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Preface

When I was writing this doctoral thesis, I really wanted to thank the people who
helped and inspire me in my three-year doctoral career:

• My adviser Romain Dujardin, for introducing me into the beautiful area of
holomorphic dynamics, and for his professional supervise, encouragement, and
constantly help. I can not expect a better PhD adviser.

• My thesis reporter Weixiao Shen and Gabriel Vigny for their valuable comments
and suggestions which helped me a lot to improve this manuscript. I also would
like to thank Viviane Baladi, Xavier Buff and Henry de Thélin for joining the
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Résumé

Cette thèse traite de deux aspects différents (produits semi-directs polynomiaux
et endomorphismes post- critiquement fini) de la dynamique holomorphe sur le plan
projectif P2. Elle contient les trois articles suivants:

I. Non-wandering Fatou components for strongly attracting polynomial
skew products. (Publié dans The Journal of Geometric Analysis.) Nous prouvons une
généralisation du théorème de non-errance de Sullivan pour les produits semi-directs
polynomiaux de C2. Plus précisément, nous montrons que si f est un produits semi-
direct polynomial avec une droite verticale invariante L attractive, et que de plus le
multiplicateur correspondant est suffisamment petit, alors il n’y a pas de composante
Fatou errante dans le bassin d’attraction de L.

II. Non-uniform hyperbolicity in polynomial skew products. (Soumis pour
publication.) Soit f un produit semi-directs polynomial avec une droite verticale in-
variante attractive L. Supposons que f restreinte à L satisfait l’une des conditions non
uniformément hyperboliques suivantes: 1. f |L est topologiquement Collet-Eckmann et
Faiblement Régulière, 2. l’exposant de Lyapunov à chaque valeur critique se trouvant
dans l’ensemble de Julia de f |L existe et est positif, et il n’y a pas de cycle parabolique.
Alors l’ensemble de Fatou dans le bassin attractif de L est l’union des bassins des cy-
cles d’attraction, et l’ensemble de Julia dans le bassin attractif de L est de mesure de
Lebesgue nulle. En particulier il n’y a pas de composants Fatou errant dans le bassin
d’attraction de L.

III. Structure of Julia sets for post-critically finite endomorphisms on P2.
De Thélin a prouvé que pour l’endomorphisme post-critiquement fini sur P2, le courant
de Green T est laminaire dans J1\J2, où J1 est l’ensemble de Julia et J2 est le support de
la mesure de l’entropie maximale. Dans ce contexte nous donnons une description plus
explicite de la dynamique sur J1 \ J2: ou bien x est contenu dans le bassin d’attraction
d’un cycle de composantes critiques, ou bien il y a un disque Fatou passant par x. Nous
montrons également que pour un endomorphisme post-critiquement fini de P2 tel que
toutes les branches de PC(f) sont lisses et se coupent transversalement, J2 = P2 si et
seulement si f est strictement post-critiquement fini. Cela est une réciproque partielle
d’un résultat de Jonsson. Comme étape intermédiaire de la preuve, nous montrons que
J2 est l’adherence de l’ensemble des cycles répulsifs.
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Abstract

This thesis deals with two different aspects (polynomial skew products and post-
ctitically finite endomorphisms) of holomorphic dynamics on projective plane P2. It
contains the following three papers:

I. Non-wandering Fatou components for strongly attracting polynomial
skew products. (Published in The Journal of Geometric Analysis.) We prove a gener-
alization of Sullivan’s non-wandering domain theorem for polynomial skew products on
C2. More precisely, we show that if f is a polynomial skew product with an invariant
vertical line L, assume L is attracting and moreover the corresponding multiplier is suf-
ficiently small, then there is no wandering Fatou component in the attracting basin of
L.

II. Non-uniform hyperbolicity in polynomial skew products. (Submitted
for publication.) We show that if f is a polynomial skew product with an attracting
invariant vertical line L, assume the restriction of f on L satisfies one of the following
non-uniformly hyperbolic condition: 1. f |L is topological Collet-Eckmann and Weakly
Regular, 2. the Lyapunov exponent at every critical value point lying in the Julia set
of f |L exist and is positive, and there is no parabolic cycle. Then the Fatou set in the
attracting basin of L is union of basins of attracting cycles, and the Julia set in the
attracting basin of L has Lebesgue measure zero. As a corollary, there are no wandering
Fatou components in the attracting basin of L.

III. Structure of Julia sets for post-critically finite endomorphisms on P2.
(Preprint.) De Thélin proved that for post-critically finite endomorphism on P2, the
Green current T is laminar in J1 \J2, where J1 denotes the Julia set, and J2 denotes the
support of the measure of maximal entropy. We give a more explicit description of the
dynamics on J1 \ J2 for post-critically finite endomorphism on P2: either x is contained
in an attracting basin of a critical component cycle, or there is a Fatou disk passing
through x. We also prove that for post-critically finite endomorphism on P2 such that
all branches of PC(f) are smooth and intersect transversally, J2 = P2 if and only if f is
strictly post-critically finite. This gives a partial converse of a result of Jonsson. As an
intermediate step of the proof, we show that for post-critically finite endomorphism on
P2, J2 is the closure of the set of repelling cycles.
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Introduction

This thesis deals with some aspects of holomorphic dynamics on the projective plane
P2(C). Let us first recall some basic history of this research domain. The object of
the holomorphic dynamics is the iteration of a holomorphic self-map f on a complex
manifold X.

When X is the Riemann sphere and f is a rational function, this is a classical
subject, introduced by Fatou and Julia at the beginning of the last century. The study
of complex dynamics made a spectacular rise in the early 1980s, thanks to works by
well-known mathematicians such as Douady, Hubbard, Sullivan, Milnor etc. and the
popularity of fractal images such as the Mandelbrot set and the Julia set. A celebrated
result from this periods is Sullivan’s non-wandering domain theorem [41], which gives a
complete description of the dynamics on a dense open set of the phase space (the Fatou
set). This will be an important theme in this thesis and we will come back on detail on
this in the next section.

In higher dimension, the subject rise in the early 1990s under the impulse of mathe-
maticians such as Bedford, Hubbard, Fornaess, Sibony and Smillie. A key input was the
introduction of modern methods from higher dimensional complex analysis (pluripoten-
tial theory, currents, etc) to the study of holomorphic dynamics. Holomorphic dynamics
in higher dimension is now a well established research topic, as a confluence of dynamical
systems, complex analysis and geometry.

Many classes of higher dimensional holomorphic maps were studied so far. Among
them holomorphic endomorphisms on Pk play a prominent role as they are the natural
analogues of one-dimensional rational maps on P1. They belong to the more general class
of meromorphic maps of algebraic varieties, which also includes for instance polynomial
automorphisms on C2 (also known as complex Hénon maps). In this thesis we will mostly
be concerned by polynomial endomorphisms on C2 and holomorphic endomorphisms on
P2.

For such mappings we can define Fatou-Julia decomposition as in dimension 1. Let f
be a holomorphic endomorphism on P2 or a polynomial endomorphisms on C2 (of degree
≥ 2). The Fatou set is defined as the locus where the iterates {fn}n≥1 locally form a

normal family. The (first) Julia set J1 is the complement of the Fatou set. Unlike the
one-dimensional case, the classification of Fatou components is not known for holomor-
phic endomorphisms on P2. In particular, contrary to Sullivan’s non-wandering domain
theorem in dimension 1, there may exist wandering Fatou components in dimension 2, as
showed recently by Astorg-Buff-Dujardin-Peters-Raissy [2]. One main question that we
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2 INTRODUCTION

address in this thesis is the study of the Fatou-Julia decomposition in two dimensions,
and in particular the question of existence of wandering Fatou components.

Post-critically finite rational functions play an important role in one-dimensional
complex dynamics, because they serve as a kind of combinatorial skeleton of moduli space
of rational functions of fixed degree. The study of post-critically finite endomorphisms
on P2 start with the works of Fornaess-Sibony [18], [19]. Fatou components for post-
critically finite endomorphisms on P2 were classified by Fornaess-Sibony, Ueda and Rong:
the only possibility is super-attracting basins. We will discuss the structure of the Julia
sets for post-critically finite endomorphisms on P2. More background on holomorphic
dynamics (both one-dimensional and higher dimensional) will be given in Chapter 1.

There are three different projects in this thesis. In Chapter 2 we give a generaliza-
tion of Sullivan’s non-wandering domain theorem for some polynomial skew products.
Polynomial skew products can be seen as a subclass of holomorphic endomorphisms on
P2, which are intermediate between one-dimensional and two-dimensional maps. We
classify the dynamics on the Fatou set for strongly attracting polynomial skew products.

In Chapter 3 we introduce some non-uniform hyperbolicity techniques for attracting
polynomial skew products. We give a description of the dynamics for a.e. point in
the Lebesgue sense, under the so called Topological Collet-Eckmann condition and the
Weakly Regular condition for the dynamics on an invariant vertical line. As a corollary,
we also show there are no wandering Fatous component in this case.

In Chapter 4 we discuss the structure of the Julia sets for post-critically finite en-
domorphisms on P2. Post-critically finite endomorphisms on P2 are holomorphic endo-
morphisms on P2 which have simple critical behavior, so their dynamics are expected to
be better understood than general holomorphic endomorphisms.

1. Non-wandering Fatou components for polynomial skew products

In one-dimensional complex dynamics, Sullivan’s no wandering domain theorem [41]
asserts that every Fatou component of a rational function is pre-periodic. Together with
the earlier results of classification of invariant Fatou component by Fatou, Siegel and
Herman, the dynamics on the Fatou set of a rational function is completely clear: a
Fatou component is pre-periodic to either an attracting basin, a parabolic basin, or a
rotation domain.

The same question naturally arise in higher dimension, i.e. to classify the Fatou
components for holomorphic endomorphisms on Pk, k ≥ 1. An invariant Fatou com-
ponent Ω is called recurrent if there is a x ∈ Ω such that the ω-limit set ω(x) satisfies
ω(x)∩Ω 6= ∅. The classification of invariant recurrent Fatou components was proved by
Fornaess-Sibony [20] when k = 2 and by Forneass-Rong [17] for general k. However the
non-recurrent invariant case still remains open, some conditional results were proved by
Lyubich-Peters [33]. On the other hand, one may expect that Sullivan’s no wandering
domain theorem holds in higher dimension, but it turns out that it is not the case. The
following result was recently proved by Astorg-Buff-Dujardn-Peters-Raissy [2]:
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Theorem 1.1. There exist a holomorphic endomorphism f on P2 of degree ≥ 2 in-
duced by a parabolic polynomial skew product, possessing a wandering Fatou component.

Note that from this theorem, wandering Fatou components can be constructed for
holomorphic endomorphisms on Pk for any k ≥ 2 by taking product. In the next few
lines we explain the definition of parabolic polynomial skew product .

A polynomial skew product on C2 is a map of the following form:

f(z, w) = (p(z), q(z, w)),

where p is a one variable polynomial of degree ≥ 2 and q is a two variables polynomial of
degree ≥ 2. When deg p = deg q = d and q(z, w) = adw

d +O(wd−1), f can be extended
holomorphically to P2. Such a polynomial skew product is called a regular polynomial
skew product.

To investigate the Fatou set of polynomial skew product f , let π1 be the projection
to the z-coordinate, i.e.

π1 : C2 → C, π1(z, w) = z.

We first notice that π1(F (f)) ⊂ F (p), and passing to some iterate of f , by Sullivan’s
non-wandering domain theorem, we may assume that the points in F (p) will eventually
land into an immediate basin or a Siegel disk (no Herman rings for polynomials), thus
we only need to study the following semi-local case:

f = (p, q) : ∆× C→ ∆× C,
where 0 ∈ ∆, p(0) = 0, which means the line L : {z = 0} is invariant, and ∆ is an
immediate attracting or a parabolic basin or a Siegel disk of p. The map f is called
attracting, parabolic or elliptic respectively according to the cases where the fixed point
is attracting, parabolic or elliptic.

As we have mentioned, the wandering Fatou component constructed in Theorem 1.1
is for a parabolic polynomial skew product. At this stage, it is interesting to investigate
the existence of wandering Fatou component for attracting polynomial skew products and
for elliptic polynomial skew products. We mention several results in the next subsection.

1.1. Earlier results on wandering domain problem for polynomial skew
products. Prior to this theorem, the investigation of wandering Fatou components for
holomorphic endomorphisms on P2 was indeed mostly restricted to the class of polyno-
mial skew products.

The first result of non-wandering Fatou components for polynomial skew products
is due to Lilov [32]. Let

f = (p, q) : ∆× C→ ∆× C,
be a polynomial skew product such that p(0) = 0. We begin with a definition.

Definition 1.2. We say a disk D ⊂ C2 is vertical if D ⊂ {z} × C for some z ∈ C.
A vertical Fatou disk D is called a vertical Fatou disk if {fn|D} is a normal family.

Lilov’s result is the following, we note that his result stress no conditions on f |L:
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Theorem 1.3. Let f = (p, q) be a super-attracting polynomial skew product, i.e.
p′(0) = 0, then there is no wandering Fatou component in the attracting basin of L =
{z = 0}. Moreover, every Fatou component of f |L extend to a two-dimensional Fatou
component of f (called a bulging Fatou component), and every vertical Fatou disk is
contained in such a bulging Fatou component.

We will see that the bulging property of Fatou components of f |L holds for every
attracting polynomial skew product as well.

After Lilov, a result due to Peters-Vivas [38] implies that the problems of wander-
ing Fatou components for attracting polynomial skew products is more difficult than
expected, and the method used by Lilov can not easily be generalized to attracting but
not super-attracting polynomial skew products.

Theorem 1.4. There exist an attracting polynomial skew product f and a vertical
Fatou disk D such that D is not contained in a bulging Fatou component. In fact the
ω−limit set of D is contained in the Julia set of f |L.

We note that Peters-Vivas did not answer the question of existence of wandering
Fatou components for attracting polynomial skew products, as they also proved in the
same paper that the vertical Fatou disk they constructed is contained in J(f).

On the other hand, it seems that putting some conditions on f |L makes the non-
wandering domain theorem for attracting polynomial skew products easier to prove. This
is indeed the case when f |L is hyperbolic. We say a rational function g is hyperbolic if
g expands uniformly a Riemannian metric in a neighborhood of J(g).

Theorem 1.5. Let f be an attracting polynomial skew product such that f |L is hy-
perbolic. Then there is no wandering Fatou component in the attracting basin of L.

Proof. Assume by contradiction that Ω is a wandering Fatou component, since Ω
is not a bulging Fatou component, it is easy to see that the ω-limit set of any point in
Ω should be contained in J(f |L), the Julia set of f |L. Since J(f |L) is a hyperbolic set,
by the shadowing lemma ([29] Theorem 18.1.3), any point x ∈ Ω is contained in a stable
manifold of some y ∈ J(f |L). In particular the Lyapunov exponent of x in the vertical
direction is positive (since x and y have same value of Lyapunov exponent in the vertical
direction). Thus x ∈ J(f), a contradiction. �

The next result due to Peters-Smit relax the hyperbolic condition on f |L by sub-
hyperbolic condition. By using different method than Lilov’s, Peters-Smit [37] proved
no wandering Fatou components for attracting polynomial skew products, under the
sub-hyperbolic (weaker than hyperbolic) condition of f |L.

Theorem 1.6. Let f be an attracting polynomial skew product such that f |L is sub-
hyperbolic, then there is no wandering Fatou component in the attracting basin of L =
{z = 0}.

We note that for example in the Mandelbrot set, there are countably many sub-
hyperbolic parameters which are not (uniformly) hyperbolic.
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The elliptic case has been studied by Peters-Raissy [36].

Theorem 1.7. Let f = (p, q) be an elliptic polynomial skew product such that f |L
admits no critical point in the Julia set of f |L, and p′(0) = eiπα is such that α is a
Brjuno number, then in a small neighborhood of L = {z = 0} there is no wandering
Fatou component.

Finally we mention that recently Astorg-Boc Thaler-Peters [3] gave a new construc-
tion (slightly different than [2]) of wandering Fatou components for parabolic polynomial
skew products. We also note that in the context of complex Hénon maps, there are some
positive and negative results for the wandering domain problem. There are no wandering
Fatou components for hyperbolic Hénon maps (Bedford-Smillie [5]) and for substantially
dissipative partially hyperbolic Hénon maps (Lyubich-Peters [34]). However, recently
Berger-Biebler proved that complex Hénon maps can have wandering Fatou components
[6].

1.2. New results. In this subsection we summarize the main results in Chapters
2 and 3. The reference papers are [26] and [25].

Let f be an attracting polynomial skew product, that is, f is a polynomial skew
product on C2 such that

(1.1) f(z, w) = (p(z), q(z, w)),

and p satisfies

p(0) = 0, |p′(0)| < 1.

Let L = {z = 0} be the invariant vertical line.

In Chapter 2 we first prove the following result.

Proposition A. Let f be an attracting polynomial skew product, let g = f |L which
can be seen as a one variable polynomial map. Then every Fatou component of g in L is
contained in a two-dimension Fatou component of f . Such Fatou components of f are
called bulging Fatou components, and they are non-wandering.

Then we prove the following result, which is a generalization of Lilov’s theorem [32],
and is the main result of the paper [26].

Theorem B. Let f = (p, q) be an attracting polynomial skew product, there is a
constant δ(q) > 0 depending on q such that if |p′(0)| < δ, there is no wandering Fatou
component in the attracting basin of L.

We note that the above result will be proved in Chapter 2, Theorem 6.4, while the
“main theorem” in Chapter 2 is a local version of the above result.

We actually show a more precise version of Theorem B, i,e, we prove the non-existence
of wandering vertical Fatou disk (see Definition 1.2) for strongly attracting polynomial
skew products:
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Theorem C. Let f = (p, q) be an attracting polynomial skew product, there is a
constant δ(q) > 0 depending on q such that if |p′(0)| < δ, then every vertical Fatou
disk belongs to the attracting basin of L is contained in a bulging Fatou component. In
particular in this situation, every Fatou component of f in the attracting basin of L is a
bulging Fatou component, hence non-wandering.

Let us now discuss the results in Chapter 3. First we introduce some non-uniformly
hyperbolic conditions in one variable complex dynamics. Non-uniformly hyperbolic the-
ory, also known as Pesin theory, is a generalization of uniformly hyperbolic theory. In
Pesin theory we only require an invariant hyperbolic measure rather than the presence
of invariant expanding and contracting directions.

In the one-dimensional complex setting, non-uniformly hyperbolic theory here is
slightly different than the general setting. There are various non-uniformly hyperbolic
conditions for rational functions such as sub-hyperbolicty, semi-hyperbolicity, Collet-
Eckmann condition (CE for short), and Topological Collet Eckmann condition (TCE for
short). These conditions are quantitative refinements of general Pesin theory. Among
these non-uniformly hyperbolic condition, the weakest one is the TCE condition. We
begin with its definition

Definition 1.8 (Przytycki-Rivera Letelier-Smirnov [39]). A rational function f on
P1 of degree ≥ 2 is called TCE if there exist µ > 1 and r > 0 such that for every
x ∈ J(f), n ≥ 0 and every connected component W of f−n(B(x, r)) we have

diam W ≤ µ−n,

where B(x, r) denotes the ball centered at x with radius r.

There are various equivalent definitions of TCE condition, see Przytycki-Rivera
Letelier-Smirnov [39], which makes it in a sense the most natural non-uniformly hy-
perbolic condition for rational functions. Note that by [39] TCE condition is preserved
under topological conjugacy.

The following condition is about the slow recurrence of critical points lying in Julia
set.

Definition 1.9. A rational map f is called Weakly Regular (WR for short) if for
all critical values v ∈ CV (f) whose forward orbit does not meet critical points we have

lim
η→0

lim sup
n→∞

1

n

n−1∑
j=0

d(fj(v),C(f)∩J(f))≤η

− log |f ′(f j(v))| = 0.

Here C(f) is the critical set and CV (f) is the critical value set.

This condition means that for every v ∈ CV (f)∩J(f): the orbit of v does not come
either too close nor too often to C(f) ∩ J(f).

The following condition Positive Lyapunov is stronger than CE.
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Definition 1.10. A rational map f is called Positive Lyapunov if for every point
c ∈ C(f) ∩ J(f) whose forward orbit does not meet other critical points the following
limit exists and is positive

lim
n→∞

1

n
log |(fn)′(f(c))| > 0.

In addition we ask that there are no parabolic cycles.

We are now in position to state the main theorem in Chapter 3.

Theorem D. Let f be an attracting polynomial skew product, let g = f |L. Assume
g satisfies one of the following conditions.

(1) g is TCE and WR,

(2) g is Positive Lyapunov,

Then the Fatou set F (f) in the attracting basin of L is the union of basins of at-
tracting cycles, and the Julia set J(f) in the attracting basin of L has zero Lebesgue
measure.

As a corollary of the above theorem, we have the following generalization of Peters-
Smit’s result (Theorem 1.6).

Corollary E. Let f be an attracting polynomial skew product, let g = f |L. Assume
g satisfies one of the following conditions.

(1) g is TCE and WR,

(2) g is Positive Lyapunov,

Then there is no wandering Fatou component in the attracting basin of L.

To the best of our knowledge, Theorem D is the first time where the zero measure
of Julia set is shown for a non-hyperbolic g (note that this is not expected to be true
when no conditions of p are assumed, as even in one dimension Julia set can has positive
Lebesgue measure, cf. Buff-Chéritat [8] and Avila-Lyubich[4]). The previous results we
have mentioned only consider the dynamics on the Fatou set. However in the case g is
uniformly hyperbolic, it is well-known that the Julia set has zero Lebesgue measure. In
fact by the proof of Theorem 1.5, J(f) in the attracting basin of L equals to the stable
set of W s(J(g)), where

W s(J(g)) =
{
x ∈ C2 : dist (fn(x), J(g))→ 0 when n→ +∞

}
.

By the standard theory of hyperbolic set, W s(J(g)) is foliated by stable manifolds and
this foliation is absolutely continuous (cf. Young [44] Definition 6.2.5 and Theorem
6.2.6). Since J(g) has zero area in L , W s(J(g)) has Lebesgue measure zero in C2.

Based on the results of Graczyk-Swiatek [22] and [23], we also show that the one-
dimensional conditions in Theorem 3.6 are satisfied by generic parameters in the uni-
critical family.
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Theorem F. In the uni-critical family
{
fc(z) = zd + c

}
, d ≥ 2, a.e. x ∈ ∂Md in the

sense of harmonic measure satisfies WR and TCE condition, or the Positive Lyapunov
condition.

Here Md is the connectedness locus, when d = 2 this is the well-known Mandelbrot
set.

1.3. Further discussion. There are several possible directions to generalize the
non-wandering domain theorem proved in Theorem B and Theorem D. These two theo-
rems both require f to be an attracting polynomial skew product, and also some addi-
tional condition such as the attracting rate being sufficiently large or f satisfying some
non-uniformly hyperbolic condition. It is natural to ask whether such assumptions are
necessary.

Problem 1: Let f be an attracting polynomial skew product of the form (1.1), can f
have a wandering Fatou component in the basin of L without a smallness assumption on
Theorem B. The argument in [26] does not apply, since in this general case a wandering
Fatou disk can exist [37]. So new ideas need to be developed.

On the other hand, one may ask that whether Theorem B and Theorem D still holds,
when we do not have a skew product structure, but still have an invariant projective
line. This situation happens for an important subclass of holomorphic endomorphisms
on P2: when f is a regular polynomial endomorphism on C2 (that is, a polynomial endo-
morphism on C2 extend holomorphically to P2), the line at infinity L∞ is an invariant
super-attracting projective line. In this case however we do not have any skew product
structure.

Problem 2: Let f be a regular polynomial endomorphism on C2. In this case f
has an attracting set L∞, which is isomorphic to P1. Can f have a wandering Fatou
component in the attracting basin of L∞? If in addition f |L∞ satisfies the TCE condition,
is it true that the Fatou set in the attracting basin of L∞ is the union of basins of
attracting cycles, and Fatou set is either empty or has full Lebesgue measure in the
attracting basin of L∞?

2. Julia sets of post-critically finite endomorphisms on P2

A holomorphic endomorphism f on Pk is called post-critically finite ( PCF for short)
if the post-critical set

PC(f) :=
⋃
n≥1

fn(C(f))

is an algebraic curve of Pk. Here

C(f) :=
{
x ∈ Pk : Df(x) is not invertible

}
is the critical set.

In dimension 1 , this coincides with the usual definition of PCF maps on the Riemann
sphere P1. These play an important role in one-dimensional complex dynamics, mainly
because the remarkable topological classification theorem of Thurston [14]. Let Md be
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the moduli space of degree d rational functions. PCF maps are also important because
they are very regularly distributed inMd: except the well-known flexible Lettès families,
the set of PCF rational functions is a countable union of 0-dimensional varieties in Md

(a corollary of Thurston’s result [14]). Moreover, every hyperbolic component in Md

with connected Julia set contains exactly one PCF map (McMullen [35]).

One may expect the similar properties of PCF endomorphisms still hold in higher
dimension. The dynamics of PCF endomorphisms in higher dimension have been inves-
tigated by many authors. Let us start by discussing theorems related to Fatou and Julia
sets for PCF endomorphisms on P2.

2.1. Earlier results on Fatou and Julia sets for post-critically finite en-
domorphisms on P2. Let f : P2 → P2 be a holomorphic endomorphism of degree
≥ 2, where P2 is the complex projective plane. The first Julia set J1 is defined as
the locus where the iterates (fn)n≥0 do not locally form a normal family, i.e. the
complement of the Fatou set. Let T be the dynamical Green current of f , defined
by T = limn→+∞ d

−n(fn)∗ω, where ω is the Fubini-Study (1,1) form on P2. The Julia
set J1 coincides with Supp (T ), and the self intersection measure µ = T ∧T is the unique
measure of maximal entropy of f . See Dinh-Sibony [13] for background on holomorphic
dynamics on projective spaces and for precise definitions.

We define the second Julia set to be J2 = Supp µ. From the definitions we know
that J2 ⊂ J1. By Briend-Duval [7], J2 is contained in the closure of the set of repelling
periodic points. However contrary to dimension one there may exists repelling periodic
point outside J2 (see [24] and [21]).

The Fatou set of PCF endomorphisms on P2 have been studied by Fornaess-Sibony
[19], Ueda [43] and Rong [40]. We have the following classification of Fatou components
for PCF endomorphisms on P2 by Rong [40], which is not known for general holomorphic
endomorphisms on P2.

Theorem 2.1. Let f be a PCF endomorphism on P2, then F (f) is the union of
attracting basins of super-attracting cycles.

Next we study the dynamics on the Julia set for PCF endomorphisms on P2. The
following definition was introduced by Ueda [43].

Definition 2.2. Let f be a holomorphic endomorphism on Pk of degree ≥ 2. A point
q is said to be a point of bounded ramification if the following conditions are satisfied:

(1) There exists a neighborhood W of q such that PC(f) ∩W is an analytic subset
of W .

(2) There exists an integer m such that for every j > 0 and every p ∈ f−j(q), we
have that ord

(
f j , p

)
≤ m.

In the case k = 2, the following characterization of points of bounded ramification
for PCF endomorphism on P2 is due to Ueda [43].
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Lemma 2.3. Let f be a PCF endomorphism on P2 of degree ≥ 2. Then the points
with unbounded ramification are the union of critical component cycles and critical point
cycles.

The above definition and theorem lead to the following definition introduced by Ueda
[42].

Definition 2.4. Let f be a PCF endomorphism on Pk of degree ≥ 2. f is called
strictly PCF is every point in Pk is of bounded ramification.

In dimension 1, this definition is equivalent to PCF maps with J(f) = P1, also known
as expanding Thurston maps.

The Julia set J2 for strictly PCF endomorphisms on P2 was studied by Jonsson [28].

Theorem 2.5. Let f be a strictly PCF endomorphism on P2 of degree ≥ 2. Then
J2 = P2.

We note that this result was generalized by Ueda [42] to arbitrary dimensions k ≥ 2,
i.e. Jk = Pk for strictly PCF endomorphism on Pk, where Jk is the support of the unique
measure of maximal entropy.

The dynamics of J1 \J2 for PCF endomorphism on P2 was studied by de Thélin [12].
We start with a definition

Definition 2.6. Let f be a holomorphic endomorphism on P2 of degree ≥ 2. The
dynamical Green current T is called laminar in an open set Ω if it expresses as an integral
of integration currents over a measurable family of compatible holomorphic disks in Ω.

Here compatible means these disks have no isolated intersections. De Thélin [11]
gave a criterion for a current expressed as a limit of curves in a ball to be laminar. He
proved the following result [12] by using his criterion of laminarity.

Theorem 2.7. Let f be a PCF endomorphism on P2 of degree ≥ 2. The the dynam-
ical Green current T is laminar in J1 \ J2 .

We note that the above result (laminarity of dynamical Green current on J1 \ J2)
does not hold for general holomorphic endomorphism on P2, as showed by Dujardin [16],
but a related weaker result hold [15] (existence of Fatou direction).

The eigenvalues of fixed points of PCF endomorphism on P2 was recently studied by
Le [31].

Definition 2.8. Let f be a PCF endomorphism on P2 of degree ≥ 2. A fixed point
x0 is called repelling if all eigenvalues of Df at x0 have modules larger than 1. A fixed
point x0 is called super-saddle if Df at x0 has one 0 eigenvalue and one eigenvalue with
modulus larger than 1. A fixed point x0 is called super-attracting if Df at x0 has only 0
as eigenvalues.
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Theorem 2.9. Let f be a PCF endomorphism on P2 of degree ≥ 2. Then every fixed
point of f is either repelling, super-saddle or super-attracting.

It is an important problem to find examples of PCF endomorphisms in higher dimen-
sions. In dimension 1 this is solved by Thurston [14]. In higher dimension non-trivial
examples of PCF endomorphisms were constructed by Crass [9], Fornaess-Sibony [18]
and Koch [30].

Finally we mention that the the dynamics of PCF endomorphisms on Pk, k ≥ 2 was
studied by Astorg [1] and Ueda [42].

2.2. New results. In this subsection we summarize the main result in chapter 4,
the reference paper is [27]. The purpose of this paper is towards understanding the
structure of the Julia set of PCF endomorphisms on P2. We begin with a definition.

Definition 2.10. Let f be a PCF endomorphism on P2 of degree ≥ 2.. We call
an irreducible component Λ of C(f) periodic if there exist an integer n ≥ 1 such that
fn(Λ) = Λ. Such an irreducible component will be called periodic critical component.
The set

{
Λ, f(Λ), . . . , fn−1(Λ)

}
is called a critical component cycle. Similarly, a critical

point x satisfying fn(x) = x for some n ≥ 1 is called a periodic critical point. The set{
x, f(x), . . . , fn−1(x)

}
is called a critical point cycle.

The critical component cycle is an attracting set as proved by Fornaess-Sibony in
[19]. Daurat [10] proved that the dynamical Green current T is laminar in the attracting
basin of a critical component cycle.

Now we propose the following conjecture.

Conjecture G. Let f be a PCF endomorphism on P2 of degree ≥ 2. Then J1 \ J2

is contained in the attracting basins of critical component cycles.

We will establish some intermediate results or some conditional results towards un-
derstanding the above conjecture. These results are the main theorems in Chapter 4.

The first result is about repelling cycles and J2.

Theorem H. Let f be a PCF endomorphism on P2 of degree ≥ 2, then J2 is the
closure of the set of repelling periodic points. Moreover if all branches of PC(f) are
smooth and intersect transversally, then any periodic point in J2 is repelling.

Here are some comments about Theorem H. First, we note that repelling periodic
point may not be contained in J2 for general holomorphic endomorphisms on P2. Indeed
there are examples with isolated repelling points outside J2, see Fornaess-Sibony [21]
and Hubbard-Papadopol [24]. Second, the assumption that all branches of PC(f) are
smooth and intersect transversally are satisfied by examples constructed by Crass [9],
Fornaess-Sibony [19] and Koch [30]. Third, we note that the first part of Theorem H
fits the picture of Conjecture G, since repelling periodic points does not belongs to the
attracting basin of a critical component cycle.
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Next we state a structure theorem of J1 \J2 for PCF endomorphism on P2. Let f be
a PCF endomorphism on P2, for point in J1 \ J2 which is not contained in an attracting
basin of a critical component cycle, for a hypothetical point we show

Theorem I. Let f be a PCF endomorphism on P2 of degree d ≥ 2. Let x ∈ J1 \ J2

which is not contained in an attracting basin of a critical component cycle, then there is
a Fatou disk D passing through x, i.e. the family {fn|D}n≥1 is normal.

We note that by the result of de Thélin [12], for σT a.e. point in J1 \ J2, there is a
Fatou disk D passing through x. The above theorem together with Daurat’s result about
laminarity of Green current in the attracting basin gives a new proof of this fact.

We also prove a partial converse of the result of Theorem 2.5.

Theorem J. Let f be a PCF endomorphism on P2 of degree ≥ 2 such that branches
of PC(f) are smooth and intersect transversally. Then J2 = P2 if and only if f is strictly
PCF.

Finally we show that Conjecture G is true, when PC(f) ⊂ C(f).

Theorem K. Let f be a PCF endomorphism on P2 of degree ≥ 2. Assume that
PC(f) ⊂ C(f). Let B be the union of attracting basins of critical component cycles,
then J2 = P2 \ B, and J2 is a repeller, i.e. there exists k ≥ 1 and λ > 1 such that for
every x ∈ J2, for every v ∈ TxP2 we have

∣∣Dfk(v)
∣∣ ≥ λ|v|.

We show Conjecture G is true under some additional condition (which is conjectured
to be always true):

Proposition L. Let f be a PCF endomorphism on P2 of degree ≥ 2. Assume every
super-saddle cycle is contained in a critical component cycle and f satisfies the “backward
contracting property”. Then J1 \ J2 is contained in the attracting basins of critical
component cycles.

We refer to chapter 4 for the definition of backward contracting property.

2.3. Further discussion. In Theorem H we proved that the repelling cycles of a
PCF endomorphism on P2 are contained in J2. On the other hand, Le [31] proved that
every periodic point of a PCF endomorphism on P2 is either repelling, super-saddle or
super-attracting. As a corollary, every periodic point in J2 which is not in the critical
set is repelling. If we consider invariant ergodic measure instead of periodic points, A
natural question would be:

Problem 3: Let f be a PCF endomorphism on P2 of degree ≥ 2, let µ be an
invariant ergodic measure such that µ does not have −∞ Lyapunov exponent. Is that
true that Supp µ ⊂ J2 and the Lyaponov exponents of µ are positive?

For one-dimensional PCF maps, the measurable dynamics are well known. Let f
be a PCF map on P1, then either J(f) = P1 and f has an invariant ergodic measure
equivalent to Lebesgue, or J(f) 6= P1 and J(f) has Lebesgue measure zero. A natural
question in dimension 2 would be:
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Problem 4: Let f be a PCF endomorphisms on P2 of degree ≥ 2. If J2 = P2, is
there an invariant ergodic measure µ that is equivalent to Lebesgue measure on P2? If
J2 6= P2, does J2 have Lebesgue measure zero?
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CHAPTER 1

Background in holomorphic dynamics

1. Dynamics in one complex variable

In this subsection we studies the dynamics of rational functions on Riemann sphere
P1. The study of local holomorphic dynamics around a fixed point was developed in
the late 19th century. However the study of global dynamics of rational function on
Riemann sphere dates back to Fatou and Julia in the beginning of 20th century. Begin
in the early 1980s, the recommend mathematicians such as Douady, Hubbard, Sullivan,
Milnor etc made great progress in this classical subject.

1.1. Fatou-Julia dichotomy. The Riemann sphere naturally divides into two parts:
the Fatou set, where the dynamics is stable, and the Julia set, where the dynamics is
chaotic.

Definition 1.1. Let f be a rational function on P1 of degree ≥ 2. The Fatou set
F (f) is the largest open set where the family of iterates {fn}n≥1 is a normal family. The

Julia set J(f) is the completement of F (f).

We have the following fundamental property of Fatou and Julia set, see Milnor [19]
for the general background on dynamics in one complex variable.

Proposition 1.2. Let f be a rational function on P1 of degree d ≥ 2. Then:

(1) F (f) is an open set and J(f) is a non-empty closed set. F (f) is a dense open
set provided F (f) 6= ∅.

(2) F (f) and J(f) are totally invariant, i.e. f−1(F (f)) = F (f) and f−1(J(f)) =
J(f).

(3) For any integer k ≥ 0, F (fk) = F (f) and J(fk) = J(f).

(4) J(f) is the closure of the set of repelling cycles, and there are at most 2d − 2
non-repelling cycles.

(5) There is a unique measure of maximal entropy µ(f) (with entropy log d). More-
over µ is mixing, has Hölder continuous local potential, has positive Lyapunov exponent,
and Supp µ = J(f).

17
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1.2. Classification of Fatou components. Since F (f) is an open set, it leads to
the following definition.

Definition 1.3. A Fatou component is a connected component of F (f). A Fatou
component Ω is called non-wandering if it is pre-periodic, i.e. there exist k ≥ 0, p ≥ 0
such that fp+k(Ω) = fk(Ω). A Fatou component Ω is called wandering if it is not
pre-periodic.

To understand the dynamics on a non-wandering Fatou component, it is enough to
study the dynamics on an invariant Fatou component, i.e. Fatou component Ω such that
f(Ω) = Ω. We have the following classical result due to Fatou, Siegel and Herman.

Theorem 1.4. Let f be a rational function on P1 of degree d ≥ 2. Let Ω be an
invariant Fatou component. Then one of the following holds.

(1) Ω is a super-attracting basin, i.e. there is a fixed point p ∈ Ω such that Df(p) = 0,
and f is locally conjugate to z 7→ zm for some integer m ≥ 2.

(2) Ω is an attracting basin, i.e. there is a fixed point p ∈ Ω such that Df(p) = λ
satisfies 0 < |λ| < 1, and f is locally conjugate to z 7→ λz.

(3) Ω is a parabolic basin, i.e. there is a fixed point p ∈ ∂Ω such that Df(p) = λ

satisfies λ = eiπp/q, where p, q are integers, and f is semi-conjugate to z 7→ z + 1 on C
(the Fatou coordinate).

(4) Ω is a Siegel disk, i.e. Ω is biholomorphic to a disk, and there is a fixed point
p ∈ Ω such that Df(p) = λ satisfies λ = eiπα, where α is irrational, and f is conjugate
to z 7→ λz.

(5) Ω is a Herman ring, i.e. Ω is biholomorphic to an annulus, and there exists
λ = eiπα, where α is irrational, and f is conjugate to z 7→ λz.

We note that the Fatou coordinate in (3) was contructed by Fatou. The first exam-
ples of Siegel disks were constructed by Siegel and the examples of Herman rings were
constructed by Herman. See [19] for a self-contained proof of the theorem.

At this stage the question of existence of wandering Fatou component was consid-
erably very important, and the answer was unknown until the 1980’s. In the seminal
paper [26], Sullivan proved such wandering Fatou component can not exist for rational
functions.

Theorem 1.5. Let f be a rational function on P1 of degree ≥ 2. Then there is no
wandering Fatou component.

Combine Theorem 1.4 and Theorem 1.5 we get a complete description of dynamics
on F (f) for rational function.

Note that for other classes of mappings (meromorphic functions or transcendental
entire functions), there are classes with or without wandering Fatou components. The
study of Fatou components is still an active topic for these classes of maps.
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1.3. Hyperbolic rational functions. In general dynamical systems theory of
smooth maps, a hyperbolic set with respect to some smooth map f is an invariant com-
pact set such that its tangent bundle may be split into two invariant subbundles, one of
which is contracting and the other is expanding under f . Hyperbolic set is interesting
because one can understand the dynamics on it completely.

In the one dimensional complex setting, one of the most important problem in one-
dimensional complex dynamics, usually refers to the Fatou conjecture, is whether the
hyperbolic rational functions form a dense subset in the parameter space of given degree.
We begin with the following definition

Definition 1.6. A rational function f on P1 of degree ≥ 2 is called hyperbolic if one
of the following equivalent conditions holds:

(1) The post critical set satisfies PC(f)∩ J(f) = ∅, where PC(f) =
⋃∞
n≥1 f

n(C(f))

and C(f) is the critical set of f .

(2) f has only attracting cycles and repelling cycles, and every critical point c ∈ C(f)
lies in an attracting basin of an attracting cycle.

(3) J(f) is a hyperbolic set.

From the definition we know that a small pertubation of a hyperbolic rational func-
tion is still hyperbolic. See Milnor [19] for more details.

The measurable dynamics of hyperbolic rational functions is well understood.

Theorem 1.7. Let f be a hyperbolic rational function on P1. Then

(1) The Hausdorff dimension of J(f) is equal to the box dimension of J(f) and is
smaller than 2.

(2) There exist a unique invariant probability measure ν which is equivalent to the
δ−dimensional Hausdorff meausre, where δ is the Hausdorff dimension of J(f). More-
over ν is mixing and has positive Lyapunov exponent.

For the proof of Theorem 1.7 see Przytycki-Urbański [22]. The non-wandering set for
a hyperbolic rational function f is the union of J(f) and the attracting cycles. It turns
out that f satisfies Smale’s axiom A. Let Ratd denote the parameter space of degree d
rational functions .As a corollary we have

Theorem 1.8. Let f be a hyperbolic rational function of degree d, then f is struc-
turally stable, i.e. let g ∈ Ratd be a small perturbation of f , then f and g are topologically
conjugate on their respective non-wandering set.

The concept of structurally stable rational functions is closely related to the concept
of J- stable rational functions.
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Definition 1.9. A rational function f on P1 of degree d ≥ 2 is called J-stable if one
of the following equivalent conditions holds:

(1) f is structurally stable.

(2) There exist a holomorphic motion of the Julia sets on a neighborhood U of f in
Ratd.

(3) The number of attracting cycles is constant on a neighborhood U of f in Ratd.

There are various of equivalent definition of structurally stable rational functions,
see Mané-Sad-Sullivan [18] and Lyubich [16] for the background and the definition of
holomorphic motion. We have the following results due to Mané-Sad-Sullivan [18] and
Lyubich [16].

Theorem 1.10. The set of J-stable rational functions is an open and dense subset
in Ratd, for every d ≥ 2.

It is conjectured that every J−stable rational function is actually hyperbolic. This
conjecture is equivalent to the Fatou conjecture.

1.4. Non-uniformly hyperbolic rational functions. Now we introduce another
important class of rational functions, which are called non-uniformly hyperbolic rational
functions. They are rational functions carrying some hyperbolicity, but are not hy-
perbolic. Non-uniformly hyperbolic rational functions are useful, for example when we
want to construct an invariant measure which is absolutely continuous with respect to
Lebesgue measure, or when we want to study the parameters on the boundary of the
Mandelbrot set.

There are various non-uniformly hyperbolic conditions for rational functions, such as
sub-hyperbolicity, semi-hyperbolicity, the Collet-Eckmann condition (CE for short) and
the Topological Collet-Eckmann condition (TCE for short). The weakest notion among
these conditions is the TCE condition.

Definition 1.11. A rational function f on P1 of degree ≥ 2 is called TCE if there
exist µ > 1 and r > 0 such that for every x ∈ J(f), n ≥ 0 and every connected component
W of f−n(B(x, r)) we have

diam W ≤ µ−n,
where B(x, r) denotes the ball centered at x with radius r.

The TCE condition was introduced by Przytycki-Rohde in [21]. There are various
equivalent characterization of the TCE condition, see Przytycki-Smirnov-Rivera-Letelier
[23].

The measurable dynamics of TCE rational functions is well understood.

Theorem 1.12. Let f be a TCE rational function, then

(1) The Fatou set F (f) is a union of attracting basins.



2. DYNAMICS IN SEVERAL COMPLEX VARIABLES 21

(2) Either J(f) = P1 or the Hausdorff dimension δ of J(f) is equal to the box
dimension of J(f) and it is smaller than 2.

(3) There is a unique invariant probability measure ν such that Supp ν ⊂ J(f)
and ν is equivalent to the unique conformal measure with exponent δ (the conformal
measure with exponent 2 is the Lebesgue measure). Moreover ν is mixing and has positive
Lyapunov exponent.

For the proof of Theorem 1.12 see Przytycki-Smirnov-Rivera Letelier [23] and Przytycki-
Rivera Letelier [20].

We note that the CE condition is stronger than the TCE condition (see [21]). It was
proved by Aspenberg [1] and Rees [24] that non-hyperbolic TCE rational functions are
abundant, in the Lebesgue sense.

Theorem 1.13. The set of CE rational functions such that J(f) = P1 is a positive
Lebesgue measure subset in Ratd, for every d ≥ 2.

The CE condition is also generic in the sense of harmonic measure by Graczyk-
Swiatek for unicritical family [13].

Theorem 1.14. In the uni-critical family
{
fc(z) = zd + c

}
, d ≥ 2, a.e. x ∈ ∂Md in

the sense of harmonic measure satisfies CE condition, where Md is the connectedness
locus.

The above result was recently generalized by de Thélin-Gauthier-Vigny [14] to arbi-
trary algebraic families of rational functions.

Theorem 1.15. Let Λ be a quasi-projective sub-variety in Ratd. Let c(λ) be a marked
critical value which is not stably pre-critical. Let TΛ,c be the bifurcation current of the
pair (Λ, c). Then a.e. parameter in Λ in the sense of trace measure of TΛ,c satisfies that
c is CE, i.e. |(fnλ )′(cλ)| ≥ Cµn for some C > 0, µ > 1.

We note that in the uni-critical family
{
fc(z) = zd + c

}
, d ≥ 2, TΛ,c (= the trace

measure) in the above theorem is same as the harmonic measure on Md.

For more about non-uniform hyperbolic rational functions and for the measurable
dynamics on J(f), we refer the reader to Przytycki and Rivera-Letelier [20], Graczyk
and Smirnov [12], and Rivera-Letelier and Shen [25].

2. Dynamics in several complex variables

2.1. Generalities. In this section we concentrate on study the dynamics of holo-
morphic endomorphisms on Pk. Holomorphic endomorphisms on Pk can be seen as a
direct generalization of rational maps on P1, and it is an important subclass of higher di-
mensional holomorphic maps for the dynamical studies. Some other higher dimensional
holomorphic dynamical systems include Hénon-like maps on Ck and regular automor-
phisms on projective surfaces, etc.
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For a holomorphic endomorphisms on Pk, we can define the Fatou set and the Julia
set for holomorphic endomorphisms on Pk similarly as in Definition 1.1. For k ≥ 2,
pluripotential theory has been a key idea to the understanding of the dynamics of holo-
morphic endomorphisms on Pk (the idea of using pluripotential theory in complex dy-
namics dates back to Sibony). An important object in the theory is a dynamically
defined positive closed current T of bidegree (1,1) on Pk.

Definition 2.1. Let f be a holomorphic endomorphism on Pk of degree d ≥ 2. Let
ω be the Fubini-Study (1,1) form. Then the following limit exist (in the sense of (1,1)
currents) and is called the dynamical Green current:

T := d−n lim
n→+∞

(fn)∗(ω).

We refer the reader to Dinh-Sibony [6] for general background on the dynamics of
holomorphic endomorphisms on Pk. We have the following important result, for more
details see [6].

Theorem 2.2. Let f be a holomorphic endomorphism on Pk of degree d ≥ 2 and let
T be the dynamical Green current. Then:

(1) T has Hölder continuous local potential.

(2) for 1 ≤ p ≤ k, the power T p := T ∧ T... ∧ T , p factors are well defined, and its
support Jp is called the Julia set of order p.

(3) T is supported on the Julia set of f , i.e. Supp T := J1(f) = J(f).

(4) µ := T k is the unique invariant probability measure with maximal entropy k log d.
Moreover µ is mixing and has positive Lyapunov exponents.

2.2. Equidistribution problems in Pk. In this paragraph, we will see that the
dynamical Green current T and the measure of maximal entropy µ have many equidis-
tribution properties: the pull back of a generic positive closed (1,1) current by fn are
equidistributed with respect to T , the pull back of a generic point by fn are equidis-
tributed with respect to µ, and the set of repelling periodic points are equidistributed
with respect to µ.

The following result is due to Briend-Duval [4] and Dinh-Sibony [6].

Theorem 2.3 (Equidistribution of preimage of points). Let f be a holomorphic
endomorphism on Pk of degree d ≥ 2 and let µ be the measure of maximal entropy.
Then there exists a proper algebraic set E, possibly empty, such that

lim
n→+∞

d−kn(fn)∗(δa) = µ,

if and only if a /∈ E, here δa is the Dirac mass. Moreover E is totally invariant, f−1(E) =
E and E is maximal in the sense that if a proper algebraic set E satisfies f−n(E) = E
for some n ≥ 1, then E ⊂ E.
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The following result is due to Briend-Duval [3].

Theorem 2.4 (Equidistribution of repelling periodic points). Let f be a holomorphic
endomorphism on Pk of degree d ≥ 2 and let µ be the measure of maximal entropy. Let
Pn denote the set of repelling periodic points of period n. Then we have

lim
n→+∞

d−kn
∑
a∈Pn

δa = µ.

The following result was proved by Favre-Jonsson [8] for k = 2, and by Dinh-Sibony
[5] for general k.

Theorem 2.5 (Equidistribution of preimage of positive closed (1,1) currents). Let
f be a holomorphic endomorphism on Pk of degree d ≥ 2 and let T be the dynamical
Greem current. Let Em denote the union of the totally invariant proper algebraic sets in
Pk which are minimal, i.e. do not contain smaller ones. Let S be a positive closed (1,1)
current of mass 1 on Pk whose local potential are not identically −∞ on any component
of Em. Then we have

lim
n→+∞

d−n(fn)∗(S) = T.

As a corollary we have

Corollary 2.6 (Equidistribution of preimage of hypersurface). Let f , T , Em be
as above. Let H be a hypersurface of degree s in Pk such that H does not contain any
component of Em, then

lim
n→+∞

s−1d−n(fn)∗[H] = T.

It is important to understand the properties of the exceptional set in the above
equidistribution theorems. In dimension 1, such exceptional set is the union of at most
two points. For k > 1, it is conjectured that an totally invariant proper irreducible
algebraic set is a projective subspace, and there are also conjectures about the number
of irreducible components of the exceptional set, see the survey paper Dinh-Sibony [7].
We have the following partial result, which is useful for our purpose.

Theorem 2.7. Let f be a holomorphic endomorphism on Pk of degree ≥ 2. Let E
be a proper algebraic set such that f−1(E) = E. Then E ⊂ C(f), where C(f) is the
critical set. When k = 2, a totally invariant algebraic curve is a union of at most three
projective lines.

For the proof see Briend-Duval [4] and Fornaess-Sibony [10].

2.3. Fatou components in Pk. Let f be a holomorphic endomorphism on Pk of
degree ≥ 2, unlike the one dimension case, the classification of Fatou components is
not completely known yet when k ≥ 2. The classification of invariant recurrent Fatou
components is known, but the classification of invariant non-recurrent Fatou components
remain mysterious. The existence of wandering Fatou components was unknown until
recently.
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Definition 2.8. Let f be a holomorphic endomorphism on Pk of degree ≥ 2. An
invariant Fatou component Ω is called recurrent, if there exist a point x ∈ Ω such that
the ω-limit set satisfies ω(x) ∩ Ω 6= ∅.

The following classification of invariant recurrent Fatou components was proved by
Fornaess-Sibony [11] for k = 2 , and by Fornaess-Rong [9] for general k.

Theorem 2.9. Let f be a holomorphic endomorphism on Pk of degree ≥ 2. Let Ω
be an invariant recurrent Fatou component. Then one of the following happens:

(1) Ω is an attracting basin, i.e. there is an attracting fixed point p ∈ Ω.

(2) There exist a closed m-dimensional complex sub-manifold M of Ω (1 ≤ m ≤
k − 1), and a holomorphic retraction ρ : Ω → M such that any limit h of a convergent
sub-sequence of {fn} is of the form h = φ ◦ ρ, where φ ∈ Aut (M).

(3) Ω is a Siegel domain. Any limit of a convergent subsequence of {fn} is an
automorphism of Ω.

Here a Siegel domain means a invariant Fatou component such that there exists a
sub-sequence {fnj} converging uniformly on compact subsets of Ω to the identity. If
M ⊂ Ω is a sub-variety, then a retraction ρ : Ω → M is a holomorphic map such that
ρ|M = Id.

For m = 1 in the above theorem, by a result of Ueda [27], M is biholomorphic to
either a disc or an annulus, and f |M is conjugate to an irrational rotation.

As we have mentioned, the non-recurrent case is more delicate, and the classification
of invariant non-recurrent Fatou components for k ≥ 2 is not known. We have the
following conditional theorem due to Lyubich-Peters [17].

Theorem 2.10. Let f be a holomorphic endomorphism on P2 of degree ≥ 2. Let Ω be
an invariant non-recurrent Fatou component. Suppose the limit set h(Ω) is unique, then
h(Ω) either consist of one point p, or h(Ω) is a injective immersed Riemann surface,
conformally equivalent to either a disk, a punctured disk or an annulus, and f |h(Ω) is
conjugate to an irrational rotation.

Here h(Ω) contains all images of limit maps of {fnj} for all sub-sequence {nj}.

Perhaps the main difference between one dimensional and higher dimensional Fatou
theory is that when k ≥ 2, a holomorphic endomorphism on Pk can have a wandering
Fatou component. The following result is due to Astorg-Buff-Dujardin-Peters-Raissy [2].

Theorem 2.11. There exist a holomorphic endomorphism f on P2 of degree ≥ 2 in-
duced by a parabolic polynomial skew product, possessing a wandering Fatou component.

As already explained, wandering Fatou components can be constructed for holomor-
phic endomorphism on Pk by taking products for k ≥ 2.
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2.4. Dynamics of polynomial skew products. A polynomial skew product on
C2 is a map of the following form:

f(z, w) = (p(z), q(z, w)),

where p is a one variable polynomial of degree ≥ 2 and q is a two variables polynomial of
degree ≥ 2. When deg p = deg q = d and q(z, w) = adw

d +O(wd−1), f can be extended
holomorphically to P2. Such a polynomial skew product is called a regular polynomial
skew product.

Definition 2.12. Let f = (p, q) be a polynomial skew product. For every z0 ∈ C,
the Julia set Jz0 ⊂ {z = z0} × C is defined as the locus where the sequence of iterates{
qpn(z) ◦ · · · ◦ qz

}
n≥1

do not locally form a normal family in {z = z0} × C. Here qz is a

one variable polynomial defined by qz(w) := q(z, w).

We have the following result due to Jonsson [15].

Theorem 2.13. Let f = (p, q) be a polynomial skew product. Then

J2 =
⋃
z∈Jp

{z} × Jz,

where Jp is the Julia set of p.

Note that the above theorem implies that repelling periodic points belongs to J2.

Jonsson proved the following topological characterization for uniformly expansion on
J2, which is analogous to the one dimensional case (see Definition 1.6).

Theorem 2.14. Let f be a polynomial skew product. Then f is expanding on J2 if
and only if J2 ∩ PC(f) = ∅, here PC(f) is the post-critical set.

For the proof see Jonsson [15]. We note that the result is unknown for general
holomorphic endomorphisms on P2. As a corollary, Jonsson obtains [15]:

Corollary 2.15. Let f be a polynomial skew product such that f is expanding on
J2. Then

J2 =
⋃
z∈Jp

{z} × Jz.

Jonsson [15] also studied the Axiom A polynomial skew products. Again the following
characterization is similar to the one dimensional case.

Theorem 2.16. Let f be a polynomial skew product. Then f is Axiom A on C2 if
and only if following conditions are satisfied:

(1) f is expanding on J2.

(2) p is hyperbolic.

(3) Let z0 ∈ C2 be an attracting periodic point of p of periods n, then fn|L is a
hyperbolic map, where L = {z = z0}.
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Moreover, a regular polynomial skew product f is Axiom A on P2 if and only if f is
Axiom A on C2 and f |L∞ is hyperbolic, where L∞ is the line at infinity.

Jonsson [15] also showed that Axiom A polynomial skew products are stable under
perturbation.

Theorem 2.17. Let f be an Axiom A polynomial skew product. Then the chain
recurrent set satisfies R(f) = Per(f). In particular, any holomorphic endomorphism on
P2 which is sufficiently close (in C1 topology) to f is also Axiom A.

Note that in general Axiom A endomorphisms may not be stable under perturbation,
but an Axiom A endomorphism satisfying R(f) = Ω(f) is stable under perturbation,
where Ω(f) is the non-wandering set, see [15].



Bibliography

[1] Magnus Aspenberg. The Collet-Eckmann condition for rational functions on the
Riemann sphere. Mathematische Zeitschrift, 273(3-4):935–980, 2013.

[2] Matthieu Astorg, Xavier Buff, Romain Dujardin, Han Peters, and Jasmin Raissy. A
two-dimensional polynomial mapping with a wandering Fatou component. Annals
of mathematics, pages 263–313, 2016.

[3] Jean-Yves Briend and Julien Duval. Exposants de liapounoff et distribution des
points périodiques d’un endomorphisme de CPk. Acta mathematica, 182(2):143–
157, 1999.

[4] Jean-Yves Briend and Julien Duval. Deux caractérisations de la mesure d’équilibre
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Études Scientifiques, 93(1):145, 2001.
[5] Tien-Cuong Dinh and Nessim Sibony. Equidistribution towards the Green current

for holomorphic maps. In Annales scientifiques de l’Ecole normale supérieure, vol-
ume 41, pages 307–336, 2008.

[6] Tien-Cuong Dinh and Nessim Sibony. Dynamics in several complex variables: en-
domorphisms of projective spaces and polynomial-like mappings. In Holomorphic
dynamical systems, pages 165–294. Springer, 2010.

[7] Tien-Cuong Dinh and Nessim Sibony. Equidistribution problems in complex dy-
namics of higher dimension. International Journal of Mathematics, 28(07):1750057,
2017.

[8] Charles Favre and Mattias Jonsson. Brolin’s theorem for curves in two complex
dimensions. In Annales de l’institut Fourier, volume 53, pages 1461–1501, 2003.

[9] John Erik Fornæss and Feng Rong. Classification of recurrent domains for holo-
morphic maps on complex projective spaces. The Journal of Geometric Analysis,
24(2):779–785, 2014.

[10] John Erik Fornæss and Nessim Sibony. Complex dynamics in higher dimensions.
In Complex potential theory, pages 131–186. Springer, 1994.

[11] John Erik Fornæss and Nessim Sibony. Classification of recurrent domains for some
holomorphic maps. Mathematische Annalen, 301(1):813–820, 1995.

[12] Jacek Graczyk and Stanislav Smirnov. Non-uniform hyperbolicity in complex dy-
namics. Inventiones mathematicae, 175(2):335, 2009.

[13] Jacek Graczyk and Grzegorz Swiatek. Harmonic measure and expansion on the
boundary of the connectedness locus. Inventiones mathematicae, 142(3):605–629,
2000.
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CHAPTER 2

Non-wandering Fatou components for strongly attracting
polynomial skew products

1. Introduction

Complex dynamics, also known as Fatou-Julia theory, is naturally subdivided ac-
cording to these two terms. One is focused on the Julia set. This is the set where
chaotic dynamics occurs. The other direction of investigation is concerned with the dy-
namically stable part - the Fatou set. In this paper we will concentrate on the Fatou
theory.

In a general setting, let M be a complex manifold, and let f : M → M be a
holomorphic self map. We consider f as a dynamical system, that is, we study the long-
time behavior of the sequence of iterates {fn}n≥0. The Fatou set F (f) is classically
defined as the largest open subset of M in which the sequence of iterates is normal. Its
complement is the Julia set J(f). A Fatou component is a connected component of
F (f).

In one-dimensional case, we study the dynamics of iterated holomorphic self map
on a Riemann surface. The classical case of rational functions on Riemann sphere P1

occupies an important place and produces a fruitful theory. The non-wandering domain
theorem due to Sullivan [11] asserts that every Fatou component of a rational map is
eventually periodic. This result is fundamental in the Fatou theory since it leads to
a complete classification of the dynamics in the Fatou set: the orbit of any point in
the Fatou set eventually lands in an attracting basin, a parabolic basin, or a rotation
domain.

The same question arises in higher dimensions, i.e. to investigate the non-wandering
domain theorem for higher dimensional holomorphic endomorphisms on Pk. A good test
class is that of polynomial skew products hence one-dimensional tools can be used.

A polynomial skew product is a map P : C2 −→ C2 of the form

P (t, z) = (g(t), f(t, z)),

where g is an one variable polynomial and f is a two variable polynomial. See Jonsson
[4] for a systematic study of such polynomial skew products, see also Dujardin [3] for an
application of polynomial skew products.

To investigate the Fatou set of P , let π1 be the projection to the t-coordinate, i.e.

π1 : C2 → C, π1(t, z) = t.

29
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We first notice that π1(F (P )) ⊂ F (g), pass to some iterates of P , we may assume that
the points in F (g) will eventually land into an immediate basin or a Siegel disk (no
Herman rings for polynomials), thus we only need to study the following semi-local case:

P = (g, f) : ∆× C→ ∆× C,
where g(0) = 0 which means the line {t = 0} is invariant and ∆ is the immediate basin
or the Siegel disk of g. P is called an attracting, parabolic or elliptic local polynomial
skew product when g′(0) is attracting, parabolic or elliptic respectively.

The first positive result is due to Lilov. Under the assumption that 0 ≤ |g′(0)| < 1,
Koenigs’ Theorem and Böttcher’s Theorem tell us that the dynamical system is locally
conjugated to

P (t, z) = (λt, f(t, z)),

when g′(0) = λ 6= 0, or
P (t, z) = (tm, f(t, z)), m ≥ 2,

when g′(0) = 0. In the first case the invariant fiber is called attracting and in the second
case the invariant fiber is called super-attracting. Now f is no longer a polynomial, and
f can be written as a polynomial in z,

f(t, z) = a0(t) + a1(t)z + · · ·+ ad(t)z
d,

with coefficients ai(t) holomorphic in t in a neighborhood of 0, we further assume that
ad(0) 6= 0 (and we make this assumption in the rest of the paper). In this case the
dynamics in {t = 0} is given by the polynomial

p(z) = f(0, z)

and is very well understood. In his unpublished PhD thesis [5], Lilov first showed that
every Fatou component of p in the super-attracting invariant fiber is contained in a
two-dimensional Fatou component, which is called a bulging Fatou component. We will
show that this bulging property of Fatou component of p also holds in attracting case.

Lilov’s main result is the non-existence of wandering Fatou components for local
polynomial skew products in the basin of a super-attracting invariant fiber. Since this
is a local result, it can be stated as follows.

Theorem (Lilov). For a local polynomial skew product P with a super-attracting
invariant fiber,

P (t, z) = (tm, f(t, z)), m ≥ 2,

every forward orbit of a vertical Fatou disk intersects a bulging Fatou component. This
implies that every Fatou component iterate to a bulging Fatou component. In particular
there are no wandering Fatou components.

See Definition 2.1 for the definition of the vertical Fatou disk.

On the other hand, recently Astorg, Buff, Dujardin, Peters and Raissy [1] constructed
a holomorphic endomorphism h : P2 −→ P2, induced by a polynomial skew product
P = (g(t), f(t, z)) : C2 −→ C2 with parabolic invariant fiber, processing a wandering
Fatou component, thus the non-wandering domain theorem does not hold for general
polynomial skew products.
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At this stage it remains an interesting problem to investigate the existence of wan-
dering Fatou components for local polynomial skew products with attracting but not
super-attracting invariant fiber. As it is clear from Lilov’s theorem, Lilov actually showed
a stronger result, namely that every forward orbit of a vertical Fatou disk intersects a
bulging Fatou component. Peters and Vivas showed in [8] that there is an attracting
local polynomial skew product with a wandering vertical Fatou disk, which shows that
Lilov’s proof breaks down in the general attracting case. Note that this result does not
answer the existence question of wandering Fatou components, but shows that the ques-
tion is considerably more complicated than in the super-attracting case. On the other
hand, by using a different strategy from Lilov’s, Peters and Smit in [7] showed that the
non-wandering domain theorem holds in the attracting case, under the assumption that
the dynamics on the invariant fiber is sub-hyperbolic. The elliptic case was studied by
Peters and Raissy in [6]. See also Raissy [9] for a survey of the history of the investigation
of wandering domains for polynomial skew products.

In this paper we prove a non-wandering domain theorem in the attracting local
polynomial skew product case without any assumption of the dynamics on the invariant
fiber. Actually we show that Lilov’s stronger result holds in the attracting case when
the multiplier λ is small.

Theorem (Main Theorem). For a local polynomial skew product P with an at-
tracting invariant fiber,

P (t, z) = (λt, f(t, z)),

for any fixed f , there is a constant λ0 = λ0(f) > 0 such that if λ satisfies 0 < |λ| < λ0,
every Fatou component iterates to a bulging Fatou component. In particular there are
no wandering Fatou components.

We can also apply this local result to globally defined polynomial skew products, see
Theorem 6.4 for the precise statement.

The proof of the main theorem basically follows Lilov’s strategy. The difficulty is
that Lilov’s argument highly depends on the super-attracting condition and breaks down
in the attracting case by [8]. The main idea of this paper are to use and adapt an one-
dimensional lemma due to Denker-Przytycki-Urbanski(the DPU Lemma for short) to
our case. This will give estimates of the horizontal size of bulging Fatou components
and of the size of forward images of a wandering vertical Fatou disk (these concepts will
be explained later). We note that some results in our paper already appear in Lilov’s
thesis [5] (Theorem 3.4, Lemma 4.1, Lemma 5.1 and Lemma 5.2). Since his paper is not
easily available, we choose to present the whole proof with all details. On the other hand
we believe that the introduction of the DPU Lemma makes the argument conceptually
simpler even in the super-attracting case.

The outline of the paper is as follows. In section 2 we start with some definitions,
then we present the DPU Lemma and some corollaries. In section 3 we show that every
Fatou component of p in the invariant fiber bulges, i.e. is contained in a two-dimensional
bulging Fatou component. This result follows classical ideas from normal hyperbolicity
theory.
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In section 4 we give an estimate of the horizontal size of the bulging Fatou com-
ponents by applying the one-dimensional DPU Lemma. Let z ∈ F (p) be a point in a
Fatou component of the invariant fiber and denote by r(z) the supremum radius of a
horizontal holomorphic disk (see Definition 2.1 for the precise definition) centered at z
that is contained in the bulging Fatou component. We have the following key estimate.

Theorem 4.3. If λ is chosen sufficiently small, then there are constants k > 0,
l > 0, R > 0 such that for any point z ∈ F (p) ∩ {|z| < R},

r(z) ≥ k d(z, J(p))l,

where J(p) is the Julia set in the invariant fiber.

In section 5 we adapt the DPU Lemma to the attracting local polynomial skew
product case, to show that the size of forward images of a wandering vertical Fatou disk
shrinks slowly, which is also important in the proof of the main theorem.

Proposition 5.5. Let ∆0 ⊂ {t = t0} be a wandering vertical Fatou disk centered at
x0 = (t0, z0). Let xn = (tn, zn) = Pn(x0). Define a function ρ as follows: for a domain
U ⊂ C, for every z ∈ U ⊂ C, define

ρ(z, U) = sup {r > 0| D(z, r) ⊂ U} .

Set ∆n = Pn(∆0) for every n ≥ 1 and let ρn = ρ(zn, π2(∆n)), here π2 is the projection
π2 : (t, z) 7→ z. If λ is chosen sufficiently small, we have

lim
n→∞

|λ|n

ρn
= 0.

The proof of the main theorem is given in section 6. The main point are to combine
Theorem 4.3 and Proposition 5.5 to show wandering vertical Fatou disk can not exist.
We finish section 6 with some remarks around the main theorem. We also show how our
main theorem can be applied to globally defined polynomial skew products in theorem
6.4.
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2. Preliminaries

2.1. Horizontal holomorphic disk and vertical Fatou disk. In this subsec-
tion we make the precise definitions appearing in the statement of Theorem 4.3 and
Proposition 5.5.

Recall that after a local coordinate change our map has the form P : ∆×C→ ∆×C,
here ∆ ⊂ C is a disk centered at 0, such that

P (t, z) = (λt, f(t, z)),
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here f is a polynomial in z with coefficients ai(t) holomorphic in ∆, and ad(0) 6= 0, λ
satisfies 0 < |λ| < 1.

Definition 2.1. • A horizontal holomorphic disk is a subset of the form

{(t, z) ∈ ∆× C | z = φ(t), |t| < δ}

where φ(t) is holomorphic in {|t| < δ} for some δ > 0. δ is called the size of
the horizontal holomorphic disk.

• Let π2 denote the projection to the z-axis, that is

π2 : ∆× C −→ C,
(t, z) 7−→ z.

A subset ∆0 lying in some {t = t0} is called a vertical disk if π2 (∆0) is a disk
in the complex plane. A vertical disk centered at x0 with radius r is denoted by
∆(x0, r). ∆0 is called a vertical Fatou disk if the restriction of {Pn}n≥0 to
∆0 is a normal family.

In the rest of the paper, for a disk on the complex plane centered at z with radius
r, we denote it by D(z, r) to distinguish.

Remark 2.2. A vertical disk contained in a Fatou component of P is a vertical Fatou
disk.

We define a positive real valued function r(z), which measures the horizontal size of
the bulging Fatou components.

Definition 2.3. Let R > 0 be a constant. For z ∈ C satisfying |z| < R and z lying
in the Fatou set of p, we define r(z) to be the supremum of all positive real numbers
r such that there exist a horizontal holomorphic disk passing through z with size 2r,
contained in F (P ) ∩ {|z| ≤ R}.

2.2. Denker-Przytycki-Urbanski’s Lemma. In this subsection we introduce the
work of Denker-Przytycki-Urbanski in [2], and give some corollaries. Denker, Przytycki
and Urbanski consider rational maps on P1, and study the local dynamical behavior of
some neighborhood of a critical point lying in Julia set. As a consequence they deduce
an upper bound of the size of the pre-images of a ball centered at a point in Julia set.

In the following let f be a rational map on P1, denote by C(f) the set of critical
points of f lying in Julia set. Assume that #C(f) = q. We begin with a definition,

Definition 2.4. For a critical point c ∈ C(f), define a positive valued function kc(x)
by

kc(x) =

{− log d(x, c), if x 6= c

∞, if x = c.
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Define a function k(x) by

k(x) = max
c∈C(f)

kc(x).

Here the distance is relative to the spherical metric on P1.

Let x0 be arbitrary and consider the forward orbit {x0, x1, · · · , xn, · · · }, where xn =
fn(x0). We let the function k(x) acts on this orbit and the following DPU Lemma gives
an asymptotic description of the sum of k(x) on this orbit. Recall that q denotes the
number of critical points lying in J .

Lemma 2.5 (Denker, Przytycki, Urbanski). There exist a constant Q > 0 such
that for every x ∈ P1, and n ≥ 0, there exists a subset

{
j1, · · · , jq′

}
⊂ {0, 1, · · · , n}, such

that
n∑
j=0

k(xj)−
q′∑
α=1

k(xjα) ≤ Qn,

here q′ ≤ q is an integer.

Lemma 2.5 implies that in a sense the orbit of a point can not come close to C(f)
very frequently. As a consequence Denker, Przytycki, Urbanski deduce an upper bound
of the size of the pre-images of a ball centered at a point in J(f).

Corollary 2.6 (Denker, Przytycki, Urbanski). There exist s ≥ 1 and ρ > 0
such that for every x ∈ J(f), for every ε > 0, n ≥ 0, and for every connected component
V of f−n(B(x, ε)), one has diam V ≤ snερ.

Corollary 2.7. Let f be a polynomial map in C. For fixed R > 0, there exist s ≥ 1
and ρ > 0 such that for any n ≥ 0 and any z ∈ C satisfying fn(z) ∈ {|z| < R}, we have

d(z, J(f)) ≤ snd(fn(z), J(f))ρ,

where the diameter is relative to the Euclidean metric.

Proof. Since the Euclidean metric and the spherical metric are equivalent on a
compact subset of C, by Corollary 2.6 for fixed R > 0, there exist s ≥ 1 and ρ > 0
such that for every z satisfying z ∈ J(f), 0 < ε ≤ R, n ≥ 0, and for every connected
component V of f−n(D(z, ε)), one has diam V ≤ snερ.

For any z and n satisfy fn(z) ∈ {|z| < R}, let y ∈ J satisfy d(fn(z), J(f)) =
d(y, fn(z)) = ε. For every connected component V of f−n(D(y, 2ε)), one has diam V ≤
sn1 (2ε)ρ, so that

d(z, J(f)) ≤ d(z, f−n(y)) ≤ diam V ≤ sn1 2ρερ.

Set s = 2ρs1 and the proof is complete. �

Remark 2.8. The existence of such a result is intuitive since the Julia set is expected
to be repelling in some sense - however the presence of critical points on J makes it non-
trivial.
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3. Structure of bulging Fatou components

In this section we show that every Fatou component of p in the invariant fiber
is actually contained in a Fatou component of P , which is called a bulging Fatou
component, and in this case we call the Fatou component of p bulges. By Sullivan’s
theorem every Fatou component of p is pre-periodic, it is sufficient to show that every
periodic Fatou component of p is contained in a Fatou component of P . There are three
kinds of periodic Fatou components of p, i.e. attracting basin, parabolic basin and Siegel
disk. For all these three kinds we study the structure of the associated bulging Fatou
components.

We may iterate P many times to ensure that all periodic Fatou components of p are
actually fixed, and all parabolic fixed points have multiplier equals to 1. In the following
of this paper the metric referred to is the Euclidean metric.

3.1. Attracting basin case. In the attracting basin case, assume that we have an
attracting basin B of p in the invariant fiber. Without loss generality we may assume
0 is the fixed point in B, so that (0, 0) becomes a fixed point of P , and p′(0) = λ′ with
|λ′| < 1. We have the following well-known theorem [10].

Theorem 3.1. If P : Ω → Ω is a holomorphic self map, where Ω is an open set of
C2 and (0, 0) ∈ Ω is a fixed point. If all eigenvalues of the derivative DP (0, 0) are less
than 1 in absolute value then P has an open attracting basin at the origin.

In our case we have

DP (0, 0) =

(
λ 0

∂f
∂t (0, 0) λ′

)
,

so that all the all eigenvalues of the derivative DP (0, 0) are less than 1 in absolute value.
As a consequence B is contained in a two dimensional attracting basin of (0, 0), say U ,
so that B bulges.

3.2. Parabolic basin case. In the parabolic basin case suppose 0 is a parabolic
fixed point of p. Assume that p is locally conjugated to z 7→ z+ azs +O(zs+1) for some
s ≥ 2, a 6= 0. We first prove that near the fixed point (0, 0), P is locally conjugated to

(t, z) 7→ (λt, z + azs +O(zs+1)).

where O(zs+1) means there are constant C such that the error term ≤ C|z|s+1, for all
(t, z) in a neighborhood of the origin. Then we prove in this coordinate every parabolic
basin of p bulges.

Lemma 3.2. Assume (0, 0) is a fixed point of P , and |p′(0)| = 1, then there exist a
stable manifold through the origin in the horizontal direction. More precisely, there is a
holomorphic function z = φ(t) defined on a small disk {|t| < δ} such that

φ(0) = 0, and f(t, φ(t)) = φ(λt).

Proof. This is related to the two dimensional Poincaré’s theorem. See [12] Theorem
3.1 for the proof. �
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We have the following theorem which is a special case of [12, §7.2].

Theorem 3.3. We assume that the local skew product is given by

P (t, z) = (λt, z + azs +O(zs+1)),

then there exist a constant δ > 0 and s-1 pairwise disjoint simply connected open sets
Uj ⊂ {|t| < δ} × C, referred to as two dimensional attracting petals, with the following
properties:

(1) P (Uj) ⊂ Uj , points in Uj converge to (0, 0) locally uniformly.

(2) For any point x0 = (t0, z0) such that Pn(x0)→ (0, 0), there exist integer N and
j such that for all n ≥ N either Pn(x0) ∈ Uj or zn = 0.

(3) Uj = {|t| < δ} × (Uj ∩ {t = 0}).

Thus by Theorem 3.3, for fixed j, all the points x0 whose orbit finally lands on Uj
form an open subset Ωj , which is contained in the Fatou set of P . It is obvious that
every parabolic basin of p is contained in one of such Ωj , this implies all parabolic basins
of p bulge.

3.3. Siegel disk case. In the Siegel disk case, we assume that 0 is a Siegel point
with a Siegel disk D ⊂ {t = 0}. We are going to prove that D is contained in a two
dimensional Fatou component.

Theorem 3.4. Assume that p is locally conjugated to z 7→ eiθz with θ an irrational
multiple of π2, then there is a neighborhood Ω of D such that D ⊂ Ω ⊂ C2, and there
exists a biholomorphic map ψ defined on Ω such that

ψ ◦ P ◦ ψ−1(t, z) = (λt, eiθz).

Proof. We may assume that p is conjugated to z 7→ eiθz, then by Lemma 3.2 there
is a stable manifold z = φ(t). A change of variables z 7→ z + φ(t) straightens the stable
manifold so that P is conjugated to

(t, z)→ (λt, eiθz + tg(t, z)),

where g(t, z) is a holomorphic function. By an abuse of notation we rename this map
by P .

Let U be a relatively compact neighborhood of D in C2. Set C = sup |g(t, z)| on U .
Let δ be so small that Cδ

1−δ < dist(D, ∂U), and then Ω = {|t| < δ}×D is an open subset

of U . Let (t0, z0) be an arbitrary initial point in Ω, and denote Pn(t0, z0) by (tn, zn),
then

||zn+1| − |zn|| ≤ |tng(tn, zn)| ≤ C|λ|nδ.
Then we have

||zn| − |z0|| ≤
Cδ

1− δ
+ |z0| ≤ dist(z0, ∂U) + |z0|,
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so that (tn, zn) still lies in U . Thus {Pn} is a normal family on Ω, for the reason that
Pn(Ω) is uniformly bounded.

Thus we can select a sub-sequence {nj} for which the sequence

φt0(z0) = lim
j→∞

e−injθftnj ◦ ftnj−1 ◦ · · · ◦ ft0(z0)

uniformly converges on compact subset of Ω. Thus φt(z) is a holomorphic function on
Ω, and we have

φλt0 ◦ ft0(z0) = eiθφt0(z0)

for every (t0, z0) ∈ Ω. Thus if we let ψ(t, z) = (t, φt(z)), since φ0(z) = z we can shrink
Ω if necessary to make sure that ψ is invertible on Ω, and we have

ψ ◦ P ◦ ψ−1(t, z) = (λt, eiθz).

For every (t, z) ∈ Ω. �

It is obvious that Ω is contained in the Fatou set of P . Since D ⊂ Ω, this implies
that every Siegel disk of p bulges.

3.4. Wandering vertical Fatou disks. We finish section 3 with a definition.

Definition 3.5. A vertical Fatou disk ∆ is called wandering if the forward images
of ∆ do not intersect any bulging Fatou component.

We note that ”wandering” has special meaning in our definition. The definition of
wandering vertical Fatou disk we made here is not equivalent to vertical Fatou disks
containing wandering points.

Remark 3.6. The forward orbit of a wandering vertical Fatou disk clusters only on
J(p).

Proof. This is simply because for every x = (t, z) ∈ ∆, if Pn(x) tends to (0, z0) ∈
F (p) then eventually Pn((t, z)) lands in the bulging Fatou component that contains
(0, z0). This contradicts the fact x lying in a wandering Fatou disk. �

4. Estimate of horizontal size of bulging Fatou components

In this section we deduce an estimate of the horizontal size of the bulging Fatou
components, by applying the one-dimensional DPU Lemma.

In the following we choose R > 0 such that if (t, z) satisfies t ∈ ∆, |z| > R, then
|f(t, z)| ≥ 2|z|. This follows that the line at infinity is super-attracting. Thus for any
holomorphic function φ(t) defined on {|t| < r} such that |φ(t)| ≤ R, we have for all
|t| < r,

(4.1) |φ(t)− φ(0)| ≤ 2R
|t|
r
,

this follows from the classical Schwarz Lemma.

We begin with a lemma.



38 2. STRONGLY ATTRACTING SKEW PRODUCTS

Lemma 4.1. Let Crit(P ) =
{

(t, z)| ∂f∂z (t, z) = 0
}

, then there exist constants 0 <

δ1 < 1 and K > K1 > 0 such that any connected component Ck of Crit(P ) ∩ {|t| < δ1}
intersects the line {t = 0} in a unique point, say ck, and for any point x = (t, z) ∈
Crit(P ), say x ∈ Ck, we have

(4.2) |z − ck| ≤ K1|t|
1
d1 .

and

(4.3) |f(t, z)− p(ck)| ≤ K|t|
1
d1 ,

where ck = Ck ∩ {t = 0}, and d1 is the maximal multiplicity of critical points of p.

Proof. Since Crit(P ) is an analytic variety, by Weirstrass preparation theorem we
can let δ1 < 1 small enough so that Crit(P ) ∩ {|t| < δ1} = ∪lk=1Ck where Ck, 1 ≤ k ≤ l
are local connected analytic sets, Ck ∩ {t = 0} = {ck}. For each fixed component C
intersect {t = 0} at c, C is given by the zero set of a Weirstrass polynomial,

C = {(t, z) ∈ {|t| < δ1} × C, g(t, z) = 0} ,
where g(t, z) = (z − c)m + am−1(t)(z − c)m−1 + · · · + a0(t) is a Weirstrass polynomial,
m ≤ d1 is an integer, ai(t) are holomorphic functions in t satisfying |ai(t)| ≤ M |t| for
some constant M > 0 .

We show that

|z − c| ≤ mM |t|
1
m .

We argue by contradiction. Suppose there exist a point (t0, z0) ∈ C such that |z0−c|
|t0|

1
m

=

a > mM , then we have

|z0 − c|m = am|t0|,
and

|am−1(t0)(z0 − c)m−1 + · · ·+ a0(t0)| ≤ mMam−1|t0|.(4.4)

Thus we have |z0 − c|m > |am−1(t0)(z0 − c)m−1 + · · · + a0(t0)|, which contradicts to
(t0, z0) ∈ C . Setting K1 = 2d1M we get (4.2).

Let Ω be a relatively compact open set that contains Crit(P ) ∩ {|t| < δ1}. Let

M ′ = max

{∣∣∣∣∂f∂z
∣∣∣∣ , ∣∣∣∣∂f∂t

∣∣∣∣ : (t, z) ∈ Ω

}
.

Then for (t, z) ∈ Ck we have

|f(t, z)− p(ck)| ≤M ′|t|+M ′|z − ck|

≤M ′(1 +K1)|t|
1
d1 .

To get (4.3) we set K = 2 max {M ′(1 +K1), 2R}. Thus the proof is complete. �

Remark 4.2. We note that K1 and K are invariant under a local coordinate change
of the form t 7→ φ(t) with φ(0) = 0 and φ′(0) = 1. To see this let ai(t) be the coefficients
of the Weirstrass polynomial, the coordinate change t 7→ φ(t) with φ′(0) = 1 takes ai(t)
become ai(φ(t)). We have |ai(φ(t)| ≤ 2M |t| by shrinking δ1(φ) if necessary , then we get
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(4.2) with the same constant K1 (this is the reason for the constant 2 in definition of
K1). By shrinking δ1(φ) we see that Ω and R are invariant, and

max

{∣∣∣∣∂f(φ(t), z)

∂z

∣∣∣∣ , ∣∣∣∣∂f(φ(t), z)

∂t

∣∣∣∣ : (t, z) ∈ Ω

}
≤ 2M ′.

By the same reason we get (4.3) with the same constant K.

We are going to prove the following estimate of r(z) under the assumption that the
multiplier λ is sufficiently small.

Theorem 4.3. There exist a constant λ1 = λ1(f) > 0 such that for fixed |λ| < λ1,
there are constants k > 0, l > 0 such that for any point z ∈ F (p) ∩ {|z| < R},

r(z) ≥ k d(z, J(p))l,

here J(p) is the Julia set of p in the invariant fiber. Furthermore l depends only on p.

We would like to give an outline of the proof of Theorem 4.3 first. Since there are
only finitely many invariant Fatou components of p, and every Fatou component is pre-
periodic to one of them, it is enough to prove Theorem 4.3 holds for z in the basin of
an invariant Fatou component. To do this, we first fix an invariant Fatou component
U , and we prove Theorem 4.3 holds for a subset W satisfying ∪∞i=0p

−i(W )= the basin
of U , this is the first step. In step 2, we use the following Pull Back Lemma to get the
relation between r(z) and r(p(z)), together with the DPU Lemma we are able to give
the estimate for the points in p−i(W ), for every i. We start with the Pull Back Lemma.

Lemma 4.4 (Pull Back lemma). There exist a constant 0 < ε < 1, such that if we
let

V = {z ∈ F (p), d(z, J(p)) < ε} ,
then for any z0 ∈ F (p) ∩ {|z| < R} such that p(z0) ∈ V , at least one of the following
holds:

(4.5) r(z0) ≥ α

|λ|
r(p(z0))d(z0, C(p))d1(d1+1);

or

(4.6) r(z0) ≥ β d(z0, J(p))d1(d1+1).

Here α, β are positive constants only depending on p and the constant K from Lemma
4.1, and C(p) is the set of critical points lying in J(p).

Proof. Let Crit(p) be the set of critical points of p, We choose ε small such that
p(z) ∈ V implies d(z, p(C(p))) = d(z, p(Crit(p)). Let φ be the associated holomorphic
function with respect to p(z0) with size r(p(z0)). We are going to show that the critical
value set of P does not intersect the graph of φ when the domain of φ is small .

Suppose x′ = (t′, z′) lies in Crit(P ) satisfying t′ < r(z0) and P (x′) lying in the graph
of φ. then by Lemma 4.1 the connected component of Crit(P ) containing x′ intersects



40 2. STRONGLY ATTRACTING SKEW PRODUCTS

{t = 0} at a unique point c. Then we have

d(p(z0), p(C(p)) ≤ |p(z0)− p(c)|
= |φ(0)− φ(λt′) + f(t′, z′)− p(c)|
≤ |φ(0)− φ(λt′)|+ |f(t′, z′)− p(c)|

≤ K |λt′|
r(p(z0))

+K|t′|1/d1 .(4.7)

(4.7) holds by applying Lemma 4.1 and inequality (4.1).

Now there are two possibilities,

(a) If |λt′|
r(p(z0)) ≥ 1, then

|t′| ≥ r(p(z0))

|λ|
.

(b) If |λt′|
r(p(z0)) < 1, then

|λt′|
r(p(z0))

≤ |λt′|1/d1
r(p(z0))1/d1

,

so that by (4.7) we have

d(p(z0), p(C(p)) ≤ K |λt′|1/d1
r(p(z0))1/d1

+K|t′|1/d1 .

For case (b), there are two subcases,

(b1) If r(p(z0)) ≤ |λ|, then

d(p(z0), p(C(p)) ≤ 2K
|λt′|1/d1

r(p(z0))1/d1
,

by applying the fact that there is a constant c = c(p) > 0 such that d(p(z0), p(C(p)) ≥
c d(z0, C(p))d1+1 we have

|t′| ≥ α

|λ|
r(p(z0))d(z0, C(p))d1(d1+1),

where α =
(
c

2K

)d1 .

(b2) If r(p(z0)) > |λ|, then

d(p(z0), p(C(p)) < 2K|t′|1/d1 .

Thus we have

|t′| >
(

1

2K

)d1
d(p(z0), J(p))d1 .

By applying the fact that there is a constant c = c(p) > 0 such that d(p(z0), J(p)) ≥
cd(z0, J(p)d1+1, we get

|t′| ≥ β d(z0, J(p))d1(d1+1).

where β = c
(
c

2K

)d1 .
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We can let α small enough such that actually αd(z0, C(p))d1(d1+1) < 1, thus for case
(b1) we have

α

|λ|
r(p(z0))d(z0, C(p))d1(d1+1) ≤ r(p(z0))

|λ|
,

thus case (a) is actually contained in case (b1).

In either case (b1) or (b2) we get a lower bound on t′. Thus for any t which does not
exceed that lower bound, φ(λt) is not a critical value of ft and so all branches of f−1

t are
well defined and holomorphic in a neighborhood of the graph of φ. Therefore, choose gt
to be the branch of f−1

t for which g0(f0(z)) = z, then the function ψ(t) = gt(φ(λt)) is
well defined from t = 0 up to |t| < η satisfying ψ(0) = z0 and the graph of ψ containing
in the Fatou set, where η is the lower bound from (4.5) and (4.6). We know that ψ is
also bounded by R, since otherwise φ would not be bounded by R. To avoid the case
|t′| ≥ δ1, we can shrink β such that β d(z0, J(p))d1(d1+1) < δ1 for all z0. Thus |t′| ≥ δ1

implies |t′| ≥ β d(z0, J(p))d1(d1+1). Thus at least one of (4.5) and (4.6) holds.

�

Proof of Theorem 4.3. In the following we fix an invariant Fatou component U of
p, denote the basin of U by B (If B is the basin of infinity we let B be contained in
{|z| < R} ). We can shrink ε to ensure that the set {z ∈ B, d(z, J(p)) < 2ε} is contained
in {|z| < R}. In either case we first construct a subset W of B, satisfies the following
conditions,

(1) W eventually traps the forward orbit of any point in B.

(2) W contains the compact subset {z ∈ B, d(z, J(p)) ≥ ε}.

(3) Theorem 4.3 holds for z ∈W .

Finally we use the Pull Back Lemma to prove Theorem 4.3 holds for z ∈ B.

Step 1: Construction of W . We split the argument in several cases.

• U is an immediate attracting basin. Let ω ⊂ U be a compact neighborhood of the
attracting fixed point. We set W = {z ∈ B, d(z, J(p)) ≥ ε} ∪ ω, then W automatically
satisfies (1) and (2). Since W is also compact and contained in F (P ), there is a lower
bound a > 0 such that r(z) ≥ a for every z ∈ W . So there exist k > 0 such that
r(z) ≥ k d(z, J(p)) for z ∈W .

• U is the attracting basin of ∞. We set W = {z ∈ B, d(z, J(p)) ≥ ε}, then W
automatically satisfies (1) and (2). There is a lower bound a > 0 such that r(z) ≥ a for
every z ∈W . So there exist k > 0 such that r(z) ≥ k d(z, J(p)).

• U is an immediate parabolic basin. Let Q be the associated attracting petal of
Theorem 3.3. We set W = {z ∈ B, d(z, J(p)) ≥ ε} ∪ Q, then W automatically satisfies
(1) and (2). By Theorem 3.3 there is a lower bound a > 0 such that r(z) ≥ a for every
z ∈ P . Thus there is a lower bound b > 0 such that r(z) ≥ b for every z ∈ W . So there
exist k > 0 such that r(z) ≥ k d(z, J(p)).
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• U is a Siegel disk. We set W = U ∪ {z ∈ B, d(z, J(p)) ≥ ε}, then W automatically
satisfies (1) and (2). To prove (3), it is enough to prove (3) for z ∈ U .

Lemma 4.5. Let U be a Siegel disk, then there are constants k > 0, l > 0 such that
for any point z ∈ U ,

r(z) ≥ k d(z, J(p))l.

Further more l only depends on p.

Proof. Since the technique of the proof is similar to that of Theorem 4.3, we post-
pone the proof to the end of this subsection. �

Step 2: Pull back argument.

We already have the estimate for z ∈ W . For every z0 ∈ B\W , let {zi}i≥0 be its
forward orbit, and let n be the smallest integer such that zn lies in W . Let m be the
smallest integer such that case (4.5) does not happen, if this m dose not exist, let m = n,
in either case we have

r(zm) ≥ k d(zm, J(p))l,

for some k, l > 0, and for all zi, 0 ≤ i ≤ m− 1, we have

(4.8) r(zi) ≥
α

|λ|
r(zi+1))d(zi, C(p))d1(d1+1).

By (4.8) we have

log r(zi) ≥ log r(zi+1) + log d(zi, C(p))d1(d1+1) + log
α

|λ|

= log r(zi+1)− d1(d1 + 1)k(zi) + log
α

|λ|
,

for all 0 ≤ i ≤ m− 1, where k(zi) is as in Lemma 2.5.

Thus we have

log r(z0) ≥ log r(zm)− d1(d1 + 1)

m−1∑
i=0

k(zi) +m log
α

|λ|
.

By Lemma 2.5 there exist a subset
{
i1, · · · , iq′

}
⊂ {0, 1, · · · ,m− 1} such that

m−1∑
i=0

k(zi)−
q′∑
α=1

k(ziα) ≤ Qm.

Therefore we have

log r(z0) ≥ log r(zm)− d1(d1 + 1)

q′∑
α=1

k(ziα)− d1(d1 + 1)Qm+m log
α

|λ|

≥ log r(zm) + d1(d1 + 1)

q′∑
α=1

log d(ziα , J(p))− d1(d1 + 1)Qm+m log
α

|λ|
.(4.9)
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By Corollary 2.7 we have for each iα,

log d(ziα , J(p)) ≥ 1

ρ
log d(z0, J(p))− 1

ρ
iα log s

≥ 1

ρ
log d(z0, J(p))− 1

ρ
m log s.

Likewise we have,

log r(zm) ≥ log k + l log d(zm, J(p))

≥ log k +
l

ρ
log d(z0, J(p))− l

ρ
m log s.

Thus applying the estimates of log d(ziα , J(p)) and log r(zm) to (4.9) gives

log r(z0) ≥ log r(zm) + d1(d1 + 1)

q′∑
α=1

log d(ziα , J(p))− d1(d1 + 1)Qm+m log
α

|λ|

≥ log k +
l + qd1(d1 + 1)

ρ
log d(z0, J(p))− l + qd1(d1 + 1)

ρ
m log s− d1(d1 + 1)Qm+m log

α

|λ|
.

Let us now fix λ1 so small such that

(4.10) log
α

λ1
≥ l + qd1(d1 + 1)

ρ
log s+ d1(d1 + 1)Q,

then for every |λ| < λ1 we have

log r(z0) ≥ log k +
l + qd1(d1 + 1)

ρ
log d(z0, J(p)),

which is equivalent to

r(z0) ≥ k d(z0, J(p))l
′
,

where l′ = l+qd1(d1+1)
ρ .

We have shown that there are constants k > 0, l′ > 0 such that r(z) ≥ k d(z, J(p))l
′

for z ∈ B, and l′ only depends on p, this finishes the proof of Theorem 4.3. �

Proof of Lemma 4.5 It is enough to prove the estimate for an invariant subset Uε ⊂
U\ {z ∈ B, d(z, J(p)) ≥ ε}. First note that the conclusion of Lemma 4.4 holds for all
z0 ∈ Uε, since for all z0 ∈ Uε the condition p(z0) ∈ V holds. Since U is a Siegel disk, the
forward orbit {zn}n≥0 lies in a compact subset S of U , where zn = pn(z0). Thus there

is a lower bound a > 0 such that r(z) ≥ a for z ∈ S, a depending on S. By Lemma 4.4
there are two cases,

(1) There is no such integer n that r(zn) ≥ β d(zn, J(p))(d1+1)d1 , thus all zn satisfy

r(zn) ≥ α
|λ|r(zn+1)d(zn, C(p))d1(d1+1).

(2) There is an integer n such that r(zn) ≥ β d(zn, J(p))d1(d1+1).
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In case (1) for every i ≥ 0

log r(zi) ≥ log r(zi+1) + log d(zi, C(p))d1(d1+1) + log
α

|λ|

= log r(zi+1)− d1(d1 + 1)k(zi) + log
α

|λ|
.

Thus we have for every n ≥ 0,

log r(z0) ≥ log r(zn)− d1(d1 + 1)
n−1∑
i=0

k(zi) + n log
α

|λ|

≥ log a+
qd1(d1 + 1)

ρ
log d(z0, J(p))− qd1(d1 + 1)

ρ
n log s− d1(d1 + 1)Qn+ n log

α

|λ|
.

Let us now fix |λ1| so small such that

(4.11) log
α

λ1
≥ l + qd1(d1 + 1)

ρ
log s+ d1(d1 + 1)Q+ 1,

thus for every |λ| < λ1 we have

log r(z0) ≥ log a+
qd1(d1 + 1)

ρ
log d(z0, J(p)) + n.

Let n → ∞ then r(z0) can be arbitrary large, which is a contradiction, thus actually
case (1) can not happen.

For the case (2), the proof is same as the proof of Theorem 4.3, thus the proof is
complete. �

Remark 4.6. The constant λ1 appearing in Theorem 4.3 is invariant under local
coordinate change t 7→ φ(t) with φ(0) = 0 and φ′(0) = 1. To see this from Lemma 4.4
and Remark 4.2 we know that α is invariant since it only depends on p and K. By
(4.10) and (4.11) λ1 only depends on α and p, hence λ1(f) is invariant.

5. Estimate of size of forward images of vertical Fatou disks

In this section we adapt the DPU Lemma to the attracting local polynomial skew
product case, to show that the size of forward images of a wandering vertical Fatou disk
shrinks slowly. We begin with two classical lemmas. We follow Lilov’s presentation.

Lemma 5.1. There exist c0 > 0 depending only on p and δ2 > 0 such that when
|t0| < δ2, let ∆(x, r) ⊂ {t = t0} be an arbitrary vertical disk, then P (∆(x, r)) contains a
disk ∆(P (x), r′) ⊂ {t = λt0} of radius ≥ c0r

d.

Proof. For fixed x = (t, z) satisfying |t| < δ2, z ∈ C, and for fixed r > 0, define a
function

ft,z,r(w) =
1

rMt,z.r
(ft(z − rw)− ft(z))

which is a polynomial defined on the closed unit disk D(0, 1). The positive number
Mt,z,r is defined by

Mt,z,r = sup
w∈π2(∆(x,r))

|f ′t(w)|.
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Let A be the finite dimensional normed space containing all polynomials with degree
≤ d on D(0, 1), equipped with the uniform norm. Since |f ′t,z,r(w)| ≤ 1 on D(0, 1), the

family
{
f ′t,z,r

}
is bounded in A. Notice that ft,z,r(0) = 0, so that {ft,z,r} is also bounded

in A. The closure of {ft,z,r} contains no constant map since the derivative of constant
map vanishes. but supD(0,1) |f ′t,z,r(w)| = 1.

Now suppose that there is a sequence {ftn,zn,rn} such that ftn,zn,rn(D(0, 1)) does not
contains D(0, δn), with δn → 0. We can take a sub-sequence ftn,zn,rn → g , where g is
a non-constant polynomial map with g(0) = 0. Therefore by open mapping Theorem
g(D(0, 1

2)) contains D(0, δ) for some δ > 0. Then for n large enough ftn,zn,rn(D(0, 1))
also contains D(0, δ), which is a contradiction. Therefore for all parameter {t, z, r},
ft,z,r(D(0, 1)) contain a ball D(0, δ), which is equivalent to say that

(5.1) ∆(P (x), δrMt,z,r) ⊂ P (∆(x, r)).

Next we estimate Mt,z,r from below. Let z1(t), z2(t), ..., zd−1(t) be all zeroes of f ′t(z).
Then f ′t(z) = dad(t)(z − z1(t)) · · · (z − zd−1(t)). We choose δ2 small such that c0 =
inf |t|≤δ2 |dad(t)| > 0. Then we have

Mt,z,r = sup
w∈π2(∆(x,r))

|f ′t(w)| = sup
w∈π2(∆(x,r))

|dad(t)(z − z1(t)) · · · (z − zd−1(t))|

≥ c0r
d−1 sind−1 π2

d− 1
,

this with (5.1) finishes the proof. �

Lemma 5.2. There exist 0 < c < c0, δ2 > 0 such that if a vertical disk ∆(x, r) ⊂
{t = t0} satisfies ∆(x, r) ⊂ {|z| < R}, |t0| < δ2 and η = d(∆(x, r), {t = t0}∩Crit(P )) >
0, then P (∆(z, r)) contains a disk ∆(P (x), r′) ⊂ {t = λt0} of radius ≥ cη2d−2r.

Proof. Let V = {x0 = (t0, z0) : |t0| < δ2, |z0| < R, d(x0, {t = t0} ∩ Crit(P )) > η},
and set

M1 = inf
V

∣∣∣∣∂f∂z
∣∣∣∣ > 0, M2 = sup

V

∣∣∣∣∂2f

∂z2

∣∣∣∣ <∞,
here M1 depends on η but M2 does not.

Thus for ∆(x0, r) ⊂ {t = t0} satisfying ∆(x0, r) ⊂ {|z| < R} and η = d(∆(x0, r), {t = t0}∩
Crit(P )) > 0, we have ∆ = ∆(x0, r) ⊂ V ∩ {t = t0}. Pick an arbitrary a in the interior
of π2(∆). Then for all z ∈ ∂π2(∆), we let

h(z) = ft0(z)− ft0(a) = f ′t0(z)(z − a) +
1

2
(z − a)2g(z).

We know g(z) satisfies |g(z)| ≤M2, so that

|f ′t0(z)(z − a)| ≥M1|z − a| ≥M1
|z − a|2

2r
.

In the case r ≤ M1
2M2

we have

|f ′t0(z)(z − a)| ≥M2|z − a|2 >
1

2
|(z − a)2g(z)|.
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Thus by Rouché’s Theorem the function h(z) has the same number of zero points as
f ′t0(z)(z−a), thus h(z) has exactly one zero point {z = a} . Since a ∈ π2(∆) is arbitrary
we have ft0 is injective on ∆. The classical Koebe’s one-quarter Theorem shows that
P (∆(x0, r)) contains a disk with radius at least

(5.2)
1

4

∣∣∣∣∂ft0∂z
(z0)

∣∣∣∣ r.
Now we estimate

∣∣∣∂ft0∂z (z0)
∣∣∣ from below. Let z1(t), z2(t), ..., zd−1(t) be all zeroes of

f ′t(z). Then f ′t(z) = dad(t)(z − z1(t)) · · · (z − zd−1(t)). We choose δ2 such that c0 =
inf |t|≤δ2 |dad(t)| > 0. We have for every 1 ≤ i ≤ d− 1, |z0 − ai(t0)| ≥ η. Thus we have∣∣∣∣∂ft0∂z

(z0)

∣∣∣∣ = |dad(t0)(z0 − z1(t0)) · · · (z0 − zd−1(t0))| ≥ c0η
d−1,

this with (5.2) gives

r′ ≥ 1

4
c0η

d−1r.

In the case r ≥ M1
2M2

, by the same argument we have

(5.3) r′ ≥ 1

4
c0η

d−1 M1

2M2
≥ 1

8M2
c2

0η
2d−2.

Setting c = 1
2 min

{
c0

4Rd−1 ,
1

8RM2
c2

0

}
we get the conclusion.

Remark 5.3. We note that c is invariant under a local coordinate change of the
form t 7→ φ(t) with φ(0) = 0 and φ′(0) = 1. To see this, we know c0 and R are invariant
under a local coordinate change of the form t 7→ φ(t) with φ(0) = 0 and φ′(0) = 1, and
by shrinking δ2(φ) we have

sup
V

∣∣∣∣∂2f(φ(t), z)

∂z2

∣∣∣∣ ≤ 2M2,

thus from (5.3) and c = 1
2 min

{
c0

4Rd−1 ,
1

8RM2
c2

0

}
we get that c is invariant.

�

Now we show that the size of forward images of a wandering vertical Fatou disk
shrinks slowly. We begin with a definition.

Definition 5.4. Define the inradius ρ as follows: for a domain U ⊂ C, for every
z ∈ U ⊂ C, define

ρ(z, U) = sup {r > 0| D(z, r) ⊂ U} ,
here D(z, r) is a disk centered at z with radius r.

Proposition 5.5. Let ∆0 ⊂ {t = t0} be a wandering vertical Fatou disk centered at
x0 = (t0, z0). Let xn = (tn, zn) = Pn(x0). Set ∆n = Pn(∆0) for every n ≥ 1 and let
ρn = ρ(zn, π2(∆n)). There is a constant λ2(f) such that for fixed |λ| < λ2, we have

lim
n→∞

|λ|n

ρn
= 0.
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Proof. Let λ3 be a positive constant to be determined. It is sufficient to prove
the result by replacing ∆n by ∆n ∩∆(xn, λ

n+1
3 ). In the following we let ∆n always be

contained in ∆(xn, λ
n+1
3 ).

Without loss generality we can assume that |t0| < min {δ1, δ2, λ3}, where δ1 is the
constant in Lemma 4.1 and δ2 is the constant in Lemma 5.1 and Lemma 5.2 . Let N be
a fixed integer such that N > dq + 1, where q is the number of critical points lying in
J(p). Let K = {|t| < min {δ1, δ2, λ3}} × {|z| < R} be a relatively compact subset of C2

such that for (t, z) /∈ K, |f(t, z)| ≥ 2|z|. Since the orbits of points in ∆0 cluster only on
J(p),we have ∆n ⊂ K for every n . We need the following lemma:

Lemma 5.6. There is a constant M > 0 that if |λ| < λ3, for every n and for every
x′ = (tn, wn) ∈ ∆n, for every integer m, letting (tn+m, wn+m) = Pm(x′) we have,

(5.4) |wn+m − pm(zn)| ≤Mmλn+1
3 .

Proof. We prove it by induction. Let M satisfying for (t, z) ∈ K,
∣∣∣∂f(t,z)

∂t

∣∣∣ ≤ M
2

and
∣∣∣∂f(t,z)

∂z

∣∣∣ ≤ M
2 . We can also assume M is larger than the constant K in Lemma 4.1.

Thus For m = 0 it is obviously true. Assume that when m = k − 1 is true, we have

|wn+k − pk(zn)| = |f(tn+k−1, wn+k−1)− f(0, pk−1(zn))|

≤ M

2
|tn+k−1|+

M

2
|wn+k−1 − pk−1(zn)|

≤ M

2
|λ|n+1 +

Mk

2
λn+1

3

≤Mkλn+1
3 .

Thus for every m, (5.4) holds. �

Remark that when wn = zn, the same argument gives

|zn+m − pm(zn)| ≤Mm|λ|n+1.

Let C(P ) be the union of components of Crit(P ) such that meet C(p) = Crit(p)∩J(p)
in the invariant fiber. For every point x ∈ ∆n, we define k(x) = − log d(x,C(P ) ∩
{t = tn}), and kn = supx∈∆n

k(x). (This definition allows kn = +∞.) Recall that N is
a fixed integer such that N > dq + 1. We are going to prove a two dimensional DPU
Lemma for attracting polynomial skew products:

Lemma 5.7 (Two Dimensional DPU Lemma). Let |λ| < λ3, then for every
Nk ≤ n < Nk+1, there is a subset{

α1, · · · , αq′
}
⊂
{
Nk − 1, Nk, · · · , n− 1

}
and a constant Q > 0 such that

(5.5)

n−1∑
i=Nk−1

ki −
q′∑
i=1

kαi ≤ Q(n−Nk + 1),
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here k is an arbitrary integer, q′ ≤ q is an integer. Recall that q is the number of critical
points lying in J(p).

Proof. Recall that the DPU Lemma implies that there is a subset{
α1, · · · , αq′

}
⊂
{
Nk − 1, Nk, · · · , n− 1

}
and a constant Q > 0 such that

(5.6)
n−1∑

i=Nk−1

k(pi−N
k+1(zNk−1))−

q′∑
j=1

k(pαj−N
k+1(zNk−1)) ≤ Q

2
(n−Nk + 1).

So it is sufficient to prove ki ≤ 2k(pi−N
k+1(zNk−1)) for every i not appearing in{

α1, . . . , αq′
}

. This is equivalent to

(5.7) d(∆i, C(P ) ∩ {t = ti}) ≥ d(pi−N
k+1(zNk−1), C(p))2.

To prove (5.7), assume that d(pi−N
k+1(zNk−1), C(p)) = d(pi−N

k+1(zNk−1), ck) for some
point ck ∈ C(p), let Ck be the component of C(P ) which meats ck at invariant fiber, by
(5.4) and Lemma 4.1 we have

d(∆i, C(P ) ∩ {t = ti}) ≥ d(pi−N
k+1(zNk−1), C(p))− sup

x′∈∆i

|π2(x′)− pi−Nk+1(zNk−1)| − |wi − ck|

≥ d(pi−N
k+1(zNk−1), C(p))−M i−Nk+1λN

k

3 −M |λ|
Nk

d1 ,

where wi is π2(Ck ∩ {t = ti}).
By |λ| < λ3 we have

M i−Nk+1λN
k

3 +M |λ|
Nk

d1 =
(
M i−Nk+1 +M

)
λ
Nk

d1
3 .

Thus we have

d(∆i, C(P ) ∩ {t = ti}) ≥ d(pi−N
k+1(zNk−1), C(p))−

(
M i−Nk+1 +M

)
λ
Nk

d1
3 .

To prove (5.7) it is sufficient to prove

(5.8)
(
M i−Nk+1 +M

)
λ
Nk

d1
3 ≤ d(pi−N

k+1(zNk−1), C(p))− d(pi−N
k+1(zNk−1), C(p))2.

By (5.6) we have

d(pi−N
k+1zNk−1, C(p)) ≥ e−

Q
2

(n−Nk+1),

thus it is sufficient to prove

(5.9) (Mn−Nk+1 +M)λ
Nk

d1
3 ≤ e−

Q
2

(n−Nk+1) − e−Q(n−Nk+1).

We can always choose λ3 sufficiently small to make (5.9) holds for all k ≥ 0. This ends
the proof of the two dimensional DPU Lemma (5.5). �
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By Lemma 5.1 and Lemma 5.2 there is a constant c > 0 such that

(5.10) ρn+1 ≥ ce−(2d−2)knρn.

and

(5.11) ρn+1 ≥ cρdn.

From the above we can now give some estimates of ρn. Recall that ρn is assumed smaller
than |λ3|n+1 otherwise we replace it by min

{
ρn, λ

n+1
3

}
.

Lemma 5.8. There is a constant c1 > 0 such that for Nk ≤ n < Nk+1, we have

ρn ≥ cN
k

1 ρd
q

Nk−1.

Proof. For Nk ≤ i ≤ n, if i − 1 ∈ {α1, · · · , αq} we apply inequality (5.10), if
i /∈
{
α1, · · · , αq′

}
we apply inequality (5.11). Thus we have

ρn ≥ cn−αq′+1 exp

−(2d− 2)
n∑

j=αq′+1

kj


· · ·

cα1−Nk+1 exp

−(2d− 2)

α1−1∑
j=Nk−1

kj

 ρNk−1

d

· · ·


d

≥ c(n−Nk+1)dq exp

−dq n−1∑
j=Nk−1

ki + dq
q′∑
j=1

kαj

 ρd
q

Nk−1 (because q′ ≤ q)

≥ c(n−Nk+1)dq exp
(
−Qdq

(
n−Nk + 1

))
ρd

q

Nk−1 (by Lemma 5.7)

≥ cNk+1dq exp
(
−QdqNk+1

)
ρd

q

Nk−1.

Setting c1 = min
{
cNd

q
e−QNd

q
, λ3

}
we get the desired conclusion. �

Lemma 5.9. For Nk ≤ n < Nk+1, ρ0 ≤ λ3 we have

ρn ≥ cN
k+1

1 ρd
q(k+1)

0 .

Proof. By iterating Lemma 5.8 we get that

ρNk−1 ≥ c
Nk−dqk
N−dq

1 ρd
qk

0 ≥ cNk

1 ρd
qk

0 ,

so that

ρn ≥ cN
k

1 ρd
q

Nk−1 ≥ c
Nk+1

1 ρd
q(k+1)

0 ,

this finishes the proof. �

Now we can conclude the proof of Proposition 5.5. For Nk ≤ n < Nk+1 we get

|λ|n

ρn
≤ |λ|Nk

cN
k+1

1 ρd
q(k+1)

0

.

Choosing λ2 small such that

(5.12) λ2 < cN1 ,



50 2. STRONGLY ATTRACTING SKEW PRODUCTS

since N > dq + 1 we deduce that for every |λ| < λ0,

lim
k→∞

|λ|Nk

cN
k+1

1 ρd
q(k+1)

0

= 0,

finally limn→∞
|λ|n
ρn

= 0, which finishes the proof.

�

Remark 5.10. The constant λ2 appearing in Proposition 5.5 is invariant under
a local coordinate change of the form t 7→ φ(t) with φ(0) = 0 and φ′(0) = 1. To
see this we know that by (5.9) λ3 depends only on M and p, M can be dealt with by
replacing it everywhere by 2M (see Remark 4.2), so that λ3 is invariant. By putting
c1 = min

{
cNd

q
e−QNd

q
, λ3

}
we get that c1 is invariant. Then by (5.12) we get that λ2 is

invariant.

Corollary 5.11. In the same setting as Proposition 5.5, for every l > 0, if λ is
chosen sufficiently small, we have

lim
n→∞

|λ|n

ρln
= 0.

Proof. By Proposition 5.5 if |λ| < λ2, then limn→∞
|λ|n
ρn

= 0 holds. For any l > 0,

we then let |λ| smaller than λl2 to make the conclusion holds. �

6. Proof of the non-wandering domain theorem

In this section we prove the non-existence of wandering Fatou components. Let us
recall the statement

Theorem 6.1 (No wandering Fatou components). Let P be a local polynomial
skew product with an attracting invariant fiber,

P (t, z) = (λt, f(t, z)).

Then for any fixed f , there is a constant λ0(f) > 0 such that if λ satisfies 0 < |λ| < λ0,
every forward orbit of a vertical Fatou disk intersects a bulging Fatou component. In
particular every Fatou component iterates to a bulging Fatou component, and there are
no wandering Fatou components.

Proof. We argue by contradiction. Suppose ∆0 ⊂ {t = t0} is a vertical disk lying
in a Fatou component which does not iterate to a bulging Fatou component. Without
loss generality we may assume |t0| < min {1, δ1, δ2, λ3}. By Remark 2.2, ∆0 is a vertical
Fatou disk. Let x0 = (t0, z0) ∈ ∆0 be the center of ∆0 and set xn = (tn, zn) = Pn(t0, z0)
and ∆n = Pn(∆0). We divide the proof into several steps, We set ρn = ρ(zn, π2(∆n))
as before and assume that ρ0 ≤ λ3. Notice that ∆0 can not be contained in the basin of
infinity, thus ∆n is uniformly bounded. Let λ0 < min

{
λ1, λ

l
2

}
, where λ1 and λ2 come

from Theorem 4.3 and Proposition 5.5. In the course of the proof we will have to shrink
λ0 one more time.
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• Step 1. By Remark 3.6, the orbits of points in ∆0 cluster only on J(p).

• Step 2. We show that there exist N0 > 0 such that when n ≥ N0, the pro-
jection π2

(
∆(xn,

ρn
4 )
)

intersects J(p). We determine N0 in the following. Suppose

π2

(
∆(xn,

ρn
4 )
)

does not intersect J(p). Thus zn ∈ F (p) and Theorem 4.3 implies

r(zn) ≥ k d(zn, J(p))l, then we have

|tn|
r(zn)

≤ |tn|
k d(zn, J(p))l

≤ 4l|tn|
k ρln

.

By Corollary 5.11 we can let N0 large enough so that for all n ≥ N0, 4l|tn|
k ρln

< 1. From

the definition of r(zn) we get a horizontal holomorphic disk defined by φ(t), |t| < r(zn)
contained in the bulging Fatou components, with φ(0) = zn, and tn is in the domain of
φ. Then we have

|φ(tn)− zn| = |φ(tn)− φ(0)| ≤ 2R
|tn|
r(zn)

≤ 2R
|tn|

k d(zn, J(p))l
≤ 2R

4l|tn|
k ρln

.

Again by Corollary 5.11, we can let N0 large enough that for all n ≥ N0, 2R 4l|tn|
k ρln

< ρn
4 .

Thus φ(tn) ∈ ∆(xn,
ρn
4 ) ⊂ ∆n. Since φ(tn) is contained in the bulging Fatou components

that contains zn, this implies ∆n intersects the bulging Fatou component so it can not
be wandering. This contradiction shows that π2

(
∆(xn,

ρn
4 )
)

intersects J(p).

Let yn ∈ ∆n satisfies π2 (yn) ∈ π2

(
∆(xn,

ρn
4 )
)
∩ J(p), then for all x ∈ ∆(yn,

ρn
4 ) we

have ρ(π2(x), π2(∆n)) ≥ ρn
2 .

• Step 3. We show that there is an integer N1 > N0 such that for every x ∈ ∆(yN1 ,
ρN1

4 ),

for every m ≥ 0, pm(π2(x)) ∈ π2(∆m+N1), here π2 (yN1) ∈ π2

(
∆(xN1 ,

ρN1
4 )
)
∩ J(p).

This means that the orbit of π2(x) is always shadowed by the orbit of ∆N1 , which will
contradict the fact that π2(∆m+N1) intersects J(p). To show this, we inductively prove
the more precise statement that for fixed N > dq +1, there exist a large N1 = Nk0−1 >
N0, such that for every k ≥ k0, Nk ≤ n < Nk+1, we have

(6.1) pn−N1(π2(x)) ∈ π2(∆n)

and

(6.2) ρ′n ≥ cN
k+1

2 ρd
q(k+1)

0 ,

where ρ′n = ρ(pn−N1(π2(x)), π2(∆n), c2 = c1
2 comes from Lemma 5.8 and Lemma 5.9.

We will determine k0 in the following.

From Lemma 5.9 we know that (6.1) and (6.2) hold for n = N1. Assume that for
some k ≥ k0, for all n ≤ Nk − 1, (6.1) and (6.2) holds. Then for Nk ≤ n < Nk+1, let

y = Pn−N
k+1(tNk−1, p

Nk−1−N1(π2(x))), by Lemma 5.8 we have

(6.3) ρ(y,∆n) ≥ cNk

1

(
ρ′Nk−1

)dq
.

To estimate the distance between π2(y) and pn−N1(π2(x)), by Lemma 5.6 we have

|π2(y)− pn−N1(π2(x))| ≤Mn−Nk+1|λ|Nk
.(6.4)
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From (6.3) and (6.4) we have

ρ′n ≥ cN
k

1

(
ρ′Nk−1

)dq −Mn−Nk+1|λ|Nk

≥ cNk

1 (cN
k

2 ρd
qk

0 )d
q −Mn−Nk+1|λ|Nk

(By the induction hypothesis (6.2))

≥ cNk

1 cN
kdq

2 ρd
q(k+1)

0 −Mn−Nk+1|λ|Nk
.

By the choice c2 = c1
2 we have

ρ′n ≥ 2cN
k+1

2 ρd
q(k+1)

0 −Mn−Nk+1|λ|Nk
.

To get (6.2) it is sufficient to prove

cN
k+1

2 ρd
q(K+1)

0 ≥Mn−Nk+1|λ|Nk
.

We take λ0 sufficiently small such that

(6.5) λ0 ≤ (
c2

M
)2N .

Thus to prove (6.2) it is sufficient to prove that when |λ| < λ0,

(6.6) ρd
q(k+1)

0 ≥ |λ|
Nk

2 .

Since N > dq + 1, we can choose k0 large enough such that for every k > k0 (6.6) holds.
This finishes the induction.

This shows that (6.1) and (6.2) are true for all n ≥ N1.

• Step 4. Since for every x ∈ ∆(yN1 ,
ρN1

4 ), for every m ≥ 0, pm(π2(x)) ∈ π2(∆m+N1),

and ∆n is uniformly bounded, the family {pm}m≥0 restricts on D(π2(yN1),
ρN1

4 )) is a

normal family. Thus π2(yN1) belongs to the Fatou set F (p), this contradicts to π2(yN1) ∈
J(p). Thus the proof is complete.

�

Remark 6.2. The constant λ0 appearing in Theorem 6.1 is invariant under a local
coordinate change of the form t 7→ φ(t) with φ(0) = 0 and φ′(0) = 1. To see this we
know that the constants c2 = c1

2 , M and N are invariant under a local coordinate change
of the form t 7→ φ(t) with φ(0) = 0 and φ′(0) = 1 (M can be dealt with by replacing it
everywhere by 2M , see Remark 4.2). Then by (6.5) λ0 only depends on c2, M and N ,
thus λ0 is invariant.

Remark 6.3. Lilov’s Theorem can be seen as a consequence of Theorem 6.1. In
fact, for the super-attracting case, the Fatou components of p bulge for a similar reason.
Since when |t| is very small, the contraction to the invariant fiber is stronger than any
geometric contraction t 7→ λt, Theorem 4.3 and Proposition 5.5 follows easily. Thus
following the argument of Theorem 6.1 gives the result.

In the following theorem we show how the main theorem can be applied to globally
defined polynomial skew products.
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Theorem 6.4. Let

P (t, z) = (g(t), f(t, z)) : C2 → C2

be a globally defined polynomial skew product, where g, f are polynomials. Assume
deg f = d and the coefficient of the term zd of f is non-vanishing, then there exist a
constant λ0(t0, f) > 0 depending only on f and t0 such that if g(t0) = t0 and |g′(t0)| < λ0

then there are no wandering Fatou components in B(t0)×C, where B(t0) is the attracting
basin of g at t0 in the t-coordinate.

Proof. First by a coordinate change φ0 : t 7→ t+ t0, P is conjugated to

P0 : (t, z) 7→ (g0(t), f0(t, z)),

where g0(t) = g(t+ t0)− t0, and f0(t, z) = f(t+ t0, z). It is clear that {t = 0} becomes
an invariant fiber.

By Koenig’s Theorem we can introduce a local coordinate change φ : t 7→ φ(t) with
φ(0) = 0 and φ′(0) = 1 such that P0 is locally conjugated to

(6.7) (t, z) 7→ (λt, f0(φ(t), z)),

where λ = g′(t0).

We have seen in Remark 6.2 that the constant λ0(f) is invariant under a local
coordinate change of the form t 7→ φ(t) with φ(0) = 0 and φ′(0) = 1. This means that
for fixed f , for every such φ,

Pφ : (t, z) 7→ (λt, f(φ(t), z))

has no wandering Fatou components when |λ| < λ0(f). Thus applying this to (6.7)
when |λ| = |g′(t0)| < λ0(f0) we get the local skew product (t, z) 7→ (λt, f0(φ(t), z))
has no wandering Fatou components. Thus by conjugation P has no wandering Fatou
components in a neighborhood of {t = t0} , thus actually P has no wandering Fatou
components in B(t0)×C, where B(t0) is the attracting basin of g at t0 in the t-coordinate.

�
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CHAPTER 3

Non-uniform hyperbolicity in polynomial skew products

1. Introduction

1.1. Background. In one-dimensional complex dynamics, i.e. in the theory of
dynamics of rational maps on Riemann sphere P1, the classical Fatou-Julia dichotomy
partitions the Riemann sphere into the Fatou set and the Julia set. Let f be a rational
map on P1, the Fatou set F (f) is defined as the largest open subset of P1 in which the
sequence of iterates (fn)n≥0 is normal. Its complement is the Julia set J(f). A Fatou

component is a connected component of F (f). A Fatou component is called wandering
if it is not pre-periodic. One can show that the Fatou set is either empty or an open
and dense subset. The dynamics on the Fatou set is completely understood, due to the
work of Fatou, Julia, Siegel and Herman, supplemented with Sullivan’s non-wandering
domain theorem [46]: the orbit of any point in the Fatou set eventually lands in an
attracting basin, a parabolic basin, a Siegel disk or a Herman ring. See Milnor [29] for
a self-contained proof.

If in addition f satisfies some non-uniformly hyperbolic conditions, the measurable
dynamics of f can also be understood. There are various hyperbolic conditions, such as
uniform hyperbolicity, sub-hyperbolicity, the Collet-Eckmann condition (CE for short),
the Topological Collet-Eckmann condition (TCE for short), the condition that Lyapunov
exponent at all critical values exist and is positive, and f has no parabolic cycles (Positive
Lyapunov for short), the Weak regularity condition (WR for short), etc. We say that f
satisfies TCE if there is an ”Exponential shrinking of components” on the Julia set, see
the precise definition in Definition 2.6.

Theorem. (Przytycki, Rivera-Letelier, Smirnov [39, Theorem 4.3]) Let f
be a TCE rational map on P1 with degree at least 2 and such that J(f) 6= P1. Then
the Fatou set F (f) is equal to the union of a finite number of attracting basins, and the
Julia set J(f) has Hausdorff dimension strictly smaller than 2 (hence it has area zero).

In higher dimensional complex dynamics, one of the major problems is to study the
dynamics of holomorphic endomorphisms of Pk, k ≥ 2. The Fatou and Julia sets can be
defined similarly. Unlike the one-dimensional case, little is known about the dynamics
on the Fatou set in higher dimension. It is known that Sullivan’s non-wandering domain
theorem does not hold in general. Indeed Astorg, Buff, Dujardin, Peters and Raissy [3]
constructed a holomorphic endomorphism h : P2 −→ P2 induced by a polynomial skew
product, possessing a wandering Fatou component.
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A polynomial skew product f is a polynomial map from C2 to C2, of the following
form:

f(t, z) = (g(t), h(t, z)),

where g is a one variable polynomial and h is a two variables polynomial. We assume that
g and h have degree at least 2. In the rest of the paper a polynomial map or a rational
map is asked to have degree at least 2. See Jonsson [24] for a systematic study of such
polynomial skew products, see also Dujardin [17], Astorg and Bianchi [2], Boc-Thaler,
Fornaess and Peters [10] for related studies. As the definition suggests, the polynomial
skew product leaves invariant a foliation by vertical lines, hence one-dimensional tools
can be used. Our first purpose is to study the dynamics of a polynomial skew product
on its Fatou set.

We assume h has the expression

h(t, z) =
∑
i+j≤n

ai,jt
izj .

If in addition we assume the polynomial skew product f satisfies deg g = deg h = n,
and a0,n 6= 0, then f extends to P2 holomorphically. In this case the polynomial skew
product is called regular. The regular polynomial skew products form a sub-class of
holomorphic endomorphisms on P2.

To investigate the Fatou set of f , let π1 be the projection to the t-coordinate, i.e.

π1 : C2 → C, π1(t, z) = t.

We first notice that π1(F (f)) ⊂ F (g), and passing to some iterate of f , we may assume
that the points in F (g) will eventually land into an immediate basin or a Siegel disk (no
Herman rings for polynomials), thus we only need to study the following semi-local case:

(1.1) f = (g, h) : ∆× C→ ∆× C,
where g(0) = 0 which means the line L : {t = 0} is invariant and ∆ is an immediate
attracting or a parabolic basin or a Siegel disk of g. The map f is called attracting,
parabolic or elliptic respectively when g′(0) is attracting, parabolic, elliptic. The exam-
ples of wandering domains constructed in [3] are parabolic polynomial skew products.
At this stage it remains an interesting problem to investigate the existence of wandering
domains for attracting polynomial skew products, one part of our main theorem answer
this question in the negative way under the non-uniformly hyperbolic condition.

In the geometrically attracting case, by Koenigs’ Theorem, (1.1) is locally conjugated
to

(1.2) f(t, z) = (λt, h(t, z)),

where λ = g′(0). Beware that h is no longer a polynomial in t.

In the super-attracting case by Böttcher’s Theorem, (1.1) is locally conjugated to

f(t, z) = (tm, h(t, z)), m ≥ 2.

In both attracting or super-attracting cases

h(t, z) = a0(t) + a1(t)z + · · ·+ ad(t)z
d
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is a polynomial in z with coefficients ai(t) holomorphic in t in a neighborhood of 0. We
furthermore assume that ad(0) 6= 0, which means the degree of h(t, z) in z is constant
for t ∈ ∆. This condition is needed in the proof of the main theorem, and it is satisfied
for regular polynomial skew products. In the rest of the paper, an attracting polynomial
skew product is assumed to have the normal form (1.2), and ∆ denotes a small disk
centered at 0.

1.2. Main theorem and outline of the proof. In this paper we show that under
the non-uniformly hyperbolic hypothesis, we can exclude the existence of wandering
domain, and give a classification of the dynamics on the Fatou set, and show that the
Julia set has Lebesgue measure zero.

Theorem. (Main Theorem) Let f be an attracting polynomial skew product in
the form of (1.1), let p = f |L be the restriction of f on the invariant fiber L. Assume
that p satisfies one of the following conditions: 1. p satisfies TCE and WR. 2. p satisfies
Positive Lyapunov. Then the Fatou set of f coincides with the union of the basins of
attracting cycles, and the Julia set of f has Lebesgue measure zero.

We let ∞ be the point at infinity of L. Since ∞ can be seen as an attracting fixed
point, the Fatou set of f is never empty. The definitions of TCE condition, WR condition
and Positive Lyapunov condition are given in section 2. The basins of attracting cycles
are clearly non-wandering, as a consequence there are no wandering domains in the
basin of L. In the rest of the paper we shall prove the main theorem for f geometrically
attracting. In the super-attracting case the proof is completely similar, and left to the
reader. Note that in that case the non existence wandering Fatou components was
established by Lilov [28] (see also [23]).

The proof of the main theorem is divided into several steps. In section 2 we recall
some preliminaries, and introduce some one-dimensional techniques such as the Koebe
distortion lemma, Przytycki’s lemma and Denker-Przytycki-Urbanski’s lemma (DPU
lemma for short). The one-dimensional non-uniformly hyperbolic theory is also intro-
duced. Then proof of the main theorem goes as follows.

Step 1: We start with some definitions. Let f : ∆×C→ ∆×C be an attracting polyno-
mial skew product, the critical set of f is defined by Crit :=

{
(t, z) ∈ ∆× C | ∂h∂z (t, z) = 0

}
.

We let the radius of ∆ be small enough so that each connected component of Crit inter-
sect L at exactly one point. We define

Crit’ := {the union of the connected components of Crit that intersect J(p)} .

Definition 1.1. Let x ∈ ∆×C be a point in the immediate basin of L, we say that x
slowly approach Crit’ if for every α > 0, distv(f

n(x),Crit’) ≥ e−αn for every sufficiently
large n.

Here distv denote the vertical distance which means that distv(x, y) = |π2(x)−π2(y)|,
where π2 is the projection to the z-coordinate, i.e.

π2 : C2 → C, π2(t, z) = z.
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Let alsoDv(x, r) denote the vertical disk, Dv(x, r) = {y ∈ ∆× C : π1(y) = π1(x), distv(x, y) < r}.

This notion of slow approach was introduced by Levin, Przytycki and Shen in one-
dimensional complex dynamics in [26]. Next we show that

Theorem 1.2. Lebesgue a.e. x ∈ ∆× C slowly approach Crit’.

This is proved in sections 3 and 4. In section 3 the existence of a stable manifold at
each critical value in J(p) and the properties of renormalization maps associated with
a critical value variety are studied. In section 4 we use the techniques developed in
section 3 to prove Theorem 1.2. Step 1 is where we need the TCE and WR conditions
or the Positive Lyapunov condition, in the remaining steps the TCE condition alone is
sufficient for the proof.

Step 2: We define vertical Lyapunov exponent at one point as follows:

Definition 1.3. Let x ∈ ∆ × C be a point in the immediate basin of L, the lower
vertical Lyapunov exponent is defined by

χ−(x) := lim inf
n→∞

1

n
log |Dfn|x(v)|.

Where v = (0, 1) is the unit vertical tangent vector.

It is well-known that the one-dimensional attracting basins of p extend to two-
dimensional attracting basins, for example see [28] or [23, Section 3]. These two-
dimensional attracting basins correspond to non-wandering Fatou components. We let
W s(J(p)) denote the stable set of J(p),

W s(J(p)) :=
{
x ∈ ∆× C : lim

n→∞
dist(fn(x), J(p)) = 0

}
.

It is easy to see that assuming p satisfies TCE, W s(J(p)) is the union of the wandering
Fatou components together with the Julia set J(f). We show that

Theorem 1.4. If x ∈W s(J(p)) slowly approach Crit’, then χ−(x) ≥ logµExp, where
µExp > 1 is the constant appearing in the definition of the TCE condition.

This is proved in section 5. Then by Theorem 1.2 Lebesgue a.e. point x ∈W s(J(p))
satisfies χ−(x) ≥ logµExp. This already implies the non-existence of wandering Fatou
component thanks to the fact that points in Fatou set can not have positive Lyapunov
exponent. Thus W s(J(p)) coincide with the Julia set J(f).

Step 3: Finally by using an adaption of a so called “telescope argument” in [26, Theorem
1.5], we show that

Theorem 1.5. The Julia set J(f) has Lebesgue measure zero.

This is proved in section 6, and the proof is complete.

In Appendix A we study the relations between TCE condition, CE condition, WR
condition and Positive Lyapunov condition. In Appendix B we exhibit some families of
polynomial maps satisfying the conditions in the main theorem.
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1.3. Previous results. The first result of non-wandering domain theorem for poly-
nomial skew products goes back to Lilov [28]. In his PhD thesis Lilov proved that
super-attracting polynomial skew products do not have wandering Fatou components.
He actually showed a stronger result, namely that there can not have vertical wandering
Fatou disks.

In the geometrically attracting case, there are many works trying to understand the
dynamics in the atrracting basin of the invariant line. Peters and Vivas showed in [32]
that there is an attracting polynomial skew product with a wandering vertical Fatou disk.
This result does not answer the existence question of wandering Fatou components, but
showed that the question is considerably more complicated than in the super-attracting
case. On the other hand, by using a different strategy from Lilov’s, Peters and Smit in
[31] showed that the non-wandering domain theorem holds in the attracting case, under
the assumption that the dynamics on the invariant fiber is sub-hyperbolic. The author
showed that the non-wandering domain theorem holds in the attracting case, under the
assumption that the multiplier is sufficiently small, following Lilov’s strategy, see [23].

In the parabolic case, the examples of wandering domains are constructed in [3], as
we have mentioned. See also the recent paper [4].

The elliptic case was studied by Peters and Raissy in [30]. See Raissy [40] for a survey
of the history of the investigation of wandering domains for polynomial skew products.

To the best of our knowledge, Theorem 1.5 is the first time where the zero measure
of Julia set is shown for non-hyperbolic p (it is in general not true when no conditions
of p are assumed, as even in one dimension Julia set can has positive Lebesgue measure,
cf. [12] and [6]). The previous results we have mentioned only consider the dynamics
on the Fatou set. However when p is uniformly hyperbolic, it is well-known that the
Julia set has zero measure and the Fatou set coincide with the union of the basins of
attracting cycles. In fact the stable set of W s(J(p)) is foliated by stable manifolds, and
this foliation is absolutely continuous hence W s(J(p)) has Lebesgue measure zero.

Acknowledgements. I would like to thank my adviser Romain Dujardin for his advice,
help and encouragement during the course of this work. I also would like to thank Jacek
Graczyk for useful discussion, Theorem B.1 is due to him.

2. Preliminaries

In this section we introduce some one-dimensional tools used in the proof of the
main theorem. Let f : P1 → P1 be a rational map , let Crit denote the set of critical
points, and let Crit’ denote the set of critical points lie in the Julia set. Let CV (f) be
the critical value set. We fix a Riemannian metric on P1, and D(x, ε) denotes a small
disk centered at x with radius ε.

2.1. Some technical lemmas. In [34, Lemma 1], Przytycki introduced a funda-
mental lemma which concerns the recurrence properties of small neighborhood of Crit’.
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Lemma 2.1 (Przytycki). Let c ∈ Crit’. There exist a constant C > 0 such that for
every ε > 0 and n > 0, if fn (D(c, ε)) ∩D(c, ε) 6= ∅, then n ≥ C log 1

ε .

We define a positive valued function on P1 as follows

Definition 2.2. Let c ∈ Crit′, define a positive valued function φc(x) by

φc(x) :=

{− log dist (x, c), if x 6= c

∞, if x = c.

In terms of using the function φc(x), the Lemma 2.1 can be reformulated as: there
exists a constant Q > 0, such that for every x ∈ P1, c ∈ Crit’, n ≥ 1, we have

min (φc(x), φc(f
n(x))) ≤ Qn.

In a later paper by Denker, Przytycki, Urbanski [15, Lemma 2.3], Lemma 2.1 was
generalized as the following DPU lemma. We let φ(x) := maxc∈Crit’ φc(x).

Lemma 2.3 (Denker-Przytycki-Urbanski). There exist a constant Q > 0 such
that for all n ≥ 0 we have

n−1∑
j=0

exceptM terms

φ(f j(x)) ≤ Qn,

where the summation over all but at most M = #Crit’ indices.

Note that the original statement differs slightly. This formulation also appeared in
[23, Lemma 2.5]. Lemma 2.1 will be used in section 4 and Lemma 2.3 will be used in
section 6.

Next we introduce a version of the Koebe distortion lemma for multivalent maps. We
refer to [35, Lemma 1.4] and [37, Lemma 2.1] for more details. Consider a disk D(x, δ)
of radius δ centered at x, let W be a connected component of f−n(D(x, δ)), assume
that fn restricted to W is D-critical, that is fn has at most D critical points counted
with multiplicity. Then fn|W has distortion properties similar to univalent maps. In the
following we assume δ smaller than diamP1/2.

Lemma 2.4. For each ε > 0 and D < ∞ there are constants C1(ε,D) > 0 and
C2(ε,D) > 0 such that the following holds.

Let D(x, δ) denotes the ball in P1 centered at x with radius δ. Assume that W is
a simply connected domain in P1 and F : W → D(x, δ) is a proper holomorphic map.
Let W ′ ⊂W be a connected component of F−1(D(x, δ/2)). Assume further that P1 \W
contains a disk of radius ε and that F is D-critical on W . Then for every y ∈W ′,
(2.1) |F ′(y)| diam (W ′) ≤ C1δ.

In addition W ′ contains a disk B of radius r around every pre-image of F−1(x) contained
in W ′, with

(2.2) r ≥ C2 diam(W ′).
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Assume further that W ′′ is a connected component of F−1(B′), where B′ ⊂ D(x, δ/2)
is a disk, then there exist a constant C3(ε,D) > 0 such that

(2.3)
diam W ′′

diam W ′
≤ C3

(
diam(B′)

δ

)2−D

.

Finally if R is a measurable subset of D(x, δ/2), there exist a constant C4(ε,D) > 0 such
that

(2.4)
meas

(
F−1(R) ∩W ′

)
meas W ′

≤ C4

(
meas(R)

δ2

)2−D

.

where meas denotes the Lebesgue measure induced by the Riemannian metric on P1.

Note that we will use this lemma only for F being a polynomial, so the assumption
that W is simply connected and P1 \W contains a disk are automatically satisfied.

Proof. The inequalities (2.1) and (2.2) were proved in [37, Lemma 2.1] and the
inequality (2.3) was proved in [35, Lemma 1.4]. Here we prove inequality (2.4).

By the Riemann mapping theorem there is a surjective univalent map ψ : D(0, 1)→
W . We consider the composition F ◦ ψ : D(0, 1) → D(x, δ). By the classical Koebe
distortion lemma for univalent maps, (2.4) is true for D = 0. To prove (2.4), it is
sufficient to prove the following: Let G : D(0, 1) → D(0, 1) be a degree D Blaschke
product on the unit disk, there exist a constant C4(D) > 0 such that if R is a measurable
set of D(0, 1/2), then

(2.5) measG−1(R) ≤ C4 meas(R)2−D .

We let ai ∈ D(0, 1) be the critical points of G, 1 ≤ i ≤ n. Thus we have n ≤ D. We
denote A = meas(R). It is sufficient to prove (2.5) for A small. For small ε we cover R
by ε-disks such that Nπε2 ≤ 2A, where N is the number of disks in the covering. For
δ > 0 small there exist a uniform constant M such that dist(G(x), G(ai)) ≥ δ for every i

and G(x) ∈ D(0, 3/4) imply |G′(x)| ≥Mδ1/2. If an ε-disk Dε is disjoint from the union⋃n
i=1D(G(ai), A

1/2), then by the change of variable formula we have

measG−1(Dε) min
x∈G−1(Dε)

|G′(x)|2 ≤ Dπε2.

From minx∈G−1(Dε) |G′(x)|2 ≥M2A1/2 we get

measG−1(Dε) ≤
Dπε2

M2A1/2
.

Let B1 be the union of all ε-disks disjoint from
⋃n
i=1D(G(ai), A

1/2). Then we have

measG−1(B1) ≤
∑

Dε∩(
⋃n
i=1D(G(ai),A1/2))=∅

measG−1(Dε) ≤
NDπε2

M2A1/2
≤ 2DA1/2

M2
.

Let B2,i be the union of all ε-disks not disjoint from D(G(ai), A
1/2), for 1 ≤ i ≤ n. Let

B2 =
⋃n
i=1B2,i. By (2.3) for small ε (ε ≤ A1/2, say), there is a constant C3(D) > 0 such
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that

measG−1(D(G(ai), A
1/2 + ε)) ≤ C3A

2−D .

Thus we have

measG−1(B2) ≤
n∑
i=1

measG−1(B2,i) ≤
n∑
i=1

measG−1(D(G(ai), A
1/2 + ε)) ≤ DC3A

2−D .

The last inequality holds since n ≤ D. Finally we have

measG−1(R) ≤ measG−1(B1) + measG−1(B2) ≤ 2DA1/2

M2
+DC3A

2−D .

Setting C4 := DC3 + 2D/M2 the proof is complete. �

Lemma 2.4 will be used frequently in the rest of the paper.

2.2. One-dimensional non-uniformly hyperbolic theory. A rational map f is
uniformly hyperbolic if f expands a Riemannian metric on a neighborhood of J(f). This
is equivalent to Smale’s Axiom A, and is equivalent to the condition that the closure
of the post critical set PC(f) is disjoint from J(f). The measurable dynamics of f is
well-understood: the Fatou set is the union of finitely attracting basins, the Hausdorff
dimension of J(f) is equal to the Minkowski dimension of J(f) and is smaller than 2,
and there is a unique invariant probability measure µ such that supp(µ) = J(f) which
is absolutely continuous with respect to the δ-dimensional Hausdorff measure (δ is the
Hausdorff dimension of J(f)). It can be shown that µ is mixing (hence ergodic) and
has positive entropy. It is widely conjectured that uniformly hyperbolic maps are dense
in the parameter space of fixed degree. This is known as Fatou conjecture and is a
central problem in one-dimensional complex dynamics. Many weaker notions such as
sub-hyperbolicity, semi-hyperbolicity have been defined. See [29, Section 19], [13] for
more details.

Non-uniformly hyperbolic theory, also known as Pesin theory, is a generalization of
uniformly hyperbolic theory. In Pesin theory we only require an invariant hyperbolic
measure rather than the presence of invariant expanding and contracting directions.
In this subsection we introduce some strong notions of non-uniform hyperbolicity in
one-dimensional complex dynamics.

Definition 2.5. A rational map f satisfies CE if there exists µCE > 1 and C > 0
such that for every point c ∈ Crit’ whose forward orbit does not meet other critical points,
and every n ≥ 0 we have

|(fn)′(f(c))| ≥ CµnCE .
In addition we ask that there are no parabolic cycles.

The CE condition was first introduced by Collet and Eckmann in [14] for S-unimodal
maps of an interval. The CE condition was introduced in complex dynamics by Przytycki
in [35]. The TCE condition was first introduced by Przytycki and Rohde in [37], as a
generalization of the CE condition.
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Definition 2.6. A rational map f satisfies TCE if there exist µExp > 1 and r >
0 such that for every x ∈ J(f), every n ≥ 0 and every connected component W of
f−n(D(x, r)) we have that

diam (W ) ≤ µ−nExp.

There are various equivalent characterization of the TCE condition, see [39]. The
following inclusions are strict:

uniform hyperbolicity $ sub-hyperbolicity $ CE $ TCE.

It was proved by Aspenberg [1] that the set of non-hyperbolic CE maps has positive
measure in the parameter space of rational maps of fixed degree, see also Rees [41]. In
the family of unicritical polynomials, it was shown by Graczyk-Swiatek [20] and Smirnov
[44] that for a.e. c ∈ ∂Md in the sense of harmonic measure fc = zd + c satisfies the CE
condition, where Md is the connectedness locus, and ∂Md is the bifurcation locus. We
list some useful property of TCE maps.

Proposition 2.7. Let f be a TCE map such that J(f) 6= P1 then

(1) The Fatou set F (f) is the union of attracting basins.

(2) The Hausdorff dimension δ of J(f) is equal to the Minkowski dimension of J(f)
and is smaller than 2.

(3) There is a unique invariant probability measure µ such that supp(µ) ⊂ J(f)
and µ is absolutely continuous with respect to the conformal measure with exponent δ.
Moreover µ is exponentially mixing (hence ergodic) and has positive Lyapunov exponent.

For the proof see [39] and [36]. For more about measurable dynamics on J(f), we
refer the reader to Przytycki and Rivera-Letelier [36], Graczyk and Smirnov [19], and
Rivera-Letelier and Shen [42].

In our presentation of the main theorem, we also ask that p satisfies WR or Positive
Lyapunov. These additional conditions are used to construct stable manifold at v ∈
CV (p) ∩ J(p) in section 3.

Definition 2.8. A rational map f satisfies WR(η, ι) if there exists η, ι > 0 and
C0 > 0 such that for all v ∈ CV (f) whose forward orbit does not meet any critical point
and for every integer n ≥ 0, it holds

n−1∑
j=0

d(fj(v),Crit’)≤η

− log |f ′(f j(v))| < nι+ C0.

This condition means that for every v ∈ CV (f)∩J(f): the orbit of v does not come
either too close nor too often to Crit’. The following WR condition is stronger than
WR(η, ι) with fixed η and ι.
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Definition 2.9. A rational map f satisfies WR if for all v ∈ CV (f) whose forward
orbit does not meet critical points we have

lim
η→0

lim sup
n→∞

1

n

n−1∑
j=0

d(fj(v),Crit’)≤η

− log |f ′(f j(v))| = 0.

The condition Positive Lyapunov is stronger than CE.

Definition 2.10. A rational map f satisfies Positive Lyapunov if for every point
c ∈ Crit’ whose forward orbit does not meet other critical points the following limit exists
and is positive

lim
n→∞

1

n
log |(fn)′(f(c))| > 0.

In addition we ask that there are no parabolic cycles.

The condition WR, as well as the condition Positive Lyapunov is satisfied for many
polynomial maps, see Appendix B.

3. Stable manifolds and renormalization maps

In this section we work under the assumption that p satisfies TCE and WR(η, ι)
with small ι (ι will be determined later) or p satisfies Positive Lyapunov. We construct
stable manifolds at each v ∈ CV (p) ∩ J(p) under the above assumptions, we also study
the renormalization maps associated to each critical value variety.

3.1. Stable manifold of a critical value. A (local) stable manifold W s
loc(v) of

f is an embedded complex disk of C2 passing through v such that there exist δ > 0
that for every x ∈ W s

loc(v) and n ≥ 0, dist(fn(x), fn(v)) decreases exponentially fast.
The construction of stable manifold is classical for hyperbolic periodic points and for
uniformly hyperbolic invariant sets, cf. [25]. In Pesin’s theory we can also construct
stable manifold for a.e. point with respect to a hyperbolic invariant probability measure,
cf. [9]. Since we deal with a single non-uniformly hyperbolic orbit, we construct a stable
manifold at v by using Hubbard and Oberste-Vorth’s graph transform associated to
a sequence of crossed mappings, cf. [22]. In the first three subsections we prove the
following theorem:

Theorem 3.1. Let f be an attracting polynomial skew product and let p = f |L be
the restriction of f to the invariant fiber. Assume p satisfies either TCE and WR, or p
satisfies Positive Lyapunov. Then every v ∈ J(p)∩CV (p) admits a local stable manifold
transverse to the invariant fiber L.

We begin with some definitions.

Let B1 = U1 × V1, B2 = U2 × V2 be two bi-disks. Let Ω be a neighborhood of B1,
let f : Ω → C2 be a holomorphic map such that f(B1) ∩ B2 6= ∅. Let π1 (resp. π2) be
the projection map to the first (resp. second) coordinate.
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Definition 3.2 (Hubbard and Oberste-Vorth). The map f is called a crossed map-
ping of degree d from B1 to B2 if there exists W1 ⊂ U1 × V ′1, where V ′1 ⊂ V1 is a
relatively compact open subset and W2 ⊂ U ′2 × V2, where U ′2 ⊂ U2 is a relatively com-
pact open subset, such that f : W1 → W2 is bi-holomorphic, and for every x ∈ U1, the
mapping

π2 ◦ f |W1∩(({x}×V1) : W1 ∩ ({x} × V1)→ V2

is proper of degree d, and for every y ∈ V2 the mapping

π1 ◦ f−1|W2∩(U2×{y}) : W2 ∩ (U2 × {y})→ U1

is proper of degree d.

Beware that coordinate are switched as compared to [22]: here the horizontal direc-
tion is contracted and the vertical direction is expanded.

Let B be the bidisk D(0, 1)×D(0, 1). We define the horizontal boundary as ∂h(B) :=
{|x| < 1, |y| = 1}. The vertical boundary ∂v(B) can be defined similarly.

Definition 3.3. An analytic curve X is called horizontal (resp. vertical) in B1 if X

is defined in a neighborhood of B1, X∩B1 6= ∅ and X∩∂h(B1) = ∅ (resp. X∩∂v(B1) = ∅).

It follows that π1 : X → U1 (resp. π2 : X → V1) is proper of degree d, for some
integer d > 0. We call this d the degree of the analytic curve.

Proposition 3.4. If f : B1 → B2 is a degree 1 crossed mapping and X is a degree
d vertical curve in B1, then π2 ◦ f : X ∩W1 → V2 is proper of degree d, or equivalent to
say, f(X) is a degree d vertical curve in B2 (defined in a neighborhood of B2).

For the proof see [22, Proposition 3.4].

Definition 3.5 (Dujardin). f is called Hénon-like from B1 to B2 if the following
three conditions are satisfied

(1) f restricted to Ω is injective, where Ω is a neighborhood of B1.

(2) f(∂hB1) ∩B2 = ∅,

(3) f(B1) ∩ ∂B2 ⊂ ∂hB2.

Again, note that horizontal and vertical directions are switched as compared to [16].

Proposition 3.6. If f is Hénon-like from B1 to B2, then f is a crossed mapping.

For the proof see [16, Proposition 2.3].

The following theorem summarizes our approach to construct stable manifolds.
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Theorem 3.7. Let B0 = U0 × V0, B1 = U1 × V1,... be an infinite sequence of bi-
disks, and fi : Bi → Bi+1 be of degree 1 crossed mapping, with V ′i simply connected (with
notation as in Definition 3.2) such that the modulus Mod(Vi \ V ′i ) is uniformly bounded
from below. Then the set

W s
(fn) = {(x, y) ∈ B0 | fn ◦ · · · ◦f0 (x, y) ∈ Bn for all n ≥ 0}

is a degree 1 horizontal curve in B0. W s
(fn) is called the stable manifold for the sequence

of crossed mappings.

For the proof see [22, Corollary 3.12].

We also need some one-dimensional preparations. The following lemma is due to
Przytycki and Rivera-Letelier ([36, Lemma 3.3]).

Theorem 3.8. Let f be a rational function satisfying TCE with constants µExp > 1
and r0 > 0. Then the following assertions hold.

There are constants C0 > 0 and θ0 ∈ (0, 1) such that for every r ∈ (0, r0), every
integer n ≥ 1, every x ∈ J(f) and every connected component W of f−n(B(x, r)), we
have

diam (W ) ≤ C0µ
−n
Expr

θ0 .

We now use the above property to show that p is hyperbolic away from Crit’ in the
following sense.

Lemma 3.9. Assume p satisfies TCE. Let η > 0 be a constant. Let {x0, x1, . . . , xN−1} ⊂
J(p) be a segment of orbit such that for every 0 ≤ i ≤ N − 1, dist(xi,Crit’) > η, then
there exist C1 and α uniform constants such that |(pN )′(x0)| ≥ C1η

αµNExp.

Proof. We use the same notations C0 and θ0 as in Theorem 3.8. It is sufficient
to prove the lemma for η small. Let r be a constant satisfying η = C0r

θ0 such that
r < r0. Let Wi be the pull back of D(xN , r) by pi at xN−i for 0 ≤ i ≤ N . We show that
Wi ∩ Crit’ = ∅ for every i. Assume that Wi ∩ Crit’ 6= ∅ for some i. By Theorem 3.8 we
have diam(Wi) ≤ C0µ

−i
Expr

θ0 ≤ η. On the other hand since dist(xi,Crit’) > η for every

i, we get diam(Wi) > η, which is a contradiction. Thus Wi ∩ Crit’ = ∅ for every i and
pN restricted to WN is univalent.

By TCE we have diamWN ≤ µ−NExp, by the classical Koebe distortion theorem we
have

|(pN )′(x0)| diamWN ≥ r/4 = 1/4C
−1/θ0
0 η1/θ0 .

Taking C1 = 1/4C
−1/θ0
0 and α = 1/θ0 we get that |(pN )′(x0)| ≥ C1η

αµNExp. �
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3.2. The TCE+WR case. In this subsection, for an attracting skew product f
such that p satisfies TCE and WR(η, ι) with small ι, we construct a sequence of bi-disks
{Bi} with low exponential size such that for every integer i, f is a degree 1 crossed
mapping from Bi to Bi+1 with Bi centered at pi(v). We use the same notations as in

Lemma 3.9. We fix a constant 0 < ε0 � min
{
|λ|−1/3 − 1, µExp − 1

}
. In the following

we choose an integer N such that C1η
αµNExp ≥ (1 + ε0)N , where η is given by WR(η, ι),

α and C1 are as in Lemma 3.9. We subdivide the integers into blocks of the form
[iN, (i+ 1)N). We say that a block of this subdivision is of first type if

(i+1)N−1∏
j=iN

|p′(pj(v))| ≥ (1 + ε0)N ,

and we call this subdivision is of second type if the above inequality does not hold. By
Lemma 3.9 if dist(pj(v),Crit’) > η for iN ≤ j < (i+ 1)N , then [iN, (i+ 1)N) is of first
type.

Let m ∈ [iN, (i+ 1)N) be a positive integer, if m is in a block of first type, we define

µm := (1 + ε0)

(i+1)N−1∏
j=iN

|p′(pj(v))|

1/N

.

When m is in a block of second type, we define

µm := (1 + ε0)2.

Note that in both cases we have µm ≥ (1 + ε0)2 ≥ 1 + ε0.

We define

rn := r0

n−1∏
m=0

am
µm

,

where r0 > 0 is a constant to be determined and am := |p′(pm(v))|.

Lemma 3.10. There are constants C2, C3 > 0 such that the following estimates of rn
hold for n ≥ 0:

(1) rn ≤ C2r0(1 + ε0)−n.

(2) rn ≥ C3r0e
−(α+2)nι(1 + ε0)−2n, where α is as in Lemma 3.9.

Proof. To prove the first inequality, notice that for every i ≥ 0, by the definition
of µm we have

(3.1)

(i+1)N−1∏
j=iN

µj ≥ (1 + ε0)N
(i+1)N−1∏
j=iN

aj .

Notice also that for every iN ≤ m < (i+ 1)N , we have

(3.2)

m∏
j=iN

aj ≤ ‖Dp‖N ,
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where ‖Dp‖ is the uniform norm of Dp on the Julia set J(p).

Combining (3.1) and (3.2), for kN ≤ n < k(N + 1) we have

rn = r0

k−1∏
i=0

(i+1)N−1∏
j=iN

aj
µj

 n∏
j=kN

aj
µj
≤ r0(1+ε0)−kN

‖Dp‖N

(1 + ε0)n−kN
= ‖Dp‖N r0(1+ε0)−n.

Taking C2 = ‖Dp‖N the first inequality is proved.

To prove the second inequality, notice that if the block [iN, (i+ 1)N) is of first type,
then

(i+1)N−1∏
j=iN

µj = (1 + ε0)N
(i+1)N−1∏
j=iN

aj .

Assume that {i0, i2, . . . , il−1} ⊂ {0, 1, . . . , k − 1} are all the integers such that the
block [ihN, (ih + 1)N) is of second type, 0 ≤ h ≤ l, then we have

rn = r0

k−1∏
i=0

(i+1)N−1∏
j=iN

aj
µj

 n∏
j=kN

aj
µj

= r0(1 + ε0)(l−k)N

 l−1∏
h=0

(ih+1)N−1∏
j=ihN

aj
µj

 n∏
j=kN

aj
µj

≥ r0(1 + ε0)(l−k)N

 l−1∏
h=0

(ih+1)N−1∏
j=ihN

aj
(1 + ε0)2

 n∏
j=kN

aj
C2(1 + ε0)2

≥ r0

C2
(1 + ε0)−2n

 l−1∏
h=0

(ih+1)N−1∏
j=ihN

aj

 n∏
j=kN

aj .(3.3)

Since the block [ihN, (ih + 1)N) is of second type, then necessarily there is an integer
j satisfies ihN ≤ j < (ih + 1)N and dist(pj(v),Crit’) ≤ η. By Lemma 3.9, the product
of derivative between two points xn1 , xn2 such that dist(xni ,Crit’) > η, n1 < i < n2

satisfies

(3.4)

n2−1∏
i=n1+1

aj ≥ C1η
α.

Notice that the number of such maximal blocks [xn1 , xn2 ] in [ihN, (ih + 1)N) is equal to
the cardinality #

{
j ∈ [ihN, (ih + 1)N) : dist(pj(v),Crit’) ≤ η

}
+ 1.

There is also a constant C4 > 0 such that dist(pj(v),Crit’) ≤ η implies aj ≤ C4η for
η small. Thus by choosing η small, for j satisfying dist(pj(v),Crit’) ≤ η we have

(3.5) C1η
α ≥ C1

(
aj
C4

)α
≥ Caαj ≥ a1+α

j .
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Combining (3.5) and (3.4) we get l−1∏
h=0

(ih+1)N−1∏
j=ihN

aj

 n∏
j=kN

aj ≥
n∏
j=0

d(pj(v),Crit’)≤η

C1η
αaj ≥

n∏
j=0

a2+α
j ≥ e(−nι−C0)(α+2).(3.6)

Combining (3.3) and (3.6) we get

rn ≥
r0

C2
(1 + ε0)−2ne(−nι−C0)(α+2).

Setting C3 := e−(α+2)C0/C2 the conclusion follows. �

The following proposition clearly implies Theorem 3.1 in the case p satisfying TCE
and WR.

We let Ui := D(pi(v), r0(1 + ε0)−3i), Vi := D(pi(v), ri) and let Bi = Ui×Vi for every
positive integer i.

Proposition 3.11. Assume p satisfies TCE and WR(η, ι) with small ι (to be deter-
mined in the proof). Then there exist r0 > 0 such that for arbitrary v ∈ J(p) ∩ CV (p)
and every i, the map f : Bi → Bi+1 is a degree 1 crossed mapping and satisfies the
condition of Theorem 3.7. As a consequence there is a stable manifold at v.

Proof. We first show that for carefully chosen ι and for r0 sufficiently small, f
restricted to a neighborhood of Bn is injective for every n. The WR condition im-
plies the following Slow Recurrence property: there exist a small α(ι) > 0, such that
dist(pn(v),Crit’) > e−nα for all large n, see Lemma A.2 for the proof. We let ι suffi-
ciently small so that α << log(1 + ε0). By Lemma 3.10 (1) we can let r0 small such that
rn << e−αn and also r0(1 + ε0)−3n << e−αn, for every n .

We need the following general fact: if f : W → f(W ) is a proper holomorphic map
satisfying no critical points and f(W ) is simply connected, then f is injective. Thus in
our case, to show f restricted to a small neighborhood of Bn is injective, it is sufficient
to show f(Bn) is contained in a simply connected domain which is disjoint with the

critical value set of f . Let M = supx∈Ω

(∣∣∣∂f∂z ∣∣∣ , ∣∣∣∂f∂t ∣∣∣), where Ω is some compact subset

such that ∆×C \Ω is in the basin of ∞. Then f(Bn) ⊂ Un+1×D(pn+1(v), 2Mrn). Let
l be the maximal order of the critical points in J(p), then there is a constant C > 0 such
that dist(pn+1(v), p(Crit′)) ≥ Celαn. By choosing sufficiently small r0 and ι we get that
Un+1 ×D(pn+1(v), 2Mrn) is disjoint with the critical value set of f . Thus f restricted
to a small neighborhood of Bn is injective.

Next we prove f : Bn → Bn+1 is a degree 1 Hénon-like map for every n. By
|λ| < (1 + ε0)−3 we get π1(f(Bn)) ⊂ π1(Bn+1), thus f(Bn)∩ ∂vBn+1 = ∅, thus it is easy
to verify f(Bn) ∩ ∂Bn+1 ⊂ ∂hBn+1.

To prove f(∂hBn)∩Bn+1 = ∅, we first show that if r0 is sufficiently small, and if we

let V̂n := D(pn+1(v), (1 + ε0)
1
2 rn+1), then V̂n ⊂ p(Vn) for every n. To see this, First by
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the definition of rn we have

anrn = µnrn+1 ≥ (1 + ε0)rn+1,

where an = |p′(pn(v))|. We choose sufficiently small r0 such that rn � dist(pn(v),Crit’).

Then the Koebe distortion theorem gives usD(pn+1(v), (1+ε0)
1
2 rn+1) ⊂ p(Vn) as desired.

For every point x ∈ ∂hBn, let y = π2(x), by the above result we have dist(p(y), Vn+1) ≥(
(1 + ε0)1/2 − 1

)
rn+1, thus we get

distv(f(x), Bn+1) ≥
(

(1 + ε0)1/2 − 1
)
rn+1 − distv(f(x), p(y))

≥
(

(1 + ε0)1/2 − 1
)
rn+1 −Mr0(1 + ε0)−3n (by mean value theorem)

≥
(

(1 + ε0)1/2 − 1
)
C3r0e

−(α+2)nι(1 + ε0)−2n −Mr0(1 + ε0)−3n,

whereM = supx∈Ω

(∣∣∣∂f∂z ∣∣∣ , ∣∣∣∂f∂t ∣∣∣) as before. By choosing ι� ε0 we get distv(f(x), Bn+1) >

0. Thus f(∂hBn) ∩Bn+1 = ∅.

It is easy to show f : Bn → Bn+1 has degree 1. The reason is that the forward image
of a vertical disk is again a vertical disk, and π2 ◦ f is of degree 1 when restricted to this
vertical disk. Since f keep the degree of the curve fix, f must have degree 1.

Finally we set V ′n := p−1Vn+1 and show that the modulus of the annulus Vn − V ′n is
uniformly bounded from below. Since the modulus is invariant under univalent maps,
we have that

Mod(Vn \ V ′n) = Mod (p(Vn) \ Vn+1) ≥ Mod
(
V̂n \ Vn+1

)
=

1

4π
log(1 + ε0).

Now all the conditions in Theorem 3.7 are checked, we conclude that there is a
stable manifold in the sense of Theorem 3.7. Since the dynamics contracts exponentially
transverse to L, this is a stable manifold in the usual sense. �

3.3. The Positive Lyapunov case. Next we assume p satisfies Positive Lyapunov
instead of TCE+WR(η, ι). We can then construct the stable manifold by arguing as
before. Indeed, let χv be the following vertical Lyapunov exponent

(3.7) χv := lim
n→∞

1

n
log |(pn)′(v)| > 0.

We need to construct µn such that an estimate of rn similar to that of Lemma 3.10 holds,
and also show the Slow Recurrence property: for every α > 0, dist(pn(v),Crit’) > e−nα

for all large n. That Positive Lyapunov implies Slow Recurrence is shown in Lemma
A.3.

To show an estimate of rn similar to Lemma 3.10, we define µn := (1 + ε0)eχv for

every n, and let rn := r0
∏n−1
i=1

ai
µi

, where r0 > 0 is a constant, ai := |p′(pi(v))|.
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Lemma 3.12. There are constants C2, C3 > 0 such that the following estimates of rn
hold for n ≥ 0:

(1) rn ≤ C2r0(1 + ε0
2 )−n.

(2) rn ≥ C3r0(1 + 2ε0)−n.

Proof. Since (3.7) holds, for every ε > 0 small, there exist constants C2 > 0 and

C3 > 0 such that
∏n−1
i=1 ai ≤ C2(1 + ε)nenχv and

∏n−1
i=1 ai ≥ C3(1 − ε)nenχv for every

n ≥ 0. Now it is sufficient to choose ε = ε0
2+ε0

. �

Remark 3.13. The above proof actually only use that the ratio of limsup and liminf
of (3.7) is sufficiently close to 1, thus the condition Positive Lyapunov can be replaced
by a weaker condition (ratio of upper and lower Lyapunov exponent is sufficient close to
1) to make the main theorem hold.

Finally the same argument as in Proposition 3.11 gives the existence of a local stable
manifold at v, in case that p satisfies Positive Lyapunov. Thus the proof of Theorem 3.1
is complete.

3.4. Renormalization map. Next we introduce the renormalization map of a crit-
ical value variety V. We let V be a component of the critical value variety that defined in
a neighborhood of B0, where B0 is as in Proposition 3.11. We assume that the germ of V
at (0, v) does not coincide with W s

loc(v) (the converse hypothesis that V = W s
loc(v) makes

the main theorem even easier to prove, we will see this later). Then by the definition of
the stable manifold in Theorem 3.7, for N large fN (V) 6⊂ BN , thus fN (V) ∩ ∂BN 6= ∅.
By the definition of a Hénon-like map we must have fN (V)∩∂BN ⊂ ∂hBN . Thus for N
large, fN (V) is a degree d vertical curve. Note that d is constant because our Hénon-like
maps have degree 1. Without loss of generality, we may assume that V is a degree d
vertical curve (in B0), otherwise we may replace V by some fN (V). By the definition of
degree 1 crossed mapping, for every n ≥ 0, fn(V) ∩ Bn is also a degree d vertical curve
(in Bn).

We assume V has the parametrization V = {γ(t) : t ∈ D(0, r0)} of the form γ(t) =
(tl, ψ(t)), where r0 is the radius of U0 in Proposition 3.11, l is a positive integer and ψ
is holomorphic. Since V is a vertical curve, we can further assume that ψ′(0) 6= 0, for
otherwise V can not be a vertical curve in B0 when r0 is sufficiently small.

For n ≥ 0 we let Wn := f−n(Bn) ∩B0. The map

ψn := π2 ◦ fn ◦ γ : γ−1(Wn)→ Vn

is well defined.

Definition 3.14. For every integer n ≥ 0, let ρn be the maximal positive real number
such that ψ−1

n (1
2Vn) contains a disk D(0, ρn), where 1

2Vn denotes a disk centered at the
same point of Vn but with one-half radius.

Concretely, ρn is the typical size of the piece of V which remains in Bj under iteration
up to time n. We can then define the renormalization map as follows
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Definition 3.15. For every integer n ≥ 0, the n-th renormalization map φn is the
holomorphic map from Dn to C, defined by φn(z) = ψn ◦ Lρn(z) for z ∈ Dn, where
Dn := L−1

ρn (ψ−1
n (1

2Vn)) is a domain in C, and for r ∈ C, Lr : C → C denotes the linear
map Lr(z) = rz.

By the definition of Dn we know that D(0, 1) ⊂ Dn. The following proposition is
crucial.

Proposition 3.16. The renormalization map φn has uniformly bounded (topological)
degree. Moreover there exist a constant C0 > 0 such that diamDn ≤ C0, and ρn is
exponentially small, namely ρn ≤ Cµ−nCErn, where µCE > 1 and C > 0 are constants.

Proof. The constant µCE corresponds to the constant appeared in the CE condition
(Definition 2.5). We will see in the proof that TCE+WR(η, ι) with ι small implies CE.
By our construction, fn ◦ γ

(
γ−1(Wn)

)
is a degree d vertical curve (in Bn) for every n.

Thus ψn is of uniformly bounded degree and so is φn.

To show diamDn ≤ C0, we observe that by Theorem 2.4 (2.2) there exist a uniform
constant C0 > 0 such that C0ρn ≥ diam(ψ−1

n (1
2Vn)), thus

diamDn =
1

ρn
diam

(
ψ−1
n

(
1

2
Vn

))
≤ C0.

To show that ρn is exponentially small, first notice that TCE + WR(η, ι) with ι small
implies CE (see Lemma A.4), and also Positive Lyapunov implies CE. Thus |(pn)′(v)|
is exponentially large, that is there exist C > 0 such that |(pn)′(v)| ≥ CµnCE with µCE
slightly smaller than µExp. Thus

|ψ′n(0)| = |ψ′(0)||(pn)′(v)| ≥ CµnCE |ψ′(0)|,

which is exponentially large. By Theorem 2.4 (2.1) we get ρn ≤ Cµ−nCErn, which is
exponentially small. �

4. Slow approach to Crit’

In this section our aim is to prove Theorem 1.2. First we remark that it is not
true that for every vertical fiber {t = t0} Lebesgue a.e. (in the sense of one-dimensional
Lebesgue measure) point in this fiber slowly approach Crit’, as pointed out in [32].
Indeed in [32] the authors construct a vertical Fatou disk which comes exponentially
close to Crit’. Instead, we need to select a full measure family of vertical fibers such
that Lebesgue a.e. point in the fiber slowly approach Crit’. This will be proved by
studying the renormalization maps along critical varieties constructed in the previous
section. Together with Przytycki’s lemma we can actually track the orbits of points in
Crit (Lemma 4.2 and Lemma 4.3). Thus we need the non-uniform hyperbolic conditions
in section 3 to make sure that the stable manifolds at each v ∈ CV (p) ∩ J(p) exist.
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Let W0 be a forward invariant open subset of F (p) satisfying p(W0) ⊂ W0. Such a
W0 exist since F (p) is a union of attracting basins. Let Wm = p−m(W0), and let Km be
the complement Km = C \Wm.

Lemma 4.1. If p satisfies TCE, then the Lebesgue measure of Km decreases expo-
nentially fast with m.

Proof. We may assume that K0 is sufficiently close to J(p), that is,

K0 ⊂ {x : dist(x, J(p)) ≤ r} ,

where r is the constant appearing in the definition of the TCE condition. Thus by
definition of the TCE condition we have

Km ⊂
{
x : dist(x, J(p)) ≤ µ−mExp

}
for m ≥ 0.

Denote Nε the number of ε-disks needed to cover J(p), by Proposition 2.7 (2), the
Minkowski dimension of J(p) is h < 2. Hence for ε > 0 sufficiently small we have
Nε < ε−h. Choosing ε = µ−mExp, for m sufficiently large, Km is covered by at most µmhExp

disks of radius µ−mExp. Thus the measure of Km is at most πµ
m(h−2)
Exp , and the conclusion

follows.

�

In the following we assume p satisfies TCE+WR or Positive Lyapunov. Let ∆ =
D(0, r0). The set W = ∆×W0 is contained in F (f), and f(W ) ⊂W , let K = (∆× C)\
W . Let W ′ be the ε−neighborhood of W ,

W ′ := {x ∈ ∆× C : dist(x,W ) < ε} .

For ε sufficiently small W ′ is forward invariant.

Let K ′ = (∆× C) \W ′. By using Proposition 3.16, we show that for most vertical
fibers, the critical points on the fiber move to the Fatou set fairly quickly. The argument
is similar to Peters-Smit [31] who treated the sub-hyperbolic case.

Let us choose a critical value variety V passing through v ∈ CV (p)∩J(p), parametrized
as before: V =

{
(tl, ψ(t)) : t ∈ ∆

}
. Let φn be the renormalization map defined in sub-

section 3.4.

For every integer s ≥ 0, we define j(s) to be the maximal integer such that |λs| ≤
ρj(s), where ρn is as in Definition 3.14.

Lemma 4.2. For every critical value variety V passing through v ∈ CV (p)∩J(p) that
does not coincide with the stable manifold at v, there is a full Lebesgue measure subset
Ev ⊂ ∆ such that for every u ∈ Ev there exist an integer Nu and β > 0 independent of
u such that for every s ≥ Nu, we have

f j(s)+βs(γ(λsu)) ∈W ′. where γ(t) = (tl, ψ(t)).
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We note that there is some abuse in notation. For the simplicity when we write a
non-integer number s as an iteration number of a map f , we mean the iteration of bsc
times.

Proof. Fix β > 0 arbitrary for the moment. For every integer s ≥ 0, let As be the
set

As =
{
u ∈ ∆ : f j(s)+βs(γ(λsu)) ∈ K ′

}
.

By the definition of the renormalization map φn, we have

As =

{
u ∈ ∆ : fβs

(
(λsu)l , φj(s)

(
1

ρj(s)
λsu

))
∈ K ′

}
.

Let M = supx∈Ω

(∣∣∣∂f∂z ∣∣∣ , ∣∣∣∂f∂t ∣∣∣), where Ω is a compact subset such that ∆ × C \ Ω

is in the basin of ∞. By a shadowing argument there exists C > 0 such that for every
integer m ≥ 0, if fm(x) ∈ K ′ and |π1(x)| < CM−m, then π2(x) ∈ Km. It is equivalent
to say that if x ∈ ∆×C satisfies |π1(x)| < CM−m and π2(x) ∈Wm, then fm(x) ∈W ′.

We choose β sufficiently small, such that for large enough s we have∣∣∣(λsu)l
∣∣∣ < CM−βs

(
β <

− log |λ|
logM

is enough

)
.

Thus we get

As ⊂
{
u ∈ ∆ : φj(s)

(
1

ρj(s)
λsu

)
∈ Kβs

}
.

Next we estimate the measure of the slightly bigger set

Ãs :=

{
u ∈ ∆ : φj(s)

(
1

ρj(s)
λsu

)
∈ Kβs

}
= ρj(s)λ

−sφ−1
j(s)(Kβs).

By Lemma 4.1 the Lebesgue measure of Kβs decreases exponentially with s. Next
we prove that we can choose ε0 and ι in Lemma 3.10 (2) sufficiently small so that the
ratio

meas(Kβs ∩ 1
2Vj(s))

r2
j(s)

is exponentially small. Since

meas(Kβs ∩ 1
2Vj(s))

r2
j(s)

≤
meas(Kβs)

r2
j(s)

,

it is sufficient to show meas(Kβs)/r
2
j(s) is exponentially small.

If we choose β = − log |λ|
2 logM , then by Lemma 4.1 (again for large enough s)

(4.1) meas(Kβs) ≤ πµ
s log |λ|(2−h)

2 logM

Exp .

On the other hand, by Proposition 3.16 we have

ρj(s) ≤ Cµ
−j(s)
CE rj(s) ≤ µ

−j(s)
CE (since r0 small).
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Then by the definition of j(s) we have

j(s) ≤ −s log |λ|
logµCE

.

Then by Lemma 3.10 (2) we have

(4.2) rj(s) ≥ C3r0e
−(α+2)j(s)ι(1 + ε0)−2j(s) ≥ C3r0e

(α+2) log |λ|
log µCE

ιs
(1 + ε0)

2 log |λ|s
log µCE .

By (4.1) and (4.2) we can choose ε0 and ι sufficiently small such that meas(Kβs ∩
1
2Vj(s))/r

2
j(s) is exponentially small.

It is proved in Proposition 3.16 that the map φn has uniformly bounded degree,
so by Lemma 2.4 (2.4) the measure of φ−1

j(s)(Kβs ∩ 1
2Vj(s)) also decreases exponentially

with s. Finally since ρj(s)λ
−s is uniformly bounded with s, the Lebesgue measure of

Ãs also decreases exponentially with s. Thus
∑∞

s=1 meas(As) ≤
∑∞

s=1 meas(Ãs) < ∞.
By the Borel-Cantelli lemma, there is a full measure subset Ev ∈ ∆ such that for every
u ∈ Ev, there exist an integer Nu such that when s ≥ Nu, u /∈ As. In other words,
f j(s)+βs(γ(λsu)) ∈W ′ and the conclusion follows. �

In the case where the critical value variety V passing through v ∈ CV (p) ∩ J(p)
coincides with the stable manifold of v, every y ∈ V will shadow v forever. Thus we get
an estimate of the returning time to Crit’ of y, simply by Przytycki’s lemma (Lemma
2.1)

Lemma 4.3. Assume that the critical value variety V passing through v ∈ CV (p) ∩
J(p) coincides with the stable manifold of v. Let γ : ∆ → C2 be the parametrization of
this stable manifold such that γ(0) = v, γ(t) = (t, ψ(t)) where ψ is holomorphic.

Let C be the critical variety of f such that f(C) = V. Then for every fixed α > 0
there exists a constant K(α) > 0 such that for every n ≥ 0, 0 ≤ s ≤ n and u ∈ ∆, if
distv(f

n(γ(u)), C) ≤ e−αn and distv(f
n−s(γ(λsu)), C) ≤ e−αn, then s ≥ Kn.

Proof. We let Lu to be the vertical line {t = u}. By the construction of bi-disks
in Proposition 3.11 , there exist constants C0 > 0, λ1 < 1 such that for every n ≥ 0 and
u ∈ ∆ we have distv(f

n(γ(u)), pn(v)) ≤ C0λ
n
1 . Together with distv(f

n(γ(u)), C) ≤ e−αn

we get distv(p
n(v), C ∩ Lλnu) ≤ e−αn + C0λ

n
1 .

For similar reasons we have distv(f
n−s(γ(λsu)), pn−s(v)) ≤ C0λ

n
1 . Together with the

inequality distv(f
n−s(γ(λsu)), C) ≤ e−αn we get distv(p

n−s(v), C ∩Lλnu) ≤ e−αn+C0λ
n
1 .

On the other hand there exist C1 > 0, l′ > 0 such that distv(C ∩Lλnu, c0) ≤ C1|λ|n/l
′

(l′ is related to the multiplicity of C at c0), where c0 = C ∩ L is the unique in-
tersection point of C and the invariant line L. Then by the triangle inequality we
have dist(pn(v), c0) ≤ e−αn + C0λ

n
1 + C1|λ|n/l

′
and also dist(pn−s(v), c0) ≤ e−αn +

C0λ
n
1 + C1|λ|n/l

′
. Thus s is a return time of pn−s(v) into the small neighborhood

D(c0, e
−αn + C0λ

n
1 + C1|λ|n/l

′
) of c0. By Przytycki’s lemma (Lemma 2.1) we get

s ≥ −C log(e−αn + C0λ
n
1 + C1|λ|n/l

′
) := Kn,
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the conclusion follows.

�

The main result of this section is the following equivalent form of Theorem 1.2,

Theorem 4.4. There is a full Lebesgue measure subset E ⊂ ∆ such that for every
u ∈ E, for Lebesgue a.e. x in the fiber Lu : {t = u}, x slowly approach Crit’.

Proof. It is enough to prove that for each fixed α > 0 and u ∈ E, the set of points
in Lu satisfing distv(f

n(x),Crit’) ≥ e−αn for all large n has full Lebesgue measure in
Lu. We let E be the intersection of all Ev, where Ev is in Lemma 4.2, and v ranges on
the set of critical values. Thus E has full Lebesgue measure in ∆. For every u ∈ E we
consider the sets

En :=
⋃

c∈Crit’∩Lλnu

f−n
(
Dv(c, e

−αn)
)
, and E′n :=

⋃
c∈Crit’∩Lλnu

f−n
(
Dv(c, e

−2αn)
)
.

(Recall thatDv stands for vertical disk). For an arbitrary critical point c ∈ Crit’∩Lλnu,
we let Γ be an arbitrary connected component of f−n (Dv(c, e

−αn)).

Step 1, we show that the cardinality # {0 ≤ s ≤ n : f s(Γ) ∩ Crit 6= ∅} is uniformly
bounded with respect to n.

For n large enough fs(Γ) has no intersection with any critical variety C such that C 6⊂
Crit’. The reason is the following. Take the radius of ∆ sufficiently small to make sure
that C ⊂⊂ F (f). Thus if c′ ∈ C∩fs(Γ) for some 0 ≤ s ≤ n, then distv(f

n−s(c′), J(p)) > δ

for some uniform constant δ. On the other hand distv(c, J(p)) ≤ C|λ|
n
l , where c is as in

the definition of En and E′n. Thus distv(f
n−s(c′), c) > δ′ for some uniform constant δ′,

this is impossible when n large since fn−s(c′) ∈ Dv(c, e
−αn). Thus it is sufficient to show

that the cardinality # {0 ≤ s ≤ n : fs(Γ) ∩ Crit’ 6= ∅} is uniformly bounded with respect
to n. For this it is sufficient to show that # {0 ≤ s ≤ n : f s(Γ) ∩ C 6= ∅} is uniformly
bounded with respect to n for every local component of critical variety C ⊂ Crit’.

Now there are two cases. Let V = f(C) be a critical value variety, and let v be the
unique intersection point of V and L, v ∈ CV (p) ∩ J(p). In the first case we assume
that V does not coincide with the stable manifold at v as in Lemma 4.2. We claim
that if n is large, s satisfies s + 1 + j(s + 1) + β(s + 1) ≤ n and s ≥ Nu, then we have
fs(Γ) ∩ C = ∅. For otherwise if c′ ∈ fs(Γ) ∩ C then v′ := f(c′) ∈ fs+1(Γ) ∩ V. Then

by Lemma 4.2 we have f j(s+1)+β(s+1)(v′) ∈ W ′. Since W ′ is forward invariant, when
n − s − 1 ≥ j(s + 1) + β(s + 1) implies fn−s−1(v′) ∈ W ′, thus fn−s(c′) ∈ W ′. By the
definition of Γ we also have distv(f

n−s(c′), C) ≤ e−αn, which is a contradiction when n
large. To summarize, there exist a uniform constant 0 < θ < 1 such that fs(Γ) ∩ C 6= ∅
implies s ≥ θn or s ≤ Nu.

We first show that the cardinality # {(1− κ)n < s ≤ n : fs(Γ) ∩ C 6= ∅} is uniformly
bounded with respect to n, where κ is the constant defined by,

κ = min

(
−θ log |λ|
4l logM

,
1

2

)
with M = sup

x∈Ω

(∣∣∣∣∂f∂z
∣∣∣∣ , ∣∣∣∣∂f∂t

∣∣∣∣) .
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Note that by the definition of κ

(4.3) Mκ ≤ |λ|
−θ
4l .

Assume s1 < s2 satisfy fsi(Γ) ∩ C 6= ∅ and (1− κ)n < si ≤ n, i = 1, 2. Let
ci ∈ fsi(Γ) ∩ C, i = 1, 2. Let c0 = C ∩ L be the unique intersection point. Then we have
(4.4)

distv(f
n−s2(c2), c0) ≤ distv(f

n−s2(c2), C∩Lλn−s2u)+distv(C∩Lλn−s2u, c0) ≤ e−nα+C|λ|
n
l .

Similarly

distv(f
n−s1(c1), c0) ≤ distv(f

n−s1(c1), C∩Lλn−s1u)+distv(C∩Lλn−s1u, c0) ≤ e−nα+C|λ|
n
l .

By the definition of θ we also have distv(c1, c2) ≤ C|λ|
nθ
l . Thus by (4.3) we have

distv(f
n−s2(c1), fn−s2(c2)) ≤Mn−s2C|λ|

nθ
l ≤ C|λ|

3nθ
4l . (By the choice of s2).

Let y = π2(fn−s2(c2)). Using (4.3) again we have

distv(f
n−s1(c1), ps2−s1(y)) ≤M s2−s1 distv(f

n−s2(c1), fn−s2(c2)) ≤ C|λ|
nθ
2l .

Thus we have
(4.5)

dist(c0, p
s2−s1(y)) ≤ distv(f

n−s1(c1), c0) + distv(f
n−s1(c1), ps2−s1(y)) ≤ e−nα + C|λ|

nθ
2l .

Combining (4.4) and (4.5) we infer that s2−s1 is a return time of y in the small disk

D(c0, e
−nα + C|λ|

nθ
2l ), by Przytycki’s lemma (Lemma 2.1) there exist a constant K(α)

such that s2 − s1 ≥ Kn. Thus # {(1− κ)n < s ≤ n : f s(Γ) ∩ C 6= ∅} ≤ κ
K(α) + 1 .

By Lemma 2.4 (2.3) there exist α1 > 0 such that diam f (1−κ)n(Γ) ≤ e−α1n.

Next if we consider the cardinality # {(1− 2κ)n < s ≤ (1− κ)n : fs(Γ) ∩ C 6= ∅},
we replace fn(Γ) by fs(Γ) where s satisfies (1 − 2κ)n < s ≤ (1 − κ)n, fs(Γ) ∩ C 6= ∅
and is maximal. Repeating the same argument we know there is a constant K(α1) >
0 such that # {(1− 2κ)n < s ≤ (1− κ)n : fs(Γ) ∩ C 6= ∅} ≤ κ

K(α1) + 1. After finitely

many iteration of the argument we get # {θn < s ≤ n : f s(Γ) ∩ C 6= ∅} is uniformly
bounded with respect to n. We also have # {0 ≤ s ≤ θn : fs(Γ) ∩ C 6= ∅} ≤ Nu. Thus
# {0 ≤ s ≤ n : f s(Γ) ∩ Crit 6= ∅} is uniformly bounded with respect to n.

In the second case we assume that V = f(C) coincides with the stable manifold
at v as in Lemma 4.3. We also want to show that # {0 ≤ s ≤ n : fs(Γ) ∩ Crit 6= ∅} is
uniformly bounded with respect to n. Let as before γ be the parametrization of the
stable manifold. Assume 0 ≤ s1 < s2 ≤ n satisfy fsi(Γ) ∩ C 6= ∅, let ci ∈ f si(Γ) ∩ C,
i = 1, 2. Let f(c1) = γ(u1), then f(c2) = γ(λs2−s1u1). By the definition of Γ we have
distv(f

n−s1(γ(u1)), C ∩ Lλn−s1u1) ≤ e−αn, and distv(f
n−s2(γ(λs2−s1u1), C ∩ Lλn−s1u1) ≤

e−αn. By Lemma 4.3 we have s2 − s1 ≥ Kn. Thus # {0 ≤ s ≤ n : fs(Γ) ∩ Crit 6= ∅} ≤
1/K + 1 which is uniformly bounded.
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Step 2, By Step 1 we already know that fn : Γ→ Dv(c, e
−αn) has uniformly bounded

degree. Now we show that the conclusion of the theorem holds.

Let Γ′ be the component of f−n(Dv(c, e
−2αn)) contained in Γ. By Lemma 2.4 (2.4)

there exist a constant α′ > 0 such that meas Γ′/meas Γ ≤ e−α
′n. Since ∞ is an

attracting fixed point, the set En is uniformly bounded. Thus measEn < A for some
constant A > 0. Thus we have

meas E′n
meas En

=

∑
meas Γ′∑
meas Γ

≤ e−α′n,

where the sum ranges over all possible critical points and connected components.

Finally we have shown that meas E′n ≤ Ae−α
′n. Thus

∑n
i=0 meas E′i < ∞, and

by the Borel-Cantelli lemma for Lebesgue a.e. point in x ∈ Lu , x /∈ E′n for large n,
which means distv(f

n(x),Crit’) ≥ e−2αn. In other words, x slowly approach Crit’. The
conclusion follows. �

5. Positive vertical Lyapunov exponent

In this section we prove Theorem 1.4: if x slowly approach Crit’ and ω(x) ⊂ J(p)
then χ−(x) ≥ logµExp, where µExp > 1 is the constant appearing in the definition of
the TCE condition.

Definition 5.1. Let x ∈ ∆ × C satisfies distv(f
n(x), J(p)) ≤ r

4 for every n ≥ 0,
where r is as in the definition of TCE condition. We say a positive integer n is a expand-
ing time of x if for every 0 ≤ m ≤ n, the connected component Γ of f−m(Dv(f

n(x), r4))

containing fn−m(x), satisfies diam(Γ) ≤ µ−mExp.

Lemma 5.2. There exist a uniform constant θ > 0 such that if x ∈ ∆ × C satisfies
distv(f

n(x), J(p)) ≤ r
4 , then every n ≤ −θ log |π1(x)| is an expanding time, provided

|π1(x)| is small enough.

Proof. Let n be an arbitrary integer, and for 0 ≤ m ≤ n let Γ be the connected

component of f−m(Dv(f
n(x), r4)) containing fn−m(x). Let M = supx∈Ω

(∣∣∣∂f∂z ∣∣∣ , ∣∣∣∂f∂t ∣∣∣) as

before. Then for arbitrary x1 6= x2 ∈ Γ, let y1 = π2(x1), y2 = π2(x2). Then for i = 1, 2
we have

distv(p
m(yi), f

m(xi)) ≤Mm|π1(xi)| ≤Mm|π1(x)|.

Let z ∈ J(p) such that distv(z, f
n(x)) ≤ r

4 , If n satisfies Mn|π1(x)| ≤ r
4 , then we

have

dist(pm(yi), z) ≤ distv(p
m(yi), f

m(xi)) + distv(f
m(xi), z)

≤ distv(p
m(yi), f

m(xi)) + distv(f
n(x), fm(xi)) + distv(z, f

n(x))

≤ r

4
+
r

4
+
r

4
< r. for i = 1, 2.

Thus pm(yi) is in the disk D(z, r), i = 1, 2. By TCE we know for every connected
component Γ′ of f−mD(z, r), we have diam(Γ′) ≤ µ−mExp, thus dist(y1, y2) ≤ µ−mExp. In
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other words, distv(x1, x2) ≤ µ−mExp. Thus diam(Γ) ≤ µ−mExp, which implies n is an expo-

nential expanding time of x providing Mn|π1(x)| ≤ r
4 . Thus for any 0 < θ < 1

logM , the

condition n ≤ −θ log |π1(x)| implies n is an expanding time. �

The main result of this section is the following.

Theorem 5.3. If x ∈W s(J(p)) slowly approach Crit’, then χ−(x) ≥ logµExp.

Proof. Without loss of generality we may assume that x satisfies distv(f
n(x), J(p)) ≤

r
4 for every n ≥ 0. For fixed sufficiently small α > 0, there exist N > 0 such that for
n ≥ N , distv(f

n(x),Crit’) ≥ e−αn by slow approach. Since x is in W s(J(p)) the orbit
of x will stay away from any component of the critical variety which does not belongs
to Crit’. Thus we have distv(f

n(x),Crit) ≥ e−αn as well. We may also assume that
|π1(x)| < 1.

Set δ := 2α logM
logµExp

, where M = supx∈Ω

(∣∣∣∂f∂z ∣∣∣ , ∣∣∣∂f∂t ∣∣∣). Let 0 < θ′ < 1 be a constant

that will be determined later. For (1− θ′)n < s ≤ n, let Γs be the connected component
of fs−nDv(f

n(x), e−δn) containing fs(x). Set δ0 = δ
2 logM , and note that for all large n,

r
4M

−δ0n ≥ e−δn. In particular

f δ0n(Dv(f
n(x), e−δn)) ⊂ Dv(f

n+δ0n(x), r/4),

hence

Dv(f
n(x), e−δn) ⊂ Compfn(x) f

−δ0n(Dv(f
n+δ0n(x),

r

4
)).

Here Compy denotes the connected component containing y.

We claim that there exist 0 < θ′ < 1 such that for large n, θ′n+ δ0n is an expanding
time of fn−θ

′n(x). Indeed by Lemma 5.2, for every m ≤ n large, −mθ log |λ| is an
expanding time of fm(x). Provided α is sufficiently small we have δ0 is sufficiently small

as well, thus θ′ = θ log |λ|+δ0
θ log |λ|−1 is a positive number. We conclude that θ′n + δ0n is an

expanding time of fn−θ
′n(x). Thus for every n− θ′n < s ≤ n, we have

diam Compfs(x) f
s−n(Dv(f

n(x), e−δn)) ≤ diam Compfs(x) f
s−(n+δ0n)(x)(Dv(f

n+δ0n(x),
r

4
))

≤ µs−(n+δ0n)
Exp ≤ µ−δ0nExp = e−αn. (By the choice of δ0.)

Thus from distv(f
s(x),Crit) ≥ e−αs we get that

Compfs(x) f
s−n(Dv(f

n(x), e−δn)) ∩ Crit = ∅.

This implies that fθ
′n restricted to Compfn−θ′n+1(x) f

−θ′n+1(Dv(f
n(x), e−δn)) is univa-

lent. Since θ′n is an expanding time of fn−θ
′n(x), we have

(5.1) diam Compfn−θ′n+1(x) f
−θ′n+1(Dv(f

n(x), e−δn)) ≤ µ−θ′nExp .

Thus by (5.1) and Koebe distortion, there is a uniform constant C > 0 such that∣∣∣∣(Dfθ′n)fn−θ′n+1(x)
(v)

∣∣∣∣ ≥ Ce−δnµθ′nExp,
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where v is the unit vertical vector.

Next we replace fn(x) by fn−θ
′n(x), and repeat the argument above, we get an

estimate ∣∣∣∣(Dfθ′n1

)
fn1−θ

′n1+1(x)
(v)

∣∣∣∣ ≥ Ce−δn1µθ
′n1
Exp ,

where n1 = n− θ′n.

We define nm := nm−1 − θ′nm−1, m ≥ 1, we set n0 = n. We can repeat this

procedure until for some k, n−
∑k

i=0 niθ
′ ≤ N . In this final time we can not define nk as

nk = nk−1−θ′nk−1, instead we choose the final nk to satisfying N < n−
∑k

i=0 niθ
′ ≤ 2N .

Combining these estimates, take the product of this derivatives, we have

|(Dfn)x (v)| ≥ ε1

∣∣∣∣(Dfθ′nk)fnk−θ′nk+1(x)
(v)

∣∣∣∣ · · · ∣∣∣∣(Dfθ′n)fn−θ′n+1(x)
(v)

∣∣∣∣
≥ ε1Ce

−δnkµθ
′nk
Exp · · ·Ce

−δnµθ
′n
Exp

≥ ε1C
k+1e−δ(n−2N)/θ′µn−2N

Exp ,

where we take ε1 = min0≤j≤2N |Df j |x(v)|.

It is not hard to give an upper bound of k. Indeed we let Sm := n−
∑m

i=0 niθ
′, then

Sm satisfies Sm = (1 − θ′)Sm−1, for 1 ≤ m ≤ k. Thus we get Sk = (1 − θ′)k+1n. Now

Sk > N implies k < logN−logn
log(1−θ′) − 1. Thus Ck+1 is a sub-exponentially large term with

respect to n.

Taking the limit in the above inequality we get

χ−(x) = lim inf
n→∞

1

n
log |Dfn|x(v)| ≥ logµExp −

δ

θ′
.

Letting α→ 0 then δ/θ′ → 0 as well, and we get χ−(x) ≥ logµExp. �

Corollary 5.4. There are no wandering Fatou components in ∆×C, W s(J(p)) =
J(f), and Fatou set F (f) is equal to the union of basins of attracting cycles. Moreover
Lebesgue a.e. point x ∈ J(f) slowly approach Crit’ and χ−(x) ≥ logµExp.

Proof. By Theorem 4.4 and Theorem 5.3, for Lebesgue a.e. point x ∈ W s(J(p)),
x slowly approach Crit’ and χ−(x) ≥ logµExp. We also know W s(J(p)) is the union of
J(f) and the wandering Fatou components.

It is clear that points in the Fatou set can not have a positive vertical Lyapunov
exponent, thus there are no wandering Fatou component in ∆×C, and W s(J(p)) = J(f).
Since every attracting basin of p bulges to an attracting basin of f , for every point x
such that x /∈ W s(J(p)) we get that x is in a basin of attracting cycle. Thus the Fatou
set is the union of basins of attracting cycles. �
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6. The Julia set J(f) has Lebesgue measure zero

In this section we prove Theorem 1.5, thus finishing the proof of the main theorem.
In the following we assume that x ∈ J(f) is both slowly approaching Crit’ and satisfies
χ−(x) ≥ logµExp. We begin with a definition.

Definition 6.1. Let 1 < σ < logµExp, Let m be a positive integer. We say m is a
σ-hyperbolic time for x if ∣∣∣(Dfm−i)f i(x)

(v)
∣∣∣ ≥ σm−i

holds for each 0 ≤ i ≤ m− 1, and v is the unit vertical vector.

We fix once for all 1 < σ < σ′ < µExp.

Since χ−(x) ≥ logµExp, the hyperbolic times have positive density by Pliss’s Lemma
[33], in the following sense:

Lemma 6.2. There is a constant θ > 0 such that if we consider the set

Hn =
{
m ∈ {1, · · · , n} : m is a σ′-hyperbolic time for x

}
,

then for large n we have

#Hn

n
> θ.

For the proof see [26, Theorem 3.1].

Next for a positive integer n we define φ(fn(x)) := − log distv(f
n(x),Crit’). Multi-

plying the metric by a constant we can further assume φ is a positive function. We show
that

Lemma 6.3. There exists a constant C = C(x) > 0 such that for every n ≥ 0,

n−1∑
k=0

φ(fk(x)) ≤ Cn.

Proof. Fix α > 0 small, by slow approach for large n we have distv(f
n(x),Crit’) ≥

e−αn, or in other words φ(fn(x)) ≤ αn.

We claim that there exist constant 0 < θ < 1 and C1 > 0 such that such for large
n we have

∑n−1
k=θn φ(fk(x)) ≤ C1n. To show this, let z = π2(fθn(x)). By Lemma 2.3 we

have
(1−θ)n−1∑

j=0
except M terms

φ(pj(z)) ≤ Q(1− θ)n.

In particular φ(pj(z)) ≤ Q(1−θ)n holds for j appearing in above sum. On the other
hand there is a constant K > 0 so that distv(p

j(z), fθn+j(x)) ≤ Kj |λ|θn. We choose θ
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sufficiently close to 1 so that eQ(θ−1)n −K(1−θ)n|λ|θn ≥ e2Q(θ−1)n. Thus we have

distv(f
θn+j(x),Crit’) ≥ dist(pj(z),Crit’)− distv(f

θn+j(x), pj(z))

≥ e−φ(pj(z)) −K(1−θ)n|λ|θn

≥ e−φ(pj(z)) + e2Q(θ−1)n − eQ(θ−1)n ≥ e−2φ(pj(z)),

which implies φ(fθn+j(x)) ≤ 2φ(pj(z)). Then we get

n−1∑
k=θn

except M terms

φ(fk(x)) ≤ 2Q(1− θ)n.

Together with slow approach φ(fn(x)) ≤ αn we have

n−1∑
k=θn

φ(fk(x)) ≤ (2Q(1− θ) +Mα)n.

Setting C1 := (2Q(1− θ) +Mα) we get the conclusion.

Repeat the above argument we get the estimate in the time θ2n to θn we get

θn−1∑
k=θ2n

φ(fk(x)) ≤ C1θn.

Keep repeating the above argument in the time θjn to θj−1n until for some j, the slow

approach property distv(f
θj+1n(x),Crit’) ≥ eθ

j+1n does not holds. The final step is a
bounded time, and the sum of φ(fk(x)) in this bounded time is bounded by a constant
depending on x. Summing up there is a constant C = C(x) > 0 such that

n−1∑
k=0

φ(fk(x)) ≤ Cn.

�

We now introduce some notions from [26, Theorem 3.1]. Given K > 0 we define the
shadow S(j,K) of a positive integer j to be the following interval of the real line:

S(j,K) := (j, j +Kφ(f j(x))].

For a positive integer N , let A(N,K) be the set of all positive integer n such that at
most N integers j satisfy n ∈ S(j,K). The following lemma and Theorem are proved
in [26, Theorem 3.1], and both rely on the one-dimensional DPU lemma (Lemma 2.3).
In our case we can replace the DPU lemma by Lemma 6.3, and get exactly the same
statements.

Lemma 6.4. For any N and K, for n sufficiently large we have

{A(N,K) ∩ {1, · · · , n}}
n

≥ 1− CK

N + 1
.
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Theorem 6.5. Suppose m is an σ′-hyperbolic time and m ∈ A(N, 1
log σ ), then there

exist a constant δ > 0 such that if we let Vm be the connected component of f−mDv(f
m(x), δ)

containing x, then fm : Vm → Dv(f
m(x), δ) has degree at most N .

If we choose N sufficiently large, by Lemma 6.4 the density of A(N, 1
log σ ) is close to

1. Together with Lemma 6.2, we get for m large, the intersection H ′m := Hm∩A(N, 1
log σ )

has uniform positive density when m→∞. Now by Theorem 6.5 we have

Corollary 6.6. For large n there exist a subset H ′n ⊂ {1, · · · , n} and constants
α > 0, δ > 0 such that #H ′n ≥ αn and for every m ∈ H ′n, fm : Vm → Dv(f

m(x), δ) has
degree at most N .

Now we are able to establish the main result of this section.

Theorem 6.7. The Julia set J(f) in the basin of L has Lebesgue measure zero.

Proof. Let δ and N be as in Corollary 6.6. First we observe that the Fatou set
F (p) in the invariant fiber L has full Lebesgue measure, as a consequence of TCE. Let
Ω be a relatively compact subset of F (p), then there exist a constant ε > 0 such that for
x satisfying |π1(x)| < ε, π2(x) ∈ Ω, we have x ∈ F (f). Thus for y ∈ ∆ × C with π1(y)
sufficiently small we have

measDv(y, δ/2) ∩ J(f)

measDv(y, δ/2)
≤ ε,

here meas denote the one-dimensional Lebesgue measure, and ε is a constant to be
determined in the next paragraph.

Now we argue by contradiction. Suppose J(f) has positive Lebesgue measure, then
by the Lebesgue density theorem and the Fubini theorem there exist x ∈ J(f) such that
x is a Lebesgue density point in the vertical line containing x. We may also assume that
x has positive Lyapunov exponent and slowly approach Crit’. By Corollary 6.6 there is
a sequence of positive integers {n0, · · · , nk, · · · } such that fnk : Vnk → Dv(f

nk(x), δ)
has degree bounded by N for all k ≥ 0. Let V ′nk be the connected component of

f−nkDv(f
nk(x), δ/2) containing x. Let ε sufficiently small such that C4ε

2−N << 1,
where C4 is the constant in Lemma 2.4 (2.4). By Lemma 2.4 (2.4) we have

measV ′nk ∩ J(f)

measV ′nk
≤ C,

where C < 1 does not depend on k. Again by Lemma 2.4 (2.1) diamV ′nk is exponentially
small, and also by Lemma 2.4 (2.2), V ′nk has uniformly good shape (the ratio of the
diameter and the inradius of V ′nk is uniformly bounded). This contradicts that x is a
Lebesgue density point. Thus J(f) must have Lebesgue measure zero. �

Remark 6.8. The main theorem also holds in a slightly more general setting. Let ∆
be a disk. Let f : ∆× P1 → ∆× P1 be a skew product holomorphic map in the following
form: f(t, z) = (λt, h(t, z)), where |λ| < 1 and h(t, z) is a rational map in z for fixed
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t. We assume moreover that the degree of h(t, z) in z is a constant for t ∈ ∆. Let
L = {t = 0} be the invariant fiber and let p = f |L. Assume p has non-empty Fatou set
and p satisfies either 1.TCE+WR or 2.Positive Lyapunov. Then the Fatou set of f is
the union of the basins of attracting cycles and the Julia set of f has Lebesgue measure
zero.

We notice that ∆ × P1 can not be embedded into P2 since any two projective lines
in P2 have non-trivial intersection. However ∆× P1 can be embedded into P1 × P1, and
the f above can be realized as a semi-local restriction of a globally defined meromorphic
map from P1×P1 to P1×P1. To construct such examples, we start with a skew product
meromorphic self map f : P1 × P1 → P1 × P1, f(t, z) = (g(t), h(t, z)), where g is a one-
variable rational function and h is a two-variable rational function. The function h has
finite number of indeterminacy points, and f is holomorphic outside these indeterminacy
points. We choose g such that g has an attracting fixed point t0, and there are no
indeterminacy points in the line {t0} × P1. Thus there exist a small neighborhood Ω of
{t0} × P1 such that f : Ω → Ω is holomorphic, thus f is a skew product holomorphic
map. We note that indeterminacy points are necessary since a globally holomorphic self
map of P1 × P1 must be a product map, see [18, Remark 1.6].

7. Appendix A: Relations between non-uniformly hyperbolic conditions

In this Appendix we study the relations between non-uniform hyperbolic conditions
given in section 2. In the following we assume f is a rational map on P1 and distance
are relative to the spherical metric.

Definition 7.1. A rational map f satisfies Slow Recurrence condition with exponent
α (SR(α) for short) if for every critical point c ∈ J(f), there exist an α > 0 such that

dist(fn(c),Crit’) ≥ e−nα for n large.

Lemma 7.2. WR(η,ι) implies SR(α) for some α(ι) > 0, and α→ 0 when ι→ 0.

Proof. By the definition of WR(η,ι) in particular we have− log |f ′(fn(c))| < nι+C0

for every n ≥ 0, which is equivalent to say |f ′(fn(c))| > e−nι−C0 , then it is straight-
forward that there exist an α > 0 such that dist(fn(c),Crit’) ≥ e−nα for large n, and
α→ 0 when ι→ 0. �

Lemma 7.3. Positive Lyapunov implies SR(α) for every α > 0.

Proof. By the definition of Positive Lyapunov in particular we have

lim
n→0

log |f ′(fn(c))|
n

= 0.

Thus for every β > 0 we have |f ′(fn(c))| > e−βn for large n . Similarly to Lemma 7.2,
there exist an α > 0 such that dist(fn(c),Crit’) ≥ e−nα for large n, and α → 0 when
β → 0. Thus f satisfies SR(α) for every α > 0. �
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Lemma 7.4. TCE+WR(η,ι) with η small or TCE+SR(α) with α small implies CE.

Proof. This lemma was proved by Li in [27] for real maps, and Li’s argument
can also apply to rational maps. Here we give a simple proof for rational maps. This
kind of argument has already appeared in [39]. By Lemma 7.2 it is sufficient to prove
TCE+SR(α) with α small implies CE. Let v = f(c). Let M = supx∈P1 |f ′(x)|. Set

α1 = 2α logM
log µExp

and ε = α1
2 logM . Note that for all large n, rM−εn ≥ e−α1n, here r is the

constant appearing in the definition of the TCE condition. We note that

D(fn(v), e−α1n) ⊂ Compfn(v) f
−εn(D(fn+εn(v), r)),

here Compy means the connected component containing y

For every 0 ≤ s ≤ n and n large we have

diam Compfs(v) f
s−(n+εn)(D(fn+εn(v), r)) ≤ µs−(n+εn)

Exp ≤ µ−εnExp.

Since D(fn(v), e−α1n) ⊂ Compfn(v) f
−εn(D(fn+εn(v), r)), we have

diam Compfs(v) f
s−n(D(fn(v), e−α1n)) ≤ µ−εnExp = e−αn

By SR(α), for all large n and all 0 ≤ s ≤ n we have

Compfs(v) f
s−n(D(fn(v), e−α1n)) ∩ Crit = ∅.

Hence fn restricted to Compv f
−n(D(fn(v), e−α1n)) is univalent, by Koebe distortion

lemma there exist a constant C > 0 such that |(fn)′(v)| ≥ Ce−α1n/µ−nExp. Since α is
small we get f is CE. �

8. Appendix B: Genericity of non-uniformly hyperbolic conditions

In this Appendix we give some families of polynomials satisfying the consitions in
our main theorem (i.e. TCE+WR or Positive Lyapunov).

In real dynamics, the WR condition was first introduced in the Tsujii’s paper [47].
Avila and Moreira proved that CE+WR condition is generic (has full Lebesgue measure)
in every non-trivial analytic family of S-unimodal maps [7]. The condition CE+WR was
also studied by Luzzatto and Wang [45], and also by Li [27] in relation to topological
invariance. For the Positive Lyapunov condition, Avila and Moreira proved that this
condition is generic (has full Lebesgue measure) in every non-trivial analytic family
of quasi-quadratic maps [8]. The quadratic family

{
ft(x) = t− x2

}
for −1

4 ≤ t ≤ 2
is obviously a non-trivial analytic family of quasi-quadratic maps, and of S-unimodal
maps. So our theorem also applies for these real polynomials (seen as complex dynamical
systems).

In the rational map case it was shown by Astorg, Gauthier, Mihalache and Vigny
that the CE and WR(η, ι) with arbitrarily small ι are robust [5, Lemma 5.5] (in the
sense that there is a positive Lebesgue measure set in the parameter space satisfying
both these two conditions).
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Next we consider the family of uni-critical polynomials, i.e. the family
{
fc(z) = zd + c

}
,

c ∈ C and d ≥ 2 an integer. We letMd be the connectedness locus, and let ∂Md be the
bifurcation locus. There is a harmonic measure (with pole at ∞) supported on ∂Md. It
is shown by Graczyk and Swiatek in [21] that for a.e. c ∈ ∂Md in the sense of harmonic
measure the Lyapunov exponent at c exist and is equal to log d.

For the WR condition, the author is told by Jacek Graczyk that WR condition is ac-
tually generic in the sense of harmonic measure in the family of uni-critical polynomials.
We thank Jacek Graczyk for kindly let us write down his argument here.

Theorem 8.1. In the uni-critical family
{
fc(z) = zd + c

}
, d ≥ 2, a.e. x ∈ ∂Md in

the sense of harmonic measure satisfies WR condition.

Proof. For c ∈ C, let ωc be the unique measure of maximal entropy of fc. It is
a result of Brolin [11] that its Lyapunov exponent

∫
log |f ′c(z)| dωc is is equal to log d.

Since |f ′c(z)| = d|zd−1| we get
∫
− log |z| dωc = 0.

We define the truncation function Hδ on J(fc) for δ > 0 as

Hδ(z) =

{
− log |z|, when |z| > δ,

− log |δ|, when |z| ≤ δ.

Thus Hδ is a continuous function, and Hδ → − log | · | when δ → 0 in L1(ωc).
According to [21] section 1.1, for a.e. c ∈ ∂Md in the sense of harmonic measure, the
critical value c of fc is typical with respect to ωc. Here typical means for every continuous
function H on J(fc),

(8.1) lim
n→∞

1

n

n−1∑
i=0

H(f ic(c)) =

∫
H dωc.

Applying (8.1) to Hδ, together with that fact that Hδ → − log | · | in L1(ωc) as δ → 0
we get

(8.2) lim
δ→0

lim
n→∞

1

n

n−1∑
i=0

Hδ(f
i
c(c)) =

∫
− log |z| dωc = 0.

On the other hand, for every δ > 0 let Fδ be a positive continuous function such
that suppFδ ⊂ D(0, 2δ), ‖Fδ‖∞ = 1 and Fδ ≥ χD(0,δ). Then for for a.e. c ∈ ∂Md in the
sense of harmonic measure we have

(8.3) lim
n→∞

− log δ

n

n−1∑
i=0

Fδ(f
i
c(c)) = − log δ

∫
Fδ dωc ≤ − log δ ωc(D(0, 2δ)).

By [38, Lemma 4] (or by the fact that the dynamical Green function is Hölder con-
tinuous, see [43] Theorem 1.7.3), for every c ∈ C there exist constants C = C(c) > 0,
α = α(c) > 0 such that for every r > 0 we have ωc(D(0, r)) ≤ Crα.
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Thus for c satisfying (8.3) we have

lim
n→∞

− log δ

n

n−1∑
i=0

Fδ(f
i
c(c)) ≤ − log δC(2δ)α.

Thus we have

lim
δ→0

lim sup
n→∞

− log δ

n

n−1∑
i=0

χD(0,δ)(f
i
c(c)) ≤ lim

δ→0
lim sup
n→∞

− log δ

n

n−1∑
i=0

Fδ(f
i
c(c))

≤ lim
δ→0
− log δC(2δ)α = 0.

We conclude that

(8.4) lim
δ→0

lim sup
n→∞

− log δ

n

n−1∑
i=0

χD(0,δ)(f
i
c(c)) = 0.

It is easy to check

n−1∑
i=0

f ic(c)/∈D(0,δ)

− log |f ic(c)| =
n−1∑
i=0

Hδ(f
i
c(c)) + log δ

n−1∑
i=0

χD(0,δ)(f
i
c(c))

Combining (8.2) and (8.4) we get for a.e. c ∈ ∂Md in the sense of harmonic measure

(8.5) lim
δ→0

lim inf
n→∞

1

n

n−1∑
i=0

f ic(c)/∈D(0,δ)

− log |f ic(c)| = 0.

Finally by the main theorem of [21], for a.e. c ∈Md in the sense of harmonic measure

lim
n→∞

1

n
log |(fnc )′(c)| = log d,

which is equivalent to (since |f ′c(z)| = d|zd−1| )

(8.6) lim
n→∞

1

n

n∑
i=0

− log |f ic(c)| = 0.

Combining (8.5) and (8.6) we get for a.e. c ∈Md in the sense of harmonic measure

(8.7) lim
δ→0

lim sup
n→∞

1

n

n−1∑
i=0

d(f ic(c),0)≤δ

− log |f ic(c)| = 0.

By Przytycki’s lemma (Lemma 2.1) we have

(8.8) lim
δ→0

lim
n→∞

1

n

n−1∑
i=0

χD(0,δ)(f
i
c(c)) = 0.
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Since |f ′c(f ic(c))| = d|f ic(c)|d−1, combining (8.7) and (8.8) we get

lim
δ→0

lim sup
n→∞

1

n

n−1∑
i=0

d(f ic(c),0)≤δ

− log |f ′c(f ic(c))| = 0.

Thus the proof is complete. �
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tor for rational functions on the Riemann sphere. Ergodic Theory and Dynamical
Systems, 16(2):255–266, 1996.

89



90 Bibliography
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CHAPTER 4

Structure of the Julia set for post-critically finite
endomorphisms on P2

1. Introduction

1.1. Background. Let f : P2 → P2 be a holomorphic endomorphism of degree
≥ 2, where P2 is the complex projective plane. The first Julia set J1 is defined as
the locus where the iterates (fn)n≥0 do not locally form a normal family, i.e. the
complement of the Fatou set. Let T be the dynamical Green current of f , defined
by T = limn→+∞ d

−n(fn)∗ω, where ω is the Fubini-Study (1,1) form on P2. The Julia
set J1 coincides with Supp (T ), and the self intersection measure µ = T ∧T is the unique
measure of maximal entropy of f . See Dinh-Sibony [10] for background on holomorphic
dynamics on projective spaces.

We define the second Julia set to be J2 = Supp µ. From the definitions we know that
J2 ⊂ J1. By Briend-Duval [5], J2 is contained in the closure of the set of repelling periodic
points. However contrary to dimension one there may exists repelling periodic point
outside J2. A major problem in holomorphic dynamics is to investigate the structure of
J1 \ J2. A promising picture is that J1 \ J2 is foliated (in some appropriate sense) by
holomorphic disks D along which (fn|D)n≥0 is a normal family. Such disks are called

Fatou disks. The dynamical Green current T is called laminar in some open set Ω if it
expresses as an integral of integration currents over a measurable family of compatible
holomorphic disks (which means these disks have no isolated intersections) in Ω. These
disks are automatically Fatou disks. Let σT = T ∧ ω be the trace measure of T, which
is a natural reference measure on J1. If T is laminar, then for σT a.e. x ∈ J1 \ J2, there
exists a germ of holomorphic Fatou disk D containing x. De Thélin proved in [8] and
[9] that T is laminar outside J2 for post-critically finite endomorphisms on P2. We note
that by the works of Dujardin in general T is not necessarily laminar [13], but a related
weaker result holds [12].

A holomorphic endomorphism f on Pk, k ≥ 1 is called post-critically finite ( PCF
for short) if the post-critical set

PC(f) :=
⋃
n≥1

fn(C(f))

is an algebraic subset of Pk, where

C(f) :=
{
x ∈ Pk : Df(x) is not invertible

}
is the critical set.

92
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In dimension 1 , this coincides with the usual definition of PCF maps on the Riemann
sphere P1. These play an important role in one-dimensional complex dynamics, mainly
because the remarkable topological classification theorem of Thurston [11].

PCF endomorphisms are still of interest in higher dimension, and their dynamics
have been investigated by many authors. The dynamics on the Fatou set of PCF endo-
morphisms on P2 were studied by Fornaess-Sibony [15], Ueda [27] and Rong [23]. Jonsson
[18] proved that J2 = P2 for strictly PCF endomorphism on P2. Le [21] proved that the
eigenvalues of periodic points of PCF endomorphism on P2 are either 0 or larger than
1. The dynamics of PCF endomorphisms on Pk, k ≥ 2 were studied by Ueda [26] and
Astorg [1]. Moreover, interesting examples of PCF endomorphisms were constructed by
Crass [6], Fornaess-Sibony [14] and Koch [20].

1.2. Basins of critical component cycles. In this paper we investigate the dy-
namics on the Julia sets for PCF endomorphisms on P2. Let f be a PCF endomorphism
on P2. Recall that the critical set C(f) is an algebraic curve. We call an irreducible
component Λ of C(f) periodic if there exist an integer n ≥ 1 such that fn(Λ) = Λ. Such
an irreducible component will be called periodic critical component. There are finitely
many periodic critical components. The set

{
Λ, f(Λ), . . . , fn−1(Λ)

}
is called a critical

component cycle. Similarly, a critical point x satisfying fn(x) = x for some n ≥ 1 is
called a periodic critical point. The set

{
x, f(x), . . . , fn−1(x)

}
is called a critical point

cycle. Since fn and f have the same Julia sets, to investigate the structure of J1 \J2 we
may assume all periodic critical components are invariant.

An important observation is that in P2, any invariant critical component Λ is an
attracting set. By definition an attracting set Λ in P2 is an invariant compact subset such
that there is a neighborhood U of Λ satisfying f(U) ⊂⊂ U, and Λ =

⋂
n≥1 f

n(U). The

open set U is called a trapping region of Λ. The attracting basin B(Λ) of an attracting set
Λ is by definition the set

⋃
n≥0 f

−n(U), where U is a trapping region of Λ. Equivalently

B(Λ) is the set of points attracted by Λ, i.e.

B(Λ) =
{
x ∈ P2 : dist (fn(x),Λ)→ 0, as n→ +∞

}
.

An attracting basin in P2 is always disjoint from J2, except when Λ = P2, see [25]
Proposition 1.1 for a proof.

Fornaess and Sibony [15] proved that for any fixed Riemannian metric on P2, if Λ is
an invariant critical component, then for x ∈ P2, when dist (x,Λ)→ 0, we have

dist(f(x),Λ) = o(dist(x,Λ))

It follows that for ε > 0 sufficiently small, the ε -neighborhood

Uε =
{
x ∈ P2 : dist(x,Λ) < ε

}
satisfies f (Uε) ⊂⊂ Uε, and Λ =

⋂
n≥1 f

n (Uε). Then Λ is an attracting set with trapping

region Uε. Fornaess and Sibony [15] also showed that an invariant irreducible curve in P2

has genus 0 or 1. Bonifant, Dabija and Milnor showed that an elliptic curve can not be
an attracting set [3], so the invariant critical component Λ must be a (possibly singular)
rational curve.
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Now let f be a PCF endomorphism on P2 with an invariant critical component Λ.

Let π : Λ̂ → Λ be the normalization of Λ, then f restricted to Λ lifts to a map f̂ from

Λ̂ to itself. By [15] Proposition 7.5, f̂ is a rational map on P1 of degree ≥ 2. Let J(f)

be the Julia set of f, and let ν̂ be the unique measure of maximal entropy of f̂ . Then
ν = π∗(ν̂) is an invariant measure on P2. It follows that Supp ν = π(J(f)), and ν is a
hyperbolic measure of saddle type. Daurat showed that the Green current T is laminar
in the basin B(Λ) and subordinate to the stable manifolds

⋃
x∈ Supp νW

s(x). See [7] for

the proof and for more details (it is easy to verify in our case the trapping region Uε
satisfies conditions (Tub) and (SJ) in Daurat’s paper when ε sufficiently small). See also
Bedford-Jonsson [2] for the case when Λ is totally invariant.

1.3. A conjectural picture of J1 \ J2. There are some examples of PCF endo-
morphisms on P2 for which we can compute J1 and J2 by hand. For example, for
homogeneous PCF regular polynomials on P2, J1 \ J2 is contained in the attracting
basins of critical component cycles. This is also true for the PCF endomorphism on P2

satisfying additional assumption, see Theorem 6.1. A conjectural picture of J1 \ J2 for
PCF endomorphism on P2 is as follows:

Conjecture 1.1. Let f be a PCF endomorphism on P2 of degree ≥ 2. Then J1 \J2

is contained in the attracting basins of critical component cycles.

Although we can not prove the conjecture yet, we will prove several results towards
Conjecture 1.1. In section 6 we will discuss a possible approach to prove Conjecture
1.1. A main difficulty in this approach is to prove the so called backward contracting
property, see Question 2 in section 6 and Theorem 6.2 for details. Roughly speaking, it
say that for a PCF endomorphism on P2, for every x ∈ P2 which is not contained in a
critical component cycle nor a critical point cycle, there exist r > 0 such that for every
component Wn of f−n(B(x, r)), diamWn → 0 when n→∞. We give possible strategy
in section 6.

In Theorem 6.2 we show: Let f be a PCF endomorphism on P2 of degree ≥ 2.
Assume f satisfies the backward contracting property and every super-saddle cycle is
contained in a critical component cycle, then J1 \J2 is contained in the attracting basins
of critical component cycles.

1.4. The main results. At this stage by Daurat’s theorem we have a nice de-
scription of the part of J1 contained in the attracting basin of critical component cycles
for PCF endomorphisms on P2. Our first result is about the structure of J2 for PCF
endomorphisms on P2.

Theorem 1.2. Let f be a PCF endomorphism on P2 of degree ≥ 2, then J2 is the
closure of the set of repelling periodic points. Moreover if all branches of PC(f) are
smooth and intersect transversally, then any periodic point in J2 is repelling.

Here are some comments about Theorem 1.2. First, we note that for a general
holomorphic endomorphism on P2, repelling periodic point may not contained in J2.
Indeed there exist examples possessing isolated repelling points outside J2, see [16] and
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[17]. Secondly, the assumption that all branches of PC(f) are smooth and intersect
transversally is satisfied by examples constructed by Crass [6], Fornaess-Sibony [14] and
Koch [20] . Thirdly, we note that the first part of Theorem 1.2 fits the picture of
Conjecture 1.1, since every repelling periodic point is not in an attracting basin of a
critical component cycle.

Now, regarding the structure of J1 \ J2, assume that f is a PCF endomorphism on
P2 and there exists points in J1 \ J2 which is not contained in an attracting basin of a
critical component cycle. For such a hypothetical point we show:

Theorem 1.3. Let f be a PCF endomorphism on P2 of degree d ≥ 2. Let x ∈ J1 \J2

which is not contained in an attracting basin of a critical component cycle, then there is
a Fatou disk D passing through x, i.e. the family {fn|D}n≥1 is normal.

We note that by the result of de Thélin [9], for σT a.e. point in J1 \ J2, there is a
Fatou disk D passing through x. The above theorem together with Daurat’s result about
laminarity of Green current in the attracting basin gives a new proof of this fact.

We also prove the following theorem, which gives a necessary and sufficient condition
for PCF endomorphisms on P2 satisfying J2 = P2, under smoothness and transversality
condition on PC(f).

Theorem 1.4. Let f be a PCF endomorphism on P2 of degree ≥ 2 such that branches
of PC(f) are smooth and intersect transversally. Then J2 = P2 if and only if f is strictly
PCF.

The definition of strictly PCF is given in section 5. We note that Jonsson [18] proved
that if f is a strictly PCF endomorphisms on P2, then J2 = P2. We will also give an
alternative proof of Jonsson’s theorem. We note that Theorem 1.4 fits the picture of
Conjecture 1.1, see Remark 5.5.

The structure of this paper is as follows. Section 2 is devoted to some preliminaires.
In particular we recall Ueda’s results about Fatou maps and the normality of backward
iteration of holomorphic endomorphisms on Pk, k ≥ 1. In section 3 we prove Theorem
1.3 as a combination of Theorem 3.3 and Corollary 3.8. The proof of Theorem 3.3, which
is the first part of Theorem 1.2, actually follows rather simply by a result of Ueda [27].
We prove Theorem 1.3 in section 4 and we prove Theorem 1.4 in section 5. In section 6
we discuss some possible generalization of our results and list some open problems.

Acknowledgements. I would like to thank my advisor Romain Dujardin for his advice,
help and encouragement during the course of this work. I also would like to thank
Xavier Buff, Van Tu Le, Jasmin Raissy, Matteo Ruggiero and Gabriel Vigny for useful
discussions.

2. Preliminaires

In this section we recall some results of Ueda that we will use later. We start with
the following definitions of Ueda [27] Definition 4.5 and [26] Section 1.
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Definition 2.1. Let f be a holomorphic endomorphism on Pk of degree ≥ 2. Let Z
be a complex analytic space. A holomorphic map h : Z → Pk is called a Fatou map if
{fn ◦ h}n≥1 is a normal family. A Fatou disk D ⊂ Pk is an image of a non-constant

Fatou map φ : D→ Pk, where D is the unit disk.

Note that with this definition, a Fatou disk may be singular.

Definition 2.2. Let f be a holomorphic endomorphism on Pk of degree ≥ 2. A point
q is said to be a point of bounded ramification if the following conditions are satisfied:

(1) There exist a neighborhood W of q such that PC(f)∩W is an analytic subset of
W .

(2) There exist an integer m such that for every j > 0 and every p ∈ f−j(q), we
have that ord

(
f j , p

)
≤ m.

In the case k = 2, we have the following characterization of points of bounded
ramification for PCF endomorphism on P2. (See Ueda [27] Lemma 5.7.)

Lemma 2.3. Let f be a PCF endomorphism on P2 of degree ≥ 2. Then the points
with unbounded ramification are the union of critical component cycles and critical point
cycles.

Next we introduce the following abstract result of Ueda. (See [27] Lemma 3.7 and
Lemma 3.8.)

Lemma 2.4. Let X be a complex manifold and D an analytic subset of X of codi-
mension 1. For every point x ∈ X, for every neighborhood W of x such that W is a
topological ball and the diameter of W ∩D is sufficiently small, for every integer m ≥ 0,
there exist a complex manifold Z and η : Z →W holomorphic such that

(1) η is m-universal, in the sense that for every D∩W -branched holomorphic covering
h : Y → W (i.e. the ramification locus of h is contained in D ∩W ) with sheet number
≤ m, there exist a holomorphic map γ : Z → Y such that h ◦ γ = η.

(2) If h : Y →W is a D∩W branched holomorphic covering, then h−1(x) is a single
point.

Specializing to PCF endomorphisms on Pk, we get the following corollary:

Corollary 2.5. Let f be a PCF endomorphism on Pk of degree ≥ 2. Let x ∈ Pk
be a point with bounded ramification. Then for every neighborhood W of x such that
W is a topological ball and the diameter of PC(f) ∩W is sufficiently small, there exist
a connected complex manifold Z, and η : Z → W a PC(f) ∩W branched holomorphic
covering map such that if Wn denotes a connected component of f−n(W ), then there
exist a holomorphic map gn : Z →Wn such that fn ◦ gn = η, i.e. the following diagram
is commute.
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Z W

Wn

η

gn
fn

The map gn constructed above can be seen as a kind of inverse branch of fn.

Proof. Since x has bounded ramification, there existsm ≥ 0 such that ord (fn, xn) ≤
m for every xn ∈ f−n(x) and n ≥ 0. Take X = Pk and D = PC(f) in Lemma 2.4. Then
for W satisfying that W is a topological ball and the diameter of PC(f) ∩W is suffi-
ciently small, there exist a connected complex manifold Z, and η : Z →W a PC(f)∩W
branched holomorphic covering map, satisfy the two conclusion of Lemma 2.4. Let Wn

denote a connected component of f−n(W ), then by Lemma 2.4 (2), Wn ∩ f−n(x) con-
tains a single point, thus fn : Wn → W has sheet number ≤ m. By Lemma 2.4 (1),
there exists a holomorphic map gn : Z → Wn such that fn ◦ gn = η. Thus the proof is
complete. �

The sequence {gv} defined in Lemma 2.5 is in fact normal, and any limit map of
{gv} is also a Fatou map, by the following result of Ueda ( [26] Theorem 2.3 ).

Lemma 2.6. Let f be a holomorphic endomorphism on Pk of degree ≥ 2. Let Z be
a complex analytic space and h : Z → Pk a holomorphic map, for every integers n let
gn : Z → Pk be a family of holomorphic maps such that fn ◦ gn = h. Then {gn} is a
normal family. Further more if φ is a limit map of a sub-sequence of {gn} , then φ is a
Fatou map.

3. Location of periodic points.

Let f be a PCF endomorphism on P2 of degree ≥ 2. In this section we prove Theorem
1.2. By Briend-Duval [5], J2 is contained in the closure of the set of repelling periodic
points. Thus to prove J2 is the closure of the set of repelling periodic points, we only need
to prove repelling periodic points are contained in J2. We also investigate the locations
of super-saddle fixed point of PCF endomorphisms on P2 in Theorem 3.4. Theorem 1.2
will be a combination of Theorem 3.3 and Corollary 3.8. We start with a definition.

Definition 3.1. Let f be a PCF endomorphism on P2 of degree ≥ 2. A fixed point
x0 is called repelling if all eigenvalues of Df at x0 have modulus larger than 1. A fixed
point x0 is called super-saddle if Df at x0 has one 0 eigenvalue and one eigenvalue with
modulus larger than 1. A fixed point x0 is called super-attracting if Df at x0 has only 0
eigenvalues.

Note that by the result of Le [21], for PCF endomorphisms on P2 every periodic
point is either repelling, super-saddle or super-attracting.
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3.1. Repelling points. We first recall the following fundamental result, for the
proof see Sibony [24] Corollaire 3.6.5.

Proposition 3.2. Let f be a holomorphic endomorphism on Pk of degree ≥ 2. Then
x ∈ Jk if and only if for every neighborhood U of x, Pk \

⋃∞
n=0 f

n(U) is a pluri-polar set.

Now we can prove the first part of Theorem 1.2.

Theorem 3.3. Let f be a PCF endomorphism on P2 of degree ≥ 2, then every
repelling periodic point belongs to J2.

Proof. Our argument concerns the backward iterates around a fixed point. This
kind of argument has already appeared in Fornaess-Sibony [16] and Le [21]. Without
loss of generality we may assume x0 is fixed. Since x0 /∈ C(f), by Lemma 2.3, x0 is a
point of bounded ramification. We are going to show that for every neighborhood U of
x0, we have P2 \ PC(f) ⊂

⋃∞
n=0 f

n(U). Thus since PC(f) is algebraic, by Proposition
3.2 we will get x0 ∈ J2.

Let y ∈ P2 \ PC(f) be an arbitrary point. Let W be a neighborhood of x0 such
that y ∈ W and W satisfies the condition in Corollary 2.5. It can be achieved, by
first joining x0 and y by a smooth embedded curve, and let W be a sufficiently thin
tubular neighborhood of this curve. Let m ≥ 0 such that ord (fn, xn) ≤ m for every
xn ∈ f−n(x0) and n ≥ 0. Let η : Z → W a PC(f) ∩W branched holomorphic covering
map as in Corollary 2.5. For n ≥ 0, let Wn denote the connected component of f−n(W )
containing x0. Then by Corollary 2.5 we can define holomorphic map gn : Z →Wn such
that fn ◦ gn = η. By Lemma 2.6, {gn} is a normal family. We are going to show that
actually gn converges to the fixed point x0. Since x0 is repelling, there exists a small
neighborhood Ω ⊂ W such that gn converges to x0 uniformly on η−1(Ω). Now let φ be
any limit map of some sub-sequence of {gn}. Since φ is constant on an open set η−1(Ω),
φ is constant on Z. Thus any limit map of some sub-sequence of {gn} is the constant
map z 7→ x0. This implies that gn converges to the fixed point x0. In particular if z0

satisfies η(z0) = y, we have gn(z0)→ x0 when n→ +∞.

Now let U be an arbitrary neighborhood of x0. Since gn(z0)→ x0, there exist N > 0
such that gN (z0) ∈ U . Since fN ◦ gN = η we get y ∈ fN (U). Since y ∈ P2 \ PC(f) is
arbitrary we get P2 \ PC(f) ⊂

⋃∞
n=0 f

n(U). By the arbitrariness of U , we have x0 ∈ J2,
which completes the proof. �

3.2. Super-saddle points. Let f be a PCF endomorphism on P2 of degree ≥ 2.
We investigate the location of super-saddle cycles of f. Let x0 be a super-saddle fixed
point. Since Df has one zero eigenvalue, x0 is contained in a critical component of f. If
the critical component C containing x0 is invariant, then there are infinitely many super-
saddle cycles in C. For example, take an arbitrary homogeneous PCF polynomials f on
P2, every repelling periodic point of f |L∞ is a super-saddle periodic point of f, where

L∞ is the line at infinity. Actually for all known examples of PCF endomorphisms on P2,
every super-saddle cycle is contained in a critical component cycle. We may conjecture
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that actually this is true for every PCF endomorphism on P2. For the moment we can
only show that this is true under an additional assumption.

Theorem 3.4. Let f be a PCF endomorphism on P2 of degree ≥ 2, Let x0 be a super-
saddle fixed point in P2. If the branches of PC(f) are smooth and intersect transversally
at x0, then x0 is contained in a critical component cycle.

Proof. In the following we let Cx0(f) denote the union of critical components con-
taining x0 and PCx0(f) =

⋃∞
n=1 f

n(Cx0(f)). It is easy to observe that PCx0(f) =
PCx0 (fn) for every n ≥ 1. Then up to an iteration of f, we may assume that all peri-
odic components of PCx0(f) are fixed, and every component of PCx0(f) is mapped to
an invariant component by at most one iteration. It remains to show x0 is contained in
an invariant component of Cx0(f). We argue by contradiction. Assume x0 is not con-
tained in an invariant component of Cx0(f), then there exist V an invariant component
of PCx0(f) such that V 6⊂ Cx0(f). We first show that V 6= PCx0(f). We argue by con-
tradiction, assuming V = PCx0(f), then there exist a neighborhood U of x0 such that
f : U → f(U) is a V -branched covering. Then, since x0 ∈ Cx0(f), f−1(V ) contains a
component of Cx0(f). Since f−1(V ) also contains V , we deduce that f−1(V ) is singular
at x0. We recall the following result of Ueda [27] Lemma 3.5.

Lemma 3.5. Let f : U1 → U2 be a V -branched holomorphic covering, where U1, U2

are complex manifolds and V is a codimension 1 analytic subset of U2. Suppose that
x0 ∈ U1 is a singular point of f−1(V ), then f(x0) is a singular point of V .

Coming back to our situation, letting U = U1 and f(U) = U2 in above lemma, we
know that x0 is a singular point of V . This is impossible, since by our assumption V is
smooth at x0. Thus there must exist a component V1 of PCx0(f) such that V1 6= V.

Let V ′ be the invariant component of PCx0(f) that is a forward image of V1. We
recall the following result of Le [21] Proposition 5.5.

Lemma 3.6. Let f : (C2, 0) → (C2, 0) be a proper holomorphic germ and let Σ1,Σ2

be two irreducible germs at 0 such that Σ1 6= Σ2, f(Σ1) = Σ2 and f(Σ2) = Σ2. If Σ2

is smooth at 0 then the eigenvalue of Df at 0 are 0 and λ where λ is the eigenvalue of
D0f |T0Σ2.

Coming back to our situation, take V = Σ2 (resp. V ′ = Σ2) in above lemma, since
x0 is super-saddle, we get that the eigenvalue of f restricted to V (resp. V ′) at x0 must
be repelling. By our assumption V ′ and V intersect transversally, the only possible case
that x0 being super-saddle is when V ′ = V . Thus we must have f (V1) = V by our
assumption that every component of PC(f) is mapped to an invariant component by
one iteration. To summarize, there exist V1 ⊂ PCx0(f) such that V1 6= V , and every
component of PCx0(f) is mapped to V by one iteration.

We do a local coordinate change such that x0 = (0, 0), V = {{x = 0} ∩U}, where U
is a small neighborhood of (0, 0). By [21] Proposition 5.5, 0 is a repelling point of f |V .
Let λ be the eigenvalue of f |V at 0, |λ| > 1. Thus after a linear coordinate change fixing
V , the expression of f in this coordinate has the following form

(3.1) f(x, y) = (G(x, y), λy + ax+H(x, y)),
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Where G(x, y) = O
(∣∣x2

∣∣ , ∣∣y2
∣∣), x is a factor of G and H(x, y) = O

(
|x|2, |y|2

)
.

Since V1 is a smooth curve that intersects {x = 0} transversally, we may assume
V1 = {y = φ(x)} for some holomorphic function φ. We do a local coordinate change
x′ → x y′ → y − φ(x). In this coordinate the expression of f has the same form as in
(3.1), and V1 = {y = 0}. In the following we work in this coordinate.

By our assumption that every component of PCx0(f) is mapped to an invariant
component by one iteration, there exists a critical component C such that f(C) = V1.
Thus C satisfies the equation

(3.2) λy + ax+H(x, y) = 0.

By the implicit function theorem, C is a smooth curve that intersects with {x = 0}
transversally. We let C = {y = ψ(x)} for some holomorphic function ψ.

By direct calculation, the Jacobian of f is

Jac(f) =
∂G

∂x

(
λ+

∂H

∂y

)
− ∂G

∂y

(
a+

∂H

∂x

)
.

Since C is in the critical set of f, ψ satisfies the following equation

(3.3)
∂G

∂x
(x, ψ(x))

(
λ+

∂H

∂y
(x, ψ(x))

)
− ∂G

∂y
(x, ψ(x))

(
a+

∂H

∂x
(x, ψ(x))

)
= 0.

Take differential of x in the both sides of (3.2) we get

(3.4) λψ′(x) + a+
∂H

∂x
(x, ψ(x)) +

∂H

∂y
(x, ψ(x))ψ′(x) = 0.

Combining (3.3) and (3.4) we get(
λ+

∂H

∂y
(x, ψ(x))

)(
∂G

∂x
(x, ψ(x)) +

∂G

∂y
(x, ψ(x))ψ′(x)

)
= 0.

Since
(
λ+ ∂H

∂y (x, ψ(x))
)
6= 0, ψ satisfies

∂G

∂x
(x, ψ(x)) +

∂G

∂y
(x, ψ(x))ψ′(x) = 0.

This implies that ψ satisfies G(x, ψ(x)) = 0 for every x. Then by the expression
(3.1), we must have f(C) ⊂ V. Since f(C) = V1, we have f(C) = (0, 0), this is a
contradiction since f is a locally finite to one map. Thus x0 is contained in an invariant
critical component, and the proof is complete. �

Remark 3.7. The post-critical set of examples of PCF endomorphisms constructed
by Crass, Fornaess-Sibony and Koch [6, 14, 20] are the union of projective lines, so these
examples satisfy the assumption in Theorem 3.4.
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Corollary 3.8. Let f be a PCF endomorphism on P2 of degree ≥ 2 such that all
branches of PC(f) are smooth and intersect transversally, then every periodic point in
J2 is repelling.

Proof. Let x0 ∈ J2 be a periodic point. By Le [21], x0 is either repelling, super-
saddle or super-attracting. Since super-attracting periodic points belong to the Fatou
set, x0 is not super-attracting. By Theorem 3.4, super-saddle periodic points are con-
tained in critical component cycles, in particular they are not in J2. So x0 must be
repelling. �

4. Structure of J1 \ J2.

In this section we prove Theorem 1.3. We will first prove several lemmas, which are
true for PCF endomorphism on P2.

Lemma 4.1. Let f be a PCF endomorphism on P2 of degree ≥ 2. Let x0 ∈ Pk and let
v be a sub-sequence of integers such that xv → y and y is of bounded ramification, where
xv = fv(x0). Let W be a neighborhood of y and η : Z → W a holomorphic covering
as in Corollary 2.5. Let Wv denote the connected component of f−v(W ) containing x0.
Let gv : Z → Wv such that fv ◦ gv = η. Assume gv converges to a constant map, then
x0 ∈ J2 and y ∈ J2

Proof. We first prove y ∈ J2. We take W = B(y, r) for sufficiently small r. Let
Z ′ = η−1(B(y, r/2)). Let N large enough such that xv ∈ B(y, r/2) when v ≥ N. Since gv
converges to a constant map and Z ′ ⊂⊂ Z, we have diam gv (Z ′)→ 0. Let v large enough
such that W ′ := fN (gv (Z ′)) ⊂⊂W. Thus fv−N : W ′ →W is a polynomial-like map, By
[10] Theorem 2.22, there exist a fixed point of fv−N in W . Letting r → 0, we get that
y is approximated by periodic points. By the result of Le [21], every periodic point of
a PCF endomorphism f on P2 is repelling, super-saddle or super-attracting. Since y is
not in a critical component cycle, and since there are only finitely many super-attracting
periodic points and super-saddle periodic points outside critical component cycles, y is
approximated by repelling periodic points. By Theorem 3.3, y ∈ J2. Let z = η−1(y).
The convergence of gv to x0 implies gv(z) → x0, thus there is a sequence of pre-image
{yv} of y such that yv converges to x0. By the backward invariance of J2, we conclude
that x0 ∈ J2. �

Lemma 4.2. Let f be a PCF endomorphism on P2 of degree ≥ 2. Let x0 ∈ P2 and let
v be a sub-sequence of integers such that xv → y and y is of bounded ramification, where
xv = fv(x0). Let W be a neighborhood of y and η : Z → W a holomorphic covering as
in Corollary 2.5. Let Wv denotes the connected component of f−v(W ) containing x0.
Let gv : Z → Wv such that fv ◦ gv = η. Assume gv converges to a non-constant map φ,
then there exist a Fatou disk passing through x0.

Proof. Let W = B(y, r) for small r. Let M = φ(Z), we will show that M contains
a Fatou disk passing through x0. Let N large enough such that xv ∈ W when v ≥ N.
Then for v ≥ N, there exist zv ∈ Z ′ such that gv (zv) = x0. Let z = η−1(y), it is clear
that zv → z when v → +∞. Let v → +∞ in the equation gv (zv) = x0 we get φ(z) = x0,
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then x0 ∈ M . By Lemma 2.6, φ : Z → P2 is a Fatou map, by definition, this implies
that {fn|M}n≥1 is a normal family. Let D ⊂ Z be a holomorphic disk passing through

z such that φ is not a constant map when restricted to D, then φ(D) ⊂ M is a Fatou
disk passing through x0. �

Lemma 4.3. Let f be a PCF endomorphism on P2 of degree ≥ 2. Let x0 ∈ J1 such that
x0 is not contained in the attracting basin of a critical component cycle nor contained in
the stable manifold of a super-saddle cycle, then there exist a sub-sequence v of positive
integers such that xv = fv (x0)→ y, where y is a point of bounded ramification.

Proof. There are at most finitely many critical point cycles, which are not contained
in the critical component cycles. We denote this finite set by E. We show that if x0 ∈ J1

is such that x0 is not contained in the attracting basins of critical component cycles and
ω (x0) contains only points of unbounded ramification, then x0 is contained in the stable
manifold of a super-saddle cycle. If x0 satisfies the above assumption, by Lemma 2.3 we
know that ω (x0) ⊂ E. We recall the following basic property of ω -limit set:

Lemma 4.4. Let X be a compact metric space, let f : X → X be a continuous map,
and let g : ω(x0) → ω(x0) be the restriction of f on the ω-limit set of x0, then there is
no non-trivial open subset U of ω(x0) such that g(U) ⊂ U .

Proof. Bowen ([4] Theorem 1) proved the above lemma for homeomorphisms, but
the proof also holds for non-invertible maps. For the completion we give a proof here.
Assume by contradiction that such open subset U exist, let Y := ω(x0). By our assump-
tion 2ε := dist(Y \ U, g(U)) > 0. Choose 0 < δ < ε such that dist(x1, x2) < δ implies
dist(f(x1), f(x2)) < ε for every x1, x2 ∈ X. Now it is clear that there is N > 0 such
that dist(fn(x0), Y ) < δ when n > N (otherwise ω(x0) will be strictly larger than Y ).
Pick M ≥ N such that dist(fM (x0), g(U)) < ε and dist(fM (x0), y) < δ for some y ∈ Y .
Then dist(g(U), y) < 2ε, which implies y ∈ U . Then

dist(fM+1(x0), g(U)) ≤ dist(fM+1(x0), g(y)) < ε.

Inductively for all m ≥M we have dist(fm(x0), g(U)) < ε. This implies Y ∩ (Y \U) = ∅,
which is a contradiction. �

Coming back to our situation, since ω(x0) is a finite set, the only possibility is that
ω (x0) contains a single periodic cycle. Since x0 ∈ J1 and ω(x0) contains no points of
bounded ramification, this cycle must be a super-saddle cycle. Thus x0 is contained in
the stable manifold of this super-saddle cycle. It follows that if x0 is not contained in the
attracting basin of a critical component cycle nor contained in the stable manifold of a
super-saddle cycle, ω (x0) has non-empty intersection with the set of points of bounded
ramification. This completes the proof. �

Now we are in position to prove Theorem 1.3. Recall the statement.

Theorem 4.5. Let f be a PCF endomorphism on P2 of degree ≥ 2. Let x ∈ J1 \ J2

which is not contained in an attracting basin of a critical component cycle, then there is
a Fatou disk D passing through x.
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Proof. Suppose first x0 is contained in the stable manifold of a super-saddle cycle.
Then there exist an embedded holomorphic disc D passing through x0 such that D
coincides with the local stable manifold at x0, and it is clear that {fn|D}n≥1 is normal.
Now suppose x0 satisfies the assumptions of the theorem, and x0 is not contained in the
stable manifold of a super-saddle cycle. By Lemma 4.3, we can choose a sub-sequence v of
positive integers such that xv = fv (x0)→ y, and y is of bounded ramification. Consider
a neighborhood W of y and η : Z → W the holomorphic covering as in Corollary 2.5.
Let Wv denotes the connected component of f−v(W ) containing x0. Let gv : Z → Wv

such that fv ◦ gv = η. By Lemma 2.6 {gv} is a normal family. By passing to some
sub-sequence, we may assume gv converges to a holomorphic map φ. φ can not be a
constant map, since otherwise by Lemma 4.1, x0 ∈ J2, which is a contradiction. Thus φ
is a non-constant map. By Lemma 4.2, there is a Fatou disk passing through x0, which
completes the proof. �

5. PCF endomorphisms satisfying J2 = P2

In this section we prove Theorem 1.4. We start with a definition of Ueda [26].

Definition 5.1. Let f be a PCF endomorphism on Pk of degree ≥ 2, k ≥ 1 . f is
called strictly PCF if all points in Pk have bounded ramification.

We note that this definition coincide with the definition of 2-critically finite maps in
Jonsson [18], when k = 2. In [18] Jonsson proved the following result, here we give an
alternative proof.

Theorem 5.2. Let f be a strictly PCF endomorphism on P2 of degree ≥ 2, then
J2 = P2.

Proof. We start with a lemma.

Lemma 5.3. Let f be a PCF endomorphism on P2 of degree ≥ 2. Let V be an
invariant irreducible component of PC(f) such that V 6⊂ C(f), let π : V̂ → V be the

normalization of V, and let f̂ be the lift of f on V̂ . Let J(f̂) be the Julia set of f̂ . Then

π(J(f̂)) ⊂ J2.

Proof. We have the following commutative diagram

V̂ V̂

V V

f̂

π π

f

It is clear that if p is a periodic point of f̂ , then π(p) is a periodic point of f. Since

periodic points of f̂ are dense in J(f̂), periodic points of f are dense in π(J(f̂)). since

J(f̂) does not have isolated points, π(J(f̂)) does not have isolated points. It is clear that

a periodic point of f in π(J(f̂)) is not super-attracting. Since V 6⊂ C(f), there are at

most finitely many super-saddle periodic points in π(J(f̂)). By the main theorem of [21],
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every periodic point is either repelling or super-attracting or super-saddle. Therefore
periodic points in π(J(f)), except finitely many of them, are repelling. Thus repelling

points are dense in π(J(f̂)). By Theorem 3.3, π(J(f̂)) ⊂ J2. �

We come back to the proof of Theorem 5.2. Suppose f is strictly PCF on P2. Then
f does not have critical component cycles, nor critical point cycles. Thus if V is an
invariant irreducible component of PC(f), then V 6⊂ C(f). Let π : V̂ → V be the

normalization of V, and let f̂ be the lift of f on V̂ . By [18] Lemma 2.6, f̂ is PCF on V̂ .

If p is a super-attracting fixed point of f̂ , then π(p) is a fixed critical point of f, since

f is strictly PCF, such p can not exist. Thus J(f̂) = V̂ and π(J(f̂)) = V . This implies
V ⊂ J2 by Lemma 5.3.

We recall the theorem of Dinh-Sibony [10] Corollary 1.65:

For holomorphic endomorphism on Pk of degree ≥ 2, k ≥ 1, there exist an exceptional
set E which is a totally invariant algebraic subset of C(f) such that if H is a hypersurface
that does not contain any component of E then (deg H)−1d−nfn∗[H] converges to the
Green current T when n→ +∞.

In our case V ∩C(f) is finite number of points, and V ∩C(f) is not invariant since f
is strictly PCF. Thus V does not contain any component of E and (deg V )−1d−nfn∗[V ]
converges to the Green current T when n → +∞. This implies every point in J1 is
approximated by points in f−n(V ), which are in J2, so J1 = J2. Since f does not have
super-attracting cycles, the Fatou set of f is empty by Rong [23], thus J2 = J1 = P2.
The proof is complete.

�

Now we prove the following theorem, which together with Theorem 5.2 completes
the proof of Theorem 1.4.

Theorem 5.4. Let f be a PCF endomorphism on P2 of degree ≥ 2 such that all
branches of PC(f) are smooth and intersect transversally. Then J2 = P2 implies that f
is strictly PCF.

Proof. By Lemma 2.3, it is enough to prove that J2 = P2 implies that f does not
have critical component cycles nor critical point cycles. First, f does not have critical
component cycles, since for any invariant critical component C of f , C is an attracting
set thus C ∩ J2 = ∅. Next, let x be a fixed critical point of f. If J2 = P2 then the
Fatou set is empty, thus x can not be super-attracting. By [21], x must be a super-
saddle fixed point. By Theorem 3.4, x is contained in an invariant critical component,
this is impossible since we just showed f does not have critical component cycles. This
completes the proof. �

Remark 5.5. If conjecture 1.1 holds, we can give a simple proof of Theorem 1.3 as
follows: J2 = P2 ⇔ J1 = J2 and Fatou set is empty ⇔ No critical component cycle and
super-attracting cycle (since Fatou set are super-attracting basins) ⇔ f is strictly PCF
(by Theorem 3.4 and Lemma 2.3).
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6. Further discussion

In Theorem 3.4 we proved that for PCF endomorphisms on P2, under some additional
assumptions, every super-saddle cycle is contained in a critical component cycle. We do
not know any counterexample when we remove the additional assumptions. Thus a
natural question is:

Question 1: Let f be a PCF endomorphism on P2 of degree ≥ 2, is every super-
saddle cycle be contained in a critical component cycle?

In Lemma 4.1 we proved that if f is a PCF endomorphism on P2 with the ”backward
contracting property”, then an orbit x0 such that ω(x0) contains a point of bounded
ramification should be contained in J2. We want to ask the following:

Question 2 (backward contracting property): Let f be a PCF endomorphism
on P2 of degree ≥ 2. Let x0 ∈ P2 and let v be a sub-sequence of integers such that
xv → y and y is of bounded ramification. Then there exist a neighborhood W of y and
η : Z → W the holomorphic covering as in Corollary 2.5. Let Wv denotes a connected
component of f−v(W ) containing x0. Let gv : Z →Wv such that fv ◦ gv = η. Assume gv
converges to a holomorphic map φ, then must φ be a constant map?

We note that, the answer to Question 2 is yes for rational functions on P1. The reason
is that if f is a rational function on P1, f expands a Thurston metric in a neighborhood
of J(f), which is a smooth metric blowing only at PC(f) ([22] section 19). We can also
prove that the answer to Question 2 is yes in two dimensions, under the assumption that
PC(f) ⊂ C(f), the reason is the following:

Theorem 6.1. Let f be a PCF endomorphism on P2 of degree ≥ 2. Assume PC(f) ⊂
C(f) Let B be the union of attracting basins of critical component cycles, then J2 =
P2 \B, and J2 is a repeller, i.e. there exists k ≥ 1 and λ > 1 such that for every x ∈ J2,
for every v ∈ TxP2 we have

∣∣Dfk(v)
∣∣ ≥ λ|v|.

Proof. Since PC(f) ⊂ C(f), up to an iteration of f we may assume PC(f) contains
only invariant critical components. Let J := P2 \B. Let Ω be a neighborhood of J such
that Ω ⊂⊂ f(Ω). Let C be an invariant critical component. Let W be a neighborhood
of C such that f(Ω)∩W = ∅. It is clear that W contains five curves in general position,
i.e. three curves can not intersect at one point. Then by [18] Proposition 3.8, P2 \W
is Kobayashi hyperbolic. So f(Ω) and Ω are Kobayashi hyperbolic. Let |.|K,Ω denotes
the Kobayashi metric on Ω. (We refer to [19] for the background on Kobayashi metric).
Since Ω ⊂⊂ f(Ω), there exists a constant λ > 1 such that for every x ∈ Ω, for every
v ∈ TxP2, we have

|v|K,Ω ≥ λ|v|K,f(Ω).

Since f : Ω→ f(Ω) is a covering map, for every x ∈ Ω, for every v ∈ TxP2, we have

|v|K,Ω = |Df(v)|K,f(Ω).

Thus we have for every x ∈ Ω, for every v ∈ TxP2

|Df(v)|K,f(Ω) ≥ λ|v|K,f(Ω).
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This implies that for the usual Fubini-Study metric, there exists k ≥ 1 and λ > 1
such that for every x ∈ J2, for every v ∈ TxP2,

∣∣Dfk(v)
∣∣ ≥ λ|v|. Thus for every x ∈ J,

for r > 0 small, the diameter of the backward image of B(x, r) by fn converges to 0. By
Lemma 4, 1, this implies x ∈ J2. Thus J = J2 and the proof is complete. �

Now it is easy to see that Theorem 6.1 implies a positive answer to Question 2 , since
in this case every point in PC(f) is of unbounded ramification. Thus x0 in Question
2 must be contained in J2, and the backward contracting property follows. Finally, we
show that the positive answers to Question 1 and Question 2 will confirm Conjecture
1.1.

Theorem 6.2. Let f be a PCF endomorphism on P2 of degree ≥ 2. Assume every
super-saddle cycle is contained in a critical component cycle and f satisfies the backward
contracting property of Question 2. Then J1\J2 is contained in the union of the attracting
basins of critical component cycles.

Proof. Suppose f satisfies the assumptions in the theorem. Let B be the union
of attracting basins of critical component cycles. It is equivalent to prove J1 \ B = J2.
Our strategy is the same as in Section 4. Let x0 ∈ J1 \ B,. We show that ω (x0) is
contained in the set of points of bounded ramification. Suppose not, since x0 /∈ B,
by Lemma 2.3 ω (x0) must contain a critical point cycle. This critical point cycle can
not be super-attracting, since x0 is not in the Fatou set. By Le [21], this critical point
cycle must be a super-saddle cycle. Then by our assumption, x0 must be contained in
a critical component cycle, which is impossible. Thus ω (x0) is contained in the set of
points of bounded ramification. Since f satisfies the backward contracting property with
conditions as in Lemma 4.1 and 4.2. Since every limit map of gv is a constan map, by
Lemma 4.1 x0 ∈ J2, which completes the proof. �
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