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Nomenclature

ω Angular frequency (ω = 2πf rad s−1).

Ci(x) Cosine integral Ci(x) = γ + lnx+
∫ x
0

cos(t)−1
t dt

∗ Complex conjugate.
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ǫ Dielectric permittivity (Fm−1).

. Dot (or scalar) product.

γ Euler’s constant, γ = 0.5772156649 . . ..

σ Electric conductivity (Sm−1).
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f Frequency (Hz).

H(g) Hilbert transform of g.

I Identity matrix.

j Imaginary number (j2 = −1).
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1A(x) Indicator function 1A(x) =

{

1 if x ∈ A,
0 if x /∈ A.

µ Magnetic permeability (Hm−1).

M Matrix.

N (µ, σ) Normal distribution with mean µ and standard deviation σ.

⊗ Outer product.

~ Plank’s constant ~ = h
2π , with h = 6.626 070 15× 10−34 J s.

P[A] Probability of an event A.

Q Quality factor (unitless).

ℜ [·] Real part of a complex number.
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Si(x) Sine integral Si(x) =
∫ x
0

sin(t)
t dt

HHHα Struve function of order α.

c The speed of light in vacuum: 299 792 458m s−1.

~ei Unit vector in a cartesian coordinate system Oi.

η0 Vacuum impedance, η0 =
√

µ0

ǫ0
(Ω).

µ0 Vacuum permeability µ0 = 4π × 10−7Hm−1.

ǫ0 Vacuum permittivity, ǫ0 = 8.854 187 812 8Fm−1.

η Wave impedance, η =
√

µ
ǫ Ω.

λ Wavelength of a monochromatic electromagnetic field (m).

k Wavenumber k = 2π
λ m−1.

11



Introduction

The three major principles of information system security (INFOSEC) are: confidentiality, integrity
and availability of information. Confidentiality consists in protecting ressources from unauthorized
access. Integrity assures protection of data against unauthorized changes to guarantee its reliability
and accuracy. Availability guarantees authorized users to have access to the resources when they need.

Information is overwhelmingly handled by information system (IS). These systems may offer
information security vulnerabilities. The aim of the INFOSEC is to reduce threats by mitigating these
vulnerabilities. Among the large variety of threats, one can identify the electromagnetic interferences
(EMI).

Indeed, the susceptibility and the emissivity of electronic devices can be a threat for the informa-
tion security. This field of interest is a prominent research area, and exists since the 1940s. These
threats are nowadays well considered at the earliest stage of the design of a critical infrastructure, and
throughout its operation.

It is common to embed electronic devices into casings as they limit the susceptibility to the
environment and their emissivity towards the environment. The casing creates reverberant conditions
for the electromagnetic field. However, it seems that no study has yet investigated the issue of
reverberant environments from an INFOSEC viewpoint.

The Wireless Security Laboratory of the National Cybersecurity Agency of France (ANSSI)
is committed to the study of threats related to EMI. Moreover, it provides advices to enhance
the information security in critical infrastructures. To reinforce its level of expertise, it has
been decided to engage a research work to study electromagnetic couplings within reverberant envi-
ronments, with the collaboration of the Group of electrical engineering of Paris at Sorbonne University.

The research work that will be exposed in this thesis manuscript is a first attempt to analyze such
environments and to put forward a methodology that can be used during a risk assessment process
from the electromagnetic security (EMSEC) point of view. Furthermore, the large diversity and the
lack of knowledge regarding the content (printed circuit boards, cables, fans, etc.) of equipment
make deterministic approaches, like circuit models, inappropriate. It thus seems pertinent to favour
the use of probabilistic approaches in order to characterize such equipment by assessing occurrence
probabilities for quantities of interest, voltages or currents typically.

This report is organized as follows: the first part is dedicated to define the goals concerning this
PhD work. An overview of the threats posed by EMI towards INFOSEC will be exposed in chapter I.1.
A domain of research, the EMSEC, will be defined as the interweaving of the electromagnetic compat-
ibility (EMC) and the INFOSEC. Multiple risks related to INFOSEC at different scales (components,
devices, systems, buildings, etc.) will be listed. We will show that the effects of the casing of electronic
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equipment to the INFOSEC is a little explored field and that it warrants attention. Specifically, the
electromagnetic couplings (energy transfer by means of electromagnetic waves) in equipment casings
can be accentuated by the reverberant behavior of such environments. This research work will tackle
this problem: how to study electromagnetic couplings within equipment casings, from the INFOSEC
viewpoint.

The following chapter I.2 is devoted to the selection of mathematical and physical tools used to
study electromagnetic couplings within reverberant environments. We will highlight that statistic
tools are the most relevant approaches.

In the second part, a case study will be exposed. It consists of a common equipment casing: a
desktop computer chassis. In chapter II.1, two models will be set to describe it, a simulation model and
an experimental one in the form of a mock-up. The design steps of that mock-up, and its manufacturing
validation will be presented. Especially, its quality factor will be measured and some slight defects
in the manufacturing process will be characterized. Devices will then be added inside the case study,
from which couplings will be determined. It consists of four simple printed circuit boards (PCBs).

In chapter II.2, both simulation and experimental models will be compared with each other. The
aim will be to assess the ability of the simulation model to determine couplings within a desktop
computer chassis. At first, the electric field within the empty mock-up will be measured, and then
compared to simulated data. Afterwards, the coupling of a plane-wave to PCBs through an aperture
will be studied.

The third part is dedicated to the random coupling model (RCM). This circuit model seems to be
well-suited to determine, from a statistical viewpoint, couplings in chaotic reverberant environments.
The RCM relies on the random matrix theory (RMT) that can describe chaotic microwave cavities.
The RMT and the RCM will be detailed in the first chapter III.1, and some key properties will be
exposed. The next two chapters III.2 and III.3 are dedicated to the integration of apertures into the
RCM, and to some numerical computations. Chapter III.4 explains how the RCM can be implemented
in a practical and efficient way. Several statistical quantities of interest for EMSEC will be stated, and
their implementation will be exposed. Finally, in chapter III.5, a comparison between experimental
data and RCM simulations will be presented.

The last appendix E of this manuscript is an extensive French-language summary of the thesis
work.
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Chapter I.1

ElectroMagnetic SECurity (EMSEC)
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I.1.1 Introduction

Electromagnetic security (EMSEC) may be considered as the fusion of electromagnetic compatibil-
ity (EMC) with information system security (INFOSEC). Fig. I.1.1 depicts the links between EMC
and INFOSEC. The EMSEC study of an electronic item leads to consider electromagnetic couplings
between systems or between the elements of a system [Guri et al., 2015, Camurati et al., 2018, Cot-
tais et al., 2018]. The occurrence of electromagnetic couplings means that an energy transfer occurs
between voltages/currents and electromagnetic radiations. If a signal carrying sensitive information
couples with another system, the risk of uncontrolled signal leakage exists (loss of the confidentiality
of information). Such a risk defines the TEMPEST threat. Another risk would involve an attacker
handling a malicious equipment in order to interfere with its victim’s equipment nominal operation,
leading to the loss of the availability and integrity of the information. This type of aggression is called
intentional electromagnetic interference (IEMI).

The analysis of the electromagnetic emanations radiated from electronic devices to recover informa-
tion was firstly outlined in [Van Eck, 1985]. From then, numerous talks and papers have highlighted
that threat. In [Hayashi et al., 2014, Kuhn, 2013] the electromagnetic emanations from computer
screens, cables and connectors of digital video signals are processed to recover the displayed informa-
tion. In [Vuagnoux and Pasini, 2009], keyboards signals are analyzed and the keystroke information is
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Fig. I.1.1 – Relations between electromagnetic compatibility (EMC) and information system security
(INFOSEC).

recovered. Researches on the effects of IEMI were also carried out like in [Kune et al., 2013, Backstrom
and Lovstrand, 2004, Kasmi et al., 2014b] where desktop computers were stressed with IEMI.

An EMSEC overview at different scales will be given in this chapter. First, the component level
will be considered, through fault attacks and side-channel analysis. Then, threats at the equipment
scale will be addressed, and especially TEMPEST and IEMI threats. Finally, a focus on building level
will be given where conducted and radiated phenomena will be examined from the EMSEC standpoint.

I.1.2 EMSEC at component level

At component level (application specific integrated circuits (ASICs), field programmable gate arrays
(FPGAs), etc.), two different applications of electromagnetic interferences (EMI) may be encountered.
The first one is the side-channel analysis, where the EMI generated from components are studied from
an INFOSEC viewpoint. The second one is related to fault attacks where components are stressed.

I.1.2.1 Side-Channel Analysis

In the general case, the goal of side-channel analysis is to recover information from unintentional
leakage of information. It thus concerns the confidentiality of information. The vector of this leakage
of information may be acoustic waves, currents, electromagnetic fields, etc. An attacker will try to
recover this information by means of a signal processing analysis.

An important field of study, related to side-channel analysis, deals with components, where the
aim is to recover a secret parameter from an algorithm. For a cryptographic algorithm, it often means
recovering a secret key. For that specific case, running a side-channel analysis requires:

• to fully understand the implementation of the targeted algorithm;

• to measure a physical quantity (such as: voltages/currents, power consumption, electromagnetic
fields, etc.), while executing an algorithm implementation.
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From these data, one might retrieve values of internal variables processed by an algorithm implemen-
tation by means of statistical analysis [Thillard, 2016].

In [Kocher et al., 1999], it was shown that the power consumption of an integrated circuit can leak
information regarding processed secret values. Later, it was highlighted that EMI radiated by compo-
nents may also leak sensitive information [Quisquater and Samyde, 2001]. When the electromagnetic
field is the vector of the leaked quantity, its magnitude is low and near-field probes are required [Genkin
et al., 2016].

However, in some situations, the leaked quantity may be propagated at long ranges. Some recent
integrated circuits integrate central processing unit (CPU) cores and radio front ends. Therefore, both
digital and analog signals flow on the same chip. Depending on its design quality, crosstalk between the
noisy digital part of the chip and the analog circuit through their common substrate may occur. This
phenomenon is referred to as substrate noise coupling [Bronckers et al., 2007]. It has been demonstrated
in [Camurati et al., 2018] that digital signals generated by cryptographic computations may be mixed
up with baseband signals of a radio front end, located on the same chip. Then, while transmitting,
microwave signals are generated, radiated and propagated at long range as well as the leakage signal
from the cryptographic computations. By means of statistical tools, it has been possible in [Camurati
et al., 2018] to recover AES1 keys at 10 meters in an anechoic chamber, and at 1 meter inside an office
environment.

I.1.2.2 Fault attacks

Fault attacks consist in stressing an electronic component in order to generate internal errors that can
somehow lead to a security failure. Several means are available for that purpose. The time constraint
violation of clock signals beyond permissible limits is a widely-used fault injection technique that
creates a clock glitch. One can also underpower the component. Some other methods require to inject
a given amount of energy E towards the component during a short time interval ∆t. Several types of
energy sources may be employed [Timmers et al., 2016]:

• a voltage v(t) and a current i(t): E =
∫ ∆t
0 i(t)v(t)dt. A voltage source is superposed to the circuit

trace of interest (power fault attacks, [Bozzato et al., 2019]);

• an electromagnetic field: E =
s

S

[

∫ ∆t
0

~E(~r, t) ∧ ~H(~r, t)dt
]

~dS, where ~E(~r, t) and ~H(~r, t) are

respectively the electric and magnetic field at location ~r. The term between the square brackets
is the total surface energy density. The use of a near-field probe allows to focus the energy
towards a small area (electromagnetic fault attacks, [Moro et al., 2013]);

• a light pulse of N photons with an angular frequency ω : E = N~ω. The aim is to provide enough
energy to ionize a specific semiconductor region which results in a change of the integrated circuit
behavior. Usually, lasers are used to focus the energy to a very precise location of the component
die where a depackaging operation is sometimes required (optical fault attacks, [Skorobogatov
and Anderson, 2002]).

• an amount of thermal energy E (temperature heating fault attacks, [Hutter and Schmidt, 2013]).

The common procedure to generate an electromagnetic field to trigger faults is to inject a pulse,
with an amplitude of several hundred volts and tens of nanosecond duration into a near-field probe.
Fig. I.1.2 depicts the set-up used for an electromagnetic fault injection. For processors, which execute
a program as a sequence of instructions, it may lead to an instruction skipping, replay or corruption.
Faults may be exploited to bypass authentication mechanisms, by skipping (or forcing) a branch
instruction for example. ASICs and FPGAs are also exposed to fault attacks, and numerous works are

1AES: Advanced Encryption Standard is an encryption algorithm.
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Fig. I.1.2 – Set-up for fault injections in order to obtain a fault model. Credits: Ronan Lashermes

(High Security Laboratory of the INRIA Rennes).

dedicated to fault cryptographic implementations, such as true random number generators (TRNGs)
that are used to generate random values [Haddad et al., 2016, Maistri et al., 2014].

I.1.3 EMSEC at system level

A system is a set of components that executes tasks by processing electric signals (like a computer
hardware, a screen, a robot, etc.). Its emissivity and susceptibility towards EMI will be evaluated from
the INFOSEC perspective. First, threats related to the loss of confidentiality due to radiated EMI will
be investigated. Then, the susceptibility of systems to electromagnetic aggressions will be addressed
through the IEMI threat and through the covert channel threat.

I.1.3.1 Electromagnetic eavesdropping

Electromagnetic eavesdropping refers to the interception and processing of uncontrolled parasitic EMI
in order to recover confidential information. If EMI are generated by the nominal behavior of the
system, it is named TEMPEST, and if EMI are forced in a software-based way, it is designated as soft-
TEMPEST. Both unintentional and intentional electromagnetic emissions will now be put in relation
with eavesdropping threats.

I.1.3.1.1 Radiated EMI from digital communications

While operating, electronic circuits generate time-varying currents which can generate electromagnetic
fields. The relation between the radiated electric ~E and magnetic ~H fields and the current density ~j
is given by the Maxwell–Ampère equation:

~rot ~H = ~j + ǫ
∂ ~E

∂t
(I.1.1)

If ~j conveys information, then information linked to it is carried by ~E and ~H.
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Fig. I.1.3 – Ethernet frame measured by direct voltage prob-
ing (top), and through a near-field probe (bottom). The orange
curve is an image of the near magnetic field (a loop probe was

employed) by the antenna factor (AF = | ~H|
V ) of the probe (mag-

netic field to output voltage ratio). The antenna factor of the
probe is frequency-dependent, however it is almost constant for
the bandwidth of interest. (Measurement ANSSI - 2020.)
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Fig. I.1.4 – Derivation board to
probe Ethernet signals and the
loop antenna. The derivation al-
lows to probe Ethernet signal while
guaranteeing the electrical continu-
ity of the cable. Remark that the
shielding was removed at the prob-
ing location.

As an example of radiated EMI, Fig. I.1.3 depicts a section of an Ethernet frame of throughput
100Mbit s−1. Fig. I.1.4 shows the measurement setup. The upper plot shows the probed voltage on
an Ethernet cable. The lower plot shows an image of the radiated magnetic field ~H measured with
a near field loop antenna. One notices that the edges (raising and falling) are responsible for the
maximum generated field. Therefore, by observing the radiated magnetic field, an attacker could be
able to recover the original data.

I.1.3.1.2 TEMPEST

TEMPEST is a codename and refers to analysis of radiated and conducted compromising EMI. Com-
promising EMI are defined from the [Committee on National Security Systems, 1995] as: ”unintentional
signals that, if intercepted and analyzed, would disclose the information transmitted, received, handled,
or otherwise processed by telecommunications or automated information systems equipment.”

Some practical entailments of compromising EMI will now be exposed.

Video streams The first published work about the emanations of electromagnetic signals from
computer screens is [Van Eck, 1985]. Van Eck proved that it is possible to recover the image displayed
on a computer monitor that includes a cathode ray tube (CRT). Indeed, in CRT screens video, signals
are amplified by a transistor-transistor logic unit to several hundred volts to drive the cathode ray
tube. Radiated emissions from the computer monitor will then be dominated by a signal that is
correlated to the signal containing the displayed information. Moreover, the tools needed to set up
this eavesdropping are really cheap. It only requires a TV, an antenna and a circuit made of a variable
oscillator and a frequency divider for synchronisation purposes. From then on, numerous researchers
have continued to try to recover the displayed information. In [Radu et al., 2003], radiation mitigating
techniques were proposed to reduce the level of compromising signals from CRT screens by adding
ferrites to the video cables.

The next generation of screens (flat-panel displays) did not lower the eavesdropping risks. Readers
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Fig. I.1.5 – Displayed image (left) and recovered image (right) from a DVI video stream (from [Ricordel
and Duponchelle, 2018]).

may refer to the works of [Kuhn, 2005] and [Lee et al., 2016] for details. EMI emissions from a digital
signal depend on its amplitude and on its time derivative. The higher the amplitude is, the higher the
amplitude of the compromising signal is, and the higher the time derivative of a signal is, the wider
its spectral occupancy is. Despite that in modern systems voltage amplitudes are low, the increase of
the throughput requires very short rising, and falling edges, which generate high frequency emissions
with numerous harmonics that can propagate at long range. Nowadays, several protocols are used
to carry video streams, some are analog like the video graphics array (VGA), and most are digital
like digital visual interface (DVI), high-definition multimedia interface (HDMI) and DisplayPort (DP).
Note that for all the protocols, the pixels are transmitted row by row. For analog protocols, the color
intensity information is coded into the amplitude, thus EMI are highly correlated to intensity variations
of consecutive pixels over a row. In other words, the more the image contains variation of intensity
(therefore of amplitude), the more the streamed signal generates EMI.

For digital protocols the image to display is coded by several bits and serially transmitted. Thus,
for the same piece of information (a pixel for example), several falling and rising edges occur (up to 10
for the DVI) and more EMI are generated.

It is worth noting that the radiation source often comes from the video cable that carries the
stream and especially from its connectors because of poor grounding continuity. Fig. I.1.5 presents the
recovered image from EMI radiated by a cable carrying a DVI encoded video stream. The tool used
to recover the displayed image from EMI is open source [Marinov, 2016] and uses a software defined
radio (SDR).

Screen tablet may also be the source of EMI when a virtual keyboard is displayed [Hayashi et al.,
2014]. This virtual keyboard is required when a user wants to enter a password for example. When
the user types a letter by touching the touch screen, the color of the corresponding key on the virtual
keyboard changes. This proof of concept highlights that one can recover the password of a user by
analyzing EMI from tablet screens even if the password is hidden behind stars and never shown on the
screen.

Keyboards Two different EMI signals from keyboards may be processed to recover the keystroke
information [Vuagnoux and Pasini, 2009]. EMI generated by the PS/2 communication signals (that
flow between the wired keyboard and the computer) may be processed to determine the keystroke
at several meters. The second one comes from the keyboard internal signals. Inside a keyboard, the
104/105 key switches are connected by a grid of circuit traces. The keystroke is determined by the
keyboard controller through a scanning process. Signals generated for this scanning generate EMI that
contain information about the keystroke. Both wired and wireless keyboard generate these EMI.
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Fig. I.1.6 – Screenshot of the displayed image that generates an amplitude modulated signal of
“Für Elise” from Beethoven.

I.1.3.1.3 Soft-TEMPEST

Classical TEMPEST is relative to the radiation of compromising signals by a device with a typical use.
However, one can control the device radiations without hardware modifications in a way that a covert
channel is created by diverting electronic elements to create a communication channel. It requires that
a malicious process is running on the target device with the ability to manipulate hardware resources
in a way that EMI are somehow controlled and much more easy to recover for an attacker.

Video streams A proof of concept is given in [Kuhn and Anderson, 1998], where a software is tuned
to control an amplitude modulated EMI. The timings of digital video streams are characterized by
the pixel clock frequency fp = 1

tp
, where tp is the period needed to code a pixel, by the horizontal

frequencies fh = 1
th

where th is the time needed to code an entire line, and by the frame refreshing
frequency ff . Thus, the pixel at position (x, y) on the n-th frame of the video stream signal will be
displayed on the screen at time t(x, y, n) = x

fp
+ y

fh
+ n

ff
.

Moreover, if A cos (2πfct) is a carrier signal, and m(t) a modulation waveform, then an amplitude
modulation signal may be written as: s(t) = A cos (2πfct)[1 + km(t)], with k the modulation index.
The authors have implemented a software that displays an image where every pixel is coded as an 8 bit
grey scale value like ⌊2552 + s(t(x, y, n))⌋, with A = 255

4 and m = 1. By choosing fc as a frequency that
can be received and demodulated by a radio receiver, information carried by m(t) may be decoded by
a commercial AM receiver. If m(t) is an audio signal, that audio information may be listened to by a
radio receiver.

An open source software that generates an amplitude modulated EMI to broadcast music is [Thiele,
2001]. Fig. I.1.6 is a screenshot captured while executing this software.

Communication bus In [Guri et al., 2015], a software has been developed to generate EMI within
the GSM frequency bandwidth by forcing communications between the CPU and the memory on
a desktop computer. The authors highlight that, by using specific single instruction multiple data
(SIMD) instructions, it is possible to produce EMI from the parallel memory bus. For DDR3 memory
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Fig. I.1.7 – Chronograms of two USB sequences.

working at a clock frequency of 1600MHz, the emitted EMI are within the 600MHz to 1100MHz
frequency range.

Therefore, the authors managed to code information into a binary amplitude shift keying modula-
tion (B-ASK). Three workstations have been tested by the authors and the signal to noise ratio (SNR)
for several configurations (workstation/measurement point/RAM frequency clock) was computed. It
was possible to achieve a SNR of 0.5 dB at a distance of 5m for a measurement point in the sight of
view of the front panel of the chassis.

As a receiver, the authors used a mobile phone with a modified firmware of the baseband processor
based on OsmocomBB (an open source GSM baseband implementation [Welte, 2010]). It does not
implement a real receiver, but a routine that measures the power on a given absolute radio-frequency
channel number (ARFCN). This implementation lead to a throughput of 1 bit s−1. Another implemen-
tation, using a SDR, is able to handle a throughput of 1 kbit s−1. The 1000 factor between the two
methods is likely due to the fact that it is much easier to control the processing of the high frequency
signal with a SDR.

More information is given in [Callan et al., 2014] about the changes on radiated emissions of a CPU
for different processsor instructions.

The same research team managed to implement another soft-TEMPEST proof of concept in [Guri
et al., 2016]. In that case, the electromagnetic emissions were controlled by a USB communication
between an unmodified USB flash drive and a computer. Specifically chosen USB signals are transmit-
ted onto a twisted pair using differential signaling. Thus, the two lines, namely D+ and D−, have an
opposite voltage. The low level voltage is indicated as V − and the high level as V + where V − = −V +.

USB uses a non-return to zero inverted (NRZI) encoding scheme. Thus, the bit ’0’ is coded as a
change of voltage (from V + to V − or from V − to V +) and the bit ’1’ as an unmodified voltage. The
two devices that communicate with each other use the signal edges to keep the clock synchronized
between them. If a long sequence of bits ’1’ is transmitted, no edge is present in the signal, and
synchronisation may be lost. That is why, as soon as a sequence of 6 bits ’1’ appears in the data to
transmit, an additional bit ’0’ is added. Fig. I.1.7 shows two chronograms of a sequence of 14 bits ’0’
and 12 bits ’1’, both sequences have same transmission duration.

Thus, by controlling the sequence of bits to transmit over USB, it is possible to modify the spectrum
of the USB signal. The fundamental frequency f0 of the electric signal lies between f0,min = 1

7T
and f0,max = 1

T , where T is the clock period. As any time-varying electric signal may generate an
electromagnetic radiation whose spectrum is correlated to the spectrum of the electric signal, it is
possible to shift the spectrum of the electromagnetic radiation of a USB communication by controlling
the transmitted bits over the link.

The authors have coded the data to leak into a binary frequency shift keying modulation (B-FSK),

22



Frequency modulation

Frequency modulation + amplitude modulation

Fig. I.1.8 – Communication scheme by means of polyglot signals. Legit communication between the
blue and green computers . Covert communication between the blue and red computers.

which means that the symbol “0” is coded by a frequency f1 and the symbol “1” by a frequency f2.
Each symbol is associated to a sequence of bits. When the sequence of bits is sent over a USB link an
electromagnetic radiation is generated at frequency f1 or f2. The authors have created a file containing
a succession of sequences of bits associated to both symbols. Electromagnetic radiations are generated
when the file is copied from the computer to the USB flash drive.

The leaked information is demodulated by a computer equipped with a SDR. This proof of concept
allows to send data at a throughput of 640 bit s−1. We can guess that the radiation source is the USB
cable. No information about the distance between the receiver and USB cable has been provided by
the authors.

I.1.3.1.4 Second order soft TEMPEST and radio front ends

In [Cottais et al., 2018] and [Lopes Esteves et al., 2017] radio front ends are perturbed in such a
way that polyglot signals are created. Polyglot signals consist in a superposition of two modulation
schemes. Consider a communication device that sends two different pieces of information towards two
receivers within the same electromagnetic signal. One receiver uses a modulation of kind A and a
second one uses a modulation of kind B. Thus, the transmitted signal must be modulated twice. For
example, it is possible to modulate a signal in frequency and amplitude at the same time. By doing so,
both receivers will be able to demodulate the information without processing the other modulation.
If the second receiver belongs to an attacker, it will be able to demodulate the information while the
first receiver continues to have a nominal behavior (see Fig. I.1.8). Thus, the work of an attacker is to
create this dual modulated signal by modifying the behavior of the transmitter device. This concept
was first introduced in [Goodspeed and Bratus, 2015].

In [Lopes Esteves et al., 2017] a proof of concept is proposed where an amplitude modulated
signal is added on top of a quadrature phase shift keying (Q-PSK), by creating an IQ imbalance.
Moreover in [Cottais et al., 2018], a B-PSK modulation is superposed on top of a Q-PSK modulation
by adding a phase offset ∆θ on the local oscillator. Several approaches are given to control this IQ
imbalance such as a software controlled crosstalk onto the power lines or on the configuration lines
of a voltage-controlled oscillator (VCO). The reader may refer to section I.1.3.2.3 for an immunity
assessment of a VCO. This procedure is referred as second order soft-TEMPEST, as it is a two-
step soft-TEMPEST attack. The attacker, through a malicious software, does not directly control the
process that generates the electromagnetic emissions towards the receiver, but the controlled radiations
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Fig. I.1.9 – Principle diagram of a Soft-TEMPEST (blue background) and second order Soft-
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Level Effect Description
U unknown Unable to determine due to effects on another component or not observed.
N no effect No effect occurs or the system can fulfill his mission without disturbances.
I interference The appearing disturbance does not influence the main mission.

II degradation
The appearing disturbance reduces the efficiency and capability
of the system.

III
loss of main

function
(mission kill)

The appearing disturbance prevents that the system is able to fulfill
its main function or mission.

Table I.1.1 – Classification of EM effects by their criticality (from [Sabath, 2010]).

compromise a subsystem (a component for example) that will propagate the data towards the receiver
as a knock-on effect. Fig. I.1.9 shows a schematic diagram of principle of both soft-TEMPEST and
second order soft-TEMPEST attacks.

I.1.3.2 Intentional electromagnetic interference (IEMI) . . .

Intentional electromagnetic interference (IEMI) defines electromagnetic aggressions that are directed
towards a target in order to alter its nominal behavior. The most prominent example of IEMI is when
a device is destroyed by a high-power aggression, leading to a loss of the availability of the information
it processes [Backstrom and Lovstrand, 2004]. The integrity of the information can also be altered
by IEMI. Indeed, an IEMI may couple onto electric conductors resulting into an additional parasitic
signal. If these conductors are used to carry information, as when dealing with serial or parallel
communications and depending on the level of coupling, the information may be incorrectly decoded
by the receiver. In such a case a loss of integrity occurs. In [Sabath, 2010] a classification of IEMI is
proposed and is reproduced in Table. I.1.1. An IEMI may also be triggered to exploit the susceptibility
of an electronic system or component in order to create a covert channel [Houchouas et al., 2016].

Multiple types of aggressions may be considered. Some are transient, like electromagnetic pulses
(EMP) where the peak electric and magnetic fields can be intense. The time duration of the aggression
is from 1 µs to 1ms. However, transient aggressions are more suitable to generate perturbations on
a wide frequency bandwidth [Backstrom and Lovstrand, 2004]. The shorter the aggression rise-time
is, the wider the bandwidth of the aggression will be. Others are continuous, when the desired effect
on the target is not generated by transient effects. Pure sine signals, amplitude modulated signals or
frequency modulated signals belong to continuous aggressions.
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The magnitude of the aggression may vary from a dozen of Vm−1 to tens of thousands of Vm−1.
EMP generated by the explosion of a nuclear bomb can generate electric fields greater than 1 kVm−1.

As critical infrastructures are more and more composed of electronic devices, it is necessary to
assess the immunity of these infrastructures. The European Union has funded several projects related
to IEMIs [PF7, 2012c,a,b]. They are related to the resilience of critical infrastructures against IEMIs,
to the high-power microwave threat, and to the security of railways against IEMIs respectively. In
what follows, an overview of IEMI effects is given for systems (independent equipement), subsystems
(actuators, etc.) and radio front ends, and, more generally, subsystems as a whole.

I.1.3.2.1 . . . Towards systems

In [Hoad and Sutherland, 2007], the effects of IEMIs onto a commercial off-the-shelf (COTS) desktop
computer are assessed. The effects are listed and classified by their severity, from no effect to functional
damage (a short loss of availability), and up to physical damage (a permanent loss of availability). An
indication of the field strength needed to trigger a severe upset is given in [Hoad et al., 2004]. A severe
upset occurs when a manual intervention is needed to recover a nominal behavior. The computer
was exposed to a continuous wave during a time interval of 30 µs every 1ms. The frequency of the
continuous wave was between 400MHz and 8GHz.

A critical aspect in mitigating the risks of IEMIs onto an information system (IS) is to be able to
detect the aggression itself or to detect the effects of the aggression. In [Kasmi et al., 2014] a software
method is used. The software analyzes the event logs of the operating system, and under exposure one
can observe:

• integrity issues on PS/2, USB or Ethernet links;

• integrity issues on a USB link (it appears that disconnection occurs during the aggression);

• major change of the temperature sensor reading value;

• rise of the noise floor on sound cards while recording;

• SNR reduction of wireless communications (Wi-Fi, Bluetooth, etc.).

By combining these information an IEMI detection agent has been developed allowing a realtime
detection of aggressions.

Another detection approach is described in [Hoad and Sutherland, 2007] where an electromagnetic
disruption detection system is designed and tested. It is based on an IEMI detection agent like in
[Kasmi et al., 2014], and is combined with an electromagnetic sensor. These two information sources
are correlated to detect an IEMI. In recently published work [Zhang and Rasmussen, 2020], a novel
method to detect the effects of IEMI onto active and passive sensors is proposed, allowing the sensor
to work properly during an IEMI. Medical devices are also studied in [Kune et al., 2013]. The authors
highlight that a pacemaker can be disturbed by an IEMI (at close range). A detection mechanism,
that avoids wrong behaviors based on heartbeat properties, is implemented.

I.1.3.2.2 . . . Towards subsystems

Responses of actuators to IEMIs have been investigated in the literature. The reliability of these
devices is mandatory for many applications. Erratic behaviors of servomotors have been highlighted
in [Houchouas et al., 2017] and in [Selvaraj, 2018] when exposed to IEMI. A functional safety analysis
needs to cover this issue in order to prevent personal injuries and damages on the device environment.
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I.1.3.2.3 . . . Towards radio front ends

Radio front ends are dedicated to process communications. As a consequence, a malfunction in radio
front ends may lead to data integrity issues or to a loss of availability. An investigation into the effects
of an IEMI towards a voltage-controlled oscillator (VCO) was given in [Dubois et al., 2014]. Two
configurations were considered: the VCO alone, and the VCO used in a phase locked loop (PLL).
The IEMI consists of a continuous wave and is generated by a custom-made near-field probe. When
the VCO is integrated in a PLL to generate a frequency f0, it appears that spurious frequencies are
generated when exposed to a continuous wave of frequency fp. The generated spurious frequencies are
f0 ± n

2 |f0 − fp| where n is an integer. The quality of a communication (in terms of throughput or bit
error rate) may suffer from this exposure if an IEMI reaches the VCO. This can happen when fp is
close to f0 (the carrier frequency of the communication), as the IEMIs will not be filtered or blocked
by a circulator. Finally, the error vector magnitude (EVM) is measured for IEMI of different powers
and frequencies fp. From these EVMs, it is possible for an attacker to select the frequency fp and the
power of an IEMI in order to degrade the communication. Moreover, it was highlighted that a field of
3.8Vm−1 is enough to degrade the communication.

Another approach is given in [van de Beek et al., 2015] where the saturation of the receiver is
sought. It results in the blocking of the receiver. Two types of components may be targeted, namely
the low noise amplifier (LNA) and mixers. This blocking is achieved by placing these components at
an operating point that saturates them (above the 1 dB compression point). Therefore, the ouput of
the LNA or the mixer is not anymore linearly linked to its input. It results in the loss of the availability
of the receiver. Finally, the power P−1 dB related to the 1 dB compression point is determined when
a continuous wave is injected into a given radio front end (evaluation kit). Thus, if an IEMI signal of
power greater than P−1 dB reaches the front end input, the receiver is likely to be blocked. Moreover, it
was highlighted that P−1 dB is frequency-dependent and that P−1 dB varies within tens of dBm. Thus,
an attacker may select a frequency that blocks the receiver while minimizing the IEMI power.

I.1.3.3 Covert channel

The exploitation of the induced effects of an IEMI to create a covert channel is also achievable. Indeed,
by taking advantage of the susceptibility of a component, it is possible to create simplex communica-
tion channels. In [Houchouas et al., 2016], the susceptibility of a temperature sensor located on a given
computer motherboard, is evaluated. When a computer is aggressed by an IEMI, the reading temper-
ature (accessible from the operating system) returned by the sensor is erroneous. It appears that the
returned value depends on the surface power density at the location of the sensor (see Fig. I.1.10a).
The aggression signals considered here are amplitude modulated with a carrier frequency of 1.1GHz.
As the surface power density at the sensor location depends on the amplitude of the aggression signal,
it is possible to code data by modulating the amplitude of the IEMI. Fig. I.1.10b depicts a chronogram
of a transmission using this procedure. Four amplitude levels are considered so 2 bits of information
are coded on each symbol. A malicious process running on the computer may monitor the evolution of
the reading temperature in order to demodulate and to process the transmitted data. A throughput
of 10 bits s−1 can be reached with that method.

I.1.4 EMSEC at building level

At building level, EMSEC studies investigate interactions or couplings between the building and ISs.
Two interaction modes are considered whether for a leaked information or an aggression. The first
one is relative to the propagation of electromagnetic waves within the structure (radiated signal). It
depends on the constitutive materials of the building and on its structure. The second one focuses on
the propagation along metallic conductors (conducted signal). Several conductors may be considered
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(b) Chronogram of a transmission containing the string "Hello scientists".

Fig. I.1.10 – Use of the susceptibility of a temperature sensor to create a covert channel.

like metallic water pipes, electric cables, reinforced concrete, etc. Conducted perturbations are gener-
ated when an electromagnetic perturbation couples onto a conductor, or when an equipment injects
perturbations through the electric power network.

I.1.4.1 Radiated emissions

The propagation of electromagnetic waves into complex structures such as a building was studied in
[Junqua et al., 2014b]. Building structures are modeled by a topological network using the Baum-
Liu-Tesche (BLT) technique. Nodes account for dissipative mechanisms, and branches for transfer
of energy paths. The interaction processes are described by the power balance (PWB) approach (see
section I.2.2.3.1 for further information). This approach shall apply to both TEMPEST and IEMI
issues.

Remark that for the TEMPEST domain the legislation on classified information requires to enforce
rules about how to arrange equipment in order to ensure that compromising emissions outside a
restricted area are small enough to prevent their analysis and interpretation.

I.1.4.2 Conducted emissions

IEMI threats Effects of electric pulse injections into power network cables inside civilian facilities are
studied in [Mansson et al., 2007] from an IEMI viewpoint. A time-domain approach is considered where
the injected pulses rising time are less than 1 ns with a maximum amplitude of 450V. Both common
and differential propagation/injection modes are studied. It was highlighted that: the injected power
can propagate at large distance, losses are mainly due to impedance mismatch, cable bends may be
neglected (no impact on the propagation) and threats mainly come from differential mode propagation.

A proof of concept of conducted emissions related to EMSEC was proposed in [Kasmi and Lopes
Esteves, 2016]. It was demonstrated that it is possible to inject voice commands to smartphones
connected to a power network. First, an amplitude modulated signal was injected on the power
network. A part of this signal reaches the smartphone power charger. It was highlighted that somehow,
the signal bypasses the power charger, reaches the smartphone, and interferes with the microphone in
such a way that it is demodulated and interpreted as a legitimate voice command. To be practicable,
the virtual assistant must be activated.

27



TEMPEST threats There are still very few literature related to the TEMPEST threat for con-
ducted emissions. However, in [Kasmi et al., 2014a] the problem of the propagation of sensitive
information on low voltage power network was adressed. Consider a sensitive IS plugged on the power
network. The risk exists that signals correlated to sensitive information processed by the IS, propagate
on the power network. If an attacker can somehow access that network, he will be able to intercept
and analyze these signals and then recover information. In order to mititage that risk, one can add
filters between the power network and the electronic device power socket. In [Kasmi et al., 2014a], the
impact of the use of counter-TEMPEST filters was analyzed. Both common and differential modes
were considered by means of two attenuation factors, and both loaded and unloaded power networks
were studied.

I.1.5 Conclusion

An overview of INFOSEC threats related to EMI have been outlined in this chapter for devices of
different scales. The TEMPEST threat is related to the interception and to the analysis of parasitic
EMI in order to recover confidential information. Several sources of EMI can be considered such as
video stream signals or keyboard signals. These EMI sources have been well investigated. However,
more broadly, all EMI radiated by sensitive IS can be considered as a TEMPEST threat. It is also
sometimes possible to control somehow EMI of electronic devices by means of softwares. This defines
the soft-TEMPEST domain, and EMIs are a vector to propagate information that an attacker want
to leak.

The susceptibility of electronic devices can also be a threat in regards with IEMI. Different impacts
on an IS can be desired by an attacker. From one hand, IEMI may be employed to destroy an IS or to
prevent an IS from functioning normally. On the other hand, IEMI can create a mean of communication
by using the susceptibility of a piece of electronics. Therefore a covert channel is created.

Two different paths may be considered for the EMI. Firstly, the radiated one when EMIs propagate
in the free space medium, and secondly the conducted one when EMIs propagate on conductors
(typically on the low voltage power network).

A wide range of scenarios has been listed, and it underlines the importance for examining electro-
magnetic phenomenon from an INFOSEC viewpoint. We highlight that some threats may be mitigated
by controlling the environment of a sensitive IS. By environment we mean:

• the others ISs (maybe out of control) close to the sensitive IS;

• the power network that may be physically accessible by an attacker and where other uncontrolled
electronics equipment may be plugged;

• the physical area around the sensitive IS where EMI may propagate at long range.

I.1.6 Need to study reverberant environments

From this literature review, one can notice that there are few (if any) published work related to
the implications of equipment casing from an EMSEC viewpoint. And yet, it is common to embed
electronic devices into casings as they limit the susceptibility to the environment and their emissivity
towards the environment. A downside of placing equipment in casings, is that it creates reverberant
conditions for the electromagnetic field. The electromagnetic modeling of such environment is complex.

Two behaviors can be considered. For some pairs 〈frequency of interest , cavity shape〉, the electro-
magnetic field is evanescent: it does not propagate inside the structure. For other pairs, standing waves
will appear as superposed propagating electromagnetic waves. The latter behavior occurs especially
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as the frequency of interest increases. It is also for this latter behavior that the risk for the INFOSEC
is higher as it dramatically increases the coupling risk. Therefore, it is relevant to study casing of
equipment from the EMSEC viewpoint. Two coupling paths will be considered.

Couplings inside a cavity between two (or several) inner elements The risk on the confi-
dentiality of information is caused by the couplings between elements that should remain electrically
isolated. Consider encryption devices which are dedicated to encrypt sensitive data. In such devices,
the signal that carries the plaintext information penetrates the device from a cable, then the infor-
mation is encrypted and this generated signal exits the equipment through another cable. It is thus
mandatory to prevent couplings of the signal containing the plaintext (that may radiate inside the
equipment chassis) to the conductor that carries the encrypted data. Indeed the information confiden-
tiality is not guaranteed anymore if a parasitic signal, correlated to the plaintext, will be superposed
on the outgoing signal.

Couplings between an outer electromagnetic field and elements inside a cavity In that
case, the risk on the confidentiality of the information is high (TEMPEST threat), as EMI generated
by the device may be radiated outside the casing. Moreover, in that case, IEMI may be responsible
for the loss of the integrity and availability of information, when a powerful electromagnetic field is
pointed towards the equipment.

Both configurations need to be studied. Moreover, from the Lorentz reciprocity theorem [Balanis,
2016, chap 3.8], studying the coupling between an item A and item B is equivalent to study the coupling
between the item B and the item A. Remark that this reciprocity does not hold from the EMSEC
viewpoint. The risk assessment is different for each coupling “direction”.

The next section will expose tools that may be employed to study reverberant environments. It
will be highlighted that the choice of the technique to apply strongly depends on the minimum and
maximum frequency of interest. To determine these frequencies, symbol rates for several common
communication protocols have been listed. Fig. I.1.11 gives symbol rates for four communication
protocols. These symbol rates cover a wide frequency bandwidth, up to several tens of GHz. Methods
that will be selected to address the issue of couplings inside reverberant environments should be
applicable up to these frequencies.
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I.2.1 Introduction

Couplings within reverberant environment have been widely investigated from the EMC standpoint
in order to prevent equipment dysfunctions. Two kinds of couplings may occur. The first one is the
coupling of an outer electromagnetic field with an enclosure through an aperture, and the second one is
the coupling between several inner elements inside a cavity (i.e. between a cable and a printed circuit
board (PCB) for example).

To characterize these interactions, various approaches have been proposed in the literature. Some
consider a fully determined configuration, whereas others focus on a situation where some parameters
are considered as random variables. The latter refers to statistical methods. Depending on the
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application, different physical quantities of interest may be looked at by means of various approaches.
Some of them are useful to evaluate the electromagnetic field at any location in the studied structure.
Others can help to characterize the electromagnetic environment such as through the mean values of
electromagnetic energy or power. Yet others are aimed at determining currents or/and voltages onto
coupled conductors. A review of these methods is exposed in this chapter, and some will be selected
and then investigated in detail throughout this dissertation.

Before listing those methods, and because some rely on full-wave electromagnetic field solvers,
it is necessary to briefly expose these solvers. Full-wave electromagnetic field solvers, resolve the
Maxwell’s equations without any assumption. The resolution technique requires either integral
equations or differential equations. Moreover, for time-domain solvers, the computed electromagnetic
field is returned versus the frequency, whereas for frequency-domain solvers, the electromagnetic field
is returned for only one frequency. Let us consider the most frequently employed resolution techniques.

The finite-difference time-domain (FDTD) is a time-domain solver where the field is computed
at each cell of a grid (over the computation volume). It relies on differential equations. The finite
integration technique (FIT), implements integral equations, and is a time-domain technique. The
method of moments (MoM) is a frequency-domain resolution technique, based on integral equations.

I.2.2 Electromagnetic couplings through apertures

I.2.2.1 Analytical methods: the diffraction theory

Several models can describe diffraction phenomena, their choice depends on the size of the aperture.
At first, general purpose principles will be exposed, then specific models suitable for small electric
dimensions will be reminded.

I.2.2.1.1 Description of general apertures

The description of the electromagnetic field behind an aperture is a complex procedure [Bouwkamp,
1954]. Small apertures can be described from the Bethe’s theory (which will be reminded in the next
section), while large ones may be considered by means of the geometrical theory of diffraction [Balanis,
2016, chap. 12.10]. For aperture dimensions close to the wavelength of interest, the two following
principles apply.

Ω̄

~E1, ~H1

~E1, ~H1 Ω

S

~J1 ~M1

(a) Initial problem.

Ω̄

~E, ~H

~E1, ~H1 Ω

S

~Js = ~n ∧ ( ~H1 − ~H)

~Ms = −~n ∧ ( ~E1 − ~E)

~n

(b) Equivalent problem.

Fig. I.2.1 – Initial and equivalent models.
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The Huygens equivalence principle [Balanis, 2016, chap. 12.1] Assume that electric ~J1 and
magnetic ~M1 sources (as current densities) generate electric ~E1 and magnetic ~H1 fields everywhere.
Consider the situation depicted in Fig. I.2.1 which represents a closed volume Ω̄ containing the electric
~J1 and magnetic ~M1 current densities. The volume outside Ω̄ is referred as Ω. An equivalent config-
uration that generates ~E1 and ~H1 outside Ω̄ consists in removing the ~J1 and ~M1 sources from Ω̄, and
to impress magnetic ~M and electric ~J current densities at the boundary S between the two volumes.
The new fields inside Ω̄ are ~E and ~H. ~M and ~J are expressed from the tangential fields to Ω̄ as:

~J = ~n ∧ ( ~H1 − ~H) (I.2.1)

~M = −~n ∧ ( ~E1 − ~E) (I.2.2)

where ~n is an outwards unit normal vector.
As the fields of interest are outside Ω̄, ~E and ~H can take any value. Especially, one can define

sources ~Js and ~Ms such that the radiated fields inside Ω̄ are null ( ~E = ~0 and ~H = ~0). These sources
are expressed as:

~Js = ~n ∧ ~H1 (I.2.3)

~Ms = −~n ∧ ~E1 (I.2.4)

This result is used in [Harrington and Mautz, 1976] where the problem of two regions separated by
a perfect electric conductor (PEC) screen containing an aperture is addressed. Further information
about its application will be given in section III.2.4.

The Babinet’s principle [Balanis, 2016, chap. 12.8] states that for complementary screens, the
sum of the electric field ~Ee diffracted through a screen with a given aperture, and the electric field
~Em diffracted by its complementary shape, is equal to the electric field ~E0 radiated if no screens were
present. The same statement holds for the magnetic field, thus:

~E0 = ~Ee + ~Em (I.2.5)

~H0 = ~He + ~Hm (I.2.6)

Fig. I.2.2 depicts an infinite screen with an aperture and its complementary shape. Another formu-
lation of the Babinet’s principle involves impedances. It states that if both an aperture and its
complementary screen can be described by two input impedances (Zs and Zc respectively), then the
following equality holds:

ZsZc =
η2

4
(I.2.7)

Aperture problems may be solved from this result when used jointly with the planar antenna the-
ory (see III.2.2).

I.2.2.1.2 Equivalent electric and magnetic dipoles for small apertures

Some simple geometry apertures, may be modeled by electric and magnetic dipoles. This method was
introduced in [Bethe, 1944] but is limited to apertures with small electrical dimensions: the condition
is that the maximum transversal dimension dmax of the aperture should be smaller than λmin

2π , with
λmin the shortest wavelength of interest. If so, the aperture may be replaced by an elementary electric
dipole of moment ~Pe and an elementary magnetic dipole of moment ~Pm while shorting the aperture
with a metallic wall. The expressions of these elementary moments are:

~Pe = ǫαe
~Esc (I.2.8)

~Pm = −α
m
~Hsc (I.2.9)

32



⇔

Fig. I.2.2 – Babinet’s principle for a planar rectangular aperture.

where ~Esc and ~Hsc are respectively the short circuit electric and magnetic field at the location of the
aperture, and are expressed from the incident field ~Ei as:

~Esc = 2(~n. ~Ei).~n (I.2.10)

~Hsc = 2(~n ∧ ~Ei) ∧ ~n (I.2.11)

with ~n the unitary vector normal to the aperture. The scalar αe and the matrix α
m

are the polar-
izabilities associated to the aperture. These quantities depend on the size and on the geometry of
the aperture. Values of αe and α

m
are available in the literature for canonical aperture shapes (such

as circles, ellipses, etc.). Formulations of polarizabilities may be found in [Butler et al., 1978, Collin,
1991] with the constraint that the aperture is smaller than the wavelength. For example, for a circle,
αe and matrix α

m
are expressed as:

αe =
2

3
R3 (I.2.12)

α
m

=





4
3R

3 0 0
0 4

3R
3 0

0 0 0



 (I.2.13)

where R is the aperture radius. Then, the total electric field ~Etotal diffracted at the position ~r and in
the direction ~u created by the coupling of an incident field ~Ei to the aperture is given by [Jackson,
1999]:

~Eelectric dipole = −ω2
0µ0G(~r)

[(

−1 + 3j

|~k||~r|
+

3

|~k|2|~r|2

)

(

(~Pe ∧ ~u
)

∧ ~u) +
(

2j

|~k||~r|
+

2

|~k|2|~r|2

)

~Pe

]

(I.2.14)

~Emagnetic dipole = |~k|ω0G(~r)

[(

1− j

|~k||~r|

)

~Pm ∧ ~u
]

(I.2.15)

~Etotal = ~Emagnetic dipole + ~Eelectric dipole (I.2.16)

where G(~r) is the free-space Green’s function, expressed as:

G(~r) = −e
−j|~k||~r|

4π|~r| (I.2.17)
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Fig. I.2.3 – Model in a full-wave simulation software
CST Studio Suite (CST-SS), the incident plane wave
is in red and the aperture has a diameter of d0 = 1 cm.
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Fig. I.2.4 – Axes conventions for the com-
parison between the full-wave simulation
software and the Bethe’s theory.

The total magnetic field ~Htotal is given by:

~Hmagnetic dipole = −ω2
0ǫ0µ0G(~r)

[(

−1 + 3j

|~k||~r|
+

3

|~k|2|~r|2

)

(

(~Pm ∧ ~u) ∧ ~u
)

+

(

2j

|~k||~r|
+

2

|~k|2|~r|2

)

~Pm ∧ ~u
]

(I.2.18)

~Helectric dipole = −|~k|ω0G(~r)

[(

1− j

|~k||~r|

)

~Pe ∧ ~u
]

(I.2.19)

~Htotal = ~Hmagnetic dipole + ~Helectric dipole (I.2.20)

A simulation has been launched to compare the electric field obtained by means of this method
to the electric field computed with a full-wave simulation software. The simulated geometry, depicted
on Fig. I.2.3, is a panel with a circle aperture of diameter d0 = 10mm which is illuminated by a
horizontally polarized plane wave of amplitude 1Vm−1. Fig. I.2.5 shows the electric field, given by
equation (I.2.16), on the plane xOy containing the center of the aperture, at frequencies 1GHz, 5GHz
and 10GHz. The axes conventions are shown in Fig. I.2.4 and the aperture is located at x = 0.
Moreover, a comparison between simulations and the analytical formulation is given for the mean
electric field on a vertical line (x = 10mm and z = 0mm with y within the −50mm to 50mm range).
The mean electric field over a period T is computed as in CST-SS like:

〈| ~E|〉 = 1

T

∫ T

0
| ~E|dt

=
1

T

∫ T

0

√

ℜ(Exe−jωt)2 + ℜ(Eye−jωt)2 + ℜ(Eze−jωt)2dt (I.2.21)

The simulations agree well for a frequency associated to a wavelength close to the dimension d0 of
the aperture, i.e. 3GHz. When the wavelength is much shorter than d0, see Fig. I.2.5a, the Bethe’s
theory does not agree with the simulation. For wavelength greater than d0, the simulation fits the
theory but only apart the axis of the aperture (where y = 0).

I.2.2.1.3 Equivalent dipoles and couplings in cavities

An application of the Bethe’s diffraction theory for small apertures is proposed in [Seidel, 1978], where
the coupling between an outer electric field and a wire located inside a cavity needs to be determined by
computing the current density on that wire. The configuration is depicted in Fig. I.2.6. The aperture
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Fig. I.2.5 – Mean value of the electric field in the plane xOy containing the center of the aperture
calculated from (I.2.16), and comparison with full-wave simulation results (CST-SS).
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Fig. I.2.6 – Scheme of the configuration studied in [Seidel, 1978, Lecointe et al., 1992]. The wire is in
blue.

is modeled by an electric dipole and a magnetic dipole of respective moments ~Pe and ~Pm. From ~Pe,
~Pm, and the Green’s function of the cavity, two integral equations are set and solved by the method
of moments. The dimensions of the studied cavity are 40 cm× 30 cm× 130 cm (see Fig. I.2.6). Two
equations are solved, where ~r ′ refers to the source location (the dipole at the aperture), and ~r to the
observation point location. The Pocklington’s equation, allows to determine the current density ~Js
on a wire of radius a and length l from its nearby electric field. Assuming that the wire is oriented
along the Oz axis, then I(z) = 2πa~ez · ~Js(z) can be calculated by solving:

∫ l
2

− l
2

2πr~ez · ~Js(z′)
[(

∂2

∂z2
+ k2

)

K(~r, ~r ′)

]

dz′ + jωǫ~ez · ~E(ρ = a) = 0 (I.2.22)

with:

K(~r, ~r ′) =
1

2π

∫ π

−π
G

Azz
(~r, ~r ′)dφ′ (I.2.23)

where G
A
(~r, ~r ′) is the dyadic Green’s function for the potential due to electric curent source. From

a second equation, the electric field ~E inside the cavity is computed from ~Pe and ~Pm as:

~E(~r) =
1

ǫ
G

e
(~r, ~r ′)~Pe + jηkg

e
(~r, ~r ′)~Pm (I.2.24)

where G
e
(~r, ~r ′) and g

e
(~r, ~r ′) are the Green’s dyads for the electric field due to the electric and

magnetic sources respectively. This method is strongly bound to the geometry of the cavity as the
Green’s function of the cavity is required.

The study exposed in [Lecointe et al., 1992, Lecointe, 1995] addresses the same problem as in [Seidel,
1978], but provides a comparison with measurements up to 3GHz. Measurements data, acquired from
a chassis mock-up, are compared to two different models. The first one does not take into account
the reactions of the cavity and the cable with the aperture, and the second one takes these reactions
into consideration. The author concludes that considering the reactions of the wire on the aperture
improves the results.

I.2.2.2 Intermediate level circuit models (ILCM).

Intermediate level circuit models refer to analytical formulations based on a circuit approach that
intends to compute the shielding effectiveness of cuboid enclosures with apertures. The seminal papers
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Fig. I.2.7 – Schematic I.2.7a and equivalent circuit I.2.7b of the problem exposed in [Robinson et al.,
1998].

related to this method are [Robinson et al., 1996, 1998]. A brief review of this method is now proposed,
as well as the improvements that were since exposed in the recent literature.

In that type of model, the enclosure is represented by a short-circuited waveguide of characteristic
impedance Zg and of propagation constant kg = jβ10 (only the TE10 mode is considered in the initial
formulation). Then, the aperture, of length l and of width w, is modeled by a coplanar stripline
short-circuited at both ends with a characteristic impedance Z0S . The width of the coplanar stripline
is equal to the height b of the enclosure, and the gap length between the two conductors corresponds
to the aperture width w. The expression of Z0S can be found in [Gupta, 1996, chap. 7]. The radiating
incident source is modeled by a waveguide with a characteristic impedance η and an electromotive
force V0 (see Fig. I.2.7). As the coplanar stripline is short-circuited, the aperture impedance at its
center is given by [Balanis, 2012, chap. 8]:

Zap = j
Z0S

2

l

a
tan

(

k0l

2

)

(I.2.25)

By employing all these analogies together, and using the Thévenin’s model, the voltage V TE10
eq at a

distance d− zp from the back of the enclosure is:

V TE10
eq =

V1 sin (β10(d− zp))
sin (β10d)− j Z1

Z
TE10
g

cos (β10d)
(I.2.26)

with Z1 =
ηZap

η+Zap
, V1 =

V0Zap

η+Zap
. Finally, the shielding effectiveness is computed as:

SE = −20 log
2|V TE10

eq |
|V0|

(I.2.27)

This analytical model was tested against measurements on a copper made enclosure whose dimensions
are 30 cm× 30 cm× 12 cm, for several rectangular apertures. Comparisons are proposed in [Robinson
et al., 1998] for three enclosure sizes, and for frequencies up to 1GHz. Measurement and simulation
data agree well with each other. However only the transmission line TE10 mode is considered, thus
this method is limited to electrically small enclosures.

This model was improved in [Azaro et al., 2001] to take into account any direction of incidence
and any polarization of the incident plane wave. Elementary sources were added to the coplanar
stripline (that models the aperture) and a voltage Vx(x) was determined across the aperture. Then

37



the voltage Vg(z) along the z-axis (on the short circuited waveguide) was expressed in terms of forward
and backward waves as Vg(z) = Vforwe

−jkgz + Vbacke
jkgz. Vg(z) is fully determined by applying the

boundary conditions Vg(0) = Vx
(

l
2

)

and Vg(d) = 0. Finally, a parametric study over the angles of
incidence of the plane wave and over the aperture sizes is given.

The ability to evaluate the shielding effectiveness everywhere in the cavity was added to that model
in [Azaro et al., 2002]. Considering only the TE10 mode at the aperture, the y component of the electric
field is expressed as:

Eap
y (x) = Vx(x)

√

2

wl

Zs

Zs + Zap
(I.2.28)

where Zs is the impedance of the waveguide at d− zp, i.e. Zs = jZg tan(kg(d− zp)). Then, by use of
a modal expension over m, the electric field in the cavity is given by:

~E =
∑

m

[

∫

S(× ~Eap)∇× ~emds

(k2m − k20)
∫

V |~em|2ds

]

~em (I.2.29)

where S is the surface of the aperture, V is the cavity volume and ~em are the divergenceless
electric eigenvectors of the cavity. Finally, the shielding effectiveness is computed from (I.2.29).
This formulation is not restrictive about the cavity modes considered (contrarily to the previous
models). However, the aperture center should still be located at the center of the front face of the cav-
ity. A method to take TEm0 and TM1n modes into account is presented in [Belokour and LoVetri, 2002].

The possibility to locate the aperture anywhere on the front face was proposed in [Konefal et al.,
2005]. Additionally, a radiation impedance for the aperture was added to this model to represent its
re-radiation. It is determined by using the Babinet’s principle and a full-wave simulation. Further
details about this principle will be given in section III.2.2. Unfortunately, this formulation only allows
to consider slot apertures (i.e. aperture whose height is a small fraction of its length).

More recently, several improvements to the Robinson’s method have been proposed:

• [Shim et al., 2010]: the shielding effectiveness calculation is extended to apertures located on
different faces of the cavity;

• [Yin and Du, 2016]: a new definition of Zap (substituted to (I.2.25)) is proposed. It allows to
consider Na apertures of center position (xi, yi) and of length li, for the m,n aperture mode:

Zap = j
Z0S

2

Na
∑

i=1

li
a
tan

(

k0li
a

)

sin
(mπ

a
xi

)

cos
(nπ

b
yi

)

(I.2.30)

• [Rabat et al., 2017]: the Taylor model is employed to determine the current on a wire that
is placed in a cavity. This current results from coupling of the eigenmodes onto the wire. It
consists in the addition of sources localised onto transmission lines to include electromagnetic
field couplings;

• [Rabat et al., 2018]: the losses on cavity walls are integrated in the model by substituting the
wavenumber kg of the waveguide by kg = αmn + jβmn. The comparison of full-wave simulations
for cavities having different wall materials (thus with different conductivities) with this method
gives good agreement.

All the applications of that model were restricted to undermoded (low mode density) cuboid enclosures.
To overcome this issue, one can use an eigenmode solver to precompute the eigenmodes and to inject
them into the circuit formulation (by use of (I.2.29) for example) with the drawback that the compu-
tation time will grow. Moreover, the wider the frequency bandwidth is, the longer the computation
time will be.
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I.2.2.3 Topological formalism associated to the power balance approach

I.2.2.3.1 The power balance approach

The power balance (PWB) approach was set by Hill (see [Hill, 2009, chap. 8.2]) with the intent
to qualify energy transfers inside reverberant environments at a macroscopic scale. Thus, instead of
determining electric/magnetic fields or voltage/current values, electromagnetic environments are iden-
tified by means of average power values. It models transfer of energy into cavities from a macroscopic
viewpoint. To be valid, the model requires that the environment is overmoded such that the field
inside the reverberant environment is uniformly distributed in polarization and in phase. It is thus
mandatory that the size of the cavity is large compared to the longest studied wavelength.

Applying this method involves to solve an equilibrium equation that describes energy transfers
inside a cavity. The PWB states that the sum of the energy losses and energy transfers in a cavity
must be equal to the injected power Pt:

Pt =
∑

i

Pdi (I.2.31)

Each loss is linked to a given elementary mechanism (subscript i), and all these elementary mech-
anisms are assumed to be independent. Pdi is the power dissipated by the ith mechanism. A quality
factor Qi may be defined for each one as:

Qi = ω
Us

Pdi

(I.2.32)

where Us =WV is the stored energy in the cavity (with V the volume of the cavity and W its volume
energy density). Then, the power density Sc in the cavity is:

Sc =
〈| ~E|2〉
2η0

= cW (I.2.33)

where ~E is the total field within the cavity. Moreover, the power Pdi may be written like:

Pdi = Scσi (I.2.34)

where Sc is the surface power density of the cavity in Wm−2 and σi is an absorption cross sections
(ACS) (in m2).
By combining the equations (I.2.32) to (I.2.34), we obtain:

Sc = cW = c
Us

V
= c

Qi

V

Pdi

ω
= λf

QiPdi

2πfV
=
λQiPdi

2πV
(I.2.35)

which leads to an equilibrium equation between the power transmitted to the cavity Pt and the losses
and energy transfers modeled by its ACS σi.

Pt = Pd = Sc
∑

i

σi (I.2.36)

The loss mechanism may be split into four types:

• power loss through apertures;

• power absorbed by the cavity walls;

• power absorbed by antennas;

• power absorbed by the loads present into the cavity.

Cross section expressions for each of these mechanisms may be found in [Hill, 2009, chap. 8.2]. In what
follows, it will be highlighted that the PWB approach can be integrated into topological descriptions
of systems to describe the interactions between different reverberant environments (such as cavities).
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Fig. I.2.9 – Example of BLT network with two nodes and one tube, with sources. Figure inspired
from [Junqua, 2010].

I.2.2.3.2 The BLT formalism

The Baum-Liu-Tesche (BLT) formalism models a complex system by a topological network where
the interactions between travelling waves W are determined. It was set by Baum, Liu and Tesche in
[Baum et al., 1978]. Its purpose is to provide a convenient method to solve problems with multiconduc-
tor transmission lines. Topological networks are composed of tubes (or branches) for the propagation,
and of junctions for the scattering.

This model was updated and specified to integrate the PWB approach [Junqua et al., 2005]. The
quantities of interest became ACS, power densities and mean powers. Thus the propagation phenomena
are not relevant anymore and were removed from the initial formulation of the BLT formalism. In
[Junqua et al., 2005], it has been stated that applying the PWB method may be reduced to the
analysis of an electrical circuit. Indeed the following equivalences are set between PWB and electric
quantities:

the average dissipated power P ↔ the current I (I.2.37)

the average power density S ↔ the voltage V (I.2.38)

the average cross section (ACS) 〈σ〉 ↔ the admittance Y. (I.2.39)

which leads to an equivalent Ohm’s law P = 〈σ〉S ↔ I = Y V .

In the network, the tubes model the propagation of travelling waves and the nodes characterize the
scattering of the travelling waves as well as the dissipative phenomena. The terms "propagation" and
"travelling waves" come from the BLT formalism and will be used even if they are not relevant when
integrating the PWB, as no propagation phenomona are considered.

Nodes may refer to metallic walls, apertures, wires, antennas, etc. Fig. I.2.8 illustrates the case
of a topological network with three nodes and two tubes. Each node k is associated to an average
dissipated power P k (in W) and an average power density Sk (in Wm−2). The travelling waves on
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the tube i of length li = l between the nodes m and n are defined by their values at each node by the
following formulas:

Wn(0) = 〈σ〉Sn − Pn (I.2.40)

Wm(0) = 〈σ〉Sm − Pm (I.2.41)

Wn(l) = 〈σ〉Sm + Pm (I.2.42)

Wm(l) = 〈σ〉Sn + Pn (I.2.43)

Moreover, on each tube, power sources may be added (see Fig. I.2.9). In the tube i it leads to:

Wm
s,i = −〈σ〉Sinc,i + Pinc,i (I.2.44)

Wn
s,i = 〈σ〉Sinc,i + Pinc,i (I.2.45)

where Sinc,i is an incident density power and Pinc,i is an incident transmitted power on the tube i. Pinc

may represent the power injected by an antenna. All these sources are contained in the super vector
[W s]. Finally, a super matrix [Γ] models the propagation and a second one [S] the scattering. They
are related by:

[W (l)] = [Γ][W (0)] + [Ws] Propagation equation (I.2.46)

[W (0)] = [S][W (l)] Scattering equation (I.2.47)

([I]− [S][Γ]) = [S][W s] BLT equation (I.2.48)

I.2.2.3.3 Applications of the PWB approach associated to the BLT formalism

This method was successfully employed in [Junqua et al., 2005] and [Junqua, 2010] to determine the
mean power in several environments, such as building rooms, cavities in missiles, or avionic equipment
casings. In every scenario, the mean power inside the N cavities of the system was determined with a
good agreement up to 12GHz. The resolution of this multi-cavity problem consists in solving a system
of N linear equations and provides the mean power density in each cavity. It is possible to solve this
problem by taking advantage of the software CRIPTE (developed at the ONERA) 1, which is a general
purpose tool dedicated to solve topological problems. More recently, an open-source tool developed
by the York university 2 was published to solve topological problems but it is specific to the PWB
approach (it is not a general purpose tool).

A similar approach was proposed more recently by [Tait et al., 2011] where transmission ACS are
determined for two configurations: nested reverberation chambers with aperture coupling and weapons
bays in a fighter aircraft.

I.2.2.3.4 Experimental determination of absorption cross sections (ACS)

In a recent work [Flintoft et al., 2016], a method has been proposed to assess the shielding effectiveness
of enclosures. As the shielding performances rely on how much the inner elements of enclosures absorb
energy, it is valuable to assess the ACS of these elements, and especially for PCB or PCB stackings.
Two electromagnetic environments have been identified. The internal environment consists in an
enclosure with PCB, which is itself placed into a mode-stirred chamber which represents the external
environment.

1https://www.onera.fr/fr/valorisation/moyens CRIPTE: Calcul sur Réseaux des Interactions Perturbatrices en
Topologie Electromagnétique.

2https://bitbucket.org/uoyaeg/aegpwb/src AEGPWB: An open-source electromagnetic power balance toolbox and
solver.
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To assess the average power densities Si and Se for both environments, one needs to quantify the
ACS of all the loss mechanisms in the system. The equivalent circuit based on the PWB method is
shown in Fig. I.2.10b. ACS are defined to describe each loss mechanism, and are listed as:

• 〈σae;w〉 are the average losses in the internal walls of the enclosure;

• 〈σai;w〉 are the average losses in the interior walls of the cavity;

• 〈σaPCB〉 are the losses in the PCB;

• 〈σae;Tx〉, 〈σai;Tx〉, 〈σae;Rx〉 and 〈σai;Rx〉 are the average losses of the antennas in the two regions when
they are receiving or emitting power;

• 〈σt〉 is the total ACS that represents the apertures on the internal enclosure faces;

• 〈σae;env〉 are the losses in the mode-stirred chamber (MSC).

The injected power in antennas placed in the interior and exterior environments are referred as
P t
e;Tx and P t

i;Tx respectively.
Then, the electromagnetic environments are solved by applying classical electrical theorems

(Thévenin, Norton and Millman using the equivalences (I.2.37), (I.2.38) and (I.2.39)). The average
power densities inside (Si) and outside (Se) the enclosure are computed as:

(

Se
Si

)

=
1

∆

(

〈σai 〉+ 〈σt〉 〈σt〉
〈σt〉 〈σae 〉+ 〈σt〉

)(

P t
e

P t
i

)

(I.2.49)

with ∆ = (〈σae 〉+ 〈σt〉)(〈σai 〉+ 〈σt〉)− (〈σt〉)2 and where 〈σai 〉 =
∑

j〈σai;j〉 and 〈σae 〉 =
∑

j〈σae;j〉.

To solve (I.2.49), 〈σaPCB〉 has to be determined. It was decided to measure it and an experimental
set-up was created. 〈σaPCB〉 is obtained by a double weighing operation. First, the board was installed
inside a MSC with two monopole antennas mounted on the panels of the chamber. The scattering
matrices Sloaded were then measured for numerous stirrer positions. Secondly, the board was removed
from the cavity and another set of matrices Sunloaded was acquired. The ACS was then computed like:

〈σaPCB〉 =
λ2

8π
ηT1 η

T
2

(

1

〈|Sloaded
21 |2〉 −

1

〈|Sunloaded
21 |2〉

)

(I.2.50)

where ηT1,2 are the efficiency of the two monopole antennas, and 〈·〉 is the average operator.

23 boards were considered in that study, sorted into the four following categories:

• the board presents a shielded surface that covers the whole PCB;

• the board presents a ground plane on one side;

• the board is densely filled with components;

• the board is a compound one consisting of two boards attached together by a spacer.

The authors measured the ACS 〈σaPCB〉 for each of these categories, and they concluded that the
more densely the components are on the board, the more they absorb energy, thus the higher the ACS
are.

As a second step, a stacking of NPCB PCBs was considered and a model to assess the global ACS
〈σastack〉 was proposed. Two scalar shadowing factors, ←−γ i

shad for the bottom side and −→γ i
shad for the top
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(a)

(b)

Fig. I.2.10 – The studied configuration (a) in [Flintoft et al., 2016] and its power balance (PWB)
model (b), © [2016] IEEE.

side, model the shadowing effects for the ith-PCB in the stacking. These factors should stay within
the 0 and 1 range. It leads to the following formula:

〈σastack〉 =
1

2

NPCB
∑

i=1

(←−γ i
shad +−→γ i

shad)〈σai 〉 (I.2.51)

where 〈σai 〉 is the ACS of the ith-board in isolation. Equation (I.2.51) reduces to 〈σastack〉 = 〈σa〉(1 +
(N−1)γshad) when all the stacked boards are identical. While imposing←−γ bottom board

shad = −→γ top board
shad = 1,

i.e. no shadowing effects occur on the outer PCB sides of the stacking (upper face of the top board
and lower face of the bottom board), it is expected that the following inequality holds:

〈σa〉 ≤ 〈σastack〉 ≤ NPCB〈σa〉 (I.2.52)

Several measurements were conducted to determine γshad for stackings of NPCB boards (NPCB ∈ [2, 4])
with a high component density on each side and a low proportion of shielded surface. It was
highlighted that γshad is in the [0.6, 0.8] range. Thus, the absorbed energy for that configuration is
between 20% and 40% less than NPCB times the amount of energy absorbed by one board.

This work was extended in [Parker et al., 2016a] where the changes of the ACS when a PCB was
placed in the vicinity of the enclosure walls were studied. A PCB with components on a single side was
considered first. The authors concluded that, for a PCB placed parallel to a wall, while the components
are not facing that wall, the ACS does not change much when the distance from the wall to the board
varies. However, when the components face the wall, the ACS may be reduced up to 30% compared to
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the case where the boards are located at the center of the MSC working volume. One can also notice
the work published in [Carlberg et al., 2004] where the ACS of canonical shapes were determined.
These ACS were obtained from full-wave simulations (the MoM and FDTD method were used), and
validated by a set of measurements.

I.2.2.4 Power balance approach combined with the random matrix theory

A PWB approach was applied in [Kovalevsky et al., 2014, 2016] and associated to the random matrix
theory (RMT). The aim was to determine couplings between two cavities linked by an aperture. The
output quantities were the averaged energies Ui in each ith-cavity. An equivalent equation close to
(I.2.49) was derived. For an overmoded cavity, the modal density ni is [Hill, 2009]:

ni =
8πf3Vi
3c3

=
Viω

3

3π2c3
(I.2.53)

where Vi is the cavity volume. The power flow between two cavities coupled by an aperture is [Junqua
et al., 2007]:

(

ω
Q12

n1 − ω
Q12

n1
− ω

Q21
n2

ω
Q21

n2

)(

U1
n1
U2
n2

)

=

(

P12

P21

)

(I.2.54)

where, by reciprocity implications Q12

n1
= Q21

n2
.

Losses in the ith-cavity were characterized by a quality factor Qi. The dissipated power at the
angular frequency ω was expressed as in (I.2.32) which became for a two-cavities network as:

(

ω
Q1
n1 0

0 ω
Q2
n2

)(

U1
n1
U2
n2

)

=

(

Pd1

Pd2

)

(I.2.55)

From the PWB equilibrium equation (I.2.31) which states that the average input power of the
ith-cavity Pi,in is balanced by the power transferred from the others cavities Pij and by its dissipated
power Pdi , thus: Pdi + Pij = Pi,in. For a two-cavities network, this leads to the following matricial
formulas:

(

Pd1

Pd2

)

+

(

P12

P21

)

=

(

P1,in

P2,in

)

(I.2.56)
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)

(I.2.57)

From the RMT, the average energy in cavities may be statistically described ([Langley and Cotoni,
2005]). Especially, the variance of Ui

ni
can be determined from the RMT ([Kovalevsky et al., 2014]).

Further information will be exposed later in this dissertation about the benefit of this theory to estimate
couplings in cavities. Another interesting part of this work ([Kovalevsky et al., 2014]) is related to
the determination of the quality factors Qij , expressed as Qij = 4πVi

λ〈σAperture〉 [Hill, 2009]. The ACS

〈σAperture〉 of the aperture was computed from an aperture impedance [Levine and Schwinger, 1950].
Finally, Qij was determined from experimental acquisitions and for two cavity sizes (up to 7GHz).

I.2.2.5 Full BLT application

The problem of an outer field that couples onto an aperture cavity was addressed in [Park et al.,
2009], to determine the surface current on a wire inside the cavity by using the BLT formanism.
Propagation phenomena were included in this study by applying the initial formulation of the BLT.
Four coupling mechanisms, bound with junctions were determined. The first (1) one was due to the
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free-space propagation towards the aperture, then (2) the aperture was represented by an equivalent
magnetic current distribution at its location. Two other mechanisms were set up in parallel to analyze
the scattered field in the cavity. First, (3) the Pocklington’s equation [Balanis, 2016, Chap. 8.3.1]
was used to compute the surface current on the wire from the electric field in the cavity, and secondly
(4) the scattered field in the enclosure was obtained from Green’s functions. The authors proposed
a comparison with a full-wave simulation (FDTD) from 1GHz to 6GHz and for an enclosure size of
10 cm× 10 cm× 15 cm. As the cavity was relatively small with regard to the frequency, only a few
eigenmodes were considered.

I.2.2.6 Methods based on full-wave simulations

The problem explored in [Lecointe et al., 1992] was evaluated by a full-wave based simulation method
in [Carpes et al., 2002]. In [Lecointe et al., 1992], the goal was to determine the coupling between a
small aperture and a wire inside a cavity using an analytical method (use of the Green’s functions and
electric and magnetic dipoles of the aperture, refer to I.2.2.1.2). Here, the finite element method (FEM)
(in time and frequency domains) method was employed. The simulation results were compared to
experimental results with good agreement. However, only small apertures were considered in this study.

The work presented in [Siah et al., 2003] allows to consider apertures of different sizes and shapes
(rectangular, slots, circles, etc.). Its goal was to maximize the shielding effectiveness of common
casings in the automotive industry, while keeping a good ventilation in the equipment. The studied
cavity dimensions were 30 cm× 12 cm× 30 cm and the surface of the aperture was up to 20 cm× 3 cm.
Simulation results were obtained from the multilevel fast multipole method (MFMM) combined with
the MoM. That combination allowed to consider larger structures while reducing the memory and CPU
usage. Several simulations were run, and some guidelines were raised for the problem.

I.2.2.7 Statistical methods

Statistical methods able to take into account apertures are all related to the random coupling model
(RCM) that will be later extensively exposed (see section III.2.2). A brief abstract is now proposed.
In this model, the interactions between the ports (cables, PCB, etc.) are modeled by the impedance
matrix Zcav in a chaotic system. Two behaviors are combined in the RCM, defined by two impedance

matrices Zrad and ξ. The first one represents the system without the boundary conditions that make

it reverberant, i.e. in a free-space environment. The latter, included in ξ = − j
πW [ λ − jα1]−1WT ,

models the reverberant part of the system. The random matrix λ includes the eigenmode spectrum of
the system and W models the coupling between eigenmodes and ports. Finally, the losses are included
in the frequency-dependent factor α. Zcav is obtained by [Zheng et al., 2006a]:

Zcav = jℑ
{

Zrad
}

+
[

ℜ
{

Zrad
}]1/2

ξ
[

ℜ
{

Zrad
}]1/2

(I.2.58)

Monte-Carlo iterations, where random matrices ξ are generated, allow to compute statistical quan-
tities. Then, currents or voltages at ports can be estimated.

As the RCM is a circuit model, the aperture is modeled as an impedance. Two formulations are
available in the literature, both of them for rectangular apertures. The first approach was presented
in [Caudron et al., 2010] and [Caudron, 2012] where the problem of the coupling between an aperture
and a monopole placed inside a computer chassis was considered. The Babinet’s principle expressed
for impedances was applied to determine the impedance of the aperture (see sections I.2.2.1.1 and
III.2.2). Another formulation of the aperture impedance was proposed in [Antonsen et al., 2011] (see
section III.2.3 for more details). The incident electric and magnetic fields were projected onto a basis of
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N modes TEn0. This impedance is then mapped to the cavity using the MoM as exposed in [Harrington
and Mautz, 1976].

I.2.2.8 Conclusion

Several formalisms have been exposed to describe the coupling of a plane wave to an aperture. Some of
them determine the electric shielding effectiveness (as methods related to the Robinson circuit model),
others deal with the electromagnetic environment like power density in enclosure (PWB approach),
while some study voltage or current (as seen in the RCM).

Methods to determine couplings from apertures are strongly related to their size (regarding the
wavelength). Small ones may be considered through the Bethe’s theory of diffraction. Apertures are
substituted by elementary magnetic and electric dipoles expressed from their polarizabilities [Butler
et al., 1978, Collin, 1991]. On the other side, electrically large apertures may be considered from a
geometrical optics standpoint with good approximations [Balanis, 2012, chap. 13].

Apertures within the order of magnitude of the wavelength of interest, are much more difficult to
describe. One can take advantage of full-wave simulations while accepting a high computation cost.
Other solutions require the application of the Huygens’s equivalence principle, to determine magnetic
current density at the aperture location [Harrington and Mautz, 1976]. Some methods are based on
the Babinet’s principle [Caudron, 2012, Konefal et al., 2005].

I.2.3 Electromagnetic couplings within a cavity

I.2.3.1 Analytical methods by use of the Green’s functions

Analytical methods have been proposed in the literature and mostly rely on the computation of the
Green’s functions of rectangular cavities. The electric field ~E at location ~r is given by:

~E(~r) = jωµ
y

V ′

G(~r, ~r ′) ~Je(~r
′)d~r ′ (I.2.59)

where ~r ′ is the source location, ~Je(~r ′) the electric current density, and V ′ is the volume where the
sources are set. The computation of the Green’s function G is not an easy task. Efficient methods
to compute this function are given in [Park et al., 1998], [Wu and Chang, 1988] and [Marliani and
Ciccolella, 2000].

A closed-form formulation of the coupling between Hertzian dipoles and transmission lines placed
in a cavity is proposed in [Spadacini et al., 2005]. In addition to the Green’s function of the cavity,
the Agrawal’s method [Agrawal et al., 1980] was used to determine the current on the transmission
line (see below, section I.2.4). The results were compared to a full-wave FIT simulation. The same
problem was addressed in [Tkachenko et al., 2013], but for a symmetric geometry with regard to
the transmission line placed in the cavity. In doing so, the computation of the Green’s function is
simplified. More recently, in [Boutar et al., 2015], a similar configuration was considered, and two
sub-models were expressed. A small monopole was used as a source. The sub-model was relative to
the cavity, and the electric field emitted inside the cavity was computed from an ad-hoc Green’s
function. Then, the transmission line was modeled in free-space as a Π-equivalent circuit. These two
sub-models were linked together by adding voltage sources on the equivalent circuit, defined by the
Agrawal’s model [Agrawal et al., 1980].

For all these formulations, neither the re-radiation of the transmission line is taken into account,
nor the direct coupling between the source and the transmission line. In addition, these formulations
are unworkable if the shape of the cavity is too complex.
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Fig. I.2.11 – Cavity used to test simulation in [Vogt et al., 2015], © [2015] IEEE.

I.2.3.2 Statistical methods

The aim of the Vogt’s work ([Vogt, 2016]) was to analyze the electromagnetic interferences between
several monopoles in a computer chassis mock-up. The mock-up was 20 cm wide, 61 cm deep and
40 cm high. These dimensions were comparable to those of commercial computer chassis. A set of
12 monopoles were randomly distributed on the walls of the cavity, and the interactions between them
were modeled. As there was no anisotropic materials in the cavity, interaction between monopoles i
and j was the same as between monopole j and i. Several models were provided, one of them was
analytical and relied on source stirring, the other one was a full-wave simulation based model.

The analytical model was based on the Green’s function of the cavity to determine the cou-
pling. The mutual impedance between two monopoles of length li and lj was given by the following
formula [Gronwald, 2006, eq. 3.185]:

Zij =
jωµli

2k sin (klj/2)

[

GA
zz(~rj , ~ri + li/2~ez)−GA

zz(~rj , ~ri − li/2~ez)− 2 cos(kli/2)G
A
zz(~rj , ~ri))

]

(I.2.60)

where the Green’s function of an empty cuboid is given by:

GA
zz(~r,

~r′) =
∞
∑

m=1

∞
∑

n=1

∞
∑

p=0

[

ǫ0p
lxlylz

sin(kxx) sin(kxx
′) sin(kyy) sin(kyy′) cos(kzz) cos(kzz′)
k2x + k2y + k2z − k2

]

(I.2.61)

where kx = mπ
lx

, ky = nπ
ly

and kz =
pπ
lz

. ǫ0p is the Neumann such as:

ǫ0p =

{

1 if p = 0

2 otherwise
(I.2.62)

(I.2.61) was not directly computed as it has a convergence issue when ~r was close to ~r ′. The Ewald’s
formulation may be used [Gronwald, 2006] to overcome this problem. Moreover, to compute the
scattering matrix S from the impedance matrix Z, all the matrix elements of Z need to be determined.
As I.2.61 presents also a convergence problem when the source ~r is to close the observation point ~r′,
an ad-hoc circuit model is provided for the on-diagonal elements of Z.

The second model was based on the MoM with the implementation of hierarchical H-matrices
which allowed to reduce the memory use. This particular implementation was not provided to the
community.
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Measurements are performed on the mock-up by using a 12 ports vector network analyzer (VNA).
The acquired scattering matrix was compared with both the analytical model and the implementation
of the MoM with H-matrices. The computation time was given for the MoM method and for several
frequencies. At 3GHz, the computation time was 5.2min and 63min at 6GHz on a modern computer.
As the MoM is a frequency solver, one simulation needs to be run per frequency (unlike with the
FDTD method for example). As a comparison, a FEM based simulation was performed and leads to
a computation time of 3.5min at 3GHz and by a higher random access memory (RAM) usage cost.

Finally, a statistical analysis was performed using source stirring. The 5% and 95% percentiles
were computed from the 66 interactions between the monopoles ( 12×11

2 ). Three different frequency-
dependant behaviors were then identified. The first behavior was corresponding to frequency bands
where the eigenmodes can be clearly separated (f < 2.5GHz). The second behavior concerns a
frequency band (f > 3.5GHz) where the couplings were considered as noise (the cavity was in an
overmoded regime). The third region, between 2.5GHz and 3.5GHz was a transition region.

In [Vogt et al., 2015], the cavity was populated with simple elements that could represent parts
found in computers, like PCBs or heat sinks. PCBs were modeled as simple conducting planes, and
heater sinks as conducting boxes. The formulation of the MoM was updated with that new problem.
Again, a comparison between the simulation and measurements allowed to validate the new model. No
information was given about the computation cost of this model.

Couplings between monopoles in a real computer and in a 19-inches server were provided as mea-
surement results but no comparison with simulations was given.

I.2.3.3 Hybrid circuit methods

A hybrid circuit method was proposed by [Lange and Leone, 2017]. Again, coupling between two
monopoles was considered inside a cavity. First, the eigenmodes of the cavity were determined thanks
to an eigenmode solver. The N first eigenmodes were such that fmax <

kN c
2π , with fmax the maximal

frequency to consider for the analysis, and kN the wavenumber associated to the N th cavity eigenmode.
The mutual impedance between the two ports is [Gronwald, 2006]:

Zij = −
1

IjI∗i
〈 ~Ej , ~J

∗
i 〉 (I.2.63)

where Ii ans Ij are the currents that flow into the two ports. ~Ej is the electric field generated by
the jth-port and ~Ji is the current density along port i. Ports were monopoles here. The electric
field in the cavity was expanded as a sum over the eigenmodes of the cavity and was split into two
terms. A solenoidal part ~En (with zero divergence) and an irrotational part ~Fn (with zero curl) from
an Helmholtz decomposition:

Zij =
jωµ
IjI∗i

∞
∑

n=0

〈 ~En, ~Jj〉〈 ~En, ~J
∗
i 〉

(k2n − k2)κE,n
− j
ωǫIjI∗i

∞
∑

n=0

〈~Fn, ~Jj〉〈~Fn, ~J
∗
i 〉

κF,n
(I.2.64)

where κE,n and κF,n are two constants.

Equation (I.2.64) was then modeled as a passive Foster-type equivalent circuit [Foster, 1924], and
a SPICE solver was used to determine the coupling.

Two configurations were tested against full-wave simulations, both frequency (up to 1.2GHz) and
time analysis were provided. The full procedure required a computation time of ≈ 40min for N = 53
eigenmodes (on a recent powerful computer).

Another hybrid formation was proposed in [Xiao et al., 2016] where reverberant environments
were studied. Two nested cavities were considered, and a PCB with a transmission line was placed
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(a) (b)

Fig. I.2.12 – Studied configuration I.2.12a and topological representation of configuration I.2.12b of
the study [Xiao et al., 2016], © [2016] IEEE.

in the inner cavity. The outer cavity dimensions were 30 cm× 12 cm× 30 cm, and the inner ones
were 9 cm× 6 cm× 6 cm. These two cavities had a common aperture. A coaxial cable connected the
transmission line to a load placed inside the outer cavity through the aperture (see Fig. I.2.12a). The
purpose of this work was to provide the voltage at one edge of the transmission line when the outer
enclosure was illuminated by an electromagnetic field (up to 2GHz).

At first, the problem was modeled as a topological network by use of the BLT formal-
ism (Fig. I.2.12b) and the couplings are determined by application of the Agrawal’s method [Agrawal
et al., 1980]. Then, the field was computed by full-wave simulation (where the cable and the microstrip
transmission line are removed) and was injected into the BLT set of equations. No information about
the type of solver involved was provided.

The method was compared to full-wave simulations with all the details (a TLM solver was used).
This comparison shows that not every resonance is considered by the hybrid method, however the
order of magnitude was satisfactory. The computation time was reduced by 6.5 in comparison to the
full-wave simulation with all the details.

I.2.4 Electromagnetic field to conductors couplings

Along this review, several studies have applied the Taylor’s method to determine the voltage or
the current impressed by the coupling of an electromagnetic perturbation onto a transmission line
composed of a wire and a ground plane spaced by distance h.

Its formulation derives from the Telegrapher’s equation where elementary sources (that are deter-
mined from the nearby electromagnetic field) are added all along the transmission line. Fig. I.2.13
depicts the transmission line circuit model with the added sources. The two integro-differential equa-
tions that need to be solved are:

dV (x)

dx
+ jωL′I(x) = −jω

∫ h

0
Be

y(x, 0, z)dz (I.2.65)

dI(x)

dx
+ jωC ′V (x) = −jωC ′

∫ h

0
Ee

z(x, 0, z)dz (I.2.66)

where V (x) is the voltage on the transmission line at position x, I(x) is the current, C ′ and L′ are
the linear capacitance and inductance. The boundary conditions must be enforced at the ends of the
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Ldxi(x)
− +

−jω
∫ h
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e
y(x, 0, z)dzdx

i(x+ dx)

v(0) v(x) −jωC ′ ∫ h
0 E

e
z(x, 0, z)dzdx C ′dx v(x+ dx) ZBv(L)

0 x x+ dx L

Fig. I.2.13 – Taylor et al. lossless model as presented in [Rachidi, 2012].

transmission line, which is terminated on impedances ZA and ZB, as:

V (0) = −ZAI(0) (I.2.67)

V (L) = ZBI(L) (I.2.68)

The electric field ~Ee is the sum of the incident electric field ~Ei and the ground-reflected field ~Er.

Two similar formulations were derived from the Taylor’s one to determine I(x) and V (x):

• the Agrawal’s method where only the component Ez of the field is needed [Agrawal et al.,
1980];

• the Rachidi’s method where the components By and Bx are both needed [Rachidi, 2012].

I.2.5 Cavity regimes

Before drawing a conclusion and selecting methods that comply with the requirements, let us describe
the different cavity regimes. These regimes are related to the eigenmode density within a cavity, and
on its losses. The number of solutions to the Helmholtz’s equation increases with the frequency up
to a point where, the eigenmodes overlap. Under that limit, the cavity is qualified as undermoded,
and above as overmoded. The boundary between the two regimes is quite difficult to determine, and
refers to the LUF (lowest usable frequency). Moreover, the higher the losses, the wider the eigenmodes
are. Thus, the probability that an overlap occurs increases with the losses inside the cavity. Fig. I.2.14
depicts, for a realistic cavity, a spectrum of the eigenmodes, versus the frequency, to illustrate such
trends. The LUF is represented for an interval as there is no single definition for it.

For some problems, it is much easier to be confronted with an undermoded regime, and especially
the one with none or just a few parameters (lengths, impedances, etc.). Whereas, for others, the
overmoded regime is an asset.

Inside overmoded cavities, the field can be asymptotically described as an infinite superposition
(a sum) of plane waves with random incidence and polarization, as stated by [Berry, 1977] and [Hill,
1998]. This theoretical behavior may be practically obtained within a cavity by means of statistical
models. The goal is to increase the number of modes having an effect at a given frequency. To do so,
a possibility is to change the boundary conditions of the cavity and, thus, the set of eigenmodes. This
may be accomplished by inserting an irregular metallic device, also known as stirrer. This stirrer can
usualy rotate and, for each position, a new set of eigenmodes is enforced. The infinite sum of plane
waves representation of the fields is achieved over the ensemble average of numerous sets of eigenmodes.

50



Frequency (∝ Hz)

E
le

ct
ri

c
fi
el

d
(∝

V
m

−
1
)

Undermoded regime Overdermoded regimeTransition regime

One eigenmode

Superposition
of several eigenmodes

Low mode density High mode density

LUF

Fig. I.2.14 – Mode density within cavities versus frequency. Each curve corresponds to an excited
eigenmode inside the cavity. The dashed black curve is the superposition of all the eigenmodes.

I.2.6 Conclusion

Very different approaches have been examined in this literature review. A comparison between the
aforementioned methods is proposed in Table I.2.1. Analytical methods have been listed, and some of
them are based on the Green’s functions of the cavity to compute the internal field. These methods
are strongly bound to the geometry of the cavity and do not allow to consider apertures [Tkachenko
et al., 2013], [Boutar et al., 2015]. Some analytical circuit models allow to determine the shielding
effectiveness, considering apertures of cavities with the assumption that they should remain unloaded
(empty) [Robinson et al., 1998]. Another circuit model, the random coupling model (RCM), is based
on the theory of the random matrices [Caudron, 2012], [Antonsen et al., 2011]. By design, its goal
is to determine couplings in reverberant environments with overlapping eigenmodes. The boundary
conditions of the cavity are randomized, thus the output of the model are statistical quantities (proba-
bility density functions, quantiles, etc.). Full-wave simulation based models are widely adopted in the
literature where mostly MoM solvers are implemented. The drawback of MoM methods is that one
simulation needs to be run for each frequency of interest. Little coverage has been found regarding
time-domain solvers like the FDTD method or the FIT, except in [Park et al., 2009] where the FIT
is used as ground truth results for comparison. The advantage of time-domain solvers is that a wide
frequency bandwidth is handled within a single simulation.The last class of methods combines several
techniques and are named hybrid methods. Two of these can be highlighted. In [Lange and Leone,
2017], an eigenmode solver is coupled to a circuit model and, in [Xiao et al., 2016], BLT equations are
combined with a full-wave solver.

I.2.7 Selection of approaches for the study of couplings inside cavities
from an EMSEC perspective.

The need to determine coupling in reverberant environments is justified from an EMSEC point of
view as explained in the previous chapter. An identified constraint is that the boundaries of the
system may not be clearly characterized due to the fact that they may vary in the course of time or
because the environment where the inner elements (like PCBs, cables, etc.) are integrated is unknown
a priori. Such a configuration can correspond to a computer chassis inside which additional elements
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are added over time, or when its internal components (cables, etc.) are not mechanically constrained
nor constant over the time. One can also consider the early design stage of equipment (when its exact
future casing shape is not determined yet) but the coupling between elements need to be assessed
anyway. Additionally, the selected method needs to take into account an electromagnetic interference
that couples to the cavity through apertures.

By determining couplings, we meant that probability density functions (PDFs) of coupled currents
and voltages need to be determined, with randomized boundary conditions. From these values, on can
determine the probability:

• that a radio front end becomes unavailable (remind section I.1.3.2.3);

• to propagate information by means of polyglot signals (see section I.1.3.1.4);

• that a covert channel is created by taking benefit from the susceptibility to conducted EMI of
an electric component or a system (see section I.1.3.3);

• that a voltage/current correlated to sensitive information reaches a threshold at which the con-
fidentiality of information is not guaranteed anymore (TEMPEST threat, see section I.1.3.1);

• that a component/system stops to work properly during an IEMI (section I.1.3.2);

• etc.

To solve these problems, the plane waves superposition representation of the field inside an over-
moded cavity (see section I.2.5) will be favourably used. If the boundary conditions are randomized,
thus for each draw a new set of eigenmodes are enforced. By considering numerous random boundary
conditions, and through an ensemble average of the field inside the cavity, the cavity of interest can
be considered as overmoded. Thus, all the methods, that require that regime, apply.

Based on that analysis and from Table I.2.1, several approaches may be rejected. All the methods
where the cavity is empty are disqualified as there is no EMSEC applications for such cavity. It
concerns all methods based on [Robinson et al., 1996], and all the methods that require to compute
Green’s functions of the cavity of interest such as [Park et al., 2009] and [Boutar et al., 2015].

The PWB approach is not restricted to a given cavity geometry, and is a statistical method. This
method was applied already to study of the electromagntic field attenuation between several rooms
inside a building, or between the outside of a building and one room [Junqua et al., 2014a]. Within
that context, it is relevant for both IEMI and TEMPEST threats.

Howerver, there is no straightforward mean to implement that method in order to obtain statistics
of couplings, such as currents or voltages. The work of [Junqua, 2010] and [Flintoft et al., 2016] can
thus be put aside regarding our issue.

One can notice that the two hybrid methods, [Lange and Leone, 2017] and [Xiao et al., 2016], rely
on full-wave simulations. Thus, they are comparable, in terms of cost and ressources, to full-wave
simulation based methods.

Full-wave simulation based models are versatile and can be applicable to any geometry, assuming
that it can be discretized. These methods seem appealing. From an EMSEC point of view (as well
as from an EMC viewpoint), one does not limit the analysis to a unique frequency but a frequency
bandwidth that could be large. Thus, all the methods based on frequency-domain solvers are not
relevant (like [Vogt, 2016]).
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Siah et al. [2003]   U ��
Park et al. [2009]  G# G# U ��
Junqua [2010]      O �
Caudron et al. [2010]    G# O �
Antonsen et al. [2011]    G# O �
Kovalevsky et al. [2014]     O �
Boutar et al. [2015]   O �
Vogt [2016]  G#   O&U ���
Xiao et al. [2016]   G#  U ���
Flintoft et al. [2016]     O �
Lange and Leone [2017]   U ��
Rabat et al. [2018]  G# U �

Types of models Capabilities Costs

Table I.2.1 – Comparison between the reviewed methods. The models divided into six classes and
three capabilities are listed. Half bullets G# denote limitations. U states for Undermoded environment
and O for Overmoded environment. The cost column is related to the computation time.

Time-domain solvers are more suitable for wide bandwidth studies and few, if any, published work
was related to the study of couplings within cavities. It thus seems interesting to investigate the
applicability of time-domain solvers for our matter.

Finally, it appears that the method applied in [Caudron, 2012] and [Antonsen et al., 2011] associated
to the RCM is able to model couplings within an enclosure and through apertures. Moreover, it
integrates by design randomized boundary conditions. So, it was decided to investigate that method
in detail as well. Notice that this method has not been applied for realistic applications for now.
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Part II

Design and assessment of computer
chassis models
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Chapter II.1

Design of computer chassis models

Contents
II.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II.1.2 The simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . 56

II.1.3 Design and production of a computer chassis mock-up . . . . . . 57

II.1.3.1 Spacing between screws and shielding gasket . . . . . . . . . . . . . . 57

II.1.3.2 Frequencies of the first modes and mode density . . . . . . . . . . . . 58

II.1.3.3 Study of the mock-up deformations . . . . . . . . . . . . . . . . . . . 60

II.1.3.4 Shielding effectiveness determination of the mock-up . . . . . . . . . . 63

II.1.4 Design and production of devices to measure couplings . . . . . . 67

II.1.4.1 Simple printed circuit boards production . . . . . . . . . . . . . . . . 67

II.1.4.2 Determination of an accurate simulation model . . . . . . . . . . . . . 69

II.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

II.1.1 Introduction

The state of the art related to the characterization of coupling in reverberant environments has shown
that a full-wave simulation based model may be relevant to study that situation. As for any simula-
tion model, it is necessary to set an accurate description of the given problem (3D model, software
parameters, etc.). Moreover, the quality of the results obtained with the numerical model must be
assessed, and that also requires a comparative model. The latter consists in a mock-up from which
experimental data are acquired. As it is not possible to fulfill all the requirements that will be listed
below with commercial off-the-shelf devices, it has been decided to design and to produce a mock-up.

Especially, a desktop computer chassis has been chosen, in order to model a widespread reverberant
environment. Its dimensions are approximately the same as those of real ATX1 computer chassis,
i.e., 170mm large, 400mm high and 440mm deep, and its constitutive materials are similar as well.
Futhermore, these two models, the simulation model and the mock-up, must be fitted with devices
from which couplings can be obtained. Such devices should be typical of the inner elements of desktop
computers, as PCBs. An acceptable solution is to replace these devices by simple transmission lines
printed on circuit boards. It has been highlighted in the previous part that couplings need to
be assessed for a wide frequency range up to tens of GHz. Measurement equipment available for
this work allows to measure couplings up to 26.5GHz. Both models must be valid for, at least, an

1ATX (Advanced Technology eXtended) defines, inter alia, form factors for desktop computer elements (see ATX
Specification Version 2.2).
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(a) Front view.
(b) Back view.

Fig. II.1.1 – 3D model of the computer chassis, with an aperture and two PCBs.

electromagnetic study up to that frequency. Thus, the wavelengths that have to be considered in the
making are longer than ≈ 1 cm.

As a consequence, two models have been worked out:

1. a simulation scheme that integrates a 3D model of a computer chassis and all the solver param-
eters;

2. a real computer chassis mock-up from which experimental data can be measured.

Several requirements have been raised for the two models. First, the simulation model needs to be
easily modeled by means of a commercial simulation software. It is also required that the simulation
should be run in an acceptable amount of time. Thus, the modeled structure should be described
with a minimum of geometrical details and a minimum number of materials. Secondly, both models
need to be versatile so that couplings for several configurations may be determined (location of
apertures, inner elements, etc.). For the simulation model, this is not a constraint as the 3D model can
easily be modified. For the mock-up it has multiple implications. The mock-up must have different
exchangeable panels to be configured with an aperture size similar to a CD reader, (146.1mm large and
41.3mm high) at different heights on the front panel. On the back panel, three configurations will be
available: a solid panel without any aperture, a panel with one aperture extended by a waveguide (in
order to introduce a field probe) and one to offer the option to insert and hold PCBs inside the mock-up.

This chapter presents how these two models have been set up.

II.1.2 The simulation model

The commercial software CST Studio Suite (CST-SS), by Dassault Systèmes, offers general purpose
solvers. It consists of three parts: a 3D modeler, a mesher and an electronic solver. As the study
should cover a wide frequency range, a time-domain solver has been chosen. The resolution technique
implemented in CST-SS for the time-domain solver is the finite integration technique (FIT). To speed
up the computation, the thickness of the panels are set to zero. Thus the panels will not be meshed
and their thickness will be set to their skin depths δ by CST-SS. Fig. II.1.1 depicts the 3D model of
the desktop computer chassis.
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II.1.3 Design and production of a computer chassis mock-up

The computer chassis mock-up has been manufactured from 1mm thick steel panels. The left, right,
top and bottom sides have been welded together and define the main body of the mock-up. Front and
back panels are attached to the main body of the chassis thanks to screws. These panels are screwed
to two steel frames. Their purposes are to stiffen the mock-up, to fix the front and back panels,
and to guarantee an electric continuity between the panel and the main body. Most of this mock-up
was designed and prepared in the former Electronics and Electromagnetism Laboratory of Sorbonne
University, but the welding had to be subcontracted. Fig. II.1.2 is a picture of the mock-up.

Positions and angles will be identified using the axis conventions given in Fig. II.1.3. The angles
θ and ϕ define the incidence of plane waves. The origin of the axis is at the lower left corner of the
mock-up. Moreover, as explained above, the mock-up allows to set several front panels that include
apertures at different positions. Fig. II.1.3c identifies these positions on the front panel.

II.1.3.1 Spacing between screws and shielding gasket

The choice of the spacing between screws has an important impact on the overall shielding effectiveness
of the mock-up. Indeed, between two consecutive screws a slit will appear (as shown in Fig. II.1.4),
which will alter the shielding effectiveness. A very pessimistic assessment of the overall attenuation of
panels attached with such assembly is given by the following expression [Mardiguian, 2014, p. 224]:

AdB = 100− 20 log l − 20 logFMHz + 20 log

(

1 + 2.3 log
l

h

)

+ 30
d

l
(II.1.1)

where l is the length of the slit, h its height and d its depth. The abacus shown in Fig. II.1.5 gives this
attenuation for different slit lengths. As a compromise between attenuation and ease of manipulation,
a spacing of 50mm has been chosen. It leads to an lower attenuation limit of nearly 15 dB at 10GHz.

To increase the shielding performances, an electric gasket is added. Its goal is to seal the slits
between the main body of the mock-up and the two panels. The chosen gasket is made by Würth
Elektronik and is specified to provide an attenuation larger than 80 dB between 100MHz and 10GHz.
To be effective, it must be properly compressed. Fig. II.1.6 shows the gasket placement. Moreover, for
reproducibility purposes, all the screws are tightened with a dynamometric screwdriver adjusted at a
torque of 3Nm according to standards 1.

Front frame

Back frame

Main body

Front panel

Fig. II.1.2 – Picture of the mock-up.

1http://www.norbar.com/Portals/0/NorbarProducts/catalogue/Pg6-10.pdf
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Fig. II.1.3 – Axis convention and aperture locations.

f011 = 506.8MHz f021 = 778.1MHz f012 = 823.8MHz f110 = 945.9MHz
f101 = 958.7MHz f022 = 1.014GHz f111 = 1.018GHz f031 = 1.089GHz
f120 = 1.115GHz f102 = 1.158GHz f013 = 1.176GHz f121 = 1.176GHz
f112 = 1.207GHz f032 = 1.268GHz f023 = 1.315GHz f122 = 1.344GHz
f130 = 1.351GHz f131 = 1.402GHz f041 = 1.414GHz f103 = 1.430GHz

Table II.1.1 – Resonance frequencies of the first 20 cavity modes.

II.1.3.2 Frequencies of the first modes and mode density

It may be useful to determine the first modes, and the mode density in the mock-up. As it is a
rectangular cuboid, its eigenfrequencies are given by [Besnier and Démoulin, 2013]:

fm,n,p =
1

2
√
ǫ0µ0

√

(m

a

)2
+
(n

b

)2
+
(p

d

)2
(II.1.2)

where, m, n, and p are integers, ǫ0 the vacuum permittivity and µ0 the vacuum permeability. a is
the width, b the depth and d the height of the mock-up. The 20 first eigenfrequencies are listed in
table II.1.1.

The Weyl’s formula [Liu et al., 1983] may be applied to determine the number of modes in the
mock-up.

Na(f) =
8πV

3

(

f

c

)3

− (a+ b+ d)

(

f

c

)

+
1

2
(II.1.3)

where c is the speed of light in the vacuum, V = abd the volume of the mock-up and f the frequency
of interest. By differentiating (II.1.3), we can compute the mode density D(f) in the mock-up:

D(f) =
∂Na(f)

∂f
= 8πV

f2

c3
− a+ b+ d

c
+

1

2
δ(f) (II.1.4)

l

l h

Fig. II.1.4 – Slit, of depth d, that may appear between two screws.
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Fig. II.1.5 – Attenuation for different slit lengths from 1GHz to 30GHz.

10mm

2mm

Face
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(a) Schematic of the panel fixing method. The
shielding gasket is in green and is compressed be-
tween the front (or back) panel and a groove in
the frame.

(b) Front view of the mock-up’s main body with
the electric gasket along the edges of the frame and
the uniformly distributed screw threads.

Fig. II.1.6 – Overview of the panel fixing method.
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Fig. II.1.7 – Evolution, versus the frequency, of Na(f) and D(f)∆f in the mock-up, computed
from (II.1.3) and (II.1.4) and from histograms by use of (II.1.2) for numerous combinations of n,m, p.

Thus, the number of modes in a frequency bandwidth of ∆f is: D(f)∆f . Fig. II.1.7 shows the
number and the density (for ∆f = 1MHz) of modes in the mock-up.

A relevant quantity when dealing with reverberant environments, is the lowest frequency for which
the cavity is considered overmoded. In this regime, the mode density is sufficiently high so that there
are spectral overlaps between the eigenmodes. It depends on the volume V (see (II.1.3) and (II.1.4))
and on the quality factor of the cavity. In the litterature, several statements allow to determine the
lowest frequency fLUF from which a cavity is overmoded [Bruns, 2005]. LUF means lowest usable
frequency and is commonly used in the mode-stirred chambers community. These statements are:

• fLUF ∈ [3ffirstmode, 6ffirstmode]: the first eigenfrequency of the mock-up is f011 = 507MHz, thus
fLUF ∈ [1.52GHz, 3.04GHz];

• at least 60 to 100 eigenmodes in the cavity: from (II.1.3) then we have fLUF ∈
[1.92GHz, 2.26GHz];

• a mode density of 1.5 modes per MHz: we solve D(fLUF)1MHz = 1.5, and we get fLUF =
7.34GHz;

Other statements rely on measurements. However, field measurements at high frequencies require
a complex and expensive measurement equipment that was not available for this work.

These definitions lead to a wide range of possible frequencies for the LUF:

fLUF ∈ [507MHz, 7.34GHz] (II.1.5)

Another definition is related to the chaoticity of a cavity and relies on the comparison of the
spacing between two consecutive eigenmodes of the cavity and the spacing between two consecutive
eigenvalues of matrices from an appropriate ensemble. It is based on the random matrix theory, and
will be discussed later (see Chapter III.1). In [Gros, 2014], this definition is used to determine the shape
of a cavity such that it can be considered as chaotic. This work relied on eigenfrequencies computed
by an eigenmode solver.

II.1.3.3 Study of the mock-up deformations

The welding of the side elements of the mock-up has created small deformations. We suspect that the
mock-up has been warmed up too much during the welding process. A convex deformation appear on
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(a) Deformation model of the mock-up’s
left side by arcs of ellipses. Note that the
figure is not put to scale.

(b) Description of the mock-up by a set of triangles.

Fig. II.1.8 – Modeling of the deformation of the mock-up due to the welding.

the left and right sides, and a concave one on the top and bottom sides. As it was not possible to
rectify these deformations, a study has been undertaken to assess their effects on the eigenfrequencies.

II.1.3.3.1 Model of the deformations

Eigenmode solvers are well suited for this issue but require a 3D model of the deformation. For the
left and right sides, the maximum deformation d measured is around 3mm and 2mm for the top
and the bottom sides. Accurately modeling the deformation is not an easy task and would require a
complex procedure. Nevertheless, a first order estimate of the deformation may be the following one.
It can be reasonably stated that the maximum of the deformation occurs at the center of a panel,
and is symmetrical with the planes xOz and xOy for the right and left panels, and with the planes
xOz and yOz for top and bottom panels. Moreover, the edges of the mock-up are not deformed.
The deformation is then approximated by a set of arcs of ellipses, see Fig. II.1.8a. The red ellipse
(located in the plane xOz) has a center that coincides with the mock-up center. Its semi-minor axis
is a

2 + d and passes through the upper and lower edges of the panel. From this first ellipse a set of N
ellipses (in blue) located within planes parallel to the plane xOy and passing through the red ellipse
are determined. In commercial electromagnetic solvers (such as CST-SS) only simple geometries can
be modeled. For more complex ones, it is necessary to create files that mesh the geometry as a set
of triangles, and to finally import it in the commercial solver. The estimated deformation has been
projected onto a Na × Nb grid and NaNb points have been computed. Then, by use of the library
Python-STL a set of 2NaNb triangles was determined. It was choosen to set Na = 61 and Nb = 81. It
was stored into the STL format and finally imported in CST-SS (see Fig. II.1.8b).

Two meshing possibilities are available for the eigenmode: the tetrahedral mesh (triangle faces)
and the hexahedral mesh (irregular orthogonal grid). As curvy shapes model the deformation, the
tetrahedral mesh was chosen.

II.1.3.3.2 Simulation and results

It was chosen to take advantage of a general purpose solver: CST-SS. The eigenmode solver was
configured to compute the first 20 modes of the cavity. As open boundaries are not supported by
the eigenmode solver, the cavity has been sealed (i.e. without any aperture). For this study, the
deformations are supposed to be symmetric (identical for opposite sides). The effects on left/right
sides, and on top/bottom sides are studied separately. Tables A.1, A.2, A.3 and A.4 in appendix A list
these 20 computed eigenfrequencies. The eigenfrequencies are associated to their mode mnp for the

61



0 1 2 3 4 5 6 7 8 9
−20

−10

0

10

20

30

40

50

δ f
r

(%
�)

Right and left sides 011

021

012

110

101

022

111

111

031

120

102

013

013

013

112

112

032

023

122

122

0 1 2 3 4 5 6 7 8 9

Deformation (mm)

−25

−20

−15

−10

−5

0

5

10

δ f
r

(%
�)

Top and bottom sides
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null deformation (cuboid shape) by use of equation (II.1.2). To compare the deviations between the
eigenfrequencies for a perfect cavity f0 and for the deformed one fi, relative errors are calculated as:

δfr =
f0 − fi
f0

(II.1.6)

Relative errors δfr for deformations d from 1 to 9mm have been analyzed. Fig. II.1.9 depicts δfr
as d increases. The maximal frequency shifts appear for the modes mnp = 110 and mnp = 101 for
the left and right sides. As the estimated deformation is of approximately 3mm, the relative error is
δfr ≈ 17.69‰. δfr is mainly positive for the convex deformation. Indeed the volume of the cavity
increases with d, thus the eigenmodes tend to decrease. In the same way, when the deformation reduces
the volume of the cavity (concave shape) δfr is mostly negative. Concerning the deformation of the
top and bottom sides, the modes mnp = 012 and mnp = 013 are the most affected ones.

A rule of thumb to assess the upper limit for δfr is to consider that λmnp,0 (the wavelength of
the non-deformed mock-up) is increased by 2d where d is the deformation amplitude. The factor 2
considers both left and right, or top and bottom sides. Thus:

λmnp,d = λmnp,0 + 2d (II.1.7)

δfrmax = 1− λmnp,0

λmnp,0 + 2d
(II.1.8)

If we consider the mode mnp = 110, with λ110,0 = c
945.27MHz = 317.15mm, we obtain δfrmax = 18.6‰

which is close to the simulated value δfr = 17.69‰.
From these relative errors, we conclude that the cavity deformations due to its welding cannot

be neglected when it comes to estimate the eigenmodes of the mock-up. All the simulation results
presented throughout this document have been obtained considering these deformations. Comparable
situations may occur when casing walls are deformed, by a heavy load for example.

II.1.3.4 Shielding effectiveness determination of the mock-up

The performances of the mock-up now need to be validated and especially the mechanism used to
fix the different front and back panels. A relevant quantity is the shielding effectiveness SE of the
mock-up. It will be determined from electric field measurements and is expressed as the ratio [Besnier
and Démoulin, 2013]:

SE =
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 (II.1.10)

where ~Ei is measured without the shielding (i.e. without the mock-up), and ~Ee with the shielding.
The other parameters of the system must remain unchanged (antenna position, distances, etc.).

The measurement setup is depicted in Fig. II.1.10, and is conducted within an anechoic chamber
which dimensions are 8m deep, 4m wide and 4.3m high. A frequency synthesizer (Anritsu MG3692B)
is connected to a 25W power amplifier (Amplifier Research 25S1G4A) and a standard gain horn
antenna (A-info LB-8180) to generate an electric field ~E. The electric field is measured with an active
and directional vectorial probe. It is connected to an optical fiber that powers the probe and that carries
information related to the amplitude and phase of the electric field projection on the orientation ~eu of
the probe. This optical fiber is connected to a converter, which creates a voltage signal V as an image
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Fig. II.1.10 – Setup for shielding effectiveness measurement.

of the projected electric field ~E.~eu radiated by the horn antenna. The probe and the converter are
constitutive of the equipment (EFS-105) manufactured by the company Enprobe. These quantities are
related to the antenna factor AF of the electric probe as:

AF =
| ~E.~eu|
V

(II.1.11)

Then, a spectrum analyzer (SignalHound BB60C) is connected to the converter to acquire the received
power. Operating bandwidths of these equipment allow to measure the shielding effectiveness between
800MHz and 3GHz.

II.1.3.4.1 Calibration step: measurement of ~Ei

The calibration step consists in the measurement of the electric reference field ~Ei. The experimental
conditions need to be kept after this measurement (i.e. position of the probe, distance to the antenna).
For this first step, the shielding (thus the mock-up) is not present. An assessment of the received
power on the spectrum analyzer may be determined by a power budget in order to compare it with
the measured one. We write Gc the gain of the antenna, α the losses into the antenna and cables, A
the gain of the amplifier, We the power driven by the frequency synthesizer and Ws the power driven
into the antenna. The equivalent isotropic radiated power (EIRP) is expressed as:

EIRP =WsGc =
WeA

α
Gc (II.1.12)

The power density Du at the location of the electric field probe is:

Du =
| ~Ei.~eu|2

2η
=
EIRP

4πD2
(II.1.13)

where η is the free-space impedance (η = 120πΩ) and D distance between the antenna and the probe.
Thus, | ~Ei.~eu| =

√
Du2η. From equation (II.1.11), the voltage Umax at the VNA port is thus:

Umax =
| ~Ei.~eu|
AF

(II.1.14)
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Fig. II.1.11 – Variations of the measured power on the spectrum analyzer according to the frequency
for the calibration process (in free-space).

Then the measured power on a spectrum analyzer for a 50Ω load Z0 is:

P =
U2

max

2Z0
=
| ~Ei.~eu|2
2AF 2Z0

(II.1.15)

Using this method, at 2GHz and at a distance of D = 4.88m we have | ~Ei.~eu| = 10.0Vm−1 and
P = −14.7 dBm. Fig. II.1.11 depicts the measured power P by the spectrum analyzer, and the orders
of magnitude agree with the power budget.

II.1.3.4.2 Measurement of ~Ee

The electric field probe is then placed into the mock-up (Fig. II.1.12) on a Styrofoam stand. The
mock-up is closed using a panel that has a squared aperture (sides of 1 cm) allowing to insert the
probe. As the contribution of this aperture to the shielding effectiveness is not desired, it can be
reduced by extending the aperture using a circular waveguide. Its diameter is 12mm and its length is
around 90mm (as seen in Fig. II.1.12b). It acts as a high-pass filter of cut-off frequency above 10GHz.
Copper tape has also been added to seal the waveguide to the mock-up.

Fig. II.1.13 shows the shielding effectiveness of the mock-up for three different angles of incidence θ:
an illumination on the side panel of the mock-up corresponds to θ = 0°, an illumination on the front
panel (with the waveguide) corresponds to θ = 90° and an illumination on the back panel corresponds
to θ = −90°. The red dots indicate frequencies where the measured shielding effectiveness is severely
reduced. These frequencies are compared to some eigenfrequencies of the mock-up in Table. II.1.2. We
can state that these dips are due to the resonances inside the mock-up.

The shielding effectiveness strongly varies with the frequency, up to ∼ 50 dB for an illumination
towards the side of the mock-up. The overall shielding effectiveness is about 55 dB for all the angles
of incidence (θ = −90°, θ = 0° and θ = 90°). One has to mention that the measurements have
been performed for one probe position only (approximately at the center of the mock-up) and that
the results may differ for other positions. However, if there were design or manufacturing errors like
slits and a bad compression of the electric gasket, it would have substantially decreased the shielding
performances. Thus, these measurements validate the design and the production of the mock-up.
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(a) Placing of the probe in the mock-up.
(b) Closed mock-up with the waveguide and the
feedthrough for the optical fiber.

Fig. II.1.12 – Shielding effectiveness measurement setup.
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Fig. II.1.13 – Shielding effectiveness for three incidence angles θ. The regions where the background
is in gray indicate that it was not possible to measure the signal (the signal did not exceed the noise
floor). Thus for these frequencies the shielding effectiveness is even better.
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From these measurements, another useful quantity that may be assessed is the quality factor Q
of the mock-up. This quantity represents the losses in the cavity. As the mock-up dimensions are
comparable to the wavelength of interest (below 3GHz), the mode density is not high, the quality
factor is thus frequency-dependent. The spectrum of mode mnp centered at frequency fmnp may be
expressed as:

|E(f)| = |Emax|
√

1 +
(

2Qmnp
f−fmnp

fmnp

)2
(II.1.16)

where |Emax| is the magnitude of the electric field at frequency fmnp. For TE modes and for a perfect
cavity (without any aperture), the quality factor is ([Liu et al., 1983]):

Qmnp =
η0abdk

2
xyk

3
mnp

4Rs[bd(k4xy + k2yk
2
z) + ad(k4xy + k2xk

2
z) + abk2xyk

2
z ]

(II.1.17)

with
kx = m

π

a
, ky = n

π

b
, kz = p

π

d
, kxy =

√

k2x + k2y, kmnp =
√

k2x + k2y + k2z (II.1.18)

where Rs =
1
σδ . σ is the conductivity of the steel and δ =

√

1
πfµσ its skin depth. a, b, d are respectively

the width, the length and the height of the mock-up. The Q factor for several modes is given in
Tab. II.1.3. For each mode, Q was estimated by a curve-fitting process using (II.1.16), and has been
compared with Qmnp thanks to (II.1.17). Two fittings were performed, the first one QForced is obtained
by a fitting of the equation (II.1.16) with |Emax| and fmnp fixed from measurements, and a second one
QFree where |Emax| and fmnp are free. Moreover, the quality factor Q−3 dB was also assessed from:

Q−3 dB =
f

∆f
(II.1.19)

where ∆f is measured at |Emax|√
2

or equivalently |Emax|dBVm−1 − 3dB. The conductivity of the steel is

σ =∼ 6.25× 106 Sm−1 [Mitchell, 2004]. Fig. II.1.14 plots, for a given eigenmode, the fitted curves.
Moreover, we see that the order of magnitudes of QForced, QFree and Q−3 dB are comparable. And,

the analytical expression (II.1.17) overestimates the quality factor of one order of magnitude.

II.1.4 Design and production of devices to measure couplings

In order to study couplings, one needs devices from which currents and voltages will be measured and
that can radiate an electromagnetic field towards its environment. These devices should be typical
of what can be found in electronic devices. We have chosen simple PCBs to ease their making, and
to avoid having too many details in the 3D model used by the simulation software. Once more, two
models are needed, a numerical one for the simulation of the computer chassis, and a physical one for
the real computer chassis mock-up.

II.1.4.1 Simple printed circuit boards production

These PCBs will allow to measure couplings between them, or between a plane wave that couples to the
cavity through an aperture and the PCBs inside the cavity. On each board, a microstrip transmission
line is printed with a unique geometry that allows to efficiently propagate the induced current to a
SMA connector which will be connected to a measurement equipment. These geometries will allow the
different field components to couple on the transmission lines. It thus diversifies the types of couplings
that may occur. The manufacturing of the boards was subcontracted to a specialized firm. Each
transmission line has a characteristic impedance Z0 of 50Ω and is terminated by a 50Ω load composed
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Mode Theoretical eigenfrequency Measured frequency Relative Error

f110 935MHz 945.921MHz 1.154%
f111 1017MHz 1017.542MHz 0.053%
f120 1110MHz 1115.089MHz 0.456%
f122 1346MHz 1343.846MHz -0.160%
f113 1473MHz 1469.827MHz -0.216%
f140 1618MHz 1624.208MHz 0.382%
f143 1978MHz 1975.772MHz -0.113%
f213 2114MHz 2120.385MHz 0.301%
f144 2215MHz 2210.894MHz -0.186%
f116 2439MHz 2440.751MHz 0.072%
f055 2533MHz 2533.989MHz 0.039%
f244 2691MHz 2687.693MHz -0.123%
f173 2779MHz 2781.888MHz 0.104%
f270 2967MHz 2967.982MHz 0.033%

Table II.1.2 – Comparison between measured frequencies corresponding to low shielding effective-
ness (with regards to other frequencies) and some eigenfrequencies (in MHz) of the mock-up.

Mode fForced QForced fFree QFree f−3 dB Q−3 dB fTheory QTheory

110 935.00 1122.0 935.21 1345.9 935.00 1009.6 945.27 7255.4
111 1017.0 747.50 1016.5 1570.3 1017.0 318.18 1016.8 7797.5
120 1110.0 883.84 1110.5 2305.6 1110.0 451.48 1114.3 7974.0
122 1346.0 1591.5 1345.9 1721.6 1346.0 1366.5 1342.9 9209.5
113 1473.0 1102.2 1473.4 1877.2 1473.0 689.94 1468.8 10917.
140 1618.0 2654.5 1617.9 3057.3 1618.0 1944.5 1623.1 9775.1
143 1978.0 2181.1 1978.1 2274.7 1978.0 1963.8 1974.4 10894.
213 2114.0 1242.9 2113.7 1299.8 2114.0 1218.5 2118.9 11863.
144 2215.0 1788.8 2215.3 2263.2 2215.0 1721.7 2209.4 11595.
116 2439.0 2573.7 2439.1 2718.2 2439.0 2333.4 2439.1 15966.
055 2533.0 3299.4 2533.3 4902.1 2533.0 2708.7 2532.2 11942.
244 2691.0 1744.3 2690.0 335.80 2691.0 2826.3 2685.8 13024.
173 2779.0 2151.9 2778.9 2270.5 2779.0 1966.7 2780.0 12836.
270 2967.0 2026.5 2966.7 1688.6 2967.0 2826.0 2965.9 13179.

Table II.1.3 – Assessed quality factor Q for some modes, and for an illumination on the back panel
θ = −90°. Frequencies are in MHz.
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of a surface mount resistor and a via. The substrate of the boards is made of FR41 (ǫr = 4.6). The
bottom layer of each PCB is a ground plane. Pictures of the four boards are exposed in Fig. II.1.15.

II.1.4.2 Determination of an accurate simulation model

At first, the scattering parameter S11 of these boards have been measured in free-space. The results
are depicted in Fig. II.1.18.

Then full-wave simulations have been conducted for the four boards. The surface mount resistor
at the end of the transmission line has been modeled as exposed in [CST, 2016], and the via consists
in a metalized through hole. The thickness of the microstrip transmission line has been set to its skin
depth.

A first simulation has been launched where energy has been driven towards the transmission line
by a waveguide port directly at the edge of the board. It corresponds to a perfect impedance match
and is not representative of any realistic sources (orange curves in Fig. II.1.18). We note that the
computed results did not match the measured data. There is an average gap of ≈ 25 dB between the
two curves.

A second model was then set to improve the results by taking the SMA connector into ac-
count (see Fig. II.1.16). The SMA connector consists in a section of a coaxial transmission line with
an extended core to join the microstrip transmission line of the board. Then the energy has been
driven towards the SMA connector by means of a waveguide port. Better agreement is observed (green
curves in Fig. II.1.18). With this upgraded model, the order of magnitude of S11 agrees for the two
models (the real PCBs and the simulation models). The drawback is that the computation time
significantly increases (as the number of cells in the mesh increases). For the following simulations,
SMA connectors will be taken into account.

1FR4: Flame Retardant 4
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(a) Straight (b) L (c) L (d) Meander

Fig. II.1.15 – Pictures of the four boards.

Fig. II.1.16 – Model of the SMA connector.
Fig. II.1.17 – Model of the 50Ω load at
the end of the transmission line, as a surface
mount resistor and a via.
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Fig. II.1.18 – S11 of the four boards.
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II.1.5 Conclusion

The set-up of two models has been detailed in this chapter: a simulation model and a mock-up, both
representative of a desktop computer chassis.

The design and the manufacturing of a computer chassis mock-up was described. That device was
made to be versatile. Several steps were necessary to validate the mock-up.

During the manufacturing process, the mock-up has been deformed due to overheating during the
welding of the lateral panels. Results computed by an eigenmode solver have showed that even a
small deformation can lead to a noticeable shift of the eigenfrequencies. These deformations should be
integrated in the 3D model when it comes to full-wave simulations. Then, the shielding effectiveness at
the center of the mock-up was measured using a field probe within a frequency range from 800MHz to
3GHz (steps of 1MHz). Its lowest value is 55 dB. However, the first quartile (over all the frequencies)
is ≈ 70 dB. It means that for 75% of the frequencies, the shielding effectiveness is greater than 70 dB.
These values indicate no design or manufacturing mistakes.

Finally, models for devices from which couplings will be obtained have been set. These take the
form of simple PCBs, and simulation models have been determined for each PCB.

In the following chapter, electromagnetic fields and couplings between a plane wave and simple
PCBs obtained by these two models will be compared.
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Chapter II.2

Comparison between the two models for
two configurations

Contents
II.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

II.2.2 Electric field amplitude and couplings assessment with the two
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

II.2.2.1 Study of the electric field in the empty desktop computer chassis . . . 72

II.2.2.2 Coupling between a plane wave and printed circuit boards . . . . . . . 78

II.2.3 Applicability of the simulation model to determine statistics . . . 81

II.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

II.2.1 Introduction

In what follows, the models exposed in the previous section, i.e. the mock-up and the numerical model
of a desktop computer chassis are compared. Two configurations will be studied. The first one will
allow to acquire the electric field at several locations in the desktop computer chassis, and the second
one will be devoted to measure the currents at the end of several transmission lines that are printed on
simple circuit boards. These quantities may then be used to run a risk assessment related to INFOSEC
for a system that can be modeled (in terms of shapes and materials).

II.2.2 Electric field amplitude and couplings assessment with the two
models

II.2.2.1 Study of the electric field in the empty desktop computer chassis

The first attempt is to compare the field measured and simulated at several locations in the empty
mock-up. For the simulation model, the computational volume is illuminated by a plane wave with a
field strength of 1Vm−1. The volume boundaries are set open. Then the electric field is computed
at several locations of the mock-up model for the whole frequency range. From the simulated and
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VNA

Probe

Converter

Fig. II.2.1 – Setup for the electric field measurement inside the mock-up.

measured data, the quantities EMeasurement (dBVm−1) and ESimulation (dBVm−1) are computed as:

EMeasurement (dBVm−1) = 20 log10

( |EMeasurement|
|ECalibration|

)

(II.2.1)

ESimulation (dBVm−1) = 20 log10

( |ESimulation|
1Vm−1

)

(II.2.2)

and compared. ECalibration accounts for the frequency response of the antenna (see next section).

II.2.2.1.1 Measurement setup

We have used the same setup and electric probe as for the shielding effectiveness measurement of
the mock-up (see section II.1.3.4.1), depicted in Fig. II.2.1. Again, measurements are limited to the
frequency bandwidth of the probe, thus up to 3GHz. This probe is propped up with a 3D printed plastic
support that allows the probe to be slipped along a groove in a styrofoam panel (ǫr ≈ 1 [Balanis, 2012]).
This set-up allows a precise and reproducible positioning of the probe inside the mock-up. Fig. II.2.2
shows the measurement configuration. The vertical electric field component Ez was acquired for two
aperture positions (see Fig. II.1.3c). To calibrate the measurement, ECalibration was measured in free
space without the mock-up. It was measured at a distance D = 4.88m from the transmitted antenna
oriented in order to radiate an electric field vertically polarised (along ~ez, see Fig. II.1.3).

II.2.2.1.2 Benchmark study between the two models

Comparison between the simulated and measured electric fields was performed for several configura-
tions: for two aperture locations (N°1 and N°3) and for several positions along the axes Ox and Oy.
Fig. II.2.3 and Fig. II.2.5 are related to the field with the aperture location N°3, and Fig. II.2.4 to the
position N°1. Fig. II.2.4 and Fig. II.2.3 show the field determined along the axis Oy, and Fig. II.2.5
along the axis Ox.

The box plots for the two series (of N sample values) are given. It indicates the first Q1, the second
Q2 (the median in orange) and third Q3 quartiles, as well as the first (p1%) and last percentiles (p99%).
The circles depict the outliers (see Fig. II.2.3, top plot for a legend). Moreover, the Pearson correlation
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3D printed support

Styrofoam sup-
port (ǫr ≈ 1)

Fig. II.2.2 – Illustrations of the positioning of the electric field probe in the mock-up. In the right
picture the deformation of both sides of the mock-up is noticeable. A gap between the styrofoam
support (which is straight) and the side is visible.
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Fig. II.2.3 – |Ez| in the empty mock-up for a normal incident plane wave (θ = 90°) and for an aperture
location N°3. The measurement position is at x = 83mm, z = 198mm and y is indicated on the figure.
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Fig. II.2.4 – |Ez| in the empty mock-up for a normal incident plane wave (θ = 90°) and for an aperture
location N°1. The measurement position is at x = 83mm, z = 308mm and y is indicated on the figure.
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Fig. II.2.5 – |Ez| in the empty mock-up for a normal incident plane wave (θ = 90°) and for an aperture
location N°3. The measurement position is at y = 342mm, z = 198mm and x is indicated on the
figure.

coefficient is computed as:

p =

N
∑

i=1
(mi − 〈m〉)(si − 〈s〉)

√

N
∑

i=1
(mi − 〈m〉)2

√

N
∑

i=1
(si − 〈s〉)2

(II.2.3)

where {si} is the serie related to the simulated data and {mi} to the measured data, and the mean
square error is also given. It allows to characterize the estimator, i.e. the simulation here. It is
computed like:

MSE =
1

N

N
∑

i=1

(mi − si)2 (II.2.4)

p and MSE are computed on the linear data (not on a logarithmic scale). Errors related to the
probe positioning and to the angle of incidence of the plane wave were taken into account by running
several simulations. For each position considered in the mock-up, the electric field was computed
on a 3 × 3 × 3 space grid with a maximum error of 5mm. Moreover, several simulations with small
deviations of the angle of incidence of the plane wave were run to take into account the incidence
offset of the transmitting antenna. The maximum error is 5° for both θ and ϕ, and 9 simulations were
run (θ ∈ [−5°, 0°, 5°] and ϕ ∈ [−5°, 0°, 5°]). The maximum and minimum errors (over 33 × 32 = 243
electric field values) define the orange interval between the simulation curves on figures. These errors
have different significances as the frequency varies.

The results show a good match between the measurement and the simulation, for Ez and for both
aperture locations and axes (Ox and Oy). The Pearson correlation coefficient lies between 0.65 and
0.78 and

√
MSE between 0.57 and 0.86 dBVm−1. Some measurements were conducted for the Ex field

component, however it was not possible to compare measurements and simulations as the field probe
is not sensitive enough. The simulations show that the ratio between the mean values of the Ez and
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Fig. II.2.6 – |Ez| in the empty mock-up for a plane wave of incidence θ between 90° (purple curve)
to 180° (yellow curve) (aperture location N°1).

Ex component is 〈|Ez |〉
〈|Ex|〉 ≈ 45 dB.

The effect of the incidence of the plane wave on the measured electric field was also investigated.
By use of a turntable (see Fig. II.1.2), 11 angles θ were considered between 90 and 180°. We remind

that θ = 90° for a normal incidence (i.e.
~k

|~k| = ~ey) and that θ = 180° for a grazing incidence (i.e.
~k

|~k| = −~ex). Fig. II.2.6a depicts the impact of θ on the measured electric field. For a plane wave the

mean value over a period of the Poynting vector is 〈~Π〉 = 1
2η | ~E|2

~k

|~k| . We can calculate the flux of

〈~Π〉 through the aperture: P =
s

S〈~Π〉 · ~dS = 1
2η | ~E|2S

~k

|~k| ·~ey = 1
2η | ~E|2S sin θ. Thus, the electric field in

the mock-up should be proportional to
√
sin θ. Fig. II.2.6b shows the measurements compensated by

computing |EMeasured|
√
sin θ

−1
. As all the curves do not merge, we can state that the power coupled

to the aperture is not strictly proportional to sin θ.
One simulation requires a computation time of ≈ 2 h and 30min for an accuracy of −60 dB1.

Conclusion This set of simulations has allowed to determine a configuration for the commercial
software that is able to simulate reverberant environment with use of a time-domain solver (in section
I.2 it was noted that these situations were mostly addressed through frequency solvers). A good
agreement was found between experimental and simulation data when it comes to determine the field
in an empty cavity. In what follows, a more complex problem is covered: PCBs will be added inside
the mock-up.

1All the full-wave simulations have been computed one the same desktop computer (64GB of RAM, 2 processors
with 6 cores each and with a clock frequency of 3GHz).
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II.2.2.2 Coupling between a plane wave and printed circuit boards

The mock-up is now filled with a stacking of PCBs, and the aim is to quantify the coupling between
a plane wave that illuminates the mock-up and a transmission line printed on a circuit board. It
was found that a convenient way to compare the simulations and the measurements is to determine
the couplings with two antenna factors, one for the measurement and another one for the simulation.
These antenna factors will be defined in the next section.

The boards presented in section II.1.4 are placed in the mock-up. The SMA connector of the
transmission line on which we want to assess the coupling is connected to a VNA to measure the
scattering matrix S between the antenna and the end of the transmission lines. Two configurations
were considered, both composed of two stacked PCBs, vertically spaced of 20mm: (I) and (L) for the
first one and (I) and ( L) for the second one. The setup is depicted in Fig. II.2.7.

II.2.2.2.1 Results standardization

For the measurement, the maximum voltage amplitude |Umax,M| at the end of the transmission line is:

|Umax,M| = |S21|
√

2PAntennaZ0 (II.2.5)

where |S21| is the forward scattering parameter between the horn antenna and the end of the trans-
mission line, PAntenna the power applied to the antenna and Z0 the impedance seen from the SMA
connector.

In the simulation software, the mock-up model is illuminated by a plane wave, with a constant
electric field magnitude, thus the maximum voltage amplitude |Umax,S| is:

|Umax,S| = |F1|
√

2Pplane waveZ0 (II.2.6)

where |F1| describes the coupling between the incident plane wave and the SMA card connector. |F1|
is provided by CST-SS (see [cst, 2020]). Pplane wave is the power of the plane wave, and is given by:

Pplane wave =
|Ez,Plane wave|2

2η0
S (II.2.7)

with S the application surface of the plane wave on the simulation working volume. Thus, it is possible
to compute two antenna factors, AFM for the measurement and AFS for the simulation, like:

AFM =
|Ez,Aperture,M|
|Umax,M|

(II.2.8)

AFS =
|Ez,Aperture,S|
|Umax,S|

(II.2.9)

where |Ez,Aperture,M| and |Ez,Aperture,S| are the electric field magnitude at the aperture location. For
the simulation, |Ez,Aperture,S| = |Ez,Plane wave|, where |Ez,Plane wave| is the amplitude of the incident
electric field defined in CST-SS. Then, |Ez,Aperture,M| was acquired during a calibration step where the
electric field was measured at the aperture location, but without the mock-up. The calibration and
the measurement procedures are depicted in Fig. II.2.8.

II.2.2.2.2 Results for two stacked PCBs

The two antenna factors are shown in Fig. II.2.9, and were computed from the voltage measured from
the board at the bottom of the stacking. For each plot, p is the correlation factor between the two series
computed from equation (II.2.3),

√
MSE is the mean squared error (equation (II.2.4)), and σM , µM
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(a) (I) and (L) configuration (inside view). (b) SMA connectors (outside view).

Fig. II.2.7 – Pictures of the set-up.

∣
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VNAConverter

(a) Calibration procedure by using the field probe
and a VNA.

VNA

PCB

(b) Measurement procedure by using a VNA.

Fig. II.2.8 – Calibration (Fig. II.2.8a) and measurement (Fig. II.2.8b) setups for the couplings between
PCBs and a plane wave.
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Fig. II.2.9 – Antenna factors for the two configurations (top (I) and (L), bottom (I) and ( L)). The
incident plane wave was vertically polarised for this measurement. The curves on the right are the
PDFs of the antenna factors.

and σS , µS are respectively the standard errors and mean values for each serie. We may remind that
the standard error σ and the mean value µ of a sample {xi} with i ∈ [1, N ] are computed like:

µ =
1

N

N
∑

i=1

xi (II.2.10)

σ =

√

√

√

√

1

N

N
∑

i=1

(xi − µ)2 (II.2.11)

These values were calculated from the logarithmic values (not the linear one). For both configurations,
the orders of magnitude are similar. Moreover, above 1GHz, the simulation is able to take into account
the overall changes. The dynamic range of the antenna factors is around 50 dB. In order to have a figure
that can characterize how close the measurement and the simulation results are, the moving difference
of averaged values over 40MHz has been computed for the two configurations (see Fig. II.2.10). This
allows to mitigate, in some way, the shifts of the eigenfrequencies between the simulation and the
measurements. This quantity varies within a range from −10 dB to 10 dB between 1GHz and 3GHz.
It gives a confidence interval around these measurements. The computation time needed to simulate
this configuration is around 2 h, with all the details (deformation of the mock-up, SMA connectors at
the PCB ends, surface mount resistor, via, etc.).

II.2.2.2.3 Results for four stacked PCB

A more complex configuration is now considered. Four boards are stacked inside the mock-up in
the following order (from bottom to top): meander (P1), straight (P2), L (P3) and L(P4). Two
polarizations (horizontal and vertical) are tested by rotating the standard gain horn antenna. We
admit that, for the calibration procedure, the field measured at the location of the aperture is equal (in
magnitude) for both polarizations (while guaranteeing that both the field probe and the standard gain
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Fig. II.2.10 – Moving difference of averaged values over 40MHz of the antenna factor for the two
configurations.

horn antenna are identically polarized). Thus we have |Ez,Aperture,M| = |Ex,Aperture,M|, and antenna
factors for the four boards and for both polarization are computed like:

AFM =
|Ex,Aperture,M|
|Umax,M|

=
|Ez,Aperture,M|
|Umax,M|

(II.2.12)

AFS =
|Ex,Plane wave|
|Umax,S|

(II.2.13)

Fig. II.2.11 depicts the antenna factor for a horizontal polarization of the electric field, and
Fig. II.2.12 for a vertical one. As for the two stacked PCB configurations, the simulations and the
measurements results give a comparable order of magnitude. For both polarizations, it appears that
results for the board at the top of the stacking are better than for the boards below. Indeed, we have for
the horizontal polarisation |σS − σM | = 0.04 dBm−1 for the upper board, 4.60 dBm−1 for the second,
4.40 dBm−1 for the third and 3.3 dBm−1 for the lowest board (this values are given in Fig. II.2.11).
For the vertical polarisation, the same behavior is noticed, |σS − σM | = 0.26 dBm−1 for the upper
board and |σS − σM | = 1.5 dBm−1 for the second, 1.7 dBm−1 for the third, and 2.97 dBm−1 for the
first position (see Fig. II.2.11). Likewise, the lowest mean squared error

√
MSE for both configurations

appears for the upper PCB, and the highest Pearson correlation factor corresponds to the upper
PCB. However, for the upper position an offset in the mean value µ is found (|µS − µM | = 3.4 dBm−1

for a vertical polarization and 4.1 dBm−1 for an horizontal one). These values were computed on the
logarithmic values. The moving difference of averaged values over 40MHz is given in Fig. II.2.13 for
all the configurations. It appears, contrary to the previous configuration (with only two boards), that
this quantity does not stay in a −10 dB to 10 dB range, but exceed ±15 dB.

As previously, to evaluate the applicability of a full-wave simulation based model, the computation
time is relevant. For four boards in the mock-up, the simulation took 4 h.

II.2.3 Applicability of the simulation model to determine statistics

First, we remind that the frequency limit of 3GHz for all the results presented previously was due
to the electric probe. For these frequencies, the cavity is not clearly overmoded (see section II.1.3.2).
However, the frequency range of interest for this work extends up to several tens of gigahertz. In
that frequency range, the cavity is overmoded. The aim of this section is to assess the number N of
simulations to run in order to obtain statistics about couplings, while considering frequency ranges
where the cavity is overmoded.
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Fig. II.2.11 – Antenna factors for four PCBs with an electric field horizontally polarized (i.e. ~E =
| ~E|~ex). The PCBs are stacked, from the lower to the upper position in the stacking in the following
order, meander (P1), straight (P2), L (P3) and L(P4).
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Fig. II.2.12 – Antenna factors for four PCBs with an electric field vertically polarized (i.e. ~E = | ~E|~ez).
The PCBs are stacked, from the lower to the upper position in the stacking in the following order,
meander (P1), straight (P2), L (P3) and L(P4).
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Fig. II.2.13 – Moving difference of averaged values over 40MHz of the antenna factor AF , for the 8
configurations (two polarizations (V and H) and 4 boards (1 to 4)).
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Fig. II.2.15 – Probability density functions of the maximum of
the electric field from a sample of size N , for N from 1 to 10000.

eRmax N

2.5 2
3.0 5
3.5 24
4.0 153
4.5 1281
5.0 13764

Table II.2.1 – Number N of
samplings needed in order to
reach FRmax(eRmax) = 95%.
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The Hill model As previously concluded, for some situations, the boundary conditions may be
unknown. Thus, a statistical approach seems to be appropriate when the boundary conditions are
randomized. We can then come back to the statistical description of the field in overmoded reverberant
environments as stated by Hill. In that case, the frequency from which the cavity may be considered
as overmoded is around 7GHz (see equation (II.1.5) and section II.1.3.2).

Indeed, from [Hill, 1998], in lossless overmoded environments, the field may be expressed by a
plane wave integral representation. Consequently, the field is assumed to be randomly polarized and
statistically isotropic. This representation is theoretical, but may be approached by:

• increasing the losses to broaden the spectral occupancy of the modes;

• increasing the lowest frequency of the study to increase the mode density;

• changing the boundary conditions of the system N times to obtain N new sets of eigenmodes in
the reverberant environment.

This representation is commonly used to describe mode-stirred chambers (MSCs) which are commonly
cuboid cavities fitted with a stirrer that changes the boundary conditions inside the enclosure.

Here, the Hill’s approach will help to describe a desktop computer chassis with random boundary
conditions. To approach this statistical representation with a simulation software, one needs to run
several simulations with different boundary conditions. The number N of simulations needs to be
assessed by evaluating three quantities.

Field uniformity Users of MSCs have a criterion σPdB that characterizes the fluctuations of the
maximum electric field amplitude sampled at several locations P of a MSC. It allows to validate the
statistical behavior of MSCs. Theoretically, σPdB should be null. However, a reasonable threshold is
given by international standards [International Electrotechnical Commission, 2010] which states that
σPdB should stay below 3 dB. σPdB is computed as:

σPdB = 20 log10

(

1 +
σP

〈|ER|max〉

)

(II.2.14)

where:

〈|ER|max〉 =
1

N

∑

N

max
i∈P

(|ER|i) (II.2.15)

σP =
1

P − 1

P
∑

i=1

(|ER|i − 〈|ER|max〉)2 (II.2.16)

|ER|i is a cartesian component of the field (|Ex|,|Ey| or |Ez|) sampled at the position i with i ∈ [1, P ],
divided by the square root of the injected power in the cavity Pin. From Monte-Carlo iterations, we can
compute σPdB as well as confidence intervals [Besnier and Démoulin, 2013, p220]. Fig. II.2.14 shows
the 2.5% and 97.5% percentiles and the mean value of σPdB. It appears that if eight positions are
considered, the inequality σ8dB < 3 dB holds almost certainly as soon as N ≥ 6.

Extreme field values Moreover, it is relevant to guarantee that the magnitude of the electric field
can reach a given value in order to gain extreme field values (as well as extreme coupled currents).
For an overmoded cavity, the cartesian component of the electric field ER is Rayleigh distributed
[Besnier and Démoulin, 2013, p. 198] and its cumulative density function (CDF) function is:

FER
(eR) = 1− e−

e2R
2σ2 (II.2.17)
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and the CDF of the maximum over N independent measurements with different boundary conditions
is:

FERmax
(eRmax) = P [eR1 < eRmax; eRi

< eRmax; · · · ; eRN
< eRmax]

=
N
∏

i=1

P [eRi
< eRmax] =

N
∏

i=1

FER
(eRmax)

= FER
(eRmax)

N (II.2.18)

which PDF pERmax
(eRmax) is:

pERmax
(ERmax) =

∂

∂eRmax
FER

(eRmax)
N = N

eRmax

σ2
FER

(eRmax)
N−1e−

e2Rmax
2σ2 (II.2.19)

σ depends on the physical properties of the chamber. Fig. II.2.15 plots pERmax
(eRmax) for several

values of N . We observe that pERmax
(eRmax) shifts to higher values when N increases. Thus fixing the

probability for which eRmax occurs (95% for example) gives the miminal number N of independent
samplings. Table II.2.1 gives the minimum sample size N required to guarantee a probability of 95%
to reach a given maximal value eRmax.

Independent samples It has to be noted that equations (II.2.14) and (II.2.19) hold when the
N sample values are independent. This assertion is not always valid as, two consecutives measure-
ments/simulations may not change enough the boundary conditions of the system such that these
measurements/simulations are not statistically independent. In [Lemoine, 2008], the number of inde-
pendent Neq may be assessed from N and by the autocorrelation function rN as:

Neq ≈ N
1− rN
1 + rN

(II.2.20)

(II.2.20) was obtained by application of an autoregressive model of order 1. This equation holds only
if N is sufficiently large and if rN is below 0.55. For an autocorrelation value rN of 0.1, only 82% of
the samples are independent. Yet, rN tends to decrease with the frequency.

Finally, the effective number of independent samples Neq, the first order autocorrelation function
rN , the required distribution function of the maximum of cartesian component of the field and the
field uniformity will determine the number N of sample values to record. This number N is likely to
be of several tens, which leads to a computation time of hundreds of hours.

II.2.4 Conclusion

The ability of the full-wave simulation software to produce reliable data in a reasonable amount of
time was assessed in this chapter. First, the electric field was determined at several random positions
through a set of measurements and simulations. A good agreement was found between experimental
and simulation data for the co-polarization case (same orientation of the electric field probe and the
emitted field). This step allowed to define an accurate 3D model (in terms of details to take into
account and in terms of parameterization of the simulation software) for the empty mock-up and to
move forward.

As the aim of this work is to provide a model that can easily determine coupling in reverberant
environments, full-wave simulations have been used to this end. Thus, four PCBs with microstrip
transmission lines were installed inside the desktop computer chassis models. It was found that
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the antenna factor is a convenient quantity to compare simulation and experimental data. Two
configurations were tested, one with a stacking of two boards and a second one with four boards. To
compare the results, moving differences of averaged values over 40MHz were computed. This quantity
is bounded between ±10 dB for the two PCBs configurations. For the four boards configuration, this
quantity varies much more around ±17 dB.

Finally, on one hand we notice a significant uncertainty of the antenna factor for a deterministic
configuration. We recall that it binds the field at the location of the aperture (an intentional
electromagnetic interference (IEMI) for example) to the parasitic induced voltage at the end of the
transmission lines. On the other hand, the high computation time assessed to apply the model in
order to compute statistics is important. It has been assessed to be of hundreds of hours.

Therefore, it seems appropriate to investigate the other model identified in section I.2.7, i.e. the
random coupling model (RCM), as it is statistical by design.
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Chapter III.1

Application of the Random Matrix
Theory to determine couplings inside
microwave cavities

Contents
III.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

III.1.2 The Random Matrix Theory (RMT) . . . . . . . . . . . . . . . . . 90

III.1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

III.1.2.2 Chaotic approach of microwave cavities . . . . . . . . . . . . . . . . . 90

III.1.3 The random coupling model (RCM) . . . . . . . . . . . . . . . . . 96

III.1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

III.1.3.2 Interest and application of the RCM . . . . . . . . . . . . . . . . . . . 98

III.1.4 Set up of the RCM for the two configurations of interest . . . . . 99

III.1.4.1 Configuration 1: plane wave coupling to a port inside a cavity . . . . 99

III.1.4.2 Configuration 2: Coupling between several ports in the cavity . . . . . 101

III.1.1 Introduction

In this last part a third approach to model a desktop computer chassis will be set up. It is based on
the random matrix theory (RMT) and is named the random coupling model (RCM).

This chapter intends to lay down how some properties of the RMT may be used to model overmoded
cavities. Then, the RCM formulation will be introduced. Finally, the implementation of the RCM
for both coupling configurations aforementioned, i.e. coupling between inner elements and coupling
between an aperture and inner elements in the chassis, will be exposed.

The next two chapters are dedicated to the integration of apertures in the RCM. As this model relies
on Monte Carlo iterations, one has to determine an RCM formulation that can be easily implemented.
That is the purpose of the fourth chapter, when coupled currents and voltages generated from the
RCM will be compared to experimental data.
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III.1.2 The Random Matrix Theory (RMT)

III.1.2.1 Introduction

Probably, the first work about random matrices was from Wishart in the 1930s [Wishart, 1928].
Then, numerous physicists and mathematicians found interest in this theory like Wigner, Mehta

and Dyson. Especially, the theory was found to be useful for nuclear physics. In quantum physics,
the energy levels of an atomic system are the eigenvalues of the Hamiltonian of the system. The
Hamiltonian takes the form of a matrix, thus the resolution of such a problem leads to solve:

Hψn = Enψn (III.1.1)

which is known as an eigenvalue problem, where En are the eigenlevels and ψn the eigenfunctions.

For complex systems, the diagonalization of this operator is almost impossible. Wigner found
that the statistics of the eigenlevel spacings of the Hamiltonian of some systems are the same as those
of the eigenvalue spacings of random matrices. In [Dyson, 1962], Dyson stated that:

"The statistical theory will not predict the detailed sequence of levels in anyone nucleus, but it will
describe the general appearance and the degree of irregularity of the level structure that is expected to
occur in any nucleus which is too complicated to be understood in detail."

Later, Bohigas, Giannoni and Schmit awaked the attention and interest for the RMT. They
stated in [Bohigas et al., 1984] that the RMT should apply to spectrum of all chaotic systems.
We remind that the spectrum of a system is the set of its stationary energy levels, and that the
spectrum of a matrix is the set of its eigenvalues. From then, it has become common to predict the
statistical behavior of the eigenlevels of chaotic systems with the RMT. Especially, it was highlighted
that the RMT allows to describe the trajectory of a moving point mass in chaotic 2D cavities,
also known as billards, such as Sinaï billards or Buminovich stadiums. Then, 3D cavities were
considered from the RMT perspective and especially microwave cavities (see next section). Readers
who want to learn more about random matrices may refer to [Mehta, 2004] for the main math-
ematical results on the RMT and to [Stöckmann, 1999, Chap. 3] for an introduction to quantum chaos.

When dealing with chaotic systems, one can find the term “semi-classical limit”. It refers to the limit
from which a system can be considered as chaotic. For microwave cavities, it indicates the threshold
from which a cavity is overmoded (i.e. its eigenmode density is high).

III.1.2.2 Chaotic approach of microwave cavities

III.1.2.2.1 Brief review of RMT applications related to microwave cavities

The RMT predictions have been tested with success against microwave cavities in numerous cases. At
first, only lossless superconducting 2D cavities were considered. Then losses were handled as well as
3D geometries. 2D means in reality that one dimension is small compared to the other two. Among
all the studies published in the literature, one can cite in chronological order:

• [Stein et al., 1995]: one of the first comparison of RMT results against a 2D microwave billard;

• [So et al., 1995]: a 2D microwave billard with or without broken time symmetry is considered.
It was the first application of the RMT for a microwave cavity with broken time symmetry.

• [Richter, 1999]: many comparisons of experimental data to the RMT for both 2D and 3D cavities,
with and without super-conductivity;
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• [Dembowski et al., 2002]: the spectrum of a generalized Bunimovich stadium billiard is con-
fronted against measured spectrum;

• [Kuhl et al., 2005]: absorptions (losses) are considered in a chaotic cavity from both analytical
and experimental data;

• [Zheng, 2005]: the RMT is integrated into a circuit model to determine couplings in a 2D cavity.
This result was generalized for 3D cavities later [Hemmady, 2006];

• [Gros et al., 2014]: application of the RMT to determine the shape of a MSC in order to obtain
a chaotic behavior for the field inside the MSC.

We will see that the work of [Zheng, 2005] and [Hemmady, 2006] can be applied to determine
couplings in reverberant environments.

III.1.2.2.2 Analogy between the spacing fluctuation of the spectrum, for random matri-
ces and for (microwave) cavities

The eigenmodes of a wave system are included in its Green’s function [Eric Akkermans, 2007]. De-
termining the Green’s function requires to solve the Helmholtz equation (we consider only scalar
waves here):

(∆~r + k2)G(~r, ~r ′, k) = δ(~r − ~r ′) (III.1.2)

In the lossless case, G(~r, ~r ′, k) may take the form:

G(k) =
1

k2 −H (III.1.3)

where H is the Hamiltonian of the system.

For integrable systems, H may be determined analytically, while the other systems require
numerical methods. However, when the mode density is high in the system, like in an overmoded
cavity, numerical methods may be inapplicable as the computation time severely increases (refer to
the previous part). Indeed, above a certain frequency threshold, the specific contribution of a given
mode is no longer recognizable. It is then much more relevant to statistically describe the eigenlevels
of the system, and the RMT can provide that statistical description.

Indeed, it exists a relation between the statistical properties of the fluctuations of the eigenlevels
(the eigenfrequencies for microwave cavities) in the semi-classical limit (i.e. in overmoded cavities),
and the statistical properties of eigenvalues of matrices taken from gaussian ensembles after an
unfolding procedure [Mehta, 2004]. This procedure will be detailed later. That property is qualified
as “universal” because it applies to all chaotic systems. Thus, the operator H may be statistically
replaced by large (theoretically of infinite size) square matrices H which are randomly drawn from
different gaussian ensembles [Bohigas et al., 1984].

The choice of the ensemble depends on the system under consideration, and among these ensembles
are:

• the gaussian orthogonal ensemble (GOE) which is the most common one and models time-reversal
invariant systems;

• the gaussian unitary ensemble (GUE) which, contrarily to the GOE, allows to consider system
without time-reversal symmetry [So et al., 1995].
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Fig. III.1.1 – Histograms (blue) of the eigenvalues of matrices from the GOE of ∼ 2 000 000 random
matrices of size M . The red curve is 〈̺GOE(E)〉, the mean eigenvalue density around E (see equation
(III.1.14)).

Issues considered in this work (couplings inside a desktop computer chassis) do not require to take
into account broken time symmetry. Thus, the random matrices will be generated from the GOE
throughout this work. To break the time reversality, one can add ferrites into the cavity as in [So
et al., 1995]. The GOE defines real symmetric matrices whose elements are distributed according
to a normal distribution with zero-mean. Diagonal elements have a variance σ2 which is twice the
one of off-diagonal elements. All the elements of the matrix are independent (while maintaining the
symmetry). The choice of σ does not matter, and we set:

σ2ii = 2σ2ij for i 6= j (III.1.4)

Hii ∼ N (0,
√
2) (III.1.5)

Hij ∼ N (0, 1) for i 6= j (III.1.6)

III.1.2.2.3 Eigenvalues PDF of matrices from the GOE, unfolding procedure, nearest
neighbor spacing distribution and number variance

Unfolding procedure To compare the Hamiltonian spectrum of a system (a cavity for example)
with the prediction of the RMT, one needs to perform an unfolding procedure on both spectrums
(Hamiltonian and RMT). The density ̺(E) of the eigenlevels close to the energy E may be split into
a constant and a fluctuating part and reads

̺(E) = ¯̺(E) + ˜̺(E) (III.1.7)

The aim of the unfolding procedure is to remove the constant part ¯̺(E) as it is specific to the system of

interest, whereas the fluctuating part ˜̺(E) is universal among all the chaotic systems. This procedure
will enforce that the moving average of ̺(E) around ∆E is the same all along the spectrum. {En}
refers to the set of eigenlevels of a folded spectrum, and {Ẽn} to the same set after an unfolding
procedure. Comprehensive information about unfolding can be found in [Haake, 2010]. Instead of
considering level densities, one can determine an accumulated level density:

N (E) =

∫ E

−∞
̺(E′)dE′ (III.1.8)

and, as for (III.1.7) we write:

N (E) = N̄ (E) + Ñ (E) (III.1.9)
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Let’s define the eigenlevel density around the eigenlevel E by:

̺(E) =
1

N

N
∑

n=1

δ(E − En) (III.1.10)

Beside that, the quantity ¯̺(E) refers to the ensemble mean as defined in statistical physics. To
determine ¯̺(E), one can take advantage of a powerful property of the RMT which is the ergodicity
of the eigenlevels [Haake, 2010]. Firstly, the ensemble mean for the first eigenlevel E1 is written as
[Haake, 2010, Eq 4.9.4]:

¯̺(E) =

∫

δ(E − E1)pE1,··· ,EN
(e1, · · · , eN )dEN (III.1.11)

where pE1,··· ,EN
(e1, · · · , eN ) is the joint PDF of the eigenlevels {En}. Secondly, the spectral average

of the eigenlevel density ̺(E) around E and within ∆E is:

〈̺(E)〉 = 1

∆E

∫ E+∆E/2

E−∆E/2
̺(E′)dE′ (III.1.12)

From the ergodicity property, one can equal (III.1.11) and (III.1.12): ¯̺(E) = 〈̺(E)〉 [Haake, 2010,
Chap. 4.10]. Indeed, in the RMT, observables are computed by averaging over a set of random matrices
H (quantities indicated by a bar). From the experimental point of view, the average is calculated over
a part of a spectrum (the first N eigenfrequencies of a microwave cavity for example), and is designated
by the operator 〈· · · 〉 [Guhr et al., 1998, Section III.B.7]. The unfolding procedure must enforce:

〈̺(E)〉 = 1

N
(III.1.13)

For matrices from the GOE, an analytical formulation is available: 〈̺GOE(E)〉 [Mehta, 2004] with

〈̺GOE(E)〉 = 1

∆E

∫ E+∆E/2

E−∆E/2
̺(E)dE′ =

√
2M − E2

πM
1[−

√
2M,

√
2M ](E) (III.1.14)

(III.1.14) is known as the Wigner semicircle distribution (M is the order of the matrices). Fig. III.1.1
shows histograms (blue) and theoretical PDFs (red) of the eigenlevels E for two samples of random
matrices with different sizes M .

Procedures related to spectrum unfolding will be detailed in section III.4.2.2. Fig. III.1.2 depicts
the histogram of the eigenvalues plotted in Fig. III.1.1 after an unfolding procedure. The obtained
eigenlevel density is almost uniformly distributed as stated by equation (III.1.13). When considering
microwave cavities, and to confront their spectrum to one computed by means of the RMT, N̄ (E) may
be assessed by the Weyl’s formula. This formula gives the number of modes in a cavity depending
on its geometry [Gros et al., 2014].

Nearest neighbor spacing distribution To highlight the effect of the unfolding procedure, let’s
now consider the sequence of spacings of the sorted eigenlevel defined as:

sn = En+1 − En (III.1.15)
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Fig. III.1.4 – Comparison between the spacing distribution at three locations (subscript j) within
the folded and unfolded spectrums. The eigenvalues, of indexes Sj,i within the ranges specified in the
figures, were gathered and their spacing PDFs were computed. In Fig. III.1.4b, the theoretical PDF
(with D = 1) has been added by using (III.1.16). We observe that all along the spectrum, the spacing
distribution is similar for the unfolded spectrum. The three PDFs were from 3000 matrices of order
M = 1000.

From the RMT the nearest neighbor spacing distribution sn of the eigenvalues of matrices from the
GOE is approximated by the Wigner surmise and reads:

pw(sn) =
πsn
2D

e
−π
4 ( sn

D )
2

(III.1.16)

with D the mean spacing between two consecutive eigenvalues: D = 〈En+1 − En〉. pw(sn) is an
approximation as (III.1.16) was established for matrices of size M = 2, but is usually generalized.
Fig. III.1.3 depicts pw(sn) and the empirical PDF pMC(sn) obtained from Monte Carlo iterations. We
observe a slight difference between pw(sn) and pMC(sn).

The effect of the unfolding procedure is rendered by Fig. III.1.4. After the unfolding procedure,
the new spacing distribution of the sorted eigenvalues s̃n = Ẽn+1 − Ẽn, must satisfy:

∫ ∞

0
s̃npw(s̃n)ds̃n = 1 and

∫ ∞

0
pw(s̃n)ds̃n = 1 (III.1.17)

A comparison of the nearest neighbor spacing distribution for three eigenvalue sets is given in
Fig. III.1.4. These sets were extracted at three locations of the spectrum. We observe that the
unfolding procedure allows to recover the same spacing distribution all along the spectrum.

Number variance The spacing distribution characterizes the eigenlevel at a short scale in the
spectrum. To describe long-range correlations, the number variance Σ2(L) is of interest. Σ2(L) is
related to the probability to have an eigenlevel Ẽ2 when it is known that there is an eigenlevel Ẽ1 in
the spectrum. Σ2(L) is computed as the variance (the fluctuation) of the number of eigenlevels nẼ(L)
within an interval [Ẽ, Ẽ + L] of length L.

Σ2(L) = Var(nẼ(L)) (III.1.18)

For unfolded spectra, we know that 〈nẼ(L)〉 = N̄ (Ẽ + L)− N̄ (Ẽ) = L, thus Σ2(L) is:

Σ2(L) = 〈(nẼ(L)− L)2〉Ẽ (III.1.19)
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When dealing with the RMT, and for eigenvalues computed from matrices from the GOE, Σ2
GOE(L)

is given by [Bohigas, 1991, C.17 and C.18]:

Σ2
GOE(L) =

[

Si(πL)

π

]2

−
[

Si(πL)

π

]

+ 2Σ2
2(L) (III.1.20)

with:

Σ2
2(L) =

1

π2
(log (2πL) + γ + 1− cos (2πL)− Ci(2πL)) + L

(

1− 2

π
Si(2πL)

)

(III.1.21)

(III.1.20) can be simplified to [Bohigas, 1991, C.20]:

Σ2
GOE(L) =

2

π2

[

log (2πL) + 1 + γ − π2

8

]

+O(L−1) (III.1.22)

Σ2
GOE(L) can characterize long-range correlations within unfolded spectrum of matrices from the

GOE, and therefore also for chaotic microwave cavities with time symmetry. Σ2
GOE(L) can also be

used as a comparative value when it comes to characterize unfolding procedures for spectra obtained
through Monte Carlo iterations. Fig. III.1.5 plots Σ2(L) computed from Monte Carlo iterations, as
well as Σ2

GOE(L).

III.1.3 The random coupling model (RCM)

III.1.3.1 Introduction

The random coupling model (RCM) is a statistical circuit model. Thus, it helps to find a random
impedance Zcav or a random admittance matrix Ycav of a cavity which statistically describes a given
configuration. From, Zcav we have:

~V = Zcav~I (III.1.23)

where ~V is the voltage source vector applied to the N ports of the system (~V = [V1, V2, · · · , VN ]), and
~I is the reaction current vector. A port may be the end of a cable of a transmission line or the input
of an antenna for example. The eigenmodes density needs to be high enough in the system to consider
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the cavity as a chaotic one [Zheng et al., 2006a]. This is a mandatory requirement to apply the RCM
as it integrates the RMT. A criterion will be defined in section III.4.6 to evaluate the chaoticity of a
system.

Two behaviors are merged into the RCM. The first one is related to the coupling between ports
that would happen in free-space, i.e. without boundary conditions that make the system reverberant.
For an electronic equipment, this can be done by removing its casing or by placing absorbers against
the casing wall [Hemmady, 2006]. This behavior is characterized by a radiation impedance matrix
Zrad which is frequency-dependent. This impedance may be determined either by simulations, by
measurements in an anechoic chamber or by an ad hoc model. The second behavior takes into account
the reverberant effects of the cavity due to the casing. The normalized impedance matrix ξ, that
depends on the boundary conditions of the system, models the couplings between the ports and the
eigenmodes of the cavity. From Zrad and ξ, the cavity impedance Zcav is defined as [Zheng et al.,

2006a]:

Zcav = jℑ
{

Zrad
}

+
[

ℜ
{

Zrad
}]1/2

ξ
[

ℜ
{

Zrad
}]1/2

(III.1.24)

Symbols ℜ [·] and ℑ [·] denote the real and imaginary parts of a complex quantity respectively. The
deterministic (for a given cavity with fully determined boundary conditions) formulation of ξ can be
expressed as:

ξ(k) = − j

π

M
∑

n=1

∆k2~Φn ⊗ ~ΦT
n

k2(1− j/Q)− k2n
(III.1.25)

where the summation over n covers the M modes (whose wavenumbers are kn) taken into account
inside the cavity. ⊗ refers to the outer product. k is the wavenumber of interest and ∆k2 the mean
spacing between two adjacent wavenumbers (∆k2 = 〈k2n+1 − k2n〉). Q is the quality factor of the
unloaded cavity (without the ports). To obtain (III.1.25), the currents and voltages at the location
of the ports are expanded into a basis of eigenfunctions φn of the cavity such as (∇2 + k2)φn = 0.
The full procedure to get (III.1.25) is given in [Zheng et al., 2006b] when there is only one port in the
cavity or in [Zheng et al., 2006a] when several ports are present. Appendix C gives key steps to obtain
(III.1.25). Equation (III.1.25) may be rewritten as:

ξ(k) = − j

π

∑

M

~Φn ⊗ ~ΦT
n

k2

∆k2
− k2n

∆k2
− jα

(III.1.26)

where α is the loss factor of the cavity, α = k2

Q∆k2
. The set of normalized wavenumbers

{

k̃2n = k2n
∆k2

}

is

difficult to assess, as it requires to determine the eigenfrequencies of the configuration. This is a hard
problem for cavities which cannot be parametrized by means of separable variables (i.e. with complex
boundary conditions). In a statistical approach, the interest is not focused on a specific cavity but
on a set of various ones. Instead of determining the modes of the cavity, they are randomly drawn
in accordance with the RMT [Hemmady, 2006]. Indeed, we remind that Wigner has shown that the
statistics of the eigenlevel spacings of the Hamiltonian of some systems are the same as those of the
eigenvalues of random matrices from a given ensemble [Eugene P. Wigner, 1967]. Moreover, the Berry

hypothesis states that, for a chaotic cavity, an infinite sum of isotropic plane waves is a good statistical
model to describe the eigenfunctions [Berry, 1977, Gradoni et al., 2014]. The RCM combines these
two conceptual features.

The set
{

k2n
∆k2

}

will be replaced by quantities provided by the RMT and specifically the eigen-

levels {En} will be changed into
{

k̃2n

}

(Ẽn → k̃2n after the unfolding procedure). Several unfolding
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methods are proposed [Hemmady et al., 2005, Zheng, 2005] and will be detailed in section III.4.2.2.
Equation (III.1.25) may be rewritten like [Hemmady, 2006]:

ξ = − j
πW [ λ − jα1 ]−1WT

(III.1.27)

This expression will be justified in section III.4.2.3. W is a M ×N real matrix, N is the number
of ports in the system and M the number of modes taken into account inside the cavity. W expresses
the coupling of the modes to the ports of the system and its elements are normally distributed (Wij ∼
N (0, 1)). λ is a diagonal matrix populated with the eigenvalues of a matrix from the GOE after
an unfolding precedure, as presented above. This formulation allows to practically apply the RCM.
Indeed, to determine the statistics of Zcav, a large number of Monte Carlo iterations shall be carried

out. For each iteration, a matrix ξ is randomly drawn (as Zrad is deterministic). Equation (III.1.27)

is a formulation of equation (III.1.25) that can be easily implemented. However, these iterations may
be time-consuming (depending on whether an aperture is considered and on the value of M), therefore
some optimizations may be implemented and will be detailed in section III.4.3.2.

The loss factor α, may be assessed by several means. Using the Weyl’s formula one can obtain:
α = k3V

2π2Q
, where V is the volume of the cavity, and Q its quality factor [Hemmady et al., 2005]. In

section III.5.3, a method to experimentally determine α will be proposed.

We should mention that the matrix ξ does not take into account the short-orbit of the system.
The short-orbits represent the energy emitted by a port in the system that returns directly to it or to
another port of the system, without ergodically sampling the system. Another formulation of ξ exists

to take these short-orbits into account [Gradoni et al., 2014] but will not be exposed here.

III.1.3.2 Interest and application of the RCM

The major interest of the RCM is to avoid the determination of the eigenfrequencies of a cavity,
which depends on its geometry. Instead, the geometry is assumed to be random, and statistics over a
large number of geometries may be evaluated through Monte Carlo iterations. For each Monte Carlo
iteration a matrix ξ is randomly drawn. Moreover, the random couplings between the N ports and

the M eigenmodes are set by the random vector ~Φn. Then, the free-space behavior contained in Zrad

is superposed to Zcav. After some iterations, statistics may be determined such as induced currents
~I = [I1, I2, · · · , IN ].

This method allows to take into account many possible cavity geometries including worse cases.
Worse cases in electromagnetic security (EMSEC) are configurations for which the currents or voltages
induced on ports of interest reach extreme values. In other words, extreme values correspond to specific
cavity geometry with a given loss factor α for which induced currents or voltages reach extreme values
in comparison to other geometries. Thus, right tails of PDF will refer to geometries (equivalently to
a set of eigenmodes) that lead to the higher induced voltages or currents. The drawback is that no
indication about the geometry that causes an extreme value can be retrieved from the RCM. In section
III.4.7 some statistical quantities of interest for EMSEC will be listed.

Three quantities need to be determined to apply the RCM: the free-space impedance matrix Zrad,
the number of modes M taken into account inside the cavity and the loss parameter α. The free-
space impedance matrix Zrad for all the tested configurations was determined from experimental data
acquired by a VNA in free-space (see section III.5). Setting M is a trade-off between the number of
modes to consider inside the cavity and the computation time. The choice of M will be suggested in
section III.4.5. The parameter α is the most difficult to assess. It characterizes the losses inside the
cavity and is frequency-dependent. It will be experimentally determined (see section III.5.3).
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Fig. III.1.6 – Configuration 1 - Coupling between an aperture and an inner element of a desktop
computer chassis.

III.1.4 Set up of the RCM for the two configurations of interest

In section I.1, two configurations of interest were mentioned. The first one intends to assess the
coupling between a plane wave, through an aperture, to a port inside a cavity. This port may be a
wire or a conductor on a PCB. In the second configuration, the coupling between ports in the cavity
is evaluated. The aim of this section is to state how the RCM may be applied to both configurations,
and which measurement setup will allow to evaluate the generated statistics from the RCM.

III.1.4.1 Configuration 1: plane wave coupling to a port inside a cavity

Fig. III.1.6 depicts the first configuration. It deals with a cavity having a PCB inside. This PCB has
a conductor of interest etched on its surface. The cavity has an aperture cut on its front panel. In this
scenario, the cavity is aggressed by an electromagnetic wave. Two regions may be defined, outside (in
red) and inside (in blue) the cavity. These regions are connected by the aperture. When the cavity
is aggressed from the exterior, a part of the incident energy penetrates inside the cavity through the
aperture and excites the eigenmodes of the cavity. The coupling of the excited eigenmodes of the cavity
on the conductor generates a current I on the PCB.

In order to assess the statistics of the induced current (flowing on a transmission line on the PCB
for example) over the space of possible cavity geometries, the set of eigenmodes in the cavity needs to
change. When this configuration is studied from the RCM point of view, the set of eigenmodes for a
random cavity geometry is determined while drawing a normalized impedance matrix ξ as exposed in
the previous section. When this configuration is measured, by means of the desktop computer chassis
mock-up, the set of eigenmodes of the cavity is excited by setting a mode-stirrer at a random position
inside the cavity. Indeed, it will change the boundary conditions thus, the set of eigenmodes will
change. The matrix ξ and the mode-stirrer have the same purpose, to variate the set of eigenmodes in
the cavity.
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With the RCM, the statistics of the current are assessed thanks to Monte Carlo iterations. For
each iteration, a matrix ξ is drawn. When the statistics of the current have to be determined by
measurements, one current value is acquired per mode-stirrer position, and statistics are computed
from a large number of mode-stirrer angles.

For this configuration, one has to find a way to couple the energy of the incoming electromagnetic
wave (located outside the cavity) into the interior of the cavity. In other words, the aperture has to be
modeled as a way to link the two regions. A method was proposed in [Harrington and Mautz, 1976]:
both regions were connected to each other thanks to two admittance matrices: Yrad for the outside

part, and Yint. for the internal part of the cavity. This method is reviewed in section III.2.4. The

admittance matrix Yrad of the exterior region represents the aperture as a set of TEn0 modes. The

method to obtain Yrad will be exposed in section III.2.

The next step is to determine the admittance Yint.. It stands for the reverberant behavior of the
cavity (as previously exposed), and the contribution of the transmission line on the circuit board.

As indicated before, the RCM superposes the chaotic behavior of a cavity to the free-space behavior
(which is deterministic). The free-space behavior is included in Zrad (Zrad merges into Zrad as there
is only one port in the system). This impedance may be obtained by measuring the impedance of the
transmission line with a VNA, or by simulation. In that case, the simulation is much easier to perform
than if the cavity was present. By placing the PCB in the cavity, the impedance seen from a port will
become Zcav, which includes Zrad and ξ.

All these quantities will be used to compute the current I. The full computation procedure with
Yrad, ξ, Zrad and the incident magnetic field ~hinc is explained in section III.2.5. A comparison between
RCM simulations and experimental data will be exposed in III.5.7

100



III.1.4.2 Configuration 2: Coupling between several ports in the cavity

In the second configuration, as depicted in Fig. III.1.7, only the coupling between ports is considered.
The quantities of interest are the statistics of the currents flowing on the PCBs. This problem is
simpler than the previous one, because there is no interaction with the aperture. The aperture will
be taken into account through the loss parameter α included in ξ. Thus, equation (III.1.24) can be
directly applied.

The impedance matrix Zrad stands for the free-space behavior of the ports associated to boards
and can be obtained by measuring the scattering matrix S of the boards. The relative positions of the
boards must stay constant when they are measured and when the boards are placed into the cavity.
That configuration will be studied in section III.5.5.
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Chapter III.2

Determination of the
impedance/admittance of an aperture
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III.2.1 Introduction

In this section, two methods will be exposed to determine the radiation impedance Zrad or admittance

Yrad of an aperture. This matrix is required to apply the RCM when the statistics of a coupling
between an aperture and a port in a cavity need to be determined.

The first method is proposed by [Caudron, 2012], and relies on the Babinet’s principle. The second
one, proposed by [Antonsen et al., 2011], expands the fields within the aperture and decomposes them
as a superposition of modes belonging to an orthonormal basis.

III.2.2 First estimation

In [Caudron, 2012], a method is proposed to compute the impedance of an aperture. It is based on
the Babinet’s principle written for the impedance (see I.2.2.1.1).

ZradZplanar dipole =
η2

4
(III.2.1)
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Fig. III.2.1 – Aperture impedance using the Babinet’s equivalence principle, and the equivalence
between a planar aperture and a wire.

where Zplanar dipole is the impedance of the complementary screen of the aperture.
In [Newman, 1987], it was suggested that a planar antenna of width w and length l is equivalent

to a wire dipole of same length and radius a, with a = w/4. Fig. III.2.1 shows the three equiva-
lent geometries. Thus, Zplanar dipole is taken to be the same as the input impedance of that wire,
Zplanar dipole = Zwire,i. To determine Zwire,i, it was proposed in [Caudron, 2012] to compute the voltage
Vi and the current Ii at the center of the wire, and to use the simple equation:

Zwire,i =
Vi
Ii

(III.2.2)

Vi and Ii were obtained by solving the Pocklington’s equation [Balanis, 2016, Chap 8.3.3] written
using cylindrical coordinates:

∫ l
2

− l
2

Iz(z
′)

[(

∂2

∂z2
+ k2

)

G(~r, ~r ′)

]

dz′ = −jωǫEi
z(ρ = a) (III.2.3)

assuming that the wire is along the Oz axis, and with:

G(~r, ~r ′) =
1

2π

∫ 2π

0

e−jkR

4πR
dφ (III.2.4)

R =

√

4a2 sin2
(

φ′

2

)

+ (z − z′)2 (III.2.5)

~r = [ρ, φ, z]T (III.2.6)

~r ′ =
[

ρ′, φ′, z′
]T (III.2.7)

~r ′ locates the sources, i.e. the current density on the wire, and ~r ′ is the observation location. The
wire is driven by a magnetic-frill generator [Balanis, 2016, p 446]. It models a source, in the feed gap of
the dipole, as a magnetic current density (circularly directed) over an annular aperture where a stands
for its inner radius and b the outer one. The relation between the voltage Vi, at the center of the wire,
and the field colinear to the wire Ei

z(ρ = a) is given by:

Ei
z(ρ = a) = −Vi

(

k(b2 − a2)e−jkR0

8 ln
(

b
a

)

R2
0

{

2

[

k

R0
+ j

(

1− b2 − a2
2R2

0

)]

+

a2

R0

[(

k

R0
+ j

(

1− b2 + a2

2R2
0

))(

−jk − 2

R0

)

+

(

− 1

kR2
0

+ j
b2 + a2

R3
0

)]})

(III.2.8)
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where R0 =
√
z2 + a2.

To solve the integro-diffential equation (III.2.3) the Galerkin’s technique was employed in
[Caudron, 2012].

Such method and magnetic-frill generators are implemented in several full-wave simulation softwares
such as [Burke and Poggio, 1981, NEC] and [FEKO]. However, for both simulation softwares, errors
appear when considering electrically wide apertures. Here, we deal with apertures of the size of a
CD reader. Therefore, it was not possible to move forward with that method. A second method is
proposed in the next section.

III.2.3 Second estimation

Another formulation, more general, of the impedance of an aperture is given in [Antonsen et al., 2011].
The field transverse to ~ez may be expressed as a superposition of modes ~es(x⊥) such as:

−→
Et =

∑

s

Vs ~es(x⊥) (III.2.9)

−→
Ht =

∑

s

Is ~ez ∧ ~es(x⊥) (III.2.10)

The coordinate system is indicated in Fig. III.2.2. The complete calculus, detailed in the ap-
pendix B, yields to the admittance of a planar aperture:

Y rad
mn (k0) =

√

ǫ0
µ0

∫

R3
1

(2π)3
2j

k0(k20−k2)
~̃en∆ ~̃ ∗emd3k (III.2.11)

with:

∆ =





k20 − k2y kxky 0

kxky k20 − k2x 0
0 0 0



 (III.2.12)

~̃en are the Fourier transform of the modes. This formulation is valid for any planar geometry. In
what follows, the shape of the aperture is supposed to be rectangular (see Fig. III.2.2).

In what follows, we will write:

Y rad
mn (k0) = Grad

mn(k0) + jBrad
mn(k0) (III.2.13)
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III.2.3.1 Definition of the modes en(x, y)

We assume that the tangential field ~E⊥ at the aperture location is composed of the TEn0 modes of a
rectangular waveguide [Gradoni et al., 2012].

We call w(x) the gate function defined as:

w(x) =

{

1, |x| ≤ 1
2

0, otherwise
(III.2.14)

We define the not-normalized mode e′n(x, y):

e′n(x, y) = sin(knx)w

(

x− L/2
L

)

w
( y

W

)

(III.2.15)

where kn = nπ
L and we search the normalized mode en(x, y), such that:

∫ ∫

aperture
|en(x, y)|2dxdy = 1 (III.2.16)

∫ ∫

aperture
|en(x, y)|2dxdy = 1⇔ en(x, y) =

e′n(x, y)
√

∫W
0

∫ L/2
−L/2 sin(knx)

2dxdy
(III.2.17)

=
e′n(x, y)
√

LW
2

(III.2.18)

= e′n(x, y)

√

2

LW
(III.2.19)

Therefore, the normalized modes are:

en(x, y) = sin(knx)

√

2

LW
w

(

x− L/2
L

)

w
( y

W

)

(III.2.20)

~en(x, y) = en~ey (III.2.21)

III.2.3.1.1 Determination of their Fourier transform

To compute (III.2.11), the Fourier transform of (III.2.20) must be determined thanks to:

F (en(x, y)) = F (en(~x⊥)) =
∫

R2

en(x, y)e
−j~k~x⊥dxdy (III.2.22)

After calculation, we obtain:

F (en(x, y)) = ẽn(kx, ky) = ẽn(~k⊥) =

√
2πn
√
LW

(

−1 + (−1)neikxL
)

sinc
(

kyW
2

)

k2xL
2 − π2n2 (III.2.23)

Thus:

~̃en =

√
2πn
√
LW

(

−1 + (−1)neikxL
)

sinc
(

kyW
2

)

k2xL
2 − π2n2 ~ey (III.2.24)
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III.2.3.2 Integration over k, evaluated by residue computation

In order to remove the pole in k = k0, we change the variables (kx, ky, kz) of equation (III.2.11) into
(k, θ, ϕ) following:

d3k = k2 sin θdkdθdϕ (III.2.25)

kx = k sin θ cosϕ (III.2.26)

ky = k sin θ sinϕ (III.2.27)

kz = k cos θ (III.2.28)

|~k| =
√

k2x + k2y + k2z (III.2.29)

Thus:

Y rad
mn (k0) =

√

ǫ0
µ0

∫ π

0

∫ 2π

0

∫ ∞

0

k2 sin θ

(2π)3
2j

k0(k20 − k2)
~̃en∆~̃e

∗
mdkdθdϕ (III.2.30)

=

∫ π

0

∫ 2π

0

∫ ∞

0
f(k, θ, ϕ)dkdθdϕ (III.2.31)

with f(k, θ, ϕ) =
√

ǫ0
µ0

k2 sin θ
(2π)3

2j
k0(k20−k2)

~̃en∆~̃e
∗
m.

We derive the residue in k = k0:

Res (f(k, θ ϕ), k0) = lim
k→k0

f(k, θ ϕ)(k − k0) (III.2.32)

= lim
k→k0

√

ǫ0
µ0

k2

(2π)3
2j

k0(k20 − k2)
~̃en∆~̃e

∗
m(k − k0) sin θ (III.2.33)

= lim
k→k0

√

ǫ0
µ0

k2

(2π)3
2j

k0(k0 − k)(k0 + k)
~̃en∆~̃e

∗
m(k − k0) sin θ (III.2.34)

= − lim
k→k0

√

ǫ0
µ0

k2

(2π)3
2j

k0(k0 + k)
~̃en∆~̃e

∗
m sin θ (III.2.35)

= −
√

ǫ0
µ0

j

(2π)3
~̃en∆~̃e

∗
m sin θ (III.2.36)

In k = k0, we have k20 = k2x + k2y + k2z . We can compute:

2jπ

∫ π

0

∫ 2π

0
Res(f(k, θ, ϕ), k0)dθdϕ = −2jπ

∫ π

0

∫ 2π

0

√

ǫ0
µ0

j

(2π)3
~̃en∆~̃e

∗
m sin θdθdϕ (III.2.37)

=

√

ǫ0
µ0

∫ π

0

∫ 2π

0

1

(2π)2
~̃en∆~̃e

∗
m sin θdθdϕ (III.2.38)

Using (III.2.12) and (III.2.24):

~̃en∆~̃e
∗
m =

8π2LmnW (k0 − kx)(k0 + kx)j
m−nsinc

(

kyW
2

)2
sin
(

1
2(kxL+ πm)

)

sin
(

1
2(kxL+ πn)

)

(kxL− πm)(kxL+ πm)(kxL− πn)(kxL+ πn)
(III.2.39)

This term is purely real when m − n is even. In that case, the residue merges with Grad
mn(k0).

Brad
mn(k0) will be computed thanks to the Kramers-Kronig relations (see section III.2.3.4). Further,

it can be demonstrated that when m− n is odd, the integral (III.2.38) equals zero.
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III.2.3.3 Determination of Grad

mn (k0)

For m− n even:

Grad
mn(k0) =

√

ǫ0
µ0

∫ π

0

∫ 2π

0

sin θ

(2π)2
~̃en∆~̃e

∗
mdθdϕ (III.2.40)

III.2.3.3.1 Change of integration variables

We perform another change of integration variables (θ, ϕ) to (kx, ky). It allows to analytically compute
the integral of Grad

mn(k0) over ky. We have:

k2x + k2y = k20 sin
2 θ(cos2 ϕ+ sin2 ϕ) = k20 sin

2 θ (III.2.41)

with:

θ = arctan





√

k2x + k2y

kz



 = arctan





√

k2x + k2y
√

k20 − k2x − k2y



 (III.2.42)

and:

ϕ = arctan

(

ky
kx

)

(III.2.43)

We can now determine the new limits of the integral. When θ goes from 0 to π, sin2(θ) oscillates
from 0 to 1. Thus:

k2x + k2y ≤ k20 ⇒ −
√

k20 − k2x ≤ ky ≤
√

k20 − k2x (III.2.44)

and,

k2x ≤ k20 ⇒ −k0 ≤ kx ≤ k0 (III.2.45)

The Jacobian determinant of the transformation is:

|J | =
∣

∣

∣

∣

∣

dθ
dkx

dθ
dky

dϕ
dkx

dϕ
dky

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

kx√
k2x+k2y

√
k20−k2x−k2y

ky√
k2x+k2y

√
k20−k2x−k2y

− ky
k2x+k2y

kx
k2x+k2y

∣

∣

∣

∣

∣

∣

=
1

√

k2x + k2y

√

k20 − k2x − k2y
(III.2.46)

Using the equality: sin (arctan (x)) = x√
1+x2

, we get sin θ = sin

(

arctan

(√
k2x+k2y
kz

))

=

√
k2x+k2y
k0

,

At the end, we obtain:

Grad
mn(k0) =

√

ǫ0
µ0

∫ k0

−k0

∫

√
k20−k2x

−
√

k20−k2x

1

(2π)2
~̃en∆~̃e

∗
m|J | sin θdkxdky

=

√

ǫ0
µ0

∫ k0

−k0

∫

√
k20−k2x

−
√

k20−k2x

1

(2π)2
~̃en∆~̃e

∗
m

1

k0

1
√

k20 − k2x + k2y

dkxdky (III.2.47)
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III.2.3.3.2 Integration over ky

It is possible to compute analytically the integral (III.2.47) over ky thanks to an algebraic computation
software [Wolfram Research, Inc., 2018], which leads to:

Grad
mn(k0) =

∫ k0

−k0

A(B − C)
D

dkx (III.2.48)

where

A = jm−nLmnW (k0 − kx)(k0 + kx) sin

(

1

2
(kxL+ πm)

)

sin

(

1

2
(kxL+ πn)

)

(III.2.49)

B =
π
(

πW
√

k20 − k2xHHH0

(

√

k20 − k2xW
)

− 2
)

J1

(

√

k20 − k2xW
)

W
√

k20 − k2x
(III.2.50)

C = π

(

πHHH1

(

√

k20 − k2xW
)

− 2

)

J0

(

√

k20 − k2xW
)

(III.2.51)

D = 60πk0(kxL− πm)(kxL+ πm)(kxL− πn)(kxL+ πn) (III.2.52)

HHH0(x) and HHH1(x) are Struve’s functions of order 0 and 1, and J0 and J1 are Bessel’s functions
of first kind (order 0 and 1 respectively).

As we did not find a way to analytically integrate (III.2.48), a numerical integration over kx was
run (see section III.3.3).

III.2.3.4 Link between real and imaginary parts of Y rad

mn (k0): the Kramers-

Kronig’s relations

A general admittance Y may be written as:

Y (ω) = G(ω) + jB(ω) (III.2.53)

Where G(ω) is the conductance and B(ω) is the susceptance. The realand imaginary parts of an
admittance are linked together by the Kramers–Kronig relations ([Van Kampen and Lurçat, 1961]):

G(ω) =
1

π
P

∫ ∞

−∞

B(ω′)
ω′ − ωdω

′ (III.2.54)

B(ω) = − 1

π
P

∫ ∞

−∞

G(ω′)
ω′ − ωdω

′ (III.2.55)

where P stands for Cauchy principal value. (III.2.54) and (III.2.55) may also be written:

G(ω) =
2

π
P

∫ ∞

0

ω′B(ω′)
ω′2 − ω2

dω′ (III.2.56)

B(ω) = −2ω

π
P

∫ ∞

0

G(ω′)
ω′2 − ω2

dω′ (III.2.57)

Those two equations are set by the causality necessity Y (−ω) = Y (ω)∗. These relations will be
applied to compute Brad

mn(k0).
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III.2.3.5 Determination of Brad

mn (k0)

Thanks to (III.2.57), and by replacing ω by k0c, and ω′ by kc:

Brad
mn(k0) = −

2k0
π
P

∫ ∞

0

Grad
mn(k)

k2 − k20
dk =

2k0
π
P

∫ ∞

0

Grad
mn(k)

k20 − k2
dk (III.2.58)

The product 2k0
k20−k2

~̃en∆~̃e
∗
m (obtain from (III.2.58) with the expression of Grad

mn(k) given in equation

(III.2.47)) yields a contribution in k−1
0 that adds an inductive part that would not be taken into

account by the transformation the equation (III.2.58). Thus, an additional term Brad,ms
mn (k0) is added

to (III.2.58), giving:

Brad
mn(k0) =

2k0
π
P

∫ ∞

0

Grad
mn(k)

k20 − k2
dk +Brad,ms

mn (k0) (III.2.59)

This term has the expression [Gradoni et al., 2015]:

Brad,ms
mn (k0) =

√

ǫ0
µ0

∫

R3

~̃en~̃e
∗
m

2k2x
k2k0(2π)3

dkxdkydkz (III.2.60)

III.2.3.5.1 Integration of Brad,ms
mn (k0) over kz

By replacing ~̃en and ~̃e∗m by their expressions given in equation (III.2.24), we get:

Brad,ms
mn (k0) =

∫

R3

k2xLmnW jm−nsinc
(

kyW
2

)2
sin
(

1
2(kxL+ πm)

)

sin
(

1
2(kxL+ πn)

)

60π2k2k0(kxL− πm)(kxL+ πm)(kxL− πn)(kxL+ πn)
dkxdkydkz

(III.2.61)
The integration over kz, thanks to an algebraic computation software [Wolfram Research, Inc.,

2018], gives:

Brad,ms
mn (k0) =

mnLW jm−n

60πk0

∫

R2

k2x sin
(

1
2(kxL+ πm)

)

sin
(

1
2(kxL+ πn)

)

(πm− kxL)(kxL+ πm)(πn− kxL)(kxL+ πn)

sinc
(

kyW
2

)2

√

k2x + k2y

dkxdky

(III.2.62)
This integral cannot be analytically computed over kx and ky.

The quantities Grad
mn(k0), B

rad
mn(k0) and Brad,ms

mn (k0) will be numerically computed in the next section.

The next step, as presented in section III.1.4, is to bind this aperture admittance to the admittance
of the cavity Yint.. Moreover, the plane wave will be modeled as an equivalent current vector ~I inc on
the aperture (see Fig. III.2.3a).

III.2.4 Impedance of an aperture between two regions

This section takes up a method proposed initially in [Harrington and Mautz, 1976]. It aims to give a
general formulation for aperture problems.
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The studied configuration consists of two regions separated by a perfect conductor with a planar
aperture. These regions are coupled through that aperture. In region 1, on the left side of the aperture,
remote impressed sources ~J inc and ~M inc create an electromagnetic field ~hinc that can couple onto the
aperture as presented in Fig. III.2.3a. Region 2, on the right side of the aperture, is open to infinity.
The problem is split into two subproblems, and for each of these an equivalent system is set by applying
the equivalent principle as exposed in [Balanis, 2012, sec. 7.8]. The fields inside the imaginary volume
are considered as null.

In region 1 (see Fig. III.2.3b), just to the left of the aperture, the electric field is ~Etot
(1)|z=0−. By

impressing an equivalent surfacic magnetic current density ~MA, the field in the original problem, i.e.
~Etot, is recovered since. ~MA can be expressed as:

~MA = ~ez ∧ ~Etot
(1)|z=0 (III.2.63)

The fields are null on the right of the aperture from the region 1 point of view.The total fields
~Etot and ~Htot are expressed as the sum of the electric/magnetic field impressed by the source ~J inc and
~M inc, and the field created by the equivalent surfacic current density ~MA:

~Etot
(1) = 2~e ince−j~k~x⊥ + ~E( ~MA) (III.2.64)

~Htot
(1) = 2~hince−j~k~x⊥ + ~H( ~MA) (III.2.65)

For region 2 (see Fig. III.2.3c), and just to the right of the aperture, a surfacic magnetic current
density ~M ′

A is added.

~M ′
A = −~ez ∧ ~Etot

(2)|z=0+ (III.2.66)

The fields are null on the left side of the aperture from the region 2 point of view.Then the tangential
part of the electric field must be continuous at the aperture boundary. On the left, the tangential part
writes ~ez ∧ ~Etot

(1)|z=0, and on the right, ~ez ∧ ~Etot
(2)|z=0+. Thus:

~ez ∧ ~Etot
(1)|z=0 = ~ez ∧ ~Etot

(2)|z=0+ (III.2.67)

~MA = − ~M ′
A (III.2.68)

So, the total field in region 2 can be written as:

~Etot
(2) =

~E( ~M ′
A) = ~E(− ~MA) = − ~E( ~MA) (III.2.69)

~Htot
(2) =

~H( ~M ′
A) = ~H(− ~MA) = − ~H( ~MA) (III.2.70)

The continuity of the tangential part of the magnetic field gives:

~Htot
(1)|tan = ~Htot

(2)|tan (III.2.71)

2~hince−j~kinc~x⊥ + ~Htot
(1) (

~MA)|tan = − ~Htot
(2) (

~MA)|tan (III.2.72)

~Htot
(1) (

~MA)|tan + ~Htot
(2) (

~MA)|tan = −2~hince−j~kinc~x⊥ (III.2.73)

The problem is solved by applying the MoM [Balanis, 2012, Chap. 12.2.8]. The expansion functions
(or basis functions) are the same as those used to model the field at the aperture in the previous section
(i.e. ~ez ∧~es( ~x⊥), see (III.2.10)). The surfacic magnetic current density ~MA may be expanded onto the
basis:

~MA =
∑

s

Vs~ez ∧ ~es( ~x⊥) (III.2.74)
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~kinc

~hinc

~ez

~ex

Aperture

~Etot
(1),

~Htot
(1)

~Etot
(2),

~Htot
(2)

(a) Initial problem.

~kinc

~hinc

Region 1 z = 0 Region 2

~MA

~ez

~ex

~Etot
(1),

~Htot
(1)

~0,~0

(b) Equivalent problem
for region 1.

Region 1 z = 0 Region 2

− ~MA

~ez

~ex

~0,~0 ~Etot
(2),

~Htot
(2)

(c) Equivalent problem
for region 2.

Fig. III.2.3 – Initial and equivalent problems for the problem of two regions separated by a planar
aperture.

Thus, thanks to the linearity of the operators ~Htot
(1) and ~Htot

(2) , the equation (III.2.73) can be rewritten
as :

∑

s

Vs ~H
tot
(1) (~ez ∧ ~es( ~x⊥))|tan +

∑

s

Vs ~H
tot
(2) (~ez ∧ ~es( ~x⊥))|tan = −2~hince−j~kinc~x⊥ (III.2.75)

The next step is to project (III.2.75) on the weighting functions (or testing functions). We take
these weighting functions to be the same as the expansion functions. This method merges with the
Galerkin technique, and we define a scalar product:

〈A,B〉 =
x

R2

AB dxdy (III.2.76)

Then:

∑

s

Vs〈~ez ∧ ~es
′
( ~x⊥), ~H

tot
(1) (~ez ∧ ~es( ~x⊥))|tan〉+

∑

s

Vs〈~ez ∧ ~es
′
( ~x⊥), ~H

tot
(2) (~ez ∧ ~es( ~x⊥))|tan〉 =

〈~ez ∧ ~es
′
( ~x⊥),−2~hince−j~kinc~x⊥〉 (III.2.77)

By putting it in a matrix form:

Y
∣

∣

z=0−
=
[

〈~ez ∧ ~es
′
( ~x⊥), ~H

tot
(1) (~ez ∧ ~es( ~x⊥))|tan〉

]

N×N
(III.2.78)

Y
∣

∣

z=0+
=
[

〈~ez ∧ ~es
′
( ~x⊥), ~H

tot
(2) (~ez ∧ ~es( ~x⊥))|tan〉

]

N×N
(III.2.79)

~I inc = [〈~ez ∧ ~es
′
( ~x⊥),−~hince−j~kinc~x⊥〉]N×1 (III.2.80)

equation (III.2.77) becomes:
(

Y
∣

∣

z=0−
+ Y

∣

∣

z=0+

)

~V = 2~I inc (III.2.81)

where N is the number of modes taken into account over the aperture.
Equation (III.2.81) may be modeled as two networks connected in parallel (see Fig. III.2.4). These

networks are driven by a set of current sources ~I inc. The advantage of this formulation is that the two
regions are independantly modeled by Y

∣

∣

z=0−
and Y

∣

∣

z=0+
.
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Each row of ~I inc writes (~es
′
( ~x⊥) is replaced by ~es( ~x⊥) for clarity):

I inc
s = 〈~ez ∧ ~es( ~x⊥),−~hince−j~kinc~x⊥〉 (III.2.82)

I inc
s =

x

R2

(~ez ∧ ~es( ~x⊥)) · (−~hinc)e−j~kinc~x⊥ dxdy (III.2.83)

I inc
s = −~hinc ·

(

~ez ∧
(x

R2

~es( ~x⊥)e
−j~kinc~x⊥

))

dxdy (III.2.84)

By noticing that: x

R2

~es(~x⊥)e
−j~kinc~x⊥dxdy = ~̃es(~k

inc
⊥ ) (III.2.85)

where ~̃es(~kinc
⊥ ) is the same as in (III.2.23), we have

I inc
s = −~hinc ·

(

~ez ∧
(

~̃es(~k
inc
⊥ )
))

(III.2.86)

Thanks to the triple product property a · (b ∧ c) = b · (c ∧ a) = c · (a ∧ b), (III.2.86) becomes:

I inc
s = −~ez ·

(

~̃es(~k
inc
⊥ ) ∧ ~hinc

)

(III.2.87)

For a normal incidence (with ~hinc = hinc~ex) of the plane wave, we have:

~̃es(~k
inc
⊥ ) = ~̃es(~0) = −

√
2 ((−1)s − 1)

√
LW

πs
~ey (III.2.88)

thus:

I inc
s =

√
2 (1− (−1)s)

√
LW

πs
hinc (III.2.89)

To solve this MoM problem, ~V needs to be computed. ~V is obtained by inverting (III.2.81), and
~V is:

~V = 2(Y
∣

∣

z=0−
+ Y

∣

∣

z=0+
)−1~I inc (III.2.90)

In the considered problem, the coupling between a plane wave and a cavity through an aperture,
the matrix Y

∣

∣

z=0−
is the admittance matrix Yrad of the aperture as determined earlier. In the same

way, Y
∣

∣

z=0+
is the admittance that models the interior of the cavity. Equation (III.2.90) becomes then:

~V = 2(Yint. + Yrad)−1~I inc
(III.2.91)

with ~I inc = [I inc
1 , I inc

2 , · · · , I inc
N ]T .

III.2.5 Mapping of the aperture impedance to the RCM

In section III.2.3, the admittance Yrad of a rectangular aperture has been determined and, in the
previous section, a way to merge two regions, modeled by two admittance matrices, and separated by
an aperture, has been proposed. The last step is to apply these two results to get an enhanced version
of the RCM that includes the admittance Yrad. This work has been firstly proposed in [Antonsen et al.,
2011] and better explained in [Gradoni et al., 2015], but with few details only and some approximations.
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I1
V1

I2
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IN
VN

Region 2Aperture

Y
∣

∣

z=0− Y
∣

∣

z=0+

Region 1

...

Fig. III.2.4 – Circuit model of the aperture, between two regions.

We have carried out as rigorously as possible calculations to bind these results and to obtain the
expression of Yint..

The studied cavity is composed of an aperture modeled by Yrad and of a set of ports (wire, PCB,
etc.). NA+NP equations are set up, where NA is the number of modes required to model the aperture,
and NP is the number of ports connected to the cavity. We define the source vectors ~φ and ~ψ of the
system:

~φ =

(

~VA
~IP

)

(III.2.92)

~ψ =

(

~IA
~VP

)

(III.2.93)

~VA and ~VP are vectors containing the voltage of either the modes in the aperture ~VA (as defined
in (III.2.91)) or the ports in the cavity ~VP (cables, PCBs, etc.), and respectively we have the associated
currents ~IA and ~IP . Starting with the hybrid block matrix of the system T we have [Antonsen et al.,
2011]:

~ψ = T~φ (III.2.94)

We can apply the RCM to formulate T:

T = jℑ
{

U
}

+
[

ℜ
{

U
}]1/2

ξ
[

ℜ
{

U
}]1/2

=

(

T1,1 T1,2

T2,1 T2,2

)

(III.2.95)

where U is a block diagonal matrix defined as:

U =

(

Yrad 0

0 Zrad

)

(III.2.96)

Here, we assume that there is no direct coupling between the aperture and the ports. Yrad stands for

the admittance of the aperture and Zrad is the impedance of the ports. The size of Yrad is (NA×NA),
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and that of Zrad is (NP ×NP ). U is then of size (NA +NP )× (NA +NP ). In [Gradoni et al., 2015] ξ
is expanded:

ξ = ~ξAP · ~ξAP
T
=

(

~ξA
~ξP

)

·
(

~ξA
T ~ξP

T
)

=





ξ
A

~ξA · ~ξP
T

~ξP · ~ξA
T

ξ
P



 (III.2.97)

where

ξ
A
= ~ξA · ~ξA

T
(III.2.98)

and

ξ
P
= ~ξP · ~ξP

T
(III.2.99)

However, that formulation was not clear in [Antonsen et al., 2011] nor in [Gradoni et al., 2015]
and raised an issue that will be discussed later. To solve the problem, NA +NP equations need to be
solved. The blocks of T may be written as:

T1,1
NA×NA

= Ycav = jℑ
{

Yrad
}

+
[

ℜ
{

Yrad
}]1/2

ξ
A

[

ℜ
{

Yrad
}]1/2

(III.2.100)

T2,2
NP×NP

= Zcav = jℑ
{

Zrad
}

+
[

ℜ
{

Zrad
}]1/2

ξ
P

[

ℜ
{

Zrad
}]1/2

(III.2.101)

T1,2
NA×NP

=
[

ℜ
{

Yrad
}]1/2

~ξA ~ξP
T
[

ℜ
{

Zrad
}]1/2

(III.2.102)

T2,1
NP×NA

=
[

ℜ
{

Zrad
}]1/2

~ξP ~ξA
T
[

ℜ
{

Yrad
}]1/2

(III.2.103)

We assume that the aperture is illuminated by a plane wave, thus ~hinc is known as well as ~I inc.
The aperture currents ~IA may be expressed as a sum of ~I inc (the contribution of the plane wave) and
−Yrad~VA (the contribution of the ports inside the cavity):

~IA = 2~I inc − Yrad~VA (III.2.104)

Putting everything together leads to the equation [Antonsen et al., 2011]:

(

Yrad 0

0 ZL

)

·
(

~VA
~IP

)

+ T ·
(

~VA
~IP

)

=

(

2~I inc

~0

)

(III.2.105)

where ZL is a diagonal matrix, which elements represent the characteristic impedance of the ports

(Usually ZL = 50I).
From (III.2.105) we get NA aperture equations:

Yrad~VA + T1,1~VA + T1,2~IP = 2~I inc (III.2.106)

(Yrad + Ycav)~VA +
[

ℜ
{

Yrad
}]1/2

~ξA ~ξP
T
[

ℜ
{

Zrad
}]1/2

~IP = 2~I inc (III.2.107)
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and NP port equations:

ZL~IP + T2,1~VA + T2,2 ~IP = ~0 (III.2.108)

(ZL + Zcav)~IP +
[

ℜ
{

Zrad
}]1/2

~ξP ~ξA
T
[

ℜ
{

Yrad
}]1/2

~VA = ~0 (III.2.109)

To isolate ~IP , we can write:

~IP = −(ZL + Zcav)−1
[

ℜ
{

Zrad
}]1/2

~ξP ~ξA
T
[

ℜ
{

Yrad
}]1/2

~VA (III.2.110)

~VA may be linked by ~I inc by injecting (III.2.110) in (III.2.107):

2~I inc = (Yrad + Ycav)~VA

−
[

ℜ
{

Yrad
}]1/2

~ξA ~ξP
T
[

ℜ
{

Zrad
}]1/2

(ZL + Zcav)−1
[

ℜ
{

Zrad
}]1/2

~ξP ~ξA
T
[

ℜ
{

Yrad
}]1/2

~VA

2~I inc =
(

Yrad + Ycav’
)

~VA (III.2.111)

with:

Ycav’ = Ycav −
[

ℜ
{

Yrad
}]1/2

~ξA ~ξP
T
[

ℜ
{

Zrad
}]1/2

(ZL + Zcav)−1
[

ℜ
{

Zrad
}]1/2

~ξP ~ξA
T
[

ℜ
{

Yrad
}]1/2

(III.2.112)
~VA can be deduced from (III.2.111):

~VA = 2
(

Yrad + Ycav’
)−1

~I inc (III.2.113)

~IP is obtained by calculating ~VA from (III.2.113), and injecting it in (III.2.110). The admittance
of the interior of the cavity Yint., merges with Ycav’.

III.2.5.1 Case where NP = 1

The above equations may be simplified when NP = 1 which corresponds to configuration 1 (see
section III.1.4.1). Equations (III.2.109) and (III.2.107) become respectively:

(ZL + Zcav)Ip +
√
Rrad · ξP ~ξA

T ·
[

ℜ
{

Yrad
}]1/2

~VA = 0 (III.2.114)

(Ycav + Yrad) ~VA +
[

ℜ
{

Yrad
}]1/2

~ξAξP
√
RradIP = 2 ~I inc (III.2.115)

where Zrad = Rrad+jXrad, and Zcav = jXrad+RradξP is the scalar cavity impedance (see Fig. III.2.5).
Then, (III.2.114) may be inverted, leading to:

IP = −
√
Rrad

ZL + Zcav
ξP ~ξA

T
[

ℜ
{

Yrad
}]1/2

~VA (III.2.116)

Inserting (III.2.116) in (III.2.115) yields to:

(Yint. + Yrad) ~VA = 2 ~I inc (III.2.117)

where:

Yint. = Ycav − Rrad

ZL + Zcav

[

ℜ
{

Yrad
}]1/2

ξ2P
~ξA ~ξA

T
[

ℜ
{

Yrad
}]1/2

(III.2.118)
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T2,1~VA

Zcav
IP

ZL

Fig. III.2.5 – Circuit model to compute IP from ~VA when NP = 1

III.2.5.2 Statistics of the elements of ξ when dealing with an aperture

Previously, an expression of ξ
1

was given:

ξ
1
= ~ξAP · ~ξAP

T
(III.2.119)

Later, in section III.4.4, we will see that ξ
2

must take the following form:

ξ
2
= − j

π
W [ λ − jα1 ]−1WT (III.2.120)

W is a matrix whose elements are standard normal distributed, λ a real diagonal matrix, and α a
scalar.

For instance, if three modes are considered in the cavity and three ports in the system,
[

λ − jα1
]−1

,

W and ξ can be written like:

[

λ − jα1
]−1

=







1
λ1−jα 0 0

0 1
λ2−jα 0

0 0 1
λ3−jα






(III.2.121)

W =





w11 w12 w13

w21 w22 w23

w31 w32 w33



 (III.2.122)

ξ
2
=









w2
11

λ1−jα +
w2

12
λ2−jα +

w2
13

λ3−jα
w11w21
λ1−jα + w12w22

λ2−jα + w13w23
λ3−jα

w11w31
λ1−jα + w12w32

λ2−jα + w13w33
λ3−jα

w11w21
λ1−jα + w12w22

λ2−jα + w13w23
λ3−jα

w2
21

λ1−jα +
w2

22
λ2−jα +

w2
23

λ3−jα
w21w31
λ1−jα + w22w32

λ2−jα + w23w33
λ3−jα

w11w31
λ1−jα + w12w32

λ2−jα + w13w33
λ3−jα

w21w31
λ1−jα + w22w32

λ2−jα + w23w33
λ3−jα

w2
31

λ1−jα +
w2

32
λ2−jα +

w2
33

λ3−jα









(III.2.123)
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There is no obvious way to equal the formulations ξ
2

and ξ
1
. However, in [Gradoni et al., 2015] the

authors indicate that the elements of ~ξAP should have the same statistical properties as the off-diagonal
elements of ξ

2
. Therefore, in what follows, the matrix ξ will be constructed in such a way that the

statistical properties of the elements ξij1 and ξij2 are the same.
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Chapter III.3

Numerical computation of the aperture
admittance

Contents
III.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

III.3.2 Numerical error estimation . . . . . . . . . . . . . . . . . . . . . . . 118

III.3.3 Integration of Grad
mn over kx . . . . . . . . . . . . . . . . . . . . . . . 119

III.3.4 Integration of Brad,ms
mn over kx and ky . . . . . . . . . . . . . . . . . 119

III.3.5 Computation of Brad
mn by means of the Hilbert transform . . . . 122

III.3.5.1 On-diagonal terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

III.3.5.2 Off-diagonal terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

III.3.6 Impedance and admittance . . . . . . . . . . . . . . . . . . . . . . . 123

III.3.1 Introduction

This chapter presents how the aperture impedance proposed by [Antonsen et al., 2011] is numerically
computed as well as some other numerical results.

Zrad
mn is computed for an aperture with a width W = 146.1mm and a length L of 41.3mm. The

size of this aperture is set from the front face of a CD reader. As the computation of some integrals is
more and more complicated as n (or m) increases, a tradeoff has to be decided and 29 modes in the
aperture are considered. They take into account all the resonances into the aperture for a study up to
27GHz.

III.3.2 Numerical error estimation

The library GNU Scientific Library (GSL), which is a general purpose library [Galassi et al., 2007], is
used. Before coming to the obtained results, an overview of a stopping criterion for the integration is
defined. The library aims at computing the integral I:

I =

∫ b

a
f(x)dx (III.3.1)

with the following goal:
|RESULT − I| ≤ max(epsabs, epsrel|I|) (III.3.2)
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Fig. III.3.1 – Grad
nn on the left (from n = 1 (purple) to n = 29 (yellow)), and the associated estimated

error on the right. The solid black curve corresponds to the asymptotic behavior (which will be used
in III.3.5.1).

where RESULT is the numerical estimation computed by the library, epsrel is the relative error
and epsabs is the absolute error. The library tries to assess the absolute error ABSERR by estimating
|RESULT − I| such that:

|RESULT − I| ≤ ABSERR ≤ max(epsabs, epsrel|I|) (III.3.3)

The algorithm stops as soon as equation (III.3.3) holds. In what follows, the absolute error is
plotted. For some cases, the requested error cannot be reached because of roundoff errors.

III.3.3 Integration of Grad
mn over kx

Grad
mn was computed by numerical integration of (III.2.48). In (III.2.48), the special Struve and

Bessel functions are used. Implementations of these functions were found in [Brun and Rademakers,
1997]. Computing Grad

mn requires a few seconds to reach an absolute error of ±1× 10−9 S. The results
for on-diagonal terms are depicted in Fig. III.3.1 and in Fig. III.3.2 for off-diagonal terms.

III.3.4 Integration of Brad,ms
mn over kx and ky

This integral cannot be analytically evaluated, thus a numerical integration will be performed. As a
reminder, the expression of Brad,ms

nm (k0) is given in (III.2.62).
In order to minimize the computation time, the number of operations need to be limited. We can
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Fig. III.3.2 – Grad
mn for some pair (m,n) on the left and the associated estimated error on the right.

write (III.2.62) as:

Brad,ms
nm (k0) = A

∫

R

(

f1(kx)

(∫

R

f2(kx, ky)dky

))

dkx (III.3.4)

= A

∫

R

f1(kx)f3(kx)dkx (III.3.5)

with :

A =
mnLW jm−n

60πk0
(III.3.6)

f1(kx) =
k2x sin

(

1
2(kxL+ πm)

)

sin
(

1
2(kxL+ πn)

)

(πm− kxL)(kxL+ πm)(πn− kxL)(kxL+ πn)
(III.3.7)

f2(kx, ky) =
sinc

(

kyW
2

)2

√

k2x + k2y

(III.3.8)

f3(kx) =

∫

R

f2(kx, ky)dky (III.3.9)

As the computation time of f1(kx) is higher than that of f2(kx, ky), we limit the number of calls
to f1(kx) by starting the integration of ky given kx. The routine gsl_integration_qagi dedicated to
infinite intervals from the GNU Scientific Library [Galassi et al., 2007] was used. The relative error
specified was close to 10−7. In order to speed up the computation, several frequencies were computed
in parallel. It took approximately 300 s to compute Brad,ms

mn for a single frequency on an up to date
desktop computer.

Fig. III.3.3 and Fig. III.3.4 illustrate the computation of Brad,ms
mn for on and off-diagonal terms, and

Fig. III.3.5a and Fig. III.3.5b the corresponding errors.
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nn , with an enlargement on the right for low frequencies.
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III.3.5 Computation of Brad
mn by means of the Hilbert transform

III.3.5.1 On-diagonal terms

To evaluate Brad
nn (k0), thanks to the Kramers-Kronig relations. We need to compute principal value

integrals. As it was impossible to compute Grad
nn (k0) analytically, Grad

nn (k0) has been discretized and
numerically integrated. We notice that computing Brad

nn (k0) is equivalent to compute the Hilbert

transform of Grad
nn (k0). To compute the Hilbert transform of a discretized signal, the following

procedure may be adopted. If xa(·) is the discrete analytic signal of the discrete signal x(·), and y(·)
its Hilbert transform, we can write:

xa(·) = F−1(F(x(·))2U) = x(·) + jy(·) (III.3.10)

where F(f) and F−1(f) are respectively the direct and inverse Fourier transform of the function
f , and U is the step function. By taking the imaginary parts of equation (III.3.10) we get H(·) =
ℑ
[

F−1(F(x(·))2U)
]

= y(·) [Duoandikoetxea and Zuazo, 2001, Chap 3].
But, as Grad

nn (k) has a constant component, see Fig. III.3.1, we cannot compute Brad
nn (k) directly,

we need to remove its constant part first.

We define Grad,m
nn (k0) to have the same asymptotic behavior as Grad

nn (k0) (black curve in Fig. III.3.1):

Grad,m
nn (k0) =

1

η0

k0W

2

1
√

1 +
(

k0W
2

)2
(III.3.11)

By using the Kramers-Kronig relations, we get:

Brad,m
nn (k0) =

2k0
π

P

∫ ∞

0

Grad,m
nn (k)

k0
2 − k2 dk =

k0W log

(√
k20W

2+4−2√
k20W

2+4+2

)

120π2
√

k20W
2 + 4

(III.3.12)

Grad,m
nn (k0) and Brad,m

nn (k0) are presented in Fig. III.3.6. This asymptotic function is subtracted
from Grad

nn (k0), then the Hilbert transform is computed, and Brad
nn (k0) is added. Thus, we can write:

∆Grad
nn (k0) = Grad

nn (k0)−Grad,m
nn (k0) (III.3.13)

∆Brad
nn (k0) = H[∆Grad

nn (k)](k0) (III.3.14)

Brad
nn (k0) = Brad,m

nn (k0) + ∆Brad
nn (k0) +Bms

nn (k0) (III.3.15)
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III.3.5.2 Off-diagonal terms

As there is no constant component on the off-diagonal terms of Grad(k0), we directly compute:

Brad
mn (k0) = H[Grad

mn(k)](k0) +Bms
mn(k0) (III.3.16)

The results are presented in Fig. III.3.7b.

III.3.6 Impedance and admittance

We now have the real and imaginary parts of Y rad
mn (k0) = Grad

mn(k0) + jBrad
mn (k0). In Fig. III.3.8 and

Fig. III.3.9, the eigenfrequencies of the modes at the aperture may be identified. It can be noticed that
two consecutive eigenfrequencies are separated by 1.05GHz. This fact is useful to assess the number
of modes to take into account a given maximum frequency. For example, for a study up to 27GHz we
need to take into account 27

1.05 ≈ 26 modes.
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Chapter III.4

Monte-Carlo simulations
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III.4.1 Introduction

The aims of this chapter are to illustrate how the RCM is practically applied, and how statistics
of coupled quantities are determined through Monte-Carlo iterations. The normalized impedance
matrix ξ will first be expressed in a convenient way to perform Monte-Carlo iterations. Then, various
implementations of programs dedicated to the RCM will be exposed, and some software optimizations
will be proposed. As the RCM applies only to chaotic system, a criterion based on the properties of ξ
will be given. Afterwards, statistical quantities of interest for the EMSEC will be introduced as well
as their implementation. Finally, the RCM will be applied on a simple case: the study of the coupling
of two weakly coupled ports inside a cavity.
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III.4.2 Elements statistics of the normalized impedance matrix ξ

III.4.2.1 Frequency dependency

In what follows, a statistical and practical formulation of the RCM will be detailed in order to run
Monte-Carlo iterations. Equation (III.4.1) formulates the normalized impedance ξ, and includes the
eigenmodes of a cavity:

ξ(k) = − j

π

∞
∑

n=1

∆k2~Φn ⊗ ~ΦT
n

k2(1− j/Qunloaded)− k2n
(III.4.1)

It is important to have in mind that ∆k2 is the mean spacing between two adjacent wavenumbers
k2 (associated to two successive eigenmodes kn and kn+1) and ~Φ statistically models the couplings
between the ports and the eigenmodes. It is then possible to define a loss factor α defined as the
following ratio [Hemmady, 2006]:

α =
k2

∆k2Qunloaded
(III.4.2)

where Qunloaded is the quality factor of the cavity without the ports of the systems. It describes the
spectral overlap. This parameter can be expressed as:

Qunloaded = ω
E

Pd
(III.4.3)

where E is the total energy stored in the cavity and Pd the dissipated power throughout the cavity.
In (III.4.2), α is estimated for a Qunloaded quality factor that does not take into account for the losses
into the cavity ports. Remind that ports may be ends of transmission lines or cables for example.
However, the contribution of the losses in ports is commonly neglected and the overall quality factor
of the cavity Q approximated by Q ≈ Qunloaded [Hemmady, 2006]. For an undermoded cavity, the
spectrum of the eigenfrequencies is discrete and α ≪ 1. On the other hand, for an overmoded cavity
with overlapping modes, α≫ 1. Equation (III.4.1) may be rewritten in such a way that:

ξ(k) = − j

π

∑

M

~Φn ⊗ ~ΦT
n

k2

∆k2
− k2n

∆k2
− jα

(III.4.4)

Moreover, at the wavenumber of interest k, only the eigenmodes (associated to kn) near k impact ξ.
Similar arguments are employed when dealing with the computation of Green’s functions of cavities
(see [Wu and Chang, 1988]), where only a few modes are considered around a given frequency to accel-
erate the convergence of the computation. If M eigenmodes are considered around k, equation (III.4.4)
can be written as:

ξ(k) = − j

π

M
2
∑

n=−M
2

~Φn ⊗ ~ΦT
n

k2

∆k2
− k2n

∆k2
− jα

(III.4.5)

From a statistical point of view, the frequency dependence may be dropped out (α is considered
constant near k), and:

ξ(k) = − j

π

M
2
∑

n=−M
2

~Φn ⊗ ~ΦT
n

k2

∆k2
− k2n

∆k2
− jα

⇔ ξ(0) = ξ = − j

π

M
2
∑

n=−M
2

~Φn ⊗ ~ΦT
n

− k2n
∆k2
− jα

(III.4.6)

The next step is to statistically determine the quantity k2n
∆k2

.
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III.4.2.2 Statistical representation of k2n
∆k2

Three different approaches may be employed to compute k2n
∆k2

. They are all related to properties of
the random matrices drawn from the gaussian orthogonal ensemble (GOE). Thus, in what follows, the

term k2n
∆k2

will be replaced by λ̃ = λ
∆(λ) , where λ are the eigenvalues of matrices from the GOE and

∆(λ) the mean spacing between two consecutive eigenvalues. These eigenvalues λ are associated to
the random variable Λ and λ̃ to the random variable Λ̃ respectively. Drawbacks and benefits of each
approache will now be exposed.

Method 1 The random variable Sn associated to the normalized eigenvalues spacing sn (sn =
λn+1−λn

∆(λ) ) is given by the Wigner surmises, and its PDF is defined by:

pSn(sn) =
πsn
2
e

−π
4

s2n (III.4.7)

The quantity λn

∆(λ) may be expressed as a sum over the n previous spacings {si} as:

λ̃ =
λn

∆(λ)
=

1

∆(λ)

n
∑

i=1

(λi+1 − λi) =
n
∑

i=1

si (III.4.8)

The main advantage is that its computation is really straightforward and fast. The drawback of this
method is that there is no guarantee that long range correlations between the eigenvalues spacings is
as predicted by the RMT. Indeed, from the RMT, it is known that spacings sn are correlated over a
long distance in n [Zheng, 2005].

To generate random samples from the Wigner surmises, one can benefit from the Rayleigh

distribution. If X and Y are two random variables (associated to their PDF fX(x) and fY (y)) and
Y = cX where c is a scalar number, then E[Y ] = E[cX] =

∫

R
cxfX(x)dx =

∫

R
yfX(yc )

dy
c , thus

fY (y) =
1
cfX(yc ).

Let R ∼ Rayleigh(
√
2) be a random variable, so its PDF is fR(r) = r

2e
−r2

4 . If the random variable

W is as W ∼ R√
π
, then its PDF is fW (r) =

√
πfR(r

√
π) =

√
πr
2 e

−πr2

4 which is the PDF of the Wigner

surmises. As scientific tools (Python, MATLAB, etc.) usually propose Rayleigh random generators,
random values from the Wigner surmises may be generated by scaling values from these random
generator by 1√

π
.

Another solution is to use the inverse transform sampling. The idea is to take advantage of uniform
random generator which distribution is U(0, 1), and to apply these random numbers to the inverse CDF
of the target distribution, which leads to Sn ∼

√
−4 lnU), with U ∼ U(0, 1) [Devroye, 2006].

Method 2 The M eigenvalues λiGOE (with i ∈ [1,M ]) of matrices of size M from the GOE are
distributed as a Wigner’s semi circle law [Zheng, 2005]. The average spacing ∆(λGOE) near the
eigenvalue λiGOE is:

∆(λiGOE) =
π

√

2M − λ2iGOE

1[−
√
2M,

√
2M ](λiGOE) (III.4.9)

As ∆ ≈
√
2M
π near λiGOE = 0, it is possible to drop out the dependency of ∆(λ) (∆(λ) → ∆) in

(III.4.9) for the middle M eigenvalues. Then λ is scaled as:

λ̃ =
λ

∆
=
λ
√
2M

π
(III.4.10)
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This method refers to an unfolding procecure as exposed in section III.1.2.2.3. It is sometimes applied
to compute the eigenvalues from a matrix of size M ′ from the GOE ensemble and to select the middle
M eigenvalues (M ′ was set to 5M in [Hemmady et al., 2012]). The advantage is that the long-range
correlations are guaranteed. The downside is that 4M eigenvalues are lost whereas the computation
of eigenvalues of large matrices is time-consuming.

Method 3 The last method is an unfolding procedure which consists in applying the CDF of the
eigenvalues distribution (pΛ(λ) =

√
2M − λ2/(Mπ)) to the computed eigenvalues λ.

If X and Y are two random variables where Y is computed as the composition of X by its CDF,
i.e. Y = FX(X), then the CDF of Y is:

FY (y) = P[Y ≤ y]
= P[FX(x) ≤ y]
= P[x ≤ FX(y)]

= FX(F−1
X (y))1FX(S)(y)

= y1FX(S)(y) (III.4.11)

where S is the support of the random variable X. Especially, if Λ′ = FΛ(Λ), then FΛ′(λ′) = λ′1[0,1](λ
′)

thus Λ′ ∼ U(0, 1) (uniform distribution between 0 and 1). A scaling process on Λ′ will enforce a
uniform spacing between the eigenvalues λ′ and leads to a set of scaled values λ̃.

λ̃i =Mλ′i −
M

2
=MFΛ(λiGOE)−

M

2
(III.4.12)

where the CDF of Λ is:

FΛ(λiGOE) =

∫ λiGOE

−∞

1

Mπ

√

2M − λ′2dλ′ = 1

2
+

1

π
sin−1

(

λiGOE√
2M

)

+
λiGOE

2πM

√

2M − λ2iGOE

(III.4.13)

To sum up, the complete procedure is: to first compute the eigenvalues λiGOE a matrix from
the GOE, then to caculate λ′i = FΛ(λiGOE) and to finally scale λ̃i as λ̃i = MFΛ(λiGOE) − M

2 . This
way, the mean value of the eigenvalue spacings remains constant all along the spectrum. However,
long-range correlations of the eigenvalues need to be verified.

We can now consider these methods with the quantities exposed in section III.1.2.2.3. Remind
that the eigenvalues λ̃ should be uniformly distributed. Fig. III.4.1 shows plots of the eigenvalue
distributions computed with the three methods. We obtain similar results, and we note that method 1
produces a fluctuating distribution. We now consider the mean eigenvalue spacings 〈s̃n〉 that should
be reduced to unity. Fig. III.4.2 depicts 〈s̃n〉 for 2000 Monte-Carlo iterations and method 3 produces
the lowest standard deviation for 〈s̃n〉. Then, the number variance (as exposed in section III.1.2.2.3)
is shown in Fig. III.4.3. Method 1 does not ensure, even for short intervals L, a number variance close
to the expected one for chaotic systems. Method 2 is valid for L < 15, and method 3 whatever L is.

From this comparison, we notice that method 3 is the most capable to model chaotic systems, and
we have selected it to model our chaotic systems.

III.4.2.3 Matricial formulation of ξ

We now consider that the eigenmodes of the cavity are issued from the random matrix theory by
method 3 described previously. To be numerically evaluated, equation (III.4.1) should be rewritten
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Fig. III.4.1 – Comparison of the three methods to compute λ̃ = λ
∆ , for M = 3000 eigenvalues

computed. The obtained distribution should be ∼ U(−M,M) and pΛ̃(λ̃) =
1
M 1[−M

2
,M
2
](λ̃) and 1

M =

3.333× 10−4. For the method 2, the middleM eigenvalues were selected in a matrix of sizeM ′ = 15000.
We remark that all the standard deviation values σλ̃ for the three methods are close to each other.
The theoretical standard deviation here is 3000

2
√
3
= 866 (standard deviation of a uniform distribution on

the range [−M,M ]).
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as [Hemmady et al., 2005]:

ξ = − j
πW [ λ − jα1 ]−1WT

(III.4.14)

where W is a M × N real matrix, N is the number of ports in the system and M the number of
modes taken into account in the cavity. The elements of W are normally distributed N (0, 1). W

takes into account the coupling of the modes onto the ports of the system. The diagonal matrix λ is

populated with values computed from method 3 (λii = MFΛ(λiGOE) − M
2 ), where λiGOE represents

the M eigenvalues of a matrix from the GOE.

III.4.3 RCM implementation

The formulation (III.4.14) of the normalized impedance matrix ξ needs to be now efficiently imple-
mented to compute induced currents or coupled voltages. This section will focus on the softwares that
have been developed and on optimizations that allow performance gains.

III.4.3.1 Developed programs

Several programs have been developed along this PhD to efficiently implement the RCM. The first one
computes the eigenvalues of matrices from the GOE, which are the on-diagonal elements of the matrix
λ. As λ is not configuration dependent, it is possible to precompute a large number of eigenvalues from
the GOE. Moreover, as the calculus involved in the computing of eigenvalues is time-consuming, these
precomputed values will reduce in a very significant way the time needed to get the induced current
(or coupled voltages) from the RCM. This software was run several times to compute eigenvalues for
matrices size M between M = 10 to M = 3000. We remind that M denotes the number of modes
considered in the cavity. Two million of matrices for a given size M were randomly drawn from the
GOE and their eigenvalues were stored in appropriate files.

Two other programs are dedicated to apply the RCM. One to compute the currents or voltages
within a cavity (i.e. without the coupling of a plane wave to an aperture) that implements equa-
tion (III.1.24). The inputs of this program are the loss factor α, the file that stores eigenvalues of
random matrices from the GOE, the radiation impedance matrix Zrad and the number of Monte-Carlo

iterations to run. Another program implements equations (III.2.110) to compute ~IP , (III.2.113) to
compute ~VA, (III.2.112) to compute Ycav’ and (III.1.24) to compute Zcav. It takes as inputs: the

loss parameter α, the number of modes in the cavity M , the admittance Yrad of the aperture, the

impedance of the ports Zrad, the characteristic impedance ZL, and the source vector ~I inc. All these
matrices and vectors are frequency dependent. The random values used to compute matrices Zcav

and Ycav, which account for a random geometry, are randomly drawn at each iteration and for each
frequency. A schematic diagram of this computation is depicted in Fig. III.4.4.

The outputs of these two programs are either a set of vectors ~I (or ~V ) or histograms of the vectors
elements and a set of outliers (for extreme values). When histograms are needed, one histogram is
computed per frequency, and all the histograms are computed with the same bin edges and bin count.
Thus, the histogram for a given frequency range is obtained by a simple addition of histograms and a
normalization step. Histograms for the real part, the imaginary part and the modulus of the elements
of ~IP may be stored.

The determination of the loss factor α is mandatory to apply the RCM. Several methods can be
employed and will be exposed later. One of these is a fitting process which uses the elements ξijα of
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to the ith−frequency). ξ
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is not randomly drawn for each frequency, but only for each Monte-Carlo

iteration. Likewise as with a stirrer, where a measurement along a given frequency bandwidth is
performed for a given rotation angle. For each frequency fi, a histogram pi(x) is computed.

the random matrix. A program is in charge of computing many matrices ξα from equation (III.4.14)
and for different values of α. Then, from ξα, the PDF of the elements ξijα are assessed by means of

a kernel density estimation (KDE) [Wand and Jones, 1994] and then stored. A KDE is related to
histograms, but can be endowed with continuity or smoothness properties. A random sample is not
considered as an increment in a histogram bin, but as a function (kernel). Then, all the functions are
averaged to determine the KDE. Even if several kernels may be applied (triangle, uniform, negative
exponential, gaussian, etc.), the gaussian kernel is classically adopted (as in this work). These
statistical distributions will be used to fit the elements ξMeasured

ij obtained experimentally in order to
determine the loss parameter α.

Finally, a tool was developed to efficiently compute some properties of scattering matrix eigenvalues
of the normalized impedance matrix ξ. These properties, that will be detailed in section III.4.6, are
related to the assessment of the chaoticity of a system.

III.4.3.2 Implementation optimizations

To obtain reliable probability density functions (in order to compute probabilities of rare events, for
example), numerous draws must be carried out. With a naive implementation of (III.4.14), thousands
of draws are calculated within a few hours. To reduce the computation time, optimizations of several
kinds need to be carried out.

First, the use of a programming language that is compiled and not interpreted (like Python or MAT-
LAB) increases the performances. Moreover, calling libraries dedicated to efficient matrix computations
results in a performance gain. It was chosen to take advantage of the Math Kernel Library (MKL)
from Intel®. This library, dedicated to Intel® processors, allows efficient operations on matrices. It
contains functions to compute products, eigenvalues/eigenvectors, inverse, etc. of matrices. The ele-
ment type of the matrices may be real or complex, and their representations may have single or double
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[Eaton et al., 2017, Octave], and n is the number of threads used to compute the eigenvalues using
the listed optimizations. Note that for n > 4 there is no performance gain as the computer has only 4
physical cores.

precision. In addition, the matrices may have different properties (general, symmetric or hermitian).
To perform an operation (i.e. eigenvalues computation, product), the function specialized in a given
matrix type (element type, element precision and property of the matrix) needs to be called. In this
way, problem specific acceleration is used, leading to reduce computation time. For operations that
occur while using the RCM, many matrices are symmetric such as Ycav, Yrad, Zcav and Zrad. Most of
the matrices having complex elements and double precision was chosen for all the matrices (i.e. 8B
per matrix element of real matrices and 16B for complex ones). We explain how the Math Kernel
Library (MKL) is employed for three steps that occur while using the RCM:

• Eigenvalues of a real symmetric matrix M: the function dsyevd is used, which implements the
divide and conquer algorithm. This algorithm is dedicated to real symmetric matrices;

• Square root of a real symmetric matrix
[

A
]1/2

: by using the dsyevd function, the matrix A

is diagonalized (A = B λ B−1). Then, the square root of the elements of λ are taken, to get

λ1/2. Then, we compute B λ1/2 B−1 by using the function zgemm (product of general complex
matrices);

• Inverse of a matrix
[

A
]−1

: first the LU factorization of the matrix A = L U is performed

thanks to the function zgetrf. Then, the backward and forward substitutions are computed by
the function zgetri.

Moreover, random numbers are needed to populate the random matrices. Samples points are
needed from gaussian and Rayleigh distributions. The routines vdRngGaussian and vdRngRayleigh

fulfill that purpose.

GSL, another library, is used to compute histograms. Indeed, it is sometimes not possible to
store all the vectors ~I as it would require too much disk storage, thus only histograms are stored. To
create a histogram, a number of bins and a range have to be specified. To estimate this range, some
Monte-Carlo iterations are processed. Then, the first and last percentiles are computed, used as lower
and upper bounds and the outliers are stored.

1Reference page for the RCM: http://anlage.umd.edu/RCM/.
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Fig. III.4.6 – PDFs of the real and imaginary part of the on-diagonal elements of the random vari-
able Ξ. By construction, all the on-diagonal elements of Ξ follow the same random variable.

All the developed programs are designed to be multithreaded, allowing to split the computations and
to process them in parallel. This requires to design the programs in such a way that ressources are well
dispatched between the different threads. Though, it is important to avoid the use of hyperthreading
technology to be able to take full advantage of the CPU caches. Fig. III.4.5 shows the performance
gains to compute 300 matrices λ for different matrix sizes M .

Some matrices have large dimensions leading to a high computation cost when it comes to
multiply matrices. By noticing that the matrix [ λ − jα1 ]−1 is diagonal, it is possible to reduce

the computational complexity from O(M2N) to O(MN) for the computation of the product W

by [λ − jα1]−1.

By putting all these optimizations together, it is possible to obtain induced currents and coupled
voltages within less than 4 minutes with thousands of draws for the matrix Zcav. These results have
been obtained on an Intel(R) Core(TM) i7-4770 CPU (3.40GHz) with 32GB of random access memory
and a Solid-state drive (SSD) disk. It is worth noting that the throughput of read and write operations
on the disks has a very significant impact on the performances.

III.4.4 Statistics of the elements of the normalized impedance ma-
trix Ξ

We now have at our disposal several tools to compute the matrix samples. From now, the normalized
impedance matrix ξ is associated to the random matrix Ξ, and Ξ

ij
refers to the random variable

associated to the elements of the random matrix Ξ. We can draw several sample points to analyse
the statistics of elements of Ξ. Fig. III.4.6 and Fig. III.4.7 show the statistics of on-diagonal and
off-diagonal elements of the matrix Ξ. These statistics have been computed with N = 2 ports
in the system (i.e. Ξ is a 2 by 2 random matrix), with M = 600 eigenvalues considered in the
reverberant environment, and for different loss factors α. Method 3 was applied to produce these
results. For each run, a new realization of W and λ was drawn. These PDFs have been assessed from
two million Monte-Carlo computations of (III.4.14). These PDFs are similar to those found in the
literature [Gradoni et al., 2014].
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III.4.5 Relation between the variance of Ξii, Ξij and α

A general formulation of the loss factor α is α = k2

∆k2Q
. More convenient expressions are given in

[Hemmady, 2006] depending on the type of the cavity. For a 2D cavity (i.e. a cavity with one
dimension very small compared to the two others), α is expressed as:

α =
k20A

4πQ
(III.4.15)

where A is the area of the cavity. For a 3D cavity, the loss factor is given by:

α =
k30V

2π2Q
(III.4.16)

where V is the volume of the cavity.

To assess the order of magnitude of α, the quality factor of the cavity of interest needs to be
quantified. The total quality factor Q may be expressed as:

1

Q
=

N
∑

i=1

1

Qi
(III.4.17)

where each Qi accounts for a loss mecanism. In [Liu et al., 1983] the following formula is given to
determine the quality factor Qwall associated to the losses in the walls of a cuboid cavity:

Qwall =
V

S

3

2

1

δ

1

1 + 3π
8k0

(

1
a + 1

b +
1
c

) (III.4.18)

where a, b and c are the dimensions of the cavity, V its volume (V = abc) and S its are (S =
2(ab+ ac+ bc) for a cuboid). Note that Qwall ∝

√
f in equation (III.4.18) when f is large enough. δ,

the skin depth of the wall material, is:

δ =

√

2

ωµ0µrσ
(III.4.19)

where σ is the conductivity of the material. In the case of the computer chassis mock-up, made of
steel, σ = 1× 106 Sm−1. If there is an aperture on the wall of the cavity, its quality factor Qap. is
[Hill, 2009]:

Qap. =
4π

λ〈σap.〉Ω
(III.4.20)
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where 〈σap.〉Ω is the mean absorption cross section of the aperture over 4π sr. 〈σap.〉Ω is not frequency
dependent for large apertures compared to the wavelength, and Qap. ∝ f . For a circular aperture,
〈σap.〉Ω = πa2

2 where a is the radius. If we consider a rectangular aperture, 〈σap.〉Ω may be taken to be
approximately equal to the surface of the aperture (i.e. 14 cm×4 cm for the aperture of the mock-up),
and Qap. may be determined.

The quality factor Q of the mock-up may finally be plotted. Fig. III.4.8 shows the evolution of
Qwall, Qap. and Q with the frequency. We observe that Q is dominated by the losses due to the
aperture. Then, from equation (III.4.16), the RCM loss factor α is plotted in Fig. III.4.9. For an
actual configuration, this reasoning does not apply as all the losses are not included, such as, in PCBs
or cables. However, it gives a lower boundary for the loss factor α.

In [Zheng et al., 2006b] it was demonstrated that the variance of the elements of Ξ are related to
the loss parameter α by the following expressions:

Var [ℜ [Ξii]] = Var [ℑ [Ξii]] =
1

πα
(III.4.21)

Var [ℜ [Ξij ]] = Var [ℑ [Ξij ]] =
1

2πα
(III.4.22)

As the developed tools allow to easily generate numerous matrices ξ, it is achievable to test these

assumptions, by computing the estimated variance. In [Hemmady, 2006] it is argued that these relations
hold only for α ≥ 5. This conclusion was based on experimental data acquired onto a 2D cavity. The
quantity Var[ℜ[Ξ11]]× απ should stay equal to 1 as α increases.

Fig. III.4.10 shows the evolution of Var[ℜ[Ξ11]] × απ according to α and for α < 11. We observe
that the equality (III.4.21) holds as soon as α ≥ 5. However, in Fig. III.4.11, one remarks that the
equality (III.4.21) does not hold for all α and for all M .

In the literature, two matrix sizes are found: M = 600 in [Gradoni et al., 2015], and M = 200
in [Zheng et al., 2006b]. These two values are sufficiently large for α ≤ 100 (as soon as α > 100, then
Var [ℜ [Ξii]] < 0.98). For M = 3000, Var [ℜ [Ξii]] < 0.98 as soon as α = 600.

For the empty mock-up, it has been estimated that αmax ≈ 40, thus setting M to 600 should be
sufficient. In any case, when applying the RCM, M has to be set in consideration of α.

III.4.6 Chaoticity of the random normalized impedance matrix Ξ

The RCM applies only to chaotic systems. Some properties of chaotic systems are related to the
eigenvalues of the scattering matrix s associated to the normalized impedance matrix Ξ. s is computed
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as:

s = (Ξ + 1)(Ξ − 1)−1 (III.4.23)

s may be diagonalized and its eigenvalues may be expressed as moduli and phases:

s = U







|λ1|ejφ1 · · · 0
...

. . .
...

0 · · · |λN |ejφN






U−1 (III.4.24)

where the columns of U are the eigenvectors of s.
Based on the Dyson circular ensemble [Dyson, 1962, Brouwer, 1995, Hemmady et al., 2005], and

for a chaotic system, the random variable Φ, associated to the distribution of the phases [φ1; · · · ;φN ]
of s, and the random variable Λ related to the distribution of the modulus [λ1; · · · ;λN ] of s should be
independent. Thus, we have:

pΛ(λ) = P [Λ = λ|Φ = φ] = P [Λ = λ] (III.4.25)

Moreover, Φ follows a uniform distribution, thus its PDF is:

p(φ) =
1

2π
1[−π,π](φ) (III.4.26)

From these properties, the polar 2D histogram of the eigenvalues has rotational invariance. As the
formulation of Ξ given in (III.4.14) considers that the system is chaotic, the properties aformentioned
must be ensured. Fig. III.4.12 displays 2D histograms of the real and imaginary parts of the eigenvalues
for two random matrices s computed from two random matrices Ξ with different loss parameter α (1
and 10). It can be observed that the modulus and phase of the eigenvalues are indeed independent. It
validates the ability of the random variable Ξ to describe a chaotic behavior.

III.4.7 Statistical quantity of interest for electromagnetic security
(EMSEC)

Three statistical quantities of interest, related to EMSEC problematics, will be exposed in this section.
In the next section, these three quantities will be used in application of the RCM.
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Fig. III.4.12 – Statistics of the eigenvalues of s for two alpha values (α = 1 for Fig. III.4.12a,
Fig. III.4.12c and Fig. III.4.12e and α = 10 for Fig. III.4.12b, Fig. III.4.12d and Fig. III.4.12f). In
addition to the 2D histograms, the assessed PDF of Λ and Φ are plotted.
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Fig. III.4.13 – Confidence intervals at xt for the empirical CDF F̂Xn(xt), the confidence interval of
the quantile xp%.

n 1− αrisk = 90% 1− αrisk = 95% 1− αrisk = 99%

100 0.122 0.136 0.163
1000 0.0387 0.0429 0.0515
10000 0.0122 0.0136 0.0163

Table III.4.1 – ε for several couples n/confidence interval, computed from equation (III.4.29). 1−αrisk

is the probability that the interval contains the true CDF FX(x)

Probability to exceed a limit For EMSEC, a valuable quantity is the probability that a physical
quantity, whose random variable is X, exceeds a given threshold. This information is related to its
CDF FX(x) defined as:

FX(x) = P [X ≤ x] (III.4.27)

Sample values of the random variable X may be generated through Monte-Carlo iterations. Then,
from this sample an empirical CDF of X can be obtained. Let X1, . . . , Xj , . . . , Xn be independent and
identically distributed (iid) random variables with a common CDF FX(x) associated to the n random
draws. The empirical CDF is then defined as the estimator F̂Xn(x) such that:

F̂Xn(x) =
1

n

n
∑

k=1

1{Xk≤x} (III.4.28)

where 1E is the indicator of the event E.
The probability that a sample point x exceeds the threshold xt is thus 1−F̂Xn(xt). As the estimator

F̂Xn(x) depends on the number of sample points n, F̂Xn(xt) also depends of n. It is thus relevant to
determine a confidence band such that: p− ≤ F̂Xn(xt) ≤ p+ (see Fig. III.4.13). The range is given by
the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [Dvoretzky et al., 1956]. It states that the
empirical CDF F̂Xn(x) is bounded as:

F̂Xn(x)− ε ≤ FX(x) ≤ F̂Xn(x) + ε, where ε =

√

1

2n
ln

(

2

αrisk

)

(III.4.29)

at a specified confidence level 1− αrisk. This inequality also confirms that the convergence rate of the
empirical CDF is of

√
n.

Quantile Another useful information is the quantity xp (namely the p quantile) for which FX(xp) =
p. This quantity is associated to the risk at p% to observe a sample point x greater than xp. Imagine
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that a risk of 5% is accepted for a device to malfunction, the quantity xp is determined from FX(xp)
(X may be a current for example). During the design stage of that device, its constitutive components
must be chosen in such a way that their functioning is guaranteed when the device is stressed by an
interference which value is lower than xp.

Again, as the underlying CDF FX(x) is unknown, the estimator F̂Xn(x) is used, and a confidence
interval at q% must be determined (see Fig. III.4.13), such as xp, 1−q

2
≤ xp ≤ xp, 1+q

2
. This problem

is not trivial, and no close solutions is available. A general confidence interval may be given by the
following procedure [Conover, 1999, p145-148]. General, because it is not asymptotic (n does not need
to be large), and non parametric as no information about the underlying distribution law is required.
Let X∗

i be the ith order statistic (i.e. ith-smallest value of a statistical sample). Then the CDF of the
ith order statistic is:

FX∗
i
(x) = P[X∗

i ≤ x]

=

n
∑

k=i

(

n
k

)

P[X1 ≤ x, . . . ,Xk ≤ x,Xk+1 > x, . . . , Xn > x]

=

n
∑

k=i

(

n
k

)

P [F (x)]k [1− F (x)]n−k =

n
∑

k=i

Ck
nP [F (x)]k [1− F (x)]n−k (III.4.30)

From (III.4.30), one can then show that:

P[X∗
i ≤ qp ≤ X∗

j ] =

j−1
∑

k=i

Ck
np

k(1− p)n−k (III.4.31)

A corollary is that if i and j are such as
∑j−1

k=i C
k
np

k(1− p)n−k = 1−α, then [X(i), X(j)] is a confidence

interval. Practically, the estimator F̂ (x) is used instead of F (x). This procedure is implemented in
the EnvStat R package [Millard, 2013] (R is a programming language dedicated to statistics [R Core
Team, 2018]), and the routine eqnpar may be employed.

Re-sampling techniques can also provide quantiles with confidence intervals. The bootstrap is one of
these. From an initial sample of size n, L random re-samplings with replacement of size n are created.
From the L samples, a bootstrap distribution of the quantity of interest (mean, quantile, etc.) is
computed. Several formulations are available and not all of these are appropriate to compute quantiles
and confidence intervals. Among all the bootstrap methods dedicated to confidence intervals (basic,
percentile, Studentized, etc. [Efron and Tibshirani, 1986]), the bias-corrected and accelerated (BCa)
bootstrap is one that works well for a variety of parameters, including quantiles [Efron, 1987]. Moreover,
the BCa is appropriate for skewed distributions and is a second-order method (more accurate). [Canty
and Ripley, 2017] is an implementation in R of numerous bootstrap methods, and espacially the BCa
one.

Threshold models If one applies the RCM to lossy cavities (α≫ 50), or when an aperture of large
size (compared to the wavelength) is considered, Monte-Carlo iterations may then be time-consuming
when it comes to determine extreme quantiles (99%, 99‰). To avoid this, it is possible to apply
threshold models from the extreme value theory [Coles et al., 2001].

If X is a random variable with a CDF FX(x), the probability to exceed a high threshold u is then:

P [X > u+ y | X > u] =
P [X > u+ y ∩X > u]

P [X > u]

=
1− FX(u+ y)

1− FX(u)
(III.4.32)
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Usually FX(x) is unknown. However, if u is large enough, and from the extreme values theory [Coles
et al., 2001]:

H(y) = 1− P [X > u+ y | X > u] (III.4.33)

with H(y) defined as:

H(y) =







1−
(

1 + ζy
σ̃

)−1/ζ
for ζ 6= 0,

1− exp
(

− y
σ̃

)

for ζ = 0.
(III.4.34)

where σ̃ = σ + ζ(u − µ). ζ, σ and µ are parameters that need to be determined. The family of
distributions H(y) is the generalized Pareto family.

Sample values gathered from Monte-Carlo iterations that are greater than u may be fitted to
(III.4.34). To estimate the parameters ζ, σ and µ a solution is to maximize the likelihood associated
to H(y).

A complex problem is to determine the lowest threshold u from which it is possible to fit the tail of
a sample (from which extreme quantiles need to be assessed) to the generalized Pareto distribution.
In [Coles et al., 2001, chap. 4.3.4] a procedure is proposed. It consists in estimating the parameters
ζ and σ (with their confidence intervals) for several thresholds u. Indeed, if a generalized Pareto

distribution (GPD) models the excesses of a threshold u, then, from equation (III.4.32), this same
distribution (with identical parameters) will model the excesses for threshold greater than u. Finally,
u is chosen as low as possible while ensuring that the estimated parameters remain constant over a
range of threshold u and with a reasonable confidence interval. Again, the R package ismev [Heffernan
and Stephenson, 2018] allows to practically deal with extreme values.

III.4.8 First RCM application

The goal of this section is to highlight how a RCM application is set up and how to configure the
sources. Moreover, the statistical quantities aforementioned will be applied to the RCM results.

III.4.8.1 Setup

Zcav
Vs1

Z01 I1

V1 V2 Vs2

Z0NI2

Fig. III.4.14 – Sources of the impedance Zcav.

We recall that, from the RCM and without apertures considered as ports, the cavity impedance
Zcav is:

Zcav = jℑ
{

Zrad
}

+
[

ℜ
{

Zrad
}]1/2

ξ
[

ℜ
{

Zrad
}]1/2

(III.4.35)

Fig. III.4.14 shows the circuit model for a two-port system. Let ~Vs be the source vector defined
as ~Vs = [Vs1, . . . , VsN ]T , ~V = [V1, . . . , VN ]T be the voltages across the ports, ~I = [I1, . . . , IN ]T be the
currents that flow into the ports, and Z01, . . . , Z0N be the impedances of the sources. Current and
voltage are assumed to be peak values (not RMS values). The current vector ~I may be expressed from

141



the source vector ~Vs. Indeed, we have ~V = Zcav~I and:

Vs =







Z01 . . . 0
...

. . .
...

0 . . . Z0N







~I + ~V =













Z01 . . . 0
...

. . .
...

0 . . . Z0N






+ Zcav







~I (III.4.36)

If Z0i = Z0, then ~Vs = (Z0I + Zcav)~I and:

~I = (Z0I + Zcav)−1~Vs (III.4.37)

If each source is defined from its input impedance and by an injected power Pi (as for a VNA), then
Vsi =

√
2Z0iPi =

√
2Z0Pi.

For this first RCM application, let’s consider a simple two-port lossy attenuator circuit defined by
the scattering matrix:

S =

[

0 e−g

e−g 0

]

(III.4.38)

Its attenuation A is A = 20 log10(e
−g) = −20g

ln 10 , and its impedance matrix Zrad is expressed as:

Zrad = Z
1/2
0 (I + S)(I − S)−1Z

−1/2
0 (III.4.39)

We now place this circuit inside a cavity with random boundary conditions and we want to determine
the statistics of the magnitude of the current vector at the port 2 when a power P = 10dBm is applied
to port 1 (thus ~Vs =

[√
2Z0P , 0

]T ).

III.4.8.2 Results

A sample of 4000 values of the magnitude current |I2| was generated. As there was only one current of
interest,the subscript 2 could be dropped. Fig. III.4.15 shows the empirical CDF F̂|I|360(|i|) obtained
for n = 360 Monte-carlo iterations. Four simulations were run with four different loss factors α (1,
20, 50 and 100). The attenuation A was set to 60 dB to simulate a low coupling between the two
ports. From the DKT inequality, a confidence band around F̂|I|360(|i|) was added for two confidence
levels (1 − αrist = 95% and 1 − αrist = 99%). An intended outcome is confirmed: as α increases, the
probability F̂|I|360α(|i|) decrease such that F̂|I|360α=10(|i|) ≥ F̂|I|360α=50(|i|) ≥ F̂|I|360α=100(|i|).

Several techniques were used to determine the extreme quantiles and their confidence intervals.
The results are listed in Table. III.4.2. The extreme quantiles (95%, 97.5%, 99% and 99.9%) were
determined from the initial sample and from a fitting to the GPD. Then, the BCa bootstrap and
the general purpose method (explained in section III.4.7) have provided the confidence intervals.
Bootstrap distributions were obtained from 10000 re-samplings. The BCa bootstrap generates
narrower intervals than the general purpose technique. Yet, it requires more computation time
(≈ 1min for a statistic, like a quantile for example). Fig. III.4.16 depicts the bootstrap distributions
obtained to determine the quantiles 95% and 99%. It highlights that the bootstrap distributions are
not always normal (thus not every bootstrap techniques can be employed).

The threshold model has been also applied to fit the tail of the distribution of the current
magnitude. Fig. III.4.17 presents the fitting procedure for two loss factors. It first consists in the
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Fig. III.4.15 – Empirical CDF F̂|I|360(|i|) for two loss factors α.

determination of the parameters ζ and σ within a given threshold range |i|t ∈ [|i|tmin, |i|tmax]. ζ
and σ are set as soon as they remain constant (over |i|t) while |i|t increases. Fig. III.4.17 shows the
quantile-quantile plot of the empirical distribution, defined as all the sample values greater than |i|t,
and the quantile of the GPD. A good agreement is observed. The column EV in Table. III.4.2 lists
the extreme quantiles determined from the fitted GPD.

Finally, it is worthwhile to study the impact of the error on α for the quantiles |i|p%. Indeed, α
may be assessed with a substantial uncertainty. Table. III.4.3 lists relative errors δ on |i|p% for sereval
quantiles, several loss factors and six errors e. We observe that the order of magnitude of the relative
errors computed for a given error e does not depend on α. Moreover, when α is estimated with an
error of ±10%, the relative errors relies within the range ±5%.
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|i|p% BCa Bootstrap Conover [1999]

α p E EV Interval Len. Shape Interval Len. Shape

1 95% 4.19 4.17 [4.11, 4.27] 154.0 0.979 [4.12, 4.27] 153.0 1.19

97.5% 4.55 4.57 [4.46, 4.65] 184.0 1.17 [4.47, 4.66] 190.0 1.43

99% 4.89 4.99 [4.83, 5.00] 175.0 1.69 [4.83, 5.06] 224.0 2.61

99.9% 5.72 5.70 [5.55, 5.95] 401.0 1.46 [5.59, 6.17] 583.0 3.47

20 95% 1.08 1.08 [1.06, 1.10] 38.8 1.46 [1.06, 1.10] 41.8 1.78

97.5% 1.21 1.20 [1.16, 1.24] 74.6 0.501 [1.17, 1.24] 74.3 0.600

99% 1.34 1.35 [1.30, 1.39] 94.7 1.15 [1.30, 1.41] 110.0 1.91

99.9% 1.70 1.67 [1.57, 1.81] 234.0 0.817 [1.59, 1.88] 286.0 1.55

50 95% 0.722 0.723 [0.708, 0.734] 25.7 0.793 [0.708, 0.734] 25.4 0.840

97.5% 0.799 0.800 [0.777, 0.831] 53.8 1.47 [0.779, 0.833] 54.3 1.79

99% 0.917 0.902 [0.889, 0.941] 52.0 0.878 [0.891, 0.952] 61.5 1.34

99.9% 1.15 1.16 [1.03, 1.36] 337.0 1.62 [1.05, 1.38] 333.0 2.08

100 95% 0.549 0.548 [0.533, 0.570] 36.6 1.38 [0.534, 0.571] 37.0 1.46

97.5% 0.616 0.618 [0.602, 0.636] 34.7 1.49 [0.603, 0.640] 37.4 1.87

99% 0.703 0.702 [0.673, 0.723] 50.5 0.690 [0.676, 0.733] 57.5 1.14

99.9% 0.839 0.878 [0.810, 0.970] 160.0 4.61 [0.821, 1.07] 249.0 13.2

Table III.4.2 – Confidence intervals for several quantiles |i|p% for four loss factors α and for two
methods: Bootstrap and a general method. All the quantities are in mA but the interval length
(column Len.) which is in µA. E refers to the quantile determined from the sample, and EV from
a fitting with the GPD (see Fig. III.4.17). The probability p′ of the GPD and the probability p are

related by p′ =
p−F̂|I|(|i|t)
1−F̂|I|(|i|t)

, where |i|t is the threshold from which a GPD is fitted. Then the quantile

is determined by use of the inverse CDF of the GPD. The shape, computed as
|i|p%up−|i|p%
|i|p%−|i|p%lo

, indicates
the dissymmetry of the confidence interval. Confidence intervals computed from the BCa bootstrap
method produce narrower and more symmetric interval than the general method (most of the time), and
especially for high quantiles (99.9%). Moreover, the higher p% is, the wider and the most dissymmetric
the confidence interval is. All these statistical quantities have been computed from an initial sample
of size 4000.
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Fig. III.4.16 – Quantile-quantile plots (Q-Q plots): quantiles from the bootstrap distribution against
quantiles from a normal distribution of the statistical quantity of interest, here the 95% and 99%
quantile. The standard deviation and the mean of the normal distribution are obtained from the
bootstrap distribution. We observe that for the 95% quantile, the bootstrap distribution agrees with a
normal distribution. However for the 99% quantile the normality assumption does not apply (see the
left tail). The quantiles are computed with α = 20, from a sample of 4000 elements, and from 10000
bootstrap samples.

α = 1 α = 20

±1% ±5% ±10% ±1% ±5% ±10%
p |i|p% δ− δ+ δ− δ+ δ− δ+ |i|p% δ− δ+ δ− δ+ δ− δ+

50 % 2.09 1.15 0.61 3.54 0.30 5.99 -2.66 0.53 0.03 -0.53 2.45 -1.87 5.74 -3.98

95 % 4.22 -0.19 -0.06 1.69 -2.30 3.93 -3.78 1.10 1.14 -0.48 3.49 -2.62 6.17 -4.11

97.5 % 4.59 0.11 0.06 2.48 -1.90 4.27 -3.20 1.22 0.95 -0.71 3.47 -3.22 5.98 -3.39

99 % 4.99 1.24 -0.09 2.72 -1.04 4.64 -3.00 1.35 1.82 0.05 4.31 -1.82 7.86 -2.77

99.9 % 5.80 -0.34 -0.57 1.98 0.30 2.62 -1.66 1.68 0.67 -2.51 0.49 -1.06 4.40 -4.01

α = 50 α = 100

±1% ±5% ±10% ±1% ±5% ±10%
p |i|p% δ− δ+ δ− δ+ δ− δ+ |i|p% δ− δ+ δ− δ+ δ− δ+

50 % 0.35 0.75 -0.09 2.57 -1.22 5.13 -3.74 0.26 0.63 -1.56 2.13 -2.77 4.76 -4.24

95 % 0.73 -0.34 -2.04 1.67 -3.08 3.92 -4.58 0.54 0.63 -0.12 1.34 -2.23 3.29 -2.84

97.5 % 0.82 -1.32 -2.82 1.17 -2.98 3.77 -5.15 0.61 -0.01 -0.71 0.78 -3.33 3.62 -4.52

99 % 0.92 -0.97 -3.29 0.26 -3.53 2.23 -5.74 0.68 0.99 0.22 2.12 -2.06 3.68 -3.16

99.9 % 1.14 -1.10 -4.09 -1.89 -3.41 -0.88 -5.57 0.83 7.08 3.96 4.17 0.29 5.69 -1.64

Table III.4.3 – Influence on the quantiles |i|p% of the error on α. For the four values α (1, 20, 50
and 100), the quantiles |i|p% were computed. For each value α, six errors e are considered ±1%, ±5%
and ±10%, and the quantiles |ie|p% are calculated. Thus six simulations were run with a loss factor

of (1 + e)α. The relative errors were computed as δ± =
|ie|p%−|i|p%

|i|p% and are expressed in percent. The

quantiles are expressed in mA. δ− refers to a negative error, i.e (1 + e)α < α, and δ+ to a positive
one, i.e (1 + e)α > α.
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(b) α = 50, |i|t = 0.72mA (F̂|I|(|i|t)) = 94.8%, ζ = 0.00789 and σ = 0.00789 and 206 sample values above |i|t.

Fig. III.4.17 – Fitting process of the tail of the current magnitude to the GPD. On the left, variations
of ζ and σ according to the threshold |i|t with a confidence interval. As explained in section III.4.7,
the lowest constant part (flagged by the red lines) allows to select the parameters ζ and σ. On the
right, the quantile-quantile plots and the histograms show a good agreement between the tail (which
starts at |i|t) of the current distribution and the GPD (with µ = u = |i|t, see equation (III.4.34)).
Both samples (α = 20 and α = 50) contain 4000 sample values. The extreme quantiles determined
from the GPD are listed on Table. III.4.2.
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III.4.9 Conclusion

This section was dedicated to the implementation of the random coupling model (RCM). The
expression of a convenient matrix formulation of the normalized impedance ξ was validated. Several

methods were implemented to express k2n
∆k2

and were compared. Some clues were given in order
to efficiently implement the RCM into a compiled language, allowing to significantly reduce the
computation time of the Monte-Carlo iterations. Then, the link between the variance of the elements
of ξ and α was confronted to Monte-Carlo simulation. It was highlighted that the number M of modes
taken into account in the cavity should be sufficiently high for lossy environments. This result was
not found in any available paper. A criterion to characterize the chaoticity of a system was exposed
and is based on the eigenvalues of the normalized impedance ξ. Finally, some relevant statistic tools

for the electromagnetic security (EMSEC) were presented. The developed tools have been used to
model low couplings in a lossy system between two ports. The extreme quantiles were determined
using several methods and with coherent results.

The last chapter of this part is devoted to compare RCM simulations to experimental data.
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Chapter III.5

Measurements
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III.5.1 Introduction

In order to validate the RCM approach, several measurements were performed for three configurations.
At first, the coupling between two monopoles was studied. Then, the coupling between stacked PCBs
was investigated. Finally, the setup has been installed to determine couplings between an aperture
and PCBs.

In the first two cases, the statistics of the coupled voltages or currents on PCBs were evaluated.
In order to do this, a small stirrer was designed and installed inside the cavity. The statistic of the
currents is assessed by acquiring scattering matrices for a frequency sweep and for a full rotation (360°)
of the stirrer at each frequency step. For each pair (frequency, stirrer position), a scattering matrix is
measured and stored. Then the current can be determined from the scattering matrix.
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(a) Servomotor outside the cavity. (b) Stirrer inside the cavity.

Fig. III.5.1 – Stirrer and servomotor.

III.5.2 Use of a small stirrer to generate a chaotic environment

To compare measurements with the RCM, the measured system has to be chaotic. In order to generate
a large number of mode topologies in the cavity (Berry hypothesis), a stirrer rotates inside the cavity.
The statistics of quantities of interest (voltages or currents) will then be assessed from sample values
acquired for frequency sweeps and stirrer rotations. Thus, statistics are determined over the ensemble
of a large number of geometries of cavities.

A small stirrer has been designed and manufactured in order to function inside a computer cavity.
Its shape has been designed to have as few symmetries as possible (Fig. III.5.1b). The stirrer is rotated
thanks to a servomotor (Fig. III.5.1a) controlled by a Raspberry Pi (a nano-computer board1). The
Raspberry Pi (inside the anechoic chamber) is connected to a desktop computer (outside the anechoic
chamber) by an optical fiber. This setup allows to rotate precisely the stirrer. Moreover, the position
of the stirrer in the cavity has been determined to maximize the chaoticity in the cavity.

III.5.3 Methods to determine the parameters of the RCM

Three quantities have to be determined to apply the RCM: the free-space impedance matrix Zrad, the
number of modes M taken into account inside the cavity and the loss parameter α. The free-space
impedance matrix Zrad has been determined from experimental data acquired by a VNA in free-space
for all the tested configuration (see Fig. III.5.3 for the monopoles and Fig. III.5.9a for a stacking of
PCBs). Setting M is a trade-off between the number of modes to consider in the cavity and the
computation time. In the previous section, it was highlighted that setting M = 600 was sufficient and
allows to take into account the losses inside the mock-up.

The parameter α is the most tricky to assess. It characterizes the losses inside the cavity and is
frequency dependent. Several techniques may be applied to evaluate it, as explained in [Hemmady,
2006, Gil et al., 2016], based on experimental data. The first method consists in computing (from
equation (III.4.14)) and storing the PDFs of the elements of ξα for different values of α. Then, from

the acquired data, ξMeasured is computed by inverting (III.1.24) as:

ξMeasured = ℜ
[

Zrad
]
1
2
(

Zcav −ℑ
[

Zrad
])

ℜ
[

Zrad
]
1
2 (III.5.1)

A fitting process then allows to match the elements of ξMeasured with the elements of the matrices
ξα=αmin

, . . . , ξα=αmax . The best fit determines the value of α.

1https://www.raspberrypi.org/
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Fig. III.5.2 – A monopole at-
tached to the front panel.

Monopoles

Styrofoam

VNA

Fig. III.5.3 – Setup to measure the free-space impedance
Zrad between the two monopoles. Two blocks of styrofoam
are used as stands.

The second method computes α from [Gil et al., 2016]:

Var
[

ℜ
[

ξMeasured
ii

]]

= Var
[

ℑ
[

ξMeasured
ii

]]

=
1

παii
(III.5.2)

Var
[

ℜ
[

ξMeasured
ij

]]

= Var
[

ℑ
[

ξMeasured
ij

]]

=
1

2παij
(III.5.3)

and:
α =

1

N2

∑

i,j

αij (III.5.4)

The benefit of this latter method is that no ξα matrix needs to be computed. However, it is important
to note that for both methods, the determination of α relies on experimental data. Both methods were
applied in this work. A comparison between these two methods can also be found in [Gil et al., 2016].

III.5.4 First comparison: monopoles

The first practical application of the RCM concerns the coupling between two monopoles that are
mounted inside the cavity. Both monopoles are composed of a 46mm long wire soldered to a bulkhead
through hole SMA connector (see Fig. III.5.2). This configuration is similar to that presented in [Gil
et al., 2016]. The free-space impedance Zrad is measured by means of a VNA (see Fig. III.5.3). The
free-space scattering parameters are summed up in Fig. III.5.4. Then, the scattering matrix S between
the two monopoles placed in the computer chassis mock-up is measured between 5 and 26.5GHz, and
for 360 stirrer angular positions.

III.5.4.1 Evaluation of the chaoticity of the system

As mentioned above, the RCM applies only for chaotic systems. In [Hemmady et al., 2005, Dyson,
1962] a method is developed to determine if a system is chaotic or not. It is based on the eigenvalues
properties of the normalized scattering matrix of the system. It states that the phase of the eigenvalues
has to be uniformly distributed, and that the phase and magnitude of the eigenvalues have to be
independent. From the normalized impedance ξ, the normalized scattering matrix is computed and
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Fig. III.5.4 – Scattering parameters of the two monopoles, measured in free-space.

diagonalized:

s = (ξMeasured − 1)(ξMeasured + 1)−1 (III.5.5)

s = U









|λ1|ejφλ1 · · · 0
...

. . .
...

0 · · · |λN |ejφλN









U−1 (III.5.6)

where U is the basis change matrix.
Fig. III.5.5 depicts histograms of the real and imaginary parts of the eigenvalues of s and of their

phases. As the 2D histogram is rotation invariant and as P (Φλs
) is uniformly distributed (P (Φλs

) ≈
1[−π,π](Φλs

) 1
2π ), we can conclude that the system is chaotic. Thus, the RCM can be applied.

III.5.4.2 Fitting of the loss parameter α and the probability density function of
the induced voltages

At the center of the four frequency ranges of 5GHz for which the chaoticity of the system has been
evaluated (i.e. 7.5, 12.5, 17.5 and 22.5GHz), the loss parameter α has been determined. As explained
previously, a fitting process allows to fit the PDF of the elements of ξMeasured to the elements of ξα.
Frequency samples within a bandwidth of 500MHz acquired for 360 stirrer positions were gathered to
compute the PDF of the elements of ξMeasured. Fig. III.5.6 depicts the PDF of the real part of ξij and
the fitted PDF associated to a given loss parameter αfit. We can notice that αfit increases when the
frequency increases. This phenomenon confirms the results given in [Gil et al., 2016].

We highlight the fact that fitting only the off-diagonal elements (ξ12 and ξ21) gives better
results when it comes to compute the induced voltages, when compared to experimental data.
Fig. III.5.7 shows the comparison between the PDF of the induced voltages computed from exper-
imental data and the PDF obtained from RCM simulations. A good agreement can be noticed for the
four frequencies. Moreover, we observe that the induced voltages decrease with frequency.

α was finally determined for the whole frequency range and is plotted in Fig. III.5.8. As expected,
α increases with the frequency, and its order of magnitude is in coherence with the assessment set in
section III.4.5.

III.5.5 Second comparison: printed circuit boards

In this section, we will assess the probabilities of occurrence of induced currents at one end of microstrip
transmission lines. These transmission lines are printed on circuit boards that are stacked together
and placed into a cavity with changing boundary conditions (by use of the mode-stirrer). These
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Fig. III.5.5 – 2D histograms of the real ℜ[λs] and imaginary ℑ[λs] parts of the eigenvalues of the
matrix s (Fig. III.5.5a, Fig. III.5.5c, Fig. III.5.5e and Fig. III.5.5g), and the distribution P (Φλs

) of the
phase of the eigenvalues of s (Fig. III.5.5b, Fig. III.5.5d, Fig. III.5.5f and Fig. III.5.5h).

configurations can be representative of a computer chassis in which cables are not constrained (i.e.
that they can move), or when a heavy load is placed on top of an equipment resulting into a mechanical
deformation that changes the boundary conditions of the problem. This may also obviously occur when
additional elements are integrated inside the chassis. One aim would be to provide placement rules of
the boards inside the chassis, to minimize, if possible, the probability of coupling due to a current that
exceeds a given threshold.

III.5.5.1 Tested configurations

Several stacking configurations (Table III.5.1) composed of a maximum of four PCBs (see Fig. II.1.15 in
section II.1.4.1) are considered. On each board a microstrip transmission line (characteristic impedance
50Ω) is printed, terminated at one end by a bulkhead through hole SMA connector (that also allows
to hold the PCB in the mock-up) and at the other end by a 50Ω load (surface mount resistor and
via). Position 1 corresponds to the board at the bottom of the stacking, and position 4 to the highest
location (Fig. III.5.9d). Two consecutive positions are separated by a 2 cm gap (like in a real desktop
computer). These configurations were chosen to allow to test the RCM with configurations that
present different spacing between the boards (multiple of 2 cm), thus different modal configurations of
the electromagnetic field within the stacking.

III.5.5.2 Computing of the experimental results

The scattering matrix S between the ports of the system has been measured from 5 to 26.5GHz with
a step of 1MHz (16501 frequency samples), and for 360 stirrer positions. Using S, the corresponding
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Fig. III.5.6 – Probability density functions of the real part of the elements ξij from ξMeasured (blue

curves) and from ξ
α

(dashed orange curves).

impedance matrix ZMeasures is calculated as:

ZMeasures =
[

Z01
] 1

2
(1 + S)(1 − S)−1

[

Z01
] 1

2
(III.5.7)

Then the current vector ~I RCM is computed from (III.4.37). Fig. III.5.10 and Fig. III.5.11 show the
CDFs |IMeasure

a,Cb | of the measured current amplitudes. a corresponds to the port index number, and b
to the configuration number (see Table III.5.1). In Fig. III.5.10 the power (10 dBm) is injected into
port index #1 and in Fig. III.5.11 into the port index #2.

III.5.5.3 Computing of the RCM results

The matrices Zrad have been measured in free space (see Fig. III.5.9a) for the five configurations. The

loss parameter α has been determined from equations (III.5.2) and (III.5.3) using ξMeasured (computed

from ZMeasures with equation (III.5.1)), as α = 1
N2

∑

i,j αi,j with N the number of ports in the system.
Then, from (III.1.24), 360 × 16501 matrices Zcav have been computed as well as the port currents

vector ~I RCM (from equation (III.4.37)). Depending on N , the time needed to compute the 5940360
vectors ~I RCM varies from 40 s to 3min. Fig. III.5.10 and Fig. III.5.11 display the CDF |IRCM

a,Cb | of the
simulated current amplitudes.
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Fig. III.5.7 – Comparison between the probability density functions of the magnitude of the induced
voltages on port 2 measured and simulated by the RCM. These PDF are computed within a frequency
bandwidth of 500MHz, and with a constant loss factor αfit.
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Fig. III.5.8 – Variation of the loss factor α inside the cavity versus the frequency.

Configuration Number of port N Position 1 Position 2 Position 3 Position 4

C1 4 Meander #1 Straight #2 L right #3 L left #4

C2 4 L right #1 Meander #2 L left #3 Straight #4

C3 2 L right #1 - - L left #2

C4 2 L right #1 - L left #2 -

C5 3 Meander #1 Straight #2 - L left #3

Table III.5.1 – The five configurations considered. The number prefixed by the symbol # corresponds
to the port index of the system.
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(a) Measurement of the
free space impedance
Zrad for configuration
C5.

(b) Stepper motor at-
tached to the back panel
of the mock-up.

(c) The stirrer inside
the mock-up.

Pos. 1

Pos. 4

Pos. 2
Pos. 3

(d) The stacking of PCBs at-
tached on the back of the
mock-up.

Fig. III.5.9 – Illustrations of the experimental set-up.

Position 1 Position 2 Position 3 Position 4

Configuration Source port index M RCM M RCM M RCM M RCM

C1 #1 Source 925 789 327 321 333 319

C1 #2 927 787 Source 802 706 307 310

C2 #1 Source 883 785 321 303 336 299

C2 #2 884 785 Source 791 733 298 301

C3 #1 Source - - - - 524 375

C3 #2 525 374 - - - - Source

C4 #1 Source - - 595 416 - -

C4 #2 594 407 - - Source - -

C5 #1 Source 946 659 - - 358 332

C5 #2 948 658 Source - - 534 408

Table III.5.2 – 95% percentile in µA for the five configurations with source location at port indexes
#1 or #2. Fig. III.5.9d indicates the four positions. Grey cells refer to line of sight configurations.

III.5.5.4 Discussion

The results depend on the existence of a line of sight configuration between the source board and
the other ones. The line of sight case appears for example when the source port index is #1 and
the measurement port index is #2, or when the source port index is #2 and the measurement port
indexes are #1 and #3. There is a good agreement between the CDF of the simulated data and the
measured ones. In the line of sight case, the probability of having higher current is greater than when
the source and the destination ports are not in a line of sight. In [Flintoft et al., 2016, Parker et al.,
2016c,a,b], the same problem (stacking of PCB) was considered, also from an experimental point of
view, and an equivalent conclusion was raised. For boards not in a line of sight, the RCM and the
measurement data are in even better agreement.

The higher the voltage and current magnitudes are, the higher the threat for the confidentiality
of the information that an equipment processe, is. Hence, we analyze high percentiles of the induced
currents. Table III.5.2 lists the 95% percentiles for the five configurations, for two port source indexes
(#1 and #2) and for both experimental and simulation data. When the source port is not in line of
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Fig. III.5.10 – CDFs of induced currents for the five configurations. The source is connected to port
#1.
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Fig. III.5.11 – CDFs of induced currents for the five configurations. The source is connected to port
#2.
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Absorbers with without

M RCM M RCM

95% percentile 82 124 372 352

Table III.5.3 – 95% percentile in µA for the configuration C5 with and without absorbers. The source
is located at port index #1.

Fig. III.5.12 – Absorbers placed at the bottom of the mock-up.

sight with the destination port, then the two percentiles (Measurements/RCM) are close.
Moreover, for all the configurations, the probability to obtain a given current amplitude is higher

for the RCM than for the experimental data (i.e. |IMeasurements| < |IRCM| for all the configurations).
Thus, RCM simulations tend to slightly overestimate the magnitude of the coupled currents.

III.5.6 Effects of absorbers on the magnitude of induced currents

If the risk assessment process unveils that the magnitude of the induced current is too high in an
electronic equipment (regarding the 95% percentile for example), some countermeasures may be set
up. One of these is the insertion of absorbers in the equipment. The impact of this operation will now
be studied.

The boards are placed in the mock-up according to configuration C5 (see table III.5.1). The
information provided by the manufacturer indicates that the absorbers (referenced as HR-25) have
a reflection coefficient lower than −20 dB from 10GHz to 60GHz. They were placed on the bottom
of the mock-up and the surface they occupy by these is approximately of 1100 cm2 or 0.11m2 (see
Fig. III.5.12).

The CDF are depicted in Fig. III.5.13, and again the 95% percentiles are listed in Table. III.5.3.
Without the absorbers, the 95% percentile is p95%,|IMeasurements

3,without absorbers
| = 372 µA for the measurement

data and p95%,|IRCM
3,without absorbers

| = 352 µA for the RCM simulations. And with the absorbers, we have

p95%,|IMeasurements
3,with absorbers

| = 82 µA and p95%,|IRCM
3,with absorbers

| = 124 µA. Thus, adding a surface of 1100 cm2 into

the mock-up mitigates the magnitude of the induced current between 9.1 dB (experimental data) and
13.1 dB (RCM simulations).
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Fig. III.5.13 – Induced currents with and without absorbers in the mock-up.
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Fig. III.5.14 – Assessment of the electric field at the aperture location.

III.5.7 Coupling between the aperture and the internal ports

III.5.7.1 Determination of RCM parameters when applied with apertures

This section reminds the quantities that are required to apply the RCM when the coupling between
one or several ports and an aperture needs to be determined and how they were determined.

The free-space impedance of the ports Zrad: it was measured in free-space for all the studied
configurations similarly to the configuration without the aperture.

The aperture admittance Y rad: it was computed as explained in chapter III.2, and numerically
evaluated in chapter III.3. It takes into account an incident plane wave of frequency up to ≈ 27GHz.

The aperture source vector ~I inc: ~I inc depends on the electric field ~Einc at the aperture and on
the dimensions of the aperture. It is possible to express the electric field ~Einc(~r = D~er) at the aperture
as :

~Einc(~r = D~er) =
∣

∣Einc(~r = D~er)
∣

∣ e−jkD~ey (III.5.8)

with

∣

∣Einc(~r = D~er)
∣

∣ =
ηk

4π

1

D

|V0|
Z0

1

|AF | (III.5.9)

where ~r is the observer location and D its distance from the transmitting antenna, k the wavelength,
|V0| the supplied voltage to the antenna, and Z0 the characteristic impedance of the VNA. The full
calculus is detailed in appendix D. The output power P of the VNA was set to its maximum value,
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Configuration Number of port N Position 1 Position 2 Position 3 Position 4

A1 1 Straight#2 - - -

A2 1 - - - L right #2

A3 2 Straight#2 - - L right #3

A4 3 L right #2 Meander #3 - L right #4

Table III.5.4 – The four considered configurations. The number prefixed by the symbol # corresponds
to the port index of the system. The source antenna is at the port index #1.

which is P = 10dBm, and |V0| =
√
2PZ0. Fig. III.5.14 shows the electric field magnitude at the

aperture location which is at a distance D = 4.28m from the source antenna. A 25 dB gain horn
antenna (reference AF-INFO LB-42-25) was chosen. Its frequency range is from 18 to 26.5GHz. Then,
from equation (III.2.89), the current input vector at the aperture location ~I inc is determined. We
assume that the field at the aperture is a plane wave, thus:

~H inc =
~ez ∧ ~Einc

η
= H inc~ex (III.5.10)

We then compute the components of ~I inc as:

I inc
s =

√
2 (1− (−1)s)

√
LW

πs
H inc (III.5.11)

=

√
2 (1− (−1)s)

√
LW

4π2ns

k

D

|V0|
Z0

1

|AF | (III.5.12)

The loss parameter α: Again, as α is not easy to determine, it was computed from experimental
data as explained in section III.5.7.1. The port index #1 of the VNA was connected to the source
antenna, and the full scattering matrix was acquired. Scattering matrices S have the form:

S =













S1,1 S1,2 · · · S1,N+1

S2,1
...

SN+1,1









S2,2 · · · S2,N+1

...
. . .

...

SN+1,2 · · · SN+1,N+1





















(III.5.13)

The sub-matrix S
p

related to the interaction between the N ports, is identified in blue in equation

(III.5.13). From S
p
, one can compute its associated impedance matrix Zcav

p
(from equation (III.5.7)).

Then, the normalized impedance ξ
p

is determined (from equation (III.5.1)), and α can be determined

either from the variance of its elements (equations (III.5.2) and (III.5.3)), or by a fitting process.

The number of modes M : As, there is no reason to change the value of M , we set M = 600 as
previously.

III.5.7.2 Results

Four configurations have been considered and are listed in Table. III.5.4. As we had at our disposal
a four ports VNA, it was not possible to consider configurations with more than three PCBs because
one port was dedicated to the antenna.
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Concerning the RCM simulations, it took ≈ 10min to execute each of these RCM simulations.
This duration does not include the time needed to numerically compute Y rad.

At the time of writting this report, it was not possible to present a comparison, because the
measurement data were not validated, as the voltages/currents measured are too abnormal compared
to the RCM results. A measurement campaign dealing with the coupling between the PCBs inside the
chassis and a plane wave through the aperture is planned in the near future, as soon as possible.

III.5.8 Conclusion

Four applications of the RCM have been proposed. The first one was relative to the coupling between
two monopoles. From experimental data, the chaoticity of the system of interest has been assessed
between 5 and 25GHz, and we could conclude that this system could be considered as chaotic in
that frequency range. The loss parameter α was then determined for some frequencies by a fitting
process. Finally, the RCM was applied and the probability density functions of the induced voltages,
for experimental and simulated data, was compared with good agreements.

The second application was about the stacking of several PCBs having microstrip transmission
lines. Induced currents were investigated by means of CDFs computed from RCM simulations and
from experimental data. The results have revealed two behaviors depending on whether the boards
are in line of sight or not. Comparison between the RCM simulations and experimental data has
shown a good agreement for all the tested configurations.

The third study was about the effect of placing absorbers in the mock-up, and we have highlighted
that adding a surface of 1100 cm2 in the mock-up reduces the 95% percentile by a factor between
9.1 dB (RCM simulations) and 13.1 dB (measurements).

The last study was considering the couplings between a plane wave and one or several PCBs fitted
inside the desktop computer chassis. The analytical expressions of the required parameters have been
proposed. However, it is not possible to propose a comparison. Further experiments are required and
will be planned as soon as possible.
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Conclusion

The study of electromagnetic phenomena is valuable for the information system security (INFOSEC).
Indeed, it was highlighted that multiple threats, against the information security, result from
electromagnetic interferences (EMI). Specifically, one of these threats is their potential coupling to
inner elements of electronic equipment chassis. Depending on the EMI spectrum occupancy and on
the chassis geometry, couplings can be strong on account of resonances. Different scenarios that
could reduce information security, involving EMI and reverberant environments, were enumerated. A
study of these couplings was thus conducted on a generic desktop computer chassis. That chassis was
described by means of three different models.

The first model was used to experiment the other two, and is the actual instantiation of a computer
chassis mock-up with common dimensions. The mock-up was first designed, then manufactured and,
finally, validated. The second model aimed to simulate the mock-up with a full-wave simulation model
by using a commercial time-domain solver. From the obtained results, it was possible to determine
couplings between an aperture and several simple printed circuit boards (PCBs). The third model is
based on the random matrix theory (RMT) and takes the form of a sophisticated circuit model. It is
referred to as the random coupling model (RCM).

EMSEC analysis for the full-wave simulation model

The simulation model allowed to accurately compute the electric field inside the empty cavity at
several positions and with different aperture locations. The model was then fitted with simple PCBs.
An antenna factor was used to compare a set of measurements with the simulated data. It was
defined as the ratio of the electric field strength, at the aperture, to the voltage generated by this
field, at the end of transmission lines printed on the circuit boards. At first, a stacking of two PCBs
was considered. The moving difference (between measurements and simulations results) of antenna
factors, averaged over 40MHz, was computed. For this configuration, the results stay within a ±10 dB
interval. Finally, a stacking of four PCBs was considered. In this case, the moving difference of
averaged values was in the range ±17 dB. Thus, a larger uncertainty is observed when the number of
stacked PCBs increases.

From an electromagnetic security (EMSEC) perspective, although the uncertainty of this moving
difference is large, its knowledge can be an input for a risk assessment process. It can be used as a level
of confidence. Indeed, one can determine from it a safety margin in order to mitigate the coupling
risks. This safety margin may be used to select electronic components, that meet requirements.
Furthermore, when considering an intentional electromagnetic interference (IEMI) towards a sensitive
information system, it could help to determine a restricted area, around this information system,
which guarantees that the couplings would not exceed a given threshold. Indeed, the free-space
propagation between the IEMI source and the target system would not allow the aggression to reach
a given level.
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Consider an application close to the studied model, for which a risk assessment process highlights
that the couplings between an aperture and PCBs inside a cavity must remain below a given threshold.
This could be a desktop computer, with a plastic cover at the location of a DVD drive, and two stacked
PCBs that process sensitive information. It is then possible to run a full-wave simulation and to
determine the antenna factor between the incident electric field and the voltage under investigation. If
the obtained antenna factor added with the uncertainty (10 dB in our example) is above the threshold,
then mitigating procedures must be engaged. The design of the PCB may be modified to reduce the
coupling or the losses within the cavity can be increased (by adding absorbers for example).

As a main drawback, this procedure can be time-consuming to determine coupled currents and
voltages for randomized boundary conditions, especially for cavities whose inner shapes cannot be
clearly determined.

EMSEC analysis for the RCM

We have illustrated that the RCM is able to quickly simulate complex reverberant environments
by providing statistical quantities when the free-space impedance matrix and the cavity losses are
available. The RCM relies on the RMT, and the eigenmodes in reverberant environments are
randomized. The inner shape of a cavity is thus, also randomized. Multiple statistical quantities of
interest were exposed, and their implementation were detailed. They are all related to right tails of
the probability density functions (PDFs).

This study has shown that to mitigate couplings between two sensitive devices, it is necessary to
interleave other non sensitive buffer boards between them. Furthermore, if the risk assessment process
reveals that the magnitude of the induced current is still too high (regarding the 95% percentile for
example), the insertion of absorbers inside the chassis could help to meet the requirements.

A possible application workflow, related to EMSEC, is the following one. Consider the design of a
new electronic equipment installed within a chassis. Inside it, a board processing sensitive information
generates parasitic signals which couple onto a given cable. Previously, a risk analysis process or a
user feedback, determined that these parasitic signals must not exceed a given threshold. The first
step would be to determine the free space impedance matrix Zrad between the board and the cable,
from a full-wave simulation software for example. Then, the quality factor Q (or the loss factor α)
of the cavity should be assessed for a frequency range depending on the spectral occupancy of the
parasitic signals. Finally, the RCM may be applied to determine at which voltage/current magnitude
the 95% percentile is reached.

We remind the straightforward application previously exposed, that is relative to encryption
devices which are dedicated to encipher sensitive data. In such devices, the signal that carries the
plaintext (not enciphered) information penetrates the device via a cable, then the information is
enciphered and this generated signal exits the equipment through another cable. It is thus mandatory
to prevent couplings of the signal containing the plaintext (that may radiate inside the equipment
chassis) to the conductor that carries the ciphered data. Indeed, if this happened, the information
confidentiality would not be guaranteed anymore as a parasitic signal, correlated to the plaintext,
may be superposed on the outgoing signal. In such a case, advantage may be taken from the RCM,
as the designer of such specific equipment has the full knowledge about its constitutive elements since
the making is managed from scratch. The quantities Zrad and α may thus be easily accessed.
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Let us consider another situation where a server is used to run sensitive information system (i.e.
data storage, active directory, etc.). An integrator will select commercial off-the-shelf (COTS) ele-
ments (casing, hard drive, processor, ethernet controller, etc.) and will arrange these pieces of hardware
together. Here, one does not control the hardware design of these elements but needs to guarantee low
couplings between two inner components like the processor and the ethernet controller. For this case,
Zrad and α are difficult to obtain, and it thus requires an additional modeling work.

Future works

The study of the IEMI coupling through apertures inside a casing is valuable as these couplings
can have an impact on the disponibility of an information system, but also on the processed
information integrity. Thus, the comparison between the RCM simulations and measurements should
be completed. This comparison would allow to qualify the selected approach. In addition, a study
to take into account aperture of arbitrary shape could be relevant as only rectangular apertures were
considered for now.

The impact, on the extreme quantiles, of adding absorber materials inside cavities was exposed.
It would be of high interest to determine the relation between the quantity of absorber materials, in
terms of occupied surface in the cavity, to the drop of the extreme quantiles. From that relation, it
would be possible to determine the amount of absorber materials that need to be inserted inside the
cavity to meet the EMSEC requirements.

If the losses cannot be changed in a given cavity, it would be relevant to determine the relative
arrangement between the system ports, in order to minimize the couplings. In order to do this, the
free-space impedance could be determined from a full-wave simulation software, for several relative
arrangements. The RCM could then be applied to select the arrangement that gives the lowest
couplings, in terms of extreme quantiles for example.

Moreover, in this study, only a small cavity (400mm×440mm×170mm) was investigated. However,
other practical applications and different scales may be considered. We can imagine applying the RCM
to server racks where equipment with multiple purposes are stacked. In that type of configuration, and
from the EMSEC point of view, the mitigation of couplings between equipment is mandatory.
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Appendix A

Tables of the mock-up deformations

Mode fmnp f0 f1 δf1 f2 δf2 f3 δf3 f4 δf4

011 506.80 506.45 507.49 -2.06‰ 508.51 -4.08‰ 509.52 -6.07‰ 510.51 -8.03‰

021 778.14 777.60 778.22 -0.79‰ 778.83 -1.58‰ 779.43 -2.36‰ 780.04 -3.13‰

012 823.84 823.27 823.87 -0.72‰ 824.45 -1.43‰ 825.04 -2.14‰ 825.61 -2.84‰

110 945.92 945.27 939.67 5.92‰ 934.09 11.82‰ 928.55 17.69‰ 923.03 23.53‰

101 958.73 958.07 952.55 5.77‰ 947.04 11.52‰ 941.55 17.24‰ 936.09 22.94‰

022 1013.6 1012.9 1013.2 -0.31‰ 1009.6 3.26‰ 1006.0 6.83‰ 1002.4 10.39‰

111 1017.5 1016.8 1013.3 3.45‰ 1011.7 5.08‰ 1009.1 7.61‰ 1006.5 10.14‰

111 1017.5 1016.8 1014.3 2.54‰ 1013.8 3.03‰ 1014.2 2.60‰ 1014.6 2.18‰

031 1089.3 1088.6 1089.0 -0.39‰ 1089.4 -0.78‰ 1089.8 -1.17‰ 1090.2 -1.54‰

120 1115.1 1114.3 1110.4 3.52‰ 1106.5 7.02‰ 1102.6 10.51‰ 1098.7 13.98‰

Table A.1 – 20 first eigenfrequencies (in MHz) of the cavity with deformations on the right and left
sides from 1 to 4mm. fmnp is the theoretical eigenfrequency computed from equation (II.1.2). δfr was
computed as δfr = f0−fi

f0
, where f0 the is the eigenfrequency without any deformation computed from

the eigenmode solver.
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Mode f5 δf5 f6 δf6 f7 δf7 f8 δf8 f9 δf9

011 511.49 -9.95‰ 512.45 -11.85‰ 513.39 -13.71‰ 514.32 -15.55‰ 515.24 -17.35‰

021 780.63 -3.90‰ 781.22 -4.66‰ 781.81 -5.41‰ 782.39 -6.16‰ 782.96 -6.89‰

012 826.18 -3.53‰ 826.75 -4.22‰ 827.31 -4.90‰ 827.86 -5.57‰ 828.41 -6.24‰

110 917.54 29.33‰ 912.10 35.09‰ 906.69 40.81‰ 901.33 46.48‰ 896.01 52.11‰

101 930.66 28.61‰ 925.27 34.24‰ 919.91 39.83‰ 914.59 45.38‰ 909.32 50.88‰

022 998.77 13.95‰ 995.18 17.49‰ 991.61 21.02‰ 988.04 24.53‰ 984.50 28.04‰

111 1004.0 12.66‰ 1001.4 15.18‰ 998.85 17.69‰ 996.30 20.20‰ 993.76 22.69‰

111 1015.0 1.76‰ 1015.5 1.34‰ 1015.9 0.92‰ 1016.3 0.51‰ 1016.7 0.10‰

031 1090.6 -1.91‰ 1091.0 -2.27‰ 1087.3 1.18‰ 1083.5 4.64‰ 1079.8 8.08‰

120 1094.9 17.43‰ 1091.1 20.86‰ 1091.4 20.55‰ 1091.8 20.21‰ 1092.2 19.87‰

Table A.2 – 20 first eigenfrequencies (in MHz) of the cavity with deformations on the right and left
sides from 5 to 9mm.

Mode fmnp f0 f1 δf1 f2 δf2 f3 δf3 f4 δf4

011 506.80 506.45 507.25 -1.59‰ 508.07 -3.20‰ 508.89 -4.82‰ 509.72 -6.46‰

021 778.14 777.60 778.04 -0.56‰ 778.47 -1.12‰ 778.92 -1.69‰ 779.36 -2.27‰

012 823.84 823.27 825.26 -2.41‰ 827.25 -4.83‰ 829.26 -7.27‰ 831.29 -9.73‰

110 945.92 945.27 944.42 0.89‰ 943.56 1.81‰ 942.67 2.74‰ 941.77 3.70‰

101 958.73 958.07 958.50 -0.45‰ 958.93 -0.90‰ 959.37 -1.35‰ 959.81 -1.81‰

022 1013.6 1012.9 1014.2 -1.31‰ 1014.2 -1.34‰ 1012.9 -0.02‰ 1011.6 1.31‰

111 1017.5 1016.8 1015.6 1.26‰ 1015.6 1.25‰ 1016.9 -0.08‰ 1018.0 -1.12‰

111 1017.5 1016.8 1017.1 -0.28‰ 1017.4 -0.55‰ 1017.7 -0.83‰ 1018.3 -1.42‰

031 1089.3 1088.6 1088.9 -0.27‰ 1089.2 -0.55‰ 1089.5 -0.83‰ 1089.8 -1.11‰

120 1115.1 1114.3 1113.7 0.55‰ 1113.1 1.11‰ 1112.4 1.69‰ 1111.8 2.29‰

Table A.3 – 20 first eigenfrequencies (in MHz) of the cavity with deformations on the top and bottom
sides from 1 to 4mm.
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Mode f5 δf5 f6 δf6 f7 δf7 f8 δf8 f9 δf9

011 510.55 -8.11‰ 511.40 -9.78‰ 512.25 -11.46‰ 513.11 -13.15‰ 513.97 -14.86‰

021 779.81 -2.85‰ 780.27 -3.43‰ 780.73 -4.02‰ 781.20 -4.62‰ 781.67 -5.23‰

012 833.32 -12.20‰ 835.37 -14.69‰ 837.43 -17.19‰ 839.50 -19.71‰ 841.59 -22.25‰

110 940.84 4.69‰ 939.88 5.69‰ 938.91 6.73‰ 937.91 7.78‰ 936.89 8.86‰

101 960.25 -2.28‰ 960.70 -2.75‰ 961.16 -3.22‰ 961.61 -3.70‰ 962.08 -4.18‰

022 1010.2 2.68‰ 1008.8 4.06‰ 1007.3 5.48‰ 1005.9 6.91‰ 1004.4 8.37‰

111 1018.3 -1.40‰ 1018.6 -1.69‰ 1018.9 -1.98‰ 1019.2 -2.27‰ 1019.5 -2.57‰

111 1019.7 -2.77‰ 1021.0 -4.13‰ 1022.4 -5.50‰ 1023.8 -6.88‰ 1025.2 -8.27‰

031 1090.1 -1.39‰ 1090.4 -1.68‰ 1090.7 -1.96‰ 1091.0 -2.25‰ 1091.3 -2.55‰

120 1111.1 2.91‰ 1110.4 3.55‰ 1109.6 4.20‰ 1108.9 4.87‰ 1108.1 5.56‰

Table A.4 – 20 first eigenfrequencies (in MHz) of the cavity with deformations on the top and bottom
sides from 5 to 9mm.
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Appendix B

Admittance of an aperture

The instantaneous electric and magnetic fields may be written as:

~E(x, y, z, t) = ℜ[ ~E(x, y, z)ejωt] = ℜ[ ~Eejωt] (B.1)

~H(x, y, z, t) = ℜ[ ~H(x, y, z)ejωt] = ℜ[ ~Hejωt] (B.2)

Then, generalized Maxwell’s equations for time-harmonic electromagnetic fields in free space
are [Balanis, 2012]:

~curl ~E = −jωµ0 ~H − ~M (B.3)

~curl ~H = jωǫ0 ~E + ~J (B.4)

div ~E =
ρe
ǫ0

(B.5)

div ~H =
ρm
µ0

(B.6)

where:

• ~E is the electric field intensity;

• ~H is the magnetic field intensity;

• ~J is the electric current density;

• ~M is the magnetic current density;

• ρe is the electric charge density;

• ρm is the magnetic charge density.

The divergence of (B.4) gives:

div ~curl ~H = jωǫ0div ~E + div ~J (B.7)

From vector analysis, if ~A is a field vector, then:

div ~curl ~A = 0 (B.8)
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Which leads to the electric charge conservation equation:

div ~J + jωǫ0div ~E = 0 (B.9)

div ~E =
div ~J

−jωǫ0
=

jdiv ~J

ωǫ0
(B.10)

Because of the symmetry of Maxwell’s equation, we also have:

div ~curl ~E = −jωµ0div ~H − div ~M (B.11)

div ~H =
jdiv ~M

ωµ0
(B.12)

We can then express the electric field ~E from the electric current density ~J and the magnetic
current density ~M :

~curl ~curl ~E = −jωµ0 ~curl ~H − ~curl ~M (B.13)
−−→
grad div ~E −∆ ~E = −jωµ0jωǫ0 ~E − jωµ0 ~J − ~curl ~M (B.14)

where:

k0 =
ω

c
= ω
√
ǫ0µ0 (B.15)

thus:

−−→
grad

jdiv ~J

ωǫ0
−∆ ~E = k20 ~E − jωµ0 ~J − ~curl ~M (B.16)

(∆ + k20) ~E =
−−→
grad

jdiv ~J

ωǫ0
+ jωµ0 ~J + ~curl ~M (B.17)

And for the magnetic field ~H:

~curl ~curl ~H = jωǫ0 ~curl ~E + ~curl ~J (B.18)
−−→
grad div ~H −∆ ~H = −jωǫ0jωµ0 ~H − jωǫ0 ~M + ~curl ~J (B.19)

−−→
grad

jdiv ~M

ωµ0
−∆ ~H = k20 ~H − jωǫ0 ~M + ~curl ~J (B.20)

(∆ + k20)
~H =

−−→
grad

jdiv ~M

ωµ0
+ jωǫ0 ~M − ~curl ~J (B.21)

In our problem, there is no electric current density:

~J = ~0 (B.22)

Rearranging (B.21) gives:

(∆ + k20) ~H =
j

ωµ0

[−−→
grad div ~M + k20 ~M

]

(B.23)
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We define the Fourier transform of a function f ∈ L1(R
3) as:

f̃(ξ1, ξ2, ξ3) = F(f)(ξ1, ξ2, ξ3) =
∫

R3

f(x)e−j(
∑i=3

i=1 xiξi)d3x (B.24)

with the following property:

F
(

∂f

∂xi

)

(ξ1, ξ2, ξ3) = jξif̃(ξ1, ξ2, ξ3) (B.25)

If F(A(x, y, z)) = Ã(kx, ky, kz), then

F
(

∂A

∂x

)

= jkxÃ (B.26)

Then, we can express ∆ ~̃H, from kx, ky and kz.

∆ ~H = ∇2Hx~ex +∇2Hy~ey +∇2Hz~ez (B.27)

F
(

∆ ~H|x
)

= −k2xH̃x − k2yH̃x − k2zH̃x = −(k2x + k2y + k2z)H̃x (B.28)

F
(

∆ ~H|y
)

= −(k2x + k2y + k2z)H̃y (B.29)

F
(

∆ ~H|z
)

= −(k2x + k2y + k2z)H̃z (B.30)

F
(

∆ ~H
)

= −(k2x + k2y + k2z)(H̃x~ex + H̃y~ey + H̃z~ez) (B.31)

Assuming that k2 = k2x + k2y + k2z , we have:

F
(

∆ ~H
)

= −k2 ~̃H (B.32)

Thus, the Fourier transform of equation (B.23) gives:

(k20 − k2) ~̃H =
j

ωµ0

[−−→
grad div ~̃M + k20

~̃M
]

(B.33)

F
(−−→
grad div ~M

)

, may be expressed as a product of a matrix by a vector ~̃M = [M̃x, M̃y, M̃z]
T :

div ~M =
∂Mx

∂x
+
∂My

∂y
+
∂Mz

∂z
(B.34)

F
(

div ~M
)

= jkxM̃x + jkyM̃y + jkzM̃z (B.35)

−−→
grad [div ~M ]x =

∂div ~M

∂x
~ex =

(

∂2Mx

∂x2
+
∂2Mx

∂x∂y
+
∂2Mx

∂x∂z

)

~ex (B.36)

−−→
grad [div ~M ]y =

∂div ~M

∂y
~ey =

(

∂2My

∂x2
+
∂2My

∂x∂y
+
∂2My

∂x∂z

)

~ey (B.37)

−−→
grad [div ~M ]z =

∂div ~M

∂z
~ez =

(

∂2Mz

∂x2
+
∂2Mz

∂x∂y
+
∂2Mz

∂x∂z

)

~ez (B.38)
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At the end, by taking the Fourier transform of equations (B.36) to (B.38), we obtain:

F
(−−→
grad div ~M

)

= −







k2x kxky kxkz

kxky k2y kykz

kxkz kykz k2z







−→̃
M (B.39)

Thus, equation (B.33) becomes:

(k20 − k2) ~̃H =
j

ωµ0







k20 − k2x −kxky −kxkz
−kxky k20 − k2y −kykz
−kxkz −kykz k20 − k2z







−→̃
M (B.40)

From the surface equivalence theorem (Huygens’s principle), we can replace the field at the aper-
ture by a magnetic current density:

−→
M = 2~ez ∧ ~EtδS (B.41)

where S described the surface of the aperture (Figure III.2.2), and es is a basis of modes.
Thus :

−→
M = 2~ez ∧

∑

s

Vs~es(~x⊥)δS (B.42)

As the modes have only orthogonal components, we can write:

~es = esx~ex + esy~ey (B.43)

~̃es = ẽsx~ex + ẽsy~ey (B.44)

Thus:

−→̃
M = 2~ez ∧

∑

s

Vs(ẽsx~ex + ẽsy~ey) = 2
∑

s

Vs(ẽsx~ey − ẽsy~ex) (B.45)

M̃x = −2
∑

s

Vsẽsy (B.46)

M̃y = 2
∑

s

Vsẽsx (B.47)

M̃z = 0 (B.48)

By inserting the components of ~̃M in (B.40) as:

~̃H =
j

ωµ0(k20 − k2)







k20 − k2x −kxky −kxkz
−kxky k20 − k2y −kykz
−kxkz −kykz k20 − k2z













−2∑s Vsẽsy

2
∑

s Vsẽsx

0






(B.49)
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We can also write the orthogonal components ~̃H⊥ of ~̃H as (see equation (III.2.10)):

~̃H⊥ = H̃x~ex + H̃y~ey =
∑

s

Is~ez ∧ ~̃es =
∑

s

Is~ez ∧ (ẽsx~ex + ẽsy~ey) (B.50)

H̃x = −
∑

s

Isẽsy (B.51)

H̃y =
∑

s

Isẽsx (B.52)

Thus:

∑

s

Isẽsy =
2j

ωµ0(k20 − k2)

[

(k20 − k2x)
∑

s

Vsẽsy + kykx
∑

s

Vsẽsx

]

(B.53)

∑

s

Isẽsx =
2j

ωµ0(k20 − k2)

[

kxky
∑

s

Vsẽsy + (k20 − k2y)
∑

s

Vsẽsx

]

(B.54)

Leading to:

∑

s

Is~̃es =
2j

ωµ0(k20 − k2)

(

k20 − k2y kxky

kxky k20 − k2x

)

∑

s

Vs~̃es (B.55)

We want to find an admittance Y rad
s′s , expressed as Is′ =

∑

s Y
rad
s′s Vs. We take the inverse 3D

Fourier transform of (B.55):

∑

s

Is~es =
1

(2π)3

∫

R3

2j

ωµ0(k20 − k2)

(

k20 − k2y kxky

kxky k20 − k2x

)

∑

s

Vs~̃ese
j~k.~x⊥d3k (B.56)

We then define the inner product between two modes as:

< ~es, ~es′ >=

∫

aperture
~es~e

∗
s′ dxdy (B.57)

in space, and in the Fourier basis:

< ~̃es, ~̃es′ >=

∫

R2

~̃es~̃es′dkxdky (B.58)

At z = 0, ~x = ~x⊥, after projecting onto ~e ∗
s′ , we have:

Is′ =

∫

R2

~e ∗
s′

(

1

(2π)3

∫

R3

2j

ωµ0(k20 − k2)

(

k20 − k2y kxky

kxky k20 − k2x

)

∑

s

Vs~̃ese
j~k. ~x⊥d3k

)

dxdy (B.59)

Thanks to Fubini, we can switch the integration of the inner product and the integration of the
inverse Fourier transform:
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Is′ =

∫

R3

2j

ωµ0(k20 − k2)

(

1

(2π)3

∑

s

Vs~̃es

(

k20 − k2y kxky

kxky k20 − k2x

)

∫

R2

~e ∗
s′ e

j~k. ~x⊥dxdy

)

d3k (B.60)

We can notice that:

∫

R2

~e ∗
s′ e

j~k.~x⊥dxdy =

(∫

R2

~es′e
−j~k.~x⊥dxdy

)∗
= ~̃e ∗

s′ (B.61)

Thus:

Is′ =

∫

R3

2j

ωµ0(k20 − k2)

(

1

(2π)3

∑

s

Vs~̃es

(

k20 − k2y kxky

kxky k20 − k2x

)

~̃e ∗
s′

)

d3k (B.62)

=
∑

s

Vs

∫

R3

2j

ωµ0(k20 − k2)

(

1

(2π)3
~̃es

(

k20 − k2y kxky

kxky k20 − k2x

)

~̃e∗s′

)

d3k (B.63)

=
∑

s

VsY
rad
s′s (B.64)

And we finally have the expression of the admittance of the aperture:

Y rad
s′s =

∫

R3

2j

ωµ0(k20 − k2)

(

1

(2π)3
~̃es

(

k20 − k2y kxky

kxky k20 − k2x

)

~̃e∗s′

)

d3k (B.65)

=
2j

ωµ0(2π)3

∫

R3

1

(k20 − k2)

(

~̃es

(

k20 − k2y kxky

kxky k20 − k2x

)

~̃e∗s′

)

d3k (B.66)

with:

1

ωµ0
=

1

η0k0
=

√

ǫ0
µ0

1

k0
(B.67)
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Appendix C

Derivation of the Random coupling model

Contents
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

C.2 Derivation of the RCM in two dimensions . . . . . . . . . . . . . . 189

C.3 Statistical representation . . . . . . . . . . . . . . . . . . . . . . . . 191

C.4 Radiation impedance as a deterministic quantity . . . . . . . . . . 193

C.5 Generalisation to the multiple port case . . . . . . . . . . . . . . . 195

C.5.1 Deterministic approach . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C.5.2 Statistical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C.1 Introduction

This appendix is relative to the derivation of the random coupling model (RCM). At first the RCM
was set for 2D cavities in [Zheng, 2005], then the results were generalized for 3D cavities in [Hemmady,
2006]. We will briefly remind the calculation steps that were well exposed in these two references.
Some additional details will be given for these succinctly described steps. We will only consider two
dimension cavities here.

C.2 Derivation of the RCM in two dimensions

Let us consider a closed 2D cavity with several ports connected to it. The cavity consists of two plates
spaced by a gap h. The cavity is sealed at its edges. The electric field is considered constant in the z
direction ~E(x, y, z, t) = Ez(~x, t)~ez with ~x = x~ex + y~ey, and ~B(~x, t) = [Bx, By, 0]

T = µ0 ~H(~x, t). Thus,
the voltage between the top and the bottom plates is VT (~x, t) = −hEz(~x, t). The surface current
density flowing on the plates is:

~Js(~x, t) = ~H(~x, t) ∧ ~ez (C.1)

and the surfacic charge density on the plates is:

ρs(~x, t) = −ǫ0Ez(~x, t) (C.2)

Equation (C.1) can be expressed in terms of localized current sources as: ~Js(~x, t) =
∑

i Ii(t)ui(~x)~e⊥
(with ~ez.~e⊥ = 0), where ui(~x) describes the distribution of the current in the vicinity ((x − xi)2 +
(y − yi)2 < l2i , where li is much smaller than the cavity dimensions) of the i-th port of the system.
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This profile function is normalized such as:
s

R2 ui(~x)dxdy = 1. In a single port system, we have
~Js(~x, t) = I(t)u(~x)~e⊥.

Applying the charge conservation equation to this system leads to:

∂ρs(~x, t)

∂t
+ div( ~Js(~x, t)) = I(t)u(~x) (C.3)

by time derivating (C.3), we obtain:

∂2ρs(~x, t)

∂t2
+
∂

∂t
div( ~Js(~x, t)) =

∂I(t)

∂t
u(~x) (C.4)

∂2

∂t2
(−ǫ0Ez(~x, t)) + div

(

∂ ~H(~x, t)

∂t
∧ ~ez

)

=
∂I(t)

∂t
u(~x) (C.5)

From the Faraday’s law we get:

∂ ~H(~x, t)

∂t
= − 1

µ0

−−→
curl ~E(~x, t)

and from vector calculus:

∂ ~H(~x, t)

∂t
∧ ~ez = −

1

µ0

−−→
curl ~E(~x, t) ∧ ~ez

= − 1

µ0

(

(~ez · div) ~E(~x, t)−−−→grad( ~E(~x, t) · ~ez)
)

=
1

µ0

−−→
gradEz(~x, t)

thus:

∂2

∂t2
(−ǫ0Ez(~x, t)) +

1

µ0

div
−−→
gradEz(~x, t) =

∂I(t)

∂t
u(~x) (C.6)

by multiplying by hµ0:

1

c2
∂2VT (~x, t)

∂t2
−∇2VT (~x, t) = hµ0u(~x)

∂I(t)

∂t
(C.7)

Assuming that we have I = Îejωt and VT = V̂T e
jωt:

−ω2 1

c2
V̂T (~x)−∇2V̂T (~x) = jωhµ0u(~x)Î

(∇2 + k2)V̂T (~x) = −jkhη0u(~x)Î (C.8)

with c2 = 1
µ0ǫ0

, k = ω
c and η0 = µ0c = 1/ǫ0c =

√

µ0/ǫ0.

One has now to define the port voltage V (t), to be able to determine an impedance. V (t) is given
by:

V (t) =
x

R2

u(~x)VT (~x, t)dxdy (C.9)

which correspond to the weighted average of VT (~x, t).
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Then, V̂T (~x) may be expanded onto a basis of eigenfunctions of the closed cavity like:

V̂T =
∑

n

cnφn(~x) (C.10)

With (∇2 + k2n)φn(~x) = 0,
s

R2 φi(~x)φj(~x)dxdy = δij and φn(~x) = 0 at the cavity boundaries. From
equation (C.9), and with, V = V̂ ejωt, we get:

V̂ =
x

R2

u(~x)
∑

n

cnφn(~x)dxdy

=
∑

n

cn
x

R2

u(~x)φn(~x)dxdy

=
∑

n

cn〈u(~x)φn(~x)〉 (C.11)

By mutiplying (C.8) by φn(~x) and integrating it with respect to x and y:

x

R2

φn(~x)(∇2 + k2)
∑

m

cmφm(~x)dxdy = −jkhη0
x

R2

u(~x)φn(~x)Îdxdy

∑

m

cm(−k2m + k2)
x

R2

φn(~x)φm(~x)dxdy = −jkhη0
x

R2

u(~x)φn(~x)Îdxdy

cn(k
2 − k2n) = −jkhη0〈u(~x)φn(~x)〉Î (C.12)

where kn = ωn

c is the wavenumber related to the mode φn(~x). Then from (C.11) and (C.12):

V̂ =
∑

n

cn〈u(~x)φn(~x)〉

= −j
∑

n

khη0〈u(~x)φn(~x)〉2
k2 − k2n

Î = ZÎ (C.13)

Which leads to a definition of the impedance for a two dimension cavity expressed as a sum over
a high number of eigenmodes of the cavity.

Z = −j
∑

n

khη0〈u(~x)φn(~x)〉2
k2 − k2n

(C.14)

C.3 Statistical representation

The definition of the impedance given in (C.14) is deterministic. Indeed, the modes (wave numbers k2n
and eigenfunctions φn(~x)) need to be determined. This is not a trivial problem as it requires to fully
know the geometry of the system as well as the materials. To circumvent this problem, the modes are
replaced by random quantities.

The eigenfunctions of the cavity may be expressed as a random superposition of N plane waves
(Berry’s hypothesis) as:

φn(~x) ≃
N
∑

i=1

1√
N
αi exp (jkn~ei · ~x+ jβi) (C.15)
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with:

~kn = kn

(

cos θi

sin θi

)

= kn~ei (C.16)

where αi, βi and θi are random variables.
We will now determine the variance of 〈u(~x)φn(~x)〉. In equation (C.16), kn is set to be known, but

not θi which is taken to be uniformly distributed (θi ∼ U(0, 2π)). From (C.15) we can compute 〈uφn〉:
√
N〈uφn〉 =

x

R2

u(~x)φn(~x)dxdy (C.17)

=
x

R2

u(~x)

(

N
∑

i=1

αi exp (jkn~ei · ~x+ jβi)

)

dxdy (C.18)

=

N
∑

i=1

αi

x

R2

u(~x) exp (jkn~ei · ~x+ jβi) dxdy (C.19)

=

N
∑

i=1

αiũ
∗(~kn)e

jβi (C.20)

where ũ∗(~kn) =
s

R2 u(~x) exp (jkn~ei · ~x+ jβi) dxdy is the Fourier transform of u(~x).

From the central limit theorem, the quantity 〈uφn〉 is a gaussian random variable with a mean
value of 0. Its variance needs now to be determined. As Var [〈uφn〉] = E

[

〈uφn〉2
]

= E [〈uφn〉〈uφn〉∗],
we start to compute 〈uφn〉〈uφn〉∗:

N〈uφn〉〈uφn〉∗ =
(

N
∑

i=1

αiũ
∗(kn~ei)e

jβi

)(

N
∑

k=1

αkũ
∗(kn~ek)e

jβk

)∗

(C.21)

=
N
∑

i=1

α2
i ũ

∗(kn~ei)ũ(kn~ei)e
jβie−jβi +

N
∑

i=1

αiũ
∗(kn~ei)e

jβi









N
∑

k=1
k 6=i

αkũ(kn~ek)e
−jβk









(C.22)

=

N
∑

i=1

α2
i |ũ∗(kn~ei)|2 +

N
∑

i=1

N
∑

k=1
k 6=i

αiαkũ
∗(kn~ei)ũ(kn~ek)e

j(βi−βk) (C.23)

Then the variance is derived (αi, βi and θi are now random variables):
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NVar[〈uφn〉] = N E
[

〈uφn〉2
]

= N E [〈uφn〉〈uφn〉∗]

= E









N
∑

i=1

α2
i |ũ∗(kn~ei)|2 +

N
∑

i=1

N
∑

k=1
k 6=j

αiαkũ
∗(kn~ei)ũ(kn~ek)e

j(βi−βk)









= E

[

N
∑

i=1

α2
i |ũ∗(kn~ei)|2

]

+ E









N
∑

i=1

N
∑

k=1
k 6=i

αiαkũ
∗(kn~ej)ũ(kn~ek)e

j(βi−βk)









=
N
∑

i=1

E
[

α2
i

]

E
[

|ũ∗(kn~ei)|2
]

+

N
∑

i=1

N
∑

k=1
k 6=i

E [αi] E [αk] E [ũ∗(kn~ei)ũ(kn~ek)]E
[

ej(βi−βk)
]

(C.24)

=
1

A

N
∑

i=1

E
[

|ũ∗(kn~ei)|2
]

(C.25)

As θi is uniformly distributed (i.e. θi ∼ U(0, 2π)), the probability density function of θi is pθj (θi) =
1
2π1[0,2π](θi), and the expectation of |ũ∗(kn~ei)|2 is

E
[

|ũ∗(kn~ei)|2
]

=

∫ 2π

0

1

2π
|ũ∗(kn~ei)|2dθi (C.26)

By taking the limit when N tends to infinity, which corresponds to superposition of an infinity of
plane waves, we get:

Var [〈uφn〉] =
1

NA

N
∑

i=1

E
[

|ũ∗(kn~ei)|2
]

(C.27)

=
1

A

∫ 2π

0

1

2π

∣

∣

∣ũ∗
(

~kn

)∣

∣

∣

2
dθ (C.28)

C.4 Radiation impedance as a deterministic quantity

The quantity 〈uφn〉2 is now fully determined, then it can be replaced by w2
n multiplied by a scaling

factor as shown below. We take wn to be a gaussian random variable with its mean equal to 0. This
scaling factor corresponds to the free space impedance of the ports of the system. In [Zheng et al.,
2006b], it is shown that the impedance cavity can take the following form:

V̂ = ZÎ = − j

π

∞
∑

n

∆
RR(kn)w

2
n

k2 − k2n
Î (C.29)

where ∆ = 4π
A , is the mean spacing between two consecutive eigenvalues, and

RR(k) =
khη0
4

∫ 2π

0
|ũ∗(~kn)|2dθ (C.30)

We can verify that, khη0〈uφn〉2 (equation (C.14)) and 1
π∆RR(kn)w

2
n (equation (C.29)) have the

same variance.
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We remind the following statistical properties: if X ∼ N (µ, σ), then E[X] = µ, and Var[X] = σ2.
Moreover X2 ∼ σ2χ2(1), E[χ2(1)] = 1 and Var[χ2(1)] = 2 thus Var[X2] = 2σ4.

Thus, from one side, 〈uφn〉 ∼ N
(

0,

√

1
A

∫ 2π
0

1
2π

∣

∣

∣
ũ∗
(

~kn

)∣

∣

∣

2
dθ

)

, then:

Var[〈uφn〉2] = 2Var[〈uφn〉]2 (C.31)

= 2

(

1

A

∫ 2π

0

1

2π

∣

∣

∣
ũ∗
(

~kn

)∣

∣

∣

2
dθ

)2

(C.32)

and from the other side:

Var

[(

1

A

∫ 2π

0

1

2π

∣

∣

∣
ũ∗(~kn)

∣

∣

∣

2
dθ

)

w2
n

]

=

(

1

A

∫ 2π

0

1

2π

∣

∣

∣
ũ∗(~kn)

∣

∣

∣

2
dθ

)2

Var
[

w2
n

]

(C.33)

= 2

(

1

A

∫ 2π

0

1

2π

∣

∣

∣ũ∗
(

~kn

)∣

∣

∣

2
dθ

)2

(C.34)

We then argue that the assertion holds, and equations (C.14) (with (C.28)) and (C.29) have the
same variance and mean value.

If we remove the side boundaries of the cavity, then the eigenfrequencies are not discrete but
continuous. In this case, we can express an impedance ZR(k) which is taken to be a free-space
impedance for the port. From (C.29), we get, as the step between two consecutive eigenfrequencies
tends to zero, the following result:

ZR(k) = lim
α→∞

− j

π

αN
∑

n=1

∆

α

RR(kn)

k2 − k2n
(C.35)

= − j

π

∫ ∞

0

RR(kn)

k2 − k2n
dk2n (C.36)

From the Kramers-Kröning relations we get XR(k):

ℜ[−jZR(k)] = XR(k) = P

(

− 1

π

∫ ∞

0

RR(k)

k2 − k2n
dk2n

)

(C.37)

with XR(k) = ℑ[ZR(k)].

Then, Z is expressed as a mean value Z̄ and a fluctuating part Z̃:

Z = Z̄ + Z̃ (C.38)

As E[w2
n] = 0, and from equation (C.29):

Z̄ = − j

π

∞
∑

n

E

[

∆
RR(kn)w

2
n

k2 − k2n

]

= − j

π

∞
∑

n

∆
RR(kn)

k2 − k2n
(C.39)

Then, (C.39) may be approximated by (C.37), with ∆ the mean spacing between eigenvalues, and:

Z̄ = jXR(k) (C.40)

Finally, (C.38) may be rewritten like [Zheng et al., 2006b]:
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Z = Z̄ + Z̃ = j(XR(k) +RR(k)ξ) (C.41)

with:

ξ = − 1

π

N
∑

n=1

1

∆

w2
n

k2 − k2n
= − 1

π

N
∑

n=1

w2
n

k̃2 − k̃2n
(C.42)

where: k̃2 = k2

∆ and k̃2n = k2n
∆ .

C.5 Generalisation to the multiple port case

C.5.1 Deterministic approach

Equation (C.8) may be changed to:

(∇2 + k2)VT (t) = −jkhη0
M
∑

i=1

ui(~x)Îi (C.43)

Where the phasor voltage is defined as in (C.9):

Vi =
∑

j

Zij Îj =
x

R2

ui(~x)VT (~x, t)dxdy ≡ 〈uiV̂T 〉 (C.44)

Thus, the cavity impedance is given by:

Z = −jkhη0
∑

n

~φn ⊗ ~φTn
k2 − k2n

(C.45)

where:

~φn =













〈u1φn〉
〈u2φn〉

...

〈uMφn〉













(C.46)

C.5.2 Statistical approach

From the Berry’s hypothesis, we argue that the vector ~φn is composed of Gaussian elements with zero
mean. For a given eigenfunction φn, and depending on the location of the ports (linked to ui(~x)), two
〈uaφn〉 and 〈ubφn〉 may be correlated. Indeed, for two close port locations, the correlation function of
the random plane wave superpositions leads to ψ(~r, ~r ′) = E [φn(~r)φn(~r

′)] ∝ J0(k|~x − ~xi|) [Alhassid
and Lewenkopf, 1995, Zheng et al., 2006b].

To take into account this, the correlation ~φn is changed to:

~φn = L(kn)~wn (C.47)
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The excitation of a given port by an eigenmode depends on its geometry and on the structure of
the eigenfunction in the vicinity of this port. As for the 2D case, and from the Berry’s hypothesis,
the random superposition of plane waves is taken into account by ~wn. Then, L(kn) is relative to the
port geometry.

Equation (C.45) becomes:

Z = −jkhη0
∑

n

L(kn)~wn ~w
T
nL

T (kn)

k2 − k2n
(C.48)

As for the 2D situation with a single port, we compute the expectation of Z:

E
[

Z
]

= −j
∫ ∞

0

khη0
∆

L(kn) E
[

~wn ~w
T
n

]

LT (kn)

k2 − k2n
dk2n (C.49)

= ZR(k) (C.50)

= RR(k) + jXR(k) (C.51)

With this formulation, RR(k) becomes [Zheng, 2005]:

RR(k) =
πkhη0
∆

L(k)LT (k) (C.52)

Thus (C.48) becomes:

Z = jXR −
j

π

∑

n

1

∆

RR(kn)
1
2 ~wn ~w

T
nRR(kn)

1
2

k2 − k2n
(C.53)

= jXR +
[

RR
1
2

]

[

− j

π

∑

n

1

∆

~wn ~w
T
n

k2 − k2n

]

[

RR
1
2

]

(C.54)

= jXR +
[

RR
1
2

]

ξ
[

RR
1
2

]

(C.55)
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Appendix D

Determination of the antenna factor from
experimental data, and of the electric
field from the antenna factor

Contents
D.1 Determination of the electric field strength at a distance D from

an antenna using its antenna factor AF . . . . . . . . . . . . . . . . 197

D.2 Determination of the antenna factor with two identical antennas 199

In this appendix, a formula is set to determine the field strength at a distance D using the antenna
factor of an antenna. Moreover, the procedure to measure the antenna factor AF with two identical
antennas is recalled. This expression is used to determine the field at the location of an aperture, as
needed in III.5.7.

The antenna factor is defined as the ratio of the field illuminating an antenna ~Einc to the voltage
that this field generates across the impedance of the receiver Z0.

AF =

∣

∣

∣

~Einc

∣

∣

∣

|Vs|
(D.1)

Fig. D.1a depicts the studied configuration.

D.1 Determination of the electric field strength at a distance D from
an antenna using its antenna factor AF .

The electric field ~E(~r), in the far field region, may be expressed as [Balanis, 2016]:

~E(~r) = −je
−j~k~r

4π|~r|







0

ηkRθ(θ, φ) + kFθ(θ, φ)

ηkRφ(θ, φ) + kFφ(θ, φ)






= −jηk

4π

e−j~k~r

|~r|
~F⊥(θ, φ) (D.2)

where the quantities Rθ(θ, φ) and Fθ(θ, φ) are related to the electric and magnetic sources that are
responsible for the field. η is the free space impedance (η = 120πΩ), ~r is the position of interest, and
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V0

Z0 I

Z0 Vs

D

~Einc ↑

(a) Principle schematic.

V0

Z0 I

Zg eg

Zg

Z0 Vs

(b) Equivalent circuit.

Fig. D.1 – Principle schematic and equivalent circuit.

k is the wavelength.

At the receiving antenna, the effective length le allows to determine the open circuit voltage Voc

when the antenna is illuminated by a plane wave. When there is a perfect polarization matching
between the antenna and incident electric field, the voltage across the impedance of the receiver Z0

may be express as:

Vs = eg
Z0

Z0 + Zg
= Eincle

Z0

Z0 + Zg
(D.3)

Then:

AF =

∣

∣

∣

∣

Einc

Vs

∣

∣

∣

∣

=
|Z0 + Zg|

Z0

1

|le|
(D.4)

At the transmitting antenna, the electric field Einc produced by the current I through the antenna
input impedance Zg is:

Einc = j
ηk

4π

e−jkri

ri
Ile = j

ηk

4π

e−jkri

ri

V0
Z0 + Zg

le (D.5)

In case of a perfect polarization, the electric field at the location of the receiving antenna is:

Einc = j
ηk

4π

e−jkD

D
Ile (D.6)

= j
ηk

4π

e−jkD

D

V0
Z0 + Zg

le (D.7)

= j
ηk

4π

e−jkD

D

V0
Z0

Z0

Z0 + Zg
le (D.8)

And the electric field strength |Einc| is expressed as:

|Einc| = ηk
4π

1
D

|V0|
Z0

1
|AF | (D.9)
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D.2 Determination of the antenna factor with two identical antennas

Let us use two identical antennas with the same antenna factor. If we rewrite equation (D.3) for
the receiving antenna, and injecting equation D.8 that gives the electric field at a distance D of a
transmitting antenna (configuration shown in Fig. D.1a), we obtain:

Vs = Eincle
Z0

Z0 + Zg
(D.10)

= j
ηk

4π

e−jkD

D

V0Z0

(Z0 + Zg)2
|le|2 (D.11)

Then:

Vs
V0

= j
ηk

4π

e−jkD

D

Z0

(Z0 + Zg)2
|le|2 (D.12)

If we take the module of (D.12), we have:

∣

∣

∣

∣

Vs
V0

∣

∣

∣

∣

=
ηk

4π

1

D

Z0

(Z0 + Zg)2
|le|2 (D.13)

∣

∣

∣

∣

Vs
V0

∣

∣

∣

∣

=
ηk

4π

1

D

1

Z0AF 2
(D.14)

Then:

AF 2 =
ηk

4π

1

D

1

Z0

∣

∣

∣

∣

V0
Vs

∣

∣

∣

∣

(D.15)

AF =

√

ηk

4π

1

D

1

Z0

∣

∣

∣

∣

V0
Vs

∣

∣

∣

∣

(D.16)

Thanks to a vector network analyzer, the ratio
∣

∣

∣

Vs

V0

∣

∣

∣ is acquired as:

|S21| =

√

|Vs|2
Z0

√

|V0|2
Z0

=

∣

∣

∣

∣

Vs
V0

∣

∣

∣

∣

(D.17)

Finally, the antenna factor of two identical antennas may be determined from the acquisition of
the forward voltage gain S21:

AF =
√

ηk
4π

1
D

1
Z0

1
|S21| (D.18)
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Annexe E

Résumé des travaux
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E.4 Établissement et évaluation de deux modèles de châssis d’ordi-
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E.4.1 Définition des deux modèles . . . . . . . . . . . . . . . . . . . . . . . . 205

E.4.2 Comparaisons entre les deux modèles . . . . . . . . . . . . . . . . . . 206

E.5 Le modèle de couplages aléatoires . . . . . . . . . . . . . . . . . . . 207

E.5.1 Présentation du modèle de couplages aléatoires . . . . . . . . . . . . . 207

E.5.2 Mise en œuvre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

E.5.3 Les deux configurations d’intérêts . . . . . . . . . . . . . . . . . . . . 209

E.5.4 Application aux couplages dans les châssis d’équipements informatiques211

E.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

E.7 Travaux futurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

E.1 Introduction

La sécurité électromagnétique (SE) peut être considérée comme la réunion de la compatibilité électro-
magnétique (CEM) et de la sécurité des systèmes d’information (SSI). Pour rappel, l’immunité d’un
équipement est son aptitude à fonctionner dans un environnement électromagnétique bruité, alors que
le « mutisme » (émissivité de faible intensité) est sa capacité à ne pas perturber son environnement.
L’étude de la SE d’équipements peut amener à considérer les couplages entre systèmes. En effet,
si un signal traité par un équipement sensible se couple sur un autre équipement non maîtrisé, ou
appartenant à un autre système d’information (SI), il est alors possible de perdre la confidentialité
de l’information. Il s’agit de la menace TEMPEST. Il existe aussi le risque qu’un équipement
perturbe volontairement un autre équipement et l’empêche de fonctionner correctement (perte de la
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Menace TEMPEST
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électromagnétique

intentionnelle

Compatibilité
Électromagnétique
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Intégrité

Disponibilité

Confidentialité

Figure E.1 – Liens entre la compatibilité électromagnétique (CEM) et la sécurité des systèmes
d’information (SSI).

disponibilité ou de l’intégrité de l’information). Il s’agit de la menace agression électromagnétique
intentionnelle (AGREMI). La figure E.1 présente les liens entre la CEM et la SSI.

Afin de faire évoluer ses connaissances sur ces sujets (couplages inter-équipements et intra-
équipement), l’Agence nationale de la sécurité des systèmes d’information (ANSSI) a proposé le sujet
de thèse suivant : "Sécurité de fonctionnement électromagnétique des systèmes d’information". Une
collaboration avec le Laboratoire d’Électronique et Électromagnétisme (L2E) de Sorbonne Université
(qui a fusionné ensuite avec le Laboratoire de génie électrique de Paris - GeePs) a été initiée pour
travailler sur ce sujet. Ce qui suit est un résumé de ces travaux.

E.2 La sécurité électromagnétique (SECEM)

E.2.1 Menaces liées à l’émissivité des équipements électroniques

Considérons dans un premier temps les menaces liées à l’émissivité des équipements électroniques. Tout
dispositif électronique, lorsqu’il est en fonctionnement, génère des émissions électromagnétiques para-
sites autour de lui. Lorsque ces dispositifs sont en fonctionnement, ils vont générer des interférences
électromagnétiques. Ceci constitue la menace TEMPEST qui est étudiée depuis les années 1950. Si ces
interférences sont corrélées à l’information traitée, et si elles peuvent être détectées par un système
d’acquisition, alors la confidentialité de l’information ne peut plus être garantie. Certaines sources
d’interférences électromagnétiques sont connues pour porter atteinte à la confidentialité de l’informa-
tion. Parmi ces sources, on trouve les signaux des flux vidéo (signaux Video Graphics Array (VGA)
par exemple). Il est possible, après une étape d’acquisition de ces interférences et de traitement du
signal, de retrouver l’information. Dans le cas des signaux vidéo, il s’agit de l’image affichée à l’écran.
On peut citer les travaux de [Van Eck, 1985] ou plus récemment de [Kuhn, 2005] sur ce sujet. De la
même manière, et à partir des interférences générées par les claviers d’ordinateurs, il est possible de
retrouver la frappe clavier [Vuagnoux and Pasini, 2009]. D’autres techniques permettent d’influer sur
les interférences générées par un équipement électronique, et ce à partir d’un logiciel s’exécutant sur
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cet équipement. On parle alors de soft-TEMPEST. En effet, l’exécution de la suite d’instructions que
représente un programme informatique va générer des signaux électriques dans l’équipement. En écri-
vant un programme ad hoc, il est possible d’avoir une influence sur les signaux électriques parcourant
l’équipement. Ces signaux électriques vont à leur tour générer des interférences qui seront corrélées à
l’information qui aura été codée depuis le programme. Il s’agit d’une méthode permettant d’exfiltrer
de l’information. On trouve dans la littérature des illustrations de cette méthode, comme par exemple
dans [Kuhn and Anderson, 1998] ou [Guri et al., 2015].

E.2.2 Menaces liées à la susceptibilité des équipements électroniques

Considérons maintenant les menaces liées à la susceptibilité des équipements électroniques. L’objec-
tif d’une AGREMI est de générer des perturbations des fonctions électroniques d’un équipement ou
d’un système. Ces perturbations peuvent être temporaires ou aller jusqu’à la destruction physique
des composants électroniques. Une perte de la disponibilité du système d’information que supporte
cet équipement est alors à craindre. Dans [Hoad and Sutherland, 2007], une étude des effets de ces
agressions est proposée pour des équipements électroniques sur étagère. Une classification des effets
possibles d’une AGREMI est donnée dans [Sabath, 2010]. Les systèmes frontaux fonctionnant dans le
domaine des radio-fréquences constituent un point d’entrée évident pour une AGREMI. Dans [Dubois
et al., 2014] et [van de Beek et al., 2015], l’impact d’une AGREMI sur des éléments, tels que des
boucles à verrouillage de phase ou des amplificateurs, est évalué vis-à-vis de la disponibilité du système
de communication sous-jacent.

Parfois, l’AGREMI peut servir à créer un canal de communication caché, en utilisant la susceptibi-
lité d’un système ou d’un composant. Ces canaux peuvent par exemple permettre de rompre l’isolation
physique d’une machine déconnectée. Dans [Houchouas et al., 2016], la susceptibilité d’un capteur de
température permet de créer un canal de communication. En effet, on peut montrer que la valeur de
la température retournée par le système d’acquisition est linéairement liée à la densité surfacique de
puissance électromagnétique à proximité du capteur. En modulant une AGREMI avec de l’informa-
tion, un programme s’exécutant sur l’équipement cible peut, en surveillant la valeur de température,
retrouver l’information.

E.2.3 Identification d’une menace peu prise en compte

Il est commun de trouver des équipements électroniques placés dans des châssis métalliques. Ils as-
surent un blindage électromagnétique qui permet de maintenir un bon niveau de compatibilité élec-
tromagnétique en limitant la susceptibilité des équipements qu’ils enferment à leur environnement, et
réciproquement leur émissivité vers leur environnement. Si des couplages interviennent à l’intérieur de
la cavité, et du point de vue de la sécurité électromagnétique, il existe le risque que :

• un système frontal radio-fréquence devienne indisponible ;

• un canal caché de communication soit établi ;

• un couplage mette à mal la confidentialité de l’information ;

• un composant cesse de fonctionner correctement ;

• etc.

Ces châssis peuvent se comporter comme des cavités réverbérantes, ce qui rend difficile l’estimation
des couplages à l’intérieur de ceux-ci. Pour certains couples 〈fréquence, conditions aux limites〉, les
résonances qui apparaissent à l’intérieur de ceux-ci favorisent les couplages. Or, ce sont ces couplages
qui augmentent les risques vis-à-vis de la sécurité de l’information. De plus, il est très probable que les
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conditions aux limites imposées au champ électromagnétique ne soient pas invariantes dans le temps.
En effet, si un utilisateur décide d’ajouter un élément à l’intérieur de l’équipement, ces conditions
aux limites vont alors changer et, par conséquent, les couplages. On peut aussi penser au cas où une
paroi d’un châssis est déformée, par le poids d’un objet par exemple. De même, il est difficilement
envisageable que la position des câbles dans un boîtier (s’ils ne sont pas contraints) soit invariante
dans le temps. Enfin, il est également envisageable que la géométrie du châssis, à l’intérieur duquel
un sous-système sera installé, ne soit pas connue précisement au moment de la conception de ce sous-
système. Dès lors, une approche déterministe de ce problème ne semble donc pas être la plus adaptée.
Il est plus pertinent de considérer les conditions aux limites du châssis étudié comme étant aléatoires.

Il devient alors nécessaire de définir des méthodes permettant d’obtenir des statistiques (sur des
courants ou des tensions) pour un grand nombre de conditions aux limites différentes, chacune d’elles
correspondant à une géométrie particulière de la cavité. Ces méthodes doivent permettre de prendre
en compte à la fois les couplages entres éléments à l’intérieur d’un châssis (configuration 1), mais
également le couplage d’une onde plane sur un élément placé dans le châssis au travers d’une ouverture
(configuration 2).

E.3 Méthodes d’étude des couplages dans les cavités

E.3.1 Critères de sélection

Les méthodes qui ont été sélectionnées pour être évaluées devaient permettre de :

• déterminer des couplages au sein de la cavité pour une large bande de fréquences ;

• prendre en compte des couplages avec une ouverture dans la cavité ;

• changer les conditions aux limites à l’intérieur de la cavité.

De plus, les fréquences que ces méthodes devaient permettre de prendre en compte correspondent
aux fréquences d’horloges présentes dans les châssis des équipements électroniques. Celles-ci s’étendent
jusqu’à plusieurs dizaines de gigahertz.

L’état de l’art a été dressé à partir de ces trois critères.

E.3.2 Revue de la littérature

Les méthodes identifiées sont listées dans le tableau E.1. Certaines sont limitées à des cavités vides
comme [Robinson et al., 1996], [Rabat et al., 2018] ou encore [Boutar et al., 2015]. Ces méthodes sont
souvent basées sur des modèles de circuits, et nécessitent parfois le calcul des fonctions de Green de la
cavité étudiée. Dans [Park et al., 2009], une méthode topologique est utilisée. Le champ électromagné-
tique y est également obtenu avec les fonctions de Green de la cavité. D’autres encore sont statistiques
comme [Junqua, 2010], [Kovalevsky et al., 2014] ou encore [Flintoft et al., 2016], et nécessitent une
densité de modes importante dans la cavité afin d’être appliquées (approche Power Balance). Quelle
que soit l’approche envisagée, la caractérisation et le calcul des couplages ne sont pas aisés. Dans
[Caudron et al., 2010] et [Antonsen et al., 2011], des modèles de « circuits » statistiques permettent de
déterminer des couplages. Ils nécessitent également une densité de modes suffisante dans la cavité pour
pouvoir être appliqués. Enfin, les méthodes basées sur la résolution numérique des équations de Max-

well peuvent également être envisagées. On parle de simulateur full-wave. Ces approches permettent
de simuler n’importe quelle géométrie de cavité, pourvu qu’elle puisse être décrite par un modèle 3D.
Dans [Siah et al., 2003] ou [Vogt, 2016] une méthode de résolution fréquentielle est utilisée. Mais, les
méthodes fréquentielles ne sont pas adaptées à des études sur un large spectre de fréquences. On trouve
aussi des méthodes hybrides, telles que [Lange and Leone, 2017] et [Xiao et al., 2016], qui utilisent
également des simulateurs full-wave.
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Robinson et al. [1996]   U �
Siah et al. [2003]   U ��
Park et al. [2009]  G# G# U ��
Junqua [2010]      O �
Caudron et al. [2010]    G# O �
Antonsen et al. [2011]    G# O �
Kovalevsky et al. [2014]     O �
Boutar et al. [2015]   O �
Vogt [2016]  G#   O&U ���
Xiao et al. [2016]   G#  U ���
Flintoft et al. [2016]     O �
Lange and Leone [2017]   U ��
Rabat et al. [2018]  G# U �

Types de modèle Capacités Coûts

Table E.1 – Comparaison de méthodes permettant de résoudre des problèmes de couplages électroma-
gnétiques au sein de châssis d’équipements électroniques. Les demi-cercles G# indiquent des limitations.
O indique que le modèle nécessite une densité de modes importante pour être appliqué, au contraire
de U (peu de modes dans la cavité).
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E.3.3 Choix des méthodes

Avant de réaliser une sélection parmi les méthodes identifiées, il est nécessaire d’exposer les propriétés
découlant d’une densité de modes importante dans une cavité. Nous nous intéressons ici au cas où la
densité de modes permet de décrire le champ électromagnétique comme une somme infinie d’ondes
planes progressives. Cette description a d’abord été formulée dans [Berry, 1977], puis plus tard dans
[Hill, 1998].

Cette description théorique peut être obtenue dans la pratique en réalisant une moyenne d’ensemble
du champ électromagnétique présent dans une cavité et ce, pour un grand nombre de conditions aux
limites différentes. Pour ce faire, il est commun de placer un élément métallique mobile, appelé brasseur
de modes, dans une cavité pour en changer les conditions aux limites. L’ensemble des modes propres de
la cavité sera donc différent pour chaque position de ce brasseur. Le calcul d’une moyenne d’ensemble du
champ sur toutes ces conditions aux limites permet d’obtenir (sous certaines hypothèses) la description
du champ telle que proposée par Hill.

Cette description du champ électromagnétique peut être utilisée à notre avantage. En effet, nous
souhaitons ici considérer des cavités ayant des géométries et donc des conditions aux limites aléatoires.
Si nous considérons un grand nombre de ces conditions aux limites, alors la description du champ
électromagnétique à l’intérieur de la cavité proposée par Hill peut s’appliquer.

Parmi les modèles répondant à ces critères se trouvent les simulateurs full-wave. En effet, il est
envisageable d’effectuer plusieurs simulations pour déterminer le couplage entre deux cartes, avec des
conditions aux limites différentes. Par ailleurs, il existe peu, s’il en existe, d’études sur les couplages
dans des cavités utilisant des simulations électromagnétiques dans le domaine temporel. Celles-ci ont
l’avantage de fournir des informations sur les couplages pour une large bande de fréquences, ce qui
était un des critères de sélection, établis précédemment.

Enfin, le modèle de couplages utilisé dans [Caudron et al., 2010] et [Antonsen et al., 2011] semble
également très pertinent. Il permet de déterminer des couplages dans des cavités considérées comme
chaotiques, et donc de prendre en compte un grand nombre de conditions aux limites différentes. Ce
modèle sera donc également étudié.

E.4 Établissement et évaluation de deux modèles de châssis d’ordi-
nateur

Nous avons décidé de nous intéresser aux couplages dans un milieu réverbérant très commun : les
boîtiers d’ordinateur de bureau. Dans un premier temps, deux modèles de ce boîtier d’ordinateur
ont été définis. Le premier prend la forme d’une maquette physique, et le second d’un modèle de
simulation électromagnétique. Ce dernier comprend une description 3D de la structure à simuler, ainsi
qu’un ensemble de paramètres de simulation.

E.4.1 Définition des deux modèles

E.4.1.1 Le modèle de simulation

Le modèle de simulation électromagnétique est défini pour le logiciel commercial de simulation CST
Studio Suite (CST-SS). Ce dernier a été choisi car il permet de réaliser des simulations dans le domaine
temporel. Il est donc capable de fournir des courants et des tensions sur une large bande de fréquences.
La figure E.2 présente un rendu 3D de ce modèle. La méthode permettant de résoudre les équations de
Maxwell mise en œuvre dans CST-SS est la technique d’intégration finie finite integration technique
(FIT).
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(a) Vue avant.
(b) Vue arrière.

Figure E.2 – Modèle 3D du châssis d’ordinateur, avec une ouverture et deux circuits imprimés.

Face arrière

Partie principale

Face avant

Figure E.3 – Photo de la maquette.

E.4.1.2 La maquette

Après avoir établi un cahier des charges qui visait à simplifier la simulation en termes de nombre de
matériaux et de niveau de complexité géométrique, le boîtier a été réalisé au sein du L2E. La figure E.3
présente une photo de cette maquette. Lors de sa réalisation, des déformations sont apparues sur les
quatre côtés du boîtier (sans doute dues à une élévation de température trop importante lors de l’étape
de soudure qui avait été sous-traitée). Une étude a permis de montrer que ces déformations ont un
impact significatif sur les résultats de simulations. Il est donc nécessaire de les intégrer au modèle
numérique. Dans un second temps, sa conception a été validée expérimentalement en mesurant son
efficacité de blindage qui est de 55 dB au minimum sur une bande de fréquence allant de 800MHz à
3GHz. La figure E.4 présente l’efficacité de blindage, également appelée atténuation, pour une incidence
normale de l’onde plane sur la face avant de la maquette.

E.4.2 Comparaisons entre les deux modèles

Les deux modèles étant définis, ils peuvent être comparés. Deux configurations ont été testées. La
première, la plus simple, correspond à un boîtier vide ayant une ouverture sur sa face avant. On cher-
chait alors à comparer des valeurs de champ électrique mesurées ou calculées par l’outil de simulation.
Les deux techniques, mesure et simulation, ont donné des résultats similaires pour des évaluations de
champ électrique à plusieurs positions dans le boîtier, et pour deux positions de l’ouverture sur la face
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Figure E.4 – Efficacité de blindage pour une incidence normale d’une onde plane sur le boîtier.

avant de la maquette.
Pour la seconde configuration, des circuits imprimés comportant des lignes de transmission ont été

ajoutés dans le boîtier. Il s’agissait dès lors de comparer les tensions mesurées ou simulées à l’extrémité
de ces lignes de transmission. Un facteur d’antenne pour chaque modèle a été défini comme étant le
module du champ électrique sur l’ouverture, divisé par la tension recueillie à l’extrémité de la ligne de
transmission. Dans un premier temps, un empilement de deux cartes a été considéré. La figure E.5
présente la configuration mesurée. Les résultats ont montré une différence moyenne de ±10 dB entre
1GHz et 3GHz. Une configuration à quatre cartes empilées a ensuite été testée, et une incertude plus
importante a été obtenue qui est de ±17 dB entre 1.25GHz et 3GHz. Ce dernier résultat est présenté
sur la figure E.6.

L’objectif initial est d’obtenir des statistiques sur les courants et tensions couplés. Il est alors
nécessaire d’effectuer un grand nombre de simulations avec des conditions aux limites aléatoires. Le
temps de calcul est de 4 heures pour la configuration à quatre cartes. On peut raisonnablement penser
que le nombre de simulations ne sera pas inférieur à quelques dizaines pour obtenir des statistiques
pertinentes, ce qui donne plusieurs dizaines d’heures de simulations dans ce cas. Ce temps de calcul
peut limiter l’intérêt de cette approche.

Il semble alors pertinent d’évaluer la seconde approche identifiée lors de l’état de l’art : le modèle
de couplages aléatoires.

E.5 Le modèle de couplages aléatoires

Depuis les années 1950, la théorie des matrices aléatoires se développe de plus en plus. Après avoir été
utilisée pour résoudre des problèmes de physique quantique, elle s’applique à des problèmes de physique
semi-classique, et particulièrement en électromagnétisme où elle est appelée Random Coupling Model
(RCM), ou modèle de couplages aléatoires.

E.5.1 Présentation du modèle de couplages aléatoires

Le modèle de couplages aléatoires est un modèle statistique de circuit où les relations entre les accès
d’un système réverbérant sont décrites par une matrice dite impédance de cavité Zcav. Pour utiliser
ce modèle, il est nécessaire que la densité de modes dans la cavité soit suffisante pour qu’elle soit
considérée comme chaotique. Il permet d’associer deux modes de couplages entre les accès. Le premier,
déterministe, prend en compte le couplage en espace libre entre plusieurs accès dans un système (entre
une carte et un câble, par exemple). Il peut être facilement obtenu, soit par la mesure, soit par la
simulation, ou encore par un modèle ad hoc. Ce couplage est pris en compte dans la matrice de
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(a) Configuration avec les cartes. (b) Connecteur SMA (vu de l’extérieur).

Figure E.5 – Photo du dispositif.
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Figure E.6 – Moyenne glissante (sur 40MHz) de la différence des facteurs d’antenne mesurés et
calculés, pour 8 configurations (deux polarisations (V et H) et quatre cartes (1 à 4)).
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rayonnement Zrad. Le second mode considère les couplages des différentes résonances dans la cavité
sur les accès, et est représenté par la matrice ξ. L’impédance de la cavité Zcav s’obtient alors grâce à
l’équation :

Zcav = jℑ
{

Zrad
}

+
[

ℜ
{

Zrad
}]1/2

ξ
[

ℜ
{

Zrad
}]1/2

(E.1)

Dans le cas déterministe, la matrice ξ s’écrit comme une somme de contributions de M modes de

cavité [Zheng et al., 2006a] :

ξ(k) = − j

π

M
∑

n=1

~Φn ⊗ ~ΦT
n

k2

∆k2
− k2n

∆k2
− jα

(E.2)

où le vecteur ~Φn caractérise les couplages entre les accès du système pour un mode n, kn est le
nombre d’onde du mode n, ∆k est l’espacement moyen entre deux nombres d’ondes de modes propres
consécutifs, enfin α permet de prendre en compte les pertes dans la cavité. Dans le cas statistique, on
ne s’intéresse pas à une cavité déterminée mais à un échantillon de cavités. Les modes d’une cavité sont
alors obtenus par un tirage aléatoire d’une matrice conformément à la théorie des matrices aléatoires
[Hemmady, 2006]. On obtient alors la formulation matricielle suivante pour ξ :

ξ = − j

π
W [ λ − jα1 ]−1WT (E.3)

où la matrice W est une matrice aléatoire dont les éléments Wij sont distribués selon une loi normale
centrée réduite et la matrice diagonale λ est issue de la théorie des matrices aléatoires [Hemmady,
2006]. Pour rendre le modèle statistique, on réalise un grand nombre de tirages de Monte-Carlo de
matrices ξ (Zrad étant déterministe). À partir de tirages de géométries de boîtiers, on obtient des
probabilités d’occurrence de l’amplitude des courants induits.

E.5.2 Mise en œuvre

Pour faire converger ces probabilités, il est nécessaire d’effectuer de nombreux tirages. Avec une appli-
cation naïve de l’équation E.3, on calcule des milliers de tirages en quelques heures. Pour réduire ce
temps de calcul, des optimisations de plusieurs natures peuvent être réalisées. La matrice [ λ− jα1 ]−1

est diagonale, ce qui permet de passer d’une complexité en O(M2N) à O(MN) pour le calcul de la ma-
trice [ λ−jα1 ]−1WT . De plus, il est possible de faire appel à des bibliothèques permettant d’utiliser des
optimisations présentes sur certains processeurs. La bibliothèque Math Kernel Library d’Intel en fait
partie. Elle fournit des fonctions permettant d’utiliser des optimisations matérielles, et repose sur des
algorithmes spécifiques aux types de matrices mises en jeu dans les calculs (hermitiennes, symétriques,
etc.). Enfin, les tirages de Monte-Carlo étant indépendants, il est possible d’effectuer des tirages en
parallèle en utilisant les différents cœurs des processeurs. Un programme développé en langage compilé
utilisant ces optimisations permet d’obtenir des courants induits ou des tensions couplées en quelques
minutes pour des milliers de tirages de la matrice Zcav.

E.5.3 Les deux configurations d’intérêts

Revenons maintenant aux deux configurations d’études présentées précédemment. La première (confi-
guration 1) était relative aux couplages entre une onde plane et un élément de la cavité. La seconde
(configuration 2) se rapportait à l’étude des couplages entre éléments dans une cavité.

La figure E.7 présente la configuration 1. On peut montrer que le problème peut être divisé en
deux sous-problèmes [Harrington and Mautz, 1976] : le problème intérieur (en bleu) et le problème
extérieur (en rouge). Chacun de ces problèmes peut être décrit par deux admittances. L’onde plane
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(a) Droite (b) L gauche (c) L droite (d) Méandre

Figure E.9 – Les quatre cartes utilisées dans les empilements.

incidente est caractérisée par un vecteur courant ~I inc appliqué au niveau de l’ouverture. L’impédance
d’une ouverture rectangulaire est de la forme [Antonsen et al., 2011] :

Y rad
nm (k0) =

√

ǫ0
µ0

∫

R3

1

(2π)3
2j

k0(k20 − k2)
~̃en∆ ~̃ ∗emd3k (E.4)

où ~̃en sont a transformée de Fourier du mode dans l’ouverture et ∆ une matrice. L’impédance Zcav

(un scalaire ici, car il n’y a qu’un seul port dans la cavité) est obtenue par le modèle de couplages
aléatoires. Afin d’obtenir des statistiques, il est nécessaire de réaliser un grand nombre de tirages de
la matrice ξ. Cela revient à changer les conditions aux limites dans la cavité (grâce à un brasseur de

modes par exemple). Avec ξ on calcule Zcav et Y int. puis l’amplitude du courant couplé |I|.
L’application du RCM pour la seconde configuration est beaucoup plus directe et est représentée

sur la figure E.8. Elle consiste à utiliser directement les équations (E.1) et (E.2).

E.5.4 Application aux couplages dans les châssis d’équipements informatiques

On va rechercher ici à estimer les probabilités d’occurrence d’amplitude de courants induits sur des
pistes de circuits imprimés (cartes) empilés et placés dans un système aux conditions limites statistiques
(changeantes). Des fonctions de répartition F|I|(i), donnant la probabilité d’occurrence d’un courant
d’amplitude i, issues du modèle de couplages aléatoires, seront comparées aux valeurs obtenues par la
mesure.

E.5.4.1 Configurations testées

Plusieurs configurations d’empilement (Tableau E.2) de cartes (Fig. E.9) ont été considérées. La posi-
tion 1 correspond à l’emplacement le plus bas et la position 4 à l’emplacement le plus haut de l’em-
pilement. Les emplacements sont distants de 2 cm. Ces configurations ont été choisies pour permettre
de comparer les résultats du modèle de couplages aléatoires pour plusieurs configurations. Celles-ci
présentent différents espacements entre les cartes afin d’obtenir des configurations modales différentes
dans l’empilement.

E.5.4.2 Mesures

Pour valider les résultats issus de l’application du modèle de couplages aléatoires, une série de mesures
a été réalisée. Afin d’obtenir des statistiques sur les amplitudes de courants induits et les tensions
mesurées, un brasseur de modes a été monté dans cette maquette (Fig. E.10). À chacune de ses
positions, il impose des conditions aux limites différentes, ce qui permet de simuler une géométrie
de boîtier différente. Les mesures ont été réalisées avec un analyseur de réseau vectoriel relié aux
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Conf. Pos. 1 Pos. 2 Pos. 3 Pos. 4
1 Méandre Droite L droite L gauche
2 L droite Méandre L gauche Droite
3 L droite - - L gauche
4 L droite - L gauche -
5 Méandre Droite - L gauche

Table E.2 – Configurations mesurées et simulées

Pos. 1

Pos. 4

Pos. 2
Pos. 3

Figure E.10 – Maquette et brasseur.

connecteurs (Figure E.5b) des cartes électroniques disposées en fonction de la configuration choisie
(Table. E.2).

E.5.4.3 Détermination des paramètres du modèle de couplages aléatoires

Trois grandeurs sont nécessaires pour appliquer le modèle de couplages aléatoires : Zrad, M et α. Les
matrices impédances Zrad des cinq configurations ont été obtenues, par la mesure, à partir des matrices
de répartition Srad acquises en espace libre. La position relative entre les cartes a été assurée grâce
à des supports en mousse, électromagnétiquement transparente. Le paramètre M , qui représente le
nombre de modes pris en compte dans la cavité, est issu de la littérature. On trouve par exemple
dans [Gradoni et al., 2012] la valeur de M = 600. Plusieurs essais ont permis de mettre en évidence
que le fait d’augmenter la valeur de M ne permet pas d’améliorer les résultats. Enfin, le paramètre le
plus compliqué à estimer est α, qui caractérise les pertes dans le système étudié et qui dépend de la
fréquence. Plusieurs techniques peuvent être mises en œuvre pour l’estimer [Hemmady, 2006] et [Gil
et al., 2016]. Dans cette étude, α a été déterminé à partir des mesures de Scav qui permet de calculer
ξcav en inversant l’équation E.1. Dans [Gil et al., 2016], les auteurs montrent que les éléments de ξcav

suivent des lois normales et que :

Var [ℜ [ξcavii ]] = Var [ℑ [ξcavii ]] =
1

παii
(E.5)

Var
[

ℜ
[

ξcavij

]]

= Var
[

ℑ
[

ξcavij

]]

=
1

2παij
(E.6)

En calculant les variances des éléments de ξcav, on détermine les valeurs des αij en fonction de la

fréquence. Enfin, on calcule leur moyenne qu’on égale à α (α = 〈αij〉).
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Figure E.11 – Comparaison des fonctions de répartition des amplitudes des courants induits obtenues
avec des mesures et avec le modèle de couplages aléatoires, pour les cinq configurations.
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E.5.4.4 Résultats

Les résultats (Fig. E.11) correspondent aux fonctions de répartition des amplitudes des courants induits
sur les cartes présentes dans le boîtier. On s’intéresse ici aux couplages entre la carte source au bas de
l’empilement, située à la position 1 (Table E.2), et les autres cartes de l’empilement. Une puissance de
P0 = 10dBm est appliquée sur l’accès de la carte source. Les courants traversant les accès du système
sont donnés par la formule suivante :

~IMesures/RCM = (ZMesures/cav + Zl1)
−1

[ √
2ZlP0

...

]

(E.7)

où Zl = 50Ω. Ces fonctions de répartition ont été obtenues en agrégeant pour chacun des 360 tirages de
Monte-Carlo (pour le modèle de couplages aléatoires) ou chacune des 360 positions de brasseurs (pour
les mesures), 16501 points de fréquences entre 10 et 26.5GHz. Au total ce sont 16501× 360 = 5940360
courants induits qui sont agrégés par courbe. La comparaison montre que les densités de probabilité
obtenues avec le modèle de couplages aléatoires sont relativement proches de celles obtenues expérimen-
talement. Les résultats sont moins bons lorsqu’il y a des couplages directs entre les cartes, c’est-à-dire
quand elles sont en regard l’une de l’autre comme observé sur |IMesures/RCM

Droite | pour la configuration 1

ou encore sur |IMesures/RCM
L gauche | pour les configurations 3 et 4. Le temps de calcul permettant de réaliser

le tirage de ces courants afin d’estimer les fonctions de répartition pour un cas à quatre cartes est de
3 minutes, et de 2 minutes pour deux cartes. Ces courbes montrent également que la disposition des
cartes électroniques a un impact sur les fonctions de répartition des amplitudes de courants induits, et
donc sur les probabilités de couplages des informations traitées d’une carte vers une autre.

E.6 Conclusion

Dans le cadre d’une analyse de risque portant sur la sécurité de l’information traitée par un système
d’information sensible, il est pertinent de vouloir estimer les probabilités d’occurrence des amplitudes
des courants induits (ou des tensions couplées) dans des équipements réverbérants tels que des châssis
d’équipements électroniques. Nous avons décidé de nous intéresser aux couplages dans des cavités très
communes : les châssis d’ordinateur de bureau. Trois modèles ont été identifiés pour traiter ce problème.
Le premier, qui prend la forme d’une maquette, sert à valider les deux autres qui sont décrits ci-après.

Le modèle de simulation Tout d’abord un modèle de simulation déterministe a été envisagé. Le
choix s’est porté sur une technique permettant d’obtenir les couplages sur une large bande de fréquences.
Le couplage entre des cartes placées dans une cavité et une onde plane qui se couple sur l’ouverture
du boîtier est déterminé. On a alors estimé l’incertitude sur les résultats obtenus. Dans le cas à deux
cartes, elle est de ±10 dB, et dans le cas à quatre cartes, elle est de ±17 dB entre 800MHz et 3GHz.
Cette incertitude est importante. Seule sa connaissance permet de définir des marges à appliquer pour
garantir un niveau de couplage acceptable du point de vue de la SECEM. Ces marges ont été définies
grâce à une analyse de risque. De même, le temps de calcul nécessaire pour obtenir des statistiques sur
les couplages peut être prohibitif.

Le modèle de couplages aléatoires Le modèle de couplages aléatoires peut fournir une estimation
rapide des probabilités d’occurrence des courants induits, et donc de leurs percentiles. La procédure
permettant d’appliquer le modèle de couplages aléatoires a été présentée, et des optimisations permet-
tant d’accélérer les calculs ont été proposées. De plus, la méthode permettant d’acquérir des données
expérimentales avec un petit brasseur a été décrite. Enfin, une comparaison entre des données expé-
rimentales et des tirages de Monte-Carlo issus du modèle de couplages aléatoires a été effectuée. Elle
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montre que l’usage du modèle de couplages aléatoires est pertinent pour évaluer rapidement des fonc-
tions de répartition des amplitudes des courants couplés dans une cavité, quand les cartes ne sont pas
en regard les unes des autres et que le système est chaotique. Cependant, l’application de ce modèle
nécessite de pouvoir estimer les pertes dans la cavité, ainsi que l’impédance en espace libre entre les
accès pour lesquels on souhaite déterminer les couplages. La détermination de ces deux quantités peut
se révéler complexe.

E.7 Travaux futurs

Il pourra être intéressant d’appliquer le modèle de couplages aléatoires afin d’estimer l’impact en
termes d’amplitude des courants induits lors d’une agression électromagnétique intentionnelle, prove-
nant de l’extérieur de la cavité ou du boîtier. Ce type d’agression peut avoir un impact à la fois sur la
disponibilité d’un système d’information, mais aussi sur l’intégrité des données manipulées. L’analyse
théorique permettant d’intégrer les ouvertures dans le RCM étant réalisée, il reste encore à mener une
comparaison des simulations du modèle de couplages aléatoires avec des données expérimentales.

Les pertes associées aux châssis ont un impact significatif sur les couplages à l’intérieur de ceux-ci.
Une étude concernant l’effet de l’ajout de matériaux absorbants sur les tensions ou courants couplés
pourra être entreprise. Avec cette analyse, il sera possible de déterminer la surface d’absorbant à
ajouter dans une cavité pour réduire l’amplitude des courants et tensions couplés, afin de satisfaire les
exigences de SECEM.

Dans le cas où les pertes ne peuvent pas être modifiées dans la cavité, il pourra être intéressant de
déterminer les agencements (c’est-à-dire les positions relatives entre elles) de cartes qui permettent
de minimiser les couplages. Cela pourra être accompli en déterminant des impédances en espace libre
pour plusieurs agencements de cartes (avec des simulations full-wave par exemple). Enfin, le modèle de
couplages aléatoires pourra être appliqué afin de sélectionner l’agencement qui minimise les couplages.

Finalement, des tailles de cavités différentes de celle qui a été étudiée dans cette thèse, pourront
être considérées. Les baies d’équipements informatiques seraient alors un cas d’étude pertinent pour la
SECEM car, à proximité d’un équipement sensible, peuvent cohabiter des équipements non maîtrisés.
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Abstract :
The electromagnetic security (EMSEC) can be defined as the merging of the electromagnetic compa-
tibility (EMC) and the information security. To guarantee the EMSEC of electronic devices, electro-
magnetic couplings must be taken into account. Yet, these couplings can be maximized (under certain
conditions) within reverberant environnements, such as casings. Thus, it is relevant to study and to
characterize these couplings inside such environnements. However, sometimes, the boundary conditions
of the studied system can be unknown, or can vary over time. Therefore, statistical approaches, where
the boundary conditions are randomized, are better suited than deterministic ones. Coupled currents
and voltages are thus statistically determined. In this PhD thesis, three different models were set to as-
sess the couplings within a desktop computer chassis. The first one is a mock-up and is used to compare
the other two models. The second one is a full-wave simulation model of a computer casing. From its
implementation, it was possible to determine the coupling between an aperture and transmission lines,
with its associated uncertainty. This uncertainty is significant, however it is known. From the EMSEC
perspective, its knowledge can be an input for a risk assessment process. It can be used to determine
a safety margin in order to mitigate the coupling risks. Finally, the third one is a circuit model where
the eigenmodes are randomized by means of the random matrix theory. From it, couplings between
several transmission lines printed on circuit boards were determined. Nevertheless, to be applied, it
requires several parameters whose determination can be quite difficult.

Keywords : electromagnetic security (EMSEC), electromagnetic compatibility (EMC), coupling, rever-
berant environments, full-wave simulations, random matrix theory.

Sécurité de fonctionnement électromagnétique des systèmes d’information
Estimation statistique de couplages en milieu réverbérant

Résumé :
La sécurité électromagnétique (SECEM) peut être considérée comme la réunion de la compatibilité
électromagnétique et de la sécurité des systèmes d’information. L’étude de la SECEM des équipements
électroniques amène à considérer les couplages électromagnétiques entre ceux-ci. Or, ces couplages
peuvent être maximisés dans les environnements électromagnétiques réverbérants, tels que les châssis
d’équipements électroniques. Dès lors, il est pertinent de vouloir caractériser les couplages au sein
de ces châssis. Celle-ci n’est pas aisée car les conditions aux limites à l’intérieur de ces équipements
peuvent ne pas être connues ou varier dans le temps. Il paraît alors pertinent de vouloir considérer les
conditions aux limites du système à étudier comme étant aléatoires. Des statistiques sur les tensions ou
les courants couplés seront alors obtenues. Dans ce travail, trois modèles ont été définis pour analyser
statistiquement les couplages dans un châssis d’ordinateur. Le premier, une maquette physique, sert
de référence pour les deux autres, à des fins de comparaisons. Le second est un modèle numérique. Il a
permis de déterminer le couplage entre une ouverture et des lignes de transmission avec une incertitude
non négligeable mais connue. Cette connaissance permet de définir des marges de sécurité afin de
garantir la sécurité de l’information. Enfin, le troisième est un modèle de circuit qui suppose que les
modes sont aléatoires. Fondé sur la théorie des matrices aléatoires, il a permis de déterminer rapidement
des couplages entre des cartes électroniques. Toutefois, son application requiert la détermination de
plusieurs grandeurs, dont l’estimation peut ne pas être triviale.

Mots clés : sécurité électromagnétique (SECEM), compatibilité électromagnétique (CEM), couplage,
environnement réverbérant, simulations électromagnétiques, théorie des matrices aléatoires.
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