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Abstract

The response of open optical resonators to excitation can be expressed as a super-
position of their intrinsic resonances, their quasinormal modes (QNM), which are
loaded by the driving field and decay exponentially in time due to power leakage
or absorption. Quasinormal modes are the eigensolutions of the time-harmonic
Maxwell’s equations et complex eigenfrequencies and allow more physical in-
sight to be brought into the analysis of resonator dynamics. However, due to
the complexity in modeling the open resonators and computing their modes, nu-
merical tools such as linear eigenmode solvers are frequently called upon. The
numerical discretization of the problem and some of the methods used to satisfy
boundary conditions manifest themselves in the form of numerical modes that
bear no physical meaning but complete the QNM basis and allow it to converge
if many modes are included in the expansion. We also verify that the multiple for-
mulas that exist for the auxiliary-field formulation of the QNM expansion have a
similar origin and produce the same results. We compute the modes of periodic
resonator structures to reconstruct the spectra on a wide spectrum of frequen-
cies. We try to make the expansion converge with the least amount of modes by
finding a way to classify them then explore the dependence of the modes on nu-
merical parameters. Finally, we devised a way to obtain convergent results with
few modes by interpolating from a few real frequency computations.

La réponse des résonateurs optiques ouverts suite à leur excitation peut se
décrire par la superposition de leurs résonances intrinsèques, leurs modes quasi-
normaux (QNM), qui sont excités par un champ incident et qui s’atténuent ex-
ponentiellement dans le temps à cause de fuites d’énergie et l’absorption. Les
QNMs sont les vecteurs propres des équations de Maxwell harmoniques et per-
mettent d’obtenir plus d’informations sur la dynamique du résonateur. Cepen-
dant, la complexité de la modélisation des résonateurs et du calcul des modes
amènent à l’utilisation d’outils numériques pour résoudre ces systèmes équations
linéaires afin de trouver les modes. La discrétisation du problème et certaines
méthodes utilisées pour vérifier les conditions d’onde sortantes se manifestent à
travers des modes numériques qui complètent la base des QNMs et qui perme-
ttent à la superposition de modes de converger si un grand nombre de modes,
physiques et numériques, sont pris en compte. Nous vérifions que les formules
qui existent pour la méthode des champs auxiliaires appliquée aux QNMs ont
une origine commune et produisent des résultats similaires. Nous calculons les
modes de structures périodiques afin de reconstruire le champs sur un spectre
fréquentiel large. Nous essayons de faire converger la superposition des QNMs
en trouvant un moyen de classifier les modes et explorons ensuite la dépendance
des modes à certains paramètres numériques. Nous faisons converger la recon-
struction modale du champ avec peu de modes en interpolant.
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Chapter 1

Introduction

Light has long since fascinated mankind. From the past devout worship of the
sun to the presence of light in religious iconography, light and its sources have
been given a divine and mysterious aura throughout the eras. As scientists began
to unearth the nature of light, from its wave characteristics hinted by interference
phenomena to later discovering its particular make-up, man has harnessed it to
better his life. The advances made in the 19th and 20th century have brought
light-harnessing appliances to the streets to our homes, and nowadays to our
pockets for our better comfort. Like it shines the way forward on the roads on
an obscure night, our increased understanding and control of optics has paved
the way for many essential innovations in the 20th century. And in a most un-
expected twist, the control of light can be achieved at scales far smaller than the
deities it inspired.

Optical micro- and nanoresonators have provided this control over the inter-
action between light and matter. Their proliferation during the past few decades
is due to the development of bottom-up [1, 2] and top-down [3, 4] nanofabri-
cation techniques and technologies, permitting the construction of structures of
varying shapes, materials, and sizes [5, 6, 7]. Optical resonators play center-
piece roles in many blossoming fields in nanophotonics, such as optical sensing
[8, 9], metamaterials[10, 11] and integrated photonic circuits [12, 13]. Nanopho-
tonics has flourished with these items, which have allowed the manipulation and
greater understanding of light at the nanometric scales [14]. Examples of different
fabricated micro- and nano-sized optical resonators are displayed in Fig. 1.1.

1.1 Photonic Resonators

Optical resonators are structures whose optical responses are exalted at certain
frequencies of light. Emitters placed around or inside these structures see their
emission increase greatly due to the confinement of light in space and across time.
The Purcell Factor [15] is one phenomenon that causes the spontaneous emission
rate of an emitter in the cavity to be enhanced. The value of the enhancement
is largely dependent on the ability of the resonator to store energy while leaking
as little as possible and its ability to confine light to very small volumes. This is
usually quantified by the ratio Q/V, where Q is the quality factor of the resonator
at its resonance frequency, and V the mode volume.
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The quality factor Q of a resonator characterizes a resonator’s bandwidth rel-
ative to its resonance frequency. It describes a resonator’s ability to store energy
relative to how much energy it leaks over time. These characteristics of optical
resonators are also found in other domains, such as acoustics. A tuning fork
will usually ring out with a clear note for several seconds after receiving a single
strike. This takes the form of damped oscillation at a single frequency, the note
of the tuning fork, usually between 100 Hz and 4 kHz. Upon absorbing the en-
ergy from the strike, it releases that energy by vibrating, at first widely because
different high-frequency vibrations are overlapping, until the dominant oscilla-
tion remains and the energy leaks out through this particular mode of acoustic
vibration. The fork will oscillate at this frequency Q times before most of the en-
ergy is depleted, that duration corresponding to the mode’s lifetime τ. The value
of Q can possibly reach a couple thousand depending on the fabrication and the
material the tuning fork is made from. For a resonator mainly oscillating at the
angular frequency Ω, the quality factor can be defined as follows with energy
considerations:

Q = Ω
τ

2π
. (1.1)

The mode volume V describes the spatial distribution of the energy the system
has received and released. It is a measure of the confinement of the energy, a
quantification of the physical volume within which the energy is mostly directed,
where the oscillations are the strongest. In the case of the tuning fork, it would
correspond to the area in space where a microphone would pick up the most
signal, where the air that creates the sound gets displaced with the most intensity,
relative to how the signal is distributed by the fork over all of space. This would
be near the tips of the tuning fork, far from the base where the acoustic signal is
weaker.

These properties of resonant systems give an idea about their characteristics
and how they can be used. In the case of the tuning fork, it gives us insight on
where to strike it to get the loudest sound, how long the ringing will last, and
where one should place their ear to listen to the sound. The same principles ap-
ply to devices made out of optical resonators. The quality factor being a measure
of the dissipation of energy, low-Q devices could be used for their small response
times, because the amplitude of the field would drastically decrease after a few
oscillations. Resonators with small mode volumes V means that the field is fo-
cused in small areas meaning that a well-constructed optical resonator could be
used to detect small objects. The exploitation of these properties allows for myr-
iad applications.

When the frequency of the excitation matches up with the resonant frequency
of the resonator, the amplitude of the oscillations of the electric field increases
dramatically. In that instance, the energy that the resonator has taken is mostly
released in a single mode of oscillation. These modes are intrinsic to the resonator,
and play an essential role in the resonator response dynamics. The design of de-
vices around the compatibility of a light source with specific modes is an effective
design philosophy for resonator applications.

And similarly to a tuning fork, the shape of optical resonators and the mate-
rials that compose them determine their resonant performance. From this, two
clear paradigms appear, for one, cavities made of low-loss materials that are able
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to store light efficiently, and plasmonic materials made of absorbing materials but
which are able to confine light in small volumes. Examples of the two types of
resonances are shown in Fig. 1.2.

(a)

(b) (c)

Figure 1.1: (a) SEM image of a silica microdisk. Reprinted with permission from
Springer Nature “Ultra-high-Q toroid microcavity on a chip” by D. K. Armani
et al [5], c© Springer 2003. (b) SEM image of a Photonic Crystal waveguide.
Reprinted with permission from [6], c© The Optical Society. (c) TEM image of
35 nm size nanocubes. The scale bar is 20 nm. Reprinted with permission from
[7]. c© American Chemical Society 2014 .

1.1.1 Dielectric Cavities

A subset of optical micro-resonators are cavities made of materials with very low
levels of absorption within a frequency range. These dielectric materials have
very little dissipation causing the quality factors of these cavities to be relatively
high (ranging from 103 to 109). In these cavities, the light usually bounces back
and forth from one end of the cavity to the other. The resonance condition is
met when a whole number of oscillations occur between both edges of the cav-
ity. This means that the field is confined in a volume usually in the order of
several to hundreds of λ3. A simple example of this is the Fabry-Pérot cavity,
made of two parallel reflecting interfaces. This cavity has been used in many de-
vices like interferometers and early laser technology. Other types of cavities have
been used for diverse purposes. Microdisk-type or toroid-type cavities like the
one pictured in Fig. 1.1a have been used for sensing applications [16, 17] due to
their incredibly sharp resonant peaks which causes great sensitivity to local per-
mittivity perturbations depending on the mode, which can be enhanced when a
mode is excited under specific conditions [17]. The drawback of this incredible
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sensitivity is the difficulty to finely tune the cavity resonance to a specific wave-
length, due to extreme sensitivity to fluctuations [18]. In these micro-disk cavities,
the light circulates on the outer border of the disk due to total internal reflection
at the interface with air. These types of oscillations are called whispering-gallery
modes, explaining the sensitivity of the microdisks to perturbation places in these
areas. Photonic crystal cavities as pictured in Fig. 1.1b are created when “defects”
are introduced in otherwise periodic structures like photonic crystal waveguides.
These types of resonators also make great for great sensors due to their high-Q
resonances [19] and also have seen use in slow light experiments [20].

In most of these devices, the field oscillates with great amplitude within the
cavity, and coupling an emitter to a cavity mode by placing it in the “hot spots”
inside the cavity leads to an increase in the spontaneous emission rate of the emit-
ter. The interaction between the cavity mode and the emitter can be harnessed
to control the emission of the atom, leading to practical applications, like quan-
tum information processing [21]. Accurately computing the characteristics of the
modes of the cavity, such as their lifetimes, their resonant frequency, and their
field, are essential to the design of devices using cavities. This allows the choice
and placement of the emitter to be optimized to the qualities of the cavity. The
properties of the cavity modes are thus of great interest.

Figure 1.2: (a) Cavity type resonator where the field oscillates back and forth and
is localized inside the cavity and leaks very little to the outside. (b) The incident
wave creates an oscillation of electrons and an electromagnetic field at the surface
of a metal-dielectric interface, the surface plasmon. The incident field can couple
very efficiently with the surface plasmon at particular frequencies.

1.1.2 Plasmonic Resonators

Plasmonic resonators are made of metals, whose electromagnetic radiation is de-
pendent on the behavior of the free conduction electrons on the surface of the
metal [22]. The collective oscillations of electrons at the surface of the metal due
to the excitation from a driving field induces the hybridization of light and elec-
tron oscillation into what is called a “surface plasmon polariton”.The resulting
electromagnetic field is heavily confined to the surface of the metal, at subwave-
length depths below the diffraction limit (l < λ/2π). While plasmonic modes
are tightly confined at the surfaces of the metal, which then leads into a small
mode volume for plasmonic resonators V ∼ 10−4λ3, due to the absorption from
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their material properties, the quality factor of plasmonic resonators is rather low
Q ∼ 20. Plasmonic modes are confined to the metal-air interface, their observa-
tion in the far field requires the use of near-field probes to convert the evanescent
field to one that propagates away from the plasmonic resonator [22]. This is usu-
ally done with the use of prisms [23] or gratings [24]. Plasmonic nanoparticles
have also proliferated due to the discoveries related to their fabrication.

Plasmonic nanoparticles have many applications. Biosensing is a domain in
which they are present [25, 23], finding practical use in sensing applications such
as pregnancy tests [26] and some cancer therapies [27]. Ensembles of plasmonic
nanoparticles also make for practical optical antennas because their arrangement
can be tailored to obtain specific anisotropic light scattering patterns [28]. Plas-
monic particles are used in metamaterials due to their interesting optical proper-
ties [10].

Devices using plasmonic particles are able to confine light precisely but in
turn, suffer detrimental dissipative loss and due to the low Qs, the spectral reso-
nances are wide and may overlap. However, due to the high dissipation, the re-
sponse time of plasmonic resonators to a pulse for example is near instantaneous,
in the range of tens of femtoseconds [29] when excited with femtosecond pulses.
This is in clear contrast to dielectric resonators where the light is preserved inside
the cavity in much longer time scales.

Finding the characteristics of the modes of plasmonic structures, such as their
lifetime and the field distribution, is key to building efficient devices. Finding
how the resonators scatter light into space can influence design decisions on op-
tical devices, like how much energy is lost from leakage or absorption depending
on the type of excitation, and how to maximize the coupling of one resonator’s
modes from a particular source.

1.1.3 Resonator Analysis

We can approximate the resonance frequency and the field of the modes of a res-
onator by analyzing its spectral response to an excitation. We will assume the
exp(−iωt) convention for time-harmonic fields for this chapter. This conventtion
will change during the thesis The resonator, described by the permittivity dis-
tribution ε(r, ω), is placed within a background medium εb(r, ω), where ω is the
angular frequency of the excitation. A driving field [Ed(r, ω), Hd(r, ω)], satisfy-
ing the curl Maxwell’s equations in the background medium acts as an excitation
interacting with the resonator. In the scattering formulation, we can write the
time-harmonic Maxwell’s equations for the field scattered by the resonator:


∇×Hs(r, ω) + iωε(r, ω)Es(r, ω) = iω(ε(r, ω)− εb)Ed(r, ω),
∇× Es(r, ω)− iωµHs(r, ω) = 0,
+ outgoing-wave boundary conditions,

(1.2)

where the source term is localized in the region in space where (ε(r, ω)− εb) is
non-null, which usually corresponds to the resonator’s location. The outgoing-
wave conditions mean that we consider the domain to be open, allowing the res-
onator’s scattered field to leak into free space where |r| → ∞. Depending on
the characteristics of the driving field, the spectral response of the resonator f (ω)
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may present resonant peaks, as pictured in the top panel of Fig. 1.3, indicating the
excitation of the modes of the resonator. The resonant linewidth ∆ω of the peaks
are inversely proportional to the mode’s lifetime and the resonant frequency Ω
corresponds to the frequency for which the response f (ω) peaks. The field cor-
responding to the mode would be somewhat approximated by the value of the
scattered field at the frequency Ω, if we were to consider that, at resonance, the
scattered field is mostly represented by the resonant mode.

In order to find the resonant frequency and the field of the mode, numerical
tools to solve Maxwell’s equations and compute the scattered field at real fre-
quencies can be used. Most of these tools require the definition of the frequency
and polarization of the driving field Ed(r, ω) that will excite the resonator, in
order to compute the scattered field which, at resonance, should be expectedly
quite similar to the mode in question. However, resolving a spectrally narrow
resonant peak would require scanning the frequency spectrum with a very small
frequency step, which would require many computations. Unearthing the spec-
tral properties of a resonator over a wide spectral range would require a great
number of computations. Additionally, a given polarization of the driving field
might not excite a particular mode of interest so the computations might need to
be repeated for different polarizations. Finding modes using real frequency com-
putations of the scattered field is thus numerically intensive due to the number of
computations needed in order to discern modes on a wide frequency spectrum.

If the resonator response is truly driven by modes, the need for a rigorous
formalism which accurately computes and reconstructs the scattering of waves
by a resonator via modal contributions becomes essential. In that sense, we need
a formalism that directly allows access to the modes of the system and that would
compute them directly, without considering any sort of external excitation, since
they are intrinsic to the resonator’s structure.

The scattered field formulation of Maxwell’s equations in Eq. 1.2 is an eigen-
value problem at the frequency ω with a source term. Solving the equations
without the source term thus would yield the eigenvectors and eigenvalues of
the scattering problem, the modes of the system. This is the principle behind the
quasinormal mode (QNM) formalism.

1.2 Quasinormal mode expansion

1.2.1 Definition

Quasinormal modes are the eigenmodes [Ẽm(r), H̃m(r)] of the time-harmonic Maxwell’s
equations of the homogeneous problem associated to Eq. 1.2. They are source-
free solutions of Maxwell’s equations for the permittivity distribution of the res-
onator ε(r, ω), at the eigenfrequency ω̃m:

∇× H̃m(r) + iω̃mε(r, ω̃m)Ẽm(r) = 0,
∇× Ẽm(r)− iω̃mµH̃m(r) = 0,
+ outgoing-wave boundary conditions.

(1.3)

The eigenfrequency ω̃m = Ωm − iΓm/2 is complex-valued, the imaginary part
Γm accounting for the losses via absorption as well as the leakage of the energy
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into the free space. The real part of the eigenfrequency corresponds to the res-
onant frequency while the imaginary part corresponds to the spectral linewidth

of the mode, which is related to the mode’s temporal lifetime τ =
1

2Im(ω̃m)
.

The choice in convention for time-harmonic fields changes the sign of the imagi-
nary part of the eigenfrequency since it always corresponds to the losses incurred
over time. Inversely, while the QNM is bound to exponentially decrease with
time, the consequence of that is the exponential growth of QNMs in space as
|r| → ∞. Indeed, the spherical outgoing-wave propagating in the far field has
the form exp[−iω̃m(t− r/c)], where c is the speed of light. This has led to a dif-
ficulty of properly computing and normalizing QNMs, since the computational
domain is supposed to be open. This prevents the modes from being normal-
ized like in Hermitian physics, by integrating the mode’s electromagnetic energy

ε
∣∣∣Ẽm

∣∣∣2 + µ
∣∣∣H̃m

∣∣∣ over a infinitely large domain, since
∣∣∣Ẽm(r)

∣∣∣ diverges at |r| → ∞.
However, by solving Eq. 1.3 for the modes directly, we are able to discern

the characteristics of the modes without considering any excitation. The modes
are intrinsic to the resonator. Resonator characteristics can be rewritten using the
QNM formalism, such as the quality factor. The quality factor of the mth mode of
the resonator can be rewritten using its eigenfrequency [14]:

Qm = − Re(ω̃m)

2Im(ω̃m)
. (1.4)

The minus sign is due to the exp(−iωt) and the factor two is due to the difference
between amplitude and intensity decays. Computing the QNMs directly has ma-
jor advantages. For one, the spectral properties of the resonator are laid bare: for
each resonant peak that one might find in the spectral response f (ω) as in the top
panel of Fig. 1.3, a corresponding mode can be placed in the complex frequency
plane. Since we are directly computing the modes, the resonances are accessed
without consideration for any kind of excitation impinging upon the resonator.

The modes, once computed, can then be normalized and the scattered field
can be expanded on the QNM basis.

1.2.2 Expansion of the scattered field

If the modes are properly normalized, the resonator response or the scattered
field of the system can then be described as the superposition of the excited
modes:

Es(r, ω) = ∑
m

αm(ω)Ẽm(r), (1.5)

where αm is the excitation coefficient of the mode, describing the mode’s level of
excitation from the driving field. The QNM is a pole of the Maxwell’s equations
operator described in Eq. 1.2, the resonator response diverges when the com-
plex excitation frequency approaches a mode’s complex-valued eigenfrequency
ω̃m. The QNMs form a basis, one that can be proven to be orthogonal under
certain conditions [14], using the Lorentz Reciprocity theorem [30] for example.
For a basic one-dimensional cavity, the expansion has been analytically proven to
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be complete inside the cavity, meaning that if we include all potentially existing
modes, the expansion will yield an exact reconstruction of the scattered field [31]
in the cavity region. This property has also been proven to apply to spheres in
three dimensions [31]. For other geometries, including practical more complex
ones, the property of completeness has not yet been proven [14] in the case of the
continuous physical problem described in Eq. 1.2.

However, this does not mean that the expansion can not be used to accurately
approximate the scattered field or the resonator response for these geometries.
While the modes of more complicated structures cannot be expressed analyti-
cally, they can be computed through numerical methods and the field can be re-
constructed, in and out of the resonator domain. With these numerical methods
and tools come limitations in the ways we can model these open resonators. The
numerical discretization of the continuous eigenvalue problem of Eq. 1.3 directly
impacts the computation of modes as well as the reconstruction. The accuracy
of the computed modes is affected by the quality of the numerical mesh used
to model the resonator. The numerical techniques to model the physics, like the
boundary conditions, also alter the modes that are computed by a solver. All
these factors influence the quality of the modal reconstruction of the field.

The subject of this work is to gauge how accurately the scattered field can be
approximated numerically using the modal expansion, and to determine what
can affect the modal reconstruction of the field.

1.2.3 Context and aim of the present work

In this work, the modes will be computed numerically and the scattered field
will be reconstructed using a finite number of modes. The continuous opera-
tor described in Eq. 1.2 and Eq. 1.3 is originally defined for an unbound space.
It is replaced with a discretized operator, a finite-dimensional matrix, defined
on a finite mapped space, with new permittivity and permeability distributions
to account for the truncation of the computation domain while satisfying the
outgoing-wave boundary condition using numerical tools [14]. One of these tools
is the use of Perfectly Matched Layers (PMLs) that perform a complex coordinate
transform of space as to simulate that the domain extends to infinity. Along with
discretization, this causes only a subset of the infinite QNM sets to be accurately
approximated and this subset is completed with another finite but substantial set
of numerical modes often referred to as PML modes [14, 32, 33, 30, 34, 35], as they
originate from the finite-discretized space bounded by PMLs. This method allows
the use of the QNM expansion within the spectral range of interest while using
modes that are resonant which allows the analysis of resonators with arbitrary
shapes, dispersive materials [36, 33, 30, 34, 35], within complex environments
[30, 35]. Owing to the finite-dimensional discretized operator, completeness of
the scattered-field expansion of Eq. 1.5 is valid everywhere in the computational
domain [30].

In the literature, the modal expansion of the field has operated under two
paradigms to reconstruct physical quantities. The first in which the expansion
is used with few modes, usually under 10, with each mode corresponding to a
resonance of the reconstructed quantity [37, 38, 39, 40, 41, 42, 43]. In these cases,
QNMs reconstruct the resonant lineshapes with a seemingly “good agreement”
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[44, 45] with a computation performed with another method. However, out of the
resonant peaks, the agreement between the reference computation and the QNM
reconstruction is lessened out of resonance [40].

With the development in the recent years of solvers that find a great number
of modes, compared to pole-searching methods [46], or FTDT methods [39], the
second paradigm consists in using a great number of modes in the expansion,
usually more than a hundred. These tools either employ eigenvalue solvers that
use auxiliary fields [30, 47, 42, 48] or nonlinear eigenvalue solvers [34, 49]. It is
usually with the exploitation of these tools that the computation of purely nu-
merical modes (sometimes referred to as PML modes) becomes possible. With
the use of hundreds of modes and a wide eigenvalue spectrum [30, 34, 50], the
convergence is attained to varying degrees of accuracy. In the supplementary
information of [30], which could be considered to be at the state of the art, the
error of the reconstruction of the extinction cross-section over a large spectrum
for complex-shaped, dispersive resonators seems to trend to 10/M2, where M is
the number of modes in the expansion as shown in the figures SI.5, SI.6 and SI.7.
This reconstruction uses both physical modes and numerical PML modes in the
expansion. This shows that the field inside the resonator has been reconstructed
accurately using both subsets of modes . This convergence speed has been ob-
served in other works on spherical resonators [51].

This present work follows these lines and aims to show what could influence
the numerical reconstruction of the field and physical quantities using the modal
expansion for different geometries. In that sense, we can rewrite Eq. 1.5 to better
represent the numerical reality of the problem:

Es(r, ω) ≈
M

∑
m

αm(ω)Ẽm(r). (1.6)

The numerical aspect of this work means that we are limited by the computa-
tional power of our tools and thus we can only use a finite number M of modes
to approximate the value of the field.

In this work, we quantify the impact of different types of modes on the recon-
struction of a physical quantity and attempt to gauge how important PML modes
are to the reconstruction of the field. We define criteria based on the modes’ fields
in order to sort the modes out and find the path to a convergent result with the
smallest number M of modes in the expansion.

1.3 Outline

Each chapter will explore the viability of the QNM basis in describing the scat-
tered field as a superposition of a finite number of modes.

Chapter 2 will first and foremost introduce the QNM formalism and explore
the case study of the Fabry-Pérot cavity, an important example due to the simplic-
ity of structure, allowing for core properties to be demonstrated and its modes to
be computed analytically. The cavity will then be simulated with finite elements
and we will reconstruct the scattered field with the numerically computed modes.

In Chapter 3, we will consider the case of a resonator whose permittivity is
described by an N-pole Lorentz function of the frequency. We propose a gen-
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Figure 1.3: Concept of QNM to describe light interaction with resonant systems.
(a) Real frequency domain: an incident field Eb(r, ω) at real frequency impinges
upon an electromagnetic resonator which produces a scattered field Es(r, ω). The
spectrum of the optical response, a quantity f (ω) which could be a scattering
or absorption cross section, the Purcell Factor, among other quantities. f (ω)
presents peaks or resonances that may overlap. (b) Complex frequency domain
: The electromagnetic resonator possesses several leaky resonances, or Quasinor-
mal modes, each of them being described by an electric field distribution Ẽm(r)
and a complex frequency ω̃m (blue dots), which are the eigenmodes and eigenval-
ues of the source-free Maxwell’s equations with outgoing-wave boundary condi-
tions. The field distribution Ẽm(r) diverges exponentially at |r| → ∞. Adapted
from [14].

eral formalism, based on auxiliary fields, which explains that there is an infinity
of mathematically-sound possible formulas for the excitation coefficient αm. Nu-
merical results validate the different formulas and compare their accuracy, show-
ing that when a great number of QNMs and other numerical modes are included
in the expansion, the expansion converges.

Chapter 4’s focus will be how the modes of one-dimensional or two-dimensional
structures are computed and how the computation of QNMs is affected by the pe-
riodicity. We present a comprehensive theory of grating anomalies and develop a
formalism to expand the field scattered by metallic or dielectric gratings into the
QNM basis, giving insight into the spectral properties of gratings. We once again
show that a combination of QNMs and numerical modes is necessary in order to
converge towards the correct value of the reflectance of the grating.

Chapter 5 seeks to highlight some of the numerical problems that arise when
reconstructing the scattered field with the modal expansion. We aim to show
that both numerical and natural physical modes are affected by the numerical
parameters of the simulations such as the properties of the perfectly matched
layers used to satisfy the outgoing wave boundary condition and the finesse of
the mesh. At the end, we try to sort the modes according to their possible impact
on the spectra and try to gauge the convergence speed of the expansion.

Chapter 6 aims to only include the physical quasinormal modes in the ex-
pansion while accurately reconstructing the spectra by employing a numerical
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method to replace the contribution from non-physical modes. If quasinormal
modes contain the main, resonant variations of the field, then the remaining non-
resonant contribution after the few QNMs are included in the expansion should
be a smooth function spanning the whole spectra. This smooth non-resonant
contribution could be accurately interpolated from a small finite number of real
frequency simulations. We implement this interpolation scheme as a substitute
for the computation of numerical modes which bear no physical meaning.
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Chapter 2

The Quasinormal mode expansion

Resonators are structures whose responses are exalted at certain frequencies. They
oscillate with greater amplitude when the excitation is done at resonant frequen-
cies. These resonators exist in many forms, be they mechanic in the case of a
spring harmonic resonator, or electromagnetic in the case RLC circuit. In optics,
these resonators enhance and localize the impinging light in different ways. In
the case of photonic cavities, the light is confined and the field is exalted inside
the resonator due to the repeat oscillations back and forth of the light inside the
cavity. In the case of plasmonic resonators, the light is confined at the surface
of the plasmonic material, like gold or metal, due to the oscillation of electrons
caused by the incident light [22]. These devices come in many shapes and forms
[52, 53, 12, 54, 55, 56] and are instrumental in the control of light at the nanoscale.

The energy the resonator receives is then scattered into free space or absorbed
by the resonator. The main conduit for this release of the incoming energy are
the modes of the system. Depending on the shape and frequency of the excit-
ing wave, the energy is loaded into the resonator and dispersed into the different
modes of the system. In this chapter, we define the electromagnetic modes of
open, absorbing and dispersive systems, a system is said to be closed if the fields
are confined to a finite region in space, like an enclosed cavity. An open cav-
ity, however, is not confined and leaks the energy to the whole universe. We
call those systems non-Hermitian. The modes of the non-Hermitian systems are
called Quasinormal modes (QNMs). They are the eigensolutions of Maxwell’s
wave equation which satisfy the outgoing wave boundary conditions. We will
first present the quasinormal mode formalism, and its implications. We will then
present the 1D case of an Fabry-Pérot cavity, analytically and numerically. The
performance of the numerical simulation in computing the modes will then be
compared to analytical results and the modal expansion’s accuracy with a finite
number of modes will be evaluated. This chapter serves to provide a overview
of the accuracy of the modal expansion using a numerical eigenmode solver to
compute the modes. These tools are necessary to compute the modes of more
complex resonator geometries with more complicated material make-up.

2.1 Quasinormal Mode Expansion

The scattering problem is the following. A scatterer defined by the permittivity
distribution ε(r, ω) is illuminated by a driving field [Ed(r, ω), Hd(r, ω)] at the fre-
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quency ω, creating a scattered field [Es(r, ω), Hs(r, ω)] that satisfies the scattered
formulation of Maxwell’s equations:

∇×Hs(r, ω) + iωε(r, ω)Es(r, ω) = iω(ε(r, ω)− εb)Ed(r, ω)
∇× Es(r, ω)− iωµHs(r, ω) = iω(µ− µb)Hd(r, ω)
+ outgoing wave condition,

(2.1)

where εb(r, ω) and µb(r, ω) are the permittivity and permeability distributions for
the background medium in which the driving field satisfies Maxwell’s equation.
In this problem we solve for the scattered field Ψs(r, ω) = [Es(r, ω), Hs(r, ω)] with
a source S(r, ω) = [ω(µ− µb)Hd(r, ω), ω(ε− εb)Eb(r, ω)]:

Ĥ(r, ω)Ψs(r, ω) = ωΨs(r, ω)+S(r, ω), with Ĥ(r, ω) =

[
0 iε−1(r, ω)∇×

−iµ−1∇× 0

]
.

(2.2)
To numerically solve this problem, with finite elements methods, we construct

the matrices Ĥ(r, ω), and S(r, ω), and taking Eq. 2.2, we can find the problem’s
unknown Ψs at the frequency ω by performing the following matrix inversion:

Ψs(r, ω) = (Ĥ(r, ω)−ωÎ)−1S(r, ω), (2.3)

where Î is the identity matrix. For every value of the frequency ω, the inverse
of the matrix (Ĥ(r, ω)− ωÎ) has to be recomputed. If Ĥ does not depend on ω,
then the eigenvectors of Ĥ are the poles of the Maxwell operator.

Modal processes, on the other hand seek to solve the eigenvalue problem
of equation 2.2 by using the spectral theorem and finding the eigenvectors and
eigenvalues of the matrix (Ĥ(r, ω)). The quasinormal modes of the structure are
the eigen modes Ψ̃m(r) = [Ẽm(r), H̃m(r)] of the source-free Maxwell’s equations
at the complex frequency ω̃m:

∇× H̃m(r) + iω̃mε(r, ω̃m)Ẽm(r) = 0
∇× Ẽm(r)− iω̃mµH̃m(r) = 0
+ outgoing wave condition,

(2.4)

The real part of the complex frequency ω̃m denotes the resonant frequency while
the imaginary denotes the spectral width of the resonance and is inversely pro-
portional to the temporal lifetime of the mode. We can rewrite Eq. 2.4 as the
following eigenproblem:

Ĥ(r, ω̃m)Ψ̃m(r) = ω̃mΨ̃m(r). (2.5)

If Ĥ is frequency-dependent, then Eq. 2.5 is a non-linear eigenvalue problem
and the set of eigenvectors does not necessarily form an orthogonal basis. If Ĥ
does not depend on ω, then Eq. 2.5 describes a linear-eigenvalue problem. For
non-dispersive materials, this means that the orthogonality of the QNM basis can
be shown using the Lorentz Reciprocity theorem [37]. For dispersive materials,
the dispersion relation has to be taken into account in order for the orthogonality
to be valid [30]. This means that the operator Ĥ is diagonalizable, and that the
scattered field can be written as a sum of the eigen modes:

Ψs(r, ω) = ∑
m

αm(ω)Ψ̃m(r), (2.6)
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where αm, the excitation coefficient, is a scalar that can be computed analytically.
The eigenvectors Ψ̃m are intrinsic to the resonator and do not depend on the wave
exciting the system. This means that once these modes are computed, the scat-
tered field can be reconstructed from the superposition of these modes. How-
ever, the derivation of analytical formulas for the excitation coefficient requires
the modes to be properly normalized. The imaginary part of the QNM frequency
corresponds to the temporal decay of the mode, which conversely translates into
a divergence in space as the distance from the resonator |r| → ∞, meaning that
the integrated energy of a QNM in the entire space is infinite and thus standard
energy normalizations are not applicable. If the system is modeled using finite
elements, the system cannot be infinitely large and the computational domain
needs to be finite while still allowing the boundary conditions to be fulfilled at
|r| → ∞. One of the solutions to that problem is to use Perfectly Matched Lay-
ers to satisfy the out-going wave conditions. Perfectly Matched Layers induce a
complex coordinate transform in space allowing the outgoing wave conditions to
be satisfied with a finite computation domain. The normalization coefficient of
the QNMs has the following expression:∫

Ω

∂(ω̃mε(ω̃m))

∂ω̃m
Ẽm · Ẽm −

∂(ω̃mµ(ω̃m))

∂ω̃m
H̃m · H̃mdr, (2.7)

where Ω is the entire computational domain. This formula was demonstrated
using the Lorentz reciprocity theorem to be independent of PML thickness in
[37].

Due to the discretization of the Maxwell operator into a finite-dimension ma-
trix, the diagonalization of the operator becomes easier to achieve. However, the
discretization affects the QNMs Ψ̃m that the solver is able to compute, depending
on the detail of discretization, such as the size of the mesh elements in the case of
a finite element model or the boundary conditions that are applied. The QNMs
are thus computed with a certain degree of accuracy, with discrepancies on the
field and eigenvalue because of the discretization. In general, the mode solver
can resolve QNMs correctly within a finite frequency range whose size varies
with the quality of the mesh. However, other numerical modes are computed
instead of the QNMs that were not resolved. These modes are usually referred
to as PML modes [32] due to their noticeable dependence, compared to QNMs,
on the properties of these layers used to satisfy boundary conditions. Numerical
modal expansions thus feature two sets of modes, the QNMs which correspond
to observable, physical resonances, and PML or numerical modes, a side effect of
the discretization and numerical tools.

2.2 Fabry-Pérot Cavity

In this section, we will present a one-dimensional dielectric resonator case, the
Fabry-Pérot cavity. This example is quite significant because the QNMs can be
computed analytically and second it has been mathematically shown that the ex-
pansion is complete inside the resonator by Leung and al. [31] in the early land-
scape of QNM literature. This section will first give the analytical formulas for the
resonances of the Fabry-Pérot cavity and then demonstrate the property of com-
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pleteness that shows that, inside the cavity, the modal expansion can reconstruct
the field exactly if all the modes are included. We will then numerically com-
pute the modes of the cavity with finite elements, and attempt to reconstruct the
field. This section aims to illustrate the consequences of the numerical implemen-
tation of mode computation and of the modal expansion on this example where
the eigenfields and eigenfrequencies are analytically known and PML modes are
irrelevant.

Figure 2.1: Schematic of the modes Fabry-Pérot cavity of size L and of the quasi-
normal modes of the cavity. Adapted from [14].

The Fabry-Pérot cavity is made of two parallel reflecting surfaces between
which waves are reflected back in forth. A schematic of a Fabry-Pérot cavity
made of a dielectric slab of width L as pictured in Fig. 2.1.

2.2.1 Analytical Eigenmodes

In the case of a singular slab of thickness L of non-dispersive refractive index n2
placed in a homogeneous background medium n1. The eigenmodes are created
by plane waves traveling back and forth between the two interfaces as drawn on

Fig. 2.1. The interfaces have reflection and transmission coefficients r =
n2 − n1

n2 + n1

and t =
2n1

n2 + n1
. We consider for the rest of the chapter the exp(−iωt) con-

vention for time-harmonic fields. The field at frequency ω in the absence of the
driving field can be written as as the superposition of two counter-propagating
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plane waves inside the cavity and two outgoing plane waves outside:

E(x) =


Aexp(in2

ω

c
x)± Aexp(−in2

ω

c
x) f or |x| < L

2
Bexp(in1

ω

c
x) f or x >

L
2

±Bexp(−in1
ω

c
x) f or x >

−L
2

. (2.8)

Both symmetric and anti-symmetric modes can exist inside the cavity, repre-
sented by the plus/minus sign. The amplitude B of the outgoing plane waves

is related to the amplitude A by Bexp
(

in1
ω

c
L
2

)
= Atexp

(
in2

ω

c
L
2

)
. In order

for a wave of frequency ω̃m to resonate inside the cavity, the field amplitude A
should be recovered from one back and forth trip inside the resonator, so after

two reflections off of the interfaces: A = Ar2exp
(

2i
ω̃m

c
n2L

)
. We can thus find

the expression of the eigenfrequency:

ω̃m = mπ
nL
c

+ iln(r). (2.9)

The expression for the eigenfrequency in Eq. 2.9 outlines how the modes are
placed in the complex plane. The real parts of the modes’ eigenfrequencies are
evenly spaced and the integer m represents the total number of complete oscilla-
tions the plane wave makes in the cavity. The eigenfrequencies’ imaginary parts
are the same for all of these resonant modes and is given by the value of the reflec-
tion coefficient r, which shows a direct relationship between the cavity’s leakage
and the eigenfrequency’s imaginary part.

2.2.2 Completeness inside the resonator

Leung and al.’s 1994 paper [31] demonstrates many important results in the case
of one-dimensional leaky optical cavities. They define the cavity as a disconti-
nuity in the refractive index. The quasinormal mode expansion is shown to be
complete inside the cavity, meaning that if all the modes are included in the ex-
pansion, then the field can accurately be reconstructed. They also demonstrate
the orthogonality of the modes. These demonstrations are done analytically for
these types of non-Hermitian systems. In Chapter 3, we verify these properties
numerically using matrices with finite sizes. The core of these demonstrations
revolves around the use of the Green’s function and the residue theorem. The
Green function of a wave equation is the solution of the wave equation for a
point source, which can be used to define the solution due to a general source
using the superposition of multiple point sources. Finding an expression to the
Green’s function is akin to expressing the field. We will give a simplified general
overview of the demonstration here. A more complete demonstration, heavily
inspired by [31] is shown in Appendix A, which covers the 1D Fabry-Pérot exam-
ple. The scalar Green’s function in this one-dimensional case in the time harmonic
domain is described as:

(−ω2

c2 ρ− ∂2

∂x2 )G̃(x, y; ω) = δ(x− y), (2.10)
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where y is a position in space, δ is the Dirac function and ρ(x) = n(x)2, where
n(x) is the refractive index. The quasinormal modes are here the poles of the
Green’s function in the complex plane, lim

ω→ω̃m

∣∣∣G̃(x, y; ω)
∣∣∣ = +∞.

The Green’s function in time-domain G(x, y, t) can be obtained by performing
an inverse Fourier Transform:

G(x, y, t) =
1

2π

∫ +∞

−∞
G̃(x, y, ω)e−iωtdt. (2.11)

This integral can be evaluated using the residue theorem and the analytical
continuation of the Green’s function in the complex plane. Let us consider the
half-circle shaped integration contour C = [−ωc, ωc] ∪ {ωceiθ, θ ∈ [−π, 0]}, with
ωc → +∞.

We denote the residue around the pole ω̃m as Rm. We then apply the residue
theorem for this contour, giving us:∫

C
G̃(x, y, ω)e−iωtdt = 2iπ ∑

ω̃m∈C
Rme−ω̃mt. (2.12)

If there are no branch cuts in the area of the complex plane enclosed by the
contour, and if

lim
|Im(ω)|→+∞

G̃(x, y, ω) = 0, (2.13)

we can show, using the residue theorem, for ωc → ∞, that the Green’s function
can be expressed as a sum of the residues of the resonances comprised within the
contour, as show in Fig. 2.2 :

G(x, y, t) = −i ∑
m

Rme−iω̃mt. (2.14)

The temporal Green’s function satisfies the initial condition:

ρ(x)
∂G
∂t

(x, y, t = 0+) = δ(x− y). (2.15)

Using Eq. 2.14 and 2.15, we obtain the relation proving completeness:

−ρ(x)∑
m

Rme−iω̃mt = δ(x− y), (2.16)

showing that the field can be written as a sum of the resonant contributions, the
quasinormal modes of the structure defined by the permittivity distribution ρ(x),
which make the field diverge when evaluated at their eigenfrequency. In [31], it
is shown for the Fabry-Pérot cavity that the completeness is only verified inside
the resonator. This demonstration is shown in Appendix A.

The completeness relation means that the field can be reconstructed using the
modal expansion, provided that all the QNMs are included in the expansion.
For the case of a one-dimensional cavity, this is shown to be true only inside
the cavity. In the case of structures whose modes can be expressed analytically,
then infinite sum theorems might be able to be used to prove this. However,
these examples are few and for the complex shapes that resonators might take,
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Figure 2.2: Integration contour for the residue theorem. The quasinormal modes,
the poles of the Green’s function are then all inside the contour, when the radius
of this one is stretched to infinity.

numerical tools are used to compute the modes and field. In the next section,
we will use a Finite Element software to compute the modes of the Fabry-Pérot
cavity and reconstruct the scattered field with the computed QNMs.

2.2.3 Numerical experiment

The aim of this section is to test the ability of a finite element solver in comput-
ing the modes of a Fabry-Pérot. We are thus comparing numerically computed
modes with ones that can be computed analytically. The scattered field of the cav-
ity after illumination by a plane wave will be evaluated with the modal expansion
using the numerically computed QNM modes. We consider the Fabry-Pérot cav-
ity described in section 2.2 and model it in the finite element solver Montjoie [48]
with n1 = 1, n2 =

√
3, and L = 2. The simulation uses reduced units of distance

with the celerity c = 1 and normalizing lengths by l = 1000 nm, frequencies are
normalized by ωnorm = 2π× 3 1014 rad · s−1. The simulation domain is bounded
instead of infinite. To satisfy boundary conditions to compute the modes, we ei-
ther apply Absorbing boundary conditions at |x| = b = 2, which are exact in 1D.
The mesh is regularly meshed with a step h. With these reduced units, the exact
eigenfrequency of the mth QNM is given by the following formula:

ω̃m,exact = m
π

2n2
− i

1
2n2

ln
(

n2 + n1

n2 − n1

)
. (2.17)

In Fig. 2.3, we plot the eigenfrequencies ω̃m,num found by the solver, instead
of having them line up horizontally in the complex plane like we would expect
according to Eq. 2.9, only QNMs up to a certain real frequency are computed
correctly, while other modes appear due to other elements such as the boundary
conditions used to verify the outgoing wave condition. The accuracy with which
we compute a mode’s eigenfrequency and eventually their eigenfield is heavily
dependent on the finesse of the mesh in this instance. We plot in Fig. 2.3b, the
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error on the eigenfrequency for different values of the mesh step h:

∆ω̃m = |ω̃m,exact − ω̃m,num|. (2.18)
This error is computed by comparing the analytical eigenfrequency with the near-
est numerically-computed eigenfrequency. We see that the finer the mesh, the
more precise the eigenfrequency estimation made by the solver. The same holds
true for the eigenfields, as pictured on Fig. 2.4a. The error on the eigenvalue is
given by:

∆Ẽm =

∣∣∣∣∣∣Ẽexact
m (x)− ẼQNM

m (x)
∣∣∣∣∣∣

x∣∣∣∣∣∣ẼQNM
m (x)

∣∣∣∣∣∣
x

. (2.19)

We compute this error by comparing a numerically-computed QNM and an
analytically-obtained QNM with similar to near-identical eigenfrequencies.
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Figure 2.3: (a) Complex mode spectra for the Fabry-Pérot cavity computed with
finite elements for h = 0.1. The analytical eigenfrequencies (QNMs) are com-
puted correctly by the finite element solver until a threshold. We draw a blue
rectangle over the correctly computed QNM eigenfrequencies. (b) Error on the
computed eigenfrequency of the QNMs.

The computation of the eigenfrequency and eigenfield of a QNM is more pre-
cise as the mesh step h is smaller. The highest frequency QNM that can be re-
solved is dependent on the finesse of the mesh. However, the finer the mesh, the
longer the computation time, and the higher the risk of reaching the computa-
tional limits of the solver and machine, which could realistically become an issue
on more complex structures with more degrees of freedom.

We are able to determine which modes are QNM and which modes are nu-
merical due to the formula in 2.9. We only use the QNMs to reconstruct the field.
We plot the error on the reconstruction inside the cavity over the spectra in Fig.
2.4b for different values of the mesh step h. The error is defined as :

∆Es(ω) =
||Es,exact(x, ω)− Es,QNM(x, ω)||x

||Es,exact(x, ω)||x
, (2.20)

and we see on Fig. 2.4b that the error falls as the mesh step decreases. Since only
the 45 first QNMs are included in the expansion, the fastest oscillating mode os-
cillates at Re(ω̃45) ≈ 40.8, more than 20 times the maximum excitation frequency
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Figure 2.4: (a) Relative error on the computed modes with different mesh steps
h. (b) Error on the reconstruction of the scattered field with M = 45 modes in the
expansion when the cavity is illuminated by a plane wave.

in the considered spectra. The error steadily rises as the excitation frequency in-
creases. We plot the field inside the cavity at the real frequency ω = 4.23 in Fig.
2.5 for different numbers M of QNMs included the expansion. The QNMs are
added in order of increasing resonant frequency. For reference, the real part of
the eigenfrequency of Re(ω̃9) = 8.16 is about twice the value of the excitation fre-
quency and we can notice some very important discrepancies between the exact
solution and the reconstructed field with M = 10 modes, even at the center of the
cavity.

The field is correct inside most of the cavity but at the edge of the cavity is
relatively inaccurate with very few QNMs as seen in Fig. 2.5b. The more modes
are added into the expansion, the more accurate the field inside the cavity and
especially on the edge becomes. Even with 100 modes, we still have a very no-
ticeable difference at the edge of the cavity. These results seem similar to other
reconstructions of the field of the Fabry-Pérot cavity found in [14]. In this article,
in Fig. 10, the field is well reconstructed inside the cavity with 13 QNMs, with the
reconstruction with 5 QNMs showing some slight discrepancies inside the cavity,
more noticeably near the edge of the cavity.

In this example, we see the limits of this numerical attempt to reconstruct.
We can observe that the Finite Element solver can only compute the quasinor-
mal modes correctly within a frequency range, out of which their eigenfrequen-
cies differ widely from their expected values given by Eq. 2.17. This is due to
many numerical factors, like the boundary conditions and the finesse of the mesh.
These different numerical conditions not only affect the computation of QNMs
but also spawn numerical modes.

We illustrate this difference between the theoretical ideal and the numerical
reality given by the tools we use in Fig. 2.6. Ideally, we would only like to use
QNMs modes, because these modes hold physical meaning that we can use to
analyze the dynamics of the resonator response. In this case, the cavity response
is a superposition of waves oscillating from one end of the cavity to the other.
However, the results of Fig. 2.5 imply that convergence inside the whole cavity
might require hundreds of modes.

The number of modes M needed to reach a given accuracy will also depend
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Figure 2.5: (a) Reconstruction of the field inside the cavity (−1 < x < 1) with
M = 10, 20, 45, 100 QNMs. (b) Reconstruction of the field on the left edge of the
cavity.

Figure 2.6: (a) Theoretical complex plane for a resonator where all the modes
are QNMs. (b) Numerical complex plane for the same resonator. Due to the dis-
cretization of the system, We can only compute a limited set of QNMs, comprised
within the red dotted box. Numerical modes, oftentimes called “PML modes”
(see the footnotes of [57]) appear due to numerous numerical factors: finesse of
the numerical mesh, ways to satisfy the outgoing-wave boundary conditions, us-
ing Perfectly Matched Layers, for example.

on the type of excitation. In this example, the excitation is a plane wave, the
corresponding source term is S(x, ω) = ω(n2

2 − n2
1)e

iωx inside the cavity and 0
elsewhere. The source term is discontinuous at the edges of the cavity and is pro-
jected upon the QNM basis, a set of continuous oscillating functions. This causes
the oscillations of the reconstructed field at the edges of the cavity, like the Gibbs
phenomenon when approximating a square with the corresponding Fourier se-
ries. There is also no given speed of convergence as the number of modes increase
M. The expansion is expected to converge but will not converge at a set pace with
each mode added into the expansion: some modes are more crucial to the recon-
struction than others, which is helpful when analyzing resonator dynamics but
there is no universal method of sorting the modes before reconstructing the field.

This section has shown that the numerical implementation of the QNM ex-
pansion suffers from side effects from the discretization and method.
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2.3 Conclusion

In this chapter, we defined the eigenvectors of the Maxwell’s equations for open
systems, the quasinormal modes. These quasinormal modes, intrinsically linked
to the resonator structure, are a useful mathematical tool to understand the dy-
namics of a resonator response. The quasinormal mode expansion being com-
plete inside the resonator for one-dimensional cavities is an important result,
showing that they can be used to reconstruct the resonator response exactly, pro-
vided all the modes are included in the expansion. While it is a powerful property
for the QNM expansion, it is only applicable to these cavities and the numerical
application has shown that the mesh computation for the one-dimensional exam-
ple depends heavily on the finesse of the mesh.

We have observed however that for an example where the modes’ field and
eigenfrequencies have clear analytical expressions, that numerical solvers can
only compute modes within a certain spectral range in the complex plane and
that discretization and the numerical methods create modes of numerical origin.
The role that these modes play in the convergence of the expansion, inside and
out of the resonator, will be further investigated in Chapters 3, 4, and 5.
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Chapter 3

Non-uniqueness of the Quasinormal
mode expansion of Electromagnetic
Lorentz Dispersive Materials

Optical micro and nanoresonators, be they plasmonic, photonic or hybrid, en-
hance and localize the electromagnetic energy at wavelength and subwavelength
scales and are key components in many photonic applications. Their optical re-
sponse is characterized by resonant features resulting from the excitation of one
or a few dominant modes, intrinsic to the resonator. In the case of open res-
onators, where the energy leaks out into free space, the modes in questions are
solutions of the source-free Maxwell’s equations at the complex frequency ω̃m
[14]: 

−i ω̃mε(ω̃m)Ẽm(r)−∇× H̃m(r) = 0,
−i ω̃mµ(ω̃m)H̃m(r) +∇× Ẽm(r) = 0,
+ Boundary conditions,

(3.1)

where Ẽm and H̃m are the electric and magnetic field vector distributions of the
mode, intrinsic to the structure characterized by the dielectric permittivity dis-
tribution ε and the magnetic permeability distribution µ. Equation (1) defines an
eigenvalue boundary problem to which the mode

[
Ẽm, H̃m; ω̃m

]
is one of its many

solutions [14].
These modes of open, leaky resonators are oftentimes called quasinormal modes

(QNMs) to emphasize that their harmonic evolution is characterized by an expo-
nential damping in time, since they are the eigenstates of a non-Hermitian opera-
tor. Consequently, the complex eigenfrequency ω̃m has a negative imaginary part,
Im(ω̃m) < 0 (the exp(−iωt) convention for time-harmonic fields is assumed).
Micro and nanoresonators play a leading role in many areas of nanophotonics.
This pushes a strong pressure on the development of QNM theory and numeri-
cal methods that explicitly consider QNMs in the analysis, providing important
clues towards the interpretation of the resonator response.

The resonator response (i.e. the field scattered by the resonator due to an
excitation by a driving field) can be expanded as a superposition of its modes.
This is what is commonly called reconstruction, and is usually summarized with

30



the following expansion in the frequency domain:

Es(r, ω) = ∑
m

αm(ω)Ẽm(r), (3.2)

where Es is the scattered electric field, computed at the real frequency ω, and αm
is the excitation coefficient of the mth QNM mode. The excitation coefficient is at
the center of the numerical efficiency of QNM-expansion reconstruction, owing
to the analytical dependence of αm with the frequency. This implies that, once the
QNMs are computed, the reconstruction for many instances of the driving field
is trivial, even in the temporal domain when resonators are illuminated by pulses
[30, 58].

However while there is a general agreement on the use of the QNM expan-
sion of Eq. 3.2 in the frequency domain, the expression of the excitation coeffi-
cient αm varies, depending on the method used to project the scattered field onto
the QNM basis. The recent review article [14] lists no fewer than five formulas,
depending on the method used to project the scattered field onto the QNM basis,
from a Green’s dyadic decomposition [31, 59], Lorentz reciprocity theorem [37],
biorthogonality products on discretized operators [32], to advanced numerical
methods, e.g. the Lanczos reduction-type method [33]. And the list is getting
longer. For material dispersion that can be described by a Drude-Lorentz model,
a new formula for αm, different from the one initially derived in [30] by lineariz-
ing the eigenproblem of Eq. 3.1 with auxiliary fields, has been proposed last year
[34]. Even more recently, another formula for the expansion of the total field [60],
this time, has been shown to provide better convergence performance than the
formula in [30], as confirmed in a recent theoretical work on the use of the QNM
expansion for non-linear nano-optics [41].

To understand why there are so many expressions, first it is important to dif-
ferentiate two different approaches of the literature.

In foundational electromagnetic studies [61, 31] as well as in more advanced
works [51, 62, 63], only “true” quasinormal modes are considered in the expan-
sion of Eq. 3.2. The Maxwell operator of Eq. 3.1 is a continuous operator de-
fined in an infinite open space. Completeness issues restrict the validity of the
scattered-field expansion of Eq. 3.2 to the resonator inside, not over the whole
space. Additionally, to avoid branch cuts in the complex plane, only resonators
placed in uniform background (no substrate) can be considered. Only simple ge-
ometries, e.g. one-dimensional Fabry-Perot cavities and Mie sphere resonators,
for which the QNMs can be analytically calculated over the entire electromag-
netic spectrum, from DC to high frequencies, are accurately investigated. In this
approach, whether the materials are dispersive or not, there are an infinity of
correct formulas for αm owing to the overcompleteness of the expansion [31, 51].

The approach that we consider hereafter is more oriented towards numerics.
It is also simpler mathematically: the continuous operator of Eq. 3.1, originally
defined on an unbounded space, is replaced by a discretized operator (a finite-
dimensional matrix) defined on a finite mapped space [14], with new permittiv-
ity and permeability distributions that accommodate Perfectly Matched Layers
(PMLs). Therefore only a subset of the infinite QNM sets of the continuous oper-
ator are accurately approximated and this subset is completed with another finite
(but huge) set of numerical modes often referred as PML modes [14, 32, 36, 33,
30, 34, 35], as they originate from the finite-discretized space bounded by PMLs.
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This approach preserves the spirit of QNM expansions since the QNMs with fre-
quencies in the spectral range of interest are included, and additionally enable
the analysis of complex resonators with arbitrary shapes [64], dispersive materi-
als [36, 33, 30, 34, 35] and several inclusions (e.g. dimers) [30], within complex
environments (e.g. deposited on metallic or dielectric substrates or embedded
in thin-film stacks) [30, 35]. Owing to the finite-dimensional discretized opera-
tor, completeness of the scattered-field expansion of Eq. 3.2 is valid everywhere
in the computational domain (inside or outside the resonator, even in the PML
domains). The derivation of analytical formulas for αm relies on simple algebra
[30].

The present work focuses on the reconstruction problem of resonators com-
posed of Drude-Lorentz materials, with the aim of clarifying the origin of the
non-uniqueness for the expressions of the excitation coefficients by using a com-
mon formalism based on a linearization of the nonlinear eigenvalue problem. We
start by re-introducing the quasinormal mode expansion of the scattered field for
the sake of consistency, largely following the initial derivation in [30]. We fur-
ther show that different linearizations of the nonlinear eigenvalue problem with
the use of auxiliary fields yield different formulas for αm, and successfully derive
three formulas of the excitation coefficient αm available in the recent literature.
The derivation evidences that all these formulas are mathematically correct, a
point that is further checked with numerical data exhibiting convergence towards
the same unique solution.

We then use the auxiliary field approach to show that, in fact, an infinity of
formulas can be found by writing different linearization schemes of Maxwell’s
equations. We also explain how degenerate eigenvalues (i.e. multiple eigenval-
ues) can be treated correctly with a simple Gram-Schmidt orthogonalization pro-
cedure. Finally, numerical results are presented in order to compare the accuracy
of the three different formulas that will have been rederived.

3.1 Scattering problem and excitation coefficients

The scattered field [Es(r, ω), Hs(r, ω)] is solution to the time-harmonic Maxwell’s
equations:

−iωε(ω)Es(r, ω)−∇×Hs(r, ω) = iω(ε(ω)− εb)Einc,
−iωµ(ω)Hs(r, ω) +∇× Es(r, ω) = iω(µ(ω)− µb)Hinc,
+ Sommerfeld conditions,

(3.3)

where [Einc, Hinc] is the incident field and εb, µb are the permittivity and perme-
ability of the background medium. The incident field satisfies the homogenous
Maxwell’s equations in the background medium. Let us introduce J(r, ω) =
iω(ε(ω) − εb)Einc, the source term. We are considering non-magnetic materials
whose relative permittivity ε(ω) is described by a N-pole Drude-Lorentz model,
thus µ(ω) = µb = µ0 and:

ε(ω)/ε∞ = 1−
N

∑
i=1

ω2
p,i/(ω

2 −ω2
0,i + iωγi), (3.4)
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which may model a large variety of systems with increasing accuracy as the num-
ber of poles increases. It also respects the causality relation ε̄(ω) = ε(−ω̄) where
ω̄ stands for the complex conjugate of ω. The contributions of a free electron-gas
of metals can be treated by a Drude permittivity, setting ω0,i = 0.

Let us denote Ωres the domain of the resonator for which ε(ω) is different from
εb (hence it is the support of the source term J). In [14], a review of the literature
surrounding quasinormal modes, an attempt was made to classify the different
formulas used to compute the excitation coefficients. At least three formulas for
αm were reported:

• The formula 5.11 in [14]:

αm =
1

i(ω̃m −ω)

∫
Ωres

J(r, ω) · Ẽm(r)dr (3.5)

• The formula proposed in [30] (equivalent to formula 5.6 in [14]):

αm =
∫

Ωres
(εb − ε∞)Einc · Ẽm(r)

+
ω̃m

ω̃m −ω
(ε(ω̃m)− εb)Einc · Ẽm(r)dr,

(3.6)

• The formula proposed in [34] (equivalent to formula 5.10 in [14]):

αm =
ω

i ω̃m(ω̃m −ω)

∫
Ωres

J(r, ω) · Ẽm(r)dr. (3.7)

All these formulas hold if the modes Ẽm are normalized as follows∫
Ω

∂(ω̃mε(ω̃m))

∂ω̃m
Ẽm · Ẽm −

∂(ω̃mµ(ω̃m))

∂ω̃m
H̃m · H̃mdr, (3.8)

where Ω is the computational domain. This is the usual normalization [37]. Note
that we use a tilde to differentiate the QNM fields from other fields, for instance
the driving field or the scattered field, and consistently, we will also use a tilde to
denote the QNM frequency ω̃m.

3.2 Discrete modal expansion

In this section, we propose a common formalism based on the discrete Maxwell’s
equations to obtain these three formulas that we show to be valid for both QNMs
and PML modes. More precisely, when ε(ω) is a rational function, auxiliary un-
knowns can be introduced in order to obtain a linear eigenvalue problem [33, 30].
After this linearization procedure and after discretization (e.g. with Finite Ele-
ment Method), the time-harmonic Maxwell’s equations can be written

−iωM̂hUh + K̂hUh = Fh, (3.9)

where M̂h is the mass matrix, K̂hUh is the stiffness matrix, and Fh is the source
term while the subscript h denotes the mesh size. Uh is the main unknown that
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will contain components of the scattered electric field Es and other auxiliary un-
knowns introduced to obtain a linear eigenvalue problem. The Matrices M̂h and
K̂h are independent of ω; an example of the matrices will be given in Section 4.
The corresponding eigenvalue problem is

K̂hx̃m = iω̃mM̂hx̃m, (3.10)

where x̃m is the right eigenvector of the system and its eigenvalue is iω̃m. Assum-
ing M̂

−1
h K̂h is diagonalizable, we have M̂

−1
h K̂h = V̂D̂V̂

−1
where D̂ is a diagonal

matrix with eigenvalues iω̃m on the diagonal and V̂ the matrix whose columns
are formed with the right eigenvectors x̃m. The biorthogonal vectors of M̂

−1
h K̂h

denoted wm, are the rows of matrix V̂
−1

. Since V̂V̂
−1

= Î, vectors x̃m and wm are
biorthogonal: 〈x̃m, wm〉 = δmn. The biorthogonal vector wm can also be found by
searching for the right eigenvectors of the transpose of M̂

−1
h K̂h. In the case where

K̂h and M̂h are symmetric, we have (M̂
−1
h K̂h)

T = K̂hM̂
−1
h . Hence wm solves

the following eigenvalue problem K̂hM̂
−1
h wm = iω̃mwm. By introducing the left

eigenvector x̃⊥m = M̂
−1
h wm, we have come back to equation Eq. 3.10, meaning that

x̃⊥m = x̃m, provided that the eigenvector x̃m is normalized such that

〈M̂hx̃m, x̃m〉 = 1. (3.11)

The convention 〈x, y〉 = ∑i xiyi is used. Equation Eq. 3.11 is the discrete equiv-
alent of equation Eq. 3.8. The solution Uh in Eq. 3.9 is expanded into the right
eigenvectors x̃m (they form a basis under our assumption that the matrix is diag-
onalizable): Uh = ∑m αmx̃m. By injecting this expansion into Eq. 3.9 and using
Eq. 3.10, we obtain

∑
m

αm(−iω + iω̃m)M̂hx̃m = Fh. (3.12)

The modal excitation coefficient αm is directly obtained by projecting this equa-
tion onto the left eigenvector x̃⊥m [32],

αm =
1

i(ω̃m −ω)
〈Fh, x̃⊥m〉. (3.13)

From a discrete point of view, once the discrete linear system Eq. 3.9 is set, equa-
tion Eq. 3.13 is the unique general formula for αm. In this specific case where the
matrices K̂h and M̂h are symmetric, x̃⊥m = x̃m and we obtain

αm =
1

i(ω̃m −ω)
〈Fh, x̃m〉, (3.14)

which justifies that the expansion formulas of Eq. 3.5, 3.6, and 3.7 solely depend
on the right eigenvector and not on the left eigenvector. This important result
provides analyticity which has not been obtained in related works [32] and was
derived in a different way using the divergence theorem and the continuous op-
erator, not the discretized one, in [30].

Though the formula for the discrete version of the excitation coefficients is
unique, the results of the biorthogonal projection described in Eq. 3.13 and 3.14
are not. Each different linearization will produce its own set of auxiliary un-
knowns, and consequently spawns a different set of matrices M̂h and K̂h, and
another source term Fh, as we shall see.
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3.3 Eigenmode expansion for the first-order formula-
tion of Maxwell’s Equations: Link between the
discrete and continuous expansion

To simplify the notation hereafter, we assume that that only the resonator is
composed of dispersive materials, but in practice, every domain with disper-
sive materials(including the PML) should be treated separately with auxiliary
fields. We consider an isotropic medium with a dispersive permittivity described
by a single-pole Lorentz model, ε(ω) = ε∞(1 − ω2

p/(ω2 − ω2
0 + iγω)), and a

non-dispersive permeability µ(ω) = µ0. We introduce two auxiliary fields in-

side the resonator: the polarization Ps = −ε∞
ω2

p

ω2 −ω2
0 + iγω

Es and the current

Js = −iωPs [33, 30]. With elementary algebraic manipulations, we can reformu-
late Maxwell’s system in Eq. 3.3 as the following source problem:


−iωε∞Es + Js −∇×Hs = J,
−iωµ0Hs +∇× Es = 0,
−iωPs − Js = 0,
iωJs − γJs −ω2

0Ps + ε∞ω2
pEs = 0,

(3.15)

inside the resonator. Outside the resonator, Es and Hs solve Maxwell’s equations
in an uniform background: −iωεbEs −∇×Hs = 0, −iωµ0Hs +∇× Es = 0 . In
order to obtain a symmetric system, we multiply the second equation of Eq. 3.15
by −1, the third equation by ω2

0/(ε∞ω2
p) and the fourth by 1/(ε∞ω2

p),



−iωε∞Es + Js −∇×Hs = J,
iωµ0Hs −∇× Es = 0,

−iω
ω2

0
ε∞ω2

p
Ps −

ω2
0

ε∞ω2
p

Js = 0

iω
ε∞ω2

p
Js −

γ

ε∞ω2
p

Js −
ω2

0
ε∞ω2

p
Ps + Es = 0,

(3.16)

We write this system using linear operators K̂ and M̂, and the source vector F and
the solution U.

K̂U− iωM̂U = F, (3.17)

with

K̂ =



0 −∇× 0 1
−∇× 0 0 0

0 0 0 −
ω2

0
ε∞ω2

p

1 0 −
ω2

0
ε∞ω2

p
− γ

ε∞ω2
p


, U =


Es
Hs
Ps
Js

 ,
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M̂ =



εe 0 0 0
0 −µ0 0 0

0 0
ω2

0
ε∞ω2

p
0

0 0 0 − 1
ε∞ω2

p


, F =


J
0
0
0

 . (3.18)

where εe = ε∞ inside the resonator domain and εe = εb elsewhere. The unknowns
Ps and Js exist only inside the resonator. K̂, M̂, U, and F are the continuous equiv-
alents of the discrete K̂h, M̂h, Uh, and Fh, and equation Eq. 3.16 is the continuous
equivalent of Eq. 3.9. In the same way, the continuous eigenvalue problem can
be written K̂Ũm = iω̃mM̂Ũm with Ũm = [Ẽm, H̃m, P̃m, J̃m]

T, similar to equation Eq.
3.10, with Ũm serving as the continuous equivalent of x̃m. In the same way, Eq.
3.14 is the discrete equivalent of Eq. 3.5 since 〈Fh, x̃m〉 = ∑i x̃m,i

∫
Ωres

F(r) ·ϕi(r) dr
where x̃m,i is the i-th component of x̃m and ϕi are finite element basis functions
(given in chapter 5 of [65]). By swapping the sum and the integral, we obtain

〈Fh, x̃m〉 =
∫

Ωres
J(r, ω) · Ẽm(r)dr. (3.19)

For numerical experiments, it is preferable to perform the scalar product as pre-
sented in Eq. 3.14 rather than approximating this integral. With the same argu-
ments, we have the following equality:

〈M̂hx̃m, x̃m〉 =
∫

Ω
εeẼm · Ẽm − µ0H̃m · H̃m

+
ω2

0
ε∞ω2

p
P̃m · P̃m −

1
ε∞ω2

p
J̃m · J̃mdr,

(3.20)

Since P̃m = −ε∞ ω2
p/(ω̃2

m + iγω̃m − ω2
0)Ẽm and J̃m = −iω̃mP̃m, it can be shown

that

〈M̂hx̃m, x̃m〉 =
∫

Ω

∂(ω̃mε(ω̃m))

∂ω̃m
Ẽm · Ẽm − µ0H̃m · H̃mdr. (3.21)

This relation proves that the normalization of Eq. 3.11 is the discrete equivalent
of Eq. 3.8. Again, for the sake of simplicity, the relation of Eq. 3.11 is preferred
to normalize discrete eigenvectors. Matrices M̂h and K̂h are real symmetric but
both are indefinite. As a result, the eigenvalue problem K̂hŨm = iωM̂hŨm is not
selfadjoint and the eigenvalues are complex. Moreover inside the PML domains,
the equations cannot be symmetrized and matrices K̂h and M̂h are not symmetric.
While Eq. 3.21 normalizes the QNM fields, it cannot be used as a norm since
〈M̂hx̃m, x̃m〉 is a complex value.

3.4 Derivation of other formulas

3.4.1 Derivation of (3.6)

To obtain the formula of Eq. 3.5, first, we have written Maxwell’s equations di-
rectly for the scattered field [Es(r, ω), Hs(r, ω)] and then introduced the auxiliary
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fields Ps and Js. In the case of Eq. 3.6, in [30], Maxwell’s equations are first
written for the total fields and the auxiliary fields are introduced at this step.
The total field [Etot, Htot, Ptot, Jtot] solves the system of Eq. 3.15 with J = 0. As
a second step, in order to fall back onto the equations for the scattered field,
we subtract the equations solved by the incident field (homogeneous Maxwell’s
equation with indices εb and µ0), and use the relation [Etot, Htot, Ptot, Jtot] = [Es +
Einc, Hs + Hinc, Ptot, Jtot], to obtain the system solved by the scattered field:



−iωε∞Es + Jtot −∇×Hs = iω(ε∞ − εb)Einc,

iωµ0Hs −∇× Es = 0,

−iω
ω2

0
ε∞ω2

p
Ptot −

ω2
0

ε∞ω2
p

Jtot = 0,

iω
ε∞ω2

p
Jtot −

γ

ε∞ω2
p

Jtot −
ω2

0
ε∞ω2

p
Ptot + Es = −Einc,

(3.22)

inside the resonator. Unlike the equations considered in Section 4, we can see that
the source term on the right hand side of the equations is no longer confined to
the first equation while the left hand side has not changed. The modal excitation
coefficient αm expressed in Eq. 3.6 is obtained after using the biorthogonal projec-
tion in Eq. 3.14. Since the source term differs slightly, we get a different formula
from Eq. 3.5 even though the matrices K̂ and M̂ are the same in both cases.

Other formulas for αm can be found by choosing a different distribution of the
source over the four equations. This is the object of the next subsection.

3.4.2 Generalized source

Let us split the source term J into a set of artificial sources denoted f1, f2, f3, f4. We
can rewrite the scattering problem thus:

−iωε∞Es + J′s −∇×H′s = f1,

iωµ0H′s −∇× Es = f2,

−iω
ω2

0
ε∞ω2

p
P′s −

ω2
0

ε∞ω2
p

J′s = f3,

iω
ε∞ω2

p
J′s −

γ

ε∞ω2
p

J′s −
ω2

0
ε∞ω2

p
P′s + Es = f4,

(3.23)

inside the resonator. By eliminating the unknowns H′s, P′s, J′s, we obtain the fol-
lowing equation for the scattered electric field Es :

−ω2ε(ω)Es +∇×
(

1
µ0
∇× Es

)
= −iωf1

+iω(ε(ω)− ε∞)(iωf4 − f3)−∇×
(

1
µ0

f2

)
,

(3.24)
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which is equivalent to the standard second order Maxwell’s equations:

−ω2ε(ω)Es +∇×
(

1
µ0
∇× Es

)
= −iωJ, (3.25)

provided that

−iωf1 + iω(ε(ω)− ε∞)(iωf4 − f3)−∇×
(

1
µ0

f2

)
= −iωJ. (3.26)

By choosing different splittings of the source (i.e. different fields f1, f2, f3, f4 that
satisfy the relationship above), we will obtain different formulas for αm given as

αm =
1

i(ω− ω̃m)

( ∫
Ωres

f1 · Ẽm + f2 · H̃m

+(ε(ω̃m)− ε∞) (f3 − iω̃mf4) · Ẽm dΩres

)
.

(3.27)

The modal expansion obtained with all these different formulas will converge
towards the same electric field Es when the number of modes increases. Since
iωµ0H′s = ∇× Es + f2, it will also converge towards H′s 6= Hs.

3.4.3 Derivation of (3.7)

In this section we propose a different linearization of the problem by starting
from the second order formulation. With this alternative linearization, we obtain
Eq. 3.7 for the coefficients αm. Let us start from the second order formulation
of Maxwell’s equations described in equation Eq. 3.25. In order to linearize this
equation, let us introduce the time-derivative of the scattered electric field E′s =
−iωEs and the auxiliary fields Js = (ε(ω)− ε∞)E′s and J′s = −iωJs. We obtain the
following system of linear equations:

−iωEs − E′s = 0,

−iωε∞E′s + J′s +∇×
(

1
µ0
∇× Es

)
= −iωJ,

−iωJs − J′s = 0,

−iωJ′s + γJ′s + ω2
0Js − ε∞ω2

pE′s = 0,

(3.28)

,which gives the following stiffness and mass operators K̂ and M̂ for the vector
U = [Es, E′s, Js, J′s]

T:

K̂ =


0 −1 0 0

µ−1
0 ∇×∇× 0 0 1

0 0 0 −1
0 −ε∞ω2

p ω2
0 γ

 ,

M̂ =


1 0 0 0
0 εe 0 0
0 0 1 0
0 0 0 1

 , F =


0
−iωJ

0
0

 . (3.29)
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Again, auxiliary fields Js and J′s only exist inside the resonator. Though the cor-
responding discrete matrices K̂h and M̂h are different this time, the discrete so-
lution will be exactly the same with this formulation compared to the previous
one mentioned in section 3.3. Since the matrix K̂h is not symmetric, we do not
have x̃⊥m = x̃m and must thus identify the different components of x̃⊥m from the
transpose eigenvalue problem. We obtain the following system of equation for
the biorthogonal eigenvector, x̃⊥m = [Ẽm,⊥, Ẽ

′
m,⊥, J̃m,⊥, J̃

′
m,⊥]:

0 1 2 3 4 5

-0.6

-0.4

-0.2

0

Numerical eigenfrequency
Analytical eigenfrequency

Figure 3.1: Numerical eigenfrequencies in the complex plane of the metallic wire.
For each numerical eigenfrequency ω̃m, we also find a mode on the opposite part
of the complex plane whose eigenfrequency has the same imaginary part and the
opposite real part. In the inset, we also plot the eigenfrequencies of the quasi-
normal modes, computed analytically as red squares. The modes in the inset are
included within a limited frequency range. ωadim = 3 · 1015 rad · s−1.



−iω̃mẼm,⊥ +∇×
(

1
µ0
∇× Ẽ

′
m,⊥

)
= 0,

−iω̃mεeẼ
′
m,⊥ − ε∞ ω2

p J̃
′
m,⊥ − Ẽm = 0,

−iω̃mJ̃m,⊥ + ω2
0 J̃
′
m,⊥ = 0,

−iω̃mJ̃
′
m,⊥ + γJ̃

′
m,⊥ + Ẽ

′
m,⊥ − J̃m,⊥ = 0.

(3.30)

By eliminating the other variables, we can show that Ẽ
′
m,⊥ verifies

−ω̃2
mε(ω̃m)Ẽ

′
m,⊥ +∇×

(
1
µ0
∇× Ẽ

′
m,⊥

)
= 0, (3.31)

which is the second order Maxwell’s eigenproblem, which the eigenvector Ẽm is
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a solution of. Subsequently we can identify the rest of the components of x̃⊥m :

Ẽ
′
m,⊥ = Ẽm,

Ẽm,⊥ = −iω̃mε(ω̃m)Ẽm,

J̃m,⊥ =
ω2

0

ω2
0 − iγω̃m − ω̃2

m
Ẽm,

J̃
′
m,⊥ =

iω̃m

ω2
0 − iγω̃m − ω̃2

m
Ẽm,

(3.32)

where Ẽm is the electric field component of the right eigenvector x̃m. We can now
obtain the excitation coefficient:

αm =
1

i(ω̃m −ω)

〈Fh, x̃⊥m〉
〈M̂hx̃m, x̃⊥m〉

=
−iω

∫
Ωres

J(r, ω) · Ẽmdr

i(ω̃m −ω)Nm
(3.33)

where the coefficient Nm appears since we chose the normalization Eq. 3.8 of the
first order formulation. Nm is given as

Nm = 〈M̂hx̃m, x̃⊥m〉 = −iω̃m

[ ∫
Ω
(ε(ω̃m) + εe)Ẽm · Ẽm

+
ε∞ω2

p

(ω2
0 − iγω̃m − ω̃2

m)
(ω2

0 + ω̃2
m)Ẽm · Ẽm dΩ

]
.

(3.34)

By using the relation H̃m =
1

iωµ0
∇× Ẽm and the variational formulation satis-

fied by Ẽm, we have −
∫

Ω µ0 H̃m · H̃m dΩ =
∫

Ω ε(ω̃m)Ẽm · Ẽm dΩ. Straightforward

derivation gives that
∂ (ω̃mε(ω̃m))

∂ω̃m
= ε∞ + ε∞ω2

p
ω̃2

m + ω2
0(

ω̃2
m + iγω̃m −ω2

0
)2 inside the

resonator. Therefore, we check that Nm is equal to the normalization (3.8) mul-
tiplied by −iω̃m. As a result, if Ẽm is normalized by equation (3.8), we obtain
Nm = −iω̃m, which gives us this expression for the excitation coefficient:

αm =
ω

iω̃m(ω̃m −ω)

∫
Ωres

J(r, ω) · Ẽmdr (3.35)

We recognize the formula in Eq. 3.7. We were able to obtain this formula with
the use of the the biorthogonal projection and auxiliary fields unlike the way it is
derived in [34].

3.4.4 Treatment of Degenerate Eigenvalues

A set of degenerate modes {x̃k}m1≤k≤m2 are solutions of the eigenvalue problem at
the same eigenfrequency ω̃m1 . Degenerate eigenvectors do not necessarily form
an orthogonal sub-basis with respects to M̂h. However, using a Gram-Schmidt
orthogonalization process, an orthogonal sub-basis with respect to M̂h can be
constructed from a set of degenerate modes by algorithm 1.

By applying this procedure, Eq. 3.5 holds for degenerate eigenvalues with
normalization Eq. 3.8.
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Algorithm 1 Algorithm to apply Gram-Schmidt orthogonalization to vectors x̃m

1: for m = m1 to m2 do
2: Initialize y = x̃m
3: for j = m1 to m− 1 do
4: α← 〈M̂hx̃m, x̃⊥j 〉
5: y← y− αx̃j

6: Compute left eigenvector y⊥ from right eigenvector y using the transpose
eigenvalue problem.

7: x̃m ← y/〈M̂hy, y⊥〉
8: x̃⊥j ← y⊥/〈M̂hy, y⊥〉

3.4.5 Case of metals: ω0 = 0

In section 3.3, the third equation of system Eq. 3.15 has been multiplied by
ω2

0/(ε∞ω2
p) which vanishes when ω0 = 0. In that case, the linear system Eq. 3.9 is

no longer invertible because some rows of M̂ and K̂ are null. But this case is often
interesting because it occurs for metallic materials, and we cannot symmetrize
the linear system with our choice of auxiliary fields. Therefore the calculations
made in section 3.3 are no longer valid for metals. However if we consider the
non-symmetric system Eq. 3.17 with the following matrix,

K̂ =


0 −∇× 0 1
−∇× 0 0 0

0 0 0 −1
ε∞ω2

p 0 ω2
0 −γ

 ,

M̂ =


ε∞ 0 0 0
0 −µ0 0 0
0 0 1 0
0 0 0 −1

 . (3.36)

The left eigenvector x̃⊥m is not equal to x̃m, but is given as:

x̃⊥m =



Ẽm
H̃m

ω2
0

ε∞ω2
p

P̃m

1
ε∞ω2

p
J̃m


. (3.37)

As a result, we still obtain the modal excitation coefficient of Eq. 3.5 and the
normalization of Eq. 3.8.

3.5 Numerical results

In this Section, we provide numerical tests to compare the convergence rate of
the three formulas Eq. 3.5 (referred to as “Usual”), Eq. 3.6 (referred to as “Alter-
native source”), and Eq. 3.7 (referred to as “Order2”). The Usual and Alternative
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Source formulas are implemented by taking a source term as explained in Sec-
tions 3.3 and 3.4. For formula Eq. 3.7, we did not implement matrices K̂h and M̂h
introduced in section 5.C, but we use the discrete equivalent of Eq. 3.7.
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Figure 3.2: (a) Real part of the scattered electric field for ω = 3ω0/2 com-
puted with the direct FEM. The relative error between the FEM and analyti-
cal solutions is 0.15%. The cylinder is illuminated by a plane wave propagat-
ing along the x-axis and polarized parallel to the cylinder axis. (b) Relative er-
ror between the scattered field computed with the modal expansion and with
the direct FEM solver as a function of the width of the spectral for the three
formulas. Top panel: the error is computed over the whole physical domain
and all modes (QNMs+PML modes) are retained in the expansion. Bottom
panel: the error is computed over the cylinder interior and only modes with
Im(ω) ≥ −3 · 1015 rad · s−1 are retained, therein preferentially selecting QNMs
and removing PML modes.

Two simple geometries, a 2D cylinder and a 3D spheres for which analyti-
cal solutions exist, are considered for the comparison. All the numerical results
are obtained with the finite element software Montjoie [48] for the computation
of the finite matrices M̂h and K̂h given in section 3.2. The eigenfrequencies ωm

of the matrix M̂
−1
h K̂h are computed with Lapack [66]. All the eigenvalues such

that |ω̃m| < 10−3ωadim are dropped in order to remove static modes. These
static modes are not included because they are too numerous. Only modes with
Re(ω̃m) ≥ 0 are computed but the complex-conjugate modes with Re(ω) < 0 are
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also considered for the reconstruction. Finally, if two eigenfrequencies ω̃i and ω̃j
are close enough (i.e. |ω̃i − ω̃j| < 10−6ωadim), they are considered degenerate.

For simplicity, the Maxwell’s equations are adimensionalized with ωadim =
3 · 1015rad · s−1 such that the numerical eigenvalues are in the range of 1.

3.5.1 Two-dimensional example : Infinite metallic wire

We first consider the field scattered by a cylindrical wire with a radius of 100
nm in air. The metallic wire is modeled with a Drude-Lorentz permittivity with
ε∞ = 6, ω0 = 4.572 · 1015rad/s, ωp =

ω0

2
, γ = 1.332 · 1015rad/s. The wire axis is

denoted by the coordinate z.
The physical computational domain is 400 nm long and 200 nm wide. 100-

nm-thick perfectly matched layers are added at the edges of the physical domain.
The field driving the system is a TE-polarized plane wave propagating along the
x-axis, at the real frequency ω. As a result, only the z-component Ez of the electric
field is non null and is discretized with continuous finite elements.

Figure 3.1 shows the eigenfrequencies ω̃m computed with Montjoie and com-
pare them with analytical values obtained with Hankel functions. We see that the
QNMs are correctly computed and that we compute a significant amount of other
modes, referred to as PML modes [30, 32]. Note the existence of one accumula-
tion point corresponding to the pole of the permittivity ε(ω) of the cylinder. The
matrices M̂h and K̂h have 5300 rows. Among the 1798 eigenvectors stored, 286
correspond to degenerate modes. The presence of degenerate eigenvalues can be
due to accumulation points or symmetry in the PML layout.

We represent in Fig. 3.1 the eigenfrequencies ω̃m of the cylinder. We can see
that the QNMs are correctly computed and that we compute a significant amount
of other modes, referred to as PML modes. We can distinguish them from QNMs
by either observing their field profile (PML modes usually have a large field mag-
nitude inside the PMLs). The ratio of the field intensity inside the PML over the
intensity inside the physical domain is a decent criterion to distinguish QNMs
and PML modes. Another way to distinguish them would be to perform the
same eigenmode search with different PML parameters. The QNMs would see
their eigenfrequencies barely affected while PML modes eigenfrequencies would
shift significantly. The matrices M̂h and K̂h have 5300 rows. Among the 1798
eigenvectors stored, 286 correspond to degenerate modes. The presence of de-
generate eigenvalues can be due to accumulation points or symmetry in the PML
layout.

In Fig. 3.2, we display the relative error between the modal expansion of the
scattered field

Emodal
s =

N

∑
m

αẼm (3.38)

and the direct FEM solution:

EFEM
s = (−iωM̂h + K̂h)

−1Fh (3.39)

as a function of the width L of the spectral interval covered by the eigenmodes
retained in the expansion. We compare the error between inversing the matrix
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directly (direct FEM solution), and using the modal expansion for a limited num-
ber N of eigenmodes. For a given L, the retained modes satisfy two conditions:
they are contained within a rectangular section of the complex plane, defined
by Re(ω̃m) ∈ [−L ωadim, L ωadim] and the mode eigenfrequency is such that
Im(ω̃m) ∈ [−ωadim L/2, 0].

The relative error defined by

Relative Error =

√√√√√√
∫

Ωp

∣∣∣Emodal
s − EFEM

s

∣∣∣2 dr∫
Ωp

∣∣EFEM
s

∣∣2 dr
, (3.40)

is computed for 31 frequencies, evenly spaced in the interval [ω0/2, 2ω0], and the
maximum value of the error is retained and plotted. Two domains Ωp will be
considered.

The main result of the comparison is shown in the upper inset of Fig. 3.2.b,
where it is shown that the three formulas converge towards the direct FEM so-
lution, as expected, with similar convergence rates. The Usual and Alternative
source formulas are very close, while the Order2 formula is a bit more accurate
when the spectral width L is small. We note that, for L = 15, the relative error
is 0.1 %, a value comparable to the difference between the FEM solution and the
analytical solution calculated with Hankel functions. To achieve very good ac-
curacy, very high frequency modes have to be retained in the expansion. Let us
finally point out that the reconstruction is performed over the entire physical do-
main, i.e. Ωp is the domain formed by the cylinder and the air background (the
PML is not included).

In the bottom panel of Fig. 3.2.b, we have also displayed the relative error
computed while retaining only the modes whose eigenfrequency’s imaginary
parts are small: Re(ω̃m) ∈ [−Lωadim, Lωadim] and Im(ω̃m) ∈ [−ωadim, 0]. With
this criterion, we expect to retain mostly QNMs in the expansion [32], and thus to
test the convergence without PML modes. Additionally, since the QNM basis is
complete only in the interior of the resonator [31], the reconstruction is performed
in a domain Ωp restricted to the cylinder interior.

3.5.2 Three-dimensional example : Metallic Sphere

We further consider a metallic sphere with a permittivity described by the same
Drude-Lorentz model and a radius of 100 nm. The sphere is illuminated by a
plane wave propagating along the z-axis and polarized parallel to the x-axis.
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Figure 3.3: Numerical eigenfrequencies in the complex plane for the metallic
sphere with a Drude permittivity. In the inset, we also plot the eigenfrequen-
cies (red squares) of the quasinormal modes, computed analytically with Mie’s
theory. The modes in the inset are included within a limited frequency range.
ωadim = 3 · 1015 rad · s−1.

Owing to symmetry, we only mesh one quarter of numerical space. The lat-
ter is composed of physical domain, a [0,150 nm]×[0,150 nm]×[-150 nm,150 nm]
parallelepiped box surrounded by a 100 nm-thick PML layers. We impose a Per-
fectly conducting condition on plane x = 0 (i.e. E × n = 0) and a Neumann
condition on plane y = 0 (i.e. H× n). Fourth order edge elements are used for
the unknown E and the mesh. For this case, the matrices M̂h and K̂h have 31246
rows. Among the 8055 stored eigenvectors, 919 are degenerate.

The computed eigenfrequencies are plotted in Fig. 3.3. The inset shows a sub-
domain of the complex plane and Mie analytical eigenfrequencies corresponding
to QNMs only. Since the mesh is much coarser in this 3D example, some QNMs
are not correctly approximated (the relative error between the direct FEM solver
results and the analytical Mie solution is around 4%). We have two accumulation
points, one for ω̃m = (1.5088− 0.2221i)ωadim which corresponds to the pole of
ε(ω) and one for the zero of ε(ω) at ω̃m = (1.6905− 0.2221i)ωadim.

We again consider 31 angular frequencies ω evenly spaced in the interval
[ω0/2, 2ω0] and compute the relative error between the modal solution and the
direct FEM solution. However, to circumvent the issue of static modes, the rela-
tive error is computed with the curl of E

Relative Error =

√√√√√√
∫

Ωp

∣∣∣∇× Emodal
s −∇× EFEM

s

∣∣∣2 dr∫
Ωp

∣∣∇× EFEM
s

∣∣2 dr
. (3.41)
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The error is plotted in Fig. 3.4 for the three formulas. Essentially, the same con-
clusions as in the 2D case hold. The three formulas provide a modal solution that
converges towards the direct FEM solution. When the width L of the spectral
interval is small, formula (3.7) is slightly more accurate. However, in contrast
to the previous case, we have to choose L ≈ 7.5 to achieve a relative error of 4
% (which is the error between the FEM solution and the analytical solution). In
order for the modal expansion to well converge, high frequency modes are once
again necessary.

If the electric field, rather than its curl, is desired, the formulas in Eq. 3.7,
3.6 and 3.5 cannot be used owing to the large number of static modes. A nice
approach consists in discretizing H with edge elements (instead of E), and to
reconstruct Hs with the modal expansion Hmodal

s = ∑m αmH̃m. Es can be obtained
through Maxwell’s equations

Emodal
s =

1
−iωε(ω)

(J +∇×Hmodal
s ). (3.42)
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Figure 3.4: Top: Relative error on the curl of Es versus the spectral width of the
modes included in the modal expansion for the case of the metallic sphere. Bot-
tom: Relative error on Es versus the spectral width of the modes included in the
modal expansion for the case of the metallic sphere. Es is obtained from the curl
of Hs, which is obtained using the modal expansion. In both cases, the error is
computed over the physical domain.

With this approach, static modes are ignored (ω̃m << ω), and the recon-
structed field converges to the correct solution.

In the lower panel of Fig. 3.4, the relative error on the electric field has been
computed by using Eq. 3.42. Only the formulas Eq. 3.5 and Eq. 3.6 can be con-
sidered to obtain Hmodal

s with the coefficients αm. The modal excitation coefficient
given by formula Eq. 3.7 can be used only to reconstruct Emodal

s , since the mag-
netic field was not introduced during the derivation of the formula.
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In the lower panel of Fig. 3.4, we observe that the reconstructed field Es with
this method converges correctly to the numerical electric field. However, the
accuracy obtained on Es is not as good as the accuracy obtained for Hs in the
upper panel of Fig. 3.4.

In this section we have shown that the reconstructed field converges towards
the numerical solution. However, the convergence was achieved with a high
spectral width which corresponds not only to a high number of modes, but also
to modes whose resonance frequencies are high. In those cases, high frequency
modes are necessary to achieve convergence of the modal expansion towards
the direct FEM results even though their resonance frequency is almost 10 times
greater than the maximum frequency on which the error on the field was com-
puted, in spite of their small linewidth. The combined contribution of these non-
resonant high frequencies allow the expansion to converge. We have also seen
that numerical modes, also called PML modes, with very large linewidths also
have an important effect on the overall convergence of the expansion, as previ-
ously discussed in [30].

In summary, we have discussed how scattered fields can be computed from
the discrete eigenmodes of Maxwell’s equations. Due to the discrete nature of the
problem, these discrete eigenmodes form a complete basis meaning the numeri-
cal solution can be written exactly as a combination of the eigenmodes. Despite
the discretization, there is no uniqueness of the modal expansion coefficients.
We have shown that, in fact, an infinity of formulas exists for the expansion co-
efficients. Even new formulas can be found by choosing a different lineariza-
tion of the dispersive Maxwell’s equations or different equivalent source terms.
With our common formalism, we have been able to recover 3 different formulas
among others that have been proposed in the recent literature. Our numerical
tests, obtained for simple geometries, do not provide conclusive observations on
which formula provides the better convergence. We also explain how degener-
ate eigenvalues are treated with a simple Gram-Schmidt orthogonalization. This
procedure is essential in order to construct an orthogonal basis of eigenmodes
with respect to the mass matrix M̂h, which can be seen as a non-classical scalar
product. Furthermore, an indirect important consequence of the present work
that we would like to emphasize in this conclusion is that, with certain symmet-
ric formulations of Maxwell’s equations that there is no need to compute the left
eigenvectors as they can be computed from the right eigenvectors. However, in
more complex cases such as gratings with quasi-periodic conditions where the
Maxwell’s equations are no longer symmetric, the computation of the left eigen-
vector is required[35].
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Chapter 4

Quasinormal mode reconstruction of
the electromagnetic fields of gratings

The efficiencies of gratings as a function of the wavelength may present peaks,
dips or anomalies generated by the excitation of leaky photonic of plasmonic
modes. This is well known since U. Fano introduced a surface- plasmon model
to analyze light diffraction by metallic gratings and explained Wood’s anoma-
lies [67].Nowadays, grating resonances have many applications for biosensing,
photodetectors, photovoltaics, light emission, optical processing, metamaterials
. . . and their theoretical analysis for harnessing light-matter interaction remains
of great importance. The theory of grating anomalies was pioneered by a mile-
stone work by Hessel and Oliner [68] and was then followed by a series of works
summarized in Refs. [69, 70, 24], which contributed to the systematic develop-
ment of a phenomenological study of grating anomalies through the poles and
zeros of the scattering operator, the so-called “polology”. Poles were indiffer-
ently computed by considering a real frequency ω (equal to the driving laser
frequency) and looking for complex in-plane wave-vectors k̃(ω) or angles of in-
cidence sin(θ̃(ω)), or by considering a fixed angle of incidence θ, and looking
for complex frequencies ω̃(θ). Great insight in the physics of grating anoma-
lies was achieved by tracking the pole trajectories in the complex plane as some
parameters, e.g. the grating depth, are tuned [70].The frequency poles ω̃, , i.e.
the natural resonances, have a profound meaning (these poles correspond to the
quasinormal-modes or QNMs hereafter). They define important quantities such
as the resonance frequency, Re(ω̃), or the inverse of the mode lifetime, 2Im(ω).
The theory of grating anomalies changed little during several decennia, and the
polology has been used to analyze or engineer various anomalous grating effects
[71]. In 2014, Vial and his colleagues published a paper that contains many im-
portant results [32]. Assuming one-dimensional gratings made of nondispersive
materials, they computed many QNMs (poles) at complex frequencies, then nor-
malized the QNMs and computed their excitation coefficients, to finally recon-
struct the field scattered by an incident plane wave in the QNM basis. The for-
malism was subsequently used to design spectral filters in the infrared [72]. The
new possibilities offered by the availability of stable methods to normalize QNMs
were also exploited for deriving closed-form expressions of the changes of grating
resonance frequency and linewidth due to tiny refractive index changes [73, 74].
Recently, several numerical methods to compute and normalize the QNMs of
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plasmonic nanoresonators, including metal gratings and plasmonic crystals, were
successfully benchmarked, establishing standards for the computation and nor-
malization of QNMs of dispersive resonators [64].These initiatives are part of
broader, more comprehensive studies on QNM-expansion formalisms for ana-
lyzing light interaction with resonances of open non-Hermitian electromagnetic
systems [14], which are presently knowing rapid progresses [30].

However, most recent works on the modes of gratings compute quasinormal
modes for fixed in-plane Bloch wave vector kp whose physical relevance is extrap-
olated to fit with grating experiments where the angle of incidence θ is usually
fixed while the wavelength of the impinging light changes. In order to compute
modes that correspond to the reality of grating experiments, we decide to com-
pute modes that would correspond to the fixed incident direction experiments.
This ends up changing many things, from the pseudo-periodicity conditions to
the normalization and excitation coefficients.

4.1 Problem definition: wave scattering on a grating

We consider the following scattering problem. A linearly polarized plane wave
is impinging upon either a one-dimensional or two-dimensional grating with an
angle of incidence θ and an azimuthal angle ϕ. For this chapter, the convention
exp(−iωt) is assumed for time-harmonic fields.

Using the Rayleigh expansion [75, 76], the total field in the lower and upper
half planes can be expressed as a sum of plane waves: Etot,I = Einc + ∑j rj exp

(
i
(

kr
j,xx + kr

j,yy + kr
j,zz
))

,

Etot,I I = ∑j tj exp
(

i
(

kt
j,xx + kt

j,yy + kt
j,zz
))

,
(4.1)

where rj and tj are the complex amplitudes of the jth reflected and transmitted
order respectively, and kr

j,x, kr
j,y, kr

j,z are the x-,y-,z-components of the jth order re-
flected plane wave’s wavevector and kt

j,x, kt
j,y, kt

j,z are the x-,y-,z-components of

the jth order transmitted plane wave’s wavevector.
In the scattering fields formulation, the scattered field is a solution of Maxwell’s

equation for the permittivity distribution of the periodic structure ε = εb + ∆ε,
where εb is the background permittivity and ∆ε a permittivity perturbation, usu-
ally corresponding to the resonator in cases where εb is uniform. The incident
field Einc spawns the driving field Ed which is a solution of Maxwell’s equations
for εb.

The total field of the system is thus written in the scattering field formulation
as

Etot = Es + Ed (4.2)

This leads to a direct relationship between the modal reconstruction of the
scattered field and the field in the upper and lower half plane. In the case of the
field in the upper half plane, we have

Etot = ∑
m

αmẼm + Ed = Einc + ∑
j

rj exp(i(kr
j,xx + kr

j,yy + kr
j,zz)). (4.3)
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Figure 4.1: The scattered field of the grating illuminated by a plane wave is made
up of a superposition of plane waves in the superstrate and substrate regions of
space.

4.2 Quasinormal mode expansion of the scattered field
of gratings

4.2.1 Two types of modes, different normalizations

Consider a grating that is periodic along the x and z directions, and a typical scat-
tering problem in which the grating is illuminated by a plane wave with a direc-
tion of incidence defined by having kp =

niω

c
[sin(θ) cos(ϕ)x̂ + sin(θ) sin(ϕ)ẑ],

where θ and ϕ are the angular components of the spherical coordinates that
specify the incident angles in a medium with refractive index ni assumed to
be non-dispersive). We can see that kp changes with the frequency ω. Due
to the periodic nature of the problem, it is convenient to employ Bloch’s the-
orem. We can express the scattered field of the system [Hs(r, ω), Es(r, ω)] =
[hs(r, ω), es(r, ω)]exp(ikp · r) where hs and es are periodic functions with the
same periodicity as the grating.

Derivation of the Normalisation and excitation of kp modes

We fix the value of the parameter kp. We can expand the scattered field on the
fixed-kp QNMs by [H̃k(r), Ẽk(r)] = [h̃k(r), ẽk(r)]exp(ikp · r), h̃k(r) and ẽk(r) also
being periodic functions with the same periodicity as the grating. [H̃k(r), Ẽk(r)]
solves the regular source-free Maxwell’s equations at the complex frequency ω̃k,
but we can rewrite the equations for the Bloch field [h̃k(r), ẽk(r)] using the vec-
torial relation ∇× ( f (r)A(r)) = f (r)∇× A(r) +∇ f (r) × A(r), where f (r) is a
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Figure 4.2: Basic schematic of the unit cell for a one-dimensional grating.

scalar function and A(r) is a field:{
∇× ẽk(r) = −ikp × ẽk(r) + iω̃mµ0h̃k(r),
∇× h̃k(r) = −ikp × h̃k(r)− iω̃mε(r)ẽk(r).

(4.4)

We can rewrite this equation into an eigenvalue problem K̂kx̃k = iω̃kM̂kx̃k
with

K̂k =

[
0 (∇×)− (ikp×)

(∇×)− (ikp×) 0,

]
, M̂k =

[
µ0 0
0 −ε,

]
, x̃k =

[
h̃k
ẽk

]
.

(4.5)
By fixing the value of the parallel wavevector kp, kp× being an unvarying

operator with regards to frequency, it can be included inside the matrix K̂k. As

in the previous chapters, the left eigenvector x̃⊥k = [h̃
⊥
k (r), ẽ⊥k (r)] is found by

searching for the right eigenvector of the transpose problem, which is written
thus:

{
∇× ẽ⊥k (r) = +ikp × ẽ⊥k (r) + iω̃mµ0h̃

⊥
k (r) = −i(−kp)× ẽ⊥k (r) + iω̃mµ0h̃

⊥
k (r),

∇× h̃
⊥
k (r) = +ikp × h̃

⊥
k (r)− iω̃mεẽ⊥k (r) = −i(−kp)× h̃

⊥
k (r)− iω̃mεẽ⊥k (r).

(4.6)
It is evident that x̃⊥k = [h̃−k(r), ẽ−k(r)], which is the QNM field obtained with

the opposite in-plane Bloch wavevector −kp.
This leads to the following normalization of fixed-−kp Bloch QNM modes for

materials with non-dispersive permittivity distribution ε(r):

〈M̂kx̃−k, x̃k〉 =
∫

Ω
ẽk(r) · ε(r)ẽ−k(r)− h̃k(r) · µ0h̃−k(r)d3r = 1, (4.7)

and the following excitation coefficient:

αk = −
1

ω− ω̃k

∫
Ωres

J(r, ω) · ẽ−k(r)d3r = 1. (4.8)
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The normalization and excitation coefficients can also be demonstrated by ap-
plying the divergence theorem to the modes [H̃k(r), Ẽk(r)] and [H̃−k(r), Ẽ−k(r)],
while assuming that these modes are orthogonal.

Since the pseudoperiodicity parameter kp is fixed, most Maxwell eigenmode
solvers with integrated pseudo-periodic conditions will be able to compute the
corresponding Bloch QNMs, like COMSOL Multiphysics [77] for example using
its default Electromagnetic Wave simulation with the RF module. However, due
to the relation between kp and the frequency and direction of the incident plane
wave, fixed-kp modes are only valid for that specific non-null value of kp which
corresponds to functional combinations of ω, θ, and φ. This would translate into
an experiment where the beam impinging upon the grating would need to rotate
to specific angles for every change in wavelength. These modes do not repre-
sent the usual protocol of grating experiments where the direction of the incident
beam is fixed, and the spectra is scanned. This is the framework that η-modes
represent.

Derivation of normalization for fixed η-modes

Consider the same grating experiment as in the previous part. This time, the
modes of the system are not computed for a fixed parallel momentum but instead
a fixed “directionality” vector ni[sin(θ)cos(ϕ)x̂ + sin(θ)sin(ϕ)ẑ], which is set by
the direction of the incident plane wave, described by the two angles θ and ϕ.
The scattered field can thus be rewritten as

[Hs(r, ω), Es(r, ω)] = [hs(r, ω), es(r, ω)] exp(i
ω

c
η · r).

The Bloch QNM fields of the system will this time be denoted by [Hη(r), Eη(r)] =

[hη(r), eη(r)]exp(i
ω

c
η · r), hη(r) and eη(r) also being periodic functions with the

same periodicity as the grating. [Hη(r), Eη(r)] is a solution to the source free
Maxwell’s equations at the complex frequency ω̃η. In the same manner as before
we can write the following set of equations for the Bloch field[hη(r), eη(r)].


∇× ẽη(r) = −i

ω̃η

c
ηp × ẽη(r) + iω̃mµ0h̃η(r) = iω̃η

(
µ0h̃η(r)−

1
c

ηp × ẽη(r)
)

,

∇× h̃η(r) = −i
ω̃η

c
ηp × h̃η(r)− iω̃mεẽη(r) = iω̃η

(
−1

c
ηp × ẽη(r)− εẽη(r)

)
.

(4.9)
We can rewrite this equation into an eigenvalue problem K̂ηx̃η = iω̃ηM̂ηx̃η

with

K̂η =

[
0 ∇×
∇× 0,

]
, M̂η =

 µ0 −
(

1
c

η×
)

−
(

1
c

η×
)

−ε,

 , x̃η =

[
h̃η

ẽη

]
. (4.10)

Since the parameter η is the one that’s fixed, the Bloch phase exp(i
ω

c
η · r) is

now a function of the frequency ω. As a direct consequence, an extra term in ω̃η
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appears in the equations verified by [hη(r), eη(r)] and extra operators fill the off
diagonal terms of M̂η.

It is trivial that the left eigenvector in this case is x̃⊥η = [h−η(r), e−η(r)]. This is
once again the counter-propagative mode, one that comes from an incident plane
wave that has a directionality of −η. This leads to the following normalization
for the η-Bloch modes:

〈M̂kx̃−η, x̃η〉 =
∫

Ω
[ẽη(r) · ε(r)ẽ−η(r)− h̃η(r) · µ0h̃−η(r)

−1
c

η · (h̃−η × ẽη + ẽ−η × h̃η)]d3r = 1,
(4.11)

In the case of materials whose permittivity is dispersive and can be described
by the Drude-Lorentz model, the introduction of the periodic fields auxiliary
fields p̃η = (ε(ω̃η) − ε∞)ẽη and j̃η = −iω̃ηp̃η allows us to write the linearized
eigenproblem K̂ηx̃η = iω̃ηM̂ηx̃η with

K̂η =


0 ∇× 0 0
∇× 0 0 −i

0 0 0 i
0 iω2

pε∞ −iω2
0 −iγ

 ,

M̂η =


µ0 −(1

c
η×) 0 0

−(1
c

η×) −ε 0 0

0 0 1 0
0 0 0 1

 , x̃η =


h̃η

ẽη

p̃η

j̃η

 .

(4.12)

The following system gives us the following form of the normalization

〈M̂kx̃−η, x̃η〉 =
∫

Ω

[
ẽη(r) ·

∂(ω̃ηε)

∂ω̃η
ẽ−η(r)− h̃η(r) · µ0h̃−η(r)

−1
c

η · (h̃−η × ẽη + ẽ−η × h̃η)

]
d3r = 1,

(4.13)

We can see that while there are similarities between the two approaches to
compute the modes of periodic structures, using the directionality of the incident
plane wave as the parameter modifies the normalization of the modes. Since the
kp and η-Bloch modes are computed for different parameters, and ultimately dif-
ferent equations, they are not the same kind of modes. Though they will coincide
normal incidence (kp = η = 0), the modes will have different eigenfrequencies
and modal fields at oblique incidence. Figure 4.3 shows the trajectory of a funda-
mental mode of a lamellar one-dimensional grating as both parameters rise.

Computation of η-modes in COMSOL

Due to the slightly different equations to solve, the standard Electromagnetics
solver of COMSOL’s with pseudoperiodicity is not a viable tool to compute the
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Figure 4.3: Eigenfrequencies of a η- and kp-modes of a 1-D periodic lamellar
groove grating in the complex plane for different values the angle of incidence
θ and the parallel momentum kp. We show the absolute value of the normalized
magnetic field of the mode at kp = θ = 0.

modes. In that scheme, the components of kp need to be entered into the “Peri-
odic Boundary Condition” widget. Unfortunately, the solver does not accept a
value of kp that contains the eigenvalue of the mode.

To compute the η-modes with COMSOL Multiphysics, we rewrite the sec-
ond order Maxwell’s equations for ẽη(r) in weak formulation and apply Periodic
Boundary Conditions where needed. In the case of Lorentz-Dispersive materials,
an additional equation verified by the auxiliary fields p̃η in the those material
domains. PMLs are applied if needed in the directions where the domain should
be infinite. With this solver [47, 30], we can compute a large number of modes
around a central frequency. In figure 4.4we plot the spectrum obtained through 6
separate computations of 1000 modes, for a total of 6000 modes.

(𝒂)

(𝒃)

Figure 4.4: (a) Complex plane representation of a sample of 200 η-modes com-
puted with the solver for a 1D lamellar grating. (b)Within the area in the red
dashed rectangle, we have computed modes for the same structure but with a
different PML. The QNMs have stayed in the same position in the complex plane
while the PML modes are different.

Among the complex frequencies plotted in figure 4.4, we can note that there
are modes near the real axis which usually are physical modes. We also find 2
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mode patterns previously reported by Vial in 2014. The first being the “rotated”
continuous spectrum that arises from the use of PMLs, causing modes with real
eigenfrequencies to rotate in the complex plane. The second pattern are modes
that are present at the real frequency corresponding to the Rayleigh anomalies, or
the frequency where a diffraction order goes from being evanescent to propagat-
ing. These branches of modes are regularly spaced along the real axis, with a gap

of
2πc

a
between each branch. These are called “branch cut modes” due to the fact

that they represent a mathematical discontinuity, in this case, the transition from
evanescent diffraction orders to propagative ones.

In figure 4.4, we notice that the modes have a central symmetry point at the
origin of the complex plane. The modes with negative real parts have positive
imaginary parts which would imply that they are no longer damped in time and
instead exponentially amplified. This, however, is a purely numerical phenom-
ena caused by the use of non-dispersive PMLs in that particular computation.

4.2.2 Scattered field formulation

Choice of the background medium

In the case of an isolated resonator it is usually convenient to choose the back-
ground permittivity εb as uniform. However, in the case of more complex struc-
tures, like infinitely long slabs with a singular nanoparticle on its surface or a
nanoparticle on a substrate, the resonator domain could be infinitely large.

𝜀𝑚

εair

𝜀𝑚

εair

Δ𝜀Δ𝜀

𝐄𝑖𝑛𝑐

εair
𝜀𝑚Δ𝜀

𝜀𝑚

Background
domain

Perturba�on
domain: metal
protrusion

Perturba�on domain:
air slits

𝜃 𝐄𝒓𝜃

𝐄𝒕

𝐄𝒅

𝐄𝒅

𝐄𝑠 𝐄𝑠

Figure 4.5: Example of a driving field Ed inside the perturbation domain in the
case of a lamellar grating with an absorbing metal substrate with an air super-
strate. In (metal protrusion), the driving field inside the perturbation domain is a
superposition of the incident and reflected field. In (air slits), the driving field is
the transmitted field, exponentially damped inside the metal substrate.

The driving field is a solution of Maxwell’s equation in an inhomogeneous
background medium. Here, the background domain has a flat interface between
the air and the metal substrate. The driving field above the substrate is a super-
position of the incident field from the source and the field reflected off the flat
interface [78]. The field transmitted inside the substrate is exponentially damped
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due to the absorbing properties of the material. The lamellar grating can be con-
structed from the background domain in two ways. A metal protrusion can be
added on top of the flat interface or air slits can be dug into the substrate. This
leads to two complementary definition of the perturbation domain inside which
∆ε is non-null with different driving fields.

η-QNM expansion of the scattered field from illumination at a fixed incidence
angle

Derivation of the excitation coefficient
The following derivation is very similar to the derivation of the excitation co-

efficient found in previous chapters. Let us now consider the reconstruction prob-
lem of the scattered field upon illumination by an incident plane wave [Hinc, Einc] =

[hinc, einc]exp(i
ω

c
η · r) with the “directionality” vector η and the (real) frequency

ω. In the scattered-field formalism used for the expansion, the scattered field is
defined by a local change ∆ε(r, ω)(∆ε 6= for r ∈ Vres) for a background permit-
tivity εb so that εb + ∆ε is equal to the permittivity distribution of the grating
geometry. Similarly, the background field [hb, eb]exp

(
i
ω

c
η · r

)
is defined as the

electromagnetic field that is solution of Maxwell’s equations for the background
permittivity distribution εb(r, ω) upon illumination by the incident plane wave.
From the orthonormality condition, it is straightforward [30] to derive closed-
form expressions for the excitation coefficients αm of the QNM expansion of the
scattered field Ψsca(r, ω, η) = ∑M

m=1 αm(ω)Ψη,m :

αm = − ω

ω− ω̃m

∫
Vres

∆ε(r, ω)ed · ẽ−ηd3r = 1. (4.14)

Reflection coefficient and modal contributions to reflectance
The scattered Bloch field is given by [hs, es] = [htot, etot]− [hd, ed] and can be

expanded into a sum of η-QNMs:

[hs, es] =
M

∑
m=1

αm(ω)
[
h̃m,η, ẽm,η

]
(4.15)

In the case of a one-dimensional grating, periodic along the x-axis and infinite
along the z-axis, illuminated by a TM-polarized plane wave(the azimuthal angle
ϕ = 0), the total magnetic field above the grating can be expressed as a sum of
plane waves[75] similarly to 4.1:

Hz,I(r, ω) = Hinc,z(r, ω) + H0 ∑
i

riexp
(
−i
(

kr
i,xx + kr

i,yy + kr
i,zz
))

. (4.16)

Due to the polarization of the incident plane wave and the structure of the
grating, the magnetic field has only one non-null component on z. In the scattered
field formulation, the total field can be rewritten as such:

Hz,I(r, ω) = Hd,z(r, ω) + Hs,z(r, ω) = Hinc,z(r, ω) + H↑,z(r, ω) + Hs,z(r, ω),
(4.17)
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where Hs,z(r, ω) is the z-component of the scattered field, H↑,z(r, ω) is the z-
component of the portion of the driving field that is reflected upwards off of the
background medium (which will be a flat air-metal interface). Taking 4.16 and
4.17, we have the following relationship between the scattered magnetic field and
the amplitudes of the reflected waves:

∑
j

rjexp
(
−i
(

kr
j,xx + kr

j,yy + kr
j,zz
))

=
1

H0

(
H↑,z(r, ω) + Hs,z(r, ω)

)
. (4.18)

Hs,z can be expanded into a sum of its Fourier harmonic since it’s a pseudo-
periodic function. H↑,z only oscillates at the excitation frequency so only its 0th
order Fourier Harmonic is non-null. Eq. 4.18 is rewritten as:

∑
j

rjexp
(
−ikr,j · r

)
=

1
H0

∑
j

∫ a

x=0

[
H↑,z(r, ω) + Hs,z(r, ω)

]
exp

(
−ikr,j · r

)
dx,

(4.19)
where kr,j = kr

j,xx̂ + kr
j,yŷ + kr

j,zẑ is the wavevector of the jth diffraction order.
In this instance, the x-component of the wavevector can be expressed as kr

j,x =

ω

c
sin(θ) + j

2π

a
and kr

j,x =

√(ω

c

)2
−
(

kr
j,x

)2
. In the case of the reflectivity in

the specular direction, computing the amplitude of the 0th diffraction order is
required and using Bloch’s theorem we obtain:

r0(ω) =
1

H0

∫ a

x=0

[
h↑,z(r, ω) + hs,z(r, ω)

]
dx. (4.20)

We can expand hs,z onto the QNM basis using Eq. 4.15 to rewrite the reflectiv-
ity as a sum of individual modal contributions interfering with the plane wave
reflected off the air-metal interface.

r0(ω) =
1

H0

[∫ a

x=0
h↑,z(r, ω)dx +

M

∑
m=1

αm(ω)
∫ a

x=0
h̃m,z,η(r)dx

]
. (4.21)

1
H0

∫ a
x=0 h↑,z(r, ω)dx = rmetal(ω)eiφ where rmetal is the Fresnel reflection coef-

ficient of the air-metal interface and eiφ the phase the reflected plane wave has
accumulated at a distance l0 from the interface, on the period where the integral
is computed. While the value of the reflectance should not depend on this dis-
tance [79], it will be shown in the next chapter that it can cause the computed
values to vary noticeably.

The complex normalized amplitude of an excited QNM in the specular direc-
tion will be denoted by

qm(r, ω) =
1

H0
αm(ω)

∫ a

x=0
h̃m,z,η(r)dx (4.22)

where the integral
∫ a

x=0 h̃m,z,η(r) is the complex amplitude of the plane wave
scattered by a QNM into the far field [79]. The reflectivity in the specular direction
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can thus be written as the interference of the reflected plane wave and the plane
wave decomposition of the of the excited QNMs of the system:

r0(ω) = rmetal(ω)eiφ +
M

∑
m=1

qm(ω). (4.23)

The specular reflectance is obtained with

R0(ω) = |r0(ω)|2. (4.24)

4.3 Numerical results

4.3.1 Reconstruction of the reflectance on a One-dimensional lamel-
lar grating

To demonstrate the effectiveness of the method, we consider a gold grating that
efficiently absorbs light over the visible (we have optimized the groove depth for
that purpose) and near infrared spectral range. The grating is composed of tiny
rectangular air grooves which are w = 60 nm wide and h = 350 nm deep.The
grating has a period of a = 600nm. In this section, we will compute the spec-
ular Reflectance computed with the Rigorous Coupled Wave Analysis (RCWA)
[80, 81]. Since 401 Fourier harmonics are retained in the computation, the com-
puted data are highly accurate and be used as reference data hereafter. Using
COMSOL Multiphysics, we build a model of the grating unit cell. The periodic-
ity along the x-direction is enforced with periodic boundary conditions, and the
outgoing-wave condition is fulfilled in the upper y-direction using PMLs. Due to
the damping in the substrate, there is no need to put PMLs under the finite layer
of gold.

We then compute the eigenmodes with the built-in eigensolver of COMSOL
using the augmented field formulation of Eq. (1). The computational time per
eigenmode is a few seconds with a standard desktop computer. We then normal-
ized the QNMs using Eq. 4.11.

We perform a first scattering experiment with a limited number of modes to
test the viability of the different background medium. We will compare the air
slits perturbation to the metal perturbation as pictured in figure 4.5. Both per-
turbation schemes will yield different driving fields Ed and perturbation volume
Vres, which will give a different perturbation coefficient αm computed according
to 4.14. We compute 20 modes and excite them with different driving fields. The
eigenfrequencies and the values of the excitation coefficients are plotted on the
left side of figure 4.6. The value of the excitation coefficient can vary significantly
with the change in resonator domain and background field. We have plotted the
specular reflectance computed according to Equations 4.21 and 4.24 on the right
side of figure with the 20 modes. We can see that the "air slit" perturbation do-
main computation correctly reconstructs the two resonance deeps with 20 modes,
while the "metal" perturbation domain computation does not: the peak at 0.77
µm is slightly shifted. The "metal" perturbation also creates some non-physical
results, like the reflectance reaching values superior to 1. With the "air slit" per-
turbation, we also plot the reflectance with only the resonant mode at .77 µm in
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Figure 4.6: Complex plane representation of 20 η-Modes of a 1D lamellar grating
for an incidence angle of θ = 10◦. The circles are colored according to the maxi-
mum value of the excitation coefficient in the spectrum plotted on the right. We
plot the specular reflection spectra of this grating for an incident angle of θ = 10◦,
with M = 20 modes for both perturbation domain. For the slit perturbation, we
also plot the reconstruction with one resonance mode.

the expansion. We can see that the resonance deep is correctly reconstructed at
near the resonance with some gap at higher wavelengths between this response
and the RCWA reference due to the lack of modes in the expansion. This prelim-
inary computation has shown that the "air slit" perturbation is seemingly more
accurate for this particular structure and we will adopt that perturbation in the
rest of the chapter.

We then reconstruct the spectrum accurately over a large spectrum using the
QNM expansion. The grating is illuminated by a plane wave impinging from air
with an angle of incidence θ = 30◦, and polarized with a magnetic-field parallel
to the grooves (TM polarization). Like before, we compute the eigenmodes with
the built-in eigensolver of COMSOL using the augmented field formulation of Eq.
4.12. The magnetic fields of the 7 dominant QNMs, labelled A, B, . . . G, which
dictate the positions and widths of the 7 main resonance dips, are displayed in the
upper panel of Fig. 4.7. A total of 6000 modes were computed, with the resonant
frequencies of the modes within the range Re(ω̃m) ∈ [−3ωp, 3ωp].

First we only consider the seven dominant QNMs in the expansion (m =
1, . . . 7). The specular reflectance computed for M = 7 is shown with the blue
curve. Qualitative agreement with the RCWA data is achieved, particularly for
resonance features. We then sort the computed QNMs according to their decreas-
ing value of the plane wave amplitude qm [30] and reconstruct the scattered field
with the first M = 200 most impactful ones, see the red curve. Now a quantita-
tive agreement is achieved. Thanks to computational results obtained with the
real frequency solver of COMSOL Multiphysics, we have additionally verified
that the small residual difference with the RCWA data is primarily due to a nu-
merical dispersion between the Fourier and finite-element methods, rather than
to the specific choice of the truncation rank M = 200.

These 200 modes are plotted in Figure 4.8. We can see that the modes retained
in the expansion range from beyond the considered spectrum on which we re-
construct the reflectance. Not only that but both numerical and QNM modes are
used in the expansion. In Figure 4.11, we plot the reconstruction for different
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Figure 4.7: Reconstruction of the reflectance spectrum of a gold grating composed
of tiny rectangular air grooves (see the inset) illuminated by a plane wave with an
angle of incidence θ = 30◦ in the x-y plane and TM-polarized. The reconstructed
specular reflectance spectra with M = 7 and 200 modes retained in the expansion
are shown with the blue and red curves, respectively, and are compared with ref-
erence data obtained with the RCWA (black dots). The magnetic-field moduli of
the M = 7 dominant normalized QNMs, labelled A, B, . . . G, dictate the positions
and widths of the 7 main resonance dips.

values of M, showing the correspondence between individual modes and reso-
nance deeps but also the broad, cumulative effects of non-resonant modes on the
spectrum. We can see that when only the resonant modes are included in the ex-
pansion, that the corresponding deeps are not only slightly shifted compared to
the reference, but also asymmetric. Adding a resonant mode into the expansion
creates a Fano-type resonance pattern, since the narrow-band QNM resonance
interferes in the far-field with the background field. As more modes are added
into the expansion, the deeps are shifted back into their correct position, as can be
seen from the transition from M = 8 modes to M = 25 modes to M = 100. With
M = 25 modes, we can see that the reflectance reaches values above 1 which is
erroneous.

The addition of numerical modes, like those from the branch cuts or on the
“PML veil”, which bear no physical meaning, does help convergence but can cre-
ate some unusual results due to the truncated basis of modes. Physical modes
in this example,which localize electromagnetic energy in the grating’s grooves or
on the metallic surface, decrease the overall reflection over the whole spectrum
as can be seen from the transition from 7 to 8 modes. In this instance, the addi-
tion of the fundamental mode of the grating, whose resonant frequency lies in
the infrared at λ = 1.1 µm , where the light is localized in the grooves, greatly
decreases the reflectance computation over the whole spectrum. The plethora of
plasmonic modes, among others, added between the 25th and the 100th modes re-
duce the overall reflectance to bring it back under 1. The modes added between
M = 100 and M = 215 finely refine the spectrum allowing a quantitative recon-
struction of the reflectance over a large spectrum. The mean error computed over
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Figure 4.8: Complex plane representation of the sample of the modes used in the
expansion for M = 200. Modes are colored according to the amplitude of the
plane waves the QNM creates in the specular direction in the far field.

the spectrum is

error =
1

λ2 − λ1

∫ λ2

λ1

∣∣RQNM(λ)− RRCWA(λ)
∣∣ dλ, (4.25)

where RQNM is the reflectance reconstructed with QNMs while RRCWA is com-
puted using RCWA and used as reference. We can also compute the mean relative
error over the spectrum with

relative error =
1

λ2 − λ1

∫ λ2

λ1

∣∣RQNM(λ)− RRCWA(λ)
∣∣

RRCWA
dλ. (4.26)

In Figure 4.9c, we plot both of these errors as a function of the number of
modes in the expansion M. For M = 212 modes, the lowest value of the mean
relative error is reached at 0.0112. However, the mean relative error rises with the
addition of additional modes and converges at a value of 0.0255. There could be
multiple reasons for why the error converges at this early with no improvement
with the addition of more modes. The reason for this could be that the mesh is
too coarse to reach lower error values so it stagnates. Another could be that we
are still missing important modes that would greatly help the expansion, modes
that could be found at higher frequencies.

We have shown in this section that the modes can be classified in terms of their
relevance in the reconstruction of the reflectance. Out of 4000+ modes, the lowest
error is reached with about 200 modes. The error could be further lowered if we
were to search for additional modes in a broader spectral range. We’ve shown
that both QNMs and PML modes had great influence on the convergence of the
reflectance spectra.
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Figure 4.9: (a) Complex mode spectrum of the 6000 modes included in the ex-
pansion. Modes are colored according to |qm|. The modes who resonate within
the evaluation spectrum λ ∈ [300nm, 1000nm] are plotted in (b). (c) Error curve
when the modes are ranked according to maxω|qm(ω)|. A minimum mean rel-
ative error of 0.0112 is reached for M = 212 modes but the error rises as more
modes are added into the expansion.

4.4 Implementation with MAN freeware

In this section, we will detail the implementation of the computation of the η-
modes into the MAN freeware. The freeware uses both COMSOL MULTIPHYSICS
software and COMSOL-MATLAB-Livelink. The computation of modes is done
within a COMSOL MULTIPHYSICS model, while the computation of the over-
lap integrals are performed on MATLAB after the eigenmodes are extracted using
Livelink.

QNMs are intrinsic to the resonator [14] which means that their computation
through the solving of the source-free Maxwell’s equations should not depend
on any possible excitation. However, in the case of periodic structures, whose pe-
riodicity translates into an infinite computation domain, we use the Bloch Theo-
rem to truncate the computation domain to a unit cell and instead compute Bloch
modes as stated in section 4.2. However, this leads to Maxwell’s Equations for
the Bloch modes to be parameterized by the in-plane wavenumber of the inci-
dent plane wave kp [32], or in the case of η-modes, by the vector eta giving the
direction of the incident plane wave. Computing η-modes fixes the direction of
the excitation wave but not the frequency.

The Maxwell’s can be written in COMSOL in weak formulation for either TM
or TE polarization. In the case studied that was presented in the previous sec-
tion, they were written for a TM polarized plane wave. This reduces the number
of variables that we need to compute. In the case of TM polarization, we only
compute the x- and y-components of a mode’s electric field.

In order to normalize the η-modes, we need to compute the modes ẽm,−η with
the opposite incident direction −η. For structures with a symmetries along the x-

62



direction, with the symmetry plane x = 0, we can compute those from the modes
ẽm,η with the following relation:

ẽm,−η(x, y) =
[

ẽx;m,η(−x, y)
−ẽy;m,η(−x, y)

]
, (4.27)

where ẽx;m,η(x, y) and ẽy;m,η(x, y) are respectively the x- and y- component of the
η-mode ẽm,η. The modes have the same eigenfrequency ω̃m.

COMSOL Mul�physics

COMSOL model sheet
Contains: 
• Computed modes
• Normaliza�on

coefficients
• Geometry
• Perturba�on and

integra�on domains

MATLAB

QNMEig_toolbox_gra�ng.m
Computes
• Overlap integrals
• Excita�on coefficients 𝛼𝑚
• Sca�ered field in incident plane
• Reflectance in the visible spectra

Contents are
extracted

Figure 4.10: QNMEig implementation and work-arround

Once the modes are computed, the modes can be extracted using Livelink
and MATLAB. We define selections in the COMSOL model in order to extract the
modes in relevant domains, such as in the regions of space where the permittivity
perturbation ∆ε is not null, in order to compute the excitation coefficient or on a
line above the resonator in order to compute the reflectance. The extracted fields’
components are stored in a vector and the coordinates of the mesh nodes from
which the field was extracted from as well. These vectors have the same size.
The coordinates are useful in defining the incident field on the mesh coordinates
to perform the overlap integral. Overlap integrals are performed with Matrix
multiplication in MATLAB using a matrix containing the values of the integration
variable δS or δl for each mesh node coordinate, depending on whether a surface
or linear integral respectively. The integral of a function f (x, y) over the surface
Σ is thus performed over a number Nmesh of discrete points with that area such
that:

∫∫
Σ

f (x, y)dS ≈
Nmesh

∑
p

f (xp, yp)δS, (4.28)

where x, p and yp are the x and y coordinates of the pth node point of the in-
side the surface Σ. The same approximation exists for linear integrals over one-
dimensional segments in space and is used to compute the integral∫ x=a

x=0
H̃z,m(x, y)dx.

This allows for swift computation of integrals and enables quick and subsequent
computations of the excitation coefficient α(ω) over a great number of frequen-
cies.

An example script that extracts the modes from a COMSOL model and com-
putes the excitation coefficient coefficient and the corresponding reflection of the
grating is included in the QNMEig package of MAN [47].
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4.5 Conclusion

In this chapter, we have introduced a method with which to compute and nor-
malize the eigenmodes of open, periodic structures. We have shown that some of
these modes correspond to grating anomalies and they allow us to qualitatively
reconstruct the spectral response of gratings. However, in order to accurately re-
construct the spectral response, not only are a great number of modes required,
but also modes whose origins are numerical and contain no physical meaning.

Figure 4.11: Reflectance spectrum for M = 0, 1, 2, 3, 4, 5, 6, 7, 8, 25, 100, 215 modes
included in the expansion. The first 7 modes are the seven resonances of the
spectrum, the other modes are added according to the value of the amplitude of
the corresponding plane wave they spawn in the specular direction qm.
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Chapter 5

Numerical limitations of the
Quasinormal mode expansion

In the previous chapters, we have used the QNM expansion to compute the field
or a related quantity. In order to obtain convergent results, hundreds or thou-
sands of modes have been computed and included in the expansion.

An overview of the literature shows two paradigms under which the expan-
sion is used to reconstruct physical quantities. The first fashion of use of the
expansion employs usually around or under 10 modes, with each mode often
corresponding to a resonance of the reconstructed quantity [38, 39, 40, 41, 42, 43].
In these articles the QNMs reconstruct the resonant features with a seemingly
“good agreement” [44, 45] between the reference curve and the QNM reconstruc-
tion at resonance. The error varies from experiment to experiment, but is rarely
quantified. Analysis of the various plots would generally yield the idea that near
the resonance frequency of the mode, the relative error would fall within the sin-
gle percent range and below [40, 82, 83] and rises expectedly outside of resonance
[40]. Some of the methods used to compute the modes are usually limited to one
mode per computation, such as pole-searching mode solvers [46] or FDTD meth-
ods [39].

The second paradigm arises from the development in recent years of numer-
ical tools to perform the “wholesale” computation of the modes of resonators
made of dispersive materials. These tools which either employ eigenvalue solvers
that use auxiliary fields [30, 47, 42, 48] or nonlinear eigenvalue solvers [34, 49]. It
is usually with the exploitation of these tools that the computation of purely nu-
merical modes(sometimes referred to as PML modes) becomes either coincidental
or voluntary as is their inclusion into the expansion. With the use of hundreds of
modes and a wide eigenvalue spectrum [30, 34, 50], the convergence is attained
to varying degrees of accuracy. The supplementary information of [30] currently
resides at the state of the art for the convergence of the modal expansion of the
extinction cross-section of many dispersive structures, such as a silver sphere and
a bowtie antenna. The relative error on the extinction cross-section spectra, which
contains multiple resonant peaks, reaches a value of 10−5 and under when thou-
sands of modes are added into the expansion. The modes are added into the
expansion after being sorted according to their impact on the spectra. The error
tends to decrease as the total number M of modes in the expansion increases.
The variation is not monotonous but the average error seems to trend towards a
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value of 10/M2, as can be seen in figures SI-5, SI-6, and SI-7. These error values
are dependent on mesh finesse as figure SI-5 of the same document shows that
the error reaches different values for different mesh finesses. In [34], the L2 er-
ror of the field in a single point in space is just over 1% over a wide frequency
spectrum. These types of work show that we can expect the modal expansion to
converge in space and for all frequencies if we have all the modes of a structure,
both physical and purely numerical. The work presented in Chapter 3 and 4 falls
within this category. Some other works in the literature detail other methods to
make the QNM expansion converge. In [36], 8 modes are computed and a con-
tour integral is used to obtain a relative error on the spectra with values ranging
from 10−4 to 10−7. In [63], “perfect agreement” with a reference computation
is reached using the QNM expansion for a one-dimensional resonator when the
modes are calculated with causality considerations. The trend is moving to find
ways to improve the overall convergence of the expansion while employing as
few modes as necessary instead of converging through the use of the complete
basis of modes.

In this chapter, we will describe some of the numerical factors that may impact
the accuracy and the speed of the convergence of the QNM expansion. We will
first look into the influence of the single Perfectly Matched Layer (PML) in the
computation of the modes of the grating studied in the previous chapter. We will
then analyze the convergence of the field in space and of the reflectance spectra
of the grating. Lastly, we will try to define criteria to sort the modes with in order
to find ways to optimize the convergence speed of the expansion.

5.1 Influence of the PML

In this section, we will expose how the PML is implemented in the grating model
used to compute the η-modes, how the modes are influenced by this parameter
and how the variations of this parameter can be used to find the physical modes
among the thousands of modes that are computed in bulk. This section uses the
sign convention exp(−iωt) for time-harmonic fields.

5.1.1 Implementation of the PML in the QNMEig Grating model

The Perfectly Matched Layer is an artificial absorbing layer used to simulate sys-
tems with open boundaries. In the case of the grating studied in the last chapter,
a single PML is placed above the grating, to emulate an air superstrate. The PML
has a finite thickness of 300 nm and is placed 275 nm above the top of the grating.

Compared to every other model in the QNMEig package in MAN [47] which
are implemented in COMSOL, the model does not use the built-in Electromag-
netic Waves Physics package to compute the η-modes. Instead Maxwell’s equa-
tions for the η-modes are rewritten with the “weak formulation” syntax em-
ployed by the Finite Element solver of COMSOL. The materials’ permittivity ten-
sor’s components in this example are all individual variables defined for each
material. In the case of homogeneous and isotropic materials, only the diagonal
terms of the permittivity tensor ¯̄ε are non zero.

The PML also is defined differently compared to the rest of the catalog of
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models included in MAN. The PML in the grating model is defined via the per-
mittivity tensor. In this example, complex-valued coordinate transformations are
applied to the background media. We define a complex PML coefficient σ that is
applied differently to the different components of the PML’s permittivity tensor
depending on which directions the PML is stretching into an open boundary. In
the case of the PML in the grating model, as shown in Fig. 5.1, the PML is there
to create an open boundary in the y direction. The permittivity tensor of the PML
is thus:

¯̄εPML =

 εbσ 0 0
0 εb/σ 0
0 0 εbσ

 . (5.1)

The permeability tensor of the materials and the PML are also defined in the same
manner.

Figure 5.1: (a) Schematic of the unit cell. (b) Influence of the PML coefficient on
the computations of modes. In both of these simulations, we searched for 1000

modes around the central frequency ωc =
ωp

2
with two different complex PML

coefficients parameters σ = 8 + 10i and σ = 12 + 12i.

5.1.2 Influence of the PML coefficient and identification of QNM
modes

In order to gauge the importance of the PML coefficient, we launch several com-

putations to compute 1000 modes around the central frequency
ωp

2
with two

PML coefficients. This allows us to discern the numerical modes from the phys-
ical modes since numerical modes are more “sensitive” to most slight changes
in numerical parameters. In Fig. 5.1, we plot the eigenfrequencies for two sepa-
rate eigenmode computations with different PML coefficients and we can see that
both computations have yielded mostly different results, with many modes not
having the same eigenfrequency between the two simulations. We can notice that
the modes computed with the PML parameter σ = 12 + 12i do not extend as far
away from the central frequency ωc in the complex plane as the modes computed
with the parameter σ = 8 + 10i. We can see that the QNMs which are close to the
real axis have the same eigenfrequencies with both computations. We can see that
modes with a relatively high imaginary part (Im(ω̃m/ωp) < −0.05) have widely
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different eigenvalues and form clusters in different ways. The cluster of numer-
ical modes shifts along the imaginary axis. The larger Re(σ) is, the closer to the
real axis the cluster is. The solver only computes a set number of modes closest
to the central frequency ωc. For σ = 12+ 12i, this cluster of numerical modes has
moved close enough to the central frequency such that the fundamental QNM
with the eigenfrequency ω̃m = (0.0688− 0.00784i)ωp was not computed because
the solver computed the number of modes it needed to before reaching it.

Due to the discontinuities of the Maxwell operator for the grating because
of its periodicity, there are branch cuts in the complex plane near the real fre-
quencies where diffraction orders become propagative. These branch cuts man-
ifest themselves as evenly spaced patterns of modes as seen in Fig. 5.1b for
Re(ω̃/ωp) ≈ {0.16, .33, 0.5, ...}. These patterns of modes orient themselves differ-

ently with different values of the ratio
Im(σ)

Re(σ)
. In particular, the “veil” of numer-

ical modes, as coined by Vial in [32], that spawn from the origin of the complex

plane, arrange themselves along the line y = − Im(σ)

Re(σ)
x [50, 84] before meeting

the cluster of numerical modes described previously.
Using two different mode searches with different PML parameters, we find

two different sets of modes : {ω̃m}m with σ = 8+ 10i and {ω̃′m}m with σ = 6+ 8i.
To identify the QNMs of one set, we compare the eigenfrequencies between the
two sets. We consider that if the minimum difference between a mode ω̃m from
the first set and any mode from the second set is inferior to a threshold value

∆ω̃, then ω̃m is a QNM. In this case, the threshold value is equal to 10−3 ωp

2π
for

the simple reason that it is the lowest value that allows all 7 resonant QNMs
featured in Fig. 4.7 to be identified by out criteria as QNMs. This is due to one
QNM mode whose eigenfrequency is close to one of the branch cuts at Re(ω̃m) ≈
0.165ωp, where numerical modes aggregate close to the real axis. In Fig. 5.2a,
we plot the complex mode spectra of the grating for a 30◦ incidence angle with
σ = 8 + 10i where the QNM as defined by the previous criteria are boxed in red.
We can see that most of the modes we identify as QNMs have very low imaginary
parts and are close to the real axis. The purpose of finding the QNMs is to single
out the modes which represent the physical resonances of the system and which
would yield a resonant peak or deep if they were to be excited. The previous
chapters have shown that QNMs are not sufficient in order to reconstruct the field
on a wide spectrum of frequencies, but identifying which modes are physical or
purely numerical can be a way to get an idea of where QNMs might appear in
general and where branch cuts modes might interfere with finding a QNM due
to their accumulation.

In Fig. 5.2b, we plot the real part of the eigenfrequency of these modes and
notice that the modes accumulate at frequencies where the permittivity takes par-
ticular values. The first accumulation point is at ω → ωp/

√
2 where the grating’s

Drude metal permittivity has the value ε(ω) → −1. These modes would corre-
spond to the Surface Plasmon Resonance [22] of a plane air-Drude metal interface.
The second accumulation point is at ω → ωp where the permittivity ε → 0. The
permittivity remains complex with small imaginary parts.

The third accumulation point is at the pole ω = −iγ where the permittivity di-
verges. For these modes, the auxiliary field p̃η = (ε(r, ω̃m)− ε∞)ẽm is divergent.
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Figure 5.2: (a) Differentiation of QNM and numerical modes through two com-
putations with different PML coefficients σ. We compute one set of modes {ω̃m}m
with σ = 8 + 10i and the other set {ω̃′m}m with σ = 6 + 8i. We consider QNM

modes to be the modes whose eigenfrequencies verify |ω̃m− ω̃′m| < 10−3 ωp

2π
. Ac-

cumulation points are circled. (b) Real part of ω̃m of the QNM modes. We can see
several accumulation points at specific values of Re(ω̃m).

Figure 5.3: Influence of QNM modes on the reconstruction of the reflectance.

The fields of these modes are almost completely localized within the metal.
The accumulation points show a flaw in our approach to identify the QNM

modes. Since the modes accumulate en masse at these specific points, the distance
between two modes from two different mode searches could potentially be lower
than the threshold value that we have chosen. These could potentially be “false
positives” for QNM modes. Nevertheless, we choose to classify them as QNM
modes in this instance.

We reconstruct the specular reflectance with all the newly identified QNM
modes. In Fig. 5.3, we can see the influence of the additional QNM modes com-
pared to the seven resonant peaks in the spectra. The additional QNMs have
lowered the overall reconstructed reflectance of the spectra. This is to be ex-
pected since the modes that have been added are surface plasmon modes and
Fabry-Pérot-type modes where the light is either confined on the surface of the
metal or within the grooves. In this example, the overall inclusion of the QNM
modes has confined light, while the addition of all the numerical modes such as
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the PML modes on the branch cuts have overall scattered light into the far-field,
raising the value of the specular reflectance. We can see that in this example, per-
forming a reconstruction with more than 500 QNM modes has widened the gap
between the reconstruction and the reference computation. This is a case where
adding more modes has increased the error on the reconstruction overall.

In this section, we explored the influence of a single numerical parameter on
the computation of the modes. We’ve shown that confirmed physical modes sel-
dom saw a change in the value of their computed eigenfrequencies when the nu-
merical parameter was changed slightly. We’ve tried to determine which modes
are QNMs by seeing which modes do not see a significant change in their eigen-
frequency when the parameter is changed. However, the existence of accumula-
tion points and the accumulation of numerical modes at branch cuts could poten-
tially hurt this criterion to identify QNM modes.

5.2 Spatial convergence of the field with the modal
expansion

Eigenmodes are the solutions of the source-free Maxwell’s equations at the com-
plex frequency ω̃m, where the eigenvector or the eigenfield is a purely spatial
quantity. In the previous chapter, due to the periodic nature of the problem, we
used the Fourier series of the reconstructed field above the grating to compute
the specular reflectance; the latter is computed at a specific height h0 above the
top of the grating. Ideally, this quantity should not vary at all with the height
where the Fourier coefficient is evaluated [75]. However, we will show that due
to an incomplete or truncated basis of modes in the expansion, the reconstructed
specular reflectance does vary significantly with this height. This section uses the
same sign convention as the previous section for time-harmonic fields.

Figure 5.4: Variation of the reconstructed reflectance with M = 200 modes with
different integration heights.

We modify our geometry slightly in order to verify the effect of the integration
height. As pictured on the left side of Fig. 5.4, we add 3 lines in the geometry
above the grating. The edges of triangular elements of the Finite Element mesh
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will line up on these 3 lines that span the period of the grating. The first line
is placed at a height h0 = λp/2 = 74.8 nm above the grating, the second line is
placed at a height of 2h0, and the third line at 3h0.

Figure 5.5: Variation of the reconstructed reflectance with M = 2000 modes with
different integration heights.

In Fig. 5.4b, we plot the reconstructed specular reflectance spectra from all
three computation heights with M = 200 modes, sampled from a single compu-
tation with a central frequency ωc = 0.2ωp. This small sample of mode contains
all 7 resonant modes in the desired spectra as well as some PML modes from the
rotated continuous spectrum and the first two branch cuts corresponding to the
diffraction orders. We can see that with this truncated basis of modes, there is
a lot of variance between the reflectance spectra computed at different heights,
whether it be in or out of resonance. It would seem that the closer the integration
height is to the top of the grating, the higher the computed reflectance when out
of resonance. The resonance deeps seem to have the same depth from one com-
putation to the next and seem offset by the non-resonant signal. The widest and
deepest peak at 710 nm seems to be the one that is reconstructed with the most
accuracy by all simulations.

In Fig. 5.5, we plot the spectra of the grating for all three integration heights
with M = 2000 modes, sampled from both sides of the spectrum with Re(ω̃m) ∈
[−ωp, ωp]. Compared to the previous simulation, the variance between the dif-
ferent computations has lessened with the addition of modes in the expansion.
This would seem to indicate that the expansion has converged in space to some
degree as the number of modes increased.

In Fig. 5.6, we plot the modulus of the reconstructed scattered magnetic field
in the unit cell plane for an illumination wavelength of λ = 500 nm. The modal
field reconstruction with 500 modes and beyond is plagued with numerical sin-
gularities that tarnish the field reconstruction on the metal’s surface, not present
in the real frequency simulations performed with COMSOL. The singularities
correspond to select modes whose electromagnetic energy is confined intensely
on the metal’s surface.

In Fig. 5.7, we compare the normalized eigenfields of one of the resonant
modes and one of the singularity modes. We can see that the fields have similar
levels of intensity at different points in space. We can also see that the electric
field for both modes is also intense at the top of the air groove. This is significant
because the excitation coefficient is computed with an overlap integral evaluated
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Figure 5.6: Modulus of the scattered magnetic field’s z-component Hz computed
at λ = 500 nm with the modal expansion using M = 200, 500, 1000 modes and a
real frequency simulation using COMSOL.

within this region, and the overlap integral is between the normalized electric
field of the mode and a plane wave that is exponentially decreasing as it dives
deep into the groove. Thus, the value of the overlap integral is determined mostly
by the eigenfield at the top of the groove. We evaluate the overlap integral and
the excitation coefficient for both of these modes in Table 5.1. We can see that the
modes have similar levels of excitation at λ = 500 nm, which explains the visi-
ble hot spots on the grating’s surface when we reconstruct. These singularities,
which are not present in the real frequency simulation, indicate that if we were
to compute the reflection at heights closer to the grating’s surface, that the results
would be affected by these hot spots.

λ̃m[nm]
∫∫∫

Vres
eb · ẽm,−ηd3r αm |αm|

Singularity mode 205.9 + 1.5i -0.0011 - 0.0009i -0.0042 - 0.0161i 0.0166
Resonant mode 714.1 + 38.7i 0.0334 + 0.7844i 0.0174 - 0.0294i 0.0342

Table 5.1: Eigenwavelength and excitation coefficient at an excitation wavelength
λ = 500 nm for the two modes displayed in Fig. 5.7
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Figure 5.7: (a) Modulus of the normalized magnetic field of the QNM resonant
at λ = 714 nm and (c) normalized modulus of the mode’s electric field’s x com-
ponent. (b) Modulus of the normalized magnetic field of the singularity mode
and (d) modulus of the electric field’s x component of a singularity mode. In the
bottom pictures, we contour the resonator volume Vres with blue boxes.

In order to measure, the effects of these hot spots, we decide to add a line to
the geometry that is closer than the previous ones. We place a line at a height
λp/20 = h0/10 above the top of the grating. This forces the mesh to employ
smaller triangular elements between the line and the top of the grating. Since the
mesh has changed, we must perform the mode searching computation again.

However the change in the mesh, in particular the refinement of the mesh
at the surface of the grating, has modified the catalog of modes we have com-
puted. We reconstruct the scattered magnetic field with the 2000 modes we have
computed this time and we can observe in Fig. 5.8 that the singularity modes
are less prominent. The hot spots that were present in the previous simulations
have greatly diminished. We suspect that these modes were purely numerical
and linked to the finesse of the mesh near the metal’s surface.

In Fig. 5.9, we plot the difference between the modulus of the reconstructed
magnetic field and the magnetic field computed directly by COMSOL. We can
see that the major differences between the two fields are localized mainly on the
metal’s surface. Lesser errors are found in the grooves, where the field is gener-
ally more potent. Relatively low errors are located above the grating, but these
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Figure 5.8: We added a line to the mesh that’s close to the surface of the metal.
We compute 2000 modes with this new mesh and reconstruct the field with those
modes. We see that adding this line to the mesh has removed, or rather, mini-
mized the computation of the potentially spurious modes like the one show in
Fig 5.7.

errors have a more substantial effect on the reconstruction of quantities such as
the specular reflection, because of the lowered intensity of the field in that area.
The relative error in the grooves is low while the local relative error above the
grating is rather high, in the order of 10%.

Figure 5.9: Difference between the scattered magnetic field directly computed
with COMSOL and the modal reconstruction with 2000 modes. The color scale
changes between (a) and (b). In the groove, the magnetic field can reach values
of 1.6 as shown in Fig. 5.8b.

In this section, we have seen how the reconstructed field is not reconstructed
to the same degree of precision in all points in space, using the quality of the re-
constructed reflectance as a measure of the quality of the reconstruction. The con-
vergence of the reconstructed field in space depends on the number of modes in
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the expansion, provided that the modes in the expansion are computed correctly.
We’ve shown that choices when meshing the structure lead to the computation of
numerical modes, which can greatly affect the quality of the reconstructed field,
especially, in this example, near the surface of the Drude-metal material. While
the local error is high in some places, in some points reaching 10% or more, the
overall error on the reflectance spectra averages to 2%.

5.3 Convergence speed of the modal expansion: find-
ing the good sorting mechanism for modes

In this section, we will analyze the convergence speed of the modal expansion of
the scattered electric field of a three-dimensional structure, the cylinder pictured
in Fig. 5.10 with the aim of deciphering which components of the modal expan-
sion and the modes’ characteristics could be useful in determining the “fastest
path to convergence”, a way to reach a certain degree of convergence with the
least modes necessary. While true convergence would require all the modes to be
included in the expansion, identifying the few modes which are the most influ-
ential in order to accurately reconstruct the field could prove useful in analyzing
resonator dynamics.

The cylinder is 400 nm high, has a radius of 240 nm and is made out of Al-
GaAs. The permittivity of this material is modeled with a Lorentz-pole model in
the infrared:

ε(ω) = ε∞ −
ω2

p

ω2 −ω2
0

(5.2)

with ωp = 1.691016rad · s−1, ω0 = 5.551015rad · s−1, and ε∞ = 1. The cylinder
is placed in an air background and the model is bounded by Perfectly Matched
Layers. In this section, the sign convention has changed to exp(+iωt) for time-
harmonic fields.

In this scattering experiment, we aim to define different mode sorting criteria
in order to ascertain which modes are useful in the expansion and how many
modes it takes to obtain a satisfactory value of the error. In the following section,
we will define all the sorting criteria, give their advantages and disadvantages,
and then compare their efficiency.

5.3.1 Criterion 1

Criterion 1 consists in ranking the modes according to the value of their excitation
coefficient αm(ω). The modes will thus be ranked according to:

β1,m(ω) = |αm(ω)| =
∣∣∣∣(εb − ε∞ +

ω̃m

ω− ω̃m
∆ε(ω̃m)

) ∫∫∫
Vres

Ed · ẼmdV
∣∣∣∣ . (5.3)

The modes would be sorted according to the decreasing value of the criterion
β1,m where the most influential mode according to this criterion would be the one
with the highest value of β1,m, the most excited mode, and so on.
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Figure 5.10: (a) Cylinder system and computed eigenmode spectra. The modes
are colored according to how intense the field in the PML (inside the domain
ΩPML) is compared to everywhere else (Ω\ΩPML). (b) Normalized eigenfield of
two QNMs.

This criterion is logical because it is a direct indicator of the mode’s level of
excitation. However, its flaws are that it’s not a ranking that is universally valid
for all excitation frequencies and polarizations. Not only that, but for isolated
structures, like this cylinder in air, it would only take into account the field inside
the resonator. For more complicated structures, it would depend on the choice of
background permittivity and its corresponding background field which is logical
since modes that aren’t excited by the background field would correspondingly
not be important to the reconstruction of the field.

In order to relieve ourselves of the dependency on the polarization of the back-
ground field Ed, we will consider this alternative version of the criterion, where
we replace the overlap integral from Eq. 5.3:

β′1,m(ω) =
1
3

∣∣∣∣(εb − ε∞ +
ω̃m

ω− ω̃m
∆ε(ω̃m)

)∣∣∣∣(∣∣∣∣∫∫∫Vres
Ẽm,xdV

∣∣∣∣+ ∣∣∣∣∫∫∫Vres
Ẽm,ydV

∣∣∣∣+ ∣∣∣∣∫∫∫Vres
Ẽm,zdV

∣∣∣∣) .
(5.4)

This modified criterion should take into account all of the components of the
mode’s normalized eigenfield.

5.3.2 Criterion 2

Criterion 2 consists in comparing the fields inside the PML to the field outside the
PML in order to distinguish the QNMs from the PML modes. Modes whose fields
carry physical meaning like QNMs are damped inside the PML. PML modes have
no such restrictions and the field in the PML is usually just as potent as the one
in the physical domains, if not more.
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We evaluate this criteria with the following formula:

β2,m =

∫∫∫
ΩPML

|Ẽm|2dV∫∫∫
Ω\ΩPML

|Ẽm|2dV
, (5.5)

where ΩPML is the PML domain, and Ω is the entire model’s domain; Ω\ΩPML
thus corresponds to the physical domain.

The advantage of this criterion is that it does not depend on the incident plane
wave in any way. It does not depend on its polarization nor its excitation fre-
quency and only uses the modal fields. It also distinguishes the PML modes from
the physical modes. However, it comes with a number of drawbacks. For one, we
run the risk of deprioritizing PML modes that are beneficial in the reconstruction
of the field. There could also potentially not be any useful sorting of the QNMs
amongst themselves.

The criterion as defined in Eq. 5.5 does not consider the resonant nature of the
modes. It thus could be potentially beneficial to modify the criterion so it takes
the lineshape of a mode’s resonance into account:

β′2,m(ω) =

∣∣∣∣ω− ω̃m

ω

∣∣∣∣
∫∫∫

ΩPML
|Ẽm|2dV∫∫∫

Ω\ΩPML
|Ẽm|2dV

. (5.6)

With Eq. 5.6, we have weighted β2,m with an inverse Lorentzian lineshape
that corresponds to the mode’s eigenfrequency ω̃m. This should allow us to dis-
tinguish which QNMs are resonant at the evaluation frequency ω.

5.3.3 Criterion 3

This criteria serves to evaluate the level of polarization of the resonator by a
mode. The modal polarization vector P̃m = (ε(ω̃m) − ε∞)Ẽm and the scattered
polarization vector can be written:

Ps(r, ω) =
M

∑
m

αm(ω)P̃m. (5.7)

A possible criterion to incorporate this idea could be:

β3,m = |αm(ω)|
∫∫∫

Vres

∣∣∣P̃m

∣∣∣ dV. (5.8)

This criterion would inherit the advantages and disadvantages of the first cri-
terion in Eq. 5.3 with the added information that comes with the polarization
vector. We also can make an alternative criterion like β′1,m in Eq. 5.4 which would
not depend on the driving field:

β′3,m = β′1,m

∫∫∫
Vres
|P̃m|dV. (5.9)

5.3.4 Numerical Results and Comparison

We compute a total of 2000 modes and reconstruct the scattered field with the
modal expansion. The truncated modal expansion includes a total of M mode,
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sorted from 1 to M according to the previously defined criteria. The truncated
scattered field is thus written:

Es,M(r, ω) =
M

∑
m=1

αm(ω)Ẽm(r). (5.10)

We will evaluate the scattered field at the excitation wavelength λ = 1550 nm.
The error will be computed at a single frequency and we will compute the error
on the scattered field of the modal reconstruction using a direct computation as a
reference. We will compute the error value for a truncated basis of M modes as:

Error(ω, M) =

∫∫∫
Vres
|Es,M(r, ω)− Es,re f (r, ω)|dV∫∫∫

Vres
|Es,re f (r, ω)|dV

. (5.11)

We undertake to compute the error inside the cylinder since it is a domain that is
not bordering a PML and that has finite dimensions.

Figure 5.11: Real frequency simulation with COMSOL and modal reconstruc-
tion with 2000 modes of the scattered field for an incident plane wave prop-
agating along x and polarized along z at λ = 1550 nm. We plot the error as
a function of the number of modes in the expansion using the sorting criteria
β1,m, β′1,m, β2,m, β′2,m, β3,m, β′3,m.

We use two COMSOL models to perform the numerical experiment. The first
model is used to compute the QNMs, and the reconstructed field at the λ =
1550 nm is computed using MATLAB-Livelink based on the MAN package[47].
The second is used to compute the scattered field directly using COMSOL.

Both models use the same mesh, meaning that extracting the scattered field
or a QNM field in a particular domain yields matrices with the same dimensions.
The overlap integrals and the computation of the excitation coefficients are per-
formed in MATLAB using these matrices. We also compute the sorting criteria
and the error values using those extracted matrices.

In Fig. 5.11 and 5.12, we plot the scattered field in the x-z plane for two differ-
ent polarizations using the direct computation and the modal expansion with M
= 2000 modes. On the right side of both figures, we plot the error value computed
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Figure 5.12: Real frequency simulation with COMSOL and modal reconstruc-
tion with 2000 modes of the scattered field for an incident plane wave prop-
agating along z and polarized along x at λ = 1550 nm. We plot the error as
a function of the number of modes in the expansion using the sorting criteria
β1,m, β′1,m, β2,m, β′2,m, β3,m, β′3,m.

as a function of the number of the modes in the expansion as sorted by all the dif-
ferent sorting criteria. The fastest convergence is obtained with β1,m and β3,m with
about 40 modes out of 2000. The slowest convergence is obtained with the β2,m
and β′2,m which we expected since they are the only criteria that did not take the
excitation of the mode into account. All criteria converge towards the same value
with less than 600 modes, beyond which there is little variation. From the huge
spikes in the error value on some of the curves, we can see that about 10 or so
modes have a large effect on the error, with 2 specific modes consistently creating
huge spikes in the error value. When we try to sort modes without considering
the driving field’s characteristics, it inevitably slows down the convergence of the
expansion.

We conclude that the reconstruction, for this example at least, is mostly car-
ried by a minority of modes which inflicts macroscopic levels of change into the
reconstructed field with their addition into the expansion. The most effective way
of sorting modes for this purpose is to compute their levels of excitation, since it
directly translates their effect on a spectrum or on the field as discussed in the
supplementary information of [30]. Important modes that were not computed
because they lie further within the complex plane, be they QNMs or numerical
modes, could potentially reduce the error to lower levels. The main obstacle to
convergence is not the number of modes but rather whether we have included
the right modes into the expansion, and this requires a thorough and long ex-
ploration of the complex plane. Since we compute modes in bulk according to
their proximity to a central frequency instead of their importance to the recon-
struction, like it can be shown to be done [83], we end up spending computation
time finding and spending storage to store them. For more computationally in-
tensive electromagnetic simulations, like this three-dimensional example, storage
and computational time stacks up quickly if we wish to simulate systems with a
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reasonable level of accuracy.

5.4 Conclusion

In this chapter, we have highlighted some of the numerical issues that arise when
reconstructing the scattered field with the modal expansion with many numer-
ical modes, unlike most of the literature. Although we achieve accurate results
over a large spectrum, the simulations are extremely sensitive to numerical pa-
rameters. PML modes, which have been shown to be relevant to the accuracy
of the modal expansion vary widely with the parametrization of the PML. For
the grating example, the reconstruction of the spectra depends heavily on the
numerical modes. We have also shown that the convergence of the field of the
QNM expansion is not uniform in space: the field converges better in some areas
than others. The mesh of the finite element model changes the modes we com-
pute and these modes can reach levels of excitation similar to physical modes
which actually hold physical significance. These spurious modes can affect the
reconstruction of the field spatially and their computation is prevented by finer
meshing around the surface of metallic domains. The convergence curves that
we have drawn show that the modes that are most important to the convergence
of the expansion are the ones that are the most excited. In these examples, a very
low proportion of modes lowered the error significantly.
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Chapter 6

Interpolation-supplemented
Quasinormal mode expansion

The optical response of micro- and nano-resonators is usually described by the
excitation of a few resonant modes [14]. The quasinormal mode expansion con-
sists in reconstructing that response from modal contributions. However, numer-
ical simulations have shown that the expansion converges if a great number of
modes are included in the expansion, some of them purely numerical in nature,
as discussed in the literature [30, 34, 50] and the previous chapters. However,
while the main resonant features of a spectra are reconstructed with few select
modes that bear physical meaning, a broadband and effective convergence is con-
ditioned by the addition of non-resonant physical modes and purely numerical
modes [30, 35]. These additional modes usually act as a fine, broadband offset on
the measured spectra when they are added in bulk. These and out-of-resonance
modes greatly outnumber the resonant contribution and most articles in the liter-
ature usually only include the few essential modes [41, 38, 39, 40, 42, 43, 85, 86, 87],
which allows for a clear modal analysis of physical phenomena.

The latter approach represents the expectations that a uninitiated user of the
QNM expansion has. With that mindset, a user would expect each excited mode
to represent a resonance that could be located on a spectrum, and the resonator
response would then be described as a superposition of resonances with clear,
documented origins, like Fabry-Pérot modes [63, 35], Bragg resonances [32], sur-
face plasmon modes [35, 34], and dipolar, quadripolar modes [42]. It breaks down
the resonator response as a competition between different engendered resonances
whose resonance frequencies, spectral widths, and lifetimes are given by their
complex frequencies. However, the accuracy of the reconstruction and the ne-
cessity of numerical modes hamper its overall usefulness. Methods to overcome
these limitations are being investigated. For example, causality considerations
can be used to offset the divergence of the field of Fabry-Pérot modes as they
leave the cavity [63]. This allows the field for the 1D cavity to be reconstructed
accurately inside and outside the cavity. In [36], the use of contour integrals in
the complex plane allows for the computation of modes and very precise recon-
structions with few modes.

We propose to overcome the convergence difficulty while considering a small
number of modes. Here, the combined contribution of the many non-resonant
and numerical modes is interpolated using a limited number of real frequency
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computations of the field. Owing to the low variation within a given frequency
range of the non-resonant contribution, it is easily interpolated from few interpo-
lation points. In this chapter, we will present a method that uses the interpolation
of a limited number of direct computations to achieve a convergent reconstruc-
tion of the field while employing the Quasinormal mode expansion, allowing for
a modal analysis of the response. We will first present the interpolation schemes
we use then put the interpolation into practice on a three-dimensional example.

Our system is described by a permittivity distribution ε(r, ω). The modes of
the system are the modes Ẽm which solve the source-free Maxwell’s equations at
the complex frequency ω̃m. With a finite number of modes, we can reconstruct
the scattered field EM

s at the real frequency ω:

EM
s (r, ω) ≈

M

∑
m

αm(ω)Ẽm(r) (6.1)

The expansion of the scattered field should converge towards the exact solution
Es as the number of modes M → ∞ due to completeness [31]. This particular
result has been demonstrated numerically [30] and a great number of the modes
included in the expansion in those results bear no physical meaning. They are
modes created from the use of Perfectly Matched Layers to satisfy the scattering
boundary condition at |r| → ∞, oftentimes labelled PML modes [30, 32, 35], or
other numerical modes spawned from the discretization of the continuous prob-
lem. While a resonant feature can usually be attributed to the excitation of a single
mode, hundreds, if not thousands, of modes are necessary in order to converge
towards the exact solution. In that sense, few physical modes can qualitatively
reconstruct the sharper variations of a spectrum while an amalgamation of non-
resonant physical modes [62], PML modes and other numerical modes build a
generally monotone, smooth function of the frequency.

6.1 Interpolation scheme

In this chapter, the sign convention exp(+iωt) is used for time-harmonic fields.
We denote u(r, ω) the difference between the exact solution and the Quasinormal
mode expansion:

u(r, ω) = Es(r, ω)− EM
s (r, ω) = Es(r, ω)−

M

∑
m=1

αm(ω)Ẽm(r). (6.2)

We consider real frequencies ω within the range [ωi, ω f ]. If we include M quasi-
normal modes such that all the resonances within the spectra are accounted for,
then the difference u(r, ω) is a slowly varying function within [ωi, ω f ]. It can thus
be conveniently approximated by a polynomial over the frequency spectra.

We choose N interpolation points scattered within [ωi, ω f ]:

ωk = ωi +
1 + xk

2
(ω f −ωi), (6.3)

where xk are points over the interval [−1, 1]. Many set of interpolation points
can be used for an efficient interpolation, we have investigated three families of
points:
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• Chebyshev points [88]: xk = cos
(

2k− 1
2N

π

)
, k = 1..N

• Clenshaw-Curtis points [89]: xk = cos
(

k− 1
N − 1

π

)
, k = 1..N

• Leja points defined recursively as (see [90]):

xk = argmaxx∈[−1,1]

k−1

∏
i=1
|x− xi|, k > 1

with x1 = 0.

All these points avoid the Runge phenomenon [91] such that the interpolation
of a smooth function, of class C1 or higher, will converge exponentially without
oscillating at the edges of the interpolation interval. Leja points have the ad-
vantage to constitute a nested sequence of points, such that a sequence of n Leja
points would be included in the sequence of n + 1 Leja points, meaning that in-
creasing the number of interpolation points from n to n + 1 would require only
one new computation. For the other points, there exists a nested sequence with
N = 1, 3, 9, 27, · · · for Chebyshev, and N = 1, 3, 5, 9, 17, 33, · · · for Clenshaw-
Curtis points. u(r, ω) can be approximated by the following polynomial:

u(r, ω) ≈
N

∑
k=1

uk(r)ϕk(ω), (6.4)

with uk(r) = u(r, ωk) and the Lagrange polynomials ϕk(ω) =
∏N

j=1,j 6=k ω−ωj

∏N
j=1,j 6=k ωk −ωj

.

The scattered field can thus be approximated as :

EI
s(r, ω) =

M

∑
m=1

αm(ω)Ẽm(r) +
N

∑
k=1

uk(r)ϕk(ω). (6.5)

The polynomial u(r, ω), composed of a sum of Lagrange polynomials, forces
EI

s(r, ωk) = Es(r, ωk) at all the interpolation frequencies ωk: the interpolated field
is thus equal to the reference field at the interpolation frequencies and will tend
towards the value of the reference field near the interpolation frequencies, due to
the continuity of the interpolated vector in frequency.

This interpolation method is linear meaning that it is scalable with the num-
ber of spatial points of the field. Meaning that the interpolation can be used for
a complex-valued, multiple component vector, as well as values in space of that
same vector. All the fields can be decomposed on their respective spatial compo-
nents on the x-,y-, and z-axis: E = Exx̂ + Eyŷ + Ezẑ and the same is true of uk:

uk = uk,xx̂ + uk,yŷ + uk,zẑ
= (Es,x − EM

s,x(r, ωk))x̂ + (Es,y − EM
s,y(r, ωk))uyŷ+

(Es,z(r, ωk)− EM
s,z(r, ωk))uzẑ.

(6.6)
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We can thus write the interpolated function u as a sum of its interpolated
spatial components: the interpolated field is a sum of the interpolation of the
different spatial components of the field. Taking Eq. 6.4 and 6.6, we can write:

u(r, ω) ≈ ∑N
k=1 uk ϕk(ω) = ∑N

k=1(uk,xx̂ + uk,yŷ + uk,zẑ)ϕk(ω)

=
(

∑N
k=1 uk,x ϕk(ω)

)
x̂ +

(
∑N

k=1 uk,y ϕk(ω)
)

ŷ+(
∑N

k=1 uk,z ϕk(ω)
)

ẑ.
(6.7)

In the same way, we can interpolate the real and imaginary parts of the fields
separately because the frequency ω is real and the Lagrange polynomial is thus a
real function. Using Eq. 6.4, we can write:

u(r, ω) ≈
N

∑
k=1

uk ϕk(ω) =
N

∑
k=1

Re(uk)ϕk(ω) + i
N

∑
k=1

Im(uk)ϕk(ω). (6.8)

6.2 Numerical Results

We call reference solution, the solution Es computed directly by the finite element
method with COMSOL Multiphysics software. We call the modal solution, the
solution EM

s computed with the modal expansion. The reference solution and the
modes are computed with the same finite element mesh. We call the interpolated
solution, the solution EI

s computed with the equation (6.5). For the expression of
αm, we use the following formula

αm =
ω

(ω̃m −ω)

∫
Ω
(ε(ω, r)− εb)Einc(r) · Em(r)dr. (6.9)

The choice of formula will not matter in the following section because the res-
onator’s materials is non-dispersive. The set of interpolation points we will use
in the next section are the Chebyshev points.

6.2.1 Dielectric cylinder

We place a dielectric cylinder in an air background. The permittivity of the cylin-
der is non-dispersive with ε = 12.25. The cylinder is 400 nm high and has a radius
of 240 nm, as pictured in Fig. 6.1a.

We first observe the field and the performance of the interpolation method on
two points in space, A and B, in the x-z plane, as pictured in Fig. ??. The driving
field is a plane wave propagating downwards along the z-axis, polarized along
the x-axis.

We compute a total of 50 modes. The real parts of the eigenwavelengths of
the modes fall between 1500 nm and 2000 nm. In Fig. 6.1, we plot the eigenwave-
lengths in the complex plane as well as the electric field at position A computed
with a real frequency simulation and with the modal expansion. We can see that
the shape of the curves are similar and that the reference computation results
seem offset by a almost constant amount compared to the modal reconstruction.
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The difference between the two methods is plotted as well, and is a smooth func-
tion, with some slight variations around 1800 nm due to the slight shift in the
peaks and dips of the modal reconstruction compared to the reference results.
On the right side of Fig. 6.1, we plot the fields of 5 excited QNM modes. The sum
of these modes reconstruct the main variations in the spectrum of interest. The
addition of the other 45 modes has only slightly shifted the value of the electric
field without modifying the overall variation of the electric field over the spec-
tra. This is reminiscent of most demonstrations of the QNM expansion such as
the modal reconstruction of the specular reflectance of the grating as shown in
Fig. 4.11 in Chapter 4. The main seven resonances of the grating example corre-
sponded to 7 dips in the reflectance, and remaining modes had mostly broadband
effects on the reflectance spectrum. These modes were either numerical or with
a resonance frequency outside of the frequency spectra of interest. If the spectra
were wider than more modes be necessary in order to capture the variations.

In the next section, we will first focus on the convergence performance at the
positions A and B.

6.2.2 Results at 2 specific points in the Geometry

Due to the smooth difference between the two different methods, it could be ac-
curately interpolated with a few interpolation points. We plot in Figs. 6.1 and
6.2 the interpolated electric field using 15 interpolation points. The electric field
is fairly well reconstructed on point A but not on point B, where the QNM re-
construction without interpolation differs greatly from the direct computation
results. The x-component of the electric field is reconstructed with a shifted peak
with the modal expansion, yet the error is still somewhat smooth and flat. For the
z-component, the shape of the modal reconstruction spectra is missing a sharp
variation compared to the direct computation. This major difference could be
due to a missing mode that is resonant inside the spectral interval and relatively
intense at point B, which we could attribute to a failure of the solver to find the
necessary mode due to the coarse mesh or because the Perfectly Matched Layers
prevent the mode from being discovered by the solver because the mode’s eigen-
frequency lies beyond the rotated continuous spectra of PML modes [32, 50].
Nevertheless, the interpolation has corrected this discrepancy between the two
methods.

We can define the average relative error on an interpolated complex quantity
X, which could be a component of the electric field for example, sampled over
Ntot = 100 regularly paced points in the wavelength spectra [1500 nm, 2000 nm]
as

〈ErrorX〉 =
1

Ntot

Ntot

∑
p=1

∣∣XS(λp)− X I
S(λp)

∣∣∣∣XS(λp)
∣∣ , (6.10)

where XS represents the reference of the quantity X, and X I the interpolated
quantity. The superscript “I” will be used to designate interpolated quantities.
The relative error on the scattered field vector is thus defined similarly to Eq.
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Figure 6.1: (a) Schematic of the cylinder geometry. Points A and B are two points
in space on which the field will be computed. (b) (top panel) Complex mode spec-
tra of the cylinder. The red squares indicate the 5 modes which contribute most to
the expansion. (bottom panel) Interpolation of the real part of the x-component
of the electric field at point A obtained with the modal expansion and with the
direct computation (labeled “Reference simulation”). The difference between the
two is also plotted. Modal reconstruction of the real part of x-component of the
electric field with M = 5, 50 modes and for 5 modes for which the value of |αm|
were highest in the spectral interval [1500 nm, 2000 nm]. The black dotted lines
denote the resonance wavelengths of the 5 modes. (c) Interpolation of the real
part of the z-component of the electric field with 15 interpolation points at eval-
uation point A. The red crosses represent the location of the interpolation points.
The crosses represent the interpolation points.

6.10:

〈ErrorE〉 =
1

Ntot

Ntot

∑
p=1

∣∣∣∣ES(λp)− EI
S(λp)

∣∣∣∣∣∣∣∣ES(λp)
∣∣∣∣ . (6.11)

The relative error on the spectra evaluated on point A and B and computed for
N = 5, 10, 15 interpolation points over a spectrum. These values are displayed in
Tables 6.1 and 6.2.

For point A, due to the general agreement in the variations of the two methods
and the smoothness of the difference between the two methods, the field is well
interpolated with at least 5 interpolation points. The relative error on the electric
field falls to around 0.05 with 5 interpolation points. By doubling the number
of interpolation points from 5 to 10, the relative error on the spectrum has been
reduced threefold and going from the 10 to 15 interpolation points, the relative
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X 〈ErrorEx〉 〈ErrorEz〉 〈ErrorE〉
5 interpolation points 0.052 0.050 0.033
10 interpolation points 0.018 0.0065 0.011
15 interpolation points 0.0042 0.0027 0.0030

Table 6.1: Average relative error on the interpolated electric field at the evaluation
point A. The spectra is plotted in Fig. 6.1

error value has been reduced by another factor 3. For point A, the error is quite
low even with only 5 interpolation points due to the smooth value of the error
across the spectrum. With 5 interpolation points, we reach an average error on
the spectrum of 0.033 with only 50 modes, comprised only within the spectrum
of interest which somewhat matches the error on the grating with 200 modes.

Figure 6.2: (Left) Interpolation of the real part of the x-component of the electric
field with 15 interpolation points at evaluation point B. (Right) Interpolation of
the real part of the z-component of the electric field with 15 interpolation points
at evaluation point B. The red crosses represent the location of the interpolation
points.

X 〈ErrorEx〉 〈ErrorEz〉 〈ErrorE〉
5 interpolation points 0.11 0.53 0.11
10 interpolation points 0.043 0.16 0.043
15 interpolation points 0.0082 0.042 0.0082

Table 6.2: Average relative error on the interpolated electric field at the evaluation
point B. The spectra is plotted in Fig. 6.2

The QNM expansion being less effective on point B in reconstructing the field,
the error is much greater than on point A. Nevertheless, the interpolation has
bridged the gap between the modal expansion and the direct computation, de-
spite the very different results for the z-axis at this particular point in space. While
the error on the vector is somewhat high, the average relative error fall below
0.01 with 15 interpolation points and the error on the z-component is below 0.05
with 15 interpolation points. The interpolation procedure was able to correct the
high inaccuracy on the field at this point in space. The interpolation method has
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shown that it could drastically reduce the errors on the spectra. As we have seen
for point B, even when the reconstruction was somewhat inaccurate, the error
was somewhat lessened by the interpolation method.

The error would surely decrease further as more interpolation points are used
to interpolate the field. Previously, in order to make the modal expansion con-
verge, we simply added more modes into the expansion. However, adding more
modes does not guarantee that the reconstruction will be more accurate by sim-
ply adding a mode or two. The convergence curves found in the supplementary
information of [30] show that the evolution of the error as more modes are added
into the expansion is not monotonous. The error does trend towards decreasing
as the number of modes in the expansion rises but not at a set speed. The same
could be observed in the reconstruction of the specular reflectance of the grating
in Chapter 4 of this thesis.

6.2.3 Convergence of the Interpolated QNM Expansion inside
and outside the cylinder

In this section, we will explore the convergence in space of the interpolated QNM
expansion inside a volume instead of single points in space and estimate the
rate of convergence of the interpolation method. Since the interpolation method
is scalable, we can just as easily interpolate a single point in space as we can
multiple points. Numerically, this means that we interpolate each element of
a matrix of points separately. We compute the electric field over the spectra
λ ∈ [1500 nm, 2000 nm] with the direct method and the modal expansion. Like in
the previous section, we interpolate the field, this time for 279 points inside the
cylinder. The number of points depends on the finesse of the mesh.

In Fig. 6.3, we plot the relative error:

relative errorEx(λ) =

∣∣Re(Ex(r, λ))− Re(EI
x(r, λ))

∣∣
|Re(Ex(r, λ))| (6.12)

for each of the 279 points in space when the interpolated field is constructed using
15 interpolation points. For most of the positions where the field is reconstructed,
the error varies between 10−2 and 10−4. The error rises for most points between
1800 and 1900 nm since that where the sharp variations of the difference between
the modal expansion and the direct computation are usually located. For some
wavelengths and some points in space, the error reaches relatively high values
like 6 10−1.

We can integrate the relative error over the volume of the cylinder for a single
frequency:

ErrorVol =
1

Vcyl

∫∫∫ ∣∣∣∣ES(λ)− EI
S(λ)

∣∣∣∣
||ES(λ)||

dV, (6.13)

and we compute the mean integrated relative error like in the previous section
with the following formula:

〈ErrorVol〉 =
1

Vcyl

1
Ntot

Ntot

∑
p=1

∫∫∫ ∣∣∣∣ES(λp)− EI
S(λp)

∣∣∣∣∣∣∣∣ES(λp)
∣∣∣∣ dV. (6.14)
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Figure 6.3: Relative error on the interpolation of the real part of the electric field’s
x-component with 15 interpolation points. Each curve corresponds to a different
point in space.

We plot the mean integrated relative error on the spectra as a function of the
number of interpolation points on Fig. 6.4. This error on the spectra falls below
10−2 for 11 interpolation points and keeps falling beyond that. This error is re-
duced by a factor of 10 for every 7 interpolation points added onto the expansion.

In Fig. 6.5, we show how the interpolation can be used to reconstruct the
field in a matrix of points. We can see that the error is localized on the surface
of the cylinder and above the cylinder and that the interpolation of the field has
seemingly fixed most of these errors.

The interpolation method has supplemented the modal expansion and per-
mitted it to converge on a great number of points in space on a wide frequency
spectrum with comparable levels of accuracy to some of the results in the litera-
ture while keeping the number of modes in the expansion relatively low.

With the interpolation, we are sure to get a more precise reconstruction as
more interpolation points are used. Like previously stated,including more modes
does not necessarily assure that the error will decrease. However, this method
only fixes the reconstructed field from a limited number of reference computa-
tion. Since we do not propose a method of analysis, more insight into the res-
onator dynamics is not gained. Users interested by the QNM expansion will have
to gauge whether computing more modes is worth the time and computational
effort. The out-of-resonance modes that the interpolation substitutes have been
shown in previous chapters to be very influential, like the fundamental grating
mode for the grating example in chapter 4 (see the 9th panel of Fig. 4.11) which
visibly lowers the reflectance over the whole spectrum. This is the current trade
off of the interpolation method. Perhaps the analysis of the interpolated differ-
ence between the modal expansion and reference computation could unearth res-
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Figure 6.4: Mean Integrated Relative error of the interpolated scattered field com-
puted across the spectrum, integrated inside the cylinder as a function of the
number of interpolation points.

onator dynamics that the modal expansion has not captured?

6.3 Conclusion

In this chapter we’ve employed the use of direct computations on a few fre-
quencies as a means to interpolate the reconstructed field with the modal expan-
sion. In the case where the variations in a given spectrum are accurately recon-
structed with very few modes, this could be a viable method to reduce the error
on QNM reconstruction, successfully approximating the contribution from nu-
merical modes and non-resonant contributions. However, this comes at a price,
this method sacrifices the non-reliance of the modal expansion on the excitation.
However, the increased accuracy gain is well worth the additional time spent on
the direct computations, especially in the case of high-Q resonances, which are
spectrally very fine and would require appropriate an adequate amount of direct
computations to properly resolve while the computations of these sharp varia-
tions would be analytic with the modal expansion.
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Figure 6.5: We reconstruct the field at λ = 1828 nm. (Top left) Reconstructed
scattered electric field x-component in the xz-plane. (Top right) Scattered electric
field x-component in the xz-plane using a real frequency computation. (Bottom
left) Difference between the scattered field computed with the direct computation
and the modal expansion. (Bottom right) Interpolated Scattered field with 15
interpolation points.
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Appendix A

Completeness of the Fabry-Pérot
Cavity

This demonstration will be considering the one-dimensional case of the Fabry-
Pérot cavity. The goal of the demonstration is to show that the Green’s function,
which describes the interaction between a light source and the inhomogenous
medium, can be expressed as a sum of its modes, which are the poles of the
Green’s function.

We consider here a semi-infinite domain Ω = [0,+∞[ with a Dirichlet bound-
ary condition at 0, and acts as a symmetry plane. The Sommerfeld condition is
applied at infinity:

lim
x→+∞

∂u
∂n
− iωu = 0, (A.1)

where u is a field and n is the unit vector along x pointing outwards from the
resonator, ω is a normalized dimensionless frequency and the demonstration as-
sumes that the celerity c = 1.

The scalar Green’s function in this one-dimensional case in the time harmonic
domain is described as:

(−ω2ρ− ∂2

∂x2 )G̃(x, y; ω) = δ(x− y), (A.2)

where y is a position in space, δ is the Dirac function and ρ(x) = n(x)2, where
n(x) is the refractive index. A practical way to compute Green’s function in 1-D is
to find two intermediate functions f (ω, x) and g(ω, x) that satisfy the following
requirements: 

(−ω2ρ− ∂2

∂x2 ) f (ω, x) = 0, for x ∈ [0,+∞[

(−ω2ρ− ∂2

∂x2 )g(ω, x) = 0, for x ∈ [0,+∞[

f (ω, x = 0) = 0
lim

x→+∞
g(ω, x) = eiωx.

(A.3)

f and g are not unique. We define the wronskian as:

W(ω) = g(ω, x)
∂

∂x
f (ω, x)− f (ω, x)

∂

∂x
g(ω, x). (A.4)
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It can be shown that the Wronskian is independent of x by computing its deriva-
tive along x and showing that it is null using Eq. A.3 and that the Green’s function
is equal to:

G̃(x, y : ω)

{
f (ω, x)g(ω, x)/W(ω), 0 < x < y,
g(ω, x) f (ω, x)/W(ω), 0 < y < x. (A.5)

By construction, this expression of the Green’s function satisfies both the Dirich-
let condition through f and the Sommerfeld condition at infinity through g. The
zeros of the wronskian W(ω) are the resonant frequencies ω̃m. When ω = ω̃m,
we have:

g(ω̃m, x)
∂

∂x
f (ω̃m, x) = f (ω̃m, x)

∂

∂x
g(ω̃m, x). (A.6)

When we divide by f g and integrate, we obtain:

g(ω̃m, x) = C f (ω̃m, x) (A.7)

meaning that f and g are proportianal with C being a constant. We can choose f
such that C = 1 and:

g(ω̃m, x) = f (ω̃m, x). (A.8)

Let us assume that ω̃m is a zero of multiplicity 1 of W, then we have using the
Taylor-expansion:

W(ω) =
dW
dω

(ω̃m)(ω− ω̃m) + ... (A.9)

And we can deduce the residue of G̃ arounf the pole ω̃m:

Rm = f (ω̃m, x)g(ω̃m, x)/
dW
dω

(ω̃m) (A.10)

In section II.C of [31], this quantity is equal to :

Rm =
fm(x) fm(x)

2ω̃m〈〈 fm| fm〉〉
, (A.11)

where fm(x) = f (ω̃m, x) and

〈〈 fm| fm〉〉 =
∫ +∞

0
ρ(x) f 2

m(x)dx. (A.12)

To prove the completeness of QNM modes, we perform an inverse Fourier
transform of the time-harmonic Green’s function:

G(x, y, t) =
1

2π

∫ +∞

−∞
G̃(x, y, ω)e−iωtdt. (A.13)

This integral can be computed using a contour C shaped like the half disk:

C = [−R, R] ∪ {Reiθ, θ ∈ [−π, 0]}. (A.14)
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with R→ ∞. The residue theorem for this contour gives us:∫
C

G̃(x, y, ω)e−iωtdt = 2iπ ∑
ω̃m∈C

Rme−ω̃mt. (A.15)

Provided that are no branch cuts in the area of the complex plane enclosed by
the contour and that

lim
|Im(ω)|→+∞

G̃(x, y, ω) = 0, (A.16)

we can show that for R→ ∞:

G(x, y, t) = −i ∑
m

Rme−iω̃mt =
i
2 ∑

m

fm(x) fm(y)
ω̃m〈〈 fm| fm〉〉

e−iω̃mt, (A.17)

The Green’s function satisfies the initial condition

ρ(x)
∂G
∂t

(x, y, t = 0+) = δ(x− y). (A.18)

Using Eq. A.17 and A.18, we obtain the relation proving completeness:

1
2 ∑

m
ρ(x)

fm(x) fm(y)
〈〈 fm| fm〉〉

= δ(x− y), (A.19)

showing that the field can be written as a sum of the resonant contributions, the
quasinormal modes of the structure defined by the permittivity distribution ρ(x),
which make the field diverge when evaluated at their eigenfrequency. In the case
of the Fabry-Pérot cavity, where the permittivity distribution ρ(x) is defined as :

ρ(x) =
{

n2
1 = 1, |x| > a,

n2
2, |x| < a.

(A.20)

In this example, the functions f and g that satisfy the requirements are:

f (ω, x) =
{

α f (ω)sin(ωx) + β f (ω)cos(ωx), x > a,
sin(ωn2x), x < a,

(A.21)

g(ω, x) =
{

eiωx, x > a,
α(ω)sin(n2ωx) + β(ω)cos(n2ωx), x < a,

(A.22)

with

α f (ω) = sin(ωn2a)sin(ωa) + n2cos(ωn2a)cos(ωa), (A.23)

β f (ω) = sin(ωn2a)cos(ωa) + n2cos(ωn2a)sin(ωa), (A.24)

α(ω) = eiωa
(

sin(ωn2a) +
i

n2
cos(ωn2a)

)
, (A.25)

β(ω) = eiωa
(

cos(ωn2a) +
i

n2
sin(ωn2a)

)
. (A.26)
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f and g are found by considering them as a sum of sine and cosine functions on
each interval. The wronskian can thus be expressed as

W(ω) = ωn2β(ω). (A.27)

For x < y < a, the Green function can be expressed as:

G̃(x, y, ω) = sin(ωn2x)
α(ω)sin(ωn2y) + β(ω)cos(ωn2y)

ωn2β(ω)
. (A.28)

β(ω) and α(ω) can be written with exponentials:

β(ω) = eiωa
[

eiωn2a
(

1
2
− 1

2n2

)
+ e−iωn2a

(
1
2
+

1
2n2

)]
, (A.29)

α(ω) = eiωa
[

eiωn2a
(
− i

2
+

1
2n2

)
+ e−iωn2a

(
i
2
+

1
2n2

)]
. (A.30)

We can express the Green function using exponentials as well:

G̃(x, y; ω) =

eiωn2(−a+y+x)
(

1
4i

+
1

4in2

)
+ eiωn2(a+x−y)

(
1
4i
− 1

4in2

)
n2ω

[
eiωn2a

(
−1

2
− 1

2n2

)
+ e−iωn2a

(
1
2
+

1
2n2

)]

+

eiωn2(−a−x+y)
(
− 1

4i
− 1

4in2

)
+ eiω(a−x−y)

(
− 1

4i
+

1
4in2

)
n2ω

[
eiωn2a

(
1
2
− 1

2n2

)
+ e−iωn2a

(
1
2
+

1
2n2

)]
(A.31)

We consider here a complex frequency ω = ωR + iωI with ωI < 0. The
denominator of G̃ is equivalent at large |ωI | and n2 6= 1 to :

|Denominator(G̃)| ≡ 1
n2ω

∣∣∣∣12 − 1
2n2

∣∣∣∣ e−ωIn2a. (A.32)

Whereas, the numerator will increase less quickly than the denominator for
large |ωI | due to the condition x < y < a. For large enough |ωI |, we obtain:

|G̃| ≤
∣∣∣∣ C
n2ω

∣∣∣∣ (A.33)

with C a constant. The limit of |G̃| is thus equal to 0 and thus the completeness
of the QNM basis is proven inside the cavity (a similar computation can be con-
ducted for y < x < a).

Now, we consider the case x<a, y>a. We have

G̃(x, y; ω) =
sin(ωn2x)eiωy

n2ω

[
eiωn2a

(
1
2
− 1

2n2

)
+ e−iωn2a

(
1
2
+

1
2n2

)] (A.34)
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For large ωI , we get

|G̃(x, y; ω)| ≡ C
1

n2ω

e−ωI(n2x+y)

e−ωI(n2a+a)
. (A.35)

As soon as n2x + y > n2a + a, the limit of G̃ is infinite instead of 0 and there is no
completeness outside of the cavity.
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Reconstruction des champs électromagnétiques avec les 
Modes Quasinormaux : une approche numérique 

 

Résumé :  

La réponse des résonateurs optiques ouverts suite à leur excitation peut se décrire 
par la superposition de leurs résonances intrinsèques, leurs modes quasinormaux 
(QNM), qui sont excités par un champ incident et qui s’atténuent exponentiellement 
dans le temps à cause de fuites d’énergie et l’absorption. Les QNMs sont les 
vecteurs propres des équations de Maxwell harmoniques et permettent d’obtenir plus 
d’informations sur la dynamique du résonateur. Cependant, la complexité de la 
modélisation des résonateurs et du calcul des modes amènent à l’utilisation d’outils 
numériques pour résoudre ces systèmes équations linéaires afin de trouver les 
modes. La discrétisation du problème et certaines méthodes utilisées pour vérifier les 
conditions d’onde sortantes se manifestent à travers des modes numériques qui 
complètent la base des QNMs et qui permettent à la superposition de modes de 
converger si un grand nombre de modes, physiques et numériques, sont pris en 
compte. Nous vérifions que les formules qui existent pour la méthode des champs 
auxiliaires appliquée aux QNMs ont une origine commune et produisent des résultats 
similaires. Nous calculons les modes de structures périodiques afin de reconstruire le 
champs sur un spectre fréquentiel large. Nous essayons de faire converger la 
superposition des QNMs en trouvant un moyen de classifier les modes et explorons 
ensuite la dépendance des modes à certains paramètres numériques. Nous faisons 
converger la reconstruction modale du champ avec peu de modes en interpolant. 

 

Mots clés :  

Nanophotonique, Interaction Matière-Rayonnement, Simulation numérique, 
Simulation électromagnétique, Résonance, Modes, QNM, Résonateur, Modes 
Quasinormaux 

 

 

 



 

Reconstruction of Electromagnetic Fields with Quasinormal 
Modes: A Numerical Approach 

 

Abstract :  

The response of open optical resonators to excitation can be expressed as a 
superposition of their intrinsic resonances, their quasinormal modes (QNM), which are 
loaded by the driving field and decay exponentially in time due to power leakage or 
absorption. Quasinormal modes are the eigensolutions of the time-harmonic Maxwell’s 
equations et complex eigenfrequencies and allow more physical insight to be brought 
into the analysis of resonator dynamics. However, due to the complexity in modeling 
the open resonators and computing their modes, numerical tools such as linear 
eigenmode solvers are frequently called upon. The numerical discretization of the 
problem and some of the methods used to satisfy boundary conditions manifest 
themselves in the form of numerical modes that bear no physical meaning but complete 
the QNM basis and allow it to converge if many modes are included in the expansion. 
We also verify that the multiple formulas that exist for the auxiliary-field formulation of 
the QNM expansion have a similar origin and produce the same results. We compute 
the modes of periodic resonator structures to reconstruct the spectra on a wide 
spectrum of frequencies. We try to make the expansion converge with the least amount 
of modes by finding a way to classify them then explore the dependence of the modes 
on numerical parameters. Finally, we devised a way to obtain convergent results with 
few modes by interpolating from a few real frequency computations. 

Keywords : Nanophotonics, Light-matter interaction, Numerical Simulation, 
Computational Electromagnetics, Resonance, Modes, Quasinormal Modes, QNM, 
Resonator 
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