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Note to the reader

The three chapters of this dissertation are self-contained research articles and can be read sep-

arately. They are preceded by an introduction which summarizes the research presented in this

dissertation. The terms “paper” or “article” are used to refer to chapters. Chapters 1 and 3 are

coauthored, which explains the use of the “we” pronoun.
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List of figures 175

List of tables 179

ix





Introduction

A striking fact in the geography of economic activity is its extremely unequal distribution.

Some areas thrive and are attractive to firms, reaching extreme levels of human concentration.

In contrast, other places offering similar locational advantages are sparsely populated or seem

trapped in decline. This suggests that being located in a dense environment is beneficial to

these firms, beyond the natural locational advantages places may have, as well as the congestion

associated with density. The analysis of so-called agglomeration economies can be traced back to

Marshall (1890), and much of the research conducted by urban economists has focused either on

the measurement of their strength, or on the mechanisms underlying them. Duranton and Puga

(2004) provide a typology of these forces. They distinguish between three main mechanisms

underlying agglomeration: sharing externalities, referring to the ability to share facilities or

suppliers; matching externalities, which mostly refer to the ability to provide better matches

in thicker labor markets; and learning externalities, which refer to the enhanced possibility to

take advantage of knowledge produced in one’s direct environment. A different approach to

these agglomeration forces can be to state that, keeping locational advantages constant, workers

and firms locate wherever they can benefit from better public goods. Some are global (e.g.

military defense, democratic institutions), others are local, meaning that they only affect the

agents located in the same region, city or even block as where they are provided. This thesis

takes interest in two mechanisms generating spatial heterogeneity in the provision of local public

goods.

In the first case, the public good is technological knowledge. It is approached as a local

public good because of the high transaction costs implied in its diffusion. Knowledge should

in theory be a pure public good: it is both non-rival and non-excludable. The empirical study

of knowledge diffusion is however marked by two important observations. First, although one

might expect ideas to flow freely across space, they diffuse much better locally. Second, social and

business networks strongly condition the diffusion of ideas. Introducing networks in the analysis
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Introduction

can reconcile the fact that ideas should be a pure public good with the empirical finding that

they diffuse better at short distances. They provide a natural representation in which knowledge

travels along links at no cost, but link formation is costly and this cost increases with distance as

the probability of social interaction decreases. The fact that knowledge is a local public good is

particularly decisive: innovation is known to be the main engine of economic growth (Aghion and

Howitt, 1992; Aghion and Jaravel, 2015), and differences in technology adoption are responsible

for a large share of cross-country income differences (Comin and Hobijn, 2010). While the

above representation of knowledge diffusion is convenient, networks and spatial features often

correlate so strongly that their separate measurement and identification is not possible (Topa

and Zenou, 2015). This makes it difficult to establish causal associations between any outcome

of interest and either space or network links, all the more so as networks are usually partly

or fully unobserved by the econometrician. Yet, while the social and spatial dimensions may

influence each other, it is important to know if what matters fundamentally is for agents to be

located close to each other, or to be strongly connected. For instance, it determines whether

policies trying to facilitate the diffusion of knowledge between innovators should focus on having

these innovators move to the same area, or invest into joint research programs and exchanges

between them.

The second mechanism studied in this dissertation implies heterogeneity in the availability of

a local public good produced by the public sector. In many developed countries, the public sector

constitutes a large part of total employment1 and is in charge of providing broader services than

mere governmental functions. The functions of police, justice, education and training, health,

social assistance, transportation, or energy often depend partly or fully on the public sector.

All the above functions can only be produced and consumed locally, but are often essential to

workers and firms alike. Contrary to knowledge, they are subject to congestion when population

in an area increases. Therefore, a heteregeneous provision of these local public goods should

have deep consequences on the distribution of economic activity.

This dissertation studies how the above two mechanisms, fostering heterogeneity in local

public goods, determine the spatial distribution of economic activity. It examines what causes

such heterogeneity, the implications it has on the location choices of economic agents as well as

the overall consequences on spatial economic patterns. The first two chapters of the dissertation

focus on the interplay between innovation networks, the geography of knowledge flows, and the

1. Between 15% and 25% of total employment in most European countries. Source: OECD.Stats, Government
at a glance, 2017.
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location of innovative firms. The first chapter explores how the connections between innovators

affect the geography of knowledge transfers. The second chapter then studies the extent to which

the localisation of innovation networks determines the location choices of innovators. The third

chapter focuses on a different problem, in which the local public good of interest is provided

by the public sector. Because of institutional constraints (namely, centralized wage-setting),

all areas do not benefit from the same level of public good. If the public sector generates

positive spillovers on the private sector, this should distort the distribution of city sizes and

productivities.

All three chapters adopt similar methods and tools and all combine theory and empirics.

Empirically, they rely exclusively on large administrative databases to provide quantitative

evidence of the phenomena at work. In particular, the first two chapters make extensive use

of the Patstat database, which records all patent applications and many of their features for

almost all patent offices in the world, often since their creation. Similarly, chapters two and

three rely extensively on the comprehensive French linked employer-employee dataset DADS

Postes, which is used to analyse both the location choices of innovative firms and the spatial

distribution of the public sector. In the analysis, I structure and connect the empirical results

with some elements of economic theory to understand their roots and implications.

Chapter 1 The first chapter of this dissertation is entitled “The Percolation of Knowledge

across Space” and is based on a joint paper with Pierre Cotterlaz. It aims at explaining how

innovators learn about each others’ ideas in spite of frictional knowledge diffusion, and how these

learning dynamics may help decipher the peculiar geography of knowledge flows.

This work is rooted in a vast body of literature showing that knowledge flows exhibit a

strong spatial bias. This literature can be traced back to Jaffe et al. (1993), who use patent

citations to show that an inventor is more likely to cite patents developed around her than

similar innovations developed further away. While this finding led to a fierce debate (Thompson

and Fox-Kean, 2005; Henderson et al., 2005), many papers confirmed it both at the very micro

level (Thompson, 2006; Murata et al., 2014) and on international or interregional citation flows

(Bottazzi and Peri, 2003; Peri, 2005; Li, 2014). The mechanism driving this role of distance still

needs to be formally established. While it seemed intuitively linked to the lower probability of

social interactions at greater distances, the difficulty to identify social interactions separately

from geography in the data was not overcome until recently. Several papers focus on a specific

3



Introduction

measure of social proximity and show that its inclusion in the analysis reduces the measured

effect of distance (Singh, 2005; Breschi and Lissoni, 2009; Agrawal et al., 2008; Kerr, 2008).

Focusing on citations by researchers in mathematics, Head et al. (2018) show more formally

that social ties inherited from one’s career determine which articles they cite, what in turn

explains a large part of the effect of distance on citations.

Building on the above work, this chapter studies the dynamics of link formation between

innovators, and how they relate to the aggregate effect of distance on knowledge flows. It intends

to characterize the evolution of firms’ links with other innovators over their life-cycle. To achieve

this, it studies empirically the influence of what an innovator knows about at a given point in

time on what she is likely to learn about in the future. In practice, we use patent citations as the

“paper trail” of their knowledge set, and compare citations made over time to track its evolution.

We initialize it in an early year and define as contacts the other innovators that a studied firm

already knows about. We then compare the subsequent citations to a set of relevant citations

which could be expected if knowledge diffusion was frictionless. To isolate such set for each

patent, we rely on patent citations added by the experts in charge of the examination of patent

applications in patent offices, who are in charge of making the reference list comprehensive. We

show that firms learn about new knowledge step by step, through the contacts of their own

contacts. This fact is used to build a model following Chaney (2018), in which the dynamics

of link formation have implications on the effect of distance faced by firms depending on their

age. Small firms are born with a set of knowledge originating from firms located at rather short

distances, and then expand their set of knowledge over their life-cycle. This initial spatial feature

of where a firm’s contacts are located can in turn explain why such a persistent effect of distance

is found on knowledge flows. It provides two stark aggregate predictions: these predictions fit

the data exceptionally well, and deliver two stylized facts. First, the distribution of innovators

sizes follows a Zipf law. Second, there exists a log-linear relationship between a firm’s size and

the average (squared) distance of its citations.

This result can provide a tentative answer to a puzzle: why has the aggregate effect of

distance remained constant since the 1980s, in a period when ICTs developed massively? Tools

such as Google Patents, which made any patent immediately searchable, should indeed have

made innovation diffusion much less frictional. This chapter provides some explanations: while

the effect of distance has not decreased, the link between a firm’s size and the distance at which

it cites has. A possible solution to the puzzle coming out of our analysis therefore is that the
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effect of distance on each firm taken individually has indeed decreased, but was compensated by

an increase in the share of small firms, facing stronger effects of distance, relative to large ones.

Chapter 2 The second chapter, entitled “Moving R&D Labs”, takes as given the local knowl-

edge networks that the previous chapter has analysed. It seeks to answer, both empirically

and theoretically, how firms internalize the existence of such local networks, and the unequal

spillovers they can expect to receive from them, to make their location choices. The analysis

is motivated by the need to link two established facts on the geography of innovation: the fact

that knowledge diffuses better at short distances, and the fact that innovation activities are

geographically more concentrated than economic activity in general (Audretsch and Feldman,

1996; Buzard et al., 2017). While knowledge spillovers provide an additional reason to cluster in

space, few papers have focused on the location choices of innovators in particular. This chapter

studies relocation choices, spillovers firms abandon when they move and spillovers they expect

from the new location.

The understanding of this phenomenon is very relevant to the design of public policies.

Indeed, based on the example of the flourishing Silicon Valley cluster, most developed countries

have tried to foster the creation of similar clusters through billions of dollars in subsidies or tax

credits.2 These policies have been (sometimes harshly) criticized by economists both because

of effects that were often perceived as weak compared to the induced public investments, and

because of misspecified theoretical foundations (Glaeser and Gottlieb, 2008; Duranton, 2011).

This motivates a deeper understanding of the link between firms’ location and relocation choices,

and the knowledge spillovers they receive from their direct environment.

The first part of the chapter describes this mobility phenomenon in the data. I use the

DADS Postes data, which contain exhaustive linked employer-employee information in France,

and characterize innovative firms as the ones employing workers with a position explicitely

labelled as R&D. I then study their propensity to move their R&D workers and the distance at

which they move. Two salient facts emerge from the analysis: innovative firms are more likely

to relocate than other firms employing high-skilled workers, and they move further away. I then

construct a measure of how valuable the place that the firm joins and the one it leaves are for

its innovation. I match these firms data with patent data, and depict the centrality of moving

firms in their local knowledge network. I find that having better connections in their original

2. As an example, the iconic “Pôles de compétitivité” policy in France has induced around 2.5 million euros of
public expenditures between 2009 and 2014 (European Commission, 2016).
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location makes firms less likely to relocate, and that movers tend to join locations where they

can expect to benefit from larger spillovers.

The second part of the chapter builds on the above facts and formalizes the problem faced

by R&D firms striving to optimize the knowledge spillovers they receive. To tie their links to

other agents with their location decision, I build a theoretical model relying on tools from the

“games on networks” literature (Jackson and Zenou, 2015). I abstract from traditional industrial

organization features relative to the production function and competition faced by the firm: this

is key to emphasize the main factors influencing joint relocation decisions while keeping the model

tractable. In this model, firms are born in a location with a set of links towards some of their

geographical neighbors, from which they receive positive knowledge spillovers. Within a location,

firms differ in their centrality, a measure of how well connected they are to other firms in their

location. These firms have limited information on the level of spillovers they could receive in

the other location. I first study stability, understood as the fact that no firm would be better

off in the other location. I show that it depends simply on the difference between the lowest

centrality in a location and the average centrality in the other location. I then study a two-stage

game, in which firms may first want to relocate if this gives them higher expected payoffs, and

then choose their optimal R&D effort. I characterize equilibria if firms made their relocation

choices simultaneously as the set of stable situations, and describe further an equilibrium which

is both Pareto-optimal and welfare-maximizing. I then provide an analysis of a process in which

movements take place sequentially: it shows under which conditions cascades of movements can

be expected.

Chapter 3 The third chapter of this dissertation is entitled “The public sector and the dis-

tribution of economic activity”, and is part of a joint project with Emeric Henry and Joan

Monras. It intends to explain the extent to which the location of civil servants who produce

local public goods consumed by workers and firms determines the spatial distribution of the

private sector. Using comprehensive data on both public and private employment in France, we

show that two distinctive features make the public sector stand out compared to the standard

spatial equilibrium model.

The recent crisis of the “yellow vests” in France has brought back at the center of the political

discussion the issue of an equal access of territories to basic public services. This resonates with

the polarizing political question of whether and where some public jobs should be cut. Yet, the
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evidence of the effects such jobs have on economic activity at the local level is recent and does

not yet provide a clear answer to whether they crowd in or out private sector activity. Part

of this undeterminacy lies in the fact that most of the exploitable quasi-experiments relocate

civil servants who really produce a global public good, such as government workers or militaries

(Becker et al., 2013; Jofre-Monseny et al., 2019; aus dem Moore and Spitz-Oener, 2012), rather

than local public goods supplied by schools, hospitals or police stations. The work presented

in this chapter tries to formalize and illustrate the effects one can expect from local public

goods provided by public sector workers, in the particular case of centralized wage-setting in

this sector. It shows how this deviates from the baseline spatial equilibrium framework with two

sectors (Rosen, 1974; Roback, 1982).

The chapter first highlights that the central setting of wages, with limited leeway to adjust

them to local prices, implies different wages across sectors within a city. Following the standard

result that mobile private sector workers must be equally well in every city as they get compen-

sated for amenity differences implies that public sector workers’ utilities are not equalized across

places. In the French context, this is illustrated by many well-known facts, for instance the stark

age sorting of teachers across areas, with young workers starting their careers in less desirable

places before being able to move away. Because a higher productivity of the private sector puts

pressure on the housing market for all workers in a city, civil servants are better off in places

with lower rents, thus lower productivity (keeping amenities constant). The analysis shows that

this might rationalize part of the imbalances between the respective numbers of workers in the

public and in the private sector across the French territory.

The second important factor through which the location of civil servants influences local

economic activity is the spillovers they produce on the private sector. We use large public job

cuts which occured during the period 2008 to 2012 and affected areas differently to highlight

the implied losses in private employment in subsequent years. Consistently with the literature,

we find that places suffering larger losses also lost employment in the non-tradable sector, which

is easily explained by the drop in local demand for non-tradable goods and is well documented

in the literature (Moretti, 2010; Faggio and Overman, 2014; Faggio, 2019). In contrast with

existing literature however, we find that places affected more strongly by the policy also suffer

large losses in the tradable sector, which can only be rationalized through the existence of

positive spillovers from the public sector to the tradable sector.

The above findings are then integrated in a spatial equilibrium model with two sectors,
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where public sector workers are sent in a city at random, have a fixed wage, and generate

positive spillovers on the other sector. The model shows that the fixed-wage structure tends

to increase the gap in labor market size between low and high productivity cities. This is the

case because the wage-constrained sector can spend less in housing than if wages were flexible,

which puts less pressure on the housing sector in the more productive cities, in turn leading

to even starker differences of size between cities with different productivities. Spillovers have

the opposite effect. A higher productivity in the private sector attracts private sector workers

at the expense of public workers and congests the public good produced by the public sector.

Therefore, the existence of spillovers affecting positively the private sector lowers the gap in size

between the most and the least productive cities.
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Chapter 1

1.1 Introduction

Despite considerable improvements in information and communication technologies in the past

three decades, geographical distance remains a serious hindrance to knowledge diffusion. As

Figure 1.1 shows, the elasticity of international patent citation flows with respect to geographical

distance hovers around −0.3, meaning that a 10% increase in the distance between two countries

is associated with a 3% decrease in citations between them. This is all the more surprising as

most conventional distance-related costs, such as transport costs or tariffs, do not apply to ideas.

While it would be reasonable to expect a decrease in its magnitude since the introduction of

search technologies such as Google Patents, it seems on the contrary to have remained very

stable since the 1980s.

Figure 1.1: Elasticity of international patent citation flows with
respect to distance, over time.
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Note: The above figure displays estimates and confidence intervals obtained
on the distance coefficient in structural gravity estimations - equation (1.1)
-. Section 1.2 provides more information on the specification and the data
used to perform these estimations. Self-citations and intranational citations are
excluded.

Attempting to solve the above puzzle, several papers have argued that social links play an

important role in knowledge diffusion:1 they typically find that controlling for social distance

decreases the effect attributed to spatial distance. This paper seeks to go one step further.

It starts by describing precisely how links form: it documents a phenomenon called “triadic

closure”, in which firms disproportionately form links with firms two steps away from them (i.e.

contacts of contacts). We show that this determines how knowledge flows between innovators,

and then formally tie it to the distance effect observed in aggregate. Both our micro and our

1. See for instance Singh, 2005; Kerr, 2008; Agrawal et al., 2008; Breschi and Lissoni, 2009.
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aggregate findings uncover large differences according to firms’ size in the extent to which they

rely on their network, and thus are affected by distance.

We use past patent citations to build network links in a flexible way, and implement a novel

identification strategy using citations added by examiners as counterfactual citations to show

the influence of the network on the probability that a link forms. It provides evidence that

firms are more aware of knowledge originating from firms they are linked with (their contacts),

and are prone to linking with the contacts of their contacts. This is reminiscent of the physics

phenomenon of percolation, in which knowledge is approached as a fluid making its way from an

inventor to another along network paths. We then use this finding as a key ingredient of a model

able to explain the aggregate effect of distance, and show that the data fit these predictions.

Thus, our paper provides evidence that the spatial clustering of social and business ties is the

root of the distance effect observed in aggregate. More specifically, it highlights the dynamics of

these ties’ formation. It shows that small firms tend to rely substantially more on their existing

links, while in aggregate, large firms tend to cite further away. These facts are tied together by a

model in which firms grow over time as their network spreads step by step, implying that firms

are less and less affected by distance as their size/age increases, simply because of the time they

have had to expand their network.

Having an acute understanding of the forces underlying the imperfect dissemination of knowl-

edge is of prime importance. Innovation and technology diffusion are essential for growth as well

as convergence patterns between countries (Nelson and Phelps, 1966; Aghion and Jaravel, 2015;

Akcigit et al., 2018). Indeed, a small group of high income countries achieves a disproportion-

ate share of technological knowledge production,2 while productivity growth in other countries

depends considerably on knowledge flows from those few highly innovative economies which are

likely to condition technology adoption.3 While the focus of the current paper is on international

knowledge flows, the extreme spatial concentration of innovation means this reasoning can be

extended at smaller scales such as regions or urban areas.

This paper starts by documenting important facts on the network formation process between

innovators. Our test for diffusion along the network links relies on the use of examiner-added

citations to build a counterfactual for what innovators would cite if they knew every relevant

2. For instance, in 2011, roughly 80% of triadic patent families (patents applied for in USPTO, EPO and
JPO) were achieved by applicants residing in only 5 countries (Japan, the US, Germany, France, Korea). Source:
http://stats.oecd.org.

3. Along these lines, Comin and Hobijn (2010) estimate that cross-country variation in the timing of technology
adoption accounts for 25% of per capita income differences.
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patent. When applying for a patent, innovators are required to give a list of all the patents on

which their invention builds. This list is completed by experts from the patent office, who make

on average 60% of all citations. Our main identifying assumptions for the effect of the network

are that in a frictionless world, firms would cite all relevant patents, and that the union of

references added by applicants and by examiners is a good proxy for the set of relevant patents.

Therefore, examiner citations help forming an ideal group of counterfactual citations: they are

relevant to the patented invention and are observably similar to applicant citations, but were

not known by it (otherwise it would have cited them). We form links using past patent citations

by applicants, which indicate that they knew about this innovation. By looking at whether,

among our group of relevant references, patents from linked firms are found disproportionately

often in applicant-added citations, we can identify the effect of the network of innovators on the

use of knowledge.

Our estimates show that firms are 30% more likely to cite a patent belonging to one of their

contacts than if it were from outside their network. This is however strongly heterogeneous,

since firms not belonging to the 1% largest are almost three times more likely to cite patents

if they belong to contacts of them than if they do not. Moreover, percolation really operates

since this effect expands beyond direct links: we also find that the citation of a patent is 70%

more likely when this patent had previously been cited by at least one of the firm’s contacts

than when it was unknown from its contacts. Our estimates are robust to the introduction of a

range of control variables, as well as to a variety of robustness tests.

We then undertake to bridge the above finding with the aggregate distance effect. The fact

that distance negatively affects bilateral flows of goods has been widely studied in trade eco-

nomics (Head and Mayer, 2014), through the so-called gravity equations. Interestingly, recent

developments in trade gravity models provide insights on the determinants of such spatial fric-

tions for knowledge flows, even though the nature of the object they apply to is different in many

aspects (it is often assumed to be non-rival and non-excludable, in contrast with traded goods).

Abstracting from trade costs, Chaney (2018) builds a dynamic model of network formation with

search for international trade partners through the network, adapting the established idea of

triadic closure in the social networks literature, i.e. the disproportionately high likelihood to

make friends with friends of friends (Jackson and Rogers, 2007). The model describes an econ-

omy in which firms get knowledge from contacts located further and further away as they grow

older, but in which a constant growth rate in the number of firms generates a large popula-
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tion of new and small firms relative to old and large ones. This model generates predictions

which connect directly to the distance feature of gravity equations. Our hypothesis is that an

analogous phenomenon takes place for knowledge flows: firms initially access knowledge from

spatially clustered contacts, and sequentially obtain new sources of spillovers through their ex-

isting contacts. In order to adapt the theoretical framework to the search of knowledge sources,

we slightly modify Chaney (2018)’s model to allow for the possibility of “spatial search”,4 which

we model as the possibility for firms to find new partners in the places where they already have

a contact.

Finally, we bring to the data the two key theoretical predictions of the network formation

model, which are sufficient to explain the observed negative distance elasticity. Firstly, the

size distribution of innovators should be Pareto. Secondly, an increasing power function should

link the average squared distance at which firms cite to their size. We find that these features

hold remarkably well in the data. On top of being sufficient conditions to generate a constant

negative distance elasticity, these two predictions of the model are interesting stylized facts in

themselves. Indeed, we show that, beyond being well-described by a Pareto distribution, the

size distribution of innovators actually enters the class of economic objects following a Zipf law.

Similarly, the systematic relationship between an innovator’s size and the distance at which it

is able to access to knowledge is a novel finding, which we find to hold very well in a variety of

settings, both in cross-section and over time.

An important takeaway of this paper therefore is that small firms are the main contributors to

the aggregate effect of distance. Innovators start off relying on knowledge produced by contacts

located close to them, and get links with innovators located further away as they grow through

network search. We find that while the overall effect of distance remained constant over time,

the relationship between size and distance of citations weakened in our period of study: we

show that this was caused by small innovators accessing more distant knowledge. Although this

should have implied a decrease in the overall effect of distance, it seems to have been offset by

an increased share of small innovators versus large ones.

This paper relates to several other strands of the literature. Micro evidence of spatial frictions

in the diffusion of knowledge were first brought out in Jaffe et al. (1993), comparing the colocation

rates of realized vs non realized citations, and was later discussed and refined by Thompson and

Fox-Kean (2005) and more recently by Murata et al. (2014). Thompson (2006) and Alcácer and

4. Note that Chaney (2014) studies the network formation at the individual level and allows for an analogous
type of spatial search.
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Gittelman (2006) contributed to this literature by using citations added by examiners to set

forth the local bias of applicants in their citations. We use the same tool in our identification

strategy, this time neutralizing the network bias of applicants rather than their spatial bias. The

other main approach has used aggregate bilateral flows between geographical units and measured

whether these aggregated flows were affected by geographical variables (mostly administrative

borders and distance). This approach was pioneered by Maurseth and Verspagen (2002), and

later used by Peri (2005) and Li (2014). These papers also found a decay in the probability of a

patent citation with distance. Additionally to being less intense, knowledge spillovers between

remote locations also take longer to occur, as evidenced by Griffith et al. (2011), who showed

that there exists a home bias in the speed of citation, meaning that domestic institutions are

quicker to cite domestic patents than foreign institutions, a finding later confirmed by Li (2014).

The effect of social networks on the diffusion of technological and scientific knowledge was first

studied using specific types of links. Singh (2005) studied interpersonal links through coinvention

within patents (which our analysis largely excludes by removing applicants’ self-citations) and

found that controlling for ties diminishes greatly the effect of geographical variables on the

probability of a citation. Similarly, Breschi and Lissoni (2009) found that controlling for mobility

of skilled workers between firms reduced the effect of distance. Agrawal et al. (2008) and Kerr

(2008) proxied social proximity with ethnicity as revealed from names and found it increased

the probability of citation. Head et al. (2018) studied citations between research articles in

mathematics, and controlled for social ties in a more elaborate way, building connections based

on past acquaintances (working in the same institution, being one’s PhD supervisor, etc.), and

reached a similar conclusion. In the same vein, Iaria et al. (2018) found that, by disrupting

encounters and exchanges between scientists of both sides of the conflict, WWI greatly reduced

international knowledge flows, while Catalini et al. (2018) showed that the opening of a low-cost

airline increased collaboration between scientists at both ends, implying that travel costs were

an important friction to knowledge diffusion. Hypothesizing that social interactions between

adopters and non-adopters of a technology are at the root of technology adoption, Comin et

al. (2012) studied how a set of important technologies diffused in space, exploring an hypothesis

relying on traveling routes and social interactions.

In contrast with the above strand of the literature, we do not restrict our attention to a

particular type of links. This flexible approach is allowed by the fact that we use past patent

citations to construct the network of innovators: rather than constructing links based for instance
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on R&D collaborations, we initialize the contacts of an applicant using the citations made

in a given year. We ask how likely it is that knowledge will flow again along a link, either

through the citation of another of the contact’s patents, or through the citation of a patent

previously cited by the contact. This provides an asymmetric measure of links which is general

enough to encompass many of the usual explanations of the localization of knowledge spillovers:

citations could capture links as diverse as formal R&D collaboration agreements, linkages with

geographical neighbours (e.g. inside clusters), inter-firm mobility of engineers, input-output

linkages, acquaintances from college between inventors, etc. While we lack information on the

nature of these links, such generality is a major advantage if one wants to explain phenomena

observed in aggregate.

The remainder of the paper is organized as follows. The next section describes the data

and replicates the stylized fact that distance negatively affects the intensity of international

knowledge flows. Section 1.3 provides micro evidence of knowledge percolation from actual link

formation between contacts, while section 1.4 builds a theoretical framework linking dynamic

network formation with the effect of distance. Finally, section 1.5 empirically shows that the

model’s aggregate predictions hold on patent data.

1.2 Data and Stylized Fact

1.2.1 Data

Patent Citations The standard approach in the literature to track knowledge flows has been

the use of patent citations: when applying for a patent, the applicant is required to cite the

relevant prior art on which its invention builds. Therefore, the widespread assumption made by

this literature is that a patent citation reflects a knowledge transfer from the cited patent to the

citing patent. Patent citations are an imperfect proxy of knowledge flows. Reasons include the

fact that many patents are valueless, that citation rules vary across offices, that citations can be

handled by lawyers rather than inventors, include some strategic considerations (Lampe, 2012),

or that inventions are rarely patented in some industries. In a nutshell, assimilating patent

citations to knowledge flows could both introduce many citations having led to no knowledge

transfer at all and miss knowledge transfers which did not lead to a citation. In particular,

a long-standing criticism towards the use of patent citations as a proxy for knowledge flows

has been the potential bias induced by the presence of examiner-added citations among the
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citations. Indeed, although patent applicants are compelled to cite prior art on which their

invention relies in their initial application, this list is often incomplete, and examiners working

for patent offices are in charge of making it comprehensive. Applicant added citations are a

priori the only citations which may reflect knowledge transfers. Moreover, surveying patent

applicants at the USPTO, Jaffe et al. (2000) found that a sizable share of citations did lead

to a knowledge transfer. In the same spirit, Duguet and MacGarvie (2005) surveyed French

applicants at the EPO and found that citations indeed correlate with ways for inventors to learn

about new knowledge such as R&D collaboration and technology licensing.

Fortunately, our database (PATSTAT, Fall 2016 edition) includes, for patent applications

made in the early 2000s onward, a variable indicating whether the citation was added by the

applicant itself or by the examiner during prosecution time. This piece of information was made

available by the USPTO in 2001 and in 1978 for the EPO. Consequently, it becomes widely

available in the database for patents applied for in the years 2000s (as shown in Figure 1.A.1 in

the Appendix). In the population from which we draw our samples (USPTO patents posterior to

2000), each patent has on average 5 applicant-added citations, and 12 examiner-added citations

(see Figure 1.A.3). This means that, on average, out of 17 relevant patents, applicants have

actually cited 5 of them. An interesting fact is that the sequentiality of the citation procedures

(applicant then examiner) does not seem to make overlapping citations impossible: indeed, out

of the 73 million citations made within the USPTO from 2000 on, 13% of citations are made

by the examiner even though the applicant had already made them, and this share rises to 20%

when only the 47 million citations from patents with at least one applicant-added citation are

considered.

The citation procedure is the following. At the time of the application, patent assignees

are asked to cite the relevant prior art, which helps judge the patentability of the invention,

and notably its novelty relative to the existing technological background. The exact nature of

this requirement varies slightly across offices: for instance, applicants at the USPTO have the

obligation (called “duty of candor”) to do so for the patent to be enforceable once granted, while

the requirement is softer at the EPO.5 The application is then assigned to an office examiner

in the relevant group called art unit. To assess novelty of each of the claims that the patent

contains, the office examiner looks for relevant prior art and typically produces a comprehensive

search report which has to be thorough and exhaustive, making use of the variety of tools at her

5. Yet, as Akers (2000) explains, applicants at the EPO have incentives to cite the relevant patents when they
file their application.
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disposal.6 It contains the documents that she considers to be relevant prior art and patents with

potentially overlapping claims. Based on this exhaustive search, the examiner adds references

to the patent.

The information on whether citations come from the applicant is unfortunately not available

for all patents. Notably, at the USPTO, it appears on patents published after 2001, thanks to

a change in citations reporting.

Patent Applicants Patent applications distinguish between the people who actually devel-

oped the claimed invention (called the inventors) and those who will obtain the legal rights over

the invention if the application is successful (equivalently called the applicants or the assignees

throughout this paper). Notably, inventors are usually employees of the institution which ob-

tains the rights over the invention. Therefore, inventors are always private individuals, while a

vast majority of assignees are firms. Since our focus is on firms, we determine the country of a

patent through the country of its assignee. However, for large firms, the country indicated on

the patent may correspond to the location of the headquarters, instead of the location where the

innovation process actually took place. In this case, using the country of the inventors would

give a more accurate information on the place where research was conducted. Thus, we also

present results obtained using the inventors to determine the patent’s country as a robustness

check. Finally, 11% of the applications have several assignees, potentially based in different

countries. In such case, we consider the application to be located in the country that appears

most frequently among the assignees (the mode), and if there is no mode, we assign randomly

one of the assignees’ countries to the patent.

Patents do not include unique firm identifiers, therefore the allocation of a patent to a firm

can be made only through the assignee name indicated on the patent. A common issue is

that the applicant’s name may be different even for patents belonging to the same firm due to

spelling mistakes, spelling variations, and national units of large companies. Therefore, some

algorithms were developed to harmonize applicant names. PATSTAT contains several name

harmonizations, of which we use the Patstat Standardized Name (PSN) applicant identifier.7

6. “Upon creation of a European search report [...], a pre-search algorithm generating a list of documents to be
inspected by the examiner is triggered.[...] The examiner should start the search process by formulating a search
strategy, i.e. a plan consisting of a series of search statements expressing the subject of the search, resulting in
sections of the documentation to be consulted for the search.” (EPO, 2016)

7. Provided by ECOOM https://www.ecoom.be/en/EEE-PPAT it is automated and is particularly accurate for
the largest patentees, which is crucial when estimating a size distribution. Moreover, it is available for assignees
at all offices represented in PATSTAT, while the HAN harmonization conducted by the OECD is mostly for the
EPO.
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Note also that along with name harmonization, PATSTAT contains information on the type

(firm, university, etc.) of each applicant. Unless specified otherwise, we keep only the applicants

that are signaled as firms in this harmonization. As a robustness check (shown in subsection

1.3.3), we also go a step further and conduct our analysis after matching names with the firm

database Orbis, to check the consistency of the identifier and run robustness checks at the group

level.

The information on the country of the assignee is only available for about half of the patents.

Nevertheless, there is a simple way to improve this figure by making use of the name harmo-

nization work performed by PATSTAT. Suppose the country is missing for a patent, but is

available for another patent granted to the same assignee: we consider that the country of the

former patent is also the one of the latter patent. Thanks to this method, we infer geographic

information for about one third of the patents, which leaves us with only few patents without

country information, as illustrated in Figure 1.A.2.

Contacts Our definition of contacts, which section 1.3 will use extensively, is the following.

The set of contacts f of a given firm is defined as all the assignees of patents truly cited (ie cited

by the applicant) for the first time in an initial year. Unless specified otherwise, contacts are

initialized on citations made in year 2000, for the coverage reason mentioned above. For this

measure to remain an acceptable proxy of an existing link between two applicants, we exclude

citations towards very large applicants (i.e. applicants belonging to the top 1% of the size

distribution, where size is measured as the total number of patent applications in the database):

our assumption is that industry leaders are too widely visible for a citation towards them to

be meaningful, and for differences of informational frictions between examiners and applicants

to be exploitable. Additionally, it makes the construction of the database considerably lighter

(since all the citations made by all their patent applications would have to be constructed).

Building distance 2 links (contacts of contacts) is a heavy procedure. To alleviate the analysis

conducted in section 1.3, we randomly select a third of all firms which would enter our analysis,

which amounts to more than 7,000 firms applying for 650,000 patents and citing more than 10

million patents.
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1.2.2 Stylized Fact: the Persistent Effect of Distance on Knowledge Flows

We test for the existence of spatial frictions in the diffusion of knowledge by studying the

sensitivity of the flows of outward patent citations to distance. Our aim is to determine whether,

after accounting for countries’ heterogeneity in size and technology levels, distance still affects

the intensity of knowledge flows between two countries. This can be done using so-called gravity

equations, a very standard and widely used specification in international economics. The citation

flow from country i to country n (Yni) is the product of an origin specific component, Oi, a

destination specific component, Dn, and a bilateral resistance term, related to the geographical

distance between the countries (dni) and to unobserved factors (ηni).

Yni = DnOi dni
ζ ηni (1.1)

This equation can be estimated through OLS or through Poisson Pseudo Maximum Likeli-

hood (PPML). All the country-specific elements, which make a location more likely to cite or

be cited, are accounted for by a set of origin and destination fixed effects. Most notably, the

fixed effects account for the “knowledge stock” of a country, without imposing any assumption

on the functional form of this stock, but also for the propensity to patent and the propensity

to cite. Data on the geographical distance between countries comes from the CEPII GeoDist.8

There are several ways to compute such bilateral distances. The distance between the most

populated city of each country is our baseline measure of distance, but we additionally report

results obtained with a “weighted distance” between the main cities of each country provided

in the above-cited database in the Appendix (Figure 1.A.7). We exclude citations of patents

having the same applicant or the same inventor as the citing patent (“self-citations”9) from our

analysis. These citations could lead to a spurious distance effect because they would increase

the “home bias”, and do not imply proper knowledge flows.

The first exercise we conduct is to estimate the distance elasticity on bilateral citations

flows aggregated from 1980 to 2010. As Table 1.1 shows, distance significantly and strongly

affects citation flows between countries. The first column of the table indicates the distance

elasticity estimated on the complete sample of citations using OLS, while column 2 shows the

same estimation using only citations added by the applicants. Columns 3 and 4 show the

8. See Mayer and Zignago, 2011, http://www.cepii.fr/cepii/fr/bdd_modele/presentation.asp?id=6.
9. We consider an outward citation to be a “self-citation” as soon as the cited and the citing patent have at

least one common applicant or inventor.
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corresponding estimates using PPML regressions.

The second exercise consists in running a series of yearly cross section estimations. This

permits to shed light on how the spatial decay of knowledge flows evolved over time. In order to

ensure that the set of dyads used in the PPML estimation does not vary over time, we balance

our database by ensuring that each potential pair of country is present at every point in time,

potentially with a zero citation flow. The results of these estimations were provided in the

introduction (Figure 1.1) for the PPML estimates. The distance elasticity hovers around −0.3

and is remarkably stable over time. The OLS estimates provide a similar picture (see Figure

1.A.5 in the Appendix).

The negative effect of distance on the intensity of international knowledge flows is a very

robust finding. In particular, it holds when the sample is disaggregated between the three main

patent offices (EPO, JPO and USPTO), and between wide technological sectors (sections of

the International Patent Classification, hereafter IPC). We also estimate equation (1.1) using a

different distance measure, and considering an alternative way to determine the country of each

patent. In all cases, the distance elasticity of citation flows remains clearly negative (see Figures

1.A.6 and 1.A.7 in the Appendix for further explanations and results).

Table 1.1: Estimates of the distance elasticity of citation flows
(ζ).

(1) (2) (3) (4)

Cit. flow

Distance -0.375a -0.356a -0.297a -0.281a

(0.0349) (0.0372) (0.0301) (0.0377)

Orig. and dest. FE Yes Yes Yes Yes

Estimation OLS OLS PPML PPML

Sample All cit. AA cit. All cit. AA cit.

Nb of dyads 7166 4667 36485 28863

Note: Distance elasticity estimated using equation (1.1). Distance is measured
as the geodesic distance between the main city of each country. The country of
each patent is determined based on its applicants. Self-citations and intrana-
tional citations are excluded. No dyadic control variables are included. Columns
(1) and (2): s.e. clustered by origin and destination country. Columns (3) and
(4): robust s.e. Significance levels: a : p < 0.01; b : p < 0.05; c : p < 0.1
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1.3 Micro Evidence of Networked Knowledge Search

This section aims at highlighting how the network is formed between inventors. This analysis

requires information on the network of innovators. As described in section 1.2.1, we recover

this network from past knowledge flows. Based on this definition of the network, we ask two

questions:

1. Is an innovator more likely to cite patents of one of its contacts (than a similar patent

owned by an applicant it is not linked to)?

2. Is an innovator more likely to cite a patent known by at least one of its contacts (than a

similar patent unknown from its contacts)?

The first test aims at providing evidence of the role of networks in the circulation of knowledge,

as well as asserting the quality of our proxy for contacts. The second one unveils a network

formation process, by looking at the existence of triadic closure, i.e. links being formed between

an innovator and a contact of one of its contacts.

These two tests are depicted graphically in Figure 1.2, as well as through the following

example. Consider patent a, which was applied for by firm A, with priority year 2000. Among

others, this patent cited another patent b1 applied for by applicant B. Our first test assesses

whether in its subsequent patent applications, firm A is more likely to cite patents of its contact

B (i.e. patents b2, . . . , bn) than similar control patents. In an earlier application, B had cited

patent c owned by applicant C. Our second test investigates whether firm A is also more likely

to cite patents previously cited by applicant B such as patent c.

1.3.1 Empirical strategy

Identification For each patented invention, there are millions of patents that the applicant

could potentially cite, which makes it computationally unfeasible to consider the complete set

of potential choices. In other words, the patents which are relevant to an applicant’s invention

but that she does not know about are unobserved. Therefore, we need to proxy it and restrain

the set of potential alternatives to a set of patents with characteristics such that they had a high

probability of being cited. To achieve this, we argue that the patents added by the patent office

during the examination process constitute a credible set of potential yet non-realized citations.

They are similar to the patents actually cited both in terms of observable characteristics (we

explore this point below and are able to control for it), which most of the literature has focused
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Figure 1.2: Design of the tests

Initialization of contacts

Studied Firms

Patent application

year 2000

AA Citation
Cited patents

= Contacts

1. Are firms more likely to cite their contacts’ patents?

Studied Firms

Patents after 2000
AA Cit.

EA Cit.
Never Cited pat.

Contacts

2. Are firms more likely to cite patents cited by their contacts?

Studied Firms

Patents after 2000 Contacts’ patents

Contacts

AA Cit.

Patents cited

by contacts

AA Cit.
EA Cit.

AA Citation: Citation added by the applicant; EA Citation: Citation added by an examiner. The set
of studied firms is made of a randomly picked third of all firms having patented both in the initialization
year and in any subsequent year.

on to build a control group, and most importantly in terms of unobservable features, in particular

the relevance to the citing patent.

Our identification strategy relies on these features. Applicants will cite documents they

are aware of, such as their own (self-citations are very common) and, if knowledge percolation

operates, patents held by their contacts as well as patents held by contacts of their contacts.

In contrast, citations added by the examiner originate from a search report posterior to the

innovation process and will contain patents that are technologically relevant to the claimed

invention, yet independent from the applicant’s network.

24



1.3. Micro Evidence of Networked Knowledge Search

In terms of observable characteristics, Figure 1.3 shows that, although not strictly equal, the

empirical distributions of the four main features we observe are largely similar between examiner

and applicant-added citations. Moreover, these slight differences are not a concern as long as

they do not imply underlying differences in unobserved characteristics, since we control for

systematic differences in quality, age, spatial or technological distance between the two groups

of citations. Further detail on how these variables are constructed is provided in Appendix 1.A.

Figure 1.3: Comparison between applicant-added and examiner-added citations
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(a) Upper left panel: geographical distance between the citing and the cited patent. (b)
Upper right panel: age of the cited patent at the time of the citation. (c) Lower left
panel: quality of the cited patent minus quality of the citing patent. (d) Lower right
panel: technological distance between the citing and the cited patent. Information on the
way these variables are computed is available in the Appendix. Distributions are obtained
using a random sample of 0.1% of USPTO applications.

Regarding unobservable characteristics, the identifying assumptions we make are the follow-

ing. We think of two key unobservable features: relevance to the citing patent, and awareness of

the person making the citation. Our first assumption is that the set of patents both cited by the

examiner and not cited by the applicant is similar to the set of patents cited by the applicant in
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terms of unobservable characteristics. In particular, both groups are as relevant to the patented

invention, and only differ on whether the applicant is aware of them or not. This assumption

requires from examiners to be experts in their field, carry an extensive and independent search

on relevant existing patents, and to be little influenced by past searches they may have done. To

validate our approach, we match our sample with the PatEX database from USPTO’s Public

PAIR data, which records information about the examination process at the USPTO, notably

the examiner in charge.10 Section 1.A.2 in the Appendix shows facts supporting our assumption:

on average, examiners seem to be specialized in fields, display little persistence in their behavior,

and do not lose accuracy when they do cite a patent several times.11

Our second identifying assumption is that if a patent is not cited by the applicant, this means

the applicant did not know about it. This is equivalent to assuming that applicants always have

an incentive to cite any relevant patent they know, because it strengthens their application and

that the examiner would find other relevant patents in any case. This is of course a simplification,

and neglects the possibility for applicants to strategically withhold some citations. Lampe (2012)

however shows evidence that strategic withholding is frequent, using patents already cited by

applicants in the past, and cited by the examiner but not by the applicant in a subsequent

application. Such phenomenon would in fact bias our estimates downwards: a citation in the

past would make the cited applicant a contact, who would later receive an examiner citation

but no applicant citation, going against the network effect we intend to estimate.12

An important point to bear in mind is that the sequentiality of the citation procedure

does not threaten our identification. Indeed, we do not strictly compare applicant citations to

examiner ones, but really applicant citations to their complementary set in examiner citations.

That is, we compare applicant-added citations to patents cited by the examiners that have not

been cited by the applicant. Therefore, our strategy is not affected by the extent of overlapping

citations between the two sets, such that the influence that applicant citations may have on the

decision by the examiner to cite these patents again or not is irrelevant for our purposes. We

however exploit the fact that the overlap is often quite large in a robustness check, in order to

test potential differences in relevance between examiner and applicant citations.

10. We match approximately 5 million USPTO applications with examiner information.
11. Moreover, as shown by Lei and Wright (2017), the fact that a thorough search has been conducted is true

even for objectively weak patents, which tend to receive more attention even though they are eventually granted.
12. More generally, it is difficult to imagine a mechanism which would bias our estimates upward. It would

imply for the patents originating from the applicant’s network to be always relevant yet unable to limit the claims
of novelty in any of the applications in the eyes of the examiner, and to be issued by firms unlikely to enter
litigation. While this knife-edge alignment may occur, it seems far too restrictive to play a first-order role in our
effects.
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Expressing these assumptions in coherence with a discrete choice framework (the canonical

McFadden et al., 1973, conditional logit model), this means that applicants face a set of N

relevant patents, and are aware of k of them. Citing a patent they know costs 0 and is worth ε

(for instance because it increases the grant probability, or because it protects it from subsequent

litigation). Searching for unknown patents costs η � ε, such that applicants always cite the k

patents they know about out of N . Examiners complement the citations list with the N − k

remaining patents (or with any random subset of m out of the N − k remaining patents both

observably and unobservably equivalent to the non-cited ones).

Specification We model the citation decision of patent o towards patent d as resulting from

variations of an unobserved latent variable, Vod, which combines both the relevance of the

(potentially) cited patent d for the citing patent o, and the awareness of o for d (as in Head

et al., 2018). A citation occurs as soon as the value of Vod exceeds a given threshold, denoted

κ. In other words, defining a dummy variable Cod taking value 1 when patent o cites patent d:

P (Cod = 1) = P (Vod > κ)

The value of the latent variable depends on Xod, a set of variables affecting the relevance of

patent d for patent o, and on our variable of interest, Lod, the existence of a link between patent

o and patent d’s applicants:

Vod = exp(ψLod + β′Xod + εod)

Taking logs, the probability of o citing d writes:

P (Cod = 1) = P (−εod < ψLod + β′Xod − lnκ)

Assuming that εod follows a logistic distribution with location parameter 0 and scale parameter

1, and denoting F the CDF of this distribution, this equation rewrites:

P (Cod = 1) = F (ψLod + β′Xod − lnκ) (1.2)

with F (x) = (1 + e−x)−1, which can be estimated through maximum-likelihood. In order to

neutralize any characteristics specific to the origin patent (the o specific components of Xod),
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we use a conditional logit estimator. Nevertheless, there are still potential confounding factors

that we need to control for, as shown in Figure 1.3: the geographical distance between patent

o and patent d, their technological distance, the quality of patent d, and the age of patent d at

the time patent o was invented, as well as the persistence in citation behaviour.

To truly identify the effect of the network, we also control extensively for potential persistence

in the citation behavior of applicants. We build a full set of dummy variables indicating in

different ways whether a patent has already been cited: if patent d was cited by at least one

of the assignees of o; if patent d was cited by at least one patent of one of the assignees of o

before 2000 (at a time where we do not know whether the citation originates from the applicant

herself or from an examiner). Similarly, we account for the fact that the assignee(s) of the cited

patents may be known to the citing firm: we create a dummy turning on when at least one of

the assignees of d was cited by at least one of the assignees of o, and another one indicating that

at least one of the assignees of d appears on at least one patent of at least one of the assignees of

o before 2000. Finally, the cited patent may already be cited by another patent of the Inpadoc

family13 of o, which is accounted for by another dummy variable.

We keep only patents applied for at the USPTO to ensure consistency of the group of

potential alternatives across patents (different offices may have different behaviors in terms

of examiner-added citations and have different rules for applicant-added citations).14 Some

citing patents could appear more than once in our sample, because they have several assignees

belonging to the set of studied firms. We drop these duplicates and record Lod = 1 as soon as

at least one of the co-assignees is linked with the destination patent. This ensures that we are

left with one single observation per patent dyad (combination of citing and cited patent).

To summarize, our sample is made of the whole set of citations by our randomly selected

applicants posterior to 2000 (applicant-added and examiner-added citations). Some of these

citations correspond to actual knowledge transfers (the applicant-added citations), others to

patents that were relevant but did not give rise to any knowledge transfer (examiner-added

citations). Our dependent variable is a dummy equal to one if patent o cites patent d through

an applicant-added citation, zero if d is cited only by the examiner. To test reliance on contacts’

patents, we include as a regressor a dummy indicating whether an applicant of patent d is a

contact of the applicant of patent o, where contacts are defined as applicants (outside of the

13. Inpadoc family is a variable provided in Patstat, which clusters patent applications referring to the same
innovation, either because of renewals, resubmissions, submissions to several offices, etc.

14. Note however that, to construct the network of firms, we use patents from all patent offices, which is not an
issue since we use only applicant-added citations.
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1% largest) cited for the first time in year 2000. To test dependence on citations from contacts,

we include a dummy indicating whether patent d had already been cited by a contact of the

applicant of patent o.

1.3.2 Results

Table 1.2: Baseline results for network formation tests

(1) (2) (3) (4) (5)

Firms All Small Large

Contact 1.17a 1.31a 1.28a 2.82a 1.24a

(0.01) (0.01) (0.01) (0.11) (0.01)

Cited by Contact 1.73a 2.12a 1.67a 1.62a 1.68a

(0.02) (0.02) (0.02) (0.09) (0.02)

Age (log) 1.66a 1.76a 1.65a

(0.01) (0.02) (0.01)

Quality (log) 1.13a 1.17a 1.12a

(0.00) (0.01) (0.00)

Tech. Dist. (log) 1.02a 1.02c 1.02a

(0.00) (0.01) (0.00)

Geo. Dist. (log) 0.98a 0.98a 0.98a

(0.00) (0.00) (0.00)

Persistence Controls X X X X X

Orig. Pat. FE 5 X X X X

Nbr of orig. applicants 7,373 7,242 6,020 3,720 2,300

Nbr of obs 6.3M 6.3M 6.1M 0.46M 5.7M

Note: Logit and conditional logit (when Orig. Pat. FE is Yes) estimations of the determinants of
knowledge transfers (equation (1.2)). The sample is the set of citations of the randomly selected
applicants after 2000, from and to USPTO patents. The dependent variable is a dummy equal to 1
when there is an applicant-added citation of patent d by patent o. “Contact” is a dummy equal to
1 when patent d belongs to a contact of the firm. “Cited by Contact” is a dummy equal to 1 when
patent d has been cited by a contact of the firm. “Several Cit.” is a dummy equal to 1 when patent d
is cited several times by the origin applicant from 2000 on. Small firms are ones with less than 1000
patent applications, large firms ones with more than 1000. Coefficients are exponentiated, standard
errors refer to these exponentiated coefficients (i.e. coefficients are odds ratios). Standard errors are
clustered at the citing patent level in all regressions. Significance levels: a p<0.01 b p<0.05 c p<0.1.

Table 1.2 presents the results for our two tests of network effects conducted simultaneously,

looking at the set of randomly selected firms having applied for a patent in year 2000, with

coefficients expressed as odds ratios. The first column of Table 1.2 shows the result of a simple

binary logit regression without controls. Column 2 displays conditional logit coefficients, which
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amounts to adding fixed-effects for citing patents to the first column, while column 3 adds a

set of control variables. Column 3 is our preferred specification: it controls for the fact that

some citing patents have more applicant-added citations than others, as well as for any feature

depending only on the citing patent: size of the applicant, etc. The coefficient associated to

contacts’ patents shows that applicants are approximately 30% more likely than examiners to

cite patents from their contacts, which implies that applicants do rely on their network links in

their citation behavior. Incidentally, this test confirms that applicant citations are a meaningful

tool to proxy contacts. Focusing on links of distance 2, column 3 shows that firms are about

75% more likely than examiners to cite patents cited by their contacts. This means that we

do indeed observe triadic closure in the formation of the innovators networks: applicants are

disproportionately likely to form links towards contacts of contacts.15 This property is key if

one wants to link the network features to the overall effect of distance on citations.

Columns 4 and 5 split the sample respectively between small/medium sized firms (belonging

to the 99 percent smallest innovators) and large firms (belonging to the 1 percent largest). It

shows an interesting fact: small firms rely considerably more on existing contacts, since they are

2.75 times more likely to cite their contacts’ patents than examiners. This suggests that small

firms are actually much more constrained in terms of the knowledge they have access to, therefore

learning about a firm which has produced a patent relevant to one of their applications makes

them much more likely to rely on other inventions from that same innovator in the future. In

contrast, large firms access to different sources of knowledge with less frictions, and are therefore

less likely to rely on existing links. In contrast, the coefficient on patents cited by contacts has a

similar magnitude across small and large firms: this means that, although the share of citations

made up by contacts may decrease when firms get larger, they have the same propensity to

rely on their contacts’ contacts as a stepping stone to find novel sources of knowledge. Sections

1.4 and 1.5 elaborate on the differentiated roles of small and large firms, and their respective

contribution to the aggregate effect of distance.

The fact that the coefficient associated to contact patents is lower than the one for patents

cited by contacts in our preferred specification is driven by several factors. First, the coefficient

on the former is strongly reduced by the fact the various controls we introduce for persistence,

notably for repeated citations to the patent on which the link has been initialized. It is therefore

15. Interestingly, Carayol et al. (2018) find a negative effect on the probability of triadic closure in co-invention
links and argue it is due to choices of avoiding redundant connections. Their paper is focused on collaborations
rather than knowledge diffusion, it contradicts in no way the above result but rather complements it.
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a conservative estimate of the effect of links of distance 1 on citations. Second, as columns 4

and 5 of the above table show, it hides a considerable amount of heterogeneity: large firms are

much less likely to rely on contacts, but constitute the largest share of patents and citations,

hence driving the coefficient down. Firm-level estimates shown in Table 1.A.4 in Appendix 1.C

confirm that the coefficient on contacts is much larger than the one on contacts of contacts

when the unit of observation is a firm rather than a patent. Moreover, the contact variable is

defined at the applicant level, which largely dilutes the effect compared to the cited by contact

variable, which is defined at the patent level: when defined at the applicant level, the second

coefficient becomes smaller than the first one. Last, coefficients are odds ratio, and only give

an idea of relative importance across both groups, even though citations to contacts are much

more frequent than ones toward patents cited by contacts.

1.3.3 Robustness

Alternative Strategy An alternative strategy can be pursued to conduct similar tests com-

paring applicant-added citations to examiner-added ones, using the examiner-added citations to

build false links rather than as counterfactual citations. To test reliance on contacts’ patents,

one may compare the probability that this group cites patents developed by applicants truly

cited in 2000 (actual contacts) relative to applicants cited by examiners in 2000 (control group

of contacts). Similarly, to test for indirect links, rather than assessing whether the group of

interest is more likely to cite patents previously cited by contacts than its examiners, one may

assess whether this group is more likely to cite patents actually cited by its contacts than patents

cited by its contacts’ examiners (i.e. examiners for its contacts’ applications). This implicitly

assumes that if a patent from a given applicant was relevant once to a a firm’s citing patent,

then other patents of the former applicant should be relevant in future citing patents.

As shown in Appendix 1.C, although coefficients are not comparable with the baseline ones

(mostly because we cannot control for characteristics of the origin patent), results largely confirm

the effect of the network. They show that contacts’ patents are more likely to get recited than

their comparison group. Similarly, patents cited by contacts get recited more than patents cited

by examiners on contacts’ applications.

Overlapping citations A potential threat to the identification we propose could be that

patents cited by applicants and by examiners have systematically different levels of relevance.

31



Chapter 1

For instance, it could be that while examiner-added citations are indeed relevant, applicant-

added citations may be somewhat fictitious references. This may be particularly problematic if

firms cite patents made by their contacts or cited by their contacts not because their discoveries

are based on them, but only to avoid making a thorough search to find the accurate references.

Yet, because it happens frequently that examiners cite a patent which was already in the list

of applicant citations, it is possible to conduct the exact same test only on the examiner-added

citations only, which means that our dependent variable will take the value 1 only when a

cited patent belongs to the overlapping set of examiner and applicant added citations. The

underlying assumption is that, contrary to our baseline strategy in which all applicant patents

are considered relevant, only patents eventually cited by examiners are actually relevant.

Table 1.A.5 displayed in Appendix 1.C shows results similar to the baseline but defining

our dependent variable as being both an examiner and an applicant citation, and dropping all

patents which do not contain such citation. It shows that the coefficients on our variables of

interest are very similar to the ones we have in the baseline regression, which alleviates the

potential concern that our coefficients of interest would be upward biased if applicant citations

were less relevant to the patented invention than examiner citations.

Group level results A critical point in the interpretation of our results is the extent to

which assignees are correctly identified, in order to fully remove self-citations. Moreover, if firms

have subsidiaries, this may mean that citations occurring between a parent company and its

subsidiaries should be included in our analysis. This is a matter of concern, since links within

the multinational firm have been found to be important for knowledge flows (Keller and Yeaple,

2013; Bilir and Morales, 2016), and that we want our mechanism to be valid beyond the borders

of MNEs. Appendix 1.C provides more detail on how we recover information on groups. Results

once group linkages are accounted for are very similar to the baseline ones.

Other robustness checks We conduct a wider range of robustness checks: we change the

initialization year, the maximum size of contacts, measure our effects at the firm level. We also

run Placebo regressions initializing contacts with examiner citations.

1.3.4 Spatial search of knowledge

An alternative way of approaching our test can be to mix our study of network formation

through citations with the more traditional method used to emphasize local knowledge spillovers,
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stemming from Jaffe et al. (1993). Indeed, firms could be practising spatial search for knowledge

parallel to network search, looking for new relevant patents with a spatial bias from their existing

knowledge stock. This spatial search could include various mechanisms: firms could for instance

have language or cultural biases in contact formation, be more likely to go to tech fairs and

shows where their contacts are located, get biased research results from search engines based on

their past researches, follow some specialization operating within clusters. This means that a

firm may have higher chances to form links with geographical neighbours of its contacts, without

its contacts being linked to these geographical neighbours.

In such setting, a first test is similar to the initial idea of Jaffe et al. (1993), and the way of

conducting it is conceptually equivalent to that of Alcácer and Gittelman (2006) and Thompson

(2006). It tests whether applicants are more likely to cite patents developed geographically close

to them than office examiners. A point of enquiry is whether this mechanism is different from the

mechanism we test above, or whether one dominates the other when both are introduced jointly

in a regression. Moreover, the approach can be followed one step further, testing if citations

to geographical neighbors of contacts are more likely. Indeed, while having a purely spatial

approach only allows to proxy links of distance 1 (being close to A who is close to B means one

is also close to B), looking at applicants close to contacts formed through citations gives a proxy

for links of distance 2. This test therefore proposes an alternative and more flexible proxy of

link formation than the one used above based purely on patent citations.

For each firm of the random sample, we select the set of neighbor firms as the firms whose

main location is less than 5km away.16 We then define a dummy variable “Close to Origin”

taking value one if the cited patent was made by a neighbor firm of the citing patent’s assignee.

Similarly, we create a dummy variable “Close to Contact” turning on when the assignee of the

cited patent is close to a contact of the citing firm(s).

Table 1.3 displays coefficients associated with the variables indicating if applicants are geo-

graphically close to our set of firms, or close to their contacts. It shows that firms are indeed

12% more likely than examiners to cite patents from assignees located less than 5 km from

them, which replicates the results of Alcácer and Gittelman (2006) and Thompson (2006). As

column 3 shows, applicants also seem very slightly more likely to cite patents from assignees

located close to their contacts. This effect however seems much weaker than the ones found on

the search along the network, and disappears completely in column 5 when confronted with our

16. The main location being defined as the mode of the locations where patents have been registered for this
firm.
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Table 1.3: Results of the spatial test

(1) (2) (3) (4) (5)

Close To Origin 1.054a 1.127a 1.119a 1.112a 1.118a

[0.023] [0.027] [0.027] [0.027] [0.027]

Close To Contact 1.033a 0.972a

[0.011] [0.010]

Contact 1.566a 1.533a

[0.038] [0.036]

Cited By Contact 1.152a

[0.039]

Age (log) 1.778a 1.780a 1.770a 1.723a

[0.025] [0.025] [0.025] [0.023]

Quality (log) 1.069a 1.069a 1.062a 1.047a

[0.004] [0.004] [0.004] [0.004]

Tech. Dist (log) 1.039a 1.039a 1.040a 1.043a

[0.005] [0.005] [0.005] [0.005]

Orig. Patent FE X X X X X

Persistence Controls X X X X X

Nbr of orig. firms 5,767 5,512 5,512 5,512 5,512

Nbr of obs 6.6M 5.3M 5.3M 5.3M 5.3M

Note: Conditional logit estimations of the determinants of knowledge transfers (equation (1.2)). The
sample is the set of citations of the randomly selected applicants after 2000, from and to USPTO
patents. The dependent variable is a dummy equal to 1 when there is an applicant-added citation
from patent o to patent d. “Contact” is a dummy equal to 1 when patent d belongs to a contact of the
firm. “Close to Origin” indicates that patent d belongs to an applicant located less than 5 kilometers
away from the origin applicant, “Cited by Contact” that patent d has been cited by a contact of the
firm, and “Close To Contact” that the applicant of patent d is close to a contact of the citing applicant.
Coefficients are exponentiated (i.e. odds ratios). In brackets are the standard errors, clustered at the
citing patent level. Significance levels: a p<0.01 b p<0.05 c p<0.1.

covariates for network effects.
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1.4 Theory: Network Origins of the Distance Effect

This section develops a dynamic model able to bridge our finding that knowledge percolates

through a network of innovators from section 1.3, with the fact that distance hinders aggregate

knowledge flows shown in section 1.2.

As established by Chaney (2018), citation flows will exhibit a negative distance elasticity as

long as the following two conditions hold:

• Condition 1: Firm sizes follow a Pareto distribution of shape parameter λ with λ > 1.

• Condition 2: An increasing power function of parameter µ links the average squared

distance of a firm’s citations to its size.

Under these two sufficient conditions,17 knowledge flows are negatively related to distance. These

two conditions to generate an effect of distance are very intuitive. The Pareto distribution for

firm sizes means that small firms are far more numerous than big firms, and the constant

elasticity µ of the average squared distance of a firm’s citations with respect to its size means

that larger firms are able to access to more distant knowledge. If there were only large firms, no

spatial effect would come out on knowledge flows intensity. However, the vast majority of firms

are small and primarily cite innovators located close to them, which generates the aggregate

observation that citation flows decay with distance.

Chaney (2018) also builds a dynamic network formation model which endogenizes the two

above-mentioned conditions. We extend the model to adapt it to the context of knowledge. The

mechanics are as follow: agents can access knowledge through their contacts, and start off with

initial contacts distributed close to them. Firms then gain some new contacts as time passes,

which are either the contacts of their own contacts (network search), or agents located close to

their contacts (spatial search).

The idea that young and small firms initially start with localized contacts (as assumed in

the model developed below) has received some empirical support: Almeida and Kogut (1997)

looked at innovators in the semi-conductor industry in the US, and found that small firms were

more prone to cite patents developed closer to them than big firms were. Their interpretation

of the result was that start-ups were more strongly tied to local knowledge networks than big

17. Additional conditions detailed in Chaney (2018) to obtain an asymptotically constant distance elasticity are

either that λ < 1+µ or that the PDF of citation distances of the smallest possible firm admits a finite
(

1 + 2λ−1
µ

)
-

th moment. More precisely, for distances going to infinity, these ensure that ζ tends towards
(

1 + 2λ−1
µ

)
.
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firms, which is exactly the logic at work in the model.

Model We extend the model featured in Chaney (2018) to introduce some “spatial search”

additionally to the “network search”, consistently with the empirical evidence provided in section

1.3. The model is the following. Time is continuous, and infinitely-lived firms are born with a

growth rate γ. Space is infinite and one-dimensional (R), so that coordinates of any location

are a scalar x. When they are born, firms are endowed with a set of contacts of mass K0, born

at the same time, and distributed around them according to the distribution k0(x), which is

assumed to be symmetric and to admit a finite second-moment. Each contact provides a firm

with one unit of knowledge. The set of contacts of a firm of age a evolves in three ways:

• Gain via spatial search: the firm can directly find new contacts, through a random Poisson

shock of parameter ρ, in each location where it already has contacts. This means that,

going from age a to age a + da, the firm has chances to get some new contacts with the

exact same spatial distribution as the contacts it already has.

• Gain via network search: a firm’s existing contact may reveal one of its own contacts

through a random Poisson shock of parameter β. This revealed contact in turn joins the

set of the firm’s contacts. A technical constraint requires that firms can only gain contacts

with firms of their age.

• Loss of a contact, also through a Poisson shock of parameter δ.

Based on these three channels, the evolution of ka, the mass of contacts at point x of an aged a

firm writes:

∂ka(x)

∂a
= ρka(x)︸ ︷︷ ︸

spatial search

+β

∫
R

ka(x− y)

Ka
ka(y)dy︸ ︷︷ ︸

network search

− δka(x)︸ ︷︷ ︸
contact loss

(1.3)

At the same time, the evolution of the overall number of contacts of a firm of age a, Ka, follows

the simple ODE:

∂Ka

∂a
= (ρ+ β − δ)Ka

with initial value K0.

Proposition. Shape parameters λ and µ from conditions 1 and 2 are functions of the Poisson

shock parameters:

• The distribution of firm sizes is Pareto, with a shape parameter λ = γ
ρ+β−δ ;
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• The average squared distance at which firms cite is a power function of their number of

contacts, of parameter µ = β
ρ+β−δ .

Proof. See Appendix 1.E.

A wrap-up of this mechanical model is that firms will gradually be less and less affected

by distance as their grow old: their average contact is further and further away. In aggregate

however, because new firms are born every period with a constant growth rate, this model will

imply both a Pareto size distribution and distance from contacts being an increasing function of

size. In other words, if large firms cite on average further away than small firms, then citations

at long distances mostly come from large firms (firms applying for many patents). This means

that the greater the number of large firms compared to small ones (smaller λ), and the quicker

the distance at which firms cite increases with size (larger µ), the lower the negative impact of

distance on patent citations is in aggregate.

Comparative Statics Partial derivatives of the parameters of interest with respect to ρ are

as follows:

∂λ

∂ρ
=

−γ
(ρ+ β − δ)2

< 0

∂µ

∂ρ
=

−β
(ρ+ β − δ)2

< 0

This means that, when spatial search increases, this generates a decrease in λ, i.e. an increase in

the proportion of large firms relative to small ones. It also generates a decrease in µ, implying

that the difference between the distance at which big and small firms cite drops.

Similarly, partial derivatives of the parameters of interest with respect to β are:

∂λ

∂β
=

−γ
(ρ+ β − δ)2

< 0

∂µ

∂β
=

ρ− δ
(ρ+ β − δ)2

≶ 0

Thus, the effect on the distribution of firms sizes of an increase in network search is exactly

equivalent to the magnitude of the effect of an increase in spatial search: it makes the tail

of the size distribution thicker, by increasing the rate at which firms get new contacts while

leaving unchanged the entry rate of newborn firms. The sign of the effect of a change in β on

µ is, however, undetermined, and depends on the relative importance of spatial search versus
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contact destruction. If the latter does less than compensate spatial search, then the last partial

derivative is positive and an increase in network search would have the consequence of increasing

µ, i.e. increasing the sensitivity of citation distance to firm size. If, however, δ is large enough in

front of ρ such that gains of contacts through spatial search do not compensate contact losses,

then an increase in network search would negatively affect µ, similarly to an increase in spatial

search. In other words, in a context in which spatial search is too weak to compensate contact

loss, an increase in network search will make the distance of firms citations less dependent on the

firm sizes, while the opposite effect will occur if spatial search is strong enough to compensate

contact loss.

1.5 Estimation of Aggregate Predictions

The network formation model presented in the previous section (section 1.4) provides sufficient

conditions for a negative elasticity of knowledge flows with respect to distance to emerge. These

predictions can be directly tested in the data. We find that they hold well empirically, which

gives credit to the idea that the network formation mechanism that we described underlies the

spatial decay of knowledge flows.

1.5.1 Pareto distribution of innovator sizes

The network formation model predicts that the distribution of firm sizes will be Pareto, i.e. that

F (K) = 1−
(
K
K0

)λ
, with λ = γ

ρ+β−δ . We therefore check that a Pareto distribution fits our data

well, and we estimate the shape parameter of this distribution, using the method introduced by

Axtell (2001). We rank innovators by increasing order of size, where size is the number of patent

applications in a given year18 and distribute them in 20 bins of equal log width.19 We compute

the average size of firms in each bin, denoted Kb, and the fraction of firms of size larger than

18. Measuring size in our context is not obvious: although the closest to the model would be to assess it through
the number of outward citations, the information on citations is missing for many patents, the number of citations
should be very correlated with the number of patents, is very dependent on the office rules, and overall yields very
noisy results. Thus, our aim is to find the best measure of firm size: we use a patent count, where all applications
are included, and not only the first one, to weight “quality” in (Lanjouw et al., 1998).

19. There seems to be no established consensus regarding the number of bins that should be used: while Axtell
(2001) uses 30 bins, Chaney (2018) uses 50. The specificity of patent data is that most firms in our sample have
1 or 2 patent applications in a given year; thus, if we use too many bins, some bins are actually empty because
firms having 1 patent application fill more than one bin. This leads to some bins being dropped, and may lead to
λ and µ being estimated with a different number of bins.
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Figure 1.4: Estimation of λ.
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Note: Each dot corresponds to one of the 20 bins. The x-axis gives
the average size of firms in the bin (Kb) and the y-axis the share
of firms that are larger than this size (1 − F (Kb)). Firm size is
measured as the number of patent applications of the firm over the
period 1980-2010.

Kb, denoted 1− F (Kb). λ is estimated from:

ln[1− F (Kb)] = a− λ ln(Kb) + εb (1.4)

The slope of the regression line shown in Figure 1.4 corresponds to our baseline estimate of λ.

The Pareto distribution fits very well our firm size data (considering the very high R-squared).

Table 1.A.10 in the Appendix confirms this finding. Moreover, it shows that the obtained

shape parameter is always very close to 1, whether we consider all applications or restrict the

sample to first applications, left-truncate the distribution by keeping only firms larger than a

certain threshold (5 patents), or measure size with the number of outward citations instead of

applications. This makes the measured distribution enter the specific case of a Zipf law, a Pareto

distribution with shape parameter equal to 1. In the model, this implies that the net growth of

the mass of contacts should equate the growth rate of the firm population.

The economic literature has uncovered a wide class of objects following a power law, which are

as diverse as city sizes, firm sizes, income distribution, the number of trades per day (Gabaix,

2016), or closer to our object of study the productivity of innovations (Ghiglino, 2012). We

add the size distribution of patenting firms to this class. From the empirical standpoint, the

distribution of firm sizes in general has been shown to follow a Zipf law by Axtell (2001).

39



Chapter 1

Moreover, while the assumption that productivities are Pareto distributed is common in the trade

literature, Nigai (2017) has shown that the left-hand side of the distribution of productivities is

closer to log-normal while the right-hand side fits the Pareto distribution better. In our context,

if productivity is equated to the number of innovations, it is sufficient to posit that only firms

above a certain productivity threshold are able to innovate, which means left-truncating the

productivity distribution, to obtain an innovator sizes distribution well described by a Zipf law.

From the theoretical standpoint, it is also common to generate power laws either from random

growth in size as in Gibrat (1931), or from scale-free network formation processes as in the

Albert and Barabási (2002) model, which also features growth in the number of nodes, and link

formation through preferential attachment (which takes the form of network search in the model

we use, growth alone being insufficient to generate a scale-free network).

If we disaggregate our sample and run distinct regressions for each year, the Pareto distri-

bution still provides an excellent fit. Figure 1.6a shows the estimated coefficient of the Pareto

distribution for each year from 1980 to 2010. Note that Zipf law cannot be rejected for almost

all of the period we study. Firm sizes are also found to be Pareto distributed when measured

using only the patents from one single office, be it the EPO, the JPO or the USPTO. Finally,

within a given technological field (IPC section), the distribution is also Pareto, but the shape

parameters exhibit some mild differences across sectors.

1.5.2 Distance of citations as an increasing function of innovator size

The network model generates a second, more specific feature. It predicts that larger firms are

able to access knowledge generated further away than smaller firms. More precisely, there is a

positive constant elasticity of the average squared distance at which firms cite with respect to

their size. To test whether this holds in our data, we rank firms in increasing order of size,20 and

construct 20 bins of equal log width. We compute the average size of firms in each bin Kb and

the average squared distance,21 denoted ∆b, at which firms in bin b cite. µ is estimated from:

ln[∆b] = a+ µ ln(Kb) + εb (1.5)

Figure 1.5 shows that the relationship between the average squared distance at which a firm

20. Size is again defined as the number of applications of the firm
21. In our baseline estimations, the distance of a citation is defined as the distance between the largest city of

the country of each applicant, and intranational citations are excluded, but we show that our results hold for
alternative geographic choices.
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cites and its size is well described by an increasing power function (i.e. increasing linear in

logs). To the best of our knowledge, this systematic relationship between a firm size and its

ability to access more distant ideas is a novel finding in the analysis of patent citations. Table

1.A.11 shows that this positive relationship between firm size and distance of citations holds

using different measures of citations, firm size, and including or not a minimal size threshold.

Figure 1.5: Estimation of µ
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Note: Each dot corresponds to one of the 20 bins. The x-axis gives
the average size of firms in the bin (Kb) and the y-axis the average
squared geographical distance at which firms in the bin cite (∆b), in
millions kilometers. The period we study is 1980-2010. Firm size is
measured as the number of patent applications of the firm over that
period. Distance is measured as the distance between the largest
city of the countries of the citing and cited patents. Intranational
citations and self-citations are excluded.

The positive link between firm size and their ability to access more distant knowledge does

not disappear when we disaggregate the sample by patent office (see Fig. 1.A.9 in Appendix

1.D). When running separate regressions for each IPC section, µ is always found to be positive,

and significant for 7 sections out of 8 (see again Fig. 1.A.9). Additionally, the estimated µ is

robust to alternative ways of measuring distance (notably to switching to city to city distances

instead of country distances between their capital cities). Note that the elasticity with respect

to firm size of the average squared distance for citations is around half the one of exports. In

other words, the ability to create links with more distant firms is less sensitive to firm size for

ideas than for exports.

A complementary exercise which we conduct is to estimate µ within firms over time, meaning

that we include firm fixed effects in a firm × year level regression, such that µ is estimated
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from time variations in firm size and distance of citations. Using this specification, we also

find a positive significant relationship between these two variables, as shown in Table 1.A.12

in Appendix 1.D. The estimated coefficients are naturally larger, simply because they weight

observations in very different ways (they give an equal weight to each firm rather than equal

weights to each size bin). This holds whether we consider all citations (columns 1, 2 and 3)

or restrict our attention to applicant-added citations (column 4), and is not driven by a time

trend, since the inclusion of year fixed effects does not change the estimated µ. This means

that firms getting bigger also tend to cite further away, while firms shrinking would tend to cite

closer. Consistently with the model, we also find a positive link between the age of a firm and

its size. We measure age as the number of years since the first appearance of the firm in our

database, and we regress the log of the firm size on its age, with a set of firm fixed effects. We

find a semi-elasticity around 0.7 (see Table 1.A.13 in Appendix 1.D). This result is robust to

the introduction of year fixed effects correcting for the fact that firms tend to be older in more

recent years, and have also recorded more patents, and to the restriction of the sample to firms

that appear at least 10 distinct years in our database.

Taken together, these two findings are consistent with the dynamics of the model: as firms

grow older, they become larger and are able to build links with more distant firms. Interestingly,

the economy described here shares similar features with ones emanating from the Schumpeterian

growth theory (Aghion et al., 2015): the size distribution of firms, where size is assimilated to

the number of their innovations, is highly skewed, and larger firms are older.

1.5.3 Time variations and their implications

The exercise of estimating λ and µ may also be useful in order to understand the changes

undergone during our period, in an attempt to explain why these have not implied a decrease in

the aggregate distance effect. The context of innovation does not meet the conditions expressed

by Chaney (2018) to give a closed firm expression of the elasticity of flows with respect to

distance as a function of λ and µ (notably, λ is not always above 1 as required). However,

changes in one parameter keeping the other constant can be interpreted in terms of changes in

the resulting ζ. For instance, decreasing µ all other things equal (including the initial distance

of contacts k0) means that the link between distance of citations and size is less stark, therefore

large firms do not cite at much larger distances than small firms do, and the elasticity of flows

with respect to distance should increase.
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Figure 1.6: Estimates of λ and µ over time.
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λ and µ are estimated from a series of cross-sectional regressions (respectively of equation (1.4) and
(1.5)), one for each year. All patents are included in the sample. Firm size is measured as the number
of patent applications of the firm during the year. The distance is the geographical distance between
the largest city of the countries of the citing and the cited patent.

Figure 1.6a shows that the shape parameter of the firm sizes distribution has remained quite

close to 1. Yet, point estimates seem to have increased slightly, going from values clearly below

1 to values close or above 1. This implies a relative increase in the number of small innovators

relative to large ones. Figure 1.6b shows that the strength of the link between firm size and

distance of citations has varied a lot over time. µ has strongly decreased over the years: while

the elasticity was around 0.1 in the 80s, it hovers around 0.04 in the 2000s, with a strong decline

occurring during the 90s. This means that the distance at which firms cite has become less and

less sensitive to size.

This drop in the value of µ could be an effect of ICTs: while small firms were very constrained

to get new knowledge in the 1980s, they can now find a share of the new knowledge they need

through internet searches, which makes distance of citations less sensitive to size. In such a case,

this would be associated with a structural change in the spatial distribution of newborn firms:

the k0 in the model would then have higher variance in later years. The alternative explanation

of such a decrease in the magnitude of µ would be that big firms are now less able to access

to distant knowledge, which seems hard to rationalize unless the geography of innovations has

changed. Figure 1.7 argues in favor of the former: on the left-hand side of the graph, the distance

at which the small firms cite has increased in the years 2000s compared to the 1980s and 1990s

(while the right-hand side is estimated with some noise and difficult to interpret with certainty).

43



Chapter 1

Figure 1.7: Estimates of µ by decade
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Firm size is measured as the number of patent applications of the firm during the decade. The distance
is the geographical distance between the largest city of the countries of the citing and the cited patent.

Explaining the stability of the aggregate distance coefficient displayed in Figure 1.1 then

requires an increase in the share of small firms, i.e. an increase in the shape parameter of the

Pareto distribution λ. This seems to be verified in Figure 1.6a, although standard errors are

too large to reject equality of these parameters over time. The explanation for the fact that

the gravity coefficients on knowledge flows have remained stable over the period would then be

hiding two joint changes: the fact that small firms are less affected by distance than they used

to, offset by the fact that small firms have grown relatively more numerous.

1.6 Conclusion

This paper shows that the negative effect attributed to distance on international knowledge

flows can in fact be explained, at least partly, by the spatially biased network formation between

innovators.

First, we empirically test the way links are formed between innovators using patent citations.

Using previous citations to build contacts, we show that a firm is more likely to cite a patent

originating from, or cited by at least one of its contacts than a similar patent from outside the

its close network. We exploit the fact that some citations are added by applicants while others

are added by the office examiners, the union of which provides us with a group of counterfactual
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citations under frictionless knowledge circulation. We estimate the effect of a direct or indirect

link on the likelihood of being cited by the applicant itself (versus the likelihood of being cited

by the examiner). We find that firms are 1.3 times more likely than examiners to cite patents

owned by their contacts, yet hiding very strong heterogeneity between small and large firms.

Moreover, firms are 1.7 times as likely to cite patents that were cited directly by their contacts.

This first effect is highly heterogeneous, since firms which do not belong to the top 1% of the

size distribution are almost three times as likely to cite their contacts’ patents. These effects

are robust to a wide range of checks.

Based on this finding, we slightly extend and use the network formation model developed by

Chaney (2018) to draw aggregate implications from the above phenomenon. In this model, the

initial spatial clustering of an innovators’ contacts tends to vanish over time since innovators

gain new, more distant contacts through network search, i.e. through a contact’s contacts, and

spatial search, i.e. gain of new contacts that are geographically close to an existing contact.

Nevertheless, the continuous arrival of new firms, which are not able to access distant knowledge,

maintains an aggregate negative relationship between distance and knowledge flows.

We then show that the theoretical aggregate predictions of the model hold remarkably well

in the data. The sizes of innovators - in terms of the number of patent applications - are Pareto-

distributed (and even Zipf distributed), and the average squared distance at which innovators

cite is an increasing power function of their size. Moreover, we find the latter relationship to

hold both across firms and within firms over their lifetime. The Zipf distribution of firm sizes,

as well as the systematic increasing relationship between size and distance at which firms are

able to cite, are novel findings. They allow generating easily a negative effect of distance on

aggregate citation flows: if small firms are far more numerous than big ones and if they cite

relatively closer, the intensity of flows will naturally depend negatively from distance.

Interestingly, the network formation mechanism put forward is general enough to encompass

many of the usual explanations of the localization of knowledge spillovers: it is consistent with

formal R&D collaboration agreements and the natural network they generate, but also with

explanations based on cultural proximity and common ethnicity (Agrawal et al., 2008; Kerr,

2008), with linkages with geographical neighbours (e.g. inside clusters), as well as inter-firm

mobility of engineers (Almeida and Kogut, 1999; Breschi and Lissoni, 2009; Serafinelli, 2018),

and input-output linkages (Carvalho and Voigtländer, 2014).
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Appendix

1.A Technical Appendix

1.A.1 Description of the PATSTAT database

Figure 1.A.1: Number of patents/citations, decomposed by patent office
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Figure 1.A.2: Patents/citations for which we have geographic information (country)
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Table 1.A.1: International Patent Classification, list of the sections

A Human necessities

B Performing operations, transporting

C Chemistry, metallurgy

D Textiles, paper

E Fixed constructions

F Mechanical engineering; lighting; heating; weapons; blasting

G Physics

H Electricity

Figure 1.A.3: Type of outward citations, by patent office
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1.A. Technical Appendix

1.A.2 Description of examiner citations

The time spent on a patent application by an examiner is substantial: after dropping very

occasional examiners (less than 5 applications), the average examiner handles 40 patent ap-

plications per year, with the 95th percentile being slightly above 100, meaning that even very

busy examiners deal with two applications in an average working week. This suggests that the

citations added in the process of examination should have been cautiously analyzed. Similarly,

examination is conducted by one person only.

Examiners appear to be very specialized in their field: keeping only the eight technological

centers as they exist today (to avoid counting organizational changes as movements), 78% of

examiners remained their whole career in one of the centers, while 86% of examiners handled

patents for less than 4 of the 589 technological divisions called art units22 over their career.

Figure 1.A.4: Correspondence between the number of times an examiner cites a
patent and the number of times other examiners cite it.
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Their is limited habit formation in examiners’ behavior. As Figure 1.A.4 shows, patents cited

several times by the same examiner also tend to be cited many times by other examiners, even

when we consider only the ones outside the examiner’s art unit (to exclude potential peer-effects).

Looking at the technological distance between the patent application assessed by the examiner

and the patents she cites, as shown in Table 1.A.2, we find that the first time an examiner cites

a patent, the technological distance is only 1% of a standard deviation lower, or equivalently

that each additional time a patent is cited by a given examiner implies an average increase of

22. Art units are grouped generally by 10 into clusters which include fields such as “Memory access and control”,
“Digital and optical communications”, “Immunology, Receptor/Ligands, Cytokines Recombinant Hormones, and
Molecular Biology”, etc.
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technological distance of .4% of a standard deviation. This means that habit formation in the

way examiners cite, while it may exist, implies very small losses in the relevance of citations as

evidenced by our measure of technological distance.

Table 1.A.2: Technological distance in multiple citations by examiners

Std. tech dist

(1) (2)

First citation by examiner -0.011a

(0.001)

Rank of examiner citation 0.004a

(0.001)

Examiner FE Yes Yes

Dest. Pat. FE Yes Yes

Nbr of obs 9.6M 9.6M

R-sq 0.74 0.74

VCE Cluster Exam-Id

Robust standard errors in parentheses
a p<0.01, b p<0.05, c p<0.1

Note: The sample is composed of all citations to destination patents cited more than once by the
same USPTO examiner. The dependent variable is the standardized technological distance between
the citing and the cited patent (Mahalanobis distance calculated on IPCs 3 digits). “First citation by
examiner” is a dummy variable taking value 1 when a patent is cited for the first time by an examiner.
“Rank of examiner citation” is a variable taking value n when a citation corresponds to the nth time
an examiner cites a patent. Standard errors are clustered at the citing patent level in all regressions.
Significance levels: a p<0.01 b p<0.05 c p<0.1.

1.A.3 Description of the variables used in Section 1.3.

Age Age is simply the difference between the priority date of the citing patent and the priority

date of the cited patent.

Quality We build a proxy for the quality of each patent by regressing the number of citations

this patent received on a set of fixed effects absorbing the effects of technological classes (IPC 3

digits), priority year and office.23 In order to use log-transformed values in the regressions, we

shift all values by the absolute value of the minimum to have only positive values. This is not

a problem since it is a control variable and that we do not interpret the associated coefficient.

23. To include IPC 3 digits fixed effects, we need to assign a single IPC3 digit of each patent (a patent may
belong to several IPC 3 digits, whereas our strategy requires that each patent is associated with one single IPC3
digit). To determine the main IPC 3 digit of a patent, we consider all the IPC 6 digits of this patent, each of
which corresponding to a single IPC 3 digits, and find the mode of IPC 3 digit based on this.
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1.B. Additional Elements on Gravity Estimates

Geographical Distance Spatial distance is determined based on the cities of the assignees

of o and d. In the case where there are several applicants located in different cities, we take the

mode of the different cities, or we randomly choose the city of one of the applicants if there is

no mode.

Technological Distance Additionally to the previous variables, we build a measure of tech-

nological distance between the citing and the cited patents based on the IPC classes in which it

has been filed. The origin of this approach can be traced back to the seminal paper of Jaffe et

al. (1993). It has later been refined by Thompson and Fox-Kean (2005) and Murata et al. (2014).

The use of Mahalanobis distance between patents as a way to calculate technological distances

between them is a valid approach, as confirmed by the recent work of Bloom et al. (2013). We

can also compare our treatment and control group based on this distance measure, and introduce

it as a control variable in our tests.

1.B Additional Elements on Gravity Estimates

Figure 1.A.5: Evolution of the distance elasticity of citation flows over time, alter-
native estimators
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Notes: These distance elasticities are obtained from a series of cross-sectional gravity estimations. Flow
share = flow / total flow to the destination. The capped spikes depict the 95% confidence interval of
each estimate.
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Figure 1.A.6: Distance elasticity of citation flows, sample split by patent office or
by technological sector
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Notes: PPML estimates. The sample is split either according to the patent office of the citing patent
(a), or to the IPC section of the citing patent (b). The capped spikes depict the 95% confidence
interval of each estimate.

Figure 1.A.7: Distance elasticity of citation flows over time, alternative geographic
measures

0
-.1

-.2
-.3

-.4

1980 1990 2000 2010
Year

(a) “Weighted distance”

0
-.1

-.2
-.3

-.4

1980 1990 2000 2010
Year

(b) Inventor’s country

Notes: (a) Instead of using the distance between the most populated city of the origin and destination
country, we use a “weighted distance” where the main cities are taken into account, with a weight
corresponding to their share of the country population (see Mayer and Zignago, 2011, for more info)
(b) Instead of using the applicants to determine the country of a patent, we use its inventors. Inventors
may be a more accurate source of information on the country of the patent if the applicant is a large
firm with worldwide R&D facilities. Indeed, in this case, the country of the applicant is likely to be
the country of the headquarters of the firm, while the country of the inventor will be the one of the
R&D facility at which the research was conducted.

1.C Network search: Robustness

Alternative Test The sample is the set of patents that could potentially be cited, i.e. patents

granted after 2000 to the true or fake contacts. The dependent variable is a dummy variable

taking value one if the patent was actually cited by the random set of firms, zero otherwise. We
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1.C. Network search: Robustness

want to know whether this binary choice is affected by the fact that the patent belongs to a

true contact as opposed to a fake one, i.e. whether a dummy variable indicating that the patent

belongs to a true contact has a positive and significant effect. This dummy variable is defined

at the citing firm × destination patent level, which is therefore the unit of observation we adopt

for our analysis.

This strategy has some drawbacks compared to the baseline one. Since citations are only

observed when these patents cited either by applicants or examiners get cited after 2000 by

origin applicants, the sample is composed of all the cited patents rather than all the citations,

which does not allow to run a conditional logit as before. Indeed, it implies conducting the

tests at the citing applicant-cited patent pair level rather than at the citing patent-cited patent

pair level. For this reason, we run a simple logit, with standard errors clustered at the citing

applicant level. Another drawback, although minor, is that it implies conducting the two tests

on very different samples (all patents from contacts, either true or control for Test 1, and all

citations, either applicant or examiner added, in all contacts’ applications in Test 2). To be

consistent with the baseline identification strategy, in which running a conditional logit implies

dropping any citation without at least one applicant added and one examiner added citation,

we drop the citations which do not meet this criterion in the following tests.

Table 2.2 shows estimates of the alternative version of the tests. Columns 1 of both tables

run logit regressions without controls respectively on patents from our group of studied firms.

Columns 2 show the same regressions controlling for quality as well as year and technological

class (1 digit) fixed effects of the cited patents. Because a citation is only observed whenever

patents get cited again (i.e. when our dependent variable is equal to 1), we can only control for

characteristics of the destination patent, mostly by using year and technology class fixed-effects.

Results for both tests support the ones from the baseline identification strategy: applicants are

more 80% more likely to cite again patents from the applicants they have truly cited than ones

cited by examiners, as shown in the left panel of Table 2.2, and are also about 30% more likely

to cite patents truly cited by their contacts than patents cited by examiners of their contacts,

as shown in the right panel of Table 2.2.

Firm level results for network search Because large firms display lower direct network

effects and make the bulk of citations, we conduct the same tests at the firm level, to provide

average effects on firms rather than on patent applications. To do so, we take the mean of all
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Table 1.A.3: Results, Alternative versions of tests

Alternative Test 1

(1) (2)

Contact Pat.

Applicant Cit. 1.70a 1.78a

(0.08) (0.07)

Cited in 2000 2.31a 2.39a

(0.06) (0.07)

Dest. Quality (log) 1.03a

(0.01)

IPC 1d FE 5 X

Year FE 5 X

Applicants Firms Firms

Nbr of obs 3.3M 3.3M

Note: Logit estimations of the determinants of
knowledge transfers (applicant-added citations).
The sample is the set of patent applications from
both true and false contacts of studied applicants
after 2000, including examiner added citations,
recorded on USPTO patents only. The depen-
dent variable is a dummy equal to 1 when patents
belonging to contacts get cited after 2000, 0 oth-
erwise. “Applicant Cit.” is a dummy equal to 1
when patent d belongs to a true contact (cited by
applicant in 2000). “Cited in 2000” is a dummy
equal to 1 when patent d was cited in 2000. Re-
sults are exponentiated coefficients (odds ratios).
Significance levels: a p<0.01 b p<0.05 c p<0.1.

Alternative Test 2

(1) (2)

Cited by contact

Applicant Cit. 1.56a 1.29a

(0.06) (0.05)

Dest. Quality (log) 1.60a

(0.04)

IPC 1d FE 5 X

Year FE 5 X

Applicants Firms Firms

Nbr of obs 3.1M 3.1M

Note: Logit estimations of the determinants of
knowledge transfers (applicant-added citations).
The sample is the set of citations made by both
true and false contacts of studied applicants af-
ter 2000, including examiner added citations,
recorded on USPTO patents only. The depen-
dent variable is a dummy equal to 1 when patents
previously cited by contact get cited after 2000, 0
otherwise. “Applicant Cit.” is a dummy equal to
1 when the contact cited directly patent d. Re-
sults are exponentiated coefficients (odds ratios).
Significance levels: a p<0.01 b p<0.05 c p<0.1.

our variables (dependent and independent) by firm over the whole period and by firm-year. We

add two variables for the number of patent applications and the number of citations made. We

then run a fractional logit regression, which is adapted to dependent variables resulting of a

mean of realizations of a binary variable. We present results as odds ratio, which can therefore

be interpreted like other robustness results.
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1.C. Network search: Robustness

Table 1.A.4: Network search measured at the firm level

(1) (2) (3) (4)

Share AA

Firm Firm × Year

Contact 3.32a 2.92a 2.07a 1.77a

(0.32) (0.29) (0.10) (0.09)

Cited by Contact 1.62a 1.41b 2.83a 1.96a

(0.28) (0.24) (0.24) (0.17)

Nbr of patents (log) 1.30a 1.24a 1.22a 1.49a

(0.03) (0.03) (0.01) (0.03)

Nbr of citations (log) 0.77a 0.80a 0.92a 0.77a

(0.02) (0.03) (0.01) (0.01)

Geo. Dist. (log) 0.80a 0.85a

(0.03) (0.01)

Age (log) 1.53a 1.57a

(0.06) (0.03)

Quality (log) 1.26a 1.24a

(0.04) (0.02)

Tech. Dist. (log) 0.97 0.93a

(0.05) (0.02)

Obs Unit Firm Firm × Year

Persistence Controls X X X X

Year FE 5 5 X X

Nbr of obs 7,365 7,236 36,318 35,822

Note: Fractional Logit estimations of the determinants of knowledge transfers (applicant-added ci-
tations), aggregated at the firm or firm and year levels. The sample is the set of randomly selected
firms with patents in and after 2000, recorded on USPTO patents only. The dependent variable is the
share of applicant-added citations over the period considered. Nbr of patents and Nbr of citations are
sums of patent applications and citations by the firm over the period considered. All other covariates
are similar to the ones found in the baseline test shown in Table 1.2, yet averaged at the relevant
observation unit level. Coefficients are odds-ratios (exponentiated), standard errors refer to these
exponentiated coefficients. Standard errors are clustered at the citing patent level in all regressions.
Significance levels: a p<0.01 b p<0.05 c p<0.1.

Identification on examiner and applicant citations overlap A motivation and descrip-

tion of this test are given in the body of the paper.

Group level results To consolidate the definition of assignee identifiers, we match origin

applicants and their contacts flagged as firms with the Orbis database. We match approximately

60% of the names we enter to firms in the database.24 The matched firms are a priori the largest

24. We try to match 36,000 contacts for which we have information on the name, country, and which are flagged
as firms in Patstat.
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Table 1.A.5: Network search using citations overlapping applicant and examiner
added citations

(1) (2) (3) (4) (5)

Firms All Small Large

Contact 1.12a 1.35a 1.30a 3.30a 1.26a

(0.01) (0.01) (0.01) (0.20) (0.01)

Cited by Contact 1.96a 2.88a 1.75a 2.10a 1.74a

(0.03) (0.04) (0.03) (0.19) (0.03)

Age (log) 1.79a 2.12a 1.77a

(0.01) (0.05) (0.01)

Quality (log) 1.34a 1.38a 1.34a

(0.00) (0.02) (0.00)

Tech. Dist. (log) 1.02a 1.08a 1.02a

(0.01) (0.03) (0.01)

Geo. Dist. (log) 0.97a 0.98a 0.97a

(0.00) (0.01) (0.00)

Persistence Controls X X X X X

Orig. Pat. FE 5 X X X X

Nbr of orig. applicants 7,329 7,198 3,925 1,993 1,932

Nbr of obs 3.8M 2.4M 2.4M 158k 2.2M

Note: Logit and conditional logit estimations of the determinants of knowledge transfers (applicant-
added citations), considering only citations found in the set of examiner-added citations. The sample
is the set of examiner citations of the randomly selected applicants after 2000, recorded on USPTO
patents only, from patents containing at least a a citation in the overlap of examiner and applicant
citations. The dependent variable is a dummy equal to 1 when there is an applicant-added citation
of patent d by patent o. “Contact” is a dummy equal to 1 when patent d belongs to a contact of the
firm. “Cited by Contact” is a dummy equal to 1 when patent d has been cited by a contact of the
firm. “Several Cit.” is a dummy equal to 1 when patent d is cited several times by the origin applicant
from the init. year on. Coefficients are odds-ratios (exponentiated), standard errors refer to these
exponentiated coefficients. Standard errors are clustered at the citing patent level in all regressions.
Significance levels: a p<0.01 b p<0.05 c p<0.1.

ones, thus the ones which are most likely to have subsidiaries. We spot within-group citations

through firms which have the same parent company as their contacts (as of September 2018).

We find that remaining within-group citations are indeed rare: we find only 0.2% of links to be

within group. We also conduct the same regressions as in the baseline merging applicants and

their contacts when they belong to the same group. Table 1.A.6 provided in Appendix shows

that consolidating assignees and contacts at the group level does not harm our results.

Initialization year Table 1.A.7 displayed in Appendix provides results similar to the baseline,

changing the initialization year from 2000 to 1999, 2001, 2003 and 2005. Results hold in all these
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1.C. Network search: Robustness

Table 1.A.6: Network search tests spotting groups with Orbis

(1) (2) (3) (4) (5)

Firms All Small Large

Contact 1.64a 1.59a 1.43a 2.42a 1.36a

(0.01) (0.01) (0.01) (0.08) (0.01)

Cited by Contact 2.04a 2.48a 1.74a 1.85a 1.74a

(0.02) (0.03) (0.02) (0.12) (0.02)

Age (log) 1.73a 1.84a 1.72a

(0.01) (0.03) (0.01)

Quality (log) 1.20a 1.21a 1.19a

(0.00) (0.01) (0.00)

Tech. Dist. (log) 1.02a 1.03b 1.02a

(0.00) (0.01) (0.00)

Geo. Dist. (log) 0.97a 0.98a 0.97a

(0.00) (0.00) (0.00)

Persistence Controls X X X X X

Orig. Pat. FE 5 X X X X

Nbr of orig. applicants 7,169 7,040 5,828 3,661 2,238

Nbr of obs 6.3M 6.3M 6.1M 438k 5.7M

Note: Logit and conditional logit estimations of the determinants of knowledge transfers (applicant-
added citations), merging applicants and their contacts based on the group they belong to, estimated
like the baseline (equation (1.2)). The sample is the set of citations of the randomly selected applicants
grouped by Orbis head of group identifier, recorded on USPTO patents only. The dependent variable
is a dummy equal to 1 when there is an applicant-added citation of patent d by patent o. “Contact” is
a dummy equal to 1 when patent d belongs to a contact of the firm. “Cited by Contact” is a dummy
equal to 1 when patent d has been cited by a contact of the firm. “Several Cit.” is a dummy equal
to 1 when patent d is cited several times by the origin applicant from the init. year on. Coefficients
are odds-ratios (exponentiated), standard errors refer to these exponentiated coefficients. Standard
errors are clustered at the citing patent level in all regressions. Significance levels: a p<0.01 b p<0.05
c p<0.1.

situations, and coefficients show little sensitivity to changes in initialization year as well as to

the implied re-sampling (since the random selection of a third of all applicants is conducted

again for each year).

Maximum size of contacts Table 1.A.8 displayed in Appendix shows results changing the

maximum size of contacts from the 99th percentile of the applicant size distribution as in the

baseline to the 90th percentile, 95th, 995th millile or 999th millile. Coefficients also deviate very

little from the ones obtained in the baseline.
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Table 1.A.7: Network search tests changing the initialization year

(1) (2) (3) (4)

Init. Year 1999 2001 2003 2005

Contact 1.16a 1.23a 1.23a 1.29a

(0.01) (0.01) (0.01) (0.01)

Cited by Contact 1.99a 1.86a 1.58a 1.71a

(0.03) (0.02) (0.02) (0.02)

Age (log) 1.68a 1.66a 1.60a 1.60a

(0.01) (0.01) (0.01) (0.01)

Quality (log) 1.12a 1.11a 1.14a 1.11a

(0.00) (0.00) (0.00) (0.00)

Tech. Dist. (log) 1.03a 1.01a 1.01b 1.02a

(0.00) (0.00) (0.00) (0.00)

Geo. Dist. (log) 0.98a 0.98a 0.97a 0.97a

(0.00) (0.00) (0.00) (0.00)

Firms All All All All

Persistence Controls X X X X

Orig. Pat. FE X X X X

Nbr of orig. applicants 5,383 5,604 5,710 5,693

Nbr of obs 6.4M 5.8M 5.5M 4.6M

Note: Logit and conditional logit estimations of the determinants of knowledge transfers (applicant-
added citations), changing the initialization year compared to the baseline (equation (1.2)). The
sample is the set of citations of the randomly selected applicants after the relevant init. year, recorded
on USPTO patents only. The dependent variable is a dummy equal to 1 when there is an applicant-
added citation of patent d by patent o. “Contact” is a dummy equal to 1 when patent d belongs to
a contact of the firm. “Cited by Contact” is a dummy equal to 1 when patent d has been cited by a
contact of the firm. “Several Cit.” is a dummy equal to 1 when patent d is cited several times by the
origin applicant from the init. year on. Coefficients are odds-ratios (exponentiated), standard errors
refer to these exponentiated coefficients. Standard errors are clustered at the citing patent level in all
regressions. Significance levels: a p<0.01 b p<0.05 c p<0.1.

Placebo tests Since the two different types of citations (AA and EA) exist at three different

levels in our tests (contact initialization, citations by contacts, citations after 2000), it is easy

to run Placebo tests, building false contacts or false citations by contacts. We invert applicant

and examiner-added citations: this way, we build a false set of contacts as the applicants cited

in 2000 by examiners, and a false set of patents cited by contacts as the patents cited by the

examiners of these false contacts. We then make sure that none of these false links overlaps with

the true links constructed in the above baseline strategy, which would naturally make our tests

spuriously positive. We run the same regressions as the ones presented in Table 1.2. Table 1.A.9
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Table 1.A.8: Network search tests changing the maximum size of contacts

(1) (2) (3) (4) (5)

Contacts max. size

(percentile) 90 95 99 99.5 99.9

Contact 1.29a 1.29a 1.28a 1.28a 1.28a

(0.01) (0.01) (0.01) (0.01) (0.01)

Cited by Contact 1.67a 1.65a 1.67a 1.68a 1.67a

(0.03) (0.02) (0.02) (0.02) (0.02)

Age (log) 1.67a 1.67a 1.66a 1.66a 1.66a

(0.01) (0.01) (0.01) (0.01) (0.01)

Quality (log) 1.14a 1.14a 1.13a 1.13a 1.12a

(0.00) (0.00) (0.00) (0.00) (0.00)

Tech. Dist. (log) 1.02a 1.02a 1.02a 1.02a 1.02a

(0.00) (0.00) (0.00) (0.00) (0.00)

Geo. Dist. (log) 0.98a 0.98a 0.98a 0.98a 0.98a

(0.00) (0.00) (0.00) (0.00) (0.00)

Firms All All All All All

Persistence Controls X X X X X

Orig. Pat. FE X X X X X

Nbr of orig. applicants 6,020 6,020 6,020 6,020 6,020

Nbr of obs 6.1M 6.1M 6.1M 6.1M 6.1M

Note: Logit and conditional logit estimations of the determinants of knowledge transfers (applicant-
added citations), changing the maximum size of contacts compared to the baseline (equation (1.2)).
The sample is the set of citations of the randomly selected applicants after 2000, recorded on USPTO
patents only. The dependent variable is a dummy equal to 1 when there is an applicant-added citation
of patent d by patent o. “Contact” is a dummy equal to 1 when patent d belongs to a contact of the
firm. “Cited by Contact” is a dummy equal to 1 when patent d has been cited by a contact of the
firm. “Several Cit.” is a dummy equal to 1 when patent d is cited several times by the origin applicant
from the init. year on. Coefficients are odds-ratios (exponentiated), standard errors refer to these
exponentiated coefficients. Standard errors are clustered at the citing patent level in all regressions.
Significance levels: a p<0.01 b p<0.05 c p<0.1.

displayed in Appendix shows that the effects of our network variables disappear once controls

on observable characteristics are introduced, which is the desired result.
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Table 1.A.9: Results of Placebo Tests

(1) (2) (3) (4) (5)

Firms All Small Large

Contact 0.90a 0.96a 1.00 0.98 1.00

(0.00) (0.00) (0.00) (0.03) (0.00)

Cited by Contact 1.48a 1.31a 0.95a 0.95 0.95a

(0.01) (0.01) (0.01) (0.03) (0.01)

Age (log) 1.75a 1.88a 1.74a

(0.01) (0.03) (0.01)

Quality (log) 1.26a 1.26a 1.26a

(0.00) (0.01) (0.00)

Tech. Dist. (log) 1.02a 1.03b 1.02a

(0.00) (0.01) (0.00)

Geo. Dist. (log) 0.97a 0.98a 0.97a

(0.00) (0.00) (0.00)

Persistence Controls X X X X X

Orig. Pat. FE 5 X X X X

Nbr of orig. applicants 7,373 7,242 6,020 3,720 2,300

Nbr of obs 6.3M 6.3M 6.1M 460k 5.7M

Note: Logit and conditional logit (when Orig. Pat. FE is YES) estimations of the determinants
of knowledge transfers (applicant-added citations) (equation (1.2)). Placebo versions of contacts and
citations by contacts are constructed following the above-described procedure. The dependent variable
is a dummy equal to 1 when there is an applicant-added citation of patent d by patent o. “Contact”
is a dummy equal to 1 when patent d belongs to a contact of the firm. “Cited by Contact” is a
dummy equal to 1 when patent d has been cited by a contact of the firm. “Several Cit.” is a dummy
equal to 1 when patent d is cited several times by the origin applicant from 2000 on. Coefficients are
odds-ratios (exponentiated), standard errors refer to these exponentiated coefficients. Standard errors
are clustered at the citing applicant level in all regressions. Significance levels: a p<0.01 b p<0.05 c

p<0.1.

1.D Additional aggregate results

1.D.1 Additional tables
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Table 1.A.10: Estimates of the shape parameter of the Pareto distribution
of firm size (λ)

All patents USPTO patents

Applications Granted Citations Applications Granted Citations

(1) (2) (3) (4) (5) (6)

λ -0.936a -0.946a -0.935a -0.973a -0.979a -0.927a

[0.026] [0.034] [0.038] [0.045] [0.050] [0.043]

Nbr. of bins 9 9 9 9 9 9

R2 0.997 0.995 0.993 0.992 0.990 0.991

Notes: Firm size is measured either as the number of patent applications of the firm over
the period 1980-2010 (columns (1) and (4)), the number of granted patents (columns (2)
and (5)) or the number of outward citations (columns (3) and (6)). Significance levels:
a : p < 0.01; b : p < 0.05; c : p < 0.1

Table 1.A.11: Estimates of the elasticity of the average squared distance
of citations with respect to firm size (µ)

All patents USPTO patents

All Cit. All Cit. All Cit. AA Cit. EA Cit.

(1) (2) (3) (4) (5)

µ 0.038a 0.034a 0.030a 0.026a 0.020b

[0.003] [0.003] [0.009] [0.005] [0.006]

Size measure Patents Cit. Patents Patents Patents

Nbr. of bins 10 10 10 10 10

R2 0.972 0.962 0.702 0.825 0.677

Notes: Firm size is measured as the number of patent applications of the firm over the period
1980-2010. Distance is measured as the geodesic distance between the most populated city
of each country. “AA Cit.” refers to the applicant added citations, while “EA Cit.” refers
to the examiner added citations. Significance levels: a: p < 0.01; b: p < 0.05; c: p < 0.1
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Table 1.A.12: Estimates of the elasticity of the average squared distance
of citations with respect to firm size (µ), using within firm variations.

All patents USPTO patents

All Cit. All Cit. All Cit. AA Cit. EA Cit.

(1) (2) (3) (4) (5)

µ 0.143a 0.138a 0.082a 0.098a 0.084a

[0.002] [0.002] [0.002] [0.003] [0.002]

Firm FE X X X X X

Year FE 5 X X X X

Nbr. of obs 689760 689760 472211 192774 276066

R2 0.529 0.530 0.522 0.544 0.533

Notes: Firm size is measured as the number of patent applications of the firm over the period
1980-2010. Distance is measured as the geodesic distance between the most populated city
of each country. “AA Cit.” refers to the applicant added citations, while “EA Cit.” refers
to the examiner added citations. Standard errors clustered by firm. Significance levels: a:
p < 0.01; b: p < 0.05; c: p < 0.1

Table 1.A.13: Semi-elasticity of firm size with respect to age.

All patents USPTO patents

Applications Granted Citations Applications Granted Citations

(1) (2) (3) (4) (5) (6)

Age 0.016a 0.013a 0.043a 0.019a 0.014a 0.047a

[0.000] [0.000] [0.001] [0.000] [0.000] [0.001]

Firm FE X X X X X X

Nbr. of obs 1.981M 1.348M 689760 560276 501064 472211

R2 0.660 0.664 0.612 0.672 0.678 0.620

Notes: Firm size is measured either as the number of patent applications of the firm over the
period 1980-2010 (columns (1) and (4)), the number of granted patents (columns (2) and
(5)) or the number of outward citations (columns (3) and (6)). Standard errors clustered
by firm. Significance levels: a : p < 0.01; b : p < 0.05; c : p < 0.1
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1.D.2 Additional figures

Figure 1.A.8: Shape parameter of the Pareto distribution of firm size (λ), sample
split by patent office or by technological sector
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Notes: Firm size is measured as the number of patent applications of the firm over the period 1980-
2010. Data is split by patent office (left-hand side) or by technological field (IPC section, right-hand
side) and equation (1.4) is estimated on each sub-sample.

Figure 1.A.9: Elasticity of the average squared distance of citations with respect to
firm size (µ), sample split by patent office or by technological sector
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Notes: Firm size is measured as the number of patent applications of the firm over the period 1980-
2010. Distance is measured as the geodesic distance between the most populated city of each country.
Data is split by patent office (left-hand side) or by technological field (IPC section, right-hand side)
and equation (1.4) is estimated on each sub-sample.
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Figure 1.A.10: Elasticity of the average squared distance of citations with respect
to firm size (µ), estimated with alternative distance measures
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Notes: (a) Instead of using the distance between the most populated city of the origin and destination
country, we use a “weighted distance” where the main cities are taken into account, with a weight
corresponding to their share of the country population (see Mayer and Zignago, 2011, for more info)
(b) Instead of using the applicants to determine the country of a patent, we use its inventors. Firm
size is measured as the number of patent applications of the firm over the period 1980-2010.

Figure 1.A.11: Average squared distance of citations as
a function of firm size
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1.E Theory Appendix

1.E.1 Proof of Proposition 1

Proof. A solution for the ODE given in (1.E.1) is:

Ka = K0e
(ρ+β−δ)a
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Introduce the distribution of contacts normalized by the total number of contacts for a firm of

age a: fa = ka
Ka

. Partially differentiating this distribution with respect to a, and denoting ∗ the

convolution product of two distributions yields:

∂fa(x)

∂a
=

∂ka(x)
∂a Ka − ka(x)∂Ka∂a

(Ka)2

=

[
(ρ− δ)ka + β ka∗kaKa

]
Ka − ka(ρ+ β − δ)Ka

(Ka)2

=
β
[
ka∗ka
Ka
− ka

]
Ka

(Ka)2

= β(fa ∗ fa − fa)

Using the Fourier transform of fa yields a simple product instead of a convolution product, which

yields that fa converges towards a Laplace distribution when age grows large (Proposition 2 in

Chaney, 2018).

One can then derive the endogenized conditions allowing to get a constant elasticity of

flows with respect to distance. The distribution of firm sizes is simply derived from the ODE:

Ka = K0e
(ρ+β−δ)a. The relation between a firm’s size and its age is ea =

(
Ka
K0

) 1
ρ+β−δ

. With a

growth rate of the firm population being equal to γ, this means that the fraction of firms having

less than K contacts writes:

F (K) = 1−
(
K

K0

)− γ
ρ+β−δ

Thus, the distribution of firm sizes is Pareto, with a shape parameter λ = γ
ρ+β−δ .

The average squared distance at which firms cite others, ∆a, is the second moment of the

normalized density of contacts fa. Following exactly the steps of the demonstration in Chaney

(2018), ∆a = ∆0e
βa. Plugging the previous expression ea = (KaK0

)
1

ρ+β−δ , this yields:

∆(K) = ∆0

(
K

K0

) β
ρ+β−δ

Thus, the average squared distance at which firms cite is a power function of their number of

contacts, of parameter µ = β
ρ+β−δ .
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Moving R&D Labs
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2.1 Introduction

It is well established that agglomeration economies are large for R&D activities and cause them

to be highly spatially concentrated (Audretsch and Feldman, 1996; Carlino and Kerr, 2015;

Buzard et al., 2017). Yet, little is known on the mechanisms that cause this clustering. This

paper proposes an explanation based on the fact that firms tend to relocate their R&D labs to

take advantage of stronger local innovation networks, that generate higher knowledge spillovers.

Understanding the roots of the spatial clustering of innovative firms is essential to design ef-

ficient innovation policies. In the last two decades, most developed countries have implemented

so-called cluster policies trying to imitate the success of the Silicon Valley, despite a limited

understanding of the mechanisms at work and the conditions for success (Duranton, 2011). Be-

yond cluster policies, the question of how firms internalize knowledge spillovers in their location

choices also connects with a strand of the urban economics literature trying to understand how

firm sorting and agglomeration forces may explain the productivity advantage of large cities.

This paper focuses on firms relocating a R&D lab, and seeks to elicit the value of local

knowledge networks through the decision of abandoning a given location jointly with choosing

a new one. It therefore exploits several advantages of relocations over initial location choices to

characterize the value of local knowledge spillovers and how firms maximize them. In particular,

only incumbent innovative firms, which are already specialized in a technological field, can

potentially engage in relocations. In contrast, initial location choices are by definition made

by entrants, who could adapt the nature of their research to the spillovers surrounding them.

Moreover, relocations provide a clear trade-off between the spillovers a firm currently receives

in its location, and the spillovers it expects to receive in its new location.

The paper starts by providing novel stylized facts about firm relocation decisions, under-

stood as a sharp change in the spatial distribution of their R&D workforce, and characterized

using French matched employer-employee data. It links these relocations with local knowledge

networks, building links using patent citation data. The paper develops two sets of facts ex-

plaining how and why innovators move. First, it shows that R&D activities are more likely to be

relocated, and tend to be moved further away. Secondly, after giving evidence on the localization

of knowledge spillovers in line with the literature, the paper shows that more central firms in

their local innovation network are less likely to move their R&D plants. Additionally, if these

firms do move, they tend to choose locations with higher expected knowledge spillovers.
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Relying on these facts, the paper then builds a theoretical framework in which the amount

of spillovers that a firm gets depends on its position in a local network of innovators. It focuses

on the trade-off faced by innovative firms between existing connections and uncertain new ones

in another location, in the presence of knowledge spillovers occurring only within a location.

The use of a network models knowledge spillovers in a rich manner: it tracks precisely the

flows between every pair of firms rather than assuming location-specific gains, and therefore

accounts in a subtle way for heterogeneity in firms’ incentives to move. Moreover, it is naturally

in line with empirical analyses, since networks accurately represent usual sources of knowledge

spillovers, ranging from explicit links such as R&D collaborations or patent citations to more

implicit ones such as transfers of engineers, supply-chain linkages, and of course face-to-face

interactions. In the model developed below, firms inherit a position on a local network which

determines the spillovers they obtain from their neighbors, and decide whether to relocate or

not. In such case, they break all their existing links and choose how many links to form in their

new location, as well as their R&D effort.

While many papers have study firms location choices in general, the literature studying the

location strategies of innovative firms is relatively sparse. Duranton and Puga (2001) build a

model of plant relocations emphasizing the virtues of initially learning from diversified sources

before moving to a more specialized area. The main paper with an empirical focus trying to

unveil strategic location choices from innovative firms is Alcácer and Chung (2007): the authors

study the entry in the US of foreign (thus large) firms, and find that these firms tend to maximize

the net spillovers they receive. Alcacer and Delgado (2016) explore theoretically the empirical

finding of Alcácer and Chung (2007) that firms are sensitive to the local production of basic

research, but also try to minimize the knowledge leakage given away to neighboring competitors.

Fitjar and Rodŕıguez-Pose (2017) survey firms engaged in collaboration about their location

choices: they find that collaborations almost never happen by chance, while partners have often

chosen their location with the potential for collaboration in mind. Catalini (2017) looks at how

colocation influences collaboration and the trajectory of convergence or divergence of scientific

research. Henry et al. (2017) use an endowment shock for public labs and study the effect on

local private labs.

Building on Jaffe et al. (1993)’s seminal paper on the localization of knowledge spillovers,

a vast empirical literature approached this fact along the lines of firm and inventor networks.

Almeida and Kogut (1999) and Breschi and Lissoni (2009) focus on the mobility of inventors
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across firms and the consequences these movements had on knowledge diffusion, while Singh

(2005) studies the effects of co-invention links (applying jointly for a patent). Head et al. (2018)

look at the effect of interpersonal links on citations of mathematics research papers. All these

papers find that controlling for social proximity implies a drastic reduction on the effect of

geography, suggesting that the effect of spatial proximity on knowledge diffusion is largely hiding

an effect of social proximity. Kerr and Kominers (2015) also provide an analysis of innovation

clusters in which firms obtain spillovers from other firms in a given radius, thus implicitly

designing a complete network around them.

As mentionned above, this paper also connects with the urban economics literature studying

agglomeration economies. In a seminal paper, Duranton and Puga (2001) built a model in which

firms initially benefit from a diverse environment to find their ideal production process, and then

move to more specialized areas, placing relocations at the core of a firm’s life-cycle. This paper

is also particularly related to their role on the productivity advantage of large cities, explored in

Combes et al. (2012) and Behrens et al. (2014), seeking to explain why more talented individuals

and more productive firms tend to locate in larger cities, making the college wage-premium

increasing in city-size. Gaubert (2018) shows that half of this estimated productivity advantage

of large cities is due to firm sorting into these locations, thus explicitly linking agglomeration

economies and firms’ strategic location choices. Davis and Dingel (2019) delve into the nature

of this agglomeration force and build a model in which idea exchange is central for productivity

and is more intense with more numerous and more talented partners, making large cities better

places for idea exchange. The model developed below is reminiscent of these features.

The paper also contributes to the literature on games on networks, and more particularly

to the strand studying the interaction between geography and a network. Jackson and Rogers

(2005) analyse how a cost of forming links depending on geography contributes to generating

small world networks. Helsley and Zenou (2014) study the location choice of individuals in a

city based on their position in the social network and the need to commute to the center for

social interactions. Using different tools than the above papers, Chaney (2014), 2018 explore the

spatial features of international trade based on the assumption that trade relations form through

“triadic closure”. Cotterlaz and Guillouzouic (2018) show that this assumption is verified for

knowledge flows, and study the consequences it has on the geography of international knowledge

flows.
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2.2 Motivating Facts

This section explores relocation patterns of innovative firms and links them with the local

connections these firms have or may expect to have. The first subsection documents relocations,

defining them as an increase of employment in at least one plant and a decrease in another

over the decade I study. The second subsection starts by replicating evidence that exchanges of

knowledge are very localized, and then shows how existing and expected local knowledge links

influence mobility.

2.2.1 Innovative Firms Relocations

Data

To characterize firm mobility, I rely on the French matched employer-employee cross-section

DADS Postes (“Déclaration annuelle de données sociales”), from 2006 to 2015. This database

compiles information declared on a yearly basis by all employers (both private and public)

active on the French territory. The information is provided at the job spell level, and includes

detailed categories on the nature of jobs (in the 4-digits PCS classification), the hours worked

and the corresponding wages, as well as information on the plant where the person works (plant

identifier, municipality, main activity).

To define R&D employment, I sum full-time equivalent job spells in the 9 categories of engi-

neers and technicians with labels mentioning explicitly R&D (see Appendix A for the included

4-digit PCS classes).

Characterizing relocations

In Duranton and Puga (2001), the authors characterize relocating firms as the ones which had

both a complete plant closure and a plant creation over the same period. Nevertheless, since

R&D activities may be transferred to another location without the plant being closed, I hereby

follow a more flexible approach based on a spatial reallocation of labor of a certain type over a

short period of time. I select R&D plants based on the criterion that they employ at least one

R&D worker in an average year, and call R&D firms all firms owning a R&D plant. To assert

that firms are relocating, I impose both a quantitative and a spatial criterion, which I detail

below.

On the quantitative side of relocations, I define relocating innovative firms in the baseline
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as the ones having both a downsized R&D plant which lost at least half of its R&D workforce,

and an upsized plant, which gained at least half of its initial R&D workforce.1 To consider

sharp enough reallocations, variations are considered between two consecutive years.2 Since the

thresholds are - necessarily - arbitrary, I do robustness checks with different values.

On the spatial side of relocations, these should occur between plants which are located far

enough. Indeed, a common phenomenon for any firm is to change premises within a given

city because the current ones have become too small. While this phenomenon has important

implications,3 it is of little interest for our study as it arguably leaves knowledge spillovers

unchanged. To select only true changes of location, I rely on INSEE’s commuting zones (“Zones

d’Emploi 2010”, hereafter referred to as commuting zones or CZ), and remove all plants located

in commuting zones appearing both in the list of downsized and of upsized plants. This way, a

firm with upsized plants in Paris and Marseille, and downsized plants in Paris and Bordeaux is

left with one relocation, from Bordeaux to Marseille.

Since relocations are characterized using the spatial reallocation of labor, the above cri-

teria can be applied using different types of labor: relocations of R&D workforce (as in the

above examples) can be compared to relocations of overall employment, or - to provide a closer

comparison - to relocations of high-skilled workforce.4 Note that R&D workers are a subset

of high-skilled workers. As with R&D, employing a high skilled worker makes a plant a “high-

skilled” (hereby HS) plant and a firm a HS firm. Thus, R&D plants and R&D firms are respective

subsets of HS plants and HS firms.

Descriptive Statistics

Table 2.1 shows statistics on relocations applied to three subcategories of labor: all workers,

high-skilled workers, and researchers. The shares of firms considered to be moving are very

similar across the types of employment considered: innovative firms do not stand out as being

particularly mobile under this descriptive criterion. Yet, high-skilled firms that move pick a

plant to relocate out of an average of 9, while innovative moving firms have on average 4 plants

employing researchers, implying that a R&D plant is more likely to be relocated than a HS

1. I further impose that the variation in the workforce should also be larger than a given absolute number, to
avoid considering a plant going from .5 to 1 (full-time equivalent) R&D worker as an upsized plant due to its
100% increase in R&D employment.

2. For firms to be considered to be relocating, the variation should also hold true between the initial and the
final year (to avoid counting the firms with intrinsically volatile employment as relocating).

3. Bergeaud and Ray, 2017.
4. i.e. the general categories 3 and 4 of the PCS-ESE classification, containing all R&D codes
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Table 2.1: Descriptive Statistics of relocations

Category All firms HS firms Innov. firms

Nbr of firms in category 689,691 301,571 24,064

Nbr of moving firms 15,583 8,232 634

Av. nbr of plants in cat. in 2006 6.90 9.18 3.90

Av. nbr of employees 166.4 292.1 879.9

Share of firms moving 2.26 2.73 2.63

Av. relocation distance 122.5 132.3 191.3

The above table shows descriptive statistics of partial relocations of at least 50% and one
full-time employee of a plant for 3 categories of firms: all firms, firms employing high-skilled
workers (HS firms), and innovative firms. A firm enters a category if at least one of its
plants employs at least one of the corresponding type of workers. Firms are considered
moving if they relocate a plant of their category: an innovative firm relocating a plant
employing high skilled but non-R&D workers is counted as a moving HS firm but not as a
moving innovative firm. Numbers of employees and plants are averages calculated over the
period covered by the data, i.e. 2006-2015.

plant. Moving innovative firms are, however, much larger than the corresponding moving firms

either high-skilled or general, having around five times as many employees as the latter, and 2.5

times as many as the former.

Distance of movements The most salient fact in the descriptive statistics shown in Table

2.1 is that R&D relocations tend to occur at larger distances. Table 2.2.b displays simple OLS

regressions of the distance of relocations on the fact of doing R&D and numbers of plants and

employees. It shows that having a R&D plant increases the distance at which a firm relocates

by about 10 to 15%.

Similarly, plotting the distributions of relocation distances as displayed in Figure 2.1 shows

that while most high-skilled and general employment relocations take place at short distances

(with a spike around 50km), the distribution of R&D relocations is much flatter with a thicker

tail.

Propensity to move To disentangle the effect of size from R&D intensity on the probability

of relocating, Tables 2.2.a, and 2.3 provide results of simple logistic regressions of the probability

that a firm relocates regressed on size and the fact that it does R&D. Table 2.2.a shows results

on the effect of being a R&D firm (defined as having a plant employing at least one researcher)

on the probability of relocating either any type of labor (column 1) or high-skilled labor (column

2). It shows that being a R&D firm does not make it more likely to move a plant in general,

but makes it 70% more likely to relocate a plant employing high-skilled workers.
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Figure 2.1: Distribution of relocation distances
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Table 2.2: Effect of being a R&D firm on the probability of defined types
of relocation (panel a.) and distance at which they occur (panel b.)

a. R&D firm and probability of moving

Firm relocates

(1) (2)

R&D firm 0.97 1.68***

(0.04) (0.06)

Log Nbr of plants 4.03*** 3.30***

(0.06) (0.05)

Log Nbr of employees 1.28*** 1.08***

(0.01) (0.01)

Sample All firms HS firms

Type of movement Overall HS empl.

Nbr obs 988775 291668

Pseudo R-sq 0.229 0.200

Logit regressions of the probability of relo-
cating a given type of labor on the fact of
being a R&D firm. “R&D firm” is a dummy
variable taking value 1 if the firm employs
at least a R&D worker. “Log Nbr of em-
ployees” and “Log Nbr of plants” respec-
tively are the log values of the total number
of worker in an average year and number of
plants a firm has over the studied period.
Coefficients are odds ratios. Robust stan-
dard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1.

b. R&D firm and relocation distance

Log. Dist.

(1) (2)

R&D firm 0.16*** 0.09**

(0.04) (0.04)

Log Nbr of plants 0.21*** 0.16***

(0.02) (0.02)

Log Nbr of employees -0.08*** -0.07***

(0.01) (0.01)

Sample All firms HS firms

Type of movement Overall HS empl

Nbr obs 15000 7923

R-squared 0.01 0.01

OLS regressions of log distance at which
firms relocate on the fact of being a R&D
firm. “R&D firm” is a dummy variable tak-
ing value 1 if the firm employs at least a
R&D worker. “Log Nbr of employees” and
“Log Nbr of plants” respectively are the log
values of the total number of worker in an
average year and number of plants a firm
has over the studied period. Robust stan-
dard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1.
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An additional element to show that R&D activities are the ones being moved can be to look

at the sensitivity of the propensity to relocate to the amount of R&D employment, i.e. if having

more R&D employees makes a firm more likely to relocate its employees overall, its high-skilled

employees, and its R&D employees. Table 2.3 shows that the probability of relocating R&D

seems very sensitive to the volume of R&D employment: tripling the number of R&D employees

(more precisely multiplying it by exp(1) ≈ 2.7) increases only slightly the probability of moving

either a HS plant or a plant in general, but strikingly almost doubles the probability that an

innovative firm relocates a R&D plant.

Table 2.3: Relocations and amount of R&D employment

Firm relocates

(1) (2) (3)

Log Nbr of R&D employees 1.08*** 1.08*** 1.99***

(0.03) (0.03) (0.09)

Log Nbr of HS employees 0.94 1.15** 0.82*

(0.06) (0.08) (0.09)

Log Nbr of employees 0.97 0.86*** 1.04

(0.05) (0.05) (0.10)

Log Nbr of plants 3.28*** 3.01*** 1.73***

(0.11) (0.10) (0.07)

Sample Inno firms Inno firms Inno firms

Type of movement Overall HS empl R&D empl

Nbr obs 23117 23117 23117

Pseudo R-sq 0.243 0.241 0.195

Logit regressions of the effect of total R&D employment on the probability of relocating a
given type of labor. “Log Nbr of R&D employees”, “Log Nbr of HS employees”, “Log Nbr
of employees” and “Log Nbr of plants” respectively are the log values of the total number
of R&D workers, HS workers, total number of worker in an average year and number of
plants a firm has over the studied period. Coefficients are odds ratios. Robust standard
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

2.2.2 Localization of Innovation Networks

A natural explanation for the higher mobility of R&D firms shown in the above subsection

is that they seek to take advantage of knowledge produced locally. The fact that knowledge

disseminates more intensely at shorter distances has been shown in many papers following Jaffe

et al. (1993)’s seminal paper. The current subsection shows evidence from France which is

consistent with the literature.
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Data To characterize links along which knowledge flows, I use the Patstat database provided

by the EPO. In particular, I build patent application densities per geographical unit, and network

links using citations added by the applicants. I match patent applicants with firm identifiers

through direct matching on names as well as scrapping web-searches (more detail is provided in

the Appendix).

Descriptive Statistics As Figure 2.2 shows, patent citations tend to occur disproportionately

at very short distances. This is consistent with the fact that innovators tend to rely on knowl-

edge produced around them, as shown first by Jaffe et al. (1993) and an abundant subsequent

literature.

Figure 2.2: Distance of patent citations
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This cannot be explained solely with the fact that areas tend to specialize in technological

fields. Figure 2.A.1 provided in Appendix is an example of the spatial distribution of patents

filed in IPC section C, corresponding to chemistry and metallurgy, for each commuting zone

of the French metropolitan territory. It shows that, while the Paris area has high levels of

concentration, many regions scattered over the territory also have an intense innovative activity.

If knowledge diffusion was frictionless and local innovation did not matter, one would expect

citations to occur at higher distances than what we observe from Figure 2.2.
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2.2.3 Plant relocations and local connections

Given that we have shown that knowledge transfers are localised, they must be flowing though

local innovation networks.5 This subsection explores how the position of a firm in its local

network connects with its decision to relocate.

Centrality and propensity to move

A first point of enquiry is whether firms enjoying better connections in their current location

are less likely to move their R&D plants. To answer this question, I build links either using the

number of patents developed locally, or the number of citations to patents developed locally.

I construct four variables accounting for centrality in the local network. The first variable is

a measure of potential links in that location based on patents produced locally. To build this

measure for each innovator, I use the share of its patents filed in each IPC class as weights, and

sum the number of patents developed in these categories in a location in the past 5 years. This

accounts for how intense innovative activity is in one’s fields of interest in each location. For

the two other measures, I calculate centralities using the network of citations (applicant-added)

in France6 within commuting zones. The first measure is simply the outdegree centrality, i.e

the number of firms cited in the CZ. The second measure is the Bonacich centrality, a measure

which takes indirect links into account and will be extensively used in the theoretical section. I

add a last measure, which is simply the Bonacich centrality weighting links by a proxy of the

quality of cited patents7 as a weight for the value of the links, implicitly assuming that citations

to higher quality patents yield higher spillovers.8

Table 2.4 presents logit regressions using the decision of an innovative firm to relocate a R&D

plant or not as the dependent variable. It shows that all three measures correlate negatively

with the probability of moving: for instance, column 1 implies that roughly tripling the number

of patents in one’s technological and geographical areas decreases by (1 - .86 =) 14% the prob-

ability that it decides to relocate a R&D plant. Similarly in column 2, tripling (more precisely

multiplying by exp(1) ≈ 2.7) the number of cited firms in the firm’s commuting zone makes it

5. Cotterlaz and Guillouzouic (2018) provide a complete analysis of network formation between innovators and
its spatial consequences

6. I keep patents which have inventors located in France, or, in the absence of such information, a French
assignee.

7. This measure is the residual of a regression predicting the number of citations received by a patent, using
technological class and year fixed effects, as in Cotterlaz and Guillouzouic (2018).

8. The parameter used to calculate the Bonacich centralities in the regressions shown hereafter is .1 (corre-
sponding to φ in the theory section), which means in the model that a firm benefits from 10% of the R&D effort
of its neighbors.
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Table 2.4: Probability of moving and local centrality

Firm relocates

(1) (2) (3) (4)

Log. Potential Local Links 0.86***

(0.05)

Log. Local Degree Centrality (non-weighted) 0.51**

(0.16)

Log. Local Bonacich Centrality (non-weighted) 0.08**

(0.09)

Log. Local Bonacich Centrality (weighted) 0.09**

(0.10)

Log. Nbr employees 1.04 1.03 1.03 1.03

(0.04) (0.04) (0.04) (0.04)

Log. Nbr R&D employees 1.13** 1.13** 1.12** 1.12**

(0.06) (0.06) (0.06) (0.06)

Log. Nbr plants 3.45*** 3.41*** 3.48*** 3.47***

(0.36) (0.34) (0.34) (0.34)

Several patenting locations 3.28*** 1.82*** 1.65** 1.62**

(1.34) (0.42) (0.35) (0.34)

Nbr obs 24064 24064 24064 24064

Pseudo r-sq 0.0916 0.0895 0.0895 0.0893

Logit regressions at the firm level, coefficients are odds ratios, standard errors of these odds ratios
are in parentheses. The dependent variable is a dummy taking value 1 if a firm is considered to be
moving a R&D lab based on the baseline definition. The first four regressors are different centrality
measures. Log. Nbr employees is the number of employees the firm has in an average year, Log Nbr
R&D employees is the same for R&D employees. Log Nbr plants is the number of plants the firm has
in total over the period. Several patenting locations is a dummy variable taking value 1 if the number
of commuting zones in which the firm has filed patents is greater than 1. *** p<0.01, ** p<0.05, *
p<0.1

roughly half as likely that it decides to move a R&D plant. Note that the coefficients are not

comparable across columns because the ranges of the regressors are very different (Bonacich cen-

tralities range from 1 to less than 5, meaning that tripling the variable implies a shift from the

very bottom to the very top of the distribution, hence the very small odds ratio). Taking very

simple network positions provides a rough interpretation of the coefficients shown in columns (3)

and (4): they imply that changing the centrality of a firm from 1 (completely isolated firm) to

exp(1) ≈ 2.7 (a firm connected to 17 firms with no other neighbors) divides the probability that

it moves by roughly 20. Table 2.A.6 shown in Appendix emphasizes the fact that local centrality

is really the determinant of relocations: taking the same measures of centrality computed over

the whole country yields unsignificant effects on the probability of relocating.
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Expected centrality and mobility

If firms value knowledge spillovers, they should also consider the links they can expect to form

in the location they are moving to. To evaluate this, I construct the same measure for potential

local links as in the previous subsection, for all commuting zones. This measures the number

of patents issued in technological fields close to those of the moving firm, and captures how

interesting the location is to the moving firm.

Then, I use the sample of moving innovative firms which could be matched with patents

(i.e. the ones for which I am able to infer the technological area), crossed with all the locations

where they could potentially move (for a total of around 150 firms), and create a dummy equal

to 1 when they did move to that location, and 0 otherwise. I regress this dummy on firm-level

covariates using a conditional logit estimator. The conditional logit structure is standard to

estimate location choices across several units where one or several of them are chosen, and is

conceptually equivalent to introducing firm fixed-effects in a logit type regression.

Table 2.5 confirms that increasing the potential links a firm could acquire in a location

makes it more likely to be chosen for a relocation. Indeed, roughly tripling the number of

relevant patents for a mover in a commuting zone doubles the odds that it will be chosen as the

destination.

Table 2.5: Potential linkages and location chosen for relocation

ZE chosen

(1) (2) (3) (4)

EZ potential links 1.97*** 1.88***

(0.06) (0.13)

EZ potential links (quality weighted) 1.96*** 1.86***

(0.06) (0.13)

Empl. Zone FE No Yes No Yes

Year FE No Yes No Yes

Nbr obs 30692 30692 29690 29690

Pseudo r-sq 0.219 0.327 0.218 0.327

Conditional logit regressions, coefficients are odds ratios. The dependent vari-
able is the fact for a mover of having an upsized R&D plant in the EZ over the
period. Regressors are potential links measures, weighted or not by quality, as
decribed in the body of the text. *** p<0.01, ** p<0.05, * p<0.1

Importantly, this result is robust to the introduction of commuting zone fixed-effects, which

capture any time-invariant characteristics of these areas such as universities, tax cuts or subsidies
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for innovative firms, etc. It is also robust to the introduction of a quality weight on surrounding

patents, with nearly equal coefficients as in the non-weighted specification.

2.2.4 Discussion

The above section has uncovered two main facts which help describe how relocation choices by

innovative firms relate to the value of local knowledge spillovers.

The first fact developed in subsection 2.2.1 is that firms doing R&D are more mobile than

other firms employing high-skilled labor. This higher mobility is found at the intensive margin:

the distance at which R&D plants are moved is much larger than other types of plants. It also

appears at the extensive margin, both through the fact that in the group of firms employing

high-skilled labor, firms doing R&D are more likely to move; and that within firms doing R&D,

the ones employing more R&D workers are also more likely to move.

The second fact, explored in subsection 2.2.3, is that firms are sensitive to existing and

expected local links in their relocation choices. This is shown along two dimensions. First,

the propensity of a firm to relocate is negatively correlated with its existing local connections.

Second, a focus on movers shows that they choose to relocate to areas in which they can expect

to form a denser network.

In what follows, I build a theoretical framework relying on these novel findings. It formalizes

the choice firms have to make about the location of their R&D activities in the presence of

strategic complementarities between their own R&D and that of their neighbors. It embeds the

ideas that firms benefit only from the effort of neighbors they are locally connected to, and that

firms have uncertainty about the quality of research produced by other firms outside of their

own location.

2.3 Model

2.3.1 Setup

In the game described below, players start off with a location and a set of links to other players.

They get spillovers from these neighbors, through a fraction of their effort.

The network G is an ordered pair < V,E > with a finite set of nodes V = {1, . . . , n} repre-

senting players and a set of links E connecting these nodes. It is a directed graph, represented

by a n× n non-symmetric adjacency matrix G. Its elements gij indicate whether there exists a
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link from node i to node j, corresponding to a knowledge transfer from j to i.

As shown in Figure 2.2, citations are mainly found at very short distances. This is translated

in a stylized way in the model through the fact that geography strictly constrains the network

structure: links may only exist within a given location. There are two locations, meaning that

the network is composed of two disconnected subgraphs (an example of which is shown in Figure

2.3) and the adjacency matrix G representing the overall network is block-diagonal:

G =

(
G1 (0)

(0) G2

)

Figure 2.3: Example of two disconnected subgraphs
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Payoffs Players have linear-quadratic gross payoffs, which depend on their effort and the

efforts of connected players such that:

πi = xi −
1

2
x2
i + φk

∑
j∈Gk

xixjgij

where firm i is located in subgraph Gk with spillovers intensity φk, π is its payoff, x the efforts,

and gij are its network links to other firms j. This payoff form has often been used in network

games applied to R&D such as König et al. (2018).

A direct consequence of this payoff structure is that the standard result exposed in Ballester

et al. (2006) applies: the equilibrium effort of players is equal to their Bonacich centrality in the

network.

Definition 1 (Bonacich centrality). Let Gp be the power p of the adjacency matrix. Its elements

g
[p]
ij record the number of walks of length p between two nodes i, j.9 Define

M(G, φ) =

∞∑
p=0

φpGp = (I − φG)−1

the sum of walks of length p discounted by the intensity of network effects (< 1) to the power p.

9. i.e. any sequence of nodes starting with i, ending with j and containing p+ 1 elements.
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The (unweighted) vector of Bonacich centralities is then written as:

bu(G, φ) = M(G, φ).u

with u the vector of ones.

The Bonacich centrality has become a classic centrality measure in the games on networks

literature,10 accounting not only for the number of neighbors a node has, but also for its indirect

links. Thus, using this centrality measure and following Ballester et al. (2006) yields the ensuing

proposition.

Proposition 1 (from Ballester et al. (2006)). For any subgraph k with φk <
1

λmax(Gk) , ∀k ∈

{1, 2}, there exists a unique interior Nash equilibrium for activity levels equal to the unweighted

Bonacich centrality of each player:

∀k ∈ {1, 2}, ∀i ∈ Gk, x∗i|Gk
= bu,i(φk,Gk) (2.1)

And the gross payoffs of agents are given by:

∀k ∈ {1, 2}, ∀i ∈ Gk, π∗i|Gk
=
bu,i(φk,Gk)2

2
(2.2)

where bu,i(φk,Gk) denotes the Bonacich centrality of player i in subgraph k.

Expected payoffs Let I(−k) be the information any player i in subgraph k has about the

other subgraph, such that all players in a subgraph have the same information set. Denote G+i
−k

the receiving subgraph, containing incumbents plus player i.

In this setup, players only differ in their position in the network. Because all nodes from a

given subgraph have the same information set, they have the same expected payoffs in the other

subgraph. Consequently, firms within a subgraph differ only in their decision to move or not.

Thus, denote E[πi(G
+i
−k) | I(−k)]−c(k) the expected payoff a player i belonging to subgraph

k has about moving to the subgraph −k, conditional on its information set about subgraph −k,

net of a moving cost which is only a function of the origin subgraph. For given parameter values

and initial graph structure, E[πi(G
+i
−k) | I(−k)]− c(k) does not depend on i, and takes only two

values: the expected payoff of players in subgraph k if they were to move to subgraph −k, and

10. Notably Helsley and Zenou, 2014; König et al., 2018; Calvó-Armengol et al., 2009.
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the converse.

2.3.2 Stable networks

Stability concept To help the subsequent analysis, I introduce the novel concept of intergraph

stability. A graph composed of two disconnected subgraphs is said to be intergraph stable if no

firm has higher expected payoffs of moving to the other subgraph than realized payoffs in the

current one. A more formal definition follows.

Definition 2 (Intergraph Stability). A graph G = (G1,G2) is intergraph stable if

∀i ∈ G1, πi(G1) > E[πi(G
+i
2 ) | I(2)]

∀j ∈ G2, πj(G2) > E[πj(G
+j
1 ) | I(1)]

This stability concept substantially differs from the concept often used in network formation

problems, namely pairwise stability, as introduced by Jackson and Wolinsky (1996),11 or Nash

stability in the case of directed networks. Stability is here defined at the location-level rather

than at the link-level, and therefore does not feature strategic choices of specific partners and

the associated stability of links that players form.

This subsection characterizes intergraph stable settings, in which no player would be better

off in the other subgraph. It shows that the intergraph stability of any graph of this type can

be characterized knowing only the lowest Bonacich centralities in each subgraph and the two

values taken by expected payoffs.

Rank agents by increasing centrality, such that agent 11 is the agent with lowest centrality

out of the n1 agents in graph G1, and 12 is the agent with lowest centrality out of the n2 agents

in graph G2.

Proposition 2. (G1,G2) is intergraph stable iff both 11 is better off staying in G1 and 12 is

better off staying in G2.

This proposition provides a simple characterization of intergraph stability: the least central

agent in each subgraph will always have the highest propensity to move, because its opportunity

11. Pairwise stability characterizes situations of undirected network formation in which players need to agree
for a link to be formed. An intergraph stable network is then a network in which no couple of players would be
better off forming a link between them, and no player has an incentive to unilaterally sever a link.
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cost of moving is the lowest.12 As a consequence, knowing the minimum centrality and the value

of expected payoffs for both subgraphs is sufficient to characterize the stability of the network.

2.3.3 Game with simultaneous relocations

Relying on the above conditions for subgraphs to be stable, this subsection explores a game

where firms are allowed to move simultaneously and characterizes equilibria.

Timing Start from an arbitrary network structure with two disconnected subgraphs in which

firms are initially distributed, have linear quadratic payoffs and limited information on the

other subgraph, following in every aspect the setting described above. Firms play the following

two-stage game:

• Stage 1: Firms simultaneously choose whether to move and, in such a case, how many

(costly) links l to form;

• Stage 2: Firms simultaneously choose their optimal effort x (R&D activity) based on the

new network structure.

Moving cost A direct consequence of the imposed network structure is that changing location

implies severing all existing links within the original location. Beyond this opportunity cost,

moving firms incur two explicit costs: a fixed cost κ (e.g. changing facilities, abandoning prior

investments), and a link formation cost c · l2i which is quadratic in li, the number of links formed

(degree) in the new network.13

Information Before the game starts, firms in Gk get aggregate information about the struc-

ture of the other subgraph: they know b̄G−k , the average Bonacich centrality in G−k. This

assumption restricts the information players have over connections in the other subgraph. Be-

cause of the linear-quadratic payoff structure, Proposition 1 applies, and the average Bonacich

centrality is simply equal to the average R&D activity in the other location.

12. A direct consequence of Proposition 2 is that if ∃ i ≥ 1 such that ik would profitably move to G−k, then
∀ j < i, jk would also move to G−k.

13. Convexity in the cost of links only avoids trivial equilibria, in which a firm deciding to move would always
form a link with every other firm in its new location: since firms have to pay a fixed cost κ of moving, plus a unit
cost per link they decide to form, linear linking costs imply that the marginal cost of a link will always be smaller
than the average cost of a link.
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Thus, a firm i moving from subgraph k to subgraph −k receives the following net payoffs:

xi|G−k
− 1

2
x2
i|G−k

+ φ−k
∑
j∈Ni

xixjgij − κ− cl2i

Equilibria The unique equilibrium of the second stage of the game is straightforward from

Proposition 1 displayed in the above subsection: firms’ equilibrium effort level is equal to the

Bonacich centrality in their subgraph.

Turning to the first stage, a crucial result in order to characterize equilibrium relocation

decisions is the effect that movers have on incumbents in their new subgraph. From the structure

of the game, incumbent firms are not allowed to revise their linkages and form links towards

entrants. Consequently, all the walks involving the entrants are the ones starting from them,

which can be formalized through the following lemma.

Lemma 1. In a given subgraph, the activity levels of incumbent firms are unaffected by entrants.

This property ensures that potentially moving firms do not internalize any effect of their

own entry on the average activity of the subgraph they are about to join.

Based on Lemma 1, a firm moving from G1 to G2 would get the expected net payoff

xi|G2
− 1

2
x2
i|G2

+ φ2xi|G2
lib̄

G2 − c.l2i − κ (2.3)

where lib̄
G2 is the expected effort of new neighbors.

Therefore, the first order condition is:

∂πi|G2

∂xi|G2

= 1− xi|G2
+ φ2lix̄

G2 = 0

Which yields a firm i’s ex ante best response activity level in case it moves from G1 to G2:

xBRi|G2
= 1 + φ2lib̄

G2 (2.4)

Plugging (2.4) into (2.3), this yields a simple second-degree polynomial function in li, the movers’

choice variable:

1

2
(φ2

2 − c)l2i + φ2x̄
G2 li − κ−

1

2
[bu,i(φ1, G1)2 − 1] (2.5)

Clearly, this expression only depends on i through bu,i(φ1, G1), which shifts i’s incentive to
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move up or down. Therefore, there exists a number of links l∗G2
which maximizes the above

expression for any firm in a given subgraph.14 In other words, firms are heterogeneous in their

opportunity cost of moving, but make the exact same decision once they decide to move.

A coordination problem arises once it appears that the network is not intergraph stable,

because the network structure is common knowledge within a subgraph. Firms can anticipate

movements of other firms in their own subgraph, and the resulting changes in their own centrality

which depend on how tightly connected they are to movers.

Thus, several equilibria may exist in this situation in which some firms simultaneously de-

cide to move and do not have ex post incentives to deviate. Typically, under reasonably low

moving costs, the situation in which all firms move is always an equilibrium: a deviating firm

would remain alone and isolated in its original subgraph, which can never be profitable if a

connected firm has found it profitable to move in the first place. Using the definition of stability

explained in the previous subsection, all equilibria have to be ex post stable: no firm should

want to change subgraph at the end of the game. Similarly, any intergraph stable network with

the corresponding vector of effort levels is an equilibrium. This directly yields the following

proposition.

Proposition 3. In any PBE, the resulting network G is intergraph stable and the vector of

R&D efforts is the vector of Bonacich centralities bu(φ,G).

Notably, there is one equilibrium which is of particular interest, namely the equilibrium

with the minimal number of movements, in which only firms that ex ante had higher expected

payoffs in the other subgraph than in theirs end up moving (i.e. that move irrespective of their

neighbors’ decisions). In what follows, I show that such an equilibrium always exists, and has

special properties: it is both welfare-maximizing and Pareto-optimal.

Welfare-maximizing equilibrium An important property of Bonacich centrality is that it

weakly decreases for a given node when any link in the subgraph is severed, even if that node

is not directly affected by the severance of this link. Therefore, a firm’s centrality in a given

subgraph decreases in the number of firms moving away, which means that its effort and payoff

also weakly decrease as other firms decide to move. Thus, if moving is a best-response for a

firm conditional to a given set of other firms moving from its own subgraph, it will remain so if

more firms are added to this set. Thus, when movements are simultaneous, there is no benefit

14. ∀i, a maximum is reached in φ2x̄
G2

2c−φ2
2(x̄G2 )2

, so l∗G2
= b φ2x̄

G2

2c−φ2
2(x̄G2 )2

c or l∗G2
= b φ2x̄

G2

2c−φ2
2(x̄G2 )2

c+ 1 .
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to a firm of its neighbors moving: movers produce a negative externality on the subgraph they

leave while they produce no externality on the subgraph they join. Therefore, the equilibrium

with the minimum possible number of movements is welfare-maximizing: forcing an additional

movement would harm the firm and its origin subgraph without benefiting incumbents in the

receiving subgraph.

Describing this equilibrium requires a measure of dependence of a node’s centrality to each

node in its subgraph. Lemma 2 extends the intercentrality concept in Ballester et al. (2006) and

establishes new individual Bonacich centralities if a firm leaves.

Lemma 2. The activity level of a player j in subgraph k after player i has left the subgraph is:

bu,j(G
−i
k , φk) = bu,j(Gk, φk)−

mji(Gk, φk)

mii(Gk, φk)
bu,i(Gk, φk) (2.6)

where the mij are, again, the self or non self loops, ie the terms of the matrix M = (I−φG)−1.

To show existence of an equilibrium in which firms do not all move, start from an inter-

graph stable network, and let φ2 be hit by a positive shock before the game starts, making G2

more attractive. Again, order firms by increasing centrality in each subgraph. For the sake of

simplicity, since firms in this context may only move from G1 to G2, the subgraph index is

dropped.

Although firm 2 has the second lowest centrality in G1 before the game starts, hence the

second highest ex ante expected gains from moving, it may not remain so once 1 moves. Indeed,

the centrality of other nodes may be more dependent on paths going through 1, implying larger

centrality drops caused by 1’s exit for these firms. It is however possible to construct iteratively

a new ranking of firms in G1, {oe}e∈{1,...,n1}, which is a simple permutation of {1, . . . , n1}, such

that firm e would have the lowest centrality in G1 conditional on firms up to oe−1 moving.

Denoting f(x̄G2 , l∗G2
, φ2) the part of the expected payoffs for G1 firms from moving to G2

that is independent of G1 network structure yields the following proposition.

Proposition 4 (Welfare-maximizing equilibrium). ∀e ∈ {1, ..., n1 − 2}, there exists a welfare-

maximizing Bayesian perfect equilibrium, in which firms {o1, . . . , oe} move to G2, form l∗G2
links

each with incumbent G2 firms, after what all firms choose an effort level equal to their Bonacich
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centrality iff


f(x̄G2 , l∗G2

, φ2)− κ− 1

2

{
[bu,oe(G

−{o1,...,oe−1}
1 , φ1)]2 − 1

}
> 0

f(x̄G2 , l∗G2
, φ2)− κ− 1

2

{
[bu,oe+1(G

−{o1,...,oe}
1 , φ1)]2 − 1

}
< 0

(2.7)

i.e. iff firm oe finds it profitable to move but firm oe+1 does not.15

In Appendix, I show that this welfare-maximizing equilibrium is also Pareto-optimal.

2.4 Sequential relocations and cascading effects

While the above section studies a game in which movements are simultaneous, a more realistic

setting is one where movements are sequential, such that potential movers observe past move-

ments and update their information about the other location. In such setting, the expected

quality of potential neighbors changes in a subgraph when firms start joining in sequentially.

Notably, it could decrease if joining firms form few links and end up having a lower Bonacich

centrality/activity than the average. A real world analogy would be that compared to the orig-

inal Silicon Valley setting from which all the leading tech companies emerged, many firms have

joined, among which a number of them probably have a low potential and are not high-value

contacts. This makes the signal on whether other firms should try to join the Silicon Valley

ambiguous, because the neighbors they will end up having may not be particularly valuable

even though the area as a whole is successful. This would be a balancing force, because if firms

with low connection levels decide to leave and form only a limited set of links, the location from

which firms initially exit will see its average quality increase, and may in turn become attractive

to firms in the receiving location. The ensuing section explores this question.

2.4.1 Environment

Timing Start again from an intergraph stable network, in which firms in each subgraph are

myopic and learn the average centrality in the other subgraph before the game starts, and let

φ2 be hit by a positive shock. Slightly modify the previous timing to the following:

1. Every round, a firm from G1 is randomly picked and may decide to move, in which case

it chooses how many links l to form;

15. For e = n1 − 1, only the first part of the condition needs to be filled for all firms to move. For e = 1, if the
first part of the condition is not met, the graph is intergraph stable.
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2. All firms update their optimal effort level x.

3. Firms collect profits and update their belief about x̄G−k (average effort in the other sub-

graph).

Discussion A fundamental change between the sequential and the simultaneous moves envi-

ronments is that in the sequential case, moving firms at a later round may end up being linked to

movers from earlier rounds. This may generate cascade phenomena (as in the financial networks

studied in Elliott et al., 2014). Indeed, the exit of a small set of firms leads to a centrality loss

while it may increase the average centrality in the competing network. This may lead to the

exit of more firms from their initial network, whereas these firms had no incentive to move in

the simultaneous moves context. The opposite phenomenon may also occur: because peripheral

firms are the most likely to leave, their exit may translate into a positive effect on the average

activity in their original network, which may be a stronger effect than the one they have on the

receiving subgraph.

In contrast, a caveat of this framework to analyze dynamic phenomena is that only movers

are allowed to revise their links, while incumbent firms cannot form connections with entrants.

Nevertheless, provided the initial graph is Nash stable (no firm is better off severing or creating

a link), a setting allowing firms to change their linkages after a movement has taken place

is likely to enhance the cascade. Indeed, firms in the receiving networks forming links with

the entrant should increase the average centrality of the receiving subgraph, while firms in the

exited subgraph would have no incentive creating new links, resulting in a decrease in the average

centrality of the subgraph. Consequently, this framework can be conceived as a lower bound of

the extent of a cascade phenomenon taking place between two graphs.

Note that total activity in G1 decreases, and total activity in G2 always increases when a

firm leaves G1 for G2. Overall, we may fall into four different cases:

1. (x̄G1 ↘, x̄G2 ↗): The exiting firm decreases average activity in G1 and creates enough

links as to increase it in G2: in this case the process is strongly amplified for the next step

(making it more likely that another firm will move);

2. (x̄G1 ↗, x̄G2 ↘): The exiting firm increases average activity in G1 and decreases it in

G2: this is an interesting case based on the fact that firms with low centrality are more

likely to move. Their exit could foster an increase in the average activity in G1, and make
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Figure 2.4: Example of a cascade: following a spillovers shock, the left-hand side
location empties as firms move to the right-hand side one.

(a) Initial subgraphs (b) Subgraphs after 25 exits

(c) Subgraphs after 50 exits (d) Subgraphs after 75 exits

it more attractive. Coincidentally, it may be that the cost of links is high enough for the

moving firm to form few links or that it is unlucky enough to end up being linked only

with very peripheral firms, such that this move decreases average activity in G2. This

case is the converse of case 1, and could even trigger a reverse cascade if firms from G2

were allowed to move: then firms of G2 would be better off moving to G1 even though

their subgraph was the one benefiting from a positive spillovers shock;

3. (x̄G1 ↘, x̄G2 ↘): The exiting firm decreases average activity in G1 but creates few links

which also implies a decrease in the average activity in G2: then the sign of the effect

of this step on the next step of the process is undetermined, as the relative magnitude of

both effects will lead the process either to be amplified or weakened;

4. (x̄G1 ↗, x̄G2 ↗): The exiting firm creates enough links to increase average activity in

94



2.4. Sequential relocations and cascading effects

G2 but was peripheral enough as to also increase average activity in G1: this is again

undetermined.

The following subsection characterizes the above-listed cases.

2.4.2 Cascades

Effect of a move on the exited subgraph The overall effect of the exit of any firm in G1

can be assessed using the intercentrality concept defined in Ballester et al. (2006).

Definition 3 (from Ballester et al. (2006)). For directed graphs ( i.e. non symmetric adjacency

matrices), the intercentrality is defined as:

ci(G, a) = bu,i(G, a)

∑n
j=1mji(G, a)

mii(G, a)
(2.8)

The intercentrality is the total number of walks that hit i, so it is the sum of i’s Bonacich

centrality, and i’s contribution to other players’ Bonacich centralities. Therefore, we know that

removing firm 1 from G1 means:

n1∑
j=2

bu,j(G
−1
1 , φ1) =

n1∑
j=1

bu,j(G1, φ1)− c1(G1, φ1) (2.9)

Proposition 5. For i’s exit to have a negative effect on average activity in G1, the following

condition needs to be met:

x̄G1 < ci(G1, φ1)

i.e. the intercentrality of player i (contribution to the network’s aggregate activity) must be

higher than the average activity in this network.

In the Ballester et al. (2006) context, the argmax of the intercentrality yields the node that

will maximally decrease total activity when removed (it is the argmin of total activity net of this

measure). In our context, the intercentrality of the exiting node tells us the exact importance

of this node for the subgraph it belonged to before the exit. Therefore, for the effect of a move

on the average centrality to be negative, it should be that the contribution of the mover to all

centralities outweighs the effect of its exit on the average centrality of the subgraph (i.e. the

fact that the mean centrality now is calculated over n1 − 1 players rather than n1).
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Effect of a move on the receiving subgraph Based on Lemma 1, the activity vector of

firms in the receiving subgraph, indexing by n2 + 1 the firm moving from G1 to G2, writes

(xG
′
2)∗ =


bu,1(G2, φ2)

...

bu,n2(G2, φ2)

1 + φ2
∑

j∈Nn2+1
bu,j(G2, φ2)

 (2.10)

As shown in Lemma 1, the activity of incumbent firms in the receiving subgraph remains

unchanged, and the activity of the entrant can be expressed simply through a sum of its new

neighbors’ centralities discounted with a factor φ2.

Amplifying effect of an exit Assembling the above results indicates which of the cases

exposed earlier we will fall into after a movement, based on the graph structure, the parameter

values, and the firm’s new neighbors.

Proposition 6. The cascade is strengthened after i’s exit if either:

• Average activity has increased in G2 and has decreased in G1 (denoted case 1 in subsection

2.4.1), which happens if both n2 +
∑n2

i=1(φ2n2gn2+1,i − 1)bu,i(G2, φ2) > 0 and x̄G1 <

ci(G1, φ1);

• Average activity has decreased in both subgraphs but decreased more in subgraph 1 (case

3), which happens if x̄G1−ci(G1,φ1)
n1−1 <

n2+
∑n2
i=1(φ2n2gn2+1,i−1)bu,i(G2,φ2)

n2(n2+1) < 0;

• Average activity has increased in both subgraphs but increased more in subgraph 1 (case 4),

which happens if
n2+

∑n2
i=1(φ2n2gn2+1,i−1)bu,i(G2,φ2)

n2(n2+1) > x̄G1−ci(G1,φ1)
n1−1 > 0;

The conditions for the cascade to be weakened are exactly opposite to the above ones.

Proof. Assembling results from previous subsections.

The above proposition shows that transitions from one step to the other of the cascade can

be described using only simple conditions on the structure of the graph.

2.4.3 Long-run Equilibrium

This subsection intends to outline a situation in which the cascade is likely to stop, and a long-

run equilibrium emerges in which all possible movements have occurred. In every round, when
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a set {r1, . . . , re} of firms has moved, there exists a unique optimal number of links, common to

every G1 firm, here denoted l∗G2+{r1,...,re}. The expected centrality of the first entrant writes

E(xr1) = 1 + φ2l
∗
G2
x̄G2

Since firms learn about the average activity in the other subgraph before the game starts, the

expected centrality of the eth moving firm in the sequence for incumbent firms in the exited

subgraph can be written

E(xre) = 1 + φ2l
∗
G2+{r1,...,re−1}x̄

G2+{r1,...,re−1}

Thus, at any point of the sequence, firms inG1 take their moving decisions based on the following

expected average activity in G2

E(x̄G2+r1) =
n2x̄

G2 + 1 + φ2l
∗
G2
x̄G2

n2 + 1

E(x̄G2+{r1,r2}) =
(n2 + 1)E(x̄G2+r1) + 1 + φ2l

∗
G2+r1

x̄G2

n2 + 2
=
n2x̄

G2 + 2 + φ2(l∗G2
+ l∗G2+r1

)x̄G2

n2 + 2
...

E(x̄G2+{r1,...,re}) =
n2x̄

G2 + e+ φ2(
∑e−1

k=1 l
∗
G2+{r1,...,rk})x̄

G2

n2 + e

This means that with every additional movement, average activity sums up to a linear function

of the initial average activity in the receiving subgraph and the number of links movers decide to

create in each moving round, over the number of firms in that subgraph after the last movement.

Proposition 7 (Sequential Moves Equilibrium). When the number of rounds played is large

enough, ∀e ∈ {2, ..., n1 − 2}, there exists a unique Bayesian perfect equilibrium in which firms

{r1, . . . , re} have moved to G2, and all others will stay in G1 whatever the additional number

of rounds iff


f

[
E(x̄G2+{r1,...,re−1}), l∗G2+{r1,...,re−1}, φ2

]
− κ− 1

2

[
bu,re(G

−{r1,...,re−1}
1 , φ1)2 − 1

]
> 0

f

[
E(x̄G2+{r1,...,re}), l∗G2+{r1,...,re}, φ2

]
− κ− 1

2

[
bu,re+1(G

−{r1,...,re}
1 , φ1)2 − 1

]
< 0

Additionally, for e = n1−1, only the first part of the condition needs to be filled for all firms

to move in the long-run. For e = 1, if the first part of the condition is not met, the graph is
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intergraph stable.

While Proposition 7 provides a result that is very close to the one presented for the simul-

taneous moves case in Proposition 4, it adds a fundamental feature through the role of changes

in expected average activity in the other subgraph, which will greatly condition the number

of moves. Indeed, as shown in the overall results, if average activity decreases in G2 as firms

move because the cost of forming new links is high, this may result in a lower number of movers

than in the simultaneous moves case. If however the average activity increases as firms move,

this could imply a self-reinforcing cascade with a much larger number of movers than in the

simultaneous moves case, if not a unique equilibrium in which all firms moves.

2.5 Conclusion

This paper has sought to shed light on the importance of local knowledge networks for innovative

firms through the study of their relocation choices. Relocations are an interesting phenomenon

to answer the wider question of how firms internalize knowledge spillovers in their location

choices, because relocating firms are facing a clear trade-off between their current and their

future location, and which already have a defined technological field.

I study relocations in a flexible way, looking at plant-level employment changes in opposite

directions in different cities. Based on this definition, I show that being an innovative firm (i.e.

employing at least a researcher in an average year) makes a firm 70% more likely to relocate

its high-skilled workforce. Similarly, tripling the number of R&D employees a firm has makes

it twice as likely that it relocates its R&D employment over the period. I also show that the

distance of R&D relocations is far larger than that of other types of employment. These facts

suggest that R&D activities are more mobile than others, which can be linked to the importance

of localized knowledge spillovers for such activities. The paper gives evidence on the localization

of knowledge networks on France in line with the literature, and then shows that firms that are

less central in their local innovation network are more likely to relocate R&D activities. What is

more, these moving firms are more likely to pick areas in which their potential for collaborations

and local linkages is higher.

Relying on these empirical facts, the paper then develops a theoretical framework which

intends to link relocations to local knowledge networks. It builds a model in which firms inherit

a position in a network with two disconnected subgraphs, and may sever their links to join the
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other part of the network. They then choose the level of R&D effort that maximizes their payoff.

To characterize equilibria, I first introduce a novel stability concept called intergraph stability,

where no firm wants to move to the other subgraph, and show that it can be characterized

simply knowing the minimum Bonacich centrality in each subgraph and the expected payoff

in the other one. Furthermore, in a game where firms first choose simultaneously whether to

relocate or not, and then choose their optimal R&D effort, all PBEs can be characterized using

this stability concept. I then prove existence and describe extensively the welfare-maximizing

and Pareto-optimal equilibrium, which is the one with the minimal number of movements.

The paper then turns to the analysis of a similar game in which the timing is changed to

allow for sequential movements: a firm is chosen randomly every round and decides whether

to move or not, after what all firms adjust their R&D efforts. In such setting, it describes

the conditions for a movement to either strengthen or weaken a cascade phenomenon by either

increasing or decreasing the incentives to move of the firms located in both the exited and the

receiving subgraph. It then shows the existence of a long-term equilibrium in a setting where

only firms from one subgraph are picked to move. Depending on the links that movers end up

forming with incumbents, equilibria with both a larger and a smaller number of movements than

in the simultaneous moves game may be achieved.

This paper leaves several points of inquiry for further research. Indeed, it would be interesting

to causally estimate how an exogenous shock to the network structure in a given location affects

relocations. Nevertheless, such an empirical setting is hard to find: it requires that the shock

affects the network structure strongly enough to foster relocations, yet without affecting the

characteristics of the location where it hits to allow identification.
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2.A Data

2.A.1 R&D employment

Table 2.A.1: Selected job categories (PCS) corresponding to R&D activities

Engineers ”383A” R&D engineers in electricity and electronics

”384A” R&D engineers in mechanics and metal-work

”385A” R&D engineers in transformation industries

(agro-industry, chemistry, metal-work, heavy material)

”386A” R&D engineers in other industries

”388A” R&D engineers in information technology

Technicians ”473B” R&D and fabrication methods technicians for electricity,

electromechanics and electronic industries

”474B” R&D and fabrication method technician in mechanical construction

and metal-work

”475A” R&D and production methods technician for transformation industries

”478A” Study and development technicians in IT.

2.A.2 Patent applicants - Firms matching

To match patents applicants with SIREN firm identifiers, I follow two complementary methods:

• I match the names of applicants with firm names taken from Sirene 2017, simplifying the

strings with the algorithms provided by the NBER patent project.

• Additionally, I use a web-scrapping method, in the spirit of Autor et al. (2016): I send

requests to a search-engine with the applicant name in the patent database, and the

constraint that the search be conducted on websites listing all firms declared in France

(societe.com, verif.com, infogreffe.fr, bilansgratuits.fr and score3.fr). These websites have

103



Chapter 2

the advantage of containing SIREN identifiers directly in the url associated to each firm.

I then use validation across these websites to avoid having many false positives.

2.B Additional Tables and Figures

2.B.1 Desc. Stat on mobility

Table 2.A.2: Descriptive Statistics: Full Relocations (as in Duranton and Puga,
2001)

Category All firms HS firms Innov. firms

Nbr of firms in category 689,691 301,571 24,064

Nbr of moving firms 14,616 7,146 421

Av. nbr of plants in cat. in 2006 7.14 9.73 4.01

Av. nbr of employees 172.1 308.4 954.1

Share of firms moving 2.12 2.37 1.75

Av. relocation distance 121 130.5 168.7

The above table shows descriptive statistics of full relocations of plants with at least one full-
time employee of the relevant category for 3 categories of firms: all firms, firms employing
high-skilled workers (HS firms), and innovative firms. A firm enters a category if at least
one of its plants employs at least one of the corresponding type of workers. Firms are
considered moving if they relocate a plant of their category: an innovative firm relocating
a plant employing high skilled but non-R&D workers is counted as a moving HS firm but
not as a moving innovative firm. Numbers of employees and plants are averages calculated
over the period covered by the data, i.e. 2006-2015.

Table 2.A.3: Descriptive Statistics: Relocations of at least 50% and at least two
full-time employees of each category

Category All firms HS firms Innov. firms

Nbr of firms in category 688,201 299,855 23,942

Nbr of moving firms 13,185 6,512 494

Av. nbr of plants in cat. in 2006 7.71 10.51 4.30

Av. nbr of employees 192.5 353.1 1047

Share of firms moving 1.92 2.17 2.06

Av. relocation distance 122.1 135.1 183.4

The above table shows descriptive statistics of partial relocations of at least 50% and two
full-time employees of a plant for 3 categories of firms: all firms, firms employing high-
skilled workers (HS firms), and innovative firms. A firm enters a category if at least one of
its plants employs at least one of the corresponding type of workers. Firms are considered
moving if they relocate a plant of their category: an innovative firm relocating a plant
employing high skilled but non-R&D workers is counted as a moving HS firm but not as a
moving innovative firm. Numbers of employees and plants are averages calculated over the
period covered by the data, i.e. 2006-2015.
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Table 2.A.4: Descriptive Statistics: Relocations of at least 25% and at least one
full-time employees of each category

Category All firms HS firms Innov. firms

Nbr of firms in category 689,691 301,571 24,064

Nbr of moving firms 16,958 9,375 773

Av. nbr of plants in cat. in 2006 6.72 8.29 3.80

Av. nbr of employees 163.2 276.1 844.3

Share of firms moving 2.46 3.11 3.21

Av. relocation distance 123.6 136 208.9

The above table shows descriptive statistics of partial relocations of at least 25% and one
full-time employee of a plant for 3 categories of firms: all firms, firms employing high-skilled
workers (HS firms), and innovative firms. A firm enters a category if at least one of its
plants employs at least one of the corresponding type of workers. Firms are considered
moving if they relocate a plant of their category: an innovative firm relocating a plant
employing high skilled but non-R&D workers is counted as a moving HS firm but not as a
moving innovative firm. Numbers of employees and plants are averages calculated over the
period covered by the data, i.e. 2006-2015.

Table 2.A.5: Descriptive Statistics: Relocations of at least 75% and at least one
full-time employees of each category

Category All firms HS firms Innov. firms

Nbr of firms in category 689,691 301,571 24,064

Nbr of moving firms 15,061 7,644 540

Av. nbr of plants in cat. in 2006 7.03 9.49 3.93

Av. nbr of employees 169.6 301.2 875.2

Share of firms moving 2.18 2.53 2.24

Av. relocation distance 121.3 129.9 179.4

The above table shows descriptive statistics of partial relocations of at least 75% and one
full-time employee of a plant for 3 categories of firms: all firms, firms employing high-skilled
workers (HS firms), and innovative firms. A firm enters a category if at least one of its
plants employs at least one of the corresponding type of workers. Firms are considered
moving if they relocate a plant of their category: an innovative firm relocating a plant
employing high skilled but non-R&D workers is counted as a moving HS firm but not as a
moving innovative firm. Numbers of employees and plants are averages calculated over the
period covered by the data, i.e. 2006-2015.
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Figure 2.A.1: Distribution of patenting in chemestry and metalurgy over the French
metropolitan territory

Number of patents filed in IPC section C ”Chemestry and metalurgy” since 2000 per
commuting zone. The scale goes from light yellow (as few as 6 patent applications) to dark
red (as many as 75k patent applications).
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Table 2.A.6: Effect of global versus local centrality on the probability of moving

(1) (2) (3) (4)

Moving

Log. Total Bonacich Centrality (non-weighted) 0.75

(0.19)

Log. Total Bonacich Centrality (weighted) 0.74

(0.19)

Log. Local Bonacich Centrality (non-weighted) 0.08**

(0.09)

Log. Local Bonacich Centrality (weighted) 0.09**

(0.10)

Log. Total nbr employees 1.03 1.03 1.03 1.03

(0.04) (0.04) (0.04) (0.04)

Log. nbr R&D employees 1.12** 1.12** 1.12** 1.12**

(0.06) (0.06) (0.06) (0.06)

Log. nbr plants 3.41*** 3.41*** 3.48*** 3.47***

(0.34) (0.34) (0.34) (0.34)

Several patenting locations 1.60** 1.60** 1.65** 1.62**

(0.38) (0.38) (0.35) (0.34)

Nbr obs 24064 24064 24064 24064

Pseudo r-sq 0.0878 0.0879 0.0895 0.0893

Logit regressions at the firm level, coefficients are odds ratios, standard errors of these
odds ratios are in parentheses. The dependent variable is a dummy taking value 1 if a
firm is considered to be moving a R&D lab based on the baseline definition. The first four
regressors are different centrality measures. Log. Total nbr employees is the number of
employees the firm has in an average year, Log nbr R&D employees is the same for R&D
employees. Log nbr plants is the number of plants the firm has in total over the period.
Log nbr zones with R&D is the number of commuting zones in which the firm has filed
patents. *** p<0.01, ** p<0.05, * p<0.1
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2.C Proofs

Proof of Lemma 1: For incumbent G2 firms, the Bonacich centrality equating their R&D

effort can be dichotomized between self-loops and non self-loops, i.e. loops going from them to

themselves and from them to other players respectively. Since no link going from another node

to the entrant (denoted n2 + 1) can exist because of the absence of links across locations, all

the loops going from n2 + 1 to any other i are exactly the walk from n2 + 1 to its neighbors

concatenated with all the walks going from the neighbors to node i. These can be expressed as

the centralities of the neighbors. The activity levels in the subgraph receiving an entrant firm

can be written as a function of the centralities in the graph before one entry as follows:

(xG
′
2)∗ =


bu,1(G2, φ2)

...

bu,n2(G2, φ2)

1 + φ2
∑

j∈Nn2+1
bu,j(G2, φ2)

 (2.11)

Proof of Lemma 2 Following Ballester et al. (2006), the effect on any node j of the exit of

player i, denoting bu,ji(G, a) the part of j’s centrality conditional to i’s presence, implies the

following:

bu,ji(G, a) ≡ bu,j(G, a)− bj(G−i, a)

=
n∑
k=1

[mjk(G, a)−mjk(G
−i, a)]

=
n∑
k=1

mji(G, a)mik(G, a)

mii(G, a)

=
mji(G, a)

mii(G, a)
bu,i(G, a)

Therefore, the activity level of a player j after player i has left is:

bu,j(G
−i
1 , φ1) = bu,j(G1, φ1)− bu,ji(G1, φ1) = bu,j(G1, φ1)− mji(G1, φ1)

mii(G1, φ1)
bu,i(G1, φ1) (2.12)

Proof of Proposition 4 Following Proposition 2, provided that only one firm from G1 is

willing to move, it has to be firm 1, with the lowest centrality. In such a case, based on Lemma
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2, the vector of centralities in G1 changes as follows:

 bu,1(G1, φ1)

...

bu,n1(G1, φ1)


(n1×1)

−1 exits→

 bu,2(G−1
1 , φ1)

...

bu,n1(G−1
1 , φ1)


(n1−1×1)

=


bu,2(G1, φ1)− m21(G1,φ1)

m11(G1,φ1)bu,1(G1, φ1)

...

bu,n1(G1, φ1)− mn11(G1,φ1)

m11(G1,φ1) bu,1(G1, φ1)


(2.13)

Construct iteratively a new ranking of firms’ centralities inG1 after firm 1 has left, {oe}e∈{1,...,n1},

which is a simple permutation of {1, . . . , n1}, such that firm e would have the lowest centrality

in G1 conditional to firms up to oe−1 moving.

More formally ∀e ∈ {2, . . . , n1},

oe = argmin
i∈{oe,...,on1}

bi(G1, φ1)−
oe−1∑
k=o1

mik(G1, φ1)

mkk(G1, φ1)
bu,k(G1, φ1)

Denote f(x̄G2 , l∗G2
, φ2) = 1

2φ
2
2(l∗G2

)2 + l∗G2
φ2x̄

G2 − c(l∗G2
)2 the part of the expected payoffs for

G1 firms from moving to G2 that is independent of G1 network structure. Provided it is the

only firm to move, firm i ∈ G1 moves iff

f(x̄G2 , l∗G2
, φ2)− κ− 1

2
[bu,i(φ1, G1)2 − 1] > 0

The first stage equilibrium when firms move simultaneously follows from introducing the above

ranking in this condition.

Proof Pareto optimality of equilibrium with simultaneous moves Any firm moving

from G1 to G2 gets expected centrality equating 1+φ2l
∗
G2
b̄G2 , which means expected net profits

equal to
(1+φ2l∗G2

b̄G2 )2

2 − κ − c(l∗G2
)2. Since the highlighted equilibrium is the one featuring the

minimal number of movements, any non-moving firm in this equilibrium gets profits equal to

[bu,i(G
{o1,...,oe}
1 ,φ1)]2

2 . The firm with the lowest centrality among these non movers is firm oe+1.

Therefore, the highlighted equilibrium only needs to provide the highest possible payoffs to

oe+1 to be Pareto-optimal (indeed, all movers have maximal payoffs since this is a criterion

for them to move, and all non movers have maximal payoffs not moving if oe+1 has maximal

payoffs not moving). Moreover, the payoffs of non-movers in G1 may only decrease if more

firms move, and their expected payoff from moving does not depend of how many firms move.

Additionally, as ensured by Lemma 1, G2 firms’ centralities, hence payoffs, are independent of

moving decision from G1 firms. Thus, firm oe+1 cannot get higher payoffs either from moving,
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or from having other G1 firms move. This holds for any firm in oe+1, . . . , on1 . Therefore, the

highlighted equilibrium, which features the lowest possible number of movers, is Pareto-optimal.

Proof of Proposition 5 The average activity after removing firm n1 in the new subgraph is:

x̄G
′
1 =

n1

n1 − 1
x̄G1 − ci(G1, φ1)

n1 − 1
(2.14)

Or equivalently, the effect of i’s exit on average activity in network G1 is

x̄G
′
1 − x̄G1 =

x̄G1 − ci(G1, φ1)

n1 − 1

Detailed version equilibrium with simultaneous moves

• ∀e ∈ {1, ..., n1 − 2}, iff


f(x̄G2 , l∗G2

, φ2)− κ− 1

2

{[
bu,oe(G1, φ1)−

e−1∑
k=0

moeok(G1, φ1)

mokok(G1, φ1)
bu,ok(G1, φ1)

]2

− 1

}
> 0

f(x̄G2 , l∗G2
, φ2)− κ− 1

2

{[
bu,oe+1(G1, φ1)−

e∑
k=0

moe+1ok(G1, φ1)

mokok(G1, φ1)
bu,ok(G1, φ1)

]2

− 1

}
< 0

there exists a Bayesian perfect equilibrium in which firms {o1, . . . , oe} move to G2, form

l∗G2
links each with incumbent G2 firms, then all firms choose an effort level equal to their

Bonacich centrality.

• Iff

f(x̄G2 , l∗G2
, φ2)− κ− 1

2

{[
bu,on1−1(G1, φ1)−

n1−2∑
k=0

mon1ok
(G1, φ1)

mokok(G1, φ1)
bu,ok(G1, φ1)

]2

− 1

}
> 0

there exists a unique Bayesian perfect equilibrium in which all G1 firms move to G2, form

l∗G2
links each with incumbent G2 firms, then all firms choose an effort level equal to their

Bonacich centrality.

• Otherwise, the network is intergraph stable and the BPE is trivial.

Remainder detailed version sequential equilibrium
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• Iff

f [
n2x̄

G2 + n1 − 2 + φ2x̄
G2(
∑n1−2

k=1 l∗G2+{1,...,n1−2})

n2 + n1 − 2
, l∗G2+{1,...,n1−2}, φ2]− κ

−1

2

{[
bu,on1−1(G1, φ1)−

n1−2∑
k=0

mon1ok
(G1, φ1)

mokok(G1, φ1)
bu,ok(G1, φ1)

]2

−1

}
> 0

(2.15)

there exists a unique Bayesian perfect equilibrium in which all G1 firms eventually move

to G2.

• Otherwise, the network is intergraph stable and the BPE is trivial.
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Chapter 3

The Public Sector and the

Distribution of Economic Activity

This chapter is a joint work with Emeric Henry & Joan Monras.
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3.1 Introduction

The public sector accounts for a large share of total employment in most countries, more than

20% on average in OECD countries. Two particular features make this sector stand out. First,

part of its activities are aimed at producing local public goods, and it thus has the potential

to create particularly high spillovers on other sectors. Second, in many countries (for instance

most countries in Europe), wages are set centrally and are uniform across locations that differ

considerably in their cost of living.1 In this paper, we show theoretically and empirically, using

comprehensive data on public and private employment in France, that these two features are

key to explain the data and are important determinants of the distribution of overall economic

activity across locations.

In a standard spatial equilibrium model where the public sector is like any other, where

workers are free to move across sectors and across locations, and where wages are set compet-

itively (Rosen, 1974; Roback, 1982), we show in the first part of the paper that wages will be

equalized across sectors within a city and indirect utilities will be equalized across locations. If

the productivity varies across locations in the private sector, the most productive cities will have

larger populations, pay higher wages, and have a larger ratio of workers in the private sector

compared to the public sector. Despite this being the canonical model to study the distribution

of economic activity across space – usually cities or regions –, many of these predictions do not

hold in the data.

In the second part of our paper, we show that most of the predictions of the canonical spatial

equilibrium model do not hold in the French data when the public sector is taken into account.

The first prediction that is violated is that wages are not equalized across sectors within each

location. Using a new and comprehensive data set on public and private employment for France,

we show that that while wages in the private sector increase steeply with productivity, with an

elasticity in the order of 0.1 which is in line with prior literature (Combes and Gobillon, 2014),

they barely increase in the public sector. This highlights that the formal wage setting rules in the

public sector are indeed respected and hence there is no access to extra source of bonuses that

is used to compensate for the higher housing costs that usually prevail in the most productive

cities. This means that real wages in the public sector are lower in productive cities, which

potentially distorts downwards the size of the public sector in the most productive cities.

1. Germany imposes uniformity at the smaller administrative unity of landers, while in the US, federal blue-
collar workers’ wages are ruled by the Federal Wage System, and adjusted according to each local wage area.
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The second feature that empirically departs from the baseline model is the fact that the

public sector generates positive spillovers toward the private sector. A direct way to document

that there are such spillovers is to study whether an exogenous increase in public employment

leads to a significant increase or decrease in private employment. For this, we use the large

decrease in public employment in France over the period 2008-2012 implemented by President

Sarkozy, where the rule was not to replace one out of two public employee retirements. While this

target was set nationally, it affected different locations differentially, based on the importance

of the public sector at baseline. Using this strategy, we document that places suffering higher

losses in public employment undergo a temporary decrease in private sector employment, with

an elasticity above .2. Contrary to previous literature on the subject, we find that public

employment losses affect negatively both tradable and non-tradable employment, although at

different time horizons: non-tradables react immediately, while we observe the effect on tradables

with a 5 years lag. We interpret the negative effect on the tradable sector as evidence that the

public sector produces spillovers, and affects local private employment beyond the mere local

multiplier (Moretti, 2010) going through the demand for locally-produced non-tradable goods

of civil-servants.

In the third part of the paper, we extend our baseline model to incorporate, first, fixed

nominal wages in the public sector following Monras (2019), and, second, spillovers from the

public to the private sectors. We show that fixed nominal wages in the public sector tend to

increase the size, the cost of living, and the wages in the private sector in the most relative

to the least productive cities. The intuition for this results is simple. The fixed wages in the

public sector limit the extent to which workers from the public sector are attracted to the most

productive locations. As a result, the share of private sector workers is larger than it would be

in a model where wages in the public sector are set competitively. In fact, the lower presence of

public workers when public wages are fixed makes the most productive cities more attractive to

private workers. Part of this higher appeal is reflected in more private workers, part in higher

private sector wages, and part in higher housing costs.

The second theoretical result that we highlight is that spillovers from the public to the private

sectors have the opposite effect on the distribution of economic activity than that of uniform

nominal wages. We model spillovers as a factor that increases productivity in the private sector

as a function of the number of public sector workers per inhabitant in each location. More

productive cities have a disproportionate number of private sector workers, and the production
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of public goods is therefore spread out over more individuals. This implies that spillovers are

smaller in the more productive cities, thus being a factor that dampens differences based on

productivities.

This paper relates to several strands of the literature. Several papers have taken interest

in how centralized wage setting influences performance and the labor market. Propper and

van Reenen (2010) study if pay regulation in the health sector in the UK has consequences on

the performances of that sector in the places where the outside wage is higher. They measure

performance through the estimated number of additional deaths of heart attacks, and find strong

negative effects on hospital quality from having a nationally set wage lower than the outside

wage. Britton and Propper (2016) use a similar setup focusing on teachers and find negative

effects on school quality. Boeri et al. (2019) study the labor market and productivity effects of

wage equalization across regions induced by collective bargaining agreements, contrasting the

cases of Italy and Germany. They estimate high employment and earnings costs of the Italian

system where nominal wages tend to be equalized relative to the German one. This paper also

fits in a larger literature interested in spatial misallocation, see for example the papers by Albouy

(2009), Fajgelbaum et al. (2016), Eeckhout et al. (2014), or Hsieh and Moretti (2017). These

papers tend to emphasize larger or smaller than optimal city sizes. Sector size within cities is

not their object of study.

Another strand of the literature has studied the effects of the location of public sector workers

on private employment. In particular, Faggio and Overman (2014) estimate the local labor

market effects of employment variation in the public sector, using a shift-share instrument (i.e.

the initial share of the public sector times the national growth trend of the public). They find

evidence of positive effects of public sector workers on the non-tradable private sector, however

offset almost completely by negative effects on employment in tradables. Using a similar strategy

on the Spanish case, Jofre-Monseny et al. (2019) find that public employment crowds-in private

employment, with effects concentrated in the non-tradable sector. Faggio (2019) finds similar

effects using the relocation of public sector workers in the UK. Becker et al. (2013) look at

the private labor market effects of the location of global public good producers, through the

displacement of the German capital city from Berlin to Bonn. They build a spatial equilibrium

model with potential productivity and amenity spillovers of the public sector on the private one.

They estimate the model and find little overall effects of the relocation of government workers

on local labor markets, because they crowd-out private workers from the housing market. These
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papers, however, do not consider the distinctive feature that in many countries wages in the

public sector are fixed.

A different yet convergent branch of the literature has focused on the existence of local

fiscal multipliers, and emphasized sizable effects of additional endowment of federal resources

on economic activity (Nakamura and Steinsson, 2014; Suárez Serrato and Wingender, 2016),

with a multiplier ranging between 1.5 and 2. Using a similar methodology, Suárez Serrato

and Wingender (2014) build a spatial equilibrium model and show that part of this effect goes

through spillovers that public jobs exert on local amenities.

The paper is organized as follows. The next section presents a theoretical benchmark, where

the public sector is just another sector with fixed wages. We describe our data in Section 3.3.

Section 3.4 presents evidence that the public sector has two important differences relative to other

sectors, which are related to its wage setting mechanism and the spillovers it produces. Section

3.5 studies a model with an influential yet constrained public sector. Section 3.6 concludes.

3.2 A baseline spatial equilibrium model with two sectors

We start by considering a benchmark model where the public sector behaves as an additional

sector, with no specificities compared to the private sector. In particular wages can freely adjust,

workers can freely move across sectors and locations and there are no spillovers from the public

to the private sector. This is the model implicitly considered in a large part of the literature

that studies the distribution of economic activity across locations, see the seminal contributions

of Rosen (1974) and Roback (1982).

Specifically we study the following model. There are two cities indexed by i ∈ {1, 2} and two

sectors indexed by j ∈ {Pub, Pri}, the public and the private sectors. We denote the number

of workers in sector j in city i by N j
i and wages by wji . Productivities in the private sector Ai

vary by city, and we assume that A1 > A2, i.e. city 1 is the most productive city. We assume

productivity in the public sector B is the same across locations.

The production technology is a CES function that combines land and labor. Land is a fixed

factor. The public sector has the same production function as the private sector, with the same

local labor demand elasticity – which we assume for simplicity – and maximizes profits.2 This

implies that the inverse labor demand is

2. We abstract potential preferences for and hence demand and prices for the public sector.
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wprii = Ai(N
pri
i )−1/η

wpubi = Bi(N
pub
i )−1/η

Consumers in the model spend a fraction α of their income in housing and a fraction 1−α in

the private sector good – which is freely traded at no cost. We assume this to be the numeraire.

We denote by pi is the price of housing in city i. Workers spend a fixed share α of income on

housing and housing supply is assumed inelastic in each city. This implicitly defines housing

prices:

α

pi
(wprii Npri

i + wpubi Npub
i ) = Hi.

The key feature of this benchmark model is that there is free mobility of workers across

sectors and across locations. Indifference between sectors implies that the wage in each location

is equalized across sectors:

Ai(N
pri
i )−1/η = Bi(N

pub
i )−1/η

Indifference between locations implies that the indirect utility of workers is the same across

locations:

A1(Npri
1 )−1/η

pα1
=
A2(Npri

2 )−1/η

pα2

Combining these conditions with the labor market and housing market clearing condition

yields the following results.

Proposition 8. (a) Wages are identical in the public and private sectors in both cities:

lnwprii = lnwpubi .

(b) The ratio of private to public workers is increasing in the gap in productivities

ln
Npri

1

Npub
1

− ln
Npri

2

Npub
2

= η(lnA1 − lnA2).
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(c) More productive cities have larger populations

lnN1 − lnN2 =
1− α

1− α+ αη
ln

(
Aη1 +Bη

Aη2 +Bη

)
,

(d) Wages and house prices are higher in more productive cities

lnw1 − lnw2 =
α

1− α+ αη
ln

(
Bη +Aη1
Bη +Aη2

)
,

ln p1 − ln p2 =
1

α
(lnw1 − lnw2).

Proposition 8.(a) is obtained directly from the free mobility of workers across sectors. Propo-

sition 8.(b) reflects the productivity advantage of city 1 with respect to city 2 in the the private

sector. This will make city 1 specialize in the private sector. The intuition for Proposition 8.(c)

and (d) is that on average city 1 is more productive than city 2. It arises from the fact that

productivity in the public sector is the same across cities, while the productivity in the private

sector is higher in city 1. In line with standard spatial equilibrium models, the higher produc-

tivity enables to sustain higher population levels, or higher wages or higher housing prices. How

much of this higher productivity is observed in population, wages, or housing prices depends

crucially on the share of labor in production and the share of housing in consumption.

Hence, a standard spatial equilibrium model has (at least) two clear implications. First, if

workers are free to choose the sector that they want to work on (as people are legally able to

do in most countries), wages should be equalized across sectors within locations and hence the

wage gradient across locations should be the same for each sector. Second, exogenous increases

in public sector employment (in the model, exogenous increases in B) should not affect private

employment, as highlighted in Proposition 8.(b). In the next section, we examine whether these

two predictions are in line with the empirical evidence.

3.3 Data

3.3.1 Employment Data

To measure public and private employment, we rely on information from the Déclarations An-

nuelles des Données Sociales (DADS). The DADS is built from mandatory social security contri-

bution records reported by firms operating in France, and it is provided by the French National
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Institute for Statistics and Economic Studies (INSEE). For every year, we observe every job

spell within France, which is defined at the worker-plant level. For every spell, we have some

basic information on the employee’s characteristics (such as age and gender), occupation, salary,

and the number of hours employed. For every plant, we have information on the industry and

municipality (commune) it operates in, as well as the industry and sector (private or public)

of the parent firm. Finally, for every job spell we also have some limited information on the

contract associated with the job, such as whether it is a part-time or full-time contract, and

whether it has a fixed or unlimited duration.

We focus on the ten years period between 2006 and 2015. The data for the private sector

is available for the whole period. For the public sector (except the army), it is available only

for the years 2009-2015. Some functions are however missing from 2009: we therefore have to

exclude some functions from our analysis to establish comparisons over time. This limits our

analysis to 85.2% of the fonction publique de l’Etat.3 For earlier years, we obtained specific

data on the public sector contained in the Fichier Général de l’État (FGE) to complete the

fonction publique de l’État. Unfortunately, this data is of lesser quality than the information

on public sector workers contained in the DADS, meaning we cannot draw robust comparisons

with subsequent data.

Because our interest is mainly on the local public goods provided by the public sector, we

sometimes focus on a set of core functions. They exclude very centralized functions such as

central administration, as well as from functions attached to the fonction publique de l’État but

grouped in one or few places (for instance national shipyards, various public agencies, national

parks administration). Our baseline definition of core functions includes teachers in pre-primary,

primary, secondary and higher education, hospitals, medical centers and elder care, social action,

police and firefighters.4

3.3.2 Wages

We take information for wages (net of social security contributions) at the job spell level from

the DADS Postes. To measure the local wage premium associated with each area in each sector

(private or public), we regress individual log hourly wages on age, age squared, a gender dummy,

3. In 2015, this amounts to 1.658 million out of the 1.944 million full-time equivalent workers in the FPE. The
main functions missing from the data in 2009 are superior education (around 200 thousand workers) and museums
(10 thousand workers).

4. Formally, we include all workers of the public sector in establishments with NAF (sector) codes starting with
851 (pre-primary education), 852 (primary education), 853 (secondary education), 854 (higher education), 8424
(police), 8425 (firefighters), 86 (hospitals), 87 (social and medical housing), 88 (social action).
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as well as a full set of position, industry and contract dummies, and a commuting zone dummy.5

We then recover these commuting zone fixed-effects, and normalize the minimum to zero. Thus,

the sectoral local wage premia we use can be interpreted as the local percent deviation from the

sector minimum in the hourly wage.

3.3.3 Local productivity estimates

Financial information on private firms is contained in the FICUS and FARE balance-sheet

datasets produced by the French tax administration (DGFiP). They report accounting data at

the firm level, such as gross value-added, sales, gross operating system, profits, employment

and paid wages. Value-added is the excess value of the firm’s production from the value of

intermediate consumptions, not considering the taxes and subsidies the firm may be submitted

to.

To measure productivity in each commuting zone, we aggregate gross value-added from

firms in the area. To handle firms with plants in multiple commuting zones, we take the spatial

distribution of their workforce from the DADS (i.e. the share of hours worked in each commuting

zone), and simply split their total value-added according to this share. We then divide by the

number of full-time equivalent workers in the area to obtain a measure of value-added per worker.

We take this measure as a proxy of local productivity.

3.3.4 Rents and housing prices

The main source we use on rents throughout the paper originates from a large web-scrapped

database, which records all rental annoucements posted in 2016 on the two main websites from

rental adds in France. From this database, we use municipality level fixed-effects from a standard

regression of the proposed rent on the characteristics of the house.6 We then take the mean of

these fixed-effects weighted by population to obtain a measure of rents in the commuting zone.

We also obtained the same type of municipality level fixed-effects for house prices, originally

calculated from the “Bases Notaires”.7

5. The contract variable takes 14 distinct values, the position variable follows the 4 digits PCS-ESE classification
and takes 429 different values (including 324 in the public sector), the industry variables follows the 5 digits NAF
rev.2 classification and takes 723 values (including 124 in the public sector).

6. These fixed-effects are extracted from a regression of the log of rents per square meter on powers of the log
of surface, the floor, the date of construction of the building when available, whether it is a single unit, whether
it is furnished.

7. The rents database is decribed in more detail in Chapelle and Eyméoud (2017). We warmly thank Guillaume
Chapelle for giving us access to the above sources.
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3.4 Empirical evidence

3.4.1 Institutional setting and summary statistics

The public sector in France employs more than 5 million people (i.e roughly 23% of total em-

ployment), divided in 3 categories: the fonction publique de l’État (national public servants,

sometimes abbreviated FPE), the fonction publique hospitalière (hospitals) and the fonction

publique territoriale (local civil servants). Wages in the fonction publique de l’État and hospi-

talière are set centrally and are theoretically uniform, except for a bonus called indemnité de

résidence that can range from 0 to 3% based on a list of cities which was set up after the Second

World War and not updated in depth since 1985.

The fonction publique de l’État covers many of the basic services. First, it includes professors,

in elementary, primary and secondary schools as well as higher education. This is in fact the

largest group (putting hospitals aside) as represented in Figure 3.1. The other large occupations

are police and administration. Figure 3.A.1 shown in Appendix presents the same population

divided by type of job rather than establishment.

Figure 3.1: Composition of the national public sector
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Notes: This figure presents the number of workers within the national public sector in France, expressed
in full-time equivalents, divided by the function of the establishment they work in. This includes the
fonction publique hospitalière, here comprised only of hospitals, and the function publique de l’État.

The Révision Générale des Politiques Publiques (RGPP) was launched in July 2007 under

the presidency of Nicolas Sarkozy, and aimed at reforming in depth the “Fonction Publique de

l’État”. The general publicized goal was to modernize the state, but one of its key purposes was

in fact a reduction of public employment. From 2008 to 2012, one out of two retirements was
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not replaced, amounting to an alledged reduction of employment of 144,000 over these 4 years.

The variation we observe in our data is actually lower, amounting to a loss of around 60,000

workers. Several factors could explain this difference: we observe only three years of reform,

the army was affected by large job cuts but is absent from our data, and official counts usually

record employment of ministries only, while our definition of public employment is wider and

would not count transfers out of the scope of ministries as losses.8 The variation by type of

occupation due to the RGPP is presented in Figure 3.2. It shows that the largest drops occurred

in the administration and in secondary teaching.

Figure 3.2: Variation in FPE employment during the RGPP
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The figure presents variations between 2009 and 2011 by type of public sector establishment (NAF).
The left panel presents relative variations, while the right panel presents variations in level (number
of full-time equivalent jobs).

3.4.2 Cross-sectional evidence

As shown in Section 3.2 one of the predictions of the baseline model is that a) wages in the

private and public sectors should increase in the same way with local productivity measures,

b) the ratio of private sector workers to public sector workers should increase strongly with

8. We consider a person to be employed by the FPE whenever the juridical category of either its employer or
its workplace depends on the FPE.
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local productivity, and c) Population and housing prices should also strongly increase with

productivity. In this section we show that some of these predictions do not hold in the data.

We argue that in this subsection that one of the main reasons why the data is not consistent

with the model in the cross-section is that wages in the public sector are not set competitively.

Private and public sector wages

The first striking fact is that equalization of wages across sectors in each city, expressed in

Proposition 8.(a), is clearly not satisfied. This is what we should expect from the institutional

framework, but we need to check that it indeed holds in the data.

As shown in Figure 3.A.4, wages are steeply increasing in the private sector as a function

of productivity, with an elasticity in the order of 9.3%, while they are barely increasing in the

public sector. The elasticity in the public sector is in the order of 2.3% , i.e. less than the

maximum bonus of 3% that is awarded based on local housing costs. This fits with the idea

that the list of cities where public servants can benefit from this bonus was barely revised since

the second world war and is thus not well aligned with current rents (nor productivities). This

result also indicates that wages cannot be adjusted using other bonuses to adjust for local living

costs.

Figure 3.3: Wages in the public and private sector
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Notes: This figure presents local wage premia measured as described in Section 3.3.2 for the public
sector (left panel) and the private sector (right panel) as functions of local log productivity. Public
sector here means all the national public sector (Fonction Publique de l’Etat and Fonction Publique
Hospitalière), but excludes the local public sector and State-owned firms. Private sector here means
all private-owned businesses. Log productivity is the natural logarithm of value-added per worker in
the commuting zone.
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Given that French workers are free to choose what sector to work on, Figure 3.A.4 suggests

that either there are large differences in real wages of public sector employees across locations

relative to private sector employees, or that on the job amenities – not included in our baseline

model – are significantly higher in the most productive cities. We think that the latter is unlikely

given the uniformity of tasks that the public sector performs across locations.

Relative size of private and public sectors

In the baseline model, we obtain a sharp prediction for the relative size of the private and public

sectors across locations. Given that wage-setting differs from what is assumed in the baseline

model, this prediction may not hold in the data either.

The size of the private sector relative to the public sector is only weakly increasing in local

productivity. As visible in Figure 3.4, the elasticity is at most 0.3 when we consider the core

functions of the public sector and as low as 0.1 when we consider all public sector employees.

Figure 3.4: Relative size of the private and public sector as a function of productivity
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Notes: These graphs present the ratio between the number of public sector workers and the number of
private sector workers (all in full-time equivalent), plotted against local log productivity. The left panel
considers all public sector workers, while the right panel restricts the public sector to our definition of
core functions. Log productivity is the natural logarithm of value-added per worker in the commuting
zone.

At first sight we may be tempted to relate the weak relationship between the private to

public sector ratio of workers to the fact that wages are not set competitively in the public

sector as argued in subsection 3.4.2. However, as we show more formally in Section 3.5, if we
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introduce fixed wages in the public sector into our baseline model we obtain that the relative

size of the private sector should be larger than when wages are set freely. Hence, in that model

we would obtain an even stronger relationship between the ratio of private to public employees

and local productivity. This suggests that there are other forces that the baseline model misses

that may help to explain the data.

Population size and housing prices

Figure 3.5: Total population and housing prices as a function of productivity
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Notes: These graphs present total population in a commuting zone as a function of productivity (panel
a) and rents (panel b). Log productivity is the natural logarithm of value-added per worker in the
commuting zone. Log rents are measured as the natural logarithm of an population weighted mean in
the commuting zone of rents cleaned from the houses characteristics.

A final aspect that the baseline model highlights is that population and housing prices should

be increasing in local productivity. We show these relationships in Figure 3.5. Panel (a) shows

that the elasticity between productivity and population is around 2.4. Reversing the graphs to

express productivity as a function of population, this estimate is comparable to estimates in

the literature that try to explain local agglomeration forces of population on productivity and

obtain estimates that range from 0.04 to 0.1 (Combes and Gobillon, 2014) – we put productivity

in the x-axis since this is the exogenous measure in our baseline model. Panel (b) shows the

relationship between housing prices and local productivity. It displays a similar pattern as with

population: rents strongly increase in productivity, with a measured elasticity of .23.
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3.4.3 Spillovers: the RGPP experiment

We provide evidence that the public sector generates local spillovers to the private sector, using

the non-replacement of one out of two retiring civil servants in the “Fonction Publique de l’État”

between 2008 and 2012 as part of the RGPP reform, and study the effects it had on the activity

of the private sector. Because our database starts only in 2009 while the beginning of non-

replacements was in 2008, we do not observe the full reform period and focus on job cuts from

2009 onward.

Instrument

To evaluate the local effect caused by public employment losses, we need places to be dif-

ferentially affected by the reform, along a dimension that was fixed ex ante and determined

the exposure of an area to the reform without determining future private employment growth.

Indeed, we want to abstract from the part of the variation in public employment which is cor-

related with variations in private employment or population. Typically, two phenomena may

coexist jointly with the reform and bias our estimates of the effect of public sector variations

in the simple OLS. On the one hand, public employment may increase relatively in areas where

the needs for public services have increased, therefore following recent growth in private employ-

ment, which is likely to be positively correlated with the future trend in employment growth.

On the other hand, the government may be reluctant to cut public employment in declining

places.

The year 2009 was quite peculiar for the public sector: while it was supposed to be the key

year of the reform because of a historical high in the predicted number of retirees in the public

sector (around 70 thousands), the actual number of retirees was actually much lower (around

55 thousands), meaning that recruitment was far too large to meet the one out of two rule for

retirees’ replacement. Therefore, we do not observe losses at the national level nor on average in

a commuting zone between 2009 and 2010, which therefore resembles more to a reallocation of

public employment over the territory than an actual reduction. A dimension that nonetheless

stands out in public employment variations during the reform period is the fact that places

starting with a high endowment of public sector relative to the private sector had to contribute

more to the national effort of reducing public employment. The existence of spatial inequalities

in such ratio is consistent with the facts shown in Figure 3.4: fixed wages in the public sector

contribute to generating an unbalanced distribution of civil servants over the territory. Yet, the
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Figure 3.6: A visual representation of the estimation first-stage
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(a) Scatter of 2009-10 public employment varia-
tion against the instrument.
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(b) Linear fits of public employment variation be-
tween 2009 and the next three years against the
instrument.

Notes: Panel (a) shows a scatter plot of the variation in public employment (∆ log) between 2009 and
2010 as a function of the public to private ratio in 2009. The slope of the fitted line is -.44 (standard
error is .09). Panel (b) shows the fitted line of public employment variation between 2009 and three
subsequent years. The blue line is the fitted line relative to the variation 2009-2010 shown in panel
(a), the red line is that of the variation 2009-2011 (slope is -.50, s.e. is .11), the green line shows the
variation between 2009 and 2012 (slope is -.70, s.e. is .12).

Figure 3.7: Maps of public employment variation and public/private employment
ratio
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These figures represent maps of commuting zones in metropolitan France (excluding Corsica). In panel
(a), commuting zones are colored according to their public to private employment ratio in 2009, where
dark red means a high value (at least .13), and light yellow a low value (less than .08). In panel (b),
areas are colored according to their variation in public employment, where dark red means larger losses
(at least - 8%) and lighter colors mean lower losses (or even increases by at least .7 % for light yellow
areas).
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variance in the private to public employment ratio once differences in productivity are accounted

for is still considerable, which could simply come from a strong path-dependence in the size of the

public sector in each city. We calculate this ratio as the number of people in the area employed

in the FPE (part of the public sector exposed to the reform) over the number of people employed

in the private sector. Conditional on variables which should cause differences in this ratio based

on the model exposed below (typically, the wage premium difference between the private and

the public sector), this provides us with an instrumental variable which predicts the treatment

intensity of the reform in an area.

Figure 3.6 shows the variations of public employment during the reform plotted against the

instrument. Figure 3.6.b shows that most of the spatial differences were introduced between

2009 and 2010: later years of the reform keep cutting public sector jobs, but do not consid-

erably increase the slope between public employment variation and the ex ante public/private

employment ratio. Because the reform was staggered over several years and the later years still

introduced some spatial differences (as shown in Figure 3.6.b, the slope of the 2009 to 2012

variation is around one and half times that of 2009 to 2010), we present results in two ways. In

the baseline, we look at variations from 2009 to years after 2010 (i.e. after areas were treated

differentially), but we present in the Appendix the analogous results for the effect of public

employment over the full reform period on private employment in years after 2012 (after the

reform ended). Tables 3.A.2 and 3.A.3 presented in Appendix show the first stage of our 2SLS

IV regressions, on the public employment variation respectively between 2009 and 2010, and

2009 and 2012. The Kleinbergen-Paap F-stat, used to judge the strength of the instrument,

ranges between around 25 and 40 depending on the specifications, meaning we can reject that

the instrument might be weak.

A usual test of the exclusion restriction of the instrumental variable is whether it correlates

with the outcome variable considered in years preceding the shock. Tables 3.A.4 and 3.A.5

presented in Appendix show such standard Placebo shock using pre-trends: conditional on our

control variables, the instrument does not predict our outcome variable considered in the years

prior to the shock, either when used in a 2SLS regression or directly in a reduced-form estimation.

This confirms that places with relatively higher levels of public to private employment did not

have different private employment trends conditional on our control variables than places with

lower such levels before the shock hit.

There are several caveats regarding our empirical design. First, following the argument
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we develop in the next section, a higher public to private ratio influences private employment

through higher spillovers. While the theoretical argument we make is static, it should have

dynamic implications. Therefore, a higher public to private employment ratio should imply a

higher private employment growth. This force would lead us to underestimate the true effect

of public employment variation, since a higher public to private ratio leads to larger public

employment losses. A second major caveat is of course the fact that we miss the first year of

the reform. While the 2009 to 2010 yearly variation seems very distinctive, it could be that

the reform implied a similar variation between 2008 and 2009, meaning that we overestimate

our effect (it could arguably also have been applied more strictly in places with lower public

to private employment ratios, although this seems unlikely). The existing data on the period

makes it very difficult to be conclusive on that side. While 2008 to 2009 public sector variations

in that data source also strongly correlate negatively with the public to private ratio (calculated

from either database), the range of variations seems far too wide, with places losing up to 43%

of their public employment over a single year. Considering the above-mentioned correlation, it

seems likely that the reform exposure followed the same spatial pattern in the first year of the

reform, meaning that places with more civil servants compared to private workers underwent

larger negative public sector variations. This means we probably overestimate the magnitude

of our effects: we therefore interpret our results only qualitatively, and do not take a stance

on the underlying value of the public sector multiplier on private sector activity. Regardless of

that value, the fact that the public sector does generate spillovers on the private sector emerges

unambiguously in our results.

Because our period of study was marked by a deep economic crisis, implying large negative

variations in private employment concentrated on some sectors (for instance construction), all

regressions conducted throughout this section include as a covariate Bartik (1991)-type shocks,

calculated over the same period as the dependent variable, which account for the an area’s

private employment exposure to country-wide sectoral changes over the period.9

In what follows, we present results for three different specifications: one with minimal controls

(called “No controls” throughout), one with a set of controls for the characteristics of an area at

the time of the shock (called “Mid controls” throughout), and one controlling also for potential

differences in pre-period variations in population and employment (called “Full controls”). In

9. Bartik shocks are calculated using NAF 5 digits industry codes, calculating shares of private employment
by commuting zone with the DADS. As has become common practice and is formally advised by Goldsmith-
Pinkham et al. (2018), we use leave-one-out growth rates, meaning that the national trend in each industry for
each commuting zone excludes its own contribution to that share.
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the “No controls” strategy, the only variable other than our dependent variable and our variable

of interest is the Bartik shock. The “Mid controls” strategy is our preferred specification: it

includes variables which are likely to influence our instrumental variable for the reasons explained

above (logs of population, public private wage ratio, productivity, rents, and the share of the

population living in rural municipalities). The “Full controls” strategy adds control variables

accounting for the trajectory of the areas before the shock, namely the population trend between

1999 and 2009, and private employment trend between 2006 and 2009. It seems however too

restrictive since our variable of interest then correlates negatively with the outcome variable

in the pre-shock period. Table 3.A.1 shown in Appendix provides summary statistics of the

variables used in the regressions.

Results

Figure 3.8: IV regression results of public variation between 2009 and 2010 on private
employment subsequent years.
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This figure plots coefficients and confidence intervals of the second-stage of 2SLS regressions of the ∆
log of private employment between 2009 and the year indicated on the x-axis on the ∆ log of public
employment between 2009 and 2010, instrumented by the public to private ratio in 2009. The y-axis
shows the value of the point-estimates and confidence interval bounds. Dots correspond to point-
estimates, dashed brackets to their 95 % confidence interval. Each color corresponds to a different
specification, where lighter blue means more control variables are added and the darkest blue means
no controls other than Bartik shocks are added.

Table 3.1 presents the main results for private employment taken in the 2009 to 2013 period,

using the public employment variation induced by the reform only between 2009 and 2010.

Column (1) presents the first stage of the regression, and displays a F-Stat of 24 implying that

the instrument is strong. Column (2) shows the results of a simple reduced-form regression of the
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Table 3.1: Results of the main regressions for the 2009 to 2013 period

(1) (2) (3) (4)

Dep. Var.: ∆ log Pub Empl. ∆ log Pri Empl.

Period: 09-10 09-13

Estimate 1st stage RF IV OLS 2SLS

Pub (FPE)/Pri Ratio 2009 -0.48*** -0.27***

(0.10) (0.10)

∆ log Public Empl. 09-10 0.07 0.48**

(0.05) (0.21)

Bartik Shock -0.09 0.71*** 0.67*** 0.61***

(0.13) (0.16) (0.16) (0.18)

Public/Private Wage ratio -0.06 -0.07 -0.04 -0.02

(0.09) (0.09) (0.09) (0.09)

Log Rents -0.02 0.06 0.07 0.04

(0.04) (0.05) (0.05) (0.04)

Log Productivity 0.02 -0.01 -0.01 -0.02

(0.02) (0.02) (0.02) (0.03)

Log Population 0.01 0.01* 0.01 0.00

(0.00) (0.00) (0.00) (0.00)

Share of Pop. in rural area 0.01 0.06** 0.05** 0.01

(0.02) (0.02) (0.02) (0.02)

VCE Robust Robust Robust Robust

N obs 296 296 296 296

R-squared 0.101 0.117 0.0978 .

1st stage KP F-stat 23.97 . . 23.97

This table presents the results for the main regressions of interest, using the 2009 to 2010 public
employment variation, and the 2009 to 2013 private employment variation, using the “mid-controls”
set. Column (1) presents the result of the first stage of the 2SLS IV regression. Column (2) presents
the reduced-form IV regression, meaning that the dependent variable (private employment variation)
is regressed directly on the IV and controls. Column (3) presents the naive OLS. Column (4) presents
the second-stage of our 2SLS IV regression.

dependent variable on our instrument, which displays a significant coefficient. Columns (3) and

(4) display the results respectively of the naive OLS and of our 2SLS IV strategy. As expected,

the variation in the OLS is very imprecisely estimated, but the IV regression is associated with

a large and significant coefficient. Figure 3.8 shows the baseline IV estimates obtained with our

three different specifications. For each specification, the x-axis shows the final year of the period

through which we consider private employment variations. The plotted coefficients correspond

to the coefficient associated to our variable of interest (public employment variation between

2009 and 2010) instrumented by the public to private employment ratio in 2009, and the dashed

brackets to their 95 % confidence interval. Each color corresponds to a different specification,

where lighter blue means more control variables are added. The figures shows a positive effect

of public employment variations on private employment, meaning that places undergoing larger
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public job cuts faced a larger decrease in private employment in the subsequent years. This effect

is most vivid in the years directly following the shock. In later years, point estimates remain

stable but the estimation becomes less precise, suggesting that some places may recover from

the treatment while others do not. Although they are more noisy and smaller in magnitude, the

simple OLS estimates presented in Figures 3.A.5 and 3.A.6 in the Appendix provide a similar

picture: they show short-run effects, which remain positive but become insignificant a couple of

years after the shock.

Figure 3.9: IV regression results of public employment variation (∆ log) between
2009 and 2010 on non-tradable and tradable sectors.
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(a) Non-tradables.
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(b) Tradables.

These figures plot coefficients and confidence intervals of the second-stage of 2SLS regressions of the ∆
log of private employment (in non-tradables in panel a, in tradables in panel b) between 2009 and the
year indicated on the x-axis on the ∆ log of public employment between 2009 and 2010, instrumented
by the public to private ratio in 2009. The y-axis shows the value of the point-estimates and confidence
interval bounds. Dots correspond to point-estimates, dashed brackets to their 95 % confidence interval.
Each color corresponds to a different specification, where lighter blue means more control variables
are added and the darkest blue means no controls other than Bartik shocks are added.

The effect on overall private employment however hides a strong dimension of heterogeneity

across sectors. In particular, the mechanisms through which tradable and non-tradable sectors

are affected strongly differ. The non-tradable sector will suffer from decreases in local demand,

as with any local employment drops in another sector, through a local multiplier mechanism

(Moretti, 2010; van Dijk, 2016). The tradable sector should however not suffer from such local

consumption effect, but is more likely to be affected by spillovers from the public sector (it

does not rely on local demand, arguably has larger underlying differences in productivity, and

should benefit from a lower pressure on the housing market). Our estimates for non-tradables,

presented in Figure 3.9.a, are in line with prior literature on local multipliers as well as with the

literature on the effects of public sector employment (Faggio and Overman, 2014; Faggio, 2019;
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Jofre-Monseny et al., 2019): we observe large short-run effects of public employment drops in

non-tradables, which decrease and become less significant at the end of the period, suggesting

at least a partial recovery in part of the places most affected. Our results on the tradable sector

presented in Figure 3.9 however differ strongly from the existing literature. While some papers

find public employment crowds out the tradable sector through increased prices in the housing

sector, we find on the contrary that public employment job cuts strongly negatively affected

employment in tradables. This effect seems to occur in the longer-run, and the time-window

we observe does not allow to state whether it is temporary or not. As shown in Figures 3.A.8,

3.A.9 and 3.A.10 in the Appendix, these results carry-through when we restrict tradables to

manufacturing, and when consider public job cuts in the 2009-2012 period on subsequent years.

The fact that the measured elasticity is much greater on the tradables than on the non-tradables

is not worrying, since the tradable sector is on average much smaller than the non-tradables.

3.5 A spatial equilibrium model of the public sector with nom-

inal rigidities and spillovers

Two key features of the public sector are emphasized in the preceding analysis. First, wages

in the public sector are essentially independent of the local characteristics and fixed across the

country. Second, the public sector has a spillover effect on the private sector. We introduce in

turn these two features in the model. They have opposing effects on the distribution of economic

activity. Spillovers tend to reduce the dispersion of activity while geographical rigidity of wages

tends to increase it. These two features are introduced in the following way:

Spillovers

The size of the public sector in city i influences the productivity of the private sector.

Specifically productivity Ai is multiplied by a factor

(
Npub
i
Ni

)β
, where β measures the strength

of spillovers. The implicit assumption is that, the larger the population, the less each inhabitant

can benefit from the addition of an extra public worker.

Geographical rigidity of wages

The wage is assumed fixed across locations in the public sector. Wage rigidity in just one

sector means that the other sectors absorb the excess supply, see for instance the minimum wage
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literature on covered and uncovered sectors (Zenou, 2009). To deviate from this literature and

make the model consistent with the wage setting mechanism in France, we assume instead that

a worker entering the public sector does not know in which city she will be appointed. The

probability of being sent to city 1 depends on the relative size of the public sectors in city 1 and

city 2, i.e on
Npub

1

Npub
2 +Npub

1

. Indifference between sectors will thus pin down wages in the private

sector, as expressed in the following relation that states that expected indirect utilities need to

be equalized across cities:

wi
pαi

=
Npub

1

Npub
1 +Npub

2

w̄

pα1
+

Npub
2

Npub
1 +Npub

2

w̄

pα2

This equation says that the real wage in city i has to be equal to the expected indirect

utility when working in the public. Expected indirect utility in the public sector is given by the

probability of working in each city times the wage (which is independent of the city) and the

price of housing in the city.

An immediate consequence of this equation is that realized real wages in the public sector

are not necessarily equalized across space. Some public workers are lucky and get assigned to

good cities, while others are assigned to worse ones. In practice, some administrations make this

decision less random by giving some decision power to workers with more seniority. We abstract

from this for simplicity in this model.

3.5.1 Model with spillovers

Given the existence of spillovers, the inverse labor demand curves in the two sectors become:

wprii = Ai

(
Npub
i

Ni

)β
(Npri

i )−1/η

wpubi = Bi

(
Npub
i

Ni

)β
(Npub

i )−1/η

The fact that spillovers affect the private and public sector in the same way implies that the

indifference between sectors within a city is unaffected compared to the benchmark model. The

indifference between locations is however altered, since cities will benefit from different levels of
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spillovers in equilibrium. This indifference can be written:

A1

(
Npub

1
N1

)
(Npri

1 )−1/η

pα1
=

A2

(
Npub

2
N2

)
(Npri

2 )−1/η

pα2

which implies:

A1

A2

(
Npub

1
N1

)β
(
Npub

2
N2

)β =

(
Npri

1

Npri
2

)1/η (
p1

p2

)α

Cities with relatively less public sector workers will benefit from smaller spillovers and this

will tend to decrease the gap between the most and least productive cities as expressed in the

following result.

Proposition 9. In a model with spillovers:

(a) The ratio of private to public workers does not depend on spillovers

ln
Npri

1

Npub
1

− ln
Npri

2

Npub
2

= η(lnA1 − lnA2).

(b) The gap in population between the most and least productive city decreases with the strength

of spillovers β

lnN1 − lnN2 =
1− α− ηβ(1− α)

1− α+ αη
ln(

Aη1 +Bη

Aη2 +Bη
).

(c) The gap in wages and house prices between the most and least productive city decreases with

the strength of spillovers β

ln
w1

w2
=

α(1− ηβ)

1− α+ αη
ln(

Bη +Aη1
Bη +Aη2

),

ln
p1

p2
=

1

α
ln
w1

w2
.

Workers can move freely across sectors and given that spillovers affect both sectors in the

same way, Proposition 9.(a) shows that the gap in the ratio of private to public sector workers

136



3.5. A spatial equilibrium model of the public sector with nominal rigidities
and spillovers

is increasing in the gap in productivities, as in the baseline model, but does not depend on the

spillover parameter β.

Spillovers however affect the other relations. As indicated in Proposition 9.(b), more pro-

ductive cities have larger population since they can offer higher wages. This gap in population

is decreasing in spillovers. City 1, with a larger population, receives less spillovers since, ac-

cording to result (a), the ratio of public to private is the same in the two cities and given that

population is larger in the more productive city, spillovers are smaller. This in turn decreases

the gap between cities, both in terms of population and in terms of wages.

3.5.2 Model with geographical rigidity of wages

We now introduce the second key characteristic of the public sector, the fact that wages do not

vary across cities. We consider the case where there are no spillovers, the combination with

spillovers is studied in the following section.

The first key consequence is that, given that the wage in the public sector is equal across

cities, the size will also be equalized: Npub
1 = Npub

2 .

The indifference condition between the public and the private sector is then given by:

wi
pαi

=
Npub

1

Npub
1 +Npub

2

w̄

pα1
+

Npub
2

Npub
1 +Npub

2

w̄

pα2

=
1

2

(
1

pα1
+

1

pα2

)

So that:

w1 =
w̄

2

pα1 + pα2
pα2

In the previous sections we considered the traded good to be the numeraire. Here instead it’s

very convenient to have pα1 + pα2 as the numeraire, so that the indifference conditions becomes:

w1 =
1

2

w̄

pα2
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Overall we obtain the following result:

Proposition 10. In a model with geographical rigidity of wages in public sector

(a) The size of public sector is the same in both cities.

Npub
i = Npub

j

(b) Ratio of private to public larger in more productive cities, and the gap is wider than when

wages in the public sector are flexible

ln
Npri

1

Npub
1

− lnN
pri
2

Npub
2

= η (lnA1 − lnA2) + ηα (lnp1 − lnp2) .

(c) The gap in population between most and least productive cities is wider than when wages in

the public sector are flexible

ln(N1)− ln(N2) =
−αη

1 + αη − α
(
ln(Aη1 + (β12)η−1Bη)− ln(Aη2 + (β21)η−1Bη)

)
+ (ln(Aη1 + (β12)ηBη)− ln(Aη2 + (β21)ηBη)) .

(d) The gap in private wages and housing prices between most and least productive cities is

wider than when wages in the public sector are flexible

ln
w1

w2
=

α

1− α+ αη
ln(

Bη + (β12)η−1Aηi
Bη + (β21)η−1Aηj

)

ln
p1

p2
=

1

α
ln
w1

w2

Proposition 10.(a) states that the size of the public sector is the same in both cities. This

is a direct consequence of the fact wages and productivity do not vary across cities, so that the

decision on employment will be identical.

Proposition 10.(a) states that the gap between the ratio of private to public workers widens

when wages are rigid in the public sector. With fixed wages, public sector workers in city i

can spend less on housing than if wages were flexible. The housing price is thus lower, and

more private workers need to move to city i to clear the market. The relative size of private to
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public in city i compared to j thus grows. In turn this implies that the gap in population and

housing prices between the most and the least productive cities increases. Overall, the rigidity

in wages has the opposite effect on the distribution of economic activity compared to the effect

of spillovers. In the next section we study the balance between these different effects.

3.6 Conclusion

This article shows, both theoretically and empirically, that the location of public sector workers

producing local public goods strongly influences the location of economic activity. Using com-

prehensive data on both public and private employment in France, we show that two distinctive

features make the public sector stand out compared to the standard spatial equilibrium model.

First, we show that the fact that wages are centrally set with limited leeway to adjust them

to local prices imply that wages are not equalized with those of the private sector within a city.

This means a higher productivity in the private sector puts upward pressure on wages, in turn

decreasing its attractiveness to public sector workers, who are better off in places with lower

rents thus lower productivity (keeping amenities constant). We show that this might explain

part of the imbalances between the respective numbers of workers in the public and in the private

sector across the French territory.

Second, we show that the location of civil servants influences local economic activity through

the spillovers they produce on the private sector. We use large public job cuts which occured

during the period 2008 to 2012 and affected areas differently to highlight the implied losses in

private employment in subsequent years. Consistently with the literature, we find that places

suffering larger losses also lost employment in the non-tradable sector, which is easily explained

by the drop in local demand for non-tradable goods. In contrast with the literature however,

we find that places affected more strongly by the policy also suffer large losses in the tradable

sector, which can only be rationalized through the existence of positive spillovers from the public

sector to the tradable sector.

We then integrate the above findings in a spatial equilibrium model with two sectors, where

public sector workers are sent in a city at random, have a fixed wage, and generate positive

spillovers on the other sector. We show that the fixed-wage structure, because the wage-

constrained sector can then consume less housing, tends to increase the gap in labor market

size between low and high productivity cities. In contrast, because a higher productivity in the
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private sector crowds out some public workers, the existence of spillovers affecting positively the

private sector lowers this gap.
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Appendix

3.A Proofs

Proof of Proposition 8

Indifference between sectors gives:

Ai(N
pri
i )−1/η = Bi(N

pub
i )−1/η

And hence:

Ai
Bi

=
(Npri

i )1/η

(Npub
i )1/η

Indifference between locations implies:

A1(Npri
1 )−1/η

pα1
=
A2(Npri

2 )−1/η

pα2

which implies:

A1

A2
=

(Npri
1 )1/η

(Npri
2 )1/η

pα1
pα2

Labor market clearing is given by:

Npri
i +Npub

i = Ni

N1 +N2 = 1

Combining labor market clearing and the indifference between sectors we obtain that:
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Ai
B

=
(Ni −Npub

i )1/η

(Npub
i )1/η

And so:

(
Ai
B

)ηNpub
i = (Ni −Npub

i )

And

Npub
i =

1

1 + (AiBi )
η
Ni

Npub
i =

Bη
i

Bη
i +Aηi

Ni

And that:

Npri
i =

Aηi
Bη
i +Aηi

Ni

These conditions mean that the share of local employment in each local sector depends on

the relative productivity between the two sectors.

From the indifference condition between regions we obtain that:10

(
Bη +Aη1
Bη +Aη2

)
1−α

1+α(η−1) = (
N1

N2
)

This implies result (c)

lnN1 − lnN2 =
1− α

1 + α(η − 1)
(ln(Bη +Aη1)− ln(Bη +Aη2))

Note now that 1−α
1+α(η−1) > 0 if and only if:

1

α
> (1− η)

And this always holds since α ∈ (0, 1) and η > 0.

We can now obtain the wages prevailing in equilibrium:

10. See appendix.
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wprii = wpubi

And:

w1

w2
=
A1

A2
(

Aη1
Bη+Aη1

N1

Aη2
Bη2 +Aη2

N2

)−1/η

Hence:11

w1

w2
= (

Bη +Aη1
Bη +Aη2

)
1
η

(1− 1−α
1+α(η−1)

)

This expression can be reexpressed as result (d).

Proof of Proposition 9

The inverse labor demand curve in the private sector is given by:12

wprii = Ai

(
Npub
i

Ni

)β
(Npri

i )−1/η

The inverse labor demand curve in the public sector is given by:

wpubi = Bi

(
Npub
i

Ni

)β
(Npub

i )−1/η

Indifference between sectors gives:

Ai

(
Npub
i

Ni

)β
(Npri

i )−1/η = B

(
Npub
i

Ni

)β
(Npub

i )−1/η

And hence:

Ai
B

=
(Npri

i )1/η

(Npub
i )1/η

11.

w1

w2
= (

Bη +Aη1
Bη +Aη2

)1/η(
N1

N2
)−1/η

Hence:

w1

w2
= (

Bη +Aη1
Bη +Aη2

)1/η((
Bη +Aη1
Bη +Aη2

)
1−α

1+α(η−1) )−1/η

12. This can be easily obtained from a CES production function that combines land and labor. Land is a fixed
factor.
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Indifference between locations implies:

A1

(
Npub

1
N1

)
(Npri

1 )−1/η

pα1
=

A2

(
Npub

2
N2

)
(Npri

2 )−1/η

pα2

which implies:

A1

A2

(
Npub

1
N1

)β
(
Npub

2
N2

)β =
(Npri

1 )1/η

(Npri
2 )1/η

pα1
pα2

Labor market clearing is given by:

Npri
i +Npub

i = Ni

N1 +N2 = 1

Combining labor market clearing and the indifference between sectors we obtain that:

Npub
i =

Bη

Bη +Aηi
Ni

And that:

Npri
i =

Aηi
Bη +Aηi

Ni

From the indifference condition between cities we obtain that:

A1

A2

(
Npub

1
N1

)β
(
Npub

2
N2

)β =
(Npri

1 )1/η

(Npri
2 )1/η

pα1
pα2

hence:

A1

A2

( Bη

Bη+Aη1
)β

( Bη

Bη+Aη2
)β

=
(

Aη1
Bη+Aη1

N1)1/η

(
Aη2

Bη+Aη2
N2)1/η

pα1
pα2

Now from

α

(
Npub
i

Ni

)β
(Ai(N

pri
i )1−1/η +B(Npub

i )1−1/η) = pi
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α(
Bη

Bη +Aηi
)β(Ai(

Aηi
Bη +Aηi

Ni)
1−1/η +B(

Bη
i

Bη +Aηi
Ni)

1−1/η) = pi

αN
1− 1

η

i (
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)β(Ai(

Aηi
Bη +Aηi
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ααN
α(1− 1

η
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Aηi
Bη +Aηi
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And thus:
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3.B Additional figures and tables

3.B.1 On cross-sectional evidence

Figure 3.A.1: Composition of the national public sector (by type of job)
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Notes: This figure presents the number of workers within the national public sector in France, expressed
in full-time equivalents, divided by the function of the worker. It includes both the fonction publique
hospitalière and the function publique de l’État.

Figure 3.A.2: Mean wages in the public and private sector
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(b) Private sector

Notes: This figure presents mean hourly wage in each commuting zone measured as described in
Section 3.3.2 for the public sector (left panel) and the private sector (right panel) as functions of
local log productivity. Public sector here means all the national public sector (Fonction Publique de
l’Etat and Fonction Publique Hospitalière), but excludes the local public sector and State-owned firms.
Private sector here means all private-owned businesses. Log productivity is the natural logarithm of
value-added per worker in the commuting zone.
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Figure 3.A.3: Wages in the public (core functions) and private sector as a function
of the private sector productivity
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(b) Private sector

Notes: This figure presents local wage premia measured as described in Section 3.3.2 for the public
sector restricted to its core functions (left panel) and the private sector (right panel) as functions of
local log productivity. Public sector here means all the national public sector (Fonction Publique de
l’Etat and Fonction Publique Hospitalière), but excludes the local public sector and State-owned firms.
Private sector here means all private-owned businesses. Log productivity is the natural logarithm of
value-added per worker in the commuting zone.

Figure 3.A.4: Wages in the public and private sector as a function of population
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(b) Private sector

Notes: This figure presents local wage premia measured as described in Section 3.3.2 for the public
sector (left panel) and the private sector (right panel) as functions of local log productivity. Public
sector here means all the national public sector (Fonction Publique de l’Etat and Fonction Publique
Hospitalière), but excludes the local public sector and State-owned firms. Private sector here means
all private-owned businesses. Log productivity is the natural logarithm of value-added per worker in
the commuting zone.
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3.B.2 On the RGPP reform

Table 3.A.1: Summary statistics of the variables used in the regressions

Mean Median St.dev. min max

Number of private sector workers (FTE) 49434.92 19453.88 143760.85 2770.75 2279658.16

Number of public sector workers (FTE) 5626.42 2349.75 14926.49 342.06 231836.44

∆ log Private Empl. 09-10 -0.01 -0.01 0.02 -0.11 0.12

∆ log Private Empl. 09-12 -0.00 -0.00 0.03 -0.17 0.11

∆ log Private Empl. 09-15 0.00 0.00 0.06 -0.22 0.15

∆ log Public Empl. 09-10 0.01 0.01 0.05 -0.25 0.20

∆ log Public Empl. 09-11 -0.01 -0.00 0.06 -0.29 0.18

∆ log Public Empl. 09-12 -0.04 -0.03 0.07 -0.34 0.13

Number of workers in tradables 15945.96 6700.55 52852.19 531.42 857170.65

∆ log tradables Empl. (09-10) -0.02 -0.02 0.06 -0.43 0.34

∆ log tradables Empl. (09-12) -0.03 -0.03 0.07 -0.29 0.32

∆ log tradables Empl. (09-15) -0.05 -0.05 0.11 -0.71 0.30

Number of workers in non-tradables 33375.97 13364.94 91181.34 1856.29 1421624.95

∆ log non-tradables Empl. (09-10) -0.01 -0.01 0.03 -0.11 0.26

∆ log non-tradables empl. (09-12) 0.01 0.01 0.03 -0.14 0.10

∆ log non-tradables empl. (09-15) 0.02 0.02 0.05 -0.17 0.17

Number of workers in manufacturing 9170.35 5406.87 14063.46 252.76 166992.83

Number of workers in non-manufacturing 40151.58 14313.05 131296.33 1930.38 2111802.77

Pub (FPE) /Pri Ratio in 2009 0.10 0.10 0.03 0.04 0.21

Public/Private Wage ratio 0.04 0.05 0.03 -0.07 0.11

Log Rents 0.78 0.76 0.09 0.55 1.11

Log Productivity 4.46 4.43 0.18 4.04 5.21

Log Population 11.71 11.59 0.95 9.83 15.60

Share of Pop. in rural area 0.38 0.39 0.20 0.00 0.94

Population pre-trend (1999-2009) 0.06 0.05 0.05 -0.07 0.24

Private empl. (etp) Var. (pct) 06-09 0.07 0.07 0.05 -0.13 0.25

Observations 297
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Table 3.A.2: First stage of the 2SLS IV regression using the 2009-10 variation

(1) (2) (3)

Dep. Var.: ∆ log Public Empl. 09-10

Pub (FPE) / Pri Ratio in 2009 -0.441*** -0.487*** -0.499***

(0.093) (0.097) (0.100)

Bartik Shock -0.065 -0.026

(0.152) (0.152)

Public/Private Wage ratio -0.061 -0.058

(0.089) (0.092)

Log Rents -0.021 -0.005

(0.044) (0.047)

Log Productivity 0.021 0.019

(0.018) (0.018)

Log Population 0.005 0.006

(0.003) (0.004)

Share of Pop. in rural area 0.010 0.014

(0.022) (0.024)

Population pre-trend (1999-2009) -0.048

(0.064)

Private Empl. (etp) Var. (pct) 06-09 -0.009

(0.079)

R-squared 0.0794 0.0997 0.102

VCE Robust Robust Robust

N obs 297 296 296

KP F-stat 22.65 25.07 25.11

Notes: This table presents the results of the first-stage of our 2SLS regression, i.e. the regression of
our covariate of interest (∆ log of Public Employment 09-10) on the exluded instrument and other
covariates. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.A.3: First stage of the 2SLS IV regression using the 2009-12 variation

(1) (2) (3)

Dep. Var.: ∆ log Public Empl. 09-12

Pub (FPE) / Pri Ratio in 2009 -0.698*** -0.798*** -0.736***

(0.117) (0.122) (0.129)

Bartik Shock 0.318 0.286

(0.200) (0.212)

Public/Private Wage ratio -0.182 -0.172

(0.164) (0.161)

Log Rents 0.063 0.017

(0.057) (0.061)

Log Productivity 0.036 0.040

(0.025) (0.025)

Log Population 0.010* 0.010*

(0.005) (0.005)

Share of Pop. in rural area 0.033 0.031

(0.033) (0.034)

Population pre-trend (1999-2009) 0.170*

(0.090)

Private Empl. Var. 06-09 -0.066

(0.097)

R-squared 0.0886 0.159 0.170

VCE Robust Robust Robust

Controls None Static Stat. and dyn.

N obs 297 296 296

KP F-stat 35.59 42.53 32.77

Notes: This table presents the results of the first-stage of our 2SLS regression, i.e. the regression of
our covariate of interest (∆ log of Public Employment 09-12) on the exluded instrument and other
covariates. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.A.4: Second stage 2SLS IV regression table of pre-treatment outcome vari-
ations

(1) (2) (3) (4)

Dep. Var.: ∆ log Private Empl.

Period 06-07 07-08 08-09 06-09

∆ log Public Empl. 09-10 0.053 -0.074 -0.214 0.053

(0.207) (0.161) (0.134) (0.207)

Bartik Shock 0.951*** 0.756*** 0.630*** 0.951***

(0.126) (0.113) (0.116) (0.126)

Public/Private Wage ratio 0.207*** 0.138** 0.108* 0.207***

(0.076) (0.067) (0.062) (0.076)

Log Rents 0.032 0.013 0.017 0.032

(0.044) (0.037) (0.033) (0.044)

Log Productivity 0.019 0.012 0.005 0.019

(0.017) (0.016) (0.014) (0.017)

Log Population 0.010*** 0.008*** 0.006*** 0.010***

(0.003) (0.003) (0.002) (0.003)

Share of Pop. in rural area 0.075*** 0.077*** 0.081*** 0.075***

(0.021) (0.018) (0.016) (0.021)

VCE Robust Robust Robust Robust

N obs 296 296 296 296

1st stage KP F-stat 18.57 19.57 19.46 18.57

Notes: This table presents the results of the second-stage of 2SLS IV regressions of our dependent
variable in the pre-treatment period (∆ log of Private Employment over the indicated period) on the ∆
log of Public Employment 09-10 instrumented by the public private ratio in 2009 and other covariates.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Figure 3.A.5: OLS regression results of public variation between 2009 and 2010 on
subsequent years.
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This figure plots coefficients and confidence intervals of the second-stage of 2SLS regressions of the ∆
log of private employment between 2009 and the year indicated on the x-axis on the ∆ log of public
employment between 2009 and 2010. The y-axis shows the value of the point-estimates and confidence
interval bounds. Dots correspond to point-estimates, dashed brackets to their 95 % confidence interval.
Each color corresponds to a different specification, where lighter blue means more control variables
are added and the darkest blue means no controls other than Bartik shocks are added.
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Table 3.A.5: Reduced-form IV OLS regression table of pre-treatment outcome vari-
ations

(1) (2) (3) (4)

Dep. Var.: ∆ log Private Empl.

Period 06-07 07-08 08-09 06-09

Pub (FPE) /Pri Ratio in 2009 -0.02 -0.04 0.10 -0.02

(0.03) (0.03) (0.06) (0.09)

Bartik Shock 0.81*** 0.71** 0.67*** 0.94***

(0.18) (0.29) (0.11) (0.11)

Public/Private Wage ratio 0.05 0.03 0.12** 0.20***

(0.04) (0.03) (0.06) (0.08)

Log Rents 0.03* -0.00 0.02 0.03

(0.02) (0.02) (0.03) (0.04)

Log Productivity 0.00 0.01 0.00 0.02

(0.01) (0.01) (0.01) (0.02)

Log Population 0.00** 0.00*** 0.01** 0.01***

(0.00) (0.00) (0.00) (0.00)

Share of Pop. in rural area 0.01 -0.00 0.08*** 0.08***

(0.01) (0.01) (0.02) (0.02)

R-squared 0.191 0.167 0.302 0.334

VCE Robust Robust Robust Robust

N obs 296 296 296 296

Notes: This table presents the results of OLS regressions of our dependent variable in the pre-treatment
period (∆ log of Private Employment over the indicated period) on the exluded instrument and other
covariates. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.A.6: Second stage 2SLS regression table of post-treatment outcome varia-
tions following the 09-10 shock

(1) (2) (3) (4) (5) (6)

Dep. Var.: ∆ log Private Empl.

Period 09-10 09-11 09-12 09-13 09-14 09-15

∆ log Public Empl. 09-10 0.18 0.40** 0.43** 0.48** 0.57** 0.64**

(0.11) (0.17) (0.18) (0.21) (0.25) (0.29)

Public/Private Wage ratio -0.05 -0.01 0.01 -0.02 -0.03 -0.01

(0.05) (0.06) (0.07) (0.09) (0.10) (0.11)

Log Rents -0.02 -0.01 0.01 0.04 0.08 0.08

(0.02) (0.03) (0.04) (0.04) (0.05) (0.06)

Log Productivity -0.01 -0.01 -0.01 -0.02 -0.03 -0.03

(0.01) (0.01) (0.02) (0.03) (0.03) (0.03)

Log Population 0.00 0.00 0.00 0.00 0.01 0.01

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

Share of Pop. in rural area 0.01 -0.01 -0.00 0.01 0.05** 0.05*

(0.01) (0.02) (0.02) (0.02) (0.02) (0.03)

Bartik Shock 0.68*** 0.53*** 0.54*** 0.61*** 0.67*** 0.80***

(0.13) (0.16) (0.20) (0.18) (0.15) (0.14)

VCE Robust Robust Robust Robust Robust Robust

N obs 296 296 296 296 296 296

1st stage KP F-stat 24.39 23.54 25.07 23.97 23.88 24.12

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table presents the results of the second-stage of our baseline 2SLS IV regressions of our
dependent variable (∆ log of Private Employment over the indicated period) on the ∆ log of Public
Employment 09-10 (instrumented by the public private ratio in 2009) and other covariates. Robust
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.A.7: OLS reduced-form IV regression table of post-treatment outcome vari-
ations following the 09-10 shock

(1) (2) (3) (4) (5) (6)

Dep. Var.: ∆ log Private Empl.

Period 09-10 09-11 09-12 09-13 09-14 09-15

Pub (FPE) /Pri Ratio in 2009 -0.09* -0.19*** -0.21*** -0.23*** -0.28*** -0.31***

(0.05) (0.07) (0.07) (0.09) (0.10) (0.12)

Public/Private Wage ratio -0.06 -0.03 -0.02 -0.04 -0.06 -0.05

(0.05) (0.06) (0.07) (0.08) (0.09) (0.11)

Log Rents -0.02 -0.02 0.01 0.03 0.06 0.07

(0.02) (0.03) (0.03) (0.04) (0.05) (0.05)

Log Productivity -0.01 -0.00 -0.00 -0.01 -0.01 -0.02

(0.01) (0.01) (0.02) (0.02) (0.02) (0.03)

Log Population 0.00* 0.00 0.00 0.01 0.01* 0.01**

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

Share of Pop. in rural area 0.01 -0.00 0.00 0.01 0.06** 0.06**

(0.01) (0.01) (0.02) (0.02) (0.02) (0.03)

Bartik Shock 0.66*** 0.46*** 0.52*** 0.57*** 0.63*** 0.76***

(0.13) (0.13) (0.18) (0.16) (0.13) (0.12)

VCE Robust Robust Robust Robust Robust Robust

N obs 296 296 296 296 296 296

R-sq 0.114 0.0806 0.103 0.110 0.125 0.174

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table presents the results of OLS regressions of our dependent variable (∆ log of Private
Employment over the indicated period) on the exluded instrument (the public private ratio in 2009)
and other covariates. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.A.8: Second stage 2SLS regression table of post-treatment outcome varia-
tions following the 09-12 shock

(1) (2) (3) (4)

Dep. Var.: ∆ log Private Empl.

Period 09-12 09-13 09-14 09-15

∆ log Public Empl. 09-12 0.27*** 0.29** 0.34** 0.38**

(0.10) (0.12) (0.13) (0.16)

Public/Private Wage ratio 0.03 0.01 -0.00 0.02

(0.07) (0.09) (0.10) (0.11)

Log Rents -0.01 0.02 0.04 0.04

(0.04) (0.04) (0.05) (0.06)

Log Productivity -0.01 -0.02 -0.03 -0.03

(0.02) (0.02) (0.02) (0.03)

Log Population 0.00 0.00 0.01 0.01

(0.00) (0.00) (0.00) (0.01)

Share of Pop. in rural area -0.01 0.01 0.05* 0.05*

(0.02) (0.02) (0.02) (0.03)

Bartik Shock 0.43** 0.52*** 0.58*** 0.71***

(0.18) (0.16) (0.13) (0.12)

VCE Robust Robust Robust Robust

N obs 296 296 296 296

1st stage KP F-stat 42.53 41.62 41.50 41.71

Notes: This table presents the results of the second-stage of our baseline 2SLS IV regressions of our
dependent variable (∆ log of Private Employment over the indicated period) on the ∆ log of Public
Employment 09-12 (instrumented by the public private ratio in 2009) and other covariates. Robust
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Figure 3.A.6: OLS regression results of public variation between 2009 and 2012 on
subsequent years.
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This figure plots coefficients and confidence intervals of OLS regressions of the ∆ log of private employ-
ment between 2009 and the year indicated on the x-axis on the ∆ log of public employment between
2009 and 2012. The y-axis shows the value of the point-estimates and confidence interval bounds.
Dots correspond to point-estimates, dashed brackets to their 95 % confidence interval. Each color
corresponds to a different specification, where lighter blue means more control variables are added and
the darkest blue means no controls other than Bartik shocks are added.

Figure 3.A.7: IV regression results of public variation between 2009 and 2012 on
private employment in subsequent years.
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This figure plots coefficients and confidence intervals of the second-stage of 2SLS regressions of the ∆
log of private employment between 2009 and the year indicated on the x-axis on the ∆ log of public
employment between 2009 and 2012, instrumented by the public to private ratio in 2009. The y-axis
shows the value of the point-estimates and confidence interval bounds. Dots correspond to point-
estimates, dashed brackets to their 95 % confidence interval. Each color corresponds to a different
specification, where lighter blue means more control variables are added and the darkest blue means
no controls other than Bartik shocks are added.

159



Chapter 3

Figure 3.A.8: IV regression results of public variation between 2009 and 2012 on
non-tradable and tradable sectors.
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(b) Employment in tradables.

These figures plot coefficients and confidence intervals of the second-stage of 2SLS regressions of the ∆
log of private employment (in non-tradables in panel a, in tradables in panel b) between 2009 and the
year indicated on the x-axis on the ∆ log of public employment between 2009 and 2012, instrumented
by the public to private ratio in 2009. The y-axis shows the value of the point-estimates and confidence
interval bounds. Dots correspond to point-estimates, dashed brackets to their 95 % confidence interval.
Each color corresponds to a different specification, where lighter blue means more control variables
are added and the darkest blue means no controls other than Bartik shocks are added.

Figure 3.A.9: IV regression results of public variation between 2009 and 2010 on
non-manufacturing and manufacturing sectors.
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(b) Employment in manufacturing.

These figures plot coefficients and confidence intervals of the second-stage of 2SLS regressions of the
∆ log of private employment (in non-manufacturing in panel a, in manufacturing in panel b) between
2009 and the year indicated on the x-axis on the ∆ log of public employment between 2009 and 2010,
instrumented by the public to private ratio in 2009. The y-axis shows the value of the point-estimates
and confidence interval bounds. Dots correspond to point-estimates, dashed brackets to their 95 %
confidence interval. Each color corresponds to a different specification, where lighter blue means more
control variables are added and the darkest blue means no controls other than Bartik shocks are added.
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3.B. Additional figures and tables

Figure 3.A.10: IV regression results of public variation between 2009 and 2012 on
non-manufacturing and manufacturing sectors.
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(b) Employment in manufacturing.

These figures plot coefficients and confidence intervals of the second-stage of 2SLS regressions of the
∆ log of private employment (in non-manufacturing in panel a, in manufacturing in panel b) between
2009 and the year indicated on the x-axis on the ∆ log of public employment between 2009 and 2012,
instrumented by the public to private ratio in 2009. The y-axis shows the value of the point-estimates
and confidence interval bounds. Dots correspond to point-estimates, dashed brackets to their 95 %
confidence interval. Each color corresponds to a different specification, where lighter blue means more
control variables are added and the darkest blue means no controls other than Bartik shocks are added.
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Biens Publics Locaux

et Géographie de l’Activité Économique



Résumé en Français

La géographie de l’activité économique frappe par sa distribution extrêmement inégale. Cer-

taines zones sont florissantes et attirent toujours plus d’entreprises et de travailleurs, atteignant

des niveaux de concentration humaine extrêmement élevés. À l’inverse, d’autres zones dotées

en apparence des mêmes avantages propres à leur localisation sont peu densément peuplées ou

déclinantes. Ces inégalités spatiales suggèrent que le fait d’être situé dans un environnement

dense est nécessaire pour les firmes, bien au delà des avantages naturels des localisations, et

en dépit des coûts de congestion induits par la concentration. L’analyse de telles économies

d’agglomération remonte à Marshall (1890), et la majorité des travaux réalisés par l’économie

urbaine s’est attachée soit à mesurer leur force, soit à en comprendre et détailler les mécanismes

sous-jacents. Duranton and Puga (2004) proposent ainsi une typologie de ces forces. Ils dis-

tinguent trois mécanismes principaux générant l’agglomération : les externalités de partage,

relatives à la possibilité de bénéficier d’infrastructures et de fournisseurs en commun avec

d’autres firmes, les externalités d’appariement, relatives à a meilleure qualité des appariements

employeur-employé dans les bassins d’emploi plus denses, et les externalités de connaissance,

relatives au partage de connaissance s’opérant entre acteurs localisés dans la même zone. Une

façon différente d’analyser la question de l’agglomération peut être de considérer que, en fixant

les avantages intrinsèques d’une localisation, les travailleurs et les firmes se localisent là où ils

espèrent bénéficier de biens publics locaux de meilleure qualité. Si certains biens publics peu-

vent être considérés comme globaux, c’est-à-dire qu’ils affectent tous les agents d’une économie

avec la même intensité (comme la défense ou les institutions démocratiques), de nombreux

biens publics sont en revanche locaux, c’est-à-dire que seuls les agents localisés suffisamment

près de leur lieu de production sont susceptibles de les consommer. Cette thèse s’intéresse aux

mécanismes générant de l’hétérogénéité spatiale dans la production de biens publics locaux, en

se focalisant sur deux mécanismes de ce type.

Dans le premier cas, le bien public étudié est la connaissance technologique. Elle est con-

sidérée comme un bien public du fait des coûts de transaction élevés qui pèsent sur sa diffusion.

En effet, la connaissance devrait théoriquement être un bien public global : elle est à la fois

non-rivale (la consommation de connaissance par un agent ne diminue pas l’usage que les autres

peuvent en faire) et non-exclusive (il n’est pas possible d’empêcher un agent d’avoir recours à

de la connaissance). Cependant, les études empiriques s’intéressant à la diffusion de connais-

sance sont marquées par deux faits saillants. En premier lieu, bien qu’on puisse s’attendre à

une dissémination parfaite dans l’espace, la connaissance se diffuse mieux à faible distance. En
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second lieu, les liens sociaux et économiques noués entre les agents sont un facteur favorisant

pour la diffusion de contenus technologiques. L’introduction d’un réseau dans l’analyse per-

met de réconcilier la contradiction apparente entre la prédiction théorique que la diffusion de

la connaissance devrait s’opérer sans frictions géographiques, et l’observation empirique que ces

frictions existent. Le réseau permet ainsi une représentation naturelle dans laquelle la connais-

sance se diffuse librement le long des liens existants, mais la formation de liens est couteuse,

et ce coût s’accroit avec la distance entre les agents, à mesure que la probabilité d’interactions

sociales diminue. Le fait que la connaissance soit un bien public local a des conséquences partic-

ulièrement marquées : l’innovation est le principal moteur de la croissance économique (Aghion

and Howitt, 1992; Aghion and Jaravel, 2015), et les écarts d’adoption technologique expliquent

une part importante des différences de niveaux de vie entre pays (Comin and Hobijn, 2010). Si

la représentation de la diffusion de la connaissance au sein d’un réseau est intuitive, sa mesure

s’avère particulièrement ardue. En effet, la corrélation entre le réseau et les caractéristiques

géographiques des agents est souvent tellement élevée que leur mesure séparée et l’identification

de ce que chaque dimension cause est souvent impossible (Topa and Zenou, 2015). Ceci com-

plique largement les tentatives d’isoler des liens causaux entre le réseau ou la géographie et

n’importe quelle variable d’intérêt, et ce d’autant plus que le réseau est généralement partielle-

ment ou complètement inobservable pour l’économètre. En dépit des difficultés de mesure, il est

important de comprendre si ce qui influence fondamentalement l’innovation des agents est le fait

d’être géographiquement proches les uns des autres, ou socialement proches. Cela a notamment

des conséquences sur les politiques optimales de soutien à l’innovation : doivent-elles s’attacher

à faciliter la diffusion des innovations en incitant les firmes à se regrouper dans une même zone,

ou investir dans la création de programmes de recherche communs entre ces agents ?

Le second mécanisme analysé dans cette thèse génère de l’hétérogénéité spatiale dans la

production d’un bien public par le secteur public. Dans la plupart des pays développés, le secteur

public représente une part importante de l’emploi total13 et est chargé d’assumer des fonctions

bien plus larges que les simples fonctions régaliennes de l’État. Les fonctions d’enseignement

et formation, santé, services sociaux, transport ou énergie dépendent souvent directement ou

indirectement du secteur public. Toutes ces fonctions sont intrinsèquement locales: elles ne

peuvent être consommées que près du lieu où elles sont produites. Elles sont néanmoins cruciales

pour le bon fonctionnement de l’activité économique. Contrairement à la connaissance, elles sont

13. Entre 15 et 25% de l’emploi total dans la plupart des pays européens. Source OECD.stats, ‘Government at
a glance’, 2017.
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sujettes à congestion lorsque la population d’une zone augmente. Par conséquent, une production

hétérogène de ces biens publics locaux devrait profondément influencer la géographie de l’activité

économique.

Cette thèse s’intéresse à la manière dont les deux mécanismes développés précédemment, via

l’hétérogénéité qu’ils créent dans la disponibilité des biens publics, sont déterminants pour la dis-

tribution spatiale de l’activité économique. Elle explore les causes d’une telle hétérogénéité, les

conséquences que cela a sur les choix de localisation des agents économiques et plus généralement

sur la géographie économique. Les deux premiers chapitres de la thèse se concentrent sur

l’interaction entre les réseaux d’innovateurs, la géographie des flux de connaissance, et les choix

de localisation des firmes innovantes. Plus précisément, le premier chapitre s’attache à com-

prendre comment les liens entre innovateurs affectent la géographie des flux de connaissance

représentés par les citations de brevets. Le second chapitre étudie à quel point cette géographie

contrainte des flux de connaissance influence les choix de relocaliser des centres de recherche-

développement pour les entreprises. Le troisième chapitre se concentre sur un problème différent,

dans le cadre duquel le bien public local étudié est produit par le service public. À cause de

contraintes institutionelles (une égalisation nominale des salaires sur le territoire), toutes les

zones ne bénéficient pas du même niveau de bien public. Ainsi, si le secteur public produit des

externalités positives sur le secteur privé, le mécanisme étudié devrait avoir des conséquences

sur la distribution de la taille et de la productivité des villes.

Chapitre 1 Le premier chapitre de cette thèse s’intitule “La Percolation de la connaissance

dans l’espace”, et se base sur un travail commun avec Pierre Cotterlaz. Il vise à expliquer

comment les innovateurs sont informés de l’existence des idées développées par les autres en

dépit de frictions importantes dans la diffusion de la connaissance. Il explique comment ces

dynamiques d’apprentissage peuvent fournir une explication à l’évolution surprenante de la

géographie des flux de connaissance.

Ce travail trouve sa source dans une vaste littérature empirique montrant que les flux de

connaissance sont marqués par un fort biais spatial. Cette branche de la littérature remonte

à l’article fondateur de Jaffe et al. (1993), qui utilise les citations de brevets et montre qu’un

inventeur a plus de chances de citer des brevets développés autour de lui que d’autres brevets

similaires mais développés dans des zones plus lointaines. Même si ce fait stylisé a suscité a un vif

débat (Thompson and Fox-Kean, 2005; Henderson et al., 2005), de nombreux articles ont depuis
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confirmé ce résultat, à la fois à un niveau très fin (Thompson, 2006; Murata et al., 2014) et sur

des flux de citations internationales ou interrégionales (Bottazzi and Peri, 2003; Peri, 2005; Li,

2014). Le mécanisme à l’origine de ce biais spatial n’a néanmoins pas été formellement identifié.

S’il semble intuitivement causé par la plus faible probabilité d’interactions sociales à des distances

plus élevées, la difficulté à séparer les interactions sociales de la dimension géographique dans

les données n’a été surmontée que récemment. Plusieurs articles se concentrent sur une mesure

partielle de la proximité sociale et montrent que l’effet de la distance sur les flux de connaissance

est réduit lorsque cette mesure est prise en compte (Singh, 2005; Breschi and Lissoni, 2009;

Agrawal et al., 2008; Kerr, 2008). Head et al. (2018) montrent plus rigoureusement l’effet causal

des liens sociaux sur les flux de connaissance : en se concentrant sur le cas des chercheurs en

mathématiques, ils montrent que les liens hérités de la carrière des chercheurs (direction de

thèse, collègues, etc.) détermine quels articles les chercheurs connaissent et donc citent, ce qui

explique une grande part de l’effet de la distance sur les citations.

En se basant sur les travaux exposés précédemment, ce chapitre étudie les dynamiques de

formation des liens entre innovateurs, et la manière dont ils sont liés à l’effet aggrégé de la

distance que l’on observe. Il caractérise l’évolution des liens qu’une firme possède avec d’autres

innovateurs, qui représentent son stock de connaissance, au cours de son cycle de vie. Pour

ce faire, il étudie l’effet de ce qu’un agent connait à un point donné dans le temps sur les

probabilités de citations futures. En pratique, nous utilisons les citations de brevets comme

trace du stock de connaissance des firmes, et nous comparons les citations faites pour la suite

pour mesurer son évolution. Nous initialisons le stock de connaissance sur une année donnée, et

définissons comme contacts les innovateurs cités dans cette année, et dont la firme étudiée a donc

connaissance. Nous comparons ensuite, pour chaque demande de brevet, les citations réalisées

à un ensemble de citations attendues si le déposant du brevet avait eu accès à l’ensemble de la

connaissance disponible. Afin d’isoler un tel ensemble de brevets pertinents et donc de citations

attendues, nous utilisons les citations ajoutées par les experts des offices de brevets en charge de

l’évaluation des demandes, qui ont pour mission de compléter la liste de citations faites par le

demandeur. Nous montrons que les firmes acquièrent des nouvelles connaissances graduellement,

via les contacts de leurs propres contacts. Ce fait stylisé est utilisé pour construire un modèle

de diffusion basé sur Chaney (2018), dans lequel les dynamiques de formation des liens ont pour

conséquence d’exprimer l’effet de la distance subi par les firmes comme une fonction de leur

âge. Les petites firmes naissent avec un stock de connaissance générée par des firmes proches
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d’elles, et étendent progressivement ce stock à des destinations plus lointaines au cours de leur

vie. Cette caractéristique de la distribution spatiale des contacts permet d’expliquer pourquoi

les flux de connaissance aggrégés sont restés affectés par la distance de manière aussi constante.

Le modèle génère en effet deux prédictions, qui sont exceptionnellement bien vérifiées dans les

données. D’une part, la distribution des tailles des innovateurs suit une loi de Pareto (et même

plus précisément une loi de Zipf). D’autre part, une relation log-linéaire lie la taille des firmes

et la distance moyenne (au carré) à laquelle elles citent.

Ce résultat peut produire une ébauche d’explication à un fait incompris : pourquoi l’effet de

la distance mesuré en agrégé est-il resté constant depuis les années 1980 ? Cette période a en effet

été marquée par l’avènement des technologies de l’information et de la communication, supposées

faciliter grandement la diffusion de la connaissance et limiter l’effet de la distance via des outils

comme Google Patents, qui rendent chaque demande de brevet accessible immédiatement. Ce

chapitre propose un élément d’explication: si l’effet de la distance n’a pas décru, le lien entre

la taille d’une firme et la distance de ses citations s’est lui largement amoindri. Des solutions

possibles pour expliquer le mystère évoqué précédemment est ainsi que l’effet de la distance subi

par les firmes prises individuellement a diminué, mais a été compensé par des changements dans

la distribution ou dans la composition de ces firmes.

Chapitre 2 Le deuxième chapitre, intitulé “Mobilité des établissements de recherche-développement”,

considère comme donnés les réseaux locaux d’innovation analysés dans le chapitre précédent. Il

vise à montrer, à la fois empiriquement et théoriquement, à quel point les firmes internalisent

l’existence de tels réseaux locaux et les externalités technologiques qu’elles peuvent espérer en

recevoir dans leurs choix de localisation. L’analyse trouve sa source dans la nécessité de lier

deux faits solidement établis de la géographie des activités d’innovation : d’une part, le fait

que la connaissance se diffuse mieux à des distances faibles ; d’autre part, le fait que les ac-

tivités d’innovation sont plus concentrées que l’activité économique en général (Audretsch and

Feldman, 1996; Buzard et al., 2017). Si les externalités technologiques locales fournissent une

raison supplémentaire de se localiser au même endroit que d’autres entreprises du même type,

peu d’articles se sont concentrés sur les choix de localisation des innovateurs en particulier. Ce

chapitre étudie donc les choix de relocalisation d’établissements de recherche-développement, les

externalités technologiques que les firmes abandonnent en quittant une zone et celles qu’elles

espèrent recevoir dans la zone qu’elles rejoignent.
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La compréhension de ce phénomène est nécessaire à la conception de politiques publiques

d’innovation efficaces. En effet, tentant de reproduire le succès de la Silicon Valley, la plupart

des pays développés ont tenté via des subventions ou des crédits d’impôts massifs de générer

des regroupements géographiques14. Ces politiques ont été critiquées (parfois durement) par les

économistes, tant à cause des effets souvent perçus comme faibles au regard de l’investissement

public consenti que de leurs fondations théoriques incomplètes (Glaeser and Gottlieb, 2008;

Duranton, 2011). Ceci justifie le développement d’une compréhension plus fine du lien entre les

choix de localisation ou de relocalisation des firmes et les externalités technologiques qu’elles

reçoivent de leur environnement direct.

La première partie de ce chapitre décrit le phénomène de mobilité tel qu’il apparait dans

les données. J’utilise pour établir cette description les données DADS Postes, qui contiennent

l’information exhaustive au niveau de l’individu sur l’emploi salarié en France, et caractérise

les firmes innovantes comme celles employant des salariés dont le poste est explicitement libellé

comme employé de recherche-développement. J’étudie ensuite leur propension à réallouer leurs

activités de recherche sur le territoire, et la distance à laquelle ces réallocations s’opèrent. Deux

faits saillants émergent de l’analyse : les firmes innovantes ont plus de chances de relocaliser

un établissement que la moyenne des firmes employant des travailleurs hautement qualifiés, et

lorsqu’elles bougent, elles le font à de plus grandes distances. J’apparie ces données de firmes à

des données de brevets, et je construis une mesure de centralité dans le réseau d’innovation local

pour chaque firmes, à partir des citations de brevets réalisées vers des innovations développées

par des firmes géographiquement voisines. Cette mesure indique l’attractivité des zones que les

firmes sont susceptibles de rejoindre et de celles qu’elles quittent, au regard de leur spécialisation

technologique. L’analyse révèle qu’être plus densément connectée à ses voisines rend une firme

moins susceptible de relocaliser ses activités de recherche. Par ailleurs, les firmes mobiles re-

joignent des zones où elles peuvent espérer bénéficier de plus grandes externalités technologiques.

La seconde partie du chapitre se base sur les faits précédents, et formalise le problème auquel

font face les entreprises innovantes cherchant à optimiser les externalités technologiques dont elles

bénéficient. Pour lier leurs connections à leurs voisins avec leur choix de localisation, je construis

un modèle théorique basé sur des outils développés dans le champ des “jeux sur réseaux” (Jackson

and Zenou, 2015). Le modèle s’abstrait en revanche de concepts d’organisation industrielle

classiques tels qu’une fonction de production réaliste ou une structure de compétition : cela

14. Par exemple en France, la politique des “pôles de compétitivité” a impliqué environ 2,5 milliards d’euros de
dépense publique entre 2009 et 2014 (European Commission, 2016).
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Résumé en Français

est nécessaire pour garder le modèle suffisamment simple pour pouvoir résoudre le problème

auquel les firmes sont confrontées. Dans ce modèle, les firmes naissent avec un ensemble de liens

dirigés vers certains de leurs voisins géographiques, par lesquels ils exraient de la connaissance.

Au sein d’une localisation, les firmes diffèrent par leur centralité, une mesure de la densité de

leur réseau local. Ces firmes ont un niveau d’information limité sur le niveau de connaissance

dont elles seraient capables de bénéficier dans l’autre localisation. Je commence par étudier la

stabilité, entendue dans ce contexte comme le fait qu’aucune firme n’ait une utilité espérée plus

élevée dans l’autre localisation. Je montre que cette propriété du réseau dépend simplement de

la différence entre la centralité la plus faible dans une localisation et la moyenne des centralités

dans l’autre. J’étudie ensuite un jeu à deux étapes : les firmes peuvent dans un premier temps

choisir de se relocaliser si cela leur garantit des profits espérés plus élevés, puis choisissent

leur niveau d’effort de recherche-développement optimal. Je décris les équilibres du jeu si les

choix de relocalisation se produisent de manière simultanée, qui sont équivalents aux situations

précédemment classées comme stables. Je décris plus précisément un équilibre particulier, qui est

à la fois Pareto-optimal et maximisateur de surplus. Je développe ensuite une analyse similaire

avec un processus de mouvement séquentiel : il montre dans quelles conditions des mouvements

en cascade peuvent se produire.

Chapitre 3 Le troisième chapitre de cette thèse, intitulé “Service public et distribution spa-

tiale de l’activité économique”, fait partie d’un projet commun avec Émeric Henry et Joan

Monras. Il cherche à expliquer à quel point la localisation des fonctionnaires, qui produisent un

bien public dont bénéficient firmes et travailleurs, est déterminant pour la distribution spatiale

de l’activité du secteur privé. En utilisant des données exhaustives sur l’emploi public et privé

en France, nous montrons deux caractéristiques originales qui font dévier l’analyse du modèle

d’équilibre spatial standard.

La récente crise des “gilets jaunes” en France a remis au centre du débat public la question

des inégalités territoriales d’accès au service public. Ceci fait écho aux propositions politiques

polarisantes de suppressions massives d’emplois publics. Cependant, les travaux existants sur les

effets générés par la localisation de tels emplois au niveau local sont récents, et n’en donnent pas

une vision univoque. Notamment, il n’existe pas de réponse claire à la question de savoir s’ils

excluent ou attirent des travailleurs du secteur privé dans les endroits où ils sont localisés. Une

part de cette incertitude provient du fait que les expériences naturelles ayant pu être exploitées
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consistent dans des relocalisations de fonctionnaires chargés de la production d’un bien public

global, comme des employés d’administrations ministérielles ou des militaires (Becker et al.,

2013; Jofre-Monseny et al., 2019; aus dem Moore and Spitz-Oener, 2012), plutôt que des biens

publics locaux générés par des écoles, des hopitaux ou des commissariats. Le travail présenté

dans ce chapitre tente de formaliser et d’illustrer les effets que l’on peut attendre de biens publics

locaux générés par le service public, dans le cas particulier où les salaires des fonctionnaires sont

fixés à l’échelle nationale et nominalement égaux sur l’ensemble du territoire. Il montre que

les conclusions d’une telle analyse dévient du cadre standard d’équilibre spatial à deux secteurs

(Rosen, 1974; Roback, 1982).

Le chapitre commence par souligner l’existence d’une fixation centralisée des salaires dans

le secteur public, avec des possibilités d’ajustements locaux limitées, qui implique des salaires

différents d’un secteur à l’autre au sein d’une ville. Il se place dans le cadre stylisé habituel

d’équilibre spatial où les travailleurs du secteur privé sont parfaitement mobiles et doivent être

marginalement indifférents entre les villes. Dans ce cadre, les utilités indirectes des travailleurs

du secteur public ne sont pas égalisées entre les villes. Dans le cas français, ceci est illustré par

certains faits connus, comme par exemple la tendance des fonctionnaires en début de carrière à

être localisés dans les endroits les moins demandés avant de pouvoir choisir plus librement leur

affectation. Sachant qu’une productivité du secteur privé plus élevée augmente la tension sur le

marché du logement pour tous les travailleurs dans la ville, les employés du public ont intérêt

à être localisés dans des endroits où les loyers, et donc la productivité, sont moindres. Cette

analyse propose donc une explication aux importants déséquilibres spatiaux observés entre les

effectifs du secteur public et du secteur privé entre zones du territoire français.

Le second fait important par lequel la localisation des employés du secteur public influence

l’activité économique locale est la présence d’externalités générée en faveur du secteur privé.

Nous exploitons des coupes d’emplois publics massives ayant eu lieu entre 2008 et 2012 (le

non-remplacement d’un départ à la retraite sur deux pendant la RGPP) et touché les endroits

de manière diverse pour identifier les variations d’emploi privé induites par ces pertes dans les

années suivantes. En accord avec la littérature existante sur le sujet, nous trouvons que les

endroits ayant subi le plus durement la réforme ont perdu relativement plus d’emploi privé dans

les services locaux, ce qui s’explique aisément par la baisse de demande induite pour ces services

locaux, et est désormais bien établie dans la littérature (Moretti, 2010; Faggio and Overman,

2014; Faggio, 2019). Nous trouvons en revanche, contrairement aux articles précédemment cités,
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que les endroits ayant subi le plus durement la réforme ont également subi des pertes importantes

dans les secteurs de biens échangeables (notamment l’industrie manufacturière). Ceci indique

que le secteur public générait des externalités positives vers le secteur des biens échangeables.

Les résultats évoqués précédemment sont ensuite intégrés dans un modèle d’équilibre spatial

avec deux secteurs, dans lequel les travailleurs publics sont envoyés dans une des localisations

aléatoirement, ont un salaire fixe, et produisent une externalité positive vers le secteur privé.

L’analyse montre que la structure de salaires fixes tend à accroitre l’écart de taille entre les villes

très productives et les villes peu productives. Ceci s’explique par le fait que le secteur contraint

par la régulation salariale peut dépenser moins sur le marché du logement que si les salaires

étaient fixés de manière flexible, ce qui augmente moins la tension sur le marché du logement

dans les villes les moins productives, augmentant encore l’écart entre villes de productivité

différente. Les externalités positives produites par le service public ont l’effet inverse. Une

productivité plus élevée dans le secteur privé attire les salariés du secteur privé aux dépens de

ceux du public, et génère de la congestion sur le bien public local produit par le public. Ainsi,

l’existence d’externalités affectant positivement le secteur privé diminue l’écart entre villes les

plus productives et villes les moins productives.
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Résumé en Français
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