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Abstract

In this PhD thesis, we study the non-stationary multi-armed bandit problem where the
non-stationarity behavior of the environment is characterized by several abrupt changes
called "change-points". We propose Memory Bandits: a combination between an algo-
rithm for the stochastic multi-armed bandit and the Bayesian Online Change-point detector
(BOCPD).

The analysis of the latter has always been an open problem in the statistical and sequential
learning theory community. For this reason, we derive a variant of the Bayesian Online
Change-point detector which is easier to mathematically analyze in term of false alarm rate
and detection delay (which are the most common criteria for online change-point detection).

Then, we introduce the decentralized exploration problem in the multi-armed bandit paradigm
where a set of players collaborate to identify the best arm by asynchronously interacting with
the same stochastic environment. We propose a first generic solution called decentralized
elimination: which uses any best arm identification algorithm as a subroutine with the guar-
antee that the algorithm ensures privacy, with a low communication cost.

Finally, we perform an evaluation of the multi-armed bandit strategies in two different context
of telecommunication networks.

First, in LoRaWAN (Long Range Wide Area Network) context, we propose to use multi-
armed bandit algorithms instead of the default algorithm ADR (Adaptive Data Rate) in order
to minimize the energy consumption and the packet losses of end-devices.

Then, in a IEEE802.15.4-TSCH context, we perform an evaluation of 9 multi-armed bandit
algorithms in order to select the ones that choose high-performance channels, using data
collected through the FIT IoT-LAB platform. The performance evaluation suggests that our
proposal can significantly improve the packet delivery ratio compared to the default TSCH
operation, thereby increasing the reliability and the energy efficiency of the transmissions.

Keywords: Non-stationary multi-armed bandits, online change-point detection, network

optimization, exploration in multi-armed bandits
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Chapter 1

Introduction

1.1 Motivations

Consider the situation in which a gambler is in front of a row of slot machines (a.k.a. one-
armed bandit) and has to decide which one to play in order to collect the maximum amount
of money. Each machine has a different winning probability, meaning that the gambler can
maximize his earnings by playing the arm with highest winning probability. However, no prior
information is given to the player. For this reason, the gambler initially may want to invest
her/his money in trying different slot machines and record all the rewards she/he collected.
As soon as there is enough evidence that an option is better than another, the player will
tend to only play consistently the best identified arm, with the purpose of maximizing the
total reward he/she gained during this process. This and many other real-world problems
can be modeled as an online decision making problem, and, more specifically, a Multi-Armed
Bandit (MAB) problem. This framework has been introduced by [135, 95, 120] and takes its
name from the aforementioned gambling example. The problem concerns an agent whose
goals is to maximize its reward (or equivalently to minimize the loss) gained during the
process of learning the option providing the largest reward.

In the literature, the MAB framework is regarded as one of the most fundamental formal-
ization of the sequential decision making problem, and in particular an illustration of the
Exploration vs. Exploitation dilemma:

• Exploration : the agent is assumed to have no prior information about the machine
payoffs. This assumption implies the need for the agent to play, i.e. to explore, arms
that were not or rarely tried.

• Exploitation : in order to gather the maximal amount of reward, the agent should play
as often as possible, or exploit, the arms with estimated best payoffs.

1.2 General problem statement

The multi-armed bandit setting considers a finite set of A actions or bandit arms. For
a ∈ A = {1 . . . A}, the a -th arm is associated with a reward distribution Pa with expectation

µa
def
= E [X ∼ Pa]. At a given time step t, the agent choose, based on the previous

observations, an arm At ∈ A and observes an instantaneous reward Xt ∼ PAt Letting T
denote a finite time horizon (T ∈ N?) , the agent’s goal is to find a policy π that maximizes



4 Chapter 1. Introduction

the cumulative sum of instantaneous rewards:

SπT =
T∑
t=1

Xt

1.3 Some applications of the multi-armed bandit domain

This section presents some applications presented in the multi-armed bandit literature. This
non-exhaustive list aims to illustrate the wide variety of successful applications of the multi-
armed bandit framework and motivate its study in the present document.

1.3.1 A/B testing

A/B testing is a standard approach for evaluating select variants in an online setting [77].
As the name implies, the technique is an experiment to determine the performance of two
options, "A" and "B". These could be ad banners or web-page formatting styles, for
example. Option "A" generally represents what is currently in use and acts as a control to
compare to option "B," though this need not be the case. In a real setting, any number of
alternative options can be tested at the same time.

During an A/B test, each option is presented to an equal number of viewers to explore its
performance. After the test concludes, the best option is identified and used exclusively,
exploiting the knowledge that was gained from the test. One drawback with A/B testing
is that it incurs "regret," which is the concept that during the test, inferior options were
presented to some viewers who may have had a better interaction with a better choice.

With a regular application of A/B testing, the regret quietly affects a company’s bottom
line over time, through less-than-ideal user experiences. For any company that regularly
runs tests to find an optimal version, minimizing regret as much as possible might provide a
significant advantage.

Bandit algorithms reduce the amount of regret that occurs with A/B tests because they
continuously balance exploration with exploitation. After every new sample, the knowledge
that was learned is used to make a better choice the next time around. Over time, the
options that perform better are used more often than the underperformers, and eventually
the best option wins out.

1.3.2 Recommendation services

Many online streaming services like Netflix, Amazon Prime, Hulu, HBO now, recommend
movies or TV shows to their users in order to increase the users’ engagement with the service.
If the service makes good recommendations, especially early in user adoption, then the users
will watch more content. Incorporating methods that adaptively respond to new users, like
multi- armed bandits, can provide a better service and generate more user engagement.

1.3.3 Network routing

Another problem with an interesting structure is network routing, where the learning agent
tries to control the internet traffic through the shortest possible path on a network [52].
At each round, the learning agent receives the start/end destinations for a packet of data.
The set of actions corresponds to the set of all possible paths starting and ending at the
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appropriate points on some graph assumed to be known. The feedback in this case is the
time it takes for the packet to be received at its destination and the reward is the negation
of this value.

Again the action set is combinatorially large with even relatively small graphs possessing an
enormous number of paths. The routing problem can obviously be applied to more physical
networks such as transportation systems used in operations research.

1.3.4 Dynamic pricing

One of the most important issues that any retailer has to solve is how to properly price
items [56]. Setting the prices too high or too low can cause bad customer experience and
dramatically effect the bottom-line of the retailer. The size of the catalog carried by a
brick-and-mortar store is very small, and because of the difficulty in changing prices, pricing
of an items is an easy problem and can be solved by carrying out elementary data analysis.
However, the presence of a large collection of products on an e-commerce website, the ability
to collect large amounts of user behaviour data easily, and also the relative ease with which
prices change can be made on a large scale, makes the problem of pricing both challenging
and rich. In traditional brick-and-mortar stores price of items tend to remain unchanged.
However, such static pricing policies do not work in an e-commerce setting. Static pricing
does not simulate the demand/price curve, nor does it allow a firm to respond to competitor
price changes. Moreover static pricing is unable to fully exploit the power of computation,
data, and the ease of implementing price changes in an online world, As a result, dynamic
pricing is the pricing policy of choice in an e-commerce setting.

1.3.5 Tree search

The Upper Confidence Tree search algorithm (UCT) [86] is an algorithm used when playing
a so-called perfect information game. In short, perfect information games are games in
which, at any point in time, each player has perfect information about all event actions that
have previously taken place. Examples of such games are Chess, Go or Tic-Tac-Toe. The
idea is to iteratively build a search tree where in each iteration the algorithm takes three
steps:

1. Chooses a path from the root to a leaf.

2. Expands the leaf (if possible).

3. Performs a Monte-Carlo roll-out to the end of the game.

The multi armed bandit algorithm is used in order to select the path from the root to the
leaves. At each node in the tree, the bandit selects the child based on the series of rewards
observed through that node so far. The resulting algorithm can be analyzed theoretically,
but more importantly has demonstrated outstanding empirical performance in game playing
problems.

1.4 Importance of the non-stationary multi-armed bandit prob-
lem

We propose that a switching environment is a good model for a wide variety of decision-
making scenarios. In this section, in order to motivate our work we briefly explore a few
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scenarios that we deem should exhibit switching behaviour.

1.4.1 Game optimization

Game playing is a typical situation where it is asked to make decisions under uncertainty.
Two or more agents compete against each other and sometimes cooperate with each other
in order to earn rewards in a game. For example in the famous card game Poker, there is a
number of agents who play together in a game [38]. Cards are dealt to each of the players
in a series of turns so that each player ignores the cards that the others have been dealt. A
player must decide whether he wishes to bid, call or fold in order to maximize the size of his
winnings. The strategy that leads to the greatest payouts for a player depends not only on
their hands and those of all other players, but also on the strategies of other competitors
(how other agents decide to bid, call, or bid). sleep). The strategies of the competitors
can be assumed to be stationary, so that in the same hand the player behaves according
to the same statistical rule. However, a common situation is that the player learns from
experience and adapts his policy based on the results of previous games. This means that
the competing agent’s strategy will change (given the same observable state, the expected
decisions will be different) during playing time. This in itself is an argument for an agent to
adapt to non-stationary environments within the framework of the game.

1.4.2 Financial markets

The bandit model for decision-making has been widely employed in the economic field in
order to model problems in financial markets. One of the first use of the bandit model
was due to Rothschild [122]. Rothschild was focusing on the process by which companies
learn to estimate the market demand for their products and services. As an illustration, let
us consider a single company estimating the market demand. The actual demand is given
by a probability distribution over the consumer valuations observable to the company. The
demand is assumed to be one of a finite set of possible values each with a prior probability
of being the true demand. The company can then set its prices in a sequence of rounds
and observe consumer valuations in order to learn what the true demand is. The problem
of Rothschild was assumed to be stationary. In [82], the authors have also considered a
similar problem to Rothschild, but the essential difference is that they have assumed that
the unknown demand is non-stationary. In the context of Venture capital funding, the author
of [128] has also considered bandit-like models, where a Venture Capitalist aims at assessing
the continued investment in some start-up companies.

Several research works on the application of bandit problems to financial markets are sum-
marised by the survey of Dirk Bergemann and Juuso Valimaki [21].

1.4.3 Network management

Networks and graph structures arise in several applications from computer networks to road
networks [101]. A network is defined by a set of nodes connected by edges. For instance,
in a computer network, the computers are represented by nodes, and the edges represent
communication channels between the nodes. Such networks are prone to various kinds of
failure. In computer network, hardware is indeed prone to failure causing nodes to become
unreachable, and thus the network structure changes fundamentally.
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We can consider that such unpredictable changes constitute a abrupt change in the net-
work behaviour. Thus, we believe that decision-making systems operating in environments
dependent on the behaviour of networks should be adaptable to sudden abrupt changes as
with a piece-wise stationary environment.

1.5 Contributions

The presented thesis brings five contributions, three of them are related to the multi-armed
bandits and statistical learning theory community and the other two are related to the
communication networks optimization community.

In this section, we provide a summary of these five contributions.

1.5.1 Contribution no 1: memory bandits for the piece-wise stationary
stochastic multi-armed bandit problem

An adaptation of the switching Thompson sampling for non-stationary multi-armed bandits
is provided. The adaptation is based on expert aggregation instead of runlength distribu-
tion sampling. Empirically, the proposal compares favorably against the original switching
Thompson Sampling for both the global and the per-arm switching settings. (This contri-
bution gave rise to a paper at NIPS-BayesOpt 2017 workshop [4]).

1.5.2 Contribution no 2: the restarted Bayesian online change-point detec-
tion strategy

A modified version of the original Bayesian online change-point detector is provided. The
proposal is easier to analyse in term of false alarm rate and detection delay. A complete
mathematical analysis of the proposal is provided. (This contribution gave rise to a paper
at ICML 2020 [5]).

1.5.3 Contribution no 3: decentralized exploration in multi-armed bandits

The decentralized exploration problem for multi-armed bandit is introduced. This problem
deals with a set of players aiming at collaborating in order to identify the best arm in an
asynchronous fashion. A generic algorithm called Decentralized Elimination is provided with
the guarantees that the privacy is ensured while the communication costs are low. (This
contribution gave rise to a paper at ICML 2019 [47]).

1.5.4 Contribution no 4: LoRa network optimization via multi-armed bandits

The optimization of the LoRaWAN technology performances is demonstrated via multi-
armed bandit algorithms where this class of learning algorithms are able to manage the
trade-off between energy consumption and packet loss. The multi-armed bandit algorithms
are used to select the communication parameters that are spreading factor and emission
power. In order to highlight the benefit of using MAB in this king of industrial use-case, the
comparison against the default strategy called ADR is performed. (This contribution gave
rise to a paper at ICT 2018 [83]).

https://bayesopt.github.io/
https://icml.cc/
https://icml.cc/
http://ict-2018.org/
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1.5.5 Contribution no 5: TSCH network optimization via multi-armed bandits

In the context of Industrial Internet of Things, an evaluation of 9 multi-armed bandit algo-
rithms against the default TSCH operation is performed where the benefit of using multi-
armed bandit strategies for the selection of high performance channels is highlighted. (This
contribution gave rise to a paper at MSWiM’18 [39]).

1.6 Thesis structure

The manuscript is organized as follows. The formal background and algorithms for the
multi-armed bandits are presented in chapter 2. Chapter 3 presents our first contribution,
and details the proposed hybridization between the Thompson Sampling algorithm and the
Bayesian online change-point detector in order to solve the piece-wise stationary stochastic
multi-armed bandit in both global and per-arm switch cases. Obviously, this hybridization
can naturally be generalized to any stochastic bandit. We are thus building the family of
memory bandits. Chapter 4 presents our second contributions, a variant of the Bayesian
online change-point detector which compares favorably with the original algorithm. We also
provide a mathematical analysis of its optimality in term of false alarm rate and detection
delay. Then, chapter 5 introduces the decentralized exploration problem in the multi-armed
bandit paradigm where a set of players collaborate to identify the best arm by asynchronously
interacting with the same stochastic environment. We propose a first generic solution called
decentralized elimination: which uses any best arm identification algorithm as a subroutine
with the guarantee that the algorithm ensures privacy, with a low communication cost.

Then the rest of the manuscript is devoted to evaluate multi-armed bandit strategies in two
different context of telecommunication networks.

Indeed, chapter 6 proposes to use multi-armed bandit algorithms instead of the default
algorithm ADR (Adaptive Data Rate) in order to minimize the energy consumption and the
packet losses of end-devices in LoRaWAN (Long Range Wide Area Network) context.

Moreover, in a IEEE 802.15.4-TSCH context, chapter 7 performs the evaluation of 9 multi-
armed bandit algorithms in order to select the ones that choose high-performance channels,
using data collected through the FIT IoT-LAB platform. The performance evaluation sug-
gests that our proposal can significantly improve the packet delivery ratio compared to the
default TSCH operation, thereby increasing the reliability and the energy efficiency of the
transmissions.

Finally, chapter 8 concludes this manuscript by discussing the presented contributions, and
proposing future research directions.

http://mswimconf.com/2018/
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Chapter 2

Multi-armed bandits: a general
background

Overview

This chapter introduces the formal background of the multi-armed bandit problem (MAB).
First, we introduce the overall overview of the multi-armed bandit world.

Then, after some definitions and notations, we present the different goals tackled by MAB
settings together with the associated evaluation criteria and loss functions known as regret.

Finally, we present the whole state of the art of the stochastic and the adversarial bandit
for the stationary and non-stationary setting.

2.1 An overview of the multi-armed bandit world

2.1.1 Multi-armed bandit model

A multi-armed bandit is formally equivalent to a one-step Markov Decision Process (MDP).

Definition 2.1: Multi-armed bandit
A MAB problem is a tuple < A, R > where:
• A is the set of A possible actions, called arms;
• R := a ∈ A −→ R(a) ∈ R is an unknown reward function depending on the chosen
action a.
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a1

a3

a2

Figure 2.1.1: Formulation of a multi-armed bandit problem with 3 arms.
When the agent selects an action, he receives a reward that depends on the

chosen action and returns to the initial (unique) state.

2.1.2 Taxonomy of multi-armed bandits

Depending on the model of the reward function R, there are different variants of the MAB
model. The taxonomy of MAB variants is summarized in Figure 2.1.2. Among the most
important characteristics of a MAB, we have that a specific problem can be:

• Stochastic vs Adversarial : in a Stochastic Multi-Armed Bandit (S-MAB) [14], the
rewards are generated from stochastic distributions. In an Adversarial Multi-Armed
Bandit (A-MAB) [15], the rewards are generated by a process that cannot be treated
as a stochastic distribution. In this latter setting, we say that the rewards are generated
by an adversary, who may take advantage of those corner cases in which a bandit
algorithm performs badly. As a consequence, adversarial algorithms must be robust to
adversary choice of the rewards.

• Stochastic Stationary vs Stochastic Non-Stationary : in a Stationary Multi-Armed
Bandit (ST-MAB), the rewards are generated from stochastic distributions which are
stationary, i.e., they do not change over time. In a Non-Stationary Multi-Armed Bandit
(NS-MAB), the stochastic distributions may change at each time.

Moreover, NS-MAB settings in which the mean reward of the arms changes at each round.
Among them, we make the following distinction:

• Abrupt changes vs Smooth changes: we call Abruptly changing Non-Stationary Multi-
Armed Bandit the setting in which the reward distributions change abruptly a number
of times which is a function of the time horizon, but the magnitude of the change
remains unbounded. We call Smoothly changing Non-Stationary Multi-Armed Bandit
the setting in which the reward distribution parameters smoothly change at each time-
step by less than a certain value.

This taxonomy is useful as it allows to correctly formalize a multi-armed bandit problem
and solve it with the right tools. Indeed, it is often unrealistic to model the real world with
stationary distributions and many problems can be modelled as non-stationary. We now
categorize the applications of the MAB model presented in Chapter 1. In online recommen-
dation systems, the designed algorithm must be able to adapt to the user having a particular
interest on one day, and thus, this situation may be modeled as a non-stationary MAB. On
the other hand, consider the task of sending packets between two nodes in a communication
network, in which there are A possible channels and the decision-maker must choose one for
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each channel in order to minimize the transmission cost. It is likely that the costs associated
with each channel cannot be modeled with stationary stochastic distribution, thus this is a
non-stationary MAB setting.

About Markovian bandits In addition to the stochastic and bandit, there is a third type of
bandit model called "Markovian". A Markovian MAB model maps each arm a to a Markov
chain [111] instead of a distribution (as for the stochastic bandit), and thus they are no
longer stochastic. There is two different kinds of Markov model: the rested model and the
restless one. For a bandit of A arms, each Markov chain has a finite number of states s,
each corresponding to a (constant) reward that the agent obtains if he selects this arm while
its Markov chain is in state s. Rested Markov models [134] means that only the state of the
selected arm’s Markov chain can change according to its Markov transition matrix. Restless
models remove this hypothesis, making them harder to track and solve. Indeed in restless
bandits [64], the state of the underlying Markov process controlling the evolution of the arm
distributions is only sparsely revealed to the agent.

Adversarial

Environment

Stochastic

Stationary Non-Stationary

Smooth non-stationaryAbrupt non-stationary

Figure 2.1.2: Taxonomy of different environments considered for the multi-
armed bandit problem

2.2 Algorithms for Multi-armed bandits

2.2.1 Problem formulation

The multi-armed bandit problem (MAB) formalizes the fundamental exploration-exploitation
dilemma that appears in decision making problems facing partial information, where decisions
have to be taken over time (discrete turns) and impact both the rewards and the information
withdrawn [92, 14, 28, 95]. Specifically, a set of A arms is available to the decision maker
(player). At each turn, he has to choose one arm and receives a reward corresponding
to the played arm, ignoring what the received reward would have been, if he had played
another arm. The player faces the dilemma of exploring, that is playing an arm whose mean
reward is loosely estimated in order to build a better estimate, or exploiting, that is playing a
seemingly best arm based on current estimates in order to maximize its cumulative reward.
The accuracy of the player policy at a given time horizon is typically measured in terms of
regret, that is the difference between the cumulative rewards of the player and the one that
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could have been acquired by a policy assumed to be optimal. The notion of optimality and
hence the algorithms depend on the environment.

Notation 1 (Useful notations for the chapter). Let us introduce the notations which will be
used in the rest of the document for stationary environments.

• A: finite set of arms of whose cardinal is A > 0.

• At : arm chosen at time t.

• Xt : reward received at time t after playing arm At .

• Pa: probability distribution of arm a ∈ A.

• µa: expectation of the distribution Pa (interpreted as expected reward for arm a).

• µ?: maximum expectation taken over all arms (i.e. µ? = maxa∈A µa).

• ∆a: optimality gap of the ath arm (i.e. ∆a = µ? − µa).

• Na,s :=
∑s
i=1 1{Ai = a}: overall number of time-steps the ath arm has been selected

up to time s.

• µ̂a,s := 1
Na,s

∑s
i=1Xi × 1{Ai = a}: empirical mean of arm a up to time s.

• ν̂a,s := 1
Na,s

∑s
i=1

(
Xi × 1{Ai = a}− µ̂a,s

)2
: empirical variance of arm a up to time s.

• T ∈ N? denotes the time horizon which might be finite or infinite.

• Ya,s : the s-th selected reward drawn from distribution Pa.

2.2.2 Notion of regret for multi-armed bandits

Two definitions of regret are introduced in the cumulative gain maximization case, respec-
tively referred to as regret and pseudo-regret. In the last case, the rewards associated to
the oracle strategy are simply set to their expectation, µ?.

Definition 2.2: Cumulative regret
With same notations as above, the cumulative regret of the agent π at time t is defined
as:

Rπt
def
= max

a∈{1...A}

t∑
s=1

Ya,s −
t∑
s=1

Xs

and the expected cumulative regret takes the following form:

EP1,...,PA [Rπt ]
def
= E

[
max

a∈{1...A}

t∑
s=1

Ya,s −
t∑
s=1

Xs

]

Definition 2.2 then tells us that the cumulative regret Rπt of a MAB policy π at time t is
the sum, up to the time t, of the differences between the rewards of the arm that would
return the highest expected reward if always pulled, and the rewards of the arms selected by
the policy π.
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A different quantity is the cumulative pseudo-regret, in which we consider the expectation
over the stochasticity of the reward process.

Definition 2.3: Cumulative pseudo regret
With same notations as above, the cumulative pseudo-regret of the MAB policy π at
time t is defined as:

Rπt
def
=

t∑
s=1

(µ? − µAs ) = tµ? −
t∑
s=1

µAs =
A∑
a=1

∆aNa,t

and the expected cumulative pseudo-regret takes the following form:

E [Rπt ] =
A∑
a=1

∆aE [Na,t ]

Thus, definition 2.3 tells us that the cumulative pseudo-regret Rπt of a MAB policy π at
time t is the sum, up to round t, of the differences between the mean of the optimal arm
a? = argmaxa∈A µa and the expectations of the arms selected by the policy π.

Lower bounds on the expected cumulative pseudo-regret

In this section, we present the two main lower bounds of the stochastic bandit, namely the
lower bound independent of the distributions (distribution free) [15] and the one distribution
dependant [91].

Theorem 2.1: Distribution-free lower bound
Let sup denote the supremum of all stochastic bandits over the segment [0, 1] and let inf
denote the infimum over all the forecasters, the following bound holds true:

infsupE [Rt ] >
1

20

√
tA (2.2.1)

Proof. See [15].

Before stating the distribution dependant lower bound in Theorem 2.2, we need to introduce
the notion of Kullback-Leibler divergence in Definition 2.4.

Definition 2.4: Kullback Leibler divergence
Let P([0, 1]) be the set of probability distributions over the segment [0, 1]. The Kullback-
Leibler divergence between two distributions P and Q is defined as follows:

KL (P,Q) =

{ ∫
[0,1]

dP
dQ log dP

dQdQ if P � Q

+∞ otherwise
(2.2.2)
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Theorem 2.2: Distribution dependant lower bound
Let us consider a bandit strategy satisfying E [Na,t ] = o (tr ) for any sub-optimal arm a (i.e.
arm a with ∆a > 0,) and any r > 0. Then, the following holds:

lim inf
T→∞

E [RT ]

logT
>

∑
a:∆a>0

∆a
Kinf (Pa, µ?)

(2.2.3)

where:
Kinf (Pa, µ

?) = inf
{
KL (Pa, v) : EX∼v [X] > µ?

}
(2.2.4)

Proof. See [92].

2.2.3 Stationary stochastic multi-armed bandits (ST-MAB)

In this section, we introduce the common strategies that deal with the stochastic stationary
settings. Stochastic multi-armed bandit problems, characterised by the presence of stochas-
tic distributions, can be handled with three different reasoning methods:

• Frequentist reasoning: the parameters of the reward distribution are scalar unknown
parameters. The strategy selects an arm at each time step based on the observed
history. Some examples are the UCB1 [14], Upper Confidence Bound 1 Tuned
(UCB1Tuned) [13] and Kullback Leibler Upper Confidence Bound (KL-UCB) [31]
strategies.

• Bayesian reasoning: the parameters of the reward distribution are random variables
with a prior distribution. The strategy selects an arm at each round based on the
posterior distribution, built using both the past observed rewards and on the provided
prior, which is updated as rewards (samples) are received. An example is the Thompson
Sampling policy [81].

• Hybrid frequentist and Bayesian reasoning: there exists policies that combines both
reasonings, for example BayesUCB [79].

Upper confidence bound

Upper confidence bound (UCB) is a suite of stationary MAB algorithms that use the frequen-
tist approach [14]. Their strategy to cope with the exploration versus exploitation problem
is to rely on the so-called optimism in face of uncertainty [92]: when the expected reward
of an arm is uncertain and the probability of it being the optimal action is high enough, the
policy favours the selection of that arm. As more samples are gathered, the estimates of
the arms rewards become more and more accurate, lessening the effect of optimism and
eventually choosing the action with highest mean reward. Following this heuristic, UCB
policies consider an upper bound Ûa,t over the empirical mean µ̂a,t of arm a and, at each
time step, select the arm with the highest upper bound.

The bound used by such policies is designed such that, with high probability:

Ûa,t := µ̂a,t + B̂a,t > µa
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that is, the upper bound on the mean of arm a must be higher than the true mean of arm
a with high probability. What is still left to define is B̂a,t . In general, we want that:

• small Na,t → large Ûa,t , because the estimated value µ̂a,t is uncertain;

• large Na,t → small Ûa,t , because the estimated value µ̂a,t is accurate;

Definition 2.5: Chernoff-Hoeffding inequality
Let X1, ..., Xt be random variables with support in [0, 1] and with identical mean E [Xi ] = µ,
then, for all ε > 0 the following holds:

P
(∣∣∣1
t

t∑
i=1

Xi − µ
∣∣∣ > ε) 6 2 exp

(
−2ε2 × t

)

The pseudo-code of UCB 1 is described in Algorithm 2.1.

Algorithm 2.1 UCB 1 [14]

Require: T : Horizon, A: Arm set
1: Initialization:

∀a ∈ A Na,0 = 0

2: Define:

IUCB1
a,t−1 :=

∞ if Na,t−1 = 0

µ̂a,t−1 +
√

2
Na,t−1

log (t − 1) otherwise
(2.2.5)

3: for t = 1, . . . , T do
4: Choose action At ← argmaxa I

UCB1
a,t−1.

5: Observe Xt and update IUCB1
a,t according to Eq.(2.2.5).

6: end for

In term of theoretical guarantees, the regret upper bound of UCB 1 is given in Theorem 2.3.

Theorem 2.3: UCB 1 regret upper bound
For the stationary bandit Θ =

(
P1, ...,PA

)
, the regret of UCB1 strategy after T rounds

takes the following upper bound:

E
[
RUCB1
T (Θ)

]
6

8
∑

a:∆a>0

(
logT

∆a

)+

(
1 +

π2

3

)(
A∑
a=1

∆a

)

Proof. See [14].

From Theorem 2.3, the UCB 1 strategy is asymptotically order optimal; its cumulative
pseudo-regret reaches the distribution dependant lower bound (Theorem 2.2) up to a mul-
tiplicative constant.
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Variance estimates for Multi-Armed Bandit

UCB Tuned The UCB Tuned algorithm introduced in [13] exploits the idea of exploiting
the empirical variance ν̂a,t of the arm a to build its index at time t. Informally, everything
else being equal, an arm with large variance should be explored more often than an arm with
small variance. The pseudo-code of UCB Tuned is described in Algorithm 2.2.

Algorithm 2.2 UCB Tuned [13]

Require: T : Horizon, A: Arm set, p > 0: hyper-parameter.
1: Initialization:

∀a ∈ A Na,0 = 0

2: Define:

B′a,s,t :=

√
2ν̂a,s log (4tp)

s
+

16 log (4tp)

3s
(Confidence sequences)

IUCBTuned
a,t−1 :=

{
∞ if Na,t−1 = 0

µ̂a,t−1 + B′a,Na,t−1,t−1 otherwise
(2.2.6)

3: for t = 1, . . . , T do
4: Choose action At ← argmaxa min

{
IUCBTuned
a,t−1 , 1

}
.

5: Observe Xt and update IUCBTuned
a,t according to Eq.(2.2.6).

6: end for

In term of theoretical guarantees, the regret upper bound of UCB Tuned is given in Theorem
2.4.

Theorem 2.4: UCB Tuned regret upper bound
For the stationary bandit Θ =

(
P1, ...,PA

)
, if p > 2, then the regret of UCB Tuned strategy

after T rounds takes the following upper bound:

E
[
RUCBTuned
T (Θ)

]
6 16

[
log(4) + p logT

] ∑
a:∆a>0

(
1 +

σ2
a

2∆a

)
+ 2

(
1 +

1

p − 2

) ∑
a:∆a>0

∆a

where: σ2
a = EX∼Pa

[(
X − EX∼Pa [X]

)2
]
denotes the variance of the distribution Pa.

Proof. See [13].

From Theorem 2.4, the UCB-Tuned strategy is asymptotically order optimal; its cumula-
tive pseudo-regret reaches the distribution dependant lower bound (Theorem 2.2) up to a
multiplicative constant.

UCB V Like UCB Tuned, the UCB V algorithm is also based on the use of empirical
variance to construct a better estimate of the index of each arm. One can quite simply
consider that the algorithm UCB V is a generalized version of the algorithm UCB Tuned, by
using any non decreasing function t −→ Et instead of the particular function t −→ log(4tp).
We describe the UCB V algorithm in Algorithm 2.3.
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Algorithm 2.3 UCB V [12]

Require: c > 0, T : Horizon, (Et)t>0 : t −→ Et is non decreasing, A: Arm set.
1: Initialization:

∀a ∈ A Na,0 = 0

2: Define:

∀a ∈ A Ba,s,t :=

√
2ν̂a,sEt
s

+ c ×
3bEt
s

(Bias sequences)

IUCBV
a,t−1 :=

{
∞ if Na,t−1 = 0

µ̂a,t−1 + Ba,Na,t−1,t−1 otherwise
(2.2.7)

3: for t = 1, . . . , T do
4: Choose action At ← argmaxa I

UCBV
a,t−1 .

5: Observe Xt and update IUCBV
a,t according to Eq.(2.2.7).

6: end for

In term of theoretical guarantees, the regret upper bound of UCB Tuned is given in Theorem
2.5.

Theorem 2.5: UCB V regret upper bound
For the stationary bandit Θ =

(
P1, ...,PA

)
, if c = 1 and Et = ζ log t for ζ > 0 Then, there

exists a constant cζ that only depends on ζ such that the regret of UCBV strategy after T
rounds takes the following upper bound:

E
[
RUCBV
T (Θ)

]
6 cζ

∑
a:∆a>0

(
σ2
a

∆a
+ 2b

)
logT

where: σ2
a = EX∼Pa

[(
X − EX∼Pa [X]

)2
]
denotes the variance of the distribution Pa.

Proof. See [12].

From Theorem 2.5, the UCB-V strategy is asymptotically order optimal; its cumulative
pseudo-regret reaches the distribution dependant lower bound (Theorem 2.2) up to a mul-
tiplicative constant.

KL-UCB

The KL-UCB algorithm follows the same spirit as the UCB1 algorithm presented above, it
is an index policy (see Algorithm 2.4), which also builds upper confidence bounds on the
unknown mean of each arm.

The KL-UCB algorithm originates from the work of T.L. Lai, and was popularized under this
name in [103] and later in [31]. The analysis of [31] is provided for Bernoulli and discrete
distributions, while [103] considers also one-dimensional exponential families. A specific
version called kl-UCB was introduced in [57] for bounded rewards
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Instead of using a confidence bound based on Hoeffding’s inequality, the kl-UCB algorithm
rather uses Chernoff’s concentration inequality for the considered exponential family (see
equation 2.2.8).

We describe the KL-UCB algorithm in Algorithm 2.4.

Algorithm 2.4 KL-UCB [57]

Require: f (t): ..., T : Horizon, A: Arm set.
1: Initialization:

∀a ∈ A Na (0) = 0

2: Define:

IKL-UCB
a,t−1 :=

∞ if Na,t−1 = 0

max
{
µ̃ ∈ [0, 1] : KL (B (µ̂a,t−1) ,B (µ̃)) 6 log f (t)

Na,t−1

}
otherwise

(2.2.8)

3: for t = 1, . . . , T do
4: Choose action At ← argmaxa I

KL-UCB
a,t−1 .

5: Observe Xt and update IKL-UCB
a,t according to Eq.(2.2.8).

6: end for

In term of theoretical guarantees, the regret upper bound of KL-UCB for the Bernoulli bandit
(where Pa the probability distribution of arm a ∈ A is a Bernoulli distribution (see Definition
2.6)) is given in Theorem 2.6.

Definition 2.6: Bernoulli distribution
A Bernoulli distribution (B (θ)) has support on {0, 1} with one parameter θ ∈ [0, 1] with
probability density function:

DB(θ) (x) = θx × (1− θ)1−x

Theorem 2.6: KL-UCB regret upper bound
For the stationary Bernoulli bandit Θ =

(
B (θ1) , ...,B (θA)

)
and choosing the function

f (t) = log t + c log log t and the parameter c = 3, the regret of KL-UCB after T rounds
takes the following upper bound:

∀ε > 0,∃C1 > 0, C2(ε) > 0, C3(ε) > 0 :

E
[
RKL-UCB
T (Θ)

]
6

∑
a:∆a>0

∆a

(
(1 + ε)

KL (B (θa) ,B (θ?))
logT + C1 log(logT ) +

C2(ε)

TC3(ε)

)

Proof. See [31].

From Theorem 2.6, the KL-UCB strategy is asymptotically optimal; its cumulative pseudo-
regret reaches the distribution dependant lower bound (Theorem 2.2).
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Thompson Sampling

Thompson Sampling [81] is a multi-armed bandit strategy which uses the Bayesian approach.
It needs a Bayesian prior for each arm as a starting point, which encodes the initial belief
that a learner has on each reward distribution associated to each arm. Subsequently, at
each round t, it samples from each arm distribution, chooses the action with highest sample
and updates its distribution using the Bayes’s rule with the received reward. The updated
distribution is called the posterior distribution. The Bayes’s rule states the following:

P (H | D) =
P (H)P (D | H)

P (D)

In the formula we can distinguish:

• P (H) is the prior distribution;

• P (D | H) is the probability of generating data D from hypothesis H also called likeli-
hood;

• P (H | D) is the posterior distribution, that is the prior updated with data D;

• P (D) is the normalizing constant, which is needed in order to obtain a probability
distribution as posterior.

In general, it is not easy to compute the posterior distribution, except for specific choices
of the prior distribution and the likelihood function such that the prior and the posterior
distributions are from the same family: the prior and the posterior are then called conjugate
distributions, and the prior is called conjugate prior for the likelihood function [50]. For
example, the beta family is conjugate to itself with respect to a Bernoulli likelihood, and the
Gaussian family is conjugate to itself with respect to a Gaussian likelihood.

We consider now the simple case of a MAB with Bernoulli rewards, i.e. arms that provide a
reward of value one with probability µ and zero otherwise. As previously stated, if the prior
is a Beta distribution and the Bernoulli samples are i.i.d. (i.e., independent and identically
distributed), then the posterior distribution is a Beta distribution too. In the following, we
recall the formal definition of the Beta distribution.

Definition 2.7: Beta distribution
A Beta distribution (Beta (α, β)) has support on [0, 1] with two parameters α > 0, β > 0

with probability density function:

DBeta(α,β) (x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

where Γ is the Gamma function. For integers x > 1,Γ(x) = (x − 1)!.

If x is a random variable distributed from the Beta distribution with parameters (α, β), we
have Ex∼Beta(α,β) [x ] = α

α+β .

The Beta posterior distribution can be computed in the following way, where Xt ∈ [0, 1] is
the new reward received:
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P (µ = θ | Xt)︸ ︷︷ ︸
posterior

∝ P (Xt | µ = θ)︸ ︷︷ ︸
likelihood

P (µ = θ)︸ ︷︷ ︸
prior

(2.2.9)

= DB(θ) (Xt)×DBeta(α,β) (θ)

= θXt (1− θ)1−Xt Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

=
Γ(α+ β)

Γ(α)Γ(β)
θα+Xt−1(1− θ)β−Xt

∝
Γ(α+ β + 1)

Γ(α+Xt)Γ(β + 1−Xt)
θα+Xt−1(1− θ)β−Xt

= DBeta(α+Xt ,β+1−Xt) (θ)

Therefore, starting with a Beta with parameters α = 1 and β = 1, i.e., a uniform distribution
over [0, 1], after observing n i.i.d. samples from a Bernoulli distribution, the posterior is
a Beta (# (reward = 1) + 1,# (reward = 0) + 1). Thus, when a new sample arrives, the
policy just updates α or β depending on the new sample being a one or a zero. The
Thompson Sampling algorithm for Bernoulli ST-MAB with Beta priors is defined in Algorithm
2.5.

Algorithm 2.5 Thompson Sampling with Beta prior [81]

Require: T : Horizon, s0, f0 > 0: Beta prior hyper-parameters, A: Arm set.
1: Initialization:

∀a ∈ A Sa,0 = s0, Fa,0 = f0
2: Define:

ITS
a,t−1 ∼ Beta (Sa,t−1, Fa,t−1) (2.2.10)

3: for t = 1, . . . , T do
4: Choose action At ← argmaxa I

TS
a,t−1.

5: Observe Xt and update Sa,t = Sa,t−1 +Xt , Fa,t = Fa,t−1 + 1−Xt .
6: end for

In term of theoretical guarantees, the regret upper bound of Thompson Sampling is given
in Theorem 2.7.

Theorem 2.7: Thompson Sampling regret upper bound
For the stationary Bernoulli bandit Θ =

(
B (θ1) , ...,B (θA)

)
, the regret of Thompson

Sampling after T rounds takes the following upper bound:

∀ε > 0 ∃cε,Θ : E
[
RTS
T,ε (Θ)

]
6 (1 + ε)

∑
a:∆a>0

∆a (logT + log logT )

KL (B (θa) ,B (θ?))
+ cε,Θ

Proof. See [81].
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From Theorem 2.7, the Thompson Sampling strategy is asymptotically optimal; its cumu-
lative pseudo-regret reaches the distribution dependant lower bound (Theorem 2.2).

Bayes UCB

The Bayes UCB introduced in [79] also uses the Bayesian point of view, updated like for
Thompson sampling, but used in a different way. Instead of sampling from the posteriors
and playing he arms with maximum sample, Bayes-UCB computes the (1− 1/ (t(ln(t))c)

quantile of each rm, at time t, and plays the arm with the largest quantile.

Algorithm 2.6 Bayes UCB [79]

Require: T : Horizon, s0, f0 > 0: Beta prior hyper-parameters, c : parameter of the quantile,
A: Arm set.

1: Initialization:
∀a ∈ A Sa,0 = s0, Fa,0 = f0

2: Define:

IBayesUCB
a,t−1 = Q

(
1−

1

(t log t)c
,Beta (Sa,t−1, Fa,t−1)

)
(2.2.11)

3: for t = 1, . . . , T do
4: Choose action At ← argmaxa I

BayesUCB
a,t−1 .

5: Observe Xt and update Sa,t = Sa,t−1 +Xt , Fa,t = Fa,t−1 + 1−Xt .
6: end for

In term of regret upper bound, Bayes UCB was proven to achieve in asymptotical optimal
problem-dependent bound for binary (Bernoulli) bandits [79] as we can notice from Theorem
2.8.

Theorem 2.8: Bayes UCB regret upper bound
For the stationary Bernoulli bandit Θ =

(
B (θ1) , ...,B (θA)

)
and choosing the parameter

of the quantile c > 5, the regret of Bayes UCB after T rounds takes the following upper
bound:

∀ε > 0 : E
[
RBayesUCB
T (Θ)

]
6

∑
a:∆a>0

(1 + ε) ∆a
KL (B (θa) ,B (θ?))

logT + oε,c
( ∑
a:∆a>0

∆a logT
)

Proof. See [79].

From Theorem 2.8, the Bayes UCB strategy is asymptotically optimal; its cumulative
pseudo-regret reaches the distribution dependant lower bound (Theorem 2.2).

2.2.4 Non-stationary stochastic multi-armed bandits

A non stationary multi-armed bandit is a stochastic MAB problem in which the distribution
of at least one arm changes before the horizon T . Formally:



24 Chapter 2. Multi-armed bandits: a general background

Definition 2.8: Non-stationary multi-armed bandit
A non-stationary multi-armed bandit problem is a tuple < A, R > where:
• A is the set of possible actions;
• R := a ∈ A −→ R(a, t) ∈ R is an unknown reward distribution depending on the chosen
action a at time t, where ∃a ∈ A, t1, t2 s.t. R (a, t1) 6= R (a, t2)

Notation 2 (Useful notations for non-stationary bandits). For the non-stationary bandit, we
will need to extend some notations introduced previously so that they are valid in the case
of non-stationary distributions.

• Pa,t : probability distribution of arm a ∈ A at time t.

• µa,t : expectation of the distribution Pa,t (Expected reward for arm a at time t).

• µ?t : maximum expectation taken over all arms at time t (i.e. µ?t = maxa∈A µa,t).

• ∆a,t : optimality gap of the ath arm at round t (i.e. ∆a,t = µ?t − µa,t).

In the case on non-stationary multi-armed bandits, the regret definition becomes the follow-
ing:

Definition 2.9: Dynamic regret
The dynamic pseudo-regret of a policy π on a non-stationary multi-armed bandit problem is
defined as:

E [Rπt ] =
t∑
s=1

E (µ?s − µAs )

Obviously, the expectation in Definition 2.9 is computed with regard to the stochasticity of
the policy π.

In the literature, there are essentially two kinds of strategies for the non-stationary multi-
armed bandit: passively adaptive policies and actively adaptive policies.

• Passively adaptive strategies

In order to forget the past rewards, the first passively adaptive strategies propose
to penalize the past rewards by multiplying them with a discount factor γ ∈

(
0, 1

)
such that the penalization is of γs if the arm was not seen since s time steps. The
Discounted UCB (D-UCB) was first proposed by [87] and then it has been analyzed
by [58]. Another popular mechanism to forget the past rewards is to use a sliding
window of fixed size τ , where only the τ last rewards are used for the decision-maker.
There are also other recent algorithms such as Discounted Thompson Sampling [119],
Thompson Sampling with sliding window [136] and REXP3 [22] that use passively
adaptive mechanisms.

• Actively adaptive strategies

There is a large literature exploring the idea of monitoring the change in the reward
distribution via online change-point detection and triggering the reset of the ban-
dit algorithm. This kind of algorithm aims at localizing the change-point and hence
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demonstrate better performances than the passive policies. The Adapte-EvE algo-
rithm [66] uses the Page-Hinkley test to detect the change-point and hence restart
the UCB1 strategy once an alarm is raised. Then, in [105], the authors provide a
combination between the Bayesian online change-point detector [2] and Thompson
Sampling. A recent and related work [97] uses CUSUM algorithm for change-point
detection. Furthermore, the Monitored UCB algorithm (M-UCB) [30] also combines
a CUSUM instance with UCB. However, the change-detection test is much easier and
a forced exploration phase is also performed. Moreover, in [24] the authors propose a
hybrid combination between KL-UCB algorithm and a Bernoulli Generalized Likelihood
Ratio Test for change-point detection.

Non-stationary multi armed bandit
strategies

Actively adaptive strategy Passively adaptive strategy

Discounted
rewards

Sliding windowed
rewards

Change detection
algorithms

Bandit algorithm

Non-stationary bandit
environment

Reward Arm

Reset

Figure 2.2.1: Taxonomy of non-stationary multi-armed bandits. There are
two main families of algorithms for the non-stationary multi-armed bandit.
The actively adaptive strategies which are adapted to the abrupt change of
environment and the passively adaptive strategies which are more adapted to

smooth changes.

Model of non-stationary environments: the switching model

Real decision-making scenarios take place in environments that change over time. We
therefore want to design algorithms that assume the environment changes over time.

For the non-stationary bandits, we assume abrupt switching defined by a hazard function,
h(t), such that:

µa,t =

{
µa,t−1 with probability h(t)

µnew ∈ [0, 1] with probability 1− h(t)
(2.2.12)
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The algorithms are designed with two such models in mind. The first model is referred to
as the Global Switching model. This model switches at a constant rate (ρ ∈ [0, 1]); when
a change point happens all arms change their expected rewards. The second model will be
referred to as Per-Arm Switching. In this model change points occur independently for each
arm, such that the times when arms switch are uncorrelated from each other (see Figure
2.2.2 for a simple illustration of these two models).

In the following, we let ΥT denoting the overall number of change-points up to time T .

change

T
IM

E

change

change

Global switching Per Arm switching

Figure 2.2.2: Global and per-arm switching models. In the global switching
model, when a change point happens all arms change their expected rewards.
In the per-arm switching model, change points occur independently for each
arm, such that when the expected reward switches for one arm, it is uncor-

related to when all other arms switch.

Passively adaptive strategies

Discounted rewards The Discounted UCB (D-UCB) algorithm is an adaptation of the
UCB algorithm, first introduced in [87]. It works by decreasing all the past rewards by a
discount factor γ ∈ (0, 1), when receiving a new reward from an arm, so that the recent
rewards weight more in the (discounted) empirical means, that are used for the computation
of its UCB indexes. Indeed, the D-UCB build the index ID-UCB

a,t of arm a at time t by
exploiting the discounted empirical mean µ̂γa,t of arm a at time t. The index ID-UCB

a,t takes
the following form:

ID-UCB
a,t = µ̂γa,t +

√√√√ 2

Nγa,t
log

(∑
a∈A

Nγa,t

)

where: µ̂γa,t :=
1

Nγa,t

s∑
i=1

γt−i1{Ai = a}Xi and: Nγa,t :=
t∑
i=1

γt−i1{Ai = a}
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We summarize the discounted UCB strategy in Algorithm 2.7.

Algorithm 2.7 Discounted UCB [106]

Require: γ ∈ (0, 1): discount factor, T : Horizon, A: Arm set
1: Initialization:

∀a ∈ A Nγa,0 = 0

2: Define:

ID-UCB
a,t−1 :=


∞ if Nγa,t−1 = 0

µ̂γa,t−1 +

√
2

Nγa,t−1
log
(∑

a∈AN
γ
a,t−1

)
otherwise

(2.2.13)

3: for t = 1, . . . , T do
4: Choose action At ← argmaxa I

D-UCB
a,t−1 .

5: Observe Xt and update ID-UCB
a,t according to Eq.(2.2.13).

6: end for

The regret of D-UCB was proven to be upper-bounded by O
(√

ΥTT ln(T )
)
in [58], with a

tuning γ = 1−
√

ΥT /T/4, dependent on ΥT .

Sliding windowed rewards The Sliding-Window UCB (SW-UCB), proposed by [58], uses
a sliding window of a fixed size τ, to store only the most τ recent rewards for each arm.
Indeed, the SW-UCB build the index ISW-UCB

a,t of arm a at time t by exploiting the sliding
windowed empirical mean µ̂τa,t of arm a at time t. The index ISW-UCB

a,t takes the following
form:

ISW-UCB
a,t = µ̂τa,t +

√
2

Nτa,t
log (min {τ, t})

where: µ̂τa,t :=
1

Nτa,t

t∑
i=t−τ+1

1{Ai = a}Xi and: Nτa,t :=
t∑

i=t−τ+1

1{Ai = a}

We summarize the SW-UCB strategy in Algorithm 2.8.

Algorithm 2.8 Sliding window UCB [106]

Require: τ > 0: sliding window size, T : Horizon, A: Arm set
1: Initialization:

∀a ∈ A Nτa,0 ← 0

2: Define:

ISW-UCB
a,t−1 :=

∞ if Nτa,t−1 = 0

µ̂τa,t−1 +
√

2
Nτa,t−1

log (min {τ, t − 1}) otherwise
(2.2.14)

3: for t = 1, . . . , T do
4: Choose action At ← argmaxa I

SW-UCB
a,t−1 .

5: Observe Xt and update ISW-UCB
a,t according to Eq.(2.2.14).

6: end for

They prove that tuning its window-size to τ = 2
√
T ln(T )/ΥT , gives a bound on the regret

of SW-UCB of the form O
(√

ΥTT ln(T )
)
.



28 Chapter 2. Multi-armed bandits: a general background

Actively adaptive strategies

Adapte-Eve

Adapt-EvE [66] is an actively adaptive policy that uses UCB1-Tuned as sub-algorithm and
employs a Page-Hinkley test (PHT) [70] to detect decreases in the mean of the optimal
arm. Whenever a change-point is detected, a meta-bandit transient phase starts, whose
goal is to choose between two options: reset the sub-algorithm or not. This policy, like
other actively adaptive policies, can be generalised with any stationary sub-policy and any
change-point detector (CDT) instead of the PHT. However, the PHT procedure provably
minimizes the expected time before detection [100].

When the CDT signals an alarm, the algorithm enters a specific transient Exploration vs
Exploitation strategy implemented as a meta-bandit. This transient phase is considered as
another bandit problem where the two options are:

• restarting the sub-algorithm from scratch;

• discarding the change detection and keeping the same strategy as before.

In the meta-bandit phase, the policy selects at each round the old bandit or the new bandit
and gradually decides if the result of the CDT was a false alarm or not. After M time-steps,
the meta-bandit phase finishes and the best meta-option becomes the new core algorithm.
This process is shown in the flowchart in Figure 4.1.

Adapt-EvE designers tried experimentally to use past samples after an alarm is raised to
bootstrap the sub-policy [66]. They call this technique γ restart, which is implemented by
decreasing the estimation effort (i.e., Na,t) for all the actions after an alarm is triggered:

Na,t → γNa,t ∀a ∈ A, γ ∈ [0, 1]

where γ represents the amount of "memory" of the sub-algorithm to be kept. If the alarm
is a false alarm, a big γ would help in preserving inertia and

keep exploiting. On the other hand, a big γ would hinter the exploration if the CDT was
right. Experimentally [66], it turns out that γ = 0 is the optimal setting, i.e. restarting the
sub-algorithm from scratch.

There is no proven upper bound on the regret of Adapt-EvE up to now, thus the parameters
of the algorithm must be decided with a trial and error procedure.

Monitored UCB

The Monitored UCB (M-UCB) algorithm was introduced in [30]. It uses a specific and simple
instance de CUSUM as change-point detector. The CUSUM test is quite complicated and it
is parametric: it uses the first w samples (for a fixed w ∈ N?) from one arm to compute the
index of arm a at time t denoted as IM-UCB

a,t , and then builds two random walks, using the
remaining observations for this arm. A change is detected when one of the random walks
crosses a threshold b. It requires the tuning of three parameters, w and b as well as a drift
correction parameter γ ∈ (0, 1). We describe the M-UCB strategy in Algorithm 2.9.
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Algorithm 2.9 Monitored UCB [30]

Require: γ ∈ (0, 1), T : horizon, A: arm set, A: number of arms, w > 0: window size,
b > 0 change-point threshold.

1: procedure M-UCB(T,A, A, γ, w, b)
2: Initialization:

τ ← 0,∀a ∈ A Na ← 0

3: for t = 1...T do . Interaction with environment
4: At ← ArmSelection (t, τ,A, A, γ)

5: Observe Xt and update NAt ← NAt + 1, ZAt ,NAt ← Xt .

6: if ChangeDetection
(
w, b, ZAt ,NAt−w+1, ..., ZAt ,NAt

)
= True then

7: τ ← t + 1,∀a ∈ A Na ← 0

8: end if
9: end for

10: end procedure
11:

12: procedure ChangeDetection(w, b, z1, ..., zw )
13: if

∣∣∑w/2
i=1 zi −

∑w
i=w/2+1 zi

∣∣ > b then return True
14: else return False
15: end if
16: end procedure
17:

18: procedure ArmSelection(t, τ,A, A, γ)
19: At ← (t − τ)modbA/γc
20: if At > A then
21: ∀a ∈ A IM-UCB

a,t := 1
Na

∑Na
i=1 Za,i +

√
2 log(t−τ)

Na

22: At ← argmaxa∈A IM-UCB
a,t

23: end if
24: return At
25: end procedure

In term of regret, it has been shown that the Monitored UCB strategy achieves a cumulative
pseudo-regret upper bound of the order of O(

√
ΥTAT logT ) for any fixed window size

w ∈ N, where υT denotes the number of change-points observed up to time T .

Switching Thompson Sampling

In what follows, we present a detailed version of the Switching Thompson Sampling algorithm
introduced in [105] for the case of a global switch and a per-arm switch. Chapter 3 is
dedicated to the detailed analysis of this algorithm.

Let Dt−1 = {X1, ..., Xt−1} denotes the sequence of observations from the starting time
t = 1 until t − 1. In order to extend the Thompson Sampling to the global switching
environment setting, it is necessary to correct the sampling from P(θ|Dt−1) which is the
distribution of the arms given the data so far. In a switching setting, the arms model θ
depends only the data observed since the last global change occurs. To characterize the
occurrence of changes, we introduce the notion of "runlength" which is the overall time
steps since the last change-point. We denote the length of the current run at time t by rt .
Since rt is unknown, we can consider it as a random variable taking values in N and then
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marginalise it out to compute P(θ|Dt−1) as follow:

P(θ|Dt−1) =
∑
rt

P(θ|Dt−1, rt)× P(rt |Dt−1)

We denote by RT = {rt} ⊂ N the set of all possible runlengths at time t. So, sampling from
P(θ|Dt−1) is done in two steps. We start by sampling the runlength distribution P(rt |Dt−1),
and then given this runlength we sample θ from P(θ|Dt−1, rt). The agent pulls then the arm
maximizing the arm model θ.

Computation of P(rt |Dt−1) Adams and MacKay [2007] have proposed an online recursive
runlength estimation in order to calculate the runlength distribution P(rt |Dt−1). To find

P(rt |Dt−1) =
P(rt ,Dt−1)

P(Dt−1)
(2.2.15)

we seek the joint distribution over the past estimated runlengths Rt−1:

P(rt |Dt−1) =
∑

rt∈Rt−1

P(rt , rt−1,Dt−1) (2.2.16)

=
∑

rt∈Rt−1

P(rt , Xt |rt−1,Dt−2)× P(rt−1|Dt−2) (2.2.17)

=
∑

rt∈Rt−1

P(rt |rt−1)× P(Xt |rt−1,Dt−2)× P(rt−1|Dt−2) (2.2.18)

So, given the previous runlength distribution P(rt−1|Dt−2), one can thus construct a
message-passing algorithm for the current runlength distribution P(rt |Dt−1) by calculating:

1. the predictive distribution P(Xt |rt−1,Dt−2)

2. the changepoint prior P(rt |rt−1)

It should be noted that at each time t, the runlength either continues to grow and then
rt = rt−1 + 1 or a global switch occurs which implies that rt = 0. By this way, the recursive
runlength distribution estimation becomes:

• Growth probability:

P(rt = rt−1 + 1|Dt−1) = P(rt |rt−1)× P(Xt |rt−1,Dt−2)× P(rt−1|Dt−2) (2.2.19)

• Changepoint probability:

P(rt = 0|Dt−1) =
∑

rt∈Rt−1

P(rt |rt−1)× P(Xt |rt−1,Dt−2)× P(rt−1|Dt−2) (2.2.20)

Changepoint Prior According to Eq.(4.3.4) and Eq.(4.3.5), the runlength distribution
estimation need to compute the changepoint prior P(rt |rt−1), which is done following 9.2.3:

P(rt |rt−1) =

{
ρ if rt = 0

1− ρ if rt = rt−1 + 1
(2.2.21)
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Then Eq.(4.3.4) and Eq.(4.3.5) become:

P(rt = rt−1 + 1|Dt−1) = (1− ρ)× P(Xt |rt−1,Dt−2)× P(rt−1|Dt−2) (2.2.22)

P(rt = 0|Dt−1) =
∑

rt∈Rt−1

ρ× P(Xt |rt−1,Dt−2)× P(rt−1|Dt−2) (2.2.23)

Predictive Distribution P(Xt |rt−1,Dt−2) The predictive distribution P(Xt |rt−1,Dt−2) is
built on exponential family likelihoods. The inference is established by a finite number of
sufficient statistics which are updated incrementally as new datum Xt arrives. In the case
of Bernoulli rewards, and denoting µAt (t) the expectation of the arm pulled at time t, and
Xt the associated reward, one can easily verify that:

P(Xt |µAt (t)) = exp (Xt logµAt (t) + (1−Xt) log (1− µAt (t))) (2.2.24)

which is an exponential likelihood of natural parameter ηAt (t) =

〈logµAt (t), log (1− µAt (t))〉 and sufficient statistics t(Xt) = 〈Xt , 1−Xt〉.

If confusion isn’t caused, we will write:

P(Xt |ηAt (t)) = P(Xt |µAt (t)) = exp
(
ηAt (t)× t(Xt)>

)
(2.2.25)

Conjugate-exponential families allow us to write both the prior and the posterior as an
exponential family distribution over the natural parameter ηAt (t) which is controlled by
succinct hyperparameters SAt (t) and FAt (t).
In the case of Bernoulli reward, the posterior distribution of arm At is a Beta distribution of
parameters SAt (t) and FAt (t) whose likelihood is written as:

P (ηAt (t) | SAt (t),FAt (t)) =
exp ((SAt (t)− 1) logµAt (t) + (FAt (t)− 1) log (1− µAt (t)))

Beta (SAt (t),FAt (t))
(2.2.26)

which is obviously an exponential likelihood of natural parameter χAt (t) =

〈SAt (t) − 1,FAt (t) − 1〉 and sufficient statistics ηAt (t). It should be noted that
Beta (SAt (t),FAt (t)) denotes the evaluation of Euler Beta function at the points SAt (t),
FAt (t).

Because of the global switching behavior of the environment, the hyperparameters
SAt and FAt and the natural parameter ηAt (t) depend only on the previous runlength rt−1

instead of the overall interaction t. So, the posterior distribution of arm At becomes:

P (ηAt (rt−1) | SAt (rt−1),FAt (rt−1)) =
exp (χAt (rt−1)× ηAt (rt−1))

Beta (SAt (rt−1),FAt (rt−1)))
(2.2.27)

Knowing the previous runlength rt−1, we can easily get SAt (rt−1) and FAt (rt−1). Without
causing confusion, we write:

P (ηAt (rt−1)|rt−1) = P (ηAt (rt−1)|SAt (rt−1),FAt (rt−1)) (2.2.28)
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Then, the predictive distribution P(Xt |rt−1,Dt−2) naturally comes by marginalizing out the
natural parameter ηAt (rt−1) following 2.2.25 and 2.2.28:

P(Xt |rt−1,Dt−2) =

∫
P(Xt |ηAt (rt−1))× P (ηAt (rt−1)|rt−1) dηAt (rt−1) (2.2.29)

Finally, to establish the desired inference we follow the hyperparameters updating rule inspired
by the classical Thompson Sampling. Indeed, the update rules are written as follows:

SAt (rt = rt−1 + 1) = SAt (rt−1) + I(Xt = 1).

FAt (rt = rt−1 + 1) = FAt (rt−1) + I(Xt = 0).

SAt (rt = 0) = s0.

FAt (rt = 0) = f0.

We describe the detailed operation of the switching Thompson Sampling algorithm in the
case of a global switching setting in Algorithm 2.10 (We use the notation ptr = P(rt =

r |Dt−1) to denote the runlength distribution at time t).
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Algorithm 2.10 Global Switching Thompson sampling

Require: ρ ∈ (0, 1): switching rate, s0, f0 > 0: Beta prior hyper-parameters, T : horizon,
A: arm set.

1: procedure GLOBAL.S-TS(ρ, s0, f0, T,A)
2: t ← 1 . Initialize interaction
3: {p}t ← {}, pt0 ← 1, {p}t ← {p}t ∪ pt0 . Initialize runlength distribution
4: ∀a ∈ A S t

0,a ← s0,F t
0,a ← f0 . Initialize hyperparameters

5: for t 6 T do . Interaction with environment
6: At ← ArmSelection({p}t , {S }t , {F}t)
7: Xt ← PlayArm(At)

8: {p}t+1 ← RunlengthDistributionUpdate({p}t , {S }tAt , {F}
t
At
, Xt , ρ)

9: {S }t+1 , {F}t+1 ← ArmsModelUpdate({S }tAt , {F}
t
At
, Xt)

10: end for
11: end procedure
12:

13: procedure ArmSelection({p}t , {S }t , {F}t)
14: Draw r with probability ptr
15: ∀a ∈ A θa ∼ Beta

(
S t
r,a,F

t
r,a

)
16: return argmaxa θa
17: end procedure
18:

19: procedure RunlengthDistributionUpdate({p}t , {S }tAt , {F}
t
At
, Xt , ρ)

20: define:
likelihoodtr :=


S t
r,At

S t
r,At

+F t
r,At

if Xt = 1

F t
r,At

S t
r,At

+F t
r,At

otherwise

21: pt+1
r+1 ← (1− ρ)× likelihoodtr × ptr

22: pt+1
0 ←

∑
r ρ× likelihoodtr × ptr

23: Normalise {p}t+1

24: return {p}t+1

25: end procedure
26:

27: procedure ArmsModelUpdate({S }tAt , {F}
t
At
, Xt)

28: S t+1
r+1,At

← S t
r,At

+Xt

29: F t+1
r+1,At

← F t
r,At

+ 1−Xt
30: ∀a ∈ A,S t+1

0,a ← s0,F
t+1
0,a ← f0

31: return {S }t , {F}t

32: end procedure

Extension to the per-arm switching setting For the case of per-arm switching setting,
the switching Thompson sampling algorithm can easily be extended in this case by considering
a runlength distribution {p}ta for each arm a ∈ A at time t.

Thus, in the per-arm switching setting, at a time-step t we update the runlength distribution
model associated with the arm At that was pulled at t via the update equations Eq.(2.2.22)
and Eq.(2.2.23).

The runlength distribution models associated with arms not pulled at t are updated differently



34 Chapter 2. Multi-armed bandits: a general background

since the runlength for these arms is independent of the reward Xt received at time t for
the arm actually pulled At . The reward likelihood term disappears in the update equations
for the runlength distribution of unpulled arms. Indeed, the update rule in this case takes
the following form:

P(rt |Dt−1) =
∑

rt∈Rt−1

P(rt , rt−1,Dt−1)

=
∑

rt∈Rt−1

P(rt , Xt |rt−1,Dt−2)× P(rt−1|Dt−2)

=
∑

rt∈Rt−1

P(rt |rt−1)× P(Xt)× P(rt−1|Dt−2)

∝
∑

rt∈Rt−1

P(rt |rt−1)× P(rt−1|Dt−2)

We describe the switching Thompson sampling for the per-arm switching setting in Algorithm
2.11.
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Algorithm 2.11 Per Arm switching Thompson sampling

Require: ∀a ∈ A ρa ∈ (0, 1): switching rate for each arm a, s0, f0 > 0: Beta prior hyper-
parameters, T : horizon, A: arm set.

1: procedure PER ARM.S-TS(ρ, s0, f0, T,A)
2: t ← 1 . Initialize interaction
3: ∀a ∈ A {p}ta ← {}, pt0,a ← 1, {p}ta ← {p}

t
a ∪ pt0,a . Initialize runlength distribution

for each arm a.
4: ∀a ∈ A,S t

0,a ← s0,F t
0,a ← f0 . Initialize hyperparameters

5: for t 6 T do . Interaction with environment
6: At ← ArmSelection({p}t , {S }t , {F}t)
7: Xt ← PlayArm(At)

8: {p}t+1 ← RunlengthDistributionUpdate({p}t , {S }tAt , {F}
t
At
, Xt , ρ)

9: {S }t+1 , {F}t+1 ← ArmsModelUpdate({S }tAt , {F}
t
At
, Xt)

10: t ← t + 1

11: end for
12: end procedure
13:

14: procedure ArmSelection({p}t , {S }t , {F}t)
15: ∀a ∈ A draw ra with probability ptr,a. Then draw θa ∼ Beta

(
S t
ra,a,F

t
ra,a

)
16: return argmaxa θa
17: end procedure
18:

19: procedure RunlengthDistributionUpdate({p}t , {S }tAt , {F}
t
At
, Xt , ρ)

20: define:
likelihoodtr :=


S t
r,At

S t
r,At

+F t
r,At

if Xt = 1

F t
r,At

S t
r,At

+F t
r,At

otherwise

21: pt+1
r+1,At

← (1− ρ)× likelihoodtr × ptr,At . Increase size of runlength
22: pt+1

0,At
←
∑
r ρ× likelihoodtr × ptr,At . Set runlength size to zero

23: pt+1
r+1,a ← (1− ρ)× ptr,a ∀a 6= At . Increase size of runlength

24: pt+1
0,At
←
∑
r ρ× ptr,a ∀a 6= At . Set runlength size to zero

25: ∀a ∈ A Normalise {p}t+1
a

26: return {p}t+1

27: end procedure
28:

29: procedure ArmsModelUpdate({S }tAt , {F}
t
At
, Xt)

30: S t+1
r+1,At

← S t
r,At

+Xt

31: F t+1
r+1,At

← F t
r,At

+ 1−Xt
32: ∀a ∈ A,S t+1

0,a ← s0,F
t+1
0,a ← f0

33: return {S }t , {F}t

34: end procedure

2.2.5 Adversarial multi-armed bandits

Another important family of bandits algorithms are the algorithms proposed for the adver-
sarial setting [16].
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Definition 2.10: Adversarial bandits
An adversarial MAB problem is specified by the number of possible actions A and a reward
vector Xt = (X1,t , . . . , XA,t) for each round t, where Xa,t ∈ [0, 1].

In an Adversarial multi-armed bandit, the rewards are generated by a process that cannot
be considered as stochastic. For instance, an adversary may generate arbitrary rewards that
make the agent’s policy achieve as much regret as possible. As a consequence, deterministic
algorithms cannot be used (e.g., UCB1), because the adversary would always know the
chosen arm and would assign it a low reward. The Adversarial multi-armed bandit problem
can be formalised as a game between a player choosing an action and a player choosing the
rewards.

The first algorithm that has been designed for adversarial bandits is the Exp3 strategy, which
stands for “Exponential weights for Exploitation and Exploration”.

Exp3: Exponential weights for Exploration and Exploitation

The Exp3 policy maintains weights $a (t) on the A arms, and at time t it samples an arm
from the distribution which is a mixture of [$1 (t) , ...,$A (t)] and the uniform distribution,
i.e. P

(
At = a

)
= (1− γ) $a(1)∑

a∈A$a(t)
+ γ × 1

A .

The weights are initially uniform and then at each time after observing a reward Xt from
arm At , Exp3 updates the weight of the chosen arm multiplicatively, using $a (t + 1) =

$a (t) exp
(
γỸa,t/A

)
. The quantity Ỹa,t denotes an unbiased estimation of the reward Xt

which is Xt/P
(
At = a

)
.

We summarize the Exp3 strategy in Algorithm 2.12.

Algorithm 2.12 Exp3 [16]

Require: γ ∈ (0, 1): exploration rate, T : horizon, A: number of arms, A: arm set.
1: Initialization:

∀a ∈ A,$a (1) = 1

2: for t = 1, . . . , T do
3: ξa (t) = (1− γ) $a(1)∑

a∈A$a(t)
+ γ × 1

A

4: Play arm At such that: ∀a ∈ A P
(
At = a

)
= ξa (t).

5: Observe Xt ∈ [0, 1].
6: Define:

Ỹa,t :=


Xt

ξAt (t) if a = At

0 otherwise

7: Update arm weight: $a (t + 1) = $a (t) exp
(
γỸa,t/A

)
8: end for

It is proven in [16] that the Exp3 strategy with a constant parameter γ achieves RExp3
T =

O(
√
AT ln(A)) problem-independent regret, and using a decreasing sequence, such as γt =

O(1/
√
t) gives an order-optimal regret upper-bound of the same order O(

√
AT ln(A)).

Then, we have two more algorithms for adversarial bandits namely Exp3.P strategy and
Exp3.S policy.
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Exp3.P

Exp3.P [16] is a variant of the Exp3 strategy where the variance is well controlled by us-
ing estimations based on upper-confidence bounds instead of estimations with the correct
expectation. This modification allows us to get guarantees in high probability.

We summarize the Exp3.P strategy in Algorithm 2.13.

Algorithm 2.13 Exp3.P [16]

Require: γ ∈ (0, 1): exploration rate, α > 0, T : horizon, A: number of arms, A: arm set.
1: Initialization:

∀a ∈ A,$a (1) = exp

(
αγ
3

√
T
A

)
2: for t = 1, . . . , T do
3: ξa (t) = (1− γ) $a(1)∑

a∈A$a(t)
+ γ × 1

A

4: Play arm At such that: ∀a ∈ A P
(
At = a

)
= ξa (t).

5: Observe Xt ∈ [0, 1].
6: Define:

Ỹa,t :=


XAt
ξAt (t) if a = At

0 otherwise

7: Update arm weight: $a (t + 1) = $a (t) exp
(
γ

3A

(
Ỹa,t + α

ξa(t)
√
KT

))
8: end for

Exp3.S

The Exp3.S strategy [16] is a variant of Exp3 where its regret depends on the hardness of
a sequence of actions (A1, . . . , AT ) defined as:

H (A1, . . . , AT )
def
= 1 + |{1 6 ` < T : A` 6= A`+1}| (2.2.30)

Algorithm 2.14 Exp3.S [16]

Require: γ ∈ (0, 1): exploration rate, T : horizon, A: number of arms, A: arm set.
1: Initialization:

∀a ∈ A,$a (1) = 1 . Initial weight given to each arm a

2: for t = 1, . . . , T do
3: ξa (t) = (1− γ) $a(1)∑

a∈A$a(t)
+ γ × 1

A

4: Play arm At such that: ∀a ∈ A P
(
At = a

)
= ξa (t).

5: Observe Xt ∈ [0, 1].
6: Define:

Ỹa,t :=


Xt

ξAt (t) if a = At

0 otherwise

7: Update arm weight: $a (t + 1) = $a (t) exp
(
γỸa,t/A

)
+ eα

A

∑A
a=1$a (t)

8: end for

It is proven in [16] that Exp3.S strategy achieves RExp3.S
T = O(

√
SAT ln(AT )) for any

sequence of actions (A1, ..., AT ) where H (A1, . . . , AT ) 6 S.
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Part II

Contributions in the multi-armed
bandit and statistical learning theory

communities
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Chapter 3

Memory Bandits for the piece-wise
stationary stochastic multi-armed
bandit problem

Overview

The Thompson Sampling exhibits excellent results in practice and it has been shown to be
asymptotically optimal. The extension of Thompson Sampling algorithm to the Switching
Multi-Armed Bandit problem, proposed in [105], is a Thompson Sampling equiped with a
Bayesian online change point detector [2]. In this chapter, we propose another extension
of this approach based on a Bayesian aggregation framework. Experiments provide some
evidences that in practice, the proposed algorithm compares favorably with the previous
version of Thompson Sampling for the Switching Multi-Armed Bandit Problem, while it
outperforms clearly other algorithms of the state-of-the-art.

Publication. This chapter is mainly based on our article [4].

3.1 Introduction

We consider the non-stationary multi-armed bandit problem with a set A of A independent
arms. At each round t, the agent chooses an action At ∈ A and observes a reward xAt . In
a stationary environment, the agent has to explore to find the best arm and to exploit it
to maximize his gain. Efficient algorithms [14, 81] have been proposed for handling the so-
called exploration-exploitation dilemma. In an evolving environment, the best arm can change
during time and hence the agent has to explore more. The adversarial bandits handles non-
stationary environments by considering that a sequence of deterministic rewards is chosen
in advance by an oblivious adversary. Rate optimal algorithms have been proposed to find
the best arm or the best sequence of arms of the run in [16, 109, 7]. Another approach
for handling non-stationary environment is to consider that the rewards are generated by an
unknown stochastic process that evolves during time. In the switching bandit problem [66,
58, 6], the mean rewards of arms change abruptly. In comparison to the adversarial approach,
the advantage of non-stationary stochastic approach is that with some mild assumptions,
stochastic algorithms, which are more efficient in practice than adversarial algorithms, can
be used.

For practical and theoretical reasons, the recent years have seen an increasingly interest
for the oldest bandit algorithm, the Thompson Sampling [135]. It exhibits excellent results
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in practice [36], while it is asymptotically optimal [81]. In [105], the authors propose an
adaptation of the Thompson Sampling to the switching bandit problem. To be consistent
with the Bayesian approach, rather than using a frequentist drift detector used in [66, 6],
the authors use a Bayesian online change point detection [2] combined with the Thompson
Sampling algorithm. In this paper, we propose a similar approach of [105] which is based
on a Bayesian aggregation of a growing number of experts seen as learners. Our approach
compares favorably with the one of [105].

3.2 Problem formulation

Let us consider an agent facing a non-stationary multi-armed bandit problem with a set
A = {1, ..., A} of A independent arms. At each round t ∈ [[1, T ]], the agent chooses to
observe one of the A possible actions. When playing the arm At at time t, a reward xAt
is received, where xAt ∼ B (µAt ,t) is a random variable drawn from a Bernoulli distribution
of expectation µa,t . Let µ?t = maxa∈A {µa,t} denotes the best expected reward at round t,
A?t = argmaxa∈A {µa,t} the best arm at round t, kt the action chosen by the decision-maker
at time t and xAt the reward obtained at the same time.

Changes in the Bernoulli distributions expectations It should be noted that µa,t , i.e.
the reward mean of arm a at time t changes over time according to a global abrupt switching
model parametrized with an unknown hazard function h(t) ∈ [0, 1] assumed to be a constant
h(t) = ρ such that:

µa,t =

{
µa,t−1 with probability 1− ρ
µnew ∼ U(0, 1) with probability ρ

(3.2.1)

When the behavior’s environment is modeled by equation (3.3.3) for all k ∈ K, the problem
setting is called a Global Switching Multi-Armed Bandit (GS-MAB), i.e. when a switch
happens all arms change their expected rewards. Where changes occur independently for
each arm k (i.e. arms change points are independent from an arm to another), the problem
setting is called a Per-arm Switching Multi-Armed Bandit. For the sake of clarity, in the
following we will focus on GS-MAB.

Sequence of change points It should be noted that for each GS-MAB, it exists a non-
decreasing change points sequence of length ΥT denoted by (τκ)κ∈[[1,ΥT+1]] ∈ NΥT+1 where:

{
∀ κ ∈ [[1,ΥT ]], ∀ t ∈ Tκ = [[τκ + 1, τκ+1]], ∀ a ∈ A, µa,t = µa,[κ]

τ1 = 1 < τ2 < ... < τΥT+1 = T

In this case, µ?[κ] = maxa
{
µa,[κ]

}
denotes the highest expected reward at epoch Tκ.

Pseudo Cumulative Regret for the switching environment In a switching environment,
the pseudo cumulative regret R(T ) up to time T is defined as the expected difference
between the rewards obtained by our policy and those received by the oracle which always
plays the best arm k?[κ] at each epoch Tκ such as:

R (T ) =
T∑
t=1

µ?t − E
[
T∑
t=1

xAt

]
=

ΥT∑
κ=1

|Tκ|µ?[κ] − E

 τκ+1∑
t=τκ+1

xAt


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3.3 Global Switching Thompson Sampling with Bayesian Aggre-
gation

3.3.1 The Thompson Sampling algorithm

Unlike optimistic algorithms belonging to the UCB family [14], which are often based
on confidence intervals, the Thompson Sampling deals with Bayesian tools by assum-
ing a Beta prior distribution πa,t=1 = Beta (s0, f0) on each arm for some s0, f0 > 0.
Based on the rewards observed xt , the posterior distribution πa,t is updated such as:
πa,t = Beta

(
Sa,t =

∑t
s=1Xs × 1{As = a} + s0, Fa,t =

∑t
s=1 (1−Xs) × 1{As = a} + f0

)
.

At each time, the agent takes a sample θa,t from each πa,t and then plays the arm

At = argmaxa θa,t . Formally, by denoting Dt−1 =
t−1⋃
i=1

xi the history of past rewards we

write: θt = (θ1,t , ..., θa,t) ∼ P
(
θt
∣∣Dt−1

)
=
∏K
a=1 πa,t . Recently, the Thompson Sampling

has been shown to be asymptotically optimal [81], i.e. the expectation of the pseudo-
cumulative regret reaches the Lai and Robbins lower bound on regret in the stochastic
Bernoulli multi-armed bandit setting [92].

Figure 3.3.1: Evolution of the posterior Beta distributions for a two armed
Bernoulli bandit problem.

The agent starts with no knowledge of the arm means and so the distributions are uniform
(Beta(1, 1)). As more observations are made the distributions become more concentrated
so that it becomes more likely that a sample estimate is drawn close to the true mean of a
given arm.

3.3.2 Decision making based on Bayesian aggregation

Best achievable performance: the Thompson Sampling oracle Let TS? denotes the
oracle that knows exactly the change points τκ. It simply restarts a Thompson Sampling
at these change points. Assume that ΥT is the overall number of change points observed
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until T , then TS? runs successively ΥT Thompson Sampling processes starting at τκ + 1

and ending at τκ+1.

Notion of expert Let t ∈ N? and i ∈ [1, t]. An expert Ei ,t is a Thompson Sampling
procedure which has started at time i . The expert Ei ,t observes exactly t − i rewards from
the environment. Formally, the expert Ei ,t is written as follows:

Ei ,t =
{

Beta
(
S1,i ,t , F1,i ,t

)
,Beta

(
S2,i ,t , F2,i ,t

)
, ...,Beta

(
Sa,i ,t , Fa,i ,t

)}

where: ∀a ∈ A, Sa,i ,t =
t∑
s=i
Xs × 1{As = a}+ s0 and Fa,i ,t =

t∑
s=i

(1−Xs)× 1{As = a}+ f0.

Bayesian Aggregation Like [105], to characterize the occurrence of changes, we use the
expert Ei ,t as an index to access in the memory the parameters of the model created at
time i . The computation of P

(
θt
∣∣|Dt−1

)
is done by taking into account the distribution

wi ,t = P
(
Ei ,t

∣∣Dt−1

)
of the expert Ei ,t such as:

P
(
θt
∣∣|Dt−1

)
=

t∑
i=1

P
(
θt
∣∣Dt−1,Ei ,t

)
P
(
Ei ,t

∣∣Dt−1

)
(3.3.1)

Then, unlike the sampling procedure used in [105], we build the index θa,t of arm k at time
t by launching a Bayesian aggregation of a growing number of experts. The estimation of
the expert distribution is done recursively according to the work of [2] where:

P
(
Ei ,t

∣∣Dt−1

)︸ ︷︷ ︸
Expert distribution at t

∝
t−1∑
i=1

change point prior︷ ︸︸ ︷
P
(
Ei ,t

∣∣Ei ,t−1

)
P
(
xt
∣∣Ei ,t−1,Dt−2

)︸ ︷︷ ︸
Instantaneous gain

Expert distribution at t−1︷ ︸︸ ︷
P
(
Ei ,t−1

∣∣Dt−2

)
(3.3.2)

The change point prior P
(
Ei ,t

∣∣Ei ,t−1

)
is naturally computed following equation (3.3.3):

P
(
Ei ,t

∣∣Ei ,t−1

)
= (1− ρ) 1{i < t}+ ρ1{i = t} (3.3.3)

Thus, the inference model takes the following form (Up to a normalization factor):

• Growth probability:
P
(
Ei ,t

∣∣Dt−1

)
∝ (1− ρ)P

(
xt
∣∣Ei ,t−1,Dt−2

)
P
(
Ei ,t−1

∣∣Dt−2

)
• Change-point probability:

P
(
Et,t

∣∣Dt−1

)
∝ ρ

t−1∑
i=1

P
(
xt
∣∣Ei ,t−1,Dt−2

)
P
(
Ei ,t−1

∣∣Dt−2

)
(3.3.4)

It should be noted that P
(
xt
∣∣Ei ,t−1,Dt−2

)
is a Bernoulli distribution of expectation

SAt ,i,t−1

SAt ,i,t−1+FAt ,i,t−1
, where SAt ,i ,t−1 and EAt ,i ,t−1 are the hyper-parameters of the arm At learned

by the expert Ei ,t−1. Let li ,t−1 denotes the instantaneous logarithmic loss associated to the
forecaster Ei ,t−1 such as: P

(
xt
∣∣Ei ,t−1,Dt−2

)
= exp (−li ,t−1), then Algorithm 3.1 provides

us an index prediction of each arm k at time t based on a Bayesian aggregation of the
available experts.
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Algorithm 3.1 Bayesian Aggregation with a growing number of experts

for t = 2, ... do
-1- Update the previous experts:

∀i ∈ {1, ..., t − 1} wi ,t = (1− ρ) exp (−li ,t−1)wi ,t−1

-2- Create new expert starting at t:

wt,t = ρ
t−1∑
i=1

wi ,t−1 exp (−li ,t−1)

-3- Compute arm index:

∀a ∈ A θa,t =

∑t
i=1 θa,i ,twi ,t∑t
j=1 wj,t

where: θa,i ,t ∼ Beta (Sa,i ,t , Fa,i ,t)

end for

Finally, by plugging the Bayesian aggregation into the formalism of [105], we get the Global
Switching Thompson Sampling with Bayesian Aggregation (Global-STS-BA), described in
Algorithm 3.2.
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Algorithm 3.2 Global Switching Thompson Sampling with Bayesian Aggregation
1: procedure Global-STS-BA(A, T, s0, f0, ρ)
2: t ← 1, w1,t ← 1, and ∀a ∈ A Sa,1,t ← s0, Fa,1,t ← f0 . Initializations
3: for t 6 T do . Interaction with environment
4: At ← ChooseArm ({w}t , {S}t , {F}t)
5: xt ← PlayArm(At) . Bernoulli trial
6: {w}t+1 ← UpdateExpertWeight ({w}t , {S}at ,t , {F}at ,t , xt , ρ)

7: {S}t+1 , {F}t+1 ← UpdateArmModel({S}t , {F}t , xt , At)
8: end for
9: end procedure

10: procedure ChooseArm({w}t , {S}t , {F}t)
11: ∀a ∈ A ∀i ∈ [1, t] θa,i ,t ∼ Beta (Sa,i ,t , Fa,i ,t)

12: return argmaxa
∑t
i=1

wi ,t∑t

j=1
wj,t
θa,i ,t . Bayesian aggregation

13: end procedure

14: procedure UpdateExpertWeight({w}t , {S}at ,t , {F}at ,t , xt , ρ)
15: li ,t ← −xt log

(
SAt ,i,t

SAt ,i,t+FAt ,i,t

)
− (1− xt) log

(
FAt ,i,t

SAt ,i,t+FAt ,i,t

)
∀i ∈ [1, t]

16: wi ,t+1 ← (1− ρ) exp (−li ,t)wi ,t∀i ∈ [1, t] . Increasing the size of expert Ei ,t
17: wt+1,t+1 ← ρ

∑
i exp (−li ,t)wi ,t . Creating new expert starting at t + 1

18: Normalise {w}t+1

19: return {w}t+1

20: end procedure

21: procedure UpdateArmModel({S}t , {F}t , xt , At)
22: SAt ,i ,t+1 ← SAt ,i ,t + 1{xt = 1} ∀i ∈ [1, t]

23: FAt ,i ,t+1 ← FAt ,i ,t + 1{xt = 0} ∀i ∈ [1, t]

24: Sa,t+1,t+1 ← s0, Fa,t+1,t+1 ← f0 ∀a ∈ A . Initializing new expert
25: return {S}t+1 , {F}t+1

26: end procedure

Discussion 3.3.1 (Global-STS-BA). In the global switching setting, when a switch oc-
curs, all arms change their expected pay-off at the same time. It should be noted that
the data from all plays collaborate in the posterior of the expert distribution estimation
(UpdateExpertWeight). The experts tell us how much previous observed data can be used
in the arm indexes prediction, i.e. when a switch occurs all past data have not to be taken
into account in the arm characterizations because of their obsolete information. The change-
point detection concept is based on a tracking of the optimal expert (see section 3.5.1).
Indeed, the total mass of the expert distribution wi ,t tends to focus around the optimal ex-
pert Eτκ,t i.e. the expert starting at the most recent change point τκ and corresponds to the
most appropriate characterization of the environment. The Bayesian aggregation exploits
this concentration to highlight the contribution of the most appropriate experts (starting
around the most recent change point τκ) in the arm indexes prediction. The concentration
around Eτκ,t is possible thanks to the inference model of equation (3.3.4). In fact, when
a change occurs the instantaneous gain P

(
xt | Ei ,t−1,Dt−2

)
of all experts starting before

the change point suddenly fall down because of their wrong estimation of the environment,
giving the advantage to the experts newly created while annihilating the former ones (see
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figures 3.5.1a, 3.5.1b). At this point, we deviate from [105] and instead of sampling the
expert distribution and then sampling the arms, we index each arm k by launching an overall
Bayesian aggregation of samples taken from the posterior distribution of arm k related to
the hyper-parameters {S}a,t , {F}a,t (ChooseArm). Finally, the agent chooses to pull the
arm with highest index. This process allows us to avoid the sampling noise induced by
Global-STS and by this way the model chosen at time t tends to better fit the unknown
environment (figure 3.4.1).

3.4 Experiments

In all the experiments, we consider a GS-MAB of three arms observing three change points
occurring at each 1000 rounds. Experiments are run 100 times. The parameters of the
state-of-the art algorithms are chosen to be experimentally optimal. Exp3, Exp3P and
Exp3S [16] are launched with an exploration rate (γ = 5%). We run Exp3R [6], Rexp3 [22]
and SW-UCB [58] respectively with H = 1000, ∆T = 1000 and τ = 500. Global-STS [105]
and Global-STS-BA are outperforming the well parametrized state of art non stationary
MAB algorithms (figure 3.4.1).
Replacing the expert distribution sampling used in [105] with the Bayesian Aggregation
allows us to obtain performances challenging those of the Thompson Sampling Oracle (figure
3.4.1).

Figure 3.4.1: Overall comparison with the non-stationary state of art and the
TS Oracle.

3.5 Numerical Illustrations in the global switching setting

3.5.1 Tracking the optimal expert in the global switching setting

Optimal expert Let t > 0 and let τ[t] denotes the most recent change point before time t.
At each time t, a set of exactly t experts is available (each expert has started at i ∈ [1, t]).
The optimal expert is the one which has started exactly at t = τ[t]. It is the expert which
gives the best description of the environment.
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Tracking the optimal expert Before the decision step, Global-STS-BA characterizes each
arm k by aggregating all the contributions of the available experts. To do well, Global-
STS-BA needs to highlight the contribution of the optimal expert because of its optimal
description of the environment. This task is called the track of the optimal expert.

The estimation of the expert distribution (expert weight) is built according to the instanta-
neous gain of each expert. This gain takes into account the history of past rewards Dt−1.
When a switch occurs, the instantaneous gains of all experts fall down because of their
obsolete estimation giving the advantage to the expert newly created which will become the
optimal expert during the next rounds.
Let us consider a GS-MAB of three arms observing two change points at time t = 25 and
t = 49. Figures 3.5.1a and 3.5.1b show the behavior of the expert gain and the expert weight
when a switch occurs. It should be noted that the experts are indexed by their starting time
i.e. the most recent expert is the one with highest index and inversely.
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(a) Tracking the optimal expert during the first switch.

(b) Tracking the optimal expert during the second switch.

Discussion 3.5.1 (Tracking the optimal expert). • Just before the change point, the
optimal expert (index = 1 for the first switch and index = 25 for the second one)
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is given the highest weight. The lower the index, the higher the expert gain. This
behavior is expected as much as the higher the number of the observations the higher
the expert gain.

• When the switch occurs, all the experts created before the change point see their
gains dropping sharply because of the abrupt change of the environment i.e. the
instantaneous gain doesn’t match anymore with the current environment, except the
expert newly created which is given a gain based on the prior of a Thompson Sampling(

s0
s0+f0

)
.

• Just after the change point, the new optimal expert see its weight starting to grow up
while the weight of the previous optimal expert starts to fall down.

• Largely after the change point, the optimal expert is given the highest weight, because
of its well fit of the current environment. This is corresponding to the expected
behavior of the Global-STS-BA: the optimal expert is well tracked.

3.5.2 Behavior of Global-STS-BA with respect to the memory size

Regarding the implementation of the Global-STS-BA, we should notice that memory space
and time requirements of the experts inference model grow linearly at each time step because
of the creation of a new expert. This makes the size of the support set of the expert
distribution {w}t increasing by one. Thus, for computational reasons, we propose to restrict
the number of experts by fixing a maximum memory size M. So, at each round, after
launching the inference model, we delete the worst expert Emin

t = arg mini wi ,t . In all the
experiments, we consider a GS-MAB of three arms. Changes occur at each 1000 rounds.
We variate the memory size from M = 15 to M = 3000. Experiments are run 100 times.

Figure 3.5.2: Behavior with respect to the switching rate ρ.

For a not very poor memory size value (M > 50), the performances of the Global-STS-BA
remains stable.

3.5.3 Behavior of Global-STS-BA with respect to the switching rate ρ

We should also notice that the inference model of the experts needs the knowledge of the
true switching rate (ρtrue). In real life, this value is unknown to the agent. [138] has proposed



3.6. Extension to the per-arm switching setting 51

to learn the switching rate from the data via a gradient descent. This method appears to not
perform particularly well if the switching rate has to be adapted at every time step. Figure
3.5.3 shows the behavior of the Global-STS-BA for different values of the switching rate.

Figure 3.5.3: Cumulative regret versus the value of the switching rate.
The performances of the Global-STS-BA remains stable even if the switching rate is quite
far from the true one.

3.6 Extension to the per-arm switching setting

3.6.1 Per-Arm Switching Thompson Sampling with Bayesian Aggregation
(Per-Arm-STS-BA)

In the per-arm switching setting, since the changes occur independently from an arm to
another, each arm k will have its own expert distribution denoted by {w}ta. To estimate
{w}ta at each time step t, we need to build some recursive message-passing algorithm. The
main difference between the global and the per-arm version of the message-passing is that
the instantaneous gain will be used in the update of the expert distribution associated to
the pulled arm At . For the other arms not pulled, the instantaneous gain won’t intervene in
the expert distribution [105]. More formally, if we denote by Ea,i ,t the expert associated to
the arm k at time t which has been introduced at time i , then the expert distributions are
updated as follow:

P
(
Ea,i ,t

∣∣Dt−1

)
∝


t−1∑
i=1
P
(
Ea,i ,t

∣∣Ea,i ,t−1

)
P
(
xt
∣∣Ea,i ,t−1,Dt−2

)
P
(
Ea,i ,t−1

∣∣Dt−2

)
if At = a

t−1∑
i=1
P
(
Ea,i ,t

∣∣Ea,i ,t−1

)
P
(
Ea,i ,t−1

∣∣Dt−2

)
otherwise

Then, we model the changes of the arm a with a constant switching rate γa such that:

P
(
Ea,i ,t

∣∣Ea,i ,t−1

)
=

{
1− ρa if i < t

ρa if i = t

Then, following the inference model used in the global switch, we deduce the following expert
distributions update rules (Up to a normalization factor):
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• Growth probability:

P
(
Ea,i ,t

)
∝

{
(1− ρk)P(xt |Ea,i ,t−1)P(Ea,i ,t−1) if At = a

(1− ρk)P(Ea,i ,t−1) otherwise

• Change-point probability:

P
(
Ea,i ,t

)
∝

{
ρk
∑t−1
i=1 P

(
xt
∣∣Ea,i ,t−1

)
P
(
Ea,i ,t−1

)
if At = a

ρk
∑t−1
i=1 P

(
Ea,i ,t−1

)
otherwise

Notice that: P
(
xt
∣∣Ea,i ,t−1

)
still a Bernoulli distribution of expectation

SAt ,i,t−1

SAt ,i,t−1+FAt ,i,t−1
, where

SAt ,i ,t−1, FAt ,i ,t−1 are the hyper-parameters of arm At at time t − 1 learned by the expert
EAt ,i ,t−1 which is associated to the change point model of arm At . We define:

P
(
xt
∣∣EAt ,i ,t−1

)
= exp (−li ,t−1)

where: li ,t−1 denotes the instantaneous logarithmic loss of the pulled arm At associated
to the forecaster EAt ,i ,t−1. For convenience, we write: wa,i ,t = P(Ea,i ,t |Dt−1). Then, we
naturally extend the Bayesian aggregation used in the global switching setting to the per-arm
Bayesian Aggregation (Algorithm 3.3).

Algorithm 3.3 Per-arm Bayesian Aggregation

for t = 2, ... do
-1- Update the previous experts:

∀i ∈ [1, t − 1] ∀a ∈ A wa,i ,t = (1− ρk)wa,i ,t−1 exp (−li ,t−1)1{a=At}

-2- Create new expert starting at t:

∀a ∈ A wa,t,t = ρk

t−1∑
i=1

wa,i ,t−1 exp (−li ,t−1)1{a=At}

-3- Predict arm index:

∀a ∈ A θa,t =

∑t
i=1 wa,i ,tθa,i ,t∑t
j=1 wa,j,t

where: θa,i ,t ∼ Beta (Sa,i ,t , Fa,i ,t)

end for

Then, by plugging the per-arm Bayesian Aggregation into the formalism of the Global-
STS-BA we get the Per-arm Switching Thompson Sampling with Bayesian Aggregation
(Per-arm-STS-BA) described in Algorithm 3.4.
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Algorithm 3.4 Per-Arm Switching Thompson Sampling with Bayesian Aggregation
1: procedure Per-Arm-STS-BA(A, T, s0, f0, ρ)
2: t ← 1, and ∀a ∈ A wa,1,t ← 1, Sa,1,t ← s0, Fa,1,t ← f0 . Initializations
3: for t 6 T do . Interaction with environment
4: At ← ChooseArm ({w}t , {S}t , {F}t)
5: xt ← PlayArm(At) . Bernoulli trial
6: {w}t+1 ← UpdateExpertWeight ({w}t , {S}at ,t , {F}at ,t , xt , ρ)

7: {S}t+1 , {F}t+1 ← UpdateArmModel({S}t , {F}t , xt , At)
8: end for
9: end procedure

10:

11: procedure ChooseArm({w}t , {S}t , {F}t)
12: ∀a ∈ A,∀i ∈ [1, t] θa,i ,t ∼ Beta (Sa,i ,t , Fa,i ,t)

13: return argmaxa
∑
i∈[1,t]

wa,i ,t∑
j∈[1,t]

wa,j,t
θa,i ,t . Bayesian aggregation

14: end procedure
15:

16: procedure UpdateExpertWeight({w}t , {S}at ,t , {F}at ,t , xt , ρ)
17: li ,t ← −xt log

(
SAt ,i,t

SAt ,i,t+FAt ,i,t

)
− (1− xt) log

(
FAt ,i,t

SAt ,i,t+FAt ,i,t

)
∀i ∈ [1, t]

18: wAt ,i ,t+1 ← (1− ρ)wAt ,i ,t exp (−li ,t) ∀i ∈ [1, t] . Increasing the size of expert
EAt ,i ,t

19: wAt ,t+1,t+1 ← ρ
∑
i wAt ,i ,t exp (−li ,t) . Creating new expert for arm At starting at

t + 1

20: wa,i ,t+1 ← (1− ρ)wa,i ,t ∀i ∈ [1, t] ,∀a 6= At . Increasing the size of expert Ea,i ,t
21: wa,t+1,t+1 ← ρ

∑
i wa,i ,t ∀a 6= At . Creating new expert for arm k starting at t + 1

22: Normalise {w}t+1

23: return {w}t+1

24: end procedure
25:

26: procedure UpdateArmModel({S}t , {F}t , xt , At)
27: SAt ,i ,t+1 ← SAt ,i ,t + 1{xt = 1} ∀i ∈ [1, t]

28: FAt ,i ,t+1 ← FAt ,i ,t + 1{xt = 0} ∀i ∈ [1, t]

29: Sa,t+1,t+1 ← s0, Fa,t+1,t+1 ← f0 ∀a ∈ A . Initializing new expert
30: return {S}t+1 , {F}t+1

31: end procedure

3.6.2 Experiments

In all the experiments, we consider a Per-Arm Switch MAB of three arms observing several
change points. Experiments are run 100 times. Per-Arm-STS [105] and Per-Arm-STS-BA
are outperforming the well parametrized state-of-art non stationary MAB algorithms (figure
3.6.1). Exp3, Exp3P and Exp3S [16] are launched with an exploration rate (γ = 5%).
We run Exp3R [6], Rexp3 [22] and SW-UCB [58] respectively with H = 600, ∆T = 600

and τ = 600. Replacing the expert distribution sampling used in STS with the Bayesian
Aggregation allows us to obtain performances challenging those of the Thompson Sampling
Oracle (figure 3.6.1).
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(a) (b)

Figure 3.6.1: Overall comparison with the state of art and the oracle.

3.7 Conclusion and future works

We have proposed Global-STS-BA: an extension of the Thompson Sampling for the Switch-
ing Bandit Problem based on a Bayesian aggregation framework. From the experiments, the
proposed algorithm compares favorably with the previous version of the Global Switching
Thompson Sampling [105], outperforming clearly other algorithms of the state-of-the-art.
It is worth noting that Global-STS-BA challenges the Thompson sampling oracle, an oracle
which already knows the change points. These results arise from the fact that Global-STS-
BA is based on the Bayesian concept of tracking the best experts which allows us to catch
efficiently the change points. Moreover, we have also extended the proposed algorithm
to the Per-arm Switching Multi-Armed Bandit by allowing an expert distribution per arm.
Obviously, we can easily extend the hybridization of Thompson Sampling and the Bayesian
change point detector to the whole family of the stochastic bandit namely KL-UCB, UCB,
Bayes UCB, UCB V, ... so we can form the family of memory bandits (figure 3.7.1). The
next step of this work is to analyze the Global-STS-BA (or more generally the memory
bandits) in term of regret.
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Memory Bandits

Stochastic bandit algorithm
(TS, UCB, KL-UCB,...)

Bayesian Online Change-
Point Detector (BOCPD)

Global
Switch

Per arm
Switch

Figure 3.7.1: The memory bandits family: a hybridization between a stochas-
tic bandit and the Bayesian change point detector
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Chapter 4

Restarted Bayesian Online
Change-point detection strategy

Overview of the chapter

In this chapter, we consider the problem of sequential change-point detection where both the
change-points and the distributions before and after the change are assumed to be unknown.
For this problem of primary importance in statistical and sequential learning theory, we derive
a variant of the Bayesian Online Change Point Detector proposed by [46] which is easier
to analyze than the original version while keeping its powerful message-passing algorithm.
We provide a non-asymptotic analysis of the false-alarm rate and the detection delay that
matches the existing lower-bound. We further provide the first explicit high-probability
control of the detection delay for such approach. Experiments on synthetic and real-world
data show that this proposal outperforms the state-of-art change-point detection strategy,
namely the Improved Generalized Likelihood Ratio (Improved GLR) while compares favorably
with the original Bayesian Online Change Point Detection strategy.

Publication. This chapter is mainly based on our article [5].

4.1 Introduction

The problem of online detecting abrupt variations (change-points) in the generative param-
eters of a sequence of observations x1, . . . xn, where observations are received one by one, is
considered. Addressing this problem is useful in a number of real-world applications including
finance [126], genetics [63], cybersecurity [118], robotics [61, 25, 88], speech recognition
[113], climate modeling [107]. The online change-point detection problem has received a
lot of attention from various areas of mathematical statistics, information theory and com-
puter science over the past century. We refer the interested reader to the recent survey
[10] on the large amount of methods developed for time series change point detection, and
to [20, 27, 75, 132, 37, 146] for classical textbooks on change-points. As noticed in [10],
performance guarantees are still lacking for many such methods, especially in terms of finite
time guarantee on the detection delay and estimation of the change-gap, both important
features for the practitioner. Amongst the many methods, the celebrated CUSUM strategy
from [112] and its extension called Generalized Likelihood Ratio (GLR), that are following a
frequentist approach based on likelihood ratio thresholding have been analyzed recently first
in [93] and then in [102], where a fully explicit parameter tuning is also provided, together
with fully non-asymptotic guarantees.
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In this chapter, we turn to Bayesian approaches. In the seminal paper of [46], the authors
introduced the Bayesian Online Changepoint Detection (BOCPD) strategy to infer the most
recent change-point, by computing the probability distribution of the elapsed time since the
last change-point (runlength). Although the algorithm has been used extensively (including
in non-stationary multi-armed bandits, [105, 4, 83, 39] and other change-point context [2,
138, 147, 145, 124, 32, 110, 137, 123, 84, 85]), up to our knowledge, no formal analysis
of its performance in terms of false-alarm or detection delay has been performed except the
work in [85], where the authors has built a robust BOCPD version to reduce false discovery
rates.

Note that although BOCPD stands for Bayesian Online Change Point Detection, the al-
gorithm performs no detection at all; rather, it maintains weights to estimate the elapsed
time since the last change-point. Following this work, we provide a modification of the
BOCPD strategy that we analyze. In particular we provide a non-asymptotic guarantees
related to the false-alarm (that is, detecting a change point while there was no change) in
Theorem 4.10 and related to the detection delay (the number of steps after a change-point
occurs before we declare detection) in Theorem 4.11.

In Section 4.2, we formally introduce the times-series model with abrupt changes, as well as
notations. We provide in Section 4.3 a new formulation of the BOCPD strategy from [2],
that we reinterpret from the standpoint of aggregation of forecasters, leading to a compact
formulation presented in Algorithm 4.1. We then present a simple way to make use of this
strategy to effectively detect changes, instead of just estimating the time since the last
change. We note that the analysis of BOCPD involves dealing with a combinatorial number
of terms, and propose a simplification of this strategy in order to derive performance guaran-
tees. We call the resulting strategy R-BOCPD for Restarted Bayesian Online Change Point
Detection. Then, we provide in Section 4.5 the two theoretical guarantees of this strategy:
namely the false alarm rate control and detection delay (Theorem 4.10, Theorem 4.11).
Finally, we show numerically that this strategy outperforms its previous version BOCPD and
its compares favorably with the Improved GLR strategy introduced by [102].

4.2 Sequential change-point detection setting

Sequential change-point detection, which is rooted in classical statistical sequential analysis
[20], aims to detect the change in underlying distributions of a sequence of observations as
quickly as possible.

In this chapter, we study the online change point detection problem, where a sequence of
independent univariate random variables with common fluctuation upper bound are collected,
and the mean may change at one or multiple time points. Indeed, we consider an agent
aiming at detecting changes in the generation of an online stream. At each time step t, the
agent observes the datum xt ∼ B (µt): a random variable following the Bernoulli distribution
of mean µt and need to decide whether or not there is a change in the generation of the
stream. Alternatively, the agent may compute at each time step t, an estimation τ̂t of the
last change-point.
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Definition 4.1: Piece-wise stationary Bernoulli process
Let T denote the time horizon of the game (stream length) and CT the overall number of
change-points observed until time T . We assume that the observations xt ∼ B (µt) are
generated by a piece-wise Bernoulli process such that there exists a non-decreasing change-
points sequence (τc)c∈[1,CT ] ∈ NCT verifying:{

∀c ∈ [1, CT ] , ∀t ∈ Tc = [τc , τc+1) µt = θc ,

τ1 = 1 < τ2 < ... < τCT+1 = T + 1.
(4.2.1)

Remark 1 (Interests in the Bernoulli case). The interests in working on the Bernoulli dis-
tributions are not as restrictive as it seems. On the first hand, from a concentration point
of view, Bernoulli distributions can be seen as a worst case of bounded distributions. More-
over, Bernoulli distributions are crucially used in many widespread applications of machine
learning. For instance:

• modelling the collisions in cognitive radio,

• monitoring the performances of statistical models,

• monitoring events in probes for network supervision,

• the multi armed bandit problem,

• experiments in clinical trials and recommender systems.

Notation 3. In the following, we denote by xs:t := (xs , ..., xt) the sequence of observations
from time s up to time t > s. Furthermore, the length of the sequence xs:t is denoted
by ns:t := t − s + 1 and the empirical mean over the sequence xs:t is denoted by µ̂s:t :=

1
ns:t

∑t
i=s xi .

Definition 4.2: Online change-point detection strategy
An online change-point strategy A takes as input a sequence xr :t and output a binary scalar
such that:

A (xr :t) =

{
1 if a change in the generation of the sequence xr :t is detected,

0 else.

A strategy is said to be anytime if it does not depend on the time horizon T which denotes
the stream length.

Performance assessment Let: xr :τc−1 ∼ B (θ1)⊗nr :τc−1 , xτc :t ∼ B (θ2)⊗nτc :t , τc the
change-point to detect and r the starting time. The performance of an algorithm that
aims at detecting the change-point τc ∈ [r, t] in the sequence xr :t is assessed using two
notions.

• False alarm rate: the probability of detecting a change at some instant s ∈ [r, τc)

where there is no change. Usually, the false alarm rate is expressed as: P
(
∃s ∈ [r, τc) :

A (xr :s) = 1
)
.
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• Detection delay: the number of time steps needed to detect a change. It is formally
defined for a strategy A as: τ̂A (xr :t) := min {s ∈ [r, t] : A (xr :s) = 1}. Thus, the
detection delay is expressed as: D|θ2−θ1|,r,τc := (τ̂A (xr :t)− τc) × 1{τ̂A (xr :t) > τc},
where 1{•} denotes the indicator function.

Currently, the literature provides us with an interesting asymptotic lower bound on the
expected detection delay. Theorem 4.9 gives the lower bound. (It is a reformulation of
Theorem 3.1 in [93]).

Theorem 4.9: Asymptotic lower bound on the expected detection delay
Let: xr :τc−1 ∼ B (θ1)⊗nr :τc−1 , xτc :t ∼ B (θ2)⊗nτc :t , A an online change-point detection
strategy, τc the change-point to detect and r the starting time. Assuming that the false
alarm rate is controlled such that: Pθ1

(∃s ∈ [r, τc) : A (xr :s) = 1) 6 δ, then as the quantity
nr :τc
|log δ| →δ→0

∞, the expected detection delay Eθ1,θ2
[τ̂A (xr :t)− τc ] is lower bounded as follows:

Eθ1,θ2
[τ̂A (xr :t)− τc ] >

(Pθ1
(τ̂A (xr :t) > τc)

kl (θ2, θ1)

)
log

1

δ

where kl (•, •) stands for the Kullback-Leibler divergence for Bernoulli distributions.

Proof. See [93].

4.3 The original Bayesian Online Change Point Detector
(BOCPD)

In this section, we describe the original version of the Bayesian Online Change Point Detector
introduced in [46] and then revisited in [2]. Then,we reformulate it in term of a learning
procedure using a growing number of forecaster. By this way, we highlight the difficulty of
its analysis.

4.3.1 Learning using the runlength inference

Notion of runlength. In order to deal with the non-stationary behavior of the environment,
the notion of runlength has been introduced by [2]. It represents the overall number of time
steps since the last change-point. We denote the length of the current run at time t > 1 by
rt . Since rt is unknown, we can consider the runlength as a random variable taking values
in Rt = [0, t − 1]. Thereby, let p (rt |x1:t) denotes the distribution of rt given the sequence
of observations x1:t .

Computation of p (rt |x1:t) based on a message passing algorithm. The authors of [2]
have proposed an online recursive runlength estimation in order to calculate the runlength
distribution p (rt |x1:t). More specifically to find:

p (rt |x1:t) =
p (rt , x1:t)

p (x1:t)
. (4.3.1)
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We seek the joint distribution over the past estimated runlengths rt−1 as follows:

p (rt , x1:t)
(a)
=

∑
rt−1∈Rt−1

p (rt , x1:t , rt−1)

(b)
=

∑
rt−1∈Rt−1

p (rt , xt |rt−1, x1:t−1) p (rt−1, x1:t−1)

(c)
=

∑
rt−1∈Rt−1

p (xt |��rt , rt−1, x1:t−1) p (rt |rt−1,���x1:t−1) p (rt−1, x1:t−1)

(d)
=

∑
rt−1∈Rt−1

p (rt |rt−1) p (xt |rt−1, x1:t−1) p (rt−1, x1:t−1) . (4.3.2)

where (a) holds true using a marginalization, (b) and (c) hold true using two chain rules,
(d) holds true thanks to the fact that rt does not depend on x1:t−1 and xt does not depend
on rt .

Thus, combining Equation (4.3.1) and Equation (4.3.2) we get:

p (rt |x1:t) ∝
∑

rt−1∈Rt−1

p (rt |rt−1)︸ ︷︷ ︸
hazard

p (xt |rt−1, x1:t−1)︸ ︷︷ ︸
UPM

p (rt−1|x1:t−1) . (4.3.3)

So, given the previous runlength distribution p (rt−1|x1:t−1), one can thus build a message-
passing algorithm (see figure 4.3.1) for the current run-length distribution p(rt |x1:t) by
calculating:

1. the underlying predictive model (UPM) p (xt |rt−1, x1:t−1),

2. the hazard function p (rt |rt−1).

It should be noted that at each time t, the runlength Rt either continues to grow (which
corresponds to the event

{
rt = rt−1 +1

}
) or a change occurs which corresponds to

{
rt = 0

}
.

Thus, from equation (4.3.3), we get the following recursive runlength distribution estimation:

• Growth probability:

p (rt = rt−1 + 1|x1:t) ∝ p (rt |rt−1) p (xt |rt−1, x1:t−1) p (rt−1|x1:t−1) . (4.3.4)

• Change-point probability:

p (rt = 0|x1:t) ∝
∑

rt−1∈Rt−1

p (rt |rt−1) p (xt |rt−1, x1:t−1) p (rt−1|x1:t−1) . (4.3.5)

Hazard function. According to Equation (4.3.4) and Equation (4.3.5), the runlength dis-
tribution estimation need to compute the change-point prior p (rt |rt−1), which is done fol-
lowing the model in Equation 4.3.6:
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t = 1

t = 2

t = 3

t = 4

Runlength

0 1 2 3

Figure 4.3.1: Message passing for runlength inference.
Boxes represent runlengths in the runlength distribution, and arrows represent messages that
are passed between them in the update algorithm. At the top of the picture the runlength
distribution is shown starting as a single runlength (here we initialise the algorithm such that
we assume a change-point has happened, so the runlength distribution just contains the
runlength of zero). After one time step the runlength distribution grows to two runlengths
(zero and one). Either a change-point occurs and so the runlength remains at zero (shown
by a dashed arrow representing the message from zero to zero) or a change didn’t happen
and thus the runlength increments to one (the message is represented by a full arrow). The
picture shows how the runlength grows by one after each time step. The update step has a
cost (both in time and space) linear in the number of possible runlengths.

p (rt |rt−1) =


H (rt−1) if rt = 0

1−H (rt−1) if rt = rt−1 + 1

0 otherwise

(4.3.6)

with: H(s) =
Pchange (s+1)∑∞
t=s+1

Pchange(t)
and Pchange denotes the probability distribution over the

interval between changepoints.

A simple example of BOCPD would be to use a constant hazard function h ∈ (0, 1) in the
sense that p(rt = 0|rt−1) is independent of rt−1 and is constant, giving rise, a priori, to
geometric inter-arrival times for change points (Pchange(s + 1) = h (1− h)s). Thus, the
recursive runlength distribution computation becomes:

p(rt 6= 0|x1:t) ∝ (1− h) p(xt |rt−1, x1:t−1)p(rt−1|x1:t−1)

p(rt = 0|x1:t) ∝ h
∑

rt−1∈Rt−1

p(xt |rt−1, x1:t−1)p(rt−1|x1:t−1)

Then, for Bernoulli observations (xt ∼ B (µt)) the underlying predictive distribution (UPM)
can be set to the Laplace predictor.
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Definition 4.3: Laplace predictor
The Laplace predictor Lp (xt+1|xs:t) takes as input a sequence xs:t ∈ {0, 1}ns:t and predicts
the value of the next observation xt+1 ∈ {0, 1} as follows:

Lp (xt+1|xs:t) :=


∑t

i=s
xi+1

ns:t+2 if xt+1 = 1,∑t

i=s
(1−xi )+1

ns:t+2 if xt+1 = 0,

where ∀x ∈ {0, 1} Lp (x |∅) = 1
2 corresponds to the uniform prior given to the process

generating θc .

Remark 2. Laplace predictor is used as the estimator of the maximum likelihood with a
uniform prior. It originates from the classical literature on universal codes and has standard
robustness properties and Bayesian interpretation that make it of especial interest. Another
variant is the Krichesky-Trofimov estimate [33].

Although BOCPD algorithm is very efficient in practice, its analysis in term of false alarm rate
and detection delay is still an open problem. As a first step of the analysis of the Bayesian
Online Change Point Detection, in this section we reformulate it in terms of learning strategy
based on a growing number of forecasters.

In the following, to simplify the derivations (especially for Lemmas 4.1 and 4.2) we assume
that the hazard function for BOCPD is constant (H (rt−1) = h). Otherwise, the statement
of Lemmas 4.1 and 4.2 becomes cumbersome to write and difficult to understand.

4.3.2 Learning with a growing number of forecasters

Notion of forecaster.

Let t ∈ N? and s ∈ [1, t]. A forecaster s is a successive product of (t − s) Laplace predictors
(Lp (xt+1|xs:t)× Lp (xt |xs:t−1)× ...× Lp (xs |∅)) (see Definition 4.3), created at time s with
some initial weight. At each time t, the forecaster s observes exactly the sequence xs:t from
the environment.

At each time t, each possible value of the runlength rt ∈ [0, t − 1] corresponds to a specific
forecaster. More specifically, the forecaster starting at time s corresponds at time t to the
t − s value of the runlength rt .

Forecaster loss.

Using the Laplace predictor, the instantaneous loss of the forecaster s at time t is given by:

ls,t := − log Lp (xt |xs:t−1)

= −xt log Lp (1|xs:t−1)− (1− xt) log Lp (0|xs:t−1) .

Then, let L̂s:t :=
∑t
s ′=s ls ′:t denotes the cumulative loss incurred by the forecaster s from

time s until time t which takes the following crude expression:

L̂s:t :=
t∑

s ′=s

− log Lp (xt |xs ′:t−1) (4.3.7)
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Forecaster weights.

Instead of dealing with the posterior distribution of the runlength rt , we propose to give to
each forecaster s a weight vs,t := p(rt = t−s|xs:t) according to its sequence of observations
xs:t (see Figure 4.3.2). By this way, we describe the novel formulation of the Bayesian Online
Change Point Detector in Algorithm 4.1. Notice that in line 5, Algorithm 4.1 performs a
change-point detection, which was not present in [2].

Algorithm 4.1 BOCPD [46]

Require: h ∈ (0, 1)

1: v1,1 ← 1

2: for t = 1, . . . do
3: Observe xt ∼ B (µt)

4: Define for each forecaster s up to time t:

vs,t ←
{

(1− h) exp (−ls,t) vs,t−1 ∀s < t,

h
∑t−1
i=1 exp (−li ,t) vi ,t−1 s = t .

(4.3.8)

5: Estimate the last change-point τ̂t such that: τ̂t ← argmax
s∈[1,t]

vs,t .

6: end for

Equation (4.3.8) defines the weights vs,t recursively. Lemma 4.1 expands the expression of
vs,t for a better way to handle these quantities.

Lemma 4.1: From recursive to closed-form expressions
Let: Vt =

∑t
s=1 vs,t . Then, by noticing that Vt =

∑t−1
s=1 exp (−ls,t) vs,t−1, the quantities vs,t

take the following alternative closed-form expression:

vs,t =

(1− h)t−s+1 h1{s 6=1} exp
(
−L̂s:t

)
Vs ∀s < t,

hVt s = t.

Proof. You only need to see that:

Vt =
t∑
s=1

vs,t

=
t−1∑
s=1

vs,t + vt,t

= (1− h)
t−1∑
s=1

exp (−ls,t) vs,t−1 + h
t−1∑
s=1

exp (−ls,t) vs,t−1

=
t−1∑
s=1

exp (−ls,t) vs,t−1.
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First, from Lemma 4.1 one should notice that the quantity Vt plays the role of an initial
weight that is given to the forecaster newly created at time t. Thus, in order to control the
quantities vt,s , we need to explicitly expand the expression of Vt .

The expression for Vt is given iteratively (see Lemma 4.1). Making it explicit reveals the
power of the strategy introduced by [46], that combines the updates of exponentially many
forecasters into a simple iterative scheme. Indeed, Lemma 4.2 gives us the explicit expression
of Vt .

Lemma 4.2: Computing the initial weight Vt
The initial weight Vt takes the following form:

Vt = (1− h)t−2
t−1∑
k=1

(
h

1− h

)k−1

Ṽk:t where:

Ṽk:t =
t−k∑
i1=1

t−(k−1)∑
i2=i1+1

...
t−2∑

ik−1=ik−2+1

exp
(
−L̂1:i1

)
×
k−2∏
j=1

exp
(
−L̂ij+1:ij+1

)
exp

(
−L̂ik−1+1:t−1

)
.

Proof. First, for all t > 2, we have:

Vt =
t∑
i=1

vi ,t

Vt = v1,t +
t−1∑
i=2

vi ,t + vt,t

Vt = (1− h)t−1 exp
(
−L̂1:t

)
V1 +

t−1∑
i=2

(1− h)t−i exp
(
−L̂i :t

)
hVi + hVt . (using Lemma 4.1)

⇔ Vt =
t∑
i=1

(1− h)t−i exp
(
−L̂i :t

)
h1(i 6=1)︸ ︷︷ ︸

αt,i

Vi with convention: L̂i ,j = 0⇔ i > j.

⇔ Vt =
t∑
i=1

αt,iVi .

⇔ (1− αt,t) Vt =
t−1∑
i=1

αt,iVi .
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Finally, by letting βt,i =
αt,i
1−h , we obtain the following expression of Vt (using the classical

induction procedure and using V1 = 1):

∀t > 4,

Vt =

(
βt,1 +

t−2∑
i1=1

βt,t−i1βt−i1,1 +
t−1∑
k=3

t−k∑
i1=1

t−(k−1)∑
i2=i1+1

· · ·
t−2∑

ik−1=ik−2+1

βt,t−i1βt−i1,t−i2 · · · βt−ik−1,1

)
V1

= βt,1 +
t−2∑
i1=1

βt,t−i1βt−i1,1 +
t−1∑
k=3

t−k∑
i1=1

t−(k−1)∑
i2=i1+1

· · ·
t−2∑

ik−1=ik−2+1

βt,t−i1βt−i1,t−i2 · · · βt−ik−1,1.

V3 = β3,1 + β3,2β2,1.

V2 = β2,1.

which can be concatenated in the following form:

Vt = (1− h)t−2
t−1∑
k=1

(
h

1− h

)k−1

Ṽk:t , where:

Ṽk:t =

(t−2
k−1)︷ ︸︸ ︷

t−k∑
i1=1

t−(k−1)∑
i2=i1+1

...
t−2∑

ik−1=ik−2+1

exp
(
−L̂1:i1

)
×
k−2∏
j=1

exp
(
−L̂ij+1:ij+1

)
exp

(
−L̂ik−1+1:t−1

)
,

and (1− h)t−2
t−1∑
k=1

(
h

1− h

)k−1
(
t − 2

k − 1

)
= 1.

On the other hand, dealing with the explicit expression of Vt is challenging from a theoretical
standpoint (proving performance guarantees), since we need to control a combinatorial
number of cumulative losses. Indeed, notice that:

t−k∑
i1=1

t−(k−1)∑
i2=i1+1

...
t−2∑

ik−1=ik−2+1

1 =

(
t − 2

k − 1

)
,

where
(•
•
)
stands for the binomial operator.

4.4 The Restarted Bayesian Online Change Point Detector al-
gorithm (R-BOCPD)

In this section, we introduce a pruning version of the original BOCPD which is built on a
novel initial weight function, a restart procedure to prune the useless experts and a well
tuned hyper-parameter instead of the hazard function.

4.4.1 Introducing a simple initial weight.

In order to avoid the difficulty mentioned in Lemma 4.2, we propose to use a much simpler
initial weight that takes the following form:

Vr :s−1 := exp
(
−L̂r :s−1

)
for some starting time r .
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v1,1

v1,2

v1,3

v1,4

v2,2

v2,3

v2,4

v3,3

v3,4 v4,4

t = 1

t = 2

t = 3

t = 4

Figure 4.3.2: Updating the forecaster distribution.
Rounded rectangles represent the forecasters in the forecaster distribution, arrows represent
the recursive forecaster distribution update formulated in Equation 4.3.8 and red dashed
rounded rectangles represent the forecaster newly created at each time step t.

Notice that the initial weight Vr :s−1 is a restricted version of the original one Vs by forgetting
the contribution of all forecasters but the one launched at the starting time r (underlined
term in Lemma 4.2). Thereby, the control of the initial weight is made easier: instead
of dealing with a combinatorial number of cumulative losses, we only need to control one
cumulative loss (L̂r :s−1). Thus, for some starting time r , we denote by ϑr,s,t the novel
weight given to the forecaster s > r at time t > s. Then, one should also notice that
BOCPD (Algorithm 4.1) produces an estimation of the last change point at each time step.
In order to analyze this algorithm in term of detection delay, we propose to introduce a
change-point decision rule (restart procedure).

4.4.2 Introducing a restart procedure.

For any starting time r 6 t, the change-point criterion is written as follows:

Restartr :t = 1{∃s ∈ (r, t] : ϑr,s,t > ϑr,r,t} (4.4.1)

where ϑr,s,t denotes the weight of the forecaster s created with the initial weight Vr :ts−1 at
time t (see Algorithm 4.2 line 4). The intuition behind the criterion Restartr :t is that at each
time t < τ where there is no change, the forecaster distribution tends to be concentrated
around the forecaster launched at the starting time r . So, if the distribution ϑr,s,t undergoes
a change then it can be seen as a certain change-point that has appeared. Thereby when
Restartr :t = 1, a change-point is detected and thus we restart a new forecaster at time
r = t + 1 and delete all previous launched forecasters (s < r). This can be seen as a
sophisticated pruning out procedure to reduce the number of launched forecasters.

Finally, by using the hyper-parameter ηr,s,t (instead of the constant value h) and plugging the
initial weight Vr :t−1 and the decision rule Restartr :t into the formalism of BOCPD (Equation
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4.3.8), we obtain a restarted version of the Bayesian Online Change Point Detector which
is described in Algorithm 4.2.

Algorithm 4.2 R-BOCPD

Require: (ηr,s,t)r>1,s>1,t>1 ∈ (0, 1)

1: r ← 1, ϑr,1,1 ← 1, ηr,1,1 ← 1.
2: for t = 1, . . . do
3: Observe xt ∼ B (µt)

4: Define for each forecaster s from time r to time t:

ϑr,s,t ←


ηr,s,t
ηr,s,t−1

exp (−ls,t)ϑr,s,t−1 ∀s < t,

ηr,t,t × Vr :t−1 s = t .
(4.4.2)

5: if Restartr :t = 1 then r ← t + 1, ϑr,r,r ← 1, ηr,r,r ← 1.
6: Estimate the last change-point: τ̂t ← r .
7: end for

4.4.3 Discussion about R-BOCPD

The main difference between the R-BOCPD and its previous version lie primarily in the use
of the test Restartr :t = 1 for detecting the change-points. The second difference is the
use of a simple initial weight Vr :t−1 instead of the quantity Vt standing for the sum of the
forecaster weights at time t. This is essentially done for theoretical reasons (see Lemma
4.2). The third difference is the use of a hyper-parameter ηr,s,t instead of the hazard function
h. The quantity ηr,s,t

ηr,s,t−1
→
t→∞

1 is used in updating the forecaster distribution ϑr,s,t at time

t instead of the quantity (1− h) whose asymptotic behavior is the same for an harazd rate
very small. Indeed, 1 − h ≈ 1. Finally, unlike [2, 46] where the hazard function is assumed
to be known (see section 4.3.1), the function ηr,s,t will be specified thanks to the analysis
in section 4.5.1.

4.5 Performance guarantees

In this section, we build the two main guarantees for the R-BOCPD algorithm, namely: the
false alarm rate (Theorem 4.10) and the detection delay control (Theorem 4.11). Then, we
provide the reader with some useful tools to build these guarantees.

4.5.1 Non-asymptotic analysis of R-BOCPD

Let r denotes the time of the last restart and τc the change-point just coming after r .

Theorem 4.10 states the condition on ηr,s,t where R-BOCPD (algorithm 4.2) does not make
any false alarm with high probability. It is without reminding that the false alarm corresponds
to the event where Restartr :t = 1 during the period [r, τc).
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Theorem 4.10: False alarm rate
Assume that xr :t ∼ B (θ)⊗nr :t . Let: α > 1. If ηr,s,t is small enough such that:

∀t ∈ [r, τc) , s ∈ (r, t] : ηr,s,t <

√
nr :s−1 × ns:t

10 (nr :t + 1)
×
(

log(4α+ 2)δ2

4nr :t log((α+ 3) nr :t)

)α

then, with probability higher than 1− δ, no false alarm occurs on the interval [r, τc):

Pθ
(
∃ t ∈ [r, τc) : Restartr :t = 1

)
6 δ.

Proof. The complete proof is given in section 9.5.

Before stating the control of the detection delay, we need to introduce the notion of relative
gap ∆r,s,t .

Definition 4.4: Relative gap ∆r,s,t
Let ∆ ∈ [0, 1]. The relative gap ∆r,s,t for the forecaster s at time t takes the following form
(depending on the position of s):

∆r,s,t =

(
nr :τc−1

nr :s−1
1{τc 6 s 6 t}+

nτc :t

ns:t
1{s < τc}

)
∆.

Theorem 4.11 states the detection delay under some condition on the quantity ηr,s,t .

Theorem 4.11: Detection delay
Let xr :τc−1 ∼ B (θ1)⊗nr :τc−1 , xτc :t ∼ B (θ2)⊗nτc :t and ∆ = |θ1 − θ2|: the change-point gap.
Then, let: fr,s,t = log nr :s + log ns:t+1 − 1

2 log nr :t + 9
8 .

If ηr,s,t is large enough such that:

ηr,s,t > exp
(
− 2nr,s−1 (∆r,s,t − Cr,s,t,δ)2 + fr,s,t

)
,

then, the change-point τc is detected (with a probability at least 1 − δ) with a delay not
exceeding D∆,r,τc , such that:

D∆,r,τc = min

{
d ∈ N? : d >

(
1− Cr,τc ,d+τc−1,δ

∆

)−2

2∆2
×
− log ηr,τc ,d+τc−1 + fr,τc ,d+τc−1

1 +
log ηr,τc ,d+τc−1−fr,τc ,d+τc−1

2nr,τc−1(∆−Cr,τc ,d+τc−1,δ)2

}
,

(4.5.1)

where:

Cr,s,t,δ =

√
2

2

(√√√√1 + 1
nr :s−1

nr :s−1
log

(
2
√
nr :s
δ

)
+

√√√√1 + 1
ns:t

ns:t
log

(
2nr :t

√
ns:t + 1 log2 (nr :t)

log(2)δ

))
.

(4.5.2)
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Proof. The complete proof is given in section 9.6.

Discussion about the detection delay D∆,r,τc From Eq.(4.5.1), for a fixed r and τc we
notice that the larger the change-point gap ∆, the smaller the detection delay D∆,r,τc and
vice versa. Moreover for a fixed gap ∆, the larger nr,τc−1: the number of observations before
the change-point τc , the smaller the detection delay D∆,r,τc (cf figure 4.5.1).

Figure 4.5.1: Variation of the R-BOCPD detection delay D∆,r,τc as a function
of the change point gap ∆ (x-axis) and the number of observations before
the change-point nr,τc−1 (y-axis). For this plot, we choose ηr,s,t = 1

nr :t
for

R-BOCPD.

Remark 3 (Minimum detectable gap ∆min (r, τc , t)). Instead of imposing a condition on the
lower-bound of ηr,s,t , we can discuss the detectability of the change-point τc according to
the magnitude of the gap ∆. Thus, if the gap ∆ is of magnitude at least ∆min (r, τc , t) =√
− log ηr,τc ,t+fr,τc ,t

nr :τc−1
+Cr,τc ,t,δ, then the change-point τc is detected (with a probability at least

1− δ) with a finite delay not exceeding D∆,r,τc .

Discussion about the asymptotic optimality We compare the result of Theorem 4.11

with the existing lower-bound on the detection delay (see [93]). The asymptotic regime
corresponds to the case where the elapsed time between the last restart r and the new
change point τc tends to infinity, while the probability of false alarm δ tends to zero. More
formally, the asymptotic regime is reached when nr :τc−1

log(1/δ) → ∞, and log nr :τc−1 = o
(

log 1
δ

)
when δ → 0. We obtain that:

D∆,r,τc →τc→∞
− log ηr,τc ,d+τc−1 + o

(
log 1

δ

)
2 |θ2 − θ1|2

. (4.5.3)
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Thus, following Theorem 4.9, the detection delay D∆,r,τc is asymptotically order optimal
(up to the Pinsker inequality tightness relating |θ2 − θ1|2 to kl (θ2, θ1)). Moreover, the
smaller ηr,s,t , the larger the detection delay and vice-versa. Also, following Remark 3, the
smaller ηr,s,t , the larger the minimum detectable gap ∆min (r, τc , t).

Remark 4 (Main difficulty to get optimality with the Kullback-Leibler divergence). The
result of Equation 4.5.3 shows the Euclidean distance |θ2 − θ1|2 instead of the Kullback-
Leibler divergence kl (θ2, θ1) as expected from Theorem 4.9. Indeed, in the analysis of the
detection delay (see section 9), the quantity nr :s−1kl (µ̂r :s−1, µ̂r :t)+ns:tkl (µ̂s:t , µ̂r :t) appears
(it naturally comes from Lemma 4.3). Building a lower bound of nr :s−1kl (µ̂r :s−1, µ̂r :t) +

ns:tkl (µ̂s:t , µ̂r :t) showing the quantity kl (θ2, θ1) (in the case where there is change point
τ ∈ [r, t]) does not seem trivial. Thus, we have opted to use the Pinsker inequality which
has slightly reduced the optimality of our result.

Discussion about the choice of ηr,s,t . Choosing ηr,s,t ≈ 1
nr :t

seems to be a wise choice
since it allows us to verify the conditions of Theorem 4.10 (for some α→ 1) and Theorem
4.11. Thus, by plugging ηr,s,t ≈ 1

nr :t
into the asymptotic expression of the detection delay

(Equation 4.5.3), we get (in the asymptotic regime nr :τc−1

log(1/δ) →∞, and log nr :τc−1 = o
(

log 1
δ

)
when δ → 0):

D|θ2−θ1|,r,τc →τc→∞
o
(

log 1
δ

)
2 |θ2 − θ1|2

.

By this way, the detection delay is asymptotically optimal in the sense of Theorem 4.9 (up
to the Pinsker inequality tightness relating |θ2 − θ1|2 to kl (θ2, θ1)).

4.5.2 Sketch of proof for the false alarm rate control and the detection delay

In this section, we provide the key elements and the essential intuitions to build the false
alarm guarantee and the detection delay control. The key element in building the false alarm
guarantee and the detection delay of R-BOCPD lies in controlling efficiently the quantities
logϑr,s,t . Indeed using Equation (4.4.2), we get (for some starting time r):

logϑr,s,t = log ηr,s,t × 1{s 6= r} − L̂r :s−1 − L̂s:t . (4.5.4)

Then, it is clear that controlling the quantity logϑr,s,t requires an efficient control of L̂s:t .
Using the crude expression of L̂s:t (see Equation (4.3.7)) seems to be very naive in the
sense that we need to control each instantaneous loss ls,t independently without taking into
account the dependencies between ls,t and ls,t−1. A smarter way to deal with the quantity
L̂s:t lies in writing it as follows:
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Lemma 4.3: Rewriting the cumulative loss
Based on the Laplace predictor, the cumulative loss L̂s:t takes the following closed-form
expression:

∀xs:t ∈ {0, 1}ns:t L̂s:t = log (ns:t + 1) + log

(
ns:t∑t
i=s xi

)
.

Proof. The complete proof is given in section 9.1.

Remark 5. The main idea of Lemma 4.3 is taken from the book "Prediction, Learning and
Games" by [34]. Notice that Lemma 4.3 is valid for any binary sequence xs:t ∈ {0, 1}ns:t .
No assumption on the intrinsic distribution of the sequence xs:t is required.

Lemma 4.4: Cumulative loss control before a change-point
Assume that we observe a sequence xs:t ∼ B (θ)⊗ns:t . Then, the control of the quantity L̂s:t

is done as follows:
• Upper bound:

L̂s:t 6 log ns:t+1 −
t∑
i=s

xi log θ −
t∑
i=s

(1− xi) log (1− θ) ,

• Lower bound:

L̂s:t > −
t∑
i=s

xi log θ −
t∑
i=s

(1− xi) log (1− θ) + log
ns:t+1√
ns:t
− ns:tkl (µ̂s:t , θ)−

9

8
.

Proof. The complete proof is given in section 9.2.

Remark 6. Notice how tight are the upper and lower bound of the loss L̂s:t . The control in
Lemma 4.4 represents an essential element to provide the false alarm guarantee in Theorem
4.10.

Finally, one should notice that the lower bound of the cumulative loss L̂s:t involves the
Kullback-Leibler divergence kl (µ̂s:t , θ). For very tight control of the cumulative loss, we
need to efficiently control the quantity kl (µ̂s:t , θ). This is done uniformly in Lemma 4.5 and
Lemma 4.6.

Lemma 4.5: Time uniform kl (•, •) concentration
Let: µ̂t denotes the empirical mean over the sequence x1, ..., xt ∼ B (θ)⊗n1:t , then for all
(δ, α) ∈ (0, 1)× (1,∞) we have:

Pθ

(
∃t ∈ N? : kl (µ̂t , θ) >

α

t
log

log(αt) log(t)

log2(α)δ

)
< δ.
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Proof. The interested reader can refer for more details on the proof of Lemma 4.5 to
the manuscript untitled "Mathematics of Statistical Sequential Decision Making" https:
//pdfs.semanticscholar.org/9099/c0f71185adce7705beb78d595abc817c33d6.
pdf.

Lemma 4.6: Doubly-time uniform kl (•, •) concentration
Let µ̂s:t denotes the empirical mean over the sequence (xs , ..., xt) ∼ B (θ)⊗ns:t , then for all
(δ, α) ∈ (0, 1)× (1,∞) we have:

Pθ

(
∃t ∈ N?,∃s ∈ (r, t] : kl (µ̂s:t , θ) >

α

ns:t
log

nr :t log2(nr :t) log((α+ 1) ns:t)

log(2) log2(α)δ

)
< δ.

Proof. The interested reader can refer for more details on the proof of Lemma 4.6 to
the manuscript untitled "Mathematics of Statistical Sequential Decision Making" https:
//pdfs.semanticscholar.org/9099/c0f71185adce7705beb78d595abc817c33d6.
pdf.

Then, in order to build the detection delay guarantee, we will need to efficiently control the
quantity |µ̂r :s−1 − µ̂s:t | (which is related to L̂r :s−1 + L̂s:t − L̂r :t via Pinsker inequality). This
is done thanks to Lemma 4.7.

Lemma 4.7: Doubly-time uniform concentration for scan statistics
Let: (xr , ...xt) be a sequence of independent binary random variables sampled from a
Bernoulli distribution and µ̂i :j the empirical mean over the sequence xi :j . Then, for all
(r, δ) ∈ N? × (0, 1), we get the following control:

P
(
∃ t > r, s ∈ [r, t) :

∣∣µ̂r :s−1 − µ̂s:t − E [µ̂r :s−1 − µ̂s:t ]
∣∣ > Cr,s,t,δ) 6 δ,

where: Cr,s,t,δ is defined in Equation (4.5.2).

Proof. The complete proof is given in chapter 9. It is mainly built using the Laplace method
of integration for optimization).

4.6 Numerical illustrations of R-BOCPD against the state-of-art

In this section, we provide numerical comparisons between the proposed strategy R-BOCPD
and two state-of-art strategies: BOCPD and the Improved GLR [102] in two different
schemes, a first comparison on synthetic data and a second comparison on real world data.

4.6.1 Synthetic data

Comparison with BOCPD

Highlighting the use of the function Vr :t−1 In order to highlight the use of the function
Vr :t−1 as initial weight given to the forecaster newly created at time t (instead of the
original one Vt), we compare the R-BOCPD strategy against its previous version BOCPD

https://pdfs.semanticscholar.org/9099/c0f71185adce7705beb78d595abc817c33d6.pdf
https://pdfs.semanticscholar.org/9099/c0f71185adce7705beb78d595abc817c33d6.pdf
https://pdfs.semanticscholar.org/9099/c0f71185adce7705beb78d595abc817c33d6.pdf
https://pdfs.semanticscholar.org/9099/c0f71185adce7705beb78d595abc817c33d6.pdf
https://pdfs.semanticscholar.org/9099/c0f71185adce7705beb78d595abc817c33d6.pdf
https://pdfs.semanticscholar.org/9099/c0f71185adce7705beb78d595abc817c33d6.pdf


74 Chapter 4. Restarted Bayesian Online Change-point detection strategy

in the following experimental setting. We generate 2500 trajectories (sequences) of length
T = 5000 where we vary the number of observation before the change-point from 10 to
1000 and we vary the change-point gap ∆ from 0.01 to 1.

Then, we run R-BOCPD and BOCPD strategy on the same sequence 600 times. Finally,
we plot the mean detection delay difference between R-BOCPD and BOCPD. Each square
corresponds to a detection event for a change-point τc . The y coordinate corresponds to
the number of observations both R-BOCPD and BOCPD algorithms received before the
change-point, the x coordinate is the gap of the change-point. From figure 4.6.1, we see
that the detection delay of R-BOCPD is slightly smaller than the one of BOCPD. Indeed,
the detection delay difference is negative over all the experiments. By the way, using the
function Vr :t−1 instead of Vt as an initial weight given to the forecaster newly created allows
us to speed up the change-point detection.

Figure 4.6.1: Difference between detection delays of R-BOCPD and BOCPD.
In these experiments, we choose ηr,s,t = 1

nr :t
for R-BOCPD and h = 1/T for

BOCPD.

Highlighting the use of the restart procedure Restartr :t In order to highlight the ben-
efit of using the restart procedure Restartr :t in R-BOCPD, we compare R-BOCPD strategy
against BOCPD in the following setting. We generate a piece-wise stationary Bernoulli pro-
cess with four change-points observed at time (τ1 = 1, τ2 = 301, τ3 = 701, τ4 = 1051), then
we run R-BOCPD and BOCPD on this environment and finally we plot (in figure 4.6.2) the
change-point estimation τ̂t for both R-BOCPD and BOCPD.

From figure 4.6.2, the curves of R-BOCPD and BOCPD are almost the same meaning
that there is no significant difference in terms of false alarm and detection delays for both
algorithms. Thus, restart procedure Restartr :t doesn’t affect the performances of the
Bayesian online change-point detector.
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Figure 4.6.2: In all the experiment, we choose ηr,s,t = 1
nr :t

for R-BOCPD and
h = 3/1200 for BOCPD. The curves are averaged over 300 runs. (Their

error bars are also plotted).

Comparison with the Improved GLR

Recently, the classical Generalized Likelihood Ratio (GLR) strategy has been improved by
[102] by well-tuning the decision threshold. It used a novel sharp concentration inequality
based on the Laplace method for scan-statistics which holds doubly uniformly in time (see
Lemma 4.7). The final formulation of the Improved GLR strategy for Bernoulli processes
takes the following form:

GLRr :t = 1
{
∃ s ∈ [r, t) :

∣∣µ̂r :s − µ̂s+1:t

∣∣ > Cr,s,t,δ}
where Cr,s,t,δ is defined in Equation (4.5.2).
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Lemma 4.8: Guarantees of the Improved GLR test
Let: xr , ..., xτ−1

i id∼ B (θ1)⊗nr :τ−1 be a sequence of τ−r i.i.d binary random variables following

a Bernoulli distribution of expectation θ1 and xτ , ..., xt
i id∼ B (θ2)⊗nτ :t be a sequence of t−τ+1

i.i.d binary random variables following a Bernoulli distribution of mean θ2. Let: ∆ = |θ1 − θ2|
denotes the gap. Then, ∀ δ ∈ (0, 1), the GLR test started at time r and using the threshold
Cr,s,t,δ for each t > r presents the three following guarantees:

1. False alarm: Pθ1

(
∃ t ∈ [r, τ) : GLRr :t = 1

)
6 δ

2. Detection delay:
∀ ε ∈ [0, 1] , ∀t ∈ [τ, τ + `ε,δ (τ − r,∆)] Pθ1,θ2

(
GLRr :t = 0

)
6 δε (t − r)

where: 
`ε,δ (n,∆) = min

d ∈ N? : d >
1
2 (1+ε)2× n+1

n
log(zd/δ)[

∆2− 1/2(1+ε)2

n
log(zd/δ)

]+


zd = (d + τ − r − 1)

√
d + τ − r + 1 and [x ]+ = max {x, 0}

δε (n) = 2n
(

δ
2n
√
n+2

)ε2× n+2
n+1 and δ1 (n) = δ

3. Maximum non-detectability gap:
Let τ−1 denotes the change-point coming before τ and τ+1 the one coming after τ .
If the change-point τc is undetectable then the magnitude of the gap ∆ must satisfy
the following condition:

∆ 6 ∆†τ−1,τ,τ+1,δ
where ∆†r,τ,t,δ = 2Cr,τ,t−1,δ

Proof. Lemma 4.8 is a direct application of Theorem 6 in [102] for the Bernoulli case where
the sequence of observations xr :t has 1

2 -sub-Gaussian noise.

The Improved GLR strategy has been proven to be asymptotically order optimal, in the sense
of Theorem 4.9 (see Theorem 6 in [102]). Therefore, comparing R-BOCPD against the
Improved GLR strategy is a wise choice since GLR is considered as a very good baseline for
the setting of the paper. Thus in Figure 4.6.3, we generate 2500 trajectories (sequences)
of length T = 2500 where we vary the number of observation before the change-point from
10 to 500 and we vary the change-point gap ∆ from 0.01 to 1. Then, we run R-BOCPD
and Improved GLR strategy on the same sequence 360 times. Finally, we plot the mean
detection delay difference between R-BOCPD and Improved GLR.

Figure 4.6.3 highlights the benefit of the R-BOCPD algorithm over the Improved GLR
strategy. Indeed, the detection delay of R-BOCPD is slightly smaller than the one of the
Improved GLR strategy. The while square means that Improved GLR isn’t able to perform
a detection while R-BOCPD does. Thus, for the small gap case, R-BOCPD is more robust
than the Improved GLR strategy.

4.6.2 Experiments on Well-log data (Real world data)

These data have been studied in the context of change-point detection by [45] and has
become a benchmark data set for uni-variate change-point detection. They consist on 4050
measurements

(
y1, ...y4050 ∈

[
6.42× 104, 1.04× 105

])
of nuclear magnetic response taken



4.7. Extension to finite support distributions 77

Figure 4.6.3: Difference between detection delays of R-BOCPD and GLR.
The white square means that ImprGLR isn’t able to perform a detection
while R-BOCPD does. In all the experiments, we choose ηr,s,t = 1

nr :t
for

R-BOCPD. The parameter δ (false alarm rate of ImpGLR) is set to 0.01.

during the drilling of a well. The data are used to interpret the geophysical structure of the
rock surrounding the well. The variations in mean reflect the stratification of the earth’s
crust. In order to perform the experiments on the Well-log data, we typically proceed by
computing the re-scaled values ỹ1, ..., ỹ4050 ∈ [0, 1] then we use the sequence of samples
x1 ∼ B (ỹ1) ..., x4050 ∼ B (ỹ4050) as input for BOCPD, R-BOCPD and ImpGLR (see figure
4.6.4). Finally, we plot the estimation of the change-points for each algorithm. Notice
that R-BOCPD is more suitable to detect the change-point at t = 2800 than BOCPD or
ImpGLR.

4.7 Extension to finite support distributions

In this chapter, the restarted Bayesian Online Change-point detector (R-BOCPD) has been
specially designed for Bernoulli distributions (see Lemma 4.3 and Definition 4.3). This does
not seem to have much limited its applications. Extensions to discrete-support distributions
might be possible, resorting for instance to other concentration inequalities results, but this
is not the purpose of this work. Note that, algorithms working on Bernoulli distributions
can be conveniently extended to work with other set of distributions with bounded support:
A classical way to do so when considering distribution D with bounded support in [a, b],
and some observation yt ∼ D ∈ [a, b], is to compute the re-scaled observation ỹt ∈ [0, 1],
then use the sample xt ∼ B (ỹt) as input (This transformation may not preserve optimality
properties, though). The experiments in section 4.6.2 has been performed following this
procedure.
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Figure 4.6.4: In all the experiment, we choose ηr,s,t = 1
nr :t

for R-BOCPD and
h = 1/T for BOCPD. The curves are averaged over 300 runs. (Their error

bars are also plotted).

It should be noted that our analysis makes use of some specific properties of Bernoulli
distributions, such as concentration inequalities, the key Lemma 4.3 and existence of explicit
conjugate priors. Lemmas 4.5, 4.6 and 4.7 on the other hand are valid for any sub-Gaussian
distributions. The Extension of our analysis to other popular distributions (e.g. Gaussians,
Poisson, etc.) would need the specific equivalent of Lemma 4.3, and depend on the specific
concentration inequalities and conjugate priors for this family. We believe this requires careful
case by case examination.

4.8 Conclusion and future work

In this chapter, we introduced an improvement of the Bayesian Online Change-point Detec-
tor, called Restarted BOCPD. We provided a non-asymptotic analysis of its false alarm rate
and detection delay, and shown numerically that our proposal outperforms its previous ver-
sion. This constitutes arguably the first problem-dependent analysis of a Bayesian strategy
in the context of change-point detection, and opens the path towards a complete analysis of
BOCPD on the one hand, and the development of other Bayesian alternative on the other
hand. We note that obtaining such guarantees is of primary importance in some applications,
and in particular in the increasingly popular context of non-stationary multi-armed bandits.
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Chapter 5

Decentralized Exploration in
Multi-Armed Bandits

Overview of the chapter

In this chapter, we consider the decentralized exploration problem: a set of players col-
laborate to identify the best arm by asynchronously interacting with the same stochastic
environment. The objective is to ensure privacy in the best arm identification problem be-
tween asynchronous, collaborative, and thrifty players. In the context of a digital service,
we advocate that this decentralized approach allows a good balance between conflicting
interests: the providers optimize their services, while protecting privacy of users and saving
resources. We define the privacy level with respect to the amount of information an adversary
could infer by intercepting all the messages concerning a single user. We provide a generic
algorithm Decentralized Elimination, which uses any best arm identification algorithm as a
subroutine. We prove that this algorithm ensures privacy, with a low communication cost,
and that in comparison to the lower bound of the best arm identification problem, its sample
complexity suffers from a penalty depending on the inverse of the probability of the most
frequent players. Then, thanks to the generality of the approach, we extend the proposed
algorithm to the non-stationary bandits. Finally, experiments illustrate and complete the
analysis.

Publication. This chapter is mainly based on our article [47].

5.1 Introduction

We consider a collaborative exploration problem, the decentralized exploration problem. The
main motivation of this new problem setting comes from sequential A/B and multivariate
testing applications. For instance, most digital applications perform sequential A/B and
multivariate testing in order to optimize the value of their audience. When a device is
connecting to the application, the application presents an option to the user of the device.
The aim is to maximize the clicks of users on the proposed options. Using the standard
centralized exploration approach, the click stream of users is gathered and processed to
choose the option which generates the most clicks. In this chapter, we formulate this
standard exploration problem in a decentralized way.

When the event "player n is active" occurs, player n reads the messages received from other
players and then chooses an arm to play. The reward of the played arm is revealed to player
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n. Finally, she may send a message to the other players for sharing information about the
arms.

The decentralized approach presents significant advantages. First, the clicks of users contain
information that may be embarrassing when revealed, or that can be used by a third party
in an undesirable way. The decentralization of exploration favors privacy since the click
stream is not transmitted. However, it is not sufficient. The messages sent by a user
may still contain private information such as her favorite topics, and therefore her political
views, sexual orientation... As the players broadcast messages to other players, a malicious
adversary can pretend to be a player, and then listening the exchanged messages. To ensure
privacy one must guarantee that no useful information can be inferred from the messages
sent by a single user. Second, the decentralization of exploration reduces the communication
cost. This is a significant requirement for the Internet of Thing applications, since the
smart devices often run on batteries. Third and finally, for all digital applications and in
particular for the mobile phone applications, the decentralization with a low communication
cost increases the responsiveness of applications by minimizing the number of interactions
between the application server and the devices.

Finally, the objective of the decentralized exploration problem is threefold:

1. sample efficiency: finding a near-optimal arm with high-probability using a minimal
number of interactions with the environment.

2. user privacy: protecting information contained in the interaction history of a single
player.

3. low communication cost: minimizing the number of exchanged messages.

5.2 Related works

The problem of the best arm identification has been studied in two distinct settings in the
literature:

• the fixed budget setting: the duration of the exploration phase is fixed and is known by
the forecaster, and the objective is to maximize the probability of returning the best
arm [29, 11, 51];

• the fixed confidence setting: the objective is to minimize the number of rounds needed
to achieve a fixed confidence to return the best arm [44, 76, 51, 80].

In this chapter, we focus on the fixed confidence setting. Its theoretical analysis is based on
the Probably Approximately Correct framework [140], and focuses on the sample complexity
to identify a near-optimal arm with high probability. This theoretical framework has been
used to analyze the best arm identification problem in [44], the dueling bandit problem in
[139], the batched bandit problem in [116], the linear bandit problem in [127], the contextual
bandit problem in [48], and the non-stationary bandit problem in [7].

The decentralized multi-player multi-armed bandits have been studied for opportunistic spec-
trum access in [98, 17, 108] or for optimizing communications in Internet of Things, even
when no sensing information is available [23]. The objective is to avoid collisions between
concurrent players that share the same channels, while choosing the best channels and
minimizing the communication cost between players.
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Recent years have seen an increasing interest for the study of the distributed collabora-
tive scheme, where there is no collision when players choose the same arm at the same
time. The distributed collaborative multi-armed bandits have been studied when the agents
communicate through a neighborhood graph in [131, 94]. Here, we allow each player to
broadcast messages to all players. In [35], a team of agents collaborate to handle the same
multi-armed bandit problem. At each step the agent can broadcast her last obtained reward
for the chosen arm to the team or pull an arm. The communication cost corresponds to
the lost of the potential reward. As the pull of the arm of the agent is broadcasted, this
approach does not ensure privacy of users. The tradeoff between the communication cost
and the regret has been studied in the case of distributed collaborative non-stochastic ex-
perts [78]. In [68], the best arm identification task with fixed budget is distributed using
Thompson Sampling in order to accelerate the exploration of the chemical space. In [69],
the best arm identification task with fixed confidence is distributed on a parallel processing
architecture. The analysis focuses on the trade-off between the number of communication
rounds and the number of pulls per player. Here, we consider here that the players activation
is under the control of the environment. As a consequence, synchronized communication
rounds can no longer be used to control the communication cost. In our chapter, the cost
of communications is assessed by the number of exchanged messages.

Moreover, our purpose is also to protect privacy of players. In the current context of
massive storage of personal data and massive usage of models inferred from personal data,
privacy is an issue. Even if individual data are anonymized, the pattern of data associated
with an individual is itself uniquely identifying. The k-anonymity approach [130] provides a
guarantee to resist to direct linkage between stored data and the individuals. However, this
approach can be vulnerable to composition attacks: an adversary could use side information
that combined with the k-anonymized data allows to retrieve a unique identifier [55]. The
differential privacy [42] provides an alternative approach. The sensitive data are hidden.
The guarantee is provided by algorithms that allow to extract information from data. An
algorithm is differentially private if the participation of any record in the database does not
alter the probability of any outcome by very much. The differential privacy has been extended
to local differential privacy in which the data remains private even from the learner [41]. In
[53], the authors propose an approach which handles the stochastic multi-armed bandit
problem, while ensuring local differential privacy. The ε-differential privacy is ensured to the
players by using a stochastic corruption of rewards. As all the rewards are transmitted to a
centralized bandit algorithm, this approach has the maximum communication cost. Here, we
define the privacy level with respect to the information about the preferred arms of a player,
that an adversary could infer by intercepting the messages of this player. The messages
could be corrupted feedbacks as in [53], or as we choose a more compact representation of
the same information.

Chapter Outline In Section 5.3, we propose a new problem setting for ensuring privacy in
the best arm identification problem between asynchronous, collaborative, and thrifty players.
In Section 5.4, we propose a generic algorithm, Decentralized Elimination, which handles the
decentralized exploration problem using any best arm identification algorithm as a subroutine.
Theorem 5.12 states that Decentralized Elimination ensures privacy, finds an approximation
of the best arm with high probability, and requires a low communication cost. Furthermore,
Theorem 5.13 states a generic upper bound of the sample complexity of Decentralized
Elimination. More specifically, Corollary 5.1 and 5.2 state the sample complexity bound
when respectively Median Elimination and Successive Elimination [44] are used as subroutine.



82 Chapter 5. Decentralized Exploration in Multi-Armed Bandits

Then, in Section 5.5, we extend the algorithmic approach to the decentralized exploration
in non-stationary bandit problem. In Section 5.6, to illustrate and complete the analysis,
we empirically compare the performances of Decentralized Elimination with two natural
baselines [78]: an algorithm that does not share any information between the players, and
hence that ensures privacy with a zero communication cost, and a centralized algorithm that
shares all the information between players, and hence that does not ensure privacy and that
has the maximum communication cost.

5.3 The decentralized exploration problem

Let N = {1, ..., N} be a set of N players. Let x ∈ N be a discrete random variable which
realization denotes the index n of the active player (the player for which an event occurs).
Let Px be the probability distribution of x which is assumed to be stationary and unknown to
the players. Let K = {1, ..., K} be a set of K arms. Let ynk ∈ [0, 1] be the bounded random
variable which realization denotes the reward of arm k for player n, and µnk be its mean
reward. Let yx=n = {ynk }k∈K be the vector of independent random variables ynk . Let Py and
Px,y be respectively the probability distribution of y and the joint probability distribution of
x and y, which are assumed to be unknown to the players.

Assumption 5.1: Stationary reward distributions
The mean reward of arms does not depend on time i.e.

∀t,∀n ∈ N and ∀k ∈ K, µnk(t) = µnk .

Assumption 5.2: Multi-armed bandits
The mean reward of arms does not depend on the player such that:

∀n ∈ N and ∀k ∈ K, µnk = µk .

Assumption 5.1 and 5.2 are used to focus on the stationary stochastic multi-armed bandits.
This section lays the theoretical foundations of the decentralized exploration problem in its
elementary form. The next section proposes an extension to the decentralized exploration in
non-stationary bandits. The extension to the decentralized exploration in contextual bandits
is discussed in section 5.7.

Definition 5.1: ε-optimal arm
Let ε ∈ (0, 1]. An arm k ∈ K is said to be ε-optimal, if µk > µk∗ − ε, where k∗ =

arg maxk∈K µk . Thus, we denote by Kε = {k ∈ K : µk > µk∗ − ε} ⊆ K the set of all
ε-optimal arms.
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Definition 5.2: Message
A message λnk ∈ {0, 1} is a binary random variable, that is sent by player n to other players,
and where λnk = 1 means that player n estimates that k is not an ε-optimal arm.a

aWe choose a Bernoulli random variable for the sake of clarity. Notice that any random variable could be
used as message.

LetMn be the set of sent messages by player n at stopping time. Let Kn(ln) ⊆ K be the
set of remaining arms at epoch ln ∈ {1, ..., L} for player n, where L is the maximal number
of epochs.

Definition 5.3: (ε, η)-private
The decentralized algorithm A is (ε, η)-private for finding an ε-optimal arm, if for any player
n, an adversary, that knows Mn, the set of messages of player n, and the algorithm A,
cannot infer what arm is ε-optimal for player n with a probability higher than 1− η:

∀n ∈ N ,∀ln ∈ {1, ..., L},@η1, 0 6 η1 < η 6 1,P
(
Kn(ln) ⊆ Kε

∣∣Mn,A
)
> 1− η1.

1− η is the confidence level associated to the decision of the adversary. If η is small, then
the adversary can use the set of messages Mn to infer with high probability which arm is
an ε-optimal arm for player n. If η is high, the only information, that can be inferred by the
adversary, is that the probability that an arm is an ε-optimal of arm for player n is a little
bit higher than 0, which can be much lesser than the random choice 1/K. η is a parameter
which allows to tune the level of privacy: the higher η, the higher the privacy protection.

Remark. Since the adversary knows the algorithm A, she knows also that µnk = µk , where
µnk is the mean reward of arm k for player n. Hence the messages of others players provide
useful information to infer the best arm of player n. Formally the guarantee is effective for
player n, when the adversary has only logged the messages of player n. We have chosen to
focus on this simplest case to analyze the decentralized exploration problem. In practice, it is
not easy for the adversary to intercept and to decipher all messages of all players, and some
assumptions are not fully met. The (ε, η)-privacy guaranty is efficient for real applications:
based on the messages of player n, the uncertainty on the best arm of player n is high.

The goal of the decentralized exploration problem (see Algorithm 5.1) is to design an algo-
rithm, that, when run on each player, samples effectively to find an ε-optimal arm for each
player, while ensuring (ε, η)-privacy to players, and minimizing the number of exchanged
messages.

The lower bound of the number of samples in Px,y needed to find with high probability an
ε-optimal arm, which is Ω

(
K
ε2 log 1

δ

)
[104], holds for the decentralized exploration problem,

since a message can be sent at each time an arm is sampled by a player. The number of
messages, that has to be exchanged in order to find with high probability an ε-optimal arm,
could be zero if each player independently handles the best arm identification problem.
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Algorithm 5.1 Decentralized Exploration Problem
Inputs: K, ε ∈ [0, 1], η ∈ [0, 1]

Output: an arm in each set Kn(ln)

Initialization: ln := 1, Kn(ln) := K
1: repeat
2: a player is sampled: n ∼ Px
3: player n gets the messages of other players
4: arm k ∈ Kn(ln) is played by player n
5: player n receives reward ynk ∼ Px=n,y

6: if player n updates Kn(ln) then ln := ln + 1

7: player n sends a message to other players
8: until (∀n ∈ N , |Kn(ln)| = 1)

Assumption 5.3: all players are active
We assume that all the players are active i.e.:

∀n ∈ N Px(x = n) 6= 0

Assumption 5.3 is a sanity check assumption for the decentralized exploration problem.
Indeed, if it exists a player n such that Px(x = n) = 0, then Algorithm 5.1 never stops (the
stopping condition line 8 never happens).

5.4 Decentralized Elimination

5.4.1 ArmSelection subroutine

Before describing a generic algorithm for the decentralized exploration problem, we need to
define an ArmSelection subroutine that handles all best arm identification algorithms. Let
Kn(ln) and Kn(ln) be respectively the set of eliminated arms and the set of remaining arms
of player n at elimination epoch ln, such that Kn(ln) ∪ Kn(ln) = Kn(ln − 1).

Definition 5.4: ArmSelection subroutine
An ArmSelection subroutine takes as parameters an approximation factor ε, a confidence
level 1−η, and a set of remaining arm Kn(ln). It samples a remaining arm in Kn(ln) and re-
turns the set of eliminated arms Kn(ln). An ArmSelection subroutine satisfies Properties 5.1
and 5.2.

Let tn be the number of calls of the ArmSelection subroutine. Let Htn be the sequence
of rewards of chosen arms

{
(k1, y

n
k1

), (k2, y
n
k2

), ..., (ktn , y
n
ktn

)
}
. Let f : {1, ..., L} → [0, 1] a

function such that
∑L
ln=1 f (ln) = 1.
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Property 5.1: Remaining ε-optimal arm
The guarantee that an ε-optimal arm is remaining is written as follows:

∀ln ∈ [0, L] ,Kn (ln) ⊂ Kn (ln − 1) ,

P
({
Kn(ln) ∩ Kε = ∅

}∣∣Htn ,Kn (ln − 1) ∩ Kε 6= ∅
)
6 η × f (ln).

Property 5.2: Finite sample complexity
The guarantee that the sample complexity is finite takes the following form:

∃tn > 1,∀η ∈ (0, 1),∀ε ∈ (0, 1],P
({
Kn(L) ⊂ Kε

}∣∣Htn) > 1− η.

Property 5.1 ensures that with high probability at least an ε-optimal arm remains in the
set of arms Kn(ln), while Property 5.2 ensures that the ArmSelection subroutine finds in
a finite time an ε-optimal arm whatever the confidence level 1 − η and the approximation
factor ε. To the best of our knowledge, all best arm identification algorithms can be used
as ArmSelection subroutine with straightforward transformations. We consider three classes
of best arm identification algorithms.

• The fixed-design algorithms use uniform sampling during a predetermined number of
samples. Naive Elimination (L = 1 and f (ln) = 1) and Median Elimination (L = log2K

and f (ln) = 1/2l
n
) [44] are fixed-design algorithms which can be used as ArmSelection

subroutines.

• The successive elimination algorithms are based on uniform sampling and arm elimina-
tions. At each time step a remaining arm is uniformly sampled. The empirical mean
of the played arm is updated. The arms, which cannot be an ε-optimal arm with high
probability, are discarded. If sub-optimal arms are discarded the epoch l is increased
by one. Successive Elimination (L = K and f (ln) = 1/K) [44], KL-Racing (L = K

and f (ln) = 1/K) [80] are successive elimination algorithms which can be used as
ArmSelection subroutines.

• The explore-then-commit algorithms are based on adaptive sampling and a stopping
rule. Rather than choosing arms uniformly, the explore-then-commit algorithms play
one of the two critical arms: the empirical best arm, and the empirical sub-optimal arm
associated with the maximum upper confidence bound. The stopping rule simply tests
if the difference, between the maximum of upper confidence bound of sub-optimal
arms and the lower confidence bound of the empirical best arm, is higher than the
approximation factor ε. When the algorithm stops it returns the best arm. LUCB
[76], KL-LUCB [80], UGapEc [51] can also be used as ArmSelection subroutines by
returning the set of eliminated arms when the stopping event occurs (L = 1 and
f (ln) = 1).
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5.4.2 Algorithm description

The basic idea of Decentralized Elimination is to use the vote of independent players, which
communicate the arm they would like to eliminate with a high probability of failure for
ensuring privacy. As the players are independent, the probability of failure of the vote is
the multiplication of the individual probability of failures. The number of players needed for
eliminating an arm is provided by the analysis.

Decentralized Elimination (see Algorithm 5.2) takes as parameters the privacy level η, the
failure probability δ, the approximation factor ε, and an ArmSelection subroutine. It outputs
an ε-optimal arm for each player with high probability. The algorithm sketch is described
below: When player n is active (i.e. when player n is sampled):

• player n gets messages from other players (line 3).

• When enough players have eliminated an arm, it is eliminated from the shared set of
arms K(l) and from the set of arms Kn(ln) of player n with a low probability of failure
(lines 5-10).

• When there is only one arm in K(l), it is an ε-optimal arm with high probability 1− δ,
and the set of arms of player n is K(l) (line 11).

• An ArmSelection subroutine, run with a low confidence level 1 − η (i.e. high privacy
level) on the set Kn(ln), samples an arm and returns Kn(ln) the set of arms that player
n has eliminated at step tn (line 13).

• When player n has eliminated an arm, she communicates to other players the index of
the arm (lines 14-20).
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Algorithm 5.2 Decentralized Elimination
Inputs: ε ∈ (0, 1], η ∈ (0, 1), δ ∈ [ηN , η2], K, an ArmSelection subroutine
Output: an arm in each set Kn(ln)

Initialization: l := 1, K(l) := K, ∀n tn := 1, ln := 1, Kn(ln) := K, ∀ (k, n) λnk := 0

1: repeat
2: player n is sampled: n ∼ Px
3: player n gets the messages λjk from other players
4: if |K(l)| > 1 then
5: for all k ∈ K(l) do
6: if

∑N
j=1 λ

j
k > b

log δ
log η c then

7: K(l) := K(l) \ {k}, l := l + 1

8: Kn(ln) := Kn(ln) \ {k}
9: end if

10: end for
11: else Kn(ln) := K(l)

12: end if
13: Kn(ln) := ArmSelection(ε, η,Kn(ln))

14: if |Kn(ln)| > 1 then
15: ln := ln + 1

16: for all k ∈ Kn(ln) do
17: Kn(ln) := Kn(ln) \ {k}
18: λnk := 1, λnk is sent to other players
19: end for
20: end if
21: tn := tn + 1

22: until ∀n |Kn(ln)| = 1

5.4.3 Analysis of the algorithm

Theorem 5.12 states the upper bound of the communication cost for obtaining with high
probability an ε-optimal arm while ensuring (ε, η)-privacy to the players. The communication
cost depends only on the problem parameters: the privacy constraint η, the probability of
failure δ, the number of actions, and notably not on the number of samples. Notice that
the probability of failure is low since the failure probability is lower than the level of privacy
guarantee: δ < η.

Theorem 5.12: Guarantees of Decentralized Elimination
Using any ArmSelection subroutine, Decentralized Elimination is an (ε, η)-private algorithm,

that finds an ε-optimal arm with a failure probability δ 6 ηb
log δ
log η
c and that exchanges at most

b log δ
log η cK − 1 messages.

Proof. The proof is composed of three parts.

Part 1: (ε, η)-privacy. Let Eln = {Kn(ln) ∩ Kε = ∅} be the event denoting that there is
no ε-optimal arm in the remaining set of arm Kn(ln) at epoch ln, and ¬Eln be the event
denoting that there is at least an ε-optimal arm in the remaining set of arm Kn(ln) at epoch
ln.
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As Decentralized Exploration (A) performs an ArmSelection subroutine on each player,
Property 5.1 ensures that for any player at epoch ln:

P
(
Eln
∣∣Htn ,A,¬Eln) 6 η × f (ln).

For the sake of simplicity, in the following we will omit the dependence on A of probabilities.

The message λnk is sent by player n as soon as the arm k is eliminated from Kn(ln) (see
lines 17− 18 in Algorithm 5.2). Hence, we have:

P
(
Eln
∣∣Mn,¬Eln

)
= P

(
Eln
∣∣Htn(ln),¬Eln

)
6 η × f (ln),

where tn(ln) is the time where epoch ln has begun.

To infer what arm is an ε-optimal arm for player n on the basis of Mn and A, we first
consider the favorable case for the adversary, where player n has sent K − 1 elimination
messages which corresponds to epoch ln = L. Using Property 1 of the subroutine used by
A and the set of messagesMn the adversary can infer that:

P
({
Kn(L) 6⊆ Kε

}∣∣¬EL−1

)
=

L∑
ln=1

P
(
Eln
∣∣Mn,¬Eln

)
6 η

L∑
ln=1

f (ln) = η.

The previous equality holds since if at epoch ln the event {Kn(ln) 6⊆ Kε} holds, then it holds
also for all following epochs. Then the inequality is obtained by applying Property 1 to each
element of the sum. Hence, if ln = L knowing the set of messagesMn and Property 1, the
adversary cannot infer what arm is an ε-optimal arm for player n with a probability higher
that 1− η.

Otherwise if ln < L then Kn(L) ⊂ Kn(ln), which implies that:

P
({
Kn(ln) 6⊆ Kε

}∣∣Mn,¬Eln
)
> P

({
Kn(L) 6⊆ Kε

}∣∣Mn,¬EL−1

)
.

Hence, if ln < L the adversary cannot infer what arm is an ε-optimal arm with a probability
higher that 1− η.

Part 2: Low probability of failure. An arm is eliminated when the events {k /∈ Kn(ln)}
occur for b log δ

log η c independent players. Assumption 3 (∀n ∈ N , Px(x = n) 6= 0) and Property

2 ensures that it exists a time t =
∑N
n=1 t

n such that for K−1 arms, there are b log δ
log η c voting

players. Moreover, Property 1 implies that ∀n ∈ N , ∀ln:

P
({
Kn(ln) 6⊆ Kε

}∣∣Mn,¬Eln
)
6 η × f (ln).

Hence, the b log δ
log η c independent voting players eliminate the ε-optimal arm with a probability

at most:
P
({
K(l) 6⊆ Kε

}∣∣M,¬El
)
6 (η × f (l))b

log δ
log η
c ,

where K(l) denotes the shared set of remaining arms at elimination epoch l (see line 7 in
Algorithm 5.2), andM =M1 ∪M2 ∪ ... ∪MN .
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If the algorithm fails, then the following event occurs : at stopping time, ∃k ∈ K(L), k /∈ Kε.
Using the union bound, we have:

P
({
K(L) 6⊆ Kε

}∣∣M,¬EL−1

)
6

L∑
l=1

(η × f (l))b
log δ
log η
c 6 ηb

log δ
log η
c.

Finally notice that:

ηd
log δ
log η
e 6 ηb

log δ
log η
c.

Part 3: Low communication cost. The index of each arm is sent to other players no
more than once per player (see line 17 in Algorithm 5.2). When b log δ

log η c messages have been
sent for an arm, this arm is eliminated for all players (see lines 4− 9 in Algorithm 5.2).

Thus b log δ
log η c(K − 1) messages are sent to eliminate the sub-optimal arms. Then, at most

b log δ
log η c − 1 messages have been sent for the remaining arm. Thus, the number of sent

messages is at most b log δ
log η cK − 1.

To finely analyze the sample complexity of Decentralized Elimination algorithm, one needs
to handle the randomness of the voting process. Let TPx,y be the number of samples in
Px,y at stopping time. Let TPy be the number of samples in Py needed by the ArmSelection

subroutine to find an ε-optimal arm with high probability. Let NM be the set of the M =

b log δ
log η c most likely players, let p? = minn∈NM Px(x = n), and let p† = minn∈N Px(x = n).

Theorem 5.13: Sample complexity of Decentralized Elimination
Using any ArmSelection subroutine, with a probability higher than

(1− δ)
(

1− I1−p?
(
TPx,y − TPy , 1 + TPy

))b log δ
log η
c
Decentralized Elimination stops after:

O

 1

p?

TPy +

√
1

2
log

1

δ

 samples in Px,y,

where Ia(b, c) denotes the incomplete beta function evaluated at point a with parameters
b, c .

Proof. Let Tn be the number of samples of player n at time TPx,y when the algorithm stops.
Tn is a binomial law of parameters TPx,y , Px(x = n). We have:

EPx [Tn] = Px(x = n)TPx,y .

Let Bδ,η be the set of players that have the b log δ
log η c highest Tn. The algorithm does not stop,

if the following event occurs: E1 = {∃n ∈ Bδ,η, Tn < TPy}.

Applying Hoeffding inequality, we have:

P
(
Tn − Px(x = n)TPx,y 6 −ε

)
6 exp(−2ε2)
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When ¬E1 occurs, ∀n ∈ Bδ,η we have with a probability at most δ:

TPy − Px(x = n)TPx,y 6 −

√
1

2
log

1

δ
.

Then, when ¬E1 occurs we have with a probability at most δ:

TPx,y >
1

pδ,η

TPy +

√
1

2
log

1

δ

 ,
where pδ,η = minn∈Bδ,η Px(x = n).

Finally if E1 does not occur, then we have with a probability at least 1− δ:

TPx,y 6
1

pδ,η

TPy +

√
1

2
log

1

δ

 .
Let NM bet the set of the M = b log δ

log η c most likely players. Let n∗ = arg minn∈NM Px(x = n),
and p? = minn∈NM Px(x = n).

Now, we consider the following event: E2 =
{
n∗ /∈ Bδ,η

}
. By the definition of Bδ,η, the

event E2 is equivalent to the event
{
Tn∗ < TPy

}
. Then, we have:

P
(
Tn∗ < TPy

)
= I1−p?

(
TPx,y − TPy , 1 + TPy

)
,

where Ia(b, c) denotes the incomplete beta function evaluated at the point a with parameters

b and c . Finally, with a probability at least (1− I1−p?
(
TPx,y − TPy , 1 + TPy

)
)b

log δ
log η
c, we have

pδ,η = p?.

As the number of players involved in the vote is set as small as possible b log δ
log η c, Theorem 2

provides with high probability 1 the sample complexity of Decentralized Elimination. Notice,
that when the number of players is high, and when the distribution of players is far from the
uniform distribution, we have p? � p†.

Corollary 5.1: Sample complexity of Decentralized Median Elimination

With a probability higher than (1−δ)
(

1− I1−p?
(
TPx,y − TPy , 1 + TPy

))b log δ
log η
c
Decentralized

Median Elimination stops after:

O

 1

p?

 K

b log δ
log η cε2

log
1

δ
+

√
1

2
log

1

δ

 samples in Px,y.

1for instance, I0.99(500, 500) = 1.47× 10−302
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Proof. We have:

ηb
log δ
log η
c 6 δ = η

log δ
log η 6 ηb

log δ
log η
c ⇒

1

δ
>

1

ηb
log δ
log η
c
⇔ log

1

η
6

1

b log δ
log η c

log
1

δ

Median Elimination algorithm [44] finds an ε-optimal arm with a probability at least 1− η ,
and needs at most:

TPy = O
(
K

ε2
log

1

η

)
6 O

 K

b log δ
log η cε2

log
1

δ

 samples in Py.

Then, the use of Theorem 5.13 finishes the proof.

Corollary 5.2: Sample complexity of Decentralized Successive Elimination

With a probability higher than (1−δ)
(

1− I1−p?
(
TPx,y − TPy , 1 + TPy

))b log δ
log η
c
Decentralized

Successive Elimination stop after:

O

 1

p?

K
ε2

logK +
1

b log δ
log η c

log
1

δ

+

√
1

2
log

1

δ

 samples in Px,y.

Proof. Successive Elimination algorithm [44] finds an ε-optimal arm with a probability at
least 1− η, and needs at most:

TPy = O
(
K

ε2
log

K

η

)
6 O

K
ε2

logK +
1

b log δ
log η c

log
1

δ


samples in Px,y. Then the use of Theorem 2 finishes the proof.

Corollary 5.1 and 5.2 state the number of samples in Px,y needed to find an ε-optimal arm by
Decentralized Elimination using respectively Median Elimination and Successive Elimination
as ArmSelection subroutines.

To illustrate these results, we consider the case of the uniform distribution of players. With
a failure probability at most δ = ηN the number of sample in Px,y needed by Decentralized
Median Elimination to find an ε-optimal arm is:

O

K
ε2

log
1

δ
+ N

√
1

2
log

1

δ

 samples in Px,y.

In comparison to an optimal best arm identification algorithm, which communicates all the
messages and does not provide privacy protection guarantee, which has a sample complexity
in O

(
K
ε2 log 1

δ

)
, the sample complexity of Decentralized Elimination mostly suffers from a

penalty depending on the inverse of the probability of the most frequent players, that in the



92 Chapter 5. Decentralized Exploration in Multi-Armed Bandits

case of uniform distribution of players is linear with respect to the number of players. The
proofs of Theorem 5.13, Corollary 5.1 and 5.2 are provided in Appendix.

5.5 Decentralized exploration in non-stationary bandits

Recently, the best arm identification problem has been studied in the case of non-stationary
bandits, where Assumption 5.1 does not hold [7, 1]. In the first reference, the authors
analyze the non-stationary stochastic best-arm identification in the fixed confidence setting
by splitting the game into independent sub-games where the best arm does not change. In
the second reference, the authors propose a simple and anytime algorithm, which is analyzed
for stochastic and adversarial rewards in the case of fixed budget setting. For the consistency
of the chapter, which focuses on fixed confidence setting, we choose to extend Decentralized
Elimination to Successive Elimination with Randomized Round-Robin (SER3 [7]). Basically,
SER3 consists in shuffling the set of arms at each step of Successive Elimination. SER3
works for the sequences where Assumption 5.4 holds.

Assumption 5.4: Positive mean-gap
For any k ∈ K \ {k∗} and any [τ ] ∈ T(τ) with τ > log K

η , we have:

∆∗k ([τ ]) =
1

τ

τ∑
i=1

i+Ki−1∑
j=i

∆k∗,k(j)

Ki
> 0,

where T(τ) is the set containing all possible realizations of τ round-robin steps, ∆k∗,k(t) is
the difference between the mean reward of the best arm and the mean reward of arm k at
time t, and Kt is the number of remaining arms at time t.

We provide below the sample complexity bound of Decentralized Successive Elimination with
Randomized Round-Robin (DSER3), which is simply Decentralized Elimination using SER3
as the ArmSelection subroutine.

Theorem 5.14: Guarantees of DSER3
For K > 2, δ ∈ (0, 0.5], for the sequences of rewards where Assumption 5.4 holds, DSER3
is an (ε, η)-private algorithm, that exchanges at most b log δ

log η cK − 1 messages, that finds an

ε-optimal arm with a probability at least (1−δ)
(

1− I1−p?
(
TPx,y − TPy , 1 + TPy

))b log δ
log η
c
, and

that stops after:

O

 1

p?

K
ε2

logK +
1

b log δ
log η c

log
1

δ

+

√
1

2
log

1

δ

 samples in Px,y.

Proof. Theorem 5.14 is a straightforward application of Theorem 5.13, where TPy is stated
in Theorem 5.12 [7].

Finally Decentralized Successive Elimination with Randomized Round-Robin and Reset
(DSER4) handles any sequence of rewards: when Assumption 5.4 does not hold a switch
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occurs (see Figures 5.5.1a, 5.5.1b). DSER4 consists in using SER4 [7] as the Arm Elimi-
nation subroutine in Decentralized Elimination. In addition, when a reset occurs in SER4,
Decentralized Elimination is reset.

(a) Mean gap versus time. Assumption 5.4 holds:
the mean gap stays positive.

(b) Mean gap versus time. Assumption 5.4 does not
hold: a switch occurs a time 7.

Figure 5.5.1: Examples of mean gap versus time.
Assumption 5.4 trivially holds when the mean rewards do not change. When the mean
rewards change, Assumption 5.4 parts the small changes that do not imply a change of
mean gap (see Figure 5.5.1a) from major changes where the mean gap changes (see Figure
5.5.1b). For more details see [7].

Theorem 5.15: Guarantees of DSER4
For K > 2, ε > η

K , ϕ ∈ (0, 1], for any sequences of rewards, DSER4 is an (ε, η)-private
algorithm, that exchanges on average at most ϕT (b log δ

log η cK − 1) messages, and that plays,

with an expected probability at most δ+ϕTI1−p?
(
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)b log δ
log η
c
, a sub-optimal
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+

√
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 times

where S is the number of switches of best arms, ϕ is the probability of reset in SER4, T is
the time horizon, and the expected values are taken with respect to the randomization of
resets.

Proof. The upper bound of the expected number of times a suboptimal arm is played by
SER4, is stated in Corollary 5.2 [7]. Then this upper bound is used in Theorem 5.13 to state
the upper bound of the expected number of times a suboptimal arm is played using DSER4.
The expected number of resets is ϕT . Theorem 2 provides the success probability of each
run of Decentralized Elimination, which states the expected failure probability of DSER4.
Then using Theorem 1 the expected upper bound of the number of exchanged messages is
stated.
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5.6 Experiments

5.6.1 Experimental setting

To illustrate and complete the analysis of Decentralized Elimination, we run three synthetic
experiments:

• Problem 1: Uniform distribution of players. There are 10 arms. The optimal arm
has a mean reward µ1 = 0.7, the second one µ2 = 0.5, the third one µ3 = 0.3, and
the others have a mean reward of 0.1. Each player has a probability equal to 1/N.

• Problem 2: 50% of players generates 80% of events. The same 10 arms are reused
with an unbalanced distribution of players. The players are split in two groups of sizes
N/2. When a player is sampled, a uniform random variable z ∈ [0, 1] is drawn. If
z < 0.8 the player is uniformly sampled from the first group, otherwise it is uniformly
sampled from the second group.

• Problem 3: non-stationary rewards. The distribution of players is uniform. The
same 10 arms are reused. The mean reward of the optimal arm does not change
during time. The mean reward of sub-optimal arms linearly decrease such that: µ(t) =

µ(0)− 10−5t.

As comparison points, we include two natural baselines:

• 1-privacy: an (ε, 1)-private algorithm that does not share any information between
the players, and hence that runs at a zero communication cost. The ArmSelection
subroutine is run with parameters (ε, δ/N) to ensure that all the players find with a
probability 1− δ an ε-optimal arm.

• 0-privacy: an (ε, 0)-private algorithm that shares all the information between players,
and hence that runs at a minimal privacy and a maximal communication cost. This
algorithm does not meet the original goal but is interesting as a reference to assess
the sample efficiency loss stemming from the privacy constraint.

As ArmSelection subroutines, We choose two frequentist algorithms2 based on Hoeffding
inequality: a explore-then-commit algorithm UGapEc [51] and a successive elimination al-
gorithm SER3 [7], which handles non-stationary rewards. Combining Decentralized Elim-
ination and the two baselines with the two ArmSelection subroutines, we compare 6 al-
gorithms (Decentralized SER3, Decentralized UGapEc, 1-privacy-SER3, 1-privacy-UGapEc,
0-privacy-SER3, 0-privacy-UGapEc) on the three problems. The algorithms are compared
with respect to two key performance indicators: the sample complexity and the communi-
cation cost. For all the experiments, ε is set to 0.25, and δ is set to 0.05. The privacy level
η is set to 0.9. All the curves and the measures are averaged over 20 trials.

2due to high values of sampling complexity obtained by Median Elimination which flatten the differences
between algorithms, we report its performance in appendix.
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(a) Problem 1 - Sample Complexity. (b) Problem 1 - Number of messages.

Figure 5.6.1: Uniform distribution of players. The sample complexities of
0-privacy baselines are the same: 800.

(a) Problem 1 - Sample Complexity. (b) Problem 1 - Number of messages.

Figure 5.6.2: 50% of players generates 80% of events (a), and the mean
rewards of sub-optimal arms linearly decrease (b).

5.6.2 Discussion about the empirical results

The results reveal that the sample efficiency of 1-privacy baselines is horrendous on both
problems: it increases super-linearly as the number of players increases. Worse, when the
distribution of players moves away from the uniformity, which is the case in most of digital
applications, the performances of 1-privacy baselines decreases (see Figure 5.6.1a, 5.6.2a).
Unlike 1-privacy baselines, the performances of Decentralized UGapEc and Decentralized
SER3 increases in Problem 2 (see Figure 5.6.2a). More precisely, the sample complexity
curves of Decentralized UGapEc and Decentralized SER3 exhibit two regimes: first the
sample complexity decreases (between 32 to 64 players), and then the sample complexity
linearly increases with the number of players. The values of hyper-parameters: δ = 0.05 and
η = 0.9, imply that the number M = b log δ

log η c of player votes required to eliminate an arm
is 28. In Problem 2 with 32 players, it means that the algorithm has to wait for infrequent
players votes to terminate. When the number of players is 64, this issue disappears. This is
the reason why the sample complexity for 64 players is lower than for 32 players. The linear
dependency of the sample complexity with respect to the number of players of the second
regime is due to the fact that in the considered problems, the probability of the most likely
player p?decreases in 1/N.
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Concerning the ArmSelection subroutines, we observe that 1-privacy-UGapEc clearly out-
performs 1-privacy-SER3 on stationary problems (see Figures 5.6.1a and 5.6.2a). Moreover,
the performance gain of 1-privacy-UGapEc increases with the number of players. This is
due to the adaptive sampling strategy of UGapEc: by sampling alternatively the empirical
best arm and the most loosely estimated sub-optimal arm, 1-privacy-UGapEc reduces the
variance of the sample complexity, and thus reduces the maximum of sample complexities
of players. However, when used as a subroutine in Decentralized Elimination, the successive
elimination algorithms such as SER3 are more efficient: thanks to the different sub-optimal
arms which are progressively eliminated by different groups of voting players, Decentralized
SER3 clearly outperforms Decentralized UGapEc (see Figure 5.6.1a and 5.6.2a).

When the mean rewards of sub-optimal arms are decreasing (Figure 5.6.2b), in comparison
to SER3 the performances of UGapEc, which is not designed for non-stationary rewards,
collapse: 1-privacy-UGapEc and Decentralized UGapEc are respectively outperformed by 1-
privacy-SER3 and Decentralized SER3. The optimistic approach used in the sampling rule
of UGapEc is too optimistic when the mean reward are decreasing.

The communication cost is the number of exchanged messages: 1-privacy baselines send
zero messages, while 0-privacy baselines send N − 1 messages per time step until the ε-
optimal arm is found. Decentralized SER3 needs three to four orders of magnitude less
messages than 0-privacy-SER3 (see Figure 5.6.1b).

5.6.3 Additional Experiments

Median Elimination is designed to be order optimal in the worst case: its sample complexity
is in O(K log 1

δ ). However, in practice it is clearly outperformed by Successive Elimination
or UGapEc on both problems (see Figures 5.6.3a, 5.6.3b).

(a) Problem 1: Uniform distribution of players.
(b) Problem 2: 50% of players generates 80% of

events.

Figure 5.6.3: Evaluating the Median elimination algorithm

5.7 Conclusion and perspectives

We have provided a new definition of privacy for the decentralized algorithms. We have
proposed a new problem, the decentralized exploration problem, where players sampled from
a distribution collaborate to identify a near-optimal arm with a fixed confidence, while en-
suring privacy to players and minimizing the communication cost. We have designed and
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analyzed a generic algorithm for this problem: Decentralized Elimination uses any best arm
identification algorithm as an ArmSelection subroutine. Thanks to the generality of the ap-
proach, we have extended the analysis of the algorithm to the case where the distributions of
rewards are not stationary. Finally, our experiments suggest that successive elimination algo-
rithms are better suited for the decentralized exploration problem than explore-then-commit
algorithms.

Future work may focus on user-dependent best arms. When Assumption 2 does not hold,
Decentralized Elimination finds with high probability the best arm of the most frequent
players. However, in lot of applications the players can observe a context before choosing an
arm. The extension of the proposed approach to contextual bandits is not straightforward
because to collaborate for building a model, the players have to exchange messages about
their favorite arms and their contextual variables, that also contain private information.
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Part III

Industrial applications
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Chapter 6

LoRa Network optimization via
multi-armed bandits

Overview of the chapter

The use of Low Power Wide Area Networks (LPWANs) is growing due to their advantages
in terms of low cost, energy efficiency and range. Although LPWANs attract the interest of
industry and network operators, it faces certain constraints related to energy consumption,
network coverage and quality of service. In this chapter we demonstrate the possibility to op-
timize the performance of the LoRaWAN (Long Range Wide Area Network) technology, one
of the most widely used LPWA technology. We suggest that nodes use light-weight learning
methods, namely, multi-armed bandit algorithms, to select the communication parameters
(spreading factor and emission power). Extensive simulations show that such learning meth-
ods allow to manage the trade-off between energy consumption and packet loss much better
than an Adaptive Data Rate (ADR) algorithm adapting spreading factors and transmission
powers on the basis of Signal to Interference and Noise Ratio (SINR) values.

Publication. This chapter is mainly based on our article [83].

6.1 Introduction and related works

The interest of the industry towards the Low Power Wide Area Networks (LPWANs) is
gradually increasing [117]. Several technologies operating on license-free industrial, scientific
and medical radio bands (868MHz for Europe, 915MHz for North America and 433MHz
band for Asia) are used by industries; among those, the LoRaWAN technology is one of the
most widely used.

The LoRaWAN network architecture is based on a star-of-stars topology with gateways
forming a transparent bridge. These gateways relay messages between end-devices and a
central network server in the backend. Nodes use a single-hop wireless connection to one
or more gateways whereas gateways are connected to the network server using standard
IP connections. Communications with end-point nodes are generally bi-directional, but it is
also possible to support multi-cast operations [8]. Communications between end-devices and
gateways are spread out over different frequency channels, using so-called spreading factors
(SF) defined as the logarithmic ratio between the symbol rate (Rs) and the chip rate (Rc):
SF = log2

(
Rc/Rs

)
. Accordingly, selecting the data rate (or equivalently, the SF) can be

seen as a trade-off between communication range and message duration [3]. This possibility
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to manage data rates and power outputs for each end-device allows to maximize network
capacity [8].

The LoRa spread spectrum modulation scheme defines six different spreading factors, SF7
(data rate of 50kbps) to SF12 (data rate of 0.3kbps). SF7 allows to send messages with a
higher data rate and a reduced time on air but at a shorter distance than the others SFs and
vice versa. Before sending a packet, each node also selects a transmission power between 2

dBm and 14dBm in addition to selecting a spreading factor.

As any IoT technology, LoRa faces several constraints. One strict constraint is the opti-
mization of energy consumption as the end-devices have generally limited energy resources.
Another constraint is a limited duty cycle, preventing nodes from sending data too often in
order to leave space for the other nodes.

LoRa can operate successfully at ranges exceeding 15km in suburban settings, and more than
2km in dense urban environments [43]. However, it is necessary to choose an appropriate
spreading factor, to have a compromise between data rate and network coverage in order to
avoid high battery consumption or frequent packet loss. That is the possibility offered by
the so-called Adaptive Data Rate (ADR) scheme [8], which currently implemented in LoRa
nodes.

Research to optimize time-on-air, receiver sensitivity, packet loss and energy has been con-
ducted by combining game theory and auction-based algorithms [65]. The goal there is to
choose the best transmission power without changing the allocated spreading factor; the
global results are satisfactory, but in case of a change in power requirements all estima-
tions need to be performed again, implying a huge overhead. In [65], the authors design a
multi-radio testing instrument, called LoRabox, for sending and receiving data packets via
LoRaWAN, Bluetooth Low Energy (BLE) and Wi-Fi, but this instrument does not have any
mechanism to evaluate the cost associated with this overhead. Recently, an approach based
on multi-armed bandits has been proposed to optimize the channel choice of end-devices in
IoT networks [26]. The authors consider an hypothetical protocol where in each time slot the
devices try to send packets to a unique Base Station. In the considered environment, half of
the devices are static and the other half learns, hence due to the learning the environment is
non-stationary. The reported performance of the stochastic multi-armed bandit algorithms
are close to the ones of the optimal policy, which suggests that the environment evolves
slowly and sparsely and that learning methods are good candidates to improve performance
in those settings.

In this chapter, we aim to minimize the energy consumption and the packet losses of end-
devices in a LoRa network. These objectives are conflicting, hence a trade-off between them
has to be found by selecting the transmission power and the spreading factor. We propose to
use multi-armed bandit algorithms, instead of the standard ADR algorithm, to handle that
trade-off. In contrast to the ADR algorithm–managed by the gateway–, the SF and power
choices are left to each node, that learns and adapts to its environment with limited memory
and computational costs. Our work departs from the recent study of [26], since instead of
considering an hypothetical protocol, we test multi-armed bandit approaches on the actual
LoRa protocols. The tested algorithms compete with the standard ADR algorithm: in our
simulation setting, we consider that all devices select their transmission parameters using the
ADR algorithm, except one that learns using a multi-armed bandit algorithm. This implies
an a priori non-stationary environment (due to ADR having nodes change their parameters),
which is likely to favor the non-stationary bandit algorithms over stationary ones.
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6.2 The ADR (Adaptive Data Rate) algorithm

In order to limit the energy consumption while ensuring successful transmissions, the ADR
algorithm, currently recommended by the LoRa Alliance, and implemented by the network,
assigns the transmission power and the spreading factor to the nodes based on the packets
received from them. Note that only the network may increase the data rate (i.e., decrease
the SF) through ADR, while only nodes may decrease their data rate (i.e., increase their
SF) during transmissions.

The algorithm is based on the Signal to Interference and Noise Ratio (SINR) of the last 20
transmissions. For each node, the last 20 Signal to Interference and Noise Ratio (SINR)
values at the gateway are taken into account to calculate a so-called margin SINR, denoted
by SINRmargin. Also a constant margin (10dB) is taken into account. Mathematically, we
have

SINRmargin := SINRmax − SINRRequired −Margin,

where:

• SINRmax is the maximum SINR of the last 20 (successfully) received packets from the
node,

• Margin is a constant set to 10dB,

• and SINRRequired depends on the spreading factor, as reported in Table 6.1.

Table 6.1: Spreading Factors, and corresponding RX windows [99], antenna
sensitivities [141], and SINRRequired [59]

SF RX windows
(ms)

Antenna Required
SINR

sensitivity
(in dBm)

for ADR (in
dB)

SF7 5.1 -124 -7.5

SF8 10.2 -127 -10

SF9 20.5 -130 -12.5

SF10 41.0 -133 -15

SF11 81.9 -135 -17.5

SF12 163.8 -137 -20

At each iteration of the ADR algorithm, the transmission power and the spreading
factor are modified according to a value denoted by Nstep , which is defined as:
Nstep := round(SINRmargin/3). Nstep corresponds to the number of steps to perform.
If Nstep is negative (i.e., measured SINRs are low) then the transmission power is incre-
mented by 3dB until it reaches the maximum transmission power (14dB), otherwise the
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spreading factor (SF) is decreased at each step. If the limit (SF7) is reached and there are
still steps remaining, then the transmission power is decreased by 3dB until the minimum
transmission power (2dB) is reached.

Note that while the ADR algorithm rules seem intuitive (increase power or decrease data
rate in case of low SINRs, and the opposite in case of large SINRs), they are heuristics, and
not based on any explicit objective optimization. By contrast, this chapter, we intend to
optimize specific performance metrics by playing on the SF and power choice. We analyze
the performance of ADR, but also of methods specifically designed to optimize metrics in
an unknown environment, namely, the multi-armed bandit algorithms described in the next
section.

6.3 Decision Making Using Multi-Armed Bandits

The LoRa network currently uses ADR, a partially decentralized heuristic to tune the SF
and transmission power of nodes. The values of these two parameters induce a trade-off
between energy consumption and packet losses. In this chapter, we claim that this trade-off
can be handled using multi-armed bandit algorithms.

The arms correspond to a discretization of the parameter space, namely of the pair (trans-
mission power,SF). We consider a limited number of possible pairs, each one corresponding
to an arm (cf. Table 6.2). This means that each time an arm is selected, the transmission
power and the spreading factor are also selected.

Table 6.2: The parameters of each arm

Arm 1 2 3 4 5 6 7 8 9

SF 7 7 7 7 8 9 10 11 12

TX
power
(dB)

2 6 10 14 14 14 14 14 14

The trade-off between energy consumption and packet losses is expressed through a cost
metric, that is a weighted sum of the energy cost and a loss cost. Mathematically we define
the cost perceived at each turn (i.e., each time the node wants to send a new packet) as:

Cost := Energy · Nb_transmission + penalty · 1{failure} (6.3.1)

where:

• Energy is the energy cost for one packet emission. It equals the product of the emission
duration (which depends on the SF) and the transmission power;

• Nb_transmission represents the number of transmissions to send the packet: it is an
integer between 1 (the first emission is a success) and 8 (since there are a maximum
of 7 re-transmissions);
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• 1{failure} equals 1 if the 8 transmissions of the same packet fail, i.e., the packet is
lost. It equals 0 otherwise.

• penalty corresponds to the conversion of a packet loss into the same cost unit as
the energy cost. Its choice is specific to the application and to user preferences: a
large penalty value means that a high quality of service is needed–for instance for
healthcare applications–even if the energy cost is significant; by contrast a small value
for the penalty corresponds to applications where the lifetime of the connected device
is favored over having highly reliable transmissions.

Since bandit algorithms function with rewards instead of costs, we first normalize cost
values with respect to the largest possible cost (highest power and lowest data rate, and
transmission failure after 8 emissions), to obtain normalized values CostN in the interval
(0, 1], then we define the reward of each decision step as:

reward := 1− CostN. (6.3.2)

6.4 LoRa transmission model and simulator

We describe here the MATLAB realistic LoRa network simulator we use to perform capacity
studies of the LoRaWAN technology [141].

6.4.1 Collision rules

In telecommunications, the Received Signal Strength Indicator (RSSI) is a measurement of
the power level of a received radio signal [125]. The Signal-to-Interference-plus-Noise Ratio
(SINR) is also an important metric of the wireless link quality [74], since it directly affects
the bit error rate in the transmissions.

A collision occurs when two LoRa frames are received simultaneously. There are two types
of collisions: Inter-SF collisions and Intra-SF collisions, which are modeled according to the
two following rules [141]:

• Intra-SF collisions: if a collision occurs between two LoRa frames with the same SF on
the same frequency, then only the LoRa frame with the highest power can be decoded,
and it is if and only if the power difference exceeds 6dB (otherwise it is lost).

• Inter-SF collisions: if a collision occurs on the same frequency between two LoRa
frames "a" and "b" with different SFs, then packet "a" is demodulated only if: RSSIa−
RSSIb > SINRa.

6.4.2 Propagation Model

We use the Okumura-Hata model [40, 67] because it is one of the most popular and accurate
models, especially used for urban and suburban areas. It is generally applied for frequencies
in the range of 150MHz-1920MHz, for a distance separation ranging from 1km to 100km,
and for antenna heights from 30m to 1000m [9]. We consider typical indoor penetration
losses, with an additional 6dB loss for deep indoor environments [141, 49, 121].
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6.4.3 Shadowing and Fast Fading modeling

Fading is the term used to describe the fluctuations in a received signal as a result of mul-
tipath components. We model it using a Rayleigh distribution for the amplitude, hence an
exponential distribution on power. Shadowing represents the fact that the received signal
power fluctuates due to objects obstructing the propagation path between transmitter and
receiver when fast fading is characterized by rapid fluctuations over very short distances.
In our LoRa network simulator the shadowing effect is modeled through a log-normal dis-
tribution with a 12dB standard deviation outdoor and 6dB standard deviation for indoor
applications [141, 54].

6.4.4 The relationship between data rate and spreading factor

The data rate DR equals: DR = SF · BW
2SF · CR, with:

• SF: the spreading factor (an integer between 7 and 12),

• BW: the bandwidth,

• CR: the coding rate.

6.4.5 Transmission and re-transmission

Following each uplink transmission the end-device opens two short receive windows in order
to receive a downlink message from the server as acknowledgment of its uplink message.
The receive window start times are defined using the end of the transmission as a reference
[99]. A node can receive a message only when one of these two windows is open. If
no acknowledgment is received after closing the second window, then the message is re-
transmitted under certain conditions. Indeed, the number of re-transmissions is limited,
generally to a maximum of 7 re-transmissions (what we consider in our simulator), but this
number may differ depending on the end-devices. The duration of the reception window
depends on the spreading factor (cf. Table 6.1).

During re-transmissions 3, 5, 7 (if any) the node increases its spreading factor (decreases
the data rate) before sending the packet again. The rule used to increase the spreading
factor is defined as: min

(
SFnode + 1,SF12

)
.

Both transmission and re-transmission must respect the duty cycle, defined as the maximum
percentage of time during which an end-device can occupy a channel and is a key constraint
for networks operating in unlicensed bands. For instance, the duty-cycle is 1% in EU 868
for end-devices [3].

In addition to the cases of collisions seen above, a re-transmission can occur if the gateway
receives the frame with an RSSI strictly below the antenna sensitivity. In all other cases, the
transmission is assumed to succeed. Mathematically, the RSSI is computed as:

RSSI = txpower · Rayleighpower/PL (6.4.1)

with Rayleighpower a random variable following an exponential law (with mean 1). PL rep-
resents the path loss predicted by the Okumura-Hata model and txpower is the transmission
power. The sensitivity of the antenna depends on the spreading factor (cf. Table 6.1).
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6.5 Experiments

6.5.1 Experimental setup

We consider that the network works in the LoRa European band 863-870MHz, and we use
the 868MHz frequency channel. The frame size is 11 bytes (4 bytes of payload for the
consumption index + 7 bytes Zigbee Cluster Library application protocol overhead, corre-
sponding to a smart metering application. Times on air for each SF are calculated using
Semtech LoRaWAN specifications [99] and are summarized below:

SF 7 8 9 10 11 12

Time on air (s) 0.04 0.07 0.14 0.25 0.49 0.99

Our simulations are for a network consisting of one gateway and 100 end-devices. In order
to consider the worst case, devices are supposed to be located deep indoor.

The experiment runs over 1000 time slots (30 minutes per time slot). Each node sends one
packet per time slot to the gateway. While respecting the duty cycle constraint, it can send it
up to 8 times (i.e., 7 retransmissions) until receiving an acknowledgment from the gateway.
We select a penalty of 1 for handling the trade-off between the energy consumption and the
packet loss, and 9 arms corresponding to 9 couples [spreading factor, transmission power]
as summarized in Table 6.2.

We consider devices with a −5dBi antenna gain, which corresponds to the reality of LoRa
devices on the market [141].

The first experiment considers a single node to be optimized at different distances from the
gateway: 592m, 1000m and 1975m, the 99 remaining nodes following the ADR algorithm.
As the transmission between a node and the gateway may interfere with the transmissions
of other nodes, the nodes are not independent. The changes of transmission parameters
(due to ADR) of the other nodes can change the distribution of rewards for the node of
interest, hence an a priori non-stationary environment. The second experiment considers
that at time step 500 the node moves from 592 meters to 1975 meters from the gateway.
This moving node introduces a switch of the best arm (cf. Fig. 6.5.1).

We compare the simulated standard ADR algorithm with 7 different multi-armed bandit
algorithms: UCB [14] and Thompson Sampling (TS) [135] designed for stationary environ-
ments, Sliding Window UCB (SWUCB) [106], Switching Thompson Sampling (STS) [105],
and Switching Thompson Sampling with Bayesian Aggregation (STSBA) [4] designed for
switching environments, and EXP3 [16], REXP3 [22] for adversarial environments.

6.5.2 Simulation Results

Tables 6.3, 6.4, and 6.5 show the energy consumption, the number of lost packets, and the
cumulative cost (averaged over 20 simulations) for a node at distance of 592m, 1000m,and
1975m from the gateway, respectively, for different SF, txpower selection algorithms (ADR
and various bandit algorithms).

The total cost value is defined as:
∑t

i=1 CostN(i), where t represents the current time slot,
and CostN(i) the normalized cost at time slot i (cf. Section 6.3).
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Figure 6.5.1: Average costs for the 9 arms, for three different distances from
the gateway: depending on the distance of the node to the gateway, the best

arm to play is not always the same.

First, note that for all distances, the MAB algorithms have a total cost below that of the
ADR algorithm (cf. Tables 6.3, 6.4, and 6.5). Second, the ADR algorithm is dominated,
both in terms of energy consumption and packet loss, by the multi-armed bandit algorithms
whatever the distance of the node: hence for any penalty value (i.e., any application an user
preferences) applying a MAB algorithm instead of ADR guarantees a cost reduction.

The multi-armed bandits based on a switching environment clearly outperform the adversarial
bandits and slightly outperform stationary bandits (cf. Tables 6.3, 6.4, 6.5), which is an
indication of the slow evolution of the stochastic environment.

Figure 6.5.2: Total cost versus time averaged over 20 trials, when at time
step 500 the node moves from 592 meters to 1975 meters from the gateway.

When the node moves at step 500, a clear switch is introduced (cf. Fig. 6.5.2). ADR, which
not handles moving node is clearly dominated by multi-armed bandit algorithms. The best-
performing multi-armed bandit algorithm is Switching Thompson Sampling with Bayesian
Aggregation. Surprisingly, Thompson Sampling algorithm performs as well as Sliding Window
UCB and Switching Thompson Sampling, which are designed for switching environments.
Adversarial algorithms explores too much to be competitive in this stochastic environment,
and UCB algorithm is the worst bandit algorithm in this non-stationary environment.
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Table 6.3: Performance for a node located 592m from the gateway

Algorithm Energy (J) Packet loss Total cost

ADR 2.07 130 132.07

UCB 1.24 15 16.24

TS 7.91 5 12.91

SWUCB 1.28 14 15.28

STS 5.53 5 10.53

STSBA 8.66 5 13.66

EXP3 7.81 18 25.81

REXP3 12.10 23 35.1

Table 6.4: Performance for a node located 1000m from the gateway

Algorithm Energy (J) Packet loss Total cost

ADR 5.20 362 367.2

UCB 1.96 49 50.96

TS 7.91 5 12.91

SWUCB 1.99 40 41.99

STS 8.67 15 23.67

STSBA 7.01 4 11.01

EXP3 11.52 71 82.52

REXP3 8.48 91 99.48
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Table 6.5: Performance for a node located1975m from the gateway

Algorithm Energy (J) Packet loss Total cost

ADR 33.90 553 586.33

UCB 3.29 135 138.29

TS 15.23 61 76.23

SWUCB 3.21 105 108.21

STS 25.18 88 113.18

STSBA 14.04 44 58.04

EXP3 30.59 224 254.59

REXP3 18.25 301 319.25

6.6 Conclusions and Perspectives

In this chapter, we suggest to optimize the performance of uplink LoRaWAN communications
by replacing the standard ADR algorithm with multi-armed bandit algorithms to select both
the spreading factor and the transmission power. The experiments are carried out with a
simulator that meets the standards of the LoRaWAN technology and are performed on nodes
located at different distances from the gateway and located in a deep indoor environment.

Simulation results show that the ADR algorithm has a tendency to perform quite well in
terms of energy consumption, but incurs large packet losses. All our experiments suggest
that the multi-armed bandit algorithms outperform the ADR algorithm, and can be tuned
to reach a compromise between energy consumption and packet loss.

As directions for future research, we plan to investigate the case of several gateways, that
correlate their received signals to improve packet reception, as well as the interactions among
multiple node selfishly optimizing their communications are worth considering.
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Chapter 7

TSCH Network optimization via
multi-armed bandits

Overview of the chapter

The Industrial Internet of Things (IIoT) faces multiple challenges to achieve high reliability,
low-latency and low power consumption. The IEEE 802.15.4 Time-Slotted Channel Hopping
(TSCH) protocol aims to address these issues by using frequency hopping to improve the
transmission quality when coping with low-quality channels. However, an optimized trans-
mission system should also try to favor the use of high-quality channels, which are unknown
a priori. Hence reinforcement learning algorithms could be useful.

In this chapter, we perform an evaluation of 9 Multi-Armed Bandit (MAB) algorithms–some
specific learning algorithms adapted to that case–in a IEEE 802.15.4-TSCH context, in order
to select the ones that choose high-performance channels, using data collected through the
FIT IoT-LAB platform. Then, we propose a combined mechanism that uses the selected
algorithms integrated with TSCH. The performance evaluation suggests that our proposal
can significantly improve the packet delivery ratio compared to the default TSCH operation,
thereby increasing the reliability and the energy efficiency of the transmissions.

Publication. This chapter is mainly based on our article [39].

7.1 Introduction

The Internet of Things (IoT) has gained a considerable attention recently. With the over-
growing of IoT, there is a heavy focus on evolving and establishing new protocols with high
performance and energy savings. For instance, Industrial IoT (IIoT) networks require a very
high reliability close to 99.9% and ultra-low delay performance. To this end, standards
such as IEEE 802.15.4 [71], WirelessHART [129] or ISA100.11a [72] employ Time Division
Multiple Access (TDMA) in conjunctions with Frequency Division Multiple Access (FDMA)
scheme to guarantee high level of reliability, by introducing the slotted time to mitigate the
collisions, and enabling channel hopping to reduce external interferences.
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Figure 7.1.1: Interfering radio channels: IEEE 802.15.4 and IEEE 802.11: 1,
6 and 11 are the three non-overlapping and broadly used radio channels for

IEEE 802.11 technology [148].

Two physical phenomena affect the reliability of wireless networks. The first is external
interference, that occurs in the case of the operation of two or more technologies in the
same radio space, causing thus, packet losses, i.e., interference between IEEE 802.11 and
IEEE 802.15.4 radio channels as shown in Figure 7.1.1. The other is multi-path fading,
which is caused by the reception of different copies of the same signal coming from different
paths. Channel hopping is a well-known approach to mitigate such issues; if a transmission
failure occurs, a re-transmission takes place on a different frequency [144].

However, there is no guarantee that the following radio channel selection will be better
than the previous one and, thus, a new failure may occur. To overcome such issues, an
intelligent algorithm is required to support the sensor devices to select the best link quality
radio channel to achieve higher success probability.

In this chapter, we introduce Multi-Armed Bandit (MAB) algorithms to select the channel
to transmit on, in the context of IEEE 802.15.4 Time Slotted Channel Hopping (TSCH)
networks. MAB algorithms are used in problems where multiple choices each with unknown
reward are available for a user who must select only one in such a way the cumulative reward
is maximum. They handle the exploitation-exploration dilemma to select the best choice.
In this work, we apply the bandit algorithm that shows the best performance to identify the
best radio channel among a set of channels available to a given node in TSCH networks.

The contributions of this work are as follows:

• We first thoroughly evaluate a large set of bandit algorithms by employing realistic
traces from the FIT IoT-LAB testbed [89], using a simulator built on Matlab.

• We then select the best bandit algorithm, the one that estimates correctly the high-
quality channels, and propose a new TSCH-based radio channel selection pattern.

• Finally, we evaluate the performance of our proposed mechanism in comparison with
the IEEE 802.15.4-TSCH behavior according to the standard.

The chapter is organized as follows. Section 7.2 provides a background on IEEE 802.15.4-
TSCH networks, and reviews the most pertinent related works from the literature. An
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Figure 7.2.1: Scheduling process in IEEE 802.15.4 TSCH networks.

overview on multi-armed bandit problems and algorithms are presented in Section 7.3. Sec-
tion 7.4 describes our Matlab-based simulator to evaluate the performance of the 9 bandit
algorithms and demonstrate the results. We present our new channel selection mecha-
nism based on multi armed bandit algorithms and compare its performance with the default
behavior of TSCH networks in Section 7.5. Finally we conclude in Section 7.6.

7.2 Background & Related Work

7.2.1 Background on TSCH mechanism

Industrial IoT applications require reliable communication, low-power operation and robust-
ness against potential external interference. Among the existing standards, IEEE 802.15.4 is
the most appropriate candidate to guarantee QoS requirements for such industrial networks.
It comes with 16 radio channels operating in 2.4GHz, where each channel has a bandwidth
of 2MHz and channel separation of 5MHz (see Figure 7.1.1).

Among the defined Medium Access Control (MAC) protocols in IEEE 802.15.4, TSCH
aims for high reliable and low power multi-hop networks. Under TSCH, the communication
among the nodes are coordinated by a scheduler, while the nodes are synchronized with their
neighbors. These schedules can be adjusted to the industrial network’s requirements and its
topology and guarantee collision-free communications.

In TSCH, the nodes continuously re-synchronize on a periodic slotframe, based on Enhanced
Beacons (EB) packets. A slotframe is a collection of timeslots that are repeated contin-
uously; according to the standard it consists of 101 timeslots but it is configurable. The
length of a timeslot is long enough for the source node to send a packet, and for the des-
tination node to send an acknowledgment. If the acknowledgment is not received within a
predefined timeout, the re-transmission of the packet will be delayed to one of the following
timeslots. At each timeslot, each node knows if it has to stay awake in order to transmit
or receive a packet, or to sleep to save energy. The timeslots are identified by an Absolute
Sequence Number (ASN) counter that increments as time elapses; ASN basically counts the
number of timeslots since the network was started.

Furthermore, each node maintains a list with the available radio channels called Hopping
Sequence List (HSL) [133]. It is the list of the 16 available radio channels. During the
scheduling process (see Figure 7.2.1), each node computes the actual radio channel to
transmit on according to the following relation:
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Channel = HSL[(ASN + ChOffSet)[| mod HSL]|] (7.2.1)

where HSL[i ] is the channel with index i in the list HSL, |HSL| is the number of channels
in the HSL, and ChOffSet (channel offset) is an integer between 0 and |HSL|-1 assigned to
the communication in the node’s schedule. Authors in [62] interpret the channel offset as
a virtual channel to be translated into an actual frequency that is going to be employed. In
case of failure, a re-transmission will be carried out using a channel also selected according
to (7.2.1).

In order to avoid internal interference, nodes can be assigned different channel offsets (trans-
lated to real frequencies) from the pair neighbor nodes communicating in the same time-slot
to ensure that they are communicating on different channels. An illustration of this channel
selection method is provided in Figure 7.2.2.

Figure 7.2.2: Illustration of (7.2.1) when HSL is made of channels 11 to 26.
In classical TSCH, a node is given one ChOffSet, while in our proposition,

and as suggested in [62], a node may be allocated several values.

However, TSCH is still suffering from external interference due to the coexistence of tech-
nologies operate in the ISM band such as WiFi, Bluetooth, Zigbee [89, 114, 115]. Therefore,
the concept of avoiding (possibly by blacklisting) poor radio channels was introduced to im-
prove TSCH performance. In the following subsection, we present the works that tackled
this issue.

7.2.2 Related Work on channels selection in TSCH

The channel hopping mechanism of TSCH allows potentially to address the impact of ex-
ternal interference and multi-path fading, by avoiding being stuck with one bad channel.
However, in the process of selection of a new radio channel, we might end up with another
affected frequency.

To address this, some works have focus on identifying the radio channel with poor perfor-
mance based on Window Mean with Exponentially Weighted Moving Average (WMEWMA)
estimator [19] and blacklist them from the list of available radio channels [90], They pro-
pose heuristics to decide which channels to blacklist considering the dynamic, unpredictable
and highly localized nature of interference. They take also into account a mechanism to
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whitelist the channels when they become reliable again. Achieving thus, to improve the
network reliability by 20%.

In [62], Gomes et al. considered learning techniques approach as a way to tackle the channel
quality estimation problem. They propose to model the channel quality estimation as a MAB
problem, they employ a distributed blacklist for improving the performance of multi-hop
wireless networks, as result they find the best channel in 75% of the transmissions.

In [96], channels selection in TSCH networks was seen as a multi-armed bandit problem.
They proposed a channel selection scheme which adapts to the environment and finds the
optimal channel. The selection of each channel was associated with the so-called Gittins
index [60]. This index is incremented with each successful transmission, set to zero in case of
disabled transmission due to assesment of busy channel (Clear Channel Assesmment CCA)
or consecutive transmission failures. Their algorithm adapts to the environment to choose
exploring or exploiting the channels. They showed that by employing their algorithm, the
throughput can achieve approximately 1.5 times larger than hopping with the default list.

Multi-armed Bandit problem have been applied to model others decision approaches not just
in TSCH networks but also in LoRa networks [83]. In this case, authors aim to optimize the
performance of LoRAWANs using MAB algorithms to select the communication parameters
such as spreading factor and emission power so that a trade-off can be accomplished between
energy consumption and packet loss. They evaluated number of multi-armed bandit algo-
rithms, finding that Switching Thompson Sampling with Bayesian Aggregation (STSBA) [4]
outperforms the others given the best trade-off.

Avrachenkov et al. in [18] consider a wireless network where transmitters can select a fre-
quency band from a shared pool to communicate, the transmitters are affected by slow fading
channel phenomena. In this case, the main goal is to maximize the Signal to Noise Ratio
(SNR), thus, they use a multi-armed bandit algorithm, Thompson Sampling [81], to deal
with exploration-exploitation trade-off to select the frequency that provides maximization of
SINR.

7.3 Learning Techniques

Multi-armed bandit problems are the most known examples of sequential decision problems
with an exploration-exploitation trade-off. This is the balance between staying with the
option that gave highest rewards in the past and exploring new options that might give
higher rewards in the future.

Normally, a set of arms is available to the "gambler". At each turn, that gambler has to
choose one arm and receives a reward corresponding to the played arm. For the next turn,
using the previously received rewards, the gambler has to take the decision of exploring, that
is playing an arm whose mean reward is loosely estimated in order to build a better estimate,
or exploiting, that is playing a seemingly best arm based on current estimates in order to
maximize its cumulative reward. The difference between the chosen strategy and an optimal
strategy, which always chooses the best arm, is called regret and measures the accuracy of
the gambler’s policy.

The channel selection in TSCH networks can be formulated as a multi-armed bandit problem.
The 16 channels are the 16 arms to play. Playing a channel means selecting it to send a
packet. The reward is either 0 or 1, where 0 corresponds to a transmission failure and 1 to a
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success. The aim is to increase the cumulative gain of the network, which is the summation
of the rewards.

Multi-armed bandit algorithms are algorithms used to solve such problems. They try to find
the best arm to play at each iteration according to the rewards received so far, in order
to maximize the cumulative gain. The algorithms can be classified into three categories
according to the environment.

7.3.1 Stochastic static environment

One of the strongest assumptions of many statistical models, including most variants of
the multi-armed bandit problem, is that the underlying distributions and parameters are
stationary.

In this setting, each arm is associated to an unknown and constant distribution for which
rewards are considered to be generated independently. Thompson Sampling [81] and Upper
Confidence Bound (UCB) [14] are two algorithms that reach optimal upper-bound on the
cumulative regret under that assumption of stationarity.

Thompson Sampling assumes a prior distribution for the reward distribution of each arm, and
at each time step, plays an arm according to its posterior probability of being the best arm.
The reward distributions are assumed to have two possible values 0 or 1, known as Bernoulli
bandit formulation. This algorithm is studied also for switching environments, which are
explained next.

7.3.2 Stochastic switching environment

In a switching environment, when a switch occurs, all arms change their expected reward.
This approach behaves as piece-wise stationary, since the mean rewards stay stationary
between those changes.

For this setting, Sliding Windows UCB [106] has shown near-optimal regret bound. Switching
Thompson Sampling combined with a Bayesian online change point detector has been used
for handling switching environments [105]. This algorithm is based on a growing number of
experts: at each time step, a new expert is introduced. To take the decision, the expert with
the highest likelihood is sampled according to its weight. Then, the Thompson Sampling
related to the chosen expert is launched to choose an arm. Finally, based on the reward
observed, the weight of each expert is updated.

Finally, let us evoke Switching Thompson Sampling with Bayesian Aggregation (STSBA) [4],
which uses Bayesian aggregation of experts instead sampling the best expert, to avoid the
sampling noise.

7.3.3 Adversarial environments

In an adversarial environment, the sequence of rewards is assumed to be chosen in advance
by an oblivious adversary. The EXP3 algorithm uses a follow-the-perturbed-leader approach
for computing the probability of each action [16]. It achieves an optimal regret with respect
to the best policy that pulls the same arm over the totality of the game. This weakness is
overcame by EXP3.S [16], that forgets the past adding at each time step a proportion of the
mean gain and achieves controlled regret with respect to policies that allow arm switches
during the run. To compete against an optimal policy that changes over time, EXP3.R [6]
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uses a statistical test to reset the EXP3 algorithm. REXP3 [22] simply resets the EXP3
algorithm after a time period.

7.4 Performance Evaluation

In this section, we describe the different scenarios on which we evaluate the multi-armed
bandit algorithms. We also describe how to build scenario simulations using real data.

7.4.1 Principle and scenarios considered

The evaluation of the bandit algorithms is based on two different scenarios referring to two
different environments. Our evaluation criterion is the Packet Data Rate (PDR), which is
the proportion of packets successfully received (number of received acknowledgments divided
by number of transmitted packets).

Our first scenario corresponds to a stationary environment: it assumes that the channels’
qualities are constant over time, while our second scenario considers a stochastic switching
environment. In both those scenarios, at any instant each channel has a given quality, that
we summarize by the probability of a successful transmission if the channel is chosen; we
will also call PDR that probability.

To summarize, based on the unknown PDR values of the channels (which can vary over time
in a switching environment), the algorithms have to learn which channels to use to maximize
the experienced PDR for a device implementing them.

7.4.2 Building a simulation from real data

In order to build a realistic experiment (in terms of PDR values and channel dynamicity),
we used the data collected by the authors of [89] during their experimental studies in the
FIT IoT-LAB platform in Grenoble site which is a part of the FIT, an open large-scale and
multiuser testing infrastructure for IoT-related systems and applications. The experiments
were conducted with a testbed of 380 nodes subjected to external interference originated
from wireless devices using other technologies, such as WiFi. The data used is the result of
276 experiments, of 90 min each, done on two communicating nodes separated by distances
varying between 0.6 and 16.8 m. The transmissions are done every 3 sec in timeslots of
30 ms each. For each packet sent, the data give its ASN, the channel that was used, and
whether the transmission was successful or not.

Figure 7.4.1 summarizes the observed PDR per channel from those experiments, where each
point corresponds to more than 4600 packets sent.
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Figure 7.4.1: Average PDR (and 99% confidence intervals) per channel for
different ranges for the distance d between nodes. Note how bad channels
are generally the ones overlapping with 802.11 channels (see Figure 7.1.1).

These experimental data are used to build up our experiments as explained in the following
subsection.

7.4.3 Estimating time-varying channel PDRs

Channel quality varies over time, but the limited number of samples imposes limits on the
dynamicity (the speed at which PDRs change) we can consider: indeed, we use the measures
to estimate the PDR of each channel over given periods, during which PDRs are treated
as constants. Hence a trade-off between estimating the PDR accurately enough (through
enough samples, hence over a long period), and encompassing the time-varying aspect of
the PDR. To address that trade-off, we use confidence intervals: for instance, a 90%-
confidence interval for the PDR when an estimation P̂DR is built over N (Bernoulli) samples
is [P̂DR− 1.645 σ√

N
, P̂DR + 1.645 σ√

N
], with σ =

√
PDR(1− PDR) the standard deviation of

the underlying Bernoulli variable. Hence the distance between P̂DR and PDR is below 0.05

with probability at least 0.9 if 1.645 σ√
N
6 0.05, or N > σ2

(
1.645
0.05

)2
. But for any value of

PDR, σ 6 1
2 , so it is sufficient to have

N >
(

1.645

0.1

)2

' 270 samples.

Of course, a higher accuracy would impose having more samples, for example a 99% guar-
antee that the PDR is correctly estimated within 0.01 necessitates, using the same method-
ology, N > ( 2.576

0.02 )2 = 16590 samples.

7.4.4 Simulation Setup

Stationary environment

For the stationary environment, we defined a vector of 16 values presenting the average PDR
on each channel at a certain distance (we chose the largest-distance range of Figure 7.4.1).
For those given fixed expected PDR (unknown to the algorithms), we ran each of the
algorithms 40 times separately at the transmitter node.
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The algorithms select one channel among the 16 radio channels every 3 seconds (slot frame
duration), then simulate a packet emission, and get the reward which is 1 with probability
equal to the PDR of the chosen channel (representing a successful transmission) or 0 with
the complementary probability (representing a transmission failure).

For each iteration, the node sends 300 packets, hence a simulated duration of 15 min.

Switching environment

On the other hand, for the switching environment, we separate the data from 6 experiments
for the same distance range, and define a matrix consisting of the PDRs on each channel
for each of the 6 experiments, i.e., assuming that the link qualities change 5 times during
the simulation. The same simulations as in the stationary environment were done with 300

packets (15 min) in total, which leaves only 50 packets (2.5 min) to learn the channel
qualities before they change.

Additionally, in order to compare these algorithms with the default behavior of TSCH, we
need to simulate the latter also. For this, in the same settings of the two environments
(stationary and switching), the node is assigned a certain channel offset for the whole
simulation. Then for each packet, the node selects the radio channel according to (7.2.1),
with |HSL|= 16 (16 available channels), sends the packet and receives the reward (success
or failure).

7.4.5 Simulation Results

Figure 7.4.2: Average PDR per algorithm, based on experimentally-decided
channel PDRs, and 95% confidence intervals.

Our results for channel PDRs estimated from real-experiment data are summarized in Fig-
ure 7.4.2, where we plot the average success rate experienced by the transmitting node,
for each channel selection method (note that all of them are multi-armed bandit algorithms
except the benchmark TSCH method). The experiments were repeated independently 40

times in order to compute confidence intervals. The best-performing methods for our setting
are Thompson Sampling, Switching Thomspson Sampling, Switching Thompson Sampling
with Bayesian Aggregation and Sliding Window UCB, which have almost the same average
experienced PDR and outperform the other methods.
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Hence those results are insufficient to isolate one single algorithm to use; we think this is
due to several channels having good qualities (about 5 channels have PDRs close to 1), and
only one channel being really bad. The limited heterogeneity among channel PDRs does
not leave enough margin for the algorithms to differentiate. Therefore, in order to evaluate
the algorithms, we will sometimes use artificially set PDR values (rather than based on real
experimental data) to have significant differences between the qualities of all the channels.
This may correspond to what nodes at a distance above 17m would experience, for which
we do not have data.

The algorithms need some time to learn the channels and discover the good and bad ones.
But since channel qualities may vary, the algorithms should perform well over a limited time.
To estimate that, we ran the simulations with PDRs varying more or less frequently: every
50, 150, or 200 packet emissions. As before, we consider 6 different values (5 PDR switches
over a simulation). The results (average PDR per algorithm) are shown in Figure 7.4.3.

Figure 7.4.3: Average PDR per algorithm (switching environment) over 5
PDR value switches, for different switching frequencies (artificially generated

PDRs), with 95% confidence intervals.

As expected with learning methods, as the number of packet emissions before a switch
increases, the average PDR increases too, meaning that the algorithms improve their esti-
mation of what channels to use. Also, as expected, that parameter has no impact with the
TSCH method, since it does not use the information from transmission successes/failures.

Equivalently, as channel qualities change faster, the algorithms need more time to learn the
new qualities and find the best channels. With frequent switches (every 50 packet emissions),
SWUCB and STSBA are the two best-performing algorithms. With more time to learn the
new PDR values, STSBA shows the best performance. This suggests that STSBA takes
more time to learn the channels than SWUCB. In the simulations we will carry out next, we
will assume that PDRs do not change too fast: for the switching case we will assume one
switch occurs every 200 packet emissions (i.e., every 10 minutes if one packet is sent every
3 seconds).

The average PDR achieved by each algorithm as well as the cumulative gain over time
(number of successfully sent packets) in the stationary environment are shown in Figures
7.4.4a-7.4.4b respectively, while Figures 7.4.5a-7.4.5b show results for the switching envi-
ronment.
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(a) Average PDR per algorithm with 95% confi-
dence intervals.

(b) Cumulative gain (number of successfully sent
packets) for each learning algorithm (average of 40

trajectories, with 95% confidence intervals).

Figure 7.4.4: Performance of channel selection algorithms in a stationary
environment (artificial link qualities).

Let us first consider Figures 7.4.4a-7.4.4b. We notice that the Thompson Sampling (TS)
algorithm has the highest average PDR (equivalently highest number of successes), slightly
outperforming Switching Thompson Sampling with Bayesian Aggregation. This could be
expected, since TS is proved to be near optimal. In contrast, the normal behavior of TSCH
has the lowest average PDR. To quantify the gain that those simple learning algorithms
could bring, we note that TS would increase the average reward by about 75% (from 0.52

to 0.92) in case of 16 available channels, with respect to simply following (7.2.1) as TSCH
does. Or equivalently, that the number of lost packets could be divided by 6.

Now let us analyze the results for the switching environment, shown in Figures 7.4.5a-7.4.5b.

(a) Average PDR per algorithm with 95% confi-
dence intervals.

(b) Cumulative gain (number of successfully sent
packets) for each learning algorithm (average of 40

trajectories, with 95% confidence intervals).

Figure 7.4.5: Performance of channel selection algorithms in a stochastic
switching environment (artificial link qualities).

We can see in Figure 7.4.5b the PDR switching points: the chosen arms perform less well,
hence a reduced slope, and the algorithms try to learn again to find the new best-performing
channels (exploration) before using them extensively (exploitation). In this environment,
STSBA has the highest average PDR. In this setting, the capacity of STSBA of updating
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the estimation of the different channels each time an arm is pulled allows it to adapt to
switching environments [142]. The algorithm keeps selecting the optimal channel until
its quality degrades, indicating a switch may have occurred. Compared to TSCH normal
behavior, STSBA would increase the average reward by about 55% (from 0.51 to 0.8), or
equivalently divide by 2.5 the packet losses.

Summarizing, the TS and STSBA algorithms have the best performance in the stationary
environment, and STSBA is the best in the switching environment. In both environments
the MAB algorithms lead to a significant improvement with regard to the TSCH normal
behavior.

However, using the MAB algorithms in a network with multiple nodes to select a radio
channel among 16 ones to transmit on (rather than the fundamental strategy) might lead
to internal interference and collisions since multiple nodes may select the same channel at
the same time. For this, we have to adapt the MAB algorithms with the normal behavior of
TSCH. That is why a new approach is proposed and discussed in the next section.

7.5 Multi-armed Bandit Algorithms for TSCH-compliant chan-
nel selection

7.5.1 Proposed method: MAB algorithm over a set of channel offsets

In this work, we propose to integrate Multi-armed Bandit Algorithms into the TSCH channel
selection protocol, while avoiding too much interference. To do so, we will limit the set of
channels that the node can use.

The authors of [62] work with the idea of a blacklisting solution where a set of channel
offsets is initially assigned to each node. The channel offsets are used to generate a list of
radio channels using (7.2.1), where a channel is selected at each iteration (each time slot)
using one offset from the available set chosen randomly. This process generates a whitelist
of channels that are used to transmit. Note that the channel is included in the whitelist just
if it is available in the HSL i.e., it’s not blacklisted, otherwise if the node does not find any
available channel there, it suspends the transmission.

The procedure helps avoiding overlapping between neighbors sending at the same time.
Nonetheless, there is a high probability of running the process and getting no available
frequency, since the assigned offsets can produce radio channels that have already been
blacklisted, representing one of the main drawback of their proposal.

In order to address that issue, Kotsiou et al [148] used single channel offsets with a global
blacklisting mechanism and distributing the bad channels to the entire network. Each time
a frequency is assigned, it is taken out of the HSL. In this way, the protocol will always
generate a whitelisted channel for the node.

We use an approach similar to the one suggested in [62]: in our proposal, each node is
assigned a set of channel offsets. At each time slot (ASN) we find the available channels
according to (7.2.1): that gives a number of channels equal to the number of offsets.
Subsequently, we suggest to use bandit algorithms to select one channel among the allowed
ones based on the rewards achieved by each of those channels. This procedure is presented
in Figure 7.5.1, where the node is assigned 4 channel offsets {1, 7, 5, 13}. At ASN=30, the
available radio channels are {3, 5, 11, 15}. In order to transmit, the MAB algorithm selects
one of these channels.
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Figure 7.5.1: TSCH combined with Multi-Armed Bandit algorithms.

7.5.2 Performance evaluation

Simulation Setup

To evaluate our proposed mechanism, we use the same setup described in Section 7.4 for
both stationary and switching environments. However, since in this setup we assign only
a set of channel offsets for each node, at a given instant only a subset of channels can
be selected, in contrast to the previous experiments where all 16 channels could be used
(equivalent to 16 channels offsets). Here, we restrict the study to the MAB algorithms
that proved to have the best performance, i.e, TS and STSBA. We also compare these
algorithms with the normal behavior of TSCH.

For this, we assign different channel offsets to each node. For instance, if node A is assigned
4 channel offsets {1, 7, 5, 13} as shown in Figure 7.5.1, another neighbor node should be
assigned a different list of channel offsets to avoid internal interference. The node will
keep these channel offsets through the whole simulation; at each ASN the TSCH protocol
generates the corresponding radio channels iterating through the list of offsets, still according
to (7.2.1). Then MAB algorithms choose among those available channels (corresponding to
the channel offsets) the one to use, while with the normal TSCH behavior the radio channel
is chosen randomly.

Simulation results

To see the impact of the number of channel offsets assigned to each node, we run our
experiments with different sets of channel offsets.

Figure 7.5.2 shows the average PDR achieved by TS, STSBA and the (reference) TSCH
methods in a switching environment, when the channel PDR values vary more or less fre-
quently, and with different numbers of channel offsets assigned to each node.

In these experiments we used the artificial data rather than those conducted from real
experiments in order to have significant differences among channels’ qualities. As expected,
for the learning method TS, the performance improves as the number of channel offsets
increases. Also, STSBA brings some performance improvement, in accordance with the
results of Figures 7.4.3 and 7.4.5a, but at the cost of a higher computational complexity.
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Figure 7.5.2: Average PDRs achieved by TS and STSBA (two bandit algo-
rithms) and the classical TSCH method, with different numbers of channel
offsets, in a switching environment (artificial PDR values). 95% confidence

intervals are also provided.

For TSCH, as expected the performance remain unchanged when increasing the number of
channel offsets, since no clever choice is made on the available channel set. The figure
additionally provides some insight regarding an “optimal” number of offsets to allocate, to
trade-off individual performance and possible overlapping among the channels that different
nodes may use. From the figure, a number of 4 offsets allocated to the node yields a
significant performance improvement, while the marginal gain from further increases in the
number of offsets may be too small (this is up to the network manager to decide, mainly
depending on the node density). In what follows, we consider 4 offsets to be a reasonable
choice.

Finally, in order to study the impact of using MABs (specifically TS and STSBA) in real
TSCH networks, our experiments were repeated using real-experimental data for both sta-
tionary and switching environments. The results are shown in Figure 7.5.3, when 4 channel
offsets are assigned to each node. The graph shows that even with realistic channel PDR
values (with heterogeneity below what we set when fixing artificial values), applying learning
algorithms in stationary or switching environments significantly improves the performance of
TSCH networks, by more than 20%. Or equivalently:

• in a stationary setting, using TS with 4 channel offsets instead of TSCH allows to
divide by about 14 the number of packet losses;

• in a switching setting, TS and STSBA seem to offer comparable performance, even if
STSBA is theoretically more adapted. From our simulations, both lead to a reduction
of packet losses by a factor above 3 with respect to the classical TSCH protocol.
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Figure 7.5.3: Average PDR per algorithm for 4 channel offsets with
experiment-based link qualities, and 95% (hardly visible) confidence intervals.

7.6 Conclusions

In this chapter, we analyze how multi-armed bandit algorithms can solve the problem of
selecting the best channel to transmit in TSCH-based networks. We evaluate 9 multi-armed
bandit (MAB) algorithms with both and artificially-generated and experiment-based link
quality values, through a realistic simulator covering diverse scenarios in terms of variability of
channel qualities over time. That analysis highlights that Thompson Sampling and STSBA,
two bandit algorithms, are the best-performing methods in stationary and switching scenarios
respectively, yielding significant improvements in terms of average packet success delivery
rate.

To also cope with controlling the overlap of the channels that different nodes may use, we
propose a new channel selection mechanism for TSCH that integrates a MAB algorithm.
The algorithm uses a multi-offset technique, using MAB to select the channel to use among
a subset of available channels, determined by the offsets allocated to the node. The com-
parison between the multi-offset TSCH normal operation and multi-offset TSCH with MAB
approach showed a significant improvement with more than 20% in PDR, or a reduction
of packet losses by a factor larger than 3 in switching environments, and larger than 10 in
stationary ones.

In future works, we consider providing another degree of freedom for nodes, where instead
of choosing between a few offsets, if all the corresponding channels are bad a node may
decide to delay its transmission to wait for a good channel to appear in its channel list.





127

Part IV

Conclusion





129

Chapter 8

General conclusion and perspectives

This final chapter summarizes our contributions and presents future work directions.

8.1 Conclusion on our contributions

We started this manuscript by detailing the historical, scientific and technical contexts of our
research during this PhD. We explained the problems that motivate and justify our works.

Our work aims at responding to several issues.

The first was the study of the non-stationary bandit problem in the case of a piece-wise
stationary environment. In this context we have analyzed in depth the algorithm proposed
by Joseph Mellor and Jonathan Shapiro in [105] which consists in combining the Thompson
Sampling algorithm with the Bayesian change point detector in order to handle a piece-
wise environment. The original algorithm is based on the principle of sequentially selecting
the best Thompson Sampling model adapted to the current state of the environment. For
that, the authors propose to infer an integer random variable named runlength describing
the number of time steps since the last change. Then, the choice of the environment
model is made by sampling the current runlength distribution. In our first contribution called
"Memory bandit", we revisited this philosophy by rewriting the algorithm as the aggregation
of a growing number of experts. Experimentally, expert aggregation gives more satisfactory
results than sampling the runlength distribution.

Since the combination of Thompson sampling and the Bayesian online change point detector
seems to give very interesting results, we wanted to understand in detail how this change-
point detector works, which is renowned for its unmatched experimental performance. Hence
our second contribution where we showed the mathematical limits which prevented the com-
munity from proving the optimality of the Bayesian online change-point detector algorithm.
We thus succeeded in extracting a version almost similar to the original algorithm but easier
to mathematically analyze in terms of false alarm rate and detection delay. We show that
the false alarm is perfectly controlled and that the detection delay asymptotically reaches the
lower bound of the problem of detecting change-points in an online fashion. This represents
the first proof of the optimality of a change point detector based on the same principles as
the original Bayesian online change point detector.

Regarding our third contribution, decentralized exploration for multi-armed bandits, we were
interested in the problem of the asynchronous collaboration of a set of agents for the best arm
identification task. This collaboration must respect privacy constraints as well as constraints
related to communication between agents. Indeed, for the collaboration between agents
to be effective, it would be necessary to guarantee privacy to the agents as well as the
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minimization of communication costs. We have thus developed a generic algorithm taking
any bandit algorithm for the best arm identification task as a subroutine. We have also shown
that our generic algorithm respects the constraints of privacy as well as communication costs
remain low.

Finally, we were also interested in showing the importance of bandit algorithms for industrial
use cases. On the one hand, we suggested to optimize the performance of uplink LoRaWAN
communications by replacing the standard ADR algorithm with multi-armed bandit algo-
rithms to select both the spreading factor and the transmission power. Simulation results
show that the ADR algorithm has a tendency to perform quite well in terms of energy con-
sumption, but incurs large packet losses. All our experiments suggest that the multi-armed
bandit algorithms outperform the ADR algorithm, and can be tuned to reach a compromise
between energy consumption and packet loss. On the other hand, we analyzed how multi-
armed bandit algorithms can solve the problem of selecting the best channel to transmit
in TSCH-based networks. We evaluate 9 multi-armed bandit (MAB) algorithms through a
realistic simulator covering diverse scenarios in terms of variability of channel qualities over
time. That analysis highlights that multi-armed bandits yield significant improvements in
terms of average packet success delivery rate.

8.2 Future works

The purpose of this section is to present some of the new research directions extending the
work presented in this document.

8.2.1 Building the whole memory bandits and non-stationary Markov decision
processes

As indicated at the conclusion of Chapter 3, extending the switching Thompson sampling
for the rest of the stationary stochastic bandits is feasible. Thus, as future work, we first
propose to reuse the principle of the growing number of experts aggregation with other
bandit algorithms namely KL UCB, Bayes UCB ... Since we have succeeded in showing the
optimality of a version of the Bayesian online change-point detector, we can now think about
how to exploit it to mathematically analyze memory bandits in terms of pseudo-cumulative
regret upper bound.

We can also extend the use of the Bayesian online change point detector for more complex
problems than the bandit namely the Markov decision process (MDP). We can thus extend
Q Learning [143] or UCRL [73] type algorithms for non-stationary MDP problems.

8.2.2 Extension of the restarted Bayesian online change-point detection for
general distributions

In chapter 4, the formulation and analysis of the Bayesian change point detector were done
in a Bernoulli framework (the observations follow a piece-wise stationary Bernoulli law). It
would be very interesting to study the extensibility of the formulation for the general case
of exponential distributions. We can also be interested in the formulation of the algorithm
for multidimensional distributions which are very useful for non-stationary MDP problems.

In this case, we shall be surprised by the analysis difficulties that will appear and which will
push the community to seek and build several stochastic process controls.
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Chapter 9

Appendix of chapter 4: proofs of
Lemmas and Theorems

In this chapter, we provide the complete mathematical analysis of the main results stated in
chapter 4 as well as all the theoretical tools needed for the previous purpose.

Notation 4 (Useful short-hand notations). In the following, for some element x ∈ [0, 1], we
denote by x̄ its complementary such that: x̄ = 1 − x . Then, we denote by Σs:t , and Σ̄s:t

the two following cumulative sums:

Σs:t =
t∑
i=s

xi and Σ̄s:t =
t∑
i=s

x̄i .

9.1 Proof of Lemma 4.3

First, notice that the cumulative loss L̂s:t can be written as follows:

L̂s,t = − log
t∏

s ′=s

Lp (xs |xs ′:s−1)

Then, in order to demonstrate the result of Lemma 4.3, we only need to show by induction
that:

∀x1:n ∈ {0, 1}n
n∏
s=1

Lp (xs |x1:s−1) =
1

(n + 1)
( n∑n

i=1
xi

) .
Step 1: For n = 1, we have to deal with two cases, x1 = 1 and x1 = 0. Using the definition
of the predictor Lp (·|·), we obtain:

Lp (1|∅) = 1/2 = 1

(1+1)(1
1)
,

Lp (0|∅) = 1/2 = 1

(1+1)(1
0)
.

Step 2: Assume that for some x1:n ∈ {0, 1}n, we have:

n∏
s=1

Lp (xs |x1:s−1) =
1

(n + 1)
( n∑n

i=1
xi

) . (9.1.1)
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Then, let us verify that:

∀xn+1 ∈ {0, 1}
n+1∏
s=1

Lp (xs |x1:s−1) =
1

(n + 2)
( n+1∑n+1

i=1
xi

) .
To this end, we need to deal with two cases, depending on the values taken by xn+1.

Case 1: xn+1 = 1 Observe that:

n+1∏
s=1

Lp (xs |x1:s−1) =
n∏
s=1

Lp (xs |x1:s−1) Lp (1|x1:n) .

Using the definition of the predictor and the assumption (9.1.1), we obtain:

n+1∏
s=1

Lp (xs |x1:s−1) =
1

(n + 1)
( n∑n

i=1
xi

) × ∑n
i=1 xi + 1

n + 2

(a)
=

(
∑n
i=1 xi + 1)× (

∑n
i=1 xi)!× (

∑n
i=1 x̄i)!

(n + 2) (n + 1) n!

=
(
∑n
i=1 xi + 1)!× (

∑n
i=1 x̄i + 0)!

(n + 2) (n + 1)!

=

(∑n+1
i=1 xi

)
!×

(∑n+1
i=1 x̄i

)
!

(n + 2) (n + 1)!

=
1

(n + 2)
( n+1∑n+1

i=1
xi

) .
where (a) holds using the definition of the Binomial operator.

Case 2: xn+1 = 0 Observe that:

n+1∏
s=1

Lp (xs |x1:s−1) =
n∏
s=1

Lp (xs |x1:s−1) Lp (0|x1:n) .

Using the definition of the predictor and the assumption (9.1.1), we obtain:

n+1∏
s=1

Lp (xs |x1:s−1) =
1

(n + 1)
( n∑n

i=1
xi

) × ∑n
i=1 x̄i + 1

n + 2

(b)
=

(
∑n
i=1 x̄i + 1)× (

∑n
i=1 xi)!× (

∑n
i=1 x̄i)!

(n + 2) (n + 1) n!

=
(
∑n
i=1 xi + 0)!× (

∑n
i=1 x̄i + 1)!

(n + 2) (n + 1)!

=

(∑n+1
i=1 xi

)
!×

(∑n+1
i=1 x̄i

)
!

(n + 2) (n + 1)!

=
1

(n + 2)
( n+1∑n+1

i=1
xi

) .
where (b) holds using the definition of the Binomial operator.



9.2. Proof of Lemma 4.4 135

9.2 Proof of Lemma 4.4

The proof follows three main steps:

Step 1: Controlling the binomial
(n
k

)
Using the the Stirling formula:

∀ n > 1
√

2πn

(
n

e

)n
6 n! 6

√
2πn

(
n

e

)n
exp

(
1

12

)
,

the control of the binomial
(n
k

)
takes the following form:

∀ n > 1,∀k ∈ [0, n]
nn

kk (n − k)n−k
exp (b1)√

n
6

(
n

k

)
6

nn

kk (n − k)n−k
(9.2.1)

with b1 = −1
6 −

1
2 log (2π).

Step 2: First bounds for the cumulative loss L̂s:t Following Lemma 4.3, we can rewrite
the cumulative loss L̂s:t as follows:

L̂s:t = log (ns:t + 1) + log

(
ns:t

Σs:t

)
.

Then by letting Φ (x) = x log x and by following Equation (9.2.1), we obtain the following
two bounds:{

L̂s:t 6 log (ns:t + 1) + Φ (ns:t)−Φ (Σs:t)−Φ
(
Σ̄s:t

)
,

L̂s:t > log (ns:t + 1) + Φ (ns:t)−Φ (Σs:t)−Φ
(
Σ̄s:t

)
− 9

8 −
1
2 log ns:t .

(9.2.2)

Step 3: Controlling the cumulative loss First, notice that:

Σs:t log Σs:t + Σ̄s:t log Σ̄s:t = Σs:t log θ + Σ̄s:t log θ̄ + ns:t log ns:t + ns:tkl
(

Σs:t

ns:t
, θ

)
.

(9.2.3)

Then, using Equations (9.2.2) with Equation (9.2.3), we obtain:

• for the upper bound of the loss L̂s:t

L̂s:t 6 log (ns:t + 1)−Σs:t log
Σs:t

ns:t
− Σ̄s:t log

Σ̄s:t

ns:t

6 log (ns:t + 1)−Σs:t log Σs:t − Σ̄s:t log Σ̄s:t + ns:t log ns:t

(a)

6 log (ns:t + 1)−Σs:t log θ − Σ̄s:t log θ̄ − ns:tkl
(

Σs:t

ns:t
, θ

)
(b)

6 log (ns:t + 1)−Σs:t log θ − Σ̄s:t log θ̄,

where (a) holds by using Equation (9.2.3) and (b) holds using the positiveness of the
Kullback Leibler divergence (kl (•, •) > 0),
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• for the lower bound of the loss L̂s:t

L̂s:t > log (ns:t + 1)−
1

2
log ns:t −Σs:t log θ − Σ̄s:t log θ̄ − ns:tkl

(
Σs:t

ns:t
, θ

)
+ b1.

> log (ns:t + 1)−
1

2
log ns:t −Σs:t log θ − Σ̄s:t log θ̄ − ns:tkl (µ̂s:t , θ)−

9

8
.

Lemma 9.9: Uniform confidence intervals
Let Y1, . . . Yt be a sequence of t i.i.d. real-valued random variables with mean µ, such that
Yt − µ is σ-sub-Gaussian. Let µ̂t = 1

t

∑t
s=1 Ys be the empirical mean estimate. Then, for

all δ ∈ (0, 1), it holds

P

∃t ∈ N, |µ̂t − µ| > σ

√(
1 +

1

t

)
2 ln(
√
t + 1/δ)

t

 6 δ
(The "Laplace" method refers to using the Laplace method of integration for optimization)

9.3 Proof of Lemma 9.9

We introduce for a fixed δ ∈ [0, 1] the random variable

τ = min

t ∈ N : µt − µ > σ

√(
1 +

1

t

)
2 ln(
√

1 + t/δ)

t


This quantity is a random stopping time for the filtration F = (Ft)t , where Ft =

σ (Y1, . . . , Yt) , since {τ 6 m} is Fm -measurable for all m. We want to show that
P(τ <∞) 6 δ. To this end, for any λ, and t, we introduce the following quantity

Mλ
t = exp

(
t∑
s=1

(
λ (Ys − µ)−

λ2σ2

2

))

By assumption, the centered random variables are σ -sub-Gaussian and it is immediate to
show that

{
Mλ
t

}
t∈N is a non-negative super-martingale that satisfies lnE

[
Mλ
t

]
6 0 for all

t. It then follows that Mλ
∞ = limt→∞M

λ
t is almost surely well-defined and so, Mλ

τ as well.
Further, using the face that Mλ

t and {τ > t} are Ft measurable, it comes

E
[
Mλ
τ

]
= E

[
Mλ

1

]
+ E

[
τ−1∑
t=1

Mλ
t+1 −Mλ

t

]

= 1 +
∞∑
t=1

E
[(
Mλ
t+1 −Mλ

t

)
I{τ > t}

]
= 1 +

∞∑
t=1

E
[(
E
[
Mλ
t+1 | Ft

]
−Mλ

t

)
I{τ > t}

]
6 1
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The next step is to introduce the auxiliary variable Λ = N
(
0, σ−2

)
, independent of all other

variables, and study the quantity Mt = E [M∧t | F∞] . Note that the standard deviation of Λ

is σ−1 due to the fact we consider σ -sub-Gaussian random variables. We immediately get
E [Mτ ] = E [E [M∧τ | Λ]] 6 1. For convenience, let St = t (µt − µ) . By construction of Mt ,

we have

Mt =
1√

2πσ−2

∫
R

exp

(
λSt −

λ2σ2t

2
−
λ2σ2

2

)
dλ

=
1√

2πσ−2

∫
R

exp

−
λσ

√
t + 1

2
−

St

σ
√

2(t + 1)

2

+
S2
t

2σ2(t + 1)

 dλ
= exp

(
S2
t

2σ2(t + 1)

)
1√

2πσ−2

∫
R

exp

(
−λ2σ2 t + 1

2

)
dλ

= exp

(
S2
t

2σ2(t + 1)

) √
2πσ−2/(t + 1)√

2πσ−2

Thus, we deduce that

|St | = σ

√
2(t + 1) ln

(√
t + 1Mt

)
We conclude by applying a simple Markov inequality (see Theorem 9.16):

P
(
τ |µτ − µ| > σ

√
2(τ + 1) ln(

√
τ + 1/δ)

)
= P (Mτ > 1/δ) 6 E [Mτ ] δ

Theorem 9.16: Markov inequality
Let X be a non-negative random variable and let a > 0, then:

P
(
X > a

)
6
E[X]

a

9.4 Proof of Lemma 4.7

Step 1 Without a loss of generality, we consider that r = 1 and we consider that the
sequence (xt)t has σ-sub Gaussian noise meaning that:

∀t,∀λ ∈ R, logE [exp (λ (xt − E [xt ]))] 6
λ2σ2

2
(9.4.1)

Note that the Bernoulli case is a σ sub-Gaussianity case where σ = 1
2 . Indeed:

∀λ ∈ R, logEX∼B(p) exp(λ(X − p)) 6
λ2

8

Let z̄s+1:t = µ̂s+1:t − µ̂s+1:t be the centered empirical mean using observations from s + 1

to t. We first introduce for each λ ∈ R and each s 6 t the following quantity:
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Bλs,t = exp

(
λ(t − s)z̄s+1:t −

λ2σ2(t − s)

2

)

Note that
(
Bλs,t

)
t∈[s,∞]∩N

is a non-negative supermartingale. Let us introduce Bs,t =

E
[
BΛ
s,t

]
, where Λ ∼ N

(
0, 1

σ2(t−s)c

)
, for some c > 0. We note that by simple algebra,

|z̄s+1:t | =

√
2σ2(1 + c)

t − s ln

(
Bs,t

√
1 + 1/c

)

In particular, choosing c = 1/(t − s), it comes for all deterministic g(t) > 0, that

P

∃t,∃s < t, |z̄s+1:t | >

√√√√√2σ2
(
t−s+1
t−s

)
t − s ln

(
g(t)
√

1 + t − s
δ

) = P
(
∃t,∃s < t,Bs,t >

g(t)

δ

)

6 P
(
∃t,max

s<t
Bs,t >

g(t)

δ

)
6 δE

[
max
t

maxs<t Bs,t
g(t)

]

Step 2 This leads to study the quantity maxs<t Bs,t
g(t) . To this end, it is convenient to introduce

B̄t =

∑
s<t

Bs,t

g(t) for t > 1. Indeed, for every random stopping time τ > 1,

E
[

maxs<τ Bs,τ
g(τ)

]
6 E

[
B̄τ
]

= E
[
B̄2 +

∞∑
t=2

(
B̄t+1 − B̄t

)
I{τ > t}

]

Further, we note that, conveniently

B̄t+1 − B̄t =
Bt,t+1

g(t + 1)
+
∑
s<t

(
Bs,t+1

g(t + 1)
−
Bs,t
g(t)

)

Next, by construction, we note that

E [Bs,t+1 | Ft ] =
σ√
2π

∫
R
E
[
Bλs,t+1 | Ft

]
e−

λ2α2

2 dλ 6
σ√
2π

∫
R
Bλs,te

− λ2q2

2 dλ = Bs,t

Thus, since I{τ > t} ∈ Ft , we deduce that

E
[

maxs<τ Bs,τ
g(τ)

]
6 E

[
B̄2

]
+
∞∑
t=2

E [Bt,t+1]

g(t + 1)
+
∞∑
t=1

∑
s<t

E
[(

1

g(t + 1)
−

1

g(t)

)
Bs,tI{τ > t}

]

= E
[
B̄2

]
+
∞∑
t=2

E [Bt,t+1]

g(t + 1)
+
∞∑
t=1

∑
s<t

(
1

g(t + 1)
−

1

g(t)

)
E [Bs,tI{τ > t}]︸ ︷︷ ︸

>0
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Hence, choosing g as an increasing function of t ensures that the last sum is upper bounded
by 0. since on the other hand E [Bt,t+1] 6 1 and E

[
B̄2

]
6 1/g(2), we deduce that

E
[

maxs<τ Bs,τ
g(τ)

]
6

1

g(2)
+
∞∑
t=2

1

g(t + 1)
=
∞∑
t=2

1

g(t)

Choosing g(t) = Ct ln2(t) for t > 1 yields

E
[

maxs<τ Bs,τ
g(τ)

]
6

1

C ln(2)

Plugging-in this in the control of the deviation and choosing C = 1/ ln(2) thus gives

P

∃t,∃s < t |z̄s+1:t | >

√√√√√2σ2
(

1 + 1
t−s

)
t − s ln

(
t ln2(t)

√
t + 1− s

ln(2)δ

) 6 δ
since on the other hand, by the classical Laplace method (see Lemma 9.9),

P

∃s, |z̄1:s | >

√√√√√2σ2
(

1 + 1
s

)
s

ln

(√
s + 1

δ

) 6 δ
we conclude by using the triangular inequality |z̄1:s − z̄s+1:t | 6 |z̄1:s |+ |z̄s+1:t | together with
a union bound argument.

9.5 Proof of Theorem 4.10

Assume that: ∀t ∈ [r, τc) xr :t ∼ B (θ)⊗nr :τc . The proof follows four main steps:

Step 1: Rewriting Lemma 4.5 and Lemma 4.6

• Let: µ̂t denotes the empirical mean over the sequence x1, ..., xt ∼ B (θ)⊗n1:t , then:

∀δ ∈ (0, 1) ,∀α > 1 Pθ

∀t ∈ N
? : kl (µ̂t , θ) <

α

t
log

log(αt) log(t)

log2(α)δ︸ ︷︷ ︸
E

(1)
θ,δ,α

 > 1− δ

(9.5.1)

• Let: µ̂s:t denotes the empirical mean over the sequence xs , ..., xt ∼ B (θ)⊗ns:t , and:

E
(2)
θ,δ,α =

{
∀t ∈ N?,∀s ∈ (r, t] : kl (µ̂s:t , θ) <

α

ns:t
log

nr :t log2(nr :t) log(αns:t) log(ns:t)

log(2) log2(α)δ

}
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then, we get the following control:

∀δ ∈ (0, 1) ,∀α > 1 Pθ
(
E

(2)
θ,δ,α

)
> 1− δ (9.5.2)

Then, let us build a suitable value of ηr,s,t in order to ensure the control of the false alarm
on the period [r, τc).
To this end, let us control the event:

{
∃t > r, Restartr :t = 1

}
which is equivalent to the

event
{
∃t > r, s ∈ (r, t] : ϑr,s,t > ϑr,r,t

}
.

Step 2: Equivalent events. First, notice that:{
∃t > r, s ∈ (r, t] : ϑr,s,t > ϑr,r,t

}
⇔
{
∃t > r, s ∈ (r, t] : logϑr,s,t > logϑr,r,t

}
.

(a)⇔
{
∃t > r, s ∈ (r, t] : − log ηr,s,t 6 L̂r :t − L̂s:t − L̂r :s−1

}
,

where (a) comes directly from Equation (4.5.4).

Step 3: Using the cumulative loss controls. Then, note that ∀δ ∈ (0, 1) ,∀α > 1 we
get:

Pθ
(
∃t > r, s ∈ (r, t] : ϑr,s,t > ϑr,r,t

)
= Pθ

(
∃t > r, s ∈ (r, t] : logϑr,s,t > logϑr,r,t

)
= Pθ

(
∃t > r, s ∈ (r, t] : − log ηr,s,t 6 L̂r :t − L̂r :s−1 − L̂s:t

)
(b)

6 Pθ

(
∃t > r, s ∈ (r, t] : − log ηr,s,t 6 log

√
nr :s−1 × ns:t × (nr :t + 1)

(nr :s−1 + 1)× (ns:t + 1)

+ nr :s−1kl (µ̂r :s−1, θ) + ns:tkl (µ̂s:t , θ) +
9

4

)
(c)

6 Pθ

(
∃t > r, s ∈ (r, t] : − log ηr,s,t 6 log

nr :t + 1√
nr :s−1 × ns:t

+ nr :s−1kl (µ̂r :s−1, θ) + ns:tkl (µ̂s:t , θ) +
9

4

)

6
δ

2
+ Pθ

(
∃t > r, s ∈ (r, t] : − log ηr,s,t 6 log

nr :t + 1√
nr :s−1 × ns:t

+ nr :s−1kl (µ̂r :s−1, θ) + ns:tkl (µ̂s:t , θ) +
9

4

⋂
E

(1)
θ,δ/2,α

)
(d)

6
δ

2
+ Pθ

(
∃t > r, s ∈ (r, t] : log

1

ηr,s,t
6 log

nr :t + 1√
nr :s−1 × ns:t

+ α log
2 log(αnr :s−1) log(nr :s−1)

log2(α)δ
+ ns:tkl (µ̂s:t , θ) +

9

4

)

6 δ + Pθ

(
∃t > r, s ∈ (r, t] : log

1

ηr,s,t
6 log

nr :t + 1
√
nr :s−1ns:t
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+ α log
2 log(αnr :s−1) log nr :s−1

log2(α)δ
+ ns:tkl (µ̂s:t , θ) +

9

4

⋂
E

(2)
θ,δ/2,α

)
(e)

6 δ + Pθ

(
∃t > r, s ∈ (r, t] : − log ηr,s,t 6 log

nr :t + 1√
nr :s−1 × ns:t

+
9

4

+ α log
2 log(αnr :s−1) log(nr :s−1)

log2(α)δ
+ α log

2nr :t log2(nr :t) log(αns:t) log(ns:t)

log(2) log2(α)δ

)

(b) holds by using Lemma 4.4, (c) holds thanks to (nr :s−1 + 1)× (ns:t + 1) > nr :s−1× ns:t ,
(d) holds true thanks to Equation 9.5.1 and (e) holds true thanks to Equation 9.5.2.

Step 4: Building the sufficient condition on ηr,s,t Thus, by using exp(−9
4 ) > 1

10 , we
get the following condition on ηr,s,t :

ηr,s,t <

√
nr :s−1 × ns:t

10 (nr :t + 1)
×
(

log2(α)δ

2 log(αnr :s−1) log(nr :s−1)
×

log(2) log2(α)δ

2nr :t log2(nr :t) log(αns:t) log(ns:t)

)α

=

√
nr :s−1 × ns:t

10 (nr :t + 1)
×
(

log(4α) log(2)δ2

4nr :t log(αnr :t) log2(nr :t) log(nr :t)

)α

=

√
nr :s−1 × ns:t

10 (nr :t + 1)
×
(

log(4α+ 2)δ2

4nr :t log((α+ 3) nr :t)

)α
,

which allows us to get the following control:

Pθ (∃t > r, s ∈ (r, t] : ϑr,s,t > ϑr,r,t) 6 δ.

9.6 Proof of Theorem 4.11

The proof follows three main steps.

Step 1: some preliminaries Before building the detection delay, we need to introduce
three intermediate results.

The first result is to link the quantity Φ (Σs:t) to Φ (µ̂s:t) such that:

∀ (s, t) : Φ (Σs:t) + Φ
(
Σ̄s:t

)
−Φ (ns:t) = ns:t (Φ (µ̂s:t) + Φ (1− µ̂s:t)) .

Then, observe that :

nr :s−1 (Φ (µ̂r :s−1) + Φ (1− µ̂r :s−1)) + ns:t (Φ (µ̂s:t) + Φ (1− µ̂s:t))

− nr :t (Φ (µ̂r :t) + Φ (1− µ̂r :t)) = nr :s−1kl (µ̂r :s−1, µ̂r :t) + ns:tkl (µ̂s:t , µ̂r :t) . (9.6.1)

Finally, observe that:

nr :s−1 (µ̂r :s−1 − µ̂r :t)2 + ns:t (µ̂s:t − µ̂r :t)2 =
nr :s−1ns:t

nr :t
(µ̂r :s−1 − µ̂s:t)

2 . (9.6.2)



142 Chapter 9. Appendix of chapter 4: proofs of Lemmas and Theorems

Then, we will also need a useful notation as fr,s,t (which comes directly from Lemma 4.4):

fr,s,t = log (nr :s−1 + 1) + log (ns:t + 1)−
1

2
log nr :t +

9

8
.

Finally, following Lemma 4.7, the control of the quantity |µ̂r :s−1 − µ̂s:t | takes the following
form: (with a probability at least 1− δ)

∀ s ∈ [r : t) |µ̂r :s−1 − µ̂s:t | > ∆r,s,t − Cr,s,t,δ, (9.6.3)

where ∆r,s,t represents the relative gap and it takes the following form:

∆r,s,t = | µ̂r :s−1 − µ̂s:t | =

{
nτc :t

ns:t
|θ1 − θ2| = nτc :t

ns:t
∆ if s < τc 6 t,

nr :τc−1

nr :s−1
|θ1 − θ2| =

nr :τc−1

nr :s−1
∆ if τc 6 s 6 t.

(9.6.4)

Step 2: Building the sufficient conditions for detecting the change-point τc First,
assume that: xr :τc−1 ∼ B (θ1), xτc :t ∼ B (θ2). Then, to build the detection delay, we need
to prove that at some instant after τc the restart criterion Restartr :t is activated. In other
words, we need to build the following guarantee:

P
(
∃t > τc : Restartr :t = 1

)
> 1− δ.

Notice that:

{∀ t > τc : Restartr :t = 0} ⇔ {∀ t > τc ,∀s ∈ (r, t] : logϑr,s,t 6 logϑr,r,t} .

⇔
{
∀ t > τc ,∀s ∈ (r, t] : log ηr,s,t 6 L̂r :s−1 + L̂s:t − L̂r :t

}
.

(a)⇒
{
∀ t > τc ,∀s ∈ (r, t] : log ηr,s,t 6 fr,s,t + Φ (Σr :s−1) + Φ

(
Σ̄r :s−1

)
−Φ (nr :s−1) .

+ Φ (Σs:t) + Φ
(
Σ̄s:t

)
−Φ (ns:t)−Φ (Σr :t)−Φ

(
Σ̄r :t

)
+ Φ (nr :t)

}
.

(b)⇒ {∀ t > τc ,∀s ∈ (r, t] : log ηr,s,t 6 fr,s,t − nr :s−1kl (µ̂r :s−1, µ̂r :t)− ns:tkl (µ̂s:t , µ̂r :t)} .
(c)⇒
{
∀ t > τc ,∀s ∈ (r, t] : log ηr,s,t 6 fr,s,t − 2nr :s−1 (µ̂r :s−1 − µ̂r :t)2 − 2ns:t (µ̂s:t − µ̂r :t)2

}
.

(d)⇒
{
∀ t > τc ,∀s ∈ (r, t] : log ηr,s,t 6 fr,s,t − 2×

nr :s−1ns:t

nr :t
(µ̂r :s−1 − µ̂s:t)

2
}
.

⇒
{
∀ t > τc ,∀s ∈ (r, t] : 2×

nr :s−1ns:t

nr :t
(µ̂r :s−1 − µ̂s:t)

2 6 fr,s,t − log ηr,s,t

}
.

(e)⇒
{
∀ t > τc ,∀s ∈ (r, t] :

√
nr :s−1ns:t

nr :t
|µ̂r :s−1 − µ̂s:t | 6

√
fr,s,t − log ηr,s,t√

2

}
.

where (a), holds true thanks to Equation (9.2.2), (b) holds true thanks to Equation (9.6.1),
(c) holds true thanks to the Pinsker Inequality taking the following form: ∀ (θ1, θ2) ∈
[0, 1]2 kl (θ1, θ2) > 2 (θ1 − θ2)2 . (d) holds true thanks to Equation (9.6.2) and (e) holds
true under the condition that ηr,s,t 6 exp (fr,s,t).
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Therefore, we obtain:

P
(
∀t > τc : Restartr :t = 0

)
6 P

(
∀t > τc ,∀s ∈ (r, t] :

√
nr :s−1ns:t

nr :t

∣∣µ̂r :s−1 − µ̂s:t

∣∣
6

√
fr,s,t − log ηr,s,t√

2

)
(f )

6 δ + P
(
∀ t > τc ,∀s ∈ (r, t] :

√
nr :s−1ns:t

nr :t
(∆r,s,t − Cr,s,t,δ) 6

√
fr,s,t − log ηr,s,t√

2

)

= δ + P
(
∀ t > τc ,∀s ∈ (r, t] :

nr :s−1ns:t

nr :t
(∆r,s,t − Cr,s,t,δ)2 6

fr,s,t − log ηr,s,t
2

)

= δ + P
(
∀ t > τc ,∀s ∈ (r, t] : 1−

fr,s,t − log ηr,s,t

2nr,s−1 × (∆r,s,t − Cr,s,t,δ)2︸ ︷︷ ︸
A

6
nr :s−1

nr :t

)
, (9.6.5)

where (f) holds true thanks to Equation (9.6.3) (We recall that the relative gap ∆r,s,t is
defined in Equation (9.6.4)). Before continuing the analysis, one need to verify that term
A is valid (i.e. A ∈ [0, 1], otherwise the associated event cannot be controlled). So, notice
that: A > 0 ⇔ ηr,s,t > exp

(
−2nr,s−1 (∆r,s,t − Cr,s,t,δ)2

)
exp (fr,s,t) ,

A < 1 ⇔ ηr,s,t < exp (fr,s,t) = (nr :s−1+1)(ns:t+1)√
nr :t

exp
(

9
8

)
.

(9.6.6)

The second condition in Equation (9.6.6) is always satisfied since, we have:

∀ (r, s, t) :
(nr :s−1 + 1) (ns:t + 1)

√
nr :t

exp

(
9

8

)
> 1 and by definition, we have: ηr,s,t < 1.

Therefore, from Equation (9.6.5) we get the following implication:

{
∃t > τc , s ∈ (r, t] : 1 +

log ηr,s,t − fr,s,t
2nr,s−1 (∆r,s,t − Cr,s,t,δ)2 >

nr :s−1

nr :t

}

⇒ P
(
∃t > τc : Restartr :t = 1

)
> 1− δ.

In other words, the change-point τc is detected at time t (with probability at least 1− δ) if
for some s ∈ (r, t], we have:

1 +
log ηr,s,t − fr,s,t

2nr,s−1 × (∆r,s,t − Cr,s,t,δ)2 >
nr :s−1

nr :t
. (9.6.7)

Step 3: Non-asymptotic expression of the detection delay D∆,r,τc To build the de-
tection delay, we need to ensure the existence of s ∈ (r, t] such that Equation (9.6.7) is
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satisfied. In particular, Equation (9.6.7) can be satisfied for s = τc . By this way, a condition
to detect the change-point τc is written as follows:

1 +
log ηr,τc ,t − fr,τc ,t

2nr,τc−1 × (∆− Cr,τc ,t,δ)2 >
nr :τc−1

nr :t
. (9.6.8)

To build the delay, we should introduce the following variable: d = t − τc + 1 = nτc :t ∈ N?.

Thus from Equation (9.6.8), we obtain:

1 +
log ηr,τc ,d+τc−1 − fr,τc ,d+τc−1

2nr,τc−1(∆− Cr,τc ,d+τc−1,δ)2 >
nr :τc−1

nr :τc−1 + d

⇔ d >

(
1− Cr,τc ,d+τc−1,δ

∆

)−2

2∆2
×
− log ηr,τc ,d+τc−1 + fr,τc ,d+τc−1

1 +
log ηr,τc ,d+τc−1−fr,τc ,d+τc−1

2nr,τc−1(∆−Cr,τc ,d+τc−1,δ)2

.

Finally, the change-point τc is detected (with a probability at least 1 − δ) with a delay not
exceeding D∆,r,τc , such that:

D∆,r,τc = min

{
d ∈ N? : d >

(
1− Cr,τc ,d+τc−1,δ

∆

)−2

2∆2
×
− log ηr,τc ,d+τc−1 + fr,τc ,d+τc−1

1 +
log ηr,τc ,d+τc−1−fr,τc ,d+τc−1

2nr,τc−1(∆−Cr,τc ,d+τc−1,δ)2

}
.
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Titre: Bandits à mémoire pour la prise de décision en environnement dynamique. Ap-
plication à l’optimisation des réseaux de télécommunications.

Mots clés: Bandit non-stationnaire, détection de point de changement, optimisation des réseaux
de télécommunication, exploration pour les bandits.

Résumé: Dans cette thèse de doctorat,
nous étudions le problème du bandit man-
chot non stationnaire où le comportement de
non-stationnarité de l’environnement est carac-
térisé par plusieurs changements brusques ap-
pelés "points de changement". Nous proposons
les bandits à mémoire : une combinaison entre
un algorithme pour le bandit manchot stochas-
tique et le détecteur Bayésien de point de
changement. L’analyse de ce dernier a toujours
été un problème ouvert dans la communauté
de la théorie statistique et de l’apprentissage
séquentiel. Pour cette raison, nous dérivons
une variante du détecteur Bayésien de point
de changement qui est plus facile à anal-
yser mathématiquement en termes de taux de
fausses alarmes et de délai de détection (qui
sont les critères les plus courants pour la dé-
tection de point de changement). Ensuite,
nous introduisons le problème d’exploration
décentralisée dans le cadre du bandit man-
chot où un ensemble de joueurs collaborent
pour identifier le meilleur bras en interagissant
de manière asynchrone avec le même environ-
nement stochastique. Nous proposons une pre-

mière solution générique appelée élimination dé-
centralisée qui utilise n’importe quel algorithme
d’identification du meilleur bras comme sous-
programme avec la garantie que l’algorithme
assure la confidentialité, avec un faible coût
de communication. Enfin, nous effectuons une
évaluation des stratégies de bandit manchot
dans deux contextes différents de réseaux de
télécommunications. Tout d’abord, dans le con-
texte LoRaWAN (Long Range Wide Area Net-
work), nous proposons d’utiliser des algorithmes
de bandit manchot à la place de l’algorithme
par défaut qui porte le nom d’ADR (Adaptive
Data Rate) afin de minimiser la consommation
d’énergie et les pertes de paquets des terminaux.
Ensuite, dans le contexte IEEE 802.15.4-TSCH,
nous effectuons une évaluation de 9 algorithmes
de bandits manchot afin de sélectionner ceux qui
choisissent les canaux les plus performants, en
utilisant les données collectées via la plateforme
FIT IoT-LAB. L’évaluation des performances
suggère que notre proposition peut améliorer
considérablement le taux de livraison des pa-
quets par rapport à la procédure TSCH par dé-
faut, augmentant ainsi la fiabilité et l’efficacité
énergétique des transmissions.



Title: Memory bandits for decision making in dynamic environments. Application to
network optimization.

Keywords: Non-stationary multi-armed bandits, online change-point detection, network opti-
mization, exploration in multi-armed bandits.

Abstract: In this PhD thesis, we study
the non-stationary multi-armed bandit problem
where the non-stationarity behavior of the en-
vironment is characterized by several abrupt
changes called "change-points". We propose
Memory Bandits: a combination between an al-
gorithm for the stochastic multi-armed bandit
and the Bayesian Online Change-Point Detec-
tor (BOCPD). The analysis of the latter has al-
ways been an open problem in the statistical
and sequential learning theory community. For
this reason, we derive a variant of the Bayesian
Online Change-point detector which is easier to
mathematically analyze in term of false alarm
rate and detection delay (which are the most
common criteria for online change-point detec-
tion). Then, we introduce the decentralized
exploration problem in the multi-armed bandit
paradigm where a set of players collaborate to
identify the best arm by asynchronously inter-
acting with the same stochastic environment.
We propose a first generic solution called decen-

tralized elimination: which uses any best arm
identification algorithm as a subroutine with the
guarantee that the algorithm ensures privacy,
with a low communication cost. Finally, we per-
form an evaluation of the multi-armed bandit
strategies in two different context of telecommu-
nication networks. First, in LoRaWAN (Long
Range Wide Area Network) context, we pro-
pose to use multi-armed bandit algorithms in-
stead of the default algorithm ADR (Adaptive
Data Rate) in order to minimize the energy con-
sumption and the packet losses of end-devices.
Then, in a IEEE 802.15.4-TSCH context, we
perform an evaluation of 9 multi-armed ban-
dit algorithms in order to select the ones that
choose high-performance channels, using data
collected through the FIT IoT-LAB platform.
The performance evaluation suggests that our
proposal can significantly improve the packet
delivery ratio compared to the default TSCH
operation, thereby increasing the reliability and
the energy efficiency of the transmissions.
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