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Abstract

Abstract

This Ph.D. thesis is done mainly in the context of the European Research Council’s (ERC)
Advanced Grant project Scale-FreeBack and partially in the context of the Inria’s COVID-19
Mission project Healthy-Mobility. The Scale-FreeBack project aims to develop a holistic, scale-free
control approach to complex systems and to set new foundations for a theory dealing with complex
physical networks with arbitrary dimensions. On the other hand, motivated by the onset of the
COVID-19 pandemic, the Healthy-Mobility project aims to develop optimal control strategies for
testing and urban human mobility to limit the epidemic spread. In relation to both projects, the
contributions of the thesis are respectively divided into two parts.

In the first part of the thesis, we develop a theory for monitoring large-scale clustered network
systems with limited computational and sensing equipment through a projected network system,
which is of tractable dimension and is obtained through the aggregation of clusters of a network
system. We propose a minimum-order average observer and provide its design criteria. Then,
the notions of average reconstructability, average observability, and average detectability are de-
fined and their necessary and sufficient conditions are provided. We also provide graph-theoretic
interpretations of these notions through inter-cluster and intra-cluster graph topologies of a clus-
tered network system. When a clustered network system does not meet the design criteria of the
average observer, we devise an optimal design methodology to minimize the average estimation
error. On the other hand, if the clusters are not pre-specified in a network system, we develop
clustering algorithms to achieve minimum average estimation error. Finally, we propose a K-means
type clustering approach to estimate the state variance of network systems, which is a nonlinear
functional of the state vector and measures the squared deviation of state trajectories from their
average mean. We illustrate the results through application examples of a building thermal system
and an SIS epidemic spread over large networks.

In the second part of the thesis, we first study epidemic suppression through a testing policy.
We develop a five-compartment epidemic model that incorporates the testing rate as a control
input. We propose a best-effort strategy for testing (BEST), which is an epidemic suppression
policy that provides a minimum testing rate from a certain day onward to stop the growth of the
epidemic. The BEST policy is evaluated through its impact on the number of active intensive care
unit (ICU) cases and the cumulative number of deaths for the COVID-19 case of France. Secondly,
we develop a model of urban human mobility between residential areas and social destinations such
as industrial areas, business parks, schools, markets, etc. for epidemic mitigation. We formulate
two optimal control policies, the so-called optimal capacity control (OCC) and optimal schedule
control (OSC), that aims to maximize the economic activity in an urban environment while keeping
the number of active infected cases bounded. The OCC limits the epidemic spread by reducing the
maximum number of people allowed at each destination category at any time of day, whereas the
OSC limits the epidemic spread by reducing the daily business hours of each destination category.

Keywords Large-scale network systems, average observer, network clustering, state variance,
epidemic spread, testing policy, urban human mobility
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Abstract

Resumé

Cette thèse de doctorat est réalisée principalement dans le cadre du projet Scale-FreeBack
de l’European Research Council (ERC) Advanced Grant et partiellement dans le cadre du projet
Healthy-Mobility de la mission COVID-19 de l’Inria. Le projet Scale-FreeBack vise à dévelop-
per une approche holistique de contrôle sans échelle des systèmes complexes et à établir de nou-
velles bases pour une théorie traitant des réseaux physiques complexes aux dimensions arbitraires.
D’autre part, motivé par la pandémie COVID-19, le projet Healthy-Mobility vise à développer
des stratégies de contrôle optimal pour les tests et la mobilité humaine urbaine pour limiter la
propagation de l’épidémie. En relation avec ces deux projets, les contributions de la thèse sont
respectivement divisées en deux parties.

Dans la première partie de la thèse, nous développons une théorie pour la surveillance de
systèmes de réseaux en grappes à grande échelle avec des ressources de calcul et de détection lim-
itées par le biais d’un système de réseau projeté, qui est de dimension traçable et est obtenu par
l’agrégation de grappes d’un système de réseau. Nous proposons un observateur moyen d’ordre min-
imum et fournissons ses critères de conception. Ensuite, les notions de reconstructibilité moyenne,
d’observabilité moyenne et de détectabilité moyenne sont définies et leurs conditions nécessaires
et suffisantes sont fournies. Nous fournissons également des interprétations graph-théoriques de
ces notions à travers les topologies de graphe inter-cluster et intra-cluster d’un système de réseau
en grappe. Lorsqu’un système de réseau en grappe ne répond pas aux critères de conception
de l’observateur moyen, nous concevons une méthodologie de conception optimale pour minimiser
l’erreur d’estimation moyenne. D’autre part, si les clusters ne sont pas pré-spécifiés dans un système
de réseau, nous développons des algorithmes de clustering pour atteindre une erreur d’estimation
moyenne minimale. Enfin, nous proposons une approche de regroupement de type K-means pour
estimer la variance d’état des systèmes en réseau, qui est une fonction non linéaire du vecteur d’état
et mesure l’écart au carré des trajectoires d’état par rapport à leur moyenne. Nous illustrons les
résultats par des exemples d’application d’un système thermique de bâtiment et d’une épidémie
de SIS répandue sur de grands réseaux.

Dans la deuxième partie de la thèse, nous étudions d’abord la suppression des épidémies par
une politique de test. Nous développons un modèle épidémique à cinq compartiments qui incorpore
le taux de test comme donnée de contrôle. Nous proposons une stratégie de best-effort pour le test
(BEST), qui est une politique de suppression d’épidémie qui fournit un taux de test minimum à
partir d’un certain jour pour arrêter la croissance de l’épidémie. La politique BEST est évaluée à
travers son impact sur le nombre de cas actifs dans les unités de soins intensifs (USI) et le nombre
cumulé de décès pour le cas COVID-19 en France. Deuxièmement, nous développons un modèle
de mobilité humaine urbaine entre les zones résidentielles et les destinations sociales telles que les
zones industrielles, les parcs d’affaires, les écoles, les marchés, etc. pour l’atténuation des épidémies.
Nous formulons deux politiques de contrôle optimal, le contrôle optimal de la capacité et le contrôle
optimal de l’horaire, qui visent à maximiser l’activité économique dans un environnement urbain
tout en maintenant le nombre de cas d’infection actifs limité. Le contrôle de la capacité optimale
limite la propagation de l’épidémie en réduisant le nombre maximum de personnes autorisées dans
chaque catégorie de destination à tout moment de la journée, tandis que le contrôle de l’horaire
optimal limite la propagation de l’épidémie en réduisant les heures d’ouverture quotidiennes de
chaque catégorie de destination.
Keywords Systèmes de réseaux à grande échelle, observateur moyen, regroupement de réseaux,
variance d’état, propagation épidémique, mobilité humaine urbaine
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General Introduction

General Introduction

I n this introductory chapter, we present the topics treated in this thesis, identify the
challenges, and motivate our work with the help of real-world applications. The thesis is di-
vided into two parts. The first part deals with aggregated monitoring of large-scale network
systems and the second part with modeling and control of epidemics. We also summarize
how each part of the thesis is organized and enlist our peer-reviewed publications.

Part I Aggregated monitoring of large-scale network systems

System monitoring provides information about the system’s state to assess its performance
and give feedback to the controller. It requires the state to be estimated by an observer us-
ing the input and output measurements from the system. For large-scale network systems,
however, monitoring requires tremendous amounts of computational and sensing resources,
which becomes impractical under a limited budget. This is because the complexity of a
large-scale network system may challenge the available computational resources, while a
limited number of sensors may render the system unobservable. Such limitations make the
state estimation task infeasible.

To deal with this issue, we propose aggregated monitoring based on the estimation of ag-
gregated state profiles of a network system, for example, multi-cluster average and variance
of the state vector. The multi-cluster average provides the mean state trajectory of each
cluster in a network system, while the multi-cluster variance provides a measure of squared
deviation of state trajectories in each cluster. Aggregated monitoring is reasonable for
large-scale network systems such as building thermal systems [Deng2010,Deng2014], power
modules [Murdock2006,Sakhraoui2018], urban traffic networks [Ramezani2015,Rodriguez-
Vega2020], and epidemic spread over large networks [Martin2020]. We elaborate these
examples below in the context of aggregated monitoring.

Building thermal systems

The first example is the thermal monitoring of residential buildings, which is important
because of a significant share of the residential sector in energy consumption and greenhouse
gas emissions [Hache2017, Lévy2018]. However, in addition to the limitations in sensing
resources for providing temperature measurements, the sensing capability of thermistors
is also limited. This is because thermistors can be placed in specific locations on walls
and ceilings, where they can provide temperature measurements corresponding to only
small areas around them. However, due to the diffusive nature of heat, it can be argued
that those measurements are sufficient for thermal monitoring. Nonetheless, it has been
shown that such temperature measurements fail to capture the temperature variance in the
rooms, which can affect human comfort significantly [Boduch2009]. Therefore, estimating
and regulating the mean operative temperature of each room ensures not only human
comfort but also facilitates thermal monitoring [Niazi2020a].

1
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(a) Thermal system of a four-room building (b) Clustered RC-network model

Figure 1: An RC-network model of a building thermal system.

(a) Representation of a power module by
[Murdock2006]

(b) Spatially-discrete 2D heated plate model
by [Sakhraoui2018]

Figure 2: Power module as spatially discretized 2D heated plate.

(a) Urban traffic network with flow sensors (b) Cluster selection for aggregated monitor-
ing

Figure 3: Urban traffic network of Grenoble, France.
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(a) Network of main cities of France (b) Cluster selection for aggregated monitor-
ing by [Martin2020]

Figure 4: Epidemic process over a network of main cities of France.

In the second example, controlling thermal operating performance can avoid potentially
damaging stresses on power modules [Murdock2006]. This entails that the precise knowl-
edge of the local temperature of different areas of power modules, modeled as spatially-
discrete 2D heated plate [Sakhraoui2018], must be obtained through estimation.

In the third example of urban traffic networks, estimating the traffic density of every
road in an urban traffic network is often not possible [Ramezani2015]. Therefore, estimating
the average traffic densities in multiple sectors of a network helps to monitor the congestion
effectively [Rodriguez-Vega2020,Rodriguez-Vega2021].

Finally, in the event of an epidemic spread over large networks, it is challenging to
measure the whole network for monitoring the epidemic situation. In such a case, it is
more reasonable to identify clusters in the network and estimate the average number of
infected people in each cluster [Martin2020]. Such a strategy can help, for instance, to
devise preventive measures for controlling the epidemic spread in a country based on the
clusters of several towns, which are connected through human mobility due to work or
other purposes.

Part II Modeling and control of epidemics

The motivation behind the second part of this thesis is the COVID-19 epidemic. Started
in Wuhan, China, at the end of 2019, it was soon declared to be a pandemic by the
World Health Organization (WHO) on March 11, 2020. The common symptoms of the
disease include fever, cough, fatigue, shortness of breath, and loss of sense of smell, where
complications may lead to pneumonia and respiratory distress known as a severe acute
respiratory syndrome (SARS). During the first year of the pandemic, the primary mode of
treatment had been symptomatic and supportive therapy [Cao2020, Baden2020], and no
vaccine or specific antiviral treatment had been approved.

The pandemic shook the economy of the whole world with significant reductions in ex-
ports, a decline in tourism, mass unemployment, and business closures [Loayza2020]. Gov-
ernments and health authorities worldwide responded by implementing non-pharmaceutical
intervention (NPI) policies that include travel restrictions, lockdown strategies, social dis-
tancing measures, workplace hazard controls, closing down of schools and workplaces,
curfew strategies, and cancellation of public events. Many countries also upgraded existing
infrastructure and personnel to increase testing capabilities and facilities for focused isola-
tion. People were instructed to wash hands several times a day, cover mouth and nose when
coughing or sneezing, maintain a certain physical distance from other people, wear a face
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mask in public places/gatherings, and monitor and self-isolate if the disease symptoms ap-
pear. The extent to which such policies and measures have been implemented in a certain
country is called the stringency index of its government’s response [Hale2020a,Hale2020b].
Each government responded in its capacity to find a suitable balance between saving lives
and saving livelihoods, which [Glover2020] termed as a perplexing problem of health ver-
sus wealth. Livelihoods can be saved through the implementation of suitable relief and
recovery measures for people and small businesses. On the other hand, lives can be saved
through the implementation of good testing and NPI policies. In other words, there is a
direct relationship between the stringency index of the government and saving lives.

All the above policies implemented by the governments are control mechanisms for
an epidemic. Such strategies fall under two categories: mitigation and suppression [Fer-
guson2020,Walker2020]. The mitigation strategies slow down the rate of transmission of
disease or, in popular terms, ‘flatten the curve.’ However, they do not necessarily stop the
disease spread, which is the goal of suppression strategies.

In addition to the NPI policies, testing and isolating the infected population from the
susceptible population is one of the most important strategies to control the epidemic
spread. For instance, it has been reported that COVID-19 was eliminated from the Italian
village Vo’Euganeo through testing both symptomatic and asymptomatic cases [Romag-
nani2020, Day2020]. Moreover, in his media briefing1 of March 16, 2020, Dr. Tedros
Adhanom Ghebreyesus, the Director-General of WHO, urged the following:

“Social distancing measures can help to reduce transmission and enable health
systems to cope. Hand-washing and coughing into your elbow can reduce the risk
for yourself and others. But on their own, they are not enough to extinguish
this pandemic. It’s the combination that makes the difference. As I keep saying,
all countries must take a comprehensive approach. But the most effective way
to prevent infections and save lives is by breaking the chains of transmission.
And to do that, you must test and isolate. You cannot fight a fire blindfolded.
And we cannot stop this pandemic if we don’t know who is infected. We have a
simple message for all countries: TEST, TEST, TEST.”

Following the recommendation of the WHO director, with different levels of setups,
many governments increased their testing capacities, while others feared the economic
burden of intensive testing policy. However, [Eichenbaum2020,Salathé2020] show that such
a burden is only short-term and, on the contrary, intensive testing reduces the overall cost
of the epidemic in the long run because it enables the government to gain rapid control
of the epidemic and revive the economy of a country. Since testing enables the health
authority to identify and isolate the infected people from the susceptible population, thus
limiting the disease transmission, it is considered to be a crucial control mechanism for the
epidemic [Chowell2003]. However, as we will show in the literature review in Chapter 6,
few attempts have been dedicated to studying the testing policies for epidemics from a
control-theoretic perspective.

Another forefront for fighting epidemics is through the control of urban human mobility.
Although it plays a vital role in a country’s economy, it facilitates the spread of disease
by allowing contact between infected and susceptible populations. If not controlled, urban
human mobility can result in a huge number of infected cases, which could overwhelm the
hospitals and cause the loss of lives. On the other hand, strict restrictions on mobility can
halt the economy and result in the loss of livelihoods. Given the required objectives (e.g.,
socio-economic costs) and constraints (e.g., restricting the number of infected people under

1Website: https://www.who.int/dg/speeches/detail/
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a given bound), the framework of optimal control theory can be employed to find optimal
strategies for urban human mobility. For this, the models of urban human mobility that
incorporate the process of disease spread play a vital role in the analysis, understanding,
and mitigation of epidemics.

Thesis Organization

The first part of the thesis concerns the estimation of aggregated state profiles of large-scale
network systems. In particular, we provide methodologies to estimate the multi-cluster
average states and the state variance of large-scale network systems. In Chapter 1, we
provide the literature review and identify our contributions related to aggregated mon-
itoring. The problem is formulated in Chapter 2. Chapter 3 studies the notion under
which the average states of pre-specified multiple clusters of a network system can be esti-
mated asymptotically. When asymptotic estimation is not possible, we provide an optimal
estimation methodology in Chapter 4 to estimate the average states with minimal error.
Finally, Chapter 5 presents clustering techniques for optimal average estimation, open-loop
average estimation, and variance estimation.

The second part of the thesis concerns the modeling and design of suppression and
mitigation policies for epidemics. In particular, we study testing policies and control of
urban human mobility in the event of an epidemic. After providing the literature review
and identifying our contributions in Chapter 6, we provide a best-effort strategy for testing
as a suppression policy for epidemics in Chapter 7. This policy provides a minimum testing
rate to stop the growth of the epidemic. Chapter 8 provides a model of human mobility
in an urban environment incorporating the process of an epidemic spread. Two optimal
control policies related to the operating capacities and schedules of destinations are also
devised using the framework of optimal control theory.

Publications

Journal articles

• M.U.B. Niazi, A.Y. Kibangou, C. Canudas-de-Wit, D. Nikitin, L. Tumash, and P.-
A. Bliman. “Modeling and control of COVID-19 epidemic through testing policies."
(Submitted to Annual Reviews in Control, 2020)

• M.U.B. Niazi, C. Canudas-de-Wit, and A.Y. Kibangou. “Average state estimation
in large-scale clustered network systems." IEEE Transactions on Control of Network
Systems, Vol. 7, No. 4, p. 1736-1745, 2020.

• M.U.B. Niazi, D. Deplano, C. Canudas-de-Wit, and A.Y. Kibangou. “Scale-free
estimation of the average state in large-scale systems." IEEE Control Systems Letters,
Vol. 4, No. 1, p. 211-216, 2019.

Conference papers

• M.U.B. Niazi, C. Canudas-de-Wit, A.Y. Kibangou, and P.-A. Bliman. “Optimal
control of urban human mobility for epidemic mitigation." (Submitted to 60th IEEE
Conference on Decision and Control (CDC), 2021)

• M.U.B. Niazi, A.Y. Kibangou, C. Canudas-de-Wit, D. Nikitin, L. Tumash, and P.-A.
Bliman. “Testing policies for epidemic control." (Submitted to 60th IEEE Conference
on Decision and Control (CDC), 2021)
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• M.U.B. Niazi, C. Canudas-de-Wit, and A.Y. Kibangou. “State variance estimation in
large-scale network systems." 59th IEEE Conference on Decision and Control (CDC),
p. 6052-6057, 2020.

• M.U.B. Niazi, C. Canudas-de-Wit, and A.Y. Kibangou. “Thermal monitoring of
buildings by aggregated temperature estimation." IFAC World Congress, Vol. 53,
No. 2, pp. 4132-4137, 2020.

• M.U.B. Niazi, X. Cheng, C. Canudas-de-Wit, and J.M.A. Scherpen. “Structure-
based clustering algorithm for model reduction of large-scale network systems." it
58th IEEE Conference on Decision and Control (CDC), p. 5038-5043, 2019.

• M.U.B. Niazi, C. Canudas-de-Wit, and A.Y. Kibangou. “Average observability of
large-scale network systems." 18th European Control Conference (ECC), p. 1506-
1511, 2019.
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Notations

Notations

N The set of natural numbers

Z The set of integers

R The set of real numbers

C The set of complex numbers

R≥0,R>0 The sets of non-negative and positive real numbers, respectively

R≤0,R<0 The sets of non-positive and negative real numbers, respectively

C≥0,C>0 The closed and open right-half complex plane, respectively

C≤0,C<0 The closed and open left-half complex plane, respectively

a A vector is denoted by a bold lower-case letter

aᵀ Transpose of vector a ∈ Rn

[a]i The i-th entry of vector a

1n,0n The vector of ones and the vector of zeros of dimension n× 1

A A matrix is denoted by an upper-case letter

Aᵀ Transpose of matrix A ∈ Rm×n

In Identity matrix of dimension n× n

A−1 Inverse of a square, non-singular matrix A ∈ Rn×n, i.e., A−1A = AA−1 = In

A+ Left pseudo-inverse of a tall matrix A ∈ Rm×n with m > n, i.e., A+A = In

A† Right pseudo-inverse of a fat matrix A ∈ Rm×n with m < n, i.e., AA† = Im

[A]ij The ij-th entry of matrix A

im(A) Image (or range) of A ∈ Rm×n

ker(A) Kernel (or nullspace) of A ∈ Rm×n

rank(A) Rank of A ∈ Rm×n, i.e., dimension of im(A)

nullity(A) Nullity of A ∈ Rm×n, i.e., dimension of ker(A)

trace(A) Trace of A ∈ Rn×n, i.e., [A]11 + [A]22 + · · ·+ [A]nn

eig(A) Spectrum of A ∈ Rn×n, i.e., the set of eigenvalues of A

‖a‖ The Euclidean norm of a ∈ Rn, i.e., ‖a‖ =
√

aᵀa

|||A||| Norm of A ∈ Rm×n induced by Euclidean norm

‖f‖2, ‖f‖∞ L2 and L∞ norm of a vector-valued function f , respectively
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Part I

Aggregated Monitoring of
Large-scale Network Systems
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1
State of the Art

T his chapter provides a literature review of state estimation and aggregated monitoring
of large-scale network systems, and describes our contributions in relation to the existing
literature.

1.1 Literature Review

For monitoring and control of dynamical systems, knowledge of the system’s state is
undoubtedly necessary. However, due to limited sensing capability and resources, the com-
plete state of a system is usually not accessible. An observer is therefore needed to estimate
the state by using the knowledge of sensor measurements. In this regard, a seminal paper
by Kalman and Bucy [Kalman1961] treats the problem of optimal filtering and state es-
timation for linear systems when the sensor measurements are corrupted by white noise.
This paper builds on the prior paper of Kalman [Kalman1960] and proposes an optimal
state estimator known as Kalman filter (or Kalman-Bucy filter), which depends on a time-
varying gain matrix obtained in real-time by solving a matrix Ricatti differential equation.
However, avoiding the use of differentiators for practical reasons [Bongiorno Jr1968] led
to the development of Luenberger observer [Luenberger1964,Luenberger1966], which con-
siders a constant gain matrix under the assumption that noise in sensor measurements is
negligible. For linear time-invariant (LTI) systems, it was then proved that the existence of
a gain matrix that ensures an asymptotic convergence of Luenberger observer to the true
state at an arbitrary rate is equivalent to the observability of system [Kalman1963,Won-
ham1967,Gopinath1971,Luenberger1971].

With limited computational and sensing resources, it is often challenging and some-
times impossible to monitor large-scale systems by estimating the complete state [An-
toulas2005]. This is because limited computational resources result in the computational
intractability of the Luenberger observer, whereas limited sensing resources result in the
unobservability of the system. However, it is sometimes unnecessary to estimate the com-
plete state, and it suffices in many applications to estimate linear functionals of the state
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Chapter 1. State of the Art

vector. Examples of such cases include static state-feedback control [Kailath1980,Kaut-
sky1985,Khargonekar1988], output-feedback control [Anderson1975,Kimura1977], decen-
tralized control [Wang1973, Corfmat1976], and reduced-order dynamic control [Ander-
son1989,McFarlane1990].

A linear functional observer is also proposed by Luenberger in [Luenberger1971], where
the order of the functional observer estimating a single linear functional is equal to the
observability index of the system minus one. Two years later, [Murdoch1973] points out
that the order of the functional observer is not minimum and can be reduced. A similar
design procedure was also proposed in [Aldeen1994,Aldeen1999] for the order reduction of
functional observers. Finally, Darouach [Darouach2000] provides a necessary and sufficient
condition for the existence and design of a functional observer of minimum order that is
possible to achieve, where the design procedure was recently improved in [Darouach2019].
The minimum order of Darouach observer is equal to the number of linear functionals
that the observer estimates. However, for general linear systems, which do not satisfy the
necessary and sufficient condition of [Darouach2000], finding a minimum-order functional
observer whose dimension is greater than Darouach observer remained an open problem
[Trinh2011]. This led to the development of functional observability in [Fernando2010a,Fer-
nando2010b, Jennings2011] followed by [Rotella2011,Rotella2015,Rotella2016], proposing
different methodologies to design a minimum-order functional observer. However, these
methods find a minimum order by working within their framework, which makes it difficult
to prove whether the obtained order is in fact minimum in an absolute sense. Moreover, the
proposed methods are iterative and require computations of several observability matrices
and the ranks of their concatenation at each iteration, which may not be computationally
feasible for large-scale systems.

In light of the above, it is therefore reasonable to resort to methods based on ag-
gregation of large-scale systems. In this regard, [Aoki1968,Wei1969, Coxson1984] intro-
duced the notion of lumpability of large-scale systems, which can have multiple interpre-
tations. Algebraically, an LTI system is lumpable if and only if the aggregation matrix
is A-invariant [Atay2017], where A is the state matrix of the system. For network sys-
tems, on the other hand, a necessary condition for lumpability is that the aggregated
clusters in a network are chosen according to an (almost) equitable partition [Ji2007,Mar-
tini2010,Egerstedt2012,Monshizadeh2014,Aguilar2017]. Therefore, the lumpability of net-
work systems can be achieved by using clustering algorithms for equitable partition. How-
ever, for large-scale network systems, one may have constraints on the number of sensors
and clusters, which makes network clustering very challenging. Moreover, when dealing
with physical network systems such as urban traffic networks, building thermal systems,
and water distribution networks, one may have yet another constraint, which is to obtain
clusters that are physically connected [Martin2019].

Another line of research employs model reduction tools [Sandberg2004,Antoulas2005,
Gugercin2008,Sandberg2009,Antoulas2010] that are known to be quite effective in reduc-
ing the complexity of large-scale systems [van der Schaft2013,Deng2014,Cheng2018b]. For
network systems, however, in addition to the dynamical properties of the system, preserv-
ing the topological structure of the network is also critical. In this regard, clustering-based
model reduction techniques [Ishizaki2014,Ishizaki2015,Cheng2017,Cheng2018a,Cheng2021]
have shown promising results by not only preserving the topological structure but also pro-
viding technical tools to quantify model approximation error.

The main goal of clustering-based model reduction is to identify clusters in a network
system and aggregate them for reducing the dimension of the system. That is, the optimal
clustering yields a reduced system with minimum model approximation error, which is
characterized in terms of H2 or H∞ norms of the difference between frequency responses of
both systems. The idea is to obtain a reduced system with a tractable dimension and whose
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input-output behavior is similar to the input-output behavior of the original large-scale
network system. Therefore, one can monitor network systems by estimating aggregated
state profiles from the reduced system. In this regard, [Sadamoto2017] presents an average
state observer by a clustering-based model reduction technique of [Ishizaki2015]. Such a
technique is reasonable because the states of the reduced system approximate the average
states of clusters in the original network system, where the clustering algorithm can be
adapted to achieve a specified error bound. Thus, it suffices to design an average observer
using the model of the reduced system to estimate the average states of the original network
system. However, this approach becomes irrelevant when the clusters are a priori specified.
In such a case, it is reasonable to study conditions under which the average states of the
clusters can be reconstructed and/or asymptotically estimated.

1.2 Our Contributions

We study the estimation of aggregated state profiles of a large-scale network system
such as multi-cluster average and variance of the state vector. The average states of mul-
tiple clusters of a network system are linear functionals of the state vector, whereas the
variance is a nonlinear functional of the state that measures the spread of the state around
its average mean. Since a large-scale network system poses difficulties when the compu-
tational resources are limited, we project its state on lower-dimensional state space and
obtain a projected network system, which is an aggregated, tractable representation of the
original network system. The projected network system considers each cluster as a single
supernode and provides the dynamics of the average states of clusters. However, we show
that the average deviation vector influences the dynamics of the projected network system
by acting as a structured unknown input. Nonetheless, the goal of obtaining an aggregated
representation of a large-scale network system is to attain computational tractability when
designing an average observer for estimating the average states of the clusters.

First, we consider a clustered network system, where the clusters are specified a priori,
and study the problem of average state estimation. We provide design criteria of an aver-
age observer with a minimum order, which is equal to the number of specified clusters, and
define three notions: (i) average reconstructability, (ii) average observability, and (iii) av-
erage detectability. After providing necessary and sufficient conditions of these notions, we
show that these notions are related to the convergence rate of the average observer. Under
average reconstructability, the average states of clusters can be exponentially estimated by
the average observer at an arbitrary rate. Average observability, on the other hand, allows
for a high-gain type of average observer, where the average states of clusters can be expo-
nentially estimated at a rate that approaches infinity. Finally, average detectability allows
for the exponential open-loop estimation of average states at a fixed rate that depends on
the eigenvalues of the projected network system. The graph-theoretic interpretations of
these notions through the inter-cluster and intra-cluster graph topologies of the network
system are also provided. We also provide some remarks about the graph structures of a
network system that can be suitable for each of these notions.

When a clustered network system does not satisfy the necessary and sufficient condition
of average reconstructability, we provide an optimal design of average observer to estimate
the average states of clusters with minimal error. This optimal design is achieved by
minimizing the effect of average deviation and ensuring the stability of the average observer.
It is worth noticing that the main assumption in the literature for showing stability is to
consider a network system with a strongly connected digraph, however, we show that this
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assumption can be relaxed to weak connectivity of the digraph. The optimal average
estimation problem is formulated as a convex optimization problem with a single decision
parameter, which is solved by gradient descent and incremental search algorithms. The
methodology of optimal average estimation is then applied to an application example of
thermal monitoring in a four-room building.

For the case where the clusters are not specified a priori in a network system, we first
provide a clustering algorithm for optimal average estimation by minimizing the distance
from average reconstructability. For illustration, the effectiveness of this clustering method-
ology for average estimation is used in an application example of SIS epidemics over large
networks. Another clustering algorithm for open-loop average estimation is provided that
minimizes the distance from average lumpability, which is shown to be related to average
detectability. Finally, we study the estimation of the state variance of a network system
by using a K-means type clustering technique, which approximates the state variance by
identifying the nodes whose state trajectories are closer to each other.

The part I of the thesis is organized as follows: In Chapter 2, we formulate the prob-
lem. The design of average observer and the notions of average reconstructability, average
observability, and average detectability are studied in Chapter 3. Chapter 4 presents an
optimal design of average observer. Finally, Chapter 5 presents clustering algorithms for
optimal average estimation, open-loop average estimation, and state variance estimation.
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2
Problem Formulation

This chapter formulates the problem of aggregated monitoring of
a clustered network system. After defining a clustered network
system in section 2.1, we describe the inter-cluster and intra-
cluster graph topologies in section 2.2. Then, in section 2.3,
through the aggregation of clusters, we obtain a projected net-
work system, which is a tractable representation of a large-scale
clustered network system. Finally, in section 2.4, we provide
problem statements that are studied in the first part of this the-
sis.
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2.1. Clustered Network System

I n this chapter, we define a class of network systems studied in the first part of this
thesis. If the nodes of a network system are partitioned into multiple clusters, then it is
called a clustered network system. We describe the inter-cluster and intra-cluster topologies
describing the induced subgraph structures between each pair of clusters and within each
cluster, respectively. Through the aggregation of clusters, we project the state of a clustered
network system on a lower-dimensional state-space and obtain a projected network system,
which is of tractable dimension and computationally feasible for aggregated monitoring.
Finally, we list the problem statements studied in part I of the thesis.

2.1 Clustered Network System

Consider a weighted digraph G = (V, E) with the set of nodes V and the set of directed
edges E ⊆ V × V. A directed edge (i, j) is an arc from node j to i, i.e., i← j, with a weight
aij > 0 associated to it. Now, consider a linear, time-invariant network system defined
over a digraph G with the dynamics of each node i ∈ V given by

ẋi(t) = aiixi(t) +
∑

j∈Ni←V

aijxj(t) +

p∑
l=1

bilul(t) (2.1)

where xi(t) ∈ R is the state of i ∈ V, ul(t) ∈ R, for l = 1, . . . , p, are the inputs to i with
weights bil ∈ R, and

Ni←V = {j ∈ V : (i, j) ∈ E , j 6= i}
is the set of i’s in-neighbors in V. The first term on the right-hand side of (2.1) refers to
the local damping at each node i with the weight aii ∈ R≤0. The second term corresponds
to the aggregated inflow to node i from all its in-neighbors j ∈ Ni←V , each of which
is weighted by aij ∈ R>0, respectively. Finally, the third term depicts the aggregated
influence of the inputs ul(t), for l = 1, . . . , p, at i, each of which is weighted by bil ∈ R,
respectively.

The local damping corresponds to self-loop of a node in the digraph G. However, for
the sake of simplicity, we shall omit the self loops in the figures and consider them implicit
when illustrating digraphs. We further remark that the self-loop weights aii, for all i ∈ V,
considered in (2.1) are quite general. There might be a network structure associated to
these scalars as in consensus-seeking multi-agent systems, [Olfati-Saber2007], where

aii = −
∑

j∈Ni←V

aij

or in spatially-discrete reaction-diffusion systems, [Ishizaki2014], where

aii = −

ri +
∑

j∈Ni←V

aij


with ri being the reaction rate (chemical dissolution) at i, or in linear flow networks,
[Walter1999], where

aii = −
∑

j∈Ni→V

aji
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with
Ni→V = {j ∈ V : (j, i) ∈ E , j 6= i} (2.2)

the set of node i’s out-neighbors in V.
The nodes of the network system, without loss of generality, are partitioned into mea-

sured and unmeasured nodes. A measured node, also known as a gateway node [Bullo2018],
is a node where a dedicated sensor is placed that provides its state measurements with re-
spect to time. On the other hand, there are no dedicated sensors for unmeasured nodes.
Let

V1 = {µ1, . . . , µm}, V2 = {ν1, . . . , νn}

be the sets of m measured and n unmeasured nodes, respectively, where V1 ∪ V2 = V and
V1 ∩ V2 = ∅. Similarly, let

x1(t) = [ xµ1(t) . . . xµm(t) ]ᵀ ∈ Rm, x2(t) = [ xν1(t) . . . xνn(t) ]ᵀ ∈ Rn

be the state vectors of measured nodes V1 and unmeasured nodes V2, respectively. We shall
also refer x1(t) as the measured state vector and x2(t) as the unmeasured state vector. By
considering

x(t) = [ xᵀ
1(t) xᵀ

2(t) ]ᵀ ∈ Rm+n, u(t) = [ u1(t) . . . up(t) ]ᵀ ∈ Rp

to be the network’s state vector and the input vector, we represent the network system
(2.1) in vector-form as

Σ :

 ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.3)

where y(t) = x1(t) ∈ Rm is the measured state vector or, simply, the output vector. The
ij-th entry of state matrix A ∈ R(m+n)×(m+n) is

[A]ij =


aij > 0, if (i, j) ∈ E and i 6= j

aii ≤ 0, if i = j

0 , otherwise.

In other words, the off-diagonal entries of A constitute the graph structure G of the network
system and the diagonal entries correspond to the local damping at its nodes. The input
matrix B ∈ R(m+n)×p contains the weighted input configurations of the network, namely
[B]il = bil ∈ R, for i = 1, . . . ,m+ n and l = 1, . . . , p. The output matrix C ∈ Rm×(m+n) is
given by C = [ eµ1 . . . eµm ]ᵀ, where µ1, . . . , µm are the measured nodes and eµi ∈ Rm+n is
a standard basis vector given by the µi-th column of the identity matrix Im+n. Since the
states can be reordered by transforming the network system Σ by a permutation matrix,
we can assume, without loss of generality, that the nodes in the network are arranged as
follows: V = {µ1, . . . , µm, ν1, . . . , νn}. This gives the following block partition of the state
matrices

A =

 A11 A12

A21 A22

 , B =

 B1

B2


C =

[
Im 0m×n

] (2.4)

where A11 ∈ Rm×m, A22 ∈ Rn×n, A12 ∈ Rm×n≥0 , A21 ∈ Rm×n≥0 , B1 ∈ Rm×p, and B2 ∈ Rn×p.
We shall abide by the following assumption throughout part I of the thesis:
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Assumption 2.1. We assume that rank(A12) = m.

To interpret Assumption 2.1, suppose A12 ∈ {0, 1}m×n is a structured matrix. Then,
the full-row rank of A12 means that (i) no measured node is a disconnected node in G and
(ii) no pair of measured nodes has the same set of unmeasured nodes as their in-neighbors.
To elucidate further, if there is a disconnected measured node µi in G, this implies that a
corresponding row i of A12 will be zero. Moreover, if a pair of measured nodes µi, µj have
the same set of unmeasured nodes as their in-neighbors, i.e., Nµi←V2 ∩ V2 = Nµj←V2 ∩ V2,
then two corresponding rows i and j of A12 can be linearly dependent. Both of these cases
lead to a rank deficiency of A12. In other words, Assumption 2.1 supposes that, since
they have a significant economic cost, the sensors are placed strategically to maximize the
coverage for network system monitoring. Nonetheless, we consider that the network system
Σ is a large-scale system with the number of nodes very large. Moreover, there is a limited
number of available sensors so that m � n—i.e., the number of measured nodes is very
small as compared to the number of unmeasured nodes. This implies that Σ may not be
observable, which means that the observability matrix

O =



C

CA

CA2

...

CAm+n−1


is rank deficient.

Now, to define a clustered network system, we suppose that the unmeasured nodes V2

are partitioned into k disjoint clusters, where k < n. That is to say that we are given a
partition, or clustering, Q = {C1, . . . , Ck} of the network’s unmeasured nodes V2 such that
C1 ∪ C2 ∪ · · · ∪ Ck = V2 and, for any α, β ∈ {1, · · · , k} and α 6= β, we have Cα ∩ Cβ = ∅.

Definition 2.1. A network system Σ with a set of measured nodes V1 and a clustering
Q = {C1, . . . , Ck} of unmeasured nodes V2 is called a clustered network system, which is
denoted by ΣV1,Q.

Let
Cn,k = {X ∈ {0, 1}n×k : X1k = 1n}

be the set of characteristic matrices of all clusterings with k clusters of n nodes. Then,
for a given clustering Q, the characteristic matrix Q ∈ Cn,k is defined as follows: For
i ∈ {1, . . . , n} and α ∈ {1, . . . , k},

[Q]iα =

 1, if νi ∈ Cα

0, otherwise.
(2.5)

Let nα = |Cα| be the number of nodes in cluster Cα, then QᵀQ = diag(n1, . . . , nk) and the
left pseudo-inverse Q+ of Q, i.e., Q+Q = Ik, is given by

Q+ = (QᵀQ)−1Qᵀ ∈ Rk×n

where

[Q+]αi =


1

nα
, if νi ∈ Cα

0, otherwise.
(2.6)
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2.2 Inter-Cluster and Intra-Cluster Graph Topologies

In relation to the clusters C1, . . . , Ck, we consider the following induced subgraphs of G:

• For α ∈ {1, . . . , k}, the topology from cluster Cα to the set of measured nodes V1

is captured by an induced bipartite subgraph Gµα = (V1, Cα, Eµα), where Eµα =
E ∩ (V1 × Cα) is the set of directed edges from all the nodes in Cα to all the nodes in
V1 = {µ1, . . . , µm}. The set of all such subgraphs is {Gµ1, . . . ,Gµk}.

• For α, β ∈ {1, . . . , k} and α 6= β, the inter-cluster topology from cluster Cβ to cluster
Cα is captured by an induced bipartite subgraph Gαβ = (Cα, Cβ, Eαβ), where Eαβ =
E ∩ (Cα×Cβ) is the set of directed edges from Cβ to Cα. The set of all such subgraphs
is {G12, . . . ,G1k,G21,G23, . . . ,G2k, . . . ,Gk1, . . . ,Gk(k−1)}.

• For α ∈ {1, . . . , k}, the intra-cluster topology of cluster Cα is captured by induced
subgraph Gαα = (Cα, Eαα), where Eαα = E ∩ (Cα × Cα) is the set of directed edges
from all the nodes in Cα to their out-neighbors in Cα. The set of all such subgraphs
is {G11, . . . ,Gkk}.

An induced bipartite subgraph Gµα is illustrated in Figure 2.1(b), and the inter-cluster
induced bipartite subgraphs Gαβ and the intra-cluster induced subgraphs Gαα are illustrated
in Figure 2.1(c) and (d), respectively, where the black nodes are the measured nodes and the
colored nodes are the unmeasured nodes. Notice that, other than G32, all the inter-cluster
induced bipartite subgraphs are empty (or edgeless) in the example of Figure 2.1(a).

For a given clustering Q, if we reorder the unmeasured nodes

V2 = {ν1, . . . , νn} → {ν̃1, . . . , ν̃n}

such that
C1 = {ν̃1, . . . , ν̃n1}

C2 = {ν̃n1+1, . . . , ν̃n1+n2}
...

...

Ck = {ν̃n1+···+nk−1+1, . . . , ν̃n1+···+nk−1+nk}

then the characteristic matrix

Q = diag(1n1 ,1n2 , . . . ,1nk).

We can divide two matrix blocks of the state matrix A in (2.4) according to clusters as

A12 := [ Ãµ1 . . . Ãµk ], A22 :=


Ã11 . . . Ã1k

...
. . .

...

Ãk1 . . . Ãkk

 .

The sub-matrices Ãµα of A12, for α = 1, . . . , k, contain the weighted edge configurations
from Cα to V1. In other words, Ãµα is the biadjacency matrix of the induced bipartite
subgraph Gµα with  [Ãµα]ij > 0, if (i, j) ∈ Eµα

[Ãµα]ij = 0, otherwise.
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Measured nodes V1
Unmeasured nodes from C1
Unmeasured nodes from C2
Unmeasured nodes from C3
Unmeasured nodes from C4

(a) The graph G of the clustered network system ΣV1,Q, where Q = {C1, C2, C3, C4}.

Gµ1

(b) An induced bipartite subgraph Gµ1 that contains directed edges from cluster C1 to the measured
nodes V1.

G32

G44

(c) An induced bipartite subgraph G32 cap-
turing inter-cluster topology from cluster C2
to cluster C3.

G11 G22

G33

G44

(d) All the induced subgraphs Gαα capturing
intra-cluster topology of clusters Cα, for α =
1, 2, 3, 4, respectively.

Figure 2.1: Different topologies embedded in a clustered network system ΣV1,Q.
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Similarly, for α, β = 1, . . . , k and α 6= β, the sub-matrices Ãαα and Ãαβ of A22 correspond
to the intra-cluster induced subgraphs Gαα and the biadjacency matrix of the induced
bipartite subgraph Gαβ , respectively, where [Ãαα]ij > 0, if (i, j) ∈ Eαα

[Ãαα]ij = 0, otherwise; [Ãαβ]ij > 0, if (i, j) ∈ Eαβ
[Ãαβ]ij = 0, otherwise.

Finally, we define the outflow centrality of i ∈ V2 as

ci→V = aii +
∑

j∈Ni→V

aji

where Ni→V is the set of i’s out-neighbors defined in (2.2). Then, the relative outflow
centrality of i ∈ V with respect to cluster Cα, for α ∈ {1, . . . , k}, is defined as

ci→Cα =


aii +

∑
j∈Cα∩Ni→V

aji, if i ∈ Cα

∑
j∈Cα∩Ni→V

aji, if i /∈ Cα.
(2.7)

2.3 Projected Network System

The average state of each cluster Cα is defined as

zα(t) :=
1

nα

∑
i∈Cα

xi(t)

for α = 1, . . . , k. In other words, the average state vector

za(t) = [ z1(t) · · · zk(t) ]ᵀ ∈ Rk

is defined through the aggregation of each cluster Cα as

za(t) = Q+ x2(t). (2.8)

By considering each cluster Cα as a single supernode, we project the unmeasured state
vector x2(t) ∈ Rn on a lower dimensional state space Rk, where k < n, and obtain a
projected network system

Σ̊V1,Q :


ż(t) = Ez(t) + Fσ(t) +Gu(t)

0k = Q+σ(t)

y(t) = Hz(t)

(2.9)

with the state vector
z(t) = [ xᵀ

1(t) zᵀa(t) ]ᵀ ∈ Rm+k
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and the average deviation vector

σ(t) := (In −QQ+)x2(t) ∈ Rn.

The system matrices of Σ̊V1,Q are

E =

 E11 E12

E21 E22

 :=

 A11 A12Q

Q+A21 Q+A22Q


F =

 F1

F2

 :=

 A12

Q+A22


G =

 G1

G2

 :=

 B1

Q+B2


H =

[
H1 H2

]
:=

[
Im 0m×k

]
.

(2.10)

Note that both Σ̊V1,Q and ΣV1,Q yield the same output y(t) because

y(t) = Cx(t) = Hz(t) = x1(t)

with

z(t) =

 Im 0m×n

0k×m Q+

x(t)

and

x(t) =

 Im 0m×k

0n×m Q

 z(t) +

 0m×n

In

σ(t).

u(t) u(t)σ(t)

y(t) y(t)

ΣV1,Q Σ̊V1,Q

Figure 2.2: Obtaining a projected network system Σ̊V1,Q from a clustered network system
ΣV1,Q by aggregating the clusters of unmeasured nodes.

The average deviation vector σ(t) is a cluster-wise mean-centered vector given by

[σ(t)]i = [x2(t)]i − zα(t) (2.11)
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for νi ∈ Cα. Recall that σ = JQx2, where the matrix JQ := In−QQ+ is symmetric (Jᵀ
Q =

JQ) and idempotent (J2
Q = JQ). The columns of JQ form a complete basis of ker(Q+)

because Q+JQ = 0k×n and nullity(Q+) = rank(JQ) = n−k. Therefore, σ(t) ∈ ker(Q+)
which means Q+σ ≡ 0k. Finally, note that σ(t) acts as a structured unknown input in
the projected system Σ̊V1,Q. It is structured because it satisfies Q+σ ≡ 0k and unknown
because it is a function of the unmeasured state x2(t).

The purpose of Σ̊V1,Q is to attain computational feasibility since the dimension of its
state space is much lower than that of the clustered network system ΣV1,Q when k � n. We
base our analysis in the following chapters on Σ̊V1,Q, where we don’t consider the dynamics
of σ(t)—we only consider its structural property, i.e., Q+σ ≡ 0k, which is the only known
information we assume about σ(t). Even though considering the dynamics σ̇(t) may allow
for more information about the average deviation, however, it will require the dimension
of Σ̊V1,Q to be equal to m+k+n, which doesn’t attain computational feasibility since this
dimension is even larger than the dimension of clustered network system ΣV1,Q.

2.4 Problem Statement

In part I of the thesis, we study the following problems:

Problem 1 Given a clustered network system ΣV1,Q with the set of measured nodes
V1 and the clustering Q of unmeasured nodes V2, under what conditions on the inter-
cluster, intra-cluster, and clusters-to-measured nodes topologies is it possible to estimate
the average state vector za(t) of clusters from the projected network system Σ̊V1,Q such
that za(t)− ẑa(t) converges to 0k asymptotically when t→∞, where ẑa(t) is an estimated
average state vector?

Problem 2 Given a clustered network system ΣV1,Q with the set of measured nodes V1

and the clustering Q of unmeasured nodes V2, if the conditions obtained in Problem 1
are not satisfied, is it possible to devise an optimal methodology such that the average
estimation error za(t)− ẑa(t) is as small as possible when t→∞?

Problem 3 Given a network system Σ with the sets of measured nodes V1 and unmea-
sured nodes V2, find a clustering Q of V2 such that the obtained clustered network system
ΣV1,Q provides an optimal solution of Problem 2.

Problem 4 Given a network system Σ with the sets of measured nodes V1 and unmea-
sured nodes V2, devise a methodology to estimate the state variance of unmeasured nodes
of Σ defined as

xv(t) =
1

n

∑
i∈V2

xi(t)− 1

n

∑
j∈V2

xj(t)

2

which measures the spread of unmeasured states around their average mean.
In Chapter 3 and 4, we study problems 1 and 2, respectively. In sections 5.1, 5.2, and

5.3 of Chapter 5, we study problem 3. Finally, section 5.4 of Chapter 5 studies problem 4.
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3
Design of Average Observer for Clustered Network

Systems

This chapter provides conditions under which the average states
of pre-specified clusters of a network system can be asymptot-
ically estimated. In section 3.1, we provide a minimum-order
average observer and its design criteria. Then, in sections 3.2,
3.3, and 3.4, we introduce the notions of average reconstructabil-
ity, average observability, and average detectability, respectively,
and relate them to the convergence rate of the average observer.
We also provide the design of average observer under these no-
tions and their graph-theoretic interpretations with respect to
inter-cluster and intra-cluster graph topologies of the clustered
network system. Finally, in section 3.5, we provide some re-
marks on the relation of average reconstructability and average
observability with scale-free networks, and a scaling property of
open-loop estimation when the necessary and sufficient condi-
tion of average detectability is not satisfied.
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Chapter 3. Design of Average Observer for Clustered Network Systems

I n this chapter, we propose a minimum-order average observer that estimates the aver-
age states of clusters in a clustered network system and provide its design criteria. Several
notions that allow asymptotic estimation of the average states are defined. For compu-
tational tractability, these notions are linked with the model of the projected network
system.

3.1 Design Criteria of Average Observer

In this section, we provide a minimum-order average observer for a clustered network
system and its design criteria as a necessary and sufficient condition that allows for the
asymptotic estimation of the average states of clusters. Consider a clustered network
system ΣV1,Q as defined in section 2.1 of Chapter 2 and whose dynamics are given by
the equation (2.3), where V1 = {µ1, . . . , µm} is the set of m measured nodes and Q =
{C1, . . . , Ck} is the clustering of n unmeasured nodes V2 = {ν1, . . . , νn}. The characteristic
matrix Q ∈ Cn,k ⊂ {0, 1}n×k of a clustering Q is defined in (2.5). One obtains a projected
network system Σ̊V1,Q as in the equation (2.9) simply by aggregating the clusters C1, . . . , Ck
and considering them as supernodes. In fact, the projected network system describes the
dynamics of the average state vector za(t) of clusters, and is obtained by projecting the
clustered network system on a lower dimensional state space with the aim of achieving
computational tractability.

To estimate the average state vector za(t) from the projected network system Σ̊V1,Q
in real-time, we consider an average observer ΩV1,Q of dimension equal to the number
of clusters in Q, which takes the measurement vector y(t) ∈ Rm and the known input
u(t) ∈ Rp as inputs and gives the estimated average state vector ẑa(t) ∈ Rk as an output.
The average observer is given by

ΩV1,Q :


ẇ(t) = Mw(t) +Ky(t) +Nu(t)

ẑa(t) = w(t) + Ly(t)

(3.1)

where the matrices M ∈ Rk×k, N ∈ Rk×p, and K,L ∈ Rk×m with k being the number
of clusters. In the following, we provide the design criteria of average observer that is a
necessary and sufficient condition for the asymptotic estimation of the average states.

Let us define the average estimation error

ζ(t) = za(t)− ẑa(t) (3.2)

where za(t) ∈ Rk is the average state vector and ẑa(t) ∈ Rk is the estimated average state
vector of clusters. Then, by taking a derivative on both sides, it follows

ζ̇(t) = ża(t)− ˙̂za(t)

= ża(t)− ẇ(t)− Lẏ(t)

where ẇ(t) is given in (3.1) and, from (2.9) and (2.10),

ża(t) = Q+A22Qza(t) +Q+A22σ(t) +Q+A21y(t) +Q+B2u(t) (3.3)
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3.1. Design Criteria of Average Observer

and
ẏ(t) = A11y(t) +A12Qza(t) +A12σ(t) +B1u(t). (3.4)

Furthermore, we add and subtract the term (Q+A22Q−LA12Q)ẑa(t) to the expression of
ζ̇(t), which is equivalent to adding (Q+A22Q− LA12Q)(w + Ly − ẑa(t)) because ẑa(t) =
w(t) + Ly(t), i.e.,

(Q+A22Q− LA12Q)ẑa − (Q+A22Q− LA12Q)ẑa ≡ (Q+A22Q− LA12Q)(w + Ly − ẑa).

Thus,

ζ̇ = Q+A22Qza +Q+A21y +Q+A22σ +Q+B2u

−Mw −Ky −Nu− LA11y − LA12Qza − LA12σ − LB1u

+(Q+A22Q− LA12Q)(w + Ly − ẑa)

= (Q+A22Q− LA12Q)(za − ẑa) + (Q+A21 − LA11 −K)y

+(Q+B2 − LB1 −N)u + (Q+A22 − LA12)σ

−Mw + (Q+A22Q− LA12Q)(w − Ly)

where the dependence on t is omitted for brevity and should be considered implicit.
Define

RL = Q+A22 − LA12 (3.5)

and consider
M = RLQ

N = Q+B2 − LB1

K = Q+A21 − LA11 +ML

(3.6)

then the dynamics of the average estimation error can be simplified to

ζ̇(t) = RL [Qζ(t) + σ(t)] (3.7)

where L ∈ Rk×m is the main design matrix of the average observer ΩV1,Q that should
be chosen such that average state vector za(t) can be estimated exponentially by the
average observer ΩV1,Q. More precisely, our goal is to find L ∈ Rk×m such that the
average estimation error ζ(t) converges to 0k exponentially as t → ∞, for any initial
error ζ0 = ζ(0) ∈ Rk. Equivalently, there exists a = a(ζ0) > 0 and γ > 0 such that
‖ζ(t)‖ ≤ ae−γt.

Proposition 3.1. The average estimation error ζ(t) converges to 0k exponentially
as t→∞ for any σ(t) ∈ ker(Q+) if and only if there exists a matrix L ∈ Rk×m such that
both the following conditions are satisfied

(i) ker(RL) ⊇ ker(Q+)

(ii) RLQ is Hurwitz

where RL is given in (3.5) and RLQ = M by (3.6).

Proof of sufficiency. Assume (i) holds, then RLσ ≡ 0k since σ(t) ∈ ker(Q+) for all t ∈
R≥0. The dynamics of the average estimation error are then given by ζ̇(t) = RLQζ(t).
Assume (ii) holds, then the solution ζ(t) = exp(RLQt)ζ(0) is such that, for every ζ0 =
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Chapter 3. Design of Average Observer for Clustered Network Systems

ζ(0) ∈ Rk, there exists a = a(ζ0) ∈ (0,∞) and γ > 0 such that ‖ζ(t)‖ ≤ ae−γt. Thus,
ζ(t)→ 0k as t→∞.

Proof of necessity. Assume (i) holds but (ii) does not hold. Then, the dynamics
ζ̇(t) = RLQζ(t) is unstable and ζ(t) → ∞ as t → ∞, which proves the necessity of (ii).
Secondly, to prove the necessity of (i), assume (ii) holds but (i) does not hold. Then, the
solution of (3.7) is given by

ζ(t) = exp(RLQt)ζ(0) +

∫ t

0
exp[RLQ(t− τ)]RLσ(τ)dτ

where the average deviation vector σ(t) ∈ Rn is neither equal to 0k nor does it converge
to 0k necessarily. Moreover, exp(RLQt) is always non-singular for all t and, since (i) does
not hold by assumption, there exists a time interval (t1, t2) such that RLσ(t∗) 6= 0k, for
every t∗ ∈ (t1, t2). Therefore,∫ t

0
exp[RLQ(t− τ)]RLσ(τ)dτ 6= 0k

and lim supt→∞ ‖ζ(t)‖ 6= 0, which concludes the proof.

The above proposition gives the design criteria of the average observer ΩV1,Q. In
particular, the matrix L of ΩV1,Q should be chosen such that it cancels out the effect of
average deviation vector σ(t) and stabilizes the dynamics of average estimation error ζ(t)
given in (3.7). If L satisfies both criteria, then we are in the ideal case where the average
observer asymptotically estimates the average states of clusters. On the other hand, if
L fails to satisfy the first criterion, then we are in a non-ideal case where our goal is to
design L such that lim supt→∞ ‖ζ(t)‖ is minimum in a sense that will be defined precisely
in Chapter 4. Finally, if L fails to satisfy the second criterion, then the average observer
is unstable and the average states cannot be estimated.

The second criterion, Proposition 3.1 (ii), holds if and only if the pair (A12Q,Q
+A22Q)

is detectable, i.e.,

rank

 sIk −Q+A22Q

A12Q

 = k

for all s ∈ C≥0. In other words, the above equality is satisfied for all the marginally
stable and the unstable eigenvalues of Q+A22Q. If the above rank is deficient for some
eigenvalues of Q+A22Q, then those eigenvalues must be stable, i.e., in the open left half
complex plane C<0. If the second criterion is not satisfied, then there is no hope and the
average estimation error ζ(t) grows unboundedly.

3.2 Average Reconstructability

The notion of average reconstructability is defined through the convergence of average
observer to the true average states of clusters at an arbitrary rate. In general, the notion
of ‘reconstructability’ allows for the reconstruction of the current state of the system from
the knowledge of its past output and input [Antsaklis2006, Chapter 5]. Similarly, we define
average reconstructability as a notion that allows for the reconstruction of current average
states of the clusters from the knowledge of past output and input of the projected network
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system. We provide a necessary and sufficient condition for average reconstructability and
give it a graph-theoretical interpretation through the induced graph structure between the
measured and the clusters of unmeasured nodes. Finally, we provide a design of average
observer under average reconstructability.

3.2.1 Necessary and sufficient condition

The average state vector za(t) can be estimated exponentially or reconstructed from the
past output y(τ) and input u(τ) of the projected network system Σ̊V1,Q, for τ ∈ [0, t], by
employing the average observer ΩV1,Q if the average estimation error ζ(t) = za(t)−ẑa(t), for
some constants a, γ > 0, satisfies ‖ζ(t)‖ ≤ ae−γt. That is to say that the estimated average
state vector ẑa(t) obtained from the average observer ΩV1,Q exponentially converges to the
original average state vector za(t) as t→∞.

Average reconstructability allows for the exponential convergence of the average ob-
server but with an arbitrary rate. What we mean by the arbitrary rate of convergence
is that, for any arbitrary γ > 0, there exists the design matrix L ∈ Rk×m of the aver-
age observer ΩV1,Q such that, for any initial error ζ0 = ζ(0) ∈ Rk and some constant
a = a(ζ0) > 0, the average estimation error satisfies ‖ζ(t)‖ ≤ ae−γt.

Definition 3.1. The clustered network system ΣV1,Q is said to be average recon-
structable if—for every t ∈ R≥0, za(0) ∈ Rk, and σ(t) ∈ Rn such that Q+σ ≡ 0k—the
average state vector za(t) can be estimated exponentially with an arbitrary rate γ > 0 by
the average observer ΩV1,Q.

In the theorem below, we suppose that the set of measured nodes V1 = {µ1, . . . , µm}
and the clustering Q = {C1, . . . , Ck} of the set of unmeasured nodes V2 = {ν1, . . . , νn} are
given for ΣV1,Q. Furthermore, the system matrices of ΣV1,Q are partitioned as in (2.4),
and the characteristic matrix Q of Q and its left pseudo-inverse Q+ are defined in (2.5)
and (2.6), respectively.

Theorem 3.2. The clustered network system ΣV1,Q is average reconstructable if and
only if

rank




A12

Q+A22

Q+


 = rank(A12). (3.8)

Proof of sufficiency. We prove that if (3.8) holds then ΣV1,Q is average reconstructable.
Assume (3.8) holds, which implies that, for any arbitrary matrix V ∈ Rk×k,

rank

 A12

Q+A22 − V Q+

 = rank(A12).

Thus,
L = (Q+A22 − V Q+)A†12 (3.9)

is a solution to LA12 = Q+A22 − V Q+. Such a choice of L implies RL = V Q+, which
gives RLσ = V Q+σ ≡ 0k and RLQ = V . Therefore, the average estimation error ζ(t) =
exp(V t)ζ0, where ζ0 = ζ(0) ∈ Rk. Let V = −γIk, for some arbitrary γ > 0. Then,
‖ζ(t)‖ ≤ ‖ζ0‖e−γt, which implies average reconstructability of ΣV1,Q.

Proof of necessity. We prove that if ΣV1,Q is average reconstructable then (3.8) holds.
Assume ΣV1,Q is average reconstructable, i.e., for any arbitrary γ > 0, the average esti-
mation error satisfies ‖ζ(t)‖ ≤ ‖ζ0‖e−γt. This means that the design matrix L ∈ Rk×m
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of the average observer ΩV1,Q can be chosen such that the eigenvalues of M = RLQ can
be assigned arbitrarily and RLσ ≡ 0k. Let L1, L2 ∈ Rk×m be such that M1 = RL1Q and
M2 = RL2Q are two different Hurwitz matrices and RL1σ = RL2σ ≡ 0k. Moreover, since
M1 and M2 are arbitrary, we can choose L1 and L2 such that i-th row of M1 is linearly
independent from the i-th row ofM2, for i = 1, . . . , k. Since RL1σ = RL2σ ≡ 0k, therefore
L1A12 = Q+A22 − V1Q

+ and L2A12 = Q+A22 − V2Q
+, where V1 = M1 and V2 = M2,

which implies

rank




A12

Q+A22 −M1Q
+

Q+A22 −M2Q
+


 = rank(A12). (3.10)

Using the fact that rank(M1) = rank(M2) = k because they are Hurwitz, and that the
corresponding rows of M1 and M2 are linearly independent, we show that

rank

 Ik −M1

Ik −M2

 = 2k.

That is,  Ik −M1

Ik −M2


is invertible, which implies that 

Ik 0k×k 0k×k

0k×k Ik −M1

0k×k Ik −M2


is invertible. Finally, notice that

A12

Q+A22 −M1Q
+

Q+A22 −M2Q
+

 =


Ik 0k×k 0k×k

0k×k Ik −M1

0k×k Ik −M2




A12

Q+A22

Q+


therefore,

rank


A12

Q+A22 −M1Q
+

Q+A22 −M2Q
+

 = rank


A12

Q+A22

Q+

 . (3.11)

From (3.10) and (3.11), we obtain (3.8), which concludes the proof.

3.2.2 Graph-theoretic interpretation of average reconstructability

Recall the measured nodes V1 = {µ1, . . . , µm}, the unmeasured nodes V2 = {ν1, . . . , νn},
and the induced bipartite subgraphs Gµ1, . . . ,Gµk that capture the graph topology from
clusters C1, . . . , Ck to the measured nodes, respectively. That is, for α ∈ {1, . . . , k}, each
edge (µi, νj) ∈ Eµα in Gµα is such that µi ∈ V1 and νj ∈ Cα ⊂ V2. The edges in subgraph
Gµα are the directed arcs from the nodes in cluster Cα to their out-neighbors that are
measured nodes V1.
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Definition 3.2. The set of measured nodes V1 is said to span the clustering Q =
{C1, . . . , Ck} of unmeasured nodes if, for every α ∈ {1, . . . , k} and for every νj ∈ Cα, there
exists µi ∈ V1 such that (µi, νj) ∈ Eµα is an edge of Gµα = (V1, Cα, Eµα).

In other words, all the unmeasured nodes have at least one out-neighbor that is a
measured node.

Corollary 3.2.1. If the clustered network system ΣV1,Q is average reconstructable,
then the set of measured nodes V1 spans the clustering Q of unmeasured nodes.

Proof. Assume ΣV1,Q is average reconstructable, then, by (3.8), the rows of Q+ are linearly
dependent to the rows of A12 ∈ Rm×n≥0 . This implies that no column of A12 is equal to a
zero vector because no column of Q+ is equal to a zero vector and having a zero column in
A12 contradicts (3.8). Furthermore, for µi ∈ V1 and νj ∈ V2, we have [A12]ij > 0 if and only
if (µi, νj) ∈ E . Therefore, for every α ∈ {1, . . . , k}, A12 captures the edge configurations
of the induced bipartite subgraph Gµα = (V1, Cα, Eµα) because Eµα = E ∩ (V1 × Cα). Since
the columns of A12 correspond to the unmeasured nodes and no column of A12 is equal to
a zero vector, therefore, for every νj ∈ V2 ∩ Cα, there exists µi ∈ V1 such that [A12]ij > 0.
Therefore, V1 spans Q.

(a) Example with a single cluster of unmea-
sured nodes (shown as blue)

(b) Example with three clusters of unmeasured
nodes (shown as blue, green, and orange)

Figure 3.1: Examples of clustered network systems, where the measured nodes (shown as
black) span the clustering of unmeasured nodes.

Example 3.1. Consider the examples of Figure 3.1 with a single cluster and three clusters
of unmeasured nodes, respectively. For Figure 3.1(a), we have Q = C1 = V2 and Q+ =
1
16116. Suppose an unweighted digraph, then

A12 =


1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

 . (3.12)

Notice that V1 spans Q since all the unmeasured nodes have a measured node as an out-
neighbor. For Figure 3.1(b), we have Q = {C1, C2, C3}, where C1 = {ν1, . . . , ν8} is shown
in blue, C2 = {ν9, . . . , ν16} is shown in orange, and C3 = {ν17, . . . , ν23} is shown in green.
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We have Q+ = diag
(

1
81ᵀ

8,
1
81ᵀ

8,
1
71ᵀ

7

)
and

A12 =


1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

 . (3.13)

Again, V1 spans Q. On the other hand, the clustered network system in the example of
Figure 2.1 is not average reconstructable since the measured nodes of that system do not
span the clustering.

3.2.3 Design of average observer under average reconstructability

Since average reconstructability allows for an arbitrary rate of convergence of the average
observer, the design of average observer under average reconstructability is flexible and is
given as follows. Choose V ∈ Rk×k to be any Hurwitz matrix, then, as in (3.9), we have

M = V

N = Q+B2 − LB1

K = Q+A21 − LA11 +ML

L = (Q+A22 − V Q+)A+
12

(3.14)

which ensures ‖ζ(t)‖ ≤ ‖ζ0‖e−γt, where the rate of convergence γ > 0 is determined by
the eigenvalue of V with smallest magnitude.

0 5 10 15 20

-1

0

1

2

3

4

Figure 3.2: Average estimation of the single cluster of unmeasured nodes in the graph of
Figure 3.1(a) by the average observer ΩV1,Q.

Example 3.2. Consider a linear flow network, [Walter1999], with the dynamics at each
node i given by

ẋi(t) =
∑

j∈Ni←V

aijxj(t)−
∑

o∈Ni→V

aoixi(t) +
2∑
l=1

bilul(t), (3.15)

where aij = 1 and aoi = 1 for all i ∈ V, j ∈ Ni←V , and o ∈ Ni→V . Note that bil = 1 if
ul(t) is applied on i, and bil = 0 otherwise. Let the system be defined on the graph shown
in Figure 3.1(a), where the measured nodes are shown as black and the unmeasured nodes
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as blue. We consider a single cluster of unmeasured nodes, i.e., Q = 116, and estimate its
average state za(t) = z1(t). Let the input vector be

u(t) =

 u1(t)

u2(t)

 =

 sin(t) + 5

sin(3t)



and the input matrix B =

 B1

B2

 with B1 = 04×2 and B2 =

 18 08

08 18

. The output

matrix C = [ I4 0 ]. Note that Q+A22 = − 1
161ᵀ

16 = −Q+ since the relative outflow
centrality of each blue node with respect to the cluster C1 is −1. Thus, the condition
(3.8) is satisfied, where A12 is given in (3.12). The design of average observer ΩV1,Q, for
V = −0.75, is computed from (3.14) as

M = −0.75, N =
[

0.5 0.5
]

K = 3
2561ᵀ

4, L = − 1
641ᵀ

4.

The average state can be estimated asymptotically by the observer ΩV1,Q, as shown in
Figure 3.2, where the solid line shows the average state trajectory of the cluster of un-
measured nodes and the dotted line shows the estimation of the average state at different
rates. The rate of convergence is arbitrary and can be set by choosing different values
V = −0.75,−0.5,−0.4,−0.25,−0.1 from faster to slower, respectively, as shown in the fig-
ure.

3.3 Average Observability

The notion of average observability is defined through the projected network system.
In general, the notion of ‘observability’ allows for the reconstruction of current state of
the system from the knowledge of its future output and input [Antsaklis2006, Chapter 5].
Therefore, we define average observability as a notion that allows for the reconstruction of
current average states of the clusters from the knowledge of future output and input of the
projected network system. Precisely, we say that a clustered network system is average
observable if, by taking sufficient derivatives of the output and inputs of the projected
network system, one can uniquely obtain the average state vector of clusters.

Note that the notions of ‘reconstructability’ and ‘observability’ are equivalent for linear
time-invariant systems with known inputs [Antsaklis2006, Chapter 5]. However, in the
projected network system, we have the average deviation vector σ(t) as an unknown input,
which makes the two notions of average reconstructability and average observability not
equivalent. This shall be clarified by the necessary and sufficient condition of average
observability. Finally, similar to average reconstructability, we provide a graph-theoretic
interpretation of average observability and present a design of average observer when its
necessary and sufficient condition is satisfied.

3.3.1 Necessary and sufficient condition

Given a clustered network system ΣV1,Q with a set of measured nodes V1 and a clustering
Q = {C1, . . . , Ck} of unmeasured nodes V2, we study the conditions under which the average
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state vector za(t) can be uniquely obtained from the output and input of the projected
network system Σ̊V1,Q.

We say that za(t) can be uniquely obtained from the projected network system

Σ̊V1,Q :


ż(t) = Ez(t) + Fσ(t) +Gu(t)

0k = Q+σ(t)

y(t) = Hz(t)

if the knowledge of future output y(τ) = Hz(t) and input u(τ), for τ ∈ [t, t+ε) with some
‘small’ ε > 0, is sufficient to obtain za(t). By a small ε, we mean a small interval after t
required to compute k derivatives of the output y(t) of Σ̊V1,Q, which gives the following
system of equations:

Zza(t) + Yȳk(t) + U ūk−1(t) + Sσ̄k−1(t) = 0 (3.16)

where

ȳk(t) =


y(t)

ẏ(t)
...

y(k)(t)

 , ūk−1(t) =


u(t)

u̇(t)
...

u(k−1)(t)

 , σ̄k−1(t) =


σ(t)

σ̇(t)
...

σ(k−1)(t)


and

Z =


E12

E12E22

...

E12E
k−1
22



Y =



E11 −Im 0 . . . 0

E12E21 E11 −Im
...

E12E22E21 E12E21 E11 −Im
. . .

...
...

. . . 0

E12E
k−2
22 E21 E12E

k−3
22 E21 . . . E12E21 E11 −Im



U =



G1 0 . . . 0

E12G2 G1
. . .

...

E12E22G2 E12G2 G1

...
. . . . . . 0

E12E
k−2
22 G2 . . . E12G2 G1
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S =



F1 0 . . . 0

E12F2 F1
. . .

...

E12E22F2 E12F2 F1

...
. . . . . . 0

E12E
k−2
22 F2 . . . E12F2 F1


with the matrices Eij , Fi, Gi defined in (2.10). The average state vector za(t) can be
uniquely obtained from (3.16) if and only if there exists a matrix X ∈ Rmk×mk that
satisfies both the following conditions:

(i) rank(XZ) = k

(ii) XSσ̄k−1 = 0.

The sufficiency of this claim is straightforward because if such a matrix X exists, then the
solution to (3.16) is given by

za(t) = −(XZ)+X (Yȳk(t) + U ūk−1(t)).

To prove necessity, we first assume that (i) holds but (ii) does not hold. Then, σ̄k−1(t)
cannot be canceled out from (3.16), thus the solution za(t) does not exist in terms of ȳk(t)
and ūk−1(t). Second, assume that (ii) holds but (i) does not hold, i.e., XZ does not have
full column rank, then the solution za(t) exists but is not unique. Therefore, the average
state vector za(t) can be uniquely obtained from Σ̊V1,Q if the solution za(t) to the equation
(3.16) exists, in terms of ȳk(t) and ūk−1(t), and is unique.

In the following, the notion of average observability is defined in the sense described
above.

Definition 3.3. The clustered network system ΣV1,Q is said to be average observable
if—for every t ∈ R≥0, za(0) ∈ Rk, and σ(t) ∈ Rn such that Q+σ ≡ 0k—the average
state vector za(t) can be uniquely obtained from the projected network system Σ̊V1,Q as a
solution of (3.16).

For the following theorem, we consider a clustered network system ΣV1,Q with the set
of m measured nodes V1 and the clustering Q = {C1, . . . , Ck} of n unmeasured nodes V2.
Recall that the system matrices of ΣV1,Q are partitioned as in (2.4), and the characteristic
matrix Q of Q and its left pseudo-inverse Q+ are defined in (2.5) and (2.6), respectively.

Theorem 3.3. The clustered network system ΣV1,Q is average observable if and only
if

rank

 A12

Q+

 = rank(A12). (3.17)

In other words, ker(Q+) ⊇ ker(A12).

Proof of sufficiency. Assume (3.17) holds, which means that the rows of Q+ are in the
rowspace of A12. In other words, there exists a matrix X ∈ Rk×m such that XA12 = Q+

and X = Q+A†12, where A†12 = Aᵀ
12(A12A

ᵀ
12)−1 is the right pseudo-inverse of A12, i.e.,

A12A
†
12 = Im. Since y(t) = Hz(t) = x1(t), we consider

ẏ(t) = A11y(t) +A12Qza(t) +A12σ(t) +B1u(t)
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from the projected system Σ̊V1,Q in (2.10). Then, by multiplying by X = Q+A†12 on both
sides, we can reconstruct the average state vector

za(t) = Xẏ(t)−XA11y(t)−XB1u(t)

where XA12σ = Q+σ ≡ 0. Thus, if (3.17) is satisfied, we can uniquely obtain za(t) from
the knowledge of ẏ(t), y(t), and u(t).

Proof of necessity. Assume ΣV1,Q is average observable but (3.17) does not hold.
However, notice that, in (3.16), there is a term F1σ

(i−1)(t), where F1 = A12, in each
expression corresponding to y(i)(t) − E11y

(i−1)(t), for all i = 1, . . . , k, which cannot be
canceled out in order to obtain za(t). This is because there does not exist any matrix X
such that XA12 = Q+. Thus, we arrive at a contradiction and, in fact, Σ is not average
observable if (3.17) does not hold.

From the necessary and sufficient conditions of average observability in (3.17) and
average reconstructability in (3.8), we obtain the following corollaries.

Corollary 3.3.1. The clustered network system ΣV1,Q is average reconstructable if
and only if both the following hold:

(i) ΣV1,Q is average observable

(ii) ker(Q+A22) ⊇ ker(A12).

Proof. The proof follows directly from (3.8) and (3.17).

The above corollary implies that average observability is necessary for average recon-
structability, but not vice versa. In other words, convergence of average observer ΩV1,Q
at an arbitrary rate implies average observability. However, average observability may
not imply the convergence of ΩV1,Q at an arbitrary rate because the condition in Corol-
lary 3.3.1(ii) may not hold.

If ker(Q+) ⊇ ker(F ), where F is given in (2.10), then, and only then, for any arbitrary
W ∈ R(m+k)×k, there exists a matrix N ∈ R(m+k)×(m+k) such that NF = WQ+. From
this, we claim the following equivalence

NF = WQ+ ⇔ NFσ ≡ 0k with σ(t) ∈ ker(Q+). (3.18)

To prove, assume NF = WQ+, then NFσ = WQ+σ ≡ 0k for σ(t) ∈ ker(Q+). In the
other direction, assume NFσ ≡ 0k, then it holds that ker(NF ) ⊇ ker(Q+). Hence, for
any arbitraryW1 ∈ R(m+k)×(m+k), there existsW2 ∈ R(m+k)×k such thatW2Q

+ = W1NF .
Therefore, by choosing W = W−1

1 W2, we obtain WQ+ = NF , which completes the proof
of (3.18).

Using the above fact, we can multiply the state equation of the projected network
system Σ̊V1,Q by N and obtain a singular projected network system Σ̊N (V1,Q), where

Σ̊N (V1,Q) :

 N ż(t) = NEz(t) +NGu(t)

y(t) = Hz(t).

Thus, another way to obtain the average state vector za(t) is through the observability of
Σ̊N (V1,Q) under the condition that NFσ ≡ 0.
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Corollary 3.3.2. If the clustered network system ΣV1,Q is average observable, then
there exists a matrix N ∈ R(m+k)×(m+k) such that both the following conditions hold:

(i) NFσ ≡ 0k

(ii) Σ̊N (V1,Q) is observable.

Proof. Assume ΣV1,Q is average observable, which is equivalent to (3.17) by Theorem 3.3.
Then, for any arbitrary W ∈ R(m+k)×k, there exists a matrix X ∈ R(m+k)×m such that if
we choose N = [ X 0(m+k)×k ] ∈ R(m+k)×(m+k), we have NF = XA12 = WQ+, where
F is given in (2.10). Therefore, we have NFσ = WQ+σ ≡ 0k, which proves (i).

Second, to prove (ii), note that Σ̊N (V1,Q) is observable if and only if, [Yip1981,
Cobb1984,Bejarano2009,Bejarano2011],

rank

 sN −NE

H

 = m+ k, ∀s ∈ C. (3.19)

We can write E = [ E1 FQ ], where E1 =

 E11

E21

, which gives

rank

 sN −NE
H

 = rank

 sX −NE1 −W

Im 0m×k


= m+ rank(W )

for all s ∈ C, where N = [ X 0(m+k)×k ] and NE = [ NE1 W ]. By (3.19), we need to

prove that rank(W ) = k. Since W is arbitrary, we can choose W = [ Ik 0k×m ]ᵀ, which

implies that rank(W ) = k and that X = Q+A†12. Thus, Σ̊N (V1,Q) is observable.

3.3.2 Graph-theoretic interpretation of average observability

A graph-theoretic interpretation of average observability is similar to that of average re-
constructability. For completeness, however, we present the following corollary.

Corollary 3.3.3. If the clustered network system ΣV1,Q is average observable, then
the set of measured nodes V1 spans the clustering Q of unmeasured nodes.

Proof. The proof is same as that of Corollary 3.2.1.

The condition of Corollary 3.2.1 and 3.3.3 concerns the induced subgraphs Gµα, for
α = 1, . . . , k. This is a necessary condition for average reconstructability and average
observability. However, average reconstructability also depends on the graph topology of
clusters C1, . . . , Ck and local damping weights aii of unmeasured nodes because of the matrix
Q+A22 in (3.8). On the other hand, average observability depends solely on the topology
of Gµα. For this reason, the examples illustrated in Figure 3.1 are average observable
irrespective of the local damping weights aii of unmeasured nodes and the topology of
clusters.
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3.3.3 Design of average observer under average observability

We remarked that average observability may not ensure the exponential convergence of
the average observer ΩV1,Q at an arbitrary rate. However, in this subsection, we show that
average observability allows for an average observer where the average estimation error can
be made arbitrarily small by choosing a gain parameter γ to be arbitrarily large.

Theorem 3.4. If the clustered network system ΣV1,Q is average observable, then, for
any γ > 0, there exists a design matrix L = Lγ ∈ Rk×m of the average observer ΩV1,Q and
increasing positive-valued functions a( · ) and b( · ) such that, for any r > 0, ζ(0) = ζ0 ∈ Rk
with ‖ζ0‖ ≤ r, and ‖σ‖∞ ≤ σ̄ <∞, the average estimation error ζ(t) in (3.7) satisfies

‖ζ(t)‖ ≤ a(r)e−γt + b(σ̄)
1− e−γt

γ
. (3.20)

In particular, the matrix L = Lγ is given by

Lγ = (Q+A22Q+ γIk)Q
+A†12. (3.21)

Proof. If ΣV1,Q is average observable, then, by Theorem 3.3, we have ker(Q+) ⊇ ker(A12).
This implies that the solution to LA12 = V Q+, for any V ∈ Rk×k, is given by L = V Q+A†12,
where Q+ = (QᵀQ)−1Qᵀ and A†12 = Aᵀ

12(A12A
ᵀ
12)−1. Let V = Q+A22Q + γIk for an

arbitrary γ > 0. Then, from (3.5), we have RL = Q+A22 − V Q+ and RLQ = −γIk. And
the dynamics of average estimation error ζ(t) in (3.7) can be written as

ζ̇(t) = −γζ(t) +Q+A22σ(t)

which implies

‖ζ(t)‖ ≤ ‖ζ(0)‖e−γt + ‖
∫ t

0
e−γτQ+A22σ(t− τ)dτ‖

≤ ‖ζ(0)‖e−γt + ‖
∫ t

0
e−γτdτ‖‖Q+A22σ‖∞

= ‖ζ(0)‖e−γt +
1− e−γt

γ
‖Q+A22σ‖∞

where the first step is due to the triangular inequality, the second step is due to the mean
value theorem [Bartle1964], and the third step is obtained by integrating e−γτ for the given
limits. Since ‖σ‖∞ ≤ σ̄ <∞, we consider a = ‖ζ0‖ and b = ‖Q+A22σ‖∞ to prove (3.20).

The consequence of (3.20) is that we can consider a high-gain-type design of the average
observer ΩV1,Q in order to ensure limt→∞ ‖ζ(t)‖ = 0 with γ → ∞. That is, the average
estimation error can be made arbitrarily small by choosing γ to be arbitrarily large. The
design of ΩV1,Q, therefore, is given by (3.6) with Lγ given in (3.21).

Example 3.3. Consider a consensus seeking multi-agent system with external inputs

ẋi(t) =
∑

j∈Ni←V

aij [xj(t)− xi(t)] +
3∑
l=1

bilul(t)

where aij = 1 for all i ∈ V and j ∈ Ni←V . The scalars bil = 1 if ul(t) is applied on i, and
bil = 0 otherwise, for l = 1, 2, 3. Let the system be defined on the graph of Figure 3.1(b),
where the measured nodes are shown as black and the three clusters of unmeasured nodes
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Figure 3.3: Average estimation of three clusters of unmeasured nodes of the graph of Fig-
ure 3.1(b).

are shown as blue, green, and orange, respectively. In this example, the state matrix
A = −L(G), where L(G) is the Laplacian matrix of the graph G of Figure 3.1(b). The
output matrix C = [ I3 0 ]. Let the input matrix B = [ I3 0 ]ᵀ. The input vector is
defined as

u(t) =


u1(t)

u2(t)

u3(t)

 =


20 sin(t) + 1

sin(2t) + 1

sin(5t) + 1


The characteristic matrix Q = diag(18,17,18) and A12 is given in (3.13). Notice that
(3.17) is satisfied and the system is average observable. The design of average observer
obtained from (3.21) and (3.6) is given as follows

L =


γ
8 −

11
64

1
56

1
32

1
56

γ
7 −

11
49

3
56

1
32

3
56

γ
8 −

13
64

 , M =


−γ 0 0

0 −γ 0

0 0 −γ

 , N = −L

K =


γ − γ

(γ
8 −

11
64

)
− 3

8
1
8 −

γ
56

1
4 −

γ
32

1
7 −

γ
56 γ − γ

(γ
7 −

11
49

)
− 4

7
3
7 −

3γ
56

1
4 −

γ
32

3
8 −

3γ
56 γ − γ

(γ
8 −

13
64

)
− 5

8

 .
Since average observability allows for a high-gain type of average observer, we consider
two values of the gain γ = 10 and γ = 50 to illustrate (3.20). As shown in Figure 3.3, the
larger gain γ = 50 gives smaller average estimation error asymptotically.

3.4 Average Detectability

The notion of average detectability is defined through the stability of average states of
clusters whose dynamics are described by the projected network system. After providing
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a necessary and sufficient condition of average detectability, we provide its graph-theoretic
interpretation showing that it demands a certain regularity and symmetry in the intra-
cluster and inter-cluster graph topologies. Finally, we show that average detectability
allows for an open-loop average observer.

3.4.1 Necessary and sufficient condition

In this section, we consider the notion of average detectability, which relates to the expo-
nential stability of the average states of the clusters under the absence of output y(t) and
the input u(t). Basically, as it will be explained in more detail, we say that a clustered
network system ΣV1,Q is average detectable if the average state vector za(t) converges to
a zero vector when y(t) = 0 and u(t) = 0 for every t ∈ R≥0 irrespective of the average
deviation vector σ(t) ∈ Rn.

Definition 3.4. The clustered network system ΣV1,Q is said to be average detectable
if—for every t ∈ R≥0, za(0) ∈ Rk, and σ(t) ∈ Rn such that Q+σ ≡ 0k—the zero output
y(t) = 0m and the zero input u(t) = 0p implies that the average state vector za(t) ∈ Rk
converges to 0k asymptotically as time t→∞. In particular,

y ≡ 0m and u ≡ 0p ⇒ lim
t→∞
‖za(t)‖ = 0, ∀σ(t) ∈ Rn such that Q+σ ≡ 0k.

Traditionally, for defining the notions of detectability for linear systems, it is assumed
that the input u ≡ 0 because it is known and can be subtracted from the solution of za(t).
Then, ΣV1,Q with a given set of measured nodes V1 and a clustering Q = {C1, · · · , Ck} of
unmeasured nodes is said to be average detectable if the zero output y ≡ 0 implies that
the average state vector za(t) converges to zero asymptotically as t→∞.

Another equivalent way of defining average detectability is as follows. From the dy-
namics of the projected network system Σ̊V1,Q in equation (2.9), let us write the dynamics
of the average state vector

ża(t) = Q+A22Qza(t) +Q+A22σ(t) +Q+A21y(t) +Q+B2u(t). (3.22)

Here, the average deviation vector σ(t) acts as a structured unknown input. By ignoring
σ(t), we obtain an ‘approximated’ average state vector ẑa(t) that satisfies

˙̂za(t) = Q+A22Qẑa(t) +Q+A21y(t) +Q+B2u(t). (3.23)

Thus, if we define the average approximation error

z̃a(t) = za(t)− ẑa(t) (3.24)

we obtain
˙̃za(t) = Q+A22Qz̃a(t) +Q+A22σ(t). (3.25)

Proposition 3.5. The clustered network system ΣV1,Q is average detectable if and
only if, for every z̃a(0) ∈ Rk, the approximation error z̃a(t) in (3.24) converges to zero 0k
asymptotically as time t→∞ for all σ(t) ∈ Rn such that Q+σ ≡ 0k.

Proof of sufficiency. Assume, for every z̃a(0) ∈ Rk, z̃a(t) → 0k as t → ∞. If we choose
z̃a(0) = za(0), then, from (3.22), we have za(t)→ 0k as t→∞ when y ≡ 0m and u ≡ 0p,
which proves that ΣV1,Q is average detectable.

Proof of necessity. Assume ΣV1,Q is average detectable. Then, for every za(0) ∈ Rk,
za(t) → 0k as t → ∞ when y ≡ 0m and u ≡ 0p. If we choose za(0) = z̃a(0), equation
(3.22) with “y ≡ 0m and u ≡ 0p” and equation (3.23) are equivalent. This implies that
z̃a(t)→ 0k as t→∞.

42



3.4. Average Detectability

Now that we have defined average detectability from the stability of (3.23), we present
the following necessary and sufficient condition that corresponds to the structure of the
projected network system Σ̊V1,Q.

Theorem 3.6. The clustered network system ΣV1,Q is average detectable if and only
if both the following conditions hold:

(i) ker(Q+A22) ⊇ ker(Q+)

(ii) Q+A22Q is Hurwitz.

Proof of sufficiency. Note that (i) is equivalent to say that, for every vector v ∈ ker(Q+),
it holds v ∈ ker(Q+A22). Then, recall that the columns of In−QQ+ form a complete basis
of ker(Q+) because Q+(In −QQ+) = 0k and nullity(Q+) = rank(In −QQ+) = n− k.
Thus, (i) implies Q+A22(In−QQ+) = 0k, which gives Q+A22 = Q+A22QQ

+. From (3.23),
we obtain the solution trajectory

z̃a(t) = exp(Q+A22Qt)z̃a(0) +

∫ t

0
exp(Q+A22Qτ)Q+A22σ(t− τ)dτ. (3.26)

If (i) holds, then Q+A22σ = Q+A22QQ
+σ ≡ 0k. If (ii) holds, then eig(Q+A22Q) ⊂ C<0

and exp(Q+A22Qt)→ 0k×k as t→∞. Hence, z̃a(t)→ 0 as t→∞ for all z̃a(0) ∈ Rk.
Proof of necessity. Assume ΣV1,Q is average detectable. However, only (ii) holds and

(i) does not hold. Then, we have

lim
t→∞
‖z̃a(t)‖ = lim

t→∞
‖
∫ t

0
exp(Q+A22Qη)Q+A22σ(t− η)dη‖

which must be 0 for average detectability. Since limt→∞ ‖σ(t)‖ is not necessarily zero and
(i) does not hold, therefore we have limt→∞ ‖z̃a(t)‖ = 0 only if exp(Q+A22Qt)Q

+A22 =
0k×n for all t ∈ R≥0. This is not possible because matrix exponential exp(Q+A22Qt)
is always nonsingular for every t ∈ R≥0 (see [Horn2013, Ch. 5, Sec. 5.6, Prob. 43])
and, due to (ii), Q+A22 6= 0k×n. Second, assume (i) holds but (ii) doesn’t hold, then
exp(Q+A22Qt)→∞ as t→∞ and, therefore, z̃a(t)→∞. This completes the proof.

In the following corollary, we relate all the three notions of average reconstructability,
average observability, and average detectability. Notice that Theorem 3.6(i) is a necessary
condition of average detectability.

Corollary 3.6.1. If the clustered network system ΣV1,Q is average observable and
satisfies a necessary condition Theorem 3.6(i) of average detectability, then ΣV1,Q is average
reconstructable.

Proof. If ΣV1,Q is average observable, then, by Theorem 3.3,

rank

 A12

Q+

 = rank(A12).

If a necessary condition of average detectability, Theorem 3.6(i), is satisfied, then

rank

 Q+A22

Q+

 = rank(Q+).
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The above equalities imply that

rank




A12

Q+A22

Q+


 = rank

 A12

Q+

 = rank(A12)

which concludes the proof by (3.2).

In Theorem 3.6, we stated a necessary and sufficient condition of average detectability,
which implies that the average approximation error z̃a(t) converges to zero asymptotically
as t → ∞. However, irrespective of average detectability, we have z̃a(t) → 0k asymptoti-
cally as t→∞ under the following condition.

Theorem 3.7. Assume that Q+A22Q is Hurwitz. Then, the average approximation
error z̃a(t)→ 0k asymptotically as t→∞ if limt→∞ ‖σ(t)‖ = 0.

Proof. Since Q+A22Q is assumed to be Hurwitz, therefore, in (3.26), we have

lim
t→∞
‖ exp(Q+A22Qt)z̃a(0)‖ = 0

for all z̃a(0) ∈ Rk. Thus, we consider only the second term on the right hand side of (3.26)
denoted as

v(t) =

∫ t

0
exp(Q+A22Qτ)Q+A22σ(t− τ)dτ.

By splitting the integral at t/2 and then changing the variable τ to η, we obtain

v(t) =

∫ t/2

0
exp(Q+A22Qτ)Q+A22σ(t− τ)dτ +

∫ t

t/2
exp(Q+A22Qτ)Q+A22σ(t− τ)dτ

=

∫ t

t/2
exp[Q+A22Q(t− η)]Q+A22σ(η)dη +

∫ t

t/2
exp(Q+A22Qτ)Q+A22σ(t− τ)dτ.

Let ||| · ||| denote the matrix norm induced by ‖ · ‖, then

‖v(t)‖ = ‖
∫ t

t/2
exp[Q+A22Q(t− η)]Q+A22σ(η)dη

+

∫ t

t/2
exp(Q+A22Qτ)Q+A22σ(t− τ)dτ‖

≤ ‖
∫ t

t/2
exp[Q+A22Q(t− η)]Q+A22σ(η)dη‖

+‖
∫ t

t/2
exp(Q+A22Qτ)Q+A22σ(t− τ)dτ‖.

By the Cauchy-Schwarz inequality, we have

‖v(t)‖≤

[∫ t

t/2

∣∣∣∣∣∣exp[Q+A22Q(t− η)]
∣∣∣∣∣∣2dη] 1

2
[∫ t

t/2
‖Q+A22σ(η)‖2dη

] 1
2

+

[∫ t

t/2

∣∣∣∣∣∣exp(Q+A22Qτ)
∣∣∣∣∣∣2dτ] 1

2
[∫ t

t/2
‖Q+A22σ(t− τ)‖2dτ

] 1
2

.
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First, notice that

lim
t→∞

∫ t

t/2

∣∣∣∣∣∣exp(Q+A22Qτ)
∣∣∣∣∣∣2dτ = 0

since Q+A22Q is Hurwitz. Second, we have

lim
t→∞

∫ t

t/2
‖Q+A22σ(η)‖2dη = 0

since limt→∞ ‖σ(t)‖ = 0. Thus, limt→∞ ‖v(t)‖ = 0, which implies limt→∞ ‖z̃a(t)‖ = 0.

Notice that limt→∞ ‖σ(t)‖ = 0 means that the states of nodes in each cluster either
reach consensus or synchronize. Precisely, we have limt→∞ ‖σ(t)‖ = 0 if and only if, for
every i, j ∈ Cα and α ∈ {1, . . . , k}, it holds that

lim
t→∞

xi(t)− xj(t) = 0.

Therefore, multi-agent systems that seek consensus [Olfati-Saber2007] or synchronization
[Scardovi2009] allow an open-loop average observer (3.23) that converges to the actual
average state of clusters.

3.4.2 Graph-theoretic interpretation of average detectability

The necessary and sufficient condition of average detectability provided in Theorem 3.6
depends on the intra-cluster and inter-cluster graph topologies of Q = {C1, . . . , Ck}, which
are captured by Gαα = (Cα, Eαα) and Gαβ = (Cα, Cβ, Eα,β), respectively, for α, β = 1, . . . , k
and α 6= β, where Eαα = E ∩ (Cα×Cα) and Eαβ = E ∩ (Cα×Cβ). Recall the relative outflow
centrality of νi ∈ V2 with respect to cluster Cα in (2.7)

ci→Cα =


aii +

∑
j∈Cα∩Ni→V

aji if i ∈ Cα

∑
j∈Cα∩Ni→V

aji if i /∈ Cα.

Definition 3.5. The clustering Q = {C1, . . . , Ck} is said to be equitable if, for every
α, β ∈ {1, . . . , k} and νi ∈ Cα, the relative outflow centrality ci→Cβ = dαβ , where dαβ ∈ R.

Theorem 3.8. Assume Q+A22Q is Hurwitz. Then, the clustered network system
ΣV1,Q is average detectable if and only if the clustering Q is equitable.

Proof. Since Q+A22Q is Hurwitz, by Theorem 3.6, ker(Q+A22) ⊇ ker(Q+) is equivalent
to average detectability of ΣV1,Q. Therefore, in this proof, we show that ker(Q+A22) ⊇
ker(Q+) is equivalent to Q being equitable. Note that ker(Q+A22) ⊇ ker(Q+) is equiva-
lent to im((Q+A22)ᵀ) ⊆ im(Q+ᵀ) by [Campbell2009, Proposition 0.2.1], i.e.,

rank

 Q+

Q+A22

 = rank(Q+) = k

which, in turn, is equivalent to the existence of a matrix D ∈ Rk×k such that DQ+ =
Q+A22. We have

Q+A22 =


1
n1
c1→C1 · · · 1

n1
cn→C1

...
. . .

...
1
nk
c1→Ck · · · 1

nk
cn→Ck

 .
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Without loss of generality, let Q be such that C1 = {ν1, . . . , νn1}, C2 = {νn1+1, . . . , νn2+1},
. . . , Ck = {νnk−1+1, . . . , νnk−1+nk}. Then, the characteristic matrix

Q = diag(1n1 ,1n2 , . . . ,1nk)

and its left-pseudo inverse

Q+ =



1
n1

1ᵀ
n1

1
n2

1ᵀ
n2

. . .
1
nk

1ᵀ
nk

 .

If the clustering Q is equitable, then

Q+A22 =


d11
n1

1ᵀ
n1 · · · d1k

n1
1ᵀ
nk

...
. . .

...
d1k
nk

1ᵀ
n1 · · · dkk

nk
1ᵀ
nk


and

D =


d11 · · · d1k

...
. . .

...

dk1 · · · dkk


implies DQ+ = Q+A22, where dαβ ∈ R given in Definition 3.5. In the other direction, let
D ∈ Rk×k with [D]αβ = dαβ be such that Q+A22 = DQ+, then


1
n1
c1→C1 · · · 1

n1
cn→C1

...
. . .

...
1
nk
c1→Ck · · · 1

nk
cn→Ck

 =


d11 · · · d1k

...
. . .

...

dk1 · · · dkk




1
n1

1ᵀ
n1

1
n2

1ᵀ
n2

. . .
1
nk

1ᵀ
nk



=


d11
n1

1ᵀ
n1 · · · d1k

n1
1ᵀ
nk

...
. . .

...
d1k
nk

1ᵀ
n1 · · · dkk

nk
1ᵀ
nk

 .
Therefore, for every α ∈ {1, . . . , k},

c1→Cα = · · · = cn1→Cα = d1α

...
...

...

c(nk−1+1)→Cα = · · · = cnk→Cα = dkα

which implies that Q is equitable.
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3.4. Average Detectability

(a) Examples with one cluster of unmeasured
nodes (shown as blue)

(b) Example with four clusters of unmea-
sured nodes (shown as red, green, orange,
and blue)

Figure 3.4: Examples of clustered network systems with an equitable clustering of unmea-
sured nodes.

For a clustered network system with a single cluster of unmeasured nodes, we have
Q = C1 = V2. In this case, we only have intra-cluster topology captured by the induced
subgraph G11 = (C1, E11). Average detectability requires certain regularity of G11. To
elaborate a single cluster case, notice that the conditions in Theorem 3.6 boil down to
1ᵀ
nA22 = −γ1ᵀ

n, where 1n = Q and γ > 0. That is, for average detectability of a network
system with a single cluster of unmeasured nodes, the induced subgraph G11 = (C1, E11)
must be regular in a way that the relative outflow centrality ci→C1 of every node i ∈ C1 must
be equal and negative. Such regularity is illustrated by the graphs shown in Figure 3.4(a),
where the measured nodes are shown as black and the unmeasured nodes are shown as
blue. In this figure, the relative outflow centrality of every unmeasured node with respect
to C1 in the left and right graph is −1 and −2, respectively.

On the other hand, for a clustered network system with multiple clusters of unmeasured
nodes, average detectability requires that the relative outflow centrality of any pair of nodes
i, j ∈ Cα with respect to cluster Cβ , for every α, β ∈ {1, . . . , k}, be equal. This is illustrated
by an unweighted graph shown in Figure 3.4(b), where the clusters are highlighted with
red, green, brown, and blue nodes, respectively, and the measured nodes are shown as
black. Consider intra-cluster topology, notice that the clustering is equitable because for
all nodes in red, green, brown and blue clusters, we have relative outflow centrality with
respect to their own clusters is equal to −2, −1, −2 and −1, respectively. Moreover,
considering the inter-cluster topology through the induced bipartite subgraphs Gαβ , we see
that the relative outflow centralities of all the nodes in a certain cluster are also equal.
For instance, consider the induced bipartite subgraph G45 with directed edges from blue to
brown nodes. Each blue node has relative outflow centrality with respect to brown nodes
equal to 1. Similarly, in both G35 and G25, the relative outflow centrality of blue nodes with
respect to C3 and C2 is 0. Therefore, the clustering of unmeasured nodes Q is equitable.

3.4.3 Design of average observer under average detectability

Under average detectability, we have an average observer ΩV1,Q with open-loop design,
which is equivalent to (3.23).

Lemma 3.9. The clustered network system ΣV1,Q is average detectable if and only
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if, for every ζ0 = ζ(0) ∈ Rk, there exist constants a = a(ζ0) > 0 and γ > 0 such that

L = 0k×m ⇒ ‖ζ(t)‖ ≤ ae−γt.

Proof of sufficiency. If, for some a, γ > 0, ‖ζ(t)‖ ≤ ae−γt, then, by Proposition 3.5, ΣV1,Q
is average detectable.

Proof of necessity. If ΣV1,Q is average detectable, then Q+A22σ ≡ 0k and Q+A22Q is
Hurwitz by Theorem 3.6. Then, choosing L = 0k×m implies that the average estimation
error (3.7) is given as

ζ̇(t) = Q+A22Qζ(t) +Q+A22σ(t) = Q+A22Qζ(t)

whose solution is given by ζ(t) = exp(Q+A22Qt)ζ0. Since Q+A22Q is Hurwitz, there exists
a constant γ > 0 such that ‖ζ(t)‖ ≤ ‖ζ0‖e−γt. Choosing a = ‖ζ0‖ concludes the proof.

In light of the above lemma, the design of average observer under average detectability
is given by

M = Q+A22Q

N = Q+B2

K = Q+A21

L = 0k×m.

(3.27)
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Figure 3.5: Average estimation of clusters of unmeasured nodes of the network shown in
Figure 3.4.
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Example 3.4. Consider an unweighted graph shown in Figure 3.4(b), where the mea-
sured nodes V1 = {1, 2, 3, 4} are shown as black. The state of each node i evolves according
to (3.15). The input is given by

ul(t) =

 sin (0.5t+ (l − 1)π/4) if l = 1, . . . , 4

0 otherwise

and the input matrix B = [ I4 0 ]ᵀ. The design of average observer is obtained from
(3.27), where L = 04×4, N = 04×4,

M =


−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1

 , K


0.25 0.25 0.25 0.25

0 0 0 0

0 0 0 0

0 0 0 0


Note that Theorem 3.6(ii) is satisfied since M = Q+A22Q is Hurwitz with eig(M) =
{−3.5321,−2.3473,−1.0000,−0.1206}. Also, Theorem 3.6(i) is satisfied since the cluster-
ing is equitable, i.e., Q+A22 = Q+A22QQ

+, where Q = diag(18,18,18,18). Therefore,
the average observer ΩV1,Q with open-loop design (3.27) converges to the average state
of unmeasured clusters as shown in Figure 3.5, where the initial states x(0) are chosen
uniformly in the interval (−0.5, 0.5).

3.5 Remarks on Scale-free Networks and a Scaling Property

3.5.1 Scale-free networks vs. average reconstructability and average ob-
servability

Scale-free network structure emerges ubiquitously in real-world large-scale systems such
as world wide web [Albert1999], metabolic networks [Jeong2000], epidemic spread [Pastor-
Satorras2001b], urban transit system [Wu2004], and many more (see [Barabási2003] and
[Barabási2009]). A scale-free network has a property that its degree distribution follows a
power law

P (d) ∼ d−γ

which states that the fraction of nodes P (d) with degree d in the network decays with d
and is proportional to d−γ , where γ > 0 is the exponent of decay. Such property implies
that scale-free networks have few hub nodes with very large degrees and many exterior
nodes with very small degrees. The hubs lie in the tail of power law distribution. For
example, the network of Figure 3.1(b) is a scale-free network whose degree distribution is
plotted in Figure 3.6 with a power law fitting P (d) = 0.15d−0.95.

Liu et al. [Liu2011] showed that the number of sensors required to render a scale-
free network controllable/observable is typically much larger than the requirement for an
Erdős-Réyi network. Moreover, considering the hubs of a scale-free network as measured
nodes does not usually make the network observable because of dilation [Lin1974,Liu2011]
that results in the non-idenfiability of exterior nodes. However, for average observability
and average reconstructability, scale-free networks are well-suited and can be made average
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1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

Figure 3.6: Degree distribution of a scale-free network of Figure 3.1(b).

observable and/or average reconstructable by choosing the hubs as measured nodes. This
is because the hubs have large degrees and span most of the exterior nodes. Therefore,
as depicted in the example of Figure 3.1(b), considering the hubs as measured nodes and
the exterior nodes around each hub as a cluster of unmeasured nodes may suffice in scale-
free networks to satisfy the condition of average reconstructability and reconstructability
in Corollary 3.2.1 and 3.3.3. In general, of course, one may need to also include some
exterior nodes as measured nodes in addition to the hubs, nonetheless, the number of
measured nodes required for average reconstructability and average observability in scale-
free networks is much less as compared to the size of network.

3.5.2 Scaling property vs. average detectability

The necessary and sufficient condition of average detectability requires that the clustering
of unmeasured nodes be equitable. However, in many applications, the clustering is a
priori specified and fixed, where the task is to estimate and control some aggregated state
profile of the clusters [Niazi2020b, Nikitin2021]. In such a case, the system may not be
average detectable. In this subsection, we show that as the scale of the system increases,
the open-loop estimation error approaches to zero asymptotically every if the system is not
average detectable. For simplicity, we assume a single cluster case, where Q = 1n, where
the necessary and sufficient condition of average detectability in Theorem 3.6 reduces to

1ᵀ
nA22 = −γ1ᵀ

n, γ > 0

which implies that the relative outflow centrality (2.7) of every node i ∈ C1 with respect to
C1 is equal to −γ, where the minus sign is due to Q+A22Q being Hurwitz (Theorem 3.6(ii)).
This means that the induced subgraph G11 = (C1, E11) formed by cluster C1 needs to be
regular with respect to the relative outflow centralities. If G11 is not completely regular
and the average detectability condition is not completely satisfied, then we have

1ᵀ
nA22 = −γ1ᵀ

n + sᵀ (3.28)

where s ∈ Rn is a sparse vector that has non-zero values only at the place of nodes that
have different relative outflow centralities.

We would like to study the effect of scale on the average estimation error ζ(t) when the
size of the network is very large, i.e., n → ∞. From (3.27), we have the following design
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of average observer ΩV1,Q

M = 1
n1ᵀ

nA221n

N = 1
n1ᵀ

nB2

K = 1
n1ᵀ

nA21

L = 01×4

and the average estimation error satisfies

ζ̇(t) =
1

n
1ᵀ
nA221nζ(t) +

1

n
1ᵀ
nA22σ(t).

From (3.28), we have

1

n
1ᵀ
nA221n =

1

n
(−γ1ᵀ

n + sᵀ)1n = −γ +
sᵀ1n
n

1

n
1ᵀ
nA22σ(t) =

1

n
(−γ1ᵀ

n + sᵀ)σ(t) =
1

n
sᵀσ(t)

which implies

ζ(t) = e(−γ+ sᵀ1n
n

)tζ(t) +
1

n

∫ t

0
e(−γ+ sᵀ1n

n
)τsᵀσ(t− τ)dτ

Assume n to be sufficiently large such that γn > sᵀ1n. Let ‖σ̄‖∞ ≤ σ̄ < ∞ and ζ∞ =
lim supt→∞ ‖ζ(t)‖, then

ζ∞ ≤ lim sup
t→∞

‖ 1

n

∫ t

0
e(−γ+ sᵀ1n

n
)τsᵀσ(t− τ)dτ‖

≤ 1

n
sᵀ1nσ̄

∫ ∞
0

e(−γ+ sᵀ1n
n

)τdτ

=
σ̄sᵀ1n

nγ − sᵀ1n
.

If limn←∞
n

sᵀ1n
=∞, then we have

lim
n→∞

ζ∞ = 0

which means that the average estimation error converges to zero asymptotically as the
scale of the system becomes arbitrarily large. We illustrate this by the following example
of grid networks.

Example 3.5 (Grid networks). Grid network topology is found in several real-world
applications such as urban traffic networks [Gartner2002] and agricultural monitoring
[Goh2006]. It also emerges as a result of space-discretization of systems governed by partial
differential equations such as asset pricing in finance [Bodeau2000], fluid dynamics [Bun-
gartz2010], topological analysis of indoor spaces [Li2010], and temperature estimation of
power modules [Sakhraoui2018]. The main property of a grid graph, also known as lattice,
is that it forms a regular tiling, where most of the nodes have degree equal to four.

Consider a spatially-discrete reaction diffusion system [Ishizaki2014] over a grid network
with single cluster Q = C1 = V2 of unmeasured nodes, where the local damping at each
node i is given by

aii = −ri −
∑
j 6=i

aij
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(a) Grid network of size 10× 10 (b) Grid network of size 25× 40

Figure 3.7: Examples of grid networks with four measured nodes (black) at the corners and
one cluster of unmeasured nodes (blue).
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Figure 3.8: Illustration of scaling property for the grid networks of Figure 3.7.

with ri the reaction rate at i. Suppose the four corner nodes of the grid are measured and
the rest of the nodes form a single cluster C1 of unmeasured nodes as shown in Figure 3.7.
For simplicty, assume the grid network is unweighted, i.e., aij = 1, and ri = r for every
i ∈ V. Although grid networks are quite regular in terms of the internal structure, they do
not satisfy the average detectability condition because of the irregularity at the boundary
nodes. However, as the scale of the grid becomes larger, the regularity of the inner nodes
overcomes the irregularity of the boundary nodes, i.e., the condition limn←∞

n
sᵀ1n

=∞ is
satisfied. Therefore, by the scaling property of open-loop average estimation, the asymp-
totic value of average estimation error is smaller for the grid of size 25× 40 than the grid
of size 10 × 10. This shows that, for instance, smaller granularity of spatial discretiza-
tion in reaction diffusion systems implies smaller average estimation error as depicted in
Figure 3.8.

3.6 Concluding Remarks

We provided a design criteria of a minimum-order average observer for clustered net-
work systems. The notion of average reconstructability of a clustered network system is
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defined as the exponential estimation of average states of clusters at an arbitrary rate by
the average observer. On the other hand, the notions of average observability and average
detectability are defined through the projected network system. However, we also estab-
lished their relation to the average observer. Average observability allows for asymptotic
estimation of average states of clusters when the gain of average observer is arbitrarily large,
whereas average detectability allows for exponential open-loop estimation of average states
at a fixed rate depending on the eigenvalues of the projected network system. We provided
graph-theoretic interpretations through the inter-cluster and intra-cluster graph topologies
of the clustered network system of these notions and showed the following relations:

average reconstructability ⇒ average observability

average observability AND average detectability ⇒ average reconstructability.

Finally, we showed that scale-free networks are suitable candidates for satisfying the
necessary condition of average reconstructability and average observability when the hubs
are considered as measured nodes. Moreover, under a mild assumption, an important
remark on the scaling property of open-loop average estimation showed that the average
estimation error converges to zero when the scale of the network system, which is not
average detectable, is very large.

The results presented in this chapter point towards several prospects such as sensor
location and clustering problems to achieve average reconstructability, average observabil-
ity, or average detectability. In this thesis, we have studied the clustering problem in
Chapter 5, however, the sensor location problem and a combination of sensor location and
clustering are reserved for future work. Another prospect is to combine the notions of
average reconstructability, average observability, and average detectability in a single clus-
tered network system, where some clusters are chosen because they satisfy the condition
of average detectability and other clusters are chosen because they satisfy the condition
of average reconstructability. However, such cluster selection can be based only on intra-
cluster graph topology, and dealing with the inter-cluster graph topology of the clustered
network system is very challenging.
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4
Optimal Average Estimation for Clustered

Network Systems

This chapter provides an optimal design of the average observer
that minimizes the average estimation error when the design cri-
teria of average observer cannot be met. First, in section 4.1, we
present a design that minimizes the effect of average deviation
on average estimation error. Second, in section 4.2, we provide
sufficient conditions for the stability of the average observer.
Finally, section 4.3 describes an algorithm to optimally choose
the gain of the average observer that minimizes the average es-
timation error asymptotically. In short, the optimal design is
achieved by minimizing the effect of average deviation on aver-
age estimation error while keeping the average observer stable.
In section 4.4, we illustrate the effectiveness of our methodology
on thermal monitoring of a four-room building.
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4.1. Minimizing the Effect of Average Deviation

W hen it is not possible to asymptotically estimate the average states of clusters in
a clustered network system, we resort to an optimal design of the average observer that
minimizes the average estimation error. First, we choose a design of the average observer
that minimizes the effect of the average deviation vector acting as a structured unknown
input in the dynamics of the average estimation error. Then, we perturb the average
observer through a gain parameter to stabilize the average observer. The optimal gain
parameter is found by solving a convex H2-optimal average estimation problem through
gradient descent or incremental search algorithm. Finally, we show the efficacy of our
methodology through the application example of a building thermal system.

4.1 Minimizing the Effect of Average Deviation

Recall a clustered network system ΣV1,Q with the set of measured nodes V1 and the
clustering Q = {C1, . . . , Ck} of unmeasured nodes V2. Our aim is to estimate the average
states of clusters Cα, for α = 1, . . . , k, through the average observer ΩV1,Q given in (3.1).
We derived the dynamics of average estimation error ζ(t) ∈ Rk in (3.7) as

ζ̇(t) = RLQζ(t) +RLσ(t) (4.1)

where σ(t) is the average deviation vector satisfying Q+σ ≡ 0k and RL = Q+A22 −
LA12 as given in (3.5). In the following, we provide a necessary condition of average
reconstructability in relation to the average deviation vector.

Lemma 4.1. If the clustered network system ΣV1,Q is average reconstructable, then
the following equivalent conditions hold:

(i) RLσ ≡ 0k

(ii) ker(RL) ⊇ ker(Q+)

(iii) RL = V Q+

where, for some Hurwitz V ∈ Rk×k, the design matrix L of the average observer ΩV1,Q is
chosen according to (3.9) as L = (Q+A22 − V Q+)A†12.

Proof. Assume that ΣV1,Q is average reconstructable, then, for every ζ(0) = ζ0 ∈ Rk and
γ > 0, the average estimation error ζ(t) satisfies ‖ζ(t)‖ ≤ ‖ζ0‖e−γt ∀t ∈ R≥0. In other
words, limt→∞ ‖ζ(t)‖ = 0. However, the solution of (4.1)

ζ(t) = exp(RLQt)ζ0 +

∫ t

0
exp[RLQ(t− τ)]RLσ(τ)dτ

where

lim sup
t→∞

‖ζ(t)‖ = lim sup
t→∞

‖
∫ t

0
exp[RLQ(t− τ)]RLσ(τ)dτ‖

under the assumption that RLQ = V is Hurwitz. Since matrix exponential is always
nonsingular and σ(t) is not equal to zero necessarily, the right hand side of the above
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equation is equal to zero only if RLσ(τ) = 0 for all τ ∈ [0,∞), thus proving the necessity
of (i).

To establish the equivalence (i) ⇔ (ii), notice that σ(t) ∈ ker(Q+) for all t. Thus, if
(i) holds, then ker(Q+) ⊆ ker(RL). In the other direction, if (ii) holds, then, for every
vector v ∈ ker(Q+), we have RLv = 0k. Since σ(t) ∈ ker(Q+), therefore RLσ(t) = 0k,
for every t ∈ R≥0.

To establish the equivalence (ii) ⇔ (iii), assume (ii). Then, im(Rᵀ
L) ⊆ im(Q+ᵀ), where

im(Rᵀ
L) = {v1 ∈ Rn : wᵀ

1RL = vᵀ
1, for w1 ∈ Rk}

im(Q+ᵀ) = {v2 ∈ Rn : wᵀ
2Q

+ = vᵀ
2, for w2 ∈ Rk}.

That is,

rank

 Q+

RL

 = rank(Q+)

which implies that there exists V ∈ Rk×k such that V Q+ = RL. In the other direction,
suppose (iii) holds, then the rows of RL are linearly dependent on the rows of Q+. This
implies that im(Rᵀ

L) ⊆ im(Q+ᵀ), which is equivalent to (ii).

The above lemma shows that average reconstructability cancels the effect of average
deviation σ(t) from the dynamics of average estimation error (4.1) through the choice
of design matrix L. However, when the clustered network system is not average recon-
structable, then RLσ may not be equal to zero. Due to the equivalence of Lemma 4.1(i)
and (iii), we first find an optimal design matrix L∗ such that ‖RLσ(t)‖ is minimized by
minimizing |||RL − V Q+||| for a fixed matrix V .

Lemma 4.2. For any V ∈ Rk×k,

L∗ = (Q+A22 − V Q+)A†12 (4.2)

is the minimizing solution to
min

L∈Rk×m

∣∣∣∣∣∣RL − V Q+
∣∣∣∣∣∣.

Proof. Consider the equation RL = V Q+, for some V ∈ Rk×k, whose least-square solution
is given by L = L∗ with L∗ in (4.2), which is the minimizing solution of |||RL − V Q+|||,
[Campbell2009].

The expression for the design matrix L∗ in (4.2) is dependent on the matrix V . Now,
choosing L = L∗, we find optimal matrix V .

Lemma 4.3. Consider L∗ in (4.2) and

RV := RL∗ = Q+A22(In −A†12A12) + V Q+A†12A12.

Then,
V ∗ = Q+A22Q (4.3)

is the minimizing solution to
min

V ∈Rk×k

∣∣∣∣∣∣RV − V Q+
∣∣∣∣∣∣.
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Proof. Consider the equation RV = V Q+, then

RV − V Q+ = (Q+A22 − V Q+)(In −A†12A12)

where the ideal solution V that satisfies RV − V Q+ = 0k×n must be such that

ker(Q+A22 − V Q+) ⊇ ker(A12)

because the columns of In −A†12A12 form a complete basis of ker(A12). This implies that
Q+A22−V Q+ = WA12 for someW ∈ Rk×m. However, if the ideal solution does not exist,
the minimizing solution is the least-square solution V = (Q+A22−WA12)Q, which implies

RV − V Q+ = (Q+A22(In −QQ+) +WA12QQ
+)(In −A†12A12).

Finally, the minimizing solution to

min
W∈Rk×m

∣∣∣∣∣∣Q+A22(In −QQ+) +WA12QQ
+
∣∣∣∣∣∣

is W = Q+A22(QQ+ − In)QQ+A+
12 = 0k×m because (QQ+ − In)Q = 0n×k. Thus, V =

V ∗ = Q+A22Q is the minimizing solution to minV ∈Rk×k |||RV − V Q+|||.

The above lemma shows that the choice of L = (Q+A22−V Q+)A†12 with V = Q+A22Q
minimizes the effect of average deviation in (4.1). However, such a choice of V may not
ensure the stability of average estimation error or average observer, which is characterized
by ML = RLQ being Hurwitz. In the next section, we consider a perturbed solution
V = ρV ∗ and find ρ that stabilizes the average observer while also minimizing the average
estimation error.

4.2 On the Stabilizability of Average Observer

We provide a methodology and a sufficient condition for the stabilizability of the average
observer or average estimation error. The stabilizability is achieved by making the state
matrix M = RLQ of the average observer Hurwitz.

4.2.1 Preliminary lemmas on the stability of matrices

Recall that a matrix X ∈ Rn×n is said to be Hurwitz if its eigenvalues are in the open left-
half complex plane, i.e., eig(X) ⊂ C<0. Moreover, a symmetric matrix P = P ᵀ ∈ Rn×n
is said to be negative definite if, for every v ∈ Rn, we have vᵀPv < 0. It is well-known
that P = P ᵀ ∈ Rn×n is negative definite if and only if its eigenvalues are in the open
left-half complex plane, i.e., eig(P ) ⊂ C<0. In other words, a symmetric Hurwitz matrix
is negative definite, and vice versa. A symmetric P = P ᵀ ∈ Rn×n, on the other hand, is
said to be positive definite if, for every v ∈ Rn, we have vᵀPv > 0, which is equivalent to
have eig(P ) ⊂ C>0. We will use the notation P < 0 if P is a negative definite matrix and
P > 0 if P is a positive definite matrix.

Lemma 4.4 (Lyapunov’s theorem). A matrix X ∈ Rn×n is Hurwitz if and only if
there exists a positive definite P = P ᵀ ∈ Rn×n such that PX +XᵀP is negative definite.
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Proof. This is a well-known result attributed to Lyapunov and its proof can be found
in [Roger1991, Theorem 2.2.1].

The following lemma is also a well-known result, see [Arrow1958,Ostrowski1962,Carl-
son1968], which is commonly known as S-stability for real matrices and H-stability for
complex matrices. This is because it deals with the stability of a matrix that is a product
of a Hurwitz matrix and a Symmetric (S) matrix.

Lemma 4.5 (S-stability). If X +Xᵀ ∈ Rn×n is negative definite and S = Sᵀ ∈ Rn×n
is positive definite, then XS is Hurwitz.

Proof. If X +Xᵀ < 0 and S = Sᵀ > 0, then we have

Sᵀ(X +Xᵀ)S = S(X +Xᵀ)S < 0.

This is because S(X+Xᵀ)S is congruent to the matrixX+Xᵀ and, according to Sylvester’s
law of inertia, congruence preserves the inertia of a matrix [Horn2013, Theorem 4.5.8]. In
other words, the inertia of X + Xᵀ ∈ Rn×n is given by ι(X + Xᵀ) = (0, n, 0), which
means it has 0, n, 0 eigenvalues in C>0,C<0,C=0, respectively, where C>0 denotes the
open right-half complex plane, C<0 denotes the open left-half complex plane, and C=0

denotes the imaginary axis of complex plane. Thus, the inertia of S(X + Xᵀ) is also
ι(S(X +Xᵀ)S) = (0, n, 0). Therefore,

S(X +Xᵀ)S = S(XS) + (XS)ᵀS < 0

which concludes that XS is Hurwitz by Lyapunov’s theorem (Lemma 4.4).

For a full-column rank matrixQ ∈ Rn×k, we sayQ+XQ is the compression ofX ∈ Rn×n
with respect to Q, where Q+Q = Ik. When the context is clear, we simply say “compression
of X" instead of “compression of X with respect to Q".

If X is a Hurwitz matrix, then the stability of compression Q+XQ depends on the
matrix Q. In the following, we provide a sufficient condition for the stability of compression
of a Hurwitz matrix X for any full-column rank matrix Q ∈ Rn×k.

Lemma 4.6. LetX ∈ Rn×n be a Hurwitz matrix. IfX+Xᵀ is negative definite, then,
for every Q ∈ Rn×k such that rank(Q) = k with k < n, the matrix Q+XQ is Hurwitz.

Proof. The compression of X+Xᵀ by Q is given by Qᵀ(X+Xᵀ)Q. By Cauchy’s interlacing
theorem, [Bhatia1997, Corollary III.1.5], we have

Qᵀ(X +Xᵀ)Q = QᵀXQ+ (QᵀXQ)ᵀ < 0

because X + Xᵀ < 0 by assumption. Since (QᵀQ)−1 > 0, therefore, by Lemma 4.5, the
matrix Q+XQ = (QᵀQ)−1QᵀXQ is Hurwitz.

For the stabilization of average observer, we first show that the optimal solution V ∗ =
Q+A22Q minimizing the effect of average deviation vector is Hurwitz for all Q ∈ Cn,k,
where

Cn,k = {X ∈ {0, 1}n×k : X1k = 1n}

is the set of characteristic matrices of all clusterings with k clusters of n nodes. In the next
subsection, we show the stability of V ∗ by using the above lemmas.
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4.2.2 Sufficient condition for the stability of V ∗

Recall the digraph G = ({V1,V2}, E) describing the structure of the clustered network
system ΣV1,Q, where V1 is the set of m measured nodes, V2 is the set of n unmeasured
nodes, E is the set of directed edges, andQ is the clustering of V2. Consider Gν = (V2, Eν) to
be the induced subgraph formed by the unmeasured nodes V2, where Eν = E∩(V2×V2). The
off-diagonal entries of the matrix A22 constitute the edge configuration of Gν . Therefore,
the subgraph Gν is weakly connected if and only if the matrix A22 +Aᵀ

22 is irreducible. A
matrix is said to be reducible if it can be transformed to a block upper-triangular form by
simultaneous row/column permutations. Otherwise, it is said to be irreducible.

The weak connectivity of induced subgraph Gν can also be established by considering
an undirected version Gν of the subgraph. The edges of Gν are obtained by ignoring the
directions from the edges of Gν . Then, Gν is weakly connected if and only if Gν is connected,
which is equivalent to having the rank of its Laplacian matrix rank(L(Gν) = n− 1.

For every unmeasured node i ∈ V2, let

si =
∑

j∈Ni←V2

aij +
∑

h∈Ni→V2

ahi

to be the sum of the weights of all edges going into and emerging from i within Gν , where
Ni←V2 and Ni→V2 are the sets of in-neighbors and out-neighbors of i. That is, the weights
of all edges of the node νi’s in-neighbors and out-neighbors. Finally, recall that all the
diagonal entries of A22 are non-positive, i.e., [A22]jj = ajj ≤ 0 for j = 1, . . . , n.

Theorem 4.7. If

(i) the induced subgraph Gν = (V2, Eν) is weakly connected and

(ii) for every unmeasured node i ∈ V2, we have si ≤ 2|aii|, and, for at least one j ∈ V2,
it holds sj < 2|ajj |

then, for any Q ∈ Cn,k ⊂ {0, 1}n×k, the matrix V ∗ = Q+A22Q is Hurwitz.

Proof. First, if (i) holds, then the symmetric part of A22, S(A22) = A22+Aᵀ
22, is irreducible.

That is, an undirected graph Gν capturing the structure of S(A22) is connected. Thus, the
Laplacian matrix of Gν defined as

[L(Gν)]ij =

 si, if i = j

aij + aji, if i 6= j

is of rank n − 1 and nullity 1. Since L(Gν) is positive semi-definite, we have, for every
v ∈ Rn, vᵀL(Gν)v ≥ 0. Moreover, 0 ∈ eig(L(Gν)) with algebraic multiplicity 1 because
Gν is connected, therefore we have vᵀL(Gν)v = 0 if and only if v = 1n, which is in the
direction of eigenvector of L(Gν) corresponding to the 0 eigenvalue.

Second, if (ii) holds, then
S(A22) = −L(Gν)−D

where D = diag(2|a11| − s1, . . . , 2|ann| − sn) is a diagonal matrix, which is positive semi-
definite because, for all i ∈ {1, . . . , n}, we have si ≤ 2|aii| and, for at least one j ∈
{1, . . . , n}, we have sj < 2|ajj |. Thus, for every v ∈ Rn, we have vᵀDv ≥ 0. However, we
know that 1ᵀ

nD1n > 0 and, for some v1 ∈ Rn such that vᵀ
1Dv = 0, we have vᵀ

1L(Gν)v1 > 0.
Therefore, L(Gν) +D is positive definite, i.e.,

S(A22) = A22 +Aᵀ
22 = −(L(Gν) +D)
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is negative definite. Therefore, for any Q ∈ Cn,k, we have Q+A22Q Hurwitz by Lemma 4.5
and 4.6.

In the next subsection, under the assumption that the sufficient condition of Theo-
rem 4.7 holds, we perturb the matrix V ∗ in order to stabilize the average observer and
provide a sufficient condition of stabilizability.

4.2.3 Stabilizability of average observer

The optimal design matrix L∗ ∈ Rk×m of the average observer ΩV1,Q that minimizes
the effect of the average deviation from the average estimation error ζ(t) is given by
L∗ = (Q+A22−V ∗Q+)A†12, where V

∗ = Q+A22Q. However, such a choice L = L∗ may not
ensure the stability of the average estimation error ζ(t), which is to say that the matrix
RLQ may not be Hurwitz. Thus, instead of considering the optimal solution V ∗ that
minimizes the effect of average deviation from ζ(t), we consider a perturbed solution

V = ρV ∗, where ρ ∈ R (4.4)

in order to ensure the stability of ζ(t) and find optimal design in terms of ρ that minimizes
the ζ(t) asymptotically. Notice that if V ∗ = Q+A22Q is Hurwitz, then V = ρV ∗ is also
Hurwitz for all ρ ∈ R>0. To elucidate, let λ1, . . . , λk to be the eigenvalues of V ∗, then
ρλ1, . . . , ρλk are the eigenvalues of ρV ∗.

The perturbed solution V = ρV ∗ gives

L =: Lρ = (Q+A22 − ρQ+A22QQ
+)A†12 (4.5)

and
RL =: Rρ = Q+A22 − LρA12

= Q+A22(In −A†12A12) + ρQ+A22QQ
+A†12A12.

(4.6)

Thus, the dynamics of the average estimation error is given by

ζ̇(t) = Mρζ(t) +Rρσ(t) (4.7)

where
Mρ = RρQ = Q+A22(In −A†12A12)Q+ ρQ+A22QQ

+A†12A12Q. (4.8)

Lemma 4.8. If a matrix X ∈ Rk×k is Hurwitz, then, for any matrix Y ∈ Rk×k, there
exists φ ∈ R such that ρX + Y is Hurwitz for every ρ > φ.

Proof. By Lemma 4.4, X is Hurwitz if and only if there exists a positive definite P = P ᵀ ∈
Rk×k such that PX +XᵀP < 0. For such a P > 0, we have

P (ρX + Y ) + (ρX + Y )ᵀP = ρ(PX +XᵀP ) + (PY + Y ᵀP ) < 0 (4.9)

if, for every v ∈ Rk,

ρvᵀ(PX +XᵀP )v < −vᵀ(PY + Y ᵀP )v.

Since PX + XᵀP is negative definite, we have vᵀ(PX + XᵀP )v < 0 for every v ∈ Rk
and v 6= 0k. Therefore, dividing both sides of the above inequality by vᵀ(PX + XᵀP )v
changes the sign of inequality and gives

ρ > − vᵀ(PY + Y ᵀP )v

vᵀ(PX +XᵀP )v
(4.10)
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which satisfies (4.9). Let

v1 = arg min
v∈Rk,‖v‖=1

|vᵀ(PX +XᵀP )v|

v2 = arg max
v∈Rk,‖v‖=1

vᵀ(PY + Y ᵀP )v.
(4.11)

Then, choose

φ =
vᵀ

2(PY + Y ᵀP )v2

|vᵀ
1(PX +XᵀP )v1|

.

From (4.11), we have, for every v ∈ Rk,

|vᵀ
1(PX +XᵀP )v1| ≤ |vᵀ(PX +XᵀP )v|

vᵀ
2(PY + Y ᵀP )v2 ≥ vᵀ(PY + Y ᵀP )v

which implies

φ ≥ vᵀ(PY + Y ᵀP )v

|vᵀ(PX +XᵀP )v|
.

Therefore, choosing ρ > φ ensures (4.10), which concludes the proof.

The above result implies that given two matrices X,Y ∈ Rk×k, we can choose ρ such
that it satisfies (4.10) to ensure that ρX + Y is a Hurwitz matrix.

Theorem 4.9. Let Assumption 2.1 hold and assume V ∗ = Q+A22Q to be Hurwitz.
If rank(A12Q) = k, then there exists φ ∈ R such that Mρ = RρQ is Hurwitz for every
ρ > φ, where Rρ is given in (4.6).

Proof. If rank(A12Q) = k and that Assumption 2.1 holds, i.e., rank(A12) = m, where
A12 ∈ Rm×n≥0 , then

rank(A12Q) = rank((A12A
†
12)−

1
2A12Q)

= rank(QᵀAᵀ
12(A12A

†
12)−1A12Q)

= rank((QᵀQ)−1QᵀAᵀ
12(A12A

†
12)−1A12Q)

= rank(Q+A†12A12Q)

= k

where we used the properties rank(XᵀX) = rank(X) and rank(Y X) = rank(X), for some
matrix X ∈ Ra×b and a non-singular Y ∈ Ra×a. This implies that

S := QᵀA†12A12Q = [(A12A
†
12)−

1
2A12Q]ᵀ(A12A

†
12)−

1
2A12Q

is positive definite.
Notice that we can write Mρ = RρQ in (4.8) as

Mρ = ρXS + Y

where
X = Q+A22Q(QᵀQ)−1

Y = Q+A22(In −A†12A12)Q
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Then, notice that X = V ∗(QᵀQ)−1 is Hurwitz by Lemma 4.5 and it holds that

X +Xᵀ = Q+(A22 +Aᵀ
22)Q+ᵀ < 0.

Therefore, again by Lemma 4.5 and the fact that S > 0, we have that XS is Hurwitz.
Finally, by Lemma 4.8, there exists φ ∈ R such that Mρ = ρXS + Y is Hurwitz for every
ρ > φ.

The above theorem provides a sufficient condition for the stabilizability of the matrix
Mρ, which is the state matrix of the average observer ΩV1,Q and characterizes its stabiliz-
ability. Notice that the sufficient condition of Theorem 4.9 is contingent on the sufficient
condition of Theorem 4.7. If both conditions are satisfied, then the average observer is
stabilizable. In the next section, we provide an algorithm to optimally choose ρ that
minimizes the average estimation error.

Furthermore, the sufficient condition of Theorem 4.9 also provides an upper bound on
the number of clusters k.

Corollary 4.9.1. If rank(A12Q) = k, then the number of clusters k is less than or
equal to the number of measured nodes m, i.e., k ≤ m.

Proof. Note that for any matrix X ∈ Rm×k, we have rank(X) ≤ min(m, k). Therefore,
requiring that A12Q ∈ Rm×k is a matrix with full-column rank implies that the number of
rows m is greater than or equal to the number of columns k of A12Q.

4.3 H2-Optimal Average Estimation

In this section, we formulate an H2-optimal average estimation problem with respect
to the gain (or perturbation) parameter ρ. The problem assumes the following:

Assumption 4.1. The clustered network system ΣV1,Q is such that the sufficient
conditions of Theorem 4.7 and 4.9 are satisfied.

The above assumption ensures that the average observer ΩV1,Q is stabilizable, which
suffices for the feasibility ofH2-optimal average estimation problem defined in the following
subsection.

4.3.1 Problem definition

Recall the dynamics of average estimation error ζ(t) given in (4.7), Mρ ∈ Rk×k given in
(4.8), and Rρ ∈ Rk×n given in (4.6). Let

Tρ(s) = (sIk −Mρ)
−1Rρ

be the transfer matrix from σ to ζ, where the impulse response is given by

Tρ(t) = L−1[Tρ(s)] = exp(Mρt)Rρ

with L−1 denoting the inverse Laplace transform. Then, the H2-norm defined as

‖Tρ(s)‖H2 =

√
trace

(
1

2π

∫ ∞
0

T(ιω)T(ιω)∗dω

)
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can be computed, due to Parseval’s theorem, as

‖Tρ(s)‖H2 =

√
trace

(∫ ∞
0

Tρ(t)T
ᵀ
ρ (t)dt

)
=

√
trace (Wρ).

where
Wρ :=

∫ ∞
0

exp(Mρt)RρR
ᵀ
ρ exp(Mᵀ

ρ t)dt (4.12)

is the controllability gramian of (Mρ, Rρ).
Define the cost J (ρ) := ‖Tρ(s)‖2H2

= trace(Wρ), then H2-optimal average estimation
problem is defined as follows: Find ρ∗ ∈ R such that

ρ∗ = arg min
ρ∈R
J (ρ) subject to Mρ is Hurwitz. (4.13)

Note that the problem (4.13) is a convex optimization problem with a scalar decision
variable, see [Boyd1994, Chapter 3] and [Boyd2004, Chapter 4].

4.3.2 Gradient descent algorithm

The gradient descent algorithm is given by

ρ̂i+1 = ρ̂i − η∇J (ρ̂i) (4.14)

where ρ̂i ∈ R>0, η ∈ R>0 is the step size, and ∇J (ρ̂i) = d
dρJ (ρ)|ρ=ρ̂i is the gradient of

J (ρ) evaluated at ρ̂i. Since (4.13) is a convex optimization problem, the algorithm (4.14)
converges to the global minimum given that η > 0 is small enough.

The initial estimate ρ0 is chosen such that the matrixMρ̂0 is Hurwitz because otherwise
the cost J (ρ̂0) is infinite. Let

Mρ = ρXS + Y

where
X = Q+A22Q

+ᵀ

S = QᵀA†12A12Q

Y = Q+A22(In −A†12A12)Q.

(4.15)

Under Assumption 4.1, the matrix product XS is Hurwitz and there exists φ ∈ R such
that Mρ is Hurwitz for every ρ > φ. Since XS is Hurwitz, there exists P > 0 such that
P (XS) + (XS)ᵀP < 0. Let T ∈ Rk×k be any arbitrary positive definite matrix, then

P =

∫ ∞
0

exp((XS)ᵀt)T exp((XS)t)dt.

satisfies P (XS) + (XS)ᵀP = −T . Define

v1 = arg min
v∈Rk

|vᵀ(P (XS) + (XS)ᵀP )v| = arg min
v∈Rk

vᵀTv

v2 = arg max
v∈Rk

vᵀ(PY + Y ᵀP )v.

Then, consider

ρ̂0 =
vᵀ

2(PY + Y ᵀP )v2

v1Tv1
+ ε (4.16)

65



Chapter 4. Optimal Average Estimation for Clustered Network Systems

for some small ε > 0. This choice of ρ̂0 ensures that Mρ̂0 is Hurwitz in the initial iteration
and thus yielding a finite cost J (ρ̂0).

The gradient ∇J (ρ) is computed as

∇J (ρ) =
d

dρ
trace(Wρ) = trace

(
d

dρ
Wρ

)
where

d

dρ
Wρ =

d

dρ

∫ ∞
0

exp(Mρt)RρR
ᵀ
ρ exp(Mᵀ

ρ t)dt

=

∫ ∞
0

∂

∂ρ

(
exp(Mρt)RρR

ᵀ
ρ exp(Mᵀ

ρ t)
)
dt

=

∫ ∞
0

[(
∂

∂ρ
exp(Mρt)

)
RρR

ᵀ
ρ exp(Mᵀ

ρ t) + exp(Mρt)RρR
ᵀ
ρ

(
∂

∂ρ
exp(Mᵀ

ρ t)

)
+ exp(Mρt)

(
∂

∂ρ
Rρ

)
Rᵀ
ρ exp(Mᵀ

ρ t) + exp(Mρt)Rρ

(
∂

∂ρ
Rᵀ
ρ

)
exp(Mρt)

]
dt

with ∂
∂ρRρ = XQᵀA†12A12 and ∂

∂ρ exp(Mρt) computed in the following lemmas.

Lemma 4.10. Let

Mρ =

 Mρ
d
dρMρ

0k×k Mρ

 .
Then,

exp(Mρt) =

 exp(Mρt)
∂
∂ρ exp(Mρt)

0k×k exp(Mρt)

 .
Proof. Consider the power series expansion of the matrix exponential

∂

∂ρ
exp(Mρt) =

∂

∂ρ

(
Ik +Mρt+M2

ρ

t2

2!
+M3

ρ

t3

3!
+ . . .

)
and note that

d

dρ
Mρ = XS

d

dρ
M2
ρ = XSMρ +MρXS

d

dρ
M3
ρ = XSM2

ρ +MρXSMρ +M2
ρXS

...
...

...

d

dρ
M `
ρ =

`−1∑
i=0

M i
ρXSM

`−1−i
ρ .

Therefore,

∂

∂ρ
exp(Mρt) =

∞∑
`=1

`−1∑
i=0

M i
ρXSM

`−1−i
ρ

t`

`!
. (4.17)
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Further notice that

M2
ρ =

 M2
ρ Mρ

(
d
dρMρ

)
+
(
d
dρMρ

)
Mρ

0k×k M2
ρ


M3

ρ =

 M3
ρ M2

ρ

(
d
dρMρ

)
+Mρ

(
d
dρMρ

)
Mρ +

(
d
dρMρ

)
M2
ρ

0k×k M3
ρ


...

...
...

M`
ρ =

 M `
ρ

∑`−1
i=0 M

i
ρ

(
d
dρMρ

)
M `−1−i
ρ

0k×k M `
ρ

 .
Thus, we have

exp(Mρt) =

 ∑∞
`=0M

`
ρ
t`

`!

∑∞
`=1

∑`−1
i=0 M

i
ρ

(
d
dρMρ

)
M `−1−i
ρ

t`

`!

0k×k
∑∞

`=0M
`
ρ
t`

`!


=

 exp(Mρt)
∂
∂ρ exp(Mρt)

0k×k exp(Mρt)


by the power series of exp( · ) and (4.17).

The power series expression of (4.17) can be computed analytically using the following
lemma, which is inspired by [Dieci2001].

Lemma 4.11. Let Mρ = ρXS + Y , where X,S, Y are given in (4.15). Then,

∂ exp(Mρt)

∂ρ
=

∫ 1

0
exp[Mρt(1− τ)]XSt exp(Mρtτ)dτ. (4.18)

Proof. Consider the power series expansion of the right-hand side expression of (4.18)∫ 1
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}
dτ.

Solving the above integral with respect to τ gives{
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[
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+XSMρt

τ2

2

]

+

[
M2
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2
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]
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}∣∣∣∣1
0

= XSt+ (MρXS +XSMρ)
t2

2!
+ (M2

ρXS +MρXSMρ +XSM2
ρ )
t3

3!
+ . . .

which is equal to (4.17).

Using Lemma 4.10 and 4.11, we can compute the gradient ∇J (ρ) required in the
gradient descent algorithm (4.14).
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4.3.3 Incremental search algorithm

The main idea of this algorithm is to initialize ρ ∈ R and keep on incrementing with a small
ε > 0 to search for the optimal solution. The value of ε > 0 is initialized arbitrarily and
then in the algorithm is reduced iteratively in order to achieve the required tolerance level
to the actual optimal solution ρ∗. In the algorithm, whenever ρ passes the optimal value,
we define a smaller interval around that optimal value, divide the interval into several
points, choose ε to be length of these divisions, and search for the optimal solution in this
interval. This process is done iteratively until a required tolerance level is achieved.

Algorithm 1 Minimum φ such that Mρ is Hurwitz for ρ ≥ φ
Input: Matrices required to compute Mρ, a small ε > 0, tolerance ε > 0, an integer η ≥ 2
Output: Minimum φ such that, for ρ = φ, Mρ is Hurwitz
1: Initialize ρ to be a negative number such that Mρ is not Hurwitz
2: repeat
3: Compute Mρ

4: if Mρ is Hurwitz then
5: Assign φ← ρ, ρ← ρ− ε, ε← ε/η
6: else
7: Assign ρ← ρ+ ε
8: end if
9: until ηε ≤ ε
10: return φ

Algorithm 2 Incremental search algorithm
Input: Matrices required to compute Wρ, tolerance ε > 0, η ≥ 2, ε > 0, and φ
Output: Optimal solution ρ∗ to (4.13)
1: Initialize ρ = φ and assign J ← trace(Wρ)
2: repeat
3: Assign ρ← ρ+ ε and J1 ← trace(Wρ)
4: if J1 > J then
5: Assign ρ∗ ← ρ− ε, ρ← ρ− 2ε, and ε← ε/η
6: else
7: Assign ρ∗ ← ρ and J ← J1

8: end if
9: until ηε ≤ ε
10: return ρ∗.

First, we find the minimum φ > 0 such that, for ρ = φ, we have Mρ Hurwitz. This is
achieved by Algorithm 1. Then, in Algorithm 2, we initialize ρ = φ and increment by ε > 0
until we pass the optimal solution, which is the global minimum. This is because before
the global minimum was reached, the trend of cost J (ρ) at each iteration is downhill, and
when the cost starts increasing, this indicates that ρ has passed the global minimum. At
this point, we realize that the solution lies in the interval [ρ−2ε, ρ], therefore, we decrement
ρ by 2ε, decrease the value of ε by dividing η, and start the search process in the specified
interval. This process is repeated until the solution ρ∗ is within the specified tolerance ε
to the true optimal value.
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4.4 Application Example: Thermal Monitoring of Buildings

Residential and commercial buildings play a significant part in the global energy con-
sumption and greenhouse gas emissions. In France, for instance, the residential sector is
the second largest source of energy consumption1, and amounts to 23% of the national
greenhouse gas emissions [Derbez2014,Lévy2018]. Within the residential sector of France,
the space heating takes a share of 70% of the energy consumption [Hache2017]. Therefore,
developing efficient techniques for thermal monitoring and control of residential buildings
is one of the crucial forefronts for the fight against global warming. In this section, we aim
to develop a thermal monitoring technique based on the H2-optimal average estimation.

Model-based techniques are considered to be quite effective in thermal monitoring and
control of buildings [Oldewurtel2010, Maasoumy2013]. In particular, resistor-capacitor
(RC) network models offer an exceptional balance between simplicity and accuracy as
evidenced in [Bueno2012,Ramallo-González2013]. However, such models are not tractable
because they scale badly with the size of a building and require tremendous amount of com-
putational and sensing equipment. To deal with this issue, a model reduction technique
to reduce the dimension of building thermal model is presented in [Deng2010,Deng2014],
which provide an aggregated thermal representation of several clusters of building ele-
ments. Such a representation, although optimal for model reduction, may not be favorable
for thermal monitoring of buildings because the clusters, for instance, may consist of several
walls in the building that are not directly linked with each other. Therefore, considering
that the clusters of building elements are prespecified, we aim to design an optimal average
observer to estimate the mean operative temperature of each cluster to facilitate thermal
monitoring and regulation.

4.4.1 Building setup and its RC-network model

We consider a 4-room building setup illustrated in Figure 4.1, which is adopted from
[Deng2010,Deng2014] with some changes. Unlike [Deng2010,Deng2014], we do not neglect
the internal mass of rooms (furniture, carpet, etc.) and we consider that the outside
temperature is an exogenous input to the system. The outside temperature is considered
to be an input, and not a state of the system, because it alters the temperature inside
the building and not vice versa. Moreover, we suppose that each room is equipped with
a heater and assume that the doors of the building are airtight that do not allow heat
transfer via convection. The windows are also airtight, however, they can allow the heat
transfer through diffusion because they have a low thermal mass as compared to the doors.

There is a duality between heat transfer and electrical phenomenon [Skadron2002],
where the temperature difference is analogous to voltage, heat flow to current, thermal
resistance to electrical resistance, and thermal mass to electrical capacitance. Therefore,
resistor-capacitor (RC) network models are considered to be suitable for the heat conduc-
tion. Convection and radiation, on the other hand, can be approximated by a resistor with
a nominal empirical resistance value [Mathews1994].

We use the model of [Wang006a], where the building envelope is represented by 3R2C
shown in Figure 4.2(c) and the internal mass by 2R2C shown in Figure 4.2(b). The
building envelope consists of the walls, ceiling, and floor, and the internal mass consists
of the carpet, furniture, and people. The mean air temperature of the room is denoted as
xin(t) in the figure. The heater model is shown in Figure 4.2(a), where qh(t) is a known
input and xh(t) is the temperature at the surface of a heater.

1Ministère de l’Écologie, Energy Figures 2019
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Figure 4.1: A 4-room building setup with heaters.

qh ch
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cin
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(a) Heater

xin xm2 xm4

rm1 rm3

cin cm2 cm4

(b) 2R2C – Internal mass

xout xea2 xea4 xin

rea1 rea3 rea5
cea2 cea4 cin

(c) 3R2C – Building envelope

Figure 4.2: The elements of the building thermal model.

In Figure 4.2(b), xm2(t) is the mean surface temperature of the total mass and xm4(t)
is the mean temperature of its core. In Figure 4.2(c), xea2 (t) is the mean temperature of the
outside surface of envelope-a and xea4 (t) is the mean temperature of the inside surface of
envelope-a, where a denotes a wall, ceiling, or floor. By employing the Kirchoff’s current
law, we find that the temperature xi(t) at node i is governed by

ci
dxi(t)

dt
=
∑
j∈Ni

xj(t)− xi(t)
rij

+
∑
k

bikqk(t), (4.19)

where ci is the capacitance of node i, Ni is the set of i’s neighboring nodes, rij is the
resistance between i and j, bik ∈ {0, 1} is a scalar, and qk(t) is the heater input to i when
bik = 1. The outside temperature xout(t) directly influences the room’s temperature if it
has a window; let rw be the resistance that the window offers.

The parameter values for the 3R2C and 2R2C models are given in Table 4.1, where
the resistance is measured in m2KW−1 and the capacitance in MJm−2K−1. The temper-
ature is measured in K, which is converted to ◦C in the figures. We use the parameter
values for 3R2C as provided in [Deconinck2016]. The parameter values of 2R2C model
are hypothetical because they depend on the type and quantity of internal mass of each
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Table 4.1: Parameter values for the building thermal model.

3R2C model rea1 cea2 rea3 cea4 rea5

Ceiling 0.3 0.17 4 0.22 0.3

Floor 0.3 0.17 4 0.22 0.3

External walls 0.3 0.17 4 0.22 0.3

Internal walls 0.3 0.22 4 0.22 0.3

2R2C model rm1 cm2 rm3 cm4 -

Internal mass 0.16 0.5 3 0.5 -

room; [Wang006b] provides an algorithm to identify these parameters. Finally, the resis-
tance of a window rw = 3 and the resistance from a heater to a room rin = 0.05, whereas
the capacitance of a room cin = 0.1 and of a heater ch = 0.5.

xin1 xin2

xin3 xin4

xh1 xh2

xh3 xh4

xout xout

xout

xout

xout

xout

Figure 4.3: RC-network representation of the building setup of Figure 4.1.

The RC-network representation of the building setup is illustrated in Figure 4.3, which
has 48 nodes and can be represented by a bidirected graph shown in Figure 4.4. Notice that,
in Figure 4.3 and 4.4, there is an edge from the floor to the internal mass. The arrows on
some nodes in Figure 4.4 represent the input at those nodes. All the black arrows indicate
the influence of the outside temperature xout(t), whereas each yellow arrow indicates a
heater input qhp , for p = 1, 2, 3, 4. We assume that the four heater nodes are the measured
nodes, that is, the temperature evolution on the surface of the heaters is measured by
sensors. The remaining nodes in the system are the unmeasured nodes.
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Figure 4.4: Graph representation of the building setup, where the green nodes represent
the rooms, the red nodes represent the internal mass, the blue nodes represent the ceiling,
the brown nodes represent the floor, the gray nodes represent the walls, and the yellow
nodes represent the heaters. The four yellow arrows represent inputs from the four heaters,
whereas all the black arrows represent the input xout(t). The clusters of elements corre-
sponding to each room are encircled by a dashed line.
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4.4.2 State space representation of the building thermal system

To provide the state-space representation, we index the nodes as follows. The measured
nodes are

V1 = {1, 2, 3, 4}

which are the heaters’ surfaces. The remaining nodes are the unmeasured nodes

V2 = Co ∪ Cr1 ∪ Cr2 ∪ Cr3 ∪ Cr4

where the nodes corresponding to the outer building envelope are

Co = {5, 6, . . . , 16}

and the nodes corresponding to the inner elements of the four rooms are

Cr1 = {17, 18, . . . , 24}

Cr2 = {25, 26, . . . , 32}

Cr3 = {33, 34, . . . , 40}

Cr4 = {41, 42, . . . , 48}

respectively. Let i = 1, 2, . . . , 48. Then, the temperature of node i at time t ≥ 0 is denoted
as xi(t) ∈ R. Let the state vector

x(t) = [ x1(t) · · · x48(t) ]ᵀ

then the state-space representation of the system is

Σ :

 ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(4.20)

where
u(t) = [ qh1(t) qh2(t) qh3(t) qh4(t) xout(t) ]ᵀ

is the input vector and

y(t) = [ x45(t) x46(t) x47(t) x48(t) ]ᵀ

is the output vector.
The structure of the system is represented by a bidirected graph G = (V, E ,W) shown

in Figure 4.4, where V = V1 ∪ V2 is the set of nodes, E ⊂ V × V is the set of edges, and

W =

{
1

cirij
: (i, j) ∈ E

}
is the set of edge weights. The graph is bidirected because the edge weight for (i, j) ∈ E
is (cirij)

−1, whereas the edge weight for (j, i) ∈ E is (cjrij)
−1, where ci is the capacitance

of the node i and rij is the resistance between node i and j; also, rii = rea1 , if i ∈ Vo, and
rii = rw, if i ∈ {13, 21, 37}.

The off-diagonal entries of the state matrix A, for i 6= j, are given as

[A]ij =

 (cirij)
−1, if (i, j) ∈ E

0, otherwise
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and the diagonal entries are given as

[A]ii =


−(rii)

−1 −
∑
j 6=i

[A]ij , if i ∈ So

−
∑
j 6=i

[A]ij , if i ∈ V \ So

where So = Vo ∪ {17, 25, 41} is the set of nodes that are directly influenced by the outside
temperature xout(t). The input matrix

[B]ip =


(cirii)

−1, if i ∈ So and p = 5

1, if (i, p) ∈ {(17, 1), (25, 2), (33, 3), (41, 4)}

0, otherwise

and the output matrix
C = [ I4 04×44 ].

4.4.3 Average temperature estimation of building rooms

The average temperature of each room is called the mean operative temperature, which is
the mean of the temperature of each element corresponding to the room. In the building
setup of Figure 4.1, we have five clusters, where one cluster contains the nodes correspond-
ing to the outer envelope of the building and the four clusters contain the nodes corre-
sponding to each room. The clustering Q = {Co, Cr1 , Cr2 , Cr3 , Cr4}, where Co is the cluster
of nodes representing the elements of outer envelope of the building and Cr1 , Cr2 , Cr3 , Cr4 is
the clusters of nodes representing the elements of each room in the building, respectively.
The characteristic matrix Q ∈ {0, 1}48×5 of the clustering Q is given by

Q = diag(112,18,18,18,18)

where the dimensions of the vectors of ones is due to |Co| = 12 and |Cr1 | = · · · = |Cr4 | = 8.
The average observer ΩV1,Q, where V1 is the set of measured nodes that represent the

heaters’ surfaces, is given by

ΩV1,Q :=

 ẇ(t) = Mw(t) +Ky(t) +Nu(t)

ẑa(t) = w(t) + Ly(t)

where ẑa(t) = [ ẑo(t) ẑᵀr(t) ]ᵀ with ẑo(t) the estimated average temperature of the outer

envelope of the building and zr(t) = [ ẑ1(t) ẑ2(t) ẑ3(t) ẑ4(t) ]ᵀ the vector of estimated
average temperatures of the rooms, and

M = (Q+A22 − LA12)Q

N = Q+B2 − LB1

K = Q+A21 − LA22 +ML

L = (Q+A22 − ρ∗Q+A22QQ
+)A†12

with ρ∗ = 14 obtained by solving (4.13) by the incremental search algorithm, which is
plotted in Figure 4.5. The submatrices A11 ∈ R4×4, A12 ∈ R4×44

≥0 , A21 ∈ R44×4
≥0 , and
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Figure 4.5: The evolution of cost J (ρ) of (4.13) with respect to ρ.

A22 ∈ R44×44 correspond to the partition of state matrix A according to measured and
unmeasured nodes as in (2.4).

The initial condition x(0) ∈ R48 of the model (4.20), i.e., the vector of initial temper-
atures of the elements of building, is chosen randomly in the interval (10, 20). The output
y(t) of the system consists of the temperature measurements at the heaters’ surfaces. The
input u = [ uᵀ

h xout ]ᵀ, where uᵀ
h = [ qh1 qh2 qh3 qh4 ] is the input of the heaters and

xout is the known outside temperature. We suppose xout(t) = 5 sin(π/12 t− π).
A simple on/off control policy is used for the heaters by taking a feedback of the

estimates of rooms’ mean operative temperatures from ΩV1,Q, which is given by

qhj (ẑj(t)) =



50 if ẑj(t) ≤ 20

0 if ẑj(t) ≥ 22

50 if 20 ≤ ẑj(t) < 22 and dẑj
dt

∣∣∣
ẑj(t)=20

≥ 0

0 if 20 < ẑj(t) ≤ 22 and dẑj
dt

∣∣∣
ẑj(t)=22

≤ 0

for j = 1, 2, 3, 4. That is, the heater j turns on with qhj (ẑj(t)) = 50 when ẑj(t) ≤ 20, and
it turns off with qhj (ẑj(t)) = 0 when ẑj(t) ≥ 22. Inside the interval 20 < ẑj(t) < 22, the
control input qhj (ẑj(t)) retains its value. That is, suppose ẑj(t1) ≤ 20, then, for t > t1,
the heater turns on with qhj (ẑj(t)) = 50. When the heater is on, the mean operative
temperature of room j starts to rise, and so does its estimate, i.e., 20 < ẑj(t) < 22. The
heater will stay on until ẑj(t) = 22, where it will be turned off. It will remain off, and
the mean operative temperature falls and so does its estimate, until ẑj(t) touches its lower
limit of 20 ◦C, where the heater will be turned on again.

The plots of average temperatures of the rooms and their estimated trajectories are
shown in Figure 4.6. With a simple on/off control policy and an average observer, notice
that the average (or mean operative) temperatures of rooms remain inside the thermal
comfort range 20-22 ◦C. This comfort range is nominal but it can be adjusted according
to weather, building type, etc. Also, in Figure 4.6, notice that the average temperature of
Room-3 reaches inside this range quickly because it doesn’t have a window, therefore, it
has a smaller influence of the outside temperature.

Let zr(t) = [ z1(t) z2(t) z3(t) z4(t) ]ᵀ and ẑr = [ ẑ1(t) ẑ2(t) ẑ3(t) ẑ4(t) ]ᵀ.
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Figure 4.6: Average temperature estimation of the building rooms.

Then, the percentage estimation error e%(t) is defined as

e%(t) =
‖zr(t)− ẑr(t)‖
‖zr(t)‖

.

The performance of ΩV1,Q is quite satisfactory as shown in Figure 4.7. For the optimal
value ρ = 14, the mean percentage error is 2.08%, i.e., around 0.4 ◦C for the range 20-22 ◦C,
and the maximum percentage error is 4.9%, i.e., around 1 ◦C for the range 20-22 ◦C.

In conclusion, the H2-optimal average observer estimates the mean operative temper-
atures of rooms in a building with a very small error. The dimension of the proposed
observer equals the number of rooms (or clusters) plus one, where the extra ‘one’ is due
to the cluster of nodes representing outer envelope of the building. The problem of error
minimization is simplified to a great degree by formulating it with respect to a single pa-
rameter ρ, whose optimal value can be found by the gradient descent or the incremental
search algorithm. We employed a simple on/off control policy based on the average ob-
server to regulate the mean operative temperatures of rooms. Although it is quite simple,
the on/off policy for regulation saves around 25.32% of the energy, which means that the
heaters on average remain off 25.32% of the day.
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Figure 4.7: Percentage estimation error for optimal ρ = ρ∗ = 14 and non-optimal values
of ρ.

4.5 Concluding Remarks

In this chapter, we provided a methodology to minimize the average estimation error
when the clustered network system does not meet the design criteria of the average observer.
The methodology comprises the minimization of the effect of the average deviation vector
on the dynamics of average estimation error and stabilization of the average observer.
First, a structure of the design matrix of the average observer is obtained that minimizes
the effect of the average deviation vector acting as a structured unknown input. Then,
to ensure the stability of the average observer, we perturbed this structure by a single
parameter ρ and find its value that achieves stability.

Tools from matrix analysis and algebraic graph theory are employed to establish suf-
ficient conditions for the stabilizability of the average observer. The main assumption in
the literature, for instance, [Ishizaki2015], is to have strong connectivity of graph for the
stability of the compression of stable matrices. However, we showed that this assumption
can be relaxed to weak connectivity of induced subgraph Gν in a network system to en-
sure that the matrix compression QᵀA22Q is stable. Then, using Lyapunov’s theorem and
S-stability result, we proved that the average observer can be stabilized if the clustering
is such that A12Q is full-column rank. The gain parameter that stabilizes the average
observer is the perturbation parameter ρ in the design matrix.

The H2-optimal average estimation problem is formulated, which is a convex optimiza-
tion problem that can be solved by a gradient descent algorithm. We provided an analytic
expression to compute the gradient of a cost function that is employed in the gradient
descent algorithm. Since a single parameter, ρ, is optimized in this problem, we provided
an incremental search algorithm, which is much simpler than the gradient descent algo-
rithm. Finally, we showed the efficacy of optimal average estimation methodology for the
application of thermal monitoring in buildings.
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5
Clustering Algorithms for Large-Scale Network

Systems

In this chapter, we study clustering techniques for optimal av-
erage estimation, open-loop average estimation, and state vari-
ance estimation. Section 5.1 presents conditions for generic
stabilizability of average observer for optimal average estima-
tion and considers them as constraints in the clustering algo-
rithm for optimal average estimation. In section 5.2, we intro-
duce the notion of average lumpability and show its relation to
average detectability. Then, we propose a clustering algorithm
for open-loop average estimation that achieves ‘almost’ average
lumpability by minimizing the distance from the ideal notion. In
section 5.3, we show that the state variance can be approximated
by obtaining a clustered network system through a K-means type
clustering algorithm. The optimal average estimation clustering
methodology is illustrated by an application example of an SIS
epidemic over a network in section 5.4, whereas the clustering
methodologies for open-loop average estimation and state vari-
ance estimation are illustrated by numerical examples in their
respective sections.
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5.1. Clustering for Optimal Average Estimation

W hen the clusters are not pre-specified in a large-scale network system, as was the
case in previous chapters, then clustering techniques can be employed to render the net-
work system close to average reconstructability or average detectability. The distance
from average reconstructability is minimized by identifying and aggregating clusters that
yield a minimum average estimation error. On the other hand, the distance from average
detectability is minimized by identifying and aggregating clusters that yield a minimum
open-loop average approximation error. In this clustering methodology, constraints per-
tinent to physical network systems, such as the connectivity of clusters, are also added,
and we define average lumpability and show its relation to average detectability and the
minimization of open-loop average approximation error.

Finally, another aggregated state profile of network systems, i.e., state variance, which
is a nonlinear functional of the state vector and measures the distance of state trajectories
from their average mean, is estimated in an approximated sense by employing a K-means
type clustering algorithm. The clusters obtained through this clustering algorithm contain
nodes whose state trajectories are close to each other, which facilitates the approximation
of state variance through the average states of clusters.

5.1 Clustering for Optimal Average Estimation

In this section, we provide a clustering technique to render a network system close to
average reconstructability by minimizing the average estimation error. First, we provide
a clustering constraint that ensures the stabilizability of the average observer in a generic
sense, by which we mean that the average observer can be stabilized through the gain
parameter γ with probability one. This notion is defined by changing the rank condition
of Theorem 4.9 to a generic rank condition, which is shown to be equivalent to having each
cluster contain at least one unmeasured node that is a neighbor of a measured node. Then,
we propose a clustering algorithm to achieve a minimum average estimation error.

5.1.1 Preliminaries on the generic rank of matrices

The rank of a matrix X ∈ Rm×n denoted as rank(X) is equal to the number of linearly
independent rows, or, equivalently, linearly independent columns, of X. In other words,
rank(X) is defined as the dimension of the column space (equivalently, the dimension of
the row space) of X. However, rank(X) can be computed when X is known. If only the
structure (or non-zero pattern) of X is known, i.e., the entries of X that are fixed to be zero
and the remaining entries that are arbitrary non-zero real numbers, then a more suitable
quantity to consider is the generic rank [Lin1974,Murota1987,Murota2010].

Definition 5.1. The generic rank of X ∈ Rm×n denoted as grank(X) is defined as
the maximum rank of X among all choices of non-zero entries in the non-zero pattern of
X.

In general, we have rank(X) ≤ grank(X). However, for a structured matrix X ∈
Rm×n, we have grank(X) = rank(X) almost always (i.e., with probability 1) except for the
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entries ofX in some proper algebraic variety, which is of Lebesgue measure zero [Dion2003].
Notice that the structure ofX can be represented as a bipartite graph GX = (Vr,Vc, EX),

where Vr = {r1, . . . , rm} is the index set of the rows of X, Vc = {c1, . . . , cn} is the index
set of the columns of X, and EX ⊆ Vr × Vc is the set of edges defined as (ri, cj) ∈ EX if
[X]ricj 6= 0. A matching in a bipartite graph GX is the set of edges such that no two edges
have a vertex in common, whereas a maximum matching is a matching with the maximum
possible number of edges [Godsil2001].

Lemma 5.1 ( [Liu2011]). The generic rank of X ∈ Rm×n is equal to the size of
maximum matching in the bipartite graph GX .

For example, for some non-zero χ1, χ2, χ3, χ4 ∈ R \ {0}, let

X =

 χ1 χ2 0

χ3 χ4 0


that is represented as a bipartite graph GX

r1

r2

c1

c2

c3

χ1

χ2
χ3

χ4

which has two maximum matchings

r1

r2

c1

c2

c3

r1

r2

c1

c2

c3

where the size of each maximum matching is two. Therefore, in this case, grank(X) = 2,
which means that the rank of X is 2 for all values of χ1, χ2, χ3, χ4 except for the case
χ1χ4 = χ2χ3, which is of Lebesgue measure zero.

5.1.2 Clustering constraint for the generic stabilizability of average ob-
server

Recall the network system Σ whose structure is represented by a digraph G = (V, E),
where V = V1 ∪ V2 is the set of nodes with V1 the set of measured nodes and V2 the set of
unmeasured nodes, and E is the set of edges. As given in (2.4), the system matrices of Σ
are partitioned into block submatrices according to the partition of nodes into measured
and unmeasured.

Definition 5.2. A subset of unmeasured nodesNV1←V2 ⊆ V2 is said to be the neighbor
set of measured nodes V1 with respect to the set of unmeasured nodes V2 if, for every
j ∈ NV1←V2 , there exists i ∈ V1 such that (i, j) ∈ E .

Recall the set of characteristic matrices

Cn,k = {X ∈ {0, 1}n×k : X1k = 1n}

of all clusterings Q of n nodes with size k.
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Theorem 5.2. Let Q ∈ Cn,k ⊂ {0, 1}n×k be the characteristic matrix of some clus-
tering Q of n unmeasured nodes V2 and let Assumption 2.1 hold. Further, assume k ≤ m,
where m is the number of measured nodes. Then, grank(A12Q) = k if and only if the
clustering Q = {C1, . . . , Ck} is such that, for every α ∈ {1, . . . , k}, Cα ∩NV1←V2 6= ∅.

Proof of sufficiency. Assume that the clustering Q = {C1, . . . , Ck} is such that, for every
α ∈ {1, . . . , k}, it holds Cα ∩ NV1←V2 6= ∅. By Assumption 2.1, we have rank(A12) = m,
where m ≤ n since A12 has the dimension m × n. Since rank(A12) ≤ grank(A12) ≤ m,
therefore grank(A12) = m, which implies that a maximum matching of the bipartite graph
GA12 is of size m. That is, for all the m measured nodes there are distinct m neighbors
in NV1←V2 , which implies |NV1←V2 | ≥ m. Since k ≤ m and |NV1←V2 | ≥ m, we have
|NV1←V2 | ≥ k. Without loss of generality, let ν1, . . . , νk ∈ NV1←V2 to be the k unmeasured
nodes that are in clusters C1, . . . , Ck, respectively. Then, a matching of size k of the bipartite
graph GA12 is

µ1

µ2

...

µk

...

µm

ν1

...
C1

ν2

...
C2

...

νk

...
Ck

where µ1, . . . , µm are the m measured nodes representing the rows of A12 and the nodes
on the right side are the n unmeasured nodes representing the columns of A12. The
unmeasured nodes are partitioned into clusters C1, . . . , Ck. The bipartite graph GA12Q is
obtained by aggregating the clusters in GA12 . Then, from the matching of size k illustrated
above for GA12 , we obtain a maximum matching of size k for GA12Q

µ1

µ2

...
µk
...

µm

c1

c2

...
ck

where the clusters C1, . . . , Ck are represented as super nodes c1, . . . , ck, respectively. Thus,
by Lemma 5.1, we have grank(A12Q) = k.
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Proof of necessity. To prove necessity, assume grank(A12Q) = k and there exists some
α ∈ {1, . . . , k} such that Cα∩NV1←V2 = ∅. Let A12 =

[
a1 · · · an

]
, where a1, . . . ,an ∈ Rm

are the columns of A12 ∈ Rm×n≥0 . Then, we can write

A12Q =
[

p1 · · · pk

]
where p1, . . . ,pk ∈ Rm are the columns of A12Q with

pα =
∑
j∈Cα

aj

for α = 1, . . . , k. Since grank(A12Q) = k, we have that, for every α ∈ {1, . . . , k}, pα 6=
0m. On the other hand, since there exists α ∈ {1, . . . , k} such that Cα ∩ NV1←V2 = ∅,
which means the cluster Cα does not contain any node from the neighbor set NV1←V2 , i.e.,
aj = 0 for all j ∈ Cα, therefore pα = 0. This implies that grank(A12Q) < k, which is a
contradiction.

If the clustering Q is not prespecified, then the state matrix M := Mρ,Q of the av-
erage observer ΩV1,Q depends on the characteristic matrix Q ∈ Cn,k of a clustering Q of
unmeasured nodes in addition to the gain parameter ρ > 0. From (4.8) and (4.6), we have

Mρ,Q = Rρ,QQ (5.1)

where
Rρ,Q = Q+A22(In −A†12A12) + ρQ+A22QQ

+A†12A12. (5.2)

Definition 5.3 (Generic stabilizability of average observer). For a network system
Σ, the average observer ΩV1,Q is said to be generically stabilizable if, for every Q ∈ Cn,k,
it holds that grank(A12Q) = k.

In the previous chapter, we stated a sufficient condition for the stabilizability of average
observer as the full-column rank of A12Q in Theorem 4.9. The stabilizability of average
observer was defined as the existence of some φ ∈ R such that Mρ,Q is Hurwitz for all
ρ > φ. However, the generic stabilizability is defined through the generic rank of A12Q,
which means that there exists φQ ∈ R almost always such that Mρ,Q is Hurwitz for every
ρ > φQ. The term ‘almost always’ indicates that, for any submatrix A12 ∈ Rm×n≥0 belonging
to a network system Σ, the rank A12Q is equal to k with probability one if the condition
of Theorem 5.2 is satisfied.

Recall the induced subgraph Gν = (V2, Eν) formed by the unmeasured nodes of the
network system Σ and that, for every i ∈ V2,

si =
∑

j∈Ni←V2

aij +
∑

h∈Ni→V2

ahi

is the sum of weighted in-degree and out-degree of i.

Theorem 5.3. Consider a network system Σ in (2.3) with V1 the set of m measured
nodes and V2 the set of n unmeasured nodes. Then, for any clustering Q of unmeasured
nodes with k ≤ m clusters, the average observer ΩV1,Q is generically stabilizable if

(i) Gν = (V2, Eν) is weakly connected,

(ii) ∀i ∈ V2, si ≤ 2|aii| and ∃j ∈ V2 such that sj < 2|ajj |, and
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(iii) ∀α ∈ {1, . . . , k}, Cα ∩NV1←V2 6= ∅.

Proof. First, assume (i) and (ii), then, for every Q ∈ Cn,k, Q+A22Q is Hurwitz by The-
orem 4.7. Second, assume (iii), then the average observer is generically stabilizable by
Theorem 4.9 and 5.2.

The conditions Theorem 5.3(i) and (ii) correspond to the network system Σ, whereas
Theorem 5.3(iii) corresponds to the clustering Q. In other words, the first two conditions
need to be satisfied by the network system and the third condition needs to be satisfied by
the clustering algorithm.

5.1.3 Clustering for H2-optimal average estimation

We formulate a clustering problem for H2-optimal average estimation in this subsection.
Since they correspond to the network system and not a clustering algorithm, we assume
that the conditions of Theorem 5.3(i) and (ii) hold. On the other hand, we consider
Theorem 5.3(iii) as a constraint in the clustering algorithm in order to ensure generic
stabilizability of average observer.

Problem definition

Consider the dynamics of the average estimation error from (3.7)

ζ̇(t) = Mρ,Qζ(t) +Rρ,Qσ(t)

where σ(t) is the average deviation vector defined in (2.11) and Q ∈ Cn,k along with ρ > 0
is a decision variable. Again, the transfer function from σ to ζ is given by

Tρ,Q(s) = (sIk −Mρ,Q)−1Rρ,Q

with its H2-norm defined as

‖Tρ,Q(s)‖2H2
= trace(Wρ,Q)

where
Wρ,Q :=

∫ ∞
0

exp(Mρ,Qt)Rρ,Q (exp(Mρ,Qt)Rρ,Q)ᵀ dt (5.3)

is the controllability gramian of the pair (Mρ,Q, Rρ,Q).

Assumption 5.1. The conditions of Theorem 5.3(i) and (ii) are satisfied. That is,
the induced subgraph Gν = (V2, Eν) is weakly connected and, ∀i ∈ V2, si ≤ 2|aii| with at
least one j ∈ V2 for which sj < 2|ajj |.

Under Assumption 5.1, the clustering problem for H2-optimal average estimation is
formulated as

min
ρ>0,Q∈Cn,k

J (ρ,Q) := trace(Wρ,Q)

subject to

 Mρ,Q is Hurwitz

Cα ∩NV1←V2 6= ∅, ∀α ∈ {1, . . . , k}.

(5.4)

The first constraint in (5.4) is for the stability and the second constraint is for the stabi-
lizability of average observer. Notice that the clustering problems are non-convex, mixed
integer optimization problems [Burer2012]. To find the global optimum is NP-hard, there-
fore, only suboptimal solutions are feasible that converge to a local minimum of the problem
(5.4).
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Clustering algorithm with optimal average observer gain

Before presenting the clustering algorithm, we need to initialize the k clusters such that
the second constraint of (5.4) is satisfied. Notice that if Assumption 5.1 and the second
constraint is satisfied, then there exists ρ ∈ R such that Mρ,Q is Hurwitz for any Q ∈ Cn,k
by Theorem 5.3, where such ρ can be obtained by Algorithm 1.

Let S1, . . . ,Sk be k clusters of a subset of V2 and define

NSα↔V2 = {j ∈ V2 : (i, j) ∈ Eν or (j, i) ∈ Eν , for i ∈ Sα}

to be the set of in-neighbors and out-neighbors of Sα. Then, the selection of initial k
clusters is obtained by Algorithm 3.

Algorithm 3 Initialization of k clusters
Input: Gν = (V2, Eν) and NV1←V2
Output: Q0 = {C1, . . . , Ck}
1: Move each j ∈ NV1←V2 to either S1, . . . ,Sk such that, ∀α ∈ {1, . . . , k}, Sα 6= ∅
2: repeat
3: Assign S1 ← S1 ∪ (NS1↔V2 \ NV1←V2)
4: for α = 2, . . . , k do
5: Assign Sα ← Sα ∪ (NS1↔V2 \ NV1←V2 \ Sα−1)
6: end for
7: until S1 ∪ · · · ∪ Sk = V2

8: Assign C1 ← S1, . . . , Ck ← Sk
9: return Q0 = {C1, . . . , Ck}

Algorithm 4 Suboptimal clustering Q∗ for fixed ρ
Input: Matrices needed to compute J (ρ,Q), initial clustering Q0, initial gain ρ0, and

tolerance δ > 0 (e.g., 10−6)
Output: Suboptimal clustering Q = {C1, . . . , Ck}
1: Compute ψ0 = J (ρ0,Q0) and assign Q1 ← Q0

2: repeat
3: Assign ψ1 ← ψ0

4: for i ∈ V2 \ NV1←V2 do
5: Assign Q2 ← Q1

6: Let β be such that i ∈ Cβ
7: for α = 1, . . . , k and α 6= β do
8: Move i to Cα and update Q2 accordingly
9: Compute ψ2 = J (ρ,Q2)
10: if ψ2 < ψ0 then
11: Assign ψ0 ← ψ2 and Q1 ← Q2

12: else
13: Move i back to Cβ and Q2 ← Q1

14: end if
15: end for
16: end for
17: Assign Q∗ ← Q1

18: until ψ1 − ψ0 < δ, i.e., specified tolerance to convergence
19: return Q = {C1, . . . , Ck}.

The Algorithm 3 starts by first clustering the neighbor set NV1←V2 into k nonempty
clusters S1, . . . ,Sk. This is guaranteed by the assumption of Theorem 5.3 that k ≤ m and
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by Assumption 2.1 that rank(A12) = m. That is, since the neighbor set NV1←V2 contains
the nodes corresponding to the non-zero columns of A12, we have |NV1←V2 | ≥ m ≥ k. After
clustering NV1←V2 , the second step is to include the remaining nodes V2 \NV1←V2 into the
clusters, where a while loop iteratively traverses the graph Gν in a breadth-first search
manner to include the immediate neighbors of each cluster into S1, . . . ,Sk, respectively.
This is done repeatedly until all the unmeasured nodes are clustered, which is guaranteed
by the assumption that Gν is weakly connected.

After initialization of k clusters, we obtain the initial optimal gain parameter ρ0 for
the initial clustering Q0 from Algorithm 1 and 2. Then, by fixing ρ = ρ0, we first obtain
a suboptimal clustering Q from Algorithm 4. Then, for the suboptimal clustering Q, we
obtain an optimal ρ from Algorithm 1 and 2. This process is repeated until convergence
to a specified tolerance, which is summarized in Algorithm 5.

Finally, note that the clustering algorithm for optimal average estimation is imple-
mented in section 5.4 for an example of SIS epidemics over networks.

Algorithm 5 Suboptimal clustering and optimal average observer
Input: All the inputs of Algorithm 1, 2, 3, and 4; and tolerance ε > 0
Output: Suboptimal clustering Q∗ = {C1, . . . , Ck} and optimal gain ρ∗

1: Find an initial clustering Q0 from Algorithm 3
2: For Q0, obtain ρ0 from Algorithm 1 and 2
3: Assign Q ← Q0 and ρ← ρ0

4: Compute ψ1 = J (ρ,Q)
5: repeat
6: Assign ψ2 ← ψ1

7: Find suboptimal clustering Q∗ from Algorithm 4 with Q0 = Q and ρ0 = ρ
8: Find optimal gain ρ∗ from Algorithm 1 and 2 with characteristic matrix Q = Q∗

9: Assign Q ← Q∗ and ρ← ρ∗

10: Compute ψ1 = J (ρ,Q)
11: until ψ2 − ψ1 < ε
12: return Q∗ = {C1, . . . , Ck} and ρ∗

5.2 Clustering for Open-Loop Average Estimation

In this section, we provide a clustering technique to render a network system close to
average detectability by minimizing the open-loop average estimation error. We first define
a notion of average lumpability, provide its necessary and sufficient condition, and show
its relation to average detectability. We show that when Q+A22Q is Hurwitz, then average
lumpability is equivalent to average detectability. Then, under a constraint of intra-cluster
connectivity, we propose a clustering algorithm that minimizes the distance from average
lumpability to obtain a minimum open-loop average estimation error and show its efficacy
through a simulation example.

5.2.1 Average lumpability and its relation to average detectability

From the dynamics of the projected network system Σ̊V1,Q in equation (2.9), consider the
dynamics of the average state vector

ża(t) = Q+A22Qza(t) +Q+A22σ(t) +Q+A21y(t) +Q+B2u(t). (5.5)
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Here, the average deviation vector acts as a structured unknown input. By ignoring σ(t),
we obtain an approximated average state vector ẑa(t) that satisfies

˙̂za(t) = Q+A22Qẑa(t) +Q+A21y(t) +Q+B2u(t). (5.6)

Definition 5.4. A clustered network system ΣV1,Q is said to be average lumpable if
the following implication holds:

ẑa(0) = za(0) ⇒ ẑa(t) = za(t) ∀t ∈ R>0.

The notion of average lumpability states that the inter-cluster and intra-cluster topolo-
gies are such that the effect of average deviation vector σ(t) is canceled from the dynamics
of average state vector za(t).

Theorem 5.4. Consider a clustered network system ΣV1,Q with measured nodes
V1 and a clustering Q of the unmeasured nodes V2. Then, the following statements are
equivalent:

(i) ΣV1,Q is average lumpable.

(ii) ker(Q+A22) ⊇ ker(Q+).

(iii) There exists V ∈ Rk×k such that V Q+ = Q+A22.

Proof. (i) ⇔ (ii). If Σ is average lumpable, then

za(t)− ẑa(t) =

∫ t

0
exp(Q+A22Qτ)Q+A22σ(t− τ)dτ

= 0k

(5.7)

where ẑa(0) = za(0), which implies that Q+A22σ ≡ 0k. Note that σ(t) = In −QQ+x2(t)
and the columns of In−QQ+ form a complete basis of ker(Q+) because Q+(In−QQ+) =
0k×n and rank(In − QQ+) = nullity(Q+) = n − k. Therefore, σ(t) ∈ ker(Q+) and
if there exists a matrix X such that Xσ(t) = 0 for all t ∈ R≥0, then σ(t) ∈ ker(X)
and we have an inclusion ker(X) ⊇ ker(Q+). Hence, Q+A22σ(t) = 0k for all t ∈ R≥0

implies ker(Q+A22) ⊇ ker(Q+). In the other direction, if ker(Q+A22) ⊇ ker(Q+), then
Q+A22σ(t) = 0k for all t ∈ R≥0 because σ(t) ∈ ker(Q+). Therefore, (5.7) holds and
ΣV1,Q is average lumpable.

(ii) ⇔ (iii). If ker(Q+A22) ⊇ ker(Q+), then im((Q+A22)ᵀ) ⊆ im((Q+)ᵀ) because,
for any matrix X, it holds that im(Xᵀ) = ker(X)⊥, [Campbell2009, Proposition 0.2.1].
Equivalently, we have

rank

 Q+A22

Q+

 = rank
(
Q+
)

(5.8)

which implies that there exists a matrix V ∈ Rk×k such that V Q+ = Q+A22. In words,
the rows of Q+A22 are linearly dependent on the rows of Q+, and that we can obtain
Q+A22 by performing k row operations on Q+. In the other direction, if there exists V
such that V Q+ = Q+A22, then Q+A22 is linearly dependent on Q+ and (5.8) is satis-
fied. This implies that im((Q+A22)ᵀ) ⊆ im((Q+)ᵀ), which is equivalent to the inclusion
ker(Q+A22) ⊇ ker(Q+).
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To satisfy Theorem 5.4(iii), the characteristic matrix Q ∈ Cn,k must be such that
im(Q+ᵀ) is a left-invariant subspace of A22, which mirrors the notion of right-invariant
subspace [Horn2013]. In other words, the average lumpability of ΣV1,Q is equivalent to
Q+A22 = Q+A22QQ

+.

Corollary 5.4.1. The following statements hold:

(i) If ΣV1,Q is average detectable, then ΣV1,Q is average lumpable.

(ii) If ΣV1,Q is average lumpable and Q+A22Q is Hurwitz, then ΣV1,Q is average de-
tectable.

Proof. The proof follows directly from Theorem 3.6 and 5.4.

The above corollary shows the relation between average lumpability and average de-
tectability. Basically, if Q+A22Q is Hurwitz, then the two notions are equivalent. There-
fore, for open-loop average estimation, we propose a clustering algorithm in the next sub-
section to obtain a clustered network system that is close to average lumpability. For this
clustering algorithm, we suppose that Assumption 5.1 holds to ensure that Q+A22Q is
Hurwitz.

5.2.2 Clustering for open-loop average estimation

Given that Q+A22Q is Hurwitz, then, by Theorem 3.8 and Corollary 5.4.1, a clustered
network system ΣV1,Q is average detectable or average lumpable if and only if the clustering
Q is equitable. In this subsection, we formulate a clustering problem that aims to minimize
a distance of a clustered network system from average lumpability under a constraint that
all intra-cluster induced subgraphs are weakly connected. This constraint is meaningful
in physical network systems such as building thermal systems, urban traffic networks, and
sensor networks [Martin2019]. After the problem formulation, we provide a suboptimal
clustering algorithm and illustrate it through a simulation example.

Problem definition

Define the average approximation, or open-loop average estimation, error

z̃a(t) = za(t)− ẑa(t) (5.9)

where za(t) satisfies (5.5) and ẑa(t) satisfies (5.6). Then,

˙̃za(t) = Q+A22Qz̃a(t) +Q+A22σ(t)

which is independent from the direct influence of the input u(t). However, notice that the
input influences the average deviation σ(t), which in turn influences the dynamics of the
error z̃a(t). Nonetheless, irrespective of the input u(t), we exploit the structural property
Q+σ ≡ 0k of the average deviation vector σ(t).

The idea is to find the clustering Q = {C1, . . . , Ck} such that the obtained clustered
network system ΣV1,Q is as close as possible to being average lumpable. That is, we
minimize the distance from average lumpability of ΣV1,Q by finding clustering Q. From
Theorem 5.4(iii), we have that average lumpability is equivalent to Q+A22 = Q+A22QQ

+.
Therefore, the distance from average lumpability is defined as∣∣∣∣∣∣Q+A22(In −QQ+)

∣∣∣∣∣∣
which we aim to minimize with respect to Q ∈ Cn,k under the constraint that intra-
cluster induced subgraph Gαα = (Cα, Eαα) formed by clusters Cα are weakly connected,
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for α = 1, . . . , k. However, to ensure average detectability, we assume that Q+A22Q is
Hurwitz, which is ensured by Assumption 5.1 according to Theorem 4.7. Therefore, we
assume that Assumption 5.1 holds and formulate the clustering problem as:

min
Q∈Cn,k

J (Q) := |||Q+A22(In −QQ+)|||

subject to Gαα = (Cα, Eαα) is weakly connected, ∀α ∈ {1, . . . , k}.
(5.10)

Again, notice that the clustering problem (5.10) is a non-convex, mixed integer opti-
mization problem [Burer2012]. Similar to the problem (5.4), finding the global optimum
is NP-hard, therefore, we resort to a suboptimal solution that is computationally feasible
and converges to a local minimum.

Clustering algorithm

Recall the induced subgraphs Gαα = (Cα, Eαα) formed by clusters Cα, for α = 1, . . . , k,
where Eαα = E ∩ (Cα ∩ Cα) is the set of edges between the unmeasured nodes of cluster Cα
in the system’s digraph G with |Cα| = nα. When dealing with physical network systems, we
often require that the clusters C1, . . . , Ck be chosen such that the corresponding subgraphs
G11, . . . ,Gkk are weakly connected. This constraint arises because one needs to interpret
the average state of the clusters in order to monitor physical network systems. In the case
of building thermal systems, for example, which is studied in Chapter 4, the average state
of each cluster Cα is the mean operative temperature of thermal elements corresponding
to Cα. Thus, if the subgraph Gαα is not weakly connected, then the corresponding mean
operative temperature is defined for elements that are far away from each other, which
does not make sense in the case of building thermal systems.

Let Gαα be the undirected version of Gαα, where the edges are assumed to be undirected.
The graph Gαα has a weighted adjacency matrix A(Gαα) = A(Gαα) + A(Gαα)ᵀ, where
A(Gαα) is the weighted adjacency matrix of the directed graph Gαα. The Laplacian matrix
of Gαα is given by

L(Gαα) = diag(A(Gαα)1nα)−A(Gαα).

The undirected version Gαα of the original directed subgraph Gαα is considered because of
the following properties:

• Gαα is weakly connected if and only if Gαα is connected

• Gαα is connected if and only if rank(L(Gαα)) = nα − 1.

To ensure that the induced subgraphs Gαα, for α = 1, . . . , k, remain weakly connected,
we define two rules for the clustering algorithm.

(i) If, for some i ∈ V2 and α ∈ {1, . . . , k}, there exists j ∈ Cα such that (i, j) ∈ E or
(j, i) ∈ E , then i is said to be adjacent to Cα, which is denoted as i↔ Cα.

(ii) If Gαα is connected and it remains connected after removing i from Cα, then i is said
to be removable from Cα, which is denoted as i←↩ Cα.

The first rule corresponds to adding nodes to cluster Cα. Due to the connectivity
constraint in (5.10), only those nodes can be added to each cluster that are adjacent to
that cluster. The second rule corresponds to removing nodes from cluster Cα and adding
them to other clusters. Again, the connectivity constraint demands that only those nodes
can be removed from each cluster that do not disconnect the subgraph of that cluster.
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Finally, recall the induced subgraph Gν = (V2, Eν) formed by the unmeasured nodes
V2 = {ν1, . . . , νn}. Let Qij ∈ Cn,(n−1) be the characteristic matrix of clustering

Qij = {ν1, . . . , {νi, νj}, . . . , νn}

with n− 1 clusters of V2, where except for one cluster {νi, νj} all the clusters consist of a
single node νh, for h = 1, . . . , n and h 6= i or j, and

Cn,(n−1) = {X ∈ {0, 1}n×(n−1) : X1n−1 = 1n}

is the set of characteristic matrices of all possible clusterings with n−1 clusters of n nodes.
We define a weighted adjacency matrix A(Gν) ∈ Rn×n of the undirected version Gν of the
directed induced subgraph Gν , whose edge weights are defined as the cost of aggregating
νi and νj in one cluster, for i, j = 1, . . . , n and i 6= j. That is,

[A(Gν)]ij = [A(Gν)]ji =

 J (Qij) if (i, j) ∈ Eν or (j, i) ∈ Eν

0 otherwise
(5.11)

where J (Qij) is the value of cost function defined in (5.10). Finally, define a Laplacian
matrix L(Gν) ∈ Rn×n as

L(Gν) = diag(A(Gν)1n)−A(Gν). (5.12)

Note that rank(L(Gν)) indicates the number of connected components in the undirected
graph Gν , i.e., if rank(L(Gν)) = n− `, then Gν has ` connected components, which corre-
spond to weakly connected components of Gν .

Algorithm 6 Initialization of k connected clusters
Input: Number of unmeasured nodes n, number of clusters k, and state matrix block A22

Output: Clustering Q0 = {C0
1 , C0

2 , . . . , C0
k}

1: Obtain Gν = (Vu, Eν) and construct A(Gν) as in (5.11)
2: repeat
3: Find an edge (i0, j0) := arg max(i,j)∈Eu [A(Gν)]ij
4: [A(Gν)]i0j0 = [A(Gν)]j0i0 = 0
5: until rank(L(Gν)) = n− k, where L(Gν) is in (5.12)
6: cmax := arg maxα∈{1,...,k} |Cα| and cmin := arg minα∈{1,...,k} |Cα|
7: repeat
8: for each node i ∈ Ccmax do
9: if i←↩ Ccmax and i↔ Ccmin then
10: Move i from Ccmax to Ccmin

11: end if
12: end for
13: cmax := arg maxα∈{1,...,k} |Cα| and cmin := arg minα∈{1,...,k} |Cα|
14: until (cmax ≤ n

k and cmin > 1) or the maximum number of iterations
15: return Q0 = {C0

1 , C0
2 , . . . , C0

k}.

First, we initialize the k connected clusters, i.e., the clusters whose induced subgraphs
Gαα are weakly connected, by employing Algorithm 6. In the first part, the algorithm
finds k connected components by removing edges between nodes that yield high cost if put
together in a single cluster. This is a heuristic to discard the worst pairs in the clustering
problem. The second part of the algorithm balances the size of clusters in order to avoid
disparity. This is necessary because too much disparity may result in a poorly initialized
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clusters that may yield the final suboptimal clusters to be very different in sizes, which is
not reasonable for average estimation in physical network systems. Then, the suboptimal
clustering can be obtained by employing Algorithm 7 that takes the initial clustering from
Algorithm 6 as an input.

Algorithm 7 Suboptimal clustering for open-loop average estimation

Input: Number of unmeasured nodes n, state matrix block A22, and Q0 = {C0
1 , · · · , C0

k}
Output: Suboptimal clustering Q = {C1, C2, . . . , Ck}
1: ψ0 ← J (Q0), where Q0 ∈ Cn,k is the characteristic matrix of Q0

2: ψ∗ ← ψ0 and Q1 ← Q0

3: repeat
4: for each node i = ν1, ν2, · · · , νn do
5: Let β be such that i ∈ Cβ
6: ψ ← ψ∗ and α← β
7: if |Cβ| > 1 and i←↩ Cβ then
8: for γ = 1, 2, . . . , k, γ 6= β and i↔ Cγ do
9: Move node i from Cβ into Cγ and update Q1

10: Compute ψ1 = J (Q1), where Q1 ∈ Cn,k is the characteristic matrix of Q1

11: if ψ1 < ψ then
12: ψ ← ψ1 and α← γ
13: end if
14: Move node i back to the cluster Cβ
15: end for
16: Move node i from Cβ to Cα and ψ∗ ← ψ
17: end if
18: end for
19: until convergence or the maximum number of iterations
20: return Q = {C1, C2, . . . , Ck}.

Simulation Example

Suppose an undirected random graph G representing a network system Σ as shown in
Figure 5.1(a) with 100 nodes. We assume 4 measured nodes V1 shown as black and find a
suboptimal clustering Q = {C1, . . . , C5} with 5 clusters for 96 unmeasured nodes. The state
matrix A = −L(G) with L(G) the Laplacian matrix of G, the input matrix B ∈ {0, 1}100×4

is generated randomly, and the input vector u(t) = [ sin t sin 5t sin 10t sin 50t ]ᵀ. We
initialize the clusters by using Algorithm 6, where the connected subgraphs formed by
each cluster are shown in Figure 5.1(c). Then, Algorithm 7 finds a suboptimal clustering
as shown in Figure5.1(a), where each cluster forms a connected induced subgraph as shown
in Figure5.1(d). The cost minimization with respect to iterations is shown in Figure 5.1(b).

The projected system Σ̊V1,Q is obtained by aggregating the clusters, whose state is
given by z(t) = [ yᵀ(t) zᵀa(t) ]ᵀ, where y(t) is the output of the original clustered network

system ΣV1,Q. Ignoring σ(t) in Σ̊V1,Q gives an approximated system whose state is given
by ẑ(t) = [ ŷᵀ(t) ẑᵀa(t) ]ᵀ, where ŷ(t) = H ẑ(t) and ẑa(t) is given in (5.9). The norm of the
output of the original network system Σ, i.e., ‖y(t)‖; and the norm of the approximated
output with initial clustering, i.e., ‖ŷ0(t)‖, and with suboptimal clustering, i.e., ‖ŷ∗(t)‖,
are shown in Figure 5.2(a). Likewise, the norm of states are shown in Figure 5.2(b).

Figure 5.2(c) and (d) show the comparison between the errors for initial clustering
and the suboptimal clustering. An interesting thing to note is that suboptimal clustering

92



5.2. Clustering for Open-Loop Average Estimation

(a) Random network with 100 nodes, V1 are
the measured nodes, and C1, · · · , C5 are the
obtained suboptimal clusters of unmeasured
nodes.
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(b) Cost minimization at each iteration.

(c) Connected induced subgraphs formed by
initial clusters obtained from Algorithm 6.

(d) Connected induced subgraphs formed by
suboptimal clusters in (a) obtained from Al-
gorithm 7 with initial clusters as in (c).

Figure 5.1: Illustration of the suboptimal clustering algorithm for open-loop average estimation
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(a) Norm of the network system’s output
y(t) and the approximated outputs: ŷ∗(t)
with suboptimal clustering and ŷ0(t) with
initial clustering.
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(b) Norm of the projected system’s state z(t)
and the approximated state: ẑ∗(t) with sub-
optimal clustering and ẑ0(t) with initial clus-
tering.
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initial clustering and final (suboptimal) clus-
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Figure 5.2: Approximation error minimization by the input-independent clustering algorithm.
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reduces the error ‖z(t)− ẑ(t)‖ by around 95% and the error ‖y(t)− ŷ(t)‖ by around 80%.
This suggests that the suboptimal clustering algorithm, on the one hand, is well-suited
for control and estimation of the average states of clusters, and, on the other hand, it
yields an approximated projected system whose input-output behavior is very similar to
the input-output behavior of the original network system.

5.3 Clustering for State Variance Estimation

Large-scale network systems are ubiquitous in modern engineering applications such
as traffic networks, building thermal systems, and distributed sensor networks. Complete
monitoring of such large-scale systems is usually not possible due to limited computational
and sensing resources. Limited computational resources can make the real-time state esti-
mation task infeasible, whereas limited number of sensors may render the network system
unobservable. It is reasonable, therefore, to monitor the network system by estimating the
aggregated state profiles such as the average and variance. Previously, we have presented
several methods to estimate the average states of multiple clusters of unmeasured nodes.
In this section, we develop a methodology to estimate state variance of network systems
in an approximate sense.

Recall the network system Σ with measured nodes V1 and unmeasured nodes V2, where
x1(t) ∈ Rm is the state vector of V1 and x2(t) ∈ Rn is the state vector of V2. The state
variance xv(t) ∈ R≥0 is a nonlinear functional that is defined to be the squared deviation
of the states of unmeasured nodes from their average mean. That is,

xv(t) =
1

n

∑
i∈V2

(
xi(t)−

∑
j∈V2

xj(t)

)2

=
1

n

∑
i∈V2

x2
i (t)−

(
1

n

∑
j∈V2

xj(t)

)2

=
1

n
xᵀ

2(t)Jnx2(t)

(5.13)

where the matrix Jn = In − 1
n1n1

ᵀ
n is symmetric (Jn = Jᵀ

n), idempotent (J2
n = Jn), and

positive semi-definite with In the identity matrix of size n × n and 1n the vector of ones
of size n× 1.

5.3.1 Review of functional observers and their limitation

The fundamental concepts of nonlinear functional observers are presented in [Kazantzis2001,
Kravaris2011, Kravaris2013, Kravaris2016], which can be employed to estimate the state
variance. Given a nonlinear functional xv(t), a functional observer of order k is a system

ẇ(t) = f(w(t),y(t),u(t))

x̂v(t) = h(w(t),y(t))

(5.14)

with f : Rk × Rm × Rp → Rk and h : Rk × Rm → R designed such that the error

ξv(t) = xv(t)− x̂v(t)
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converges to zero asymptotically. Such a functional observer is possible if and only if there
exists an invariant manifold w = g(x) such that

∂g(x)

∂x

(
Ax +Bu

)
= f(g(x),y,u)

xv = h(g(x),y).

(5.15)

For linear systems, we need to find a linear map g(x) = P ᵀx, where P ∈ R(m+n)×k, in
order to satisfy the condition (5.15). This can be stated as follows:

Proposition 5.5. Consider an observer (5.14) with

f(w(t),y(t),u(t)) = Mw(t) +Ky(t) +Nu(t)

h(w(t),y(t)) = wᵀ(t)Dw(t) + yᵀ(t)Ly(t)

(5.16)

where M ∈ Rk×k is a Hurwitz matrix, K ∈ Rk×m, N ∈ Rk×p, D ∈ Rk×k, and L ∈ Rm×m.
Then, the error xv(t)− x̂v(t) converges to zero asymptotically if and only if there exists a
matrix P ∈ R(m+n)×k such that

P ᵀA−MP ᵀ = KC (5.17a)
PDP ᵀ = T (5.17b)

where A is the state matrix of the network system Σ and

T =

 −L 0m×n

0n×m
1
nJn

 .
Proof of sufficiency. Define e1(t) = P ᵀx(t)−w(t), then

ė1(t) = Me1(t) + (P ᵀA−MP ᵀ −KC)x(t)

where we chose N = P ᵀB. Moreover, define ξv(t) = xv(t)− x̂v(t), then

ξv(t) = xᵀ(t)(T − PDP ᵀ)x(t) + eᵀ1(t)De1(t)− 2xᵀ(t)PDe1(t).

Assume (5.17a) and (5.17b) hold. Then, (5.17b) implies that ξv(t) = eᵀ1(t)De1(t) −
2xᵀ(t)PDe1(t) and (5.17a) implies that e1(t) = exp(Mt)e1(0). Since M is a Hurwitz
matrix, we have e1(t) → 0k exponentially as t → ∞ for all e1(0) ∈ Rk. Therefore,
ξv(t)→ 0 asymptotically as t→∞.

Proof of necessity. Assume ξv(t)→ 0 as t→∞, then

lim
t→∞

(xᵀ(t)(T − PDP ᵀ)x(t) + eᵀ1(t)De1(t)− 2xᵀ(t)PDe1(t)) = 0.

In general, when limt→∞ x(t) 6= 0m+n, the above equation implies (5.17b) and

lim
t→∞

e1(t) = 0k

which is true only if (5.17a) holds.
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To design a functional observer of the form (5.16) under the constraint that M is
Hurwitz, one has to determine the order k and find P ∈ R(n+m)×k that satisfies (5.17).
Finding a minimal order k such that the Sylvester equation (5.17a) is solvable is known
to be quite challenging, [Fernando2010a,Rotella2016]. Moreover, in order to solve (5.17b),
we see that the order k of the observer must be at least n − 1. To elucidate this fact, we
suppose P ᵀ = [ P ᵀ

1 P ᵀ
2

] with P1 ∈ Rm×k and P2 ∈ Rn×k, then (5.17b) can be written as

 P1DP
ᵀ
1 P1DP

ᵀ
2

P2DP
ᵀ
1 P2DP

ᵀ
2

 =

 −L 0m×n

0n×m
1
nJn

 .
Apart from P1DP

ᵀ
1 = −L, P1DP

ᵀ
2 = 0m×n and P2DP

ᵀ
1 = 0n×m, we also need to satisfy

P2DP
ᵀ
2 = 1

nJn, which implies that rank(P2) ≥ n− 1 because rank(Jn) = n− 1. Hence, it
is necessary that k ≥ n− 1, which is a lower bound on the order of functional observer of
the form (5.16).

Even if the functional observer is of minimum order, i.e., k = n − 1, the estimation is
still not feasible because n can be very large. Such an observer estimates all but one states
of the unmeasured nodes to compute the state variance. This is because rank(Jn) = n− 1
and 1ᵀ

nJn = 0, which means that if we estimate n − 1 elements of the vector Jnx2(t) =
x2(t)−1nxa(t), the n-th element equals the negative sum of the estimated n− 1 elements.
The problem of interest, however, is to estimate the variance xv(t) without estimating
the whole vector Jnx2(t), which is not possible due to the limitation on the order of the
functional observer. Therefore, instead of the asymptotic estimation, i.e., xv(t)− x̂v(t)→ 0
as t → ∞, we would like to find an optimal approximate estimation solution, where the
order k is chosen according to the available computational capability.

5.3.2 K-means type clustering for state variance estimation

The infeasibility of designing a nonlinear functional observer directs us towards estima-
tion of state variance in an approximate sense. That is, we first approximate the state
variance by partitioning V2 into k clusters such that the states of nodes in each cluster
can be approximated by its average state, which is similar to a K-means clustering prob-
lem [Abonyi2007]. The approximated state variance is then computed from the average
states of the clusters. Then, we employ the H2-optimal average state observer to estimate
the average states of clusters, which gives us an estimated state variance.

Problem definition

Let k < n be the given number of clusters and Q = {C1, . . . , Ck} be the clustering of
the unmeasured nodes V2 = {ν1, . . . , νn}, where C1 ∪ · · · ∪ Ck = V2 and Cα ∩ Cβ = ∅, for
α, β ∈ {1, . . . , k} and α 6= β. The characteristic matrix Q ∈ Cn,k of the clustering Q is as
defined before in (2.5).

The rationale for an approximated state variance is as follows: If Q ∈ Cn,k is such that

x2(t) ≈ Qza(t)

where za(t) = Q+x2(t) and Q+ = (QᵀQ)−1Qᵀ, then, from (5.13),

xv(t) ≈
1

n
zᵀa(t)QᵀJnQza(t).

That is, if a clustering is such that the states of all nodes in a cluster Cα, for α = 1, . . . , k,
can be approximated by their average zα(t) = 1

nα

∑
j∈Cα xj(t), then the state variance can
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be approximated as

xv(t) ≈
1

n
zᵀa(t)QᵀJnQza(t)

=
1

n

k∑
α=1

nαz
2
α(t)−

(
1

n

k∑
α=1

nαzα(t)

)2 (5.18)

where za(t) = [ z1(t) · · · zk(t) ]ᵀ ∈ Rk is the average state vector and nα = |Cα| with∑k
α=1 nα = n.
Recall the average deviation vector σ(t) = x2(t) − Qza(t) with i-th entry, for i =

1, . . . , n, given by σi(t) = xνi(t) − zα(t), where νi ∈ Cα and α ∈ {1, . . . , k}. That is, the
entries of σ(t) are the differences between the states of unmeasured nodes and the average
states of the corresponding clusters. We can write

σ(t) = DQx(t)

where
DQ = [ 0n×m In −QQ+ ].

Then, the transfer function from u to σ is given by

T(s) = DQ(sI −A)−1B

with the H2(τ)-norm defined as, see [Sinani2019],

‖T‖2H2(τ) = trace(DQWτD
ᵀ
Q)

where, for some τ ∈ R>0,

Wτ =

∫ τ

0
exp(At)BBᵀ exp(Aᵀt)dt (5.19)

is the finite-horizon controllability grammian of the network system Σ. If the state matrix
A is Hurwitz, then the standard H2-norm can also be considered, which can be computed
by using the infinite-horizon controllability grammian [Sinani2019].

The K-means type clustering problem is defined as follows: Find Q ∈ Cn,k such that

min
Q∈Cn,k

J (Q) := trace(DQWτD
ᵀ
Q) (5.20)

where Cn,k = {X ∈ {0, 1}n×k : X1k = 1n}. The clustering problem (5.20) is a non-convex,
mixed-integer NP-hard optimization problem.

Clustering algorithm

In this subsection, we provide a suboptimal clustering algorithm for solving (5.20) in poly-
nomial time. Let ψ = trace(DQWτD

ᵀ
Q) be the cost of (5.20) for some Q ∈ Cn,k, which is

the characteristic matrix of the clustering Q. Similarly, let ψ0 = trace(DQ0WτD
ᵀ
Q0

) be
the cost of a randomly initialized clustering Q0.

The suboptimal solution obtain from Algorithm 8 depends on the initial clustering Q0.
Therefore, to obtain a better solution, the Algorithm 9 repeatedly runs Algorithm 8, where
at every iteration the clustering is initialized randomly.
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Algorithm 8 Suboptimal K-means clustering
Input: Number of unmeasured nodes n, number of clusters k, the controllability grammian

Wτ , an initial clustering Q0, and a stopping criterion δ > 0 (e.g., 10−6)
Output: Suboptimal clustering Q = {C1, . . . , Ck}
1: Compute ψ0 = J (Q0) and assign Q1 ← Q0

2: repeat
3: Assign ψ1 ← ψ0

4: for i = 1, 2, · · · , n do
5: Assign Q2 ← Q1

6: Let β ∈ {1, . . . , k} be such that νi ∈ Cβ
7: if Cβ has more than one node, i.e., |Cβ| > 1, then
8: for α = 1, 2, . . . , k and α 6= β do
9: Move νi from its cluster to Cα
10: Update Q2 accordingly and compute ψ2 = J (Q2)
11: if ψ2 < ψ0 then
12: Update ψ0 ← ψ2 and Q1 ← Q2.
13: end if
14: end for
15: end if
16: end for
17: until ψ1 − ψ0 < δ
18: Assign Q ← Q1

19: return Q = {C1, . . . , Ck}, ψ = trace(DQWτD
ᵀ
Q).

Algorithm 9 Improving suboptimal K-means clustering
Input: Number of unmeasured nodes n, number of clusters k, the controllability grammian

Wτ , an initial clustering Q0, and a stopping criterion δ > 0 (e.g., 10−6), maximum
value of counter c > 0

Output: Suboptimal clustering Q∗ = {C∗1 , . . . , C∗k}
1: Assign a← 0 and b← 0
2: repeat
3: Compute ψ0 = trace(DQ0WτD

ᵀ
Q0

)
4: Run Algorithm 8 and store Q and ψ
5: Assign a← a+ 1
6: if a = 1 then
7: Assign ψ∗ ← ψ and Q∗ ← Q
8: Randomly initialize Q0 and compute DQ0

9: else
10: if ψ < ψ∗ then
11: Assign ψ∗ ← ψ and Q∗ ← Q
12: Randomly initialize Q0 and compute DQ0

13: else
14: Assign b← b+ 1
15: end if
16: end if
17: until b ≤ c
18: return Q∗ = {C∗1 , · · · , C∗k}, ψ∗ = trace(DQ∗WτD

ᵀ
Q∗).
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Figure 5.3: Three clusters (enclosed by the dashed lines) identified by Algorithm 9 in the
network.

Example 5.1. Consider a network system shown in Figure 5.3, where the input u =

[ u1 u2 ]ᵀ and the output y = [ y1 y2 ]ᵀ. The measured nodes V1 = {1, 2} and the unmea-
sured nodes V2 = {3, 4, . . . , 10}. Let the number of clusters be k = 3. Then, the clustering
Q∗ = {C∗1 , C∗2 , C∗3} is obtained from Algorithm 9, where C∗1 = {3, 6, 9}, C∗2 = {4, 7}, and
C∗3 = {5, 8, 10}, which are specified by the dashed lines in Figure 5.3.

The clustering obtained by Algorithm 9 ensures that the state trajectories of each
cluster stay closer to each other as time progresses, shown in Figure 5.4(a). For instance,
initially the states x5(0), x8(0), x10(0) are not close to each other, however, as t > 1, we
see that their trajectories converge closer to each other. Consequently, the state variance
can be approximated as shown in Figure 5.4(b). y
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(a) State trajectories of clustered unmea-
sured nodes of the network system shown in
Figure 5.3.
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(b) The plots of actual state variance xv(t)
computed by (5.13) from the states of unmea-
sured nodes and approximated state variance
computed by (5.18) from the average mean
values of the identified clusters.

Figure 5.4: Approximation of the state variance of a network system.
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State Variance Estimation

After obtaining a suboptimal clustering Q∗ from Algorithm 9, we design an H2-optimal av-
erage observer ΩV1,Q∗ to estimate the average state vector of clusters. Then, the estimated
state variance is given by

x̂v(t) =
1

n
ẑᵀa(t)QᵀJnQẑa(t) (5.21)

where ẑa(t) ∈ Rk is the estimated average state vector by ΩV1,Q∗ . Since the average
estimation error ζ(t) = za(t) − ẑa(t), where za(t) ∈ Rk is the average state vector of
clusters, we have

x̂v(t) =
1

n
(za(t)− ζ(t))ᵀQᵀJnQ(za(t)− ζ(t))

=
1

n
(zᵀa(t)QᵀJnQza(t) + ζᵀ(t)QᵀJnQζ(t)− 2za(t)Q

ᵀJnQζ(t))

and since x2(t) = σ(t) +Qza(t), we have, from (5.13),

xv(t) =
1

n
(σ(t) +Qza(t))

ᵀJn(σ(t) +Qza(t))

=
1

n
(σᵀ(t)σ(t) + zᵀa(t)QᵀJnQza(t))

where we used the facts that

σᵀ(t)Jnσ(t) = σᵀ(t)σ(t) and σᵀ(t)JnQza(t) = 0.

Therefore, the state variance estimation error ξv(t) := xv(t)− x̂v(t) is given by

ξv(t) =
1

n
(σᵀ(t)σ(t) + (2za(t)− ζ(t))ᵀQᵀJnQζ(t)) . (5.22)

The above expression contains two summands. The first summand is the square of the
norm of state variance approximation error ‖σ(t)‖2 and the second is proportional to the
average state estimation error ζ(t). If the optimization problems (5.20) and (4.13) admit
a solution that yields a small cost, then the state variance approximation error and the
average estimation error will also be small. Consequently, the state variance estimation
error will be small.

Simulation Example

As a simulation example, we consider a linear flow network, [Walter1999], where each
compartment is a node with a state xi(t) ∈ R≥0 that represents some physical quantity in
i. The nodes V are connected via an underlying graph G and the rate of change of node i’s
state equals the difference between the inflow to i and the outflow from i. The inflow is
what i receives from its in-neighbors and the positive external inputs. The outflow is what
i gives out to its out-neighbors and the negative external inputs. That is,

ẋi(t) = f in
i (t)− fout

i (t),

where f in
i (t) and fout

i (t) represent the inflow and the outflow, respectively, which are given
by

f in
i (t) =

∑
j∈Ni←V

aijxj(t) + b+ilu
+
l (t),

fout
i (t) =

∑
h∈Ni→V

ahixi(t) + b−ilu
−
l (t)
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with Ni←V and Ni→V the in-neighbors and the out-neighbors of node i, respectively;
u+
l (t) ∈ R≥0, u−l (t) ∈ R≤0 are the positive and the negative inputs, respectively, b+il , b

−
il ∈

{0, 1} are the scalars that determine if the input-l is applied at node i, and aij ≥ 0 for all
i, j ∈ V and i 6= j.

The state matrix A = Λ − L(G), where the Laplacian matrix L(G) = D↓(G) − A(G)
with D↓(G) the weighted in-degree matrix and A(G) the weighted adjacency matrix of the
graph G, and the diagonal matrix Λ = D↑(G) +D↓(G) with D↑(G) the weighted out-degree
matrix of G. Then, the state matrix A = A(G) − D↑(G) and 1ᵀ

`A = 01×`. There are
many applications modeled as above, see [Walter1999], including traffic networks in free
flow [Rodriguez-Vega2020,Rodriguez-Vega2021].

We generate a graph G of 55 nodes by an Erdos-Renyi model with a probability of a
directed edge between any pair of nodes equal to 0.15. The number of measured nodes
m = 5 and the number of unmeasured nodes n = 50. We choose the number of clusters
to be k = 5. We consider the input vector to be u(t) = [ u1(t) u2(t) ]ᵀ, where each input

ul(t) = u+
l (t)−u−l (t) with u+

l (t), u−l (t) ∈ [0, 1] representing random, discontinuous signals.
The inputs are directly applied to 10% of nodes chosen in a uniformly random way.

Figure 5.5: The state trajectories x2(t) of the 50 unmeasured nodes in the example network
system. The colors of the trajectories correspond to the 5 clusters identified by Algorithm 9.
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Figure 5.6: Optimal average estimation with the optimal tuning parameter ρ∗ = 1.8879
obtained from Algorithm 2. The colored solid trajectories show the average states of the
clusters za(t) and black dashed trajectories show the estimated average states ẑa(t).

We compute Wτ for τ = 10 from the expression (5.19) and run Algorithm 9 to obtain
suboptimal clustering of unmeasured nodes with k = 5 clusters. The state trajectories of
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Figure 5.7: The actual state variance xv(t) plotted with black solid line vs. the estimated
state variance x̂v(t) plotted with red dotted line.
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Figure 5.8: Percentage variance estimation error.
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the system are shown in Figure 5.5, where the trajectories of the same color correspond to
the nodes of the same cluster.

We then design the average observer ΩV1,Q and obtain the optimal tuning parameter
ρ∗ = 1.8879 from Algorithm 2, where Wρ is computed at every iteration using the expres-
sion (4.12). The estimation of the average states are shown in Figure 5.6. Notice that the
estimation of the four average states shown as green, blue, red, and yellow is very accurate,
whereas the estimation of the average state shown as magenta is not very accurate. This
can be due to the fact that the cluster represented by magenta has only one node, which is
an outlier node since its trajectory is far from the states of other nodes. The average state
observer is designed to optimally estimate the average states of a cluster of several nodes,
and not the states of individual nodes. Another reason can be the fact that we optimize
a single parameter ρ in problem (4.13), which changes the eigenvalues of Mρ = RρQ with
an equal proportion. After obtaining an optimal ρ∗, if the spectrum eig(Mρ) contains a
very small eigenvalue, then the corresponding estimated average state trajectory will not
be accurate, as shown in the figure.

We compute the actual state variance from the state trajectories of unmeasured nodes
using the expression in (5.13), and the estimated state variance from the estimated average
state trajectories using the expression in (5.21). The plot of the actual and the estimated
state variance is shown in Figure 5.7 and the percentage state variance estimation error
in Figure 5.8. We see that the state variance estimation is very accurate, which is due
to the following reasons: (i) The variance approximation is very accurate because of the
state trajectories of the identified clusters are very close to each other, and (ii) The average
estimation is very accurate because of the optimal tuning parameter ρ∗. From the discus-
sion that follow after the variance estimation error equation (5.22), we conclude that the
accuracy of state variance approximation and average estimation results in the accuracy
of state variance estimation.

5.4 Application Example: SIS Epidemics over Networks

Modeling and analysis of spreading phenomenon has been a topic of interest not only
in mathematical epidemiology but also in computer networks [Pastor-Satorras2001b], wire-
less communication [Kleinberg2007], statistical physics [Grassberger1983], and social sci-
ences [Boccaletti2006]. This is because, in addition to disease spreading in networks of bi-
ological beings, the spreading phenomenon described by the epidemic models also captures
virus spreading in computer networks or rumor spreading in social networks. Nonetheless,
epidemic models are very crucial in understanding and devising preventive measures and
control strategies to mitigate the disease spread as will be discussed in detail in the second
part II of this thesis.

The main idea of epidemic models is to consider compartments of different popula-
tions, which are divided on the basis of whether they are susceptible, exposed, infected,
or recovered. The most common models are (i) susceptible-infected (SI), (ii) susceptible-
infected-susceptible (SIS), (iii) susceptible-infected-recovered (SIR), and (iv) susceptible-
exposed-infected-recovered (SEIR). The susceptible population in these models is prone
to disease and recovered population is immune. In SI model, once the susceptible peo-
ple are infected, they stay infected and do not recover. In SIS model, the infected peo-
ple recover but do not attain immunity and become susceptible again. In SIR model,
the infected people recover and attain permanent immunity. In SEIR model, the sus-
ceptible people do not get infected right away after a contact with infected population,
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they first become exposed, then transition to being infected, and then recover with per-
manent immunity. There is a vast body of literature on epidemic models as evidenced
by [Hethcote2000, Brauer2012]. These epidemic models are population models that con-
sider lumped population in each compartment by assuming a homogeneous population
structure, where the underlying contact network is assumed to be complete. In this com-
plete structure, all people are connected to each other and thus are equally likely to get
infected. These models are simple and fail to capture the inherent network structure
embedded in the epidemic spread process, which often results in imprecise estimation
of the epidemic situation. The shortcomings posed by the population models are over-
come by the networked epidemic models, which are studied in [Pastor-Satorras2001a,New-
man2002,Pastor-Satorras2015,Khanafer2016,Nowzari2016,Mei2017,Paré2020]. In this sec-
tion, we apply our clustering-based optimal average estimation method for a networked
SIS epidemic model, where SIS pattern is suitable for infectious diseases in humans such
as tuberculosis, meningitis, and gonorrhea [Allen2008,Keeling2011].

5.4.1 SIS epidemic model over networks

We consider a networked metapopulation SIS epidemic model that comprises several groups
of population interacting with each other over a graph G = (V, E), where V is the set of
groups or nodes and E is the set of edges specifying interactions among the groups. For
instance, the nodes of the network may correspond to population of several cities and edges
to transportation links between those cities. Denote xi(t) ∈ [0, 1] to be the proportion of
infected people in node i, then the networked SIS model is given by

ẋi(t) = β(1− xi(t))
∑

j∈Ni←V

aijxj(t)− γxi(t)

where aij > 0 is the edge weight of (i, j) ∈ E , β is the infection rate of i, and γ is the
recovery rate of i. Similar to the setup of this thesis, we assume that the proportion of
infected people in m nodes are measured, which are x1(t), . . . , xm(t), and the rest of the n
nodes are unmeasured.

Let A := A(G) be the weighted adjacency matrix of graph G defined as

[A]ij =

 aij if (i, j) ∈ E

0 otherwise.

Then, the vector form of the model is

ẋ(t) = β(Im+n − diag(x(t)))Ax(t)− γx(t)

y(t) = Cx(t)
(5.23)

where

x(t) = [ x1(t) . . . xm+n(t) ]ᵀ

diag(x(t)) = diag(x1(t), . . . , xm+n(t))

y(t) = [ x1(t) . . . xm(t) ]ᵀ

C = [ Im 0m×n ].
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5.4.2 Simulation results for clustering-based optimal average estimation

Simulation setup

We generate an Erdős-Rényi graph of 100 nodes, where the probability of a directed edge
between any pair of nodes is 0.15. We suppose the number of measured nodes m = 5, the
number of unmeasured nodes n = 95, and the number of clusters k = 4. The edge weights
aij of the graph are chosen randomly in the interval (0, 1) and the initial condition x(0) is
chosen in the interval (0, 0.1)m+n.

The infection rate β = 0.02 and the recovery rate γ = 0.12, where βλmax(A)/γ = 1.1,
which is greater than one and implies that the networked SIS dynamics will not converge
to zero (i.e., disease-free equilibrium) but it will converge to an endemic state, [Mei2017].

Figure 5.9: Suboptimal clustering obtained by Algorithm 5.

Suboptimal clustering and optimal gain

Linearization around the equilibrium point x(t) ≈ 0m+n yields a linear model

ẋ(t) = Ax(t)

where A = βA− γIm+n, which is partitioned as A11 A12

A21 A22

 :=

 βA11 − γIm βA12

βA21 βA22 − γIn

 .
Using this linear model, we solve Problem (5.4) using Algorithm 5 with Wρ,Q,Mρ,Q, Rρ,Q
defined in (5.3), (5.1), and (5.2), respectively. We obtain the optimal gain value ρ∗ = 3.0002
and the suboptimal clustering Q∗ illustrated in Figure 5.9, where the black nodes are
measured nodes and the colored nodes respectively depict the clusters of unmeasured nodes.

The matrices of average observer ΩV1,Q∗ with suboptimal clustering Q∗ are obtained
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as follows

M =


−0.1153 0.0375 0.0373 0.0275

0.0162 −0.1016 0.0230 0.0213

0.0157 0.0317 −0.1030 0.0246

0.0164 0.0347 0.0332 −0.0981



K =


0.0018 0.0024 0.0080 0.0066 0.0046

0.0019 0.0019 0.0057 0.0022 0.0031

0.0029 0.0038 0.0057 0.0049 0.0043

0.0024 0.0022 0.0062 0.0042 0.0052



L =


0.0761 0.0085 0.0750 −0.0679 −0.0044

−0.0410 0.0088 0.0242 0.0686 0.0744

0.0063 0.0015 0.1188 0.0525 0.0080

0.0503 0.0510 0.0154 0.0249 0.0184


where M = Mρ,Q defined in (5.1) with Q being the characteristic matrix of Q∗. Notice
that N = 0 because there is no input to the system.
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Figure 5.10: Average estimation of four clusters of unmeasured nodes in Figure 5.9.

Simulation results

The estimation of average states of four clusters is illustrated in Figure 5.10, where the
solid black lines are the original average states of clusters given by

za(t) = Q+x2(t) = [ z1(t) z2(t) z3(t) z4(t) ]ᵀ

with x2(t) the unmeasured state vector of the model (5.23), and the dotted colored lines are
the estimated average states of clusters given by the output of the average observer ΩV1,Q

ẑa(t) = [ ẑ1(t) ẑ2(t) ẑ3(t) ẑ4(t) ]ᵀ.
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Figure 5.11: Percentage average estimation error.

In Figure 5.11, we illustrate the percentage average estimation errors

eα(t) =
(zα(t)− ẑα(t))2

(zα(t))2

for α = 1, 2, 3, 4. The final values of percentage average estimation errors for the four
clusters are 0.2160%, 0.0048%, 0.0537%, and 0.0693%, respectively, which are very small
and show that the average estimation is reliable.

5.5 Concluding Remarks

We presented clustering algorithms for optimal average estimation, open-loop average
estimation, and state variance estimation. We provided a sufficient condition in terms of a
clustering constraint for ensuring the generic stabilizability of the average observer. A result
on generic rank is employed to ensure the stabilizability because the usual rank condition
may not hold for cases that are of Lebesgue measure zero. The clustering algorithm for
optimal average estimation considers this sufficient condition of generic stabilizability as a
constraint and seeks a local minimum solution. We consider an application example of the
SIS epidemic over a large network to show the efficacy of our methodology.

In the clustering methodology of open-loop estimation, we defined a notion of average
lumpability and showed the following relation to average detectability:

average detectability ⇒ average lumpability

average lumpability AND Q+A22Q Hurwitz ⇔ average detectability.

The clustering algorithm aims to minimize the distance from average lumpability given
the number of clusters and the connectivity constraint of clusters. A simulation example
showed the effectiveness of the clustering algorithm for open-loop average estimation.

Finally, we showed the limitation of estimating a state variance of a network system
by a nonlinear functional observer, where the order of the observer has to be the number
of unmeasured nodes minus one. Such an order is not computationally feasible for large-
scale network systems. We provided a K-means type clustering methodology to obtain
a clustered network system and employ an optimal average observer to approximately
estimate the state variance. The state trajectories of nodes in each cluster obtained by the
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K-means clustering algorithm are shown to comparatively close to each other, therefore,
can be approximated by the average mean. This allows us to approximate the state variance
by the average states of clusters. We showed the effectiveness of this approach through a
simulation example. The future direction in this regard is to estimate the variance of each
cluster in a clustered network system.
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6
State of the Art

I n this chapter, we provide a literature review of epidemic modeling and control. After
providing a general review of different models and control techniques that exist in the recent
literature, we focus on works that study policies for testing and urban human mobility to
control epidemics. Then, we provide our contributions in relation to the existing literature.

6.1 Literature review

The literature on mathematical epidemiology is very vast. However, we mainly focus
on recent papers that appeared following the outbreak of COVID-19. Each model, by
and large, is a variant and/or an extension of SIR (susceptible, infected, recovered) and
SEIR (susceptible, exposed, infected, recovered) models, which describe the flow of popu-
lation through three or four mutually exclusive stages of infection, respectively (see [Ker-
mack1927] and [Hethcote2000] for a comprehensive review). These basic models have
few parameters that are easy to identify [Massonis2020] and are considered as population
models that view the epidemic from the macroscopic perspective. This is in contrast with
the approaches that capture the heterogeneity of population structure such as network
epidemic models [Khanafer2016,Paré2018a,Paré2018b] or metapopulation epidemic mod-
els [Colizza2008, Pastor-Satorras2015,Della Rossa2020], that view the epidemic from the
microscopic perspective.

Recent epidemic models, however, are more complex and comprehensive than sim-
ple SIR and SEIR. These models include several intermediate stages to accurately por-
tray the dynamics of the epidemic with each focusing on different facets of the epidemic
to understand, predict, and control the evolution of the COVID-19 epidemic. For in-
stance, [Lin2020] develops an extension of the SEIR model that incorporates the gov-
ernmental actions (e.g., preventive measures and restrictions) and the individual behav-
ioral reactions, whereas [Anastassopoulou2020] develops an extension of the SIR model
that incorporates the number of deaths due to the epidemic. Another quite interesting
model is the one developed in [Giordano2020] that considers an eight-compartment model
called SIDARTHE, which includes eight stages of infection: susceptible (S), infected (I),
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diagnosed (D), ailing (A), recognized (R), threatened (T), healed (H), and extinct (E).
A distinguishing feature of this model is that it differentiates between the infected in-
dividuals based on the severity of their symptoms and whether they are diagnosed by
a health authority. It is crucial, as also emphasized in [Liu2020, Ducrot2020], to differ-
entiate between diagnosed and undiagnosed individuals because the former are typically
isolated and are less likely to spread the infection. Similar models have been adopted
and extended to study optimal control policies for the epidemic such as the implementa-
tion of social distancing measures [Köhler2020,Morato2020,Perkins2020], lockdown strate-
gies [Casella2020,Olivier2020,Alvarez2020], and heterogeneous policy responses based on
age-groups [Acemoglu2020,Brotherhood2020].

In addition to the above NPI strategies, testing and isolating the infected population
from the susceptible population is one of the most important strategies to control the
epidemic spread. The emphasis of the director-general of WHO on testing was very strong
when he gave his message “test, test, test” to all countries. This is because testing is
well-known to be a crucial control mechanism for epidemics [Chowell2003]. It limits the
spread of disease to the susceptible population by enabling the health authority to detect
and isolate the infected people.

In somewhat similar to a resource allocation problem [Nowzari2016, Nowzari2017] in
epidemic control, [Pezzutto2020] poses the optimal test allocation as a well-known sensor
selection problem in control theory, whereas [Ely2020] poses it as a welfare maximization
problem by considering specificity and sensitivity of tests. The main assumption in these
papers, however, is the availability of information portfolios of all individuals in a soci-
ety, which enables the decision-makers to compute the infection probability of individuals
and utility loss for each individual in case of decision errors. On the other hand, [Pigu-
illem2020,Berger2020] study the problem of testing policy from an economic perspective,
where the goal is to find an optimal testing policy that minimizes the total number of
quarantined people to incur minimal cost on the economic activity of a country while also
mitigating the epidemic spread. Without such a testing policy, governments usually resort
to indiscriminate quarantining of people that burdens the economy of a country without
any reason. Therefore, testing allows to identify and isolate the positive cases to allow for
case-dependent quarantining. A different aspect of the testing policy is studied in [Char-
pentier2020], which aims to find an optimal trade-off between testing effort and lockdown
intervention under the constraint of limited Intensive Care Units (ICU). However, in all
these studies, testing policies lack a control-theoretic perspective even though it is a very
crucial control mechanism. Given a current situation of an epidemic, there is no result
providing the number of tests needed to be performed per day in order to control the
evolution of the epidemic.

Another focal point for controlling an epidemic is urban human mobility. It plays a
vital role in the economy of a country, however, when there is an epidemic, it facilitates
the spread of disease by allowing contact between infected and susceptible populations.
Considering a SIR epidemic model for disease spread, human mobility between different
geographic regions has been investigated and modeled in [Sattenspiel1995,Arino2003,Bal-
can2010, Poletto2013]. In these models, the individuals associated with one region or
city can go to and return from other regions. However, these models capture averaged
mobility patterns between different cities with large timescales and cannot capture the
daily patterns of mobility within an urban environment. To tackle this problem, [Frias-
Martinez2011,Pappalardo2015,Pastor-Satorras2015,Nadini2020] study agent-based models
of urban human mobility with epidemic spread. These models are powerful tools for com-
putational purposes, however, they rely on the digital footprints of individuals and can
lead to privacy violations. A similar line of research in [Song2020] aims to find control
policies that restrict mobility to and from regions that are estimated to be of high risk
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by employing a reinforcement learning framework and relying on aggregated demand for
mobility and regional epidemic statistics. However, a more practical approach is to find
optimal capacities and schedules of locations, such as workplaces, schools, and markets,
where the nominal density of people is high, in order to mitigate the epidemic.

6.2 Our Contributions

In Chapter 7, we introduce a new model named SIDUR model — susceptible (S), un-
diagnosed infected (I), diagnosed infected (D), unidentified recovered (U), and identified
removed (R) — to study the control of an epidemic through testing. Similar to [Gior-
dano2020,Liu2020,Ducrot2020], we differentiate between the undiagnosed and diagnosed
infected population. We assume that the diagnosed infected population are either quaran-
tined and/or hospitalised and only the undiagnosed infected population is responsible for
the disease transmission to the susceptible population. The identified removed population
consists of people who recover or die after being diagnosed and the unidentified recovered
population consists of people who recover without getting diagnosed.

The control input in the SIDUR model is defined as the number of tests performed per
day, where the influence of the control is directly linked with the testing specificity. The
testing specificity determines the probability of detecting an undiagnosed infected person
through a test, which, for instance, can be increased through efficient contact tracing.
Notice that COVID-19 can be detected through two types of tests known as type-1 (RT-
PCR) and type-2 (serology). In the type-1 test, a swab is inserted into the subject’s nose
to qualitatively detect nucleic acid from SARS-CoV-2 in the upper and lower respiratory
specimens [FDA2020], which enables one to detect whether the subject is currently infected
with COVID-19. Type-2 test, on the other hand, is a serum test in order to detect relevant
antibodies, which enables one to know whether the subject was infected in the past with
COVID-19 and now he/she has recovered. Both types of tests are important in the control
of an epidemic. Type-1 tests help to limit the disease spread by the identification of infected
individuals and their contact tracing [de Walque2020]. Type-2 tests, on the other hand,
are useful in reducing the size of the testable population for type-1 tests [Winter2020] that
helps to increase the testing specificity. However, the type-1 test, up to now, is considered
to be the only recommended method for the identification and laboratory confirmation
of COVID-19 cases according to the WHO [WHO2020]. Moreover, only type-1 tests can
provide information in real-time related to describe the outburst of the epidemic, which is
the reason that the datasets related to testing only include type-1 tests1. Therefore, we
assume that the control input in the SIDUR model only accounts for the type-1 (RT-PCR)
tests.

We consider the COVID-19 case of France as a benchmark example in Chapter 7. That
is, we estimate and validate the model on French COVID-19 data. Then, we propose a
testing policy, the so-called best-effort strategy for testing (BEST), for epidemic suppres-
sion. The BEST policy provides the minimum number of tests to be performed per day in
order to stop the epidemic spread. Thus, BEST is meaningful only during the spreading
phase of the disease. We provide an algorithm to compute the number of tests required
by BEST policy. Since BEST is a suppression strategy that stops the epidemic growth
immediately, it usually requires a lot of tests to be performed per day. However, it requires

1Website: Our World in Data: Coronavirus (COVID-19) Testing. (Accessed 30/09/2020)
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less number of tests if implemented sooner, which is illustrated for the case of France by
plotting the number of tests required by BEST with respect to time.

In Chapter 8, we develop an urban human mobility model that captures the daily
mobility patterns and incorporates the process of epidemic spread at each location. Every
day a certain number of people go from their residential areas, which are called origins, to
locations visited daily for work, education, shopping, etc., which are called destinations, and
return on the same day. The daily mobility patterns are captured by the time-dependent
supply and demand gating functions. The supply gating function (SGF) of each destination
is controlled by its daily destination schedule, which is its opening and closing hours. The
demand gating function (DGF), on the other hand, is defined on each edge of the mobility
network and corresponds to the daily mobility window, which is the time interval during
which people utilize that edge to move between origins and destinations. The supply
function of each destination controlled by the SGF determines the inflow allowed to that
destination and depends on its operating capacity controlled by the capacity control input.
The demand function controlled by the DGF determines the outflow from one location
to another. The process of urban human mobility is modeled on the network edges that
connect different locations through flows and the process of epidemic spread is modeled
locally at each location that depends on the number of susceptible and infected people at
that location.

We formulate two optimal control problems in Chapter 8 for epidemic mitigation while
maximizing the economic activity: (i) optimal capacity control policy and (ii) optimal
schedule control policy. These problems aim to find an optimal capacity control input and
schedule control input, respectively, that maximizes the economic activity while mitigating
the epidemic by keeping the number of active infected cases bounded. The capacity control
policy restrict the number of people in destinations of each category by specifying the
operating capacities in relation to their nominal capacities. The schedule control inputs,
on the other hand, specifies the closing hour of destinations of each category by altering the
destination schedules and mobility windows. The effectiveness of these policies is shown
numerically for an example of two origins and three destinations.
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7
Design of Testing Policy for Epidemic Suppression

In this chapter, we develop an epidemic model that incorpo-
rates the testing rate as a control input in section 7.1. After
presenting and imputing the data for the COVID-19 case of
France in section 7.2, we estimate and validate the model in
section 7.3. Then, a suppression strategy, called the best-effort
strategy for testing (BEST), is proposed in section 7.4, which
provides a lower bound on the testing rate such that the epi-
demic switches from a spreading to a non-spreading state. To
evaluate the BEST policy, we predict its impact on the num-
ber of active intensive care unit (ICU) cases and the cumulative
number of deaths due to COVID-19 in France.
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Chapter 7. Design of Testing Policy for Epidemic Suppression

T esting for infected cases is one of the most important mechanisms to control an epi-
demic. It enables the isolation of the detected infected individuals, thereby limiting the
disease transmission to the susceptible population. However, despite the significance of
testing policies in epidemic control, the literature on this subject lacks a control-theoretic
perspective. In this chapter, we develop an epidemic model that incorporates the testing
rate as a control input. The proposed model differentiates the undetected infected from
the detected infected cases, who are assumed to be removed from the disease spreading
process in the population. We consider the COVID-19 case of France to estimate and vali-
date the model. Then, we propose a suppression strategy, the so-called best-effort strategy
for testing (BEST), which provides a lower bound on the testing rate such that the epi-
demic switches from a spreading to a non-spreading state. The BEST policy is evaluated
by predicting the impact on the number of active intensive care unit (ICU) cases and the
cumulative number of deaths due to COVID-19 in France.

7.1 Formulation of SIDUR Epidemic Model

We develop a five-compartment model with the purpose of evaluating and devising
a testing policy for epidemic suppression. We assume that testing allows for diagnosing
and isolating the infected people from the population to prevent the transmission of the
disease to the susceptible population. The acronym of the proposed model is SIDUR,
where the letters correspond to five compartments: susceptible (S), undiagnosed infected
(I), diagnosed infected (D), unidentified recovered (U), and identified removed (R). The
model is characterized by four parameters and one control input, which is the testing rate.

7.1.1 Model design

Consider a compartmental model SIDUR depicted in Figure 7.1. At any time t ∈ R≥0,
where t is measured in days, each compartment is characterized by a single state, which is
its population denoted as follows:

xS(t) Number of susceptible people

xI(t) Number of undiagnosed infected people

xD(t) Number of diagnosed infected people

xU(t) Number of unidentified recovered people

xR(t) Number of identified removed people.

The susceptible people are prone to the disease and can get infected when they come
in contact with the infected people. The undiagnosed infected people are those who are
undetected and can infect others, whereas the diagnosed infected people are those who
are detected positive with the disease and are isolated. Finally, the unidentified recovered
people are those who were infected and then recovered naturally without getting detected,
whereas the identified removed people are those who were infected and then recovered or
died after getting detected positive with the disease.

118



7.1. Formulation of SIDUR Epidemic Model

Assumption 7.1. We adopt the following assumptions:

(i) The population remains constant during the evolution of the epidemics, i.e.,

xS(t) + xI(t) + xD(t) + xU(t) + xR(t) = N

where N stands for the total population.

(ii) Only the undiagnosed infected population xI(t) is responsible for the disease trans-
mission to the susceptible population xS(t).

(iii) All the deaths from epidemic are identified and reported, and are included in the
removed population xR(t) along with the people who recover after being diagnosed.

(iv) The efficiency of the acquired immunity is sustainable enough. That is, the uniden-
tified recovered population xU(t) and the removed population xR(t) are not infected
again.

Measured compartments

Susceptible
Infection rate Undiagnosed

Infected

Testing rate

Diagnosed
Infected

Recovery rate Unidentified
recovered

Removal rate Identified
Removed

Figure 7.1: Block diagram of SIDUR model.

Based on the above assumptions, the model is given as

ẋS(t) = −β(t)xS(t)
xI(t)

N
(7.1a)

ẋI(t) = β(t)xS(t)
xI(t)

N
− u(t)

xI(t)

xT(t)
− γxI(t) (7.1b)

ẋD(t) = u(t)
xI(t)

xT(t)
− ρxD(t) (7.1c)

ẋU(t) = γxI(t) (7.1d)

ẋR(t) = ρxD(t) (7.1e)

where β(t) ≥ 0, γ ≥ 0, and ρ ≥ 0 are the infection, recovery, and removal rates, respectively,
u(t) is the testing rate,

xT(t) = xI(t) + (1− θ(t)) (xS(t) + xU(t))

= θ(t)xI(t) + (1− θ(t)) (N − xD(t)− xR(t))
(7.2)

is the testable population, and θ(t) ∈ [0, 1] is the testing specificity parameter.
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The recovery rate γ is the inverse of the average recovery time 1/γ after which an
undiagnosed infected person recovers, and the removal rate ρ is the inverse of the average
removal time 1/ρ after which a diagnosed infected person recovers or dies. The average
recovery time is expected to be shorter than the average removal time because the undi-
agnosed infected population that comprises the undetected asymptomatic cases and cases
with mild symptoms usually recover faster than the diagnosed population that comprises
mostly the cases with severe symptoms.

The infection rate β := β(t) is the product of the frequency of contacts among the
susceptible and infected populations and the probability of disease transmission after a
contact has been made. In fact the parameters β, γ, and ρ are related to the disease biology.
However, the value of β can also be partially impacted by a country’s government through
non-pharmaceutical interventions (NPI) such as social distancing, lockdown, confinement,
travel restrictions, and preventive policies (i.e., to maintain a certain distance from other
people, to wear a face mask in public spheres, to wash/sanitize hands more often, etc.).
The value of β is expected to be smaller when NPI’s are implemented in comparison to the
case when no NPI is implemented. Depending on the time intervals during which different
policies concerning NPIs are implemented, we consider the infection rate β to be piecewise
constant.

The testing specificity parameter θ := θ(t), unlike other parameters, is solely dependent
on the testing policy of the public health authority. Given that the testing rate is constant,
the value of θ will be larger when the tests are allocated efficiently through contact tracing
than the value of θ when the tests are performed randomly. However, there are other
factors that can also influence θ, for example, if only the people with severe symptoms
are tested, then the probability xI/xT of detecting an infected person from the testable
population is equal to one, i.e., the testing specificity parameter θ = 1. This is to indicate
that the larger value of θ doesn’t necessarily imply the efficiency of testing policy, rather
it signifies only the specificity of tests. Depending on the time intervals during which
different testing policies are implemented, we consider the testing specificity parameter θ
to be piecewise constant.

7.1.2 Control input and testable population

We consider the testing rate u(t) to be the control input of the model, which is the number
of tests performed per day. The testing rate allows to detect a proportion of the testable
population xT(t), which is a sample from the total population N , in order to diagnose the
infected people at time t. From (7.2), it is obvious that the infected population xI(t) ≤
xT(t) at any given time t. Thus, given the testing specificity parameter θ ∈ [0, 1], the
probability of detecting an infected person per test in a homogeneous population structure
is given by xI(t)/xT(t).

The testing specificity parameter θ allows for the adjustment of the testable population
to accommodate for the detection rate of tests. In most countries, at the beginning of an
epidemic outbreak, the number of available tests are limited. Thus, the available tests are
usually utilized to confirm the symptomatic infected cases or to diagnose certain people
such as medical care agents, politicians, athletes, etc. In such a case, the testable pop-
ulation is close to the infected population and the value of θ increases to approximately
one. Once the capacity of testing is increased, the size of the testable population is also
increased that can include, for example, contacts of diagnosed people, the whole popula-
tion of a city where a cluster is identified, travellers, etc. As a consequence, the value of θ
decreases.
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7.1.3 Outflows from the model compartments

The SIDUR model is described by the one-way transfer of population between compart-
ments, where an outflow from one compartment is the inflow to the other compartments.
It suffices, therefore, to describe only the outflows from the compartments for describing
the dynamics of the model.

Infection transmission In the beginning of the epidemic, most of the population is
in the susceptible compartment (S) with the exclusion of those who are initially infected
and/or diagnosed. Some of the susceptible people in S may get infected and leave this
compartment when they come in contact with an infected person. The rate of the outflow
from this compartment is according to the infection transmission rate, which depends on
the product of the number of susceptible and infected populations, and is given as

βxS(t)
xI(t)

N

where β is the infection rate. The term xI(t)/N is the proportion of undetected infected
population at any time t in a homogeneous population structure. Note that in light of
Assumption 7.1(ii), diagnosed population xD(t) does not participate in the infection trans-
mission because they are either quarantined and/or hospitalized, i.e., they are temporarily
isolated from the population. Finally, by Assumption 7.1(iv), there is no inflow to the
susceptible compartment.

Detection The outflow from the infected compartment (I) is either due to detection (i.e.,
transfer to the diagnosed compartment (D)) or recovery without detection (i.e., transfer to
the unidentified recovered compartment (U)). The first outflow is due to the testing rate
u(t). Since the probability of detecting an infected person from a testable population by a
single test is xI(t)/xT(t), therefore we have

u(t)
xI(t)

xT(t)

as the rate of detection of the infected population in I compartment.

Recovery The second outflow γxI(t) from the I compartment consists of those people
who recover naturally with a recovery rate γ without getting diagnosed, where 1/γ is the
average recovery period. The unidentified recovered compartment (U) accumulates the
infected people who recover naturally without being detected.

Removal The diagnosed compartment (D) admits u(t)xI(t)/xT(t) as an inflow, whereas
the outflow is ρxD(t) with ρ being the removal rate. That is, 1/ρ is the average time period
after which a typical diagnosed person either recovers or dies. The removed compartment
(R) accumulates the diagnosed people who die or recover with a removal rate ρ.

7.1.4 Output signals from the model

The data reported by the health authorities are chosen as the measured outputs of the
SIDUR model. They are five measurements, related directly to the states are as follows:

• Cumulative number of diagnosed people

y1(t) = xD(t) + xR(t) (7.3)
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• Cumulative number of removed people

y2(t) = xR(t) (7.4)

• Number of positively tested people (or positive test results) per day

y3(t) = u(t)
xI(t)

xT(t)
(7.5)

• Number of active Intensive Care Unit (ICU) cases (or the number of ICU beds
currently occupied by the diagnosed infected):

B(t) := y4(t) = g(A(t− ψ)) (7.6)

where A(t) = xI(t) + xD(t) is the number of active infected cases, ψ is the average
time period a typical ICU case takes from getting infected to being admitted to ICU,
and the function g is to be chosen to fit the data B(k) := y4(k).

• Cumulative number of deaths due to the epidemic (or extinct cases):

E(t) := y5(t) = h(I(t− φ)) (7.7)

where I(t) = N − xS(t) is the cumulative number of infected cases, φ is the average
time period a typical extinct case takes from getting infected to death, and the
function h is to be chosen to fit the data E(k) := y5(k).

The model outputs (7.3), (7.4), and (7.5) are fitted with the data outputs y1(t), y2(t),
and y3(t), respectively, in order to estimate the model parameters β, θ, γ, ρ in section 7.3
for the COVID-19 case of France. Note that these model outputs are related to each
other. Since the number of diagnosed infected people at any time t can be obtained as
xD(t) = y1(t) − y2(t), which is also known as the number of active diagnosed cases, we
obtain the following relation between y1(t) and y2(t) from (7.1e)

ẏ2(t) = ρ(y1(t)− y2(t)). (7.8)

On the other hand, the number of positive test results per day y3(t) is related to the
cumulative number of diagnosed cases y1(t) by the following relation

y3(t) = ẋD(t) + ẋR(t) = ẏ1(t). (7.9)

The cumulative number of diagnosed people y1(t) can be obtained by integrating the daily
number of positive test results as

y1(t)− y1(0) =

∫ t

0
y3(η)dη. (7.10)

These output relations (7.8), (7.9), (7.10) are used to infer the missing data from the
available data in section 7.2.

Second, the model outputs (7.6) and (7.7) depend on the functions g and h, which are
assumed to be polynomials that fit the available COVID-19 data of France on the number
of active ICU cases and the cumulative number of deaths, respectively, in section 7.3.
These model outputs will be used as performance outputs to evaluate the testing policy
proposed for epidemic suppression in section 7.4.
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7.1.5 Basic and effective reproduction numbers

An important quantity to assess the epidemic potential of a disease is the basic repro-
duction number R0, which is defined as the expected number of secondary infected cases
produced by a single infected person in a completely susceptible population [Hethcote2000].
If R0 > 1, then each generation of infected cases produces more secondary cases in the
next generation and the disease has a potential of becoming an epidemic. If R0 < 1,
then each generation of infected cases produces less secondary cases in the next generation
and the disease will eventually die out. It is worth noticing, however, that the definition
of R0 assumes that the people around a primary infected case are all susceptible. This
suggests that determining R0 is important only at the onset of an epidemic. However, in
the later stages, more people get infected and not all people around an infected person are
necessarily susceptible. As more people get infected, the conditions favoring the disease to
propagate change and the number of susceptible people that an infected person infects is
actually less than that what R0 predicts. Thus, a more suitable quantity during the later
stages of the epidemic is the effective reproduction number Rt, which takes into account
the proportion of susceptible people in the total population [Rothman2008].

For the SIDUR model, the effective reproduction number Rt is the ratio of the inflow
and the outflow of the undiagnosed infected compartment (I). In other words, Rt is the
ratio of the number of newly infected people and the number of newly diagnosed and
recovered people at time t. If Rt < 1, this means that more people are being diagnosed
and recovered than the people being infected at time t, which implies that xI(t) will
decrease. If Rt > 1, this means that more people are being infected than the people being
diagnosed and recovered at time t, which implies that xI(t) will increase. Notice that the
definition of the basic reproduction number R0 is same as Rt for t = 0.

To derive the expression of the effective reproduction number Rt, we consider the model
equation (7.1b), where the undiagnosed infected population xI(t) satisfies

ẋI(t) = βxS(t)
xI(t)

N
− u(t)

xI(t)

xT(t)
− γxI(t).

The positive rate (inflow) βxS(t)xI(t)/N tells how many new infections will be generated
in the next moment, and the negative rates (outflows) u(t)xI(t)/xT(t) and γxI(t) tell how
many infected people will be diagnosed or recovered in the next moment, respectively.
Therefore, the effective reproduction number is given by

Rt =
βxS(t)

xI(t)
N

u(t)xI(t)xT(t)
+ γxI(t)

=
β

u(t)
xT(t)

+ γ

xS(t)

N
. (7.11)

To derive the expression of the basic reproduction number R0, we consider the expres-
sion of Rt at t = 0, which corresponds to the onset of the epidemic. Furthermore, for t = 0,
one can assume few infected cases so that xS(0) ≈ N and xT(0) ≈ (1− θ)N . Under these
approximations, the basic reproduction number is given by

R0 =
β

u(0)
(1−θ)N + γ

. (7.12)

This expression can also be obtained by following the methodology of [Van den Driess-
che2008]. Notice that the basic reproduction number R0 depends on the initial testing
policy u(0). This indicates that it is possible to suppress the epidemic in the beginning
by having an intensive testing policy, which can be seen, for example, in the case of South
Korea [Oh2020]. In general, however, we have u(0) ≈ 0 that implies R0 ≈ β/γ, which is
same as the basic reproduction number of SIR epidemic model.
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7.2 Data for COVID-19 case of France

The data related to COVID-19 in France is collected from the French government’s
platform for publicly available data1 for the time period of January 24 to July 01, 2020. In
particular, we use datasets provided by the French Ministry of Social Affairs and Health
(Ministère des Solidarités et de la Santé (MSS)) and the French Public Health Agency
(Santé Publique France (SPF)). From MSS, we obtain the data about different categories
of people affected by COVID-19, i.e., diagnosed, hospitalized, recovered from hospitals,
and dead. From SPF, we obtain the data for the number of PCR tests performed and
positive test results obtained per day.

The data obtained from both sources is incomplete in several aspects. For instance, the
data for the number of recovered people does not record those who were not hospitalized
and recovered from their homes after being diagnosed. These people are not hospitalized
because of mild symptoms of the disease, but are quarantined in their homes for a certain
number of days. Only those who are hospitalized after being diagnosed are recorded as
recovered when they are discharged from the hospitals. On the other hand, the data for
COVID-19 PCR tests is also incomplete. To illustrate this, we consider three intervals
of time: (1) January 24 to March 09, 2020, (2) March 10 to May 12, 2020, and (3) May
13 to July 01, 2020. There is no data available for the tests during the first interval.
During the second interval, the testing data is collected only from the medical laboratories
and not from the hospitals. However, we have reliable data only during the third interval
which is collected both from the medical laboratories and the hospitals. Therefore, the
data obtained from the above sources can be considered as a raw data which needs to be
imputed. In what follows, we first present the raw data and then detail the procedure
for data imputation. The imputed data is obtained by making reasonable assumptions in
order to infer the missing data from the raw data.

7.2.1 Raw data

This subsection illustrates the data obtained from MSS and SPF without any modification.
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Figure 7.2: Cumulative number of diagnosed cases y1(k) from January 24 to July 01, 2020.
Source: MSS.

Cumulative number of diagnosed cases We denote the data for the cumulative
number of diagnosed cases by y1(k), which is illustrated in Figure 7.2 and corresponds to

1Open platform for French public data (data.gouv.fr)
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the model output y1(t) in (7.3). It is also known as the total “confirmed” cases. This is
a cumulative data for all the cases diagnosed with the disease through RT-PCR tests2.
Thus, it includes both the active cases (those who are either admitted to the hospitals
and/or quarantined) and the inactive cases (those who either recovered or died after being
diagnosed). That is, y1(k) corresponds to the sum of people in the diagnosed (D) and
removed (R) compartments of the SIDUR model (Figure 7.1) on a given day k, as given
in (7.3).

There is also an additional data for the diagnosed cases from French retirement homes
(EHPAD). However, the French government database3 and several other international
databases4 5 do not add the diagnosed cases from EHPAD to the cumulative number
of diagnosed (confirmed) cases. That is, the data for the cumulative number of diagnosed
cases is considered to be inclusive of the diagnosed cases from EHPAD. However, in all
the above databases, the data on cumulative number of deaths is collected separately from
both the hospitals and EHPAD.
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Figure 7.3: Total number of recovered cases who returned home after hospitalization from
January 24 to July 01, 2020. The number of active COVID-19 hospitalized cases H(k)
and ICU cases B(k) from March 17 to July 01, 2020. Source: MSS.

Number of active hospitalized and ICU cases The data on the number of active
hospitalized cases is denoted as H(k) and is illustrated in Figure 7.3 along with the number
of active ICU cases denoted as B(k). This data corresponds to the number of people who
are admitted to the hospitals and/or ICU on a given day. That is, it is not a cumulative
data. Moreover, it doesn’t include those who were diagnosed but not hospitalized. That
is, this data corresponds to a certain proportion of people in the diagnosed compartment
(D) of the SIDUR model. This data is available from March 17, 2020, onward.

Cumulative number of recovered cases from hospitals This data is also illustrated
in Figure 7.3. It corresponds to people who, after recovering from the disease, were dis-
charged from the hospitals. Obviously, prior to recovering, they were diagnosed with the
disease and hospitalized due to having severe symptoms.

2Santé Publique France
3Open platform for French public data (data.gouv.fr)
4European Centre for Disease Prevention and Control
5Worldometers.info
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Figure 7.4: Total number of deaths from COVID-19 reported (a) by hospitals from January
24 to July 01, 2020, and (b) by retirement homes (EHPAD) from April 01 to July 01, 2020.
Source: MSS.

Cumulative number of deaths As mentioned before, the data on the cumulative
number of diagnosed cases is considered to be inclusive of the diagnosed cases from the
French retirement homes (EHPAD). However, the case for data on the cumulative number
of deaths is different. Those who died at the hospitals and those who died in the retirement
homes (EHPAD) are considered to be distinct in the databases. Thus, the cumulative
number of deaths is the sum of both data, which are illustrated in Figure 7.4.

Number of tests and positive tests per day We have two types of data related to RT-
PCR tests for COVID-19. The first type of data is collected by SPF on the number of tests
performed and positive test results per day from March 10 to May 26, 2020. However, this
data is collected only from the central sampling laboratories: Eurofins Biomnis and Cerba.
Figure 7.5(a) (blue) illustrates the number of tests performed per day and Figure 7.5(b)
(blue) illustrates the number of positive test results per day.

The second type of data was made available after the deployment of a new information
screening system (SI-DEP) by the SPF. This data is available from May 13, 2020, onward.
It is collected from both the laboratories and the hospitals. However, the data reported by
SI-DEP is the number of ‘tested people’ per day instead of the number of ‘tests performed’
per day. SI-DEP guarantees that only one test is counted per person. In the case of, for
instance, multiple negative test results for a certain person, SI-DEP considers only the
first date on which the PCR test was performed. Later, if that person gets a positive test
result, then only this new result is reported in the data and the previous data is erased.
Figure 7.5(a) (red) illustrates the number of tested people per day and Figure 7.5(b) (red)
illustrates the number of positively tested people per day.

7.2.2 Imputed data

In the raw data, we only have the data for those who recover or die in the hospitals after
being diagnosed with the disease. However, the removed compartment of the SIDUR model
also comprises the diagnosed cases who were not hospitalized but were quarantined in their
homes. There is no data that records the recovery of these people. Moreover, the data on
PCR tests is also incomplete; there is no data from January 24 to March 09, 2020, and the
data from March 10 to May 12, 2020, doesn’t include the tests performed in the hospitals.
Therefore, in order to infer the missing data, we impute the raw data by making reasonable
assumptions.

126



7.2. Data for COVID-19 case of France

Mar Apr May Jun Jul
0

1

2

3

4

5

6
10

4

(a)

Mar Apr May Jun Jul
0

500

1000

1500

2000

2500

(b)

Figure 7.5: Data on the PCR tests: (a) The number of tests performed per day from
March 10 to May 26 and the number of tested people per day from May 13 to July 01; (b)
The number of positive test results per day from March 10 to May 26 and the number of
positively tested people per day from May 13 to July 01. Source: SPF.

Cumulative number of removed cases

From the data on the total number of recovered people from hospitals shown in Figure 7.3,
we see that 76,540 people have recovered from the hospitals as of July 01, 2020. If we
subtract this number and the total number of deaths (Figure 7.4), i.e., 29,860, from the total
number of diagnosed cases (Figure 7.2), i.e., 165,700, we obtain 165, 700−76, 540−29, 860 =
59, 300 people. Further subtracting the currently hospitalized cases (Figure 7.3), i.e., 8336
as of July 01, we obtain 59, 300 − 8336 = 50, 964 people, who have an unknown status.
These people were diagnosed but were not hospitalized; they were quarantined in their
homes, and it is not known whether they have recovered or are still infected. There is no
data that provides a correct answer for how many people among them have recovered and
how many of them are still infected. Therefore, using the relevant raw data, we infer the
cumulative number of removed cases y2(k) by estimating the number of diagnosed cases
who recovered from home.

We use the following notations for simplicity and brevity:
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Dh(k) Total number of diagnosed who are hospitalized

Dq(k) Total number of diagnosed who are quarantined at home

Rh(k) Total number of recovered or dead from a hospital

Rq(k) Total number of recovered from quarantine at home

where, by Assumption 7.1(iii), all deaths are reported and, hence, not included in Rq(k).
By definition, we have

y1(k) = Dh(k) +Dq(k)

y2(k) = Rh(k) +Rq(k)
(7.13)

where k is from January 24 to July 01, 2020. Note that y1(k) is illustrated in Figure 7.2
and

Dh(k) = Rh(k) +H(k),

where Rh(k) is the sum of the total number of recovered cases from hospitals (Figure 7.3)
and the total number of deaths (Figure 7.4), and H is the number of active hospital-
ized cases (Figure 7.3). Thus, we can compute the total diagnosed cases who were not
hospitalized as

Dq(k) = y1(k)−Dh(k).

Since there is no data for the diagnosed people who recovered from home, therefore
Rq(k) is unknown. Thus, we assume the following:

Rq(k)

Dq(k)
=
Rh(k)

Dh(k)
. (7.14)

That is, the ratio of the diagnosed cases who recovered in quarantine at homes to the total
diagnosed cases who were quarantined at homes is equal to the ratio of the diagnosed cases
who recovered or died at hospitals to the total diagnosed cases who were hospitalized. In
other words, we assume that the removal rate of people who were not hospitalized is equal
to the removal rate of people who were hospitalized. Thus, from (7.13) and (7.14), we
obtain

y2(k) = Rh(k)

(
1 +

Dq(k)

Dh(k)

)
=
Rh(k)

Dh(k)
y1(k).

which corresponds to the data on cumulative number of removed cases y2(t) defined in
(7.4).

Combining two types of testing data

From Figure 7.5, we see that the first type of testing data, which is available from March
10 to May 26, 2020, considers the number of tests performed and positive test results per
day. On the other hand, the second type of testing data, which is available from May 13,
2020, onward, considers the number of tested people and positively tested people per day.
However, no person is usually tested more than once in a single day. Therefore, we assume
that the number of tested people per day is same as the number of tests performed per day.
Similarly, the number of positively tested people per day is same as the number of positive
test results per day. Note that if a person is tested more than once but on different days,
then this assumption is not violated.

We consider three time intervals: (i) January 24–March 09, when the data on PCR
tests in France is not available; (ii) March 10–May 12, when the data is available but
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incomplete; (iii) May 13–July 01, when the complete data is available. Let u(k) and y3(k)
denote the number of tests performed and the number of positive test results per day,
respectively, for the entire interval January 24 to July 01, 2020. Let u′(k), u′′(k), u′′′(k)
and y′3(k), y′′3(k), y′′′3 (k) be the number of tests performed and the number of positive test
results obtained for the first, second, and third time intervals, respectively. Since the data
in the third interval is reliable, we do not make any imputations for u′′′(k) and y′′′3 (k). For
the other two intervals, we make reasonable assumptions to complete the data.

(i) January 24–March 09: This time interval corresponds to the beginning of the epi-
demic in France and the data for tests performed and positive test results per day
for this interval is u′(k) and y′3(k), respectively, which is not available and is inferred
from the other data. Our key observation is that only those people were tested during
this time interval who showed symptoms. Therefore, we assume that the number of
tests performed per day is approximately equal to the number of positive test results
obtained per day during January 24 and March 09. Moreover, the number of positive
test results obtained per day is equal to the number of diagnosed cases that day. Thus,
from the output relation (7.9), we have

u′(k) ≈ y′3(k)

and
y′3(k) = y1(k + 1)− y1(k)

where k = 0, 1, . . . , 46 are the days from January 24 to March 09.

(ii) March 10–May 12: In the second interval, we have the data on PCR tests that is
reported only by the laboratories and not by the hospitals. During this interval, we
compute the data as follows: u′′(k) is same as the data (Figure 7.5) and y′′3(k) =
y1(k + 1)− y1(k), where k = 47, . . . , 110 are the days from March 10 to May 12.

(iii) May 13–July 01: In this third interval, we have a reliable data u′′′(k) and y′′′3 (k) from
SPF as shown in Figure 7.5, where k = 111, . . . , 160 are the days from May 13 to
July 01.

Based on the above data imputations, we obtain the number of tests performed per
day

u(k) =


u′(k) if k ∈ {0, 1, . . . , 46}

u′′(k) if k ∈ {47, . . . , 110}

u′′′(k) if k ∈ {111, . . . , 160}

which corresponds to the control input u(t), and the number of positive tests obtained per
day

y3(k) =


y′3(k) if k ∈ {1, . . . , 46}

y′′3(k) if k ∈ {47, . . . , 110}

y′′′3 (k) if k ∈ {111, . . . , 160}

which corresponds to the model output y3(t) in (7.5), where k = 1, . . . , 160 are the days of
the complete time interval from January 24 to July 01, 2020.
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Figure 7.6: Input signal from the data.
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Figure 7.7: Output signals from the data.

7.2.3 Input and output signals from the data

For k = 0, 1, 2, . . . , 160, we define a continuous-time input signal from the data as

u(t) = u(k), for btc ≤ k < dte

which is illustrated in Figure 7.6. We denote by yi(t), for i = 1, 2, 3, the outputs obtained
from the data. That is, the output signals from the data and the model are related as
follows

y1(t) = y1(t) + w1(t)

y2(t) = y2(t) + w2(t)

y3(t) = y3(t) + w3(t)

where wi(k), for i = 1, 2, 3, represents the measurement noise. The outputs y1(t), y2(t),
and y3(t) correspond to the cumulative number of diagnosed cases, the cumulative number
of removed cases, and the number of positive test results per day, respectively. Similar to
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the input u(t), we define continuous-time output signals from the data as
y1(t) = y1(k), for btc ≤ k < dte

y2(t) = y2(k), for btc ≤ k < dte

y3(t) = y3(k), for btc ≤ k < dte

which are illustrated in Figure 7.7.

7.3 Estimation of the Model Parameters

In this section, we validate the SIDUR model by estimating the model parameters ρ,
β, θ, and γ for the COVID-19 case of France.

7.3.1 Estimation of the removal rate

The removal rate ρ can be directly estimated from the data outputs y1(k) and y2(k).
Consider a daily sampling of the model equation (7.1e), which leads to

∆xR(k) ≈ ρxD(k)

where ∆ stands for the forward difference operator, i.e., ∆xR(k) = xR(k + 1) − xR(k) for
k ∈ N. Therefore, from the relation between y1(t) and y2(t) in (7.8), we obtain

∆y2(k) = ρ y12(k) + e(k) (7.15)

where y12(k) = y1(k)− y2(k) and e(k) is the error term due to measurement noise. Then,
the problem of estimating ρ can be formulated as follows: Find ρ∗ such that

ρ∗ = arg min
ρ∈[0,1]

τ∑
k=1

‖∆y2(k)− ρ y12(k)‖2. (7.16)

The solution of this problem is obtained through least-square estimation [Ljung1999, Chap-
ter 7].

7.3.2 Estimation of the infection rate, the testing specificity parameter,
and the recovery rate

We formulate a problem of fitting the model outputs y1(t), y2(t), y3(t) to the data outputs
y1(k), y2(k), y3(k), where k = 0, 2, . . . , 160 represents the days from January 24 to July 01.
The model fitting is done by optimizing the parameters β, θ, γ for the time interval [0, 160]
under the assumption that γ is constant whereas β and θ are piecewise constants.

To limit the rate of spread of COVID-19, the French government announced to place a
lockdown all over France from March 17 to May 10, 2020, which included restricted human
mobility, strict social distancing measures, and closure of schools, offices, and marketplaces.
However, the essential services and public establishments were authorized to remain open
under strict preventive measures. People were allowed to leave their homes with face
masks only for necessary groceries, brief exercise within a certain radius of their homes,
or for urgent medical reasons. Such an intervention from the public authority is necessary
to mitigate the rate of spread of the disease and to reduce the value of infection rate
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β. Therefore, in relation to the case of France, we divide the time into three intervals:
(i) Before lockdown (January 24 to March 16), i.e., k = 0, 1, . . . , 53, (ii) During lockdown
(March 17 to May 10), i.e., k = 54, . . . , 108, and (iii) After lockdown (May 11 to July 01),
i.e., k = 109, . . . , 160. We consider a different value of the infection rate β during each of
these intervals, i.e.,

β(k) =


β1, for k ∈ {0, 1, . . . , 53}

β2, for k ∈ {54, . . . , 108}

β3, for k ∈ {109, . . . , 160}

where β1, β2, β3 are non-negative real numbers.
For the testing specificity parameter θ, on the other hand, we divide the time into two

intervals: (i) January 24 to May 10, i.e., k = 0, 1, . . . , 108, and (ii) May 11 to July 01,
i.e., k = 109, . . . , 160, where May 11 corresponds to the change in testing policy in France
(see [Hale2020b] and the website of Our-World-in-Data6). Thus, we have

θ(k) =

 θ1, for k ∈ {0, 1, . . . , 108}

θ2, for k ∈ {109, . . . , 160}

where θ1 and θ2 are real numbers in the interval [0, 1].
Let p = [ β1 β2 β3 θ1 θ2 γ ]ᵀ be the parameter vector. Then, the goal is to find

p∗ such that
p∗ = arg min

p
J (p) (7.17)

where the cost function is given by

J (p) =

160∑
k=0

[
(y1(k,p)− y1(k))2 + (y2(k,p)− y2(k))2 + (y3(k,p)− y3(k))2

]
(7.18)

with the model outputs yi, i = 1, 2, 3, depending on the parameter vector p.
To solve this problem, one can also pose it as a least-square estimation, as we did for the

removal rate ρ, by defining relations between the data outputs y1(k), y2(k), y3(k). However,
such relations include the difference operator ∆ applied twice to the data outputs, which
is usually not recommended when the data is noisy because it amplifies the measurement
noise. Moreover, the gradient-based estimation algorithms [Nelles2001, Chapter 4] are also
not suitable due to the difficulty of computing the gradient of the cost function J (p) online
with respect to the parameter vector p. This is because the model outputs y1(t), y2(t), y3(t)
do not depend directly on the parameters but through the solution trajectories of the
SIDUR model. For simplicity, therefore, we choose the particle swarm optimization (PSO)
[Kennedy1995], which is a ‘derivative-free’ algorithm, to estimate the parameter vector p.

Particle swarm optimization algorithm

We briefly describe the particle swarm optimization (PSO) algorithm, [Kennedy1995],
which considers a foraging swarm of n particles who collectively search for an optimal
solution of (7.17) in the parameter space. At time step h = 0, 1, 2, . . . , each particle i
visits a position p̂ih by moving with velocity vih. Initially, when h = 0, the positions p̂i0, for
all i ∈ {1, . . . , n}, are chosen randomly in the parameter space and the velocities vi0 = 0.
Each particle i stores its personal best pair (p̂i∗h , J

i∗
h ) and the social best pair (s∗h, J

s∗
h )

6https://ourworldindata.org/grapher/covid-19-testing-policy
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in memory, where J i∗h = J (p̂i∗h ) and Js∗h = J (s∗h) are the costs (7.18) of personal best
position p̂i∗h and social best position s∗h = arg minp̂i∗h ,i∈{1,...,n}

J (p̂i∗h ), respectively. Notice
that Js∗h ≤ J i∗h for all i ∈ {1, . . . , n}. The personal best pair of a particle corresponds to
the best position in the parameter space it has visited so far. The social best pair, on the
other hand, corresponds to the best position in the parameter space that anyone in the
swarm has visited so far.

At every time step, each particle updates its velocity, position, its personal best pair,
and the social best pair. The velocity and position are updated as follows:

vih+1 = wvih + c1rh,1(p̂i∗h − p̂ih) + c2rh,2(s∗h − p̂ih)

p̂ih+1 = p̂ih + vih+1

where w is the inertia weight, c1, c2 are the acceleration coefficients, and rh,1, rh,2 are
uniformly distributed random numbers in [0, 1] generated at each time step h. There are
many ways of choosing these parameters [Clerc2002,Poli2007,Zhan2009].

Each particle i computes the cost J ih+1 = J (p̂ih+1) at its current position and updates
its personal best pair as

(p̂i∗h+1, J
i∗
h+1) =


(p̂ih+1, J

i
h+1), if J ih+1 ≤ J i∗h

(p̂i∗h , J
i∗
h ), otherwise.

Each particle i then communicates its personal best pair with all the other particles and
each of them finds the social best pair for time h+ 1 as

(sh+1, J
s
h+1) = (p̂bh+1, J

b
h+1)

where b = arg minj∈{1,...,n} J
j
h+1. Finally, the social best pair is updated as

(s∗h+1, J
s∗
h+1) =


(sh+1, J

s
h+1), if Jsh+1 ≤ Js∗h

(s∗h, J
s∗
h ), otherwise.

7.3.3 Estimated parameter values

Infection rate β1 = 0.3708 β2 = 0.0707 β3 = 0.3717

Testing specificity θ1 = 0.9948 θ2 = 0.9967

Recovery rate γ = 0.1589

Removal rate ρ = 0.0499

Table 7.1: Estimated parameters of SIDUR model for the COVID-19 case of France.

The estimated parameter values obtained by solving (7.16) and (7.17) are provided in
Table 7.1. The estimated recovery rate γ and removal rate ρ show that an undiagnosed
infected person recovers on average in about 1/γ ≈ 6.3 days and a diagnosed person
recovers or dies on average in about 1/ρ ≈ 20 days. The testing specificity parameter
changes slightly from θ1 = 0.9948 to θ2 = 0.9967, which can have significant impact on the
positive test results because it multiplies with the sum of the susceptible and unidentified
recovered population in (7.2) that is in the order of 107 in the case of population of France.
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The infection rate β changes its value twice. First, it drops from β1 = 0.3708 to
β2 = 0.0707 when the lockdown is implemented in France on March 17, which significantly
decreased the rate of the epidemic spread. Then, it rises from β2 = 0.0707 to β3 = 0.3717
when the lockdown is lifted on May 10. Many restrictions like social distancing and wearing
of face masks were still in place after May 10 in order to prevent the spread of COVID-19 in
France. However, the increase in the value of β can be explained by the summer vacations
when people were allowed to travel everywhere across France and Europe7. This made the
places with tourist attractions very crowded and resulted in a higher infection rate.

7.3.4 Model validation

Using the estimated values of the model parameters in Table 7.1, we run the model from
January 24 to July 01, 2020. The model fits the output signals from data as shown in
Figure 7.8.

The basic reproduction number R0 at the outbreak of the COVID-19 epidemic in France
is computed using (7.12) and the average value of effective reproduction number Rt during
the three phases (before, during, and after lockdown) are computed using (7.11). For the
‘after lockdown’ phase, we chose July 01, 2020, to compute Rt because it is the date up
to which our data is considered. These computed values are shown in Table 7.2 with a
comparison to the ones reported by the government8 9.

Epidemic phases Computed from model Reported by French government

Outbreak R0 = 2.33 R0 = 2.7

Before lockdown Rt = 2.3 Rt = 2.7

During lockdown Rt = 0.33 Rt = 0.7

After lockdown Rt = 1 Rt = 1

Table 7.2: The basic reproduction number R0 at the outbreak and the values of the effective
reproduction number Rt at the end of each phase of the COVID-19 epidemic in France.

The change in the value of Rt also influences the evolution of diagnosed population
xD(t). This is because larger value of Rt results in a larger infected population xI(t)
and smaller value of Rt results in a smaller infected population xI(t), which respectively
increases and decreases the probability of detecting an infected person xI(t)/xT(t) by a
single test. Keeping the number of tests performed per day same, the larger probability of
detection xI(t)/xT(t) results in a larger diagnosed population xD(t).

In Table 7.2, we see that the placement and lifting of lockdown on March 17 and May 11,
respectively, had a significant impact on the value of Rt. Such an effect on Rt impacted
the evolution of the diagnosed population xD(t) = y1(t) − y2(t), which can be interpreted
as the number of active confirmed cases and is illustrated in Figure 7.9. The placement of
lockdown reduced the value of Rt and resulted in less number of active confirmed cases as
compared to the scenario in Figure 7.9 where the lockdown was not placed on March 17.
In this scenario, as shown in Figure 7.9, the number of active confirmed cases would have
increased to a point that could have challenged the available medical facilities such as
hospital beds, ventilators, and ICUs. On the other hand, the lifting of lockdown increased

7Sortir à Paris article “Coronavirus: vacances d’été partout en France et en Europe” published on May
28, 2020

8Santé Publique France: Epidemiological update of COVID-19, September 2020
9Open platform for French public data (data.gouv.fr)
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Figure 7.8: Model validation.
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Figure 7.9: The comparison between the number of active diagnosed cases in the actual
scenario vs. two scenarios: if the lockdown was not placed on March 17 and if the lockdown
was not lifted on May 11.

the value of Rt and resulted in more number of active confirmed cases as compared to the
scenario where the lockdown was not lifted on May 11.

7.3.5 Number of active ICU patients and deaths

The number of active ICU patients B(t) is a function of the number of active infected people
A(t). Since an infected person starts to show symptoms after the average incubation period
of approximately 5 days, [Lauer2020], and a person takes on average 12 days from being
diagnosed to being addmitted to ICU, [Zhou2020], we assume ψ = 5 + 12 = 17 days to
be the average time delay from getting infected to being admitted to ICU for a typical
COVID-19 critically ill case. Thus, we model the number of active ICU patients B(t) as a
function of A(t− ψ), which is approximated by:

B(t) = b1A(t− ψ) + b2
√
A(t− ψ) (7.19)

where b1 and b2 are the parameters given in Table 7.3, which are determined via the least-
square solution to fit (7.19) to the data on the number of ICU patients. This is illustrated
in Figure 7.10.

Parameters of B(t) b1 = −0.54× 104 b2 = 1.25× 104

Parameters of E(t)

e1 = 4.14× 104 e2 = 7.92× 105

e3 = −1.27× 107 e4 = 9.04× 107

e5 = −3.63× 108 e6 = 8.81× 108

e7 = −1.32× 109 e8 = 1.19× 109

e9 = −5.93× 108 e10 = 1.25× 108

Table 7.3: Estimated parameters b1 and b2 in (7.19) and ei, for i = 1, . . . , 10, in (7.20).

Similar to the case of the number of active ICU patients, a typical non-surviving case has
an average incubation period of 5 days and, in addition to that, an average removal period
of ρ−1 ≈ 20 days, where ρ is the removal rate, Table 7.1. Thus, assuming φ = 5+ρ−1 = 25
days to be the average time delay from getting infected to death of a typical non-surviving
COVID-19 case, we model the number of deaths E(t) as a function of I(t − φ), which is
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Figure 7.10: Number of active ICU patients B(t) with respect to the number of active
infected cases A(t).
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Figure 7.11: Model fit of the data on the number of active COVID-19 ICU cases B(t) in
France using the relation (7.19).
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approximated by the following polynomial:

E(t) =

10∑
i=1

eiI
i(t− φ) (7.20)

where ei, for i = 1, . . . , 10, are the parameters given in Table 7.3, which are determined
via the least-square solution to fit (7.20) to the data on the number of deaths. This is
illustrated in Figure 7.12.

Using the relations (7.19) and (7.20), we illustrate the model fit of the number of active
ICU cases and the cumulative number of deaths with the data in Figure 7.11 and 7.13.
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Figure 7.12: Cumulative number of deaths E(t) with respect to the cumulative number of
infected cases I(t).
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Figure 7.13: Model fit of the data on the number of COVID-19 deaths E(t) in France using
the relation (7.20).

7.4 Best-Effort Strategy for Testing

In this section, we design a testing policy for epidemic suppression and use the SIDUR
model validated with the COVID-19 data of France to evaluate the testing policy. The
testing policy is called Best-Effort Strategy for Testing (BEST), which gives the minimum
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number of tests needed to be performed per day in order to stop the epidemic from growing.
In other words, if the BEST is applied, then the number of new infections stop to grow
with respect to time.

7.4.1 Definition and computation of BEST policy

Assume that a country can manufacture or buy tests continuously during the time of the
epidemic, and there is no limitation on the total stockpile of tests during the whole epidemic
period. Based on this, we provide a testing policy recommendation on the daily testing
capacity starting from a certain time t∗ in order to change the course of the epidemic in
a sense that is defined below. For simplicity, we further assume that the number of tests
performed per day is considered to be the daily testing capacity c(t). In other words, the
daily testing capacity is utilized completely each day, i.e., u(t) = c(t).

We say that, at time t, an epidemic is spreading if the number of undiagnosed infected
population xI(t) is increasing, i.e., the effective reproduction number Rt > 1. On the other
hand, an epidemic is non-spreading if xI(t) is not increasing, i.e., the effective reproduction
number Rt ≤ 1.

Definition 7.1 (BEST). The best effort strategy for testing (BEST) at a given time
t∗ is the minimum number of tests to be performed per day from time t∗ onward such that
the epidemic switches from spreading to non-spreading at t∗.

In other words, the BEST policy provides the smallest lower bound on the testing rate
u(t) sufficient to change at given time t∗ the course of the epidemic from spreading to non-
spreading. Notice that the BEST policy is meaningful only for time t∗ when the epidemic
is spreading. If the epidemic is already non-spreading, the BEST policy is equal to 0.

Before presenting the BEST policy computation, we first establish the decreasing prop-
erty of the testable population xT(t).

Lemma 7.1. The testable population xT(t) decreases on any interval on which xI(t)
is decreasing and θ(t) is non-decreasing.

Proof. Consider an interval (t, t′), t < t′, on which xI is decreasing while θ is non-
decreasing. From (7.2), we have

xT(t) = θ(t)(xI(t) + xD(t) + xR(t)−N) + (N − xD(t)− xR(t))
≥ θ(t′)(xI(t) + xD(t) + xR(t)−N) + (N − xD(t)− xR(t))
= θ(t′)xI(t) + (1− θ(t′))(N − xD(t)− xR(t)) (7.21)

because xI(t) + xD(t) + xR(t) − N < 0 and θ(t) is non-negative and non-decreasing by
assumption. Since xI is supposed to be decreasing, therefore

θ(t′)xI(t) ≥ θ(t′)xI(t′). (7.22)

On the other hand
Ṅ − ẋD − ẋR = −uxI

xT
< 0

meaning that N − xD − xR is a decreasing function. As 1− θ(t′) ≥ 0, one gets

(1− θ(t′))(N − xD(t)− xR(t)) ≥ (1− θ(t′))(N − xD(t′)− xR(t′)). (7.23)

Adding the two inequalities (7.22) and (7.23), one deduces from (7.21) that xT(t) ≥ xT(t′)
whenever xI is decreasing on (t, t′). A tighter examination shows that, as both expressions
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θ(t′) and 1− θ(t′) cannot be zero altogether, at least one of the two inequalities (7.22) and
(7.23) is a strict inequality in (t, t′), which implies xT(t) > xT(t

′).

Define a function

c∗(t) = xT(t)

∣∣∣∣β(t)

N
xS(t)− γ

∣∣∣∣
+

(7.24)

where, by definition, for any scalar z, |z|+ = z if z > 0 and |z|+ = 0 otherwise.

Proposition 7.2. Assume that the infection rate β is non-increasing while the testing
specificity parameter θ is non-decreasing on a time interval [t∗, t1), for some t∗ < t1. Then,
the best effort strategy for testing (BEST) at time t∗ is given by

u(t) = c∗(t∗) = xT(t
∗)

∣∣∣∣β(t∗)

N
xS(t

∗)− γ
∣∣∣∣
+

, ∀t ∈ [t∗, t1). (7.25)

Proof. In order to prove that c∗(t∗) for t ∈ [t∗, t1) is the BEST policy at t∗, we show the
following:

(i) If u(t) > c∗(t) (resp., u(t) ≥ c∗(t)) for any t ∈ [t∗, t1), then xI is decreasing (resp.,
non-increasing) on [t∗, t1).

(ii) If u(t) > c∗(t∗) (resp., u(t) ≥ c∗(t∗)) for any t ∈ [t∗, t1), then xI is decreasing (resp.,
non-increasing) on [t∗, t1).

Assume that u(t) > c∗(t) on [t∗, t1). Then, Φ(t) := β(t)xS(t)N − u(t)
xT(t)

− γ < 0 which
implies that xI is decreasing since ẋI(t) = Φ(t)xI(t) almost everywhere. If only the weaker
assumption u(t) ≥ c∗(t) on [t∗, t1) is fulfilled, then, by using the continuity of the solutions
of ODE with respect to perturbations of the right-hand side, one gets that xI is non-
increasing.

Assume now that u(t) > c∗(t∗) on [t∗, t1), where c∗(t∗) is constant. Then, by continuity,
u(t) > c∗(t) on a certain interval [t∗, t2), for some t2 ∈ (t∗, t1]. As a consequence of the
result (i) shown previously, xI decreases on [t∗, t2). Moreover, assume that t2 is the maximal
point in (t∗, t1] having this property. In order to show that t2 = t1, it is sufficient to show
that u(t2) > c∗(t2), otherwise one may consider a larger value for t2 which will lead to a
contradiction with the fact that it is maximal. Since xI decreases on [t∗, t2) and θ is non
decreasing, from Lemma 7.1, we can conclude that xT also decreases on this interval. On
the other hand, since xS is always decreasing and β is non increasing, one can conclude
that c∗(t) also decreases on [t∗, t2). This is obtained by upper bounding c∗(t). Thus, one
has c∗(t∗) > c∗(t), which implies that that u(t2) > c∗(t2). Therefore, as t2 = t1, we have
established that xI decreases on the whole interval [t∗, t1). For the case where u(t) ≥ c∗(t∗),
we can use the same argument of continuity of the trajectories.

From the previous results, one deduces that the BEST is given by c∗(t∗) and the testing
rate u(t) ≥ c∗(t∗) for t ∈ [t∗, t1). If u(t) < c∗(t∗), for t ∈ [t∗, t1), then one can show easily
that the epidemic goes on spreading in the interval [t∗, t1). Hence, u(t) = c∗(t∗) is the
BEST policy at t∗.

Proposition 7.2 states that the peak of xI(t) is uniquely determined by the BEST policy
c∗(t∗), where the peak is achieved at time t∗. Therefore, Algorithm 10 can be used to set
the peak time t∗ once parameters β, γ, and θ are learned from the data.
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Algorithm 10 Computation of the BEST policy at time t∗.

1. Inputs: N , β, γ, θ, t∗, xS(t∗) and xT(t∗).

2. Compute the BEST policy c∗(t∗) using (7.24).

3. Set u(t) = c∗(t∗), for all t ≥ t∗.

4. Return to step 2 if β increases or θ decreases.

Remark 7.1. Requiring that β must not increase and θ must not decrease in the interval
(t∗, t1) for some t1 > t∗ is necessary for the BEST policy. It is thus important to keep the
external conditions that determine the values of β and θ either constant or such that β
decreases (e.g., through the implementation of lockdown) and/or θ increases (e.g., through
efficient contact tracing).

Remark 7.2. The case where β decreases and/or θ increases at some time t1 > t∗ has
the effect of speeding up the suppression of the epidemic under BEST policy.

Remark 7.3. From (7.1b), we can note that if xS(t)/N < γ/β, then the epidemic nat-
urally decreases. In this case, doing no testing u(t) = 0 is the BEST policy, which, by
definition, gives a minimum number of tests to be performed in order to stop the growth
of the infected population xI. However, if the testing is resumed in this case, i.e., u(t) > 0,
it will further speed up the decrease of the infected population.

7.4.2 Evaluation of the BEST policy

Given the COVID-19 data of France, we first compute c∗(t∗) for different values of t∗ from
January 24 to March 13. Figure 7.14 shows the number of tests per day required by the
BEST policy if it is implemented on day k and the corresponding value of peak of infected
cases xI(k∗). One can note that the later the BEST policy is applied the higher is the
required number of tests. An exponential increase can be observed from February 28 which
corresponds to an acceleration of the infection spread.
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Figure 7.14: Number of tests per day required by the BEST policy (left y-axis, green) vs.
peak of infection (right y-axis, red, in logscale) for an implementation day t∗.

Now, we evaluate the BEST policy by considering a scenario where BEST is imple-
mented from March 01, 2020, onward. Figure 7.15 depicts the number of active cases
when u(t) is the actual testing scenario (see Figure 7.6) and when u(t) is given by the
BEST policy (7.25). For the evaluation, we use u(t) as given by the recorded data on
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Figure 7.15: Predicted number of infected cases xI(t): actual testing scenario vs. BEST

the testing rate until March 01 and then use constant u(t) = c∗(t∗) given by (7.25) from
March 01 onward. In the first case, the peak of the infected population xI(t), which are
the active undiagnosed cases, is about 6 million. In the second case, the peak of infected
population in this case is 363, 169. The required number of tests per day to be performed
for the implementation of BEST on March 01 is c∗ ≈ 147, 000.

The impact in terms of ICU occupation and number of deaths is now evaluated using
the equations (7.19) and (7.20) respectively. The results are illustrated in Figure 7.16 and
7.17. We observe that the peak of the number of active ICU patients could have been
reduced by 34.71% and the number of deaths could have been reduced by 74.45% if the
BEST policy was applied from March 01, 2020.

Feb Mar Apr May Jun Jul
0

2000

4000

6000

8000

10000

Figure 7.16: The prediction of the number of active ICU cases B(t): actual scenario vs.
BEST policy.

7.5 Concluding Remarks

We proposed a SIDUR model for the control of epidemics through testing rate. Testing
enables the government to diagnose and isolate the infected people from the susceptible
population. We estimated and validated the model for the COVID-19 case of France data.
We proposed a best effort strategy for testing (BEST) for epidemic suppression, which

142



7.5. Concluding Remarks

Feb Mar Apr May Jun Jul
0

0.5

1

1.5

2

2.5

3

3.5
10

4

Figure 7.17: The prediction of the cumulative number of deaths E(t): actual scenario vs.
BEST policy.

provides the minimum number of tests to be performed from a certain day onward in order
to make the increasing infected population non-increasing immediately. That is, it changes
the course of epidemic from spreading to non-spreading.

For the COVID-19 case, the control input in SIDUR model corresponds to the number
of RT-PCR tests performed per day. However, another type of test, a serology test, which
is not considered in the current model because of the unavailability of its data, is also very
important. A serology test determines the relevant antibodies in a subject’s serum in order
to detect whether he/she was infected in the past. By performing serology tests on the
testable population, one can detect the unidentified recovered population and transfer them
in the identified removed compartment of the model. This reduces the size of the testable
population, which in turn increases the testing specificity of RT-PCR tests. In other words,
the serology tests complement the RT-PCR tests [de Walque2020,Winter2020]. Therefore,
as a future prospect, it will be interesting to consider two control inputs corresponding to
both types of test in the SIDUR model.

The model is estimated and validated by fitting the model outputs with the available
data of France. This allows us to predict the populations in the unmeasured compart-
ments of the model. However, there is no certainty whether these predicted populations
correspond to the reality because of the absence of feedback correction. Therefore, another
future prospect is to design an observer for the SIDUR model that estimates the true states
of the model.

The BEST policy is easy to compute and implement, however, it is static. Thus, its
influence on the control of epidemic is limited. In future, it will be interesting to solve
a finite/infinite-horizon optimal control problem to minimize the peak and/or cumulative
number of the infected population by a dynamic control input.
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8
Control of Urban Human Mobility for Epidemic

Mitigation

This chapter develops a model of human mobility between ori-
gins (residential areas) and destinations (business parks, indus-
trial areas, schools, markets, etc.) in an urban environment in
section 8.1. The SIR epidemic spread process is incorporated
into the mobility model in section 8.2. Then, after defining the
economic activity of the population and the active infected cases
in the city in section 8.3, we formulate and solve the optimal
capacity control and the optimal schedule control problems in
section 8.4 that maximize the economic activity while keeping
the number of active infected cases bounded for epidemic miti-
gation.
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Chapter 8. Control of Urban Human Mobility for Epidemic Mitigation

C ontrolling human mobility during an epidemic is a fundamental issue faced by policy-
makers. Such control can only be done optimally if human mobility is adequately modeled
at the scale of a city or metropolis. This chapter, first, develops a model of human mo-
bility that captures the daily patterns of mobility in an urban environment through time-
dependent gating functions, which are controlled by the destination schedules and mobility
windows. The process of epidemic spread is incorporated at each location that depends on
the number of susceptible and infected people present at that location. Then, two optimal
control policies are proposed to maximize the economic activity at the destinations while
mitigating the epidemic. Precisely, operating capacities and time schedules of destinations
are controlled to maximize the economic activity under the constraint that the number of
active infected cases remains bounded.

8.1 Formulation of the Urban Human Mobility Model

Consider human mobility in an urban environment between locations of two types:
origins and destinations. The origins correspond to locations where people reside—for
example, residential areas, neighborhoods, and towns. The destinations, on the other
hand, correspond to locations that people visit daily for work, education, shopping, or
leisure—for example, industrial zones, business parks, schools, markets, cinemas, etc. We
represent this mobility process by a flow network describing the transfer of people between
different locations. The main idea of the urban human mobility model is that a certain
number of people go from each origin to the destinations every day during specified time
intervals and then return later the same day.

The flow of people from one location to another depends on the demand and supply of
locations, which depend on the destination schedules, mobility windows, and the number of
people in each location. The destination schedules correspond to the daily business hours
of destinations during which they are open and people can visit them, whereas the mobility
windows between two locations correspond to specified time intervals during which there
is mobility of people between those locations. We consider that each destination has an
operating capacity that corresponds to the maximum number of people that can visit the
destination at any time. The operating capacity of a destination is less than or equal to
its nominal capacity and depends on the government’s policy during an epidemic in order
to reduce the maximum number of people that can gather in the destinations at any time.
Therefore, the flow to a certain location stops when the number of people in that location
reaches its operating capacity.

8.1.1 Network representation and main assumptions

Let the index set of m origins be

Vo = {1, . . . ,m}

and the index set of n destinations be

Vd = {m+ 1, . . . ,m+ n}.
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Figure 8.1: An example of an urban human mobility network with two origins and three
destinations.

Denote the total population of origin i ∈ Vo by Pi, which is the number of people who
reside in i, and the nominal capacity of destination j ∈ Vd by Cj , which is the maximum
number of people who can visit j nominally at one time. By nominal we mean the times
when there is no epidemic and there is no government policy that restricts the maximum
number of people who can gather in any destination. Note that the total population of the
city is given by

P =
∑
i∈Vo

Pi.

The network of urban human mobility is represented by a bi-directed, bipartite graph
G = (Vo,Vd, E), where E is the set of bi-directed edges—i.e., for every i ∈ Vo and j ∈ Vd,
if (i, j) ∈ E then (j, i) ∈ E . An example of a mobility network is illustrated in Figure 8.1.

Assumption 8.1. We adopt the following assumptions:

(i) The total population of the city remains constant.

(ii) The mobility occurs only between pairs of origins and destinations, and not among
a pair of different origins or a pair of different destinations.

(iii) The number of people who visit destination j from origin i during a day is equal to
the number of people who return to i from j on the same day.

(iv) The mobility pattern between each pair of origins and destinations is periodic and
repeats every day, i.e., the period Tperiod = 24 hours. In particular, we ignore mobility
patterns of the weekends or holidays that may be different than the normal days.

Note that Assumption 8.1(iv) is a simplifying assumption, which can be relaxed without
loss of generality by considering Tperiod to be a week, a month, etc.
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8.1.2 Destination categories

Suppose the destinations are divided into p ≤ n categories, which correspond to a type
of destination such as workplace, school, market, etc. The categories of destinations are
represented by a partition

D = {D1, . . . ,Dp}

where the destinations of category k are grouped in a set Dk, for k = 1, . . . , p, and each
destination belongs to only one category, i.e., for every k, l ∈ {1, . . . , p} and l 6= k,

p⋃
k=1

Dk = Vd and Dk ∩ Dl = ∅.

In the example illustrated in Figure 8.1, we have p = n, i.e., three categories and three
destinations, because each destination is of a different category. However, it is possible that
a mobility network may have multiple destinations of the same category. For instance, a
slight modification of the example of Figure 8.1, say with two working places and three
schools, could illustrate this immediately.

8.1.3 Operating capacities of destinations

Let uk(t) ∈ [0, 1] be the capacity control input for destinations of category k, for k =
1, . . . , p, which determines the allowed operating capacity of Dk in terms of the proportion
of nominal capacity at time t in the event of an epidemic. In other words, it can be
considered as the government’s policy at time t that limits the operating capacities in
destinations of category k in order to mitigate the epidemic spread, where

Operating capacity = Cjuk(t), for j ∈ Dk.

We consider uk(t) to be piece-wise constant—i.e.,

uk(t) =



µ1
k if t ∈ [0, Tu)

µ2
k if t ∈ [Tu, 2Tu)
...

...

µqk if t ∈ [(q − 1)Tu, qTu)

(8.1)

with µhk ∈ [0, 1] constant for every h ∈ {1, . . . , q} and T = qTu the total time horizon
considered by a policymaker. The policy horizon Tu is a multiple of Tperiod and corresponds
to the time after which the policy on operating capacities is announced periodically. It can
be chosen by the policymaker from at least a week to several months because changing the
policy on shorter time intervals may not be practical in terms of implementation.

8.1.4 Destination schedule and mobility window

The destination schedule of j ∈ Vd

Sj = [aj , bj), 0 ≤ aj < bj ≤ 24

is the daily time interval during which j is open, where aj and bj are the nominal opening
and closing hours of j, respectively. The origins, on the other hand, are open throughout
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the day, i.e., for every i ∈ Vo, Si = [0, 24). Then, the supply gating function (SGF) for
j ∈ Vo ∪ Vd

σj(t) =

 1 if t mod 24 ∈ Sj

0 otherwise
(8.2)

which is periodic with respect to 24 hours.
The mobility window of (i, j) ∈ E

Dij = [tij , tij + τij), 0 ≤ tij < tij + τij ≤ 24

is the daily time interval during which there is mobility from i to j, where τij > 0 is
the duration of mobility window in hours. Then, the demand gating function (DGF) of
(i, j) ∈ E

δij(t) =

 1 if t mod 24 ∈ Dij

0 otherwise
(8.3)

which is also periodic with respect to 24 hours.

8.1.5 Model of urban human mobility

Let Ni(t) ≥ 0 be the number of people in i ∈ Vo ∪ Vd at time t (hour). Then, according
to the urban human mobility model, the rate of change of the number of people at any
location at time t is equal to the sum of inflows to that location minus the sum of outflows
from that location.

In other words, for any i ∈ Vo ∪ Dk and k ∈ {1, . . . , p}, the urban human mobility
model is given by

Ṅi =
∑
j∈Ni

(φji − φij) (8.4)

where Ni is the set of neighbors of i in the mobility network G and φij(t,Ni(t), Nj(t), uk(t))
is the flow from i ∈ Vo to j ∈ Dk given as

φij = min(∆ij ,Σj)

with ∆ij(t,Ni(t), uk(t)) and Σj(t,Nj(t), uk(t)) the demand and supply functions, respec-
tively. Notice that the flow φji(t,Nj(t), Ni(t), uk(t)) is defined similarly with the subscript
ji instead of ij.

The supply function Σj(t,Nj(t), uk(t)) of each location j corresponds to the allowed
inflow to j from other locations and is given by

Σj =

 σj min(Fj , v[Cjuk −Nj ]) if j ∈ Dk
σj min(Fj , v[Pj −Nj ]) if j ∈ Vo

where σj(t) is the SGF given by (8.2), v > 0 is a regularization parameter taken to be very
large (see Remark 8.1), Cjuk(t) is the operating capacity of j ∈ Dk with uk(t) defined in
(8.1), and

Fj(t) =
∑
i∈Nj

fij(t)

is the maximum inflow to j with

fij(t) =
Mijuk(t)

τij
(8.5)
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the maximum outflow from i ∈ Vo to j ∈ Dk. Here, Mij denotes the nominal number of
visitors to j from i and Mijuk(t) is the number of visitors when the capacity control input
uk(t) is implemented. Notice that, since all visitors return, we have Mji = Mij .

The demand function ∆ij(t,Ni(t), uk(t)) of each edge (i, j) ∈ E corresponds to the
outflow from i towards j and is given by

∆ij = δij min (vNi, fij)

where δij(t) is the DGF given by (8.3), v > 0 is the same regularization parameter intro-
duced in the supply function Σj(t,Nj(t), uk(t)), and fij(t) is the maximum outflow from i
to j given by (8.5).

i j
φij(t) = min(∆ij ,Ψj)

Σj = σj min(Fj , v[Cjuk −Nj ])︸ ︷︷ ︸
Ψj

∆ij = δij min(vNi, fij)︸ ︷︷ ︸
∆ij

Pi

fij

Ni(t)

∆
ij

Slope v

Cj

Fj

Nj(t)

Ψ
j

Slope −v

Figure 8.2: An example illustrating the flow φij(t) from origin i to destination j in terms
of supply of j and demand of i with respect to j. Here, the arrows on each curve indicate
the time evolution.

Suppose i ∈ Vo and j ∈ Dk, then Figure 8.2 illustrates the flow from i to j in terms
of demand and supply functions. In the figure, notice that the demand of i moves from
right to left with respect to time t, i.e., from being full to being empty, and the supply of j
moves from left to right with respect to time t, i.e., from being empty to being full, which
is indicated by arrows in the figure.

Remark 8.1. To ensure that the daily number of people going from i to j equals
Mijuk(t), we assume that the demand function ∆ij(t,Ni(t), uk(t)) = δij(t)fij(t)1Ni(t)>0,
where 1Ni(t)>0 = 1 if Ni(t) > 0, and 0 otherwise, is the indicator function. Similarly, we
assume that the supply function Ψj(t,Nj(t), uk(t)) = σj(t)Fj(t)1Nj(t)<Cjuk(t). However,
to avoid the discontinuity posed by the indicator functions, we approximate the demand
and supply functions by considering steep slope with a very large regularization parameter
v as illustrated in Figure 8.2. �
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Populations P1 = 3000, P2 = 2000

Capacities C3 = 2000, C4 = 1500, C5 = 200

No. of Visitors M13 = 1200, M14 = 900, M15 = 900

M23 = 800, M24 = 600, M25 = 600

Mobility
windows Di3 = [8, 9.5), Di4 = [9, 10), Di5 = [8.5, 20)

D3i = [17, 18.5), D4i = [16, 17), D5i = [10, 21)

for i = 1, 2

Destination
schedules S3 = [8, 18), S4 = [9, 17), S5 = [8.5, 20)

Capacity control
policy u1(t) = 0.5, u2(t) = 0.5, u3(t) = 1

for t ∈ [0, 48)

Regularization
parameter v = 30

Table 8.1: Parameters related to urban human mobility for the example of Figure 8.1.

Example 8.1. Consider the example of mobility network shown in Figure 8.1 with two
origins and three destinations. For the mobility model (8.4), we consider the parame-
ters given in Table 8.1. The mobility profile of two days is plotted in Figure 8.3, where
N1(t), N2(t) denote the number of people in Town 1 and 2 at time t, respectively, and
N3(t), N4(t), N5(t) denote the number of people in the industries, schools, and markets,
respectively. As shown in the figure, people go from the origins (1 and 2) to the destina-
tions (3, 4, and 5) and return on the same day according to the destination schedules and
mobility windows. Notice that the mobility profiles are the same for both days because,
by Assumption 8.1(iv), the destination schedules and mobility windows are the same for
every day. Moreover, the nominal capacities of industries and schools are C3 = 2000 and
C4 = 1500, however, the capacity control policy u1(t) = u2(t) = 0.5 reduce the oper-
ating capacities to 50% of the nominal capacities. Therefore, the maximum number of
people present in these destinations during a day is around C3/2 = 1000 and C4/2 = 750,
respectively.

8.2 Incorporating Epidemic Spread Process in Mobility

When people gather at a certain location during the mobility process, the epidemic
spreads process occurs at that location which is described here by a SIR model, [Het-
hcote2000], where the population is divided into Susceptible, Infected, and Recovered
classes, and the disease is transmitted according to the local infection rates when the
susceptible and infected populations mix in the same location. Notice that any similar
epidemiological model could be used instead.

8.2.1 Urban human mobility with epidemic spread

According to the SIR model of epidemic spread, the number of people Ni(t) at each loca-
tion i ∈ Vo ∪ Vd are divided into three classes: number of susceptible Si(t), infected Ii(t),
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Figure 8.3: The mobility profile of two days for the example in Figure 8.1.

and recovered Ri(t), where, at every time t,

Ni(t) = Si(t) + Ii(t) +Ri(t).

The disease transmission at each location i occurs according to the local mass action law

βi(t)Si(t)
Ii(t)

Ni(t)

where

βi(t) =


βi

Ni(t)
Pi

if i ∈ Vo

βi
Ni(t)
Ci

if i ∈ Vd

is the infection rate of i at time t with βj the nominal infection rate of i. The nominal
infection rate is defined as the average number of contacts of a person in location i per hour
when the number of people in i is maximum. The infection rate βi(t) reduces when the
number of people Ni(t) at location i is small and increases when Ni(t) is large. The infected
people Ii(t) recover with a recovery rate γ ∈ (0, 1], which is a constant that depends on the
disease biology and, if available, the treatment methods. The recovery rate γ is defined as
the inverse of the average recovery period (in hours) of the infected cases.

Assumption 8.2. The restrictions imposed on the urban human mobility by the
government affects all the people, whether susceptible, infected, or recovered, equally.

By Assumption 8.2, the flow from i to j in terms of the number of susceptible, infected,
and recovered can be respectively given by

φij(t,Ni(t), Nj(t), uk(t))
Si(t)
Ni(t)

φij(t,Ni(t), Nj(t), uk(t))
Ii(t)
Ni(t)

φij(t,Ni(t), Nj(t), uk(t))
Ri(t)
Ni(t)

.
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Let xi(t) = [ Si(t) Ii(t) Ri(t) ]ᵀ ∈ R3
≥0
be the state vector of location i ∈ Vo ∪ Vd and

ξi(xi(t)) =


−βi(t)Si(t) Ii(t)Ni(t)

βi(t)Si(t)
Ii(t)
Ni(t)

− γIi(t)

γIi(t)

 ∈ R3 (8.6)

be the vector describing the process of epidemic spread in location i. Then, for i ∈ Vo and
j ∈ Dk, the model of urban human mobility with epidemic spread is given by

ẋi = ξi(xi) +

p∑
k=1

∑
j∈Dk

[
φji(uk)

xj
Nj
− φij(uk)

xi
Ni

]

ẋj = ξj(xj) +
∑
i∈Vo

[
φij(uk)

xi
Ni
− φji(uk)

xj
Nj

]
.

(8.7)

As illustrated in Figure 8.4, there are two aspects of the model. First, inside the locations i
and j, there is a process of epidemic spread that transmits the disease from the infected to
the susceptible with a local infection rate, and the recovery process that heals the infected
with a constant recovery rate. Second, on the edges (i, j) and (j, i), there is a process
of human mobility that transfers people from one location to another through the flows
φij(t,Ni(t), Nj(t), uk(t)) and φji(t,Nj(t), Ni(t), uk(t)), respectively.

Si

Ii

Ri

βi

γ

Sj

Ij

Rj

βj

γ

φij

φji

Origin i Destination j

Figure 8.4: The process of urban human mobility happens along the edges whereas the
process of epidemic spread happens inside the locations.

8.2.2 Compact representation of the model

The urban human mobility model with epidemic spread given in (8.7) describes the dy-
namics of the number of susceptible Si(t), infected Ii(t), and recovered Ri(t) people in
location i ∈ Vo ∪ Vd. These dynamics are controlled by the piece-wise constant capacity
control inputs u1(t), . . . , up(t), defined in (8.1), of the p destination categories in D. Define

u(t) =
[
u1(t) . . . up(t)

]ᵀ
.

Then, to represent the model in a compact form, let

x =

 xo

xd

 , where


xo = [ xᵀ

1 · · · xᵀ
m ]ᵀ

xd = [ xᵀ
m+1 · · · xᵀ

m+n
]ᵀ
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with xo(t) ∈ R3m
≥0

the state vector of origins Vo and xd(t) ∈ R3n
≥0

the state vector of
destinations Vd. Similarly, let

ξ =

 ξo

ξd

 , where


ξo = [ ξᵀ1 · · · ξ

ᵀ
m ]ᵀ

ξd = [ ξᵀm+1 · · · ξ
ᵀ
m+n

]ᵀ

with ξo(xo(t)) ∈ R3m the vector describing the epidemic process in the origins Vo and
ξd(xd(t)) ∈ R3n the vector describing the epidemic process in the destinations Vd. Notice
that the vector ξi(xi(t)) describing the epidemic process in each location i is given in (8.6).

The model (8.7) can be represented as

ẋ = ξ(x) + Φ(x,u)x (8.8)

where the dependence on t is omitted for brevity. The matrix of flows Φ(t,x(t),u(t))
describes the mobility process in the network G and is given as

Φ(x,u) =

 Φoo(x,u) Φdo(x,u)

Φod(x,u) Φdd(x,u)

⊗ I3

where ⊗ denotes the Kronecker product and

Φoo = diag

[
−
∑
j∈Vd

φ1j

N1
. . . −

∑
j∈Vd

φmj
Nm

]

Φdd = diag

[
−
∑
i∈Vo

φm+1,i

Nm+1
. . . −

∑
i∈Vo

φm+n,i

Nm+n

]

Φod =


φ1,m+1

N1
· · · φm,m+1

Nm
...

. . .
...

φ1,m+n

N1
· · · φm,m+n

Nm



Φdo =


φm+1,1

Nm+1
· · · φm+n,1

Nm+n
...

. . .
...

φm+1,m

Nm+1
· · · φm+n,m

Nm+n

 .

8.3 Economic Activity and Active Infected Cases

The economic activity E(t) ∈ R≥0 in the mobility network G is defined as

E(t) =

p∑
k=1

∑
j∈Dk

χj
Nj(t)

Cj
(8.9)

where Nj(t) is the number of people in destination j ∈ Dk at time t, Cj is the nominal ca-
pacity of j, and χj ∈ [0, 1] is the weight assigned to j according to its economic importance
such that

∑
j∈Vd χj = 1. Since Ni(t) = 1T

3xi(t), we can write (8.9) as

E(t) = eᵀx(t) (8.10)
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where x(t) is the state of (8.8) at time t and

e =
[

0ᵀ
m

χm+1

Cm+1
· · · χm+n

Cm+n

]ᵀ
⊗ [ 1 1 1 ]ᵀ.

The number of active infected cases I(t) ∈ R≥0 in the mobility network G at time t is
the sum of the number of infected people in all the locations. It is given by

I(t) =
∑

i∈Vo∪Vd

Ii(t) (8.11)

where Ii(t) is the number of infected people at location i at time t. Since Ii(t) =

[ 0 1 0 ]xi(t), we can write (8.11) as

I(t) = gᵀx(t)

where
g =

[
1ᵀ
m 1ᵀ

n

]ᵀ
⊗ [ 0 1 0 ]ᵀ.

Finally, the infection peak is defined as

Ipeak = sup
t∈[0,T ]

I(t) = sup
t∈[0,T ]

gᵀx(t) (8.12)

where [0, T ] is a given finite time horizon.

Recovery rate γ = 1/14 per 24 hours

Nominal infection rates β1 = 0.11 per 24 hours

β2 = 0.11 per 24 hours

β3 = 0.71 per 24 hours

β4 = 1.07 per 24 hours

β5 = 0.57 per 24 hours

Table 8.2: Parameters related to local epidemic spread for the example of Figure 8.1.

Example 8.2. Consider the example of mobility network in Figure 8.1 with the mobility
parameters given in Table 8.1 and the epidemic parameters given in Table 8.2. Note that
the nominal infection rates outside the residences (the “destinations”) are assumed higher
than the nominal infection rates at the residences (the “origins”). For T = 1680 hours (or
10 weeks), we plot the active infected cases I(t) in Figure 8.5 under two circumstances:
(i) when there are no restrictions on the operating capacities of all destinations, i.e., u(t) =

[ 1 1 1 ]ᵀ for all t ∈ [0, T ], and (ii) when the operating capacities of all destinations are

reduced to 50% throughout [0, T ], i.e., u(t) = [ 0.5 0.5 0.5 ]ᵀ for all t ∈ [0, T ]. In
Figure 8.5, notice the effect on the number of active infected cases when the operating
capacities are reduced. When there are no restrictions on the operating capacities, the
infection peak Ipeak is about 1810 people, whereas, with the restrictions, the peak is about
605 people. In other words, given the mobility and epidemic parameters for the example
of Figure 8.1, one can reduce the infection peak by 66.5% through 50% reduction of the
operating capacities. y
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Figure 8.5: Reduction of the number of infected cases I(t) by reducing operating capacities
via capacity control policy.

8.4 Optimal Control Policies for Epidemic Mitigation

In this section, we formulate two optimal control problems for epidemic mitigation. The
goal of these problems is to maximize the economic activity while keeping the number of
active infected cases bounded. First, we formulate the problem of optimal capacity control,
which provides an optimal reduction of operating capacities at the destination categories.
Second, we formulate the problem of optimal schedule control, which provides an optimal
reduction of destination schedules. The problems are solved numerically and simulation
results are illustrated.

8.4.1 Optimal capacity control policy

The number of hospitalized cases and deaths due to an epidemic are related to the number
of infected cases I(t). A large value of I(t) implies a large number of hospitalizations and
loss of lives in the near future. Moreover, if the measures to mitigate the epidemic and
limit the number of infected cases are not taken, then the number of hospitalizations may
reach a point that could challenge the available medical facilities of the city. As shown in
Example 8.2, the number of infected cases can be reduced by reducing the operating capac-
ities of the destinations through the capacity control policies u1(t), . . . , up(t). However, on
the other hand, choosing the values of u1(t), . . . , up(t) too small can result in a significant
reduction of the economic activity E(t), which may result in bankruptcy of businesses and
loss of livelihoods. Therefore, our goal in this section is to find optimal capacity control
policy that maximize the economic activity under a constraint that the infection peak Ipeak
remains bounded from above.

Suppose a finite time horizon T , a policy horizon Tu = T/q for q ∈ N, an upper bound
I > 0 on the infection peak, and all the parameters of the model (8.8) be given. Let u ∈ U ,
where U is the set of admissible capacity control policies u : [0, T ]→ [0, 1]p such that, for
every t ∈ [(h− 1)Tu, hTu) and h ∈ {1, . . . , q}, u(t) = µh for some µh = [ µh1 · · · µhp ]ᵀ ∈
[0, 1]p. Then, the optimal capacity control policy is obtained by solving the following
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problem:

maximize
u∈U

L(u) :=
1

T

∫ T

0
eᵀx(t; x0,u)dt

subject to

 ẋ = ξ(x) + Φ(x,u)x; x(0) = x0

Ipeak(u) ≤ I

(8.13)

where Ipeak(u) = supt∈[0,T ] g
ᵀx(t; x0,u) is given in (8.12) and the economic activity E(t) =

eᵀx(t) is given in (8.10).

Time horizon T = 1680 hours (10 weeks)

Policy horizon Tu = 336 hours (2 weeks)
Upper bound
on infection peak I = 1000

Weights of
economic importance χ3 = 0.4, χ4 = 0.3, χ5 = 0.3

Table 8.3: Parameters related to the optimal control problem (8.13) for the example of
Figure 8.1.

Example 8.3. Again, consider the example of Figure 8.1 with the mobility and epidemic
parameters given in Table 8.1 and 8.2, respectively. Also, consider the parameters in
Table 8.3 required by the optimal control problem (8.13). The optimal control problem is
solved numerically for a time horizon T = 1680 hours (i.e., 10 weeks) using a nonlinear
programming solver fmincon in MATLAB with interior point algorithm. The solver returns
a local minimum uopt(t) plotted in Figure 8.6 that satisfies the constraints of (8.13) and is
piece-wise constant, where the policy horizon Tu = 336 hours (i.e., 2 weeks). In particular,
the constraint on the infection peak is satisfied and Ipeak ≈ 922 is less than I = 1000
as shown in Figure 8.7. Notice that in the beginning the optimal capacity control allows
the operating capacities to be around 70-90% of the nominal capacities of destinations.
However, as the number of infected cases increase, the value of the optimal capacity control
decreases for the next four steps until 8Tu = 1344 hours (i.e., 8 weeks) to mitigate the
infection spread. Then, in the last interval [8Tu, T ], the optimal capacity control increases
to allow more people visiting the destinations because the infected cases have started to
decrease. In Figure 8.8, we plot the economic activity for three cases: (i) when no capacity
control policy is implemented, (ii) when the capacity control policy limits the operating
capacities to 50% of the nominal capacities of destinations, and (iii) when the optimal
capacity control policy uopt(t) shown in Figure 8.6 is applied. Notice that the optimal
capacity control uopt(t) increases the economic activity as compared to the cases when
u(t) = 0.513 while keeping the Ipeak under the bound I. y

8.4.2 Optimal schedule control policy

We formulate an epidemic mitigation policy that alters the destination schedules and mo-
bility windows. That is, for every j ∈ Dk, the destination schedule is altered as

Sj = [aj ,min(sk, bj))

where sk ∈ [s, 24) is the schedule control that enforces that all destinations of category k,
for k = 1, . . . , p, must be closed after sk hour, respectively, and s ≥ 0 is the lower bound
on sk. Such a policy limits the spread of infection by reducing the daily amount of time
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Figure 8.6: Optimal capacity control policy uopt.
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Figure 8.7: Reduction of the number of infected cases I(t) by controlling the operating
capacities via optimal capacity control policy uopt.
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Figure 8.8: Economic activity (i) without capacity control policy, i.e., u = 13, (ii) with
50% capacity control policy u = 0.513, and (iii) with optimal capacity control policy uopt.

people spend at destinations. It also alters the mobility windows

Dij = [tij ,min(tij + τij , sk))

Dji = [min(tji, sk),min(tji, sk) + τji).

for i ∈ Vo and j ∈ Dk. That is, people cannot go from i to j after sk hour and people at j
must return to i after sk hour.

Let s = [ s1 · · · sp ]ᵀ be the schedule control policy of all destination categories.
Then, the problem is to find an optimal s such that the economic activity is maximized
while keeping the infection peak bounded by I. The schedule control policy complements
the capacity control policy obtained by solving (8.13) when there are lower bounds on the
capacity control policy. These lower bounds correspond to minimum operating capacities
of certain destinations that are required for functioning of the society. This is because
some destinations, like hospitals and markets, are essential and their operating capacities
cannot be reduced beyond a minimum bound. In other words, for all k ∈ {1, . . . , p} and
h ∈ {1, . . . , q}, we assume constant capacity control policy u(t) = µ, for all t ∈ [0, T ], where
µ ∈ [0, 1]p states the minimum allowed capacity control policy of p destination categories.
In the presence of these lower bounds, the problem (8.13) may become infeasible and
the infection peak may no longer be bounded. Thus, implementation of optimal schedule
control policy s may help in containing the infections while also allowing economic activity
at destinations.

Suppose a finite time horizon T , an upper bound I > 0 on the infection peak, a constant
capacity control policy u(t) = µ ∈ [0, 1]p, ∀t ∈ [0, T ], and the parameters of the model (8.8)
are given. Then, the optimal schedule control policy is obtained by solving the following
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problem:

maximize
s∈[ s,24)p

L(s) :=
1

T

∫ T

0
eᵀx(t; x0, s)dt

subject to

 ẋ = ξ(x) + Φ(x, s)x; x(0) = x0

Ipeak(s) ≤ I

(8.14)

where Ipeak(s) = supt∈[0,T ] g
ᵀx(t; x0, s) is given in (8.12) and the economic activity E(t) =

eᵀx(t) given in (8.10).
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Figure 8.9: Reduction of the number of active infected cases I(t) by controlling destination
schedules and mobility windows via optimal schedule control policy sopt.

Example 8.4. Consider again the example of Figure 8.1 and the parameters given in
Table 8.1, 8.2, and 8.3, where we change the policy horizon Tu = T since the schedule
control policy s is constant throughout [0, T ]. Let the capacity control policy u(t) =

[ 0.75 0.75 0.75 ]ᵀ, ∀t ∈ [0, T ], i.e., the operating capacities of destinations should
be 75% of their nominal capacities. Then, solving (8.14) numerically by using fmincon
solver in MATLAB with interior point algorithm, we obtain a local minimum sopt =

[ 14.54 13.75 16.10 ]ᵀ, which means that the industries must be closed after 14.54 hour
(02:32 pm), the schools must be closed after 13.75 hour (01:45 pm), and the markets must
be closed after 16.10 hour (04:06 pm). Figure 8.9 shows that the constraint on the infection
peak is satisfied. y

160



8.5. Concluding Remarks

8.5 Concluding Remarks

We developed an urban human mobility model on network of origins and destinations
that incorporates the process of epidemic spread at each location. The model is described
by the flows that transfer people from origins to destinations and back to origins every
day. The flows capture the daily patterns of mobility in an urban environment through the
gating functions that depend on the destination schedules and mobility windows. At each
location, the disease spreads through the interaction of susceptible and infected people,
where the infection rate depends on the number of people in that location. We study two
optimal control policies, capacity control and schedule control, that mitigate the epidemic
spread while maximizing the economic activity at each destination. The optimal capacity
control policy maximizes the economic activity by allowing maximum allowable number of
people at each destination under the constraint that the infection peak remains bounded.
The optimal schedule control policy maximizes the economic activity by allowing maxi-
mum allowable time that people spend daily at destinations under the constraint that the
infection peak remains bounded. The future investigations include the model predictive
control formulation of optimal control problems studied in this chapter. A work in progress
is the validation of model with the urban mobility data and regional epidemic statistics,
and the development of web interface to illustrate our proof of concept.
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Conclusions and Future Outlook

W e present general conclusions of our work and discuss the problems that are reserved
for the future work.

Part I Aggregated monitoring of large-scale network systems

For the monitoring of large-scale network systems, one has to deal with limited computa-
tional and sensing resources. The limitation in computational resources makes the state
estimation task infeasible, whereas the limitation in sensing resources renders the network
system unobservable. Increasing the computational and sensing resources comes with enor-
mous economic costs and turns out to be impractical under a limited budget. To deal with
this issue, we developed techniques in the first part of the thesis for aggregated monitor-
ing of a large-scale network system through a projected network system. The projected
network system is a tractable representation obtained by aggregating multiple clusters of
nodes in the original network system.

In case the clusters of nodes are specified a priori in a clustered network system, we
studied the problem of estimating the average states of clusters from the knowledge of the
states of few measured nodes and the model of the projected network system. We provided
a minimum-order average observer and stated its design criteria, which is a necessary and
sufficient condition for the reconstruction or asymptotic estimation of the average states.
Based on the design criteria, we defined the notions of average reconstructability, average
observability, and average detectability. Average reconstructability, similar to the usual
notion of reconstructability, allows for the reconstruction of current average states of clus-
ters through the average observer that uses the knowledge of past output and input of the
network system. On the other hand, average observability allows for the reconstruction of
current average states of clusters through the projected network system by taking sufficient
derivatives of its output and input. Finally, average detectability allows for the open-loop
estimation of the average states through the projected network system and relates to
the exponential stability of the average states of clusters. We interpreted these notions
graph-theoretically through the clusters to measured nodes, inter-cluster, and intra-cluster
topologies of the clustered network system. For average reconstructability and average
observability, the measured nodes must span the clustering of the network system. On
the other hand, average detectability demands a certain regularity or symmetry of the
inter-cluster and intra-cluster topologies. Finally, the design of the average observer under
each of these notions is provided.

In case the necessary and sufficient condition for the asymptotic estimation is not satis-
fied, we devised a methodology for an optimal design of the average observer. The optimal
design is achieved by simultaneously stabilizing the average observer and minimizing the
effect of average deviation from the average estimation error. We provided sufficient con-
ditions in terms of the induced subgraph topology of unmeasured nodes and clustering of
the network system that ensure the stabilizability of the average observer. The efficacy of

163



Conclusions and Future Outlook

the design is illustrated by an application example of a building thermal system.
In case the clusters are not specified in a network system, we presented clustering tech-

niques to facilitate average estimation and illustrated the results by an application example
of an SIS epidemic over a large network. Finally, we presented a K-means type cluster-
ing technique that facilitates the estimation of state variance of network systems, which
is a nonlinear state functional that measures the squared deviation of state trajectories
from their average mean. The K-means clustering algorithm allows for the identification
of clusters of nodes whose state trajectories eventually converge closer to each other. This
enables one to efficiently approximate the state variance through the average states of
clusters instead of the states of all nodes. Then, an optimal average observer is employed
to estimate the average states and compute the estimated state variance.

The problems that will be studied in the future include optimal sensor placement for
asymptotic estimation of average states, cluster selection for combined average observabil-
ity and average detectability, and variance estimation of multiple clusters. The problems
of optimal sensor placement and cluster selection are non-convex, mixed-integer NP-hard
optimization problems. Therefore, devising an efficient algorithm is quite challenging. Fi-
nally, variance estimation of multiple clusters entails K-means clustering inside each cluster
to approximate its state variance. This makes the task computationally challenging.

Part II Modeling and control of epidemics

Mathematical models describing the evolution of epidemics help governments devise poli-
cies for the prevention of infection spread in human societies. However, precise identifica-
tion and integration of the control variables are the crucial parts of an epidemic model. The
second part of the thesis, therefore, developed two epidemic models that can be employed
to devise control policies related to testing rate and urban human mobility in the event of
an epidemic.

Firstly, we developed a five-compartment epidemic model, SIDUR, which considers the
testing rate as a control input. The model differentiates between the undetected infected
and detected infected people in a population, where the infection is assumed to spread
only through the undetected infected people. We estimated and validated the model for
the COVID-19 case of France. We devised an epidemic suppression policy called the best-
effort strategy for testing (BEST), which provides a minimum testing rate required to
stop the growth of the epidemic. The BEST policy is then evaluated by its ability to
significantly reduce the cumulative number of deaths and the active number of ICU cases
due to COVID-19 in France.

Secondly, we developed a human mobility model in an urban environment that incor-
porates the process of epidemic spread at each location. We consider mobility between
locations of two types, origins and destinations. The origins correspond to residential ar-
eas where people reside and the destinations correspond to places that people visit daily.
The destinations are divided into multiple categories such as workplaces, schools, mar-
kets, etc., whose operating capacities are defined in proportion to their nominal capacities,
which correspond to the maximum number of people that can visit each category at a
given time during nominal times. In the event of an epidemic, we propose to not only
reduce the operating capacities of the destination categories but also limit their schedules
of business hours. Thus, we formulate and solve two optimal control problems: optimal
capacity control and optimal schedule control. These optimal control problems aim to
find a solution that maximizes the economic activity in the destinations while keeping the
number of active infected cases bounded.

The future work includes the design of an observer for the SIDUR model, dynamic
testing policies on a moving horizon, and the use of the model predictive control framework
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and the feedback mechanism for optimal urban human mobility. The observer design for
epidemic models is challenging due to the nonlinearity posed by the disease transmission
process, which is modeled as the product between the infection rate, susceptible population,
and the proportion of infected people. The literature on observer design for epidemic
models is scarce, which usually assumes the knowledge of the disease transmission rate
to avoid dealing with the nonlinearity. On the other hand, the BEST policy is static
that provides a constant testing rate to control the epidemic. However, in the future, we
are interested to devise the BEST policy that updates based on the state and parameter
estimation of an observer. Similarly, the optimal control policies for urban human mobility
are open-loop and solved for the whole time horizon. However, it is more effective to
obtain the optimal policies in the framework of model predictive control through a feedback
mechanism.
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