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Introduction

After entering the information age, the speed of acquiring information increases constantly, and
computational science has become a critical tool in various scientific research fields, such as
weather forecasting, aerospace, biomedical, etc., in order to complete computationally intensive
tasks. Computers play also an important role in our daily life. They are frequently used in
different places like schools, banks, governments, etc.

In order to meet the ever-increasing requirements in terms of information processing (e.g.,
storage, computing performance), building high-performance computers (i.e., supercomputers)
has turned out indispensable. The computational works (i.e., tasks) in different fields have dif-
ferent characteristics and requirements. Many of them have time constraints: Tasks completed
after their predefined deadline have little or no value. Furthermore, the available budget is
usually also limited. Budget here can refer to monetary or energy resources.

The main goal of this thesis is to design scheduling heuristics for independent tasks under
budget and time constraints, in order to satisfy different criteria (i.e., system performance,
energy consumption or reliability). More precisely, given a set of independent tasks with their
deadline, and a platform composed of identical or different processors, we need to decide how
to allocate tasks on the platform, in which order to execute them on each processor, in order to
meet their requirements. We deal with diverse requirements in our work: meet a given reliability
threshold, or maximize the number of tasks successfully executed. As for the budget, we may
have limited monetary resource available, or we need to minimize the energy consumption. The
problem becomes more complicated with multiple constraints and objectives. But inevitably,
such complicated problems appear in applications and systems of more and more research
domains. Therefore, we urgently need to study the solution to these problems.

There exists diverse task models in different computational problems. Real-time tasks is a
popular one used in many applications. Real-time systems (or tasks) are systems where tasks
are input periodically and must complete successfully before a fixed time-interval called the
deadline. In the literature, real-time systems (or tasks) are classified as hard or soft systems [5].
For hard real-time tasks, no deadline should be missed: it is mandatory that each task completes
before its deadline. This is related to our work in Chapter 5, in which we have a set of periodic
tasks and the deadline of each task instance should be matched. On the contrary, for soft
real-time tasks, some deadlines can be missed. There are two scenarios then: either a task that
missed its deadline must still be completed, or it can be ignored. Our work in Chapter 4 refers to
the latter case: we have periodic tasks which are allowed to miss their deadline, and there is no
value to complete them after their deadline. This is the case of firm real-time tasks. Examples
of applications for firm real-time tasks include multimedia applications, satellite-based tracking,
financial forecast systems, and robotic assembly lines [53, 56, 59]. In our work of Chapter 4,
we assume that the tasks are skippable. While the processors are occupied, all submitted jobs
are waiting for their turn (or waiting to be dropped) in a job queue. We consider a platform
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composed of identical processors, and the objective is to maximize the expected number of
tasks successfully completed before their own deadline, especially in the case that the system is
overloaded.

In Chapters 2 and 3 of this thesis, we consider another task model. We have a set of
independent tasks for which the execution times follow the same distribution. We name that
“stochastic tasks” or “bag of tasks”. Furthermore, in our task model, it is not necessary for
all tasks to be completely processed to obtain a meaningful result. They are all available in
the beginning and have common budget and deadline constraints. The scheduler can decide
to interrupt a (long) running task at any time and then launch a new one, hoping that the
latter can take less time to complete, but the budget already spent for the interrupted task is
lost. The objective is to successfully complete as many tasks as possible, but it does not matter
which ones succeed. This problem is closely related to imprecise computations. Most often,
tasks in imprecise computations are divided into a mandatory and an optional part: while the
execution of all mandatory parts is necessary, the execution of optional parts is decided by the
user. Often, the user has not the time or the budget to execute all optional parts, and she
must select which ones to execute. Our work in Chapters 2 and 3 corresponds to optimizing the
processing of the optional parts. Among domains where tasks may have optional parts (or where
some tasks may be entirely optional), one can cite recognition and mining applications [69],
robotic systems [48], speech processing [27]; and [55] also cites multimedia processing, planning,
artificial intelligence, and database systems. In these applications, the processing times of the
optional parts are heavily data-dependent, hence the need to estimate them via a probability
distribution.

In addition to the task model, as already mentioned above, there is also a variety of require-
ments in computational problems. It is shown that transient faults are much more frequent
than permanent faults and represent the major fraction of detected errors. Transient faults are
induced mainly by outside disturbances, such as neutron and alpha particle strikes [85, 93].
Nowadays, the scale of computational problems and digital systems is getting larger and larger.
Although fault rates of a single component in the platform may not be high, with the increase of
the scale of problems to be solved, the scale of the supercomputer increases as well and is more
likely to encounter a fault. Hence, it is important to ensure correct scientific computations in
face of transient faults. In the work in Chapter 5, we have a set of periodic tasks, as discussed
above, and a heterogeneous platform. The worst case execution time (WCET) of each task on
each processor is known in advance. We use the classical replication strategy to guarantee the
reliability target of each task face to transient fault.

In Chapters 2 and 3, we consider a budget constraint. In these two chapters, the global
cost of a processor is the product of its usage time and its unit cost per second, and the budget
can refer to a monetary resource constraint. But in many cases, it is necessary to establish
power management techniques when providing scheduling strategies, not only due to monetary
constraints, but also for protecting the environment. Presently, many domains are pursuing sus-
tainable development. It is also the case in supercomputing. The list of Green500 [60], which
is announced twice a year with TOP500, ranks the supercomputers in the world by energy
efficiency. It means that performance is no longer the only indicator for evaluating supercom-
puters. Energy-efficiency becomes one of the critical objectives in a variety of problems. In
Chapter 5, we aim at minimizing the global energy consumption while meeting the reliability
target and the deadline constraint mentioned above. However, minimizing energy consumption
is antagonisitc to the requirement of reliability, because we need extra resources to avoid faults
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(e.g., replication method in our work). Hence, we should deal with the trade-off between the
reliability and the energy.

The rest of the thesis is organized as following: In Chapter 1, we review the related work of
this thesis, and we present the previous work of our team, in which authors designed scheduling
strategies for stochastic independent tasks under budget and deadline constraints on homoge-
neous platforms, in order to maximize the number of tasks successfully executed. The first
three works extends the state-of-the-art in three different directions: In Chapter 2, we consider
the same task model but applied to an heterogeneous platform. In Chapter 3, we treat the
problem under a non-clairvoyant case: we do not know in advance the task execution times,
and we must learn them during the execution. After that, in Chapter 4, instead of having all
tasks available in the beginning, we consider a real-time system: tasks arrive periodically and
have their own deadline. Finally, we study a more complicated problem in Chapter 5: we have
periodic tasks and a heterogeneous platform. We need to find a heuristic which minimizes the
expected energy consumption, while matching deadline and reliability constraints of all tasks.
The main contributions of each chapter are summarized below.

Chapter 1: Related work

This is a preliminary chapter in which we introduce related work, as well as previous which this
thesis is building upon.

Chapter 2: Scheduling stochastic tasks on heterogeneous cloud platforms [C1, R1]

In this chapter, we extend the previous work to the case of an heterogeneous platform. In the
previous work, the target platform was made of identical processors, and the main questions
are how many processors to enroll and whether and when to interrupt tasks if they have been
executing for a long time. The authors presented an asymptotically optimal strategy in which
they stop all unsuccessful tasks after executing for a duration lopt. This duration was named
the optimal cutting threshold, and this threshold can be calculated numerically according to
the distribution D of the task execution times. As for this work, the cloud platform is com-
posed of several types of processors, where each type has a unit execution cost that depends
upon its characteristics. The task execution times follow a variety of standard probability dis-
tributions (exponential, uniform, half-normal, lognormal, gamma, inverse-gamma and Weibull)
whose mean and standard deviation both depend upon the processor type. In this work, the
main questions are which processors to enroll, and whether the optimal cutting threshold pro-
vided in the previous work is efficient in the case of an heterogeneous platform. We assess the
complexity of the problem by showing its NP-completeness and providing a 2-approximation
for the asymptotic case where budget and deadline both tend to infinity. Then we introduce
several heuristics and compare their performance by running an extensive set of simulations.

Chapter 3: Scheduling stochastic tasks with unknown probability distribution [R3]

Based on the results obtained in the previous work and in Chapter 2, in this chapter, we go back
to the homogeneous platform, and we study the scheduling strategy when task execution times
are not known before execution; instead, the only information available to the scheduler is that
they obey the same (unknown) probability distribution. The scheduler needs to acquire some
information before deciding for a cutting threshold. In addition, the cutting threshold may
be re-evaluated as new information is acquired when the execution progresses further. This
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work presents several strategies to determine a good cutting threshold, and to decide when to
re-evaluate it. In particular, we use the Kaplan-Meier estimator to account for tasks that are
still running when making a decision. The efficiency of our strategies is assessed through an
extensive set of simulations with various budget and deadline values, and ranging over a variety
of probability distributions.

Chapter 4: Efficient task-dropping strategies for firm real-time systems

As stated above, Chapters 2 and 3 deal with the problem in which all tasks are available at time
0 and have the same deadline. In this chapter, we are no longer in an offline case. In contrast,
task instances arrive periodically and have their own deadline. The real-time version of the
problem considered in this chapter is dramatically more complicated, because the pressure on
the system at each time-step plays an important role, and dynamic scheduling decisions must be
taken. In this chapter, we design several heuristics which decide whether and when to interrupt
long-lasting tasks, and when a processor is idle, to launch which task in the waiting queue.
We discretize the time and construct a Markov Chain. We prove that this chain is aperiodic
and irreducible, and we compute with this theoretical model the expected performance of our
heuristics. On the practical side, a comprehensive set of simulations with variety of parameters
is launched, in order to evaluate our heuristics.

Chapter 5: Energy-aware strategies for reliability-oriented real-time task allocation on het-
erogeneous platforms [R2, C2, R4]

Low energy consumption and high reliability are widely identified as increasingly relevant is-
sues in real-time systems on heterogeneous platforms. Thus, after focusing on success rate, in
this chapter, we propose a multi-criteria optimization strategy to minimize the expected energy
consumption while enforcing the reliability threshold and meeting all task deadlines. The plat-
form is composed of processors with different (and possibly unrelated) characteristics, including
speed profile, energy cost and failure rate. The tasks arrive periodically, as in Chapter 4. But
instead of following a certain probability distribution, the information known about task execu-
tion times in this work is their WCETs on each processor. Each instance of a task is replicated
to ensure a prescribed reliability threshold. We provide several mapping and scheduling heuris-
tics to solve this challenging optimization problem. Specifically, a novel approach is designed to
control (i) how many replicas to use for each task, (ii) on which processor to map each replica
and (iii) when to schedule each replica for each task instance on its assigned processor. Dif-
ferent mappings achieve different levels of reliability and consume different amounts of energy.
Scheduling matters because once a task replica is successful, the other replicas of that task
instance are canceled, which calls for minimizing the amount of temporal overlap between any
replica pair. The experiments are conducted for a comprehensive set of execution scenarios,
with a wide range of processor speed profiles and failure rates.



French summary

Après l’entrée dans l’ère de l’information, la vitesse d’acquisition de l’information augmente et la
science informatique devient un outil essentiel dans divers domaines de la recherche scientifique,
tels que les prévisions météorologiques, l’aérospatiale, le biomédical, etc., afin d’effectuer des
tâches à forte intensité de calcul. Les ordinateurs jouent également un rôle important dans
notre vie quotidienne. Ils sont fréquemment utilisés dans différents endroits comme les écoles,
les banques, les gouvernements, etc.

Afin de répondre aux exigences croissantes en termes de traitement de l’information (par ex-
emple, stockage, performances de calcul), la construction d’ordinateurs de hautes performances
(i.e., superordinateurs) devient indispensable. Les travaux de calcul (i.e., tâches) de différents
domaines ont des conditions et des exigences différentes. Beaucoup d’entre eux ont des con-
traintes de temps: les tâches terminées après leur échéance prédéfinie ont peu ou pas de valeur.
D’un autre côté, le budget dont nous disposons est généralement également limité. Le budget
peut ici faire référence à des ressources monétaires ou énergétiques.

Par conséquent, l’objectif principal de cette thèse est de concevoir des heuristiques
d’ordonnancement pour des tâches indépendantes sous contraintes de budget et de temps, afin
de satisfaire différents critères (i.e., performances du système, consommation d’énergie ou fiabil-
ité). Plus précisément, étant donné un ensemble de tâches indépendantes avec leur échéance, et
une plate-forme composée de processeurs identiques ou différents, nous devons décider comment
allouer les tâches sur la plate-forme, dans quel ordre les exécuter sur chaque processeur, afin de
répondre aux contraintes. Nous traitons de diverses contraintes dans notre travail: atteindre un
seuil de fiabilité prédéfinie, ou maximiser le nombre de tâches exécutées avec succès. En ce qui
concerne le budget, nous pouvons disposer d’une limite de ressources monétaires ou nous devons
minimiser la consommation d’énergie. Le problème devient plus compliqué avec de multiples
contraintes et objectifs. Mais inévitablement, un tel problème apparaît dans les applications et
les systèmes de plus en plus de domaines de recherche. Il est donc urgent d’étudier la solution
à ces problèmes.

Il existe divers modèles de tâches dans différents problèmes de calcul. Le modèle des tâche
temps réel est un modèle populaire utilisé dans de nombreuses applications. Les systèmes (ou
tâches) en temps réel sont des systèmes dans lesquels les tâches sont entrées périodiquement
et doivent se terminer avec succès avant un intervalle de temps fixe appelé échéance. Dans la
littérature, les systèmes (ou tâches) en temps réel sont classés en systèmes dur ou souple [5].
Pour les tâches en temps réel dures, aucune échéance ne doit être manquée : il est obligatoire
que chaque tâche se termine avant son échéance. Ceci est lié à notre travail dans le chapitre 5,
dans lequel nous avons un ensemble de tâches périodiques et la date limite de chaque instance
de tâche doit être respectée. Au contraire, pour les tâches en temps réel souples, certaines
échéances peuvent être dépassées. Il y a alors deux scénarios : soit une tâche qui a dépassé son
échéance doit encore être terminée, soit elle peut être ignorée. Notre travail dans le chapitre 4
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se réfère à ce dernier cas : nous avons des tâches périodiques qui sont possible de manquer
leur échéance, et il n’y a aucune sens de les terminer après leur date limite. C’est le cas des
tâches temps réel fermes. Des exemples d’applications pour des tâches en temps réel fermes
incluent les applications de multimédias, le suivi de trajet basé sur des satellites, les systèmes
de prévision financière et les chaînes de montage robotiques [53, 56, 59]. Dans notre travail du
chapitre 4, nous supposons que les tâches sont interruptibles. Pendant que les processeurs sont
occupés, tous les travaux soumis attendent leur tour (ou attendent d’être abandonnés) dans une
file d’attente de travaux. Nous considérons une plate-forme composée de processeurs identiques,
et l’objectif est de maximiser l’espérance du nombre de tâches accomplies avec succès avant leur
propre échéance, surtout dans le cas où le système est surchargé.

D’autre part, dans les chapitres 2 et 3 de cette thèse, nous considérons un autre modèle de
tâche. Nous avons un ensemble de tâches indépendantes pour lesquelles les temps d’exécution
suivent la même distribution. Nous appelons cela « tâches stochastiques » ou « sac de tâches ».
De plus, dans notre modèle de tâches, il n’est pas nécessaire que toutes les tâches soient com-
plètement traitées pour obtenir un résultat significatif. Ils sont tous disponibles au départ et ont
des contraintes de budget et de temps communes. L’ordonnanceur peut décider d’interrompre
à tout moment une tâche (longue) en cours d’exécution puis en lancer une nouvelle, en espérant
que cette dernière puisse prendre moins de temps à se terminer, mais le budget déjà dépensé
pour la tâche interrompue est perdu. L’objectif est d’accomplir avec succès autant de tâches
que possible, mais nous ne nous soucions pas savoir lesquelles sont réussies. Cette définition
est étroitement liée aux calculs imprécis (imprecise computations). Le plus souvent, les tâches
aux calculs imprécis sont divisées en une partie obligatoire et une partie facultative : alors que
l’exécution de toutes les parties obligatoires est nécessaire, l’exécution des parties facultatives
est décidée par l’utilisateur. Souvent, l’utilisateur n’a pas le temps ou le budget pour exécuter
toute la partie facultative, et elle doit sélectionner ce qu’elle va exécuter. Notre travail dans les
chapitres 2 et 3 correspond à l’optimisation du traitement de cette partie optionnelle. Parmi les
domaines où les tâches peuvent avoir une partie facultative (ou certaines tâches peuvent être
entièrement facultatives), on peut citer les applications de reconnaissance et de minage [69], les
systèmes robotiques [48], le traitement de la parole [27] ; et [55] cite également le traitement
multimédia, la planification, l’intelligence artificielle et les systèmes de bases de données. Dans
ces applications, le temps de traitement de la partie optionnelle est fortement dépendant des
données, d’où la nécessité de les estimer via une distribution de probabilité.

En plus du modèle de tâche, comme déjà mentionné ci-dessus, il existe également une variété
d’exigences dans les problèmes de calcul. Il est montré que, parmi toutes les erreurs détectées,
les défauts permanents ne causent qu’une petite fraction par rapport aux défauts transitoires.
Les erreurs transitoires sont principalement induites par des perturbations extérieures, telles
que les impacts de neutrons et de particules alpha [85, 93]. De nos jours, l’échelle des problèmes
de calcul et des systèmes numériques est de plus en plus grande. Bien que les taux d’erreur
d’un seul composant de la plate-forme ne soient pas élevés, avec l’augmentation de l’échelle des
problèmes à résoudre, la taille du superordinateur augmente également et est plus susceptible
de rencontrer une panne. Par conséquent, il est important d’assurer un calcul scientifique
correct face aux erreurs transitoires. Dans le travail du chapitre 5, nous avons un ensemble de
tâches périodiques, comme déjà mentionné ci-dessus, et une plate-forme hétérogène. Le temps
d’exécution dans le pire des cas (WCET) de chaque tâche sur chaque processeur est connu
à l’avance. Nous utilisons la réplication, une stratégie classique, pour garantir une fiabilité
prédéfinie de chaque tâche face à une faute transitoire.
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Comme mentionné ci-dessus, dans les chapitres 2 et 3, nous considérons une contrainte
budgétaire. Dans ces deux chapitres, le coût global d’un processeur est le produit de son
temps d’utilisation et de son coût unitaire de temps, et le budget peut faire référence à une
contrainte de ressources monétaires. Mais il est nécessaire d’établir une gestion de l’énergie
tout en proposant des stratégies d’ordonnancement dans de nombreux cas, non seulement en
raison de contraintes monétaires, mais aussi pour la protection de l’environnement. À l’heure
actuelle, de nombreux domaines poursuivent le développement durable. C’est aussi le cas du
supercalcul. La liste des Green500 [60], qui est annoncée deux fois par an avec TOP500, classe les
superordinateurs dans le monde par efficacité énergétique. Cela signifie que la performance n’est
plus le seul indicateur pour évaluer les superordinateurs. L’efficacité énergétique devient l’un
des objectifs critiques dans une variété de problèmes. C’est ce à quoi nous sommes confrontés
dans le chapitre 5, dans lequel nous devons minimiser la consommation globale d’énergie tout
en respectant l’objectif de fiabilité et la contrainte de temps mentionnés ci-dessus. Cependant,
minimiser la consommation d’énergie est contraire à l’exigence de fiabilité, car nous avons besoin
de ressources supplémentaires pour éviter les pannes (par exemple, la méthode de réplication
dans notre travail). Par conséquent, nous devrions traiter le compromis entre la fiabilité et
l’énergie.

Le reste de la thèse est organisé comme ci-dessous: Dans le chapitre 1, nous revoyons l’état-
de-l’art de cette thèse, et nous présentons le travail précédent de notre équipe, dans lequel les
auteurs ont conçu une stratégie d’ordonnancement pour des tâches indépendantes stochastiques
sous contraintes de budget et de temps sur une plate-forme homogène , afin de maximiser le
nombre de tâches exécutées avec succès. Les trois premiers travaux étendent l’état de l’art
dans trois directions différentes: Dans le chapitre 2, nous considérons le même modèle de tâche
dans le cas d’une plate-forme hétérogène. Au chapitre 3, nous traitons le problème sous un
cas non-clairvoyant: nous ne connaissons pas à l’avance la distribution du temps d’exécution
des tâches, et nous devons l’apprendre pendant l’exécution. Après cela, au chapitre 4, au lieu
d’avoir toutes les tâches disponibles au début, nous considérons un système en temps réel: les
tâches arrivent périodiquement et ont leur propre échéance. Enfin, nous étudions un problème
plus compliqué au chapitre 5: nous avons des tâches périodiques et une plate-forme hétérogène.
Nous devons trouver une heuristique qui minimise l’espérance de la consommation d’énergie,
tout en respectant les contraintes de temps et de fiabilité de toutes les tâches. Les principales
contributions de chaque chapitre sont résumées ci-dessous:

Chapitre 1: Etat de l’art

Il s’agit d’un chapitre préliminaire dans lequel sont introduits les états-de-l’art et le travail
précédent à partir duquel cette thèse est construite.

Chapitre 2: Ordonnancement de tâches stochastiques sur des cloud plate-formes hétérogènes [C1,
R1]

Dans ce chapitre, nous étendons le travail précédent au cas des plate-formes hétérogènes. Dans
le travail précédent, nous sommes dans un cas homogène, et les principales questions sont le
nombre de processeurs à utiliser et, si et quand interrompre les tâches si elles s’exécutent depuis
longtemps. Les auteurs ont présenté une stratégie asymptotiquement optimale dans laquelle
ils arrêtent toutes les tâches non-accomplies après avoir exécuté pendant le temps lopt. Les
auteurs l’ont nommé le seuil à couper optimal, et ce seuil peut être calculé numériquement
en fonction de la distribution des temps d’exécution des tâches D. Quant à ce travail, la
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plate-forme de type cloud est composée de plusieurs types de processeurs, où chaque type a
un coût d’exécution unitaire qui dépend de ses caractéristiques. Les temps d’exécution des
tâches suivent une variété de distributions de probabilité standard (exponentielle, uniforme,
semi-normale, lognormale, gamma, gamma inverse et Weibull) dont la moyenne et l’écart-type
dépendent tous deux du type de processeur. Dans ce travail, les principales questions sont de
savoir quels processeurs à utiliser et si le seuil à couper optimal fourni dans le travail précédent
est efficace dans le cas de plate-forme hétérogène. Nous évaluons la complexité du problème en
montrant sa NP-complétude et en fournissant une 2-approximation pour le cas asymptotique
où le budget et le temps tendent tous deux vers l’infini. Ensuite, nous introduisons plusieurs
heuristiques et comparons leurs performances en exécutant un ensemble extensif de simulations.

Chapitre 3: Ordonnancement de tâches stochastiques avec une distribution de probabilité
inconnue [R3]

Basé sur des résultats obtenus dans le travail précédent et dans Chapitre 2, dans ce chapitre,
nous revenons à une plate-forme homogène, et nous étudions la stratégie d’ordonnancement
lorsque les temps d’exécution des tâches ne sont pas connus avant l’exécution; en revanche, la
seule information disponible pour l’ordonnanceur est qu’ils obéissent à la même distribution de
probabilité (inconnue). Le ordonnanceur doit acquérir certaines informations avant de décider
d’un seuil à couper. De plus, le seuil à couper peut être réévalué au fur et à mesure que de
nouvelles informations sont acquises lorsque l’exécution progresse. Ce travail présente plusieurs
stratégies pour déterminer un bon seuil à couper, et pour décider quand le réévaluer. En
particulier, nous utilisons l’estimateur de Kaplan-Meier pour tenir compte des tâches en cours
d’exécution lors de la prise de décision. L’efficacité de nos stratégies est évaluée à travers un
vaste ensemble de simulations avec diverses valeurs de budget et d’échéance, portant sur une
variété de distributions de probabilité.

Chapitre 4: Stratégies efficaces de suppression de tâches pour les systèmes en temps réel
fermes

Comme indiqué ci-dessus, les chapitres 2 et 3 traitent du problème dans lequel toutes les tâches
sont disponibles au temps 0 et ont la même échéance. Dans ce chapitre, nous ne sommes
plus dans un cas offline. En revanche, les instances de tâche arrivent périodiquement et ont
leur propre échéance. La version temps réel du problème considéré dans ce chapitre est plus
compliqué, car la pression sur le système à chaque pas de temps joue un rôle important, et des
décisions d’ordonnancement dynamiques doivent être prises. Dans ce travail, nous concevons
plusieurs heuristiques qui décident si et quand interrompre les tâches de longue durée, et quand
un processeur est disponible, de lancer quelle tâche dans la file d’attente. Nous discrétisons le
temps et construisons une chaîne de Markov. Nous montrons que cette chaîne est apériodique
et irréductible, et nous calculons avec ce modèle théorique l’espérance de performance de notre
heuristique. Du côté pratique, un ensemble de simulations avec une variété de paramètres sont
lancés, afin d’évaluer nos heuristiques.

Chapitre 5: Stratégies écoénergétiques pour l’allocation de tâches en temps réel axée sur
la fiabilité sur des plate-formes hétérogènes [R2, C2, R4]

La faible consommation d’énergie et la fiabilité élevée sont largement identifiées comme des
problèmes de plus en plus pertinents dans les systèmes en temps réel sur des plate-formes
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hétérogènes. Ainsi, après s’être focalisé sur le taux de réussite, dans ce chapitre, nous pro-
posons une stratégie d’optimisation multicritères pour minimiser l’espérance de consommation
d’énergie tout en respectant le seuil de fiabilité et en respectant toutes les échéances des tâches.
La plate-forme est composée de processeurs avec des caractéristiques différentes (et éventuelle-
ment sans corrélation), y compris la vitesse, le coût énergétique et le taux d’échec. Les tâches
arrivent périodiquement, comme dans le chapitre 4. Mais au lieu de suivre une certaine dis-
tribution de probabilité, les informations connues sur les temps d’exécution des tâches dans
ce travail sont leurs WCET sur chaque processeur. Chaque instance d’une tâche est répliquée
pour garantir un seuil de fiabilité prescrit. Nous proposons plusieurs heuristiques d’attribution
et d’ordonnancement pour résoudre ce problème d’optimisation difficile. Plus précisément,
une nouvelle approche est conçue pour contrôler (i) le nombre de répliques à utiliser pour
chaque tâche, (ii) sur quel processeur attribuer chaque réplique et (iii) quand ordonnancer
chaque réplique pour chaque instance de tâche sur son processeur attribué. Différentes attri-
butions atteignent différents niveaux de fiabilité et consomment différentes quantités d’énergie.
L’ordonnancement est important car une fois qu’une copie de tâche est réussi, les autres copies
de cette instance de tâche sont annulés, ce qui nécessite de minimiser la superposition temporel
entre des paires de copies. Les expériences sont exécutées pour un grand ensemble de scénarios,
avec une large gamme de vitesse et de taux d’échec pour les processeurs.
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Chapter 1

Related work

We overview in this section the related work and the previous work of this thesis. At first,
we present in Section 1.1 the previous work based on which we establish our proper research.
Secondary, the work in this thesis falls under the scope of cloud computing since it targets to
schedule independent tasks on a cloud platform under deadline and budget constraints. We
overview the resource provisioning on cloud platform in Section 1.2. After that, in Chapters 2
and 3, we consider bags of tasks and imprecise computations which will be presented respectively
in Section 1.3 and 1.4. Furthermore, in Chapter 3, task execution times obey a probability
distribution which is unknown before execution, which is closely related to non-clairvoyant
scheduling, which we survey in Section 1.5. As for the work in Chapter 4, we consider firm
real-time tasks in Section 1.6 and job queue in Section 1.7, which are related with the model in
this work. On the other hand, we present in Section 1.8 a set of works which consider similar
problem as that in Chapter 4. Finally, in Section 1.9, we present existing works in the field of
multi-criteria real-time tasks scheduling, in either homogeneous and heterogeneous platforms,
which is very closely related to our work in Chapter 5.

1.1 Scheduling stochastic independent tasks on homogeneous plat-
form

In this section, we recall previous results in [12, 13], which provide scheduling strategies for
stochastic independent tasks on homogeneous platform under common budget and deadline
constraints. As mentioned in the introduction, we have a bag of tasks for which the execution
times follow a common probability distribution D which is known in advance. And we have a
set of identical processors. The budget spent by a processor is the product of its execution time
by the unit execution cost of that processor. Authors deal with the following two questions:
Firstly, how many processors should be enrolled? Secondly, should all tasks be allowed to run
until completion, or should some tasks be interrupted and, in the latter case, which tasks and
when?

For the first question, authors find that, with a budget of b and a deadline of d, we should
enroll

⌈
b
d

⌉
processors.

Then comes the key problem in this work: A scheduling policy has to decide whether and
when should unsuccessful tasks be interrupted. Of course, interrupting a running task is a risky
decision, because: (i) the time and budget already spent to execute the current task will be lost

1
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if it gets interrupted; and (ii) there is no guarantee that the new task will complete faster than
the interrupted one.

Consider a given processor and a given distribution of task execution times with expected
value µ and standard deviation σ. Authors propose a fixed-threshold strategy. A fixed-threshold
strategy interrupts every not-yet-completed task at a predefined threshold l (i.e., when the task
has been executing for a time l without completing). They introduce the OptRatio heuristic
which is proved to be an asymptotically optimal policy for discrete distributions and extend
it to continuous distributions. Known a distribution of task execution times, OptRatio finds
an optimal cutting threshold lopt. It means that, all tasks will be interrupted after executing
for time lopt without successfully completing. The idea behind OptRatio is that, cutting
unsuccessful tasks at lopt maximizes (asymptotically) the ratio E(l) of the probability of success
to the expected execution time spent for a single task, when each task is interrupted at time
l. As for the simulation, OptRatio has been shown to perform very well for a wide range of
budget and deadline values. The calculation in discrete and continuous cases is presented in
the following sections:

1.1.1 Discrete distributions

In this section, authors consider a discrete distribution D under which there are k possible task
execution times, w1 < w2 < ... < wk. A task has an execution time wi with probability pi, with
0 ≤ pi ≤ 1 and

∑k
j=1 pj = 1. The success rate of the strategy with threshold l is computed as

follows:

E(l) =


0 if l < w1∑I(l)

j=1 pj∑I(l)
j=1 pjwj+

(
1−
∑I(l)

j=1 pj

)
l

otherwise (1.1)

where I(l) is the index of the largest task execution time smaller than or equal to l: I(l) = k if
l ≥ wk, and wI(l) ≤ l < wI(l)+1 otherwise. This complicated formula has an intuitive explanation:
the probability of success with cutting threshold l is

∑I(l)
j=1 pj , and the execution time is averaged

as follows: some tasks have (successfully) executed in wj seconds, with probability pj , for each
j ≤ I(l), and the remaining tasks have been interrupted after l seconds (with the remaining
probability

(
1−

∑I(l)
j=1 pj

)
). Thus, the optimal threshold is defined as following:

lopt = arg max
l∈{w1,...,wk}

E(l)·

1.1.2 Continuous distributions

In this case, D is a continuous distribution whose cumulative distribution function is F (x) and its
probability density function f(x). The execution time of a task is defined by a random variable
X which follows D. With these notations, the probability that the execution is no longer than a
duration t is: P (X ≤ t) = F (t). Then, the equation of the yield of the fixed-threshold strategy
of threshold l is easily extrapolated from that for discrete distributions (Equation 1.1):

E(l) = F (l)∫ l

0
xf(x)dx+ l(1− F (l))

(1.2)
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The optimal threshold is then, like previously:

lopt = arg max
l

E(l).

For most distributions, lopt cannot be computed analytically, but authors provide a pro-
gram [14] to compute it numerically.

Thus, the final conclusion of this work is following: With several identical processors avail-
able and a distribution of task execution times known in advance, we enroll

⌈
b
d

⌉
processors and

execute on each of them the fixed-threshold strategy of threshold lopt.

1.2 Resource provisioning on cloud platform
Resource provisioning and scheduling are key steps to the efficient execution of workflows on
cloud platforms. Singh and Chana published a survey devoted solely to cloud resource provision-
ing [84], that is, the decision of which resources should be enrolled to perform the computations.
Resource scheduling decides which computations should be processed by each of the enrolled
resources and in which order they should be performed.

In Chapters 2, 3 and 4, we refine the classical deterministic model by adding stochasticity to
task execution times. We observe that the stochastic context has not received much attention.
Indeed, most of the studies assume a clairvoyant setting: the resource provisioning and task
scheduling mechanisms know in advance, and accurately, the execution time of all tasks. A
handful of additional studies also consider that tasks may fail [63, 75]. Among these articles,
Poola et al. [75] differ as they assume that tasks have uncertain execution times. However, they
assume they know these execution times with a rather good accuracy (the standard deviation of
the uncertainty is 10% of the expected execution time). They are thus dealing with uncertainties
rather than a true non-clairvoyant setting. The work in [10] targets stochastic tasks but is
limited to taking static decisions (no task interruption).

On the other hand, in Chapter 5, we are facing a multi-criteria scheduling problem. We
can find extensive studies which consist in meeting deadlines and either respecting a budget
or minimizing the energy consumption for deterministic workflows [2, 4, 7, 9, 24, 30, 65, 66,
94]. [95] maximizes the reliability of an energy-constrained DAG executed on a heterogeneous
platform while using DVFS. Conversely, [100] minimizes the energy consumption of a reliability-
constrained DAG executed on a heterogeneous platform while using, or not, DVFS. A group
of authors published a book [98] and several articles on the problem of DAG scheduling on
heterogeneous platforms. In Chapter 2 of book [98] and in [96] these authors consider the energy
minimization when scheduling a DAG with or without DVFS. However, these two references do
not consider reliability. In [97] they considered the same problem while satisfying some reliability
goal. Some works are limited to a particular type of application like MapReduce [47, 50, 88].
For instance, Tian and Chen [88] consider MapReduce programs and can either minimize the
financial cost while matching a deadline or minimize the execution time while enforcing a given
budget.

1.3 Bags of tasks
A bag of tasks is an application composed of a set of independent tasks sharing some common
characteristics: either all tasks have the same execution time or they are instances sampled
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from the same probability distribution. This is exactly the case of the first three works in this
thesis. There exists a survey about resource optimization for bag of tasks applications [87].
Several works devoted to bag-of-tasks processing explicitly target cloud computing [8, 16, 37,
73]. Most of them [8, 16, 37] consider the classical clairvoyant model, in which we know the
exact execution time or its distribution, or the uncertain model, in which we know its range
or its standard deviation, while [73] targets a non-clairvoyant setting. Vecchiola et al. [92]
consider a single application comprising independent tasks with deadlines but without any
budget constraints. In their model, tasks are supposed to have different execution times but
they only consider the average execution time of tasks rather than its probability distribution
(this is left for future work). Moreover, they do not report on the amount of deadline violations;
their contribution is therefore hard to assess. Mao et al. [67] consider both deadline and budget
constrained provisioning and assume they know the tasks execution times up to some small
variation (the largest standard deviation of a task execution time is at most 20% of its expected
execution time). Hence, this work is more related to scheduling under uncertainties than to
stochastic tasks scheduling.

1.4 Imprecise computations and anytime tasks

In the works in Chapter 2 and 3, task model assumes that some tasks may not be executed.
This model is very closely related to imprecise computations [3, 19, 62]. Furthermore, this
task model also corresponds to the overload case of [6] where jobs can be skipped or aborted.
Another related model, is that of anytime tasks [52] where a task can be interrupted at any
time, with the assumption that the longer the running, the higher the quality of its output.
Such a model requires a function relating the time spent to a notion of reward. Finally, we note
that the general problem related to interrupting tasks falls into the scope of optimal stopping,
the theory that consists in selecting a date to take an action, in order to optimize a reward [28].

1.5 Non-clairvoyant task scheduling

Most of the related works surveyed so far assume a fully or semi clairvoyant set of task execution
times, which is not always true in a realistic scenario. In contrast, our model in Chapter 3
considers a fully non-clairvoyant case, in which we have no information in advance about the
execution times of our bag of tasks. Although this topic has received less attention, we can still
find several references. For instance, Sungjin et al. [51] and Pawan et al. [83] both worked on
online algorithms. They assume that the size of arriving tasks is not known before completing
them. In [51], a unified model is designed for several different scheduling problems, while [83]
aims at minimizing flow-time and energy. In the work of Li [58], task execution times are
unknown, and the objective is to minimize the makespan while using one or several multicore
processors. A group of authors [72, 73, 74] has published several studies focusing on budget-
constrained makespan minimization. They do not assume to know the distribution of execution
times but try to learn it on the fly [72, 74]. This work differs from ours as these authors do not
consider deadlines. For instance, in [73], the objective is to try to complete all tasks, possibly
using replication on faster processors, and, in case the proposed solution fails to achieve this
goal, to complete as many tasks as possible. The implied assumption is that all tasks can be
completed within the budget. Using replication to ensure the completion of all tasks is our
objective and strategy in Chapter 5. But in Chapters 2, 3 and 4, we implicitly assume the
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opposite: there are too many tasks to complete all of them by the deadline, and therefore we
attempt to complete as many as possible.

1.6 Firm real-time tasks
Many real-time systems enforce hard deadlines that cannot be missed. But as stated in the
introduction, in Chapter 4, we consider soft real-time tasks which allow the missing of some
deadlines. In particular, for firm real-time tasks, there is no value to complete a task after its
deadline, hence the objective function is to maximize the number of tasks that are successfully
executed. There are many applications that involve firm real-time tasks [53, 56, 59].

In a general firm real-time system, there are several periodic tasks that are input to the
system, and the scheduler has to choose among the task instances which ones will be launched
and which ones will not. Usually, it is assumed that task execution times can take stochastic
values within a prescribed interval: each task has a Worst-Case Execution Time (WCET) that is
an upper bound on the execution time [45]. Mapping decisions are taken statically, based upon
the WCETs. On the contrary, scheduling decisions can be taken either statically, based upon
the total utility of the parallel platform, or dynamically, reclaiming slack intervals based upon
actual execution times. This is exactly the case in Chapter 5. But in the work of Chapter 4, we
extend the state-of-the-art to probability distributions with unbounded support, by interrupting
long-lasting tasks after a given duration threshold has been reached.

1.7 Job queues
As already mentioned, in the work of Chapter 4, we deal with the list of waiting jobs via a
queue. It is however very different from what is done in queueing theory systems [46] where the
typical constraint is to select in which order jobs should be executed to optimize an objective
such as their response time. In this work, jobs all follow the same probability distribution. We
use a simple First-Come-First-Served strategy, in order to select which jobs we execute next
among jobs that have not been dropped.

The closer to our work is the job dropping model [20], where upon arrival of a job, the
system selects, a priori, whether it should be dropped (i.e. should not be added to the queue).
The decision to drop a job often depends on a function of queue parameters (number of jobs
in the queue, average load of the queue): linear function (average queue size) [29] or other
more complicated functions [26, 78]. Then, all jobs from the queue are executed (for example
following a FCFS strategy). Contrarily to the job dropping model, in Chapter 4, we decide
to drop jobs a posteriori, that is, once it is their turn to be scheduled, the algorithm decides
based on information on their deadline and on their distribution of execution time whether they
should be executed or dropped.

1.8 Task pruning in heterogeneous computing systems

In a series of publications [22, 23, 36, 70, 80], authors consider an oversubscribed heterogeneous
computing system to which tasks are submitted at random times. Similar as in our work of
Chapter 4, authors have been investigated task pruning techniques in order to maximize the
proportion of tasks that are successfully executed on the system. Different from our heuristic
which contains one job queue, in their work, when a task is released, it is at first stored in a
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batch queue, and then can be allocated to the machine queue of a processor by the mapping
process. At each mapping event (completion of an old task or arrival of a new task), the success
probability of all tasks in the machine queue is recomputed, via a costly convolution over all
possible durations of the tasks in the queue weighted by their respective probabilities. Tasks
in the batch queue are also considered when there remains a processor with available positions
after the previous computation. Tasks with low probability to meet their deadline are dropped
from the machine queue and deferred in the batch queue. Tasks are deferred mean that their
assignment to a processor is postponed. In contrast, a task dropped from the machine queue
is definitely removed out of the system. Contrarily to our problem, there are several task
types, several processor types, and task arrival dates are random rather than not periodic. This
calls for a very costly solution where a whole convolution over a large time window must be
recomputed at each mapping event. However, some tasks can be pruned (dropped) after some
duration, which is a strategy that we also investigate in our work. The striking difference is
that with a single task type and periodic releases, we are able to determine the optimal value of
the key scheduling parameters once and for all and to apply them on the fly, thereby providing
a schedule whose cost is constant and independent of the number of tasks that are released.

1.9 Multi-criteria real-time tasks scheduling
Section 1.2 introduced a set of works in the domain of resource provisioning and task scheduling.
However, these studies do not consider real-time applications. The periods and deadlines which
constrain real-time tasks render problems significantly harder to tackle. This is the case of our
work in Chapters 4 and 5, in which we consider a set of periodic tasks. Section 1.6 presented the
special case of firm real-time tasks which is a model related to Chapters 4. Instead of focusing
on the number of tasks executed, Chapter 5 consider at the same time energy consumption,
deadline and reliability. Thus, in this section, we will find a few works about multi-criteria real-
time tasks scheduling. We will start with works on homogeneous platform, and then extend to
those on heterogeneous platform.

Liu and Layland first introduced the Earliest Deadline First (EDF) and the Rate Mono-
tonic (RM) scheduling policies for real-time systems and provided the utilization bounds for
both policies in 1973 [61]. Since then, the real-time scheduling problem has been extensively
studied. There exists a very significant literature on real-time scheduling for multiprocessor
systems. However, most work is devoted to homogeneous processor systems, as exemplified by
the survey [21] which ignores altogether heterogeneous systems, and by the more recent sur-
vey [82] where only 9 of the 78 references deal with heterogeneous platforms. [45] minimizes the
energy when scheduling independent tasks with different deadlines on a homogeneous platform
while satisfying some threshold on reliability. The study [43] improved the solution from [45], in
particular by carefully avoiding overlaps between primary and secondary replicas. [44] considers
the same problem; however, it uses checkpointing to cope with failures when all other works
consider replication.

We refer the interested reader to [21, 43, 45, 82] for a comprehensive overview of the related
work for homogeneous platforms. Heterogeneous platforms make the problem even harder
because processors can have different speeds, energy costs, and failure rates. Therefore, the
processor preferred for one task by one of the objectives and constraints —deadline satisfaction,
energy minimization, reliability threshold satisfaction— may be the worst processor for another
objective or constraint. The heuristics have thus to perform complicated trade-offs in these
three-criteria settings.
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Some related works target the scheduling of real-time applications on heterogeneous plat-
forms, but without considering fault tolerance. For instance, [103] targets the execution of a
DAG, but considering neither energy consumption nor fault-tolerance (when DAGs are sched-
uled, tasks are always assumed to have the same deadline). [42] targets the execution of in-
dependent tasks that access shared resources, the access to resources being exclusive. Their
objective is to maximize the number of instances for which a solution is found. [71], [79] and
[102] minimize energy consumption by using DVFS, [71] when scheduling independent tasks,
[79] a DAG, and [102] a moldable application. [91] considers the scheduling of independent
tasks and DAGs under an energy constraint, while [89] considers the scheduling of independent
tasks under a thermal constraint. [101] proposes a fully polynomial-time approximation scheme
(FPTAS) for minimizing the energy consumption for a set of independent tasks executed on a
set of heterogeneous (unrelated) processing elements.

On the other hand, some related work considers the execution of real-time applications on
heterogeneous failure-prone platforms but is limited to coping with a single failure per task
or per processor. [76] maximizes the reliability of the considered DAG but does not consider
energy consumption and follows the primary/backup technique and, thus, is limited to at most
one failure per task of the DAG. [77] attempts to maximize resource utilization (and does
not consider energy) when scheduling a set of independent tasks. It assumes that at most one
processor can fail, which enables the simultaneous scheduling of several backup tasks on the very
same processor, since at most one of them will need to be executed. [49] minimizes the energy
consumed for the execution of a DAG while satisfying a reliability threshold. The proposed
solution uses DVFS and Power Mode Management (i.e., the ability to switch off idle processors
to low-power inactive state). This solution, however, cannot produce a schedule more reliable
than the original one. It also supports at most one fault per processor. [39] minimizes the
energy consumed for the execution of a set of independent tasks while satisfying a reliability
threshold using DVFS and following a primary-backup approach.

Very few studies consider the execution of real-time applications on heterogeneous failure-
prone platforms and can cope with two or more failures per task. [86] minimizes the energy
consumed for the execution of a set of independent tasks while satisfying a reliability threshold.
The proposed solution uses DVFS. This solution, however, is based on a primary-backup ap-
proach that is then extended. This approach, by design, cannot produce a schedule more reliable
than the original one with two replicas per task, strongly relies on DVFS, and schedules several
replicas of a same task on the same processor (what most other approaches forbid). [38] targets
the execution of a DAG on a heterogeneous platform while satisfying a reliability threshold.
However, the objective is not the minimization of energy consumption but the maximization of
the utilization of energy consumption, which can be seen as a yield of reliability improvement
with respect to increased energy consumption. As a consequence, [38] produces energy greedy
schedules (see subplots (a-1), (b-1), and (c-1) of Figure 1 in [38]). In Chapter 3 of the already
mentioned book [98], the authors consider cost minimization when scheduling a DAG under
deadline and reliability constraints. Therefore, we consider the same problem but for a set of
independent tasks rather than for a DAG. Because of the dependence between tasks and the
chosen as-soon-as-possible scheduling of [98], this solution tends to schedule simultaneously the
different replicas of a single task. As already pointed out in the studies [43, 45] this can lead to
a significant waste of energy. Therefore, it would have been unfair to compare our solution to
that of [98] applied to independent tasks.

From what precedes, we have identified only a single existing solution that enables to sched-
ule real-time tasks on heterogeneous platforms while minimizing energy consumption and sat-
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isfying some bound on the overall reliability. However, this solution being dedicated to DAGs
lacks the possibility to minimize overlapping between replicas of a same task, which has been
previously shown to be crucial [43] and which we have given special care to in our work (see
Section 5.4).



Chapter 2

Scheduling stochastic tasks on heterogeneous
cloud platforms

2.1 Introduction

In this first chapter, we deal with the following problem: given a cloud platform and a bag of
stochastic tasks, how to maximize the number of successful task executions, given a budget and
a deadline. The cloud platform is composed of several processor types, each with a different unit
cost and computing capacity. The execution time of the tasks follows a different probability
distribution on each processor type, in order to account for their different performance. For
instance, the expectation of the distribution of task durations on a given processor can be
inversely proportional to the raw speed of that processor, while the standard deviation can
account for the interplay between task profiles and processor parameters, such as memory
usage, communication pattern, etc. In this chapter, we use an extensive set of widely used
distributions, namely exponential, uniform, half-normal, lognormal, gamma, inverse-gamma
and Weibull distributions.

This task model assumes that some tasks may not be executed in the end. In fact, there are
three cases: (i) some tasks are launched and reach completion, meaning that they are successfully
executed: (ii) some tasks are launched but they are interrupted before completion, meaning
that their execution has failed; and (iii) some tasks are not launched at all. The objective
is to maximize the number of successful tasks, given the deadline and budget constraints.
This scheduling problem naturally arises with many applications in the context of information
retrieval. Informally, the goal is to extract as much information as possible, by launching
analysis tasks whose execution time strongly depends upon the nature of the data sample being
processed. A typical example is a set of image files, whose processing times heavily depend
upon the elements that are present (or not) within each image. Not all data samples must be
processed, but the larger the number of data samples successfully processed, the more accurate
the analysis. Furthermore, as mentioned in the introduction, this task model is closely related
to imprecise computations [3, 19, 62], particularly in the context of real-time computations.

As stated in 1.1, with a single processor, the problem is to decide whether, and when,
to interrupt a long-lasting task, with the hope to launch a new one that would execute faster.
Previous work [12, 13] showed that there exists an optimal threshold at which each running task
should be interrupted. Interrupting each yet unsuccessful task when it reaches this optimal
cutting threshold is shown to maximize the expected success rate on the processor, i.e., the

9
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average number of tasks successfully executed per time unit. This cutting threshold depends
upon the probability distribution of task execution times and is computed numerically.

With several processors of different types, the problem becomes dramatically more compli-
cated, because we have to decide how many processors to enroll, and of which type. In addition
to success rate, the unit cost of the processor plays an important role. In fact, the key parameter
is the yield, defined as the ratio of the success rate over the unit cost: it gives the expected num-
ber of successful tasks per budget unit. Intuitively, one would like to sort available processors by
non-increasing yields, and greedily enroll them in this order. With this greedy algorithm, there
remains to determine how many processors to enroll. We show how to determine this number
and call Greedy the resulting greedy algorithm with the optimal number of processors. Unfor-
tunately, Greedy is not optimal. In fact, we show that the problem to decide which processor
to enroll is NP-complete, but we also show that Greedy is guaranteed to be a 2-approximation.
These results lay the foundation for the complexity of the problem with several processors. On
the practical side, we compare Greedy with a variety of other heuristics, using an extensive set
of simulations, and observe that it always achieve a close-to-optimal performance, which makes
it the heuristic of choice for the target optimization problem.

The main contributions of this chapter are the following:
• We provide several theoretical results (NP-completeness, the Greedy approximation al-
gorithm and performance lower bound) for the problem instance with large budget and
deadline. These results show the difficulty of the optimization problem under study, and
lay the foundations for its analysis;
• We compare the performance of Greedy to that of several heuristics for the general
problem with arbitrary deadline and budget values, and for all the probability distributions
mentioned above. Not only Greedy is superior to the other heuristics, but its performance
is very close to the lower bound on most instances. Altogether, Greedy provides a robust
approach to the problem.

The rest of the chapter is organized as follows. We detail the framework and objective in
Section 2.2. We provide complexity results (NP-completeness and 2-approximation algorithm)
in Section 2.3. We compare these heuristics in Section 2.4, assessing their performance for an
extensive set of simulation parameters. Finally, we provide concluding remarks in Section 2.5.

2.2 Problem definition
This section details the framework and the scheduling objective. See Table I for a summary of
main notations.

2.2.1 Platform and tasks

We aim at scheduling a set of independent stochastic tasks on a cloud platform. The cloud
platform is composed of a set of different processors, each with their own characteristics. In the
abstract formulation of the problem, there is a set P = {m1,m2, . . . ,mM} ofM processors. Each
processor has a unit cost: ci is the amount of budget spent per unit of time for executing a task on
mi. The execution time of a task on mi obeys a probability distribution Di which is chosen as a
probability distribution whose mean and standard deviation both depend on the characteristics
of mi. The rationale for such a framework is the following. First, we assume that task execution
times are data-dependent, as is the case in many applications, and therefore exhibit stochastic
behaviors which can be nicely modeled by a probability distribution. Second, task execution
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Table I: Summary of main notations.

Platform

P platform
M number of processors
mi the i-th processor
ci unit cost of mi

li cutting threshold for task interruption on mi

Ei success rate of mi, computed using li
Yi yield of mi, where Yi = Ei

ci
Y tot total platform yield
k number of processor categories
nj number of processors of type j (hence M =

∑k
j=1 nj)

Tasks

Di probability distribution of execution times on mi

µi, σi mean, standard deviation of Di
Constraints

b budget
d deadline
K ratio b/d

times cannot be easily encapsulated as a mere function of the number of cores of their host
processor, because many parameters such as memory usage and communication patterns must
be taken into account. Therefore, it would not make sense to consider a unique probability
distribution and simply scale it by a unique parameter, say the number of cores of each processor,
to induce actual execution times on that processor. Instead, we use a different probability
distribution for each processor, with values of mean and standard deviation accounting for
the heterogeneity of sources. It makes sense to assume that the mean µi of Di, which is the
expectation of execution times on mi, is somewhat related to the number of cores nbcoresi of
mi. In the experimental section (Section 2.4), we explore scenarios where the mean values µi
are inversely proportional to the core counts nbcoresi, but we vary the standard deviations σi to
account for a wide range of heterogeneity degrees. We report results for a variety of standard
probability distributions (exponential, uniform, half-normal, lognormal, gamma, inverse-gamma
and Weibull).

Finally, in many experimental cloud platforms, there is only a reduced set of different pro-
cessor types, with several available identical processors per type. We let k be the number of
types and nj be the number of available processors for type j, where

∑k
j=1 nj = M .

2.2.2 Constraints and optimization objective

The user has a limited budget b and an execution deadline d. The optimization problem is
to select a subset of processors and to maximize the expected number of tasks that can be
successfully completed on these processors before the deadline is reached or the totality of the
budget is spent. More precisely, the optimization problem Opt(P, b, d) is the following:



12 CHAPTER 2. HETEROGENEOUS PLATFORMS

• Decide which processors to launch: it can be any subset of P;
• Each processor in P executes tasks continuously, as soon as it is started and until the
deadline or the budget is exceeded, whichever comes first;
• At any time and on each processor, decide whether to interrupt the task that is currently
executing and launch a new one: each task can be deleted by the scheduler at any time
before completion;
• The execution of each task is non-preemptive. In a non-preemptive execution, interrupted
tasks cannot be relaunched, and the time/budget spent computing until interruption is
completely lost.

2.3 Complexity results
In this section, we present complexity results with several processors, assuming large budget and
deadline values. We start by formulating the asymptotic optimization problem in Section 2.3.1.
We assess its complexity in Section 2.3.2. Then we introduce a greedy polynomial heuristic in
Section 2.3.3, and show that it is a 2-approximation.

2.3.1 Problem instance with b = Kd

Consider a given processor mi ∈ P . Given the distribution Di of task execution times on mi,
we choose a cutting threshold lcut

i at which to interrupt tasks, using any of the methods in
Section 1.1 (for instance we take lcut

i = lopt
i , the value computed for OptRatio). We then

derive the (asymptotic) success rate Ei (average number of successful tasks per time unit) and
the yield Yi = Ei

ci
(average number of successful tasks per cost unit), where ci is the unit cost

of mi. The asymptotic behavior of mi is characterized by these two parameters. With several
processors, if there is no deadline, the best solution is to use a single processor, namely the
one with highest yield Yi. Introducing a deadline makes parallelism unavoidable, and raises the
question of selecting which processors to enroll. In the following, we assume that budget and
deadline are proportional: b = Kd for some constant K ≥ 1, and aim at deriving asymptotic
results when b tends to infinity under that constraint. Intuitively, K represents the total cost
per time unit available until deadline d. Hence, the potential parallelism that can be achieved.

Now assume that we enroll a subset Q = {mi, i ∈ Q} of processors from P. Here, Q
simply represents the subset of {1, 2, . . . ,M} that records the indices of enrolled processors.
These processors will work continuously until the budget is exhausted or the deadline has been
reached, whichever comes first. If the processors in Q work for a duration t, the total budget
spent is t×

∑
i∈Q ci. Hence,

t = min
(
d,

b∑
i∈Q ci

)
= b

max(K,
∑
i∈Q ci)

·

Asymptotically, each mi, with i ∈ Q, is successfully executing Ei task per time unit. Hence, the
total yield of subset Q is

Y tot =
∑
i∈Q Ei

max(K,
∑
i∈Q ci)

· (2.1)

We are ready to define the asymptotic optimization problem with several processors:

Definition 1 (OptHetero). Given the set P of available processors and the constraint b = Kd,
determine the subset Q of P so that the value of Y tot in Equation (2.1) is maximized.



2.3. COMPLEXITY RESULTS 13

2.3.2 NP-completeness
In this section, we show that the decision problem associated to OptHetero is NP-complete.
For simplicity, we use the same name for the decision and optimization problems.

Theorem 1. OptHetero is NP-complete.

Proof. The decision problem is the following: given the set P of available processors and the
constraint b = Kd, and given a bound on the total yield Z, can we find a subset Q of P with
total yield Y tot ≥ Z? The problem obviously belongs to the class NP, a certificate being the
subset of enrolled processors, whose yield can be computed in linear time. For the completeness,
we make a reduction from SubsetSum, a well-known NP-complete problem [35]. Consider an
instance I1 of SubsetSum: given n positive integers a1, a2, . . . , an and a target T , can we
find a subset J of {1, 2, . . . , n} such that

∑
i∈J ai = T? We build the following instance I2 of

OptHetero: a platform P with M = n + 1 processors, budget/deadline constraint b = Kd
where K = T + 1. Processors characteristics are the following:
• mi, for 1 ≤ i ≤ n, has success rate Ei = Kai and unit cost ci = ai
• mn+1 has success rate En+1 = 2K and unit cost cn+1 = 1.

Finally, the bound on total yield is Z = K + 1. The size of I2 is clearly polynomial (and even
linear) in the size of I1. We now show that I1 has a solution if and only if I2 has a solution.
Assume first that I1 has a solution, i.e., a subset J with

∑
i∈J ai = T . If we enroll all processors

whose index is in J plus mn+1, we obtain the total yield

Y tot =
∑
i∈J Kai + 2K

max(K,
∑
i∈J ai + 1) = KT + 2K

max(K,T + 1) = K + 1.

Hence, a solution to I2.
Assume now that I2 has a solution, i.e., an index subset Q with total yield Y tot ≥ Z = K+1.

If the last processor is not enrolled, i.e., if n + 1 /∈ Q, then Y tot =
∑

i∈QKai

max(K,
∑

i∈Q ai)
≤ K, a

contradiction. Hence, necessarily n+ 1 ∈ Q. Let J = Q \ {n+ 1}, we are going to show that J
is a solution of I1. We know that

Y tot =
∑
i∈J Kai + 2K

max(K,
∑
i∈J ai + 1) ≥ K + 1.

Let U =
∑
i∈J ai. If U ≥ K then Y tot = KU+2K

U+1 = K + K
U+1 < K + 1, a contradiction. If

U ≤ K − 2 then Y tot = KU+2K
K = U + 2 < K + 1, a contradiction. Hence, U = K − 1 = T , and

J is a solution to I1. This concludes the proof.

2.3.3 Greedy heuristic
The OptHetero problem is similar to a knapsack problem, and a natural heuristic is to enroll
processors with highest yield first. Table II shows a little example with a platform P consisting
of M = 5 processors. We use K = 5 in the example.

In Table II, processors are ordered by non-increasing yield, so the greedy heuristic selects
m1 first, then m2, etc. The performance achieved is the following:
• Using only m1: Y tot = 10

max(5,1) = 2;
• Using m1 and m2: Y tot = 10+6.2

max(5,1+3) = 3.24;
• Using m1, m2 and m3: Y tot = 10+6.2+8

max(5,1+3+4) = 3.025;
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Table II: Example of platform P (M = 5).

Processor Success rate Unit cost Yield

m1 E1 = 10 c1 = 1 Y1 = 10
m2 E2 = 6.2 c2 = 3 Y2 ≈ 2.1
m3 E3 = 8 c3 = 4 Y3 = 2
m4 E4 = 6 c4 = 4 Y4 = 1.5
m5 E5 = 4 c4 = 4 Y5 = 1

• Using m1, m2, m3 and m4: Y tot = 10+6.2+8+6
max(5,1+3+4+4) ≈ 2.5167;

• Using all five processors: Y tot = 10+6.2+8+6+4
max(5,1+3+4+4+4) = 2.1375.

In the example, the best choice is to use only m1 and m2, for a total yield Y tot = 3.24. In
the following, we characterize how many processors should be chosen. Finally, note that in the
example, the optimal solution is to use only m1 and m3, for a total yield Y tot = 10+8

max(5,1+4) = 3.6.

Proposition 1. Consider a platform P with M processors ordered by non-increasing yields and
with the constraint b = Kd. The total yield Y tot achieved by the greedy heuristic is maximum
when enrolling either the first i∗ − 1 processors or the first i∗ processors, whichever has the
higher total yield, where i∗ is the smallest index such that

∑i∗
i=1 ci > K.

In other words, the greedy heuristic should enroll processors until their cumulated cost
exceeds K, and then the best solution is either using all theses processors or using all of them
except the last one. In the example of Table II, we have i∗ = 3 and the best solution is with
the first two processors. We let Greedy denote the greedy heuristic which enrolls the optimal
number of processors. Note that when two different processors have the same yield, we rank
them and use the one with lowest unit cost first, which is better for scenarios where the budget
is limited.

Proof. For 1 ≤ i ≤M , we consider the first i processors and define
• the cumulated success rate Stot

i =
∑i
j=1 Ej ;

• the cumulated cost Ctot
i =

∑i
j=1 cj ;

• the cumulated success/cost ratio Ri = Stot
i

Ctot
i
.

Now the total yield achieved with the first i processors is Y tot
i = min

(
Ri,

Stot
i
K

)
. Note that i∗ is

the smallest index i such that Ctot
i ≥ K. First we observe that the Ri are non-increasing. This

is because processors are ordered by ratio Eici . We easily check that

E1
c1
≥ E2
c2

⇒ E1
c1
≥ E1 + E2
c1 + c2

≥ E2
c2

and the result follows by induction.
For i ≥ i∗, we have Y tot

i = Ri ≤ Ri∗ = Y tot
i∗ . For i ≤ i∗ − 1, we have Y tot

i = Stot
i
K ≤ S

tot
i∗−1
K =

Y tot
i∗−1. This concludes the proof.

In order to show that the performance of Greedy is within a factor two of the optimal,
we define the FracOptHetero fractional version of the OptHetero problem. The only
difference between FracOptHetero and OptHetero is that each processor enrolled at the
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beginning can now be stopped at any time before the deadline or the exhaustion of the budget.
For FracOptHetero, the total yield is

Y tot,frac =
∑
j∈P Ejtj
b

(2.2)

where tj is the running time of mj . Formally:

Definition 2 (FracOptHetero). Given the set P of available processors and the constraint
b = Kd, determine tj, which is the running time of the j-th processor in P, so that the value of
Y tot,frac in Equation (2.2) is maximized (tj is null if we do not use the j-th processor). Each mi

in P obeys the OptRatio strategy and interrupts all tasks at time lopt
i , with expected success

rate Ei.

For this problem, the following variant of the greedy algorithm is optimal:

Proposition 2. Consider a platform P with M processors ordered by non-increasing yields and
with the constraint b = Kd. An optimal solution for FracOptHetero is obtained by enrolling
the first i∗− 1 processors until the deadline and enrolling the i∗-th processor to exhaust the rest
of the budget, where i∗ is the smallest index such that

∑i∗
i=1 ci > K.

Proof. For the proof, we assume that i∗ does exist, otherwise all processors are enrolled until the
deadline, which is optimal. Let topt

i denote the running time of mi in the optimal solution, and
ti be its running time in the greedy algorithm. If an optimal solution is not making the greedy
choice, there exists an index i such that topt

i > ti. Because the greedy algorithm uses the first
i∗−1 processors until the deadline, we have i ≥ i∗. Also, because the budget is exhausted by the
greedy algorithm (from the existence of i∗), there must exist an index j such that topt

j < tj . Since
the greedy algorithm does not use processors of index k ≥ i∗ + 1, we have j ≤ i∗, hence j < i.
With the ordering method in the greedy algorithm, we can conclude that Yi ≤ Yj . Then in
the optimal solution, we re-distribute the amount of budget β = min {(tj − topt

j )cj , (topt
i − ti)ci}

frommi tomj . The first term of β guarantees that, after the re-distribution, mj spends no more
budget than its does in the greedy algorithm. After the re-distribution, the yield of the optimal
solution is increased by a nonnegative value β(Yj−Yi)

b . If Yi < Yj , this contradicts the optimality.
Otherwise, each mk, where j ≤ k ≤ i has same yield (because of the ordering method of the
greedy algorithm); then the optimal solution and the greedy algorithm have same global yield.
This concludes the proof.

Let Yopt be the highest yield for OptHetero, and Yopt-frac be the highest yield for Frac-
OptHetero problem. From Proposition 2, we know that Yopt-frac is achieved by the greedy
algorithm, which is given by

Yopt-frac =
Stot
i∗−1
K

+
(

1−
Ctot
i∗−1
K

)
Ei∗
ci∗
· (2.3)

Proposition 3. Greedy is a 2-approximation algorithm for OptHetero.

Proof. We need to prove that: Y tot
greedy ≥

1
2Y

opt. We have

Y tot
greedy = max(Y tot

i∗−1,Y tot
i∗ ) = max

(
Stot
i∗−1
K

,
Stot
i∗

Ctot
i∗

)
.
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Similarly to the proof of Proposition 1, we can easily prove by induction that S
tot
i∗
Ctot
i∗
≥ Ei∗

ci∗
·. As

0 ≤ 1− C
tot
i∗−1
K ≤ 1, we have S

tot
i∗
Ctot
i∗
≥
(

1− C
tot
i∗−1
K

)
Ei∗
ci∗
· We derive:

Y tot
greedy ≥ max

(
Stot
i∗−1
K

,

(
1−
Ctot
i∗−1
K

)
Ei∗
ci∗

)

≥ 1
2

[
Stot
i∗−1
K

+
(

1−
Ctot
i∗−1
K

)
Ei∗
ci∗

]

= 1
2Y

opt-frac ≥ 1
2Y

opt.

2.4 Experiments

This section assesses the performance of several strategies to interrupt executing tasks and to
choose the number and types of processors to enroll for a given budget and deadline. The
algorithms are implemented in R and the related code, data and analysis are publicly available
in [33].

2.4.1 Cutting threshold heuristics

We use the same cutting threshold heuristics as in the previous work [12]:
• OptRatio is the heuristic designed in the previous work that we have already introduced

in Section 1.1.
• MeanVariance(x) is the family of heuristics that interrupt a task as soon as its execution

time reaches µi + xσi, where x is some constant (positive or negative).
• Quantile(x) is the family of heuristics that interrupt a task when its execution time
reaches the x-quantile of the distribution Di with 0 ≤ x ≤ 1.
• Finally, NeverInterrupt is the baseline heuristic that never interrupts tasks; more

precisely, to avoid outliers, NeverInterrupt interrupts a task when its execution reaches
100 times the mean value of the distribution.

2.4.2 Processor selection heuristics

As we have different types and numbers of processors, we aim at finding the optimal subset
to be enrolled. This is especially true when we only have the budget to ue a small subset of
the processors until the deadline. In order to achieve this goal, we compare several methods
for choosing processors. They differ in their criteria to order the processors and then greedily
select the processors in that order. Each method comes in two versions: the limited (ltd) version
enrolls the first i∗ − 1 processors, where i∗ is the smallest index such that

∑i∗
i=1 ci > K; the

refined version selects the best total yield when either using i∗ − 1 processors, as in the limited
version, or using i∗ processors. This choice has for objective to show the improvement of the
last step on results. Here are the three orderings:
• Expectltd and Expect (computation-speed based methods): processors are sorted by
non-decreasing expected value of computation time.
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• Costltd and Cost (cost-per-time-unit based methods): processors are sorted by non-
decreasing unit cost.

• Greedyltd and Greedy (yield methods): processors are sorted by non-increasing yield.
Greedy is indeed the greedy algorithm of Section 2.3.3.

In addition, we assess the absolute performance of each method by comparing with Frac-
tional, which is the yield achieved by the solution to the fractional problem FracOptHetero
(see Proposition 2). Indeed, the value of Fractional is an upper bound to the performance, which
is not always tight; we use it as a reference.

2.4.3 Parameters

In the following experiments, all platforms are composed of processors from six processor types
(k = 6). Without special description, each processor type has 10 processors. In other words,
we have M = 60 and mj = 10 for 1 ≤ j ≤ 10 in default. While studying the impact of different
number of processors, we vary mj between values in {1, 2, 3, 5, 7, 10}. Each processor type is
characterized by a unit cost and a distribution that determines the execution time of each task.
Type j processors have average speed sj = 2j−1 (i.e., sj ∈ {1, 2, 4, 8, 16, 32}). These values
correspond to normalized speeds in realistic platforms such as Amazon EC21 or Google Cloud2

and are correlated to the number of cores in the processors. By default, the unit cost of a
processor is proportional to its average speed: cj = sj . But we will also study in one paragraph
the cases where unit costs are increasing faster than average speeds, in which cj = 1.5sj or
cj = s1.5

j .
The second processor characteristic is the distribution of the execution times, which follow

standard probability distributions. The heterogeneity of a scheduling problem instance has
several meanings (for instance, both tasks and processors heterogeneity are studied in [15]).
In our case, we consider the heterogeneity of the expectation and the heterogeneity of the
variability. For all tested distributions, the expectation of execution times is fixed as the inverse
of the processor speed, which determines the first type of heterogeneity. For the second type, we
control the variation of the Coefficient of Variation (CV), which is defined as the ratio of standard
deviation over expectation. Similar CVs for all processors lead to a low variability heterogeneity:
execution times varies similarly on all processors. On the contrary, different CVs mean that
execution times are closer to their expectations on some processors than on some others. For
instance, two distributions with expectations 1 and 2 and the same CV 1 have expectation
heterogeneity but no variability heterogeneity. This is the opposite with distributions both
with expectation 1 and with CVs 1 and 2. This second type of heterogeneity is controlled by
parameter xCV. Of course for exponential and half-normal distributions, which have a single
parameter, the standard deviation is given when choosing the mean, so this discussion only
applies to the two-parameter distributions (lognormal, uniform, gamma, inverse-gamma and
Weibull). Altogether, the expected value µj and standard deviation σj on mj are set as follows:
µj = 1

sj
, σj = µjU where the parameter U is drawn randomly and uniformly in the interval

[3− xCV, 3 + xCV]. We use 0 ≤ xCV ≤ 3 in the experiments.
Finally, we fix the budget3 at b = β

∑k
j=1mjcj = β×630, where β ∈ {0.01, 0.05, 0.1, 1, 2, 5, 8, 10}.

For each budget value, we vary the deadline as d = β630
i
5 (hence K = 6301− i

5 ) for 0 ≤ i ≤ 5.
This leads to 6 deadline values following a geometric progression between two extreme cases

1https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls
2https://cloud.google.com/compute/pricing
3630 represents the budget required to enroll all 60 processors for one time unit.

https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls
https://cloud.google.com/compute/pricing
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d = b and d = β. The first case is when the deadline is sufficiently large to exhaust the en-
tire budget by selecting any single processor. The second case is when the deadline is so tight
that all processors must be used to exhaust the budget. Altogether, we have 8 budget and 6
deadline values, hence 48 configurations. For each configuration, each strategy is run 10 times
on 100 randomly drawn platform instances (the mean of the distribution is fixed, and we draw
the value of the standard deviation as discussed above, except for exponential and half-normal
distributions).

The numbers of successes are reported in boxplots, each of which consists of a bold line for
the median, a box for the quartiles, whiskers that extend at most to 1.5 times the interquartile
range from the box and additional points for outliers. We start with a summary table covering
all distributions, and then focus on lognormal distributions.

Table III: Performance ratio of all orderings over Fractional.

Ordering Mean Median Q10% Q90%

Greedy 0.9977 0.9994 0.9668 1.0272
Greedyltd 0.6047 0.8385 0 0.9998

Cost 0.6943 0.9507 0.0522 1.0208
Costltd 0.5587 0.7634 0 1.0016
Expect 0.7766 0.9717 0.1556 1.0124

Expectltd 0.3642 0 0 0.9973

2.4.4 Result synthesis for all distributions

In Table III, OptRatio is chosen as cutting threshold heuristic on each processor. We use
b = 630 (hence β = 1) and xCV = 3. For each distribution, we have 6 values of d. For exponential
and half-normal, the standard deviation is given when we select the mean, so we run only one
platform configuration. For the other five probability distributions (lognomal, uniform, gamma,
inverse-gamma and Weibull), we draw 100 platform configurations, as mentioned above. Each
configuration is run 10 times, which leads to a total of 30,120 experiments. Now, for each
heuristic, we proceed as follows: for each experiment, we record the ratio of the number of
successful tasks achieved by the processor selection heuristics over the number of successful
tasks achieved by Fractional; this leads to the statistical values reported in Table III: mean,
median, 10% Quantile and 90% Quantile.

Table III shows that Greedy performs very well overall. Its ratio is close to 1, not only
for the mean value, but even for the 10% quantile. In other words, Greedy has a performance
close to that of Fractional; it also consistently outperforms all the other processors selection
heuristics.

For each heuristic, the non-limited version is always much better than the limited one.
Because limited versions readily discard each processor for which there is not enough budget to
run until the deadline, they are at risk of wasting a big fraction of the budget and then produce
a bad, even null result. Indeed, there is a large difference between the mean and median values
for the limited versions, showing that there are many results close to 0. Results for the 90%
quantile are good for all heuristics, and even larger than 1, while Fractional represents an
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asymptotic upper bound. Here is the explanation: a sixth of experiments are for d = 1. In this
case, all the heuristics enroll all the 60 processors to execute tasks. As the execution time of a
task is randomly drawn, some heuristics can have a better result than Fractional.

2.4.5 Lognormal distribution
In this section, we focus on lognormal distributions and further study the impact of several
parameters. A lognormal distribution is a natural candidate to model task execution times,
because it has been advocated to model file sizes [25], and task costs could naturally obey this
distribution too. Moreover, the lognormal distribution is positive, it has a tail that extends to
infinity and the logarithm of the data values are normally distributed.

For a lognormal(α, β) distribution, the density function is f(x) = e
− (log(x)−α)2

2β2

xβ
√

2π for x ∈ [0,∞),

the mean is µ = eα+β2
2 and the standard deviation is σ = eα+β2

2
√
eβ2 − 1. To ensure a given

expected value µ and standard deviation σ, we set α = log(µ) − log(σ2/µ2 + 1)/2 and β =√
log(σ2/µ2 + 1).

Cutting threshold heuristics

First, we compare the performance of the different cutting threshold heuristics in Figure 2.1.
We report results for b = 630 and the 6 corresponding deadline values. We can find that, for
lognormal distribution, OptRatio, Quantile (0.1) and Quantile (0.2) have usually better
results than others. This is because the threshold calculated by OptRatio is usually between
10−1 and 10−3 in our case and the threshold provided by Quantile (0.1) and Quantile (0.2)
is closer to this value than other heuristics. The results confirm the observations made with
homogeneous processors [12]: OptRatio achieves the best success rate, and is significantly
better than the baseline NeverInterrupt. This leads to choose OptRatio as the cutting
threshold heuristic in all the following experiments.

Varying budget and deadline values

Figure 2.2 reports results for the 48 (b, d) pairs. We make several observations.
First, when K is fixed, multiplying b and d by a value β > 1 only changes the absolute value

of the result (there is a proportional relationship between β and the number of successful tasks),
but the global outcome remains the same: the same processors are chosen, and the ratio of the
results of each heuristic over Fractional is not modified. This shows that, for a lognormal
distribution with µ and σ chosen as in our experiment, β = 1 is enough to simulate a problem
instance with large b and d values. In the following experiment, we keep b = 630 and vary xCV.

Second, in Figure 2.2, we see the impact of the deadline constraint by varying both d and
K with a constant b (in each column of the figure). With the extreme case when K is large
(i.e., K =

∑
i ci), all methods select all processors, which exhausts the budget when reaching

the deadline. The alignment of all boxplot values in the figure for d = β confirms this effect.
Moreover, all methods choose processors in a predefined order until the sum of ci of selected
processors reaches K, which means we must choose more processors with large values of K. As
processors are ordered by their yield in the Fractional method, the larger the value of K, the
smaller the average yield of chosen processors. However, with larger deadlines, the processor
choice becomes critical and only Greedy has a gain similar to Fractional. In other words,
the difference between these two latter methods and the other ones increases as the parallelism
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K decreases. As the deadline is less constrained, Greedy can select only the processors with
best yield. With K ≤ 13.2, the gain is less remarkable because the best processors are all
already enrolled. Only small deadlines impose the selection of inefficient processors to exhaust
the budget before the deadline. Thus, having larger deadlines provides little benefit.

Third, in all instances, Greedy, Cost and Expect are respectively better than or similar
to Greedyltd, Costltd and Expectltd. These last three methods even have some zero values.
As explained in Section 2.4.4, this is because these methods enroll processors (in different orders)
until the last processor that does not exceed the budget when executed up to the deadline d.
Thus, the first processor is abandoned if the budget to execute this processor exceeds b. In this
scenario, no processor is chosen by the method, and the number of successful tasks is zero.

Fourth, we observe that Greedy remains the most efficient resource selection heuristic even
for small values of the budget (when β < 1). This is good news, because we had proven the
asymptotic efficiency of Greedy but needed to check that it maintained its superiority for the
whole range of budget and deadline values (even though the number of successes is no longer
proportional to the budget for smaller values).

Impact of variability heterogeneity

Figure 2.3 demonstrates the dependence between the level of variability heterogeneity controlled
by xCV and the performance disparity between the resource selection heuristics. When xCV = 0,
all processors have the same yield as they have the same ratio CV, thus all heuristics are similar.
As xCV increases, the difference between Fractional and all other methods except Greedy
expands up to a factor three for the median performance. Note that the maximum number of
successful tasks increases with xCV, especially for Fractional and Greedy heuristics, because
the methods manage to select processors with the best yield. In particular, it is possible to
perform twice as much tasks with xCV = 2.5 than with xCV = 0 because some processors in a
platform configuration can have a higher yield.

Impact of the number of processors

Figure 2.4 presents the variation of performance when varying the number of processors for
each task type mj . We can find that, while fixing the budget, the performance of all heuristics
increases with mj (and M). The difference between heuristics also increases with the number
of processors, and Greedy has always a performance very close to Fractional.

Impact of unit cost

Figures 2.5, 2.6 and 2.7 show the performance of all heuristics when the unit cost is respectively
defined as following: cj = sj , cj = 1.5sj and cj = s1.5

j . In order to make the different sets
comparable, we increase the budget respectively to b = 1.5 ∗ 630 = 945 and b = 6301.5 ≈ 2795
for the latter two experimental sets. The results in these figures confirm that Greedy performs
very closely to Fractional, and in the cases of cj = 1.5sj and cj = s1.5

j , the heuristics have
the same variation as cj = sj while varying K and xCV. This proves the robustness of our
heuristic.
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2.4.6 Summary
All the above results confirm that Greedy reaches better performance than the other resource
selection heuristics, up to a factor three on average.

2.5 Conclusion
In this chapter, we have dealt with the problem of scheduling stochastic tasks on a cloud platform
under both deadline and budget constraints. On each enrolled processor, we use several cutting
threshold heuristics to decide when to interrupt tasks. The main difficulty is to select the
best subset of processors so as to maximize the expected number of tasks that are successfully
executed. We have assessed the complexity of this resource selection optimization problem,
showing that it is NP-hard, and also designing Greedy, a greedy algorithm whose performance
is proved to be a 2-approximation. Greedy sorts the processors by non-decreasing yield and
then determines the optimal number of processors to enroll when considering them in this order.
On the practical side, we have conducted an extensive set of experiments, with several standard
probability distributions for task execution times. These experiments show that, (i) as in the
homogeneous case, OptRatio has the best performance within all cutting threshold heuristics
in the heterogeneous case, and (ii) Greedy significantly outperforms other approaches based
on simple heuristics, and reaches an absolute performance close to the upper bound established
in the chapter.
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Figure 2.1: Number of successfully executed tasks for different resource selection and cutting
threshold heuristics, with mj = 10, M = 60, cj = sj , b = 630. Execution times follow a
lognormal distribution with xCV = 3.
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Figure 2.2: Number of successfully executed tasks for resource selection heuristics with Op-
tRatio, mj = 10, M = 60, cj = sj . Execution times follow a lognormal distribution with
xCV = 3.
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Figure 2.3: Number of successfully executed tasks for resource selection heuristics with Op-
tRatio, mj = 10, M = 60, cj = sj , b = 630 and d ≈ 13.2. Execution times follow a lognormal
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Figure 2.4: Number of successfully executed tasks of different methods to choose VMs when
interrupting tasks with heuristic OptRatio. Each of the 100 platforms is generated with
mj = 1, 2, 3, 5, 7, 10, M = 6, 12, 18, 30, 42, 60, cj = sj and is used 10 times with b = 630 and
d ≈ 13.2 (K ≈ 47.8). Execution times follow lognormal distributions with xCV = 3.
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Figure 2.5: Number of successfully executed tasks of different methods to choose VMs when
interrupting tasks with heuristic OptRatio. Platforms are generated with mj = 10, M = 60,
cj = sj , b = 630. The values for d and K follows a geometric progression between 1 and b = 630.
Execution times follow a lognormal distribution.
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Figure 2.6: Number of successfully executed tasks of different methods to choose VMs when
interrupting tasks with heuristic OptRatio. Platforms are generated with mj = 10, M = 60,
cj = 1.5sj and b = 945. The values for d and K follows a geometric progression between 1 and
b = 945. Execution times follow a lognormal distribution.
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Figure 2.7: Number of successfully executed tasks of different methods to choose VMs when
interrupting tasks with heuristic OptRatio. Platforms are generated with mj = 10, M = 60,
cj = s1.5

j and b ≈ 2795. The values for d and K follows a geometric progression between 1 and
b ≈ 2795. Execution times follow a lognormal distribution.



Chapter 3

Scheduling stochastic tasks with unknown prob-
ability distribution

3.1 Introduction

Similarly as the work in Chapter 2, this chapter builds also upon the previous work introduced
in Section 1.1 where we tackle the dramatically simpler problem where the distribution D is
known. In that case, we proposed an analytical method to compute the optimal threshold l.
The main focus of this chapter is to investigate efficient strategies when the distribution D is
unknown.

The only information known is that the task execution times are independent and identically
distributed (IID) random variables obeying the same probability distribution, but this distribu-
tion is unknown. Similarly to the previous work, the scheduler has both a deadline constraint
d and a budget constraint b. At any time, and on each enrolled processor, the scheduler can
decide whether to interrupt a long-running task T to start a new task T ′.

In this non-clairvoyant setting, what is the optimal strategy? Intuitively, the scheduler
must first decide how many processors to enroll. Then, the scheduler needs to acquire some
information about task execution times by letting several tasks run until completion on each
processor. At some point, the scheduler synthesizes the information acquired so far and will
decide for a scheduling policy. This policy could be either to allow all tasks to run until
completion, or to define a cutting threshold l after which every long-running task should be
interrupted. The cutting threshold l can be recomputed dynamically as the execution progresses
until the deadline d is reached or the budget b is exhausted, whichever comes first. Each of the
above decisions involves a complicated trade-off. The main problem is to determine when and
how to compute a first cutting threshold l (with the possibility that l = +∞, meaning that all
tasks are allowed to run until completion). Again, there is a trade-off. Deciding for the threshold
early can lead to an imprecise estimation because it is based on little information, but this would
avoid to consume a significant fraction of the deadline and of the budget before interrupting any
task. On the contrary, deciding for the threshold later during the execution leads to making
a more accurate decision, at the risk of having wasted resources unduly. Altogether, these are
several complicated trade-offs to achieve. The key is to be able to compute a good threshold
without bias, and this chapter introduces several strategies to determine a good threshold, and
at the right moment in the execution.

As already mentioned in Chapters 1 and 2, the problem is very closely related to imprecise
computations, where tasks are divided into a mandatory and an optional part. Our work

29
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perfectly corresponds to the optimization of the processing of the optional parts. However, the
probability distribution D of task execution times is unknown before processing in this work,
and can be only determined through sampling many tasks. Unfortunately, in our scheduling
problem, letting the scheduler sample many tasks without interruption to learn, say, the mean
and standard deviation of the distribution, can prove very costly: it will consume a significant
part of the budget and will prove suboptimal for any distribution requiring a small cutting
threshold l, such as lognormal distributions.

To the best of our knowledge, this work constitutes the first attempt to address this chal-
lenging problem. The major contributions of this work are the following:
• We design a set of scheduling heuristics that use different estimators of the cutting thresh-
old l, and that refine this estimation periodically as the execution progresses.
• We show how to use to the Kaplan-Meier estimator [54] to account for long-running tasks
when estimating the threshold l.

• We introduce several methods for deciding when to recompute the threshold.
• We report a comprehensive set of simulation results that compare the heuristics for various
budget and deadline values, using up to 14 different probability distributions.

The rest of the chapter is organized as follows. We detail the framework and objective
in Section 3.2. We provide scheduling heuristics for the unknown distribution in Sections 3.3
and 3.4: Section 3.3 is devoted to methods for computing the cutting threshold accurately,
while Section 3.4 focuses on when to recompute it. We compare the heuristics in Section 3.5,
assessing their performance for an extensive set of simulation parameters. Finally, we provide
concluding remarks in Section 3.6.

3.2 Problem definition

We consider a cloud platform composed of identical processors. The execution time of a task
on a processor obeys an unknown probability distribution D. Without loss of generality, we
assume it costs one budget unit to execute a task for one second on any processor, and we
have a total budget b and an overall deadline d. As we are on the homogeneous platform in
this work, as mentioned in the previous work 1.1, the number of processors used can be simply
calculated with M =

⌈
b
d

⌉
. Therefore, in this chapter, we use the number of processors M ,

instead of K in Chapter 2, to express the ratio of budget to deadline. When considering the
asymptotic behavior of policies, we assume that budget b and deadline d grow toward infinity.
Main notations are summarized in Table I. We assume executions to be non-preemptive: if the
execution of a task is interrupted, all the work done (and the budget spent) so far for that
task is lost. Our objective is to maximize the total number of tasks successfully completed
under the budget and deadline limits. To drive the design of our scheduling policies, we use an
instantaneous version of this objective, namely the yield (Y), which is defined as the expected
number of tasks completed per unit of budget spent. This is equal to the expected success rate
per second (E), as we spend one budget unit per second.

All our scheduling policies are required to have polynomial complexity. Since a solution to
the problem is the list of the tasks that are executed, either partially or successfully (for each
of these tasks, the scheduler made a decision), the size of the problem is proportional to that
number of tasks. This number in turn is proportional to the budget (or deadline), divided by
the expectation of the (unknown) probability distribution D, since the average execution time
until completion of a task is µ(D). Furthermore, the scheduling policies will make decisions
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Table I: Summary of notations.

b budget
d deadline
M number of processors used
D probability distribution of task execution times
µ, σ mean, standard deviation of D
Y expected number of tasks completed per unit of budget spent
E expected success rate per second

and compute a cutting threshold several times during the whole execution; we require that the
number of such decisions be constant, and they will typically be taken each time a prescribed
percentage of the budget is spent. The motivation here is to cap the overhead incurred by the
scheduler by forbidding to recompute a threshold at each execution of a new task.

3.3 Threshold estimation for unknown distributions

We have seen in section 1.1 that when the distribution of task execution times is known, the
optimal policy is a fixed-threshold strategy that interrupts tasks, and that the choice of the
cutting threshold can have a very significant impact on the system performance. Now the
question is: how do we find the optimal cutting threshold when the distribution is unknown?

In order to acquire information on the distribution of task execution times, the single option
is to execute some tasks and record their execution times. We will consider the problem of
deciding how many tasks to execute in Section 3.4. For the sake of the argument, let us assume
that we have already launched the execution of several tasks, that some executions have already
completed, some are still running, and some were interrupted. For instance, in the toy example
presented on Figure 3.1 we have two processors, four tasks, and we want to take a decision at
time 20. One task has executed for 5 seconds, one for 16; two tasks have not yet completed
(the tasks in red), having run, respectively, for 15 and 4 seconds so far. The question is then:
how do we estimate the distribution of task execution times based on this data?

Proc 1
Proc 2

time0 5 16 20

Figure 3.1: Toy example with two processors, two successfully completed tasks (in blue) and
two not-yet-completed tasks (in red) at time 20.

There are two types of approaches. In the first type, we would try to guess some char-
acteristics of the distribution. For instance, we could claim that “task execution times likely
follow an exponential distribution”. Then, we would look for the exponential distribution that
better fits the data, for instance using a maximum likelihood estimation. If our initial guess
was lucky, we should end up with a good result. However, the underlying distribution may
be either a lognormal distribution, or a multimodal one, or even not resemble any of the most
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Figure 3.2: Probability of survival (left) and yield (right) for the toy example of Figure 3.1
when using the empirical distribution function (blue) or the Kaplan-Meier estimator (red).

used probability distributions. Rather than relying on potentially unlucky guesses, we aim at
designing a robust approach which would deliver high quality results, regardless of the underly-
ing distribution. Therefore, our approach belongs to the second type of approaches, sometimes
called “nonparametric” statistics. We are not going to make any assumption on the underlying
distribution. Section 3.3.1 details a naive approach that only considers the execution times of
tasks that have completed. This approach has the advantage of simplicity. However, as exem-
plified by the toy example on Figure 3.1, it can ignore a significant share of the data, and in
particular long-running tasks. The question on how to take into account tasks that have not yet
completed has been thoroughly research in the field of . . .medical research! In Section 3.3.2, we
show that our problem is exactly the statistical medical problem known as survival analysis with
right-censored data, even if the concepts and wordings are quite different. We also show how to
use its classical solution, the Kaplan-Meier estimator, to solve our problem more accurately.

3.3.1 The empirical distribution function

The naive approach only considers the execution times of completed tasks and uses the asso-
ciated empirical distribution function [90], along with the case of known probability. Consider
an example where there are k different task execution times, w1 < w2 < ... < wk, and where ni
tasks have the execution time wi. Then, using the empirical distribution function, a task has
an execution time wi with probability pi = ni∑k

j=1 ni
. Using these probabilities, we search in the

set {w1, ..., wk} the value maximizing the yield, using Equation 1.1.
The main advantage of this approach is its simplicity. The toy example on Figure 3.1

illustrates its main drawback: there maybe many tasks whose information is ignored, namely
the tasks that have not yet completed. This drawback induces a bias by ignoring long-running
tasks.

3.3.2 Survival analysis and the Kaplan-Meier estimator

In medical research, biostatisticians have to answer questions like: “What is the probability
that a patient will still be alive 5 years after receiving a cancer diagnosis?” To answer such a
question, biostatisticians analyse the data of many individual patients. Some of these data will
be complete: they will have both the time of diagnosis and the time of death of the patient.
However, at the time of the analysis, some patients enrolled in the dataset will still be alive.
The status of some other patients may be unknown because contact with them has been lost
(e.g., they have moved away). In both cases observations are incomplete. One only knows the
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time of diagnosis and the last time the patient was known to be alive. Hence, one only knows a
lower bound on the time the patient has survived after the diagnosis. These incomplete “lower-
bound” data are called right-censored data and the question addressed by biostatisticians is that
of survival analysis with right-censored data. This problem is exactly ours, only the vocabulary
changes:
• instead of survival times, we have execution times;
• instead of diagnosis times, we have start times;
• at the time of analysis, instead of patients still alive, we have tasks still running;
• at the time of analysis, instead of patients with unknown whereabouts, we have tasks that
have been terminated by the scheduler before completion.

We can therefore use the tool to solve survival analysis with right-censored data, that is the
Kaplan-Meier estimator [1, 54]. Nowadays, survival analysis with the Kaplan-Meier estimator is
widely used in biostatistics [17, 40, 99], and in a variety of other domains such as engineering [81],
economics [64], etc. We refer the interested reader to [1] for a thorough overview of survival
analysis.

Consider an example where there are k different task execution times, w1 < w2 < ... < wk.
Here, execution times can be the execution times of tasks that have completed, like the values 5
and 16 in the example of Figure 3.1. They can also be censored execution times, like the values
4 and 15 in that example. Let di be the number of tasks that die at time wi, that is, the number
of tasks whose execution time is exactly wi. Let ri be the number of individual at risks just
prior to time wi, that is, the number of tasks whose execution time is greater than or equal to
wi. The survival function, S(t), is the probability that life is longer than t: S(t) = Pr(X > t).
The Kaplan-Meier estimator gives us:

S(t) =
∏
wi≤t

(
1− di

ri

)
. (3.1)

Using this estimator, we can then rewrite Equation 1.1 as:

Y(t) = 1− S(t)∑I(t)
j=1(S(wi−1)− S(wi))wj + S(wI(t))t

where I(t) is the index of the largest task execution time smaller than or equal to t: I(t) = k if
t ≥ wk, and wI(t) ≤ t < wI(t)+1 otherwise (with w0 = 0 and S(w0) = 1).

We illustrate this estimator with the toy example of Figure 3.1:

wi di ri 1− di
ri

∏
j≤i

(
1− dj

rj

)
4 0 4 1 1
5 1 3 2

3
2
3

15 0 2 1 2
3

16 1 1 0 0

The resulting function is presented in red on the left-hand side of Figure 3.2, alongside
the probabilities associated to the empirical distribution function (in blue). Red ticks indicate
the presence of censored data. For the empirical distribution function, the probability that
the execution time of a task exceeds 5 seconds is 50%, while it is 66.6% for the Kaplan-Meier
estimator. When we plug these different probability functions in Equation 1.1, we obtain
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the yields depicted on the right-hand side of Figure 3.2. In this toy example, the empirical
distribution function claims that the optimal cutting threshold is 5, when the survival analysis
claims that it is 16.

Note that, in the product of Equation (3.1), only the times corresponding to actual (non-
censored) execution times matter. Execution times that only correspond to censored times
each contribute a value of 1 in the product (see the table above). Note also that if there is no
censored data, we have ri−1 − ri = di−1 and S(t) simplifies into

S(t) =
∏
wi≤t

ri − di
ri

=
∏
wi≤t

ri+1
ri

= rj
r0

where j is the smallest index such that wj > t. In other words, when there is no censored data,
the empirical distribution function and the Kaplan-Meier estimator coincide.

We can use the survival function to compute the mean and variance of the execution times.
Recall that S(t) = Pr(X > t). Hence, Pr(X = wj) = Pr(X ∈]wj−1, wj ]) = S(wj−1) − S(wj))
for 1 ≤ j ≤ k (with w0 = 0 and S(w0) = 1, as stated above). We derive that:

µ = E[X] =
k∑
j=1

(S(wj−1)− S(wj))wj + S(wk)wk.

σ2 = E[X2]− E[X]2

=
k∑
j=1

(S(wj−1)− S(wj))w2
j + S(wk)w2

k − µ2

3.4 Taking decisions
In Section 3.3, we have shown how we can use data from the execution of tasks to define the
best cutting threshold. In this section we focus on how and when to acquire the data needed
to compute a cutting threshold, possibly many different times as the execution progresses.

In order to acquire information on the distribution of task execution times, the only solution
is to execute some tasks and to record their execution times. In this process, we have to make a
classical trade-off. On the one hand, we should execute a sufficiently large number of tasks until
completion, in order to be sure that the set of observed execution times is indeed representative
of the underlying distribution. On the other hand, we should execute as few tasks as possible
before making a decision, to avoid wasting a significant share of the budget on running tasks
until completion if the optimal threshold is a “short” one. We start by designing policies that
try to guess the good tradeoff before launching any task. Then, we present a policy that tries
to automatically infer that tradeoff.

3.4.1 One-size-fits-all policies
The simplest strategies will try to guess, without interrupting any task, the “right” tradeoff.
Consider a strategy that spends 10% of the overall budget running tasks up to completion
before computing the optimal threshold: it can still hope to achieve a 90% overall efficiency.
Indeed, it can achieve such a good performance just by applying the optimal policy for the
actual distribution of task execution times during the remaining 90% of the budget. As this
looks promising, this is the basis of our first two strategies:
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1. we pick a priori a percentage p;

2. we run tasks on processors until we have spent the fraction p× b of the overall budget;

3. we compute the cutting threshold either using the empirical distribution function for
strategy Empirical, or survival analysis for strategy Survival;

4. we then apply the cutting threshold on all tasks until the budget is exhausted.

For 2), recall that we enroll
⌈
b
d

⌉
processors. Hence, up to rounding artefacts, the fraction pb of

the whole budget is spent when the fraction pd of the deadline is reached on each processor.
When the task average execution time is large and the observation budget pb is small, it

may happen that no task has completed when the observation budget is exhausted. In such
a case, we delay the computation of the threshold to after having spent 2pb, and so on if this
extended budget is also too small.

There are two obvious limitations to these first two strategies. First, once a threshold is
computed, it is applied until the end. However, in the meantime, new tasks complete and some
are interrupted, and we gather more information on the distribution. We should take the new
available information into account. We propose to do that periodically, each time we have spent
another fraction pb of the budget, by recomputing the threshold considering all the available
data. This gives us two new strategies PerEmpirical and PerSurvival.

The second limitation is due to the fact that when we compute the threshold, we have no idea
how much the accumulated data is representative of the actual distribution of execution times.
Therefore, we have no idea of the quality of the threshold that we compute. To remedy this,
in the next section, we propose to automatically infer when to stop observing the distribution
and to compute the threshold.

3.4.2 Automatic inference
We do not want to compute the threshold before ascertaining that the data we have acquired
on the distribution of task execution times is “good enough”. However, we do not want to spend
the whole budget trying to acquire information. Hence we decide to rely on two parameters
fixed a priori: a percentage pmax of the overall budget and a precision ε. The precision ε will
guarantee that we have a good enough approximation of the data distribution because the mean
value and standard deviation of the empirical distribution function have converged (up to the
precision ε). In addition, the percentage pmax will be a large value guaranteeing that in extreme
cases, we will eventually take a decision before running out of the budget. We will compute the
threshold as soon as one of the two following conditions is met: either observing convergence
of the empirical distribution function, or having spent a fraction pmax b of the overall budget.
In practice, each time a task completes, we recompute the mean value and standard deviation
of the distribution. If both new values have a relative difference less than ε from previous ones,
we assume the approximation of the distribution to have converged.

Once we have computed a cutting threshold, say after having spent a budget qb, we recom-
pute it periodically each time we have spent max{0.01, q}b of the budget. We add the max for
the cases where the budget is very large and the convergence very fast, in order to keep the
number of decisions constant (as stated in Section 3.2). Obviously the new strategy can be
implemented for both the empirical distribution function and the survival analysis. However,
because of the superiority of the survival analysis (shown in Section 3.5), we implement it only
for survival analysis, leading to the new strategy AutoPerSurvival.
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3.5 Experiments

This section assesses the performance of the different strategies introduced in the previous
sections. The experimental settings are detailed in Section 3.5.1, and results are presented in
Section 3.5.2. All strategies were implemented in R. The corresponding source code, and all the
data, are publicly available in [32].

3.5.1 Experimental methodology

The default settings are as follows. The deadline d can take the values 5, 10, 50, and 100. The
cloud platform is composed of M = 10 identical processors, each with a unitary cost. As stated
in Section 3.2, the budget b is defined as b = Md. Then, the budget b is evenly shared among
the processors which all execute tasks until the deadline d. As discussed in Section 1.1, recall
that a typical configuration enrolls

⌈
b
d

⌉
processors.

We use different standard probability distribution functions to generate task execution
times, namely uniform, exponential, log-normal, half-normal, truncated normal (truncated on
[0,+∞)), gamma, inverse-gamma, and Weibull distributions. In addition, multimodal distribu-
tions have been advocated to model jobs, file and object sizes [25]. Therefore, we also consider
two types of bimodal distributions, either based on truncated normal distributions or on expo-
nential distributions. For all the bimodal distributions, the two modes are equiprobable. For
four of the distributions, we consider two different sets of parameters to illustrate different po-
tential behaviors associated to the same type of distribution. These distributions are the gamma
distribution, the log-normal, the bimodal exponential, and the bimodal truncated normal. To
enable a direct comparison between all different distributions, we choose their parameters so
that all distributions achieve a mean equal to 1. The detailed parameters of the distributions
are presented in Table II.

In objective to avoid arbitrarily small task execution times, we add a constant δ = 0.05 to
all randomly generated task execution times. Therefore, for all the distributions under study,
execution times will always have an average value of 1.05.

For each simulation setting, we generate 1000 random instances (i.e., sets of task execu-
tion times). In addition, we compare the result of the proposed strategies with two reference
heuristics. NeverInterrupt is the baseline heuristic which let all tasks run up to comple-
tion. Oracle knows in advance the distribution used to generate task execution times and
computes the optimal threshold using that knowledge. Oracle is thus an upper bound on the
performance of any strategy. Therefore, the closer to Oracle’s performance, the better the
heuristic.

3.5.2 Results

We present the experimental results in two steps. At first, we present results for the one-
size-fits-all heuristics: Empirical, Survival, PerEmpirical and PerSurvival, for all the
distributions. PerSurvival turns out to be the best of the 4 heuristics in almost all studied
cases. This is why, after that, we compare PerSurvival and AutoPerSurvival.

Before assessing the performance of the heuristics, we consider the distributions under study.
Figure 3.3 presents, for each distribution, the theoretical yield achievable as a function of the
cutting threshold. In Figure 3.3, we have ordered the distributions by non-increasing values of
their cutting threshold. One can see that different distributions, or the same distribution with
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Figure 3.3: Theoretical yield when varying the cutting threshold for each distribution.
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Figure 3.4: Ratio to Oracle of number of tasks successfully executed using different heuristics
when varying pfor each distribution (1/3).
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Figure 3.5: Ratio to Oracle of number of tasks successfully executed using different heuristics
when varying pfor each distribution (2/3).
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Figure 3.6: Ratio to Oracle of number of tasks successfully executed using different heuristics
when varying pfor each distribution (3/3).



3.5. EXPERIMENTS 41

Table II: Symbol and parameters for the distributions used in the simulations. (For all dis-
tributions µ is the mean and σ the standard deviation, except for the truncated normal and
half-normal distributions where µ and σ are the mean and standard deviation of the original
normal distribution.)

Symbol Distribution Parameters

double_exp(λ1, λ2) Bimodal exponential λ1 = 1
1.005 ≈ 0.995, λ2 = 1

0.995 ≈ 1.005
λ1 = 1

0.1 = 10, λ2 = 1
1.9 ≈ 0.526

double_truncnorm(µ1, σ1, µ2, σ2) Bimodal truncated normal µ1 = 0.5, σ1 ≈ 0.534, µ2 = 1, σ2 ≈ 1.068
µ1 = 0.01, σ1 ≈ 0.178, µ2 = 1, σ2 ≈ 1.782

exp(λ) Exponential λ = 1
gamma(k, θ) Gamma k = 1, θ = 1

k = 1
3 ≈ 0.333, θ = 3

hnorm(σ) Half-normal σ =
√

π
2 ≈ 1.253

invgamma(α, β) Inverse Gamma α = 7
3 ≈ 2.333, β = 4

3 ≈ 1.333
lnorm(µ, σ) Log-normal µ = 1, σ = 0.5

µ = 1, σ = 3
truncnorm(µ, σ) Truncated normal µ = 0.8, σ ≈ 0.754
unif(a, b) Uniform a = 0, b = 2
weibull(k, λ) Weibull k ≈ 0.411, λ = 1

Γ(1+ 1
k ) ≈ 0.324

different parameters, lead to different shapes of the yield function. For the first distributions
in the figure, tasks should never be interrupted. For the following distributions, tasks should
be interrupted, and sometimes quite early. Table III reports the optimal cutting threshold for
each distribution. This variety of situations makes it challenging to determine a good cutting
threshold when the distribution is unknown. In the remainder of this section, in order to ease
the comparison of the behaviors of the different strategies for the different distributions, all
graphs and tables report results with distributions ordered as in Figure 3.3.

One-size-fits-all heuristics

In Figures 3.4, 3.5, and 3.6, we plot the ratio of the number of tasks successfully executed by
each heuristic, over the value achieved by Oracle. Hence, the closer to 1, the better. We plot
the performance of each heuristic while varying the percentage p of the budget spent for the
observation phase (namely p = 1%, 2.5%, 5%, 10%, 15%, or 20%), and for the four different
values of the budget b.

We observe that the performance of the different heuristics is strongly correlated to the
shape of the yield functions, as illustrated by Figure 3.3. In particular, the performance
of the heuristics evolve according to our ordering of the distributions. When the optimal
threshold is infinite (i.e., for unif(0,2), truncnorm(0.8, 0.75), lnorm(1,0.5), hnorm(1.25), dou-
ble_truncnorm(0.5,0.5,0.53,1,1.07), double_exp(0.5,1,1.01), exp(1) and gamma(1,1) ), Never-
Interrupt has the same performance as Oracle. Also, the performance of the other heuristics
increases with p. This is easily explained, since the behavior of the heuristics during the obser-
vation phase is, by definition, that of NeverInterrupt. Moreover, the longer the observation
phase, the higher the probability that the accumulated data will be of good quality and lead to
deriving an efficient threshold.

When the optimal threshold is finite (i.e., for invgamma(2.33,1.33), gamma(0.33,3),
lnorm(1,3), double_truncnorm(0.5,0.01,0.18,1,1.78), double_exp(0.5,10,0.53) and weibull(0.41,
0.32)), NeverInterrupt performs predictably worse. The lower the optimal threshold, the
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Table III: Optimal cutting threshold for each distribution

Distribution Optimal Threshold

unif(0,2) ∞
truncnorm(0.8, 0.754) ∞
lnorm(1,0.5) ∞
hnorm(1.253) ∞
double_truncnorm(0.5,0.534,1,1.068) ∞
double_exp(0.995,1.005) ∞
exp(1) ∞
gamma(1,1) ∞
invgamma(2.333,1.333) 1.842
lnorm(1,3) 0.300
double_truncnorm(0.01,0.178,1,1.782) 0.290
double_exp(10,0.526) 0.180
gamma(0.333,3) 0.110
weibull(0.411,0.324) 0.090

lower the performance of NeverInterrupt. Also, the larger the budget, the lower the per-
formance of NeverInterrupt, even if the decrease is not always significant. For the other
heuristics, the best value for p decreases. This is once again easily explained, because with
larger values of p, the observation phase is longer, and thus the budget spent in a suboptimal
mode is larger. The graphs are not decreasing from the start because a significant number of
tasks must complete to make a decision close to the optimal one, rather than one that is heavily
influenced by the random nature of the very few completion times available.

When the budget is large with respect to the average task execution time (e.g., b = 1000),
many tasks complete before the end of the observation phase and we can deduce a relatively
precise threshold. Hence, the four heuristics perform globally well. For instance, when p =
10%, all heuristics achieve a performance that is at least 90% that of Oracle, whatever the
distribution. For some distributions, some heuristics achieve a performance of 95% of this
theoretical optimal. This is true even for distributions that, theoretically, need to be cut early,
such as Weibull. Because we have enough budget to obtain high-quality threshold after the
observation period (which costs 10% of the budget), for the rest of the execution time (90% of
the budget), we achieve a performance close to the optimal. Therefore the overall results are
very good although we do not interrupt tasks during the observation phase.

When the budget is either b = 500 or b = 1000, PerSurvival achieves the best perfor-
mance, or a performance equivalent to that of the best of the four heuristics, except for the
inverse-gamma distribution. For inverse-gamma, PerSurvival is sometimes very slightly be-
low PerEmpirical for the same percentage p. However, these two heuristics achieve the same
peak performance for that distribution.

On the contrary, when the budget is small with respect to the average task execution time
(e.g., b = 50), the performance of all heuristics worsens. When b = 50 and p = 10%, each of
the 10 processors executes tasks for only 0.5 seconds during the observation phase. Hence, the
threshold should be computed after very few tasks are completed, if any. It should therefore
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not be a surprise that the results are then far from optimal. The best performance is achieved
either for the distributions which have a small optimal threshold —and then the performance
is rather good whatever the value of p— or when the value of p is large —which compensates
from the fact that the budget is small. PerSurvival remains the best heuristic when b = 100;
when b = 50 there is no obvious heuristic of choice.

In conclusion, when the budget b is large with respect to the average task execution time,
the four basic and periodic heuristics achieve a good performance (at least 90% of the optimal)
if we choose carefully the parameter p (e.g., p = 10%). Then, among the four heuristics,
PerSurvival achieves the best performance overall and also in most instances. When the
budget is small, the performance of the heuristics worsens. The main reason is that for a same
value of p, there are no longer enough completed tasks to make a relevant decision with respect to
the threshold. When the budget is small, p should be large if tasks should never be interrupted
and p should be small if tasks must be interrupted quickly. Obviously, before running any task
we do not know what the average task execution time will be, what the cutting-threshold will
be and, hence, how to adequately chose the value of p. The AutoPerSurvival policy aims at
alleviating this problem.

AutoPerSurvival vs. PerSurvival

In Figures 3.7, 3.8 and 3.9, we compare the performance of AutoPerSurvival for different
values of pmax (namely pmax= 10%, 20%, 30%, 40%, or 50%) when varying ε (namely, ε= 0.0010,
0.0025, 0.0050, 0.0100, 0.0250, 0.0500, and 0.1000). We added the performance of PerSurvival
using different values for p as a reference.

In all graphs, we observe that the performance of AutoPerSurvival is influenced by the
interplay of the two parameters ε and pmax. When the value of ε is very small, we need a very
large (in expectation) number of launched tasks to meet the ε criteria. This, in turn, will require
to spend a large amount of budget for the observation phase. If ε is sufficiently small, on most
instances this requirement will exceed the upper limit set by pmax on the budget spent during
the observation phase. Hence, if ε is sufficiently small, the behavior of AutoPerSurvival is
only dictated by the value of pmax. For instance, when b = 50, this is the case for the uniform
distribution when ε ≤ 0.0050, and for the Weibull distribution when ε ≤ 0.0025. However, when
the value of ε gets larger, convergence is reached sooner. Then an approximation of the data
distribution deemed “good enough” (with respect to ε) is obtained before spending a share pmax
of the budget. In that case, pmax does not play any role, and only ε has an influence on the
observation period, and thus on the performance. For instance, when b = 100, this is the case
for lnorm(1,3) when ε ≥ 0.0250. However, for the uniform distribution when b = 100, note that
pmax = 10% still plays a role when ε = 0.1000 which explains why AutoPerSurvival (10%,
0.1000) has a performance lower than that of the other AutoPerSurvival variants.

Furthermore, we see that the evolution of the performance depends upon the optimal cut-
ting threshold. When the optimal cutting threshold is infinite, the smaller ε, the better the
performance. Indeed, during the observation period, the optimal NeverInterrupt strategy is
implemented, and, later on, the cutting-threshold strategy is applied. This is particularly true
when we have enough time before convergence (large values of pmax and of b). In such a case,
there is no performance penalty in having a large observation period during which tasks are
not interrupted. In contrast, for distributions with a short optimal cutting threshold, small ε
values (and longer observation periods) waste more budget without interrupting tasks, and the
performance decreases when ε decreases.
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Figure 3.7: Number of successfully executed tasks for each distribution using AutoPerSur-
vival (different pmax when varying ε) and PerSurvival (different p) (1/3).
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Figure 3.8: Number of successfully executed tasks for each distribution using AutoPerSur-
vival (different pmax when varying ε) and PerSurvival (different p) (2/3).
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Figure 3.9: Number of successfully executed tasks for each distribution using AutoPerSur-
vival (different pmax when varying ε) and PerSurvival (different p) (3/3).
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Figure 3.10: Number of successfully executed tasks for the different heuristics with a budget
b = 1000 when task execution times follow a log-normal distribution. Unless otherwise specified,
the expectation is µ = 1, the standard deviation is σ = 3, and the number of processors is
M = 10.

Globally, when the budget and deadline are large enough, AutoPerSurvival (when ε ≤
0.0100) performs similarly to PerSurvival, and they both have a good performance (larger
than 90%). In this case, all pmax values perform equally well. However, when the budget
and deadline decrease, we already know that PerSurvival performs worse, and we observe
that the performance of AutoPerSurvival is strongly correlated to the value of pmax and ε.
Among the parameters tested, AutoPerSurvival (40%, 0.01) is a good choice, because it can
successfully execute more than 77% of the tasks of the optimal heuristic Oracle, regardless of
the distribution and the budget (deadline) values. In other words, using AutoPerSurvival
(40%, 0.01) will always lead to good results, contrarily to all one-size-fits-all heuristics.

Stability of performance while varying µ, σ, and M

Figures 3.10 and 3.11 assess the performance of the different heuristics under a log-normal
distribution of task execution times when b = 1000 (Figure 3.10) and b = 50 (Figure 3.11) for
different values of the average task execution time (µ), of the standard deviation (σ,) and of
the number of processors in the platform (M). We use a log-normal distribution because it has
been advocated to model file sizes [25], and thus task costs can also be assumed to follow this
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Figure 3.11: Number of successfully executed tasks for the different heuristics with a budget
b = 50 when task execution times follow a log-normal distribution. Unless otherwise specified,
the expectation is µ = 1, the standard deviation is σ = 3, and the number of processors is
M = 10.
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Table IV: Ratio to Oracle of number of tasks completed for each heuristic and each distribution
with µ = 1, b = 1000 and d = 100.

NeverInterrupt AutoPerSurvival (40%,0.01) PerSurvival (10%) Survival (10%) PerEmpirical (10%) Empirical (10%)

unif(0,2) 1.0000 0.9217 0.9880 0.9887 0.9873 0.9881
truncnorm(0.8, 0.754) 1.0000 0.9170 0.9911 0.9914 0.9913 0.9914
lnorm(1,0.5) 1.0000 0.9186 0.9894 0.9909 0.9903 0.9909
hnorm(1.253) 1.0000 0.9168 0.9920 0.9920 0.9903 0.9903
double_truncnorm(0.5,0.534,1,1.068) 1.0000 0.9127 0.9881 0.9873 0.9860 0.9859
double_exp(0.995,1.005) 1.0000 0.9360 0.9690 0.9379 0.9370 0.9367
exp(1) 1.0000 0.9388 0.9685 0.9352 0.9362 0.9367
gamma(1,1) 1.0000 0.9391 0.9669 0.9397 0.9381 0.9391
invgamma(2.333,1.333) 0.9350 0.9512 0.9876 0.9871 0.9897 0.9881
lnorm(1,3) 0.5345 0.9620 0.9464 0.9352 0.9344 0.9351
double_truncnorm(0.01,0.178,1,1.782) 0.5023 0.9470 0.9338 0.9229 0.9259 0.9259
double_exp(10,0.526) 0.3610 0.9522 0.9236 0.9151 0.9169 0.9162
gamma(0.333,3) 0.8440 0.9711 0.9810 0.9801 0.9803 0.9799
weibull(0.411,0.324) 0.2296 0.9613 0.9183 0.9108 0.9109 0.9109

distribution. For the heuristics, we choose the parameters which achieved the best performance
in the previous simulations: AutoPerSurvival is used with the parameters pmax = 40% and
ε = 0.01. For the four one-size-fits-all strategies, we use the same value to define the observation
phase: p = 10%.

In Figure 3.10, as the budget is big enough (b = 1000), all heuristics perform similarly and
close to the optimal in all configurations. AutoPerSurvival may perform slightly better than
the four other heuristics in most of the cases but the differences are minimal.

Figure 3.11 presents the more interesting case of a small budget b = 50 with respect to the
average task execution time. The first row of subgraphs show the influence of the average task
execution time, µ, on the performance of heuristics. Remark that for b = 50, p = 10%, and
M = 10, the observation phase for one-size-fits-all heuristics only lasts for 0.5 second, during
which one expects that very few processors will be able to complete a task. This gets even
more true when µ increases, and explains that the performance of the heuristics is decreasing.
Nevertheless, the performance of AutoPerSurvival decreases more slowly than that of the
other heuristics. For instance, when µ = 3, the four one-size-fits-all heuristics already achieve
a rather bad performance while AutoPerSurvival remains quite close to the optimal. The
fact that AutoPerSurvival automatically adapts the length of its observation phase to the
quality of the information that it gathers (here mainly the number of tasks that complete),
enables it to achieve a graceful degradation of performance.

The second row of subgraphs shows the impact of the standard deviation σ. When σ varies,
the optimal cutting-threshold varies. This is illustrated by the performance of NeverInter-
rupt which decreases when σ increases, showing that the optimal threshold also decreases. All
heuristics have similar performance when σ = 3 and σ = 5. However, only AutoPerSurvival
achieves near optimal performance when σ = 1.

The third row of subgraphs show that varying the number of processors has no significant
impact on the performance of the heuristics: all scenarios achieve near optimal performance.
Overall, AutoPerSurvival (40%, 0.01) is a very robust heuristic, which overcomes the other
heuristics in all settings, and which, in the most adverse scnearios, exhibits a graceful degrada-
tion of performance with respect to the theoretical optimal.

Conclusion

To summarize our findings, we finally present two tables showing the number of tasks completed
by each heuristic for each distribution expressed as a fraction of the optimal performance (of
Oracle). We present results for a large budget (Table IV, b = 1000 and d = 100) and a small
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Table V: Ratio to Oracle of number of tasks succeeded for each heuristic and each distribution
with µ = 1, b = 50 and d = 5

NeverInterrupt AutoPerSurvival (40%,0.01) PerSurvival (10%) Survival (10%) PerEmpirical (10%) Empirical (10%)

unif(0,2) 1.0000 0.8872 0.4659 0.4522 0.4513 0.4775
truncnorm(0.8, 0.754) 1.0000 0.8904 0.4089 0.4002 0.3981 0.4288
lnorm(1,0.5) 1.0000 0.9230 0.3620 0.3646 0.3633 0.3667
hnorm(1.253) 1.0000 0.8874 0.6046 0.5701 0.5974 0.6146
double_truncnorm(0.5,0.534,1,1.068) 1.0000 0.8881 0.4989 0.4818 0.4940 0.5088
double_exp(0.995,1.005) 1.0000 0.9086 0.7846 0.7552 0.7927 0.8172
exp(1) 1.0000 0.9235 0.7973 0.7456 0.7916 0.8010
gamma(1,1) 1.0000 0.9221 0.8033 0.7604 0.8133 0.8203
invgamma(2.333,1.333) 0.9858 0.9647 0.4729 0.4738 0.4790 0.4788
lnorm(1,3) 0.6865 0.8896 0.9238 0.9048 0.9484 0.9493
double_truncnorm(0.01,0.178,1,1.782) 0.5233 0.7794 0.9190 0.8831 0.9386 0.9420
double_exp(10,0.526) 0.4107 0.7725 0.9190 0.8925 0.9068 0.9057
gamma(0.333,3) 0.8513 0.9599 0.9658 0.9592 0.9603 0.9610
weibull(0.411,0.324) 0.3291 0.7995 0.9198 0.9014 0.8802 0.8711

one (Table V, b = 50 and d = 5) with respect to the average task execution time (µ = 1).
Obviously, we use the same heuristic parameters than previously: ε = 0.01, pmax = 40%, and
p = 10%.

Table IV shows that, with large values of budget and deadline, all heuristics perform well.
Indeed, with the chosen parameters all heuristic achieve at least 91% of the performance of the
optimal. Among the one-size-fits-all heuristics, PerSurvival performs best and is the most
robust, but the difference between these heuristics is not always significant. On average the
performance of AutoPerSurvival and PerSurvival are pretty similar.

Table V presents the result when budget and deadline are small. In this case all one-
size-fits-all heuristics achieve very low performance, below 40% for each of them (for the log-
normal distribution). On the contrary, AutoPerSurvival always achieves good to very good
performance: its worse case is 77% of the optimal. Once again, this shows the great robustness
of AutoPerSurvival (40%, 0.01).

3.6 Conclusion
In this work, we have studied the problem of maximizing the number of tasks successfully
executed on a cloud platform under deadline and budget constraints. When task execution
times obey a probability distribution that is known before execution, previous results showed
that long-running tasks must be interrupted at some optimal cutting threshold τ , and provided
techniques to determine its value. Some probability distributions call for a very short threshold τ
while others have a large or infinite one. The main difficulty in this study is that the probability
distribution of task execution times is unknown to the scheduler. We designed a set of scheduling
heuristics to estimate the cutting threshold τ , some of which making use of the Kaplan-Meier
estimator. We also assessed different decision mechanisms to recompute the threshold as the
execution progresses. On the practical side, extensive simulations show that our best heuristic
AutoPerSurvival (40%, 0.01) achieves good performance for a wide spectrum of probability
distributions and parameter sets. In the worst scenario, it can execute 79% of tasks that an
omniscient oracle (knowing the distribution) would be able to complete.



Chapter 4

Efficient task-dropping strategies for firm real-
time systems

4.1 Introduction

As mentioned in the introduction, we pass to firm real-time tasks in this chapter. In the classical
setting of the problem with firm real-time tasks, there are several periodic tasks that are input
to the system. Each periodic task is composed of instances that are released with a given period
and deadline. All instances of a periodic task have same duration. The objective is to maximize
the number of task instances that successfully complete before their deadline. There are many
variations: for instance, some tasks may have two different types, skippable or not [68], and
only skippable tasks are allowed to miss their deadline.

In this chapter, we revisit the problem with firm real-time tasks in a framework closer to
that of the previous work and in Chapters 2 and 3. We deal with a single periodic task and
assume that all task instances are skippable, which simplifies the scheduling, but we no longer
assume that all instances have the same execution time, which dramatically complicates it. As
in the previous work and in Chapter 2, we assume that the task execution times obey some
probability distribution D known in advance, and we provide experiments with a wide range of
standard distributions.

Specifically, tasks arrive periodically and enter automatically the waiting queue for follow-up
allocation: instance number i, i ≥ 1, is released at time ri = τ × (i− 1) and must complete not
later than time δi = ri + d, where τ is the period and d the deadline. More precisely, if task
i is not completed by δi, it is considered as failed, and any resource spent to execute part of
it has been wasted. We consider a parallel platform with identical processors. The system can
decide whether, when, and on which processor to start the execution of each task. It can also
decide, at any instant, to interrupt the execution of a (long) running task and to launch a new
one, or to drop a task still in the waiting queue. Dealing with such stochastic execution times
introduces new challenges: If the support of the distribution D is unbounded, some tasks may
execute for an arbitrarily long duration, thereby putting the following tasks at risk. However,
if we decide to interrupt a task to launch a new one, the time already spent to execute it is
lost, and there is no guarantee that the new task will complete faster than the interrupted one.
Note that the problem is similar to scheduling overloaded systems that allow skips [57].

Although the task model varies compare to Chapters 2 and 3, we can still find some common
points: this task model also assumes that some tasks may not be executed in the end. On the
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other hand, the optimization objective remains to maximize the fraction of tasks that will be
completed before their deadline.

Within this framework, scheduling decisions become complicated. When a processor is idle,
we need to decide which task in the waiting queue should be launched. Recently released tasks
have a longer deadline, but maybe the probability to complete a more ancient task successfully
is high enough to be worth the try. Furthermore, we need to decide whether and when to
interrupt long-lasting tasks; at a given time-step, this decision depends upon how long the task
has been executing and upon how many tasks are in the waiting queue, and since when.

This work introduces and evaluates several heuristics to solve this challenging scheduling
problem. We first deal with the single processor case, and use as reference the heuristic Nev-
erKill that launches tasks in the order of arrivals and never interrupt any task before its
deadline is reached. We show that our best heuristics have a significantly better performance
than NeverKill in nearly all cases. Then we extend these best heuristics to the multiprocessor
case, showing that the gain in performance remains. The major contributions of this work are
the following:

• We design several heuristics, that dynamically decide to interrupt some (long-lasting)
tasks and launch new ones, based upon a variety of criteria including current length of
execution time, remaining time until deadline and duration of time spent in waiting queue
since release;

• We construct a Markov chain based upon a discretization of time and probability values,
we show that the chain is both aperiodic and irreducible, and we compute the optimal
throughput via the limit distribution of the chain;

• We conduct an experimental evaluation based on a comprehensive set of simulations sce-
narios, showing that our best heuristics achieve a significant gain over the whole spectrum
of application and platform parameters.

The rest of the chapter is organized as follows. Section 4.2 provides a description of the
optimization problem under study. The design of our heuristics is detailed in Section 4.3. The
Markov chain is constructed and solved in Section 4.4. Section 4.5 is devoted to a comprehensive
experimental comparison of the heuristics. Finally, Section 4.6 gives concluding remarks and
hints for future work.

4.2 Problem framework
In this work, we are considering the case where the system comprises a set of M identical
processors m1, ..., mM . We assume that the processors are never voluntarily left idle. We
consider a task instance set T , in which all instances are independent, and their execution times
follow the very same distribution D. We consider discretized distribution while establishing
theoretical equations for our problem, and we use continuous distribution during our simulation.
LetX be the random variable for the execution time of a task. Then, let us define pt = P(X = t).
In other words, pt is the probability that the execution duration of a task is t. As described
before, tasks arrive periodically with period τ . Task i arrives at time ri = (i − 1)τ , and has a
window of size d to be executed. In other words its deadline is δi = ri + d. If d − τ ≤ 0, that
is if d ≤ τ , there is no overlap between tasks, and it is obvious that we can let all tasks to be
executed until their deadline. Therefore, in our problem, we assume that d > τ .
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The objective is to maximize the throughput of tasks successfully completed. In other words,
we want to maximize the number of tasks successfully completed before their deadline per unit
of time. As there is one new task arriving every τ units of time, it is equivalent to maximize the
throughput in successfully completed tasks and to maximize the probability that a task arriving
in the system is successfully completed.

Thus, we need to find a heuristic which solves at first the following question: On which
processor to execute each task? After that, comes the second question: Whether and when to
execute the task on its attributed processor and, if it is allowed to run, for how long time?

After defining a heuristic, in order to evaluate the probability of success of a task, we need
to define the following notations:

• si,j : number of time units after the release of task i at which the processor mj will
become available for task i (i.e., the absolute time at which mj becomes available for task
i is ri + si,j).

• S = (s1, ..., sM ): the state of the system. The state of the system is defined by the list of
the times at which the different processors will be available after the release of the task
under consideration.

• pS : the probability that state S occurs.

• Φi: the set of all possible states of the system at the release date of task i.

• P availi,j (t): the probability that processor mj will become available for task i t time units
after its release time (i.e., P(si,j = t)). As there is no value to execute a firm real-time task
after its deadline, it will obviously be stopped at the deadline even if it is not completed
yet. Therefore, every processor will be available at the latest d− τ time units after task i
is released, because this is the deadline for the previous task, task i− 1.

• ci: if task i is successfully finished, ci = True; if task i is interrupted or is never started,
ci = False.

• P compi,j (t): the probability that task i will complete successfully if processor mj becomes
available t time units after its release time (i.e., P(ci|si,j = t)).

Consider a heuristic which will choose to map task i on some processor h(i,S) if the system
is the state S when task i is released. Then the probability of success of task i under this
heuristic is: ∑

S∈Φi
pSP

comp
i,h(i,S)(si,h(i,S))

Our objective is to find a heuristic which maximizes this value for any task.

4.3 Heuristics
In order to solve the problems defined above, we designed a two-phase heuristic. It comprises
at first the task mapping phase, in which we decide which processor is going to execute which
task. And then, we will pass to the task admission phase, in which we must decide, for each
processor and each task attributed to it, whether to start it and if started, whether to interrupt
its execution at some point or let it run either through completion or until it reaches its deadline.
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Task mapping. We consider in this work the two following attribution heuristics: the Round
robin strategy (RoundRobin) and the Earliest start time strategy (EarliestStartTime).
Under the RoundRobin strategy, task i is to be executed by processor h(i) = 1 + (i mod M).
After that, the M processors process their sets of tasks fully independently. On the other hand,
under the EarliestStartTime strategy, task i will be executed by any processor h(i) which
satisfies si,h(i) = min1≤j≤M si,j .

Task admission. We define three criteria about whether and for how long to execute tasks:

• Upper bound on starting times (smax): We define smax as the upper bound on the start
time of a task. Task i cannot start later than time ri + smax. As described above, a
processor is available for task i at the latest at time ri+d−τ . There is no sense to set the
smax to a value larger than d − τ , because this is equivalent to the case of smax = d − τ .
Thus, we assume that 0 ≤ smax ≤ d− τ .

• Upper bound on execution times (lmax): In this variant, we do not allow a task to run for
longer than a time lmax. Obviously, if lmax ≥ d, this is equivalent to not having any upper
bound on the execution time of tasks. On the other hand, there is no sense to take a lmax
value smaller than or equals to τ . In this case, each task will be interrupted before the
next task is released and the processor will be left idle. Hence, in the following we assume
that we have τ < lmax ≤ d.

• Upper bound on interruption times (dmax): In this variant, tasks are interrupted dmax
time units after its release time, instead of allowing them to execute until their deadline.
Similarly as in the case of lmax, we can also assume that τ < dmax ≤ d.

In our heuristics, we can combine the above three criteria arbitrarily, and we can obtain in
total eight algorithms:

• NeverKill: This is the heuristic in which we do not interrupt any tasks voluntarily. A
task can only be thrown by its deadline if it is not started or completed earlier. In other
words, there is not any smax, lmax or dmax constraints.

• Other heuristics (Smax+Lmax+Dmax, Smax+Lmax, Smax+Dmax, Lmax+Dmax,
Smax, Lmax, Dmax): In these heuristics, only the criteria appearing in the heuristic
name are enabled. When a criterion is disabled in an algorithm, we set its value to d
(for lmax and dmax) or d − τ (for smax), which means that there is no restriction on this
criterion. In contrast, if a criterion is enabled, we need to find the value which has the
best expected performance, within its valid value range described above. After that, tasks
will be started, stopped or dropped according to the criterion value.

Different criteria values (smax, lmax and dmax) leads to different number of tasks successfully
completed. Given a parameter set (period τ , deadline d and distribution of task execution times
D) and the set of criteria enabled C, we need to design an algorithm to find the combination of
values of criteria in C which can achieve the best performance.

In order to reduce the complexity of our algorithm, we define a quantum duration q. We
discretize a period τ into τ

q quanta. A processor has d−τ
q + 1 possible states when task i arrives:

it can be available 0, 1, ..., d−τq quanta after the release of the task. If we find the probability
that each of these states appear while releasing task i, where i tends to infinity, we can then
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calculate the asymptotic expected probability that a task is executed successfully, because the
probability of task execution time is known. Thus, given a parameter set (τ , d and D) and a
combination of criteria values (smax, lmax and dmax), we can construct a Markov chain to present
these states, and then calculate its limit distribution to find the asymptotic expected probability
that a task can be successfully executed. If we traverse all possible values of enabled criteria, we
can find the best combination of criteria values, for which the asymptotic expected probability
is the largest. Algorithm 1 presents this procedure. On the other hand, if we have only one
criteria enabled in our heuristic, we can hypothesize that there exists only one local maximum
of performance, and we can check through experiments that this hypothesis is correct. Thus
we can use a binary search to find the best criterion value. This can reduce the execution time
of heuristics. This procedure is presented in Algorithm 2. A more detailed explanation about
the sub-algorithm calculating the asymptotic expected success probability of tasks is presented
in Section 4.4.

What needs to be added is, as tasks arrive periodically and their deadline is always d time
units after their release time, we will treat them in a First-In First-Out order: When task i− 1
is successfully completed or is interrupted, we treat always task i. Evidently, task i can not be
executed at all and be dropped directly because of some task admission criteria. In this case,
we will pass immediatly to task i+ 1.

4.4 Resolution of Markov chain

In the previous sections, we defined our problem and we presented the heuristics used in the
paper. In this section, we continue to consider a theoretical world, and use a Markov chain to
represent the states that we can encounter during the execution, in order to find the expected
result of the objective function.

We consider different task admission heuristics for each of our attribution strategy. For
RoundRobin, as we can consider each processor independently, in Section 4.4.1, we establish
at first a linear system for the single processor case, and then extend the result to RoundRobin
in multiple processors case. For EarliestStartTime, the situation becomes more complicated,
because the task attribution on one processor is no more periodic. In Section 4.4.2, we try to
merge equivalent states and describe them, in order to reduce the computational cost.

4.4.1 RoundRobin strategy

In this section, we give at first the Markov chain resolution method in the single processor case.
After that, we talk about how to extend the result to RoundRobin heuristics in the multiple
processor case.

Equations of NeverKill and single criterion heuristics

In this section, we have a single processor platform. All tasks are attributed to processor
m1. We establish the equations for NeverKill and for each case while enabling a single
task admission criterion (smax, dmax, lmax) to present the success probability P compi,1 (t) and the
available probability P availi,1 (t) in terms of pt and P availi−1,1(t). As we discretized the system into
quanta of duration q. In the following equations, t can take any multiple of q between 0 and d.
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Algorithm 1: Search of the best criteria values given a parameter set
Input: q: quantum duration, C: criteria enabled
τ : task releasing period, d: task deadline, D: distribution of task execution times
Output: cbest: table which contains the best combination of criteria values

1 begin
2 if ”smax” ∈ C then
3 Smax = {0, q, 2q, . . . , d− τ}

/* smax can take value between 0 and d−τ
q

quanta */
4 else
5 Smax = {d− τ}

/* smax is not constrainted, and is set to the maximal value */

6 if ”lmax” ∈ C then
7 Lmax = {τ + q, τ + 2q, . . . , d}

/* lmax can take value between τ
q

and d
q

quanta */
8 else
9 Lmax = {d}

/* lmax is not constrainted, and is set to the maximal value */

10 if ”dmax” ∈ C then
11 Dmax = {τ + q, τ + 2q, . . . , d}

/* dmax can take value between τ
q

and d
q

quanta */
12 else
13 Dmax = {d}

/* dmax is not constrainted, and is set to the maximal value */

14 perfbest = 0
/* maximal expected performance */

15 cbest = [0, 0, 0]
/* criteria values for which the maximal performance is reached */

16 for smax ∈ Smax do
17 for lmax ∈ Lmax do
18 for dmax ∈ Dmax do
19 ccurrent = [smax, lmax, dmax]
20 perftmp = ResolveMarkovChain(q, ccurrent, τ, d,D)

/* Function to resolve the Markov chain, and to return the expected
success probability according to the input parameter set */

21 if perftmp > perfbest then
22 cbest = [smax, lmax, dmax]
23 perfbest = perftmp

/* Renew cbest and perfbest if we find a better performance */

24 return cbest
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Algorithm 2: Binary search of the best values given a criterion and a parameter set
Input: q: quantum duration, crit: (the only) criterion enabled (smax:0, lmax:1, dmax:2)
τ : task releasing period, d: task deadline, D: distribution of task execution times
Output: cbest: best criterion value found

1 begin
2 cLB = [d− q, d, d]
3 cLB [crit] = 0
4 cUB = [d− q, d, d]

/* Define initial value of lowerbound cLB and upperbound cUB according to criterion
enabled */

5 perfLB = ResolveMarkovChain(q, cLB , τ, d,D)
6 perfUB = ResolveMarkovChain(q, cUB , τ, d,D)

/* Calculate the expected performance of the lowerbound and the upperbound */
7 while cUB [crit]− cLB [crit] > q do
8 ctarget = [d− q, d, d]
9 ctarget[crit] = b cUB [crit]−cLB [crit]

2q c ∗ q
10 perftarget = ResolveMarkovChain(q, ctarget, τ, d,D)
11 if perfLB ≤ perftarget and perftarget ≤ perfUB then

/* If the function is apparently non-decreasing, we focus on the second half
of the interval */

12 cLB = ctarget
13 perfLB = perftarget
14 else if perfLB ≥ perftarget and perftarget ≥ perfUB then

/* If the function is apparently non-increasing, we focus on the first half of
the interval */

15 cUB = ctarget
16 perfUB = perftarget
17 else if perfLB ≥ perftarget and perftarget ≤ perfUB then

/* If the middle point is the minimum of the three tested values, according to
our hypothesis, the maximum of the three tested values correspond to the
optimum */

18 if perfUB ≥ perfLB then
19 cbest = cUB [crit]
20 else
21 cbest = cLB [crit]
22 return cbest
23 else

/* The performance at the target point is the maximum of the three tested
values. We have no way to know on which half the absolute maximum resides.
We test the next point to know what the "derivative" is at the target point
*/

24 cnext = [d− q, d, d]
25 cnext[crit] = ctarget[crit] + q
26 perftarget = ResolveMarkovChain(q, cnext, τ, d,D)
27 if perftarget ≥ perfnext then

/* If the performance at the target point is higher, the maximum is no
later than the target point */

28 cUB = ctarget
29 perfUB = perftarget
30 else

/* Otherwise, it is no earlier than the target point */
31 cLB = ctarget
32 perfLB = perftarget

33 if perfLB ≥ perfUB then
34 cbest = cLB [crit]
35 else
36 cbest = cUB [crit]
37 return cbest
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NeverKill P compi,1 (t) is easy to establish and is common to all tasks:

P compi,1 (t) = P(X ≤ d− t) =

d−t
q∑

k=1
pkq

One can remark that

P compi,1 (d− τ) =

τ
q∑

k=1
pkq

and that for 0 ≤ t < d− τ
P compi,1 (t) = P compi,1 (t+ q) + pd−t

As for P availi,1 (t), if i = 1, we have P avail1,1 (0) = 1. In other cases, we have to consider two
limit cases and one intermediary case:

Case P availi,1 (0). For the processor to be available at the release time of task i, task i− 1 must
have successfully completed at the latest at that time and, therefore, it must have started
at least one quantum earlier.

P availi,1 (0) =

τ
q
−1∑
s=0

P(X ≤ τ − sq)P availi−1,1(sq) =

τ
q
−1∑
s=0


τ
q
−s∑

k=1
pkq

P availi−1,1(sq)

Case P availi,1 (t) with q ≤ t ≤ d− τ − q. For the processor to be available at the time ri + t =
ri−1+τ+t, the execution of task i−1 must complete exactly at that time. The processing of
task i−1 starts at time ri−1+sq (i.e., s quanta after its release time) where 0 ≤ sq ≤ d−τ ,
and where ri−1 + sq < ri + t = ri−1 + τ + t, because task i − 1 must start at least one
quantum before task i.

P availi,1 (t) =
min{ t+τ

q
−1, d−τ

q
}∑

s=0
P(X = t+ τ − sq)P availi−1,1(sq) =

min{ t+τ
q
−1, d−τ

q
}∑

s=0
pt+τ−sqP

avail
i−1,1(sq)

Case P availi,1 (d− τ). At time ri + d − τ = ri−1 + d, task i − 1 reaches its deadline and will be
stopped whether it is completed or not. We just consider all possible starting times for
task i− 1 and the probability that it is executed until the deadline.

P availi,1 (d− τ) =

d−τ
q∑

s=0
P(X ≥ d− sq)P availi−1,1(sq) =

d−τ
q∑

s=0

1−

d
q
−s−1∑
k=1

pkq

P availi−1,1(sq)

Criterion smax enabled In this case, the latest allowed start time for each task is smax. Recall
that we assume smax ≤ d− τ .

The equation for the probability of success is the same as previously as long as t ≤ smax.
Otherwise, the task will not be executed and the probability is always 0.

P compi,1 (t) =

 P(X ≤ d− t) =
∑ d−t

q

k=1 pkq if t ≤ smax
0 otherwise

The calculation of the probability of availability becomes more complicated:
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Case P availi,1 (0). In this case, the equation is the same as for the NeverKill heuristic:

P availi,1 (0) =

τ
q
−1∑
s=0

P(X ≤ τ − sq)P availi−1,1(sq) =

τ
q
−1∑
s=0


τ
q
−s∑

k=1
pkq

P availi−1,1(sq)

Case P availi,1 (t) with q ≤ t ≤ d− τ − q. For the processor to be available at the time ri + t =
ri−1 + τ + t, the execution of task i− 1 must complete exactly at that time or processor
is available for task i− 1 at that time, but is killed because of smax. As we assumed that
smax ≤ d− τ , the processing of task i− 1 can start at time ri−1 + sq where 0 ≤ sq ≤ smax.
We have two cases to consider:

q ≤ t ≤ smax − τ or d− 2τ + q ≤ t ≤ d− τ − q. In this variant, only the first case de-
scribed above is possible: the execution of task i− 1 completes exactly at that time.
It is not possible that the processor is available for task i−1 and it is immediately be
killed by smax within this interval because: (i) if t ≤ smax − τ , the available time for
task i is earlier than ri + smax− τ = ri−1 + smax. If the processor is available for task
i−1 exactly at that time, it will not be killed by the smax, but will start to run. (ii) if
t > d−2τ , the available time for task i is strictly later than ri+d−2τ = ri−2 +d. In
this case, all tasks before i− 1 have reached their deadline earlier, and the processor
cannot be available for task i− 1 exactly at that time.

P availi+1,1(t) =
min{ t+τ

q
−1, smax

q
}∑

s=0
P(X = t+τ−sq)P availi−1,1(sq) =

min{ t+τ
q
−1, smax

q
}∑

s=0
pt+τ−sqP

avail
i−1,1(sq)

smax − τ + q ≤ t ≤ d− 2τ . In this variant, both situations described above are possible.
Thus, we need to add a term to the equation of the first variant, which corresponds to
the following case: the processor is available for task i−1 at time ri−1 + t+τ = ri+ t
and the task is killed because smax is already passed. The processor is thus available
for task i.

P availi+1,1(t) = P availi,1 (t+ τ) +
min{ t+τ

q
−1, smax

q
}∑

s=0
P(X = t+ τ − sq)P availi−1,1(sq)

= P availi,1 (t+ τ) +
min{ t+τ

q
−1, smax

q
}∑

s=0
pt+τ−sqP

avail
i−1,1(sq)

Case P availi,1 (d− τ). Similarly as for the NeverKill heuristic, at time ri + d − τ = ri−1 + d,
task i − 1 reaches its deadline and will be stopped whether it is completed or not. The
difference is that, task i−1 cannot be started after time ri−1 +smax = ri+smax−τ . Thus,
we consider possible starting times for task i − 1 and the probability that it is executed
until the deadline.

P availi,1 (d− τ) =

smax
q∑

s=0
P(X ≥ d− sq)P availi−1,1(sq) =

smax
q∑

s=0

1−

d
q
−s−1∑
k=1

pkq

P availi−1,1(sq)
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Criterion lmax enabled In this variant, we do not allow a task to be executed for longer than
a duration of lmax. Recall that we assume lmax ≥ τ .

The probability of success is similar to that of NeverKill, but is limited because of lmax:

P compi,1 (t) = P(X ≤ min{d− t, lmax}) =
min{ d−t

q
, lmax

q
}∑

k=1
pkq

As for the probability of availability, we need to discuss different cases:

Case P availi,1 (0). As we have lmax ≥ τ , task i− 1 cannot be interrupted between time ri−1 and
ri. Thus, the only possibility that the processor is available at the release time of task i
is that task i− 1 has successfully completed at the latest at that time.

P availi,1 (0) =

τ
q
−1∑
s=0

P(X ≤ τ − sq)P availi−1,1(sq) =

τ
q
−1∑
s=0


τ
q
−s∑

k=1
pkq

P availi−1,1(sq)

Case P availi,1 (t) with q ≤ t ≤ d− τ − q. For the processor to be available at the time ri + t =
ri−1 + τ + t, the execution of task i− 1 must complete exactly at that time or task i− 1
must be killed at that time because of lmax. The processing of task i− 1 starts at a time
ri−1 + sq where 0 ≤ sq ≤ d − τ , and where ri−1 + sq < ri + t = ri−1 + τ + t, and where
t+ τ − sq ≤ lmax because the execution of task i− 1 lasts at most lmax. Altogether, this
gives us the constraints:

max{0, t+ τ − lmax} ≤ sq ≤ min{d− τ, τ + t− 1}.

We have two cases to consider:

q ≤ t ≤ lmax − τ − q. In this case, task i − 1 cannot be killed because of the lmax limit.
This is because, if t < lmax − τ , the processor will be available for task i strictly
earlier than ri + lmax − τ = ri−1 + lmax. At that time, task i − 1 is generated for
strictly less than lmax time units. Thus, it can not be interrupted because of the
upper bound of execution time lmax. Hence, we only need to consider the case that
task i− 1 is completed exactly at that time, as in the case of NeverKill.

P availi,1 (t) =
min{ t+τ

q
−1, d−τ

q
}∑

s=0
P(X = t+τ−sq)P availi−1,1(sq) =

min{ t+τ
q
−1, d−τ

q
}∑

s=0
pt+τ−sqP

avail
i−1,1(sq)

lmax − τ ≤ t ≤ d− τ − q. In this case, the second situation described above is also possi-
ble: if task i − 1 is started at time ri−1 + t + τ − lmax and is not completed before
ri−1 + t+ τ = ri + t, it will be killed, and the processor will be available for task i at
that time.

P availi,1 (t) = P(X ≥ lmax)P availi−1,1(t+ τ − lmax) +
min{ t+τ

q
−1, d−τ

q
}∑

s= t+τ−lmax
q

+1

P(X = t+ τ − sq)P availi−1,1(sq)

=

1−

lmax
q
−1∑

k=1
pkq

P availi−1,1(t+ τ − lmax) +
min{ t+τ

q
−1, d−τ

q
}∑

s= t+τ−lmax
q

+1

pt+τ−sqP
avail
i−1,1(sq)
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Case P availi,1 (d− τ). At time ri + d − τ = ri−1 + d, task i − 1 reaches its deadline and will be
stopped whether it is completed or not. With the limit of lmax, task i− 1 must be started
after time ri−1 + d − lmax. Otherwise, it is already interrupted earlier. Thus, we just
consider all possible starting times for task i − 1 and the probability that it is executed
until the deadline.

P availi,1 (d− τ) =

d−τ
q∑

s= d−lmax
q

P(X ≥ d− sq)P availi−1,1(sq) =

d−τ
q∑

s= d−lmax
q

1−

d
q
−s−1∑
k=1

pkq

P availi−1,1(sq)

Criterion dmax enabled This variant is very similar to NeverKill. We can obtain each
equation by replacing d in the case of NeverKill by dmax.

In the following sections, we will at first present the establishment of the linear system (and
the transition matrix) based on the above equations, which is used to find the asymptotic result
of probabilities of availability. After that, for multi-criteria enabled cases, we will use a simple
example to show that the transition matrix of these cases can be easily built from that when
single criterion is enabled.

Building the linear system

In order to find the asymptotic behavior of P availi,1 (t) for each time t (i.e., i → ∞), we use the
equations above to establish a system of linear equations. We consider how the probabilities
evolve from the execution of the (i − 1)-th task to the execution of the i-th. Hence, we will
express P availi,1 (0), ..., P availi,1 (d− τ) as functions of P availi−1,1(0), ..., P availi−1,1(d− τ). Note that at time
d − τ after the release of task i, task i − 1 reaches its deadline and the processor becomes
available anyway.

We define as following the column vector of probability of availability for task i:

πi =


P availi,1 (0)
P availi,1 (q)
P availi,1 (2q)

...
P availi,1 (d− τ)


We use the matrix A such that Ax,y = P(si,1 = xq

∣∣si−1,1 = yq) (probability that the
availability time of m1 equals to x quanta for task i knowing that the availability time equals
to y quanta for task i− 1). Note that A is the transpose of the transition matrix of the Markov
chain, and we use it because it is more handy to deal with column vectors rather than with row
vectors. We will end up with a system of the form πi = A× πi−1, more precisely:

P availi,1 (0)
P availi,1 (q)
P availi,1 (2q)

...
P availi,1 (d− τ)

 = A×


P availi−1,1(0)
P availi−1,1(q)
P availi−1,1(2q)

...
P availi−1,1(d− τ)


In order to compute the asymptotic probabilities of availability, we should solve the linear
system:  π∞ = A× π∞∑ d−τ

q

k=0 P
avail
∞,1 (kq) = 1
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where

π∞ =


P avail∞,1 (0)
P avail∞,1 (q)
P avail∞,1 (2q)

...
P avail∞,1 (d− τ)


is the vector of asymptotic probabilities of availability. After that, we can calculate the asymp-
totic probability of success of our tasks.

Special case of multi-criteria heuristics

In this section, we use a simple example to present the building of matrix A while using a
multi-criteria heuristics.

We set the parameters as following: q = 1, τ = 4, d = 12, smax = 5, lmax = 6, dmax = 10.
At first, here is the matrix A for the NeverKill heuristic. The first row of the matrix

contains elements for P availi,1 (0), until the last row for P availi,1 (d− τ).



4∑
k=1

pk

3∑
k=1

pk

2∑
k=1

pk p1 0 0 0 0 0

p5 p4 p3 p2 p1 0 0 0 0
p6 p5 p4 p3 p2 p1 0 0 0
p7 p6 p5 p4 p3 p2 p1 0 0
p8 p7 p6 p5 p4 p3 p2 p1 0
p9 p8 p7 p6 p5 p4 p3 p2 p1
p10 p9 p8 p7 p6 p5 p4 p3 p2
p11 p10 p9 p8 p7 p6 p5 p4 p3

1−
11∑
k=1

pk 1−
10∑
k=1

pk 1−
9∑
k=1

pk 1−
8∑
k=1

pk 1−
7∑
k=1

pk 1−
6∑
k=1

pk 1−
5∑
k=1

pk 1−
4∑
k=1

pk 1−
3∑
k=1

pk


The matrix A of smax enabled case has exactly the same first 1+ smax

q columns as the matrix
for NeverKill. The remaining d−τ−smax

q columns only contain zeros except for the elements
As− τ

q
,s, for q + smax ≤ sq ≤ d − τ , which are all equal to 1. These values represent the cases

that task i − 1 is not launched at such a start time sq and the processor is given immediately
to task i for which it is τ

q quanta “sooner” with respect to its release time.



4∑
k=1

pk

3∑
k=1

pk

2∑
k=1

pk p1 0 0 0 0 0

p5 p4 p3 p2 p1 0 0 0 0
p6 p5 p4 p3 p2 p1 1 0 0
p7 p6 p5 p4 p3 p2 0 1 0
p8 p7 p6 p5 p4 p3 0 0 1
p9 p8 p7 p6 p5 p4 0 0 0
p10 p9 p8 p7 p6 p5 0 0 0
p11 p10 p9 p8 p7 p6 0 0 0

1−
11∑
k=1

pk 1−
10∑
k=1

pk 1−
9∑
k=1

pk 1−
8∑
k=1

pk 1−
7∑
k=1

pk 1−
6∑
k=1

pk 0 0 0


Below is the matrix A in the case when lmax is enabled. Let A′ be the matrix of NeverKill

under the same parameter values. Recall that Ax,y is the probability that the availability time
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equals to ri + xq for task i knowing that the availability time equals to ri−1 + yq for task i− 1.
We have three cases to consider:

• For y ≥ x + τ−lmax
q + 1, we can deduce that (ri + xq) − (ri−1 + yq) < lmax. This means

that the difference between the available times of tasks i and i − 1 is smaller than lmax.
In this case, the execution time of i − 1 is less than lmax, and it will not be interrupted.
The only possible situation is, as in NeverKill, that task i − 1 has exactly finished at
that time. Hence, we have Ax,y = A′x,y.

• Similarly, for y = x + τ−lmax
q , we have (ri + xq) − (ri−1 + yq) = lmax. This means

that task i − 1 will be interrupted at that time, even if it is not successfully finished.
Thus, the probabilities of cases that the execution time of i − 1 is larger than lmax in
NeverKill are all summed up in this term while enabling lmax. Thus we can deduce
that, Ax,y = 1−

∑y−1
y′=0A

′
x,y′ .

• Otherwise, the difference between the available times of tasks i and i − 1 is larger than
lmax, processor cannot be available for task i exactly at that time, because i− 1 must be
successfully completed or interrupted earlier, thus Ax,y = 0.



4∑
k=1

pk

3∑
k=1

pk

2∑
k=1

pk p1 0 0 0 0 0

p5 p4 p3 p2 p1 0 0 0 0

1−
5∑
k=1

pk p5 p4 p3 p2 p1 0 0 0

0 1−
5∑
k=1

pk p5 p4 p3 p2 p1 0 0

0 0 1−
5∑
k=1

pk p5 p4 p3 p2 p1 0

0 0 0 1−
5∑
k=1

pk p5 p4 p3 p2 p1

0 0 0 0 1−
5∑
k=1

pk p5 p4 p3 p2

0 0 0 0 0 1−
5∑
k=1

pk p5 p4 p3

0 0 0 0 0 0 1−
5∑
k=1

pk 1−
4∑
k=1

pk 1−
3∑
k=1

pk



The matrix A when dmax is enabled has exactly the same first dmax−τ
q rows as the matrix for

NeverKill. For the dmax−τ
q + 1-th row, we have xq = dmax− τ . This is the case that processor

is available for task i at time ri+dmax− τ = ri−1 +dmax, where task i−1 should be interrupted
by dmax, and all available times larger than this value are not possible. Thus, we can deduce

that A dmax−τ
q

,y = 1−
∑ dmax−τ

q

y′=1 A dmax−τ
q

,y′ , and the remaining d−dmax
q rows only contain zeros.
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4∑
k=1

pk

3∑
k=1

pk

2∑
k=1

pk p1 0 0 0 0 0

p5 p4 p3 p2 p1 0 0 0 0
p6 p5 p4 p3 p2 p1 0 0 0
p7 p6 p5 p4 p3 p2 p1 0 0
p8 p7 p6 p5 p4 p3 p2 p1 0
p9 p8 p7 p6 p5 p4 p3 p2 p1

1−
9∑
k=1

pk 1−
8∑
k=1

pk 1−
7∑
k=1

pk 1−
6∑
k=1

pk 1−
5∑
k=1

pk 1−
4∑
k=1

pk 1−
3∑
k=1

pk 1−
2∑
k=1

pk 1− p1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


As for the case where the three criteria are all enabled (smax, lmax and dmax), it is easy to

find the corresponding matrix by composing those of the above heuristics. At first, we can start
from the matrix of lmax enabled case. And then, we replace the last d−τ−smax

q columns by that
of smax. Finally, as in the case when dmax is enabled, we replace the last d−dmax

q rows by 0, and

the dmax−τ
q + 1-th row (x = dmax−τ

q ) is calculated as following: Ax,y = 1 −
∑ dmax−τ

q

y′=1 Ax,y′ . And
we can obtain the matrix:



4∑
k=1

pk

3∑
k=1

pk

2∑
k=1

pk p1 0 0 0 0 0

p5 p4 p3 p2 p1 0 0 0 0

1−
5∑
k=1

pk p5 p4 p3 p2 p1 1 0 0

0 1−
5∑
k=1

pk p5 p4 p3 p2 0 1 0

0 0 1−
5∑
k=1

pk p5 p4 p3 0 0 1

0 0 0 1−
5∑
k=1

pk p5 p4 0 0 0

0 0 0 0 1−
5∑
k=1

pk 1−
4∑
k=1

pk 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


For other cases where we enable only two of the criteria, we can proceed similarly as for this

example, and just skip the criteria disabled in each case.

Multi-processor case

Recall that, under the multiple processor case, for the RoundRobin heuristic, task i will be
executed by processor 1+(i mod M). Thus, we can treat theM processors fully independently.
Let us consider a case with period τ , deadline d, and the distribution of execution times D. We
can simply consider each processor as a system with period Mτ , deadline d, and distribution
D. And then, we can calculate the asymptotic success probability of each task according to
its attributed processor. Finally, we can compute the performance by summing up the success
probability of all tasks.



4.4. RESOLUTION OF MARKOV CHAIN 65

4.4.2 EarliestStartTime strategy
For EarliestStartTime strategy, the M processors become dependent. Thus, we need to
treat simultaneously the states of all the processors while considering any task.

Recall that si,j is the time at which machine mj will be available to start task i. For
the EarliestStartTime heuristic, task i will be executed by processor h(i) which satisfies
si,h(i) = min1≤j≤M si,j .

As mentioned above, we can define the state of the system at the release time of task i by a
list of the available times of all the processors: Si = (si,1, ..., si,M ). We need to determine every
possible state list Si and the probability that it is reached, by considering Si−1, the state list at
the release time of task i− 1.

Equations

We assume that task i − 1 is allocated to processor mh(i−1). Thus, for any processor mj

such that j 6= h(i− 1), the available time of the processor is not changed before and after
the releasing of task i − 1. Therefore, these processors will be available for task i at time
ri−1 + si−1,j = ri + si−1,j − τ . Therefore:

si,j = max{0, si−1,j − τ} if j 6= h(i− 1).

As for processor mh(i−1), we will consider each of our task admission criteria differently.

NeverKill For processor mh(i−1), there exists two cases: (i) with probability pt, the execution
of task i − 1 will last for a duration of t where q ≤ t ≤ d − si−1,h(i−1). In this case, task i − 1
will be completed successfully at time si−1,h(i−1) + t. Hence, processor mh(i−1) will be available
for task i at time si,h(i−1) = max{0, si−1,h(i−1) + t− τ} with probability pt. (ii) if the execution
time of task i − 1 is greater than d − si−1,h(i−1), it will be interrupted by the deadline at time

ri−1 + d = ri + d − τ . This happens with probability 1 −
∑ d−si−1,h(i−1)

q

k=1 pkq, and the available
time for task i can be defined by si,h(i−1) = d− τ .

Altogether, we get:

si,h(i−1) =

 max{0, si−1,h(i−1) + t− τ} with probability pt, for q ≤ t ≤ d− si−1,h(i−1)

d− τ with probability 1−
∑ d−si−1,h(i−1)

q

k=1 pkq

Criterion smax enabled In this case, task i− 1 cannot be started later than time ri−1 + smax,
and we have to consider two situations: (i) the available time for task i−1, si−1,h(i−1), is greater
than smax, task i − 1 is not launched. Thus, the available time of processor mh(i−1) for task i
is calculated as other processors not handling task i − 1. (ii) otherwise, task i − 1 is started
successfully, and si,h(i−1) can be calculated as for NeverKill. Altogether, we have:

If si−1,h(i−1) > smax.
si,h(i−1) = max{0, si−1,h(i−1) − τ}

If si−1,h(i−1) ≤ smax.

si,h(i−1) =

 max{0, si−1,h(i−1) + t− τ} with probability pt, for q ≤ t ≤ d− si−1,h(i−1)

d− τ with probability 1−
∑ d−si−1,h(i−1)

q

k=1 pkq
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Criterion lmax enabled In this variant, a task can be interrupted either by the deadline or by
the threshold lmax. Recall that we assume τ < lmax ≤ d. We need to rewrite the equation of
NeverKill to take into account lmax:

si,h(i−1) =


max{0, si−1,h(i−1) + t− τ} with probability pt, for q ≤ t ≤ min{d− si−1,h(i−1), lmax}

min{d− τ, si−1,h(i−1) + lmax − τ} with probability 1−
min{

d−si−1,h(i−1)
q

, lmax
q
}∑

k=1
pkq

in which the first term corresponds do the case where task i − 1 is successfully finished before
the deadline and before the lmax upper bound, and the second term is the case that task i− 1
is interrupted by the deadline or the lmax threshold.

Criterion dmax enabled This variant is very similar to NeverKill, we just need to replace d
by dmax, because we interrupt uncompleted tasks at time dmax instead of at their deadline.

si,h(i−1) =

 max{0, si−1,h(i−1) + t− τ} with probability pt, for q ≤ t ≤ dmax − si−1,h(i−1)

dmax − τ with probability 1−
∑ dmax−si−1,h(i−1)

q

k=1 pkq

Probability of states changing

In this section, we enable all three task attribution criteria (smax, lmax, dmax). We can consider
other cases as a special case of this one, in which disabled criteria are set to their maximal value
(d for lmax and dmax; d− τ for smax).

As mentioned above, the state of the system at the release time of task i can be defined
by an available time state list of all processors: Si = (si,1, ..., si,M ). We will calculate the
probability that each state list Si is reached, based on Si−1, the state list of task i − 1. Note
that the following two states: S = (s1, s2, ..., sM ) and S ′ = (sM , sM−1, ..., s1), are equivalent
and indistinguishable. Therefore, we can merge the M ! equivalent configurations, identical up
to the ordering of processors, to reduce the computational cost of the implementation.

Thus, for task i− 1, we only need to consider the state lists Si−1 = (si−1,1, ..., si−1,M ) which
are lexicographically ordered: si−1,1 ≤ si−1,2 ≤ ... ≤ si−1,M . According to the definition of
EarliestStartTime, task i − 1 will be attributed to processor m1. In order to facilitate the
representation, we define a function Sorted which has as input a state list, and has as output
the non-decreasing list with the same elements as its input.

All possible available time state lists and the probability that they are reached are presented
as following:

• If si−1,1 > smax, task i− 1 is not started because of the smax:

Si = (si−1,1 − τ, si−1,2 − τ, ..., si−1,M − τ) with probability 1.

• If si−1,1 ≤ smax, task i− 1 will be started, and we have the following different cases:

– Task i− 1 is successfully finished before the release of task i:
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∗ If si−1,1 < τ ,

Si = (0, si−1,2−τ, ..., si−1,M−τ) with probability
min{

τ−si−1,1
q

,
dmax−si−1,1

q
, lmax

q
}∑

k=1
pkq

∗ If si−1,1 ≥ τ ,

Si = (0, si−1,2 − τ, ..., si−1,M − τ) with probability 0

– Task i−1 is successfully finished after the release of task i. For max{q, τ−si−1,1+q} ≤
t ≤ min{dmax − si−1,1, lmax}:

Si = Sorted((si−1,1 + t− τ, si−1,2 − τ, ..., si−1,M − τ)) with probability pt

– Task i− 1 is interrupted either by the dmax or the lmax threshold:
∗ If si−1,1 + lmax < dmax, task i− 1 will be interrupted by reaching lmax:

Si = Sorted((lmax+si−1,1−τ, si−1,2−τ, ..., si−1,M−τ)) with probability 1−

lmax
q∑

k=1
pkq

∗ If si−1,1 + lmax ≥ dmax, task i− 1 will be interrupted by reaching the dmax:

Si = Sorted((dmax−τ, si−1,2−τ, ..., si−1,M−τ)) with probability 1−

dmax−si−1,1
q∑

k=1
pkq

• All other states Si cannot be reached.

4.4.3 Limit behavior of the Markov chain

In this section we will prove that the Markov chains that we consider are both irreducible and
aperiodic. Since their number of states is always finite, this is equivalent to say that these
Markov chains are regular. It is well known that a regular finite Markov chain admits a unique
limit distribution [41].

For the sake of readability, we will restrict the proof to the case where there is a single
processor. The multi-processor case is quite similar.

In this section, all variables related to time are assumed to be integer multiples of the
quantum duration q. On the other hand, we assume that all possible execution times for a task
do actually happen. That is, for any duration l ∈ [q; d], pl > 0.

In the following, s will denote the state when the considered task i arrives. That is, the
processor will be available for task i at time ri+s. Then t denote the time at which the processor
will be available for task i+ 1. We are going to first recall a few remarks on the values of smax,
lmax and dmax, and will deal with two degenerate cases.

We have already assumed in Sections 4.2 that the deadline is strict larger than the period,
that is d > τ . We also discussed in Section 4.3 the range that each task admission criteria can
take value: smax can take value in the range [0; d− τ ], lmax and dmax can take value in the range
[τ + q; d].
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We now show that all states are reachable. The latest possible start time for task i is
ri+smax. Then its execution for last at the longest either for a time lmax or until time ri+dmax,
whichever is reached first. Therefore, the processor will be available for task i+ 1 at the latest
at time max{0,min{smax + lmax, dmax}− τ} = min{smax + lmax, dmax}− τ . Therefore, the range
of (theoretically) possible states is [0; min{smax + lmax, dmax} − τ ]. Let us “forget” about dmax
for a short while. The processor is available for task i at time ri + s. Then, because lmax > τ
and pτ+q > 0, then with probability pτ+q the execution of task i will last for a time τ + q and
the processor will be available for task i + 1 at time ri + s + τ + q = ri+1 + s + q. Therefore,
if the state of the system is s for task i, it will be in state s+ q for task i+ 1 with probability
pτ+q > 0. This is true as long as s ≤ smax and s+ τ + q ≤ dmax.

Let us first consider the case s+τ+q = dmax. If we reached it, this means that smax +lmax ≥
dmax, because smax ≥ s and lmax ≥ τ + q. Therefore, the possible range of values is [0; dmax− τ ],
and we have established that all these states are reachable. Now consider the other case.
Namely, we reached the case s = smax without, in the process, having tasks interrupted because
of the value of dmax. Then, with probability pτ+j > 0, with j ∈ [q; min{lmax; dmax − smax} − τ ],
the execution of task i lasts until the time ri + smax + τ + j = ri+1 + smax + j. Hence, all states
in the range [smax + q; min{smax + lmax; dmax} − τ ] are reachable. Therefore, all possible states
are reachable from the initial state, the state s = 0.

Now consider any state s. With probability pq > 0, the next state is max{0, s − τ} < s.
Hence, from any state a strictly “smaller” state is reachable. Therefore, there is a path from
any state to the state 0. This shows that the Markov chain is irreducible.

There is a loop from state 0 to itself. Indeed, with probability
∑ τ

q

k=1 pkq > 0 a task execution
takes no longer than the period τ . Hence, if the state before the execution of the task was 0,
this is also the case after its execution. Hence the period of state s = 0 is one. And because the
chain is irreducible, all states have period one too. Hence the Markov chain is aperiodic, which
concludes the proof.

4.5 Performance evaluation
In the experiments, we will test the accuracy of our model and evaluate the performance of
different criteria, on either single processor and multiple processors cases. In Section 4.5.1, we
describe the parameters and settings used during the experimental campaign. Then we present
our results in Section 4.5.2.

4.5.1 Experimental methodology
In this section, we present the parameter sets used in our experiments. The default settings
are as follows. For the theoretical Markov chain model, the quantum duration q takes a value
between 0.001 and 0.1. On the other hand, for the simulations, the number of tasks released
E varies between 10 and 107. The task period τ varies between one quantum duration q and
2. Let N = d

τ be the ratio of deadline d to period τ . N is chosen between 2 and 14. When we
present our results in the multiple processors case, we vary our number of processors between
2 and 6.

The standard probability distribution functions used to generate task execution times are
almost the same as in Chapter 3. We only add a second Weibull functions with shape k = 1.5.
As in the previous section, to enable a direct comparison between all different distributions,
we choose their parameters so that all distributions achieve a mean equal to 1. But different
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Table I: Symbol and parameters for the distributions used in the simulations. (For all dis-
tributions µ is the mean and σ the standard deviation, except for the truncated normal and
half-normal distributions where µ and σ are the mean and standard deviation of the original
normal distribution.)

Symbol Distribution Parameters

double_exp(λ1, λ2) Bimodal exponential λ1 = 1
1.005 ≈ 0.995, λ2 = 1

0.995 ≈ 1.005
λ1 = 1

0.1 = 10, λ2 = 1
1.9 ≈ 0.526

double_truncnorm(µ1, σ1, µ2, σ2) Bimodal truncated normal µ1 = 0.5, σ1 ≈ 0.534, µ2 = 1, σ2 ≈ 1.068
µ1 = 0.01, σ1 ≈ 0.178, µ2 = 1, σ2 ≈ 1.782

exp(λ) Exponential λ = 1
gamma(k, θ) Gamma k = 1, θ = 1

k = 1
3 ≈ 0.333, θ = 3

hnorm(σ) Half-normal σ =
√

π
2 ≈ 1.253

invgamma(α, β) Inverse Gamma α = 7
3 ≈ 2.333, β = 4

3 ≈ 1.333
lnorm(µ, σ) Log-normal µ = 1, σ = 0.5

µ = 1, σ = 3
truncnorm(µ, σ) Truncated normal µ = 0.8, σ ≈ 0.754
unif(a, b) Uniform a = 0, b = 2
weibull(k, λ) Weibull k ≈ 0.411, λ = 1

Γ(1+ 1
k ) ≈ 0.324

weibull(k, λ) Weibull k = 1.5, λ = 1
Γ(1+ 1

k ) ≈ 1.108

from Chapter 3, we will not add a transition to the execution times in this work. The detailed
parameters of the distributions are recalled in Table I.

In addition, we present the performance of our heuristics as percentage of tasks successfully
completed on time. Therefore, the larger the performance, the better the heuristic.

4.5.2 Results
We will present our results as following: At first, in Section 4.5.2, we study the size needed
to minimize the simulation error due to an imprecise evaluation, and we decide the framework
that will be used in the following experiments. After that, Section 4.5.2 is a first study of our
algorithm. We are in the single processor case, and we focus on the value of q and on different
task admission criteria. We choose in this section the parameter sets for our algorithm which are
worth to be analyzed. And then, we evaluate our algorithms in detail in Section 4.5.2. Finally,
we pass to the multiple processors case. We present in Section 4.5.2 the study of different task
attribution criteria.

Evaluation of accuracy for the framework

In this section, we fix in advance several values of smax. For theoretical model and simulation,
we study the execution time and expected performance while varying respectively the quan-
tum duration q and number of tasks generated E. In order to simplify the presentation, we
present the results of all parameters (deadline, period, distribution, etc.) in one figure, and the
percentiles (and worst-case) are presented.

At first, in Figures 4.1 and 4.2, we can find the execution time needed to obtain the expected
performance respectively using the Markov chain theoretical model and the simulations. We
can observe that the execution time increases linearly with the scale of the problem. In order
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Figure 4.1: Execution times of the theoretical version while fixing different values of smax for
different quantum sizes. For each quantum size and each value of smax, many different periods,
deadlines, and distributions are evaluated whose percentiles (and worst-case) are presented.
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Figure 4.2: Execution times of the simulated version while fixing different values of smax for
different number of simulated tasks. For each number of tasks and each value of smax, many
different periods, deadlines, and distributions are evaluated whose percentiles (and worst-case)
are presented.
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Figure 4.3: Absolute value of percentage of deviation from the performance of the heuristic
Smax, while fixing different values of smax, predicted for different quantum values, to the
performance simulated with 107 tasks. For each quantum size and each value of smax, many
different periods, deadlines, and distributions are evaluated whose percentiles (and worst-case)
are presented.

smax = d (aka NeverKill) smax = 0.75 d smax = 0.50 d smax = 0.25 d

1e+02 1e+04 1e+06 1e+02 1e+04 1e+06 1e+02 1e+04 1e+06 1e+02 1e+04 1e+06

0%

1%

2%

3%

4%

5%

Number of simulated tasks

Ab
so
lu
te

va
lu
eo

fp
er
ce
nt
ag
eo

fd
ev
iat

ion
to

m
os
tp

re
cis

e

Percentile: 50% 75% 90% 95% 99% 100%

Figure 4.4: Absolute value of percentage of deviation from the performance of the heuristic
Smax, while fixing different values of smax, predicted for different number of tasks simulated,
to the performance simulated with 107 tasks. For each number of tasks and each value of
smax, many different periods, deadlines, and distributions are evaluated whose percentiles (and
worst-case) are presented.
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Figure 4.5: Absolute value of percentage of deviation from the performance simulated with 106

tasks predicted for heuristic Smax whose parameter smax was defined by a Markov chain using
a quantum 0.001, when then quantum is larger. For each quantum size, many different periods,
deadlines, and distributions are evaluated whose percentiles (and worst-case) are presented.

to establish a relatively correct evaluation framework, we need to find a trade-off between the
result precision and the execution time.

Thus, we will compare, for the theoretical model and for simulations, the performance
obtained by different values of E or q, in order to find a parameter for which results are
accurate enough and obtained relatively quickly. Figures 4.3 and 4.4 presents, respectively for
different q and E, the absolute value of relative deviation in performance to the most precise
simulation E = 107. We can find that, E = 106 has equivalent deviation with q = 0.01, and
their performance is very close to that of the baseline E = 107 (under 1% in nearly all cases).
As for the execution time, q = 0.01 executes 100 times slower than E = 106 in the worst case.
On the other hand, the execution time of the simulations depends only on the number of tasks
E, but neither on the deadline d nor on the period τ .

In conclusion, we choose to run simulations with E = 106 in our following experiments to
evaluate the performance of the different heuristics.

Parametrization of the algorithms

The results of our algorithms depend on a variety of parameters. It will be unreadable to present
them together on one figure. Thus, in this section, we will do a first summarized study and find
the parameters of the algorithms which are worth to be analyzed in detail.

At first, we will use once again Smax as heuristic. We calculate the best smax for each value
of q, and we compare the performance of these best smax values while generating a simulation
of 106 tasks. We choose to use a theoretical model to calculate the best smax value because,
compared to simulations, the theoretical model is more robust. As for simulations, the smax
value found can have a major deviation, especially in the case of a small number of successful
tasks. We present in Figure 4.5 the absolute value of relative deviation in performance of
different q with that of the most precise case q = 0.001. The sub-figure on the left is the
summarized result of all parameter sets. We can find that, if we consider q = 0.1, the deviation
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Figure 4.6: Absolute difference in the simulated performance (with 106 tasks) of the Smax and
Smax+Lmax+Dmax heuristics. For each value of the period τ , the main percentiles (and
worst-case) are presented.
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Figure 4.7: Absolute difference in the simulated performance (with 106 tasks) of the
Lmax+Dmax and NeverKill heuristics. For each value of the period τ , the main percentiles
(and worst-case) are presented.
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Figure 4.8: Absolute difference in the simulated performance (with 106 tasks) of the Smax and
BinSmax heuristics. For each value of the period τ , the main percentiles (and worst-case) are
presented.

is under 5% even in the worst case. In addition, according to the two other sub-figures, we can
find that this worst case appears when the period τ is quite small (i.e.,the system is severely
over-loaded). If we consider only period parameter between 0.25 and 2, we can find a worst case
deviation of only 1.7%. Thus, we can conclude that q = 0.1 has larger deviation when period
decreases, but the performance is still close to q = 0.001. It is a value acceptable considering
both the execution time and the precision.

After fixing the q value to 0.1, we do the first study of different task admission crite-
ria. Figures 4.6 and 4.7 show respectively the difference of performance between Smax and
Smax+Lmax+Dmax (Figure 4.6) and between Lmax+Dmax and NeverKill (Figure 4.7).
We vary only the period in the figures and we summarize all other parameters together, because
we found that the difference of performance varies only with the period. We can observe that,
in both comparisons, there is little difference (under 5% in the worst case) when the period is
small. In other cases, the difference is almost equals to 0. Thus we can conclude that, Smax has
a performance similar to Smax+Lmax+Dmax, while NeverKill has a performance similar to
Lmax+Dmax. We can deduce that, Lmax and Dmax have almost no effect in our algorithms,
and we will focus on Smax and NeverKill in the following simulations.

Task admission criteria with single processor

In this section, we compare the performance of the chosen task admission heuristics (Smax and
NeverKill), while varying other parameters. For Smax heuristic, similar to the experiments
above, we use the theoretical model with q = 0.1 to find the best smax.

While researching for the best smax, as we vary only one criterion in this case, instead of iter-
ating all possible values, we use binary search presented in Algorithm 2 which can significantly
reduce the execution time. We name this variant of heuristic BinSmax. Figure 4.8 shows that
the difference between Smax and BinSmax is almost equals to 0 (under 0.1% in the worst case)
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Figure 4.9: Absolute performance of task admission heuristics BinSmax and NeverKill when
the quantum length is 0.1 time unit. The choice of the values of the parameter smax is defined
through the Markov chain approach, but the performance are assessed through simulations of
106 tasks.
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Figure 4.10: Best value for the smax threshold for task admission heuristic BinSmax expressed
as a fraction of the maximum meaningful value d − τ , when the quantum length is 0.1 time
unit.
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even in the worst case. Hence, in the following experiments, we will replace Smax by BinSmax
which provides the same quality of result, while the execution is significantly more quickly.

For both BinSmax and NeverKill heuristics, we generate a simulation of E = 106 tasks to
estimate the performance. Figure 4.9 shows the performance of the two heuristics while varying
the period τ , the ratio of deadline to period N , and the distribution of task execution times D.
We can also find in Figure 4.10 the corresponding best smax values.

At first, it is obvious that the performance of both heuristics increase with the period, be-
cause the system load decreases. Our Smax heuristic performs better than NeverKill in nearly
all cases, and the difference between the two heuristics is larger (up to 30% in performance)
when the period is small.

After that, while fixing the period, our BinSmax heuristic has a relatively low performance
when the ratio of deadline to period is small (i.e., N = 2). But when N > 4, the performance
remains stable when N increases. On the other hand, the performance of NeverKill does not
vary with N .

As for the distribution of task execution times, we can distinguish two types: The first one
takes exponential distribution as example, for which BinSmax and NeverKill perform very
closely, and the best smax chosen is the largest possible value in nearly all cases. The second
one can be represented by uniform distribution, for which BinSmax performs obviously better
than NeverKill when the period τ ≤ 1, and the best smax value increases with the period.
It’s important to note that, in some cases, performance can be similar for very different values
of smax. This is why some non-smooth curve appears in Figure 4.10.

In conclusion, we find that BinSmax performs better than NeverKill, especially in the
case of overload. This difference of performance can be up to 30%. Thus, we will choose Smax
(more precisely, BinSmax, the variant of Smax) as task admission heuristic, and we will focus
on task attribution heuristic in the next section.

Task attribution criteria with multiple processors

In this section, we will pass to the multiple processor platform. As already mentioned above, we
consider BinSmax as task admission heuristic, and we will try to compare our task attribution
heuristics. In the figures, we add also NeverKill heuristic as reference.

Figures 4.11 to 4.15 show the performance of RoundRobin and EarliestStartTime
under different parameter sets. We can find that, when the number of processors increases, a
few points are missing in the figures. This is because the calculation is too expensive in these
cases, and we do not have enough time to finish them. But we can find that, the points missing
have relatively large values of N and τ , where the performance of all heuristics equals to 1.
Therefore, the missing of these points will not lead to loss of information. On the other hand,
for BinSmax heuristic, we use the theoretical model of RoundRobin to find the best smax
values while executing simulation under EarliestStartTime criteria. This is because the
theoretical model of EarliestStartTime is too complicated that it is not possible to find a
result of best smax in a reasonable time.

We can find that, similar to the single processor case, the performance of all heuristics
increases with the period. While increasing the value of N , the performance increases and then
becomes stable.

Within task attribution criteria, EarliestStartTime performs better than RoundRobin,
but the difference becomes smaller when the number of processors increases. EarliestStart-
Time and RoundRobin perform similarly in most of the cases, smaller than that between
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Figure 4.11: Absolute performance of task attribution heuristics RoundRobin and Earliest-
StartTime when the quantum length is 0.1 time unit, with 2 processors. The choice of the
values of the parameter smax is defined through the Markov chain approach, but the performance
are assessed through simulations of 106 tasks.
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Figure 4.12: Absolute performance of task attribution heuristics RoundRobin and Earliest-
StartTime when the quantum length is 0.1 time unit, with 3 processors. The choice of the
values of the parameter smax is defined through the Markov chain approach, but the performance
are assessed through simulations of 106 tasks.
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Figure 4.13: Absolute performance of task attribution heuristics RoundRobin and Earliest-
StartTime when the quantum length is 0.1 time unit, with 4 processors. The choice of the
values of the parameter smax is defined through the Markov chain approach, but the performance
are assessed through simulations of 106 tasks.
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Figure 4.14: Absolute performance of task attribution heuristics RoundRobin and Earliest-
StartTime when the quantum length is 0.1 time unit, with 5 processors. The choice of the
values of the parameter smax is defined through the Markov chain approach, but the performance
are assessed through simulations of 106 tasks.
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Figure 4.15: Absolute performance of task attribution heuristics RoundRobin and Earliest-
StartTime when the quantum length is 0.1 time unit, with 6 processors. The choice of the
values of the parameter smax is defined through the Markov chain approach, but the performance
are assessed through simulations of 106 tasks.
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BinSmax and NeverKill task admission heuristics. We can see difference when the perfor-
mance is strictly smaller but very close to 1. For example, using exponential distribution, this
difference can be found between τ = 0.5 and 0.75 when the number of processors is equal to 2.

Therefore, we can conclude that, EarliestStartTime performs better than or similar to
RoundRobin in all cases, and we decide to choose EarliestStartTime as task attribution
criteria.

Summary

In this section, we did firstly a parametrization test which helps us to establish a framework
which is accurate enough and costs less time: We use a theoretical model in which time is
discretized into quantums of duration q = 0.1 time unit to calculate the best value of task
admission criteria. We use a simulation of E = 106 to evaluate the performance while the
values of task admission criteria are fixed. On the other hand, the simulation results confirm
that Smax (or its variant BinSmax) and EarliestStartTime reaches better performance
than the other task attribution and admission heuristics, up to 30% in performance.

4.6 Conclusion
In this work, we have studied the problem of allocating and scheduling firm real-time tasks
on a platform composed of one or more identical processors. The difficulty is to decide: (i)
on which processor to allocate each task, (ii) whether and when to interrupt a (long-lasting)
task, (iii) which task in the waiting queue should be launched when a processor is idle. We
designed a two-phase heuristic to solve this problem. At first, when a task is released, we map
it to a processor either according to the Round robin strategy (RoundRobin) or the Earliest
start time strategy (EarliestStartTime). Secondly, we can dynamically decide to interrupt
and start tasks, based on several criteria: duration of time since release (smax), current length
of execution time (lmax) and remaining time until deadline (dmax). We constructed a Markov
chain based on a discretization of time and processor availability probabilities, in order to
estimate the best values for these criteria, given the values of task period (τ), ratio of deadline
to period (N), and distribution of task execution times (D). We have conducted an extensive
set of experiments, which showed that EarliestStartTime and Smax outperform other task
attribution and task admission heuristics, and can achieve a gain of performance up to 30%.
On the other hand, BinSmax is proved to have the same accuracy as Smax, but because of the
binary search method, the execution speed is much faster than Smax.
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Chapter 5

Energy-aware strategies for reliability-oriented
real-time task allocation on heterogeneous plat-
forms

5.1 Introduction

Real-time systems are composed of periodic tasks that are regularly input to a parallel com-
puting platform and must complete execution before their deadlines. In many applications,
another requirement is reliability: the execution of each task is prone to transient faults, so
that several replicas of the same task must be executed in order to guarantee a prescribed level
of reliability [18, 104]. Recently, several strategies have been introduced with the objective
to minimize the expected energy consumption of the system while matching all deadlines and
reliability constraints [44, 45].

This work aims at extending these energy-aware strategies in the context of heterogeneous
platforms. Heterogeneous platforms have been used for safety-critical real-time systems for
many years [38]. With the advent of multiple hardware resources such as multi-cores, GPUs,
and FPGAs, modern computing platforms exhibit a high level of heterogeneity, and the trend
is increasing. The multiplicity of hardware resources with very different characteristics in terms
of speed profile, reliability level and energy cost, raises an interesting but challenging problem:
given several device types, which ones should we keep and which ones should we discard, in
order to achieve the best possible tri-criteria trade-off (time, energy, reliability)? Needless to
say, this optimization problem is NP-hard, even with two identical error-free processors, simply
because of matching deadlines.

This work provides several mapping and scheduling heuristics to solve the tri-criteria problem
on heterogeneous platforms. The design of these heuristics is much more technical than in the
case of identical processors. Intuitively, this is because the reliability of a replica of one task
depends upon the processor which executes it, and is different for each task instance (which we
define in Section 5.2.1 below). More precisely, the reliability of a replica of the j-th instance
of the i-th task mapped on processor mk can be estimated by R(τi,j ,mk) = e−λkci,k , where ci,k
is the worst case execution time (WCET, which is common for all instances of the same task)
of task τi on mk, and λk the failure rate of mk. The total reliability of a task instance can be
estimated by a function of the reliability of all its replicas (which we explicit in Equation 5.1
below); hence, it is not known until the end of the mapping process, unless we pre-compute
an exponential number of reliability values. Then there are many processors to choose from,
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and those providing a high reliability, thereby minimizing the number of replicas needed to
match the reliability threshold, may also require a high energy cost per replica: in the end, it
might be better to use less reliable but also less energy-intensive processors. Furthermore, the
reliability is not enough to decide for the mapping: if two processors offer similar reliabilities
for a task, it might be better to select the one with smaller execution time, in order to increase
the possibility of mapping other tasks without exceeding any deadline. Altogether, we face a
complicated decision, and we provide several criteria to guide the mapping process.

Overall, the objective is to minimize the expected energy consumption while matching all
deadlines and reliability constraints. The expected energy consumption is the average energy
consumed over all failure scenarios. Consider a sample execution: whenever the execution of
a task replica succeeds, all the other replicas are instantaneously deleted; therefore, the actual
amount of energy consumed depends both upon the error scenario (which replica is the first
successful) and upon the overlap between replicas (some replicas are partially executed and
interrupted when the successful one completes). Given a mapping, the scheduling phase aims
at reducing overlap between any two replicas of the same task. Note that having an overlap-free
scheduling is not always possible, because of utilization constraints. Also, deciding whether an
overlap-free scheduling exists for a given mapping is NP-hard [43], even for deterministic tasks.

Finally, in actual real-time systems, tasks often complete before their worst-case execution
time, or WCET, so that execution times are routinely modeled as stochastic. For instance, one
typically assumes that the execution time of every instance of task τi on mk follows a common
uniform probability distribution in the range [βb/wci,k, ci,k] for some constant βb/w < 1 (ratio
of best case over worst case).

In the end, the expected energy consumption must also be averaged over all possible values
for execution times in addition to over all failure scenarios. To assess the performance of our
heuristics, we use a comprehensive set of execution scenarios, with a wide range of processor
speed profiles and failure rates. When the failure rate is low, most heuristics are equivalent,
but when the failure rate is higher, only a few heuristics achieve good performance. Because
we have no guarantee on the performance of the global mapping and scheduling process, we
analytically derive a lower-bound for the expected energy consumption of any mapping. This
bound cannot always be met. Nevertheless, we show that the performance of our best heuristics
remains quite close to this bound in the vast majority of simulation scenarios.

The main contributions of this chapter are the following:

• The formulation of the tri-criteria optimization problem;
• The design of several mapping and scheduling heuristics;
• The characterization of a lower-bound for energy consumption;
• An experimental evaluation based on a comprehensive set of simulations scenarios, showing
that our best heuristics achieve a significant gain over the whole spectrum of application
and platform parameters.

The rest of the chapter is organized as follows. Section 5.2 provides a detailed description of
the optimization problem under study, including a few notes on its complexity. The mapping
and scheduling heuristics are described in Section 5.3 and 5.4 respectively. The lower-bound
of energy consumption is introduced in Section 5.5. Section 5.6 is devoted to a comprehensive
experimental comparison of the heuristics. Finally, Section 5.7 gives concluding remarks of this
work.
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Table I: Key Notations

Notation Explanation

N and M number of tasks and of processors
τi the i-th task
τi,j the j-th instance of the i-th task
mk the k-th processor
pi period (deadline) for each instance of task τi
L = lcm1≤i≤n pi hyperperiod of the system
wi,j,k actual execution time for task instance τi,j on processor mk

ci,k WCET for task τi on processor mk

ui,k = ci,k
pi

utilization of task τi executing on processor mk

uk utilization of mk (sum of utilization of replicas assigned to mk)
Ri target reliability threshold for task τi
λk failure rate of processor mk

R(τi,j ,mk) reliability of task τi,j on processor mk

Pk,d dynamic power consumed per time unit on processor mk

Pk,s static power consumed per time unit on processor mk

Es total static energy consumption of the system
Ed total dynamic energy consumption of the system
Ed(τi,j ,mk) dynamic energy cost of task instance τi,j on processor mk

5.2 Model

The inputs to the optimization problem are a set of real-time independent tasks, a set of non-
identical processors and a reliability target. Key notations are summarized in Table I.

5.2.1 Platform and tasks

The platform consists of M heterogeneous processors m1, m2, . . . , mM and a set of N periodic
atomic tasks τ1, τ2, . . . , τN . Each task τi has WCET ci,k on processor mk. The WCETs among
different processors are not necessarily related. In the experiments, we generate the ci,k values
with the method proposed in [11], where we have two parameters to control the correlation
among task execution times and processors (see Section 5.6.1 for details). Each periodic task
τi generates a sequence of instances with period pi, which is equal to its deadline. The j-th
instance of task τi is released at date (j − 1)pi and its deadline is jpi. The whole input pattern
repeats every hyperperiod of length L = lcm1≤i≤n pi. Each task τi has L

pi
instances within the

hyperperiod.
As already mentioned, real-time tasks usually complete execution earlier than their esti-

mated WCET: actual execution times are assumed to be data-dependent and non-deterministic,
randomly sampled from some probability distribution whose support is upper bounded by the
WCET. See Section 5.6.1 for details on the generation of actual execution times from WCET
values. The utilization ui,k of task τi executing on processor mk is defined as ui,k = ci,k

pi
. The

utilization of a processor is the sum of the utilizations of all task instances that are assigned to
it.
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The execution of any task can be preempted, that is, to be temporarily stopped (for instance
to allow for the execution of another task) and later resumed without any induced penalty.

5.2.2 Reliability

We consider transient faults, modeled by an exponential probability distribution of rate λk on
processor mk. Thus, fault rates differ from one processor to another. This is a very natural
assumption for a heterogeneous platform made of different-type processors. At the end of the
execution of each task, there is an acceptance test to check the occurrence of soft errors induced
by the transient faults. It is assumed that acceptance tests are 100% accurate, and that the
duration of the test is included within the task WCET [45].

The reliability of a task instance is the probability of executing it successfully without
software faults. It is related to its execution time. But in our problem, only the tasks WCETs
are known, but not the actual execution times. Thus, in our heuristics, we use the WCETs to
estimate the reliability of task instances and to make mapping decisions. The reliability of task
instance τi,j on processor mk with WCET ci,k can be estimated by R(τi,j ,mk) = e−λk×ci,k . Two
instances τi,j and τi,j′ of the same task τi have the same estimated reliability if they are executed
on the same processor, because their WCETs are the same. But the actual reliability during
execution is not the same (e−λk×wi,j,k and e−λk×wi,j′,k respectively) because of their different
actual execution times.

Note that a task instance cannot be replicated twice on the same processor. Thus, in the
final schedule, task instance τi,j may have several replicas executing on different processors, in
order to match its reliability threshold. Let alloc(i, j) denote the index set of the processors
executing a replica of τi,j . The mapping achieves the following reliability R(τi,j) for task instance
τi,j :

R(τi,j) = 1−Πk∈alloc(i,j)(1−R(τi,j ,mk)) (5.1)

Indeed, the task will succeed if at least one of its replicas does. The success probability is
thus equal to 1 minus the probability of all replicas failing, which is the expression given in
Equation (5.1). It also means that all other replicas (executing or not started) can be canceled
when the first one is successfully finished.

Each instance τi,j of task τi has a reliability threshold Ri which is an input of the problem
and that must be met by the mapping. In other words, the constraint writes R(τi,j) ≥ Ri for
1 ≤ i ≤ N and 1 ≤ j ≤ L

pi
. This threshold is always satisfied during the actual execution,

although we use the estimated reliability for mapping; this is because the actual execution time
can never be greater than the WCET and, thus, the actual reliability is never smaller than the
estimated one.

Because the tasks are independent, it is natural to assume that they might have different
reliability thresholds: a higher threshold means that more resources should be assigned for the
task to complete successfully with a higher probability. In the experiments we use Ri = R for
all tasks, but our heuristics are designed to accommodate different thresholds per task.

5.2.3 Power and energy

The power consumed per time unit on processor mk is composed of two parts, static power
(Pk,s) and dynamic power (Pk,d). The static power is consumed permanently if the processor
mk is used in the schedule. In contrast, the dynamic power is consumed only if the processor
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is actually executing a task. To summarize, we have 2M input values, {P1,s, P2,s . . . PM,s} for
static powers and {P1,d, P2,d . . . PM,d} for dynamic powers.

The total static energy consumption of the system during one hyperperiod is simply given
by

Es =
∑

k∈Used
Pk,s × L (5.2)

where Used denotes the index set of the processors used by the schedule.
Similarly to Section 5.2.2, the dynamic energy consumption of one replica of task instance

τi,j on processor mk is estimated using the WCET ci,k of task τi:

Ed(τi,j ,mk)estimated = Pk,d × ci,k (5.3)

in which we use the same value ci,k for all instances τi,j of the same task τi on mk because their
WCET is the same. Thus, the estimated dynamic energy consumption during one hyperperiod,
which is used to compute the schedule, is expressed as

Eestimated
d =

∑
(i,j,k)|k∈alloc(i,j)

Ed(τi,j ,mk)estimated (5.4)

But the actual energy consumption of τi,j will likely be lower than stated in Equation (5.3).
First the actual execution time wi,j,k is typically smaller than the WCET ci,k. In addition, recall
that we cancel all other replicas of a task instance as soon as one of its replicas has successfully
completed. Thus, the execution time of a replica can be reduced or even zeroed out by the
success of another replica of the same task instance.

We define a scenario s = {W,F} as the random drawing of the execution times wi,j,k and of
the failure booleans fi,j,k for all (i, j, k) where k ∈ alloc(i, j). fi,j,k = True if the replica of task
instance τi,j executed on processor mk can be successfully completed, and fi,j,k = False if it will
be victim of a failure. Again, some replicas will be interrupted or never launched, depending
upon the scenario. Given a scenario sc, we let ri,j,k denote the actual execution times of each
replica of each task instance. These values are dynamically computed as the execution of the
schedule progresses. We compute the actual dynamic energy as

Ed(τi,j ,mk)actual
sc = Pk,d × ri,j,k (5.5)

Eactual
d,sc =

∑
(i,j,k)|k∈alloc(i,j)

Ed(τi,j ,mk)actual
sc (5.6)

Finally, we weight each scenario sc ∈ S by its probability psc, where S is the set of all
scenarios, and compute the expected dynamic energy consumption during one hyperperiod:

Eexpected
d =

∑
sc∈S

(psc ∗ Eactual
d,sc ) (5.7)

Altogether, the expected energy consumption of the schedule during one hyperperiod be-
comes:

Eexpected = Es + Eexpected
d (5.8)

The optimization objective is to find the schedule which minimizes this value. Clearly, there
is no closed-form formula for the expected energy consumption, whose value is approximated
by Monte-Carlo simulations.
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5.2.4 Optimization Objective

The objective is to determine a set of replicas for each task, a set of processors to execute
them, and to build a schedule of length at most L, so that the expected energy consumption is
minimized, while matching the reliability threshold Ri for each task τi and the deadline j×pi of
each task instance τi,j . As already mentioned in Section 5.1, the expected energy consumption
is an average made over all possible execution times randomly drawn from their distributions,
and over all failure scenarios (with every component weighted by its probability to occur).
An analytical formula is out of reach, and we use Monte-Carlo sampling in the experiments.
However, we stress the following two points:
• To guide the design of the heuristics, we use a simplified objective function; more precisely,
we use WCETs instead of (yet unknown) actual execution times, and we conservatively
estimate the dynamic energy of a task as the sum of the dynamic energy of all its replicas.
Because mapping decisions are based upon WCETs, the number of enrolled processors
does not depend upon actual execution times and the static energy is always the same for
all scenarios, namely the length of the period times the sum of the static powers of the
enrolled processors (see Equation (5.2)).
• To assess the absolute performance of the heuristics, we derive a lower-bound for the
dynamic energy. This bound is based upon actual execution times but neglects scheduling
constraints and assumes no overlap between any two task replicas; hence, it is not reachable
in general. However, we show that our best heuristics achieve performance close to this
bound.

5.2.5 Complexity

The global optimization problem is obviously NP-hard, since it is a generalization of the
makespan minimization problem with a fixed number of parallel processors [35]. The opti-
mization of the sole scheduling phase is also NP-hard for identical processors: if the number of
replicas has already been decided for each task, and if the assigned processor of each replica has
also been decided, the scheduling phase aims at minimizing the expected energy consumption
by avoiding overlap between the replicas of a same task [43]. In fact, the heterogeneity of the
processors, both in terms of power cost and fault rate, dramatically complicates the problem.
Proposition 4 shows that the problem remains NP-complete when mapping identical and de-
terministic tasks with same period onto processors with different fault-rates, even without any
energy constraint; in other words, choosing the optimal subset of processors to execute each task
and its replicas to match their reliability threshold is an intrinsically combinatorial problem!
We formally state the corresponding decision problem:

Definition 3 (Reliability). Consider n identical and deterministic tasks τi with same period
and deadline p = 1, and same reliability threshold R, to be executed on a platform composed
of M heterogeneous processors. On processor mk, 1 ≤ k ≤ M , each task τi has execution
time ci,k = 1 and reliability R(τi,mk) = Rk. Is it possible to map all tasks so as to match the
reliability threshold for each task?

Because the execution time on each processor is always equal to the period/deadline, the
hyperperiod of length L = 1 is composed of a single instance of each task, and all replicas will
necessarily be executed in parallel in the time interval [0, 1]; hence each processor executes at
most one replica.
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Proposition 4. Reliability is NP-Complete.
Proof. The problem is obviously in NP. For the completeness, we use a reduction from 3-
PARTITION [35]. Consider an arbitrary instance I1 of 3-PARTITION: given 3m positive
integers ai, 1 ≤ i ≤ 3m with B

4 < ai <
B
2 and

∑3m
i=1 ai = mB, can we find a partition of

{1, 2, . . . , 3m} into m subsets Ij such that
∑
i∈Ij ai = B for 1 ≤ j ≤ m? We build the following

instance I2 of Reliability: we have M = 3m processors and n = m tasks. A replica on
processor mk, 1 ≤ k ≤ M , has reliability Rk = ak

A where A = 6B2 + 2B3. Finally, the target
reliability threshold for each task is R = B

A (1− 3BA ). The size of I2 is clearly polynomial (and
even linear) in the size of I1.

We now show that I2 has a solution if and only if I1 does. Assume first that I1 has a solution
and let Ij denote them subsets of the partition. Note that each subset has exactly three elements
because on the condition on the size of the ai’s. For I2, we map task τi, 1 ≤ i ≤ n = m, on the
three processors whose index belongs to Ii. This is a valid mapping onto theM = 3m processors
because the m subsets form a partition of {1, 2, . . . ,M}. Each task has three replicas. Writing
Ii = {i1, i2, i3}, the reliability of τi writes

Ri = 1−
∏3
q=1(1−Riq)

=
∑3

q=1 aiq
A −

∑
1≤q<r≤3 aiqair

A2 + ai1ai2ai3
A3

≥
∑3

q=1 aiq
A −

∑
1≤q<r≤3 aiqair

A2

(5.9)

Since
∑3
q=1 aiq = B and ai < B

2 for all 1 ≤ i ≤ 3m, we obtain

Ri ≥
B

A
− 3B2

4A2 ≥
B

A
− 3B2

A2 = R

Hence, I2 has a solution.
Assume now that I2 has a solution, and let Ii denote the indices of the processors executing

replicas of task τi for 1 ≤ i ≤ n. The subsets Ii are pairwise disjoint, but we do not know whether
they form a partition yet (some processors may have not been enrolled in the mapping). But
assume that some Ii has only 1 element i1: we get Ri = ai1

A ≥ R. This leads to

ai1 ≥ B
(

1− 3B
A

)
= B − 3B2

A
≥ B − 1

2
The last inequality comes from the definition of A which has been chosen large enough. But
ai1 <

B
2 < B implies ai1 ≤ B − 1 since we have integers. Hence, a contradiction. Similarly, if

some Ii has only 2 elements i1 and i2: we get

Ri = ai1 + ai2
A

− ai1ai2
A2 ≥ R

hence ai1+ai2
A ≥ R. We conclude as before, because it implies that ai1 + ai2 ≥ B − 1

2 , while
ai1 + ai2 < 2B2 = B implies ai1 + ai2 ≤ B − 1. As a consequence, each subset Ii has at least 3
elements. We do have a partition of {1, 2, . . . , 3m}, and each subset Ii has exactly 3 elements.
Then, writing Ii = {i1, i2, i3} as before, we have Ri ≥ R = B

A (1− 3BA ) for all 1 ≤ i ≤ m, where
Ri is given by Equation (5.9). We derive that∑3

q=1 aiq
A

≥ B

A

(
1− 3B

A

)
+
∑

1≤q<r≤3 aiqair
A2 − ai1ai2ai3

A3

≥ B

A

(
1− 3B

A

)
− ai1ai2ai3

A3
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As ai < B
2 for 1 ≤ i ≤ 3m, we can deduce:∑3

q=1 aiq
A

≥ B

A

(
1− 3B

A

)
− B3

8A3

Recall that A = 6B2 + 2B3 and B is positive integer. Hence,

3∑
q=1

aiq ≥ B
(

1− 3B
A

)
− B3

8A2 ≥ B
(

1− 3B
A

)
− B3

A

≥ B − 3B2 +B3

A
≥ B − 1

2

Then
∑3
q=1 aiq ≥ B because we have integers. But the sum of the 3m integers ai is mB. Hence,

all the sums are indeed equal to B, and we have a solution to I1. This concludes the proof.

5.3 Mapping
In the mapping phase, we need to define the number of replicas for each task instance, as
well as the execution processor for each replica, aiming at meeting the reliability target and
deadline, while minimizing the energy cost. As hyperperiods are repetitive, we aim at finding a
feasible mapping within one hyperperiod (time length L). One difficulty introduced by platform
heterogeneity is that we do not know the number of replicas needed for each task instance
to reach its reliability threshold, before completing the mapping process, because different
processors have different failure rates and speeds and, hence, they provide different reliabilities
for each replica. Therefore, the simpler three-step method of [43, 45] cannot be applied.

Since the estimation of dynamic energy consumption (Ed(τi,j ,mk)estimated) and reliability
(R(τi,j ,mk)) of task instance τi,j on processor mk do not depend on the index of instance j,
these two values will be the same for all instances of the same task. Thus, in the following
description, instead of making decision for each task instance τi,j , we will use Ed(τi,mk) and
R(τi,mk) as the estimated dynamic energy consumption and reliability on processor mk, for all
instances of task τi, and we will make the same mapping decision for all instances of the same
task.

When mapping all the L
pi

instances of a given task on a processor, we use the standard
Earliest Deadline First (EDF) scheduling heuristic [61]. EDF tells us that a given processor is
a fit for that replica if and only if the utilization of that processor does not exceed 1. Recall
that the utilization of a processor is the sum of the utilizations of all task instances assigned to
it.

As shown in Algorithm 3, given a set of tasks with their periods and reliability targets and
a set of heterogeneous processors, we first order the tasks according to TaskMapCriterion,
which can be either:
• deW (inW ): decreasing (increasing) average work size c̄i = ci,1+ci,2+···+ci,M

M ;
• deMinW (inMinW ): decreasing (increasing) minimum work size c̄i = min1≤k≤M ci,k;
• deMaxW (inMaxW ): decreasing (increasing) maximum work size c̄i = max1≤k≤M ci,k;
• random: random ordering.

Then, for each task in the ordered list, we order the processors for mapping its replicas according
to ProcMapCriterion, which can be either:
• inE : increasing energy cost;
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Table II: Example of processors with different characteristics and two ratios calculated

mk E(τi,mk) R(τi,mk) R(τi,mk)
E(τi,mk) − log10(1−R(τi,mk))

E(τi,mk)

1 1 0.9 0.9 1
2 1 0.9 0.9 1
3 2 0.99 0.495 1
4 1 0.99 0.99 2
5 2 0.9 0.45 0.5

• deR: decreasing reliability;
• deP: decreasing ratio of − log10(1−R(τi,mk))

E(τi,mk) (explained below);
• random: random ordering.
We use the example shown in Table II to explain how to design a better criterion in

ProcMapCriterion. Assume there are five processors with different energy and reliabil-
ity configurations (the first two processors are identical). Considering only the reliability, we
cannot distinguish between the third and fourth processors. Apparently, the fourth processor
is better since it consumes less energy and provide the same level of reliability. The problem
is the same when ordering processors only according to energy cost. This gives us a hint that
we need to consider energy and reliability interactively. A first idea would be to use the ratio
R(τi,mk)
E(τi,mk) , which expresses the reliability per energy unit of every instance of task τi executing
on processor mk. But consider a task instance with a reliability target Ri = 0.98: it requires
either the third processor alone or the first two processors together. Both solutions match the
reliability goal with the same energy cost 2, but they have a different ratio. We aim at a formula
that would give the same weight to both solutions. The ratio − log10(1−R(τi,mk))

E(τi,mk) is a good candi-
date, because the total energy cost is the sum of all processors while the reliability is a product.
This discussion explains how we have derived the third criterion deP in ProcMapCriterion,
namely to order processors by decreasing ratio of − log10(1−R(τi,mk))

E(τi,mk) .
For the mapping phase, for task τi, we add replicas for all its instances τi,j in the order of

the processor list until the reliability target Ri of each instance is reached. The algorithm uses
the probability of failure PoF = 1 − R(τi) = Πk∈alloc(i)(1 − R(τi,mk)) (Equation (5.1)). The
mapping process always ensures that: (i) no two replicas of the same task are assigned to the
same processor; (ii) the utilization uk of each processor does not exceed 1.

5.4 Scheduling

In the scheduling phase, we aim at ordering the tasks mapped on each processor, with the
objective to further minimize the energy consumption during execution. Recall that the success
of any replica leads to the immediate cancellation of all the remaining replicas, a crucial source
of energy saving. Thus, our approaches identify a primary replica for each task instance, then
all other replicas for that instance become secondaries. The goal of the proposed scheduling
heuristics is to avoid overlaps between the execution of the primary and secondary replicas of
each task instance: the primary must be terminated as soon as possible, while the secondaries
must be delayed as much as possible.
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Algorithm 3: Replication setting and mapping
Input: A set of tasks τi with reliability targets Ri and periods pi; a set of heterogeneous processors mk

Output: An allocation σm of all replicas on the processors
1 begin
2 order all the tasks with TaskMapCriterion and renumber them τ1, . . . , τN

/* initialize the utilization of all processors to zero */
3 u← [0, . . . , 0]

/* iterate through the ordered list of tasks */
4 for i ∈ [1, . . . , N ] do

/* order processors for each task */
5 order all processors for task τi with ProcMapCriterion and renumber them proc1, . . . , procM

/* this ordered list may differ from task to task */
6 k = 1
7 PoF = 1
8 while 1− PoF < Ri do
9 if k > m then

10 return not feasible
/* utemp is the utilization of processor mk after adding a replica of task τi

*/
11 utemp = uk + ui,k
12 if utemp ≤ 1 then
13 uk = utemp
14 PoF = PoF × (1−R(τi,mk))
15 for all instances of τi, add a replica on prock

16 k + +
17 return σm
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After the mapping phase, we have a static schedule on each processor, also called the canon-
ical schedule, which is based upon the WCET of each task and EDF. The EDF schedule can use
preemption, so that a given task instance may be split into several chunks. As a result, from the
canonical schedule, each processor has an ordered list made up with all task instance chunks
that it has to execute during the hyperperiod, together with their starting and finish times.
As the actual execution time of a real-time task instance will be shorter than its WCET, the
canonical schedule will never be executed exactly as such. Still, it can be used as the baseline
to compute the maximum delay for secondary replicas without missing any deadline.

To determine the primary replica for each task instance, we could make the decision offline
or online. The offline strategy means that we use pre-knowledge before real execution, where
we consider the following criteria:
• EDF_WCET: choose the processor that can execute the replica the fastest;
• EDF_Energy: choose the processor that can execute the replica with the minimum

dynamic energy consumption;
• EDF_Reliability: choose the processor that can execute the replica the most reliably.
Note that for offline strategies, the primary replicas for different task instances of the same

task are on the same processor. After determining the primary replicas, we deploy the following
techniques based on the canonical schedule to differentiate the primary replica and the secondary
replicas. The techniques are accompanied by figures, in which different colors represent different
tasks, and primary replicas are marked with a darker color:
• Scale the WCETs of all tasks by 1

α , where α is the utilization, which also gives a valid
canonical schedule, but with longer worst case expected execution times for all tasks, which
we call the scaled canonical schedule as shown in Figure 5.1. This gives a better reference
to further delay the start time of secondary replicas. Here is why: at the mapping phase,
as long as the total utilization of replicas that are mapped onto the processor is less than
or equal to one, then we are able to find a valid scheduling using EDF. Assume we have
mapped three tasks ti, tj , tk onto processor p, and that the utilization is α = ci,p

pi
+ cj,p

pj
+ ck,p

pk
.

Either we keep the mapping and have a fraction 1 − α of the interval where p is idle, or
we artificially slow down the execution times of all three tasks by a factor α, then we will
have a new utilization β = ci,p

piα
+ cj,p

pjα
+ ck,p

pkα
= 1, which also gives us a feasible mapping

without any idle time. Then we could delay the start time of secondary replicas without
conflict timeliness as long as they will finish executions not later than their finish times
in the scaled canonical schedule (Figure 5.2).
• Consider a scheduling interval defined by two consecutive deadlines in the canonical sched-
ule. Inside the interval, task chunks to be executed are ordered by the EDF policy. We
observe that we can freely reorder the chunks without missing any deadline, by definition
of an interval. It means that in each interval, we could reorder to execute all primary
replicas first, and then secondary replicas (Figure 5.3).
• Since we have delayed the start time of secondary replicas, there are some idle slots in
the schedule. We could take advantage of these idle slots by pre-fetching other primary
replica chunks in the availability list: those primaries that have been released but which
were scheduled later because they have lower EDF priority than the current secondary
replicas.

Based on the above ideas, considering one interval in the improved static schedule, it: 1)
starts with the primary replica chunks; 2) fills in the idle slot by inserting other primary replica
chunks that are available; 3) ends by the secondary replica chunks. Then, during the real
execution, according to the failure case, the scheduler will dynamically cancel the execution of
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(a) Canonical schedule
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τ1 τ1 τ1 τ1

(b) Scaled canonical schedule

Figure 5.1: Example of scaling WCETs with two tasks τ1 and τ2 (c1,1 = c2,2 = 0.5, c1,2 = c2,1 =
1, p1 = 2 and p2 = 3) on each processor with total utilization u1 = 7

12 and u2 = 4
6 .

some secondaries if the corresponding primary replica finished successfully. If the replica selected
as primary is the least expensive energy-wise (like the one selected by EDF_Energy), and if
no secondary replica has started executing yet, then the energy consumption will be minimal
for that task. However, because the choice of the primary replica is highly dependent on
the characteristics of processors, different tasks may have their primary replicas on the same
processor, which would lead to load imbalance and heavy overlaps. To avoid this situation, we
design another type of method to choose primary replicas on-the-fly:
• EDF_Start_Time: choose the processor that can start the execution of the replica the
earliest (given already made scheduling decisions).

This online strategy dynamically chooses the replica starting the earliest as the primary
replica for each task instance. This tends to spread primaries onto different processors, which
gives more slack time on each processor to reduce overlaps. As a side note, it will possibly be
the case that two different instances of the same task have not the same primary processor.
Then all other replicas of the same task become secondaries and are delayed according to the
scaled canonical schedule, as shown in Figure 5.2. We could not implement the “reordering
inside intervals” shown in Figure 5.3 for EDF_Start_Time, which means that the end time
of secondaries will not exceed the one planned in the scaled canonical schedule, as this is an
offline improvement that requires the primary replica known in advance. But the online strategy
has two major advantages compared to the offline strategies: (1) as long as we finish one replica
successfully, we can safely cancel other replicas of the same task instance earlier than in offline
schedules, which gives more flexibility to adjust the schedule afterwards; (2) the static schedules
have to reserve time slots for the secondaries that correspond to their WCET (it is impossible
to know their actual execution times before execution). Since their actual execution times are
usually shorter, this dynamically frees some time slots that the online schedule uses to prefetch
available primary replica chunks.



5.5. LOWER BOUND 97

1 2 1 2 1

1 2 1 2 1

P1

P2

time
0 1 2 3 4 5 6

τ2 τ2 τ2
τ1 τ1 τ1 τ1

Figure 5.2: Static schedule when prioritizing primaries while delaying secondaries according to
their finish times in the Scaled canonical schedule.
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Figure 5.3: Reordering chunks freely inside intervals.

5.5 Lower bound

In this section, we explain how to derive a lower-bound for the expected energy consumption of
a solution to the optimization problem, namely a mapping/scheduling heuristic that uses some
of the selection criteria outlined in Sections 5.3 and 5.4.

For each problem input, namely N tasks τi with reliability thresholds Ri, M processors
mk with failure rates λk, and with all WCET ci,k, we compute a solution, i.e., a mapping and
scheduling of all replicas. We first use Monte-Carlo simulations (see Section 5.6) and generate
several sets of values for the actual execution time wi,j,k of task instance τi,j on processor mk.
The values wi,j,k are drawn uniformly across processors as some fraction of their WCET ci,k
(refer to Section 5.6.1 for details).

Now, for each set of values wi,j,k, we generate a set of failure scenarios, compute the actual
energy consumed for each scenario, and report the average of all these values as the expected
energy consumption. A failure scenario operates as follows. We call an event the end of the
execution of a replica on some processor. At each event, we flip a biased coin (weighted with the
probability of success of the replica on that processor) to decide whether the replica is successful
or not. If it is, we delete all other replicas of the same task instance. At the end of the execution,
we record all the dynamic energy that has been actually spent, accounting for all complete and
partial executions of replicas, and we add the static energy given by Equation (5.2). This
leads to the energy consumption of the failure scenario. We average the values over all failure
scenarios and obtain the expectation, denoted as E({wi,j,k}).

In addition, we also compute a lower-bound LB({wi,j,k}) as follows. Our goal is to accurately
estimate the energy consumption of an optimal solution. Since the static energy depends upon
the subset of processors that are used in the solution (see Equation (5.2)), we need to try all
possible subsets. Given a processor subset S, we consider each task instance τi,j independently,
and try all possible mappings of replicas of τi,j using only processors in S. Thus we explore all
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subsets T of S. A subset T is safe if mapping a replica of τi,j on each processor of T meets the
reliability criterion Ri, and if no strict subset of T is safe. Note that safe sets are determined
using the WCETs ci,k, and not using the wi,j,k, because of the problem specification. Now for
each safe subset T , we try all possible orderings (there are k! of them if |T | = k); for each
ordering, we compute the expected value of the dynamic energy consumption as follows: if, say,
T = {m1,m3,m4} and the ordering is m3,m4,m1, then we compute

P3,dwi,j,3 + (1− e−λ3wi,j,3)P4,dwi,j,4 + (1− e−λ3wi,j,3)(1− e−λ4wi,j,4)P1,dwi,j,1.

We see that we optimistically assume no overlap between the three replicas, and compute the
dynamic energy cost as the energy of the first replica (always spent) plus the energy of the
second replica (paid only if the first replica has failed) plus the energy of the third replica (paid
only if both the first and second replicas have failed), and so on. Note that here we use execution
times and failure probabilities based upon the actual execution times wi,j,k and not upon the
WCETs ci,k. The value of the sum depends upon the ordering of the processors in T . Hence,
we check the 6 orderings and retain the minimal value. We do this for all safe subsets and
retain the minimal value. Finally we sum the results obtained for each task instance and get
the lower-bound for the original processor subset S. We stress that this bound is not necessarily
tight, because our computation assumes no overlap for any replica pair, and does not check the
utilization of each processor (which may exceed 1). The final lower-bound LB({wi,j,k}) is the
minimum over all processor subsets. Although the computation has exponential cost, due to
the exploration of all processor subsets S, the computation of the expected energy for a given
ordering in a subset T of S obeys a closed-form formula.

5.6 Performance evaluation

This section assesses the performance of our different strategies to map and schedule real-
time tasks onto heterogeneous platforms. In Section 5.6.1, we describe the parameters and
settings used during the experimental campaign. We present the results in Section 5.6.2. The
algorithms are implemented in C++ and in R. The related computing code and experimental
data are publicly available in [31].

5.6.1 Experimental methodology

In the experiments, we have M = 10 processors and N = 20 tasks. The hyperperiod L of
the system is fixed at 300. The task instances τi,j are arrived every pi, chosen between one
of the following values: 20, 30, 50, 60, 100, 150. The set of WCETs is generated by the
method proposed in [11], as mentioned in Section 5.2.1. The WCET values are controlled by
the correlation factor between the different tasks (cortask) and between the different processors
(corproc). For example, cortask = 0 (resp. corproc = 0) means that the WCET values between
different tasks on one processor (resp. between different processors for one task) are completely
randomly generated. Inversely, cortask = 1 (resp. corproc = 1) means that the WCET values
between different tasks on one processor (resp. between different processors for one task) are
all the same. We vary these two parameters between 0.25 and 0.75 to visualize the result under
different correlation conditions, while guaranteeing a certain degree of randomness. We also
define a parameter basicWork as the estimated total utilization of the system with a single
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replica per task instance, in order to study the impact of system workload pressure:

basicWork =
∑
i,k ui,k

M2 (5.10)

In Equation (5.10), we use the average utilization on the M processors (
∑

k
ui,k

M ) to estimate the
pressure that one replica of task τi can give on the system. We sum up the average utilization
of all N tasks, and we divide this value by M because M processors are available. Hence,
basicWork represents an estimation of the fraction of time that processors are used if each task
has a single replica. In the experiments, we vary basicWork from 0.1 to 0.3.

To generate the actual execution times for each task instance from the task WCETs, we
use two parameters. The first one, βb/w, is global to all tasks: βb/w is the ratio between the
best-case execution time and the worst-case execution time. It is the smallest possible ratio
between the actual execution time of a task instance and the WCET of that task. Therefore,
the actual execution time of all instances of task τi on processor mk belongs to [βb/wci,k, ci,k].
We consider five possible values of βb/w: 0.2, 0.4, 0.6, 0.8, and 1. The second parameter, βi,j , is
task instance dependent: βi,j describes whether the task instance τi,j is a small one or a large
one. βi,j is randomly drawn in [0, 1]. βi,j = 0 means that task instance τi,j has the shortest
possible execution time, and βi,j = 1 means that the actual execution is equal to its worst case
execution time. Overall, the actual execution time of task instance τi,j on processor mk is thus
defined as: wi,j,k = (βb/w + (1− βb/w)βi,j)ci,k.

For a processormk in the platform, we fix its static power Pk,s at 0.001 as in the literature [95,
97, 100]. For the dynamic power and the failure rate, we have two sets of parameters. The
first parameter set also follows values from previous work [95, 97, 100]. For this set, we have a
relatively high dynamic power and very low failure rate. Therefore, the replicas using this first
set of parameters succeed in almost all cases. Then, to evaluate our heuristics in the context
when failures occur more frequently, we introduce a second set of parameters where the replicas
have lower dynamic power and relatively high failure rate. For the first set, we choose randomly
the dynamic power Pk,d between 0.8 and 1.2, and the failure rate λk between 0.0001 and 0.00023.
And for the second set, we have Pk,d 10 times smaller (between 0.08 and 0.12), and λk 100 times
larger (between 0.01 and 0.023). With the second set of parameters, the actual reliability of one
replica ranges from 0.1 to 0.99. To be more realistic, in our experiments processors with a larger
dynamic power Pk,d have a smaller failure rate λk. It means that a more reliable processor costs
more energy than a less reliable one. We guarantee this by ordering inversely the Pk,d’s and the
λk’s after generating the random values.

We vary the local reliability target Ri between 0.8 and 0.95 for the big failure rate set and
between 0.9 and 0.98 for the small failure rate set. This is to give the system a reasonable
freedom while mapping and scheduling. The reliability target is relatively high, implying that
tasks need several replicas to reach it. But it is chosen low enough so that feasible mappings
can be found in the vast majority of scenarios.

5.6.2 Results
In this section, we compare the performance of the different criteria presented in Sections 5.3
and 5.4, and we choose the criterion which performs the best. Next, we analyze the impact of
the different parameters on the performance of the chosen criterion.

Because of the large amount of experimental data, we used more than 300 figures to show
the complete experimental results. As it is impossible to include all of them in this thesis,
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we choose only to present a representative subset of the results. The comprehensive set of all
results is available in the research report [34].

We choose as default values βb/w = 1, basicWork = 0.3, Ri = 0.95 for big failure rate case,
and Ri = 0.98 for small failure rate case. This set of parameters is chosen to observe results
when the platform is under maximum pressure. We fix cortask and corproc both at 0.5 as default
values.

Each experiment is an average of 25 WCETs sets generated as follows. We first generate
5 sets of periods. For each of these sets of periods, 5 WCET matrices are generated. For
each WCET matrix, we generate 10 sets of random Pk,d and λk values. For each Pk,d and λk
generated, the final result is the average over 10 executions. Overall, we run 2, 500 randomly
generated experiments for each set of βb/w, basicWork, Ri, cortask and corproc values. The total
number of experiments ran is 2,700,000 for each heuristic.

Each result point is represented as the percentage of energy saved over the random base-
line method (defined below). Hence, on all the figures and in all the tables, the higher, the
better. The random baseline method is defined as follows: for each task, we add replicas
randomly on available processors until reaching the task reliability target during the map-
ping phase; for scheduling, we randomly order replicas mapped on each processor and execute
them in sequence and as soon as possible. We compare our different strategies to the lower-
bound proposed in Section 5.5. During the scheduling phase, we add several other references
called EDF_Plain, EDF_Ref_Paper, and Smallest. They all use the same mapping as
our heuristics, but have different scheduling strategies: EDF_Plain is simply the plain EDF
heuristic. EDF_Ref_Paper is the heuristic proposed in [45]. Smallest considers a single
replica for each task instance, the replica which costs the least energy (hence, Smallest is
not always a valid heuristic as it may not satisfy the reliability threshold). In fact, Smallest
shows an ideal case for the scheduling phase: every instance of every task successfully executes
one replica, the replica which costs the least energy, while all other replicas are not yet started
and are canceled after the first replica is completed. In contrast, LowerBound calculates the
lowest expected energy consumption without considering the load of processors. Thus, we can
find in the experimental results that Smallest can have a better result than LowerBound
in some cases.

For the 2, 500 random trials for each setting, in the figures, we report the average number
of replicas needed in total for the 20 tasks (on the left side), the average number of failures
that occur per time unit (in the middle), and the average percentage of random trials in which
we find feasible mapping (on the right side). These numbers are reported in black above the
horizontal axis on each figure.

Task ordering criteria for the mapping phase

In Tables III and IV, we summarize the performance of different task ordering criteria during
the mapping phase for different cortask and corproc parameter sets. We see that, for each (cortask,
corproc) group, the difference between the different task ordering criteria, including random, is
not obvious. The difference is at most 0.7% between the best and the worst criteria for any
given set of (cortask, corproc) values. We conclude that these criteria do not critically influence
energy consumption. Therefore, in the following, for ordering tasks, we will only consider
deMinW , which performs globally slightly better than others, especially in the big failure rate
case. We now focus on how to select processors during the mapping phase, and on the scheduling
strategies.
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random deW inW deMinW deMaxW inMinW inMaxW

cortask = 0.25, corproc = 0.25 54.8% 54.7% 55.1% 55.0% 54.7% 54.8% 55.1%
cortask = 0.25, corproc = 0.50 47.6% 47.5% 48.0% 47.6% 47.5% 48.0% 48.0%
cortask = 0.25, corproc = 0.75 33.5% 33.8% 33.7% 33.8% 33.8% 33.7% 33.7%
cortask = 0.50, corproc = 0.25 55.1% 55.4% 55.1% 55.4% 55.4% 55.1% 55.1%
cortask = 0.50, corproc = 0.50 48.6% 48.7% 48.8% 48.7% 48.7% 48.8% 48.8%
cortask = 0.50, corproc = 0.75 33.4% 33.6% 33.6% 33.6% 33.6% 33.6% 33.6%
cortask = 0.75, corproc = 0.25 54.6% 54.9% 54.4% 54.9% 54.8% 54.4% 54.4%
cortask = 0.75, corproc = 0.50 44.2% 44.4% 44.3% 44.3% 44.4% 44.3% 44.3%
cortask = 0.75, corproc = 0.75 32.9% 33.2% 33.2% 33.2% 33.1% 33.2% 33.2%

Table III: Percentage of energy saved over the baseline when using different task ordering heuris-
tics during the mapping phase under big failure rate, with basicWork = 0.3, βb/w = 1, and
Ri = 0.95.

random deW inW deMinW deMaxW inMinW inMaxW

cortask = 0.25, corproc = 0.25 59.5% 59.3% 59.9% 59.4% 59.3% 59.4% 60.0%
cortask = 0.25, corproc = 0.50 45.7% 45.8% 46.0% 45.7% 45.7% 45.9% 46.0%
cortask = 0.25, corproc = 0.75 24.9% 25.0% 24.8% 25.0% 24.9% 24.9% 24.9%
cortask = 0.50, corproc = 0.25 57.6% 57.5% 57.7% 57.7% 57.6% 57.6% 57.7%
cortask = 0.50, corproc = 0.50 47.3% 47.3% 47.5% 47.3% 47.3% 47.4% 47.6%
cortask = 0.50, corproc = 0.75 25.8% 25.7% 25.7% 25.7% 25.6% 25.7% 25.7%
cortask = 0.75, corproc = 0.25 55.9% 55.8% 56.0% 55.9% 55.8% 55.9% 56.0%
cortask = 0.75, corproc = 0.50 41.1% 40.9% 41.0% 40.9% 40.9% 41.0% 41.0%
cortask = 0.75, corproc = 0.75 25.8% 25.9% 25.8% 25.8% 25.8% 25.8% 25.8%

Table IV: Percentage of energy saved over the baseline when using different task ordering heuris-
tics during the mapping phase under small failure rate, with basicWork = 0.3, βb/w = 1, and
Ri = 0.98.
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Figure 5.4: Percentage of energy saved over the baseline when using deMinW and different
processor ordering heuristics during the mapping phase under big failure rate, with corproc = 0.5,
cortask = 0.5, basicWork = 0.3, βb/w = 1, and Ri = 0.95.

Processor ordering criteria for the mapping phase

Figures 5.4 and 5.5 show the performance of different processor ordering criteria. We see from
this figure that our criteria perform globally well. Our heuristics, random excepted, can save
around 60% of energy compared to the baseline scheme. Among the different criteria, inE and
deP have similar performance, and this performance is better than that of deR. In the following,
we will consider deP as the default criterion for ordering processors.

Scheduling heuristics

For the scheduling strategies, Figures 5.6 and 5.7 show that, after carefully selecting the mapping
criterion, our heuristics can save up to 66.9% of the energy in the best case when compared
to the random baseline. Among the different heuristics, we can find that, for small failure
rate case, all heuristics perform similarly, and has a performance of around 63.8%. As for
big failure rate case, the EDF_Start_Time heuristic, which chooses the earliest replica as
primary, and which has an energy saving performance of 64.2%, is the worst of our original
heuristics. On the contrary, EDF_Energy performs the best (with a performance of 66.9%).
It saves 8.4% more energy than EDF_Plain, and the performance is only 2.7% worse than
Smallest. Recall that Smallest sums up, for each task instance, only one replica which
costs the least energy, without considering failures or replica overlapping. It is very likely that
this bound is unreachable, especially when the system is under high pressure. EDF_WCET
performs similarly to EDF_Energy, and EDF_Reliability performs slightly worse. In
fact, as the energy consumption of a replica depends a lot on its WCET, it is reasonable that
EDF_WCET and EDF_Energy tend to choose the same primary replica and have similar
performance. This result shows that it is better to choose a replica which costs less energy as
primary. In contrast, the earliest starting replica may not lead to minimal energy consumption,
although we could have expected that it would induce less overlap among replicas.
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Figure 5.5: Percentage of energy saved over the baseline when using deMinW and different
processor ordering heuristics during the mapping phase under small failure rate, with corproc =
0.5, cortask = 0.5, basicWork = 0.3, βb/w = 1, and Ri = 0.98.
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Figure 5.6: Percentage of energy saved over the baseline when using the deMinW and deP
heuristics during the mapping phase and different criteria during the scheduling phase under
big failure rate, with corproc = 0.5, cortask = 0.5, basicWork = 0.3, βb/w = 1, and Ri = 0.95.
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Figure 5.7: Percentage of energy saved over the baseline when using the deMinW and deP
heuristics during the mapping phase and different criteria during the scheduling phase under
big failure rate, with corproc = 0.5, cortask = 0.5, basicWork = 0.3, βb/w = 1, and Ri = 0.98.

In the following paragraphs, we only consider EDF_Energy and we focus on the variation
of its performance for the different parameters. We add EDF_Plain, EDF_Start_Time,
and Smallest as references.

Task and processor correlation

Figures 5.8, 5.9, 5.10 and 5.11 show results when task correlation or processor correlation varies.
We see that, when cortask and corproc are not high (< 0.75), the performance remains relatively
stable. The EDF_Energy strategy achieves an energy saving percentage over the random
baseline of around 60%. This result is close to the Smallest and LowerBound references.
When cortask and corproc is high, we can observe that the performance decreases. In the case
of cortask = 0.75 or corproc = 0.75, the performance of EDF_Energy decreases respectively
to 57.3% and 45.4% under big failure rate, and to 54.0% and 36.2% under small failure rate.
But the difference with LowerBound remains small (3.8% and 7.2% respectively in big failure
rate case, and under 1% in small failure rate case).

Figures 5.8 and 5.9 also show that, in the case of big failure rate, the performance of
EDF_Start_Time is closer to that of EDF_Energy when cortask or corproc is high. The
reason is that, with a higher cortask or corproc, the WCETs of different tasks on the same
processor, or the WCETs of the same task on different processors, are more similar. In both
cases, the orders of the processors for different tasks become more similar, and are more closely
related to the power and/or the reliability parameters (Pk,d and λk). Therefore, after the
mapping phase, we have a few fully used processors, while the other processors have a low
load. The overlapping increases, and the performance becomes worse. Inversely, when cortask
or corproc is not high, if we simply choose the replica which costs the least energy as the primary
replica, the primary replicas are more randomly distributed on the different processors because
of the high randomness of WCETs, and the overlapping is minimal. Then it is possible that
we finish the primary early and with success, and delete all secondary replicas before starting
the processing of any of them. This is why, when cortask or corproc is high, the EDF_Energy
strategy cannot save as much energy as in other cases.
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Figure 5.8: Percentage of energy saved over the baseline when using deMinW and deP during
mapping for different scheduling criteria, under big failure rate, when varying cortask, with
corproc = 0.5, basicWork = 0.3, βb/w = 1, and Ri = 0.95.
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Figure 5.9: Percentage of energy saved over the baseline when using deMinW and deP during
mapping for different scheduling criteria, under big failure rate, when varying corproc, with
cortask = 0.5, basicWork = 0.3, βb/w = 1, and Ri = 0.95.
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Figure 5.10: Percentage of energy saved over the baseline when using deMinW and deP during
mapping for different scheduling criteria, under small failure rate, when varying cortask, with
corproc = 0.5, basicWork = 0.3, βb/w = 1, and Ri = 0.98.
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Figure 5.11: Percentage of energy saved over the baseline when using deMinW and deP during
mapping for different scheduling criteria, under small failure rate, when varying corproc, with
cortask = 0.5, basicWork = 0.3, βb/w = 1, and Ri = 0.98.
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Figure 5.12: Percentage of energy saved over the baseline when using deMinW and deP dur-
ing mapping for different scheduling criteria, under big failure rate, when varying βb/w, with
cortask = 0.5, corproc = 0.5, basicWork = 0.3, and Ri = 0.95.

Task variability

Figures 5.12 and 5.13 presents the results when βb/w varies. We observe that the result of each
heuristic is (almost) independent of the value of βb/w. This is because we map and schedule
tasks based on their WCETs, so the mapping and scheduling results are independent of the
value of βb/w. Furthermore, each task τi has the same βi on the different processors. Therefore
the energy savings tend to be similar. More precisely, the performance of EDF_Energy varies
under 0.5% when βb/w increases from 0.2 to 1. So we can conclude that the result is independent
of βb/w.

When βb/w is small, actual execution times can greatly differ from the WCETs which are
used for mapping and scheduling. However, in this case, the heuristics perform as well as in the
case βb/w = 1. This shows that the heuristics are very robust.

Utilization and reliability threshold

On Figures 5.14 and 5.15, we observe the performance of the different heuristics when varying
both basicWork and Ri. We see that, in small failure rate case, all heuristics have similar perfor-
mance while varying basicWork andRi. In contrast, in big failure rate case, when basicWork and
Ri increase, the differences between heuristics become larger. EDF_Plain performs worse,
while the performance of EDF_Energy remains stable. The difference between the Smallest
and LowerBound references and our heuristics also increases with basicWork and Ri. When
basicWork = 0.3 and Ri = 0.95, this difference of percentages is only of 1.5% for Smallest and
0.4% for LowerBound. In fact, with the increase of the system load, the WCETs increase,
and each replica has a higher chance to be victim of a failure. But LowerBound does not
consider the load of processors, and Smallest estimates the energy consumption without con-
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Figure 5.13: Percentage of energy saved over the baseline when using deMinW and deP during
mapping for different scheduling criteria, under small failure rate, when varying βb/w, with
cortask = 0.5, corproc = 0.5, basicWork = 0.3, and Ri = 0.98.
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Figure 5.14: Percentage of energy saved over the baseline when using deMinW and deP during
mapping for different scheduling criteria, under big failure rate, when varying basicWork and
Ri, with cortask = 0.5, corproc = 0.5 and βb/w = 1.
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Figure 5.15: Percentage of energy saved over the baseline when using deMinW and deP during
mapping for different scheduling criteria, under small failure rate, when varying basicWork and
Ri, with cortask = 0.5, corproc = 0.5 and βb/w = 1.

sidering failures or overlapping. This explains the growing gap between these references and
the heuristics when basicWork and Ri increase.

In summary, our strategy maintains a stable performance when basicWork and Ri increase.
In contrast, EDF_Plain performs worse, especially in big failure rate case. The difference
between EDF_Energy and the LowerBound reference is lower than 1% even in the worst
case, which stresses the high performance of the designed strategy.

Number of replicas, number of failures and success rate

For each experiment, we counted the number of replicas used for different heuristics, number of
replicas that failed during the execution, and the success rate which means the percentage of
experiments for which we can find feasible mapping.

In the small failure rate case, there are low number of replicas (slightly higher than 20
replicas per execution), little failure (on average 0.0002 failed replicas per time unit) and high
success rate (100% of experiments find feasible mapping), it is more difficult to find a variation
through parameters using this experimental set. Hence, we will focus on big failure rate case in
this section.

In the set with big failure rate, the average number of failed replicas per time unit increases
to 0.0129. In Figure 5.4, we observe that random needs more replicas and is the victim of a
larger number of failures. deR achieves the lowest total number of replicas and total number of
failures encountered because it always uses the processors with highest reliability. deP achieves
a slightly lower number of replicas and failures than inE because it considers both reliability and
energy. In Figure 5.6, the total number of replicas is the same for all criteria because they all
use the same mapping. For the number of failures, the difference is not obvious between strate-
gies. Unsurprisingly, EDF_Reliability has the lowest failure rate. Then, EDF_WCET and
EDF_Energy have slightly better failure rates than the other heuristics. Figures 5.8 and 5.9
show that the number of replicas and failures remain relatively stable when cortask or corproc is
not high. But there is a relative increase when cortask or corproc reaches 0.75. As for βb/w, we
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cortask = 0.25 cortask = 0.50 cortask = 0.75

corproc = 0.25 100% 100% 100%
corproc = 0.50 99.971% 100% 100%
corproc = 0.75 99.111% 99.992% 100%

Table V: Success rate of random trials under big failure rate, when varying cortask and corproc.

basicWork = 0.1 basicWork = 0.2 basicWork = 0.3

R = 0.80 100% 100% 100%
R = 0.85 100% 100% 100%
R = 0.90 100% 100% 99.940%
R = 0.95 100% 100% 98.825%

Table VI: Success rate of random trials under big failure rate, when varying cortask and corproc.

see on Figure 5.12 that, when βb/w increases, the number of replicas remains the same, while
the number of failures increases. This is because we map replicas according to the task WCET
which is independent on the value of βb/w. However, when βb/w is larger, we have longer actual
execution times and, thus, a higher probability that failures actually happen. While increasing
Ri and basicWork, we observe in Figure 5.14 that the number of replicas increases, and also
the number of failures. With higher Ri, we need more replicas to satisfy the reliability target,
and more replicas executed at the same time means a higher probability that failures actually
occur. As for basicWork, a higher basicWork means larger average WCETs. Longer replicas
lead to lower reliability. Thus failures happen more frequently, and we need also more replicas
to reach the reliability threshold.

The success rate of big failure rate case can be found in Tables V and VI. We observe that
the proportion of experiments for which we can find a feasible mapping decreases when the
system pressure becomes large. The fraction of instances for which we can build a solution
also decreases when cortask is low and corproc is high. This is why we used Ri = 0.95 and
basicWork = 0.3 as the highest reliability target and basic work parameter, and we avoided to
use extreme correlation values in our experiments. Within all platforms in the experiments,
all the tested heuristics are able to find a valid solution in all tested configurations with small
failure rate. And in the big failure rate cases, heuristics are able to build valid solutions for
more than 99.8% of the instances. The very high success rate of our experiments means that
we can be confident in our results and that they do not suffer of any bias.

Summary

In conclusion, in the experiments we compared different criteria for the mapping and scheduling
phases, and we also studied the influence of the different parameters. Tables VII, VIII, IX
and X present a synthetic view of the results, achieved by different heuristics, or for different
correlations, under big or small failure rate, and when the system is under the highest pressure
(βb/w = 1, basicWork = 0.3, Ri = 0.95 for big failure rate and Ri = 0.98 for small failure rate).

Among the different criteria used in the heuristics, we observe from Tables VII and IX
that the deP method is the best processor ordering for the mapping phase, and inE performs
similar to deP in most of the cases. As for scheduling phase, all heuristics perform similarly in
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random deR inE deP

EDF_Plain 6.9% 57.2% 58.2% 58.5%
EDF_Ref_Paper 8.8% 57.3% 58.1% 58.7%
EDF_Start_Time 17.0% 62.1% 64.0% 64.2%
EDF_Reliability 23.6% 62.1% 65.3% 64.9%

EDF_WCET 23.8% 64.2% 66.8% 66.8%
EDF_Energy 24.2% 64.4% 66.8% 66.9%

LowerBound 67.6%

Smallest 51.8% 67.4% 69.7% 69.6%

Table VII: Percentage of energy saved over the baseline when using different processor ordering
criteria during mapping and using different scheduling criteria under big failure rate, with
cortask = 0.5, corproc = 0.5, βb/w = 1, basicWork = 0.3, and Ri = 0.95.

cortask = 0.25 cortask = 0.50 cortask = 0.75

corproc = 0.25 72.4% 70.0% 67.1%
corproc = 0.50 64.3% 66.9% 57.3%
corproc = 0.75 42.6% 45.4% 46.4%

Table VIII: Percentage of energy saved over the baseline when using the deMinW task or-
dering criterion and the deP processor ordering criterion during mapping, and using the
EDF_Energy scheduling criterion, under big failure rate, when varying cortask and corproc,
with βb/w = 1, basicWork = 0.3, and Ri = 0.95.

random deR inE deP

EDF_Plain 12.8% 58.3% 63.9% 63.8%
EDF_Ref_Paper 12.8% 58.3% 63.9% 63.8%
EDF_Start_Time 12.8% 58.3% 63.9% 63.8%
EDF_Reliability 12.8% 58.3% 63.9% 63.8%

EDF_WCET 12.8% 58.3% 63.9% 63.8%
EDF_Energy 12.8% 58.3% 63.9% 63.8%

LowerBound 63.9%

Smallest 12.8% 58.3% 63.9% 63.8%

Table IX: Percentage of energy saved over the baseline when using different processor ordering
criteria during mapping and using different scheduling criteria under small failure rate, with
cortask = 0.5, corproc = 0.5, βb/w = 1, basicWork = 0.3, and Ri = 0.98.
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cortask = 0.25 cortask = 0.50 cortask = 0.75

corproc = 0.25 78.4% 74.7% 71.4%
corproc = 0.50 60.4% 63.8% 54.0%
corproc = 0.75 35.4% 36.2% 36.0%

Table X: Percentage of energy saved over the baseline when using the deMinW task ordering cri-
terion and the deP processor ordering criterion during mapping, and using the EDF_Energy
scheduling criterion, under small failure rate, when varying cortask and corproc, with βb/w = 1,
basicWork = 0.3, and Ri = 0.98.

small failure rate case, and EDF_Energy performs the best among the scheduling criteria in
big failure rate case. Respectively under big or small failure rate, in the case of high system
pressure, our best criterion can still achieve 66.9% or 63.9% of energy saving compared to the
random baseline. While using the best criterion, the difference of performance with random
is 42.7% and 51.0% respectively under big and small failure rate. The difference is only 2.7%
compared to the Smallest reference in big failure rate case. And in the case of small failure
rate, this difference with Smallest is very close to 0. To study the efficiency of our selected
heuristic under different cortask and corproc, Tables VIII and X present the performance while
using deMinW , deP and EDF_Energy as criteria. Our strategies can save more than 35%
of the energy consumed by the baseline in all cases, and this percentage can be higher than
70% in the best case. Furthermore, in big failure rate case, we report a median energy saving
percentage of only 1.6% less than that of the LowerBound; and an average of only 2.0% less.
In small failure rate case, these two values can both be reduced to 0.3%.

We can confidently conclude that our best strategies perform remarkably well over the whole
experimental settings.

5.7 Conclusion
In this work, we have studied the problem of executing periodic real-time tasks on an het-
erogeneous platform, with several objectives: minimizing energy consumption, guaranteeing
reliability thresholds, and meeting all deadlines. For each task, we decide how many replicas
should be launched, and on which processors to map them. We tagged one replica per task as
“primary” replica and the other ones as “secondary” replicas. To obtain an absolute measure
for the evaluation of our heuristics, we have computed a theoretical lower-bound on energy
consumption.

Extensive simulations show that our best heuristics always achieve very good performance,
very close to the LowerBound (on average the percentage of energy saving of our best heuristic
is only 2% less than that of LowerBound). This performance was reached by considering
processors in the deP order when mapping the replicas of a task (roughly speaking, deP is the
ratio of a task failure rate by its energy cost), and by tagging as “primary” the replicas which
cost the smallest dynamic energy.

Furthermore, while all decisions are taken with worst-case execution times (WCETs) of tasks
as only input, the simulations used actual execution times; the best heuristic always achieved
excellent performance even when the actual execution times were far smaller than the WCETs,
showing the robustness of our approach.
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Summary of results
In this thesis, we have designed scheduling heuristics for independent tasks under budget and
time constraints, in order to satisfy different requirements. The first three chapters of this thesis
have performance as objective, while the fourth chapter focuses on energy efficiency.

The first three chapters have a common framework: We have a set of tasks whose execution
times follow the same probability distribution. We can decide at any instant to interrupt the
execution of a long running task and to launch a new one instead. The main questions are
how many (or which) processors to enroll, and whether and when to interrupt tasks if they
have been executing for a long time. In a previous work, the problem has been dealt with on
a homogeneous platform and with the same release time and deadline for all tasks. Our work
extends the state-of-the-art in three directions: In the first work, we consider an heterogeneous
platform. In the second work, we assume that the distribution of task execution times is
unknown. In the third work, we consider real-time tasks which are released periodically and
have their own deadlines.

The fourth chapter considers a more complicated framework: We have periodic tasks and
an heterogeneous platform. We consider transient faults. Tasks are replicated to guarantee a
pre-defined reliability threshold. We aim at finding a heuristic which minimizes the expected
energy consumption, while matching the deadline and reliability constraints of all tasks.

Our contributions in each chapter are summarized in the following paragraphs:

Task scheduling on heterogeneous platform This chapter dealt with the problem of schedul-
ing stochastic tasks on an heterogeneous platform under deadline and budget constraints. The
main difficulty was to select the best subset of processors in order to maximize the expected
number of tasks successfully executed. We proved that this problem is NP-hard, and designed
Greedy, a greedy algorithm which is proved to be a 2-approximation. In the Greedy algo-
rithm, we sorted the processors by non-increasing yield and calculated which ones to enroll,
based on the budget and deadline. Through the experiments with a variety of parameter sets,
we found that Greedy significantly outperforms the other heuristics, and its performance is
very close to the upper bound established in this work.

Non-clairvoyant task scheduling In this chapter, we considered a similar framework as in
the previous work and in Chapter 2. Previous results showed that long-lasting tasks must be
interrupted at some optimal cutting threshold, calculated according to the distribution of task
execution times. But in this work, we assumed that this distribution is unknown. Therefore,
we designed a set of scheduling heuristics to estimate the cutting threshold, some of which
making use of the Kaplan-Meier estimator. We also introduced several methods to recompute
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the threshold value while new data are observed. We found in the experiments that our best
heuristic AutoPerSurvival (40%, 0.01) can execute 79% of tasks that an omniscient oracle
which knows the distribution of task execution times would be able to complete.

Firm real-time task scheduling In this chapter, we considered firm real-time tasks, which
arrive periodically and have their proper deadlines. We continue to study the problem of
maximizing the number of tasks successfully completed. In this work, we designed several
heuristics which decide, on which processor to allocate each task, whether and when to interrupt
a (long-lasting) task, and which task in the waiting list should be launched when a processor
is idle. As for theoretical results, we discretized the time and constructed a Markov Chain.
We showed that the chain is aperiodic and irreducible, and computed the asymptotic expected
performance via the limit distribution of the chain. On the practical side, we launched an
extensive set of experiments, which showed that EarliestStartTime and Smax respectively
outperform other task attribution and task admission heuristics, and can achieve a gain up to
30% compared to the RoundRobin and NeverKill heuristic.

Multi-criteria real-time task scheduling In this work, we continued to consider real-time tasks.
But differently from Chapter 4, we assumed that the task execution times are limited by the
Worst Case Execution Time (WCET). We studied the problem of executing real-time tasks on
heterogeneous platforms with three objectives: minimizing energy consumption, guaranteeing
reliability thresholds, and meeting deadlines. We designed a mapping-scheduling heuristic and
several criteria for each phase. We also characterized the lower-bound of energy consumption
in our problem. We conducted a comprehensive set of experiments and found that our best
heuristic (deP for processor ordering and EDF_Energy for scheduling) achieves a performance
very close to the lower-bound. On average, the percentage of energy saving by our best heuristic
is only 2% less than that of LowerBound.

Future work and perspectives

We plan to continue our research along the following directions:
Firstly, we can extend the target platform to a more complex study. In Chapters 3 and 4, we

consider a homogeneous platform in the current work. Future work will be dedicated to consid-
ering heterogeneous platforms, as what we do in Chapters 2 and 5. Typically, cloud providers
provide different categories of processors with different power and cost. This heterogeneity will
dramatically complicate the selection of a good processor subset and the estimation of the cut-
ting threshold for the work in Chapter 3. As for the work in Chapter 4, the analysis of processor
states and the allocation of task to processor will also become more complicated. Chapters 2
and 3 assume that the unit cost of a processor is proportional to the running time. We can
extend the pricing model to take more complex scenarios into account, for example considering
start-up costs (which would limit the number of enrolled processors), or non-constant costs that
depend on the time and day, or on the load of the cloud platform. In Chapter 5, we assume
that processors have only one available frequency. We can extend our heuristics to processors
with multiple frequency levels.

Secondly, we can also extend our heuristics with a more general task model. Chapters 2, 3
and 4 consider tasks whose execution time follows a common probability distribution. We
start the trial of multimodal distributions in Chapters 3 and 4. We can continue to study the
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problem while different types of tasks need to be launched. Our tasks in Chapters 4 and 5
have a period completely fixed. We can add randomness to their period or we can consider
tasks with random release times. This randomness is challenging for the estimation of processor
states. In this thesis, we studied different problems with independent tasks. Future work can
aim at extending the algorithms to graphs of tasks instead of independent task sets. The
dependences between tasks will dramatically complicate the mapping and scheduling problems,
because we need to enforce all graph dependences. In addition, we can extend the model to
include communication cost, data storage cost, response time of tasks, etc., in order to make it
closer to a real application.
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