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Introduction

Dealing with few-body or many-body interacting systems is at the heart of a large variety
of domains in physics. Unfortunately, it appears that already in the case of N = 3

particles, the general solution is too complicated. From there, one has to rely actively
on a set of approximations (all associated with various theoretical approaches), guided
by the parameters scale of the system at hand. Here, one might ask:

Is there a particular branch of physics that offers a good platform, both theoretically
and experimentally, to study few-body and many-body interacting systems?

The ultracold gases , a domain where one works with gases of atoms at very low
temperature, appears to be a really good candidate as it benefits from a remarkable
separation of scales. Hence, a very small number of parameters is needed to describe the
interacting system, and just as important, most of these parameters can be fine-tuned
in experiments. In itself, this domain provides us a wonderful playground to better
understand quantum matter at an atomic level [1]. It also appears to start answering
other many-body problems, ranging from condensed matter to astrophysics, by playing
the role of a quantum simulator, thanks to its ability to reproduce artificially some
phenomena which are hard to compute numerically [2–4].

As the reader might expect from the title of this thesis, we embark on this domain for
the rest of the manuscript and recall here basic properties of these gases before moving
on.

Ultracold gases are very dilute systems, as they are approximately 105 times less
dense than the ambient air (the density n ' 1014 atoms/cm³). The atomic de Broglie
wavelength λT = (2π~2/mkBT )

1/2 is made very large since the temperature T is typ-
ically ranging from 100 nK to 1 µK. At these typical scales, the gas can no longer be
considered classical and obeys quantum statistics, with its nature changing radically ac-
cording to the bosonic or fermionic character of its components. For the bosonic case, one
eventually obtains a remarkable state of matter, the so-called Bose-Einstein-Condensate
(BEC), where atoms occupy the ground state of the gas macroscopically. It has been
first observed experimentally in 1995 [5–7], and the field has developed a lot since this
breakthrough. The incredible methods to achieve such systems, which mainly use the
physics of laser and the use of evaporative cooling are given in Ref. [8].

Actually, the formation of a BEC emerges purely from quantum statistics and does
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2 INTRODUCTION

not need interactions, but those ones have a dramatic effect on the gas (not to mention
their necessity in the evaporative cooling [8], or in the appearance of the superfluid
state [9]). Introducing Re, the range of the interatomic potential (typically few nm),
we recall that in the regime where λT � Re, often referred to the ultracold limit, one
parameter is generally sufficient to describe the two-body interaction between particles:
the so-called scattering length a. This leads to the equivalence of all two-body short-
range potentials with the same scattering length: we talk here of universality. From this
parameter, we usually define the strength g2 of an effective two-body potential modeling
the interaction.

Let us now have an insight on the homogeneous many-body interacting system of
N atoms in a volume V at T = 0. As the mean interparticle distance l = n−1/3

between atoms satisfies the dilute limit condition l � Re, we usually only consider pair
interactions. That leads us to perform a mean-field (MF) analysis of the system: to
obtain the interacting energy EMF, we multiply the energy of one interacting pair ∝ g2

by the number of pairs in the system, leading for large N to EMF = g2N
2/2V . For

g2 > 0, corresponding to an overall repulsion, the system is in the gaseous phase and
expands to minimize its energy. It then requires to be trapped with an external potential
to be localized for experiments. For g2 < 0, associated with an overall attraction, the
system collapses on itself. At this stage, one might ask:

Are these two scenarios (gaseous phase and collapse) exhaustive? Or is it possible
to obtain a liquid state, i.e., a (very dilute) self-bound state in equilibrium with vacuum
without external potential?

Such a state would require that the total interacting energy per particle Eint/N(n)

exhibits a nontrivial minimum at a certain density n0. A way to obtain such a property is
to take into account the existence of beyond-mean-field (BMF) energy terms EBMF =

Eint−EMF to counterbalance the mean-field one. Usually, these BMF terms correspond
to higher-order corrections to the total energy and do not really change the properties
of the system. Here, let us assume that the leading order of these terms ∝ gαn

α where
α > 2 1. One can then write the total energy per particle as

Eint/N ∝ g2n+ gαn
α−1, with α > 2. (1)

To have a minimum at n0, one needs to have the particular scaling g2 ∼ gαn
α−2
0 , where

both terms need to have different signs: a mean-field attraction being stabilized by a
beyond mean-field repulsion and inversely. Moreover, the gas should remain dilute to not
suffer from a short lifetime due to inelastic collisions. In three dimensions, where g2 ∝ a,
one can show that a simultaneous small a and large gα with a small α is preferable. Note

1In the general case, and especially for low-dimensions, the leading order of the BMF terms can have
a different and more complicated dependence on the density n. However, the possible mechanism of
stabilization stays the same.
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also that one might expect the BMF term to be strongly dependent on the MF term,
arising the fact that it is a priori not evident to control these terms independently.

There, one might wonder the different options which are offered to obtain such a
self-stable system. Let us approach the problem from a historical point of view. In 1957,
Lee, Huang, and Yang (LHY) derived in the case of a homogeneous weakly repulsive
Bose gas (where na3 � 1) the first two leading terms of the energy density [10,11] with
a pseudopotential method (in agreement with the Bogoliubov approach [12, 13]), which
read

E/V =
4π~2a

m

n2

2

(
1 +

128

15
√
π

√
na3 + ...

)
. (2)

In our notations, this LHY correction corresponds to a term α = 5/2. It is universal,
as it depends only on the scattering length (∝ a5/2), and a striking property lies in its
pure quantum nature (as it corresponds to quantum fluctuations, or in a more theoretical
picture, to the zero-point energy of Bogoliubov phonons). However, although this term
has indeed been observed [14] and can be manipulated, one can see that this effect is
perturbative and the LHY term is then always much smaller than the MF term. Hence,
we a priori need to look elsewhere to obtain this self-stable state we pursue.

Almost five decades after LHY, Bulgac asked himself the question of engineering
quantum liquid droplets [15]. His proposal lies in the ability to fine-tune the scattering
length in experiments thanks to an external magnetic field through the so-called Feshbach
mechanism. Following the resonant case where |a| → +∞ which involves the Efimov
physics [16, 17], he shows that a three-body repulsion (i.e., α = 3 and g3 > 0) can
contribute to stabilize an attractive (g2 < 0) interacting system of bosons, hence leading
to a self-bound state of density n0 = −2g2/g3 he called a boselet (a boson droplet).
Although it was a great theoretical step, these droplets appear difficult to observe because
in the resonant case, inelastic collisions 2 are really important and lead to a short lifetime
of the sample [18,19].

However, Petrov presented in 2014 a way to control two-body and effective three-
body interactions in the non-resonant case [20], opening the way to observe self-bound
quantum droplets. Indeed, this proposal lies on a system of dipoles in a bilayer geometry
with interlayer tunneling, where one can drastically reduce inelastic collisions.

One year later, Petrov realized that the tunneling was not needed for liquefaction. He
looked in Ref. [21] at a Bose-Bose mixture (↑, ↓) with two-body attractive interspecies
(g↑↓ < 0) and two-body repulsive intraspecies (g↑↑, g↓↓ > 0) close to the region where
mean-field predicts collapse and defined by the condition g2

↑↓ > g↑↑g↓↓ (i.e., the attractive
part of the system overcomes the repulsive part). Analyzing the energy density of the
mixture up to the LHY correction for this system, he showed that this term can actually

2Typically, in a three-body inelastic collision, two atoms can form a molecule such that the third
particle carries then a kinetic energy surplus sufficient to leave the trap.
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stabilize the collapsing mixture with a fine-tuning of the interactions, and that the system
gets instead into a dilute liquid droplet. In other words, the unstable classical system
(i.e., from a MF viewpoint) is stabilized by “ switching on ” quantum mechanics. Here,
the fundamental difference with the single component Bose gas is that the MF term
and the LHY correction can be controlled independently and hence tuned to the same
order. Various properties of this exotic phase (excitations spectrum, surface tension, etc
...) were described in this paper, as the experimental road to obtain such a state: a few
years later, it was successfully observed in a potassium mixture (39K, 41K) at ICFO in
Barcelona [22], then later at LENS in Florence [23].

This new liquid-like state differs quite strongly from the classical picture of liquids
we know, which is explained through the Van der Waals theory [24]. Indeed, they are
much more dilute (the droplet is 108 times less dense than water !) and the frame is here
rather universal as the liquid depends on a set of few parameters, in contrast to classic
liquids where the description depends on the details of the interatomic potentials [25].

Meanwhile, dipolar quantum droplets have been observed in groups of Stuttgart
and Innsbruck using dipolar gases (respectively with Dy and Er dipoles) [26–29]. They
are explained by the same mechanism of stabilization as the Bose-Bose mixture case,
i.e., thanks to quantum fluctuations (LHY term). Here, the MF term is weakened via a
balance between an attractive dipolar tail and a repulsive short-range contact interaction.

Although the observation of this liquid-like droplet state was a major breakthrough
as it goes beyond the Van der Waals paradigm, it also appeared to open the road to the
realization of an even more intriguing state: the supersolid. This state of matter, which
exhibits both a crystalline structure and a frictionless motion, has a long story as it
was predicted theoretically for many decades [30] but was never observed. Nevertheless,
three groups have recently observed the first evidence of supersolid properties through
the formation of coherent arrays of quantum dipolar droplets, which rely genuinely on
interactions between particles [31–33].

These seminal ideas and experimental observations have considerably raised the at-
tention for systems with an intentionally weakened MF term (thus enhancing the impor-
tance of the BMF ones) over the past few years. The Ref. [34] is a very useful review on
this new domain .

Theoretically wise, these systems where an attractive part and a repulsive part com-
pete with each other are a way to appreciate better the BMF physics in all its richness
of possibilities. From non-local collective excitations (quantum fluctuations) to effective
local higher-body interactions, we now see that these terms can no longer be reduced
to an academical problem as they can dramatically change the nature of the system. It
raises the following question:

What do these BMF terms depend on?
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Of course, they are mainly linked to the shape and strength of the interactions in
the system at hand, as well as the trap potential, but one of their major features is that
they generally strongly depend on dimensionality. For example, the LHY term involves
a sum in the momentum space, and its dependence on the particle density greatly varies
(n5/2 for D = 3, n2 lnn for D = 2 and n3/2 for D = 1). It allows wide possibilities
as experimentalists are capable of strongly confining the system in desired directions,
hence freezing degrees of freedom for the atoms, entering quasi-low-dimensional regimes.
Usually, one uses harmonic potentials trap to do so, often leading the system to exhibit a
cigar (quasi-1D) or a pancake (quasi-2D) shape. Note also that reducing the problem to
a pure low-dimensional model often contributes to add effective higher-body interactions
in the system, which find their origin in the virtual excitations of the trapped atoms. In
a more general way, following an Effective Field Theory (EFT) approach, one can show
that effective higher-body forces arise naturally when one integrates out frozen degrees
of freedom in a system [35].

Overview of the Manuscript and Principal Results

In this thesis, we intend to study beyond-mean-field effects close to a two-body zero-
crossing (i.e., with weakened mean-field interaction associated with g2 → 0) in various
systems, geometries, and interactions. Although it will lead us to navigate between
few- and many-body problems, an emphasis will be put on the few-body approach.
This manuscript is divided into five chapters, the first two which serve as a pedagogical
introduction.

In the first chapter, we recall useful few-body concepts which will act as building
blocks to understand all the next chapters. We look at the typical interaction between
two neutral atoms and present some two-body scattering properties at low-energy, as
well as the Feshbach mechanism. We then introduce effective potentials much easier
to manipulate than the true interactions, which encapsulate the low-energy scattering
properties of the system, using the so-called zero-range approximation. In particular, we
present the Skorniakov-Ter-Martirosian method, being particularly handy for three and
four-body problems we will face later.

In the second chapter, we enter the many-body world and present more in detail
the principal motivations of this thesis, namely systems where the MF interaction can
be fined tuned to an arbitrary small value, emphasizing the importance of BMF effects,
and leading ultimately to new exotic states of matter. Following first the example of a
mass-balanced Bose-Bose mixture with attractive interspecies and repulsive intraspecies
contact interactions, we explain how the LHY term can stabilize the system close to
the regime where the MF approach predicts collapse, leading to a liquid-like droplet
formation. The question is addressed in every dimension. We also give some brief insights
on dipolar gases, which can exhibit the same phenomenon of quantum stabilization.



6 INTRODUCTION

In the third chapter, we enrich the phase diagram of the 1D Bose-Bose mixture
defined in the previous chapter. Starting from the regime where the system maps to
a repulsive gas of dimers, we solve the dimer-dimer scattering problem. In the plane
parametrized by the ratios of the coupling constants g↑↑/|g↑↓| and g↓↓/|g↑↓| we trace out
the curve where the dimer-dimer interaction switches from attractive to repulsive. We
find this curve to be significantly (by more than a factor of 2) shifted towards larger
gσσ(or smaller |g↑↓|) compared to the mean-field stability boundary g↑↑g↓↓ = g2

↑↓. For
a weak dimer-dimer attraction, we predict a dilute dimerized liquid phase stabilized
against collapse by a repulsive three-dimer force. Motivated by the verification of this
prediction, we turn on solving the three-boson problem with contact two-body and three-
body interactions in one dimension and analytically calculate the ground and excited
trimer-state energies. This theoretical result is in itself an important step to understand
one-dimensional bosonic systems. By using the diffusion Monte Carlo technique, our
collaborators calculated the binding energy of three dimers formed in the previously
studied one-dimensional Bose-Bose or Fermi-Bose mixture. Combining these results
with our three-body analytics, we extract the three-dimer scattering length close to the
dimer-dimer zero-crossing. In both considered cases, the three-dimer interaction turns
out to be repulsive. By using an appropriate wave-function mapping, our results also
apply to one-dimensional Bose-Fermi mixtures. They also constitute a concrete proposal
for obtaining a one-dimensional gas with a pure three-body repulsion.

In the fourth chapter, we develop the perturbation theory for bosons interacting
via a weak two-body potential V, attractive and repulsive parts of which cancel each
other. We find that the leading nonpairwise contribution to the energy emerges in the
third order in V and represents an effective three-body interaction, the sign of which in
most cases (although not in general) is anticorrelated with the sign of the long-range
tail of V. We apply our theory to a few particular two-body interaction potentials and
calculate the leading two-body and three-body interaction corrections for tilted dipoles
in quasi-low-dimensional geometries. We show that our approach is consistent with the
many-body Bogoliubov treatment.

In the fifth chapter, motivated by some cases where the LHY term appears not to be
able to counterbalance the unstable MF term (single component Bose gas, low dimension
geometry, etc ...), we propose a way to engineer an effective three-body force to ensure
this property: for bosons interacting with each other by a two-body potential tuned to
a narrow zero-crossing, we show the emergence of an effective three-body force which
we calculate in any dimension. We use the standard two-channel model parameterized
by the background atom-atom interaction strength, the amplitude of the open-channel
to closed-channel coupling, and the atom-dimer interaction strength. The three-body
force originates from the atom-dimer interaction, but it can be dramatically enhanced
for narrow crossings, i.e., for small atom-dimer conversion amplitudes. This effect can
be used to stabilize quasi-two-dimensional dipolar atoms and molecules.
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Finally, we conclude by mentioning exciting perspectives and new challenges related
to BMF effects, both theoretical and experimental.
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10 Few-body basics

The goal of this chapter is to introduce relevant few-body parameters used in the
manuscript. We previously mentioned the importance of interactions for ultracold gases.
Experiments are done with neutral atomic gas at very low densities (nR3

e � 1) such
that we can limit ourselves to the model of binary collisions to describe the system
since higher-order ones are much less probable. After presenting some features of the
interatomic potential, we study the two-body scattering problem and define the main
parameter to describe interactions at low-energy: the s-wave scattering length a. Finally,
we look for model potentials to describe interactions easily, introducing especially the
zero-range approximation. In this chapter, an emphasis is put on the three-dimensional
case to introduce the basic notions. Still, we also briefly discuss some low-dimensional
scattering properties, helpful for the next chapters.

1.1 Interactions

Let us take two neutral atoms of the same species, prepared in their electronic ground
state 1: how do they interact?

We will assume in this section they interact via an isotropic interatomic potential
V (r) where r is the interatomic distance. 2

Let us begin with the long-range behavior, which is the easiest to describe. For the
two atoms far away from each other, where the exchange of electrons is negligible (typical
value is ∼ 10−10 m), the dominant interaction is the electric dipole-dipole interaction.
It leads, thanks to a perturbative development to the second-order, to an attractive
potential, the so-called van der Waals (vdW) potential, which can be written as

VvdW(r) = −C6/r
6, (1.1)

where C6 is a positive coefficient that defines the strength of this interaction. As
its value directly depends on the matrix elements of the dipole-dipole operator between
the fundamental and excited atomic wavefunctions, it generally involves complicated
calculations, which are then performed numerically. However, for alkali and alkali earth
atoms, this value can surprisingly be well approached with a simple two-level energy
model [36].

One can define the characteristic length RvdW associated with the range of the vdW
potential, that is to say, the distance beyond which the action of the potential becomes
negligible (i.e., where the potential term becomes negligible compared to the kinetic
energy) which reads

1For the case of two excited neutral atoms, we provide here a good introduction reference [36].
2We hence neglect anisotropic interaction like the magnetic dipole-dipole interaction. This is a good

approximation for most of the usual atoms used in experiments. However, we present in Chapter 2 some
systems (like Dy or Er atoms) where these interactions play a significant role.
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RvdW =
1

2

(2µC6

~2

)1/4

. (1.2)

This value is generally on the order of 10−9 m (for potassium atoms RvdW ' 65 Å).

Note that this vdW approach neglects delay effects [37] which lead to a change in the
long-range asymptote from r−6 to r−7.

We now turn to the short-range behavior of the interatomic potential: this region
provides a strong repulsive interaction as electronic clouds repel each other thanks to
the Pauli principle. For alkali, which are widely used in experiments, the interatomic
potential depends then typically on the electronic spin configuration of the atoms (singlet
or triplet state).

Finally, we note that the interatomic potential generally contains many deep bound
states: for the considered densities and temperature we work with, it arises the fact that
at the complete thermal equilibrium, the system is in a solid state (that is why the BEC
is often called a metastable state).

1.2 Two-body scattering

Let us now turn to the two-body scattering problem. We take two particles with a
relative position r and a reduced mass µ, interacting through a potential V (r) of range
Re such that it vanishes when r > Re. We can decouple their center of mass motion
and their relative motion: the center of mass moves as a free particle, while the relative
motion is governed by the following Schrödinger equation

− ~2

2µ
∆rψ(r) + V (r)ψ(r) = Eψ(r), (1.3)

where ψ is the relative motion wavefunction.

We look first at scattering states (E = ~k2/2µ > 0) and write ψk the relative motion
wavefunction associated with the incoming momentum k. We treat here the case of
elastic collisions where there is no change in internal states for the two particles before
and after the collision: the norm of the incoming momentum for the relative motion is
then conserved. A good approach to solve this scattering problem is to treat Eq. (1.3)
with a Green function formalism. This is done using small rearrangements to make a
source term appear at the right of Eq. (1.3) and depending on ψk itself,

(∆r + k2)ψk(r) =
2µ

~2
V (r)ψk(r). (1.4)

A particular solution without the source term is the plane wave eikr with k = kn

which will be seen as the incoming free wave of the collision. We look now for a Green’s
function GD, where D is the dimension, which satisfies
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(∆r + k2)GD(r) = δ(r). (1.5)

We choose the Green’s functions corresponding physically to an outgoing wave for
r → +∞ which read


GD=3(r) = − 1

4π

eikr

r
, (1.6a)

GD=2(r) = − i
4
H

(1)
0 (kr), (1.6b)

GD=1(r) = − i

2k
eikr, (1.6c)

where H(1)
0 is the Hankel function of the first kind.

It leads to the following integral equation known as the Lippman Schwinger equation,

ψk(r) = eik.r +
2µ

~2

∫
GD(r− r′)V (r′)ψk(r′)d3r′. (1.7)

An important remark is that we did not solve Eq. (1.4) as ψk appears both on the
left and on the right sides of Eq. (1.7). Nevertheless, it is handy when the potential V
has a finite range Re. Indeed, Eq. (1.7) links the value of ψk at an arbitrary point r to
the values of ψk in a sphere of radius Re.

From now on until the next section, we will focus on the scattering problem in three
dimensions as it is the most physical one, but leave to the reader a useful reference to
treat the scattering in pure and quasi-low dimensions [38]. Thus, let us develop Eq. (1.7)
when r � Re, and r � kR2

e, using the fact that 3

eik|r−r
′|

|r− r′|
∼ eikr

r
e−ikr̂.r

′
, (1.8)

where we call r̂ = r/r.

In this condition, we can then write the asymptotic form of ψk as

ψk(r) ∼ eik.r + f(k, r̂)
eikr

r
, (1.9)

where f(k, r̂) is the so-called scattering amplitude. It does not depend on the distance
r and reads

f(k, r̂) = − µ

2π~2

∫
e−ikr̂.r

′
V (r′)ψk(r′)d3r′. (1.10)

3The first condition is to expand |r− r′|, the second one is to neglect a contribution to the phase of
eik|r−r′|.
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The Born Approximation

If the potential V is weak enough 4, the idea is to replace the term ψk(r′) in the integral
Eq. (1.10) by its value at the zeroth order of V , which corresponds to the incoming wave
function eik.r, leading to write

f(k, r̂) = − µ

2π~2

∫
eik(n−r̂).r

′
V (r′)d3r′. (1.11)

This approximation at first order in V can be helpful to evaluate some scattering
properties quickly. But we can even push the idea further and pursue what we did by
doing successive iterations: we can approximate ψ at order n + 1 in V by using its
approximation at the order n. It corresponds to the Born expansion where we expand ψ
in powers of V . Nevertheless, whether this sum is convergent or not is actually a delicate
point. One can show that one condition is that the potential carries no bound state,
which directly eliminates this development for the real interatomic potential. However,
we will see that it can be used for model potentials which will carry the scattering
properties of the actual real potential.

Cross-section

Before going any further, let us relate the scattering amplitude to physical observables.
Thanks to detectors, we can measure flux of particles far from the scattering region,
where the asymptotic form of our wavefunction we derived is valid. So if we define the
ingoing flux of particles per surface Jinc and the flux of particles Jdiff scattered into a
solid angle dΩ (defined by r̂), we can define the so-called differential cross section dσ

dΩ

and the scattering cross section σ as

dσ

dΩ
(k,Ω) =

Jdiff
Jinc

, and σ(k) =

∫
dσ

dΩ
dΩ. (1.12)

Physically, dσ corresponds to the area that captures the amount of incident flux which
is going into the solid angle dΩ.

The tool to calculate flux in quantum mechanics is the probability current. Hence,
after some calculations, one can find the relation between the diffusion amplitude and
the differential cross section which reads

dσ

dΩ
= |f(k, r̂)|2. (1.13)

Identical particles

So far we neglected the fact that our particles can be identical, so our approach has
to be slightly modified in this case since particles are then indiscernible. We have to

4This condition is fulfilled if |V | � ~2/mR2
e where |V | is the order of magnitude of the potential in

its principal region of existence [13].
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symmetrize (or antisymmetrize) the relative wavefunction of our two particles according
to the parity of their total spin. Calling ε = +1 (-1) for polarized bosons (fermions), we
find

dσ

dΩ
= |f(k, r̂) + εf(k,−r̂)|2. (1.14)

Low-energy limit

The next thing is obviously to search for a more explicit expression for the scattering
amplitude. In the case where we deal with a central potential V (r) = V (r), one can use
the development in partial waves, which leads to express the so-called phase shifts to solve
the scattering problem. We leave this to reference [13] and use a shortcut by considering
low energy collisions (or equivalently, collisions at sufficiently low temperature). Indeed,
if kRe � 1 (called the ultracold limit) we can see that in Eq. (1.10) we can omit the
exponential in the integral, leading to the independence of the scattering angle described
by r̂ in the diffusion amplitude. The asymptotic form of the scattered wavefunction is
thus spherically symmetric (even if we consider non-symmetric potential !) and we deal
with the so-called s-wave, corresponding to the azimuthal quantum number l = 0 in the
partial wave expansion. Hence, in the ultracold limit, we will consider that the scattering
problem occurs only in the s-wave.

A fundamental point is that in this limit, fermions do not see each other since by
using Eq. (1.14) we find σfermions = 0, whereas σbosons is a priori non zero . This result
is linked to the more general result that scattering of fermions (bosons) takes place only
through partials waves of odd (even) parity. Actually, this peculiar feature for fermions
leads to difficulties in the evaporative cooling of a polarized fermionic gas. To circumvent
this problem, one way is to use a two-component Fermi gas [39].

Scattering length

Going back to the expression of the scattering amplitude at low energy, one finds

lim
k→0

f(k, r̂) = −a, (1.15)

where a is the so-called s-wave scattering length describing the scattering process at
low energy. The cross section for both nonidentical atoms (n.i.) and polarized bosons
then read

σn.i. = 4πa2, and σbosons = 8πa2. (1.16)

When a > 0, the scattering length corresponds to the node of the extrapolated
wavefunction at zero energy 5 since

5That remark permits actually to define the notion of scattering length in two dimensions.
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lim
k→0

ψk(r) = 1− a/r +O(
1

r2
). (1.17)

Physically it means that at low energy, any potential with a positive scattering length
can be seen as a hard-core potential of radius a. Note, however, that a can be either
positive or negative, hence defining respectively the effectively attractive (or repulsive)
interaction. It also naturally scales as the range Re of the potential but can be fine-tuned
using the mechanism of Feshbach resonance, to which we will come later.

As we can see, the scattering length fully characterizes interactions at low energy.
This feature is often referred to as the universality of potentials at low energy in the
sense that one can forget about the complicated short-range details of the potential.
That is to say, if two potentials, really different (one being repulsive at distance where
the other is attractive for example) have the same scattering length, then, at sufficiently
low energies, the collective behavior of atoms will be basically the same.

Effective range

Let us briefly continue our study of the scattering amplitude at low energy. Since the
number of particles has to be conserved during the scattering process 6, one can show
that in the case of a central sufficiently short-ranged potential, the s-wave scattering
amplitude fs reads [13]

fs(k) =
1

gs(k)− ik
, with lim

k→0
gs(k) = −1/a+

rek
2

2
+O(k4), (1.18)

where we introduce re, the so-called effective range which determines the next order
term in k (after the scattering length) in the scattering amplitude at low energy. This
term is generally negligible in the ultracold limit since a and re are typically of the order
of the range Re of the potential and kRe � 1.

Real life

We used a finite range Re for the potential such that when r > Re, the potential vanishes.
It is obviously not the case in real life (see Sec.1.1), and one may be scared that our results
do not hold. However, our conclusions stay true as long as the potential decreases faster
than 1/r3 at large distances (if not, the s-wave effective-range expansion is different, and
we have to consider all partial waves at low energy).

Dimers

Let us briefly consider the case where E = −~κ2/2m < 0 with κ > 0 in Eq. 1.3. In
contrast to the scattering states associated with a continuous positive energy spectrum,
one can show that the system has a discrete spectrum of negative energies possible.

6Which corresponds equivalently to the unitarity of the S-matrix, resulting in the optical theorem.
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These two-body bound states (b.s.) are called dimers, and their number depends on the
nature of the potential. For r � Re, their wavefunction satisfy

ψb.s. ∝
e−κr

r
. (1.19)

Feshbach resonances

We now shortly illustrate how one can tune the s-wave scattering length a using a
magnetic field B, permitting us to free ourselves from its natural scaling. The standard
theoretical approach is to use a two-channel model. We decide here to present the main
concepts behind it and leave the details aside as we will give some of them in a future
chapter.

Due to their electronic spin configuration and internal states (hyperfine states), a
pair of two colliding atoms can scatter through many different channels. Let us consider
two channels: an open channel called VO, where we consider the scattering of two free
atoms at a low energy E and another channel above, where scattering states at energy
E cannot exist, which is then referred to as the closed-channel VC . Let us assume that
the closed channel carries a bound state at energy Eres. When applying an external
magnetic field B, the difference of energy ∆E = Eres − E varies proportionally to it
as there is a difference of magnetic moments δµ̃ between the atomic pair in the open
channel and the bound state in the closed channel. When both energies are sufficiently
close to each other, a resonance between the two states occurs 7, hence changing the
value of the scattering length a as

a(B) = abg

(
1− ∆B

B −B0

)
, (1.20)

where abg is the background scattering length far away from the resonance, ∆B is
the width of the resonance, and B0 the value of the magnetic field corresponding to the
resonance. We hence see that we can tune the value of a from −∞ to +∞, associated
with an attractive or repulsive character of the two-body interaction.

This mechanism gives rise to scattering states no matter the sign of a, and bound
states when a is positive. These last ones are called Feshbach molecules. When a� Re,
one can write their energy Eb as

Eb = − ~2

2µa
. (1.21)

In the case where Re is large, corrections to Eq. 1.21 have to be made [40,41].

One can see that Feshbach resonances lead to a vast range of possibilities: one can
transform a natural repulsive gas into an attractive gas (or vice-versa), it can offer the
opportunity to engineer a perfect gas (i.e., with no interactions), to study the strongly

7Providing they have the same total angular momentum.
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interacting regime and its correlations, or to transform a pair of free atoms into molecules
(and vice versa). This mechanism is extensively used in ultracold atoms experiments and
was the fundamental tool to study the BEC-BCS crossover [42,43].

Inelastic scattering

Of course, neutral atoms can also undergo inelastic collisions. These events are impor-
tant since they contribute to a decrease of the atom density in the trap with a typical
relaxation time τ , hence giving an upper bound for the lifetime of ultracold experiments.
They depend a lot on the atoms which are considered. There are three types of these
events:

The first one is the collision of trapped atoms with the background gas and depends
then on the vacuum quality (typically, τback ∼ min).

The second arises from the use of a magnetic field to trap the atoms. Indeed the
resulting magnetic dipolar interaction between two atoms can induce a change of the
hyperfine state in one (or two) of the considered atom(s), resulting in an energy release
sufficient for the two atoms to leave the trap (τm.dip. ∼ min).

The third and most important event for a loss of atoms in a BEC relates to a three-
body process (often called the three-body recombination): two atoms can form a molecule
thanks to the existence of deep bound states in the interatomic potential, such that the
third particle carries the kinetic energy surplus sufficient to leave the trap. At BEC
typical densities, τrec ∼ s, but this value can be greatly reduced when particles are
strongly interacting (i.e. for resonances where a→ +∞) !

In the rest of the manuscript, we will neglect these effects in the theoretical approach,
keeping in mind that going into the strongly interacting regime in three dimensions is
associated with a short lifetime of the sample, which is not convenient for experiments.

1.3 Model potentials

The true interatomic potential V is difficult to calculate with precision, and a small error
in its expression can result in a large error of its scattering properties. Moreover, since it
carries deep bound states, we cannot use some thermal equilibrium theory tools as the
BEC is a metastable state. In addition, the strong repulsion at small distances prevents
us from using V in the Born approximation.

Nevertheless, we recall that at sufficiently low energy and for sufficiently fast decaying
potential, the system can be described via a single parameter: the scattering length a.
The idea is then to construct a potential with the same a easier to manipulate, hence
forgetting about the details of the true potential.
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The δ-potential

The first naive approach to modelize the true potential, that one can use in every dimen-
sions, would be to consider a simple δ contact interaction, namely a zero-range potential
Vδ(r) = g0δ(r), where g0 would then take the role of the strength of the potential (also
referred as the bare coupling constant). Let us see what happens if we substitute this
potential in Eq. (1.7). Calculating ψk to the first Born approximation we get

ψk(r) = eik.r +
2µ

~2
g0G

D(r) +O(g2
0), (1.22)

where GD is the Green’s function in D dimensions which satisfies Eq. (1.6).

As we can see, everything is here well defined but we need to relate g0 to physical pa-
rameters such as the scattering length. For D = 3, comparing Eq. (1.22) with Eq. (1.17)
gives us instantly the extensively used result which links at low-energy the parameter g0

to the s-wave scattering length a in the first Born approximation, namely

g0 =
2π~2

µ
a. (1.23)

In pure and especially quasi-low-dimensions, the link between g0 and the physical
quantities of the system necessitates a more careful work [38,44].

Moving on now to the second order in g0, we find

ψk(r) = eik.r +
2µ

~2
g0G

D(r) +
2µ

~2
g0

∫
GD(r − r′)Vδ(r′)GD(r′)dr′ +O(g3

0). (1.24)

The third term in the right hand side of 1.24 is divergent for D > 1. Hence, choosing
the Vδ as a model potential fails to describe terms beyond the first Born approximation
8.

We emphasize here that the divergences appear here just because we went too far in
the simplification of the true interaction. Nevertheless, one can remark that this approach
is actually well defined for D = 1. Indeed, defining a1D as the zero of the extrapolated
one-dimensional wavefunction at E = 0, one can recover that using Vδ(x) = g1Dδ(x)

with

g1D =
−~2

µa1D

, (1.25)

permits to model the real potential in a much simpler way, keeping its physical
implications at low energy as this effective potential leads to the same scattering length.

8In fact, one can think that the divergence is due to the singular behavior of the δ- function. However,
in three-dimensions, if one changes the δ potential into a soft sphere potential δε(r) = 3/4πε2 for r < ε
and which vanishes for r > ε, one can show that when ε→ 0, the particles do not see each other, which
reveals that the model potential Vδ is not sufficient to describe the interactions of the true potential.
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For D > 1 we can use the notion of cut-off to circumvent the divergences: the idea
is basically to introduce a parameter Λ, value at which we cut-off the divergent integrals
and which is related to physical limitations of the system or a regime where the theory
breaks down. This way, one can define the δ-potential in a more rigorous way for D = 2

and D = 3 [45]. This cut-off approach is used extensively in physics to remove both
infrared and ultraviolet divergences. We point out that one has to make a bridge to real
observables such that the final result does not depend on the cut-off parameter. All these
processes refer to the approach of regularization and renormalization, which is itself a
very wide and interesting topic [46].

The pseudopotential

Going further in the idea of a model potential with a zero range, we now present an
efficient method to not deal with divergences for D > 1. We will focus on the general
idea for the case D = 3 and leave the more technical two-dimensional case to Ref. [47].

For D = 3, the main goal is to properly account for the 1/r divergence when r → 0.
This is done by defining the action of an operator, the so-called pseudo-potential Vpp as

Vpp[ψ(r)] = gδ(r)∂r[rψ(r)]. (1.26)

Defining g ≡ 2π~2a/µ, the exact scattering amplitude of this model potential fpp
reads

fpp(k) =
−a

1 + ika
. (1.27)

We see that it matches the s-wave scattering amplitude of the true potential at low-
energy Eq.(1.18). So in the low-energy limit, Vpp describes very well the scattering 9.
This approach is also often called the zero-range approximation, as it involves considering
the potential only in the singularity region where r → 0.

In the continuity of this last remark, we mention the Bethe-Peierls approach [48]
which encapsulates the same idea as the pseudo-potential, but in the form of a limit
condition for the wavefunction ψ, or more specifically, a contact condition. It is defined
by the following requirements,


For r 6= 0, − ~2

2µ
∆rψ(r) = Eψ(r). (1.28a)

When r → 0,∃ C such that ψ(r) = C(
1

r
− 1

a
) +O(r). (1.28b)

Finally, before embarking on the many-body world, let us present a helpful extension
of the zero-range approximation for the N -body case.

9Note however it leads to a vanishing effective range re (∼ Re for the true potential).
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1.4 The method of Skorniakov and Ter-Martirosian

Direct solution of the Schrödinger equation may not be the most efficient way of solv-
ing the problem of particles interacting via zero-range potentials. Skorniakov and Ter-
Martirosian (STM), by using the zero-range approximation for internucleon forces, re-
duced the three-body problem of neutron-deuteron scattering to a one-dimensional in-
tegral equation [49]. The STM approach 10 has proven its power for many problems
with ultracold atoms where the interactions can indeed with a very good accuracy be
considered zero range. A great advantage of the method is that it works directly in the
zero-range limit using two-body scattering parameters (scattering length, effective range)
as the starting point. This allows one to concentrate on few- and many-body processes,
bypassing the task of solving the two-body scattering problem on the way. Let us illus-
trate the general idea behind this method by presenting a self-contained derivation in
the one-dimensional case keeping arbitrary N , masses, and number of species for future
reference.

The Schrödinger equation for N particles of masses mi moving in free space and
interacting via zero-range potentials with coupling constants gij reads

[
−

N∑
i=1

1

2mi

∂2

∂x2
i

− E

]
ψ(x1, ..., xN) = −

∑
i<j

gijδ(xi − xj)ψ(x1, ..., xN), (1.29)

where E is the energy and we set ~ = 1. Introducing the Fourier transform ψ(p1, ..., pN) =∫
e−ip1x1...−ipNxNψ(x1, ..., xN)dx1...dxN , switching to momentum space, and restricting

our analysis to negative energies E < 0 we rewrite Eq. (1.29) in the form

ψ(p1, ..., pN) = −
∑

i<j gijFij(p1, ..., pi−1, pi+1, ..., pj−1, pj+1, ..., pN ;Q)∑N
i=1 p

2
i /2mi − E

, (1.30)

where Q =
∑N

i=1 pi and Fij is the Fourier transform of δ(xi − xj)ψ(x1, ..., xN) or,
alternatively, by introducing Pij = (p1, ..., pi−1, pi+1, ..., pj−1, pj+1, ..., pN)

Fij(Pij;Q) =

∫
ψ(p1, ..., pi

′, ..., pj
′, ..., pN)2πδ(pi

′ + pj
′ − pi − pj)

dpi
′dpj ′

(2π)2
. (1.31)

The center of mass momentum Q is a conserved parameter and without loss of generality
we take Fij(Pij;Q) = 2πδ(Q)Fij(Pij). We can now substitute Eq. (1.30) into Eq. (1.31).
This eliminates ψ and straightforwardly leads to the STM equations

10We mention that the well known Faddeev equations, used extensively in nuclear physics, can be
seen as a generalization of the STM method in the particular case of finite and long-range potentials.
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Fij(Pij) = −
∫ ∑

k<l gklFkl(Pkl)∑N
k=1 p

2
k/2mk − E

δ

(
N∑
k=1

pk

)
dpidpj

2π
. (1.32)

One can think of the function Fij as a wave function for N − 2 atoms plus a pair
with momentum opposite to the total momentum of the atoms. Therefore, there are
only N − 2 arguments in F . The function Fij has the same symmetry with respect to
permutation of its arguments as the total wave function ψ. When these symmetries are
taken into account, the number of different functions Fij needed to describe the system
reduces to the number of coupling constants characterizing the different interactions.

From Eq. 1.32, one usually turns into a numerical approach and puts the equations
on a grid to transform it into a matrix problem, thus accessing the desired scattering
properties of the system. Note, however, that pretty quickly (for example, the study of
a N = 6-body problem formed by three pairs of ↑, ↓ particles, hence with three different
gij), these numerics based on deterministic grid methods becomes too hard. One has
then to turn into other methods like the Diffusion Monte Carlo technique (DMC) [50].
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In this chapter, we adopt a many-body viewpoint at T = 0, and we present more in
detail how one can obtain a dilute self-bound state from bosonic systems with competing
attractive and repulsive interactions, where the MF interaction term can be made weak
and of the order of the BMF term. We first study the case of the Bose-Bose (BB)
mixture in every dimension by calculating the leading BMF term (corresponding to the
LHY term) and show how it can stabilize the MF unstable system. This section is based
on Ref. [21, 51]. We then briefly mention some insights on bosonic dipolar gases, which
share the same interesting feature of quantum stabilization, and which are at the center
stage in the recent observation of supersolidity [31–33].

The weakly interacting regime

A usual way to appreciate the many-body interacting problem is to first study the
perturbative regime where the interaction between particles is weak. Assuming a short-
range potential in D dimensions between particles, we saw earlier one can define a
coupling constant g characterizing the strength of a pair interaction, such that we can
write the leading interacting energy term as EMF = gN2/2V . This is true in the so-called
weakly interacting regime, where the wavefunction of particles is not influenced by the
interaction between them at the mean interparticle distance l ∼ n−1/D. In other words,
if we consider a box of size l containing on average one particle, the interaction energy
per particle I = ng has to be much weaker than the kinetic energy K = ~2/2ml2. The
weakly interacting regime in D dimensions is then defined by the condition

mgn1−2/D

~2
� 1. (2.1)

In the natural scale (away from resonances), this inequality leads to recover the
dilute limit nRD

e � 1 we introduced before. Notably, one can see how the dimensions
dramatically affect this equation, leading to interesting effects. For example, a decrease
in density makes the system more and more interacting in one dimension.

2.1 Bose-Bose mixture

Hamiltonian in the homogeneous case

Let us first consider the problem of the homogeneous bosonic mixture in D dimensions
of two components σ =↑, ↓, of densities n↑, n↓ with same mass m. Following a second
quantization formalism, we introduce â†σ,k and âσ,k, the creation and annihilator operators
associated respectively to the creation and destruction of a boson σ with momentum k.
The system is governed by the following Hamiltonian

H =
∑
σ,k

k2

2
â†σ,kâσ,k +

1

2

∑
σ,σ′,k1,k2,q

â†σ,k1+qâ
†
σ′,k2−qŨσσ′(q)âσ,k1 âσ′,k2 , (2.2)



2.1 Bose-Bose mixture 25

where we set m = ~ = 1, and Ũσσ′ represent the Fourier transform of the short-
range interaction potentials Uσσ′ between the components. As introduced in Sec 1.3, we
use effective potentials with the same scattering properties at low-energy but easier to
manipulate: we then substitute Uσσ′ by a simple contact interaction characterized by a
bare coupling constant gσσ which satisfies the weakly interacting criterion Eq.(2.1). 1

Below, we use the standard Bogoliubov theory to derive the ground state energy
density. The idea is to treat the mixture as an almost ideal gas as we consider that the
different components are weakly interacting. Hence we assume a macroscopic occupation
of the ground state Nσ,p=0 = Nσ,0 ' Nσ � 1, and Nσ,p6=0/Nσ is assumed very small.
Under these conditions, the operators âσ,0 = â†σ,0 become numbers (= √n0,σ).

MF approach and Stability

The zeroth order of the expansion in terms of operators âσ,p6=0 (and in the first order of
g) give us the MF energy density of the system, namely

EMF

ΩD

=
g↑↑n2

↑ + g↓↓n2
↓ + 2g↑↓n↑n↓

2
, (2.3)

where we introduce ΩD as the volume in D dimensions. This quadratic form Eq.(2.3)
is stable with respect to small changes in densities if it is positive definite, namely if

g↑↑ > 0 , g↓↓ > 0 and g2
↑↓ < g↑↑g↓↓. (2.4)

In the regime where |g↑↓| <
√
g↑↑g↓↓ the two condensates overlap: the system is

miscible. For g↑↓ >
√
g↑↑g↓↓, the system is not miscible since the repulsive interspecies

interaction is so large than the system separate spatially the two species to minimize its
energy. For g↑↓ < −

√
g↑↑g↓↓, the system collapses as the intraspecies interactions cannot

overcome the interspecies attraction. The transition between the miscible and immiscible
phase, as well as the transition to the collapse region has already been extensively studied.

Taking into account the external potential and finite temperature effects, Eq. (2.4)
has to be slightly modified [52], but we will neglect these modifications in what follows.

The LHY term

Let us now calculate the next order correction to the ground state energy to the second
order in g ∼ gσσ′ . The first order terms of the Bogoliubov expansion vanish by conser-
vation of momentum. Hence, we expand Eq. (2.2) up to bilinear terms in the operators
â†σ,k and âσ,k for k 6= 0 and we diagonalize the resulting form using an adequate linear
transformation, arriving at the following energy density [53]

1For the sake of simplicity, we present this common method. If one wants to be formally more
rigorous, a pseudopotential or a cutoff approach would remove unwanted divergences which will appear
from this simple choice, see Sec 1.3.
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E

ΩD

=
g↑↑n2

↑ + g↓↓n2
↓ + 2g↑↓n↑n↓

2︸ ︷︷ ︸
MF term

+
1

2

∑
±

∑
k

[
E±(k)− k2/2− c2

±

]
︸ ︷︷ ︸

LHY term

, (2.5)

E±(k) =
√
c2
±k2 + k4/4 , c2

± =
g↑↑n↑ + g↓↓n↓ ±

√
(g↑↑n↑ − g↓↓n↓)2 + 4g2

↑↓n↑n↓

2
. (2.6)

The first term of Eq. (2.5) corresponds to the MF energy density, whereas the second
term refers to the leading order correction term known as the LHY correction and arising
from quantum fluctuations. As we can see, in contrast to the single-component gas, the
Bogoliubov treatment of our mixture gives two excitation branches E± with different
sound velocities c±. Notably, the integral over the momentum in the present Eq. (2.5)
leads to ultraviolet divergences for D > 1, due to the oversimplification of the bare
effective potential we chose.

Let us first discuss the case D = 3, and write Ω3 = V . We saw in the previous chapter
that the relation gσσ = 4πaσσ′ holds for the first Born approximation but not beyond.
The common method to take care of this artefact is then to formally renormalize the
bare coupling constants in the first term of Eq. (2.5) to take care of the second Born
approximation gσσ′ → gσσ′(1 + gσσ′/V

∑
k 1/k2) [13].

We can then perform analytically the integral associated with the LHY term to obtain

ELHY

V
=

8

15π2
(c5

+ + c5
−). (2.7)

Crucially, in contrast to the single-component gas, we see that the MF and LHY terms
depend on a different combination of gσσ′nσ and can be then controlled independently.
Note that the main contribution to this integral comes from momenta of order 1/ξ =
√
gn, the inverse of the so-called healing length.

Quantum stabilization

Introducing δg = g↑↓ +
√
g↑↑g↓↓, we look at the regime where δg is negative, hence

collapsing from the MF viewpoint [see Eq.(2.4)] and very small compared to g =
√
g↑↑g↓↓

i.e. close to the MF collapse line. In this region, the MF term fixes the densities ratio to
n2/n1 =

√
g↑↑/g↓↓ as it is energetically favorable. Looking at the LHY term, we remark

that since in the region k ∼ 1/ξ mostly contributing to the integral, E± are not sensitive
to small variations of δg and its sign, we can still use the LHY form calculated in Eq.(2.7)
2. Close to the MF collapse line, there is a softening of the lower Bogoliubov mode such

2A careful derivation actually shows that for small momenta k ∼
√
m|δg|n, E− becomes complex,

reflecting instability. However, this effect can be carefully neglected as it is related to a higher order
correction in δg/g [54].
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that c− � c+. Therefore we can consider that only the hard branch c+ will contribute
to the LHY term. Assuming g ∼ g↑↑ ∼ g↓↓ to enhance the energy dependence on the
different parameters easily, we find by omitting prefactors

E

V
∼ δgn2 + (gn)5/2. (2.8)

For δg < 0, that is to say, a MF attraction, the repulsive LHY term prevents the sys-
tem from collapsing, and the energy per particle exhibits a minimum at n0 ∼ a−3(δg/g)2

corresponding to the apparition of a self-bound state: a liquidlike droplet (see Fig.2.1).
Indeed, in addition to its self-bound property, it exhibits a saturation of the peak density
characteristic of a liquid with low compressibility. Moreover, as it remains in the weakly
interacting regime, it strikingly differs from droplets like atomic nuclei or helium, which
are strongly correlated self-bound systems [34,55,56].

Figure 2.1: Energy per particle E/n as a function of the density n close to the MF
collapse line for the three-dimensional BB mixture. The quantum stabilization of the
MF attractive term (in blue) by the repulsive LHY term (in orange) leads to the existence
of a liquidlike droplet at the density n0 (small red and purple disks play the role of the
two species ↑ and ↓).

To have an insight into the equilibrium and dynamic aspect of this system in actual
experiments, note that the LHY correction can be cast in the form of an effective local
term added to the mean-field Gross-Pitaevskii energy-density functional for two compo-
nents of a homonuclear mixture, if we assume they have the same spatial mode. Note
then that the three-body recombination also has to be included in the model since the
larger density of the droplet compared to the gas leads to rapid losses.

Finally, a careful study of the droplet properties, as the necessity of a critical atom
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number to exist, its surface modes, and its capacity to self evaporate, are described in
detail in Ref. [21].

Low dimensional cases

As we can see from the previous paragraphs, apart from the appropriate definition of
the coupling constant gσσ, the dimension of space enters our problem in the calculation
of the LHY term, which carries a sum in the momentum space.

Two-dimensional case

In 2D, we take care of the ultraviolet divergence thanks to a more careful definition
of the coupling constant by introducing a cutoff κ such that

gσσ′(q) =

{
2π/ ln (2e−γ/a2D

σσ′κ) for q ≤ κ

0 for q > κ
(2.9)

where γ is the Euler’s constant and a2D
σσ′ is the s-wave two-dimensional scattering

length [38]. Performing the LHY integral, and rewriting Ω2 = S we find

E2D

S
=
EMF

S
+

1

8π

∑
±
c4
± ln (

c2
±
κ2

). (2.10)

One can actually verify that to the second-order in g, this result does not depend on
the value κ. A striking difference with the three-dimensional case is that the liquid phase
exists whenever the interspecies interaction is weakly attractive and the intraspecies are
weakly repulsive close to the MF collapse line (i.e., not just when δg < 0). The energy
density reads

E

S
∼ g2n2(ln

n

n0

− 1). (2.11)

Interestingly, a quasi-low dimensional analysis of the symmetric mixture (a3D
↑↑ =

a3D
↓↓ = a3D) permits to study the crossover between three and two dimensions: in the

regime where 0 < −a3D
↑↓ < a3D, the mixture is in gas phase for D = 3. If one then

confines the mixture in one direction providing a3D � l0 with l0 the oscillator length in
the confined direction, the system goes into a liquid phase !

One-dimensional case

In 1D, there is no condensate, but it is known that the Bogoliubov theory describes
well the properties of the weakly interacting Bose gas [57]. For the LHY term, there is
here no problem of divergence, and we use simply gσσ′ = −2/a1D

σσ′ , where a1D
σσ′ is the one-

dimension s-wave scattering length. The LHY integral is then calculated analytically,
where we set Ω1 = L
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E1D

L
=
EMF

L
+

2

3π

∑
±
c3
±. (2.12)

In the regime where |δg|/g � 1, i.e. close to the MF collapse line, the energy density
reads

E

L
∼ δgn2 − (gn)3/2. (2.13)

Here, we observe a surprising behavior: the LHY correction is effectively attractive,
meaning the mixture goes in the liquid phase close to the MF collapse line for a weak
MF repulsion (δg > 0).

As we just saw, each low dimensional case has peculiar features compared to the
three-dimensional one. In the next chapter, we focus on the one-dimensional system and
explore more about its phase diagram: what happens if we go in the strong interaction
regime, where the ratio δg/g is large?

2.2 Dipolar gases

As mentioned in the introduction, dipolar BEC was the first system where one observed
the formation of a dilute self-bound state arising from BMF effects. This was done using
Dy or Er atoms, which feature naturally strong magnetic dipolar-dipolar interaction.
The formation of this exotic state is explained by the same mechanism as for a BB
mixture in three dimensions, thanks to a repulsive LHY term that counterbalances a
MF attraction predicting collapse. We discuss here some similarities and differences
with BB mixtures and take advantage of this comparison by introducing some peculiar
features of BEC dipolar gases for future chapters. The topic of dipolar gases is so wide
that we leave here a useful review to enter its very rich physics [58].

Let us consider first a BEC of magnetic dipoles in three-dimensions in the homo-
geneous case, of density n with dipole moments m oriented along the direction z of a
magnetic field B. The interaction Vint between two dipoles of relative position r reads

Vint(r) = gδ(r) +
Cdd
4πr3

(1− 3 cos2 θ)︸ ︷︷ ︸
Vdd

, (2.14)

where g = 4πa is the coupling constant characterizing the short-range interaction
with a the s-wave scattering length, and where Vdd represents the dipole-dipole interac-
tion (DDI) with Cdd = µ0|m|2 being the dipolar interaction strength (µ0 is the vacuum
permittivity). Finally, θ is the angle between r and the polarization direction z. Impor-
tantly, from now on, we will limit ourselves to the case of repulsive contact interaction
a > 0 in order to avoid local collapse of the system [59].
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From the definition of the total interaction, one can see that there is a short- and
long-range interaction that can compete with each other (such as the inter- and intra-
species for BB mixture), leading to a regime where the overall MF term can be made
weak and of the order of the BMF correction. One of the significant differences from the
mixture case will lie in the anisotropy of the long-range interaction.

If we Fourier transform Eq.(2.14), we obtain

Ṽint(k) = g[1 + εdd(3 cos2 θk − 1)], (2.15)

where θk is the angle between the vector k and the polarization direction z and where
we introduced εdd = add/as with add = Cdd/12π the length associated to the DDI. As
the reader might see, εdd then characterizes the competition between the DDI and the
contact interactions. When εdd ∼ 1 we then expect to observe interesting BMF effects.

Importantly, the anisotropy leads us to a problem to define the MF energy density in
the homogeneous three-dimensional case. This can be understood by the non uniqueness
of the MF value of the chemical potential since

µMF = n lim
k→0

Ṽint(k). (2.16)

Indeed, since physically µMF represents the value of energy necessary to bring one
dipole at infinity into the condensate, we understand that for a particle coming from an
infinitely parallel or a perpendicular direction to the magnetic field, the result will be
different. This problem is not present in the inhomogeneous systems [60, 61] (which is
associated with the real case of experiments !) where the MF term depends dramatically
on the trap anisotropy and is usually derived through a Gross Pitaevskii formalism. In
the usual case of harmonic confinement, we just mention that the ratio of the trapping
frequencies λ = ω⊥/ω‖, where ω⊥ (resp. ω‖) is the trapping frequency perpendicular
(resp. parallel) to the polarization direction, plays a key role in the phase diagram of
the system [58,62,63].

However, let us continue our discussion in the homogeneous case for the sake of
simplicity. It is motivated by the fact that the results we derive here from homogeneous
cases can be included in the more realistic models using a local-density approximation
(LDA) [64,65] 3. In this approximation, the homogeneous leading BMF term we calculate
is then typically cast into a so-called extended Gross-Pitaevskii equation (eGPE) [34].

Hence, let us perform a Bogoliubov approach of the homogeneous BEC dipolar gas.
From its common formalism, we obtain one excitation branch Ed with a sound velocity
c which read

3LDA assumes that the system is locally homogeneous such that we introduce a space-dependent
chemical potential µ(r) = µh − Vtrap(r), where µh is the homogeneous chemical potential and Vtrap the
trapping potential
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Ed(k) =
√
c2(θk)k2 + k4/4, and c2(θk) = gn[1 + εdd(3 cos2 θk − 1)], (2.17)

First, let us point out the anisotropy of the sound velocity, which is a peculiar feature
of DDIs and which has been observed in a group of Paris [66]. Secondly, we observe that
for small momenta such that cos2 θk < 1/3 and in the regime where εdd > 1, Ed becomes
imaginary, consistent with the fact that the system becomes unstable. Indeed, the system
collapses due to the partial attraction of the dominant DDI, similar to one-component
Bose gas characterized by a short-range attraction.

In the stable regime where 0 < εdd < 1 we can calculate the LHY integral (renormal-
izing the contact interaction as we did for BB mixture) leading to write [64]

ELHY

V
=

8

15π2
〈c5(k̂)〉k̂, (2.18)

where 〈f〉k̂ = 1
4π

∫
dφkdθk sin θkf(k) is the average of the function f over its angular

part in three dimensions. In this form, one can appreciate the similarities and differ-
ences with the BB mixture Eq.(2.7), since we find again ELHY ∝ n5/2. Here, the main
contribution to the LHY integral comes from the hard modes cos2 θk > 1/3.

Note that as opposed to the MF term, the LHY correction suffers no problem of
definition when k → 0, stemming from the fact the LHY term is defined by an integral
over all the possible momentum.

Close to εdd ∼ 1, we saw that the system becomes unstable. However in the same
spirit as for BB mixtures, we can still use the expression Eq.(2.18) since in this regime,
the soft modes cos2 θk < 1/3 can be neglected compared to the stable hard modes
cos2 θk > 1/3 which mostly contribute to the LHY term. Therefore, close to the limit
when the system becomes partially attractive εdd ∼ 1, the system is stabilized by a
repulsive LHY term [61,65,67].

As mentioned before, a more careful study is needed to appreciate the rich physics in
dipolar gases, where one takes into account the interaction parameters add, a, but also
the trap geometry parameter such as λ as or the atom number N . It leads then to a
wide variety of exotic phases: dilute BEC, single droplet, multidroplet, array of droplets,
with indeed, ultimately, the supersolid state [26–29,34,68].

We just presented two systems (BB mixture, dipolar gases) where the leading BMF
term corresponds to the LHY term in a particular regime. Nevertheless, as mentioned in
the introduction, it is not always the case. There are various reasons to consider other
configurations where the LHY term is not the dominant BMF term (single-component
contact-interacting atoms, low-dimensional geometries, etc.). In these cases, an effective
three-body interaction, associated with a three-body term ∝ n3 in the energy density
can become dominant if the leading-order two-body forces are suppressed. In particular,
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we have already mentioned systems where three-body forces have been considered in the
context of droplet formation in three dimensions [15,20].

In the next chapters, following mainly a few-body approach of systems close to a
two-body zero crossing, we will discuss BMF effects associated with effective three-body
forces.
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In this chapter, we present the first results of this thesis: we explore the rich physics
of the one-dimensional BB mixture, and we provide an analytical solution of the three-
boson problem with two-body and three-body interactions. This chapter is divided into
two parts.

3.1 Dimer-dimer zero crossing and dilute dimerized
liquid

Background and Goal

In Chapter 2, we saw that the one-dimensional BB mixture collapses for g↑↓ < −
√
g↑↑g↓↓

and liquefies otherwise (due to the existence of an effectively attractive LHY correction)
close to the MF collapse line g↑↓ = −√g↑↑g↓↓, where the weakly-interacting regime is
valid and where the saturation density of the liquid is high [51].

Departing from this line (by increasing gσσ or decreasing |g↑↓|) makes the system
more dilute, which, in one dimension, leads to stronger correlations. For gσσ � |g↑↓| the
one-dimensional mixture with equal ↑ and ↓ populations eventually becomes a gas of ↑↓
dimers with interdimer repulsion. Indeed, in the limit g↑↑ = g↓↓ = ∞ the two bosonic
components can individually be mapped to noninteracting fermions [69, 70], and their
mixture becomes equivalent to the exactly solvable fermionic Gaudin-Yang model [71–73]
which has no bound states other than ↑↓ dimers.

Our goal is then to make a step towards understanding the nonperturbative inter-
mediate region by starting from the repulsive gas of dimers and decreasing the ratio
g↑↑g↓↓/g2

↑↓ for finite generally different intraspecies coupling constants (see Fig. 3.1).

This chapter is organized as follows. In Sec. 3.1.1 we calculate the ↑↑↓ trimer binding
energy and thus determine the trimer-formation threshold in dimer-dimer collisions.
In Sec. 3.1.2 we find the dimer-dimer scattering parameters in the regime of a nearly
vanishing effective dimer-dimer interaction. In Sec. 3.1.3 we apply the mean-field theory
of Bulgac to the dilute system of dimers taking care of the one-dimensional three-dimer
interaction. In Sec. 3.1.4 we discuss other possible scenarios for the mixture and present
an outlook for further studies.

3.1.1 Trimer energy

Before we embark on the dimer-dimer scattering let us make a brief detour into the three-
body problem. We need to know the trimer binding energies in order to determine the
trimer-formation threshold in dimer-dimer collisions. In the considered case of repulsive
intraspecies couplings three identical bosons do not bind. Below, we analyze the ↑↑↓
combination, the results being obviously valid for the ↑↓↓ system upon interchanging g↑↑
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g↑↑/|g↑↓|

g
↓↓

/|g
↑↓

| ?

Collapse

Gaudin-Yang

Dilute atomic liquid

Gas of Dimers

MF Collapse Line 

Figure 3.1: Initial knowledge of the phase diagram in the plane {g↑↑/|g↑↓|, g↓↓/|g↑↓|} at
the stage of the introduction. In blue is shown the MF collapse line which separates
the collapse region below, and the stability region above. We know that close to this
mean-field collapse line there is the existence of a dilute atomic liquid (region in orange).
Finally, in the limit g↑↑ = g↓↓ = ∞ we have a gas ↑↓ dimers. The idea is to start from
this point and decrease the ratio g↑↑g↓↓/g2

↑↓ to access to the unknown region (cf. question
mark).

and g↓↓ (we consider m↑ = m↓). The ↑↑↓ trimer can be formed if ε↑↑↓ is smaller than E,
which, for zero dimer-dimer collision energy, equals twice the ↑↓ dimer energy.

Consider the ↑↑↓ equal-mass bosonic problem characterized by the coupling constants
g↑↑ = −2/a↑↑ and g↑↓ = −2/a↑↓ < 0, where aσσ′ are the one-dimensional scattering
lengths and we set m↑ = m↓ = 1. We apply the STM method presented in Chapter 1
where 1 and 2 refer to ↑ particles and 3 to the ↓ particle. We can write F↑↑(p) =

F12(p) and F↑↓(p) = F13(p) = F23(p), the latter equality follows from Eq. (1.31) and the
symmetry ψ(p1, p2, p3) = ψ(p2, p1, p3). The STM equations read(

1 +
g↑↑√

3p2 − 4E

)
F↑↑(p) =

∫
2g↑↓F↑↓(q)

E − p2 − pq − q2

dq

2π
,(

1 +
g↑↓√

3p2 − 4E

)
F↑↓(p) =

∫
g↑↓F↑↓(q) + g↑↑F↑↑(q)

E − p2 − pq − q2

dq

2π
.

(3.1)

In Fig. 3.2 we plot the trimer energy ε↑↑↓ < 0 in units of the dimer binding energy
|ε↑↓| = 1/a2

↑↓ as a function of the ratio g↑↑/|g↑↓|. The curve is obtained by discretizing the
momentum, transforming the integrals in Eqs. (3.1) into sums, and solving the resulting
matrix-eigenvalue problem. Also shown are the atom-dimer (dotted) and dimer-dimer
(dashed) scattering thresholds, as well as the ground state energy of three identical
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attractive bosons (see red circle).
For the considered case of negative g↑↓ the ↑↑↓ trimer is always bound. However, in

the limit g↑↑ =∞ the trimer binding energy ε↑↑↓−ε↑↓ vanishes and the atom-dimer even-
channel scattering length diverges. This limit is a particular case of the exactly solvable
N + 1 McGuire [74, 75] or more general Gaudin-Yang model [71, 72] of attractive spin-
1/2 fermions. The connection with our bosonic system is obtained by the wave-function
mapping ψBose(x↑1, x↑2, x↓) = ψFermi(x↑1, x↑2, x↓)sign(x↑1 − x↑2) [69, 70]. In the fermionic
case it is thus the odd-channel atom-dimer scattering length that diverges. The explicit
expression for the atom-dimer transmission amplitude (there is no reflection) in this case
is given in Ref. [76].

The trimer state deepens with decreasing g↑↑/|g↑↓|. We find numerically that it crosses
the dimer-dimer threshold, i.e., its energy equals ε↑↑↓ = 2ε↑↓, for g↑↑ = 0.0738|g↑↓|. It is
worth mentioning that for g↑↑ = −|g↑↓| the ground state of our ↑↑↓-system is the same
as the ground state of three identical attractive bosons. The trimer energy here equals
four times the dimer energy [77].
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Figure 3.2: The ↑↑↓-trimer energy in units of the ↑↓-dimer energy as a function of
g↑↑/|g↑↓| (solid). The dotted and dashed lines indicate, respectively, the atom-dimer and
dimer-dimer scattering thresholds. The red circle indicates the ground state energy of
three identical attractive bosons.

3.1.2 Dimer-dimer scattering problem

Consider now the scattering problem of two ↑↓ dimers and let 1 and 2 refer to ↑ particles
and 3 and 4 – to ↓ particles. Then, from Eq. (1.31) and from the symmetry relations
ψ(p1, p2, p3, p4) = ψ(p2, p1, p3, p4) = ψ(p1, p2, p4, p3)= ψ(p2, p1, p4, p3), one can show that
F13 = F14 = F23 = F24. We thus denote this function by F↑↓ and also define F↑↑ = F12 and
F↓↓ = F34. Equations (1.32) then transform into a set of three coupled two-dimensional
homogeneous equations for Fσσ′ . We do not write these rather bulky equations to avoid
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cluttering. However, they are well suitable for numerical calculations on a grid. Let us
just explain how we deduce the dimer-dimer scattering amplitude from the numerics.

We look for the dimer-dimer scattering solution at the collision energy p2
0/2, which

corresponds to E = −2|ε↑↓| + p2
0/2. In real space, when the two dimers are separated

from each other by more than their size, |x1 +x3−x2−x4|/2� a↑↓, the four-body wave
function factorizes into

ψ(x1, x2, x3, x4) ≈ φ0(x13)φ0(x24)χ[(x1 + x3 − x2 − x4)/2], (3.2)

where xij = xi−xj, φ0(r) =
√

1/a↑↓ exp(−|r|/a↑↓) is the normalized dimer wave function,
χ(R) = cos(p0R)+f(p0) exp(ip0|R|) describes the relative dimer-dimer motion, and f(p0)

is the dimer-dimer scattering amplitude.

In order to understand the behavior of F↑↓(p2, p4) corresponding to the asymptote
(3.2) we multiply Eq. (3.2) by δ(x13) and Fourier transform it arriving at F13(p2, p4;Q) =

2πδ(Q)F↑↓(p2, p4) with F↑↓(p2, p4) ∝ φ̃0[(p2 − p4)/2]χ̃(−p2 − p4), where φ̃0 and χ̃ are
Fourier transforms of φ0 and χ, respectively. Accordingly, F↑↓(p2, p4) has a singularity
at |p2 + p4| = p0, close to which it behaves as

F↑↓(p2, p4) ∝ 2πδ(|P | − p0)− 4ip0f(p0)/(P 2 − p2
0 − i0)

p2 + 1/a2
↑↓

, (3.3)

where we have introduced the pair center-of-mass and relative-coordinate representation,
P = p2 + p4 and p = (p2 − p4)/2. Motivated by Eq. (3.3) we make the substitution

F↑↓(p2, p4) =
2πδ(|P | − p0)− 4G(P, p)/(P 2 − p2

0)

p2 + 1/a2
↑↓

(3.4)

in the STM equations and obtain an inhomogeneous set of equations for G, F↑↑, and F↓↓.
For numerical convenience we restrict ourselves to real-valued functions and understand
integration of terms proportional to 1/(P 2 − p2

0) in the principal-value sense. Once G
is calculated, f can be deduced by comparing Eqs. (3.3) and (3.4) and by using the
convention 1/(P − p0 − i0) = 1/(P − p0) + πiδ(P − p0). We arrive at the identification

f(p0) = − 1

1− ip0/G(p0)
, (3.5)

where G(p0) = G(p0, p) does not depend on p. The value G(p0) thus determines the
dimer-dimer scattering amplitude and, in particular, the dimer-dimer effective-range
expansion through G(p0) = −1/add + rep

2
0/2 + ..., where add and re are, respectively, the

dimer-dimer scattering length and effective range. The dimer-dimer coupling constant
is defined as gdd = −1/add = G(0). More generally, one can think of G(p0) as the
energy-dependent coupling constant.

The solid black curve in Fig. 3.3 corresponds to the values of g↑↑/|g↑↓| and g↓↓/|g↑↓|
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Figure 3.3: Zero crossing for the interaction between two ↑↓ dimers (thick black). The
dotted red horizontal and vertical lines are the corresponding asymptotes for g↑↑ =∞ and
g↓↓ =∞, respectively. The thin orange curves indicate parameters where gdd/|g↑↓| = 0.1
(upper curve) and −0.1 (lower curve). The dashed blue curve is the mean-field collapse
boundary g↑↓ = −√g↑↑g↓↓.

where gdd vanishes and add diverges. This curve is obviously symmetric with respect to
the interchange of g↑↑ and g↓↓. For infinite g↑↑ the dimer-dimer zero crossing is located at
g↓↓/|g↑↓| = 0.575(3). This asymptote is indicated by the horizontal dotted red line. The
vertical one is its symmetric analog. The upper and lower thin orange curves correspond,
respectively, to gdd/|g↑↓| = 0.1 (repulsion) and −0.1 (attraction). The dashed blue curve
represents the collapse boundary g↑↑g↓↓ = g2

↑↓.
We have also calculated the dimer-dimer effective range re along the zero-crossing

line. We find that re/|a↑↓| does not change much on the scale of Fig. 3.3. This ratio
approximately equals 1.25 for g↑↑ = g↓↓ and increases to 1.3 as one reaches the point
where gσσ/|g↑↓| = 6. We see that re is on the order of the dimer size. One can thus
think of the dimer-dimer interaction in terms of an effective potential with the range
∼ re ∼ a↑↓ and competing attractive and repulsive parts.

3.1.3 Dilute liquid of dimers

In this section we argue that sufficiently close to the dimer-dimer zero-crossing line, on
its attractive side, many dimers form a dilute dimerized liquid. The liquid state is a
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result of a competition between two- and three-dimer forces as predicted by Bulgac [15].
In the one-dimensional case that we consider the three-body scattering is kinematically
equivalent to the two-dimensional two-body scattering and the corresponding mean-field
energy shift depends logarithmically on the energy itself (see, for example, [20, 78]).
This logarithmic running makes the mean-field description of the system slightly more
complicated than in the three-dimensional case discussed in [15]. On the other hand,
it also allows us to make quantitative predictions of liquid properties without actually
solving the three-dimer problem. In our analysis we will use analogies with the well-
studied problem of two-dimensional two-body-interacting bosons.

Consider Nd > 2 dimers close to the dimer-dimer zero crossing in the attractive
regime where add � a↑↓ ∼ re. To the zeroth order in the dimer size one can think of the
dimers as point-like particles neglecting their composite nature (see Fig. 3.4).

Figure 3.4: Mapping of our gas of dimers of size a↑↓ close to the dimer-dimer zero crossing
lines to point like bosons weakly interacting through the two-body coupling constant gdd.

As follows from Sec. 3.1.1, trimers can be excluded from this picture since they are
not sufficiently deeply bound and we consider the population-balanced case. Thus, to
the leading order, we deal with a gas of Nd attractive point-like bosons, the ground state
of which is a soliton with the energy [77]

ENd = −g2
ddNd(N2

d − 1)/12 (3.6)

and size L ∼ 1/
√
ε ∼ add/Nd, where ε ∼ ENd/Nd is the energy per dimer and we do not

count the dimer binding energies. The central density of dimers diverges with increasing
Nd (keeping add fixed). This is obviously an artefact of the point-like approximation.
That the system does not collapse can be shown by contradiction. Indeed, if the average
distance between dimers becomes smaller than their size, the mixture enters into the
mean-field “atomic” regime where it should be mechanically stable since we are above
the mean-field collapse line g↑↑g↓↓ = g2

↑↓ [79].
We will now show that a repulsive three-dimer interaction stops the grows of the

dimer density at a much lower value nd � 1/a↑↓. Before we discuss the three-dimer
interaction energy shift let us give general considerations on the three-body scattering
in one dimension [20, 78]. After separating the center-of-mass motion the configura-
tional space of three dimers is a two-dimensional plane parameterized by the hyperra-
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dius ρ =
√

2/3
√
x2

12 + x2
13 + x2

23 and hyperangle φ = arcsin(x12/ρ), where xij is the
distance between dimers i and j. The three-dimer interaction is an effective potential
originating from virtual excitations of internal and external degrees of freedom of three
colliding dimers (pair-wise dimer-dimer processes are excluded to avoid double count-
ing). This potential is thus physically localized at ρ ∼ a↑↓ and is characterized by
the scattering length a3 > 0 defined as the position of the (extrapolated) node of the
zero-energy three-body wave function ∝ ln(ρ/a3). An important consequence of this
hyper-two-dimensional kinematics is that at low energies the three-body interaction be-
comes repulsive, equivalent to a hard-wall constraint at ρ = a3. Even without solving the
three-dimer problem one can assume that for small a↑↓/add the scattering length a3 can
be approximated by its value at add =∞ and that it is of the same order of magnitude
as the dimer size a↑↓ (we will return to this point in the next section).

In order to proceed to the many-body problem we assume that the state of the system
is homogeneous in the thermodynamic limit and that it is susceptible to the mean-
field treatment. The corresponding applicability condition requires that the interaction-
induced chemical potential µ be much smaller than the quantity n2

d, comparable to the
chemical potential in the strongly interacting Tonks-Girardeau regime. The inequality
|µ| � n2

d also means that there is a macroscopic number of dimers per healing length
(allowing for the classical description), where the healing length is ∼ 1/

√
|µ|. Here we

require that the mean-field condition be satisfied separately for the two- and three-dimer
interaction parts. In particular, for the two-dimer part we need addnd � 1.

The treatment of the three-dimer interaction proceeds in the same manner as for the
short-range two-body interaction in the two-dimensional case (see, for example, [57, 80,
81]). In one way or another, these approaches consist of replacing the short-range (in our
case three-dimer) potential by an effective potential with the same scattering length but
with the range larger than the mean interparticle distance and smaller than the healing
length. This effective potential then looks short ranged at relevant momenta ∼

√
|µ|

and, on the other hand, it is sufficiently weak for the applicability of the Born-series
expansion. In our case, the three-dimer effective potential can be taken as a constant in
momentum space [78],

g3 =

√
3π

2 ln(2e−γ/a3κ)
, (3.7)

where γ ≈ 0.5772 is the Euler constant and the overall numerical coefficient (different
from the two-dimensional two-body scattering case) is related to the Jacobian of the
transformation from the coordinates x12 and x23 to the two-dimensional hyperradius-
hyperangle pair [20]. The potential is assumed to vanish above the (hyper)momentum
cut-off κ, which satisfies nd � κ �

√
|µ|. The three-body energy shift per dimer then

equals g3n
2
d/6 and the mean-field applicability condition is g3 � 1, which is satisfied,

in particular, if a3 is exponentially smaller than the mean inter-dimer separation. Note
that in this case g3 > 0.
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For negative gdd and positive g3 the energy per dimer

ε = gddnd/2 + g3n
2
d/6 (3.8)

has a minimum at a finite saturation density [15] given by

nd = −3gdd/2g3. (3.9)

For this density ε = µ = −(3/8)g2
dd/g3 and it is easy to see that the two- and three-body

mean-field applicability conditions reduce to g3 � 1.
The exact value of the cut-off momentum κ is, in fact, not important if one sticks

to the leading order in g3. At this level of approximation the three cut-off values κ =

nd ∼ 1/addg3, κ =
√
µ ∼ 1/add

√
g3, and κ = 1/add lead to the same result since they

differ only by a power of g3 rather than exponentially. Indeed, by substituting these
cut-off momenta into Eq. (3.7) one obtains three values of g3 different from each other
by ∼ g2

3 ln g3 � g3. We thus take κ = 1/add. Similarly, we neglect other numerical
factors under the logarithm and set a3 = a↑↓ in Eq. (3.7). This leads to the explicit
expressions g3 =

√
3π/2 ln(add/a↑↓)� 1,

nd = (
√

3/πadd) ln(add/a↑↓), (3.10)

and
µ = ε = −(

√
3/4πa2

dd) ln(add/a↑↓). (3.11)

With increasing Nd the peaked soliton solution corresponding to Eq. (3.6) transforms
into a liquid-like droplet characterized by an approximately constant bulk density nd

given by Eq. (3.10). By comparing densities or energies per dimer in these two limits one
can see that the soliton-droplet crossover happens at Nd ∼

√
ln(add/a↑↓) (see Fig. 3.5).

L

Figure 3.5: Density probability function of the system of dimers before and after the
soliton- droplet crossover by increasing the number of dimers Nd.

3.1.4 Discussion and outlook

The perturbative expansion in powers of g3 � 1 can be continued beyond the mean-
field term. The next order requires the application of the Popov theory [57] and a more
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precise knowledge of a3. Note that dimer-dimer effective-range effects are beyond this
power-law expansion. The effective-range energy correction per dimer scales as reεnd

and is thus smaller than ε by rend ∼ g−1
3 e−

√
3π/2g3 which is smaller than any power of g3.

The MF and BMF treatment of effective-range effects for one-dimensional bosons has
been discussed in Refs. [82,83].

In Sec. 3.1.3 we have substituted a↑↓ for a3 since distinguishing these two quantities
is exceeding the accuracy of the leading-order calculation in the low-energy dilute regime
defined by a↑↓ ∼ a3 � 1/nd or, more precisely, by 1/ ln(1/a↑↓nd) ∼ 1/ ln(1/a3nd) � 1.
An interesting alternative appears in the regime

a↑↓ � 1/nd � a3 (3.12)

corresponding to a weak three-body attraction studied by Sekino and Nishida [78]. More
precisely, they find that one-dimensional bosons with a pure three-body zero-range at-
traction form solitons with binding energies exponentially increasing and sizes exponen-
tially decreasing with Nd, similar to solitons of two-body-interacting two-dimensional
bosons discovered by Hammer and Son [84]. The relevance of the Sekino-Nishida states
for our mixture depends on the exact solution of the three-dimer problem. We distinguish
two possibilities: (1) There is no three-dimer bound state. This typically corresponds to
a3 being comparable to or smaller than the dimer size. In this case, our dilute liquid is a
stable state. (2) a3 is larger than the dimer size and the three-dimer bound state exists
on or even above the dimer-dimer zero crossing. In this case our dilute solution still
exists but becomes metastable with respect to the formation of clusters of the higher-
density Sekino-Nishida phase. The fate of this phase in this case is an interesting problem
by itself since the unlimited grows of density with Nd would eventually contradict the
first inequality of (3.12). In any case, this discussion motivates solving the three-dimer
(↑↑↑↓↓↓) problem, calculating a3, and looking for eventual three-dimer bound states. An
interesting possibility to check is whether there is a three-dimer zero-crossing point on
the dimer-dimer zero-crossing curve.

It is tempting to speculate on the behavior of our dilute dimerized liquid as one moves
from the dimer-dimer zero crossing towards the mean-field collapse curve in Fig. 3.3. The
liquid phase just above this curve has been studied in Ref. [51]. Pairing correlations have
not been discussed for this “atomic” liquid, but they seem to be irrelevant for its self-
trapping character. Moreover, Ref. [51] suggests that for g↑↑ 6= g↓↓ the liquid is density
imbalanced, n↑/n↓ =

√
g↓↓/g↑↑. Hence, for example, for g↑↑ > g↓↓, a dimerized liquid

droplet does not adiabatically connect to the atomic one as it should somehow get rid
of the ↑ component. We thus expect more details to appear in the many-body analog
of the diagram in Fig. 3.3, at least, outside of the diagonal g↑↑ = g↓↓. Note that this
region can be investigated experimentally in the two-component mixture of 39K studied in
Refs. [22,23,85]. These speculations bring up a potentially interesting few-body problem
in the ↑↑↑↓↓ configuration, which can be thought of as two dimers and an atom. As
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we have shown (see Fig. 3.2), the atom always binds to a dimer. In addition, it can
hop from one dimer to the other thus mediating an exchange attraction between them.
Therefore, even above the dimer-dimer zero crossing this attraction can overcome the
dimer-dimer repulsion and bind the system into a pentamer state. More generally, this
scenario suggests that the liquid phase in the population-imbalanced configuration may
extend above the zero-crossing curve in Fig. 3.3.

Finally, there appears a fascinating possibility of observing self trapping in a one-
dimensional Fermi-Bose mixture with interspecies attraction and Bose-Bose repulsion.
We predict that fermionic Fermi-Bose dimers in this case bind for gBB < 0.575|gFB|
(assuming equal masses) and can thus form a dilute dimerized liquid. This effect can be
studied, in particular, in the 40K-41K mixture by utilizing the wide interspecies Feshbach
resonance at 540 G [86]. Very recently, Pan and coworkers [87] have discussed a one-
dimensional (atomic) Fermi gas near a p-wave resonance and argued that in the collapse
regime (equivalent to our gdd < 0) the system can be stabilized by effective-range effects.
No three-atom interaction is included in their model.

3.2 Three-boson problem with two- and three-body in-
teractions

Directly motivated by our prediction in Sec. 3.1.3, we now look at the one dimensional
three-boson problem with two- and three-body interactions.

Background and Goal

The one-dimensional N -boson problem with the two-body contact interaction g2δ(x) is
exactly solvable. Lieb and Liniger [88] have shown that for g2 > 0 the system is in
the gas phase with positive compressibility. McGuire [77] has demonstrated that for
g2 < 0 the ground state is a soliton with the chemical potential diverging with N . In
the case N = ∞ the limits g2 → +0 and g2 → −0 are manifestly different: The former
corresponds to an ideal gas whereas the latter corresponds to collapse. Accordingly,
the behavior of a realistic one- or quasi-one-dimensional system close to the two-body
zero crossing strongly depends on higher-order terms not included in the Lieb-Liniger or
McGuire zero-range models. Sekino and Nishida [78] have considered one-dimensional
bosons with a pure zero-range three-body attraction and found that the ground state of
the system is a droplet with the binding energy exponentially increasing with N , which
also means collapse in the thermodynamic limit. In the last section, we have argued that
in a sufficiently dilute regime the three-body interaction is effectively repulsive, providing
a mechanical stabilization against collapse for g2 < 0. The competition between the two-
body attraction and three-body repulsion leads to a dilute liquid state similar to the one
discussed by Bulgac [15] in three dimensions.
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The three-body scattering in one dimension is kinematically equivalent to a two-
dimensional two-body scattering [20, 78]. Therefore, the corresponding interaction shift
depends logarithmically on the product of the scattering momentum and three-body
scattering length a3. An important consequence of this fact is that, in contrast to
higher dimensions, the one-dimensional three-body interaction can become noticeable
even if a3 is exponentially small compared to the mean interparticle distance. Therefore,
three-body effects can be studied in the universal dilute regime essentially in any one-
dimensional system that preserves a finite residual three-body interaction close to a two-
body zero crossing. Universality means that the effective-range effects are exponentially
small and the relevant interaction parameters are the two- and three-body scattering
lengths a2 and a3.

This rest of this Chapter is organized as follows. In Sec. 3.2.1 we solve the problem
of three point-like bosons with contact two- and three-body interactions and analytically
relate the ground and excited trimer energies with the scattering lengths. In particular,
we follow the evolution of these states as the ratio a3/a2 is changed. In Sec. 3.2.2 we con-
sider the previously defined 1D BB mixture where the dimer-dimer interaction is tunable
by changing the intraspecies repulsion. Our analytical predictions are complemented by
diffusion Monte Carlo calculation of the hexamer energy permitting to determine the
three-dimer scattering length close to the dimer-dimer zero crossing. We perform this
procedure for equal intraspecies coupling constants and in the case where their ratio
is infinite. In the latter limit one of the components is in the Tonks-Girardeau regime
and the system is equivalent to a Fermi-Bose mixture. We find that the three-dimer
interaction is repulsive in both cases, which confirm our previous prediction.

3.2.1 Derivation of the formula

Consider three bosons of mass m interacting via contact two- and three-body forces
characterized by the scattering lengths a2 and a3, respectively. The correct boundary
condition for the wave function at the two-body coincidences is ensured by the two-
body pseudopotential g2δ(xij) with g2 = −2/ma2, where xij = xi − xj is the distance
between particles i and j and we set ~ = 1. The three-body boundary condition implies
that in the limit of vanishing hyperradius ρ =

√
2/3
√
x2

12 + x2
13 + x2

23 the three-body
wave function should be proportional to ln(ρ/a3). This small-hyperradius asymptote
holds for all finite g2 since at ρ � |a2| the two-body interaction can be neglected and
the three-body kinematics corresponds to the two-dimensional scattering on a zero-range
potential. The logarithmic scaling does not hold only in the case of impenetrable particles
(g2 = ∞), where a3 is ill defined. However, this case is trivial since the contact three-
body interaction is completely screened by the two-body one and plays no role. The
applicability conditions for the zero-range model that we use here requires, as usual, that
the de Broglie wavelengths of particles be much larger than the ranges of the potentials.

In order to construct the wave function ψ(x1, x2, x3), let us for a moment think of it
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as Green’s function which solves the equation

(Ĥ1 + V̂2 −mE)ψ(x1, x2, x3) = δ(x12)δ(x13), (3.13)

where Ĥ1 = −(∂2
x1

+ ∂2
x2

+ ∂2
x3

)/2 and V̂2 = −2[δ(x12) + δ(x13) + δ(x23)]/a2. In the
limit ρ → 0 one can neglect V̂2 and mE in Eq. (3.13) which then acquires the Poisson
form −∇2

ρψ = 2δ(ρ)/
√

3, where ρ = {x12, (x13 + x23)/
√

3}. For small ρ, we thus have
ψ = − ln(ρ/ξ)/

√
3π, where ξ depends on details of the full Eq. (3.13) and is, therefore,

a function of mE and a2. Note that if ξ(mE, a2) were equal to a3, ψ would satisfy
the correct two- and three-body boundary conditions, thus solving our original problem.
Therefore, the logic of our approach is to solve Eq. (3.13), extract ξ(mE, a2), and find
E from the implicit equation ξ(mE, a2) = a3.

The solution of Eq. (3.13) exists for any energy E and is unique, if mE does not
belong to the spectrum of the operator Ĥ1 + V̂2. Here, we will be interested in three-
body bound states and will assume E below the three-atom (for a2 < 0) or atom-dimer
(for a2 > 0) scattering thresholds. Since Ĥ1+V̂2 can be diagonalized by the Bethe ansatz,
one could, in principle, expand ψ in terms of Bethe-ansatz states. This, however, involves
the summation over a two-dimensional parameter space of free-atom states. Here we will
use a different approach which allows us to work only with the trimer and atom-dimer
scattering states.

Assuming zero center-of-mass momentum, we define F (x) = 2ψ(2x/3,−x/3,−x/3)/a2

and move V̂2 to the right-hand side of Eq. (3.13) arriving at

(Ĥ1 −mE)ψ =
3∑
i=1

F (xi − xj)δ(xjk) + δ(x12)δ(x13), (3.14)

where j and k are different from each other and from i. We now solve Eq. (3.14) with
respect to ψ by switching to momentum representation where the operator (Ĥ1−mE)−1

is a number. Expressing ψ in terms of F and using the definition of F , we obtain the
closed equation for F̃ (p) =

∫
F (x)e−ipxdx,

(L̂− a2/2)F̃ (p) = −1/
√

3p2 − 4mE, (3.15)

where

L̂F̃ (p) =
F̃ (p)√

3p2 − 4mE
+

∫
2F̃ (q)

p2 + pq + q2 −mE
dq

2π
. (3.16)

The three-body contact boundary condition is taken into account by noting that ψ
is the sum of two functions corresponding, respectively, to the first and second terms on
the right-hand side of Eq. (3.14).

The former is nonsingular and equals 3
∫
F̃ (p)(3p2 − 4mE)−1/2dp/2π at ρ = 0. The

latter equals K0(
√
−mEρ)/

√
3π ≈ − ln

(√
−mEρeγ/2

)
/
√

3π, where K0 is the decaying
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Bessel function and γ = 0.577 is Euler’s constant. The condition ψ ∝ ln(ρ/a3) then
gives

ln

√
−mEa3e

γ

2
= 3
√

3π

∫
F̃ (q)√

3q2 − 4mE

dq

2π
. (3.17)

The spectrum and eigenfunctions of L̂ can be derived analytically from the Bethe
ansatz. One can thus solve Eq. (3.15) for F̃ and substitute the result into Eq. (3.17)
directly relating the trimer energy E = E3 with a2 and a3. Although solving Eqs. (3.13)
and Eq. (3.15) are conceptually similar tasks, the latter involves a much smaller eigen-
function basis. Note that when passing from Eq. (3.13) to Eq. (3.15) the roles of E
and a2 get interchanged; E is now a parameter and a2/2 plays the role of an eigen-
value. Since we are dealing with E < 0, the spectrum of L̂ now contains only the
trimer and atom-dimer scattering states. The former is characterized by the eigenfunc-
tion F̃McG(p) = 2(−mE)−1/4/(1 − p2/mE) and eigenvalue λMcG = 1/

√
−mE consistent

with the relation E = −4/ma2
2 for the trimer state in the absence of three-body in-

teraction [77]. The continuum spectrum of L̂ consists of atom-dimer scattering states
parameterized by the atom-dimer relative momentum k and characterized by eigenval-
ues λk = (3k2 − 4mE)−1/2. The explicit form of F̃k is obtained by Fourier transforming
Fk(x) extracted from the Bethe-ansatz eigenstate of Ĥ1 + V̂2 with a2 = 2λk. These
manipulations result in

ln
a3κe

γ

a2

=
2

κ2 − 1

[
π

3
√

3
+

3κ2 − 1√
4κ2 − 1

arctan

√
2κ+ 1

2κ− 1

]
, (3.18)

where κ =
√
−mEa2/2.

A more detailed calculation of Eq.(3.18) is given in Appendix A.

Discussions

In Fig. 3.6, we plot E = E3 < 0 in units of the dimer binding energy |E2| = 1/ma2
2

as a function of ln(a3/a2) for positive a2 where E3/E2 = 4κ2. We find that there are
always two trimer states in this case. For a3 � a2 the ground trimer is bound by the
dominant three-body force and its energy tends to −4e−2γ/ma2

3 (red dotted curve). In
the opposite limit a3 � a2, the three-body interaction is subleading and the ground-
trimer energy asymptotes to the McGuire result E3 = 4E2 [77] (blue dot-dashed lines).
The limits of large and small a3 correspond to the weak three-body attraction and
repulsion, respectively. The trimer follows this transition adiabatically and, in the zero-
range approximation, becomes an excited state, which remains bound for any a3/a2.
In the limit a3 → ∞, the energy of this excited trimer asymptotically approaches the
atom-dimer scattering continuum (red filled area in Fig. 3.6) following the threshold law
E3/E2 − 1 ≈ (π/3)2/ ln2(a3/a2).

For the case a2 < 0 (two-body repulsion), there is no dimer and κ is negative.
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Figure 3.6: The trimer energy in units of |E2| = 1/ma2
2 versus ln(a3/|a2|) for positive

a2 (solid black). The red filling indicates the atom-dimer scattering continuum, the blue
dash-dotted lines correspond to E3 = 4E2 valid in the absence of the three-body force,
and the red dotted line shows the asymptote E3 = −4e−2γ/ma2

3 valid in the absence of
the two-body force. The black dashed curve is the trimer energy for a2 < 0. The repulsive
two-body interaction in this case pushes the trimer into the three-atom continuum at a
finite value of ln(a3/|a2|) (see text).

Equation (3.18) remains valid provided that its right-hand side is analytically continued
from κ > 0 to κ < 0 just above the real axis. This gives a single trimer state, the
energy of which (black dashed curve in Fig. 3.6) tends to −4e−2γ/ma2

3 (red dotted curve)
for a3 � |a2|. With increasing the two-body repulsion this trimer gets pushed above
the three-atom threshold at ln(a3/|a2|) = −γ − 2π/3

√
3. That we know the energy

analytically makes it one of rare examples of a three-body resonance where one can
study the threshold behavior to any desired order. In particular, one can show that
the branch-cut singularity in this case corresponds to a two-dimensional resonance in
the angular-momentum channel with l = 3, consistent with the observation that we are
dealing with a localized trimer coupled to the continuum of highly fermionized three-
atom states (see the Supplemental Material of Ref. [20]).

Returning to the two-body attraction (a2 > 0), we note that the relative deviation
of the trimer energy from the McGuire asymptote amounts to about 30% for a3/a2 =

e±10, illustrating that even an extremely weak three-body interaction is important in
one dimension. Our results can be applied to three-dimensional bosonic atoms in the
quasi-one-dimensional geometry. By integrating out the radial degrees of freedom this
system reduces to a pure one-dimensional model characterized by effective two- and
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three-body coupling constants. In the regime where the three-dimensional scattering
length a is much smaller than the oscillator length l0 of the radial confinement, the
two-body coupling constant equals g2 = 2a/ml20 [44] and the three-body one is g3 =

−12 ln(4/3)a2/ml20 [89–91]. On the other hand, with the logarithmic accuracy the latter
can be written in terms of a3 as g3 =

√
3π/[m ln(l0/a3)] as depicted in Sec 3.1. We

thus identify ln(a3/a2) ≈ π/[4
√

3 ln(4/3)]l20/a
2, which allows us to relate the trimer

energies with the three-dimensional parameters a and l0 by using Eq. (3.18). Note
that in this model of quasi-one-dimensional point-like bosons the two- and three-body
coupling constants vanish simultaneously with the three-dimensional scattering length
a. Yet, three-body effects are visible and even lead to a qualitative change of the system
behavior, particularly to the excited trimer state not present in the McGuire model (its
existence has been first pointed out in the quasi-dimensional geometry [92]).

3.2.2 Back to the 1D mixture problem

Systems where two- and three-body effective interactions can be controlled more inde-
pendently are difficult to produce or engineer (see [20] and references therein). We now
discuss a model tunable to the regime of pure three-body repulsion. Namely, we consider
the mixture of one-dimensional pointlike bosons ↑ and ↓ of unit mass characterized by
the coupling constants g↑↓ = −2/a↑↓ < 0 (interspecies attraction) and gσσ = −2/aσσ > 0

(intraspecies repulsions). The interspecies attraction leads to the formation of ↑↓ dimers
of size a↑↓ and energy E↑↓ = −1/a2

↑↓. We showed in Sec 3.1 that the two-dimer interaction
changes from attractive to repulsive with increasing gσσ. In particular, the two-dimer
zero crossing is predicted to take place for g↑↑ = g↓↓ = 2.2|g↑↓| [Bose-Bose (BB) case]
and for g↓↓ = 0.575|g↑↓| if g↑↑ =∞ [Fermi-Bose (FB) case]. Here we consider three such
dimers and characterize their three-dimer interaction by calculating the hexamer energy
E↑↑↑↓↓↓ and by comparing it with the tetramer energy E↑↑↓↓ on the attractive side of the
two-dimer zero crossing where the tetramer exists. The idea is that sufficiently close to
this crossing the dimers behave as pointlike particles weakly bound to each other. One
can then extract the three-dimer scattering length a3 from our zero-range three-boson
formalism [Eq. (3.18)] with m = 2, E2 = E↑↑↓↓ − 2E↑↓, E3 = E↑↑↑↓↓↓ − 3E↑↓, and using
the asymptotic expression for the dimer-dimer scattering length a2 = 1/

√
2|E2|.

Diffusion Monte Carlo 1

In order to calculate E2 and E3, we resort to the diffusion Monte Carlo (DMC) technique,
which is a projection method based on solving the Schrödinger equation in imaginary
time [50]. The importance sampling is used to reduce the statistical noise and also to
impose the Bethe-Peierls boundary conditions stemming from the δ-function interactions.

1This calculation is done by Grecia Guijaro.
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We construct the guiding wave function ψT in the pair-product form

ψT =
∏
i<j

f ↑↑(x↑↑ij )
∏
i<j

f ↓↓(x↓↓ij )
∏
i,j

f ↑↓(x↑↓ij ) , (3.19)

where xσσ′ij = xσi − xσ
′
j is the distance between particles i and j of components σ and σ′,

respectively.

The intercomponent correlations are governed by the dimer wave function f ↑↓(x) =

exp(−|x|/a↑↓) and the intracomponent terms are fσσ(x) = sinh(|x|/a↑↓ − |x|/2add) −
(aσσ/a↑↓ − aσσ/2add). These functions satisfy the Bethe-Peierls boundary conditions,
∂fσσ

′
(x)/∂x|x=+0 = −fσσ′(0)/aσσ′ , which, because of the product form, also ensures

the correct behavior of the total guiding function ψT at any two-body coincidence.
At the same time, the long-distance behavior of fσσ(x) is chosen such that ψT al-
lows dimers to be at distances larger than their size. When the distance x between
pairs {x↑1, x

↓
1} and {x

↑
2, x
↓
2} is much larger than the dimer size a↑↓, Eq. (3.19) reduces to

ψT ∝ f ↑↓(x↑↓11)f ↑↓(x↑↓22) exp(−|x|/add). For add � a↑↓, this wave function describes two
dimers weakly-bound to each other. While aσσ′ are fixed by the Hamiltonian, we treat
add as a free parameter in Eq. (3.19). Close to the dimer-dimer zero crossing add ≈ a2

and this parameter is related self-consistently to the tetramer energy while far from the
crossing its value is optimized according to the variational principle. It is useful to men-
tion that in case FB, where a↑↑ = 0, the ↑ component is in the Tonks-Girardeau limit
and can be mapped to ideal fermions by Girardeau’s mapping [69]. Replacing |x| by x
in the definition of f ↑↑(x) makes ψT antisymmetric with respect to permutations of ↑
coordinates.

Results

In Fig. 3.7, we show E3/|E2| for cases BB (red squares) FB (blue circles) as a function of
δ = 1/ ln

(√
2|E2|a3

)
along with the prediction of Eq. (3.18) (solid black). The quantity

a3 is a fitting parameter to the DMC results; changing it essentially shifts the data
horizontally. We clearly see that in both cases the three-dimer interaction is repulsive
since E3/|E2| is above the McGuire trimer limit [77] (dash-dotted line). For rightmost
data points the hexamer is about ten times larger than the dimer and the data align with
the universal zero-range analytics. For the other points we observe significant effective
range effects related to the finite size of the dimer. In the universal limit a↑↓ � a2, we
previously showed the leading effective-range correction to the ratio E3/|E2| is expected
to be proportional to a↑↓/a2 ∝ e1/δ. Indeed, adding the term Ce1/δ to the zero-range
prediction well explains deviations of our results from the universal curve and we have
checked that other exponents do not work that well. We thus treat a3 and C as fitting
parameters; in case BB we obtain a3 = 0.01a↑↓ and in case FB a3 = 0.03a↑↓. Both cases
are fit with C = −100 (dashed curve in Fig. 3.7). We emphasize that we are dealing with
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Figure 3.7: E3/|E2| vs 1/ ln
(√

2|E2|a3

)
(same as Fig. 3.6 except for the inverse of

the horizontal axis) for one-dimensional dimers. Here E2 and E3 are the tetramer and
hexamer energies measured relative to the two- and three-dimer thresholds, respectively.
The solid curve is the prediction of Eq. (3.18) and the dashed curve is a fit, which
includes finite-dimer-size effects into account (see text). The dash-dotted line is the
McGuire result E3 = 4E2 for three pointlike bosons with no three-body interaction. The
red squares are the DMC data for case BB plotted using a3 = 0.01a↑↓ and the blue
circles stand for case FB with a3 = 0.03a↑↓. The error bars are larger in the latter case
because of the larger statistical noise induced by the nodal surface imposed by the Fermi
statistics.

the true ground state of three dimers. The lower “attractive” state formally existing for
these values of a2 and a3 in the zero-range model is an artifact since it does not satisfy the
zero-range applicability condition. The three-dimer interaction is an effective finite-range
repulsion which supports no bound states.

Conclusion

In conclusion, we obtain an analytical expression for the ground and excited trimer en-
ergies for one-dimensional bosons interacting via zero-range two- and three-body forces.
We argue that since in one dimension the three-body energy correction scales logarithmi-
cally with the three-body scattering length a3, three-body effects are observable even for
exponentially small a3, which significantly simplifies the task of engineering three-body-
interacting systems in one dimension. We demonstrate that Bose-Bose or Fermi-Bose
dimers, previously shown to be tunable to the dimer-dimer zero crossing, exhibit a notice-
able three-dimer repulsion. We can now be certain that the ground state of many such
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dimers slightly below the dimer-dimer zero crossing is a liquid in which the two-body
attraction is compensated by the three-body repulsion [15].

Our results have implications for quasi-one-dimensional mixtures. We mention par-
ticularly the 40K-41K Fermi-Bose mixture which emerges as a suitable candidate for
exploring the liquid state of fermionic dimers. Here the intraspecies 41K-41K background
interaction is weakly repulsive (the triplet 41K-41K scattering length equals 3.2nm [93])
and the interspecies one features a wide Feshbach resonance at 540G [86]. Let us iden-
tify ↑ with 40K, ↓ with 41K, and assume the radial oscillator length l0 = 56nm, which
corresponds to the confinement frequency 2π × 80kHz. Under these conditions the ef-
fective coupling constants equal gσσ′ ≈ 2a

(3D)
σσ′ /l

2
0 [44] and the dimer-dimer zero crossing

at g↓↓ = 0.575|g↑↓| is realized for the three-dimensional scattering lengths a(3D)
↓↓ ≈ 3.2nm

and a
(3D)
↑↓ ≈ −5.6nm. The dimer size is then ≈ 560nm and dimer binding energy cor-

responds to ≈ 2π × 800Hz placing the system in the one-dimensional regime. For the
rightmost (next to rightmost) blue circle in Fig. 3.7, the tetramer is approximately 20
(10) times larger than the dimer and 800 (200) times less bound. Moving left in this fig-
ure is realized by increasing |a3D

↑↓ | and thus getting deeper in the region g↓↓ < 0.575|g↑↓|.
Note, however, that this also pushes the system out of the one-dimensional regime and
effects of transversal modes [89–91] become important. Note that while completing this
work, we became aware of another work [94] reporting the solution of the three-boson
problem with zero-range interactions.
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Let us take two particles interacting through a weak two-body potential at T = 0:
what happens for the system’s energy if we had a third particle (assuming only two-
body potentials between particles)? A MF naive approach would result in multiplying
the initial MF energy by 3, by considering the new possible pairwise interactions. But
what if the MF value of the two-body potential vanishes (i.e., when its shape permits
to fulfill this condition, without totally vanishing in amplitude)? How could one extend
the results to the many-body case?

In this Chapter, we reconcile the first-quantized few-body approach with the Bogoli-
ubov perturbation theories in the particular case of a two-body potential of zero mean
value [defined by

∫
V (r)dDr = 0 in the pure D-dimensional case and by Eq. (4.18) in

quasi-low-dimensional geometries] calculating the ground-state energy up to terms ∝ V 3.
We find that up to this order, the result is an analytic function of the density and con-
tains two-body corrections ∝ V 2n2 and ∝ V 3n2 as well as an effective three-body term
∝ V 3n3. We present closed-form integral expressions for the corresponding coefficients
in pure dimensions and in quasi-low-dimensional geometries and discuss their general
consequences. We apply our formalism to bosons interacting by the double-Gaussian
potential and by the Yukawa potential in pure dimensions, noticing that the emergent
three-body interaction is repulsive (attractive) when the long-range tail of the under-
lying two-body potential is attractive (repulsive). We then calculate the three-body
and two-body energy shifts for quasi-low-dimensional dipoles as a function of their tilt
angle θ with respect to the confinement cylindrical symmetry axis. We find that the
three-body force for quasi-two-dimensional dipoles changes from attraction to repulsion
with increasing θ. For one-dimensional dipoles, the dominant three-body force is at-
tractive and second-order in V except when they are aligned along the axis (θ = 0).
In all these quasi-low-dimensional cases the confinement-induced shift of the two-body
coupling constant is found to be positive as a result of a renormalization procedure.

The Chapter is organized as follows. In Sec. 4.1 we use the standard perturbation
theory to derive the interaction energy shift for N atoms in free space and in quasi-
low-dimensional geometries. In Sec. 4.2 we apply the obtained general formulas to the
cases of double-Gaussian and Yukawa-plus-delta potentials in pure dimensions. Sec-
tions 4.2.3 and 4.2.4 are devoted, respectively, to the quasi-two-dimensional and quasi-
one-dimensional tilted dipoles. In Sec. 4.3 we make connections to the many-body case
and show how our results can be obtained from the Bogoliubov theory. We conclude in
Sec. 4.4.
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4.1 Few-body perturbative approach

We consider the system of N distinguishable atoms 1 characterized by the Hamiltonian
(we assume unit mass and ~ = 1)

Ĥ =
N∑
i=1

−∂2
xi
/2− ∂2

yi
/2 + U(yi) +

∑
i>j

V (xi − xj,yi − yj), (4.1)

where U(y) is the confining potential and x and y denote the sets of single-particle
coordinates in the unconfined and confined directions, respectively. For example, in the
quasi-two-dimensional geometry x is the two-dimensional in-plane position vector and
y = y is the coordinate perpendicular to the confinement direction. The unconfined
space is assumed to be a cube of unit volume with periodic boundary conditions and we
write the single-particle eigenstates of the noninteracting part of Eq. (4.1) as

φq,ν(x,y) = eiqxψν(y), (4.2)

where each component of q is an integer divided by 2π and ν is the set of quantum
numbers labeling the eigenstates ψν(y) for the single-particle motion in the confined
direction, εν being the corresponding spectrum which we count relative to the ground
state (such that ε0 = 0).

Assuming the last term on the right-hand side of Eq. (4.1) as a perturbation and
applying the standard perturbation theory we write the ground-state energy of the N -
body system as

E[N ] = E(1)[N ] + E(2)[N ] + E(3)[N ] + ..., (4.3)

where E(i)[N ] denotes the i-th order term in powers of V . In Eq. (4.3) we have already
used the fact that by construction E(0)[N ] = 0 (all particles are in the state {q,ν} = 0).
We will restrict ourselves to perturbation order i ≤ 3 and use the general expressions for
the energy corrections available up to this order in Ref. [13]. Let us reproduce these gen-
eral formulas for reference. Denoting the noninteracting multiparticle states by symbols
with the bar n̄ = {k1,ν1; ...; kN ,νN}, the corresponding multiparticle energies by ωn̄,
their differences by ωn̄m̄ = ωn̄ − ωm̄, and the whole interacting part of the Hamiltonian
(4.1) by V̄ , energy corrections to state n̄ read [13]

E
(1)
n̄ = V̄n̄n̄, (4.4)

E
(2)
n̄ = −

∑′

m̄
|V̄m̄n̄|2/ωm̄n̄, (4.5)

E
(3)
n̄ =

∑′

k̄

∑′

m̄

V̄n̄m̄V̄m̄k̄V̄k̄n̄
ωm̄n̄ωk̄n̄

− E(1)
n̄

∑′

m̄

|V̄m̄n̄|2

ω2
m̄n̄

, (4.6)

where the primes mean that the state n̄ is excluded from the summations.

1Distinguishable atoms have the same ground state as identical bosons.
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Our task thus reduces to counting multi-particle excited states and calculating V̄n̄m̄.
To this end we introduce the two-body matrix elements

V ζηµν (k) = [V ηζνµ (−k)]∗ = V µνζη (−k)

=

∫
dydy′dxeikxV (x,y − y′)ψ∗ζ(y)ψ∗µ(y′)ψη(y)ψν(y′),

(4.7)

where the equalities in the first line follow from V (r) = [V (r)]∗ = V (−r), assumed to
be valid throughout the chapter. In terms of these matrix elements the first correction
to the N -body ground-state energy reads

E(1)[N ] = g
(1)
2

(
N

2

)
= V 00

00 (0)

(
N

2

)
(4.8)

and the second one can be written as

E(2)[N ] = g
(2)
2

(
N

2

)
+ g

(2)
3

(
N

3

)
, (4.9)

where

g
(2)
2 = −

∑
k,ν,µ

|V 0ν
0µ (k)|2

k2 + εν + εµ
(4.10)

and
g

(2)
3 = −6

∑
ν

|V 00
0ν (0)|2

εν
. (4.11)

In Eqs. (4.10) and (4.11) the summations exclude terms with vanishing denominators
[equivalent to the prime in Eq. (4.5)]. Equation (4.10) is just the second-order interaction
correction for a single pair. It corresponds to (virtual) excitations of two atoms which, in
the first interaction event, get excited into states {ν,−k} and {µ,k} and, in the second
interaction event, get back to their ground states.

Equation (4.11) represents an effective three-body attraction, which appears in con-
fined geometries for weak two-body interactions of the usual type [for which, in particular,
V 00
0ν (0) 6= 0]. It has been discussed in the context of quasi-one-dimensional [89, 91] and

lattice bosons [95]. It can also be obtained by solving the Gross-Pitaevskii equation for
the condensate wave function [89]. Accordingly, this term is absent in pure dimensions
(in our derivation this follows from the fact that there are no transversal excitations and
thus no summation over ν). The emergence of this term in our first-quantization analy-
sis can be understood by going back to Eq. (4.10) and reconsidering virtual excitations
where only one particle is promoted to ν 6= 0 (in this case k should vanish because of
the momentum conservation in the unconfined directions). Then the amplitude V 00

0ν (0)

should be replaced by (N − 1)V 00
0ν (0), since the atom can be excited by interacting with

N −1 other atoms, not just one as implied in Eq. (4.10). In addition, in Eq. (4.10) these
special one-particle events should be counted ony once per atom. The equation Eq. (4.9)
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comes then from the following procedure,

E(2)[N ] = g
(2)
2

(
N

2

)
−
[N(N − 1)

2
2
∑
ν

|V 00
0ν (0)|2

−εν

]
+N

∑
ν

|(N − 1)V 00
0ν (0)|2

−εν
, (4.12)

where we removed the terms which are counted in the wrong way in the second term
of the right hand side of Eq. (4.12) (since µ and ν play a symmetric role, there is a
factor 2 which appears) and we added the correct counting and amplitude for those one
particle events.

Equation (4.11) is meant to compensate for these “errors” in Eq. (4.10) when N > 2.
In Sec. 4.3 we present a many-body approach to this problem based on the second
quantization, where Eq. (4.11) emerges in a more natural manner.

Proceeding to the calculation of the third-order correction let us represent it as

E(3)[N ] = g
(3)
3

(
N

3

)
+ g

(3)
2

(
N

2

)
+ δ(3) + σ(3). (4.13)

In Eq. (4.13)

g
(3)
3 = 6

∑
k,ν,µ,η

V 0η
0ν (k)V 0µ

η0 (k)V ν0µ0 (k)

(k2 + εν + εη)(k2 + εν + εµ)
, (4.14)

where the summation extends to indices satisfying the constraint k 6= 0 ∨ (ν 6= 0 ∧µ 6=
0∧η 6= 0) (∨ and ∧ are boolean OR and AND, respectively). The term (4.14) accounts
for the following sequence of virtual excitations of three different atoms. The first and
the second atoms interact with each other and get excited into states {ν,−k} and {µ,k},
respectively. Then, the second interaction event results in the second atom getting back
to the ground state and the third atom being excited to state {η,k}. Finally, the first
and the third atoms interact with each other both going down to the ground state. The
constraint on the summation indices mentioned above is imposed in order to count in
Eq. (4.14) only genuine three-body events and not two-body or one-body ones, which
we will now discuss.

We write the coefficient in the second term on the right-hand side of Eq. (4.13) in
the form

g
(3)
2 =

∑
ν,µ,η,ζ,k,q

V 0ζ
0η (−q)V ζµην (q− k)V µ0ν0 (k)

(k2 + εν + εµ)(q2 + εη + εζ)
, (4.15)

where the sum is constrained only by the requirement of nonvanishing denominator
[equivalent to the primes in Eq. (4.6) or, mathematically, to (k 6= 0 ∨ ν 6= 0 ∨ µ 6=
0) ∧ (q 6= 0 ∨ η 6= 0 ∨ ζ 6= 0)]. Equation (4.15) is nothing else than the first term on
the right-hand side of the general formula Eq. (4.6) calculated for a single pair of atoms.
However, similarly to Eq. (4.10), Eq. (4.15) does not properly account for some two-body
excitations when N > 2. We will show that a higher-order compensation term is required
[denoted by δ(3) in Eq. (4.13)] which, however, vanishes when V ζηµν (0) = 0. Arguments for
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this are rather technical because of the chosen first-quantization technique. We present
them for completeness in the next paragraph, which the reader can skip, if not interested.

Consider virtual-excitation sequences implied by Eq. (4.15), for which at least one of
the atoms changes its state less than three times. In the sum of Eq. (4.15) this happens
when one of the matrix elements is of the form V γγαβ (0) or V αβγγ (0), i.e., we are dealing
with an interaction event where only one atom changes its transversal state from β to α
leaving its momentum unchanged as well as the state of all other atoms. This transition
can be triggered not only by the interaction with the second atom in state γ, but also
with any of the other N − 2 atoms. In order to account for this type of transitions in
Eq. (4.15) one can replace matrix elements V γδαβ(k), characterizing the interaction of two
atoms in vacuum, by

Ṽ γδαβ(k) = V γδαβ(k) + δk,0

[
(N − 2)δα,βV

γδ
00 (0)

+ (N − 2)δγ,δV
00
αβ(0) +

(
N − 2

2

)
δα,βδγ,δV

00
00 (0)

]
,

(4.16)

which corresponds to the same transition but in the presence of N − 2 other atoms
in the ground state. In Eq. (4.16) δk,k′ and δν,ν′ are Kronecker deltas. An additional
modification is needed when only one atom is excited throughout the whole sequence
of the three interaction events in Eq. (4.15). This happens for (µ = ζ = 0 ∨ ν =

η = 0) ∧ k = q = 0. In this case not only the matrix elements should be corrected as
explained above, but, in addition, the whole contribution of such terms should be divided
by N − 1 as in Eq. (4.15) each of these “one-body” excitation sequences is counted twice
for every pair [with subsequent multiplication by

(
N
2

)
in Eq. (4.13)], whereas they should

be counted only once per atom, illustrating basically the same idea we developed in
Eq. (4.12) . These patches of Eq. (4.15) can be cast in the form of a compensation
term which we call δ(3) but do not write explicitly as, for purposes of this chapter, it is
sufficient to understand that it vanishes when V ζηµν (0) = 0.

Finally, the term σ(3) in Eq. (4.13) corresponds to the last term in the general formula
Eq. (4.6). This term can be written explicitly by noting its resemblance to Eq. (4.5).
However, we observe that it is also proportional to Eq. (4.8), which vanishes when
V 00
00 (0) = 0. We should note that if V ζηµν (0) 6= 0, the sum δ(3) + σ(3) can be expressed

in the form of three terms, two of which correct the constants (4.14) and (4.15), and
the third one corresponds to an effective four-body interaction. We have checked that
five-body terms cancel out.

In pure dimensions we have explicitly

E(3)[N ] =

(
N

2

)∑
q,k

V (−q)V (q− k)V (k)

k2q2
+ 6

(
N

3

)∑
k

V 3(k)

k4
, (4.17)

where states with k = 0, q = 0 or q = k are excluded from the summation.
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We observe that under the assumption∫
dxV (x,y) = 0 (4.18)

we have V ζηµν (0) = 0 for any set {µ,ν, ζ,η} [see Eq. (4.7)]. Then, the energy of the
N -body system, up to terms of order V 3, equals the renormalized two-body part [g

(2)
2 +

g
(3)
2 ]
(
N
2

)
plus the leading nonpairwise part (an effective three-body interaction) given by

g
(3)
3

(
N
3

)
.

Note that the renormalized two-body interaction scales asymptotically (for V →
0) as V 2. Therefore, slightly softening the condition Eq. (4.18) by allowing the Born
integral be of order ∝ V 2 gives us more flexibility in controlling the renormalized two-
body interaction. In particular, one can make it weakly repulsive, weakly attractive,
or vanishing. In the latter case the three-body term g

(3)
3 ∝ V 3 becomes the leading

interaction correction as all other terms scale at least as V 4 [this follows from the scaling
V νµηζ (0) ∝ V 2 for the matrix elements at zero momenta].

This brings us to one of the main statements of this section. In a sufficiently narrow
vicinity of a two-body zero crossing, reached by a fine-tuned compensation, expressed
by Eq. (4.18), of the attractive and repulsive parts of the interaction potential, the
dominant effective three-body interaction is third order in V and is characterized by
the coupling constant given by Eq. (4.14). Note that this effective interaction can be
repulsive or attractive depending on the shape of the two-body potential and on the
confining geometry. In the next Section we calculate this term explicitly for a few
academically and practically relevant cases.

4.2 Applications

4.2.1 Double-Gaussian potential

Gaussian potentials, although not very realistic, are very frequently used as model po-
tentials for solving few-body and many-body problems. They are smooth, characterized
by regular effective-range expansions, and allow one to calculate quite a few things an-
alytically. Thus, the first example that we will consider is the sum of two Gaussians in
pure dimensions, one attractive and one repulsive, with different ranges,

V (x) = v0e
−λ0x2 + v1e

−λ1x2 . (4.19)

The condition (4.18) applied to (4.19) fixes the ratio v1/v0 as a function of α = λ0/λ1

and dimension D, namely v1/v0 = −α−D/2. Then, the potential (4.19) leads to the
following three-body coupling constant in different dimensions

g
(3)
3 (D = 1) =

3π

2

v0
3

λ0
3

[√
3(1− α3/2)− (2 + α)3/2 + (1 + 2α)3/2

]
, (4.20)
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g
(3)
3 (D = 2) =

9π2

8

v0
3

λ0
4

[
− 2 ln (2 + α)− α ln (3α2 + 6α)

+ 2α ln (1 + 2α) + ln (3 + 6α)
]
,

(4.21)

and

g
(3)
3 (D = 3) =

3π4

4

v0
3

λ0
5

[
−
√

3 +
√

3α + 3
√

2 + α− 3
√

1 + 2α
]
. (4.22)

In all these cases the configuration of the potential where it has a repulsive central
part and attractive tail (v0 > 0 and α > 1 or v0 < 0 and α < 1) leads to a three-
body repulsion (see Fig. 4.1). This phenomenon has been noticed in Ref. [96]. In our
perturbative analysis it follows from the fact that the Fourier transform of V (x) is positive
for any momentum. By contrast, the repulsive tail case leads to a three-body attraction.

Note also that the momentum integral in Eq. (4.14) is converging at small momenta
since V (k) ∝ k2 with the main contribution to the integral coming from momenta com-
parable to the inverse interaction range. We can thus say that the effective three-body
term is characterized by the same range as the two-body potential.

-4 -2 0 2 4

-0.05

0.00

0.05

0.10

Figure 4.1: The double Gaussian potential (in black) is the sum of two Gaussian potential
(in red and blue). The ratio of their amplitude is fixed by the condition Eq. (4.18). We
show here the attractive tail case with v0 > 0 and α > 1 which leads to g(3)

3 > 0, i.e a
three-body effective repulsion.

4.2.2 Yukawa-plus-delta potential

We now consider the case of an attractive Yukawa potential compensated by a repulsive
delta potential. A concrete realization of this model can be achieved by placing bosonic
impurities (species ↓) in a Bose-Einstein condensate of another species (↑) [97, 98]. For
simplicity, we assume that m↓ = 1 � m↑ so that we can integrate out the host-gas dy-
namics in the adiabatic Born-Oppenheimer approximation. In this manner the phonon
exchange in the host gas leads to a static induced Yukawa attraction between the im-
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purities and their direct interaction can be tuned in order to reach the condition (4.18).
This is attained at the phase-separation threshold g↑↓ =

√
g↑↑g↓↓, where gσσ′ are the two-

body interaction coupling constants. In this case, the Fourier transform of the effective
interaction (exchange plus direct) between two ↓ impurities is given by

V (k) = v − v/ξ2

k2 + 1/ξ2
=

vk2

k2 + 1/ξ2
, (4.23)

with v = g↓↓ = g2
↑↓/g↑↑ and ξ = 1/

√
4m↑g↑↑n↑ [97, 98].

Substituting Eq. (4.23) into Eq. (4.14) leads to the three-body coupling constant

g3 = SDv
3ξ4−D, (4.24)

where S1 = 3/8, S2 = 3/(4π) and S3 = 9/(16π). Similarly to the double-Gaussian case,
the attractive Yukawa tail corresponds to an effective three-body repulsion since v and
V (k) are positive. One can also notice that the main contribution to the effective three-
body interaction term comes from k ∼ 1/ξ since the integral in Eq. (4.14) converges and
there is no other momentum scale.

By analyzing the double-Gaussian potential, the Yukawa-plus-delta potential, and a
few other relatively simple two-body potentials satisfying Eq. (4.18) we have observed
that the signs of their long-range tails are inversely correlated with the sign of the
emergent effective three-body interactions. It is important to mention that this does not
hold in general. As a counterexample consider a double-Gaussian potential with, say,
attractive tail, to which we add a very weak Yukawa-plus-delta potential with repulsive
tail. The three-body interaction in this case is dominated by the double-Gaussian part
and is repulsive. However, since the Gaussian-law decay is faster than Yukawa, no matter
how weak the Yukawa part is, it will dominate the long-range behavior of the resulting
two-body potential. We have just constructed a two-body potential satisfying Eq. (4.18),
for which the two-body tail and the three-body effective interaction are both repulsive.

4.2.3 Quasi-two-dimensional dipoles

We now consider quasi-two-dimensional dipoles in the geometry defined by r = {x1, x2, y},
where x = {x1, x2} and y are the in-plane and transverse coordinates, respectively. The
external confinement potential is harmonic

U(y) =
y2

2l4
− 1

2l2
, (4.25)

where l is the confinement oscillator length. The transversal eigenfunctions equal ψν(y) =

e−y
2/(2l2)Hν(y/l)/

√
l
√
π2νν! and correspond to εν = ν/l2. The dipole moments are

assumed to be in the {x1, y} plane tilted by the angle θ with respect to the y-axis (see
Fig. 4.3). The corresponding two-body interaction potential is the sum of the dipole-
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dipole and zero-range (pseudo)potentials [99]

V (r) = r∗
r2 − 3(x1 sin θ + y cos θ)2

r5
+ 4πaδ(r) (4.26)

with the Fourier transform

V (k, p) = 4πr∗

[
(k1 sin θ + p cos θ)2

k2 + p2
− 1

3
+
a

r∗

]
, (4.27)

where r∗ is the dipolar length proportional to the square of the dipole moment, k =

{k1, k2}, and k = |k|. Equation (4.18) for this tilted-dipole setup translates to the
condition [100–102]

a = a∗ = (1/3− cos2 θ)r∗, (4.28)

which marks the point where V (0, p) = 0.

Equation (4.26) should be understood as an effective mean-field potential valid in the
limit of zero momenta and energies. The short-range coupling constant 4πa is defined
by postulating that the N -body interaction energy shift in the limit of extremely large
l scales as

E[N ] =

(
N

2

)
1√
2πl

4π(a− a∗). (4.29)

This formulation of the zero-momentum limit avoids problems associated with the fact
that this limit in Eq. (4.27) is not well defined, which, in particular, makes Eq. (4.8)
useless in the strictly uniform three-dimensional space. For the same reason a cannot be
called the scattering length since the zero-momentum limit of the scattering amplitude
depends on the direction of the momentum. In spite of this peculiarity of the potential
(4.26) it could be treated perturbatively in the same manner as the ordinary isotropic
pseudopotential 4πaδ(r). The ultraviolet cutoff implicit in Eq. (4.26) may or may not be
important for a given observable (here we have in mind energy shifts or coupling constants
g

(i)
n ) depending on whether the corresponding momentum integral is ultraviolet divergent
or not.

The matrix elements of the potential (4.27) of interest to us can be written as 2

V ν0
µ0 (k) = V 0ν

µ0 (k) = V 0ν
0µ (k) =

∫ ∞
−∞

dp

2π
V (k, p)λν(p)λµ(−p), (4.30)

where
λν(p) =

∫ ∞
−∞

ψν(y)ψ0(y)eipydy = (−1)ν/2(lp)νe−p
2l2/4/

√
2νν!. (4.31)

2Our derivation of the matrix elements follows the procedure of Edler et al. [103] who discussed
quasi-one-dimensional dipoles aligned along the symmetry axis.
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Integrating over p in Eq. (4.30) then gives

V ν0
µ0 (k) = V 0ν

µ0 (k) = V 0ν
0µ (k) =

(−1)µ+s/2

2(s−1)/2

√
π

ν!µ!

a− a∗
l

[1 + (−1)s](s− 1)!!

− (−1)µ+s/2

2s

√
π

ν!µ!

r∗
l

(kl)s+1ek
2l2/2

×
{

[1 + (−1)s](s− 1)!! Γ

(
1− s

2
,
k2l2

2

)(
cos2 θ − k2

1

k2
sin2 θ

)
+

1− (−1)s√
2

s!! Γ

(
−s

2
,
k2l2

2

)
k1

k
sin 2θ

}
−−→
s�1

√
s!

ν!µ!

1

2s/2+5/4π3/4s1/4l
[(−1)µ+s/2V (k,

√
s/l) + (−1)ν+s/2V (k,−

√
s/l)],

(4.32)

where Γ(j, σ) is the incomplete Gamma function and we have denoted s = ν + µ.
The last line in Eq. (4.32) is an approximate expression valid for large s and obtained by
observing that the product λν(p)λµ(−p) in this limit is essentially the sum of two delta
peaks at p = ±

√
s/l.

Substituting Eq. (4.32) into Eq. (4.14) and setting a = a∗ we obtain

g
(3)
3 =

r3
∗
l

[C0F0(θ) + C1F1(θ)], (4.33)

where
F0(θ) =

1 + 3 cos 2θ

4

31 + 12 cos 2θ + 21 cos 4θ

64
, (4.34)

F1(θ) =
1 + 7 cos 2θ

8
sin2 2θ, (4.35)

and the numerical coefficients C0 = −141.1 and C1 = −10.7. The solid line in Fig. 4.2
shows C0F0(θ)+C1F1(θ) as a function of θ. It equals C0 for θ = 0, i.e., for dipoles aligned
perpendicularly to the plane we arrive at a three-body attraction (assuming positive r∗).
Again, we observe that the three-body attraction is correlated with the repulsive tail.
By contrast, for dipoles in the plane C0F0(π/2) +C1F1(π/2) = −5C0/16 and we predict
a three-body repulsion.

That the sum in Eq. (4.14) converges at large momenta and energies can be un-
derstood by considering the purely three-dimensional version of Eq. (4.14) for dipoles.
In this case, V (k) = O(|k|0) and the integral over the three-dimensional momentum is
converging at large k as

∫
d3k/k4. A cutoff at k ∼ 1/r0 would produce an effective-

range correction to g3 on the order of δg3 ∼ r0r
3
∗/l

2 3. Assuming r0 ∼ r∗, this gives the
“natural” scaling δg3 ∼ r4

∗/l
2 for the three-dimensional three-body interaction coupling

constant ∝ r4
∗ projected to the transversal ground state of the trap. This is to say that

the three-body interaction (4.33) is enhanced by the factor l/|r∗| � 1 compared to the

3Introducing a cutoff εc ∝ 1/r20 for excitation energies in Eq. (4.14) we clearly observe the scaling
g3(εc)− g3(∞) ∝ 1/

√
εc. We use this scaling for calculating C0, C1 in Eq. (4.33).
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“natural” three-dimensional scale. Nevertheless, it remains much weaker than the “natu-
ral” two-dimensional scaling g3 ∝ l2 for a nonperturbative two-dimensional potential of
range l.

The quasi-two-dimensional model at hand is often reduced to a purely two-dimensional
one by projecting the interaction potential on the transversal Gaussian ground state [60,
100, 102, 104–109]. In our case this projection means that in Eq. (4.14) we retain only
terms with ν = µ = η = 0. This approximation gives C0 = −127.4 and C1 = 0 in
Eq. (4.33) and is rather accurate (see the dashed line in Fig. 4.2). This curious fact
is consistent with the above-mentioned convergence of the sum in Eq. (4.14) at high
energies. As we will now show, the two-body energy correction requires a more accurate
treatment.

0 π /8 π /4 3π /8 π /2
-150

-100

-50

0

50

θ

g
3(3
)

Figure 4.2: g(3)
3 in units of r3

∗/l as a function of the tilt angle θ for the case of quasi-
two-dimensional dipoles. The solid line is obtained by evaluating the sum in Eq. (4.14)
with all excited states of the trap taken into account. The dashed line includes only the
transverse ground state (ν = µ = η = 0). Assuming r∗ > 0 the effective three-body
interaction monotonically changes from attractive when dipoles are perpendicular to the
plane (θ = 0) to repulsive when they are in the plane (θ = π/2). The change of sign
takes place at θ ≈ 0.29π.

Let us now discuss the confinement-induced correction to the two-body interaction,
given by Eq. (4.10), for a = a∗. Under this condition the sum in Eq. (4.10) converges
at small momenta and we do not have to deal with the logarithmic infrared divergence,
typical for the “ordinary” two-dimensional scattering (see, for instance, §45 in [13]). On
the other hand, Eq. (4.10) does feature an ultraviolet diverging part

− 1√
2πl

∑
s,k

V 2(k,
√
s/l) + V 2(k,−

√
s/l)

4πl
√
s(k2 + s/l2)

, (4.36)

which is obtained by substituting the large-s asymptote given by the last line in Eq. (4.32)
into Eq. (4.10) and using the fact that

∑
ν,µ(ν!µ!)−1δν+µ,s = 2s/s!. By identifying s =
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(lp)2 and passing from summation over s to integration over p Eq. (4.36) transforms into

− 1√
2πl

∫ ∞
−∞

dp

2π

∫
d2k

(2π)2

V 2(k, p)

k2 + p2
, (4.37)

which is nothing else than the second-order Born correction calculated for V (k, p) in
free space and averaged over the transversal density profile 4. This piece renormalizes
the short-range coupling constant 4πa and has to be formally thrown away since it has
already been taken into account in Eq. (4.29). The regularized sum in Eq. (4.10) for
a = a∗ then equals

g
(2)
2 =

r2
∗
l2

(
B0

3 + 10 cos 2θ + 19 cos2 2θ

32
+B1

sin2 2θ

4

)
, (4.38)

where the coefficients B0 = 0.55 and B1 = 1.5 are obtained by extrapolating the nu-
merical summation to infinite cutoff. The second-order correction Eq. (4.38) is positive
(because of the renormalization) and monotonically decays from B0(r∗/l)2 for θ = 0

(dipoles perpendicular to the plane) to (3/8)B0(r∗/l)2 for θ = π/2 (dipoles in the plane).
This means that in order to stay at the two-body zero crossing while increasing the
confinement, one has to tune the short-range interaction coupling constant to the value
4πa ≈ 4πa∗ −

√
2πg

(2)
2 l (valid up to second order in r∗/l). We do not calculate g(3)

2

limiting our discussion to the leading-order two-body and three-body corrections.

We should note that the positivity of the renormalized g
(2)
2 may be specific to the

considered confinement and interaction potentials. Zin and co-workers [110], using es-
sentially the same renormalization scheme but for dipoles under periodic boundary con-
ditions, arrived at a negative g(2)

2 .

Figure 4.3: To the left, the quasi-two dimensional case where the dipole moments (in red
and green) are assumed to be in the {x1, y} plane tilted by the angle θ with respect to
the y-axis. To the right, the quasi-one dimensional case where the dipole moments are
assumed to be in the {x, y1} plane tilted by the angle θ with respect to the longitudinal
x-axis.

4Averaging over the density profile means multiplying by
∫
ψ4
0(y)dy = 1/(

√
2πl) and by∫

ψ4
0,0(y)d

2y = 1/(2πl2), respectively, in the quasi-two-dimensional and quasi-one-dimensional cases.
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4.2.4 Quasi-one-dimensional dipoles

We now proceed to discussing the quasi-one-dimensional model of tilted dipoles, wich
has recently been realized experimentally with Dy [111]. In spite of their formal analogy,
the quasi-two-dimensional and quasi-one-dimensional models of tilted dipoles have an
interesting difference which concerns the effective three-body interaction. Let us define
the quasi-one-dimensional model by the coordinates r = {x,y} = {x, y1, y2}, the external
confinement potential is assumed cylindrically symmetric,

U(y) =
y2

2l4
− 1

l2
. (4.39)

The single-particle eigenfunctions ψν(y) satisfy [−∂2
y/2 + U(y)]ψν,m = εν,mψν,m, where

εν,m = (2ν + |m|)/l2. We have used the cylindrical symmetry of the potential (4.39)
to write ν = {ν,m}, where the integers ν ≥ 0 and −∞ < m < ∞ are the radial and
angular quantum numbers, respectively. The eigenfunctions read

ψν,m(y) = eimφ
(−1)ν

l
√
π

√
ν!

(ν + |m|)!

(y
l

)|m|
L|m|ν

(
y2

l2

)
e−y

2/2l2 , (4.40)

where L|m|ν is the Laguerre polynomial and φ = arg(y1 + iy2).
The dipole moments are assumed to be in the {x, y1} plane tilted by the angle θ with

respect to the longitudinal x-axis (see Fig. 4.3). The interaction (pseudo)potential is
then given by

V (r) = r∗
r2 − 3(x cos θ + y1 sin θ)2

r5
+ 4πaδ(r), (4.41)

which can also be obtained from Eq. (4.26) by replacing x1 → y1, x2 → y2, and y → x.
Accordingly, the Fourier transform V (k,p) of (4.41) is obtained from Eq. (4.27) by
replacing k1 → p1, k2 → p2, and p→ k.

In contrast to the quasi-two-dimensional case, for quasi-one-dimensional dipoles with
tilt, Eq. (4.18) cannot in general be satisfied for all y. Indeed, one can check that∫

dxV (x,y) = 4π(a− a∗)δ(y) + 2r∗ sin2 θ
y2

2 − y2
1

y4
, (4.42)

where

a∗ =

(
1

3
− sin2 θ

2

)
r∗. (4.43)

From Eq. (4.42) we see that the condition V 00
00 (0) = 0 requires a = a∗ (this condition

corresponds to εdd = 1 in notations of Ref. [103]). However, the matrix elements V ζηµν (0)

involving excited states all vanish only if a = a∗ and sin θ = 0. Therefore, for a finite
tilt angle the dominant nonpairwise interaction correction is given by g(2)

3 Eq. (4.11) and
corresponds to an effective three-body attraction. We will calculate it for arbitrary θ.
As far as g(3)

3 is concerned, it can become dominant only at (or sufficiently close to) the
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point θ = 0.
The relevant matrix elements needed for these calculations can be written as 5

V
0{ν,m}
0{µ,m′}(k) = V

0{ν,m}
{µ,−m′}0(k) = V

{ν,−m}0
0{µ,m′} (k) = V

{ν,m}0
0{µ,−m′}(k)

=

∫
d2p

(2π)2
V (k,p)λν,m(p)λµ,m′(−p),

(4.44)

where
λν,m(p) =

∫
ψ0(y)ψν,m(y)eipyd2y

=
(−1)ν+|m|/2√
ν!(ν + |m|)!

(
lp

2

)2ν+|m|
e−p

2l2/4

(
p1 + ip2

p

)m
.

(4.45)

Then, integrating in Eq. (4.44) over p gives

V
0{ν,m}
0{µ,m′}(k) =

(−1)s2−s−1s!√
ν!(ν + |m|)!µ!(µ+ |m′|)!

4(a− a∗)δm+m′,0 + r∗δ|m+m′|,2 sin2 θ

l2

+
r∗(−1)s(kl/2)2s+2ek

2l2/2

l2
√
ν!(ν + |m|)!µ!(µ+ |m′|)!

× {s!Γ(−s, k2l2/2)[δm+m′,0(4− 6 sin2 θ)− δ|m+m′|,2 sin2 θ]

+ 2(s+ 1/2)!Γ(−s− 1/2, k2l2/2)δ|m+m′|,1 sin 2θ},

(4.46)

where s = ν + µ+ (|m|+ |m′|)/2.
Substituting Eq. (4.46) and more precisely, its particular case:

V 00
0{ν,m}(0) =

(−1)ν

2ν−1

(
a− a∗
l2

δm,0 −
r∗ sin2 θ

8l2

√
ν + 1

ν + 2
δ|m|,2

)
, (4.47)

into Eq. (4.11), we get

g
(2)
3 = −12 ln

4

3

(
a− a∗
l

)2

+

(
3

2
− 6 ln

4

3

)(r∗
l

)2

sin4 θ. (4.48)

The first term on the right-hand side of Eq. (4.48) recovers the result of Refs. [89, 91]
obtained for r∗ = 0. By tuning to a = a∗ this term vanishes simultaneously with the
leading two-body energy shift g(1)

2 = V 00
00 (0). Nevertheless, Eq. (4.48) predicts that the

three-body attraction persists for any finite tilt angle even if a = a∗. Tilted dipoles can
thus realize a model of one-dimensional bosons with three-body attraction, interesting
for some applications (see, for example, Ref. [78]). Curiously, g(2)

3 remains finite also for
the “magic” angle given by cos θ = 1/

√
3, a characteristic point where V (x,y) looses its

long-range dipolar tail in the x direction.
As we have mentioned, for θ = 0 and a = a∗ the second-order term g

(2)
3 vanishes.

5Our derivation of the matrix elements follows the procedure of Edler et al. [103] who discussed
quasi-one-dimensional dipoles aligned along the symmetry axis.
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The three-body interaction in this case emerges in the third order and can be repulsive.
Evaluating Eq. (4.14) and using Eq. (4.46) with θ = 0 and a = a∗, we obtain 6

g
(3)
3 = 4.65(r∗/l)

3. (4.49)

We see that the attractive long-range tail (corresponding to r∗ > 0) is correlated with
a three-body repulsion. As in the quasi-two-dimensional case we can compare the full
quasi-one-dimensional model with the purely one-dimensional one obtained by projecting
the interaction potential V (r) to the radial ground state. The calculation of g(3)

3 then
proceeds by restricting the sum in Eq. (4.14) to ν = µ = η = 0 and gives g(3)

3 =

3.57(r∗/l)3.

Finally, let us come back to the case of finite θ and mention the confinement-induced
correction g(2)

2 . For a = a∗ Eq. (4.10) contains no infrared divergences and the ultraviolet
one has the same origin and is treated in the same manner as in the quasi-two-dimensional
case. Performing a very similar analysis of the large-s asymptote of V 0{ν,m}

0{µ,m′}(k) we arrive
at the diverging integral of the type (4.37) for the function V 2(k,p) with the prefactor
1/(2πl2) instead of 1/(

√
2πl) (see Sec.4.2.3). When calculating Eq. (4.10) we subtract

this diverging contribution and arrive at

g
(2)
2 =

r2
∗
l3

(D0 +D1 sin2 θ +D2 sin4 θ) (4.50)

with the numerical coefficients D0 = 0.081, D1 = 0.35 and D2 = −0.2. The correction
(4.50) is always positive.

We can try to calculate g(2)
2 by projecting to the transversal ground state, i.e., in-

tegrating over k in Eq. (4.10) with ν = µ = 0. In this manner we obtain g
(2)
2 =

−0.94(r2
∗/l

3)[1 − (3/2) sin2 θ]2, which is actually quite different from Eq. (4.50), indi-
cating that the correct renormalization procedure is important. In fact, Edler and co-
workers [103] have calculated the BMF energy density for quasi-one-dimensional dipoles
with θ = 0 and a = a∗ by using the projected value of g(2)

2 as the low-density reference
point for their Hugenholtz-Pines approach. We agree with them on the effective three-
body repulsion in this case, but disagree on g2. This, however, does not qualitatively
change the conclusion of Ref. [103] on the existence of self-bound states in this system
since one can always tune g2 by modifying a. Nevertheless, it would be interesting to
perform the BMF crossover analysis using Eq. (4.50) as the low-density reference point.

6Again, we use the scaling g3(εc) − g3(∞) ∝ 1/
√
εc after the introduction of a cutoff εc ∝ 1/r20

for excitation energies in Eq. (4.14). We use this scaling for calculating the numerical coefficient in
Eq. (4.49).
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4.3 Bogoliubov theory

The standard perturbation theory of Sec. 4.1 requires that the interaction shifts be
smaller than the level spacing in the non-interacting system of N particles. In principle,
one can always reach this regime by decreasing V while keeping the volume fixed. The
fixed volume maintains a low-momentum cutoff, avoiding possible infrared divergences
in the integrals, and leads to the regular expansion of the energy in integer powers of V .

The problem of infrared divergences can also be solved in the thermodynamic limit
by turning to the Bogoliubov theory which accounts for a nonperturbative change in
the system behavior at length scales comparable or larger than the healing length ξ ∝
1/
√
V 00
00 (0)n. The Bogoliubov theory thus effectively introduces an infrared density-

dependent cutoff at k ∼ 1/ξ, which, in particular, leads to the nonanalyticity of the
energy as a function of n (and V ).

In all examples of Sec. 4.2 the infrared divergences are eliminated by the condition
(4.18) 7. Our theory thus predicts the regular expansion of the energy in integer powers
of n, characterized by the effective few-body coupling constants g2 and g3, which are
“local” BMF contributions involving virtual excitations with wave lengths comparable to
the interaction range.

The perturbation theory of Sec. 4.1 is basically the Born series expansion for which
the typical value of |V | (in real space) multiplied by the square of its range should be
small [13]. This small parameter is density independent. By contrast, the Bogoliubov
theory relies on the relative smallness of the non-condensed fraction, which depends
on the density. It is then interesting to figure out how the hierarchy of the Bogoliubov
theory (the mean-field term, the leading-order BMF contribution, the beyond-Bogoliubov
terms) is related to our expansion in powers of V . In the remaining part of this section
we show how the perturbative results obtained in Sec. 4.1 can be deduced from the
Bogoliubov theory.

The Hamiltonian (4.1) in the second quantization reads

Ĥ =
∑
q,ν

(q2/2 + εν)â†q,ν âq,ν

+
1

2

∑
q1,q2,k,ν,µ,η,ζ

V ζηµν (k)â†q2+k,µâ
†
q1−k,ζ âq2,ν âq1,η.

(4.51)

Following the standard Bogoliubov procedure we assume the macroscopic occupation of
the ground state replacing â0,0 and â†0,0 by

√
n0 and then expanding Ĥ = H0 + Ĥsp +∑4

i=1 Ĥi, where
H0 = V 00

00 (0)n2
0/2, (4.52)

7There are, of course, examples featuring infrared divergences on the one hand, and satisfying
Eq. (4.18) on the other. Consider, for instance, the low-momentum scaling V (k) ∝ |k|γ with small
positive γ.
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Ĥsp =
∑
q,ν

(q2/2 + εν)â†q,ν âq,ν , (4.53)

Ĥ1 = n
3/2
0

∑′

ν

V 00
ν0 (0)â†0,ν + V 00

0ν (0)â0,ν , (4.54)

Ĥ2 =
n0

2

∑′

ν,µ,k

V ν0µ0 (k)â†k,µâ
†
−k,ν + V 0ν

0µ (k)â−k,µâk,ν

+ 2[V 00
µν (0) + V 0ν

µ0 (k)]â†k,µâk,ν ,

(4.55)

Ĥ3 =
√
n0

∑′

q,k,ν,µ,η

V µην0 (k)â†k,ν â
†
q,µâq+k,η

+ V 0ν
ηµ (k)â†q+k,ηâk,ν âq,µ,

(4.56)

and
Ĥ4 =

1

2

∑′

q1,q2,k,ν,µ,η,ζ

V ζηµν (k)â†q2+k,µâ
†
q1−k,ζ âq2,ν âq1,η. (4.57)

In Eqs. (4.54-4.57) the primes indicate that the corresponding sum excludes terms in-
volving creation or annihilation operators of condensate particles.

Equation (4.52) is the usual mean-field term. As far as the linear part Eq. (4.54) is
concerned, it appeared because we skipped one step of the standard Bogoliubov method.
Namely, we just took the single-particle ground state φ0,0(x,y) [see Eq. (4.2)] for the
condensate mode instead of solving the mean-field Gross-Pitaevskii equation, which, in
general, leads to a different profile in the confined direction (see, for example, [105]).
The inconvenience of having this linear term is compensated by the fact that the matrix
elements V ζηµν (k) do not depend on the density and other parameters through the out-
come of the Gross-Pitaevskii equation. In fact, this equation may not even always have
a solution if the system is unstable from the mean-field viewpoint. It is also interesting
to observe that tuning V 00

00 (0) to zero does not necessarily mean Ĥ1 = 0 since matrix
elements of the type V 00

ν0 (0) can still remain finite. A particular example of this phe-
nomenon is quasi-one-dimensional dipoles with finite tilt discussed in Sec. 4.2.4. In such
cases, one can treat Ĥ1 as a perturbation on top of the single-particle Hamiltonian Ĥsp

given by Eq. (4.53). The second-order correction to the energy calculated in this manner
equals g(2)

3 n3
0/6, with g

(2)
3 given by Eq. (4.11).

In what follows we proceed under the assumption (4.18), which means H0 = Ĥ1 = 0.
Among remaining terms the sum Ĥsp+ Ĥ2 is the quadratic Bogoliubov Hamiltonian, the
zero-point energy of which gives the leading-order BMF contribution to the energy den-
sity. The diagonalization of this Hamiltonian consists of solving the linear Bogoliubov-de
Gennes equations and can be done analytically in some cases (for instance, for flat con-
densates with periodic boundary conditions [110]). Otherwise, and this is the case of
harmonic confinement, this procedure requires a numerical diagonalization of a 2M×2M

matrix, where M is the size of the discretized ν-space [103]. This is however, not nec-
essary for our purposes. We just note that for small V or n0 we can treat Ĥ2 as a
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perturbation to Ĥsp and proceed with the standard perturbation theory. It is then easy
to see that the first-order energy shift vanishes, and the second and third-order correc-
tions are given by g(2)

2 n2
0/2 and g(3)

3 n3
0/6, respectively, where the coupling constants are

given by Eqs. (4.10) and (4.14). On the other hand, the third-order correction to the
two-body constant Eq. (4.15) is not recovered, which is understandable since Ĥ2 does
not include interactions between excited atoms.

In our search for all third-order corrections we thus have to formally go beyond the
Bogoliubov approximation and consider Ĥ3 and Ĥ4. Note that these operators do not
perturb the ground state of Ĥsp in any order. They can thus only react on the ground
state already perturbed by Ĥ2 leading to corrections of order V 3 or higher. Indeed, the
ground state of Ĥsp + Ĥ2, calculated to the first order in Ĥ2, reads

|1〉 = −n0

2

∑′

ν,µ,k

V ν0µ0 (k)

k2 + εν + εµ
â†k,µâ

†
−k,ν |0〉 , (4.58)

where |0〉 is the vacuum of excitations of Ĥsp, i.e., pure condensate with density n0. We
then observe that 〈1| Ĥ3 |1〉 = 0 and the leading-order beyond-Bogoliubov contribution
equals

〈1| Ĥ4 |1〉 = g
(3)
2 n2

0/2, (4.59)

where g(3)
2 is given by Eq. (4.15). Finally, we note that the leading-order noncondensed

density equals

δn = 〈1|
∑
q,ν

â†q,ν âq,ν |1〉 = n2
0

∑
k,ν,µ

|V 0ν
0µ (k)|2

(k2 + εν + εµ)2
, (4.60)

and, to the order V 3, for all the above mentioned energy corrections we can take n0 to
be equal to the total density. We have thus established the consistency of the second-
quantized Bogoliubov approach with the standard first-quantized approach of Sec. 4.1
up to the order V 3. Note, however, that Eq. (4.60) features an infrared logarithmic
divergence for quasi-two-dimensional dipoles since V 0ν

0µ (k) ∝ k. This divergence leads
to the scaling δn ∝ V 2 lnV , which does not change our conclusion, but signals that at
higher orders a nonperturbative treatment of the quadratic Bogoliubov Hamiltonian is
necessary in this case.

4.4 Conclusions

In conclusion, we have developed a perturbation approach for calculating interaction
energy shifts for bosons with the interaction potential V tuned close to the condition
(4.18). Under this assumption the leading nonpairwise energy correction is a third-order
effect manifesting itself in the form of an effective three-body interaction. Whether
this interaction is attractive or repulsive is determined by the shape of V (k) through
Eq. (4.14). For simple two-body potentials the sign of g3 is systematically anticorrelated
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with the sign of the long-range tail of the two-body potential, but this does not hold in
general (see a counterexample in the end of Sec. 4.2.2).

We have applied our theory to a few particular shapes of V in pure dimensions
(double-Gaussian and Yukawa-plus-delta potentials) and in quasi-low-dimensional ge-
ometries where we have considered tilted dipoles. For the latter systems we have fully
characterized the leading two-body and three-body energy corrections as a function of
the tilt angle. In particular, we have found that dipoles under harmonic quasi-two-
dimensional confinement are characterized by an effective three-body attraction when
aligned perpendicularly to the plane and by a three-body repulsion, if aligned in the
plane (see Fig. 4.2). It remains to be seen if this repulsion can stabilize dilute su-
persolid stripe phases of tilted dipoles, so far predicted to be stable only in the dense
regime [112,113]). The three-body repulsion for dipoles aligned in the plane has also been
found by Zin et al. [110], although in their case the quasi-two-dimensional confinement
is achieved by imposing the periodic boundary condition.

Our analysis of quasi-one-dimensional dipoles has revealed a strong (second-order)
three-body attraction for any finite tilt angle and a weaker (third-order) three-body
repulsion when the dipoles are aligned along the unconfined axis. This latter observation
is in agreement with the BMF calculations of Ref. [103]. We however disagree on the
leading-order two-body correction g

(2)
2 , positive in our case and negative in Ref. [103]

(see our comment in the end of Sec. 4.2.4). We argue that our results can be used to
improve the Hugenholtz-Pines analysis by providing the low-density reference point for
quasi-low-dimensional tilted dipoles.
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How can one engineer an effective three-body repulsive force?

How can it stabilize quasi-two-dimensional dipolar atoms in the pursuit of the super-
solid phase?

In this Chapter, we analyze a simple mechanism for the emergence of an effective
three-body interaction. Namely, we consider bosons interacting with each other by a po-
tential tuned to a zero-crossing near a narrow Feshbach resonance, where the conversion
amplitude from atoms to closed-channel dimers is small and where the two-body scat-
tering amplitude is characterized by a large effective range Re. The effective three-body
force appears in this model when one takes into account the interaction between atoms
and closed-channel dimers, characterized by the coupling strength g12. We find that the
three-body coupling constant g3 in D dimensions is proportional to RD

e g12 and can thus
be enhanced near narrow two-body zero crossings.

The Chapter is organized as follows. In Sec. 5.1 we introduce the two-channel model
and perform its mean-field analysis. In the dilute limit, the density of closed-channel
dimers in the system scales as RD

e n
2 � n and the effective three-body interaction emerges

simply as the atom-dimer mean-field interaction energy ∝ RD
e g12n

3. We show that this
simple mechanism, applied to two-dimensional dipoles, generates conditions for observing
supersolid phases predicted in Ref. [114].

In Secs. 5.2 and 5.3 we turn to the few-body perspective and perform a detailed
nonperturbative analysis of the two-body (Sec. 5.2) and three-body (Sec. 5.3) problems
with zero-range potentials. In particular, the three-body scattering length near a narrow
two-body zero crossing is found for an arbitrary atom-dimer interaction strength in any
dimension.

5.1 Mean-field analysis

We start with the two-channel model described by the Hamiltonian [115]

Ĥ =

∫
r

{
− ψ̂†1(r)

∇2

2
ψ̂1(r) + ψ̂†2(r)

(
−∇

2

4
+ ν0

)
ψ̂2(r)

−α
2

[ψ̂†1(r)ψ̂†1(r)ψ̂2(r) + h.c.] +
∑
σσ′

gσσ′

2
n̂σ(r)n̂σ′(r)

}
, (5.1)

where ψ̂1 and ψ̂2 are, respectively, the annihilation operators of atoms and dimers, n̂σ are
the corresponding density operators, ν0 is the detuning parameter, gσσ′ are interaction
constants, α is the atom-dimer conversion amplitude (without loss of generality assumed
real and positive), and we have set ~ and atom mass equal to 1. Hereafter,

∫
r
denotes∫

dDr.
In the mean-field description of (5.1) we assume pure atomic and molecular conden-

sates ψ̂σ =
√
nσ with the same phase (which corresponds to the energy minimum for
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α > 0) [115]. We arrive at the energy density

E/LD = ν0n2 − αn1

√
n2 +

∑
σσ′

gσσ′nσnσ′/2, (5.2)

which we minimize with respect to n2 (or n1) keeping the total density n = n1 + 2n2

constant. For positive ν0 and small n the dimer population behaves quadratically in n

n2 =

(
αn

2ν0

)2(
1 +

4g11ν0 − 2g12ν0 − 3α2

ν2
0

n

)
+O(n4) (5.3)

and the energy density reads

E

LD
=

(
g11

2
− α2

4ν0

)(
n2 − α2

ν2
0

n3

)
+
g12α

2

4ν2
0

n3 +O(n4). (5.4)

The two-body zero crossing occurs at the detuning ν0 = α2/2g11 where the first term
in the right-hand side of Eq. (5.4) vanishes. One can then see that the residual three-
body energy shift originates from the direct mean-field interaction of atoms with dimers.
It equals g12n1n2 ≈ g3n

3/3! with

g3 = 6g12g
2
11/α

2 = 3g12R
D
e . (5.5)

The effective volume RD
e = 2g2

11/α
2 introduced in Eq. (5.5) characterizes the closed-

channel population. Indeed, the density of dimers can be written as

n2 ≈ RD
e n

2/2 (5.6)

meaning that each pair of atoms is found in the closed-channel dimer state with proba-
bility (Re/L)D.

If gσσ′ are of the same order of magnitude ∼ g, the expansion (5.4) is in powers of
RD

e n, which we assume small. Then, at the zero crossing the three-body term gives the
leading contribution to the energy density ∼ gn2(RD

e n)1 and we neglect subleading terms
such as, for instance, the dimer-dimer interaction ∼ g22α

4n4/ν4
0 ∼ gn2(RD

e n)2. On the
other hand, it may be interesting to keep a small but finite effective two-body interaction
geff = g11 − α2/2ν0 ∼ g(RD

e n)� g, so that it can compete with the three-body term. It
is also useful to note that the effective two-body interaction depends on the collisional
momentum as geff(k) = geff(0) − RD

e k
2 (see [116] and Sec. 5.2). However, if k � √gn,

the corresponding effective-range correction gives a contribution to (5.4) much smaller
than gn2(RD

e n)1. We thus conclude that on this level of expansion we reduce (5.1) to
the model of scalar bosons with local effective two-body and three-body interactions.
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5.1.1 Application to two-dimensional dipoles

Having in mind supersolid phases, which require a three-body repulsive force [114], let
us perform the same mean-field analysis in the case of two-dimensional dipoles ori-
ented perpendicular to the plane. Instead of pointlike interactions characterized by the
momentum-independent constants gσσ′ we now assume momentum-dependent pseudopo-
tentials [114,117]

Ṽσσ′(|k− k′|) = gσσ′ − 2πdσdσ′ |k− k′|, (5.7)

where k and k′ are the incoming and outgoing relative momenta and d1 and d2 are
dipole moments of atoms and dimers, respectively. The pseudopotential (5.7) is an
effective potential valid only for the leading-order mean-field analysis at low momenta.
Its coordinate representation

Vσσ′(r− r′) =

∫
d2q

(2π)2
Ṽσσ′(q)e

iq(r−r′) (5.8)

has the long-distance asymptote dσdσ′/r3 with the characteristic range r∗σσ′ = 2µσσ′dσdσ′ ,
where µ11 = 1/2 and µ12 = 2/3 are the atom-atom and atom-dimer reduced masses,
respectively.

Obviously, for homogeneous condensates the momentum-dependent part of (5.7)
plays no role and our previous analysis holds. Namely, we arrive at the energy den-
sity E/L2 = geffn

2/2 + g3n
3/6, where geff = g11 − α2/2ν0 is tuned to be small and g3

is given by Eq. (5.5). Let us now assume that the atomic and dimer condensates are
spatially modulated with a characteristic momentum k (in the supersolid phase the mod-
ulation is periodic). Then, the most important new terms in Eqs. (5.2) and (5.4) are the
kinetic energy of the atomic component ∼ nk2 and the momentum-dependent part of the
atom-atom interaction ∼ −r∗11kn

2. Minimizing their sum with respect to k gives a con-
tribution εmod ∼ −r∗211n

3 to the energy density and the optimal modulation momentum
kmin ∼ r∗11n [114]. One can check that other momentum-dependent terms are sublead-
ing. For instance, the kinetic energy of dimers ∼ n2k

2 and the momentum-dependent
atom-dimer interaction ∼ r∗12knn2 carry an additional factor R2

en � 1. It is important
to mention that the density of dimers satisfies Eq. (5.6) locally, i.e., n2(r) ≈ R2

en
2(r)/2.

Deviations from this relation, which follows from minimizing the first two terms in the
right-hand side of Eq. (5.2), are energetically too costly. A change of n2 by, say, a factor
of two compared to the optimal value would cost ∼ g11n

2 � gn2(R2
en) in the energy

density.

This analysis leads us to the model of two-dimensional dipoles characterized by
an effective two-body pseudopotential Ṽ (k) = geff − 2πd2

1k and local three-body term
g3δ(r1 − r2)δ(r2 − r3). The mean-field phase diagram of this model has been worked
out in Ref. [114]. It has been shown that the stability of the system with respect to
collapse is ensured by the repulsive three-body interaction term compensating the effec-
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tively attractive εmod, which also scales as n3. The supersolid stripe, honeycomb and
triangular phases are predicted when these two terms are comparable and geff < 0. To
give a concrete example, the four-critical point where the three supersolid phases meet
with one another and with the uniform phase (this is also the point where the roton
minimum touches zero) is characterized by g12R

2
e = 2(πr∗11)2 and nR2

e = |geff |/g12.

5.1.2 Inelastic losses

Collisions of atoms with closed-channel dimers can lead to the relaxation to more deeply
bound molecular states. The rate of this process in a unit volume is given by αrn1n2,
where αr is the relaxation rate constant. In our model this corresponds to the atom loss
rate ṅ = −(3/2)αrR

D
e n

3, and we see that this effective three-body loss gets enhanced
with increasing Re in the same manner as the elastic three-body interaction (5.5). In
fact, the atom-dimer relaxation can be mathematically modeled by allowing g12 to be
complex. Shotan and co-workers [116] have measured the three-body loss rate constant
near a two-body zero crossing in three dimensions. They argue that this quantity is
proportional to R4

e . Here we claim a slightly different scaling (∝ R3
e), valid when Re is

much larger than the van der Waals range.
For Feshbach molecules of the size of the van der Waals length αr is typically of

the same order of magnitude as g12. The lifetime of the sample is thus comparable to
the timescale associated with the elastic three-body energy shift. There are, however,
ways of overcoming this problem. For dipoles oriented perpendicular to the plane in the
quasi-two-dimensional geometry inelastic processes are suppressed by the predominantly
repulsive dipolar tail. For instance, for Dy the atom-dimer dipolar length r∗12 can reach
about 50 nm depending on the magnetic moment of the closed-channel dimer. The
confinement of frequency ω = 2π×100 kHz for this system gives the oscillator length√
~/2µ12ω ≈ 21 nm. Under these conditions one expects a noticeable reduction of the

relaxation rate [118–120]. This mechanism may work also for dipolar molecules where
larger values of r∗12 can be reached.

A different approach to this problem is to consider closed-channel dimers which are
weakly-bound and have a halo character, i.e., well extended beyond the support of the
potential. A specific way of generating three-body interactions in this manner has been
proposed by one of us in Ref. [20]; two atoms in state 1 collide and both go to another
internal state 1′ where they form an extended molecular state. The effective three-body
force is then due to a repulsive mean-field interaction between atoms 1′ and a third atom
in state 1. In this case, the relaxation is slow since the dimer is not “preformed”.

5.2 Regularized model and two-body problem

We now go back to the model (5.1), try to analyze it from the few-body viewpoint, and
characterize the three-body interaction beyond the mean-field result (5.5) (also trying
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to determine its validity regime). Clearly, at some point the strength of the background
atom-atom interaction becomes a relevant parameter (not just the ratio g11/α). One
also observes that the pointlike interaction and conversion terms in Eq. (5.1) lead to
divergences and have to be regularized in dimensions D > 1, which necessitates an
additional parameter (a short-range or high-momentum cutoff).

In order to regularize the model (5.1) we use the delta-shell pseudopotential repre-
sentation [121,122] with a finite range r0. Namely, we rewrite Eq. (5.1) as

Ĥ =

∫
r

−ψ̂†1(r)
∇2

2
ψ̂1(r) + ψ̂†2(r)

(
−∇

2

4
+ ν0

)
ψ̂2(r)

+
∑
σσ′

gσσ′

2

∫
r

∫
y

δ̃r0(y)n̂σ(r + y/2)n̂σ′(r− y/2)

−α
2

∫
r

∫
y

δ̃r0(y)[ψ̂†1(r + y/2)ψ̂†1(r− y/2)ψ̂2(r) + h.c.], (5.9)

where δ̃r0(y) = δ(|y|− r0)/SD(r0) is the normalized delta shell with S1(r0) = 2, S2(r0) =

2πr0, and S3(r0) = 4πr2
0. The range r0 should be understood as the smallest lengthscale

in our problem. It does not enter in the final formulas and it is just a convenient way to
regularize the problem without using zero-range pseudopotentials, which have different
forms in different dimensions. In the one-dimensional case r0 can be set to zero from the
very beginning, but we keep it finite in order to use the same formalism for the cases
with different D. Note also that we do not intend to consider effects of scattering with
angular momenta l 6= 0. This is to say that, as r0 is decreased, the coupling constants
gσσ′ and α are tuned to reproduce desired (physical) Re and aσσ′ only for the s-wave
channel. Then, in the limit r0 → 0, the terms gσσ′ δ̃r0(y) and αδ̃r0(y) are too weak to
induce any scattering for l > 0.

A stationary two-body state with zero center-of-mass momentum and l = 0 in the
two-channel models (5.1) or (5.9) is represented by∫

c

∫
y

Ψ(y)ψ̂†1(c + y/2)ψ̂†1(c− y/2) |0〉+

∫
c

φψ̂†2(c) |0〉 , (5.10)

where |0〉 is the vacuum state. Acting on (5.10) by the operator Ĥ − E, and requiring
that the result vanish, we get the coupled Schrödinger equations at energy E,

[−∇2
y − E + g11δ̃r0(y)]Ψ(y) = αδ̃r0(y)φ/2, (5.11)

(ν0 − E)φ = αΨ(r0), (5.12)

which, upon eliminating the closed-channel amplitude φ, become

[−∇2
y − E + geff(E)δ̃r0(y)]Ψ(y) = 0 (5.13)
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with
geff(E) = g11 +

1

2

α2

E − ν0

. (5.14)

The zero crossing condition at zero energy thus reads

ν0 = α2/2g11. (5.15)

We also introduce the effective range by the formula

RD
e = α2/2ν2

0 > 0, (5.16)

which characterizes the small-E asymptote geff(E) = geff(0)−RD
e E +O(E2) (cf. [116]).

At the crossing Eq. (5.16) is consistent with our earlier definition of Re introduced in
Eq. (5.5). As we have mentioned, RD

e is also related to the closed-channel occupation.
Indeed, from the normalization integral of Eq. (5.10) one finds that the closed-channel
to open-channel probability ratio equals |φ|2/

∫
y

2|Ψ(y)|2 = |φ|2/(2LD|Ψ(r0)|2) where we
have used the fact that at the crossing Ψ(y) = Ψ(r0). On the other hand, from Eq. (5.12)
one obtains |φ|2 = 2RD

e |Ψ(r0)|2 for |E| � |ν0|, which gives the result claimed in Sec. 5.1.
Namely, the probability for two atoms to be in the closed-channel dimer state equals
(Re/L)D.

Eventually, we will need to express our results in terms of the scattering lengths
aσσ′ and the effective range Re rather than in terms of the bare r0-dependent quantities
gσσ′ , α, and ν0. Relations between gσσ′ and aσσ′ are obtained by solving the scattering
problem at zero collision energy and by looking at the long-distance asymptote of the
two-body wave function. Namely, the zero-energy Schrödinger equation reads

[−∇2
y + 2µσσ′gσσ′ δ̃r0(y)]Ψ(y) = 0. (5.17)

In one dimension the (unnormalized) solution is

Ψ(y) =

{
1, |y| < r0

1 + µσσ′gσσ′(|y| − r0), |y| > r0,
(5.18)

from which we see that
aσσ′ = r0 − 1/µσσ′gσσ′ . (5.19)

In the limit r0 → 0 we recover the usual relation gσσ′ = −1/µσσ′aσσ′ . In two dimensions
the solution of Eq. (5.17) reads

Ψ(y) =

{
1, |y| < r0

1 + µσσ′gσσ′ ln(|y|/r0)/π, |y| > r0

(5.20)
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and one has
µσσ′gσσ′ = π/ ln(r0/aσσ′). (5.21)

In three dimensions

Ψ(y) =

{
1, |y| < r0

1− µσσ′gσσ′/2π|y|+ µσσ′gσσ′/2πr0, |y| > r0,
(5.22)

from which we obtain
1/aσσ′ = 2π/µσσ′gσσ′ + 1/r0. (5.23)

We now analyze conditions for having two-body bound states at the two-body zero
crossing, in particular, having in mind the three-body recombination to these states when
considering the three-body problem. We just note that solutions of Eq. (5.13) at distances
|y| � 1/

√
|E| in different dimensions are given, respectively, by Eqs. (5.18), (5.20), and

(5.22) with σ = σ′ = 1 and with g11 substituted by geff(E). We then match these
asymptotes with the decaying solutions Ψ(D=1)(y) ∝ exp(κ|y|), Ψ(D=2)(y) ∝ K0(κ|y|),
and Ψ(D=3)(y) ∝ exp(−κ|y|)/|y|, where κ =

√
−E. This matching procedure gives the

following equations for the determination of κ (γ ≈ 0.577 is the Euler constant),

(κRe)
2(a11/Re)− κRe = 2, D = 1, (5.24)

(κRe)
2 ln(κa11e

γ/2) = 2π, D = 2, (5.25)

(κRe)
3 − (κRe)

2(Re/a11) = 4π, D = 3. (5.26)

Analyzing these equations we find that in one dimension there is no two-body bound
state, if a11 < 0 (or g11 > 0). In higher dimensions we always have a bound state, but it
becomes deep in the limit of small positive a11 (E ∝ −1/a2

11). In principle, the case of a
weak repulsive background atom-atom interaction can also be realized by a finite-range
repulsive potential (in the mean-field spirit of Sec. 5.1). Then, the dimer states given by
Eqs. (5.24-5.26) are spurious, consistent with the fact that the zero-range theory can no
longer be used at such high momenta.

5.3 Three-body problem

Similar to Eq. (5.10) a stationary state of three atoms with zero center-of-mass momen-
tum can be written in the form∫

c

∫
x

∫
y

Ψ(x,y)ψ̂†1(c− x/2
√

3− y/2)ψ̂†1(c− x/2
√

3 + y/2)ψ̂†1(c + x/
√

3) |0〉

+

∫
c

∫
x

φ(x)ψ̂†2(c− x/2
√

3)ψ̂†1(c + x/
√

3) |0〉 ,
(5.27)
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where c is the center-of-mass coordinate and the relative Jacobi coordinates are

x = (2r1 − r2 − r3)/
√

3,

y = r3 − r2. (5.28)

Let us introduce operators P̂+ and P̂− which exchange the first atom with the second
and the third, respectively. Acting by these operators on an arbitrary function F (x,y)

results in
P̂±F (x,y) = F (−x/2∓

√
3y/2,−

√
3x/2± y/2). (5.29)

The open-channel wave function Ψ(x,y) is invariant with respect to these permutations.

The coupled Schrödinger equations for Ψ and φ read

[−∇2
x −∇2

y − E + g11(1 + P̂+ + P̂−)δ̃r0(y)]Ψ(x,y) = α(1 + P̂+ + P̂−)δ̃r0(y)φ(x)/2,

(5.30)

[−∇2
x − ν0 − E + g12δ̃r0(

√
3x/2)]φ(x) = αΨ(x, r0), (5.31)

where Ψ(x, r0) in the right-hand side of Eq. (5.31) denotes the projection on the s-wave
channel in the coordinate y, i.e., the angular average 〈Ψ(x, r0ŷ)〉ŷ. The difference between
Ψ(x, r0ŷ) and Ψ(x, r0), which accounts for non-s-wave scattering channels, vanishes in
the limit r0 → 0 and we will thus make the replacement δ̃r0(y)Ψ(x,y) → δ̃r0(y)Ψ(x, r0)

in Eq. (5.30). Then, it is convenient (the reason will become clear below) to introduce
an auxiliary function f(x) such that

Ψ(x, r0) = −f(x)/g11 + αφ(x)/2g11. (5.32)

We now eliminate Ψ from Eqs. (5.30) and (5.31) in favor of f and thus derive coupled
equations for f and φ. To this end we note that with the use of (5.32) Eq. (5.30) becomes

(−∇2
x −∇2

y − E)Ψ(x,y) = (1 + P̂+ + P̂−)δ̃r0(y)f(x). (5.33)

Equation (5.33) can now be solved with respect to Ψ by using the Green function
G

(2D)
E of the 2D-dimensional Helmholtz operator in the left-hand side (see, for exam-

ple, Ref. [123]). This procedure gives

Ψ(x, r0) = Ψ0(x, 0) +

∫
x′

{
G

(2D)
E [

√
(x− x′)2 + r2

0]

+
∑
±
G

(2D)
E (

√
x2 ± xx′ + x′2)

}
f(x′),

(5.34)

where Ψ0(x,y) is any solution of (−∇2
x − ∇2

y − E)Ψ0(x,y) = 0. In Eq. (5.34) we
have already taken the limit r0 → 0, where it exists. With the use of Eq. (5.34) the
function Ψ(x, r0) can now be eliminated from Eqs. (5.32) and (5.31). Here we explicitly
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write down the resulting coupled equations for f and φ at the two-body zero crossing
(ν0 = α2/2g11) and at zero energy (E = 0, Ψ0 = 1),

L̂f(x) + f(x)/g11 = φ(x)/
√

2RD
e − 1, (5.35)

[−∇2
x + g12δ̃r0(

√
3x/2)]φ(x) = −

√
2/RD

e f(x), (5.36)

where L̂ is the integral operator in the right-hand side of Eq. (5.34) with E = 0. We will
use the following forms of the zero-energy Green functions

G
(2)
0 (ρ) = − ln(ρ/Re)/2π, (5.37)

G
(4)
0 (ρ) = 1/4π2ρ2, (5.38)

G
(6)
0 (ρ) = 1/4π3ρ4. (5.39)

Equations (5.35) and (5.36) conserve angular momentum and parity. We will be in-
terested in the case of positive parity (for D = 1) and zero angular momentum (for
D > 1) so that f(x) = f(x) and φ(x) = φ(x). Note also that if g12 = 0, the solution of
Eqs. (5.35) and (5.36) is f(x) = 0 and φ(x) =

√
2RD

e indicating the absence of two-body
and three-body interactions.

The quantity that we want to extract from solving Eqs. (5.35) and (5.36) is f̃(0) =∫
x
f(x), which is proportional to the three-body scattering amplitude. Indeed, at large

hyperradii ρ =
√
x2 + y2 Eq. (5.34) gives Ψ ≈ 1 + 3f̃(0)G

(2D)
0 (ρ) or, explicitly,

Ψ =


1− 3f̃(0) ln(ρ/Re)/2π ∝ ln(ρ/a3), D = 1,

1 + 3f̃(0)/4π2ρ2 ∝ 1− S3/ρ
2, D = 2,

1 + 3f̃(0)/4π3ρ4 ∝ 1−Υ3/ρ
4, D = 3,

(5.40)

where we have introduced the three-body scattering length a3 in one dimension, surface
S3 in two dimensions, and hypervolume Υ3 in three dimensions which read

a3 = Re exp
[
2π/3f̃(0)

]
, D = 1, (5.41)

S3 = −3f̃(0)/4π2, D = 2, (5.42)

Υ3 = −3f̃(0)/4π3, D = 3. (5.43)

It is useful to note that for D = 2, 3 the three-body potential g3δ(
√

3x/2)δ(y) with 1

g3 = −3(
√

3/2)Df̃(0) (5.44)

treated in the first Born approximation would produce the same scattered wave as
Eqs. (5.40). Equations (5.42), (5.43), and (5.44) relate the three-body coupling constant

1The prefactor
√
3/2 here [and also in Eqs. (5.36), (5.47-5.49)] comes from our definition of the Jacobi

coordinates (5.28), according to which the atom-dimer distance equals
√
3x/2.
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g3 to the three-body scattering surface and hypervolume. The corresponding contri-
bution to the energy density of a three-body-interacting condensate equals g3n

3/6 in
the weakly interacting regime, which is defined by |S3|n � 1 in two dimensions and by
|Υ3|n4/3 � 1 forD = 3. The quantity g3/L

2D gives the energy shift for three (condensed)
atoms in a large volume LD. By solving the three-body problem nonperturbatively we
calculate the exact g3, which can then be compared to the mean-field result given by
Eq. (5.5).

The relation between a3 and the three-body energy shift in the case D = 1 is slightly
more subtle. Pastukhov [124] has recently shown that the ground-state energy density
of a three-body-interacting one-dimensional Bose gas can be expanded in half-integer
powers of the small parameter

g3(n) =
√

3π/ ln(1/a3n)� 1, (5.45)

with the leading-order term equal to E/L = g3(n)n3/6. Although, g3 given by Eq. (5.45)
depends on n, one can replace 1/n by another density-independent length scale l. If this
scale is not exponentially different from 1/n, the two small parameters are equivalent
since they differ only by a higher-order term ∼ g2

3. By computing a3 we can thus compare
Eqs. (5.5) and (5.45) which we expect to approach each other in the limit Re/a12 → 0

(at fixed n). Equivalently, one can say that in this limit Eq. (5.5) predicts the leading
exponential dependence of the one-dimensional three-body scattering length

a3 ∝ exp

(
π√
3

µ12a12

Re

)
= exp

(
2π

3
√

3

a12

Re

)
(5.46)

leaving, however, the preexponential factor unknown.
Returning to the task of determining f̃(0) from Eqs. (5.35) and (5.36) we note that

the three-body problem in hand admits a zero-range description parametrized by a11,
a12, and Re (see, however, Sec. 5.3.3). Indeed, the sum L̂f(x) + f(x)/g11 in Eq. (5.35)
is well behaved in the limit r0 → 0 since the singularity of L̂f(x) gets canceled by the
r0-dependent term in 1/g11 [see Eqs. (5.21) and (5.23)]. The parameter r0 thus drops out
from Eq. (5.35), g11 being conveniently eliminated in favor of a11. As far as Eq. (5.36)
is concerned, one can just substitute the interaction term g12δ̃r0(

√
3x/2) by the Bethe-

Peierls boundary conditions at x→ 0

φ(x) ∝ |x| − 2a12/
√

3, D = 1, (5.47)

φ(x) ∝ ln
(√

3x/2a12

)
, D = 2, (5.48)

φ(x) ∝ 1− 2a12/
√

3x, D = 3. (5.49)

In other words, Eq. (5.36) is equivalent to

−∇2
xφ(x) = −

√
2/RD

e f(x) (5.50)
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supplemented by the boundary conditions (5.47)-(5.49).
From now on, for brevity, we choose to measure all distances in units of Re. The

function f̃(0) then depends on a11 and a12 (measured in units of Re) and its dimension
is clear from Eq. (5.40).

The idea of solving Eqs. (5.35) and (5.47)-(5.50) is to eliminate φ by inverting the
Laplacian in Eq. (5.50) and then deal with a single integral equation for f . We per-
form this procedure in momentum space [the Fourier transform is defined by F̃ (p) =∫
x
F (x)e−ipx] where Eq. (5.50) formally transforms into p2φ̃(p) = −

√
2f̃(p). Note,

however, that we can always add to φ(x) a general solution of the Laplace equation
−∇2

xφ = 0, possibly singular at the origin. The solution of Eq. (5.50) in momentum
space is thus −

√
2f̃(p)/p2 plus any linear combination of δ(p) and 1/p2. The freedom

of choosing the corresponding coefficients is removed by Eq. (5.35) and the boundary
conditions (5.47)-(5.49). The passage to momentum space in Eq. (5.35) is realized by
rewriting the Fourier-space version of the operator

(L̂+ 1/g11)f̃(p) =

(
2√
3

)D−2∑
±

∫
f̃(q)

p2 ± pq + q2

dDq

(2π)D

+ f̃(p)×


1/2|p| − a11/2, D = 1,

− (1/2π)ln(pa11e
γ/2), D = 2,

− p/4π + 1/4πa11, D = 3.

(5.51)

We now proceed to reformulating the boundary conditions (5.47)-(5.49) in momentum
space. To this end let us first study the large-x behavior of φ(x) and f(x) and check
that these functions indeed possess well-defined Fourier transforms. When two atoms
are far away from the third one (large x), the function φ is approximately proportional
to Ψ due to Eq. (5.12), which is equivalent to having small f in Eq. (5.32). Thus, the
large-x asymptotic behavior of φ(x) is given by Eq. (5.40) and, by calculating the second
derivative of these asymptotes and using Eq. (5.50), we obtain the large-x scaling f(x) ∝
x−2D. We conclude that the passage to momentum representation is straightforward for
D > 1 where f(x) and φ(x) are well behaved. By contrast, in one dimension φ(x) ∝ ln |x|
should be understood in the generalized sense by using a limit of a series of Fourier-
transformable functions. In particular, we can use the relation K0(

√
ε|x|) ≈ − ln

√
ε|x|eγ

2

valid for small ε > 0 and define a generalized Fourier transform of ln |x| as

− π

|p|
= lim

ε→+0

[
− π√

p2 + ε
− 2πδ(p) ln

√
εeγ

2

]
. (5.52)

An immediate application of this formalism is the reformulation of the Bethe-Peierls
boundary condition (5.47) in momentum space. Namely, for small x we have

φ(x) =

∫
φ̃(p)

dp

2π
− |x|

2
lim
p→∞

p2φ̃(p) + o(x), (5.53)
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where the integral is convergent, the singularity φ̃(p) ∝ 1/|p| being understood in the
sense of Eq. (5.52). Comparing Eq. (5.53) with (5.47) and denoting C = limp→∞ p2φ̃(p)

gives us the Bethe-Peierls boundary condition in momentum space∫
φ̃(p)

C

dp

2π
=
a12√

3
. (5.54)

Repeating the same procedure in two dimensions Eq. (5.48) transforms into

∫ [
φ̃(p)

C
− 1

p2 + σ

]
d2p

(2π)2
=

1

2π
ln
a12

√
σeγ√
3

, (5.55)

where σ is any positive number. In the case D = 3, Eq. (5.49) becomes

∫ [
φ̃(p)

C
− 1

p2

]
d3p

(2π)3
= −

√
3

8πa12

. (5.56)

The task of reformulating our problem in momentum space is thus over.

We now write the solution of Eq. (5.50) in the form

φ̃(p) =
√

2(2π)Dδ(p) +
C −
√

2f̃(p)

p2
. (5.57)

Equation (5.57) is consistent with the definition of C (which is still unknown) and the
coefficient in front of δ(p) is dictated by Eq. (5.35) and by the fact that the operator
(5.51) does not give rise to a delta function. We now eliminate φ̃(p) by substituting
Eq. (5.57) into Eqs. (5.35) and (5.54)-(5.56) and after simple manipulations we obtain
the following results.

5.3.1 One dimension

In one dimension we arrive at

f̃(0) =
1

a12/
√

3 + I(1)(a11)
, (5.58)

where the function I(1)(a11) =
∫ χ(p)−1

p2
dp
2π

is defined through the solution of

√
3

2

∑
±

∫
χ(q)

p2 ± pq + q2

dq

2π
+

(
1

2|p|
+

1

p2
− a11

2

)
χ(p) =

1

p2
, (5.59)
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C =
√

2f̃(0), and f̃(p) = f̃(0)χ(p). Substituting Eq. (5.58) into Eq. (5.41) a3 factorizes
into (we restore the dimensions here)

a3 = Re exp

(
2π

3
√

3

a12

Re

)
exp

[
2π

3
I(1)

(
a11

Re

)]
, (5.60)

consistent with Eq. (5.46) in the limit of small Re/a12.
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Figure 5.1: Functions ReI(1) (solid) and ImI(1) (dashed) characterizing the dependence of
the effective three-body interaction on a11 in one dimension [see Eqs. (5.58) and (5.40)].
a11 is measured in units of Re. The dotted curves correspond to the large-a11 asymptote
[Eq. (5.62)]. For a11 → ±0 one has I(1) ≈ −0.03.

Let us now discuss the function I(1). For large a11 (weak atom-atom interaction) this
function can be expanded in powers of

√
−1/a11. In order to see this we rescale the

momentum p =
√
−1/a11z and rewrite Eq. (5.59) in the form

χ(z) =
1

1 + z2/2

− 1√
−a11

z2

1 + z2/2

[√
3

2

∑
±

∫
χ(y)

z2 ± yz + y2

dy

2π
+
χ(z)

2|z|

]
, (5.61)

which we then solve iteratively. In particular, the first iteration gives χ(z) = 1/(1+z2/2)

and provides the leading order term I(1) ≈ −
√
−a11/8. The second iteration results in

I(1) = −
√
−a11

8
+

9 + 5
√

3π + 27 ln(−a11e
−2γ/2)

36π
+ o(1). (5.62)
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The solid and dashed lines in Fig. 5.1 show, respectively, the real and imaginary parts
of I(1) as a function of −1/a11 (= g11/2) obtained numerically. The dotted lines indicate
the real and imaginary parts of the large-a11 asymptote (5.62).

For negative a11 the solution is real and ImI(1) ≡ 0. By contrast, for a11 > 0 the
function χ(p) is characterized by simple poles at p = ±(κ + i0), where κ > 0 is defined
by Eq. (5.24) [this is also the point where the term in round brackets in Eq. (5.59)
vanishes]. These poles correspond to the three-body recombination to a dimer state,
which, as found in Sec. 5.2, exists only for positive a11. One sees that I(1) and, therefore,
f̃(0) become complex reflecting the three-body loss. Technically, as one passes from
positive to negative −1/a11, the choice of the correct branch of the square root and
logarithm in Eq. (5.62) is ensured by keeping −1/a11 just below the real axis.

5.3.2 Two dimensions

The solution in the two-dimensional case can be written as

f̃(0) =
2π

ln
(
a12eγ/

√
3
)

+ 2πI(2)(a11)
, (5.63)

where I(2)(a11) =
∫ χ(p)−1/(p2+1)

p2
d2p

(2π)2
and χ satisfies

∑
±

∫
χ(q)

p2 ± pq + q2

d2q

(2π)2
+

(
1

p2
− 1

2π
ln
a11pe

γ

2

)
χ(p) =

1

p2
. (5.64)

The three-body scattering surface is proportional to f̃(0) [see Eq. (5.42)] and the mean-
field result (5.5) is recovered for weak attractive or repulsive atom-dimer interactions
(small or large a12). As in the one-dimensional case we see that the dependence on a12 is
analytic and for the complete solution of the problem one needs to know only I(2)(a11).

For a weak atom-atom background interaction (small or large a11), introducing the
small parameter λ = 1/ ln(1/a11), we can proceed iteratively in exactly the same manner
as in the one-dimensional case. Namely, using the momentum rescaling p =

√
λz one

can see that to the leading order χ(z) ≈ 1/(1 + z2/2π) and after two iterations we have

I(2) =
ln(2πλ)

4π
+ λ

ln(Cλ)

8π
+ o(λ), (5.65)

where C ≈ 0.013.

In Fig. 5.2 we plot the real (solid) and imaginary (dashed) parts of I(2) versus λ
together with the asymptote (5.65) (dotted). In the two-dimensional case ImI(2) is
always finite since there is always a dimer bound state available for the recombination
(see Sec. 5.2). However, for small positive λ the dimer is exponentially deep and small
(its energy is proportional to 1/a2

11 = e−1/λ) so that the recombination in this limit is
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Figure 5.2: Real and imaginary parts of I(2) in the two-dimensional case. We use the
same notations as in Fig. 5.1.

not captured by the power expansion Eq. (5.65).

Note that for small λ the characteristic momentum involved in the solution χ(p) is√
λ. Therefore, the asymptotic expansion (5.65) is also valid if, instead of the zero-

range atom-atom interaction, we have a potential of a finite but sufficiently small range
� 1/

√
λ =

√
| ln(1/a11)|, characterized by the same scattering length a11. In particular,

one can have a purely repulsive potential which does not lead to a dimer state in our
problem.

5.3.3 Three dimensions

In three dimensions we have

f̃(0) =
1

−
√

3/8πa12 + I(3)(a11)
, (5.66)

where I(3)(a11) =
∫ χ(p)

p2
d3p

(2π)3
with χ satisfying

2√
3

∑
±

∫
χ(q)

p2 ± pq + q2

d3q

(2π)3
+

(
1

p2
− p

4π
+

1

4πa11

)
χ(p) =

1

p2
. (5.67)

Here we also manage to separate the dependencies on the atom-dimer and atom-atom
interactions. The mean-field solution (5.5) is retrieved for a12 → 0. Calculating I(3) is,
however, more subtle than in the low-dimensional cases. Indeed, small hyperradii effec-
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tively correspond to high collision momenta and energies where the two-body scattering
length is approximated by its background value a11. Thus, at ρ� a11 we deal with the
Efimovian three-boson system which requires a three-body parameter or a cutoff momen-
tum. Mathematically, this can be seen from Eq. (5.67) at momenta p� 1/a11, where the
dominant terms are the integral and −pχ(p)/4π. The corresponding large-momentum
behavior of χ(p) is a linear combination of Efimov waves p±is0−2 with s0 ≈ 1.00624 [125].
The coefficients in this linear combination are fixed by introducing an external (three-
body) parameter, phase, or momentum. Namely, one can set

χ ∝ sin[s0 ln(p/p0)]

p2
(5.68)

as the asymptotic boundary condition for p � 1/a11. Accordingly, the quantity I(3) is,
in fact, a function of a11 and the three-body parameter p0. However, for small a11 the
leading-order contribution to I(3) is universal, i.e., independent of p0. Indeed, for small
a11 and momenta p � 1/|a11| Eq. (5.67) reduces to (1/p2 + 1/4πa11)χ(p) = 1/p2. The
corresponding solution χ = 1/(1 + p2/4πa11) is characterized by the typical momentum
√
a11 � 1/a11 and leads to

I(3) ≈
√
a11/4π. (5.69)

In order to estimate the next-order term we match χ(p) with the Efimov wave (5.68) at
momentum p ∼ 1/|a11| obtaining a contribution to I(3) of the order of a2

11.
It makes sense to study the case of larger a11 (& Re) within our zero-range model,

if we deal with a zero crossing near a narrow Feshbach resonance (large Re) which,
in turn, lies in the vicinity of a broader Feshbach resonance (large a11). At the same
time it is interesting to have a significant atom-dimer interaction (large a12) such that
the two terms in the denominator of Eq. (5.66) are comparable. Then, in order to
find the effective three-body force we also need to know the three-body and inelasticity
parameters (or, equivalently, the real and imaginary parts of p0), which could be known
from the Efimov loss spectroscopy near the broad resonance. Given the large number
of parameters in this problem we just give a prescription for calculating I(3). Namely,
one has to solve Eq. (5.67) with the boundary condition (5.68) at p→∞ also requiring
χ ∝ 1/(p− κ− i0) near the pole given by Eq. (5.26).

5.4 Discussion and conclusions

In this chapter we have expanded the idea that the bosonic model with a Feshbach-
type atom-dimer conversion (5.1) near a two-body zero crossing can be reduced to a
purely atomic model with an effective three-body interaction, which strongly depends
on the atom-dimer conversion amplitude. As a particular example, we show that this
mechanism of generating three-body forces can be used for stabilizing supersolid phases
of two-dimensional dipoles.
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Sections 5.2 and 5.3 have been devoted to constructing a zero-range regularized ver-
sion of the model (5.1) with a minimal set of parameters (a11, a12, and Re). We have
solved this model nonperturbatively in the two-body and three-body cases in all dimen-
sions at the two-body zero crossing. Formulas (5.58), (5.63), and (5.66) give analytic
dependencies of the three-body scattering amplitude on a12 in different dimensions. The
dependence on a11 is found numerically and also analytically for weak atom-atom back-
ground interactions. In the three-dimensional case, our three-body zero-range model is
Efimovian and requires an additional three-body parameter. We find, however, that for
small |a11|/Re, effects associated with the Efimov physics are subleading.

These results show that for comparable and weak atom-dimer and atom-atom inter-
actions (characterized by g12 and g11, respectively), the three-body interaction is mostly
influenced by g12, consistent with the mean-field result (5.5). However, the convergence
is not always uniform. For example, in the two-dimensional case, one can simultaneously
decrease g12 and g11, keeping both terms in the denominator of Eq. (5.63) comparable to
(or even canceling) each other (resulting in a diverging three-body scattering surface).
In the same spirit, we can use the nonperturbative three-dimensional formula Eq. (5.66)
and predict a three-body resonance at

√
3Re/8πa12 ≈

√
a11/4πRe � 1.

Inelastic three-body events manifest themselves through the appearance of an imag-
inary part of f̃(0), which, in turn, comes from the complex I(D) or complex atom-dimer
scattering length a12. The former reflects the three-body recombination to a dimer state
and the latter the relaxation process in collisions of atoms with closed-channel dimers.

Several proposals on how to observe elastic three-body interactions experimentally
are based on the following ideas. A repulsive three-body force could stabilize a system
with attractive two-body interactions and make it self-trapped [15]. The structure and
energies of few-body bound states, detectable spectroscopically, are also influenced by
these forces [78, 92, 94, 126]. Collective-mode frequency shifts in a trapped gas could be
another experimentally observable signature of three-body interactions [127].



Conclusion and perspectives

The last couple of years clearly show that it is unnecessary to go into the strongly
interacting limit to observe interesting quantum effects. Indeed, the study of systems
where one looks at a regime where the leading pairwise MF contribution is made weak,
thus enhancing BMF effects, offers a very rich and interesting physics. This domain
developed recently, thanks to an active dialog between theorists and experimentalists [34].

In this thesis, we started the journey by introducing the LHY correction in systems
exhibiting a competition between attractive and repulsive forces (namely, BB mixture
with repulsive intraspecies and attractive interspecies interactions, and dipolar gases
with repulsive contact interactions), which can be controlled independently from the
MF term. Dramatic effects of this correction have been observed experimentally in both
systems, essentially via the formation of an exotic phase of matter, the dilute quantum
droplet, constituting then a direct proof of the existence and importance of BMF terms.

A first question arises naturally: what other physical systems can exhibit such pe-
culiar quantum properties, and if so, what are the main differences with the systems
previously presented?

As the reader may have seen, most of the results in this manuscript have been de-
veloped through few-body approaches 2. In particular, it turned out that we focused
on BMF effects which can be encapsulated in local effective three-body interactions of
different origins, where the LHY correction is not anymore the leading BMF term.

Indeed, in Chapter 3, where we studied the one-dimensional BB mixture, we showed
the appearance of a three-dimer repulsion close to the dimer-dimer zero crossing line,
which stabilizes the collapsing system into a liquid-like droplet. This effective three-
body force arises from virtual excitations of internal and external degrees of freedom of
the system. We actually largely explored the kinematic equivalence of the three-body
scattering in one dimension with the two-body scattering in two dimensions. We showed
that taking into account the existence of this effective three-body force has a big impact
on the one-dimensional three-body problem with two-body contact interactions, even if
this force is extremely weak. In Chapter 4, using a common perturbation theory scheme,
we derived in every pure and quasi-low dimensional configuration an explicit expression

2One of the main motivations is that it offers to venture into both the weakly and strongly-interacting
regime, i.e., in the regime not tractable on the Bogoliubov level.
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for the three-body coupling constant associated with a weak two-body potential of van-
ishing MF value. Finally, in Chapter 5, we presented a way to engineer a three-body
force in a one-component Bose gas, finding its origin in an atom-dimer interaction close
to a two-body zero-crossing near a narrow Feshbach resonance.

In all the present systems, we proposed ways to verify our theoretical results ex-
perimentally. Although the result of the last chapter can be typically used to stabilize
the supersolid phase in quasi-2D [114], engineering such many-body force also has other
applications. We recall here that a local repulsive gk+1 contact interaction is the parent
Hamiltonian of the k-th state of the Read-Rezayi series of quantum Hall states, which
supports topologically protected states useful for quantum computing (maximizing the
value gk+1 actually increase the protection of these desired states) [128].

Interestingly, we note that adding an effective three-body interaction in weakened
MF systems can sometimes be cast via another picture that takes into account the
finite physical range of two-body interactions [129]. More work on the equivalence and
differences of these approaches is necessary to understand BMF physics better.

An obvious continuation of our work would be to switch to a many-body viewpoint
and to perform a generalization of the Bogoliubov theory where one adds a short-range
three-body force in every dimension, expressing the results in terms of universal param-
eters. This problem is not trivial since the interaction requires a renormalization scheme
which is different from the two-body-interacting case, typically requiring to go beyond
the standard Bogoliubov approach.

As the reader might expect, there is still a lot of open problems to better understand
these systems where BMF terms play a crucial role. For the MF unstable BB mixture
and dipolar gases system, there are still indeed a lot of theoretical challenges:

The inhomogeneous problem (associated, for example, with the implementation of
the external potential necessary to first trap and cool down the atoms) has yet to be
more explored, particularly when the LDA is no more valid. Indeed the approximation
may fail to describe the system for a low number of particles or for typical regimes of
particle interactions and trapping parameters.

Moreover, although the usual description through the extended Gross-Pitaevskii
equation of these systems is in good agreement with experiments, by its nature, it fails to
understand what happens in the nonperturbative regime (in this sense, we made progress
for the one dimensional BB mixture in Chapter 3). In general, more work is still needed
to understand the dynamics of these many-body systems better. In this direction, we
mention a recent work using the diagrammatic Beliaev approach, which permits to get
rid of the instabilities [130] encountered with a Bogoliubov approach of the MF collaps-
ing BB mixture. We also mention two studies about the dimensional crossover for the
BMF correction associated with the formation of droplets in BB mixture [110,131]. For
dipolar gases, the pursuit of supersolidity with quantum droplets makes appear a really



CONCLUSION AND PERSPECTIVES 93

complex phase diagram where not all the phase transitions have been fully understood
theoretically [34]. Moreover, finite temperature effects have also to be more explored: for
example, experimentally wise, the quantum droplet in the BB mixture still suffer from
a too-short lifetime to observe its collective excitations.

In conclusion, looking at systems where the BMF terms are of the order of the usual
leading MF terms (eventually becoming the dominant one) offers a wonderful platform to
appreciate the large panel of interactions at play in a system, from its fundamental and
effective few-body ones to its emerging collective excitations of pure quantum nature,
and ultimately redefine our classic conception of states of matter.
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Appendix A

Detailed derivation of Eq.(3.18)

Extended STM equation

To a integrable function f : R3 → C, we define its Fourier transform f̃ as

f̃(p1, p2, p3) =

∫
e−ip1x1e−ip2x2e−ip3x3f(x1, x2, x3). (A.1)

Let us assume three particles in one dimension of position xi of mass m interacting
via two-body contact potential of coupling constant g = −2/ma2, and a three-body
δ-potential. The idea is to perform a STM approach of this three-body problem. Let
us see the three-body wavefunction Ψ(x1, x2, x3) as the Green’s function solution of the
equation

[
− 1

2m

3∑
i=1

∂2

∂x2
i

− E
]
Ψ(x1, x2, x3) = −g

∑
i<j

δ(xij)Ψ(x1, x2, x3) +
1

m
δ(x12)δ(x13), (A.2)

where xij = xi − xj and we set ~ = 1.

We Fourier transform Eq.(A.2), which leads to

Ψ̃(p1, p2, p3) =
−g
[
F12(p3;Q) + F13(p2;Q) + F23(p1;Q)

]
+ 2πδ(Q)/m

p2
1 + p2

2 + p2
3

2m
− E

, (A.3)

where Q = p1 + p2 + p3 is the center-of-mass momentum, and Fij(pk;Q) corresponds
to the Fourier transform of δ(xij)Ψ(x1, x2, x3).

Since we are working on the problem of three identical bosons, we find Fij(p;Q) =

F(p;Q) which reads

F(p;Q) =

∫
Ψ̃(q1, q2, p)δ(q1 + q2 −Q+ p)

dq1dq2

2π
. (A.4)
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To have the extended STM equation (i.e. with a three-body term), we insert Eq.(A.3)
into Eq.(A.4) and we obtain

F(p3;Q) =

∫ {−g[F(p3;Q) + F(q2;Q) + F(q1;Q)
]

q2
1 + q2

2 + p2
3

2m
− E

+
2πδ(Q)/m

q2
1 + q2

2 + p2
3

2m
− E

}
δ(q1 + q2 −Q+ p)

dq1dq2

2π
.

(A.5)

We then insert the ansatz for the total wavefunction Ψ̃(p1, p2, p3) = 2πδ(Q)ψ̃(p1, p2, p3)

according to a zero value of the center of mass momentum. We hence define the function
F̃ such that

F(p;Q) =
a2

2
2πδ(Q)F̃ (p) , F̃ (p) =

2

a2

∫
ψ̃(p, q,−p− q)dq

2π
. (A.6)

We insert Eq.(A.6) into Eq.(A.5) and use the symmetry between q1 and q2. We
integrate over q2 and recalling q1 = q and p3 = p and using g = −2/ma2 we finally end
up with

F̃ (p) = F̃ (p)I(p) +

∫
2F̃ (q)

p2 + q2 + pq −mE
dq

2π
+ I(p), (A.7)

where

I(p) =

∫
1

p2 + q2 + pq −mE
dq

2π
=

1√
3p2 − 4mE

. (A.8)

We put Eq.(A.7) in a more condensed form, namely

(L̂− a2/2)F̃ =
−1√

3p2 − 4mE
, (A.9)

where L̂ is an operator which satisfies

L̂F̃ (p) =
F̃ (p)√

3p2 − 4mE
+

∫
2F̃ (q)

p2 + q2 + pq −mE
dq

2π
. (A.10)

Remark that comparing

F (x) =

∫
eipxF̃ (p)

dp

2π
=

2

a2

∫
eipxψ̃(p, q,−p− q) dpdq

(2π)2 (A.11)

with the wavefunction Ψ which satisfies

Ψ(x1, x2, x3) =

∫
eipx31eiqx32ψ̃(p, q,−p− q) dpdq

(2π)2 , (A.12)

we find by identification
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F (x) =
2

a2

Ψ(−2x/3, x/3, x/3), (A.13)

in good agreement with the function F defined in the short version of the calculation
in Chapter 3.

Boundary conditions for the three-body term

We now have to introduce the three-body scattering length a3 in our problem. To do this,
we study the wave function in real space. We hence Fourier transform back Eq.(A.3),
and thanks to symmetry between p1, p2, p3, we end up with

Ψ(x1, x2, x3) =

∫
eiqx31eipx32

[ 3F̃ (q)

p2 + q2 + pq −mE

] dpdq
(2π)2 +K0(

√
−mEρ), (A.14)

where ρ =
√

2/3
√
x2

12 + x2
13 + x2

23 is the hyper-radius and K0 the Bessel decaying
function.

Since a3 is defined as the position of the extrapolated node of the zero-energy wave
function, we take the limit of the previous equation when ρ→ 0 and obtain

− 1√
3π

ln (ρ/a3) = 3

∫
F̃ (q)√

3q2 − 4mE

dq

2π
− 1√

3π
ln

√
−mEρeγ

2
, (A.15)

where we developed K0(x) up to order one and the Euler’s constant γ appears in the
result. Note that the exponentials in the integral disappeared leading us to use Eq.(A.8).
After small rearrangements we find

ln

√
−mEa3e

γ

2
= 3
√

3π

∫
F̃ (q)√

3q2 − 4mE

dq

2π
. (A.16)

From STM to the Final Equation

The idea is now to understand how from the two following Eq.(A.9) and Eq.(A.16) we
arrive, introducing κ =

√
−mEa2/2, to the final equation

ln
a3κe

γ

a2

=
2

κ2 − 1

[ π

3
√

3
+

3κ2 − 1√
4κ2 − 1

arctan

√
2κ+ 1

2κ− 1

]
. (A.17)

Briefly, we eliminate F̃ from Eq.(A.16). To do so, we have to extract the expression
of F̃ thanks to the extended STM equation Eq.(A.9).

In the following, we use the definition of the following hermitian inner product

∀ f, g 〈f |g〉 =
1

2π

∫ +∞

−∞
f ∗g. (A.18)
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Hence, Eq.(A.16) reads

ln
a3κe

γ

a2

= 3
√

3π 〈 1√
3q2 − 4mE

|F̃ 〉 , (A.19)

whereas using Eq.(A.9) we get

F̃ = (L̂− a2/2)
−1 −1√

3q2 − 4mE
, (A.20)

Therefore, we can write

〈 1√
3q2 − 4mE

|F̃ 〉 =

〈
1√

3q2 − 4mE

∣∣∣∣∣ (L̂− a2/2)
−1

∣∣∣∣∣ −1√
3q2 − 4mE

〉
, (A.21)

The main idea is now to use the diagonal representation of the operator (L̂− a2/2)
−1
.

Indeed since we are dealing with E < 0, the spectrum of L̂ contains only the trimer and
atom-dimer scattering states which can be both derived. We denote λν the eigenvalue
associated to the orthonormal eigenvector F̃ν which satisfies

L̂F̃ν = λνF̃ν ,
〈
F̃ν

∣∣∣ (L̂− a2/2)
−1
∣∣∣ F̃µ〉 =

δνµ
λν − a2/2

. (A.22)

We can then rewrite Eq.(A.21) such that

〈 1√
3q2 − 4mE

|F̃ 〉 = −
∑
ν

〈 1√
3q2 − 4mE

|F̃ν〉
1

λν − a2/2
〈F̃ν |

1√
3q2 − 4mE

〉 , (A.23)

Using the definition of the operator L̂ Eq.(A.10) we remark that

〈1|L̂F̃ν〉 = 3 〈 1√
3q2 − 4mE

|F̃ 〉 , (A.24)

Moreover, thanks to Eq.(A.22), and the definition of the inverse Fourier transform
we have

〈1|L̂F̃ν〉 = λν 〈1|F̃ν〉 = λνFν(x = 0), where Fν(x) =

∫
F̃ν(p)e

ipx dp

2π
. (A.25)

Using Eq.(A.24) and Eq.(A.25) we can replace inner products of the sum in Eq.(A.23)
by a function of {λν ,Fν(0),F ∗ν (0)}, such that we can rewrite Eq.(A.19) as

ln
a3κe

γ

a2

= − π√
3

∑
ν

λ2
ν

(λν − a2/2)
|Fν(x = 0)|2. (A.26)

We now separate the spectrum of L̂ that contains the McGuire trimer state FMG (see
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Ref. [77]) and the atom-dimer scattering states Fk, where k is the relative atom-dimer
momentum, namely

ln
a3κe

γ

a2

= − π√
3

[ λ2
MG

(λMG − a2/2)
|FMG(0)|2 +

∑
k

λ2
k

(λk − a2/2)
|Fk(0)|2

]
. (A.27)

Using λMG = 1/
√
−mE and FMG(p) = 2(−mE)−1/4

(1−p2/mE)
consistent with Ref. [77], we take

care of the first term in the sum.

Let us consider now the atom-dimer scattering states. According to the relation E =

3k2/4m−1/ma2
2 in the absence of three-body force, and requiring that λk = a2/2 in this

case (thanks to Eq.(A.9) with no right-hand side), we find that λk = (3k2 − 4mE)
−1/2.

Thanks to a Bethe Ansatz formalism detailed in the next subsection, we obtain

|Fk(0)|2 =
1

2

3k2 −mE
k2 −mE

, (A.28)

and using the correspondence
∑

k →
1

2π

∫
dk we find

∑
k

λ2
k

(λk − a/2)
|Fk(0)|2 =

1

4π
2
√

3I(κ), (A.29)

where I is defined as

I(κ) =
1√
3

∫ +∞

0

dp
3p2 + 1

(p2 + 1)
[√

3p2 + 4− κ(3p2 + 4)
] . (A.30)

We then do the change of variable 3p2 = 4 sinh2(z), leading to

I(κ) =

∫ +∞

0

dz
1 + 4 sinh2(z)

(3 + sinh2(z))(1− 2κ cosh(z))
. (A.31)

Analytically it follows that

I(κ) =
π

3
√

3

1 + 3κ

κ2 − 1
+ 2

(1− 3κ2)

(κ2 − 1)
√

4κ2 − 1
arctan

√
2κ+ 1

2κ− 1
, (A.32)

and we can group the previous terms such that

ln
a3κe

γ

a2

=
π√
3

( κ+ 1

κ2 − 1

)
− 1

2
I(κ). (A.33)

By simple manipulations, we can now rewrite the previous expression such that it
gives the final equation

ln
a3κe

γ

a2

=
2

κ2 − 1

[ π

3
√

3
+

3κ2 − 1√
4κ2 − 1

arctan

√
2κ+ 1

2κ− 1

]
(A.34)
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Three-body Bethe-Ansatz

We give here a quick calculation of the atom-dimer scattering states with the Bethe
Ansatz formalism. In the domain D = {x1 < x2 < x3}, we write the three-body
wavefunction Ψ(x1, x2, x3), where xi refer to the position of particles in the center-of-
mass frame as

Ψ(x1, x2, x3) = te
− |x2−x1|

a2 eik(x3− (x1+x2)
2

) + e
− |x3−x2|

a2 eik(x1− (x3+x2)
2

)

+ c1e
− |x3−x1|

a2 eik(x2− (x1+x3)
2

) + c2e
− |x3−x1|

a2 e−ik(x2− (x1+x3)
2

),
(A.35)

where we introduced three coefficients (t,c1,c2) we need to calculate. For this, we first
rewrite the problem in terms of two variables (x, y) such that

x1 = − x

2
√

3
− y

2
, x2 = − x

2
√

3
+
y

2
, x3 =

x√
3
. (A.36)

We use the two-body contact conditions between two particles (say here for example,
x1 = x2 i.e. y = 0), arising from the δ-potential interaction,

∂Ψ

∂y

∣∣∣∣
y=0+

= − Ψ

a2

∣∣∣∣
y=0+

, (A.37)

and we end up with the following identities
c1 =

−6 + i3ka2

2 + i3ka2

,

c2 = 0,

t =
(−2 + i3a2k)(−6 + i3a2k)

(2 + i3a2k)(6 + i3a2k)
,

(A.38)

Ψ(0, 0, 0) = 1 + c1 + c2 + t =
−2 + i3ak

2 + iak
. (A.39)

Using a2 = 2λk = 2(3k2 − 4mE)
−1/2 and the fact 〈Fν |Fν〉 = 1, we find

|Fk(0)|2 =
1

2

3k2 −mE
k2 −mE

. (A.40)



Appendix B

Synthèse en français

Le traitement des systèmes à petit ou grand nombre de corps en interaction est au
cœur d’une grande variété de domaines de la physique. Malheureusement, il apparaît
que dès le cas N = 3 particules, la solution générale est trop compliquée. À partir
de là, il faut se baser activement sur un ensemble d’approximations (toutes associées à
diverses approches théoriques), guidées par la valeur typique des paramètres du système
en question. Ici, on peut alors se demander :

Existe-t-il une branche particulière de la physique qui offre une bonne plateforme,
tant sur le plan théorique qu’expérimental, pour étudier les systèmes en interaction à
petit et grand nombre de corps ?

Le domaine des gaz ultra-froids , où l’on travaille avec des gaz d’atomes à très
basse température, semble être un très bon candidat. En effet, un très petit nombre de
paramètres est nécessaire pour décrire le système en interaction et, de manière tout aussi
notable, la plupart de ces paramètres peuvent être réglés avec précision dans les expéri-
ences. Ainsi, ce domaine nous offre un formidable terrain de jeu pour mieux comprendre
la matière quantique à l’échelle atomique [1]. Ce domaine semble également pouvoir
commencer à répondre à d’autres problèmes à plusieurs corps, allant de la matière con-
densée à l’astrophysique, en jouant le rôle de simulateur quantique, grâce à sa capacité à
reproduire artificiellement certains phénomènes difficiles à calculer numériquement [2–4].

Rappelons ici les propriétés de base de ces gaz avant de poursuivre.

Les gaz ultrafroids sont des systèmes très dilués, car ils sont environ 105 fois moins
denses que l’air ambiant (la densité n ' 1014 atomes/cm³). La longueur d’onde atomique
de de Broglie λT = (2π~2/mkBT )

1/2 est rendue très grande puisque la température T
est typiquement comprise entre 100 nK et 1 µK. A ces échelles typiques, le gaz ne peut
plus être considéré comme classique et obéit à des statistiques quantiques, sa nature
changeant radicalement selon le caractère bosonique ou fermionique de ses composants.
Dans le cas bosonique, on obtient finalement un état remarquable de la matière, appelé
condensat de Bose Einstein, où les atomes occupent l’état fondamental du gaz de façon
macroscopique. Il a été observé pour la première fois expérimentalement en 1995 [5–7],
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et le domaine s’est beaucoup développé depuis cette percée. Les méthodes incroyables
pour réaliser de tels systèmes, qui font principalement appel à la physique du laser et à
l’utilisation du refroidissement par évaporation, sont présentées dans la Réf. [8].

En fait, la formation d’un condensat de Bose Einstein émerge purement des statis-
tiques quantiques et ne nécessite pas d’interactions, mais celles-ci ont un effet dramatique
sur le gaz (sans mentionner leur nécessité dans le refroidissement par évaporation [8],
ou dans l’apparition de l’état superfluide [9]). En introduisant Re, la portée du poten-
tiel interatomique (typiquement quelques nm), nous rappelons que dans le régime où
λT � Re (atomes ultrafroids), un seul paramètre est généralement suffisant pour décrire
l’interaction à deux corps entre les particules : la dite longueur de diffusion a. Ceci
conduit à l’équivalence de tous les potentiels à courte portée à deux corps avec la même
longueur de diffusion : on parle ici d’universalité. À partir de ce paramètre, on définit
généralement la force g2 d’un potentiel effectif à deux corps modélisant l’interaction.

Considérons maintenant un système homogène de N atomes qui intéragissent dans
un volume V à T = 0. Si on suppose que la distance moyenne entre les atomes l =

n−1/3 satisfait la condition l � Re, alors on ne prend généralement en compte que les
interactions par paires. Cela conduit à effectuer une analyse du système en champ moyen
(MF) : pour obtenir l’énergie d’interaction EMF, nous multiplions l’énergie d’une paire en
interaction ∝ g2 par le nombre de paires dans le système, ce qui conduit pour un grand
nombre d’atomes N à EMF = g2N

2/2V . Pour g2 > 0, correspondant à une répulsion
globale, le système est en phase gazeuse et se dilate pour minimiser son énergie. Il doit
alors être piégé par un potentiel externe de manière à être localisé pour les expériences.
Pour g2 < 0, associé à une attraction globale, le système s’effondre sur lui-même. A ce
stade, on peut se demander :

Ces deux scénarios (phase gazeuse et effondrement) sont-ils exhaustifs ? Ou est-il
possible d’obtenir un état liquide, c’est-à-dire un état lié (et très dilué) en équilibre avec
le vide sans potentiel externe ?

Un tel état exigerait que l’énergie totale d’interaction par particule Eint/N(n) présente
un minimum non trivial à une certaine densité n0. Une façon d’obtenir une telle propriété
est de prendre en compte l’existence de termes d’énergie au-delà du champ moyen
(BMF) EBMF = Eint−EMF pour contrebalancer celui du champ moyen. Habituellement,
ces termes BMF correspondent à des corrections d’ordre supérieur de l’énergie totale et
ne changent pas vraiment les propriétés du système. Supposons ici que l’ordre principal
de ces termes est ∝ gαn

α où α > 2 1 On peut alors écrire l’énergie totale par particule
comme suit

Eint/N ∝ g2n+ gαn
α−1, with α > 2. (B.1)

1Dans le cas général, et particulièrement pour les faibles dimensions, l’ordre principal des termes
BMF peut avoir une dépendance différente et plus compliquée en la densité n. Cependant, le mécanisme
possible de stabilisation reste le même.
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Pour avoir un minimum à n0, il faut avoir l’échelle particulière g2 ∼ gαn
α−2
0 , où

les deux termes doivent avoir des signes différents : une attraction de champ moyen
étant stabilisée par une répulsion au-delà du champ moyen et inversement. De plus, le
gaz doit rester dilué pour ne pas souffrir d’une courte durée de vie due aux collisions
inélastiques. En trois dimensions, où g2 ∝ a, on peut montrer qu’il est préférable d’avoir
simultanément un petit a et un grand gα avec un petit α. Notons également que l’on
peut s’attendre à ce que le terme BMF soit fortement dépendant du terme MF, d’où le
fait qu’il n’est a priori pas évident de contrôler ces termes indépendamment.

On peut alors s’interroger sur les différentes options qui s’offrent pour obtenir un tel
système "auto"-stable. Abordons le problème d’un point de vue historique. En 1957,
Lee, Huang et Yang (LHY) ont dérivé dans le cas d’un gaz de Bose homogène faiblement
répulsif (où na3 � 1) les deux premiers termes de la densité d’énergie [10, 11] avec la
méthode du pseudopotentiel (en accord avec l’approche de Bogoliubov [12,13]),

E/V =
4π~2a

m

n2

2

(
1 +

128

15
√
π

√
na3 + ...

)
. (B.2)

Dans nos notations, cette correction LHY correspond à un terme α = 5/2. Elle
est universelle, car elle ne dépend que de la longueur de diffusion (∝ a5/2), et une
propriété frappante réside dans sa nature purement quantique (car elle correspond à des
fluctuations quantiques, ou dans une image plus théorique, à l’énergie du point zéro des
phonons de Bogoliubov). Cependant, bien que ce terme ait effectivement été observé [14]
et puisse être manipulé, on constate que cet effet est perturbatif et que le terme LHY
est alors toujours beaucoup plus petit que le terme MF. Par conséquent, nous devons a
priori chercher ailleurs pour obtenir cet état auto-stable que nous poursuivons.

Près de cinq décennies après LHY, Bulgac s’est posé la question de l’ingénierie des
gouttelettes liquides quantiques [15]. Sa proposition réside dans la possibilité d’ajuster
finement la longueur de diffusion dans les expériences grâce à un champ magnétique
externe par le biais du mécanisme de Feshbach. En suivant le cas résonnant où |a| → +∞
et impliquant la physique d’Efimov [16, 17], il montre qu’une répulsion à trois corps
(c’est-à-dire, α = 3 et g3 > 0) peut contribuer à stabiliser un système de bosons en
interaction attractive (g2 < 0), conduisant ainsi à un état autolié de densité n0 = −2g2/g3

qu’il appelle un boselet (une gouttelette de bosons). Bien qu’il s’agisse d’un grand pas
théorique, ces gouttelettes semblent difficiles à observer car dans le cas de la résonance,
les collisions inélastiques 2 sont vraiment importantes et conduisent à une courte durée
de vie de l’échantillon [18,19].

Cependant, Petrov a présenté en 2014 un moyen de contrôler les interactions à
deux corps et à trois corps effectives dans le cas non résonnant [20], ouvrant la voie
à l’observation de gouttelettes quantiques auto-liées. En effet, cette proposition repose

2Typiquement, dans une collision inélastique à trois corps, deux atomes peuvent former une molécule
telle que le troisième atome porte alors un surplus d’énergie cinétique suffisant pour quitter le piège.
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sur un système de dipôles dans une géométrie bicouche avec tunnellisation inter-couches,
où l’on peut réduire drastiquement les collisions inélastiques.

Un an plus tard, Petrov a réalisé que l’effet tunnel n’était pas nécessaire à la liqué-
faction. Il a étudié dans la Réf. [21] une mixture boson-boson (↑, ↓) avec une attrac-
tion inter-espèces à deux corps (g↑↓ < 0) et une répulsion intra-espèces à deux corps
(g↑↑, g↓↓ > 0) près de la région où le champ moyen prédit l’effondrement, définie par
la condition g2

↑↓ > g↑↑g↓↓ (c’est-à-dire que la partie attractive du système surpasse la
partie répulsive). En analysant la densité d’énergie du mélange jusqu’à la correction
LHY pour ce système, il a montré que ce terme peut en fait stabiliser le mélange qui
s’effondre avec un réglage fin des interactions, et que le système se transforme plutôt en
une gouttelette de liquide dilué. En d’autres termes, le système classique instable (d’un
point de vue champ moyen) est stabilisé en " allumant " la mécanique quantique. Ici,
la différence fondamentale avec le gaz de bosons à un seul composant est que le terme
MF et la correction LHY peuvent être contrôlés indépendamment et donc accordés au
même ordre. Diverses propriétés de cette phase exotique (spectre d’excitation, tension
de surface, etc...) ont été décrites dans cet article, comme la voie expérimentale pour
obtenir un tel état : quelques années plus tard, il a été observé avec succès dans un
mélange de potassium (39K, 41K) à l’ICFO à Barcelone [22], puis plus tard au LENS à
Florence [23].

Ce nouvel état liquide diffère assez fortement de l’image classique des liquides que
nous connaissons, qui est expliquée par la théorie de Van der Waals [24]. En effet, ils
sont beaucoup plus dilués (la gouttelette est 108 fois moins dense que l’eau !) et le cadre
est ici plutôt universel puisque le liquide dépend d’un ensemble de quelques paramètres,
contrairement aux liquides classiques où la description dépend des détails des potentiels
interatomiques [25].

Parallèlement, des gouttelettes quantiques dipolaires ont été observées par les groupes
de Stuttgart et d’Innsbruck à l’aide de gaz dipolaires (respectivement avec des dipôles
Dy et Er) [26–29]. Ils s’expliquent par le même mécanisme de stabilisation que le cas de
la mixture boson-boson, c’est-à-dire grâce aux fluctuations quantiques (terme LHY). Ici,
le terme de champ moyen est affaibli via un équilibre entre une queue dipolaire attractive
et une interaction de contact à courte portée répulsive.

Bien que l’observation de cet état de gouttelette semblable à un liquide constitue
une avancée majeure car allant au-delà du paradigme de Van der Waals, elle ouvre
également la voie à la réalisation d’un état encore plus intriguant : le supersolide. Cet
état de la matière, qui présente à la fois une structure cristalline et un mouvement
sans frottement, a une longue histoire car il a été prédit théoriquement depuis plusieurs
décennies sans jamais être observé. Récemment, trois groupes ont apporté la première
preuve expérimentale de propriétés supersolides via la formation de réseaux cohérents de
gouttelettes dipolaires quantiques, reposant fondamentalement sur les interactions entre
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les particules [31–33].

Ces idées maîtresses et les observations expérimentales ont considérablement aug-
menté l’attention portée aux systèmes avec un terme MF intentionnellement affaibli
(augmentant ainsi l’importance des termes BMF) au cours des dernières années. La
Ref. [34] est une revue très utile sur ce nouveau domaine.

D’un point de vue théorique, ces systèmes où une partie attractive et une partie
répulsive entrent en compétition sont un moyen de mieux apprécier la richesse physique
des termes au-delà du champ moyen. Des excitations collectives non-locales (fluctua-
tions quantiques) aux interactions locales effectives entre plusieurs corps, nous voyons
maintenant que ces termes ne peuvent plus être réduits à un problème académique car
ils peuvent changer radicalement la nature du système. Cela soulève la question suivante
:

De quoi dépendent ces termes au-delà du champ moyen ?

Bien sûr, ils sont principalement liés à la forme et à la force des interactions dans le
système considéré, ainsi qu’au potentiel de piégeage, mais une de leurs caractéristiques
majeures est qu’ils dépendent généralement fortement de la dimension considérée. Par
exemple, le terme LHY implique une somme dans l’espace des moments, et sa dépendance
à la densité de particules varie donc fortement (n5/2 pour D = 3, n2 lnn pour D = 2 et
n3/2 pour D = 1). Cela offre de larges possibilités car les expérimentateurs sont capables
de confiner fortement le système dans des directions souhaitées, gelant ainsi certains
degrés de liberté des atomes, pour entrer dans des régimes dits de quasi-basse dimension.
On utilise fréquemment des piège harmoniques, et le système présente souvent une forme
de cigare (quasi-1D) ou de crêpe (quasi-2D). Il faut d’ailleurs noter que la réduction
du problème à un modèle en pure basse dimension contribue souvent à ajouter des
interactions effectives à plusieurs corps dans le système, qui trouvent leur origine dans
les excitations virtuelles des atomes dans le piège. D’une manière plus générale, en
suivant une approche de théorie effective des champs (EFT), on peut montrer que des
forces effectives à plusieurs corps apparaissent naturellement lorsqu’on intègre les degrés
de liberté gelés dans un système [35].

Dans cette thèse, nous avons l’intention d’étudier les effets au-delà du champ moyen
à proximité d’une région où l’interaction de champ moyen est considérablement affaiblie
(g2 → 0) dans divers systèmes, géométries et interactions. Bien que cela va nous amener
à naviguer entre les problèmes à petit et grand nombre de corps, l’accent sera mis sur
l’approche à petit nombre de corps. Ce manuscrit est divisé en cinq chapitres, les deux
premiers servant d’introduction pédagogique.

Dans le premier chapitre, nous rappelons les concepts utiles de l’approche à petit
nombre de corps qui serviront de blocs de construction pour comprendre tous les chapitres
suivants. Nous examinons l’interaction typique entre deux atomes neutres et présentons
certaines propriétés de diffusion à deux corps à basse énergie, ainsi que le mécanisme
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de Feshbach. Nous introduisons ensuite des potentiels effectifs beaucoup plus faciles à
manipuler que les interactions réelles et qui contiennent les propriétés de diffusion à basse
énergie du système, en utilisant ce que l’on appelle l’approximation de portée nulle. En
particulier, nous présentons la méthode de Skorniakov-Ter-Martirosian, particulièrement
pratique pour les problèmes à trois et quatre corps auxquels nous serons confrontés par
la suite.

Dans le second chapitre, nous entrons dans le monde à grand nombre de corps
et présentons plus en détail les motivations principales de cette thèse, à savoir les sys-
tèmes où le terme de champ moyen peut être ajusté à une valeur arbitrairement faible,
soulignant l’importance des effets au-delà du champ moyen, et menant finalement à de
nouveaux états exotiques de la matière. En suivant d’abord l’exemple d’une mixture
boson-boson équilibré en masse avec des interactions de contact attractives inter-espèces
et répulsives intra-espèces, nous expliquons comment le terme LHY peut stabiliser le
système près du régime où l’approximation du champ moyen prédit l’effondrement, con-
duisant à la formation d’une gouttelette très diluée. La question est abordée dans toutes
les dimensions. Nous donnons également un bref aperçu des gaz dipolaires, qui peuvent
présenter le même phénomène de stabilisation quantique.

Dans le troisième chapitre, nous enrichissons le diagramme de phase du mélange
boson-boson 1D défini dans le chapitre précédent. En partant du régime où le sys-
tème se transforme en un gaz répulsif de dimères, nous résolvons le problème de la
diffusion dimère-dimère. Dans le plan paramétré par les rapports des constantes de cou-
plage g↑↑/|g↑↓| et g↓↓/|g↑↓| nous traçons la courbe où l’interaction dimère-dimère passe
d’attractive à répulsive. Nous constatons que cette courbe est décalée de manière sig-
nificative (de plus d’un facteur 2) vers une valeur plus grande de gσσ (ou plus petite de
|g↑↓|) par rapport à la limite de stabilité du champ moyen g↑↑g↓↓ = g2

↑↓. Pour une faible
attraction dimère-dimère, nous prédisons une phase liquide diluée dimérisée stabilisée
contre l’effondrement par une force répulsive à trois dimères. Motivés par la vérification
de cette prédiction, nous nous tournons vers la résolution du problème de trois bosons
avec des interactions de contact à deux et trois corps à une dimension et calculons ana-
lytiquement les énergies de l’état fondamental et de l’état excité du trimère. Ce résultat
théorique est en soi une étape importante pour comprendre les systèmes bosoniques uni-
dimensionnels. En utilisant la technique de diffusion Monte Carlo, nos collaborateurs
ont calculé l’énergie de liaison des trois dimères formés dans le mélange unidimensionnel
boson-boson ou fermion-boson précédemment étudié. En combinant ces résultats avec
notre analyse à trois corps, nous extrayons la longueur de diffusion des trois dimères
à proximité de la région où l’interaction à deux corps dimère-dimère disparaît. Dans
les deux cas considérés, l’interaction entre les trois dimères s’avère être répulsive. Nos
résultats s’appliquent également aux mélanges boson-fermion unidimensionnels. Ils con-
stituent également une proposition concrète pour obtenir un gaz unidimensionnel avec
une pure répulsion à trois corps.
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Dans le quatrième chapitre, nous développons la théorie des perturbations pour
des bosons interagissant via un potentiel à deux corps faible V, dont les parties attractive
et répulsive s’annulent. Nous constatons que la principale contribution non relative à
une interaction par paires à l’énergie émerge au troisième ordre en V et représente une
interaction effective à trois corps, dont le signe dans la plupart des cas (mais pas en
général) est anticorrélé avec le signe de la queue à longue portée de V. Nous appliquons
notre théorie à quelques potentiels d’interaction à deux corps particuliers et calculons
les principales corrections d’interaction à deux et à trois corps pour des dipôles inclinés
dans des géométries quasi-basse dimension. Nous montrons qu’à grand nombre de corps,
notre approche est cohérente avec le traitement de Bogoliubov.

Dans le cinquième chapitre, motivés par certains cas où le terme LHY semble ne
pas pouvoir contrebalancer le terme MF instable (gaz de Bose à un seul composant,
géométrie de faible dimension, etc ...), nous proposons une façon de concevoir une force
effective à trois corps pour assurer cette propriété : pour des bosons interagissant entre
eux par un potentiel à deux corps où l’on impose la disparition de l’interaction par
paires , nous montrons l’émergence d’une force effective à trois corps que nous calculons
en toute dimension. Nous utilisons le modèle standard à deux canaux paramétré par la
force de l’interaction atome-atome de fond, l’amplitude du couplage entre canal ouvert
et canal fermé, et la force de l’interaction atome-dimère. La force à trois corps provient
de l’interaction atome-dimère, mais elle peut être considérablement renforcée pour les
croisements étroits, c’est-à-dire pour les petites amplitudes de conversion atome-dimère.
Cet effet peut être utilisé pour stabiliser les atomes et molécules dipolaires en quasi-2D.

En conclusion, l’étude de systèmes où les termes au-delà du champ moyen sont de
l’ordre du terme de champ moyen (et éventuellement dominants), offre une plateforme
merveilleuse pour apprécier la large palette d’interactions en jeu dans un système, nous
amenant ultimement à redéfinir notre conception classique des états de la matière.
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