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Résumé

Nous étudions la géométrie symplectique C0 au travers de l’action des homéomorphismes
sympectiques sur des sous-variétés lagrangiennes. Plus précisément, nous initions l’étude
du mapping class group symplectique C0, i.e. le groupe des classes d’isotopie des homeo-
morphismes symplectiques, et nous prouvons les premiers résultats concernant la topologie
du groupe des homéomorphismes symplectiques. Pour ce faire, nous développons une
méthode provenant de la théorie de Floer et de la théorie des codes-barres.

En appliquant cette stratégie au Dehn-Seidel twist, un symplectomorphisme partic-
ulièrement intéressant pour l’étude du mapping class group symplectique, nous général-
isons à un contexte C0 un résultat de Seidel concernant la non-trivialité de la classe de ce
morphisme dans le mapping class group symplectique. Nous prouvons que le Dehn-Seidel
twist n’est pas dans la composante connexe de l’identité dans le groupe des homéomor-
phismes symplectiques. Ce faisant, nous prouvons la non-trivialité du mapping class group
symplectique C0 de certains domaines de Liouville.

Notre méthode utilise de très récents résultats comme ceux de Abouzaid-Kragh à propos
de la nearby Lagrangian conjecture, ainsi que les dernières avancées en matière de topologie
symplectique C0. En particulier, nous adaptons à notre contexte la continuité locale C0

des codes-barres, prouvée par Buhovsky-Humilière-Seyfaddini et Kislev-Shelukhin.

Mots-clés

Dehn-Seidel twist, Codes-barres, Topologie symplectique C0, cohomologie de Floer, sous-
variétés Lagrangiennes, mapping class group.
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The Dehn-Seidel twist, C0 symplectic geometry and
barcodes

Abstract

We study C0-symplectic geometry through the action of symplectic homeomorphisms
on Lagrangian submanifolds. More precisely, we initiate the study of the C0 symplectic
mapping class group, i.e. the group of isotopy classes of symplectic homeomorphisms, and
prove the first results regarding the topology of the group of symplectic homeomorphisms.
For that purpose, we develop a method coming from Floer theory and barcodes theory.

Applying this strategy to the Dehn-Seidel twist, a symplectomorphism of particular
interest when studying the symplectic mapping class group, we generalize to C0 settings
a result of Seidel concerning the non-triviality of the mapping class of this symplectomor-
phism. We prove that the generalized Dehn twist is not in the connected component of the
identity in the group of symplectic homeomorphisms. Doing so, we prove the non-triviality
of the C0 symplectic mapping class group of some Liouville domains.

Our method uses some very recent results such as those of Abouzaid-Kragh related to
the nearby Lagrangian conjecture and the last developments of C0-symplectic topology.
In particular, we adapt and generalize to our context the local C0-continuity of barcodes
proved by Buhovsky-Humilière-Seyfaddini and Kislev-Shelukhin.

Keywords

Dehn-Seidel twist, Barcodes, C0-symplectic topology, Floer cohomology, Lagrangian sub-
manifolds, mapping class group.
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Introduction

Motivation and main results

Let us start with some basic terminology used in symplectic geometry.

A symplectic manifold (M2n, ω) is an even dimensional smooth manifold equipped
with a closed non-degenerate 2-form ω. The diffeomorphisms that preserve the 2-form
ω are called symplectomorphisms and their group is denoted Symp(M,ω). Among these
symplectomorphisms, some of them are called Hamiltonian diffeomorphisms and satisfy
additional properties. A Hamiltonian on M is a time dependent function

H : S1 ×M → R.

We will denote Ht(x) = H(t, x). This Hamiltonian generates a Hamiltonian vector field
XHt defined by

dHt = ω(·, XHt).

The flow φtH of this vector field, when defined, is called the Hamiltonian isotopy generated
by H. A Hamiltonian diffeomorphism is a symplectomorphism that can be written as the
time 1 on a Hamiltonian isotopy. We denote by Ham(M,ω) the group of Hamiltonian
diffeomorphisms on (M,ω). Any Hamiltonian diffeomorphism is isotopic to the identity in
Ham(M,ω).

The set of symplectomorphisms isotopic to the identity in Symp(M,ω) is denoted by
Symp0(M,ω). The group Ham(M,ω) is a normal subgroup of Symp0(M,ω), which is itself
a normal subgroup of Symp(M,ω).

In a symplectic manifold, some submanifolds are of particular interest. A Lagrangian
submanifold of a symplectic manifold (M,ω) is a n-dimensional submanifold where the
2-form vanishes; see Section 1.3 for more details. We call a Lagrangian sphere in M an
embedding l : Sn →M such that its image is a Lagrangian submanifold. We will also call
the image a Lagrangian sphere.

9
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C0 symplectic topology

C0 symplectic topology was born with the famous Gromov-Eliashberg theorem [30] stating
that given a symplectic manifold (M,ω), if a sequence of symplectomorphisms C0-converges
to a diffeomorphism, then this diffeomorphism is a symplectomorphism as well. We will
precisely define what we mean by “C0-converges" in Section 1.4.

Considering this theorem, symplectic homeomorphisms were naturally defined as the
C0-closure of symplectomorphisms.

Definition 1. Let (M,ω) be a symplectic manifold. A homeomorphism ϕ of M is called
a symplectic homeomorphism if it is the uniform limit of a sequence of symplectic diffeo-
morphisms.

The main goal in C0-symplectic topology is then to understand whether it is possible
or not to do symplectic topology with continuous objects.

Laudenbach and Sikorav [55] proved an analogue of the Gromov-Eliashberg theorem,
but with Lagrangian submanifolds replacing symplectomorphisms.

More than a decade later, C0-symplectic topology took a step forward, when Oh and
Müller [69] introduced a notion of Hamiltonian homeomorphisms, which they called hameo-
morphisms. These maps have the property of being generated in some sense by continuous
Hamiltonians, hence appearing as good C0 generalizations of Hamiltonian diffeomorphisms.
This notion renewed the interest for C0 symplectic topology. In particular it was realized
by Fathi and Oh that hameomorphisms could be used to tackle the old open question of
the simplicity of the group of area preserving and compactly supported homeomorphisms
of the 2-disc, recently solved in [26]. Viterbo [97] and Buhovski-Seyfaddini [17] established
a uniqueness result for the C0 Hamiltonians involved in the definition of hameomorphisms.
Regarding symplectic homeomorphisms, Opshtein [71] proved that they preserve charac-
teristic foliations on hypersurfaces.

More recently, C0 symplectic topology took a second step forward. Humilière-Leclercq-
Seyfaddini proved a result of coisotropic rigidity in [46] and a reduction result in [47], both
papers proving that, on many aspects, symplectic homeomorphisms tend to behave as
symplectic diffeomorphisms. At the same time, Buhovsky-Opshtein [16] exhibited, among
other rigidity results, the first flexibility behaviour for symplectic homeomorphisms: a
symplectic homeomorphism leaving invariant a smooth symplectic submanifold V , and
whose restriction to V is smooth but not symplectic. It was shortly followed by the
counter-example to the Arnold conjecture by Buhovsky-Humilière-Seyfaddini [14], which
is another beautiful example of C0-symplectic flexibility.

In parallel, much progress has been made regarding the barcodes and action selec-
tors which are the main tools used to study these homeomorphisms. The main results
concern the C0-continuity for action selectors, started by Seyfaddini [86] with his ε-shift
trick, and followed by Buhovsky-Humilière-Seyfaddini [15]. Seyfaddini [86], Buhovsky-
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Humilière-Seyfaddini [15], Kawamoto [48], Shelukhin [87, 88] proved the C0-continuity of
the action selectors in various settings. Using a result of Kislev-Shelukhin [51], this implies
the C0-continuity of barcodes in the same settings. Le Roux-Seyfaddini-Viterbo [57] proved
the continuity of barcodes for Hamiltonians on surfaces, without using Kislev-Shelukhin’s
result.

Note that there exist other aspects of C0-symplectic topology, such as the C0-rigidity
for the Poisson bracket, initiated by Cardin-Viterbo [18] and Entov-Polterovich [32]. Nev-
ertheless, these will not be discussed here as they cover an entirely different subject.

In dimension 2 things behave in a different way, for instance Matsumoto [61] proved
that the Arnold conjecture holds for Hamiltonian homeomorphisms. The tools involved in
dimension 2 are not the same as those in symplectic topology but rather the ones usually
used in dynamical systems.

Between rigidity and flexibility, C0-symplectic geometry raises many open questions.
Two examples of central questions of the domain are presented below. Note that these
questions appear as problems 19 and 41 in McDuff-Salamon [62].

The first example is called the "C0-flux conjecture" and was formulated by Banyaga
[8]:

Question 1. Is the group Ham(M,ω) of Hamiltonian diffeomorphisms closed in Symp0(M,ω)

with respect to the C0-topology?

This is well-known in dimension 2 [35]. In higher dimensions the conjecture has been
established in some cases by Lalonde-McDuff-Polterovich [54] and Buhovsky ([13]). Note
that the C∞ version of this conjecture was proven by Ono [70] in its full generality.

The second open question is the following:

Question 2. Does the 4-sphere S4 admit a C0-symplectic structure, i.e. an atlas whose
transition maps are symplectic homeomorphisms?

For this question to make sense, let us recall that there is no smooth symplectic struc-
ture on S2n, for n ≥ 2. More generally, an open question is whether there exists a smooth
manifold that does not admit a smooth symplectic structure but still admits a C0 one.

This question is part of the motivation for my work in this thesis on the space of
symplectic homeomorphisms, as there is no hope to find (or not) such a structure without
a very good understanding of these objects.

Dehn twists and mapping class groups

Dehn twists are diffeomorphisms supported in the neighbourhood of a simple loop in sur-
faces.
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Figure 1 – Dehn Twist in T ∗S1.
The red curve represents the image by the Dehn twist of a fiber of T ∗S1.

Let us first describe the local model. We consider the annulus S1 × [−1, 1] = T ∗1 S
1.

We denote τ : T ∗1 S
1 → T ∗1 S

1 the map given by

τ(θ, t) = (θ + 2πf(t), t),

where f : [−1, 1] → R+ is a smooth function equal to 0 near −1 and and equal to 1 near
1. This map is called a twist map. Now that we have our model, we can describe the
Dehn twist for surfaces. It consists of a map which agrees with our local model on the
neighbourhood of a given loop l and is equal to the identity away from this loop. It is
called the Dehn twist along l and it is denoted τl. One can prove that the isotopy class of
τl only depends on the isotopy class of l. If the loop along which the Dehn twist is defined
is not contractible, then the Dehn twist is not isotopic to the identity.

The Dehn twists are of particular interest when studying the mapping class group of
surfaces. Let us recall that the mapping class group is defined, in the case of a smooth
oriented manifold M by

MCG(M) = π0(Diff+(M)).

Let Σ be an oriented smooth surface and denote ω an associated symplectic form on Σ.
We denote by MCGω(Σ) the mapping class group for area-preserving diffeomorphisms.
This MCGω(Σ) is nothing but π0(Symp(Σ, ω)). Let us also denote by MCG(Σ, C0) =

π0(Homeo+(Σ)) the mapping class group for homeomorphisms and by MCGω(Σ, C0) =

π0(Homeo+,ω(Σ)) the mapping class group for area-preserving homeomorphisms.

One can prove that the mapping class group MCG(Σ) is generated by Dehn twists. We
actually have the following isomorphisms:

MCGω(Σ) ∼= MCG(Σ) ∼= MCG(Σ, C0) ∼= MCGω(Σ, C0). (1)
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The first isomorphism is a consequence of Moser’s trick. The surjectivity of the second
one comes from the fact that any homeomorphism is a limit of diffeomorphisms, which is
for example proven in [57], together with the fact that the group of homeomorphisms is
locally contractible [22]. Its injectivity comes from the local contractibility of the group of
diffeomorphisms [56]. Finally, the third isomorphism is due to Fathi [35].

In symplectic geometry, the mapping class group we are interested in is of course related
to symplectomorphisms:

MCGω(M) = π0(Symp(M,ω)).

These Dehn twists have been generalized to higher dimensions by Arnold [4] and they
have been then intensively studied by Seidel in his PhD thesis [84] and in [80, 81, 82]. We
call these higher dimensional maps generalized Dehn twist, or Dehn-Seidel twists. They are
defined in the neighbourhood of a Lagrangian sphere L, and thus will be denoted τL. Let
us give a brief description of these maps. As in dimension 2, we start by describing a local
model in the cotangent bundle of a sphere. We denote

T ∗1 S
n = {ξ ∈ T ∗Sn, |ξ| ≤ 1},

where | · | denotes the dual of the standard round metric on Sn. In coordinates we have

T ∗1 S
n = {(u, v) ∈ Rn+1 × Rn+1, |u| ≤ 1, |v| = 1, 〈u, v〉 = 0},

and ωT ∗1 Sn =
∑

i dui ∧ dvi. We set

σt(u, v) =

(
cos(2πt)u− sin(2πt)v|u|, cos(2πt)v + sin(2πt)

u

|u|

)
,

for t ∈ [0, 1], and (u, v) ∈ T ∗Sn \ Sn. When t = 1/2, σ corresponds to the antipodal
map: σ1/2(u, v) = (−u,−v). Note that this antipodal map extends continuously to the
zero-section. We choose a cut-off function ρ : [0, 1] → R such that ρ is equal to 1

2 near 0

and equal to 0 near 1. We can now define τ by

τ(ξ) = σρ(|ξ|)(ξ).

This map is a symplectomorphism equal to the antipodal map on the zero-section and
equal to the identity near the boundary of T ∗1 Sn. When n = 1, it is isotopic to the model
Dehn twist on surfaces described above.

We now want to embed our local model into a symplectic manifold, matching the zero-
section with a Lagrangian sphere. Let (M,ω) be a symplectic manifold with boundary,
together with a Lagrangian embedding l : Sn → M . Using Weinstein’s neighbourhood
theorem, we may implant this local model in the neighbourhood of the Lagrangian sphere
l(Sn) = L. The isotopy class in Symp(M,ω) of the resulting map τl only depends on l.
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This map is called the generalized Dehn, or Dehn-Seidel twist along l.
In his PhD thesis [84], Seidel proved that in dimension 4, the square of a Dehn-Seidel

twist is isotopic to the identity through smooth diffeomorphisms but is not through sym-
plectomorphisms. He later generalized the last part of this result to higher dimensions
using the technology of Lagrangian Floer cohomology in [81].

Using Seidel’s notations, we start by describing what an (Ak)-configuration is. Let M
be a 2n-dimensional compact symplectic manifold.

Definition 2. An (Ak)-configuration in M is a family of Lagrangian spheres (l1, ...lk) with
images (L1, ...Lk) such that

• they are pairwise transverse

• for 2 ≤ j ≤ k − 1, |Li ∩ Lj | = 1 if i = j ± 1 and |Li ∩ Lj | = ∅ else.

Before going further, we have to be sure that such configurations really exist. Sei-
del proved [80] that the affine hypersurface (H,ω) in Cn+1 equipped with the standard
symplectic form satisfying the equation

z2
1 + z2

2 + · · ·+ z2
n = zm+1

n+1 +
1

2

contains an (Am)-configuration of Lagrangian n-spheres. The name comes from the fact
that these hypersurfaces are the Milnor fibres of type (Am)-singularities.

Following Seidel’s paper [80], we briefly describe these Lagrangian spheres for n = 2.
Let us denote π : H → C2 the projection onto the (z1, z2) complex plane and σ the map
defined by σ(z1, z2, z3) = (z1, z2, e

2iπ/(m+1)z3). The projection is an (m+ 1)-fold covering
branched along C = {z2

1 + z2
2 = 1

2 , (z1, z2) ∈ C2} whose covering group is generated by
σ. We now consider the map f : S2 ⊂ R3 → C2 defined by

f(x1, x2, x3) = (x2(1 + ix1), x3(1 + ix1)).

For all x ∈ S2, we have f(x) ∈ C2 \ C. This map is an immersion with one double point:
f(1, 0, 0) = f(−1, 0, 0). Let us denote f̃ : S2 → H a lift of f . One can show that f̃(S2)

and σ ◦ f̃(S2) have only one intersection point, at f̃(1, 0, 0). In the same way, the family

(f̃(S2), σf̃(S2), ..., σm−1f̃(S2))

satisfies the intersection conditions of the previous definition. Finally one can choose a
2-form ω0 on H, diffeomorphic to ω, such that these spheres are Lagrangians, and thus
(H,ω0) admits a (Am)-configuration. The fact that these two 2-forms are diffeomorphic
tells that (H,ω) contains such a configuration as well.

This allows us to have such configurations inside a Liouville domain. These objects
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were intensively studied by Khovanov-Seidel [50], Seidel-Thomas [85], Seidel [83], Keating
[49]...

The theorem of Seidel which interests us in this thesis is the following ([81])

Theorem 3 (Seidel [81]). Let (M2n, ω) be a compact symplectic manifold with contact type
boundary, with n even, which satisfies [ω] = 0 and 2c1(M,ω) = 0. Assume that M contains
an A3-configuration (l∞, l

′, l) of Lagrangian spheres. Then M contains infinitely many
symplectically knotted Lagrangian spheres. More precisely, if one defines L′(k) = τ2k

l (L′)

for k ∈ Z, then all the L′(k) are isotopic as smooth submanifolds of M, but no two of them
are isotopic as Lagrangian submanifolds.

Here, c1(M,ω) denotes the first Chern class of the tangent bundle TM . This theorem
immediately implies that τ2

L is not isotopic to the identity in Symp(M,ω). Historically,
this is the first higher dimensional result on the symplectic mapping class group.

Remark 4. In Seidel’s theorem, it is assumed that n is even. Indeed, for n odd, one can
prove that the square of the Dehn-Seidel twist acts non-trivially on homology making the
previous result irrelevant. However, in the same paper [81], Seidel also proved an odd-
dimensional counterpart of this theorem in which one should consider a composition of
non-isotopic Dehn-Seidel twists.

Seidel’s result is deeply related to Picard-Lefschetz theory and thus to homological mir-
ror symmetry. Nevertheless, this is an entirely different subject that will not be addressed
here. However, many progress have been made on more related topics. For example
Evans [33] and Li-Li-Wu [60] showed that the symplectic mapping class group of some
specific blow-ups of CP2 is generated by Dehn-Seidel twists. Khovanov-Seidel [50] and
Seidel-Thomas [85] proved that if two Lagrangian spheres intersect transversely at a single
point, their associated Dehn twists satisfy a braid relation. This result was generalized
in [49] by Keating for more general pairs of Lagrangians. In some specific cases Evans
[33] and Wu [99] proved that there is a weak homotopy equivalence between the group
of compactly supported symplectomorphisms and a braid group on the disk. Moreover,
Dimitroglou-Rizell and Evans [27] constructed from Dehn twists non-contractible families
of symplectomorphisms.

As shown by Seidel’s result, these questions are closely related to Lagrangian iso-
topy questions. For instance Coffey [23] showed that under specific conditions, on a
4-dimensional manifold M together with a (very) specific Lagrangian submanifold L,
Symp(M) is homotopy equivalent to the space of Lagrangian embeddings of L.

Dehn-Seidel twist and C0 symplectic mapping class group

We now turn our attention to the core of this thesis. Inspired by the pioneering work
of Seidel on the group of symplectomorphisms, we would like to study the topology of
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the group Symp(M,ω) of symplectic homeomorphisms. In particular, we would like to
understand the C0 symplectic mapping class group, i.e. the group π0(Symp(M,ω)).

There is a priori no reason for this group to be non trivial. Indeed, the flexibility
results such as the C0-counter example to the Arnold conjecture ([14]) show that sometimes
symplectic homeomorphisms behave very differently than their smooth counter parts. This
led Ivan Smith to ask 1 the following question.

Question 3. Is the square of the Dehn-Seidel twist connected to the identity in Symp(M,ω),
where (M,ω) is a symplectic manifold as in Seidel’s Theorem 3?

Answering this question would help to understand the relation between the symplectic
mapping class group and the C0 symplectic mapping class group. It would show that the
natural map induced by the inclusion

π0(Symp(M,ω))
J−→ π0(Symp(M,ω)) (2)

is non-trivial. Here, Symp(M,ω), which denotes the set of symplectic homeomorphisms,
is equipped with the C0-topology, whereas Symp(M,ω) is equipped with C∞-topology.

The main objective of this thesis was to answer Question 3, which we successfully
achieved by proving the following theorems.

Theorem A. Let (M2n, ω) be a 2n-dimensionnal Liouville domain with n even, n ≥ 4 and
2c1(M,ω) = 0. Assume that M contains an A2-configuration of Lagrangian spheres (l, l′).

Then, τ2
l is not in the connected component of the identity in Symp(M,ω).

Unlike in Seidel’s theorem, we only assume that M contains an A2-configuration. It
was probably known that Seidel’s Theorem 3 holds for an A2-configuration as well, but
we were not able to find an appropriate reference. This theorem implies that the group
π0(Symp(M,ω)) is not trivial. Of course, an immediate consequence of the previous the-
orem is the following corollary answering Question 3.

Corollary B. Under the same assumptions as Theorem A, the map τ2
l is not isotopic to

the identity in Symp(M,ω).

We have to discuss the relation between Theorem A and its Corollary B. In smooth
symplectic geometry, the two results would be equivalent. However, in C0-symplectic
geometry, there is no reason for this equivalence to hold and it is actually related to an
important and much harder question that could have been stated along with Question 1
and Question 2. It is the question of the local path-connectedness of Ham or Symp, which
can be formulated in the following way.

1in a private discussion with V. Humilière
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Question 4. Given an arbitrary neighbourhood U of the identity in Ham(M,ω) or in
Symp(M,ω), is there a neighbourhood V contained in U such that every element in V can
be connected to the identity using a path in V ?

Consequently, whether Symp(M,ω) is locally path-connected in dimension greater or
equal to 4 remains an open question. It is unknwon whether the connected component
of the identity is equal to the path-connected component of the identity in Symp(M,ω).
It is known that a positive answer to Question 4 would, for example, solve the C0-flux
conjecture of Question 1.

To illustrate the complexity of this question, one could have in mind a counterpart of the
nearby Lagrangian conjecture, but for symplectomorphism isotopies instead of Lagrangian
isotopies.

The nearby Lagrangian conjecture was proposed by Arnold. It states that given a
cotangent bundle T ∗L, any closed exact Lagrangian submanifold L′ ⊂ T ∗L is Hamiltonian
isotopic to the zero-section. This conjecture is exceptionally difficult to prove. However,
important progress has been made. It was proved for T ∗S2 by Hind [44] and T ∗T2 by
Goodman-Ivrii-Rizell [28]. On general cotangent bundles, a series of works by Fukaya-
Seidel-Smith [40], Abouzaid [1], Kragh [52] and Abouzaid-Kragh [2] led to the fact that for
any closed exact Lagrangian L′, the projection of L′ onto the zero section L is a homotopy
equivalence. Even if this conjecture is not proven in its full generality, those results have
already been used. For instance, in Shelukhin’s proof of the Viterbo conjecture [88], it
allows him to extend his results to all exact Lagrangian submanifolds.

Moreover, note that Theorem A also implies the following corollary since Ham(M,ω)

is connected (as the closure of a connected space).

Corollary C. Under the hypothesis of Theorem A, τ2
l0
does not belong to Ham(M,ω).

Denoting Sympc(M,ω) the set of compactly supported symplectomorphisms in (M,ω),
the most explicit corollary may be the following one:

Corollary D. Let L be a n-dimensional manifold with n > 2. Then the Dehn-Seidel-twist
along L is not in the connected component of the identity in Sympc(T ∗L, ω).

By Weinstein’s neighbourhood theorem (see Section 1.3), the C∞-counterpart of this
corollary was a consequence of Seidel’s Theorem 3.

As we will see in Section 6.5, we also have results for n = 2 with stronger assumptions
on the Lagrangian configuration.

Theorem E. Let (M4, ω) be a 4-dimensional Liouville domain, such that 2c1(M,ω) = 0.
Assume that M contains an A3-configuration of Lagrangian spheres (l, l′, l∞).

Then, τ2
l is not isotopic to the identity in Symp(M,ω).
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Let us say a few words on the map J defined by (2). This map is very poorly understood
and we have the following open question.

Question 5. For a general symplectic manifold (M,ω), is the map J injective? Is it
surjective?

Note that Theorem A implies that, at least, this map is non-trivial on some manifolds.
Moreover, a positive answer to Question 4 would imply the surjectivity of the map J .

However, in some specific cases, some results exist. As mentioned earlier in (1), we
know that, for surfaces, this map is an isomorphism.

The case of the 2n-ball is also very interesting. Let us denote Sympc(B
2n, ω) the group

of compactly supported symplectomorphisms of B2n ⊂ R2n. Using Alexander’s trick, i.e.
conjugating by x 7→ t · x, one gets that Sympc(B

2n, ω), the group of compactly supported
symplectic homeomorphisms, is contractible. Consequently, we have that MCGω(B2n, C0)

is trivial and so is the map J . On the other hand, it is not known whether the group
Sympc(B

2n, ω) is connected, except when n = 1 or 2. Indeed, in this case, Gromov showed
[43] that this is contractible.

As this example shows, it could well be that the C0 symplectic mapping class group
turns out to be simpler to study in general than the smooth symplectic mapping class
group.

Techniques involved

Seidel’s proof cannot directly be adapted to symplectic homeomorphisms. Indeed, it is
based on Floer homology which only applies to smooth objects. However, we will see that
barcodes form a rich enough invariant that can be defined for symplectic homeomorphisms
and that offers a good substitute to Floer homology.

Floer homology

Floer Homology was introduced by Floer in [36]. Given a symplectic manifold (M,ω)

satisfying good properties and a Hamiltonian H, his idea was to use the action functional
AH : LM → R from the Hamiltonian H introduced by Lagrange, to construct a Morse-
like complex. Here, LM denotes the space of contractible loops in M . By Morse-like
complex, we mean a complex generated by critical points and the differential given by the
trajectories of a pseudo-gradient vector field. This will be explained in Chapter 2.

Floer homology is then defined from a complex whose generators are the critical points
of this action functional. The differential is given by counting some perturbed pseudo-
holomorphic curves.

The homology obtained this way is called the Floer homology of the Hamiltonian H,
and is denoted HF (H). Floer proved the following theorem:
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Theorem 5. For (M,ω) a compact, symplectically aspherical symplectic manifold, and for
any Hamiltonian H on M ,

HF (H) ∼= H∗(M).

Part of his motivation was to answer the Arnold conjecture[3]:

Conjecture 6. A Hamiltonian diffeomorphism of M must have at least as many fixed
points as the minimal number of critical points of a smooth function on M .

Following these ideas, other Floer (co)homologies have been defined. The one we are
particularly interested in is the Lagrangian intersection Floer cohomology.

We will be working with exact Lagrangian submanifolds. In an exact symplectic man-
ifold (M,ω = dλ), an exact Lagrangian submanifold L is a Lagrangian submanifold such
that the restriction λ|L of the 1-form λ is exact.

Let L,L′ be two closed exact Lagrangian submanifolds in an exact symplectic manifold
(M,ω). We assume that their intersections are transverse. The Floer complex is generated
by the intersection points χ(L,L′) of the two Lagrangian submanifolds L and L′. One
could want to proceed as for Morse homology and find an action functional to compute its
differential in order to obtain its gradient vector field and hence the differential. However,
even if we can construct this action functional whose critical points correspond to the
intersection points, some analytic difficulties make the rest of the construction impossible.
To define the differential, we have to count J-holomorphic strips, for a chosen almost
complex structure J , between two intersection points, with boundaries on both Lagrangian
submanifolds. Of course, for all the objects at stake to be well-defined, some perturbations
are required. Once this Floer cohomology is defined, we have an analogue of Theorem 5.

Theorem 7 (Floer [37]). Let (M,ω) be a symplectically aspherical symplectic manifold,
together with a closed weakly-exact Lagrangian submanifold L. Then,

HF ∗(L,L;Z/2) ∼= H∗(L,Z/2).

Many improvements, for weaker assumptions, have been made since then by Oh [66],
Fukaya-Oh-Ohta-Ono [39]...

One of the many interesting properties of this cohomology is its Hamiltonian invariance,
i.e. let φ be an Hamiltonian diffeomorphism on M , then

HF ∗(L,L′) ∼= HF ∗(L, φ(L′)).

When L = L′, we denote HF (L,H) = HF (L,ϕ1
H(L)) and for all K,H ∈ Ham(M,ω),

we have HF (L,H) ∼= HF (L,K). The invariance property makes this cohomology a great
tool to study Hamiltonian diffeomorphisms.
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Moreover, the structure of this cohomology is very rich. Indeed, given three closed
exact Lagrangian submanifolds L0, L1, L2 in (M,ω), counting pseudo-holomorphic curves
between three intersection points, one can define a product structure

µ2 : HF (L0, L1)⊗HF (L2, L0)→ HF (L2, L1).

This product equips HF (L,L) with a ring structure and the isomorphism of Theorem 7
is a ring isomorphism. Given more Lagrangian submanifolds, we can also define higher
products µk, k ∈ N.

Action selectors and Barcodes

Action selectors were introduced by Viterbo [96] for Lagrangian submanifolds in a cotan-
gent bundle using generating functions theory. After this construction, it was adapted to
many contexts by Oh [67], Schwarz [79], Leclercq [58] and others... They contributed to
the definition of many useful tools, such as the spectral norm [96], or the study of other
ones such as the Hofer norm, defined for Hamiltonian diffeomorphisms [45]. These ac-
tion selectors are fundamental symplectic invariants and are thus deeply studied. Since
these objects will be discussed in much more detail later on, we will give here only a brief
overview of their construction and relevant properties.

Given a non-zero homology class α ∈ HF (H) (respectively a cohomology class in
HF (L,H)), the associated action selector l(α,H) is the minimal action above (respectively
maximal action under) which this class is represented in homology. These action selectors
satisfy the following properties

• Finiteness: l(α,H) < +∞,

• Spectrality: l(α,H) is a critical value of the action functional,

• Continuity: |l(α,H)− l(α,K)| ≤ ‖H −K‖, where ‖ · ‖ denotes the Hofer norm,

• Triangle inequality: l(α ∗ β,H]K) ≤ l(α,H) + l(β,K), where ∗ denotes the intersec-
tion product and ] the flow composition (this is for homology, for cohomology, the
inequality goes in the other direction and the product is the cup product).

These action selectors have been subject to a lot of works and have been shown to satisfy
stronger properties than the above mentioned. For instance, the result relevant for us is
that Buhovsky-Humilière-Seyfaddini [15] proved that they are locally C0-Lipschitz in the
Hamiltonian Floer homology case.

Thanks to respectively Theorem 5, one can define the spectral norm γ by

γ(H) = l([M ], H)− l([pt], H).
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Note that there exists an analogous version of this definition for Lagrangian Floer coho-
mology denoted by γ(L,H).

The above properties easily lead to a certain continuity of this spectral norm.

Barcodes come from a totally different area of mathematics: topological data analysis.
A barcode is a collection of intervals (called bars) used to represent certain algebraic
structures called persistence modules. They were introduced by Edelsbrunner et al. [29]
and, for example, found applications in image recognition with the work of Carlson et al.
[20].

The terminology of barcodes was brought into symplectic topology by Polterovich and
Shelukhin [75] although germs of this theory were already present in the work of Barannikov
[9] and Usher [92, 93]. Indeed, they observed that Floer theories carry natural persistence
module structures, coming from the action filtration. See Chapter 4 for details.

The space of barcodes may be equipped with a distance, called the bottleneck distance.
One can associate a barcode to a Morse function, and this barcode is C0-continuous with
respect to the Morse function. They satisfy many more properties that will be discussed
in much more details in Chapters 4 and 5.

Barcodes are of particular interest since they carry the information on the action filtra-
tion in Floer (co)homology. Given two exact Lagrangian submanifolds L,L′ in a symplectic
manifold (M,ω), this filtration is given by the cohomology of the following subcomplexes.
For all κ ∈ R, we define

CF ∗,κ(L,L′) = spanZ/2
{
z ∈ χ(L,L′), AL,L′(z) < κ

}
⊂ CF ∗(L,L′),

where χ(L,L′) denotes the generators of the Floer complex CF (L,L′), and AL,L′ the action
functional associated to the pair of Lagrangians. When the parameter κ increases, some
classes appear while some other ones vanish. The bars of the associated barcode keep track
of the levels at which classes appear and disappear.

But maybe the most interesting property of the space of barcodes is that, being
equipped with a distance, it has a topology. We will use the existence of this topology on
the space of barcodes, together with continuity results to prove our statements.

Some recent continuity results will be extremely useful. The first one comes from a work
of Kislev-Shelukhin. In [51], they proved that, in the case of a Lagrangian submanifold
together with a Hamiltonian function, the aforementioned barcodes are continuous with
respect to the Lagrangian spectral norm γ(L,H).

The second result is the one we mentioned before: Buhovsky-Humilière-Seyfaddini
[15] proved that action selectors (in the Hamiltonian case) are locally C0-Lipschitz. This
allows to extend these objects and the different spectral invariants to the C0-closure, i.e.
to Hamiltonian homeomorphisms. This provides invariants that will be used to study these
objects.
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One can put both those results together to get a local C0-Lipschitz continuity of the
barcodes. Adapting these proofs to our context is the point of our following main tool-
theorem.

Theorem F. Let M be a Liouville domain. Let L and L′ be two closed exact Lagrangian
submanifolds, and assume that H1(L′,R) = 0. The map

ϕ ∈ Symp(M,ω) 7→ B̂(ϕ(L′), L),

where B̂(L,L′) denotes the barcodes associated to the exact Lagrangian submanifolds L and
L′, is continuous and extends continuously to Symp(M,ω).

Remark 8. This theorem implies that there is a map between the homotopy groups of
Symp(M,ω) and the homotopy groups of the relevant space of barcodes which we strongly
hope to use in the future to study the topology of Symp(M,ω).
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Organisation

In the first chapter, we recall basic definitions of symplectic topology and give some nota-
tions that will be used in the rest of this thesis.

The second chapter starts with a short presentation of Morse homology, as it will
be helpful to understand the following constructions. We then present Lagrangian Floer
cohomology of two exact Lagrangian submanifolds.

The third chapter is a presentation of the theory of persistence modules and barcodes as
they were introduced in topological data analysis, focusing on the properties we are inter-
ested in. We also prove some small topological observations on this set, both completeness
and connectivity results.

In the fourth chapter, after having recalled how barcodes are constructed for Morse
homology, we propose a definition of barcodes for Lagrangian Floer cohomology. We then
prove that the product operations in Floer cohomology respect the filtration. We also
present the action selectors for a pair of Lagrangian and define the spectral distance in the
case of a pair exact Lagrangians non-necessarily Hamiltonian isotopic, together with some
properties. Note that the same definition also appears in Shelukhin’s work [88].

We do not claim any original result in Chapters 1-4 but rather produce an adaptation
to our context of pre-existing definitions and results.

The fifth chapter is the proof of our main tool-theorem used to get our results on the
Dehn twist. We prove a local Lipschitz continuity of the barcodes, with respect to the
C0-norm. The statements presented here are generalizations of similar results obtained by
Kislev-Shelukhin in [51] and Buhovsky-Humilière-Seyfaddini in [15]. Using this theorem,
we also prove Theorem 5.1.3 and Theorem 5.1.4. The first one associates a continuous path
of barcodes to a continuous path in Symp while the second one is a connectivity result.

Finally, in Chapter 6, after a presentation of the Dehn-Seidel twist and Seidel’s results,
we state and prove our main results, Theorem A and its corollaries, along with their
counterparts in dimension 4.



24 INTRODUCTION



Chapter 1

Preliminaries and notations

All the definitions and proofs of the propositions in this section can be found in McDuff-
Salamon’s book [62].

1.1 Symplectic geometry

Let M be a smooth oriented manifold endowed with a closed non-degenerate 2-form ω.
The pair (M,ω) is said to be a symplectic manifold. To be equipped with such ω, M has
to be even dimensional. Hence, we will often denote by 2n the dimension of M .

The most basic example is the Euclidean space R2n, with coordinates (x1, ...xn, y1, ..., yn),
equipped with the symplectic form

ω0 =
n∑
j=1

dxj ∧ dyj .

A famous theorem of Darboux states that every symplectic form ω on a manifold M is
locally diffeomorphic to the standard form ω0 on R2n.

We are interested in the study of diffeomorphisms preserving the symplectic form, i.e.
the diffeomorphisms φ ∈ Diff(M) such that

φ∗ω = ω.

These diffeomorphisms are called sympectic diffeomorphisms or symplectomorphisms. The
set of symplectomorphisms is a group called the symplectomorphism group and is denoted
Symp(M,ω) or just Symp(M) when no confusion is possible.

Definition 1.1.1. We call an compatible almost complex structure on M a map J :

TM → TM such that gJ = ω(·, J ·) is a Riemannian metric and ω(J ·, J ·) = ω. A triple
(ω, J, g) with these properties is called a Hermitian structure on M .

25
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One can prove that the set of compatible almost complex structures onM is non empty
and contractible.

As a consequence, the first Chern class of the complex tangent bundle (TM, J) does not
depend on the complex structure, and hence will be denoted c1(TM) or c1(M,ω). We will
be interested in symplectically aspherical symplectic manifolds, i.e. symplectic manifolds
such that

〈2c1(TM), π2(M)〉 = 0 and 〈ω, π2(M)〉 = 0.

A symplectic manifold (M,ω) is said to be exact if ω is exact, i.e. if there is a 1-form
λ such that ω = dλ. This 1-form λ is called a Liouville form, to which we can associate a
vector field Xλ defined by

iXλω = λ.

This vector field Xλ is called the Liouville vector field and its flow φtL satisfies

(φtL)∗ω = etω.

A symplectomorphism ϕ on (M,ω = dλ) is said to be exact (with respect to λ) if
ϕ∗λ− λ is exact.

In this thesis, we will be interested in particular cases of exact symplectic manifolds
called Liouville domains. Before giving the definition of such manifolds, we have to say a
few words on contact manifolds. Contact manifolds can be seen as the odd-dimensional
counterparts of symplectic manifolds.

A contact manifold is a pair (V, ξ) where V 2n−1 is an odd dimensional oriented manifold,
and ξ is a contact structure. A contact structure is a maximally non-integrable hyperplane
distribution. For a contact structure ξ, there exists a contact form α such that kerα = ξ

and α ∧ dαn−1 > 0. Note that this contact form is not unique.
A symplectic manifold with contact type boundary is a symplectic manifold (M,ω), with

∂M 6= ∅ which admits a Liouville vector field in a neighbourhood of ∂M which is transverse
and pointing outwards along ∂M . The existence of this Liouville vector field implies that
ω is exact near the boundary equal, to dλ. Thus ∂M is a contact manifold for a contact
form α obtained as the pull-back of λ to ∂M by the inclusion.

We can now define a Liouville domain.

Definition 1.1.2. A Liouville domain is an exact symplectic manifold (M,ω = dλ) with
contact type boundary such that the Liouville vector field Xλ, defined by iXλdλ = λ, is
transverse to the boundary and points outwards.

The pull-back α of λ on the boundary is a contact form.
For such a manifold, there exists an embedding ψ : (−ε, 0]×∂M →M such that ψ(0, ·)

is the identity on ∂M , and ψ∗ω = d(etα). Here, t denotes the (−ε, 0]-coordinate. We can
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now define the completion (M̂, ω̂) of the Liouville domain (M,ω) as

M̂ = M ∪ [0,+∞)× ∂M, (1.1)

with the symplectic form d(etα) as the symplectic form on the cylindrical part. We in fact
obtain this completion by simply gluing on the boudary ∂M the cylinder [0,+∞) × ∂M
equipped with the symplectic form d(etα) so that it extends the collar Im(ψ).

Remark 1.1.3. For the proofs involved in this thesis, we do not need to require that the
symplectomorphisms defined on the Liouville domain M are equal to the identity on the
boundary ∂M .

1.2 Hamiltonian formalism

Let us recall and detail the preliminaries mentioned in the introduction.

Let (M,ω) be a symplectic manifold. We call a Hamiltonian function (or just a Hamil-
tonian), a smooth function

H : S1 ×M → R.

The S1 coordinate refers to the time-dependence of the Hamiltonian. We will often denote
Ht(x) = H(t, x), where t is the S1 coordinate and x the M coordinate. A Hamiltonian
generates a time-dependent vector field XHt by the formula

dHt = ω(·, XHt).

A time-dependent vector field that can be expressed as the vector field generated by a
Hamiltonian is called a Hamiltonian vector field. When it is defined, the flow φtH of this
vector field is called the Hamiltonian isotopy generated by H. A symplectomorphism ϕ is
called a Hamiltonian diffeomorphism if it is the time-1 of a Hamiltonian isotopy φtH , i.e.
there exist a Hamiltonian H such that ϕ = φ1

H .

Remark 1.2.1. For this flow to be well defined on a Liouville domain M , we require the
Hamiltonian to be constant on the boundary ∂M . This implies that the vector field XHt

is tangent to the boundary and thus ensures that the flow φtH is well-defined.

We say that ϕt is a Hamiltonian isotopy supported in U ⊂ M if it is generated by a
Hamiltonian H supported in U , i.e. for all t ∈ S1, Ht is supported in U .

The set of Hamiltonian diffeomorphisms on (M,ω) is a group called the Hamiltonian
group and is denoted Ham(M,ω) or just Ham(M) when there is no possible confusion. Let
us give the following properties which prove that this is indeed a group. These notations
will be useful later.
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Let H and K be two Hamiltonian functions on a symplectic manifold (M,ω). The flow
φt
H̄

= (φtH)−1 is generated by the Hamiltonian

H̄(t, x) = −H(t, φtH(x)).

The flow φtH]K = φtH ◦ φtK is generated by the Hamiltonian

(H]K)(t, x) = H(t, x) +K(t, (φtH)−1(x)).

The Hamiltonian group can be equipped with a norm, called the Hofer norm. We
define for a Hamiltonian H its Hofer norm ‖H‖ by

‖H‖ =

∫ 1

0
(maxHt −minHt)dt.

This corresponds to the so-called the Hofer length of the isotopy (φtH)t∈[0,1] generated by
H. Consequently, given a Hamiltonian diffeomorphism ϕ, we define the Hofer norm of ϕ
as

‖ϕ‖ = inf{‖H‖, φ1
H = ϕ}.

It was proven by [45, 74, 53] that the Hofer norm is non-degenerate. It therefore allows us
to naturally define the Hofer distance between two Hamiltonian diffeomorphisms ϕ and ψ
as

dHofer(ϕ,ψ) = ‖ψ ◦ ϕ−1‖.

1.3 Lagrangian submanifolds

The notion of Lagrangian submanifold is a fundamental notion in symplectic geometry and
its study is a central topic in symplectic topology. To define these objects, we have to start
by the linear case.

Let (V, ω) be a symplectic vector space and let W be a linear subspace. We define the
symplectic orthogonal of W in V as

Wω = {u ∈ V | ω(u, v) = 0 ∀v ∈W}.

The subspace W is called

• isotropic if W ⊂Wω,

• coisotropic if Wω ⊂W ,

• symplectic if W ∩Wω = {0},

• Lagrangian if W = Wω.
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Note than in a 2n-dimensional vector space, a Lagrangian subspace is n-dimensional. We
will denote by Λ(n) the Lagrangian Grassmanian in R2n, i.e. the manifold consisting of
all Lagrangian subspaces.

We can now define Lagrangian submanifolds in a symplectic manifold.

Definition 1.3.1. Let (M2n, ω) be a symplectic manifold, together with W ⊂M a smooth
submanifold. The submanifold W is called a Lagrangian (or respectively isotropic or
coisotropic) submanifold if and only if, for every q ∈ W , the subspace TqW of TqM is
Lagrangian (respectively isotropic or coisotropic).

A Lagrangian submanifold is n-dimensional.
The most important examples of Lagrangian submanifold for us are the following.

Example 1.3.2. Let L be a smooth manifold. Its cotangent bundle T ∗L admits an exact
symplectic 2-form ω = dλ locally given by

λ = −pdq and ω = dq ∧ dp,

where q is a local coordinate on L and p the dual coordinate on the fibre T ∗q L. Then, the
zero section L ⊂ T ∗L is a Lagrangian submanifold.

Moreover, given a closed 1-form β on L, its graph Gβ ⊂ T ∗L is a Lagrangian subman-
ifold.

The following theorem, called Weinstein’s neighbourhood theorem [98] is a perfect
illustration of the importance of the previous example.

Theorem 1.3.3. Let (M,ω) be a symplectic manifold and L ⊂M a Lagrangian subman-
ifold. Then there exists a neighbourhood V ⊂ T ∗L of the zero section and a neighbourhood
W (L) ⊂M of L together with a diffeomorphism ψ : V →W (L) such that

ψ∗ω = dλ and ψ|L = Id,

where λ is the canonical 1-form on T ∗L.

Some Lagrangian submanifolds satisfy properties that make them easier to work with.
This is the case of the so-called exact Lagrangian submanifolds, which are of particular
interest for our study.

Definition 1.3.4. Let (M,ω = dλ) be an exact symplectic manifold. A Lagrangian sub-
manifold L is said to be exact if the restriction of λ to L is exact, i.e. there exists a
function f : L→ R such that

λ|L = df.
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Remark 1.3.5. Let L be an exact Lagrangian submanifold in (M,dλ) together with a
function f such that λ|L = df . Then for all c ∈ R, the function fc defined by fc = f + c

also satisfies λ|L = dfc.

Exact Lagrangian submanifolds are closely related to Hamiltonian transformations.
Indeed, let ϕ be a Hamiltonian diffeomorphism in (T ∗L, λ). Then ϕ(L) ⊂ T ∗L is an exact
Lagrangian submanifold, where L denotes the zero-section.

More generally, if we are working in an exact symplectic manifold (M,dλ) and the
path (Lt)t∈[0,1] is a smooth path of exact Lagrangian submanifolds, there is a smooth path
(φt)t∈[0,1] in Ham(M,dλ) such that

∀t ∈ [0, 1], φt(L0) = Lt. (1.2)

1.4 Motivations for C0 symplectic geometry

The interest for C0-symplectic geometry began with the famous Gromov-Eliashberg theo-
rem. This theorem was in fact proved by Eliashberg [30] building on previous work from
Gromov.

Theorem 1.4.1. Let (M,ω) be a symplectic manifold together with a sequence (ϕn)n∈N

of symplectomorphism. Assume that this sequence C0-converges to a diffeomorphism ϕ.
Then ϕ is a symplectomorphism.

Before discussing the consequences of this famous theorem, we have to explain what
we mean by “C0-converges". It is the uniform convergence on compact sets. Let us choose
a Riemannian metric on M and denote d its induced distance. For any compact subset K
in M , and two homeomorphisms ϕ,ψ : M →M , we denote

dK(ϕ,ψ) = max

{
sup
p∈K

d(ϕ(p), ψ(p)), sup
p∈K

d(ϕ−1(p), ψ−1(p))

}
. (1.3)

Consequently, we say that (ϕn)n∈N C
0-converges to ϕ in M if and only if, for all compact

K in M , (ϕn)n∈N converges to ϕ for the distance dK . Note that the C0-convergence is a
notion that does not depend on the choice of the Riemannian metric.

One could choose to define dK only by

dK(ϕ,ψ) = sup
p∈K

d(ϕ(p), ψ(p)).

However, in that case, it is possible for a sequence of homeomorphisms to converge to a
map which is not a homeomorphism, which we would like to avoid. With our choice, the
following lemma holds.
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Lemma 1.4.2. Let (ϕn)n∈N be a sequence of symplectomorphisms which C0-converges to
a map ϕ. Then ϕ is a homeomorphism and (ϕ−1

n )n∈N C
0-converges to ϕ.

Gromov-Eliashberg’s theorem is the first example of C0 symplectic rigidity. Note that
this fact can be surprising as the condition for a diffeomorphism to be symplectic is a
C1 condition, and there is no assumption concerning a convergence of the differential in
the theorem. This theorem is the birth of C0 symplectic topology as the study of objects
defined as C0-limits of their smooth symplectic counterparts. The first consequence of this
theorem is the following natural definition.

Definition 1.4.3. Let (M,ω) be a symplectic manifold. We say that ϕ is a symplectic
homeomorphism of M if there is a sequence of symplectomorphisms (ϕn)n∈N of M such
that ϕ is the C0-limit of (ϕn)n∈N.

The set of symplectic homeomorphisms of (M,ω) is denoted Symp(M,ω). By Gromov-
Eliashberg theorem, we have

Diff(M) ∩ Symp(M,ω) = Symp(M,ω).

Remark 1.4.4. In the special case of dimension 2, it is proven in [57] that for every com-
pact symplectic surface, the area and orientation preserving homeomorphisms are exactly
the symplectic homeomorphisms:

Symp(M,ω) = Homeo+,ω(M).

The statement in that paper is actually more precise: denoting G0 the identity component
of a topological group G, we have

Symp(M,ω)0(M,ω) = Homeo+,ω
0 (M).

In this thesis, we are mainly interested in Lagrangian submanifolds. Hence, a natural
question to ask is what happens to these submanifolds when taking their image by a
symplectic homeomorphism? A Gromov-Eliashberg -like rigidity theorem was proven by
Humilière-Leclercq-Seyfaddini [46] (see also Laudenbach-Sikorav [55]).

Theorem 1.4.5. Let L be a Langrangian submanifold in a symplectic manifold (M,ω),
together with a symplectic homeomorphism ϕ. If ϕ(L) is a smooth submanifold, then ϕ(L)

is a Lagrangian submanifold.

This theorem is part of the motivation for the upcoming discussions. Indeed, if sym-
plectic homeomorphisms preserve the Lagrangian property of smooth submanifolds, it is
legitimate to ask whether they preserve other topological properties or not. In a more
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general way, the main question is to what extent do symplectic homeomorphisms behave
as symplectic diffeomorphisms.



Chapter 2

Different homologies

2.1 Morse homology

In this section, we will briefly sketch the definition of the Morse homology, as many of
the objects presented in this thesis can be interpreted as a generalization of Morse theory.
It will also help to present and understand these objects. This theory was developed by
Morse [65], Thom [91], Smale [90], Milnor [63] . We follow Audin-Damian’s work [6] for
this section.

For all this section, M will be a n-dimensional compact manifold.
Let us recall that a function M → R is said to be Morse if and only if all its critical

points are non-degenerate, i.e.

∀x ∈M,df(x) = 0⇒ d2fx non degenerate.

The functions at stake in this section will all assumed to be Morse. The structure of f
near the critical points is well understood as shown by the following Morse lemma.

Lemma 2.1.1. Let a ∈M be a critical point of Morse function f : M → R. There exists
a neighbourhood U of a, and a local chart, called a Morse chart ϕ : (U, a) → (Rn, 0) such
that

f ◦ ϕ−1(x1, ..., xn) = f(a)−
i∑

j=1

x2
j +

n∑
j=i+1

x2
j .

The i ∈ N in the previous sum is actually independent of the choice of the Morse chart,
and is called the Morse index of a. We will denote Critkf the critical points of f of index
k.

Fixing a Morse function f on M , a pseudo gradient vector field for f is a vector field
X such that for all x ∈ M , dfx(Xx) ≤ 0 and with equality if and only if x is a critical
point of f . Moreover, we ask that in a Morse chart near a critical point, X is equal to the

33
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opposite of the gradient vector field of f for the canonical metric on Rn. Given a Morse
function, such vector fields always exist.

Let us fix a Morse function f and a pseudo gradient vector field X. By Smale’s
theorem, one can always find a pseudo gradient vector field Y , C1-close to X such that,
for all critical points a and b of f , the Y -stable manifold of a intersects transversely the
Y -unstable manifold of b. The vector field Y is said to satisfy the Smale condition.

We can now describe the Morse chain complex CM∗(f), with f being a Morse function
on M , together with a pseudo-gradient vector field X satisfying the Smale condition. The
kth group of the chain complex CMk(f) is given by

CMk(f) =

 ∑
c∈Critk(f)

λc · c, λc ∈ Z/2

 .

We now have to define the differential of this complex: ∂X : CMk(f)→ CMk−1(f). To do
so, we will study the solutions of the following exact differential equation

l̇(t) = X(l(t)). (2.1)

Let x− and x+ be two distinct critical points of f . We set

M(x−, x+; f,X) =

{
l solution of 2.1, lim

t→±∞
l(t) = x±

}
.

Since we haveM(x−, x+; f,X) ∼= W u(x−)∩W s(x+), the transversality condition ensures
that dim(M(x−, x+; f,X)) = ind(x−)− ind(x+).

Moreover, there is a free and proper action of R onM(x−, x+; f,X) given for all c ∈ R
by l 7→ l(· + c). So we define M̂(x−, x+; f,X) the quotient of M(x−, x+; f,X) by this
action. The manifold M̂(x−, x+; f,X) is then (ind(x−) − ind(x+) − 1)-dimensional. The
Morse differential ∂X : CM∗(f) → CM∗−1(f) is then defined to be the linear map such
that for all critical points x− ∈ Critk(f),

∂X(x−) =
∑

y∈Critk−1(f)

]M̂(x−, y; f,X) · y,

where ]M̂(x−, y; f,X) denotes the cardinal of M̂(x−, y; f,X). The last point to be checked
is whether we have ∂2

X = 0. For x ∈ Critk+2(f),

∂2
Xx =

∑
z∈Critk(f)
y∈Critk+1(f)

](M̂(x, y; f,X)× M̂(y, z; f,X)) · z.

Proving that ∂2
X is always equal to zero requires to understand the structure of the moduli
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spaces. This can be achieved through the two following theorems, the first one being a
compactness one and the second a gluing one [6].

Let us first define broken gradient trajectories.

Definition 2.1.2. A broken gradient trajectory between two critical points x− and x+ is
a family (l1, ..., lp) of trajectories such that

1. for all i, li is a solution of 2.1,

2. l1,− = x−, lp,+ = x+

3. ∀1 ≤ i ≤ p− 1, li,+ = li+1,−.

For two critical points x− and x+ we denote M̂(x−, x+; f,X) the space of broken
gradient trajectory from x− to x+.

Theorem 2.1.3. The space M̂(x−, x+; f,X) is compact for all critical points x− and x+.

Theorem 2.1.4. Let (x−, z, x+) ∈ (Critk+1(f)×Critk(f)×Critk−1(f)), and l ∈ M̂(x−, z; f,X),
l′ ∈ M̂(z, x+; f,X). There is a continuous, differentiable on the interior of its defini-
tion domain, embedding ψ from an interval [0, δ), δ > 0, to a neighbourhood of (l, l′) in
M̂(x−, x+; f,X) such that

1. ψ(0) = (l, l′) ∈ M̂(x−, x+; f,X),

2. ψ(s) ∈ M̂(x−, x+; f,X) for all s 6= 0.

Moreover, for any (ln) sequence in M̂(x−, x+; f,X) converging to (l, l′) then, for n large
enough, ln lies in the image of ψ.

Together with the properties of the index, these theorems lead to⋃
z∈Critk(f)

M̂(x−, z; f,X)× M̂(z, x+; f,X) = ∂M̂(x−, x+; f,X),

where (x−, z, x+) are defined as in the above theorem. Moreover, M̂(x−, x+; f,X) is a
1-dimensional manifold with boundary. Hence, we get that ∂2

X = 0.

Remark 2.1.5. This homology does not depend on the choice of the function f , or the
vector field X. Indeed, given two Morse functions f and g on M , and associated pseudo-
gradient vector fields X and Y , there is a chain homotopy equivalence

ψ∗ : (CM∗(f), ∂X)→ (CM∗(g), ∂Y ),

which induces an isomorphism in homology.
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Figure 2.1 – Compactification of M̂(x−, x+; f,X).

We also make the following remark which will be proved to be useful when discussing
persistence modules and barcodes.

Remark 2.1.6. Given a Morse function f and a pseudo-gradient vector field X, the
differential ∂X decreases the value of f , i.e. for all x ∈ Crit(f), we have f(x) ≥ f(∂Xx).
Indeed, let us consider two critical points x− and x+ such that ind(x−) = ind(x+) + 1 and
such that there exist a trajectory x from x− to x+ satisfying 2.1. Since such a trajectory
is a flow line of X, by definition of a pseudo-gradient vector field, we immediately get that
f(x−) > f(x+). This means that all the points y with non-zero coefficient in the expression
of the differential of a point x satisfy f(x) > f(y).

2.2 Floer cohomology for a pair of exact Lagrangian subman-
ifolds

This section will closely follow the work of Denis Auroux [7] together with lectures note
from Ghiggini [41] and Oh’s book [68].

2.2.1 Motivation and general presentation

One would naively want to define Lagrangian Floer homology in the same way that Morse
homology is defined. This means defining an action functional, and setting the generators
of the chain complex to be the critical points of this action functional, while the differential
would be given by its flow lines.

Let (M,ω) be a Liouville domain, with dλ = ω, and let L and L′ be two closed connected
exact Lagrangian submanifolds in M . We denote f : L→ R and f ′ : L′ → R the functions
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satisfying df = λ|L and df ′ = λ|L′ . We recall that these functions are well-defined up to a
constant by Remark 1.3.5.

Let us consider the path space

P(L,L′) = {γ : [0, 1]→M,γ smooth, γ(0) ∈ L, γ(1) ∈ L′}.

Remark 2.2.1. With this definition, the tangent space of P(L,L′) at γ is:

TγP(L,L′) = {ξ ∈ Γ(γ∗TM), ξ(0) ∈ Tγ(0)L, ξ(1) ∈ Tγ(1)L}.

Note that this is purely heuristic: we do not describe (or have) a manifold structure on
this space of paths.

To do computations, this definition is not the easiest one to consider. As we will see,
it is more convenient to consider tangent vectors at γ as the derivative of a 1-parameter
family of paths near γ.

We can now define the action functional as follows.

Definition 2.2.2. In our context, the action functional on the space of paths P(L,L′) is
the map AL,L′ : P(L,L′)→ R defined by the expression

AL,L′(γ) =

∫
γ∗λ+ f(γ(0))− f ′(γ(1)),

with γ ∈ P(L,L′).

Remark 2.2.3. This definition of the action presents some unusual properties regarding
the classical conventions used in cohomology. Indeed, as we will see in Remark 2.2.16, the
differential in cohmology decreases this action. This choice does not fundamentally matter
but it makes the definitions of persistence modules and barcodes easier as our setting thus
matches with the usual definitions of these objects.

Let us compute the differential to get the critical points. To do so, we compute the
differential of AL,L′ at a point γ applied to a tangent vector ξ.

To do so, we extend γ(t) to us(t) = u(s, t) defined for s in a neighborhood (−ε, ε) of 0,
with ε > 0, such that 

∀s ∈ (−ε, ε), u(s, 0) ∈ L, u(s, 1) ∈ L′

u(0, t) = γ(t)
∂u
∂s (0, t) = ξ(t).
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The differential of AL,L′ at γ is then

dγAL,L′(ξ) =
∂

∂s
AL,L′(u(s, t))|s=0

= lim
s→0

1

s

(
AL,L′(u(s, t))−AL,L′(u(0, t))

)
= lim

s→0

1

s

∫
[0,1]

u∗sλ− u∗0λ+ f(u(s, 0))− f ′(u(s, 1))− f(u(0, 0)) + f ′(u(0, 1))


= lim

s→0

1

s

∫
∂([0,s]×[0,1])

u∗λ

= lim
s→0

1

s

∫
[0,s]×[0,1]

u∗ω

= lim
s→0

1

s

∫ s

0

∫ 1

0
ωu(s,t)(

∂u

∂s
,
∂u

∂t
)dtds

=

∫ 1

0
ωγ(t)(ξ(t), γ̇(t))dt.

Thus, the critical points of AL,L′ are exactly the paths such that for all t ∈ [0, 1], γ̇(t) = 0,
i.e. the constant paths. Since the only constant paths with endpoints on L and L′ are the
intersection points, we conclude that the critical points of AL,L′ are the intersection points
between L and L′. At such a point p, we have

AL,L′(p) = f(p)− f ′(p).

We denote Spec(L,L′) the set of critical values of AL,L′ .
To proceed as done for Morse homology, in order to define the differential, we now have

to compute the gradient flow lines. However, the analysis results at work in Morse theory
do not work anymore when trying to do infinite-dimensional Morse theory. This is why,
even if the generators of our Floer complex will be intersection points, in order to define
Floer cohomology, we will have to study moduli spaces of pseudo-holomorphic strips.

Along the definition of Lagrangian Floer cohomology, we will explain how our particular
case of an exact symplectic manifold together with two exact Lagrangian submanifolds
makes this cohomology easier to define than for the general case.

2.2.2 The complex

In the general case, Floer cohomology is defined with coefficients in a Novikov field. How-
ever, thanks to the exactness condition required in our context, we do not need this coef-
ficient field, and we can work with coefficients in Z/2.

Let us take a Liouville domain (M,ω = dλ) and two closed exact Lagrangian subman-
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ifolds L and L′ that intersect transversely, at a finite set of points. The Floer complex is
the free Z/2-module generated by the intersection points χ(L,L′) = {p ∈ L ∩ L′} of these
two Lagrangian submanifolds:

CF (L,L′) =
⊕

p∈χ(L,L′)

Z/2 · p.

Before defining the differential and the grading of this complex, we have to choose an ω-
compatible almost-complex structure J as in Definition 1.1.1. It will be essential to define
a metric on our moduli spaces.

Let us recall [62] that for all (M,ω), the set ω-compatible almost-complex structure
is non empty and contractible. So let us fix a time-dependent almost complex structure
(Jt)t∈[0.1] ∈ J (M,ω). We are working with time-dependent almost-complex structures
because this will allow us to ensure the good definition of the Lagrangian Floer cohomology;
this will be discussed in Subsection 2.2.5.

We now define the differential of our chain complex.

2.2.3 The Floer differential

The idea of the Floer differential ∂ : CF (L,L′)→ CF (L,L′) is to count pseudo-holomorphic
strips in M with boundary in L and L′, between two intersection points.

Let p and q be two points in χ(L,L′). We define the moduli spaceM(p, q; Jt) as follows.

Definition 2.2.4. The moduli spaceM(p, q; J) is the set of smooth maps u : R×[0; 1]→M

which satisfy the Cauchy-Riemann equation

∂u

∂s
+ Jt(u)

∂u

∂t
= 0 ⇐⇒ ∂̄Jtu = 0, (2.2)

together with boundary conditions:

∀s ∈ R, u(s, 0) ∈ L, u(s, 1) ∈ L′,

∀t ∈ R lim
s→+∞

u(s, t) = p,

∀t ∈ R lim
s→−∞

u(s, t) = q.

Amap u ∈M(p, q; Jt) is called a Floer strip from p to q, and a map u ∈ C0(R×[0, 1],M)

which satisfies the boundary conditions but which does not satisfy Cauchy-Riemann is
called a Floer-like strip from p to q.

Remark 2.2.5. If u is in M(p, q; Jt), then s0 · u defined by s0 · u(s, t) = u(s0 + s, t) is
also inM(p, q; Jt). This means that there is an R-action on the moduli spaceM(p, q; Jt).
The fixed points of this action are the constant maps at an intersection point. The only
stabilizer of a non-constant map is 0.



40 CHAPTER 2

Figure 2.2 – Floer strip between p and q.

Remark 2.2.6. When working with non-exact Lagrangian submanifolds, an other condi-
tion is required for the previous definition, which is called the finite energy condition, i.e.
the maps u have to satisfy

E(u) :

∫
u∗ω =

∫ ∫ ∣∣∣∣∂u∂s
∣∣∣∣2 < +∞.

However, a consequence of the following lemma is that this condition is always satisfied,
in our exact Lagrangian submanifolds setting.

Lemma 2.2.7. Let p, q ∈ χ(L,L′) and let u be a Floer strip from p to q. Then,

E(u) = AL,L′(p)−AL,L′(q) = f(p)− f ′(p)− f(q) + f ′(q) < +∞.

Proof. Applying twice Stoke’s theorem to u, we have

E(u) =

∫
u∗ω

=

∫
R
u(·, 0)∗λ− u(·, 1)∗λ

= f(p)− f(q) + f ′(q)− f ′(p)

= AL,L′(p)−AL,L′(q).

We now need to study these moduli spaces in order to define our differential. To do so,
we will study the different connected components.

Definition 2.2.8. For an homotopy class [u] ∈ π2(M,L∪L′), we denoteM(p, q; [u]; Jt) ⊂
M(p, q; Jt) the set of maps representing the class [u], and M̂(p, q; [u]; Jt) ⊂ M̂(p, q; Jt) its
quotient by the R-action.

This quotient is well-defined by the above Remark 2.2.5.

Remark 2.2.9. Since we are working with a Liouville domain, we need to understand
what happens when a pseudo-holomorphic curve goes to the boundary of our domain. Let



2.2. FLOER COHOMOLOGY FOR A PAIR OF EXACT LAGRANGIAN SUBMANIFOLDS41

us consider the completion (M̂, λ̂) of (M,ω) as defined in 1.1. Let us assume that u is
a pseudo-holomorphic curve in (M̂, λ̂) between two intersection points in (M,ω) and let
us denote v its restriction to the end [−ε,+∞) × ∂M . One can show that v satisfies a
maximum principle in the [−ε,+∞) direction. Since u is a strip between two points in M ,
the component of v in the direction [−ε,+∞) is constant. Therefore, a pseudo-holomorphic
strip with boundary on Lagrangian submanifolds in M cannot enter this end and we can
work in M instead of M̂ .

The dimension of the connected components is computed thanks to Fredholm operators
theory. Given u ∈ M(p, q; Jt), we linearize the Cauchy-Riemann operator ∂̄Jt near u in
the suitable space of sections that will now be described.

Let us denote B∞ the set of smooth Floer-like strips from p to q, with p and q in
χ(L,L′). Then, if u ∈ B∞, then ∂̄Jtu is a section of u∗TM and ∂̄Jt is a section of the
bundle E∞ → B∞ whose fiber at u is Γ(u∗TM). Given p > 2, we denote B the set of
Floer-like strips from p to q of class W 1,p and Eu the Banach space of sections of u∗TM of
class Lp. We have the following proposition.

Proposition 2.2.10. B is a Banach manifold, and for every u ∈ B,

TuB = {ξ ∈W 1,p(u∗TM)|ξ(s, 0) ∈ Tu(s,0)L, ξ(s, 1) ∈ Tu(s,1)L
′}.

In addition, E → B is a bundle of Banach spaces and ∂̄Jt : B → E is a smooth section.

Now, for a given u ∈M(p, q; Jt), we can define the linearized Cauchy-Riemann operator
Du : TuB → Eu. Identifying B with the zero section of E , there is a canonical isomorphism
TuE ∼= TuB ⊕ Eu, and a natural projection πu : TuE → Eu. The linearized operator Du is
then defined as πu ◦du∂̄Jt . The section ∂̄Jt is transverse to the zero section at u if and only
if Du is surjective.

Proposition 2.2.11. If L and L′ intersect transversely at p and q, then for all u ∈
M(p, q; Jt), the linearized operator Du is a Fredholm operator.

We define the index of [u] as the Fredholm index of Du:

ind([u]) = indR(Du) = dim ker(Du)− dim coker(Du). (2.3)

This index can also be computed as an invariant of the class [u]. This index is called the
Maslov index, and it will be defined in the following section.

Given a class [u], if the linearized operator Du is surjective at each point of the space
of solutions M̂(p, q; [u]; Jt), the solutions are said to be regular. Provided that they are all
regular, the set M̂(p, q; [u]; Jt) is a smooth manifold of dimension ind([u]).
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Remark 2.2.12. Both the regularity or transversality question and the compactness of
M̂(p, q; [u]; Jt) will be briefly discussed later. In more general cases of definition for Floer
cohomology, one has to discuss the orientation of the moduli spaces. However, working
with Z/2-coefficients, this issue does not appear in our context.

Let us assume for now that we have addressed these questions. We can then define the
differential.

Definition 2.2.13. The Floer differential ∂ : CF (L,L′) → CF (L,L′) is the Z/2-linear
map defined by:

∂p =
∑

q∈χ(L,L′)
[u]:ind([u])=1

(]M̂(p, q; [u]; Jt)) · q, (2.4)

where ]M̂(p, q; [u]; Jt) ∈ Z/2 is the count of points in the moduli space of Floer strips
connecting p to q in the class [u].

Remark 2.2.14. In the definition of the differential, we only consider the moduli spaces
M̂(p, q; [u]; Jt), where [u] is such that ind([u]) = 1. Thus, the moduli space M̂(p, q; [u]; Jt)

is a compact manifold of dimension 0, i.e. a finite set of points. This ensures that the sum
2.4 in the definition of the differential is well defined.

We defined the action of a single point in χ(L,L′). However, as indicated in the previous
definition of the differential, we will not be only interested in each generator individually
but rather in a formal sum of them. Consequently, we have to define the action for such a
sum.

Definition 2.2.15. Let p1, ...pk, for k ∈ N be points in χ(L,L′). The action of the formal
sum of these points is the maximum of the different actions, i.e.

AL,L′(p1 + ...+ pk) = max{AL,L′(p1), ...AL,L′(pk)}.

Remark 2.2.16. Since the energy of a Floer strip connecting p to q is always strictly
positive by Remark 2.2.6, Lemma 2.2.7 tells that the differential strictly decreases the
action, i.e.

AL,L′(p) > AL,L′(∂p),

for all p in χ(L,L′).

In general, transversality is not automatic. To achieve it, we have to perturb the
Cauchy-Riemann equation, and then count perturbed pseudo-holomorphic strips between
perturbed intersection points of L and L′. This issues will be discussed later on. Now, we
will state Floer’s theorem [37].
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Theorem 2.2.17. Assume that [ω] ·π2(M,L) = [ω] ·π2(M,L′) = 0. Then the Floer differ-
ential ∂ is well-defined and satisfies ∂2 = 0. The resulting Floer cohomology HF (L,L′) =

H∗(CF (L,L′;Z/2), ∂) is independent, up to isomorphism, of the choice of the almost
complex-structure J . Moreover, Hamiltonian isotopies of L or L′ induces quasi-isomorphisms
on the chain complexes.

The last point of the previous theorem means that the Lagrangian Floer cohomology
is invariant under Hamiltonian isotopies of L or L′.

Remark 2.2.18. In our context of a Liouville domain together with exact Lagrangian
submanifolds L and L′, the condition [ω] ·π2(M,L) = [ω] ·π2(M,L′) = 0 is always verified,
by Stoke’s theorem.

Remark 2.2.19. As mentioned in the introduction, Lagrangian Floer cohomology has
been defined in much more general contexts since Floer’s work [66, 39].

2.2.4 Maslov index

Defining a cohomology, one wants a notion of grading. In the case of Lagrangian Floer
cohomology, this grading is a relative one which behaves with respect to the index of Floer
strip defined earlier by the formula 2.3. This index is called the Maslov index, and first
appeared in the work of Viterbo [95].

Let us denote Λ(n) the Grassmannian of Lagrangian n-planes in Cn. Let us recall
[62] that the group U(n) acts transitively on Λ(n), and the stabilizer of Rn is O(n).
This tells that Λ(n) is diffeomorphic to U(n)/O(n), and then that π1(Λ(n)) ∼= Z. This
diffeomorphism is induced by the map:

U(n) → Λ(n)

U 7→ U(Rn).

This allows to define a map
ρ : Λ(n)→ S1,

using the mapping
det2 : U(n)→ Λ(n)→ S1,

by setting
ρ(U(Rn)) = det2U.

Let l be a loop in Λ(n), its Maslov index is then defined to be:

µM (l) = deg(ρ(l)) ∈ Z.
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Before adapting this definition to the setting of Lagrangian Floer cohomology, we have to
define the canonical short path which will allow us to have a loop.

Definition 2.2.20. Let l0 and l1 in Λ(n) be two transverse Lagrangian subspaces. One
can find a map A ∈ Sp(2n) such that A(l0) = Rn and A(l1) = iRn. The canonical short
path is the path lt = A−1((e−iπt/2R)n), t ∈ [0; 1], which connects l0 to l1 in Λ(n).

Remark 2.2.21. The proof of the existence of such A can be found in [62].

Definition 2.2.22. Let p, q ∈ χ(L,L′). Let us denote lp the canonical short path from
Tp(L) to Tp(L′) and lq the one from Tq(L) to Tq(L′). Let u : R × [0; 1] → M be a strip
connecting p to q and let us pick a trivialization of u∗TM . We can now see the paths
l = u∗R×{0}TL and l′ = u∗R×{1}TL

′ as paths in Λ(n) (with orientation with s going from
−∞ to +∞). The Maslov index µ(u) of the strip u is then the Maslov index of the closed
loop in Λ(n) obtained by concatenating −l, lp, l′ and −lq.

We have the fundamental following proposition [37].

Proposition 2.2.23.
ind(u) = µ(u)

Remark 2.2.24. Since R× [0; 1] is contractible, it is immediate that the pullpack u∗TM
is a trivial symplectic vector bundle. Moreover, all the trivializations are homotopic.

To ensure that this is well-defined, we have to make sure that this definition does not
depend on the choice of the trivialization. Moreover, to be able to use this grading for
our Lagrangian Floer homology, we also have to make sure that it does not depend on the
choice of the homotopy class of [u].

The first requirement needed is that the first Chern class of M must be 2-torsion:
2c1(TM) = 0. Indeed, if we take two Floer strips u and u′ between two intersection points
p and q, such that they have the same boundary, i.e; with the notations of Equation 2.2,
for all s ∈ R, u(s, 0) = v(s, 0) and u(s, 1) = v(s, 1), we have that [95]:

µ(u)− µ(v) = 2c1(u]v̄),

where u]v̄ is the gluing of u and v̄, with v̄ denoting the strip v with opposite orientation.
The second requirement concerns the Malov classes of L and L′. We require that

µL ∈ Hom(π1(L),Z) = H1(L,Z) and µL′ ∈ Hom(π1(L′),Z) = H1(L′,Z) vanish. Indeed,
according to Viterbo [95], let u and v two Floer strips between two intersection points p
and q, with boundary lu and lv in L and l′u and l′v in L′, if 2c1(TM) = 0, then

µ(u)− µ(v) = µL(lu]l
−1
v )− µL′(lu]l−1

v ),

where l]l′ denotes the concatenation of the two path l and l′.
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By doing all this, we have defined a relative Maslov index for our intersection points.
Indeed, if we fix the degree for a given intersection point, it fixes the degree for all the
other intersection points. We just have to set that

ind(u) = deg(q)− deg(p).

There is a way to define an absolute Maslov index that is described in Appendix A.

Remark 2.2.25. A reassuring fact with this definition is that the Floer differential we
defined earlier has degree 1.

2.2.5 Transversality

The two following sections will be short, following Auroux’ work [7].

Two types of transversalities are required to define Lagrangian Floer cohomology. The
first one is the transversality of the intersections between our two Lagrangian submanifolds
L and L′, the second one is the transversality of the moduli spaces.

It often appears that the two Lagrangian submanifolds L and L′ do not intersect trans-
versely. The main example is simply when L = L′. To define the Floer cohomology in this
case, the trick is to introduce a Hamiltonian perturbation. Indeed, we require in the con-
struction that this cohomology is independent under Hamiltonian isotopy. Consequently,
we will add a Hamiltonian perturbation term to the Cauchy-Riemann equation. Let us fix
a generic Hamiltonian H ∈ C∞([0; 1]×M,R), Equation 2.2 then becomes

∂u

∂s
+ Jt(u)

(
∂u

∂t
−XH(t, u)

)
= 0,

with the same boundary conditions on t: u(s, 0) ∈ L and u(s, 1) ∈ L′ for all s ∈ R. If we
were not working with exact Lagrangian submanifolds, we would still need the finite energy
condition. For the boundary conditions on s, i.e. where u converges as s goes to ±∞, the
intersection points p and q do no longer make sense. The strip converges to trajectories of
XH from L to L′. These are flow lines γ : [0; 1]→M such that

γ̇(t) = XH(t, γ(t)),

γ(0) ∈ L, γ(1) ∈ L′.

They are the actual generators of the Floer complex CF (L,L′). An alternative solution is
to set χ(L,L′) = L∩(φ1

H)−1(L′), where φ1
H ∈ Ham(M,ω) is the time-1 of the flow generated

by the Hamiltonian H, and then to proceed as before. With this point of view, we still have
intersection points as generators, but they are "the perturbed by H" intersection points
between L and L′.
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When we define the action in this context, we have to take into account the Hamiltonian
perturbation. The Hamiltonian action of a path γ from L to φH(L) is then defined as

AHL,L′(γ) =

∫ 1

0
γ∗λ−H(γ)dt+ f(γ(0))− f ′(γ(1)). (2.5)

We denote by Spec(L,L′;H) the set of critical values of this action functional. The critical
points are the above mentioned generators of the Floer complex.

To be sure that the previous arguments at stake in the definition of Floer coho-
mology hold for the perturbed Cauchy-Riemann equation, one can consider ũ(s, t) =

(φtH)−1(u(s, t)). We then have

∂ũ

∂t
= (φtH)−1

∗

(
∂u

∂t
−XH

)
.

The perturbed Cauchy-Riemann equation then becomes

∂ũ

∂s
+ J̃t(ũ)

∂ũ

∂t
= 0,

with J̃t = (φtH)−1
∗ (Jt). This means that the solutions of the perturbed equation are clas-

sical J̃-holomorphic curves with boundaries in L and (φ1
H)−1(L′), between two points in

χ(L,L′) = L ∩ (φ1
H)−1(L′). We can now apply all the arguments involved above to define

the Floer complex
CF (L,L′;H; J̃t),

and then the Floer cohomology HF (L,L′;H; J̃t).
The natural question then is whether this definition depends on the choice of the

Hamiltonian perturbation. As stated in Theorem 2.2.17, Lagrangian Floer cohomology is
invariant under Hamiltonian perturbation and consequently independent of the choice of
the perturbation. This will be discussed in Subsection 2.2.7.

Remark 2.2.26. If the Lagrangian submanifolds L and L′ were transverse, we could of
course choose H = 0. Moreover, for two given Lagrangian submanifolds, the Hamiltonian
perturbation to achieve transversality can be chosen as small as desired.

The transversality of the moduli spaces is actually the question of the surjectivity
of the linearized ∂̄Jt at all solutions, which is critical to ensure that the moduli spaces
M(p, q; [u]; Jt) are indeed smooth and of the expected dimension. For that purpose, we
will consider a path Jt of almost-complex structure instead of with a autonomous one.
Note that we still assume here that L and L′ intersect transversely.

Definition 2.2.27. A time-dependent almost-complex structure Jt is regular if Du is sur-
jective for all Floer strips u.
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This notion of regularity replaces the Morse-Smale condition at work in the definition of
Morse homology. For Lagrangian Floer cohomology, we make use of the following theorem
from Floer [37].

Theorem 2.2.28. Regular time-dependent almost complex structures are generic.

As a consequence, one can always find a regular almost complex structure which will
ensures the transversality of the moduli spaces and the correct definition of the Floer
cohomology.

2.2.6 ∂ is a differential

As in Morse homology, to prove that the square of the differential is equal to zero, one has
to count broken Floer strip. To do so, the idea is to consider these moduli spaces of broken
strips as the boundary of index two moduli spaces and easy dimensional arguments will
allow us to conclude. This is summarized by the following theorem [43], which is both a
compactness and a gluing theorem.

Theorem 2.2.29. Let (M,λ) be a Liouville domain, and L and L′ be two closed exact La-
grangian submanifolds which intersect transversely. Then, for any regular time-dependent
compatible almost complex structure Jt, we have

• by transversality, if u is a Floer strip with Maslov index µ(u) ≤ 0, then u is a constant
strip, i.e. for all s and t, u(s, t) = p ∈ χ(L,L′). Thus µ(u) = 0.

• if p, q ∈ L ∩ L′, then
⋃

ind([u])=1

M̂(p, q; [u]; Jt) is a finite set.

• if p, q ∈ L∩L′, and u ∈ M̂(p, q; Jt) such that ind([u]) = 2, then M̂(p, q; [u]; Jt) is a 1-
dimensional manifold and it admits a natural compactification which is homeomorphic
to a 1-dimensional manifold with boudaries. The boundary of the compactification is

∂M̂(p, q; [u]; Jt) =
⋃

r∈χ(L,L′)
[v]+[v′]=[u]

ind([v])=ind([v′])=1

M̂(p, r; [v]; Jt)× M̂(r, q; [v′]; Jt).

The compactness of the moduli space is an essential requirement to define Lagrangian
Floer cohomology. It will ensure that the sum (2.4) in the definition of the differential
is well-defined, which corresponds to the second point of the previous theorem. It also
ensures the possibility to compactify the moduli space of index 2 Floer strips, thus giving
sense to the last point of the previous theorem. These results are due to Gromov’s com-
pactness theorem [43] which addresses sequences of J-holomorphic curves with uniformly
bounded energy. This can be straightforwardly applied to our context of exact Lagrangian
submanifolds. Indeed Lemma 2.2.7 shows that all J-holomorphic curves between two given
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intersection points have the same finite energy since this energy only depends on the two
intersection points.

The last point of the theorem is larger than a compactness result, it is also a gluing
result. Indeed it means that every broken strip (with index 1 and 1) is locally the limit
of an unique family of index 2 strips representing the total class. Moreover, the union
of these broken strips is the boundary of the compactification of index 2 strips. In this
case, broken configurations with more than two components cannot occur. Noting that
the index is additive, ind(u) = 2 thus implies that the only possible decomposition is
[u] = [v] + [v′], with ind([v]) = ind([v′]) = 1 since any non-constant strip has positive
index by transversality.

With all these results being stated, we can sketch the proof that ∂2 = 0, before dis-
cussing the compactness argument.

Let us recall that (M,λ) is a Liouville domain, L and L′ are two exact Lagrangian
submanifolds, which are assumed to intersect transversely. If not, we just have to pick an
adequate Hamiltonian perturbation. Let Jt be a regular time-dependent almost complex
structure, and p be a generator of the Floer complex. Composing ∂ with itself and applying
it to the generator p, we obtain

∂2p =
∑

q∈χ(L,L′)


∑

r∈χ(L,L′)
[v]+[v′]=[u]

ind([v])=ind([v′])=1

(]M̂(p, r; [v]; Jt))(]M̂(p, r; [v]; Jt))

 · q.

The coefficient of a generator q in the expression of ∂2p is actually the number of points in⋃
r∈χ(L,L′)

[v]+[v′]=[u]
ind([v])=ind([v′])=1

M̂(p, r; [v]; Jt)× M̂(r, q; [v′]; Jt).

But we know that this the boundary of⋃
ind([u])=2

M̂(p, q; [u]; Jt),

which is a finite collection of compact connected 1-dimensional submanifolds. Conse-
quently, since we are counting the number of points in the boundary and since we are
working with Z/2-coefficients, the coefficient of q appears to be equal to zero. Hence, since
it holds for all p,

∂2 = 0.
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Let us go back now to the compactness argument. As mentioned earlier it is based on
Gromov’s work [43], studying J-holomorphic curves.

We denote (un)n∈N a sequence of J-holomorphic strips between L and L′ from p to q
with uniformly bounded energy. As for Morse homology, we are interested in a phenomena
called strip breaking, which, with respect to his name, will provide the broken strips at stake
in the gluing-compactness theorem. However, when working with non-exact Lagrangian
submanifolds, the situation is more complex than in Morse homology. Indeed, two issues
may appear as limiting configurations and thus resulting in obstructions to the definition
of Floer cohomology. These issues are called bubbling, and they are of two types:

• the sequence (un) converges (in some sense that will not be discussed here) to a
J-holomorphic curve with a J-holomorphic disc at its boundary. The boundary of
this disc is in one of the two Lagrangian submanifolds. It is called disc bubbling and
appears if |dun| → ∞ at a boundary point.

• the sequence (un) converges to a J-holomorphic curve with a J-holomorphic sphere.
It is called sphere bubbling and appears if |dun| → ∞ at an interior point.

As seen earlier, the energy of u is defined by

E(u) :

∫
u∗ω =

∫ ∫ ∣∣∣∣∂u∂s
∣∣∣∣2

These two bubbling situations can thus be interpreted in term of energy. In the case of
disc bubbling, the energy concentrates on a boundary point, i.e. t equal 0 or 1, whereas in
the case of sphere bubbling, the energy concentrates on an interior point.

In our context, the fact that we are working with exact Lagrangian submanifolds leads
to [ω] · π2(M,L) = [ω] · π2(M,L′) = 0. This ensures the absence of disc bubbling and
sphere bubbling since their symplectic area would be equal to zero. This is one of the
main reason that makes it easy to work with exact Lagrangian submanifolds: ∂2 = 0 does
not hold with disc bubbling. The other issue with bubbling is the transversality results
discussed in the previous section. The trick using perturbation to achieve transversality
does not work anymore when it comes to the limit curves with disc or sphere bubbles.

According to Gromov’s compactness theorem, once these bubblings excluded, to achieve
compactness of the moduli space, we have to add an other phenomena as limiting config-
uration, which is the above mentioned strip breaking.

In terms of energy, strip breaking happens when the energy escapes toward an end of
the strip. This means that the reparametrization un(· + an, ·), with an → ±∞, leads to
different limits. In this case, the limit of (un) is a sequence of J-holomorphic strips.

Aside from compactness, strip-breaking is closely related to the gluing aspect of The-
orem 2.2.29, and thus plays a major role in the proof of ∂2 = 0.
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These issues having been clarified, putting all this together leads to the structure The-
orem 2.2.29 for Floer strips moduli spaceM(p, q; Jt) in our context of a Liouville domain
together with closed exact Lagrangian submanifolds.

Remark 2.2.30. Note that one can actually work with weaker conditions than the exact-
ness of the Lagrangian submanifolds [67, 39].

2.2.7 Hamiltonian invariance

Let us choose (H,Jt) and (H ′, J ′t) two almost complex structures and Hamiltonian pertur-
bations. Since both the set of Hamiltonians and compatible almost-complex structures are
contractible, there is a smooth family (H(θ), Jt(θ))θ∈[0;1] such that (H(0), Jt(0)) = (H,Jt)

and (H(1), Jt(1)) = (H ′, J ′t). To go from this homotopy to the correct moduli spaces, let
us pick a smooth function of s, θ(s) such that

s� 0, θ(s) = 1,

s� 0, θ(s) = 0.

The idea of this proof is quite close to the proof of ∂2 = 0. This is fairly natural since
both constructions are much alike. The point is to construct a so-called continuation
map between CF (L,L′;H; Jt) and CF (L,L′;H ′; J ′t) by counting the strips u between
p ∈ χ(L,L′;H) and p′ ∈ χ(L,L′;H ′) of index 0 and satisfying the following equation:

∂u

∂s
+ Jt(θ(s), u)

(
∂u

∂t
−XH(θ(s), t, u)

)
= 0,

with
u(s, 0) ∈ L, u(s, 1) ∈ L′.

Denoting Ψ the continuation morphism, the coefficient of p′ ∈ χ(L,L′;H ′) in Ψ(p) is the
number in Z/2 of such strips satisfying u −→

s→+∞
p and u −→

s→−∞
p′.

In the absence of bubbling, it has been shown [37] that Ψ is a chain map, i.e. Ψ ◦ ∂ =

∂′ ◦ Ψ. The proof requires to study the index 1 moduli space resulting from the previous
equation. It is similar to what we saw for the differential. In our context, no bubbling
can occur. There are then two possibilities for broken strips. If it occurs at s → −∞, we
obtain a J ′-holomorphic strip contributing to ∂′, with perturbation H ′. Such strips are
actually the strips counted by ∂′ ◦Ψ. If it occurs at s→ +∞, we obtain a J-holomorphic
strip contributing to ∂, with perturbation H. Such strips are the strips counted by Ψ ◦ ∂.
The moduli spaces of degree 1 strips are consequently 1-dimensionnal manifolds, whose
end points are broken strips, consisting of an index 0 solution of the previous equation,
together with an index 1 perturbed Cauchy-Riemann solution. Once again, the fact that
there is an even number of end points and that we are working with Z/2 leads to conclusion:



2.2. FLOER COHOMOLOGY FOR A PAIR OF EXACT LAGRANGIAN SUBMANIFOLDS51

either both types of broken strips come together as the boundary of the same connected
component, or one type counts two ends, which goes to zero in Z/2.

To conclude, we just have to note that we can follow the homotopy in the other di-
rection. This gives another chain map Ψ′ from CF (L,L′; J ′t;H

′) to CF (L,L′; Jt;H). The
composition of the chain maps Ψ and Ψ′ is homotopic to identity. We will not compute the
homotopy here, but it could be done by counting index −1 solutions of a one-parameter
family of equations similar to the previous one, with different θ.

Remark 2.2.31. In general, even ifH = H ′, the continuation map Ψ from CF (L,L′; Jt;H)

to CF (L,L′; J ′t;H) does not induce the identity on the level of cochain complexes. How-
ever if the continuation data (H(θ), J(θ)) does not depend on s, it induces the identity.
By continuity, this result still holds for a small perturbation of this s-independent contin-
uation data, i.e. a continuation data C1-close to a continuation data independent of s.
Consequently, for CF (L,L′; Jt;H) and CF (L,L′; J ′t;H

′), if H and H ′ are close enough,
a continuation data C1-close to a continuation data independent of s will induce a 1 : 1

correspondence on the level of cochain complexes.

2.2.8 General properties and remarks

Let (M,ω) and (M ′, ω′) be two Liouville domains, together with two pairs of closed exact
Lagrangian submanifolds (L0, L1) ⊂ M and (L′0, L

′
1) ⊂ M ′. Let us recall that we are

working with Z/2-coefficients. Then, there is a Künneth-type formula

HF (L0, L1;H,J)⊗HF (L′0, L
′
1;H ′, J ′) ∼= HF (L0 × L′0, L1 × L′1;H ⊕H ′, J ⊕ J ′). (2.6)

This isomorphism is natural, resulting from the fact that a pseudo holomorphic curve v in
(M ×M ′, J ⊕ J ′) can be written as v = (u, u′), where u is pseudo-holomorphic curve in
M and u′ in M ′. At the chain level, for (p, p′) ∈ χ(L0, L1) × χ(L′0, L

′
1), the isomorphism

is simply defined by
(p, p′) 7→ (p, p′) ∈ χ(L0 × L′0, L1 × L′1).

In the following chapters, we will not be interested in the Hamiltonian or almost-
complex structure perturbation, we will just want these Hamiltonian perturbations to be
ε-small, for a given ε > 0. Thus, using Kislev-Shelukhin’s notations [51], we will denote
the Floer cohomology of L and L′

CF ∗(L,L′;D),

where D denotes the data perturbation, i.e. the pair (H,J). The perturbation data is
said to be ε-small if the Hamiltonian is ε-small. When not needed, we will just write
CF ∗(L,L′), and assume that there is a suitable perturbation data implied.
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We firstly point out here a staightforward consequence of the previous section. Let
(M,ω), L and L′ be as before, together with a perturbation data D and a Hamiltonian H.
Then, the Hamiltonian invariance results in

HF (L,L′;D) ∼= HF (L, φH(L′);D′),

where D′ is any suitable data perturbation and φH is the time-1 flow of the Hamiltonian
H. Together with 1.2 this implies that, for a path of exact Lagrangian submanifolds in M
denoted (L′t)t∈[0,1] and a suitable choice of perturbations data (Dt)t∈[0,1], we have

∀t ∈ [0, 1], HF (L,L′0;D0) ∼= HF (L,L′t;Dt).

This invariance does not hold when considering (non-Hamiltonian) symplectomorphisms.
However given a symplectomorphism ψ of (M,ω), taking the images by ψ of all the objects
involved in the construction of the Floer cohomology of L and L′ leads to

CF (L,L′;D) ∼= CF (ψ(L), ψ(L′);D′) (2.7)

for D and D′ two suitable perturbation datas.

One can naturally ask about the relation between CF (L,L′;D) and CF (L′, L;D). In-
deed, a Floer strip from p ∈ χ(L,L′) to q ∈ χ(L′, L) in the Floer complex CF (L,L′;D)

corresponds to a Floer strip from q to p in CF (L′, L;D′) for suitably chosen data pertur-
bations D and D′. In fact the two complexes are dual to each other: there exists i ∈ Z
(coming from the fact that the index in χ(L,L′) is defined up to a constant) such that

CF ∗(L,L′;D) ∼= CFn+i−∗(L′, L;D′).

Consequently, the two cohomologiesHF (L,L′;D) andHF (L′, L;D′) are dual to each other
for two suitably chosen perturbation datas D and D′.

In the following chapters, we will either consider the Lagrangian submanifolds L and L′

as Lagrangian submanifolds in M or as Lagrangian submanifolds in T ∗L. We will denote
HF (L,L′;D,M) when the Floer cohomology is computed in M and HF (L,L′;D, T ∗L)

when the Floer cohomology is computed in T ∗L.

Lastly we point out that the case when L and L′ are Hamiltonian isotopic is particularly
interesting in the perspective of the Arnold conjecture. Let us assume that L′ = L. This
choice is not restrictive thanks to the Hamiltonian invariance of the Floer cohomology.

In this case, it is indeed easier to work with more general conditions on the Lagrangian
submanifolds considered. Due to Weinstein’s neighbourhood theorem and energy esti-
mates, choosing to work in the cotangent bundle T ∗L of the Lagrangian L will not be
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restrictive. A longer and more detailed discussion on this subject will be held in Section
5.2.

Let ε > 0 and choose a ε-small Morse function f : L→ R. We extend this function to
T ∗L by setting

H = f ◦ π : T ∗L→ R, (2.8)

where π : T ∗L → L is the natural projection. The exact Lagrangian submanifold φH(L)

is the graph of df and intersects L transversely. Note that if we work in a symplectic
manifold M instead of T ∗L, the cotangent bundle of L, we have to multiply H by a cut-off
function equal to 1 near L.

With this perturbation, a critical point p of f is exactly an intersection point between
L and φH(L). We then obtain

AHL,φH(L)(p) = −H(p). (2.9)

For a good choice of almost-complex structure J and of shift in the definition of the
degree of the intersection points, the matching associates a generator of the Floer cochain
complex CF (L,L;H,J) of degree i to a critical point of Morse index n− i, i.e a generator
of the Morse cochain complex CM(L,H) of index i [38].

This identification is associated to a correspondence between the moduli spaces. The
Floer cochain complex CF (L,L;H,J) is then identified with the Morse cochain complex
CM(L,H). Together with the Hamiltonian invariance of Floer cohomology, it implies the
following proposition.

Proposition 2.2.32. Let L and L′ be two Lagrangian submanifolds which are Hamiltonian
isotopic to each other, such that [ω] · π2(M,L) = [ω] · π2(M,L′) = 0, then

HF ∗(L,L′) ∼= HF (L,L) ∼= H∗(L;Z/2).

We assume in this statement that the choice of shift in the definition of the degree for
the generators of the Floer complexes make the degree equal to the Morse index.

Remark 2.2.33. Both the Floer cochain complex and the Morse cochain complex carry
a natural filtration that will be discussed in details in Chapter 4. The filtration for the
Floer complex is given by the action functional. The filtration for the Morse complex is
given by the Morse function f .

However, with our choice of action for Floer cohomology, the identification between
these two complexes does not respect these natural filtrations. Indeed the differential
decreases the action functional in Floer cohomology while the differential increases the
action in Morse cohomology. Consequently we have to consider the filtration given by −f .
We denote CF (L,L;H,J ;AHL,L) the Floer cochain complex with the filtration given by
AHL,L and CM(L, f ;−f) the Morse cochain complex with the filtration given by −f .
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Together with the formula 2.9, this leads, for the ε-small Hamiltonian defined in the
formula 2.8, to

CF (L,L;H,J ;AHL,L) ∼= CM(L,H;−H).

Remark 2.2.34. We can choose the Morse function f to have a unique maximum and a
unique minimum on L. This implies that there is a unique generator of CM0(L,H) and a
unique generator of CMn(L,H). With the previously mentioned good choice of grading,
this implies that there is also a unique generator of CF 0(L,L;H,J) and a unique generator
of CFn(L,L;H,J).

To finish this section, we make some remarks concerning the relation between action
and energy, when there is a data perturbation D. As we will later only be concerned
about C2-small perturbations, we will only describe this situation here. However, if one
is interested in a particular Hamiltonian H, this Hamiltonian term has to be taken into
account when defining the action of the generators of the Floer complex as mentioned in
Subsection 2.2.5. We can choose a perturbation data to achieve transversality everywhere
and conduct the same argument as the following.

Let p, q be two perturbed intersection points in χ(L,L′) together with u, a J-holomorphic
strip from p to q. When computing the energy E(u), one has to take into account the per-
turbation data. So the energy writes down as

E(u) = AL,L′(p)−AL,L′(q) + fD(p, q),

where fD is a function depending smoothly on D and such that fD converges to zero when
the Hamiltonian part of the perturbation data D goes to zero. According to Remark 2.2.26,
this perturbation data can be chosen as small as wished, so that, for all ε > 0, we can find
D such that

E(u) ≤ AL,L′(p)−AL,L′(q) + ε, (2.10)

and thus
AL,L′(q) ≤ AL,L′(p) + ε.

This last remark will one of the key arguments in Section 4.2 to define persistence modules
and barcodes associated to Lagrangian Floer cohomology.
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Persistence modules and barcodes

These notions come from Topological data analysis and the work of Edelsbrunner et al.
[29] and Carlson et al. [20]. They have been introduced later in symplectic geometry by
Polterovich and Shelukhin [75] although some germs of these notion were already present
in the works from Barannikov [9] and Usher [92] [93]. We will here present the abstract
framework, and we will discuss its relevance for symplectic geometry in the following chap-
ter. The proof of the lemmas unproven in this chapter can be found in Chazal, De Silva,
Glisse and Oudot’s book [21] along with much more discussions. One can also refer to
[42, 24, 19].

3.1 Persistence modules

Definition 3.1.1. A persistence module over a field K is a family (V t)t∈R of finite dimen-
sional vector spaces over K equipped with a doubly-indexed family of linear maps, called
structure maps, ist : V s → V t, for all s ≤ t ∈ R satisfying:

1. V t = 0 for t� 0,

2. for all s, t, r ∈ R, such that r ≤ s ≤ t, we have ist ◦ irs = irt and iss = IdV s,

3. for all r ∈ R, there is ε > 0 such that ist are isomorphisms for all r − ε < s ≤ t ≤ r,

4. there is a set of points S(V ) ⊂ R such that for all r ∈ R \ S(V ), there exists ε > 0

such that ist are isomorphisms for all r − ε < s ≤ t < r + ε.

We will denote the persistence module V or (V, i).

We will denote by V∞ the direct limit

V∞ = lim−→
t→+∞

V t,

together with is : V s → V∞ the natural map.

55
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Definition 3.1.2. S(V ) is called the spectrum of V .

Remark 3.1.3. If S(V ) is finite, then for s, t large enough we may assume V s = V t and
ist is equal to the identity. These persistence modules are said to be tame or of finite type.
For s large enough, we then have V s = V∞, and ist = is.

Lemma 3.1.4. If a < b are two consecutive points in S(V ), then for all a < s ≤ t ≤ b, ist
is an isomorphism.

We can define a selector for persistence modules, which takes its values in S(V ). This
definition is to be related to the notion of action selectors which is one of the main tools
to study C0-symplectic geometry, as we will see in the next section.

Definition 3.1.5. Let (V, i) be a persistence module and α ∈ V∞ \ {0}. We set

c(α, V ) = inf{s ∈ R, α ∈ Im is}.

Persistence modules being defined, we now have to define morphisms of such objects.
This is essential because it is the key to equip the space of persistence modules with a
distance.

Definition 3.1.6. Let (V, i) and (V ′, i′) be two persistence modules. A morphism of persis-
tence modules h : (V, i)→ (V ′, i′) is a family of morphisms ht : V t → V ′t, t ∈ R compatible
with the structure maps, i.e., for all s ≤ t ∈ R, the following diagram is commutative

V t ht // V ′t

V s
hs
//

ist

OO

V ′s.

i′st

OO

The kernel and image of a morphism of persistence modules h : (V, i)→ (V ′, i′) are the
families of vector spaces (kerht ⊂ V t)t∈R and (Imht ⊂ V ′t)t∈R. Since the structure maps
i and i′ restrict to each family, (kerh, i) and (Imh, i′) are also persistence modules.

Let us define a natural operation on persistence modules: the shift.

Definition 3.1.7. Let (V, i) be a persistence module, and δ ≥ 0. The δ-shifted persistence
module (V [δ], i[δ]) is the persistence module with vector spaces V [δ]t = V t+δ and maps
i[δ]st = is+δt+δ . We will denote sh(δ)V : V → V [δ] the natural shift morphism of persistence
modules given by

sh(δ)tV = itt+δ : V t → V t+δ.

A morphism of persistence modules h : V → V ′ naturally induces a shifted morphism of
shifted persistence modules h[δ] : V [δ]→ V ′[δ].

For δ ≤ 0, we denote V [δ] the persistence module such that V [δ][−δ] ∼= V .
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We have now defined all we need to introduce a distance on the space of persistence
modules.

Definition 3.1.8. Let V and V ′ be two persistence modules and let δ, ε ≥ 0. They are
(δ, ε)-interleaved if there exist two morphisms of persistence modules f : V → V ′[δ] and
g : V ′ → V ′[ε] such that

g[δ] ◦ f = sh(δ + ε)V and f [ε] ◦ g = sh(δ + ε)V ′ ,

i.e. the two following diagrams commute for all s ≤ t

V t V ′t+δ V t+δ+ε

V s V ′s+δ V s+δ+ε

f t

itt+δ+ε

gt+δ

fs

ist

iss+δ+ε

i′s+δt+δ

gs+δ

i′s+δ+εt+δ+ε

V ′t V t+ε V ′t+δ+ε

V ′s V s+ε V ′s+δ+ε.

gt

i′tt+δ+ε

f t+ε

gs

i′st

i′ss+δ+ε

is+εt+ε

fs+ε

i′s+δ+εt+δ+ε

The pair (f, g) is called a (δ, ε)-interleaving. If ε = δ, it is a δ-interleaving, and V, V ′ are
δ-interleaved.

The distance on persistence modules is then naturally defined from this notion of in-
terleaving:

Definition 3.1.9. Let V and V ′ be two persistence modules. The interleaving distance
between V and V ′ is

dinter(V, V
′) = inf{δ | V, V ′ are δ-interleaved}.

If there is no interleaving between V and V ′, then dinter(V, V ′) = +∞.
This distance is non degenerate in the following sense: two persistence modules are

0-interleaved if and only if they are isomorphic.

Proposition 3.1.10. The interleaving distance satisfies the triangle inequality. Let U, V
and W be three persistence modules, then

dinter(U,W ) ≤ dinter(U, V ) + dinter(V,W ).

Proof. Let (f1, g1) be a δ1-interleaving between U and V and let (f2, g2) be a δ2-interleaving
between V and W .

U
f1 // V

f2 //W

U V
g1oo W

g2oo
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Set f = f2 ◦ f1 and g = g1 ◦ g2. These maps are a δ = δ1 + δ2-interleaving between U and
W . Indeed we have

g[δ] ◦ f = g1[δ + δ2] ◦ g2[δ] ◦ f2[δ1] ◦ f1 = g1[δ + δ2] ◦ sh(2δ2)V [δ1] ◦ f1

= g1[2δ2 + δ1] ◦ f1[2δ2] ◦ sh(2δ2)U = sh(2δ1)U [2δ2] ◦ sh(2δ2)U

= sh(2δ)U ,

f [δ] ◦ g = f2[δ + δ1] ◦ f1[δ] ◦ g1[δ2] ◦ g2 = f2[δ + δ1] ◦ sh(2δ1)V [δ2] ◦ g2

= f2[δ + δ1] ◦ g2[2δ1] ◦ sh(2δ1)W = sh(2δ2)W [2δ1] ◦ sh(2δ1)W

= sh(2δ)W .

Taking the infimum over δ1 and δ2 concludes the proof.

Before moving on, we present a classical example of persistence module.

Example 3.1.11. Let X be a compact topological space, together with a continuous func-
tion f : X → R. For t ∈ R, we denote f≤t the set of points x in X such that f(x) ≤ t. This
induces a filtration on the singular chain complex and hence a persistence module V . The
vector spaces are V t = H∗(f

≤t,R) and the structure maps are induced by the inclusions
f≤s ⊂ f≤t for all s ≤ t. If the function f is Morse, the spectrum of V is given by the
critical values and consequently V is of finite type. Suppose that g is another function on
the same topological space X, and set δ = max(g − f) and ε = max(f − g). We have the
following diagrams whose arrows are induced by inclusions, hence obviously commute.

f≤t g≤t+δ f≤t+δ+ε

f≤s g≤s+δ f≤s+δ+ε

g≤t f≤t+ε g≤t+δ+ε

g≤s f≤s+ε f≤s+δ+ε

This implies that the (δ, ε)-interleaving diagrams of H∗(f≤t,R) and H∗(g≤t,R) commute.
As a consequence these two persistence modules are (δ, ε)-interleaved.

Finally the following property will also be used.

Proposition 3.1.12. Let (V, i) and (V ′, i′) be two persistence modules. Then the direct
sum

(V, i)⊕ (V ′, i′) = (V ⊕ V ′, i⊕ i′)

is a persistence module as well. The structure maps are given for all s ≤ t by

(i⊕ i′)st = ist ⊕ i′st .
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Remark 3.1.13. The persistence modules actually form a category usually denoted pmod.
This is in fact an abelian category, with respect to the sum given by the previous propo-
sition.

Remark 3.1.14. Let V and V ′ be two (δ, ε)-interleaved persistence modules such that
V∞ and V ′∞ are isomorphic vector spaces. Taking the limit when t goes to +∞, in the
interleaving distance diagrams, we obtain that for all α ∈ V∞,

−δ ≤ c(α, V )− c(ψ(α), V ′) ≤ ε,

where ψ is the isomorphism induced by the (δ, ε)-interleaving.

3.2 Barcodes

A more intuitive way to “draw" these persistence modules is based on a “structure theorem"
for persistence modules. Before stating this theorem and presenting barcodes, we introduce
some definitions.

Definition 3.2.1. Let J be a non-empty interval in R of the form (a, b] or (a,+∞), with
a and b in R. The interval module I = KJ is the persistence module with vector spaces

It =

K, if t ∈ J

0, otherwise,

and structure maps

ist =

Id, if s, t ∈ J,

0, otherwise.

We can now state the structure theorem which is proven in [25].

Theorem 3.2.2. For any persistence module V , there is a unique collection of pairwise
distinct intervals (Ji)i∈I of the form (ai, bi] or (ai,+∞), with ai, bi ∈ S(V ), and multiplicity
mi ∈ N such that

V ∼=
⊕
i∈I

(KJi)mi .

From this theorem, we can define the barcode associated to V . Let us firsttly define a
multiset.

Definition 3.2.3. A multiset is a pair B = (S,m) where S is a set and m : S → N∪{+∞}
is the multiplicity function. This function tells how many times each s ∈ S occurs in B.
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Definition 3.2.4. We denote by B(V ) the multiset containing mJ copies of each interval J
appearing in the structure theorem, and I(B(V )) the set of intervals Ji without multiplicity.
B(V ) is called the barcode associated to V , and the intervals Ji are called bars. We will
denote

B(V ) =
⊕

J∈I(B(V ))

JmJ .

Remark 3.2.5. The starting points of the semi-infinite bars are exactly the values of the
selectors for V introduced in Definition 3.1.5. Each possible value of these selectors is the
starting point of a semi-infinite bar.

We can equip the set of barcodes with a distance, which is called the bottleneck distance.

Definition 3.2.6. Let I be a non-empty interval of the form (a, b] or (a,+∞), and δ ∈ R
such that 2δ < b − a. We denote I−δ the interval (a − δ, b + δ] or (a − δ,+∞). Let B
and B′ be two barcodes, and δ ≥ 0. They admit a δ-matching if we can forget in both of
them some bars of length smaller than 2δ to get two barcodes B̄ and B̄′ and find a bijection
φ : B̄ → B̄′ such that if φ(I) = J , then

I ⊂ J−δ and J ⊂ I−δ.

As it was the case for persistence modules, the definition of the distance follows:

Definition 3.2.7. Let B and B′. The bottleneck-distance between them is

dbottle(B,B′) = inf{δ| B and B′ admit a δ-matching}.

The bottleneck distance is non-degenerate: if B and B′ are two barcodes such that
dbottle(B,B

′) = 0, then B = B′.

The two notions of interleaving and bottleneck distance are closely related as shown in
the following isometry theorem [10].

Theorem 3.2.8. Let V, V ′ be two persistence modules. Then

dinter(V, V
′) = dbottle(B(V ),B(V ′)).

Remark 3.2.9. As for persistence modules, given a barcode B and δ ∈ R, we will denote
B[δ] the barcode obtained from B by an overall shift of δ. If B is a barcode associated to
a persistence module V , then B[δ] is the barcode associated with the persistence module
V [δ].
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Figure 3.1 – Two barcodes B and B′ such that dbottle(B,B′) ≤ δ

3.3 A bit of topology

One of the main objectives of this work is to obtain new information concerning C0-
symplectic topology using the technology of barcodes applied to Floer homology. We
will be working on cases where the number of generators of the chain complex is finite.
Consequently, most of our persistence modules will be of finite type, and this will naturally
be translated into barcodes.

Definition 3.3.1. A barcode is said to be finite if it contains finitely many intervalls
counted with multiplicity. We will denote Bf the set of finite barcodes.

This finiteness condition is closely related to the one related to persistence modules, as
stated by the following lemma.

Lemma 3.3.2. Let V be a persistence module and B(V ) its associated barcode. Then V

is of finite type if and only if B(V ) is finite.

Since we study C0 objects in a world of smoothness, we need, at some point, to take
limits, and hence limits of finite barcodes. Thus, the question of closedness and com-
pleteness naturally arise. That will be achieved through the set-up given in the following
definition.

Definition 3.3.3. We denote B the set of barcodes satisfying the following condition: for
all ε > 0, the number of bars of length greater or equal to ε is finite.
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Remark 3.3.4. In litterature [21, 12] such barcodes are often referred as “q-tame bar-
codes".

The following proposition, proved by Bubenik and Vergili [12], justifies the introduction
of the set B.

Proposition 3.3.5. The space B is complete.

Aside from completeness, the following proposition explain why the set B is of particular
interest for us, as we will be working with limits of sequences of finite barcodes.

Proposition 3.3.6. The set Bf is dense in B for the topology induced by the bottleneck
distance.

Proof. Let us pick B ∈ B. We set (Bn)n∈N a sequence of barcodes defined by

Bn =
⊕

I∈I(B)

l(I)≥ 1
n

ImI ,

where l(I) is the length of the interval I, and mI its multiplicity in B. By definition of B,
for all n ∈ N, Bn is a finite barcode, and for all n ∈ N, Bn satisfies

dbottle(Bn, B) =
1

2n
.

This implies that (Bn)n∈N ⊂ Bf converges to B for the bottleneck distance.

When studying homology or cohomology, the presence of a Z-grading is important.
We can easily incorporate this notion to obtain those of persistence modules of Z-graded
vector spaces such that the structure maps respect the grading. For instance, if we have a
family of persistence modules Vr indexed by the integers, the persistence module

(⊕r∈ZVr,⊕r∈Zir)

has such a structure. We can then define an interleaving distance as

dinter(V, V
′) = max

r∈Z
{dinter(Vr, V ′r )},

where V = ⊕rVr and V ′ = ⊕rV ′r are two Z-graded persistence modules.
We can incorporate this notion in the same way for barcodes. A Z-graded barcode is

a family of barcodes (Br)r∈Z. We denote

B =
⊕
r∈Z

Br,
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the Z-graded barcode B associated to the family (Br)r∈Z. Then, as for persistence modules,
the bottleneck distance for graded barcodes is defined by

dbottle(B,B
′) = max

r∈Z
{dbottle(Br, B′r)},

where B =
⊕
r∈Z

Br and B′ =
⊕
r∈Z

B′r.

A finite graded barcode B = (Br)r∈Z is a graded barcode such that there is finitely
many bars in the whole family (Br)r∈Z. Since we will always consider graded barcodes, we
also denote Bf the set of finite graded barcodes. By abuse of notations, we also denote B
the set of graded barcodes B = (Br)r∈Z such that for all ε > 0 there is a finite number of
bars of length greater than ε in the whole family (Br)r∈Z. From now on, when using the
notation B or Bf , we will always refer to their graded version.

Remark 3.3.7. Let B = (Br)r∈Z, if B is finite, then Br has more than 0 bars for only
finitely many r ∈ Z. In the same way, if B ∈ B, then for all ε > 0, Br has more than 0

bars of length greater than 0 for only finitely many r ∈ Z.

With these graded barcodes, we still have

Bf = B,

and for the same reason as in the non-graded case, B is complete.

Before moving on and defining barcodes for objects of real interest, we have to make
some observations regarding the connectedness of B.

First of all, let us introduce the map that counts the number of semi-infinite bars in
each degree.

Definition 3.3.8. We define σ∞ : B → NZ by

σ∞(B) = (σn)n∈Z with ∀n ∈ Z, σn =
∑

I∈I(B)
l(I)=+∞
Ind(I)=n

mI .

This map will be very useful. Indeed the following property shows that its relation
with the bottleneck distance is quite straightforward.

Proposition 3.3.9. For all B,B′ ∈ B,

dbottle(B,B
′) < +∞ ⇐⇒ σ∞(B) = σ∞(B′).

Proof. We will first prove that dbottle(B,B′) < +∞⇒ σ∞(B) = σ∞(B′). We will actually
prove the converse: assume that B,B′ ∈ B have different images by σ∞. This means that



64 CHAPTER 3

there is a degree r for which σr(B) 6= σr(B′). By definition of a δ-matching, since δ > 0

is finite, a semi-infinite bar of B has to be associated to a semi-infinite bar of B′ of same
degree in a δ-matching. Then, since there is a degree for which B and B′ do not have the
same number of semi-infinite bars, such a δ-matching is impossible, and this holds for all
δ > 0. Consequently dbottle(B,B′) = +∞, which concludes this part of the proof.

Now we prove: σ∞(B) = σ∞(B′) ⇒ dbottle(B,B
′) < +∞. Let B,B′ ∈ B such that

σ∞(B) = σ∞(B′). We denote

B∞ =
⊕

I∈I(B)
l(I)=+∞

ImI and B′∞ =
⊕

J∈I(B′)
l(J)=+∞

JmJ .

Let us recall that each barcode B∞ and B′∞ has the same finite number of bars with
multiplicity in each degree. So we can define A ∈ R to be the diameter of (S(B)∪ S(B′)),
and then B∞ and B′∞ admit an A-matching. Now, denote

Bf =
⊕

I∈I(B)
l(I)<+∞

ImI and B′f =
⊕

J∈I(B′)
l(J)<+∞

JmJ .

Since for all ε > 0, each barcode has only a finite number of bars of length greater than ε,
we can define 2C ∈ R to be the maximal length of a bar in Bf ∪ B′f . Then, Bf and B′f

admit a C-matching. So finally we have that B and B′ admit a max(A,C)-matching and
then dbottle(B,B′) < +∞.

Remark 3.3.10. The barcode B∞ introduced in the proof strongly relates to what we
defined as V∞ after Definition 3.1.1. The number of bars in each degree r ∈ Z is equal to
the dimension of the degree r component of V∞.

This proposition immediately implies the following corollary, which is topologically
really useful.

Corollary 3.3.11. σ∞ is locally constant.

Thanks to this corollary and Definition 3.3.8 of σ∞, we can now state the following
proposition.

Proposition 3.3.12. The connected components of B are indexed by the graded number
of semi-infinite bars, i.e. two barcodes belong to the same connected component of B if
and only if they have the same number of semi-infinite bars in each degree. Moreover the
connected components are path-connected.

Proof. Since the map σ∞ is locally constant, it is constant on the connected components
of B. This means that if two barcodes B,C ∈ B are in the same connected component,
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Figure 3.2 – The barcodes B and C are in the same connected component, while D is not.

then σ∞(B) = σ∞(C), i.e. B and C have the same number of semi-infinite bars in each
degree.

Conversely, let B be a barcode in B. With r ∈ Z denoting the degree, we write
B =

⊕
r∈ZB

r and denote

Br =
⊕
i∈IrB

(ai,+∞)⊕
⊕
i∈Jr

(aj , bj ].

We define for all t ∈ [0, 1]

Br
t =

⊕
i∈IrB

((1− t)ai,+∞)⊕
⊕
i∈J rB

((1− t)aj , (1− t)bj ],

and Bt =
⊕

r∈ZB
r
t . The path (Bt)t∈[0,1] is a continuous path of barcodes from B to

B0(B) =
⊕
r∈Z

⊕
i∈IrB

(0,+∞).

Let B and C be two barcodes in B such that they have the same number of semi-infinite
bars in each degree. Then for all r ∈ Z, IrB = IrC so B0(B) = B0(C).

This implies that the two barcodes B and C are isotopic and thus in the same connected
component of B which concludes the proof of this proposition.

The following corollary is a direct and obvious consequence of the previous Proposi-
tion 3.3.12, but its formulation will be useful later.

Corollary 3.3.13. Let (Bt)t∈[0;1] be a continuous path of graded barcodes. Then for all
t ∈ [0; 1] and for all k, the number of semi-infinite bars of Bt

k is constant with respect to
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the parameter t.

Let us now introduce another space of barcodes which will allow us to get our desired
results.

Definition 3.3.14. We define B̂ as the set of barcodes B quotiented by the action by overall
shift of R on B, i.e. B and B′ represent the same class in B̂ if and only if there is c ∈ R
such that B = B′[c].

Since the action of R by an overall shift on B is free and proper, all the above mentioned
topological properties also hold for B̂.

The only remaining question is the completeness of B̂. The distance on B̂ is given by
the Hausdorff distance between the equivalence classes which will be denoted dH .

Lemma 3.3.15. The set B̂ is complete for the distance dH .

Proof. Let (b̂n)n∈N be a Cauchy sequence in B̂. There is a strictly increasing sequence
(Np)p∈N such that

∀k ∈ N, dH(b̂Np − b̂Np+k) ≤
1

2p
.

Let us choose b0 ∈ B a representative of b̂N0 and b′1 ∈ B a representative of b̂N1 . Then, by
definition of the equivalence classes, there exists c1 ∈ R such that

dbottle(b0, b
′
1[c1]) ≤ 1

2
.

Indeed, for all c ∈ R and all b, b′ ∈ B, we have dbottle(b, b′) = dbottle(b[c], b
′[c]). Now set

b1 = b′1[c1]. We will inductively construct a sequence (bp)p∈N such that for all p, the
barcode bp is a representative of b̂Np and dbottle(bp, bp+1) ≤ 1

2p+1 . Let p0 ∈ N and assume
that for all p ∈ {0, ..., p0}, the barcode bp is constructed.

The barcode bp0 represents the class of b̂Np0 . Let us fix b
′
p0+1 representing the class of

b̂Np0+1. Since dH(b̂Np0 , b̂Np0+1) ≤ 1
2p0+1 , there exists cp0+1 such that

dbottle(bp0 , b
′
p0+1[cp0+1]) ≤ 1

2p0+1
.

We define bp0+1 = b′p0+1[cp0+1]. And thus we obtain our sequence (bp)p∈N inductively.
By the triangle inequality of Proposition 3.1.10 and a classical high school result, we

obtain for all p, k ∈ N
dbottle(bp, bp+k) ≤

1

2p
.

Consequently (bp)p∈N is a Cauchy sequence which converges to a barcode b ∈ B since B is
complete. This straightforwardly implies that (b̂n)n∈N converges to b̂, the equivalence class
of b, and so B̂ is complete.
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Barcodes and action selectors in
symplectic topology

As mentioned before, the terminology of barcodes was brought into symplectic topology by
Polterovich and Shelukhin [75] quickly followed by Usher-Zhang’s work [94]. Again, note
that germs of this theory were already present in the work of Barannikov [9] and Usher
[92, 93].

Action selectors were introduced by Viterbo [96] for Lagrangian submanifolds in a
cotangent bundle using generating functions theory. After this construction, it was adapted
to many contexts by Oh [67], Schwarz [79], Leclercq [58] and others... Even if actions
selectors appeared before the notion of barcodes in symplectic topology, they can be defined
naturally using the theory of persistence modules.

4.1 Morse case

Let M be a compact manifold together with a Morse function f : M → R. For all
t ∈ R, we define V t(f) = H∗(f, {f < t},Z/2) the Morse homology of sublevel sets of f
with coefficients in Z/2. Since we saw in Remark 2.1.6 that the differential decreases the
value of the function, the generators form a subcomplex and hence this homology is well
defined. Moreover, we set ist : V s(f) → V t(f) to be the maps induced by the inclusion
of subcomplexes. Then (V (f), i) is a persistence module and its spectrum S(V ) coincides
with the critical values of the Morse function f .

For a given degree r ∈ Z, one can set V t
r (f) = Hr(f, {f < t},Z/2). In this case, the

spectrum of Vr is contained in the set of values of f at the critical points of index r or
r+ 1. This equips V (f) with a structure of persistence module of Z-graded vector spaces,
and V (f) = ⊕Vr(f).

The barcode B(V (f)) is then a finite barcode, and the endpoints of the different bars
are the critical values of f . A finite bar in degree r is a bar between a critical value

67
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Figure 4.1 – Barcodes of M with the height function h

of f corresponding to a point of index r and a critical value of f corresponding to a
critical point of index r + 1. Indeed, a given non-zero class α in Hr(f, {f < t},Z/2),
t ∈ R disappears from the sublevel homology Hr(f, {f < s},Z/2), for s > t when there is
β ∈ Hr+1(f, {f < s},Z/2) such that α = ∂β. If there is no such s, then α is non-zero in
H∗(f,Z/2), and its critical value is the starting point of a semi-infinite bar.

Moreover, in terms of persistence modules, one can also naturally identify V∞ from
Definition 3.1.1 with the total Morse homology H∗(f,Z/2) with an isomorphism ψ : V∞ →
H∗(f,Z/2). For all α ∈ H∗(f,Z/2) \ 0, we can redefine the action selector or spectral
invariant for α using the vocabulary of persistence modules:

l(α, f) = inf{t ∈ R, ψ−1(α) ∈ Im it},

where we recall that it is the structure map from V t to V∞. This corresponds to the
selector for persistence modules introduced in Section 3.1. These spectral invariants are
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exactly the starting points of semi-infinite bars in the barcode B(V (f)).

One of the main sources of motivation for studying barcodes in symplectic geometry
is that, thanks to Remark 2.1.5 and in the view of Example 3.1.11, for all f and g Morse
functions on M ,

dinter(V (f), V (g)) ≤ ‖f − g‖,

where ‖ · ‖ denotes the uniform norm.

This can be directly interpreted in terms of Morse homology. Indeed, to prove that
the Morse homology of a compact manifold does not depend on the choice of the function,
we have to construct a chain map. For two Morse functions f and g, this chain map is
defined by counting anti-gradient trajectories of a homotopy between f and g. We know
that this map induces an isomorphism on homology and that it cannot change the value of
a critical point by more than ‖f −g‖. So there is a chain map between C∗(f, {f < t},Z/2)

and C∗(g, {g < t + ‖f − g‖},Z/2) and another one between C∗(g, {g < t},Z/2) and
C∗(f, {f < t = ‖f − g‖},Z/2), both being inclusions.

Finally we once again obtain

dinter(V (f), V (g)) ≤ ‖f − g‖.

We see here that the barcode associated to a Morse function is C0-continuous.

4.2 Lagrangian Floer cohomology

Let (M,ω = dλ) be a Liouville domain, and L,L′ two closed exact Lagrangian submanifolds
intersecting transversely, together with two primitive functions fL : L→ R and fL′ : L′ →
R such that dfL = λ|L and dfL′ = λ|L′ . We assume that the Floer cohomology is well
defined. For all κ ∈ R, we define

CF ∗,κ(L,L′) = spanZ/2
{
z ∈ χ(L,L′), AL,L′(z) < κ

}
⊂ CF ∗(L,L′).

Let us recall that, for all x ∈ CF ∗,κ(L,L′), Remark 2.2.16 tells:

AL,L′(∂x) < AL,L′(x) < κ.

This means that CF ∗,κ(L,L′) is in fact a subcomplex of CF ∗(L,L′), and consequently we
can define:

HF ∗,κ(L,L′) = H∗(CF ∗,κ(L,L′)).

Moreover, the inclusions of cochain complexes, i.e. ∀κ′ < κ ∈ R,

CF ∗,κ
′
(L,L′) ⊂ CF ∗,κ(L,L′)
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induce maps iκ′κ in cohomology which commute for κ1 < κ2 < κ3, thus satisfying the
property required for structure maps. Finally, ((HF ∗,κ(L,L′))κ∈R, i) has the structure of
a finite Z-graded persistence module. We denote its associated graded barcode

B∗(L,L′) = B
(
(HF ∗,κ(L,L′))κ∈R, i

)
.

Since χ(L,L′) is finite, B(L,L′) is a finite barcode.
It is easy to recover the cohomology from the barcode. Indeed, by definition

lim
→

κ→∞

CF ∗,κ(L,L′) = CF ∗(L,L′)

and then
lim
→

κ→∞

HF ∗,κ(L,L′) = HF ∗(L,L′).

This means that HF ∗(L,L′) corresponds to the bars that survive when κ goes to infinity,
i.e.

Proposition 4.2.1. The graded rank of HF (L,L′) is equal to the graded number of semi-
infinite bars in B(L,L′).

As for Morse homology, and barcodes in general, we now define selectors. This selector,
denoted by l(·, L, L′), is defined as the action selector of Definition 3.1.5 applied to the
persistence module HF κ(L,L′). Let us give an explicit definition.

Definition 4.2.2. To any α ∈ HF ∗(L,L′) \ {0}, we associate

l(α,L, L′) = inf{κ ∈ R, α ∈ Im iκ : HF ∗,κ(L,L′)→ HF ∗(L,L′)}.

As for Morse homology, these numbers are exactly all the different starting points of the
semi-infinite bars, i.e. each semi-infinite bar corresponds to some non-zero α ∈ HF ∗(L,L′),
and the starting point of this particular semi-infinite bar is given by l(α,L, L′).

We now have to discuss what happens when we do not assume transversality. This
actually does not make any fundamental change, we only have to acknowledge the resulting
perturbations. Thus for a Hamiltonian perturbation H and an almost-complex structure
Jt, the vector spaces of our new persistence module are

HF ∗,κ(L,L′; Jt, H) = H∗(CF ∗,κ(L,L′; Jt, H)).

We denote
B∗(L,L′; Jt, H) = B

(
(HF ∗,κ(L,L′; Jt, H))κ∈R, i

)
,

its associated barcode. This is well-defined since the fact that H∗(CF ∗,κ(L,L′; Jt, H)) is
a subcomplex still holds. Thus, given a non-zero cohomology class α ∈ HF ∗(L,L′;H,J),
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we can define the corresponding action selector as we did before:

l(α,L, L′; Jt, H) = inf{κ ∈ R, α ∈ iκ : HF ∗,κ(L,L′; Jt, H)→ HF ∗(L,L′; Jt, H)}. (4.1)

The following proposition gives classical properties of these action selectors as found in
[96, 79, 67, 58].

Proposition 4.2.3. For every pair of closed exact Lagrangian submanifolds in a Liouville
domain, and every non-zero class α ∈ HF (L,L′; Jt, H), the action selector l(α,L, L′; Jt, H)

satisfies:

• l(α,L, L′; Jt, H) ∈ Spec(L,L′;H),

• l(α,L, L′; Jt, H) does not depend on Jt hence will be denoted l(α,L, L′;H),

• |l(α,L, L′;H)− l(α,L, L′;H ′)| ≤ ‖H −H ′‖, where ‖ · ‖ denotes the Hofer norm.

The first property is called the spectrality property, and the third one the Lipschitz
continuity property. These are classical results when studying action selectors and thus
we will not prove them here. However, we can say that the first two properties directly
follow from the definition. The third one is a direct consequence of the construction of
continuation maps used to prove that the cohomology does not depend on the choice of
the Hamiltonian perturbation.

These action selectors satisfy the so-called Lagrangian splitting formula which is a
direct consequence of the Künneth formula 2.6; see for example [31] or [47].

Proposition 4.2.4. Let (M,ω) and (M ′, ω′) be symplectic manifolds as before, and (L0, L1) ⊂
M , (L′0, L

′
1) ⊂ M ′ two pairs of closed exact Lagrangian submanifolds. Let H and H ′ be

two Hamiltonian perturbations to achieve transversality. Then, for α ∈ HF (L0, L1; Jt, H)

and α′ ∈ HF (L′0, L
′
1; J ′t, H

′) two non-zero cohomology classes,

l(α⊗ α′;L0 × L′0, L1 × L′1;H ⊕H ′) = l(α,L0, L1;H) + l(α′, L′0, L
′
1;H ′),

where α⊗ α′ is defined by the Künneth formula 2.6.

As we did for barcodes in Morse homology, the continuation maps also give the conti-
nuity of the barcodes:

Proposition 4.2.5. Let L,L′ be two closed exact Lagrangian submanifolds in a Liouville
domain, and let H,K be two Hamiltonians together with time dependent almost-complex
structure J and J ′ such that the graded barcodes B∗(L,L′; Jt, H) and B∗(L,L′; J ′t,K) are
well-defined. Then,

dbottle(B(L,L′; Jt, H),B(L,L′; J ′t,K)) ≤ ‖H −K‖,



72 CHAPTER 4

where ‖.‖ denotes the Hofer distance.

Note that this bound does not depend on choice of the almost complex structures J
and J ′.

The proof of this proposition is a straightforward translation to our context of a well-
known result. This was proven by Polterovich-Shelukhin [75] and Usher-Zhang [94] in full
generality.

Proof. This proposition comes from the construction of the continuation map from CF (L,L′; Jt, H)

to CF (L,L′; J ′t,K). Let u be a continuation strip as defined in Subsection 2.2.7 between
two generators x ∈ CF (L,L′; Jt, H) and y ∈ CF (L,L′; J ′t,K). Let us recall that x is
actually a XH -flow line x(t)t∈[0,1] from L to L′ and y is a XK-flow line y(t)t∈[0,1] from L

to L′. We then have

AHL,L′(x)−AKL,L′(y) = E(u) +

∫
K(y(t))−

∫
H(x(t))dt

≥
∫
K(y(t))−

∫
H(x(t))dt

≥
∫ 1

0
min(Kt −Ht)dt = −

∫ 1

0
max(Ht −Kt)dt.

We thus obtain AKL,L′(y) ≤ AHL,L′(x) +
∫ 1

0 max(Ht −Kt)dt.
Taking the continuation in the other direction, we get by the same computation,

AHL,L′(x) ≤ AKL,L′(y) +
∫ 1

0 max(Kt −Ht)dt.
Let us denote Ψ the continuation map from CF (L,L′; Jt, H) to CF (L,L′; J ′t,K) and

Ψ′ the continuation map from CF (L,L′; J ′t,K) to CF (L,L′; Jt, H). The previous compu-
tation shows that the map satisfies

Ψ : CF κ(L,L′; Jt, H)→ CF κ+E+(H,K)(L,L′; J ′t,K)

Ψ′ : CF κ(L,L′; J ′t,K)→ CF κ+E+(K,H)(L,L′; Jt, H),

where E+(H,K) is Usher’s notation for
∫ 1

0 max(Ht − Kt)dt. We recall that we saw in
Subsection 2.2.7 that both compositions of Ψ and Ψ′ are chain homotopic to the identity.
For a good choice of homotopy betweenH andK, this chain homotopy respect the filtration
[75, 94]. Then this corresponds to Definition 3.1.8 of the interleaving distance between the
associated persistence modules HF κ(L,L′; Jt, H) and HF κ+E+(H,K)(L,L′; J ′t,K). The
interleaving distance here is E+(H,K) + E+(H,K) = ‖H −K‖, which concludes the proof
of this proposition.

In the following chapters, we do not really care about the Hamiltonian perturbation.
The fact that given any two closed exact Lagrangian submanifolds, the Hamiltonian per-
turbation can be made as small as one wishes by Remark 2.2.26, together with the Propo-
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sition 4.2.3 allows us to define, for a a non-zero class in HF (L,L′; Jt, H)

l(a;L,L′) = lim
H∈H→0

l(a;L,L′;H),

where H is the set of Hamiltonians satisfying the transversality requirements. If L and L′

intersect transversely, it equals the action selector defined in Definition 4.2.2.
We can also use for barcodes the perturbation data notation as in Subsection 2.2.8, i.e.

denoting D the pair (H,J) where H is the Hamiltonian perturbation and J the regular
almost complex structure, the barcode can be written

B(L,L′;D).

Following Proposition 4.2.5, given two closed exact Lagrangian submanifolds L,L′ in a
Liouville domain (M,ω = dλ) with two primitive functions fL : L → R and fL′ : L′ → R
such that dfL = λ|L and dfL′ = λ|L′ , the map

H 7→ B(L,L′;H,J)

is continuous with respect to the Hofer distance. Since the space of barcodes is complete
by Proposition 3.3.5, we can take the limit of B(L,L′;D) as the Hamiltonian part of the
perturbation goes to zero and thus define

B(L,L′) = lim
H→0

B(L,L′;H,J).

For two exact Lagrangian submanifolds L and L′, we denote B̂(L,L′) the image of
B̂(L,L′) in B̂.

4.3 Product structure in Lagrangian Floer cohomology

This section follows Auroux presentation in [7] together with the books of Oh [68] and
Seidel [83].

The Floer cochain complex can be equipped with a product operation. Let L0, L1 and
L2 be three Lagrangian submanifolds of a symplectic manifold (M,ω). Under suitable
assumptions, we aim to define a product operation from the Floer complexes CF (L1, L2)

and CF (L0, L1) to CF (L0, L2), i.e. a map

CF (L1, L2)⊗ CF (L0, L1)→ CF (L0, L2).

The idea is to define this product in the same spirit as the construction of the differential.
It will indeed count specific pseudo-holomorphic strips, using the relation between the
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index of a curve and the dimension of the associated moduli space.
We will firsttly define the moduli spaces, i.e. the pseudo-holomorphic curves we are

interested in. To do so let us define what positive and negative punctures with asymptotic
markers are.

Let S be the standard closed Riemannan disc in C, with boundary S1. Let us denote
Γ a finite set of punctures in ∂S. These punctures will be of two types: the negative, or
output, punctures denoted Γ−, and the positive, or input, punctures denoted Γ+.

A cylindrical end at a puncture z ∈ Γ is a biholomorphism

uz : (0,+∞)× [0, 1]→ U(z) \ {z},

if z is a positive puncture and

uz : (−∞, 0)× [0, 1]→ U(z) \ {z},

if z is a negative puncture. In both cases, U(z)\{z} denotes a punctured open neighborhood
of z in S. The idea of this setting is that the punctures of the punctured Riemann disc
will be sent on generators of the different cochain complexes. The cylindrical ends will
then help to achieve transversality by introducing perturbations of the almost-complex
structure as well as a Hamiltonian perturbation.

Let us now introduce the moduli spaces we are interested in to define the product
operation. They will correspond to moduli spaces of punctured Riemann disc: Σ = S \ Γ.
Let L0, L1 and L2 be three exact Lagrangian submanifolds of a Liouville domain (M,ω).
We assume for now that they are pairwise transverse. Let p ∈ χ(L0, L1), p′ ∈ χ(L1, L2)

and q ∈ χ(L0, L2), and let Jt be a time dependent almost-complex structure on M . Let
Σ be the closed Riemann disc with 3 boundary punctures z, z′ and z0, such that z0 is a
negative puncture and z, z′ are positive punctures. We denote γ′0 the boundary arc from
z0 to z, γ′1 the one from z to z′ and γ′2 from z′ to z0.

Definition 4.3.1. Let [u] be a homotopy class. The space M(p, p′, q; [u]; Jt) is the space
of J-holomorphic maps u : Σ→M in the class of [u] which maps z, z′ and z0 to p, p′ and
q respectively and γ′0, γ

′
1 and γ′2 to L0, L1 and L2 respectively.

Remark 4.3.2. As in the definition of the moduli spaces for the differential, in more
general cases, i.e. when working with non-exact Lagrangian submanifolds, one has to add
a condition of finite energy. In our context, as will be seen in the Section 4.4, the energy
of such maps is constant when p, p′ and q are fixed.

As the idea is exactly the same as for the moduli spaces used in the definition of the
differential, we only discuss briefly the question of the dimension of the moduli spaces
M(p, p′, q; [u]; Jt). Assuming that the transversality properties hold, these are smooth
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Figure 4.2 – Map u : Σ→M , giving a J-holomorphic map from p, p′ to q.

manifolds. Their dimension is given by the Fredholm index of the linearized Cauchy-
Riemann operator Du. As for Expression 2.3, this Fredholm index can be understood in
terms of Maslov index for on appropriate Lagrangian loop.

Let us fix an orientation of γi for i ∈ {0, 1, 2} such that the concatenation of these
paths goes counterclockwise, as in Figure 4.2. After trivialization, the path u(γi) induces
a path, which will be denoted γ′i in Λ(n) given by the tangent space of Li. We denote lp
the canonical short path from Tp(L0) to Tp(L1), lp′ the canonical short path from Tp′(L1)

to Tp′(L2) and lq the canonical short path from Tq(L2) to Tq(L0). The appropriate loop is
then the concatenation

γ′1]lp′]γ2]lq]γ0]lp.

As in the construction setting for the differential, the Maslov index of this loop in Λ(n)

is equal to the index ind(u). Working in well-behaved conditions, i.e. when 2c1(M) = 0,
and µL0 , µL1 and µL2 vanish, we saw that we can associate a well-defined degree to the
generators of the different chain complexes. These degrees then relate to the Maslov index
of our Lagrangian loop and thus to the index of u in the following way [68] [83]:

ind(u) = deg(q)− deg(p)− deg(p′).

Remark 4.3.3. Since we are working with Z/2 as coefficient field, questions of orientation
are not relevant in our context.

We can now define the product operation.

Definition 4.3.4. The Floer product is the Z/2-linear map

CF (L1, L2)⊗ CF (L0, L1)→ CF (L0, L2),
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defined by
µ2(p′, p) =

∑
q∈χ(L0,L2)
[u]:ind([u])=0

(]M(p, p′, q; [u]; Jt))q.

Remark 4.3.5. A Gromov’s compactness argument tells that the moduli spaces in this
sum are compact. Together with the fact that they are 0-dimensional manifolds, this
ensures that this sum is finite hence well-defined.

The following property ensures that this product on chain complexes induces a well-
defined product on cohomology. The proof can be found in [68] or [83].

Proposition 4.3.6. The Floer product satisfies the following Leibniz rule:

∂µ2(p′, p) = µ2(∂p′, p) + µ2(p′, ∂p),

where the signs do not matter, since we are working with Z/2 coefficients.

This implies that the product defined on chain complexes induces a well-defined product

HF (L1, L2)⊗HF (L0, L1)→ HF (L0, L2).

To prove this proposition, with the same idea as for ∂2 = 0, we have to study the boundary
of a compactified moduli space of dimension 1. The intersection points p, p′ and q being
generators of the Floer complexes as above, and [u] being a homotopy class with ind([u]) =

1, the moduli spaces we are looking for are the M(p, p′, q; [u]; Jt), which are indeed 1-
dimensional. Gromov compactness tells that these moduli spaces admit a compactification
M(p, p′, q; [u]; Jt).

Since we are working with conditions under which sphere or disc bubbling cannot
appear, the only phenomenon we have to deal with is strip-breaking. The idea of this strip-
breaking is the same as before: the energy can concentrate at one of the three punctures.
As in Section 2.2, transversality implies that a non-constant strip has a positive index, and
that no strip has a negative index. Moreover, the sum of the indices of the different discs
in case of strip-breaking has to be equal to 1. This leaves us with only three possibilities:
an index 0 disc with three punctures together with an index 1 strip, with boundary on two
of the three Lagrangian submanifolds. In fact, these limit configurations are the subject of
another gluing theorem: they are the boundary of our dimension 1 moduli spaces. More
precisely, we have:

∂M(p, p′, q; [u]; Jt) =
⋃

r∈χ(L0,L2)
[v]+[v′]=[u]

ind([v])=1−ind([v′])=0

M(p′, p, r; [v]; Jt)× M̂(r, q; [v′]; Jt)
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∪
⋃

r∈χ(L1,L2)
[v]+[v′]=[u]

ind([v])=1−ind([v′])=0

M(r, p, q; [v]; Jt)× M̂(p′, r; [v′]; Jt)

∪
⋃

r∈χ(L0,L1)
[v]+[v′]=[u]

ind([v])=1−ind([v′])=0

M(p′, r, q; [v]; Jt)× M̂(p, r; [v′]; Jt).

Writing down this gluing theorem this way allows to identify which configuration con-
tributes to the coefficient of q in each term of the Leibniz formula. The first union con-
tributes to the coefficient of q in ∂(p′ · p), the second one to the coefficient of q in (∂p′) · p,
and the third one to the coefficient of q in p′ · (∂p). SinceM(p, p′, q; [u]; Jt) is a compact
smooth 1-dimensional manifold with boundary, its boundary consists of an even number
of set of points. Because we are working with Z/2 coefficients, we immediately obtain:

0 = ]∂M(p, p′, q; [u]; Jt) =
∑

r∈χ(L0,L2)
[v]+[v′]=[u]

ind([v])=1−ind([v′])=0

]M(p′, p, r; [v]; Jt)]M̂(r, q; [v′]; Jt)

+
∑

r∈χ(L1,L2)
[v]+[v′]=[u]

ind([v])=1−ind([v′])=0

]M(r, p, q; [v]; Jt)]M̂(p′, r; [v′]; Jt)

+
∑

r∈χ(L0,L1)
[v]+[v′]=[u]

ind([v])=1−ind([v′])=0

]M(p′, r, q; [v]; Jt)]M̂(p, r; [v′]; Jt).

Since we have the wished equality for each q, we finally get the Leibniz formula.

The Floer product is not associative on the level of cochain complexes, but it is as-
sociative in cohomology. To sketch the proof of this, we will need to introduce higher
products and the relations between them. Before doing so, we sketch the way to deal with
transversality issues, the one concerning intersections of Lagrangian submanifolds and the
one concerning moduli spaces.

As seen above, the main tool to achieve transversality is to use time-dependent almost-
complex structures and Hamiltonian perturbations. We will have to proceed more carefully
than for the differential, taking care of what happens near the punctures. This is why we
introduced the notion of cylindrical ends.

To achieve transversality, we have to choose a family of ω-compatible time-dependent
complex structures Jt and a family of Hamiltonians H such that both families only depend
on the [0, 1] coordinate in each cylindrical end. Then we perturb the Cauchy-Riemann
equation so that it reduces on each cylindrical end to a perturbed equation with a specific
Hamiltonian on each end. Let us denote Hi,j the resulting Hamiltonian perturbation on
the cylindrical end at the intersection between Li and Lj , and Ji,j the corresponding time-
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dependent complex structure. The cylindrical end satisfying the equation

∂u

∂s
+ Jt(u)

(
∂u

∂t
−XH(t, u)

)
= 0,

with boundaries mapping to Li and Lj , the strip u does not converge any longer to the
intersection point between Li and Lj . It rather converges to Hi,j flow lines from Li to Lj ,
i.e. to the perturbed intersection points Li ∩ (φ1

Hi,j
)−1(Lj).

Applying the arguments above to these perturbed intersection points and these moduli
space of perturbed pseudo holomorphic curves, we finally obtain a well-defined product
map between the "perturbed" Floer complexes:

CF (L1, L2;H1,2; J1,2)⊗ CF (L0, L1;H0,1; J0,1)→ CF (L0, L2;H0,2; J0,2).

The Leibniz rule is still true for this product if one is careful enough to choose the appro-
priate differential.

We now discuss the associativity of this product in homology. To do so, we will briefly
introduce higher products, i.e., given k + 1 exact Lagrangian submanifolds L0, ..., Lk in a
Liouville domain (M,ω), a map

µk : CF (Lk−1, Lk)⊗ · · · ⊗ CF (L0, L1)→ CF (L0, Lk).

This map is (2− k)-graded when it is possible to define a grading on the Floer complexes.
The construction of these higher products is exactly the same as before: we count pseudo-
holomorphic curves interpolating between intersection points. In fact, the case k = 1

corresponds to the differential and the case k = 2 to the product. There are also compact-
ness and transversality issues for these products. Once again it is possible to take care
of these using perturbations, but this issue will not be addressed here. We will assume
that transversality and compactness hold. The results and construction to be stated now
remain true under the perturbations to achieve transversality and compactness.

Given a homotopy class [u], the moduli spaces to be considered consist of maps u in the
class [u] from a Riemann disc equipped with k positive punctures and 1 negative one to the
symplectic manifold, with boundaries matching the approriate Lagrangian submanifolds.
Let us denote pi ∈ χ(Li − 1, Li), for i ∈ {1, ...k} and q ∈ χ(L0, Lk). For a time-dependent
almost-complex structure J , the moduli space is denoted M(p1, ..., pk, q; [u]; J) and its
dimension is

k − 2 + ind([u]) = k − 2 + deg(q)−
n∑
i=1

deg(pi),

when the degree is defined. Note that the k + 1 punctures on the Riemann disc are not
fixed, they are allowed to vary. Therefore the k + 2 = (k + 1) − 3 term in the previous
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equality comes from the fact that there is k + 1 punctures and that a biholomorphism on
the disc acts 3-transitively on the boundary.

The operation µk : CF (Lk−1, Lk)⊗ · · · ⊗CF (L0, L1)→ CF (L0, Lk) is then defined as
the Z/2-linear map such that

µk(pk, ...p1) =
∑

q∈χ(L0,Lk)
[u]:ind([u])=2−k

(]M(p1, ...pk, q; [u]; Jt))q.

The study of the compactification and boundaries of the different moduli spaces con-
cludes, among other things, that there are relations between the different products. These
relations are the object of the following proposition which we will admit. A proof can
be found in [83]. Let us just recall that we are working with closed exact Lagrangian
submanifolds intersecting transversely.

Proposition 4.3.7. The operations µk satisfy the following relations:

k∑
j=1

k−j∑
i=0

µk+1−j(pk, ..., pi+j+1, µ
j(pi+j , ...pi+1), pi, ..., p1) = 0.

Since we are working with Z/2 coefficients, the signs do not matter.

Remark 4.3.8. When k = 1, the relation writes as ∂2 = 0, and when k = 2, it corresponds
to the Leibniz rule.

The relation of interests here is the one for k = 3. Indeed, with Z/2 coefficients, it
writes

µ2(µ2(p3, p2), p1) + µ2(p3, µ
2(p2, p1)) = ∂µ3(p3, p2, p1) + µ3(∂p3, p2, p1) (4.2)

+µ3(p3, ∂p2, p1) + µ3(p3, p2, ∂p1).

This means that the Floer product is not associative on the Floer complexes, but it is
up to the explicit homotopy just written above. More interestingly this also means that
the Floer product is in associative in cohomology. This homotopy will also be essential
when we will define filtrations.

Moreover, we have the following property [83].

Proposition 4.3.9. Let L and L′ be two closed exact Lagrangian submanifolds in M . The
product

CF (L′, L)⊗ CF (L′, L′)→ CF (L′, L)

is cohomologically unital. This unit is given by the image of the fundamental class [L′] of
L′ in HF (L′, L′).
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Adequate choices of Hamiltonian perturbations make it possible to have an isomorphism
on the level of cochain complexes. Let us pick ε > 0 and choose a ε-small perturbation
f for the pair (L′, L′) as explained in Remark 2.2.34. By abuse of notation, f both
denotes the Morse function on the Lagrangian L and its extension to a Hamiltonian on
M . We also choose a ε-small perturbation H for the pair (L,L′). The choice of the
perturbation f implies that there is a unique representative of the fundamental class [L′]

in CF 0(L′, L′; f, J) (see Remark 2.2.34).
In [72] Piunikhin, Salamon and Schwarz defined the so-called PSS morphism. Let g be

a Morse function on L and K a Hamiltonian perturbation for the pair (L′, L′). The PSS

morphism
PSS : CM∗(L′, g)→ CF ∗(L′, L′;K)

is a homotopy equivalence. Indeed one can construct a PSS inverse morphism, PSS−1

which is the inverse of PSS up to homotopy. This is proven by Biran-Cornea in [11].
In our case we have K = g denoted f . So we have the following commutative diagram:

CF (L′, L;H)⊗ CF (L′, L′; f) // CF (L′, L;Hf )

CF (L′, L;H)⊗ CM(L′; f)

Id⊗PSS

OO 44
,

where Hf denotes the perturbation f]H of H by the Hamiltonian f .

H

f

Hf

z

H H

Hf Hf

zmin
∇f ∇f

zminff

L L′
L L′

L L′

L′ L′

L′

Figure 4.3 – Product by z zmin and the map ψ

Let us recall that since we work with a Morse function f presenting a unique minimum,
there is only one element in degree 0 in both CM(L′, f) and CF (L′, L′; f). We denote
them zM ∈ CM0(L′, f) and z ∈ CF 0(L′, L′; f). Since PSS is a homotopy equivalence we
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have PSS(zM ) = z. Consequently we have the following commutative diagram

CF (L′, L;H)⊗ z // CF (L′, L;Hf )

CF (L′, L;H)⊗ zM

OO

ψ

55
.

By a classical gluing theorem in Floer theory [77, 37, 6], the map ψ consists of counting strip
with the perturbation H near the positive puncture, perturbation Hf near the negative
puncture, with a marked point z′ on the L boundary with a perturbation f near z′. On this
marked point z′ there is also a f -gradient trajectory from zM to z′. See Figure 4.3. Since
zM is a unique minimum, the gradient trajectory is unique and thus does not impose any
condition. For ε-small enough, the continuation data on the strip satisfies the condition
explained in Remark 2.2.31 and thus we obtain an isomorphism on the cochain complexes.
This can be summarized by the following proposition.

Proposition 4.3.10. Let L and L′ be two closed exact Lagrangian submanifolds in M and
ε > 0. Let f a Hamiltonian perturbation for (L′, L′) defined as in Remark 2.2.34 and H a
Hamiltonian perturbation for (L′, L). Assume that f and H are ε-small. Then for ε small
enough, the following map is an isomorphism:

µ2(·, z) : CF (L′, L;H)→ CF (L′, L;Hf ),

where z is the unique representative of the image (Proposition 2.2.32) of the fundamental
class [L′] in CF (L′, L′; f) and Hf = f]H.

4.4 Product in filtered Lagrangian Floer cohomology

In this section, we focus on the action during a product on Floer complexes. Regarding
the degree, results are the same as those in non-filtered Floer cohomology. However we
need to understand precisely how we can bound the shift of action in order to define this
structure on filtered Floer cohomology.

We will actually be working in the case we need, which turns out to be a nice and easy
one.

Let (M,ω) be a 2n-dimensional exact symplectic manifold.
Let L0, L1, L2 be three pairwise transverse closed exact Lagrangian submanifolds in

M . We assume that the product is well defined.
Since these Lagrangian submanifolds are exact, they come with three primitive func-

tions (defined up to a constant; see Remark 1.3.5) fi : Li 7→ R, such that dfi = λ|Li
for i ∈ {0, 1, 2}. Let p1 ∈ χ(L0, L1), p2 ∈ χ(L1, L2) and z ∈ CF ∗(L0, L2) such that
µ2(p2, p1) = z. Note that z is a formal sum of (qj)j ∈ χ(L0, L2).
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Figure 4.4 – Product in Floer cohomology

Let us recall that
AL0,L1(p1) = f0(p1)− f1(p1),

AL1,L2(p2) = f1(p2)− f2(p2),

AL0,L2(qi) = f0(qi)− f2(qi).

Let u : Σ→ (M ;L0, L1, L2) be a pseudo-holomorphic curve with punctures asymptotic
to (p1, p2, qj) as defined earlier in Section 4.3 for the product in Lagrangian Floer coho-
mology. Let us denote for i ∈ {0; 1; 2} the paths γi : [0; 1] → Li such that γi([0; 1]) =

u(D2, ∂D2) ∩ Li. We set the orientations of the γi for i ∈ {0; 1; 2} such that their concate-
nation γ0]γ1]γ2 turns counterclockwise as in Figure 4.4.

Since ω is exact, equal to dλ, Stokes’ theorem gives

Area(u) =

∫
D2

u∗ω

=

∫
γ1

λL1 +

∫
γ2

λL2 +

∫
γ0

λL0 .

Moreover, all the Li being exact Lagrangian submanifolds, with associated functions fi,
we get:

∀i ∈ {0, 1, 2},
∫
γi

λi = fi(γi(1))− fi(γi(0)).

Then,

Area(u) = f0(p1)− f0(qj) + f1(p2)− f1(p1) + f2(qj)− f2(p2)

= AL0,L1(p1) +AL1,L2(p2)−AL0,L2(qj).
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Since the area of u is positive, we have

AL2,L0(qj) < AL0,L1(p1) +AL1,L2(p2).

Let us recall that
AL2,L0(z) = max

j
{AL2,L0(qj)}.

We immediately get
AL2,L0(z) < AL0,L1(p1) +AL1,L2(p2).

As done in previous sections, we now have to discuss the case where we do not assume
the transversality properties, and hence where we need a perturbation data D. The argu-
ment is exactly the same as for Inequality 2.10, as the perturbation data has to be taken
into account in the same way when computing E(u). Since the perturbation data D can
be chosen as small as desired, as before, for all ε > 0, we can find D such that all our
cohomologies are well-defined and

E(u) ≤ AL0,L1(p1) +AL1,L2(p2)−AL0,L2(z) + ε.

We then straightforwardly obtain

AL2,L0(z) ≤ AL2,L1(p1) +AL1,L0(p2) + ε,

for p1 ∈ χ(L0, L1), p2 ∈ χ(L1, L2) and z ∈ CF ∗(L0, L2;D) with µ2(p2, p1) = z.

This means that the product preserves the filtration and immediately implies the fol-
lowing lemma which will be essential for the upcoming discussions.

Lemma 4.4.1. Let L0, L1, L2 be three closed exact Lagrangian submanifolds in (M,ω)

exact, together with a ε-small perturbation data collection D, and let p2 ∈ CF k(L1, L2;D),
with action b. Let us assume that the product µ2(p2, ·) : CF ∗(L0, L1;D) 7→ CF ∗+k(L0, L2;D)

is well defined.

Then, we have a morphism of persistence modules:

µ2(p2, ·) : CF ∗,t(L0, L1;D)→ CF ∗+k,t+b+ε(L0, L2;D), ∀t ∈ R

µ2(p2, ·) : CF ∗(L0, L1;D)→ CF ∗+k(L0, L2;D)[b+ ε].

Lemma 4.4.2. Let L0, L1, L2 be three closed exact Lagrangian submanifolds in (M,ω)

exact together with a perturbation data ε-small D. Let p1 ∈ CF k(L0, L1;D), with action
a, p2 ∈ CF k(L1, L0;D), with action b. The following maps obtained by composition

µ2(p2, µ
2(p1, ·)) : CF (L2, L0;D)→ CF (L2, L0;D)[a+ b+ 3ε],
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µ2(p1, µ
2(p2, ·)) : CF (L2, L1;D)→ CF (L2, L1;D)[a+ b+ 3ε],

are well-defined and filtered chain homotopic to the maps

µ2(µ2(p2, p1), ·) : CF (L2, L0;D)→ CF (L2, L0;D)[a+ b+ 3ε],

µ2(µ2(p1, p2), ·) : CF (L2, L1;D)→ CF (L2, L1;D)[a+ b+ 3ε].

Proof. The composition maps are well-defined and filtered by the preceding lemma. Since
we saw with Equality 4.2 that the product in Lagrangian Floer cohomology is associative,
we only have to check that the associator behaves correctly with respect to the filtration.
Let us recall that for our chain complexes we have

µ2(µ2(p2, p1), q) + µ2(p2, µ
2(p1, q)) = ∂µ3(p2, p1, q) + µ3(∂p2, p1, q)

+µ3(p2, ∂p1, q) + µ3(p2, p1, ∂q),

where q is an element of CF (L2, L0). Then, the exact same computation as for µ2 gives
us

AL2,L0(µ3(p2, p1, q)) ≤ AL0,L1(p1) +AL1,L0(p2) +AL2,L0(q) + 3ε.

Moreover, as seen in Lemma 2.2.7, the differential decreases the action, so that

max{AL2,L0(∂µ3(p2, p1, q)),AL2,L0(µ3(∂p2, p1, q)),

AL2,L0(µ3(p2, ∂p1, q)),AL2,L0(µ3(p2, p1, ∂q))}

≤ AL0,L1(p1) +AL1,L0(p2) +AL2,L0(q) + 3ε.

This means that the homotopy defined from µ3 between the two different compositions
preserves the filtration, which concludes the proof of this lemma.

The following lemma will be a key argument in the proof of Section 5.3.

Lemma 4.4.3. Let L,L′ be two closed exact Lagrangian submanifolds in (M,ω) together
with ε-small perturbation data f and let H behave as in Proposition 4.3.10. Denote Hf =

f]H. Let z ∈ CF 0(L′, L′; f, J) be as in the same proposition. The multiplication map

m2(·, z) : CF ∗(L′, L;H)→ CF ∗(L′, L;Hf )[2ε]

are filtered chain-homotopic to the standard inclusion and hence induce 2ε-shift maps on
the persistence modules.

Proof. Let us recall that Proposition 4.3.10 tells us the multiplication by z is an iso-
morphism of cochain complexes and hence induces the standard inclusion of persistence
modules. We now just need the energy estimate.
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Since the Hamiltonian part of the perturbations are ε-small, the action of z is smaller
than ε and Hf is ε close to H. Consequently, using the same argument as the one implying
Lemma 4.4.1, this map induces a ε + ε = 2ε-shift of action. This concludes the proof of
this lemma.

4.5 Spectral norm and exact Lagrangians in a cotangent bun-
dle

Given a closed exact Lagrangian submanifold L together with a non-degenerate Hamilto-
nian H, the spectral norm γL(H) is defined as

γL(H) = l([L], L, L;H) + l([L], L, L;H),

where [L] denotes the image of the fundamental class [L] through the isomorphism of
Proposition 2.2.32. It is equal to the diameter of the spectrum Spec(L,L;H). This is
called the Lagrangian spectral norm or Viterbo norm as its first version was introduced by
Viterbo in [96]. A similar version also exists in Hamiltonian Floer homology.

Let L and L′ be two closed exact Lagrangian submanifolds in a symplectic manifoldM
as before, together with a Hamiltonian perturbation H. Then, in the same spirit, we set

γ(L,L′;H) = Diam(Spec∗(L,L′;H)),

where Spec∗(L,L′;H) is the set of action selectors for HF (L,L′;H,J). We denote by
Diam(·) the diameter (i.e. max−min). Note that this definition is only interesting when
the cohomology HF (L,L′;H,J) has dimension at least 2. By Proposition 4.2.4, and with
the same notations we immediately get

γ(L0 × L′0, L1 × L′1;H ⊕H ′) = γ(L0, L1;H) + γ(L′0, L
′
1;H ′). (4.3)

Consequently, if M = M ′, L0 = L′0, L1 = L′1 and H = H ′,

γ(L0 × L0, L1 × L1;H ⊕H) = 2γ(L0, L1;H). (4.4)

Remark 4.5.1. Let L and L′ be two closed exact Lagrangian submanifolds in a Liouville
domain (M,ω) together with a Hamiltonian H and a function f : M → R. The third point
of Proposition 4.2.3 together with the definition of γ tells us that

|γ(L,L′;H + f)− γ(L,L′;H)| ≤ 2(max f −min f).

Note that we do not need any transversality assumptions for the intersections between
L and L′. Indeed, by the continuity of the spectral invariants, γ(L,L′;H) is defined for all
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H. So we can set
γ(L,L′) = lim

H∈H→0
Diam(Spec∗(L,L′;H)),

where H is the set of Hamiltonians satisfying the transversality requirements.

Remark 4.5.2. Given two Lagrangian submanifolds L and L′, we can actually define γ
directly since the spectrum is defined without any transversality assumptions.

The question of the continuity of γ with respect to the C0-distance is a fundamental
one. This has been proved for specific symplectic manifolds in [96, 86, 15, 48, 88]. We will
also prove its continuity in our context in Section 5.4, and thus we will not discuss it more
here.

An important question is the relation between two C0-close Lagrangian submanifolds.
It is the object of Arnold’s famous Nearby Lagrangian Conjecture. The results on this con-
jecture will be useful for both another, more precise, definition of γ and for the arguments
of Section 5.3. Let us start by stating this conjecture.

Conjecture 4.5.3. Let M be a closed manifold. Any closed exact Lagrangian submanifold
in T ∗M is Hamiltonian isotopic to the zero section.

Together with Weinstein’s theorem, this means that in a symplectic manifold M to-
gether with a closed Lagrangian submanifold L ⊂ M , any exact closed Lagrangian sub-
manifold L′ ⊂M is Hamiltonian isotopic to L if L′ is C0-close enough to L.

For most cases, this conjecture is still open and subject to a lot of research. Indeed,
proving this conjecture would allow us to understand much better the symplectic topology
of general symplectic manifolds by using well-known symplectic tools in cotangent bundles.

This conjecture has been fully proved in special cases. Hind [44] proved the following
theorem:

Theorem 4.5.4. The Nearby Lagrangian Conjecture is true in T ∗S2.

For T ∗S1, there is not much to discuss and it is also true. Rizell, Goodman and Ivrii
[28], Abouzaid-Kragh [2] or Abouzaid [1] proved it for T ∗T2.

In more general context, important progress has been made by Fukaya, Seidel and
Smith [40], proving that when the Maslov class vanishes, the projection

π : L′ → L ⊂ T ∗L

induces an isomorphism on homology. This result was improved later by Abouzaid-Kragh
in the following theorem [2].

Theorem 4.5.5. Let L be a closed manifold together with L′ an exact closed Lagrangian
submanifold in T ∗L. Then, there exists an integer i = iL′ ∈ Z such that for every ex-
act closed Lagrangian submanifold K in T ∗L, there are chain-level quasi-isomorphisms
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in both directions between CF ∗(L′,K) and CF ∗+i(L,K) and between CF ∗(K,L′) and
CF ∗−i(K,L). These quasi-isomorphisms are compatible with the product structure in Floer
cohomology.

The quasi-isomorphisms in fact result from the product by a carefully chosen cohomol-
ogy class.

Let L0 and L1 be two closed exact Lagrangian submanifolds in (T ∗L, ω = dλ) exact,
together with two primitives functions fL0 and fL1 such that dfLi = λ|Li , for i ∈ {0, 1}.
As mentioned before, this theorem allows us to propose an other definition of γ(L0, L1).
Indeed, previous Theorem 4.5.5 and Proposition 2.2.32 respectively tell that we have the
two following isomorphisms

HF ∗(L,L)
∼−→
σ
HF ∗(L0, L1),

H∗(L)
∼−→
θ
HFn−∗(L,L).

By abuse of notation, we denote

[L] = σ ◦ θ([L]) ∈ HF 0(L0, L1),

[pt] = σ ◦ θ([pt]) ∈ HFn(L0, L1).

It is known that the following lemma holds by the same argument as in [64, 59].

Lemma 4.5.6.
γ(L0, L1) = l ([L], L0, L1)− l ([pt], L0, L1) .

Let us give the basic properties of γ. Following Definition 2.2.2, we have AL0,L1 =

−AL1,L0 . Together with the fact that the two complexes CF (L0, L1) and CF (L1, L0) are
dual to each other, we have

l ([pt], L0, L1) = −l
(
σ′ ◦ θ([L]), L1, L0

)
,

where σ′ is the isomorphism from HF (L,L) to HF (L1, L0) given by Theorem 4.5.5. We
thus obtain

γ(L0, L1) = l ([L], L0, L1) + l
(
σ′ ◦ θ([L]), L1, L0

)
.

Consequently, for all L0 and L1 exact in T ∗L,

γ(L0, L1) = γ(L1, L0). (4.5)

Moreover, for all L0, L1, L2 closed exact Lagrangian submanifolds in T ∗L with primitive
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functions fL0 , fL1 , fL2 , it also satisfies the triangle inequality

γ(L0, L1) ≤ γ(L0, L2) + γ(L2, L1). (4.6)

Indeed, if x ∈ CF (L2, L1) and y ∈ CF (L0, L2) both represent the fundamental class in
their respective homology, so does µ2(x, y) in CF (L0, L1) (see Section 5.3). Together with
Lemma 4.4.1, we immediately obtain this triangle inequality.



Chapter 5

Continuity of the barcode

5.1 Results and idea of the proof

5.1.1 Main theorem and consequences

The object of this chapter is to prove the following theorem which will be the key to prove
our results concerning the Dehn twist. It shows a certain local Lipschitz continuity on bar-
codes associated to Lagrangian submanifolds. We will always assume that the considered
Lagrangian submanifolds are connected.

Theorem 5.1.1. LetM be a Liouville domain. Let L and L′ be two closed exact Lagrangian
submanifolds, and assume that H1(L′,R) = 0. Then there exist K ≥ 0 and l > 0 such that
for all ϕ and ψ in Symp(M,ω), if dC0(ϕ,ψ) ≤ l, we have

dbottle(B̂(ϕ(L′), L), B̂(ψ(L′), L)) ≤ KdC0(ϕ,ψ).

The fact that we have a uniform Lipschitz continuity with respect to the C0 distance
immediately implies the following corollary.

Corollary 5.1.2. The map ϕ 7→ B̂(ϕ(L′), L) continuously extends to a map Symp(M,ω)→
B̂.

Since L and L′ are closed, the number of semi-infinite bars of B(ϕ(L′), L) stays finite
for all ϕ ∈ Symp(M,ω). This extension to the closure requires to work with B as defined in
Definition 3.3.3 which is the completion of the space of barcodes Bf by Proposition 3.3.5.
As we will see in the proof, we will then have to work with B̂ to deal with possible overall
shifts.

From Theorem 5.1.1, we obtain the two following theorems. They are direct conse-
quences of the continuity of barcodes together with its Corollary 5.1.2.

89
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Theorem 5.1.3. Let M be a Liouville domain. Let L and L′ be two exact compact
Lagrangian submanifolds, and assume that H1(L′,R) = 0. Consider two symplectomor-
phisms ϕ and ψ. If these two symplectomorphisms are in the same connected component of
Symp(M,ω), then the two barcodes B̂(ϕ(L′), L) and B̂(ψ(L′), L) are in the same connected
component of B̂.

The following theorem is an immediate consequence of Theorem 5.1.3.

Theorem 5.1.4. LetM be a Liouville domain. Let L and L′ be two closed exact Lagrangian
submanifolds, and assume that H1(L′,R) = 0. Consider two symplectomorphisms ϕ and ψ.
If these two symplectomorphisms are isotopic in Symp(M,ω), then there is a continuous
path of barcodes from B̂(ϕ(L′), L) to B̂(ψ(L′), L).

This continuous path can be constructed in the following way. Let us denote (φt)t∈[0,1]

the path in Symp(M,ω) from ϕ to ψ. For each t ∈ [0, 1], Corollary 5.1.2 allows to associate
a barcode B̂t to φt. The path of barcodes is then the path (B̂t)t∈[0,1].

Remark 5.1.5. In smooth symplectic topology, the two previous theorems would be equiv-
alent. However, in C0 symplectic topology we do not know whether Symp(M,ω) is locally
path-connected, thus it is not known whether the connected components of Symp(M,ω)

are path-connected. Consequently Theorem 5.1.3 implies Theorem 5.1.4 but the reciprocal
implication is far from clear.

5.1.2 Sketch of the proof

In order to prove Theorem 5.1.1, we prove the two following propositions. The first one
bounds the bottleneck distance by the spectral norm γ.

Proposition 5.1.6. Let L and L′ be two closed exact Lagrangian submanifolds in a Li-
ouville domain (M,ω). There exists δ > 0, independant of L, such that for all ϕ and ψ ∈
Symp(M,ω) satisfying dC0(ϕ,ψ) ≤ δ, then

dbottle(B̂(ϕ(L′), L), B̂(ψ(L′), L)) ≤ 1
2γ(L′, ψ−1 ◦ ϕ(L′)).

The second proposition asserts that γ(L′, ϕ(L′)) goes to zero, as ϕ goes to identity.

Proposition 5.1.7. There exist constants l ≥ 0 and κ ≥ 0 such that and for all ϕ ∈
Symp(M,ω) satisfying dC0(ϕ, IdM ) ≤ l, we have

γ(L′, ϕ(L′)) ≤ κdC0(ϕ, IdM ).

Proof of Theorem 5.1.1. With these two propositions, Theorem 5.1.1 is straightforward.
Let ϕ and ψ be in Symp(M,ω) such that dC0(ϕ,ψ) ≤ l. We can assume without loss of
generality that l ≤ δ. (See the choice of l in Section 5.4.)



5.1. RESULTS AND IDEA OF THE PROOF 91

Indeed we have

dbottle(B̂(ϕ(L′), L), B̂(ψ(L′), L)) ≤ 1
2γ(L′, ψ−1 ◦ ϕ(L′))

≤ 1
2κdC0(ψ−1 ◦ ϕ, IdM )

= 1
2κ sup

x∈M
d(ψ−1(x), ϕ−1(x))

≤ 1
2κdC0(ψ,ϕ).

Setting K = 1
2κ, this proves Theorem 5.1.1.

Let us now briefly sketch the proof of Proposition 5.1.6 and Proposition 5.1.7 and set
up some conventions. Proposition 5.1.6 will be implied by the case where ψ = IdM .

Let us fix ε0 > 0, ε′ � ε0 and assume that all the Hamiltonian parts of the perturbation
data at stake in this proof are of C2-norm smaller than ε′.

Let us fix such a perturbation data collectionD such thatHF t(ϕ(L′), L;D),HF t(L′, L;D),
HF t(ϕ(L′), L′;D), HF t(L′, L′;D) and HF t(ϕ(L′), ϕ(L′);D) are well defined.

Remark 5.1.8. In the case ofHF (L′, L′;D), we require that the Hamiltonian perturbation
is defined in the following way (see also Remark 2.2.34). Let f be a ε′/2-small Morse
function defined on L′ with a unique maximum and a unique minimum. We extend it
to a Hamiltonian H which is supported on a ε0-small tubular neighbourhood of L′. This
construction implies that there is only one element in CFn(L′, L′;D) and only one in
CF 0(L′, L′;D). We perform the same construction in the case of HF (ϕ(L′), ϕ(L′);D).

We aim to find two morphisms of persistence modules A = {At}t∈R and B = {Bt}t∈R
together with δ, δ′ ∈ R:

At : CF t(ϕ(L′), L;D) 7−→ CF t+δ(L′, L;D),

Bt : CF t(L′, L;D) 7−→ CF t+δ
′
(ϕ(L′), L;D),

such that these maps are filtered and their compositions are chain homotopic to shifts of
persistence modules:

shϕ(L′) : B(ϕ(L′), L;D) 7−→ B(ϕ(L′), L;D)[δ + δ′ + ε′]

shL′ : B(L′, L) 7−→ B(L′, L)[δ + δ′ + ε′].

If they indeed satisfy the above conditions, these maps A and B provide a δ + δ′ + ε′-
matching. Then, to achieve the proof, we will only have to bound the shift δ + δ′ + ε′

by the C0 distance between ϕ and IdM . We will prove that this shift is in fact equal to
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1
2γ(L′;ϕ(L′);D) + ε′, and use this to get the bound. This is the purpose of Section 5.3.
Proving that this bound goes to zero when ϕ C0-converges to the identity is the purpose
of the last Section 5.4.

Following Kislev and Shelukhin’s idea [51], these maps A and B will come from the
multiplication in Floer cohomology:

• A corresponds to the multiplication by a specific class [x] in HF (L′, ϕ(L′);D).

• B corresponds to the multiplication by a specific class [y] in HF (ϕ(L′), L′;D).

These choices will be achieved using Abouzaid-Kragh’s Theorem 4.5.5 [2]. This result re-
quires the Lagrangian submanifolds to be in a cotangent space. To obtain this requirement,
we will consider a symplectomorphism ϕ C0-close enough to the identity so that ϕ(L′) is
included in a Weinstein neighbourhood of L′. We thus obtain two cohomologies which
could be different: the one computed in M and the one computed in T ∗L′. Consequently,
for the sake of our argument, we will first prove that we have the isomorphisms

HF (L′, ϕ(L′);D,M) ∼= HF (L′, ϕ(L′);D, T ∗L′),

HF (ϕ(L′), L′;D,M) ∼= HF (ϕ(L′), L′;D, T ∗L′).

Of course we will also prove that these isomorphisms respect the filtration. We will in fact
only give the details for one of these isomorphisms since the proofs are identical for both.
By abuse of notation, we denote by D both the perturbation data in M and its image in
T ∗L. This is the purpose of the following Section 5.2.

Remark 5.1.9. Now that the proof is sketched, we can explain the conditions required
for the two Lagrangian submanifolds L′ and L in Theorem 5.1.1. These are both exactness
conditions. In the previous chapters, to define Lagrangian Floer cohomology, the product
and the action filtration, we require the considered Lagrangian submanifolds to be exact.
This exactness condition is also required for Theorem 4.5.5 that will be used to construct
the maps A and B.

The conditionH1(L′,R) = 0 guarantees that, for any symplectomorphism ϕ ∈ Symp(M,ω),
ϕ(L′) is an exact Lagrangian submanifold as well. With these conditions, we are sure that
all the above mentioned objects used in the following proof will be well defined.

This implies that, when working with ϕ ∈ Ham(M,ω), we can drop the condition
H1(L′,R) = 0 for the weaker condition that L′ is exact. Indeed, the image of an exact
Lagrangian submanifold by a Hamiltonian diffeomorphism is always exact.

The following sections are dedicated to the proof of Proposition 5.1.6 and Proposi-
tion 5.1.7.
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5.2 Equality of the barcodes in M and in T ∗L′

If the symplectomorphism ϕ is C0-close enough to the identity, then ϕ(L′) is included in
a Weinstein neighbourhood of L′. This will contribute to the definition of the constants
δ and l ∈ R at stake in Proposition 5.1.6 and Proposition 5.1.7. By abuse of notation, we
also denote L′, ϕ(L′) their respective images in T ∗L′ by a Weinstein embedding. Denoting
D a perturbation data in T ∗L′, we also denote D its pull-back by the chosen Weinstein
embedding. Let us recall that HF s(ϕ(L′), L′;D,M) is the filtered cohomology computed
in M and HF s(ϕ(L′), L′;D, T ∗L′) the filtered cohomology computed in T ∗L′. We aim to
prove that these two cohomologies are isomorphic and that this isomorphism respects the
filtration.

This section is thus dedicated to the proof of the following Lemma 5.2.1. The idea
for this is to localize the Floer trajectories near L′. Indeed, this will imply that the Floer
trajectories inM and T ∗L′ are in 1 : 1 correspondence, and thus the two cochain complexes
are isomorphic.

Lemma 5.2.1. If ϕ is C0-close to the identity, then for an arbitrary choice of data (see
Remark 1.3.5) there exists C ∈ R such that for all s ∈ R

HF s(ϕ(L′), L′;D,M) ∼= HF s(ϕ(L′), L′;D, T ∗L′)[C].

We can actually choose the primitive functions of the 1-forms λM and λT ∗L′ restricted to
the Lagrangian submanifolds such that the shift C is equal to 0.

Proof. The idea here is to retract the Lagrangian submanifold ϕ(L′) by the negative Li-
ouville flow. This will decrease the diameter of the spectrum and thus allow to have small
enough energy estimates on the moduli spaces.

Let us choose twoWeinstein’s tubular neighbourhoods U andW of L′ such that U bW .
We denote ψ : W → T ∗L′, the symplectic embedding provided by Weinstein’s theorem.
Let us suppose that ϕ is close to IdM , so that we have ϕ(L′) included in U . We have two
Liouville forms on W . The first one is the Liouville form λM restricted to W . The second
one is the Liouville form obtained from the Liouville form λT ∗L′ on T ∗L′: ψ∗λT ∗L′ . Let
us recall that ψ∗λT ∗L′ − λM is closed on W . Since H1(L′,R) = 0 we have H1(W,R) = 0.
Then ψ∗λT ∗L′ − λM is exact on W and consequently there exists a function F : W → R
such that ψ∗λT ∗L′ = (λM )|W + dF .

Let us pick a cut-off function β : W → R such that β is constant, equal to 1 on U

and equal to 0 near the boundary of W . By abuse of notation, we denote F the function
defined onM equal to βF onW and continuously extended by 0 outside ofW . The 1-form
(λM + dF ) is a Liouville form on M equal to ψ∗λT ∗L′ on U . We thus obtain a globally
defined negative Liouville flow (i.e. the flow of the negative Liouville vector field) on M
which preserves U and matches with the negative Liouville flow on T ∗L′.
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In T ∗L′, let us denote ϕt−L the negative Liouville flow. When we apply this flow to
ψ(ϕ(L′)) for t ∈ R+, we obtain a smooth path (L′t)t∈R+ of Lagrangian submanifolds in
T ∗L′. We can now consider the smooth path of Lagrangian submanifolds in M given by
(Lt)t∈R+ = (ψ−1(L′t))t∈R+ .

Lemma 5.2.2. For all t ∈ R+ we have Spec(L′t, L
′;T ∗L′) = Spec(Lt, L

′;M) + Ct, where
Ct ∈ R. Moreover, we can choose the primitive functions of the 1-forms λM and λT ∗L′
restricted to the Lagrangian submanifolds such that Ct is equal to 0 for all t.

Proof. Fix t ∈ R+. Let x be in χ(Lt, L
′) ⊂ M , with action AL′t,L′(x). Denote x′ = ψ(x)

which is consequently in χ(Lt, L
′) ⊂ T ∗L′ with action AL′t,L′(x

′). Set Ct = AL′t,L′(x
′) −

ALt,L′(x).
For any other y ∈ χ(Lt, L

′) together with y′ = ψ(y) ∈ χ(L′t, L
′), let us denote γ1 a path

from x to y in L′ and γ2 a path from y to x in L. We denote γ′1 and γ′2 their respective
images by ψ. From Definition 2.2.2 and Lemma 2.2.7, we have

ALt,L′(y)−ALt,L′(x) =

∫
γ1

λM +

∫
γ2

λM ,

AL′t,L′(y
′)−AL′t,L′(x

′) =

∫
γ′1

λT ∗L′ +

∫
γ′2

λT ∗L′ .

Denoting γ1]γ2 the concatenation of γ1 and γ2 we get

AL′t,L′(y
′) = AL′t,L′(x

′) +

∫
γ′1]γ

′
2

λT ∗L′

= AL′t,L′(x
′) +

∫
γ1]γ2

ψ∗λT ∗L′

= AL′t,L′(x
′) +

∫
γ1]γ2

λM + dF

= AL′t,L′(x
′) +

∫
γ1]γ2

λM since γ1]γ2 is a loop

= AL′t,L′(x
′) +ALt,L′(y)−ALt,L′(x)

= ALt,L′(y) + Ct.

Since this is true for any t ∈ R+ and any pair (y, y′) such as before, we can conclude that

∀t ∈ R+, Spec(L′t, L
′;T ∗L′) = Spec(Lt, L

′;M) + Ct.

Now, for all t, choosing two primitive functions on L′t and Lt such that AL′t,L′(x
′) =

ALt,L′(x) gives Ct = 0, which finishes this proof.

From now on, assume that the primitives on the Lagrangian submanifolds chosen so
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that for all t ∈ R, Ct = 0. Since in T ∗L′ we have (ϕt−L)∗ω = e−tω, and (ϕt−L) is equal to
the identity on L′, we get

Spec(L′t, L
′;T ∗L′) = e−tSpec(L′0, L

′;T ∗L′). (5.1)

Figure 5.1 – Evolution of the barcode during the Liouville retraction

Lemma 5.2.3. For T large enough, there is a canonical identification between the cochain
complexes CF (L′T , L

′;D, T ∗L′) and CF (L′T , L
′;D,M) given by the Weinstein’s neighbour-

hood embedding.

Corollary 5.2.4. For T large enough there is a canonical isomorphism

HF s(L′T , L
′;D, T ∗L′) ∼= HF s(L′T , L

′;D,M)

holding for all s ∈ R.

Proof. These two cochain complexes are generated by the perturbed intersection points,
which are identified by Weinstein’s neighbourhood embedding. To prove this lemma, we
thus have to show that for T large enough, the differential is the same, i.e. that the J-
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holomorphic curves between two intersection points agree. To do so we will show that if
T is large enough, no such J-holomorphic curves can go outside of W .

Since we are working with a Liouville domain, which is always tame, Sikorav’s proposi-
tion 4.3.1 and its corollary in [89] are verified. Consequently, there exists a constant κ ∈ R,
such that for any compact subset K, any compact connected J-holomorphic curve u such
that u ∩K 6= ∅, and ∂u ⊂ K satisfies

u ⊂ U(K,κA(u)), (5.2)

where U(K,κA(u)) is the κA(u)-neighbourhood of K. Let us fix δ > 0 small enough such
that we can find a compact neighbourhood K of L′ such that U(K, δ) ⊂W .

Let us denote Γt, the diameter of the spectrum Spec(L′t, L
′;T ∗L′), which is equal by

Lemma 5.2.2 to the diameter of the spectrum Spec(L′t, L
′;M). From the previous equality

5.1, we have Γt = e−tΓ0. Set tδ = ln(Γ0κ
δ ). We then have

∀t ≥ tδ,Γt ≤
δ

κ
.

Let us recall that following Lemma 2.2.7, the area of a J-holomorphic strip between two
intersection points is equal to the difference of action between the two intersection points.
This area is thus bounded by the diameter of the spectrum Γt. Let us fix T > tδ. A
J-holomorphic strip u between two generators of CF (L′T , L

′;D,M) satisfies A(u) ≤ δ
κ .

Inclusion 5.2 then becomes

u ⊂ U(K,κA(u)) = U(K, δ) ⊂W.

This means that the J-holomorphic strips defining the differential of the chain complex
CF (L′T , L

′;D,M) stay inW . They are identified by the embedding ψ to the J-holomorphic
strips defining the differential of the chain complex CF (L′T , L

′;D, T ∗L′). Consequently the
differential of the two chain complexes behave well with respect to the embedding ψ. This
concludes the proof of this lemma.

Remark 5.2.5. In this lemma, we only dealt with J-holomorphic curves computing the
differential. However, we can conduct the exact same proof with other moduli spaces. This
implies that the µk-operations are preserved by the isomorphism given by Lemma 5.2.3.

Remark 5.2.6. Since the paths (Lt)t∈R and (L′t)t∈R are smooth, the associated barcode
paths are continuous according to the expression 1.2 and Proposition 4.2.5. Let us denote
Bt = B(Lt, L

′;D,M) and B′t = B(L′t, L
′;D, T ∗L′). The previous lemma tells that for T

large enough, BT = B′T .

Moreover let (Bt)t∈[0;1] be a continuous path of barcodes such that there is a positive
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continuous function f : R→ R which satisfies

∀t ∈ [0; 1],Spec(Bt) = f(t)Spec(B0).

Since there is no bifurcation in the spectrum, Bt is a dilation by f(t) of B0.

Lemma 5.2.7. Let L be a closed exact Lagrangian submanifold in a Weinstein neighbour-
hood U of L′ with associated embedding ψ. For all t ∈ [−T, 0] let us denote L′t = ϕt−L◦ψ(L).
Assume that for all t ∈ [−T, 0] L′t ⊂ U . Let us denote Lt = ψ−1(L′t). Then for all s ∈ R

HF s(L′t, L′; (ϕt−L)∗D, T ∗L′) ∼= HF se
−t

(ψ(L), L′;D, T ∗L′),

HF s(Lt, L′; (ϕt−L)∗D,M) ∼= HF se
−t

(L,L′;D,M).

Proof. The symplectic invariance given by Equality 2.7 tells that there is a function f :

R→ R such that

HF s(L′t, ϕt−L(L′); (ϕ−t−L)∗D, T ∗L′) ∼= HF f(s)(ψ(L), L′;D, T ∗L′),

HF s(Lt, ψ−1 ◦ ϕt−L(L′); (ϕt−L)∗D,M) ∼= HF f(s)(L,L′;D,M).

We can indeed write the second isomorphism since the negative Liouville flow has been
globally defined on M . Since ϕt−L(L′) = L′ for all t, we have

HF s(L′t, L′; (ϕt−L)∗D, T ∗L′) ∼= HF f(s)(ψ(L), L′;D, T ∗L′),

HF s(Lt, L′; (ϕt−L)∗D,M) ∼= HF f(s)(L,L′;D,M).

Moreover Equality 5.1 tells that f(s) = se−t. We then have

HF s(L′t, L′; (ϕt−L)∗D, T ∗L′) ∼= HF se
−t

(ψ(L), L′;D, T ∗L′).

The same computation as in Lemma 5.2.2 gives

HF s(Lt, L′; (ϕt−L)∗D,M) ∼= HF se
−t

(L,L′;D,M).

Applying this lemma to LT together with Lemma 5.2.3 and the fact that ϕ−T−L(L′T ) =

ϕ(L′), we finally obtain

HF s(ϕ(L′), L′;D,M) ∼= HF s(ϕ(L′), L′;D, T ∗L′)

for all s ∈ R. This concludes the proof of Lemma 5.2.1.
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Let us assume, once and for all that ϕ is sufficiently close to identity, so that ϕ(L′) is
inside the Weinstein neighbourhood of L′ and reciprocally.

5.3 Bounding the bottleneck distance by the spectral norm

In this section, we will bound the bottleneck distance by the spectral norm γ by proving
the following proposition.

Proposition 5.3.1. Let L and L′ be two closed exact Lagrangian submanifolds in a Li-
ouville domain (M,ω). There exists δ > 0, independant of L, such that for all ϕ ∈
Symp(M,ω) satisfying dC0(ϕ, IdM ) ≤ δ, then there exists C ∈ R such that

dbottle(B(L′, L),B(ϕ(L′), L)[C]) ≤ 1
2γ(L′, ϕ(L′)).

In [51], Kislev and Shelukhin proved a similar statement in a different setting. In
their case, L = L′ is a weakly monotone Lagrangian submanifold in a closed symplectic
manifold and ϕ is a Hamiltonian diffeomorphism. The following proof of Proposition 5.3.1
is an adaptation of their proof to our setting.

We choose δ > 0 so that, for all ϕ ∈ Symp(M,ω), if dC0(ϕ, IdM ) ≤ δ then ϕ(L′) is
included in a Weinstein neighbourhood of L′. We will denote this Weinstein neighbourhood
W (L′).

We can now prove Proposition 5.1.6 required to prove Theorem 5.1.1.

Proof of Proposition 5.1.6. To prove this proposition, we will apply Proposition 5.3.1 to
the symplectomorphism ψ−1 ◦ ϕ. As in Proposition 5.3.1, we choose δ > 0 so that, for
all φ ∈ Symp(M,ω), if dC0(φ, IdM ) ≤ δ then φ(L′) is included in W (L′), a Weinstein
neighbourhood of L′. Let us assume that dC0(ϕ,ψ) ≤ δ.

dC0(ϕ,ψ) = max

{
sup
x∈M

d(ϕ(x), ψ(x)), sup
x∈M

d(ϕ−1(x), ψ−1(x))

}
≥ sup

x∈M
d(ϕ−1(x), ψ−1(x))

= sup
x∈M

d(ψ−1 ◦ ϕ(x), x)

= dC0(ψ−1 ◦ ϕ, IdM ).

So we get
dC0(ψ−1ϕ, IdM ) ≤ δ.

We introduced the set of barcodes quotiented by an overall shift B̂ to get rid of the shift
in the inequality of Proposition 5.3.1. Indeed, when working with the barcodes in B̂, this
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inequality becomes

dbottle(B̂(L′, L), B̂(ϕ(L′), L)) ≤ 1
2γ(L′, ϕ(L′)).

By invariance of the barcode under the action of a symplectomorphism, we have

dbottle(B̂(ϕ(L′), L), B̂(ψ(L′), L)) = dbottle(B̂(L′, ψ−1(L)), B̂(ψ−1 ◦ ϕ(L′), ψ−1(L))).

By the previous inequality and Proposition 5.3.1, we then have

dbottle(B̂(L′, ψ−1(L)), B̂(ψ−1 ◦ ϕ(L′), ψ−1(L))) ≤ 1
2γ(L′, ψ−1 ◦ ϕ(L′)),

which concludes the proof of this proposition.

Let us now prove Proposition 5.3.1 and the desired bound. We start by introducing
the interleaving maps.

Definition of the interleaving maps
As explained in Remark 5.1.9, the condition H1(L′,R) = 0 guarantees that for all ϕ ∈

Symp(M,ω), ϕ(L′) is an exact Lagrangian submanifold. Hence, we can apply Abouzaid-
Kragh’s Theorem 4.5.5 [2], thus obtaining two isomorphisms

HF (L′, L′;D, T ∗L′) ∼−→
σ
HF (L′, ϕ(L′);D, T ∗L′),

HF (ϕ(L′), ϕ(L′);D, T ∗L′) ∼−→
σ′

HF (ϕ(L′), L′;D, T ∗L′).

Moreover, by Proposition 2.2.32 applied to L′ and ϕ(L′), and Poincaré duality there is an
isomorphism

θ : H∗(L
′)→ HFn−∗(L′, L′;D, T ∗L′).

By symplectic invariance of Floer cohomology (see equality 2.7), we have

HF ∗(ϕ(L′), ϕ(L′);φ∗D, T ∗L′) ∼= HF ∗(L′, L′;D, T ∗L′).

Consequently we also have an isomorphism

θ′ : H∗(L
′)→ HFn−∗(ϕ(L′), ϕ(L′);D, T ∗L′).

Let us choose c ∈ HF (L′, L′;D, T ∗L′) to be the class θ([L′]), and c′ ∈ HF (ϕ(L′), ϕ(L′);D, T ∗L′)
the class θ′([L′]). Moreover assume that the gradings are chosen so that c and c′ are both
of degree 0.

Lemma 5.2.1 provides two isomorphisms ζ and ζ ′ between HF (L′, ϕ(L′);T ∗L′) and
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HF (L′, ϕ(L′);M) and between HF (ϕ(L′), L′;T ∗L′) and HF (ϕ(L′), L′;M). We can now
choose two cycles x ∈ CF (L′, ϕ(L′);M) and y ∈ CF (ϕ(L′), L′;M) such that

[x] = ζ(σ(c))

[y] = ζ ′(σ′(c′)).

Let us choose two primitive functions f ′ : L′ → R and g : ϕ(L′) → R such that
df ′ = λ|L′ , dg = λ|ϕ(L′) and such that we can find

• z such that [z] = c ∈ HF (L′, L′;D) with A(z) ≤ ε′/2� ε0

• z′ such that [z′] = c′ ∈ HF (ϕ(L′), ϕ(L′);D) with A(z′) ≤ ε′/2� ε0.

According to the previous choices of degree, we actually have [z] ∈ HF 0(L′, L′;D) and
[z′] ∈ HF 0(ϕ(L′), ϕ(L′);D).

Lemma 5.3.2. The multiplication maps

m2(·, z) : CF ∗(L′, L;D)→ CF ∗(L′, L;D)[ε′]

m2(·, z′) : CF ∗(ϕ(L′), L;D)→ CF ∗(ϕ(L′), L;D)[ε′]

are filtered chain-homotopic to the standard inclusions and hence induce the ε′-shift maps
on the persistence modules.

Proof. This lemma is an immediate consequence of Lemma 4.4.3.

By abuse of notation, to make the following expressions clearer, we denote [L′] =

ζ◦σ◦θ([L′]) ∈ HF 0(L′, ϕ(L′);D,M) and [ϕ(L′)] = ζ ′◦σ′◦θ′([L′]) ∈ HF 0(ϕ(L′), L′;D,M).
Now, let us choose x ∈ CF 0(L′, ϕ(L′);D) and y ∈ CF 0(ϕ(L′), L′;D) as above such that:

l([L′];L′, ϕ(L′);D) ≤ A(x) = a ≤ l([L′];L′, ϕ(L′);D) + ε′,

l([ϕ(L′)];ϕ(L′), L′;D) ≤ A(y) = b ≤ l([ϕ(L′)];ϕ(L′), L′;D) + ε′,

which is possible by definition of l([L′];L′, ϕ(L′);D) and l([ϕ(L′)];ϕ(L′), L′;D).
Moreover, by definition of x, y, we have [µ2(y, x)] = [z] ∈ HF 0(L′, L′;D). Indeed, up

to the appropriate isomorphisms, the cycles x, y, z all represent the same class [L] in their
respective cochain complexes. With our particular choice of perturbation data for the pair
(L′, L′) as explained in Remark 5.1.8, the cycle z is the only representative of his class.
The same argument holds for z′. Consequently, we have the following lemma.

Lemma 5.3.3.
µ2(y, x) = z ∈ CF 0(L′, L′;D),
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µ2(x, y) = z′ ∈ CF 0(ϕ(L′), ϕ(L′);D).

Remark 5.3.4. If we choose to work with ϕ being a Hamiltonian diffeomorphism and
not only a symplectomorphism, the definition of x and y is much easier. In this case, it is
achieved without Abouzaid-Kragh’s result [2] of Theorem 4.5.5.

Indeed, continuation morphisms give the isomorphisms:

HF ∗(ϕ(L′), L′) ∼= HF ∗(L′, L′) ∼= HF ∗(ϕ(L′), ϕ(L′)) ∼= HF ∗(L′, ϕ(L′)).

Since these continuations morphisms are compatible with the product structure on
Lagrangian Floer cohomology, we can directly define x and y, and it is easy to see that
the product by these elements will not be constant equal to 0. Indeed we easily have

[µ2(y, x)] = [z]

[µ2(x, y)] = [z′].

Moreover, the two multiplication operators m2(·, z) and m2(·, z′) are still filtered chain-
homotopic to the standard inclusion.

Bounding the bottleneck distance
Now that our objects are defined, we can adapt the Kislev-Shelukhin method [51] to

our context. The point here is to carefully study the shifts of action induced by the the
multiplication by the elements introduced above. Let us start with the two following
lemmas.

Lemma 5.3.5. The maps

µ2(·, x) : CF ∗(ϕ(L′), L;D)→ CF ∗(L′, L;D)[a+ ε′]

µ2(·, y) : CF ∗(L′, L;D)→ CF ∗(ϕ(L′), L;D)[b+ ε′]

are well-defined and induce filtered maps of chain complexes.

Lemma 5.3.6. The maps

µ2(µ2(·, y), x) : CF ∗(L′, L;D)→ CF ∗(L′, L;D))[a+ b+ 3ε′]

µ2(µ2(·, x), y) : CF ∗(ϕ(L′), L;D)→ CF ∗(ϕ(L′), L;D)[a+ b+ 3ε′]

are well-defined and filtered chain homotopic to the multiplication operators:

µ2(·, µ2(y, x)) : CF ∗(L′, L;D)→ CF ∗(L′, L;D)[a+ b+ 3ε′]

µ2(·, µ2(x, y)) : CF ∗(ϕ(L′), L;D)→ CF ∗(ϕ(L′), L;D)[a+ b+ 3ε′]
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Proof. These two lemmas directly follow from the discussion on the product structure.
Lemma 4.4.1 gives the first one and Lemma 4.4.2 the second one.

Remark 5.3.7. In Kislev and Shelukhin’s paper [51], there is another term in the previous
equality which is a boundary. This additional term induces a shift in action by a constant
β which vanishes in our case.

We now have the relation between the previous maps and the multiplication by z or
z′: the maps

µ2(·, µ2(y, x)) : CF ∗(L′, L;D)→ CF ∗(L′, L′;D)[a+ b+ 3ε′]

µ2(·, µ2(x, y)) : CF ∗(ϕ(L′), L;D)→ CF ∗(ϕ(L′), L;D)[a+ b+ 3ε′]

are equal to the multiplication operators:

µ2(·, z) : CF ∗(L′, L;D)→ CF ∗(L′, L;D)a+ b+ 3ε′]

µ2(·, z′) : CF ∗(ϕ(L′), L;D)→ CF ∗(ϕ(L′), L;D)[a+ b+ 3ε′]

Following Lemma 5.3.2, we obtain on the level of filtered homology the shifts of persis-
tence modules morphisms

shL′ : CF ∗(L′, L;D)→ CF ∗(L′, L;D)[a+ b+ 4ε′]

shϕ(L′) : CF ∗(ϕ(L′), L;D)→ CF ∗(ϕ(L′), L;D)[a+ b+ 4ε′].

Let us recall that the barcodes are C2-continuous by Proposition 4.2.5. We can take the
limit as the Hamiltonian part of the perturbation data goes to zero as explained after
Proposition 4.2.5 and assume that

a < l([L′];L′, ϕ(L′)) + 2ε′,

b < l([L′];ϕ(L′), L′) + 2ε′.

Consequently we have shift maps of barcodes without the perturbation data:

shL′ = µ2(·, x) ◦ µ2(·, y) : B(L′, L; )→ B(L′, L)[γ(L′, ϕ(L′)) + 6ε′]

shϕ(L′) = µ2(·, y) ◦ µ2(·, x) : B(ϕ(L′), L)→ B(ϕ(L′), L)[γ(L′, ϕ(L′)) + 6ε′].

Indeed, as discussed in Section 4.5,

l([L′];L′, ϕ(L′)) + l([L′];ϕ(L′), L′) = γ(L′, ϕ(L′)) ≥ 0.
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For readability reasons, we denote

α = l([L′];L′, ϕ(L′)) and ᾱ = l([L′];ϕ(L′), L′).

With this expression, the multiplication operators appear as maps between persistence
modules:

µ2(·, x) : B(ϕ(L′), L)→ B(L′, L)[α+ 3ε′]

µ2(·, y) : B(L′, L)→ B(ϕ(L′), L)[ᾱ+ 3ε′].

Let us recall that, by Lemma 4.5.6, we have γ(L′, ϕ(L′)) = α + ᾱ. Consequently, the
previous multiplication operators can be written as

µ2(·, x) : B(ϕ(L′), L)→ B(L′, L)[1
2(α− ᾱ)][1

2γ(L′, ϕ(L′)) + 3ε′]

µ2(·, y) : B(L′, L)[1
2(α− ᾱ)]→ B(ϕ(L′), L)[1

2γ(L′, ϕ(L′)) + 3ε′]

Together with the previous identity of persistence modules, this is the exact definition of
the fact that B(L′, L) and B(ϕ(L′), L)[1

2(α− ᾱ)] are 1
2γ(L′, ϕ(L′))+3ε′-interleaved. Taking

the limit as ε′ goes to zero, we get

dbottle(B(L′, L),B(ϕ(L′), L)[1
2(α− ᾱ)]) ≤ 1

2γ(L′, ϕ(L′)). (5.3)

Setting C = 1
2(α− ᾱ), this concludes the proof of Proposition 5.3.1.

5.4 Bounding the spectral norm by the C0-distance

We will now prove Proposition 5.1.7. This proof is an adaptation to our context of a lemma
and a proof of Buhovsky-Humilière-Seyfaddini [15]. In their paper, they proved the same
result for a Lagrangian submanifold Hamiltonian isotopic to the zero section in a cotangent
bundle. Here we are working with L′ being a closed exact Lagrangian submanifold in M .
Let us denote W (L′) a Weinstein neighbourhood of L′. By definition, if ϕ ∈ Symp(M,ω)

is close enough to IdM , then ϕ(L′) ⊂ W (L′). By abuse of notation, we also respectively
denote B and ϕ(L′) the images by a Weinstein embedding of respectively B and ϕ(L′) in
T ∗L′, where B is a ball in W (L′).

Lemma 5.4.1. Let B be a ball in L′. Let SympB(M,ω) := {ϕ ∈ Symp(M,ω)| ϕ(L′) ∩
T ∗B = 0B)}. There exist δ > 0 and C > 0 such that for any ϕ ∈ SympB(M,ω), if
dC0(IdM , ϕ) ≤ δ, then γ(L′, ϕ(L′)) ≤ CdC0(IdM , ϕ).

Proof. Let ε > 0 and let us choose an ε-small smooth function f : L′ → R whose critical
points are all contained in B. Let π : T ∗L′ → L′ be the natural projection and ρ : T ∗L′ →
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[0; 1] be a compactly supported function in T ∗L′ equal to 1 on T ∗RL
′, for R large.

Denote H = ρπ∗f and with r � R, we have

φtH(q, p) = (q, p+ tdf(q)), ∀t ∈ [0; 1], ∀(q, p) ∈ T ∗r L′.

Since f has no critical point outside of B, and L′ is compact, let us denote η > 0, the
minimum of ‖df(q)‖, for q ∈ L′ \B.

Let us fix δ > 0 such that, for all ϕ ∈ SympB(M,ω), if dC0(IdM , ϕ) ≤ δ then ϕ(L′) ⊂
W (L′). From now on in this proof, we assume dC0(IdM , ϕ) ≤ δ.

Let ϕ be in SympB(M,ω) and d = dC0(IdM , ϕ).

Since B ∩ ϕ(L′) is connected, the following lemma tells that two points (q1, 0) and
(q2, 0) in B ∩ ϕ(L′) have the same action α.

Lemma 5.4.2. Let (M,ω) be an exact symplectic manifold, with λ such that dλ = ω. Let
L and L′ be two closed exact Lagrangian submanifolds together with primitive functions fL
and fL′ such that dfL = λ|L and dfL′ = λ|L′. Assume there is a ball B such that L∩L′ ∩B
is connected. Then, all points in (L ∩ L′ ∩B) have the same action.

Proof. In (L ∩ L′ ∩B), we have that d(fL − fL′) = 0. This means that fL − fL′ is locally
constant. Moreover (L ∩ L′ ∩ B) is connected so the function fL − fL′ is constant on
(L∩L′ ∩B). Since for a point p ∈ (L∩L′), the action AL,L′(p) is equal to fL(p)− fL′(p),
this concludes the proof of this lemma.

Let us recall that the action is defined up to a constant. We can thus choose the action
α = 0.

Fix ε′ > 0 and let fd,ε′ = (dη + ε′)f . We then have, for q ∈ L′ \B,

‖dfd,ε′(q)‖ =

(
d

η
+ ε′

)
‖df(q)‖

≥ d+ ε′η,

and for all q ∈ L′

‖fd,ε′(q)‖ ≤
(
d

η
+ ε′

)
ε.

Let Hd,ε′ = ρπ∗fd,ε′ .

Consequently we have

φ1
Hd,ε′

ϕ(L′) =
{

(q, p+ dfd,ε′(q)), (q, p) ∈ ϕ(L′)
}

=: ϕ(L′) + Lfd,ε′ .

Therefore,
(ϕ(L′) + Lfd,ε′ ) ∩ L

′ =
{

(q, 0), dfd,ε′(q) = 0
}
.
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To achieve the proof of Lemma 5.4.1, we now need to bound the difference of action
between the intersection points of (ϕ(L′) + Lfd,ε′ ) and L′.

In T ∗L′, the action of a critical point x = (q, 0) is given by AT ∗L′(x) = f(q), if we
choose 0 to be the primitive of λstd|B×{0} = 0|B×{0}. We have to make a choice of primitive
here because the action is defined up to a constant. With that choice, the action in T ∗L
equals the action in M for the points in B ∩ ϕ(L′).

Let us denote ψ : W (L′) → T ∗L′ the symplectomorphism provided by Weinstein’s
neighbourhood theorem.

In T ∗B, ψ∗λ− λstd is closed, and since it is simply connected domain, it is also exact.
Consequently we can write:

ψ∗λ− λstd = dF,

where F : T ∗B → R.
The action of an intersection point x in W (L′) is given by:

Aϕ(L′),L′⊂M (x) = fϕ(L′)(x)− fL′(x).

The previous equality leads to:

Aϕ(L′),L′⊂M (x) = F|ψ(ϕ(L′))(ψ(x)) + fd,ε′(ψ(x))− F|B(ψ(x))

= fd,ε′(ψ(x)).

Our choice for the action α = 0 and our choice of 0L′ to be the primitive of λstd|L′ comes to
sense now. Without these choices, we would have Aϕ(L′),L′⊂M (x) = fd,ε′(ψ(x)) +C, where
C ∈ R does not depend on x. This does not actually matter since we are only interested
in differences of action, it is just more convenient this way.

Since ‖fd,ε′(q)‖ ≤ (dη + ε′)ε, and γ(L′, ϕ(L′) + Lf ) is a difference between the actions
of two intersection points, we get

γ(L′, ϕ(L′) + Lfd,ε′ ) ≤ 2

(
d

η
+ ε′

)
ε.

Moreover, the third point of Proposition 4.2.3 or Remark 4.5.1 yields

|γ(L′, ϕ(L′) + Lfd,ε′ )− γ(L′, ϕ(L′))| ≤ 2
(
max(fd,ε′)−min(fd,ε′)

)
.

Consequently we get

γ(L′, ϕ(L′)) ≤ 4

(
d

η
+ ε′

)
ε.

As ε′ goes to zero, we finally have

γ(L′, ϕ(L′)) ≤ 4
d

η
ε
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≤ 4
ε

η
dC0(IdM , ϕ).

Setting C = 4 εη concludes the proof of this lemma.

In order to finish the proof of Proposition 5.1.7, we need to reduce to Lemma 5.4.1.
Indeed in the hypothesis, we do not have such a ball B. To do so, we will use and
adapt to our context a trick from [15]. This trick consists in doubling the coordinates and
introducing the following auxiliary map:

Φ : ϕ× ϕ−1 = M ×M →M ×M,

where M ×M is equipped with the natural symplectic form ω ⊕ ω.
We will now prove the following lemma:

Lemma 5.4.3. For any ball B in M , there is a smaller ball B′ ⊂ B with the following
property. There exists ∆ > 0 such that for any ϕ ∈ Symp(M,ω) with dC0(ϕ, IdM ) < ∆,
we can find a symplectomorphism Ψ ∈ Symp(M ×M,ω ⊕ ω) satisfying:

1. supp(Ψ) ⊂ B ×B and supp(Φ ◦Ψ) ⊂M ×M\B′ ×B′,

2. dC0(Ψ, IdM×M ) < CBdC0(ϕ, IdM ) and dC0(Φ ◦Ψ, IdM×M ) < C ′BdC0(ϕ, IdM ), where
CB and C ′B do not depend on ϕ.

Proof. Let B be a non empty open ball in M.
The following lemma gives us the existence of a Hamiltonian diffeomorphism f on

M ×M which locally switches the coordinates. This lemma and its proof come from [15],
so we will not prove it here.

Lemma 5.4.4. For any non empty open ball B′′ ⊂ B there exists a Hamiltonian diffeo-
morphism f on M ×M , such that

• f is the time-1 map of a Hamiltonian supported in B ×B,

• for all (x, y) ∈ B′′ ×B′′, we have f(x, y) = f(y, x).

For the rest of the proof of Lemma 5.4.3, we pick a ball B′′ and a Hamiltonian dif-
feomorphism f as provided by the previous Lemma 5.4.4. Let B′ be a ball such that its
closure is included in B′′ and let us denote Γ = ϕ× IdM . Let

Ψ = Γ−1 ◦ f−1 ◦ Γ ◦ f.

Let us pick ∆ > 0 small enough such that if dC0(ϕ, IdM ) < ∆, we have

• Γ−1(supp(f)) ⊂ B ×B
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• ϕ(B′) ⊂ B′′.

Since Γ−1(supp(f)) = supp(Γ−1 ◦ f−1 ◦ Γ), and supp(f) ⊂ B × B, we conclude that
supp(Ψ) ⊂ B ×B.

Moreover, for all (x, y) ∈ B′ ×B′, we have

Φ ◦Ψ(x, y) = Φ ◦ Γ−1 ◦ f−1 ◦ Γ ◦ f(x, y)

= Φ ◦ Γ−1 ◦ f−1 ◦ Γ(y, x)

= Φ ◦ Γ−1 ◦ f−1(ϕ(y), x)

= Φ ◦ Γ−1(x, ϕ(y))

= Φ(ϕ−1(x), ϕ(y))

= (x, y).

This concludes the proof of the first point of the lemma.
Let us recall that Ψ = Γ−1 ◦ f−1 ◦ Γ ◦ f and Γ = ϕ × IdM . This means that, by a

triangle inequality,

dC0(Ψ, IdM×M ) ≤ dC0(Γ−1, IdM×M ) + dC0(f−1 ◦ Γ ◦ f, IdM×M )

≤ CBdC0(ϕ, IdM ),

where CB depends only on the Lipschitz constants of both f and f−1.
Moreover, by another triangle inequality, we get

dC0(Φ ◦Ψ, IdM×M ) ≤ C ′BdC0(ϕ, IdM ),

where once again C ′B depends only on the Lipschitz constants of both f and f−1.
Finally, the symplectomorphism Ψ is exact, as a composition of exact symplectomor-

phisms.

This Lemma 5.4.3 together with Lemma 5.4.1 will allow to conclude the proof of
Proposition 5.1.7 and thus Theorem 5.1.1. Indeed, we have proven that B(L′, L) and
B(ϕ(L′), L)[1

2(α − ᾱ)] are 1
2γ(L′, ϕ(L′))-interleaved. We now just have to find two con-

stants κ > 0 and l > 0 such that if dC0(ϕ, IdM ) ≤ l, then γ(L′, ϕ(L′)) ≤ κdC0(ϕ, IdM ).
Let us pick a point x ∈ L′ and a ball Bx centered on x. Lemma 5.4.3 provides a smaller

ball B′ also centered on x. Pick a smaller ball B0, centered on x and whose closure is
included inB′. The same lemma also provides l0 > 0 and a symplectomorphism Ψ such that
l0 < ∆ and if dC0(ϕ, IdM ) < l0, then Φ◦Ψ(L′∩B0×L′∩B0)∩T ∗(B′×B′) = L′∩B0×L′∩B0.

Then, let us pick another ball B1 centered on y ∈ L′ × L′ whose closure is included in
M\B × B. Since dC0(Ψ, IdM×M ) ≤ CBdC0(ϕ, IdM ) and supp(Ψ) ⊂ B × B, we can find
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l1 > 0 such that if dC0(ϕ, IdM ) < l1, then Ψ and B1 satisfy the conditions of Lemma 5.4.3.
Let us choose l > 0 = min{δ, l0, l1}. Then we have, using successively Proposition 4.2.4

and its consequence of Equality 4.3 and the triangle inequality 4.6 and the symmetry of γ
4.5, for all ϕ such that dC0(ϕ, IdM ) < l:

γ(L′, ϕ(L′)) =
1

2
γ(L′ × L′,Φ(L′ × L′))

=
1

2
γ(Ψ−1Φ−1(L′ × L′),Ψ−1(L′ × L′))

≤ 1

2
γ(L′ × L′,Ψ−1(L′ × L′)) +

1

2
γ(Ψ−1Φ−1(L′ × L′), L′ × L′)

=
1

2
γ(L′ × L′,Ψ−1(L′ × L′)) +

1

2
γ(L′ × L′,ΦΨ(L′, L′)).

For the second equality, the same argument as in Lemma 5.2.2 indeed tells that γ(L′ ×
L′,Φ(L′ × L′)) = γ(Ψ−1Φ−1(L′ × L′),Ψ−1(L′ × L′)), when composing by Ψ−1Φ−1. A
similar argument holds for the first equality and for the last one.

Choosing B0 ×B0 for the ball in Lemma 5.4.1, we can apply it to Φ ◦Ψ for all ϕ such
that dC0(ϕ, IdM ) < l. We then get that there is a constant C1 > 0 such that for all these
ϕ, we have:

γ(L′ × L′,Φ ◦Ψ(L′ × L′)) ≤ C0dC0(Φ ◦Ψ, IdM×M )

≤ C0C
′
BdC0(ϕ, IdM ).

Moreover, for all such ϕ, Lemma 5.4.3 gives for Ψ:

γ(L′ × L′,Ψ−1(L′ × L′)) ≤ C1dC0(Ψ−1, IdM×M )

≤ C1CBdC0(ϕ, IdM ).

Putting all this together, we get:

γ(L′, ϕ(L′)) ≤ 1

2
(C0C

′
B + C1CB)dC0(ϕ, IdM ).

By setting κ = 1
2(C0C

′
B + C1CB), we get that for all ϕ such that dC0(ϕ, IdM ) ≤ l, then

γ(L′, ϕ(L′)) ≤ κdC0(ϕ, IdM ).

Taking into account the discussions in Section 5.1.2, the proof of Theorem 5.1.1 is now
complete, and this Chapter 5 finished.



Chapter 6

The Dehn-Seidel twist in
C0-symplectic grometry

6.1 The Dehn-Seidel twist

6.1.1 The classical Dehn twist on surfaces

In this section, we will briefly recall the definition of the Dehn twist for surfaces, and
then state a few results, still for surfaces, to explain our interest for this particular dif-
feomorphism. As it will appear, this is an important map in the study of the mapping
class group. In the case of surfaces, it comes from the work of Dehn and for example is
extensively discussed in [34].

Figure 6.1 – Dehn twist in T ∗S1

We consider the annulus T ∗1 S1 = S1 × [−1, 1]. We denote τ : T ∗1 S
1 → T ∗1 S

1 the map
given by

τ(θ, t) = (θ + 2πf(t), t),

109
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where f : [−1, 1]→ R+ is a smooth function equal to 0 near −1 and equal to 1 near 1. The
isotopy class of this map does not depend on the choice of f . This map is called a positive
twist map. Note that this map τ is an area and orientation preserving homeomorphism
which fixes ∂T ∗1 S1 pointwise. Moreover, one could choose to have −2π in the formula
instead of +2π, this is called a negative twist.

Now that we have our model, we can describe the Dehn twist for surfaces. Let Σ be
an oriented surface, let l be a simple smooth closed curve in Σ, and let N be a tubular
neighbourhood of l, together with an orientation preserving homeomorphism ψ : T ∗1 S

1 →
N . We define a Dehn twist along l to be the map τl : Σ→ Σ such that

τl(x) =

ψ ◦ τ ◦ ψ−1(x) if x ∈ N

x if x ∈ Σ \N.

The map τl depends on both the choices of the neighbourhood N and the homeomorphism
ψ. However, the isotopy class of τl does not depend on either of these choices. In fact τl
depends only on the isotopy class of the simple closed curve l. By abuse of notation, we
denote τl the element of the mapping class group MCG(Σ) called the Dehn twist along l
which is well-defined.

The first interesting property of the Dehn twist is the following, assessing that we are
not studying an irrelevant object.

Proposition 6.1.1. Let l be a simple closed curve in a surface Σ. If l is not homotopic
to a point or a puncture of Σ, then the Dehn twist τl is a non-trivial element of MCG(Σ).

In fact, by studying intersection numbers, one can show that Dehn twist has infinite
order. Dehn twists are actually a central piece in the study of the mapping class group
of surfaces, as stated by the following theorem of Dehn and Lickorish. We denote Σg the
surface of genus g.

Theorem 6.1.2. For g ≥ 0, the mapping class group MCG(Σg) is generated by finitely
many Dehn twists along non-separating simple closed curves.

Of course, there are relations between the different Dehn twists, depending on the
intersection numbers of the curves along which they are defined, but they will not be
discussed here.

Before moving on to higher dimensions, let us recall that in dimension 2 the area-
preserving diffeomorphisms are exactly the symplectomorphisms. Moreover, a one param-
eter version of Moser’s trick tells us that

MCGω(Σ) ∼= MCG(Σ).

Since the mapping class group is generated by Dehn twists, so does the symplectic mapping
class group. This is part of the motivation to study higher dimensional Dehn twists.
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We actually have the following isomorphisms:

MCGω(Σ) ∼= MCG(Σ) ∼= MCG(Σ, C0) ∼= MCGω(Σ, C0).

The surjectivity of the second isomorphism is due to the fact that any homeomorphism is
a limit of diffeomorphisms, which is for example proven in [57], together with the fact that
the group of homeomorphisms is locally contractible [22]. Its injectivity comes from the
local contractibility of the group of diffeomorphisms [56]. Finally, the third isomorphism
was proven by Fathi [35]. As we will see, the situation is drastically different in higher
dimension.

6.1.2 Presentation of the Dehn-Seidel twist

The Dehn-Seidel twist is a generalization of the Dehn twist to higher dimensions. It was
defined by Arnold [4] and later deeply studied by Seidel [84, 81] and many others. This
section presents the definition of this morphism. We will also state its main properties to
be used for the following discussions and comment its importance for the mapping class
group.

To describe the Dehn-Seidel twist, we start by describing a model, as we did for surfaces.
Given n ∈ N∗, we consider

T ∗1 S
n = {ξ ∈ T ∗Sn, |ξ| ≤ 1},

equipped with the standard round metric and the standard symplectic structure which we
will denote ωT ∗1 Sn . In coordinates, T ∗1 Sn can be written as

T ∗1 S
n = {(u, v) ∈ Rn+1 × Rn+1, |u| ≤ 1, |v| = 1, 〈u, v〉 = 0},

and ωT ∗1 Sn =
∑

i dui ∧ dvi. Let us consider the function H(u, v) = |u| on T ∗Sn \ Sn.
It induces an Hamiltonian circle action σ = (σt)t∈S1 which is the normalized geodesic
flow. This means that the flow transports the cotangent vectors at unit speed along the
corresponding geodesic, independently of the norm of the vector. Since all the geodesics
of Sn are closed and 2π-periodic, this defines a circle action. Since the geodesic flow is
well-known in coordinates, we get an explicit expression for σ:

σt(u, v) =

(
cos(2πt)u− sin(2πt)v|u|, cos(2πt)v + sin(2πt)

u

|u|

)
,

for t ∈ [0, 1], and (u, v) ∈ T ∗Sn \ Sn. When t = 1/2, σ corresponds to the antipodal
map: σ1/2(u, v) = (−u,−v). Note that this antipodal map extends continuously to the
zero-section, but it is not the case for other t ∈ (0, 1/2). Let us now take a smooth function
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ρ : R→ R such that

ρ(t) =

1/2 if t ≤ 1/3

0 if t ≥ 2/3,

and define a diffeomorphism τ on T ∗1 Sn:

τ(ξ) = σρ(|ξ|)(ξ).

This diffeomorphism is well defined thanks to the smooth extension of the antipodal map
to the zero-section. Note also that it is equal to identity near ∂T ∗1 Sn. This map τ is called
a model Dehn twist. An explicit computation of the expression σ shows that this map is a
symplectomorphism.

Remark 6.1.3. For different choices of ρ, satisfying ρ equal to 0 near 1 and equal to 1/2

near 0, one gets different maps which are isotopic in Aut(T ∗1 S
n, ∂T ∗1 S

n). This results from
the fact that the map σρ(|ξ|) can be seen as the time 1 map of a Hamiltonian flow rρ(H),
where rρ is function defined on R. Thus, taking two different functions ρ0 and ρ1, one
obtains an isotopy between the two resulting Dehn twists which can be expressed using ρ0

and ρ1.

We now want to embed our local model into a symplectic manifold, by matching the
zero-section with a Lagrangian sphere. Let (M,ω) be a symplectic manifold with boundary,
together with a Lagrangian sphere l : Sn →M .

By Weinstein’s neighbourhood theorem, there exists an embedding i : T ∗1 S
n →M and

c > 0 such that i|Sn = l and i∗ω = cωT ∗1 Sn . We can define a Dehn-Seidel twist along l,
denoted τl, as

τl(p) =

iτ i−1(p) if p ∈ i(T ∗Sn)

p elsewhere.

The map τ being a symplectomorphism equal to the identity near the boundary, τl is a
symplectomorphism as well. Moreover, the class [τl] of this map in π0(Aut(M,∂Mω)) is
independent of the choice of ρ. Concerning the dependence in i, it only depends on the
Lagrangian isotopy class of i|Sn . Thus τl is called the Dehn-Seidel twist along l.

Remark 6.1.4. One can check that when n = 1, this definition corresponds to the positive
Dehn twist we described for surfaces.

Before discussing the properties of τl, we shall briefly present another way to define of
the map τ which is more geometric and directly constructs the Dehn-Seidel twist from the
common Dehn twist on surfaces. This can be found in [78].
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Let us recall that the geodesics of Sn are closed. For each geodesic γ of Sn, γ is a
great circle, and we consider Aγ = T ∗γ ∩T ∗1 Sn ∼= S1× [−1, 1]. For this expression to make
sense, we identify the tangent and cotangent bundles through the round metric on Sn. We
can define the Dehn twist τγ on this annulus as in Subsection 6.1.1, so that τγ equals the
antipodal map on the zero section and is compactly supported.

Moreover, since we have T ∗1 Sn =
⋃
γ Aγ , we can define the map τ as

τ(q) = τγ(q) for q ∈ Aγ .

Since all τγ are equal to the antipodal map on the zero section of their respective Aγ , this
map is well-defined on the zero-section of T ∗1 Sn. Away from the zero-section, for each point
q in T ∗1 Sn \ Sn, there is a unique geodesic γ such that q is in the annulus Aγ . Finally, the
map τ is well defined and we get the model Dehn-Seidel twist.

One can wonder whether the symplectic isotopy class of the Dehn-Seidel twist only
depends on the image L of l. Since for n ≤ 3, π0(Diff+Sn) = 1, it is clear that this is true
for these dimensions. Indeed, for two Lagrangian spheres l and l′ from Sn to M , if l and
l′ are isotopic, then [τl] = [τl′ ]. However this is an open question in higher dimensions.

Let l be a Lagrangian sphere inM , with image L. Seidel proved [84, 80] that this Dehn-
Seidel twist corresponds to a symplectic version of Picard-Lefschetz transformations, and
hence, their action on homology is given by the following formula:

(τl)∗(x) =

x− (−1)
n(n−1)

2 (x · [L])[L] if x ∈ Hn(M,Z)

x if x ∈ Hk(M,Z), k 6= n.

Let us recall that
[L] · [L] = (−1)

n(n−1)
2 χ(L),

χ(L) being the Euler characteristic. For n even, χ(L) = 2. A direct computation then
shows that τ2

l acts trivially on Hn(M,Z) and hence on the whole homology. If n is odd,
then, as long as [L] is not a torsion class, (τl)∗ has infinite order. This is the main reason
why we will study the square of the Dehn-Seidel twist in M2n symplectic manifolds, with
n even. Indeed, since in the other cases the Dehn-Seidel twist does not act trivially on the
homology, we directly know that it is not in the connected component of the identity.

In his thesis [84], Seidel proved that, when n equals 2, the square of the Dehn-Seidel
twist is isotopic to the identity in Diff(M). Although we are sure this does not hold for odd
n, we do not know whether this is true for larger even n. Moreover, as for the Dehn twist on
surfaces, there are some relations between Dehn twists coming from different Lagrangian
spheres. However, the question of the connectedness of τ2

l to the identity is a non trivial
question. It will be the subject of the following sections.
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For now, we will give a few facts on these diffeomorphisms that will be used in the
following discussions.

Remark 6.1.5. Let L be a Lagrangian sphere in M . Then for any Lagrangian sphere L′

in M , τl(L′) is a Lagrangian sphere as well.
It can be checked that the Dehn-Seidel twist is in fact an exact symplectomorphism.

Remark 6.1.6. Let (l1, l2) be an A2-configuration of Lagrangian spheres. Seidel [81]
proved also that τl1(L2) and τ−1

l2
(L1) are isotopic as Lagrangian submanifolds to the

Polterovich surgery [73] of L1 and L2, L1]L2.

6.2 Seidel’s theorem

Since the square of the Dehn-Seidel twist has been proved to be isotopic to the identity in
Diff(M2n) when n = 2 [84], it is a natural question to ask whether this is true in higher
dimensions. Since this map is symplectic, it is also natural to wonder whether this also
holds in Symp(M,ω), or whether this is a purely smooth (non-symplectic) result. Even if
the answer to the first question is still unknown, regarding the second one, Seidel proved in
[81] a stronger result, by considering images of Lagrangian submanifolds instead of directly
considering the Dehn twist. Let us state Seidel’s theorem.

Theorem 6.2.1 (Seidel [81]). Let (M2n, ω) be a compact symplectic manifold with contact
type boundary, with n even, which satisfies [ω] = 0 and 2c1(M,ω) = 0. Assume that M
contains an A3-configuration (l∞, l

′, l) of Lagrangian spheres. Then M contains infinitely
many symplectically knotted Lagrangian spheres. More precisely, if one defines L′(k) =

τ2k
l (L′) for k ∈ Z, then all the L′(k) are isotopic as smooth submanifolds of M, but no two
of them are isotopic as Lagrangian submanifolds.

Since no two of these Lagrangian submanifolds are isotopic as Lagrangian submanifolds,
the following corollary is immediate.

Corollary 6.2.2. τ2
l is not in the identity component of Sympc(T

∗Sn), the compactly
supported symplectomorphisms of T ∗Sn.

Indeed, if this symplectomorphismmorphism was in the identity component of Sympc(T
∗Sn),

its conjugation by the embedding j would also be in the identity component of Sympc(M,ω),
and thus, all the Lagrangian spheres in Theorem 6.2.1 would be isotopic as Lagrangian
submanifolds.

The proof of this theorem deeply relies on the isotopy invariance of Floer homology
together with the action of the Dehn-Seidel twist on the Maslov index. The proof we
will give for the analogous result in C0 symplectic topology also relies on barcodes and
consequently on Floer cohomology. However there are some technical difficulties to adapt
Seidel’s proof to our context.
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Remark 6.2.3. A similar result holds when working with odd n. However, one should
not consider the square of the Dehn-Seidel twist, but the cube of the composition of two
Dehn-Seidel twists defined along different but intersecting Lagrangian submanifolds [81].

We introduced the notion of Milnor fibres after Definition 2 as these are examples of
manifolds satisfying the conditions required for Theorem 6.2.1.

We state here the following technical lemma, which was a key argument in Seidel’s
proof [81] and which will be useful in the following computations.

Lemma 6.2.4. There is a unique L∞ grading τ̃l of τl which acts trivially on the part of
L∞ which lies over M \ Im(i). It satisfies τ̃lL̃ = L̃[1− n] for any grading L̃ of L.

See Appendix A for explanations on this grading.

6.3 Long exact sequence in Floer cohomology

As mentioned in the previous section, Floer cohomology will be essential to our proof. It is
actually possible to compute the action of the Dehn-Seidel twist on the Floer cohomology
of certain exact Lagrangian submanifolds. It is the object of the following theorem, also
proved by Seidel [82].

Theorem 6.3.1. Let l : Sn → M be a Lagrangian sphere in (M2n, ω) with image L. For
any two exact Lagrangian submanifolds L0, L1 ∈M , there is a long exact sequence of Floer
cohomology groups:

HF (τl(L0), L1)
0 // HF (L0, L1)

n
uu

HF (L,L1)⊗HF (L0, L)

1−n

jj

Now that this theorem is stated, we make some computations of this long exact se-
quence, in order to use it in our context.

Proposition 6.3.2. Let (M2n, ω) be a connected Liouville domain, n > 2, 2c1(M,ω) = 0.
Assume that M contains an A2-configuration of Lagrangian spheres (l, l′). Let x = L ∩
L′. Choose an ∞-Maslov covering on M and L∞-gradings L̃, L̃′ of L and L′ such that
Ĩ(x, L̃′, L̃) = 0.

Then, for all k ∈ Z,

HF ∗(τ̃l
2(L̃′), L̃′) � HF ∗+k(L̃′, L̃′).

Proof. Since our Lagrangian submanifolds are spheres of dimension > 1, they are exact.
We can thus apply Seidel’s Theorem 6.3.1 to L1 = L0 = L′ to get an exact triangle in
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Floer cohomology:

HF (τl(L
′), L′)

0 // HF (L′, L′)

n
uu

HF (L,L′)⊗HF (L′, L)

1−n

jj

Seidel’s exact triangle in our particular case leads to a long exact sequence in Floer coho-
mology:

HF 0(τ̃l(L̃′), L̃′) HF 0(L̃′, L̃′)
⊕

k+l=n

HF k(L̃, L̃′)⊗HF l(L̃′, L̃)

HF 1(τ̃l(L̃′), L̃′) HF 1(L̃′, L̃′)
⊕

k+l=n+1

HF k(L̃, L̃′)⊗HF l(L̃′, L̃)

HFn−1(τ̃l(L̃′), L̃′) HFn−1(L̃′, L̃′)
⊕

k+l=2n−1

HF k(L̃, L̃′)⊗HF l(L̃′, L̃)

HFn(τ̃l(L̃′), L̃′) HFn(L̃′, L̃′)
⊕

k+l=2n

HF k(L̃, L̃′)⊗HF l(L̃′, L̃)

· · ·

?

Following Equality A.4 regarding the properties of the cohomology of graded La-
grangian submanifolds, we obtain

HF (L̃′, L̃′) = Z/2[0] ⊕ Z/2[n].

Moreover, we can choose particular gradings for L and L′ such that, together with the
Poincaré duality (A.3) we have:

HF (L̃′, L̃) = Z/2[0] and HF (L̃, L̃′) = Z/2[n].

Consequently we have

⊕
k+l=j

HF k(L̃, L̃′)⊗HF l(L̃′, L̃) =

{
Z/2 if j = n

0 else

We now have to discuss the arrow ?. Since HF 0(L̃′, L̃′) and
⊕

k+l=n

HF k(L̃, L̃′)⊗HF l(L̃′, L̃)
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are both of dimension 1, this arrow is either a bijection or zero. We will check both cases.

Let us start with the case when the arrow ? is a bijection. Our long exact sequence
then becomes

0 HF 0(τ̃l(L̃′), L̃′) Z/2 Z/2

HF 1(τ̃l(L̃′), L̃′) 0 0

HFn−1(τ̃l(L̃′), L̃′) 0 0

HFn(τ̃l(L̃′), L̃′) Z/2 0

· · ·
We conclude that

HF (τ̃l(L̃′), L̃′) = Z/2[n].

We now consider the three Lagrangian submanifolds: L,L′ and τl(L′). The subman-
ifolds L and L′ are still two Lagrangian spheres in (M,ω). Moreover τl(L′) is an exact
Lagrangian submanifold as well according to Remark 6.1.5.

We can now apply Seidel’s Theorem 6.3.1 to L = L, L0 = τl(L
′) and L1 = L′. We thus

get an exact triangle in Floer cohomology:

HF (τ2
l (L′), L′)

0 // HF (τl(L
′), L′)

n
tt

HF (L,L′)⊗HF (τl(L
′), L)

1−n

jj

This exact triangle leads to a long exact sequence in Floer cohomology:
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HF 1−n(τ̃l
2(L̃′), L̃′) HF 1−n(τ̃l(L̃′), L̃′)

⊕
k+l=1

HF k(L̃, L̃′)⊗HF l(τ̃l(L̃′), L̃)

HF 2−n(τ̃l
2(L̃′), L̃′) HF 2−n(τ̃l(L̃′), L̃′)

⊕
k+l=2

HF k(L̃, L̃′)⊗HF l(τ̃l(L̃′), L̃)

HFn−1(τ̃l
2(L̃′), L̃′) HFn−1(τ̃l(L̃′), L̃′)

⊕
k+l=2n−1

HF k(L̃, L̃′)⊗HF l(τ̃l(L̃′), L̃)

HFn(τ̃l
2(L̃′), L̃′) HFn(τ̃l(L̃′), L̃′)

⊕
k+l=2n

HF k(L̃, L̃′)⊗HF l(τ̃l(L̃′), L̃)

· · ·

Using Equality A.2 and Lemma 6.2.4 together with the fact that HF (L̃′, L̃) = Z/2[0], we
can compute HF (τ̃l(L̃′), L̃):

HF ∗(τ̃l(L̃′), L̃) = HF ∗(L̃′, τ̃l
−1(L̃))

= HF ∗(L̃′, L̃[n− 1])

= HF ∗+n−1(L̃′, L̃)

We thus obtain

HF ∗(τ̃l(L̃′), L̃) =

{
Z/2 if ∗ = 1− n

0 else.

We also have

⊕
k+l=j

HF k(L̃, L̃′)⊗HF l(τ̃l(L̃′), L̃) =

{
Z/2 if j = 1

0 else.

Our long exact sequence then becomes:
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0 HF 1−n(τ̃l
2(L̃′), L̃′) 0 Z/2

HF 2−n(τ̃l
2(L̃′), L̃′) 0 0

HFn−1(τ̃l
2(L̃′), L̃′) 0 0

HFn(τ̃l
2(L̃′), L̃′) Z/2 0

· · ·
So finally, we get:

HF (τ̃l
2(L̃′), L̃′) = Z/2[n] ⊕ Z/2[2−n].

We now have to check the case where the arrow ? is zero. In this case our long exact
sequence then becomes:

0 HF 0(τ̃l(L̃′), L̃′) Z/2 Z/2

HF 1(τ̃l(L̃′), L̃′) 0 0

HFn−1(τ̃l(L̃′), L̃′) 0 0

HFn(τ̃l(L̃′), L̃′) Z/2 0

· · ·

0

We conclude that

HF (τ̃l(L̃′), L̃′) = Z/2[0] ⊕ Z/2[1] ⊕ Z/2[n].

As above, we apply Seidel’s Theorem 6.3.1 to L = L, L0 = τl(L
′) and L1 = L′. The exact

triangle and the computation of the previous case lead to the following exact sequence:
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0 HF 1−n(τ̃l
2(L̃′), L̃′) 0 Z/2

HF 2−n(τ̃l
2(L̃′), L̃′) 0 0

HF 0(τ̃l
2(L̃′), L̃′) Z/2 0

HF 1(τ̃l
2(L̃′), L̃′) Z/2 0

HFn−1(τ̃l
2(L̃′), L̃′) 0 0

HFn(τ̃l
2(L̃′), L̃′) Z/2 0

· · ·
So finally, we obtain

HF (τ̃l
2(L̃′), L̃′) = Z/2[n] ⊕ Z/2[1] ⊕ Z/2[0] ⊕ Z/2[2−n].

This concludes the proof of Proposition 6.3.2.

6.4 Connectedness to the identity in high dimensions

The computation of Floer cohomology of Proposition 6.3.2 indicates that we may have
to split the cases for n = 2 and n ≥ 4. We will discuss in this section the case when
n ≥ 4. The case n = 2 will be discussed in the following Section 6.5. We will now prove
Theorem A stated in the introduction. For the reader’s convenience, we repeat it here.

Theorem 6.4.1. Let (M2n, ω) be a 2n-dimensionnal Liouville domain, n even, n ≥ 4,
2c1(M,ω) = 0. Assume that M contains an A2-configuration of Lagrangian spheres (l, l′).

Then, τ2
l is not in the connected component of the identity in Symp(M,ω).

Proof. Let us assume that τ2
l is in the connected component of the identity in Symp(M,ω).

Theorem 5.1.3 implies then that B̂(L′, L′) and B̂(τ2
l (L′), L′) are in the same connected

component in B̂, i.e. up to an overall shift, they have their semi-infinite bars in the same
degree.

Moreover, since HF (L′, L′) = Z/2[0] ⊕ Z/2[n], Proposition 4.2.1 implies that B0 =

B̂(L′, L′) has only two semi-infinite bars, one in degree 0 and one in degree n. Consequently,
the barcode B̂(τ2

l (L′), L′) has two semi-infinite bars, one in degree 0 and one in degree n.
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However, let us recall that Proposition 6.3.2 gives, for all k ∈ Z,

HF (τ̃l(L̃′), L̃′[k]) � Z/2[0] ⊕ Z/2[n].

This means that B̂(τ2
l (L′), L′) cannot have the semi-infinite bars in the same degree

as for B̂(L′, L′). This contradicts the fact that they should be in the same connected
component and thus concludes the proof of this theorem.

The following statements correspond to Corollary B and Corollary C stated in the in-
troduction. For the reader’s convenience, we repeat them here. The first one is a straight-
forward consequence of Theorem 6.4.1.

Corollary 6.4.2. Let (M2n, ω) be a 2n-dimensional Liouville domain, n even, n ≥ 4,
2c1(M,ω) = 0. Assume that M contains an A2-configuration of Lagrangian spheres (l, l′).

Then, τ2
l is not isotopic to the identity in Symp(M,ω). In particular, MCGω(M,C0)

is non-trivial.

Let us recall that, according to the discussion held in the introduction, Corollary 6.4.2
does not imply Theorem 6.4.1. Indeed, whether Symp(M,ω) is locally path-connected
remains an open question.

The following theorem is also a consequence of Theorem 6.4.1. Indeed the subspace
Ham(M,ω) ⊂ Symp(M,ω) is connected as it is the closure of the connected space Ham(M,ω).

Theorem 6.4.3. Let (M2n, ω) be a 2n-dimensional Liouville domain, n even, n ≥ 4,
2c1(M,ω) = 0. Assume that M contains an A2-configuration of Lagrangian spheres (l, l′).

Then, τ2
l does not belong to Ham(M,ω).

6.5 In dimension 4

When working in dimension 4, we cannot use the computation of Proposition 6.3.2. How-
ever, we can apply Hind’s Theorem 4.5.4 on the nearby Lagrangian conjecture [44]. Nev-
ertheless, we also have to use Seidel’s Theorem 6.2.1. Consequently, in dimension 4, we
require an A3-configuration instead of an A2-configuration as in higher dimensions.

Theorem 6.5.1. Let (M4, ω) be a compact connected 4-dimensional submanifold with con-
tact type boundary, [ω] = 0, 2c1(M,ω) = 0. Assume that M contains an A3-configuration
of Lagrangian spheres (l, l′, l∞).

Then, τ2
l does not belong to Ham(M,ω).

Using Hind’s proof of the Nearby Lagrangian Conjecture of Theorem 4.5.4 in the case
of T ∗S2 [44], the proof is quite straightforward and does not require the use of barcodes.
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Proof. Let us assume that there is a sequence of Hamiltonian diffeomorphisms (ϕn)n∈N of
M which C0-converges to τ2

l . Then, for N large enough, we have that ϕN (L′) is included
in a Weinstein neighbourhood of τ2

l (L′).

Moreover, τ2
l (L′) is a Lagrangian sphere and so its Weinstein neighbourhood is, by

definition, symplectomorphic to a neighbourhood of the zero section in T ∗S2. Conse-
quently, we are under the condition of application of the Nearby Lagrangian Conjecture
as in Theorem 4.5.4, in the case of T ∗S2.

We get that ϕN (L′) is Lagrangian isotopic to τ2
l (L′), which contradicts Seidel’s result

in Theorem 6.2.1.

For the reader’s convenience, we repeat here the statement of Theorem E. It is the
counterpart in dimension 4 of Corollary 6.4.2.

Theorem 6.5.2. Let (M4, ω) be a compact connected 4-dimensionnal submanifold with
contact type boundary, [ω] = 0, 2c1(M,ω) = 0. Assume that M contains an A3-configuration
of Lagrangian spheres (l, l′, l∞).

Then, τ2
l is not isotopic to the identity in Symp(M,ω).

Note that none of Theorem 6.5.1 and Theorem 6.5.2 imply the other.

Proof. As above for the case n = 2, this proof heavily relies on the proof of the Nearby
Lagrangian conjecture for T ∗S2 as in Theorem 4.5.4 [44].

Let us assume that τ2
l is connected to identity in Symp(M,ω). This means that we

can find a continuous path (ϕt)t∈[0;1] ⊂ Symp(M,ω) such that ϕ0 = IdM and ϕ1 = τ2
l .

Since for all t ∈ [0; 1], ϕt is in Symp(M,ω), we can find sequences ϕtn ∈ Symp(M,ω)

such that
∀t ∈ (0; 1), lim

n→∞
ϕtn = ϕt.

Let us choose a Weinstein neighbourhood W (L′) of L′ together with ε > 0 such that,
for all ϕ ∈ Symp(M,ω), if dC0(ϕ, IdM ) < ε, then ϕ(L′) ⊂W (L′).

The path ϕt being continuous, we can find a finite sequence (ϕti)i∈J0;NK ⊂ Symp(M,ω)

such that ϕt0 = IdM , ϕtN = τ2
l and

∀i ∈ J1;NK, dC0(ϕti−1 , ϕti) < ε
3 .

Moreover, for each (ti)i∈J0;N−1K, we can find ni such that dC0(ϕti , ϕtini) <
ε
3 . We choose

ϕt00 = IdM and ϕtNN = τ2
l .

Consequently, we get a sequence (ϕtini)i∈J0;NK ⊂ Symp(M,ω) such that ϕt0n0
= IdM ,
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ϕtNnN = τ2
l which satisfies ∀i ∈ J1;NK,

dC0((ϕ
ti−1
ni−1)−1 ◦ ϕtini , IdM ) ≤ dC0(ϕ

ti−1
ni−1 , ϕ

ti
ni)

≤ dC0(ϕ
ti−1
ni−1 , ϕ

ti−1) + dC0(ϕti−1 , ϕti) + dC0(ϕti , ϕtini)

< ε
3 + ε

3 + ε
3 = ε.

Then

ϕtini(L
′) = ϕ

ti−1
ni−1 ◦ (ϕ

ti−1
ni−1)−1 ◦ ϕtini(L

′)

⊂ ϕ
ti−1
ni−1(W (L′)) ∼= W (ϕtini(L

′)),

where W (ϕtini(L
′)) denotes a Weinstein neighbourhood of ϕtini(L

′).
Applying now Hind’s Theorem 4.5.4, we obtain that for all i ∈ J1;NK, ϕni,ti(L′) is

Lagrangian isotopic to ϕni−1,ti−1(L′). Gluing these paths together, we finally get that L′

is Lagrangian isotopic to τ2
l (L′). This contradicts Seidel’s result of Theorem 6.2.1 and

concludes this proof.

Remark 6.5.3. One can directly prove Corollary 6.4.2 without the use of barcodes. In-
deed, an argument similar to the one for the case n = 2 holds for the proof of this corollary.
The idea is to find a sequence (ϕn)n∈N such that the cohomology HF (ϕ(L′), L′) remains
constant. We can then conclude in the same way.

We could have also proved this result using Theorem 5.1.4 to construct a continuous
path of barcodes between B̂(L′, L′) and B̂(τ2

l (L′), L′). This path together with Corol-
lary 3.3.13 telling that the degree of the semi-infinite bars cannot change along a continuous
path leads to a contradiction.

6.6 Further remarks

We now discuss what we would have obtained if we avoided the use of "high-technology"
results, i.e. results of [40, 1, 2] concerning the Nearby Lagrangian conjecture. Of course,
we obtain weaker, but still interesting results and new questions.

The main issue is the following. Let (M,ω) be a Liouville domain together with L and
L′ two exact Lagrangian submanifolds. Let ϕ ∈ Ham(M,ω) be defined as the C0-limit of
a sequence (ϕn)n∈N ⊂ Ham(M,ω).

Remark 5.3.4 tells that when we are working with Hamiltonian diffeomorphisms in-
stead of symplectomorphisms, we can bound the bottleneck distance without using the
Nearby Lagrangian conjecture’s result of Theorem 4.5.5. The rest of the proof of Theo-
rem 5.1.1 goes through. Consequently we can define a barcode B ∈ B̂ as the limit of the
barcodes B̂(ϕn(L′), L). Assuming that ϕ(L′) is a smooth exact Lagrangian submanifold,
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we can define the barcode B̂(ϕ(L′), L)). However, there is no reason for B to be equal to
B̂(ϕ(L′), L)).

Nevertheless, we can still associate a continuous loop of barcodes to a continuous loop
in Ham. This loop is given by the following proposition.

Proposition 6.6.1. Let M be a Liouville domain. Let L and L′ be two exact compact
Lagrangian submanifolds. Let ϕ be a Hamiltonian diffeomorphism together with a loop
(ϕt)t∈[0,1] ⊂ Ham(M,ω) such that ϕ0 = ϕ1 = ϕ. Then we can associate a loop in B̂ to
this loop in Ham(M,ω).

Proof. Since, for all t ∈ [0; 1], ϕt is in Ham(M,ω), we can find sequences ϕn,t ∈ Ham(M,ω),
one for each t such that:

∀t ∈ (0; 1), lim
n→∞

ϕn,t = ϕt.

For each t ∈ (0, 1), the sequence ϕn,t Cauchy converges. Then the associated barcode
sequence Bn,t = B̂(ϕn,t(L

′), L′) is also Cauchy for n large enough, by Theorem 5.1.1. This
consequently allows, using Corollary 5.1.2, to define

Bt = lim
n→∞

B̂(ϕn,t(L
′), L′).

By setting B0 = B1 = B̂(ϕ(L′), L′), we get a loop of barcodes (Bt)t∈[0,1].

Lemma 6.6.2. (Bt)t∈[0;1] is a continuous loop of barcodes with base point B̂(ϕ(L′), L′).

This lemma is a straightforward consequence of Theorem 5.1.1 in this Hamiltonian
case. This completes the proof of this proposition.

At this point, there is no available tool to study π1(Ham(M,ω)). However, we strongly
hope that this proposition will provide such a useful tool. Moreover, we can apply the same
approach for Symp(M,ω) using Theorem 5.1.1, and thus we can hope to obtain results
concerning π1(Symp(M,ω)).

It would maybe help us to define a kind of “C0 Seidel’s morphism". However this is
still an ongoing project as we need to better understand the topology of the relevant space
of barcodes.

Remark 6.6.3. We could apply the same argument for the higher homotopy groups
πk(Ham(M,ω)) and πkSymp(M,ω)). We would then have to study the higher homotopy
groups of the relevant space of barcodes.



Appendix A

Absolute grading in Floer
cohomology

As mentioned before, the degree of a generator of the Floer complex is defined up to an
overall shift. While this does not matter in most of the contexts we will consider, it can
be useful to have an absolute grading. This is possible and it was in fact introduced by
Seidel [81]. Even if we will not really use this notion in our proof, this absolute grading is a
key point in the proof of his theorem related to the Dehn-Seidel twist. As this notion will
come handy later in a computation, we will briefly present it here. We will not give any
proof as they all can be found in the same paper from Seidel [81]. This section is following
his work and Audin’s work in [5].

Let us first describe the linear setting. Let us recall that we have a mapping

det2 : U(n)→ Λ(n)→ S1,

which induces an isomorphism on the π1. For N ∈ N, consider the N -fold covering of S1

and pull it back by the previous mapping. We obtain a covering of Λ(n):

ΛN (n) =
{

(L, z) ∈ Λ(n)× S1| det2(L) = zN
}
.

These coverings are always connected and correspond to the elements of H1(Λ(n),Z/N).

Let (M,ω) be a connected symplectic manifold as above. We denote L(M) the La-
grangian Grassmanian bundle over M associated to the tangent bundle TM .

Seidel proved [81] that there exists a covering LN (M) of L(M) which restricts on each
fiber to the covering ΛN (n)→ Λ(n) if and only if N divides 2NM , where NM is the minimal
Chern number of M . This covering is unique if and only if H1(M,Z/N) = 0.

Let us take a Lagrangian immersion l : L → M , together with its Gauss mapping
Γ : L → L(M). In the same paper, Seidel proved that such a Lagrangian immersion
can be lifted to LN (M) if and only if N divides the minimal Chern number of L. Such
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a lift is called a N -grading of the immersion l. A Lagrangian submanifold satisfying
H1(L;Z/N) = 0 always admits a N -grading.

When 2c1(M,ω) = 0, it is possible to define the ∞-covering L∞(M) which restricts on
each fiber to a covering Λ∞(n) coming from an ∞-covering of S1:

Λ∞(n) =
{

(L, t) ∈ Λ(n)× R| det2(L) = e2iπt
}
.

In that case, a Lagrangian immersion l in M such that H1(L) = 0 always admits an
∞-grading. This is our context of interest.

We now have to link this notion with the Maslov index. Let us assume, following Seidel’s
notations that L̃0 and L̃1 are two Z/N -graded Lagrangian submanifolds in a symplectic
manifold (M,ω) which intersect transversaly at a point x. This gives two elements of
ΛN (n) L̃0(x) and L̃1(x). Let us choose two paths λ̃0 and λ̃1 from [0, 1] to ΛN (n) such that
λ̃0(0) = λ̃1(0) and λ̃0(1) = Λ̃0(x) and λ̃1(1) = L̃1(x). We denote λ0 and λ1 the projection
of these two paths on Λ(n). We set

Ĩ(L̃0, L̃1;x) =
1

2
n− µ(λ0, λ1),

where µ(λ0, λ1) ∈ 1
2Z is the Maslov index for a pair of paths [95, 76]. This Ĩ(L̃0, L̃1;x) is

an integer whose class in Z/N is independent of all choices.

Moreover, given two points p, q ∈ χ(L0, L1) together with a strip u connecting p to q,
we have

µ(u) = Ĩ(L̃0, L̃1; q)− Ĩ(L̃0, L̃1; q) mod Z/N.

Denoting L̃[k] the graded Lagrangian L̃ whose grading has been shifted by k ∈ Z/N , one
can show that

Ĩ(L̃0[k], L̃1[l];x) = Ĩ(L̃0, L̃1;x)− k + l.

Consequently, we have the following useful property [81].

HF ∗(L̃0[k], L̃1[l]) ∼= HF ∗−k+l(L̃0[k], L̃1[l]). (A.1)

In addition we have the invariance under the action of a graded symplectomorphisms ϕ̃:

HF ∗(ϕ̃(L̃0), ϕ̃(L̃1)) ∼= HF ∗(L̃0, L̃1), (A.2)

the Poincaré duality
HF ∗(L̃1, L̃0) ∼= HFn−∗(L̃0, L̃1). (A.3)
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Finally, when Proposition 2.2.32 holds, we have a graded counterpart:

HF ∗(L̃, L̃) ∼=
⊕
i∈Z

H∗+iN (L,Z/2). (A.4)
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