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Abstract  

 

Optogenetics  is  a  common  strategy  used  to  manipulate  the  activity  of  specific  cortical              
neurons in  vivo .  Different  variants  (ChR2,  ReaChR,  etc.)  have  been  developed  that             
allow  for  extended  as  well  as  very  localized  perturbations  of  cortical  network  activity.              
This  work  is  devoted  to  describing  the  mechanisms  underlying  the  response  of             
mouse  cortical  networks  to  two  variants  of  ChR-assisted  photostimulation  of  the            
parvalbumin-positive  interneurons  (PV)  -  the  largest  subtype  of  inhibitory  neurons  in            
the  mouse  cortex.  In  the  first  part,  we  investigate  the  effects  of  the  ReaChR               
optogenetic photostimulation  of  PV  neurons in  the  anterolateral  motor  cortex  (ALM)            
and  in  the  barrel  cortex  (S1)  on  the  population  average  responses  of  principal              
excitatory  cells  (PCs)  and  PV  interneurons.  ReaChR  allows  for  a  uniform  stimulation             
of  the  neurons  upon  broadly  extended  regions  (up  to  a  few  mm).  After  extending  the                
theory  of  balanced  networks  to  networks  with  multiple  inhibitory  populations,  we            
investigate  the  connectivity  patterns  that  are  essential  in  accounting  for  these  effects.             
We  show  that  the  average  responses  of  PCs  and  PV  neurons  in  ALM  layer  2/3  and                 
layer  5  can  be  accounted  for  by  a  four-population  network  with  connectivity  similar  to               
that  reported  in  the  primary  visual  cortex.  We  propose  an  alternative  network             
architecture  to  robustly  account  for  these  responses  in  S1.  In  the  second  part,  we               
examine  the  effects  of  the  ChR2  optogenetic  stimulation  of  PV  neurons  in  the  mouse               
barrel  cortex  on  the  spatial  profile  of  the  responses  of  PCs  and  PV  neurons.  ChR2                
allows  for  stimulation  of  the  neurons  upon  very  localized  regions  (a  few  hundred              
microns).  We  investigate  these  effects  in  two-population  (one  excitatory  and  one            
inhibitory)  network  models  where  the  probability  of  connection  between  the  neurons            
decay  exponentially  with  distance.  We  show  that  for  stimulation  of  strong  enough             
intensity,  the  activity  of  the  excitatory  neurons  is  suppressed  on  a  characteristic             
length  that  non-linearly  depends  on  the  radius  of  the  perturbation.  We  derive             
conditions  upon  the  length  of  the  recurrent  neuronal  interactions  to  explain  the  profile              
of   the   excitatory   and   inhibitory   responses   in   the   surround   of   this   suppression.   
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Chapter   1   

Introduction  
Optogenetic  tools  offer  the  ability  to  target  and  manipulate  the  activity  of  specific              
neuron  subtypes in  vivo .  The  technique  relies  on  the  expression  into  the  neurons  of               
a  gene  for  a  light-sensitive  opsin  (typically  an  ion  channel  or  a  pump).  Upon  light                
illumination  ion  channels  open  (resp.  ion  pumps  activate)  leading  to  a  depolarization             
(resp.  hyperpolarization)  of  the  membrane  voltage  of  the  genetically  modified           
neurons,   and   thus   to   an   activity   change.   

Optogenetics  has  furthered  the  understanding  of  how  different  neurons  contribute  to            
network  dynamics,  cortical  computations,  cognitive  processes,  and  behavior.         
Nevertheless,  optogenetics  has  some  drawbacks.  For  example,  illumination  with  a           
defined  intensity  has  variable  effects  on  individual  cells  since  not  all  the  neurons              
express  the  markers  at  the  same  level.  Moreover,  stimulation  spreads  in  brain             
tissues  on  a  spatially  extended  region  and  variably  affects  neurons  depending  on             
their  distance  from  the  light  source.  As  a  consequence,  the  optogenetic  perturbation             
of  selective  neuron  subtypes  can  lead  to  important  changes  in  the  network  dynamics              
and  open  the  field  of  numerous  counter-intuitive  observations.  Only  a  precise            
mathematical   analysis   can   be   used   to   separate   the   wheat   from   the   chaff.  

The  major  goal  of  this  thesis  is  to  evaluate  the  consequences  of  optogenetic              
perturbations  of  specific  cortical  populations  of  neurons in  vivo ,  on  how  they  shape              
neuronal  dynamics  and  can  provide  insights  on  the  operating  regime  of  the  cortex              
during  spontaneous  activity.  In  the  first  part  of  the  thesis,  I  will  describe  the  properties                
of  cortical  inhibitory  neurons  and  their  role  in  the  dynamics  of  recurrent  circuits.  I  will                
review  the  essential  statistical  properties  of  cortical  network  activity  and  describe  the             
competing  theoretical  frameworks  that  provide  a  natural  explanation  for  them. I  will             
discuss  recent  experimental  observations  obtained  from  ChR2  optogenetic         
perturbations  of  the  cortex  and  review  the  existing  theories  that  give  an  account  for               
the   experimental   results.  

In  the  second  part  of  the  thesis,  I  present  the  results  of  a  study  conducted  in                 
collaboration  with  the  experimental  group  of  Dr.  Nuo  Li  (Baylor  College  of  Medicine,              
Texas).  It  deals  with  the  mechanisms  underlying  the  response  of  the  cortex  to  the               
optogenetic  manipulations  of  the  parvalbumin-expressing  inhibitory  neurons  (PV)  in          
the  anterior  lateral  motor  cortex  (ALM)  and  the  barrel  cortex  (S1)  of  the  mouse.  In                
this  study,  we argue  for  the  framework  of  recurrent  networks  with  strong  synapses              
and  sparse  connections. We  investigate  network  architectures  that  can  account  for            
the  experimental  observations.  We  demonstrate  that  standard  two-population  models          
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cannot  explain  our  data  either  in  ALM  layer  2/3  and  layer  5  nor  in  S1.  In  contrast,  we                   
described  how  the  average  response  of  PCs  and  PV  neurons  in  ALM  layer  2/3  and                
layer  5  can  be  accounted  for  by  a  four-population  network  with  connectivity  similar  to               
that  reported  for  V1.  We  proposed  an  alternative  network  architecture  to  account  for              
the  proportional  decrease  in  the  PC  and  PV  population  average  activities  observed             
in   S1.  

The  third  part  deals  with  understanding  the  spatially  extended  responses  of  cortical             
networks to  optogenetic  perturbations  of  PV  neurons in  vivo .  It  provides  an              
explanation  of  the  mechanisms  underlying  the  observations  of (Li  et  al.,  2019)  in  the               
mouse  barrel  cortex.  We  investigate  the  spatial  response  of  two-population  networks            
of  neurons  to  photostimulation  of  their  inhibitory  population  with  a  Gaussian-shaped            
perturbation  when  the  probability  of  connection  between  neurons  falls  off           
exponentially  with  distance.  We  show  that  upon  strong  perturbation  the  balance  of             
excitation  and  inhibition  is  disrupted  on  a  characteristic  length  where  excitatory            
neurons  are  silenced  and  derive  its  dependence  with  the  intensity  and  radius  of  the               
perturbation.  

In  the  last  chapter,  I  will  discuss  my  results  and  their  implications  and  give               
perspectives   and   insights   on   future   work   to   be   conducted.  

Inhibition   in   the   mouse   cortex  

Recurrent   circuits   of   excitatory   and   inhibitory   neurons  

One  cubic  millimeter  of  the  mouse  cortex  comprises  around  neurons  recurrently           105    
connected  through  nearly  synapses.  These  neurons  consist  of  glutamatergic     109        
excitatory  principal  neurons  (PCs)  and  of  local  projecting  GABAergic  inhibitory           
interneurons  that  together  form  highly  complex  local  circuits (Braitenberg  and  Schüz,            
2013;  Schüz  and  Palm,  1989) .  Although  they  only  represent  10  to  15  of  all  cortical             %     
neurons (Meyer  et  al.,  2011) ,  GABAergic  interneurons  have  been  reported  to  be             
highly  heterogeneous  in  the  cortex.  Cortical  computations  (such  as  information           
processing  of  sensory  inputs,  working  memory,  and  long  term  memory)  are  thought             
to   rely   on   the   dynamics   of   these   networks.   

In  the  previous  decade,  huge  efforts  have  been  dedicated  to  experimentally  quantify             
the  cortical  connectivity  graph  and  theoretically  motivated  constraints  on  the  wiring            
diagram  have  been  proposed. Electrophysiological  recordings  have  revealed  that  the            
probability  of  connection  between  neurons  is  small,  favoring  the  idea  that  cortical             
connectivity  is  sparse (Holmgren  et  al.,  2003;  Markram  et  al.,  1997;  Thomson  et  al.,               
2002;  Thomson  and  Bannister,  2003) .  In  addition,  the  probability  of  connection            
between  neurons  has  been  reported  to  fall  off  with  anatomical  distance  on  a  range  of                
a  few (Hellwig,  2000;  Holmgren  et  al.,  2003;  Lee  et  al.,  2012;  Perin  et  al.,   00  1  mμ               
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2011) .  Long-range  projections  (  to )  between  distinct  neuronal  subtypes    00 μm  5    mm  1      
are   also   known   to   exist    (Stepanyants   et   al.,   2009) .  

The  presence  of  specific  pre and  postsynaptic  targets  between  different  inhibitory            
subtypes  is  well  documented (Beierlein  et  al.,  2003;  Gibson  et  al.,  1999;  Jiang  et  al.,                
2015;  Pfeffer  et  al.,  2013) .  In  addition,  input  and  output  synaptic  efficacy,  kinetics,              
and  dynamics  are  subtype  dependent (Beierlein  et  al.,  2003;  Gupta  et  al.,  2000) .              
Interneurons  preferentially  target  distinct  subcellular  domains,  with  inhibitory  neurons          
almost  exclusively  targeting  either  dendrites  or  somas (Klausberger,  2009) .          
Moreover,  interneurons  exhibit  a  large  diversity  of  intrinsic  electrophysiological          
properties  ( e.g.  firing  patterns,  synaptic  dynamics,  etc.) which  might  potentially  be            
vital   in   sculpting   the   network   dynamics.  

With  advances  in  molecular  genetics,  a  large  number  of  studies  have  focused  on              
labeling  and  manipulating  specific  inhibitory  subtypes.  Experimental  evidence  has          
highlighted  the  specific  role  of  distinct  inhibitory  subtypes  in  cortical  functions  such             
as  gain  control (Fu  et  al.,  2014;  Isaacson  and  Scanziani,  2011;  Katzner  et  al.,  2011) ,                
sensory  feature  selectivity (Kaneko  et  al.,  2017;  Wood  et  al.,  2017) ,  synaptic             
plasticity (Fu  et  al.,  2015;  Hayut  et  al.,  2011) ,  temporal  coding,  and  generation  of               
cortical   rhythms    (Cardin   et   al.,   2009;   Sohal   et   al.,   2009;   Stark   et   al.,   2014,   2013) .  

Classification   of   inhibitory   subtypes  

The  general  classification  of  interneurons  was  first  based  on  their  morphological            
features (Klausberger  and  Somogyi,  2008;  Somogyi  and  Klausberger,  2005) .          
Nevertheless,  it  has  been  found  to  be  inconclusive  to  unambiguously  segregate            
between  inhibitory  subtypes (DeFelipe  et  al.,  2013) .  In  contrast,  with  the  recent             
advances  in  molecular  genetics,  the  generation  of  transgenic  rodents  expressing           
fluorescent  proteins  or  enzymes  ( e.g.  Cre  recombinase)  has  allowed  for  a  more             
precise  categorization (Taniguchi  et  al.,  2011) .  Morphological  and         
electrophysiological  analysis  of  the  interneurons  expressing  distinct  molecular         
markers  as  well  as  segregation  based  on  developmental  origin  and  connectivity  -             
distinct  inhibitory  classes  are  known  to  specifically  project  to  different  neuronal            
targets  -  have  permitted  a  better  description  of  the  different  inhibitory  populations  in              
the  cortex.  Interneurons  can  be  broadly  subdivided  into  three  molecular  classes:            
calcium-binding  protein  parvalbumin-positive  (PV),  neuropeptides  somatostatin       
positive  (SOM)  and  serotonin  receptor  (5HT3aR)  expressing  neurons (Rudy  et  al.,            
2011)  (Fig.  1).  These  three  molecular  markers  are  expressed  in  largely            
non-overlapping  cell  types  in  the  cortex (Lee  et  al.,  2013) .  Moreover,  they  have  been               
found  to  account  for  nearly  all  inhibitory  neurons  in  the  primary  somatosensory             
cortex   (S1).  

Neurons  within  each  of  these  populations  show  quasi-exclusive  intrinsic  properties           
( e.g.  morphological,  electrophysiological,  in  vivo  activity  patterns,  etc.)  as  well  as            
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gene  expression  patterns (Tasic  et  al.,  2016;  Zeisel  et  al.,  2015) .  Within  the  same               
molecular  population,  differences  can  still  be  found.  Each  molecular  subtype  can  be             
further  divided  into  smaller  ensembles  of  neurons  (in  total,  around  30  subtypes  have              
been   reported,   see   Fig.   1)    (Tremblay   et   al.,   2016) .  

 

Figure  1. Cortical  interneurons  diversity.  Inhibitory  neurons  in  the  cortex  express  one  of  the               
main  three  non-overlapping  markers:  parvalbumin  (PV,  blue),  somatostatin  (SOM,  red),  and            
the  ionotropic  serotonin  receptor  5HT3a  (5HT3aR,  green-yellow).  Further  subdivisions  within           
each  molecular  group  are  revealed  by  morphological  features,  cellular  and  subcellular            
targeting  biases,  and  expression  of  other  markers,  as  well  as  some  known  anatomical,              
electrophysiological,  and  synaptic  properties.  Figure  and  adapted  caption  from (Tremblay  et            
al.,   2016) .  

The  molecular  classification  of  cortical  inhibitory  neurons  mostly  relies  on           
experiments  conducted  in  the  mouse  barrel  cortex.  However,  studies  comparing           
various  cortical  areas  have  shown  that  the  distributions  of  neurons  expressing  the             
PV,  SOM  and  5HT3aR  markers  are  preserved  across  areas (Xu  et  al.,  2010) .              
Moreover,  the  same  PV,  SOM  and  5HT3aR  expressing  neurons  have  been            
described  in  the  cortex  of  different  mammalian  species  with  additional  interneurons            
subtypes  discovered  in  higher  mammals (DeFelipe  et  al.,  2002) .  In  mice,  differences             
in  connectivity  patterns  have  been  reported  between  areas (Kätzel  et  al.,  2011;             
Packer  et  al.,  2013) .  In  addition,  the  density  of  each  molecular  population  has  been               
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reported  to  vary  across  cortical  layers (Rudy  et  al.,  2011;  Tremblay  et  al.,  2016) .               
Thus,  cortical  circuits  in  different  areas  and/or  layers  might  exhibit  very  different             
architectures.  

Inhibitory   circuit   motifs   in   mouse   cortex  

 

Figure  2. Circuit  motifs  in  the  mouse  cortex. A .  Thalamocortical  neurons  synapse  onto  both               
excitatory  PCs  and  PV  neurons  allowing  PV  neurons  to  provide  feedforward  inhibition  to  the               
PCs. B .  SOM  interneurons  provide  feedback  inhibition  to  neighboring  cells.  C.  VIP             
interneurons  disinhibit  the  PCs  through  the  inhibition  of  SOM  neurons.  Figure  adapted  from              
(Tremblay   et   al.,   2016) .  

In  recent  years,  numerous  experimental  studies  have  investigated  the  rules  of            
connectivity  between  inhibitory  subtypes. I t  is  thought  that  interneuron  connectivity           
exhibit  a  few  core  motifs:  feedforward  inhibition,  feedback  inhibition,  and  disinhibition            
(Fig.   2).  

Feedforward  inhibition  describes  the  process  by  which  an  external  excitatory  input            
drives  an  inhibitory  subtype  to  provide  a  direct  source  of  inhibition  to  PCs.  It  is                
thought   to   be   mostly   mediated   by   PV   neurons   in   the   cortex.   

Feedback  inhibition,  in  contrast,  describes  the  local  inhibitory  input  into  a  PC  from              
the  inhibitory  neurons  it  projects  to.  It  is  thought  of  as  a  mechanism  preventing               
runaway  excitation.  It  is  likely  that  most  inhibitory  subtypes  participate  in  local             
feedback  loops.  In  particular,  SOM  neurons  lateral  inhibition  has  been  proposed  as  a              
mechanism  for  surround  suppression  in  the  visual  cortex (Adesnik  et  al.,  2012) .             
Given  that  SOM  neurons  connect  to  both  PCs  and  PV  neurons,  but  do  not  interact                
with  each  other (Adesnik  et  al.,  2012;  Gibson  et  al.,  1999;  Hu  et  al.,  2011) ,  increasing                 
the  size  of  a  visual  stimulus  leads  to  a  decrease  in  the  response  of  PCs  and  PV                  
neurons  due  to  an  increase  in  the  inhibition  provided  by  the  SOM  population.              
Inhibitory  neurons  not  only  provide  direct  inhibition  to  the  PCs,  but  they  can  also               
disinhibit  the  latter  when  inhibiting  other  interneurons (Freund  et  al.,  1983;  Somogyi             
et  al.,  1983) .  The  intricate  nature  of  the  connectivity  between  PCs  and  inhibitory              
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neurons  might  lead  to  loops  in  the  network.  Therefore,  inhibitory  to  inhibitory             
connections  are  not  always  disinhibitory.  It  is  commonly  acknowledged  that  the  VIP             
to  SOM  interaction  is  disinhibitory  in  the  superficial  layers  of  the  mouse  cortex.              
Indeed,  according  to  recent  electrophysiological  studies  in  slice  VIP  neurons           
preferentially  target  SOM  neurons  in  the  layer  2/3  of  primary  somatosensory  cortex,             
primary  visual  cortex,  primary  auditory  cortex,  and  also  in  the  prefrontal  cortex (Lee              
et  al.,  2013;  Pfeffer  et  al.,  2013;  Pi  et  al.,  2013) .  Therefore,  since  SOM  neurons                
target   the   PCs,   VIP   neurons   disinhibit   the   PCs.   

Neuron   firing   statistics   in   cortex    in   vivo  

Spike   train   temporal   irregularity  

 

Figure  3.  Irregular  v.s.  regular  neuronal  firing  in  cultures  of  neocortical  neurons  from  the               
somatosensory/motor  cortex. A .  Response  to  conventional  DC  stimulation. B .  Response           
evoked  by  a  non-deterministic  input  current  mimicking  a  realistic  input  drive  of  cortical              
networks.   Figure   adapted   from    (Giugliano   et   al.,   2004) .  

Neuronal  spike  trains  recorded  in  vivo  exhibit  significant  temporal  irregularity (Bair  et             
al.,  1994;  Softky  and  Koch,  1993;  Tomko  and  Crapper,  1974) .  During  spontaneous             
as  well  as  during  stimulus-evoked  activity,  interspike  interval  distributions  are           
right-skewed  and  long-tailed  and  resemble  those  generated  by  a  Poisson  process            
(Shinomoto  et  al.,  2009) .  The  irregularity  of  the in  vivo neuronal  activity  also  appears               
in  intracellular  recordings  as  large  fluctuations  in  the  voltage  traces  of  the  membrane              
potential (Giugliano  et  al.,  2004)  (Fig.  3B).  In  contrast  in  activity  patterns  generated              
in vitro  ( e.g.  injecting  neurons  with  constant  currents  Fig.  3A),  neuronal  discharges             
are  highly  regular  and  voltage  fluctuations  are  practically  nonexistent.  The  irregularity            
of  the  neuronal  dynamics in  vivo  is  likely  to  be  independent  of  the  intrinsic  properties                
of  the  neurons.  It  might  be  due  to  strongly  fluctuating  synaptic  inputs  into  the               
neurons.  However,  in  view  of  a  large  number  of  nearly  uncorrelated  synaptic             
afferents  to  a  neuron,  fluctuations  in  its  net  input  should  average  out.  What  can  be                
the   origin   of   these   large   temporal   fluctuations?   
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Firing   rate   heterogeneity   in   the   cortex  

The  mean  spontaneous  and  evoked  firing  rates  of  individual  neurons  are  very             
heterogeneous in  vivo (Buzsáki  and  Mizuseki,  2014;  Compte  et  al.,  2003;  Hromádka             
et  al.,  2008;  Mizuseki  and  Buzsáki,  2013;  O’Connor  et  al.,  2010) .  The  distributions  of               
both  spontaneous  and  evoked  single-cell  mean  activities  are  strongly  skewed,           
typically  presenting  a  log-normal  shape.  Such  distributions  allow  for  a  wide  range  of              
firing  rates  with  a  large  number  of  low  firing  neurons  and  a  small  fraction  of  high  rate                  
cells. Skewed  distributions  are  a  ubiquitous  feature  across  species and  appear  to  be              
a   general   feature   of   neuronal   dynamics.  

 

Figure  4.  Log-normal  distribution  of  firing  rates  in  the  cortex. A .  Firing-rate  distribution  of               
principal  cells  in  the  rat  hippocampus  (CA1,  CA3  and  dentate  gyrus  (DG))  and  the  entorhinal                
cortex  (EC;  specifically,  in  layers  2,  3  and  5)  during  slow-wave  sleep  (SWS;  left  panel)  and                 
exploration  (RUN;  right  panel). B .  Firing-rate  distribution  of  neurons  in  the  auditory  cortex  of               
awake  rats. C .  Firing-rate  distribution  of  superficial  (layers  2/3)  and  layer  5  neurons  in  the                
prefrontal  cortex  of  an  exploring  rat. D .  Firing-rate  distribution  of  neurons  from  lateral              
intraparietal  and  parietal  reach  region  areas  of  the  macaque  cortex  during  a  baseline              
condition  and  during  the  performance  of  a  reaching  task.  Figure  and  caption  adapted  from               
(Buzsáki   and   Mizuseki,   2014) .  

Models   of   cortical   dynamics  
Models  of  cortical  circuits  usually  consider  two-population  networks  of  randomly           
connected  excitatory  (E)  and  inhibitory  (I)  neurons.  In  most  of  the  cases,  the  average               
number  of  presynaptic  inputs, ,  from  neurons  in  population  is  assumed  to  be      KA      A      
sufficiently  large  but  small  in  comparison  with  the  number  of  neurons  in  this              
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population, .  That  is,  the  connectivity  matrix, ,  of  interaction  between  neurons   NA       C ij
AB      

is  sparse.  Here  we  will  consider  that  the  connection  from  a  neuron  in             B, )  ( j   
population  and  a  neuron  in  population  is  with  probability  and  B     A, )  ( i    A    1    KB

NB
   0  

otherwise.  There  is  a  great  variety  of  model  neurons  ranging  from  simple  binary  units               
(Van  Vreeswijk  and  Sompolinsky,  2005;  van  Vreeswijk  and  Sompolinsky,  1998,           
1996) ,  rate  models (Harish  and  Hansel,  2015;  Ozeki  et  al.,  2009) ,  integrate  and  fire               
models (Hansel  and  Mato,  2013;  Mongillo  et  al.,  2012;  Roxin  et  al.,  2011)  to  complex                
conductance-based  neurons (Hansel  and  van  Vreeswijk,  2012;  Pattadkal  et  al.,           
2018;  Rao  et  al.,  2019) .  For  the  purpose  of  this  section,  we  will  consider  a  simple                 
rate  model  and  assume  here  that  neurons  are  characterized  by  a  continuous             
variable, ,  commonly  interpreted  as  their  temporal  activity.  non-linearly  (t)ri

A        (t)ri
A   

depends  on  the  inputs, ,  into  the  neuron  through  the  neuronal  transfer     (t)ui
A     A, )  ( i      

function .  In  addition,  we  will  assume  that  neurons  receive  feedforward  external  Φ            
inputs  from  outside  the  network  and  that  these  are  drawn  from  a  Gaussian  with               
mean   ,   total   variance     and   quench   variance   .  r jA0 0 αA0 βA0  

Provided  that  is  sufficiently  large,  all  are  stochastically  independent  and    KA      (t)ui
A      

have   a   common   Gaussian   distribution,  

(t)  ξ  ζ (t)  ui
A = uA + √βA i + √α −βA A i  (1)  

with   mean  

< u (t)] = j  [C ] (t)uA = [ i
A > jA0 + ∑

 

B,j
 AB ij

AB < rj
B >  (2)  

a   total   variance   given   by  

< (δu (t)) ] = j  (δ(C  r (t))) ]αA = [ i
A 2 > α0 + ∑

 

B,j
 AB < [ ij

AB
j
B 2 > (3)  

and  a  quench  variance  due  to  the  variability  in  the  number  of  afferent  connections               
per   neuron  

< (t)> ]−u  βA = [ ui
A 2 2

A  (4)  

Here  denotes  the  population  average,  the  temporal  average  and  .][       < . >      
. X −[X]  δ = X  

The   activity   of   a   neuron   is   then   determined   by  

(t) r (t) (u  ξ  ζ (t))dt
d ri

A

= − i
A + Φ A + √βA i + √α −βA A i (5)  

where     and     are   Gaussian   with   zero   mean   and   variance   one   and   . ξi (t)ζ i (t) =  < ζ i > 0  
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Weak   interactions:   Inhibitory   stabilization  
 

Figure  5. The  mechanism  of  surround  suppression. A .  Effect  of  contrast  on  center-surround              
interactions  for  one  MT  neuron.  The  neuron  responded  optimally  to  a  stimulus  with  10  deg  in                 
diameter  and  was  strongly  suppressed  by  larger  patterns. B .  Strength  of  surround             
suppression  measured  at  both  high  and  low  contrast. A-B  Adapted  from (Pack  et  al.,  2005) .                
C .  Asymmetries  in  the  spatial  organization  of  the  suppressive  surround  (after  Xiao  et  al.               
1997). D .  A  two  populations  network  model.  with  feedforward  input  driven  by  the  receptive               
field  center  and  lateral  excitatory  input  driven  by  the  receptive  field  surround  (I  only). E .                
Events  following  surround  stimulation  after  pre-existing  center  stimulus:  after  a  transient            
increase  in  the  activity  of  the  inhibitory  neurons,  activity  in  both  the  E  and  I  cells  decreases                  
(d)  relative  to  the  activity  evoked  by  center  stimulus  alone  (a). F .  Temporal  dynamics  of  the                 
changes   in   the   activity   of   E   and   I   neurons.    D-E-F    adapted   from    (Ozeki   et   al.,   2009) .  

When  the  strength  of  the  synaptic  interactions  between  neurons, ,  scale  as ,          jAB    1
KB

 

i.e. ,  the  activity  of  the  network  is  determined  by  a  set  of  coupled  non linear  jAB = KB

JAB               
equations   which   depends   on   the   neuronal   transfer   function,  

 Dζ Φ(u  ξ  ζ) ( )  ri
A = ∫ A + √βA0 i + √α −βA0 A0 + O 1

KA
 (6)  

Excitatory  and  inhibitory  inputs  into  a  neuron  are  both  comparable  to  its  rheobase              
even  when  is  large,  but  the  spatial  and  temporal  fluctuations  of  the  neuron  net    KA              
recurrent  input  vanish  as  increases.  For  large  but  finite ,  the  firing  irregularity      KA        KA     
and  heterogeneity  essentially  arise  from  the  fixed  irregularity  and  heterogeneity  in            
the   feedforward   inputs   into   the   neurons.  
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Inhibition   stabilized   networks  

Numerous  studies  focus  on  a  particular  set  of  network  models  with  weak  interactions              
where:  1)  the  strength  of  the  interactions  between  excitatory  neurons, ,  is  so            JEE    
strong  so  that  the  network  steady-state  is  unstable  in  the  absence  of  feedback              
inhibition;  2)  The  strength  of  the  inhibitory  recurrent  feedback, ,  is  sufficiently           JEI    
strong  to  stabilize  the  network.  These  networks  are  referred  to  as  inhibition-stabilized             
networks   (ISN)    (Ozeki   et   al.,   2009) .   

A  key  prediction  of  ISN  models  is  that  the  average  inhibitory  activity  decreases  when               
inhibitory  neurons  are  stimulated (Ozeki  et  al.,  2009;  Tsodyks  et  al.,  1997) . (Ozeki  et               
al.,  2009)  have  used  this  counter-intuitive  “paradoxical”  effect  to  account  for  the             
phenomenon  of  surround  suppression  in  the  primary  visual  cortex  (Fig.  5).  Surround             
suppression  is  the  mechanism  by  which  the  relative  activity  of  a  neuron  decreases              
when  a  visual  stimulus  is  enlarged  to  the  region  surrounding  its  receptive  field.              
Neurons  from  distinct  cortical  areas  exhibit  surround  suppression (Anderson  et  al.,            
2001;  Nienborg  et  al.,  2013;  Ozeki  et  al.,  2009;  Sengpiel  et  al.,  1997;  Vanni  and                
Casanova,  2013;  Wang  et  al.,  2009) .  This  suppression  was  thought  to  be  linked  to               
an  increase  in  the  lateral  inhibitory  inputs  into  the  PCs.  Instead, (Ozeki  et  al.,  2009)                
have  shown  that  surround  stimulus  decreases  inhibition  into  the  PCs  and  that             
suppression   emerges   as   a   property   of   the   network   recurrent   dynamics.  

Supralinear   Stabilized   networks  

Recently, (Ahmadian  et  al.,  2013)  have  extended  ISN  models  toward  the  study  of              
models  where  the  neuronal  transfer  function  present  an  expansive  non-linearity.  In            
their  models,  referred  to  as  stabilized  supralinear  networks  (SSNs),  the  response  of             
the  neurons  to  weak  feedforward  inputs  is  supralinear  and  it  becomes  sublinear  and              
non-monotonic  in  response  to  strong  feedforward  input. (Rubin  et  al.,  2015)  have             
shown  that  SSN  can  account  for  a  large  ensemble  of  phenomena  observed  in  the               
primary   visual   cortex.   

In  particular,  SSN  models  provide  a  better  account  of  the  mechanisms  underlying             
surround  suppression  than  ISN  models.  It  explains  that  the  responses  of  the  neurons              
in  the surrounding  regions  are  facilitating  when  contrast  is  weak (Schwabe  et  al.,              
2010;  Sengpiel  et  al.,  1997)  while  higher  contrasts  have  a  suppressive  effect             
(Anderson  et  al.,  2001;  Cavanaugh  et  al.,  2002;  Sceniak  et  al.,  1999;  Song  and  Li,                
2008) .  

It  also  accounts  for  the  effect  of  response  normalization  observed  in  V1 (Carandini              
and  Heeger,  2011)  ( i.e.  the  response  to  a  sum  of  visual  stimuli  is  closer  to  the  mean                  
than  to  the  sum  of  the  responses  when  each  stimulus  is  presented  separately).  In  an                
SSN,  this  summation  is  supralinear  when  stimuli  are  weak,  consistent  with            
experimental   observations    (Heuer   and   Britten,   2002) .  
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Finally,  SSN  models  give  an  explanation  of  the  suppression  of  response  variability  in              
response  to  stimulation  during  evoked  activity (Hennequin  et  al.,  2018) .  Increasing            
the  stimulus  contrast  leads  to  an  effective  strengthening  of  the  recurrent  interactions             
and  therefore  settles  the  network  in  a  state  with  strong  suppressive  inhibitory             
feedback   and   quenched   correlated   variability.  

Strong   interactions:   The   balanced   state  

 

Figure  6. The  balance  of  excitation  and  inhibition  in  a  recurrent  network  of  EI  neurons  with                 
strong   interactions.   Figure   from    (Wolf   et   al.,   2014) .  

Alternative  models  consider  the  case  where  the  synaptic  interactions  between           
neurons, ,  are  stronger  than  in  the  ISN  and  SSN  scenarios  by  a  factor  and,  jAB               √KB   

therefore,  scale  as , i.e. (Van  Vreeswijk  and  Sompolinsky,  2005;  van    1
√KB

  jAB = JAB
√KB

       

Vreeswijk  and  Sompolinsky,  1998,  1996) .  In  these  models,  under  very  general            
conditions  the  network  activity  self-adjusts  so  that  excitatory  and  inhibitory  inputs  into             
the   neurons   balance   each   other   (Fig.   6).  

 r  J  r ( )JA0 0 + ∑
 

B
 AB B = O 1

√KA
(7)  

The  resulting  spatial  and  temporal  fluctuations,  although  small  in  comparison  with            
the  average  excitatory  and  inhibitory  currents  taken  separately  ( i.e. )  are  of          ( )  O √KA    
the  same  order  as  the  total  net  inputs  into  the  neurons  ( i.e.  of  the  order  of  the                  
neuronal  rheobase  current).  Irregular  firing  is  self-consistently  generated  by  the           
collective  network  dynamics  and  does  not  require  any  fine-tuning  of  the  parameters             
nor   additional   external   noise   into   the   neurons.  
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J  r (1)αA = αA0 + ∑
 

B
 AB B = O  (8)  

When  is  sufficiently  large,  the  dynamics  linearizes  and  the  firing  rates  are  given   KA              
by  a  linear  combination  of  the  strength  of  the  external  feedforward  inputs  into  the               
network:  

 . Ir→ = J−1
0

→
 (9)  

A  necessary  criterion  for  a  network  of  strongly  interacting  neurons  to  operate  in  the               
balanced  regime  is  that  in  the  mean-field,  the  balanced  solution  is  the  only              
steady-state  of  the  dynamics  of  the  network.  Therefore,  one  needs  to  constrain  the              
parameters  such  that  a  solution  for  which  and  no  longer  exists.         rE = 0   (1)  rI = O     
These   constraints   are   summarized   in   the   inequalities:  

J I0
JE0 > J II

JEI > J IE
JEE  (10)  

Analytical  calculations  (extended  dynamical  mean-field  in  the  limit  of  large  number  of             
neurons, ,  and  large  average  number  of  connections, )  combined  with   N         KA    
numerical  simulations  have  shown  that  the  balanced  state  also  provides  a  natural             
explanation  for  the  observation  that  the  distributions  of  firing  rates  in  cortex  are              
approximately   log-normal    (Roxin   et   al.,   2011) .  

Balanced  networks (Hansel  and  van  Vreeswijk,  2012)  can  explain  the  emergence  of             
strong  stimulus  selectivity  in  the  absence  of  functionally  specific  connectivity.  This            
counters  what  has  been  prevalent  for  many  years  in  studies  of  the  mouse  visual               
cortex    (Ohki   and   Reid,   2007) .   

Balanced  networks  can  be  bistable  when  synaptic  interactions  exhibit  short-term           
plasticity  such  as  synaptic  depression  and  facilitation (Mongillo  et  al.,  2012) .  Bistable             
balanced  networks  have  been  shown  to  account  for  the  irregularity  of  persistent             
activity  as  observed  in  working  memory  tasks (Hansel  and  Mato,  2013) .  Moreover,             
with  STP,  synaptic  interactions  become  non-linear  and  therefore,  the  balance           
equations  become  non-linear  in  the  population  firing  rates  just  as  in  a  SSN.  In               
particular, (Konrad  and  Tchumatchenko,  2015)  have  recently  proposed  a  model  of            
balanced  networks  that  exhibits  similar  properties  as  in  a  SSN  in  the  presence  of               
STP.  

Balanced  networks  can  also  account  for  the  quenching  of  neuronal  variability            
observed  during  evoked  activity (Churchland  et  al.,  2010) .  This  was  recently  shown             
in  a  model  of  mouse  V1 (Rao  et  al.,  2019)  that  includes  circuit  motifs  such  as                 
bidirectional  connections  in  the  connectivity.  Bidirectional  connections  between  E          
and  I  neurons  effectively  act  as  negative  feedback  onto  the  neurons  and  can  lead  to                
a   decrease   in   variability   following   stimulus   onset.  
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There  is  experimental  evidence  supporting  the  idea  that  the  cortex  might  be             
operating  in  an  approximately  balanced  regime.  Indeed,  studies  have  reported  large            
and  opposing  excitatory  and  inhibitory  synaptic  currents (Haider  et  al.,  2006;  Shu  et              
al.,  2003)  as  well  as  a  high  sensitivity  of  the  network  dynamics  to  small  perturbations                
(London  et  al.,  2010) .  Moreover,  in  cortical  cultures,  synaptic  strengths  have  been             
shown  to  approximately  scale  as  the  inverse  of  the  square  root  of  the  number  of                
connections    (Barral   and   D   Reyes,   2016) .  

Balance   of   n   populations  

In  order  to  balance  populations  of  neurons  one  needs  to  a  priori  discard     n           −1  2n  
solutions  and  therefore  consider  constraints  on  the  parameters.  If  two  or  more     −1  2n          
steady  states  coexist,  the  network  equilibrium  could  be  multistable  and  the  balanced             
solution  could  coexist  with  partially  balanced  solutions  where  one  or  more            
populations   are   silenced   while   the   rest   remain   balanced.  

Let  us  consider  the  case  of  a  network  consisting  of  two  inhibitory  populations  (  and               1   
).   In   the   mean-field   the   activity   of   each   of   the   two   populations   is 2  

  (J J −J J ) rr1 = 1
|J | 10 22 20 12 0 (11)  

(J J −J J ) rr2 = 1
|J | 20 11 10 21 0  (12)  

and  a  balanced  solution  exists  as  long  as  and .  There  are  a  priori          r1 > 0    r2 > 0      
 possible  steady  states  together  with  the  balanced  solution:  (1) −1  22 = 3           (1)  r1 = O  

and ;  (2)  and  ;  (3)  and .  Because  of  the   r2 = 0    r1 = 0   (1)  r2 = O     r1 = 0    r2 = 0     
feedforward  input  into  each  of  the  populations,  there  is  no  solution  for  (3).  (1)  exists                
as  long  as  and  (2)  exists  as  long  as .  Therefore,  when ,  the    J20

J10 > J11
J21

       J10

J20 > J12

J22    J |  | > 0   
balanced  solution  is  the  unique  steady  state  of  the  network  dynamics.  This  is  not  the                
case  when  where  the  balanced  solution  coexists  with  the  partially  balanced   J |  | < 0           
solutions  (1)  and  (2).  In  this  example,  the  balanced  solution  is  unstable  when  it               
coexists  with  (1)  and  (2)  and  we  are  left  with  a  bistable  steady  state  of  two  partially                  
balanced   solutions.  

PC-PV-SOM   networks  

Let  us  consider  a  more  realistic  network  composed  of  three  populations  the  PCs,  the               
PV  neurons  and  the  SOM  neurons.  We  consider  an  architecture  where  SOM             
neurons  do  not  interact  with  each  other (Adesnik  et  al.,  2012;  Gibson  et  al.,  1999;  Hu                 
et   al.,   2011) .  

In   the   mean-field,   the   activity   of   the   three   populations   is  

  r  rE = 1
|J | (J  J  J −J  J  J  (J  J −J  J ))E0 IS SI I0 ES SI + JS0 ES II EI IS  0 (13)  
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  rrI = 1
|J | (J  J  J −J  J  J  (J  J −J  J ))E0 IS SE I0 ES SE + JS0 ES IE EE IS  0 (14)  

(15)  rrS = 1
|J | (J  (J  J −J  J )  (J  J −J  J )  (J  J −J  J ))E0 SI IE SE II + J I0 SE EI SI EE + JS0 EE II EI IE  0  

There   are   a   priori     possible   partially   balanced   solutions   of   the   dynamics: −1  23 = 7  

(1)   ,     and     which   never   exists. (1)  rE = O  rI = 0  rS = 0  

(2)   ,     and     which   implies  rE = 0 (1)  rI = O  rS = 0   

and    J II
JEI > J I0

JE0  J II
JSI > J I0

JS0  

(3)   ,     and     which   implies (1)  rE = O (1)  rI = O  rS = 0  

  and   and  rrE = J  J −J  JE0 II I0 EI
J  J −J  JEI IE EE II 0 r  r I = J  J −J  JEI IE EE II

J  J −J  JE0 IE I0 EE
0 J  r  r −J  r    S0 0 + JSE E SI I < 0  

(4) ,  and  which  never  exists  but  implies  that  the  unbalanced   rE = 0   rI = 0   (1)  rS = O          
solution ,  and  always  exists  as  long  as  the  SOM  population   rE = 0   rI = 0   ( )rS = O √K          
receives   a   strong   feedforward   input.  

(5)   ,     and     which   never   exists. (1)  rE = O  rI = 0 (1)  rS = O  

(6)   ,     and     which   implies  rE = 0 (1)  rI = O (1)  rS = O  

and    J −J  J   J I0 SI S0 II > 0  J  J −J  J  J  (J  J −J  J )   JE0 IS SI S0 EI IS + JES S0 II I0 SI < 0  

(7)   ,     and     which   never   exists.  rE = 0  rI = 0  rS = 0  

From  (4)  we  see  that  whenever  the  SOM  population  receives  a  strong  feedforward              
input  (of  order ),  the  balanced  state  coexists  with  an  unbalanced  solution  where     √K           
the  activity  of  the  SOM  population  saturates  while  the  PCs  and  PV  neurons  are               
silenced.  To  avoid  such  pathological  states,  feedforward  inputs  into  the  SOM            
neurons  must  be  at  most  of  order .  Consistent  with  our  findings,  experimental         1       
studies  have  actually  reported  that  SOM  neurons  receive  little  to  no  inputs  from              
external  sources  like  the  thalamus  in  the  cortex (Beierlein  et  al.,  2003,  2000;              
Cruikshank   et   al.,   2010;   Ma   et   al.,   2006;   Xu   et   al.,   2013) .  

Therefore,  in  the  absence  of  strong  feedforward  input  into  the  SOM  neurons,  the              
balanced   conditions   in   the   PC-PV-SOM   network   can   now   be   simplified.  

(2)  and  (6)  imply  that .  Then,  the  positivity  of  the  rates  of  E  and  I  imply      J IS
JES > J I0

JE0 > J II
JEI             

,   and   the   positivity   of     that     . J |  | < 0 rS  (J  J −J  J )  JE0 SE II SI IE >  (J  J −J  J )  J I0 SE EI SI EE  

Finally,  to  eliminate  the  existence  of  the  partially  balanced  solution  (3)  we  get  the               
additional   constraint   
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 or J II
JEI > J IE

JEE
J IE
JEE > J I0

JE0  

Altogether  these  constraints  lead  to  two  sets  of  solutions,  one  of  which  remarkably              
conserves   the   conditions   required   for   the   standard   balance   of   two   populations.  

Optogenetic   activation   of   PV   inhibitory   neurons   in   vivo  

 

Figure  7. ChR2  photostimulation  of  PV  inhibitory  neurons in  vivo . A .  PV  cell  activation  with                
ChR2  photostimulation.  Left:  Example  of  contrast  response  of  a  single  PC  in  control  (black)               
and  during  stimulation  of  PV  neurons  (red).  Right:  Example  of  contrast  response  of  a  single                
PV  cell  in  control  (cyan)  and  during  activation  with  ChR2  (red).  Panels  adapted  from (Atallah                
et  al.,  2012) . B .  The  suppression  of  interneurons  causes  a  paradoxical  increase  in              
PC-inhibitory  synaptic  current.  Top:  photoinactivation  of  SOM  cells  increases  spontaneous           
EPSCs  and  IPSCs.  Bottom:  PV  cell  inactivation  experiments.  Panels  adapted  from (Kato  et              
al.,   2017) .  

If  the  cortex  operates  in  an  inhibition  stabilized  regime,  the  theory  predicts  that              
stimulation  of  the  GABAergic  neurons  should  lead  to  a  paradoxical  response  in             
which  the  activity  of  both  excitatory  and  inhibitory  neurons  decreases  (see  the             
previous  section).  However,  experimental  evidence  for  inhibition  stabilization  in  the           
cortex  is  ambiguous  since  both  paradoxical  and  non-paradoxical  effects  have  been            
reported. (Atallah  et  al.,  2012)  reported  that  optogenetic  stimulation  of  PV            
interneurons  in  the  layer  2/3  of  the  mouse  primary  visual  cortex  resulted  in  an               
increase  in  the  inhibitory  current  to  PC  through  an  augmentation  of  the  total  inhibitory               
activity  (Fig.  7A).  More  recently, (Kato  et  al.,  2017)  found  that  the  optogenetic              
inactivation  of  PV  or  SOM  interneurons  in  mouse  auditory  cortex  layer  2/3             
strengthens  inhibitory  currents  to  PCs  (Fig.  7B).  The  studies  mentioned  above  used             
Channelrhodopsin  to  activate  the  different  inhibitory  subtypes,  it  is  likely  that  only  a              
subset  of  the  targeted  neurons  was  activated.  Theoretical  studies  ( (Sadeh  et  al.,             
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2017)  with  networks  operating  in  an  ISN  regime, (Gutnisky  et  al.,  2017)  with              
networks  operating  in  an  approximately  balanced  regime)  have  shown  that  when  a             
relatively  small  fraction  of  the  inhibitory  population  is  stimulated,  the  stimulated            
neurons  increase  their  activity  upon  light  onset  and  therefore  exhibit  a            
non-paradoxical  response  (Fig.  8).  More  recently, (Sanzeni  et  al.,  2019)  have            
provided  data  consistent  with  the  balanced  theory,  and  observed  a  non-paradoxical            
response  in  the  upper  layers  of  visual,  somatosensory,  and  motor  cortex  of  the              
mouse  when  expressing  Channelrhodopsin  in  PV  neurons  but  in  addition  found  that             
when  using  transgenic  mouses  in  which  almost  all  neurons  expressed  the  markers,             
stimulating   PV   neurons   produced   a   population   paradoxical   effect.  

Modeling   the   ChR2   activation   of   PV   neurons   in   a   standard   balanced   network  

We  give  here  a  detailed  analysis  of  the  effect  of  the  partial  activation  of  the  inhibitory                 
population  in  strongly  recurrent  networks  of  neurons  with  one  excitatory  and  one             
inhibitory   population   operating   in   the   balanced   regime.  

Activation   of   a   small   proportion   of   I   neurons  

We  want  to  investigate  the  response  of  the  network  to  the  stimulation  of  a  proportion                
 of  its  inhibitory  population.  Let  us  denote  by  (resp. )  the  subpopulation  of p          +    −     

stimulated  (resp.  non-stimulated)  inhibitory  neurons.  We  model  the  effect  of  the            
stimulation  as  an  additional  large  external  input,  into  the  neurons  in  population         δI  √K       

.  Let  us  start  with  the  stimulation  of  a  very  small  fraction  of  the  inhibitory +                
population,  namely ,  where  is ,  and  describe  the  response  of  the    p = ε

√K
  ε   (1)  O        

network   with   increasing   the   proportion     of   stimulated   inhibitory   cells. p  

The   average   inputs   into   the   neurons   are  

ε J (r −r ) uE = √K (J  r  r −J  r )E0 0 + JEE E EI − − EI + − (16)  

) ε J (r −ru+ = √K (J  r δI  r −J  r )I0 0 +  + J IE E II − − II + −  (17)  

ε J (r −r ) u− = √K (J  r  r −J  r )I0 0 + J IE E II − − II + − (18)  

where  (resp. )  is  the  net  input  into  the  perturbed  population  (resp.  u+   u−           
non-perturbed  population),  and  (resp. )  is  the  average  rate  of  the  perturbed    r+   r−         
population   (resp.   non-perturbed   population).  

Because  the  stimulation  is  of  strength ,  there  is  no  solution  in  which ,       ( )  O √K        uE  u+  
and  can  remain  finite  and  non-zero.  Therefore,  even  stimulating  a  very  small  u−             
proportion  of  the  inhibitory  neurons  breaks  the  global  balance  of  the  network.             
Nevertheless,  we  can  consider  solutions  for  which  either  the  stimulated  population            
saturates  and  the  non-stimulated  population  is  still  balanced  or  for  which  the             
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stimulated  population  remains  balanced  and  the  non-stimulated  population  is          
silenced.  

 

Figure  8. Modeling  the  ChR2  activation  of  PV  neurons. A.  Scheme  of  the  EI  network. B.                 
Top:  Activation  of  a  small  proportion  of  I  cells.  Bottom:  Activation  of  a  large  proportion  of  I                  
cells. C.  Evolution  of  the  normalized  slope  of  PCs  and  PVs’  normalized  activities  (evaluated               
for   )   as   a   function   of   the   proportion   of   stimulated   neurons,   . I >δ − 0 p  

Because  we  only  consider  the  stimulation  of  a  very  small  fraction  of  the  I  population,                
in  the  limit  where  goes  to  infinity,  the  only  consistent  solution  is  the  one  where      K             

,     and   . (1)  rE = O +r+ → ∞ (1)  r− = O  

Let   us   write   , and   .  rE = rE
∞ + νE

√K
r    + = Λ+ √K + λ+  r− = r−

∞ + ν−
√K

 

The  balance  of  the  inputs  into  the  excitatory  cells  and  into  the  non-stimulated  I               
neurons   leads   to  

0  r  r −J  (r Λ )  JE0 0 + JEE E
∞

EI −
∞ + ε + =  (19)  

  =   0  r  r −J  (r Λ )  J I0 0 + J IE E
∞

II −
∞ + ε +  (20)  

Thus,   and   ,  r  rE
∞ = |J |

J  J  −J  JII E0 EI I0
0  r −ε Λr−

∞ = |J |
J  J −J  JIE E0 EE I0

0 +  

23  



and   to   leading   order,  

 [J  ν  (ε (r −λ )−ν ), , ]  rE
∞ = Ψ EE E + JEI −

∞
+ − β α  (21)  

 [J  ν  (ε (r −λ )−ν ),  r−
∞ = Ψ IE E + J II −

∞
+ − β ]  , α  (22)  

]  [ (δI−ε J  Λ )  ν  (ε (r −λ )−ν ), ,r+ = Ψ √K II + + J IE E + J II −
∞

+ − β α  (23)  

Given   that     when     ,   equation   [23]   leads   to (x, , )  Ψ β α ≈ x
τ(V −V )th R

 x → ∞  

Λ+ = δI
τ  (V −V ) + ε J  th r II

  (24)  

λ+ = τ  (V −V ) + ε Jth r II

J  ν  + J  (ε r  − ν )IE E II −
∞

−   (25)  

and   the   corrections     and     can   be   computed   using   equations   [21]   and   [22]. νE ν−  

Remarkably,  and  decrease  with  so  for  sufficiently  large ,  and  will  Λ+   r−
∞    ε       K  r+   r−   

also   decrease   with   . ε  

Depending  on  the  parameters,  namely  on  the  value  of  the  baseline  rate  of  the             rBL    
inhibitory  population  with  respect  to  the  quantity ,  or  becomes  zero.  When        δI

J II
 r−

∞   Λ+     

,     becomes     for   . δI
J II

> rBL r−
∞  0 ε = εC = δI−J  rII BL

τ(V −V ) rth r BL  

Activation   of   a   large   proportion   of   I   neurons  

When  the  strength  of  the  perturbation  is  and  the  proportion  of  perturbed        ( )  O √K       
neurons,   ,   is   ,   the   average   inputs   into   the   neurons   are   given   by p (1)  O  

uE = √K (E  r −J  (p r 1−p) r )+ JEE E EI + + ( −  (26)  

u+ = √K (I δI  r −J  (p r 1−p) r ))+  + J IE E II + + ( −  (27)  

u− = √K (J  r  r −J  (p r 1−p) r ))I0 0 + J IE E II + + ( −  (28)  

In  the  limit  where  goes  to  infinity,  the  only  consistent  solution  is  the  one  where      K             
,  and .  and  are  determined  by  the  equations (1)  rE

∞ = O  (1)  r+
∞ = O    r−

∞ = 0  rE
∞   r+

∞       
imposing  the  balance  of  the  net  inputs  into  the  PCs  and  into  the  perturbed  inhibitory                
population:  

0  r  r −J  p r  JE0 0 + JEE E
∞

EI +
∞ =  (29)  

0  r δI  r −J  p r  J I0 0 +  + J IE E
∞

II +
∞ =  (30)  

Thus,   and   .  rrE
∞ = |J |

J  J  −J  JII E0 EI I0 
0 − |J |

 J  δIEI  rr+
∞ = p |J |

J  J −J  JIE E0 EE I0
0 − p |J |

J  δIEE  
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Remarkably,  the  rate  of  the  perturbed  population  decreases  as .  Its  response          p
1    

becomes   paradoxical   for   a   value   of     such   that   ,   namely, p (p )  r+
∞ = pc∞ = rBL  

−pc∞ = 1 r  |J |BL

J  δIEE (31)  

For   finite   but   large   ,   let   us   write     and   ,  K rE = rE
∞ + νE

√K  rrI = p +
∞ + νI

√K  

[J  ν −J  ν , , ]  rE = Ψ EE E EI I β α (32)  

[J  ν −J  ν , , ]  r+ = Ψ IE E II I β α  (33)  

[−δI  ν −J  ν , , ]r− = Ψ √K + J IE E II I β α  (34)  

The  first  two  equations  Eq.  32-33  determine  the  first-order  corrections  of  the  rates  of               
the  excitatory  and  inhibitory  populations.  The  third  one  Eq.  (34)  gives  the  order  of  the                
correction  of  the  rate  of  the  non-perturbed  inhibitory  population  which  gives  an             
exponentially   small   function   of   .  K  
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Chapter   2   

Mechanisms  underlying  the  response  to  the       
optogenetic  photostimulation  of  PV  inhibitory      
neurons   in   vivo  

Introduction  
Loss-of-function  is  a  common  strategy  used  to  infer  the  relation  between  network             
dynamics  and  neural  computation  and  behavior.  Classically,  it  relies  on  irreversible            
lesions  of  brain  areas  (Lashley,  1931;  Mishkin  and  Ungerleider,  1982;  Newsome  and             
Wurtz,  1988),  on  the  use  of  chemicals  to  permanently  disrupt  excitatory  neuronal             
activity  (Guo  et  al.,  2017;  Hikosaka  and  Wurtz,  1985;  Krupa  et  al.,  1999),  or  on  the                 
cooling   of   brain   tissues   (Long   and   Fee,   2008;   Ponce   et   al.,   2008).  

In  recent  years,  optogenetic  tools  have  allowed  the  reversible  silencing  of  local             
excitation  in  the  mouse  cortex  (Deisseroth,  2015).  This  photo-inhibition  can  be            
achieved  when  a  light-sensitive  protein  (opsin  involving  light-gated  Cl-/H+          
hyperpolarizing  pumps)  is  expressed  in  the  excitatory  neurons  (Yizhar  et  al.,  2011).             
Upon  light  stimulation,  these  proteins  cause  the  hyperpolarization  of  the  membrane            
potential  of  the  targeted  neurons,  leading  to  their  inactivation  (Chow  et  al.,  2010;              
Wiegert   et   al.,   2017;   Zhang   et   al.,   2007).  

Alternatively,  photo-suppression  can  also  be  achieved  indirectly  when  an  excitatory           
opsin  (channelrhodopsin,  ChR)  is  expressed  in  the  inhibitory  neurons  (Asrican  et  al.,             
2013;  Madisen  et  al.,  2012;  Zhao  et  al.,  2011).  Specific  Cre  lines  have  been               
developed  that  enable  the  stimulation  of  specific  inhibitory  subtypes  ( e.g.  PV,  SOM             
or  VIP  neurons) in  vivo .  Different  variants  of  ChR  ( e.g.  with  blue-shifted  light,  ChR2,               
and  with  red-shifted  light,  ReaChR;  Hooks  et  al.,  2015;  Klapoetke  et  al.,  2014;  Lin  et                
al.,  2013)  also  exists  allowing  for  the  stimulation  of  local  as  well  as  very  extended                
cortical   regions.  

The  effects  of  the  ChR-assisted  suppression  of  cortical  excitation  can  lead  to             
counter-intuitive  observations.  Indeed,  the  optogenetic  stimulation  of  a  given          
inhibitory  subtype  can  paradoxically  lead  to  a  decrease  in  the  activity  of  these              
targeted  neurons.  The  mechanisms  underlying  these  effects  are  likely  to  depend  on             
the  ChR  variant  as  well  as  the  targeted  inhibitory  subtype  and  are  still  to  be                
investigated.  

We  have  described  in  the  introduction  how  the  effects  of  the  ChR2  stimulation  of  PV                
neurons  can  be  accounted  for  in  two-population  network  models  when  only  a  subset              
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of  the  inhibitory  neurons  is  effectively  stimulated.  Here,  we  will  characterize  the             
effects  of  the  optogenetic  stimulation  of  PV  inhibitory  neurons  in  ReaChR  mice  in  the               
anterior  lateral  motor  cortex  (ALM)  and  in  the  barrel  cortex  (S1).  ReaChR  is  a               
red-shifted  variant  of  ChR  that  enables  the  stimulation  of  a  large  fraction  of  the               
neurons   in   a   very   wide   area.  
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Abstract   
GABAergic  Interneurons  can  be  subdivided  into  three  subclasses:  parvalbumin          
positive  (PV),  somatostatin  positive  (SOM)  and  serotonin  positive  neurons.  With           
principal  cells  (PCs)  they  form  complex  networks.  We  examine  PCs  and  PV             
responses  in  mouse  anterior  lateral  motor  cortex  (ALM)  and  barrel  cortex  (S1)  upon              
PV  photostimulation  in  vivo .  In  ALM  layer  5  and  S1,  the  PV  response  is  paradoxical:                
photoexcitation  reduces  their  activity.  This  is  not  the  case  in  ALM  layer  2/3.  We               
combine  analytical  calculations  and  numerical  simulations  to  investigate  how  these           
results  constrain  the  architecture.  Two-population  models  cannot  explain  the  results.           
Four-population  networks  with  V1-like  architecture  account  for  the  data  in  ALM  layer             
2/3  and  layer  5.  Our  data  in  S1  can  be  explained  if  SOM  neurons  receive  inputs  only                  
from  PCs  and  PV  neurons.  In  both  four-population  models,  the  paradoxical  effect             
implies  not  too  strong  recurrent  excitation.  It  is  not  evidence  for  stabilization  by              
inhibition.  
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Introduction  
Local  cortical  circuits  comprise  several  subclasses  of  GABAergic  interneurons  which           
together  with  the  excitatory  neurons  form  complex  recurrent  networks (Goldberg  et            
al.,  2004;  Jiang  et  al.,  2015;  Karnani  et  al.,  2016;  Markram  et  al.,  2004;  Moore  et  al.,                  
2010;  Pfeffer  et  al.,  2013;  Tasic  et  al.,  2018;  Tremblay  et  al.,  2016) .  The  architecture                
of  these  networks  depends  on  the  cortical  area  and  layer (Beierlein  et  al.,  2003;               
Jiang   et   al.,   2013;   Rudy   et   al.,   2011;   Xu   et   al.,   2013;   Xu   and   Callaway,   2009) .  

Optogenetics  is  now  classically  used  to  reversibly  inactivate  a  particular  cortical  area             
or  neuronal  population  to  get  insights  into  their  functions (Atallah  et  al.,  2012;  Guo  et                
al.,  2014b;  Lee  et  al.,  2012;  Li  et  al.,  2015;  Svoboda  and  Li,  2018) .  Optogenetics  has                 
also  been  applied  to  isolate  the  different  components  ( e.g.  feedforward vs.  recurrent)             
of  the  net  input  into  cortical  neurons (Lien  and  Scanziani,  2018,  2013) .  It  can  also  be                 
used  to  experimentally  probe  the  architecture  of  local  cortical  circuits (Moore  et  al.,              
2018;  Xu  et  al.,  2013) .  However,  because  of  the  complexity  of  these  networks  and  of                
their  nonlinear  dynamics,  qualitative  intuition  and  simple  reasoning  ( e.g.          
‘box-and-arrow’  diagrams)  are  of  limited  use  to  interpret  the  results  of  these             
manipulations.  

“Paradoxical  effect”  designates  the  phenomenon  that  stimulation  of  a  GABAergic           
interneuron  population  not  only  decreases  the  average  activity  of  the  principal  cells             
(PCs)  but  also decreases  the  activity  of  the  stimulated  population (Murphy  and  Miller,              
2009;  Ozeki  et  al.,  2009;  Tsodyks  et  al.,  1997) .  Intuitively,  paradoxical  effect  arises              
when  the  stimulation  induces  a  strong  activity  suppression  in  the  PCs  (Kato  et  al.,               
2017;  Moore  et  al.,  2018),  such  that  the  overall  (synaptic+stimulus)  excitation  to  the              
stimulated  population  decreases.  However,  the  precise  conditions  under  which  the           
paradoxical   effect   occurs   are   difficult   to   establish   without   mathematical   modeling.  

In  simple  models  consisting  of  only  two  populations  (one  excitatory  and  one             
inhibitory)  these  conditions  have  been  mathematically  derived.  The  paradoxical          
effect  occurs  when  the  networks  operates  in  the  regime  known  as inhibition             
stabilized (inhibition  stabilized  networks,  ISN)  in  which  the  total  the  total  recurrent             
excitation  is  so  strong  that  inhibition  is  necessary  to  prevent  a  blow  up  in  the  activity                 
(Murphy  and  Miller,  2009;  Ozeki  et  al.,  2009;  Tsodyks  et  al.,  1997) .  Networks,  with               
several  inhibitory  populations  have  been  recently  investigated (Del  Molino  et  al.,            
2017;  Litwin-Kumar  et  al.,  2016;  Sadeh  et  al.,  2017) .  These  studies  considered             
network  models  with  synaptic  currents  small  compared  to  neuronal  rheobase           
currents (Gerstner  et  al.,  2014;  Lapicque  1909) .  However,  interactions  in  cortex  are             
stronger   than   what   is   assumed   in   these   studies    (Shadlen   and   Newsome,   1994) .  

Simple  networks  with  strong  interactions  comprising  one  excitatory  and  one           
inhibitory  population  have  been  studied  extensively.  In  a  broad  parameter  range  not             
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requiring  fine-tuning,  such  networks  dynamically  evolve  into  a  state  in  which  strong             
excitation  is  balanced  by  strong  inhibition  such  that  the net  input  into  the  neurons  is                
comparable  to  their  rheobases (van  Vreeswijk  and  Sompolinsky,  1998,  1996) .  The            
theory  of  balanced  networks  has  been  developed  for  a  variety  of  single  neuronal              
models  including  binary  neurons (van  Vreeswijk  and  Sompolinsky,  1998,  1996) ,  rate            
models (Harish  and  Hansel,  2015;  Kadmon  and  Sompolinsky,  2015) ,          
leaky-integrate-and  fire  neurons (Hansel  and  Mato,  2013;  Mongillo  et  al.,  2012;            
Rosenbaum  and  Doiron,  2014;  Roxin  et  al.,  2011;  Van  Vreeswijk  and  Sompolinsky,             
2005)  and  conductance-based  models (Hansel  and  van  Vreeswijk,  2012;  Pattadkal           
et   al.,   2018) .  

In  the  present  study  we  investigate  experimentally  the  effects  of  the  photostimulation             
of  PV  interneurons  on  the  anterior  lateral  motor  cortex  (ALM)  and  barrel  cortex  (S1)               
of  the  mouse.  We  show  that  two-population  network  models  do  not  suffice  to  account               
for  these  effects.  To  overcome  this  limitation,  we  develop  a  theory  for  the  paradoxical               
effect  in  balanced  networks  that  takes  into  account  the  multiplicity  of  GABAergic             
neuronal  populations.  Combining  analytical  calculations  and  numerical  simulations,         
we  study  the  responses  of  these  networks  at  population  and  single  neuron  level.  For               
two-population  balanced  networks  it  has  been  shown  that  the  paradoxical  effect  only             
occurs  when  the  network  is  inhibition  stabilized (Pehlevan  and  Sompolinsky,  2014;            
Wolf  et  al.,  2014) .  Here  we  show  that  in  contrast,  in  four-population  networks,  the               
paradoxical  effect  can  occur  even  if  the  network  is  not  inhibition  stabilized.  We              
conclude  with  prescriptions  for  experiments  that  according  to  the  theory  can  be             
informative   about   network   architectures   in   cortex.  

Results  

ALM   layer   5   and   S1   exhibit   paradoxical   effect   but   not   ALM   layer   2/3  

We  expressed  a  red-shifted  channelrhodopsin  (ReaChR)  in  PV  interneurons  to           
optogenetically  drive  local  inhibition  in  the  barrel  cortex  (S1)  and  anterior  lateral             
motor  cortex  (ALM)  of  awake  mice (Hooks  et  al.,  2015) .  We  used  orange  light               
(594nm)  to  illuminate  a  large  area  of  ALM  or  S1  (2  mm  diameter),  photostimulating  a                
large  proportion  of  PV  interneurons  (Fig.  1A).  We  measured  the  light-induced  effects             
on  neural  activity  using  silicon  probe  recordings.  In  both  brain  areas,  putative  PCs              
and  putative  PV  neurons  were  identified  based  on  spike  width  (Methods).  Neurons             
with  wide  spikes  were  likely  mostly  PCs.  Units  with  narrow  spikes  were  fast  spiking               
(FS)  neurons  and  likely  expressed  parvalbumin (Cardin  et  al.,  2009;  Guo  et  al.,              
2014b;  Olsen  et  al.,  2012;  Resulaj  et  al.,  2018) .  We  investigated  the  responses  of               
these  neurons  as  a  function  of  the  photostimulation  intensity  in  ALM  layer  2/3  and               
layer   5,   and   in   S1.  
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Figure  1.  Effects  of  photostimulation  of  PV-positive  interneurons  in  the  mouse  neocortex.  A.              
Scheme  of  the  experiment.  B-C.  Normalized  spike  rate  as  a  function  of  laser  intensity  in                
different  layers  and  brain  areas.  Top,  individual  neuron  responses  of  the  PCs  (red)  and  PV                
(blue)  neurons;  bottom,  population  average  responses.  B.  ALM:  layer  2/3:  n=26  (PCs),  n=9              
(PV);  C.  ALM  layer  5:  n=62  (PCs),  n=12  (PV).  D.  S1:  n=52  (PCs),  n=8  (PV). Mean  ±  s.e.m.                   
across  neurons,  bootstrap.  E.  Comparison  of  PV  neurons’  normalized  spike  rates  between             
ALM  Layer  2/3  and  Layer  5  at  laser  intensity  0.5  mW/mm 2 .  F.  Slope  of  PCs  and  PVs’                  
normalized  spike  rate  as  a  function  of  laser  intensity.  Data  from  ALM  layer  5.  Slopes  are                 
computed  using  data  from  0.3  mW/mm 2  and  below,  before  the  spike  rate  of  PV  neurons                
begin  to  increase.  Mean±SEM,  bootstrap  (Methods).  G.  Same  as  F  but  for  data  from  S1.  In  F                  
and   G   the   difference   between   the   slopes   for   the   PC   and    PV   populations    is   not   significant.  
 
We  found  that  in  all  recorded  layers  and  areas,  the  population  average  activity  of  the                
PCs  decreased  with  the  optogenetic  drive  (Fig.  1B,  Fig.  2).  In  contrast  in  ALM,  the                
PV   population   exhibited   a   behavior   which   depended   on   the   recorded   layer.  
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In  ALM  layer  2/3,  the  population  average  firing  rate  of  PV  neurons  monotonically              
increased  with  the  photostimulation  intensity.  However,  individual  neuron  responses          
were  heterogeneous.  Most  PV  neurons  increased  their  spike  rates  from  baseline            
with  increased  photostimulation  intensity.  Some  PV  neurons  initially  decreased  their           
spike   rates   below   baseline   for   low   light   intensity.  
 
In  ALM  layer  5,  the  response  of  the  PV  population  was  non-monotonic.  For  low  laser                
intensity,  their  activity  paradoxically  decreased  with  the  optogenetic  drive.  The  slope            
of  the  normalized  firing  rate v.s .  laser  intensity  was  significantly  different  from  zero  for               
both  the  PC  and  PV  populations  (Fig.  1F).  The  ratio  of  their  slopes  was  0.62  ±  0.28.                  
At  high  photostimulation  intensity,  the  activity  of  the  PV  population  increased.  At             
intermediate  photostimulation  intensity  (0.5  mW/mm 2 ),  the  response  of  the  PV           
neurons  was  significantly  different  between  layer  2/3  and  layer  5  (Fig.  1E,  p<0.005,              
unpaired   t-test,   two-tailed   test).  
 
Paradoxical  decrease  in  PV  neurons  activity  with  the  optogenetic  drive  was  also             
observed  in  S1.  Remarkably,  the  concomitant  decrease  of  the  PC  and  the  PV              
population  activities  was  proportional  (Fig.  1G,  ratio  of  slopes  PV/PC,  mean  ±  SEM;              
S1,   1   ±   0.29).   
 
In  both  ALM  layer  5  and  S1,  there  was  also  a  large  diversity  of  responses.  Most  PV                  
neurons  decreased  their  activity  at  low  photostimulation  intensity.  At  high  laser            
intensity  (5  mW/mm 2 ),  a  fraction  of  PV  neurons  (6/12  in  ALM  layer  5  and  6/10  in  S1)                  
had  a  larger  response  than  baseline,  while  the  rest  remained  suppressed.  Figure  2              
shows  the  spike  rates  of  PCs  and  PV  neurons  at  an  intermediate  light  intensity               

.  (0.5 mW .mm )−2   

Network   models  

To  assess  the  network  mechanisms  which  may  account  for  the  experimental  data             
from  ALM  and  S1  we  first  considered  models  consisting  of  one  excitatory  and  one               
inhibitory  population.  Since  it  is  well  established  that  cortical  circuits  involve  a  variety              
of  inhibitory  subpopulations,  we  later  extended  the  theory  to  network  models  of  four              
populations  of  neurons  representing  PCs  and  three  subtypes  of  GABAergic           
interneurons  in  cortex.  In  all  our  models,  neurons  are  described  as  integrate-and-fire             
elements.  The  data  we  seek  to  account  for,  were  obtained  in  optogenetic             
experiments  in  which  the  laser  diameter  was  substantially  larger  than  the  spatial             
range  of  neuronal  interactions  and  comparable  to  the  size  of  the  area  in  which               
activity  was  recorded.  Therefore,  in  all  our  models,  we  assume  for  simplicity  that  the               
connectivity  is  unstructured.  We  modeled  the  ReachR-optogenetic  stimulation  of  the           
PV  population  as  an  additional  external  input, ,  into  PV  neurons.  We  assumed         Iopto       
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that  it  depends  on  the  intensity  of  the  laser, ,  as  where           Γopto   log  Iopto = I0 1( + Γ0

Γopto)    I0  

and     are   parameters   (Fig.   3-figure   supplementary   1,    (Hooks   et   al.,   2015) ).  Γ0  

 
Figure  2.  Spike  rates  of  PCs  (top)  and  PV  neurons  (bottom).  Dots  correspond  to  individual                
neurons.  Laser  intensity  is 0.5  mW/mm 2  .  Pie  charts  represent  the  fraction  of  neurons  with                
different  types  of  changes.  Mean  ±  s.e.m.  bootstrap.  Black,  fraction  of  neurons  with  activity               
increase  larger  than  0.1  Hz.  Light  gray,  fraction  of  neurons  with  activity  decrease  larger  than                
0.1  Hz.  Dark  gray,  fraction  of  neurons  with  activity  change  smaller  than  0.1  Hz.  White,                
fraction   of   neurons   with   activity   smaller   than   0.1   Hz   upon   PV   photostimulation.  

Two-population   model  

The  two-population  network  is  depicted  in  Fig.  3A.  It  is  characterized  by  four              
recurrent  interaction  parameters, ,  and  two  feedforward  interaction  parameters,     Jαβ       
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,     (see   Materials   and   Methods).  Jα0 , ∈{E, }  α β I  
 
Results  from  numerical  simulations  of  the  model  are  depicted  in  Fig.  3B  and  C               
where,  the  dependence  of  the  population  activities  normalized  to  baseline,  are            
plotted  against  the  intensity  of  the  laser, . Figure  3B  shows  the  response  of  the         Γopto         
network  where  the  recurrent  excitation, ,  is  non  zero.  The  activity  of  the  PV       JEE          
population,  varies  non-monotonically  with  the  laser  intensity.  For  small  intensities,  rI           

 paradoxically  decreases  together  with  the  activity  of  the  PCs, .  This rI           rE   
paradoxical  effect  stems  from  the  fact  that  the  decrease  in  the  activity  of  the  PCs                
yields  a  reduction  in  the  excitation  to  PV  neurons  which  is  not  compensated  for  by                
the  optogenetic  drive.  As  a  result,  the  net  excitation  to  PV  neurons  diminishes              
yielding  a  decrease  in .  When  becomes  very  small,  this  mechanism  does  not     rI   rE         
operate  anymore  and  consequently,  increases  as  is  increased  further.  In     rI     Γopto      
Figure  3C,  is  zero,  monotonically  increases  with  the  light  intensity  whereas    JEE    rI         

 monotonically  decreases.  For  small  intensities,  is  close  to  a  constant.  It  starts rE       rI         
to  increase  appreciably  only  when .  Therefore,  the  PV  response  is  not      ≃0  rE        
paradoxical.  
 

 
Figure  3.  Paradoxical  effects  in  the  two-population  model.  A.  The  network.  B-C.  Responses              
of  PCs  and  PV  neurons  normalized  to  baseline vs .  the  laser  intensity, ,  for  different             Γopto    

values  of  the  recurrent  excitation, .  B: ,  the  network      jEE  / .98 μA . ms . cm jEE = JEE √K = 0 −2    
exhibits  the  paradoxical  effect.  C: ,  the  population  activity  of  PV  neurons  is  almost       jEE = 0          
insensitive  to  small  laser  intensities.  Red:  PCs.  Blue:  PV  neurons.  Thick  lines:  population              
averaged  responses.  Thin  lines:  responses  of  10  neurons  randomly  chosen  in  each             
population.  Firing  rates  were  estimated  over .  Parameters: ,       00 s1   7600,NE = 5  9200N I = 1  

.  Other  parameters  as  in  Table  1-2.  Baseline  firing  rates  are: , 00K = 5            .7 HzrE = 5  
  (B)   and   ,     (C).   At   the   minimum   of     in   (B),   . 1.7 HzrI = 1 .5 HzrE = 1 .7 HzrI = 5 rI .06 HzrE = 0  

 
Qualitatively  this  model  seems  to  account  for  our  experimental  data  from  ALM  layer              
2/3,  ALM  layer  5  and  S1.  It  would  imply  that  in  layer  5,  is  sufficiently  large  to               JEE      
generate  the  paradoxical  effect,  while  in  layer  2/3  this  is  not  the  case.  On  closer                
inspection  however,  there  are  major  discrepancies  between  the  simulation  results           
and  the  experimental  data.  In  our  recordings  in  both  ALM  layer  5  and  S1,  the  PV                 
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population  activity  reaches  a  minimum  while  the  PCs  are  still  significantly  active:             
relative  to  baseline  the  activity  is  40%  in  ALM  and  25%  in  S1.  In  contrast,  in  the                  
two-population  model,  the  minimum  of  the  PV  activity  is  reached  (Appendix  1B)             
when  excitatory  neurons  are  virtually  completely  silenced  (Fig.  3B,  Fig.  3-figure            
supplementary  2A).  In  fact  one  can  show  that  for  sufficiently  large ,  when  is             K   rI   
minimum,  the  activity  of  the  excitatory  population  is  exponentially  small  in .  As  a             K    
result,   to   account   for   the   data   one   needs   to   assume   that   . ≃10  K  
 
In  addition,  in  the  experimental  data  the  activities  of  the  PC  and  PV  populations  in  S1                 
decrease  in  equal  proportions  before  the  minimum  of  the  PV  activity  (Fig.  1B).  This               
cannot  be  accounted  for  in  a  two-population  model  unless  parameters  are  fine-tuned             
(Fig.  3-figure  supplementary  3).  Analytical  calculations  (Appendix  1B)  supplemented          
with  numerical  simulations  show  that  this  proportional  decrease  only  happens  when            
the  determinant  of  the  interaction  matrix, ,  is  close  to  zero.  Moreover,  the  external        Jαβ         
input  must  also  be  fine-tuned  so  that  the  neurons  have  biologically  realistic  firing              
rates   (Fig.   3-figure   supplementary   3).  
 
The  experimental  data  from  ALM  layer  2/3  show  that  for  already  small  light  intensity               
the  activity  of  PV  neurons  increases  appreciably.  This  is  in  contrast  with  Fig.  3C.  In                
Fig.  3-figure  supplementary  2B,  we  show  that  the  two-population  model  can  account             
for  this  feature  only  if  the  recurrent  excitation  is  very  weak  in  that  layer  and  the                 
connectivity   is   extremely   sparse.  
 
These  discrepancies  prompted  us  to  investigate  whether  models  with  several           
populations  of  inhibitory  neurons  can  account  for  our  experimental  data  without            
fine-tuning.  We  focus  on  two  four-population  network  models.  Both  consist  of  three             
populations  representing  PCs,  PV  and  SOM  neurons  and  a  fourth  population            
representing  other  inhibitory  neurons.  The  main  difference  between  the  two  models            
lies   in   the   inhibitory   populations   from   which   SOM   neurons   receives   inputs.  

A   four-population   model   with   V1-like   architecture   (Model   1)  

We  first  investigated  the  dynamics  of  a  four-population  network  with  an  architecture             
that  is  similar  to  the  one  reported  in  layer  2/3  in  V1 (Pfeffer  et  al.,  2013)  and  S1 (Lee                    
et  al.,  2013)  (Fig.  4A).  The  model  consists  of  four  populations  representing  PCs,  PV,               
SOM  and  VIP  neurons.  SOM  neurons  do  not  interact  with  each  other (Adesnik  et  al.,                
2012;  Gibson  et  al.,  1999;  Hu  et  al.,  2011) .  VIP  neurons  only  project  to  the  SOM                 
population (Jiang  et  al.,  2015;  Pfeffer  et  al.,  2013) .  All  neurons  except  SOM  receive               
inputs  from  sources  external  to  the  network  ( e.g.  thalamus) (Beierlein  et  al.,  2003,              
2000;  Cruikshank  et  al.,  2010;  Ma  et  al.,  2006;  Xu  et  al.,  2013) .  The  same                
architecture   was   considered   in    (Litwin-Kumar   et   al.,   2016) .   

Following  (Pfeffer  et  al.,  2013),  the  PV  population  does  not  project  to  the  SOM               
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population.  Other  studies  have  reported  such  a  connection (Jiang  et  al.,  2015) .             
However,  adding  such  a  connection  to  Model  1  does  not  qualitatively  affect  the  PC               
and   PV   responses   (see   Appendix   1C).  

We  considered  parameter  sets  such  that:  1)  At  baseline,  the  network  is  operating  in               
the  balanced  state  with  all  populations  active;  2)  the  activity  of  the  PC  population               
decreases   with   the   laser   intensity   as   observed   in   our   experiments.  

Theory   in   the   large     limit. ,  N K  

It  is  instructive  to  consider  the  limit  in  which  the  number  of  neurons  in  the  network,                 
,  and  the  average  number  of  connections  per  neuron, ,  go  to  infinity.  In  this  limit,  N           K        

the  analysis  of  the  stationary  state  of  the  network  simplifies  (see  Materials  and              
Methods).  This  stems  from  the  fact  that  when  interactions  are  numerous,  excitatory             
and  inhibitory  inputs  are  strong  and  only  populations  for  which  excitation  is  balanced              
by  inhibition  have  a  finite  and  non-zero  activity.  The  average  activities  of  the  four               
populations  are  then  completely  determined  by  four  linear  equations, the  balance            
equations ,  which  reflect  this  balance.  Solving  this  system  of  equations  yields  the             
population  activities, , ,  as  a  function  of  the  external  inputs  to  the   rα  , , ,  α = E I S V           
network.  In  particular,  when  the  laser  intensity  is  sufficiently  small,  the  four             
populations  are  active  and  their  firing  rates  vary  linearly  with  the  current  induced  by               
the   photostimulation   (Appendix   1C).   

Figure  4  plots  the  activities  of  the  populations vs .  the  optogenetic  input  into  PV               
neurons, ,  for  two  sets  of  interaction  parameters.  In  Fig.  4B,  the  activity  of  the   Iopto               
PV  population, ,  increases  with .  In  contrast,  in  Fig.  4C,  decreases  with   rI     Iopto       rI    

:   the   response   of   the   PV   population   is   paradoxical.  Iopto  

To  characterize  for  which  interaction  parameters  the  PV  response  is  paradoxical,  we             
consider  the  susceptibility  matrix .  The  element  is  the   ×4  4     χ[ αβ]     χαβ (α, , , , )β = E I S V    
derivative  of  the  population  activity, ,  with  respect  to  a  small  additional  input,  into     rα          
population , .  Evaluated  for  small ,  characterizes  by  how  much  varies  β   Iβ      Iβ   χαβ      rα   
with  an  increasing  but  weak  extra  input  into  population .  Its  sign  indicates  whether          β      

 increases  or  decreases  with .  The  elements  of  the  susceptibility  matrix  can  be rα       Iβ          
decomposed  in  several  terms  corresponding  to  the  contributions  of  different           
recurrent  loops  embedded  in  the  network  (Appendix  1C).  Using  this  decomposition            
one  can  show  whether  the  PV  response  is  paradoxical  or  not  depends  on  the               
interplay  between  two  terms.  One  is  the  gain  of  the  disinhibitory  feedback  loop              
PC-VIP-SOM-PC  and  the  other  is  the  product  of  the  recurrent  excitation, ,  with             JEE   
the  gain  of  the  disinhibitory  feedback  loop  VIP-SOM-VIP  (Fig.  4-figure           
supplementary  1).  Remarkably,  PV  neurons  are  not  involved  in  these  two  terms.  A              
straightforward  calculation  (Eq.  A37)  then  shows  that  the  response  of  PV  neurons             
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increases   with     if   the   recurrent   excitation   is   sufficiently   strong,   namely   if  Iopto  

JEE > J*
EE = JV E

JES
JV S

(1)  

The  denominator  in  is  the  strength  of  the  connection  from  the  SOM  population     J*
EE            

to  the  VIP  population.  The  numerator  is  the  gain  of  the  pathway  which  connects               
these  two  populations  via  the  PCs.  When  the  negative  contribution  of  the         JEE > J*

EE       
disinhibitory  loop  PC-VIP-SOM-PC  dominates  in  the  expression  of .  It  is  the          χII     
opposite  when .  The  stability  of  the  balanced  state  provides  other    JEE < J*

EE          
necessary  conditions  that  the  interactions  must  satisfy  (see  Materials  and  Methods).            
In   particular,   the   determinant   of   the   interaction   matrix,   ,   must   be   positive.  J  

 

Figure  4. Population  activities vs.  in  Model  1  in  the  large limit.  A.  The  network  is      I  
opto        , K N       

composed  of  four  populations  representing  PCs,  PV,  SOM  and  VIP  neurons.  The             
connectivity  is  as  in (Pfeffer  et  al.,  2013) .  B.  Parameters  as  in  Table  4.  The  activity  of  PV                   
cells  increases  with  while  for  the  three  other  populations  it  decreases.  C.  Parameters    I  

opto            

as  in  Table  5.  The  activity  of  SOM  neurons  increases  with  while  for  the  three  other            I  
opto       

populations   it   decreases.   Right   panels   in   B   and   C:   the   activities   are   normalized   to   baseline.  

The  difference  between  the  behaviors  in  Fig.  4B  and  4C  can  now  be  understood  as                
follows:  in  Fig.  4B,  and ,  thus,  increases  with ;  in  Fig.      JEE > J*

EE   .6  χII = 1 > 0   rI     Iopto    
4C,  and  and  thus,  decreases.  Remarkably,  in  both  cases   JEE < J*

EE   − .1  χII = 5 < 0    rI       
the  activities  of  the  PC  and  VIP  populations  normalized  to  baseline,  are  always  equal               
(Fig.  4B-C,  right  panel).  This  is  a  consequence  of  the  balance  of  excitatory  and               
inhibitory  inputs  into  the  SOM  population  which  implies  that  and  are          rE   rV   
proportional   (see   Materials   and   Methods,   Eq.   15.3).  
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In  Fig.  4B,  the  activity  of  the  SOM  population  decreases  with  the  laser  intensity.  This                
also  stems  from  the  fact  that  (Appendix  1C,  Eq.  A31-A34).  This  qualitative        JEE > J*

EE        
behavior  is  therefore  independent  of  parameter  sets,  provided  that  inequality  (1)  is             
satisfied.  In  contrast,  for  parameters  for  which  the  activity  of  the  SOM         JEE < J*

EE       
population  either  decreases  or  increases  with  depending  on  other  parameters.        Iopto      
Moreover,  it  is  straightforward  to  prove  that  if , the  product  is          JEE > J*

EE    χ  χEI IE   
positive  (Appendix  1C).  Since  we  assumed  that  decreases  upon  photostimulation        rE     
of  PV  neurons,  namely ,  this  implies  that  is  also  negative.  In  other  words,      χEI < 0      χIE        
in  Model  1,  a  non-paradoxical  response  of  the  PV  population  upon  PV             
photostimulation  implies  that  the  PV  activity decreases  when  PCs  are           
photostimulated.   

When  is  sufficiently  large,  the  solution  of  the  four  balance  equations  will  contain   Iopto              
one  or  more  populations  for  which .  Obviously  such  a  solution  is  inconsistent.        rα < 0        
Instead,  other  solutions  should  be  considered  where  at  least  one  population  has  a              
firing  rate  which  is  zero  and  the  firing  rates  of  the  other  populations  is  determined  by                 
a  new  system  of  linear  equations  with  lower  dimensions  (see  Materials  and  Methods,              
Appendix  1C).  Consistency  requires  that  in  these  solutions  the  net  input  is             
hyperpolarizing  for  the  populations  with .  As  a  consequence,  the  network       rα = 0       
population  activities  are  in  general  piecewise  linear  in  (Fig.  4-figure          Iopto    
supplementary   2).   

The  large  analysis  provides  precious  insights  into  the  dynamics  of  networks   ,  N K           
with  reasonable  size  and  connectivity.  In  particular,  we  will  show  that  the  criterion  for               
the  paradoxical  effect,  Eq.  (1),  remains  valid  up  to  small  corrections.  Although  it  is               
possible  to  treat  analytically  the  dependence  of  on  for  finite ,  these        rα    Iopto     K   
calculations  are  very  technical  and  beyond  the  scope  of  this  paper.  Instead  here,  we               
proceed   with   numerical   simulations.  

Numerical   simulations   for    JEE > J*
EE  

Figure  5  depicts  the  results  of  our  numerical  simulations  of  Model  1  for  the  same                
parameters  as  in  Fig.  4B  (see  Materials  and  Methods,  Table  3-4).  The  response  of               
PV  neurons  is  non-paradoxical:  the  activity  of  the  PV  population  increases            
monotonically  with  in  the  whole  range  (Fig.  5A).  Concurrently,  the  population    Γopto           
activities  of  PC,  SOM  and  VIP  neurons  monotonically  decrease  with  (Fig.            Γopto   
5A-B).  For  sufficiently  large ,  PCs  become  very  weakly  active  and  the  SOM  and      Γopto           
VIP  populations  dramatically  reduce  their  firing  rates.  The  variations  with  of ,            Γopto   rE  

,  and  are  robust  to  changes  in  the  average  connectivity,  (Fig.  5-figure rI  rS   rV           K    
supplementary  1)  and  in  qualitative  agreement  with  the  predictions  of  the  large             ,  N K  
limit   (Fig.   4B,   Appendix   1C,   Fig.   4-figure   supplementary   2).  
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Figure  5.  Numerical  simulations  of  Model  1  for .  Responses  of  the  neurons          JEE > J *
EE      

normalized  to  baseline vs .  the  intensity  of  the  laser, .  A.  Activities  of  PCs  and  PV          Γopto        
neurons:  the  PV  response  is  not  paradoxical.  B.  Activities  of  SOM  and  VIP  neurons.  Color                
code  as  in  Fig.  4.  Thick  lines:  population  averaged  responses.  Thin  lines:  responses  of               01  
neurons  randomly  chosen  in  each  population.  Firing  rates  were  estimated  over .            00 s1  
Parameters: , .  Other  parameters  as  in  Table  3-4.  The  baseline  activities  00K = 5  6800N = 7           
are:   ,   ,   ,   . .3 HzrE = 3 .5 HzrI = 6 .9 HzrS = 5 .5 HzrV = 3  

To  test  the  robustness  of  our  results  with  respect  to  changes  in  the  interaction               
strengths,  we  generated  100  networks  with  chosen  at  random  within  a  range  of        Jαβ         

 of  those  of  Fig.  4B.  All  the  networks  exhibited  a  balanced  state  which  was 10%  ±                
stable  with  respect  to  slow  rates  fluctuations  in  the  large  limit.  We  simulated          ,  N K     
those  networks  with  and  computed  the  population  activity  at  baseline  and    00  K = 5          
for .  For  all  these  networks,  the  results  were  consistent  with  the  .07mW .mm  Γopto = 0 −2            
one  of  the  control  set:  for ,  was  larger  and , ,  were       .07mW .mm  Γopto = 0 −2  rI     rE  rS  rV   
smaller  than  baseline  (Fig.  5-figure  supplementary  2).  However,  a  small  percentage            
of  these  networks  (10%)  exhibited  oscillations  with  at  most  an  amplitude  20%  of  their               
mean   in   the   firing   rates.   Apart   from   that,   the   results   were   robust   to   changes   in   .  Jαβ  

In  contrast  to  what  happens  in  the  large  limit  (Fig.  4B,  right  panel),  in  the         ,  N K         
results  depicted  in  Fig.  5  the  activity  of  the  PC  and  VIP  populations  are  not                
proportional.  Moreover,  in  the  large  limit,  PC  and  VIP  neurons  are  inactivated       K         
before  the  SOM  population  is.  For ,  VIP  is  the  first  population  to  be  silenced       00  K = 5          
followed  by  the  SOM  and  finally  the  PC  population.  Simulations  with  increasing             
values  of  show  that  these  differences  are  due  to  substantial  finite  effects  (Fig.    K            K    
5-figure   supplementary   1).  

Figure  5  also  depicts  the  changes  in  the  firing  rates  (normalized  to  baseline)  with               
 for  several  example  neurons.  These  changes  are  highly  heterogeneous  across  Γopto            

neurons  within  each  population.  Whereas  the  population  average  varies          
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monotonically,  individual  cells  activity  can  either  increase  or  decrease  and  the            
response   can   even   be   non-monotonic   with   .  Γopto  

 

Figure  6.  Single  neuron  firing  rates  in  the  PC  and  PV  populations  upon  PV  activation  for  two                  
values  of  the  light  intensity  (Model  1  with ).  A.  Single  neuron  firing  rates  at          JEE > J *

EE        
baseline vs .  at .  B.  Same  for .  Top:  PCs  (red).    .5 mW  . mmΓopto = 0 −2      mW  . mmΓopto = 1 −2     

Bottom:  PV  neurons  (blue).  Scatter  plots  of  randomly  chosen  PC  and  PV  neurons.  Pie        003         
charts  for  the  whole  population.  The  pie  charts  show  the  fraction  of  neurons  which  increase                
(black)  or  decrease  (light  gray)  their  activity  compared  to  baseline.  Dark  gray:  Fraction  of               
neurons  with  relative  change  smaller  than .  White:  fraction  of  neurons  with  activity       .1 Hz0        
smaller   than     upon   PV   photostimulation. .1 Hz0   

The  heterogeneity  in  the  single  neuronal  responses  are  also  clear  in  Fig.  6A-B  that               
plots,  for  two  different  light  intensities,  the  perturbed  firing  rate vs .  baseline  for  PCs               
and  PV  neurons.  Remarkably,  in  both  populations  a  significant  fraction  of  neuron             
exhibits  a  response  which  is  incongruous  with  the  population  average.  The  pie  charts              
in  Fig.  6  depict  the  fraction  of  PCs  and  PV  neurons  which  increased,  decreased,  or                
did  not  change  their  firing  rates.  The  fraction  of  neurons  whose  activity  is  almost               
completely  suppressed,  is  also  shown.  Remarkably,  even  for ,         .0mW .mm  Γopto = 1 −2  
some  of  the  PCs  show  an  activity  increase.  Moreover,  the  fraction  of  PV  neurons               
whose  firing  rate  increases  is  less  for than .        .0mW .mm  Γopto = 1 −2   .5mW .mm  Γopto = 0 −2  

It  should  be  noted  that  in  the  model  all  PV  neurons  receive  the  same  optogenetic                
input,  therefore,  the  heterogeneity  in  the  response  is  not  due  to  whether  or  not  the                
PV  neurons  were  “infected”.  This  heterogeneity  is  solely  due  to  the  randomness  in              
the   connectivity.   

Numerical   simulations   for J   EE < J*
EE  

Figure   7   depicts   the   results   of   our   numerical   simulations   of   Model   1   when   .  JEE < J*
EE  

Parameters   are   the   same   as   in   Fig.   4C   (see   Materials   and   Methods,   Table   3-5).   The  
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population   activities   of   PCs   and   VIP   neurons,     and   ,   decrease   monotonically rE rV  
with   the   laser   intensity,   .   Conversely,   the   variations   of   the   activities   of   the   PV  Γopto  
and   SOM   populations,     and   ,   are   non-monotonic   with   .   For   small   light rI rS  Γopto  
intensities,     decreases   and   then   abruptly   increases   with   larger   ;     exhibits rI  Γopto rS  
the   opposite   behavior.   Remarkably,   when     is   minimum,     is   maximum   for   nearly rI rS  
the   same   value   of   .   We   show   in   Fig.   7   S4   that   this   proportional   decrease   only  Γopto  
happens   in   a   small   region   of   parameter   space   when   the   determinant   of   the  
interaction   matrix,   ,   is   close   to   zero.  ϵ  Jαβ β  

 

Figure  7.  Numerical  simulations  of  Model  1  for .  Responses  of  the  neurons          JEE < J *
EE      

normalized  to  baseline vs .  the  intensity  of  the  laser, .  A.  Activities  of  PCs  and  PV          Γopto        
neurons:  the  PV  response  is  paradoxical.  B.  Activities  of  SOM  and  VIP  neurons.  Color  code                
as  in  Fig.  4.  Thick  lines:  population  averaged  responses.  Thin  lines:  responses  of              01  
neurons  in  each  population.  Firing  rates  were  estimated  over .  Parameters: ,          00 s1   00K = 5  

.  Other  parameters  as  in  Table  3-5.  The  baseline  activities  are: , 6800N = 7            .8 HzrE = 4  
,   ,   . 1.2 HzrI = 1 .1 HzrS = 7 .3 HzrV = 5  

This  behavior  is  qualitatively  similar  to  the  one  derived  in  the  large  limit  (Fig.             ,  N K    
4-figure  supplementary  3).  As  suggested  by  the  large  analysis,  the  paradoxical         ,  N K     
response  of  the  PV  neurons  in  the  simulations,  is  driven  by  the  positive  feedback               
loop  PC-VIP-SOM-PC  (Fig.  4-figure  supplementary  1). Remarkably,  when  the  activity           
of  the  PV  neurons  is  minimum,  the  PCs  are  still  substantially  active  (40%  of  baseline                
level).  This  is  due  to  finite  corrections  to  the  large  predictions  (Fig.  7-figure        K      ,  N K     
supplementary  1).  These  corrections  are  strong  and  scale  as  (Appendix  1C).          1

√K
   

Indeed,  even  for  as  large  as ,  is  still  25%  of  the  baseline  when  is     K     000  2  rE         rI   
minimum.  

We  checked  the  robustness  of  these  results  with  respect  to  changes  in  the              
interaction  parameters  as  we  did  for .  We  found  that  for  small  light  intensity        JEE > J*

EE         
all  the  100  simulated  networks  were  operating  in  the  balanced  state  and  exhibited              
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the   paradoxical   effect   (Fig.   7-figure   supplementary   2).  

 

Figure  8.  Single  neuron  firing  rates  in  the  PC  and  PV  populations  upon  PV  activation  for  two                  
values  of  the  light  intensity  (Model  1  with ).  A.  Single  neuron  firing  rates  at          JEE < J *

EE        
baseline vs .  at .  B.  Same  for .  Top:  PCs.  Bottom:    .5 mW  . mmΓopto = 0 −2      mW  . mmΓopto = 1 −2     

PV  neurons.  Scatter  plots  of  randomly  chosen  PC  and  PV  neurons.  Pie  charts  for  the      003            
whole  population.  Firing  rates  were  estimated  over  simulation  time.  Neurons  with  rates        00 s1       
smaller   than     are   plotted   at   .   Color   code   as   in   Fig.   6.   Parameters   as   in   Fig.   7. .01 Hz0 .01 Hz0  

Finally,  the  single  neuron  responses  are  highly  heterogeneous.  Figure  8  plots  the             
perturbed  activities  of  PCs  and  PV  neurons vs .  their  baseline  firing  rates  for  two  light                
intensities.  In  Fig.  8A,  the  PV  response  is  paradoxical.  This  is  not  the  case  in  Fig.  8B.                  
Interestingly,  the  fraction  of  PV  neurons  incongruous  with  the  population  activity  is             
larger  for  than  for .  For  both  light  intensities   .5mW .mm  Γopto = 0 −2    .0mW .mm  Γopto = 1 −2      
the   activity   of   almost   all   the   PCs   is   decreased.  

Four-population   network:   Model   2  

In  S1,  in  the  range  of  laser  intensities  in  which  the  PV  response  is  paradoxical,  the                 
decrease  of  the  PC  and  PV  activity  is  proportional.  This  feature  of  the  data  can  be                 
accounted  for  in  Model  1  but  only  with  a  fine-tuning  of  the  interaction  parameters               
(Fig.  7-figure  supplementary  3  and  Fig.  7-figure  supplementary  4).  This  prompted  us             
to  investigate  whether  a  different  architecture  could  account  robustly  for  this            
remarkable  property.  Our  hypothesis  is  that  this  property  is  a  direct  consequence  of              
the   balance   of   excitation   and   inhibition.  
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Figure  9. Network  models  with  proportional  change  in  the  PC  and  PV  activities  upon               
photostimulation  of  the  PV  population.  A.  A  three-population  network  consisting  of  PCs,  PV              
and  SOM  neurons.  SOM  neurons  only  receive  projections  from  the  PC  and  PV  populations.               
B.  Model  2  consists  of  four  populations:  PC,  PV,  SOM  and  an  unidentified  inhibitory               
population,  X.  The  population  X  projects  to  the  PC,  the  PV  population  and  to  itself.  The  PC                  
population  projects  to  X.  C.  Population  activities  normalized  to  baseline vs .  in  the  large            I  

opto     

limit.  PC  and  PV  populations  decrease  their  activity  with  in  a  proportional  manner. ,  N K          I  
opto      

Parameters  as  in  Table  7.  Baseline  firing  rates  are: , , ,          .0 HzrE = 3  .7 HzrI = 6  .4 HzrS = 6  
. .8 HzrX = 3  

 
Theory   in   the   large     limit ,  N K  
We  first  considered  the  three-population  model  depicted  in  Fig.  9A.  It  consists  of  the               
PC,  PV  and  SOM  populations.  SOM  neurons  receive  strong  inputs  from  PCs  and  PV               
neurons,  but  do  not  interact  with  each  other  and  do  not  receive  feedforward  external               
inputs.  In  the  large  limit,  the  balance  of  excitation  and  inhibition  of  the  SOM     ,  N K            
population   reads   (see   Materials   and   Methods,   Eq.   16.2)   

r rJSE E − JSI I = 0 (3)  
Therefore,  the  activities  of  the  PC  and  PV  populations  are  always  proportional.             
However,  as  we  show  in  (Appendix  1D)  a  three-population  network  with  such  an              
architecture   cannot   exhibit   the   paradoxical   effect.  
We  therefore  considered  a  network  model  in  which  a  third  inhibitory  population,             
referred  to  as  ‘X’,  is  added  without  violating  Eq.  (3)  (Fig.  9B).  This  requires  that  SOM                 
neurons  do  not  receive  inputs  from  X  neurons  (Appendix  1D).  This  network  exhibits              
the  paradoxical  effect  if  and  only  if ,  that  is  if  the  gain  of  the        J J J  J JSE EX XS > JXX ES SE         
positive  feedback  loop,  SOM-X-PC-SOM,  is  sufficiently  strong  (Appendix  1D).          
Obviously,   this   condition   simplifies   and   reads  

J J  JEX XS > JXX ES  (4)  
Remarkably,  this  inequality  does  not  depend  on .  This  is  in  contrast  to  what         JEE        
happens  in  Model  1  where  the  paradoxical  effect  occurs  only  if  is  small  enough             JEE     
(see   Eq.   (2)).  
As  in  Model  1,  we  further  required  that  the  activity  of  the  PC  population  increases                
with   its   feedforward   external   input.   This   adds   the   constraint   (Appendix   1D):  
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J J  J IX XS > JXX IS (5)  

Eqs.  (3-5)  do  not  depend  on .  For  simplicity,  we  take  and  refer  to  the        JXI       JXI = 0      
resulting   architecture   as   Model   2.  

In  Fig.  9C,  the  slope  of  the  PV  population  activity  changes  from  negative  to  positive                
while  PCs  are  still  active.  This  is  because  if  SOM  neurons  are  completely              
suppressed,  the  loop  SOM-X-PC-SOM  which  is  responsible  for  the  paradoxical           
effect,  is  not  effective  anymore.  Interestingly,  the  analytical  calculations  also  show            
that,  when  the  SOM  population  activity  vanishes,  the  activity  of  the  X  population  is               
maximum.  Since  the  SOM  population  is  inactive  before  PCs,  there  is  a  range  of  laser                
intensities  where  the  activity  of  the  latter  keeps  decreasing  while  the  activity  of  the               
PV  population  increases.  Once  PCs  are  inactive,  the  activity  of  the  X  population  do               
not  vary  with .  This  is  because  then  they  only  receive  a  constant  feedforward     Iopto            
excitation  from  outside  the  network  which  is  balanced  by  their  strong  recurrent             
mutual   coupling,   .  JXX  

Simulations   for   finite   K  

 

Figure  10.  Numerical  simulations  of  Model  2.  Responses  of  the  neurons  normalized  to              
baseline vs .  the  intensity  of  the  laser, .  A.  Activities  of  PCs  and  PV  neurons:  for  small        Γopto           

,  the  PV  response  is  paradoxical  and  the  suppression  of  the  PC  and  PV  population Γopto                
activities  relative  to  baseline  are  the  same.  B.  Activities  of  SOM  and  X  neurons.  Color  code                 
as  in  Fig.  9.  Thick  lines:  population  averaged  responses.  Thin  lines:  responses  of              01  
neurons  randomly  chosen  chosen  in  each  population.  Firing  rates  were  estimated  over .            00 s1  
Parameters: , .  Other  parameters  as  in  Table  6-7.  The  baseline  activities  00K = 5  6800N = 7           
are:   ,   ,   ,   . .2 HzrE = 4 .8 HzrI = 6 .0 HzrS = 7 .9 HzrX = 3  

These  features  are  also  observed  in  our  simulations  depicted  in  Fig.  10.  For  small               
laser  intensities,  the  network  exhibits  a  paradoxical  effect  where  the  activities  of  the              
PC  and  PV  populations  decrease  with  and  in  a  proportional  manner  (Fig.  10A),        Γopto         
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until  the  SOM  neurons  become  virtually  inactive  (Fig.  10B).  At  that  value,  is             rI   
minimum  and  is  maximum.  For  larger ,  increases  while  keeps   rX       Γopto  rI    rE   
decreasing  and  is  still  substantial.  After  has  vanished,  saturates  but       rE    rX    rI  
continues  to  increase.  All  these  results  are  robust  to  changes  in  the  connectivity,               K  
(Fig.  10-figure  supplementary  1)  as  well  as  to  changes  in  the  interaction  parameters              
(Fig.  10-figure  supplementary  2).  Single  neuron  responses  are  more  heterogeneous           
than  in  the  experimental  data.  It  should  be  noted  however  that  we  did  not  tune                
parameters   to   match   the   experimental   heterogeneity.  

 

Figure  11.  Single  neuron  firing  rates  in  the  PC  and  PV  populations  upon  PV  activation  for                 
two  values  of  the  light  intensity  (Model  2).  A.  Single  neuron  firing  rates  at  baseline vs .  at                  

.  B.  Same  for .  Top:  PCs.  Bottom:  PV  neurons. .5 mW  . mmΓopto = 0 −2      mW  . mmΓopto = 1 −2       

Scatter  plots  of  randomly  chosen  PC  and  PV  neurons.  Pie  charts  for  the  whole    003             
population.  Firing  rates  were  estimated  over .  Neurons  with  rates  smaller  than       00 s1       .01 Hz0  
are   plotted   at   .   Color   code   as   in   Fig.   6.   Parameters   as   in   Fig.   10. .01 Hz0  

Discussion  
We  studied  the  response  of  cortex  to  optogenetic  stimulation  of  parvalbumin  positive             
(PV)  neurons  and  provided  a  mechanistic  account  for  it.  We  photostimulated  the  PV              
interneurons  in  layer  2/3  and  layer  5  of  the  mouse  anterior  motor  cortex  (ALM).  In                
layer  2/3  photostimulation  increased  PV  activity  and  decreased  the  response  of  the             
principal  cells  (PCs)  on  average.  In  contrast,  in  layer  5  the  response  of  the  PV                
population  was  paradoxical: both  PC  and  PV  activity  decreased  on  average.  This  is              
similar  to  what  we  found  in  the  mouse  somatosensory  cortex  (S1) (Li  et  al.,  2019)  .                 
To  account  for  these  results,  we  first  investigated  the  dynamics  of  networks  of  one               
excitatory  and  one  inhibitory  population  of  spiking  neurons.  We  showed  that            
two-population  network  models  of  strongly  interacting  neurons  do  not  fully  account            

52  

https://paperpile.com/c/e0Uu32/AEBW


for  the  experimental  data.  This  prompted  us  to  investigate  the  dynamics  of  networks              
consisting   of   more   than   one   inhibitory   population.   

We  considered  two  network  models  both  consisting  of  one  excitatory  and  three             
inhibitory  populations.  Interneurons  are  known  to  be  unevenly  distributed  throughout           
the  cortex.  For  instance,  SOM  neurons  have  been  reported  to  be  most  prominent  in               
layer  5  whereas  VIP  neurons  are  mostly  found  in  layer  2/3  (Tremblay  et  al.,  2016).                
Instead  of  giving  a  complete  description  of  these  layers  and  all  neuronal  populations              
they  include,  we  propose  here  models  with  the  minimal  number  of  inhibitory             
populations   that   can   account   for   the   data.   

The  three  inhibitory  populations  in  Model  1  represent  PV,  somatostatin  positive            
(SOM)  and  vasoactive  intestinal  peptide  (VIP)  interneurons  with  a  connectivity           
similar  to  the  one  reported  in  primary  visual  cortex (Pfeffer  et  al.,  2013)  and  S1  layer                 
2/3 (Lee  et  al.,  2013) .  In  Model  2,  the  first  two  inhibitory  populations  likewise               
represent  PV  and  SOM  neurons  and  the  third  population,  denoted  as  X,  represents              
an  unidentified  inhibitory  subtype.  The  main  difference  with  Model  1  is  that  here,  the               
third   population   does   not   project   to   SOM   neurons.   

Depending  on  network  parameters,  the  response  of  PV  neurons  in  Model  1  can  be               
paradoxical  or  not.  To  have  equal  relative  suppression  of  the  PCs  and  PV  activities,               
however,  interaction  parameters  have  to  be  fine-tuned.  In  Model  2,  the  relative             
changes  in  the  PC  and  PV  activity  are  the  same  independent  of  interaction              
parameters.  

For  a  two-population  network,  the  paradoxical  effect  only  occurs  when  it  is  inhibition              
stabilized (Pehlevan  and  Sompolinsky,  2014;  Wolf  et  al.,  2014) .  This  is  because  the              
mechanism  requires  strong  recurrent  excitation.  In  the  four-population  networks  we           
studied,  however,  the  mechanism  responsible  for  paradoxical  effect  is  different.  It            
involves  a  disinhibitory  loop.  In  fact,  strong  recurrent  excitation  prevents  the            
paradoxical  effect  in  these  networks.  Therefore,  the  observation  of  the  paradoxical            
effect  upon  PV  photo-excitation  is  not  a  proof  that  the  network  operates  in  the  ISN                
regime.  

Strong   vs.   weak   interactions  

Cortical  networks  consist  of  a  large  number  of  neurons  each  receiving  a  large         (N )        
number  of  inputs .  Because  and  are  large,  one  expects  that  a  network     (K)    N    K         
behaves  similar  to  a  network  where  and  are  infinite.  In  this  limit  the  analysis  is        N    K          
simplified  and  the  mechanisms  underlying  the  dynamics  are  highlighted.  When           
taking  the  large  limit  one  needs  to  decide  how  the  interaction  strengths  scale  with     K             

.  Two  canonical  scalings  can  be  used:  in  one  the  interactions  scale  as (Hansel  K              1
K   

and  Sompolinsky,  1992;  Hennequin  et  al.,  2018;  Knight,  1972;  Rubin  et  al.,  2015) ,  in               
the  other  as (Darshan  et  al.,  2017;  Renart  et  al.,  2010;  Rosenbaum  et  al.,  2017;    1

√K
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van  Vreeswijk  and  Sompolinsky,  1996) .  These  differ  in  the  strength  of  the             
interactions.  For  instance,  for  interactions  are  weaker  by  a  factor  30  in  the     00  K = 9           
first  scaling  than  in  the  second.  Importantly,  these  two  scalings  give  rise  to              
qualitatively   different   dynamical   regimes.  

When  interactions  are  strong,  the  excitatory  and  inhibitory  inputs  are  both  very  large              
(of  the  order  of ).  They,  however,  dynamically balance  so  that  the  temporal     .K 1

√K
= 1          

average  of  the  net  input  and  its  spatial  and  temporal  fluctuations  are  comparable  to               
the  rheobase (Van  Vreeswijk  and  Sompolinsky,  2005;  van  Vreeswijk  and           
Sompolinsky,  1998) ,  Appendix  1A).  In  this balanced  regime,  the  average  firing  rates             
of  the  populations  are  determined  by  a  set  of  linear  equations:  the  “balance              
equations”.  These  do  not  depend  on  the  neuronal  transfer  function.  For  large  but              
finite ,  the  network  operates  in  an  approximately  balanced  regime.  In  this  regime,   K             
the  population  activities  are  well  approximated  by  the  balance  equations,  interspike            
intervals   are   highly   irregular   and   firing   rates   are   heterogeneous   across   neurons.  

When  the  interactions  are  weak,  excitatory  and  inhibitory  inputs  are  both  comparable             
to  the  rheobase  even  when  is  large,  but  their  spatial  and  temporal  fluctuations       K          
vanish  as  increases.  The  activity  of  the  network  is  determined  by  a  set  of  coupled    K               
non-linear  equations  which  depends  on  the  neuronal  transfer  function.  For  large  but             
finite ,  the  firing  of  the  neurons  is  weakly  irregular  and  heterogeneities  mostly  arise   K              
from   differences   in   the   intrinsic   properties   of   the   neurons.  

In  which  of  these  regimes  does  cortex  operate in-vivo ?  This  may  depend  on  the               
cortical  area  and  on  whether  the  neuronal  activity  is  spontaneous  or  driven  ( e.g .              
sensory,  associative,  or  motor  related).  There  are,  however,  several  facts  indicating            
that  the  approximate  balanced  regime  may  be  ubiquitous.  Many  cortical  areas  exhibit             
highly  irregular  spiking (Shinomoto  et  al.,  2009)  and  heterogeneous  firing  rates            
(Hromádka  et  al.,  2008;  Roxin  et  al.,  2011) .  Excitatory  and  inhibitory  postsynaptic             
potentials  (PSPs)  are  typically  of  the  order  of  to  or  larger (Levy  and  Reyes,         .2  0   mV2       
2012;  Ma  et  al.,  2012;  Pala  and  Petersen,  2015;  Seeman  et  al.,  2018) .  Model               
networks  with  PSPs  of  these  sizes  and  reasonable  number  of  neurons  and             
connections  exhibit  all  the  hallmarks  of  the  balanced  regime (Amit  and  Brunel,  1997;              
Argaman  and  Golomb,  2018;  Hansel  and  Mato,  2013;  Hansel  and  van  Vreeswijk,             
2012;  Lerchner  et  al.,  2006;  Pattadkal  et  al.,  2018;  Pehlevan  and  Sompolinsky,  2014;              
Rao  et  al.,  2019;  Roudi  and  Latham,  2007;  Roxin  et  al.,  2011;  Van  Vreeswijk  and                
Sompolinsky,  2005) .  Moreover,  there  is  experimental  evidence  of  co-variation  of           
excitatory  and  inhibitory  inputs  into  cortical  neurons (Haider  et  al.,  2006;  Shu  et  al.,               
2003) .  Finally,  in  cortical  cultures  synaptic  strengths  have  been  shown  to            
approximately  scale  as (Barral  and  D  Reyes,  2016) .  Therefore  in  this  paper  we    1

√K
           

focused  on  cortical  network  models  in  which  interactions  are  strong, i.e. of  the  order               
of   . 1

√K
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Model   1   accounts   for   the   responses   in   ALM   layer   2/3   and   layer   5  
In  Model  1,  whether  the  network  exhibits  a  paradoxical  effect  depends  on  the  value               
of  the  ratio  where .  Here, ,  is  the  strength  of    ρ = J*

EE

JEE   J*
EE ≡ JV E

JES
JV S

  ,  α, ∈{E, , }  Jαβ  β S V      
the  connection  from  population  to  population  .  When ,  the  PV  response  is     β    α     ρ > 1      
non-paradoxical  and  its  activity  increase  can  be  substantial  well  before  suppression            
of  the  PC  activity.  On  the  other  hand  when ,  the  PV  response  is  paradoxical           ρ < 1       
and  the  PV  activity  reaches  its  minimum  for  light  intensities  at  which  the  PCs  are  still                 
substantially   active.  
 
In  ALM  layer  2/3,  the  activity  of  the  PV  population  increases  with  the  light  intensity                
while  the  activity  of  the  PC  decreases  on  average.  Remarkably,  our  experiments             
showed  that  the  increase  in  the  PV  activity  was  already  substantial  for  small  light               
intensities,  where  the  PCs  were  still  significantly  active.  In  ALM  layer  5  the  activity  of                
the  PV  population  initially  decreased  with  the  light  intensity  together  with  the  activity              
of  the  PC  population.  As  the  light  intensity  is  further  increased,  the  PV  activity               
reaches  a  minimum  after  which  it  increases.  At  this  minimum,  the  PC  activity  is  still                
substantial.   

Thus,  Model  1  accounts  for  our  experimental  findings  in  ALM  layer  2/3  provided  that               
 is  sufficiently  large.  It  accounts  for  the  paradoxical  effect  in  layer  5  provided  that  JEE                
 is  sufficiently  small.  Note  that  this  does  not  mean  that ,  is  larger  in  the  JEE             JEE      

former  layer  as  compared  to  the  latter.  The  interactions ,  and  are  likely           JV E J   ES    JV S    
to   be   layer   dependent    (Jiang   et   al.,   2015)    and   therefore   so   is   the   value   of   .  J*

EE  

Model  2  accounts  for  the  paradoxical  effect  in  S1  while  Model  1  would  require               
fine-tuning  

Similar  to  ALM  layer  5,  the  PV  response  in  S1  is  paradoxical.  Remarkably  however,               
in  S1  the  relative  suppression  of  the  PC  and  PV  activities  is  the  same  for  low  light                  
intensity.  Model  1  can  account  for  this  feature  only  when  the  interaction  parameters              
are  fine-tuned.  In  contrast,  in  Model  2  the  co-modulation  of  the  PC  and  PV  activities                
stems  from  the  architecture  and  therefore  occurs  in  a  robust  manner.  Furthermore,  it              
can  equally  well  account  for  the  fact  that  in  S1  the  PV  activity  reaches  its  minimum                 
when   the   PC   population   is   active.  
 
Note  that  in  ALM  layer  5  the  difference  between  the  slopes  of  the  PC  and  PV                 
population  activities  is  not  significantly  different  (p>0.05).  Therefore,  we  cannot           
exclude   that   Model   2   describes   ALM   layer   5.  

The  main  difference  between  Model  1  and  Model  2  is  that  in  Model  1,  the  third                 
inhibitory  population  (VIP)  projects  to  SOM  neurons  while  in  Model  2,  the  third              
population  (X)  does  not.  This  suggests  that  population  X  is  not  the  VIP  population.               
For  example,  X  could  be  chandelier  cells  that  do  not  express  the  PV  marker (Jiang  et                 

55  

https://paperpile.com/c/e0Uu32/Xfol
https://paperpile.com/c/e0Uu32/Xfol


al.,  2015)  Alternatively,  population  X  could  describe  the effective  interaction  of            
several   inhibitory   populations   with   PC   and   PV   neurons.  

Models   1   and   2   account   for   the   heterogeneity   of   single   neuron   responses  

The  responses  of  PCs  and  PV  neurons  in  the  experimental  data  are  highly              
heterogeneous  across  cells.  Indeed  in  ALM  layer  5  and  S1,  PV  neurons  on  average               
show  a  paradoxical  response  but  at  the  single  neuron  level  the  effect  of  the  laser                
stimulation  is  very  diverse.  Moreover,  the  firing  rate  of  a  neuron  can  vary              
monotonically  or  non-monotonically  with  the  laser  intensity.  For  instance,  when           
stimulated,  the  firing  rates  of  many  PV  neurons  increase,  although,  on  average  the              
activity  is  substantially  smaller  than  baseline.  Conversely,  for  some  PV  neurons  the             
paradoxical   effect   is   so   strong   that   the   laser   completely   suppresses   their   activity.  

We  observed  an  even  larger  diversity  in  single  neuron  responses  in  our  simulations              
of  Model  1  and  2.  We  should  emphasize  that  in  the  simulated  networks  all  the                
neurons  were  identical  and  the  cells  in  the  same  population  received  the  same              
feedforward  constant  external  input.  The  only  possible  source  of  heterogeneity           
therefore  comes  from  the  randomness  in  the  network  connectivity.  The  effect  of  this              
randomness  on  the  network  recurrent  dynamics  is  however  non-trivial:  one  may  think             
that  the  effect  of  the  fluctuations  in  the  number  of  connections  from  neuron  to  neuron                
should  average  out  since  in  the  models  the  number  of  recurrent  inputs  per  neuron  is                
large  (  or  more).  This  is  not  what  happens  because  in  our  simulations  00  K = 5             
populations  which  are  active  operate  in  the  balanced  excitation/inhibition  regime           
(Roxin  et  al.,  2011;  van  Vreeswijk  and  Sompolinsky,  1998,  1996) .  In  this  state,              
relatively  small  homogeneity  in  the  number  of  connections  per  neuron  is  amplified  to              
a  substantial  inhomogeneity  in  the  response.  Thus,  strong  heterogeneity  in  the            
response  of  neurons  is  not  a  prima  facie  evidence  for  the  heterogeneity  of  the  level                
of  Channelrhodopsin  expression  in  the  cells  nor  is  it  for  the  diversity  of  the  single                
neuron   intrinsic   properties.  

Limitations  
We  give  here  a  qualitative  account  for  the  mechanisms  underlying  the  responses  of              
different  cortical  areas  to  optical  stimulation.  A quantitative  analysis  of  the  data,  in              
particular  of  the  heterogeneity  is  beyond  our  scope.  Such  an  analysis  would  require              
a  much  larger  number  of  PV  neurons.  Moreover,  it  would  necessitate  the  use  of               
more  complicated  neuronal  models  making  the  mathematical  analysis  intractable,          
limiting   the   investigation   to   simulations   only   and   thus   obscuring   the   mechanisms.  

In  our  experiments  we  expressed  ReaChR  in  all  PV  neurons  and  in  all  layers  in  ALM.                 
In  particular,  all  PV  neurons  in  layer  2/3  and  layer  5  were  simultaneously  affected  by                
the  photostimulus.  Principal  cells  in  layer  2/3  project  to  layer  5  and  receive  feedback               
from  the  latter  (Hooks  et  al.  2011,  Naka  and  Adesnik,  2016).  Interlaminar  interactions              
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are   likely   to   also   contribute   to   the   effect   of   the   photostimulation.  

In  our  models  we  did  not  take  into  account  such  interactions.  Including  strong              
connections  from  layer  2/3  PCs  to  neurons  in  layer  5  and/or  feedback  connections              
from  layer  5  neurons  to  layer  2/3,  could  alter  our  interpretations.  In  the  absence  of                
data  that  reveal  the  nature  of  interlaminar  interactions,  extending  our  model  to             
incorporate  these  is  impractical  given  the  large  number  of  parameters  to  vary.             
Experiments  in  ALM  and  S1  where  the  optogenetic  marker  is  expressed  in  only  one               
layer  at  a  time  would  constraint  models  which  include  interlaminar  interactions  and             
facilitate   their   analysis    (Moore   et   al.,   2018) .  

There  is  a  large  amount  of  experimental  evidence  indicating  that  different  synapses             
can  exhibit  diverse  dynamics  depending  on  their  pre  and  postsynaptic  populations            
(Ma  et  al.,  2012) .  For  instance,  recent  studies  have  shown  that  PCs  to  PV  synapses                
are  depressing  while  the  PCs  to  SOM  synapses  are  highly  facilitating (Karnani  et  al.,               
2016;  Xu  et  al.,  2013) .  Synaptic  facilitation  and  depression  mechanisms  could  give             
rise  to  dynamics  which  will  make  the  network  responses  depend  on  the  duration  of               
the  photostimulation.  Here,  we  did  not  take  into  account  short  term  plasticity.  Mice              
neocortex  mostly  comprises  PV,  SOM  and  5HT3aR  expressing  interneurons.  There           
is  a  growing  amount  of  experimental  evidence  indicating  that  these  populations            
include  different  subtypes  which  may  have  distinct  connectivity  patterns (Naka  and            
Adesnik,  2016;  Nigro  et  al.,  2018;  Tremblay  et  al.,  2016) .  In  the  present  work,  we                
only  considered  three  populations  of  identical  interneurons:  PV,  SOM  and  VIP  or  X.              
As  the  number  of  populations  increases,  the  number  of  interaction  parameters            
increases  quadratically,  making  it  a  great  challenge  to  uncover  even  simple            
mechanisms   that   could   underlie   the   network   responses.  

Comparison   with   previous   theoretical   work  

The  paradoxical  effect  was  first  described  in (Tsodyks  et  al.,  1997)  and (Ozeki  et  al.,                
2009)  for  weak  interactions  using  coarse  grained  two-population  rate  models (Wilson            
and  Cowan,  1972) .  These  models  were  extended  in (Rubin  et  al.,  2015)  to  a  spatially                
structured  network  to  explain  center-surround  interactions  and  other  contextual          
effects  in  primary  visual  cortex.  They  found  that  these  effects  can  be  accounted  for  if                
the  neuronal  transfer  function  is  supralinear  and  the  network  is  operating  in  the              
inhibition  stabilized  regime  (ISN).  With  supralinear  transfer  functions,  whether  or  not            
the  network  exhibits  a  paradoxical  effect  depends  on  the  background  rate  of  the              
inhibitory  neurons.  These  models  were  further  extended  by (Litwin-Kumar  et  al.,            
2016)  to  networks  consisting  of  PC,  PV,  SOM  and  VIP  neurons  with  an  architecture               
similar  to (Pfeffer  et  al.,  2013) .  They  studied  the  effect  of  photostimulation  of  the               
different  inhibitory  populations  on  the  responses  and  orientation  tuning  properties  of            
the  neurons.  In  a  recent  study (Sadeh  et  al.,  2017)  have  investigated  the  effects  of                
partial  activation  of  PV  neurons  upon  photostimulation  in  an  ISN.  They  argued  that              
depending  on  the  degree  of  viral  expression,  the  average  response  of  the  infected              
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neurons  can  decrease  or  increase  with  the  light  intensity:  it  decreases  only  if  a  large                
proportion  of  the  population  is  infected. (Del  Molino  et  al.  2017)  showed  that  due  to                
the  non-linearity  in  the  neuronal  transfer  function,  the  response  of  the  network  to              
stimulation  can  be  different  for  different  background  rates.  In  particular,  they  showed             
that   it   can   reverse   the   response   of   SOM   neurons   to   VIP   stimulation.  

All  these  works  considered  inhibition  stabilized  networks  in  which  the total  recurrent             
excitation  is  so  strong  that  the  activity  would  blow  up  in  the  absence  of  inhibitory                
feedback.  With  our  notations,  this  means  that ,  where  is  the  gain  of        jGE EE > 1

K   GE      
the  noise  average  transfer  function  (f-I  curve)  of  the  excitatory  neurons.  In  fact,  in               
these  models  all  the  interactions  are  of  order  so  they  are  weak  in  our  sense.      jαβ     1

K         
Moreover,  these  studies  considered  networks  that  are  so  small  that  it  is  impossible  to               
extrapolate  their  results  to  mouse  cortex  size  networks.  Here  we  studied  large             
network  models  with  strong  interactions, i.e. ,  are  of  order    (N 6800)= 7      jαβ     1

√K
 

operating  in  the  balanced  regime.  Note  that  such  networks  are  ISNs  provided  that              
.  We  showed  that  paradoxical  effect  can  be  present  or  not  depending  on  the ≠0  jEE               

interaction   parameters.  

Since  we  used  static  synapses,  changes  in  the  background  rates  cannot  reverse  the              
paradoxical  effect  in  our  models.  This  is  because  with  static  synapses  the  balance              
equations  are  linear.  One  can  recover  this  reversal  if  one  introduces  short-term             
plasticity  which  will  make  the  balance  equations  nonlinear.  We  did  not  consider             
partial  expression  of  channelrhodopsin  in  the  PV  population  because  our  goal  was  to              
account  for  experimental  data  where  virtually  all  neurons  were  infected.  These            
effects  have  been  studied  in (Gutnisky  et  al.,  2017;  Sanzeni  et  al.,  2019)  in  strongly                
coupled  networks  of  two  populations  yielding  to  the  same  conclusions  as (Sadeh  et              
al.,   2017) .  

Predictions  

Our  theory  (Model  1)  predicts  that  in  ALM  layer  2/3  the  activity  of  the  SOM  and  VIP                  
populations  will  decrease  upon  PV  photostimulation  (Fig.  4B).  It  also  predicts  that             
upon  PC  photoinhibition,  the  PV  activity  will  increase  whereas  the  activity  of  the              
SOM  and  VIP  populations  will  decrease  (Fig.  12A).  This  is  because  in  Model  1  when                
the  PV  response  is  non-paradoxical  ( )  the  product  is  also  positive  (see       χII > 0    χ  χEI IE      
Appendix  1C).  Furthermore,  in  ALM  layer  2/3  the  population  activity  of  PCs             
decreases  upon  PV  photostimulation, .  Hence,  is  negative.  The  balance      χEI < 0    χIE      
of  the  PC  and  the  VIP  inputs  into  SOM  neurons  implies  that  VIP  and  PC  activity                 
covary.  Finally,  in  Appendix  1C  we  show  that  if  and  then  necessarily           χEE > 0    χIE < 0    

.  Thus,  in  ALM  layer  2/3,  the  SOM  population  activity  should  decrease  upon  χSE > 0              
PC   photoinhibition   (Fig.   12A).  

In  auditory  and  prefrontal  cortex (Pi  et  al.,  2013)  as  well  as  in  S1 (Lee  et  al.,  2013) ,                   
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photostimulation  of  VIP  neurons,  activates  them  ( )  and  disinhibits  the  PCs  (        χV V > 0      
)  through  an  inhibition  of  the  SOM  population  ( ).  If  this  is  also  true  in  χEV > 0          χSV < 0        

ALM  layer  2/3,  our  model  predicts  that  photostimulation  of  VIP  neurons  should             
increase   the   PV   activity   ( )   (Appendix   1C,   Fig.   12B).  χIV > 0  

In  S1  our  theory  (Model  2)  predicts  that  the  PC  and  PV  activities  will  proportionally                
decrease  upon  PC  photoinhibition  (Eq.  (3),  Appendix  1D,  Fig.  12C).  Photostimulation            
of  the  SOM  neurons  modifies  Eq.  (3)  and  consequently,  the  changes  in  PC  and  PV                
activity  no  longer  covary  (Fig.  12D).  Thus,  our  theory  can  be  tested  by              
photostimulating  PV  neurons  as  in  our  experiment,  while  also  photostimulating  SOM            
neurons  with  a  second  laser  with  constant  power.  In  this  case,  the  model  predicts               
that  S1  will  still  exhibit  the  paradoxical  effect  but  that  the  responses  of  the  PC  and                 
PV   populations   will   no   longer   be   proportional   (Fig.   12E).   

Perspectives  

We  only  considered  response  of  the  neurons  for  a  large  radius  of  the  laser  beam.  In                 
a  recent  study (Li  et  al.,  2019) ,  Li  et  al.  have  investigated  the  spatial  profile  of  the                  
response  and  its  dependence  on  the  light  intensity.  Our  theory  can  be  extended  to               
incorporate  spatial  dependencies.  Studying  the  interplay  between  the  connectivity          
pattern  and  laser  beam  width  in  the  response  profile  of  the  networks  will  provide               
further   constraints   on   cortical   architectures.   

Due  to  the  strong  interactions  in  our  models,  the  nonlinearity  of  the single  neuron  f-I                
curves  hardly  affects  the  population  average  responses.  However,  it  influences  the            
response  heterogeneity  that  naturally  arises  in  our  theory  (Figs.  6-8-11).  An            
alternative  model  for  the  paradoxical  effect  is  the  supralinear  stabilized  network            
(SSN) (Rubin  et  al.,  2015)  which  relies  on  an  expansive  non-linearity  of  the              
input-output  transfer  function  of  the  inhibitory populations .  Whether  this  mechanism           
can  account  for  our  experimental  data  is  an  issue  for  further  study.  In  particular,  it                
would  be  interesting  to  know  whether  the  SSN  scenario  can  account  for  the  strong               
heterogeneity  in  the  responses  and  for  the  proportionality  of  the  PC  and  PV              
population  activities  in  S1.  Answering  these  questions  may  provide  a  way  to             
discriminate   between   the   balance   network   and   SSN   theory.  
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Figure  12. Predictions  of  the  theory. A. In  ALM  layer  2/3,  the  activity  of  the  PV  population                  
decreases  upon  photoinhibition  of  the  PCs. B .  In  ALM  layer  2/3,  photostimulation  of  VIP               
neurons  increases  the  activity  of  the  PV  population. C .  In  S1,  PV  and  PC  activity  decrease                 
proportionally  upon  photoinhibition  of  the  latter. D .  In  S1,  the  PC  and  PV  responses  are  not                 
proportional  upon  photoinhibition  of  the  SOM  population. E .  In  S1,  upon  photostimulation  of              
PV  neurons  and  photoinhibition  of  the  SOM  population  with  a  constant  input,  the  PV               
response   is   paradoxical   but   PC   and   PV   responses   are   no   longer   proportional.  
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Materials   and   Methods  

Key   Resources   Table  

Reagent   type  
(species)   or  
resource  

Designatio 
n  

Source   or  
reference  

Identifiers  Additional  
information  

Transgenic  
mouse  
Pvalb -IRES-Cr 
e   x  
R26-LSL-CAG- 
LSL-ReaChR- 
mCit  

PV-Ires-Cr 
e   x  
R26-CAG- 
LSL-ReaC 
hR-mCitrin 
e   mice  

The   Jackson  
Laboratory  

JAX   #008069  
JAX   #026294  

Red-shifted  
channelrhodops 
in   (ReaChR)   in  
PV   neurons  

Animals   and   Surgery  

The  experimental  data  is  from  9  PV-Ires-Cre  x  R26-CAG-LSL-ReaChR-mCitrine          
mice  (age  >  P60,  both  male  and  female  mice) (Hooks  et  al.,  2015) .  3  mice  were  used                  
for  photoinhibition  in  somatosensory  cortex  (S1).  6  mice  were  used  for            
photoinhibition  in  anterior  lateral  motor  cortex  (ALM).  All  procedures  were  in            
accordance  with  protocols  approved  by  the  Janelia  Research  Campus  and  Baylor            
College   of   Medicine   Institutional   Animal   Care   and   Use   Committee.  

Mice  were  prepared  for  photostimulation  and  electrophysiology  with  a  clear-skull  cap            
and  a  headpost (Guo  et  al.,  2014a,  2014b) .  The  scalp  and  periosteum  over  the               
dorsal  surface  of  the  skull  were  removed.  A  layer  of  cyanoacrylate  adhesive  (Krazy              
glue,  Elmer’s  Products  Inc)  was  directly  applied  to  the  intact  skull.  A  custom  made               
headbar  was  placed  on  the  skull  (approximately  over  visual  cortex)  and  cemented  in              
place  with  clear  dental  acrylic  (Lang  Dental  Jet  Repair  Acrylic;  Part#  1223-clear).  A              
thin  layer  of  clear  dental  acrylic  was  applied  over  the  cyanoacrylate  adhesive             
covering  the  entire  exposed  skull,  followed  by  a  thin  layer  of  clear  nail  polish               
(Electron   Microscopy   Sciences,   Part#   72180).  
Photostimulation  

Light  from  a  594  nm  laser  (Cobolt  Inc.,  Colbolt  Mambo  100)  was  controlled  by  an                
acousto-optical  modulator  (AOM;  MTS110-A3-VIS,  Quanta  Tech;  extinction  ratio         
1:2000;  1µs  rise  time)  and  a  shutter  (Vincent  Associates),  coupled  to  a  2D  scanning               
galvo  system  (GVA002,  Thorlabs),  then  focused  onto  the  brain  surface (Guo  et  al.,              
2014a) .  The  laser  at  the  brain  surface  had  a  diameter  of  2  mm.  We  tested                
photoinhibition  in  barrel  cortex  (bregma  posterior  0.5  mm,  3.5  mm  lateral)  and  ALM              
(bregma   anterior   2.5mm,   1.5   mm   lateral).  

To  prevent  the  mice  from  detecting  the  photostimulus,  a  ‘masking  flash’  pulse  train              
(40  1ms  pulses  at  10  Hz)  was  delivered  using  a  LED  driver  (Mightex,  SLA-1200-2)               
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and  590  nm  LEDs  (Luxeon  Star)  positioned  near  the  eyes  of  the  mice.  The  masking                
flash  began  before  the  photostimulus  started  and  continued  through  the  end  of  the              
epoch   in   which   photostimulation   could   occur.  

The  photostimulus  had  a  near  sinusoidal  temporal  profile  (40  Hz)  with  a  linear              
attenuation  in  intensity  over  the  last  100-200  ms  (duration:  1.3  s  including  the  ramp).               
The  photostimulation  was  delivered  at  ~7  s  intervals.  The  power  (0.5,  1.2,  2.2,  5,  12                
mW  for  S1  photostimulation;  0.3,  0.5,  1,  1.5,  2,  3.3,  5,  8,  15  mW  for  ALM                 
photostimulation)  were  chosen  randomly.  Because  we  used  a  time-varying          
photostimulus,   the   power   values   reported   here   reflect   the   time-average.  
Electrophysiology  

All  recordings  were  carried  out  while  the  mice  were  awake  but  not  engaged  in  any                
behavior.  Extracellular  spiking  activity  was  recorded  using  silicon  probes.  We  used            
32-channel  NeuroNexus  silicon  probes  (A4x8-5mm-100-200-177)  or  64-channel        
Cambridge  NeuroTech  silicon  probes  (H2  acute  probe,  25  μm  spacing,  2  shanks).             
The  32-channel  voltage  signals  were  multiplexed,  digitized  by  a  PCI6133  board  at             
400  kHz  (National  Instruments)  at  14  bit,  demultiplexed  (sampling  at  25,000  Hz)  and              
stored  for  offline  analysis.  The  64-channel  voltage  signals  were  amplified  and            
digitized  on  an  Intan  RHD2164  64-Channel  Amplifier  Board  (Intan  Technology)  at  16             
bit,  recorded  on  an  Intan  RHD2000-Series  Amplifier  Evaluation  System  (sampling  at            
20,000  Hz)  using  Open-Source  RHD2000  Interface  Software  from  Intan  Technology           
(version   1.5.2),   and   stored   for   offline   analysis.  

A  1  mm  diameter  craniotomy  was  made  over  the  recording  site.  The  position  of  the                
craniotomy  was  guided  by  stereotactic  coordinates  for  recordings  in  ALM  (bregma            
anterior  2.5mm,  1.5  mm  lateral)  or  barrel  cortex  (bregma  posterior  0.5  mm,  3.5  mm               
lateral).  

Prior  to  each  recording  session,  the  tips  of  the  silicon  probe  were  brushed  with  DiI  in                 
ethanol  solution  and  allowed  to  dry.  The  surface  of  the  craniotomy  was  kept  moist               
with  saline.  The  silicon  probe  was  positioned  on  the  surface  of  the  cortex  and               
advanced  manually  into  the  brain  at  ~  3  µm/s,  normal  to  the  pial  surface.  The                
electrode  depth  was  inferred  from  manipulator  depth  and  verified  with  histology.  For             
ALM  recordings,  putative  layer  2/3  units  were  above  450  µm  and  putative  layer  5               
units  were  below  450  µm (Hooks  et  al.,  2013) .  For  S1,  our  recording  did  not                
distinguish   layers.  
Data   analysis  

The  extracellular  recording  traces  were  band-pass  filtered  (300-6  kHz).  Events  that            
exceed  an  amplitude  threshold  (4  standard  deviations  of  the  background)  were            
subjected   to   manual   spike   sorting   to   extract   single   units    (Guo   et   al.,   2014a) .  

Our  final  data  set  comprised  of  204  single  units  (S1,  95;  ALM,  109).  For  each  unit,  its                  
spike  width  was  computed  as  the  trough  to  peak  interval  in  the  mean  spike  waveform                
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(Guo  et  al.,  2014a) .  We  defined  units  with  spike  width  <0.35  ms  as  FS  neurons                
(31/204)  and  units  with  spike  width  >0.45  ms  as  putative  pyramidal  neurons             
(170/204).  Units  with  intermediate  values  (0.35  -  0.45  ms,  3/204)  were  excluded  from              
our   analyses.  

To  quantify  photoinhibition  strength,  we  computed  “normalized  spike  rate”  during           
photostimulation.  For  each  neuron,  we  computed  its  spike  rate  during  the            
photostimulus  (1  second  time  window)  and  its  baseline  spike  rate  (500  ms  time              
window  before  photostimulus  onset).  The  spike  rates  under  photostimulation  were           
divided  by  the  baseline  spike  rate.  The  “normalized  spike  rate”  thus  reports  the  total               
fraction  of  spiking  output  under  photostimulation.  For  normalized  spike  rate  of            
individual  neurons,  each  neuron’s  spike  rate  with  photostimulation  was  normalized           
by  dividing  its  baseline  spike  rate  (Fig  1B-D,  top).  For  normalized  spike  rate  of  the                
neuronal  population  (Fig  1B-D,  bottom),  the  spike  rates  with  photostimulation  were            
first  averaged  across  the  population  (without  normalization)  and  then  normalized  by            
dividing   the   averaged   baseline   spike   rate.   

Bootstrap  was  performed  over  neurons  to  obtain  standard  errors  of  the  mean.  For              
each  round  of  bootstrapping,  repeated  1000-10000  times,  we  randomly  sampled  with            
replacement  neurons  in  the  dataset.  We  computed  the  means  of  the  resampled             
datasets.  The  standard  error  of  the  mean  was  the  standard  deviation  of  the  mean               
estimates   from   bootstrap.  
Network   models  

All  the  models  we  consider  consist  of  strongly  interacting  leaky  integrate-and-fire            
neurons.  We  first  study  networks  of  one  excitatory  (E)  and  one  inhibitory  (I)              
population.  We  then  investigate  two  models  comprising  three  inhibitory  populations,           
namely  parvalbumin  positive  (PV  or  I),  somatostatin  positive  (SOM  or  S)  and  a  third               
population  either  corresponding  to  the  vasoactive  intestinal  peptide  positive  (VIP  or            
V)   neurons   (Model   1)   or   to   an   unidentified   population   denoted   by   X   (Model   2).  

In  all  models  the  total  number  of  neurons  is .  In  the  two  population  model,          6800  N = 7       
75%  are  excitatory  and  25%  inhibitory.  In  the  four-population  networks,  75%  are             
excitatory  and  the  number  of  cells  is  the  same, ,  for  all  GABAergic  inhibitory          N

12      
population.  

The  data  we  seek  to  account  for,  were  obtained  in  optogenetic  experiments  in  which               
the  laser  diameter  was  substantially  larger  than  the  spatial  range  of  neuronal             
interactions  and  comparable  to  the  size  of  the  cortical  area  were  the  recordings  were               
performed.  Therefore,  in  all  models  we  assume  for  simplicity  that  the  connectivity  is              
unstructured:  neuron , ,  is  postsynaptically  connected  to  neuron    (i, )α   α , , ,( = E I S X

V )       
  with   probability  (j, )β   
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P ij
αβ = Nβ

Kαβ (1)  

For   simplicity,   we   take     the   same   for   all   populations,   .  Kαβ  Kαβ = K  

Neuron   dynamics :   The   dynamics   between   spikes   of   the   membrane   potential   of   the  
neuron     is   given   by  (i, )α  

 

−CM dt
dV (t)i

α

= gα
leak (V )i

α (t) − V R + Iαi
rec (t) + Λα

ext + Λαi
opto (2)  

Here,  is  the  net  recurrent  input  into  neuron ,  represents  inputs  from   Iαi
rec (t)          (i, )α  Λα

ext     
outside  the  circuit  ( e.g.  thalamic  excitation)  to  population ,  and  is  the         α   Λαi

opto    
optogenetic   input   into   neuron   .  (i, )α  

We  assumed  that  the  capacitance, ,  is  identical  for  all  neurons  and  the  leak      CM          
conductance, ,  is  identical  for  all  the  cells  in  the  same  population.  We  take  gα

leak              

,     and   = = . μF .cm  CM = 1 −2 .1mS.cm  gIleak = 0 −2 gEleak gSleak .05mS.cmg X
V

leak = 0 −2   

Equation  (2)  has  to  be  supplemented  by  a  reset  condition:  if  at  time  the  membrane              t    
potential  of  the  neuron  crosses  the  threshold ( )  = = ,  the      (i, )α     V i

α t−  V th 0mV  − 5   
neuron  fires  a  spike  and  its  voltage  is  reset  to  the  resting  potential ( )  = =              V i

α t+  V R  
. 0mV  − 7  

Recurrent   inputs:     The   net   recurrent   input   into   neuron   is  (i, )α  

 ε  C  SIαi
rec (t) = ∑

 

β,j
jαβ β ij

αβ
j
αβ (t) (3)  

where  is  the  connectivity  matrix  between  (presynaptic)  population  and   Cαβ         β   
(postsynaptic)  population ,  such  that  if  neuron  projects  to  neuron   α    C ij

αβ = 1     (j, )β     
 and  otherwise.  The  parameter ,  is  the  strength  of  the  interaction  (i, )α   C ij

αβ = 0     jαβ        
from  neurons  in  population  to  neurons  population .  We  assumed  it  to  depend  on     β     α        
the  pre  and  postsynaptic  populations  only.  The  polarity  (excitation  or  inhibition)  of  the              
interaction   is   denoted   by     .   Therefore   if   ,     and   otherwise. εβ  β = E  εβ = 1 −   εβ = 1  

The   function     is Sj
αβ (t)  

 Sj
αβ (t) = ∑

 

k
fαβ t( − tkβj) (4)  

where  is  the  time  at  which  neuron  has  emitted  its  spike,  the  sum  is  over  tkβj         (j, )β     kth       
all   the   spikes   emitted   by   neuron     prior   to   time     and  (j, )β t   
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efαβ (t) = 1
τ αβ

−t
ταβ (5)  

where  is  the  synaptic  time  constant  of  the  interactions  between  neurons  in  τ αβ             
population     and   . β α  

External  and  optogenetic  inputs :  The  feedforward  input, ,  into  the  neurons  in        Λα
ext      

population  is  described  by  inputs  from  external  neurons  with  constant  firing  α       K  2       
rate     and   an   interaction   strength   ,   therefore,   . Hz  r0 = 5 jα0 r  Λα

ext = 2Kjα0 0  

We  model  the  ReachR  photostimulation  as  an  additional  external  constant  input  to             
the  stimulated  population.  For  simplicity,  we  assume  that  this  input, ,  is           Λαi

opto = Λα
opto   

the  same  for  all  stimulated  neurons.  Unless  specified  otherwise,  we  only  consider             
  and     for   . ΛI

opto = Λopto  Λα
opto = 0 ≠I  α  

In  qualitative  agreement  with  Fig.  3,  and Figs.  5,  7,  7-supplementary  figure  3,  10               
(Hooks   et   al.,   2015)    we   take   

log  Λopto = Λ0
α 1( + Γα

0

Γopto) (6)  

where     is   the   laser   intensity   and   and     are   parameters.  Γopto Λ0  Γ0  

Architectures  of  the  four-population  models: The  network  of  Model  1  is  depicted  in              
Fig.  4A.  In  line  with  the  results  of (Pfeffer  et  al.,  2013) ,  there  are  no  connections  from                  
PV  to  SOM,  VIP  to  PC  and  VIP  to  PV  neurons.  There  is  no  mutual  inhibition  between                  
SOM  as  well  as  between  VIP  neurons.  All  the  populations  except  SOM  receive              
feedforward   external   input.  

The   interaction   matrix   of   the   network   is   

(7)  

The   network   of   Model   2   is   depicted   in   Fig.   9B.   SOM   only   receives   projections   from  
PCs   and   PV   neurons.   X   neurons   are   recurrently   connected   and   project   to   PCs   and  
PV   neurons.   The   PC   and   SOM   populations   project   to   the   population   X.   All   the  
populations   except   SOM   receive   feedforward   external   input.  

The   interaction   matrix   is  
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(8)  

Numerical   simulations:     The   dynamics   of   the   models   was   integrated   numerically  
using   a   second-order   Runge-Kutta   scheme    (Press   et   al.,   1986)    without   spike   time  
interpolation.   Unless   specified   otherwise   the   time   step   was     and   the t .01ms  Δ = 0  
temporally   averaged   firing   rates   were   estimated   over   . 00s  1  

The   balance   equations  

We  consider  recurrent  networks  of  strongly  interacting  neurons (van  Vreeswijk  and            
Sompolinsky,  1996)  in  which  order  excitatory  synaptic  inputs  are  sufficient  to       √K        
bring  the  voltage  above  threshold.  To  understand  the  behavior  of  such  networks,  it  is               
imperative  to  analyse  how  it  behaves  when  goes  to  infinity.  To  this  end,  we  scale         K          
the   interactions   as   

  =   jαβ √K
Jαβ (9)  

where     does   not   depend   on   .   Since   a   neuron   receives   on   average     inputs  Jαβ  K  K  
from   each   of   its   presynaptic   populations,   the   total   interaction   from   population     to   a β  
neuron   in   population     is   .   To   keep   the   relative   strength   of   the   optogenetic α Jαβ√K  
input,   ,   as     increases   we   take Λα

opto  K  

Λα
opto = Iα

opto√K (10)  

where     depends   on   the   intensity   of   the   laser:  Iα
opto  

log  Iα
opto = I0

α 1( + Γα
0

Γopto) (11)  

We   take:     and   . nA  I0
α = I0 = 8 .5mW .mm  Γ0

α = Γ0 = 0 −2  

The   net   input   into   the   neurons   must   remain   finite   in   the   infinite     limit.   This   implies  K  
that   up   to   corrections   which   are   of   the   order   of   , 1

√K
 

 J  r  ε r2 α0 0 + Iα
opto + ∑

 

β
Jαβ β β = 0  (12)  

In  a -population  network,  these  equations  determine  the  firing  rates,   n    n     n    
. , α∈{1, .., }  rα  . n  

This  set  of  linear  equations  express  the  fact  that,  for  the  population  activities  to  be                
finite,  excitatory  and  inhibitory  inputs  to  the  neurons  must  compensate.  These            
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“balance”  equations  have  a  unique  solution  (unless  the  determinant  of  the  matrix             
 is  zero).  To  be  meaningful  the  solution  must  be  such  that  all  population ε  Jαβ β               

activities  are  positive.  This  constrains  the  feedforward  and  recurrent  interaction           
parameters.  

The  stability  of  this  balanced  solution  further  constraints  the  interaction  parameters            
and  synaptic  time  constants.  A  necessary  condition  for  the  stability  is  that             

.  This  condition  guarantees  that  the  “balanced  state”  is  stable  with et  d J ε[ αβ β] > 0            

respect  to  divergence  of  the  firing  rates.  A  complete  study  of  these  constraints  for               
our   LIF   networks   is   beyond   the   scope   of   this   paper.   

In  all  the  models,  we  study  parameter  ranges  in  which,  at  baseline  ( ),  the              Iα
opto = 0   

network  operates  in  a  stable  balanced  state  where  distributions  of  rates  exhibit  a              
quasi-lognormal  shape  and  spikes  are  emitted  irregularly  as  in  a  Poisson  process             
(Fig.  5-figure  supplementary  3,  Fig.  7-figure  supplementary  5  and  Fig.  10-figure            
supplementary  3).  For  sufficiently  large,  it  may  happen  that  one  or  more     Iα

opto           
population  activity  reaches  zero.  In  this  case,  the  network  evolves  to  a  partially              
balanced  state  in  which  the  rates  of  the  populations  that  remain  active  satisfy  a               
reduced  set  of  balanced  equations.  For  example,  if  we  consider  a  solution  were  the               
rate  of  population ,  is  zero  and  all  other  rates  are  positive,  the  reduced  balance    γ  rγ             
equations   are   

,   for   .  r  ϵ  r2 Jα0 0 + Iα
opto + ∑

 

β≠γ
Jαβ β β = 0 ≠γ  α  (13)  

Consistency  of  this  solution  leads  to  the  requirement  that  the  input  into  population              γ  
is   hyperpolarizing.   

 J r  ε  r2 γ0 0 + Iγ
opto + ∑

 

β≠γ
J γβ β β < 0 (14)  

Note   that   they   may   be   multiple   self-consistent   solutions   which   are   partially   balanced.  

Upon   photostimulation   of   PV,   in   Model   1,   the   balanced   equations   are  

 J  r  r  r  r  2 E0 0 + JEE E − JEI I − JES S = 0  (15.1)  
 J  r  r  r  r2 I0 0 + I Iopto + J IE E − J II I − J IS S = 0  

(15.2)  
 r  r  JSE E − JSV V = 0  (15.3)  

 r  r  r  r  2 JV 0 0 + JV E E − JV I I − JV S S = 0  (15.4)  

In   particular,   Eq.   15.3   implies   that     and     are   always   proportional   ( ). rE rV ,  JSE JSV > 0  

Similarly,   in   Model   2,   the   balanced   equations   are  
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 r  r  r r  r  2 JE0 0 + JEE E − JEI I − JES S − JEX X = 0 (16.1)  
  (16.2)  r r  r  r r2 J I0 0 + I Iopto + J IE E − J II I − J IS S − J IX  X = 0  

 r r  JSE E − JSI  I = 0  (16.3)  
 r  r  r  r  2 JX0 0 + JV E E − JV S S − JXX X = 0 (16.4)  

Equation   16.3   implies   that   in   this   network     and     are   always   proportional rE rI  
.  (J , )SE  JSI > 0  
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Parameters   of   the   two-population   model  
 
Table   1.    Connection   strength   matrix   (rows:   postsynaptic   populations;   columns:  
presynaptic   populations)  
 

 Jαβ (μA.ms.cm )−2  Feedforward  PC  PV  

PC  17  29  30  

PV  17  36  36  

 
Table   2.    Synaptic   time   constants   

 τ αβ (ms)  E  I  

E  4  2  

I  2  2  
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Default   parameters   of   Model   1  
 
Table   3.    Synaptic   time   constants   

 τ αβ (ms)  PC  PV  SOM  VIP  

PC  4  2  2   N/A  

PV  2  2  4  N/A  

SOM  2  N/A  N/A  4  

VIP  4  2  4  N/A  

 
Table   4.    Connection   strength   matrix   for     (rows:   postsynaptic   populations;  JEE > J*

EE  
columns:   presynaptic   populations)  

 Jαβ (μA.ms.cm )−2  Feedforward  PC  PV  SOM  VIP  

PC  34  20  26.4  41  0  

PV  27  44  28  35.6  0  

SOM  0  24  0  0  14  

VIP  39  12  35.2  35  0  

 
Table   5.    Connection   strength   matrix   for     (rows:   postsynaptic   populations;  JEE < J*

EE  
columns:   presynaptic   populations).  

 Jαβ (μA.ms.cm )−2  Feedforward  PC  PV  SOM  VIP  

PC  52  17.4  34.4  32.8  0  

PV  39  36.6  29.2  28.8  0  

SOM  0  24.2  0  0  16.8  

VIP  30  31.2  31  14.6  0  

 
 
 
 
Default   parameters   of   Model   2  
Table   6.    Synaptic   time   constants   in   Model   2  
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 τ αβ (ms)  PC  PV  SOM  X  

PC  4  2  2   4  

PV  2  2  4  4  

SOM  2  2  N/A  N/A  

X  2  N/A  4  2  

 
Table   7.    Connection   strength   matrix   (rows:   postsynaptic   populations;   columns:  
presynaptic   populations).  

 Jαβ (μA.ms.cm )2  Feedforward  PC  PV  SOM  X  

PC  48  20  30  32  36  

PV  29  40  28  16  32  

SOM  0  26  12  0  0  

X  24  24  0  36  22  
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Supplementary   Materials:   Figures   

 
Figure  3-figure  supplementary  1.  Current, , v.s.  laser  intensity, .  Parameters       Iopto      Γopto   
are   ,   . nA  I0 = 8 .5mW .mm  Γ0 = 0 −2  

 
Figure  3-figure  supplementary  2.  Effects  of  on  the  responses  of  a  two-population        K        
network  to  photoactivation  of  the  inhibitory  population.  A. ,  the         2μA.ms.cm  JEE = 2 −2   
inhibitory  population  activity  always  recovers  when  the  PCs  are  silenced.  B. ,             JEE = 0  
as  increases,  the  response  of  the  inhibitory  population  becomes  more  and  more   K             
insensitive  to  the  perturbation.  Cross: ;  triangles: ;  circles: .      0  K = 5   00  K = 1   00  K = 5  
Dashed  line:  .  Color  code  and  parameters  as  in  Fig.  3.  Baseline  firing  rates:  A.   ∞  →               

: , ; : , ; : 0  K = 5  0.8Hz  rE = 1  6.8Hz  rI = 1  00  K = 1  .8Hz  rE = 8  4.7Hz  rI = 1  00  K = 5  
, ; : , .  B. : , .7Hz  rE = 5  1.7Hz  rI = 1   K = ∞  .9Hz  rE = 3  .5Hz  rI = 8   00  K = 5  .9Hz  rE = 1  
; : , ; : , ; : .6Hz  rI = 3  00  K = 1  Hz  rE = 2  .8Hz  rI = 4  00  K = 5  .5Hz  rE = 1  .7Hz  rI = 5   K = ∞  
,   . .4Hz  rE = 1 .1Hz  rI = 9  
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Figure  3-figure  supplementary  3.  Two-population  model.  The  response  of  the  PC  and             
PV  populations  upon  stimulation  of  the  latter  are  proportional  only  if  parameters  are              

fine-tuned.  A.  where  estimated  for .  The  ratio   χI
χE

  χα = Γopto

−1( rα
rα
light on )

   .5mW .mm  Γopto = 0 −2    

is  close  to  one  only  if .  B.  Red  star  indicates  the       0μA.ms.cmJEE ≈ JEI J II
J IE = 3 −2       

approximate  center  of  the  region  with  proportionality  of  the  responses  together  with             
reasonable   activities.   Parameters   as   in   Fig.   3.   . 00  K = 5  

 
Figure  4-figure  supplementary  1.  Graphical  representation  of  the  population          
susceptibilities  upon  stimulation  of  PV  in  Model  1  (large  limit).  The  prefactor  in          ,  N K      
front  of  each  diagram  accounts  for  the  fact  that  additional  terms  are  needed  to               
complete   the   loops.    Note:   . χχV I = JSE

JSV EI  
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Figure  4-figure  supplementary  2.  Population  activities vs.  in  Model  1  (large         Iopto      

 limit).  The  activities  are  normalized  to  baseline.  A.  Parameters  as  in  Table  4. ,  N K               
The  activity  of  the  PV  (blue)  population  increases  with .  For  PC  (red  cross),           Iopto      
SOM  (green)  and  VIP  (gray)  the  activity  decreases.  B.  Parameters  as  in  Table  5.  In                
the  shaded  region,  the  network  is  bistable.  In  one  stable  state  all  the  four  populations                
are  active.  In  the  other  stable  state,  only  the  PV  population  is  active.  A  third  state  in                  
which  only  the  PV  and  SOM  populations  are  active  exists  in  this  range  of  laser                
intensity   (dotted-dashed   line).   This   state   is   unstable.   Baseline   firing   rates   as   in   Fig.   4.  

 

Figure  5-figure  supplementary  1.  Model  1  with .  Robustness  with  respect         JEE > J*
EE     

to  change  in  the  average  connectivity, .  Triangles: ;  cross: ;        K   00  K = 5   000  K = 1  
circles: .  neurons  per  population.  Baseline  firing  rates:  000  K = 2  0000  Nα = 1        00  K = 5
: , , , : , ,  .3Hz  rE = 3  .5Hz  rI = 6  .9Hz  rS = 5  .5Hz; 000  rV = 3 K = 1  .0Hz  rE = 3  .6Hz  rI = 6  

, ; : , , , . .6Hz  rS = 5  .7Hz  rV = 3  000  K = 2  .9Hz  rE = 2  .7Hz  rI = 6  .4Hz  rS = 5  .8Hz  rV = 3  
Rates   are   averaged   over   .   Color   code   and   parameters   as   in   Fig.   5. 0s  1   
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Figure  5-figure  supplementary  2.  Model  1  with .  Robustness  to  a  change  of         JEE > J*
EE       

 in  the  interaction  parameters.  A.  Distribution  of  the  population  activities.  B. 10%  ±             
Distribution  of  the  activity  changes  upon  stimulation  for .  Color         .07mW .mm  Γopto = 0 −2   
code   as   in   Fig.   5.   Rates   are   averaged   over   . 0s  1  

 

Figure  5-figure  supplementary  3.  Model  1  with .  Firing  statistics  at         JEE > J*
EE     

baseline.  A.  Distribution  of  the  firing  rates  (mean: , ,         .3Hz  rE = 3  .5Hz  rI = 6  .9Hz  rS = 5
, ).  B.  Distribution  of  CV.  Color  code  as  in  Fig.  5.  Parameters  as  in  Fig.  5.  .5Hz  rV = 3                 
Individual  rates  are  averaged  over  with  a  threshold  at .  CVs  are      00s  1      .05Hz  0    
computed   over   . 0s  3  
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Figure  7-figure  supplementary  1.  Model  1  with .  Robustness  to  a  change  of         JEE < J*
EE       

 in  the  interaction  parameters.  A.  Distribution  of  the  population  activities.  B. 10%  ±             
Distribution  of  the  activity  changes  upon  stimulation  for .  Rates         .07mW .mm  Γopto = 0 −2   
are   averaged   over   .   Color   code   as   in   Fig.   7.   Parameters   as   in   Fig.   7. 0s  1  

 

Figure  7-figure  supplementary  2.  Model  1  with .  Robustness  with  respect         JEE < J*
EE     

to  change  in  the  average  connectivity, .  Triangles: ;  cross: ;        K   00  K = 5   000  K = 1  
circles: .  neurons  per  population.  Baseline  firing  rates:  000  K = 2  0000  Nα = 1        00  K = 5
: , , , : ,  .7Hz  rE = 4  1.2Hz  rI = 1  .1Hz  rS = 7  .2Hz; 000  rV = 5 K = 1  .1Hz  rE = 4  0.3Hz  rI = 1
, , ; : , , , .  .6Hz  rS = 7  .7Hz  rV = 4  000  K = 2  .7Hz  rE = 3  .7Hz  rI = 9  .8Hz  rS = 7  .4Hz  rV = 4  
Rates   are   averaged   over   .   Color   code   and   parameters   as   in   Fig.   7. 0s  1   
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Figure  7-figure  supplementary  3.  Model  1  for .  Proportionality  of  the  PC         JEE < J*
EE      

and  PV  activity  requires  fine-tuning.  A.  The  response  of  the  PV  population  is              
paradoxical  for  small  and  is  proportional  to  the  PC  response.  B.  Responses  of     Γopto            
the  SOM  and  VIP  neurons.  Baseline  firing  rates: , ,         .4Hz  rE = 6  2.2Hz  rI = 1  .5Hz  rS = 6
, .  Color  code  as  in  Fig.  7.  Interaction  parameters:  1.0Hz  rV = 1          

0 μA.ms.cm  , 0 μA.ms.cm , J 2 μA.ms.cm , J 2 μA.ms.cm ,  ,  JJE0 = 4 −2 JEE = 2 −2  EI = 3 −2  ES = 2 −2 JEV = 0  I0 = 3
.   Other   parameters   as   in   Table   3.  

 

Figure  7-figure  supplementary  4.  Model  1.  The  response  of  the  PC  and  PV              
populations  upon  stimulation  of  the  latter  are  proportional  only  if  parameters  are             

fine-tuned.  A.  where  estimated  for .  B.  Red   χI
χE

  χA = Γopto

( −1)rA

rA
light on

   .5mW .mm  Γopto = 0 −2    

square  indicates  the  region  of  the  parameter  space  for  which  the  ratio  of  the  PC  and                 
PV  slopes  and  activities  are  reasonable  ( , ).   ±0.3  1      Hz  rE < 5  0Hz  5Hz < rI < 1  
Parameters   as   in   Fig.   5.   . 00  K = 5  
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Figure  7-figure  supplementary  5.  Model  1  with .  Firing  statistics  at         JEE < J*
EE     

baseline.  A.  Distribution  of  the  firing  rates  (mean: , ,         .8Hz  rE = 4  1.2Hz  rI = 1  
, ).  B.  Distribution  of  CV.  Individual  rates  are  average  over .1Hz  rS = 7  .3Hz  rV = 5           

 with  a  threshold  at .  CVs  are  computed  over .  Color  code  as  in  Fig. 00s  1      .05Hz  0      0s  3       
7.   Parameters   as   in   Fig.   7.  

 
Figure  9-figure  supplementary  1.  Model  2.  Graphical  representation  of  (large           χII   

  limit).   Note:   . ,  N K χχEI = JSI
JSE II  

 

Figure  10-figure  supplementary  1.  Model  2.  Robustness  with  respect  to  change  in             
the  average  connectivity, .  Triangles: ;  cross: ;  circles: .     K   00  K = 5   000  K = 1   000  K = 2  

 neurons  per  population.  Color  code  and  parameters  as  in  Fig.  10. 0000  Nα = 1             
Baseline  firing  rates: : , , ,    00  K = 5  .2Hz  rE = 4  .0Hz  rI = 7  .0Hz  rS = 7  

: , , , ; : .0Hz; 000  rX = 4 K = 1  .0Hz  rE = 4  .8Hz  rI = 6  .8Hz  rS = 6  .8Hz  rX = 3  000  K = 2  
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,   ,   ,   .   Rates   are   averaged   over   . .7Hz  rE = 3 .8Hz  rI = 6 .7Hz  rS = 6 .8Hz  rX = 3 0s  1  

 

Figure  10-figure  supplementary  2.  Model  2.  Robustness  to  a  change  of  in  the            10%  ±    
interaction  parameters.  A.  Distribution  of  the  population  activities.  B.  Distribution  of            
the  activity  changes  upon  stimulation  for .  Rates  are  averaged       .07mW .mm  Γopto = 0 −2     
over   .   Color   code   as   in   Fig.   10. 0s  1  

 

Figure  10-figure  supplementary  3.  Model  2.  Firing  statistics  at  baseline.  A.            
Distribution  of  the  firing  rates  (mean: , , ,       .5Hz  rE = 4  0.6Hz  rI = 1  .2Hz  rS = 7  

).  B.  Distribution  of  CV.  Individual  rates  are  average  over  with  a .9Hz  rV = 4           00s  1    
threshold  at .  CVs  are  computed  over .  Color  code  and  parameters  as  in   .05Hz  0      0s  3        
Fig.   10.  
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A.   Mean   field   theory  
Let  us  consider  a  network  consisting  of  populations  ( e.g. )  receiving        n     n = 4   
feedforward  input, ,  from  an  external  population  with  constant  firing  rate, ,  and   Λα

ext          r0   
an  optogenetic  input,  (Materials  and  Methods).  The  total  input  into  neuron    Λα

opto           (i, )α  
is   

Iαi
tot (t) = Iαi

rec (t) + Λα
ext + Λα

opto (A1)  

If  the  size  of  the  network, ,  and  mean  connectivity,  are  large  and  the  synaptic        N     ,  K       
time  constants  are  sufficiently  small  compared  to  the  membrane  time  constants,  one             
can   take   the   diffusion   approximation   and   neglect   the   temporal   correlations   and   write  

ζ η  Iαi
tot (t) = uα + √Aα i

α + √Bα i
α (t) (A2)   

where  is  an  i.i.d.  Gaussian  with  zero  mean  and  unit  variance,  and  is  a  ζ i
α             ηi

α (t)    
Gaussian   white   noise   with   zero   mean   and   unit   variance.   The   mean   input,   ,   is uα   

< ]  ε  ruα = [ Iαi
tot (t) > = Λα

ext + Λα
opto + K ∑

 

β
jαβ β β  (A3)  

where  the  population  average  firing  rate  of  population  is  and  is  the         β   r ]rβ = [ j
β   rj

β    

firing  rate  of  the  neuron .  Here  denotes  temporal  average  ( i.e.  over )       (j, )β    < . >       ηi
α (t)  

and  is  the  average  over  the  quenched  disorder  ( ).  The  latter  stems  from  .[ ]         ζ i
α      

heterogeneities   in   the   in-degree   of   the   inputs   into   the   neurons.  

In   Eq.   (A2),     is   the   variance   of   the   quenched   disorder   which   is   given   by Aα  

< ] qAα = [ Iαi
tot (t) >2 − u2

α = K ∑
 

β
j2αβ β (A4)  

while  is  the  variance  of  the  temporal  fluctuations (Van  Vreeswijk  and  Bα            
Sompolinsky   2005;   Roxin   et   al.   2011)  

 Bα = 1
τ α
m [ 1

Δt ∫
t+Δt

t
dt I <( ′ αi

tot (t )′ − Iαi
tot (t )′ >)2]  (A5)  

In   Eq.   (A4),   . (r ) ]qβ = [ j
β 2  

Equations  (A4-5)  have  to  be  supplemented  with  the  expression  of  the  input-output             
transfer   function   which   relates   the   average   firing   rate,   ,   to   the   statistics   of   , ri

α Iαi
tot (t)  

(u  ζ , )  ri
α = Φα α + √Aα i

α Bα  (A6)  
Dζ Φ (u ζ, )  rα = ∫ α α + √Aα Bα (A7)  
Dζ Φ (u ζ, )  qα = ∫ α α + √Aα Bα

2 (A8)  
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where   =   ,   and     is   given   by    (Capocelli   and   Ricciardi   1971) ζ  D e1
√2π

− 2
ζ2

Φα  
 

 Φα (x, )y =  we erfc{√ y
πτ α

m ∫
X−

α

X+
α

d w2 (w)}−1

(A9)  

where   ,     and     is   the   membrane   time   constant   of X−
α =

√y
x−g Vα

leak R X+
α =

√y
x−g Vα

leak Th τ α
m = CM

gα
leak

 

the   neurons   in   population   . α   
With   ,     and     (see   Materials   and   Methods),   we jαβ = √K

Jαβ Λα
ext = 2√K Λα

opto = Iα
opto√K  

obtain   

 uα = √K 2J  r  ε  r( α0 0 + Iα
opto + ∑

 

β
Jαβ β β) (A10)   

qAα = ∑
 

β
J2

αβ β  (A11)   

rBα = 1
τ α
m

∑
 

β
J2

αβ β (A12)   

For   finite,   but   large   ,   the   average   activity   of   population     is  K α  

 rα = Ψα u , ,[ α Aα Bα]  (A13)  

where     is   the   right   hand-side   of   Eq.   (A7). Ψα  
In   the   limit   where   ,   it   can   be   shown   that →  uα − ∞   

− eΨα u , ,[ α Aα Bα] ~ uα
τ α
m√π

Bα

(2A +B )α α 2
3

− u2
α

2A +Bα α (A14)  

In  the  large  limit,  the  activities, ,  have  to  satisfy  a  set  of  linear  balance     K     rα        n    
equations   (Eq.   (12),   Materials   and   Methods)   and   are   given   by   

−  rα = εα ∑
 

β
J[ −1]αβ

2 J  r( β0 0 + Iβ
opto) (A15)  

We  define  the  susceptibility  matrix, ,  as  the  derivative  of  the  activity, ,  with       χαβ        rα   
respect   to   , Iβ

opto  

− J  χαβ = εα[ −1]αβ
(A16)  

At  baseline ,  the  positivity  of  imposes  conditions  on  the  recurrent    I( β
opto = 0)     , α  rα ∀       

and  feedforward  interaction  strengths,  and .  The  requirement  that  there  are      Jαβ    Jα0       
no  “partially”  balanced  solutions  for  which  one  or  more  of  the  populations  is            n    
inactive  or  saturates  and  the  stability  of  the  balanced  solution  imposes  further             
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constraints.  

B.   Two-population   model  
Large     limit  K  

For  a  two-population  (one  excitatory  E  and  one  inhibitory  I)  network,  solving  Eq.              
(A13)   gives   for   a   perturbation,   ,   upon   I,  Iopto  

rE = Δ
2(J J −J J )r −J III E0 EI I0 0 EI opto (A17)  

rI = Δ
2(J J −J J )r −J IIE E0 EE I0 0 EE opto  (A18)  

where   . J  Δ J= JEI IE − JEE II   
The  requirement  that  at  baseline  the  network  state  is  fully  balanced  and  stable              
implies   that  

J I0
JE0 > J II

JEI > J IE
JEE

(A19)  

Therefore,   .  Δ > 0  

The   susceptibilities   with   respect   to   a   perturbation   of   I   are   

χEI = Δ
−JEI  (A20)  

χII = Δ
−JEE  (A21)  

which  both  are  negative.  Therefore,  and decrease  linearly  with , i.e .,  the      rE   rI      Iopto    
response   of   the   I   population   is   paradoxical.  
It   is   useful   to   consider   the   susceptibilities   normalized   to   baseline   rate  

−χEI = JEI
2(J J −J J )rII E0 EI I0 0

(A22)  

−χII = JEE
2(J J −J J )rIE E0 EE I0 0

(A23)  

Eq.   (A19)   implies   that,     is   larger   than   . χ|| EI
|
| χ|| II

|
|  

Moreover,  whereas  is  independent  of ,  depends  on .  When ,    χEI      JEE   χII     JEE    JEE = 0  
  is   zero:   the   PV   activity   is   insensitive   to   .  χII  Iopto  

The  identity  of  the  two  normalized  susceptibilities  can  only  be  achieved  with  a              
fine-tuning   of   the   interaction   parameters   such   that     for ≃0  Δ   

JEE ≃ JEI J II
J IE

(A24)   
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Concurrently,  as ,  the  activity  of  the  two  populations  diverge  as  with   JEE → JEI J II
J IE          1

Δ   

a  constant  ratio  equal  to .  Thus,  to  keep  the  activities  finite,      J II
J IE         2 (J J J )II E0 − JEI I0 r0  

and     must   also   tend   to   zero.  2 (J J J )IE E0 − JEE I0 r0  

Finally,  if ,  vanishes  (Fig.  3-figure  supplementary  1).   ≡2  Iopto = I*
opto J( E0

J II
JEI

− J I0) r0  rE       

When ,  the  balance  between  the  total  external  excitatory   Iopto > I*
opto         

(optogenetic+feedforward)  and  recurrent  inhibitory  inputs  into  I  implies  that          rI  
linearly   increases   with     and   the   slope   is   .  Iopto

1
J II

 
Finite   K   corrections   to   and      near    rE rI  I*

opto  
When  is  finite,  starts  to  increase  with  when  is  exponentially  small  in   K    rI       Iopto   rE       K
.  To  show  that,  we  have  to  derive  the  leading  order  correction  to  the  activities  near                 

.  I*
opto   

We  make  the  ansatz  that  when , and       I  Iopto = I*
opto + δ √ K

log(K)  rE = νE K
√log(K)   

,  where  and  are  and  is  the  inhibitory  rI = rI
∞ + νI√ K

log(K)   νE   νI    O (1)   JrI
∞ = 2 E0

r0
JEI

    

firing   rate   at     in   the   large     limit.  Iopto = I*
opto  K  

To   leading   order:  
 rI

∞ = ΨE ,[√log (K) (δI ν ν )+ J IE E − J II I ,AI
∞ BI

∞] (A25.1)  

 νE√ K
log(K) = ΨE ,[√log (K) (J ν ν )EE E − JEI I ,AE

∞ BI
∞]

(A25.2)  
where  and , ,  are  the  variance  of  the  temporal  and  quenched  noise  Aα

∞   Bα
∞  ∈{E, }  α I           

in   the   large     limit   (Eqs.   A11-A12).  K  
Equation   (A25.1)   implies   that   

I ν ν  δ + J IE E − J II I = O( 1
√log(K)) (A26)  

Together   with   Eq   (A25.2)   one   obtains  

 νE√ K
log(K) = ΨE − ,[( (J δI Δ)EI + νE J II

√log(K)) ,AE
∞ BI

∞] (A27)  

where   . J J  Δ = JEI IE − JEE II  
For   large   ,  K  

νE
√K

= Q
J II

(J δI Δ)EI + νE e
−

2A +B J( ∞
E

∞
E) 2

II

J δI+ν Δ log(K)( EI E )2

(A28)  

where   . Q = 1
τEm√π

B∞
E

(2A +B )∞
E

∞
E 2

3   

Since  must  be  positive,  must  also  be  positive,  Eq.  (A28)  then  νE      (J δI Δ)EI + νE         
implies   that   to   leading   order   

 νE = 1
Δ J δI( II√AE

∞ + 2
B∞
E − JEI ) (A29)  

Hence,     is νI   
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 νI = 1
Δ J δI( IE√AE

∞ + 2
B∞
E − JEE ) (A30)  

Therefore,  both  and  decrease  with .  This  holds  for .   νE   νI    I  δ     I≾  δ J II
JEI √AE

∞ + 2
B∞
E  

Beyond   this   range     is   exponentially   small,     and     increases   with   . rE νI = δI
J II

rI  Iopto  
In  conclusion,  when  the  response  of  the  I  population  is  minimum  the  firing  rate  of  the                 
excitatory   population   is   exponentially   small   in   .  K  

C.   Four-population   model:   Model   1  
Large     limit  K  

In  Model  1,  the  population  susceptibilities  in  response  to  a  perturbation  of  the  PV               
population   are   given   by   Eq.   (A16)  

χEI = JSV Δ
(J J −J J )EI V S ES V I (A31)  

χII = JSV Δ
(J J −J J )EE V S ES V E (A32)  

χSI = JSV Δ
(J J −J J )EI V E EE V I (A33)  

χχV I = JSE
JSV EI (A34)  

where   . et  Δ = d ( J ε )[ AB B]  

Note,  in  this  model  we  do  not  take  into  account  any  PV  to  SOM  connections.                
Nevertheless  even  If  one  includes  these,  the  expressions  of  the  PC  and  PV              
susceptibility  will  only  differ  by  a  scaling  factor  from  the  ones  in  A31  and  A32                
(because  of )  and  therefore  their  sign  will  depends  on  the  same  conditions  than   Δ             
A31   and   A32.  

Interestingly,  for  stable  solutions ,  then  implies  that .     (Δ )> 0    χII > 0     J  J  JEE V S > JES V E  
while  implies  that .  Therefore, .   χEI < 0     J  J  JES V I > JEI V S    J  J  J  JEE V S V I > J  JV E ES V I  
and .  Combining  the  latter  one  has   J  J  J  J  JES V I V E > JEI V S V E       

.  Therefore,  which  is  equivalent  to  J  J  J  J  JEE V S V I > JEI V S V E    J  J  JEE V I > JEI V E      
.  χSI < 0   

Similarly   one   can   show   that   if     and     necessarily   .  χEE > 0  χIE < 0  χSE > 0  

Let  us  consider  a  particular  set  of  parameters  for  which  a  stable  balanced  solution               
exists   when     .  JEE = 0  (Δ )(0) > 0  

The   susceptibility     as   a   function   of     is  χII  JEE  

 

χII (J )EE = JSV Δ(J )EE

J J −J JV S EE V E ES (A35)  
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− JΔ (J )EE = χ ̂EE EE + Δ (0) (A36)  

where ,  is  the  numerator  in  the  susceptibility  .Δχ ̂EE ≡ χEE (J )EE = JSV (J J J )V I IS − J II V S        
.  χEE   

In  our  models,  we  assumed .  When ,  is  positive  thus,       χEE > 0    JEE = 0   Δ (0)      χII (0) < 0
.  As  increases,  the  sign  of  depends  on  the  order  relationship  between    JEE       χII (J )EE        
two  quantities.  The  first  one, ,  is  the  value  of  for  which  the  numerator  in  Eq.       J*

EE       JEE        
(A35)   changes   sign  

J*
EE = JV S

J JV E ES (A37)  

The   second   one,   ,   is   defined   by    J cEE  Δ (J )c
EE = 0  

J cEE =
χ ̂EE

Δ(0) (A38)  

Therefore,   for   ,   the   dynamics   is   unstable.   Two   cases   can   be   distinguished:  JEE > J cEE  

1) If ,  then  is  an  increasing  function  of .  It  is  negative  if   J*
EE < J cEE    χII        JEE      

  and   becomes   positive   for   .  JEE < J*
EE  JEE > J*

EE  
2) If ,  is  a  decreasing  function  of  and  is  negative  in  all  the   J*

EE > J cEE   χII        JEE        
region   where   the   dynamics   is   stable.  

The  derivative  of ,  (Eq.  (A35)),  with  respect  to ,  has  the  same  sign  as .     χII        JEE       χ  χEI IE  
Therefore,     is   positive   in   the   first   case   and   negative   in   the   second. χ  χEI IE   

Experimental  data  shows  that  the  activity  of  the  PC  population  decreases  upon  PV              
photostimulation, i.e. , .  Therefore,  if  as  in  ALM  layer  2/3,  must  be    χEI < 0     χII > 0        χIE    
negative,    i.e. ,   the   activity   of   the   PV   population   decreases   upon   PC   photostimulation.  

Finite    K  

When  is  sufficiently  strong,  a  fully  balanced  solution  no  longer   Iopto          (r , α)α > 0 ∀    
exists   in   our   case     for     where  rE = rV = 0  Iopto > I*

opto   

. I*
opto = (J J −J J )ES V I EI V S

J (J J −J J )+J (J J −J J )+J (J J −J J )E0 IS V I II V S I0 EI V S ES V I V 0 ES II EI IS  

To  understand  the  network  behavior  after  this  point  we  need  to  consider  finite               K  
corrections.   

Since  the  PC  and  VIP  population  activities  decrease  with ,  when  is           Iopto    Iopto   
sufficiently  large  and  due  to  the  balance  of  the  SOM  input,  and  will  both  be  at            rE   rV      

most .  Let  us  write:  and  where  and  are  at  most   O ( 1
√K)     rE ≡ νE

√K
  rV ≡ νV

√K
  νE   νV     

 O (1) .  
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One   should   consider   four   cases:  

1)     and     are   . νE νV  O (1)  

In   this   case,   the   average   net   input   into   the   SOM   population,   ,   is ν ν  uS = JSE E − JSV V  
  and   the   temporal   fluctuations,   ,   and   heterogeneities,   ,   are   negligible.   If  O (1) BS AS  

  is   larger   than   the   rheobase,   ,     is   also   .   Otherwise,   . uS gSleak

(V −V )th R rS  O (1)  rS = 0   

Because     and     are   ,     and     are   .   Thus,   to   leading   order, νE νV  O (1) uE uV  o( 1
√K)   

J r r r  2 E0 0 − JEI I − JES S = 0 (A39)  
J r r r  2 V 0 0 − JV I I − JV S S = 0 (A40)  

Moreover,   the   balance   of   the   PV   population   implies   that  

J r r r  2 I0 0 + Iopto − J II I − J IS S = 0 (A41)  

Thus,  there  are  three  linear  equations  (Eqs.  (A39-40-41))  for  two  unknowns            
 .  These  cannot  be  satisfied  and  hence,  in  this  case,  there  is  no  consistent (r  and r )I s                

solution.   

2)     and   .  νE = o (1)  νV = O (1)  

Here,  to  leading  order, ,  while .  As  a  result,  to  leading     − ν  uS = JSV V < 0    AS = BS = 0       
order,   .   The   activity   of   the   PV   population   is   then  rS = 0  

rI = J II

2J r +I( I0 0 opto) (A42)   

Because     is   , νV  O (1)  

J r r  2 V 0 0 − JV I I = 0 (A43)  

Eqs.   (A42,   A43)   cannot   both   be   satisfied.   This   solution   is   also   inconsistent.  

3)     and   .  νE = O (1)  νV = o (1)   

In  this  case  and  therefore  can  be .  Eqs.  (A39)  and  (A41)    ν  uS = JSE E > 0    rS     O (1)      
imply   

J r r r  2 E0 0 − JEI I − JES S = 0  (A44)   

r r r  2J I0 0 + Iopto − J II I − J IS S = 0 (A45)  

which   determine     and     as     and   . rI rS rI = J J −J JES II EI IS

(J J −J J )r +J IES I0 IS E0 0 ES opto rS = J J −J JES II EI IS

(J J −J J )r −J III E0 EI E0 0 EI opto  

Provided   that   the   parameters   are   such   that   they   are   positive,     is   given   by νE  

 rS = ΨS J ν , ,[ SE E 0 0]   
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(A46)  
Finally,   since     consistency   implies   that  νV = o (1)   
J r r r  2 V 0 0 − JV I I − JV S S < 0 (A47)  

This  solution  is  valid  for  a  finite  range  of .  It  exists  as  long  as  which           Iopto        rs > 0   

implies   that   . JE0
J II
JEI

− J I0 > Iopto > I*
opto  

4)     and   .  νE = o (1)  νV = o (1)  
Here,  and  thus, .  This  solution  exists  only  for  sufficiently  large   uS = AS = BS = 0     rS = 0         

 such  that  and  are  and  negative.  Therefore,  PV  is  the  only  active  Iopto    uE   uV    O (√K)          
population   and     is   given   by   Eq.   (A40). rI  

In  conclusion,  in  this  model  at  the  minimum  of ,  is  of  order  in  contrast  to  the          rI  rE     1
√K

     
two-population   case   where     is   exponentially   small   in   . rE  K  

D.   Four-population   model:   Model   2  
Large     limit  K  

To  get  insights  on  the  network  architecture  that  could  explain  the  proportional             
paradoxical  effect  observed  in  layer  5  of  ALM  and  S1,  we  first  considered  a               
three-population   network   consisting   of   the   PC,   PV   and   SOM   populations   (Fig.   9A).  

In   this   network,   the   population   activities   are   

rE = JSI Δ
2(J J −J J )r +J IES I0 IS E0 0 ES opto (A48)  

rrI = JSI
JSE

E (A49)  

rS = Δ
2((J J −J J )J −(J J −J J )J )r −(J J −J J )III SE IE SI E0 EI SE EE SI I0 0 EI SE EE SI opto (A50)  

where   .  Δ = (J J − J )II SE J IE SI JES + (J J J )EE SI − JEI SE J IS > 0  
The   full   balance   of   the   network   activities   implies  

J IS
JES > 2J rE0 0

2J r +II0 0 opto
> J II

JEI (A51)  

The  inequality  on  the  left  side  stems  from  the  positivity  of  the  rates.  The  inequality  on                 
the  right  side  stems  from  the  fact  that  the  balanced  state  is  the  only  solution  of  the                  
dynamics,  namely  that  no  partially  balanced  solution  (in  particular, ,           rE = 0   rI = O (1)  
and     and   ,     and   )   exists.  rS = 0  rE = 0  rI = O (1)  rS = O (1)  

 and  are  proportional  (Eq.  A49)  and  increase  with .  As  a  consequence,  the rE   rI          Iopto      
network   never   exhibits   the   paradoxical   effect.  
In  this  three-population  network,  the  proportionality  of  and  stems  from  the        rE   rI     
balance  of  inputs  into  the  SOM  population.  To  account  for  the  proportional             
paradoxical  effect ,  we  consider  a  network  model  with  an  additional  inhibitory            
population,  denoted  X  (Fig.  9B).  Because  in  this  network  the  SOM  neurons  only              
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receive  inputs  from  PCs  and  PV  neurons,  here,  the  balance  of  the  SOM  input  also                
ensure   the   proportionality   of     and   . rE rI  
The   susceptibilities   upon   PV   stimulation   are   

χEI = JSI Δ
(J J −J J )ES XX EX XS (A52)  

χχII = JSI
JSE

EI (A53)  

χSI = Δ
(J J J −J J J −J J J )EE SI XX XE SI XE EI SE XX  (A54)  

χXI = Δ
(J J J +J J J −J J J )ES SI XE EI SE XS EE SI XS (A55)  

where     (see   Material   and   Methods). et  Δ = d ( J ε )[ AB B]  

Paradoxicality   implies   that   

JEX > J*
EX ≡ JXS

J JES XX (A56)  

The   susceptibilities   upon   PC   stimulation   are   

χEE = JSI Δ
(J J −J J )IX XS IS XX (A57)  

χχIE = JSI
JSE

EE (A58)  

χSE = Δ
(J J J +J J J −J J J )IX SI XE II SE XX IE SI XX  (A59)  

χXE = Δ
(J J J −J J J −J J J )IE SI XS IS SI XE II SE XS  (A60)  

Therefore,   the   PC   population   activity   increases   upon   PC   stimulation   if   

J J  J IX XS > J IS XX (A61)  

One   can   find   a   range   of   parameters   ( e.g.    Fig.   9C)   such   that:  
1)  The  relative  decrease  in  the  SOM  population  is  larger  than  that  in  the  E  and  I                  
populations.  As  a  consequence,  as  is  increased,  approaches  zero  when  the       Iopto    rS      
PC   and   PV   activities   are   still   finite.  
2)  As  is  increased  further,  the  network  settles  into  a  partially  balanced  state    Iopto             
where ,  and  are  finite  and  increases  with ,  while  continues  to  rE  rI   rX     rI     Iopto   rE    
decrease.  
Thus,     reaches   its   minimum   value   when     is   finite   even   in   the   large     limit. rI rE  K  
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Conclusion   of   the   chapter  
In  this  work,  we  investigated  how  the  optogenetic  photostimulation  of  the  PV  neurons              
affects  the  responses  of  PCs  and  PV  neurons  i n  both  ALM  layer  2/3  and  layer  5  and                  
S1 .  We  inferred  from  our  observations  the  properties  in  the  network  architectures             
that   are   essential    to   account   for   the   responses   in   each   of   these   areas.   

We  showed  that  to  understand  the  effects  of  these  manipulations  it  is  crucial  to  take                
into  account  the  diversity  of  the  inhibitory  neurons.  We  expect  that  this  diversity  is               
essential  to  understand  the  effects  of  other  optogenetic  perturbations  and  in            
particular,  when  all  the  inhibitory  subtypes  are  stimulated.  Indeed,  each  subtype            
contributes  to  very  specific loops  in  the  connectivity.  Therefore,  the  network  response             
is   likely   to   still   depend   on   specific    disinhibitory   patterns .  

In  the  next  chapter,  we  will  investigate  the  effects  of  the  optogenetic  perturbation  of               
cortical  circuits  on  a  different  scale.  We  will  consider  how  we  can  infer  from               
optogenetic  manipulations,  information  on  the  characteristic  length  of  the  interactions           
between   cortical   neurons.   
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Chapter   3   

Mechanisms   underlying   the   spatial   photosupression  
of   cortical   excitatory   activity  

 

The  response  of  networks  of  one  excitatory  (E)  and  one  inhibitory  (I)  population  of               
neurons  to  perturbations  of  their  inhibitory  population  has  been  the  subject  of             
numerous  recent  studies.  The  majority  of  these  works  focused  on  describing  the             
response  of  networks  with  unstructured  connectivity.  Here,  we  investigate  the           
response  of  spatially  structured  networks  of  neurons  with  strong  recurrent           
interactions  to  the  stimulation  of  their  inhibitory  population  with  a  Gaussian-shaped            
perturbation.  When  the  connectivity  decays  exponentially  with  distance,  we  show           
that  upon  strong  perturbation  the  balance  of  excitation  and  inhibition  is  disrupted  on              
a  characteristic  length, ,  where  excitatory  neurons  are  silenced.  We  derive  the     xc          
dependence  of  with  the  intensity  and  radius  of  the  perturbation.  Our  models    xc            
account  for  the  experimental  observations  of  (Li  et  al.,  2019)  in  the  mouse  barrel               
cortex.  Notably,  we  give  general  predictions  on  the  dependence  of  the            
photo-suppression  length, ,  with  the  intensity  and  radius  of  the  laser.  Finally,  for    xc            
finite-size  networks,  we  propose  conditions  upon  the  length  of  the  recurrent            
interactions  to  explain  the  concomitant  decrease  of  the  excitatory  and  inhibitory            
responses   in   the   surround   of   the   suppression.  
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Introduction  
In  the  mouse  cortex,  excitatory  connections  are  sparse  with  connection  probability            
falling  off  sharply  with  distance (Levy  and  Reyes,  2012) ,  inputs  are  integrated  from              
nearby  neurons  ( i.e.  250 m  to  500 m).  Long-range  connections  ( i.e.  500 m  to     μ    μ      μ   
1500 m)  between  neurons  are  known  to  exist  but  are  thought  to  be  made  between  μ               
neurons  with  similar  functional  properties (Stepanyants  et  al.,  2009) .  Thalamocortical           
projections  are  known  to  be  broader  than  intracortical  interactions (Freund  et  al.,             
1989;  Landry  and  Deschênes,  1981)  and  it  is  commonly  admitted  that  excitatory             
connections  are  broader  than  their  inhibitory  counterpart (Fino  and  Yuste,  2011;  Hioki             
et   al.,   2013;   Kato   et   al.,   2017;   Packer   and   Yuste,   2011) .  

In  a  recent  study, (Li  et  al.,  2019)  measured  the  effects  of  the  ChR-assisted               
photoactivation  of  the  PV  neurons  in  the  mouse  barrel  cortex.  They  limited  the  viral               
expression  of  ChR  to  a  laterally  confined  region  within  a  radius  across  all           00 μm  3     
layers  (Fig.  1A-B).  They  activated  these  localized  PV  neurons  with  a  Gaussian             
shaped  laser  for  different  intensities.  They  measured  the  responses  of  the  PCs  and              
PV  neurons  at  different  distances  from  the  stimulation  center  with  a  set  of  electrodes               
evenly  spaced  between  the  site  of  viral  expression  and  of  cortical  distance.          200 μm  1     
Surprisingly,  they  reported  that  the  photostimulation  of  PV  neurons  suppressed  the            
activity  of  the  PCs  in  a  region  that  extended  beyond  the  site  of  viral  expression.  For                 
large  laser  intensities,  PCs  were  completely  silenced  up  to  from  the  center  of          .4 mm  0      
the  light  and  totally  recovered  only  at  a  distance  of  from  the  center  of  the  laser            mm  1        
beam  (Fig.  1C).  Conversely,  PV  neurons  were  highly  activated  up  to  from  the            .2 mm  0    
center  of  the  laser  and  exhibited  an  activity  decrease  in  the  surrounding  regions  up               
to     from   the   center   where   they   recovered   to   their   baseline   activity   (Fig.   1C). .6 mm  0  

Over  the  range  of  distances  where  the  activity  of  the  neurons  decreased,  the  relative               
suppression  of  the  excitatory  and  inhibitory  activity  appears  to  be  proportional  at  all              
light  intensity.  Figure  2  plots  the  relative  spike  rate  versus  the  lateral  distance  from               
the  laser  center  when  the  viral  expression  is  not  localized.  Because  of  the  scattering               
of  the  light  through  brain  tissues,  a  larger  set  of  neurons  is  affected  by  the  light.  For                  
sufficiently  large  laser  intensities  (Fig  2A  and  B  left),  the  relative  spike  rates              
(normalized  to  baseline)  of  the  PCs  and  PV  neurons  in  the  surround  of  the  center  of                 
the   stimulation   (   to   )   are   nearly   identical.  mm  ~ 1  mm  3  

Previous  works  have  investigated  the  dynamics  of  two-population  networks  with           
spatially  structured  connectivity (Ben-Yishai  et  al.,  1997;  Ebsch  and  Rosenbaum,           
2018;  Rosenbaum  and  Doiron,  2014;  Van  Vreeswijk  and  Sompolinsky,  2005) .  Few            
studies  consider  networks  of  strongly  interacting  neurons  operating  in  the  balanced            
regime. (Rosenbaum  and  Doiron,  2014)  have  investigated  the  conditions  that           
recurrent  and  feedforward  interactions  have  to  satisfy  for  the  existence  of  a  balanced              
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regime  in  networks  where  the  probability  of  connection  between  neurons  is            
Gaussian.  They  found  that  for  a  network  to  operate  in  a  balanced  state,  feedforward               
interactions  must  be  broader  than  recurrent  excitatory  connections  that  in  turn  must             
be  broader  than  inhibitory  interactions.  Consequently,  they  concluded  that          
mechanisms  that  are  thought  to  rely  on  broad  lateral  inhibitory  interactions  ( e.g.             
tuning  curve  sharpening (Shapley  et  al.,  2003)  cannot  be  accounted  for  in  a              
balanced   network.  

 

Figure  1. ChR-assisted  photoinhibition  using  virus  injection  can  achieve  submillimeter           
spatial  resolution.  (A)  Schematics,  confined  ChR2  expression  in  PV  neurons  and  silicon             
probe  recording  at  different  distances  from  the  expression  site.  (B)  Silicon  probe  recording  in               
the  barrel  cortex  during  photostimulation.  The  right  shank  of  the  silicon  probe  was  painted               
with  DiI  to  label  the  recording  tracks.  Coronal  section  showing  viral  expression  of              
ChR2-tdTomato,  electrode  and  photostimulus  locations.  The  photostimulus  was  aligned  to           
the  virus  injection  site.  (C)  Relative  spike  rate  versus  lateral  distance  from  the  photostimulus               
center  for  different  laser  powers.  Top,  putative  FS  neurons  (n  =  14).  Bottom,  pyramidal               
neurons  (n  =  78).  Neurons  were  pooled  across  cortical  depths.  (D)  Photoinhibition  strength              
versus  spatial  spread.  Relative  spike  rate  is  the  average  across  all  pyramidal  neurons  near               
the  laser  center  (<0.4  mm,  all  cortical  depths).  Spatial  spread  is  the  distance  at  which                
photoinhibition  strength  is  half  of  that  at  the  laser  center  (‘radius,  half-max’).  Each  circle               
represents   data   from   one   photostimulation   power.   Lines   connect   all   circles   of   one   method.  
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Here,  we  consider  two-population  network  models  with  exponentially  decaying          
distance-dependent  interactions  to  explain  the  observed  responses  of  principal          
excitatory  cells  (PCs)  and  parvalbumin-positive  (PV)  neurons  to  optogenetic          
perturbations  of  the  PV  neurons  in  the  superficial  layers  of  the  mouse  barrel  cortex.               
We  investigate  how  local  interactions  account  for  the  photo-suppression  of  the            
excitatory  activity  and  shape  the  network  responses.  Spatially  structured  interactions           
result  in  a  local  competition  between  the  network  activities  that  lead  to  a  modulation               
of  the  responses  over  distances  that  extend  beyond  the  radius  of  the             
photostimulation.  

 

Figure  2. Proportional  activity  decrease  in  pyramidal  and  FS  neurons  during  ChR-assisted             
photoinhibition.  (A)  Relative  spike  rate  versus  lateral  distance  from  the  photostimulus  center             
for  PV-IRES-Cre  x  Ai32.  Data  from  Figure  5C  replotted  with  activity  shown  on  a  log  scale.                 
PV  neurons  (gray)  and  pyramidal  neurons  (black).  The  arrows  point  to  regions  in  the               
photostimulus  surround  where  the  activity  of  PV  neurons  and  pyramidal  neurons  decrease  in              
proportion   (paradoxical   effect).   (B)   Same   as   (A)   but   for   PV-IRES-Cre   x   ReaChR.   

We  have  shown  in  a  previous  study (Mahrach  et  al.,  2019)  that  two-population              
balanced  network  models  were  not  sufficient  to  describe  the  effects  of  the             
photostimulation  of  PV  neurons  when  the  radius  of  the  laser  is  large.  A  complete               
understanding  of  the  mechanisms  underlying  the  spatial  responses  of  the  PCs  and             
PV  neurons  would  also  require  the  modeling  of  networks  with  multiple  inhibitory             
populations.  We  here  give  as  a  necessary  prerequisite,  an  account  of  these             
mechanisms   in   two-population   network   models.  

Network   models  
We  consider  networks  of  one  excitatory  (E)  and  one  inhibitory  (I)  populations  of              
neurons  (Fig.  3A),  consisting  of  randomly  strongly  connected  neurons.  The       N       
neurons  lie  on  a  ring  of  size ,  and  we  denote  the  position  of  a  neuron         mm  L = 3          A, )  ( i  
in  population  as .  The  neurons  are  uniformly  distributed  across  the  ring,   A    xi

A          
namely, .  The  probability  of  connection  between  the  neurons  is  assumed  to  xi

A = i L
NA

           
have   a   periodic   exponential   profile   (Fig.   3B)  
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  P i,j
AB = ZB

λAB
∑
+∞

k=−∞
e− λAB

|x −x + k L|i
A

j
B

(1)  

where  is  a  normalization  factor  such  that ,  so  that  the  neurons  on  ZB        ∑
 

j
P ij
AB = K       

average  receive  inputs  per  population.  is  the  characteristic  length  of  the    K      λAB        
decay  of  the  interaction  from  population  to  population  with  distance.  We  will       B    A      
abusively   refer   to   it   as   the   interaction   length   from   population     to   population   . B A  

 

Figure  3.  Network  model  and  connection  probability.  A.  Scheme  of  the  network  architecture              
(ring  model).  B.  Profile  of  the  probability  of  connections  (example  with ).            λAB = λB  
Dashed-line:   red:   ;   blue:   . 0.5 m4 λE =  0.3 m4 λI =   

We  first  assume  that ,  in  other  words,  that  the  length  of  the  interaction      λAB = λB           
between   the   neurons   only   depends   on   the   presynaptic   population.   

The  neurons  receive  homogeneous  inputs  from  sources  outside  of  the  network  ( e.g.             
thalamus)  with  a  fixed  rate  and  strong  interactions  strength, .  We      r0        JjA0 =  A0√K   
also  assume  that  the  neurons  interact  through  strong  synapses  and  denote  by             

  the   absolute   strength   of   the   connection   from   population     to   population   . jAB = √K
JAB B A  

We  model  the  effect  of  the  photostimulation  as  a  strong  additional  current  into  the               
inhibitory   neurons   with   a   Gaussian   shape   of   variance     and   amplitude   :  σ0 Γ0√K  

𝓘 x)  I (x)   e( = √K I = √K Γ0
σ0√2π

− x2
2σ2

0  (2)  

Globally   balanced   solutions   

The   net   input,   ,   into   a   neuron     in   population   A   at   the   position     is (x)  uA A, )  ( x  x  
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(x)  uA = √K I (x)  r   ε  ∫ dy e  r (y)( A + JA0 0 + ∑B λB
JAB

B
+∞
−∞

− λB
|x−y|

B )  (3)  

where  is  the  absolute  scaled  strength  of  the  interaction  from  population  to   JAB            B   
population ,  and  depending  on  whether  is  excitatory  or  inhibitory.  Here,  A   ±  εA = 1     A       

  is   the   activity   of   the   neuron   . (x)  rA A, )  ( x  

Given  that  the  profile  of  the  interactions  is  exponential,  one  easily  shows  that  the               
inputs  into  the  neurons  are  the  solutions  of  a  system  of  two  second-order  differential               
equations  

″(x)−M  . u(x)  u = √K I″(x) −  (J . Λ . J ). I(x) − 2 ( J  . Λ ) . r(x){ −2 −1 −2 } (4)  

where     and     is   the   Kronecker   symbol.  λ  ΛAB = δAB B δAB  

Each  differential  equation  has  to  be  provided  with  a  proper  set  of  boundary              
conditions.   Assuming   that   the   solutions   are   symmetric   we   have  

( ) (− )r 
A 2

L = r 
A 2

L  (5)  

In  addition,  we  assume  that  the  size  of  the  ring, ,  is  large  in  comparison  with  the           L        
interaction  length  and  with  the  perturbation  radius.  Therefore,  at ,  the  network          x = 2

L    
behaves   as   if   it   was   not   perturbed   implying   that  

( )  dx
dr 

A
2
L = 0 (6)  

Analytical  solutions  to  the  set  of  self-consistent  equations  of  the  dynamics  can  then              
be  found  numerically.  However,  these  can  be  tricky  to  solve  given  that  they  involve               
the   resolution   of   nonlinear   transcendental   equations.  

Theory   in   the   large     limit , K  N   

When  the  average  number  of  connections  becomes  infinitely  large,  the  network        K       
operates  in  a  regime  where  excitation  and  inhibition  are  balanced  if  the  net  input  into                
a  neuron  remains  finite  and  non-zero (Van  Vreeswijk  and  Sompolinsky,  2005) .   A, )  ( x           
This  implies  that  for  each  neuron,  the  right-hand  side  of  Eq.  [3]  must  be .               ( )O 1

√K
 

Similarly,  the  balance  of  the  net  input  into  a  neuron  at  any  position  implies  that  the               x     
right-hand   side   of   Eq.   [4]   is   zero.   Therefore,   the   activities   are   

(x)  ( 1 (1 − ) ) erE
∞ = r0

E −  JEI2|J | 
Γ0

σ0√2π
+  σ2

0

 λ2
E x2

σ2
0

− x2
2 σ2

0 (7)  

(x)  ( 1 (1 − ) ) erI
∞ = rI

0 −  JEE2|J | 
Γ0

σ0√2π
+  σ2

0

 λI
2

x2

σ2
0

− x2
2 σ2

0 (8)  

where   the   baseline   rates   are     and   . rr0
E = 2

1 J  J  −J  J  E0 II I0 EI
J  J  −J  J  EI IE EE II 0 rrI

0 = 2
1
J  J  −J  J  EI IE EE II

J  J  −J  J  E0 IE I0 EE
0  
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The   solution   is   balanced   as   long   as     and     are   positive   for   any   given   . (x)  rE
∞ (x)  rI

∞  x   

At   the   center,   the   responses   of   E   and   I   are   minimum   and   below   their   baseline   value  

(0)  ( 1  ) rE
∞ = r0

E −  JEI2|J | 
Γ0

σ0√2π
+  σ2

0

 λ2
E (9)  

(0)  ( 1  ) rI
∞ = rI

0 −  JEE2|J | 
Γ0

σ0√2π
+  σ2

0

 λI
2

(10)  

Therefore,  the  responses  at  the  center  are  always  paradoxical:  the  activities  of  both              
E  and  I  decrease  with  the  intensity  of  the  perturbation .  When  is  too  large,  the            Γ0    Γ0      
activity  of  either  E  or  I  reaches  zero  and  the  balance  no  longer  holds.  This  occurs  for                  
an   intensity  

in[ , ] r  σ  Γ*
0 = m

J  (λ  + σ )EI
 2ˆ
E

2
0

J  J  −J  JE0 II I0 EI  
J  (λ  + σ )EE I

 2ˆ 2
0

J  J  −J  JE0 IE I0 EE
0

3
0 √2 π  (11)  

When ,  the  response  of  E  exhibits  a  maximum  at .   Γ0 <  Γ*
0          xE

max = λE

σ  0 √3 λ +σ2
E

2
0  

Respectively,  the  inhibitory  response  is  maximum  at .  The  values  of        xI
max = λI

σ  0 √3 λ +σI
2 2

0     
the   normalized   activities   at   their   maximum   are  

(x )  e er̄E E
max ≡ r0

E

r (x )∞
E E

max

= 1 + √ π
2

|J | 
JEI

σ3
0

Γ  λ0
2
E − 2

3 −
σ2

0
2 λ2

E (12)  

(x )  e er̄I I
max ≡ rI

0

r (x )I
∞

I
max

= 1 + √ π
2

|J | 
JEE

σ3
0

Γ  λ0 I
2

− 2
3 −

σ2
0

2 λ2
I (13)  

Therefore,   at   their   maximum,   the   responses   of   E   and   I   increase   with   .  Γ0  

One  easily  shows  that  a  necessary  condition  for  a  balanced  state  to  be  stable  is                
.  Remarkably,  when  this  is  the  case .  Therefore,  for  the  λE > λI         xI

max > xE
max     x < xE

max   
responses  of  E  and  I  decrease  with  .  For ,  the  response  of  E         Γ0     xE

max < x < xI
max      

increases  with  while  the  response  of  I  decreases.  Finally,  for ,  both    Γ0           x > xI
max > xE

max   
the   responses   of   E   and   I   increase   with   .  Γ0  

Partially   balanced   solutions   

We  want  to  investigate  the  response  of  the  network  to  large  perturbations  of  its               
inhibitory  population .  We  expect  that  if  the  perturbation  is  large  enough,  the   Γ )  ( 0 > Γ*

0            
inhibitory  neurons  in  the  perturbed  region  will  increase  their  activity  and            
consequently  silence  their  excitatory  neighbors.  Therefore,  we  look  for  solutions  to            
the  network  dynamics  where  the  excitatory  population  is  silenced  within  a  given             
region,  namely  in .  For  reasons  of  symmetry,  we  will  only   (x)  rE = 0   −x ; ]  [ c xc         
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investigate  the  network  responses  in ,  and  label  the  solutions  of  the      0; ][ 2
L    −}  {      

dynamics   in     and     the   ones   in   . 0; ]  [ xc +}{ x ; ][ c 2
L  

The  net  input  into  neuron  in  population  can  be  expressed  in  terms  of  the       x    A         
activities   on   the   left   side   and   right   side   of     as  xc  

(x)  {I (x)  r  −  ( y (e ) r (y)  uA = √K A + JA0 0 ∑
 

B
 λB
JAB ∫

+∞

xc
d − λB

|x+y|

+ e− λB
|x−y|

+
B  

y (e e ) r (y)}+ ∫
xc

0
d − λB

|x+y|

+  − λB
|x−y|

−
B  (14)  

Activities   in   x ; ][ c 2
L  

For   a   neuron   in   ,   Eq.   [14]   simplifies   as x ; ][ c 2
L  

(x)  {I (x)  r   ( e [ y cosh( ) r (y) y cosh( ) r (y)] u+
A = √K A + JA0 0 + 2 ∑

 

B
 λB
JAB − x

λB ∫
x

xc
d y

λB
+
B + ∫

xc

0
d y

λB
−
B  

  osh( ) y e  r (y))} + c x
λB ∫

+∞

x
d − y

λB +
B (15)  

One  easily  shows  that  the  input  into  the  neurons  in  is  the  solutions  of  the           x ; ][ c 2
L       

same  system  of  two  second-order  differential  equation  as  in  the  globally  balanced             
scenario:  

″(x)−M . u (x) {I″(x) − M . (I(x) ) − 2 (J  . Λ ) . r (x)}u+ + = √K + I0
−2

+ (16)  

where   ,     and     .  . Λ  . J  M = J −2 −1  r ;  r )  I0 = (JE0 0 J I0 0  λ  ΛAB = δAB B  

Activities   in   0; ]  [ xc  

For  the  neurons  in ,  we  are  only  interested  in  the  response  of  the  inhibitory     0; ]  [ xc            
population   since   we   assumed   .   Eq.   [14]   then   simplifies   as (x) , x 0; ]  r−

E = 0 ∀ ∈ [ xc  

(x)  {I (x)  r   (cosh( ) y e  r (y)) uI
− = √K I + J I0 0 + 2 λE

J IE x
λE ∫

+∞

xc
d − y

λE +
E   

      2 (cosh( )[ y e  r (y) y e  r (y)] − λI
J II x

λI ∫
+∞

xc
d − y

λI I
+ + ∫

xc

x
d − y

λI I
−   

       y cosh( ) r (y))}+ e− x
λI ∫

x

0
d y

λI I
− (17)  

One  easily  shows  that  the  input  into  the  inhibitory  neurons  in  is  the  solution  of            0; ]  [ xc      
the   following   second-order   differential   equation  
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(x)− { I ″(x) −  r (x)    dx2
d u2

I
−

λI
2

 u (x)I
−

= √K I λI
2

I (x)+J  rI I0 0 + 2
 λI

2
J II

I
− + 2 λE

J IE −( 1
λ2
E

1
λI

2 )   

    osh( ) y e  r (y)}× c x
λE ∫

+∞

xc
d − y

λE +
E (18)  

Surprisingly,  when ,  the  left  and  right  solutions  uncouple.  On  the  left  side,    λE = λI            
 behaves  as  if  the  network  consisted  of  a  single  inhibitory  population  receiving (x)  rI

−              
an  external  input .  On  the  right-hand  side,  the  excitatory  and  inhibitory    (x)  I I          
populations  are  balanced.  However,  when ,  the  inhibitory  response  in  the      =  λE / λI       
region ,  depends  on  the  spatially  averaged  response  of  the  active  excitatory  0; ]  [ xc            
neurons   in   the   region   . x ; ][ c 2

L  

Suppression   length    xc  

The  length  of  the  region  where  the  excitatory  activity  is  silenced, ,  has  to  be             xc     
determined  self-consistently.  Equations  [16]  and  [18]  have  to  be  provided  with  a             
proper  set  of  boundary  conditions.  Assuming  that  the  solutions  are  continuous,  the             
continuity   of   the   rates   and   of   their   first   derivative   at     implies  x = xc  

(x ) (x )  r+
A c = r−

A c   

(x ) (x ) dx
dr+

A
c = dx

dr−
A

c (19)  

In  addition,  when  the  size  of  the  ring, ,  is  large  in  comparison  with  the  length  of  the         L           
interactions  and  with  the  perturbation  radius,  we  can  assume  that  when ,  the            x = 2

L   
network   behaves   as   if   it   was   not   perturbed   implying   that  

( )  dx
dr+

A
2
L = 0 (20)  

Theory   in   the   large     limit , K  N   

In  the  limit  where  goes  to  infinity,  the  steady-state  of  the  network  is  given  by      K             
setting   the   right   terms   of   each   differential   equation   to   zero.  

In   the   region     the   network   behaves   as   a   globally   balanced   one x ; ][ c 2
L  

(x)  (Λ . J . I″(x) − J . (I(x) ))r+ = 2
1 2 −1 −1 + I0 (21)  

The   activity   of   the   inhibitory   neuron     in     is  x 0; ]  [ xc  

r (x) ( −I ″(x)   ( − ) cosh( ) y e  r (y)) I
− = λI

2

2 J II λI
2

I (x)+J  rI I0 0
I + 2 λE

J IE 1
λI

2
1

λ2
E

x
λE ∫

+∞

xc
d − y

λE +
E (22)  

To  completely  figure  out  the  network  response,  we  need  to  determine  the  value  of                x  
that  separates  the  two  solutions.  has  to  be  determined  self-consistently  given  its       xc         
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definition:  it  is  the  minimum  value  of  for  which  no  longer         x    (x) , r (x)  rI
− > 0  −

E = 0    
stands,  implying  that  and .  This  leads  to  finding  the  roots  of  the    (x )  u−

E c
− = 0   (x )  u−

E c
+ > 0          

transcendental   equation   that   determines   the   net   input   into   E   at   ,  xc  

 r  { (cosh( ) y e  r (y)) − (cosh( )[ y e  r (y)]JE0 0 + 2 λE
JEE xc

λE ∫
+∞

xc
d − y

λE +
E λI

JEI
 λI

xc ∫
+∞

xc
d − y

λI I
+   

 y cosh( ) r (y))}+ e− λI
xc

∫
xc

0
d y

λI I
− = 0  (23)  

The   local   susceptibility   of   the   inhibitory   neurons   in     is 0; ]  [ xc   

(x) (x)  [ (1 ) e  cosh( )  (x  λ ) e ]χ I
− ≡ d rI

−

d Γ0
= λI

2

2 J  σII√2 π 3
0

+
λI

2
σ2

0 − x2

σ2
0

− x2
2 σ2

0 +  x
λE |J |

J  JIE EI

λ  λ2
E I

2
(λ −λ )2

E I
2

c E − σ2
0

− −xc
λE

x2c
2 σ2

0

(24)  

Depending  on  the  parameters  the  inhibitory  activity  at  the  center  of  the  perturbation              
can  be  paradoxical  even  when  E  is  silenced.  When  is  sufficiently  large  is           xc     (0)  χ I

−   
always  positive.  Therefore,  at  the  center,  the  inhibitory  activity  increases  with  the             
perturbation  intensity.  Conversely,  when  is  sufficiently  small  is  always      xc     (0)  χ I

−    
negative.  Therefore,  the  inhibitory  activity  at  the  center  decreases  with  the            
perturbation   intensity.  

Figure  4A  plots  the  phase  diagram  of  the  steady-state  of  the  network  in  the               σ , )  ( 0 Γ0
plane.  When ,  the  network  is  balanced:  excitatory  and  inhibitory  neurons   (σ )  Γ0 < Γ*

0 0          
have  a  non-zero  activity  at  any .  When ,  the  network  settles  in  a  partially        x   (σ )  Γ0 > Γ*

0 0        
balanced  state  where  excitation  is  silenced  on  a  length .  For  sufficiently  large ,           xc      Γ0  
the  inhibitory  response  in  becomes  zero  and  the  network  settles  in  a     0, ]  [ xc          
non-balanced   state.  

Figure  4B  shows  the  spatial  profile  of  the  mean-field  responses  of  the  excitatory  and               
inhibitory  populations  (normalized  to  their  baseline)  in  the  three  regions.  The  radius             
of  the  perturbation, ,  is  smaller  than  the  length  of  the  recurrent     σ .4 mm  4 0 = 0          
excitatory  interactions,  and  than  the  length  of  the  recurrent  inhibitory    λ .5 mm  4 E = 0          
interactions,   .  λ .3 mm  4 I = 0   

Figure  4Ba  shows  the  responses  of  the  excitatory  and  inhibitory  populations  when             
the  network  is  globally  balanced  and  The  excitatory  and  inhibitory       .005 a.u.  Γ0 = 0      
responses  exhibit  a  minimum  at  the  center  of  the  perturbation.  Activities  show  a              
maximum  in  the  surround.  Far  from  the  center  of  the  perturbation,  the  network  is  at                
its  baseline.  Figure  4Bb  shows  the  responses  of  the  excitatory  and  inhibitory             
populations  at  the  edge  of  the  globally  balanced  region .  The          Γ .017 a.u.)  ( 0 = Γ*

0 =    
profile  of  the  activities  is  similar  to  the  one  in  Fig.  4Ba  except  that  at  the  center  of  the                    
perturbation,   excitation   is   zero.  
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Figure  4.  Gaussian  stimulation  of  the  inhibitory  population  in  an  EI  network  with  exponential               
interactions  (large  limit).  A.  Phase  diagram  of  the  steady-state  of  the  network  in  the   K              

 plane.  B-C.  Spatial  profile  of  the  activities  (normalized  to  baseline).  B.  The  radius  of σ , )( 0 Γ0                
the  perturbation  is  greater  than  the  length  of  the  recurrent  excitatory  interactions:             

.  C.  The  radius  of  the  perturbation  is  smaller  σ .6 mm  λ .5 mm4 0 = 0 > 4 E = 0 >   λ .3 mm4 I = 0          
than  the  length  of  the  recurrent  excitatory  interactions: >          λ .5 mm  σ .4 mm4 E = 0 > 4 0 = 0

.  a.  Global  balance, .  b.  Edge  of  the  global  balance, .  c.  λ .3 mm4 I = 0     .1 a.u.Γ0 = 0        a.u.Γ0 = 2   
Partial  balance, .  d.  Partial  balance, .  Dashed-line:  interaction  length  (   .1 a.u.Γ0 = 0      a.u.Γ0 = 2     

),  Red:  excitatory  neurons;  blue:  inhibitory  neurons;  black: ;  gray:  suppression  λ4 A         σ4 0    
length,   .   Parameters   in   Table   1. xc   

Figure  4  Bc-d  shows  the  responses  of  the  excitatory  and  inhibitory  populations  when              
the  network  is  partially  balanced.  In  Fig.  4Bc,  the  intensity  of  the  perturbation  is               
rather  small,  namely, ,  but  sufficiently  large  so  that  the  global  balance  is    .1 a.u.  Γ0 = 0           
disrupted  and  excitation  is  partially  silenced  on  a  suppression  length .  In           .21 mm  xc = 0   
this  region,  the  activity  of  the  inhibitory  population, ,  decays  from  a  value  slightly         (x)  rI

−       
greater  than  its  baseline  at  to  a  minimum  reached  before .  In  the  region       x = 0        xc     

,  excitation  and  inhibition  are  balanced.  The  activities  of  the  excitatory  and x ; ][ c 2
L             

inhibitory  neurons,  and ,  decay  exponentially  from  large  non  zero  values   (x)  r+
E   (x)  rI

+         
to  their  baseline  values.  In  Fig.  4Bd,  the  intensity  of  the  perturbation  is  larger  (               

).  Here,  excitation  is  silenced  in  a  region  of  greater  length.  However,  the  a.u.  Γ0 = 2              
profile  of  activities  is  similar  as  in  Fig.  4Bc:  (1)  in  a  region ,  exponentially              0; ]  [ xc  (x)  rI

−   
decays  from  a  non-zero  value  much  greater  than  its  baseline  to  a  minimum  below  its                
baseline  before  and  then  increases  exponentially  until  to  a  value  below  its    xc        xc       
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baseline;  (2)  in ,  both  and  decay  exponentially  from  large  non-zero    x ; ][ c 2
L   (x)  r+

E   (x)  rI
+       

values   to   their   baseline   values.   

Remarkably,  in  Fig.  4Bc-d,  the  network  responses  on  the  left  and  right-hand  side  of               
,   are   discontinuous.  xc  

Figure  4C  shows  the  spatial  profile  of  the  mean-field  responses  of  the  excitatory  and               
inhibitory  populations  (normalized  to  their  baseline)  in  the  three  regions  when  the             
radius  of  the  perturbation  is  greater  than  the  length  of  the  recurrent  interactions,  (              

>   ).  σ .6 mm  λ .5 mm  4 0 = 0 > 4 E = 0  λ .3 mm  4 I = 0  

 

Figure  5.  Suppression  length, , v.s.  perturbation  intensity  and  perturbation  radius  (large     xc         
 limit).  A.  Suppression  length, v.s.  photostimulation  intensity, .  Black: . K      xc     Γ0    σ .6 mm4 0 = 0  

Gray: .  B.  Suppression  length, v.s.  photostimulation  radius, .  Black:   σ .4 mm4 0 = 0     xc      σ4 0   
.  Dark-gray: .  Gray: .  Dashed-line  same  as  in  Fig.  4.  a.u.Γ0 = 2   .2 a.u.Γ0 = 0   .1 a.u.Γ0 = 0        

Parameters   in   Table   1.  

Figure  5  depicts  the  effect  of  changing  the  perturbation  intensity  and  radius  on  the               
length,  of  the  region  where  excitation  is  suppressed.  Figure  5A  plots  the   xc             
suppression  length, , v.s.  the  perturbation  intensity  for  two  fixed  perturbation    xc       Γ0      
radius  (  and ).  For  both  perturbation  radius  (   σ .4 mm  4 0 = 0    σ .6 mm  4 0 = 0       σ0 > λE > λI  
and ),  increases  monotonically  with  spanning  continuously  across   λE > σ0 > λI   xc      Γ0     
the  interaction  length  of  the  inhibitory  and  excitatory  populations.  Interestingly,  for            
sufficiently  large  intensities,  slowly  increases  as  the  logarithm  of  the  perturbation     xc          
intensity.  Figure  5B  plots  the  suppression  length, v.s.  the  perturbation  radius,         xc       σ  4 0
,  for  three  fixed  perturbation  intensities  ( ,  and ).       .1 a.u.  Γ0 = 0  .2 a.u.  Γ0 = 0    a.u.  Γ0 = 2  
When  the  perturbation  intensity  is  large,  monotonically  increases  with  with  a        xc      σ0    
slope  smaller  than .  Therefore,  as  increases,  sweeps  away  from  the  value  of     1     σ0    xc        
the  perturbation  radius.  Surprisingly,  as  becomes  smaller,  becomes       Γ0     xc   
non-monotonic  in .  For  sufficiently  small  and  sufficiently  large ,  can  even    σ0      Γ0      σ0   xc    
become   zero,   and   the   network   is   globally   balanced.  
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Figure  6. Responses  of  the  neurons  normalized  to  baseline  v.s.  the  intensity  of  the               
perturbation,  (large  limit).  A. .  B.  Γ0   K     σ .4 mm, x .19 mm, x .22 mm4 0 = 0  E

max = 0  I
max = 0   

,   ,   .   Parameters   in   Table   1.  σ .6 mm4 0 = 0 .32 mmxE
max = 0 .40 mmxI

max = 0  

Figure  6  plots  the  normalized  activities v.s.  the  perturbation  intensity  for  two  different              
perturbation  radius  and  at  different  positions  on  the  ring.  At  the  center  and  in  its  near                 
neighbors,  the  responses  of  E  and  I  are  paradoxical  for  small .  When  the             Γ0    
excitatory  neurons  are  silenced,  the  inhibitory  response  increases  linearly  with .            Γ0  
When  is  sufficiently  far  from  the  center  but  smaller  than ,  for  small   x            xI

max    
perturbation  intensities  the  inhibitory  response  decreases  with  while  the         Γ0    
excitatory  response  increases.  When  is  greater  than  but  smaller  than ,      x      xI

max      xE
max  

for  small  perturbation  intensities  both  the  inhibitory  and  excitatory  responses           
increase  with .  Far  from  the  center  of  the  perturbation,  the  excitatory  and  inhibitory    Γ0             
responses   always   increase   with   .  Γ0  

The  large ,  analysis  provides  precious  insights  into  the  understanding  of  the    N   K           
response  of  networks  with  reasonable  size  and  connectivity  to  photostimulation  of            
their  inhibitory  population.  In  particular,  we  will  show  that  the  properties  exhibited  in              
the  large  limit,  remains  valid  up  to  small  corrections.  Although  it  is  possible  to    K              
treat  analytically  the  dependence  of  the  activities  on  the  perturbation  for  finite ,              K  
these   calculations   are   very   technical   and   beyond   the   scope   of   this   paper.   

Numerical   simulations   

We  provide  in  the  following  numerical  simulations  of  network  models  of  leaky             
integrate  and  fire  neurons  to  account  for  eventual  discrepancies  between  the  theory             
in  the  large  limit  and  the  finite  connectivity  case.  Unless  mentioned  otherwise,  we     K            
will  consider  networks  of  excitatory  and  inhibitory  cells     5000  NE = 1    5000  N I = 1    
interacting  strongly  with  on  average  neurons,  and  the  length  of  the      00  K = 5        
interactions   is     and   . .5 mm  4 λE = 0 .3 mm  4 λI = 0  
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Figure  7.  Gaussian  photo-stimulation  of  the  inhibitory  population  in  EI  network  with             
exponential  interactions.  A. .  B. .  Left:  the  radius  of  the  perturbation  is    .1 a.u.Γ0 = 0    a.u.Γ0 = 2         
smaller  than  the  length  of  the  recurrent  excitatory  interactions:          λ .5 mm  σ .4 mm4 E = 0 > 4 0 = 0

.  Right:  the  radius  of  the  perturbation,  is  greater  than  the  length  of  the  λ .3 mm> 4 I = 0               
recurrent  excitatory  interactions: .  Dashed-line:     σ .6 mm  λ .5 mm  λ .3 mm4 0 = 0 > 4 E = 0 > 4 I = 0   
interaction  length  ( ),  Red:  excitatory  neurons;  blue:  inhibitory  neurons.  black: .    λ4 A         σ4 0  
Parameters   in   Table   1.   ,   . 5000NE = N I = 1 00K = 5  

Figure  7  depicts  the  results  of  our  numerical  simulations  for  the  same  parameters  as               
in  Fig.  4.  Figure  7A  plots  the  spatial  profile  of  the  population  activities  (normalized  to                
baseline)  for  a  small  laser  intensity  ( )  and  a  perturbation  radius  smaller       .1 a.u.  Γ0 = 0       
than  the  range  of  the  recurrent  excitatory  interactions  ( ).  In          λ  σ .4 mm  λ  4 E > 4 0 = 0 > 4 I   
Fig.  7B,  and  the  laser  intensity  is  the  same.  In  contrast  to  the  predictions    σ0 > λE > λI              
of  the  theory  in  the  large  limit,  here,  when ,  the  excitatory  population        K     .1 a.u.  Γ0 = 0     
is  always  active.  Moreover,  the  inhibitory  response  is  always  below  its  baseline  value              
even  at  the  center  of  the  laser.  However,  is  non-monotonic:  it  is  highly         (x)  rE       
suppressed  near  the  laser  center  and  increases  exponentially  to  a  maximum  above             
its  baseline  value  in  the  surround  before  exponentially  decreasing  to  its  baseline.             
Conversely,  the  response  of  the  inhibitory  population  is  always  paradoxical,  it  is             
slightly  non-monotonic  when  near  the  laser  center  where  the  activity  at     λE > σ0 > λI          
zero  is  greater  than  in  its  neighboring  surround  and  then  recovers  to  its  baseline.  In                

112  



particular,  when ,  is  minimum  at  the  center  of  the  stimulation  and    σ0 > λE > λI  (x)  rI           
monotonically   increases   to   its   baseline   value   in   the   surround.  

 

Figure  8.  Photo-suppression  length v.s.  laser  intensity  and  laser  radius.  A.  Suppression             
length, v.s.  photostimulation  intensity, .  Black: .  Gray: .  B.  xc     Γ0    σ .6 mm4 0 = 0    σ .4 mm4 0 = 0   
Suppression  length, v.s.  photostimulation  radius, .  Black: .  Dark-gray:   xc      σ4 0    a.u.Γ0 = 2   

  .   Gray:   .   Dashed-line   same   as   in   Fig.   7.   Parameters   in   Table   1. .2 a.u.Γ0 = 0 .1 a.u.Γ0 = 0  

Figure  7C-D  shows  similar  network  responses  but  for  a  larger  perturbation  intensity,             
namely, .  Here,  is  sufficiently  large  so  that  excitatory  neurons  are  a.u.  Γ0 = 2    Γ0          
silenced  in  a  given  region  near  the  center  of  the  perturbation.  In  this  region  inhibitory                
neurons  are  highly  activated  at  the  laser  center,  then  the  inhibitory  activity  decreases              
exponentially  to  a  minimum  value  below  its  baseline  but  at  a  value  of  for  which  the               x     
activity  of  the  excitatory  population  is  non-zero.  Finally,  recovers  exponentially         (x)  rI    
to  its  baseline  value.  Conversely,  the  excitatory  neurons  are  silenced  in  a  small              
region  near  the  laser  center,  then  the  excitatory  activity  exponentially  increases  to  a              
maximum  value  above  its  baseline  and  finally,  exponentially  decreases  to  its        (x)  rE      
baseline   value.  

The  discrepancies  exhibited  by  the  simulations  with  regard  to  the  theory  in  the  large               
 limit  are  probably  due  to  strong  size  effects  as  suggested  by  simulations  of  larger  K                

networks   (see   SM   Fig.   1).  

Figure  8  depicts  the  effect  of  changing  the  photo-stimulation  intensity  and  radius  on              
the  length,  of  the  region  where  excitation  is  suppressed.  Figure  8A  plots  the    xc             
suppression  length, , v.s.  the  photostimulation  intensity  for  two  fixed    xc       Γ0     
photostimulation  radius  (  and ).  Consistently  with  the    σ .4 mm  4 0 = 0    σ .6 mm  4 0 = 0     
theory  in  the  large  limit,  for  both  perturbation  radius  (  and      K        σ0 > λE > λI    λE > σ0 > λI
),  increases  monotonically  with .  Moreover,  for  sufficiently  large  intensities,   xc      Γ0        xc  
slowly  increases  as  the  logarithm  of  the  perturbation  intensity,  as  predicted  by  the              
theory.  Figure  8B  plots  the  suppression  length, v.s.  the  photostimulation  radius,         xc      
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,  for  three  fixed  photo-stimulation  intensities  ( ,  and  σ  4 0       .1 a.u.  Γ0 = 0  .2 a.u.  Γ0 = 0   
).  Here  again,  the  simulations  are  in  agreement  with  the  prediction  of  the  a.u.  Γ0 = 2              

theory.  When  the  photostimulation  intensity  is  large,  monotonically  increases  with         xc     
 with  a  slope  smaller  than  and  for  small ,  becomes  non-monotonically  in  σ0        1      Γ0   xc     

.   For   sufficiently   small   ,     can   even   always   be   zero.  σ0  Γ0  xc  

 

Figure  9. Responses  of  the  neurons  normalized  to  baseline  v.s.  the  intensity  of  the               
perturbation,     .   A.   .   B.   .   Parameters   in   Table   1. Γ0  σ .4 mm4 0 = 0  σ .6 mm4 0 = 0  

Figure  9  plots  the  normalized  responses  versus  the  laser  intensity  at  different             
positions  from  the  laser  center.  The  averaged  responses  of  E  and  I  neurons  are  in                
agreement   with   the   ones   in   the   large     limit.  K  

For  now,  our  model  accounts  for  only  parts  of  the  experimental  data  presented  by  (Li                
et  al.,  2019).  In  particular,  there  is  no  sign  in  the  recordings  of  a  rebound  of  the                  
excitatory  response  in  the  region  surrounding  the  suppression.  We  postulate  that  the             
rebound  of  activity  could  be  due  to  the  assumption  in  the  model  that  the  interaction                
lengths  depend  only  on  the  presynaptic  population,  namely, .  Unfortunately,          λAB = λA   
when  this  is  not  the  case,  network  models  with  exponentially  decaying  interactions             
can  no  longer  be  reduced  to  simple  differential  equations.  Instead,  one  is  left  with  a                
set  of  coupled  Fredholm  equations  that  have  no  explicit  solutions.  However,  it  is              
possible  to  get  some  insights  about  the  role  of  which  specific  interaction  lengths              
shape   the   responses   of   the   network   in   the   limit   when     . >  K − ∞  

Partially   balanced   solutions   when   =λBA / λCA  

We  want  to  investigate  the  response  of  the  network  to  a  strong  perturbation  of  its                
inhibitory  population  when  the  length  of  an  interaction  depends  on  both  the  pre  and               
postsynaptic  populations  ( ).  Similarly  to  the  previous  case,  we  look  for   =  λBA / λCA          
solutions  to  the  dynamics  of  the  network  where  the  excitatory  population  is  silenced              
within  a  given  region  and  we  only  investigate  the  network’s  responses  in     −x ; ]  [ c xc          
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.  The  solutions  of  the  dynamics  in  are  labeled and  the  ones  in 0; ][ 2
L        0; ]  [ xc   −}  {     x ; ][ c 2

L  
are   labeled   . +}{   

The  net  input  into  neuron  in  population  can  be  expressed  in  terms  of  the       x    A         
activities   on   the   left   and   right   side   of     as  xc  

(x)  { I (x)  r  ε [ y e  r (y) − y e  r (y) uA =  √K A + JA0 0 + ∑
 

B
λAB
JAB

B ∫
+∞

−∞
d − λAB

|x−y|
+
B ∫

+ 2
xc

− 2
xc
d − λAB

|x−y|
+
B  

y e  r (y)]}+ ∫
+ 2
xc

− 2
xc
d − λAB

|x−y|
−
B  (25)  

Network   activities   in   in   the   large     limit x , ][ c 2
L , K  N   

The  balance  of  the  excitatory  and  inhibitory  inputs  into  the  neurons  in  the  region               
 implies  that  the  right-hand  side  of  Eq.  [25]  must  remain  finite  as  becomes x , ][ c 2

L               K   
large.   In   the   limit   where     goes   to   infinity,   it   implies   that  K   

(x)  r  ε [ y e  r (y) − y Π (y) e  r (y) IA + JA0 0 + ∑
 

B
λAB
JAB

B ∫
+∞

−∞
d − λAB

|x−y|
+
B ∫

+∞

−∞
d xc

− λAB
|x−y|

+
B  

y Π (y) e  r (y)] 0+ ∫
+∞

−∞
d xc

− λAB
|x−y|

−
B =  (26)  

where   and     is   the   Heaviside   function. (x) Θ(x ) (x )  Πxc =  + xc − Θ − xc Θ  

Let   us   rewrite   Eq.   [18]   in   the   Fourier   domain:  

(k)  r  δ(k) G (k) [r (k) (k) H (k)]ÎA + JA0 0 + ∑
 

B
 ˆ

AB ˆ+
B − Ĥ

+
B +  ˆ −

B = 0 (27)  

where     and   . (k) ± FT [Π ]⊛FT [r ]  Ĥ
±
B =  xc

± (k)ĜAB = J  εAB B

1 + k  λ2
AB

2   

Because  of  the  convolution  integrals  in  Eq.  [26]  all  include  the  interaction  kernel,              
,  Eq.  [27]  is  linear  in  the  terms  that  include  the  activities.  Provided  that  is e1

λAB
− λAB

|x−y|

              G   
invertible   one   can   write   

  (k) (k) (k) − (k) . (I(k)  δ(k) )r̂+ + Ĥ
+

+ Ĥ
−

= Ĝ
−1 ˆ + I0 (28)  

The   left-hand   side   of   Eq.   [28]   can   be   easily   Fourier   inverse   noticing   that  

[FT [Π ]⊛FT [r ]](x) (x) r (x)  since x  FT −1
xc

± = Πxc
± = 0 ≥ xc (29)  

Therefore,  provided  that  the  right-hand  side  of  Eq.  [28]  has  a  defined  inverse  Fourier               
transform   the   activity   in   the   region     is x ; ][ c 2

L   
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(x) − [G  . (I )](x)r+ = FT −1 ˆ −1 ˆ + I0 (30)  

Equation  [30]  can  be  analytically  solved  in  general,  nevertheless  its  derivation  is  very              
technical  and  will  be  published  somewhere  else.  To  get  an  understanding  of  which              
interaction  is  essential  to  shape  the  excitatory  response  we  will  only  consider  the              
case   where     and   compare   it   to   numerical   simulations   with   .  JEE = 0 =  JEE / 0  

When   ,     is   well   defined   and   the   activities   of   each   population   are  JEE = 0 T [G  . I]  F −1 ˆ −1 ˆ  

(x) − Γ   e  r+
E = r0

E 0 2 J  σIE
5
0

λ  σ +σ −x  λ2
IE

2
0

4
0

2 2
IE − x2

2σ2
0 (31)  

(x)   rI
+ = rI

0 (32)  

where     and     are   the   baseline   activities.  rr0
E = 2 J JEI  IE

J  J  − J  JE0 II I0 EI  
0 rrI

0 = JE0
2 JEI 0  

Remarkably, is  a  non-monotonic  function  of  that  always  exhibits  a  maximum  (x)  r+
E       x       

at .  Remarkably,  is  determined  by  and  only  and  is  x* = λIE

σ0√σ +3 λ2
0

2
IE    x*      σ0    λIE     

independent   of   the   rest   of   the   interaction   length   (   and   ).  λEI λ   II   

Moreover,   at     the   normalized   excitatory   activity   is   equal   to  x*   

(λ ) 1 )F IE ≡ r0
E

r (x )+
E * = ( +  σ  ( J  J  −J  J ) r0

3
E0 II I0 EI 0

2 e  e  Γ  λ  −3/2 −σ / 2 λ0
2

IE
2

0 IE
2

 (33)  

One  easily  shows  that  the  function  monotonically  increases  with .  In  other       F      λIE    
words,  the  maximum  value  of  the  normalized  activity  of  E  is  minimized  for  small .                λIE  
Note   that      does   not   depend   on     and   . F  λEI λ   II  

Inhibitory   activity   in     in   the   large     limit x , ][ c 2
L , K  N   

For  the  neurons  in ,  we  are  only  interested  in  the  response  of  the  inhibitory     0; ]  [ xc            
population,   since   we   assumed   . (x) , x 0; ]  r−

E = 0 ∀ ∈ [ xc  

One   easily   shows   that   the   activity   of   the   inhibitory   neuron     in   the   region     is  x 0; ]  [ xc  

r (x) ( −I ″(x)   ( − ) cosh( ) y e  r (y)) I
− = λ2

II
2 J II λ2

II

I (x)+J  rI I0 0
I + 2 λIE

J IE 1
λ2
II

1
λ2
IE

x
λIE ∫

+∞

xc
d − y

λIE +
E (34)  

Suppression   length     in   the   large     limit  xc , K  N   

To  completely  figure  out  the  network  response,  we  need  to  establish  the  value  of                x  
that  separates  these  two  solutions.  has  to  be  determined  self-consistently  given       xc        
its  definition:  it  is  the  minimum  value  of  for  which  no  longer          x    (x) , r (x)  rI

− > 0  −
E = 0    

stands,  implying  that  either  and .  This  leads  to  the     (x )  u−
E c

− = 0   (x )  u−
E c

+ > 0      
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determination  of  the  roots  of  the  transcendental  equation  that  determines  the  net             
input   into   E:  

(35)  r  (cosh( )[ y e  r (y)]  y cosh( ) r (y))  JE0 0 − 2 λEI
JEI xc

λEI ∫
+∞

xc
d − y

λEI I
+ + e− xc

λEI ∫
xc

0
d y

λEI I
− = 0  

The  evolution  of  the  suppression  length, ,  with  the  interaction  lengths, ,  cannot        xc       λAB   
be  derived  analytically.  However,  we  show  in  SM  Fig.  S2  that  is  an  increasing             xc     
function   of     and   .  λIE  λEI   

The  excitatory  activity  in  the  region  surrounding  the  suppression  will  present  a             
rebound  if is  sufficiently  large  in  comparison  with .  However,  this  rebound  of    x*        xc      
activity  is  small  when  is  small  and  its  position  is  independent  of  the  inhibitory      λIE            
interaction  lengths.  Moreover,  is  an  increasing  function  of ,  as  a  consequence     xc        λEI     
for  sufficiently  small  and  sufficiently  large ,  the  excitatory  response  will  not     λIE      λEI       
present   any   rebound   of   activity.  

We  will  show  that  the  properties  exhibited  here  remain  valid  in  networks  with  finite               
size.  Then,  we  will  investigate  how  the  previous  results  change  in  numerical             
simulations   of   networks   with   strong   recurrent   excitatory   connections.  

Numerical   simulations   

 

Figure  10.  Effect  of  the  length  of  the  E  to  I  and  I  to  E  recurrent  interactions  on  the                    
photo-suppression  length  and  the  maximum  of  the  normalized  E  response. ,           JEE = 0  

,   .   Other   parameters   in   Table   1.   ,   .  a.u.Γ0 = 1  σ  .4 mm4 0 = 0 5000NE = N I = 1 00K = 5  

Figure  10  depicts  the  results  of  our  numerical  simulations  for  a  network  without              
strong  recurrent  interaction  ( ).  Figure  10A  shows  the  evolution  of  the     JEE = 0         
maximum  of  the  normalized  excitatory  activity, ,  for  different  E  to  I  and  I  to  E       rE           
recurrent  interaction  lengths.  Consistent  with  the  large  theory,  for  a  given ,        , K  N        λEI  
the  maximum  value  of decreases  as  becomes  smaller.  For  sufficiently  large     rE    λIE       

and  sufficiently  small ,  this  maximum  is  equal  to  and  the  excitatory  activity  λIE     λIE        1      
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exhibit  no  rebound  activity.  Figure  8B  shows  how  the  change  in  and  affect             λIE    λEI   
the  suppression  length, .  As  predicted  in  the  large  limit,  at  given ,     xc       , K  N       λEI   xc  
decreases  as  becomes  smaller.  Conversely,  for  fixed ,  increases  as    λIE        λIE   xc     λEI  
becomes   larger.  

 

Figure  11.  Effect  of  the  length  of  the  E  to  I  and  I  to  E  recurrent  interactions  on  the                    
photo-suppression  length  and  the  maximum  of  the  normalized  E  response. .           =JEE / 0  

,   .   Other   parameters   in   Table   1.   ,   .  a.u.Γ0 = 1  σ  .4 mm4 0 = 0 5000NE = N I = 1 00K = 5  

Figure  11  depicts  the  results  of  our  numerical  simulations  for  a  network  with  strong               
recurrent  interaction  ( ).  Figure  11A  depicts  the  evolution  of  the  maximum   ( )JEE = O 1

√K
         

of  the  normalized  excitatory  activity, ,  for  different  E  to  I  and  I  to  E  recurrent      rE            
interaction  lengths.  For  a  given ,  the  maximum  value  of decreases  as       λEI      rE    λIE  
becomes  smaller.  For  sufficiently  small ,  this  maximum  becomes  smaller  or  equal       λIE        
to ,  therefore  the  excitatory  activity  exhibit  no  rebound  activity.  Remarkably  and  in   1             
contrast  with  Fig.  10A,  when  is  fixed,  the  maximum  value  of increases  as       λIE        rE    λEI  
becomes  larger.  Figure  11B  shows  how  the  change  in  and  affect  the           λIE    λEI    
suppression  length, .  Similarly  to  Fig.  10B,  for  a  given ,  decreases  as    xc          λEI   xc     λIE  
becomes   smaller.   Conversely,   for   fixed   ,     increases   as     becomes   larger.  λIE  xc  λEI  

Figure  12  depicts  the  result  of  the  simulations  of  the  photo-stimulation  of  the              
inhibitory  population  in  a  network  where .  Figure  10A  plots  the        λEE > λEI > λII > λIE      
spatial  profile  of  the  population  activities  (normalized  to  baseline)  for  a  small  laser              
intensity  ( )  and  a  perturbation  radius  smaller  than  the  range  of  the  .1 a.u.  Γ0 = 0            
recurrent  excitatory  interactions  ( )  but  greater  than  the  length  of    .4 mm  λEE > σ0 = 0        
the  other  interactions.  In  Fig.  10B,  and  the  laser  intensity  is  the  same.  The        σ0 > λEE          
excitatory  population  is  always  active,  however,  in  contrast  to  the  responses            
observed  Fig.  6,  the  excitatory  response  is  always  below  its  baseline  value  even  in               
the  surround  of  the  center  of  the  laser:  there  is  no  rebound  of  the  excitatory  activity  in                  
the  surrounding  region.  is  monotonic:  it  is  highly  suppressed  near  the  laser    (x)  rE           
center  and  increases  exponentially  to  its  baseline  value  in  the  surround.  The             
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response  of  the  inhibitory  population  is  always  paradoxical  and  very  similar  to  the              
one  in  Fig.  6A-B:  it  is  slightly  non-monotonic  when  near  the  laser  center           λEE > σ0      
where  the  activity  at  zero  is  greater  than  in  its  neighboring  surround  and  then               
recovers  to  its  baseline.  When ,  is  minimum  at  the  center  of  the       σ0 > λEE  (x)  rI         
stimulation  and  monotonically  increases  to  its  baseline  value  in  the  surround.  Figure             
12C-D  shows  similar  network  responses  but  for  a  larger  photo-stimulation  intensity,            
namely,   .  a.u.  Γ0 = 2   

 

Figure  12.  Gaussian  photo-activation  with  Exponential  Interactions  when         
.  A. .  B. .  Left:  the  radius  of  the  perturbation  is λEE > λEI > λII > λIE   .1 a.u.Γ0 = 0    a.u.Γ0 = 2         

smaller  than  the  length  of  the  recurrent  excitatory  interactions:          λ .5 mm  σ .4 mm4 EE = 0 > 4 0 = 0
.  Right:  the  radius  of  the  perturbation,  is  greater  than  the  length  of  the  recurrent  excitatory                 
interactions: .  Dashed-line:  interaction  length  ( ),  Red:   σ .6 mm  λ .5 mm4 0 = 0 > 4 EE = 0      λ4 A   
excitatory  neurons;  blue:  inhibitory  neurons.  black: .  Parameters  in  Table  1.       σ4 0      

,   .   . 5000NE = N I = 1 00K = 5 .125 mm, λ .125mm, .075 mm, λ .0625 mmλEE = 0  EI = 0 λII = 0  IE = 0  

Here,  is  sufficiently  large  so  that  excitatory  neurons  are  silenced  in  a  given  region   Γ0               
near  the  center  of  the  perturbation.  In  this  region  inhibitory  neurons  are  highly              
activated  at  the  laser  center,  then  the  inhibitory  activity  decreases  exponentially  to  a              
minimum  value  below  its  baseline  but  at  a  value  of  for  which  the  activity  of  the            x        
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excitatory  population  is  non-zero.  Finally,  recovers  exponentially  to  its  baseline      (x)  rI       
value.  Conversely,  the  excitatory  neurons  are  silenced  in  a  small  region  near  the              
laser  center,  then  the  excitatory  activity  exponentially  increases  to  its  baseline  value.             
In  particular,  the  responses  of  E  and  I  are  almost  identical  in  the  region  from  the                 
minimum  of  I  and  the  recovery  to  their  baseline.  Remarkably,  the  lengths  of  the               
region   where   E   is   suppressed   are   similar   to   the   one   in   Fig.   7.  

 

Figure  13.  Photo-suppression  length  v.s.  laser  intensity  and  laser  radius  when            
.  A.  Suppression  length, v.s.  photostimulation  intensity, .  Black: λEE > λEI > λII > λIE     xc     Γ0   

.  Gray: .  B.  Suppression  length, v.s.  photostimulation  radius,  σ .6 mm4 0 = 0    σ .4 mm4 0 = 0     xc     
.  Black: .  Dark-gray: .  Gray: .  Dashed-line  same  as  in  σ4 0    a.u.Γ0 = 2   .2 a.u.Γ0 = 0   .1 a.u.Γ0 = 0      

Fig.   12.   Parameters   as   in   Fig.   6.   Parameters   as   in   Fig.   10.   ,   . 5000NE = N I = 1 00K = 5  

Figure  13  depicts  the  effect  of  the  photo-stimulation  intensity  and  radius  on  the              
length,  of  the  region  where  excitation  is  suppressed.  Figure  13A  plots  the   xc             
suppression  length, , v.s.  the  photo-stimulation  intensity  for  two  fixed    xc       Γ0     
photo-stimulation  radius  (  and ).  For  both  perturbation    σ .4mm  4 0 = 0    σ .6mm  4 0 = 0     
radius  (  and ),  increases  monotonically  with  spanning   σ0 > λEE    λEE > σ0   xc      Γ0   
continuously  across  the  interaction  length  of  the  inhibitory  and  excitatory  populations.            
Moreover,  for  sufficiently  large  intensities,  slowly  increases  as  the  logarithm  of  the       xc         
perturbation  intensity.  Figure  13B  plots  the  suppression  length, v.s.  the          xc    
photostimulation  radius, ,  for  three  fixed  photostimulation  intensities  (    σ  4 0       

,  and ).  When  the  photostimulation  intensity  is .1 a.u.  Γ0 = 0  .2 a.u.  Γ0 = 0    a.u.  Γ0 = 2       
large,  linearly  increases  with  with  a  slope  smaller  than .  As  increases,   xc      σ0        1    σ0    xc  
becomes  more  and  smaller  than  the  photo-stimulation  radius.  When  becomes           Γ0   
smaller,  becomes  non-monotonic  in .  For  sufficiently  small  and  sufficiently   xc      σ0      Γ0    
large ,  becomes  zero.  These  results  are  qualitatively  similar  to  that  one  of  Fig.   σ0   xc              
7.  However,  here,  the  region  of  such  that  the  region  of  global  balance  is       Γ , )  ( 0 σ0          
bigger   than   in   Fig.   7.  
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Discussion  
We  provided  a  mechanistic  account  for  the  spatial  profile  of  cortex  to  the  optogenetic               
stimulation  of  parvalbumin-positive  (PV)  neurons.  Photostimulation  enhanced  the  PV          
activity  and  suppressed  the  response  of  the  principal  cells  (PCs)  in  a  region  of  the                
order  of  the  laser  radius.  In  the  surround,  excitatory  and  inhibitory  activity  was              
suppressed  in  a  relatively  proportional  manner  independently  of  the  light  intensity (Li             
et  al.,  n.d.)  2019).  To  account  for  these  results,  we  investigated  the  dynamics  of               
networks  of  one  excitatory  and  one  inhibitory  population  where  the  probability  of             
interaction  decays  exponentially  with  the  distance  between  the  neurons.  We  showed            
that  when  a  perturbation  is  strong  enough,  the  balance  of  excitation  and  inhibition  is               
disrupted  on  a  finite  length, ,  where  the  excitatory  population  is  silenced.       xc        
Conversely,  the  balance  of  excitation  and  inhibition  is  preserved  in  the  surrounding             
regions.  We  showed  that  for  large  perturbation  intensities  the  length  of  the             
suppression, ,  is  linear  with  the  radius  of  the  perturbation.  This  is  not  the  case  for   xc                
small  perturbation  intensities  where  is  non-linear  with  the  radius  of  the      xc         
perturbation:  it  increases  with  small  perturbation  sizes  and  then  decreases  for            
sufficiently   large   radiuses.  
 
In  network  models  where  the  length  of  the  interactions  only  depends  on  the              
presynaptic  population  (homogeneous  interaction  lengths, ),  we  showed  that       λAB = λA     
the  excitatory  population  exhibits  a  large  rebound  of  activity  in  the  surround  of  the               
suppression.  Therefore,  these  models  cannot  fully  account  for  the  experimental  data.            
This  prompted  us  to  investigate  the  dynamics  of  networks  where  the  length  of  the               
interactions  depends  on  both  their  pre  and  postsynaptic  targets  (heterogeneous           
interaction  lengths, ).  These  models  can  account  for  the  relative  similar   =  λAB / λAC          
suppression  of  the  excitatory  and  inhibitory  activity  in  the  surround  of  the             
perturbation  provided  that  the  excitatory  to  inhibitory  interaction  length  is  small  in           λIE     
comparison  with  the  radius  of  the  perturbation.  Moreover,  we  showed  that  then,  to              
counter  the  consequent  reduction  in  the  length  of  suppression  of  the  PC  activity,              
inhibitory   to   excitatory   interactions   must   be   broader.  

Limitations  

In  our  models,  we  did  not  take  into  account  the  diversity  of  inhibitory  neurons  in  the                 
cortex.  For  example,  somatostatin  expressing  interneurons  have  been  shown  to           
exhibit  interactions  on  a  length  similar  to  the  PC  to  PC  connection.  The  study  of                
spatially  extended  network  models  with  multiple  inhibitory  populations  will  precise  the            
mechanisms  that  underlie  cortical  response  to  locally  restricted  optogenetic          
manipulations  and  provide  insights  on  the  relative  length  of  cortical  neuron            
interactions.   
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Interlaminar  interactions  are  likely  to  also  contribute  to  the  spatial  effects  of             
optogenetic  manipulations.  For  example,  in  cortex  thalamocortical  projections  are          
thought  to  be  broader  than  intracortical  interactions.  Future  modeling  work  should            
investigate  to  what  extent  recurrent  interactions  and/or  feedforward  projections          
shape   the   spatial   response   of   cortical   neurons.  

Comparison   with   previous   works  

Previous  studies  have  investigated  how  spatially  extended  inhibition  could  sharpen           
tuning  curves (Somers  et  al.,  1995)  or  promote  pattern  formation (Coombes,  2005;             
Kilpatrick  and  Ermentrout,  2013) .  Nevertheless,  these  works  consider  neural  fields           
with  weak  interactions.  We  show  here  that  broad  inhibitory  to  excitatory  interactions             
are   compatible   with   the   balanced   state.   

(Rosenbaum  and  Doiron,  2014)  have  studied  the  conditions  upon  which  a  balanced             
state  exists  in  strongly  recurrent  networks  of  neurons  with  periodic  Gaussian            
probability  of  connections.  They  have  shown  in  the  case  where  interaction  lengths             
are  homogeneous  ( ,  where  is  the  interaction  length  of  the  connection    σAB = σB    σAB         
from  population  B  to  population  A)  that  balanced  states  required  external  inputs             
broader  than  recurrent  excitatory  connections  which  in  turn  must  be  broader  than  the              
inhibitory  ones  ( ).  We  show  here  that  when  interactions  have  an    σ0 > σE > σI          
exponential  profile  balanced  states  can  exist  even  when  inhibitory  to  excitatory            
connections  are  broader  than  the  excitatory  to  inhibitory  connections  ( ).           λEI > λIE  
This  is  also  the  case  with  Gaussian  interactions.  We  give  more  detail  about  the               
necessary   conditions   upon   which   it   occurs   in   the   Appendix.  

In  a  recent  study, (Ebsch  and  Rosenbaum,  2018)  have  investigated  the  mechanism             
of  amplification  and  suppression  from  a  local  imbalance  of  excitation  and  inhibition  in              
recurrent  circuits  of  strongly  interacting  neurons  with  periodic  Gaussian  interactions           
and  homogeneous  interactions.  They  model  the  effect  of  visual  stimulation  in  a             
model  where  a  layer  of  excitatory  neurons  representing  layer  4  of  the  mouse  primary               
visual  cortex  sends  feedforward  projections  to  an  EI  network  representing  its  layer             
2/3.  When  the  length  of  the  feedforward  interaction  was  small,  excitatory  neurons             
exhibited  a  response  profile  similar  to  a  2D  Mexican  hat  with  a  sharp  peak  at  the                 
center,  a  minimum  response  in  the  surround  and  recovery  to  baseline  far  from  the               
center.  They  showed  that  to  observe  a  non-linear  response  with  stimulus  size,  the              
length  of  the  interactions  from  a  population  of  neurons  must  be  smaller  than  the               
stimulus  radius.  We  show  here  a  more  complete  picture  that  accounts  for             
heterogeneous   interactions   in   the   connectivity.  

Perspectives  

Li  et  al.  only  considered  the  response  of  the  neurons  for  a  large  radius  of  the  laser                  
beam.  Investigating  the  dependence  of  the  spatial  response  of  PCs  and  PV  neurons              
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on  the  laser  radius  will  provide  further  constraints  on  the  length  of  the  interactions  in                
the  cortex.  In  particular,  future  work  should  investigate  the  effect  of  photostimulation             
of  the  cortex  on  a  scale  smaller  or  equal  to  the  length  of  the  inhibitory  to  inhibitory                  
interactions.  In  particular,  on  how  the  balance  state  is  then  disrupted  and  spatial              
correlations   build   up   in   the   network   responses.   
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Parameters   

Table  1. Connection  strength  matrix  (rows:  postsynaptic  populations;  columns:          
presynaptic   populations)  

 (μA . ms . cm )  Jαβ
−2  Feedforward  PC  PV  

PC  34  29  30  

PV  34  36  36  

 

Table   2.    Synaptic   time   constants   

(ms)  τ αβ  E  I  

E  3  2  

I  3  2  
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Supplementary   Materials   

 

Figure  S1.  Gaussian  photo-activation  with  Exponential  Interactions.  Interaction         
lengths   are   homogeneous.   ,   .   Parameters   as   in   Fig.   7. 20000  N = 1 000  K = 2  

 

Figure  S2. Suppression  length  v.s.  in  the  large limit  ( )  for  two  different       λEI      K   JEE = 0     
values   of   .   A.   .   B.   .   Parameters   as   in   Fig.   8.  Γ0 σ .4mm  4 0 = 0 σ .6 mm  4 0 = 0  
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Figure  S3.  Gaussian  photo-activation  with  Exponential  Interactions.  Interaction         
lengths   are   heterogeneous.   ,   .   Parameters   as   in   Fig.   12. 20000  N = 1 000  K = 2  
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Appendix  

Networks   with   Gaussian   interactions  
We  consider  a  second  model  where  the  probability  of  connection  has  a  Gaussian              
profile.  Similar  studies  were  conducted  by (Ebsch  and  Rosenbaum,  2018;           
Rosenbaum  and  Doiron,  2014)  in  the  case  where  the  interaction  length  only             
depended  on  the  presynaptic  population.  We  will  show  that  upon  photostimulation  of             
I,  these  network  models  behave  qualitatively  in  a  similar  fashion  than  in  the  case               
where  the  interactions  were  exponentials  (at  least  for  finite ).  We  will  then  give           K      
some  necessary  conditions  upon  which  the  networks  can  operate  in  the  balanced             
regime  when  the  probability  of  connection  depends  on  both  the  pre  and  postsynaptic              
populations   and   investigate   the   response   of   such   networks   with   photostimulation.  

Balance   of   excitation   and   inhibition  

The  probability  of  connection  between  the  neurons  is  now  assumed  to  have  a              
periodic   Gaussian   profile,  

P i,j
AB = ZB ∑

+∞

k=−∞
e

−
2σ2

AB

(x −x +k L)i
A

j
B 2

  (1)  

where  is  a  normalization  factor  such  that ,  so  that  the  neurons  on  ZB        ∑
 

j
P ij
AB = K       

average  receive  inputs  per  population.  is  the  characteristic  length  of  the    K      σAB        
interaction   from   population     to   population   . B A  

In  the  large  limit,  the  balance  of  the  net  input  into  the  neurons  in  each  population     K               
implies   that  

 r (x) ⊛r (x)−J ⊛r (x)  JE0 0 + IEopto + JEE E EI I = 0 (2)  

 r  (x) ⊛r (x)−J ⊛r (x)J I0 0 + I Iopto + J IE E II I = 0 (3)  

Therefore,  after  taking  the  Fourier  transform  of  the  previous  expressions,  one  can             
write   the   Fourier   moments   of   the   population   activities   as  
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where     and   . rr0
E = J  J  −J  J  E0 II I0 EI

J  J  −J  J  EI IE EE II 0  rI
0 = rJ  J  −J  J  EI IE EE II

J  J  −J  J  E0 IE I0 EE
0  

When  and ,  these  expression  simplifies  and  the  solution   σEE = σIE = σE    σEI = σII = σI        
is  balanced  as  long  as  the  range  of  the  feedforward  interactions  is  larger  than  the                
range   of   the   recurrent   ones,   namely     and   . ,  σE0 > σE σI ,  σI0 > σE σI  

When  all  the  interactions  are  taken  into  account,  the  balance  of  the  solution  imposes               
that  in  the  limit  where  is  large,  the  moments  of  the  population  activities  remain      k           
finite.  Therefore  one  can  a  priori  consider  two  cases:  1)  the  case  where              

;  2)  the  case  where .  Nevertheless,  when  σ2
EE + σ2
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IE       σ2
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II    
,   one   can   show   that   the   network   steady-state   is   unstable.  σ2
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When   ,   as     the   moments   can   be   reduced   to  σ2
EE + σ2

II > σ2
EI + σ2

IE k → ∞  

(k)  (Γ  J  e −Γ  J  e ) r̂E ~ J  JEI IE

e(σ +σ )k2
EI

2
IE

2

E0 II
−(σ +σ )k2

E0
2
II

2

I0 EI
−(σ +σ )k2

I0
2
EI

2
(6)  

(k)  (Γ  J  e −Γ  J  e ) r̂I ~ J  JEI IE

e(σ +σ )k2
EI

2
IE

2

E0 IE
−(σ +σ )k2

E0
2
IE

2

I0 EE
−(σ +σ )k2

I0
2
EE

2
 (7)  

Therefore,   the   moments   remain   finite   when   

  , ,     and     (8)  σ2
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In   particular,   when   the   perturbation   is   limited   to   the   inhibitory   population   one   gets  
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and   the   necessary   conditions   

  and    σ2
I0 > σ2

IE  σ2
I0 + σ2

EE > σ2
EI + σ2

IE  (11)  

This  set  of  inequalities  gives  an  ensemble  of  necessary  conditions  upon  which  a              
network  could  operate  in  a  balanced  state.  Unfortunately,  one  cannot  derive  the             
general  conditions  for  which  such  a  state  would  exist.  Therefore,  we  will  rely  on               
simulations  to  give  a  qualitative  description  of  the  network  responses  and  test  the              
robustness   of   our   predictions   with     and   .  N  K  

We  can  guess  from  these  conditions  that  in  order  to  maintain  a  balanced  state  when                
slightly  perturbing  the  inhibitory  population  must  be  smaller  than  the  perturbation       σIE        
radius.  Moreover,  since  shapes  the  Fourier  moments  when ,  small     σIE      (k)rE   k → ∞   
values  of  should  ensure  that  stays  below  its  baseline.  Similarly,    σIE     (x)  rE        σEI  
controls  the  rate  upon  which  the  Fourier  moments  of  decay  to  zero,  we  expect          (x)  rI       
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that  the  larger  is,  the  larger  a  perturbation  would  affect  the  inhibitory  response     σEI            
and   consequently,   the   suppression   length,   .  xc  

 

Numerical   simulations  

 

Figure  A1.  Gaussian  photo-stimulation  of  the  inhibitory  population  in  EI  network  with             
Gaussian  interactions.  A. .  B. .  Left:  the  radius  of  the  perturbation  is    .1 a.u.Γ0 = 0    a.u.Γ0 = 2         
smaller  than  the  length  of  the  recurrent  excitatory  interactions:          σ .5 mm  σ .4 mm4 E = 0 > 4 0 = 0
> .  Right:  the  radius  of  the  perturbation,  is  greater  than  the  length  of  the  σ .3 mm4 I = 0               
recurrent  excitatory  interactions: .  Dashed-line:     σ .6 mm  σ .5 mm  σ .3 mm4 0 = 0 > 4 E = 0 > 4 I = 0   
interaction  length  ( ),  Red:  excitatory  neurons;  blue:  inhibitory  neurons.  black: .    σ4 A         σ4 0  
Parameters   in   Table   1.   ,   . 5000NE = N I = 1 00K = 5  

Figure  A1  shows  the  spatial  profile  of  the  responses  of  the  excitatory  and  inhibitory               
populations  (normalized  to  their  baseline)  upon  strong  photostimulation  of  the           
inhibitory  population  with  a  Gaussian  perturbation  for  two  laser  intensities,  and            Γ0   
two  perturbation  radius, .  Here,  the  interactions  are  Gaussian  and  the  interaction     σ  4 0          
lengths  only  depend  on  the  presynaptic  population.  For  a  given  perturbation,  the             
response  of  the  network  is  qualitatively  identical  to  the  response  shown  in  Fig.  6.               
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Therefore,  for  finite ,  whether  one  considers  exponentially  decaying  interaction     K        
profiles   or   Gaussian   interaction   profile   has   little   to   no   effect   on   the   network   response.   

 

Figure  A2.  Photo-suppression  length  v.s.  laser  intensity  and  laser  radius.  A.  Suppression             
length, v.s.  photostimulation  intensity, (Gaussian  interactions).  Black: .  xc     Γ0     σ .6 mm4 0 = 0  
Gray: .  B.  Suppression  length, v.s.  photostimulation  radius, .  Black:   σ .4 mm4 0 = 0     xc      σ4 0   

.  Dark-gray:  .  Gray: .  Dashed-line  same  as  in  Fig.  6.  a.u.Γ0 = 2   .2 a.u.Γ0 = 0    .1 a.u.Γ0 = 0        
Parameters   as   in   Fig.   A1.  

Figure  A2  depicts  the  effect  of  changing  the  photostimulation  intensity  and  radius  on              
the  length,  of  the  region  where  excitation  is  suppressed.  Here  again,  the  general    xc             
properties  of  the  dependence  of  with  and  derived  in  Fig.  A1  seems  to  be       xc    Γ0    σ0         
preserved.  Moreover,  Figure  A2  A  plots  the  suppression  length, , v.s.  the           xc    
photostimulation  intensity  for  two  fixed  photo-stimulation  radius.  For  both    Γ0         
photostimulation  radius  (  and )  increases  monotonously    σ0 > σE > σI    σE > σ0 > σI   xc    
with  spanning  continuously  across  the  interaction  length  of  the  inhibitory  and   Γ0            
excitatory  populations.  Figure  9B  plots  the  suppression  length, v.s.  the          xc    
photostimulation  radius, ,  for  three  fixed  photo-stimulation  intensities.  When  the    σ  4 0         
photostimulation  intensity  is  large,  monotonously  increases  with  with  a  slope      xc      σ0     
smaller  than .  As  increases,  becomes  more  and  more  smaller  than  the    1    σ0    xc         
photostimulation  radius.  becomes  smaller,  becomes  non-monotonous  in .    Γ0     xc      σ0  
For   sufficiently   small     and   sufficiently   large   ,     can   even   become   zero.  Γ0  σ0  xc  

Figure  A3  shows  the  result  of  the  numerical  simulations  for  a  set  of  interaction  length                
such  that  and  Eq.  [11]  is  satisfied.  Similarly  to  the  case  when    σEE > σEI > σII > σIE            
the  interactions  decay  exponentially,  when  is  small,  there  is  no  rebound  of  the       σIE          
excitatory  activity  in  the  surround  of  the  suppression.  Moreover,  for  sufficiently  large             

 the  dependence  of  the  suppression  length  with  the  intensity  and  radius  of  the  σEI               
perturbation   are   identical   to   the   one   in   Fig.   A2.  
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Figure  A3.  Gaussian  photo-activation  with  Gaussian  Interactions  when         σEE > σEI > σII > σIE

.  A. .  B. .  Left:  the  radius  of  the  perturbation  is  smaller  than  the  length   .1 a.u.Γ0 = 0    a.u.Γ0 = 2             
of  the  recurrent  excitatory  interactions: .  Right:  the  radius  of      σ .5 mm  σ .4 mm4 EE = 0 > 4 0 = 0      
the  perturbation,  is  greater  than  the  length  of  the  recurrent  excitatory  interactions:             

.  Dashed-line:  interaction  length  ( ),  Red:  excitatory  σ .6 mm  σ .5 mm4 0 = 0 > 4 EE = 0      σ4 A    
neurons;  blue:  inhibitory  neurons.  black: .  Parameters  in  Table  1. ,      σ4 0      5000NE = N I = 1  

.   . 00K = 5 .125 mm, σ .125mm, .075 mm, σ .0625 mmσEE = 0  EI = 0  σII = 0  IE = 0  
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Figure  A4.  Photo-suppression  length  v.s.  laser  intensity  and  laser  radius  when            
.  A.  Suppression  length, v.s.  photostimulation  intensity, .  σEE > σEI > σII > σIE      xc      Γ0  

Black: .  Gray: .  B.  Suppression  length, v.s.   σ .6 mm  4 0 = 0    σ .4 mm  4 0 = 0      xc   
photostimulation  radius, .  Black: .  Dark-gray: .  Gray:    σ  4 0    a.u.  Γ0 = 2   .2 a.u.  Γ0 = 0   

.  Dashed-line  same  as  in  Fig.  A2.  Parameters  as  in  Fig.  A3.  Parameters .1 a.u.  Γ0 = 0              
as   in   Fig.   10.   ,   . 5000  NE = N I = 1 00  K = 5  
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Chapter   4   

Discussion  

The  standard  model  of  the  balanced  state  with  one  excitatory  and  one  inhibitory              
population (van  Vreeswijk  and  Sompolinsky,  1998,  1996)  has  been  very  successful            
in  accounting  for  some  of  the  basic  features  of  cortical  dynamics  observed             
experimentally  and  is  supported  by  some  in-vitro (Shu  et  al.,  2003)  and  in-vivo              
(Haider  et  al.,  2006)  experimental  studies.  However,  it  is  a  simplified  description  of              
reality  and  thus  suffers  from  several  significant  limitations.  Whether  cortical  neurons            
do  operate  in  this  regime  remains  to  a  large  extent  an  open  question. In  this  thesis,                 
we  investigate  this  question  by  extending  the  theory  of  standard  balanced            
hypotheses.  Our  strategy  is  to  infer  from  the  cortical  responses  to  specific             
optogenetic   perturbations   the   state   in   which   the   cortex   operates.  

Summary   

The   role   of   inhibitory   interneuron   diversity   
Cortical  inhibitory  neurons  comprise  several  populations  that  differ  in  their  intrinsic            
properties,  their  patterns  of  connectivity,  and  the  feedforward  inputs  they  receive.            
The  recent  experimental  developments  combining  molecular,  genetic  and  optical          
techniques  have  provided  new  tools  to  target  certain  neuronal  subpopulations           
(excitatory,  PV,  SOM,  VIP)  and  perturb  their  activity in  vivo .  In  this  study,  we               
extended  the  balanced  state  to  models  that  take  into  account  the  diversity  of              
interneurons.  We  then  investigated  how  these  different  populations  contribute  to  the            
global  balance  in  the  network  and  we  investigated  the  effects  of  optogenetic             
manipulation  of  some  of  these  populations  on  the  network  dynamics.  Given  a             
network  connectivity  scheme,  we  predicted  the  network  responses  to  various  types            
of   optogenetic   perturbations.   These   need   to   be   experimentally   tested   in   future   works.  

Spatial   spread   of   inhibition  
The  spatial  range  and  the  intensity  of  the  perturbations  can  be  manipulated  by              
changing  the  size  and  the  power  of  the  laser  beam.  Here  we  studied  how  changing                
these  parameters  affect  the  state  of  the  network, e.g.  the  spatial  profile  of  the  activity.                
Our  models  account  for  the  spatial  spread  of  photo-inhibition  in  the  experimental             
data  of  Li  et  al.  We  found  a  significant  dependence  of  the  photo-suppression  length,               
with  the  intensity  and  radius  of  the  laser.  For  large  stimulus  intensities,  it  increases               
with  the  stimulus  radius.  This  is  not  the  case  when  the  stimulus  intensity  is  small                
where  the  response  is  non-linear.  In  order  to  explain  the  concomitant  decrease  of  the               
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excitatory  and  inhibitory  responses  in  the  surround  of  the  suppression,  we  derived             
conditions  upon  the  length  of  the  recurrent  interactions  for  finite-size  networks.  We             
found  that  in  order  to  account  for  the  experimental  observations,  excitatory  to             
inhibitory  connections  must  be  small  in  comparison  with  the  stimulus  radius.            
Conversely,  to  obtain  a  sufficiently  large  suppression  in  the  excitatory  response,  the             
inhibitory  to  excitatory  projections  must  be  broadened.  Future  experimental  and           
theoretical  work  would  be  required  to  understand  the  effect  of  photostimulation  of  the              
cortex  on  a  scale  of  the  length  of  the  inhibitory  to  inhibitory  interactions.  Finally,               
extending  the  theory  to  networks  with  multiple  inhibitory  populations  would  be            
necessary  in  order  to  understand  which  inhibitory  interactions  are  crucial  in  shaping             
the   network   response.  

Beyond   the   cortex  
Interneuron  diversity  is  not  restricted  to  cortical  areas.  Indeed,  interneurons  have            
been  reported  to  also  exhibit  a  large  amount  of  heterogeneity  outside  of  the  cortex  in                
regions  like  the  hippocampus,  the  cerebellum  and  the  basal  ganglia  ( e.g.  in  the              
cerebellum  Purkinje  cells,  the  sole  output  of  the  cerebellar  cortex  and  main             
computational  cell  type,  receive  input  from  several  classes  of  interneurons  that  are             
thought  to  play  an  essential  role  in  controlling  cerebellar  cortical  output  during  motor              
behavior (Bower,  2010;  Dizon  and  Khodakhah,  2011) ).  Several  lines  of  evidence            
suggest  that  interneuron  dysfunction  may  contribute  to  cognitive  abnormalities  in           
several  brain  diseases.  For  example,  when  PV  interneurons  are  dysfunctional  in  the             
hippocampus,  the  network  exhibits  hypersynchrony  and  oscillatory  rhythmic  activity          
that  lead  to  cognitive  abnormalities  in  Alzheimer's  disease (Hijazi  et  al.,  2019;  Verret              
et  al.,  2012) .  The  precise  causes  and  physiological  consequences  of  this  dysfunction             
still  remain  to  be  understood  from  a  physiological  as  well  as  from  a  mathematical               
point  of  view.  Indeed,  investigating  the  mechanisms  by  which  interneurons  could            
alter  network  dynamics  and  function  could  be  of  particular  interest  to  the             
development  of  specific  therapeutic  treatments.  In  particular,  with  the  advance  of            
optogenetics,  manipulation  of  specific  interneurons  could  be  a  good  strategy  to            
improve   brain   functions   in   pathological   conditions.  

(Mastro  et  al.,  2017)  have  reported  that  optogenetic  activation  of  different  neuronal             
populations  in  the  basal  ganglia,  can  restore  movement  and  attenuate  pathological            
activity  even  after  stimulation  offset  in  parkinsonian  mice  (Fig.  1B).  We  will  here  give               
a  brief  account  of  how  simple  mathematical  reasoning  can  explain  the  contributions             
of  these  different  interneurons  to  the  mechanism  underlying  parkinsonian  behavior  in            
a   model   of   the   basal   ganglia.  
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Interneurons   in   the   basal   ganglia  

 

Figure  1 .  Optogenetic  manipulation  of  the  basal  ganglia. A. Nuclei  and  pathway  of  the  basal                
ganglia.  Panel  from (Wichmann  and  DeLong,  1996) .  B.  Global  GPe  stimulation  does  not              
rescue  movement  in  dopamine  deprived  mice. C. Stimulation  of  specific  interneurons  rescue             
movement   in   dopamine   deprived   mice.    B-C    panels   adapted   from    (Mastro   et   al.,   2017) .  

Basal  Ganglia  (BG)  consist  of  a  set  of  interconnected  nuclei  intensely  connected  with              
other  cerebral  structures,  including  the  cerebral  cortex,  the  thalamus,  and           
dopaminergic  nuclei  (Fig.  1A).  BG  are  involved  in  motor  control  and  its  dysfunction  is               
known   to   be   a   key   component   underlying   movement   disorders.  

BG  main  input  structure,  the  striatum,  receives  topographically  ordered  excitatory           
projections  from  cortex  (McGeorge  and  Faull  1989;  Wiesendanger  et  al.,  2004)  and             
provides  inhibitory  inputs  into  the  substantia  nigra  pars  reticulata  (SNR),  its  main             
output  structure,  and  into  the  globus  pallidus  pars  externa  (GPe),  one  of  BG  internal               
nuclei.  GPe  mostly  sends  GABAergic  projections  to  the  subthalamic  nucleus  (STN)            
which  in  turn  provides  glutamatergic  projections  to  the  SNR.  Last,  SNR  provides             
feedback  inhibition  to  the  VentroAnterior  (VA),  VentroLateral  (VL)  and  VentroMedial           
(VM)  thalamus.  Dopaminergic  SNc  neurons  project  to  several  BG  nuclei  (for  review,             
see  Graybiel,  2000),  but  these  projections  and  the  dopaminergic  receptors  are  more             
numerous   in   the   striatum   (Haber   and   Fudge,   1997).  
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Figure  2. A  model  of  the  BG. A.  Architecture  of  the  network. B.  Cortico-striatal  input                
modulation  with  the  dopamine  level  (DA) C.  Dopamine  depletion  leads  to  oscillatory  activity.              
D.  Left:  Activities  of  SNR  and  Gpe  neurons  present  little  change  with  DA  level.  Right :                
Thalamus   and   D2   neurons   decrease   their   activity   with   the   DA   level.  

The  Cortex-BG-Thalamic  loop  is  known  to  decompose  into  three  parallel  pathways:            
(1)  a  direct  pathway  through  the  cortex-striatum-SNR-cortex  loop  (Albin,  Young,  and            
Penney  1989;  Alexander  and  Crutcher  1990);  (2)  an  indirect  pathway  through  the             
cortex-striatum-GPe-STN-SNR-cortex  loop;  (3)  an  hyperdirect  pathway  through  the         
cortex-STN-SNR-cortex   (Nambu,   Tokuno,   and   Takada,   2002).  

Previous  theoretical  studies  have  investigated  how  the  competition  between  these           
different  loops  are  responsible  for  a  variety  of  functions  and  dysfunctions,  and  in              
particular  for  the  generation  of  oscillatory  dynamics  that  is  thought  to  be  a  key               
component  of  Parkinson’s  disease.  We  propose  here  some  preliminary  results  of  a             
model  where  oscillatory  neural  activity  can  arise  from  the  BG  itself  and  spread              
towards  the  cortex  and  the  thalamus  when  dopamine  is  depleted.  Our  model  places              
GPe   interneuronal   heterogeneity   as   a   key   component   of   the   BG   dysfunction.  

We  consider  a  simple  rate  model  of  the  Basal  Ganglia  consisting  of  the  striatum               
composed  of  two  inhibitory  populations  and ,  with  and      D1   D2   D1   D2  
interconnected.  Following (Mastro  et  al.,  2017)  (Fig.  1B),  our  GPe  consists  of  two              
inhibitory  populations  PV  and  Lhx6,  with  projections  from  PV  neurons  to  Lhx6             
neurons  only.  The  SNR  receives  inhibition  from  all  the  populations  in  the  GPe  and               
from  in  the  striatum.  Finally,  the  thalamus  receives  inhibitory  feedback  from  the  D1             
SNR.  For  simplicity,  we  omit  the  thalamus-cortex-striatum  pathway  that  provides           
excitation  to  the  striatum  and  considers  that  the  thalamus  directly  provides  excitatory             
inputs   to     and     in   the   striatum. D1 D2  
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We  can,  therefore,  distinguish  between  two  distinct  pathways:  (1)  a  direct  pathway             
consisting  of  the  Striatum-SNR-Thalamus-Striatum  loop;  (2)  an  indirect  pathway          
consisting  of  the  Striatum-GPe-SNR-Thalamus-Striatum  loop.  Because  we        
introduced  interneuronal  diversity  in  the  GPe,  the  indirect  pathway  (2)  can  be             
decomposed  into  two  sub-loops  one  involving  only  the  PV  neurons,  and  the  other              
including   all   the   inhibitory   populations   in   the   GPe   (Fig.   2A).  

Cortico-striatal  transmission  is  thought  to  be  altered  by  DA  depletion  (Calabresi  et             
al.,  2000).  Moreover,  the  signal-to-noise  ratio  in  the  striatum  has  been  reported  to              
depend  on  the  DA  level  (O’Donnell,  2003;  Nicola  et  al.,  2004).  We,  therefore,  model               
the  effect  on  the  dopamine  level  (DA)  received  by  the  neurons  in  the  striatum  as                
follow:  the  excitatory  l  input  to  neurons  is  a  sigmoid  function  of  the  dopamine       D1          
level  (0  when  and  1  when );  the  excitatory  input  to  neurons  is    A  D = 0     A 00%  D = 1      D2    
a   slightly   decreasing   function   of   the   dopamine   level   (Fig.   2B).  

The  network  goes  from  a  stable  steady-state  to  an  oscillatory  state  when  dopamine              
concentration  is  depleted  below  a  given  level (Fig.  2C).  This  is  because        A A  D = D critic      
as  dopamine  is  depleted,  the  gain  of  the  positive  loops  involving  in  the  circuit  is            D1      
diminished.  For ,  these  loops  can  no  longer  counter  the  negative  loops   A A  D = D critic           
involving ,  namely  the  loop -PV-SNR-Thalamus- ,  and  the  network  exhibits  D2     D2 D2      
synchronous  oscillations.  In  fact,  the  loop -PV-SNR-Thalamus-  could  in       D2 D2    
principle  be  balanced  by  the  contribution  of  the  loop  that  involves  the  Lhx6  neurons               
(namely  the  loop -PV-Lhx6-SNR-Thalamus- ).  This  is  the  case  when  the    D2 D2        
strength  of  the  projections  from  PV  neurons  in  GPe  to  the  SNR  would  be  smaller                
than  the  gain  of  the  indirect  pathway  from  GPe  to  SNR  namely,  the  product  of  the                 
strength  of  the  interaction  from  PV  neurons  to  Lhx6  neurons  and  the  strength  of  the                
interaction  from  Lhx6  neurons  to  the  SNR.  In  fact,  that            J  JPV →SNR > JPV →Lhx6 Lhx6→SNR  
is  also  required  to  ensure  that  in  the  normal  physiological  state  (when  dopamine  is               
not  depleted)  the  steady-state  is  stable.  As  a  postdiction,  we  observed  in  the  model,               
that  even  when  dopamine  level  is  depleted  beyond ,  small  activation  of  PV         AD critic      
neurons  or  large  activation  of  Lhx6  suppress  the  synchronous  oscillatory  network            
activity.   

Perspectives  

Effects   of   optogenetic   manipulation   on   feature   selectivity  
Several  recent  studies  have  investigated  the  contribution  of  different  inhibitory           
neurons  to  stimulus  selectivity  in  the  mouse  visual  cortex (Atallah  et  al.,  2012;              
El-Boustani  and  Sur,  2014;  Lee  et  al.,  2012;  Wilson  et  al.,  2012) .  Cortical  inhibitory               
cells  have  been  reported  to  be  more  broadly  tuned  than  PCs.  Between  inhibitory              
subtypes  tuning  properties  are  known  to  vary.  VIP  neurons  have  been  reported  to  be               
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more  selective  for  orientation  than  SOM  and  PV  neurons  in  mouse  V1 (Kerlin  et  al.,                
2010) .  A  few  Inhibitory  neurons  have  been  reported  to  exhibit  strong  stimulus             
selectivity  that  is  similar  to  that  of  PCs (Runyan  et  al.,  2010) .  Similarly,  inhibitory               
neurons  in  other  sensory  areas  have  also  been  reported  to  be  more  broadly  tuned               
than  PCs (Kato  et  al.,  2017) .  What  factors  underlie  tuning  properties  of  interneurons,              
and  why  are  inhibitory  neurons  generally  more  broadly  tuned  than  PCs?  How  do              
distinct   interneurons   contribute   to   the   shaping   of   the   tuning   response   of   PCs?  

There  is  no  consensus  regarding  the  role  of  distinct  inhibitory  populations  in  shaping              
the  response  of  the  PCs.  Some  studies  found  that  SOM  neurons  sharpen  orientation              
tuning (Wilson  et  al.,  2012) ,  while  that  activation  of  PV  neurons  have  little  to  no  effect                 
on  tuning  but  changed  response  gain  ( (Atallah  et  al.,  2012) ,  Fig.  3A).  Others              
reported  that  PV  neurons  sharpened  tuning,  but  not  SOM  neurons  ( (Lee  et  al.,              
2012) ,   Fig.   3B).  

 

Figure  3.  Interneurons  shape  the  tuning  properties  of  PCs. A .  PV  photostimulation  decrease              
PCs  stimulus  selectivity.  Panel  adapted  from (Atallah  et  al.,  2012) . B .  PV  photostimulation              
enhances  V1  stimulus  selectivity.  ChR2-mediated  changes  in  stimulus  selectivity  for  PV            
stimulation  (top),  SOM  stimulation  (middle)  and  VIP  stimulation  (bottom).  Panel  adapted            
from (Lee  et  al.,  2012) . C .  Three  hypotheses  for  the  mechanism  of  subtraction.  Top:  untuned                
inhibition  leads  to  subtraction  if  excitatory  f-I  curves  are  linear.  Middle:  withdrawal  of  tuned               
PV  inhibition  leads  to  a  sharpening  of  subthreshold  input  and  approximate  subtraction  if              
excitatory  f-I  curves  are  nonlinear.  Bottom:  nonlinear  dendritic  integration  allows  untuned            
SOM  inhibition  to  sharpen  tuned  excitatory  input,  leading  to  subtraction  if  excitatory  f-I              
curves   are   nonlinear.   Panel   and   caption   adapted   from    (Litwin-Kumar   et   al.,   2016) .  
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In  a  recent  study, (Litwin-Kumar  et  al.,  2016)  investigated  the  dynamics  of  recurrent              
networks  of  weakly  connected  neurons  with  multiple  inhibitory  subtypes  (namely,  the            
PV,  SOM  and  VIP  neurons)  and  connectivity  matching  the  one  reported  in  mouse              
primary  visual  cortex.  They  studied  the  role  of  each  interneuron  subtype  in  the              
mechanisms  of  disinhibition,  surround  suppression,  and  modulation  of  orientation          
tuning  in  networks  operating  in  an  inhibition  stabilized  regime  (Fig.  3C).  To  this  date,               
no  similar  study  was  conducted  in  a  balanced  network  model  with  multiple  inhibitory              
populations.   

Response   of   cortical   networks   to   deterministic   noise   
The  dynamics  of  fluctuations  is  at  the  core  of  the  balanced  state  regime  and  the  use                 
of  stochastic  inputs  could  refine  the  characterization  of  its  parameters.  A  particular             
type  of  noise  could  be  used  to  test  how  fluctuations  propagate  within  networks.              
Indeed,  it  is  possible  to  generate  a  stimulus  that  has  all  characteristics  of  noise  but                
that  is  deterministically  equal  from  trial  to  trial  (frozen  noise).  It  has  been  shown  that                
such  a  signal  may  produce  highly  precise  spike  timings  in  single  cells  in  vitro               
(Mainen  and  Sejnowski,  1995;  Nowak  et  al.,  1997) .  By  measuring  the  trial  to  trial               
variability  of  neural  responses,  it  is  possible  to  measure  the  propagation  of             
fluctuations  within  the  network.  It  is  now  possible  to  reproduce  such  inputs             
experimentally  with  optogenetic  tools.  One  could  analyze  the  dependence  of  the            
network  variability  on  the  frequency  of  the  stimulus.  This  will  be  used  to  determine               
whether  slow  channel  dynamics,  motifs  in  the  connectivity,  or  fluctuations  in  the             
external  input  are  the  dominant  source  of  fluctuations  in  the  network  activity  on  short               
time   scales   (tens   of   milliseconds).  

Diversity   of   short-term   plasticity   
In  addition  to  specific  patterns  of  connectivity,  inhibitory  interneurons  also  exhibit            
preferential  patterns  of  short-term  synaptic  plasticity  (STP) (Gupta  et  al.,  2000;            
Karnani  et  al.,  2014) .  For  instance,  synapses  on  and  from  PV  neurons  are  typically               
depressing  while  synapses  on  and  from  SOM  neurons  are  typically  facilitating.  While             
the  experimental  characterization  of  these  STP  motifs  is  rapidly  progressing,  the            
understanding  of  their  function  has  been  lagging  behind.  STP  has  been  shown  to  be               
a  robust  source  of  non-linearity  for  networks  operating  in  the  balanced  regime.  In              
particular,  it  enables  the  co-existence  of  multiple  balanced  states (Hansel  and  Mato,             
2013;  Mongillo  et  al.,  2012) .  Further  work  should  investigate  the  impact  of  the              
diversity  of  STP  patterns  on  the  operation  of  balanced  networks  with  multiple             
inhibitory  populations.  In  particular,  one  should  investigate  how  the  number  of  fixed             
points  and  their  stability,  changes  depending  on  a  given  pattern  of  STP  in  the               
connections.  Specifically,  it  should  focus  on  the  possibility  of  multi-stability  between            
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states  with  approximately  the  same  activity  level  in  the  excitatory  population  but             
different   activity   levels   in   the   inhibitory   populations.   

Recent  studies  report  strong  evidence  supporting  the  view  that  PV  neurons  are  a  key               
player  in  the  generation  and  maintenance  of  gamma,  theta,  and  ripple  oscillations  in              
mouse  cortex (Cardin  et  al.,  2009;  Sohal  et  al.,  2009;  Stark  et  al.,  2014,  2013) .                
These  rhythms,  and  the  circuits  underlying  their  generation,  illustrate  the  importance            
of  the  fast  signaling  properties  of  PV  cells (Bartos  et  al.,  2007) .  The  mechanisms  by                
which  PV  cells  control  the  oscillatory  components  of  neural  activity  are  still  to  be               
elucidated.  

Cortical  circuits  are  known  to  generate  rhythmic  activity  in  different  frequency  ranges.             
However,  in  two-population  balanced  models,  due  to  the  linearity  of  synaptic            
interactions,  no  balanced  oscillatory  regime  is  possible.  The  non-linearity  provided  by            
STP  could  endow  the  network  with  the  ability  to  produce  balanced  oscillations.             
Future  work  must  investigate  the  mechanism  underlying  the  generation  of  rhythm  in             
multi-inhibitory  population  network  models  with  STP  as  a  function  of  the  levels  of              
feedforward  inputs  to  the  different  neuronal  populations.  In  this  case,  it  will  be  of               
extreme  interest  to  characterize  the  statistical  features  stimulus-evoked  activity          
depending  on  the  global  state  of  the  network  ( i.e. ,  asynchronous  v.s.  balanced             
oscillations).  
 
Another  interesting  question  is  how  the  state  of  the  network  affects  the  statistics  of               
stimulus-evoked  activity  ( e.g. ,  average  activity,  selectivity  in  different  neuronal          
populations).  Besides  providing  a  source  of  static  non-linearity,  STP  also  can            
transiently  modify  the  response  properties  of  the  network  on  relatively  long            
time-scales  ( i.e. ,  100-1000  ms).  This  can  in  principle  enhanced  the  network            
computational  abilities  since  the  response  to  an  afferent  stimulation  will  depend  on             
previously  encountered  stimuli.  Further  work  should  characterize  the  statistical          
features  of  stimulus-evoked  activity  depending  on  the  previous  history  of  stimulation.            
In  particular,  it  would  be  interesting  to  measure  the  fraction  of  variability  of  evoked               
response   that   can   be   explained   by   history-dependent   effects.  
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