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Abstract

In this thesis is presented an algorithmic architecture for systematic risk evaluation, mit-

igation and management intended for autonomous transportation vehicles. The methods

presented span low level control, trajectory tracking and multi-vehicle coordination. A

task separation between low level steering control and trajectory tracking has been im-

plemented to spread the design effort across two functional blocks. A robust low level

controller has been designed, and a comfortable and flexible Model Predictive Controller

(MPC) has been implemented for trajectory tracking. This controller has been associated

with a supervision mechanism that monitors its performance in real time to evaluate the

probability to underperform. When such a risk is identified, the speed of the system is

adapted. The multi-vehicle coordination block fulfils the planning task. It is a decentral-

ized, probabilistic optimization algorithm that is naturally risk-adverse. It is based on the

Probability Collectives (PC) algorithm and operates a multi-stage negociation between

vehicles. It has been made compatible with mixed-traffic scenarios with human drivers on

the road. Results show that risks are monitored and managed across the whole architec-

ture. Furthermore, easy to understand risk metrics are outputted to make the algorithms

decisions understandable by the users and engineers working on the system. The work in

this thesis thus proposes systematic risk management techniques transposable to all au-

tonomous vehicles systems. It has been tested in simulations and on the autonomous test

vehicles available at the Institut Pascal.



Abstract

Dans cette thèse est présentée une architecture algorithmique pour l’évaluation, le man-

agement et la minimisation du risque pour les véhicules de transport autonomes. Les

travaux présentés couvrent le contrôle bas niveau, le suivi de trajectoire et la coordination

multi-véhicules. Un contrôleur de direction robuste a été conçu, fonctionnant en synergie

avec un module de suivi de trajectoire MPC (Model Predictive Control). Cela permet

d’assurer l’optimalité du suivi, des garanties de confort ainsi qu’une supervision de la

performance de suivi permettant de prévenir des écarts trop importants à la trajectoire de

référence. Un algorithme décentralisé de coordination multi-véhicules a été conçu afin

de remplir la tâche de planification. Il est décentralisé, fonctionne sur des hypothèses

probabilistes et a pour conséquence un comportement naturel de minimisation du risque

des manoeuvres. L’algorithme présenté est basé sur le “Probability Collectives Algo-

rithm” (PC Algorithm) et opère une négociation entre les véhicules. Cet algorithme a été

rendu compatible avec du trafic mixte comprenant des véhicules autonomes et des con-

ducteurs humains. Des indicateurs liés au niveau de risque de la solution sont également

calculés par l’algorithme. Ils permettent de rendre les solutions calculées facilement

compréhensible par les décideurs et développeurs qui travailleraient sur un tel système.

Le travail proposé dans cette thèse propose donc un management du risque systématique

sur toute l’architecture typique d’un véhicule autonome, du contrôle bas-niveau à la co-

ordination multi-véhicules. Les solutions proposées ont été testées en simulations et sur

des véhicules autonomes de test disponibles à l’Institut Pascal.
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1.1 Context of the thesis

The PhD thesis presented in this manuscript is a joint effort by Cranfield University (UK)

and the Université Clermont Auvergne (UCA, France). Each university has participated

for half of the funding of the thesis. This collaboration stems from Pr. Antonios Tsourdos

from Cranfield University and Mr. Lounis Adouane from the UCA.

Cranfield University is a UK based university founded in 1946. It originally served to

teach test pilots, and later diversified in Aeronautics related engineering. It has become

a strong actor in Unmanned Aerial Vehicles (UAV) -and Unmanned vehicles in general-

in the last two decades. It has now extended its interests to ground vehicles for passenger

transportation. The work at Cranfield University takes place in the School of Aerospace,

Transport and Manufacturing under the supervision of Pr. Antonios Tsourdos.

The UCA is a generalist French university based in the city of Clermont-Ferrand in the

Auvergne-Rhône-Alpes region. The UCA hosts a number of laboratories ranging from

geology to particle physics. This thesis has been done as part of the Institut Pascal

(IP) laboratory http://www.institutpascal.uca.fr/index.php/fr/. It is a multi-

disciplinary laboratory focused on engineering sciences. The IP’s mission is to help de-

velop the technologies for next generation transports, hospitals and factories. The Institut

Pascal has several team clusters. The author has worked under the Images, Systèmes de

Perception, Robotique (Visual Sensing, Perception Systems, Robotics) cluster.

Cranfield University and the UCA entered a collaboration for a joint project called Inte-

grated Risk Management Architecture for Autonomous Vehicle Navigation (IRMA-AVN)

project, led by Pr. Lounis Adouane in the context of Laboratory of Excellence IMobS3

(Innovative Mobility: Smart and Sustainable Solutions). The aim of this project is to

improve the flexibility and safety of autonomous vehicles performing complex navigation

tasks in urban environments. Three PhD theses have been funded within this project. Two

of them are related to sensing and collaborative sensing. This thesis is the third one and

is focused on the planning and control of the vehicles.

The Institut Pascal has a strong background in robotics applied to ground vehicles and

passenger transportation vehicles [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. These works span

robotics for agricultural applications, Lyapunov based navigation of autonomous vehicles,

platooning, and bayesian reasoning for decision making.

The Institut Pascal has a test track for autonomous vehicles called the Plateforme d’Auvergne

pour les Véhicules Intelligents (PAVIN, Auvergne Platform for Intelligent Vehicles). It is
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an approximately 1600sqm zone contaning roads with all the hallmarks of urban environ-

ments: a roundabout, traffic lights, narrow roads, blind corners and pedestrian crossings.

The track is narrower than a regular road, and the vehicles are scaled accordingly for

testing. The PAVIN is shown in Figure 1.1.

Figure 1.1: PAVIN test track in Clermont-Ferrand (France)

The test vehicles used for this thesis are the IPCars from the Institut Pascal. The IPCars

are electric test vehicles with 4 seats, with approximately the size of a golf cart. They

are equipped for autonomous navigation with steering actuators and a range of sensors:

LIDAR, GPS, Real-Time Kinematics GPS (RTK-GPS), cameras and an Inertial Mea-

surement Unit (IMU). Their maximal speed is 3m/s, which mimicks regular speeds and

reaction times in a real urban environment due to the dimensions of the test track. IPCar

test vehicles are shown on Figure 1.2.

Figure 1.2: IPCar test vehicles
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1.2 Research gap

The aim of this thesis is to address several topics spanning the whole architecture of an

autonomous vehicle related to decision and action. The following sections replace the

topic in its context and the state of the art.

1.2.1 Autonomous vehicles background

Autonomous Vehicles (AV) and Connected Autonomous Vehicles (CAVs) are seen as a

great tool to improve safety on the roads and reduce congestion in and out of urban areas

[12]. CAVs in particular would be able to mitigate traffic jams due to speed oscillations

on highways.

There have been several big challenges in the last decade in order to push the develop-

ments and adoption of autonomous vehicles:

• The Defense Advanced Research Projects Agency (DARPA) Grand Challenge (2005):

[13, 14, 15]

• The DARPA Urban Challenge (2007): [16, 17, 18, 19, 20, 21]

• The Grand Cooperative Driving Challenge (GCDC) [22, 23, 24]

Nowadays, developments in autonomous vehicles are not only focused on the vehicles

themselves but also their integration in urban traffic infrastructure and their influence on

traffic, whether at the scale of an single intersection or a city.

Private actors like Tesla, Google and historic car manufacturers such as Renault, BMW

and Volvo have also been getting involved in autonomous vehicles research, highlighting

the interest for the field. However, the adoption of autonomous vehicles is still slow [25].

There are still technical challenges, legal challenges and also public acceptance challenges

[26].

The work in this thesis aims to propose methods that would accelerate the adoption of

autonomous vehicles on the short and medium term. Those methods include risk manage-

ment technique that would help with the legal and public acceptance challenges, which

are often foreshadowed by the purely technical challenges. Of course, the algorithms

developed must at least attain, if not surpass, the performance of current algorithms for

autonomous vehicles. The following sections highlight the state of the art for autonomous

navigation and multi-vehicle coordinations. They also point to where contributions can be
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made with respect to risk evaluation and management of the algorithms implemented in

autonomous vehicles. Some researchers have started going in this direction, with a focus

on minimizing risk during navigation but for single vehile navigation only.

1.2.2 Navigation of autonomous vehicles

In the field of ground vehicles, the term “navigation” entails all actions related to reaching

a goal (defined by a configuration of the vehicle in the environment). The distinction

between low level control and trajectory tracking is usually not made, as those functions

are most often fulfilled by a single functional block.

For example, such integrated approaches are presented in [15, 27]. Such integrated ap-

proaches usually resort to nonlinear control techniques or optimal techniques such as

Model Predictive Control.

The work presented in [28] fits in this category but adds flexibility to the algorithm: The

goal of the algorithm is defined as a target which is either static or mobile. This kind

of flexibility is targeted in this thesis. However, these approaches usually do not imple-

ment safety metrics/constraints or robustness because they already have to fulfill a lot of

tasks.

Some other works cover the two tasks but with separate controllers for each one, which

has the advantage to separate the objectives for each task and give an adapted answer.

These approaches usually use two controllers in a cascade architecture. Such works for

ground vehicles include [29] and [30]. Linear control is often used for the inner control

loop. A similar cascade architecture for aerospace applications is presented in [31]. It is

a common approach in Unmanned Aerial Vehicles (UAV) design.

There is a desire in this thesis to implement safety guarantees and safety constraints. In

the literature, this naturally leads to the field of robust control. Robust control is a general

term defining control techniques that will be largely unaffected by perturbations from the

environment or in the behaviour of the vehicle. For example, a vehicle steering controller

could be desired to be robust to slipping, or gusts of wind (for trucks mostly). Robust

controllers offer a form of safety at the expense of performance: robust controllers are

more conservative to prevent oscillations and instabilities of the system.

Several types of robustness can be distinguished:

• Robustness to external perturbations like wind, slippery surface (perturbation rejec-
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tion).

• Robustness to model uncertainty. This is useful when the exact model describing

the behaviour of a system cannot be known.

• Robustness to an actuator malfunction (special kind of perturbation rejection). This

characteristic is often sought after in aircraft control, where an engine could stop

and destabilize the aircraft without proper design.

• High-level robustness. This form of robustness is about having an external algo-

rithm that oversees the controller’s performance and takes appropriate action if the

performance is not within acceptable bounds. This form of robustness is not directly

linked to the control aspect and is quite recent in the literature. A possible exam-

ple would be limiting the speed of a vehicle to ensure the performance of a lateral

tracking controller (assuming the lateral control is more precise at low speeds).

A corpus of works have been dealing with robust controller synthesis on linear models.

This is the now mainstream robust control theory. Usually a H∞ controller is designed to

control the uncertain model [32, 33], H∞ being a form of optimally designed controller

that can take robustness criteria as a design input. Very rarely, some robustness proofs

have been achieved with nonlinear (Lyapunov) based control [34].

When the controller depends on a measurable parameter, Linear Parameter Varying (LPV)

models can be used. In this case the varying parameter is also used as a parameter for the

controller, for example with gain-scheduling techniques [35, 36, 37]. An example is

provided in [38] with a gain-scheduled robust controller for the steerability and lateral

stability of a vehicle designed on an LPV model.

Besides robustness considerations, optimality of the control actions is often a big consid-

eration. Optimal control describes a set of techniques where the control signal is com-

puted as the result of an optimization procedure. Model Predictive Control (MPC) is the

most popular of these techniques in the recent literature. It consists of formulating an

optimization problem to find the best control sequence of the vehicle within a fixed time

horizon in the future. It uses an internal model to compute what is best with respect to the

objective. MPC can have different forms, such as nonlinear [39] and linear [40, 41, 42].

The linear form of MPC is a bit more constrained in its formulation and relies on more

assumptions, but it does provide the convergence proof and low computational cost that

the nonlinear version fails to deliver. Most MPC implementations for trajectory tracking

are done this way [40, 41, 42]. Other refinements of MPC exist such as robust MPC [43],
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constrained MPC [44] or linear MPC applied on time-varying (LTV) models [45].

This thesis aims to steer away from integrated approaches in order to spread the design

effort to more functional blocks. Robust control is a popular technique but has been

seldom used for the control of ground vehicles: so far the preference in the literature has

been for integrated and nonlinear methods. In addition to that, this thesis aims to bring

new safety metrics and risk monitoring to the field of urban vehicles. As the goal is urban

navigation with multi-vehicle maneuvers, a degree of flexibility should be kept in the

algorithm such as in [6]. The work presented here thus aims to fill the gap between non-

flexible algorithms with supervision mechanisms [46], robust control techniques [33], and

flexible navigation techniques for urban use [6].

1.2.3 Multi-Vehicle navigation

The aim is to bridge the gap between single autonomous vehicle applications and multi-

robot algorithms applied to small robots (cf. Figure 1.3). In general, multi-robot coor-

dination fails to propose systematic risk management or safety proofs, which is why few

real-world applications have been seen to this day. The existing projects implementing

multi-vehicle coordination focus on:

• Infrastructure-heavy centralized solutions, assuming all vehicles share the same

standards and all vehicles on the road are autonomous.

• Simple interactions between vehicles, such as a mutual exclusion from an intersec-

tion or navigation in a fixed formation.

Previous works at the Institut Pascal have implemented and demonstrated more complex

interactions [6, 11] in recent years. This thesis follows this research direction and aims to

build upon these works by implementing risk monitoring and management techniques for

multi-vehicle maneuvers.

Among the possible use-cases target for multi-vehicle interaction, one could mention:

• Merging (insertion on a highway)

• Overtaking

• Intersection crossing

• Platooning
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Figure 1.3: Schematic illustration of the targeted research gap

Platooning maneuvers include maneuvers realized by a group of connected vehicles that

travel on the same road. Usually, the goal is to maintain a desired formation shape. This

can be for example about maintaining an equal longitudinal distance between several ve-

hicles in the same lane [47, 48, 49]. Platooning is thought to bring benefits in terms of

traffic throughput even though it is a very local action [50]. Platooning has been exten-

sively studied at the Institut Pascal [1, 6]. It is also used as an additional tool to improve

the throughput at intersections [51, 52]. The main risk associated with platooning is to

enure that any oscillations between the relative positions of the vehicles are dampened.

This is the concept of string stability [53].

Merging is a maneuver that could be considered specific because of the constraints: the

maneuver has to succeed. The objectives of a merging maneuver are to reduce travel time,

to prevent oscillations that cause traffic jams, and ensure safe completion of the maneuver.

A study of the impact of Connected and Automated Vehicles at merging roadways has

been proposed in [54]. Several dedicated optimal methods have been proposed in the

literature [55, 56, 57, 58].

Overtaking maneuvers have also been a focus of the community recently, in order to

increase the capabilities of current Adaptive Cruise Control systems beyond following a

vehicle in a single lane [59, 10, 11, 60]. Some works have started to propose probabilistic
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frameworks for overtaking maneuvers [61, 11].

Intersection management is an extension of platooning on vehicles that do not travel on

the same road/in the same direction. The aim is usually to maximize the throughput of

the intersection under some constraints of connectivity and safety. The methods can be

similar to the two previous topics. Due to the number of vehicles involved, centralized

approaches are sometimes preferred.

Intersection management is an important goal for many research groups as well as city

planners. Intelligent traffic lights are currently being rolled out [62] in an attempt to curb

congestion with adaptive traffic lights cycles. Connected Autonomous vehicles (CAV)

are seen as a valuable tool to further improve the traffic flow in congested areas through

efficient intersection crossing. A study of the possibilities of reducing the overall en-

ergy expenditure at signalized intersections is presented in [63]. Even relatively simple

techniques such as platooning could double throughput at intersections [50]. The main

objective seeked is usually a maximization of throughput/minimization of waiting time.

These objectives are similar, even though throughput maximization more refers to a wider

scale. Waiting time minimization takes more the point of view of a passenger at a single

intersection. From the point of view of a city planner, pollution minimization would also

be an important objective, hence some works on minimization of energy expenditure at

intersections [64]. As most of the algorithms rely on optimization techniques, the opti-

mization criterion could easily be focused on one or the other. It means that these methods

are not mutually exclusive for the most part. Reviews of planning at intersections are pro-

posed in [65] and [66].

A first main group of techniques can be characterized by their hypothesis that 100% of

vehicles on the road are autonomous and connected. The majority of the research done

on intersection management nowadays works under this hypothesis. It could become

true over the long term, but only after a transition phase where autonomous vehicles and

human-driven vehicles would coexist on the road. This hypothesis also implies that there

will be universal standards of communication and procedures between autonomous ve-

hicles (V2V, Vehicle-to-Vehicle communication) and/or with a centralized infrastructure

(V2I, Vehicle-to-Infrastructure communication).

Among this first group of techniques, most of them directly assign a trajectory to ve-

hicles [67, 68, 60, 69, 70, 71, 72]. Vehicles are often controlled individually and the

intersection is assumed to be non-signalized. In addition to coordination mechanisms,

platoon formation is sometimes used to alleviate the computing costs while having little
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impact on the overall performance [73, 52] (platoon formation can also be used on its

own with regular intersections. This will be detailed later). In particular, [64] proposes an

energy minimization mechanism. These algorithms usually consider that the intersection

is unsignalized, and thus no rules are imposed on the vehicles actions. This is the very

property that excludes the sharing of the road with human drivers.

Some others work under a more restrictive hypothesis of mutual exclusion from a shared

zone [74, 75, 76, 77, 78]. These techniques lead to less optimal solutions because of this

strict mutual exclusion condition. However it means that human drivers could in theory

use an intersection managed by such an algorithm as well.

The method in [79] proposes an interesting variant of the mutual exclusion class of algo-

rithms by defining several small exclusion zones where the respective paths of vehicles

cross each other (instead of the whole intersection). The solution is formulated as an en-

semble of permutations which is the order of the vehicles at each conflicting point.

Still within this first category, some methods leave the door open for sharing the road with

humans. In this class of algorithms, the intersection is signalized so that human drivers

know what behaviour to follow. For example, [80], [81], [82] and [83] propose to control

both the trajectory of autonomous vehicles and the traffic lights patterns. This is a way of

making a signalized intersection more flexible for autonomous vehicles while still being

compatible with human drivers. The main drawback of these systems are that they restrict

the degree of freedom available to autonomous vehicles: they have to conform to what

the traffic light says. However, this is a logical consequence of leaving the door open to

accommodating human drivers. A similar method that only acts on the speed of vehicles

is presented in [84], using Cooperative Adapative Cruise Control (CACC) with a heuristic

optimization algorithm to reduce delays at an intersection. CACC is a driver assistance

feature that could be also found on human driven vehicles (or semi-autonomous). To be

collaborative, such vehicles would still need to be connected.

The second group of techniques includes those which explicitly consider a mixed traffic

in their design. To the knowledge of the author, all these methods rely on traffic light

management in addition of assigning trajectories to the autonomous vehicles. The method

proposed in [85] explicitly considers three types of vehicles: conventional, connected

non-automated, and automated. This application relies on connected vehicles to gather

information on the incoming flow rates at an intersection and optimize the traffic lights

pattern accordingly. The traffic light based method proposed in [86] fixes the dependency

to connected vehicles by using external sensors. It has been successfully tested with
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various market penetration rates of autonomous vehicles. A similar testing protocol has

been used in [66] with human driven vehicles in the simulations. It has been shown that

even a small proportion of Autonomous Vehicles can improve the smoothness of the traffic

flow and increase throughput of the intersection.

Besides the traffic light management, some approaches focus on enabling platoons of

autonomous vehicles at normal intersections to improve throughput [87, 88]. Arguably,

these methods are not really intersection management methods as they make do with

existing intersection mechanisms.

There is currently a gap in the literature for intersection management methods that:

• Explicitly consider human driven vehicles.

• Work on existing infrastructure (i.e., without using intelligent traffic lights).

• Are able to provide risk metrics and risk management techniques.

Regarding the last point, probabilistic techniques that allow to manage the level of risk

have so far been reserved for single vehicle applications [61, 89, 90].

1.3 Objectives

An outline of the algorithmic architecture developed during this thesis is shown in Figure

1.4. The lower part of this architecture is typical for ground vehicles and autonomous

vehicles navigation in general. The Risk Management block has been added because it is

one of the contributions of the thesis.

Figure 1.4: Different functional blocks addressed in the thesis

The general aims of the thesis can be categorized either by theme or by the functional

block that is concerned.

The aims categorized by topics are:
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• Using robust methods across the architecture

• Implementing systematic risk monitoring metrics

• Implementing risk management/mitigation techniques using the monitoring metrics

• Using optimal algorithms when possible

These objectives will be applied across the whole algorithmic architecture of autonomous

vehicles. More precisely, they will be applied to:

• The low-level control block

• The Trajectory tracking block

• The Collaborative planning block

• The Risk monitoring block created for the needs of this thesis.

Overall, the expected result of this thesis is a coherent architecture that provides the func-

tions necessary for the navigation of autonomous vehicles in urban environments. The

vehicles should be able to cooperate together as a result of the developed algorithms. The

risk management techniques should be as independant as possible from the specific imple-

mentation of each function, such that they are generalizable to a whole range of specific

navigation techniques across different works.

The following sections will detail those aims following the functional block classification.

The objectives concerning the risk monitoring function will be addressed in the sections

for the other blocks for clarity.

1.3.1 Control and trajectory tracking

There are several targeted aims for the control and trajectory tracking architecture:

• It should provide flexibility with regards to the tasks performed: trajectory tracking,

target following, navigation in platoon

• It should be explicitly comfortable and safe, in a way that is easy to validate

• It should provide robustness to perturbations and model uncertainties: these char-

acteristics are often absent from the works in passenger vehicle navigation.

• It should provide risk monitoring metrics and the ability to perform risk manage-

ment/mitigation.
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These characteristics have been seen in different works but not at the same time. Ap-

proaches that are flexible are usually performance based and do not provide risk metrics.

Likewise, Robust approaches often fail to provide flexibility.

The proposed combination of characteristics is seen as satisfying the constraints for higher

adoption of autonomous vehicles technology for urban transportation.

A risk monitoring function should be clearly identified and produce meaningful metrics

understandable by humans. In fact, the risk monitoring and mitigation shall be dissociated

as much as possible from the actual implementation of the algorithms. This is to be

able to provide systematic risk management methods that are transposable to different

algorithmic architectures.

The resulting algorithms should provide all three characteristics at the same time. Success

will also be evaluated in light of the possibility of implementing the algorithms and control

techniques in real-life on the test vehicles. In fact, an objective of the thesis is to test the

control algorithms on the IPCar vehicles under the ROS framework. As this framework

is becoming more standard in the autonomous vehicles industry, this would be another

big argument towards the applicability of the work developed in this thesis to real life

situations.

1.3.2 Multi-Vehicle Coordination (MVC)

The development of Multi-Vehicle Coordination (MVC) techniques in this thesis has been

focused on intersection management. There is a research gap in the literature for dealing

with short and medium term scenarios (mixed traffic on the road), and even more so

without using dedicated and expensive infrastructure. Furthermore, even fewer methods

propose systematic risk management as is targeted in this thesis.

Other multi-vehicle maneuvers can be seen as particular cases of intersection manage-

ment. An intersection is in essence the least structured space the vehicles have to face.

There are vehicles coming from every direction, multiple destination options and in gen-

eral no clear structure to the maneuver that should be achieved. By contrast, the vehicles

all go in the same direction for merging, platooning and overtaking. The number of po-

tential conflicts and the differential speeds between vehicles are much smaller in these

cases.

The goal is thus to develop a general algorithm for multi-vehicles collaboration that will
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be tested on intersection management in the most difficult conditions. These difficult con-

ditions will entail high densities of vehicles, several intersection layouts and the inclusion

of human drivers with unknown intentions. It is expected that an algorithm that can cope

with intersection management under those conditions can also cope with merging and

overtaking.

A typical intersection use-case to challenge the design is presented in Figure 1.5. Its main

features are the presence of a human driver with unknown intentions and the potential use

of platooning as an additional tool to reduce complexity of the maneuver. This type of

scenario could happen in the short to medium term because of the presence of humans on

the road. Some algorithms work under the longer term hypothesis of 100% of CAV on

the road. It is an explicit aim of this thesis to focus on shorter term scenarios by keeping

perturbations in the form of human drivers on the road.

Figure 1.5: Example of a targeted use-case for the coordination algorithm

Success will be evaluated in light of the actual capabilities of the algorithm: optimality,

scalability, real-life applicability and risk management abilities. Scalability of the algo-

rithm means that it could work with arbitrarily complex intersection layouts and high

numbers of vehicles without explosion of the computational cost. Risk management abil-

ities are linked to the fact that the algorithm can output relevant risk metrics and has a

risk-adverse behaviour.

Real-life applicability in the case of this work is composed of several factors:
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• Ease of implementation: the algorithm is easily transferrable to real vehicles and

does not need dedicated and expensive infrastructure.

• Low computational cost: The algorithm should not need supercomputers to work at

a satisfactory speed.

• Ease of deployment: an algorithm is easy to deploy if it does not rely on overly strict

software and data standards. It should also be easily understandable to engineers

and developers that are not the designers of the algorithm.

1.3.3 Path to achieve the aims

The author has approached the problems in a bottom-up order. The architectural consid-

erations have been tackled first (in Chapter 2) because they condition the rest of the work.

Then the low level control has been tackled, followed by the trajectory tracking and the

multi-vehicle coordination algorithm. The risk management techniques have been de-

veloped along with the three functional blocks mentioned before. Usually, a given risk

monitoring function is closely related to one of the blocks.

In the scope of this thesis, three validation techniques are available and have all been

used:

• Matlab simulations

• 4D-Virtualiz (4DV) simulation software

• Implementation on test vehicles

The 4D-Virtualiz software http://www.4d-virtualiz.com/en/ is an advanced sim-

ulation environment for the test and validation of robotic systems. Figure 1.6 shows the

environment in 4DV. The PAVIN and IPCars are simulated in the software as well as

all the vehicle’s sensors. It allows for a very realistic simulation from where it is easy

to transfer code to real vehicles. The test vehicles are the IPCars described in Section

1.1.

The validation workflow intended for the control and trajectory tracking contributions is

presented in Figure 1.7. All algorithms are prototyped and evaluated on Matlab first. A

C++ implementation for the Robot Operating System (ROS) framework is then carried

away. ROS is a popular middleware to implement software on robots. It provides a

programmation environment to the user in which the sensors and actuators are easily
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Figure 1.6: Illustration of the 4DV simulator environment

accessible (https://www.ros.org/). The ROS code can then be tested in the 4DV

environment or on the real vehicles. Due to the high level of simulation accuracy provided

by 4DV, the transfer from 4DV to the real vehicles is very easy and can be done back and

forth.

Figure 1.7: Validation workflow for control and trajectory tracking contributions

The intended workflow is slightly different for developing the Multi-Vehicle Coordination

(MVC) algorithm. It is depicted in Figure 1.8. As most MVC techniques work on simpler

hypotheses than is intended here (100% of CAV and no explicit risk management), the

developments will start from there and try to build on the complexity of the scenarios that

the algorithm can tackle. If mature enough, it will then be transferred to C++ code in

order to be tested in simulation or on real vehicles.
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Figure 1.8: Validation workflow for Multi-Vehicle Coordination (MVC) algorithm devel-
opment

1.4 Manuscript organization

The remainder of the manuscript is divided as follows:

• Chapter 2 investigates the necessity to split the navigation function between the

Low level control block and the Trajectory tracking block. It also proposes a robust

controller for the Low level control.

• Chapter 3 focuses on the Trajectory tracking block and its relation to the Risk man-

agement supervision block. As the trajectory tracking function is freed from low

level considerations thanks to the split between low level control and trajectory

tracking, a risk-based approach can be implemented without asking too much of

this block. A risk management technique is also demonstrated to successfully en-

force tracking performance.

• Chapter 4 focuses solely on the Collaboration block. It presents a decentralized

multi-vehicle collaboration technique that aims to be compatible with a risk man-

agement module. This is achieved by developing an algorithm that works on prob-

abilistic assumptions and can output risk-related metrics.

• Chapter 5 extends the algorithm proposed in Chapter 4 in order to make it useable

in real-life situations. It is related mostly to the Collaboration block.

• Finally, Chapter 6 presents a further development of the collaboration technique
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proposed, called the Unified Probabilistic Multi-Vehicle Coordination algorithm

(UP-MVC). This algorithm is a polyvalent multi-vehicle planner able to cope with

human drivers on the road. Due to its probabilistic nature, it naturally takes risk

adverse decisions and outputs relevant, easy to understand risk metrics. Thus the

developments in this chapter are related to the Collaboration block and the Risk

management block.

• This thesis manuscript ends with general conclusions of the proposed contribution

and several prospects for this PhD.

1.5 List of published and submitted works

The first three articles have been published in international conferences. They correspond

respectively to the content in Chapter 2, 3 and 4:

• Philippe C., Adouane L., Tsourdos A., Shin H.-S., Thuilot B., “Risk and comfort

management for multi-vehicle navigation using a flexible and robust cascade con-

trol architecture”. In: European Conference on Mobile Robots (6-8 Sept. 2017,

Paris). [91]

• Philippe C., Adouane L., Tsourdos A., Shin H.-S., Thuilot B., “Safe and Online

MPC for Managing Safety and Comfort of Autonomous Vehicles in Urban Environ-

ment”. In: IEEE Conference on Intelligent Transportation Systems, Proceedings,

ITSC (Nov. 4-7 2018, Maui, Hawaii), pp. 300-306. [92]

• Philippe C., Adouane L., Tsourdos A., Shin H.-S., Thuilot B., “Probability Collec-

tives Algorithm applied to Decentralized Intersection Coordination for Connected

Autonomous Vehicles”. In Intelligent Vehicles Symposium, IV (9-12 June 2019,

Paris), pp. 1928-1934. [93]

The following paper has been submitted to the journal Transaction on Intelligent Vehicles.

It is currently pending for review. It corresponds to the content given in Chapter 5:

• Philippe C., Adouane L., Tsourdos A., Shin H.-S., Thuilot B., “Robust and Decen-

tralized Traffic Flow Management of Autonomous Vehicles at Intersections based

on Probability Collectives Algorithm”. Submitted to Transactions on Intelligent

Vehicles, IV.
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Finally, the content of Chapter 6 has been submitted in a shortened form to the Interna-

tional Conference on Robotics and Automation (ICRA ’20’):

• Philippe C., Adouane L., Tsourdos A., Shin H.-S., Thuilot B., “Unified Probabilis-

tic Multi-Vehicle Coordination (UP-MVC) Algorithm: A Decentralized Optimal

Intersection Crossing Algorithm Compatible with Mixed-Traffic Scenarios”. Sub-

mitted to International Conference on Robotics and Automation, ICRA.
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[7] José Vilca, Lounis Adouane, and Youcef Mezouar. “Adaptive leader-follower for-

mation in cluttered environment using dynamic target reconfiguration”. In: Dis-

tributed Autonomous Robotic Systems. Springer, 2016, pp. 237–254.

[8] Pierre Avanzini. “Modélisation et Commande d’un Convoi de Véhicules Urbains
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Abstract

This chapter presents a new cascade control architecture formulation for addressing the

problem of autonomous vehicle trajectory tracking under risk and comfort constraints.

The integration of these constraints has been split between an inner and an outer loop.

The former is made of a robust controller dedicated to stabilizing the car dynamics while

the latter uses a nonlinear Model Predictive Control (MPC) scheme to control the car

trajectory. The proposed structure aims to take into account several important aspects,

such as robustness considerations and disturbance rejection (inner loop) as well as control

signal and state constraints, tracking error monitoring and tracking error prediction (outer

loop). The proposed design has been validated in simulation while comparing mainly

with common kinematic trajectory controllers.
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2.1 Introduction

Autonomous vehicles are getting more and more important in the academic field as well

as in the industry. Constructors such as BMW, Volvo, Tesla and other companies such as

Uber are trying to reach the next step of autonomy for consumer cars. Recent incidents

or accidents [1] have highlighted the need for safe and robust architectures.

The objectives of this chapter are to describe the development of a control architecture

for autonomous vehicle under the constraints specific to urban passenger transportation.

The two major categories of constraints are the safety and the comfort of the passengers.

Indicators of tracking performance and health monitoring will be developed to allow for

the future development of a supervision layer in the architecture.

In the end, the proposed architecture aims to be a generic and easily transposable solution

for single and multi-vehicle navigation. These aims will be reached with a combination of

an MPC controller for the tracking and a robust H∞ controller for yaw stabilization.

The numerical applications are done for the IPCar vehicles, which are autonomous elec-

tric vehicles for urban transportation (cf. Fig. 2.1).

Figure 2.1: IPCar autonomous transport vehicles in a coordinated maneuver

The remainder of this chapter will be organized as follows. Section 2.2 will give an

overview on the works on autonomous vehicle control and will describe the pertinence

and novelty of the proposed architecture. Section 2.3 will explain the design of the two

blocks of the cascade control architecture. Section 2.4 will show comparative simulations

in a range situations for different controllers and architectures.
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2.2 Towards a Flexible And Robust Control Architecture

2.2.1 Related works

The existing works on autonomous vehicle lateral control can be separated in two main

categories. There are trajectory/target tracking algorithms on one side and yaw stabiliza-

tion algorithms on the other side. Some approaches will be described as integrated and

aim to fulfil those two tasks at the same time. For the tracking task, kinematic controllers

are used in [2] and [3]. Depending on the implementation they can cover a range of

speeds and situations but the lack of consideration of dynamic effects can be problematic

for highly dynamic situations. Yaw stabilization (or active steering) schemes include [4]

and [5] which use respectively the linear robust control framework and the MPC frame-

work. Both approaches show very good performances, at the expense of a robustness

proof in [5] with the MPC design. As for integrated approaches, a first example based

on a nonlinear kinematic controller is presented in [6]. Empirical terms have been added

to a trajectory controller for dynamic effects compensation. In [7] is presented another

integrated approach based on linear adaptive control. In [8] is presented an approach

based on MPC. The choice of the technique mainly depends on the design objectives.

Some other works cover the two tasks but with separate controllers for each one, which

has the advantage to separate the objectives for each task and give an adapted answer.

These approaches usually use two controllers in a cascade architecture. Such works for

ground vehicles include [9] and [10]. Linear control is often used for the inner control

loop. A similar cascade architecture for aerospace applications is presented in [11]. It

is a common approach in Unmanned Aerial Vehicles (UAV) design. Usually, integrated

architectures fail to take into account the comfort, safety and implementability at the same

time since they are more performance based. This is what the proposed design aims to

do.

2.2.2 Architecture design

Compared to integrated design, the advantage of cascade architectures is the flexibility

for multi-vehicle navigation and the natural separation between kinematic and dynamic

phenomenons. Moreover, the trajectory tracking error dynamics are not on the same time

scale than the car yaw dynamics. This separation is analogous to the Guidance/Control

framework [12] even though it is more a kinematic/dynamic separation.
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The MPC has been used with great success to address trajectory tracking and yaw stabi-

lization as an integrated approach. However it seems more relevant in this application to

separate the yaw stabilization in a cascade architecture.

The inner loop for yaw stabilization has to deal with the uncertainty on the vehicle phys-

ical parameters. For instance the weight and inertia of the vehicle will undergo wide

variations because of the variable passenger repartition. The friction coefficient µ will

also be unknown and unmeasurable.

For these reasons the linear robust control framework has been chosen to design the inner

loop controller. It enables the robustness assessment of the controller under the model

uncertainty, which is a big asset for ensuring safety.

The designed architecture is shown in Fig. 2.2. The MPC controller generates a desired

yaw rate rd and a desired speed vd to track the reference trajectory Xre f . The inner con-

troller tracks the signal (rd, vd) by generating a desired steering angle δd and acceleration

ad to the vehicle. The state Xdyn (resp. Xkin) is the dynamic (resp. kinematic) state of the

vehicle. It will be defined in section 2.3.1 (resp. 2.3.2).

Figure 2.2: Designed cascade architecture

2.3 Proposed Cascade Control Architecture

This architecture will have to fulfil the tasks of trajectory following as well as target

tracking in order to be fit for multi-vehicle navigation. Trajectory following is the action

of following a predefined line (defined in (x, y) coordinates) with a reference speed vre f at

each point. For target following the same information is available but only at the current

instant. More states can be known about the target, whether by sensing or communication.

As mentioned in section 2.2, the proposed architecture will have to handle the two tasks

while ensuring passenger comfort and safety. The inner loop design will be described first

and then the outer loop design, since it depends on the former.
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2.3.1 Inner loop design

A mixed sensitivity H∞ controller has been chosen because it is an optimal design tech-

nique, and it has explicit disturbance rejection and frequency domain performance specifi-

cations. The disturbance rejection characteristics are interesting because it will dictate the

vehicle’s behaviour under wind gusts. Too strong of a reaction could be seen as dangerous

and uncomfortable.

For this application the model in the state space form is shown in Equation (2.1). It

is based on the kinematic bicycle representation. It consists of a 2 degrees of freedom

(DoF) model for the sideslip β and yaw rate r dynamics and a first order model of time

constant τact for the evolution of δ, the steering angle. The overall state is Xdyn = (β, r, δ)T

(resp. sideslip, yaw rate and steering angle defined in Fig. 2.3). The input is the desired

steering angle δd. This model has been presented in depth in [13]. It is suitable for low

speed situations such as urban traffic.

Figure 2.3: Dynamic bicycle model conventions

Ẋdyn =


a11 a12 b1

a21 a22 b2

0 0 −τ−1
act

 Xdyn +


0

0

τ−1
act

 δd (2.1)

The coefficients ai j and bi depend on the constants c f , cr,m, v, J, lb, l f defined in Table

2.1.

The following range of configurations has been considered:

• from zero passenger to four passengers of 100kg each

• speeds from 1.5m/s to 4.5m/s

47



Table 2.1: Parameter values for uncertain car plant study
parameter notation value
wheelbase lb 3m
inertial radius ir 1.5m
cornering stiffnesses c f , cr 700N/deg
actuator time constant τact 0.6s
mass m 600kg ± 30%
CG position to front axle l f 1.4m ± 20%
speed v 3m/s ± 50%
friction coefficient µ 0.65 ± 50%

• friction coeff in [0.3, 1] (from a slippery wet road to a dry road)

• Centre of Gravity (CoG) from 1.1m to 1.6m to front axle (because of the passenger

repartition)

The corresponding uncertain variables have been summarized in Table 2.1. As a way to

reduce the number of uncertain variables, J has been considered proportional to m with

the intermediate of the inertial radius ir (c.f. [13]).

The result of the H∞ design is shown in (2.2) with KCF being the feedforward filter and

KDR being the feedback filter. The filters have been approximated by second order transfer

functions to make the implementation faster.
KCF(s) =

s2 + 21.2s + 158.2
s2 + 20s + 156.3

KDR(s) =
250(s + 124)(s + 1.67)

s(s + 17.5)

(2.2)

The robustness analysis shows that the design is robust to the modelled uncertainty. The

performance analysis shows that the rise time for the yaw rate is always between 0.3s and

0.8s with a nominal value at 0.5s and the system is always well damped (as seen in Fig.

2.4).

Since the system is always well damped (there is no overshoot), it will be approximated

by a first order system in the following developments, making for a simpler model for the

MPC.
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Figure 2.4: Closed-loop step response envelope

2.3.2 Outer loop design

The outer loop controller (cf. Fig 2.2) needs to address the problem of stabilizing the

vehicle around a moving target or a reference trajectory.

Even though it is a classical approach, MPC has good qualities to address our problem:

it finds an optimal solution, can inherently deal with non linear processes such as car

steering and can include constraints on the states and control signal (linked to comfort

and safety). The prediction is also valuable to deal with slow dynamics and to anticipate

future situations.

The main problem of MPC is that it always needs a reference trajectory over a finite hori-

zon. In multi-vehicle navigation it is not always available and thus needs to be predicted

to enable the use of MPC. Fig. 2.5 shows a situation where a reference trajectory for

the virtual target T that VF (the follower) has to follow is only partially known over the

MPC horizon. In this situation the aim is to keep constant offsets ∆yre f and ∆sre f with the

trajectory of VL (the leader). As the prediction horizon of the MPC depends on the model

dynamics, it is not correlated to how far the target is to the leading vehicle. Thus a big

MPC horizon and a small leader/target distance can lead to such a situation.
The reference trajectory prediction is based on the hypotheses that the yaw rate r and

speed v of the leader are constant. The states for the prediction are the same as the MPC

presented later in (2.3). It generates a reference trajectory X̂ref(k + N|k) over the MPC

prediction horizon N. The MPC scheme can then be used seamlessly whether there is a
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Figure 2.5: Partial availability of a reference trajectory in leader/follower navigation

reference trajectory over the whole prediction horizon or not and makes the architecture

more flexible.

The chosen model for the MPC is shown in (2.3). At a timestep k, the state is Xkin(k) =

(xk, yk, ψk, rk, vk)T where xk, yk and ψk are defined in Fig. 2.6, rk is the yaw rate of the car

and vk its speed. The input is U = (rd, vd)T (the desired yaw rate and speed). The only

parameters that describe the vehicle’s dynamics are τr and τv, the time constants for the

yaw rate and the speed responses which have been identified on the closed inner loop (cf.

Table 2.2). The last parameter is the sampling time Ts of the loop. These responses are

assumed to be described by first order models. It is a realistic hypothesis as long as the

real responses are well damped. This is the case here as seen in Fig. 2.4 thanks to the

inner loop designed in section 2.3.1.



xk+1 = xk + Tsvk cosψk

yk+1 = yk + Tsvk sinψk

ψk+1 = ψk + Tsrk

rk+1 = rk + τ−1
r (rd − rk)

vk+1 = vk + τ−1
v (vd − vk)

(2.3)

The MPC scheme finds a control input Uopt that minimizes a cost function J(U), where

U = (Uk, ...,Uk+N) is series of control signals to test over the prediction horizon N. This

function is usually composed of a term that penalizes the errors to the reference trajectory

and other terms to smooth the control signal.
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Figure 2.6: Navigation errors definition

The penalized terms are:

• X̃, the matrix of differences w.r.t. the reference trajectory over the prediction hori-

zon N

• Ê(k + N|k) the navigation errors over the prediction horizon N. These errors are

defined in Fig. 2.6 and further detailed in [2]. They are a convenient way to work

in a local frame that is in the vehicle’s orientation.

• Ũ the difference between the test input signal and the previous optimal input signal.

• U∆ the differences between two successive input values in the tested input signal

(a.k.a. control effort).

The chosen cost function is defined in (2.4). It is a weighted sum of the penalty terms:

J(U) = X̃T QX̃ + Ê(k + N |k)T S Ê(k + N|k)

+ ŨT RŨ + UT
∆R∆U∆ (2.4)

The penalties on Ũ and U∆ tend to smooth the tracking and are often encountered in non-

linear MPC schemes. The penalty on the navigation errors allows to separately penalize

the lateral and longitudinal errors (ex and ey) and have been preferred to the penalty on the

state difference X̃. The values of the weight matrices Q, S , R and R∆ are compiled in Ta-

ble 2.2. The raw state difference X̃ has not been penalized except for the speed difference,

which was found to smooth the longitudinal tracking.

For comfort and safety, the following constraints have been introduced:

• |rd|≤ rmax
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Table 2.2: MPC controller parameters
N 14
τr 0.5s
τv 1.4s
Q diag(0, 0, 0, 0, 0.1)
S diag(1, 2, 0, 0)
R diag(0, 0)
R∆ diag(15, 15)
rmax 30 deg/s

drmax 50 deg/s2

vmax 4.5 m/s
ay,max 5 m/s2

ax,max 3 m/s2

ex,max 0.5 m
ey,max 0.2 m

• |ṙd|≤ drmax

• vmin ≤ vd ≤ vmax

• |ay,d|= |vdrd|≤ ay,max

• |ax,d|= ∆vd/Ts ≤ ax,max

• |κd|= |rd/vd|≤ κmax

The constraints on the yaw rate rd, the yaw rate derivative ṙd and the lateral/longitudinal

accelerations ay,d and ax,d are here for comfort. The constraints on the speed vd and the

curvature κd are physical limitations of the vehicle. Two additional constraints on the

tracking errors have been added: |ex|≤ ex,max and |ey|≤ ey,max. These constraints are used

to ensure the vehicle will stay within given bounds around the target. For example, the

constraint on ey will depend on the road width. The numerical values used for the con-

straints are compiled in Table 2.2. The optimization function used for the simulations is

the fmincon Matlab optimization function under constraints. The input constraints will

always be respected (it restricts the search space) and the function will try to find a solu-

tion that respects the additional constraints on the tracking errors, unless impossible. In

the latter case, the optimization function’s output will mention that the constraints were

not respected. This information can be used to prevent the violation of constraints before

it actually happens. Finally, the MPC scheme runs approximately in 20 seconds for a 10

seconds Simulink simulation with a modern computer (a 2013 Intel i5 equipped laptop)

and a loop rate of 10Hz.
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2.3.3 Conclusion

The proposed architecture is comprised of two loops in cascade that aim to solve the

trajectory tracking/target following problems under comfort and safety constraints. The

task separation allows to split the constraints and to focus on different aspects of the

problem at each stage as well as allowing a simpler design overall.

2.4 Simulations and Results

2.4.1 Model Used

The model used for the simulations consists of a 3DoF bicycle chassis model with a

linear tyre model (for both the longitudinal and lateral forces). The simulations have been

performed in Simulink.

The model for the simulations is based on the one presented in section 2.3.1. The rota-

tional wheel dynamics have been added in order to have a realistic longitudinal behaviour.

Thus the state vector is defined as X = (β, r, v, ω f , ωr)T with the three first states already

defined in Equation (2.1) and ω f (resp. ωr) is the front (resp. rear) wheel rotational

speed. The input vector is U = (δd, ad)T , the desired steering angle and longitudinal ac-

celeration. These inputs are transformed into actual wheel angle and acceleration by the

{actuator + controller} systems modelled by first order transfer functions of time constant

0.6s (resp 1s) and damping 0.8. The front and rear axles inertias are J f = Jr = 0.45kg.m−2

and the longitudinal tyre stiffnesses are Cl, f = Cl,r = 104N/deg. The other model param-

eters will be within the range of values used for controller design (cf. Table 2.1). Unless

specified otherwise, the nominal values have been taken.

2.4.2 Simulation scenarios

Comparisons will be made with two kinematic controllers. The first controller is the one

presented in [2] and [14]. For simplicity it will be referenced as the “Vilca” controller.

It is a nonlinear control law designed for both dynamic target following and waypoint

navigation. It is based on a Lyapunov function design and is a recent example of a flexible

kinematic controller. The other one is the “Pure Pursuit” controller [15], a widely used

kinematic controller for trajectory tracking because of its simplicity and efficiency. It is
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Table 2.3: Common simulation parameters
parameter value
initial vehicle position (1, 1) (m)
initial vehicle heading 30◦

target path curvature variation rate 0.1 Hz
max target path curvature 1/15m−1

Vilca’s law coefficients KV (1, 2.2, 8, 0.1, 0.01, 0.6)
Pursuit law look-ahead coeff. kPP 0.5
Pursuit law look-ahead dist. bounds [1, 5] (m)
outer loop sampling time Ts,g 1/10s
inner loop sampling time Ts,c 1/50s

a non linear controller that computes a curvature to reach a point on the trajectory at a

look-ahead distance. This distance is usually proportional to the vehicle speed with a

coefficient kPP within a lower and upper bound (cf. Table 2.3). Both algorithms compute

the steering angle corresponding to the desired curvature under kinematic hypotheses,

thus not taking into account actuator delays and slip.

For the simulations, the virtual target follows a sinusoidal path at a constant speed (cf.

Fig 2.7). For the MPC controller it is assumed that no information of the target’s future

path is available to put it in difficult conditions. As a consequence, the prediction module

described in section 2.3.2 will be used. It is on the other hand assumed that the trajec-

tory is entirely available when using the pursuit controller, thus giving it more favorable

conditions.

Two test cases are presented:

• Behaviour comparison: A test at low speed to compare the behaviour of the three

controllers. For this test the nominal values for the car model will mostly be used.

• Safety and comfort assessment: A test at a higher speed and non-nominal car model

values to check the robustness of the approaches. This test will also serve to check

if the comfort constraints with our approach are respected in more aggressive ma-

neuvers.

The common (resp. variable) parameters for the simulation scenarios are compiled in

Table 2.3 (resp. Table 2.4).
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Table 2.4: Variable simulation parameters
parameter value

First simulation Second simulation
initial target position (1.5, 1.5) (m) (2, 2) (m)
initial target heading 30◦ 40◦

Target speed 2m/s 4m/s
vehicle mass 600kg 750kg
friction coefficient µ 0.65 0.4
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Figure 2.7: Example of path for the simulations (target and follower)
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2.4.3 Behaviour comparison

All the nominal parameters for the model have been taken except the speed which is

2m/s. The MPC shows a very good tracking compared to the two other methods (cf Fig.

2.8). However the control signals (Fig. 2.9) and the comfort indicators (Fig. 2.10) are

approximately of the same magnitude for the three approaches. In easy maneuvers like

this one the proposed architecture behaves well but has an edge on neither the pursuit

controller or on Vilca’s controller in terms of comfort.
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Figure 2.8: Tracking performance (1st series)
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Figure 2.9: Control signals (1st series)
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2.4.4 Safety and comfort assessment

In this simulation, the safety has been assessed by checking the tracking performance

under a change of mass, friction coefficient and speed. The respect of the comfort con-

straints with the proposed cascade architecture has been tested and compared with the

behaviour of the other controllers. In this series, the target initial position was further

from the vehicle initial position (cf. Table 2.4) to study the behaviour of the controllers

when a more aggressive maneuver is required to follow the target.

The tracking performance of the designed cascade architecture is now far better than both

the Pursuit controller and Vilca’s controller (cf. Fig. 2.11). The latter one shows an

unstable oscillatory behaviour at these higher speeds because it neither anticipates the

trajectory nor the actuator delay. The performance of the cascade architecture also shows

the effectiveness of the inner controller to stabilize the yaw dynamics with a non nominal

model. The control signals (Fig. 2.12) show an effective capping of both the desired speed

and yaw rate with the cascade architecture, leading to a faster tracking errors convergence

while respecting the introduced constraints. The comfort indicators (cf. Fig. 2.13) show

undamped oscillations for both the Pursuit and Vilca’s controller, and a slight overshoot

for the cascade design. It could be removed with finer tuning of the MPC controller or the

use of the real target’s trajectory information.
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Figure 2.11: Tracking performance (2nd series)

t (s)

0 1 2 3 4 5 6 7 8 9 10

v
c
a
r (

m
/s

2
)

1

2

3

4

5
desired speed

PP Vilca Cascade

t (s)

0 1 2 3 4 5 6 7 8 9 10

r d
 (

m
-1

)

-1

-0.5

0

0.5

1
desired yaw rate

Figure 2.12: Control signals (1st series)

58



t (s)

0 1 2 3 4 5 6 7 8 9 10

r c
a
r (

m
-1

)

-1

-0.5

0

0.5

1
measured yaw rate

PP Vilca Cascade

t (s)

0 1 2 3 4 5 6 7 8 9 10

a
y
,C

G
 (

m
.s

-2
)

-5

0

5

measured lateral acceleration at CG

PP Vilca Cascade

Figure 2.13: Comfort indicators (2nd series)

2.5 Conclusion

In this chapter has been proposed a cascade architecture for autonomous vehicle navi-

gation. This architecture seamlessly fills the tasks of trajectory/path tracking as well as

dynamic target following and thus can cope with multi-vehicle scenarios. The architecture

is divided into a robust low-level yaw stabilization controller that focuses on the vehicle’s

dynamics and a high-level tracking MPC controller that focuses mainly on the kinematics.

This architecture shows an improvement in tracking performances, safety and flexibility

compared to usual kinematic controllers for trajectory tracking. It is not intended to have

an edge on performances compared to integrated approaches for trajectory tracking but to

improve robustness and implementability. Further work will be carried out to check the

performances of a linear MPC controller as well as a robustification of the MPC scheme.

Real time implementability will be evaluated and Linear Parameter Varying (LPV) tech-

niques for the low-level controller (parametrized by speed) will be investigated to improve

its performance and operational envelope.
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Chapter 3

Safe and Online MPC for Managing
Safety and Comfort of Autonomous
Vehicles in Urban Environment
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Abstract

In this chapter is presented a linear MPC controller design for autonomous cars naviga-

tion. It combines both the lateral and longitudinal control. This controller is designed

to manage comfort and safety as well as being compliant with specific platooning tasks

(such as target following, ACC and collaborative obstacle avoidance) and the switches

that can occur between those tasks. The MPC cost function has been designed to account

for human driving behaviours, i.e., it smoothes out coarse reference trajectories. Further-

more, a safety monitoring module has been implemented. It computes an estimated time

before reaching an unacceptable situation (w.r.t. comfort constraints and tracking per-

formance) under the current tracking conditions. The overall benefit of this controller is

to guarantee trajectory smoothness while outputting information on its performance. In

terms, this information can be used to re-plan safe trajectories in dynamic environments.

The proposed linear MPC controller has been tested in a typical urban scenario based on

a realistic simulator.
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3.1 Introduction

The field of mobile robotics for passenger transportation has been very active in the re-

cent years. Many advances have been done and highlighted by challenges such as the

DARPA Grand Challenge and more recently by the Grand Cooperative Challenge, as

well as advances from companies such as Volvo, Uber, Google or Tesla. Recent events

have highlighted the necessity to ensure very high levels of reliability in the algorith-

mic developments to deal with uncertainties in the environment as well as foreseeing and

preventing problems that could arise from sensors and actuators. This chapter brings a

contribution to solving these problems for trajectory tracking.

Model Predictive Control (MPC) is now a widely used and performant technique for

optimal trajectory tracking [1], [2] and/or optimal trajectory generation [3]. It allows to

cater for future events and the predictive nature often helps generating smoother control

signals when the MPC is used as a controller.

For all the above mentioned applications, a linear MPC formulation has to be used, mainly

for computational complexity reasons. This formulation introduces limitations in the way

the problem can be formulated, since it ultimately has to come down to a Quadratic Pro-

gramming (QP) solving. As a consequence, the cost functions used in the nonlinear for-

mulations cannot always be transformed into a corresponding linear formulation for real

time implementation.

Other interesting works have moved towards human-like behaviour, such as in [4] for a

plannning algorithm, showing good results. Such an approach potentially allows to limit

the difference between humans and machines in terms of perceived behaviour and could

ultimately allow the passengers to feel less uncomfortable. The approach shown in this

chapter is to include elements of “smoothness” in the trajectory tracking algorithm (mim-

icking human behaviour) while ensuring safety and precision. Guaranteeing smoothness

of the car trajectory at the controller level additionally means it is not needed to tackle this

problem when designing the trajectory planner. Thus, some complexity is removed from

the planner and other elements can be taken into account, such as risk minimization.

Some recent planning algorithms have introduced such functions to assess the perfor-

mance of the subsequent trajectory controller in order to compute a maximal safe speed

(c.f. [5] for an offroad application). It has the benefits of ensuring a given tracking per-

formance. The main risks of failure to guarantee tracking performances are actuator satu-

ration and tracking precision (due mainly to disturbances and model inacurracies).
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This chapter follows up a first contribution for an architecture design including guidance

and control presented in [6]. It goes further by linearizing the MPC algorithm, proposing

a safety monitoring module and testing it in a realistic simulation environment using the

ROS middleware.

The approach proposed in this chapter focuses on improving the attainable tradeoff be-

tween smoothness of the control signal and tracking performance. This objective has

been reached using a linear MPC formulation that gives a smoother control signal than

traditional linear MPC controllers, and a risk monitoring module.

The remainder of this chapter is organized as follows. Section 3.2 explains the reasons

behind the architecture and controller choice, and describes the design of the controller.

The characteristics and performance of the proposed controller are assessed in section 3.3

through experiments on a realistic simulation software. A conclusion and prospects are

given in section 3.4.

3.2 Proposed Architecture

3.2.1 Architecture design

The proposed MPC algorithm is intended to be part of a common Guidance, Navigation

and Control (GNC) architecture. The navigation layer is not detailed here since it is not the

focus of the presented works. The aim is to propose a versatile architecture for navigation

of urban vehicles. This architecture should ease the support of convoy navigation and

ensure safety. The proposed MPC algorithm is designed as a trajectory controller for both

the lateral and longitudinal axis. The lateral control signal generated by the MPC feeds a

low-level yaw-rate controller that controls the car steering. Such a low level controller has

been shown in [6]. The MPC controller is coupled with a safety monitoring algorithm that

computes a risk associated to the current tracking situation: reference trajectory, desired

speed and predicted performance of the MPC controller. This risk is computed based on

the following criterions:

• degree of MPC model accuracy

• predicted lateral error

These two criteria give an indication of the tracking performance that can be expected.

they can also be used to obtain an estimation of the likelihood of failing to track accurately
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the reference trajectory. The general architecture is shown in Fig. 3.1.
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Figure 3.1: Planning and risk monitoring architecture

3.2.2 MPC controller

A linear MPC controller has been designed. In an earlier publication [6], a nonlinear

MPC controller has been presented and tested in simulations against a widely used trajec-

tory controller [7] and a versatile Lyapunov function based nonlinear control law [8] that

supports trajectory tracking, mobile target tracking and waypoint-based navigation. This

controller showed a significant increase in terms of tracking performance while keeping

respective qualities of the two other control laws. However, its computational complexity

is too much for real-time applications and the non-convex optimization due to the non

linearity leads to local minima whose qualities are difficult to evaluate.

In this chapter, the MPC controller has been linearized around a reference trajectory [1].

This reference trajectory is time-variable and is the output of the local planning algo-

rithm. Such a linearization allows to overcome the two common drawbacks of nonlinear

MPC schemes (computational burden and non-convexity of the problem). The linear for-

mulation presented here can run in real-time on commercial grade computers. To keep

the same behaviour as the nonlinear MPC algorithm given in [6], a formulation has been

derived to introduce a penalty on the control signal derivative.

The continuous model Ẋ = f (X) for the MPC algorithm is shown in equation (3.1). A

second order model has been chosen for the yaw rate. This model represents the inner

loop as designed in [6]. A first order model has been kept for the longitudinal control as it

gives satisfactory accuracy in our application. The state is defined as X = (x, y, ψ, r, v, ṙ)

and the input U = (rd, vd). In this chapter, r denotes a yaw rate, ψ a heading, v a linear
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speed.

f (X) =



v cosψ

v sinψ

r

ṙ

τ−1
v (vd − v)

−2ζrωrṙ − ω2
r (r −Grrd)


(3.1)

Where τv is the first order time constant of the longitudinal actuator model, ζr is the

damping of the 2nd order lateral actuator model, ωr the pulsation and Gr the gain. The

number of states is n = 6 and the number of inputs is p = 2. The model conventions are

shown in Fig. 3.2.
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Figure 3.2: Model conventions

The series of reference points Xre f ,i in Fig. 3.2 define a reference trajectory to track and

is generated by a trajectory planner. Each Xre f ,i has the same dimension than the model

state X.

A discrete model is derived from the continuous one with a first order Taylor series around

the linearization point (Xre f ,Ure f ) with sampling time Ts:

X̃(k + 1) = Ac(k,Ts)X̃(k) + Bc(k,Ts)Ũ(k) (3.2)

Where Ure f is a reference input that allows to follow perfectly the reference states Xre f ,i.

The difference vectors are defined as X̃ = X − Xre f and Ũ = U − Ure f . The reference

input Ure f is computed through an ”inversion” of the model between successive reference

states. For example, between two reference states Xre f ,0 and Xre f ,1, the reference input

would be ideally defined by the perfect following equality:

Xre f ,1 = Ac(0,Ts)Xre f ,0 − Bc(0,Ts) ∗ Ure f (3.3)

As the input matrix Bc(0,Ts) is not always invertible, the reference input has been com-
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puted by means of a least square approximation.

The equation (3.2) can be vectorized over the MPC prediction horizon of size NMPC:

X̃(k + 1) = Ac(k)X̃(k|k) + Bc(k)Ũ(k) (3.4)

Where X̃(k + 1) = (X̃(k + 1), ... , X̃(k + NMPC))T and Ũ(k) = (Ũ(k), ... , Ũ(k + NMPC −

1))T

The computation of the model matrices Ac(k) and Bc(k) is explained in [1]. They depend

on the non vectorized model matrices Ac(k+i,Ts) and Bc(k+i,Ts) at the different timesteps

i in the MPC horizon. To mitigate the discretization errors without increasing the control

sampling rate, the model matrices have been computed at an upsampled rate Tup. The

MPC horizon size is denoted NMPC. The model sampling time is Tup, and the upsampling

factor Kup = Ts/Tup. The upsampled model matrices are then defined as:

Ac,up(k) = Ac(k,Tup)Kup

Bc,up(k) =

Kup−1∑
i=0

Ac(k,Tup)i

 Bc(k,Tup)

These matrices correspond to the propagation Kup times of a model sampled at Tup around

the linearization point k.

The optimization problem can be expressed as the usual quadratic optimization problem

with the cost function J(k) defined as:

J(k) =
1
2

Ũ(k)T H(k)Ũ(k) + fT Ũ(k) (3.5)

With:
H(k) = 2

(
Bc(k)T QBc(k) + R

)
f(k) = 2Bc(k)T QAc(k)X̃(k)

(3.6)

In this formulation, the current difference between the state and the first reference X̃(k)

needs to be fully measurable to propagate the model.

The matrix Q = diag(Q1, ...,QNMPC ) is used for weighting the penalty of the state error X̃

in the cost function. Each Qi is a n-by-n square matrix containing the weights for each

state. In this application, these weights have been kept constant over the MPC horizon.
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Thus, each Qi is defined as:

Qi = (Q11,Q22, ... ,Qnn) (3.7)

The matrix R weights the error to the reference input series Ure f . R is built the same way

as the matrix Q: it is a diagonal matrix of NMPC square blocks Ri = diag(R11,R22).

An augmentation of the cost function is proposed in this chapter to include terms on

the control signal derivatives (which could easily be translated into cost on the states

derivatives). This term is often used in nonlinear MPC algorithms to smooth the control

signal. In this application, it is also used as a way to make the MPC algorithm less

sensitive to noise in the reference trajectory. Such a noisy reference can happen because

of noisy localization data or when following a vehicle.

In this formulation, the derivatives are computed by means of finite differences. Let U be

the input series to impose the weight on, Ure f the reference input and Ũ = U−Ure f .

The subscript ∆ denotes backwards differences operation. Hence U∆ is the vector of

backwards differences of the terms in U.

For vectorized notations, the subscript 0 denotes the terms for the first NMPC −1 timesteps

in an input vector. The subscript 1 denotes the terms for the last NMPC − 1 timesteps.

Hence, U∆ = U1 − U0.

The aim is to find two matrices Hd and fd so that:

‖U∆‖
2 = ŨT HdŨ + fT

d Ũ (3.8)

As a consequence, the matrices Hd and fd (after weighting) can be added to H(k) and f(k)

in the quadratic problem.

Developing the expression of ‖U∆‖
2 yields:

‖U∆‖
2 =

∥∥∥Ũ1 − Ũ0

∥∥∥2

+ 2
(
Ure f ,1 − Ure f ,0

)
.Ũ1

− 2
(
Ure f ,1 − Ure f ,0

)
.Ũ0

+
∥∥∥Ure f ,1 − Ure f ,0

∥∥∥2

(3.9)

The quadratic and linear terms in Ũ are clearly separated. Hence, the following identifi-
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cation (because of the unicity of a polynomial coordinates):

ŨT HdŨ =
∥∥∥Ũ1 − Ũ0

∥∥∥2
(3.10)

and:

fT
d Ũ = 2

(
Ure f ,1 − Ure f ,0

)
.Ũ1 − 2

(
Ure f ,1 − Ure f ,0

)
.Ũ0 (3.11)

Developing ‖U∆‖
2 in equation (3.8) and identifying the quadratic and linear terms yields

the following definition for Hd:

Hd =



Ip −Ip 0
−Ip 2Ip −Ip

. . .
. . .

. . .

−Ip 2Ip −Ip

0 −Ip Ip


(3.12)

Where Hd is a square matrix of size NMPC-by-p (NMPC is the size of the MPC horizon and

p denotes the number of model inputs). The matrix Ip is the identity matrix of size p. The

vector fd is a column vector of dimension NMPC defined as:

fd = 2

Ure f ,0 − Ure f ,1

0

 + 2

 0

Ure f ,1 − Ure f ,0

 (3.13)

With each block in the vector having p rows.

The new matrices for the optimization are finally obtained as follows:

H(k) = 2
(
Bc(k)T QBc(k) + R + RdHd

)
f(k) = 2

(
Bc(k)T QAc(k)X̃(k) + Rdfd

)
Where Rd is used to weight the penalty on the control signal derivative. It is built in the

same way as R. The scalar weight for the lateral input derivative is denoted Rd,11 and for

the longitudinal input Rd,22.

This formulation introduces a trade-off between the tracking performance and the pas-

senger comfort in the usual MPC formulation (in favor of the smoothness of the control

signal). Usually, the weight R is used to tune the convergence rate of MPC controllers.

The main drawback is that it penalizes the difference between U and Ure f : this difference

can be noisy due to the computation of Ure f . It arises because the model inversion that
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is used to get Ure f from Xre f tends to amplify noise on Ure f . If the aim is to be able to

give coarse reference paths to the MPC, the convergence should not be set by increasing

R.

Because of this new weight Rd on the control signal derivative in the penalty function,

no hard constraints needs to be introduced for comfort features. Instead, comfort require-

ments will be dealt with the trajectory planner, in order to keep even aggressive emergency

trajectories controllable by the MPC algorithm.

However, a constraint on the maximal required curvature has to be implemented to con-

sider the vehicle’s geometry and mechanical constraints. With the linear MPC formu-

lation, it has to be implemented through an approximation. From the variables in U =

(rd, vd)T , the desired curvature is c = rd/vd which is not a linear relation with respect to U.

As a consequence, the curvature is expressed approximately with c̄ = rd/vre f around the

linearization trajectory. This approximation holds perfectly as long as the vehicle’s speed

is close to the reference speed.

The constraint is then expressed as: c̄ = r/vre f ≤ cmax

c̄ = r/vre f ≥ −cmax
(3.14)

Subtracting cre f = rre f /vre f on each side and rearranging gives:


1

vre f
r̃ ≤ cmax − cre f

−
1

vre f
r̃ ≤ cmax + cre f

(3.15)

With r̃ = r − rre f .

To express these two constraints in the form DŨ ≤ d, the following 2-dimensional matri-

ces are used:

D =

 v−1
re f 0

−v−1
re f 0


t

d =

cmax − cre f

cmax + cre f


(3.16)

They can be generalized for the input Ũ over the MPC horizon.

Additionally, it has been chosen not to implement tracking constraints on the vehicle’s
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state as they can destabilize the optimization if being impossible to fulfill. In that case,

a linear quadratic solver may prefer to violate constraints on the input (maximum speed

or yaw rate) and give completely unacceptable solutions. A monitoring solution has been

preferred, in order to introduce a form of feedback on the tracking performance. This is

detailed in the next section.

3.2.3 MPC behaviour monitoring

As tracking performance should never be compromised for safe trajectory tracking, a be-

haviour monitoring module for the MPC algorithm has been developed. This module uses

the knowledge of the MPC controller performance to generate a risk estimation associ-

ated to what is currently asked to the MPC controller. It takes advantage of the predictive

nature of the MPC. This information is intended to be used in a trajectory planner in order

to find acceptable trajectories risk-wise.

The safety monitoring module has two subfunctions in order to assess:

• The risk of violating the comfort constraints

• The risk of lateral tracking constraint violation

In this application, comfort constraints are defined as state constraints on the yaw rate

and yaw rate derivative. The risk of violating the comfort constraints is evaluated as a

critical time tc,com f ort at which those constraints would be violated by tracking the current

trajectory. The optimal input found Uopt is used to propagate the states of the vehicle

over the MPC horizon. The predicted states are then checked for violation yaw rate con-

straints, and of derivative constraints. If such a point is found at the critical index ic,com f ort,

then:

tc,com f ort = Tsicritical (3.17)

For tracking accuracy monitoring, an estimation of the uncertainty of the MPC predicted

lateral error êy is first carried out. At each time step k, the NMPC past inputs are ap-

plied from the vehicle’s position NMPC time steps ago. The lateral error predictions[
êy(k − NMPC), ..., êy(k)

]
obtained are compared with the known lateral errors up to the

present time:
[
ey(k − NMPC), ..., ey(k)

]
. At the time k, it gives the errors associated to the

prediction of ey:

ẽy(i, k) = êy(k − i) − ey(k − i) (∀i ∈ [1,NMPC]) (3.18)
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These errors are due to modelling inaccuracies and measurement errors. They are com-

piled in a matrix Ey,model of size (NMPC,Nmem) over a finite number of timesteps Nmem. A

column j of Ey,model contains the model errors for each step in the MPC horizon computed

j timesteps ago.

The uncertainty associated to êy is computed from the data in Ey,model. Assuming an unbi-

ased normal distribution for each êy(i), its uncertainty is computed as the standard devia-

tion (denoted σey(i)) of the prediction errors for each step i in the MPC horizon:

σey(i) =

√√√
1

NMPC − 1

NMPC∑
j=1

Ey,model(i, j)2 (3.19)

The bigger the memory time Nmem, the finer the estimation of the standard deviation,

but the more lag it has. This can be problematic if the model error is dependant on

external parameters such as the curvature of the road. The main risk is to underestimate

the standard deviation of êy, and as a consequence to trust the model too much. A short

horizon of Nmem = 5 has been chosen.

Thanks to the information on ey uncertainty, a probabilistic risk prediction for the tracking

error violation can be carried out. The result of this prediction will be a critical time

tc,êy within the MPC horizon at which the probability of overshooting the lateral tracking

constraint is above a given threshold probability Pc (typically 5%): ic,êy = min
i∈[1,NMPC]

(
i, so that P

(
êy(i) ≥ ey,max

)
≥ Pc

)
tc,êy = Tsic,êy

(3.20)

It is equivalent as looking for the first i for which the required confidence interval of êy is

not included in [−ey,max, ey,max].

For instance, the 95% confidence interval of êy(i) (Pc = 5%) is defined as:

Ic,95% = [êy(i) − 2σey(i), êy(i) + 2σey(i)]

Thus, the index looked for is the first i so that:

|êy(i)|+2σey(i) ≥ ey,max (3.21)

This relation can be generalized for any threshold probability Pc, knowing the confidence

intervals of the normal distribution of standard deviation σey(i). This way of computing
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a critical time is more conservative than using êy without considering its uncertainty. Its

aim is to allow earlier notice of risky situations and avoid false negatives.

The two indexes developed in this section provide in-depth and clearly understandable

information about different kind of risks linked to the trajectory tracking performance.

Their additional computational cost is very low because all the information used comes

from the MPC algorithm, which makes them interesting as a systematic probabilistic risk-

monitoring approach for MPC applications. The risk evaluation defined in this section

will be assessed in section 3.3.2.

3.3 Experiments

The simulations shown in this section have been performed with the ROS framework and

the 4D-Virtualiz simulation engine1. A screenshot of the environment is shown in Fig.

3.3. This simulation environment provides a realistic physical model for the vehicle and

actuators as well as integration within the ROS framework. The vehicle used in simulation

is an IPCar, an electric urban vehicle of maximal speed 3m/s and minimum turning

radius Rmin ≈ 3m. The roads used in simulation are an exact copy of the Plateforme

d’Auvergne pour les Véhicules Intelligents2 (PAVIN). The PAVIN is half scale test track

representing a neighbourhood, with red lights and a roundabout. Thus, realistic urban

driving situations can be mimicked at lower speeds with narrower roads and tighter turns.

All the vehicle’s sensors have been modelled as on the real ones: Real-Time Kinematics

GPS (RTK-GPS), LIDAR, odometry sensors on the back wheels, angle sensors on the

front wheels. The yaw acceleration is not measured and thus is simply computed by

means of finite differences.

For the experiments presented here, the GPS data is perfect and has been sampled at

Fs = 10Hz. The odometry sensors on the back wheels give a noisy estimation of the yaw

rate and linear speed.

3.3.1 MPC behaviour analysis

The behaviour of the MPC controller has been assessed against its main tuning coeffici-

cients for lateral dynamics R11 and the term introduced in this chapter Rd,11. The other

1http://www.4d-virtualiz.com/. A demonstration video has been joined to the chapter submission.
2IPDS, “http://ipds.univ-bpclermont.fr,” Dec. 2017, The Institut Pascal Data Sets.
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Figure 3.3: 4D-Virtualiz simulation environment

tuning term for lateral dynamics Q11 has been kept constant, since multiplying all the

coefficients by a scalar ultimately does not change the “shape” of the cost function. The

aim of this section is to show that the adaptation of the weight on the control signal

derivative to the linear case makes sense and allows to tune the MPC controller so that it

gives a smooth trajectory even in the presence of noisy perception/reference trajectories.

The path followed is a 90o left hand turn of minimum radius of curvature Rc ≈ 4m. Its

characteristics are shown in shown in Fig. 3.4.

In this section, the weights for the state error on the x-axis and the y-axis have been kept

constant at Q11 = Q22 = 1. The reference trajectory is followed at a constant speed of

vre f = 2m/s. Thus, only the lateral control signal has been plot. For the plots, the measured

yaw rate data has been smoothed a posteriori with a moving average of 5 samples.

The first experiment shows the effect of the introduced term Rd,11 when following a

smooth reference trajectory. The second experiment shows the effect of Rd,11 when fol-

lowing a noisy reference trajectory. The default MPC controller parameters have been

summarized in table 3.1. This table also contains actuator parameters, which have been

identified with a least-squares method with data from the simulator.

In Fig. 3.5, the curve for Rd,11 = 0 corresponds to a classic linear MPC formulation.

The increase coefficient Rd,11 shows very little improvement when following the smooth

reference path. Even though the control signal rd is smoother, the only noisy event at

t = 4s present in rd in the classic case has no influence on the measured yaw rate and does

not introduce any oscillations.

However, the introduced weight on the control signal derivative shows a beneficial effect

under a noisy reference trajectory in Fig. 3.6. it shows an improvement in the control

signal smoothness and in the measured yaw rate, while not degrading the tracking per-

formance. It also helps preventing the noise on the control signal rd that is picked by the
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Figure 3.4: Reference trajectory for MPC coefficients assessment

Table 3.1: Parameter values for MPC behaviour analysis
parameter notation value
reference speed vre f 2 m/s
loop rate Fs 10 Hz
MPC horizon N 15
weight on longitudinal error Q22 1
default weight on lateral ref. input R11 3
weight on longitudinal ref input R22 5
lateral actuator gain Gr 0.92
lateral actuator pulsation ωr 6.9 rad/s
lateral actuator damping ζr 0.7
longitudinal actuator time constant τv 0.5
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Figure 3.5: Effect of Rd,11 coefficient, smooth reference trajectory
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Figure 3.6: Effect of Rd,11 coefficient, noisy reference trajectory

classic formulation, and successfully smoothes the turn exit. Furthermore, it prevents a

constant oscillatory behaviour of the classic controller which is not smoothed out by the

car dynamics (as seen on the two upper plots of Fig. 3.6).

In conclusion, the weight on the input derivative allows to find a better tradeoff between

tracking accuracy and control signal smoothness by acting as a filter for noisy reference

signals and inaccuracies in the model. Ultimately, it makes the MPC controller more

confortable and robust. It also has the added benefit of not needing the higher order

derivatives to be in the model. Those higher order state derivatives are often noisy and

difficult to estimate.

3.3.2 Risk monitoring

For the experiments with the risk monitoring module, the noisy reference trajectory has

been used.

A limit value of ey,max has been set for the lateral tracking error. A higher speed of 2.5m/s

has also been used, which is close to the maximum speed of the IPCar.

Two simulations have been run, to show the interest of assessing the risk as presented in

the article. In the first one, the reference speed of 2.5m/s is carried out through the whole

maneuver, independently of the risk prediction. In the second one, the reference speed

has been set to go down to 2m/s as soon as tc,êy < 0.5s. It is thus a very simple form of
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speed replanning depending on the risk estimation. Results are shown in Fig. 3.7.
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Figure 3.7: Lateral tracking risk prediction and speed replanning

Fig. 3.7 shows the results for the lateral tracking risk estimator. The blue line corresponds

to the simulation where no speed replanning is applied, and the orange one to the simu-

lation where the speed is reduced if tc,êy < 0.5s. The top plot shows the critical time tc,êy

based on a 5% risk of violating the lateral tracking constraint. At t = 2.9s, the replanning

happens for the second simulation, as seen in the bottom plot. As a consequence, it ef-

fectively manages to prevent the overshooting of the lateral error constraint (dotted line

on the middle plot). When no speed replanning happens, the tracking constraint ends up

being violated. A more elaborate path planner could re-plan the speed in a smoother way,

instead of the step that has been imposed on the reference speed in the second simula-

tion.
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3.4 Conclusion

In this chapter, a control architecture for risk and comfort management for an urban ve-

hicle has been proposed. This architecture solves the problem of trajectory tracking for

ground vehicles while being robust to noise on the reference trajectory. A safety moni-

toring module has been added in order to have a probabilistic way of assessing the risk

linked to the trajectory tracking (defined as the violation of constraints). This safety man-

agement has been shown to be able to foresee future dangerous situations and prevent

them.

Thanks to these developments, further work on planning and collaborative intersection

management will be made easier. With the proposed MPC controller, such algorithms

would not have to deal with smoothness of the trajectory and thus can have a lower

complexity. The freed computing power can then be used for probabilistic risk-based

approaches that are the continuity of the approach hereby developed. For instance, risk

estimation could be used in platooning: when following a leader, the following vehicles

could notify the leader it makes them take too high risks to keep the formation.
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[7] Jesús Morales, Jorge L. Martı́nez, Marı́a A Martı́nez, and Anthony Mandow. “Pure-

pursuit reactive path tracking for nonholonomic mobile robots with a 2D laser

scanner”. In: Eurasip Journal on Advances in Signal Processing 2009.1 (2009),

p. 935237.
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Chapter 4
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Abstract

In this chapter, a multi-agent probabilistic optimization algorithm is applied to the prob-

lem of multi-vehicle coordination. The algorithm is known as “Probability Collectives”

(PC) and has roots in Game Theory and Optimization theory. It is traditionally used for

finding optimal solutions of NP-hard problems such as the travelling salesman problem.

On the other end, the proposed PC formulation presented in this chapter focuses on a

minimal complexity implementation for solving the coordination problem in a time of the

order of magnitude of 0.1s. Besides time constraints, the emphasis in the design is put on

ensuring that the algorithm always comes up with a feasible solution. Simulations show

that both objectives are reached while having a decentralized algorithm, and flexible with

respect to the type of situations it can deal with. Additional benefits of the PC algorithm

include robustness to agent failure and the possibility to accommodate non-collaborative

vehicles (market penetration of autonomous vehicles < 100%).
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4.1 Introduction

In the last decade, autonomous vehicles have emerged as having a great potential to reduce

congestion in cities and reduce casualties on the road [1]. The transition phase from only

human-driven vehicles on the roads to only autonomous vehicles will be the most difficult

to cope with. Some studies even underline the challenges linked to estimating the public

acceptance and what passengers would be likely to accept from autonomous vehicles

[2].

In the field of intersection coordination, several approaches coexist depending on the

hypotheses considered by the authors. For instance, coordination can be achieved by

changing the traffic lights pattern [3], by assigning slots to vehicles [4] or by direct ve-

hicle control [5]. While some of those approaches work under the hypothesis of 100%

of connected autonomous vehicles on the road [4, 6], the others focus on shorter-term

hypotheses in which some vehicles present on the road would be neither connected nor

autonomous [3]. In this case when not all vehicles are autonomous it is more difficult to

find and enforce truly optimal solutions regarding the specific problem objectives (fuel

consumption, time for crossing the intersection, ...). It is of interest to notice that even

“simply” using platooning can double intersection throughput [7]. Thus, it seems that big

gains are reachable despite not having a truly optimal coordination.

Some coordination techniques rely on mutual exclusion from a shared zone [4] (the centre

of the intersection for example). More generally, the main difficulty in intersection co-

ordination is to avoid conflicting motions which can lead to collisions. Mutual exclusion

techniques are one way of achieving that which is compatible with human driving since it

is what traffic lights achieve. The work presented in this chapter does not work under this

hypothesis, while keeping the door open for humans to share the road. This is achieved

through the use of the Probability Collectives (PC) algorithm. While the demonstrations

in this chapter only include autonomous vehicles, the PC algorithm has been proven to be

robust to agent failure [8]. Its probabilistic nature also allows the insertion of probabilis-

tic hypotheses about the behaviour of human driven vehicles without changing the way it

works.

The proposed approach thus fills a gap between human-compatible intersection coordina-

tion (based on traffic light management and/or mutual exclusion of vehicles from a shared

space) and optimal coordination techniques based on 100% of connected autonomous ve-

hicles on the road. Its decentralized nature allows it to be used even without dedicated
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infrastructure. Other significant benefits of the algorithm are: the robustness to agent

failure [8], compatibility with mixed-traffic scenarios (human drivers on the road) and its

risk-averse behaviour based on its probabilistic characteristics.

In this chapter the demonstrations focus on showing the useability of the proposed algo-

rithm for road scenarios since it has never been applied this way. The examples shown

are for intersection crossing but the algorithm can be used for any kind of coordination,

including platooning or highway insertion. The trade-off between performance and exe-

cution time will be investigated to evaluate its potential to run in real time. The overall

aim is to allow the algorithm to run a full optimization in around 0.2s (cf. Section 4.3.2).

This would allow reducing the distance at which the vehicles have to start synchronizing,

and maybe running the optimization several times whenever a new event occurs.

The proposed method uses the Probability Collectives (PC) algorithm. It originates from

the field of optimization and Game-Theory [8]. It is a decentralized agent-based algorithm

based on probabilistic hypotheses and has been shown to be able to accommodate agent

failure (if one of the agents is non-collaborative).

The remainder of this chapter is organized as follows:

• Section 4.2 presents the state of the art on the Probability Collectives algorithm and

the proposed developments to apply it to intersection coordination.

• Section 4.3 presents some experiments to show the capabilities of the proposed

algorithm. The first experiment is a proof of concept with detail on the optimization

variables. The second experiment is a repetition of an optimization on a fixed initial

situation. The aim is to determine how variable the result is from the PC algorithm

(since it is based on a Monte-Carlo sampling, it has an element of randomness).

The third experiment serves to study the effect of the search space sampling.

4.2 Proposed intersection coordination algorithm

4.2.1 Probability Collectives algorithm

The Probability Collectives (PC) algorithm is extensively presented in [9, 10, 8]. It is a

multiagent optimization method in which different agents are playing a game iteratively.

For each agent, the game consists of finding its own action (among a set of possible
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actions) that maximizes the overall expected utility. In mathematical uses of the PC algo-

rithm, agents are variables of a problem and “actions” are possible values of the variables.

In the proposed approach and in [11], agents are the actual vehicles trying to solve a

conflicting situation and the actions are possible trajectories. The performance of the PC

algorithm has been shown to be superior to classic Genetic Algorithms (GA) [12]. It can

also accommodate agent failure and non-collaborative agents [10].

The PC algorithm has the following main characteristics:

• It is probabilistic. Each agent computes the expected utility for each of its possible

actions. To do so it gets (or estimates) the probability of the actions of the other

agents.

• It does not directly output a specific action, but rather a probability distribution
qi(Xi) for its set Xi = (Xi

1, ..., X
i
N) of possible actions (for the vehicle i). An action

Xi
k more likely to be the best choice will have a high probability number.

• It is collaborative: the probability distribution is communicated to other agents

(cf. first bullet point). It has been shown that the algorithm properties and agents

behaviour (rational players) make the algorithm converge to a Nash equilibrium,

which is at least a local minimum of the utility function [11].

• The probabilistic aspect is coupled with Simulated Annealing (SA) to allow good

exploration properties when starting up the algorithm and exploitation of promising

solutions at the end. To achieve that, SA techniques use a “temperature” T to define

an “entropy” that starts high and is close to zero at the end of the optimization.

Most of the applications of the PC algorithm are for NP-hard problems like the sales-

man problem, the circle packing problem or others. These applications consist of one-off

offline optimizations and the goal is to find a high-quality solution with a high computa-

tional time (several minutes). To the knowledge of the authors, the only application of the

PC algorithm close to the topic of this chapter is presented in [11] for airplane conflict

resolution. The PC algorithm is used as either a fully decentralized or semi-centralized

intensive optimization algorithm. The implementation in [11] relies on a high volume of

communications and a relatively complex problem formulation. It has been favourably

compared to the Iterative Peer-to-Peer Collision Avoidance (IPPCA) algorithm which is

a benchmark in the domain of airplane collision avoidance [11].

A coarse outline of the PC algorithm is presented below in Algorithm 1 from the point of

view of one of the agents. For a more detailed description, the reader is invited to read
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[10], [11] or any reference mentioned above on the PC algorithm.

Algorithm 1 Basic outline of the PC optimization
Data: Own set of possible actions Xi

Result: Probabilities vector qi(Xi)
Initialize qi(Xi) to a uniform distribution
Initialize the SA temperature T
while no convergence of qi(Xi) do

for vehicles j , i do
if j is collaborative then

Get set Xj from communication
Get q j(X j) from communication

else
Estimate Xj

Estimate q j(X j)
end if

end for
for each Xi

k in Xi do
for j , i do

Randomly sample some Xj based on the probabilities q j(X j)
end for
Compute expected utility E(Xi

k) of action Xi
k

(based on the sampled strategies for other vehicles)
Store E(Xi

k) in a vector E(Xi)
end for
Find qi(Xi) minimizing f (E(Xi),T ) ( f is described in Eq. (4.2))
Update T

end while
Apply action Xi

opt = argmax(qi(Xi))

Usually the algorithm starts in a synchronized manner for all agents but there is no obli-

gation to do so. In this chapter the simulations have been run with a synchronized start of

the algorithm on all vehicles. The effects of inserting a new vehicle in the optimization

while it is running will be explored later.

4.2.2 Application to Intersection Coordination

The proposed formulation of the PC algorithm introduces several novelties. All the de-

sign choices have been oriented towards a low complexity and fast optimization. The

problem is also very different from airplane collision avoidance because of the highly

constrained environment, its dynamic nature and the low time available to solve the coor-

dination problem. The proposed PC was also made specifically for dealing with any type
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of collaborative manoeuvre (intersection crossing, highway insertion, platooning). Thus

the proposed algorithm and formulation should not be seen exclusively as an intersection

coordination algorithm but more of a polyvalent collaborative planner.

Different aspects of the proposed PC formulation for intersection crossing will be de-

tailed. The main contributions are the formulation of the search space, the specific 2-step

optimization to break down complexity, the form of the utility function and the specific

PC parameters to reach an interesting trade-off in terms of solution quality and execution

time.

4.2.2.1 Problem formulation

In this chapter, the path of the vehicles is considered fixed through the intersection. Thus

the only degree of freedom is their speed. The problem geometry is thus entirely defined

by the set of all the 2D paths of the vehicles on the road. This set of 2D paths will

depend on the topology of the intersection. However, the only information needed by the

algorithm is the shape of the paths. As a consequence, the algorithm can cope with any

type of situation as long as some paths are defined. An example of such a situation is

shown in Fig. 4.1 for a “cross” intersection and a roundabout. The vehicles are at their

initial position and have to follow the dotted paths to their intersection exit at a suitable

speed.
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Figure 4.1: Example of intersection configuration and paths of the vehicles

In the proposed PC formulation, an element of the search space is a preset speed pro-

file over the whole intersection. Thus, the size of the search space does not depend on

the length of the conflict zone but on the number of sampled speed profiles considered.

Changing this number is an easy way to modify the complexity of the optimization. The

consequences of that will be discussed later.
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An illustration of the possible actions (speed profiles) of a vehicle at each step of the

optimization is shown in Fig. 4.2. On the upper plot, there are 10 available options to

the vehicle. These options are all composed of an acceleration/deceleration of constant

magnitude to a fixed speed. In this formulation the speed profiles could be summed up as a

couple (amax, vend) (acceleration, end speed). However, it shall be noted that this set could

contain randomly shaped speed profiles and is not limited to such simple shapes. Any

speed profile of the form v = f (t) (where f is any continuous function that respects the

vehicle’s dynamics) could be considered. On the bottom plot, the available options are 10

speed profiles that all start following the profile chosen at phase 1 and have reaccelerations

to a nominal speed at different times. The available options could have any shape that the

designer sees fit.

For the intersection application, the optimization is done in two steps (Fig. 4.2). First

of all the agents are looking for a speed profile with a fixed end speed (“Phase 1” sub-

plot) that allows them to avoid any collision. At this step, the algorithm is guaranteed to

find a feasible solution if it is started when the vehicles are far enough upstream of the

intersection. This way, the vehicles have the option to come to a complete stop (or an

arbitrary low speed, here 0.1m/s) before the shared zone. However their aim is to find a

better speed profile that allows them to clear the intersection without coming to a stop and

without colliding with any other vehicle. The second step is a reacceleration to a speed

that allows the vehicles to clear the intersection as fast as possible while maintaining the

collision-free characteristic of the solution.
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Figure 4.2: Search space representation with two-step optimization

To ensure a sampling of good quality during the first step, the final speeds have to span:
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• A wide range, that needs to include 0m/s (a complete stop, to ensure the availability

of a safe solution) and vmax (the maximal speed in the intersection for fast clearing)

• Closely “enough” spaced speeds so that the vehicle can “squeeze” in slots between

other vehicles.

If the speed profiles sampling is too coarse, some solutions could be unattainable. For

example, a car willing to insert itself on a lane between two other cars could be unable

to find a suitable speed profile if its options are too coarse. One action will be too fast

and the next slightly slower variation will be too slow. Thus, it will lead to a suboptimal

solution through suboptimal use of space.

4.2.2.2 Objective Function

In this chapter, the proposed local utility to minimize is as follows for an agent i:

J(X) =Wsep

∑
iv,i

kmax∑
k=1

1
dk(iv, isel f )2

+ Wspeed(vmax − vavg)2

+ Wcontrol

kmax∑
k=1

∣∣∣visel f (k) − visel f (0)
∣∣∣

(4.1)

Where dk(iv, isel f ) is the distance between the ego vehicle and the vehicle iv at time step

k. The sum over k is for all the time steps. The first term penalizes low separation

distances between the vehicles. The second term penalizes slow average speeds through

the intersection, and thus favours a fast crossing. The last term penalizes the control

effort, that is the deviation from the initial speed of the vehicle when it approaches the

intersection.

Constraints are imposed on the separation distance. For simplicity the vehicles are rep-

resented as discs and thus the separation constraint is a distance between the vehicles

centres.

As usual in the PC framework, the vehicle i will not directly optimize this function. In-

stead, it will find a probability distribution qi(Xi) = (qi(Xi
1), ..., qi(Xi

N)) for its set of N

actions Xi = (Xi
1, ..., X

i
N) such that:

qi(Xi) = argmin

 N∑
k=1

qi(Xi
k)E(J(Xi

k)) − TS (qi(Xi))

 (4.2)
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Where E(J(Xi
k)) is the expectancy of the utility function J for the strategy Xi

k of the vehicle

i. It is computed by randomly sampling the other vehicles’ strategies and computing the

obtained utility J. The obtained utility is averaged over several samplings of the other

vehicles’ strategies. This random sampling is done according to the latest probability

distribution of the actions of the other vehicles’, as they communicated it to vehicle i. This

distribution is denoted q j(X j) (for j , i). The parameter T is specific for the Simulated

Annealing (SA) and is called the temperature. The function S is an entropy defined

as:

S (qi(Xi)) = −

N∑
k=1

qi(Xi
k) ln(qi(Xi

k)) (4.3)

At the beginning of the PC optimization, the parameter T ∈ R is big, which weighs the

entropy term more. If T is infinite, the optimal qi(Xi) is uniform and the qi(Xi
k) are all

equal to 1/N. This favors the exploration of all possible solutions. At the end, T is

brought close to zero to weight the expectancy term more.

As the speed profiles span the whole duration of the intersection crossing, the PC opti-

mization can be run just once. This comes from the fact that the shared road space has

finite dimensions and well-defined bounds. One run of the PC algorithm corresponds to

several iterations in which the probabilities of each action are exchanged at each iteration

between the vehicles as they update their probability distribution.

It shall be noted that the probability distributions q j(X j) of other vehicles’ actions may

not be available. For instance, some vehicles may be human-driven. In that case, an esti-

mation of the probability distribution should be carried out based on sensory information:

use of blinkers, speed of entry...

4.2.3 Comparison with existing work using PC

Several key differences exist between our approach and the approach for airplane colli-

sion avoidance presented in [11]. In this airplane collision avoidance approach, the search

space is a succession of heading changes over a rolling horizon. The headings are deter-

mined one by one at regular time intervals. In our approach, an element of the search

space is a whole speed profile over a fixed time horizon, greatly limiting the complexity

of the search space. In [11] the environment is not dense (airspace) so a solution can

always be found. The minimal separation distance is implemented as a soft constraint.

The emphasis is not on finding a feasible solution (easy to do in this case) but on finding

a really optimal solution. In our approach the space is very constrained: there are a lot
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of vehicles in a small area. The emphasis is on finding a feasible collision in a very short

time that corresponds to the time constants found in ground traffic.

In [11], objective functions are shared and agreed upon so they are homogeneous through

the range of all agents. It is interesting to note that the optimization runs at regular in-

terval when the horizon has moved. Thus, the future collisions (or separation distance

violations) are less penalized than the imminent collisions in the cost function. Because

of the heavily constrained space for traffic management, the horizon of the optimization

has been chosen to span the whole intersection. This is possible for ground traffic because

the boundaries of the shared zone are usually clearly identified.

Finally, a typical optimization in [11] will see 800MB of data exchanged between air-

planes in the fully decentralized version. The time spent for optimization is up to 120s

for a round of PC optimization with 25 aircraft. There is a linear complexity dependence

for the decentralized PC implementation under some realistic hypotheses (broadcasting

messages about partial costs and predictions). The semi-centralized PC operation takes

longer, at 610s for the same conflict. The fully decentralized approach is thus better at

scaling. In the proposed PC formulation and implementation, the data exchange is in-

tended to be minimal and a solving time of 0.2s is targeted (0.8s have been achieved so

far for 4 vehicles on non-optimized Matlab code). The typical data exchange would be in

the range of several MB (detailed in section 4.3.1).

4.3 Experiments

This section presents experiments done with a first implementation in Matlab. Simu-

lations show a cross intersection scenario, but the work is generalizable to any type of

collaborative maneuver.

The algorithm has been implemented in its fully decentralized version for better scaling

[11].

4.3.1 Proof of concept

This section details a simulation done on a given initial situation with 4 vehicles at a

cross intersection. Table 4.1 shows the main parameters chosen for the PC algorithm.

The sampling time is used to represent the speed profiles and to integrate the positions
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of the vehicles over the time horizon. This information is used to compute the cost J.

In this simulation, the cost function contains only the terms on the average crossing time

(altruistic objective) and on the separation distance. If a solution violates the separation

constraint (represented by the dotted circles in Fig. 4.3), an additional cost Jcons is added

for each constraint violated. The algorithm stops if the global solution does not change

for Nstop iterations. The weight on the control effort has been left at zero for the moment

to focus on the “altruistic” terms of the utility function. The M1 column is the regular

mode of the PC algorithm for fast optimization, and the M2 mode has been used as a

longer optimization to find an optimal solution. The annealing schedule is much slower

and starts at a higher temperature to allow the algorithm to explore more possibilities. The

number of possible actions is also higher. This mode will be used in section 4.3.2.

A snapshot of the results of the optimization is shown in Fig. 4.3. The vehicles are

represented as circles so far for the sake of simplicity. The solution seems intuitive, be-

cause it allows the two vehicles with the highest entry speed (yellow and orange) to carry

their speed through the intersection. The purple (resp. blue) vehicle lowers its speed just

enough to yield to the yellow (resp. orange) vehicle. Thus during this fully decentral-

ized optimization, the algorithm has arrived at a relevant solution without any constraint

violation.

At the beginning of the simulation, each vehicle broadcasts its set of strategies to other

vehicles. Each strategy is a float vector of size 200 (40s horizon and 0.2s sampling time)

and the set has 10 strategies. That is a total of 2000 floats exchanged per vehicle, or 8kB

(kilobytes). This is done again at the beginning of the phase 2 (reacceleration, cf. subsec-

tion 4.2.2.1). Then for each iteration the vehicle broadcasts its updated probability vector

qi(Xi) of 10 floats. The optimization in the M1 mode runs in around 20 iterations so it

will be a total broadcasted per vehicle of 200 floats (0.8kB). For 4 vehicles, the data vol-

ume broadcasted will be around 16.8kB per vehicle and 67.2kB in total. If the objective

of doing the optimization in 0.2s is respected, it means the required network thoughput

should be in the order of magnitude of 0.4MB/s. Of course this does not consider the

overhead due to the communication protocols, and considers that messages can be broad-

casted. Even with a pessimistic hypothesis of a requirement ten times superior, it would

stay well within what is physically possible (4MB/s required).
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Table 4.1: Main PC parameters
Parameter Notation Value

M1 M2
Number of strategies Ns 10 20
Sampling time Ts 0.2s
Weight on control effort Wcontrol 0
Weight on separation dist. Wsep 1
Weight on avg. crossing time Wavg 10
Penalty for constraint violation Jcons 105

Samples to get expected utility Nsamples 10 20
Stopping criteria Nstop 4 10
S A start temperature Tinit 1 10
S A end temperature Tend 0 0
S A temperature step Tstep 0.2 0.66
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Figure 4.3: Snapshot of the application of the best solution when t = 4s. The pur-
ple vehicle is entering from the right lane and will exit at the bottom. It slowed down
just enough to yield for the yellow vehicle (yellow vehicle came from the right, exits
at the top). The red vehicle (coming from the left, exits to the right) accelerated up to
its maximal allowed speed so that the blue one has to wait the minimal amount of time
before entering the intersection (blue enters from the bottom). Full video available at
https://youtu.be/XTgY-4RUFz0
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Table 4.2: Results of the PC consistency test (100 runs)
Parameter Notation Distribution
M1 mode
Average crossing time tavg,M1 8.4s ± 0.7s
Max crossing time tmax,M1 12.5s ± 1.9s
Execution time texec,M1 3.3s ± 0.4s
M2 mode
Average crossing time tavg,M2 7.8s ± 0.2s
Max crossing time tmax,M2 10.6s ± 0.2s
Execution time texec,M2 14.6s ± 1.0s

4.3.2 Analysis of consistency on fixed initial situation

For this series of simulations, the initial situation has been fixed to be the same as in sec-

tion 4.3.1. The algorithm has been run several times to check consistency. For reference,

the performance metric distribution has been compared with the performance found with

a run of the algorithm in the M2 mode (slower and more “optimal” solution). The results

are shown in Table 4.2. It shall be noted that the algorithm provided solutions with no

constraint violation in 100% of the cases.

The distribution is shown in Fig. 4.4. The distribution in the histograms seems discrete

for the average time and max time because of the discrete nature of the search space. The

algorithm used in Mode 1 found most of the time a single solution yielding a crossing

time of 8.5s, and sometimes solutions yielding either tavg = 7.5s or tavg = 9.5s.

When running the algorithm in the more precise mode M2, the crossing times for the

vehicles are slightly improved in terms of average value and highly improved in terms of

standard deviation. This comes however with a 4.4 times higher computation time. The

fast mode (and low complexity) of the PC optimization thus seems to give a good balance

between the quality of the solution and the execution time. The overall consistency is

quite good and even the suboptimality is not critical. The main interest of the M2 mode

is the increased consistency. In both cases, the best solution the algorithm can output (at

7.2s of average crossing time) has only been found a handful of times.

It shall be noted that computation time is given for a Matlab simulation where the code

for all the vehicles is not parallelized. The execution time per vehicle would be 4 times

less for these conditions with the same code. It means that would be around 0.8s in this

case. It is expected that the code could run much faster when implemented in C++. With

the current figure or a vehicle going at 14m/s (50km/h), it means that the synchronization
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should start around 11m before the point where any braking should start. For reference,

an emergency braking to a full stop at this speed is around 14m on modern cars and dry

roads. Thus, the distance needed for synchronization is of an acceptable magnitude for

the considered application. The authors expect to bring the optimization time down to

0.2s (3m travelled at 50km/h).

Figure 4.4: Results of 100 runs of the PC optimization for the same initial conditions.
Mode 1 in blue and Mode 2 in orange.

4.3.3 Influence of search space sampling

In this experiment the effect of changing the number of available actions is tested. The

available actions refer here to several speed profiles that the vehicle can choose from to

cross the intersection. Instinctively, if a vehicle has fewer actions to chose from, it should

show a decrease in performance. The simulations are done on the same settings as before

on a cross intersection and with 4 vehicles. Optimization parameters are the same as

shown in Table 4.1 (Mode 1). The number of available actions is changed between 4 and

14.

The results are shown in Fig. 4.5. The average performance does not really decrease (av-

erage crossing time, max crossing time) but more and more outliers appear on the middle

plot (distribution of the crossing time of the last vehicle). This means that the algorithm

struggles to guarantee consistent performance. The outliers most likely correspond to sit-

uations where an additional intermediate action should have been undertaken to squeeze

between two (or several) vehicles.
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However, the execution time plot shows a significant decrease in execution time. For a

search space of size Nstrats = 4, the average execution time is 1.7s. This corresponds to

0.4s per vehicle, and 5.6m travelled at 14m/s (50km/h). With this setting, the algorithm

starts to show real time capabilities (considering the code is not yet optimized) but fails to

propose refined enough solutions in some cases. Ideally, a very low number of available

options could be kept if a post-processing of the speed profile is applied: it is easy to

detect if a vehicle waits more than is necessary because of not enough available options.

It would keep the execution time low but would not solve the situations where a vehicle

failed to find a solution to “squeeze” between other vehicles.
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Figure 4.5: Effect of the size of the search space on the performance of the coordination
algorithm.

4.4 Conclusion

A novel formulation of the Probability Collectives (PC) algorithm has been presented to

apply it to ground traffic coordination. The main interests of the proposed algorithm are its
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low complexity compared to usual PC applications and its flexibility to any kind of road

scenario. Its capabilities have been demonstrated for an intersection crossing in which the

space is highly constrained. The algorithm exhibits good exploration properties to find

relevant solutions in a very short time (0.8s in average for the demonstrated scenarios).

It is also fully decentralized and can be applied to collaborative manoeuvre. Trade-offs

between performance, consistency and execution time have been highlighted. The current

performance hints towards true real-time implementation of the proposed algorithm. In

order to further minimize the execution time, it is planned in the near future to switch to

a ROS-based C++ implementation.

Further work will focus on practical implementation problems. For example the algorithm

should re-run if a new vehicle wants to join the collaboration. In this case some continuity

of the already computed speed profiles shall be enforced. Furthermore, the algorithm will

be tested in situations where the cost functions of the vehicles are non-homogeneous.

Non-collaborative vehicles or human-driven vehicles will also be inserted to check the

robustness of the proposed algorithm to such elements.
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Abstract

In this chapter, the potential for the “Probability Collectives” (PC) algorithm to solve

continuous multi-vehicle coordination at an intersection is evaluated. Basic application

of the PC algorithm to Multi-Vehicle Coordination (MVC) has been demonstrated in [1]

and in chapter 4. This chapter extends the previous work by demonstrating robustness

to non-collaborative vehicles and continuous traffic flow management capabilities. The

PC algorithm is a decentralized probabilistic optimization algorithm that has roots in op-

timization theory and Game Theory. It has been used with great success in the field

of NP-hard optimization, for example for the traveling salesman problem. Following

previous work establishing the possibility to use the PC algorithm for fast multi-vehicle

coordination, more specific aspects are now investigated. In this chapter is detailed the

study of the flexibility of the algorithm to different use cases, its ability to accommo-

date non-collaborative vehicles and practical aspects to enable its use in real life scenario:

smoothness of the generated trajectories and ability to recompute solutions dynamically

in a changing environment. The results are promising and allow to consider real life

implementation. Further works will focus mainly on its compatibility to scenarios with

mixed traffic (humans and autonomous vehicles).
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5.1 Introduction

In the last decade, autonomous vehicles have emerged as having a great potential to reduce

congestion in cities and reduce casualties on the road [2]. The most difficult phase to

cope with has been foreseen as the transition between 100% of humans on the road and

100% of autonomous vehicles. Some studies also underline general public and passenger

acceptance challenges [3].

5.1.1 Related works

Intersection coordination methods can be split into two main categories. The first category

includes management strategies that are designed for mixed traffic (or human only traffic).

In these conditions, coordination is often achieved by changing the traffic lights pattern

[4]. The second category includes approaches that consider that 100% of the vehicles on

the road are autonomous. A wider variety of coordination mechanisms can then be used,

such as slot assignment to vehicles [5] or direct vehicle control [6]. The more conserva-

tive coordination techniques rely on mutual exclusion from a shared zone [5, 7]. More

generally, the main difficulty in intersection coordination is to avoid conflicting trajecto-

ries. Mutual exclusion techniques are one way of achieving that which is compatible with

human driving since it is what traffic lights achieve. This method is akin to an adaptive

traffic light that lets through one vehicle at a time through the intersection area.

Optimal solutions for intersection crossing are attractive, but are often complex to obtain.

They require all the vehicles to be autonomous and the environment to be under control.

However, improvements of traffic flow metrics (throughput, fuel consumption, ...) can be

obtained even with simple coordination mechanisms [8].

The method proposed in this chapter tries to strike a middle ground. The mutual exclusion

techniques are deemed too conservative in their approach, leading to a slow intersection

crossing. The proposed algorithm tries to keep the door open for humans to share the

road while removing the restriction of mutual exclusion of the vehicles. This is achieved

through the use of a decentralized Probability Collectives (PC) algorithm. The PC algo-

rithm has been proven to be robust to agent failure [9] in theoretical problems: that is

when an agent stops collaborating. This property is demonstrated in this chapter for the

practical problem that is intersection coordination, with all its characteristics and con-

straints. The probabilistic nature of the PC algorithm also allows the insertion of prob-

abilistic hypotheses about the behaviour of human driven vehicles without changing the
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way it works.

The proposed approach thus fills a gap between human-compatible intersection coordina-

tion (based on traffic light management and/or mutual exclusion of vehicles from a shared

space) and optimal coordination techniques based on 100% of connected autonomous

vehicles on the road. Its decentralized nature allows it to be used even without dedi-

cated infrastructure. Another benefit is the probabilistic representation of data within the

algorithm, which leads to a risk-adverse behaviour. The demonstrated property of ro-

bustness to agent failure for intersection crossing will be used to develop a framework

for continuous traffic flow management. Other potential benefits of the algorithm include

compatibility with mixed-traffic scenarios (human drivers on the road).

To the knowledge of the author, the only similar implementation of PC for a traffic man-

agement problem is for Air Traffic Control [10]. The goal was similar (conflict solving)

although the environment is different in its lack of spatial constraints (airspace) and the

conflict solving process is quite heavy (several hundreds of MB of data exchanged). All

the agents were connected and collaborative, and the problem was solved offline once (no

continuous air traffic management). Thus, this work is more akin to [1].

5.1.2 Organization of the chapter

Following the works presented in [1], an improvement in the applicability of the PC algo-

rithm for intersection crossing is shown in this chapter. It also pushes further the charac-

terization and performance analysis of the algorithm. In this chapter, intersection is used

to describe any kind of intersection (crossroad, roundabout, ...) as the algorithm has been

designed to be independent from the road layout.

The remainder of this chapter is organized as follows:

• Section 5.2 is a reminder of the adaptation and improvement of the PC algorithm

for intersection crossing.

• Section 5.3 brings further the analysis done in [1] on the characterization of the al-

gorithm. Monte-Carlo simulation have been used to randomize the initial situations

and draw conclusions on the flexibility of the algorithm and its scalability.

• Section 5.4 explains how a specific framework has been built to enable the use of

the PC algorithm for real-life situations with continuous traffic. The behaviour of

the algorithm with continuous traffic applications is demonstrated.
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5.2 Proposed Intersection Coordination Algorithm

The Probability Collectives (PC) algorithm is described in [11, 12, 9]. It is a multi-

agent optimization method in which different agents are playing a game iteratively. For

each agent, the game consists of finding an action (among a set of possible actions) that

maximizes the shared utility of all the agents. More precisely, each agent associates

a probability to each of his possible actions, denoting the likelihood that this action is

the best choice. These probabilities are then shared among all the agents. When this

procedure is repeated, each agent gets an increasingly better knowledge over time of what

the others would like to do, and how certain they are of their choice. After repeated

rounds, the group of agents will have converged to a best action to undertake (one action

will have a probability of 1 for each agent), and the algorithm stops.

To sum up, the PC algorithm has the following main characteristics:

• It is probabilistic. Each agent computes the expected utility for each of its possible

actions. To do so it gets (or estimates) the probability of the actions of the other

agents.

• It does not directly output a specific action, but rather a probability distribution
qi(Xi) for its set Xi = (Xi

1, ..., X
i
N) of possible actions (for the vehicle i). An action

Xi
k more likely to be the best choice will have a high probability number.

• It is collaborative: the agents get the information from other agents through com-

munication. It has been shown that the algorithm properties and agents behaviour

(rational players) make the algorithm converge to a Nash equilibrium, which is at

least a local minimum of the utility function [10] in the case of communication

between agents. It is interesting to note that the intentions of the other agents (pos-

sible actions and probabilities) could also be estimated instead of obtained through

communication.

• It balances exploration of the search space with exploitation of promising solutions

through Simulated Annealing (SA). The exploration properties have been shown

to be very good in the case of multi-vehicle coordination [1].

• It has been shown to be robust to agent failure [9]. That means the algorithm

will converge anyway if one of the agents stops collaborating. For instance, that

could be a vehicle refusing to change its planned action. This property is useful for

continuous traffic situations (cf. section 5.4.3) and/or to implement strong priorities
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for certain classes of vehicles (emergency vehicles, police, ...)

Most of the applications of the PC algorithm are for NP-hard problems like the traveling

salesman problem, the circle packing problem or others. These applications consist of

one-off offline optimizations and the goal is to find a high-quality solution with a high

computational time (several minutes).

The outline of the PC algorithm is reminded below in Algorithm 2 for ease of reading.

For a more detailed description, the reader is invited to read [12], [10] or any reference

mentioned above on the PC algorithm.

Algorithm 2 Basic outline of the PC optimization
Data: Own set of possible actions Xi

Result: Probabilities vector qi(Xi)
Initialize qi(Xi) to a uniform distribution
Initialize the SA temperature T
% Main loop of the algorithm:
while no convergence of qi(Xi) do

% Loop to get set of possible actions and probabilities for other vehicles:
for vehicles j , i do

if j is connected then
Get set Xj from communication
Get q j(X j) from communication

else
Estimate Xj

Estimate q j(X j)
end if

end for
% Loop to evaluate the cost expectancy of each action (for self):
for each Xi

k in Xi do
for j , i do

Randomly sample some Xj based on the probabilities q j(X j)
end for
Compute expected utility E(Xi

k) of action Xi
k

(based on the sampled strategies for other vehicles)
Store E(Xi

k) in a vector E(Xi)
end for
Find qi(Xi) minimizing f (E(Xi),T ) ( f is described in Eq. (5.1))
Update T

end while
% When algorithm has converged, apply best action:
Apply action Xi

opt = argmax(qi(Xi))

From the point of view of one agent, the other agents are represented as a set of possible
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actions Xj with associated probabilities of each action happening q j(X j). This property

can be used to allow the algorithm to work with non connected agents (or vehicles in our

case). Instead of getting the information from the non-connected vehicle, a set of possible

actions can be sampled from its observations, and likelihood estimations can be carried

out. Human driven vehicles fall into that category: they are neither collaborative or con-

nected but can still be inserted in the optimization process as “virtual failed agents”.

In the PC framework, the optimization that will be done by each agent for a given iteration

is of the form:

qi(Xi) = argmin
(

f (E(Xi),T )
)

(5.1)

Where:

f (E(Xi),T ) =

N∑
k=1

qi(Xi
k)E(J(Xi

k)) − TS (qi(Xi)) (5.2)

It means that the goal is to find a discrete probability distribution qi(Xi) = (qi(Xi
1), ..., qi(Xi

N))

for the actions of the ego vehicle Xi = (Xi
1, ..., X

i
N) so that the utility function f (E(Xi),T )

is minimized. This utility function has two terms. The first one is the weighted sum of the

expectancy of local utilities of each action (how “good” is supposed to be each possible

action). The second term is an entropy term. When T is high, this term is the most impor-

tant and steers the discrete probability distribution qi(Xi) to a uniform distribution. This

is the part that comes from the field of Simulated Annealing (SA). A high T (temperature)

encourages exploration of all the possibilities. Typically, T starts high and will then be

progressively lowered to encourage exploitation.

The overall utility function f (E(Xi),T ) uses the expected utilities J of each strategy be-

cause J is not deterministic for a given action. It depends on the choice of actions of

other vehicles. These choices are not known in a deterministic manner. In fact, the other

vehicles communicate the probabilities of choosing each of their possible actions (their

own set q j(X j) for j , i). Because of the probabilistic nature of the knowledge involved,

J can only be computed as its expectancy E(J) for any given action.

It is interesting to note that as the optimization progresses, the vehicles will slowly become

“certain” of which action to choose. In other words, one of the probabilities in qi(Xi) will

be 1 and the rest at 0. So at the end of the optimization, the expected utilities E(J)

converge to the deterministic utilities J.

In this chapter, the proposed local utility J associated to a given action has several terms

[1]:
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• The first term rewards a good separation distance between vehicles.

• The second term penalizes the time spent in the intersection, to favorize fast cross-

ing

• The last term penalizes the control effort. Vehicles are encouraged to keep a con-

stant speed as much as possible.

Constraints are imposed on the separation distance. For simplicity the vehicles are rep-

resented as discs and thus the separation constraint is a distance between the vehicles

centres.

For greater detail on the implementation the reader is invited to read the previous work

of the author [1], and the previously mentioned references for more detail on the PC

algorithm [12, 9, 13].

5.3 Algorithm Characterization

In this section, several characteristics of the algorithm are evaluated in a non-continuous

vehicle flow. That means an initial situation is generated randomly with a fixed number

of vehicles, and the PC algorithm is run so that the vehicles find a solution to cross the

intersection. The evaluation metrics are:

• The average time for vehicles to cross the intersection (from the start of the simu-

lation to when the vehicles exit the intersection) [1].

• The crossing time of the slowest vehicle.

• The execution time. Although it highly depends on the machine on which it is

executed and the optimization of the code, it allows to draw conclusions when two

simulations are run on the same machine in similar conditions.

The following characteristics of the algorithm are evaluated:

• The behaviour of the algorithm with a varying sample size to evaluate the cost

expectancy E(J(Xi
k)) (cf. Eq. 5.1).

• The scalability properties of the algorithm depending on the number of agents

Nvehicles in the scheme.

• The influence of the intersection layout on the performance of the algorithm (cross-

roads versus roundabout).
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Table 5.1: Monte-Carlo simulations parameters
Parameter Notation Range
Start distance to intersection Ds [7m, 12m]
Initial inter-vehicle distance Di

sep [1m, 3m]
Index of entry road iin {1, 4}
Index of exit road iout {1, 4} \ iin

Initial speed vinit [0.1m/s, 3m/s]
Number of simulations Nsims 100

Table 5.2: Main PC parameters
Parameter Notation Value
Sampling time Ts 0.2s
Optimization horizon To pt 30s
Number of strategies Ns 10
Weight on control effort Wcontrol 0
Weight on separation distance Wsep 1
Weight on avg. crossing time Wavg 10
Penalty for constraint violation Jcons 105

Samples to get expected utility Nsamples 10
Stopping criteria Nstop 4
S A start temperature Tinit 1
S A end temperature Tend 0
S A temperature step Tstep 0.2

To this end, Monte-Carlo simulation have been carried away with randomized initial sit-

uations. The randomized parameters are:

• The starting distances from the intersection

• The initial distance between vehicles

• The upstream road and destination of the vehicles

• The initial speeds

These parameters are summed up in Table 5.1 for the simulations carried out. If any

Monte-Carlo simulation has a different spread of parameters, it will be specified. The

distributions of parameters are all uniform. For a vehicle that follows closely another

in the initial situation, the initial speed has been constrained to prevent an unavoidable

collision because of the initial situation.

Unless specified otherwise, the main PC algorithm parameters values are defined in Table

5.2.
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The intersection layouts for a crossroad and a roundabout are shown in Figure 5.1. These

two use cases will be used for the Monte-Carlo simulations. As mentioned in [1], the

algorithm can accommodate any situation as long as 2D paths are defined.
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Figure 5.1: Comparison of the layout of a traditional crossroad and a roundabout.
Matched upstream roads and initial position of vehicles.

In these simulations, the set of possible actions Xi of the vehicles is the same as in [1].

The optimization is done in two steps.

• During the first step, the possible speed profiles are composed of a constant acceler-

ation phase to a constant speed. Each possible speed profile has a different constant

speed value.

• After converging to a speed profile, the second step is started. During this second

step the PC algorithm keeps running but the set of actions Xi changes. From the pre-

viously chosen speed profile, the different options are a reacceleration to a nominal

speed to clear the intersection as fast as possible.

Examples of those sets are shown in Figure 5.2. The numerical application has been done

to match the IPCar Vehicles on the PAVIN platform in Clermont-Ferrand (France). It is

a scaled down city neighborhood used for tests with the IPCar vehicles whose maximum

speed is about 3m/s. The scaling down of the roads and of the vehicles dimension and

speed give similar dynamics as on the road in a more compact setting and with lower
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kinetic energy.
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Figure 5.2: Search space representation with two-step optimization

5.3.1 Effect of sample size for cost expectancy computation

To have a clear picture of the cost expectancy: randomly sample a lot of strategies on

the probability distribution. Otherwise the cost expectancy is computed from not enough

cases and only reflects particular situations.

If several but not enough samples, all the relevant cases will be represented but it will give

too much importance to rare cases (distribution poorly approximated).

The results in Figure 5.3 show no significant difference in the quality of the solution found

among all simulations. For Nsamples = 1 and Nsamples = 5, the execution time is higher than

for Nsamples = 10 and has higher variance. The standard deviation of the execution time is

reduced from N = 10 upwards, and the computation time increases (N = 15 and N = 20)

still with a low standard deviation.

As the time spent in each iteration of the PC is lower for a lower Nsamples (quicker to

compute the expected utility), it means that more iterations are needed for Nsamples = 1

and Nsamples = 5, i.e. the algorithm takes more time to converge. This is because at

each iteration, the update of the probability distribution qi(Xi) will be done with more

scarce information: under Nsamples = 10, the set of actions Xj associated to the probability

distributions qj(Xj) are not sampled correctly. As a remainder, the size of the set of
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possible actions for each vehicle in these simulations is Ns = 10. From the results it

appears that a number of samples of at least Nsamples > Ns is necessary for ensuring the

quality of the strategy sampling for the cost expectancy computation. The optimal seems

to be at Nsamples = Ns. Any further increase of Nsamples increases the execution time

without reducing its variance.
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Figure 5.3: Effect of sample set size for cost expectancy computation

5.3.2 Scalability properties

In this Monte-Carlo run, the performance of the PC algorithm is evaluated with an increas-

ing number of vehicles. The randomized parameters are within the same range, except

that the initial distance from the intersection can exceed the upper bound if too many ve-

hicles are generated on the same upstream road. The separation distance constraints take

precedence.

The aim of this run is to find the limiting number of vehicles for the application of this
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algorithm, and see how efficient it is at dealing with high number of vehicles in a restricted

space. Figure 5.4 shows results for Nvehicles = 3 to Nvehicles = 9.

In this plot, the execution time is shown per vehicle, as in real life the algorithm would

run in parallel on all the vehicles. With the present Matlab implementation the code has

not been parallelized (neither optimized).
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Figure 5.4: Scalability study of the PC algorithm with variable number of vehicles in-
volved in the optimization

The results show a steady increase from Nvehicles = 3 to Nvehicles = 9 for both the average

crossing time and the crossing time of the last vehicle. The change in crossing time

(average and max.) is very limited (approx. 25% for the mean value) whereas the number

of vehicles has been multiplied by three. This indicates that the algorithm copes well to

make a high number of vehicles pass through an intersection limited in space.

The complexity trend as seen in the bottom plot shows a nonlinear increase in execution

time. As the number of vehicles is multiplied by 3, the average execution time is multi-

plied by approx. 9. The trend up to 9 vehicles is thus polynomial of order 2. A further

117



analysis of complexity will be carried out in further works, and more realistic execution

times will be measured after an optimization of the code and parallelization.

These complexity execution time figures can be used as a reference for the continuous

flow simulations demonstrated in Section 5.4. Assuming an acceptable to find a solution,

the maximum number of vehicles that can participate in the PC optimization would be

given by the data in Figure 5.4. Practical aspects of the implementation of the PC algo-

rithm for intersection crossing can allow to manage and enforce this number and will be

detailed in Section 5.4.

5.3.3 Intersection layout effect

In this Monte-Carlo run, the performance of the PC algorithm is comparatively evaluated

for a traditional crossroad and a roundabout. As previously, 100 initial situations are

generated and are used for both intersection layouts. Figure 5.1 shows the two layouts

with a matching initial situation. The vehicles have the same initial starting/destination

point, initial position and velocity.
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Figure 5.5: Results of Monte-Carlo simulation with 8 vehicles in a 4-way intersection
versus a roundabout (matched initial positions)

The results shown in Fig. 5.5 show that the quality of the solution is slightly better in the

case of a crossroad in terms of average crossing time and maximum crossing time. The
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difference is quite small as the median for the average crossing times are 0.5s apart and

for the maximum crossing time 1s apart. However, the execution time is slightly slower

in the roundabout case, indicating a better ease of convergence (although the difference in

execution time is weak).

From these results, the proposed association {crossroad, PC algorithm} seems to be (weakly)

preferable to the couple {roundabout, PC algorithm} for throughput maximization. This

is contrary to what has commonly been seen for roundabouts with human drivers [14].

To be more meaningful, this comparison should be extended to more complex layouts:

double/triple lanes and more roads to/from the intersection.

The lack of sensitivity shown by the algorithm to the intersection layout points to good

polyvalence characteristics of the algorithm. This in turn points towards its usability in

a range of real-life situations without the need for significant infrastructure modifica-

tion.

5.4 Towards Real-Life Implementation

This section presents a series of improvements around or centered on the PC algorithm to

enable its use for continuous traffic scenarios, as opposed to a fixed initial situation with

a predetermined number of vehicles.

5.4.1 Ensuring smooth speed profiles for comfortable use

The speed profiles are the possible actions the vehicles can choose from. In this section is

detailed an optimal generation of speed profiles for ensuring smoothness while respecting

continuity constraints with the current state of the vehicle. It is inspired by the speed

profile generation presented as part of the algorithm in [5], and has been adapted to fit the

needs of the PC algorithm.

The aim is to design an optimization algorithm that each vehicle can use to generate

smooth speed profiles that will be its set of possible actions Xi. For this, a cost function f

for the optimization problem should be designed. Different terms are desirable in the cost

function to achieve this goal:

• A cost on the input signal (jerk)
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• A cost on the acceleration

• A cost on the difference to a specified reference speed vre f

The state-space model chosen for optimal speed profile generation is an integrator. It has

been defined in discrete form at a sampling time of T s as:

Xk+1 = AXk + BUk (5.3)

Where:

Xk = (sk, vk, ak) Uk = ( jk) (5.4)

Where the elements of Xk are respectively the curvilinear abscissa, the speed and the

acceleration. The input U is the jerk. The state and input matrices A and B are defined

as:

A =


1 T s 0

0 1 T s

0 0 1

 B =


0

0

T s

 (5.5)

For easier definition of the quadratic cost function for optimization, three different output

matrices are defined for the three states respectively:

Cs =
(
1 0 0

)
Cvel =

(
0 1 0

)
Ca =

(
0 0 1

) (5.6)

The vector Ū = (u1, ..., uNopt) of Nopt concatenated inputs is defined over a time horizon of

length Nopt ∗ T s for the optimization. The goal is to find an optimal input with respect to

a quadratic cost function defined in the following paragraph. The model matrices A, B,

Cs, Cvel, Ca are aggregated in matrices Ā, B̄, C̄s, C̄vel and C̄a as in [15] and [16]. From the

concatenated input Ū, the concatenated states over the optimization horizon are defined

as:

X̄ = Ā ∗ Xinit + B̄Ū (5.7)

Weight coefficients Qa and Qvel are defined to penalize the acceleration and speed respec-

tively. These coefficients are concatenated in matrices Q̄a and Q̄vel. A weight coefficient

R is also defined for the input (jerk) and aggregated in a weight matrix R̄.

The cost function f depending on the input Ū can now be formalized in the following
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form:

f (Ū) =

Nopt∑
k=1

Qaa2
k + Ru2

k + Qv(vk − vre f )2 (5.8)

The function f can be defined as depending only of Ū because of Eq. 5.7.

The usual quadratic function to optimize is of the form:

f (Ū) =
1
2

ŪHŪ + fŪT (5.9)

To implement the function f in Eq. 5.8 in the form of Eq. 5.9, the matrices H and f are

defined as:

H = (C̄aB̄)T Q̄a(C̄aB̄) + (C̄velB̄)T Q̄vel(C̄velB̄) + R̄

f = (C̄velB̄)T Q̄vel(C̄velĀ)Xinit − Qvelvre f (C̄velB̄)T
(5.10)

The first term in H implements the cost on the acceleration, and the last term R̄ is for

the cost on the input signal. The remainder of the terms in H and f are implementing the

quadratic cost to the difference to the reference speed vre f (explained in detail in [5].

For the usual quadratic problems, constraints are inserted as:
Umin ≤ Ū ≤ Umax

AineqŪ = bineq

AeqŪ = beq

(5.11)

The previously defined matrices are used to insert inequality constraints on the input Ū,

on the acceleration and on the speed. Equality constraints are used to enforce the speed

and acceleration at specific points.

Figure 5.6 shows the result of the generation of N = 10 speed profiles from an initial state

of vinit = 2.2m/s and ainit = −1m/s2. Constraints have been inserted to force the speeds

at t = 4.8s to a spread going from 0.1m/s to 2.9m/s through equality constraints. The

acceleration has been constrained at the same instant to 0m/s2. The reference speed vre f

in Eq. 5.9 has been defined for each speed profile to be equal to the constrained value at

t = 4.8s. The cost function weights are Qa = 1, Qvel = 0.5 and R = 1.
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Figure 5.6: Generated smooth speed profiles

5.4.2 Optimization with non-collaborative connected agents

Non-collaborative connected agents are defined as vehicles that communicate their speed

profile but will not change it. This could for example be the case of high kinetic energy ve-

hicles (trucks) or emergency vehicles (firefighters, police, ambulances). In section 5.4.3,

this property is also used to limit the number of vehicles partaking in the optimization at

any given instant. It is one of the tools used to keep a low complexity of the optimization

scheme.

Due to the nature of the PC algorithm, the information for a non-collaborative agent j can

be inserted in the same way than for collaborative agents, through:

• The set of possible actions Xj

• The associated probability distribution q j(X j)

These two variables completely define the interaction between vehicles within the PC al-

gorithm framework. With a non-collaborative vehicle, these variables just take particular

values:

• The set Xj collapses to one element, that is the planned speed profile of the con-

nected non-collaborative vehicle.

• The associated probability distribution collapses to qi(Xi) = {1}.

That means the non collaborative vehicle only has one possible action which probability

of execution is 1. The work flow of the algorithm presented in Algorithm 2 is otherwise

unchanged.

The capability of the algorithm to cope with connected but non-collaborative agents is

highlighted in Fig. 5.7. In this figure, the blue vehicle is connected and non-collaborative.

The only possible option it advertises to other agents is that it will keep a constant speed
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(cf. blue line on the top plot). As a result, the four other agents do the normal PC opti-

mization taking into account the non-collaborative vehicle. They will either pass before or

after the blue vehicle, so that it does not need to modify its speed profile. The blue agent

comes from the left and holds a constant speed. It has nonetheless communicated its in-

tentions to the other agents. The vehicles coming from the top lane (yellow and orange)

slowed down just enough. Two vehicles coming from the bottom lane (green and purple)

found a solution that allowed them to go before the blue vehicle. The last one (pale blue)

reduced his speed just enough to go after the blue non-collaborative vehicle.
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Figure 5.7: Snapshot of the collaborative solution accounting for non-collaborative con-
nected agent in blue, taken at 4.7s. Link to video at https://youtu.be/bpxXq9G4RTk

The seamless integration of collaborative agents means that at any moment during the

optimization a collaborative agent can become non-collaborative and vice-versa. This

property has been demonstrated (albeit for a very different class of problems) in [9]. In

this chapter the non-collaboration of agents is not seen as a ”failure” as in the cited paper
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but as a feature of the algorithm and framework built around it.

5.4.3 Adaptation to continuous flow at an intersection

To the knowledge of the author, the PC algorithm has not been used yet to do repeated

optimizations, in our case to deal with a continuous flow of vehicles. The closest appli-

cation was [10] for air traffic management, but the algorithm was demonstrated on fixed

initial situations.

The first point to address is when to run the optimization and with which vehicles. Fig.

5.8 shows the intersection layout that has been defined to manage the repeated optimiza-

tions. Vehicles can enter the distributed optimization scheme only if they are within the

synchronization zone. They must have agreed on an admissible solution before entering

the shared zone. As the vehicles are not allowed to enter the shared space of the intersec-

tion (red) without a valid collaborative solution, the default speed profile planned by the

vehicles upon entering the synchronisation zone should be to slowly come to a complete

stop just before the shared zone. This condition ensures feasibility when only connected

vehicles are present. Within the shared zone, vehicles are allowed to reevaluate their

solutions to improve the situation for new incoming vehicles. The length of the synchro-

nization zone shall be enough to allow for a safe stopping before entering the shared zone.

It should also be short enough as not to contain too many vehicles for the algorithm to

cope with (cf. execution time study on Fig. 5.4)

Assuming some of the vehicles present in the synchronization zone already have an

admissible solution, rules have to be defined as to whether these vehicles effectively

participate again or just keep their speed profile. Three possibilities have been imple-

mented:

• Single Vehicle optimization (denoted “single” mode)

• Full optimization (“full”)

• Batch optimization (“batch”)

In the single mode, a vehicle runs the PC optimization as soon as it enters the synchro-

nization zone. All the other vehicles are considered to be connected but non-collaborative

(cf. section 5.4.2). In this mode, the coordination is sequential more than collaborative

since the vehicles decide what to do one by one. This is a great option to reduce com-

plexity in situations with low uncertainty and with only autonomous vehicles. Of course,
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Figure 5.8: Illustration of intersection layout for continuous traffic coordination

if there is an unforeseen event or uncertainty about the action of a vehicle in the intersec-

tion, this mode will not work: all the vehicles should recompute what is the best course

of action. This is the goal of the full optimization mode. This is to be used if such an

event occurs, or if any problem arises with the current solution(s). Also, the intersection

crossing performance with the single mode could be suboptimal as not all the vehicles

coordinate with each other. A full optimization from time to time would allow to find

better solutions. The batch mode is a compromise between the two. In this mode, rules

are defined regarding which vehicles participate in an optimization. For instance, the op-

timization could be done in waves of several vehicles once a threshold number is reached

(5 vehicles not coordinated yet in the synchronization zone for example). This mode has

not been implemented yet, the author relying mostly on the first two for the simulations

presented in this chapter.

It is of importance to note that in the case of a human driven vehicle present in the in-

tersection or near it, all the connected autonomous vehicles would have to continuously

reevaluate their solutions to account for behaviour of the human driver.

The second point to address is to ensure continuity through the repeated optimizations. If

a vehicle has already participated in an optimization and has determined a speed profile

to follow, any new speed profile recomputed later should comply with continuity con-
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straints for the speed profile. To ensure continuity, the set of possible actions Xi is defined

with the algorithm described in section 5.4.1. This algorithm allows to insert constraints

on the speed profile for the initial conditions. Thus, all the possible actions in Xi will

ensure continuity by design, and so will the action Xi,k ∈ Xi chosen at the end of the

optimization.

The second point to address is the time horizon of the optimization. A finite time horizon

of 10s has been implemented for each vehicle participating in the optimization. it is low

enough to reduce complexity, and long enough to ensure that the planning has a high

chance of spanning until when the vehicle exits the intersection. If the time horizon is too

short, another optimization can be run later. Alternatively, the optimization can be re-run

right away with a longer time horizon. The first solution has been implemented to with

success so far, as it does not lead to adverse effects.

5.4.4 Demonstration of continuous traffic capabilities

In this section is shown a simulation with all the elements explained through Section 5.4.

Vehicles generate their speed profiles with the optimization algorithm described in section

5.4.1. Among the PC optimization modes described in section 5.4.3, the single mode has

been tested.

In the case of the single mode, all the vehicles are non-collaborative except the last ve-

hicle to have entered the synchronization zone. This mode is useful to demonstrate the

capabilities of the algorithm to deal with a high number of non-collaborative connected

agents. It also demonstrates the use and performance of the algorithm in the special case

of single vehicle optimization. On the other hand, the full mode shows the exact opposite

as it forces all the vehicles to re-run the optimization every time a new vehicle enters the

synchronization zone. This mode has been used in the previous section when an opti-

mization is done on a fixed initial situation with all the vehicles. That is why the single

mode has been preferred here.

Vehicles are spawned on the road in a random manner, similarly to the simulations in

Section 5.3. A probability distribution has been defined for the spawning time between

two vehicles. The main simulation parameters are summed up in Table 5.3. The sampling

time within the PC algorithm is decoupled from the sampling time of the simulation.

In the example simulation, no conflicts happened between any of the vehicles present,

even though they did the optimization one by one. Figure 5.9 shows a snapshot of the
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Table 5.3: Continuous traffic simulation parameters
Parameter Notation Value
Simulation duration Tsim 120s
Sim. sampling time Ts,sim 0.2s
Start distance to intersection Ds 25m

Spawn time distribution parameters
(Normal law))

Min time between spawns ∆tmin 0.5s
Min time (same lane) ∆t0

min 1s
Avg. time ∆tavg 1.5s
Standard deviation σt 2s

PC parameters
PC time horizon Thoriz,PC 10s
PC sampling time Ts,PC 0.2s

continuous traffic situation during the simulation with a link to the full video. Green

vehicle cores indicate that the vehicle has successfully found a speed profile to cross the

intersection with the PC algorithm. The red vectors show the direction and speed of the

vehicles. The chosen parameters for the distribution of the spawning times lead to a quite

dense traffic situation. Even like that, the single optimization mode is enough to ensure

that there are no conflicts between vehicles and no jamming. With the ability to perform

continuous traffic simulations, it will be possible to evaluate the throughput properties of

the algorithm.

5.5 Conclusion

A study of the characteristics of the Probability Collectives algorithm for intersection

crossing has been presented in this chapter, with the aim of evaluating its applicability to

real-life intersection management. The study has explored the behaviour of the algorithm

in terms of scalability, sensitivity to road layout, and convergence. Overall the presented

PC algorithm for intersection shows sound convergence properties, exhibits a polynomial

complexity trend and its performance is mainly insensitive to the road layout. These

characteristics show no critical flaw so far for application of the PC to continuous traffic

management.

To go further towards such application of the PC algorithm, several steps carried out

to make it compatible with real-life scenarios and continuous traffic management. An

optimal smooth speed profile generator has been designed, also ensuring continuity of
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Figure 5.9: Snapshot of the continuous traffic simulation. Link to video at https://
youtu.be/9k_J8E0x_-M

.

the overall planned speed of the vehicles through repeated PC optimizations. Robustness

of the algorithm to non-collaborative connected vehicles has been demonstrated, and an

overall framework for real-time traffic management has been designed and demonstrated

with Matlab simulations.

Further works will include optimization of the code for faster execution and insertion of

human drivers in the intersection.
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Chapter 6

Unified Probabilistic Multi-Vehicle
Coordination (UP-MVC): Extending
the P-MVC for Real-Life Application
and Mixed-Traffic Scenarios
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Abstract

Some potential benefits of the PC algorithm that have previously been demonstrated by

the author include robustness to agent failure and the possibility to accommodate non-

connected vehicles (human drivers). This latter property would be very important with a

market penetration of autonomous vehicles < 100%, which includes all short and medium

term scenarios for road use. Only the robustness to a specific kind of agent failure has

been demonstrated so far [1]. In this chapter are presented improvements to the previ-

ously developed PC based Probabilistic Multi-Vehicle Coordination (P-MVC) algorithm

in order to make it robust to non-collaborative, non-connected vehicles. These are classic

vehicles driven by humans and without Vehicle-to-Vehicle (V2V) communication tech-

nologies. Robustness of the PC algorithm to such agents has never been demonstrated. In

this work, it has been achieved by representing human drivers in a probabilistic manner

similar to that of the usual PC algorithm.

The resulting algorithm has been called Unified Probabilistic Multi-Vehicle Coordination

(UP-MVC). It provides a decentralized risk-adverse algorithm to manage mixed-traffic at

intersections. Its decentralized nature allows to use it without dedicated infrastructure.

The risk-adverse characteristic comes from its probabilistic nature and makes the algo-

rithm choices easy to understand and monitor. These characteristics are demonstrated in

the presence of human drivers on the road with Matlab simulations both offline and online

(dealing with continuous traffic flow). CAV market penetration rates from 50% to 100%

have been tested.

Further works will include testing the UP-MVC on the full range of CAV market penetra-

tion (from 0% to 100%) and using it for other maneuvers than intersection crossing as the

algorithm in essence does not depend on the intersection layout. These maneuvers can

include highway insertion or platooning.
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6.1 Introduction

In the field of intersection coordination, several approaches coexist depending on the hy-

potheses considered by the authors. For instance, coordination can be achieved by chang-

ing the traffic lights pattern [2], by assigning slots to vehicles [3] or by direct vehicle con-

trol [4]. Among these, only some focus on shorter-term hypotheses in which some human

drivers are present on the roads [2]. In this case when not all vehicles are autonomous it

is more difficult to find and enforce truly optimal solutions regarding the specific problem

objectives (fuel consumption, time for crossing the intersection, ...). Traffic lights pattern

optimization is a popular technique in this case.

Other coordination techniques aim to be compatible with mixed traffic while directly con-

trolling the autonomous vehicles. One such category of works rely on mutual exclusion

from a shared zone with humans [3] (the centre of the intersection for example). Mutual

exclusion techniques are one way of achieving a collision free traffic that is compatible

with human driving at the cost of more loss of time, because of the conservative “exclu-

sion” hypothesis. This paper does not work under this hypothesis, while still providing

compatibility with mixed-traffic scenarios. This is achieved through the use of a Proba-

bility Collectives (PC) based algorithm.

The proposed approach thus provides the mixed traffic compatibility that was reserved

until now to traffic lights based human-compatible intersection coordination or exclusion

based methods, while having performance real optimal coordination algorithms not com-

patible with mixed traffic. Another significant benefit of the proposed algorithm is its

explicit and easily understandable risk-averse behaviour, based on its probabilistic data

representation [5].

This chapter describes the algorithmic framework and improvements built upon the P-

MVC algorithm of Chapter 4 and 5 in order to develop a unified algorithm for multi-

vehicle coordination. Several big modifications to the existing algorithm were needed.

The remainder of this chapter is organized as follows:

• Section 6.2 shows the generalization of the PC framework to mixed traffic scenarios

including human drivers.

• Section 6.3 presents simulation results demonstrating the abilities of the PC algo-

rithm to deal with continuous traffic management and human drivers on the road.

The behaviour of the algorithm is analyzed and the main performance metrics of
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the UP-MVC are discussed.

6.2 UP-MVC: Extension of the Algorithm to Mixed-Traffic

Scenarios

In this section are presented the developments that made the proposed PC-based algorithm

a really unified solution for intersection crossing with all types of vehicles:

• Connected collaborative vehicles

• Connected non-collaborative vehicles, also described as “stubborn” (Section 5.4.2)

• And now, also with non-connected, non-collaborative vehicles. This class of ve-

hicles has unknown intentions from the point of view of the connected vehicles,

as they do not communicate them and may not collaborate with the other vehicles.

In real life, those characteristics correspond mostly to classic vehicles driven by

humans.

The last class of vehicles will be referred to as “human driven vehicles” in the remainder

of this chapter as it is more easily relatable.

The resulting algorithm have been called Unified Probabilistic Multi-Vehicle Coordina-

tion algorithm (UP-MVC). Its aim is to provide an optimization engine working on prob-

abilistic data to come up with decisions on which the level of risk can be understood by

humans and monitored. As previously stated, it is a polyvalent algorithm with respect

to the types of vehicles on the road. It is also flexible with regards to the intersection

layout. The UP-MVC has been demonstrated on simulations containing all three types of

vehicles, both offline and online.

6.2.1 Computational aspects of dealing with non-collaborative, non-
connected agents

This section is about using the algorithm with human driven vehicles in the intersection

or more generally in the zone shared by all vehicles. The human drivers are characterized

by the fact that:

• They do not collaborate (not taking part in the collaborative decision).
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• They are not connected (no information or very little is available regarding their

intentions).

The PC algorithm has the potential to deal with this type of situation because of its prob-

abilistic formulation. Its robustness to a specific type of failed agents has been demon-

strated in [1], although for an offline optimization of a mathematical problem. Integrating

human-drivers in the optimization goes beyond that for two reasons:

• It is dynamic (rapidly changing)

• The action of human drivers are inherently unknown

For the second point, educated guesses can be built through observation of the current and

past states of the agent (speed, turn signals, ...) and assumptions about the behaviour (is

the vehicle arriving at a stop? A green light?).

To make the PC algorithm compatible with the presence of such agents, a set of possible

actions Xi has to be generated along with a probability distribution qi(Xi) on Xi.

The focus of this work is not on the set generation per se. It focuses on characterizing

what quality of information is needed for the algorithm to come up with relevant solutions.

Thus, the output of this work can be seen more as a set of design requirements for:

• The intersection layout (will condition the knowledge and assumptions about hu-

man drivers)

• The algorithm that will effectively generate those sets

• The adaptations required for continuous traffic flow optimization

6.2.2 Possible action prediction for human-driven vehicles

The work here is focused on the characteristics of the prediction necessary for the PC

algorithm to work. It can be seen as a list of design requirements for the conception of

the predictor of possible actions.

As designed, each possible action is a full trajectory composed of a 2D path and a speed

profile. For now the 2D paths have been set to be fixed and known. This hypothesis is

realistic because a lot of visual clues are available to know the intended path of a vehicle

such as the lane it is in and whether the turn signals are on. With the possible 2D paths

fixed, the notations for the possible actions of humans can be kept simple and consistent.
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For a human driven vehicle i, the set of N possible actions considered is Xi = (Xi
1, ..., X

i
N)

where each Xi
k is a speed profile over a given time horizon in the future.

The possible speed profiles have been designed for continuity of speed and acceleration.

The targeted human driven vehicle is assumed to have been perfectly observed. The range

of possibilities considered is shown in Fig. 6.1.

Figure 6.1: Example of strategies hypotheses and discrete probability distribution
.

The probabilities shown on Fig. 6.1 have been generated through a discretization of a

normal law of known standard deviation. The distribution has been centered on the speed

profile that makes the vehicle keep its initial speed. The vehicle is deemed unlikely to

either accelerate much or decelerate much.

The dimensionless parameter σ is akin to a standard deviation and is an input of the

behaviour prediction function. It is used to artificially change the degree of certainty

assumed about a human driver’s behaviour to see the effect it has on the algorthm. It

is expected that a higher standard deviation (more uncertainty on the human driver be-

haviour) would lead to the UP-MVC algorithm onto a more conservative behaviour (for

example by giving more space to the human drivers). The probabilities of each discrete

action are computed from a continuous normal probability distribution:

• Centered on icentral, the index of the strategy that is deemed the most likely.

• Of standard deviation Nsσ, where Ns is the number of possible strategies consid-

ered.

The probabilities are then normalized so that their sum is equal to 1, in order to give the

discrete probability distribution qi(Xi). The qi notation has been kept to be consistent

with the previous definition of the PC algorithm.
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This action prediction technique has been kept consistent through this section so that the

results are more easily understandable, and any effect observed will be a result of the PC

algorithm behaviour.

6.2.3 Criteria for comparing solutions

Assuming an ego-vehicle is i, the sets of possible actions Xj and associated probabilities

q j(X j) are:

• known for all j , i, j describing a CAV.

• estimated for all j , i, j describing a human driven vehicle.

As described in Algorithm 3, the possible actions of each vehicle j will be sampled ac-

cording to their probability distribution. These samples will serve to compute the ex-

pectancies E(Xi) and ultimately the favourite self-strategy of the ego-vehicle [5].

The PC algorithm is used here in a semi-centralized formulation presented in Algorithm

3. Solutions found by the connected vehicles are compared with each other to find out

which vehicle found the best overall strategy at the current step. This formulation allows

to more closely monitor the feasibility of the solution at each step instead of letting be-

haviours emerge as in [1]. The main contribution for dealing with human drivers in the

optimization algorithm is related to how the costs are compared between vehicles to know

which connected vehicle has found the best solution.

The preferred self strategy Xi
opt,tmp is computed based on cost expectancies associated

with each self possible action Xi
k ∈ Xi. Those cost expectancies are computed using the

expected actions of other vehicles, including human driven vehicles.

Even though the preferences of human driven vehicles and connected vehicles are both

expressed through the same format (Xj,q j(X j)), they mean very different things. For

connected vehicles those preferences are actually a degree of freedom of the optimization,

and the favourite action in Xj will be the one actually carried away. For human driven

vehicles, the couple (Xj,q j(X j)) represents a mere guess of the future behaviour of the

vehicle: the most likely action in Xj may not even happen and the connected vehicles

have no influence on it.

Thus, a joint strategy Y can only be defined for the set of connected vehicles that partic-

ipate to the optimization. With human drivers inserted in the optimization, the cost of a

joint strategy Y is composed of two very different terms:
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Algorithm 3 Semi-centralized PC optimization outline
1: Data: Own set of possible actions Xi

2: Data: Current joint strategy proposed by vehicle i: Y i
opt,tmp

3: Data: Best joint strategy found so far by any vehicle: Yopt

4: Result: Joint strategy Yopt

5: Initialize qi(Xi) to a uniform distribution
6: Initialize the SA temperature T
7: while no convergence of qi(Xi) do
8: for vehicles j , i do
9: if j is connected then

10: Get set Xj from communication
11: Get q j(X j) from communication
12: else
13: Estimate Xj

14: Estimate q j(X j)
15: end if
16: end for
17: for each Xi

k in Xi do
18: for j , i do
19: Randomly sample some Xj based on the probabilities q j(X j)
20: end for
21: Compute expected utility E(Xi

k) of Xi
k

(based on the sampled strategies for other vehicles)
22: Store E(Xi

k) in a vector E(Xi)
23: end for
24: Find qi(Xi) minimizing f (E(Xi),T )
25: Store action Xi

opt,tmp = argmax(qi(Xi))
26: Build Y i

opt,tmp by concatenating Xi
opt,tmp with known preferrences for vehicles j , i

27: if Y i
opt,tmp is better than Yopt then

28: Propose Y i
opt,tmp to other vehicles

29: Compare Y i
opt,tmp to other new proposals Y j

opt,tmp ( j , i)
30: Store best proposal as Yopt

31: end if
32: end while

140



• A deterministic cost cost JD(Y) related to the quality of the joint strategy if no

human driven vehicles were there. This cost is the same as described in [5] for a PC

application without human driven vehicles. The cost includes a weighted sum of

terms related to: the average speed through the intersection, the separation distance

with the other vehicles and the control effort that the solution requires.

• A cost expectancy E(JH(Y)) related to the interaction of connected vehicles with

human driven vehicles. The notation JH is used because the cost function is slightly

modified from J that was defined in [5]. The subscript H is used because it is related

to “humans”.

The objectives to fulfil during the optimization are very different with respect to human

driven vehicles versus connected vehicles. Among connected vehicles, the aim of a strat-

egy is threefold as described in [5]. A good solution is a balance of separation with other

vehicles, high average speed through the intersection and low control effort for the pas-

sengers comfort. With respect to human driven vehicles, the single major objective is to

ensure safety through keeping a safe distance. It is logical to expect that the more un-

certain the behaviour of the human driver is, the bigger the separation distance should be

kept. Concepts such as average speed through the intersection and control effort do not

apply to the human driven vehicles in the scope of the collaborative optimization. Thus,

the resulting cost is denoted JH and expressed as:

JH(X) = Wsep

∑
j∈Cindexes

N∑
k=1

1
dk( j, i)2 (6.1)

Where N is the prediction horizon and Cindexes is the set of indexes of the connected

vehicles present in the intersection.

To account for constraints violation, a high cost penalty Jcons is added to the cost for each

dk( j, i) < dsa f e (where dsa f e is a minimal separation distance to the human driven vehicles).

For a number of violated separation constraints Ncollisions, the cost JH(X) becomes:

JH(X) = Wsep

∑
j∈Cindexes

N∑
k=1

1
dk( j, i)2 + NcollisionsJcons (6.2)

For each human driven vehicle Vi present in the intersection, Ns strategies are sampled

among the possible strategies set Xi of Vi. The separation cost JH is then evaluated. As

each tested strategy Xi
k for the human driven vehicle Vi is associated with a probability
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qi
k, the partial expectancy Ei(J(Y)) can be computed. The term partial is used because

Ei(JH(Y)) is the cost expectancy due only to the human driven vehicle Vi with respect to

all connected vehicles.

When computed for all vehicles, the cost expectancy E(JH(Y)) is then defined as:

E(JH(Y)) =
∑

i∈Hindexes

Ei(JH(Y)) (6.3)

For a joint strategy Y of the connected vehicles. The set Hindexes denotes the indexes of

human driven vehicles.

The penalty Jcons in Equation 6.2 is usually several orders of magnitude bigger than Wsep.

Thus, when monitoring the cost expectancy, it becomes easy to see if some outcomes for

the human driver’s behaviour lead to collisions with the current test joint strategy Y .

It is important to remember that the cost expectancy E(JH(Y)) due to humans depends

on the actual random sampling of human driven vehicle’s strategies. When comparing

E(JH(Y)) between two solutions, the sampling needs to be exactly the same as not to

favour unfairly one strategy against another one.

The following criteria have been implemented to decide which of the proposed Y i
opt,tmp is

best in Algorithm 3:

• First of all, the feasibility of Y i
opt,tmp is computed as if only connected vehicles ex-

isted. The strategy with strictly less constraint violations wins.

• For strategies Y i
opt,tmp with the same number of constraints violations, the determin-

istic cost JD(Y) and human related cost expectancy E(JH(Y)) are used to determine

which is better.

• To strike a balance between optimality and robustness during the comparison of

solutions, the sum of JD(Y) and E(JH(Y)) has been used as a criteria.

With these adaptations, the transformation of the P-MVC algorithm into the UP-MVC has

been fully carried away. The UP-MVC is able to consider human driven vehicles in the

optimization in a probabilistic manner. In Section 6.3, The algorithm will be demonstrated

for offline situations to check and explain its behaviour. An extension to online use will

be presented.
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6.2.4 Probability of disruption

One of the criteria of success of the algorithm (and any optimization algorithm) is to find

a solution that minimizes the cost function that has been defined.

Another success metric has been developed for the UP-MVC algorithm in order to evalu-

ate the quality of the solution with respect to the human drivers potential actions.

When the algorithm stops, the final cost expectancy E(JH(Y)) defined in 6.2.3 can be

memorized, as well as the following quantities for each human driven vehicle V j ( j ∈

Hindexes):

• For each possible strategy X j
k of V j, a boolean b j

k denoting the feasibility of X j
k with

respect to separation constraints with any of the connected vehicles.

• The sum of all probabilities of the strategies of V j that lead to such violation. This

is the probability that V j does something the joint strategy Y has not been planned

for. This probability is denoted q j
v =

∑
k∈Icollision

q j
k, where q j

k is the probability of X j
k

and Icollision is the set of all k so that b j
k = 1, for X j

k ∈ Xj (in other words, all the X j
k

that lead to a separation constraint violation).

Assuming that the behaviour of the human driven vehicles is independent (which is a

pessimistic hypothesis, more on that later), the total probability that the joint strategy Y

“goes wrong” with respect to the separation constraint with human drivers is then:

Qv =
∑

j∈Hindexes

q j
v (6.4)

Of course, humans will do their best to avoid collisions so this probability should be seen

as the likelihood that the humans are set on a colliding trajectory at the current time, and

thus the likelihood that they will have to reconsider their actions at a future time. In other

words, this can be seen as a probability of “disruption” of the human drivers. The lower

this probability is, the better. With an accurate enough knowledge of the intentions of the

human drivers, this probability would actually be very close to zero.

This would be an approximation of the likelihood of collision if the humans were “blind”

and did not ever change their course in reaction to the situation. As a consequence, this

probability should be seen as no better than a coarse upper bound of the probability of

collision at any given time.
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Parameter Notation Value
Number of strategies Ns 10
Sampling time Ts 0.2s
Weight on control effort Wcontrol 0
Weight on separation dist. Wsep 1
Weight on avg. crossing time Wavg 10
Penalty for constraint violation Jcons 105

Samples to get expected utility Nsamples 10
Stopping criteria Nstop 4
S A start temperature Tinit 10
S A end temperature Tend 0
S A temperature step Tstep 0.2
Degree of certainty for human drivers σ 0.5

Table 6.1: Main parameters for UP-MVC proof of concept

6.3 UP-MVC Demonstrations and Experiments

6.3.1 UP-MVC for mixed traffic: proof of concept

The simulation presented here is a proof of concept of the integration of human driven

vehicles in the optimization algorithm. A set of three vehicles has been defined. The

vehicle V1 in blue is human driven, comes from the left and goes to the right. Vehicles

V2 (orange) and V3 (yellow) are autonomous and have opposite vertical trajectories. They

both participate to the offline situation.

The main PC parameters are shown in Table 6.1.

The assumptions for the human driven vehicles are as follows:

• The initial speed of 2m/s is perfectly observed

• The range of possible speeds is assumed to go from 1.5m/s to 3m/s: that means the

human is assumed to not stop (i.e. he has the priority)

• The most likely action is for him to keep a constant speed. The provided video of

the solution will show this action.

• The standard deviation that describes the quality of the knowledge isσ = 0.5, which

is a quite poor distribution as shown in Figure 6.2

On Figure 6.3 is shown a snapshot of the solution when the human driver (in blue) actually

applies what was deemed the most likely hypothesis by the autonomous vehicles (i.e.
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Figure 6.2: Possible strategies for V1 and associated probabilities

constant speed, as shown on Fig. 6.2). The full video is available at https://youtu.be/

wNOiwajG4tA.The autonomous vehicles leave some space to the human driven vehicle in

case their prediction had been wrong. If V1 had gone slower than the hypothesis deemed

most likely, the vehicles V2 and V3 would still have had a valid solution with enough space

left as they did not rush behind the blue vehicle. As V1 was deemed to have a possibility

to accelerate to 3m/s, both vehicles decided not to go in front of it.

For this simulation, the total probability of disruption is Qv = 0.101. So there is an

estimated 10% chance that the human driver has to change its behaviour. This quantifies

the degree of acceptability of the solution found by the algorithm, assuming the behaviour

estimation is correct. The majority of optimizations with human drivers lead to Qv < 0.1,

meaning that the algorithm has been implemented in a way that favorizes low chances of

disruption of the human drivers.

For comparison purposes, Fig. 6.4 shows a solution generated with a much higher degree

of certainty on the actions of the human driven vehicle (video available at https://

youtu.be/q9dQPt0LflQ). In this case the yellow vehicle (V3) decides it is safe enough

to go in front of the human driven vehicle. The orange vehicle V2 leaves much less space

at the back of V1. In this case the probability of disruption computed by the optimization

algorithm is Qv = 0. However, the certainty has been set very high. In real life, this level

of certainty is unrealistic, and the solution applied by the autonomous vehicles would

actually influence its behaviour (braking when the yellow goes in front). This latter effect

would actually be mitigated by enforcing a higher minimal separation distance to humans

such as their driving would not be disrupted even when the knowledge is considered

certain.
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Figure 6.3: Snapshot of the application of the best solution when t = 4.3s
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Figure 6.4: Snapshot of the application of the best solution when t = 5s (high certainty)
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6.3.2 Study of probability distribution standard deviation

As previously mentioned, the actual solution found by the algorithm is heavily influenced

by the degree of certainty associated with the behaviour prediction for the human drivers.

This section investigates this relation. It is expected that the less sure the knowledge is

about the human drivers, the more separation the autonomous vehicles will observe.

More precisely:

• If the predictions are very broad (lots of actions possible with equal probability),

the algorithm will be overly conservative and tend to lead to slow solutions.

• If the predictions are very specific (one action considered certain, probability 1), the

solution will be very optimal. However, in this case the UP-MVC algorithm would

not really be needed: the non collaborative vehicle behaves as if it was connected

because its actions are known (cf section 5.4.2).

To evaluate the behaviour of the algorithm with respect to the degree of certainty in the

human driver’s behaviour prediction, a series of simulations have been carried away. The

initial situation has been fixed to the one presented in Section 6.3.1. For each simulation,

the standard deviation σ defining the spread of probabilities for the strategies set of the

human driver has been picked randomly in [0.02, 0.5]. The chosen output metric is the

average distance left by the autonomous vehicles to the human driver when at their closest

point. The expected result is that the more uncertain the knowledge is, the more space

will be given to the human driven vehicle V1. Figure 6.5 shows the results obtained for

100 simulations.

It appears that the distance left to the humans is closely correlated to σ up to σ = 0.15.

Then, a saturation phase appears where the distance is constant. It means the algorithm

saw no additional benefit to give more space to the human driver, because the probability

of collision was low enough. In terms of the distances shown on the figure, the reader

should remember that the test case is the “IPCar” vehicles on the PAVIN platform. These

vehicles go at speeds of up to 3m/s, are 2m in length and 1m in width. Thus, round vehi-

cles of radius of 1.5m have been implemented in the simulations. A separation distance

of 4m (centre to centre) means that 1m has been left between the vehicles.

It is also interesting to note that there are outliers to the top (high certainty and high

separation distance) but not to the bottom of the curve which means the algorithm is

sometimes too conservative but has not exhibited a “reckless” behaviour. This, and the

correlation of σ with the separation distance are very important and novel properties that
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Figure 6.5: Relation between standard deviation of behaviour estimation and space given
to human drivers.

show the suitability of the UP-MVC algorithm to mixed traffic scenarios.

6.3.3 Insertion of human-driven vehicles in online continuous flow
simulations

In this section are shown simulations with continuous traffic management with the UP-

MVC algorithm. This time, the simulations include a proportion of human drivers to

demonstrate the capabilities of the UP-MVC algorithm to deal with human drivers in a

continuous traffic optimization.

For the simulation, vehicles are spawned randomly with a given probability of being hu-

man driven. A rolling time horizon has been implemented for the optimization. A vehicle

will recompute its solution at regular intervals if it does not reach the intersection exit

within the optimization horizon.

An Adaptive Cruise Control (ACC) has been implemented as a crude way to emulate the

behaviour of human drivers. Their path has been fixed in advance but the actual speed

profile depends on what happens during the simulation. The ACC implemented comes

from [6]. The main ACC equation is as follows:

are f = K1(∆d − thvsel f ) + K2∆̇d (6.5)

Where are f is a reference acceleration, ∆d is the distance from the ego vehicle to the
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Parameter Notation Value
Simulation duration Tsim 60s
Sim. sampling time Ts,sim 0.2s
Start distance to intersection Ds 25m

Spawn time distribution parameters
(Normal law)

Min time between spawns ∆tmin 0.5s
Min time (same lane) ∆t0

min 1.5s
Avg. time ∆tavg 1.5s
Standard deviation σt 2s

PC parameters
UP-MVC time horizon Thoriz,PC 10s
UP-MVC sampling time Ts,PC 0.2s
ACC desired headway th 1s
ACC coefficients [K1,K2] [1, 3]
ACC acceleration bounds [amin, amax] [1,−3]

Table 6.2: UP-MVC parameters for continuous traffic simulation with human drivers

vehicle in front, th is the desired headway time, vsel f is the ego vehicle speed and ∆̇d is the

time derivative of ∆d.

The main simulation parameters and ACC parameters have been summed up in Table

6.2.

For the simulation, a priority rule has been set up for the human drivers. Vehicles who

want to enter the intersection have to yield to the vehicles already in it. This has been

implemented through the ACC formula, by projection the position of vehicles in the in-

tersection onto the path of the ego-vehicle. The projection is then considered as a real

vehicle and used to compute a reference acceleration with the ACC.

Of course, the behaviour of autonomous vehicles is not bound to those rules as they op-

timize the way they cross the intersection. In addition to that, the hypothesis deemed

most likely for the human drivers is that they keep a constant speed. The consequence of

choosing this hypothesis is that autonomous vehicles will tend to be careful about human

drivers entering the intersection, as they expect them not to observe the priority. This

choice has been done for two reasons:

• It allows to demonstrate the behaviour of the algorithm in a dynamic environment

when the predictions happen to not match the reality.

• It helps to generate a very conservative behaviour for the autnomous regarding the

human drivers, which can be considered as a ”priority by default” for the humans.
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For a more realistic behaviour of the connected vehicles, a reactive collision avoidance

has been used within the intersection when interacting with human driven vehicles. The

ACC has been used, as for the human driven vehicles when they have to yield before the

intersection.

The following rules have been set up for when and which autonomous vehicles should

participate in the collaborative optimization:

• By default, the single mode is used (defined in Section 5.4.3). When a vehicle

enters the synchronization zone upstream of the intersection, it runs the UP-MVC

alone while considering autonomous vehicles already in the synchronization zone

as stubborn.

• A fixed time duration has been implemented after which a vehicle will participate

again in an optimization. This is to make sure that an optimization has been done

with recent predictions for the human drivers. In the simulations presented, this

duration has been set to 1s. This is also a form of single mode optimization.

• When a human driven vehicle enters the synchronization zone, an optimization is

run for all vehicles present in the intersection (full optimization). These optimiza-

tions are more computationally intensive.

• When no feasible solution has been found between a vehicle that participated in

the optimization and a stubborn vehicle (a vehicle which does not want to change

its trajectory), a “soft” conflict solving mechanism is applied. The optimization

is re-run for the two conflicting vehicles, with neither of them being granted the

“stubborn” status. Usually this increases enough the degree of freedom of the opti-

mization to come up with a solution. In case this batch recomputation did not come

up with a feasible solution, a full optimization is run.

A snapshot of the simulation is shown in Figure 6.6. In this figure, connected vehicles

are represented in blue, with a green core when they have successfully finished one or

more optimization. Human driven vehicles are in red. The full video of the continu-

ous traffic simulation with 20% of human drivers is available at https://youtu.be/

h3H57iAFvXw.

The speed profiles of some of the connected vehicles present in the optimization are shown

in Figure 6.7. It can be seen that V2 and V3 keep a constant speed equal to 3m/s to cross

the intersection. The vehicles V4 and V5 participated to one round of optimization and

thus their speed profile is very typical: slowing down to a constant speed that solves the
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Figure 6.6: Snapshot of a continuous traffic flow simulation with 20% of human drivers

conflicts that could arise during the crossing, and then reacceleration when possible to

vmax. The vehicle V6 has a more tortured speed profile. It participated to collaborative

optimizations at t = 13s, t = 16s, t = 18s, and t = 25s. It is noticeable on the figure

because these durations correspond to changes in accelerations. The pattern observed

between 18s and 25s is the result of a single optimization. As a reminder, each round of

the UP-MVC algorithm is done in two steps: a first optimization that finds a target speed

to solve the conflict, and second step in which the algorithm looks for a reacceleration in

order to clear the intersection faster. The target speed found at the first optimization step is

reached at t ≈ 20s, and a reacceleration to 1m/s is then applied. There is a discontinuity in

the acceleration at t = 32s for V6 which is not due to the UP-MVC algorithm: it happens

when the vehicle switches back to a pure ACC behaviour upon exiting the intersection.

As what happens after the exit is of little interest for the present research, continuity

constraints have not been enforced there.

Overall, this figure demonstrates the continuity of the speed profiles applied by the au-

tonomous vehicles, whether they participate in a single UP-MVC round or several due to

the rules mentioned above. Even in the case of V6, there are no ”changes of mind”, in

which the vehicle would repeatedly decelerate/accelerate/decelerate. Such a behaviour is

highly desired for the maneuvers to be understandable for the passengers.

An histogram of the intersection crossing times for all vehicles is shown in Figure 6.8.
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Figure 6.7: Speed profiles of some of the autonomous vehicles

The crossing time here has been computed between the entrance of a vehicle in the syn-

chronization zone, and its exit from the intersection. The synchronization zone starts 10m

upstream of the intersection entrance, and the path length to cross the intersection is in

average 8m. So a crossing time of 6s would be achieved in average for a vehicle that keeps

its maximal speed of 3m/s. Shorter times are achieved for some vehicles that do a right

turn at full speed and thus have less distance until the intersection exit. It can be seen that

most of the vehicles have a crossing time between 4s and 11s. The average is 7.6s and the

standard deviation 3.7s. These results are on par with those presented in [5] for an initial

situation with 6 vehicles (connected vehicles only). In the present case, the environment

is changing and presents stubborn vehicles as well as non-collaborative vehicles (human

drivers). It shows that the performance of the PC algorithm holds well even for highly

dynamic environments.

For comparison and information purposes, the proportion of human driven vehicles has

been tested up to 50%. However, since the human drivers behaviour has been imple-

mented in a very simplistic way, collisions start to arise between human drivers. The

connected vehicles however did not have any collisions either between them or with the

human drivers. A video is available at https://youtu.be/rL8Wn8s--i8. While the

UP-MVC algorithm is still coping well, the demonstration would be better served by a

real human behavioural engine at those proportions of human drivers on the road.

With higher proportions of human drivers on the road, the collaborative aspect of the

algorithm will be less important as most of the optimizations will be done for a single

autonomous vehicle. Nevertheless, the UP-MVC is still a suitable algorithm for these sit-

uations because of its polyvalence, its probabilistic nature and its explicit success metrics
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Figure 6.8: Repartition of intersection crossing times

such as the probability of disruption.
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6.4 Conclusion

A unified algorithm for optimal intersection crossing compatible with mixed-traffic sce-

narios has been proposed. It is based on the Probability Collectives algorithm, which

is a decentralized optimization algorithm that was designed for solving NP-hard prob-

lems.

The UP-MVC brings the performance of pure optimization algorithms to mixed traf-

fic scenarios (scenarios with both human drivers and CAVs on the road). Mixed traffic

scenarios were until now dealt with conservative methods: traffic lights management or

mutual exclusion of vehicles. The algorithm has been demonstrated to have good per-

formance and predictable behaviour on offline and online simulations (continuous traffic

simulation). Further works will include testing the algorithm on the full range of CAV

market penetration with a better human behaviour engine. It will also be extended to

other maneuvers than intersection crossing, such as highway insertion or platooning in

mixed traffic environments.
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General Conclusion and Perspectives

157



158



7.1 Conclusion

In Chapter 2 has been proposed a cascade architecture for autonomous vehicle navigation.

This architecture seamlessly fills the tasks of trajectory/path tracking as well as dynamic

target following and thus can cope with multi-vehicle scenarios. The architecture is di-

vided into a robust low-level yaw stabilization controller that focuses on the vehicle’s dy-

namics and a high-level tracking MPC controller that focuses mainly on the kinematics.

This architecture shows an improvement in tracking performances, safety and flexibility

compared to usual kinematic controllers for trajectory tracking. It is not intended to have

an edge on performances compared to integrated approaches for trajectory tracking but to

improve robustness and implementability.

In Chapter 3, the control architecture’s capabilities have been extended for explicitly en-

suring comfort levels, and management of tracking-related risk for an urban vehicle. This

has been achieved by using a linear MPC based approach with appropriate formulation

and constraints. It is also robust to both noise on the reference trajectory and model un-

certainties due to the low level control design.

The safety monitoring has been achieved through a probabilistic evaluation of the risks

linked to the trajectory tracking. The main risk considered is to overshoot the lateral

tracking constraints. A performance monitor associated with a probabilistic analysis of

the performance has been able to foresee future dangerous situations and prevent them

by reducing the speed of the vehicle. Ultimately this provides a guaranteed tracking

performance and reduces the speed if necessary. This tracking technique has been tested

on the 4DV simulator as well as on real vehicles on the PAVIN platform.

The probabilistic approach has been carried in Chapter 4 by developing a Multi-Vehicle

Coordination (MVC) algorithm based on the Probability Collectives (PC) algorithm. The

PC algorithm is a multi-agent based optimization technique that was until now used for

solving NP-hard problems. Its principle has been heavily modified to make its core com-

patible with fast optimization in highly constrained environments such as an intersection.

The algorithm naturally uses a probabilistic way of representing the data so was a good

candidate for further developments in this thesis. The main interests of the proposed mod-

ified PC algorithm are its low complexity and its flexibility to any kind of road scenario.

That makes it a polyvalent algorithm able to fulfill the objectives stated in Section 1.3.

The algorithm exhibits abilities to quickly explore a search space for feasible solutions

(0.8s in average for the demonstrated scenarios). The optimality metrics achieved are
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satisfying compared to the short time allocated to finding a solution, and it inherently

performs better than algorithms based on mutual exclusion from a shared zone.

In Chapter 5 has been carried out an extensive study of the capabilities of this algorithm

for intersection crossing. The algorithm exhibits a polynomial complexity which means

it is easily scalable (there is no combinatorial complexity explosion). It also shows very

little sensitivity to the road layout, meaning that it is generalizable to -at least- various

intersection layouts. The convergence speed has been shown to be satisfactory even with

a high number of vehicles.

Chapter 5 also describes the development of a framework around the proposed algorithm

to make it compatible with real-time continuous traffic management. This framework

includes a smooth speed profile generator, a specific intersection layout to ensure that

vehicles cannot enter the intersection without a valid collaborative solution, and actual

rules for when and which vehicles should participate in a collaborative optimization.

This goes towards the objectives of ensuring applicability of the algorithm in the short

to medium term as stated in Section 1.3.2. This ability has been validated on Matlab

simulations.

The applicability of the proposed algorithm to short term scenarios has been brought even

further in Chapter 6. The capabilities of the algorithm have been extended to scenar-

ios with human drivers. It successfully bridges the gap between optimal collaborative

planning methods working for 100% of CAV on the road only, and human compatible

methods mostly based on traffic lights management. This finalized version of the algo-

rithm has been called the Unified Probabilistic Multi-Vehicle Coordination algorithm. In

addition to filling the research gap, it brings a natural probabilistic representation of in-

formation perfectly suited for representing human behaviours. Additional benefits of this

representation include easy to understand risk metrics such as the Probability of disrup-

tion described in Section 6.2.4.

7.2 Further work

7.2.1 Vehicle Planning and Control

This thesis opens a lot of perspectives for further work, in order to close in on real-life

application of all the presented techniques. A Linear Parameter Varying (LPV) model
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parametrized by speed could be used for the low-level controller to improve its perfor-

mance and operational envelope. This would make the controller less conservative while

keeping its robustness characteristics. A robustification of the MPC controller could also

be carried out in addition to the current characteristics implemented. Such techniques ex-

ist in the form of the Generalized Predictive Control [1]. The speed monitoring developed

in Section 3.2.3 could also be used to feed the probabilistic UP-MVC coordination algo-

rithm with a probability that each vehicle respects its tracking constraints (and at what

speed). This could help prune the candidate trajectories in the optimization that are too

fast to ensure a given level of safety.

7.2.2 Multi-Vehicle Coordination

The UP-MVC itself has room for more developments. A proper C++ implementation

on the 4DV simulator and test vehicles would serve to evaluate more finely the speed

of the algorithm and communication requirements. If needed, complexity could be fur-

ther reduced by grouping vehicles in platoons to cross the intersection and considering

a platoon as a single entity. More testing of the UP-MVC could specifically be done in

pathological situations such as CAV ratios on the road near 0% (At the very beginning

of the introduction of autonomous vehicles on the roads) and specific road layouts such

as merging roads. The development of a better human behaviour engine would also be

required to explore CAV ratios closer to 0%. For the behavioural prediction of other road

users, several works propose such an estimation [2, 3, 4]. However, only [2] proposes an

estimation of the uncertainty of the prediction that is required by the proposed UP-MVC

algorithm. Current algorithms usually focus on accurate predictions.

Some other pure implementation aspects of the MPC will be interesting to investigate.

The properties of the separation function (isotropy, threshold distance). In particular, the

separation cost depends at the moment only of the distance between two vehicles. It

should also depend on their relative speed as two vehicles approaching each other will ap-

pear more dangerous to the human passenger than two vehicles at the same distance with

similar directions. The communication requirements imposed by the algorithm could also

be evaluated in more depth, even though a very low communication volume requirement

has been demonstrated. The algorithm properties could also be studied for a network of

intersections, to understand how the properties scale up.
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