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Introduction 1.1 General context

When two bodies are put in contact and slide against each other, a resistance to the motion is generated. This resistance is called friction and is one of the most important problems in tribology, which is the science and technology of interacting surfaces in relative motion -the science of friction, wear, and lubrication [START_REF] Sheng | Handbook of friction-vibration interactions[END_REF][START_REF] Dante | Handbook of friction materials and their applications[END_REF]. Friction between two solid bodies can be defined as dry if there is direct contact between the two objects, and as lubricated if a substance (called lubricant) is introduced at the interface to reduce friction [START_REF] Sheng | Handbook of friction-vibration interactions[END_REF].

Solid friction has been an important subject of study in a large number of fields, as it is present in both simple daily life situations up to engineering fields. It is either desired, e.g. the resistance between our feet and the ground allowing walking, or undesired, e.g. when producing heat in mechanical systems causes an unwanted energy dissipation [START_REF] Young | Fundamental Aspects of Energy Dissipation in Friction[END_REF], or when it triggers damage and wear in the materials. It is even more complex than that, in the sense that the production of heat and wear can also be desired, e.g., in friction welding [START_REF] Mb Uday | Advances in friction welding process: a review[END_REF] and polishing [START_REF] Liang | Wear phenomena in chemical mechanical polishing[END_REF], respectively.

Friction, which results from the interaction at the microscopic scale of two solids in contact, is in fact a very complex phenomenon that couples many time and length scales. At larger scales, classical friction laws are necessary and are often based on average approaches. Since the Amontons-Coulomb laws in 1699 and also in most of the derived macroscopic friction laws, the response of an interface, subjected to external tangential forces, is expressed in terms of two main parameters of friction, e.g. the static and kinetic friction coefficients. These laws, which are based mainly on the proportionality between friction and normal forces, only very rarely include a link to the microscopic origin of the phenomenon.

Therefore, an in-depth understanding of the sliding contact behavior of bodies, whose fundamental origins have been studied for centuries but remain contentious [START_REF] Krim | Surface science and the atomic-scale origins of friction: what once was old is new again[END_REF][START_REF] Bo Nj Persson | Sliding Friction: physical principles and applications[END_REF], is of crucial importance. The transition between the two friction states, i.e. the problem of the transition from static to kinetic friction, remains insufficiently understood.

It is even more crucial in the case of elastomeric interfaces as they involves materials with complex behaviors. Indeed, elastomers exhibit a unique combination of material properties, each of which being considered as challenging both from the experimental and modelling standpoints, those include: strong adhesion, strong friction, non-linear elasticity and non-linear visco-elasticity.

Scientific context

From a scientific perspective, much progress has been made in the last decades in the fundamental understanding of friction [START_REF] Vakis | Modeling and simulation in tribology across scales: An overview[END_REF][START_REF] Meng | A review of recent advances in tribology[END_REF]. However, despite centuries of investigation, the laws of friction remain essentially empirical laws.

Friction laws

The first two laws of friction were established from the experiments described by Leonardo da Vinci (1452-1519) [START_REF] Hutchings | Leonardo da Vinci's studies of friction[END_REF], which were formulated later by Guillaume Amontons (1663-1705), often known as Amontons' laws, and are briefly summarized as follows:

(1) the friction force Q s is proportional to the normal load P (first Amontons' law, 1699);

Q s = µP (1.1)
being µ the friction coefficient.

(2) the friction force is independent of the apparent contact area for a constant normal load (second Amontons' law, 1699);

A third law of friction was added later by Coulomb [START_REF] Augustin | Théorie des machines simples en ayant égard au frottement de leurs parties et à la roideur des cordages[END_REF]:

(3) the kinetic friction coefficient µ k (defined from the force required to maintain relative motion at a constant sliding velocity) is lower than the static friction coefficient µ s (defined from the force required to start motion between two bodies) and is independent of the sliding speed (Coulomb's law, 1785).

Origin of the friction laws

Since the pioneering work of Bowden and Tabor [START_REF] Frank | The friction and lubrication of solids[END_REF], it is well known that the independence of friction from the apparent contact area arises from the fact that the real contact area A R (see Figure 1.1b) between two surfaces is much smaller than the apparent contact area A A (see Figure 1.1a) and that the total friction force has two main contributions: adhesion and deformation. The former is associated with short-range attractive interactions between the two solids, localized within the real contact area; the latter with the force needed to plough the asperities in contact.

In this context, one of the main challenges for the understanding of friction concerns the evaluation of the real contact area between two surfaces (because that is the region where practically all the tribological interactions occur) and its evolution both with normal and tangential forces. Note here that, in the case of visco-elastic materials, the temporal variations of the strain may also contribute to the friction. 

Apparent contact area,

Real contact area

In general, contact between both natural and engineered surfaces is discontinuous, exhibiting surface roughness on different length scales, constituting a multi-asperity contact and making friction phenomena occur at a myriad of small contacts between The contact area increases with the load or the time spent in contact, from red to green for the load and from red to blue for the contact time. The black rectangle corresponds to the apparent contact area. Figures from [START_REF] James | Direct observation of frictional contacts: New insights for state-dependent properties[END_REF].

the individual asperities of both surfaces. Such micro-contacts are not only difficult to characterize, both because of their small size and because of the opacity of the materials, but they are also constantly being formed or destroyed during sliding, thus also causing local normal load variations.

In particular, direct measurements on transparent interfaces, as shown in Figure 1.2(a), have shown that the real contact area A R is a dynamic quantity, that depends on different parameters, some of them well identified in the literature, such as:

• the normal load P: the real contact area A R of a rough interface is proportional to P [START_REF] Kurian | Unusual surface aging of poly (dimethylsiloxane) elastomers[END_REF][START_REF] Yashima | Normal contact and friction of rubber with model randomly rough surfaces[END_REF][START_REF] Shmuel M Rubinstein | Detachment fronts and the onset of dynamic friction[END_REF], as illustrated in Figure 1.2(b), which presents the real contact area between two rough PMMA blocks for various normal loads [START_REF] James | Direct observation of frictional contacts: New insights for state-dependent properties[END_REF]:

P ∼ A R ; (1.2)
• the aging time: under static conditions, the real contact area increases slowly and generally logarithmically with time spent in contact [START_REF] Kurian | Unusual surface aging of poly (dimethylsiloxane) elastomers[END_REF][START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]. Figure 1.2(c) illustrates the aging of micro-asperities, again at the interface between two rough PMMA blocks, as the time of stationary contact increases. Depending on the material in contact, this phenomenon can be due to plastic [START_REF] Berthoud | Physical analysis of the state-and rate-dependent friction law: Static friction[END_REF] or viscoelastic [START_REF] Ronsin | State, rate and temperaturedependent sliding friction of elastomers[END_REF] relaxation of the micro-contacts;

• the shearing, i.e. the friction force: a direct proportionality between the static friction force Q s and the real contact area A R is observed in shearing experiments, both for single- [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Jf Archard | Elastic deformation and the laws of friction[END_REF][START_REF] Robert | Scratching the surface: fundamental investigations of tribology with atomic force microscopy[END_REF][START_REF] Cohen | Incidence of the molecular organization on friction at soft polymer interfaces[END_REF] and multi-contact interfaces [START_REF] Yashima | Normal contact and friction of rubber with model randomly rough surfaces[END_REF][START_REF] Shmuel M Rubinstein | Detachment fronts and the onset of dynamic friction[END_REF][START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Wu-Bavouzet | Effect of surface pattern on the adhesive friction of elastomers[END_REF]. This proportionality allows one to define the interface shear strength, σ, as the coefficient of proportionality between Q s and A R (see Figure 1.3):

Q s = σA R (1.3) (a) (b) 
Figure 1.3: The friction force (noted F in (a) and F t in (b)) and the real contact area (noted A) are proportional to the normal load (noted W), so they are proportional to each other. Figures from [START_REF] Jf Archard | Elastic deformation and the laws of friction[END_REF] and [START_REF] Wu-Bavouzet | Effect of surface pattern on the adhesive friction of elastomers[END_REF].

Origin of the proportionality between the real contact area and the normal load

Many different mechanical models have been proposed to describe the contact between nominally planar surfaces that contain roughness. One class of such models is the so-called asperity models, which are inspired by the pioneer work of Greenwood and Williamson [START_REF] Greenwood | Contact of nominally flat surfaces". Proceedings of the royal society of London[END_REF] and Bowden and Tabor [START_REF] Fp Bowden | Mechanism of metallic friction[END_REF] which, even if based on totally antagonist assumptions, result in the same final observation, i.e. the proportionality between the contact area and the normal force.

On the one hand, in the Greenwood and Williamson approach in 1966 [START_REF] Greenwood | Contact of nominally flat surfaces". Proceedings of the royal society of London[END_REF], the contact between a smooth rigid plane and a nominally flat rough surface is considered purely elastic. They choose to model the roughness by a collection of spherical asperities, with the same radius and a random distribution of height Φ(z) (see Figure 1.4), which deformation is described by Hertz model (see Section 1.2.3, Adhesionless normal contact). By calculating the number of contacts spots N and thus the real contact area A R , they show that, under those elastic assumptions and for an exponential distribution of heights, the real contact area is proportional to the normal load.

Figure 1.4: Schematic view of Greenwood and Williamson [START_REF] Greenwood | Contact of nominally flat surfaces". Proceedings of the royal society of London[END_REF] model for the contact between rough surfaces. The interface is modeled by the contact between a smooth rigid plane and a collection of spherical asperities, with the same radius R and a random distribution of height Φ(z), which deformation is described by Hertz model.

On the other hand, in the Bowden and Tabor approach in 1942 [START_REF] Fp Bowden | Mechanism of metallic friction[END_REF], the contact between two rough surfaces is considered as purely plastic. By assuming that the real contact area A R is far lower than the apparent contact area A A , they considered that the local pressure p 0 in each micro-contact, which is highly loaded, is equal to the yield strength of the material: p 0 = σ Y . As by definition p 0 = P/A R , it results again that the real contact area is proportional to the normal load (P = σ Y A R ).

Back to the friction laws

As we have just seen, both experimental measurements and models predict, for rough interfaces, the proportionality of P and A R (Equation1.2). In addition, due to the rupture of the interface under shear at the transition between static and sliding contacts, the static friction force Q s is also proportional to A R . It thus becomes obvious that these observations can be considered as the origin of the linearity of the relationship between the static friction force Q s and the applied normal load P. The friction coefficient, introduced by the first Amontons' law (see Equation 1.1), is just the mathematical translation of this proportionality.

Contact mechanics: single-asperity

Due to its small size, studying the friction behavior of a single micro-contact on a rough interface is extremely difficult, both experimentally and numerically. Thus, many studies in the literature are based on a simple approach, which consists of investigating friction in a model sphere/plane contact as a proxy for an individual microcontact (see Figure 1.1(c)). This approach is not unreasonable because, locally, the contact between two antagonist asperities can be approximated by that of two elliptic paraboloids, which is exactly the case of Hertz's theory [START_REF] Hertz | Ueber die Berührung fester elastischer Körper[END_REF]. Then, the asperity/asperity contact can be reduced to a sphere/plane contact by using the equivalent radius and equivalent reduced modulus, as given below in Section 1.2.3 (Adhesionless normal contact) and Equation 1.4.

Note that, during the approximation of a real micro-contact by a smooth sphere/plane contact, much information may be lost, e.g. the complex multi-scale character of the roughness of the initial surfaces, the shear force induced by the non-coincidence of the apexes of the two contacting asperities, the proportionality between normal and friction forces, or the effect of the elastic interactions with neighbouring micro-contacts.

Thus, going back to the initial problem is not always straightforward.

Nevertheless, there is a breadth of research into the field of contact mechanics on single-asperities under normal loading, starting from Hertz [START_REF] Hertz | Ueber die Berührung fester elastischer Körper[END_REF], where the frictionless non-adhering surfaces of linearly elastic spheres were considered, to theories that include adhesion, friction, and plasticity [START_REF] Kl Johnson | Surface energy and the contact of elastic solids[END_REF][START_REF] Boris V Derjaguin | Effect of contact deformations on the adhesion of particles[END_REF][START_REF] Bhushan | Contact mechanics of rough surfaces in tribology: single asperity contact[END_REF].

Adhesionless normal contact

The pioneer study in this area was presented by Hertz [START_REF] Hertz | Ueber die Berührung fester elastischer Körper[END_REF] where the frictionless normal contact of two elastic bodies of quadratic profile was considered (see Figure 1.5).

Hertz determined the contact radius a of two spheres pressed in contact under load P as [START_REF] Kl | Contact mechanics[END_REF]:

a = 3RP 4E * 1/3
(1.4)

where 1 R = 1 R 1 + 1 R 2 and 1 E * = 1-ν 2 1 E 1 + 1-ν 2 2
analysis is in particular applicable to the contact of an elastic hemisphere and a rigid plane (E 2 >> E 1 and R 2 >> R 1 ).

Figure 1.5: Sketch of the system considered in Hertz's theory (from [START_REF] Kl | Contact mechanics[END_REF]). Two initially circular solids with smooth surfaces are brought in unilateral contact by a normal load P. The remote displacements δ 1 and δ 2 induce surface displacements u z1 and u z2 such that a circular contact of radius a is formed.

Adhesive contact

A major improvement to Hertz's contact theory for elastic materials, proposed in two different models by Johnson, Kendall, and Roberts (JKR theory) [START_REF] Kl Johnson | Surface energy and the contact of elastic solids[END_REF] and by Derjaguin, Muller and Toporov (DMT theory) [START_REF] Boris V Derjaguin | Effect of contact deformations on the adhesion of particles[END_REF], was the consideration of attractive interactions (adhesion) that arise mainly from Van der Waals forces acting between two contacting surfaces [START_REF] Brogly | Forces involved in adhesion[END_REF].

JKR's theory assumes perfectly smooth surfaces, linearly elastic materials and attractive interactions acting only at very small gaps, i.e. within the real contact region.

In this model (see Barthel [32] for a complete review), the attractive interactions introduce tensile stress near the contact edges while it is compressive at the centre. There is a finite contact area at zero normal load P as well as a greater contact area compared to the Hertzian prediction under a given P. The JKR contact radius a expression is given by, a = 3R 4E * P + 3ω 0 πR + 6ω 0 πRP + (3ω 0 πR) 2 1/3 (1.5) where ω 0 is called the work of adhesion, that represents the work done to separate a unit area of the interface from contact to infinity.

The JKR theory also predicts a pull-off force, that is, a negative load needed to separate two surfaces from contact. That negative load has to overcome the action of adhesive forces between the surfaces in order to separate them, and it is related to the work of adhesion ω 0 by (for a pull-off procedure under imposed normal force):

P pull-o f f = - 3 2 ω 0 πR (1.6)
In contrast, DMT's theory assumes that the deformed contact profile remains the same as in Hertz's theory, but with additional attractive interactions outside the area of contact [START_REF] Boris V Derjaguin | Effect of contact deformations on the adhesion of particles[END_REF]. Their expression for the contact radius a is, a = 3R 4E * (P + 2ω 0 πR) 1/3 (1.7)

and the pull-off force,

P pull-o f f = -2ω 0 πR. (1.8)
As we can see, the magnitudes of the pull-off force predicted by the JKR and DMT theories are different, although the scaling is the same. Then, which theory is more suitable to explain the contact area dependence on the normal load?

Tabor [START_REF] Tabor | Surface forces and surface interactions[END_REF] pointed out that JKR and DMT theories are valid at the two extreme values of a parameter λ (Tabor parameter), that measures the impact of the interaction stresses on the surface deformations, and is given by [START_REF] Barthel | Adhesive elastic contacts: JKR and more[END_REF]:

λ = σ 0 ωE * 2 πR 1/3 (1.9)
where σ 0 is the amplitude of the attractive interaction stresses. Then, JKR theory describes compliant and adhesive materials for which λ is large and DMT theory describes stiff and weakly adhesive materials with small values of λ.

However, real situations are intermediate between these two extremes. A theory in this intermediate region, i.e. valid for a range of the Tabor parameter, was proposed by Maugis [START_REF] Maugis | Adhesion of spheres: the JKR-DMT transition using a Dugdale model[END_REF], which is a general case describing the contact, while both the JKR and DMT theories are special cases (see Figure 1.6). 

Sheared contact in rough and single-asperity interfaces

A large part of the literature is concerned with contacts under purely normal load, while the case of sheared contacts has been much less investigated. And when that is the case, the pressure state is often supposed to be unchanged with respect to that in the normal loading case. Following the pioneer work of Cattaneo-Mindlin [START_REF] Cattaneo | Sul contatto di due corpi elastici. Accademia dei Lincei[END_REF][START_REF] David | Compliance of elastic bodies in contact[END_REF], numerous models and experiments were proposed in the literature to expand these works toward more and more realistic cases. As we will see below, some of those studies try (i)

to directly address the case of rough interfaces (see Figure 1.1 (b)) and others try (ii) to address the specific perfectly smooth sphere/plane contacts under shear (see Figure 1.1 (c)) always expecting, as it was the case for pure normal loading, that going back to the initial rough problem is possible.

Model approach for sheared interfaces

In addition to the contact problem under pure normal loading, the case of subsequent tangential loading was first addressed by the classical [START_REF] Cattaneo | Sul contatto di due corpi elastici. Accademia dei Lincei[END_REF] [START_REF] Cattaneo | Sul contatto di due corpi elastici. Accademia dei Lincei[END_REF] and [START_REF] David | Compliance of elastic bodies in contact[END_REF] [START_REF] David | Compliance of elastic bodies in contact[END_REF] studies. They consider that the Hertz contact pressure is not affected by the application of a tangential load, which is a reasonable assumption in the case of elastomer/glass contacts, because the elastomer is incompressible and much softer than the glass. In these conditions, the normal/tangential decoupling is expected to be perfect. If the interface was fully stuck (no slip allowed), the shear stress field on the circular contact would diverge at the contact edges. Assuming a local Coulomb friction law, the contact edge is also a region of vanishing slip threshold. Both features indicate that, in reality, slip must occur at the contact periphery, as soon as the slightest shear force is applied to the contact. Slip thus initiates as a peripheral annulus, which will grow radially inward as the tangential load increases, with a size controlled by the value of the local friction coefficient µ [START_REF] James | Nominally static frictional contacts under periodic loading[END_REF]. The central stick zone thus shrinks progressively, until it completely disappears when macroscopic sliding sets in, i.e. when Q = µP [START_REF] Kl | Contact mechanics[END_REF][START_REF] Valentin | Contact mechanics and friction[END_REF].

Note that the Cattaneo-Mindlin model contains a physical inconsistency. Indeed, on the one hand, it is based on Hertz's theory, which considers a perfectly smooth contact. On the other hand, it assumes a local Coulomb's friction law, which implies that the macroscopic friction force is proportional to the normal load. The latter implication is at odds with Q s = σA R (Equation 1.3), which has been found to be valid for smooth sphere/plane contacts. Indeed, due to the non-linearity between P and A R in Hertz's theory, Equation 1.3 is incompatible with a proportionality between Q s and P. Then, Cattaneo and Mindlin do not seem to be usable to model perfectly smooth sphere/plane contacts under shear.

In the last decades, more adequate models have been developed by the rough contact mechanics community in two main directions (see Vakis et al. [START_REF] Vakis | Modeling and simulation in tribology across scales: An overview[END_REF] for a recent review).

First, asperity models in which the contact interface is divided into well-defined micro-contacts actually carrying the normal and tangential loads applied to the contacting solids (Braun and Röder [START_REF] Braun | Transition from stick-slip to smooth sliding: an earthquakelike model[END_REF], Ciavarella, Delfine, and Demelio [START_REF] Ciavarella | A "re-vitalized" Greenwood and Williamson model of elastic contact between fractal surfaces[END_REF], and Violano

and Afferrante [START_REF] Violano | Contact of rough surfaces: Modeling adhesion in advanced multiasperity models[END_REF]). Each micro-junction is ascribed a set of individual properties (e.g., its height, radius of curvature and friction coefficient) necessary to apply some assumed behaviour laws (e.g., any contact (Johnson [START_REF] Kl | Contact mechanics[END_REF]) or friction law (Bot et al. [START_REF] Bot | Relaxation tribometry: a generic method to identify the nature of contact forces[END_REF])) when submitted to an external stimulus. The macroscopic behavior of the interface is then the emerging collective response of the population of micro-contacts (Trømborg et al. [START_REF] Kjoshagen | Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces[END_REF], Braun and Peyrard [START_REF] Oleg | Seismic quiescence in a frictional earthquake model[END_REF], and Costagliola, Bosia, and Pugno [START_REF] Costagliola | A 2-D model for friction of complex anisotropic surfaces[END_REF]).

Second, the contact, with adhesion, of a sphere and a half-space in which there is both normal and tangential loading was first considered by Savkoor and Briggs [START_REF] Savkoor | The effect of tangential force on the contact of elastic solids in adhesion[END_REF].

They use a combination of linear elastic fracture mechanics (LEFM) and contact mechanics, extending JKR theory (mode I) to tangential forces (mode II/mode III). They found that, as a result of increasing the tangential load, the surfaces tend to peel apart, and hence, the contact area decreases progressively. In their model, however, they did not account for frictional resistance as the contact evolves and have underestimated the interfacial toughness, which is the resistance to crack growth along an interface. This led to an overestimation of the reduction of the contact area with increasing tangential force. For many interfaces, it has been observed an increase of the interfacial toughness under mixed modes due to various phenomena such as friction, plasticity, etc [START_REF] Hutchinson | Mixed mode fracture mechanics of interfaces[END_REF].

Then, this mode combination effect has been accounted for by various models [START_REF] Kl | Continuum mechanics modeling of adhesion and friction[END_REF][START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF][START_REF] Valentin | Friction in an adhesive tangential contact in the Coulomb-Dugdale approximation[END_REF][START_REF] Ciavarella | Fracture mechanics simple calculations to explain small reduction of the real contact area under shear[END_REF][START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF][START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF] in which an empirical Mode-Mixity Function (MMF) f (ψ) [START_REF] Hutchinson | Mixed mode cracking in layered materials[END_REF] is introduced to tune the interaction modes:

G c = f (ψ)G Ic , (1.10) 
where G c is the critical energy release rate, G Ic is the mode I critical factor (or surface energy in Griffith's concept) and ψ is the phase angle that defines the ratio of mode I and II loading, defined as .11) where K I and K I I are, respectively, the stress intensity factors in mode I and mode II (along the shearing direction).

ψ = arctan K I I K I , ( 1 
K I = P H -P 2a √ πa , K I I = Q 2a √ πa , (1.12) 
where P H = 4E * a 3 /3R is a compressive Hertzian load, with a denoting the radius of the contact area and Q the tangential force.

The three most popular versions of such a model in the literature [START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF][START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF][START_REF] Hutchinson | Mixed mode cracking in layered materials[END_REF] have a similar quadratic form at low K I I /K I for the function f (ψ):

f (ψ) 1 + (1 -λ)ψ 2 + O(ψ 4 ) (1.13)
where 0 ≤ λ ≤ 1 is an empirical parameter. λ = 1 is the uncoupled limit mode with no effect of the tangential load on the contact area upon shearing. λ = 0 corresponds to the "ideally brittle" fracture of Savkoor and Briggs [START_REF] Savkoor | The effect of tangential force on the contact of elastic solids in adhesion[END_REF] model. λ can be adjusted to find the best agreement with the observed area decrease with the tangential load.

From all previous equations, the fundamental equation that governs the contact area reduction while the shear load is increased, for any mode-mixity function f (ψ) can be expressed as:

P = 4E * a 3 3R -8πE * G Ic a 3 f (ψ) -Q 2 .
(1.14)

From Equation 1.14, it is now possible to predict the real contact area during the shearing of a sphere as function of the normal force P. So far, in the literature, LEFM-based models have been shown to quantitatively reproduce experimental results on the decay of the contact area under mixed-mode loading, and also to reproduce the anisotropic properties of the area changes. However, the overall contact area evolution depends on the MMF form [START_REF] Kl | Continuum mechanics modeling of adhesion and friction[END_REF][START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF][START_REF] Valentin | Friction in an adhesive tangential contact in the Coulomb-Dugdale approximation[END_REF][START_REF] Ciavarella | Fracture mechanics simple calculations to explain small reduction of the real contact area under shear[END_REF][START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF][START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF]. Due to the same lack of understanding of the mode mixity, other adhesion models, like the numerical ones of Mergel et al. [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF], Salehani, Irani, and Nicola [START_REF] Khajeh Salehani | Modeling adhesive contacts under mixed-mode loading[END_REF], and Mergel, Scheibert, and Sauer [START_REF] Mergel | Contact with coupled adhesion and friction: Computational framework, applications, and new insights[END_REF] or the theoretical one of McMeeking et al. [START_REF] Rm Mcmeeking | The interaction of frictional slip and adhesion for a stiff sphere on a compliant substrate[END_REF], also require ad hoc descriptions of the local interfacial behavior under coupled normal and tangential loading. More recently, adhesionless models based only on hyper-elasticity, to better account for the high deformation in elastomers, also have been suggested [START_REF] Mergel | Contact with coupled adhesion and friction: Computational framework, applications, and new insights[END_REF][START_REF] Wang | Sphere and cylinder contact mechanics during slip[END_REF][START_REF] Lengiewicz | Finite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts[END_REF]] and they will be discussed in further detail in Chapter 3.

To date, there is no universally accepted friction model for sheared elastomer contacts, and the different modeling strategies mentioned above do not always converge towards a unified vision of the mechanisms responsible for the area reduction/shrinkage observed in experiments. However, they may not all be equally relevant for all loading ranges. Indeed, one can easily imagine that the respective weights of the various mechanisms possibly involved (adhesion, large deformation, etc.) can vary according to the applied load.

Sheared interface experiments

While there are many theoretical models, the literature remains very poor on the experimental side. In the following, we will restrict our overview of the experimental literature to elastomeric sheared interfaces using PDMS (Polydimethylsiloxane), because they represent the central point of this study.

In the first set of experiments, performed by Chateauminois, Fretigny, and Olanier [START_REF] Chateauminois | Friction and shear fracture of an adhesive contact under torsion[END_REF] and Prevost, Scheibert, and Debregeas [START_REF] Prevost | Probing the micromechanics of a multi-contact interface at the onset of frictional sliding[END_REF], the authors studied the local transition to sliding by performing in-situ strain field measurements during shearing of an elastomeric interface. In the second set of experiments, performed by Waters and Guduru [START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF], Mergel et al. [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF], and Sahli et al. [START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF], the authors study the area reduction that occurs during shearing of elastomeric interfaces and that was first experimentally demonstrated by Savkoor and Briggs [START_REF] Savkoor | The effect of tangential force on the contact of elastic solids in adhesion[END_REF]. The in-plane elastomer deformation was then observed during the incipient sliding, i.e. during the transition between static and sliding regimes. They could determine the displacement fields by image correlation between time t with a reference at t = 0 (no tangential force). Figure 1.9(b) shows the typical u x (along the shear direction) displacement field under P = 0.5 N at 6 different instants during the incipient tangential loading. Also here, as soon as Q increases, an annular slip region, in coexistence with a central stick region, is found to progressively invade the contact, up to the moment where this stick region vanishes marking the onset of the macroscopic sliding phase.

They could compare quantitatively those fields with the predictions of the Cattaneo-Mindlin model. The agreement was quantitatively satisfactory, without any adjustable parameters. However, systematic second order deviations were found, related to the presence of small scale roughness at the surface of the elastomer block and not accounted for in such a simple model. Note that in this experimental configuration, i.e. a rigid sphere on a soft plane, the strains in the PDMS are constantly evolving under the steady sliding rigid sphere. Therefore, viscous effects can play a role in the mechanisms involved at the interface.

Waters and Guduru [START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF] performed shearing experiments using a microtribometer, shown in Figure 1.10(a), to study the adhesive contact of a glass sphere and a smooth PDMS plane for tensile and compressive normal loadings, in the millinewton range, while continually recording images of the contact area evolution. The authors observed that under tensile loading, the contact area reduces axi-symmetrically and remains circular until separation at a critical tangential load. In contrast, under compressive loading, after a phase of symmetric peeling, the contact area becomes asymmetric with significantly more peeling occurring at the trailing edge of the contact compared to the leading edge.

More recently, Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] and Sahli [START_REF] Sahli | Mise en glissement des interfaces multicontacts élastomères: étude expérimentale par visualisation in situ[END_REF], using an experimental set-up similar to that of [START_REF] Prevost | Probing the micromechanics of a multi-contact interface at the onset of frictional sliding[END_REF] (see Figure 1.11), carried out shearing experiments for contacts between a glass plate and a smooth (single asperity) or a rough (multiple asperity) PDMS samples under large compression in the newton range. Figures from [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF].

By analyzing the behavior of individual asperities, they also showed that such a macroscopic reduction originates from the reduction of each asperity, shown in the inset of Figure 1. 13(a), where the red line (resp. blue line) corresponds to the contour for no tangential force (Q = 0) (resp. under shear, at the onset of sliding Q s ). Indeed, each asperity has a behavior similar to the one of a single sphere/plane contact (see Later, using the same experimental set-up as Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] (see Figure 1.11), Mergel et al. [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF] performed shearing experiments on the onset of sliding of a smooth glass plate on a smooth PDMS sphere under small normal loads (from -1 mN to 8 mN).

Their results about the typical behavior of shearing elastomers are shown here in Fig- progressively sheared up to reach a macroscopic sliding and remains stable. And, in agreement with Waters and Guduru [START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF], contacts with the smallest initial areas (small normal load) immediately vanish when sheared, before entering a macroscopic sliding. In Figure 1.15(c), they find a good agreement with the threshold law proposed by Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] on identical smooth sphere/plane contacts, but for large normal loads (> 0.27 N), that is, the friction force and the contact area are proportional to each other. This finding is also consistent with experiments on rough contacts involving soft materials [START_REF] Yashima | Normal contact and friction of rubber with model randomly rough surfaces[END_REF][START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Wu-Bavouzet | Effect of surface pattern on the adhesive friction of elastomers[END_REF]. However, they report experimental results in which the decay of the contact area is not quadratic for the entire range of observations and thus does not follow the empirical relation proposed by Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]. Their findings indicate that the classical law by Coulomb and Amontons (with a linear dependence between the normal and tangential loads) is not applicable for strong adhesion or small roughnesses. In this case, the friction force is also affected by an additional adhesion term.

Finally, all the experimental studies presented in this section have some limitations to investigating the contact area evolution that can be highlighted:

• they are concentrated in different normal force ranges (either large or small), thus leaving an intermediate gap that has not been investigated (see Chapter 4);

• they have been performed in different experimental conditions, making a quantitative comparison between experiments, theory, and simulations even more complicated;

• the setup of most recent experimental studies does not allow direct measurements of the resulting normal force, which is only known initially (dead weight) [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] or estimated from the initial contact area using JKR theory [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF] (see Chapter 2)

• they are limited to constant normal loading (see Chapter 5);

• their experimental optical observations do not provide insight into what occurs within the contact area, i.e. the local origin of the mechanisms of contact area variation (see Chapter 3).

Objectives and contents of the thesis

Despite the great progress that has been made in the last decades in the fundamental understanding of friction, in particular the mechanics of adhesive contacts subject to tangential forces, there remains a lot to explore, mainly due to the complexity of friction associated with the phenomena involved. Thus, the main objective of this thesis is to deepen the understanding of the onset of dry sliding elastomeric contact with a focus on the analysis of a model sphere/plane interface. All upcoming analysis will thus be based on a model sheared experiment of a smooth PDMS sphere on a glass plane with simultaneous monitoring of the normal and tangential force and in-situ visualization of the real contact area.

In a specific approach, an attempt will be made to bring the sphere/plane model towards more realistic contact mechanics. As illustrated in Figure 1.16, and previously mentioned, real surfaces contain irregularities of various orders, which cause contact to occur at discontinuous contact spots, that is, between their asperities. Then, the first specific objective will be (i) to identify the fundamental mechanisms that play a role during single-asperity shearing under constant normal loading. Additionally, such asperities can have different heights, which causes the contact spots to be subjected to different local normal loadings, ranging from millinewtons to newtons. The second specific objective will consist (ii) of exploring the behavior of a sheared interface over a wide range of normal loadings. Furthermore, due to the slope of the asperities, the contact spots can be submitted to local normal loading variations, and this is the third specific objective, i.e. (iii) to study the influence of the normal loading trajectory. To achieve these objectives, this thesis is organized as follows:
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Chapter 2 introduces in detail the equipment used to conduct the experimental study of the shear-induced behavior of elastomer/glass contacts, the details about the materials used, and the experimental procedures and techniques.

Then, in order to identify the elementary mechanisms and their effects on the contact area reduction, Chapter 3 presents an original experiment on an elastomer/glass interface, similar to those of Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF], but allowing in-situ access to the interface displacement field. The strategy is based on the incorporation of particles near the surface of the elastomer and on their use as local motion tracers of the frictional interface during the onset of tangential loading. The relevance of the detected mechanisms is compared with a non-adhesive model that shows a quantitative agreement with recent large-load experiments, with no adjustable parameters.

Chapter 4 is dedicated to improve the understanding of shear-induced area reduction over a wide range of normal loadings by describing the features of model sphere/plane experiments, from millinewtons up to newtons, in terms of contact area morphology, area reduction parameter, and interfacial shear strength. Thereby, covering, in one work, the ranges of normal load available in the literature data and bridging the gap between them.

Chapter 5 addresses the influence of the loading trajectory. In particular, the variation of the normal load during shearing is investigated.

Finally, Chapter 6 concludes this thesis with some important highlights obtained in previous chapters and presents some prospects for future work.

Chapter 2

Experimental methods

As we have seen in the last chapter, for a better understanding of the elementary mechanisms in sliding contacts of macroscopic bodies, it is important to characterize the interface. In this context, the present study considers the sliding contact of a sphere and a plane, under normal load, as a model for the contact of a single asperity with a rough interface. To do this, model experiments were performed on an optomechanical instrument, sketched in 

Samples

To guarantee the required transparency in the optomechanical instrument that allows in-situ observation of the real contact area, two transparent samples are used, a glass substrate and an elastomer. Note that the refractive index of the glass (∼ 1.50 [START_REF] Matsuoka | Temperature dependence of refractive index of SiO2 glass[END_REF])

and of the elastomer (∼ 1.40 [START_REF]SYLGARD 184 Silicone Elastomer Kit Technical Data Sheet[END_REF]) are quite similar, so that refraction effects at the PDMS/glass interface are expected to be negligible.

Glass substrate

Smooth bare glass plates (Mirit Glass) with dimensions 46 mm×38 mm×5 mm are used both as a slider and as the bottom support for the PDMS samples (that will be described in Section 2.1.2). The glass roughness is considered as negligible as it is several order of magnitude lower than the PDMS sphere radius of curvature.

Before use, the glass surface is gently mechanically pre-cleaned with distilled water using a lens cleaning tissue. Then, it is sonicated in three different baths, each for 15 min, in the following order: (i) soapy water (∼ 5 % solution of Decon 90 with water), (ii) ethanol, and (iii) distilled water. Between the baths, the glass is rinsed in distilled water to avoid cross-contamination. Finally, it is dried in an oven (Prolabo, Astel) at 

Elastomer samples

The elastomer used is a cross-linked PolyDiMethylSiloxane (PDMS, kit Sylgard 184, Dow Corning) known for its elastic behavior with a Poisson ratio of ∼0.5 (incompressible), chemical inertness, mold-release properties and ability to replicate features down to the nanoscale, with low shrinkage during cure (around 1 %) [START_REF] Friend | Fabrication of microfluidic devices using polydimethylsiloxane[END_REF][START_REF] Woo | Shrinkage ratio of PDMS and its alignment method for the wafer level process[END_REF][START_REF] Mcdonald | Fabrication of microfluidic systems in poly (dimethylsiloxane)[END_REF].

The PDMS samples are prepared as follows. The two components, elastomer base and curing agent, are mixed in a weight ratio of 10:1, respectively, and degassed in a desiccator under vacuum to remove air bubbles introduced during mixing. Next, two different types of samples are molded:

• Sample of the type S1R9: PDMS samples with a single sphere (S1) of a radius of curvature of 9.42 mm (R9). For this type of sample, a plano-concave glass lens, with a radius of curvature of 9.42 mm (45-014, Edmund Optics) and a roughness of the order of a nanometer, is placed at the bottom of a cylindrical cavity (11 mm of height and 30 mm of diameter) coated with an aluminum foil, as illustrated in Figure 2.2(a). The aluminum foil (not illustrated) is used to assist in the demolding process. Then, the cavity is filled with the PDMS mixture, Figure 2.2(b), covered with the glass plate (46 mm×38 mm×5 mm), Figure 2.2(c), and cured at room temperature for 48 h. After, the PDMS sample is demolded by carefully raising the tip of the aluminum foil causing the cavity to be removed. And at last, with the aid of a scalpel, the PDMS sample is cut around the lens to remove any excess of PDMS and to ensure that the sphere is indeed the highest point in the sample (i.e. the unique contact point in the upcoming contact experiments).

The final configuration is a cylindrical-like shape attached to a glass plate with a height of 6 mm, the top of which features a spherical smooth cap with a radius of curvature of 9.42 mm with a summit 2 mm higher than the top surface of the cylinder-like, Figures 2.2(d) and (e). As for the glass plate, the roughness of the PDMS sphere is negligible as it is of the order of a nanometer (the roughness of the lens). This process maintains the attachment of the PDMS to the glass by Van der Waal's bonds [START_REF] Anwar | Reversible sealing techniques for microdevice applications[END_REF] and preserves the required transparency of the samples.

The PDMS/glass interface is completely invisible.

• Sample of type S1R9P: PDMS sample with a single sphere (S1) of radius of curvature of 9.42 mm (R9) and a layer of particles (P). The objective here is to introduce a layer of particles that will be used to estimate the displacement field at the interface by a tracking method (see Section 3.2.2). This layer of particles must be as thin as possible to avoid 3D effects and as close as possible to the interface.

However, it must also not be precisely at the interface to avoid modifying its frictional behaviour. Thus, for this type of sample, the cross-linking is performed in two steps. In the first step, a drop of PDMS mixture is poured into the planoconcave glass lens with a radius of curvature of 9.42 mm (the same as for sample M, Agar Scientific) diluted in acetone. The second step follows the same molding and demolding procedure as previously described for sample of type S1R9, except that a coated lens is used. Finally, with the exception of a layer of particles located ∼16 µm from the surface of the spherical cap, the sample is very similar to the sample of type S1R9 in terms of shape, see C for 20 min to obtain a thin cross-linked PDMS layer which is sprinkled with silver particles. Second, the same preparation procedure as for sample S1R9 is used in Figure 2.2 using the coated lens. (d) The final configuration is the same as for sample of type S1R9, except for a layer of particles located ∼16 µm from the surface of the spherical cap.

Optomechanical test

Instrument overview

A custom-built experimental setup was used to carry out the optomechanical tests.

The instrument is an upgrade from those used in [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF][START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF] and is shown in Fig- A PDMS sample is fixed to an optical table, while a glass plate is attached at the free extremity of a double cantilever and is driven at a constant velocity V by a motorized x-stage. Tangential force is measured by a force sensor located at the fixed extremity of the double cantilever and normal force is measured by four force sensors located between the optical table and a sample attachment. The contact interface is illuminated from the top and imaged in reflection with a camera. An inverse configuration (glass fixed and PDMS slid, see Figure 2.5) is also allowed since the glass plate onto which the PDMS sample is crosslinked and the glass plate used as a slider are identical. The inset shows a real picture of the instrument to aid in visualization (i) Sample attachment system: in the sample attachment system two configurations are possible, a normal and an inverse, as illustrated in Figure 2.5. In a normal (resp. inverse) configuration, the PDMS sphere (resp. glass plate) sample is fixed to the optical table, while the glass plate (resp. PDMS sphere) is attached at the extremity of the moving cantilever.

Normal configuration

To ensure that the motion of the upper part, during normal loading of the tested interface, is as vertical as possible and with negligible rotation, a double cantilever beam, composed of two identical steel arms, with low vertical stiffness is placed between the sample and the tangential force sensor. The cantilever has a stiffness k z of 177 ± 1 N/m in the vertical z-direction (normal to the contact interface) and is essentially rigid in the x-and y-directions (parallel to the interface) allowing a quasi-perfect transmission of the forces from the interface to the sensor. Its stiffness calibration is presented in Fig- (ii) Translation system: a motorized x-stage allows the displacement of the whole assembly made up of the slider sample, the cantilever, and the tangential force sensor. The motion is ensured by using a linear motor (LTA-HL, Newport) and its motion controller (SMC100CC, Newport). The maximum displacement stroke of the motor is 25 mm with a resolution of 50 nm, at a maximum speed of 1 mm/s and with a maximum pulling force of 100 N. The whole ensemble -slider sample, cantilever, and tangential force sensor -also can be moved by additional manual stages (UMR8.25, Newport) in the y-and z-directions. (iii) Force acquisition system: the force acquisition system allows the simultaneous measurement of the tangential force Q and the normal force P. Q is measured by a piezoelectric force sensor (Type 9217A, Kistler), placed just above the fixed end of the cantilever and connected to a charge amplifier (Type 5018A, Kistler, long measuring mode, 100 Hz low pass filter). Q measurements can be performed in tension and compression with a measuring range from -500 N to 500 N and a threshold measure of 1 mN. P is measured by four force sensors (LSB200, Futek) localized between the optical table and the fixed sample holder. P also can be performed in tension and compression within a maximum range of ∼ 8.9 N.

(iv) Optical acquisition system: in this system the contact interface zone is illuminated from above with a white LED panel and is monitored optically in reflection mode using a CCD camera (2M360 MCL, Flare, 8 bits, 2048×1088 square pixels, 340 fps max.) connected to a variable-zoom objective lens (7000 type C, Navitar) and controlled by a software (Hiris, R&D vision). The software allows a direct adjustment of the acquisition frequency, exposure time, gain and offset of the camera. The camera is then put into edge-triggered mode and waits for an external image acquisition trigger signal sent by a LabVIEW TM (National Instruments Corporation) code. All the images and their acquisition times are acquired and stored on the computer that drives all settings. region of dark pixels, because light is quasi-perfectly (b) transmitted through the PDMS/glass interface and is then (c) absorbed by a black layer which is placed under the bottom sample. Outside the contact area, i.e. at the interface between the glass and the air and at the interface between the air and the PDMS, part of the light is (a) reflected back to the camera, resulting in the lighter gray background in the image. The small area of dark pixels seen in the upper right corner of the contact is due to a black marker, intentionally drawn on the top surface of the glass substrate, that (c) absorbs the light. The marker is used as a tracker to follow the motion of the glass plate slider. In the image from the particle layer PDMS(S1R9P)/glass interface the contact area is not uniformly dark, as it was for PDMS(S1R9)/glass interface images and previous experiments from [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF][START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF]. In contrast, it is sprinkled with random bright spots which are due to the (a) reflection of light on the particles that were introduced close to the PDMS sample surface (detailed in Section 2.1.2, sample S1R9P). These spots will be used as tracers of contact area evolution in further analyses (see Chapter 3).

Figure 2.8 shows series of typical grayscale images of the contact interface during an experiment for PDMS/glass interface (in the first row) and particle layer PDMS(S1R9P)/glass (in the second row). Note that both samples show a similar behaviour of changing morphology, indicating that the introduction of the particles into the elastomer sphere is not significantly affecting the mechanical response of the interface. Second row: grayscale images of the particle layer PDMS(S1R9P)/glass contact interface. The main dark region is the contact area; the bright spots inside the contact area, in the second row, are the particles; and the small dark region, in the top right corner, is a marker drawn on the glass plate slider to follow its displacement.

(v) Alignment system: three goniometers are used to align the instrument. Two of them are located under the sample holder (M-GON65-U and L, Newport), enabling to tilt the sample around the y-and x-direction, with an angular ranging from -10 • to 10 • and -5 • to 5 • , respectively. The third one (M-GON65-U, Newport) is placed above the tangential force sensor, capable of rotating the whole assembly made of the tangential force sensor, cantilever, and sample (attached at the free end of the cantilever) around the y-axis, with an angular ranging from -10 • to 10 • . In this PhD thesis, a particular attention has been paid to the alignment of the various mechanical components of our experimental device. Indeed, as we will see in Chapter 5, this alignment is critical to the quality of the results obtained, and even a small angle variation can produce significant modifications in the measurements.

The alignment is made using a stainless steel ball (Young's modulus of ∼ 210 GPa) fixed on a glass plate to avoid any large normal deformation. Firstly, the upper goniometer, located above the tangential force sensor, is set. For this, the ball sample is placed in a normal sample attachment configuration (i.e. a fixed ball with a glass slider). Then, the glass slider is brought into contact with the ball under several normal forces and displaced by around 15 mm. During this displacement, the normal force P is recorded by the P sensors, and the system is considered aligned if P remains constant. Otherwise, the setting of the goniometer is modified and the procedure is carried over again. Secondly, the lower part of the device is aligned (the one located under the sample holder) by setting the two other goniometers. For this, a similar procedure is performed for an inverse sample attachment configuration (a fixed glass plate with a sliding ball) both in x-and y-direction. The whole system is considered aligned when P remains constant in both sample attachment configurations. The alignment is checked occasionally based on the use of the instrument.

(vi) Control system:

All the physical signals coming from the sensors and the motors are digitized with a DAQ card (NI-PCI-6281, National Instruments), via a shielded connection block (NI-BNC-2110, National Instruments), and transferred at high frequency (up to 3kHz) to a computer. Control of the camera settings is directly done through the Camera Link serial port.

The set-up is fully controlled through an interface developed in the laboratory using LabVIEW TM software (National Instruments Corporation). Figure 2.9 shows a sketch of the data acquisition components, and their relationship to each other. This graphic interface allows in particular to control and program the displacement of the motor and the measurement of the force sensors, to trigger the camera and finally, to export all the data that are saved on the computer. Triggering the camera is of prime interest as it allows to have a perfect synchronisation between the force measurement and the image acquisition. A MATLAB R (The MathWorks, Inc.) code has been developed to perform this synchronization of the data with the images (see Section 2.3).

Experimental procedure

Using the optomechanical instrument just introduced, the complete process of a typical shear-induced experiments will be described in this section.

The experimental process is divided into three main phases: preparation, test, and post-test. All experiments that will be presented have been performed in air and at room temperature, and followed this process.

Preparation

First, the experimental parameters are determined: (i) pre-waiting time (before the motor starts): 40 s; (ii) motor displacement, d: 2 mm; (iii) motor velocity, V: 0.1 mm/s; Second, the normal force P is settled. For this, the whole ensemble of slider sample, cantilever, and tangential force sensor is moved vertically bringing the slider sample in contact with the fixed sample in a position in which they just snap into contact due to adhesion. The normal force P is applied by adding dead weights on the latter configuration, except for small normal forces (< 0.2 N) where P is obtained by pushing the sliding sample on the fixed one via the z-stage. Then, P is verified by comparison with the output of the P sensors.

Test

At the beginning of the test sequence and during all its duration, all the data coming in particular from the motor displacement d, the normal P and tangential Q forces, and the trigger signal of image acquisition, are launched and recorded at a rate of 2 kHz.

The test phase is subdivided into three periods: pre-waiting, shearing, and postwaiting, as shown in Figure 2.10.

Pre-waiting period (40 s):

this first period is used to mitigate the effect of area aging due to relaxation process [START_REF] James | Direct observation of frictional contacts: New insights for state-dependent properties[END_REF], by letting the contact age by about a constant time before shear. For this, the contact is removed and then recreated using a thread tied to the (a) free end of the cantilever, that gently lifts and drops the slider sample. This process of contact recreation can be seen as an abrupt decline on the normal force P on the right axis of Figure 2.10(b). Also, during the cantilever lifting (in absence of contact between the PDMS and the glass samples), the tangential force sensor is re-scaled to zero, as seen on the left axis of Figure 2.10(b), to avoid the sensor drift and to remain within the optimal conditions of operation, less than 120 s, as recommended by the sensor manufacturer.

Shearing period (20 s): after the pre-waiting period of 40 s, a 100 Hz periodic square wave is generated to simultaneously trigger the displacement and the image acquisition. Indeed, at the first rising edge of the signal, the motor starts to run and the fixed extremity of the cantilever is pulled horizontally at a constant velocity V of 0.1 mm/s, over a total distance d of 2 mm, as specified during the preparation phase. While the motor is running and also from the first rising edge of the square signal, the system starts to record images at a frame rate of 100 fps. In the periodic square signal, each rising front edge imposes the acquisition of a single image, as shown by the red dots in the inset of Figure 2.11 for 10 successive images in an interval of 0.1 s.

Post-waiting period (10 s): 10 s after the stop of the motor displacement the acquisition data stops and the outputs of the shear-induced experiment are generated in the form of several files containing (i) the parameters specified in the preparation phase, (ii) the acquired signals of the motor displacement, the normal force, the tangential force, and the image trigger, (iii) the frequencies of data acquisitions, and (iv) the recorded images. 

Post-test

An Excel file labels each carried out experiment and it is filled out with some details such as the file location of stored data, information about PMDS samples fabrication, and the ambient temperature and humidity.

At the end of a set of the experiments, an image of a ruler is taken on the same plane as the PMDS/glass interface for the purpose of calibration of the images in metric units.

As shown in Figure 2.12, for a given zoom, a line with a known metric distance is drawn on the image of the ruler. Then, the known distance in metric units is divided by the length of the line in pixels, resulting in the size of each pixel in metric units/pixel, i.e. a calibration coefficient to convert pixels in metric units. 12: Image of a ruler taken on the same plane as the PMDS/glass interface for calibration of the images. A line with a known metric distance is drawn on this image. Then, the known distance in metric units is divided by the length of the line in pixels, which gives the size of each pixel in metric units/pixel.

Data processing

One can notice that images (100 Hz) and others acquired data (2 kHz) are recorded at different frequencies, and in order to analyze those data it is necessary to synchronize them. This process is possible using the trigger signal (Figure 2.11) that has been generated at 2 kHz and contain all the exact instants of the image acquisition starting.

To improve the data analysis and management, a Graphical User Interface (GUI) has been developed with MATLAB R software (The MathWorks, Inc.), during this PhD thesis, to synchronize the recorded data and also to visualize the results. The interface comprises point-and-click controls providing organized and simple access to the data. It allows a rapid process of the raw data (data synchronization, image processing, parameter evaluation, and so forth.), contains some visualization tools and returns a structure array containing information and processed data for each experiment. 

Image processing

In this section, the procedures performed for the image analysis will be presented.

The methods used to segment the recorded grayscale images (8-bit), to evaluate the contact area from and to measure the glass displacement will be detailed. Note that, for the use of the image processing techniques, the images are considered as a twodimensional function f (x, y), where x and y are spatial (plane) coordinates of a certain point, called pixel (picture element), and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image. This function can be mathematically represented in the form of matrices, where each element of this matrix is the amplitude of f and the coordinates x and y correspond to the columns and rows, respectively [START_REF] Rafael | Digital image processing[END_REF].

Segmentation

The first step in the image processing is the segmentation of the grayscale images into in-and out-of-contact pixels. Inside the GUI, the segmentation is initiated at the click of the button "Aire". First, the images are cropped in a region of interest around the contact area, thus excluding the marker on the glass substrate (see top right black spot in Figure 2.8) and also all noisy zones at the edge of observation zone. Then, the cropped images are converted into binary images by thresholding. A threshold level, T, for the image intensity distribution is found by using the MATLAB R function graythresh, that uses Otsu's method [START_REF] Otsu | Threshold Selection Method from Gray-level Histograms[END_REF]. As a result, every pixel turns black or white according to whether its intensity is greater or less than T:

A pixel becomes =       
white if its gray level is > T, black if its gray level is ≤ T.

The threshold value is found for the initial image and is kept constant for all images of a same test. In view of the operations to be performed next, the black and white images are reversed using the MATLAB R function imcomplement, resulting in binary images in which the contact area is indicated by 1 (white) and out-of-contact area is indicated by 0 (black).

In the particular case of binary images of samples S1R9P, the particles are seen as holes (out-of-contact) area within the contact zone. Then, to compute these "holes" as in-contact areas, they are filled using the MATLAB R function imfill with the argument holes.

Contact area

The second step consists in using the binary images to measure the real contact area A by using the MATLAB R function regionprops. This function identifies connect components, called objects, and measures the contact area through the number of pixels of the object. This function also returns properties such as centroid, and the position and size of the smallest box containing the object. When multiple objects are identified, which is the case when there are instabilities in the interface, as seen in the third row of Figure 2.14, the features of each object are stored and the total area is considered as the sum of the areas of all objects. Then, by using calibration coefficients (described in Section 2.2.2, Post-test), the total number of the contact area pixels is converted into metric units.

Glass displacement

The last step of the image processing, done by clicking on the button "Traceur" on the GUI, aims at tracking the displacement of the black marker drawn on the top of the glass plate slider to evaluate the glass displacement (as seen in Figures 2.8 and 2.14).

The whole raw images are cropped in a region of interest around the black marker.

Then, the same segmentation process, as presented above in Section. 2.3.1 is applied. The centroid's coordinates of the object detected in each image, as determined by the MATLAB R function regionprops, are stored. The evolution of these coordinates are used to translate the images to set them in the slider's frame, in such a way that this tracer remains at a constant position. In other words, we place our images in the frame of the glass slider which actually moves from left to right at velocity V in the laboratory frame.

Force measurements processing

This data processing starts, after a click on the bottom "Traitement" on the GUI, by synchronizing the acquired signals (2 kHz) with the images (100 Hz). First, the effective starting time of the shearing period is defined, i.e. the precise moment at which the displacement starts. For this, a piece-wise method is used dividing the displacement signal into two pieces. The first piece uses displacement data at a time interval between the nominal starting of 40 s and 2.5 s before it. This first piece is expected to correspond to a constant position for the motor. The second piece uses a time interval between the nominal starting of 40 s and 2.5 s after it. This second piece is expected to correspond to a constant velocity for the motor, and thus a linear evolution of the displacement. Then, each of the two pieces is fitted by a linear regression (dashed red lines in Fig 2 .15), and their intersection defines the effective starting time (vertical dotted line in Fig 2.15). This method allow to account for the acceleration phase at the beginning of the motion. As outputs of this data processing, we have all signals -normal force, tangential force, and displacement -at the time of the images, as shown in Figure 2.17 

Other procedures 2.4.1 Tangential force peak determination

The peak of tangential force Q s is usually used to define the transition between stuck state and macroscopic sliding, and is used in analyses that will be discussed in more details in the following chapters.

To find the tangential force peak, the MATLAB R function max is used. This function returns the maximum of the tangential force curve. However, in some exceptions, the maximum of the tangential force is not found at the expected transition to macroscopic sliding, as in the two examples shown in Fig 2 .18.

(a) Therefore, this operation is visually inspected to check whether the maximum point is indeed located in the transitional zone. If not, the procedure is performed, but in a manually restricted region of interest around to the transition region.

0 0.5 1 1.5 2 Displacement, d (mm) 0 0.05 0.1 Tangential force, Q (N) Q max Q s (b) 0 0.5 1 1.5 2 Displacement, d (mm) 0 1 2 3 Tangential force, Q (N) Q max Q s

Oscillating curves' envelope

In further analyses a correspondence between the tangential force peak Q s and the contact area is carried out by evaluating the contact area at the moment of Q s and denoted as A s , see vertical dashed lines in Figure 2.19(a). However, when instabilities occurs at the interface (see Figure 2.14 third row), they generate oscillations in both the tangential force and area evolution curves, as shown in To minimize the potential error made on the evaluation of A s , we made the strong assumption that the lower envelope of the A = f (d) curve is representative of the behaviour of an interface in absence of instabilities. Indeed, in Figures 2.19 and 2.20, the lower envelope of the oscillations appears to be the natural continuation of the beginning of the curve, when no oscillation is present yet. Thus, a numerical method to evaluate the lower envelope of the oscillated signal is implemented. The lower envelope is a curve outlining the signal, by interpolation over local minima. Here, the lower envelope is constructed, using some MATLAB R functions, as follow:

(i) the contact area curve is smoothed, in order to eliminate small peaks (noise), using the function smooth with a rloess method and a smoothing factor of 0.002;

(ii) after, the prominence of all local minina (or valley) are detected applying the function findpeaks with the argument peak prominences on the reverse of the smoothed contact area curve. The prominence of a local minimum measures how the valley stands out with respect to its depth and location relative to other valleys;

(iii) then, the local minina prominence's average is used as a threshold T p , so that the function findpeaks can return only those peaks that have a prominence of at least the value of T p . For it, the function findpeaks is applied again on the reverse of the smoothed contact area curve, but this time with the argument MinPeakProminence = T p found in (ii);

(iv) the found local minima are interpolated using the function interp1 with the method linear;

(v) finally, the lower envelope was constructed by concatenating the smoothed curve until the first oscillation (first local minima) and the resulting from the interpolation of the local minima. 

Measurement of elastic modulus and adhesion energy

Experimental data are also used to estimate the adhesion energy ω 0 of the interfaces (PDMS/glass) and the elastic modulus E of the PDMS samples. Using the same method apply in Waters and Guduru [START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF] and Vorvolakos and Chaudhury [START_REF] Vorvolakos | The effects of molecular weight and temperature on the kinetic friction of silicone rubbers[END_REF], the data are fitted according to the Johnson, Kendall, and Roberts (JKR) adhesion theory [START_REF] Kl Johnson | Surface energy and the contact of elastic solids[END_REF]. The original JKR relation between the load and the contact radius (at zero tangential force) is rearranged as:

a 3/2 R = 9 16E * P a 3/2 + 3 4 6πω 0 E * (2.1)
where a is the contact radius, R is the radius of curvature of the sphere, and P is the normal force.

Therefore, by performing a linear fit of a 3/2 /R as a function of P/a 3/2 , it is possible to find the equivalent E and ω 0 from its slope and y-intercept, respectively. An example of this approach is shown in Figure 2.22.

Repeatability

Any analysis of experimental measurements can be confirmed after repeating a set of tests several times. However, in our case, it is challenging to establish comparisons between different sets of measurements. The main difficulty is experienced when one attempts to compare the results from two different PDMS samples, due to the variability of properties found even when the same protocol of fabrication is carefully followed. Interestingly, a greater tangential force was observed at each beginning of a set of experiments, i.e. for the two or three first sliding experiments, which may be due to the orientation, extension and/or pull-out of the PDMS chains, a phenomenon evidenced by some authors [START_REF] Kurian | Unusual surface aging of poly (dimethylsiloxane) elastomers[END_REF][START_REF] Galliano | The role of free chains in adhesion and friction of poly (dimethylsiloxane)(PDMS) networks[END_REF][START_REF] Elzein | Chains anisotropy in PDMS networks due to friction on gold surfaces[END_REF][START_REF] Kroner | Effect of repeated contact on adhesion measurements involving polydimethylsiloxane structural material[END_REF]. For this reason, in this manuscript, the first four tests of a set of experiments were rejected most of time. The cases in which the first tests were considered will be indicated.

In addition, in all this work, the sets of experiments with different normal forces were carried in a random order of normal force, to ensure that the observations are consistent with the evolution of the normal force, and have no relation to any aging or temporal modification of the system.

Chapter 3

Elementary mechanisms of shear-induced contact area reduction

Introduction

Solid contacts of soft materials such as elastomers and human skin have revealed complex changes to the contact morphology when submitted to an additional shear loading. Not only is the overall real contact area significantly reduced [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Weber | Frictional weakening of slip interfaces[END_REF], but it also becomes increasingly anisotropic [START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF]; two effects that have not been satisfactorily explained yet. For both effects, smooth sphere/plane contacts have been shown to obey similar behaviour laws as rough contacts [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF]. It is therefore appealing to investigate anisotropic shear-induced area reduction in such simpler, single sphere/plane contacts between smooth solids.

Experimentally, elastomeric sphere/plane contacts are known to evolve from a circular area under pure normal load to a smaller, ellipse-like area in macroscopic sliding regime. In order to identify the underlying mechanisms responsible for such contact area evolution, Barquins and Courtel [START_REF] Barquins | Rubber friction and the rheology of viscoelastic contact[END_REF] and Barquins [79] monitored the shape of a straight line scratched on the polymer surface perpendicular to the direction of motion ("passing line" method), showing that the contact area shrinkage occurs by a peeling process; and also confirmed the existence of an adhesive zone, whereas partial slip takes place in an annular region adjacent to the edge of the contact area. Later, Waters

and Guduru [START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF] performed a similar experiment to the "passing line" method; their results showed that there was no slip visible within the contact area while it remained symmetric, as the line appeared to remain straight inside the entire contact area. They concluded that the contact area reduction under shearing is due to a peeling process rather than a slip propagation. Note that the difference in terms of loading conditions (normal loadings and shearing speed) in the above-mentioned studies may play a role in the observed discrepancies. It should be also noted that both findings, from Barquins

and Courtel [START_REF] Barquins | Rubber friction and the rheology of viscoelastic contact[END_REF] and Barquins [START_REF] Barquins | Sliding friction of rubber and Schallamach waves-a review[END_REF] and Waters and Guduru [START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF], are made only along the observation of the shape of a straight central line of the contact, and the presence of the scratched line can affect the mechanical behavior of the interface.

In this context and in order to take the first step toward the main objective of the thesis, this chapter presents an experimental analysis of an elastomer/glass interface, similar to those of Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF], to identify the elementary mechanisms responsible for contact area reduction and their relative contributions. The strategy is based on the incorporation of particles at the proximity of the elastomer surface and on their use as local tracers for the motion of the entire frictional interface during incipient tangential loading under several constant normal loads. The relevance of the detected mechanisms will be compared with a non-adhesive model that shows a quantitative agreement with recent large-load experiments, with no adjustable parameter.

Experimental procedure

Tangential loading experiments

The custom-built setup presented in Section 2.2.1 was used to shear the interface between a smooth glass plate and a cross-linked PDMS sample (nearly incompressible, E = 1.5 ± 0.1 MPa) with a spherical cap seeded with a layer of particles about 16 µm below the surface (see details in Section 2.1.2, sample of the type S1R9P). The experiments were performed in a normal sample attachment configuration, as illustrated in The incorporation of particles into the proximity of the PDMS sphere surface is the strategy that allows us to observe any local phenomenon occurring within the contact area during tangential loading. However, in order to carry out such observation, some specifications are required: (i) the particles must be visible by the camera regarding their sizes and light reflection ability, providing high contrast in the contact area; (ii) they must be located close to the sphere surface, but not on the very surface to avoid affecting the mechanical response of the interface; (iii) the layer of particles thickness must be thin to avoid differential displacement due to different depths; (iv) the particles in the layer must be well scattered and sufficiently isolated from one another to be monitored individually by a PIV (Particle Image Velocimetry) type procedure.

Among several tested particles candidates (e.g., aluminum oxide, boron carbide, and glass micro-spheres), silver particles were the ones that best satisfied these requirements, however they have random shapes with a mean area of 9.2 ×10 2 µm 2 (ranging from 2.9 ×10 2 µm 2 to 67.1 ×10 2 µm 2 ).

Typical raw images of the contact interface, for the four normal loads, are shown in The upper right dark region is a marker drawn on the glass substrate to monitor its macroscopic motion. 

Image processing: segmentation and particle tracking

The bright spots present in the images of Figure 3.2 were used as tracers of the contact evolution by applying a homemade tracking procedure detailed hereafter. The main aim of this tracking code is to generate a data set in which the xand y-positions of each tracer are given for each image/time-step. Note that only the tracers at the vertical of the contact regions are visible.

Image analysis followed the operations described in Section 2.3.1 and after the segmentation process, where basically the raw images are classified into in-and out-ofcontact pixels, a noise reduction process was performed on all images. In this denoising process, all objects (set of connected pixels) with an area of a single pixel are removed by successively performing two morphological operations, erosion and dilation, with a 3×3 square structuring element (set of coordinate points whose width is 3 pixels).

Then the closest remaining objects are connected by successively performing the two same operations in reverse order, i.e. dilation and erosion. This results in connecting all the objects within a distance of less than 23 µm for P = 1.85 N and less than 27 µm for the other normal loads. In such operations, the center pixel of the structuring element, called the origin, is aligned with each pixel in the image that has a value of 1 (white)

and each pixel of the structuring element is included (resp. excluded) in the dilated (resp. eroded) image. Those binary images were then used as inputs to the tracking code.

The tracking processing, as described in Algorithm 1, identifies, only on the initial image, objects whose area is strictly larger than 4 pixels. Those objects are then considered as tracers of the contact evolution for upcoming analyses. For each tracer, the centroid (C x and C y ) and the xand y-widths of the smallest rectangle enclosing it (W x and W y ) are stored. Next, the trajectory of each tracer is found by searching for its successive positions in all images. For two successive images, the following procedure is applied to each tracer:

• extracts two sub-images from both successive images (at steps i and i+1): their common extraction positions correspond to the position, C x (i) and C y (i), of the tracer and their widths correspond to W x (i) and W y (i) increased by 5 pixels on all four sides to account for the dilation operation performed on the next process.

This sub-image procedure is implemented to improve computing performance by significantly increasing the image processing speed in MATLAB R (The Math-Works, Inc.).

• performs a dilation operation with a 3×3 square structuring element only on the sub-image at step i. This dilation enlarges the boundaries of the tracer by a larger amount than the expected theoretical travel distance (∆d max ) of the slider between two successive images in the steady sliding regime, ∆d max = 1 µm ∼ 0.14 pixel.

• multiplies pixel by pixel the two resulting sub-images, i.e. the dilated one at step i with the unmodified one at step i+1.

• finds all objects in the image resulting from the multiplication and stores the position of the object as the coordinates, C x (i + 1) and C y (i + 1), of its center of mass in the full image. If multiple objects are detected, only the closest object to the center of the sub-image at step i is considered. If there is no object, then the trajectory ends.

Therefore, the outcome of the tracking process is a data set in which the centroid position, C x (i) and C y (i), of each tracer is given in the laboratory frame, for all image, i.e.

for each time step. Then, all tracers containing non-realistic trajectory changes (greater than 3 pixels, that is, greater than 23 µm for P = 1.85 N and 27 µm for the other normal loads) in the position of the tracer between two consecutive images were removed.

Finally, the displacement of the glass plate was subtracted from all trajectories (for instructions on glass displacement extraction, refer to Section 2.3.1). In other words, we place the trajectories in the frame of the glass substrate.

Results and analysis

In this section, based on the results of the particle tracking procedure, a thorough analysis of the tracers' behavior (appearance/disappearance and relative motion with respect to their initial position and adjacent tracers) is conducted. First, the existence of elementary mechanisms of contact area evolution on the onset of the macroscopic sliding is searched. Second, the evolution of the tracers displacement throughout the entire experiment is investigated.

Elementary mechanisms of contact area evolution

As mentioned in Section 3.2.1, the particles are only visible in the vertical direction of the contact area, which provides the possibility to investigate the existence of elementary mechanisms responsible for the contact area evolution. extract two sub-images from the couple successive images at i and i+1: their common extraction coordinates correspond to the position, C x (i) and C y (i), of the tracer and their widths correspond to W x (i) and W y (i) increased by 5 pixels on all sides to account for the dilation operation that is performed on the next process. Tracers that were initially in contact and no longer exist at the onset of the macroscopic sliding (at Q s ), means that they have been lifted out-of-contact. This first elementary mechanism of area variation is then named "contact lifting" (or simply "lifting").

On the contrary, tracers that were initially out-of-contact, but came into contact during the incipient loading phase demonstrate the second elementary mechanism of area variation, that is named "contact laying" (or "laying"). Finally, the third elementary mechanism is related to inhomogeneous slip and in-plane deformation within the contact zone and leads to either "in-plane compression" or "in-plane dilation".

In an attempt to quantify those mechanisms we make use of two graphical approaches: Voronoi tessellation and Delaunay triangulation. In an overview definition, Voronoi tessellation of a finite set of unique sites is a collection of regions, called cells, that divide up an Euclidean space. Each cell corresponds to one of the sites, and all the sites in one region are closer to the corresponding site than to any other site [START_REF] Okabe | Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[END_REF]. 

Its

Contact lifting

The feature of local contact lifting is that a tracer disappears from the image when it is reached by a moving contact edge, which means that a point of the elastomer initially in contact with the glass has been lifted out-of-contact. Such criterion of being close to the contact edge is used to distinguish tracers that are truly lifted from tracers that disappear due to noise in the images and tracking procedure.

In practice, we look for the tracer's trajectory which ends at a position less than 20 pixels from the contact edge (i.e., 154 µm for P = 1.85 N and 180 µm for the others normal loads). All these tracers are represented as disks in Figure 3. It appears that a considerable amount of tracers are indeed lifted during the incipient tangential loading of the contact for all normal loads. The majority of them are located at the trailing edge of the contact (on the right side), where points of the glass are continuously driven out-of-contact region. Some of them are located at the leading edge of the contact, but may be tracers that were initially close to the contact edge and disappeared due to tracking noise. However, for the smallest normal load, P = 0.05 N, shown in Figure 3.5(d), it seems that a real lifting also occurs at the contact leading edge since the contour on the left side moves inward the contact area.

The color of each disk in Figure 3.5 corresponds to the glass displacement at which the tracer disappears. It seems that the colors of the filled disks are spatially organized, from blue (early disappearance) for the rightmost disks to red (late disappearance) for the leftmost disks. Such a pattern indicates that lifting occurs through an inward front propagation, starting from the trailing edge of the contact (and also from the leading edge for the small load, P = 0.05 N, see Figure 3.5(d)).

In order to quantify the contact area lost due to lifting, we assign a representative individual area to each tracer. To this end, we performed a bounded Voronoi tessellation of the centroid of the tracers in the initial image, the boundary being the contact contour. Each tracer was thus assigned the area of its Voronoi cell. In Figure 3.5, the grey cells correspond to all Voronoi cells assigned to lifting in the final image (at d s ).

Then, for each image, the lifted area is calculated as the sum of the Voronoi cells area of Plate direction all lifted tracers so far. The evolution of the lifted area along the experiments is shown in blue in Figure 3.6 and is stair-like because each lifting event abruptly increases the lifted area by a finite amount (a cell area). The estimated final lifted area for each normal load is shown in Table 3 

d 0 d 1 d 2 d s (d) (c) (b)
∼ 4 % 0.25 N ∼ 28 % ∼ 38 % ∼ 6 % ∼ 3 % 0.05 N ∼ 35 % ∼ 46 % 0 % < 1 %

Contact laying

The mechanism of laying, i.e. points of the elastomer getting into contact with the glass plate upon shearing, can be analyzed similarly to lifting. The same analysis as in the previous section is performed here, but backward in time: the first image considered is the one at the static friction peak (at d s ), while the last one is the initial image (at d 0 ).

In doing so, tracers appearing close to the contact periphery in forward time are the one disappearing in backward time and therefore those detected by our reverse procedure. , indicating that laying mechanism may not occur under such small normal load, a regime in which adhesion stresses are expected to dominate [START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF].

However, the very low resolution of our analysis in such a small contact area with very few tracers does not fully validate this hypothesis and further investigations are required.

The amount of contact area gained via laying is estimated using a bounded Voronoi tessellation performed in the final contact configuration (at d s ). In Figure 3.5, the red cells correspond to the area assigned to laying in the final image (at d s ). At each instant, the laid area is counted as the sum of the areas of all laid tracers. The evolution of the area gained due to laying is shown in magenta in Figure 3.6. Unlike lifting, the laying mechanism initiates only after a finite shear is applied, and it seems to increase as the normal load increases, as shown in Table 3. 

In-plane deformation

In previous analyses of tracers' displacement, it is observed that a peripheral slip region gradually invades the contact replacing a central stuck area as shear increases.

Moreover, in both contact lifting and laying, the filled and open markers have different locations regarding the glass plate (see Figure 3.5), which clearly means that slip occurs between the two instants. Local lifting is preceded by a slip, while local laying is followed by a slip. In both analyses, slip is found to be roughly parallel, but opposed to the glass plate motion, and it occurs in both the leading and trailing regions of the contact.

From the combination of backward slip at the trailing edge and a stuck zone at the contact center, one expects in-plane compression of the elastomer in the trailing half of the contact. Symmetrically, in-plane dilation is expected in the leading half. The overall effect of both types of in-plane deformation must lead to a change in contact area that was estimated as follows.

Only the tracers present in the initial image and that could be followed from d 0 to d s , thus excluding the lifted and laid ones, were considered. A Delaunay triangulation was performed to mesh these tracers in the initial image, as shown as a grey network in Figure 3.7(a). As shear increases, the tracers move relative to each other. By keeping the same connectivity within the mesh, but updating the position of the tracers (sites), the relative changes of the areas of all the triangles of the initial Delaunay triangulation were monitored and the local in-plane deformation is thus estimated as these relative area changes. Those field measurements are qualitatively consistent with previous measurements of Barquins and Courtel [78] and Barquins [79] on a similar system, but made only along the central line of the contact in steady-state sliding.

The evolution under shear of the sum of the total area contained in the deforming Delaunay triangulation is shown in red in Figure 3.6. This area remains essentially unchanged during the first half of the experiment, and then progressively decreases by up to about 7 %, 4 %, 3 %, and <1 % of the initial contact area for P = 1.85 N, 0.54 N, 0.25 N, and 0.05 N, respectively. 

Uncertainties on the area changes evaluation

The uncertainties of the above experimental measurements are mainly related to the finite surface density of useful tracers. Table 3.2 shows the number of tracers larger than 4 pixels in the initial image of each experiment, on which the tracking procedure has been applied. As well as the the amount of tracers useful for the Voronoi (i.e. corresponding either to lifted or laid tracers) and Delaunay analysis. Not all the tracers were used in the analyses due to the exclusion of the tracers containing non-realistic trajectories, see Section 3.2.2. In addition, the final estimate of the lifted area is actually an overestimation. Because, for the latest lifted cells, the fraction of area at the left of the tracer has not been really lifted yet. The same discussion applies to the estimation of the final laid area.

Both effects would be reduced with a larger density of tracers, resulting in smoother curves with smaller step amplitudes.

Concerning the estimate of in-plane deformation, the region probed by the Delaunaybased analysis is only a fraction of the target region (the part of the initial contact that never lifts nor lays during the experiment). This is apparent for instance in Figure 3.7(a), for all normal loads P, with the white strip between the leading part of the contact contour and the Delaunay triangulation. An analogous strip is also lost on the trailing side, between the Delaunay triangulation and the lifted region. Those strips are due to the fact that only the tracers that could be followed from d 0 to d s (excluding the lifted and laid ones) were considered in this analysis. Because the largest strains are precisely expected to be found on the periphery of the Delaunay triangulation (see Figure 3.7(d)), the estimate of the area lost by in-plane deformation may be subject to a significant error. The values in Table 3.1 of area reduction due to this mechanism must then be taken with caution.

Evolution of tracers displacement

The displacement of each tracer relative to its initial position in the contact area ∆d t is measured and show in Figure 3.8 as a function of the time t for the four normal loads.

The instant of the static friction force Q s is indicated as a vertical line. The trajectory of tracers considered to be lifted out-of-contact (see Section 3.3.1) before the end of the experiment are shown in black, while colored lines represent the tracers present from the initial (at t = 0 s) to the end of the experiment (at t = 20 s). Cold colors are for the smallest displacements and warm colors for the largest ones at Q s .

We can see in Figure 3.8 that each particle, basically, has two main regimes. The first one, at a low times/tangential displacements, corresponds to a stuck regime during which the particles stay nearly at the same position in the glass moving frame, which means that they are stuck to the moving glass plate. In reality, one can notice that in this regime, especially for the highest loads, the position of each particle does not remain exactly unchanged (vanishing displacement). This small unexpected displacement can presumably be attributed to the bulk deformation of the PDMS under shear. Indeed, the particles are not precisely located at the interface (∼ 16 µm in depth) and thus they can be slightly displaced in the direction of the shear even if no relative displacement (slip) occurs at the interface. Note that a similar phenomenon was observed at a rough contact interface in [START_REF] Prevost | Probing the micromechanics of a multi-contact interface at the onset of frictional sliding[END_REF]. The second regime, at large times/tangential displacements, corresponds to a full sliding regime during which the particles stay in place in the laboratory frame, i.e. move at the glass velocity in the glass frame.

By focusing on the transitions between those two regimes, for each particle, three important observations can be made: (i) the transitions at the various tracers are spread over a period of approximately half the duration to reach the peak; (ii) the order of departure of the transition respects the color code used which means that the first particles that have slipped (warm color) are those in the end which have slipped the most; and, (iii) the larger the time/displacement at which the transition occurs, the more abrupt it is: the last particle which slips (i.e. the one corresponding to the darkest blue curve)

clearly shows a sharp kink between the two regimes.

All of these observations seem to indicate that there is a temporal and spatial organization in the transition to sliding within the interface. Then, to better spatially address each tracer displacement in the contact area, their magnitude is represented by iso-displacement contours in Figure 3.9.

As in Figure 3.8, cold colors are for the smallest displacements and warm colors for The tracers lifted during the experiment are represented as filled disks, while open disks are for tracers present throughout the experiment; their color follows the same color code that of the sets of iso-displacement contours, i.e. showing the magnitude of the tracers displacement. We assumed a displacement greater than 0.03 mm as a slip. This threshold (not equal to 0) is set to account for the unexpected displacement of the particles in the stuck regime due to their depth relative to the interface. Note that this fixed threshold should, ideally, be considered as a function of the PDMS bulk deformation under shear.

By following the evolution in time of the 0.03 iso-value curve, i.e. the limit between stuck and slip region, it can be seen that a micro-slip front moves inward from the contact periphery as shear increases. As expected, at d = d s , this slip front converges and disappears around the last tracer to slip (show as a filled magenta disk in Figure 3.8).

Both figures, Figure 3.8 and Figure 3.9, are consistent with a context of a partial slip, which is classical in sheared sphere/plane contacts, either rough [START_REF] Prevost | Probing the micromechanics of a multi-contact interface at the onset of frictional sliding[END_REF] or smooth [START_REF] Chateauminois | Friction and shear fracture of an adhesive contact under torsion[END_REF].

This scenario is also apparent in the movies (M185, M054, M025, and M005) where a peripheral slip region gradually invades the contact, replacing a central stuck area.

Those observations are less evident to be performed with small normal loads, due to the lower density of tracers in such normal loads, hindering a more conclusive analysis.

To draw attention to some specific points of 

Finite-strain modelling of shear-induced contact area reduction

In collaboration with J. Lengiewicz and S. Stupkiewicz from Institute of Fundamental Technological Research (IPPT), Polish Academy of Sciences, a 3D model that combines a hyperelastic bulk and a non-adhesive but frictional interface was developed to evaluate the findings of the experimental analysis in terms of elementary mechanisms of shear-induced contact area reduction -lifting, laying, and in-plane deformation. The model results were prepared to be matched quantitatively with the literature experiments of [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF]. However, those literature results are similar enough to the ones obtained earlier in this chapter to enable a qualitative comparison with the same model.

The results were presented in the published article "Finite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts" [START_REF] Lengiewicz | Finite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts[END_REF], and a summary of the model and simulation part will be presented here.

relationship between the parameters (E, ν) and (µ, κ) is given by µ = E/(2(1 + ν)) and κ = E/(3(1ν)) and corresponds to a shear modulus of µ = 0.60 MPa and a bulk modulus of κ = 0.40 MPa. A value of µ = 0.60 MPa was derived in a unique manner using the experimental values of P and A(Q = 0). Similarly, a value of σ = 0.41 MPa was derived using the experimental values of A s and Q s . Note that the ratio σ/µ is significant, such that shear strains exceeding 50 % are expected. This is far beyond the range of validity of the small-strain theory, and of linear elasticity in particular, so that the finite-strain framework used in this study is, actually, essential. At those large strains, the mechanical behaviour of the elastomer used in the experiments of Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF] (Sylgard 184) is already well beyond its linear range [START_REF] Danh | Surface pressure and shear stress fields within a frictional contact on rubber[END_REF][START_REF] Maraghechi | Experimental full-field analysis of size effects in miniaturized cellular elastomeric metamaterials[END_REF].

Shear-induced contact area reduction

Firstly, using the computational model described above, the shear-induced contact area reduction in the literature sphere/plane experiments of Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF] were simulated and qualitatively compared in Fig 3 .12. Figure 3.12(a) directly compares the predicted A(Q) curves with those of Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] (see their Figure 2C). The solid red line correspond to the relation Q = σA. Figure 3.12(b) compares the predicted contact sizes along and orthogonal to shear, and ⊥ respectively, with those of Sahli et al.

[63] (see their Figure 3b). In both cases, the amplitudes and shapes of the curves are well captured, although the model slightly underestimates A and does not capture the slight increase of ⊥ observed in the experiments.

Elementary mechanisms of contact area reduction

Secondly, a thorough analysis of the simulation results of this model was used to validate the experimental findings of Section 3.3.1, to test whether the elementary mechanisms -lifting, laying and in-plane deformation -responsible for contact area reduction in the experiment can also be identified in the model. 
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▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ in green if they were initially in contact and not anymore at the onset of macroscopic sliding. As in the experimental findings observed earlier in this chapter and in the experiments of Sahli et al. [START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF], the contact zone and the stick zone have an elliptical shape, the related shear-induced anisotropy increases with increasing displacement d and is higher for the lower normal loads.
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The labeled nodes allow us to identify the same mechanism as those found in the experiments. First, the region of contact lifting clearly corresponds to the green region around the final contact zone, i.e. the region that corresponds to nodes that have been lifted out-of-contact during the incipient loading due to the shear-induced deformations of the elastic sphere. Second, region of contact laying correspond to small parts (hardly visible in Figure 3.13 d s ) of the final contact which are found outside the deformed initial contact region (shown as a green region in the current configuration).

These nodes were initially out of contact, but laid into contact during the incipient tangential loading. Finally, in-plane deformation, related to inhomogeneous slip, is also find in the model within the contact zone and leads to either "in-plane compression" or "in-plane dilation". Indeed, in Figure 3.13, the slip zone advances from the contact periphery towards the centre at the expense of the stick zone until the stick zone vanishes and full sliding occurs. As in our experiments (see Figure 3.9), an inward slip front, corresponding to the boundary of the blue region (i.e. the frontier between the stick and slip zones) can be identified and is responsible for the inhomogeneous strain field at the interface. Such deformations extend beyond the contact region, which explains why the boundary of the green zone does not coincide with the dashed circle.

The partial slip configurations, as those seen in Figure 3.13, are classically found (with a circular stick zone) in models of sheared frictional linear elastic sphere/plane contact [START_REF] Kl | Contact mechanics[END_REF][START_REF] James | [END_REF]. They typically correspond to heterogeneous slip fields, thus causing in-plane deformations. dilation and compression are individually significant, however, they essentially cancel each other out, so that the in-plane deformation is responsible only for about 5-10 % of the total area reduction. Contact laying is rarely observed (if so, at the leading edge only), therefore its contribution to the total area reduction is essentially negligible in the model.

We emphasize that the relevant lifting in our model is a local lifting due to shear deformations of the elastic sample, rather than a shear-induced global lifting of the rigid plate. Such a global lifting, although existing in the constant normal load setting of the model, has been found to be only about 4 % of the normal displacement associated with the initial, purely normal loading. Thus, it is far from sufficient to explain the 15-30 % area reduction observed in Figure 3.15.

Summary

The model just presented has been shown to capture quantitatively the experimental results of [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF] about the anisotropic shear-induced area reduction of sphere/plane elastomer contacts for relatively large normal loads (Figure 3.12) and also the results of the experimental observations presented in this chapter. The agreement was obtained without any adjustable parameter, in the sense that virtually all model parameters are set by independent measurements on the same experimental system. Those parameters are: the geometry of the hyperelastic neo-Hookean sample, its shear modulus, and the contact shear strength of the PDMS/glass interface. This absence of adjustable parameters provides the presented model with a decisive comparative advantage over competing models with reduced contact area induced by shear. Especially, fracture-like adhesion-based models, that in order to offer a good quantitative agreement with experiments [START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF][START_REF] Das | Sliding of adhesive nanoscale polymer contacts[END_REF], require a prescription of finely-tuned mode-mixity functions [START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF]. The presented 3D model also captures the anisotropic evolution of the contact shape, whereas most fracture-based adhesive models assume axisymmetry of the contact (see Papangelo et al. [START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF] for the only exception, to our knowledge).

The direct implication of the model is that finite-deformation effects and the nonlinear elasticity of elastomers are presumably the key ingredients explaining the experimental results, rather than viscoelasticity or adhesion. Nevertheless, the model has only been applied to contacts submitted to relatively large normal load, in the newton range [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF], while other experiments have used much smaller normal loads, in the millinewton range [START_REF] Savkoor | The effect of tangential force on the contact of elastic solids in adhesion[END_REF][START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF][START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF]. For those smaller loads, adhesive stresses may be of the order of, or even exceed, contact stresses, and non-linear elasticity may be not the only dominant ingredient for shear-induced contact shrinking anymore. Identifying the normal load regimes in which adhesion needs to be accounted for is an important goal not only for future contact mechanics models but also for experiments. In face of this, we will present in Chapter 4 an experimental study in a wide range of normal loads.

Discussion

An original experimental analysis using an elastomer sphere seeded with particles identified different stages during the sliding process and the presence of three elementary mechanisms -lifting, laying, and in-plane deformation -responsible for the anisotropic contact area reduction. Although a higher area density of tracers would be desirable to reduce the measurement uncertainties, particularly at small loads (Section 3.3.1), lifting is presumably the dominant area reduction mechanism, while a non negligible contribution of the laying and in-plane mechanisms exists as the normal load increases. The observations suggest that the contributions of those mechanisms are load-dependent and that different phenomena govern at small and large normal loads.

A typical transition between a stuck state to a sliding one, i.e. the transition between the static to kinetic friction is usually defined by a peak in a tangential-time curve followed by an abrupt decrease. However, experimentally, such a peak is not well apparent, which leads us to question: where is the onset of sliding? The observations in Section 3.3.2 show that the frictional sliding undergoes different stages and partial slip starts well below the static friction force Q s with micro slip occurring at different instants, for different tracers, until Q s . The profile of tracers' trajectory has shown a quite asymmetrical displacement in the contact zone and a less pronounced transition to macroscopic sliding as the normal load increases. Surprisingly, the velocity of the tracers reached a velocity even greater than the glass velocity V before finally reaching it. As pointed out, such observation may be due to a process of interfacial relaxation, that is, the interface is in a deformed state, it has stored elastic energy, and part of this elastic energy must be restored to return to a less-deformed state during the macroscopic sliding state.

The incipient shear-loading of smooth sphere/plane elastic contacts is characterized in the experiments and in the model by two propagating fronts: a lifting front at the contact periphery, and a non-circular micro-slip front within the contact area. The existence of those two different fronts, although explicitly acknowledged by some authors [START_REF] Rm Mcmeeking | The interaction of frictional slip and adhesion for a stiff sphere on a compliant substrate[END_REF][START_REF] Johnson | Adhesion and friction between a smooth elastic spherical asperity and a plane surface[END_REF], has never been properly described in fracture-based adhesive models. Indeed, in those models, the additional energy dissipation in the contact due to frictional micro-slip, and described via the mode-mixity function, is assumed to be located at the contact periphery, and not within a growing, finite region of the contact.

For the first time, the elementary mechanisms of area change were quantified. And, as in the experiments, the modeling results suggest that for the experimental conditions used in [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF], local lifting is the main mechanism explaining the significant area reduction observed and its anisotropy (Figure 3.15). For all normal loads explored, this conclusion is true, with the total area reduction being dependent on the normal load (as also observed experimentally).

In summary, lifting is presumably the main area reduction mechanism in both experiments and model. While experiments revealed a potentially larger contribution of the laying and in-plane mechanisms for large normal loads, a definitive quantitative comparison with the model is hindered by the finite experimental resolution. Also note that, due to the higher contact shear strength (0.53 rather than 0.41 MPa) and smaller Young's modulus (1.5 rather than 1.8 MPa) of this chapter's experiments compared to those of [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF], the numerical model could not converge in those more severe conditions, thus impeding direct comparison between model and tracer-based experiments. Such a comparison is also an important challenge for future work.

Finally, the simplicity and generality of the model assumptions suggest that the results may be also relevant to other systems than the elastomer sphere/plane contacts studied here. First, non-linear elasticity being a generic feature of soft materials, from gels to human skin, we expect it to be a likely mechanism for contact area reduction in all studies involving such materials. It would thus be interesting to re-interpret recent experiments like those of e.g. [START_REF] Das | Sliding of adhesive nanoscale polymer contacts[END_REF] on polyacrylonitrile or those of [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sirin | Fingerpad contact evolution under electrovibration[END_REF] on human fingertips, from the standpoint of finite-deformation mechanics. Second, [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF] argued that the mechanisms of shear-induced anisotropic contact area reduction may be the same in millimetric sphere/plane contacts and in individual micrometric junctions within rough contact interfaces. Such a similarity across scales suggests that the present conclusions may also be used to further understand the shear behaviour of soft material multicontacts, the modelling of which may require non-linear elasticity. This may in particular be an explanation for the fact that, in [START_REF] Scheibert | Onset of sliding of elastomer multicontacts: failure of a model of independent asperities to match experiments[END_REF], a multi-asperity model based on linear elasticity failed to reproduce quantitatively the multicontact results of [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF].

Conclusion

An original experimental analysis was proposed to show the existence of elementary mechanisms responsible for the evolution of the contact area under shear. First, it was demonstrated that contact lifting and contact laying do occur and can be quantified using Voronoi tessellation. Second, using Delaunay triangulation, the progressive development of a heterogeneous in-plane strain field within the contact area was illustrated. The existence of those mechanisms seems to be normal load-dependent. Under large load, contact lifting and contact laying occur on opposite sides of the periphery of the contact area, while under small load, contact lifting occurs at both sides. The challenges associated with the experimental approach has been thoroughly discussed.

With the tracking of the particles we could measure their displacement relative to its initial position in the contact area and identify a micro-slip front that moves from the contact periphery inward the contact region as shear increases, replacing a central stuck area. We highlighted different stages during their evolution: a stuck state, a partial slip, a transient sliding, and steady state sliding.

The findings, under large load, were qualitatively compared with a developed model proposing for the first time a non-adhesive, non-viscous model of shear-induced contact area reduction in soft materials. Quantitative agreement with the recent experimental results of Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF] on sphere/plane elastomer contacts has been obtained, with no adjustable parameter, using the Tresca friction law and the neo-Hookean hyperelastic model. The necessary ingredients for this agreement are finite deformations and non-linear elasticity.

All results suggest a new perspective on the phenomenon of shear-induced contact area reduction in soft materials. This currently highly debated topic has been dominated by interpretations based on a leading role of adhesion. Here, instead, it was suggested that finite-deformation effects and non-linear elasticity can be equally important, all the more so as large normal loads are considered. Clarification of the validity domains where adhesion and/or finite deformations need to be accounted for remains a major open issue on the topic.

Chapter 4

Shear-induced area reduction over a wide range of normal loadings

Introduction

Elastomer friction between dry surfaces in relative motion is a complex phenomenon due to mechanical, chemical, and physical interactions, each operating at their own force scale. Adhesion and deformation components have the most significant contributions to the overall friction force [START_REF] Frank | The friction and lubrication of solids. Part 2[END_REF][START_REF] Bo Nj Persson | On the theory of rubber friction[END_REF].

In the previous Chapter 3, we were focused on the investigation of a simple model problem, i.e. a sphere/plane contact involving an elastomer and a rigid smooth surface.

We have shown that deformation at the interface and lifting/laying at the contact edges are the main mechanisms governing the contact area reduction under shearing under relatively large normal loads. This investigation raises a direct and natural question: do the same mechanisms occur over a wider range of normal forces? Despite many scientific groups have carried out theoretical [START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF][START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF][START_REF] Papangelo | Fracture mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws[END_REF] and numerical simulation [START_REF] Khajeh Salehani | Modeling adhesive contacts under mixed-mode loading[END_REF][START_REF] Wang | Sphere and cylinder contact mechanics during slip[END_REF][START_REF] Lengiewicz | Finite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts[END_REF] studies on sheared model interfaces for different range in terms of normal force, experiments are mainly performed under small compression (or even tension), i.e. for very small normal loads [START_REF] Savkoor | The effect of tangential force on the contact of elastic solids in adhesion[END_REF][START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF][START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF]. Only recently, a few experiments have been conducted under much higher normal loads [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] but still leaving a gap in the range of load explored. In addition to this experimental gap, the different conditions of the available experimental data (see Figure 4.1) make a quantitative comparison between experiments, theory and simulations from the literature even more complicated. Indeed, the frictional behavior of the interface depends strongly on material, elastic modulus, surface energy, contact geometry, equipment/procedure, sliding velocity, temperature, and so forth, making it impossible to have a unified view of the behavior of a single sphere on plane sheared contact over a wide range of normal forces.

Within this scenario and to proceed to the next step in our study, which will consist in going towards more realistic frictional sliding configurations, the objective of this chapter is to improve the understanding of shear-induced area reduction from mN up to N in order to cover and fill the experimental gap found in literature. In particular, we will study the evolution of the main features and parameters that allow describing the model sphere/plane experiments: contact area morphology, area reduction parameter, and interfacial shear strength over a wide range of normal loadings. 

Tangential loading experiments

To address the objective of this chapter, three sets of experiments have been performed using the optomechanical instrument presented in Section 2.2.1 on S1R9 samples (one sphere with a radius of curvature of 9.42 mm, see Section 2.1.2) against a glass plate, for a wide range of normal forces P, as shown in Table 4.1. The normal load was applied by adding dead weights, except for P smaller than 0.25 N. In this small load case, the normal load was applied by pushing the whole cantilever on the sphere (resp. glass plate) in a normal (resp. inverse) attachment configuration via the z-stage (see Figures 2.4 and 2.5). The normal force P was measured with the normal load sensors and it remains constant throughout the experiments. The tangential force results from the displacement of the glass plate (normal configuration) or of the sphere (inverse configuration) at a constant velocity V = 0.1 mm/s. Images of the contact area during the test were taken with a lateral square pixel of 7.75, 8.08, and 8.09 µm for Set 1, 2, and 3, respectively. In each set, a different PDMS sphere was used and, although they were carefully manufactured in a similar way, some parameters were difficult to control, such as the elastomer base and curing agent batch and the delay in the effective use of the sphere after the defined curing time of 48 h. For each set, the experiments were carried out in random order, in terms of normal loads, to avoid systematic errors. Full details and specifications of the experimental procedure are given in Chapter 2.2.2. 

Results and analysis

In this section the results and analyses of the three sets of experiments will be presented. In order to properly define the wide range of normal forces, hereafter small loads correspond to tests with P ≤ 0.25 N and large loads to tests with P > 0.25 N.

This threshold value has been chosen based on data found in the literature. Indeed, the literature maximum normal force is 15.5 mN in the small load range [START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF], and the minimum normal force is 0.27 N in the large load range [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF].

Adhesion energy and elastic modulus

The adhesion energy ω 0 of the PDMS/glass interfaces and the effective elastic modulus E * of the PDMS samples were estimated for each set from the contact area under no tangential load (Q = 0) by JKR theory [START_REF] Kl Johnson | Surface energy and the contact of elastic solids[END_REF] using the method described in Section 2. C between them was detected afterwards. Since the cross-linking process depends strongly on temperature, the non-control of this parameter can result in an incomplete cross-linking after 48 h, which causes a variation in the final properties of the PDMS samples. Incomplete cross-linking leads to an imperfect network with free chains (not linked to the network) and dangling chains (connected to the network only at one extremity). This results in a lower elastic modulus ("the more the PDMS is crosslinked, the less it is elastic" [START_REF] Kuncová | PDMS and its suitability for analytical microfluidic devices[END_REF]) and in a transfer of free chains to the glass plate over the successive experiments, reducing the surface energy thereby the adhesion energy [START_REF] Ia Lyashenko | The effect of contact duration and indentation depth on adhesion strength: experiment and numerical simulation[END_REF][START_REF] Tiwari | Rubber adhesion and friction: role of surface energy and contamination films[END_REF]. These findings were made later in the timeline of this thesis and, unfortunately, they could not be taken into account in the subsequent results. However, it has led to enhancements to the PDMS sample preparation process under temperature control for future work.

Therefore, thereafter, we will not be able to compare quantitatively the results between the three different sets of experiments as was initially our intention. We will just compare them qualitatively. Indeed, E * and ω 0 are key parameters in the response of the interface (all the more at small load for ω 0 ). to red for the largest P for each set. To allow a better visualization, the small loads are also shown on the right side of the figure. We can observe, for each curve, the typical behavior: Q increases linearly at the very beginning, followed by a progressive slope reduction, before reaching a maximum Q s ; then Q decreases and enters a macroscopic sliding regime. In a simple theory of friction, due to Bowden and Tabor [START_REF] Fp Bowden | Mechanism of metallic friction[END_REF], when the tangential force reaches its maximum Q s (indicated as a circle marker) is the the start of sliding, i.e. the sudden transition from static to kinetic friction. Experimentally, here, such transition is more marked when P is small and becomes smoother as P increases.

Tangential and normal forces

Also with the increase of P, we can observe the expected increase of Q s , likewise, we see that both the displacement d to reach it and the slope of the curves in the static region increase. One can notice, in the three sets, that the Q(d) curves present stickslip-like oscillations appearing sometimes even before Q s . We can identify a tendency for such instabilities to arise at lower normal force values. Such oscillations are thought to be the result of detachment waves from a compressive zone to a tensile one, so-called Schallamach waves, occurring due to surface instability [START_REF] Barquins | Sliding friction of rubber and Schallamach waves-a review[END_REF]. The conditions for such instability are very difficult to control and still remain unclear in the literature. In this study, we have hypothesized that these oscillations did not have a major effect on the results. all the contact areas are, as expected, perfectly circular and their size increases with the normal load P. At Q = Q s , we can observe a clear area reduction, and as, for example, in Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF], the area reduction is not axisymmetric and evolves from a circular to a prolate shape as the reduction is much larger in the sliding direction. Moreover, the prolate shape is not quite symmetrical about the vertical axis (perpendicular to the sliding direction) as the reduction is larger at the trailing edge of the contact (right side on the images). Note that in some images, one can clearly see the presence of the detachment waves that propagate at the trailing edge of the contact. The inset shows a zoom in the small loads. We can see that, in all sets, the reduction of the contact area increases with the decrease of A 0 (decrease of P). However, their overall contact area reduction levels are significantly different. The difference in the values between the sets is attributed to the difference in terms of properties of the PDMS spheres. Recently, a contact area decrease by up to 30 % for smooth (single asperity) and rough (multiple asperity) contacts, was reported in the literature on the range of large P [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF].

Contact area evolution

Even if much more investigation would be necessary to be able to quantify the relation between the contact area reduction and the PDMS properties, we can observe that Set 1 presented the smallest reduction in the contact area while having the highest values of elastic modulus and adhesion energy (see Tables 4.2 and 4.3).

Analysis

As suggested by Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF], plotting and analyzing the evolution of the contact area as a function of the tangential force from 

Q = 0 to Q = Q s ,

Contact area reduction rate

To evaluate the contact area reduction, from Figure 4.10, we use the quadratic decay expression proposed by Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] for a range of large normal loads in both smooth sphere/plane and rough interfaces: where A is the initial contact area (at Q = 0).

A = A 0 -α A Q 2 , ( 4 
The authors in [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] found that the contact area rate α A obeys a well-defined scaling law,

α A = β(A 0 ) γ , (4.2)
with γ -3/2 over four orders of magnitude of A 0 . However, in their study, the authors have used different samples to explore a such wide range of A 0 (i.e. of normal loads P). In particular, they have used a single PDMS sphere for large normal loads, while for small ones, they employed a rough interface. Indeed, for their rough sample, they extracted the behavior of each micro-asperity contact and considered it as a single independent spherical contact.

Using the quadratic decay law (Equation 4 In Figure 4.12(a), the evolution of α A (Equation 4.1) is plotted as a function of A 0 for Set 1 (G), Set 2 (L), and Set 3 (o). Figure 4.12(a) also shows the result of a fit performed by using Equation 4.2 on the entire range of normal loads (colored lines with the same color as the corresponded fitted set). We can see that, for each set, the points are well aligned and in good agreement with a power-law evolution, as expected by Equation 4.2. However, the level of the curve seems to vary from one set to another (mainly for Set 1). In addition, the points are well aligned at large loads (large A 0 ), but less well aligned -larger dispersion -at small loads (small A 0 ). This observation is validated by Figure 4.12(b) which shows a rather good fit agreement (high R-square) with the experimental data at large loads, i.e. in the same range as in Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] (I in Figure 4.12). However, as in Mergel et al. [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF] (M in Figure 4.12), for small normal loads, the quadratic law does not fit well the experimental data (lower R-square).

(a) To go further in the verification of the validity of Equation 4.2 over a wide range of normal loads, we also fit the three sets of data, as well as the literature experimental data from small [START_REF] Mergel | Contact with coupled adhesion and friction: Computational framework, applications, and new insights[END_REF] and large [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] loads for a single sphere/plane contact in two sub ranges of normal loads: large loads (see lines in We have just seen that the power-fits (Equation 4.2) do not work well with a single exponent over the wide range of normal loads. Interestingly, in the literature, some studies question the validity of the quadratic decreasing of contact area, especially at small loads. Indeed, Mergel et al. [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF], using a similar set-up as the one of this study, but with small normal loads, report experimental results in which the decay of the contact area is not quadratic for the entire range of their observations. More recently, Salehani, Irani, and Nicola [START_REF] Khajeh Salehani | Modeling adhesive contacts under mixed-mode loading[END_REF] carried out simulations on sphere/plane contacts for compressive and tensile loads, and found that under tensile load, when the onset of sliding is approached, the rate of contact area reduction increases. Recent models also seem to confirm that the decay of contact area under small loads may no longer be associated with a power of 2 [START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF][START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF][START_REF] Khajeh Salehani | Modeling adhesive contacts under mixed-mode loading[END_REF]. In face of those discrepancies at small normal loads where the decay of contact area law (Equation 4.1) may not be strictly quadratic, Papangelo et al. [START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF] proposed to use a power-law function with a variable exponent n to describe area reduction:

A = A 0 -α B Q n , (4.3)
from which the best-fit exponent n is to be obtained. Using a nonaxisymmetric model based on linear elastic fracture mechanics, the authors showed, in their Figure 10(b) [START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF],

a value of n close to 2 under large loads (for P in the order of 1 N, n ∼ 1.8-1.9), and pointed out that under small loads n increases (for P in order of 10 -3 -10 -2 , n ∼ 3 ± 0.5).

Accordingly, we used Equation 4.3 to fit the data in our three sets of experiments. In . We can see that the exponent n is quite constant at large loads, and is close to 2 (quadratic form as in Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]) for Set 2 and 3, but close to 3 for Set 1. This exponent variation between the sets, raises the question of the exponent's dependence on the properties of the PDMS. For small loads, as in the literature [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF], we find an exponent which tends to increase. 

Comparison with mode-mixity fracture model

In addition to all previous analyses and still to evaluate the contact area reduction, we compared our experimental data sets to a recent mode-mixity model proposed by Papangelo and Ciavarella [START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF] which predicts the contact area reduction of an adhesive contact under shearing by taking into account the dependence of the interfacial toughness on the phase angle ψ = arctan(K I I /K I ); K I I and K I being, respectively, the mode II and mode I stress intensity factors (defined in Equation 1.13 and Equation 1.12).

This model is an improved version of the LEFM-based models, which all require at least one empirical coefficient λ within one mode-mixity function f (ψ) [START_REF] Hutchinson | Mixed mode cracking in layered materials[END_REF] to describe the critical condition for the propagation of an interfacial crack. The expression for f (ψ)

proposed by Papangelo and Ciavarella [START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF] is:

f (ψ) = [1 + (λ -1) sin 2 (ψ)] -1 (4.4)
To access f (ψ) from our experimental data, we use the fracture mechanics model rewritten in the form [START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF]:

G c G Ic = f (ψ) = 4E * a 3 3R -P 2 + Q 2 8πE * a 3 G Ic (4.5)
where G Ic corresponds to the adhesion energy of the interface, i.e. ω 0 . Then, the ratio Then, in Figure 4.16, we plotted, as a function of the normal forces P, (a) the coefficient λ that best fits our three sets of experimental data and (b) the coefficient of determination R-square of the fits. First, as observed in the previous analyses for α, the values of λ vary from one set of experiment to the other. Second, contrary to Papangelo and Ciavarella [START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF] that suggested an almost constant value of λ for a given set of experiment, we point out that, at low loads, this does not seem to be exactly the case. The values of λ for small loads are more scattered, see inset of the normal forces, as shown in Figure 4.17. Again, λ vary from one set of experiment to the other and the oscillations at the ends of the curves result in a relatively low coefficient of determination (R-square). Then, in Figure 4.18, the aforementioned empirical forms of mode-mixity functions, f (ψ), as described by Equation 4.5, were used to plot the prediction of the evolution of the contact area as a function of the tangential force Q using λ = f (P) (red lines) and λ = const (blue lines). Those predictions can thus be compared to our experimental data (black line). Note that Figure 4.18 only presents the results for two representative normal loads (small and large) of Set 1 as, all other case presents the exact same qualitative tendency.

G c /G
At large loads, Figure 4.18(b), both predictions seem to capture the experimental evolution. However, using λ = f (P), i.e a single value of λ for each A = f (Q) curve, always yields slightly better results. Nevertheless, at low loads, Figure 4.18(a), the prediction based on a single value of λ does not capture the experimental evolution at all, in contrast to the prediction based on λ = f (P).

Finally, we can see that the amplitude of the mode-mixity function (controlled by the value of λ) has a strong influence on the prediction of contact area evolution. For a wide range of normal loads, the experimental results can be fitted well only by using the appropriate value of λ. The dependence of λ versus P remains to be understood, in order to be properly accounted for in such LEFM-based models. 

Interface shear strength

For the analysis of the interface shear strength σ, we fitted the endpoints of the curves in Figure 4.10 using the threshold equation also proposed by Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF],

A s = aQ s , (4.6) 
with a single adjustment parameter a such that σ = 1/a. We can see in Figure 4. 19(a) that the fits on the entire range are dominated by large load points. In (b), the fits of the large loads do not seem to capture the small ones, and Then the interface shear strength σ for the large load range is lower than for the small one, except for Set 3, as shown in Table 4.5. This exception, however, is probably due to the fact that there are too few points available at large loads in this set, resulting in a value of σ possibly poorly estimated. The literature data also indicate a lower σ value for the small load range data, which is consistent with the σ results of the sets.

In the linear relation of Equation 4.6, the authors of [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] only considered large normal loads, then they postulated that the straight line goes through the origin. However, when we expand this range of normal load by considering large and small loads together, such a linear relation does not seem to work well. In face of this and based on a previous study by Nguyen et al. [START_REF] Danh | Non-Amontons-Coulomb local friction law of randomly rough contact interfaces with rubber[END_REF], that suggests a power-law relationship between the local shear stress and the local pressure for PDMS in contact with a sandblasted glass surface, we applied the following power-law equation to fit the data: Even if, qualitatively, the difference between the fits performed on the different range of normal force seems to be less important than when a linear relation is used, one can see, in particular in tables 4.6, that the values of the exponent differs with the range of normal forces that is considered. Again, as for α and λ, the interfacial shear strength σ exhibits a dependency toward the normal load P.

A s = ρ(Q s ) κ . ( 4 

Discussion

To date, studies in the literature on the onset of sliding of elastomer sphere/plane contacts have focused on various and quite narrow ranges of normal forces. It is important to note that a wide range of experimental data is difficult to address experimentally due to the difficulty in controlling the various parameters involved in the process. Besides the difficulties, the setup of most recent experimental studies for small loads in Mergel et al. [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF] and for large normal loads in Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] does not allow direct measurements of the normal force really at play at the interface, which is only known through a dead weight [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] or estimated from the initial contact area using JKR theory [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF].

In this chapter, the tangential force experiments on a model sphere/plane interface have been carried out over the widest range of normal forces in the literature. They even cover all the ranges of normal forces that we have identified. Thus, as intended, they filled the gap between all existing data and also improved the normal force measurements.

The characterization of the model interfaces followed generally the literature laws:

(i) the empirical quadratic law, A = A 0α A Q 2 , to describe the contact area reduction, (ii) the latest version of LEFM-based models and (iii) the threshold law, Q s = σA s , to characterize the interface shear strength. However, if one looks much more in detail, it does not appear that these laws and models allow the experimental results to be adequately explained in a single and satisfying way over the entire range of normal forces that have been investigated. First, the quadratic exponent of the area reduction law and the LEFM based models seem to not well describe the decay of the contact area, in particular for small P (small A 0 ) (see Figure 4.14 or Figure4.18), not to mention the variation due to different E and ω 0 (from different samples). Second, the threshold law seems to work well only when using a limited range of force P (small or large P). In other words, we have constant behaviors by ranges of normal force, but with different values of σ. However, when we try to unify the ranges of P, the scenario becomes more complicated and σ is not constant anymore (Figure 4.19 and Table 4.5).

Even a power-law for σ (Equation 4.7) seems to not fit the very small loads (Figure 4.20 and Table 4.6). Such difficult unification may be due to the relative contribution of the elementary mechanisms responsible for the contact area reduction, which may differ for small and large normal loads, as previously suggested in Chapter 3.

Transition to kinetic sliding

Our experiments have shown that a quantitative comparison of the experimental results from different sets can be misleading. Nevertheless, it is still possible to indicate overall trends, which is the focus of the following discussion.

One trend which can be brought out is the aforementioned gradual transition to a kinetic sliding. According to Bowden and Tabor [START_REF] Fp Bowden | Mechanism of metallic friction[END_REF], when a tangential force Q is applied to an interface between two solids, the force increases quasi-statically with time t. Once Q reaches a peak Q s , the interface starts to slide and Q suddenly decreases to a kinetic sliding Q k (Figure 4.21, left side). However, experimentally, we observed a gradual transition to a kinetic sliding Q k (Figure 4.21, right side), that is more evident in the large normal forces, as we could see in the Figure 4.3.
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.21: Time t evolution of the tangential force Q. Scheme of a theoretical abrupt (on the left side) and a more realistic gradual (on the right side) transition from a static region Q s to a kinetic region Q k . Scenario 1: the minimum contact area A s is related to the static peak Q s . Scenario 2: the minimum contact area A k is related to the kinetic point Q k .

In face of this gradual Q transition, we can rise some questions about the behavior of the contact area during this process: Where is the minimum of the contact area? Is it related to the static peak Q s (scenario 1 in To answer these questions, we revisit Figure 4.8, where, after reaching Q s (indicated by a circle marker), the contact area continues to decrease (even more so for small loads) before entering the steady sliding regime. This means that the area associated with the tangential force peak Q s is different and higher than the one in the steady sliding regime Q k which seems to correspond more to scenario 2 in Figure 4.21 (right side). This observation about the continuation of the reduction of the contact area after Q s can also be seen in the literature data from Mergel et al. [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF] in their Figure 5(b), represented here in Figure 4.22. In this figure, the time t evolution of the contact area A is shown for a range of very small normal loads (from -0.46 mN to 7.74 mN), and we can clearly see that the contact area A continues to reduce after Q s (indicated as a filled circle marker). Therefore, these literature data [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF] and our three sets were analyzed to find the critical area A crit before entering the steady state in the kinetic sliding regime. In theory, this regime is described as constant, but from an experimental point of view, we usually observe that there is indeed a slight slope (positive or negative), attributed to the presence of a residual angle in the experimental device. This slope makes the detection of A crit a little more complicated. For it, we have used the following procedure:

(i) for the literature data, the MATLAB R function findchangepts was used to find the point where the mean value and slope of the contact area curve (using linear statistics) changed most abruptly. This function was applied in a curve interval between Q s and 1.5 × Q s . The found A crit are shown in Figure 4.22 as open circle markers; (ii) for our three experimental sets, the same identification A crit method was used. However, due to the great oscillations in some curves, the method was applied to the lower envelope of them (see Section 2.4.2) and a visual inspection was performed to confirm that the automatically found A crit was in a critical zone to a steady sliding regime. If not, a manual identification was performed. And to avoid manual user error, a simple clickand-point interface was developed, asking 7 volunteers to indicate the critical point on the curves and the average of the answers was taken into account. An asterisk will be used to indicate cases where A crit manual detection was used.

Thus, the normalized difference between A s and A crit was plotted in Figure 4.23 versus the initial contact area A 0 . The experiments in which the contact abruptly vanishes during shearing were not considered here since they do not enter a clear steady sliding regime, as for example, the bottom light blue curve in Figure 4.22. Normalized difference between the contact area at the moment of tangential force peak A s and the area before entering a steady state in the kinetic sliding regime A crit versus the initial contact area A 0 . Set 1 (G), Set 2 (L), and Set 3 (o). The points in the large range of P are represented by filled markers and the small range by open markers. Literature data for small loads are also show as M (Mergel et al. [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF]). Asterisks denote cases where A crit was manually detected.

The points of Figure 4.23 are well fitted by using a power-law relation ( f (x) = ax k ) with an exponent of -1.61 ± 0.17 (see grey line). This means that at large initial contact area A 0 (i.e. at large P), the difference between A s and A crit is very small or even almost zero. Therefore, A crit is almost simultaneous with the tangential force peak Q s , and more related to scenario 1 in Figure 4.21 (right side). Contrarily, the more A 0 decreases (i.e. the more P decreases), the further the A crit seems to move away from Q s , indicating that the area reduction mechanisms continue after Q s , which is more similar to scenario 2 in Figure 4.21 (right side).

In the case of scenario 2, we can propose two hypotheses: (i) macroscopic sliding starts at Q s and the contact area reduction continues after it, that is, during the macroscopic sliding. However, in this case, what would be the mechanisms, since lifting and deformation require a stuck area?; (ii) macroscopic sliding starts after the tangential peak, that is, it starts at Q crit when A reaches A crit . In that case, is adhesion playing a dominant role in the transition to sliding? Due to the fact that these observations occur close to a dynamic phase of the contact's evolution in which the micro-slip front finishes invading the interface, experiments in the presence of particles (tracers) with a high temporal resolution are required to validate these hypotheses.

Alternative interpretation of the interface shear strength

The non-correspondence between Q s and A crit , that is when they do not occur at the same time, poses an issue in the definition of the interface shear strength σ. So far, σ has been defined as the ratio Q s /A s , and in order to evaluate it, the static stresses stored in the interface must be entirely relaxed down to their kinetic counterpart, i.e. the interface must be in a full sliding regime.

Is this still the case with small loads? Should one take into account the adhesion (either with analytical model or with numerical methods). The current problem (in the course of resolution) is that the analytical model are in simple elasticity and the numerical models do not take into account the adhesion. One can wonder if the simultaneous taking into account of the two phenomena is necessary and if each one is dominant on the other according to the range of force.

In view of these observations, we propose an alternative shear strength, defined as Q crit /A crit . Figure 4.24 shows, in a log-log scale, the critical contact area A crit as a function of its corresponding tangential force Q crit . Due to the presence of oscillations in the tangential force Q curves, Q crit was taken from the lower envelope of Q, constructed at the same way of the area lower envelope (see Section 2.4.2). Given how well aligned the points in Figure 4.24 appear, we fitted them with a power-law equation ( f (x) = ax k ), shown as lines in Figure 4.24 (colored lines with the same color as the corresponded fitted set). The fit exponent results are 1.11 ± 0.01 (Set 1: G, -), 1.14 ± 0.05 (Set 2: L, • •), and 1.01 ± 0.23 (Set 3: o, --). We can observe that the fits are in better agreement with the points than the fits of the classic definition of σ (see For a better comparison we show in Figure 4.25 as filled marker: A s and Q s ; and as open markers: A crit and Q crit . A vertical shift was applied between the experimental sets by an offset on the points for a better visualization. We can see in Figure 4.25 that the critical points seem to be better aligned than the points at tangential force peak. Also, the difference between the two sets of points seems to increase with the decrease in the normal load. Then, a scenario 2 which the hypothesis (ii) that the macroscopic sliding starts after the tangential peak (as discussed in Section 4.4.1) seems to be more reasonable.

The effect of normal load on contact area reduction mechanisms

A qualitative visual analysis of the contact area images by superimposing frames of the initial contact area (at Q = 0) and frames at the static friction peak (at Q s ) in the frame of the moving glass plate was performed and is shown in Figure 4.26. In this figure, the leading edge of the contacts is on the left side. The black region, in the middle, shows the contact area presents during the onset of sliding (from Q = 0 to Q s ); the blue region, on the right edge, shows the area presents at Q = 0 and not at Q s ; and the red region is the area not presents at Q = 0 but presents at Q s . Images for four normal forces are presented (in the columns), two in the small load range (a and b) and two in the large load one (c and d), for the three sets (in the rows). 

Conclusion

This chapter aimed at improving the understanding of shear-induced area reduction from millinewtons up to newtons normal force, covering the gap of experimental data in the literature that so far was concentrated in distinct normal load ranges. We thus performed the first experiments to bridge the gap between those two ranges with the very same sample and experimental setup.

By analysing the experimental data, the main features and parameters were discussed along with the literature experimental data, and we have shown that a quantitative comparison between experiments obtained from the same equipment/procedure is already challenging. Therefore, comparing theoretical and numerical results with experimental data from different teams and labs may result in misleading conclusions.

Chapter 5

Sliding friction under normal loading variation

Introduction

When two rough surfaces move relative to each other, first, during purely normal contact, their roughness causes contact to occur at discontinuous contact spots, that is, between their asperities, which might have not only random sizes and heights (as often taken into account in the literature [START_REF] Bhushan | Contact mechanics of rough surfaces in tribology: multiple asperity contact[END_REF]), but also differ in terms of the mean plane of their macroscopic contact interface. Such an interface may have a different inclination than nearby micro-contacts, and be different from the mean plane of the contact interface macroscopic, e.g., two opposite asperities in contact, whose summits are not confused. Second, during relative motion, these micro-contacts have finite lifetimes (constantly coming in-and out-of-contact), causing the local loading conditions between them to vary significantly.

Unfortunately, these two characteristics -inclination and temporal evolution of the load -are not taken into account by the approach classically used in contact mechanics, which often considers a constant normal loading and a contact model sphere and shear plane parallel to the plane of interface.

In this chapter, in order to study more realistic contact problems, which integrate these non-standard conditions, we will investigate the influence of the loading trajectory on sheared model interfaces. In particular, the variation of the normal load during shear and its influence in terms of coefficient of friction, contact area variation, area reduction parameter and interfacial shear strength will be studied.

Experimental set-up

The experiments were carried out using the tribometer presented in Section 2.2.1 on S1R9 samples (a single smooth sphere with a radius of curvature of 9.42 mm, see Section 2.1.2) against a smooth glass plate. Shearing tests with simultaneous normal loading variations were performed by introducing a slight tilt between the glass plate and the direction of the tangential loading. For this, two representative cases were considered:

Case A -Tilt of the sliding plate: the tilt was introduced using the goniometer located above the tangential force sensor and the cantilever. In this case, not only the sliding plate was tilted, but also the cantilever and the tangential force sensor, see Fig- -fixed sphere at the bottom (in blue) and plate at the top (in red). Case B -Tilt of the fixed plate: the goniometer located under the fixed plate was used for introducing the tilt, as shown in Figure 5.2. In this case, we used an inverse attachment configuration (also defined in Figure 2.5) -sliding sphere at the top (in blue)

and the fixed plate at the bottom (in red).

Note that these presented cases are only two of the possibilities of introducing a tilt in one tribological test among many others. Nevertheless, they were chosen because they illustrate, as we will see later, the two main configurations that are expected, the other configurations being reduced to one or the other of these two cases if we focus only on the contact interface. For each case, the normal load was first applied by adding dead weights, and then the tilt was set up using the respective goniometer. After that, the initial value of normal force was verified with the normal load sensors and adjusted, if necessary, to reach the target normal force value, via the z-stage, which pushes the whole ensemble of tangential force sensor, cantilever and slider sample on the sphere (resp. plate) in a normal (resp. inverse) attachment configuration. The tilt is defined as the angle φ between the contact interface plane and the xy-plane. Note that, in both configurations, the motor displacement is applied only in the x-direction, and therefore parallel to xyplane. Positive angles have been defined as the ones corresponding to a motion of the sphere upwards on the glass plate, as shown in Figure 5.3. The tangential motion was imposed to the plate (resp. sphere) for Case A (resp.
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Case B) at a constant velocity V = 0.1 mm/s. Images of the contact area during the running of the tangential force were recorded at 100 fps. The lateral square pixel varied in the range of 7.90 µm -9.06 µm for the different sets of experiments. The contact area A was obtained from the images following the image processing described in Section 2.3.1, where, basically, each image is segmented by applying a threshold on the image intensity distribution using Otsu's method [START_REF] Otsu | Threshold Selection Method from Gray-level Histograms[END_REF]. Consequently, the images are binarized into in-and out-of-contact regions according to their intensity level with respect to the threshold. Then, the total number of in-contact pixels is multiplied by the square of the pixel size to evaluate the apparent contact area A app seen by the camera, in squared meters. Note that, due to the tilt of the interface, the camera is no longer perpendicular to it and thus a correction is required to access the real contact area A.

As A app is the projection of A onto the xy-plane, we applied the following correction: 

A = A app / cos φ.

Case

Range of φ

P 0 Sample I A -4 to 4 • 0.78 N S1R9 (4) L B(i) -2.5 to 4 • 0.78 N S1R9 (4) o B(ii) -3 to 4 • 0.78 N S1R9 (5) M B(iii) -2.5 to 4 • 0.10 N S1R9 (5) G B(iv) -2 • -0.6 mN to 3.20 N S1R9 (2) G B(iv) 0 • -0.2 mN to 3.21 N S1R9 (2) G B(iv) 2 • -2.3 mN to 3.19 N S1R9 (2) 
Table 5.1 lists all experiments that have been performed. Cases A and B(i) were carried out under the same initial normal force P 0 of 0.78 N and with the same sphere, S1R9 (4). Cases B(i) and B(ii) were performed under the same initial normal load P 0 of 0.78 N and different spheres, S1R9 (4) and S1R9 [START_REF] Liang | Wear phenomena in chemical mechanical polishing[END_REF]. For the same sphere, S1R9 (5), two different normal forces were tested, P 0 = 0.10 N B(iii) and P 0 = 0.78 N B(ii). Finally, to test the influence of the tilt on a wide range of initial normal loading, three sets of experiment, named B(iv), with two opposite angles, -2 • and 2 • , and an aligned case, 0 • , were performed with the same sphere, S1R9 (2).

For Case A, the aligned experiment φ = 0 • was carried out first. Then, we performed the ones with φ > 0 • in an ascending order and last, the ones with φ < 0 • in a descending order. For Cases B(i,ii, and iii), the experiments were performed in the following order: φ = 0 • , φ < 0 • (descending order), and φ > 0 • (ascending order). In Case B(iv), the experiments were carried out randomly in relation to the applied initial normal load, and φ was modified every 5 tests in the following order: φ = 0 • , -2 • , and 2 • . For example, 5 different initial normal loads (randomly selected) at φ = 0 • were tested. Then the same 5 initial normal loads were tested for φ = -2 • , and last the same 5 initial normal loads for φ = 2 • . For Cases B, the contact area was difficult to be correctly detected for angles smaller than -2.5 • , because, in such conditions, the projected contact area touches the edge of the field of view detected by the camera, making the detection of the contact area difficult.

Results and analysis

In this section, we will present the results and analyses, first, for Case A (tilt of the sliding plate) and second, for Case B (tilt of the fixed plate). In Figure 5.4(a) a typical tangential force-displacement curve behavior is observed for all angles φ, i.e. when the plate starts to move, Q increases linearly. Then, a small difference between the positive and negative angles can be noticed in the slight slope change before the curves reach their maximum Q s . After Q s , the curves decrease entering in a macroscopic sliding with, unlike a constant regime, a decay for φ < 0 • (blue lines) and a rise for φ > 0 • (red lines). As mentioned in Section 2.5, we found a greater tangential force at the beginning of the sets of experiments, which may be due to the orientation, extension, and/or pull-out of the PDMS chains [START_REF] Kurian | Unusual surface aging of poly (dimethylsiloxane) elastomers[END_REF][START_REF] Galliano | The role of free chains in adhesion and friction of poly (dimethylsiloxane)(PDMS) networks[END_REF][START_REF] Elzein | Chains anisotropy in PDMS networks due to friction on gold surfaces[END_REF]. For this reason, the first tests are usually eliminated, but as an exception here, they were considered.

Case A: tilt of the sliding plate

Raw experimental results

The higher Q s values for φ = 0 • , 0.5 • , and 1 • may be due to this reason rather than a effect of the tilt. Excluding the first tests (φ = 0 • , 0.5 • , and 1 • ), the values of Q s are also a little different, of around 6 % for φ ranging between -4 • and 4 • .

Concerning the normal force-displacement curves, shown in Figure 5.4(b), we can observe that, for φ = 0 • (black line), the normal force is, as expected, constant during the entire sliding process. However, with the addition of a positive (resp. negative) tilting, the normal force start to decrease (resp. increase) before entering the macroscopic sliding regime. We can observe a variation of the normal force at Q s of around 33 % for a variation of φ in the range of -4 • to 4 • . In the subsequent sliding regime, the normal force remains nearly stable even if some variations, out of the scope of this work, can emerge at large angles, both positive and negative. 

Analysis: from raw to real force measurements

The results presented above lead us to some intriguing questions: why does a 33 % variation in the normal force have no significant effect on the tangential force and on the contact area reduction? Have we really carried out the experiments we expected and applied a normal load variation? Is there something wrong with our measurements?

In order to answer those questions, we will analyze the forces acting on the contact interface during the experiment in more details. The main objective is to see if they correspond to the forces that are measured by the sensors, as one expects in a welldesigned experiment. The top panel of Figure 5.6 shows all the forces at play in the Case A configuration.

There are 4 forces acting on the system -the force of gravity P = mg due the presence of a dead-weight in our experiment, the applied tangential force Q, and the contact tangential Q cn and normal P cn forces. P acts in a downward direction and is colinear with the normal force measured by the sensor P m . Q is colinear with the tangential force measured by the sensor Q m . We consider that P and Q are both directly measured by our normal/tangential force sensors. P cn acts in a direction perpendicular to the contact plane and Q cn parallel to it.

The bottom panel of Figure 5.6 shows the forces at play in a tilted configuration for a positive angle and the free body diagram on (1) the glass plate and on (2) the PDMS sphere for a positive tilting position. In all the tilting configurations, that is, for positive and negative ones, the forces must be balanced to fulfill the conditions of static equilibrium.

First, the cantilever equilibrium gives:

Q = Q m (5.1)
due to the subtraction of P • sin(φ) (see Equation 5.7). Indeed, P < Q max at least for elastomers and sin(φ) is small. However, for P cn (d), the corrections are huge, because during the entire experiment, the normal sensors progressively measure a growing portion of the tangential force that is projected onto the interface plane, Q cn • sin(φ) (see Equation 5.10). Indeed, sin(φ) is small but as Q continuously increases up to even become much higher than P, Q sin(φ) becomes no longer negligible and its evolution is mainly responsible for the unexpected evolution of P that is measured. Once this contribution of the tangential force is removed, we note that the P cn (d) curves are nearly flat and constant; meaning that, from the contact's point of view, tilting the whole ensemble of tangential force sensor, cantilever and slider sample, has no effect on P cn . Instead of 17 different experiments, we now understand that we have just replicated the same experiment 17 times, and the remaining Q cn variation is only due to uncertainties (or maybe some secondary effects). The remaining small changes of about 4 % in the contact tangential force peak Q cns are related to the also small relative changes of P cns (at Q cns ) of about 1.5 %. Even though it is outside the scope of this work, which is focused on the onset of sliding, one can observe that, in steady sliding regime, both the tangential and normal forces seem to increase (resp.decrease) for positive (resp. negative) φ. the trajectory of the contact area reduction and the value of the endpoints, that is, the tangential force peak Q s and the corresponding contact area A s seem to be affected by the tilt of the fixed plate. In this case, with a φ variation range of -2.5 • to 4 • , we observe a Q s variation of ∼ 27 % and a A reduction at Q s of ∼ 30 % while the normal force P remains essentially constant (less than 3 % variations).

Analysis: from raw to real force measurements

As in the previous case, those results lead us to some interesting and almost similar questions: why do the tangential and the contact area vary so much when the normal force appears to be nearly constant? Have we really carried out the experiments that we expected, a test with a normal load variation? Is there something wrong with our measurements?

In order to answer these questions, we will again analyze in more detail the forces acting on the contact interface during the experiment. The top panel of Figure 5.9 shows the forces at play in the Case B configuration, and the bottom panel a diagram of forces for a positive tilting case, which shows the free body diagram on (1) the glass plate and

(2) on the PDMS sphere. Such forces, as in Case A, must be balanced for all the tilting configurations (positive and negative) to fulfill the conditions of static equilibrium. Thus, here again, the cantilever equilibrium gives: up to even become much higher than P, sin(φ) is small, and cos(φ) ∼ 1. However, for P cn (d), the corrections are huge (as in Case A), because during the entire experiment, the normal sensors progressively measure a tangential force component that is projected onto the interface plane, Q cn • sin(φ). sin(φ) is small but as Q increases to become even higher than P, Q cn • sin(φ) becomes no longer negligible and is mainly responsible for the unexpected evolution of normal force that is measured. The P cn (d) curves actually vary significantly before the onset of sliding, progressively increasing (resp. decreasing) for positive (resp. negative) angles.

Q sensor P Q Glass Glass PDMS ������ P cn Q cn (1) (2) Q = Q m P P m (1) (2) 
When entering the macroscopic sliding regime, Q cn remains stable. We can identify a variation of P cn at the instant of Q s of more than 38 % for a variation of φ in the range of -4 • to 4 • which may explain the variation in the contact tangential force peak Q cns (∼ 29 %). Indeed, from Equation 5.18, one can see that, in this case, this is not the measurement of the normal force that is affected by a tiny part of the friction force but the normal force (P cn ) acting on the contact itself. There is a clear coupling between P and Q. In Case B, while we seem to measure a constant normal force, in reality, we are performing tests with progressively increasing normal loads. Figure 5.10 shows, on the right side, that the tilt angle φ significantly affects the normal force acting on the contact interface. The increase in the loading during the displacement of the contact is proportional to the friction force that develops progressively at the interface. Note that in the sliding regime, as Q is expected to remain constant, P also remain constant but at a higher (resp. lower) values than the one at the beginning for positive (resp. negative) angles. Analysis: effect on the real area evolution Figure 5.11 shows the evolution of the contact area A as a function of displacement d (on the left side) and as a function of the contact tangential force Q cn up to its peak (on the right side). We can see in this figure that, when compared to φ = 0 • (aligned cases, black lines), the A reduction is greater for φ < 0 • (blue lines), and it is smaller for φ > 0 • (red lines).

B(i)

In order to know whether those variation in the contact area evolution can be understand knowing the real loading condition applied to the interface, i.e. a gradual increasing/decreasing of the contact normal force due to the coupling with the friction force, we will perform the usual analyses initially proposed by Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]: evaluation of the area reduction rate α A and of the interfacial shear strength σ.
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Displacement, d (mm) quadratic-law does not seem to fit as well the experimental data (lower R-square) for such small normal loads (as discussed in Chapter 4). Now, concerning the effect of the tilt, in Figure 5.12(a) the level of the points (i.e. the value of the prefactor β) seems to differ for each of the three set of experiments, leading to higher values of α A for φ < 0 • and lower for φ > 0 • compared to the aligned case (φ = 0 • ). Note that the variation of the β prefactor for the three B(iv) sets is of the same order of magnitude as that observed in [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF], which could mean that the quality of the alignment (not measured in [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]) is a possible origin of the experimental uncertainties highlighted in that study. Since the quadratic law does not adequately describe the contact area reduction for small normal loads, we also looked into using the power-law relation

A = A 0 -α B Q n cn ,
which was first proposed by Papangelo et al. [START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF] and allows accounting for different exponents. 

Interface shear strength

Second, to investigate the potential role of the tilt on the interface shear strength σ, we plotted in Figure 5.14, for all sets of experiments of Case B, the endpoints of the curves from Figure 5.11 (right side), i.e. the contact area at the moment of the tangential force peak A s versus the contact tangential force peak Q cns . The lines correspond to linear fits forced through the origin using the linear law, A s = aQ s [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF], in which the linear coefficients a is the inverse of the interface shear strength σ (σ = 1/a). The fit results, in terms of σ, are shown in Table 5.3. (G,-) -0.6 mN to 3.20 N 0.47 ± 0.01 B(iv) 0 • (G,-) -0.2 mN to 3.21 N 0.43 ± 0.01 B(iv) 2 • (G,-) -2.3 mN to 3.19 N 0.44 ± 0.01 As in Chapter 4, in Figure 5.14 we observe that the fits are dominated by points at larger loads which causes σ determination to be of poor quality at low initial P 0 (see inset in Figure 5.14) and makes the analysis of the results all the more delicate. Also, we can see in Table 5.3 that the interface shear strength σ for large loads is smaller than for small ones. Overall, no major tilt effect on σ can be clearly seen.

Then, to take this analysis a step further, we measured an instantaneous interface shear strength, i.e. the ratio Q cns /As for each curve, rather than a "global" σ resulting from a linear fit over all normal loads. In Figure 5.15(a), we can point out a slight increase in σ inst in the presence of a tilt φ (negative and positive), however the dispersion of those values are of the same order of magnitude as the standard error that is made on this type of experiment. In Figure 5.15(b), the tendency for σ inst to increase at low normal loads (consequently low Q s ) seems to be confirmed, but no clear dependency with the tilt seems to emerge.

At this point of the analysis of Case B experiments, the addition of a tilt seems to play a role in the contact area reduction (both on its amplitude and on its functional form (parameter n). On the other hand, the interfacial shear strength (σ) does not seem to be affected or at least at a level too low to be measured at present.

Discussion

Effect of a tilt on the friction coefficient evaluation

In this chapter, two tilting cases were presented and studied: Case A, in which the plate (slider), the cantilever, and the tangential force sensor were tilted simultaneously;

and Case B, where the sphere was the slider and the tilt was applied to the fixed plate.

It is worth mentioning again that these are just two representative cases of many other possible configurations.

In both cases, the results indicate the importance of considering the forces really at play at the contact interface. This consideration is crucial in any study in which the value or evolution of the normal force is a key parameter, such as for example when the coefficient of friction µ is to be determined. Indeed, friction between two solid surfaces is typically represented by µ, which is defined as the ratio of the peak tangential force to its corresponding normal force. Note that here, µ correspond to In Case A (Figure 5.16(a)), we can see that the coefficients of friction µ calculated from the sensors data (filled markers) increase linearly with the increase of the tilt angle φ. However, when considering the forces acting on the contact plane (open markers), µ is found to be nearly constant. Note that the discrepant points (for φ = 0 • , 0.5 • , and 1 • ) are attributable to the first experiments of a sets of tests, which has been discussed previously in this chapter and in Section 2.5. In fact, in our sets of experiment, the normal force acting on the interface P cn did not change with φ, and this tilt configuration had no effect on the contact normal force at the incipient shearing, i.e. the tilting configuration performed here has only modified the value measured by the sensor, but not the test itself when focusing on the interface.

In Cases B (Figure 5.16(b)), a similar situation to Case A is observed. When the sensors forces are considered (filled markers), µ also seems to increase linearly with the increase of the tilt angle φ. But considering the forces acting on the contact plane (open markers), µ seems to actually slightly decrease with the increase of φ. Such tilt configuration generates a variation of P cn during the incipient sliding but as µ is just evaluated at the moment of the tangential force peak Q s , and both values of Q cns and its corresponding normal force P cns increase (resp. decrease) for φ > 0 • (resp. φ < 0 • ), µ is not strongly affected.

All the above observations imply that a simple and direct friction coefficient µ calculation based on raw sensor measurements can be significantly affected in presence of a minor misalignment between the contact interface and the sliding direction, which may lead to incorrect conclusions or additional experimental uncertainty. Indeed, in our experiments, the apparent evolution of µ from raw sensor data analysis is only reflecting the effect of an "error" in the conception of our experimental set-up. Here, the "error", i.e. the misalignment, was deliberate and mastered. However, this highlights the difficulty to correctly design an experimental set-up to evaluate the friction of elastomers. Indeed, due to their high friction coefficient, any slight misalignment can result in non-negligible variations in the normal force measurement due to the induced coupling with the tangential forces at the interface. Unfortunately, evaluating such misalignment is often quite difficult and rarely performed, which makes the comparison between experimental results from the literature sometimes hazardous. We emphasize the importance of analyzing the forces really acting on the interface. But, in order to do so, information on the misalignment as well as the normal force measurement are required, which is not always the case in experiments where normal loading is based on the use of dead weight.

Finally, in Case B, we have performed sets of experiments in which, contrary to classical ones, the normal load constantly evolved during the incipient shearing. This raise some questions up to now unanswered, including: how to define a friction coefficient in such a loading condition, i.e. when the normal force is not constant? Is the definition of µ as the ratio Q/P at the peak of tangential force still valid? Does µ depend on the loading trajectory?

Contribution of normal force variation in the contact area evolution

In order to better understand the effect caused by the tilting during Cases B experiments, we will analyze in more detail the respective contributions of the variation of the contact normal force P cn and the contact tangential force Q cn . Indeed, increasing/decreasing the normal load tends to increase/decrease the contact area, whereas shearing the contact tends to reduce it, so variations of both forces will contribute to the evolution of the contact area and to the resulting friction force. As a consequence, we think that one fraction of the final area reduction is due to the evolution of Q cn and one fraction is due to the variation of P cn .

In the following, we propose to modify the usual law of contact area reduction under shearing (A = A 0α A Q 2 cn [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]) to account for the contribution of the contact normal loading variation. Successively, we will test two different scenarii by assuming respectively an additive and a multiplicative contribution. For the additive contribution, we will test two different equations based on the theory of Hertz and JKR, respectively.

Additive contribution based on Hertz's theory

First, according to Hertz's contact theory, we propose to account for an additive contribution of the contact normal force variation to the evolution of the contact area under shearing, in the following form:

A = A 0 -α add Q 2 cn + A 0 • P cn P cn0 2/3 -1 (5.21)
where A is the contact area, A 0 the initial contact area, α add the fitting coefficient, Q cn the contact tangential force, P cn the contact normal force, and P cn0 the initial contact normal force. This equation allows us to define A Q , which correspond to contribution of the the contact area corrected by the expected effect of the contact normal load P cn , as:

A Q = A -A 0 • P cn P cn0 2/3 -1 (5.22)
Then, Figure 5.17 shows A Q as a function of Q cn . We can see that all curves seem to follow a single master curve. Indeed, the shearing contribution to contact area reduction seems to be similar for experiments under the same initial normal loading and the dispersion of the curves A(Q cn ) in Figure 5.11 was mainly due to the normal loading variations. However, a certain variation in the shape of the A Q (Q cn ) curves between the negative (in blue) and positive (in red) angles can still be pointed out.

Note that caution must be taken when interpreting these A Q (Q cn ) curves, because they connect two quantities with different physical representativity, i.e. one fraction only of the contact area (A Q ) vs the full contact tangential force Q cn .

B(i)

0 1 2 3
Q cn (N) Q cn (N) The color gradients for Cases B(iv) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 . The inset on B(iv) shows a zoom in the small P 0 .

All the curves of Figure 5.17 were used to evaluate the area reduction parameter α add associated uniquely with shearing using quadratic-law: Comparing Figure 5.18 to Figure 5.12, we can see that the points are now regrouped into a single master curve, i.e. the dependence on the tilt has practically disappeared.

A Q = A 0 -α add Q 2 cn . Then,
The points can be very well fitted by the scaling law, α add = β(A 0 ) γ [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]. The result can be seen in the three lines of Figure 5.18 which are almost perfectly superimposed.

Similar values of γ and β were also found for all three B(iv) experiments and thus, for all tilt angles (see Table . 5.4). This implies that the observed effect in Figure 5.12 was, in fact, a contribution to the variation of the contact normal force variation caused by the tilting and that using an additive contribution based on Hertz's theory is enough to account for the role of the normal load variation on the area reduction. An area decreasing as Q n cn [START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF] was also considered, since the area reduction for small forces seem not to be well captured by a Q 2 cn evolution [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF]. The exponent n is, then, plotted in Figure 5.19 as a function of (a) A 0 and (b) φ. Again, when compared to 

Additive contribution based on JKR theory

Second, we proposed to account for an additive contribution of the contact normal force variation to the evolution of the contact area under shearing, according to JKR contact theory, in the following form:

A = A 0 -α add Q 2 cn + A 0 •   P cn + 6ω 0 πR + 12ω 0 πRP cn + (6ω 0 πR) 2 P cn0 + 6ω 0 πR + 12ω 0 πRP cn0 + (6ω 0 πR) 2 2/3 -1   (5.23)
where ω 0 is the adhesion energy of the interface and R is the sphere radius of curvature.

The adhesion energy ω 0 of the PDMS/glass interfaces under φ = 0 • was obtained, for each PDMS sample, from the initial contact area (at Q = 0) by JKR theory [START_REF] Kl Johnson | Surface energy and the contact of elastic solids[END_REF] using the method described in Section 2.4.3.

Then, as before, we define A Q as the contact area corrected by the expected effect of the contact normal load, P cn ,

A Q = A -A 0 •   P cn + 6ω 0 πR + 12ω 0 πRP cn + (6ω 0 πR) 2 P cn0 + 6ω 0 πR + 12ω 0 πRP cn0 + (6ω 0 πR) 2 2/3 -1   (5.24)
The evolutions of α add (JKR) (see Figure 5.20) and n (see Figure 5.21) with (a) A 0 and (b) φ were obtained using the same approach as in the previous analysis. Once again, the tilt effect has nearly disappeared, the points are also in agreement with the scaling law, α add = β(A 0 ) γ [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF], see lines in Figure 5.20 and Table 5.5. However, the quality results are not substantially different from the Hertz-based additive contribution to justify the increase in complexity added by the use of JKR theory instead of Hertz's theory. 

Multiplicative contribution based on Hertz's theory

Finally, again based on the Hertz's contact theory, we propose to account for a multiplicative contribution of the contact normal force to the evolution of the contact area under shearing, in the following form:

A = (A 0 -α multi Q 2 cn ) • P cn P cn0 2/3
(5.25)

Once again, we performed the same analyses as in previous sections to obtain the evolution of α multi (see Figure 5.22) and n (see Figure 5.23) as a function of (a) A 0 and (b)

φ. The regrouping of the points into a single master curve for α multi , the agreement with the scaling law (see lines in Figure 5.22 and values of the exponents in Table 5.6) and the nearly vanishing of the influence of φ occur. However, the quality is not as good as for the additive contributions as can be seen by the more important dispersion of the data point especially at low A 0 .

(a) 

Summary

Two methods to account for the contribution of the normal force variation to the reduction of the contact area have been proposed: an additive, based on Hertz and JKR's theory, and a multiplicative based on Hertz's theory. By fitting the experimental data, we have observed the same trend in all proposed contributions, a regrouping of the area reduction decay parameter (α) as a function of the initial contact area on a single main curve, the additive method based on Hertz's theory being the best to account for the contribution of the normal force variation. However, even after eliminating the contribution of the normal force variation with the best method, it can be noticed that the shapes of the A Q (Q) curves are still somewhat different one from the others, refer to Figure 5.17 The fit coefficient (α add ) captures well the rate of the quadratic based reduction of A Q . However, the shape of such curves is better fitted when using a power-law based approximation Q n . In fact, the fitting coefficient in the quadratic equation [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] determines the rate of decreasing of the quadratic function, i.e. the steepness of the drop at its end, as shown in Figure 5.24(a). In contrast, the exponent n in the equation A = A 0α A Q n cn [START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF] determines the shape of the curve, as shown in 

A = A 0 -α A Q 2 cn

The effect of the tilt on contact area reduction mechanisms

A qualitative analysis of the images of the evolution of the real contact area for all tests in Case B is proposed here based on the findings of Chapter 3, which identified the main mechanisms responsible for the contact area reduction of large normal loads under shearing, namely interface deformation and lifting/laying at the contact edges.

Although such mechanisms were observed with particle-based tests, which is not the case in present experiments, we have just superimposed frames of the initial contact area and at the moment of the contact tangential force peak in the frame of the moving glass plate, as in Chapter 4, to observe the variation of the real contact area at the onset of sliding. The black regions correspond to the contact areas always present during the incipient shearing; the blue regions are the areas present at Q = 0 and not at Q s ; and the red region are the areas not present at the beginning Q = 0, but present at Q s . By performing a simple visual analysis, we can see that, relative to the aligned case (φ = 0 • ), for all normal forces (all cases), the red area of the positives angles (φ = 2 • ) has increased, while for negative angles (φ = -2 • ) it has slightly decreased or remained the same. Despite the lack of an rigorous analysis such as the particle-based one to identify the exactly mechanisms playing a role here, we can suggest that the tilt, or the variation of the contact normal force, is affecting the contribution of the reduction area mechanisms at least by changing the proportion in between all of them.

Conclusion

In this chapter we have investigated the influence of the loading trajectory on the behaviour of a sheared model sphere on plane interface. In particular, variations of the normal load during shearing were imposed in a controlled way through the introduction of a small tilt angle at the interface, and its effect was studied for two representative tilting cases.

One of the most significant findings that emerge from this study is that a simple and direct static friction coefficient µ calculation for soft material based on raw sensor measurements can be very affected by the presence of a minor misalignment between the contact interface and the sliding direction, due to an induced coupling with the tangential forces. Such coupling may lead to incorrect conclusions or additional experimental uncertainty. With this study, we raised important questions about the definition of the friction coefficient when the normal force is not constant, a condition that closely represents the reality of bodies in contact, down to the single micro-contact scale.

After carefully correcting the force measurements to extract the real force at play at the interface, the effect of normal loading variation during shearing on the evolution of the contact area and on the resulting shear force was investigated. Our results show that, contrary to the interfacial shear strength which remains nearly unchanged, the area reduction is strongly affected by the load variation. To account for this variation, we proposed an empirical modification of the standard law of contact area reduction under shear (A = A 0α A Q 2 cn [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]), which considers an additive effective contribution of the normal load based on Hertz's model. This law appears to be effective for the type of loading trajectories considered in this work. However, its validity must be tested for various other types of trajectories to assess its generality. Finally, with a visual analysis of the contact, we suggested that the tilt angle can affect the relative contributions of the mechanisms of the contact area reduction. These findings have significant implications for the understanding of the contact and friction behaviour of more realistic interfaces, including rough on rough contacts.

Chapter 6

Concluding remarks and future work

In this chapter, firstly, we will summarise and bring together the main areas covered in this work, highlighting the findings, improvements, challenges, and still open questions; and secondly, we will make recommendations for future work.

Summary of the work

The main objective of this thesis was to obtain a better understanding of the onset of dry sliding contact of elastomers for the simplest sphere/plane model experiment, to shed light on the phenomena potentially involved in more realistic and/or practical situations. To this end, comprehensive studies of a single elastomer contact in the incipient dry sliding process were performed using an optomechanical apparatus in order to achieve the following specific objectives: (i) investigate the elementary mechanisms that play a role during shearing under constant normal loadings, (ii) explore a wide range of normal loading, and (iii) investigate the effect of the normal loading trajectory.

In Chapter 2 -Experimental methods, we included a full description of the experimental setup and procedures of the materials and geometries of the samples, and of the data analyses used in this work. In addition, some improvements and difficulties have been reported, among which we can highlight:

• The improvement of the optomechanical setup, which was already used in [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF][START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF], by:

replacing the single cantilever beam by a double one;

allowing the direct measurement of the normal load by the addition of four force sensors;

adding goniometers to ensure the equipment alignment (which has been proven in Chapter 5 to be critical to the quality of the results obtained).

• The development of a graphical user interface (GUI) for data processing, management, and visualization.

• The repeatability challenge, due to the various properties of different PDMS samples, that resulted in improvements in the PDMS sample preparation process under temperature control for future work.

In Chapter 3 -Elementary mechanisms of shear-induced contact area reduction,

we have taken a fundamental first step in our goal of understanding friction sliding in elastomers, i.e. identifying the mechanisms responsible for contact area reduction in the most simplified representation of contact mechanics, that is, a sphere/plane model interface.

For this, we performed an original experiment by introducing particles in the vicinity of the elastomeric surface and studied their local displacement during shearing at the onset of sliding under several constant normal loadings. Using a homemade particle tracking algorithm and some processing tools, we have been able to show that (i) contact lifting and (ii) contact laying do occur, and their contribution was quantified by a Voronoi tessellation based method. Additionally, using a method based on Delaunay triangulation, we demonstrated that (iii) a heterogeneous in-plane strain field develops progressively at the interface. We also noted that these mechanisms are dependent on normal load. However, under small loads, further research is required to validate this finding due to the low resolution of the presented study.

By tracking the motion of the particles during shearing, we measured their relative displacement compared to their initial position in the contact area and showed the existence of a micro-slip front moving from the contact periphery inward the contact region as shear increases. This allowed us to distinguish three different stages in the evolution of the contact interface:

• a stuck stage which is very short in time, meaning that the transition to slipping starts quite early for very low tangential force (i.e. well before the peak of the tangential force);

• a partial slip during which an annular-like slipping zone progressively replaces the central stuck area, which is in qualitative agreement with the classical Cattaneo-Mindlin [START_REF] Cattaneo | Sul contatto di due corpi elastici. Accademia dei Lincei[END_REF][START_REF] David | Compliance of elastic bodies in contact[END_REF] approach;

• a classical steady-state sliding that seems to start when the tangential force reaches its maximum value, at least for large loads. At small loads, the lack of resolution of the presented method, due to too few tracers, does not allow a precise conclusion on this point.

For the first time in the literature, the findings, under large loads, were successfully qualitatively compared with numerical simulation based on a non-adhesive, nonviscous model of shear-induced contact area reduction in elastomers. Quantitative agreement with the recent experimental results of Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF] on sphere/plane elastomer contacts has been obtained, with no adjustable parameter, using the Tresca friction law and the neo-Hookean hyperelastic model. Those results indicate that shearinduced contact area reduction is essentially a large strain effect.

In Chapter 4 -Shear-induced area reduction over a wide range of normal loadings, we carried out the second step of our study, which was to study more realistic frictional sliding. Considering that the contact spots in a real and rough interface are subject to very different local normal loadings, ranging from millinewtons to newtons, we performed three sets of shearing experiments on a model sphere/plane interface for a wide range of constant normal loads. This study was also motivated by (i) the fact that, in the literature, experimental studies on sheared sphere/plane interfaces are concentrated either on small normal loads [START_REF] Savkoor | The effect of tangential force on the contact of elastic solids in adhesion[END_REF][START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF][START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF] or on large loads [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF], leaving a range of normal loads to be explored, and (ii) by the findings of the previous Chapter 3 on large normal loads that led us to question if the same mechanisms responsible for the contact area variation occur over a wider range of normal loads. Thus, we were able to:

• cover and fill the gap present in the data of the experimental literature;

• present for the first time a unified view of the behavior of a single sphere/plane sheared contact performed with similar conditions from millinewtons to newtons;

• show that a quantitative comparison between experiments obtained from the same equipment/procedure is still challenging unless the procedure to generate the samples is fully mastered. Therefore, comparing theoretical and numerical results with experimental data from different sources is even more challenging and may result in misleading conclusions;

• show that neither of the two area reduction parameters (α and λ) used in literature can be considered as constant over the entire range of normal loads that we tested and that dependence on normal load remains to be taken into account, especially at low normal loads;

• show that interfacial shear strength (σ) is also not constant over the entire range of normal loads that we tested and depends on normal load;

• confirm the already observed effect of a higher contact area reduction rate under small normal loads and its possible link with the increasing effect of adhesion;

• show that, for small normal loads, area reduction continues after the tangential peak force, which calls into question the definition of the exact moment of the transition to sliding and thus the method to evaluate the interfacial shear strength.

Considering all of these, experimentally in elastomers, the transition from the tangential force peak Q s to the kinetic regime Q k is much more complex than in Bowden and Tabor [START_REF] Frank | The friction and lubrication of solids. Part 2[END_REF]. In particular, for large normal loads, it does not seem to be due to an abrupt instability, but rather to a gradual transition, most likely in connection with a micro-slip front that moves from the contact periphery inward the stuck contact region with the increase of tangential force, as discussed in Chapter 3. At low normal loads, the transition is even more complex and clearly needs further investigation to bring a definitive conclusion.

Even though we have not been able to show the existence of the contact area reduction elementary mechanisms highlighted in Chapter 3 for all normal loads, we raised the question about the load-dependence of their relative contribution in the contact area reduction process.

In Chapter 5 -Sliding friction under normal loading variation, we took the last step in this study. Indeed, in addition to the different local normal loading conditions that the contact spots encountered in a rough interface, they may also be submitted to local normal loading variations due to the transient nature of micro-contacts as antagonist asperities pass above each other. In this context, we investigated the influence of the loading trajectory by carrying out shearing experiments under a progressive increase/decrease of normal loading. For it, we studied two cases where the contact plane and the sliding direction were misaligned.

First, the most significant finding of this study was that a simple and direct static friction coefficient µ s calculation for elastomers based on raw measurements can be significantly affected by the presence of a minor misalignment between the contact interface and the sliding direction. This finding is of main importance in the design of elastomer-specific tribometers.

Second, by studying the effects of normal loading variation during shearing, in particular by analyzing the evolution of contact area variation, area reduction parameter, and interfacial shear strength, we have been able to propose an empirical and practical extension of the usual law of contact area reduction under shear. Whether this extended law is specific to the type of loading trajectory used here or is more general remains to be assessed in future studies.

Third, the question of the potential effect of a tilt angle on the relative weights of the several elementary mechanisms occurring at the onset of sliding also remains open.

Finally, the analyses undertaken in this work make several fundamental contributions that improve our understanding of the progressive transition to sliding of elastomer interfaces and, in particular, the associated contact area reduction [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF][START_REF] Papangelo | Shear-induced contact area anisotropy explained by a fracture mechanics model[END_REF][START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF][START_REF] Khajeh Salehani | Modeling adhesive contacts under mixed-mode loading[END_REF]. The findings provide significant insights into the mechanisms and their relative contributions to friction. All the presented experimental results for single contacts may now be integrated into probabilistic multi-contact analyses of rough surfaces and go beyond the case, a little too simplistic but whose in-depth study remains essential, of a mono-contact between a smooth sphere and a smooth plane.

Prospects for future research

Finally, for future work, in addition to the several prospective systems and questions that have been raised and that remain to be studied, two specific topics require special attention: the effect of roughness/patterning and sliding precursors.

Effect of roughness/patterning

Up to now, in this work, we have focused exclusively on the friction behavior of smooth interfaces, i.e. a smooth sphere sliding on a smooth glass plate. However, it is obvious that understanding the crucial role of roughness or patterning would be of major interest in deepening our understanding of the onset of dry sliding contact of elastomers.

In Figure 6.1(b), we show the results of shearing experiments performed between a patterned sphere and a smooth glass plate. The pattern was obtained by molding the PDMS directly on a homemade aluminum mold rather than on a smooth glass lens (see Figure 6.1(a)). A sphere with a radius of 9.42 mm was milled on the mold using a micro-milling machine equipped with a spherical mill cutter with a radius of 1 mm.

As a consequence of this milling process, the mold surface was patterned with parallel grooves that correspond to the successive passes of the mill cutter. Then, the PDMS sphere was a negative replica of the mold and thus presents a pattern in the form of parallel cylindrical stripes with a height of ∼ 0.25 mm as can be observed in Figures 6.1 As expected, the peak of the tangential force Q s is affected by the normal load P, but it is also affected by the sliding direction. For each P, Q s is higher when the sphere slides parallel to the pattern. This preliminary result emphasizes the crucial role of roughness and clearly shows that additional investigations are required to understand, for example, the influence of surface morphology on the elementary mechanisms of macroscopic sliding of the interface. In Figure 6.4(b), when the first sphere begins to slide, a small change in the slope of the curve can be observed by the naked eye, quite before the peak force (e.g. at about 0.45 mm for 0.82 N and 0.3 mm for 0.55 N). Unfortunately, such a subtle feature is nearly impossible to extract automatically from the curve. The problem becomes even more complex when more spheres are added to the interfaces, as can be seen in Figure 6.3 for the case of three spheres (two small and one large) or five spheres (four small and one large). Then, in Figure 6.4, we combined two textured spheres of same radius of curvature R=9.42 mm but with a height difference of 0.2 mm in a single interface. And similar to the case of two smooth spheres, a change in the slope of the evolution of the tangential force Q curve appears (e.g., see red arrow in Figure 6.4(a)). The texture was obtained by molding the PDMS on a milled aluminum mold, using a fine pitch between the different circular milling passes to obtain a smoother surface than in Figure 6.1(a) for instance.

In this case, stick-slip-like oscillations (a way in which instabilities during sliding in Titre : Mise en glissement des interfaces élastomères : apports fondamentaux issus d'expériences de contacts modèles sphère/plan Mots clés : mécanique du contact cisaillé, frottement, adhésion, aire de contact, PDMS, mesure in-situ, mesure de champ de déplacement.

Résumé : L'objectif principal de cette thèse était d'obtenir une meilleure compréhension de la mise en glissement des contacts secs en élastomère. Lors de la mise en contact de deux surfaces réelles, généralement rugueuses, l'interface crée est bien souvent constituée d'une myriade de micro-contacts individuels entre des aspérités antagonistes. Ainsi, le comportement macroscopique d'une telle interface multi-contact est la somme complexe des réponses individuelles de tous les micro-contacts. Dans cette étude, nous avons cherché à mieux caractériser le comportement des micro-contacts grâce à une étude systématique basée sur des expériences modèle de cisaillement d'une sphère en PDMS sur une plaque de verre. En plus des mesures de force macroscopique lors des expériences de cisaillement, le travail s'est principalement appuyé sur l'analyse in-operando de l'évolution de de l'interface de contact par une méthode optique. Nous avons d'abord revisité les expériences récentes de la littérature sur la réduction de la zone de contact réelle induite par le cisaillement dans les interfaces élastomériques, dont l'origine a été très débattue. À l'aide d'échantillons d'élastomères ensemencés de particules, d'une technique de suivi des particules et d'analyses de trajectoire originales, nous avons démontré la coexistence de plusieurs mécanismes élémentaires de réduction d'aire réelle de contact agissant simultanément et quantifié leur contribution relative à la réduction d'aire globale. Nous avons identifié le soulèvement comme mécanisme principal et avons également prouvé l'existence d'une zone de glissement de type annulaire qui remplace progressivement la zone centrale initialement collée au sein de l'interface. Par comparaison avec un modèle de mécanique des milieux continus, nous avons montré que, à des charges normales importantes, la réduction de surface provient des grandes déformations mise en jeu et des non-linéarités qui y sont associées, plutôt que des effets adhésifs mis en avant dans la littérature.

La réduction de l'aire réelle de contact induite par le cisaillement avait déjà été étudiée, dans la littérature, principalement pour deux gammes de charges normales distinctes : soit dans le millinewton, soit dans la gamme du Newton. Nous avons ainsi réalisé les premières expériences qui comblent l'écart entre ces deux gammes avec le même échantillon et la même configuration expérimentale. Les résultats indiquent que le comportement observé aux charges normales élevées se maintient jusqu'à environ 0.1 N, en dessous de cette limite les effets adhésifs deviennent vraisemblablement non négligeables. Aux faibles charges normales, nous montrons également que la réduction d'aire se poursuit après le pic en force tangentielle, ce qui remet en question la définition du moment exact de la transition vers le glissement.

La plupart des études de la littérature considèrent des expériences de cisaillement à charge normale constante, alors que, dans une interface glissante rugueuse, les microcontacts subissent vraisemblablement d'importantes variations de charge normale lors du cisaillement. Pour traiter l'effet de ces variations, nous avons introduit des inclinaisons contrôlées dans notre expérience. Après avoir soigneusement corrigé les mesures de force brutes par l'effet de telles inclinaisons pour extraire la force réellement en jeu à l'interface, nous avons pu proposer la première loi de comportement empirique pour l'évolution de la surface de contact due aux variations simultanées des forces normales et de cisaillement.

Tous ces résultats sur le comportement en frottement des contacts élastomériques modèles fournissent la base nécessaire pour mieux comprendre et/ou concevoir des interfaces multi-aspérités fonctionnelles plus complexes.

Title: Onset of sliding of elastomer interfaces: fundamental insights from model sphere/plane contact experiments

Keywords: sheared contact mechanics, friction, adhesion, contact area, PDMS, in-situ measurement, full-field displacement measurement.

Abstract:

The main objective of this thesis has been to obtain a better understanding of the onset of sliding of dry elastomer contacts. Because real surfaces are rough, contact interfaces are usually multi-contacts made up of a myriad of individual micro-contacts between antagonist asperities. The macroscopic behavior of such interfaces is thus a complex sum of the individual responses of all micro-contacts. Here, we aimed at better characterizing the micro-contact behavior through a systematic study of model PDMS sphere/glass plate shearing experiments. In addition to macroscopic force measurements during shearing experiments, the work mainly relied on the analysis of inoperando images of the contact interface.

We first revisited recent literature experiments about shear-induced real contact area reduction in elastomeric interfaces, the origin of which was highly debated. Using particle-seeded elastomer samples, a particle tracking technique and original trajectory analyses, we demonstrated the coexistence of several area reduction elementary mechanisms acting simultaneously and quantified their relative contribution to the global reduction. We identified contact lifting as the main mechanism and also proved the existence of an annular-like slipping zone that progressively replaces the central stuck area. Through comparison with a continuum mechanics model, we showed that, at large normal loads, area reduction originates from large strains and the related nonlinearities, rather than from the adhesive effects put forward in the literature.

Shear-induced contact area reduction had previously been studied in two separate and distinct normal load ranges in the literature: either in the millinewton or in the newton ranges. We thus performed the first experiments bridging the gap between those two ranges with the very same sample and experimental setup. The results indicate that the large normal load behavior holds down to about 0.1 N, below which adhesive effects presumably become non-negligible. At low normal loads, we also show that area reduction continues after the tangential peak force, which calls into question the definition of the exact moment of the transition to sliding.

Most of the literature studies consider shearing experiments at a constant normal load, while micro-contacts in a sliding rough-rough interface undergo important normal load variations with time. To address the effect of those variations, we introduced controlled tilts in the experiment. After carefully correcting the force measurements by the effect of such tilts to extract the real force at play at the interface from the raw measurements, we could propose the first empirical behavior law for contact area evolution due to simultaneous normal and shear force variations.

All those results on the friction behavior of single elastomer contacts provide the necessary basis to understand and/or design more complex functional multi-asperity interfaces.
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 11 Figure 1.1: Illustration of a single-asperity approach. (a) Apparent contact area A A between two bodies in contact, (b) zoom-in showing the multi-asperity contact forming the real contact area A R , and (c) a single-asperity contact shown as a model sphere/plane.

Figure 1 . 2 :

 12 Figure 1.2: (a) Schematic representation of a rough contact interface where a monochromatic light transmitted through two blocks is scattered, except at the contact spots. Visualization of the interface between two rough PMMA blocks with (b) increasing the normal load and (c) time of stationary contact. The real contact area for low normal load or low contact time between the two solids is shown in red. The contact area increases with the load or the time spent in contact, from red to green for the load and from red to blue for the contact time. The black rectangle corresponds to the apparent contact area. Figures from [13].
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 16 Figure 1.6: Evolution of the contact radius as a function of the normal force for Hertz, DMT, and JKR models. Maugis model with different values of Tabor parameter λ is also shown. Figure from [32].
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 1 7 presents the results for three different versions of the f (ψ) function.
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 17 Figure 1.7: Evolution of the normalized contact area à as a function of the normalized shear load T for different normalized normal loads P using three different versions [49, 52, 54] of the f (ψ) function in Equation1.14 (lines with different colors). Figure from[START_REF] Papangelo | On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials[END_REF].
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 1819 Figure 1.8: (a) Schematic description of the torsional contact apparatus. (b) Image of a twisted contact between a glass sphere and a PDMS substrate during stiction. (c) Orthoradial surface shear stress profiles obtained from the inversion of the measured surface displacement field at different stages of the stiction process. The large dotted line delimits the contact zone. Small dotted lines indicate the location of the adhesive zone. Figures from [61].
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 11 Figure 1.10: (a) Sketch of the experimental setup. (b) Evolution of tangential force vs time at various constant normal loads, and contact area images (1-4) for tensile normal loading (P = -5.5 mN) and (A-D) for compressive normal loading (P = 9.5 mN). In the images, sample motion relative to the spherical indenter is from left to right. Scale bar: 1 mm. Figures from [49].
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 111 Figure 1.11: Sketch of the experimental setup for shearing experiments on a glass plate and an elastomer sphere used in Sahli et al.[START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] and Sahli[START_REF] Sahli | Mise en glissement des interfaces multicontacts élastomères: étude expérimentale par visualisation in situ[END_REF] and Mergel et al.[START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF]. Figure from[START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF].
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 1121 Figure1.12: Typical evolution of the real contact area (blue) and the tangential force (red), of the multi-contact interface between a rough elastomer and a smooth glass substrate, as a function of time. Figure from[START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF].
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 1 Figures 1.13(c) and (d)). Then, by plotting A R as a function of Q (Figures 1.13(b) and (d)) for both single-and multi-contacts (Figures 1.13(a) and (c)), they were able to propose two laws:

  (a) and (c)), they were able to propose two laws:• an empirical quadratic law of the form, A R = A 0α A Q 2 , to describe the contact area reduction. The rate of the decrease is thus quantified by the parameter of reduction, α A , being A 0 the initial real contact area;• a threshold law, Q s = σA s , to characterize the interface shear strength, σ. The interface shear strength is deduced from the experimental data by fitting with a linear expression the position of the tangential force peak Q s at different normal forces in a A = f (Q) diagram, where A s is the corresponding real contact area to Q s (see red lines in Figures 1.[START_REF] James | Direct observation of frictional contacts: New insights for state-dependent properties[END_REF](b) and (d)).These laws have been shown to be relevant regardless of the applied normal force (valid on more than four orders of magnitude) and the type of the interface (rough or smooth), as shown in Figure1.14, where α exhibits a power-law behavior over four decades as a function of the initial contact area A 0 , i.e as a function of the initial normal load. Note that in this figure, the authors have concatenated data coming from single sphere on plane experiments (at large A 0 ) and from the analysis of the behaviour of micro-contact in a rough interface (at small A 0 ).
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 114 Figure 1.14: Area reduction across scales: α A vs A 0 (PDMS/glass interface). Circles: sphere/plane contacts. V = 0.1 mm/s. +: raw data for micro-junctions within multi-contacts (rms roughness 26 µm). Squares: average of the data divided into 40 classes. Bars show the standard deviation within each class. Line: guide for eyes with slope -3/2. Inset: α R vs A 0 for the same multi-contacts. Inset line: guide for eyes with slope -1.Figure from [17].

ure 1 .

 1 15: (a) the tangential load increases, first almost linearly and then with a weakening slope, reaches its maximum (the static friction peak), and then rapidly decreases before entering a macroscopic sliding; (b) the contact area reduces as the interface is
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 115 Figure 1.15: Friction force (noted F t ) and real contact area (noted A real ) measured under low normal loads for the onset sliding of a interface between a glass plate and an elastomer sphere. Each color corresponds to a different initial contact area. The square markers indicate the moment of the tangential force peak. t start is the instant when the motor starts to move at velocity V = 0.1 mm/s. Figure from [55].
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 116 Figure 1.16: Graphical overview of the specific objectives of this thesis.
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 2121 Figure 2.1: Sketch of the optomechanical instrument. P is the applied normal force, Q is the tangential force, and V is the motor translating velocity. The instrument is also presented in more detail and in a more realistic view in Figure 2.4.
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 22 Figure 2.2: Sketch of sample of type S1R9 preparation. (a) A plano-concave glass lens is placed at the bottom of a cylindrical cavity coated with an aluminum foil (not illustrated), (b) the cavity is filled with a PDMS mixture, and (c) a glass plate is used to cover the cavity. (d,e) The final configuration is a cylinder-like shape PDMS sample attached to a glass plate with a spherical cap on top.

Figure 2 .

 2 3(d).

Figure 2 . 3 :

 23 Figure 2.3: Sketch of sample of type S1R9P preparation steps. First, (a) a drop of PDMS mixture is poured into a plano-concave glass lens, (b) spin-coated and (c) cured in an oven at 80 • C for 20 min to obtain a thin cross-linked PDMS layer which is sprinkled with silver particles. Second, the same preparation procedure as for sample S1R9 is used in Figure 2.2 using the coated lens. (d) The final configuration is the same as for sample of type S1R9, except for a layer of particles located ∼16 µm from the surface of the spherical cap.

ure 2 . 4 .Figure 2 . 4 :

 2424 Figure 2.4: Optomechanical instrument.A PDMS sample is fixed to an optical table, while a glass plate is attached at the free extremity of a double cantilever and is driven at a constant velocity V by a motorized x-stage. Tangential force is measured by a force sensor located at the fixed extremity of the double cantilever and normal force is measured by four force sensors located between the optical table and a sample attachment. The contact interface is illuminated from the top and imaged in reflection with a camera. An inverse configuration (glass fixed and PDMS slid, see Figure2.5) is also allowed since the glass plate onto which the PDMS sample is crosslinked and the glass plate used as a slider are identical. The inset shows a real picture of the instrument to aid in visualization
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 25 Figure 2.5: Sample attachment configurations.
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 26 showing the force measurement as a function of an imposed cantilever vertical displacement by the z-stage. The slope of the fitted line gives the cantilever stiffness k z = 177 N/m. As an example, for a normal load in the contact of 1 N, the typical indentation is of the order of 300 µm which gives a force exerted by the double cantilever beam of approximately 0.05 N.
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 26 Figure 2.6: Force as a function of imposed cantilever vertical displacement. The slope of the fitted line provides the cantilever stiffness k z of 177 ± 1 N/m in the direction normal to the contact interface.

Figure 2 .

 2 Figure 2.7 schematically shows the fundamental optical principles involved, and two typical grayscale images of the contact: one for an interface between PDMS(S1R9)/glass and the other for an interface between particle layer PDMS(S1R9P)/glass. In the images, see right side of Figure 2.7, the contact area corresponds to the largest
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 27 Figure 2.7: Sketch of the optical principles involved in the images acquisition.
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 28 Figure 2.8: Typical images from the optomechanical instrument. Normal force P of 1.85 N and velocity V of 0.1 mm/s. First row: grayscale images of the PDMS(S1R9)/glass contact interface.Second row: grayscale images of the particle layer PDMS(S1R9P)/glass contact interface. The main dark region is the contact area; the bright spots inside the contact area, in the second row, are the particles; and the small dark region, in the top right corner, is a marker drawn on the glass plate slider to follow its displacement.
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 29 Figure 2.9: Data acquisition flow of the optomechanical instrument.

Figure 2 .

 2 Figure 2.10: (a) Motor displacement d as a function of the time t. (b) Time evolution of the tangential force Q (black line, left axis), and the normal force P (grey line, right axis).
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 211 Figure 2.11: A 100 Hz periodic square (pulse) wave trigger signal used to trigger and control the camera image acquisition. The inset shows an interval of 0.1 s where each rising front edge (red dots) indicates the acquisition of a single image.

  Figure2.12: Image of a ruler taken on the same plane as the PMDS/glass interface for calibration of the images. A line with a known metric distance is drawn on this image. Then, the known distance in metric units is divided by the length of the line in pixels, which gives the size of each pixel in metric units/pixel.

Fig- ure 2 .

 2 [START_REF] James | Direct observation of frictional contacts: New insights for state-dependent properties[END_REF] shows the data flow diagram of the GUI. The essential GUI interactions and their outputs will be described in the coming sections.
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 213 Figure 2.13: Data flow diagram of the Graphical User Interface (GUI) developed for the data processing.
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 2 Figure 2.14 first and second rows show the result of these operations on the images of Figure 2.8.
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 214 Figure 2.14: Segmentation of images. First row: segmented images of the PDMS/glass contact interface shown in Fig 2.8 first row. Second row: segmented images of the particle layer PDMS/glass contact interface shown in Fig 2.8 second row. Third row: segmented images of a case with instabilities at the interface. The main dark region is the contact area and the bright spots inside the contact area, on the second row, are the particles.

4 Figure 2 . 15 : 2

 42152 Figure 2.15: Motor displacement d as a function of time t. The inset is a zoom showing the piece-wise method for defining the effective start position. Displacement data is split into two pieces: one, 2.5 s before the nominal starting of 40 s and other, 2.5 s after it. These two pieces are fitted by linear regression represented by the dashed red lines, and their intersection defines the effective starting time, represented by the vertical dotted line.

Figure 2 . 16 :

 216 Figure 2.16: Synchronization of force and displacement signals with images. (a) All acquired signals -trigger image, normal force, tangential force, and motor displacement -as a function of the time t. (b) Zoom in on (a) where it is shown that the synchronization of the signals and the images is done using the trigger signal of image acquisition and taking each front edge and its temporal correspondence in the other signals.

  .
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 217 Figure 2.17: Evolution of the normal and tangential forces (left axis), and of the contact area A (right axis) as a function of the displacement d, after the synchronization of all data.
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 218 Figure 2.18: Tangential force Q as a function of the displacement d. (a) P = 0.004 N. (b) P = 0.546 N. Q s is the force at the transition to macroscopic sliding, while Q max is the absolute maximum of the tangential force curve.
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 2219220 Figure 2.19: Evolution of the tangential force Q (solid black curve, left axis) and of the contact area A (solid grey curve, right axis) as a function of the imposed displacement d. (a) Case of a direct correspondence between the peak of the tangential force Q s and the contact area A s reduction curve. (b) Case with the presence of instabilities in the interface, when a direct correspondence in such curves can be a potential source of error.
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 2221 Figure 2.21 shows an example of the final result of these operations, where the smoothed contact area is represented as black lines. In (a) the found local minima from operation (iii) and the interpolated curve from operation (iv) are shown as red circle marks and solid red line, respectively. In (b) the constructed lower envelope is show as a solid blue line.
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 2222223 Figure 2.22: Contact radius a as a function of the normal force P from experimental data at zero tangential force. In this example, the value of E = 3.19 ± 0.05 MPa and ω 0 = 125 ± 23 mJ/m 2 , are obtained from a linear fit to the experimental data using Equation 2.1.
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 2531 Figure 2.5, under 4 different constant normal loads, P = 1.85 N, 0.54 N, 0.25 N, and 0.05 N. Respectively, 21 s, 14 s, 13 s, and 22 s, after the contact has been created for each experiment, a constant driving velocity V = 0.1 mm/s was imposed on the glass plate, over a total distance of 2 mm. Images of the interface were acquired during the glass displacement with a lateral square pixel of 7.7 µm for P = 1.85 N, and 9.0 µm for the others normal loads, in the contact plane. See section 2.2.2 for more specifications and a detailed description of the experiment.

Figure 3 .

 3 2(a-d) for four different displacements (shown in Figure 3.1): d 0 before any shear, d s the displacement at the static friction peak Q s , and d 1 and d 2 two intermediate displacements. Full movies are available, as supplementary material, in Appendix A, as Movies M185, M054, M025, and M005 for P = 1.85 N, 0.54 N, 0.25 N, and 0.05 N, respectively. The contact region corresponds to the biggest region of dark pixels. In all subsequent figures, the leading (resp. trailing) edge is always on the left (resp. right) side. As mentioned in the description of the optical acquisition system in Chapter 2, the contact regions are not uniformly dark, but are sprinkled with random bright spots that are due to light reflection on the particles incorporated close to the elastomer surface.

Figure 3 . 2 :

 32 Figure 3.2: Raw images of the contact interface at the four displacements shown in Figure 3.1. (a): d 0 , (b): d 1 , (c): d 2 , and (d): d s , for the four normal loads, 1.85 N, 0.54 N, 0.25 N, and 0.05 N.The main dark region is the contact area, bright spots are the particles, and the upper right dark region is a marker drawn on the glass substrate to monitor its macroscopic motion. The images are in the frame of the camera and the leading edge is on the left side.

Figures 3 .

 3  show typical contours of the contact, the inner area of which defines the contact area A. The evolution of A as a function of the imposed displacement of the glass plate is shown in Figure3.1 (grey lines, right axes). For all experiments, both, Q and A curves, in Figure3.1 present the same qualitative behavior as previous experiments in the literature[START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Waters | Mode-mixity-dependent adhesive contact of a sphere on a plane surface[END_REF][START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF], which shows that the insertion of particles into elastomer spheres does not significantly affect the mechanical response of the interface.The oscillations observable in the A(d) curves in Figure3.1 originate from the so-called detachment folds[START_REF] Barquins | Sliding friction of rubber and Schallamach waves-a review[END_REF] occurring at the trailing edge of the contact.
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 33 Figure 3.3: Segmented images from raw images of Figure 3.2 at the four displacements, (a): d 0 , (b): d 1 , (c): d 2 , and (d): d s , for the four normal loads, 1.85 N, 0.54 N, 0.25 N, and 0.05 N. In (a-d) of each experiment, the contours are those of the contact (same colors as in Figure 3.1), the inner area of which defines the contact area; black spots correspond to the particles. The images are in the frame of the moving glass plate. The leading edge is on the left side.

10 perform a dilation

 10 operation with a 3x3 square structuring element only on the sub-image at step i 11 multiply pixel by pixel the sub-image (dilated) at step i and the sub-image (unmodified) at step i+1 12 find the number of objects (connected pixels) in the image resulting from the multiplication 13 if object = 1 then 14 save tracers as coordinates (C x (i + 1) and C y (i + 1)) of its centroid in the full image. 15 else if object > 1 then 16 only the closest object to the center of the sub-image at step i is considered.

  dual graph is a Delaunay triangulation, where two sites are connected by an edge in the Delaunay triangulation if they belong to adjacent Voronoi cells. Delaunay triangulation is formed by a net of triangles satisfying the empty circumcircle criterion: (i) the circumcircle of each triangle contains only the vertices of the triangle, and (ii) there are no site of other triangles inside the circumcircle. Delaunay triangulations also maximize the minimum angle of all triangles in the triangulation [80, 81]. Figure 3.4 illustrates an example of a Voronoi diagram (solid black lines) and its dual Delaunay tessellation (dashed red lines) for a set of 11 sites (open black disks).
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 34 Figure 3.4: A Voronoi diagram (solid black lines) and its dual Delaunay tessellation (dashed red lines) for a set of 11 sites (open black disks).

  5. Filled disks correspond to the position of the lifted tracers in the initial image (at d 0 ), and open disks indicate the position when the tracers disappear.
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 35 Figure 3.5: Measurement of the lifted and laid areas. (a) P = 1.85 N, (b) P = 0.54 N, (c) P = 0.25 N, and (d) P = 0.05 N. Solid colored lines: contours of the contact at the four selected displacements (same colors as in Figures 3.1, 3.3, and 3.9). The contours are in the frame of the moving glass plate. The leading edge is on the left side. Open (resp. filled) disks: position of the lifted particles when they disappear (resp. at d 0 ). The symbol color corresponds to the displacement at which the particle is lifted (same color code as for the contours). Grey cells: cells of the Voronoi tessellation at d 0 associated to lifted particles at d s . Filled (resp. open) diamonds: position of the laid particles at d s (resp. when they appear). The symbol color corresponds to the displacement at which the particle are laid. Red cells: cells of the Voronoi tessellation at d s associated to laid particles at d s .
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 36 Figure 3.6: Contributions of the various mechanisms to the area variation. (a) P = 1.85 N, (b) P = 0.54 N, (c) P = 0.25 N, and (d) P = 0.05 N. Relative area variation, ∆A/A 0 , vs the imposed displacement, d. Black: reduction of the total contact area. Blue (resp. magenta): area lost (resp. gained) by lifting (resp. laying), measured as in Figure 3.5. Red: area variations due to slip-induced in-plane deformation, measured as in Figure 3.7.

Figure 3 .

 3 Figure 3.5 shows the results of this analysis, where the locations of the laid tracers are shown in the final configuration (at d s , filled diamonds) or where they appear (open diamonds). Laid tracers are found at the leading edge of the contact, beyond the initial contact region. Only for P = 0.25 N (Figure 3.5(c)), there are two laid tracers found at the trailing edge of the contact (right side), but as mentioned in the lifting analysis, these tracers may initially be located at the proximity of the contact edge and disappeared in backward time due to noise in the images. The filled diamonds color, evolving from blue to red, corresponds to the displacement at which they appear and is again spatially organized, indicating that contact laying occurs through an outward front propagation starting at the leading edge of the contact. No laid tracer is found for P = 0.05 N (Figure 3.5(d)), indicating that laying mechanism may not occur under such

1 .

 1 The values of laid cells consider the ones attributed to noise in the images in P = 0.25 N (Figure 3.5(c)) with tracers located at the trailing edge of the contact and in P = 0.54 N (Figure 3.5(b)) with tracers located inside the initial contour at the leading edge, resulting in an overestimation of the laid areas of ∼ 3 % for both P = 0.54 N and P = 0.25 N.

Figure 3 .

 3 Figure 3.7 shows, for the four normal loads (in the rows), the evolution of the inplane deformation field as shear increases (cold colors for compression, warm ones for dilation). Before d 1 (b) no deformation is observed, presumably because the slip front has not reached yet the fraction of initial contact covered by the Delaunay triangulation. Between d 1 (b) and d 2 (c), a compressed region sets in at the trailing side of the contact;the absence of a detectable symmetrical dilated region on the leading side suggests that the propagation of the slip front is not axisymmetrical, as usually considered in models of the incipient shear loading of circular linear-elastic contacts[START_REF] James | [END_REF]. At d s (d), a heterogeneous slip-induced in-plane deformation field is fully developed, with a large compression region on the trailing side and a smaller dilation region on the leading one.

5 Figure 3 . 7 :

 537 Figure 3.7: In-plane deformation measurement. (a) Grey network: Delaunay triangulation based on all tracers of the first image (at d 0 ) that can be tracked until d s . (b-d) Snapshots of the evolution of the Delaunay triangles (defined at d 0 ) at successive instants: d 1 (b), d 2 (c), and d s (d). Solid lines are the contours of the contact at d 0 , d 1 , d 2 , and d s with the same color code as in Figures 3.1, 3.3 and 3.5. The color of each triangle corresponds to its relative area change with respect to the situation at d 0 (see colorbar). Colder (resp. warmer) colors mean in-plane compression (resp. dilation).

  Figure 3.7: In-plane deformation measurement. (a) Grey network: Delaunay triangulation based on all tracers of the first image (at d 0 ) that can be tracked until d s . (b-d) Snapshots of the evolution of the Delaunay triangles (defined at d 0 ) at successive instants: d 1 (b), d 2 (c), and d s (d). Solid lines are the contours of the contact at d 0 , d 1 , d 2 , and d s with the same color code as in Figures 3.1, 3.3 and 3.5. The color of each triangle corresponds to its relative area change with respect to the situation at d 0 (see colorbar). Colder (resp. warmer) colors mean in-plane compression (resp. dilation).

  3 summarizes the average Voronoi area of the useful cells and their fraction of the initial contact area. In practice, due to the randomness of the tracers' location, the individual areas varied considerably, as show in the fourth column. Because the Voronoi cells are the smallest units of area involved in the lifting (resp. laying) analysis, the evolution rate of the estimated lifting (resp.laying) area suffers from large fluctuations. In fact, each drop (resp. rise) in the blue (resp.magenta) curves of Figure 3.6 are linked to the simultaneous subtraction (resp.addition) of one or more Voronoi cells with a radom area.

Figure 3 . 8 :

 38 Figure 3.8: Tracers displacement vs time. (a) P = 1.85 N, (b) P = 0.54 N, (c) P = 0.25 N, and (d) P = 0.05 N. Vertical line indicates the instant of the static friction force Q s . Black lines: tracers' trajectories that are lifted out-of-contact before the end of the experiment (at t = 20 s). Colored lines: tracers present from the beginning to the end of the experiment. Cold colors are for the smallest displacements and warm colors for the largest displacements at Q s .

Figure 3 . 9 :

 39 Figure 3.9: Iso-displacement contours of the tracers displacement for all normal loads. The outer contour defines the contact area at the instants (a) d 1 , (b) d 2 , and (c) d s with the same color code as in the previous Figures 3.1 and 3.3. Lifted tracers at Q s , i.e. tracers that up to Q s will be lifted, are represented as filled disks (•), while open disks (•) are for tracers present throughout the experiment (from t = 0 s to t = 20 s); their color is the same of the sets of iso-displacement contours. Cold colors are for the smallest displacements and warm colors for the largest ones for both tracers and iso-displacement contours. The filled magenta disk (•) is the last tracer to slip.
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 381310 Fig 3.9). The fact that the tracers start to slip at different instants results in a heterogeneous slip field, thus leading to the in-plane deformations discussed previously in Section 3.3.1.Transient sliding (4-5): at the very beginning of sliding of each tracer, the slope of the curves seem to increase, meaning that the velocity of each tracer accelerates reaching a velocity even greater than the glass velocity V, i.e. the slope of the curves greater than the slope of the hatched area, before stabilising at V. Such transient sliding may be due to a process of interfacial relaxation, and its duration increases with the increase of the normal load, from (d) to (a) in Figure3.10. Note that for P = 1.85 N, the experiment duration was not sufficient to allow all tracers to stabilize their velocity at V. Steady state sliding (5-end): after the accelerated sliding period, all slipping tracers reach the same velocity as the glass (5), i.e. the slopes of the curves and of the hatched area are the same, meaning that a steady macroscopic sliding is reached.

Figure 3 .

 3 Figure 3.13 shows the evolution of the contact area, for the normal loads P = 0.27 N and P = 2.12 N, during the incipient tangential loading at five selected displacements of the rigid plate: d 0 = 0, d s at the onset of global sliding and three intermediate configurations (d i ). The nodes of the elastic surface are labeled in red if they have undergone some local slip, in blue if they are still stuck to the same point of the rigid plate, and

Figure 3 . 12 :

 312 Figure 3.12: Comparison of the model predictions obtained for the model, for all normal loads, to the experimental results of [17, 63]. (a) A vs Q. Solid straight red line: Q = σA. (b) Contact size along ( ) and perpendicular to ( ⊥ ) the shear loading direction vs Q. Figure adapted from [60].

Figure 3 . 13 :

 313 Figure 3.13: Evolution of the contact zones for (a) P = 0.27 N (d 1 , d 2 , d 3 : 35, 61, 81 % of d s = 0.45 mm) and (b) P = 2.12 N (d 1 , d 2 , d 3 : 29, 58, 80 % of d s = 1.04 mm) shown in the frame attached to the moving rigid plate. Dashed circles indicate the boundary of the initial contact zone (at d 0 ). Blue and red regions denote the stick and slip zones, respectively. Green regions indicate the current (deformed) location of the initial contact zone that has been lifted. The leading edge is on the left. Figure from [60].

Figure 3 .

 3 Figure 3.14 provides a detailed insight into this last mechanism, by showing the field of local surface dilation/compression. For each contact node i, its tributary area (i.e. the area associated with the node) is computed both in the initial configuration (at d 0 ), A i 0 , and in the current configuration, A i . The color map in Figure 3.14 corresponds to the local surface dilation/compression, (A i -A i 0 )/A i 0 . Surface dilation is observed close to the leading edge while compression is observed close to the trailing edge. The decreasing green elliptical region in the middle of the contact zone, in which the local surface dilation/compression is equal to zero, corresponds to the stick zone in Figure 3.13.

Figure 3 .

 3 Figure 3.15 compares the individual contributions of all mechanisms to the total relative contact area change in the model. For all normal loads, the model predicts that lifting represents about 90-95 % of the total shear-induced area reduction, indicating it as the primary mechanism responsible for the area reduction. The contributions of

Figure 3 . 14 :

 314 Figure 3.14: Evolution of the field of surface dilation/compression, (A i -A i 0 )/A i 0 , shown in the frame attached to the moving rigid plate for (a) P = 0.27 N and (b) P = 2.12 N, and for the same select displacements as in Figure 3.13. Dashed circles indicate the boundary of the initial contact zone. The leading edge is on the left. Figure from [60].

Figure 3 . 15 :

 315 Figure 3.15: Evolution of the individual contributions of the various elementary mechanisms to the total relative area variation ∆A/A 0 as a function of the rigid plate displacement d. (a) P = 0.27 N and (b) P = 2.12 N. Figure adapted from [60].
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 41 Figure 4.1: Illustration of the spreading of experimental conditions found in the literature for model sphere/plane sheared interfaces. The axes show the range of normal forces P, the effective elastic modulus E*, and the surface energy ω 0 . The marker size indicates the sphere radius R.All studies used PDMS against glass, except Savkoor and Briggs[START_REF] Savkoor | The effect of tangential force on the contact of elastic solids in adhesion[END_REF] that used a rubber dielectric gel (indicated with a white dot texture on the marker).

4 . 3 .Figure 4 . 2 :

 4342 Figure 4.2: Estimation of the adhesion energy ω 0 of the PDMS/glass interfaces and the effective elastic modulus E * of the PDMS samples by JKR theory [27] using the method described in Section 2.4.3. Set 1 (G,-), Set 2 (L,• •), and Set 3 (o,--). The points in the large load range of P are represented by filled markers and the small load range by open markers (also shown in the insets). The lines represent the fits (Equation 2.1) of each set of data in three distinct ranges of P: (a) entire, (b) large load, and (c) small load.

Figure 4 .

 4 Figure 4.3 shows the evolution of the tangential force Q plotted versus the tangential displacement d. On the left side, the entire range of normal loads is presented for (a) Set 1, (b) Set 2, and (c) Set 3. The curves color scale goes from blue for the smallest P

Figure 4 . 3 :

 43 Figure 4.3: Tangential force Q as a function of displacement d for (a) Set 1, (b) Set 2, and (c) Set 3. The entire sets of normal loads are shown on left side; the small loads are show on the right side. Curves color scale goes from blue (smallest P) to red (largest P). The moment of the tangential force peak Q s is shown as a circle marker.

Figure 4 .Figure 4 . 4 :

 444 Figure 4.4 shows the evolution of the normal load as a function of the displacement d associated to the tests presented in Figure 4.3. Again, the left side shows the entire range of P for (a) Set 1, (b) Set 2; and (c) Set 3, and the right side shows a zoom in the small loads. The moment of the tangential force peak Q s is shown as a circle marker. Aslight increase, on Set 2 and 3, and decrease, on Set 1, can be seen in the static region, up to Q s , due to the presence of a small residual angle between the shear direction and the plane. This slight variation in the normal force does not explain the large reduction in the contact area A that is observed (see next section 4.3.3). In the case of increased P, it is even against the reduction of A. The effect of the presence of a small angle will be

Figures 4. 5

 5 Figures 4.5, 4.6 and 4.7 present the raw images of the three sets of experiments for

  Figures 4.5, 4.6 and 4.7 present the raw images of the three sets of experiments for two small normal loads and two large normal loads (specified in the figures). In each figure, the first column of images shows the initial contact area before shearing (Q = 0), the last column shows the contact area at the tangential force peak (Q = Q s ), and the second and third columns correspond to two intermediate displacements. At Q = 0,

Figure 4 . 5 :

 45 Figure 4.5: Raw images of Set 1 for four normal forces showing the contact area evolution under shearing for four displacement steps: (a) at Q = 0, (b-c) at two intermediate displacements, and (d) at Q = Q s .

Figure 4 . 6 :

 46 Figure 4.6: Raw images of Set 2 for four normal forces showing the contact area evolution under shearing for four displacement steps: (a) at Q = 0, (b-c) at two intermediate displacements, and (d) at Q = Q s .

Figure 4 . 7 :

 47 Figure 4.7: Raw images of Set 3 for four normal forces showing the contact area evolution under shearing for four displacement steps: (a) at Q = 0, (b-c) at two intermediate displacements, and (d) at Q = Q s .

  , 4.6, and 4.7, we can now evaluate the contact areas A using the procedure described in Section 2.3.1. Figure4.8shows the evolution of these contact areas A during the displacement d. On the left side is shown the entire range of P for (a) Set 1, (b) Set 2, and (c) Set 3; and on the right side is shown a zoom in the small loads. The curves color scale goes from blue for the smallest P to red for the largest P for each set. The moment of the tangential force peak Q s is shown as a circle marker. As soon as the displacement d starts, the contact area A begins to reduce in all experiments (i.e. for all normal loads). Note that some curves exhibit a stick-slip-like aspect (periodic oscillations), as for Q(d), which is again the consequence of the detachment waves.

Figure 4 . 8 :

 48 Figure 4.8: Contact area A as a function of displacement d for (a) Set 1, (b) Set 2, and (c) Set 3. The entire set of normal loads are shown on the left side; the small loads are shown on the right side. Curves color scale goes from blue (smallest P) to red (largest P). The moment of the tangential force peak Q s is shown as a circle marker.

Figure 4 .

 4 Figure 4.9 shows the percentage of area reduction at Q s as a function of A 0 for Set 1 (G), Set 2 (L), and Set 3 (o). The points in the large load range of P (large A 0 ) are represented by filled markers and in the small load range (small A 0 ) by open markers.

Figure 4 . 9 :

 49 Figure 4.9: Contact area reduction at Q s versus the initial contact area A 0 . The points in the large load range of P (large A 0 ) are represented by filled markers and in the small load range (small A 0 ) by open markers. The inset shows a zoom in the small load range. Set 1 (G), Set 2 (L), and Set 3 (o).

  as shown in Figure 4.10, allows extracting the two main parameters that characterized the behavior of the involved interface: (i) the decay of contact area under shearing and (ii) the shear strength of the interface. In this section, we will investigate those two parameters for the three sets of experiments over a wide range of normal loads.

Figure 4 . 10 :

 410 Figure 4.10: Evolution of the contact area A with the tangential force Q for (a) Set 1, (b) Set 2, and (c) Set 3. The entire set of normal loads are shown on left side; the small loads are show on the right side. Curves color scale goes from blue (smallest P) to red (largest P).

. 1 )

 1 , each A(Q) curve (Figure 4.10) of the three sets of experiments was fitted with the single adjustment parameter: α A . It thus allows to extract α A for each normal load P, i.e. for different initial contact area A 0 .

Figure 4 . 98 Figure 4 . 11 :

 498411 Figure 4.11 shows, e.g., the results of the fit (red lines) of the experimental data (black lines) for one small P (left side) and one large P (right side) of (a) Set 1, (b) Set 2, and (c) Set 3. For small P, a smaller and relatively poor coefficient of determination (R-square = 0.93) is found, in comparison with the one for large P (R-square = 0.98).

Figure 4 .

 4 Figure 4.12: (a) Decay rate of contact area under shearing α A vs the initial contact area A 0 . Set 1 (G,-), Set 2 (L,• •), and Set 3 (o,--). The lines represent the power-law fits performed by using Equation 4.2 on the entire range of normal loads. The points in the large load range of P are represented by filled markers and the small load range of P by open markers. The literature data are also shown for large loads as I,-(Sahli et al.[START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]) and for small loads as M,-(Mergel et al.[START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF]). (b) Evolution of the coefficient of determination R-square of the fits (Equation 4.1) vs A 0 .

Figure 4 .

 4 13(a)) and small loads (see lines in

Figure 4 . 2 )Figure 4 . 13 :

 42413 Figure 4.13: Results of the power law fits performed on the data of Figure 4.12 for sub ranges of normal loads: (a) large loads and (b) small loads.

Figure 4 .

 4 Figure 4.14, the evolution of the exponent n is plotted as a function of the initial contact area A 0 both for our data (Set 1 (G), Set 2 (L), and Set 3 (o)) and for those of the literature (Sahli et al. [17] (I) and Mergel et al. [55] (M)). We can see that the exponent n is quite

Figure 4 . 14 :

 414 Figure 4.14: Evolution of the best-fit exponent n (Equation 4.3) as a function of the initial contact area A 0 . The points in the large range of P are represented by filled markers and the small range by open markers. Set 1 (G), Set 2 (L), and Set 3 (o). The literature data are also shown as I (Sahli et al.[START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]) and M (Mergel et al.[START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF]).

  Ic as a function of ψ can be obtained directly from our experiments and compared with the proposed model (Equation4.4) to extract the value of the unique adjustment parameter λ. We used the elastic and adhesive properties, E * and ω 0 , for each set of experiments from the parameters related to the JKR fit in the entire range of P performed in Section 4.3.1 (refer to the parameters in Figure4.2 and Tabs. 4.2 and 4.3). As we have seen in the previous Section 4.3.1, the parameters E * and ω 0 in our experiments are mainly dominated by the experiments in the large load range of P and we could not notice a significant difference using the other parameters. Also, we use a value of P estimated from JKR's theory, that is : P = 4E * a 3 3R -8πE * a 3 G Ic . The proposed model (Equation4.4) was used to fit our results on the contact area decay under shearing.

Figure 4 .

 4 15 shows an example of how the experimental data (represented by markers) are fitted (represented by green lines). One can notice that for Sets 2 (Figure 4.15(b)) and 3 (Figure 4.15(c)) the oscillations at the ends of the curves disturb the fit, resulting in a relatively low coefficient of determination (R-square).

Figure 4 . 15 :

 415 Figure 4.15: Ratio G c /G Ic as a function of ψ for (a) Set 1, (b) Set 2, and (c) Set 3. Left side: small P and right side: large P. Markers are from the experimental data and green lines are the fits using Equation 4.4).

Figure 4 .Figure 4 .

 44 Figure 4.16: (a) Best fitted λ as a function of the normal force P. (b) Fit coefficients of determination (R-square) as a function of the normal force P. The insets show a zoom in the small loads.
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 417418 Figure 4.17: Ratio G c /G Ic as a function of ψ of all normal forces P for (a) Set 1, (b) Set 2, and (c) Set 3. Markers are from the experimental data and green lines are the fits using Equation 4.4).

Figure 4 .Figure 4 . 19 :

 4419 Figure 4.19: Contact area A s at the moment of the peak of tangential force Q s , as a function of Q s . Left side: fit on the (a) entire, (b) large, and (c) small range of P. Right side: zoom in the small range of P. Set 1 (G, -), Set 2 (L, • •), and Set 3 (o, --). The points in the large range of P are represented by filled markers and the small range by open markers. Literature data are also shown as I (Sahli et al.[START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF]) and M (Mergel et al.[START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF]).

. 7 ) 4 Figure 4 . 20 :

 74420 Figure 4.20: Contact area A s , at the moment of the peak of tangential force Q s , as a function of Q s in a log-log scale. Fits using the power-law Equation 4.7 to (a) the entire range of P, (b) the large load range, and (c) the small load range. The points in the large range of P are represented by filled markers and the small range of P by open markers. Set 1 (G, -), Set 2 (L, • •), and Set 3 (o, --), Sahli et al. [17] (I,-), and Mergel et al. [55] (M, -).

Figure 4 .

 4 21, right side)? Or to the kinetic point Q k (scenario 2 in Figure 4.21, right side)?

7 PFigure 4 . 22 :

 7422 Figure 4.22: Contact area A evolution over time t adapted from Figure 5(b) of Mergel et al. [55]. The filled circle markers show the time of the tangential force peak Q s and the open circle markers (not present in the original figure in [55]) a critical minimum area A crit before entering a steady sliding regime.

Figure 4 .

 4 Figure 4.23: Normalized difference between the contact area at the moment of tangential force peak A s and the area before entering a steady state in the kinetic sliding regime A crit versus the initial contact area A 0 . Set 1 (G), Set 2 (L), and Set 3 (o). The points in the large range of P are represented by filled markers and the small range by open markers. Literature data for small loads are also show as M (Mergel et al.[START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF]). Asterisks denote cases where A crit was manually detected.

Figure 4 . 24 :

 424 Figure 4.24: Critical contact area A crit as a function of Q crit (Q at the moment of A crit ) in a loglog scale. The points in the large range of P are represented by filled markers and the small range by open markers. Set 1 (G, -), Set 2 (L, • •), and Set 3 (o, --). Lines are the power-law fits ( f (x) = ax k ) with the same color as the corresponded fitted set

Figure 4 .

 4 Figure 4.20).

Figure 4 . 25 :

 425 Figure 4.25: Contact area A as a function of the tangential force Q in a log-log scale for Set 1 (G), Set 2 (L), and Set 3 (o). A vertical shift was applied between the sets by an offset on the points to a better visualization.
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 4264 Figure 4.26: Superimposed images of the initial contact (at Q = 0) and images of the contact area at the static friction peak (at Q s ) in the frame of the moving glass plate. The leading edge of the contacts is on the left side. The black region is the contact area presents both at Q = 0 to Q s ; the blue region the area presents at Q = 0 and not at Q s ; and the red region the area not presents at Q = 0 but presents at Q s .
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 51 In this case, we used a normal attachment configuration (defined in Figure2.5)

Figure 5 . 1 :

 51 Figure 5.1: Setup for Case A -Tilt of the sliding plate.

Figure 5 . 2 :

 52 Figure 5.2: Setup for Case B -Tilt of the fixed plate.

Figure 5 . 3 :

 53 Figure 5.3: Definition of the tilt angle φ. Case A: Tilt of the sliding plate. Case B: Tilt of the fixed plate. Left: aligned configuration (φ = 0 • ), centre: φ < 0 • , and right: φ > 0 • .

Figure 5 .

 5 Figure 5.4 shows the evolution of (a) the tangential force Q and (b) the normal force P during the displacement d.

Figure 5 . 4 :

 54 Figure 5.4: Evolution of (a) the tangential force Q and (b) the normal force P during the displacement d for Case A.
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 555 Figure 5.5 shows the evolution of the contact area A as a function of (a) the displacement d and (b) of the tangential force Q up to its peak. A typical behavior evolution of A, as in previous experiments in the literature [17, 55], can be seen in all curves, i.e. a reduction of A starting immediately withan increase of (a) the displacement d and (b)the tangential force Q, before reaching the macroscopic sliding regime during which A remains nearly constant. We also can identify here a discrepancy in the first tests (φ = 0 • , 0.5 • , and 1 • ), showing a greater reduction in the contact area, probably for the same reasons responsible for the modification of tangential force curves. Excluding them, a variation of the contact area at Q s of around 5 % for a variation of φ in the range of -4 • to 4 • can be observed for all tilt angles. In light of these observations, the tilt does not appear to have a significant influence on the reduction of the contact area.

Figure 5 . 6 :

 56 Figure 5.6: Force diagrams of Case A. Top panel: forces acting on an aligned system ((φ = 0 • )). Bottom panel: forces acting on a positive tilting position (φ > 0 • ).

Figure 5 . 7 :

 57 Figure 5.7: Evolution of the contact tangential force Q cn and (b) the contact normal force P cn during the displacement d.
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 558 Figure 5.8 shows Case B(i) results, that has an initial normal force of 0.78 N (same as Case A) and a tilt variation between -2.5 • and 4 • . This figure shows (a) the tangential Q and (b) the normal P forces, directly measured by the sensors, as a function of the

Figure 5 . 9 :

 59 Figure 5.9: Force diagrams of Case B. Top panel: forces acting on an aligned system (φ = 0 • ). Bottom panel: forces acting on a positive tilting position (φ > 0 • ).
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 510 Figure 5.10: Evolution of the contact tangential force Q cn (on the left side) and the contact normal force P cn (on the right side) as functions of the displacement d. B(i): 0.78 N; B(ii): 0.78 N; B(iii): 0.1 N; B(iv): wide range of initial normal force for 3 different tilt angles (-2 • : blue lines, 0 • : black lines, and 2• : red lines). The color gradients for Cases B(iv) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 . The insets on B(iv) show a zoom in the small P 0 .

Figure 5 . 11 :

 511 Figure 5.11: Contact area A as a function of the displacement d (on the left side) and of the tangential force Q cn up to its peak (on the right side). B(i): 0.78 N; B(ii): 0.78 N; B(iii): 0.1 N; B(iv): wide range of initial normal force for 3 different tilt angles (-2 • : blue lines, 0 • : black lines,and 2• : red lines). The color gradients for Cases B(iv) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 . The insets on B(iv) show a zoom in the small P 0 .

Figure 5 .

 5 12(b) tends to confirm the dependence of α A with the tilt. Indeed, the contact area decay rate gradually increases when the tilt angle decreases from 4 • to -4 • for all initial normal loads that have been tested. This effect can be easily seen for the three set of experiment performed at a single constant normal load (L B(i): 0.78 N, o B(ii): 0.78 N, and M B(iii): 0.10 N) and harder to see for the B(iv) sets, as both the angle and the normal force act on the values of α A .
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 5513 Figure 5.13: Evolution of the exponent n for fit performed on all sets of experiments in case B using the the power-law relation A = A 0α B Q n cn as a function of (a) the initial contact area A 0 and (b) the tilt angle φ. L B(i): 0.78 N; o B(ii): 0.78 N; M B(iii): 0.10 N; and a wide range of initial normal loadings for G B(iv): φ = -2 • , G B(iv): φ = 0 • , and G B(iv): φ = 2 • . The color gradients for Cases B(iv) in (b) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 .

6 Figure 5 . 14 :

 6514 Figure 5.14: Contact area A s , at the moment of the the peak of the contact tangential force Q cns , as a function of Q cns . The inset shows a zoom in the small contact normal forces. Cases: L B(i): 0.78 N; o B(ii): 0.78 N; M B(iii): 0.10 N; and a wide range of initial normal loadings for G B(iv): φ = -2 • , G B(iv): φ = 0 • , and G B(iv): φ = 2• . The color gradients for Cases B(iv) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 . The lines correspond to linear fits with the same colors as their fitted points.
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 5515 Figure 5.15: Instantaneous interface shear strength (σ inst = Q cns /A s ) as a function of (a) the tilt angle φ and (b) Q cns . Cases: L B(i): 0.78 N; o B(ii): 0.78 N; M B(iii): 0.10 N; and a wide range of initial normal loadings for G B(iv): φ = -2 • , G B(iv): φ = 0 • , and G B(iv): φ = 2 • . The color gradients for Cases B(iv) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 .

Figure 5 . 16 :

 516 Figure 5.16: Friction coefficient µ as a function of the tilt angle φ for (a) Case A and (b) Cases B. Filled markers are for the forces measured by the sensors and open markers for the corrected forces acting on the contact plane. L B(i): 0.78 N; o B(ii): 0.78 N; M B(iii): 0.10 N; and some initial normal loadings for the wide range of G B(iv): φ = -2 • , G B(iv): φ = 0 • , and G B(iv): φ = 2 • . The color gradients for Cases B(iv) in (b) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 .

Figure 5 . 17 :

 517 Figure 5.17: Fraction of the contact area A Q attributed to the contribution of the contact tangential force Q cn as a function of Q cn . B(i): 0.78 N; B(ii): 0.78 N; B(iii): 0.1 N; B(iv): wide range of initial normal force for 3 different tilt angles (-2 • : blue lines, 0 • : black lines, and 2 • : red lines).The color gradients for Cases B(iv) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 . The inset on B(iv) shows a zoom in the small P 0 .

Figure 5 . 2 )Figure 5 . 18 :

 52518 Figure 5.18 shows the evolution of α add as a function of (a) the initial contact area A 0 and of (b) the tilt angle φ.

Figure 5 .Figure 5 . 19 :

 5519 Figure 5.13, it seems that the dependency of n toward the tilt has nearly vanished, just remaining a slight decrease towards the positive angles.

2 )Figure 5 . 20 :

 2520 Figure 5.20: Area reduction parameter α add (JKR) as a function of (a) the initial contact area A 0 and of (b) the tilt angle φ. Cases: L B(i): 0.78 N; o B(ii): 0.78 N; M B(iii): 0.10 N; and a wide range of initial normal loadings for G B(iv): φ = -2 • , G B(iv): φ = 0 • , and G B(iv): φ = 2 • . The lines in (a) represent the power-law fits with the same colors of their fitted points. The color gradients for Cases B(iv) in (b) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 .

Figure 5 . 21 :

 521 Figure 5.21: Exponent n as a function of (a) the initial contact area A 0 and (b) as a function of the tilt angle φ. Cases: L B(i): 0.78 N; o B(ii): 0.78 N; M B(iii): 0.10 N; and a wide range of initial normal loadings for G B(iv): φ = -2 • , G B(iv): φ = 0 • , and G B(iv): φ = 2 • . The color gradients for Cases B(iv) in (b) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 .

2 )Figure 5 . 22 :Figure 5 . 23 :

 2522523 Figure 5.22: Area reduction parameter α multi as a function of (a) the initial contact area A 0 and of (b) the tilt angle φ. Cases: L B(i): 0.78 N; o B(ii): 0.78 N; M B(iii): 0.10 N; and a wide range of initial normal loadings for G B(iv): φ = -2 • , G B(iv): φ = 0 • , and G B(iv): φ = 2 • . The lines in (a) represent the power-law fits with the same colors of their fitted points. The color gradients for Cases B(iv) in (b) are in function of the initial normal force P 0 ; light colors for small P 0 and dark colors for large P 0 .
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Figure 5 .Figure 5 . 24 :

 5524 Figure 5.24(b). And, as seen in Figure 5.19, the exponent n seems to somehow depend on the tilt angle φ, leading us to assume that φ may have a slight effect on the contact area evolution.

Figure 5 .

 5 [START_REF] Fp Bowden | Mechanism of metallic friction[END_REF] shows these two frames for different tilt angles, in the columns, φ = -2 • (left), φ = 0 • (centre), and φ = 2 • (right) and for the different experiments, in the rows, B(i), B(ii), B(iii), and two initial normal forces of cases B(iv): 0.10 N and 0.78 N.

Figure 5 . 25 :

 525 Figure5.25: Superimposed images of the initial contact area (at Q cn = 0) and images at the static friction peak (at Q cns ) for (in the columns) φ = 0 • , -2 • , and 2 • of (in the rows) the cases B(i), B(ii), B(iii), and two initial normal forces of cases B(iv): 0.10 N and 0.78 N. The leading edge of the images is on the right side. The black region is the contact area present during the whole incipient shearing; the blue region is the area present at Q cn = 0 and not at Q cns ; and the red region is the area not present at Q cn = 0 but present at Q cns . The superimposed images are in the frame of the moving glass plate.

  (a) and (c).

Figure 6 .

 6 1(b) shows the evolution of the tangential force Q for different normal loads P and two different sliding directions with respect to the pattern (parallel and perpendicular).

Figure 6 .

 6 1(c) Images of the patterned sphere/plane contact at no tangential force (Q = 0) for the parallel and perpendicular directions under normal loads of P = 0.82 N and P = 0.82 N, respectively.

Figure 6 . 3 :

 63 Figure 6.3: (a) Left side: in-situ optical view of the real contact area (black spots) for a three spheres/glass interface under normal load of 0.25 N. Right side: tangential force Q evolution during shearing of the three spheres/glass interface shown on the left side. (b) Left side: in-situ optical view of the real contact area (black spots) for a five spheres/glass interface under normal load of 1.05 N. Right side: tangential force Q evolution during shearing of the five spheres/glass interface shown on the left side.

  

  [START_REF] Okabe | Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[END_REF] 

  .1. It can be seen that the contact area reduction increases with the decrease of the normal load P, from ∼ 19 % to ∼ 35 %; one expects the lifted area

to behave in the same way. However, the values of lifted cells presented on Table

3

.1 must be carefully observed, since, for P = 1.85 N and P = 0.54 N (see

Figures 3.5

Table 3 .

 3 

	P	Area reduction Lifted cells Laid cells Delaunay triangles
	1.85 N	∼ 19 %	∼ 31 %	∼ 9 %	∼ 7 %
	0.54 N	∼ 24 %	∼ 45 %	∼ 14 %	

1: Estimated contribution of contact area reduction mechanisms.

Table 3 .

 3 2: Number of tracers applied on the analyses.

	P	Tracers Voronoi analysis Delaunay analysis
	1.85 N	263	31	174
	0.54 N	140	30	48
	0.25 N	89	16	34
	0.05 N	48	7	12

Table 3 .

 3 

Table 3 .

 3 3: Voronoi areas.

	P	Avg. Voronoi area (mm 2 ) Avg. Voronoi area (%) Range of Voronoi area (%)
	1.85 N	0.15	1.33	0.21 -3.99
	0.54 N	0.12	2.20	0.21 -5.27
	0.25 N	0.10	2.74	1.66 -4.71
	0.05 N	0.10	6.76	3.55 -9.86
			Avg: average	

Table 4 .

 4 1: Sets of tangential loading experiments.

	Set	Range of P	Sample Attachment configuration*
	1	-14.1 mN to 5.2 N S1R9 (1)	Normal
	2	-0.2 mN to 3.2 N S1R9 (2)	Inverse
	3	-2.1 mN to 1.4 N S1R9 (3)	Inverse

* As illustrated in Figure

2

.5.

Table 4 .

 4 2: Effective elastic modulus E* of the PDMS samples.

	Set	Range of P	Entire	Large	Small
		1 (G,-)	3.19 ± 0.05 MPa 3.06 ± 0.08 MPa 3.82 ± 0.39 MPa
		2 (L,• •)			

1.86 ± 0.02 MPa 1.87 ± 0.06 MPa 1.78 ± 0.20 MPa 3 (o,--) 2.14 ± 0.06 MPa 2.20 ± 0.15 MPa 2.29 ± 0.33 MPa

Table 4 .

 4 3: Adhesion energy ω 0 of the PDMS/glass interfaces. We can see in Figure 4.2 and Tables 4.2 and 4.3 that the entire range of P fits (solid black lines) are mainly dominated by the experiments in the large load range. Another observation is the huge variation in the evaluation of the adhesion energy ω 0 of the PDMS/glass interfaces and also of the effective elastic modulus E* of the PDMS sam-

	Set	Range of P	Entire	Large	Small
		1 (G,-)	125 ± 23 mJ/m 2 42 ± 33 mJ/m 2 182 ± 8 mJ/m 2
		2 (L,• •)	22 ± 7 mJ/m 2	30 ± 31 mJ/m 2 18 ± 8 mJ/m 2
		3 (o,--)	48 ± 12 mJ/m 2 85 ± 72 mJ/m 2 56 ± 11 mJ/m 2

ples, between the sets. Those differences may be due to the difficulty of controlling all parameters in PDMS sample preparation, as mentioned in Section 4.2. All PDMS samples of this work were prepared at room temperature. However, they were prepared during different periods (e.g., summer and winter) and a temperature variation of around 10

Table 4 .

 4 4: Power-law fit exponent, γ, of Equation 4.2.

	Power-law fit exponent, α

Table 4 .

 4 5: Interface shear strength σ in MPa. ) where the fits of the small loads do not seem to capture the large ones.

	Set	Range of P	Entire	Large	Small
		1 (G,-)	0.39 ± 0.01 0.39 ± 0.02 0.52 ± 0.01
		2 (L,• •)	0.43 ± 0.01 0.43 ± 0.01 0.55 ± 0.04
		3 (o,--)	0.70 ± 0.02 0.70 ± 0.08 0.65 ± 0.06
	Sahli et al. [17] (I)		0.36 ± 0.01	
	Mergel et al. [55] (M)			0.43 ± 0.01
	vice versa in (c				

Table 4 . 6

 46 

	Set	Range of P	Entire	Large	Small
		1 (G, -)	1.11 ± 0.03 1.14 ± 0.06 1.01 ± 0.01
		2 (L, • •)	0.98 ± 0.09 1.07 ± 0.07 0.73 ± 0.02
		3 (o, --)	0.80 ± 0.09 1.17 ± 0.28 0.66 ± 0.02
	Sahli et al. [17] (I, -)		1.17 ± 0.04	
	Mergel et al. [55] (M, -)			0.76 ± 0.07

: Power-law fit exponent, κ, of Equation 4.7.

Table 4 .

 4 7: Power-law fit constant of proportionality, ρ, of Equation 4.7.

	Set	Range of P	Entire	Large	Small
		1 (G, -)	2.13 ± 0.08 2.10 ± 0.15 1.84 ± 0.30
		2 (L, • •)	2.09 ± 0.36 2.04 ± 0.19 1.13 ± 0.77
		3 (o, --)	1.52 ± 0.30 1.12 ± 0.36 1.08 ± 0.53
	Sahli et al. [17] (I, -)		2.04 ± 0.07	
	Mergel et al. [55] (M, -)			1.33 ± 0.28

All values in the magnitude order of 10 -6 .

Table 5 .

 5 1: Sets of experiments.

Table 5 .

 5 3: Interface shear strength σ in MPa.

	Case	P 0	σ
	B(i) (L,-)	0.78 N	0.47 ± 0.01
	B(ii) (o,-)	0.78 N	0.47 ± 0.01
	B(iii) (M,-)	0.10 N	0.55 ± 0.01
	B(iv) -2		

Table 5 .

 5 4: Power-law fitting results of α add (A 0 ) (Hertz). • -1.87 ± 0.15 0.57 ± 2.19 B(iv) (G,-) 0 • -1.83 ± 0.14 0.93 ± 2.83 B(iv) (G,-) 2 • -1.84 ± 0.14 0.79 ± 2.27 Values in the order of magnitude of 10 -16 .

	Case	φ	γ	β *
	B(iv) (G,-) -2		

Table 5 .

 5 5: Power-law fitting results of α add (A 0 ) (JKR). • -1.83 ± 0.12 0.91 ± 2.29 B(iv) (G,-) 0 • -1.75 ± 0.09 2.36 ± 3.66 B(iv) (G,-) 2 • -1.81 ± 0.17 1.15 ± 5.14Values in the order of magnitude of 10 -16 .

	Case	φ	γ	β *
	B(iv) (G,-) -2		

else

tracer trajectory ends.
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Computational model: finite-strain framework and Tresca friction

The finite strain framework and Tresca friction model (see below) without adhesion are the two basic features of the model. They are combined with a finite element method as a suitable spatial discretization scheme. The contact problem under consideration, sketched in Figure 3.11 from Lengiewicz et al. [START_REF] Lengiewicz | Finite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts[END_REF], corresponds to normal, and then tangential loading of a hyperelastic spherical solid in (adhesionless) frictional unilateral contact with a rigid plate. Figure 3.11: 2D sketch of the (3D) soft-sphere/rigid-plane contact under study. The initial (dashed lines) and deformed (solid lines) configurations are shown for two stages: (a) under pure normal load P and (b) when an additional tangential displacement d is applied, giving rise to a tangential load Q. In all subsequent figures, the leading (resp. trailing) edge is always on the left (resp. right) side. A 0 and A indicate the contact areas in the initial and deformed configurations, respectively. Figure from [START_REF] Lengiewicz | Finite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts[END_REF].

Hyperelasticity is treated using the nearly-incompressible isotropic neo-Hookean model. Such a model is used for predicting the nonlinear stress-strain behavior of materials, like elastomers and polymers, undergoing large deformations [START_REF] Marckmann | Comparison of hyperelastic models for rubber-like materials[END_REF]. For the frictional behaviour of the contact interface, the Tresca model is employed. In this model, no local slip occurs until the contact shear strength σ is reached, and σ is assumed constant and independent on the normal contact traction. It was chosen because it is the simplest model that produces a proportional relation between the friction force of sphere/plane contact interface and its contact area, a relationship reported experimentally in many frictional contacts (see, e.g., Sahli et al. [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF] and references therein). In the Tresca model, the proportionality constant will simply be the contact shear strength, σ.

The model parameters were taken to match their experimental counterpart in [START_REF] Sahli | Evolution of real contact area under shear and the value of static friction of soft materials[END_REF][START_REF] Sahli | Shear-induced anisotropy in rough elastomer contact[END_REF]. The elastic properties of the elastomer sample are specified by the shear modulus µ and bulk modulus κ. Assuming a nearly incompressible response with the Poisson's ratio of ν = 0.49, the Young's modulus has been identified as E = 1.80 MPa. The We have confirmed the already raised discussion about a higher rate of contact area reduction under small normal loads, and indicated the possibility of a PDMS properties dependence. In particular, for small normal loads, we also show that area reduction continues after the tangential peak force, which calls into question the definition of the exact moment of the transition to sliding.

The results indicate that the large normal load behavior holds down to about 0.1 N, below which adhesive effects presumably become non-negligible, i.e. the results seems to indicate a different contribution of the mechanisms of contact area reduction from that at larger normal loads. Ideally, the introduction of particles, as was performed for large loads in Chapter 3, would enable verification of the contact area reduction mechanisms and their relative contributions in different ranges of normal force.

Analyzing the static equilibrium of (1) in the x-and z-direction, respectively, gives

(5.2)

or, in a parallel and perpendicular direction to the contact interface, it gives

)

The analysis of the static equilibrium of (2) in the z-direction (downward) gives

In summary,

)

)

From those equations, one can see that, in the tilted experiments, the forces acting on the contact (Q cn and P cn ) do not correspond to the ones that are measured (Q m and P m ). However, knowing the tilt angle and using the equations above, it is now possible to calculate them. 

And the static equilibrium of (1) in the z-direction gives

12)

The equilibrium of (2) in the x-and z-direction gives

And in a parallel and perpendicular direction to the contact interface

In summary,

(5.17)

)

After making the necessary corrections using the equations above, Figure 5.10 shows the real forces acting on the contact interface of Cases B(i,ii,iii, and iv). On the left (resp. 

Contact area reduction rate

First, to evaluate the area reduction rate, the quadratic-law equation

, where A 0 is the initial contact area at Q cn = 0 and α A is the area reduction rate, was used to fit all sets of experiments of Cases B. Case

Values in the order of magnitude of 10 -16 .

We can see in Figure 5.12(a) that, for Cases B(iv) (G B(iv): φ = -2 • , G B(iv): φ = 0 • , and G B(iv): φ = 2 • ), which have a wide range of initial normal loads, the results are consistent with those of Chapter 4: (i) the experimental points are in good agreement with a power-law evolution, and similar values of the exponent γ are found, see Table 5.2; (ii) there is a larger dispersion of points at small loads (small A 0 ) because the contact area reduction and also on the propagation of the annular-like slipping front (see Chapter 3). and two different sliding directions with respect to the patterned sphere: parallel (black lines) and perpendicular (grey lines). (c) Images of the patterned sphere/plane contact at no tangential force (Q = 0).

Sliding precursors

Ultimately, one would like to be able to understand and predict frictional sliding.

Indeed, a better understanding of the transition between static and dynamic friction is crucial for many technological, economic, and societal applications, because it is involved, for example, in the problems of gripping objects, in wear of nano-devices, in the physics of earthquakes, or even in more classic contact problems involving elastomers (e.g., road/tire or piston/syringe). Prediction of sliding is a very complicated issue, but based on the work performed in this thesis, we can propose some strategies in that direction. Indeed, we provide some new elements to now be able to design model surfaces that may allow the emergence and detection of sliding precursors early enough before global sliding occurs. Even if there is still a lot of progress and work to be done, some preliminary results, performed during this work, demonstrate that patterned surfaces can be used to induce the emergence of macroscopic sliding precursors. For example, when two smooth spheres of different radii are combined, they begin to slide at different sliding thresholds. Indeed, in Fig 6 .2(a), which presents the evolution of the tangential force during shearing of two different spheres of radius 4.71 mm and 24.81 mm for three normal loads (0.27 N, 0.55 N and 0.82 N), we can observe as expected that the tangential force peak is both higher and shifted toward higher displacement when the radius of the sphere is higher. Thus, when the same two spheres of different radius are combined in one single interface, we expect the smallest to slide before. Provided that one is able to detect this event in the main friction curve, it could play the role of precursor to the soft adhesives manifest) occur as soon as one of the two spheres starts sliding. Those oscillations show up in the tangential force, which could facilitate the detection of the simultaneous slope change (see Figure 6.4(a)). However, a large part of the physics responsible for the appearance of such instabilities (like Schallamach waves [START_REF] Schallamach | How does rubber slide?[END_REF] and re-attachment folds [START_REF] Barquins | Rubber friction and the rheology of viscoelastic contact[END_REF]) is still not fully understood and, as we have seen all along this work, mastering their presence is still a very challenging task. One way would be to extend the work done in Chapter 3 to 3D in order to access not only the mechanical field at the very interface but in the whole bulk of the sphere. This could be done numerically by using the same type of model that the one presented, or experimentally by using an in-situ 3D imaging method (such as X-Ray tomography) combined with Digital Volume Correlation (DVC).