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Résumeé (francais)

Les interactions positives entre microorganismes ont longtemps été minoritairement
étudiées par les microbiologistes. Mais aujourd’hui, la coopération entre bactéries gagne en
importance depuis qu’il a été mis en évidence qu’un grand nombre de bactéries sont
auxotrophes et nécessitent la présence d’autres microorganismes pour se développer. Ce
nouveau domaine d’étude s’est principalement développé grace a des co-cultures de
microorganismes en laboratoire.

Dans cette thése, nous désirions valider certaines prédictions issues de ces études en
laboratoire en les testant sur une communauté bactérienne d’un environnement naturel.
Nous nous sommes focalisés sur I'impact des acides organiques et avons émis I’hypothese
gu’une augmentation de la concentration en acide organique causerait une augmentation de
la compétition entre bactéries tout en diminuant la coopération dans cette communauté
bactérienne. Afin de tester cette hypothese, nous avons d’abord utilisé le séquencage
métagénomique afin de détecter les génes rapportés dans la littérature scientifique comme
étant un indice de coopération (plasmides) ou de compétition (genes de résistance aux
antibiotiques) entre bactéries. De plus, nous avons également évalué les interactions
bactériennes en construisant des réseaux de co-variance basés sur des données issues du
séquencage 16S rRNA. Cette approche hybride fut ensuite appliquée sur une communauté
bactérienne de neige arctique.

Au cours de notre premiere étude, réalisée sur une série temporelle de neige, nous avons pu
appliquer avec succés notre méthode afin d’étudier I'impact des acides organiques sur les
interactions bactériennes dans la neige. Nous avons mis en évidence que les échantillons
présentant une concentration plus importante en acides organiques présentaient également
un nombre plus important de genes de résistance aux antibiotiques. Ce résultat supporte
I’hypothése qu’une augmentation de la concentration d’acides organiques dans la neige
augmente la compétition entre bactéries. A I'inverse, les échantillons de neige possédant de
fortes concentrations d’acides organiques présentaient un plus faible nombre de génes
structuraux de plasmides dans leurs métagénomes. Ceci étaye ainsi I’hypothése qu’une
augmentation de la concentration d’acides organiques dans la neige diminue également la
coopération. La comparaison des réseaux de co-variance a conforté cette interprétation.
Suite a ces résultats encourageants, nous avons décidé de valider de maniére plus minutieuse
notre hypothése en tentant de reproduire nos résultats dans des microcosmes de neiges
amendés au moyen d’'un des acides organiques majoritairement identifié dans notre
précédente étude (acétate). En parallele, nous avons également développé un pipeline
personnalisé pour traiter nos métagénomes en améliorant la fiabilité de I’annotation
fonctionnelle des séquences qui ne peuvent pas étre assemblées (en déduisant une valeur
seuil d’annotation suivant sa distribution observée dans les séquences assemblées). En
utilisant cette nouvelle méthode d’annotation pour traiter nos métagénomes, nous avons
reproduit la méme approche hybride pour étudier les interactions bactériennes. Nous avons
pu confirmer le fait que I'augmentation de la concentration d’acides organiques augmentait
la compétition entre bactéries mais nous n’avons pas observé d’impact significatif sur la
coopération qui ne différait pas beaucoup du niveau observé dans les microcosmes contréles.
Nous en avons déduit que la concentration d’acides organique dans la neige affectait
principalement la compétition entre bactéries mais n’avait pas ou peu d’effet sur la



collaboration dans la communauté bactérienne de la neige arctique. Malgré ces résultats
encourageants, le présent travail a également mis en lumiere la difficulté de pouvoir
interpréter de maniére univoque les génes qui participent aux interactions bactériennes et
suggeére la mise en place d’une base de données spécialement dédiée a ce type de génes.






Summary

Microbial interactions are ubiquitous in the environment, but microbiologists mainly focused
on negative interactions (mainly competition) between microorganisms as natural selection
would only select for the most individually adapted bacteria in the environment. However,
bacterial cooperation is starting to attract more and more attention as microbiologists
realized that a significant number of microorganisms are auxotrophic for one or more
biomolecules and require the presence of other microorganisms in order to grow. This new
field of microbiology has been mostly developing in laboratory controlled co-cultures. Thus
we now face the challenge of validating the acquired knowledge from the wet lab
experiments in the environment.

In this thesis, we wanted to validate observations that had been made in lab controlled co-
cultures at the level of an environmental bacterial community. We focused on the effect of
organic acids (a carbon source) and hypothesized that an increase in their concentration
would augment bacterial competition and reduce bacterial cooperation. To test this
hypothesis, we selected two methods to assess bacterial interactions. First, we tracked genes
reported as being proxies of cooperation (plasmids) and competition (antibiotics resistance
genes-ARG) in metagenomes. We also used co-variance networks to assess microbial
interactions. This hybrid approach was then used on a bacterial community from the Arctic
snow. The Arctic snow environment was used as a model because it is reported as being
dynamic with seasonal increases in organic acids.

During our first study, carried out on snow samples collected in Svalbard, we successfully
applied our methodology to track bacterial interactions and how they were influenced by the
increase in organic acid concentrations. In the snow metagenomes, the ARGs were detected
in higher abundance in the snow samples with higher organic acid concentrations, which we
considered as a signal of an increase of competition. In contrast, plasmid backbone genes
were retrieved in higher abundance in the snow metagenomes from samples with low organic
carbon concentrations as cooperation should decrease when organic acids increase. The co-
variance networks showed a decrease of connectivity in the networks in high organic acid
concentration snow samples. To validate our observations, we carried out a time series
experiment in lab-controlled snow microcosms amended with acetate, which is one of the
most abundant organic acids found in the field. In parallel, we developed a custom
bioinformatics pipeline to process the functional annotation of our metagenomes in a more
accurate way for of the reads that could not be assembled. This pipeline improved the degree
of accuracy of read annotation (with an error rate of 5%) and improved our annotation using
an e-value threshold on the assembled reads. We applied this new annotation method on our
snow microcosm metagenomes and repeated our methodology to track microbial
interactions. We confirmed that organic acids triggered bacterial competition in our
microcosms, but showed little effect on reducing bacterial collaboration. This work
highlighted the difficulties of using genes reported as proxies of cooperation or competition
and that more effort is still needed to build an appropriate reference database for such genes.
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Avant-propos

L'introduction suivante est destinée a donner le contexte général nécessaire pour
comprendre le projet de doctorat qui sera décrit. Il commence par introduire les interactions
bactériennes qui est le principal sujet d’étude de cette these. Ensuite, I'environnement choisi
pour |'étude est décrit ainsi que le projet dans lequel ce doctorat est intégré. Les hypothéses
de travail seront introduites, a partir des différents éléments présentés en introduction. Un
résumé des autres chapitres de la thése incluant les résultats les plus marquants est
également inclus.

Synthése (Francais)

Les bactéries, comme tous les autres organismes vivants, interagissent avec leur
environnement mais aussi avec d'autres bactéries et micro-organismes. Ces interactions
peuvent étre classées en différentes catégories selon qu'elles sont neutres, nuisibles ou
bénéfiques pour I'un ou les deux partenaires (Faust and Raes 2012). Le résultat de
I'interaction est déterminé par l'effet de l'interaction sur la valeur sélective (le fitness en
anglais) des bactéries impliquées. La valeur sélective d'un organisme peut étre définie comme
sa capacité a survivre dans un environnement particulier et a se reproduire pour participer
au pool génétique de I'espéce dans la prochaine génération. Etant donné que les bactéries se
développent par clonalité, nous pourrions définir la valeur sélective des bactéries comme le
nombre de cellules filles qu'elles seront capables de produire. Si la bactérie parvient a
augmenter sa progéniture grace a l'interaction, elle sera qualifiée de positive. Au contraire, si
I'interaction diminue ce montant, elle sera qualifiée de négative. Le résultat de l'interaction
peut étre bénéfique (augmentation de la valeur sélective = positif), préjudiciable (diminution
de la valeur sélective = négatif) ou neutre (pas d'impact sur le fitness = nul) pour les espéces
en interaction. Par exemple. Si nous considérons la prédation, le prédateur augmente sa
valeur sélective dans l'interaction parce qu'il mange sa proie mais la proie diminue sa valeur
sélective car elle est consommeée par le prédateur. Au niveau des especes, l'interaction est
positive pour les espéces prédatrices et négative pour les espéces proies.

En pensant aux concepts écologiques ayant considéré les interactions biologiques, nous
pourrions considérer la théorie de I'évolution de Charles Darwin (Darwin 1859) ou les especes
non adaptées a leur environnement finiraient par disparaitre. En effet, par environnement, il
faut aussi inclure les interactions avec les autres espéces qui peuvent augmenter ou diminuer
la valeur sélective des espéces impliquées dans l'interaction. Cette importance des
interactions dans le processus évolutif a été formalisée pour la premiere fois par Van Valen
(1973) dans son hypothése de la Reine Rouge. Il a déclaré que pour survivre, les espéeces
devaient s'adapter en permanence a leur environnement mais aussi aux especes avec
lesquelles elles étaient en compétition. Le fait que cette « course évolutive » ne se terminerait
jamais pourrait s’expliquer par le fait que chaque espece tente d’atteindre un optimum
mutuellement incompatible avec celui de ses concurrents. En outre, cette théorie soutenait
que le principal type d'interactions dans la nature était principalement la compétition ou le
parasitisme : ** La Reine Rouge propose que les événements de mutualisme, au moins au



méme niveau trophique, aient peu d'importance dans I'évolution par rapport aux interactions
négatives ( ...) »(Van Valen 1973). C'est pourquoi en microbiologie, jusqu'a récemment, la
grande majorité des travaux sur les communautés microbiennes ne recherchaient pas trop
les interactions, car on pensait que la composante principale était la compétition comme le
déclarent Foster and Bell (2012) par exemple. En conséquence, les changements dans la
structure de la communauté bactérienne ne pourraient résulter que d'une diminution de la
valeur sélective due a un taux de croissance plus faible dans les nouvelles conditions
environnementales (changement de pH par exemple) ou a des interactions compétitives (par
exemple, compétition pour |'espace ou acces préférentiels aux nutriments). C'est pourquoi
de nombreux articles ont considéré principalement I'environnement chimique et ont oublié
de s'intéresser aux interactions bactériennes...

De nos jours, l'importance des interactions bactériennes positives commence a étre
considérée. En effet, de plus en plus de publications se concentrent sur les interactions
bactériennes et, fait intéressant, les publications liées aux interactions positives croissent plus
rapidement que les interactions négatives. Ces tendances pourraient étre liées a la
publication d'une nouvelle hypothése évolutive soutenant |'apparition d'une collaboration a
partir d'une interaction compétitive. Cette hypothese, appelée " hypothese de la reine noire
", soutient la théorie selon laquelle la perte de génes de fonctions coliteuses fuyantes
(fonctions métaboliques qui libérent leurs produits finaux par diffusion dans I'environnement,
produisant ainsi des biens publics) peut entrainer un accroissement de la valeur sélective au
niveau individuel si le nombre de producteurs dans la communauté (également appelés
«aides») est encore suffisamment important pour soutenir la croissance de la communauté.
Ces bactéries qui perdent de tels genes deviennent des «bénéficiaires» des «aides» (Morris
2015). On a également émis I'hypothése que ce couplage métabolique permettait aux
bactéries d'éviter une compétition exclusive en faisant en sorte que les deux partenaires de
ce couplage atteignent un état stable dans I'environnement, évitant ainsi la disparition de
I'une des deux espéces et réduisant la compétition (Mas et al. 2016).

Une deuxiéme conséquence de cette théorie est que le faible taux de micro-organismes
pouvant croitre en culture, connue sous le nom d '«anomalie du grand nombre de plaques»
pourrait également s'expliquer par le fait qu'un nombre trés élevé de micro-organismes
partagent des métabolites de bien public, étant ainsi auxotrophe pour un ou plusieurs
métabolites spécifiques (Zengler and Zaramela 2018). Cette hypothése est soutenue a un
rythme accru par des expériences de culture réussissant a isoler des micro-organismes non
cultivés auparavant en ajoutant par exemple des sidérophores (D’Onofrio et al. 2010). De
plus, des expériences récentes de co-culture de Ren et al. (2015) ont montré un nombre sans
précédent de synergies positives de souches bactériennes isolées des sols, soutenant le fait
que les couplages métaboliques pourraient également étre importants dans les
communautés bactériennes environnementales. D’Souza and Kost (2016), ont également
montré dans une expérience de culture en laboratoire que la culture de bactéries dans un
milieu de culture ol un nutriment qu'elles étaient capables de produire était déja présent
pouvait sélectionner la perte des genes de synthése de cette voie, confirmant I'hypothése de
Morris (2015).

Les interactions bactériennes peuvent étre tres diverses et impliquer également des
interactions avec une grande variété d'autres taxons en interaction comme les plantes (Finkel
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et al. 2019), les champignons (van Overbeek and Saikkonen 2016) ou les animaux (Rgnn,
Vestergard, and Ekelund 2015).

L'importance de ces interactions est de plus en plus mise en évidence par des études récentes.
Par exemple, il a été démontré que le développement racinaire des plantes pouvait étre
affecté par des interactions bactériennes spécifiques (Finkel et al. 2019) ou que le rendement
du mais pouvait étre corrélé a des interactions bactériennes spécifiques (Tao et al. 2018). Il a
également été démontré que les interactions bactériennes modulent le succes de
reproduction des diatomées qui constituent une partie trés importante du phytoplancton, les
principaux producteurs des océans (Torres-Monroy and Ullrich 2018). Enfin, les interactions
bactériennes peuvent également moduler les cycles biogéochimiques (Ho et al. 2016). Si les
deux especes bactériennes impliquées dans l'interaction bactérienne modulent des réactions
de différents cycles biogéochimiques, un couplage biogéochimique peut étre observé dans
I'environnement conduisant a des dépendances métaboliques imprévues entre les cycles
(Schlesinger et al. 2011; Burgin et al. 2011). Par exemple, Beal, House, and Orphan (2009) ont
découvert que I'oxydation du méthane pouvait étre couplée au manganése ou méme au fer
au lieu de la réduction du sulfate dans les sédiments marins a suintement de méthane. Un
autre exemple impressionnant de couplage de processus biogéochimiques a été trouvé dans
une ancienne saumure marine isolée dans |'Antarctique. Mikucki et al. (2009) ont observé
qu'une communauté microbienne active faisait circuler le soufre par couplage avec une
réduction de fer en Fe (ll). Un tel couplage a permis a la communauté microbienne de se
développer malgré son isolement (pas de photosynthése entrainant un apport limité de
carbone dans la communauté) (Mikucki et al. 2009).

Les interactions bactériennes attirant de plus en plus |'attention, la stabilité d'une telle
interaction a également commencé a étre étudiée. Une grande variété de facteurs
environnementaux a été étudiés principalement au cours d'expériences en laboratoire. Il a
été démontré que chacun de ces parametres sélectionne les interactions positives
(coopération), ou au contraire, les interactions compétitives. Ainsi, en pensant a
I'environnement ou les concentrations de nutriments, le pH, I'humidité et 'hnomogénéité de
I'environnement peuvent varier dans le temps, nous pourrions commencer a penser que les
interactions bactériennes peuvent étre considérées comme des liens dynamiques entre les
bactéries. Un tel concept peut étre illustré par |'expérience de co-culture de Benomar et al.
(2015) qui ont observé que lorsque Desulfovibrio vulgaris, une bactérie réductrice du sulfate,
était co-cultivée avec Clostridium acetobutylicum, certains échanges métaboliques entre les
especes pouvaient démarrer lorsqu'une pénurie de nutriments (manque de sulfate) se
produisait dans le milieu de culture. La conséquence d'une telle dynamique est que le résultat
de la structure d'une communauté bactérienne définie ne peut pas étre prédit uniquement
en examinant leurs métabolismes individuels mais aussi en examinant tous les couplages et
potentiels d'interaction possibles qui se trouvent entre ses différents membres. Konopka,
Lindemann, and Fredrickson (2015) ont modélisé une telle dynamique et ont observé que les
interactions bactériennes pouvaient générer une dynamique endogéne affectant Ia
communauté bactérienne méme en |'absence de perturbations exogéenes. Ils ont également
remarqué que le réseau d'interactions pouvait améliorer la résistance de la communauté
bactérienne contre les perturbations et devrait étre pris en compte en plus de la redondance
métabolique dans la communauté bactérienne (Konopka, Lindemann, and Fredrickson 2015).
L'étude de l'effet de chacune des variables environnementales sur une communauté
bactérienne est toujours en cours, de nouveaux effets sont donc encore découverts et,
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comme nous pouvons le constater en regardant la littérature scientifique, toutes les études
ne s'accordent pas sur l'effet de chaque parametre. Ces résultats contrastés peuvent
s'expliquer par le fait que la coopération et la compétition peuvent également se produire a
différentes échelles au sein d'une communauté bactérienne. Par exemple, Cordero et al.
(2012) ont observé que les antibiotiques étaient sécrétés par certains membres d'un
consortium bactérien tandis que les autres souches collaboratives partageaient les genes de
résistance aux antibiotiques. Ils ont conclu que la synthése d'antibiotiques pouvait étre
considérée comme un trait collaboratif dans cette partie de la communauté et était utilisée
pour rivaliser avec d'autres membres de la communauté. D'un autre coté, les bactéries
modeles utilisées pour ces études peuvent également influencer les résultats et montrer ainsi
que différentes stratégies de collaboration ou de compétition pourraient étre sélectionnées
dans différents environnements.

Dans cette thése, nous avons choisi de considérer principalement les interactions
bactériennes a travers les interactions liées a la nutrition et non liées a la compétition pour
I'espace donc nous nous concentrerons principalement sur les interactions suivantes pour
nos interprétations :

(A) Compétition nutritionnelle : Il s'agit d'un cas spécial de compétition (négatif-négatif) ou
les deux partenaires sont en compétition un nutriment particulier. Méme si finalement l'une
des deux espéces peut remporter la compétition, l'interaction est négative pour les deux
especes car chaque espéce prend une partie du pool de nutriments qui est ainsi perdu pour
la seconde espece.

(B) Syntrophie: Il s'agit d'un cas particulier de mutualisme (Positif-Positif). Deux bactéries
coopérent pour dégrader un composant qu'elles ne pourraient pas dégrader seules. Ainsi,
I'interaction est positive pour les deux bactéries, car elles peuvent métaboliser un pool de
nutriments qu'elles ne pourraient pas traiter sans la présence de leur partenaire.

(C) Alimentation croisée (appelée cross-feeding en anglais) : il s'agit d'un cas particulier de
comensalisme (neutre-positif). La présence de la premiére espéce produisant un nutriment
essentiel, tel qu'une vitamine, permet a une bactérie incapable de produire ce composé
(I'auxotrophe) de survivre. La bactérie produisant la vitamine ne tire aucun avantage de cette
interaction, mais I'auxotrophe est capable de survivre dans cet environnement grace a cette
deuxieme espece, de sorte que sa valeur sélective est considérablement augmentée par la
présence de cette autre espéce.

L'Arctique

L’Arctique et le réchauffement global

L’Arctique est généralement défini comme la partie du globe localisée au-dela de 66°33 ‘de
latitude dans I’hémisphére Nord. Les températures les plus chaudes de I'année sont
généralement inférieures a 10 degrés Celsius. Le temps est donc trés froid. Cela peut
s'expliquer par le fait que les poéles obtiennent un taux d’ensoleillement atténué en raison de
I'inclinaison de |la Terre par rapport a I'incidence des rayons solaires. Les jours et la nuit varient
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considérablement au cours de I'année : les deux extrémes représentant 24 heures de nuit
(nuit polaire) en hiver et 24 heures de jour en été.

Pendant longtemps, ces régions ont été considérées comme trés pauvres en termes de
biodiversité et de chaine alimentaire mais, de nos jours, cette vision a considérablement
évolué au fur et a mesure que la connaissance de cet environnement augmentait. Malgré les
conditions extrémes, une riche biodiversité et des chaines alimentaires complexes sont
présentes.

Néanmoins, cette biodiversité est désormais en danger du fait du réchauffement climatique
et les chalnes alimentaires commencent a étre impactées par |'effet de cette augmentation
rapide de la température (Post et al. 2009). Les effets du changement climatique peuvent étre
multiples. Ce changement de gradient de température peut par exemple permettre aux
especes envahissantes de se propager a travers un nouvel écosysteme et d'avoir un impact
significatif sur les espéces indigenes. Il peut également modifier la disponibilité des
nutriments (= la nourriture), les échanges de gaz et les bilans carbone des écosystémes (Post
et al. 2009). Mais tous les effets des changements climatiques ne sont pas aussi évidents que
les précédents, car ils peuvent étre masqués par I'effet tampon des écosystemes ou des
interactions entre les espéces (Post et al. 2009). La dynamique de |'Arctique peut également
avoir un impact indirect sur d'autres écosystemes et avoir une rétroaction positive sur le
changement climatique lui-méme, car la fonte de la couverture de neige et de glace de mer
diminue I'albédo mondial de la Terre. C’est pour cette raison qu’il est urgent de caractériser
davantage ces écosystéemes afin de pouvoir évaluer plus précisément les impacts réels a long
terme du changement climatique sur les écosystemes arctiques.

Présentation du projet Microarctic

Ce doctorat fait partie du réseau innovant de formation (ITN) Microarctic soutenu par une
subvention du programme d'actions Marie Sklowdowska Curie de la Commission
européenne. Les objectifs de ce projet sont de former la prochaine génération d'experts en
microbiologie et biogéochimie de I'Arctique qui, grace a leur compréhension unique de
I'environnement arctique en évolution rapide et des facteurs qui influent sur la réponse des
écosystemes et des organismes au réchauffement de |'Arctique, seront en mesure de
répondre aux besoins de gouvernance et de leadership dans divers aspects liés aux intéréts
publics, politiques et commerciaux.

Le réseau Microarctic est composé de 15 doctorats réalisés dans 13 universités et entreprises
a travers I'Europe. Ce grand réseau étudiera les différents écosystémes composant I'Arctique
(air, pergélisol, glace, ...) de différentes manieres. Le projet en lui-méme est divisé en 7 lots
de travaux interconnectés (WP). Ce doctorat fait partie du WP 1 qui est un WP axé sur I'étude
de l'effet du temps, de la saison et du réchauffement de I'Arctique sur les communautés
bactériennes des écosystemes terrestres de I'Arctique. Au cours de cette these, j'étudierai la
dynamique saisonniere des interactions bactériennes dans la neige de I'Arctique. Le choix
d'étudier les interactions bactériennes dans un tel environnement a été motivé par plusieurs
critéres que je vais essayer de mettre en évidence en présentant I'environnement de la neige.
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La neige est une composante majeure de la cryosphére terrestre (régions polaires et alpines
du globe). Il couvre environ 46 millions de kilométres carrés pendant I'hiver. Plus de 98% de
la neige est localisée dans I'hémisphere Nord. Parmi tous les différents biomes de I'Arctique,
la neige peut étre considérée comme tres importante. Elle est colonisée par une communauté
diversifiée d'algues des neiges, de bactéries et de champignons. La neige a un impact
significatif sur les sols de I'Arctique de plusieurs fagons. Pendant I'hiver, elle agit comme
isolant sur le sol en le protégeant des vents froids (Vincent et al. 2009). De plus, au printemps,
I'enneigement commence a fondre et les nutriments de la communauté microbienne de la
neige sont transférés dans le sol (Vincent et al. 2011). Un changement de la couverture
neigeuse peut également avoir un impact significatif sur I'hydrologie de la région arctique et,
par conséquent, sur les écosystemes aquatiques tels que les lacs, les rivieres et les zones
humides, car c'est I'une des principales sources d'eau pour certains de ces écosystemes
(Vincent et al. 2009). Ainsi, la vulnérabilité de cet écosysteme est une préoccupation majeure
et la caractérisation des communautés microbiennes de la neige est vraiment cruciale car
elles peuvent interagir et avoir un impact également sur d'autres communautés.

La neige arctique pourrait étre considérée comme un environnement extréme. En effet, la
température est trés basse et la disponibilité en eau est faible. De plus, pendant la saison
printaniére, le rayonnement UV peut étre trés élevé a sa surface (Maccario et al. 2015). Pour
survivre dans un tel environnement, les bactéries ont développé une gamme de stratégies et
d'adaptations. Pour survivre aux stress photo-oxydants induits par une forte irradiation UV,
les bactéries peuvent par exemple produire des enzymes anti-oxydantes capables de réagir
de maniére croisée avec les ROS (= Reactive Oxygen Species) générées par les UV et réparer
leur ADN endommagé (Sinha and Hader 2002; Ziegelhoffer and Donohue 2009). Les bactéries
sont également exposées a une concentration élevée en sel car la majeure partie de la
communauté bactérienne pourrait étre concentrée dans des micro-canaux riches en sel a
I'intérieur de la neige (Maccario et al. 2015). Nous désignons les bactéries adaptées pour vivre
dans des environnements secs ou trés salés comme étant psychrophiles. Néanmoins, au
printemps, une augmentation rapide des nutriments peut étre observée a l'intérieur de la
neige et |'environnement peut devenir assez riche en nutriments par rapport a la neige
d'hiver. Cet environnement est donc assez dynamique et présente une large gamme de
variations environnementales. Cette propriété est donc tres intéressante puisque la neige
peut étre utilisée comme environnement modele pour comparer les interactions
bactériennes dans un environnement oligotrophe (pauvre en nutriments) et le méme
environnement enrichi en nutriments a la fin de la saison printaniére. Etant donné le fait que
lors de cette thése, nous nous sommes focalisés sur les interactions liées a la nutrition des
bactéries, ce milieu fut choisi principalement pour cette propriété remarquable.

Aprés cette breve revue du milieu d’étude nous allons maintenant passer en revue les outils
d’étude utilisés pour les interactions bactériennes.

Comme nous l'avons vu, la grande majorité des études menées sur les interactions
bactériennes ont été réalisées dans des expériences basées sur la culture. De telles méthodes
présentent un biais majeur pour étudier les interactions bactériennes a |"échelle de la
communauté car leur représentativité du systeme d'origine est loin d'étre exhaustive. Les
principaux avantages de ces systémes sont qu'ils sont tres faciles a suivre dans le temps et
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présentent une complexité réduite permettant d'utiliser la protéomique pour suivre les
métabolites sécrétés par certaines souches spécifiques (Chignell et al. 2018; Herschend et al.
2017) ou visualiser physiquement les interactions par microscopie ou via des techniques plus
complexes telles que le nanoSIM (Musat et al. 2016).

Les méthodes de culture incluent des co-cultures ou I'observation de taux de croissance
différentiels par rapport a la culture pure peuvent étre utilisés pour déduire si l'interaction
est positive ou négative. De telles méthodes peuvent également étre utilisées sur des co-
cultures d'organismes modeles ou leurs génomes respectifs sont déja connus afin d'évaluer
comment une interaction positive ou négative peut affecter leurs profils d'expression génique
en générant des profils transcriptomiques différentiels (Hansen et al. 2017; Molina-Santiago
et al. 2017; Khan et al. 2018; McClure et al. 2018). Enfin, la modélisation peut également étre
appliquée afin de prédire, sur la base d'expériences de cultures antérieures et d'analyses de
génomes, leurs réseaux métaboliques et comment une interaction ou une perturbation du
systeme (par exemple une augmentation des nutriments) pourrait les affecter (e.g Zeng and
Yang 2019) . Ces analyses sont appelées Flux Balance Analysis (FBA) et peuvent prédire
comment les flux métaboliques seraient affectés par une perturbation. Cette analyse repose
sur le fait que chaque réaction métabolique est connue et peut étre estimée par des systémes
d'équations qui peuvent étre résolus. Sur la base d'une telle approche, Zelezniak et al. (2015)
ont développé un outil pour estimer quels métabolites pourraient étre échangés et prédire,
sur la base de tels systemes d'équations, si les interactions entre les espéces considérées
pouvaient étre positives ou négatives. Néanmoins, actuellement, ce systéme est limité par le
nombre d'especes pouvant étre calculées par le programme (<100), ce qui le rend
actuellement inadapté aux études de communautés environnementales (com. Pers. De
['auteur de I'outil).

L'utilisation de méthodes sans culture est récente mais a tendance a se développer trés
rapidement car elle permet de s'affranchir du biais de représentativité des méthodes
précédentes. Les deux principales méthodes sans culture utilisées de nos jours pour étudier
les interactions bactériennes comprennent les réseaux de co-variance / co-occurrence et les
métagénomes ou analyses de métatranscriptomes. Les deux techniques ont actuellement des
limites.

L'approche des réseaux repose principalement sur I'hypothése que les taxons qui covarient
positivement dans le temps coopéerent et ceux qui covarient négativement sont en
compétition. Cette approche a été utilisée pour les communautés microbiennes des océans
(Ruan 2006; Lima-Mendez et al. 2015) les sols (Barberan et al. 2012; Ding et al. 2015), les
microbiomes humains (Faust et al. 2012) et des sédiments pollués par les métaux lourds(Yin
et al. 2015). Ces réseaux utilisent souvent la co-variance pour déduire des interactions
bactériennes positives (coopératives) et négatives (compétitives) (par exemple Ruan 2006),
mais la co-variance pourrait également indiquer que les populations répondent
simultanément a d'autres stimuli.

Une deuxiéme stratégie pour suivre les interactions bactériennes consiste a suivre les génes
connus comme étant caractéristique des interactions bactériennes. Il faut ensuite rechercher
s'ils augmentent ou diminuent dans les échantillons avec des tendances similaires a ce qui
peut étre observé dans les réseaux d'interaction. La limitation actuelle de cette approche,
c'est qu'il n'y a actuellement aucun consensus clair sur les génes qui sont indubitablement de
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fiables pour la coopération et la compétition. En effet, nous pouvons remarquer qu'un grand
nombre de ces genes sont impliqués dans des processus liés a la fois a la concurrence et a la
coopération. Par exemple, la sécrétion d'exopolysaccharides (EPS) est souvent considérée
comme un trait coopératif car les biofilms présentent de nombreuses synergies entre eux
(Faust et al. 2012). Néanmoins, Oliveira et al. (2015) ont observé que la sécrétion d'EPS
pouvait également étre déclenchée par une exposition a des concentrations d'antibiotiques
non-létales, montrant un lien avec la compétition. C’'est pourquoi nous avons choisi de nous
concentrer sur un nouveau type de gene caractéristique pour la coopération qui sont des
génes de structure des plasmidies. En effet, plusieurs articles ont montré que la collaboration
pouvait étre maintenue par des échanges génétiques et des scientifiques ont également
observé que les génes codant pour les biens publics étaient préférentiellement localisés sur
les éléments mobiles et les points chauds de recombinaison dans les génomes bactériens
(Dimitriu et al. 2014; 2015; 2016; Nogueira et al. 2009). Concernant le type de génes utilisé
pour évaluer la compétition, nous avons décidé de sélectionner des genes de résistance aux
antibiotiques car ils sont également considérés dans la littérature comme seuls signes de
compétition d'interférence. Cordero et al. (2012) ont observé que la sécrétion d'antibiotiques
peut également étre un bien public. C'est pourquoi il est également important, lors de la
comparaison de I'abondance des genes de résistance aux antibiotiques dans le temps, de
suivre l'augmentation de la diversité de ces genes. Si le nombre de genes différents
augmente, nous pouvons facilement exclure le fait que la sécrétion d'antibiotiques est un
bien public car la communauté ne partage pas une petite quantité de résistance mais affiche
une augmentation du nombre de composés toxiques sécrétés qui est plus compatible avec
I’hypothése d'une concurrence accrue entre les différents membres de la communauté
bactérienne.

Comme chacune des deux méthodes d’études ne nécessitant pas de cultures sont limitées,
nous avons décidé de les utiliser toutes les deux en simultané afin de renforcer les résultats
de notre étude.

Hypotheses de la these

Sur la base des théories précédentes que nous avons exposées dans cette introduction, nous
avons émis I'hypothése qu'une augmentation des acides organiques dans le réchauffement
de la neige de printemps augmenterait la concurrence (et réduirait la collaboration).

Cette hypothése est appuyée par le fait qu'une augmentation du carbone pourrait augmenter
la compétition d'interférence comme observé par Hol et al. (2014). Nous nous attendons
également a ce qu'une croissance bactérienne provoquant une augmentation du stress
bactérien augmente également la compétition, comme le soutient la théorie de la détection
de la concurrence de Cornforth and Foster (2013).

En opposition, la coopération pourrait étre plus élevée dans un environnement nutritif plus
limité, comme I'ont montré Benomar et al. (2015) que les échanges de métabolites pourraient
étre déclenchés par des stress nutritionnels.
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Résumé des différents chapitres de la these

Le premier chapitre de cette thése établi une breve revue de la littérature scientifique
concernant les interactions bactériennes et a déja été résumé plus largement au cours des
parties précédentes de la synthese. En outre, nous avons également présenté les différents
outils permettant de suivre les interactions bactériennes et justifié nos choix
méthodologiques.

Au cours du second chapitre, nous avons examiné |'effet des changements de carbone
organique sur les communautés microbiennes de neige in situ sur deux mois. Nous avons
comparé les communautés bactériennes de neige d'une période a faible teneur en carbone
organique a celles d'une période de carbone organique plus élevée. Nous avons émis
I'nypothése qu'une augmentation de la teneur en carbone ferait passer l'interaction
microbienne dominante de la collaboration a la compétition. Pour évaluer les interactions
microbiennes, nous avons construit des réseaux taxonomiques de co-variance a partir d'OTU
obtenus a partir du séquencage du gene de I'ARNr 16S. De plus, nous avons suivi les génes
marqueurs de la coopération microbienne (génes du squelette plasmidique) et de la
compétition (génes de résistance aux antibiotiques) a travers les deux périodes
d'échantillonnage dans les métagénomes et les métatranscriptomes. Nos résultats ont
montré une diminution de la connectivité moyenne du réseau a la fin du printemps par
rapport au début du printemps que nous avons interprété comme une diminution de la
coopération. Cette observation a été renforcée par les génes de squelette plasmidique
significativement plus abondants dans les métagénomes du début du printemps. La
modularité du réseau a partir de la fin du printemps s'est également avérée supérieure a celle
du début du printemps, ce qui est un autre indicateur possible d'une concurrence accrue. Les
génes de résistance aux antibiotiques étaient significativement plus abondants dans les
métagénomes de la fin du printemps. De plus, les génes de résistance aux antibiotiques
étaient également positivement corrélés a la teneur en carbone organique de la neige au
cours des deux saisons. La teneur en carbone organique de la neige pourrait étre responsable
de ce changement dans les interactions bactériennes dans la communauté de neige de
I'Arctique.

En parallele de ces investigations concernant les interactions bactériennes, nous avons
également réalisé un pipeline permettant d’améliorer la qualité des annotations
métagénomiques réalisées dans la partie suivante de cette thése. La motivation principale
étant de pouvoir quantifier plus précisément avec une plus grande certitude les génes
impliqués dans les interactions bactériennes. La limitation dans notre design expérimental
étant que nous utilisons une technique de séquencage ayant un faible débit (miSeq)
comparativement au standard de métagénomique (hiSeq) car nous réalisons un
échantillonnage assez important (pres d’une centaine d’échantillons) en séries temporelle.
Cette contrainte méthodologique liée a notre étude a pour conséquence que I'assemblage
des séquences obtenues par séquengage n’est pas trés exhaustif (moins de 50% des
séquences parviennent a étre assemblées). Dans ce chapitre, nous présenterons donc un
nouveau pipeline congu pour traiter spécifiquement un tel ensemble de données. Nous avons
recouru au co-assemblage et utilisé une stratégie d'annotation de séquences pour compléter
I'exhaustivité des annotations afin de récupérer les séquences qui ne pouvaient pas étre
cartographiées sur les contigs assemblés. De plus, afin d'éviter d'ajouter trop de bruit lors du
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sauvetage des séquences en utilisant I'annotation de lecture, nous avons construit un
algorithme pour définir un seuil de valeur e basé sur le bruit de I'annotation de séquences
appris des séquences utilisées dans I'assemblage.

Pour concevoir un pipeline, nous avons sélectionné plusieurs outils récents connus pour étre
efficaces pour effectuer l'assemblage, la cartographie(mapping), le regroupement et
I'annotation de ces données. De plus, ce pipeline a également été construit dans le but d'étre
tres convivial en termes d'installation. Trés souvent, les pipelines pour la métagénomique
nécessitent d'installer de nombreux outils ou dépendances séparément. La conséquence
étant que certaines connaissances préalables en informatique sont nécessaires pour utiliser
de tels outils. De plus, parfois, la reproductibilité d'un tel outil peut étre délicate si trop de
différences dans l'installation sont faites par les utilisateurs. Dans cette idée de
reproductibilité, d'accessibilité et de transparence, nous avons également congu un script
d'installation pour permettre a chaque utilisateur d'installer chaque outil nécessaire au
pipeline de maniere simple et reproductible. Concernant les performances de ce pipeline,
nous avons pu montrer que le taux d’erreur attendu (False discovery rate) pour I’annotation
était proche de 5%. Enfin, nous avons également utilisé un jeu de données réel concernant
un site de bioreméditation et montré que la représentabilité des échantillons semblait bien
meilleure lorsque nous utilisions notre pipeline que lorsque nous utilisions une stratégie
d’assemblage de métagénomes classique. Néanmoins il reste encore du chemin avant de
pouvoir publier cet outil car une validation plus poussée devrait étre effectuée afin de mieux
caractériser les performances de notre outil.

Notre premiére tentative d’étude des interactions bactériennes dans la neige Arctique a
montré combien il était difficile d'établir de maniére fiable un effet de la concentration
d'acide organique sur les interactions bactériennes en raison du niveau élevé de facteurs de
confusion possibles lors d’'une étude in situ (Bergk Pinto et al. 2019). Pour cette raison, nous
avons décidé de valider davantage notre hypothése originale en étudiant l'effet de la
concentration d'acides organiques dans une expérience de microcosme de neige. Nous avons
construit une expérience de séries temporelles ou nous avons comparé |'évolution d'une
communauté bactérienne de |'Arctique des neiges exposée a une forte concentration d'acides
organiques a sa population d'origine dans une série temporelle de controle. Afin de suivre et
comparer les interactions bactériennes, nous avons décidé de continuer a appliquer notre
double approche. Suite a un manque de signal, nous avons di quelque peu adapter notre
méthodologie en étudiant également d’autres genes indicateurs d’interactions bactériennes.
Nous avons pu confirmer le fait que I'augmentation de la concentration d’acides organiques
augmentait la compétition entre bactéries mais nous n’avons pas observé d’impact
significatifs sur la coopération qui ne différait pas beaucoup du niveau observé dans les
microcosmes contréles. Cette tendance a également été confirmée dans les réseaux de co-
variance ou le pourcentage d’interactions négatives détecté dans le réseau des microcosmes
amendés avec I'acide organique était pres de quatre fois supérieur a celui observé dans le
réseau des microcosmes contrdles. Nous en avons déduit que la concentration d’acides
organique dans la neige affectait principalement la compétition entre bactéries mais n’avait
pas ou peu d’effet sur la collaboration dans la communauté bactérienne de la neige arctique.

Malgré ces résultats encourageants, le présent travail a également mis en lumiere la difficulté

de pouvoir interpréter de maniére univoque les génes qui participent aux interactions
bactériennes et suggere la mise en place d’une base de données spécialement dédiée a ce
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type de genes. En effet, le recoupement des définitions des genes impliqués dans le
métabolisme lié aux antibiotiques différe par exemple entre la Gene Onthology et la base de
donnée KEGG ce qui rend parfois laborieux I'analyse des données et ajoute une certaine
difficulté a l'interprétation des résultats.
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Chapter | - Introduction: Interactions
matter in microbiology

This thesis will focus on microbial interactions in the Arctic snow and how organic acid
concentrations affect them. We will begin by formally introducing interactions in biology in
an evolutionary context. We will summarize the different theories and hypotheses published
by microbiologists to explain how cooperative interactions can be selected for in the
environment and also explore their importance in microbiology. We will then discuss the
factors that influence these bacterial interactions create dynamic changes in this relationship.
The main focus will be on the links between nutrition strategies and bacterial interactions as
this thesis centers on the effects of organic acids on microbial communities. We will also
discuss the state of the art and the methodology used for studying interactions in natural
communities, given that the vast majority of the current knowledge has been generated in
lab experiments. We will finally introduce the environment chosen for this study (the arctic
snow) and detail our hypotheses.

1 Definition and biological context for interactions in microbiology

The word “interaction” is defined by the Cambridge dictionary as “an occasion when two or
more people or things communicate with or react to each other”. When applying this
definition to the biological field, it would define any communication or reaction between two
or more organisms.

Bacteria, as all other living organisms, interact with their environment but also with each
other and other microorganisms (Faust and Raes 2012). These interactions can be classified
in different categories depending on whether it is neutral, detrimental or beneficial for one
or both partners. Lidicker (1979) summarized all these possible interactions into an “intra-
action compass” (Figure 1). The outcome of the interaction is determined by the effect of the
interaction on the fitness of the bacteria involved (Faust and Raes 2012). The fitness of an
organism can be defined as its ability to survive in a particular environment and its capacity
to reproduce and participate in the next generation’s gene pool ( Barker 2009; Orr 2009).
Since bacteria grow by clonal division, their fitness can be defined as the number of child cells
they are able to produce. If the bacterium increases its offspring due to an interaction, then
it will be termed positive. If the interaction decreases this amount, it will be termed negative.
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Figure 1: The intra-action compass figure from Lidicker (1979) modified by Faust and Raes
(2012) to display all the possible pairwise interactions. The outcome of the interaction can be
beneficial (win fitness = positive), detrimental (lose fitness = negative) or neutral (no impact
on the fitness = null) for the species interacting. For example, if we consider predation, the
predator wins fitness in the interaction because it consumes its prey and the prey loses fitness
because it’s consumed by the predator. At the species level, the interaction is positive for the
predator species and negative for the prey species.

Several ecological concepts have considered biological interactions, including Charles
Darwin’s theory of evolution (Darwin 1859), which postulates that species not adapted to
their environment would go extinct. When considering the environment, interactions with
other species that can increase or decrease a specie’s fitness should also be included (e.g.
Gillott 1995). The importance of interactions in the evolutionary process was first formalized
by Van Valen (1973) in his Red Queen hypothesis. He stated that to survive, species had to
continuously adapt to their environment but also to the species with which they were
competing. This “evolutionary run” would never end, because each species is trying to reach
an optimum which is mutually incompatible with the one(s) of its competitor(s). This theory
also states that the main kind of interactions in nature are competition or parasitism: “The
Red Queen proposes that events of mutualism, at least on the same trophic level, are of little
importance in evolution in comparison to negative interactions (...)” (Van Valen 1973). This
statement may have contributed to a focus on studying competitive interactions in
microbiology, which were considered to be dominant among the different forms, as also
stated by Foster and Bell (2012). As a consequence, changes in bacterial community structure
were hypothesized to result mainly from a decrease in fitness due to a lower growth rate
under changing environmental conditions (e.g. change of pH) or to competitive interactions
(e.g. antibiotics, competition for space or preferential nutrient access).
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2 Bacterial interactions: cooperation matters

The importance of positive bacterial interactions has recently become a focus of research.
Publications related to bacterial interactions, and especially positive interactions, are growing
faster than those on negative interactions (Figure 2). This shift could be related to the release
of a new evolutionary hypothesis supporting the appearance of collaboration from
competitive interactions. This hypothesis, called the “Black Queen’s hypothesis”, supports the
theory that gene loss of costly leaky functions (metabolic functions that release their end
product by diffusion in the environment, thus producing public goods) can result in an
increased fitness at the individual level if the number of producers in the community (also
called helpers) are still big enough to support community growth. Bacteria losing such genes
become beneficiaries of the helpers (Morris 2015). This metabolic coupling was also
hypothesized to enable bacteria to avoid exclusive competition by making the two partners
reach a steady state in the environment, thus avoiding a disappearance of one of the two
species and reducing competition (Mas et al. 2016).
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Figure 2: plot showing the number of articles published between the year 2000 until 2018 (by year) on PubMed using
keywords related to bacterial interactions (blue). The number of articles published with keywords related to positive
interactions (green) is growing faster than the number of articles with keywords related to negative interactions (red).

This theory might also explain the low cultivability of microorganisms, known as the “great
plate count anomaly”, because if a significant number of microorganisms require public good
metabolites, they could be auxotroph for one or several specific metabolites (Zengler and
Zaramela 2018) and therefore be unable to grow without their microbial partners. Recent
culture experiments that were able to isolate previously uncultured microorganisms by
adding siderophores (D’Onofrio et al. 2010; Vartoukian et al. 2016) support this hypothesis.
In addition, recent co-culture experiments on bacterial strains isolated from soils by Ren et
al. (2015) showed a number of positive synergies (higher growth rates in co-culture than in
pure culture), supporting the fact that metabolic couplings could be important in bacterial
communities. D’'Souza and Kost (2016) also showed that bacterial strains lost biosynthesis
genes for metabolites present within the culture media by selection, which confirms the
hypothesis that organisms can lose the ability to perform functions whose products are
available from the environment (Morris, 2015).
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2.1 Importance of bacterial interactions

Bacterial interactions can be very diverse and can also involve other interacting taxa like
plants (Finkel et al. 2019), fungi (van Overbeek and Saikkonen 2016) or animals (Rgnn,
Vestergard, and Ekelund 2015). The significance of these interactions is becoming more
apparent through recent studies. For example, plant root development has been shown to be
affected by bacteria-bacteria interactions (Finkel et al. 2019) and that maize yield could be
correlated to specific bacterial interactions (Tao et al. 2018). Bacterial interactions have also
been shown to modulate the reproductive success of diatoms (Torres-Monroy and Ullrich
2018). Bacterial interactions can also modulate biogeochemical cycles (Ho et al. 2016). If two
interacting bacterial species mediate reactions from different biogeochemical cycles,
biogeochemical coupling can be observed, leading to unpredicted metabolic dependencies
between cycles (Schlesinger et al. 2011; Burgin et al. 2011). For example, Beal, House, and
Orphan (2009) discovered that methane oxidation could be coupled to manganese or even
iron instead of sulfate reduction in marine methane-seep sediments. Another example of
biogeochemical coupling was discovered in an ancient marine brine system isolated from the
atmosphere in the Antarctic. Mikucki et al. (2009) observed that an active microbial
community was cycling sulfur through coupling with iron reduction to Fe (ll). This enabled the
microbial community to grow despite its isolation (no photosynthesis causing a limited input
of carbon in the community) (Mikucki et al. 2009).

3 Bacterial interactions can change

As bacterial interactions attract more and more attention, the stability of these interactions
has also begun to be investigated. Several environmental parameters have been studied
mainly during lab experiments (Table 1). Each of these parameters has been shown to select
for cooperation or counter-select for it by increasing competition. Therefore, given that
nutrient concentrations, pH, water content and the homogeneity of the environment can vary
across time, bacterial interactions can be seen as dynamic links between organisms. This
concept can be illustrated by the co-culture experiment carried out by Benomar et al. (2015),
in which Desulfovibrio vulgaris, a Gram-positive sulfate reducing bacterium, was co-cultured
with Clostridium acetobutylicum, a Gram-negative bacterium. The authors showed that
metabolic exchanges between species only began once sulfate was depleted in the culture
medium. The consequence of dynamic interactions is that the outcome of the structure of a
defined bacterial community cannot be predicted only by the individual metabolisms of the
organisms present, but also by possible couplings and interaction potentials among the
different members. Konopka, Lindemann, and Fredrickson (2015) modelled these dynamics
and observed that bacterial interactions could generate endogenous dynamics affecting the
bacterial community even in the absence of exogeneous perturbations. They also showed
that the interaction network could improve the resistance of the community to perturbation
and should be considered in addition to metabolic redundancy (Konopka, Lindemann, and
Fredrickson 2015).

The study of the effect of each of the environmental variables on bacterial interactions are

still ongoing and new effects are still being discovered. As observed in Table 1, not all the
studies agree on the effect of each parameter. Such contrasting results can be explained by
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the fact that cooperation and competition can also occur at different scales within a bacterial
community. For example, Cordero et al. (2012) observed that antibiotic were secreted by
some members of a bacterial consortium while the other collaborative strains shared the
antibiotic resistance genes. They concluded that antibiotic synthesis could be considered as a
collaborative trait in this part of the community and was used to compete against other
members of the community. On the other hand, the model bacteria used for these studies
can also influence the results and thus show that different collaborative or competitive

strategies could be selected for across different environments.

Table 1: Summary of biotic and abiotic factors found to select for competition or cooperation among the bacterial
communities. Most of those results have been generated during lab experiments results and/or modelling.

Type of factor Factor Selects for / Type of study Article
impacting indicates
interaction
Biotic Factors Antibiotics Competition Lab experiment | (Vasse et al.
2017; Cordero
et al. 2012)
Genetic Lab experiment @ (Dimitriu et al.
information Bioinformatics 2014; 2015;
transfer 2016; Nogueira
et al. 2009)
High bacterial Lab experiment @ (Darch et al.
density 2012)
Low bacterial Lab experiment @ (Ross-Gillespie
density et al. 2009;
Ross-Gillespie et
al. 2007)
Increased Competition Lab experiment @ (Harrison and
mutation rate (decreases Buckling 2005)
cooperation)
Abiotic Factors | High nutrient | Competition Lab experiment @ (Brockhurst et
richness al. 2010; Ponce-
Soto et al. 2015;
Lambert et al.
2011; Ravindran
2017; F.J. Hol et
al. 2014)
Low nutrient | Competition Lab experiment | (F. J. Hol et al.
richness 2014; Ponce-

Soto et al. 2015;
Velez et al.
2018; Lambert
et al. 2011;
Lambert,

Vyawahare, and
Austin 2014;
Benomar et al.
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2015; Ravindran
2017; Pande et

al. 2015)
high substrate Lab experiment @ (Dengand Wang
complexity 2016; Tecon and
Or 2017)
Oxidative stress Lab experiment | (John et al.
2017)
Increased Lab experiment | (Kimmerli et al.
structure of modelling 2009; F. J. H. Hol
environment et al. 2013;
2015; Mc Ginty,
Rankin, and

Brown 2011;
Tecon et al.
2018)

4 Nutritional strategies and bacterial interactions

Based on Table 1, nutrient concentrations or composition can influence bacterial interactions.
The effect of changes in nutrient concentrations on the bacterial interactions is the main focus
of this thesis. Therefore, we will focus on interactions related to nutrients in the following
sections. The main types of interactions are defined below:

(A) Nutritional competition: This is a special case of competition (Negative-Negative) where
both partners compete for a particular nutrient (fig.2.A). Even though one of the two species
can win the competition, the interaction is negative for both species, because each one
consumes a part of the nutrient pool that is then lost for the other species.

(B) Syntrophy: This is a particular case of mutualism (Positive-Positive) (fig.2.B). Two
microorganisms cooperate to degrade a compound that they would not be able to degrade
alone. Thus, the interaction is positive for both bacteria, since they can metabolize a pool of
nutrients that they would not be able to process without the presence of their partner.

(C) Cross-feeding: This is a special case of commensalism (Neutral-Positive). The presence of
the first species producing an essential nutrient such as a vitamin allows a bacterium unable
to produce this compound (auxotroph) to survive (fig.2C). The bacterium producing the
nutrient does not benefit from this interaction, but the auxotroph is able to survive (improved
fitness) due to the second species.
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Figure 3: lllustration showing three kinds of nutritional interactions that can be observed among
microorganisms. A The competition for nutrient uptake will lead to the increase of one bacterial strain
and the decrease/disappearance of the bacterial strain that lost the competition. B The consumption
of a by- product (green square) e.g. hydrogen generated by fermentation of ethanol to acetate by a
second strain that reduces CO2 to CH4, thus making the first reaction more thermodynamically

favorable. C A bacterial strain producing an essential nutrient (e.g. vitamin) allows the growth of
auxotrophs. Figure from the article of Seth and Taga (2014).

4.1 Copiotrophs versus oligotrophs: is lifestyle linked to bacterial interactions?

A first question arising from these interactions is whether they could result from an
adaptation to a specific lifestyle, by selecting a specific kind of interaction (competition or
cooperation) based on the nutrient load, for example. Here, we review the different attempts
to classify bacteria based on the trophic strategies.

A lot of effort has been invested to classify microorganisms based on their ability to survive
in copiotrophic (nutrient rich) or oligotrophic (nutrient poor) environments (see review by Ho
et al. 2017). Some researchers have tried to link the taxonomy of the bacterial community
members to bacterial properties such as carbon mineralization in soils, for example (Fierer,
Bradford, and Jackson 2007). This approach has been difficult to generalize across studies due
to the lack of consensus related to using a taxonomic based approach. For example, some
organisms previously identified as copiotrophs were identified as oligotrophs and vice versa
(Ho et al. 2017). In another attempt to classify bacteria based on lifestyle, researchers have
begun using genomic features as proxies for copiotrophic or oligotrophic organisms. For
example, Klappenbach, Dunbar, and Schmidt (2000) classified bacterial taxa based on their
rRNA copy numbers and observed a dominance of high copy number bacteria in rich media
(responding quicker to amendment) and a dominance of low copy number bacteria in the
unamended media. In @ more complex attempt to classify copiotrophic and oligotrophic
bacteria, Lauro et al. (2009) used several bacteria already classified as copiotrophs and
oligotrophs and compared their genomes to find categories of genes that were differentially
abundant in one of the two groups of genomes. The advantage of this approach is that only
metabolic potential is needed to classify bacteria, which can easily be generalized and used
to predict lifestyles from metagenomes by comparing gene abundance, for example.
Antibiotic related genes were found to be significantly more abundant in copiotroph
genomes, suggesting that they could be found in environments with intense competition.
Another hypothesis is that these organisms are less nutrient limited and could thus invest
more energy and resources into competition-related metabolisms. The second hypothesis
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could be supported by the study of F. J. Hol et al. (2014) who observed that an antibiotic
sensitive E.coli strain could co-exist with a colicin-secreting E.coli strain when co-cultivated on
a poor growth medium (sugars), but not on a rich medium (amino acids and peptides), where
the colicin-secreting E.coli strain released antibiotics.

Figure 2: short summary of genomic features detected by (Lauro et al. 2009) as being more abundant in copiotrophs or

oligotrophs bacterial genomes.
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Oligotrophic bacterial genomes:

Size: Small

Low prophage nb. repeats

Low amount of generalized cell
wall transport channels (ABC)
Lipid metabolism + transport
High secondary metabolisms
biosynthesis, transport and

R g catabolism
Antibiotics i ) ! : :
Antibiotic tarvation » High spore germination

Transporter

Motility and sensing minimia e
zatio

MNutrient storage

Transporter
specialization

Detoxification

Spore forming

However, considering competitive interactions as resulting only from adaptations to a given
nutrient level in the environment is likely inaccurate since other factors, such as those
summarized in Table 1, have also shown to be involved.
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4.2 Bacterial competition sensing: how bacteria can use environmental signals to
interact

A theory to explain bacterial competition as a consequence of stress, mainly related to
nutritional state, but also to cell damages caused by potential competitors, has recently been
proposed by Cornforth and Foster (2013). They postulate that bacteria are able to sense
competition (i.e. competition sensing) through a physiological response that detects harm
caused by other organisms. They suggest that many stress responses in bacteria detect
ecological competition by sensing changes in nutrient levels (exploitative competition) or
direct cell damage (interference competition).

Competition sensing has the advantage that it reduces the number of factors to consider and
creates a framework where competition is mainly dependent on two environmental factors
(nutrient stress and cell damage). One limitation of this system is that the selection of
cooperation is not discussed as a strategy since the authors suggest that, in their own words,
bacteria exist in mainly a “microbe-kill-microbe” world (Cornforth and Foster 2013a).
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Figure 4: figure from Cornforth and Foster (2013) summarizing the bacterial competition sensing framework. Bacteria can
detect the presence of competitors by quorum sensing (Qo increasing) and increasing cell damage (D increasing). The
increase of cell density can be detected by nutritional stress (N) increasing.

Despite this limitation, their model is able to explain nutritional competition in an elegant and
very predictive way. This model could potentially be used to predict an increase in
competition in an environment experiencing a nutrient pulse, with an increase in cell density
while genetic diversity is maintained, as illustrated in the green square on Figure 4.

When considering cooperation and its selection, no model has shown how this interaction
could be established nor how nutrient dynamics would impact it, with the exception of the
“Black Queen’s hypothesis”. If we look at the competition sensing model, we could
hypothesize that in low nutrient environments, bacterial density would be lower, thus
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decreasing the cell damage sensed by bacteria in the community. However, this still does not
explain the cooperation selective process. Nutritional stress adaptations of bacteria limited
by a nutrient in their environment might provide some information regarding this.

4.3 Metabolic overflow: a metabolic response of cell under nutrient stress

As defined in the article by Basan et al. (2015), “Overflow metabolism refers to the seemingly
wasteful strategy in which cells use fermentation instead of the more efficient respiration to
generate energy, despite the availability of oxygen”. This metabolic overflow leads to the
release of fermentation products, such as intermediates of glucose degradation in the
glycolysis or sometimes the Krebbs pathway (e.g. lactate, ethanol, acetate or oxalate) from
cells. This has been observed in fast growing eukaryotic and bacterial cells, but an explanation
for this type of metabolic regulation has been lacking until recently. Basan et al. (2015)
observed that above a certain threshold growth rate, E.coli batch cultures started to carry out
metabolic overflow by secreting acetate as a byproduct. The acetate secretion per biomass
observed above the growth rate threshold was linearly correlated to the growth rate. Basan
et al. (2015) defined this phenomenon as the acetate line (Figure 5).
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Figure 5: Figure and legend from Basan et al.(2015). Acetate excretion rate (Jac) is linearly correlated with the growth rate
(A) for wild-type (WT) cells grown in minimal medium with various glycolytic carbon sources (black symbols), and for cells
with titratable or mutant uptake systems (purple symbols) (Extended Data Table 1). Black diamonds indicate various carbon
sources supplemented with seven non-degradable amino acids (AA). The red line shows the best-fit of all the data to equation
in Basan et al. (2015).

This was observed for different carbon sources. Basan et al. (2015) emitted the hypothesis
that a metabolic shunt could occur due to the high bioenergetic cost of using proteomes for
respiration (lower energy ratio for building the pathway proteome/ energy generated by such
proteome) relative to the fermentation pathway. At high carbon uptake and high potential
growth rate, cells can obtain the highest growth rate by using the more efficient fermentative
pathway. On the other hand, if carbon uptake is low and growth rate is also low, it is more
useful to rely on the more carbon efficient respiratory pathway to maximize the carbon flux
to support growth (Basan et al. 2015). This is an example of a selective pressure to optimize
growth yield and minimizing the protein pool needed to reach it.
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Other selective pressures can also lead to metabolic overflow when cells grow under limiting
nutrient conditions. The review by Carlson et al. (2018) describes how metabolic shunts can
be observed when E. coli batch cultures are cultivated under different limiting nutrient
conditions in chemostat studies. The metabolic shunts are triggered by culture on low carbon
or low iron and lead to secretion of acetate or formate, while under more severe nutritional
stress, formate and acetate are predicted to decrease and lactate starts to accumulate in the
batch culture medium (Carlson et al. 2018). This time, the selective pressure occurs on the
limitation of a key nutrient being used to produce enzymes involved into oxidative
metabolisms (e.g. iron) and leads to a shunt selecting the metabolic pathway being less
limited by this low nutrient availability (fermentation).

4.3.1 Releasing costless metabolites can lead to cross-feeding cooperation

The secretion of metabolic byproducts could trigger the beginning of cross-feeding
interactions among the different members of the community and thus promote an increased
cooperation as well as a decrease in competition (Carlson et al. 2018). This was first suggested
by Pfeiffer and Bonhoeffer (2004) who showed in their modelling experiments that cross-
feeding could arise from a set of energetic and metabolic optimization principles: “the rate of
ATP production is maximized, the concentration of enzymes of the pathway is minimized, and
the concentration of intermediates of the pathway is minimized”.

In addition to this work, a more recent modelling experiment based on flux balance analysis
(FBA) simulations of 24 microbial species co-cultured under various carbon source
combinations was recently published (Pacheco, Moel, and Segré 2019). Their simulations
showed that costless metabolites secreted by one of the two co-cultured members could
stabilize cross-feeding interactions without being detrimental for the secreting bacteria (the
growth rate of the secreting bacteria stayed the same as the growth rate computed without
the byproduct secretion).
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Figure 6:Figure from Pacheco, Moel, and Segré (2019) summarizing the different sorts of costless metabolites secreted during
all their simulations in (a) Oxic co-cultures and (b) Anoxic co-cultures.
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In addition, they also identified the main costless metabolites secreted by the strains during
co-culture (Figure 6). The dominant metabolite excreted is inorganic (e.g. water, CO,, ...),
followed by organic acids, representing more than 20% of the costless metabolites in both
oxic as well as anoxic co-culture simulations (Figure 6). We have introduced the possible
mechanisms of bacterial competition as well as bacterial cooperation. These interactions
were shown to be dynamic. Now we will review the different tools available to study bacterial
interactions and then summarize the current research on bacterial interactions and the effect
of nutrients dynamics.

5 Studying bacterial interaction in the environments, available
tools

5.1 Culture based methods

As we have seen, the vast majority of studies carried out on bacterial interactions are culture-
based experiments. Such methods present a bias for investigate microbial interactions at the
community level as they are not representative of the natural environment (Figure 7). The
key advantages of such systems are that they are easy to follow over time and the reduced
complexity in terms of microbial diversity makes it possible to track secreted metabolites to
specific strains (Chignell et al. 2018; Herschend et al. 2017) or to visualize physical interactions
by microscopy or more complex techniques such as nanoSIM (Musat et al. 2016) .

Tractability

Accessibility Reduced size

— NEtUral COMMUNIty s Semi-natural community Synthetic community
w— Fermentad food community

Figure 7: Characterization of the different model communities according to: (1) reduced size, (2) representativity, (3)
stability, (4) accessibility and (5) tractability. Figure and legend are from Blasche et al. (2017)

Culture methods include co-cultures where differential growth rates compared to the pure
culture can be used to deduce whether the interaction is positive or negative. Such methods
can also be used on co-cultures of model organisms where their respective genomes are
already known in order to assess how a positive or negative interaction can affect gene
expression patterns by generating differential transcriptomic profiles (Hansen et al. 2017;
Khan et al. 2018; Molina-Santiago et al. 2017; McClure et al. 2018). Finally, modelling can also
be applied in order to predict, based on previous culture experiments and genome analyses,
metabolic networks and how an interaction or a perturbation of the system (e.g. increase of
nutrient) could affect them (e.g. Zeng and Yang 2019). Such analyses, called Flux Balance
Analysis (FBA), have the potential to predict how the metabolic fluxes would be affected by a
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perturbation. This analysis relies on the fact that each metabolic reaction is known and can
be estimated by equation systems that can be solved. Based on such an approach, Zelezniak
et al. (2015), developed a tool to estimate what metabolites could be exchanged and
predicted if the interactions between the considered species could be positive or negative.
However, this system is currently limited by the number of species that can be computed by
the program (<100) which makes it unsuitable for screening complex communities (pers. com.
from the author of the tool).

5.2 Culture free methods

The use of culture free methods is recent, but is rapidly developing as it can overcome the
representativity bias of the previously described methods. The two main culture free methods
used to study bacterial interactions include co-variance/co-occurrence networks and
metagenome or metatranscriptome analyses. Both techniques have limitations.

The network approach relies mainly on the assumption that taxa which covary positively
across time cooperate and the ones which covary negatively compete (Figure 8). This
approach has been used for microbial communities from oceans (Lima-Mendez et al., 2015;
Ruan, 2006), soils (Barberdn et al., 2012; Ding et al., 2015), human microbiomes (Faust et al.,
2012) and heavy-metal-polluted sediments (Yin et al., 2015). These networks often use co-
variance to infer positive (cooperative) and negative (competitive) bacterial interactions (e.g.
Ruan, 2006), but co-variance might also indicate that the populations are responding to other
stimuli simultaneously.
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Figure 8: The goal of network inference is to identify combinations of microorganisms that show significant co-presence or
mutual exclusion patterns across samples and to combine them into a network. a | Network inference starts from an incidence
or an abundance matrix, both of which store observations across different samples, locations or time points. b | Pairwise
scores between taxa are then computed using a suitable similarity or distance measure. A range of such measures are used
in the literature (for example, Pearson, Spearman, hypergeometric distribution and the Jaccard index). In contrast to
similarity-based approaches, multiple regression can detect relationships that involve more than two taxa. To reduce over-
fitting, sparse multiple regression is usually carried out — that is, the source taxa subset that best predicts the target taxon’s
abundance is selected. In addition, the regression model is cross-validated: that is, after regression coefficients have been
identified with a training data set, the model’s prediction accuracy is quantified on a test data set. ¢ | In the next step, a
random score distribution is generated by repeating the scoring step a large number of times (often 1,000 times or more).
The random score distribution computes the P value (that is, the probability of obtaining a score by chance that is equal to or
better than the observed score) to measure the significance of the predicted relationship. The P value is usually adjusted for
multiple testing with procedures such as Bonferroni or Benjamini—-Hochberg. d | Taxon pairs with P values below the threshold
are visualized as a network, where nodes represent taxa and edges represent the significant relationships between them. The
edge thickness can reflect the strength of the relationship. Figure and legend are from (Faust and Raes 2012).

A second strategy to study bacterial interactions is by tracking genes identified as proxies and
determine whether they increase or decrease across samples. What is currently limiting is
that there is currently no clear consensus on genes that are good proxies for cooperation and
competition. If we look at the summary table (Table 3), many of the identified genes have
been shown to be implicated in both competition and cooperation. For example, the
secretion of exopolysaccharides (EPS) is often seen as a cooperative trait as biofilms have
many synergies within them. Nonetheless, Oliveira et al. (2015) observed that EPS secretion
could also be triggered by exposure to sublethal antibiotic concentrations, showing a link to
competition. Competition was hypothesized to be mediated by antibiotic release in a number
of studies (Cornforth and Foster 2013b; Oliveira et al. 2015; Ponce-Soto et al. 2015; Song et
al. 2017), but Cordero et al. (2012) observed that antibiotics secretion can also be a public
good. This is why it is also important to track the increase in diversity of antibiotic resistance
genes across time. If the diversity of genes increases, then we can exclude the hypothesis that
antibiotic secretion is a public good, since the community responds to an increase in the
number of toxic compounds secreted. This is more compatible with the hypothesis of
increased competition among the different members of the bacterial community. A newly
identified proxy of cooperation are plasmid backbone genes. Indeed, several articles showed
that collaboration could be maintained by genetic exchanges and observed that genes coding
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for public goods were preferentially located on mobile elements and hotspots of
recombination in bacterial genomes (Dimitriu et al. 2014; 2015; 2016; Nogueira et al. 2009).

Table 3: Table summarizing the different types of genes considered as being clues of cooperation or competition between
bacteria. As we can see, most of them don’t show a clear separation between competition of cooperation interactions. In
addition, when the supporting article was a lab experiment, the experimental design is given by the following code between
brackets and specifies if the observation was done on a single species = multiple/single strains culture (MS/SS), a co-culture
of two or more species (CC) or an enriched environmental bacterial community (E).

Genes used as Clue of Type of study Articles
surrogate of
bacterial
interactions
Antibiotics Competition Lab experiment | (Vasse etal. 2017;
(MS) Cordero et al.
2012)
Genetic Lab experiment | (Dimitriu et al.
information Bioinformatics | 2014; 2015; 2016;
transfer (plasmids) Nogueira et al.
2009)
Type VI secretion | Competition Lab experiment | (Basler, Ho, and
system (T6SS) (MS) Mekalanos 2013;
Brunet et al.
2013)
Contact dependent Competition Lab experiment | (Jones, Low, and
inhibition (CDI) Modelling Hayes 2017;

Blanchard, Celik,
and Lu 2014)

Exopolysaccharides | Competition Lab (Oliveira et al.

(EPS) (MS) experiments 2015; Frost et al.
2018; Nadell,

Drescher, and
Foster 2016; Song

et al. 2017)
Quorum sensing Competition Lab (Oshri et al. 2018;
(cQ) experiments Darch et al. 2012;
Czéran and

Hoekstra  2009;
Diggle et al. 2007;
Miller and Bassler
2001; Goo et al.
2015)

39



6 Nutrients and bacterial interactions, a short review

Most of the studies on the impact of nutrients on bacterial interactions have been carried out
in lab culture experiments (Mitri and Foster 2013). Co-culture studies give the advantage of
being able to define whether the interaction is positive or negative for the cultured species.
If the growth rate from the co-cultured species is higher than its growth rate in pure culture,
the interaction is termed as positive (cooperation), and if the growth rate is reduced in the
co-culture, it’s considered negative (competition).

Dynamic changes in nutrient concentrations have been shown to influence bacterial
interactions with ramifications for microbial community structure and function (Friedman
and Gore, 2017; Khan et al., 2018). In these pure culture studies, either cooperation or
competition were the dominant interaction strategy depending on the nutrients considered
and their concentrations (Brockhurst et al., 2008, 2010, Lambert et al., 2011, 2014; Ravindran,
2017). Interference competition was hypothesized to be mediated by antibiotic release
(Cornforth and Foster, 2013; Oliveira et al., 2015; Ponce-Soto et al., 2015; Song et al., 2017)
and was shown to be affected by the nutrient supply (Hol et al., 2014). For example, a
sensitive E.coli strain co-existed with a colicin-secreting E.coli strain when co-cultivated on a
poor growth medium (sugars), but not on a rich medium (amino acids and peptides), where
the colicin-secreting E.coli strain released antibiotics (Hol et al., 2014). While these studies
have provided information on different nutrient effects on bacterial interactions under
controlled conditions, they might not predict microbial interactions in the environment.

Microcosm or mesocosm approaches have been used more recently to study microbial
communities and the results have varied (Ali et al., 2016; Ponce-Soto et al., 2015; Song et al.,
2017). Although no studies on the effect of carbon content on microbial interactions have
been published to date, one study measured an increase in antibiotic resistance genes in
strains of Enterococcus faecalis cultivated in eutrophic sediment mesocosms amended with
nitrogen and phosphorus (Ali et al. 2016). Other studies observed a decline in antibiotic
resistance in cultivable bacterial populations from an oligotrophic lake in mesocosms
amended with nitrogen and phosphorus and from soil bacteria cultivated on agar plate
amended with increasing nutrient medium concentrations (Ponce-Soto et al. 2015; Song et
al. 2017). The main difference between these two sets of studies is that one used a PCR based
method to track antibiotic resistance (Ali et al. 2016), while the others used culture-based
methods (Ponce-Soto et al. 2015; Song et al. 2017). Culture based techniques could have a
higher bias since they alter the bacterial community by selecting members able to grow on
media.

7 Arctic snow: a model habitat for studying bacterial interaction
dynamics caused by seasonal changes in nutrient
concentrations

Arctic snow could be referred to as an extreme environment. Indeed, temperatures are below
0°C, water availability is low, and during the spring season, UV radiation can be very high at
its surface (Maccario et al. 2015). To survive in such an environment, bacteria have developed
a range of strategies and adaptations. To survive to the photo-oxidative stresses induced by
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high UV irradiation, bacteria can, for example, produce anti-oxidative enzymes able to cross
react with the ROS (Reactive Oxygen Species) generated by UV and repair their damaged DNA
(Sinha and Hader 2002; Ziegelhoffer and Donohue 2009). Microorganisms are also exposed
to variable nutrient concentrations and osmotic stress (Maccario et al. 2015).

Figure 9: Average snow extent across the Northern Hemisphere reaches its maximum in January (left), and its minimum in
August (right). White indicates snow, blue shows oceans and water, and gray indicates land. Figure and legend from the
website of the NSIDC (National Snow and Ice Data Center.)

An interesting feature of this environment is that, during the spring season, a rapid increase
in nutrients can be observed in the snow and the environment can become quite rich as
compared to winter snow. This environment is thus dynamic and displays a range of
environmental variations. This property is interesting since the snow can be used as a model
environment to compare bacterial interactions in an environment poor in nutrients and the
same environment enriched in nutrients during the end of the spring season.

Research on microbial communities of the Arctic snow have shown that there was a dynamic
community capable of responding to environmental changes with the potential to carry out
a vast range of metabolic activities (Hell et al. 2013; Catherine Larose, Dommergue, and Vogel
2013; Catherine Larose et al. 2013; Catherine Larose et al. 2010; Maccario, Vogel, and Larose
2014). However, none of those studies measured the activity of the tracked bacterial
community. Some controversy remains as to whether there is a sustainable microbial
community in the snow, given the low bacterial density (102-10° cells) compared to other
cryospheric environments (Boetius et al. 2015), but more recent studies suggest that there
are seasonal changes in the community and that these changes are driven by environmental
factors (Catherine Larose et al. 2013; Maccario, Vogel, and Larose 2014; Lutz, Anesio, Raiswell,
et al. 2016).

Bacterial communities are predominant in the snow and it has been shown that they can
impact geochemical cycles in the Arctic and Antarctica (Catherine Larose et al. 2013; Antony
et al. 2016). It has been shown that some bacterial communities in other environments have
the potential to couple biogeochemical cycles via metabolic coupling or through bacterial
interactions (e.g. syntrophy) (Beal, House, and Orphan 2009; Thamdrup et al. 1993). For the
moment, nothing is known about the potential interactions of biogeochemical cycles in the
snow and if they are coupled through bacterial interactions. Studying snow microbial
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communities and how they interact could help understand the impact of arctic snow
environments on global geochemical cycles.

Microbial snow communities have been characterized in several studies and reviewed in
Boetius et al. (2015) and Maccario et al. (2015). The snow environments generally dominated
by Proteobacteria (alpha- and beta- proteobacteria being present in most of the published
communities) and also Bacteroidetes (Boetius et al. 2015; Maccario et al. 2015). This is
unsurprising if we consider that Arctic snow environments are affected by large seasonal
variations in term of light exposition (affecting primary productivity) and temperature
fluctuations. Betaproteobacteria are considered r-strategists, able to exploit a wide variety of
nutritional sources, and are thus likely to survive in these very dynamic (Hell et al. 2013). Hell
et al. (2013) were unable to determine spatial variations in microbial communities during
their study on an Arctic melting snowpack, but Maccario, Vogel, and Larose (2014) detected
depth variation in addition to seasonal variation, showing that snow could be a highly
stratified environment. The observed spatial variability was linked to distinct environmental
conditions such as UV exposition for example. Lutz et al. (2016) also observed that bacterial
community diversity could be explained by geography and biochemical properties of the
snow. However, the vast majority of these studies have focused on spring or summer snow
(Maccario et al. 2015)and little is known about bacterial communities and their metabolic and
biogeochemical activity in the winter. Hamilton et al. (2013) recently observed subglacial
bacterial activity and showed that the amount of phylogenetically related species in the
subglacial environment was lower than in the ice. This was attributed to the isolation of the
communities from atmospheric nutrient inputs, leading to an oligotrophic environment
(Hamilton et al. 2013). In their discussion, they hypothesized that these highly diversified
(phylogenetically) subglacial communities carried out mutualistic interactions to increase
resources (nutrients) availability. If we make a parallel with the snow, we would expect snow
to be more oligotrophic in the winter than in the spring (since there is no photosynthesis).

Although microbial interactions have never been studied in the snow, Gokul et al. (2016) used
a network approach to study bacterial communities in cryoconite. Core taxa (key species)
were predominantly Actinobacteria (related to isolates from soil humus) and interacted
positively with the rest of the bacterial community. The authors also showed that these core
OTUs had a stronger influence on the community structure than the studied environmental
conditions (Gokul et al. 2016). This finding could be an illustration of the concept of Konopka
et al. (2015), that states that the bacterial community can be modified by interactions that
will impose a dynamic change even in the absence of any modification in the environmental
conditions.
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8 Hypotheses of the work

Arctic snow microbial communities were selected because arctic snow carbon content varies
by several orders of magnitude during the spring season (Twickler et al. 1986) and is generally
considered a low carbon environment. Recently, using COG functions characteristic of
oligotrophy or copiotrophy as proposed by Lauro et al. (2009), Maccario et al. (2019) showed
that arctic snow bacterial communities were adapted to oligotrophic lifestyles. Although
oligotrophic, carbon content in the snow increases over the spring season (Grannas et al.
2007; Haan et al. 2001; Twickler et al. 1986). In addition, Arctic snow has varying nutrient
conditions that affect bacterial community structure and function (Larose et al. 2013).

Based on the previous theories outlined in this introduction, the overarching hypothesis of
this PhD is that an increase in organic acids in the snow would increase competition and
reduce collaboration. This hypothesis is supported by the observation that an increase in
carbon increased interference competition (F. J. Hol et al. 2014). In opposition, cooperation
could be higher in more limited nutrient environments, as shown by Benomar et al. (2015),
who observed that metabolite exchanges could be triggered by nutritional stresses.

In Chapter 2, | used a multidisciplinary approach combining chemistry, metagenomics,
metatranscriptomics and network analysis to identify shifts in microbial interactions in Arctic
snowpacks during the spring. Snowpack communities were investigated over two months to
assess changes in community structure, activity and function and relate these to shifts in
organic acid concentrations.

Given the challenges related to analysing samples with low sequencing depths, | needed to
develop new tools to improve annotation and analysis. In Chapter 3, | present a new
bioinformic pipeline called EggVio that was validated using an existing dataset available in the
laboratory.

In Chapter 4, | carried out a microcosm study to validate the experimental results obtained
from field data. Arctic snow collected in Svalbard was incubated at -5°C and nutrients were
added to test whether organic acids could shift the interactions of microbial communities. |
applied the pipeline described in Chapter 3 and showed that organic acid concentrations
modify interactions.

Based on our results, we suggest that the seasonal increase or organic acids in the arctic snow
is caused by specific members of the endogenous microbial community (mainly Fungi). In
addition, this increase of organic acids in the microbial community causes a shift in microbial
interactions. Bacterial competition is the main interaction affected by organic acids, as we
showed that it could increase significantly (four-fold increase) when we amended arctic snow
with acetate in our microcosms. In contrast, we suggest that an increase in organic acids had
little or no effect on bacterial cooperation.
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Chapter Il - Do Organic Substrates Drive
Microbial Community Interactions in
Arctic Snow?

1 Abstract

The effect of nutrients on microbial interactions, including competition and collaboration, has
mainly been studied in laboratories, but their potential application to complex ecosystems is
unknown. Here, we examined the effect of changes in organic acids among other parameters

on snow microbial communities in situ over 2 months. We compared snow bacterial
communities from a low organic acid content period to that from a higher organic acid period.
We hypothesized that an increase in organic acids would shift the dominant microbial
interaction from collaboration to competition. To evaluate microbial interactions, we built
taxonomic co-variance networks from OTUs obtained from 16S rRNA gene sequencing. In
addition, we tracked marker genes of microbial cooperation (plasmid backbone genes) and
competition (antibiotic resistance genes) across both sampling periods in metagenomes and
metatranscriptomes. Our results showed a decrease in the average connectivity of the
network during late spring compared to the early spring that we interpreted as a decrease of
cooperation. This observation was strengthened by the significantly more abundant plasmid
backbone genes in the metagenomes from the early spring. The modularity of the network
from the late spring was also found to be higher than the one from the early spring, which is
another possible indicator of increased competition. Antibiotic resistance genes were
significantly more abundant in the late spring metagenomes. In addition, antibiotic resistance
genes were also positively correlated to the organic acid concentration of the snow across
both seasons. Snow organic acid content might be responsible for this change in bacterial
interactions in the Arctic snow community.

2 Introduction
Dynamic changes in nutrient concentrations have been shown to influence bacterial
interactions with ramifications for microbial community structure and function (Friedman
and Gore, 2017; Khan et al., 2018). In these pure culture studies, either cooperation or
competition was the dominant interaction strategy depending on the nutrients considered
and their concentrations (Brockhurst et al.,, 2008, 2010, Lambert et al,
2011, 2014; Ravindran, 2017). Interference competition was hypothesized to be mediated by
antibiotic release (Cornforth and Foster, 2013; Oliveira et al., 2015; Ponce-Soto et al,,
2015; Song et al., 2017) and was shown to be affected by the nutrient supply (Hol et al., 2014).
For example, a sensitive Escherichia coli strain was observed to co-exist with a colicin-
secreting E. colistrain when co-cultivated on a poor growth medium (sugars), but not on arich
medium (amino acids and peptides), where the colicin-secreting E. coli strain released
antibiotics (Hol et al., 2014). Cooperation was also proposed to be mediated by either
metabolic or genetic exchanges between different collaborative strains (Nogueira et al.,
2009; Mc Ginty et al., 2011; Dimitriu et al., 2014, 2015; Benomar et al., 2015; Wall,
2016; Tecon and Or, 2017) and has also been shown to be affected by nutrient supply
(Benomar et al., 2015). Several studies have examined the importance of horizontal gene
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transfer in maintaining cooperation in synthetic bacterial communities (Czaran and Hoekstra,
2009; Nogueira et al., 2009; Dimitriu et al., 2014, 2015; Wall, 2016). Therefore, cooperation
might be promoted by increasing assortment among cooperative alleles (Dimitriu et al., 2014)
or by increasing kin selection (Nogueira et al., 2009; Wall, 2016). In addition, most of the
genes coding for public goods appeared to be preferentially localized on mobile genetic
elements (plasmids) and at hotspots of genome recombination (Nogueira et al., 2009).

The majority of research concerning nutrient-related effects on bacterial interactions has
been generated with culture-based experiments (Mitri and Foster, 2013). While these studies
have provided information on different nutrient effects on bacterial interactions under
controlled conditions, they might not predict microbial interactions in the environment.
Microcosm or mesocosm approaches have been used more recently to study microbial
communities and the results have varied (Ponce-Soto et al., 2015; Ali et al., 2016; Song et al.,
2017). Although no studies concerning the effect of carbon content on microbial interactions
have been published to date, one study measured an increase in antibiotic resistance genes
in strains of Enterococcus faecalis cultivated in eutrophic sediment mesocosms amended
with nitrogen and phosphorus (Ali et al., 2016). Other studies observed a decline of antibiotic
resistance in cultivable bacterial populations from an oligotrophic lake in mesocosms
amended with nitrogen and phosphorus and from soil bacteria cultivated on agar plates
amended with increasing nutrient medium concentrations (Ponce-Soto et al., 2015; Song et
al., 2017). The main difference between these two sets of studies is that one used a PCR based
method to track antibiotic resistance (Ali et al., 2016), while the others used culture based
methods (Ponce-Soto et al., 2015; Song et al., 2017). Culture based techniques could have a
higher bias since they alter the bacterial community by selecting members able to grow on
media.

Nutrient dynamics also affect bacterial community structure (Campbell et al., 2010). For
example, an increase in organic matter during soil fertilization was shown to decrease
bacterial community evenness in Arctic tundra soil (Koyama et al., 2014). The observed effect
of nutrients on bacterial community structure might be indirect and mediated in part by
bacterial interactions. The low cultivability associated with environmental bacteria might be
mainly due to the co-dependency of bacteria that are auxotrophic for some critical functions
and, therefore, are obligate co-operators (Pande and Kost, 2017). Thus, bacterial
communities might be viewed as networks of cooperating and competing individuals. Such a
view has been explored by recent experiments that show a differential growth rate of
environmental bacterial strains when co-cultured with other specific strains (Pande et al.,
2014; Ren et al., 2015; Vartoukian et al., 2016). Bacterial interactions could provide a selective
advantage to bacterial species as a function of nutrient concentrations and subsequently
influence bacterial community structure.

Tracking bacterial interactions in situ can be performed through networks, such as co-
variance networks based on taxonomic data (Faust and Raes, 2012). This approach has been
used for microbial communities from oceans (Ruan, 2006; Lima-Mendez et al., 2015), soils
(Barberan et al., 2012; Ding et al., 2015), human microbiomes (Faust et al., 2012) and heavy-
metal-polluted sediments (Yin et al., 2015). These networks often use co-variance to infer
positive (cooperative) and negative (competitive) bacterial interactions (e.g., Ruan, 2006), but
co-variance might also indicate that the populations are responding to other stimuli,
simultaneously. An approach combining gene markers for bacterial interactions based on
pure culture studies and taxonomy-based co-variance networks described above should
strengthen the results obtained. Here, we applied this combined approach using antibiotic
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resistance as the surrogate for competition and plasmid structural genes for collaboration,
and taxonomy-based co-variance networks on microbial communities sampled from an Arctic
snowpack over the spring season. Arctic snow microbial communities were selected because
arctic snow carbon content varies by several orders of magnitude during the spring season
(Twickler et al., 1986) and is generally considered a low carbon environment. Recently, using
COG functions characteristic of oligotrophy or copiotrophy as proposed by Lauro et al.
(2009), Maccario et al. (2019)showed that arctic snow bacterial communities were adapted
to oligotrophic lifestyles. However, oligotrophic the arctic snow environment is, carbon
content increases over the spring season (Hacking et al., 1983; Twickler et al., 1986; Haan et
al., 2001; Grannas et al., 2007). In addition, Arctic snow has varying nutrient conditions that
affect bacterial community structure and function (Larose et al., 2013). We hypothesized that
increases in organic acids (as a soluble subset of potential organic substrates) in the warming
spring snow would increase competition (and reduce collaboration).

3 Materials and Methods

3.1 Field Sampling

Snow samples were collected during a 2011 springtime field campaign in Ny-Alesund
(Svalbard, Norway, 78°56'N, 11°52'E). Surface snow layers (upper 3 cm) (2L meltwater
equivalent) were collected into sterile bags using a sterilized shovel as described previously
(Larose et al., 2010a). A total of 31 samples were collected between mid-April to beginning of
June 2011. The spring research campaign was held between April, 2011 and June, 2011 at Ny
Alesund in the Spitsbergen Island of Svalbard, Norway (78°56'N, 11°52°E). The field site, a 50
m? perimeter with restricted access (to reduce contamination from human sources), is
located along the south coast of the Kongsfjorden, which is oriented SE-NW and open to the
sea on the west side (Supplementary Figure S1). We added a map in supporting information.
The Kongsfjorden was free of sea ice throughout the campaign. Specific sampling dates can
be found in the chemistry table (see dataset at Supplementary Table S1). In addition, different
weather and snow conditions were monitored over the sampling period (Supplementary
Figure S2). Samples for snow chemistry were collected, stored frozen, sent back to the
laboratory in France for analysis as described in Larose et al. (2010a, b). Snow samples
collected for microbiology were processed immediately after collection in the field
laboratory. Samples were left to melt at room temperature prior to filtering onto sterile 0.22
UM 47 mm filters (Millipore) using a sterile filtration unit (Nalge Nunc International
Corporation) and filters were stored in Eppendorf tubes filled with the extraction buffer from
the PowerWater extraction kit (MoBio) at —20°C for further analysis. Samples for major ions
and particles were collected in sterile polycarbonate Accuvettes© sealed with polyethylene
caps. All samples were stored frozen (-20°C) and in the dark until analysis.

3.2 Chemical Analysis
Samples were melted in a class 100 clean room at LGGE-CNRS laboratory (Grenoble, France).
They were then transferred into Dionex glass vials previously rinsed with ultra-pure Millipore
water (conductivity > 18.2 mQ, TOC < 10 ng/g) and analyzed less than 24 h after melting.
Analyses were performed by conductivity-suppressed ion chromatography using a Dionex ICS
30000 apparatus and a Dionex AS40© autosampler placed in the clean room facilities.
Different chemical parameters were measured during this study (e.g., major/minor ions,
organic acids, and pH). Soluble anions (methyl sulfonic acid (MSA), SO4, NOs, Cl) and cations
(Na, NHa, K, Mg, Ca) and organic acids were analyzed by ionic chromatography (IC, Dionex
ICS3000). AS/AG 11HC and CS/CG 12A columns were used for anions and cations analyses,
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respectively. All chemical analyses were carried out at on the airOsol platform of the IGE
laboratory in Grenoble, France. This data set can be found in Supplementary Table S1. The
following parameters were used for statistical analyses [Organic acids (oxalate, lactate,
glutarate, propionate, succinate, formate, acetate), NOs~, NH4*, SO42-, mercury, fluoride,
calcium, magnesium, bromide, strontium, lithium, sodium, chloride, potassium, number of
particles, methyl sulfonic acid (MSA)] and pH. For values below the detection limit, we used
the detection limit divided by 2.

3.3 DNA Extraction and Sequencing

The DNA from 20 surface snow samples collected between April and May 2011 (CH3N-1 to
CH3N-37 or early spring ES) and 16 surface snow samples collected from May to June 2011
(CH3N-40 to CH3N-76 or late spring LS) were extracted for taxonomic analysis. Snow was
melted at 4°C before filtering on 0.2 um filters. DNA was extracted from filters using the
DNeasy PowerWater Kit (Qiagen) following the manufacturer’s instructions. Then, the DNA
was quantified using the Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific) and the V3—
V4 regions of the 16S rRNA genes were amplified by a PCR of 35 cycles at 92°C 30 s, 55°C 30
s and 72°C. air Forward primer is composed of the Illumina adapter 5'TC
GTCGGCAGCGTCAGATGTGTATAAGAGACAG coupled to the 16s rRNA gene primer part
CCTACGGGNGGCWGCAG and Reverse primer is composed of the Illumina adapter 5'GT
CTCGTGGGCTCGGAGATGTGTATAAGAGACAG coupled to the 16s rRNA gene primer part
GACTACHVGGGTAT CTAATCC. The 16S rRNA gene primers are from Klindworth et al. (2013).
Simultaneous adapter insertion and amplification was performed using the Platinum PCR
SuperMix (Invitrogen). Libraries for 16S rRNA gene sequencing were prepared using the 16S
rRNA gene Library Preparation Workflow recommended by Illlumina. Paired end sequencing
was then carried out on a MiSeq sequencer (lllumina) at the laboratory in Lyon. Size of
samples before and after clustering is provided in Supplementary Table S2.

Eight samples (CH3N-1 to CH3N-10) collected between April and May and twelve samples
(CH3N-40 to CH3N-66) collected between May and June underwent metagenomic and
metatranscriptomic sequencing. Not all samples were analyzed for 16S rRNA genes as some
of the metagenomic samples did not have any DNA remaining for the 16S rRNA analysis. In
addition, we selected extra samples for the 16S rRNA gene based network analysis. For the
metatranscriptomic/metagenomic analyses, total nucleic acids were extracted using
PowerWater RNA isolation kit (MoBio) following the manufacturer’s instructions, except that
the DNAse treatment step was omitted. The RNA fraction of nucleic acids was then further
purified using RNeasy kit from Qiagen following the manufacturer’s instructions. cDNA
libraries were prepared from RNA using Tetro cDNA synthesis kit (Bioline). DNA and cDNA
samples were then amplified using multiple displacement amplification with the
illustra™ GenomiPhi™ HS DNA Amplification Kit (GE Healthcare) since concentrations were
too low for library preparation and sequenced using a Roche 454 Titanium pyrosequencer to
generate longer reads than illumina MiSeq. Not all samples had sufficient amounts of DNA
for sequencing, resulting unbalanced groups (i.e., 8 for ES and 12 for LS). The reads produced
from the 454 were 350 bp + 100 bp average fragment length following quality filtering
(Supplementary Figure S3). The depth of sequencing for each sample is reported
in Supplementary Table S3. Sequences are publically available at ftp://ftp-adn.ec-
lyon.fr/Snow_organic_acids_bacterial_interactions.
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3.4 Bioinformatic Pipeline for Quality Filtering, de novo Clustering, and 16S rRNA
Gene Annotation
We used USEARCH (v 9.2) and the UPARSE pipeline (Edgar, 2013) for quality filtering and
clustering of our 16S rRNA gene datasets (for details on parameters used see Supplementary
Material and also the provided script). We annotated the representative sequence of each
cluster using RDP classifier (Wang et al., 2007) with a bootstrap threshold of 80%. We
normalized the OTU counts by using the R package MetagenomeSeq (Paulson et al., 2013).

3.5 Metagenomic and Metatranscriptomic Annotation and Dataset Generation

The raw files from 454 pyrosequencing were processed using Mothur (Schloss et al., 2009)
for quality filtering with the settings recommended in Schloss et al. (2011). FastQC (Andrews,
2010) was also used to control for base overrepresentation. Some remains of adapters were
found and Usearch (Edgar, 2010) was used to trim our sequences. The resulting.fastq files
were functionally annotated using EggNOG-Mapper (Huerta-Cepas et al., 2017), based on
eggNOG orthology data (Huerta-Cepas et al., 2016), using the default parameters. The
sequence searches were performed using diamond (Buchfink et al., 2015). Resulting
annotations were imported into R (R Development Core Team, 2011) to build gene count
tables. Reads annotated as eukaryotic sequences were filtered out based on the tax id
associated to each sequence annotation using the R package taxize to obtain a bacterial and
archaeal dataset (Chamberlain and Szdcs, 2013). The “Retrieve/ID mapping” function! from
uniprot was used to convert the string ids (EggNOG) into uniprot protein names to generate
functional gene tables for each metagenomic and metatranscriptomic dataset. The GO
annotation associated to these protein names was used for subsequent analyses.

3.6 Chemical/Molecular Biology Data Analysis

The chemical data were evaluated for differences between sample groups. Data were log
transformed (except pH) and a PCA was calculated using the ade4 package (Dray and Dufour,
2007) in R. Co-inertia analysis (Dolédec and Chessel, 1994) was used to test the impact of
snow chemistry on bacterial communities using the R package ade4 (Dray and Dufour, 2007).
Chemical data sets were compared to microbial taxonomy (OTU table 16S rRNA gene at the
genus level), metagenomes (gene annotation level and EggNOG-Mapper annotations) and
metatranscriptomes (gene annotation level and EggNOG-Mapper annotations). The
significance of each co-inertia was tested using a permutation test (10000 permutations).

3.7 ANOSIM Analysis
The OTU tables were processed with the ADONIS function from the vegan (Dixon, 2003)
package in R to carry out ANOSIM (ANalysis Of SIMilarities) analysis. This is a non-parametric
test to detect whether more similarities exist between samples inside a sampling group than
with the rest of the dataset. We used this method with a randomization test (10000
permutations) to test for differences in similarity between the groups of samples from early
spring (ES) and late spring (LS).

3.8 Network Analysis with the OTUs
Based on the OTU tables generated previously with USEARCH for ES and LS groups, a co-
variance network was built. Prior to building the network, a filtering step was used to
remove OTUs present in less than eight samples (50% of the samples used to build each
network). FastLSA (Durno et al., 2013), an improved version of LSA (Local Similarity Analysis)
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(Ruan, 2006) was used to compute the networks. LSA has been shown by Weiss et al.
(2016) to detect significant co-variance on time series data. We used a lag of zero and
filtered out the results that were not significant at the 95% confidence interval (p-val <
0.05). These data were then imported into R and the packages igraph (Csardi and Nepusz,
2006) and GGally, which is an extension from ggplot2 (Wickham, 2009), were used to
visualize the co-variance networks obtained. After the network assembly, we compared
their respective densities.

3.9 Functional Analysis of Microbial Communities

Metagenomes and metatranscriptomes were pooled into groups based on chemical analysis
and co-inertia results. Four groups were determined: early spring (ES) metagenomes, early
spring (ES) metatranscriptomes, late spring (LS) metagenomes and late spring (LS)
metatranscriptomes. Annotation diversity and differences in profiles between the genes
retrieved in the metagenomes and the metatranscriptomes of these groups were compared
with Venn diagrams using R package limma (Ritchie et al., 2015). Differential protein gene
abundance was compared between the metagenomic profiles of the ES and LS groups using
the R package edgeR (Robinson et al., 2010). The p-value was set at 0.05.

3.10 Plasmid Marker and Antibiotic Gene Identification in Metagenomes and
Metatranscriptomes

Plasmid structural related protein names were identified by retrieving the proteins annotated
with the GO term id GO:0005727 (extrachromosomal circular DNA). In addition, a regular
search of protein names using the keyword “plasmid” was carried out. Antibiotic response
GO terms were extracted using a custom set of protein names retrieved from Uniprot
(Supplementary Table S4 for complete list). Protein names annotated with the GO id
G0:0017000 (antibiotic biosynthetic process) were also used. To mine for antibiotic
resistance genes determinants (ARGDs) in both our metagenomic and metatranscriptomic
datasets, reads were also annotated using Diamond blastx (Buchfink et al., 2015) against the
CARD database (McArthur et al., 2013). All the hits that were returned with an e-value lower
than 10710, az-score higher than 50 and a sequence similarity higher than 60% were
considered as significant. For all the annotations, the best hit method was adopted to retrieve
one unique annotation per read. Annotations were normalized by the total read count from
their respective sample (after the removal of eukaryotic sequences from the total read
counts).

4 Results

4.1 Snow Chemistry

Changes in snow chemical composition were monitored during the spring sampling period
(April to June 2011, Supplementary Table S1). The chemical composition in early spring
samples (ES) was different (PERMANOVA p-value = 0.0015) than late spring samples (LS) as
shown by principal component analysis (PCA) (Figure 1). The difference in the early and late
spring samples was due to the increase in most organic acids (acetate, oxalate, succinate and
formate) and a decrease in lactate concentrations in late spring as well as changes in pH.
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Many inorganic salts (e.g., sulfate, bromide) were at higher concentrations in the early spring
samples.

Oxalate Sufccinate A

Formate
H A Acetate

X
= lutarat
o utarate
S NH4
AN
E 0-----Tlopionate ez L A
O |
! S04.2 Py
! Brsr
. L
; @
|
1
2 o’ |
®| |
o o :
. @
o |
: o
! | . '
-5 0 5 10

Dim1 (45.3%)
Figure 1: Principal component analysis biplot from the snow chemical analyses of the samples used in this study. The
different chemical variables considered in this PCA are represented by vectors. The samples [black dots (early spring
samples) and triangles (late spring samples)] are represented based on their respective projections.

4.2 Relationship Between Snow Chemistry and Microbial Data During Early and
Late Spring

The co-variance of the chemistry and taxonomic datasets was determined (co-inertia
coefficient RV = 0.48, p-value = 0.01). The co-inertia analysis did not highlight any clear
relationship between taxonomy and chemistry. The metagenomic and metatranscriptomic
relative abundances in different functional classes also co-varied with snow chemistry (Table
1). The level of annotation (i.e., proteins vs. gene onthology (GO) categories) influenced their
relative co-variance. The co-inertia coefficient (RV) was the highest for metagenomic (vs.
metatranscriptomic) datasets when using the GO terms. The co-inertia plot was similar to the
PCA carried out using the chemistry data (Supplementary Figure S4). We observed a
separation between the samples from the early and late spring along the first axis of the co-
inertia plot (Supplementary Figure S4). The chemical variables with the highest influence on
first axis of the co-structure were organic acids (acetate, succinate, oxalate and formate and
lactate), pH and some major ions (fluoride, calcium). Similar to the OTU analysis, no specific
proteins were found to have a significantly higher contribution to the co-inertia.
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Table 1: Comparison of the different co-inertia calculated with the snow chemistry of the different snow samples and the
different datasets such as 16S rRNA sequence clusters and the metagenomes/metatranscriptomes annotations determined
with the Eggnog mapper.

Dataset Annotation Co-inertia RV p-value
Metagenomes Genes id 0.44 0.033
GO terms 0.45 0.003
Kegg pathways 0.59 0.0002
Metatranscriptomes Genes id 0.43 0.072
GO terms 0.44 0.023
Kegg pathways 0.37 0.064
16S rBNA sequencing OTU97% id 0.48 0.01

4.3 Bacterial Community Structure

After filtering of the 16S rRNA gene reads, the samples had an average of 16 757 reads and a
median of 8944 reads. Based on the annotation of cluster seeds using RDP classifier, the
observed genera were mainly affiliated to Proteobacteria, Cyanobacteria, Bacteroidetes,
Acidobacteria, Firmicutes and Actinobacteria. Linear correlation between individual variables
was low (R = 0.14) and the analysis of similarity (ANOSIM) of the 16S rRNA gene derived OTUs
from the early and late spring samples had a p-value = 0.03 (perm = 10 000). SIMPER analysis
showed that the contribution from any individual OTU to the observed between-groups
dissimilarity never exceeded 0.4%. The core community (defined as the OTUs appearing in
more than 50% of the samples from one sampling period) from the early spring appeared to
be bigger than the one from the late spring (59 vs. 29 OTUs with 17 shared OTUs between the
two periods) (Supplementary Table S5). This threshold of 50% was based on the guidelines
suggested by Weiss et al. (2016), although different levels up to 80% were examined and
these higher values did not change the shared OTUs significantly. These two core
communities (59 and 29 OTUs) were then used to build co-variance networks. The variations
and annotation of the OTUs varied between samples and time during the spring season
(Supplementary Figure S5).

4.4  Exploring Cooperation Using Interaction Networks

More OTUs co-varied positively in the early spring (ES) network than in the late spring (LS)
network. The networks from early spring and late spring shared three interactions (Figure 2;
red circles). The ES network displayed higher average node connectivity, but had a lower
modularity than the network from the LS period (Table 2). The graph density and its
transitivity were higher in the LS network, while the average edge betweenness and closeness
were found to be higher in the ES network. We also investigated to which extend the size of
the networks could be considered as different since the core communities from which the
networks were derived were different in size (59 OTUs for ES vs. 29 OTUs for LS core
community) (Supplementary Table S5). To do so, we considered the amount of interactions
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retrieved as positive in the respective networks (59 vs. 10) and standardized it by the total
amount of possible interactions that were possible to build with their respective input sets of
OTUs (i.e., which corresponds to a binomial coefficient computed for n = number of core
OTUs and k = 2). This comparison confirmed our initial findings since the ratio of significant

positive co-variances observed in each network was higher for ES (0.034) as compared to LS
(0.025).
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Figure 2: Co-variance networks built from the OTU normalized counts from early spring (ES) and late spring (LS). Each dot
represents an OTU (the colors represent different phyla) and each black line represents a positive co-variance (considered as
a surrogate of cooperation) and the two red lines in the ES networks represent two negative co-variances (interpreted as a
possible competitive interaction). The red circles highlight the interactions that both networks shared. The average
connectivity (average amount of positive co-variance a node possesses in a network) is higher in the ES network (=4)
compared to the LS network (=1.82). The modularity was higher in the LS network (0.72) than in the ES network (0.532).

61



Table 2: The main network properties observed in the two co-variance networks build from OTU clusters of 165 rRNA gene
sequencing data.

Network property Early spring Late spring
Average node connectivity 4 1.82
Modularity 0.632 0.72
Graph density (group adhesion) 0.14 0.18
Networks connectivity (group cohesion) 1 0
Transitivity 0.48 1
Average node closeness (normalized) 0.28 0.11
Average edge betweenness 36.62 0

4.5 Bacterial Community Function

We used the KEGG metabolic pathways obtained from the EGGNOG annotations to
determine the main metabolic pathways in the snow metagenomes and metatranscriptomes.
The dominant pathways were similar for both metagenomes and metatranscriptomes
(Supplementary Tables S6, S7) and were related to amino acid (i.e., arginine and proline
metabolism), nucleic acid (i.e., purine/pyrimidine metabolism) and carbohydrate (butanoate,
propionate and pyruvate) metabolism/catabolism. Nitrogen metabolism, bacterial
chemotaxis, and ABC transporters were also present among the most abundant pathways.
Pathways related to vitamin biosynthesis (i.e., folate biosynthesis), antibiotic metabolism (i.e.,
streptomycin and vancomycin biosynthesis pathways), methane metabolism, photosynthesis,
cell motility (flagellar assembly), DNA repair, polyunsaturated fatty acid metabolisms as
xenobiotic degradation (i.e., naphthalene, ketone) were also identified in the metagenomes
and metatranscriptomes. Heatmaps with the 50 most abundant KEGG pathways in our
metagenomes and metatranscriptomes are shown inSupplementary Figures S6,S7,
respectively.

4.6 Bacterial Community Functional Changes From Early (ES) to Late (LS) Spring

Venn diagrams were constructed at the protein level (gene product) and at the GO term level
from the annotated metagenomic and metatranscriptomic datasets. At both the protein level
and the GO level, a more diverse group of genes was annotated for LS samples than for ES
samples (Figure 3). The metagenomes and metatranscriptomes in late spring shared more
genes between them than they did in early spring. In addition, the overlap between early
spring metatranscriptomes and late spring metagenomes was larger than the overlap
between early spring metagenomes and early spring metatranscriptomes. The overlap
between early spring and late spring metatranscriptomes was larger than the overlap
between early spring metatranscriptomes and metagenomes.
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Figure 3: Venn diagrams displaying the functional overlap from the metagenomes (MG) and the metatranscriptomes (MT)
from the early spring (ES) and the late spring (LS) periods based on two different levels of annotations (using EGGNOG-
mapper) retrieved using UNIPROT: (A) protein name level and (B) GO (gene onthology) categories.

The GO categories that were more abundant in ES metagenomes and metatranscriptomes
were related to resistance to chloramphenicol, plasmid maintenance, and cellular stress like
ribophagy and autophagy (see Supplementary Table S8 for details). Among the GO categories
that were more abundant in LS metagenomes and metatranscriptomes, several were related
to lactate/oxalate catabolism and acetate and formate metabolism as well as phosphate
starvation (see Supplementary Table S9 for details). Some examples for acetate include
cation/acetate symporter (log FC 4.4, p-value 0.004) and acetyl-coenzyme A synthetase
(logFC 4.1, p-value 0.001). The proteins names retrieved as being in relation with organic acid
catabolism were formyl-CoA:oxalate CoA-transferase (FCOCT) and formate dehydrogenase
(FDH). The tax ids from those genes were from bacterial species from the Comamonadaceae
and the Ralstoniaceae, two families from the order of Burkholderiales. Virus related terms
(i.e., viral process and capsule organization) were also more abundant in the late spring
samples.

In total, 1463 proteins were shown to be significantly more abundant in the metagenomic
dataset from either of the two sampling periods by EdgeR (see Supplementary Table S10 for
more abundant in ES and Supplementary Table S11 for more abundant in LS for details) of
which 125 were more abundant in ES metagenomes (logfold < 0), while 1338 were more
abundant in LS metagenomes (logfold > 0) (Figure 4). The annotated proteins that were most
enriched in the ES metagenomes with the largest logfold changes between early and late
spring were linked to chloramphenicol resistance (logFold = -11.5), plasmid structure genes
(logFold = -7.6) (Supplementary Table S10 for details). Annotated proteins involved in
plasmid maintenance and plasmid partition were more abundant in the early spring (Table 3).
Annotated proteins that had the largest logfold changes between late and early spring were
linked to environmental sensing (logFold = 7.6—-8.3), a membrane-transport protein (logFold
= 8.1) and a putative exported protein (logFold = 9.4). Antibiotic resistance proteins (tetR,
penicillin binding protein, bleomycin resistance, and macrolide resistance) and proteins
involved in antibiotic biosynthesis (amidase) were more abundant in the late spring (Table 4).
Sequences related to viruses and chemotaxis were also observed at higher abundances in LS
metagenomes (Supplementary Table S11 for details).
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Figure 4: Volcano plot displaying the protein names significantly enriched in early or late spring metagenomes compared to
the other period. The log10 of the p-value significance of the differential abundance study retrieved from edgeR is plotted as
a function of the logFold change observed for the respective protein names used in the study (filtered out for occurrences
lower than two samples). The cutoff of p-val > 0.05 (log10(0.05) = 1.3) has been used in this study. The plasmid structural
protein names (replication proteins and toxin anti-toxin complex, considered as surrogate of bacterial cooperation) identified
are plotted as blue dots, the antibiotic resistance/synthesis protein names (surrogate of bacterial competition) are plotted as
red dot. We plotted protein names related to viruses in black and protein names related to chemotaxis and sensors as orange
dots.

Table 3: Protein names related to plasmid structure genes determined by edgeR as being significantly enriched in
metagenomes from early spring (logFC < 0) or late spring (logFC > 0).

Protein logFC logCPM P-value
Replication initiation protein (Protein E) (Protein rep) -9.193 12.645 1.62 x 10-15
Rep protein (Fragment) —7.600 11.182 1.288 x 10~
Putative plasmid maintenance system antidote protein, XRE family -5.240 9.607 3x10°5
XRE family plasmid maintenance system antidote protein —4.397 9.255 0.001
Plasmid maintenance system killer -3.300 9.107 0.007
Plasmid recombination protein —2.041 10.565 0.027
Plasmid recombination protein.1 -2.041 10.565 0.027
Replication protein 3.517 11.551 0.0005

The logCPM represents the average abundance of the protein name across the whole dataset and is an indicator of how much signal was present in the dataset to test
the enrichment with edgeR.

Table 4: Protein names related to antibiotic resistance or synthesis genes returned by edgeR as being significantly enriched
in metagenomes from early spring (logFC < 0) or late spring (logFC > 0).

Protein logFC logCPM P-value
Chloramphenicol acetyltransferase (EC 2.3.1.28) -11.509 14915 5.50 x 10-21
Transcriptional regulator, TetR family 1.922 11.399 2.2 x 1072
Beta-lactamase 2.168 10.564 2.4 x 10-2
Penicilin-binding protein 1B (PBP-1b) (PBP1b) (Murein polymerase) 2.471 9.616 0.036
Penicillin-binding protein 2 3.301 9.189 0.043
Glyoxalase/bleomycin resistance protein/dioxygenase 3.393 9.801 0.011
Macrolide export ATP-binding/permease protein MacB (EC 3.6.3.-) 3.807 9.312 0.017
Penicillin-binding protein 3.873 9.338 0.017
Putative amidase 6.663 10.997 3.15e - 06

The logCPM represents the log2 average abundance of the protein name across the whole dataset and is an indicator of how much signal was present in the dataset to
test the enrichment with edgeR.
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4.7 Changes in Antibiotic Resistance Gene Determinants in the Snow

Using the CARD antibiotic resistance gene database (McArthur et al., 2013), metagenomic
and metatranscriptomic sequences were annotated for antibiotic resistance genes. The
number of the different antibiotic resistance gene determinants (ARGDs) was greater for the
late spring samples and the overlap between metagenomes and metatranscriptome ARGDs
was higher for the late spring samples (Supplementary Figure S8). Both the number of
metatranscriptomic sequences annotated as ARGDs and the diversity of these genes
correlated to organic acid concentrations (Figure 5). The annotated early spring taxonomy of
the chloramphenicol acetyl-transferase had two tax ids from the database (Clostridium
scindens and Pseudoflavonifractor capillosus). For the late spring samples, the sequences
annotated as the putative amidase were assigned eight different taxa ids (two strains
of Pseudomonas fluorescens, Nocardia farcinica, Gemmatimonas aurantiaca, Sinorhizobium
fredii, Rubrivivax benzoatilyticus, and Gordonia alkanivorans). The sequences annotated as
the protein MacB involved in macrolide resistance was assigned to four different tax ids (P.
fluorescens, Stenotrophomonas maltophilia, Nostoc sp., and Achromobacter insuavis).
Interestingly, Pseudomonas was found in the early spring interaction network and implicated
in a negative interaction.
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Figure 5: Antibiotic resistance genes (ARGD) transcription annotated from the metatranscriptome datasets (MT) vs. the
total sum of organic acids amounts measured in the snow samples (black dot, early spring samples and black triangle, late
spring samples). The numbers display the amount of different ARGD genes annotated in each sample. A Spearman
correlation between ARGD transcription and total organic acids concentration had a rho = 0.57 and a p-value = 0.010.
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5 Discussion

5.1 Interactions Between Organic Acids and Bacterial Communities in Snow

Among the different snow chemical parameters that were tightly coupled to changes in
microbial functions (metagenomic) (Table 1), total measured organic acid concentration
ranged from around 3 ppb to over 2000 ppb (see Supplementary Table S1). For samples that
had metagenomic sequencing performed, the total organic acids ranged from 6ppb to 350
ppb (see Figure 5). Increases in organic acid concentrations were previously observed in
Svalbard (Larose et al., 2013) and Greenland snow (Twickler et al., 1986). We also saw an
increase in genes related to organic acid metabolism (e.g., acetate catabolism) in LS
metatranscriptomes, which could reflect an active response of the snow community.
Metatranscriptomes might provide a sensitive and rapid indicator of environmental signals
while metagenomes might be more representative of changes over longer periods of time in
relation to their chemical environment. The late spring protein-coding genes (both from
metagenomic and metatranscriptomic data sets) overlapped more with the
metatranscriptomes from the early spring than with the metagenomes from the early spring
(Figure 3). These trends were also observed at the GO term annotation level. This pattern
might indicate that some of the low abundance active taxa from the early spring season (not
observed in the metagenomes but observed in the metatranscriptomes from early spring)
became dominant during the late spring season (observed in the late spring metagenomes)
and stayed active during this period (also present in late spring metatranscriptomes). This was
consistent with the associated taxonomy based on the functional gene annotation where taxa
observed only in the early metatranscriptomes but not in the metagenomes that were also
retrieved in the late spring metagenomes and metatranscriptomes (Supplementary Figure
S9).
5.2 Bacterial Communities of the Snow Shift From Cooperation Toward
Competition as Organic Acid Levels Increased

Plasmids might be involved in cooperative interactions and could serve as a marker for
microbial collaboration. For example, genes coding for public goods were preferentially
located on mobile elements or close to integrases when incorporated into genomes (Nogueira
et al.,, 2009; Mc Ginty et al., 2011). In addition, conjugation and gene transfer through
plasmids were associated with bacterial cooperation (Dimitriu et al., 2014). Gene transfer
might drive cooperation among bacteria by increasing their genetic similarity that would
select cooperative behavior via kin selection (Nogueira et al., 2009). The sequences related
to plasmid structural proteins were more abundant in early spring metagenomes than in late
spring when the organic acid concentrations were higher. While this does not show causality,
it is consistent with the hypothesis that organic acids might impact microbial interactions.

Antibiotics might be proxies for bacterial competition and their related marker genes
(production and resistance) have been used to track bacterial interference competition
(Ponce-Soto et al., 2015; Goordial et al., 2017). In our study, sequences annotated as
antibiotic resistance and secretion proteins were more abundant in late spring
metatranscriptomes and metagenomes (Figure 4). Sequences annotated as putative amidase,
penicillin amidase, and penicillin amylase were only observed in the late spring
metagenomes. These proteins are known to be involved in some derivatives of penicillin and
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lactone biosynthesis; this last molecule is one of the main constituents of macrolide
antibiotics (Omura, 2002). We correlated an increase in the number and diversity of antibiotic
resistant gene determinants to an increase of organic acid content in the snow (Figure 5).
Competition might increase as the environment becomes richer in organic acids and result in
bacterial communities actively transcribing genes for an increasingly diverse set of ARGDs.
While antibiotic resistance is also sometimes associated with cooperative traits (Cordero et
al., 2012), the diversity of antibiotic genes would be low as the entire community shares the
public good. In our data sets, only early spring samples had low antibiotic gene diversity
(see Table 4), which might be compatible with the hypothesis of antibiotics secreted as a
public good to protect the whole cooperative community.

Physical changes of the snowpack might also induce a shift from cooperation to competition.
As the season progressed, the snowpack became gradually warmer and wetter. This likely
increased motility of the bacterial population within the snow as indicated by an increase in
the relative abundance of proteins related to chemotaxis and motility (i.e., receptors, flagella)
in late spring samples (Supplementary Tables S9, S10). A decrease in the environmental
stratification of the snow ecosystem with observed changes in snow crystal morphology (from
faceted crystals to rounded ones) and a loss of snow layers was also apparent throughout the
entire spring period. Several studies have shown that bacterial cooperation was counter-
selected when the stratification of the environment decreased to the benefit of competitive
bacterial strains (F. J. H. Kimmerli et al., 2009; Hol et al., 2013, 2015). The transition from a
cold dry snowpack to a warmer wetter one might have led to increased habitat mixing among
micro-organisms. Increased mixing could increase the viral-microbial contact, which would
lead to increased infection rate (Ashby et al., 2014; Simmons et al., 2018). This possible
increased infection rate was consistent with the increased viral related sequences and GO
terms in late spring metagenomes (Supplementary Tables S9, S11 for details).

5.3 Microbial Networks Respond to the Shift of Cooperation Toward Competition

Co-variance networks have been used recently to study bacterial interactions and two
network characteristics, connectivity and modularity, were considered as proxies for
cooperation and competition, respectively. The early spring (ES) network had a higher
average connectivity than the late spring network (Figure 2 and Table 2). This was further
confirmed by the higher ratio observed between the positive interactions retrieved in the ES
network and all the possible interactions than the same ratio for the LS network. We also
compared the intensity of the respective co-variances observed in these two networks by
looking at their respective local spatial autocorrelation (LSA) coefficients (similar to a
correlation coefficient with values between 0 and 1 for positive co-variances) and did not
observe any significant differences in their distribution [between 0.81 and 0.91
(Supplementary Figure S10)]. Higher average connectivity can be interpreted as a marker of
cooperation within the early spring bacterial community. This property is also related to an
increased resistance to change (local resilience) since the presence of several organisms
within the network can contribute to resisting to local perturbations (Scheffer et al., 2012). In
the context of positive bacterial interactions, metabolic exchanges between the different
members of the community could enhance the resilience of the cooperative strains when the
nutrient composition changes. As shown by Benomar et al. (2015), nutrient stress can induce
metabolic exchanges between two bacterial strains. However, once perturbations are too
great, the whole network structure can be transformed (Scheffer et al., 2012). The overlap
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between the covariance networks of early and late spring communities was low (only two
interactions, see Figure 2), even though their core communities overlapped by more than 50%
of the OTUs (Supplementary Table S5). The changes in nutrients over a short period of time
and the decrease in environmental stratification might have led to the differences in the
positive interaction networks for the bacterial communities from early and late spring snow
(Figure 2 and Table 2).

The late spring network displayed a higher modularity than the early spring network. High
modularity is linked to a higher adaptive capacity, since the network is more heterogeneous
(Scheffer et al., 2012). This network configuration could be more advantageous in a dynamic
environment where perturbations are more intense. An increase in environmental
perturbations has also been associated with a decline in cooperation (Wilson et al., 2017).
This effect was explained by a trade-off between access to nutrients (enhanced by spatial
perturbations) and access to an auto-inducer to initiate cooperation (decreased by spatial
perturbations) (Wilson et al., 2017). In our data, we observed more GO terms related to stress
(mainly due to antibiotics and viruses but also to oxidative and osmotic stress) in the late
spring metagenomes relative to the early spring metagenomes.

6 Conclusion

Increase in organic acid concentrations in the snow might have influenced bacterial
interactions and led to a shift from cooperation to competition. Several other correlations
were observed between community response and environmental chemical parameters.
Physical changes of the snow structure leading to decreased stratification and increased
mixing might have also contributed. Using a combined method of marker genes and network
analysis, we evaluated bacterial interactions in the complex snow microbial communities.
Future work should include controlled laboratory studies with snow enriched with organic
acids to confirm the trends observed in this field study. In addition, we need to increase our
knowledge of genetic markers of microbial interactions since the number of genes currently
used to track cooperation and competition is still small and controversial.
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Chapter Il - EggVio: a user friendly and
versatile pipeline for assembly and
functional annotation of shallow depth
sequenced samples

1 Introduction
Metagenomic approaches are useful for investigating both the diversity and functioning of
environmental microbial communities. Over the last decade, several tools and workflows have
been released to assemble and analyse these datasets (e.g. Li et al. 2016; Bankevich et al.
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2012; Wood and Salzberg 2014; Buchfink, Xie, and Huson 2015; Menzel, Ng, and Krogh 2016).
Metagenomic data (derived from shotgun sequencing of total extracted DNA) has recently
been used to assemble putative genomes, called metagenomic assembled genomes (MAGs),
to determine taxonomy and to identify metabolic functions of microbial communities.
Sequence reads are assembled into contigs, which improves the accuracy of annotation, and
binned into MAGs. Both the contigs and the bins (putative genomes - MAGs) can provide more
accurate taxonomical annotations. The accuracy of the processes suggested for assembling
the reads in contigs and for binning them are dependent on sequencing depth; if it is too
shallow, the coverage of the contigs will be low and only a small fraction of reads will be
recruited into the assembly. As a consequence, the results might be less reliable and other
strategies must be used.

There are several methods for improving the assembly into contigs and for the subsequent
binning into MAGs. Co-assembly is one strategy that has been developed to improve the
assembly quality when sequencing depth is limited. If the metagenomic dataset is composed
of several samples that are known to contain similar bacterial communities, they can be
pooled during the assembly step to increase the sequencing depth and improve the quality of
the assembly. In this case, reads from different samples can be used to create a contig. The
subsequent binning of contigs has often in the past relied on nucleotide frequency
discrimination, although the binning could be improved by using differential coverage of the
reads in the contigs in the different samples. Co-assembly of the contigs from multiple samples
could, therefore, improve the quality of MAGs retrieved by increasing the discrimination
among taxonomically related species or strains. For example, Delmont and Eren (2018)
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retrieved more MAGs from the Tara ocean dataset, including several strains of
Prochlorococcus, than found in the original publication (Sunagawa et al. 2015) by using both
co-assembly of the contigs and differential coverage for the binning. Co-assembly can also be
used to track changes in taxonomy and functions in time-series datasets. If the genes of
interest are abundant, shallower sequencing technologies other than hiseq (e.g. miSeq) can
be used and co-assembly can increase the assembly quality. However, pipelines to deal with
these specificities (time series, shallow depth sequencing, low assembly) are currently
missing.
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In this paper, we introduce a new workflow (“Eggvio”) designed to annotate and analyse
metagenomic datasets of any size (but optimized for shallow sequencing datasets). Co-
assembly was coupled to a read annotation strategy to rescue reads that were not easily
mapped back to the assembled contigs. In addition, an algorithm was built to define an e-
value threshold based on the noise of read annotation derived from the reads used in the
assembly. Several recent tools to carry out the assembly, mapping, binning and annotation
were selected to build a user-friendly pipeline. Pipelines for metagenomics generally involve
the installation of many tools or dependencies and require some previous informatics
knowledge. To improve the reproducibility, accessibility and transparency, we designed a
script that allows every user to install all the tools needed for the pipeline.

2 Material and methods

EggVio workfiow
ar
e |
m
Ll Genesireads 7
Reads not
’:““". mapped on reads annotation
(Bowtie2] contigs [eggnog-mapper]
Genes
Mapping reads Detection
{Prodgal Learn evalue
threshold for
reads annotation
Map reads from
contigs on genes.
Genes
annotation
(ezgnog-
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annotations with
amiinds Merge genes and
reads annotavon

Figure 1: Summary of the workflow. The workflow is divided in three subparts illustrated by different colors. The main workflow
(light blue) carries out steps which are mandatory to both MAG binning with anvio (orange) and functional annotation (red)
using eggnog-mapper. Tools used to carry out every step of the pipeline are written between brackets inside the box. If no
tool is given, then it means that the whole step is carried out using custom R or bash scripts without the need of any other
tool.

EggVio is a flexible pipeline optimized for co-assembly, binning and annotation of low depth
MiSeq samples (<106 reads per sample). Due to the computational needs for read annotation,
it was designed to be used on a linux server with a batch slurm queue for job submission. It is
coded mainly into bash scripts to process fastq data starting from quality filtering to functional
annotations. R (R Development Core Team 2011) programming is used for merging
annotations from contigs and reads that did not map back onto the assembly and also to
determine the e-value threshold. The programs used to carry out every step of the pipeline
are shortly summarized in the flowchart shown in Figure 1. In addition, an installation script
( EggVio_install_tools.sh) is provided for most of the tools that do not require any root
privileges for installation (this excludes the assembler, megahit). The user needs to download
the annotation database for eggnog mapper and the taxonomic database for contig taxonomic
annotation by kaiju separately. The databases were not included in the installation, because
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multiple annotation databases are available and the user can choose which one to download
themselves. As a guide, we included both steps in the wiki pipeline
(https://gitlab.com/R_addict/eggvio/wikis/Download-and-installation-of-EggVio). The scripts
for the pipeline are freely available on GitLab (https://gitlab.com/R_addict/eggvio) under the
MIT open source license.

2.1 Description of the steps and citation of the tools used in the pipeline

The Eggvio pipeline can be applied to raw metagenomic illumina reads for MAG assembly and
refinement in anvio or for functional annotation using a hybrid method (assembly and read
annotation). The main steps of the pipeline are represented in Figure 1 in light blue. The first
step is quality filtering using trimmomatic (Bolger, Lohse, and Usadel 2014) followed by
assembly using megahit (D. Li et al. 2016). The assembled contigs are then renamed using
anvio (Eren et al. 2015) and filtered by length (optional) to discard contigs that are too small
for binning and gene prediction steps. Read mapping onto the assembly is computed using
Bowtie2 (Langdon 2015). If the user is interested in assembling MAGs, the next steps of the
pipeline consist in taxonomic annotation of the contigs using kaiju (Menzel, Ng, and Krogh
2016). These data can then be imported into anvio for binning of MAGs and assembly
visualization. For functional annotation of the metagenomes, several other steps are needed
and are described in the next section with a focus on the algorithm used to learn the e-value
threshold for read annotation.

75



2.2 Description of the learning algorithm to estimate the e-value threshold for
read annotation
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Figure 2 : Summary of the different steps of the EggVio pipeline needed for read annotation. A. The reads from different
samples from the dataset are co-assembled into contigs B. Genes are detected on the contigs and extracted in fasta. C. Reads
mapped on the contigs (previous section) are mapped on the genes and their respective coverage across the dataset is
computed. D. Reads which mapped successfully on the genes and the genes themselves are functionally annotated. E. The
annotations of the genes (considered as a ‘gold standard’) are compared to the annotations of their respective mapped reads.
If the annotations of reads and genes are different, the read annotation is considered as spurious (False Positive = FP) and if
they are identical, then they are considered as true positives (TP) F. The algorithm to learn the threshold is a greedy algorithm
based on successive refining steps. It works on a (decreasingly) ordered vector of e-values from read annotation with a
corresponding vector returning the information whether the corresponding e-value returned a TP or a FP annotation. The
algorithm will compute the percentage of FP starting from the whole dataset and then by removing iteratively the highest
1000 e-value annotations. When it finds the local optima, it will start computing the same statistics, but starting from the
interval identified as optimal and refine it by removing iteratively 100 annotations and then for the last refinement step only
1. This e-value returned will then be used to annotate the reads that did not map onto genes with an expected probability of
FP<0.05 .

After co-assembly of the different samples of the dataset (Figure 2 A), gene detection on
contigs (Figure 2 B) is carried out using prodigal (Hyatt et al. 2010). The coverage is then
computed using Bowtie2 (Figure 2 C) and results are converted into counts using a custom
bash script relying on functions from samtools (H. Li et al. 2009) and bedtools (Quinlan and
Hall 2010). The genes and the reads which mapped onto them are then functionally annotated
(Figure 2 D) by eggnog-mapper (emapper version: emapper-1.0.3-3-g3e22728 emapper)
(Huerta-Cepas et al. 2017) using the diamond (Buchfink, Xie, and Huson 2015) mode with the
eggnog orthology database (DB version: 4.5.1). These gene annotations and their respective
mapped reads are compared to identify false positive (FP) annotations. If the read annotations
differ from the genes they are mapped onto (considered as the ‘gold standard’ annotation),
this is considered as a false positive (Figure 2 E). Based on these data, the e-value threshold
(E.T.) learning algorithm is used to define a suitable threshold for read annotation where the
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percentage of expected FP in the annotations considered as significant would be p-value <=
0.05.
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This algorithm is written in R and is presented below.

falsePosFind = (dataF, stepN, modeU, startPos){
(modeU == X
roundNumb <- nrow(dataF) - (nrow(dataF) stepN)
stepMax <- roundNumb / stepN

stepMax <-

res <- data.frame(rowN=rep(NA,stepMax+1), Fpos= rep(NA,stepMax+1))
(iter c(1:stepMax)){
(iter == 1){
res$rowN[1] <- startPos
res$Fpos[1] <-
Iength(which(dataF[c(startPos:nrow(dataF)),1]==0))/(nrow(dataF)-startPos+1)

res$rowN[iter+1] <- (iter*stepN)+startPos
fpos <-
Iength(which(dataF[c(((iter*stepN)+startPos):nrow(dataF)),1]==0))/(nrow(dataF)-
((iter*stepN)+startPos))
(length(fpos
res$Fpos[iter+1] <-

res$Fpos[iter+1] <- fpos

(res)

steps <- c(

dataForLearn <- ([order(learningData$V2,decreasing = ). 1

(stepSize steps){
(stepSize ==
threshRes <- falsePosFind(dataForLearn,stepSize, ,1)

threshRes <- falsePosFind(dataForLearn,stepSize, ,whereToCut)

(pValThresh < min(threshRes$Fpos)){
errorM <- paste(

, min(threshRes$Fpos))
(errorM)

whereToCut <- threshRes$rowN[which(threshRes$Fpos < pValThresh)[1]]
(stepSize > 1){
whereToCut<- whereToCut - stepSize

3

threshold_seed_ortholog_evalue <- dataForLearn[whereToCut,2]
exactPval <- nd(threshRes$Fpos[which(threshRes$Fpos < pValThresh)[1]],5)
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This function is designed to find an e-value threshold such that after filtering, the false

P —0.05 (where FP = False Positive and TP = True Positive)
FP+TP

At the same time, we would like to minimize the rejection of correct annotations. To meet
both criteria, the function orders the dataset by decreasing e-value (the least significant e-
value has the row name 1 in the ordered dataset). Then, the script calls the function
“FalsePosFind” to compute the FDR with a threshold set every 1000 annotations. Since the
data are ordered, the first threshold that meets the criteria FDR < 0.05 will be the best
solution, as it will preserve the highest amount of TP. Once this position is found, the loop will
iterate the function “FalsePosFind” a second time, but starting from the position located 1000
annotations higher than that initially found. The optimization serves to minimize the amount
of TP rejected as false negative (FN) and to refine the threshold such that it is less restrictive
by computing FDR every 100 annotations starting 1000 annotations away from the local
optima found on the previous iteration. In total, 1000/100 = 10 FDR will be computed and
then the best optima (first optima found) will be selected and refined further with intervals of
10 annotations and finally 1 annotation. This e-value threshold will then be used to annotate
the reads not mapped on the contigs using eggnog-mapper.

discovery rate FDR =

2.3 Benchmarking the EggVio pipeline
Presentation of the dataset used in the study:

To test how our pipeline could enhance the annotation of shallow sequenced datasets, we
used one of our in-house datasets from a polluted site bioremediation project (MISS). It
consisted of a time series of 30 samples tracking chlorinated compounds in a polluted ground
water site. After the injection of organic carbon to induce the biodegradation of chlorinated
solvents in the groundwater (C1), three other samples were taken one month apart (C2, C3
and C4). Six replicates were collected for each time point. The biodegradation of chlorinated
compounds was evaluated at each time point and qPCR analysis was carried out in order to
evaluate the abundance of the pceA gene coding for an enzyme involved in reductive
dechlorination of tetrachloroethene (PCE) to trichloroethene (TCE).

2.4 Evaluation of the threshold learning algorithm:

We first used this dataset to evaluate how our threshold learning for read annotation based
on assembled data would perform. We computed the threshold for every annotation (gene
id, gene name, Kegg orthologs = KO and Gene Onthology = GO) to compare the thresholds
returned. We then focused on the KO annotation to test how learning on a subset of the
dataset (since we could not assemble the whole dataset) would affect the threshold and FDR
estimate. To test this, we randomly subsampled the learning dataset to predict the threshold
and then observed how the FRD was affected when computed on the whole dataset.
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2.5 Comparison of the sequencing results and the gPCR results on the tracking of
the gene pceA

We also used this dataset to compare how the hybrid annotation (genes and reads
annotations) would affect the results as compared to gene only annotation using the
intermediate results from EggVio. Both annotations (hybrid and genes only) were then
normalized by the RPKM method using the R package GenomEnvironR (github:
https://gitlab.com/R _addict/genomenvironr). The percentage of sample being annotated as
genes and as reads was then investigated for every sample. A NMDS of the samples was
carried out for both types of annotation at the KO (Kegg orthologs) level. These sample
representations were compared to an NMDS plot of the samples that included chemical data
of several chlorinated compound concentrations measured in the water. Given that
measurements were missing or below detection level for some of the chlorinated compounds,
we only used PCE, TCE and cis-DCE in the analysis.

Finally, we determined whether read annotation using the hybrid EggVio approach would
improve classic methods by comparing the abundances of pceA genes observed in the contig
assembled data versus the hybrid annotation and the qPCR data. To determine whether this
approach could improve the overall significance between biological and chemical data, we
correlated gene abundances with environmental variables related to pceA activity (PCE and
TCE).

3 Results

3.1 Benchmarking the EggVio pipeline

3.1.1 Summary of the assembly and reads annotation

In total, the assembly recruited only 11% of the reads (915788 reads from 8001127 reads in
total) used in the co-assembly and generated over 319458 contigs. The N50 of the assembly
was 593 bp of contig length. During the mapping, 100% of the assembly could recruit at least
one read of coverage showing that no artefact contig had been generated during this step. In
addition, most of the assembly displayed a coverage of 2 minimum (99% of bins of size 10 bp
displayed a coverage of 2 or more).
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Figure 3: Summary of the percentage of reads annotated successfully (seed eggnog ortholog level) with the hybrid method
from EggVio. The annotations derived from the genes predicted on contigs are represented as black bars and the annotations
derived from direct read annotation are represented as grey bars.
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The number of reads annotated by their annotation in their respective contig assembly was
high for some samples (up to 34%), but heterogeneous, with some samples being annotated
below 1% (Figure 3). Individual read annotation provided more homogeneous results, with all
the samples having more than 10% and up to 26% of their reads annotated (Figure 3). For the
hybrid method, the lowest percentage of annotated reads was around 15% and reached up
to 65%. On the other hand, the range of possible annotations decreased dramatically when
contigs were used. In other words, the annotation variability at the seed eggnog ortholog level
(composed of a unique gene and its respective genome taxonomy id) increased significantly
for the reads compared to the contigs. The gene annotation returned 18613 possible genes
from the contig annotation compared to 408618 different genes (~ 22 times more) for the
read annotation.

3.1.2 Evaluation of the read annotation threshold learning algorithm

In order to evaluate how our learning threshold performed, we first ran the algorithm on the
fully assembled data. Then, we assessed how random subsampling of the training dataset
would impact our learning threshold and its ability to keep the amount of false positive below
0.05. To do this, we subsampled the mapped reads to smaller fractions (respectively 80%, 50
% and 10% of the original dataset) 1000 times and ran the threshold analysis. The threshold
results were then compared to the amount of True Positive (TP) and False positive (FP) in the
original dataset at different annotation levels (gene ID, gene name, KO and GO, Table 1). An
FDR = 0.05 was obtained for all the annotation levels except for Gene ID, where the error was
too high with a threshold at FDR = 0.34. By default, the algorithm computes an e-value
threshold where the False discovery rate (FDR) is below 5% of False positive (FP), i.e. FDR =
0.05. For each threshold, the number of true positives (TP) is also given. The fraction of correct
annotations rejected with this threshold is also given (fraction of correct rejected) as well as
the fraction of false annotations successfully rejected (fraction of false rejected). These two
fractions are used to determine the sensitivity of the annotation.

Table 1: Results of the e-value threshold learning algorithm for the MISS dataset. False discovery rate (FDR), false positive
(FP), true positives TP, false negatives FN, and true negatives (TN)

ANNOTATION FDR  THRESHOLD FN ™ FP ™ FRACTION OF FRACTION OF
E-VALUE CORRECT FALSE
REJECTED REJECTED
GENE 0.34 1.8e-27  0.52084 0.47916  0.34001  0.65999 0.6348 0.75634
ID

GENE 0.05 2e-08 0.82506 0.17494  0.04995  0.95005 0.02547 0.09535

NAME

KEGG 0.05 3.2e-15  0.88202 0.11798  0.04988  0.95012 0.26222 0.4752
ORTHOLOGY

GENE 0.05 3.5e-17  0.83239 0.16761 0.04998  0.95002 0.30443 0.62618
ONTHOLOGY

Based on the annotation level, the threshold is variable for the same FDR (0.05). The highest
threshold found for an FDR of 0.05 was for gene name annotation (2e-08) and the lowest was
for GO terms annotation (Table 1). The vast majority of the annotations rejected are FN (above
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80% of the rejected annotations during the learning) (Table 1). This feature is expected since
the e-value distributions of the correct and incorrect annotations for KO (Figure 4) overlap. If
we compare their medians (dashed lines on Figure 4), the e-value median of the correct
annotations is much smaller (<1e-20) than that of the incorrect annotations (>1e-15). As a
consequence, the percentage of correct annotations rejected is smaller (~26%) than that of
the incorrect annotations (~47%) (Table 1).
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Figure 4 : Histograms of the distribution of e-value for the reads annotations from the reads mapped on the genes predicted
from the contigs of the assembly. The vast majority of the read annotations are identical as the ones from the genes (blue
green) at the opposite of the spurious annotations (red) different from the genes. The vertical black line represents the
threshold returned by the learning algorithm from EggVio where the amount of spurious annotation represents less than 5%
from the total number of annotations accepted with this threshold. The dashed vertical lines represent the median e-value of
their respective distributions.

We then evaluated the impact of dataset subsampling on the e-value threshold estimate for
read annotation and our FDR estimate for the whole dataset. After plotting the results of 1000
subsampling at different percentages of the dataset, we observed that the e-value estimate
became more variable at smaller subsampling sizes (Figure 5) and the boxplots tended to
deviate from the true estimate toward smaller e-values as they were moved toward the
bottom of the y axis (Figure 5).
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Figure 5: Effect of subsampling on the learning of the e-value for the read annotation. Each dot represents the threshold e-
value returned by the algorithm based on its learning on a subset of the annotations (represented on the x axis as a percentage
from the total dataset) from the reads mapped on the assembly genes.

This trend was confirmed by the amount of TP observed for each of the e-value thresholds
returned for the different subsampling. The second quartile of the boxplots was generally
above 0.95 (Figure 6) for the subsampling replicates, indicating that for more than 50% of the
subsamples, the threshold returned was enriched with correct annotations and thus showed
an FRD <0.05. In addition, the replicates with the lowest amount of TP were always above
0.945, and FRD <0.055 was observed in the worst case during the subsampling experiments
(Figure 6).
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Figure 6 : Effect of subsampling on the amount of true positive (TP) after filtering. Each dot represents the amount of TP
detected in the annotation of the reads mapped on the genes (whole dataset) when the learning was performed on a subset
of the annotations (represented on the x axis as a percentage from the total dataset) from the reads mapped on the assembly
genes.
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3.2 The effect of the read annotation on the dataset representability and the
detection of pceA genes.
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Figure 7: NMDS of the different samples from the MISS dataset based on their respective normalized annotations (Kegg
orthologs) established on the annotation of: A = genes predicted from the contigs assembly only B = genes predicted from the
contigs assembly and annotations of reads not mapped on the assembly. C. = NMDS based on the chlorinated compounds
measured (PCE, TCE and cis-TCE).

We investigated how the NMDS representations of the MISS dataset based on the
metagenomic data agreed with the NMDS representation based on the chemistry (Figure 7).
The NMDS from both types of annotation (assembly and hybrid) clustered more together at a
given sampling time (e.g., C1 with samples C1) than between samples from different sampling
times, but their grouping at a finer scale showed differences. For example, the sample Clpz-
20 was far from all the other samples from the dataset when considering only the assembly
annotation (Figure 7 A) but did not display any chemical features on the chemistry NMDS that
could explain its position (Figure 7 C). This sample had the lowest annotated coverage (<1%)
in the assembly (Figure 3). We also observed that like in the NMDS of the chemistry, the
samples from sampling time C4 were more densely clustered together on the NMDS from the
hybrid annotation (Figure 7 B) than for the assembly only (Figure 7 A). A last trend to observe
is that at the opposite of the chemistry NMDS representation, the samples C3 are totally apart
from the samples C2 and separate C2 and C4 samples in the assembly NMDS (Figure 7 A). The
NMDS from the hybrid annotation agreed more with the continuum between C2, C3 and C4
and led to C2 and C3 samples to be partially intermixed (Figure 7 B).
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Figure 8: Comparison of the abundances of the genes pceA detected using qPCR (A), sequencing with gene retrieved from
the assembly alone (C) or with the reads annotation added (E). These abundances detected with those methods have then
been correlated to the ratio of the target of the gene (PCE) and its end-product (TCE) using the gPCR data (B), the
sequencing with gene retrieved from the assembly alone (D) or with the reads annotation added (F).

The last result generated is the follow up of the relative abundance of the pceA genes. The
abundance of these genes at different sampling times was determined for the different
metagenomic annotations and quantified using gPCR (Figure 8 A, C and E). We observed that
the sequencing data totally disagreed with the qPCR data (Figure 8 A versus C and E). The
maximum amount of pceA quantified using gPCR was detected at time 1 and 4 at the opposite
of the metagenomic data where the maximum observed quantities were detected at t2 and
t3 (Figure 8 A versus C and E). Interestingly, we could observe that in the metagenomic data,
the vast majority of the signal was coming from the assembly (>90%) by comparing the plots
from the assembly to the hybrid annotation (Figure 8 C versus E). We could not detect any
correlations between pceA gene quantification and PCE or TCE concentrations in the samples
(data not shown) but we could detect a significant negative correlation between the
quantification of pceA genes in metagenomic data and the ratio of the PCE over TCE
concentration (Figure 8 D and F). interestingly, the detected correlation was more significant
when computed using the hybrid data quantification (p-val=0.018) instead of the assembly
annotations (p-val=0.046) alone (Figure 8 D and F).
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4 Discussion

4.1 Assembly missed meaningful information in shallow depth datasets, but can
be complemented by rescuing reads

The percentage of reads recruited in the assembly varied widely across samples (Figure 3),
with an average of 11% of reads recruited and the amount of gene ids detected in the
assembly were 22 times lower than in the read annotations. This is lower than what was
observed in a study where full datasets were assembled and 10% to 30% more annotations
were retrieved using an assembly free method (Anwar et al. 2019). The undersampling of the
dataset was further supported by the NMDS representation that showed that sample Clpz-
20 was the most unique sample based on the assembled data (Figure 7 A). However, this
sample had the lowest coverage (<1%) in the assembly (Figure 3). After applying the hybrid
method, the NMDS could be corrected (Figure 7 B) and showed a representation of the
samples that was much more in accordance with the chemical dataset (Figure 7 C). In addition,
the hybrid method increased the sensitivity of correlation detection between the relative
abundance of pceA genes in the metagenomes and the concentrations of PCE over TCE (Figure
8 E versus F). This negative correlation was not detected in the gPCR data (p-val>0.05). We
interpreted this correlation as PCE degradation occurring prior to sampling time rather than
an instantaneous measure of the PCE degradation potential of the bacterial community
(rather detected by metatranscritomics). Thus, at lower PCE/TCE ratios, a higher abundance
of pceA genes could be interpreted as a selection for organisms able to degrade PCE into TCE
in the microbial community.

4.2 EggVio E.T. algorithm can accurately quantify the noise added when rescuing
reads for annotation

By randomly subsampling the learning dataset to evaluate how the e-value threshold estimate
would affect the estimation of the FDR at the KO annotation level, we showed that in the
worst case, the FDR would only be impacted by 5% leading to an accuracy (= TP/(FP+TP)) of
0.945 (Figure 6). We also observed that the recall (= TP/(TP+FN) = 1 - FRACTION OF CORRECT
REJECTED) was above 69% if we exclude the gene id (seed eggnog ortholog). These estimated
performances can be compared to other read annotation tools such as miFaser (Zhu et al.
2018), recently released and based on a custom high quality database using a custom score
modeled after the HSSP metric for function transfer between full-length proteins (Schneider,
de Daruvar, and Sander 1997). Based on reads generated from their database, they assessed
that the accuracy of miFaser could reach 90% and the recall 50% (Zhu et al. 2018). However,
since the databases are different and do not use the same criteria, comparisons are difficult
to perform.

Concerning the lowest level of annotation accessible by eggnog-mapper (gene id = seed
eggnog ortholog), the noise is high and we would, therefore, not recommend using this
annotation level for any downstream analyses. The high noise at this annotation level
compared to others is likely related to the inclusion of taxonomical information. Gene id
annotation is composed of a tax id at the species level and the gene id from its original
genome, making it challenging to accurately retrieve annotations from non-assembled reads.
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Although not shown in this work, EggVio also integrates kaiju taxonomical annotation of the
contigs, which is more accurate since it is carried out on longer reads, thus making the
resolution much higher (as for functional annotation) and enables taxonomic analysis of the
dominant strains of the population.

5 Conclusion

We showed that EggVio is a flexible pipeline for processing shallow depth sequencing
datasets. In addition to assembling reads into contigs, the pipeline can rescue unrecruited
reads while adding a predicted amount of noise (FDR = 5%) to the annotation. EggVio
improved the correlation between metagenomic and environmental chemistry data. In
addition, it removed the artifacts observed in the NMDS when calculated using the assembly
alone and showed a more reliable community composition and allow a more robust sample
comparison in the actual dataset. Nonetheless, further validation, using a mock community
for example or benchmarking it against other possible tools such as miFaser is required to
validate the full performance of the pipeline.
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Chapter IV - Effect of nutrient enrichment
on bacterial interactions in a time series
experiment on snow microbial
communities

1 Abstract

Based on data collected in the field, we were able to show that organic acids have an effect
on bacterial interactions and hypothesized that increases in carbon concentration could lead
to a shift from cooperation to competition among microorganisms. In order to validate this
hypothesis, we set up a microcosm experiment to study the effect of nutrient concentrations
on snow microbial communities at temperatures below zero. Two series of microcosms (n=4
replicates per treatment) were set up (-5°C in the dark) using Arctic snow: one that was
enriched with sodium acetate and the other with water as a control, and destructively
sampled over the course of a month (10 sampling times). The evolution of the microbial
community over time and its response to the treatments was monitored by measuring cell
abundance, taxonomy, functional potential and changes in chemistry. In order to follow
changes in microbial interactions, we applied network analysis and studied changes in genetic
markers of interactions. Based on our results, we were able to confirm that nutrient addition
shifted the interactions from cooperation between fungi and bacteria to competition
between bacteria. Co-variance networks showed that the percentage of negative interactions
detected in the network of microcosms amended with sodium acetate was almost four times
higher than that observed in the network of control microcosms. This work also highlighted
the difficulty in identifying genes that participate in bacterial interactions. For example, the
definitions of the genes involved in antibiotic metabolism differ between the Gene Onthology
and the KEGG databases, which complicates data analysis and renders the interpretation of
results more difficult.

2 Introduction
Microbial interactions are important in ecosystems and can affect community members in
several ways, notably by impacting metabolism. Co-culture experiments have shown that the
metatranscriptomes as well as the proteomes of bacteria differed as compared to
monoculture (Molina-Santiago et al. 2017; Hansen et al. 2017; Chignell et al. 2018; Khan et
al. 2018; Albers et al. 2018). In turn, such metabolic shifts can impact the bacterial community
structure as a whole (Seth and Taga 2014). Bacterial interactions can also create emerging
properties and influence the three dimensional organization of the community (Yannarell et
al. 2019), enhance the growth rate of collaborating bacteria (Guillonneau et al. 2018) or
provide protection against predators (Raghupathi et al. 2018). This is why the study of
interactions and how they react to environmental changes is crucial for understanding the
bacterial community as a whole. A lot of effort is still needed since the vast majority of the
knowledge on bacterial interactions has been obtained from culture experiments (Mitri and
Foster 2013). This is mainly due to the challenges related to tracking bacterial interactions in
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natural ecosystems (Blasche et al. 2017) given the high level of possible confounding factors
(Bergk Pinto et al. 2019).

In a previous field study, we investigated how organic acid concentrations impact bacterial
interactions in Arctic snow microbial communities (Bergk Pinto et al. 2019). To study this, we
used a dual approach to track bacterial interactions in snow sampled as a time series in
Svalbard. We tracked genes that were considered as proxies of bacterial collaboration
(plasmid backbone genes) or bacterial competition (antibiotic resistance genes) in snow
metagenomes and metatranscriptomes. To strengthen this first analysis, we also used co-
variance networks based on 16 rRNA gene sequencing data approaches to support our
results. We observed that an increase in organic acids in snow was positively correlated to an
increase in the diversity as well as to the total amount of antibiotic resistance genes in the
snow metatranscriptomes. We also observed that a higher diversity of plasmid backbone
genes was present in samples with lower organic acid concentrations. We observed a
significantly higher density of positive co-variances in the low organic acid network than in
the high organic acid one. Based on our results, we hypothesized that organic acid
concentrations drove bacterial interactions in the arctic snow bacterial community, with a
potentially significant influence on the snow ecosystem as a whole.

In order to validate our hypothesis, we tested the effect of organic acid concentrations on
snow microbial communities in a microcosm experiment. Here, we present the results of the
evolution of an Arctic snow microbial community amended with sodium acetate and
compared the results to a control time series. In order to track microbial interactions, we
applied the dual approach developed for the analysis of field data (Bergk-Pinto et al., 2019).
A machine learning approach was also applied to identify the metabolic processes that were
the most correlated to the nutrient levels in the snow in our metagenomes. We expected to
retrieve metabolic pathways related to competition (e.g. antibiotic) or to cooperation (e.g
gene transfer) if microbial interactions were important in the response to changes in nutrient
concentration.

3 Material and methods

3.1.1 Snow
The snow used during the microcosm experiment was collected in Ny-Alesund (Svalbard,
Norway, 78°56'N, 11°52'E) during the month of March, 2012. A freshly fallen surface snow
layer was collected as described in Larose et al. (2010) using sterile sampling bags and
protective equipment. The snow was then shipped back to France and stored at -15C.

3.1.2 Microcosm set up and sampling

The microcosms (n=88) were prepared in a cold room tempered at -15°C. Before transferring
300 g (+-10g) of snow into washed and autoclave-sterilized 2L microcosm jars, snow was
disaggregated in sterile Whirl-pak™ bags using a hammer and homogenized in two large
polystyrene boxes coated with sterile sampling bags. Half of the microcosms were amended
with 3000 ppb of a sodium acetate solution (1 ml of a solution prepared by diluting 78 mg of
sodium acetate (Merck) into 60 ml of milliQ water that was filtered on 0.22 um) and the other
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half consisted of wet controls (CH) to which 1 ml of miliQ water was added. Control and spiked
microcosms were homogenized by mixing with a sterilized spatula for roughly 10 seconds
each. The homogenization method was tested by adding 1 ml of crystal violet stain to an
extra microcosm. The jars were stored in the dark at -5 °C until sampling.

Samples were destructively sampled over a 3-week period at two to three days intervals. At
each sampling time, 4 amended microcosms and their respective paired controls were
randomly chosen by using the R command sample (). The selected microcosms were left to
melt at room temperature prior to filtering. For biological samples, filtering was performed
onto sterile 0.22 uM 47 mm filters (Millipore) using a sterile filtration unit (Nalge Nunc
International Corporation) and filters were stored in Eppendorf tubes at -20°C for further
analysis. For chemical analyses, 10 ml of melted snow was filtered using a Nalgene sterile
syringe and a 0.22 uM filter (Millipore) and bottles containing the filtered water were stored
at 4°C prior to measurements.

3.1.3 Chemical analysis

Chemistry samples were analyzed as detailed in Bergk Pinto et al. (2019). Briefly, organic acids
(acetate, oxalate, succinate, lactate and formate) and ions (sodium, ammonium, nitrate,
potassium, magnesium, calcium, chlore and sulfate) were analyzed using conductivity-
suppressed ion chromatography (a Dionex ICS 3000© apparatus and a Dionex AS400©) at IGE
laboratory (Grenoble, France). Some organic acids (succinate, lactate and formate) were
always below the detection limit (1ppb) and were discarded from the analyses for this reason.
The chemical measurements of this study can be found in supplementary material (see annex
pp. 122-125).

3.1.4 Molecular analysis

DNA was extracted from filters using the DNeasy PowerWater Kit (Qiagen) following the
manufacturer’s instructions. DNA was quantified using the Qubit™ dsDNA HS Assay Kit
(Thermo Fisher Scientific). 16S rRNA gene copies were quantified in the snow using qPCR. The
samples were amplified in duplicates using a set of primers designed to amplify 314F until
534R. For each run, a standard curve was established using the following standards dilutions:
starting from 102 gene copies until 10? gene copies by doing several successive dilutions by a
factor of 10X.

3.1.5 DNA sequencing

DNA samples extracted from the 88 samples were processed to build 16S rRNA gene libraries
for sequencing as described in Bergk Pinto et al. 2019. Briefly, the V3-V4 regions of the 16S
rRNA genes were amplified by PCR and Libraries for 16S rRNA gene sequencing were prepared
using the 16S rRNA gene Library Preparation Workflow recommended by lllumina. Libraries
for ITS sequencing were prepared by amplifying the region of the fungal ITS2 gene using the
following  primer set from Taylor et al. (2016): ILL_5.85 Fun 5
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAACTTTYRRCAAYGGATCWOCT 3’ as the forward
primer sequence, and ILL_ITS4 Fun 5'
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCCTCCGCTTATTGATATGCTTAART 3’ as
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the reverse primer sequence. The resulting libraries were then prepared by following the
Library preparation workflow recommended by lllumina. Paired end sequencing was then
carried out on a MiSeq sequencer (lllumina) at the laboratory in Lyon. Metagenomic libraries
were prepared for the 88 samples from both times series using the Nextera kit (Illumina)
following the manufacturer’s instructions. Paired end sequencing was then carried out on a
MiSeq sequencer (lllumina) at the laboratory in Lyon.

3.2 Bioinformatics for quality filtering and data processing

3.2.1 Quality filtering, amplicon sequence retrieval and taxonomy annotation for the
16S rRNA gene and ITS sequencing

The primers used for 16S rRNA genes and ITS amplification were removed from the reads
using cutadapt (Martin 2011). The dada2 pipeline (v 1.12) (Callahan et al. 2016, 2) was used
for quality filtering, trimming and identification of the amplicon sequence variants (ASV). The
parameters were adapted to fit specificities of each sequencing type (ITS versus 16S rRNA
genes). The two R scripts are included in the supplementary materials and provide details on
the parameter values used for processing. The abundance tables were normalized by using
the cumulative sum scaling (CSS) from the R package MetagenomeSeq (Paulson et al. 2013).

3.2.2 Metagenomes annotation

In order to annotate the metagenomes, samples were co-assembled and annotated using a
custom pipeline called EggVio. This pipeline carries out all the steps in one single shot using
several tools in a fully automated way. The quality filtering was done by using trimmomatic
(Bolger, Lohse, and Usadel 2014) to remove the adapters from Nextera’s kit and quality filter
the remaining reads. Co-assembly was then carried out using megahit (Li et al. 2016). To
compute the coverage of the assembly, reads from the samples were mapped back using
bowtie2 (Langdon 2015). These results were then imported into anvi’o (Eren et al. 2015) to
visualize the assembled genomes as well as their taxonomy. Gene identification of the
assembled contigs was carried out using prodigal (Hyatt et al. 2010). Genes were functionally
annotated using EggNOG-Mapper (Huerta-Cepas et al., 2017), based on eggNOG orthology
data (Huerta-Cepas et al., 2016), using the default parameters in diamond mode. The
sequence searches were performed using diamond (Buchfink et al., 2015). In addition, the
pipeline used a read annotation strategy on the reads that could not be mapped onto contigs
in order to improve the exhaustiveness of annotation. A custom R script merged the count
coverage returned for contigs and read annotations to generate a final abundance table.
These data were then normalized using the RPKM normalization function included in our
package GenomEnvironR.

3.3 Bioinformatics for data analyses
3.3.1 Boostregression on KOs

In order to test whether our hypothesis about bacterial interactions was relevant in the
bacterial communities of our microcosms, we used gradient boost machine learning to
retrieved the KEGG orthologs (KOs) that were the most correlated to the nutrient levels in the
snow. If bacterial interactions were significant in the response of microbial communities to
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organic enrichment of the snow, metabolic pathways related to competition (e.g. antibiotic)
or cooperation (e.g gene transfer) should be identified using this technique. Machine learning
was carried out using a ratio between the snow acetate concentrations (main carbon source
in our system) and the ammonium concentrations (main nitrogen source in our system).
Briefly, the dataset was randomly split into a training and testing set and one thousand
permutations of the model was cross-validated to determine parameters that achieved the
lowest mean squared error (MSE). The optimized model (n trees, interaction depth of n) was
run on the entire dataset to calculate the relative influence of each KO on ratios between the
acetate and ammonium concentrations in the snow, and the mean and standard deviation
for relative influence per KO over one thousand permutations was determined. To be
considered as a KO of interest, the average influence threshold was set to 1%.

3.3.1 Data visualization and differential abundance analysis

Data visualization of normalized metagenomic data or normalized 16S rRNA gene and ITS
gene sequencing data was carried out using the R package vegan (Dixon 2003). Raw count
data tables were first transformed into gene name tables by summing up all the genes related
to a certain gene name. EdgeR (Robinson, McCarthy, and Smyth 2010) was used to test which
sets of KOs were more abundant in one of the two time series (p-value < 0.05 (95% confidence
interval)).

3.3.1.1 Mining of genes related to microbial interactions using GO terms and KEGG
orthology

We mined the gene names retrieved as significantly more abundant in one of the two time
series to assess whether they were related to antibiotics, plasmids or acetate metabolism
using specific sets of GO terms (see supp. mat. in the annexes pp. 126-127) associated with
the retrieved annotation from eggnog mapper. These sets of genes were then annotated
using KEGG orthology. To determine which pathways were significantly enriched in the data
sets, the original pool of genes in each time series were randomly sampled (1000 times) to
build random gene sets that could be compared to those retrieved by edgeR. The KEGG
annotation for all the genes was recorded. For each pathway, the relative abundance of the
genes retrieved in the original dataset was compared to their distribution in the random gene
sets generated. The pathway was then considered significantly enriched if the observed
relative abundance was bigger than 95% of the random gene sets. The resulting p-value was

Nobs random
1000
where the relative abundance of the genes related to the tested pathway is smaller than the

one observed for the original gene set.

computed as: p-val =1 — where N,ps random iS the number of random genes sets

3.3.2 Network construction from the 16S rRNA gene and ITS data

Based on the ASVs of Bacteria and Fungi, networks were constructed for each time series
separately. Prior to computing the networks, a filtering step was carried out using the R
package GenomeEnvironR to remove all ASVs present in less than 22 samples (50% of the
samples) in each time series. The two groups of ASVs (129 in the water control series and 123
in amended acetate series) were compared and only the ASVs found in both groups were
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used for the network calculations, resulting in 112 ASVs. In this way, the networks from both
time series were built with the same ASVs. Then, the networks were computed using eLSA
(Xia et al. 2013), a tool to compute local similarity scores on time series with replicates. The
results were then filtered by p-value threshold set to 0.00001. The remaining significant local
similarity scores were then imported into R to build networks and compare them for each
data type. The extent to which the networks represented the core community was assessed
by summing up the sequences affiliated to the core ASVs and dividing them by the total depth
of sequencing from their respective samples (ITS and 16SrRNA sequencing) to generate
relative abundances. The change in relative abundance of the core microbial community
throughout the microcosm experiment was then monitored.

The percentage of positive and negative co-variance (LSA) was then retrieved for each of the
networks. The co-variances were then subdivided based on the taxonomy of the two ASVs
linked by co-variance (e.g. a bacterial ASV interacting with a fungal ASV). We interpreted
positive co-variance as being a surrogate of positive interactions (cooperation) and negative
ones as surrogates of negative interactions (competition). To test whether the observed
trends in terms of dominant type of co-variance (interactions) were significant, we generated
subnetworks for each time series by randomly subsampling a fixed number N of samples at
each sampling time and then computing the networks using the same method as for the
original ones. To test different subsampling sizes, we used N= 3, then 2 and finally only one
sample per sampling time. We set the p-value to 0.001 as a cutoff for significance, since we
measured the co-variances using a smaller number of replicates per time point. We generated
100 networks per time series and for each subsampling size to determine a confidence
interval for the observed trends to confirm their significance.
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4 Results

4.1 Chemistry of the microcosm time series
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Figure 1: Principal component analysis biplot from the chemistry of the samples used in this study.
Green triangles (water control samples) and red dots (acetate amended samples) are represented
based on their respective projections. The sample codes next to the symbols are: time series id (A =
acetate, CH = water) followed by the time of sampling (t0 to t10) and finishes by a letter to identify
each replicate individually (a to d).

Principle component analysis (PCoA) of the chemical data showed that almost 50% of the
total variability of the dataset was represented by the first two axes (Figure 1). We observed
a separation between the time series along the first axis (Dim 1) of the PCA. The variables that
contributed the most to this axis were nitrate and oxalate (above 20%), followed by sodium,
ammonium and magnesium (above 10%). Acetate contribution to this separation was low
(around 1%). The chemical variables that contributed the most to the second axis (Dim2) were
chloride and sulfate (above 20%), followed by acetate, calcium and ammonium (above 10%).
The t0 samples from both time series were represented at the center of the plot by their first
axis coordinates but already separated along the second axis.
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The evolution of organic carbon and nitrogen species over the course of the experiment are
presented in figure 2. Each time series followed distinct patterns. At to, the acetate
amendment was detected in the acetate time series (average 2000 ppb), while acetate
concentrations were close to the detection limit in the water controls (Figure 2 A). The acetate
concentrations in the acetate microcosms decreased throughout the experiment, with the
exception of to; where it increases. In the water control time series, the acetate
concentrations increased with some slight fluctuations until the end of the experiment (with
concentration value ranging from 20 ppb up to 1000 ppb). Oxalate concentrations also
increased significantly in the water control, from 5 ppb to 50 ppb, but were undetected in the
acetate time series (Figure 2 B).

Nitrate and ammonium followed similar trends for their respective time series. In the acetate
series, the concentration of nitrate and ammonium decreased significantly (starting at 100
ppb for nitrate and around 500 ppb for ammonium to reach concentration below 1 ppb, the
detection limit) (Figure 2 C and D). This trend was the strongest for ammonium, where
measures were below detection limits after to2 (Figure 2 C). Nitrate was also under the
detection limit after to7. In the water control, nitrate concentrations did not vary significantly
and were around 200 ppb. However, the ammonium concentration increased significantly
during the experiment, from 20 ppb to a final concentration of about 200 ppb (Figure 2 C and
D). Ammonium concentrations differed between the two time series at to, with higher
concentrations in the acetate time series, despite no nitrogen additions (Figure 2 D).
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4.2 Metabolic changes observed in the snow microbial community

4.2.1 Boost regression

The boost regression analysis retrieved KOs (KEGG Orthologs) identified as being the best
predictors of the C:N ratio in our microcosms. We chose the C:N ratio based on the PcoA
results that showed that carbon (acetate and oxalate) and nitrogen (ammonium and nitrate)
contributed the most to explaining the variability in our control versus acetate amended
microcosms (Figure 1).

KO genes with the highest influence during training (mean influence above 1%) were mainly
classified in three categories: transporters, secondary metabolite biosynthesis and sugar
metabolism (annex pp. 128-129). KOs linked to the biosynthesis of antibiotics (K01568 and
K14681) as well as one KO related to secretion system (K02674) were also detected. In
addition, 3 out of 18 KOs (16%) were related to microbial competition (Table 1). No single KO
had a consistent, high impact on the boost regression validation. KOs influenced the
prediction by 12% in the best validations and 2% in the worse (see annex p. 129).

Table 1: Definitions and pathways of the KOs with the highest influence and related to bacterial interactions retrieved by
the boost regression (see figure 7 and table 1 in the annex pp. 128-129 for detailed influence and exhaustive results of the
boost regression).

Kegg ortholog id Name Definition Pathway
K01568 PDC, pdc pyruvate decarboxylase ko00010 Glycolysis / Gluconeogenesis
[EC:4.1.1.1]

ko01100 Metabolic pathways

ko01110 Biosynthesis of secondary
metabolites

ko01130 Biosynthesis of antibiotics

K14681 argHA argininosuccinate lyase / ko00220 Arginine biosynthesis
amino-acid N-
acetyltransferase ko00250 Alanine, aspartate and
[EC:4.3.2.1 2.3.1.1] glutamate metabolism

ko01100 Metabolic pathways

ko01110 Biosynthesis of secondary
metabolites

ko01130 Biosynthesis of antibiotics
ko01210 2-Oxocarboxylic acid metabolism
ko01230 Biosynthesis of amino acids

K02674 pilY1l type IV pilus assembly Secretion system
protein PilY1 Bacterial motility proteins
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4.2.2 Differential abundance of genes between both time series

Boost regression was used to identify variables that were predictors for the observed changes
in our microcosms, but this approach cannot be used to track dynamic shifts in gene
abundance during the experiment. The metagenomes of both time series shared a high
number of genes (70% of the genes could be observed in at least 1 sample from each time
series). We used edgeR to retrieve the genes that were statistically significantly more
abundant in one of the two time series to follow metabolic changes between the acetate
amended microcosms and the water control microcosms. 596 genes were returned, with 422
gene names more abundant in the water control (referred to as the water gene set) and 174
more abundant in the acetate amended time series (referred to as the acetate gene set). The
absolute values of the observed Log2 fold changes (LFC) were all comprised between 0,2 and
2,89. However, after p-value correction, none of these were found to be significant.

a. Gene onthology (GO terms)

The functional annotations of the 596 gene names that were significantly more abundant in
one of the two time series were analyzed using GO terms. No gene names related to plasmids
(proxy for collaboration) were significantly more abundant in either of the two time series.
Two genes related to antibiotics (AMRA and AMRB) were returned as significantly (p-value <
0,05) more abundant in the water time series (logFC close to 1,3 for both genes) before p-
value correction. Three other genes related to antibiotics (using the GO term “response to
antibiotics”) were also retrieved as being significantly more abundant in the acetate time
series. One gene name related to acetate metabolism (FG00176.1), coding for isocitrate lyase,
was returned as being more abundant in the acetate time series (logFC = - 0,84).

b. KEGG

The functional annotations of the 596 gene names that were significantly more abundant in
one of the two time series were also analyzed using KEGG. A total of 319 different pathways
were significantly more abundant in the water time series, while 161 pathways were more
abundant in the acetate treatment and 140 pathways were shared between both gene sets.
Some of the pathways retrieved during this step, such as the biosynthesis of secondary
metabolites, were similar to the ones that were returned by the boost regression. Among the
shared pathways, antibiotic biosynthesis (map01130) was detected in both time series, with
33 annotated genes for the water set and 26 genes for the acetate set. This represented 7.8%
of the water gene set (33/422) and 12.1% of the genes from the acetate gene set (21/174).
However, the likelihood that this pathway was significantly more abundant was only
confirmed for the acetate gene set (likelihood = 0.035) but not for the water gene set
(likelihood = 0.647).

In total, 17 KEGG pathways were returned as being enriched in the gene set from the water
control time series and 23 KEGG pathways for the acetate gene set. The complete list of
pathways retrieved for both gene set is available in the annex (pp. 130-143) of this thesis. The
pathways enriched in the water gene set were related to amino acid metabolism (tryptophan
and histidine), pyruvate metabolism, platinum drug resistance and two-component system.
This last pathway was also detected in the acetate gene set but its likelihood of being enriched
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was close to significant (likelihood = 0.053). Concerning bacterial interactions, pathways
related to siderophore metabolism were only identified in the water gene set, but its
likelihood of being enriched compared to a random distribution was not significant. We also
detected pathways related to fungi (yeast meiosis and yeast autophagy) that were close to
significance in terms of likelihood (respectively 0.073 and 0.059).

Table 2: pathways returned as significantly enriched in the water control gene set. The first column describes the pathway id,
its name and, between brackets, the number of KOs retrieved for this particular pathway. The second column gives the total
number of genes identified in the water gene set with one or more KOs related to this particular pathway. The third column
gives, as a fraction, the number of genes retrieved as being part of this pathway among all the genes from the water gene
set (422 genes). The last column shows the likelihood computed by random distribution method (see material and method)
to detect if the number of genes related to this pathway was enriched in the gene set compared to its relative abundance
among the 1000 random gene sets generated.

PATHWAY DEFINITION PATHWAY NGENES  FRACTION LIKELIHOOD
ID PER GENES
PATHWAY ENRICHED
BIOSYNTHESIS OF SECONDARY METABOLITES (48) | map01110  45.00 0.107 0.785
BIOSYNTHESIS OF ANTIBIOTICS (29) map01130  33.00 0.078 0.647
TWO-COMPONENT SYSTEM (40) map02020  27.00 0.064 0.022
PYRUVATE METABOLISM (14) map00620  15.00 0.036 0.021
ABC TRANSPORTERS (45) map02010  14.00 0.033 0.664
ABC TRANSPORTERS (45) map02010  14.00 0.033 0.664
QUORUM SENSING (17) map02024  14.00 0.033 0.186
TRYPTOPHAN METABOLISM (7) map00380  11.00 0.026 0.042
GLYCEROLIPID METABOLISM (4) map00561 8.00 0.019 0.023
HISTIDINE METABOLISM (3) map00340 7.00 0.017 0.016
PLATINUM DRUG RESISTANCE (4) map01524 7.00 0.017 0.011
CITRATE CYCLE (TCA CYCLE) (8) map00020 7.00 0.017 0.103
MEIOSIS - YEAST (7) map04113 7.00 0.017 0.059
BETA-LACTAM RESISTANCE (10) map01501 7.00 0.017 0.129
AUTOPHAGY - YEAST (4) map04138 5.00 0.012 0.073
BACTERIAL SECRETION SYSTEM (4) map03070 3.00 0.007 0.793

The pathways enriched in the acetate gene set were linked to antibiotics (including
prodigiosin and ansamycin biosynthesis), fatty acids, carbon fixation and other metabolisms,
including geraniol degradation. We also observed several other pathways related to bacterial
interactions (quorum sensing, bacterial chemotaxis and biofilm formation). These pathways
were also present in the water gene set, but their respective likelihood of being enriched
compared to a random distribution was not significant (for detailed likelihood see the annex
pp. 130-143). Some pathways of interest were present in both gene sets but with a non-
significant likelihood such as the secretion system, the ABC transporter or the ATC cycle
pathways.
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Table 3: Pathways determined as significantly enriched in the acetate gene set. The first column describes the pathway id,
its name and, between brackets, the number of KO retrieved for this particular pathway. The second column gives the total
number of genes identified in the acetate gene set with one or more KO related to this particular pathway. The third column
gives, as a fraction, the number of genes retrieved as being part of this pathway among all the genes from the acetate gene
set (174 genes). The last column shows the likelihood computed by random distribution method (see material and method)
to detect if the number of genes related to this pathway was enriched in the gene set compared to its relative abundance
among the 1000 random gene sets generated.

PATHWAY DEFINITION PATHWAYID  NGENES  FRACTION  LIKELIHOOD
PER GENES

PATHWAY  ENRICHED
BIOSYNTHESIS OF SECONDARY
METABOLITES (38) map01110 32 0.184 0.001
BIOSYNTHESIS OF ANTIBIOTICS (26) map01130 21 0.121 0.035
FATTY ACID METABOLISM (7) map01212 12 0.069 0.001
TWO-COMPONENT SYSTEM (15) map02020 12 0.069 0.053
CARBON METABOLISM (15) map01200 11 0.063 0.134
ABC TRANSPORTERS (28) map02010 11 0.063 0.066
QUORUM SENSING (11) map02024 10 0.057 0.025
FATTY ACID DEGRADATION (7) map00071 9 0.052 0.006
BUTANOATE METABOLISM (10) map00650 8 0.046 0.026
FATTY ACID BIOSYNTHESIS (3) map00061 8 0.046 0.003
BENZOATE DEGRADATION (7) map00362 7 0.04 0.017
CARBON FIXATION PATHWAYS IN
PROKARYOTES (7) map00720 > 0.029 0.042
PHENYLALANINE, TYROSINE AND
TRYPTOPHAN BIOSYNTHESIS (10) map00400 > 0.029 0.001
BACTERIAL CHEMOTAXIS (7) map02030 5 0.029 0.011
ASCORBATE AND ALDARATE
METABOLISM (4) map00053 4 0.023 0.036
BIOTIN METABOLISM (1) map00780 4 0.023 0.049
GERANIOL DEGRADATION (3) map00281 4 0.023 0.018
PRODIGIOSIN BIOSYNTHESIS (1) map00333 4 0.023 0.022
BIOFILM FORMATION - VIBRIO CHOLERAE
@) map05111 4 0.023 0.028
INOSITOL PHOSPHATE METABOLISM (4) map00562 3 0.017 0.047
CARBON FIXATION IN PHOTOSYNTHETIC
ORGANISMS (2) map00710 3 0.017 0.042
BIOSYNTHESIS OF ANSAMYCINS (1) map01051 2 0.011 0.031
BIOSYNTHESIS OF VARIOUS SECONDARY
METABOLITES - PART 2 (2) map00998 2 0.011 0.029
CITRATE CYCLE (TCA CYCLE) (3) map00020 2 0.011 0.451
BETA-LACTAM RESISTANCE (2) map01501 2 0.011 0.51
BACTERIAL SECRETION SYSTEM (2) map03070 2 0.011 0.503
FLAGELLAR ASSEMBLY (1) map02040 1 0.006 0.479
CELL CYCLE - YEAST (1) map04111 1 0.006 0.754
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4.3  Snow microbial dynamics, composition and interactions using co-variance
networks comparison

PCoA analysis of the bacterial community compositions did not show any clear separation
among the samples and explained less than 10% of the variability along the first two axes.
Similar results were obtained for the fungal community based on PCoA analysis of the

normalized ITS data (for figures, see annex p. 121).
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Figure 3: This figure represents boxplots of the absolute quantification of 16S rRNA genes (in copies/microliter) using gPCR
for the replicates of the snow microcosms at each sampling time (2-3 days between each sampling). The boxplots in red
represent the estimate of dispersion of the replicates from the acetate amended time series and the blue one represents the
replicates of the water (control) time series. The circles represent possible outliers.

Based on gPCR analysis of 16S rRNA genes, control and acetate amended microcosms showed
similar trends, with an increase in copy number after t1 and reached their highest densities
at t05 and t09 (Figure 3). At t05, 16S rRNA gene copy numbers were significantly higher than

those in the water control.
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4.3.1 Bacterial taxonomy assessed by 16S rRNA gene sequencing and fungal taxonomy
assessed by ITS sequencing
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Figure 4: A: Bar plot showing the relative abundance of the most abundant bacterial orders observed across both microcosm
time series. The taxonomy is based on the classification of the ASV from the 16S rRNA sequencing data using RDP classifier.
The minor bacterial orders represented by a low abundance of sequences in the different samples have been summed up and
termed “Other taxa”. B: Bar plot showing the relative abundance of the most abundant fungal orders observed across both
microcosm time series. The taxonomy is based on the classification of the ASV from the ITS sequencing data using RDP
classifier. The minor fungal orders represented by a low abundance of sequences in the different samples have been summed
up and termed “Other taxa”.
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We looked at the taxonomy and relative abundances of the different ASVs. The bacterial
communities from the snow were stable across time and treatments. They were dominated
by Betaproteobacteria of the Burkholderiales order and the majority of them could not be
classified at the genus level, but belonged to the family of Oxalobacteraceae.

The fungal community of the snow microcosms was also very similar across time and
treatments and was dominated by taxa belonging to the phylum of the Basidiomycota. RDP
could not classify its members further in the taxonomy with enough confidence. The second
most represented phylum was the Ascomycota. At the order level, after the unclassified
Basidiomycota, the Atheliales were the second most abundant order.
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4.3.2 Bacterial-fungal interactions assessed using 16S rRNA gene and ITS sequencing in
co-variance networks

The taxonomy of the ASV retrieved in the core network of each time series can be found in
the supplementary material (see annex pp. 145-147). The core community ASV represented
more than 60% of all the sequencing depth and could reach up to 90% in some samples (see
annex p. 148).

The acetate network had a bigger number of edges (3214) than the water control network
(2434) and 853 edges connected the same ASV/nutrient nodes in both networks. Of these,
134 edges changed in terms of interaction type (e.g positive to negative and vice versa) in one
two networks, while 604 edges remained identical. Of the 134 edges that changed, 42
negative edges in the water control time series network became positive in the acetate
amended microcosms network and 92 positive edges became negative. The nodes were more
connected in the acetate amended network with an average of 55.90 edges versus 41.97
edges in the water control network. The graph showing the degree distributions for both
networks are provided in the supplementary material (see annex p. 149).

/ater ., 4 Acetate

e

ot
R
variance (considered as a surrogate of cooperation) and each red line represents a negative co-variance (interpreted as a
possible competitive interaction).
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Table 4: Table summarizing the relative abundance of specific kind of co-variances used as surrogates of interactions. The
kind of co-variance is named based on the taxonomy of its interacting nodes (bact = bacteria, fung= fungi) and the sign of
its LSA coefficient (Pos = positive LSA value, Neg= negative LSA value).

Time bact_bact  bact_fung  fung fung  bact_bact bact_fung  fung_ fung

series Pos Pos Pos Neg Neg Neg
Acetate \ 33,21% 14,95% 9,56% 21,32% 15,44% 5,51%
Water \ 34,04% 30,44% 13,67% 5,56% 9,82% 6,46%

We looked at the predominance of certain kinds of covariance-links in both networks. Positive
interactions between bacterial ASV were dominant in both networks, followed by positive
interactions between Bacteria and Fungi in the water network, representing 30%. Negative
interactions between bacteria was the second most dominant type of interaction in the
acetate network (21%), while this represented only 5% of the interactions in the water
network. Downsampling of the original dataset was preformed to test the robustness of the
networks. Similar trends were observed for most of the features for the bigger subsampling
sizes (3 and 2 replicates) as compared to the original networks. Subsampling size was shown
to have an impact on some of the results, especially the negative interactions that became
more similar between both networks at smaller subsampling sizes (see annex pp. 150-152).
Finally, we also looked more closely at the core network (interactions that were detected in
both networks). The interactions that stayed stable across both time series included most of
the ASV from the network (99 ASV were connected). We observed, for example, that a fungal
ASV (Basidiomycota_sp|SH216408.06FU, OTU_11000) interacted positively with three
bacterial ASVs from the family of Oxalobacteraceae: two ASVs could not be classified further
(OTU_1 and OTU_119) and the last one was classified as the genus Massilia (OTU_40). More
interactions like these were also observed. Some negative interactions stayed constant across
both datasets like, for example, the interaction between a bacterial ASV classified into the
order of  Rhizobiales (OTU_47) and the fungal ASV  classified as
Atheliaceae_sp|SH232729.06FU (OTU_12100). We also detected negative bacterial
interactions that stayed constant between both networks, for example, an ASV classified in
the family of Oxalobacteraceae (OTU_58) and an ASV classified as Granulicella sp. (OTU_37).
Positive interactions were also detected for bacterial ASVs as well as for fungal ASVs in both
networks.

We detected that five fungal ASVs and two bacterial ASVs were interacting with oxalate in the
water control microcosm. Both bacterial ASVs (OTU_186 and OTU_39, respectively classified
as Rhizobacter sp. and Massilia sp.) interacted negatively with oxalate. Most fungal ASVs also
interacted negatively with oxalate, except for one classified as
Rhodotorula_sp_TP_Snow_Y129[SH212318.06FU (OTU_52100) that showed a positive
interaction. This fungal ASV interacted positively with four bacterial ASVs (OTU_129,
OTU_260, OTU_286 and OTU_7: respectively classified as Hymenobacter sp., Burkholderiales
order, Oxalobacteraceae family and Mucilaginibacter sp.). These interactions tended to
disappear in the acetate amended network, with the exception of one (with Mucilaginibacter
sp., OTU_7) which switched to a negative interaction.
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Discussion

4.4  Microorganisms produce organic acid substrates at temperatures below zero
and respond to nutrient additions

We compared the chemistry of water control versus sodium acetate amended time series and
the main chemical variables contributing to the difference between them was oxalic acid
(Figure 1), which could only be detected in the water controls. In the water controls, oxalic
acid, ammonium and acetate increased significantly over time (Figure 2 B). This increase
supports the hypothesis that microbial communities are active at temperatures below zero
and that they can alter their chemical environment. This would suggest that microorganisms
might play a non-negligible role in the seasonal increases in organic acid concentrations in
arctic snow (Twickler et al. 1986), in addition to exogenous inputs and photochemistry
(Grannas et al. 2007; Christner et al. 2008). Further research is needed to quantify their
contribution.

Oxalogenesis has mostly been reported in fungi, with three recognized pathways (i) the
cytoplasmic pathway; (ii) the tricarboxylic acid (TCA) pathway; and (iii) the glyoxylate (GLOX)
pathway in which the central reaction is the fixation of carbon dioxide on a molecule of
pyruvate, via pyruvate carboxylase to form oxaloacetate (Plassard and Fransson 2009). After
this step, oxaloacetate can be metabolized into oxalate, citrate or various other organic acids
at different rates depending on different factors such as nutrient concentrations, pH and
metal concentrations. For example, Cunningham and Kuiack (1992) found that citric acid
production was promoted under nitrogen-limited conditions, while oxalic acid production
was promoted under carbon-limited conditions. Only a few studies have reported oxalic acid
production in bacteria, with production by Pseudomonas from a glyoxylate intermediate in
response to aluminum stress (Hamel et al. 1999) and in two species of the genus Burkholderia
as a pathogenicity factor (Nakata, 2011; Nakata & He, 2010). In our study, pyruvate
carboxylase was identified as one of the pathways that was significant via boost regression
(Table 1) and KEGG pathway analysis also showed that pyruvate metabolism was significantly
enriched in the water controls (Table 2), suggesting a fungal, rather than bacterial, source.

In the sodium acetate amended microcosms, oxalic acid was undetected, suggesting that a
metabolic shift occurred as a result of the additions. Acetate has been shown to be an
effective antifungal (Stiles et al. 2002). Kang, Park, and Go (2003) have observed that several
species of the genera Colletotrichum were inhibited by acetate concentrations of 30 mM
when cultivated in pure culture. In comparison, the initial concentration of sodium acetate
added in our snow microcosms was close to 350 mM which is more than ten times the
inhibition threshold reported in this study. In addition, fungal contaminations (Penicillium) of
culture plates have also been shown to grow slower on petri dishes where strains of
Lactobacillus were cultured and produced acetate, showing the strong inhibitory potential of
this organic compound on Fungi (Guimaraes, Venancio, and Abrunhosa 2018). Given that the
snow system is oligotrophic, it is possible that the levels added were sufficient to inhibit
oxalogenesis. The communities in the amended microcosms seemed to respond to the
additions after three days, with uptake in acetate, ammonium and nitrate. The delayed
response in uptake might be related to nutrient stress, as oligotrophic organisms are less
reactive to abrupt resource availability (Ho et al. 2017). This is supported by the high
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abundance in ABC transporter genes in both data sets (6.3% in sodium acetate amended
versus 3.3% in water). These genes are reported as being prevalent in oligotrophic bacteria
(Lauro et al. 2009), but have also been found to be adaptations to organic acid toxicity and
antibiotic resistance (Nakano, Fukaya, and Horinouchi 2006; Greene et al. 2018; Wolfger,
Mamnun, and Kuchler 2001).

4.1 Nutrient additions affect microbial metabolic pathways

Based on the machine learning algorithm, the main microbial metabolisms affected by the
amended sodium acetate were related to microbial competition (16%) (Table 1). This
supports the hypothesis that microbial interaction dynamics represent an important
component of the response of the snow microbial community to an increase in nutrients, as
previously suggested in a field study (Bergk-Pinto et al., 2019).

Differential gene abundance analysis allowed us to identify the pathways that were more
abundant in each of the treatments, the majority of which were found in the control (water)
microcosms (422 versus 174). A high percentage of these genes (6%) were related to the two-
component system, which was the third most abundant pathway in the water control set
(Table 2). This category was also observed in the acetate gene set, although the likelihood for
pathway enrichment was not significant (Table 2 and Table 3). These two-component
systems, prevalently found in Prokaryotes and Archea, are known to help bacteria sense and
response to external signals (Capra and Laub 2012). Since the Arctic snow is a dynamic
environment (Maccario et al. 2015; 2019), bacteria must adapt to rapidly changing conditions,
therefore it is unsurprising to retrieve a high abundance of these genes in this ecological niche
(Capra and Laub 2012). We also observed that some pathways related to yeasts (e.g. yeast
meiosis and autophagy) were identified in the water gene set with a significant likelihood
(Table 2) of being enriched. Yeast cells undergo meiosis under nitrogen-starved conditions
and require autophagy for meiosis initiation (Matsuhara and Yamamoto, 2015). Oxalic acid
has been shown to suppress autophagy (Kabbage et al., 2013) and might constitute a negative
interaction between fungi in the water control microcosms. Several other metabolisms have
been retrieved as likely to be enriched (likelihood < 0.05) in the water gene sets and include
mainly primary metabolism (e.g. glycerolipid, pyruvate, amino acids) with the exception of
chloroalkane and chloroalkene degradation (Table 2). A pathway related to siderophores
(Table 2) was exclusively observed in the water gene set (but not returned as being likely to
be enriched), which suggests bacterial collaboration (e.g. D’Onofrio et al. 2010).

Among the genes that were dominant in the sodium acetate amended time series, secondary
metabolites were identified (18%, likelihood 0.001, Table 2). Genes related to this pathway
were also observed in the water set, but the likelihood of enrichment was not significant
(10%, likelihood 0.78, Table 1). Secondary metabolism has been shown to be a stress
response controlled by the nutrient balance in the environment of the microorganisms (e.g.
Martin et al. 2011; Fujita 2009). Concerning the pathways returned as likely to be enriched in
the acetate gene set, the metabolisms were more diverse, with genes related to the
metabolism of ascorbate and aldarate (organic acids not tracked during this study), and
butanoate metabolism in addition to some pathways related to primary metabolism (Table
3). In addition, the degradation of geraniol was also retrieved as being likely to be enriched
only in the acetate gene set (Table 3). Geraniol, as other monoterpenes secreted by
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microalgae, has been shown to be an antimicrobial active compound (Santos et al. 2016). The
presence of microalgae is partially confirmed by the fact that pathways related to carbon
fixation and photosynthesis were also shown to be enriched in the acetate gene set (Table 3).
In a study on Arctic snow from Svalbard, Zhu et al. (2020) found a positive correlation
between organic acids levels and geraniol degradation and fatty acid metabolism. These
results suggest that our experimental set-up reproduces field observations in a laboratory
setting and can be used for hypothesis testing.

The pathways of quorum sensing, antibiotic biosynthesis (e.g. ansamycins and prodigiosin)
and biofilm formation (vibrio) were significantly enriched in the acetate gene set compared
to random sampling (Table 3). The enrichment of pathways related to the biosynthesis of
antimicrobial compounds suggests that bacterial competition increases as a result of nutrient
amendment (e.g. Gao et al. 2018) (Sanchez et al. 2010), which supports the results obtained
in our field study (Bergk-Pinto et al., 2019).

4.2 Bacterial and fungal networks are impacted by the addition of organic acids

The networks built by using the ASV considered as the core microbiome of bacteria and fungi
co-variances showed contrasting structures (Figure 5). The interaction changes observed
could be extrapolated to a large fraction of the snow community, since 60-90% of the
sequences were represented by the networks (annex p. 148). In addition, bacterial growth
dynamics (Figure 3) and microbial community structure (Figure 4 and annex p. 144) were
similar in both time series, therefore no other biological parameters except interactions could
explain the differences observed in our networks. Downsampling of our initial dataset was
applied to generate pseudo-replicates of networks to determine robustness. For a
downsampling size of 3 or 2 samples, the trends were the same as our original networks,
suggesting that they are robust. This was not the case for a downsampling to a size of 1 (see
annex pp. 142-144), but this is probably due to the use of an algorithm (eLSA) that was
originally designed for time series with replicates and thus not well adapted for non-
replicated (1 sample per sampling time) data (Xia et al. 2011).

Several ASVs from our core microbiome have previously been reported in cold habitats. For
example, Basidiomycota_sp [SH216408.06FU was identified in the maritime Antarctic region
(Newsham et al. 2015), species affiliated to the genus Granulicella sp. have been isolated from
Arctic soils (Mannisto et al. 2012; Oshkin et al. 2019),
Rhodotorula_sp_TP_Snow_Y129[SH212318.06FU was reported in a study of yeasts extracted
from cold snowpacks from the Tibetan plateau (GenBank: JQ768923.1) (Clark et al. 2016), a
species of Hymenobacter has been isolated in red snow from Antarctica (Kojima et al. 2016)
and Mucilaginibacter sp. was previously reported in a study of Antarctic snowpacks (Antony
et al. 2016). Those observations suggest that our microbial community was representative of
cold ecosystems.

We did not observe a strong difference in terms of positive co-variance (considered as a proxy
of collaboration) between bacteria in our networks (Table 4), but a drop in positive bacterial
and fungal was observed in the sodium acetate amended microcosms. This suggests that
nutrient levels do not affect bacterial collaboration, but might play a role in fungal-bacterial
collaboration.
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Oxalic acid is the most common light molecular weight organic acid produced among fungi
and is reported to play a key role in the regulation of bacterial-fungal interactions (Deveau et
al. 2018) and ecosystem functioning (Palmieri et al. 2019). Oxalic acid also serves as a public
good and plays a central role in maintaining pH homeostasis (Oh et al. 2014; Plassard and
Fransson 2009) and has been reported to participate in mineral weathering (Cheng et al.
2017; Becerra-Castro et al. 2013; Frey et al. 2010). Fungi, as Bacteria, can produce organic
acids such as oxalate via metabolic pathways referred as overflow metabolism (Pinu et al.
2018; Geoffrey M. Gadd 1999; Palmieri et al. 2019). These metabolic byproducts can then be
used by other microorganisms and initiate a cross feeding interaction (Carlson et al. 2018).
Oxalate can also be used as a carbon source (Palmieri et al. 2019; Haq et al. 2018) and
oxalotrophic bacteria have been shown to use oxalic acid to localize their oxalogenic fungal
host and move towards it by quorum sensing-dependent chemotaxis in order for both
partners to interact (Rudnick, Veen, and Boer 2015). This is supported by the network results
that show almost 30% positive interactions between bacteria and fungi in the water controls.
In the acetate amended samples, these positive interactions were reduced to 15% (Table 3).
In our water network, we detected positive interactions between the fungal ASV
(Rhodotorula_sp_TP_Snow_Y129|SH212318.06FU) suspected to produce the oxalate and
several bacterial ASVs. In the acetate amended network, these interactions were no longer
detected or switched to negative interactions. These results suggest that cross-feeding
interactions occur in the snow, with cooperative interactions between oxalogenic fungi and
oxalotrophic bacteria, as highlighted in the water control time series. This is in line with a
recent study by Velez et al. (2018), that highlighted cross-kingdom interactions as an adaptive
trait to oligotrophic environments by favouring microbial colonization and growth under low
nutrient conditions.

The biggest changes were in the negative co-variances between bacterial ASVs (interpreted
as a proxy of bacterial competition), where a fourfold increase in negative edges was
observed in the sodium acetate amended network as compared to the water control network
(Table 4). The use of the ratio of positive versus negative edges as an indicator of cooperative
or competitive microbial communities was first proposed by Ding et al. (2015). This result
supports the metagenomic observations that the increase in competition is related the
amendment of nutrients in the snow. The increase in negative interactions changed the
network representation, with an apparent tighter clustering in the bacterial nodes in the
sodium acetate network than in the water network where fungal (pink) and bacterial nodes
(blue) where more intermixed (Figure 5). The edges connecting bacterial nodes represented
54.53% of all the edges compared to 39.6% in the water network (Table 4). Although nutrient
addition did not impact positive or negative co-variance proportions between fungi, the drop
in collaboration (fewer positive edges) and increased competition (more negative edges)
between fungal ASVs and bacterial ASVs in the sodium acetate amended snow networks
(Table 4) suggests that fungi could become less dominant in microbial community interactions
upon nutrient addition.

Nutrient addition might result in reduced dependence of bacteria on fungal exudates for
survival (Velez et al. 2018). Thus, if our hypothesis of a possible cross-feeding consortium
mediated by fungal production of organic acids is valid, then a switch to a non-limiting
environment where competition is high could mediate a rapid change in the microbial
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community. However, no such change was observed in our taxonomic data analysis (Figure
3). It is likely that a DNA-based approach was not sufficiently sensitive to capture dynamical
changes at ASV level over the timing of the experiment and future work should include RNA-
based approaches.

4.3 Conclusion and perspective

During this study, confirmed that the increase in organic acids in the Arctic snow affects
microbial interactions as previously observed in a field-based study (Bergk Pinto et al. 2019).
In addition, we retrieved specific pathways, previously shown to be positively correlated to
the increase in organic acids (e.g. geraniol degradation) in our snow microcosms amended
with organic acids (Zhu et al. 2020). On the other hand, our microcosm experiments did not
confirm that organic acids could modulate bacterial collaboration (Bergk Pinto et al. 2019),
which suggests that confounding factors were at play in the field experiment. We also
investigated fungal interactions in the snow using a network approach that showed that the
response to organic acids was different than for bacteria. The interactions among the fungal
community stayed stable in both microcosm time series, but collaboration with bacteria was
shown to drop as the competitive interactions increased in relative abundance.

The next step would be to use metatranscriptomic sequencing to track microbial activity at a
finer scale as the regulation of secondary metabolism could vary rapidly over time. This would
then show possible correlations between organic acid concentrations and the secondary
metabolic pathways linked to microbial competition (e.g. antibiotics biosynthesis).
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Concluding remarks for the thesis

Microbial interactions are ubiquitous in the environment and structure their communities.
Their importance is starting to be uncovered due to recent studies that showed the
cooperation among microorganisms can prevail in some communities and act as an
environmental parameter to generate specific and complex dynamics. The current state-of-
the-art concerning bacterial interactions is mainly based on laboratory co-cultures of
microorganisms under different experimental conditions. As stated in the introduction of this
thesis, little is known about the representability of these experiments compared to
environmental microbial communities. In addition, the tools available to study these
interactions in a culture-free manner are currently limited and render their study at an
environmental scale more challenging.

In order to validate some of these laboratory-based observations, we investigated bacterial
interactions in the snow. The secondary objective was to design and validate a protocol to
study microbial interactions in the environment. In chapter one, we summarized the methods
available for studying interactions and decided to use two culture-free methods to strengthen
the conclusions of our experiments. We focused on the effects of organic acids on microbial
interactions, because cross-feeding could be mediated by these metabolites. The choice of
snow as the environment of study was appropriate as it had been reported that organic acid
concentrations in the snow showed a seasonality. Our hypothesis was that the microbial
collaboration would be favored at lower organic acid concentrations and that competition
would be favored once organic acid concentrations increased in the snow. As a consequence,
anincrease in the general nutrient conditions mirrored by organic acid concentrations (during
Spring melt, for example) could transform the microbial community from one dominated by
collaboration to one dominated by competition.

We tested our hypothesis during our first field-based experiment. Antibiotic resistance genes
(ARGs), which were considered as proxy genes for competition, were found to be correlated
with organic acid concentrations in the snow in both metagenomes and metatranscriptomes.
In contrast, plasmid backbone genes, which were considered as proxy genes for collaboration,
were more abundant in the metagenomes sampled when organic acid concentrations were
low in the snow. Co-variance networks that were used as the second culture-free method to
evaluate bacterial interactions confirmed this trend. Nonetheless, given that the seasonality
of organic acid concentrations was also correlated to other environmental changes, we could
not exclude that the observed changes in bacterial interactions were the result of other
uninvestigated factors (e.g. snow melting, temperature, microbial inputs ...).

To further test our hypothesis, we used a microcosm time-series approach. In addition, since
we switched from Roche 454 pyrosequencing to illumina MiSeq sequencing, we needed to
design a specific assembly-based pipeline to annotate our metagenomes. In the third chapter,
| presented this new tool and showed that the assembly of a test dataset was enhanced when
this pipeline was used instead of assembly alone. We complemented the assembly annotation
with a read-based annotation in order to avoid losing meaningful data. The annotation of the
reads that could not be recruited in the assembly was controlled for the percentage of
spurious annotations by ‘learning’ the threshold to set on the assembly itself. This method
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improved the number of reads used in the annotation of our metagenomes while controlling
the noise introduced in our data. Since our interpretations of the genes used as proxies of
cooperation and competition are highly dependent on the accuracy of this assembly and
annotation, this pipeline was designed to make our interpretations more reliable. This
approach was used for the metagenomes generated in our microcosm study described in the
last thesis chapter. We also applied our hybrid approach (tracking of genes used as proxies of
microbial interactions in metagenomes and co-variance networks) on the snow microcosm
data. We observed that the organic-acid-amended microcosms appeared to be enriched in
genes associated with biochemical pathways related to secondary metabolites and antibiotic
biosynthesis. We observed that gene-associated metabolic pathways linked to antibiotics
were significantly enriched in the acetate-amended time series. We did not observe any
difference in plasmid backbone genes between the control snow microcosms and the organic-
acid-amended ones. This observation was confirmed further with the metagenomic data
using the KEGG database. We concluded that competition was higher in the bacterial
community of the organic-acid-amended snow microcosms compared to the controls. The co-
variance networks were consistent with this trend but, interestingly, did not show large
differences in terms of collaboration or cooperation between bacteria. We concluded that
the organic acids might trigger competition between bacteria and, yet, have little or no effect
on bacterial cooperation. This last observation opens a new perspective concerning cross-
kingdom cooperation between fungi and bacteria. We also measured an increase in the
organic acid, oxalate, (associated with fungal activity) in the control snow microcosm. Thus,
the seasonal increase in organic acids observed in the Arctic snow during the winter — spring
transition could be due to in situ metabolic activity from the endogenous snow microbial
community in addition to possible aerial deposition. Specific fungal taxa were found to be the
potential producers of those organic acids (oxalate) and potentially interact with bacterial
taxa in the co-variance networks. Thus, both Prokaryotes and Eukaryotes need to be included
when studying the interactions as both could influence the dynamics of the whole community
and excluding them could lead to spurious conclusions.

These results have initiated our understanding of microbial cooperation and competition in
the environment away from the controlled laboratory conditions. This development required
both innovative field work and bioinformatics, although the current methodology should
evolve. For example, we experienced difficulties in tracking the genes related to some
microbial interactions, such as antibiotic resistance, because some databases (e.g., the Gene
Ontology) did not cross-validate the annotations of another database (e.g., KEGG). Thus,
database choice has a significant impact on microbial interaction results and conclusions. We
believe that the definition of genes implicated in microbial interactions placed in one single
database to be used as a reference for this fast growing field will sustain more reproducible
and comparable investigations.
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Annexes

1 Chapter Il annexes
Supplementary files for this chapter can be found online on the website of frontiers in
microbiology using the following link:
https://www.frontiersin.org/articles/10.3389/fmicb.2019.02492/full#fsupplementary-
material

2 Chapter IV annexes

Individuals - PCA
0-
= _5D-
ﬁ: Groups
o
5 * A
E CH
o
-100-
. . . 1
150 <100 -50 ]

Dim1 (3.2%)

Figure 1: Principal component analysis biplot from the amplicon single variants (ASV) of the
16S rRNA sequencing of the samples used in this study. The samples, green triangles (water
control samples) and red dots (acetate amended samples) are represented based on their

respective projections.
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Table 1: Table containing all the chemical measurements done on the snow microcosms samples. The first column provides the individual sample id to link each metagenome sample (fc

files) to its chemical measurements. All the chemical measurements are reported in ppb and the q
Sample
Fastq id

43CH
34CH
37CH
7CH

40CH
39CH
16CH
9CH

17CH
30CH
4CH

45CH
28CH
31CH
6CH

15CH
11CH
20CH
21CH
27CH

Time
point

t00
t00
t00
t00
t01
t01
t01
t01
t02
t02
t02
t02
t03
t03
t03
t03
t04
t04
t04
t04

Sampling
time
26/06/2018
26/06/2018
26/06/2018
26/06/2018
28/06/2018
28/06/2018
28/06/2018
28/06/2018
01/07/2018
01/07/2018
01/07/2018
01/07/2018
03/07/2018
03/07/2018
03/07/2018
03/07/2018
05/07/2018
05/07/2018
05/07/2018
05/07/2018

Sodium
(ppb)

3190.8
2276.48
2673.24
2914.51
2995.38
2480.12
2223.86
2897.12
2061.21
2603.64
2276.07
1996.44
2637.93
2668.73
2457.96
3248.12
2317.8
2407.93
2280.55
2335.6

Ammonium
(ppb)
95.37
26.94
20.21
63.2
220.91
196.27
61.04
256.55
185.31
403.28
173.8
265.98
189.2
26.23
287.67
375.28
257.6
480.21
161
316.36

Potassium
(ppb)
37.07
31.17
33.34
34.43
56.96
61.85
36.66
62.16
52.79
63.33
42.57
67.96
65.03
42.69
68.82
67.71
60.05
65.35
50.63
64.59

Magnesium
(ppb)
18.15
48.4
62.27
55.87
67.55
88.3
98.81
63.86
78.35
80.92
72.6
93.29
78.66
99.43
86.4
76.06
90.57
77.52
75.41
119.74

Calcium
(ppb)

37.09
87.66
93.48
68.67
79.29
85.18
98.55
63.44
72.94
69.4
56.61
73.96
61.83
77.53
90.01
90.57
94.53
74.31
72.19
175.73

Acetate
(ppb)

23.45
124.24

53.02

54.31
149.98
287.22
185.13
399.62
230.98
310.25
384.98
619.83
507.01

23.64
325.93
352.38
308.66
312.69
270.51
621.99

Chlore
(ppb)
4043.76
3631.51
3871.35
3578.41
4147.51
4108.16
3761.17
3584.55

3386.7
4334.62
3450.57
3610.25
3892.64
4256.57
3422.78
4207.07
3959.85
3986.04
3483.88
3924.17

Nitrate
(ppb)
1.78
238.9
314.95
220.74
208.25
199.68
134.79
207.26
183.21
222.65
176.56
216.97
235.5
146.92
200.81
222.5
210.06
220.66
182.69
229.92

Sulfate
(ppb)
841.41
735.7
806.65
710.12
768.37
877.09
776.96
723.46
721.2
878.22
692.09
733.33
818.25
895.8
691.25
923.99
830.84
873.19
731.82
825.43

Oxalate
(ppb)

5.59
6.05
5.18
7.21
15.25
26.86
14.61
23.46
30.31
110.28
16.79
38.61
27.92
8.9
56.21
65.23
14.82
88.03
9.51
64.41

gPCR16S
(copies/
microlL)

3950

16635.5
13223.5
8575
63475.5
8049
12339
27551.5
25321.5
15180
33181.5
11655
11721
6534.5
56316
5659.5
3851
4173.5
40310.5
11907.5

o O O O O O O O O O O O 0O 0O O O O O O 0O



26CH t05 08/07/2018  2389.03 386.14 63.87 100.86 150.21 291.81 3919.24 214.26 832.04 98.64 31973 CH

2CH t05 08/07/2018  2048.36 59.97 26.16 105.47 167.78 5.48 3603.81 66.93 725.93 3.59 40679.5 CH
8CH t05 08/07/2018  2198.94 279.05 58.72 88.73 1256.46 318.53 3627.17 203.61 712.19 27.54 110092 CH
23CH t05 08/07/2018  2078.53 262.49 46.64 47.63 127.46 434.36  3432.91 191.26 714.17 57.62 24561 CH
19CH t06 10/07/2018  2852.13 295.58 59.81 63.57 103.68 546.31 3836.11 249.16 832.86 90.57 14720 CH
38CH t06 10/07/2018  2323.02 268.75 63.77 88.18 94.38 929.34 3731.66 254.99 753.05 50.95 12189.5 CH
25CH t06 10/07/2018  2346.02 204.22 59.67 84.25 118.16 343.02 3877.77 235.96 795.48 23.37 7174 CH
32CH t06 10/07/2018  2178.69 221.42 61.43 85.1 61.17 289.21 3834.72 215.99 825.72 47.16 5589.5 CH
12CH t07 12/07/2018  2420.17 309.33 63.37 101.96 76.08 358.36 4117.48 242.97 884.83 82.97 15708 CH
41CH t08 12/07/2018  2321.95 81.67 45.96 111.37 92.75 22.76  3978.85 264.75 805.58 29.33 5039 CH
3CH t07 12/07/2018  2071.86 219.29 56.07 79.99 51.03 249.87 3487.9 201.15 723.98 62.25 54422 CH
33CH t07 12/07/2018  2469.31 250.91 56.69 78.09 53.18 21.3 3875.05 217.12 802.85 18.06 23591 CH
50CH t08 16/07/2018  2203.24 243.8 73.95 97.92 89.46 266.45 3860.84 246.53 711.63 59.75 13700.5 CH
44CH t08 16/07/2018  2573.38 223.91 61.17 91.65 67.33 251.44 4176.99 298.14 856.79 73.38 43445 CH
14CH t07 16/07/2018  2094.89 250.84 61.49 113.74 94.67 375.9 3809.59 246.85 816.91 55.03 46081 CH
47CH t08 16/07/2018  2170.59 333.17 58.22 111.47 107.49 492.6 3940.39 252.72 768.66 81.2 123675 CH
29CH t09 18/07/2018  2422.77 411.34 58.23 72.13 62.54 359.84 3591.32 243.47 743.02 75.37 69589 CH
1CH t09 18/07/2018  2173.22 237.16 64.37 96.83 86.44 298.57 3766.01 225.38 762.9 44.99 46029 CH
22CH t09 18/07/2018  2329.37 167.37 54.58 90.78 75.16 1210.47 3469.84 247.17 697.9 37 98836 CH
18CH t09 18/07/2018  2081.03 242.22 63.61 81.41 66.49 449.19 3632.7 209.69 715.4 68.6 23792 CH
24CH t10 19/07/2018  2621.77 286.87 64.74 107.47 111.86 967.98 4140.81 282.65 919.48 85.82 13158 CH
13CH t10 19/07/2018  2582.08 76.32 61.91 108.8 96.55 1032.99 4147.09 243.13 866.46 28.1 7603.5 CH
10CH t10 19/07/2018  1988.53 288.34 57.86 88.78 78.97 433.08 3429.3 192.49 724.92 48.24 9514.5 CH
5CH t10 19/07/2018  2006.92 149.86 61.45 92.39 74.37 837.09 3518.51 210.99 735.52 34.86 17796.5 CH
29A t00 26/06/2018  3317.37 354.5 31.71 54.06 239.76 3354.92 3895.46 179.88 742.96 0.5 382 A

28A t00 26/06/2018  3487.18 426.53 21.68 79.98 321.59 1741.95 3663.24 147.61 700.1 0.5 23170 A

24A t00 26/06/2018  3316.07 415.59 13.19 94.5 330.64 1507.82  3545.65 48.79 665.01 0.5 15597 A

1A t00 26/06/2018  3378.53 669.29 37.19 111.09 514 49.98 3643.44 0.5 698.26 0.5 20176.5 A
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3591.14
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3514.22
3594.31
3864.22
4086.14
3801.15
3317.01
3705.15
3758.37
3675.44

3424.9
3754.97
3773.66
4206.85
3336.42
3209.98
3985.21
3389.01
3523.65
3826.41
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3378.56
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3403.74
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49.31
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66.27
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84.39
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73.5
83.09
60.72
60.77
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50.78
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85.95
52.97
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30.86
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65.32
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65.85
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55.34
95.57
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96.89
92.67
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77.99
62.46

3277.87
2752.84
2590.03
324.59
814.89
507.71
2381.07
552.44
73.1
1343.26
1151.75
0.5
31.28
30.82
147.11
0.5
1111.67
717.53
0.5
71.27
0.5

0.5
91.15
2664.99
0.5
775.5
1915.68
2742.4

3606.96
3780.61
3454.66
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3888.03
3833.31
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3934.81
3883.08
3628.09
3688.58

3855.1
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4133.48
3820.49
3948.48
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3907.9
3710.61
3765.83

4012.1
3642.58
3793.77
3787.55
3653.78
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11.27
0.5
20.26
70.96
83.82
0.5
27.43
109.93
0.5
0.5
74.37
60.86
0.5
66.15
105.16
0.5
60.83
0.5
0.5
0.5
212.4
0.5
125.29
69.11
0.5

669.35
747.38
644.2
782.33
794.83
734
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791.82
782.13
830.51
844.22
642.88
766.08
730.94
705.76
815.69
726.44
717.18
616.3
650.68
713.77
656.89
608.83
701.02
627.34
669.11
954.2
642.73

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

12110.5
7064
26652
48081
11282
18371
44465
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5944
4223.5
2080.5
18048
9686
26176.5
11392.5
4099
36492
80933
70701
77019.5
7946.5
11639.5
9383
10781.5
15363
40631
26633
27936
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3704.7
3649.66
3654.03
3902.16
3825.89
3602.97
3848.44

3783.6
3833.53
3629.62
3810.86

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
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0.5
0.5
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0.5
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4646
54690
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8255.5
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20444
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4479.5
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Table 2:Table showing the GO terms tracked in our metagenome annotations as proxies of plasmids.

GO term ID GO term classification GO term name

G0:0060910 biological_process negative regulation of DNA
replication initiation involved
in plasmid copy number
maintenance

G0:0060908 biological_process plasmid copy number
maintenance

G0:0060909 biological_process regulation of DNA replication
initiation involved in plasmid
copy nhumber maintenance

G0:0075530 biological_process establishment of latency as a
linear episome

G0:0075529 biological_process establishment of latency as a
circular episome

G0:0075720 biological_process establishment of episomal
latency

G0:0030541 biological_process plasmid partitioning

G0:0030543 biological_process 2-micrometer plasmid
partitioning

G0:0006276 biological_process plasmid maintenance

G0:0042150 biological_process plasmid recombination

Table 3: Table showing the GO terms tracked in our metagenome annotations as p

roxies of acetate metabolism.

GO term ID GO term classification GO term name
G0:0006083 biological_process acetate metabolic process
G0:0006846 biological_process acetate transport
G0:0010034 biological_process response to acetate
G0:0019654 biological_process acetate fermentation
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Table 4: Table showing the GO terms tracked in our metagenome annotations as proxies of antibiotics metabolisms.

GO term ID GO term classification GO term name
G0:0016999 biological_process antibiotic metabolic process
G0:0042891 biological_process antibiotic transport
G0:0042895 molecular_function antibiotic transmembrane
transporter activity
G0:0030651 biological_process peptide antibiotic biosynthetic
process
G0:0030650 biological_process peptide antibiotic metabolic
process
G0:0030653 biological_process beta-lactam antibiotic
metabolic process
G0:0030652 biological_process peptide antibiotic catabolic
process
G0:0030655 biological_process beta-lactam antibiotic
catabolic process
G0:0030654 biological_process beta-lactam antibiotic
biosynthetic process
G0:0030648 biological_process aminoglycoside antibiotic
biosynthetic process
G0:0030647 biological_process aminoglycoside antibiotic
metabolic process
G0:0030649 biological_process aminoglycoside antibiotic
catabolic process
G0:0046677 biological_process response to antibiotic
G0:0046353 molecular_function aminoglycoside 3-N-
acetyltransferase activity
G0:0071236 biological_process cellular response to antibiotic
G0:0042740 biological_process exogenous antibiotic catabolic
process
G0:0042741 biological_process endogenous antibiotic
catabolic process
G0:0017000 biological_process antibiotic biosynthetic process
G0:0017001 biological_process antibiotic catabolic process
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Figure 2: most influent Kegg Orthologs (KO) retrieved during the training of the boost regression algorithm. The dots show
the respective average influence of the KO observed to have an average influence above 1% on the 1000 validations done
during this experiment. The error bars display the standard deviation of this influence.

Table 5: Summary of the definitions and pathways of the KO retrieved by the boost regression as having the highest
influence (see 7 for detailed influence).

Kegg ortholog id Name Definition
K15587 nikD, cntD nickel transport system ATP- | “ctemeores
binding protein [EC:7.2.2.11]

Pathway

K03794 sirB sirohydrochlorin 000850, Porphyrin and chlorophyll metabofism
ferrochelatase [EC:4.99.1.4] koO1100. Metabolic pathways
ko01110 Biosynthesis of secondary metabolites
K02674 pily1 type IV pilus assembly protein | seceer e proteins
Pilyl
K01568 PDC, pdc pyruvate decarboxylase £000010. Glycolyss / Gluconeogenesis

[EC:4.1.1.1] 001100 Metabolic pathways

k001110  Biosynthesis of secondary metabolites

ko01130 Biosynthesis of antibiotics
09183 Protein families: signaling and cellular processes

K16248 gutA, gutP probable glucitol transport Transporters [BR:k002000
protein GutA

K19800 SCH9 serine/threonine protein koO4138  Autophagy -yeast
kinase SCH9 [EC27111] ko04213 Longevity regulating pathway - multiple species
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K03148 thiF sulfur carrier protein ThiS k000730 Thiamine metabolism

adenylyltransferase k001100 Metabolic pathways
M ko04122 Sulfur relay system
[EC:2.7.7.73]
K16695 wzxC lipopolysaccharide exporter Ty rProcesses
K03430 p hnW k000440 Phosphonate and phosphinate metabolism
2-am inoethy|ph05phonate_ k001100 Metabolic pathways
pyruvate transaminase | ko01120 Microbial metabolism in diverse environments

[EC:2.6.1.37]

K16153 K16153 glycogen k000500 Starch and sucrose metabolism
phosphorylase/synthase k001100 Metabolic pathways
[EC:2.4.1.1 2.4.1.11] ko01110 Biosynthesis of secondary metabolites

k002010 ABC transporters

K10191 lack lactose/L-arabinose transport
system ATP-binding protein

K00276 AOC3, AOC2, tynA | primary-amine oxidase k000260 Glycine, serine and threonine metabolism
[EC:1.4.3.21] k000350 Tyrosine metabolism

k000360 Phenylalanine metabolism

k000410 beta-Alanine metabolism

ko00950 Isoquinoline alkaloid biosynthesis

k000960 Tropane, piperidine and pyridine alkaloid
biosynthesis

k001100 Metabolic pathways

ko01110 Biosynthesis of secondary metabolites

K08311 nudH putative (di)nucleoside Ko03018 A degradation
polyphosphate hydrolase
[EC:3.6.1.-]

K06183 rSUA 0901380%);:(:;2‘:;:\S;s;::::;lc information processing
16S rRNA pseudouridine516
synthase [EC:5.4.99.19]

K02146 ATPeVOD, ATP6D V-type H+-transporting 000190 Oxidative phosphorylation
ATPase subunit d k01100 Metabolic pathways

09183 Protein families: signaling and cellular processes

K16696 amsL exopolysaccharide 02000 Transporters
(amylovoran) exporter

K14681 argHA argininosuccinate lyase / k000220, Arginine biosynthesis
amino-acid N- Ko00250 Alanine, aspartate and glutamate metabolism
acetyltransferase k001100 Metabolic pathways
[EC:4.3.2.1 2.3.1.1] k001110 Biosynthesis of secondary metabolites

ko01130 Biosynthesis of antibiotics.

k001210 2-Oxocarboxylic acid metabolism

ko01230 Biosynthesis of amino acids

K01182 IMA, malL oligo-1,6-glucosidase k000052 Galactose metabolism
[EC:3.2.1.10] k000500 Starch and sucrose metabolism

k001100 Metabolic pathways
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Table 6: pathways returned as detected in the water control gene set. The first column describes the pathway id, its name
and, between brackets, the number of ko retrieved for this particular pathway. The second column gives the total number
of genes identified in the water gene set with one or more ko related to this particular pathway. The third column gives, as
a fraction, the number of genes retrieved as being part of this pathway among all the genes from the water gene set (422
genes). The last column shows the p-value computed by random distribution method (see material and method) to detect if
the number of genes related to this pathway was bigger than it would be due to a random event.

Definition Ngenes Fraction  Likelihood
Per Genes

pathway  enriched
map01100 Metabolic pathways (128) 89 NA NA
map01110 Biosynthesis of secondary 45 0.1066 0.785
metabolites (48)
map01120 Microbial metabolism in diverse 39 0.0924 0.638
environments (57)
map01130 Biosynthesis of antibiotics (29) 33 0.0782 0.647
map01200 Carbon metabolism (18) 17 0.0403 0.664
map01210 2-Oxocarboxylic acid metabolism (4) 4 0.0095 0.576
map01212 Fatty acid metabolism (7) 10 0.0237 0.478
map01230 Biosynthesis of amino acids (10) 9 0.0213 0.924
map01220 Degradation of aromatic 11 0.0261 0.101
compounds (12)
map00010 Glycolysis / Gluconeogenesis (8) 10 0.0237 0.233
map00020 Citrate cycle (TCA cycle) (8) 7 0.0166 0.103
map00030 Pentose phosphate pathway (4) 3 0.0071 0.729
map00040 Pentose and glucuronate 2 0.0047 0.855
interconversions (3)
map00051 Fructose and mannose metabolism 1 0.0024 0.988
(1)
map00053 Ascorbate and aldarate metabolism 6 0.0142 0.076
(2)
map00500 Starch and sucrose metabolism (6) 3 0.0071 0.93
map00520 Amino sugar and nucleotide sugar 2 0.0047 0.991
metabolism (2)
map00620 Pyruvate metabolism (14) 15 0.0355 0.021
map00630 Glyoxylate and dicarboxylate 8 0.0190 0.612
metabolism (9)
map00640 Propanoate metabolism (5) 6 0.0142 0.788
map00650 Butanoate metabolism (15) 12 0.0284 0.134
map00660 C5-Branched dibasic acid 2 0.0047 0.407
metabolism (2)
map00562 Inositol phosphate metabolism (2) 2 0.0047 0.634
map00190 Oxidative phosphorylation (10) 7 0.0166 0.401
map00710 Carbon fixation in photosynthetic 1 0.0024 0.898
organisms (1)
map00720 Carbon fixation pathways in 5 0.0118 0.509
prokaryotes (5)
map00680 Methane metabolism (4) 3 0.0071 0.934
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map00910 Nitrogen metabolism (3)
map00920 Sulfur metabolism (3)

map00061 Fatty acid biosynthesis (1)
map00062 Fatty acid elongation (2)
map00071 Fatty acid degradation (9)
map00072 Synthesis and degradation of
ketone bodies (3)

map00140 Steroid hormone biosynthesis (2)
map00561 Glycerolipid metabolism (4)
map00564 Glycerophospholipid metabolism (2)
map00565 Ether lipid metabolism (1)
map00592 alpha-Linolenic acid metabolism (1)
map01040 Biosynthesis of unsaturated fatty
acids (1)

map00230 Purine metabolism (5)
map00240 Pyrimidine metabolism (3)
map00250 Alanine, aspartate and glutamate
metabolism (3)

map00260 Glycine, serine and threonine
metabolism (8)

map00270 Cysteine and methionine
metabolism (3)

map00280 Valine, leucine and isoleucine
degradation (10)

map00290 Valine, leucine and isoleucine
biosynthesis (1)

map00300 Lysine biosynthesis (1)
map00310 Lysine degradation (6)

map00330 Arginine and proline metabolism (3)
map00340 Histidine metabolism (3)
map00350 Tyrosine metabolism (4)
map00360 Phenylalanine metabolism (2)
map00380 Tryptophan metabolism (7)
map00400 Phenylalanine, tyrosine and
tryptophan biosynthesis (2)

map00410 beta-Alanine metabolism (3)
map00440 Phosphonate and phosphinate
metabolism (1)

map00450 Selenocompound metabolism (2)
map00460 Cyanoamino acid metabolism (2)
map00480 Glutathione metabolism (3)
map00510 N-Glycan biosynthesis (1)
map00532 Glycosaminoglycan biosynthesis -
chondroitin sulfate / dermatan sulfate (1)
map00534 Glycosaminoglycan biosynthesis -
heparan sulfate / heparin (1)

w N U1 w N

P P P N 0N

N W

— 0o

R R, RN

0.0047
0.0071
0.0118
0.0047
0.0308
0.0071

0.0047
0.0190
0.0047
0.0024
0.0024
0.0024

0.0071
0.0047
0.0047

0.0190

0.0071

0.0332

0.0024

0.0024
0.0213
0.0142
0.0166
0.0095
0.0095
0.0261
0.0047

0.0190
0.0024

0.0047
0.0024
0.0095
0.0024
0.0024

0.0024

0.822
0.819
0.609
0.069
0.064
0.237

0.242
0.023
0.879
0.629
0.671
0.645

0.983
0.919
0.935

0.416

0.912

0.056

0.85

0.913
0.144
0.509
0.016
0.763
0.819
0.042
0.687

0.093
0.573

0.621
0.83
0.461
0.76
0.105

0.067
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map00550 Peptidoglycan biosynthesis (1)
map00511 Other glycan degradation (1)
map00571 Lipoarabinomannan (LAM)
biosynthesis (2)

map00740 Riboflavin metabolism (1)
map00760 Nicotinate and nicotinamide
metabolism (6)

map00770 Pantothenate and CoA biosynthesis
(2)

map00780 Biotin metabolism (1)

map00790 Folate biosynthesis (3)

map00830 Retinol metabolism (2)
map00860 Porphyrin and chlorophyll
metabolism (4)

map00130 Ubiquinone and other terpenoid-
quinone biosynthesis (1)

map00900 Terpenoid backbone biosynthesis
(2)

map00981 Insect hormone biosynthesis (1)
map00903 Limonene and pinene degradation
(1)

map00281 Geraniol degradation (5)
map01052 Type | polyketide structures (2)
map01054 Nonribosomal peptide structures
(3)

map01053 Biosynthesis of siderophore group
nonribosomal peptides (5)

map00232 Caffeine metabolism (1)
map00311 Penicillin and cephalosporin
biosynthesis (1)

map00333 Prodigiosin biosynthesis (1)
map00999 Biosynthesis of various secondary
metabolites - part 1 (1)

map00998 Biosynthesis of various secondary
metabolites - part 2 (1)

map00362 Benzoate degradation (11)
map00627 Aminobenzoate degradation (1)
map00364 Fluorobenzoate degradation (1)
map00625 Chloroalkane and chloroalkene
degradation (5)

map00361 Chlorocyclohexane and
chlorobenzene degradation (1)

map00623 Toluene degradation (2)
map00622 Xylene degradation (2)
map00633 Nitrotoluene degradation (1)
map00642 Ethylbenzene degradation (1)

N

N W wwum

[ 00 Kk

== W N

0.0024
0.0024
0.0024

0.0024
0.0095

0.0047

0.0118
0.0071
0.0071
0.0047

0.0024

0.0047

0.0118
0.0118

0.0118
0.0024
0.0024

0.0024

0.0024
0.0024

0.0118
0.0024

0.0024

0.0237
0.0024
0.0024
0.0190

0.0024

0.0047
0.0071
0.0024
0.0024

0.672
0.766
0.396

0.654
0.357

0.648

0.252
0.417
0.251
0.877

0.904

0.67

0.004
0.065

0.072
0.271
0.356

0.575

0.249
0.438

0.108
0.05

0.477

0.065
0.99
0.624
0.013

0.784

0.545
0.121
0.629
0.546

132



map00643 Styrene degradation (1)
map00930 Caprolactam degradation (1)
map00626 Naphthalene degradation (2)
map00365 Furfural degradation (1)
map00980 Metabolism of xenobiotics by
cytochrome P450 (3)

map00982 Drug metabolism - cytochrome
P450 (2)

map00983 Drug metabolism - other enzymes
(3)

map03040 Spliceosome (4)

map03010 Ribosome (10)

map00970 Aminoacyl-tRNA biosynthesis (4)
map03013 RNA transport (3)

map03015 mRNA surveillance pathway (2)
map03008 Ribosome biogenesis in eukaryotes
(4)

map04141 Protein processing in endoplasmic
reticulum (4)

map04120 Ubiquitin mediated proteolysis (6)
map04122 Sulfur relay system (1)

map03018 RNA degradation (2)

map03030 DNA replication (3)

map03430 Mismatch repair (1)

map03440 Homologous recombination (1)
map02010 ABC transporters (45)

map03070 Bacterial secretion system (4)
map02020 Two-component system (40)
map04014 Ras signaling pathway (3)
map04015 Rap1l signaling pathway (2)
map04010 MAPK signaling pathway (2)
map04013 MAPK signaling pathway - fly (1)
map04016 MAPK signaling pathway - plant (1)
map04012 ErbB signaling pathway (2)
map04310 Wnt signaling pathway (1)
map04340 Hedgehog signaling pathway (1)
map04341 Hedgehog signaling pathway - fly (2)
map04390 Hippo signaling pathway (1)
map04391 Hippo signaling pathway - fly (1)
map04370 VEGF signaling pathway (1)
map04371 Apelin signaling pathway (2)
map04630 JAK-STAT signaling pathway (2)
map04668 TNF signaling pathway (2)
map04066 HIF-1 signaling pathway (1)
map04068 FoxO signaling pathway (6)
map04020 Calcium signaling pathway (2)
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0.262
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0.766

0.273
0.742
0.824
0.355
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0.664
0.793
0.022
0.241
0.389
0.514
0.731
0.084
0.217
0.739
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0.191
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map04070 Phosphatidylinositol signaling
system (1)

map04072 Phospholipase D signaling pathway
(2)

map04071 Sphingolipid signaling pathway (1)
map04024 cAMP signaling pathway (3)
map04022 cGMP-PKG signaling pathway (1)
map04151 PI3K-Akt signaling pathway (6)
map04152 AMPK signaling pathway (3)
map04150 mTOR signaling pathway (3)
map04144 Endocytosis (3)

map04145 Phagosome (5)

map04142 Lysosome (7)

map04146 Peroxisome (2)

map04140 Autophagy - animal (5)

map04138 Autophagy - yeast (4)

map04136 Autophagy - other (1)

map04137 Mitophagy - animal (1)

map04139 Mitophagy - yeast (2)

map04110 Cell cycle (6)

map04111 Cell cycle - yeast (7)

map04112 Cell cycle - Caulobacter (1)
map04113 Meiosis - yeast (7)

map04114 Oocyte meiosis (4)

map04210 Apoptosis (5)

map04214 Apoptosis - fly (1)

map04217 Necroptosis (2)

map04115 p53 signaling pathway (2)
map04218 Cellular senescence (1)
map04510 Focal adhesion (3)

map04520 Adherens junction (1)

map04530 Tight junction (2)

map04540 Gap junction (2)

map04550 Signaling pathways regulating
pluripotency of stem cells (1)

map02024 Quorum sensing (17)

map05111 Biofilm formation - Vibrio cholerae
(1)

map02025 Biofilm formation - Pseudomonas
aeruginosa (5)

map02026 Biofilm formation - Escherichia coli
(4)

map02030 Bacterial chemotaxis (7)
map04810 Regulation of actin cytoskeleton (3)
map04611 Platelet activation (3)
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0.141
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map04620 Toll-like receptor signaling pathway
(2)

map04621 NOD-like receptor signaling
pathway (4)

map04625 C-type lectin receptor signaling
pathway (2)

map04650 Natural killer cell mediated
cytotoxicity (2)

map04612 Antigen processing and
presentation (3)

map04660 T cell receptor signaling pathway (2)
map04659 Th17 cell differentiation (1)
map04657 IL-17 signaling pathway (2)
map04662 B cell receptor signaling pathway (2)
map04664 Fc epsilon Rl signaling pathway (2)
map04666 Fc gamma R-mediated phagocytosis
(1)

map04670 Leukocyte transendothelial
migration (2)

map04062 Chemokine signaling pathway (3)
map04911 Insulin secretion (1)

map04910 Insulin signaling pathway (4)
map04922 Glucagon signaling pathway (2)
map04923 Regulation of lipolysis in adipocytes
(2)

map04920 Adipocytokine signaling pathway (1)
map03320 PPAR signaling pathway (2)
map04929 GnRH secretion (1)

map04912 GnRH signaling pathway (2)
map04913 Ovarian steroidogenesis (1)
map04915 Estrogen signaling pathway (5)
map04914 Progesterone-mediated oocyte
maturation (5)

map04917 Prolactin signaling pathway (2)
map04921 Oxytocin signaling pathway (2)
map04926 Relaxin signaling pathway (4)
map04935 Growth hormone synthesis,
secretion and action (3)

map04918 Thyroid hormone synthesis (2)
map04919 Thyroid hormone signaling pathway
(5)

map04928 Parathyroid hormone synthesis,
secretion and action (1)

map04916 Melanogenesis (1)

map04924 Renin secretion (1)
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map04925 Aldosterone synthesis and secretion
(2)

map04927 Cortisol synthesis and secretion (1)
map04261 Adrenergic signaling in
cardiomyocytes (2)

map04270 Vascular smooth muscle contraction
(3)

map04970 Salivary secretion (2)

map04971 Gastric acid secretion (1)
map04972 Pancreatic secretion (1)
map04976 Bile secretion (2)

map04973 Carbohydrate digestion and
absorption (1)

map04978 Mineral absorption (1)

map04962 Vasopressin-regulated water
reabsorption (2)

map04960 Aldosterone-regulated sodium
reabsorption (1)

map04961 Endocrine and other factor-
regulated calcium reabsorption (3)
map04964 Proximal tubule bicarbonate
reclamation (1)

map04966 Collecting duct acid secretion (1)
map04724 Glutamatergic synapse (1)
map04727 GABAergic synapse (2)

map04725 Cholinergic synapse (2)
map04728 Dopaminergic synapse (1)
map04726 Serotonergic synapse (1)
map04720 Long-term potentiation (1)
map04723 Retrograde endocannabinoid
signaling (2)

map04721 Synaptic vesicle cycle (3)
map04722 Neurotrophin signaling pathway (2)
map04745 Phototransduction - fly (1)
map04740 Olfactory transduction (1)
map04742 Taste transduction (1)

map04750 Inflammatory mediator regulation
of TRP channels (2)

map04320 Dorso-ventral axis formation (1)
map04360 Axon guidance (1)

map04361 Axon regeneration (2)

map04380 Osteoclast differentiation (2)
map04211 Longevity regulating pathway (2)
map04212 Longevity regulating pathway -
worm (2)
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map04213 Longevity regulating pathway -
multiple species (2)

map04713 Circadian entrainment (1)
map04714 Thermogenesis (7)

map04626 Plant-pathogen interaction (5)
map05200 Pathways in cancer (9)
map05202 Transcriptional misregulation in
cancer (2)

map05206 MicroRNAs in cancer (3)
map05205 Proteoglycans in cancer (5)
map05204 Chemical carcinogenesis (3)
map05203 Viral carcinogenesis (3)
map05230 Central carbon metabolism in
cancer (2)

map05231 Choline metabolism in cancer (2)
map05235 PD-L1 expression and PD-1
checkpoint pathway in cancer (1)
map05210 Colorectal cancer (2)
map05212 Pancreatic cancer (1)
map05225 Hepatocellular carcinoma (5)
map05226 Gastric cancer (2)

map05214 Glioma (2)

map05221 Acute myeloid leukemia (2)
map05220 Chronic myeloid leukemia (2)
map05218 Melanoma (1)

map05211 Renal cell carcinoma (3)
map05215 Prostate cancer (4)

map05213 Endometrial cancer (2)
map05224 Breast cancer (2)

map05222 Small cell lung cancer (2)
map05223 Non-small cell lung cancer (2)
map05323 Rheumatoid arthritis (3)
map05010 Alzheimer disease (2)
map05012 Parkinson disease (3)
map05016 Huntington disease (4)
map05017 Spinocerebellar ataxia (2)
map05020 Prion diseases (1)

map05030 Cocaine addiction (1)
map05031 Amphetamine addiction (1)
map05032 Morphine addiction (1)
map05034 Alcoholism (2)

map05418 Fluid shear stress and
atherosclerosis (7)

map05410 Hypertrophic cardiomyopathy
(HEM) (1)
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0.198
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map05412 Arrhythmogenic right ventricular
cardiomyopathy (ARVC) (2)

map05414 Dilated cardiomyopathy (DCM) (2)
map05416 Viral myocarditis (1)

map04930 Type Il diabetes mellitus (1)
map04932 Non-alcoholic fatty liver disease
(NAFLD) (2)

map04931 Insulin resistance (2)

map04933 AGE-RAGE signaling pathway in
diabetic complications (1)

map04934 Cushing syndrome (2)

map05110 Vibrio cholerae infection (3)
map05120 Epithelial cell signaling in
Helicobacter pylori infection (1)

map05130 Pathogenic Escherichia coli infection
(3)

map05132 Salmonella infection (6)
map05131 Shigellosis (2)

map05135 Yersinia infection (3)

map05133 Pertussis (3)

map05134 Legionellosis (2)

map05152 Tuberculosis (3)

map05100 Bacterial invasion of epithelial cells
(3)

map05166 Human T-cell leukemia virus 1
infection (3)

map05170 Human immunodeficiency virus 1
infection (2)

map05162 Measles (2)

map05164 Influenza A (2)

map05161 Hepatitis B (2)

map05160 Hepatitis C (2)

map05168 Herpes simplex virus 1 infection (3)
map05163 Human cytomegalovirus infection
(3)

map05167 Kaposi sarcoma-associated
herpesvirus infection (1)

map05169 Epstein-Barr virus infection (2)
map05165 Human papillomavirus infection (4)
map05146 Amoebiasis (3)

map05145 Toxoplasmosis (1)

map05142 Chagas disease (American
trypanosomiasis) (1)

map05143 African trypanosomiasis (1)
map01501 beta-Lactam resistance (10)
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map01503 Cationic antimicrobial peptide
(CAMP) resistance (4)

map01521 EGFR tyrosine kinase inhibitor
resistance (2)

map01524 Platinum drug resistance (4)
map01523 Antifolate resistance (1)
map01522 Endocrine resistance (3)

0.0095

0.0047

0.0166

0.0024
0.0071

0.312

0.279

0.011

0.662
0.093

Table 7: pathways returned as being detected in the acetate gene set. The first column describes the pathway id, its name
and, between brackets, the number of ko retrieved for this particular pathway. The second column gives the total number
of genes identified in the acetate gene set with one or more ko related to this particular pathway. The third column gives,
as a fraction, the number of genes retrieved as being part of this pathway among all the genes from the acetate gene set
(422 genes). The last column shows the p-value computed by random distribution method (see material and method) to
detect if the number of genes related to this pathway was bigger than it would be due to a random event.

Definition

map01100 Metabolic pathways (93)
map01110 Biosynthesis of secondary
metabolites (38)

map01120 Microbial metabolism in diverse
environments (31)

map01130 Biosynthesis of antibiotics (26)
map01200 Carbon metabolism (15)
map01212 Fatty acid metabolism (7)
map01230 Biosynthesis of amino acids (14)
map01220 Degradation of aromatic
compounds (6)

map00010 Glycolysis / Gluconeogenesis (4)
map00020 Citrate cycle (TCA cycle) (3)
map00030 Pentose phosphate pathway (2)
map00040 Pentose and glucuronate
interconversions (4)

map00051 Fructose and mannose metabolism
(3)

map00052 Galactose metabolism (1)
map00053 Ascorbate and aldarate metabolism
(4)

map00500 Starch and sucrose metabolism (2)
map00520 Amino sugar and nucleotide sugar
metabolism (9)

map00620 Pyruvate metabolism (6)
map00630 Glyoxylate and dicarboxylate
metabolism (3)

map00640 Propanoate metabolism (3)
map00650 Butanoate metabolism (10)
map00562 Inositol phosphate metabolism (4)
map00190 Oxidative phosphorylation (5)

Ngenes
Per
pathway
60
32

21

21
11
12
9
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w

w w oo w

Fraction
Genes
enriched
NA
0.1839

0.1207

0.1207
0.0632
0.0690
0.0517
0.0345

0.0230
0.0115
0.0172
0.0172

0.0057

0.0057
0.0230

0.0115
0.0230

0.0287
0.0172

0.0172
0.0460
0.0172
0.0172

likelihood

NA
0.001

0.166

0.035
0.134
0.001
0.079
0.077

0.376
0.451
0.231
0.182

0.871

0.83
0.036

0.681
0.328

0.244
0.676

0.646

0.026

0.047
0.43
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map00710 Carbon fixation in photosynthetic
organisms (2)

map00720 Carbon fixation pathways in
prokaryotes (7)

map00680 Methane metabolism (3)
map00910 Nitrogen metabolism (1)
map00061 Fatty acid biosynthesis (3)
map00071 Fatty acid degradation (7)
map00121 Secondary bile acid biosynthesis (2)
map00140 Steroid hormone biosynthesis (1)
map00561 Glycerolipid metabolism (3)
map00564 Glycerophospholipid metabolism (3)
map00600 Sphingolipid metabolism (1)
map00230 Purine metabolism (5)
map00240 Pyrimidine metabolism (1)
map00250 Alanine, aspartate and glutamate
metabolism (1)

map00260 Glycine, serine and threonine
metabolism (2)

map00270 Cysteine and methionine
metabolism (1)

map00280 Valine, leucine and isoleucine
degradation (4)

map00310 Lysine degradation (5)

map00220 Arginine biosynthesis (1)
map00330 Arginine and proline metabolism (2)
map00340 Histidine metabolism (4)
map00350 Tyrosine metabolism (4)
map00360 Phenylalanine metabolism (5)
map00380 Tryptophan metabolism (3)
map00400 Phenylalanine, tyrosine and
tryptophan biosynthesis (10)

map00410 beta-Alanine metabolism (3)
map00440 Phosphonate and phosphinate
metabolism (1)

map00450 Selenocompound metabolism (1)
map00510 N-Glycan biosynthesis (1)
map00513 Various types of N-glycan
biosynthesis (1)

map00603 Glycosphingolipid biosynthesis -
globo and isoglobo series (1)

map00730 Thiamine metabolism (1)
map00750 Vitamin B6 metabolism (1)
map00760 Nicotinate and nicotinamide
metabolism (3)
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0.0115

0.0057

0.0287

0.0230
0.0057
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0.0172
0.0057

0.0057
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0.0057

0.0057

0.0057
0.0172

0.042

0.042

0.452
0.771
0.003
0.006
0.121
0.328
0.197
0.177
0.493
0.387
0.843
0.814

0.795

0.885

0.28

0.248
0.709
0.687
0.118
0.163
0.091
0.513
0.001

0.32
0.332

0.576
0.498
0.418

0.237

0.556

0.309
0.136
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map00770 Pantothenate and CoA biosynthesis
(1)

map00780 Biotin metabolism (1)

map00830 Retinol metabolism (1)
map00860 Porphyrin and chlorophyll
metabolism (3)

map00130 Ubiquinone and other terpenoid-
quinone biosynthesis (2)

map00900 Terpenoid backbone biosynthesis
(1)

map00906 Carotenoid biosynthesis (1)
map00981 Insect hormone biosynthesis (1)
map00903 Limonene and pinene degradation
(3)

map00281 Geraniol degradation (3)
map01051 Biosynthesis of ansamycins (1)
map00960 Tropane, piperidine and pyridine
alkaloid biosynthesis (2)

map00401 Novobiocin biosynthesis (1)
map00333 Prodigiosin biosynthesis (1)
map00998 Biosynthesis of various secondary
metabolites - part 2 (2)

map00362 Benzoate degradation (7)
map00627 Aminobenzoate degradation (2)
map00364 Fluorobenzoate degradation (1)
map00625 Chloroalkane and chloroalkene
degradation (2)

map00361 Chlorocyclohexane and
chlorobenzene degradation (1)

map00623 Toluene degradation (3)
map00622 Xylene degradation (1)

map00791 Atrazine degradation (1)
map00930 Caprolactam degradation (2)
map00626 Naphthalene degradation (1)
map00980 Metabolism of xenobiotics by
cytochrome P450 (1)

map00982 Drug metabolism - cytochrome
P450 (1)

map00983 Drug metabolism - other enzymes
(1)

map03010 Ribosome (1)

map00970 Aminoacyl-tRNA biosynthesis (2)
map03008 Ribosome biogenesis in eukaryotes
(1)

map04141 Protein processing in endoplasmic
reticulum (1)

N R NN N B

[N

B R NP R W

0.0057

0.0230
0.0057
0.0057

0.0115

0.0057

0.0057
0.0057
0.0172

0.0230
0.0115
0.0115

0.0057
0.0230
0.0115

0.0402
0.0115
0.0057
0.0115

0.0057

0.0172
0.0057
0.0057
0.0115
0.0057
0.0057

0.0057
0.0057
0.0057
0.0115

0.0057

0.0057

0.614

0.049
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0.238
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0.396
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0.018
0.031
0.095

0.205
0.022
0.029

0.017
0.559
0.364
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0.05
0.411
0.234
0.193
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0.743
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0.388
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map04122 Sulfur relay system (2)

map03050 Proteasome (1)

map03420 Nucleotide excision repair (1)
map03430 Mismatch repair (1)

map02010 ABC transporters (28)

map02060 Phosphotransferase system (PTS)
(4)

map03070 Bacterial secretion system (2)
map02020 Two-component system (15)
map04014 Ras signaling pathway (1)
map04015 Rap1 signaling pathway (1)
map04010 MAPK signaling pathway (1)
map04012 ErbB signaling pathway (1)
map04370 VEGF signaling pathway (1)
map04064 NF-kappa B signaling pathway (1)
map04066 HIF-1 signaling pathway (1)
map04020 Calcium signaling pathway (2)
map04070 Phosphatidylinositol signaling
system (3)

map04072 Phospholipase D signaling pathway
(1)

map04152 AMPK signaling pathway (1)
map04146 Peroxisome (1)

map04140 Autophagy - animal (2)

map04110 Cell cycle (1)

map04111 Cell cycle - yeast (1)

map04216 Ferroptosis (1)

map04115 p53 signaling pathway (1)
map04218 Cellular senescence (1)

map02024 Quorum sensing (11)

map05111 Biofilm formation - Vibrio cholerae
(4)

map02025 Biofilm formation - Pseudomonas
aeruginosa (1)

map02030 Bacterial chemotaxis (7)
map02040 Flagellar assembly (1)

map04650 Natural killer cell mediated
cytotoxicity (1)

map04660 T cell receptor signaling pathway (1)
map04658 Th1l and Th2 cell differentiation (1)
map04659 Th17 cell differentiation (1)
map04664 Fc epsilon Rl signaling pathway (1)
map04666 Fc gamma R-mediated phagocytosis
(1)

map04670 Leukocyte transendothelial
migration (1)
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0.066
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0.641
0.281
0.266
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0.027
0.322
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0.025
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0.011
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0.206

0.288
0.157
0.211
0.214
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map04920 Adipocytokine signaling pathway (2)
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Figure 3: A: Bar plot showing the relative abundance of the eight most abundant bacterial genus observed across both
microcosm time series. The taxonomy is based on the classification of the ASV from the 16S rRNA sequencing data using RDP
classifier. The minor bacterial genus represented by a low abundance of sequences in the different samples have been
summed up and termed “Other taxa”. B: Bar plot showing the relative abundance of the most abundant fungal orders
observed across both microcosm time series. The taxonomy is based on the classification of the ASV from the ITS sequencing
data using RDP classifier. The minor fungal orders represented by a low abundance of sequences in the different samples
have been summed up and termed “Other taxa”.
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Table 8: Taxonomy table of the core ASV (ASV appearing in at least 22 samples of the considered time series). The first column shows the ASV name displayed on the networks in the main

article. The two last columns show the presence (X) or absence (-) of the ASV in each core community from both time series. Note: Only the ASVs being present in both core communities were

used to build the core networks in the article.

ASV name domain phylum class order family genus species waterCore acetateCore
oTU_1 Bacteria Burkholderiales S i Unclassified X X
01U_10 Bacteria i Unclassified X X
0TU_10100 Fungi unidentified unidentified_1 unidentified 1 unidentified 1 1 sp|SH216408.06FU X X
otu_11 Bacteria i Unclassified X X
0TU_11000 Fungi _unidentified | Basidiomycota_unidentified_1 unidentified_L unidentified_1_1 i _sp|SH216408.06F0 X X
0oTU_111 Bacteria i il i Unclassified X -
0TU_11610 Fungi _unidentified _unidentified_1 _unidentified_1 _unidentified 1_1 Basi _sp|SH216408.06FU - X
oTU_117 Bacteria i chi i Unclassified X -
0TU_119 Bacteria Burkholderiales (o 0; Unclassified X X
oty_12 Bacteria Pre Rhizobiales Rhizobium Unclassified X X
0TU_12100 Fungi Atheliales Atheliaceae iaceae Ath _sp| SH232729.06FU X X
0TU_12110 Fungi Microbotryomycetes L L L ified_L i - X
0TU_12310 Fungi X 1 X 1 X 11 Basi _sp|SH219414.06F0 X X
0oTU_129 Bacteria Cytophagia < o Unclassified X X
0TU_12910 Fungi i i_Basidiomycota i_Basidiomycota i_Basidiomycota i X X
0OTU_13100 Fungi unidentified unidentified_1 unidentified_1 unidentified 1 1 sp|SH216408.06FU X X
oTU_134 Bacteria i Burkholderiales 9 o Unclassified X X
oTU_138 Bacteria Burkholderiales 0 o Unclassified X X
oTu_14 Bacteria Pre X K K Unclassified X X
0TU_14100 Fungi Ascomycota L Lecanorales P _furfuracea| SH230099.06FU X X
oTU_15 Bacteria i i i i Unclassified X X
0OTU_150 Bacteria Burkholderiales (o Massilia Unclassified X X
0TU_15100 Fungi _unidentified i _unidentified_1 _unidentified_1 i _unidentified 1_1 _sp|SH216408.06F0 X X
0TU_16 Bacteria i i i i Unclassified X X
0TU_161 Bacteria Pre Burkholderiales Oxalobacteraceae unclassified_Oxalobacteraceae Unclassified X X
0TU_16100 Fungi Ascomycota ci [§ unidentified [€ unidentified_1 c 5p| SH228288.06FU X X
0TU_16510 Fungi X X 1 _unidentified _unidenti _sp|SH216408.06F0 X X
0TU_168 Bacteria Subtercola Unclassified X X
o1u_17 Bacteria Burkholderiales Oxalobacteraceae Massilia Unclassified X X
0TU_17010 Fungi i idi i idi i if X -
0TU_17100 Fungi Ascomycota ete: Capnodial Davidiella Davidiella_tassiana |SH196750.06FU. X X
oTU_18 Bacteria Pre Unclassified X X
0TU_18100 Fungi Ascomycota cl N ified_t X X
OTU_186 Bacteria Unclassified X X
0TU_19 Bacteria Pre Unclassified X X
0TU_19100 Fungi I Lecanorales _furfuracea| SH230099.06FU X -
o1U_2 Bacteria Burkholderiales 0 0 Unclassified X X
01U 20 Bacteria Pr Burkholderiales [ o Unclassified X X
0TU_20100 Fungi i yomy L i [ L ified_L X X
otu_21 Bacteria Unclassified X X
0TU_21000 Fungi unidentified | _Basidiomycota_unidentified_1 Basidiomycota_unidentified 1 Basidiomycota_unidentified 1 1 Basidiomycota_sp|SH216408.06FU X X
0TU_21100 Fungi Microbotryomycetes L i I L X X
otu_22 Bacteria i Unclassified X X
0TU_22100 Fungi Microbotryomycetes L L L ified_L X X
oty 23 Bacteria Pre Unclassified X X
0TU_23100 Fungi - 1 K 1 ified_\ 1 X X
0TU_23610 Fungi Fungi Fungi Fungi Fungi Fungi ified_Fungi X -
0TU_25100 Fungi X X 1 X 1 X 11 Basi _sp|5H216408.06F0 X X
01U 26 Bacteria Unclassified X X
0TU_260 Bacteria Burkholderiales X X Unclassified X X
0TU_26100 Fungi Agaricomycetes Atheliales Atheliaceae Atheliaceae_unidentified Atheliaceae_sp|SH232729.06FU X X
otu_27 Bacteria i i < ified_Ct Unclassified X X
0TU_27100 Fungi y Incertae_sedis_22 Celosporium Cel sp|SH231451.06FU X X
0TU_272 Bacteria Pr Burkholderiales Oxalobacteraceae unclassified_Oxalobacteraceae Unclassified - X
o1U_28 Bacteria Unclassified X X
OTU_286 Bacteria Burkholderiales ) 0 Unclassified X X
0TU_29100 Fungi Ascomycota omycota Ascomycota Ascomycota Ascomycota ycota X X
o1U_3 Bacteria i Burkholderiales 0 o Unclassified X X
0TU_30 Bacteria Burkholderiales 9 o Unclassified X X
0TU_31 Bacteria Unclassified X X
0TU_31000 Fungi unidentified | _Basidiomycota_unidentified_1 unidentified_1 unidentified_1_1 5p|SH216408 06FU X X
0TU_31100 Fungi Ascomycota L Lecanorales L I i L I i Lecanorales_sp|SH227434.06FU X X
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oTU_32 Bacteria chi Unclassified X X
0TU_32100 Fungi y populi| SH231447.06FU X X
oTU_33 Bacteria Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium Unclassified X X
0TU_33100 Fungi idi _unidentified i _unidentified_1 i _unidentified_1 i _unidentified 1_1 i _sp|SH216408.06F0 X X
oTU_332 Bacteria i Burkholderiales 0 0 Unclassified X X
0TU_34100 Fungi Microbotryomycetes L L L ified_L X X
0oTU_35 Bacteria i Mi Unclassified X X
0TU_35100 Fungi Polyporales Polyporales_unidentified Polyporales_unidentified_1 Polyporales_sp|SH202320.06FU X X
0TU_36 Bacteria Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium Unclassified X X
OTU_364 Bacteria Burkholderiales [ o Unclassified X -
o1U_37 Bacteria _Gpl ified_Aci _Gpl ¥ _Gpl Unclassified X X
0TU_37100 Fungi Microbotryomycetes L L L ified_L X X
oTU_38 Bacteria Burkholderiales C Unclassified X X
oTU_387 Bacteria Burkholderiales 9 o Unclassified X -
0TU_39 Bacteria Burkholderiales Oxalobacteraceae Massilia Unclassified X X
0TU_39100 Fungi Fungi Fungi Fungi Fungi Fungi Fungi X X
0TU_393 Bacteria i Burkholderiales X X Unclassified X X
oTU 4 Bacteria i Unclassified X X
0TU_40 Bacteria Burkholderiales Oxalobacteraceae Massilia Unclassified X X
0TU_40100 Fungi Venturiales unidentified sp|SH238426.06FU - X
o1U_41 Bacteria _GpL ified_J _Gpl ¥ _GpL Unclassified X X
0TU_41000 Fungi Agaricomycetes Atheliales Atheliaceae Atheliaceae_unidentified Atheliaceae_sp|SH232729 06FU X X
0TU_41100 Fungi i Capnodiales unidentified - 5p|5H238976.06FU X X
otU_42 Bacteria Bacteroidetes i Unclassified X X
otu_43 Bacteria [§ i d Unclassified X X
0TU_43100 Fungi Ascomycota unidentified _unidentified_1 _unidentified_1 D etes_sp| SH231472.06FU X X
oTU_44 Bacteria Luteibacter Unclassified X X
0TU_45 Bacteria Rhizobiales Rhizobiales Rhizobiales Unclassified X X
0TU_45100 Fungi Ascomycota C cf i c i c X X
0OTU_46 Bacteria Burkholderiales Unclassified X X
otu_47 Bacteria Rhizobiales Rhizobiales Rhizobiales Unclassified X X
0TU_47100 Fungi Ascomycota c unidentified 5p|SH241308.06FU X X
otu_48 Bacteria i Unclassified - X
OTU_48100 Fungi Fungi_unidentified Fungi_unidentified 1 Fungi_unidentified 1 Fungi_unidentified 1 1 Fungi_unidentified 1 1 Fungi_sp|SH216411.06F0 X X
oTU_49 Bacteria Pr Burkholderiales [ o Unclassified X X
oTU_5 Bacteria Burkholderiales 9 o Unclassified X X
0TU_51000 Fungi _unidentified | Basidiomycota_unidentified_1 unidentified_L unidentified_1_1 _sp|SH216408.06F0 X X
0TU_52100 Fungi Mi yomycet Incertae_sedis_25 Rhodotorula _sp_TP_Snow_Y120|SH21231806FU_| X X
0TU_55 Bacteria Unclassified X X
0TU_55100 Fungi Ascomycota L Helotiales Incertae_sedis_2 Incertae_sedis_2_{ Helotiales_sp|SH234732.06FU X X
0TU_56100 Fungi idi Agaricomycetes Agaricales Clitopilus ified_Clitopilus X X
oTU_58 Bacteria Burkholderiales S ified_O; Unclassified X X
0TU_58100 Fungi yomy Leucosporidiaceae L ified_L X X
01U 6 Bacteria Pre K ified | K Unclassified X X
0TU_60 Bacteria Gp1 A Gp1 Gp1 Gpl Unclassified X .
0TU_60100 Fungi y D D D ified_D: - X
0TU_61 Bacteria Gpl i Gpl Gpl Terriglobus Unclassified X B
0TU_61000 Fungi Ascomycota C E X 5 _unidentified_1 [ _5p|SH228288.06F0 X X
0TU_61100 Fungi y L L Zalerion Zalerion_sp_T2N16¢| SH224770.06FU X X
0TU_63 Bacteria Burkholderiales 0 ified_ Unclassified X X
0TU_64100 Fungi Ascomycota Leotiomycetes Helotiales Helotiales_unidentified Helotiales_unidentified_1 Helotiales_sp|SH209225 06FU - X
0TU_65 Bacteria Burkholderiales iales_incertae_sedis ified_| _incertae_sedis | Unclassified X -
0TU_66 Bacteria Burkholderiales C Unclassified X X
oTU_67 Bacteria teriales Chi Ferrugini Unclassified X X
OTU_68 Bacteria Rhizobiales Rhizobiales Rhizobiales Unclassified - X
0TU_69 Bacteria Burkholderiales o) 0 Unclassified X
0TU_69100 Fungi Ascomycota Eur Incertae_sedis 18 Incertae_sedis 40 Sarcinomyces crustaceus| SH210411.06FU X -
otu_7 Bacteria i i i i i Unclassified X X
o1U_70 Bacteria Unclassified X X
0TU_70100 Fungi c S Udeniomyces Udeniomyces_sp_X]_8B3|SH207893.06FU X X
o1U_71 Bacteria Ac Unclassified X -
0TU_71000 Fungi X 1 X 1 11 i _sp|SH216408.06F0 X X
OTU_74100 Fungi Agaricomycetes Agaricales Clitopilus Clitopilus_hobsonii |SH205041.06FU’ X X
oty_75 Bacteria Pre Burkholderiales 0 Massilia Unclassified X X
otu_77 Bacteria Burkholderiales 9 i Unclassified X X
0TU_77100 Fungi Ascomycota omycota Ascomycota Ascomycota Ascomycota ycota - X
oT1U_79 Bacteria Pre Burkholderiales [ o Unclassified X X
0TU_81000 Fungi Capnodiales Davidiella Davidiella_tassiana|SH196750.06FU X X
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0TU_82100 Fungi yomy L L L ified_L i X X
0TU_88100 Fungi Basidiomycota Tremellales Incertae_sedis_12 Cryptococcus 1 Cryptococcus_victoriae| SH198055.06FU X -
0TU_89 Bacteria Pre Unclassified X -
0TU_89100 Fungi i - X
0109 Bacteria Chi ¢ Unclassified X X
0TU_S0 Bacteria Unclassified X -
0TU_90100 Fungi Ascomycota ‘Ascomycota_unidentified ‘Ascomycota_unidentified_1 Ascomycota_unidentified_1 Ascomycota_unidentified 1_1 Ascomycota_sp|SH222905.06FU X -
otU_92 Bacteria i Burkholderiales 9 ified_O Unclassified X X
0TU_92100 Fungi Basidiomycota Agaricomycetes Atheliales Atheliaceae Atheliaceae_ Atheliaceae_sp|SH232729.06FU X -
0TU_9340 Fungi Atheliales Atheliaceae Byssocorticium 5p|SH233176.06FU X X
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Figure 4: Boxplot showing the relative abundance (as a percentage of total sequences retrieved in the 16S rRNA and ITS
sequencing) of the ASV composing the core community in the samples from both time series microcosms. The blue boxplots
represent the abundance of the core ASV in the replicates from the water control snow microcosms while the red boxplots
display the relative abundance of the core ASV in the acetate amended microcosms. As we can the core community represents
more than 50% of the sequence pool in almost all the samples and can sometimes even reach up to 90% in some samples of
the last sampling time (t10). Thus, the trends observed in our networks will be representative of the dynamics of a substantial
part of the snow communities tracked during this time series experiment.
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5: Histogram showing the degree distribution (i.e the number of edges connecting the different nodes = ASV or

nutrients) from the acetate amended time series network. The average connectivity of this network is 55.90.
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Figure 6: Histogram showing the degree distribution (i.e the number of edges connecting the different nodes = ASV or

nutrients) from the water control time series network. The average connectivity of this network is 41.97.
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Figure 7: Boxplots showing the fraction of edges (used here as a possible clue of biological interaction) representing different
kind of co-variances based on the fact that the sign of the LSA coefficient ( Pos = positive LSA value, Neg= negative LSA value)
and the taxonomy of the interacting nodes (bact = bacteria, fung= fungi)represented in the subsampled networks. Those
networks were built by sampling randomly three replicates among  the four replicates present at each time point (100
networks built for each time series). The kind of co-variance is named based on the taxonomy of its interacting nodes and the
sign of the LSA coefficient.
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Figure 8: Boxplots showing the fraction of edges (used here as a possible clue of biological interaction) representing different
kind of co-variances based on the fact that the sign of the LSA coefficient ( Pos = positive LSA value, Neg= negative LSA value)
and the taxonomy of the interacting nodes (bact = bacteria, fung= fungi)represented in the subsampled networks. Those
networks were built by sampling randomly two replicates among the four replicates present at each time point (100
networks built for each time series). The kind of co-variance is named based on the taxonomy of its interacting nodes and the
sign of the LSA coefficient.
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Figure 9: Boxplots showing the fraction of edges (used here as a possible clue of biological interaction) representing different )

kind of co-variances based on the fact that the sign of the LSA coefficient ( Pos = positive LSA value, Neg= negative LSA value)
and the taxonomy of the interacting nodes (bact = bacteria, fung= fungi)represented in the subsampled networks. Those
networks were built by sampling randomly only one replicate among the four replicates present at each time point (1000
networks built for each time series). The kind of co-variance is named based on the taxonomy of its interacting nodes and the
sign of the LSA coefficient.
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