
HAL Id: tel-03411393
https://theses.hal.science/tel-03411393

Submitted on 2 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging the gap between natural language system
requirements and architecture design models

Takwa Kochbati

To cite this version:
Takwa Kochbati. Bridging the gap between natural language system requirements and architecture
design models. Software Engineering [cs.SE]. Université Paris-Saclay, 2021. English. �NNT : 2021UP-
ASG076�. �tel-03411393�

https://theses.hal.science/tel-03411393
https://hal.archives-ouvertes.fr

Bridging the gap between natural
language system requirements and

architecture design models
Combler le fossé entre les exigences du système exprimées en

langage naturel et les modèles de conception d’architecture

Thèse de doctorat de l'université Paris-Saclay

École doctorale n°580, sciences et technologies de l'information et de la
communication (STIC)

Spécialité de doctorat : Informatique
Unité de recherche : Université Paris-Saclay, CEA, Institut LIST, 91191, Gif-sur-Yvette, France

Référent : Faculté des sciences d’Orsay

Thèse présentée et soutenue à Paris-Saclay,

le 19/10/2021, par

 Takwa KOCHBATI

Composition du Jury

Aurélie NEVEOL
Directrice de Recherche, Université Paris-Saclay, CNRS, LISN

 Présidente

Ileana OBER

Professeur, Université Paul Sabatier
 Rapportrice & Examinatrice

Reda BENDRAOU

Professeur, Université Paris Ouest Nanterre la Défense
 Rapporteur & Examinateur

Xavier LE PALLEC

Maître de conférences HDR, Université de Lille
 Examinateur

Direction de la thèse
Sébastien GERARD

Directeur de recherche HDR, CEA LIST
 Directeur de thèse

Shuai LI

Ingénieur chercheur, CEA LIST
 Co-Encadrant

T
h

è
se

 d
e
 d

o
ct

o
ra

t
N

N
T

: 2
02

1U
PA

SG
07

6

To my family, the reason of what I become today.

Thanks for your great support and continuous love and care.

Acknowledgements

First of all, I would like to express my sincere gratitude to my thesis advisor Sébastien Gérard and

my scientific supervisor Shuai Li for their availability, their attentive guidance and their involvement in

this thesis.

I would also like to thank Chokri Mraidha for his valuable and constructive suggestions during the

planning and development of my research.

I want to extend my thanks to Xavier Le Pallec and Pierre Zweigenbaum for their valuable advice

during the mid-term defense.

Last but not least, the most important thanks go to my family, who have always been there for me:

my parents Samia and Habib for their selfless support and love, my brother Aymen and my sisters

Abir, Narjess and Sameh, with whom sharing life has always been the best thing in the world.

i

ii

Contents

1 Introduction 8

1.1 AI for automated SE . 8

1.2 Automation of MBSE with AI - potential issues . 9

1.3 Goal of the thesis . 10

1.4 Thesis structure . 12

2 Background 14

2.1 Requirements engineering . 14

2.1.1 System requirements . 14

2.1.2 Requirements engineering process . 15

2.2 AI techniques for SE . 17

2.2.1 Natural Language Processing . 17

2.2.2 Text clustering . 24

2.3 Conclusion . 27

3 State of the art 28

3.1 Current research directions in deriving architecture models from natural language soft-

ware requirements . 28

3.2 The machine learning techniques used to group natural language software requirements 30

3.2.1 Related works of requirements clustering . 31

3.2.2 Related works of requirements classification 32

3.2.3 Summary . 35

3.3 From natural language requirements to visual models 36

3.3.1 Related works . 37

3.4 Summary . 41

3.5 Research questions . 44

1

2 CONTENTS

3.6 Scope of contributions . 46

3.7 Contribution Overview . 47

3.8 Conclusion . 49

4 Semantic Clustering of System Requirements 50

4.1 The semantic clustering solution overview . 50

4.2 Preprocessing . 51

4.2.1 Cleaning . 52

4.2.2 Tokenization . 53

4.2.3 Annotation . 53

4.2.4 Normalization . 54

4.3 Semantic similarity computation module . 55

4.3.1 Word-level similarity computation . 55

4.3.2 Requirement-level similarity computation . 57

4.4 Requirements clustering . 59

4.5 Labelling . 60

4.6 Conclusion . 61

5 Automatic generation of the preliminary architecture design models 62

5.1 Linking requirements to models . 62

5.1.1 Requirements engineering challenges . 63

5.1.2 Use case modeling . 64

5.2 Overview of the model extractor approach . 66

5.2.1 Extracting relevant use case model elements 67

5.2.2 Mapping into preliminary UML design models 73

5.3 Conclusion . 74

6 Evaluation of the requirements semantic clustering solution 76

6.1 Key Performance Indicators (KPIs) . 76

6.2 Case studies description . 78

6.2.1 User stories . 78

6.2.2 Functional requirements written in plain text . 80

6.3 Results analysis and evaluation . 81

6.3.1 Experimental settings . 81

6.3.2 Evaluation of the semantic clustering of the user story case studies 82

3 CONTENTS

6.3.3 Evaluation of the semantic clustering of the case studies of functional require-

ments written in plain text . 86

6.4 Assessing KPIs . 91

6.5 Threats to validity . 94

6.6 Conclusion . 95

7 Evaluation of the automatic generation of the preliminary architecture design models 96

7.1 Key Performance Indicators (KPIs) . 96

7.2 Results analysis and evaluation . 98

7.2.1 Relevant model elements extraction . 98

7.3 Assessing KPIs . 106

7.4 Threats to validity . 107

7.5 Conclusion . 108

8 Conclusion and future work 109

A Résumé 113

A.1 L’intelligence artificielle pour automatiser l’ingénierie logicielle 113

A.2 Automatisation du MBSE en utilisant l’IA - les problèmes potentiels 115

A.3 Objectif de la thèse . 116

A.4 Contributions . 118

A.5 Validation . 121

B Technical demonstration of the developed tool 123

B.1 The semantic clustering approach . 123

B.1.1 Software and libraries . 123

B.1.2 Execution . 124

B.2 Automatic generation of the UML use case model . 126

B.2.1 Software and libraries . 126

B.2.2 Execution . 126

List of Figures

2.1 Vector space for a small sample corpus . 19

2.2 Two model architectures of word2vec. The CBOW model is to predict the current

word based on the words around it, and the Skip-gram model can find the most likely

surrounding words based on the current word. 23

2.3 An example of graphical representation of a dendrogram tree 27

3.1 General process for applying AI techniques to bridge the gap between natural lan-

guage requirements and design models . 29

3.2 Overview of the proposed approach . 48

4.1 The requirement semantic clustering approach . 52

4.2 An example of a tokenized sentence. 53

4.3 An example of a parsed sentence with POS tags. 54

4.4 An example of tokens after conducting stemming. 54

4.5 Simplified process of obtaining word vectors using word2vec. 56

4.6 An example for computing maxSim(w,R) . 58

4.7 A simplified example of clusters identification. 60

5.1 Use case model and design model. 65

5.2 Overview of the model extractor approach. 66

5.3 Extracting relevant use case model elements. 68

5.4 Example of the result of the dependency parsing using Spacy. 69

5.5 Example of the structure of the resulted CSV file grouping the use case model elements. 72

5.6 Pseudo-code of the mapping algorithm. 74

6.1 Bar graph of the clustering accuracy across user story case studies. 83

6.2 Dunn index bar graph of the "CMS Company" case study. 85

4

5 LIST OF FIGURES

6.3 Dendrogram of the identified clusters of the "CMS Company" case study. 86

6.4 Bar graph of the precision values of the identified clusters. 89

6.5 Bar graph of the recall values of the identified clusters. 90

6.6 Bar graph of the F-measure values of the identified clusters. 90

6.7 The number of the identified clusters against the number of the requirements for each

case study of functional requirements. 91

6.8 Execution time by number of user stories. 93

6.9 Execution time by number of functional requirements written in plain text. 94

7.1 Example of extracted elements for the "CMS Company" case study. 99

7.2 Example of extracted elements for the "Web Company" case study. 99

7.3 Example of extracted elements for the "Archive Space" case study. 100

7.4 Example of extracted elements for the "E-store System" case study. 100

7.5 Example of extracted elements for the "WASP System" case study. 101

7.6 Example of extracted elements for the "UUIS System" case study. 101

7.7 Example of extracted elements for the" MHC-PM System" case study. 101

7.8 The generated UML use case model for the CMS Company. 102

7.9 Example of a mapping of a cluster into a use case package for the CMS Company

case study. 103

7.10 Bar graph of F-measure values of the extracted model elements. 104

A.1 Un aperçu de l’approche proposée . 119

B.1 The generation of semantic clusters of requirements. 124

B.2 The use case model elements extraction. 125

B.3 The UML use case model generation. 127

List of Tables

2.1 term-by-document matrix M for a small sample corpus 19

3.1 Overview of the existing approaches for clustering of natural language software re-

quirements . 33

3.2 Overview of the existing approaches for classifying natural language software require-

ments . 35

3.3 Overview of the existing approaches for extracting design models from natural lan-

guage software requirements . 40

3.4 Summary table of recent work in automating the transition from natural language re-

quirements and architecture design models . 42

5.1 Model elements mapping . 73

6.1 Characteristics of the case studies of user stories . 79

6.2 Characteristics of the case studies of functional requirements written in plain text . . . 80

6.3 An example of a semantic cluster identified from the "CMS Company" case study. . . 83

6.4 An example of a semantic cluster identified from the "Web Company" case study. . . . 84

6.5 An example of a semantic cluster identified from the "Archive Space" case study. . . . 85

6.6 Accuracy of the generated semantic clusters for the user story case studies. 85

6.7 Identifying the C_Gap for the user story case studies. 86

6.8 An example of a semantic cluster identified from the "E-store system" case study. . . . 87

6.9 An example of a semantic cluster identified from the "WASP system" case study. . . . 87

6.10 An example of a semantic cluster identified from the "UUIS system" case study. 88

6.11 An example of a semantic cluster identified from the "MHC-PM system" case study. . 88

6.12 Accuracy of the generated semantic clusters for the case studies of functional require-

ments written in plain text. 89

6.13 The execution time of the clustering approach for the user story case studies 92

6

7 LIST OF TABLES

6.14 The execution time of the clustering approach for the case studies of functional re-

quirements written in plain text . 93

7.1 Accuracy of the generated UML use case model for the "Web Company" case study. . 104

7.2 Accuracy of the generated UML use case model for the "CMS Company" case study. . 104

7.3 Accuracy of the generated UML use case model for the "Archive Space" case study. . 105

7.4 Accuracy of the generated UML use case model for the "E-store System" case study. 105

7.5 Accuracy of the generated UML use case model for the "WASP System" case study. . 105

7.6 Accuracy of the generated UML use case model for the "UUIS System" case study. . . 105

7.7 Accuracy of the generated UML use case model for the "MHC-PM System" case study. 105

7.8 The execution time of the automatic models generation approach for the user story

case studies. 107

7.9 The execution time of the automatic models generation approach for the case studies

of functional requirements. 107

Chapter 1

Introduction

This Chapter presents an introduction to this thesis, in which we give an overview of the topics it deals

with. First, we present the general context of this thesis that consists in using Artificial Intelligence

(AI) for Software Engineering (SE). Then, we give the potential issues that we have identified for the

automation of Model Based Systems Engineering (MBSE) with AI. Afterwards, we present the goal

of the thesis and finally, we present the structure of this thesis document.

1.1 AI for automated SE

The software engineering (SE) industry is always looking for better and efficient ways of building

higher quality software systems.

Model-Based Systems Engineering (MBSE), as defined by the International Council on Systems

Engineering (INCOSE) [112], is “the formalized application of modeling to support system require-

ments, design, analysis, verification and validation activities beginning in the conceptual design

phase and continuing throughout development and later life cycle phases”. MBSE comprises mul-

tiple modeling concepts: processes, languages, methods, and tools to produce one system model

or more. Hence, it promises to support SE companies by enabling the realization of successful sys-

tems by fostering a holistic view of design and empowering high quality and maintainable software

architecture.

Despite its theoretical advantages, several studies demonstrated that MBSE methodology re-

mains difficult to apply [87, 10]. Consequently, MBSE is not yet widely adopted in real-world appli-

cations since it still struggles with huge challenges [5, 27, 28] that neither the MB nor the SE part

is able to handle. We can summarize all the challenges related to the adoption of MBSE in one: its

benefits do not outweigh its costs [24].

8

9 1.2. AUTOMATION OF MBSE WITH AI - POTENTIAL ISSUES

Meanwhile, recent technological advancements regarding big data management, development of

more complex systems, algorithms, and tools have enabled a lot of opportunities for industries to

make use of Artificial Intelligence (AI). The discipline of AI has been generally recognized for more

than seven decades. It can be described as the the science of mimicking human mental faculties on

a computer [54]. AI systems include modules that enables the generation of types of learning. For

instance, Machine Learning (ML) is a type of artificial intelligence technique that makes decisions or

predictions based on data. Natural Language Processing (NLP) is the branch of AI which enables

computers to understand, interpret, and manipulate human languages. In fact, AI techniques together

with suitable technology have enabled systems to perceive, predict, and act in assisting humans in a

wide range of applications.

In 2016, AI had a major breakthrough when a computing system developed by Google Deep-

Mind’s researchers, AlphaGo, beat the world’s best human player in Go, a game far more compli-

cated than chess. During the same year, Microsoft corporation launched its AI chatbot Tay to better

understand the way teenagers talk via Twitter. Tay aimed at learning how to speak better over time

through conversations, however, it was shut down only 16 hours after its launch when it began to

post inflammatory and offensive tweets. Though these two examples cannot be compared due to

their different domains of application, it is crucial to acknowledge both advantages and drawbacks of

the application of AI and to keep it under control.

Although the disciplines of AI and SE have developed separately, they have many commonalities.

Actually, both disciplines deals with modeling real world objects from the real world like business

process, expert knowledge, or process models [94].

Nowadays several research directions of both AI and SE disciplines come closer together and

are beginning to build new research areas, automated software engineering being one of them. Au-

tomated software engineering is a research area which is constantly developing new methodologies

and technologies in order to create software systems that exhibit some form of human intelligence.

It aims to assist or automate the activities in software engineering in order to improve the efficiency,

reduce time and costs of the system development process.

1.2 Automation of MBSE with AI - potential issues

In recent years, system design constraints evolves more and more requiring to embed more stake-

holders in the projects to handle various new concerns - such as security, safety, cost, and sustain-

ability – earlier in the process, at specification time. Consequently, modern software projects are

becoming many times larger and hence more complex than in the past. Especially, the exponential

10 1.3. GOAL OF THE THESIS

growth of the number of system requirements raises difficulties in managing manually the require-

ments and having a clear crystal view of the expectation and scope of the system to be designed

[22].

Model-based development methods ensure the formalized application of modeling for system

specification, instead of doing it just using informal text or drawings description. However, architecture

design models are always extracted manually by engineers which became a tedious, time-consuming

and error prone task especially with the exponential growth of the system requirements and the needs

to trace everything all along the life-cycle of the product to be designed. Thus, this task is critical

since errors introduced at the beginning stages of development are the hardest and most expensive

to correct [23].

Moreover, the growing demand on agility and the development of more complex systems have

led practitioners to focus on programming rather than requirements management, planning, specifi-

cation, architecture, design and documentation [80]. Consequently, adopting model-based methods

to develop complex systems becomes challenging as it requires much time, cost, and resources in-

vestment [72]. In fact, the ROI (Return On Investments) deploying MBSE is indeed more perceived

on the long term than on the short term [13]. The lack of human expertise as well as powerful au-

tomation tools are often cited as the main key barriers that still slow down the spread of the MBSE

approach and present significant hurdles to demonstrate its ROI. Hence, it stands to reason that ad-

vances in AI can bring great practical value to mitigate some of the challenges raised by the adoption

of MBSE.

In the 1990s, Ian [106] asked the question: “Why was AI never mentioned in a seminar discussion

about the future of software engineering?”. After almost 30 years, and looking in the SE Handbook

[112] and the recent inspiring SE Vision 2025 [57], it is also surprising that the application of AI for SE

is not clearly mentioned. We therefore ask ourselves, instead of ignoring many well-known MBSE

methods, why not automate the design of systems starting from early requirements with the

help of some intelligent solutions?

Our research encompasses the integration of the fields of MBSE and AI -especially ML and NLP

techniques- to automate the generation of architecture design of complex systems and thus, improve

the efficiency, reduce time and costs of the development process.

1.3 Goal of the thesis

In the first steps of the software development process, engineers discover and collect requirements

from customers and then, they manually record them in a requirements specification document.

11 1.3. GOAL OF THE THESIS

The gathered requirements describe different aspects of the target software in an informal natural

language. Requirements elicitation and management has a significant impact on information systems

quality and success, as the errors introduced at the beginning stages of development are the hardest

and most expensive to correct [23]. Industry figures state that insufficient requirement engineering is

the root cause of the failure of more than 50% of software projects [70]. Hence, it is crucial that the

requirements set be well understood and well managed by engineers [118].

In recent years, system design constraints evolve more and more requiring to embed more stake-

holders in the projects to handle various new concerns - such as security, safety, cost, and sustain-

ability – earlier in the process, at specification time. Consequently, the sets of requirements used in

the analysis and design of such systems are often so large that traditional requirements management

and organisation techniques become unwieldy. Moreover, modern software projects are becoming

many times larger and more complex than in the past.

Indeed, many of the classic challenges of developing software products derive from this essential

complexity and its nonlinear increases with size [22]. Especially, the exponential growth of the num-

ber of requirements raises difficulties in manually managing requirements and having a clear crystal

view of the expectation and scope of the system to be designed. Although MBSE methods remain to

be the focal point that ensure the transition from natural language requirements to architecture de-

sign, its adoption still faces significant hurdles to demonstrate its ROI, especially with the increasing

complexity of the developed systems.

In this thesis, we aim to contribute a first step towards applying AI for MBSE to optimize the adop-

tion of MBSE and resolve a set of its challenges. Specifically, the main objective of this thesis is the

following:

Define a new flow of AI components including their specific parametrization, enabling the

automation of the transition from natural language requirements to the architecture design of

complex systems.

This main goal hides two underlying research directions that we investigated in our proposal:

The first research direction consists in solving the challenges raised by the exponential growth of

requirements and the increasing complexity of systems. One of the most used and efficient design

paradigms to deal with complexity is the well-known “divide-to-conquer” strategy i.e., building smallest

pieces to reduce the complexity.

In order to meet this goal, we propose a solution based on ML and NLP techniques that decom-

poses the system into a set of sub-systems based on the semantic similarity of early requirements.

12 1.4. THESIS STRUCTURE

In fact, such early decomposition helps developers to better understand and realize the target soft-

ware project. In addition, it helps to design an initial architecture described by a package break-down

model of the software product as the identified groups of requirements represent components or sub-

systems that should be implemented and reused [107, 6].

The second research direction consists in proposing an automatic model generator that provides

a semi-formal representation of the initial architecture design of the system based on the obtained

groups of requirements.

In order to achieve this goal, further analyses of the requirements within each identified group

of requirements by means of NLP techniques are required in order to extract the relevant elements

that are needed to build the preliminary design model. As a result, we obtain an initial architecture

design model that consists of a preliminary package break-down model of the target system. Indeed,

adopting an initial package break-down model helps to represent and communicate what is important

among stakeholders and developers, gives insights on the expected features of the target system and

helps to keep track of the gathered requirement throughout the project.

1.4 Thesis structure

This thesis is structured in four parts and several appendices. The contents of the rest of this thesis

is organized as follows:

Part 1, made of chapters 2 and 3 presents the background encompassing basic concepts needed

to be known in advance and gives an overview of the related work and studies that make use of

AI techniques to bridge the gap between natural language system requirements and the preliminary

architectural design.

Part 2 is made of chapter 4 and 5 and presents the contributions of the thesis. Chapter 4 describes

the approach that we have proposed to support the decomposition of complex systems based on

early system requirements, whereas Chapter 5 presents the approach that we have proposed to

automatically generate preliminary architecture design models describing the decomposition of the

system.

Part 3 is made of chapter 6 and 7 and presents the prototyping and the validation of the con-

tributions of this thesis. Chapter 6 presents the prototyping and the validation of the approach that

has been proposed to decompose the complex systems based on early requirements. Chapter

7 presents the prototyping and the validation of the approach that has proposed to automatically

generate preliminary architecture design models describing the decomposition of the system. We

13 1.4. THESIS STRUCTURE

evaluated our contributions with several case studies and we compared our results with baselines

from related works.

Chapter 8 concludes our thesis work by summarizing our contributions and analyzing the attain-

ment of objectives and discussing the potential directions for future research.

Finally, the Appendices extend and clarify information to give a better understanding of some of

the issues presented in previous chapters.

Chapter 2

Background

In this chapter, we discuss and clarify some key concepts that are needed to be known of in advance.

Firstly, we present the basic information related to requirements engineering. Afterwards, we present

the fundamental concepts regarding AI techniques used in SE and particularly AI techniques used to

support the transition from system requirements to design models.

2.1 Requirements engineering

Our research scopes the early stages of software development particularly the transition from system

requirements to architecture design models. In what follows, we detail the basic concepts related to

requirements engineering.

2.1.1 System requirements

Requirements engineering is the formalised process of defining the features and constraints of a

system to be developed. These features and constraints are known as the "requirements" of the

system. More formally, a requirement is a condition or capability that must be met or possessed by a

system or system component to satisfy a contract, standard or specification [1]. System requirements

are mainly divided into functional and non-functional requirements.

Functional requirements describe what the system does or must not do. Essentially, they help

to capture the intended behavior of the system. This behavior may be expressed as functions, ser-

vices or tasks or which system is required to perform. Functional requirements are supported by

non-functional requirements (also known as "quality requirements"), which impose constraints on the

design or implementation (such as performance requirements, security, or reliability). Mainly, func-

14

15 2.1. REQUIREMENTS ENGINEERING

tional requirements are expressed in the form "system must do «requirement»," while non-functional

requirements take the form "system shall be «requirement»." [31]

Non-functional requirements specify how a system is supposed to be. They describe aspects of

the system that are not directly related to the function behavior of the system [23]. Non-functional re-

quirements are concerned with emergent properties, for instance: reliability, performances or repara-

bility etc [111]. These are constraints and boundaries which are essential to be acknowledged in

software development. Generally, non-functional requirements are in the form of "system shall be

«requirement»".

2.1.2 Requirements engineering process

Requirement Engineering is the process of defining, documenting and maintaining the requirements.

It provides the appropriate mechanism to understand what the customer desires, analyzing the need,

and assessing feasibility, negotiating a reasonable solution, specifying the solution clearly, validating

the specifications and managing the requirements as they are transformed into a working system.

The activities involved in requirements engineering vary widely, depending on the type of system

being developed and the organization’s specific practice(s) involved [107]. These may include:

• Requirement elicitation:

It is also known as the gathering of requirements. In this step, developers and stakeholders

meet; the latter are inquired concerning their needs and wants regarding the software product.

Requirements elicitation is related to the various ways used to gain knowledge about the project

domain and requirements. The various sources of domain knowledge include customers, busi-

ness manuals, the existing software of same type, standards and other stakeholders of the

project.

The techniques used for requirements elicitation include interviews, brainstorming, task anal-

ysis, prototyping, etc. Elicitation does not produce formal models of the requirements under-

stood. Instead, it widens the domain knowledge of the analyst and thus helps in providing input

to the next stage.

• Requirement analysis:

In this step, the requirements are analyzed to identify inconsistencies, defects, omission, etc.

Requirements are identified (including new ones if the development is iterative), and conflicts

with stakeholders are solved. Both written (e.g., use cases and user stories) and graphical tools

(e.g., UML) are successfully used as aids. Although graphical tools are commonly used in the

16 2.1. REQUIREMENTS ENGINEERING

design phase, some find them helpful at this stage too.

• Requirement specification:

At this stage, requirements are documented in a formal artifact called a Software Requirements

Specification (SRS) document, which will become official only after validation. It is the job of

the analyst to write the requirement in technical language so that they can be understood and

beneficial by the development team. A requirement specification (RS) can contain both written

and graphical (models) information if necessary.

• Requirement validation:

After requirement specifications developed, the requirements discussed in this document are

validated. The user might demand illegal, impossible solution or experts may misinterpret the

needs. Requirements can be checked against the following conditions. Hence, requirement

validation consists in checking that the documented requirements and models are consistent

and meet the stakeholder’s needs. Only if the final draft passes the validation process, the RS

becomes official.

• Requirement management:

Requirement management is the process of managing changing requirements during the re-

quirements engineering process and system development. New requirements emerge during

the process as business needs a change, and a better understanding of the system is de-

veloped. The priority of requirements from different viewpoints may change or be extended

during development process. Moreover, the business and technical environment of the system

changes during the development.

MBSE methods promise to support both the requirements and the design associated with the

development of complex systems. However, the transition from system requirements to design model

is usually done manually i.e., there is a huge lack of automation and assistance in transforming

the information and knowledge from documents into models. Hence, we conclude that MBSE still

requires a high investment effort compared to its achieved benefits, particularly in the scope of the

transition from natural language system requirements to design models. This is mainly due to several

human and technological factors [49].

As further shown by this thesis, AI techniques can help mitigate such MBSE challenges, because

they are designed to deal with one of the most demanding challenges of all; the replication of intelli-

gent behaviour. In the next section, we present some AI techniques that have been used to support

17 2.2. AI TECHNIQUES FOR SE

the automation and the assistance of the transition from natural language system requirements to

design models.

2.2 AI techniques for SE

The software engineering community has exploited many of the practical algorithms, methods and

techniques that have emerged from the AI community. These AI algorithms and techniques find

important and effective applications that impact on almost every area of software engineering activity.

Automated software engineering is a research area in which both AI and SE disciplines intersect.

In particular, the automation of the transition from natural language requirements to architecture

design has gained a lot of attention in the last few years. In what follows, we give insights on the ML

and NLP techniques that have been used to support such transition.

2.2.1 Natural Language Processing

Natural Language Processing is defined as follows by Chowdhury [29]: "Natural Language Pro-

cessing (NLP) is an area of research and application that explores how computers can be used to

understand and manipulate natural language text or speech to do useful things. NLP researchers aim

to gather knowledge on how human beings understand and use language so that appropriate tools

and techniques can be developed to make computer systems understand and manipulate natural

languages to perform the desired tasks."

Natural Language Processing (NLP) is a branch of artificial intelligence that deals with the in-

teraction between computers and humans using the natural language. By using NLP techniques,

computers can analyze, understand, and derive meaning from human language. There are many

applications for NLP that can help engineers in the software development process such as automatic

summarization, translation, or knowledge extraction.

As a technology, natural language processing has come of age over the past ten years, with

products such as Siri, Alexa and Google’s voice search employing NLP to understand and respond

to user requests. Hence, NLP is crucial for extracting architecture design models from requirements

written in natural language. The basic ideas and techniques of NLP tasks used in this thesis are

introduced in the following.

18 2.2. AI TECHNIQUES FOR SE

Semantic similarity matching methods

Computing sentence similarity is not a trivial task, due to the variability of natural language expres-

sions. Computing semantic similarity between two sentences or texts aims to check if two pieces of

text mean the same thing or how semantically similar they are [65]. Many approaches have been pro-

posed for semantic similarity computation by the employment of lexical matching, linguistic analysis

and semantic features. Methods for lexical matching are based on the intersection of the word sets

of the input texts and they aim to determine whether the words in two texts have similar spellings. Al-

though they are successful in trivial cases, these lexical methods cannot always identify the semantic

similarity of texts [83, 61, 58]. For example, the "US" would be closer to the "UK" this way, than it

would be to the "States". Features based on linguistic analysis, like dependency parses or syntactic

trees, are mainly used for text similarity [50]. Although most languages have linguistic tools such as

parsers, their quality varies significantly across languages. Moreover, these tools might require man-

ual intervention even though external tools such as Stanford Parser [79] are integrated. They also

might be expensive to compute at run-time when it comes to high-quality parses. For semantic fea-

tures, external knowledge sources such as Wikipedia [14] or WordNet [14, 43] have been used. The

shortcoming of applying WordNet or other external lexical database of structured semantic knowl-

edge is that high quality resources like these are not available for all languages, and proper names,

domain-specific technical terms and slang tend to be underrepresented [4].

Word embedding

Word vectors—also referred to as Word embeddings—has recently seen an increasing interest as

new ways of computing them efficiently have become available. Word embeddings models help to

capture the context of a word in a document, semantic and syntactic similarity, as well as its relations

with other words [71] The vector representations of words are commonly achieved in two different

ways: traditional distributional semantic models (DSMs) and neural word embedding.

• Traditional DSMs

Distributional semantic methods such as Vector Space Model (VSM) and Latent Semantic Anal-

ysis (LSA) [34] are based on the intuition that words appearing in similar contexts tend to have

similar meanings.

-VSM: The VSM is a model for representing text in a vector space based on the bag of words

approach. It was first presented as a model for Information Retrieval (IR) in [100] and was used

in the System for the Mechanical Analysis and Retrieval of Text (SMART) information retrieval

system [98, 36].

19 2.2. AI TECHNIQUES FOR SE

In VSM, text units of a corpus are represented by vectors. Traditionally a whole document is

used as a text unit, but any other text unit like paragraphs or sentences can be used just as well.

Each dimension of a vector corresponds to a term that is present in the corpus. A term might

be, e.g., a single word, n-gram or a phrase. If a term occurs in a document the value of that

dimension is non-zero. Values can be binary (1 if the term is present in the document and 0 if

the term is not present in the document), frequencies of terms in the document, or term weights.

A whole text corpus can then be represented by a term-by-document matrix M. Consider the

following example of a sample text corpus containing the following three sentences:

S1. "Small dogs are better than cats."

S2. "Big cats are nice and funny."

S3. "Big dogs are nice."

The terms "cat", "dog" and "big" are used for indexing. The corpus can then be represented by

the term-by-document matrix M as shown in Table 2.1.

Table 2.1: term-by-document matrix M for a small sample corpus

S1 S2 S3

cat 1 1 0
dog 1 0 1
big 0 1 1

The sentences can be then represented as vectors in space as shown in Figure 2.1. Hence,

similarities between documents or a query and a document can be calculated.

Figure 2.1: Vector space for a small sample corpus

20 2.2. AI TECHNIQUES FOR SE

Regarding terms weighting techniques, the most common one is the Term Frequency-Inverse

Document Frequency (TF-IDF) weighting scheme [99]. TF-IDF is a weighting scheme that

is often used in VSM together with cosine similarity to determine the similarity between two

documents. TF-IDF considers the different frequency of words in all documents and is able to

distinguish documents. In VSM, each vector is composed by terms and weights that represent

documents. The similarity of documents can be expressed by the distance between vectors,

the smaller the distance means the more similar the two documents. The formula is as follows

(Equation 2.1):

TF − IDF = tf ∗ idf (2.1)

tf is the frequency of occurrence of term in the document and idf is the inverse document

frequency that represents he specificity of a word. Given a word w in a corpus, idf(w) has

been defined as the log of the total number of documents in the corpus divided by the total

number of documents including that word [62], where Equation 2.2:

idf(w) = log(Total number of documents/Number of documents with word w in it) (2.2)

The most commonly used measure of text similarity is the cosine distance. This measure is

based on the angle α between two vectors in the VSM. The closer the vectors are to each other

the more similar are the documents. The calculation of the cosine of an angle between two

vectors ~a and ~b can be derived from the Euclidean dot product as shown in Equation 2.3:

cosine(α) =
~a ·~b

|~a| ∗ |~b|
(2.3)

The values of cos(α) can range from -1 for opposing vectors to 1 for identical vectors.

Within the VSM only similarities between documents or between a query and documents can

be calculated within one space. If terms were to be compared to each other another space

would have to be considered. In a term space, where the terms represent the dimensions,

the terms are considered to be linearly independent, which means their relations to each other

are not taken into account. Moreover, in the traditional vector space the similarity calculation

is based only on word matching. Each dimensions of a vector corresponds to a term. Two

documents with a similar topic but different vocabulary will not be placed next to each other.

21 2.2. AI TECHNIQUES FOR SE

Only documents that overlap in vocabulary will be considered similar.

-LSA: Latent Semantic Indexing (LSI) was developed as a special vector space approach to

conceptual Information Retrieval (IR) [34]. It attempts to overcome two common problems of

search engines – synonymy and polysemy. In the standard VSM [97], the terms are assumed

to be independent and thus term associations are ignored. By contrast LSI re-expresses a

co-occurrence matrix in a new coordinate system. The idea is to uncover the latent semantic

structure of a document collection, i.e., to find hidden relations between terms, sentences,

documents or other text units. This is achieved by using high-order co-occurrence [68]. This

measure reflects the semantic similarity between words that are used in similar context, e.g.,

synonyms, antonyms, hyponyms or compounds. The technique is called LSI when it is applied

to IR otherwise it is called LSA.

Similarly to the VSM, LSA can represent the text as document-term matrix using TF-IDF Vec-

torizer and calculate the similarity between documents based on their vectors. The difference is

that the LSA algorithm assumes that words that will occur in similar pieces of text (the distribu-

tional hypothesis) are semantically close in meaning while VSM can not express the information

of semantic level.

For example, there are documents, one contains a word “automobile”, and another contains a

word “car”, these two words will be considered as two different words, have different TF-IDF

weighting and they maybe influence the meaning of documents. The worst thing is the two

documents is classified as two categorizations because of the two words, after all, the two

words has the same meaning.

The purpose of LSA is to find true meaning of words in documents and solve the problem above-

mentioned. A matrix containing word counts per document (rows represent unique words and

columns represent each document) is constructed from a large piece of text and a mathemati-

cal technique called singular value decomposition (SVD) is used to reduce the number of rows

while preserving the similarity structure among columns. For instance, there is 1000 documents

and 8000 words, LSA will create 100-dimensional space and mapping all of words and docu-

ments to this space. The procedure of mapping documents to this space is SVD and reducing

dimensions. Reducing dimensions is the most important procedure. The noise is removed and

the semantic architecture becomes clear by this operation. In LSA, SVD of terms (words) by

documents matrix can be formulated as follows:

C = USV T , (2.4)

22 2.2. AI TECHNIQUES FOR SE

where C is the term by documents matrix (m × n). U is a m × m matrix and its columns is

the orthogonal feature vectors of CCT . V is a n × n matrix and its columns is the orthogonal

feature vectors of CTC. The feature values of CCT and CTC is same and it is λ1, λ2, . . . , λn.

For S, S is a n× n matrix, Sii =
√
λi, λi > λi+1 and zero otherwise.

To reduce the dimension of vector space to D, SD+1,D+1 to Snn are set to zero and S11 to

SDD are kept. After this, we can multiply U , S (having been reduced dimensions), V T , and

reconstruct the terms by documents matrix. In the new matrix, latent semantic of documents

is presented, and we can calculate the similarity between documents or words much exactly.

Each row of US is the term coordinate in latent semantic space and each row of V S is the

document coordinate.

• Neural word embedding

Neural word embedding is a neural-network-based natural language processing architecture

which can be seen as prediction models, since the vector representations of words or texts can

be gained from a pre-trained language model trained on large text collections.

In [84, 85] an algorithm called word2vec is proposed. Word2vec is a two-layer neural network

that is used to produce word embeddings (i.e., vectors), to obtain the word semantic similarity.

The input of Word2vec is a text corpus. Given enough text data and contexts, word2vec can

achieve highly accurate meanings of the words appearing in the input corpus and establish a

word’s association with other words. The output is a set of words representations (i.e., vectors),

that is, vectors of similar words are grouped together in a semantic vector space. The word2vec

model has two architectures.

The first architecture is Continuous Bag-of-Words Model (CBOW) that predicts the current word

based on the words around it, and the second architecture is Continuous Skip-gram Model

that predicts the surrounding words based on the current word (see Figure 2.2). The training

objective of CBOW is to find distributed word representation that can predict the current word

based on words around it. It is similar to the feed forward neural network language model

(NNLM) that was proposed in [18]. But it removes the most time-consuming non-linear hidden

layer and only has 3 layers. The projection layer is shared for all words, and every word gets

projected into the same position on the second layer. CBOW does not only use words from

past, but also uses words from future. Unlike standard continuous bag of words model, it uses

continuous distributed representation of the context [84]. So the best performance of predicting

the current word based on i preceding words and i following words is obtained. The purpose

of Continuous Skip-gram model is to predicts multiple surrounding words from one input word

23 2.2. AI TECHNIQUES FOR SE

as shown in Figure 2.2.

Figure 2.2: Two model architectures of word2vec. The CBOW model is to predict the current word
based on the words around it, and the Skip-gram model can find the most likely surrounding words
based on the current word.

By contarst with neural word embedding models, traditional DSMs can be considered as "count"

models as they count co-occurrences among words by operating on co-occurrence matrices

which decreases the similarity accuracy. For instance, VSM can only represent the effect of

word frequencies in document content and meaning, and it can not express the phenomenon

of polysemy and synonymy. This leads to the words that have the same meaning and differ-

ent spelling is considered as totally different words, and the worst situation is it leads to the

documents that contains these words are classified to different categories. LSA can solve this

problem and it execute SVD and reducing dimensions on term and document relation matrix.

The generated document vectors and the word vectors can well represent the latent semantic

of documents or words, and it makes computing the similarity between words and words, words

and documents, documents become more reliable. To some extent, it has solved the problem

of synonymy that VSM can not resolve. But there still are the problem of polysemy.

In [16], Baroni et al compare word2vec word embeddings to traditional distributional semantics

models. Their experiments show that neural-network-based word embedding models achieve

better results than traditional DSMs such as VSM and LSA. Indeed, the word2vec model pro-

vides an efficient estimation of word representations in vector space. After training this model

on a big data set, every word can be represented as a vector and this vector can fully express

the sense of word. Based on this model, the problem of polysemy and synonymy has a good

way to resolve.

24 2.2. AI TECHNIQUES FOR SE

2.2.2 Text clustering

Clustering algorithms aim at partitioning the amount of data by categorizing or grouping similar data

items together into subsets or clusters [77]. The goal is to generate clusters with internal coherence,

placing similar objects in the same group and assigning dissimilar objects to different groups. In this

sense, requirements that belong to a certain cluster should be as similar as possible and dissimi-

lar from requirements in other clusters. In order to group similar software requirements, there are

mainly two essential factors to perform the clustering task: define a similarity measure among textual

requirements and choose a suitable clustering algorithm. In what follows, we explain and clarify the

existing methods for similarity computation and the clustering techniques.

Clustering algorithms

In terms of machine learning algorithms, clustering is an unsupervised task since it does not require

training data and the result only depends on natural distribution of the data. The lack of supervision

means that there is no human expert providing labeled training data, or assigning labels to data [95].

The clustering task depends on the distribution and makeup of the data that will determine cluster

membership. It consists in dividing the population or data points into a number of groups such that

data points in the same groups are more similar to other data points in the same group than those in

other groups. An input to the clustering algorithm is an component-attribute data matrix. Components

are the entities that we want to group based on their similarities and attributes are the properties of

the components.

Applications of clustering methods can be found in many disciplines [8, 114]. In the context of

natural language requirements clustering, the goal is to provide an initial partition of the requirements

based on a given similarity criteria. Such partition can give the designer some insight on the func-

tional decomposition or possible conceptual components the desired architecture will have. Textual

requirements clustering refers to the process of taking a set of requirements and grouping them so

that, requirements in the same cluster are similar and requirements in different clusters are different.

The input to the requirements clustering algorithm is a requirement-similarity matrix.

Clustering methods can be classified either as partitional or hierarchical [55]. Partitioning algo-

rithms separate the data set into the specified number of clusters based on the similarity or distance

among the data samples. Hierarchical algorithms compose the clusters in the hierarchical structure.

In what follows, we present two examples of partitional and hierarchical clustering algorithms which

are k-means and the Hierarchical Agglomerative Clutering algorithm (HAC).

25 2.2. AI TECHNIQUES FOR SE

• K-means:

K-means clustering [75] is one of the simplest and frequently used unsupervised learning al-

gorithms, especially in data mining and statistics. Being a partitioning algorithm, its goal is to

form groups of data points based on the number of clusters, represented by the variable k. k

needs to be predefined before the execution. K-means uses an iterative refinement method to

produce its final clustering based on the number of clusters defined by the user and the data

set. Initially, k-means randomly chooses k as the mean values of k clusters, called centroids,

and find the nearest data points of the chosen centroids to form k clusters. Then, it iteratively

recalculates the new centroids for each cluster until the algorithm converges to one optimum

value. k-means clustering would be suited with the numerical data with a low dimensionality

because numerical data is used to compute the mean value. The type of data best suited for

k-Means clustering would be numerical data with a relatively lower number of dimensions. The

algorithm works as follows:

1. Place k points into the space represented by the objects that are being clustered. These

points represent initial group centroids.

2. Assign each object to the group that has the closest centroid. The Euclidean distance can

be used to calculate the distance between each data points and the initialized centroids.

3. When all objects have been assigned, recalculate the positions of the k centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of

the objects into groups from which the metric to be minimized can be calculated.

K-means has only a few computations, only computing and comparing distance among data

points and grouping clusters. Thus, it can be computationally faster than hierarchical clustering,

having the time complexity of O(n), where n is the number of data samples. Additionally, it can

scale up to large data set and it can also adapt to new data samples. Despite these advantages,

K-means has some disadvantages. The most important limitations of using k-means are:

– The number of clusters, k has to be specified manually.

– The clustering results can vary depending on initial values. K-means also randomly select

the initial centroids for k clusters. Therefore, the results can be different from one execution

and another, lacking inconsistency.

– K-means has difficulty with clustering data sets of varying sizes and density.

26 2.2. AI TECHNIQUES FOR SE

• Hierarchical clustering:

Hierarchical clustering algorithms seek to build a hierarchy of cluster. They work iteratively

by connecting data points to form clusters based on their distance. It starts with some initial

clusters and gradually converge to the solution. Hierarchical clustering has two categories: ag-

glomerative and divisive. The agglomerative clustering algorithms initially takes each data point

as an individual cluster and the iteratively merge the clusters until the final cluster contains all

data points in it. This approach is also called a bottom-up approach. As an opposite technique

of agglomerative clustering, divisive clustering techniques follow top-down flow which starts

from a single cluster having all data points in it and iteratively split the cluster into smaller ones

until each cluster contains one data point.

In what follows we present the steps followed by the standard algorithm for Hierarchical Ag-

glomerative Clustering (HAC) which works in a bottom-up manner:

1. As an initial step, the algorithm takes each data point as a single cluster and we decide a

specific proximity matrix to determine the distance between the clusters.

2. To find the closest pair of clusters, it computes the similarity (distance) between each of

the clusters.

3. Then, the similar clusters are merged to form a cluster according to the distance function.

4. Iteration through step 2 and 3 continues until all data points are merged into one last

cluster.

In general, hierarchical clustering is forming a single tree of clusters where each node is rep-

resenting the clusters and each data point starts as a tree leaf. The root of the tree is the final

cluster containing all of the data points. At different distances, different clusters will form, which

can be represented using a dendrogram. The dendrogram represents the arrangement of the

clusters in a hierarchical tree structure as shown in Figure 2.3. In a dendrogram, the y-axis

marks the distance at which the clusters merge, while the objects are placed along the x-axis

such that the clusters don’t mix. When this hierarchy is cut off at a specific point based on

predefined criteria such as text semantic similarity, a set of clusters is obtained. In the example

below (Figure 2.3), the horizontal line crosses the hierarchy in four points (called cutting points)

and we have four resulted clusters. One cluster containing 2,5, a second cluster containing 1,

a third cluster containing 0, and a fourth cluster containing 3,4.

The advantage of using the HAC algorithm is that the number of clusters is not necessarily

required to be specified in advance. Moreover, it can output the hierarchical structure of a

27 2.3. CONCLUSION

Figure 2.3: An example of graphical representation of a dendrogram tree

cluster tree (dendrogram), which can help in deciding the number of clusters. Nevertheless, the

HAC algorithm has some disadvantages. The most important drawbacks is its time complexity.

Comparing with other algorithms, it has a relatively higher complexity of O(n2logn), n being the

number of data points.

2.3 Conclusion

In this chapter, we introduced the prerequisite knowledge for reading this thesis. Our research is

interested in bridging the gap between natural language software requirements and architecture

design models in the context of complex systems. In fact, providing a preliminary architecture design

at early stage helps engineers to understand the system to be implemented. However, deriving

architecture models from early requirements is usually performed manually by engineers and thus, it

becomes time-consuming and error-prone task especially in the context of complex systems.

To address this, we proposed to employ advances in AI techniques to automate the transition from

natural language system requirements to preliminary architecture design models. Basically, Natural

Language Processing (NLP) and Machine Learning (ML) techniques are indispensable topics in this

thesis, and we also introduce the main techniques that we used in the following chapters.

Chapter 3

State of the art

This chapter aims at assessing the state of the art of using machine learning and NLP techniques

to automate/assist the extraction of architecture design models from early natural language require-

ment. We have explored the state of the art in three directions : (1) What are the main AI-based ap-

proaches used to extract architecture design models from natural language software requirements?

(2) What are the main shortcomings and limitations of the used techniques? (3) To what extent do the

current techniques succeed in automating the transition from natural language software requirements

to visual architecture design models?

Afterwards, we give the research questions that we have identified and finally, we enumerate the

contributions of the thesis.

3.1 Current research directions in deriving architecture models

from natural language software requirements

The literature review shows that several NLP and machine learning techniques have been used in

requirements engineering process in order to aid engineers in architectural software design based on

early software requirements. We briefly describe the commonly used techniques and introduce how

these techniques are generally used to bridge the gap between natural language software require-

ments and architecture models at early stages. The general process used by the current approaches

is shown in Figure 3.1.

As a first step, natural language requirement documents are pre-processed in order to be eas-

ily analyzed by computers. In particular, natural language requirement documents are divided into

words, phrases, or other meaningful elements (e.g., using tokenization). Additionally, the most com-

28

29
3.1. CURRENT RESEARCH DIRECTIONS IN DERIVING ARCHITECTURE MODELS FROM

NATURAL LANGUAGE SOFTWARE REQUIREMENTS

mon words that do not bring any linguistic information such as stop words (e.g., "the", "at", "and"

etc) are removed. The other words can be tagged with their type (e.g., noun, verb, object, etc) using

Part-of-Speech tagging (POS tagging).

Figure 3.1: General process for applying AI techniques to bridge the gap between natural language
requirements and design models

The second step is term weighting. This step is optional and it refers to the assignment of nu-

merical values to terms that represent their importance in a document in order to improve retrieval

effectiveness [99]. The commonly used technique for term weighting in current approaches is the

Term Frequency-Inverse Document Frequency (TF-IDF) [92]. TF-IDF is intended to reflect the speci-

ficity of terms in different natural language documents by calculating the frequency of their occurrence

in these documents. Hence, a term is considered important if it appears frequently in a document,

but infrequently in other documents.

The next step is semantic analysis which is also an optional step. Semantic analysis is typically

used to extract semantic information from text. In this step, Vector Space Model (VSM) and Latent

Semantic Analysis (LSA) are widely used to conduct a semantic analysis. Using VSM, the pre-

processed text is represented as vectors and then similarity is generally computed using a similarity

30
3.2. THE MACHINE LEARNING TECHNIQUES USED TO GROUP NATURAL LANGUAGE

SOFTWARE REQUIREMENTS

metric such as cosine similarity or the euclidean distance. LSA uses document-term matrix which

describes the occurrences of terms in documents to analyze the similarity of documents.

After processing data by means of NLP techniques, the analyzed data are then post-processed

in order to assist engineers in architectural software design. We observed that there exists two main

research directions that were investigated in the post-processing step. The first direction focuses on

extracting architecture design models from natural language requirements by generating the visual

design model or extracting the list of relevant elements needed to build the model. Typically, specific

extraction rules and algorithms have been mainly used to extract the set of relevant design model el-

ements. The second direction focuses rather on grouping software requirements based on a certain

criteria (e.g., similarity, shared functionalities etc) using machine learning techniques such as cluster-

ing and classification. Certainly, such grouping of software requirements can be easily mapped into

design concerns of a possible architecture for the system. Particularly, with the increasing complexity

of the developed systems, grouping similar requirements helps in assisting engineers by providing

them with insights on the architectural design of the system decomposing its functionalities during

early stages of the development process.

In what follows, we detail the related works interested in both directions we mentioned above.

We provide detailed insights of techniques used, degree of automation achieved, shortcomings, and

challenges ahead for extracting architecture design models from natural language requirements.

3.2 The machine learning techniques used to group natural lan-

guage software requirements

Architectural software design, helps to analyze properties of complex systems, comprising a major

issue in the building of new systems with solid foundations. In real life, requirement engineering and

architectural modeling may not be as close as they seem to be in theory. Especially in the context

of modern software systems, which are more complex than projects in the past, inter-dependencies

and constraints between architectural elements and requirements are difficult to understand and

trace during software development. One of the most used and efficient design paradigms to deal

with complexity is the well-known “divide-to-conquer” strategy i.e., building smaller pieces to reduce

the complexity. Herein lies the importance of an automatic solution to categorize software require-

ments into a set of groups in order to breakdown the target software system into a set of smaller

sub-systems at early stages of the development process. Such requirements categorization meth-

ods provide an initial partition of the candidate architecture artifacts, that can give the software en-

31
3.2. THE MACHINE LEARNING TECHNIQUES USED TO GROUP NATURAL LANGUAGE

SOFTWARE REQUIREMENTS

gineers some insights on the system decomposition or possible conceptual components the desired

architecture will have. Moreover, providing engineers with an automatic categorization of software

requirements leads to a considerable gain in time and in development cost especially with the expo-

nential growth of the number of the collected requirements in modern software systems. There are

mainly two methods to categorize natural language software requirements: clustering and classifi-

cation. Both methods aim to group software requirements based on some criteria. It is important to

distinguish between these two main methods: the clustering is the process of grouping or organizing

requirements into an undefined number of groups (clusters) while, the classification is the process of

assigning requirements to a predefined number of classes. In the following, we explain both methods

and present the related work interested in both categories.

3.2.1 Related works of requirements clustering

The usage of clustering techniques in the early phases of software engineering has gained a lot of

attention in recent years.

In [7], the authors developed a tool based on hierarchical clustering of requirements in order to

propose a packaging solution for software engineers. The tool’s input is a software requirement docu-

ment in the form of Message Sequence Chart (MSC). They defined a similarity measure that aims to

cluster classes with high number communication in the same package. However, the optimal number

of clusters is manually selected by software engineers based on the hierarchical tree generated by

the clustering algorithm.

Casamayor et al. [26] propose an initial clustering of responsibilities from requirements, in order

to identify architecture components. Responsabilities are verb phrases within sentences, which most

likely will refer to tasks to be performed by the system and can be associated to some actor or

component in the software model.The proposed approach firstly processes requirements documents

by POS tagging technique to detect the actions and tasks that the system needs. Afterwards, the

similarity function is computed based on the verb phrase each responsibility contains and the direct

object it is related to. Then, a decomposition of responsibilities into functional components was

performed and validated using four different clustering algorithms and several validity metrics.

Barbosa et al. [15] present an approach to cluster and sequence user stories in order to assist

software engineers in the implementation phase. The sequencing of software requirements is based

on a data dictionary that identifies the functional dependencies of the semantic steps in a given

domain. To group the requirements, they start by vectorizing the sentences using the TF-IDF. Then,

the partitional clustering algorithm K-medoids and the silhouette score were employed to identify the

32
3.2. THE MACHINE LEARNING TECHNIQUES USED TO GROUP NATURAL LANGUAGE

SOFTWARE REQUIREMENTS

best number of clusters.

In [60], the authors propose an approach that clusters similar requirements in order to reuse them

in software product lines (SPLs). The work aims to extract features from requirements in order to

identify similar requirement documents from online product reviews as a first step towards require-

ments reuse. First, they used tf-idf to represent features, then they employ the Latent Semantic

Analysis (LSA) technique to compute the documents similarity. Then, they used the Agglomerative

Clustering algorithm (HAC) to group similar product reviews as it provides better results compared to

K-means.

In [96], the authors demonstrate the use of the Hierarchical Agglomerative Clustering algorithm

(HAC) to break-down the project into a set of sub-projects based on related functional software re-

quirements. They use traditional vector space models to vectorize text requirements. The clustering

framework that they propose is dynamic and can be extended to include different clustering algo-

rithms and distance measures.

In [44], the authors propose an approach based on clustering to identify relevant-architecture

structures from both functional and non-functional requirements. Thus, the extracted structures help

to derive strategies for the implementation of requirements in the architecture by providing information

about when, where, and how to implement requirements in the architecture.

Table 3.1 summarizes the techniques used by these approaches, their inputs, their outputs as

well as their degree of automation.

3.2.2 Related works of requirements classification

Requirements classification is the process of assigning requirements to a predefined number of

classes. Automated classification is also known as supervised learning. Classification is the task

of machine learning that learns a function that maps an input to an output based on labeled training

data examples. In software requirements classification, training data are a set of pre-classified re-

quirements that are similar to the requirements that are about to be classified. The algorithm "learns"

where to classify test data (the requirements to be classified) based on the "supervision" of the train-

ing data. In requirements engineering, classifying software requirements by their kind into functional

requirements and non-functional requirements [39, 108] is a widely accepted standard practice today.

In what follows, we present research work interested in both categories.

• Functional requirements classification

Few works found in the literature of requirement engineering focus on the classification of func-

tional requirements (FRs). In [107], Sommerville classifies FRs into two categories: user re-

33
3.2. THE MACHINE LEARNING TECHNIQUES USED TO GROUP NATURAL LANGUAGE

SOFTWARE REQUIREMENTS

Table 3.1: Overview of the existing approaches for clustering of natural language software require-
ments

Approach Input Output Semantic
analysis/
vectoriza-

tion
techniques

Clustering
algorithm

Automation

Amannejad
et al., 2014

[7]

Message
sequence chart

documents

Package model The commu-
nication size

between
classes

HAC Automatic

Casamayor
et al., 2012

[26]

Set of
responsabilities
(verb phrases

within a
sentence)

Set of clusters
grouping

responsabilities

Not known EM, cobWeb,
Xmeans,
DBScan

Semi-
automatic

Barbosa et
al., 2015

[15]

User stories (in
semi-controlled

natural
language)

Clusters and
sequences of user

stories

TF-IDF k-medoids Semi-
automatic

Jalab and
Kasirun,
2014 [60]

natural
language

requirement
documents

Clusters grouping
similar

requirements

TF-IDF, LSA K-means, HAC Semi-
automatic

Salman et
al., 2018

[96]

natural
language

requirement
documents

Clusters of
functional

requirements

TF-IDF HAC automatic

Galster et
al., 2013

[44]

natural
language

requirements

Clusters of
relevant-

architecture
structures

Manually
assigned
values of

architecture
relevant
attribute

A specific
clustering

algorithm based
on euclidean

distance

Semi-
automatic

quirements and system requirements. Ghazarian et al. [46] introduce a requirements specifica-

tion framework, called Problem Decomposition Scheme (PDS), that helps to classify manually

FRs into only five classes. These classes include input data, output data, data persistence,

application rules and actions.

In [45], Ghazarian also used FRs classes in [46] as a starting point to assign manually a type

for each system FR in the context of web-based enterprise systems. The resulting classification

scheme is composed of 12 classes which can be expanded and modified as necessary.

• Non-functional requirements classification

In contrast to the FRs classification, most existing works focused on non-functional require-

ments (NFRs) classification. In Sommerville’s textbook [107], NFRs are classified into three

main types: external, product and organizational requirements.

34
3.2. THE MACHINE LEARNING TECHNIQUES USED TO GROUP NATURAL LANGUAGE

SOFTWARE REQUIREMENTS

Many approaches are proposed to automate the process of identifying and classifying the

NFRs.

Rashwan et al. [93] proposed an ontology-based approach to detect and classify NFRs. They

classify NFRs into five types (maintainability, reliability, portability, security and usability/utility)

using a Support Vector Machine (SVM) Classifier.

In [103], Singh et al. proposed a rule-based technique to identify and classify NFRs provided

in the PROMISE corpus into eight types. Their technique relies on linguistic relations among

requirement statements to extract thematic roles which describe the thematic relations in the

sentences written in natural language.

In [25], the authors proposed a machine learning based approach for classifying requirements

into two types (functional requirements and non-functional requirements), eleven types (non-

functional requirements sub-classes), and twelve types (functional requirements plus non-functional

requirements sub-classes). They combined two text vectorization (Bag of Words (BoW) vs.

Term Frequency–Inverse Document Frequency (TF-IDF) vs. Chi Squared (CHI2))techniques

with four machine learning algorithms (Logistic Regression (LR), Support Vector Machine (SVM),

Multinomial Naive Bayes (MNB) and k-Nearest Neighbors (kNN)) to classify requirements. The

data used to carry out the research was the PROMISE_exp, a recently made dataset that ex-

pands the already known PROMISE repository1, a repository that contains labeled software

requirements.

In [115], the authors presented a semi-supervied learning approach to extract and categorize

NFRs from a list of software requirement specifications. The approach consists in using a

word2vec model trained on wikipedia dump and then used to represent words in each require-

ment statements as well as keywords that represent each NFR type. The semantic similarity

is then computed and compared to a threshold value in order to identify the requirements sub-

categories.

In [91], the authors proposed a requirement identification framework using RNN variants in or-

der to classify NFR into pre-defined categories. First, NFRs are pre-processed to eliminate

unnecessary contents and. Then, the pre-processed text is vectorized using word2vec algo-

rithm to fed in the neural network model RNN variants. The LSTM and GRU variants of the

RNN have been applied as NFR classifier.

Requirements are processed to eliminate unnecessary contents, then features are extracted

using word2vec to fed as input of RNN variants LSTM and GRU.

1http://promise.site.uottawa.ca/SERepository/

35
3.2. THE MACHINE LEARNING TECHNIQUES USED TO GROUP NATURAL LANGUAGE

SOFTWARE REQUIREMENTS

Table 3.2 summarizes the techniques used by the existing requirements classification approaches,

their inputs, their outputs as well as their degree of automation.

Table 3.2: Overview of the existing approaches for classifying natural language software require-
ments

Approach Input Output Terms
Weighting

Grouping Method Automation

Rashwan et
al., [93]

Requirement
corpus

Four types of
NFRs

(maintainability,
reliability,
portability,

security and
usability/utility)

(SVM) Classifier Semi-
automatic

Singh et al.,
[103]

SRS
document

Eight types of
NFRs

Rule-based
technique

Automatic

Canedo and
Mendes [25]

PROMISE_exp
(extension of

the
PROMISE
dataset)

Categorization
into twelve

types
(functional

requirements
plus

non-functional
requirements
sub-classes)

Bag of
Words
(BoW),

TF-IDF, Chi
Squared
(CHI2)

Logistic
Regression (LR),
Support Vector
Machine (SVM),

Multinomial Naive
Bayes (MNB),

k-Nearest
Neighbors (kNN)

Automatic

Younas et
al., [115]

tera-
PROMISE
and CCHIT

datasets

Sub-categories
of NFRs

word2vec
model

trained on
wikipedia

dump

Semantic similarity
based on the

word2vec model
trained on

wikipedia dump

Automatic

Rahman et
al., [91]

PROMISE
dataset

sub-categories
of NFRs

word2vec RNN variants:
LSTM and GRU

Automatic

3.2.3 Summary

Automatic methods to categorize software requirements have become an essential task within soft-

ware engineering. In fact, such categorization helps in decomposing the system into a set of smaller

sub-systems and identifying architecture candidates at early stages.

As shown in Tables 3.1 and 3.2, most of the proposed approaches for this task are based on ma-

chine learning techniques which are mainly requirements classification and requirements clustering.

The Promise Repository has been widely used as a training dataset in software requirements

classification tasks. It consists of 625 labeled natural language requirements (255 FRs and 370

NFRs). The labels classify the requirements first into FR and NFR. Within the latter category, eleven

sub-categories are defined: (a) ten quality requirement categories: availability, look and feel, main-

tainability, operability, performance, scalability, security, usability, fault tolerance, and portability; (b)

36 3.3. FROM NATURAL LANGUAGE REQUIREMENTS TO VISUAL MODELS

one constraint category: legal and licensing. Although these supervised learning methods suc-

ceeded to provide relatively accurate results in most cases, they are labor-intensive and they have

the overhead to train the model. Moreover, if the domain of application changes, experts have to

pre-categorize manually a huge amount of requirements in order to build the new training dataset.

Hence, a lot of effort is required to train the new model in order to get acceptable results.

Requirements clustering approaches, on their side, have recently seen a surge of interest as

way to gather software requirements based on their similarity. Since they are based on unsupervised

learning, requirements clustering methods do not require a training dataset. However, most of the ex-

isting requirements clustering approaches suffer from a lack of automation when defining the optimal

number of clusters [7], others rely on the similarity between words or concepts in each requirement

[73, 26]. Moreover, many works utilize traditional DSMs which are considered as “count” models

such as Vector Space Model (VSM) [15, 96] and Latent Semantic Analysis (LSA) [60] to calculate the

similarity. However, using traditional DSMs to identify the semantic similarity among sentences does

not usually succeed to achieve accurate results. The main limitation of these techniques is that they

rely on counting the co-occurrences among words by operating on co-occurrence matrices. Thus,

sentences with similar context but different term vocabulary will not be considered as similar.

In summary, several machine learning based approaches have been proposed to organize and

group requirements encompassing their strengths and their weaknesses in providing a preliminary

decomposition of complex systems at early stages [7, 26, 15, 60, 96, 44, 93, 103, 25, 115, 91].

Nevertheless, only a few of the existing works focus on the software modeling phase [7, 26] which

is a crucial phase for building new systems with solid foundations. Hence, in the next section, we

complement our review by investigating the existing works focusing on automating the extraction of

design models from natural language requirements.

3.3 From natural language requirements to visual models

The idea of extracting knowledge from natural language requirements and represent it with semi-

formal models has also been investigated throughout these years. New tools and approaches have

been proposed to support the modeling phase during the software development process. This re-

flects the use of object oriented design (OOD) paradigm [12] also called Component Added Soft-

ware Engineering (CASE) [21] which encourages the use of Unified Modelling Language (UML) for

modelling the user requirements. In a conventional OOD software modelling approach, the system

analyst first has to spend a lot of time understanding the gathered requirements and then, based on

the requirements analysis made, CASE tools are used to build the UML models.

37 3.3. FROM NATURAL LANGUAGE REQUIREMENTS TO VISUAL MODELS

Over the last 20 years, researchers focused on automating the process of extracting valuable

information from natural language software requirements in order to process models and extract ar-

chitecture relevant elements. In this context, organizations aim to automate the process of capturing

models from software requirements in order to improve their efficiency, reduce time and costs, and/or

reduce human beings errors. Hence, several natural language based CASE tools that utilize different

levels, or combinations of levels of linguistic analysis have been proposed in order to generate OO

models from the natural language requirements.

In what follows, we present some of the NLP based CASE tools and approaches that have been

proposed in literature and that are interested in generating design models from natural language

requirements.

3.3.1 Related works

In this section, we detail the existing CASE tools as well as approaches that are based on NLP

techniques to extract visual design models.

• LIDA

The Linguistic Assistant for Domain Analysis (LIDA) [89] provides linguistic assistance to con-

struct UML class model from natural language requirements. The proposed tool relies heavily

on the analyst’s intervention. The analyst imports the requirements documents to be analyzed

and then she/he selects candidate classes, attributes, methods and roles. After this identifica-

tion process, the analyst employs LIDA Modeler to graphically associate the identified attributes,

methods and roles with the appropriate classes.

• CM-Builder

The Class Model Builder (CM-builder) [51] uses robust NLP techniques to analyze textual re-

quirements and perform domain independent OO analysis. The tool constructs an integrated

discourse model, represented in a Semantic Network (SN). By converting nouns into classes

and verbs into relationships, The resulted SN is then used to automatically construct an initial

UML class model. However, the CM-builder has a limitation in its linguistic analysis due to the

ambiguity, fuzziness, and redundancy of NL.

• UMGAR

Deeptimahanti and Babar presented the semi-auto-matic tool UML Generator from Analysis of

Requirements (UMGAR) [33] which assists developers in generating UML Use-case models,

38 3.3. FROM NATURAL LANGUAGE REQUIREMENTS TO VISUAL MODELS

Design class models, and Collaboration models from natural language requirements. The pro-

posed tool has been developed using three efficient NLP technologies:

-Stanford Parser: to generate parse tree and extract relevant concepts like actors, use cases,

classes, methods, attributes, and associations.

- WordNet2.1: is a large lexical database to perform morphological analysis.

- JavaRAP 2: to replace all the possible pro-nouns with its correct noun form.

Although it can be used for large requirement document, the UMGAR tool relies on human

interaction, for instance, to identify aggregation/composition relationships among objects.

• UMLG

The Unified Modeling Language Generator (UMLG) [12] relies on a rule-based approach to au-

tomatically analyze the natural language text, extract concepts such as classes, attributes and

associations, and generate OO modeling (class model, sequence model, use case model..).

UMLG is also enable the conversion of the object-oriented modeling information in several lan-

guages such as Java, C#.NET or VB.net.

• DC-Builder

The Diagram Class Builder (DC-Builder) [52] is an automated tool based on NLP techniques

and domain ontologies that aims to analyze the users’ requirements to facilitate the extraction

of the class model. First, the requirements descriptions are analyzed using the Nearly-New

Information Extraction System (ANNIE) for natural language processing of the GATE frame-

work. Then, UML relevant concepts such as classes and attributes are extracted using a set of

rules. The extracted model elements are stored in a XML file and domain ontologies are used

to eliminate these irrelevant elements.

• Rapid

More and Phalnikar have proposed a tool called Requirement Analysis to Provide Instant Dia-

grams (RAPID) [86] that analyzes the natural language requirements, extracts relevant model

elements and produces UML models. PAPID is based is mainly based on NLP components

such as:

- OpenNLP 3: provides lexical and syntactical parsers of the natural language requirements.

- RAPID Stemming Algorithm: identifies the root of words from natural language text.

- WordNet2.1: provides semantic parsing that is used to validate the semantic correctness of

the sentences generated at the syntactic analysis.

2JavaRAP, http://www.comp.nus.edu.sg/ qiul/
3http://opennlp.sourceforge.net/

39 3.3. FROM NATURAL LANGUAGE REQUIREMENTS TO VISUAL MODELS

The tool extracts the relevant elements of UML class models using NLP rules and it uses on-

tologies to improve the identification of the extracted relevant model elements. One limitation of

this tool is that each sentence in the requirements document has to satisfy a specific structure

defined by the system.

• ABCD

The Automatic Builder of Class Diagram (ABCD) [63] is an automated tool implemented in Vi-

sual Basic.Net that generates UML class models from natural language user requirements.This

tool performs on lexical and syntactical processing of natural language requirements using the

Stanford NLP toolkit. The UML model relevant elements are extracted using a pattern-matching

NLP techniques then, the UML class model is built using a CASE tool. One of the limitations

of this tool is that it confuses the concepts of association and method identification and fails to

deal with redundant information problem.

• Gilson and Irwin [47] proposed an automatic transformation from user stories to robustness

models based on NLP techniques. The approach aims at helping requirements engineers and

users to validate user stories and to perform structured analysis. It consists in parsing user

stories using to generate a dependency tree. The generated tree is then chunked into tagged

words to be parsed against linguistic rules to generate the named entity graph. The parsed

dependency tree is transformed to generate the graph of connected named-elements and then,

post-processed to be transformed a set of robustness model objects.

• Elallaoui et al. [40] proposed an approach that helps engineers to reduce ambiguity in re-

quirements specifications in the Scrum processes. The approach consists of an algorithm that

generates sequence models from user stories in order to generate test cases. It is based on a

set of rules that are used to extract the relevant model elements from user stories. Then, an XMI

file defining the corresponding sequence model for each user story is generated. The resulting

XMI file format then, transformed into a sequence model using the UML2 tool SDK plugin for

Eclipse. In [41], they propose an automatic transformation of user stories into UML use case

models to assist the work of the development team and the Product Owner. The approach is

based on a set of NLP heuristics that enables the extraction of the model concepts. However,

the proposed approach fails to detect actors with compound nouns as well as inclusion and

extension relations between use cases.

• Arora et al. [9] developed a domain model extractor from natural language requirements. They

are able to identify classes, relations and attributes by using existing extraction rules in the

40 3.3. FROM NATURAL LANGUAGE REQUIREMENTS TO VISUAL MODELS

Table 3.3: Overview of the existing approaches for extracting design models from natural language
software requirements

Approach Input Output Automation Limitations

LIDA [89] Natural
language re-
quirements

UML class
model

Semi-
automatic

Needs extensive user
intervention

CM-BUILDER [51] Natural
language re-
quirements

UML class
model

Automatic Cannot capture
candidate model objects

UMGAR [33] Natural
language re-
quirements

Use case
model, class
model and

collaboration
models

Semi-
automatic

Requires human
intervention to eliminate
irrelevant classes and to

identify
aggregation/composition

UMLG [12] Text
scenarios in

natural
language

Use case
model, class

model,
sequence
model and

activity
model

Automatic The input requirement
document is not free
natural language text

DC-Builder [52] Natural
language re-
quirements

Class model Automatic Not all concepts are
identified

Rapid [86] Natural
language re-
quirements

Class model Semi-
automatic

Each sentence in the
requirements document
has to satisfy a specific
structure defined by the

system
ABCD [63] Natural

language re-
quirements

Class model Automatic -Fails to deal with
redundant information

problem
-confuses the concepts of
association and method

identification
Gilson and Irwin

[47]
Natural

language
user stories

Robustness
model

Automatic Model elements
extraction is not accurate

enough for longer
sentences

Elallaoui et al., [40] Natural
language

user stories

Sequence
model

Automatic Fails to detect actors with
compound nouns as well

as inclusion and
extension relations
between use cases

Arora et al., [9] Natural
language re-
quirements

Candidate
class model

elements

Automatic Lack of accuracy in terms
of some extracted
relations type and

cardinalities

software engineering literature, extending these rules with complementary rules from the infor-

mation retrieval literature, as well as proposing new rules to better exploit results obtained from

modern NLP dependency parsers.

41 3.4. SUMMARY

Table 3.3 provides an overview of the existing works that focus on extracting design models from

natural language requirements. We observe that most of the existing approaches are rather imma-

ture,i.e., they suffer from lack of accuracy as most of the extracted design models does not capture

all the relevant model elements, or, the generated design models are not accurate enough (e.g., [33],

[52], [63], [47], [40], [9]). Moreover, some of current approaches fail to achieve a high degree of

automation and rely heavily on the analyst’s intervention (e.g., [89], [33],[86]).

In summary, existing approaches present several limitations that may hinder their applicability in

particular for complex systems. Hence, we believe that starting by decomposing the complex system

at early stages (as stated in section 3.2) is crucial as it helps to analyze each sub-system separately

and provide a design model with different levels of abstraction. Then, it is necessary to complement

this step by providing an NLP-based process that enhances the accuracy of the extracted design

models.

3.4 Summary

In this chapter, we have presented the related work for using AI techniques to bridge the gap between

natural language software requirements and architecture models in order to improve the efficiency,

reduce time and costs of developing complex systems.

Table 3.4 summarizes the existing studies that aim to automate the transition from natural lan-

guage system requirements and architecture design models. The cross (X) shows that the feature

is not used by the study and the check mark (X) shows that the feature is used by the study. As

shown in Table 3.4, current approaches are mainly interested in two research directions, i.e., they

focus either on decomposing the complex system at early stages or directly extracting design models

from the system requirements. Additionally to their lack of accuracy and automation (see Tables 3.1,

3.2 and 3.3), existing approaches in both research directions present several weaknesses.

For instance, existing works interested in supporting the decomposition of complex systems

based on early system requirements present potential limitations related to the used techniques

that can be summarized in the followings:

• L1. Some proposed approaches are based on supervised classification of natural language

requirements. Typically, these approaches focus on either identifying functional requirements

and non-functional requirements or classifying non-functional requirements into sub-categories

based on their type (see Table 3.2). However, among these approaches, there is no approach

42
3.

4.
S

U
M

M
A

R
Y

Table 3.4: Summary table of recent work in automating the transition from natural language requirements and architecture design models

Approach/Tool
Support of the decomposition of the system based on system requirements Support of the generation

of design modelsuse of
external
training
dataset

use of
traditional

DSMs

semantic
Similarity

computation

classification clustering

Rashwan et al.
[93], Singh et al.
[103], Canedo and
Mendes[25]

X X X X X X

Younas et al. [115] X X X X X X
Rahman et al. [91] X X X X X X
Lucassen et al.
[73], Casamayor et
al. [26], Barbosa et
al. [15], [60],
Salman et al. [96],
Galster et al.[44]

X X X X X X

Amannejad et al.
[7]

X X X X X X

LOLITA [81], D-H
[35], LIDA [89],
GOOAL [90],
CM-Builder [51],
UMGAR [33],
UMLG [12],
DC-Builder [52],
Rapid [86], ABCD
[63], Gilson and
Irwin [47], Elallaoui
et al. [40], [41],
Arora et al. [9]

X X

43 3.4. SUMMARY

that focuses on classifying early functional requirements: first because grouping functional

requirements requires an important semantic analyses information extraction. Second, the

classes of the generated groups of the outcomes are not always known in advance unlike

NFRs, which are generally classified into eleven sub-categories [2].

• L2. Approaches that are based on supervised classification require an external training dataset

to group requirements. For this, the PROMISE repository for requirements engineering has

been used in most of these approaches either to classify requirements into FRs and NFRs or,

to classify NFRs into subcategories.

However, when a classification task of requirements related to a specific domain of application

needs to be executed (e.g., grouping FR requirements of a given system by functionality),

chances are that no relevant dataset exists. Thus, high-quality dataset creation is needed if

datasets containing requirements related to a specific domain of application are not readily

available, which is often the case [48].

Hence, the domain experts have to prepare training data manually, that is, a huge amount of

pre-categorized requirements is needed. Hence, a lot of effort is needed to train the model in or-

der to get acceptable requirement classification results. In addition, if the domain of application

changes, then analysts need to build and/or retrain the new model which is a labor-intensive

task.

• L3. Unsupervised clustering based approaches have been also used to provide an early group-

ing of similar requirements. Such clustering based approaches may mitigate the issues raised

by the classification based approaches since they do not require a training dataset. Thus, sys-

tem requirements are grouped together based on their similarity. However, as shown in Table

3.4 requirements clustering approaches are based on traditional DSMs to compute the simi-

larity of the system requirements. The shortcoming of applying traditional DSMs is that they

are considered as "count models" as they count co-occurrences among words by operating on

co-occurrence matrices. Consequently, they usually achieve worse results than neural-network

based natural language processing architectures which can be seen as prediction models [16].

Since the arrangement of the grouped requirements provides a general overview of the complex

system, it can be employed as a first step towards architecture design generation. However, there

is no approach that focuses on the design phase among the approaches mentioned above. Hence,

we investigated the related works interested in automating the generation of architecture design

models from natural language requirements. We observed that most of the existing approaches in

this research direction also suffer from several limitations that can be presented as follows:

44 3.5. RESEARCH QUESTIONS

• L4. The majority of the proposed approaches fail to achieve a high degree of automation as

they heavily rely on the requirements analyst’s intervention (see Table 3.3).

• L5. Moreover, automatic models extraction approaches are either poor, i.e., the extraction

process does not capture all the relevant elements that are required to build the target design

model, or, the generated architecture models are not accurate enough.

In summary, the existing approaches in both research directions present several limitations which

may hinder their applicability in practice. To the best of our knowledge, there is no work that proposes

an automated decomposition of complex systems based on early requirements as a starting point

towards automated architecture design models generation.

Nevertheless, we were inspired a lot from the existing approaches as they succeeded to a certain

degree in providing engineers with an early decomposition of the complex system and giving insight

about its functionalities described by the generated design models. Herein lies the need to combine

both approaches in order to benefit from their strengths, mitigate their limitations and empower their

automation.

In this thesis, we propose an automated approach that aims to provide engineers with an archi-

tecture design of the complex system decomposing its functionalities based on early requirements.

Hence, the proposed approach aims to: (i) benefit from the strengths of the existing approaches

(see Table 3.4) interested in both decomposing the system into smaller sub-systems based on sys-

tem requirements and, providing engineers with visual design models with further degrees of details

describing each sub-system; (ii) mitigate the limitations addressed by these approaches by provid-

ing full automation of the process and improving the accuracy of the extracted features (i.e., both

requirement groups and the extracted design models).

By achieving the above key goals, we provide engineers with insights on the decomposition of the

complex system that enables them to better understand the features to be implemented, shorten the

development process, and to reduce costs and errors.

3.5 Research questions

AI-based methods have shown their ability to enhance the software development process including

the requirements modeling. Therefore, we aim to benefit from these advances to automate the tran-

sition from natural language software requirements to architecture design in the context of complex

systems. The main research statement of our work is the following:

"Which methodology is sufficiently effective to deal with both the complexity of the soft-

45 3.5. RESEARCH QUESTIONS

ware systems and automating the generation of architecture design from natural language

requirements?"

The main research question aims at defining a methodology based on AI components, that should

deal with the challenges addressed by both (1) the complexity of systems due to the increasing

number of requirements, which raises the need to break-down the system into a set of smaller sub-

systems; (2) the automation of the generation of the UML architecture design models representing

each sub-system in order to provide a holistic visibility of the target system. We decomposed the

above research question into two finer-grained, more focused research questions that constitute the

main concerns of this dissertation:

• RQ1- "How to guarantee an accurate decomposition of the complex system at early

stages of the development process?"

The goal of this research question is to define a method that groups requirements based on

their similarity. For this, it is crucial to:

- First, define a similarity computation method that ensures effective identification of the natural

language requirements that share similar characteristics. In this context, many computation

methods have been proposed in literature to compute the similarity between natural language

requirements statements. However, existing methods are rather immature that is, they are

lacking accuracy (regarding the identified clusters of requirements) and suffer from incomplete

extracted semantic information. Thus, our goal is to propose a similarity computation module

that enhances the extraction of the semantic information among the requirement statements

and enables a high degree of automation of the process.

- Second, define a convenient machine learning based method that ensures an accurate group-

ing of natural language requirement statements based on the extracted semantic similarity

among early requirements. The grouping solution should provide a high degree of automation,

speed-up the grouping process and provide an accurate grouping of early requirements. The

extracted groups of similar requirements will represent a first partition of the complex system

into smaller sub-systems that can be exploded into architecture design models with further de-

grees of detail.

• RQ2- "How to effectively automate the generation of preliminary architecture design de-

noting the system’s decomposition based on early requirements?"

46 3.6. SCOPE OF CONTRIBUTIONS

Natural language is the predominant notation that practitioners use to represent system re-

quirements. Albeit easy to read, natural language does not readily highlight key concepts and

relationships such as dependencies. This contrasts with the inherent capability of design mod-

els to visualize a given system in a holistic fashion. Herein lies the importance of an automatic

solution that bridges the gap between natural language requirements and architecture design

models.

Indeed, after decomposing the system into a set of sub-systems, providing a clear holistic

design of the resulted sub-systems is crucial. Such visual representation helps engineers to

better understand the system features they are investigating and to speed-up the development

process of the target system. However, due to lack of powerful tools, especially tools enabling

high automation of the process, model-based approaches are still only marginally adopted by

software engineers. Thus, the second research question is addressed by the definition of an AI-

based solution that provides a high degree of automation enabling the generation of preliminary

UML architecture design models describing the system’s decomposition as well as its expected

features.

3.6 Scope of contributions

Clearly, using AI–based methods to bridge the gap between natural language requirements and ar-

chitecture design models is crucial to assist engineers in their tasks, reduce project failure rates and

enhance the performance of the software development process. Our thesis contributions consist in

proposing a new flow of AI components including their specific parametrization, enabling the automa-

tion to go from natural language requirements to the architecture design of complex systems. In this

section, we present the scope of the contributions of this thesis work.

The input to this thesis work is a set of software requirement documents expressed in natural

language. Software requirement documents commonly have two types of requirements one is func-

tional requirements, which defines the feature of the system-to-be, and the other is non-functional

requirements, which defines the quality attributes of the system features. In our research, we start by

applying our contributions to functional software requirements. Indeed, developers emphasize more

on the functional side of the software to understand the features to be implemented. The input re-

quirements are from different domains, expressed in natural language and written in different styles,

which allows us to assess the applicability of our contributions.

Our goal is to automatically generate the preliminary architecture design describing the features of

the target system. For this, we use the Unified Modeling Language (UML) [21] as a visual language

47 3.7. CONTRIBUTION OVERVIEW

to represent the output of our work. In fact, UML has been widely used to specify the features

of software systems, and to reduce the ambiguity between the requirement specifications and the

design, on the basis of models. Among these models, UML use case models are typically developed

in the early stages of development. use-cases have been widely used to capture the requirements

from the user’s point of view. In addition, they are easy to understand and provide an excellent

way for communicating as they provide a semi-formal framework for modeling (mainly functional)

requirements [3]. Hence, we generate as output a UML use case model describing the primary

specification of the functional requirements for the system.

The generated UML use case model contains a set of use-case descriptions in text, each describ-

ing one use case. Each use case description specifies a required functional service that the system

is expected to provide for certain kinds of users called actors. The UML use case model may contain

packages that are used to structure and decompose the model to simplify analysis, communications,

navigation, development, maintenance and planning [59].

3.7 Contribution Overview

In real life scenarios, requirement engineering and architecture design may not be as close as they

seem to be in theory. Inter-dependencies and constraints between architecture artifacts and natural

language requirements are difficult to understand and model during software development. This is

mainly due to the increasing complexity of the modern software systems as well as the lack of au-

tomation tools providing an accurate architectural design at early stages of the development process.

In our thesis work, we propose an AI-based methodology that enables the automation to go

from natural language system requirements to architecture design decomposing the target

system during early stages of the development process as shown in Figure 3.2.

Our methodology deals with the two research questions mentioned before. The first research

question (1) "How to guarantee an accurate decomposition of the complex system at early

stages of the development process? " is addressed by the definition and the implementation of

a machine-learning based methodology that enables the grouping of similar software requirements

and thereby, it enables the decomposition of the software system into a set of sub-systems at early

stages. Typically, there exists two methods to achieve this goal: requirements classification and

requirements clustering.

Nevertheless, high-quality training data that are needed for the requirements classification task

are not always available for all domains of application. Hence, as our goal is to provide an applicable

method for all domains of application, we propose a requirements clustering solution based on the

48 3.7. CONTRIBUTION OVERVIEW

Figure 3.2: Overview of the proposed approach

semantic similarity of requirements. The proposed clustering solution aims to provide a first partition

of the complex system into a set of sub-systems by grouping similar requirements in the same cluster.

Thus, each cluster defines a sub-system that covers a particular functionality/characteristic of the

complex system and can be exploded into architecture design components with further degrees of

detail.

As shown in Figure 3.2, The proposed clustering solution is based on a semantic similarity compu-

tation module that extracts the semantic similarity of requirements. The similarity computation module

is mainly based on word embeddings and it takes into account both word-level and requirement-level

similarity in order to enhance the semantic similarity extraction among requirement statements. Ac-

cordingly, the semantic similarity computation includes two steps : (i) word-level similarity: we use a

neural word embedding model, word2vec, as a predictive model to compute the semantic similarity

between each pair of words in each different pairs of requirement statements. (ii) requirement-level

similarity: we extend the word-level similarity to the requirement-level using a scoring function for

text similarity. The used scoring formula takes into account the word-to-word semantic similarity and

generates as output the similarity matrix of each pair of requirement statements in the document.

Additionally, we implemented an operation that identifies automatically the optimal number of

clusters to be generated in order to reduce the manual intervention. Finally, requirements are grouped

based on their semantic similarity scores using a clustering algorithm and the generated clusters are

labelled automatically based on a key words ranking function.

The research question (2) "How to effectively automate the generation of preliminary archi-

49 3.8. CONCLUSION

tecture design denoting the system’s decomposition based on early requirements?" is ad-

dressed by the definition and the implementation of a model extractor that automatically generates

the UML use case model denoting the system’s decomposition based on the identified clusters of

requirements.

In order to achieve this goal, we first define and implement a set of specific NLP heuristics that

extract the relevant design model elements from each requirement statement within each identified

cluster. The preliminary generated architecture model consists of a UML use case model containing a

set of packages of use-cases describing the initial decomposition of the target system. Each package

represents a cluster (i.e., sub-system) covering a set of similar requirements. The goal is to extract

the relevant model elements that are embedded within each cluster and that are needed to build the

UML use case model. Hence, the outcome of this step provides further degrees of detail about the

identified packages decomposing the complex system.

Then, the second step consists in implementing a mapping algorithm that maps the extracted

model elements as well as the identified clusters of requirements into their corresponding ones in

the UML use case model. Thus, we programmatically obtain a generated UML package break-down

model denoting the system’s decomposition, including a UML use case model providing a holistic

view of the target system.

3.8 Conclusion

In this chapter, we presented the existing works interested in structuring natural language software

requirements for architecture design as well as extracting visual design models from software re-

quirements. We also detailed the investigated research questions and we gave an overview of the

contributions of this thesis. In a nutshell, our contributions consist of a new flow of AI components in-

cluding their specific parametrization, enabling the automation of the transition from natural language

requirements to the architecture design of complex systems. In the following chapter, we describe in

details the contributions of this thesis.

Chapter 4

Semantic Clustering of System

Requirements

In the previous chapter we gave an overview of the contributions of this thesis, namely the semantic

clustering of natural language system requirements and the automatic generation of the preliminary

architecture design models denoting the system’s decomposition. In this chapter, we detail the first

contribution that consists of a semantic clustering solution that deals with decomposing the complex

system into smallest sub-systems based on early system requirements. First, we give an overview

of the proposed semantic clustering approach. Afterwards, we detail each step of the proposed

approach.

4.1 The semantic clustering solution overview

Nowadays, modern software projects are many times larger and more complex than projects of the

past. This is mainly due to exponential increasing of the number of system requirements so that

traditional requirements management and organisation techniques become unwieldy.

Most of the classic problems of developing software products derive from this essential complexity

and its non-linear increases with size [22]. One of the most challenging tasks is manually capturing

design models from these large sets of requirements. Actually, this task becomes tedious, cost and

time-consuming and error-prone as the number of software requirements are exponentially increas-

ing. Moreover, the extracted models become quickly too large to be effectively explored by analysts.

One strategy for reducing the complexity of the developed systems is the well-known “divide-to-

conquer” strategy i.e., decomposing the target system into smallest sub-systems and treat each sub-

50

51 4.2. PREPROCESSING

system separately. However, there is a lack of automatic solutions to group software requirements

and even the existing tools/methodologies are rather immature, that is, they lack of accuracy.

In order to overcome these limitations, we propose an automatic clustering approach that groups

natural language software requirements based on their semantic similarity. Such automatic require-

ments clustering solution helps to break-down the target system into a set of sub-systems at early

stages of the development process. Eventually, each sub-system covers a set of related software

requirements and could be developed by a separate and specialized developer team. Additionally,

these groups of software requirements help to generate the software requirements specifications,

which can be used for validating and verifying the final software system. Furthermore, the identi-

fied clusters help to design the preliminary architecture of the software system as they represent

components or sub-systems that should be implemented and reused.

As shown in Figure 4.1, the proposed clustering approach consists of four major steps that are

based on machine learning and NLP techniques.

Initially, the natural language software requirements are preprocessed. Text preprocessing is an

essential step in the pipeline of a NLP system as it transforms the text into a form that is predictable

and analyzable for machine learning tasks.

Then, we implement a semantic similarity module that computes the semantic similarity between

each pair of the requirements, taking as input the preprocessed requirements generated in the first

step. The similarity computation module includes two levels: (i) word-level similarity computation,

in which we use a predictive word embedding model, word2vec, to compute word-to-word seman-

tic similarity, (ii) then, we extend it to the requirement-level similarity computation by means of the

Mihalcea scoring formula for documents similarity computation [83]. The output of this module is

a requirement semantic similarity matrix that includes the semantic similarity between each pair of

requirements in the input requirement document.

The obtained similarity matrix is then fed into the Hierarchical Agglomerative Clustering algorithm

(HAC) which generates the semantic clusters of requirements. Finally, each identified cluster is

labelled in order to bring a semantic information about the features that it embeds. In what follows,

we detail each step of the proposed semantic clustering of requirements approach.

4.2 Preprocessing

The very first step of our clustering approach is requirements preprocessing. Preprocessing the nat-

ural language requirements consists in cleaning and normalizing the natural language text for further

processing such as requirements similarity computation and requirements clustering. Requirements

52 4.2. PREPROCESSING

Figure 4.1: The requirement semantic clustering approach

normalization is achieved by performing four tasks: cleaning, tokenization, annotation and normal-

ization. These tasks are executed according to the following order by means of the Natural Language

Toolkit NLTK [19].

4.2.1 Cleaning

The input requirement texts usually comprise various types of data, such as words, punctuation,

symbols, etc, while not all the data is helpful for a particular task. In order to facilitate further analysis,

we just keep the relevant information of the requirement text. For this, the performed operations are

as follows:

53 4.2. PREPROCESSING

Stop words and punctuation removal

Usually, natural language requirements contain lots of noise such as punctuation marks, and

many frequent words that do not have an impact on the general orientation of it such as stop-words

(e.g., "as", "of", "the", "to", etc. . .). Keeping those words makes the dimensionality of the problem

high and hence the clustering more difficult. Hence, this type of tokens are removed.

Lower case

Letters and words are often written either in upper case or lower case. For example, the letter at

the beginning of the sentences is capitalized. In NLP, words in lower case are usually regarded as

the standard form in order to simplify the analysis process.

4.2.2 Tokenization

In the tokenization task, each set of requirements are divided into individual statements using comma

and dot delimiters. Then, each statement is divided into tokens (individual words) based on white

space. An example of tokenizing a requirement statement is as follows:

Figure 4.2: An example of a tokenized sentence.

According to the example above, the original requirement statement is transformed into a list of

tokens that can be seen as meaningful units for further analysis process.

4.2.3 Annotation

Annotation in NLP helps to annotate the meaningful words from the sentence to make it usable for

machine learning tasks understand texts.

Part-of-Speech tagging

Part-of-Speech tagging (POS tagging) is the most popular annotation task for preprocessing. It

aims to assign a meaningful tag to each word in a sentence, while the tag presents a certain kind of

54 4.2. PREPROCESSING

linguistic information of the word. By using POS tagging, the part of speech of each word or token

can be assigned, for example, noun, verb, adjective, etc. The tag as a sort of a priori knowledge

helps the machines to process and understand natural language. In Figure 4.3, the line under the

tokenized requirement statement presents the POS tags of each word.

Figure 4.3: An example of a parsed sentence with POS tags.

4.2.4 Normalization

A word can be changed into different forms in terms of the way of being used, such as presenting

different tenses (i.e., the past, present and future tense). However, different forms of a word (i.e., the

inflected words) may increase the complexity of processing a sentence for some specific NLP tasks.

Normalization aims to convert a list of words to a more uniform sequence. This is useful in preparing

text for later processing. When we normalize text, we attempt to reduce its randomness, bringing it

closer to a predefined “standard”.

Stemming

Reducing tokens to their stems in information retrieval is known as stemming [78]. Stemming is a

normalization technique that aims to remove inflectional endings and to return the base or dictionary

form of a word. For example, "adding" and "adds" are reduced to its root "add". In Figure 4.4, we

present an example of a stemming operation for the requirement statement "Any university group

member can add all assets in the inventory".

Figure 4.4: An example of tokens after conducting stemming.

After preprocessing, there are further processing steps i.e., mainly the requirements similarity

computation and the clustering. In the following section, we describe in details the similarity compu-

55 4.3. SEMANTIC SIMILARITY COMPUTATION MODULE

tation module.

4.3 Semantic similarity computation module

As we aim to group textual requirements in order to decompose the target system, we need to identify

textual requirements that are semantically similar to one another.

Traditional approaches to compute the similarity between two text segments consist in using lexi-

cal matching method, and producing a similarity score based on the number of lexical units that occur

in both input segments. However, these lexical similarity methods cannot always identify the seman-

tic similarity of texts as they aim to determine whether the words in two texts have similar spellings

[83]. For example, the “US” would be closer to the “UK” this way, than it would be to the “States”.

Going beyond these traditional methods, and in order to enhance the semantic similarity extraction

among requirements, we compute and analyze the semantic information at two levels: locally, for

each word contained in a requirement description, but also globally at the statement level. Moreover,

we use advances in neural word embedding models in order to enhance the extraction of semantic

information.

4.3.1 Word-level similarity computation

Before computing the word-level similarity, the preprocessed natural language requirements need to

be prepared for further processing. This task consists in transferring the preprocessed requirement

statements from natural language to a machine-readable and analyzable format that work with ma-

chine learning algorithms. Hence, words should be transformed into numerical vectors and this is

known as text vectorization.

As stated in Chapter 2, the recent surge of interest in deep learning methods over the machine

learning field has led to many attempts to change the way text vectorization is done and find better

ways to represent text than traditional DSMs. Inspired by the work of Mikolov et al. [85], we use the

word2vec model, a two-layer neural network that is used to produce word embeddings (i.e., vectors).

The input of word2vec is a text corpus. Given enough text data and contexts, word2vec can

achieve highly accurate semantics of the words appearing in the corpus and establish a word’s as-

sociation with other words in the semantic space. Moreover, word embedding models have shown to

outperform traditional DSMs which are considered as “count” models as they count co-occurrences

among words by operating on co-occurrence matrices [16]. The output is a set of vectors, that is,

vectors of words are grouped together in a semantic vector space. Hence, by using word2vec as

56 4.3. SEMANTIC SIMILARITY COMPUTATION MODULE

prediction model, we gain more accurate vector representations of words, compared with traditional

DSMs such as Vector Space Model (VSM) and Latent Semantic Analysis (LSA) [34].

Then, we measure the semantic similarity between each pair of the obtained word vectors belong-

ing to two different requirement statements using the cosine similarity. The cosine similarity principle

consists in computing the cosine of the angle between two words vectors. The range of the cosine

value is between -1 and 1. Similar words vectors have a cosine value close to 1, and close to 0 oth-

erwise, i.e., the smaller the angle, the higher is the similarity. Given two words w1 and w2 belonging

to two pairs of requirement statements, we denote their semantic similarity as the cosine similarity

between their learned word embeddings as shown in Equation 4.1:

wordSim(w1, w2) = cosine(w1, w2) (4.1)

This is simply the inner product of the two vectors, normalized by their Euclidean norm. The

cosine similarity mainly focuses on the direction differences of two vectors instead of their absolute

numerical differences.

There are different metrics that can be used to compute the similarity of words. For example,

Euclidean distance measures absolute difference in the numerical characteristics among the dimen-

sions of vectors. However, using Euclidean distance might lead to a problem, that is, even if two

words are similar, they may be of a large Euclidean distance, especially for the large size of re-

quirements. In this case Euclidean distance is not able to represent the similarity of requirements

accurately.

Figure 4.5: Simplified process of obtaining word vectors using word2vec.

As shown in Figure 4.5 the cosine similarity measures the angle between two vectors in the vector

space and attaches importance to the differences reflected in the direction rather than the position.

For example, if the position of point A is fixed, point B is far away from origin of coordinates along

57 4.3. SEMANTIC SIMILARITY COMPUTATION MODULE

the original direction. We can see that the angle between the two vectors is not changed, that is the

cosine similarity is not changed, while the distance between point A and point B has already been

varied, which is the basic difference between cosine similarity and the Euclidean distance.

Hence, using the cosine similarity, even if the two similar requirements are far apart by the Eu-

clidean distance (due to the size of the requirements), chances are they may still be oriented closer

together. As a result, cosine similarity helps to properly compute the similarity between words among

different sizes of requirements.

4.3.2 Requirement-level similarity computation

After obtaining the word-level similarity, we extend it at the global statement-level. Some approaches

capture the meaning of longer pieces of text by taking the means of the individual term vectors

[56, 105]. However, means or sums are rather poor ways of describing the distribution of word

embeddings across a semantic space. It would be desirable to capture more properties of the two

texts, especially with respect to the semantics of words that do or do not match.

We overcome the above-mentioned limitations by deriving the statement-level similarity from the

word-level similarity based on two characteristics: the distribution of words in each requirement state-

ment; and the specificity of each word in the requirements document. To do that, we got inspiration

from the work of Mihalcea et al. [83], to derive the statement-level semantic similarity from the

word-level semantic similarity. Hence, we used the Mihalcea’s scoring function for text similarity

computation to compute the similarity of each pair of requirement statement (see Equation 4.4).

First, we identify for each word w1 in the text requirement R1, the word w2 in the text requirement

R2 that have the highest semantic similarity maxSim(w1, R2) (Equation 4.2), based on the word-

to-word semantic similarity wordSim(w1, w2) using word2vec. Next, the same process is applied to

determine the most similar word in R1 starting with words in R2 as as indicated by the example in

Figure 4.6.

maxSim(w1, R2) = max
w2∈R2

wordSim(w1, w2) (4.2)

In addition to the similarity of words, we also take into account the specificity of words using the

Inverse Document Frequency (idf). The specificity of a word w, idf(w) (Equation 4.3) has been

defined as the log of the total number of documents in the corpus divided by the total number of

documents including that word [62].

58 4.3. SEMANTIC SIMILARITY COMPUTATION MODULE

idf(w) = log(Total number of documents/Number of documents with word w in it) (4.3)

The word similarities are then weighted with the corresponding word specificity using the Inverse

Document Frequency (idf) weighting technique to capture the specificity of a word. In a nutshell, this

technique aims to measure how much a word contributes to the relevance of two texts. The weighted

word similarities are then summed up and normalized with the length of each text segment. The

resulting similarity scores are combined using a simple average and thus, the semantic similarity of

two requirements R1 and R2 is computed as follows:

Sim(R1, R2) =
1

2
× (

∑
w∈R1

maxSim(w,R2)× idf(w)
∑

w∈R1
idf(w)

+

∑
w∈R2

maxSim(w,R1)× idf(w)
∑

w∈R2
idf(w)

) (4.4)

The achieved similarity score of each pair of requirements is a potentially good indicator of the

semantic similarity of two input texts as it combines both the semantic information of word-to-word

similarity based on word2vec and the word specificity in a document.

Figure 4.6: An example for computing maxSim(w,R)

The resulting requirement similarity has a value between 0 and 1, with a value of 1 indicating

identical requirement text segments, and a value of 0 indicating no semantic overlap between the

two segments. Ultimately, given a document containing N requirements, the output of the similarity

computation module is a N ×N semantic similarity matrix that contains the semantic similarity score

of each pair of requirements.

59 4.4. REQUIREMENTS CLUSTERING

4.4 Requirements clustering

In order to generate clusters of similar requirements, we fed the obtained requirements similarity ma-

trix into a clustering algorithm. For this, we use the Hierarchical Agglomerative Clustering algorithm

(HAC) [117] as it does not require us to pre-specify the number of clusters in advance which helps to

reduce the manual intervention.

The HAC algorithm works in a bottom-up manner, each requirement statement is initially con-

sidered as a single-element cluster (leaf). At each step of the algorithm, the two clusters that are

the most similar are combined into a new bigger cluster (node). This procedure is iterated until all

requirements are member of just one single big cluster, resulting in a hierarchical clustering tree.

However, identifying the optimal number of clusters is not a trivial task. It might be subjective

as it can heavily rely on the analyst’s knowledge. In order to automate this task, we implement

an operation that identifies automatically the best number of clusters based on the inconsistency

threshold coefficient. More precisely, we compute an inconsistency value between a cluster node

and all its descendants in the hierarchical clustering tree. If this value is less than or equal than an

inconsistency threshold, then all its leaf descendants belong to the same cluster of requirements.

Hence, defining an appropriate inconsistency threshold plays a crucial role in clusters extraction by

the HAC algorithm, since the inconsistency threshold makes a huge difference regarding the number

of clusters and the accuracy of the extraction process.

In clustering theory, internal validity indices are utilized to evaluate the clustering results when

the ground truth of clusters is unknown. Thus, in order to achieve an optimal clustering solution, we

apply an internal validity index to estimate the accuracy of the extracted clusters by the clustering

algorithm in terms of different candidate number of clusters.

We use Dunn index [37] as internal validity index to evaluate the goodness of the extracted clus-

ters. For a given set of clusters extracted by the clustering algorithm, a higher Dunn index indicates

better clustering solution. Therefore, we compute the Dunn index value each time, while varying the

candidate cluster numbers. A higher Dunn index indicates better clustering solution. Consequently,

to estimate the optimal number of clusters, we select the candidate cluster number for which we have

a higher Dunn index.

We explain the process of identifying the optimal clustering solution through the example in Figure

4.7 using four requirements (R1-R4). First, the similarity matrix of requirements is fed into the HAC

algorithm to cluster similar requirements. And then, the optimal number of clusters corresponding

to the optimal clustering solution is achieved (i.e., ONC = 3), since the value of the corresponding

Dunn index is the largest one (i.e., DI = 0.8). After clustering, we obtain three clusters (i.e., clusters

60 4.5. LABELLING

Figure 4.7: A simplified example of clusters identification.

B, C, D). The resulted clusters B, C and D represent a set of sub-systems of the software system,

that will be mapped into a package break-down model denoting the preliminary architecture design

of the target system.

4.5 Labelling

The result of applying the clustering algorithm is a set clusters that group the semantically similar

requirements. These clusters present the set of sub-systems describing the target system’s decom-

position.

In terms of architecture design, the resulted clusters represent the architecture packages. These

packages give insights on a possible decomposition of the complex system and can be refined af-

terwards to provide engineers with further details about the features expected by the target system.

However, without a name that summarizes what a cluster (i.e., package) is about, it would be difficult

distinguish the clusters from each other. Hence, it is crucial to assign a label for each cluster that

describes what each architecture package embeds in terms of functionalities or characteristics. How-

ever, assigning the adequate name to each cluster is not a trivial task and it requires a considerable

human intervention. One approach to automate this task consists in extracting the most common

representative key words within each cluster.

For this, we use Gensim library for text summarization1. Gensim is a free Python library designed

1https://radimrehurek.com/gensim/auto_examples/tutorials/run_summarization.html

61 4.6. CONCLUSION

to automatically extract semantic topics from documents. This summarizer is based on the ranks of

text sentences using a variation of the TextRank algorithm proposed by Mihalcea et al. [82] and it

summarizes a given text, by extracting one or more important sentences from the text. In a similar

way, it can also extract keywords, i.e., the set of terms that best describe a document. Thus, we

label each generated cluster using the Gensim’s summarizer by extracting the best representative

keywords that are embedded in the cluster.

As a result, we obtain a set of labeled clusters of requirements that describe the architecture de-

sign packages as well as their content. Indeed, the obtained architecture packages help engineers

to better understand the composition of the complex system at a first level of abstraction. Then, by

applying further analyses of the requirement statements within each cluster, we can refine the pack-

ages with further degrees of details in order to generate the preliminary use case model describing

the target system.

4.6 Conclusion

In this chapter, we presented the requirements semantic clustering approach that we proposed in

order to decompose the target system as a first step towards preliminary architecture design gener-

ation.

The proposed clustering approach is based on a semantic similarity computation module that

takes into account both word-level and requirement-level similarity among requirement statements.

First, we used advances in neural word embedding models particularly, we used the word2vec model

as prediction model to generate word vectors. We used the cosine similarity to compute the seman-

tic similarity between each pair of word vectors of each pair of requirements. Second, we derive the

requirement-level similarity from the word-level similarity using the Mihalcea’s scoring formula for text

similarity. The output is a requirement similarity matrix that contains the semantic similarity score

between each pair of requirements. Afterwards, we fed the generated matrix into the Hierarchical

Agglomerative Clustering algorithm (HAC) to generate clusters of requirements. Finally, the iden-

tified clusters are labelled in order to give insights on a possible candidate architecture packages

decomposing the complex system.

In the next chapter, we describe the solution that we proposed to automatically generate prelimi-

nary architecture design models describing the system’s decomposition.

Chapter 5

Automatic generation of the

preliminary architecture design

models

In the previous chapter, we presented our first contribution that consists in decomposing the system

into a set of sub-systems based on the semantic similarity of early requirements.

In this chapter, we present our second contribution that consists of a model extractor that auto-

matically generates the preliminary architecture design denoting the decomposition of the complex

system. The proposed model extractor uses the identified clusters of requirements as a starting point

towards generating UML package of use-cases model and thus, it helps to provide a holistic view of

the system’s decomposition at early stages.

In what follows, we detail the approach used by the proposed model extractor to automatically

generate preliminary architecture design models from early requirements.

5.1 Linking requirements to models

The process of software development is the process of modelling a real world problem and transform-

ing it into a number of refined models, ending with the executable code. MBSE methods promise

to support software systems developments by fostering a holistic view of design and empowering

high quality and maintainable software architecture on the basis of models. Such methods help to

enhance the realization of reliable and efficient systems. Indeed, models play a crucial role in the

description and the abstraction of the systems to be developed and help to increase their comprehen-

62

63 5.1. LINKING REQUIREMENTS TO MODELS

sibility from the early stages of development. Moreover, design models help engineers understand

the features expected by the future system and reduce errors especially in the context of complex

systems.

However, the integration of model-based methods in the software engineering process, is facing

many challenges [67]. Particularly, linking early requirements to models is not a trivial task especially

with the increasing complexity of the developed systems. In what follows, we present the challenges

raised by requirements engineering and we highlight the importance of models in mitigating them.

5.1.1 Requirements engineering challenges

The purpose of the requirements engineering activities in a software project is to describe precisely

what to build. Although it seems like a simple task, requirements are often considered to be the

biggest software engineering challenge [42]. A great challenge that continues to confront software

engineering at early stages, is how to proceed easily and efficiently from a set of system requirements

to a design that will satisfy those requirements.

One problem in requirements engineering is the variability of natural language in which the re-

quirements are expressed. Moreover, in modern software systems, the number of requirements is

exponentially increasing due to the increasing of the number of stakeholders involved in the process.

This exponential growth in the number of requirements hinders the efficient management and the

understanding of the gathered requirements and consequently, it hinders the construction of high-

quality systems.

Additionally, with the shift to Agile development, requirements are continuously changing, which

makes it difficult to capture all requirements for a non-trivial system before development starts [69].

It is therefore critical to keep track of the requirements throughout the project.

Herein lies the importance of adopting models as they ensure having a clear crystal view of the

expectation and scope of the system to be designed [22].

In fact, adopting models helps to represent and communicate what is important among stakehold-

ers, keep track of the gathered requirement throughout the project, and helps developers deal with

the complexity of the problem being investigated or the solution being developed.

In the previous chapter, we presented a solution that helps to reduce the system’s complexity

by enabling a semantic clustering of early requirements requirements. In this chapter, we provide

a solution that automatically generates the preliminary architecture design denoting the system’s

decomposition throughout the project.

Eventually, each sub-system covering a set of requirements could be expressed in a semi-formal

64 5.1. LINKING REQUIREMENTS TO MODELS

manner using a UML package including a use case model. Such representation helps to provide

an abstraction of the system’s decomposition, and a clear view on its big picture and its expected

features.

5.1.2 Use case modeling

The Unified Modeling Language (UML) [21] has been employed as a visual language that supports

requirements engineering. It has been widely used to specify the features of software systems, and to

reduce the ambiguity between the requirement specifications and the design, on the basis of models.

Among these models, UML use case models are typically developed in the early stage of devel-

opment. They have been widely used to capture the requirements from the user’s point of view. In

addition, they are easy to understand and provide an excellent way for communicating as they pro-

vide a semi-formal framework for modeling (mainly functional) requirements [3]. A use case model is

a model of how different types of users interact with the system to solve a problem. As such, it de-

scribes the goals of the users, the interactions between the users and the system, and the required

behavior of the system in satisfying these goals. A use case model consists of a set of use case

descriptions in text, each describing one use case. Each use case description specifies a required

functional service that the system is expected to provide for certain kinds of users called actors. It

describes a use case in terms of a pattern of interactions between the actors and the system.

An actor of a use-case can be any entity external to the system. It interacts with the system by

calling a system operation to request a service of the system. The system may also require services

from actors to carry out a requested service.

Associations are used to describe the relationships between actors and the use cases they par-

ticipate in. This relationship is commonly known as a "communicates-association".

Therefore, a use case model specifies the systems’s required functional services, the users of

these services, and the dependency relationships among these services. A library system, for ex-

ample, has use cases to, "Borrow a copy", "Make a Reservation" and "Validate User Identification"

for the actor called "User". Both "Borrow a Copy" and "Make a Reservation" includes "Validate User

Identification".

The use case model may contain packages that are used to structure and decompose the model

to simplify analysis, communications, navigation, development, maintenance and planning. In large

scale systems, use-case packages can be employed to further structure the use-case model. In fact,

partitioning a use-case model into use-case packages can serve in agile development by reflecting

the order, configuration, or delivery units in the finished system thus supporting iteration planning.

65 5.1. LINKING REQUIREMENTS TO MODELS

In addition, employing use-case packages supports the « divide-to-conquer » strategy as they en-

able the representation of the decomposition of the system into smaller sub-systems to reduce the

complexity.

Use-cases are further specified by a number of use case scenarios (also referred to as use case

instances). These scenarios, which describe the interaction between a system and its actors, can

be described using UML sequence models and activity models [21]. Typically, for each use-case in a

use case model, there is also a corresponding use-case realization in a design model [20]. As shown

in Figure 5.1, a use-case realization is a description of how different design elements collaborate to

solve a specific use-case [69]. The main purpose of a use-case realization is to provide a bridge

between requirements modeled as a use-case and a systems design (i.e. traceability). Use-case

realizations are often described using UML Sequence or Collaboration models.

Figure 5.1: Use case model and design model.

Use case models play a broader role in describing systems specifications and they serve as a

unifying thread throughout the system development. They are used as the primary specification of the

functional requirements for the system, as the basis for analysis and design, as an input to iteration

planning, as the basis of defining test cases and as the basis for user documentation and architecture

system validation [59]. We believe that extracting UML use case models from early requirements

helps to derive architecture design since a use case model could serve as an intermediate model

towards analysis models generation(i.e., class model, sequence model, etc...).

In this chapter, we propose a model extractor that automatically derives the preliminary archi-

66 5.2. OVERVIEW OF THE MODEL EXTRACTOR APPROACH

tecture design models of the complex system based on early requirements. The proposed model

extractor takes a starting point the identified semantic clusters of requirements and generates as

output a UML use case model including packages of use-cases denoting the resulted sub-systems.

In what follows, we give an overview of the approach used by the proposed model extractor.

5.2 Overview of the model extractor approach

Figure 5.2: Overview of the model extractor approach.

67 5.2. OVERVIEW OF THE MODEL EXTRACTOR APPROACH

In large scale systems, manually building architecture design model is a laborious, time-consuming

and error-prone task. Several approaches were proposed in literature to assist engineers with this

task, whereby candidate design model elements are automatically/semi-automatically extracted us-

ing Natural Language Processing (NLP) rules. Despite the existing work on design models extraction,

important facets remain under-explored: (1) the existing extraction rules do not adequately extract

relevant elements, i.e, the extracted elements lack accuracy; and (2) the rules developed by the in-

formation retrieval community for information extraction remains unutilized for building UML design

models.

Motivated by addressing the above limitations, we developed a model extractor that automates

the generation of preliminary architecture models representing the system’s decomposition. It takes

as input the identified clusters of similar requirements describing the system’s decomposition (see

previous chapter) and generates as output the UML use case model describing the system as well

as its sub-systems.

As shown in Figure 5.2, the model extractor approach is based on two pillars: First, we extract

from each cluster the relevant elements that are needed to build the use case model using NLP tech-

niques. Then, we implement a mapping operation that maps the extracted relevant elements into

their corresponding ones in the UML use case model. The generated UML use case model encom-

passes use case packages representing the identified semantic clusters and thus, representing the

system’s decomposition.

In what follows, we describe in details the NLP techniques that we used to extract relevant model

elements as well as the mapping algorithm that we implemented to map the identified model elements

into their corresponding ones in the UML use case model.

5.2.1 Extracting relevant use case model elements

Building a design model is an important step for transitioning from informal requirements expressed in

natural language to precise and analyzable specifications [116] expressed in semi-formal language.

In order to meet this goal, we propose an NLP based module to extract the relevant model elements

that are needed to construct the use case model describing the target system.

As shown in Figure 5.3, the proposed NLP module takes as input a cluster of requirements writ-

ten in natural language and generates as output the relevant use case model elements. For each

requirement statement, we initially perform the following operations: tokenization, punctuation and

stop words removal (see Section 4.2 in Chapter 4) using the NLTK library1. These operations help to

clean the input text and to eliminate insignificant words for our task. Then, we apply pos-tagging to
1https://www.nltk.org/

68 5.2. OVERVIEW OF THE MODEL EXTRACTOR APPROACH

Figure 5.3: Extracting relevant use case model elements.

perform the structure parsing of the sentence by inferring the structural units of the requirement state-

ment (see Section 4.2.3 in Chapter 4). In our work, the units of interest are noun phrases and verbs.

A noun phrase (NP) is a unit that can be the subject or the object of a verb. A verb (VB) appears

in a verb phrase (VP) alongside any direct or indirect objects, but not the subject. In addition to the

sentence structure parsing, dependencies identification is also required. In fact, It aims at identifying

grammatical dependencies between the individual words in a sentence. In contrast to phrase struc-

ture parsing, which identifies the structural constituents of a sentence, dependency parsing identifies

the functional constituents, e.g., the subject and the object. Hence, for each requirement statement,

we perform the dependency parsing using the Spacy library2.

For example, the top part of the graph of Figure 5.4 shows the output of dependency parsing

over requirements statement "The user can modify his profile.". An example typed dependency

here is nsubj(modify, user), stating that "user" is the subject of the verb "modify". The output of the

dependency parsing is represented as a directed acyclic graph, with labeled (typed) dependency

relations between words as shown in Figure 5.4.

The final step of the proposed module consists in applying NLP heuristic rules in order to ex-

tract relevant model elements. The implemented rules basically rely on both structure parsing and

dependencies identification to infer the relevant elements. Moreover, depending on the of the input

requirement statement that can be either user stories or expressed in plain text, we implement two

categories of NLP heuristics. Indeed, this makes our model extractor flexible to supports different

templates and structures of natural language requirements.

In the next subsections, we detail the proposed NLP heuristics that we used to derive preliminary

2https://spacy.io/

69 5.2. OVERVIEW OF THE MODEL EXTRACTOR APPROACH

Figure 5.4: Example of the result of the dependency parsing using Spacy.

UML design models from system requirements. As our goal is to generate UML use case models,

the elements that we aim to extract via the proposed NLP rules are actors, use-cases, and the

association relationships between them. We detail the NLP rules that we implemented to derive

these elements from both user stories and requirements written in plain text.

The used NLP rules to extract relevant use case model elements from requirements expressed

in plain text

The most basic NLP heuristic that we proposed specifies that each (1) noun in the requirement

statement denotes an entity that could be a candidate actor or a system in interaction with the actor

and, (2) the main verb that occurs between two entities is more likely to be a relationship. For verbs,

we exclude modal verbs such as "can", "shall", "must", etc. This prompts us to define the first entity

and relationship heuristic as follows:

R1: "Every noun is a potential entity."

R2: "The verb that occurs between two entities is a potential relationship.”

Example: Consider the requirement statement “An administrator can manage accounts.” that

comprises two nouns ("administrator" and "account"), and one verb ("manage") when we exclude the

modal verb “can”. Rule R1 specifies to create two entities “administrator” and “account” and rule R2

originates a relationship between these entities named as the verb:

manage(administrator, account) (R2)

To form relationships between entities, a sentence should contain three elements: the subject,

the object and the verb (phrase) linking the previous two. The subject is certainly essential: in an

active sentence, for instance, the subject represents the actor element in a use case model as it is

the initiator of the main action performed. For actors, we ignore every proper noun such as (Location

name, Person name, etc.). The verb phrase which contains the verb and the object of a sentence

is potentially a candidate use case. For use-cases, we exclude verb phrases in which the verb is

70 5.2. OVERVIEW OF THE MODEL EXTRACTOR APPROACH

included in the following list: [include, involve, consist of, contain]. The identified actor and use-case

in a sentence are linked by an association relationship. Therefore, we define the following rules:

R3: "If a noun is a subject then, it is an actor."

R4: "The verb phrase linking the subject and the object is a use-case.”

R5: "Each actor and use case are linked by an association relationship."

Example: Considering the same requirement example above“An administrator can manage ac-

counts.”, "administrator" is a noun that represents the subject of the sentence. Rule R3 implies that

"administrator" is the actor. The subject and the object are linked via the verb “manage” (if we exclude

"can"). Hence, R4 denotes that the verb phrase (VP) "manage accounts" denotes the use-case and

rule R5 originates an association between the identified actor and use-case.

Most often, the actor can be a compound noun, that is, a noun composed of multiple words. The

compound noun can be sequences of nouns or adjectives followed by one or more nouns. To accu-

rately identify the actor element, we consider the whole compound noun as an entity. If a sequence of

nouns or adjectives followed by one or more nouns exists and the last noun is not included within the

following set of words: S = [number, no, code, date, type, volume, birth, id, address, name], and the

compound noun represents a subject, then it may be an actor. Consequently, we define the following

NLP rule:

R6: "If a compound noun is a subject and the last noun in that compound noun is not in

«S» then, noun compounds are taken together to form an actor."

Example: Let us consider the following requirement statement “A newly registered user can

change his password.” The sentence comprises a compound noun "a newly registered user" which

is the subject. By applying R6, "newly registered user" represents an actor.

The used NLP rules to extract relevant use case model elements from user stories

After being introduced in the early 2000s, Agile software development methods such as Scrum, have

become widespread in the industry, even surpassing the ”classical” waterfall method according to

some surveys [38, 109]. Among Agile requirement engineering practices, user stories are widely

adopted [102], involving potential stakeholders in the requirement elicitation process by writing their

needs in natural language [64].

A user story is a requirement expressed from the perspective of an end-user perspective. It is a

semi-structured natural language description of requirements. The structure of user stories follows a

compact template that describes the type of user, what they want and (optionally) why [113]. Although

many different templates exist to express user stories, 70% of practitioners use the template [74]: “As

71 5.2. OVERVIEW OF THE MODEL EXTRACTOR APPROACH

a « type of user » , I want « goal », [so that « some reason »]”. Following these templates, user stories

can capture three distinct aspects of a requirement:

• Who wants the functionality.

• What functionality the end users or stakeholders want the system to provide.

• Why the end users and stakeholders need this functionality (optional).

User stories have been identified as being effective at developing the ”right software” since they

require a detailed functional decomposition and increase the perceived productivity [74]. The first

objective in the Scrum process is to define the product backlog, that is, a list of elicited and prioritized

requirements that should be implemented. Then, Scrum processes in sprints. Each sprint contains

the tasks to achieve by the developer teams.

The backlog grooming is mainly a manual task, which may become time-consuming and error-

prone as the amount of stories grows [17]. This growth in number tends to dilute the technical

knowledge across the whole backlog [53], such that visual models may be required to provide a clear

view of the target system and to keep stakeholders involved in requirement engineering tasks [53].

However, the adoption of models in Agile methodologies has been hard to perform due to the lack

of powerful automation tools as well as the focus of teams on the implementation rather than analysis

or documentation [72]. In order to overcome these challenges, it’s critical to provide a bridge between

user stories and preliminary design models since it helps stakeholders gain a better understanding

of the target system as the system evolves during development.

Since user stories are concise statements about the functionality of a system, not all NLP rules

that we proposed in the previous subsection are equally relevant. In fact, user stories are written

in a semi-controlled natural language that relatively facilitates the identification of the relevant model

elements, thereby making the previous NLP rules poorly relevant.

Accordingly, our model extractor accepts user stories that use the indicators as identified by

Wautelet [113]: "As / As a(n)" for the role, "I want (to) / I can / I am able / I would like" for the

means, and "so that" (optional) for the ends part. Otherwise, syntactically invalid user stories are not

processed.

"R7: "Each first noun, noun plural or compound noun is an actor."

"R8: The use-case is the verb phrase that exists between the patterns: «I’m able to» / «I

want»/«I would like to» and «so that/so» if it exists."

The association is the relationship linking the actor and the use case which makes R3 from the

previous subsection relevant.

72 5.2. OVERVIEW OF THE MODEL EXTRACTOR APPROACH

Example: Let us consider the following user story “As a visitor, I want to register in the event.”

By applying R7, "visitor" specifies the actor since it is the first noun in the sentence. "register in the

event" is the verb phrase that exists after the pattern "I want to" consequently, it represents the use

case R8.

In summary, depending on the writing style of the input requirement statement, our model extrac-

tor performs either the proposed NLP rules for requirements expressed in plain text or those that we

proposed for user stories.

The output of these rules is the set of relevant model elements that are needed to construct the

UML use case model. The resulted model elements are stored in a CSV file for further processing. In

this file, we associate the extracted model elements with their corresponding cluster’s name. Figure

5.5 shows an overview of the output of this step. For each cluster, we specify the set of use case

model elements that it contains,i.e, the actor and the use-case elements. The actor and the use-case

that are in the same row are linked by an association relationship. For example, in the cluster A, actor

A1 and use-case A1 are linked by an association relationship.

Figure 5.5: Example of the structure of the resulted CSV file grouping the use case model elements.

The resulted file grouping the extracted model elements serves as input for the mapping algo-

rithm. In what follows we explain in details how the proposed mapping algorithm proceeds in order to

generate the UML package break-down model including the UML use case model from the extracted

model elements.

73 5.2. OVERVIEW OF THE MODEL EXTRACTOR APPROACH

5.2.2 Mapping into preliminary UML design models

In order to build a visual representation of the preliminary architecture decomposing the system, we

implement a mapping algorithm that maps each identified cluster and each extracted use case model

element to their corresponding ones in the UML package break-down model including the UML use

case model.

For each identified cluster, the mapping algorithm takes as input the cluster’s label, and the ex-

tracted model element corresponding to that cluster,i.e, the actor, the use-case and the association

relationship linking them. Table 5.1 shows the source and the target elements that are processed by

the mapping algorithm.

Table 5.1: Model elements mapping

Source Target

cluster element UML package
actor element UML actor

use case element UML use case
association relationship

element
UML association

First, the clusters are mapped into UML packages in the target UML use case model, providing

then a holistic view of the decomposition of the system. Then for each cluster, the extracted ac-

tors, use cases and associations are mapped into their corresponding UML elements and they are

grouped together in the package representing their reference cluster.

The resulted UML use case model including the packages of use cases is generated in the Eclipse

Papyrus modeling environment3. We use Papyrus as it is an open source Model-Based Engineering

tool that provides an integrated environment for editing UML models. Moreover, It has notably been

used successfully in industrial projects and is the base platform for several industrial modeling tools.

Specifically, we use the UML2 tool SDK for Eclipse Papyrus 4 to automatically generate UML use

case models from the extracted use case model elements. The main goals of this component are

the provisions of useful implementation of UML for the support of modeling tool development, as well

as common XMI schema for the facilitation of the exchange of semantic models. UML2 tool SDK

for Eclipse enables the creation of models (and their contents) both programmatically and by using

the sample UML editor. Accordingly, we use this plugin to programmatically create UML use case

models. We implement a java mapping algorithm that maps the identified clusters and the extracted

model element to their corresponding ones in the target UML use case model. Figure 5.6 shows an

overview of the implemented mapping algorithm.

3https://www.eclipse.org/papyrus/
4https://wiki.eclipse.org/MDT-UML2Tools

74 5.3. CONCLUSION

Figure 5.6: Pseudo-code of the mapping algorithm.

Finally, the output of his mapping algorithm is a UML use case model that contains packages

of use-cases decomposing the system. Each package of use-cases encompasses further details

on use case model elements that it contains. Indeed, grouping these model elements in packages

provides a better readability of the UML use case model, especially for complex systems.

5.3 Conclusion

In this Chapter, we presented our model extractor that automatically generates a holistic view of the

system’s decomposition based on early natural language requirements. The proposed model extrac-

tor takes as input the identified set of requirement clusters and generates as output the corresponding

UML use case model including packages of use-cases describing the system’s decomposition.

First, we proposed a set of NLP heuristics to extract from each requirement statement within

each cluster, the relevant model elements that are needed to build the target UML model. Then,

the extracted elements are mapped into their corresponding ones in the UML use case model. The

final output is a UML use case model in which each cluster is represented as a UML package of

75 5.3. CONCLUSION

use-cases.

The generated UML use case model helps to provide the preliminary architecture design since it

serves as an intermediate towards analysis models generation (i.e., class model, sequence model,

etc.).

Chapter 6

Evaluation of the requirements

semantic clustering solution

In this chapter, we demonstrate the applicability and benefits of the proposed requirements semantic

clustering solution in real-world case studies. For this purpose, we conduct seven case studies con-

taining different writing styles of natural language requirements to evaluate the proposed approach:

three case studies containing user stories and four case studies containing functional requirements

written in plain text.

This chapter is organized as follows: Section 6.1 presents the Key Performance Indicators (KPIs)

that are investigated in order to evaluate the approach. Section 6.2 describes the conducted case

studies. Afterwards, in Section 6.3 we present the results analysis and the evaluation. In Section

6.4, we present the assessment of the KPIs. Then, in Section 6.5, we discuss the raised threats to

validity and Finally, Section 6.6 concludes the chapter.

6.1 Key Performance Indicators (KPIs)

In this section, we present the KPIs that we investigated in order to assess the applicability of the

proposed semantic clustering solution in practice. The identified KPIs are as follows:

• KPI1: The accuracy of the clustering solution

Motivation. For this KPI, we aim at determining the accuracy of the proposed clustering so-

lution in order to assess whether our approach succeeded to identify semantic clusters that

reflect the domain functionalities embedded in a given requirements document. For this pur-

pose, we compare our results of the clustering with the ground truth clusters. For each case

76

77 6.1. KEY PERFORMANCE INDICATORS (KPIS)

study, ground truth requirements clusters are manually clustered by analysts.

Approach. To evaluate this KPI, we assess the proposed clustering solution using two valida-

tion criteria as follows:

– The correctness of the identified semantic clusters:

This validation criterion aims at verifying whether the identified semantic clusters are close

to the ground truth clusters. We match the identified cluster (i.e., their requirement state-

ments) with the ground truth clusters of the case study of interest. For this, we rely on two

well-known measures in the Information Retrieval (IR) field. These metrics are precision,

recall [78]. Finally, to put precision and recall in relation, we use F-measure as a harmonic

average of both of these measures.

Let True Positive (TP) elements be the similar requirements correctly assigned to the same

cluster, False Positive (FP) elements be dissimilar requirements assigned to the same

cluster and False Negative (FN) elements be similar requirements incorrectly assigned to

different clusters. The evaluation metrics are defined as follows:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F −measure = 2 ∗ Precision ∗Recall/(Precision+Recall)

– The clustering gap (C_GAP):

For this validation criterion, we aim to verify whether the identified number of clusters is

close to the ground truth number that is manually identified by analysts. This is recognized

as the clustering gap (C_Gap). The C_Gap compares the identified number of clusters

with the ground truth number of clusters of the case study of interest. Hence, this metric

is computed by applying the following equation:

C_Gap = |numberidentifiedClusters − numbergroundTruthClusters|

• KPI2: Applicability of the proposed clustering solution in realistic settings

Motivation. For this KPI, we aim to establish whether our approach is scalable. Particularly,

the goal is to check how well the clustering solution performs when increasing the number of

requirements.

78 6.2. CASE STUDIES DESCRIPTION

Approach. In order to evaluate this KPI, we assess the following validation criterion:

– The end-to-end execution time of the clustering solution:

This validation criterion consists in measuring the impact of the number of requirement

statements of each case study on the execution time of the clustering solution. Hence,

it aims to check whether the proposed clustering solution runs within reasonable time for

larger number of requirements in realistic settings.

• KPI3: Applicability of the clustering solution for different domains

Motivation. For this KPI, we put emphasis on the applicability of our approach for different

domains. If the clustering approach would be sensitive for a certain domain, it lacks generaliz-

ability for different domains in practice, and thus, would have a limited applicability.

Approach. In order to address this KPI, we assess the applicability of our approach on seven

real-world case studies from different domains and with different requirements writing style that

we will detail in the following section.

6.2 Case studies description

In order to assess the generalizability of the proposed clustering approach, we conduct seven real-

world case studies from different domains and containing different writing styles of functional require-

ments.

We conduct three real-world case studies containing user stories for Agile development. The user

stories in each case study follow different templates. Moreover, we evaluate our approach on four

other case studies from open-access software projects containing functional requirements written in

plain text. In what follows, we detail the conducted case studies.

6.2.1 User stories

The conducted real-world case studies of user stories are available in the University of Bath’s Insti-

tutional Repository (IRDUS1). The three case studies belong to different domains following different

templates of user stories and having different number of statements. In the following, we introduce

each in more detail:

• CMS Company:

This case study involves a company from a mid-sized software company located in the Nether-

lands with 120 employees and 150 customers. They supplied 34 user stories for a complex

79 6.2. CASE STUDIES DESCRIPTION

CMS product for large enterprises; those stories represent a snapshot of approximately a year

of development in 2011. The user stories follow the template proposed by Cohn [32]) defined

as follows ‘As a [type of user], I want to [some goal] so that [some reason]’.

Despite the smaller size, this case study contains lengthy user stories with non-trivial sentence

structuring such as: "As an editor, I want to search on media item titles and terms in the Media

Repository in a case insensitive way, so the number of media item results are increased, and I

find relevant media items more efficiently".

• Web Company:

This case study comes from a Dutch company that creates tailor-made web applications for

businesses. The team consists of nine employees who iteratively develop applications in bi-

weekly Scrum sprints. The Web Company supplied 84 user stories covering the development

of an entire web application focused on interactive story telling that was created in 2014. The

user stories in this case study rely on the template: "As a [type of user], I’m able to [some goal]

so that [some reason]". However, the structure of the user stories in this case study is more

complex than in the CMS Company case study.

• Archive Space

Archive Space is an open-source software product created by archivists. The user stories of this

project are available online(http://archivesspace.atlassian.net). It contains 51 user stories that

rely on the template "As a [type of user], I want [some goal]". All user stories in this collection

omit the "so that" token. Moreover, many user stories contain unnecessarily capitalized words,

compound nouns, and idiosyncratic phrases such as "...either the [creator | source | subject] of

an [Accession | Resource | Resource Component]..."

Table 6.1: Characteristics of the case studies of user stories

Case study Number of user
stories

Number of
clusters

CMS Company 34 4
Web Company 84 6
Archive Space 51 5

For these case studies, the ground truth clusters is not provided. Hence, they are manually

created by our team experts. Table 6.1 shows the characteristics of each case study in terms of

number of requirements as well as the ground truth number of clusters.

80 6.2. CASE STUDIES DESCRIPTION

6.2.2 Functional requirements written in plain text

In addition to the conducted case studies of user stories, we evaluate our approach on four open-

access projects containing functional requirements written in plain text in order to assess the gener-

alizability of our clustering solution. The conducted case studies are from different domains and have

different number of requirements. In what follows, we describe each in more detail:

• E-Store System

E-store is a software that consists of online sales, distribution and marketing of electronics [88].

It contains 62 functional requirement statement.

• WASP System

WASP system presents architecture specifications of context-aware mobile telecommunication

services [101]. It contains 66 functional requirement. These requirements provide several

wishes for functionality in the 3G platform from the point of view of the WASP platform.

• UUIS system

The UUIS system - Unified University Inventory System - is used to integrate three faculties’

databases providing a web interface that allows user to access and manage the integrated

inventory [88]. It guarantee a secure access to the data from outside university at any time

during working hours. This case study contains 25 functional requirement.

• MHC-PM System

The MHC-PM system is a Mental Health Care Patient Management System [110]. It allows

users to manage patient’s data, retrieve data, and generate reports. It contains 19 functional

requirement statement.

Table 6.2: Characteristics of the case studies of functional requirements written in plain text

Case study Number of
functional

requirements

Number of
clusters

E-store System 62 20
WASP System 66 14
UUIS System 25 11

MHC-PM System 19 6

The four case studies mentioned above are provided in a Software Requirement Specification

(SRS) document. In this document, functional requirements sharing similar functionalities are grouped

together. Hence, the SRS documents of these case studies serve as the ground truth for our cluster-

ing approach evaluation.

81 6.3. RESULTS ANALYSIS AND EVALUATION

Table 6.2 shows the characteristics of each case study in terms of number of requirements as

well as the ground truth number of clusters.

6.3 Results analysis and evaluation

In this section, we present and evaluate the results of applying our approach to the chosen case

studies. First, we describe the experimental settings that we considered to apply the approach.

Then, we evaluate the results of the application of the clustering approach to both case studies of

user stories and functional requirements written in plain text. Namely, we evaluate the accuracy of

the semantic clustering and the C_Gap stated in Section 6.1. Moreover, we compare the clustering

results of functional requirements written in plain text with a related approach.

In our experimentation, we assume that the requirements in the conducted case studies are

unambiguous, understandable and consistent [11].

6.3.1 Experimental settings

In this section, we briefly introduce the key parameters setting that we applied for the semantic clus-

tering approach. For the word-level similarity computation, we were confronted with two limitations in

the conducted case study:

1) A word embedding model trained with a large corpus is supposed to be of high quality. How-

ever, the chosen case studies are small datasets, which leads to a lack of enough data for training a

word embedding model with high quality.

2) Although we can achieve an accurate word similarity with the word2vec model, it still exhibits

the limitation that a vector space is not capable of gaining the association of all words we consider,

if a word does not exist in the training corpus. That is to say, even if the size of one corpus is large

enough, it hardly contains all relevant words for the different case studies, especially for domain-

specific words. Hence, the similarity value of a pair of words can not be determined, if one of these

words does not exist in the training corpus. The common method to handle out-of-vocabulary words

is to assign a random vector for out-of-vocabulary words [66]. Unfortunately, a random vector not

only lacks the ability to vectorize a word accurately but also leads to an uncertainty of the results.

In order to overcome these limitations, we use two different word2vec models to compute the

word-level similarity. First, we use the pre-trained word2vec model from Mikolov et al. [84] trained on

Google News dataset1 including 100 billion words to mitigate the limitation raised by small training

1https://code.google.com/archive/p/word2vec

82 6.3. RESULTS ANALYSIS AND EVALUATION

datasets. Second, we also train a complementary word2vec model on the requirements of each

case study. The first pre-trained model is utilized to gain the general meaning of a word. The

complementary model is utilized to handle out-of-vocabulary words. If a word is absent in the main

model, then, it probably belongs to domain-specific terms and the vector representation of this word

is obtained by applying the complementary model.

6.3.2 Evaluation of the semantic clustering of the user story case studies

In this subsection, we present the results of applying the proposed clustering approach to the con-

ducted user story case studies. Then, we assess the accuracy of the semantic clustering of the

identified clusters of user stories using precision, recall and F-measure metrics as stated in Section

6.1.

In Tables 6.3, 6.4 and 6.5, we present examples of the identified semantic clusters and the corre-

sponding ground truth clusters for the three user story case studies. The user stories shown in bold

in the identified cluster are irrelevant user stories in that cluster.

Table 6.6 shows the average precision and recall values of the identified clusters for each user

story case study. These values indicate that the user stories of these identified clusters are se-

mantically grouped together to form semantic clusters. Indeed, precision values take a high-range

(0.80–0.89), recall values take a reasonable range (0.76–0.86) and F-measure values take a range

(0.77-0.87) across different case studies.

In Figure 6.1, we graphically display the average precision, recall and F-measure values of the

identified clusters from each case study against the number of user stories. As shown in this figure,

the average values for precision are relatively close to each other. In addition, the average values for

recall are relatively close to each other. Consequently, the average F-measure values are also close

to each other. This represents an indicator that our proposed approach works accurately regardless

of the number of user stories.

The second criterion that we use to evaluate our clustering solution is the C_GAP. In fact, the

accuracy of the clustering solution depends on the choice of the number of clusters. We automated

the identification of the optimal number of clusters using Dunn index as stated in Chapter 4. We

run the HAC algorithm with different number of clusters for each run and we check Dunn index of

the outcome. Thus, we carried out 6 runs for each case study. The best number of clusters is the

number of clusters with the largest Dunn index value.

For example, the best clustering result for the "CMS Company" case study was achieved in the

fourth run, followed by the fifth, third and second ones. Thus, as shown in Figure 6.2 the optimal

83 6.3. RESULTS ANALYSIS AND EVALUATION

Table 6.3: An example of a semantic cluster identified from the "CMS Company" case study.

Identified Cluster Members Ground Truth Cluster Members

As a marketeer I want to set the title attribute
of a link so I can improve the SE ranking of

the website.

As a marketeer I want to set the title attribute
of a link so I can improve the SE ranking of

the website.
As a marketeer I want to create friendly

URLs for my nested product pages so I can
improve the SE ranking of the product

section of my website.

As a marketeer I want to create friendly
URLs for my nested product pages so I can

improve the SE ranking of the product
section of my website.

As a marketeer I want to set the rel attribute
of external links so I can make sure that SE
bots do no affect SE rankings for pages with

many external links.

As a marketeer I want to set the rel attribute
of external links so I can make sure that SE
bots do no affect SE rankings for pages with

many external links.
As a marketeer I want to set canonical tags
to individual pages so I can avoid duplicate

content easily without having to set
permanent redirects and thereby will improve

the SE ranking of the website.

As a marketeer I want to set canonical tags
to individual pages so I can avoid duplicate

content easily without having to set
permanent redirects and thereby will improve

the SE ranking of the website.
As a marketeer I want to be solve URL

conflicts immediately so I avoid not-friendly
URLs and thereby will postively influence the

overall SE ranking of the website.

As a marketeer I want to be solve URL
conflicts immediately so I avoid not-friendly

URLs and thereby will postively influence the
overall SE ranking of the website.

As an editor I want to assign page sections
to pages using the current page section
structure so I can easily and efficiently

manage page sections assigned to pages.

As an editor I want to assign page sections
to pages using the current page section
structure so I can easily and efficiently

manage page sections assigned to pages.
As a marketeer I want to switch URLs

when URL duplication occurs between
pages so that I can solve conflicts

between pages easily without having to
search all pages in the tree.

Figure 6.1: Bar graph of the clustering accuracy across user story case studies.

number of clusters for the "CMS Company" case study is four clusters. Moreover, it is possible to

graphically verify the conformance of the distribution of the user stories and the optimal number of

84 6.3. RESULTS ANALYSIS AND EVALUATION

Table 6.4: An example of a semantic cluster identified from the "Web Company" case study.

Identified Cluster Members Ground Truth Cluster Members

As an Administrator I’m able to delete
content (which a user added) from a

person’s profile page.

As an Administrator I’m able to delete
content (which a user added) from a

person’s profile page.
As a User I’m able to delete content (which I
added) from a person’s profile page so that I
remove information that I no longer want to

share.

As a User I’m able to delete content (which I
added) from a person’s profile page so that I
remove information that I no longer want to

share.
As a User I’m able to edit the content that I

added from a person’s profile page to update
the information.

As a User I’m able to edit the content that I
added from a person’s profile page to update

the information.
As a User I’m able to add a description to a

person’s profile page.
As a User I’m able to add a description to a

person’s profile page.
As a User I’m able to add an audio fragment
(Soundcloud link) to a person’s profile page.

As a User I’m able to add an audio fragment
(Soundcloud link) to a person’s profile page.

As a User I’m able to add a video (YouTube
Vimeo link) to a person’s profile page.

As a User I’m able to add a video (YouTube
Vimeo link) to a person’s profile page.

As a User I’m able to add an image to a
person’s profile page.

As a User I’m able to add an image to a
person’s profile page.

As a User I’m able to add text to a person’s
profile page.

As a User I’m able to add text to a person’s
profile page.

As a User I’m able to add content to the
selected profile.

As a User I’m able to add content to the
selected profile.

As a Visitor I’m able to view the added
stories (if any) on the profile page so that I

can learn more about the person.

s a Visitor I’m able to view the added stories
(if any) on the profile page so that I can learn

more about the person.
As a Visitor I’m able to view the profile of a
particular person so that I can identify that
person and add additional content to their

profile.
As a Visitor I’m able to click on a person’s
profile card so that I can open their profile

page.

As a Visitor I’m able to click on a person’s
profile card so that I can open their profile

page.
As an Administrator I’m able to manage
people so that I can add edit or delete

profiles.

clusters that we identified based on the dendrograms as shown in Figure 6.3. In this figure, the

horizontal red line crosses the hierarchy in two cutting points. Therefore, four semantic clusters are

identified.

Table 6.7 shows, for each case study, the number of the identified clusters, the ground truth

number of clusters as well as the C_Gap value.

We note that the number of identified clusters is very close to the ground truth number of clusters

(that are shown in Table 6.2) of each user story case study. Hence, we obtain a small C_Gap value

(between 0 and 1) which represents a good indicator about the accuracy of the proposed approach.

85 6.3. RESULTS ANALYSIS AND EVALUATION

Table 6.5: An example of a semantic cluster identified from the "Archive Space" case study.

Identified Cluster Members Ground Truth Cluster Members

As an archivist, I want to import EAD files
that were exported by Archon.

As an archivist, I want to import EAD files
that were exported by Archon.

As an archivist, I want to import Accessions
data in CSV.

As an archivist, I want to import Accessions
data in CSV.

As an archivist, I want to import Resources
from MARCXML records.

As an archivist, I want to import Resources
from MARCXML records.

As an archivist, I want to import Agent
information from EAC-CPF records.

As an archivist, I want to import Agent
information from EAC-CPF records.

As an archivist, I want to export agent
records as EAC-CPF.

As an archivist, I want to export agent
records as EAC-CPF.

As an archivist, I want to import only Agent
and Subject information from MARCXML

records.

As an archivist, I want to import only Agent
and Subject information from MARCXML

records.
As an archivist, I want to import EAD files

that were exported by the Archivists’ Toolkit.
As an archivist, I want to import EAD files

that were exported by the Archivists’ Toolkit.
As an archivist, I want to export a description

as EAD.
As an archivist, I want to export a description

as EAD.
As an archivist, I want to upload an EAD for
import from within the frontend application.

As an archivist, I want to upload an EAD for
import from within the frontend application.

As an archivist I want to import EAD data. As an archivist I want to import EAD data.
As an archivist, I want to create and edit

Agent records.

Table 6.6: Accuracy of the generated semantic clusters for the user story case studies.

CMS Company Web Company Archive Space

Average Precision 89% 80% 85%
Average Recall 86% 76% 83%

Average F-measure 87% 77% 84%

Figure 6.2: Dunn index bar graph of the "CMS Company" case study.

86 6.3. RESULTS ANALYSIS AND EVALUATION

Figure 6.3: Dendrogram of the identified clusters of the "CMS Company" case study.

Table 6.7: Identifying the C_Gap for the user story case studies.

CMS Company Web Company Archive Space

Number of the
identified clusters

4 7 4

Number of the ground
truth clusters

4 6 5

C_Gap 0 1 1

6.3.3 Evaluation of the semantic clustering of the case studies of functional

requirements written in plain text

In this subsection, we present the results of applying the semantic clustering approach to the con-

ducted case studies of functional requirements written in plain text. Then, we assess the accuracy

of the semantic clustering of the identified clusters using precision, recall and F-measure metrics

presented in Section 6.1.

In Tables 6.8, 6.9, 6.10 and 6.11, we present examples of the identified semantic clusters and the

corresponding ground truth clusters for the four case studies. The functional requirements shown in

bold in the identified cluster are irrelevant requirements in that cluster.

87 6.3. RESULTS ANALYSIS AND EVALUATION

Table 6.8: An example of a semantic cluster identified from the "E-store system" case study.

Identified Cluster Members Ground Truth Cluster Members

The system shall allow user to create profile
and set his credential.

The system shall allow user to create profile
and set his credential.

The system shall authenticate user
credentials to view the profile.

The system shall authenticate user
credentials to view the profile.

The system shall allow user to update the
profile information.

The system shall allow user to update the
profile information.

The system shall allow user to register for
newsletters and surveys in the profile.

Table 6.9: An example of a semantic cluster identified from the "WASP system" case study.

Identified Cluster Members Ground Truth Cluster Members

The WASP platform MUST allow end-users
to set an alert on an event.

The WASP platform MUST allow end-users
to set an alert on an event.

The WASP platform SHOULD allow the
end-user to specify the notification type

when setting an alert.

The WASP platform SHOULD allow the
end-user to specify the notification type

when setting an alert.
The WASP platform MUST maintain a list of
events the end-user can be notified about.

The WASP platform MUST maintain a list of
events the end-user can be notified about.

The WASP platform SHOULD be able to
decide how to notify the user of an alert for

which an event was set.

The WASP platform SHOULD be able to
decide how to notify the user of an alert for

which an event was set.
The WASP platform MUST actively monitor

all events.
The WASP platform MUST actively monitor

all events.
The WASP platform MUST allow the

end-user to remove previously set alerts on
events.

The WASP platform MUST allow the
end-user to remove previously set alerts on

events.
If the user cannot be notified of the event the
first time, the WASP platform SHOULD retry

to notify the user of the occurrence of the
event, until the user has been notified or a

specified time-out elapses.

If the user cannot be notified of the event the
first time, the WASP platform SHOULD retry

to notify the user of the occurrence of the
event, until the user has been notified or a

specified time-out elapses.
The WASP platform MUST notify the

end-user about the occurrence of an event
for which an alert was set, as soon as the

event occurs.

The WASP platform MUST notify the
end-user about the occurrence of an event
for which an alert was set, as soon as the

event occurs.
It MUST be possible for a WASP

application to send out messages to
users using the WASP platform.

In order to evaluate the applicability of our approach on functional requirements written in plain

text, we compute the average precision, recall, F-measure and C_Gap values of the identified se-

mantic clusters for each case study.

In addition, we compare our results to the work in [96]. In fact, the approach proposed by Salman

et al. in [96] closely relates to our work as it proposes a method to cluster functional requirements

using the same case studies. Thus, we use the work in [96] as a baseline to assess the identified

clusters. Table 6.12 shows the evaluation results of our approach as well as a comparison with the

88 6.3. RESULTS ANALYSIS AND EVALUATION

Table 6.10: An example of a semantic cluster identified from the "UUIS system" case study.

Identified Cluster Members Ground Truth Cluster Members

Any DA group member or authorised
inventory group member asset is owned by

the department.

Any DA group member or authorised
inventory group member asset is owned by

the department.
Any faculty member can add all related

departments inventory.
Any faculty member can add all related

departments inventory.
Any university group member can add all

assets in the inventory.
Any university group member can add all

assets in the inventory.
A bulk entry can be used to add many

assets.

Table 6.11: An example of a semantic cluster identified from the "MHC-PM system" case study.

Identified Cluster Members Ground Truth Cluster Members

Patient should be able to request their own
personal.

Patient should be able to request their own
personal.

Clinical Staff should be able to look up
patient information including appointment

history, diagnosis history, prescriptions
history.

Clinical Staff should be able to look up
patient information including appointment

history, diagnosis history, prescriptions
history.

Receptionist should be able to search for
records of individual patients.

Receptionist should be able to search for
records of individual patients.

Nurses going into the field should be able to
download record on to their laptop and after

upload back the records will
modified/updated to the system.

Nurses going into the field should be able to
download record on to their laptop and after

upload back the records will
modified/updated to the system.

System shall generate a list of patient
conditions, treatments and the current

care provider.

Within 3 months of death the patient’s
record will be removed from the

MHC-PMS system and be stored in the
old data record (none use of data) or

archive system.

baseline [96] in terms of precision, recall, F-measure and C_GAP. The best values are displayed in

bold.

Precision values take a high-range (74% – 87%), recall values take a reasonable range (63% –

75%) and F-measure values take a high-range (73% - 78%) across different case studies. In most

of these case studies, we achieved better precision, recall and F-measure values compared with the

baseline [96]. Figures 6.4, 6.5 and 7.10 show the bar graphs of the precision, recall and F-measure

values achieved by our clustering solution compared with the baseline [96].

89 6.3. RESULTS ANALYSIS AND EVALUATION

Table 6.12: Accuracy of the generated semantic clusters for the case studies of functional require-
ments written in plain text.

E-store
System

WASP
System

UUIS
System

MHC-PM
System

Our approach

Average
Precision

83% 87% 74% 84%

Average
Recall

68% 63% 75% 73%

Average
F-measure

75% 73% 74% 78%

C_Gap 0 2 1 1

The baseline
[96]

Average
Precision

80% 83% 72% 78%

Average
Recall

61% 54% 60% 57%

Average
F-measure

69% 65% 65% 66%

C_Gap 1 4 2 0

Figure 6.4: Bar graph of the precision values of the identified clusters.

90 6.3. RESULTS ANALYSIS AND EVALUATION

Figure 6.5: Bar graph of the recall values of the identified clusters.

Figure 6.6: Bar graph of the F-measure values of the identified clusters.

For example, for the "MHC-PM System" case study our approach achieves better precision, recall

and F-measure values by 6, 16 and 12 percentage points respectively. Thus, the evaluation shows

clustering results with relatively high quality with better precision, recall and F-measure values in

most case studies compared with the baseline [96].

In addition, the proposed clustering approach achieves closer C_Gap values compared with the

work in [96]. Figure 6.7 shows an illustration of the number of clusters identified by both the baseline

and our approach, against the number of requirements for each case study of functional require-

ments. Clearly, Figure 6.7 shows that the identified number of clusters is more closer to the ground

truth compared with the work in [96]. In addition the C_GAP value varies between 0 and 2 for the

four case studies.

Consequently, this indicates that our approach succeeded to achieve an accurate identification of

91 6.4. ASSESSING KPIS

the number of clusters regardless the number of requirements of the case study of interest.

Figure 6.7: The number of the identified clusters against the number of the requirements for each
case study of functional requirements.

6.4 Assessing KPIs

For KPI1, firstly, our approach provides relatively high precision, recall and F-measure values for the

identified semantic cluster across different cases studies containing different writing styles of require-

ment statements (i.e., both user story case studies and case studies of functional requirements). As

shown in Tables 6.6 and 6.12, the average F-measure values take a high-range (73% - 87%) across

the seven conducted case studies.

Moreover, the C_GAP is close to the ground truth number of clusters and in some cases it is the

same as the ground truth as shown in Tables 6.7 and 6.12. Particularly, by comparing our clustering

solution with the related approach proposed in [96], we observe that our approach provides better

accuracy results in terms of precision, recall and F-measure (see Table 6.12). The C_Gap values

are also relatively accurate compared with the C_Gap values identified in the baseline. In addition

our approach succeeded to achieve an accurate identification of the number of clusters regardless

the number of requirements of the case study of interest (see Figure 6.7). Accordingly, our approach

improves the semantic clusters extraction for the case studies of functional requirements compared

with the baseline [96].

At the light of these results, it is noticeable that our semantic clustering solution succeeded to

achieve relatively accurate results that can be applicable regardless the writing style of the input nat-

ural language requirements. This assessment is based on the average precision, recall, F-measure

92 6.4. ASSESSING KPIS

and C_Gap values and their statistics shown in Tables 6.6 and 6.12 as well as the comparison of our

clustering results with a related approach [96].

For KPI2, we assess the applicability of the proposed clustering solution by measuring the end-

to-end execution time across different case studies. The experiments were carried out on a laptop

with a 2.10 Ghz Intel (R) Core (TM) i7-4600U CPU and a 8GB of memory. In Tables 6.13 and

6.14, we present the impact of the number of requirements on the end-to-end execution time across

the seven chosen case studies. As shown in the Tables 6.13 and 6.14, the semantic clustering

approach takes few seconds to few minutes (between 20s and 1m7s) for the seven conducted case

studies. Moreover, both Figures 6.8 and 6.9 show a linear growth trend for the impact of the number

of requirements on the execution time. Given such linear relation and the fact that the end-to-end

execution time takes few seconds to few minutes, we conclude that our approach runs in reasonable

time. Hence, we anticipate that our semantic clustering solution should be practical for more larger

requirements documents.

Table 6.13: The execution time of the clustering approach for the user story case studies

Case Study Phase Execution time in
seconds

CMS Company
preprocessing 5

Clustering (similarity
computa-

tion+HAC+labelling)

28

Total 33

Web Company
preprocessing 11

Clustering (similarity
computa-

tion+HAC+labelling)

56

Total 67

Archive Space
preprocessing 7

Clustering (similarity
computa-

tion+HAC+labelling)

35

Total 42

93 6.4. ASSESSING KPIS

Table 6.14: The execution time of the clustering approach for the case studies of functional require-
ments written in plain text

Case Study Phase Execution time in
seconds

MHC-PM System
preprocessing 5

Clustering (similarity
computa-

tion+HAC+labelling)

15

Total 20

UUIS System
preprocessing 6

Clustering (similarity
computa-

tion+HAC+labelling)

18

Total 24

E-store System
preprocessing 9

Clustering (similarity
computa-

tion+HAC+labelling)

32

Total 41

WASP System
preprocessing 13

Clustering (similarity
computa-

tion+HAC+labelling)

39

Total 52

Figure 6.8: Execution time by number of user stories.

94 6.5. THREATS TO VALIDITY

Figure 6.9: Execution time by number of functional requirements written in plain text.

Regarding KPI3, comparing the results of the seven case studies from different domains and con-

taining requirements with different writing styles, we evaluate whether our approach works properly

for different domains. We first conduct three real-world case studies of user stories from different

domains. Second, we conduct four open-access case studies containing functional requirements

written in plain text.

For the two types of the conducted case studies, the evaluation of the proposed clustering ap-

proach reveals accurate identification of the semantic clusters (KPI1) as well as a reasonable execu-

tion time (KPI2). Accordingly, we conclude that the proposed semantic clustering approach can be

applicable in realistic settings.

6.5 Threats to validity

In this section, we discuss the limitations of the proposed approach in terms of internal threats,

construct threats, external threats and conclusion threats. These threats are as follows:

Internal Validity. We apply semantic similarity of requirements to extract a package break-down

model by means of a clustering approach, regarding requirements with similar functionality as a

package. Although this method may lead to bias of identifying packages, we still achieve relatively

accurate system decomposition compared with ground truth.

Construct validity. With regard to assessing the accuracy of the proposed clustering approach,

the definition of what a "better" cluster is might be a subjective procedure for the user story case

studies since there is no baseline in the literature to compare our clustering results with. Although

this may lead to bias of evaluating clusters, we still achieve relatively accurate results compared with

95 6.6. CONCLUSION

the ground truth clusters that are manually created by the team experts. Moreover, the evaluation of

the conducted case studies of functional requirements of which the ground truth is available reveals

accurate semantic clusters identification.

External validity. Our approach is capable of generating clusters from short text requirements.

However, if a requirement describing a functionality is of too many sentences, our approach maybe

cannot provide an accurate result. Hence, in this case, some manual semantic analyses may still be

needed to overcome this limitation.

Conclusion validity. We evaluate the applicability of our approach on seven real-world case

studies from different domains and with different writing styles. Although the evaluation results are

promising, conducting industrial case studies with larger number of requirements statement may be

needed for a better evaluation.

6.6 Conclusion

In this chapter, we first demonstrate the applicability of the proposed requirements clustering ap-

proach that aims to break-down the system into a set of sub-systems at early stages. Then, we

conducted seven real-world case studies to evaluate the accuracy of the proposed approach. The

conducted case studies are from different domains and they contain different writing styles of require-

ments, i.e., three user story case studies and four case studies of functional requirements written in

plain text.

The evaluation results reveal relatively accurate results for the identified semantic clusters as well

as a reasonable execution time which demonstrates the generalizability and the applicability of the

proposed approach in realistic settings.

In the next chapter, we evaluate the approach that we proposed to automatically generate the

preliminary UML architecture design model.

Chapter 7

Evaluation of the automatic

generation of the preliminary

architecture design models

In this chapter, we demonstrate and assess the applicability of the second pillar of this thesis work that

consists in generating automatically the preliminary UML design model from the identified clusters of

requirements.

For this purpose, we use the seven real-world case studies that were used to assess the clustering

solution. These case studies contain different types of natural language requirements to evaluate the

proposed approach: three case studies containing user stories and four case studies containing

functional requirements written in plain text.

This chapter is organized as follows: Section 7.1 presents the key performance indicators (KPIs)

that we investigated in order to evaluate the approach. Section 7.2 presents the results analysis and

the evaluation. Afterwards, in Section 7.3, we assess the investigated KPIs. Then, in Section 7.4, we

discuss the raised threats to validity and Finally, Section 7.5 concludes the chapter.

7.1 Key Performance Indicators (KPIs)

In this section, we present the KPIs that we investigated in order to assess the applicability of the

proposed automatic models generation approach in practice. Through these KPIs, we aim to evaluate

the generated UML package break-down model containing the UML use-cases representing the

preliminary design model. Hence, we formulate the following three KPIs:

96

97 7.1. KEY PERFORMANCE INDICATORS (KPIS)

• KPI1: Accuracy of the generated UML use case models

Motivation. For this KPI, we aim at determining whether our approach succeeded to correctly

identify and generate the UML use case models from the identified clusters of requirements.

For this purpose, we compare the results of our approach with the ground truth UML use case

models. For each case study, ground truth UML use case models are manually created by

analysts.

Approach. To assess KPI1, we evaluate the generated UML use case models by matching

the identified model elements with the ground truth UML use case models of the case study

of interest. For this, we rely on the well-known measures in the Information Retrieval (IR) field

which are precision, recall and F-measure [78].

For each generated use case model, let True Positive (TP) elements are the elements identified

both manually and by the automatic approach, False Positive (FP) elements be the elements

identified by the automatic approach but not manually and False Negative (FN) elements be

the elements identified manually but not by the automatic approach. The evaluation metrics are

defined as follows:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F −measure = 2 ∗ Precision ∗Recall/(Precision+Recall)

• KPI2: Applicability of the proposed approach in realistic settings

Motivation. For KPI2, we aim to establish whether our approach is scalable. Particularly, the

goal is to check how well the automatic models generation approach performs when increasing

the number of requirement statements.

Approach. In order to evaluate KPI2, we assess the following validation criterion:

– The end-to-end execution time of the UML use case model generation approach:

This validation criterion consists in measuring the impact of the number of requirement

statements on the execution time of our approach. Hence, it aims to check whether the

UML use case models generation process runs within reasonable time for larger number

of requirements in realistic settings.

• KPI3: Applicability of the models generation approach for different domains

98 7.2. RESULTS ANALYSIS AND EVALUATION

Motivation. For this KPI, we put emphasis whether the proposed approach works properly for

different domains, possibly with different writing styles. Hence, we aim to assess the generaliz-

ability of the proposed approach.

Approach. In order to address this KPI, we assess the applicability of our approach on seven

real-world case studies from different domains and with different writing style of requirements

that we detailed in Section 6.2 in the previous chapter.

7.2 Results analysis and evaluation

In this section, we present and evaluate the results of applying our approach to the seven case

studies described in Section 6.2 in the previous chapter . First, we present the obtained results.

Then, we evaluate the accuracy of the generated UML use case models across the two types of case

studies (i.e., user story case studies and case studies of functional requirements). We also compare

the accuracy of the generated UML use case models for the user story case studies with a related

approach.

7.2.1 Relevant model elements extraction

In this section, we present and evaluate the results of applying the proposed NLP techniques to

extract the relevant elements from each cluster of requirements in order to build the UML use case

model describing the system’s decomposition.

• Experimental results

In this subsection, we show the results of applying each step of our approach (see Section 5.2.1

chapter 5) on the conducted case studies.

The first step consists in extracting from each cluster of a case study of interest the relevant ele-

ments that are needed to build the UML use case model namely, actors, use-cases and associations.

For this, we developed a model extractor that is based on NLP techniques to extract the relevant

model elements. We store the extracted elements in a CSV file which contains three columns: the

cluster label, the actor and the use case. An actor and a use-case that are on the same row are linked

together by an association relationship. Additionally, an associated actor and a use-case belong to

the cluster that is on the same row.

In Figures 7.1-7.7, we show examples of the extracted use case model elements for each case

study that we described in the previous chapter (see Section 6.2).

99 7.2. RESULTS ANALYSIS AND EVALUATION

Figure 7.1: Example of extracted elements for the "CMS Company" case study.

Figure 7.2: Example of extracted elements for the "Web Company" case study.

100 7.2. RESULTS ANALYSIS AND EVALUATION

Figure 7.3: Example of extracted elements for the "Archive Space" case study.

Figure 7.4: Example of extracted elements for the "E-store System" case study.

101 7.2. RESULTS ANALYSIS AND EVALUATION

Figure 7.5: Example of extracted elements for the "WASP System" case study.

Figure 7.6: Example of extracted elements for the "UUIS System" case study.

Figure 7.7: Example of extracted elements for the" MHC-PM System" case study.

102 7.2. RESULTS ANALYSIS AND EVALUATION

Afterwards, the extracted use case model elements as well as the identified clusters are fed into

the mapping algorithm that programmatically generates the UML package break-down of use-cases.

The resulted UML use case models containing the packages break-down are generated upon Pa-

pyrus. Figure 7.8 shows an example of the generated UML use case model for the "CMS company"

case study. As shown in the figure, the case study contains seven actors: editor, main editor, marke-

teer, online channel manager, system administrator and developer. The three highlighted packages

"content media language", "flash presentation" and "page url attribute" correspond the identified

clusters. Each package contains a set of use-cases associated with an actor.

Figure 7.8: The generated UML use case model for the CMS Company.

In Figure 7.9, we zoom in the package "page url attribute" in order to show in more details an

example of the content of a UML package element. The highlighted part of the generated UML

use case model represents the UML package of use-cases corresponding to the cluster "page url

attribute". As shown in the figure below, the package contains a set of use-cases and their association

with the actors. Finally, a visual UML package of use-cases could be displayed to illustrate the

features that are embedded in a resulted sub-system. Such visual representation of each resulted

UML package of use-cases would help engineers to have a holistic view of the target system.

103 7.2. RESULTS ANALYSIS AND EVALUATION

Figure 7.9: Example of a mapping of a cluster into a use case package for the CMS Company case
study.

• Results evaluation

In this subsection, we evaluate the results of applying the automatic models generation approach.

For this, we specified True Positive (TP), False Negative (FN) and False Positive (FP) elements

applied to actors, use-cases and their relationships. Tables 7.1- 7.7 summarize the evaluation of the

generated UML use case models in terms of precision, recall and F-measure for the seven conducted

case studies. Moreover, we compare the obtained results for the conducted "Web Company" case

studies with a related work proposed by Elallaoui et al.[41]. We consider the work in [41] as our

104 7.2. RESULTS ANALYSIS AND EVALUATION

baseline because it closely relates to our work since it aims to extract use case models from the user

stories in the "Web Company" case study using a set of NLP rules.

Table 7.1 shows the evaluation results of our approach as well as a comparison with the baseline

[41] in terms of precision, recall and F-measure. The best values are displayed in bold.

Table 7.1: Accuracy of the generated UML use case model for the "Web Company" case study.

Actors Use Cases Relationships

Our approach

TP FP FN TP FP FN TP FP FN
84 0 0 84 2 7 69 17 10

Precision 100% 97% 97%
Recall 100% 92% 90%

F-measure 100% 94% 93%

The baseline
[41]

TP FP FN TP FP FN TP FP FN
90 1 1 143 20 25 81 20 25

Precision 98% 87% 87%
Recall 98% 85% 85%

F-measure 98% 85% 85%

Figure 7.10: Bar graph of F-measure values of the extracted model elements.

Table 7.2: Accuracy of the generated UML use case model for the "CMS Company" case study.

Actors Use Cases Relationships

TP FP FN TP FP FN TP FP FN

34 0 0 32 2 2 28 4 4
Precision 100% 94% 88%

Recall 100% 94% 88%
F-measure 100% 94% 88%

105 7.2. RESULTS ANALYSIS AND EVALUATION

Table 7.3: Accuracy of the generated UML use case model for the "Archive Space" case study.

Actors Use Cases Relationships

TP FP FN TP FP FN TP FP FN

56 0 0 51 1 6 33 11 6
Precision 100% 98% 75%

Recall 100% 89% 84%
F-measure 100% 93% 79%

Table 7.4: Accuracy of the generated UML use case model for the "E-store System" case study.

Actors Use Cases Relationships

TP FP FN TP FP FN TP FP FN

62 0 0 59 9 11 57 12 15
Precision 100% 86% 82%

Recall 100% 84% 79%
F-measure 100% 84% 80%

Table 7.5: Accuracy of the generated UML use case model for the "WASP System" case study.

Actors Use Cases Relationships

TP FP FN TP FP FN TP FP FN

66 0 0 60 10 15 57 13 18
Precision 100% 85% 81%

Recall 100% 80% 76%
F-measure 100% 82% 78%

Table 7.6: Accuracy of the generated UML use case model for the "UUIS System" case study.

Actors Use Cases Relationships

TP FP FN TP FP FN TP FP FN

25 0 0 17 6 8 19 8 10
Precision 100% 73% 70%

Recall 100% 68% 65%
F-measure 100% 70% 67%

Table 7.7: Accuracy of the generated UML use case model for the "MHC-PM System" case study.

Actors Use Cases Relationships

TP FP FN TP FP FN TP FP FN

19 0 0 16 4 6 15 3 7
Precision 100% 80% 83%

Recall 100% 72% 68%
F-measure 100% 76% 74%

As shown in Tables 7.1- 7.7, our approach succeeded to achieve relatively accurate results for the

extracted use case model elements for the seven conducted case studies. For all the conducted case

studies, we succeeded to extract all the actor elements even actors with compound nouns such as

106 7.3. ASSESSING KPIS

"read Only user" and "repository Manager". Consequently, precision, recall and F-measure values

for the actors extraction is equal to 100% for the seven case studies.

We evaluate the accuracy of the extracted model elements based on the F-measure metric as it

combines both precision and recall values.

For use-cases and relationships extraction, F-measure values take a high-range (93%-94%) and

(79%-93%) respectively for the case studies of user stories.

Additionally, as shown in Figure 7.10 evaluation results indicate that our approach succeeded in

extracting all the actors while the approach proposed in the baseline [41] failed to extract actors with

compound nouns such as "newly registered user". Moreover, for use-cases and relationships, our

approach achieves better F-measure results than the baseline [41] by 9 and 8 percentage points

respectively.

Regarding the case studies of functional requirements, F-measure values of use-cases and rela-

tionships extraction take a reasonable-range (70%-84%) and (67%-80%) respectively.

For use-cases and relationships extraction, the values are slightly affected by the fact that our

approach does not support inclusion, extension and generalization relationships between use-cases.

We also observe that the accuracy of use-cases and relationships extraction for the case studies

of functional requirements is slightly lower than the accuracy values for the case studies of user

stories. This is mainly due to the variability of natural language as the considered case studies of

functional requirements are expressed in plain text contrary to the semi-controlled natural language

used to express user stories which facilitates the elements identification process.

7.3 Assessing KPIs

Regarding KPI1, our approach provides relatively high precision, recall and F-measure values for

the identified use case model elements across different cases studies containing different writing

styles of requirements (see Tables 7.1- 7.7). Moreover, by comparing our approach with the related

work proposed in [41] (Table 7.1), we observe that our approach provides better precision, recall and

F-measure values for the "Web Company" case study.

At the light of these results, it is noticeable that our automatic model elements extraction approach

succeeded to achieve relatively accurate results that can be applicable regardless the writing style of

the input natural language requirements.

In order to evaluate KPI2, we assess the applicability of the proposed clustering solution by mea-

suring the end-to-end execution time across different case studies. The experiments were carried

out on a laptop with a 2.10 Ghz Intel (R) Core (TM) i7-4600U CPU and a 8GB of memory.

107 7.4. THREATS TO VALIDITY

Table 7.8: The execution time of the automatic models generation approach for the user story case
studies.

CMS
Company

Web
Company

Archive
Space

Execution time in
seconds

5 8 6

Table 7.9: The execution time of the automatic models generation approach for the case studies of
functional requirements.

E-store
System

WASP
System

UUIS
System

MHC-PM
System

Execution time in
seconds

7 8 5 6

In Tables 7.8 and 7.9, we present the impact of the number of requirements on the execution time

across the seven chosen case studies. As shown in the Tables 7.8 and 7.9, the automatic models

generation approach takes few seconds (between 5s and 8s) for the seven conducted case studies.

Hence, we conclude that our approach runs in a reasonable time and we anticipate that it should

be practical for more larger requirements documents.

Regarding KPI3, we conduct seven case studies from different domains and containing require-

ments with different writing styles. We first conduct three real-world case studies of user stories.

Second, we conduct four open-access case studies containing functional requirements written in

plain text. Four both types of writing styles of the conducted case studies, the evaluation of the ac-

curacy of the proposed models generation approach in terms of precision, recall and F-measure,

reveals relatively accurate result that can be applicable in realistic settings.

7.4 Threats to validity

In this section, we discuss the limitations of the proposed models generation approach in terms of

internal threats, construct threats and external threats. These threats are as follows:

Internal validity. The proposed use case models generation approach does not support the

extraction of inclusion, extension and generalization relationships. Although, this might slightly af-

fects the accuracy of the extracted relationships, we still achieve relatively accurate results for the

relationships identification.

Construct validity. With regard to assessing the automatic models generation approach, the

evaluation procedure might be a subjective since there is no baseline in the literature for all the

considered case studies to compare our results with, except for the "Web Company" case study.

Although this may lead to bias of evaluating the extracted model elements, we still achieve relatively

108 7.5. CONCLUSION

accurate results compared with ground truth that was created manually by analysts.

External validity. We evaluate the applicability of our approach on seven real-world case studies.

Although the evaluation gives promising results, we need to evaluate the approach on further case

studies including industrial ones.

7.5 Conclusion

In this chapter, we firstly demonstrate the applicability of the proposed UML use case models gener-

ation approach describing the system’s decomposition from early requirements. Given as input a set

of clusters of similar natural language requirements, the proposed approach automatically generates

the UML use case model containing a package break-down of the target system.

To evaluate the accuracy of the proposed approach, we conducted the seven real-world case stud-

ies that were used in the previous chapter. The evaluation results reveal relatively accurate results

for the generated UML use case models as well as a reasonable execution time which demonstrates

the applicability and the generalizability of the proposed approach in realistic settings.

Chapter 8

Conclusion and future work

In this dissertation, we proposed a first step towards applying AI for MBSE to optimize the adoption of

MBSE and resolve some of its challenges. Specifically, we addressed the issue of automatically de-

riving preliminary architecture design models expressed in UML from natural language requirement

in the context of complex systems.

We have provided a new flow of AI components including their specific parametrization, enabling

the automation to go from natural language requirements to preliminary UML architecture design.

A prototype has been developed to support the contributions and validate them. The resulted UML

design models describing the system of interest are generated upon Papyrus.

This chapter summarizes the main contributions of the work presented in this dissertation, reca-

pitulates how we validated them, and finally identifies future research work.

Summary of contributions.

Our first contribution was to provide an early decomposition of the complex system into a set of

sub-systems based on the semantic similarity between requirement statements. In fact, such early

decomposition supports the "divide-to-conquer" strategy i.e., building smaller pieces to reduce the

complexity and help developers to better understand and realize the target software project. In addi-

tion, it helps to design a preliminary architecture design describing the systems decomposition as the

identified groups of requirements represent components or sub-systems that should be implemented

and reused.

For this, we proposed a semantic similarity computation module that analyzes and computes the

semantic similarity of both word-level and requirement-level of each pair of requirement statements.

First, the semantic similarity module computes the word-level similarity of requirements using the

109

110

neural word embedding model word2vec as a prediction model. Second, the requirement-level se-

mantic similarity are derived from the obtained word-level semantic similarity using the Mihalcea’s

scoring formula for text similarity.

Third, we employed the Hierarchical Agglomerative Clustering algorithm to group the similar re-

quirements and provide a set of semantic clusters denoting the early decomposition of the system.

The second contribution of this thesis consists in generating automatically the UML preliminary

architecture design model that consists of a UML package break-down of use-cases describing the

system’s decomposition. For this, we developed a model extractor that uses a set of NLP heuristics

to extract from each cluster of requirements, the relevant model elements that are needed to build

the use cases model describing the features of target the system. Then, we implemented a map-

ping algorithm that programmatically generates the UML package break-down model denoting the

system’s decomposition including the UML use case model describing its expected functionalities.

Validation.

The results of our contributions have been validated with literature searching, case studies and feed-

back obtained during the elaboration and presentation of peer-reviewed scientific publications.

Firstly, we have started our work with a literature search of existing research results, techniques,

and tools that are related to our work. We continued to review other new results during the three

years of this Ph.D. thesis. Among the existing works, we found two existing approaches [96, 41]

that closely relate to our work. Hence, we used these two approaches as baselines to assess our

proposal.

Secondly, and in order to evaluate the generalizability of our approach, we conducted seven real-

world case studies from different domains, with different number of requirements and containing

different writing styles of natural language requirements. Among the considered case studies, we

conducted three case studies of user stories in the context of Scrum process, and four open-access

case studies containing functional requirements written in plain text. Indeed, the diversity of the

conducted case studies helps to evaluate whether our approach works properly for different domains,

different number of requirements as well as for different writing styles.

Then, we defined a set of Key Performance Indicators (KPIs) that aim to assess whether our

proposal provides accurate results that could be applicable in realistic settings.

The evaluation results of both semantic clustering approach and the automatic generation of

preliminary design model approach reveal relatively accurate results in terms of precision, recall, F-

measure and execution time. Moreover, the comparison of the obtained results with the two baselines

111

shows that our proposal succeeded to achieve better precision, recall and F-measure results for both

semantic clustering of requirements and automatic generation of preliminary design model.

To conclude, the evaluation of the obtained results demonstrates the accuracy of our proposal as

well as its applicability and generalizability in realistic settings.

Future work

From the work we have accomplished in this dissertation, we see several research directions worth

investigating. Several improvements can also be considered for the prototype that has been imple-

mented.

Improvement of the current prototype. In this dissertation work, we have implemented a pro-

totype that automatically generates a package break-down model including a use case model, from

natural language requirements as a proof of concepts. Although our prototype supports different

writing styles of input requirements, it supports only three templates of user stories.

In a future work, we can extend our prototype to support other possible templates of user stories

as input. Moreover, conducting industrial case studies with larger number of requirements statement

may be needed for a better evaluation of our prototype. Indeed, this could help to generalize the

applicability of our approach in both the industrial context and Scrum processes.

Another direction that could be investigated in a future work is the extension of our prototype

to support the extraction of extension, inclusion and generalization relationships for the generated

UML use case model. To this end, specific NLP heuristics with further semantic analysis among

requirement statements have to be implemented.

Deriving initial architecture design models from non-functional requirements. Requirement

documents commonly have two types of requirements one is functional requirements, which defines

the feature of the system-to-be, and the other is non-functional requirements, which defines the

quality attributes of the system features. Such attributes enforce operational constraints on different

aspects of the system’s behavior, such as its usability, security, reliability, performance, and portability

[30].

In our research, we applied our prototype on functional requirements. In fact, developers empha-

size more on the functional side of the software underrating the non-functional quality attributes such

as development time and cost which later on leads to project failure.

In future work, we could consider the issue of deriving initial architecture design from non-

functional requirements in the context of complex systems.

Indeed, most of the work focusing on automating non-functional requirements categorization use

supervised learning techniques requiring huge training datasets, which are not always available for

112

all domains. The PROMISE repository for requirements engineering has been used in most of these

approaches either to classify requirements into FRs and NFRs or, to classify NFRs into subcategories

[76], [104]. However, when a classification task of requirements related to a specific domain of

application needs to be executed (e.g., grouping FR requirements of a given system by functionality),

chances are that no relevant dataset exists. Thus, high-quality dataset creation is needed if datasets

containing requirements related to a specific domaines of application are not readily available, which

is often the case [48].

In order to mitigate these limitations, we could extend our clustering solution to categorize non-

functional requirements according to their type. So far, employing clustering to categorize non-

functional requirements did not provide sufficient accuracy compared with existing works which rely

on supervised learning methods. Hence, we could integrate additional methods taking into account

popular key words describing each non-functional requirement type to enhance the categorization

process.

Regarding the automatic models generation from the clusters of non-functional requirements, we

could implement specific NLP heuristics to extract relevant elements that are needed to build the initial

architecture design. The NLP heuristics to be implemented will depend heavily on the choice of the

UML design model to be generated which should describe efficiently the non-functional requirements

of the target system.

Appendix A

Résumé

A.1 L’intelligence artificielle pour automatiser l’ingénierie logi-

cielle

L’industrie d’ingénierie logicielle est toujours à la recherche de moyens meilleurs et efficaces pour

créer des produits logiciels de meilleure qualité.

L’ingénierie des systèmes basée sur les modèles (MBSE), telle que définie par le conseil interna-

tional d’ingénierie des systèmes (INCOSE) [112], est "l’application formalisée de la modélisation pour

prendre en charge les exigences du système, la conception, l’analyse, la vérification et les activités

de validation commençant dans la phase de conception et se poursuivant tout au long des phases de

développement et du cycle de vie ultérieur ". MBSE comprend plusieurs concepts de modélisation

: processus, langages, méthodes et outils pour produire un ou plusieurs modèles de système. Par

conséquent, il promet de soutenir les entreprises d’ingénierie logicielle en permettant la réalisation

de systèmes logiciels réussis en favorisant une vision holistique de la conception et en permettant

une architecture logicielle maintenable et de haute qualité.

Malgré ses avantages théoriques, plusieurs études ont démontré que la méthodologie du MBSE

reste difficile à appliquer [87, 10]. Par conséquent, le MBSE n’est pas encore largement adopté dans

les applications du monde réel car il est toujours aux prises avec d’énormes défis [5, 27, 28] que ni

la partie basée sur les modèles ni la partie ingénierie des systèmes ne sont capables de gérer. Nous

pouvons résumer tous les défis liés à l’adoption du MBSE en un seul : ses avantages ne l’emportent

pas sur ses coûts [24].

Les récents progrès technologiques concernant la big data, le développement de systèmes,

d’algorithmes et d’outils plus complexes ont permis aux industries d’avoir de nombreuses oppor-

113

114 A.1. L’INTELLIGENCE ARTIFICIELLE POUR AUTOMATISER L’INGÉNIERIE LOGICIELLE

tunités d’utiliser l’intelligence artificielle (IA). La discipline de l’IA est généralement reconnue depuis

plus de sept décennies. Il peut être décrit comme la science de l’imitation des facultés mentales

humaines sur un ordinateur [54].

Les systèmes d’IA comprennent des modules qui permettent de générer des types d’apprentissage.

Par exemple, l’apprentissage automatique (ML) est un type de technique d’intelligence artificielle qui

prend des décisions ou des prédictions basées sur des données. Le traitement du langage naturel

(TALN) est la branche de l’IA qui permet aux ordinateurs de comprendre, d’interpréter et de manip-

uler les langues humaines. En fait, les techniques d’IA associées à une technologie appropriée ont

permis aux systèmes de percevoir, de prédire et d’agir pour aider les humains dans un large éventail

d’applications.

En 2016, l’IA a fait une percée majeure lorsqu’un système informatique développé par les chercheurs

de Google DeepMind, AlphaGo, a battu le meilleur joueur humain du monde au Go, un jeu bien plus

compliqué que les échecs. Au cours de la même année, la société Microsoft a lancé son chatbot IA

Tay pour mieux comprendre la façon dont les adolescents parlent via Twitter. Tay visait à appren-

dre à mieux parler au fil du temps à travers des conversations, cependant, il a été fermé seulement

16 heures après son lancement lorsqu’il a commencé à publier des tweets incendiaires et offen-

sants. Bien que ces deux exemples ne puissent pas être comparés en raison de leurs domaines

d’application différents, il est crucial de reconnaître à la fois les avantages et les inconvénients de

l’application de l’IA et de la garder sous contrôle.

Bien que les disciplines de l’IA et de l’ingénierie logicielle se soient développées séparément, elles

ont de nombreux points communs. En fait, les deux disciplines traitent de la modélisation d’objets du

monde réel à partir du monde réel comme les processus métier, les connaissances d’experts ou les

modèles de processus [94].

De nos jours, plusieurs directions de recherche des disciplines de l’IA et de l’ingénierie logicielle

se rapprochent et commencent à construire de nouveaux domaines de recherche, l’ingénierie logi-

cielle automatisée en faisant partie. L’ingénierie logicielle automatisée est un domaine de recherche

qui développe constamment de nouvelles méthodologies et technologies afin de créer des systèmes

logiciels qui présentent une certaine forme d’intelligence humaine. Il vise à assister ou à automatiser

les activités de l’ingénierie logicielle afin d’améliorer l’efficacité, de réduire le temps et les coûts du

processus de développement du système.

115 A.2. AUTOMATISATION DU MBSE EN UTILISANT L’IA - LES PROBLÈMES POTENTIELS

A.2 Automatisation du MBSE en utilisant l’IA - les problèmes

potentiels

Au cours des dernières années, les contraintes liées à la conception des systèmes évoluent de

plus en plus et nécessitent l’intégration d’un plus grand nombre d’intervenants dans les projets pour

gérer diverses nouvelles préoccupations - telles que la sécurité, la sûreté, les coûts et la durabilité

- plus tôt dans le processus, au moment de la spécification. Par conséquent, les projets logiciels

modernes sont de plus en plus volumineux et donc plus complexes que dans le passé. En partic-

ulier, la croissance exponentielle du nombre d’exigences système soulève des difficultés pour gérer

manuellement les exigences et avoir une vision claire et cristalline des attentes et de la portée du

système à concevoir [22].

Les méthodes de développement basées sur des modèles garantissent l’application formalisée

de la modélisation pour la spécification du système, au lieu de le faire simplement en utilisant un

texte informel ou une description de dessins. Cependant, les modèles de conception d’architecture

sont toujours extraits manuellement par les ingénieurs, ce qui est devenu une tâche fastidieuse,

chronophage et sujette aux erreurs, en particulier avec la croissance exponentielle des exigences du

système et la nécessité de tout retracer tout au long du cycle de vie du produit à concevoir. Ainsi,

cette tâche est critique car les erreurs introduites au début du développement sont les plus difficiles

et les plus coûteuses à corriger [23].

De plus, la demande croissante d’agilité et le développement de systèmes plus complexes ont

conduit les praticiens à se concentrer sur la programmation plutôt que sur la gestion des exigences, la

planification, la spécification, l’architecture, la conception et la documentation [80]. Par conséquent,

l’adoption de méthodes basées sur des modèles pour développer des systèmes complexes devient

un défi car cela nécessite beaucoup de temps, de coûts et d’investissements en ressources [72]. En

effet, le ROI (Retour sur Investissement) déployant le MBSE est en effet plus perçu sur le long terme

que sur le court terme [13]. Le manque d’expertise humaine ainsi que des outils d’automatisation

puissants sont souvent cités comme les principaux obstacles clés qui ralentissent encore la diffu-

sion de l’approche du MBSE et présentent des obstacles importants pour démontrer son ROI. Par

conséquent, il va de soi que les progrès de l’IA peuvent apporter une grande valeur pratique pour

atténuer certains des défis soulevés par l’adoption du MBSE.

Dans les années 1990, Ian [106] a posé la question : « Pourquoi l’IA n’a-t-elle jamais été men-

tionnée dans une discussion de séminaire sur l’avenir de l’ingénierie logicielle ? Après près de 30

ans, et en regardant dans le SE Handbook [112] et le récent inspirant SE Vision 2025 [57], il est

également surprenant que l’application de l’IA pour l’ingénierie logicielle ne soit pas clairement men-

116 A.3. OBJECTIF DE LA THÈSE

tionnée. On se demande donc, au lieu d’ignorer de nombreuses méthodes MBSE bien connues,

pourquoi ne pas automatiser la conception des systèmes à partir des exigences logicielles à

l’aide de solutions intelligentes ?

Notre recherche englobe l’intégration des domaines du MBSE et de l’IA - en particulier des tech-

niques de ML et de TALN - pour automatiser la génération de conception d’architecture de systèmes

complexes et ainsi, améliorer l’efficacité, réduire le temps et les coûts du processus de développe-

ment.

A.3 Objectif de la thèse

Dans les premières étapes du processus de développement logiciel, les ingénieurs découvrent et

collectent les exigences des clients, puis les enregistrent manuellement dans un document de spéci-

fication des exigences. Les exigences rassemblées décrivent différents aspects du logiciel cible dans

un langage naturel informel. L’élicitation et la gestion des exigences ont un impact significatif sur la

qualité et le succès des systèmes d’information, car les erreurs introduites au début du développe-

ment sont les plus difficiles et les plus coûteuses à corriger [23]. Les chiffres de l’industrie indiquent

qu’une ingénierie des exigences insuffisante est à l’origine de l’échec de plus de 50% des projets

logiciels [70]. Par conséquent, il est crucial que les exigences définies soient bien comprises et bien

gérées par les ingénieurs [118].

Ces dernières années, les contraintes de conception du système évoluent de plus en plus, né-

cessitant d’intégrer davantage d’intervenants dans les projets pour gérer diverses nouvelles préoc-

cupations - telles que la sécurité, la sûreté, les coûts et la durabilité - plus tôt dans le processus, au

moment de la spécification. Par conséquent, les ensembles d’exigences utilisés dans l’analyse et la

conception de tels systèmes sont souvent si vastes que les techniques traditionnelles de gestion des

exigences et d’organisation deviennent lourdes. De plus, les projets logiciels modernes deviennent

beaucoup plus grands et plus complexes.

En effet, de nombreux défis classiques du développement de produits logiciels découlent de cette

complexité et de ses augmentations non linéaires avec la taille [22]. En particulier, la croissance

exponentielle du nombre d’exigences pose des difficultés pour gérer manuellement les exigences

et avoir une vision cristalline claire des attentes et de la portée du système à concevoir. Bien que

les méthodes du MBSE restent le point central qui assure la transition des exigences de langage

naturel à la conception de l’architecture, son adoption fait toujours face à des obstacles importants

pour démontrer son ROI, en particulier avec la complexité croissante des systèmes développés.

Les méthodes basées sur l’IA de leur coté ont montré leur capacité à améliorer le processus de

117 A.3. OBJECTIF DE LA THÈSE

développement logiciel, y compris la modélisation des exigences. Par conséquent, nous visons à

tirer parti de ces avancées pour automatiser la transition des exigences logicielles exprimées en lan-

gage naturel aux modèles de conception d’architecture préliminaires dans le contexte de systèmes

complexes.

La principale question de recherche de notre travail est la suivante : "Quelle méthodologie

est suffisamment efficace pour faire face à la fois à la complexité des systèmes logiciels et

à l’automatisation de la génération de conception d’architecture à partir des exigences du

système exprimées en langage naturel ?"

La principale question de recherche vise à définir une méthodologie basée sur les composants

de l’IA, qui devrait faire face aux défis abordés à la fois par (1) la complexité des systèmes en rai-

son du nombre croissant d’exigences, ce qui soulève la nécessité de décomposer le système en

un ensemble de sous-systèmes; (2) l’automatisation de la génération des modèles de conception

d’architecture exprimés en UML décrivant la décomposition du système cible afin de fournir une vis-

ibilité holistique du système complexe. Nous avons décomposé la question de recherche ci-dessus

en deux questions de recherche sous-jacentes plus précises et plus ciblées qui constituent les prin-

cipales préoccupations de cette thèse :

• RQ1- "Comment garantir une décomposition précise du système complexe aux premiers

stades du processus de développement ?"

L’objectif de cette question de recherche est de définir une méthode qui décompose le sys-

tèmes en sou-systèmes en se basants sur les similarités sémantiques entre les exigences

logicielles du système cible. Pour cela, il est crucial de :

-Premièrement, définir une méthode de calcul de similarité qui assure un regroupement effi-

cace des exigences exprimées en langage naturel qui partagent des fonctionnalités ou des

caractéristiques similaires. Dans ce contexte, de nombreuses méthodes ont été proposées

dans la littérature pour calculer la similarité entre les énoncés d’exigences exprimées en lan-

gage naturel. Cependant, les méthodes existantes sont plutôt immatures, c’est-à-dire qu’elles

manquent de précision (en ce qui concerne les groupes d’exigences identifiés) et souffrent

d’informations sémantiques extraites incomplètes. Ainsi, notre objectif est de proposer un

module de calcul de similarité qui améliore l’extraction de l’information sémantique à partir

des énoncés d’exigences et améliore la précision des groupes d’exigences identifiés.

-Deuxièmement, définir une méthode pratique basée sur l’apprentissage automatique qui garan-

tit un regroupement précis des déclarations d’exigences en langage naturel en fonction de la

similarité sémantique extraite parmi les exigences logicielles. La solution de regroupement

118 A.4. CONTRIBUTIONS

doit offrir un degré élevé d’automatisation afin d’accélérer le processus et d’améliorer son effi-

cacité. Les groupes identifiés d’exigences similaires représenteront une première partition du

système complexe en un ensemble de sous-systèmes qui pourront être éclatés en composants

de conception d’architecture avec des degrés de détail supplémentaires.

• RQ2- "Comment automatiser la génération de modèles de conception d’ architecture à

partir des exigences du système exprimées en langage naturel ?"

Le langage naturel est la notation prédominante que les praticiens utilisent pour représenter

les exigences du système. Bien que facile à lire, le langage naturel ne met pas facilement

en évidence les concepts et les relations clés tels que les dépendances. Cela contraste avec

la capacité inhérente des modèles de conception à visualiser un système donné de manière

holistique. C’est là que réside l’importance d’une solution automatique qui comble le fossé

entre les exigences du langage naturel et les modèles de conception d’architecture.

Après avoir décomposé le système en un ensemble de sous-systèmes, il est crucial de fournir

une vision claire et holistique des différents sous-systèmes décomposant le système cible. En

fait, une telle représentation visuelle permet aux ingénieurs de mieux comprendre les carac-

téristiques et la portée du système cible et contribue à accélérer le processus de développe-

ment. Cependant, en raison du manque d’outils puissants, en particulier d’outils permet-

tant une automatisation élevée des processus, les approches basées sur des modèles ne

sont encore que marginalement adoptées par les ingénieurs logiciels. Ainsi, la deuxième

question de recherche est abordée par la définition d’une solution qui permet un haut degré

d’automatisation de la génération d’une conception d’architectural préliminaire exprimée en

UML décrivant le système ainsi que ses sous-systèmes.

A.4 Contributions

Dans des scénarios réels, l’ingénierie des exigences et la conception de l’architecture peuvent

ne pas être aussi proches qu’elles semblent l’être en théorie. Les interdépendances et les con-

traintes entre les artefacts architecturaux et les exigences initiales sont difficiles à comprendre

et à modéliser lors du développement logiciel. Cela est principalement dû à la complexité crois-

sante des systèmes logiciels modernes ainsi qu’au manque d’outils d’automatisation offrant

une conception architecturale précise aux premiers stades du processus de développement.

Dans cette thèse, nous visons à contribuer à une première étape vers l’application de l’IA pour

le MBSE afin d’optimiser l’adoption du MBSE et de résoudre un ensemble de ses défis. En par-

119 A.4. CONTRIBUTIONS

ticulier, nous proposons une méthodologie basée sur l’IA qui permet d’automatiser la tran-

sition des exigences du système écrites en langage naturel à la conception d’architecture

décomposant le système cible à des stades précoces comme l’illustre la Figure A.1.

Figure A.1: Un aperçu de l’approche proposée

Notre méthodologie répond aux deux questions de recherche mentionnées précédemment. La

première question de recherche (1) "Comment garantir une décomposition précise du sys-

tème complexe aux premiers stades du processus de développement ? " est abordée par

la définition et la mise en œuvre d’une méthodologie basée sur l’apprentissage automatique qui

permet le regroupement d’exigences logicielles sémantiquement similaires et, par conséquent,

permet la décomposition du système logiciel en sous-systèmes à des stades précoces. En ap-

prentissage automatique, il existe deux méthodes pour atteindre cet objectif : la classification

des exigences (apprentissage supervisé) et le clustering des exigences (apprentissage non

supervisé).

Néanmoins, les données d’entrainement de haute qualité nécessaires à la tâche de classifica-

tion des exigences ne sont pas toujours disponibles pour tous les domaines d’application. Par

conséquent, comme notre objectif est de fournir une méthode applicable à tous les domaines

d’application, nous proposons une solution de clustering basée sur la similarité sémantique

des exigences logicielles. La solution de clustering proposée vise à fournir une première par-

tition du système complexe en un ensemble de sous-systèmes en regroupant des exigences

similaires dans le même cluster. Ainsi, chaque cluster définit un sous-système qui couvre une

fonctionnalité/caractéristique particulière du système complexe et qui représente un composant

120 A.4. CONTRIBUTIONS

de conception d’architecture avec des degrés de détail supplémentaires.

Comme le montre la figure A.1, la solution de clustering proposée est basée sur un module

de calcul de similarité sémantique qui extrait la similarité sémantique entre les exigences. Le

module de calcul de similarité est principalement basé sur l’incorporation de mots et prend

en compte à la fois la similarité au niveau du mot et au niveau de l’énoncé de l’exigence

afin d’améliorer l’extraction de la similarité sémantique entre les paires d’exigences. Par con-

séquent, le calcul de similarité sémantique comprend deux étapes : (i) similarité au niveau des

mots : nous utilisons un modèle de prolongement lexicaux neuronaux, word2vec, comme mod-

èle prédictif pour calculer la similarité sémantique entre les paire de mots dans chaque paire

d’énoncés d’exigences. (ii) similarité au niveau des énoncés des exigences : nous étendons la

similarité au niveau des mots au niveau des exigences. Pour cela, nous utilisons une fonction

de notation pour la similarité de texte qui prend en compte la similarité sémantique mot à mot

obtenue dans l’étape précédente, et génère en sortie la matrice de similarité de chaque paire

d’énoncés d’exigences.

De plus, nous avons mis en place une opération qui identifie automatiquement le nombre op-

timal de clusters à générer afin de réduire l’intervention manuelle. Enfin, les exigences sont

regroupées en fonction de leurs scores de similarité sémantique à l’aide d’un algorithme de

clustering et les clusters générés sont étiquetés automatiquement en utilisant une fonction

d’identification et de classement des mots clés.

La question de recherche (2) "Comment automatiser efficacement la génération de mod-

èles de conception d’ architecture en UML partir des exigences système exprimées en

langage naturel ?" est abordée par la définition et la mise en œuvre d’une méthode qui génère

automatiquement les modèles de conception d’architecture décomposant le système complexe

en se basants sur les groupes d’exigences identifiés.

Afin d’atteindre cet objectif, nous définissons et implémentons d’abord un ensemble d’heuristiques

de TALN qui extraient les éléments pertinents pour construire le modèle préliminaire de con-

ception à partir de chaque exigence au sein des clusters identifiés. Le modèle préliminaire

d’architecture généré consiste en un modèle UML de paquets de cas d’utilisation décrivant une

décomposition initiale du système cible. En effet, l’adoption d’un modèle de paquets fournissant

une décomposition initiale du système permet de représenter et de communiquer ce qui est im-

portant entre les parties prenantes et les développeurs, donne un aperçu des fonctionnalités

attendues du système cible et permet de suivre les exigences recueillies tout au long du projet.

121 A.5. VALIDATION

Cette étape vise à extraire les relations intra-clusters des concepts du modèles de conception

à partir de chaque cluster. Par conséquent, le résultat de cette étape fournit des degrés de dé-

tail supplémentaires sur les composants d’architecture identifiés qui décomposent le système

complexe.

Ensuite, la deuxième étape consiste à implémenter un algorithme de mapping qui transforme

les éléments pertinents du modèle en leurs correspondants dans le modèle de paquet de

cas d’utilisation UML. Par conséquent, la sortie est un modèle préliminaire de paquet de cas

d’utilisation en UML. Ainsi, le modèle de conception généré fournit une vue holistique du sys-

tème cible en montrant les relations intra-cluster entre les concepts du modèle.

A.5 Validation

En plus de l’implémentation des prototypes, les résultats de nos contributions ont été validés

par des recherches bibliographiques, des études de cas et de la présentation de publications

scientifiques évaluées par des pairs.

Premièrement, nous avons commencé notre travail par une revue de littérature des résultats de

recherche, des techniques et des outils existants qui sont liés à notre travail. Nous avons con-

tinué à examiner d’autres nouveaux résultats au cours des trois années de cette thèse. Parmi

les travaux existants, nous avons identifié deux approches existantes [96, 41] qui sont étroite-

ment liées à notre travail. Par conséquent, nous avons utilisé ces deux approches comme

référence pour évaluer les résultats de nos travaux.

Deuxièmement, et afin d’évaluer la généralisabilité de notre approche, nous avons mené sept

cas d’étude appartenant à différents domaines, avec un nombre différent d’exigences logicielles

et présentant différents styles d’écriture en langage naturel. Parmi les études de cas consid-

érés, nous avons mené trois cas d’étude réels d’histoires d’utilisateurs dans le contexte du

processus Scrum, et quatre cas d’étude en accès libre contenant des exigences fonctionnelles

écrites en texte brut. En effet, la diversité des cas d’étude menés permet d’évaluer si notre

approche fonctionne correctement pour différents domaines, différents nombres d’exigences

ainsi que pour différents styles d’écriture.

Ensuite, nous avons défini un ensemble d’indicateurs de performance clés qui visent à évaluer

si notre prototype fournit des résultats précis qui pourraient être applicables dans des contextes

réalistes.

122 A.5. VALIDATION

Les résultats de l’évaluation de l’approche de clustering sémantique et de l’approche de généra-

tion automatique du modèle préliminaire de conception révèlent des résultats relativement pré-

cis en termes de précision, de rappel, de F-mesure et de temps d’exécution. De plus, la com-

paraison des résultats obtenus avec les travaux existants [96], [41] montre que notre prototype

a réussi à obtenir de meilleurs résultats pour le regroupement sémantique des exigences ainsi

que pour la génération automatique du modèle de conception préliminaire.

Finalement, l’évaluation des résultats obtenus démontre que notre proposition pourrait être

applicable et généralisée dans des contextes réalistes.

Appendix B

Technical demonstration of the

developed tool

In this technical demonstration, we use the "CMS Company" (6.2.1) case study as an input to the

tool in order to illustrate the execution steps of the prototype that we developed.

B.1 The semantic clustering approach

The fist step of our prototype consists in generating the semantic clusters of requirements from the

input "CMS Company" case study. This task is implemented in Python 3.7.4. In what follows we

present the software and the libraries that we used to implement the proposed approach as well as

a demonstration of the execution.

B.1.1 Software and libraries

Task Software / Library

Integrated Development
Environment (IDE)

Spyder IDE: https://www.spyder-ide.org/

word2vec model https:

//code.google.com/archive/p/word2vec/

Tokenization nltk.word_tokenize
TF-IFD vectorizer sklearn.feature_extraction.text.TfidfVectorizer

Stemming nltk.stem.porter.PorterStemmer
Pos-tagging nltk.import word_tokenize.pos_tag

HAC algorithm sklearn.cluster.AgglomerativeClustering
Dunn index dunn_index.dunn

Lemmatization nltk.stem.wordnet.WordNetLemmatizer
English stopwords nltk.corpus.stopwords.words(’english’)
Clusters labelling gensim.summarization.keywords

123

124 B.1. THE SEMANTIC CLUSTERING APPROACH

B.1.2 Execution

Firstly, we have to run the "clustering.py" file in order to generate the semantic clusters of require-

ments. As shown in Figure B.1, by executing this file for the "CMS Company" case study, we obtain

a set of labelled clusters.

Figure B.1: The generation of semantic clusters of requirements.

Then, we run the "extract-use-case-elements.py" a shown in Figure B.2. This step generates the

125 B.1. THE SEMANTIC CLUSTERING APPROACH

CSV file containing the relevant use case model elements as well as the cluster they belong to.

Figure B.2: The use case model elements extraction.

126 B.2. AUTOMATIC GENERATION OF THE UML USE CASE MODEL

B.2 Automatic generation of the UML use case model

B.2.1 Software and libraries

Task Software / Library

Integrated Development
Environment (IDE)

Papyrus: https://www.eclipse.org/
papyrus/download.html

UML2 SDK tool https://www.eclipse.org/modeling/mdt/

uml2/docs/articles/Getting_Started_

with_UML2/article.html

UML Factory org.eclipse.uml2.uml.UMLFactory;
UML use case elements org.eclipse.uml2.uml.Actor

org.eclipse.uml2.uml.AggregationKind
org.eclipse.uml2.uml.Association
org.eclipse.uml2.uml.Classifier

org.eclipse.uml2.uml.Component
org.eclipse.uml2.uml.Enumeration

org.eclipse.uml2.uml.EnumerationLiteral
org.eclipse.uml2.uml.Generalization

org.eclipse.uml2.uml.LiteralUnlimitedNatural
org.eclipse.uml2.uml.Model

org.eclipse.uml2.uml.Package
org.eclipse.uml2.uml.PrimitiveType

org.eclipse.uml2.uml.Property
org.eclipse.uml2.uml.Stereotype

org.eclipse.uml2.uml.Type

B.2.2 Execution

In order to automatically generate UML use case models, we run the mapping algorithm that takes

as input the CSV containing the relevant model elements. The algorithm was developed in java using

the UML2 SDK plugin as shown in Figure B.3.

127 B.2. AUTOMATIC GENERATION OF THE UML USE CASE MODEL

Figure B.3: The UML use case model generation.

128 B.2. AUTOMATIC GENERATION OF THE UML USE CASE MODEL

Bibliography

[1] Standard glossary of software engineering terminology. 1990.

[2] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K. Schneider. What works better?

a study of classifying requirements. 2017 IEEE 25th International Requirements Engineering

Conference (RE), pages 496–501, 2017.

[3] S. Adolph, A. Cockburn, and P. Bramble. Patterns for effective use cases. 2002.

[4] E. Agirre, D. M. Cer, M. T. Diab, A. Gonzalez-Agirre, and W. Guo. *sem 2013 shared task:

Semantic textual similarity. In *SEM@NAACL-HLT, 2013.

[5] A. Albers and C. Zingel. Challenges of model-based systems engineering: A study towards

unified term understanding and the state of usage of sysml. 2013.

[6] A. Alebrahim. Framework for identifying meta-requirements. 2017.

[7] Y. Amannejad, M. Moshirpour, B. Far, and R. Alhajj. From requirements to software design:

An automated solution for packaging software classes. Proceedings of the 2014 IEEE 15th

International Conference on Information Reuse and Integration (IEEE IRI 2014), pages 36–43,

2014.

[8] M. R. Anderberg. Cluster analysis for applications. 1973.

[9] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer. Extracting domain models from natural-

language requirements: approach and industrial evaluation. Proceedings of the ACM/IEEE

19th International Conference on Model Driven Engineering Languages and Systems, 2016.

[10] O. Badreddin, R. Khandoker, A. Forward, O. Masmali, and T. Lethbridge. A decade of software

design and modeling: A survey to uncover trends of the practice. Proceedings of the 21th

ACM/IEEE International Conference on Model Driven Engineering Languages and Systems,

2018.

129

130 BIBLIOGRAPHY

[11] A. Bahill, B. Bentz, and F. F. Dean. Discovering system requirements. 1996.

[12] I. S. Bajwa. Object oriented software modeling using nlp based knowledge extraction. 2009.

[13] S. S. Balram. Perceptions of model-based systems engineering as the foundation for cost

estimation and its implications to earned value management. 2012.

[14] D. Bär, C. Biemann, I. Gurevych, and T. Zesch. Ukp: Computing semantic textual similarity by

combining multiple content similarity measures. In SemEval@NAACL-HLT, 2012.

[15] R. Barbosa, D. Januario, A. E. Silva, R. L. O. Moraes, and P. Martins. An approach to clustering

and sequencing of textual requirements. 2015 IEEE International Conference on Dependable

Systems and Networks Workshops, pages 39–44, 2015.

[16] M. Baroni, G. Dinu, and G. Kruszewski. Don’t count, predict! a systematic comparison of

context-counting vs. context-predicting semantic vectors. In ACL, 2014.

[17] J. Bass. Artefacts and agile method tailoring in large-scale offshore software development

programmes. Inf. Softw. Technol., 75:1–16, 2016.

[18] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. In

J. Mach. Learn. Res., 2000.

[19] S. Bird, E. Klein, and E. Loper. Natural language processing with python. 2009.

[20] K. Bittner. Use case modeling. 2002.

[21] G. Booch, J. Rumbaugh, and I. Jacobson. The unified modeling language user guide. J.

Database Manag., 10:51–52, 1999.

[22] F. Brooks. No silver bullet essence and accidents of software engineering. Computer, 20:

10–19, 1987.

[23] B. Brügge and A. Dutoit. Object-oriented software engineering using uml, patterns, and java.

2009.

[24] J. Cabot, R. Clarisó, M. Brambilla, and S. Gérard. Cognifying model-driven software engineer-

ing. In STAF Workshops, 2017.

[25] E. Canedo and B. Mendes. Software requirements classification using machine learning algo-

rithms. Entropy, 22:1057, 2020.

[26] A. Casamayor, D. Godoy, and M. Campo. Functional grouping of natural language require-

ments for assistance in architectural software design. Knowl. Based Syst., 30:78–86, 2012.

131 BIBLIOGRAPHY

[27] M. Chami and J. Bruel. A survey on mbse adoption challenges. 2018.

[28] M. Chami, A. Aleksandraviciene, A. Morkevicius, and J. Bruel. Towards solving mbse adoption

challenges: The d3 mbse adoption toolbox. 2018.

[29] G. Chowdhury. Natural language processing. Annu. Rev. Inf. Sci. Technol., 37:51–89, 2003.

[30] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-functional requirements in software engi-

neering. In International Series in Software Engineering, 2000.

[31] P. Clarkson and C. Eckert. Design process improvement : a review of current practice. 2005.

[32] M. Cohn. User stories applied: For agile software development. 2004.

[33] D. K. Deeptimahanti and M. Babar. An automated tool for generating uml models from natural

language requirements. 2009 IEEE/ACM International Conference on Automated Software

Engineering, pages 680–682, 2009.

[34] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by latent

semantic analysis. Journal of the Association for Information Science and Technology, 41:

391–407, 1990.

[35] S. Delisle, K. Barker, and I. Biskri. Object-oriented analysis : Getting help from robust compu-

tational linguistic tools. 1999.

[36] D. Dubin. The most influential paper gerard salton never wrote. Libr. Trends, 52:748–764,

2004.

[37] J. C. Dunn. Well-separated clusters and optimal fuzzy partitions. 1974.

[38] T. Dybå and T. Dingsøyr. Empirical studies of agile software development: A systematic review.

Inf. Softw. Technol., 50:833–859, 2008.

[39] J. Eckhardt, A. Vogelsang, and D. Fernández. Are "non-functional" requirements really non-

functional? an investigation of non-functional requirements in practice. 2016 IEEE/ACM 38th

International Conference on Software Engineering (ICSE), pages 832–842, 2016.

[40] M. Elallaoui, K. Nafil, and R. Touahni. Automatic generation of uml sequence diagrams from

user stories in scrum process. 2015 10th International Conference on Intelligent Systems:

Theories and Applications (SITA), pages 1–6, 2015.

[41] M. Elallaoui, K. Nafil, and R. Touahni. Automatic transformation of user stories into uml use

case diagrams using nlp techniques. In ANT/SEIT, 2018.

132 BIBLIOGRAPHY

[42] S. Faulk. Software requirements: A tutorial,. 1995.

[43] S. Fernando and M. Stevenson. A semantic similarity approach to paraphrase detection. 2008.

[44] M. Galster, A. Eberlein, and L. Jiang. Structuring software requirements for architecture design.

2013 20th IEEE International Conference and Workshops on Engineering of Computer Based

Systems (ECBS), pages 119–128, 2013.

[45] A. Ghazarian. Characterization of functional software requirements space: The law of re-

quirements taxonomic growth. In 2012 20th IEEE International Requirements Engineering

Conference (RE), pages 241–250, 2012. doi: 10.1109/RE.2012.6345810.

[46] A. Ghazarian, M. S. Tehrani, and A. Ghazarian. A software requirements specification frame-

work for objective pattern recognition: A set-theoretic classification approach. In 2011 16th

IEEE International Conference on Engineering of Complex Computer Systems, pages 211–

220, 2011. doi: 10.1109/ICECCS.2011.28.

[47] F. Gilson and C. Irwin. From user stories to use case scenarios towards a generative approach.

2018 25th Australasian Software Engineering Conference (ASWEC), pages 61–65, 2018.

[48] V. Gudivada, A. Apon, and J. Ding. Data quality considerations for big data and machine

learning: Going beyond data cleaning and transformations. 2017.

[49] J. Hallqvist and J. Larsson. Introducing mbse by using systems engineering principles. 2016.

[50] L. Han, A. L. Kashyap, T. Finin, J. Mayfield, and J. Weese. UMBC_EBIQUITY-CORE: Se-

mantic textual similarity systems. In Second Joint Conference on Lexical and Computational

Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Se-

mantic Textual Similarity, pages 44–52, Atlanta, Georgia, USA, June 2013. Association for

Computational Linguistics. URL https://www.aclweb.org/anthology/S13-1005.

[51] H. M. Harmain and R. Gaizauskas. Cm-builder: an automated nl-based case tool. Proceed-

ings ASE 2000. Fifteenth IEEE International Conference on Automated Software Engineering,

pages 45–53, 2000.

[52] H. Herchi and W. B. Abdessalem. From user requirements to uml class diagram. ArXiv,

abs/1211.0713, 2012.

[53] A. Hess, P. Diebold, and N. Seyff. Understanding information needs of agile teams to improve

requirements communication. Journal of Industrial Information Integration, 14:3–15, 2019.

133 BIBLIOGRAPHY

[54] A. Hopgood. The state of artificial intelligence. Adv. Comput., 65:3–77, 2005.

[55] A. Hotho, A. Nürnberger, and G. Paass. A brief survey of text mining. LDV Forum, 20:19–62,

2005.

[56] B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for matching

natural language sentences. In NIPS, 2014.

[57] INCOSE. A world in motion: Systems engineering vision 2025. 2014.

[58] A. Islam and D. Inkpen. Semantic text similarity using corpus-based word similarity and string

similarity. ACM Transactions on Knowledge Discovery from Data (TKDD), 2:1 – 25, 2008.

[59] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-oriented software engi-

neering - a use case driven approach. In TOOLS, 1993.

[60] H. Jalab and Z. M. Kasirun. Towards requirements reuse: Identifying similar requirements with

latent semantic analysis and clustering algorithms. 2014.

[61] V. Jijkoun and M. Rijke. Recognizing textual entailment using lexical similarity. 2005.

[62] K. S. Jones. A statistical interpretation of term specificity and its application in retrieval. Journal

of Documentation, 60:493–502, 1988.

[63] W. B. A. Karaa, Z. B. Azzouz, A. Singh, N. Dey, A. Ashour, and H. B. Ghézala. Automatic

builder of class diagram (abcd): an application of uml generation from functional requirements.

Software: Practice and Experience, 46:1443 – 1458, 2016.

[64] M. Kassab. The changing landscape of requirements engineering practices over the past

decade. 2015 IEEE Fifth International Workshop on Empirical Requirements Engineering (Em-

piRE), pages 1–8, 2015.

[65] T. Kenter and M. Rijke. Short text similarity with word embeddings. Proceedings of the 24th

ACM International on Conference on Information and Knowledge Management, 2015.

[66] Y. Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.

[67] D. Kolovos, L. M. Rose, N. Matragkas, R. Paige, E. Guerra, J. S. Cuadrado, J. Lara, I. Ráth,

D. Varró, M. Tisi, and J. Cabot. A research roadmap towards achieving scalability in model

driven engineering. In BigMDE ’13, 2013.

[68] A. Kontostathis and W. Pottenger. A framework for understanding latent semantic indexing (lsi)

performance. Inf. Process. Manag., 42:56–73, 2006.

134 BIBLIOGRAPHY

[69] P. Krutchen. The rational unified process: An introduction. 2000.

[70] A. V. Lamsweerde. Requirements engineering - from system goals to uml models to software

specifications. 2009.

[71] R. Lebret and R. Collobert. Word embeddings through hellinger pca. ArXiv, abs/1312.5542,

2014.

[72] R. Löffler, B. Güldali, and S. Geisen. Towards model-based acceptance testing for scrum.

Softwaretechnik-Trends, 30, 2010.

[73] G. Lucassen, F. Dalpiaz, J. M. V. D. Werf, and S. Brinkkemper. Visualizing user story require-

ments at multiple granularity levels via semantic relatedness. In ER, 2016.

[74] G. Lucassen, F. Dalpiaz, J. V. D. Werf, and S. Brinkkemper. The use and effectiveness of user

stories in practice. In REFSQ, 2016.

[75] J. B. MacQueen. Some methods for classification and analysis of multivariate observations.

1967.

[76] A. Mahmoud and G. Williams. Detecting, classifying, and tracing non-functional software re-

quirements. Requirements Engineering, 21:357–381, 2016.

[77] C. D. Manning and H. Schütze. Foundations of statistical natural language processing. In

SGMD, 2002.

[78] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval. 2005.

[79] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky. The stanford

corenlp natural language processing toolkit. In ACL, 2014.

[80] K. Meinke and A. Bennaceur. Machine learning for software engineering: Models, methods,

and applications. 2018 IEEE/ACM 40th International Conference on Software Engineering:

Companion (ICSE-Companion), pages 548–549, 2018.

[81] L. Mich. Nl-oops: from natural language to object oriented requirements using the natural

language processing system lolita. Nat. Lang. Eng., 2:161–187, 1996.

[82] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In EMNLP, 2004.

[83] R. Mihalcea, C. Corley, and C. Strapparava. Corpus-based and knowledge-based measures

of text semantic similarity. In AAAI, 2006.

135 BIBLIOGRAPHY

[84] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean. Efficient estimation of word representations

in vector space. In ICLR, 2013.

[85] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of

words and phrases and their compositionality. ArXiv, abs/1310.4546, 2013.

[86] P. R. More and R. Phalnikar. Generating uml diagrams from natural language specifications.

International Journal of Applied Information Systems, 1:19–23, 2012.

[87] G. Mussbacher, D. Amyot, R. Breu, J. Bruel, B. Cheng, P. Collet, B. Combemale, R. France,

R. Heldal, J. Hill, J. Kienzle, M. Schöttle, F. Steimann, D. R. Stikkolorum, and J. Whittle. The

relevance of model-driven engineering thirty years from now. In MoDELS, 2014.

[88] N. R. C. of Italy. Natural language requirements dataset. URL http://fmt.isti.cnr.it/

nlreqdataset/.

[89] S. P. Overmyer, B. Lavoie, and O. Rambow. Conceptual modeling through linguistic analysis

using lida. Proceedings of the 23rd International Conference on Software Engineering. ICSE

2001, pages 401–410, 2001.

[90] H. Pérez-González and J. Kalita. Automatically generating object models from natural lan-

guage analysis. In OOPSLA ’02, 2002.

[91] M. A. Rahman, M. A. Haque, M. H. Tawhid, and M. Siddik. Classifying non-functional re-

quirements using rnn variants for quality software development. Proceedings of the 3rd ACM

SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Eval-

uation, 2019.

[92] A. Rajaraman and J. Ullman. Mining of massive datasets. 2011.

[93] A. Rashwan, O. Ormandjieva, and R. Witte. Ontology-based classification of non-functional

requirements in software specifications: A new corpus and svm-based classifier. 2013 IEEE

37th Annual Computer Software and Applications Conference, pages 381–386, 2013.

[94] J. Rech and K. Althoff. Artificial intelligence and software engineering: Status and future trends.

Künstliche Intell., 18:5–11, 2004.

[95] H. Romesburg. Cluster analysis for researchers. 1984.

[96] H. E. Salman, M. Hammad, A.-D. Seriai, and A. Al-Sbou. Semantic clustering of functional

requirements using agglomerative hierarchical clustering. Inf., 9:222, 2018.

136 BIBLIOGRAPHY

[97] G. Salton. The smart retrieval system—experiments in automatic document processing. 1971.

[98] G. Salton. A new comparison between conventional indexing (medlars) and automatic text

processing (smart). J. Am. Soc. Inf. Sci., 23:75–84, 1972.

[99] G. Salton and M. McGill. Introduction to modern information retrieval. 1983.

[100] G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing. Commun.

ACM, 18:613–620, 1975.

[101] J. Sayyad Shirabad and T. Menzies. The PROMISE Repository of Software Engineering

Databases. School of Information Technology and Engineering, University of Ottawa, Canada,

2005. URL http://promise.site.uottawa.ca/SERepository.

[102] E.-M. Schön, J. Thomaschewski, and M. J. E. Cuaresma. Agile requirements engineering: A

systematic literature review. Comput. Stand. Interfaces, 49:79–91, 2017.

[103] P. Singh, D. Singh, and A. Sharma. Classification of non-functional requirements from srs

documents using thematic roles. 2016 IEEE International Symposium on Nanoelectronic and

Information Systems (iNIS), pages 206–207, 2016.

[104] P. Singh, D. Singh, and A. K. Sharma. Rule-based system for automated classification of non-

functional requirements from requirement specifications. 2016 International Conference on

Advances in Computing, Communications and Informatics (ICACCI), pages 620–626, 2016.

[105] R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning with neural tensor networks for

knowledge base completion. In NIPS, 2013.

[106] I. Sommerville. Artificial intelligence and systems engineering. 1993.

[107] I. Sommerville. Software engineering, 10/e. 2020.

[108] I. Sommerville and P. Sawyer. Requirements engineering: A good practice guide. 1997.

[109] S. Stavru. A critical examination of recent industrial surveys on agile method usage. J. Syst.

Softw., 94:87–97, 2014.

[110] M. H. C. P. M. System. URL https://bscs143.files.wordpress.com/2015/11/

requirement-mhc-pms.docx.

[111] L. Tripp, E. Byrne, P. Croll, P. Deweese, R. Fralick, M. Ginsberg-Finner, J. Harauz, M. Henley,

D. Lawrence, D. Maibor, R. Milovanovic, J. Moore, T. Niesen, D. Rilling, T. Rout, R. Schmidt,

137 BIBLIOGRAPHY

N. Schneidewind, D. Schultz, B. Sherlund, P. Voldner, R. Wade, S. Ali, T. K. Atchinson, M. Au-

guston, R. Barry, L. Beltracchi, H. R. Berlack, R. E. Biehl, M. A. Blackledge, S. Bologna,

J. Borzovs, K. L. Briggs, M. Scott, B. M. Caldwell, J. E. Cardow, E. A. Carrara, L. Catchpole,

K. Chan, A. Cicu, T. Clarke, S. Clermont, R. Coleman, V. Lee, C. W. W. G. Cozens, G. T. Daich,

G. Darnton, T. Daughtrey, B. K. Derganc, J. Do, E. S. Dow, C. Dragstedt, S. Eagles, C. Ebert,

L. Egan, R. Fairley, J. Fendrich, J. Forster, K. Fortenberry, E. Freund, R. Fries, R. Fujii, A. N.

Ghannam, G. John, J. Glynn, L. Gonzalez-Sanz, D. A. Gunther, J. Gustafson, J. Hagar, R. T.

Harauz, H. Harley, W. J. Hecht, M. Heßey, M. Hein, M. Heinrich, D. Henley, J. W. Herrmann,

J. Horch, P. L. Huller, G. K. Hung, F. V. Jackelen, W. S. Jorgensen, G. Junk, R. Kambic, R. S.

Karcich, J. S. Kenett, R. J. Kerner, D. L. Kierzyk, S. Knirk, T. M. Koenig, J. B. Kurihara, J. Lane,

L. Dennis, C. Fang, W. M. Lim, J. J. Lively, D. Longbucco, J. Look, S. Lord, D. J. Magee,

H. Maibor, R. A. Mains, T. Martin, M. Matsubara, P. McAndrew, C. Mccray, J. W. Mcmacken,

B. Mersky, A. Michael, C. Miller, J. W. Modell, P. Moore, M. L. Navrat, I. P. Olson, A. Pal,

P. T. Polack, L. S. Poon, K. R. Przybylski, A. D. Ptack, D. Reilly, A. P. Rilling, H. Sage, S. R.

Sandmayr, H. Schach, N. P. Schaefer, D. J. Schneidewind, L. A. Schultz, R. W. Selmon, D. M.

Shillato, C. A. Siefert, J. M. Singer, R. S. Sivak, N. M. Sky, M. Smith, H. M. Smyre, A. R. Sneed,

D. W. Sorkowitz, L. Sova, J. Spotorno, F. J. Stesney, C. Strauss, S. Brown, T. Toru, H. Richard,

B. Thayer, P. Thomas, T. J. Trellue, G. D. Urbanowicz, U. Venables, D. D. Voges, D. Walden,

W. M. Wallace, J. Walsh, C. Walz, S. A. Swhite-Partain, P. Whitmire, P. Wolfgang, N. C. Work,

J. Yopconka, G. Zalewski, P. F. Zimmerman, Zoll, R. J. Holleman, D. Heirman, V. Chair, J. Gor-

man, M. Emeritus, V. E. Zelenty, S. Aggarwal, C. R. Camp, J. T. Carlo, G. R. Engmann, H. E.

Epstein, T. Garrity, R. D. Garzón, J. Gurney, J. Isaak, L. G. Johnson, R. A. Kennelly, E. Kiener,

J. L. Koepþnger, S. Lambert, J. Logothetis, D. C. Loughry, L. B. Mcclung, R. C. Petersen, G. H.

Peterson, J. Posey, G. S. Robinson, H. Weinrich, and D. Zipse. Ieee recommended practice

for software requirements specifications. 1993.

[112] D. Walden. Systems engineering handbook : a guide for system life cycle processes and

activities. 2015.

[113] Y. Wautelet, S. Heng, M. Kolp, and I. Mirbel. Unifying and extending user story models. In

CAiSE, 2014.

[114] T. A. Wiggerts. Using clustering algorithms in legacy systems remodularization. Proceedings

of the Fourth Working Conference on Reverse Engineering, pages 33–43, 1997.

[115] M. Younas, D. N. A. Jawawi, I. Ghani, and M. A. Shah. Extraction of non-functional requirement

using semantic similarity distance. Neural Computing and Applications, 32:7383–7397, 2019.

138 BIBLIOGRAPHY

[116] T. Yue, L. Briand, and Y. Labiche. atoucan: An automated framework to derive uml analysis

models from use case models. ACM Trans. Softw. Eng. Methodol., 24:13:1–13:52, 2015.

[117] M. L. Zepeda-Mendoza and O. Resendis-Antonio. Hierarchical Agglomerative Clustering,

pages 886–887. Springer New York, New York, NY, 2013. ISBN 978-1-4419-9863-7. doi: 10.

1007/978-1-4419-9863-7_1371. URL https://doi.org/10.1007/978-1-4419-9863-7_1371.

[118] D. Zowghi and C. Coulin. Requirements elicitation: A survey of techniques, approaches, and

tools. 2005.

Titre: Combler le fossé entre les exigences du système exprimées en langage naturel et
les modèles de conception d’architecture

Mots clés: exigence du système, traitement automatique du langage naturel, apprentissage
automatique, conception d’architecture, UML

Résumé : Au cours des dernières années,
les contraintes liées à la conception des sys-
tèmes évoluent de plus en plus et néces-
sitent l’intégration d’un plus grand nombre
d’intervenants dans les projets. Par con-
séquent, les systèmes modernes deviennent
de plus en plus complexes. L’ingénierie des
systèmes basée sur les modèles (MBSE)
est reconnue pour favoriser une vision holis-
tique de la conception et permettre une ar-
chitecture système maintenable et de haute
qualité. Cependant, les modèles de con-
ception d’architecture sont toujours extraits
manuellement à partir des exigences sys-
tème, ce qui est devenu une tâche fastidieuse,
chronophage et sujette aux erreurs. En par-
ticulier, la croissance exponentielle du nom-
bre d’exigences système soulève des diffi-
cultés pour gérer ces exigences manuellement
et avoir une vision claire et cristalline des at-
tentes et de la portée du système à concevoir.
Le manque d’expertise humaine ainsi que des
outils d’automatisation puissants sont souvent
cités comme les principaux obstacles clés qui
ralentissent encore l’adoption de l’approche
MBSE et présentent des obstacles importants
pour démontrer son retour sur investissement
(ROI).
De nos jours, les applications de l’intelligence
artificielle (IA) sont de plus en plus présentes
dans notre vie quotidienne. En fait, les
techniques d’IA associées à une technolo-
gie appropriée ont permis aux systèmes de
percevoir, de prédire et d’agir pour aider les
humains dans un large éventail d’applications.
Par conséquent, les progrès de l’IA peuvent
apporter une grande valeur pratique pour at-
ténuer les défis soulevés par l’adoption du
MBSE au niveau de la transition des exigences
systèmes exprimées en langage naturel au

modèles d’architecture exprimés en UML.
Dans cette thèse, nous avons proposé un
nouveau flux de composants d’IA, y com-
pris leur paramétrage spécifique, permettant
l’automatisation de la transition des exigences
exprimées en langage naturel vers un mod-
èle préliminaire de conception d’architecture
en UML.
Premièrement, nous avons proposé une so-
lution de clustering qui aide à décomposer
le système complexe en sous-systèmes plus
petits en fonction de la similarité sémantique
des exigences système. La solution de clus-
tering proposée est basée sur un module de
calcul de similarité sémantique qui analyse
l’information sémantique des mots ainsi que
des énoncés d’exigences pour chaque paire
d’exigences en utilisant le modèle de prolonge-
ments lexicaux neuronaux word2vec. Un en-
semble de groupes d’exigences sémantique-
ment similaires sont ainsi générés désignant
les sous-systèmes identifiés et, qui aident à
réduire la complexité du système cible. En-
suite, nous avons proposé un extracteur de
modèle qui extrait à partir de chaque groupe
d’exigences identifié (c.-à-d., sous-système),
les éléments pertinents qui sont nécessaires
pour construire le modèle de paquets de cas
d’utilisation exprimé en UML en utilisant un en-
semble d’heuristiques de Traitement Automa-
tique du Langage Naturel (TALN). Enfin, nous
avons proposé une opération de mapping qui
transforme les éléments pertinents extraits en
leurs correspondants dans le modèle de pa-
quet de cas d’utilisation cible exprimé en UML.
Notre travail a été prototypé sous Papyrus
et évalué sur plusieurs cas d’étude com-
prenant différents types d’exigences système
exprimées en langage naturel.

Title: Bridging the gap between natural language system requirements and architecture
design models

Keywords: system requirement, natural language processing, machine learning, architecture
design, UML

Abstract: In recent years, system design con-
straints evolve more and more requiring to em-
bed more stakeholders in the projects. Conse-
quently, modern software projects are becom-
ing many times larger and more complex than
in the past.
Model-Based Systems Engineering (MBSE)
methods are on their side recognized to fos-
ter holistic view of design and empower high
quality and maintainable software architecture.
However, architecture design models are al-
ways extracted manually by engineers, which
became a tedious, time-consuming and error
prone task. Especially, the exponential growth
of the number of system requirements raises
difficulties in managing the requirements man-
ually and having a clear crystal view of the ex-
pectation and scope of the system to be de-
signed. The lack of human expertise as well
as powerful automation tools are often cited as
the main key barriers that still slow down the
spread of the MBSE approach and present sig-
nificant hurdles to demonstrate its Return On
Investments (ROI).
Recently, Artificial Intelligence (AI) has been
receiving intensive attention and its applica-
tions have made their way into products in our
daily life. In fact, AI techniques together with
suitable technology have enabled systems to
perceive, predict, and act in assisting humans
in a wide range of applications. Hence, it
stands to reason that advances in AI can bring
great practical value to mitigate some of the
challenges raised by the adoption of MBSE.
In this thesis, we contributed a first step to-
wards applying AI for MBSE to optimize the

adoption of MBSE and resolve some of its
challenges. Specifically, we proposed a new
flow of Machine Learning (ML) and Natural
Language Processing (NLP) components, em-
powering the automation to go from natural
language requirements towards a preliminary
UML architecture design model including a
package breakdown model denoting the sys-
tem’s decomposition.
First, we proposed a clustering solution that
helps to decompose the complex system into
smallest sub-systems based on the semantic
similarity of early requirements. The core of
the proposed clustering solution is a seman-
tic similarity computation module that analyzes
the semantic information of both the words
and requirement statements of each pair of re-
quirements using the neural word embedding
model word2vec. Accordingly, a set of clus-
ters of similar requirements are generated de-
noting the identified sub-systems and hence,
helping to reduce the complexity of the target
system. Then, we proposed a model extractor
that extracts from each identified cluster (i.e.,
sub-system), the relevant elements that are
needed to build the UML use-case package
break-down model using a set of NLP heuris-
tics. Finally, we proposed a mapping opera-
tion that programmatically maps the extracted
model elements into their corresponding ones
in the target UML use-case package model.
Our proposal was prototyped on Papyrus and
evaluated on several case studies encompass-
ing different types of natural language software
requirements.

	Introduction
	AI for automated SE
	Automation of MBSE with AI - potential issues
	Goal of the thesis
	Thesis structure

	Background
	Requirements engineering
	System requirements
	Requirements engineering process

	AI techniques for SE
	Natural Language Processing
	Text clustering

	Conclusion

	State of the art
	Current research directions in deriving architecture models from natural language software requirements
	The machine learning techniques used to group natural language software requirements
	Related works of requirements clustering
	Related works of requirements classification
	Summary

	From natural language requirements to visual models
	Related works

	Summary
	Research questions
	Scope of contributions
	Contribution Overview
	Conclusion

	Semantic Clustering of System Requirements
	The semantic clustering solution overview
	Preprocessing
	Cleaning
	Tokenization
	Annotation
	Normalization

	Semantic similarity computation module
	Word-level similarity computation
	Requirement-level similarity computation

	Requirements clustering
	Labelling
	Conclusion

	Automatic generation of the preliminary architecture design models
	Linking requirements to models
	Requirements engineering challenges
	Use case modeling

	Overview of the model extractor approach
	Extracting relevant use case model elements
	Mapping into preliminary UML design models

	Conclusion

	Evaluation of the requirements semantic clustering solution
	Key Performance Indicators (KPIs)
	Case studies description
	User stories
	Functional requirements written in plain text

	Results analysis and evaluation
	Experimental settings
	Evaluation of the semantic clustering of the user story case studies
	Evaluation of the semantic clustering of the case studies of functional requirements written in plain text

	Assessing KPIs
	Threats to validity
	Conclusion

	Evaluation of the automatic generation of the preliminary architecture design models
	Key Performance Indicators (KPIs)
	Results analysis and evaluation
	Relevant model elements extraction

	Assessing KPIs
	Threats to validity
	Conclusion

	Conclusion and future work
	Résumé
	L'intelligence artificielle pour automatiser l'ingénierie logicielle
	Automatisation du MBSE en utilisant l'IA - les problèmes potentiels
	Objectif de la thèse
	Contributions
	Validation

	Technical demonstration of the developed tool
	The semantic clustering approach
	Software and libraries
	Execution

	Automatic generation of the UML use case model
	Software and libraries
	Execution

