
HAL Id: tel-03412980
https://theses.hal.science/tel-03412980

Submitted on 3 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Verification and synthesis of parameterized concurrent
systems

Anirban Majumdar

To cite this version:
Anirban Majumdar. Verification and synthesis of parameterized concurrent systems. Other [cs.OH].
Université Paris-Saclay, 2021. English. �NNT : 2021UPASG059�. �tel-03412980�

https://theses.hal.science/tel-03412980
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N

N
T

:
20

21
U

P
A

S
G

05
9

Verification and Synthesis of

Parameterized Concurrent Systems

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de l’Information et
de la Communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay

Référent: ENS Paris-Saclay

Thèse présentée et soutenue à Gif-sur-Yvette, le 30 Septembre 2021, par

Anirban MAJUMDAR

Composition du jury:

Benedikt BOLLIG Président
Directeur de recherche, CNRS, France
Giorgio DELZANNO Rapporteur
Professor, Università di Genova, Italy
Emmanuel FILIOT Rapporteur
Mâıtre de recherche, FNRS, Belgium
Martin ZIMMERMANN Examinateur
Associate professor, Aalborg Universitet, Denmark

Patricia BOUYER-DECITRE Directrice
Directrice de recherche, CNRS, France
Nathalie BERTRAND Co-encadrante
Directrice de recherche, Inria, France

Abstract

This thesis is at the crossroad of verification and synthesis of parameterized concurrent
systems. The parameterized model checking problem asks whether a system satisfies a
given specification independently of the number of its components, whereas synthesis
requires an algorithmic design of protocols for its components so that the specification is
satisfied.

The contribution of this thesis is two-fold. In the first part, we study a parameterized
model of networks where processes are distributed over an undirected graph, running the
same broadcast protocol. Processes communicate via broadcasts of messages, each process
can broadcast messages to its neighbours. Then the coverability problem asks, given a state
of the protocol, whether there exists an execution that reaches a configuration such that
at least one process is in that state. We show that for positive instances of the coverability
problem in reconfigurable semantics, the size (resp., the length) of a minimal covering
execution, called the cutoff (resp., the covering length), is linearly (resp., quadratically)
bounded. We introduce loss-on-broadcast semantics, and show similar bounds for the
cutoff and the covering length.

Game theory provides an approach towards solving the synthesis problem. The
interactions between agents can be modelled using games. Games with a fixed number of
players have been extensively studied in the literature. In the second part of the thesis,
we introduce parameterized concurrent games, a model of concurrent games involving an
arbitrary number of agents, where the edges are labelled by languages of finite yet a priori
unbounded words, and study two different settings on this model. First, we consider a
scenario where a distinguished player Eve is trying to achieve a given objective against
the coalition of her opponents, not knowing a priori how many they are; and second, a
coalition setting where all players collectively try to achieve a common goal.

In the first setting, we prove the existence of a winning strategy for Eve is decidable, and
show tight complexity bounds for reachability objectives. More precisely, when the edges
are labelled with regular languages, we show that the game problem is PSPACE-complete.
In the coalition setting, we consider safety objectives and show that the existence of a
winning coalition strategy is decidable, and prove complexity bounds for the same. We
show that the safe coalition problem is in EXPSPACE and PSPACE-hard. Further, one
can synthesize a coalition strategy, if it exists, that uses exponential memory, which can
be computed in exponential space.

3

Acknowledgements

In life, we are thankful to a number of people who helped us become us. People come,
people go, people change, we change, and in the end, we all forget. I am no exception.

Let me take you back to 2013. An eighteen-year-old Indian boy travels 1600 km from
his hometown to study Mathematics. Unfortunately, he does not feel the passion for
the subject that he had for the past twelve years, in fact, sometimes it intimidates him.
Parallelly, he was also exploring the field of theoretical computer science and, in particular,
automata theory and formal methods et cetera. He started to get a new flavour. He still
remembers his first course in automata theory by M. Praveen, and in the following years,
several courses by B. Srivathsan, A. Manuel, M. Mukund and others.

Fast forward four years, he now has a Bachelor’s degree in Mathematics and Computer
Science. Further, he also knows he wants to do a Ph.D. in topics related to formal methods
and games. A special thanks to D. Kuperberg who gave him the very first overview of
what doing research is like, which is not the same as doing courses and writing exams.

One more year well-spent, the twenty-three-year-old boy now flies 8000 km to do a
Ph.D. in France. Patricia Bouyer and Nathalie Bertrand are not just two names to him,
they were there in every yes and no of him during the past three years. He learnt from
them how to approach a problem, formalize its solution and write an accessible paper or
thesis and what not. You want to know what tolerance is, what patience is, you should
have seen them dealing with this boy, till the very end. Unbelievable!

A Ph.D. student always dreams that his thesis is reviewed very carefully. This was
absolutely the case for him. He is thankful to Emmanuel Filiot and Giorgio Delzanno for
their kind feedback on his Ph.D. manuscript. And the list would not be complete without
thanking the other members of the jury, Benedikt Bollig and Martin Zimmermann.

However, to me, only having helpful supervisors are not sufficient to complete a Ph.D.
Away from home, it is not always easy to keep the balance, especially when the world
gives you a pandemic. However, I bet this boy had a bunch of wonderful friends around
him, maybe not everyone was there till the end, but he would not be in this place without
them. He will not mention names but wants to thank each and every one among them.

Finally, nothing would have been possible if he had not left home eight years ago, and
who showed him the courage to do that? Who gave him confidence and constant support?
His parents. Respect!

5

Contents

Abstract 3

Acknowledgements 5

1 Introduction 9
1.1 Background . 9
1.2 Contributions of the thesis . 15
1.3 Organization of the thesis . 18

I Verification of Ad Hoc Networks 19

2 Preliminaries 21
2.1 Broadcast protocols . 24
2.2 Semantics . 25
2.3 Coverability . 32
2.4 Cutoff and covering length . 35
2.5 Discussion . 37

3 Tight Bounds on Cutoff and Covering Length 39
3.1 Refined saturation algorithm . 40
3.2 Tight bounds on cutoff and covering length 46
3.3 Succinctness of reconfigurations compared to message losses 55
3.4 Complexity of deciding the size of minimal witnesses 57
3.5 Concluding remarks . 59

II Parameterized Concurrent Games 63

4 Preliminaries 65
4.1 Two-player turn-based games . 69
4.2 Two-player concurrent games . 74
4.3 Parameterized concurrent games . 79
4.4 Discussion . 89

5 Playing against Arbitrarily Many Opponents 91
5.1 Game setting . 92
5.2 The knowledge game . 98

7

5.3 Tight bounds for reachability games . 105
5.4 Concluding remarks . 118

6 Synthesizing Safe Coalition Strategies 121
6.1 Game setting . 122
6.2 The tree unfolding . 126
6.3 An EXPSPACE upper bound for the safe coalition problem 132
6.4 A PSPACE lower bound for the safe coalition problem 137
6.5 Synthesizing a winning coalition strategy 141
6.6 Concluding remarks . 144

7 Conclusion 147
7.1 Summary of contributions and immediate follow-ups 147
7.2 Perspectives . 150

Bibliography 155

Index 165

8

Chapter 1

Introduction

The generalization and everyday usage of modern distributed systems call both for
the verification and synthesis of algorithms running on distributed systems. Concrete
examples are cloud computing [AFG+09], blockchain technologies [NK18], servers with
multiple clients [DN12], wireless sensor networks [YMG08], bio-chemical systems [FK13],
or fleets of drones cooperating to achieve a common goal [CQSS19]. In their general
form, these systems are not only distributed, but they may also involve an arbitrary large
number of agents. This explains the interest of the model-checking community both for
the verification of parameterized systems (see for instance the survey [Esp14], and the
book [BJK+15]), and for the synthesis of distributed systems [PR90]. This thesis is at
the crossroad of those topics.

1.1 Background

Model checking. Computerized systems are becoming an integral part of our daily
life, be it a personal computer, smart-phone, or even parts of cars, planes, banking,
medical equipments, etc. Needless to say, it is not only desired that these systems be
flawless in their implementations, but in some scenarios, small hardware or software
errors may lead to enormous damages. For example, when the brake of a car is applied,
necessary hardwares need to react immediately. A software error in Ariane-5 missile led to
a crash which cost a huge financial damage [Rep96]. This explains the need for developing
techniques to automatically check correctness of the computerized systems.

Numerous verification techniques have been developed over the years, one of them
being formal verification. The technique consists in checking correctness of a mathematical
formalization of the system algorithmically. Model checking is a formal verification tech-
nique that performs an exhaustive search of the state space of the system model [CES09].
More precisely, the behaviours of a system are often represented by a transition system
and its desired properties are described as a logical specification (for example, a formula
in a temporal logic). Then the model checking techniques explore all possible behaviours
of the transition system and check if all of them satisfy the specification. For negative

9

10 1. Introduction

instances, most model checking algorithms output a counter-example. For further reading
on model checking techniques, we refer to [BK08].

Parameterized verification. In distributed systems, many processes run concurrently,
interacting with each other and also with the environment. Modern computerized systems
are heavily dependent on the theory of concurrency. Typical examples are multicore
processors, telephone networks, wireless networks, etc. One of the main challenges in
verification of these systems is state-space explosion: the number of states of the system
grows rapidly while keeping track of interactions between processes. Another issue is that
some algorithms need to be proven correct independently of the system size. For instance,
a mutual exclusion algorithm should ensure that two processes never enter the critical
section simultaneously for any number of processes. Similarly, a cache-coherence protocol
should be correct independently of the number of processes. This motivates the study of
parameterized model checking, which is the central aspect of this thesis.

In general, parameterized systems are computerized systems that can be described using
one or more parameters. Typically, the parameters are related to the size or the topology
of a network, the initial values of variables, etc. In the first part of the thesis, we consider a
particular class of parameterized systems: systems that consist of arbitrarily many identical
processes, each of which follows a same finite-state protocol. Then the parameterized
model checking problem (PMCP) asks whether each member of the infinite family satisfies
some given specification. Notice that the number of processes here is a parameter; indeed,
if that number is fixed a priori then, assuming each component of the system has a finite
number of states, the above problem would fall under finite-state model checking. The
verification of parameterized systems started in the late ’80s [AK86, GS92, EN95, EFM99],
and recently regained attention from the model-checking community [Esp14, BJK+15].

Unfortunately, the PMCP is in general an undecidable problem [AK86]. However, in
the proof of the above undecidability result, the description of a component of the system
depends on the parameter, the number of components. Therefore, their result does not
directly apply to systems that are composed of arbitrarily many copies of a finite program
whose description is independent of the size of the system. For instance, in [GS92], the
authors study a model of systems which communicate via a rendez-vous mechanism (at a
time, two entities synchronize via message passing) and show that the PMCP is decidable.

The decidability of the PMCP depends on various factors: the shape of the communica-
tion architecture (cliques, rings, stars, etc.), the means of communication (message-passing,
token-passing, shared memory, etc.), the possibility of non-deterministic reconfiguration
of the network topology, the presence of a leader, etc. Broadcast communication (a
node broadcasts a message to all its neighbours simultaneously) was originally stud-
ied in [EFM99], where the entities synchronize via message passing. Later, broad-
cast communication was also considered, for instance, in [DSZ10, DSTZ12, DSZ12].
In [Suz88, EN95, CTTV04, AJKR14], the authors consider systems where processes
communicate via token-passing. Asynchronous shared-memory systems were studied
in [EGM13, BMR+16], where processes communicate through a shared, bounded-value

1.1. Background 11

register. Angluin et al. [AAD+04] defined a model of computation based on pairwise
interaction between agents, called population protocol, which was further studied, for
instance, in [AAE06, EGLM17, LFI+17, BEG+20]. Other contributions in this line of
research also include [BDG+19, CFO20], where an environment tries to control a popula-
tion of arbitrary size uniformly, motivated by biological systems, for example, population
of yeasts.

Cutoff detection technique. While the undecidability results for the PMCP are
mostly proved by reducing the non-halting problem of Turing machines, or the reachability
problem of two-counter machines, various techniques and abstractions have been applied
to show decidability for specific subclasses of parameterized systems (see, for instance,
the survey [BJK+15]), of which, the existence of a cutoff is of special interest. Such an
approach was considered, for example, in [EN95, BHV03, CTTV04].

The intuitive idea behind this approach is that if a distributed system goes wrong for
some large number of processes, then the bug already appears in a smaller instance. In
other words, if everything goes fine with a specific number, say m, of processes, then the
system will also behave correctly for any larger number of processes. For a system which
satisfies the above criterion for a given specification, the number m is called the cutoff of
that system for that particular property. The existence of a cutoff reduces the PMCP to a
finite-state model checking problem. Indeed, if a cutoff exists, it is then sufficient to check
if the property is satisfied for all instances of the system with at most m processes. The
first part of this work fits in this scenario: we study the existence and bounds of a cutoff
in the model of broadcast protocols. However, unfortunately, not every parameterized
system enjoys a cutoff property (see, for example, [AKR+14]).

Ad hoc networks. We study in the first part of the thesis the parameterized verification
of an automata-based model of ad hoc networks, called broadcast protocols, introduced
in [DSZ10]. An ad hoc network is composed of several processes that execute the same
broadcast protocol. The latter is a finite automaton, where transitions are labelled
with (1) broadcasts of messages or (2) receptions of messages. A configuration in an
ad hoc network is then comprised of a set of processes and their current local states,
together with a communication topology that represents which processes are within
transmission range. A transition represents the effect of one process sending a message
to its neighbours. Parameterized verification of ad hoc networks amounts to checking
whether a given property is satisfied independently of the initial configuration, and in
particular, independently of the number of processes and communication topology. Among
various properties of broadcast protocols, the coverability problem is of special interest
and, in this part, we study the notion of cutoff for the same.

Program synthesis. Verification techniques algorithmically check correctness of a
mathematical model of a system with respect to a particular property, and for negative
instances, a counter-example is provided. However, after significant amount of resources

12 1. Introduction

have been invested in the system design, verifying the system and fixing bugs several
times before a correct program is developed is not the most desired solution. Given a
specification, building a model of a system automatically such that all behaviours of the
system satisfy the specification would be more ideal. This is known as the synthesis
problem.

The synthesis problem was originally stated by Church [Chu62]. The author considered
the problem of synthesizing a circuit from a logical specification expressed in Monadic
Second Order logic (MSO) over the structure (N,+1). More precisely, given a specification
ϕ(X, Y) in MSO between inputs X and outputs Y defining the relation Rϕ ⊆ {0, 1}ω ×
{0, 1}ω, construct a circuit (if it exists) that, for any received input α, outputs β such
that Rϕ(α, β) holds. A decade later, Büchi and Landweber [BL69] solved the problem
using a game-theoretic framework (an alternative proof was given by Rabin [Rab72] using
tree automata techniques). The high level idea of Büchi and Landweber’s proof is to
first convert the MSO formula into an equivalent Muller automaton, which can further
be reduced to a two-player turn-based game with a parity objective such that a winning
strategy for the system player in that game corresponds to a correct program for the
given specification. A turn-based game perfectly captures the interaction between the
system and the environment in a reactive system. We refer to the tutorial [Tho09] for a
simplified explanation of the proof.

Distributed synthesis. The synthesis problem was extended to distributed systems by
Pnueli and Rosner [PR90]. The distributed synthesis problem asks, given a specification
and a model of a system, to find a program for each of the processes such that the overall
behaviour of the system satisfies the specification. There are several possible formalizations
for distributed synthesis. For instance, an architecture of processes with communication
links between agents was considered in [PR90] to represent a distributed system, whereas
coordination games were used in [PR79, MW03, BKP11]. The two settings are related,
and many (un-)decidability results have been proven, depending on various parameters.
To name some of them, it was shown in [PR90] that the distributed synthesis problem
is undecidable for a system with two parallel processes and an environment, even with
a safety specification, and hence undecidable in general. In the same work, the authors
study some subclasses where the problem is decidable, for example, pipeline architectures.
In [MW03], the authors take a game-theoretic approach to the problem, where processes
only have a partial view of the environment’s states.

Games on graphs. Game theory provides an approach towards solving the synthesis
problem. Interactions between agents in a system are modelled using games on graphs. In
particular, in an open system with a single process, the interactions between the system
and the environment are modelled as two-player turn-based games [Tho95, ALW89]: one
player models the system and other the environment, and the players take moves in turn.
The game is typically represented as a graph with vertices distributed between the players
and the transition relation defines the moves of the players. On the other hand, the
interactions between individual processes and the environment in a distributed system

1.1. Background 13

can be modelled using a concurrent game structure [AHK98, AHK02]. In such structures,
a vertex represents a global configuration of the system, and the transitions between
vertices depend on the action of each component, including environment. A concurrent
game arena for n agents is a directed graph, where the transitions are labelled by n-tuples
of actions (or simply words of length n). At each vertex of the graph, all n agents select
simultaneously and independently an action, and the next vertex is determined by the
combined move consisting of all the actions (or word formed of all the actions). In both of
the game structures, most often, one considers infinite duration plays, i.e., plays generated
by iterating this process forever. The notion of a concurrent game structure is illustrated
below on a toy example.

v0 v1

〈⊥,⊥〉;〈g,∗〉 〈⊥,r〉 〈⊥,⊥〉

〈g,∗〉

Figure 1.1: The concurrent game structure for a simple server-client model.

Example 1.1. A simple example of a server-client model is depicted in Figure 1.1. Here,
the first component belongs to the server and the other to the client. The client sends
requests to the server by playing action r (and ⊥ for no request), and the server grants
(resp., does not grant) the request by playing action g (resp., ⊥). The label ‘∗’ represents
any action of the player. Intuitively, the vertex v0 represents the state of the system where
there is no pending requests, and v1 denotes the situation where a request is pending; the
edge labellings define the transition relation.

One of the central problems on such game structures is to decide the existence of
winning strategies for a set of agents (assuming the other components are uncontrollable)
for a given objective. This is related to the (distributed) synthesis problem. For a
single process system, the synthesis problem reduces to finding a finite-state winning
strategy for the process player in a turn-based game. Unfortunately, this approach does
not directly extend to the distributed case. However, game-theoretic approaches for the
distributed synthesis problem have been considered in the literature [MW03]. Coming
back to concurrent games, de Alfaro et al., in [AHK98], study the problem of existence
of a winning strategy for reachability objectives when there are two players in the game.
In [AHK02], the authors propose a new logic, called alternating-time temporal logic, to
specify winning behaviours of multiple agents.

Games with a parameterized number of players. Traditional games played on
graphs are defined for a fixed number of players. Indeed, the transitions of a concurrent
game are labelled with tuples of fixed size depending on the number of processes in the
distributed system. The purpose of the second part of the thesis is to settle the foundations
of concurrent games involving a parameterized number of players, paving the way to the
modelling and verification of interactions involving an arbitrary number of agents. Such

14 1. Introduction

games can model interactions of agents in a parameterized system, and, as mentioned
earlier, these systems need to be proven correct independently of the system size. The
transitions of a parameterized concurrent game are labelled with sets of words, each word
representing an interaction between some agents. Such a parameterized arena represents
infinitely many interaction situations, one for each possible number of agents. In the
following, we illustrate the notion of a parameterized concurrent game on a server-client
model, an extension of Example 1.1, with a parameterized number of clients.

v0 v1 v2

⊥,⊥∗

g,⊥∗

g,⊥∗r⊥∗
⊥,⊥∗

g,⊥∗r⊥∗

g,⊥∗

⊥,⊥∗

g,⊥∗r⊥∗

⊥,⊥∗r⊥∗r⊥∗

⊥,⊥∗r⊥∗

g,⊥∗r⊥∗r⊥∗
⊥,⊥∗r⊥∗

g,⊥∗r⊥∗r⊥∗

g,⊥∗

Figure 1.2: A simple server-client model with a parameterized number of clients.

Example 1.2. An example of a server-client model with a parameterized number of clients
is depicted in Figure 1.2. We assume, the server can have at most 2 pending requests
at a certain time (otherwise the game simply moves to a sink losing vertex, not depicted
here), and it can grant at most one request at a time. The actions of each client are
either r (to send a request to the server), or ⊥ (otherwise). Similarly, the server grants
(resp., does not grant) the request by playing action g (resp., ⊥). In this example, for
the sake of readability, the labels on the transitions are divided into two components: the
first belongs to the server, the other to an arbitrary number of clients which is not fixed a
priori. A word in the language on an edge represents actions of the agents, one for each of
them. For instance, a word in ⊥∗r⊥∗ denotes that exactly one client is sending a request.
Therefore, the edge from v0 to v1 represents the situations when either a client is sending
a request and the server does not grant the request, or two clients are sending requests
and the server grants one of them. The vertex v0, intuitively, indicates the state of the
system where there is no request pending, v1 denotes the fact that one request is pending,
and at v2, two requests are pending.

Given a parameterized game and a winning condition, it is natural to ask whether
a set of players – assuming there are at least that many players in the game – have a
winning strategy in a parameterized game for a given specification. The set of agents for
which we want to synthesize a strategy plays as a coalition against the environment (the
other components of the game), and their strategies should be uniform in the sense that
it should be winning irrespective of the number of players participating in the game and
the choices of their opponents. In the second part of this thesis, we approach these kinds
of problems on parameterized concurrent games. We summarize in the following the main
contributions of the thesis.

1.2. Contributions of the thesis 15

1.2 Contributions of the thesis

The contribution of this thesis is two-fold. In the first part, we study a model of ad hoc
networks, called broadcast protocols, of [DSZ10], whereas the second part is dedicated to
the study of games on graphs extended to a parameterized setting, where the parameter
is the number of players. We summarize here the main contributions of this thesis.

1.2.1 Verification of ad hoc networks

In ad hoc networks, several mobile devices are connected wirelessly without the presence
of a pre-existing infrastructure. They communicate via message broadcasts: any node can
transmit data to other nodes within its transmission range. Due to frequent movement of
the nodes, topology can change rapidly. Delzanno et al. [DSZ10] proposed an automata-
based model, called broadcast protocols, to represent the main characteristics of ad hoc
networks. A broadcast protocol is a finite state machine equipped with the following
actions: broadcast of a message or reception of a message. A network is represented by an
undirected graph, nodes are processes, and the edges define the communication topology.
A process in the network can broadcast a message and simultaneously, the adjacent
processes (those who are connected to the broadcasting node) may receive the message.
We consider various types of communication topology: static (the topology is fixed
throughout an execution), reconfigurable (the topology can evolve non-deterministically),
loss-on-reception (a message can be lost during reception), and loss-on-broadcast (a
message can be lost during broadcast), the last one being a contribution of this part. We
are interested in parameterized verification of ad hoc networks, where the parameter is
the number of processes. In other words, in the problems we consider here, the number
of nodes in the initial configuration is not fixed a priori, and given a property, we ask
whether it is satisfied for any initial configuration, and in particular independently of the
number of nodes and communication topology.

Among various decision problems considered in the literature, we are mostly interested
in the coverability problem. Given a broadcast protocol P, and a set of (unsafe) states
F , the problem asks whether there exists an initial configuration, and an execution
reaching a final configuration such that at least one process in the final configuration
is in a state of F . When considering some kind of error states, a positive instance
of the above corresponds to a network that exhibits a bad behaviour. Although the
problem in general is undecidable for networks with static topology, decidability can
be shown for reconfigurable [DSZ10, DSTZ12] and loss-on-reception networks [DSZ12].
Other decidability results were also shown, for instance, for node failures [DSZ12], for
clique topologies in static networks [EFM99], for networks of k-bounded path topologies,
where any simple path in the network has length at most k [DSZ10], etc.

As mentioned earlier, a tempting approach towards the decidability of the PMCP is
to show that the system has a cutoff. This approach is relevant for the reconfigurable

16 1. Introduction

and lossy semantics of broadcast protocols, since they enjoy a monotonicity property: if a
state can be covered from a configuration, it can also be covered from any configuration
with more nodes. We call this property the copycat property. The main contribution
in this part of the thesis is the study of two quantities, cutoff, and covering length, of
broadcast protocols, that determines how large and how fast some states of the protocol
can be covered (for positive instances of coverability). In other words, the cutoff is the
minimal number of processes in the network for which a covering execution exists; and the
covering length is the minimal number of steps in a covering execution. In parameterized
verification, the study of the notion cutoff comes quite naturally. One can expect that,
for some parameterized systems, if a bug appears with a large number of processes, then
it already appears in another instantiation of the system with small number of processes.
Unfortunately, this is not the case in general, examples were shown in [AKR+14]. However,
using the copycat property of the reconfigurable and lossy ad hoc networks, we will show
that in these semantics, there is indeed a cutoff for positive instances of coverability.

We will show a linear upper bound on the cutoff and a quadratic upper bound on
the covering length for positive instances of coverability in the reconfigurable and lossy
ad hoc networks. In other words, we show that if there is a covering execution in those
semantics, then there is one that has at most linear number of nodes and the length of
the execution is at most quadratic in the size of the protocol. The proof goes by a fine
analysis of a modified version of the saturation algorithm for coverability in reconfigurable
semantics [DSTZ12]. We further show that the upper bounds for both cutoff and covering
length are tight: we exhibit a family of protocols that achieves these bounds. While the
loss-on-reception semantics is inter-reducible to the reconfigurable semantics [DSZ12], we
show that for loss-on-broadcast semantics, the set of coverable states coincides with that
of reconfigurable semantics. However, the executions in loss-on-broadcast semantics can
in general be more succinct: there exists a family of protocols such that in reconfigurable
semantics, the cutoff is 3, yet in loss-on-broadcast semantics, the cutoff is linear in the size
of the protocol. Finally, we consider the MinNodes problem of deciding the minimal size
of a covering execution and show that it is an NP-complete problem: the NP upper bound
follows from a guess-and-check algorithm that non-deterministically guesses an execution
of at most linear size and quadratic length efficiently; and the lower bound is achieved
by a reduction from the SetCover problem which is known to be an NP-complete
problem [Kar72].

1.2.2 Parameterized concurrent games

In the second part, we study parameterized games, a model of games on graphs, where the
parameter is the number of players. These games extend classical two-player concurrent
games of [AHK98] to the setting where the number of players are not fixed a priori. While
in classical concurrent games, edges of the graph are labelled with a tuple of actions, one
for each player, in parameterized games, we replace it by (regular) languages of finite but
possibly unbounded words. For instance, the label a+ represents that all players choose
action a, while ab+ is the situation where the first player chooses a, while all other players

1.2. Contributions of the thesis 17

play b. Such a parameterized arena can therefore represent infinitely many interaction
situations, one for each possible number of agents. Given a winning condition described
by a set of vertices of the graph, we are interested in typical decision problems, such as
the existence of winning strategies for a (non-empty) collection of players. The set of
agents for which we want to synthesize a strategy plays as a coalition, and their strategies
should be uniform: it should be winning for any number of players and all possible choices
of their opponents. In this work, we consider two particular cases: (1) when the set is
singleton, i.e., a distinguished player is trying to achieve a given objective against the
coalition of her opponents, not knowing a priori how many they are; and (2) when the
set consists of all players, i.e., the players as a coalition are trying to achieve a common
objective, not knowing a priori how many they are. Another subtlety here is that the
arena need not necessarily be deterministic. Moreover, the number of players and the
non-determinism of the arena are resolved by an antagonistic environment.

In the first setting, where a distinguished player, called Eve, wants to achieve an
objective against her opponents, we show it reduces to a simpler model where the edges
are labelled with languages that only constrain the number of her opponents, called
semi-parameterized games. Intuitively, since Eve has to play uniformly that should be
winning against any number of her opponents and their strategies, the knowledge of the
number of them is necessary information to her, in fact we show that it is also sufficient.
In semi-parameterized arenas, the number of Eve’s opponents are described as constraints,
and in this work, we consider the constraints as (finite unions of disjoint) intervals or
semilinear predicates. Our main contribution in this setting is to show complexity bounds
for the decision problem of the existence of a winning strategy for Eve for a reachability
objective. As parameterized games reduce in polynomial time to semi-parameterized ones
with semilinear predicates, we prove the complexity results for the latter. We show that the
problem is PSPACE-complete for semilinear predicates or finite unions of intervals. When
constraints are finite unions of intervals, but the arena is restricted to a deterministic one,
the problem is NP-complete. Finally, for only interval constraints, the decision problem
is PTIME-complete. The upper bound results are achieved in two steps: first, from a
semi-parameterized arena, we construct the knowledge game, a two-player turn-based
game, in which every vertex of Eve is equipped with a subset of integers that describes her
knowledge of the number of opponents at the corresponding vertex in the original game.
The decidability of semi-parameterized game immediately follows from the decidability of
the knowledge game. Second, the PSPACE upper bound derives from a depth-first search
algorithm on an exponential size tree, non-trivially extracted from the knowledge game.
The NP upper bound for deterministic arenas with constraints as finite unions of intervals
follows from the fact that if there is a winning strategy for Eve, then there is one which is
polynomially bounded in the size of the arena. The lower bound results are shown by
reductions from QBF-SAT and 3SAT, that are known to be PSPACE-complete [SM73]
and NP-complete [Coo71], respectively.

The second contribution in this part of the thesis is to study a coalition setting for
parameterized games. In this setting, players choose their actions such that collectively
they achieve a common objective, irrespective of their number. There is no explicit
communication between the players, and they do not have any prior information about

18 1. Introduction

their number, however, they can infer knowledge about the number of them as the game
evolves. While the problem seems quite non-trivial even for a reachability objective, we
consider here a simpler objective - a safety objective, and show decidability and complexity
results of the decision problem of the existence of a coalition winning strategy. To show
decidability, we first consider an unfolding of the arena with the condition that we stop
exploring a branch if either some vertex repeats in that branch, or an unsafe vertex is
reached. Intuitively, in the former case, one can consider the same coalition strategy as in
the first occurrence of the vertex, and in the latter, that play is immediately losing, so we
do not need to explore that branch. The tree can be exponential in size, and the bound is
tight. After showing the correctness of the construction, we consider the coalition game
on this finite tree and give an algorithm which outputs yes if and only if there is a winning
coalition strategy that runs in exponential space in the size of the game. The algorithm
constructs a safety automaton B that runs in parallel all input automata labelling the
edges in the parameterized game. Then we show that an accepting run in B corresponds
to a winning coalition strategy in the parameterized game. As a bonus, we show that one
can synthesize a coalition winning strategy also in exponential space. Furthermore, the
size of the memory of a winning strategy is at most exponential. We finally show that the
coalition game problem is PSPACE-hard, by a reduction from QBF-SAT, which is known
to be a PSPACE-complete problem [SM73].

1.3 Organization of the thesis

The thesis is divided in two parts: Part I studies broadcast protocols, a model of ad hoc
networks, whereas Part II is on parameterized games on graphs. Each part contains a
self-contained Preliminaries chapter that recalls related notions and results from literature,
and also defines the new models and problems we are interested in (Chapters 2 and 4).
We show the results on cutoff and covering length for coverability in a broadcast protocol
in Chapter 3. Among two game settings targetted in Part I, Chapter 5 studies the first
one where Eve wants to achieve an objective against any number of opponents and their
strategies, and Chapter 6 discusses the other where the players as a coalition want to
achieve a common objective. Each contribution chapter (Chapters 3, 5 and 6) contains
a dedicated conclusion that discusses possible future works in that particular topic. In
addition, we discuss more general perspectives in Chapter 7.

Part I

Verification of Ad Hoc Networks

19

Chapter 2

Preliminaries

Ad Hoc Networks. An ad hoc network is a local area network (LAN) of autonomous
mobile nodes connected by wireless links. They are decentralized type of networks, i.e.,
they do not depend on any pre-existing infrastructure such as routers, they allow several
portable computing devices to establish networks on-the-fly. Each node can transmit data
to other nodes within its transmission range - such nodes are called (single-hop) neighbours
of the transmitting node. Data transmissions to other nodes therefore have to be routed
through some intermediate nodes. Further, nodes can move freely, leading to changes in
the network topology - this special property of the network makes them difficult to model.
There have been extensive studies to the development of protocols for ad hoc networks
including [JM96, PB99, NH06, SRS08, SRS09]. The study of verification problems for
networks of arbitrary size and unknown topology is an interesting and challenging problem
for this class of systems.

Broadcast protocols. In [DSZ10], the authors propose an automata-based model,
called broadcast protocols, to represent the main characteristics of ad hoc networks. A
network is represented by an undirected graph, nodes are processes, and the edges define
the communication topology. If a node n is connected to n′ in the graph, it denotes that
n′ is a (single-hop) neighbour of n, and vice-versa. Finally, the nodes communicate by
message broadcasts: all neighbours of the broadcasting node may receive the message (in
some semantics, messages may be lost in the networks). We note that the model was
previously studied by Esparza et al. [EFM99], where nodes communicate via rendez-vous
communications or message broadcasts, but for message broadcasts, it reaches all other
nodes in the network.

We are interested in parameterized verification of various properties of broadcast
protocols. In particular, the size of the network is not fixed a priori, and can possibly be
unbounded, i.e., the number of nodes is the parameter. We consider, in this part of the
thesis, various semantics of broadcast protocols, depending on (1) how the communication
topology evolves, and (2) whether a message is non-deterministically lost in the network.
Other semantics were also considered in the literature depending on, for example, whether
a node crashes during an execution [DSZ12], etc.

21

22 2. Preliminaries

Coverability problem. Parameterized verification of ad hoc networks amounts to
checking if a given property holds independently of the initial configuration, and in
particular, independently of the number of nodes and the communication topology.
Several verification problems on this model have been studied in the literature, in which
coverability is of special interest. Intuitively, the problem asks whether there exists an
initial configuration and an execution leading to a configuration in which some node is in
a given local state. When considering error states, a positive instance for the coverability
problem thus corresponds to a network that can exhibit a bad behaviour.

The coverability problem, along with other verification problems, has been extensively
studied in the literature for various semantics of broadcast protocols [DSZ10, DSZ11,
DSTZ12] For instance, one can consider static topology where the connection between
any two nodes remains unchanged throughout an execution, whereas in reconfigurable
semantics, the connection relation may evolve arbitrarily. One can also consider lossy
semantics, where a message can be lost non-deterministically in the network, either on
reception or on broadcast. The problem has also been studied for different connectivity
graphs, for instance, cliques [EFM99, DSZ11], bounded path graphs [DSZ10], bounded
diameter graphs [DSZ11] etc.

Cutoff and covering length. A well-known approach towards solving a parameterized
model checking problem is to check if a cutoff exists: if the property holds with a specific
number of processes, then it also holds for any larger number of processes; and further
finding this specific number where it exists. If it exists, then the parameterized model
checking problem reduces to the model checking of finitely many systems; indeed, it is then
enough to verify the property for the system with at most m number of processes (where
m is the cutoff of the system for that property). This approach is particularly relevant for
the coverability problem in the case of reconfigurable and lossy ad hoc networks since, as
we will formally show later in this part of the thesis, they enjoy a monotonicity property: if
a state can be covered from a configuration, it can also be covered from any configuration
with more nodes. We are therefore interested in finding upper and lower bounds on the
cutoff for positive instances of the coverability problem in the reconfigurable and lossy
semantics. Furthermore, we introduce here a similar notion, called covering length, that
measures the number of transitions needed for a state of the protocol to be covered. While
considering error states, the covering length thus measures the number of steps for which
a network will for sure be correct; in other words, how fast a network execution can go
wrong. More precisely, for positive instances of the coverability problem, the cutoff is the
minimal number of processes in the network for which a covering execution exists; and
the covering length is the minimal number of steps for a covering execution. Thus, if one
can show upper bounds m and l for cutoff and covering length, respectively, then given
a set of states F , one checks if a state in F is coverable by an execution with at most
m nodes, moreover, one only considers executions of length at most l. This may lead to
efficient algorithms for parameterized model checking of coverability for ad hoc networks.

This part of the thesis is based on the publications [BBM19b] and [BBM21] co-authored
with Nathalie Bertrand and Patricia Bouyer appeared in the proceedings of CONCUR

23

2019 and the journal LMCS 2021, respectively.

Related work

In [DSZ10], the authors study parameterized verification problems for ad hoc networks
under different semantics. The authors show that the coverability problem is undecidable
for general topology in static ad hoc networks, i.e., when the communication topology is
arbitrary but does not evolve over time. However, the problem becomes decidable for more
restricted topologies, for instance, for cliques [EFM99], for k-bounded path topologies (any
simple path in the network has length at most k) [DSZ10]. It is, however, still undecidable
for graphs with k-bounded diameter (the shortest path between any two nodes has length
at most k) for k > 1 [DSZ11].

The decidability of coverability can also be recovered by allowing non-deterministic
reconfigurations of the communication topology. Moreover, under this semantics, the
coverability problem is in PTIME [DSTZ12]. In [DSZ12], the authors study communication
failures in the network, assuming non-deterministic message losses could happen upon
reception and node failures, where a node can join or crash during any step along an
execution. As observed by the authors, the coverability problem for such networks reduces
to the coverability problem in reconfigurable networks.

Extensions of ad hoc networks with time constraints, registers, probabilistic transitions,
etc. have been considered in literature. Verification of timed ad hoc networks was studied
in [ADR+11]. In such networks, each node is equipped with a set of clocks, and a set of rules
is defined in the protocol; a broadcast is performed if the clock values of the broadcasting
node as well as the receiving nodes (if any) satisfy the guards of that transition; additionally,
time can elapse arbitrarily for every node in the network. In [DST13], the underlying
protocol is a register automaton, equipped with a set of registers. Each node in the
network is labelled with a state of the protocol and register values; messages are allowed
to carry data, that can be assigned to or tested against the local registers of receivers.
Asynchronous broadcasts were considered in [DT13], where the broadcast and reception
actions may not be synchronous: a local buffer associated to each node stores messages
it receives from its neighbours during a transition, which may be processed eventually.
A probabilistic variant, where a broadcast protocol is extended with probabilistic states
(resp., transitions), was considered, for instance, in [BFS14].

The technique of finding a cutoff has been studied for various classes of systems
with specific connection topologies among processes. Let us mention here some of them.
Token-passing systems with uni-directional ring topologies was studied in [EN95] for
various specifications described in indexed CTL∗ \ X. Their work has later been extended
in [CTTV04] for arbitrary network topologies, however, the properties of a system is
specified in indexed LTL \ X in the latter. Moreover, a new viewpoint of the notion of
cutoff was introduced: in order to verify the parametrized system, it is enough to verify
a constant number of small ones, each of which has a bounded number of processes.
In [EK00], the authors study guarded protocols with disjunctive guards, or conjunctive

24 2. Preliminaries

guards with initial state for specifications in indexed LTL \ X whose atoms are indexed by
the processes. In [KKW10] and [AHH13], the authors study the problem of finding cutoffs
dynamically for a given parameterized system and a specification. However, in [AKR+14],
the authors provides examples of systems for which no cutoff exists. Finally, in [HS20] and
also in [BER21], the authors study the decidability of existence of a cutoff in rendez-vous
networks.

Organization of the chapter

We begin with a formal introduction to broadcast protocols in Section 2.1 and elaborate
its various semantics with illustrative examples in Section 2.2. This is followed by a formal
description of the coverability problem for ad hoc networks with the complexity results
for different semantics in Section 2.3. Further, in this section a polynomial time algorithm
for coverability under reconfigurable semantics is recalled [DSTZ12]. In Section 2.4, the
notion of cutoff and covering length are formally introduced. We close the chapter in
Section 2.5 that announces our contributions that will be presented in the following
chapter.

Notations

We denote by N the set of all natural numbers greater than or equal to 0 and by N>0 the
set of all natural numbers strictly greater than 0. For a finite set S, Sk denotes the set of
all finite sequences (or words) of length k; S∗ denotes the set of all finite words over S;
S+ denotes the set of all non-empty finite words over S; and finally, Sω denotes the set
of all infinite words over S. For two words u ∈ S∗ and w ∈ S+ ∪ Sω, we write u v w to
denote u is a prefix of w, and for any k ∈ N>0, [w]≤k denotes the prefix of length k of w
(belongs to Sk).

2.1 Broadcast protocols

In this section, we formally define broadcast protocols and its various semantics.

Definition 2.1. A broadcast protocol is a tuple P = (Q, I,Σ,∆) where Q is a finite set
of control states; I ⊆ Q is the set of initial control states; Σ is a finite message alphabet;
and ∆ ⊆ (Q× {!a, ?a | a ∈ Σ} ×Q) is the transition relation.

The label !a (resp., ?a) represents the broadcast (resp., reception) of the message

a ∈ Σ. For ease of readability, we often write q
!a−→ q′ (resp., q

?a−→ q′) for (q, !a, q′) ∈ ∆
(resp., (q, ?a, q′) ∈ ∆). We will assume the protocol to be complete for receptions: for

every q ∈ Q and a ∈ Σ, there exists q′ such that q
?a−→ q′.

2.2. Semantics 25

q0 q1 q2 q3 q4

r1

p1

r2

!a

?a !b1 ?a !b2

?b1
?b2

?b1
,?b

2

Figure 2.1: Example of a broadcast protocol.

Example 2.2. A broadcast protocol is represented in Figure 2.1. In this and further
examples, for concision purposes, we assume that if the reception of a message is unspecified
from some state, it implicitly represents a self-loop. This will be our running example
to explain various semantics of broadcast protocols; in the sequel, we will generalize this
example to prove some of our results on the bounds for the cutoff and covering length of
broadcast protocols.

Here, the set of states Q = {p1} ∪ {q0, q1, q2, q3, q4} ∪ {r1, r2}, and the set of actions

Σ = {a, b1, b2}. The transition relation is defined as follows: q0
!a−→ q0, q0

?b1−−→ r1, r1
?bi−→ r2,

and for every 1 ≤ i ≤ 2, q0
?bi−→ p1, q2i−2

?a−→ q2i−1, q2i−1
!bi−→ q2i. For example, here from

q0, broadcasting message a leads to q0 again, and receiving the message a leads to q1.
Broadcast protocols can in general be non-deterministic, for instance, in this example, at
q0, there is a non-deterministic choice on reception of message b1. Also note that the
self-loops upon receiving any message, when not already indicated, are implicit; for example

here, q1
?a−→ q1 is such a transition.

Remark 2.3. Note that our definition of broadcast protocols slightly differs from the one
considered in [DSZ10], where ∆ also allows internal actions of the form q

τ−→ q′, where τ
is a special symbol in Σ representing an internal action. However, these two definitions
are equivalent (under all semantics we will consider in this thesis), since one can simulate
internal actions by message broadcasts and receptions: for q

τ−→ q′ an internal action, add

transitions q
!τ−→ q′, and for every q ∈ Q, q

?τ−→ q in ∆.

2.2 Semantics

Ad hoc networks comprises several nodes that execute the same broadcast protocol. A
configuration is represented by an undirected graph whose nodes are labelled with states in
Q. Transitions between configurations happen by broadcasts from a node to its neighbours.

Formally, given a broadcast protocol P = (Q, I,Σ,∆), a configuration is an undirected
graph γ = (N,E, L) where N is a finite set of nodes; E ⊆ N × N is a symmetric and
irreflexive relation describing the set of edges; finally, L : N→ Q is the labelling function.
We let Γ(P) denote the (infinite) set of configurations of the broadcast protocol P . Given
a configuration γ = (N,E, L) ∈ Γ(P), we write n ∼ n′ whenever (n, n′) ∈ E, and we let

26 2. Preliminaries

Neighγ(n) = {n′ ∈ N | n ∼ n′} be the neighbourhood of n, i.e. the set of nodes adjacent to n.
Finally, L(γ) = ∪n∈NL(n) denotes the set of labels appearing in nodes of γ. A configuration
γ = (N,E, L) is called initial if L(N) ⊆ I, i.e. every node is in an initial state.

In the following, we define various semantics of broadcast protocols.

2.2.1 Static ad hoc networks

The operational semantics of a static ad hoc network for a given broadcast protocol P is
an infinite-state transition system T (P). Intuitively, each node of a configuration runs
protocol P , and may send/receive messages to/from its neighbours. From a configuration
γ = (N,E, L), there is a step to γ′ = (N,E, L′) if there exists n ∈ N and a ∈ Σ such that
(L(n), !a, L′(n)) ∈ ∆, and for every n′ ∈ N, if n′ ∈ Neighγ(n), then (L(n′), ?a, L′(n′)) ∈ ∆,
otherwise, L′(n′) = L(n′): a step thus reflects how nodes evolve when one of them broadcasts

a message to its neighbours. We then write γ
n,!a−−→s γ

′, or simply γ →s γ
′ (the s subscript

emphasizes that the communication topology is static). We denote by
∗−→s the reflexive

and transitive closure of →s. Note here that the number of nodes is the same in a step
and the connection topology is fixed.

An execution of the static ad hoc network is a sequence ρ = (γi)0≤i≤t of configurations
γi = (N,E, Li) such that γ0 is an initial configuration, and for every 0 ≤ i < t, γi →s γi+1.
We write #nodes(ρ) for the number of nodes |N| in γ0, #steps(ρ) for the number t of steps
along ρ, and for any node n ∈ N,#steps(ρ, n) for the number of broadcasts, called the
active length, that node n performs along ρ. The set of all static executions is denoted
Execs(P). Here again, the subscript s indicates static semantics.

q0

q0

q0

q0

q0
!a−→s

q1

q0

q0

q1

q0

!b1−→s
q2

r1

p1

q1

q0

!b1−→s
q2

r1

p1

q2

p1

Figure 2.2: A sample static execution for the protocol from Figure 2.1.

Example 2.4. We provide an example of a static execution in Figure 2.2 for the broadcast
protocol of Figure 2.1. Nodes are represented by squares, and the labels are written within
the nodes. For simplicity, the node names are not given. Note that the communication
topology is the same throughout the execution. In the example, the yellow nodes broadcast
a message to its neighbours in the step leading to the next configuration.

2.2. Semantics 27

2.2.2 Reconfigurable ad hoc networks

In a reconfigurable ad hoc network, the communication topology of a configuration may
change non-deterministically along an execution.

Transitions between configurations are consistent with the static semantics, except
now the communication topology can evolve non-deterministically after performing a
broadcast. Formally, from a configuration γ = (N,E, L), there is a step to γ′ = (N,E′, L′)
if there exists n ∈ N and a ∈ Σ such that (L(n), !a, L′(n)) ∈ ∆, and for every n′ ∈ N, if
n′ ∈ Neighγ(n), then (L(n′), ?a, L′(n′)) ∈ ∆, otherwise L′(n′) = L(n′): a step thus reflects
that the communication topology may change unconditionally from E to E′ after the
broadcast of a message from a node to its neighbours in the old topology. For such a step,

we write γ
n,!a−−→r γ

′, or simply γ →r γ
′ (the r subscript emphasizes that the communication

topology is reconfigurable). We denote by
∗−→r the reflexive and transitive closure of →r.

An execution is defined similarly as in the static semantics. We write Execr(P) for the
set of all reconfigurable executions in P (subscript r for reconfigurable semantics). For
an execution ρ, similarly to the static semantics, #nodes(ρ) is the number of nodes in ρ,
#steps(ρ) is the number of steps, and #steps(ρ, n) is the number of broadcasts by node n
along ρ.

q0

q0

q0

!a−→r
q1

q0

q0

!b1−→r
q2

r1

q0

!a−→r
q3

r1

q0

!b2−→r
q4

r2

q0

Figure 2.3: A sample reconfigurable execution for the broadcast protocol from Figure 2.1.

Example 2.5. Figure 2.3 gives an example of a reconfigurable execution for the broadcast
protocol of Figure 2.1. Note that the communication topology indeed evolves along the
execution. As before, the yellow nodes broadcast a message in the step leading to the next
configuration.

Remark 2.6. Note that our definition of a reconfigurable step slightly differs from an
equivalent one which is often found in the literature, for instance in [DSTZ12], where the
broadcast of a message and the non-deterministic reconfiguration of the communication
topology are two separate steps. Clearly, these two notions are equivalent.

2.2.3 Lossy ad hoc networks - loss-on-message reception

Under this semantics, a message can be lost non-deterministically during a step upon
reception: after a message is broadcast, some neighbours of the broadcasting node may not
receive it. Yet, the communication topology is fixed throughout an execution. However,

28 2. Preliminaries

we will later show that one can simulate an execution in this semantics by one in the
reconfigurable semantics such that the node labels in the final configuration are unchanged
and vice-versa. This semantics was introduced and studied in [DSZ12]. Let us first define
the semantics formally.

A configuration is defined the same way as under the static (or reconfigurable) semantics
and let Γ(P) denotes the set of all configurations. From a configuration γ = (N,E, L), there
is a step to γ′ = (N,E, L′) if there exists n ∈ N and a ∈ Σ such that (L(n), !a, L′(n)) ∈ ∆,
and for every n′ ∈ N, if n′ ∈ Neighγ(n), then either (a) (L(n′), ?a, L′(n′)) ∈ ∆, or (b)
L′(n′) = L(n′) (this neighbour has not received the message, it has been lost); otherwise
L′(n′) = L(n′). A step thus reflects that a message may be lost at some nodes before
receiving. Observe that the communication topology remains fixed during a transition.

We write γ
n,!a−−→lr γ

′ or simply γ →lr γ
′ (the subscript lr denotes the loss-on-reception

semantics). We denote by
∗−→lr the reflexive and transitive closure of→lr. An execution is

defined similarly as in the static or reconfigurable semantics. We write Execlr(P) for the
set of all loss-on-reception executions in P (subscript lr for loss-on-reception semantics).
For an execution ρ, similarly to the other semantics, #nodes(ρ) is the number of nodes in
ρ, #steps(ρ) is the number of steps, and #steps(ρ, n) is the number of broadcasts by node
n along ρ.

q0

q0

q0

!a−→lr
q1

q0

q0

!b1−→lr
q2

r1

q0

!a−→lr
q3

r1

q0

!b2−→lr
q4

r2

q0

Figure 2.4: Example of a loss-on-reception execution of the protocol from Figure 2.1.

Example 2.7. Figure 2.4 gives an example of a loss-on-reception execution for the
broadcast protocol of Figure 2.1. As before, the yellow nodes broadcast a message in the
step leading to the next configuration. Note that the communication topology indeed is
fixed (i.e., static) along the execution, however for instance, in the second and the last
step, some neighbours of the broadcasting node do not receive the message and stay in the
same states. Note here that this execution has the same number of nodes with same node
labels as in Figure 2.3.

However, a lossy execution can be simulated by a reconfigurable one and vice versa.
Intuitively, a reconfigurable step can be considered as a lossy one with a complete graph
topology where the non-neighbours of the broadcasting node lose the message, and
conversely, given a lossy step, we can construct a reconfigurable one where only the nodes
which have successfully received a message during the lossy step are connected to the
broadcasting node in the corresponding reconfigurable step. The formal proof involves a
bit more technicality, which we present in the following.

2.2. Semantics 29

Lemma 2.8. Let P be a broadcast protocol. Then ∃ρ = γ0 →r γ1 · · · →r γt = (N,E, L)
∈ Execr(P)if and only if ∃ρ′ = γ′0 →lr γ

′
1 · · · →lr γ

′
t = (N,E′, L) ∈ Execlr(P).

Proof. (⇒) First assume ρ = γ0 →r · · · γt is an execution in the reconfigurable semantics
with γi = (N,Ei, Li) for every 0 ≤ i ≤ t. Consider the execution in the loss-on-reception
semantics ρ′ = γ′0 →lr · · · γ′t such that for every 0 ≤ i ≤ t, γ′i = (N,E′, Li) with
E′ = N× N \ {(n, n) | n ∈ N} (i.e., a complete graph topology without self-loops) and the
nodes in γi and γ′i have the same labels. It only remains to prove that for any 0 ≤ i ≤ t,
γ′i −→lr γ

′
i+1 is indeed a valid step in the loss-on-reception semantics which we verify here.

Assume γi
n,!a−−→r γi+1. Note that for every n′′ /∈ Neighγi(n), Li+1(n′′) = Li(n′′). Then,

indeed, in γ′i, node n can perform the same broadcast of message a and move to Li+1(n):
(Li(n), !a, Li+1(n)) ∈ ∆, and the neighbours of n in γi receive the message in the loss-on-
reception semantics and all other nodes lose the message before receiving. Therefore,
for every node n′ ∈ N, if n′ ∈ Neighγi(n), (Li(n′), ?a, Li+1(n′)) ∈ ∆, else, Li+1(n′) = Li(n′).

Thus, γ′i
n,!a−−→lr γ

′
i+1 is a valid step in the loss-on-reception semantics.

(⇐) Let us now prove the other direction. Assume ρ′ = γ′0 →lr · · · γ′t is an execution in
the loss-on-reception semantics with γ′i = (N′,E′, L′i) for each 0 ≤ i ≤ t. Define N = N′. We
will show by induction on i that for every 0 ≤ i ≤ t, there is an execution ρi = γ0 →r · · · γi
in the reconfigurable semantics with γi = (N,Ei, Li) and for every n ∈ N, Li(n) = L′i(n).
The base case is trivial: choose E0 arbitrarily and set L0(n) = L′0(n) for each n ∈ N. To

easily understand the inductive step, let us show the case for i = 1. Let γ′0
n,!a−−→lr γ

′
1.

Consider γ′′0 = (N,E′′0, L0) such that the nodes, and their labels are the same as in γ0,
and, thanks to reconfiguration, (n, n′) ∈ E′′0 if and only if n 6= n′ and L′0(n′) 6= L′1(n′)
(i.e., n′ is a node different from the broadcasting node n that has received the message
a from n in the corresponding lossy step without failure). Then in the reconfigurable
semantics, each neighbour n′ of n also receives the message a and moves to L′1(n′). Hence,

γ′′0
n,!a−−→r γ1 is a valid step in the reconfigurable semantics, additionally, for every node

n ∈ N, L1(n) = L′1(n). With no loss of generality, set E1 = E′′0. We obtain the execution ρ1.

Let us now assume that we have constructed an execution ρi = γ0 →r · · · γi for

some 1 ≤ i < t, and we will construct ρi+1. Let γ′i
n,!a−−→lr γ

′
i+1 be the i + 1-th step

in the loss-on-reception semantics. Consider the reconfigurable execution of length i:
ρ′′i = γ0 →r · · · γi−1 →r γ

′′
i with γ′′i = (N,E′′i , Li) such that the nodes and their labels in γ′′i

are the same as in γi and, thanks to reconfiguration, the communication topology in γ′′i
satisfies: (n, n′) ∈ E′′i if and only if n 6= n′ and L′i(n′) 6= L′i+1(n′) (i.e., n′ is a node different
from the broadcasting node n that has received the message a from n in the i+ 1-th lossy

step without failure). Extend ρ′′i with the braodcast γ′′i
n,!a−−→r γi+1 to obtain ρi+1. Then

each neighbour n′ of n in ρ′′i receives the message a and moves to L′i+1(n′) in ρi+1, while the
other node labels remain unchanged. Therefore, for every node n ∈ N, Li+1(n) = L′i+1(n),
and set Ei+1 = E′′i .

This concludes the proof of the lemma.

30 2. Preliminaries

Lemma 2.8 establishes the correspondence between reconfigurable and loss-on-reception
semantics of a broadcast protocol. As we will see later, as a consequence of the above,
these two semantics enjoy many similarities w.r.t. the problems considered, for instance,
the coverability problem. In the following, we define an alternative semantics where, unlike
loss-on-reception semantics, non-deterministic message losses may happen on broadcast.

2.2.4 Lossy ad hoc networks - loss-on-message broadcast

As we have witnessed in Section 2.2.3, an execution in loss-on-reception semantics can be
simulated by one in reconfigurable semantics, and vice versa. In this part of the thesis,
we introduce and study an alternative semantics of broadcast protocols, that is message
loss upon broadcast: when a message is broadcast, it either reaches all neighbours of the
sending node, or none of them; however the communication topology remains fixed. In
contrast to message losses upon reception, it is not straight-forward to simulate arbitrary
reconfigurations of the communication topology with such message losses. Below, the
semantics is defined formally.

From a configuration γ = (N,E, L), there is a step to γ′ = (N,E, L′) if there exists
n ∈ N and a ∈ Σ such that (L(n), !a, L′(n)) ∈ ∆, and either (a) for every n′ 6= n,
L′(n′) = L(n′) (no one has received the message, it has been lost), or (b) if n′ ∈ Neighγ(n),
then (L(n′), ?a, L′(n′)) ∈ ∆, otherwise L′(n′) = L(n′) (every node in the neighbourhood of
the broadcasting node has received the message): a step thus reflects that the broadcast
message may be lost when it is sent. Observe that the communication topology remains

fixed during a transition. We write γ
n,!a−−→lb γ

′ or simply γ →lb γ
′ (the subscript lb denotes

the loss-on-broadcast semantics). We denote by
∗−→lb the reflexive and transitive closure

of →lb. An execution is defined similarly as in the static or reconfigurable semantics.
Similarly to the static and reconfigurable semantics, for ρ an execution, #nodes(ρ) is
the number of nodes in ρ, #steps(ρ) is the number of steps, and #steps(ρ, n) is the
number of broadcasts (including lost ones) by node n along ρ; additionally, we write
#nonlost steps(ρ, n) for the number of successful broadcasts by node n along ρ. We use
the notation Execlb(P) for the set of all loss-on-broadcast executions in P (subscript lb
stands for loss-on-broadcast semantics).

Example 2.9. Figure 2.5 gives an example of a loss-on-broadcast execution for the
broadcast protocol of Figure 2.1. Note that the topology is fixed throughout the execution. As
before, the coloured nodes broadcast a message in the step leading to the next configuration.
A lossy step is shown in the third transition: the yellow node performs a lossy broadcast,
that is to say in this step none of the nodes in its neighbourhood receives the message and
their states remain unchanged, emphasized in the figure by the subscript “lost”.

We now show that a loss-on-broadcast execution can be simulated by a reconfigurable
one. Intuitively, if a node performs a real broadcast, it also does in reconfigurable semantics
and if it performs a lossy broadcast, we disconnect every node and take the same broadcast
so that no other node is affected in the reconfigurable semantics. This can be formalized
as follows.

2.2. Semantics 31

q0

q0

q0

q0

q0
!a−→lb

q1

q0

q0

q1

q0

!b1−→lb
q2

r1

p1

q1

q0

!b1−→lb
lost

q2

r1

p1

q2

q0

!a−→lb
q2

p1 q0

q3

r1

!b2−→lb
q2

p1 p1

q4

r2

Figure 2.5: Example of a loss-on-broadcast execution of the protocol from Figure 2.1.

Lemma 2.10. Let P be a broadcast protocol P. For any ρ = γ0 →lb γ1 · · · →lb γt an
execution in Execlb(P), with γt = (N,E, L), there is an execution ρ′ = γ′0 →r γ

′
1 · · · →r γ

′
t

in Execr(P) of same length t, with γ′t = (N,E′, L).

Proof. Assume ρ = γ0 →lb γ1 · · · →lb γt is an execution in the loss-on-broadcast semantics
with γi = (N,E, Li) for every 0 ≤ i ≤ t. We will show by induction on i that for every
0 ≤ i ≤ t, there is an execution ρ′i : γ′0 →r γ

′
1 · · · →r γ

′
i in the reconfigurable semantics

with γ′i = (N,E′i, L
′
i) such that for every n ∈ N, L′i(n) = Li(n). The base case is trivial:

choose E′0 arbitrarily and set L′0(n) = L0(n) for every n ∈ N.

Let us now assume that we have constructed an execution ρ′i = γ′0 →r · · · γ′i for some
1 ≤ i < t, and we will construct ρ′i+1. We use a similar idea as in the proof of Lemma 2.8.

Let γi
n,!a−−→lb γi+1 be the i + 1-th step in the loss-on-broadcast semantics. Consider the

reconfigurable execution of length i: ρ′′i = γ′0 →r · · · γ′i−1 →r γ
′′
i , with γ′′i = (N,E′′i , L

′
i),

such that the nodes and their labels in γ′′i are same as in γ′i and, thanks to reconfiguration,
the communication topology in γ′′i satisfies the following:

• if n performs a real broadcast in the loss-on-broadcast semantics, then (n, n′) ∈ E′′i if
and only if (n, n′) ∈ Ei (i.e., n has the same set of neighbours in both semantics).

Then consider the transition γ′′i
n,!a−−→r γ

′
i+1 in reconfigurable semantics, each neighbour

n′ of n in γ′′i receives the message a and moves to Li+1(n′) in γ′i+1, while the other
node labels remain unchanged. Therefore, for every node n ∈ N, L′i+1(n) = Li+1(n),
and with no loss of generality, set E′i+1 = E′′i .

• if n performs a lossy broadcast, then E′′i = ∅ (i.e., nodes are disconnected from each

other). Then consider the transition γ′′i
n,!a−−→r γ

′
i+1 in reconfigurable semantics, n

32 2. Preliminaries

performs the same broadcast and moves to Li+1(n) but no other nodes are affected.
Therefore, for every node n ∈ N, L′i+1(n) = Li+1(n) and set E′i+1 = E′′i .

We extend ρ′′i with the transition γ′′i
n,!a−−→r γi+1 to obtain ρ′i+1. This concludes the proof of

the lemma.

We have proved that every execution in loss-on-broadcast semantics has a corresponding
reconfigurable execution. However, in contrast to Lemma 2.8, it is not immediate whether
a reconfigurable execution can be simulated by one in the loss-on-broadcast semantics.
In the next chapter, we will show a weaker result which states that if a configuration γ
is reachable in reconfigurable semantics, then for any state q, label of a node in γ, there
exists an execution reaching γ′ in the loss-on-broadcast semantics such that at least one
node in γ′ is labelled with q.

In the next section, we introduce the coverability problem for broadcast protocols and
discuss its decidability status for various semantics.

2.3 Coverability

One can be interested in various decision problems on the models for ad hoc networks, for
instance coverability (whether there exists an execution in which a given state appears
eventually), repeated coverability (whether there exists an execution in which a given state
occurs infinitely often), target reachability (whether a configuration is reachable in which
every node has a label from a given set of states). In this thesis, we are most interested in
the coverability problem, which we formally define in the following.

Given a broadcast protocol P and a set of target states F ⊆ Q, the coverability problem
(also called control state reachability problem in the literature) asks whether from an
initial configuration a final configuration is reachable in which at least one node has label
q ∈ F . Often in practice, the set F consists in some kind of error states and therefore
such a covering execution is considered as an undesirable execution. In that situation, a
positive instance of coverability problem thus corresponds to a network that can exhibit an
undesirable behaviour. This emphasizes the importance and relevance of the coverability
problem of broadcast protocols.

Before moving towards the formal definition of coverability, let us discuss a few
examples.

Example 2.11. Consider the protocol from Figure 2.1. Considering F = {r2}, Figure 2.3
provides an example of an execution that covers F : the final configuration has a node
labelled with r2. The intuition is as follows: every configuration has 3 nodes. The top-most
node always stays at q0 and only broadcasts message a to the middle node when needed
(for instance, in the first and third steps). The middle node follows the middle path in

2.3. Coverability 33

the protocol; it receives message a from the node at the top and broadcasts messages bi
(i ∈ {1, 2}) to the bottom node. Finally, the node at the bottom reaches r2 by receiving
bi’s from the middle node and following the bottom path in the protocol. Note here that,
indeed, the communication topology has changed multiple times in that execution. Also
notice that, under reconfigurable semantics, every state in this protocol is coverable: for
every q ∈ Q, there exists an execution such that the final configuration contains a node
labelled with state q.

Example 2.12. The execution presented in Figure 2.2 for the protocol of Figure 2.1. does
not cover r2. In fact, one can show that, under static semantics, the state r2 cannot be
covered by any execution, i.e., for any configuration reachable from an initial configuration,
none of the nodes has label r2. Indeed, in order to cover r2, one node –say n– must reach
q4 by performing the broadcast of b2. Node n must be linked to at least one other node n′

that performs the second broadcast of a and make n move from q2 to q3. To reach q2, node
n must have performed a broadcast of b1. However, because of the static topology after n
had broadcast b1, n′ could no longer be in q0 (and moved to either p1 or to r1), and thus
would not have been able to broadcast a. Thus, node n could not have reached r2.

Example 2.13. Every state in the protocol from Figure 2.1 is coverable under both
loss-on-reception and loss-on-broadcast semantics. For loss-on-reception semantics, the
statement follows from Lemma 2.8 and the fact that it is already the case for reconfigurable
semantics. As we will see later in this part of the thesis, the set of coverable states
in loss-on-broadcast semantics also coincides with the ones in reconfigurable semantics.
Examples of a loss-on-reception execution and a loss-on-broadcast execution are presented
in Figure 2.4 and Figure 2.5, respectively, where the final configuration in each of them
has a node labelled with state r2.

In the following, we formally define the coverability problem.

Given a broadcast protocol P and a subset of target states F ⊆ Q, COVERsem(P , F)
denotes the set of all covering executions under the semantics sem ∈ {s, r, lr, lb} (recall
that s, r, lr, lb represent static, reconfigurable, loss-on-reception and loss-on-broadcast
semantics, respectively), that is, executions that reach a configuration with a node labelled
by a state in F :

COVERsem(P , F) = {(γi = (N,Ei, Li))0≤i≤t ∈ Execsem(P) | Lt(γt) ∩ F 6= ∅}.

Then the coverability problem is defined as follows:

Coverability problem
Input: A broadcast protocol P , a set of states F ⊆ Q, sem ∈ {s, r, lr, lb}.
Output: Yes if and only if COVERsem(P , F) 6= ∅.

In the following, we discuss the decidability status of the coverability problem for
various semantics.

34 2. Preliminaries

In [DSZ10], it was shown that the coverability problem is undecidable for broadcast
protocols under static semantics. The proof goes by a reduction from the halting problem
of a two-counter machine, which is known to be undecidable [Min67].

Theorem 2.14. [DSZ10] The coverability problem is undecidable for static ad hoc
networks.

Decidability can be recovered in reconfigurable semantics. In fact, under reconfigurable
semantics, the coverability problem can be solved in polynomial time. More precisely,
coverability is PTIME-complete for reconfigurable networks [DSTZ12]. The polynomial
time algorithm for coverability in reconfigurable semantics, called saturation algorithm,
will be crucial to prove most of our results in the following chapter. We therefore describe
the saturation algorithm from [DSTZ12] in the following.

2.3.1 Saturation algorithm

Fix a broadcast protocol P = (Q, I,Σ,∆). Delzanno et al. proposed a polynomial
time saturation algorithm to compute the set of all states that can be covered under
reconfigurable semantics for ad hoc networks [DSTZ12]. In the following chapter, we shall
slightly modify this algorithm to achieve our results. For the sake of completeness, we
present their algorithm here.

The algorithm maintains a set S of states that are known to be coverable. Initially, S
is set to I. At each iteration, one adds to S all states that can be covered in one step from
S. Formally, S is augmented with all q′ ∈ Q such that, either there exists q ∈ S and a ∈ Σ
with (q, !a, q′) ∈ ∆, or there exist p, q ∈ S, p′ ∈ Q and a ∈ Σ such that (p, !a, p′) ∈ ∆ and
(q, ?a, q′) ∈ ∆.

Algorithm 1 Saturation algorithm for coverability

1: S := I; S ′ := ∅
2: while S 6= S ′ do
3: S ′ := S
4: for all (q1, !a, q2) ∈ ∆ s.t. q1 ∈ S ′ do
5: S := S ∪ {q2} ∪ {q′2 ∈ Q | (q′1, ?a, q′2) ∈ ∆ ∧ q′1 ∈ S ′}
6: end for
7: end while
8: return S

We will write REACHsem(P) for the set of states that can be covered in semantics
sem ∈ {s, r, lr, lb}:

REACHsem(P) = {q ∈ Q | ∃γ0
∗−→sem γ ∈ Execsem(P) with γ = (N,E, L) s.t. q ∈ L(γ)}.

We then state the following result from [DSTZ12] that establishes the correspondence
between the set of states returned by the saturation algorithm and the set of coverable
states in reconfigurable semantics of broadcast protocols.

2.4. Cutoff and covering length 35

Lemma 2.15 ([DSTZ12]). Algorithm 1 terminates and the set S the algorithm returns is
exactly the set of coverable states in reconfigurable semantics. Formally, S = REACHr(P).
Moreover, there exists an execution ρ = γ0 →r γ1 · · · →r γ with γ = (N,E, L), such that
L(γ) = S.

By Lemma 2.15, deciding the coverability problem for reconfigurable networks thus
reduces to checking if F ∩ S 6= ∅ (i.e., COVERr(P , F) 6= ∅ iff F ∩ S 6= ∅). Notice that
Algorithm 1 performs at most |Q| iterations and each iteration requires at most |∆|2 checks
(check for a message broadcast or reception), and each check can be done in constant
time. Therefore, the set S can be computed in polynomial time (O(|Q|.|∆|2)) in the size
of the input protocol. Finally, checking non-emptiness of the set F ∩S can also be done in
polynomial time. We conclude that the coverability problem can be decided in polynomial
time for reconfigurable ad hoc networks.

Lemma 2.16 ([DSTZ12]). The coverability problem is in PTIME for reconfigurable ad
hoc networks.

Delzanno et al. have further shown that coverability in reconfigurable semantics is
PTIME-hard by a LOGSPACE reduction from the Circuit Value Problem, which is known
to be PTIME-complete [Lip76].

Theorem 2.17 ([DSTZ12]). The coverability problem is PTIME-complete for reconfig-
urable ad hoc networks.

As a corollary of Lemma 2.8, we conclude that Lemma 2.15 also holds for ad hoc
networks in loss-on-reception semantics, that is the set Algorithm 1 returns is also the
set of coverable states in loss-on-reception semantics (i.e., S = REACHlr(P)). Indeed,
there is a covering execution in the reconfigurable semantics if and only if there is one
in the loss-on-reception semantics. Hence the coverability problem for loss-on-reception
networks can also be solved in polynomial time. Similarly, the PTIME-hardness result for
coverability also applies to the loss-on-reception semantics.

Corollary 2.18. The coverability problem is PTIME-complete for broadcast protocols in
loss-on-reception semantics.

In the next section, we define two relevant quantities of broadcast protocols, namely
the cutoff and the covering length, and the problems we are most interested in, that is
finding bounds for these quantities.

2.4 Cutoff and covering length

While considering a parameterized model checking problem for a distributed system, a
typical approach is to check if a cutoff exists and then to find the cutoff where it exists.

36 2. Preliminaries

Intuitively, the cutoff is a bound on the number of processes such that if a given property
is satisfied for this specific number of processes then it also holds for any larger number of
processes. If a cutoff exists, then a parameterized model checking problem boils down to
a finite model checking problem, that is, checking if the property holds with finitely many
processes, the number being less than or equal to the cutoff.

This approach is particularly relevant for the coverability problem in reconfigurable,
loss-on-reception and loss-on-broadcast ad hoc networks, since they follow a monotonicity
property that we will show in the following chapter: if a state can be covered from a
configuration, it can also be covered from any configuration with more nodes. We are
therefore interested in finding bounds on the cutoff for the positive instances of the
coverability problem in those semantics. More precisely, the cutoff is the minimal number
of processes in the network for which a covering execution exists. While considering error
states, the cutoff therefore measures the maximum size of a network that can avoid those
faulty states.

Definition 2.19. Given a broadcast protocol P, a target set F , and sem ∈ {s, r, lr, lb},
the cutoff under the semantics sem is the minimal number of processes in the network for
which a covering execution exists that reaches a state in F :

CUTOFFsem(P , F) = min
ρ∈COVERsem(P,F)

#nodes(ρ).

Additionally, we introduce here a similar notion, called covering length, that is the
minimal number of steps for a covering execution. When considering faulty states, the
covering length weighs how fast a network execution can go wrong.

Definition 2.20. Given a broadcast protocol P, a target set F , and sem ∈ {s, r, lr, lb},
the covering length under the semantics sem is the minimal number of steps in an execution
that reaches a state in F :

COVLENsem(P , F) = min
ρ∈COVERsem(P,F)

#steps(ρ).

In both the cases, we will use the convention that if the set COVERsem(P , F) = ∅, then
both the cutoff and the covering length are ∞.

Example 2.21. Figure 2.3 provides an example execution of the protocol in Figure 2.1
under reconfigurable semantics with 3 nodes that covers the state r2. One can in fact show
that there is no reconfigurable execution that reaches r2 with 2 nodes. Indeed, a node n2 has
to reach r2 by receiving messages b1 and b2 sequentially from another node n1. However,
n1 has to receive an a between those broadcasts, which is not possible by a broadcast from
n2 since n2 would be in r1 after receiving b1. Therefore, we must need another node than
n1 and n2. Thus, the cutoff for F = {r2} in the reconfigurable semantics is 3.

2.5. Discussion 37

Given a broadcast protocol P and a target set of states F , our aim is to find upper
and lower bounds for CUTOFFsem(P , F) and COVLENsem(P , F).

However, as a consequence of Lemma 2.8, the bounds on the cutoff and the covering
length for coverability in the reconfigurable semantics will also apply to the loss-on-
reception semantics. We will therefore mainly focus on the reconfigurable and loss-on-
broadcast semantics.

We further investigate the complexity of the decision problem of determining the
minimum size of covering executions. More precisely, given a broadcast protocol, a set
of target states, a natural number k, and sem ∈ {s, r, lr, lb}, decide if the cutoff for the
coverability problem under the semantics sem is at most k. This can be formalized as
follows:

Minimum number of nodes for coverability (MinNodes)
Input: A broadcast protocol P, a set of target states F ⊆ Q, a natural number k ∈ N,
and sem ∈ {s, r, lr, lb}.
Output: Yes if and only if CUTOFFsem(P , F) ≤ k.

We will close the chapter by announcing our contributions on the cutoff and the
covering length for coverability that we will present in the following chapter.

2.5 Discussion

The saturation algorithm presented in Section 2.3.1 computes the set of coverable states
in reconfigurable semantics in polynomial time. Let S0, S1, . . . , Sm be the sets after each
iteration of the algorithm, with S0 = I and Sm = S. In the proof of Lemma 2.15, the
authors inductively construct a witness covering execution for the set S. More precisely, for
every 0 ≤ j ≤ m, they construct an execution ρj = γ0 →r γ1 · · · →r γf(j) such that γ0 is an
initial configuration, and γf(j) = (N,E, L) with L(γf(j)) = Sj . However, in their proof, in the
inductive step the number of nodes is at least doubled, i.e., #nodes(ρj+1) ≥ 2#nodes(ρj).
This produces a covering execution for S of size exponential in the size of the input
protocol. Consequently, the length of the execution is also considerably large. As another
consequence, the same bounds also apply to the loss-on-reception semantics, thanks to
Lemma 2.8. To the best of our knowledge, any bounds on the minimum number of
nodes (i.e., cutoff) and the minimum length (i.e., covering length) of an execution that is
necessary to reach a state in S have not been given before.

In the following chapter, we investigate the problem of finding upper and lower bounds
on cutoff and covering length, formally defined in Section 2.4. Among all the semantics
discussed in Section 2.2, notice that coverability is undecidable for static semantics, and
bounds for loss-on-reception semantics will coincide with the ones for reconfigurable

38 2. Preliminaries

semantics, as a consequence of Lemma 2.8. We therefore focus on reconfigurable and
loss-on-broadcast semantics.

In Chapter 3, we show a linear upper bound for cutoff and a quadratic upper bound
for the covering length for these two semantics. We first observe that in both semantics,
the networks satisfy a monotonicity property, called copycat property, which informally
states that any node in a reachable configuration can be duplicated. This allows us to
refine the saturation algorithm presented in Section 2.3 in a simple manner to achieve
the desired upper bounds. We further show that the upper bounds on the cutoff and the
covering length are in fact tight in both the semantics: we exhibit a family of protocols
that meet these bounds, although, the reconfigurable executions can in general be more
succinct than the loss-on-broadcast executions. We also show that the set Algorithm 1
returns coincide with the set of all coverable states in loss-on-broadcast semantics. In other
words, a state is coverable in the reconfigurable semantics if and only if it is coverable in
the loss-on-broadcast semantics. Finally, we show that MinNodes is an NP-complete
problem.

Chapter 3

Tight Bounds on Cutoff and
Covering Length

In the previous chapter, we have seen that the coverability problem is decidable in
polynomial time for broadcast protocols under reconfigurable (hence, also under loss-on-
reception) semantics. A saturation algorithm was presented in Section 2.3 which computes
all states that can be covered in these semantics.

In this chapter, we will prove tight bounds on cutoff and covering length for various
semantics of broadcast protocols. Notice that as a consequence of Lemma 2.8, the bounds
for the reconfigurable semantics will also apply to the loss-on-reception semantics, hence,
we will mainly focus on reconfigurable and loss-on-broadcast semantics. In view of proving
the upper bounds, we first refine the saturation algorithm described in Section 2.3 in a
simple manner, so as to keep track of the size of an execution that covers the set returned
by the algorithm. We then show that, based on the underlying computation, one can
construct small witness executions for the positive instances of the coverability problem
in reconfigurable semantics. These small witnesses have a linear number of nodes and a
quadratic number of steps. We further show that the same upper bounds also hold for
loss-on-broadcast semantics. We then show that these bounds are tight in both semantics:
we give a family of protocols for which any covering execution needs at least a linear
number of nodes and a quadratic number of steps. Despite satisfying the same bounds,
we show that reconfiguration can be in some cases more succinct by a linear factor than
message losses on broadcast. Finally, we prove that the problem of deciding the size of a
minimal witness for the coverability problem is NP-complete.

While considering message losses, since our main focus is on the loss-on-broadcast
semantics, further in this chapter, by “lossy semantics”, we will refer to the semantics of
message losses on broadcast, unless otherwise specified.

39

40 3. Tight Bounds on Cutoff and Covering Length

Organization of the chapter

Section 3.1 is dedicated to the refined saturation algorithm. First, we observe an important
property, called copycat property, for both reconfigurable and lossy networks, and then
present the modified algorithm. Complexity upper bounds on cutoff and covering length
together with matching lower bounds are presented in Section 3.2. We then show that
reconfigurable executions can be in some cases more succinct than the lossy ones in
Section 3.3. The MinNodes problem is studied in Section 3.4. We close the chapter with
a remark on application of our results in other communication models and a discussion
on the possible directions for future work in Section 3.5.

3.1 Refined saturation algorithm

In this section, we modify the saturation algorithm recalled in Chapter 2, Section 2.3 so
that it also keeps track of the size of an execution that covers the set returned by the
algorithm. This new measure will play a crucial role in proving the complexity bounds for
cutoff and covering length. Our results on the upper bounds of cutoff and covering length,
however, rely on a monotonicity property, called copycat property, for reconfigurable and
lossy ad hoc networks. We therefore begin the section describing this property in more
details.

Intuitively, the copycat property states that any node in a reachable configuration in
these semantics can be duplicated. More precisely, for every reachable configuration γ,
and any node n in γ, one can build another execution such that the final configuration γ′

has an extra copy of node n with the same label, keeping the other nodes the same as in γ.
This monotonicity property has already been observed in [DSTZ12], and it also appears
in several other contexts, for instance for asynchronous shared-memory systems [EGM13].
We now formally state and prove this property, starting with the reconfigurable semantics.

3.1.1 Copycat property for reconfigurable semantics

The copycat property for reconfigurable ad hoc networks can be formalized as follows.

Proposition 3.1. Let ρ = γ0 →r γ1 · · · →r γs be an execution in Execr(P), with
γs = (N,Es, Ls). Then for any q ∈ Ls(γs), for any nq ∈ N such that Ls(nq) = q, there
exists t ∈ N and an execution ρ′ = γ′0 →r γ

′
1 · · · →r γ

′
t with γ′t = (N′,E′t, L

′
t) such that

|N′| = |N|+1, there is an injection ι : N→ N′ with for every n ∈ N, L′t(ι(n)) = Ls(n), and for
the extra node nfresh ∈ N′ \ ι(N), L′t(nfresh) = q; moreover, #steps(ρ′, nfresh) = #steps(ρ, nq).

Let us first give an intuitive idea of the proof. The new node nfresh will copy the moves
of node nq: it performs the same broadcasts (yet to an empty set of neighbours) and
receives the same messages, thanks to reconfiguration of the topology. More precisely,

3.1. Refined saturation algorithm 41

yet informally, when nq broadcasts in ρ, it does so also in ρ′; in the following step we
disconnect every node and nfresh repeats the same broadcast (no other node is affected
because of the disconnection). On the other hand, when nq receives a message from
another node n in ρ, in the corresponding step in ρ′, we connect nfresh to the node ι(n),
i.e., (ι(n), nfresh) ∈ E′ so that nfresh, along with the others, receives the same message in ρ′.
We now prove the proposition formally.

Proof. Fix an execution ρ = γ0 →r γ1 · · · →r γs with γi = (N,Ei, Li) for every 0 ≤ i ≤ s.
We denote by ρi the execution γ0 →r · · · γi whenever 0 ≤ i ≤ s. Let nq ∈ N be such that
Ls(nq) = q. Define N′ a finite set such that |N′| = |N|+ 1, and fix an injection ι : N→ N′.
Write nfresh for the unique element of N′ \ ι(N). We first define γ′0 = (N′,E′0, L

′
0). Set

L′0(ι(n)) = L0(n) for every n ∈ N, and L′0(nfresh) = L0(nq). We will show by induction
on i that for every 0 ≤ i ≤ s, there is an execution ρ′i = γ′0 →r γ

′
1 · · · →r γ

′
f(i) for

some f(i), with γ′f(i) = (N′,E′f(i), L
′
f(i)), such that L′f(i)(ι(n)) = Li(n) for every n ∈ N

and L′f(i)(nfresh) = Li(nq); and finally #steps(ρ′i, nfresh) = #steps(ρi, n
q). The base case

i = 0 is trivial. We assume that for some i < s, we have constructed a corresponding
ρ′i = γ′0 →r · · · γ′f(i). Then we will extend it to ρ′i+1 as follows. We will apply a similar idea
used in the second part of the proof of Lemma 2.8 for reconfigurations of the communication
topology. We make a case distinction depending on the nature of the step γi →r γi+1:

• Assume γi
n,!a−−→r γi+1 is a broadcast message such that nq 6= n. For checking

correctness, we distinguish two cases:

– nq is not connected to n in γi. Then it is the case that the label of nq remains

unchanged during the step γi
n,!a−−→r γi+1. Consider ρ′′i = γ′0 →r · · · γ′f(i)−1 →r

γ′′f(i) such that the nodes and their labels in γ′′f(i) are same as in γ′f(i); furthermore,
thanks to reconfiguration, the communication topology among the nodes in
ι(N) of γ′′f(i) is the same as in γi, additionally, nfresh is disconnected from every
other node. We define ρ′i+1 the execution obtained by extending ρ′′i with the

broadcast γ′′f(i)

ι(n),!a−−−→r γ
′
f(i)+1. We write f(i+ 1) = f(i) + 1. Notice that neither

of ι(nq) and nfresh are affected in this step. Since they both had label Li(nq)
in γ′f(i) (by induction hypothesis), they will also have the same label in γ′′f(i)

and γ′f(i+1), respectively. Since nq was not affected in the last step of ρi+1,

L′f(i+1)(ι(nq)) = Li+1(nq). The condition on the number of broadcasts by nfresh

is therefore also trivially satisfied. Note also that all other nodes in ι(N) can
progress to the same states as those of N in γi+1.

– nq is connected to n in γi. Then in this step nq receives message a from n.
Consider again ρ′′i = γ′0 →r · · · γ′f(i)−1 →r γ

′′
f(i) such that the nodes and their

labels in γ′′f(i) are same as in γ′f(i); furthermore, thanks to reconfiguration,

the communication topology among the nodes in ι(N) of γ′′f(i) is the same as

in γi, additionally, nfresh is connected to ι(n). We define ρ′i+1 the execution

obtained by extending ρ′′i with the broadcast γ′′f(i)

ι(n),!a−−−→r γ
′
f(i)+1. We write

f(i+ 1) = f(i) + 1. In this case, both nodes ι(nq) and nfresh receive the message

42 3. Tight Bounds on Cutoff and Covering Length

a from ι(n). Since they both had label Li(nq) in γ′f(i) (by induction hypothesis),
they will also have the same label in γ′′f(i), and hence, resolving properly the

non-determinism of the protocol, both of them reach the label Li+1(nq) in
γ′f(i+1). The condition on the number of broadcasts by nfresh is also trivially

satisfied. Note also that all other nodes in ι(N) can progress to the same states
as those of N in γi+1.

• Assume γi
nq ,!a−−→r γi+1 is a broadcast message by node nq. Consider the reconfigurable

execution of length f(i): ρ′′i = γ′0 →r · · · γ′f(i)−1 →r γ
′′
f(i) such that the nodes and

their labels in γ′′f(i) are same as in γ′f(i); furthermore, thanks to reconfiguration,

the communication topology among the nodes in ι(N) of γ′′f(i) is the same as in γi,
additionally, nfresh is disconnected from every other node. We then extend ρ′′i in

two steps. First, γ′′f(i)

ι(nq),!a−−−−→r γ
′
f(i)+1 such that nodes in γ′f(i)+1 are disconnected

from each other (i.e. E′f(i)+1 = ∅); and second, γ′f(i)+1

nfresh,!a−−−−→r γ
′
f(i)+2. The resulting

execution is denoted ρ′i+1, and we write f(i+ 1) = f(i) + 2.

Notice that in the first step, nfresh is not affected since it is not connected with any
other node in γ′′f(i), and all nodes in ι(N) progress to the same states as those of
N in γi+1. In the second step, nfresh broadcasts message a and, resolving properly
the non-determinism of the protocol, reaches the same label as of nq in γi+1; and
every other node is unaffected in the second step, therefore they remain in the same
states as those of N in γi+1. Each of nq and nfresh performs a broadcast and hence
#steps(ρ′i+1, nfresh) = #steps(ρi+1, n

q).

This concludes the proof of Proposition 3.1.

Let us illustrate the copycat property on an example of a reconfigurable network.
Consider the reconfigurable execution from Figure 2.3. Below is an example of an execution
where the middle node from that example is duplicated (and represented bottom-most).

q0

q0

q0

q0

!a−→r

q1

q0

q0

q1

!b1−→r

q0

q2

r1

q1

!b1−→r

q0

q2

r1

q2

!a−→r

q0

q3

r1

q3

!b2−→r

q0

q4

r2

q3

!b2−→r

q0

q4

r2

q4

Figure 3.1: Illustration of the copycat property for reconfigurable semantics.

Example 3.2. Figure 3.1 illustrates the copycat property for the reconfigurable semantics.
Here, in this example, the nodes follow the protocol in Figure 2.1. In this example, the
bottom-most node (nfresh) copies the middle node from the execution in Figure 2.3 (nq).

3.1. Refined saturation algorithm 43

Note here that a broadcast by nq (for instance, broadcast of b1 and b2) is duplicated in two
steps and a reception by nq (for instance the reception of a) is duplicated by connecting
nfresh with the broadcasting node. Finally, observe that in the final configuration, both
nodes nq and nfresh are at q4 that are highlighted in blue.

We now prove that loss-on-broadcast ad hoc networks also satisfy this property.

3.1.2 Copycat property for loss-on-broadcast semantics

The copycat property for loss-on-broadcast ad hoc networks can be formalized as follows.

Proposition 3.3. Given ρ = γ0 →lb γ1 · · · →lb γs an execution, with γs = (N,E, Ls), for
every q ∈ Ls(γs), for every nq ∈ N such that Ls(nq) = q, there exists t ∈ N and an execution
ρ′ = γ′0 →lb γ

′
1 · · · →lb γ

′
t with γ′t = (N′,E′, L′t) such that |N′| = |N|+1, there is an injection

ι : N→ N′ with for every n ∈ N, L′t(ι(n)) = Ls(n), and for the extra node nfresh ∈ N′ \ ι(N),
L′t(nfresh) = q, for every n ∈ N, nfresh ∼′ ι(n) iff nq ∼ n, #steps(ρ′, nfresh) = #steps(ρ, nq),
and #nonlost steps(ρ′, nfresh) = 0.

The idea behind the proof is to make nfresh mimic nq. Notice that in the lossy semantics,
the communication topology is fixed throughout an execution. We connect nfresh to nodes
to which nq is connected. Then if nq is receiving a message to progress, nfresh also receives
the message; if nq is broadcasting a message, then we will make nfresh lossy broadcast the
same message so that no other node is impacted.

Proof. Fix an execution ρ = γ0 →lb γ1 · · · →lb γs. First notice that, from our definition of
lossy semantics, the topology should be the same throughout the execution. Therefore, we
write γ0 = (N,E, L0), and more generally, for every 0 ≤ i ≤ s, γi = (N,E, Li). Furthermore,
we denote by ρi the execution γ0 →lb · · · γi whenever 0 ≤ i ≤ s. Define N′ as a finite
set such that |N′| = |N|+ 1, and fix an injection ι : N→ N′. Write nfresh for the unique
element of N′ \ ι(N). We first define γ′0 = (N′,E′, L′0). Set L′0(ι(n)) = L0(n) for every n ∈ N,
and L′0(nfresh) = L0(nq). Define the edge relation E′ by its induced edge relation ∼′ such
that ι(n) ∼′ ι(n′) iff n ∼ n′, and nfresh ∼′ ι(n′) iff nq ∼ n′.

We will show by induction on i that for every 0 ≤ i ≤ s, there is an execution
ρ′i : γ′0 →lb γ

′
1 · · · →lb γ

′
f(i) for some f(i), with γ′f(i) = (N′,E′, L′f(i)), such that L′f(i)(ι(n)) =

Li(n) for every n ∈ N and L′f(i)(nfresh) = Li(nq). The base case i = 0 is obvious. We assume
that for some i < s we have constructed a corresponding ρ′i , and we will extend it to ρ′i+1

as follows. We make a case distinction depending on the nature of the step γi →lb γi+1:

• Assume γi
n,!a−−→lb γi+1 is a broadcast message with nq 6= n, then ρ′i+1 is obtained

by extending ρ′i with the broadcast γ′f(i)

ι(n),!a−−−→lb γ
′
f(i)+1, with the condition that

it should be lost if and only if it was lost in the original execution. For checking
correctness, we distinguish two cases:

44 3. Tight Bounds on Cutoff and Covering Length

– the broadcast message was not lost, and nq ∼ n. Then, it is the case that
nfresh ∼′ ι(n), hence nfresh also receives the message. By resolving properly the
nondeterminism, we can make the label of nfresh become the same as the label
of nq in γi+1. Note also that all nodes in ι(N) can progress to the same states
as those of N in γi+1;

– the broadcast message was lost, or nq 6∼ n, then it is the case that the label

of nq has not been changed in γi
n,!a−−→lb γi+1, and so will the label of the fresh

node in γ′f(i).

• Assume γi
nq ,!a−−→lb γi+1 is a broadcast message, then we extend ρ′i with the two steps

γ′f(i)

ι(nq),!a−−−−→lb γ
′
f(i)+1

nfresh,!a−−−−→lb γ
′
f(i)+2 (resolving nondeterminism in a similar way as

in γi
nq ,!a−−→lb γi+1), and we make the last broadcast lossy whereas the broadcast from

ι(nq) is lossy if and only if it was lossy in γi →lb γi+1.

This concludes the induction. Notice that in the constructed execution, node nfresh does
not make any real sending, so that #nonlost steps(ρ′i+1, nfresh) = 0.

Let us illustrate the copycat property in a lossy network. Consider the lossy execution
from Figure 2.5. Below is an example of an execution where the node in middle-right
(that reaches the state q4) from that example is duplicated.

q0

q0

q0

q0

q0

q0

!a−→lb
q1

q0

q0

q1

q0

q1

!b1−→lb
q2

r1

p1

q1

q0

q1

!b1−→lb
lost

q2

r1

p1

q2

q0

q1

!b1−→lb
lost

q2

r1

p1

q2

q0

q2

!a−→lb
q2

p1 q0

q3

r1 q3

!b2−→lb
q2

p1 p1

q4

r2 q3

!b2−→lb
lost

q2

p1 p1

q4

r2 q4

Figure 3.2: Illustration of the copycat property for loss-on-broadcast semantics.

Example 3.4. Figure 3.2 illustrates the copycat property for the loss-on-broadcast seman-
tics. Here, in this example, the nodes follow the protocol in Figure 2.1. In this example,
the node at bottom-right, call nfresh, copies the node at middle-right (that reaches the state
q4), call nq, from the execution in Figure 2.3. Note here that nfresh is connected to only
those who were connected to nq in the original execution. A real broadcast (for instance,
broadcast of b2 in the last step) by nq is duplicated in two steps: first the original node

3.1. Refined saturation algorithm 45

performs the (real) broadcast followed by a lossy broadcast of the same message by nfresh; a
lossy broadcast by nq is also duplicated in two steps: first the original node performs the
(lossy) broadcast followed by another lossy broadcast of the same message by nfresh; and
a message that is received by nq is also received by nfresh because of the communication
topology (for instance the reception of a). Finally, observe that in the final configuration,
both nodes nq and nfresh are at q4, that are highlighted in blue.

We have shown that both reconfigurable and lossy networks satisfy a strong copycat
property. We now describe the modified saturation algorithm.

3.1.3 Refined Saturation Algorithm

Fix a broadcast protocol P = (Q, I,Σ,∆). Once again, we maintain a set, say S, of
states that are known to be coverable. Initially, S is set to I. However, in contrast
to Algorithm 1, now we augment the saturation set S by at most one element in each
iteration. Formally, S is augmented with at most one q′ ∈ Q such that, either there exists
q ∈ S and a ∈ Σ with (q, !a, q′) ∈ ∆, or there exist p, q ∈ S, p′ ∈ Q and a ∈ Σ such that
(p, !a, p′) ∈ ∆ and (q, ?a, q′) ∈ ∆. Additionally, we associate an integer-valued variable
c that counts the number of nodes that are sufficient to cover the set S at the current
iteration. Intuitively, when a state is added as the target of a broadcast transition, we
copy the corresponding node responsible for the broadcast, whereas in case of a reception
transition we need to copy two nodes involved in the action (one for broadcasting, one for
receiving).

The reason for this modification is that the value of the new variable c at the end of
the algorithm, as we will show in the following section, gives a bound on the number of
nodes to cover all states in S that the algorithm returns, which is at most linear in the
number of states in Q. We will also prove this linear bound on cutoff is tight, i.e., we
show an example of a family of protocols for which any covering execution needs at least
linearly many nodes.

Algorithm 2 Refined saturation algorithm for coverability

1: S := I; c := |I|; S ′ := ∅
2: while S 6= S ′ do
3: S ′ := S
4: if ∃(q1, !a, q2) ∈ ∆ s.t. q1 ∈ S ′ and q2 6∈ S ′ then
5: S := S ∪ {q2}; c := c+ 1
6: else if ∃(q1, !a, q2) ∈ ∆ and (q′1, ?a, q

′
2) ∈ ∆ s.t. q1, q2, q

′
1 ∈ S ′ and q′2 6∈ S ′ then

7: S := S ∪ {q′2}; c := c+ 2
8: end if
9: end while

10: return S

The refined saturation algorithm is presented in Algorithm 2.

46 3. Tight Bounds on Cutoff and Covering Length

Recall that REACHr(P) denotes the set of coverable states in the reconfigurable semantics
of the broadcast protocol P :

REACHr(P) = {q ∈ Q | ∃γ0
∗−→r γ ∈ Execr(P) with γ = (N,E, L) s.t. q ∈ L(γ)}.

We adapt Lemma 2.15 for this modified version of the algorithm:

Lemma 3.5. Algorithm 2 terminates and the set S the algorithm returns is exactly the
set of coverable states in reconfigurable semantics. Formally, S = REACHr(P). Moreover,
there exists an execution ρ = γ0 →r γ1 · · · →r γ with γ = (N,E, L), such that L(γ) = S.

The correctness of Lemma 3.5 follows from that of Lemma 2.15. Indeed, both algorithms
perform the same actions on the set S, except in the earlier, in each iteration, we augment
the set with every possible states reachable in a single step, whereas in the latter we add
them one at a time.

3.2 Tight bounds on cutoff and covering length

In this section, we show matching upper and lower bounds for cutoff and covering length.
We achieve a linear bound on cutoff and a quadratic bound on covering length. Concerning
the upper bounds, notice that it would be enough to show the result only for the lossy
semantics and the result for reconfigurable semantics will automatically follow. Indeed,
given a broadcast protocol P , by Lemma 2.10, a lossy execution ρ reaching a configuration
γ can be simulated by a reconfigurable one, say ρ′, of same length that reaches γ′ with
same set of nodes as γ with same labels. Therefore, upper bounds for cutoff and covering
length in the lossy semantics also apply to reconfigurable semantics. While both proofs
use a similar idea, it is more technical in case of lossy semantics than the other. To ease
the understanding, we begin with the reconfigurable semantics.

3.2.1 Upper bounds in reconfigurable semantics

Fix a broadcast protocol P = (Q, I,Σ,∆). Let S be the set of states computed by
Algorithm 2 on protocol P . Further assume S0, S1, . . . , Sm are the sets after each iteration
of the algorithm, with S0 = I and Sm = S; and c0, c1 . . . , cm be the respective values of
the variable c with c0 = |I|. We fix an ordering on the states in S (except the states in I)
on the basis of insertion in S: for all 1 ≤ i ≤ m, qi is such that qi ∈ Si \ Si−1.

We show that there exists an execution of size O(n) and length O(n2) covering at the
same time all states of S for reconfigurable networks. This can be formalized as follows.

Lemma 3.6. Let P = (Q, I,Σ,∆) be a broadcast protocol and S be the set of states

returned by Algorithm 2 on input P. Then there exists an execution ρ = γ0
∗−→r γ with

γ = (N,E, L) such that L(γ) = S, #nodes(ρ) ≤ 2|Q| and #steps(ρ) ≤ 2|Q|2.

3.2. Tight bounds on cutoff and covering length 47

Proof. We will show by induction on i that for every step 0 ≤ i ≤ m of Algorithm 2, there
exists an initial configuration γ0 and a reconfigurable execution ρi = γ0 →r · · · γf(i) for
some γf(i), with γf(i) = (Ni,Ef(i), Lf(i)), such that Lf(i)(γf(i)) = Si, #nodes(ρi) = ci, and
maxn #steps(ρi, n) ≤ i.

The base case i = 0 is obvious: take the initial configuration γ0 with |I| nodes and
arbitrary topology, furthermore, label each node with a different initial state; its size is
|I|, and the length of the execution is 0, hence so is the maximum active length.

To prove the induction step, we distinguish two cases: depending on whether qi+1 was
added as the target state of a broadcast transition from some q ∈ Si; or whether qi+1 is
the target state of a reception from some q ∈ Si with matching broadcast between two
states already in Si.

Case 1: There exists q ∈ Si with q
!a−→ qi+1. We apply the induction hypothesis to step

i, and exhibit an execution ρi = γ0 →r · · · γf(i) for some f(i), with γf(i) = (Ni,Ef(i), Lf(i)),
such that Lf(i)(γf(i)) = Si, #nodes(ρi) = ci and maxn #steps(ρi, n) ≤ i. Applying the
copycat property (see Proposition 3.1), we construct an execution ρ′ = γ′0 −→r . . . γ

′ such
that γ′0 has one node more than γ0, and, focusing on the nodes, γ′ coincides with γf(i), with
an extra node n labelled by q, and finally, all nodes in γ′ are disconnected (reconfiguration

can be done in the last transition in ρ′). We then extend ρ′ with a transition γ′
n,!a−−→r γ

′′,
which makes only progress node n from q to qi+1. We write γ′′ = (N′′,E′′, L′′), and the
resulting execution is denoted ρi+1. Then:

1. L′′(γ′′) = Si ∪ {qi+1} = Si+1,

2. #nodes(ρi+1) = ci + 1 = ci+1,

3. maxn #steps(ρi+1, n) ≤ maxn #steps(ρi, n) + 1 ≤ i+ 1; indeed, the active length of
the copycat node along ρ′ coincides with the active length of some existing node
along ρi (see Proposition 3.1), and it is increased only by 1 in ρi+1.

This proves the induction step in the first case.

Case 2: There exists q, q′, q′′ ∈ Si with q
?a−→ qi+1 and q′

!a−→ q′′. The idea is similar to
the previous case, but one should apply the copycat property twice, to both q and q′. We
formalize this.

We apply the induction hypothesis to step i, and exhibit an execution ρi = γ0 −→r

. . . γf(i), with γf(i) = (Ni,Ef(i), Lf(i)), such that Lf(i)(γf(i)) = Si, #nodes(ρi) = ci and
maxn #steps(ρi, n) ≤ i. Applying the copycat property (see Proposition 3.1) twice, to
both q and q′, we construct an execution ρ′ = γ′0 −→r . . . γ

′ such that γ′0 has two nodes
more than γ0, and, focusing on the nodes, γ′ coincides with γf(i), with two extra nodes
n, n′ labelled by q, q′ respectively and finally in γ′, n and n′ are connected to each other
whereas all other nodes are disconnected (reconfiguration can be done in the last transition

48 3. Tight Bounds on Cutoff and Covering Length

in ρ′). We then extend ρ′ with a transition γ′
n′,!a−−→r γ

′′; this makes node n progress from
q to qi+1 and node n′ progress from q′ to q′′; all other nodes are unchanged. We write
γ′′ = (N′′,E′′, L′′), and the resulting execution is denoted ρi+1. Then:

1. L′′(γ′′) = Si ∪ {q′′, qi+1} = Si+1 since q′′ ∈ Si,

2. #nodes(ρi+1) = ci + 2 = ci+1,

3. maxn #steps(ρi+1, n) ≤ maxn #steps(ρi, n) + 1 ≤ i+ 1; indeed, the active length of
any of the copycat nodes along ρ′ coincides with the active length of some existing
node along ρi (see Proposition 3.1), and it is increased by at most 1 in ρi+1.

This proves the induction step in the second case.

We therefore deduce that there exists an execution ρ = γ0
∗−→r γ with γ = (N,E, L)

such that:

1. L(γ) = Sm;

2. #nodes(ρ) = cm ≤ |I|+ 2m ≤ |I|+ 2(|Q| − |I|) = 2|Q| − |I|;

3. maxn #steps(ρ, n) ≤ m ≤ |Q| − |I|.

Therefore #steps(ρ) ≤
(
#nodes(ρ)

)
·
(

maxn #steps(ρ, n)
)
≤ 2|Q|2, so that we established

the desired bounds for Lemma 3.6.

Lemma 3.6 states that we can effectively construct a reconfigurable execution with
linear number of nodes and quadratic length that reaches a configuration such that for
every state q ∈ S (S is the set returned by Algorithm 2), there is a node labelled with q.
Lemma 3.5 establishes the correlation between the set of coverable states in reconfigurable
semantics and the set S, that they coincide. Thus, we conclude that for positive instances
of coverability, there exists a covering execution ρ with the same bounds on the size and
length, i.e., #nodes(ρ) ≤ 2|Q| and #steps(ρ) ≤ 2|Q|2, where Q is the set of states in
the broadcast protocol. This yields a linear upper bound on the cutoff and a quadratic
upper bound on the covering length in reconfigurable semantics. This can be formalized
as follows.

Theorem 3.7. Let P = (Q, I,Σ,∆) be a broadcast protocol, F ⊆ Q a set of target states.
If COVERr(P , F) 6= ∅, then CUTOFFr(P , F) ≤ 2|Q| and COVLENr(P , F) ≤ 2|Q|2.

By Lemma 2.8, there is a reconfigurable execution if and only if there is one in the
loss-on-reception semantics of the same size and length, such that the final configurations
have the same set of nodes with same labels. Therefore, we conclude that the same upper
bounds for the minimal covering executions also apply to the loss-on-reception semantics.
This can be formalized as follows:

3.2. Tight bounds on cutoff and covering length 49

Corollary 3.8. Let P = (Q, I,Σ,∆) be a broadcast protocol, F ⊆ Q a set of target states.
If COVERlr(P , F) 6= ∅, then CUTOFFlr(P , F) ≤ 2|Q| and COVLENlr(P , F) ≤ 2|Q|2.

We now prove similar upper bounds on cutoff and covering length for loss-on-broadcast
semantics.

3.2.2 Upper bounds in loss-on-broadcast semantics

Perhaps surprisingly, Algorithm 2 also computes the set of states that can be covered by
lossy executions. Concerning coverable states, the reconfigurable and lossy semantics thus
agree. Yet, in Section 3.3, we will show that reconfigurable covering executions can be
more succinct than lossy covering executions.

Fix a broadcast protocol P = (Q, I,Σ,∆). Let S be the set of states computed by
Algorithm 2 on protocol P . Again assume S0, S1, . . . , Sm are the sets after each iteration
of the algorithm, with S0 = I and Sm = S; and c0, c1 . . . , cm be the respective values of
the variable c with c0 = |I|. We fix an ordering on the states in S (except the states in I)
on the basis of insertion in S: for all 1 ≤ i ≤ m, qi is such that qi ∈ Si \ Si−1.

First we show an analogous result to Lemma 3.6, but for lossy semantics in which
we effectively construct a lossy execution with linear number of nodes and of quadratic
length that reaches a configuration such that for every q ∈ S, there is a node labelled
with q. Then in Lemma 3.11, we will prove that Algorithm 2 indeed computes the set of
coverable states for lossy semantics as well.

We show that there exists an execution of size O(n) and length O(n2) covering at
the same time all states of S for lossy networks, where n is the number of states in the
broadcast protocol. This can be formalized as follows.

Lemma 3.9. Let P = (Q, I,Σ,∆) be a broadcast protocol and S be the set of states

returned by Algorithm 2 on input P. Then there exists an execution ρ = γ0
∗−→lb γ with

γ = (N,E, L) such that L(γ) ⊇ S, #nodes(ρ) ≤ 2|Q| and #steps(ρ) ≤ 2|Q|2.

For any configuration γ = (N,E, L) and every node n, we write L(n) = × if n is not
important any more in the execution, in other words all the required conditions in γ′ such
that γ

∗−→lb γ
′ are still satisfied whatever L(n) is.

We will refine the construction from the proof of Lemma 3.6 (in the context of
reconfigurable broadcast networks), and build inductively a lossy execution covering all
states in Si. Since the topology is static, some nodes which have “finished their jobs” will
remain connected to other nodes, and may therefore continue to change states (contrary to
Lemma 3.6 where they could be fully disconnected). Hence, in every such execution, every
state q ∈ Si (which is then covered by the execution) will have a “main” corresponding
node, whose label will remain q. All nodes which are not the main node of a state will

50 3. Tight Bounds on Cutoff and Covering Length

eventually be assigned × (when they would have finished their jobs), since their labels
will become meaningless. We prove Lemma 3.9 below.

Proof. We will show by induction on i that for every step 0 ≤ i ≤ m of Algorithm 2, there
exists an execution ρi = γ0 −→lb . . . γf(i) for some f(i), with γf(i) = (Ni,Ei, Lf(i)) (notice
that the communication topology is fixed throughout ρi), and:

1. Lf(i)(γf(i)) \ {×} = Si and #nodes(ρ) = ci,

2. maxn #steps(ρi, n) ≤ i and maxn #nonlost steps(ρi, n) ≤ 1,

3. for every q ∈ Si, there exists nmain
q ∈ N such that

• Lf(i)(nmain
q) = q and #nonlost steps(ρi, n

main
q) = 0,

• nmain
q ∼ n implies Lf(i)(n) = ×, and if n /∈ {nmain

q | q ∈ Si}, then Lf(i)(n) = ×.

The case i = 0 is obvious, by picking one main node per initial state in I, and
by disconnecting all nodes; hence forming an initial configuration satisfying all the
requirements.

To prove the induction step, we distinguish two cases: depending on whether qi+1 was
added as the target state of a broadcast action !a from some q ∈ Si; or whether qi+1 is
the target state of a reception from some q ∈ Si with matching broadcast between two
states already in Si.

Case 1: There exists q ∈ Si with q
!a−→ qi+1. We apply the induction hypothesis to

step i, and exhibit the various elements of the statement. Applying the copycat property
for lossy broadcast systems (that is, Proposition 3.3) with node nmain

q on ρi, we build
an execution ρ′ = γ′0 −→lb . . . γ

′ such that γ′ = (N′,E′, L′) with |N′| = |N| + 1, and an
appropriate injection ι. The fresh node nfresh is connected to nodes to which nmain

q was

connected before. Then we extend ρ′ with γ′
nfresh,!a−−−−→lb γ

′′ and lose the message (this is
for condition #nonlost steps(ρ, nmain

q) = 0 to be satisfied). We write γ′′ = (N′′,E′′, L′′), and
the resulting execution is denoted ρi+1. We declare nmain

qi+1
= nfresh. Then:

1. L′′(γ′′) \ {×} = Si ∪ {qi+1} = Si+1, and #nodes(ρi+1) = ci + 1 = ci+1,

2. maxn #steps(ρi+1, n) ≤ maxn #steps(ρi, n) + 1 ≤ i + 1; indeed, the active length
of the copycat node along ρ′ coincides with the active length of some existing
node along ρi (see Proposition 3.3), and it is increased only by 1 in ρi+1, and
maxn #nonlost steps(ρi+1, n) ≤ 1,

3. further,

• L′′(nmain
qi+1

) = qi+1 and #nonlost steps(ρi+1, n
main
qi+1

) = 0,

3.2. Tight bounds on cutoff and covering length 51

• nmain
qi+1
∼ n implies nmain

q ∼ n, and by induction hypothesis, Lf(i)(n) = ×, hence

L′′(n) = ×. Furthermore, if n /∈ {nmain
q | q ∈ Si+1}, then L′′(n) = ×. Indeed, all

such nodes n are present in γf(i) with label × (by induction hypothesis), and
hence it remains labelled by × in γ′ and γ′′, respectively.

This proves the induction step in the first case.

Case 2: There exist q, q′, q′′ ∈ Si such that q
?a−→ qi+1 and q′

!a−→ q′′. We apply
the induction hypothesis to step i, and exhibit the various elements of the statement.
Applying twice the copycat property (that is, Proposition 3.3), once with node nmain

q and
once with node nmain

q′ , we build an execution ρ′ = γ′0 −→lb . . . γ
′ such that γ′ = (N′,E′, L′)

with |N′| = |N| + 2, and an appropriate injection ι. The two fresh nodes nfresh and
n′fresh are only connected to ×-nodes in γ′ (by induction hypothesis on nmain

q and nmain
q′

respectively). We transform γ′0 into γ′′0 by connecting the two nodes nfresh and n′fresh. By
Proposition 3.3, we know that those two nodes do not perform any real sending (i.e.,
#nonlost steps(ρ′, nfresh) = 0 and #nonlost steps(ρ′, n′fresh) = 0), hence this new connection
will not affect the labels of the nodes, and we can safely apply the same transitions as in ρ′

from γ′′0 to get an execution ρ′′ = γ′′0 −→lb . . . γ
′′, where γ′′ coincides with γ′, with an extra

connection between nodes nfresh and n′fresh. Then, we extend ρ′′ with γ′′
n′fresh,!a−−−−→lb γ

′′′. We
assume it is a real sending, hence: node nfresh can progress from state q to qi+1, and node
n′fresh can progress from q′ to q′′. All other nodes which are connected to n′fresh are labelled
by × in γ′′, hence their labels will remain × in γ′′′. We write γ′′′ = (N′′′,E′′′, L′′′), and
the resulting execution is denoted ρi+1. We relabel n′fresh to ×, and declare nmain

qi+1
= nfresh.

Then:

1. L′′′(γ′′′) \ {×} = Si ∪ {q′′, qi+1} = Si+1, and #nodes(ρi+1) = ci + 2 = ci+1,

2. maxn #steps(ρi+1, n) ≤ maxn #steps(ρi, n) + 1 ≤ i + 1; indeed, the active length
of the copycat node along ρ′ coincides with the active length of some existing
node along ρi (see Proposition 3.3), and it is increased only by 1 in ρi+1, and
maxn #nonlost steps(ρi+1, n) ≤ 1,

3. further,

• L′′′(nmain
qi+1

) = qi+1 and #nonlost steps(ρi+1, n
main
qi+1

) = 0,

• nmain
qi+1
∼ n implies nmain

q ∼ n, and by induction hypothesis, Lf(i)(n) = ×, hence

L′′′(n) = ×. Furthermore, if n /∈ {nmain
q | q ∈ Si+1}, then L′′′(n) = ×. Indeed,

nodes of this kind that were already present in γf(i) has label × in γf(i) (by
induction hypothesis), thus remains labelled by × in γ′, γ′′ and γ′′′, respectively,
moreover, the new node n′fresh that is not a “main” node is labelled by × in γ′′′.

This proves the induction step in the second case.

We therefore deduce that there exists an execution ρ = γ0
∗−→lb γ with γ = (N,E, L)

such that:

52 3. Tight Bounds on Cutoff and Covering Length

1. L(γ) \ {×} = Sm, therefore, L(γ) ⊇ S;

2. #nodes(ρ) = cm ≤ |I|+ 2m ≤ |I|+ 2(|Q| − |I|) = 2|Q| − |I|;

3. maxn #steps(ρ, n) ≤ m ≤ |Q| − |I|.

Therefore #steps(ρ) ≤
(
#nodes(ρ)

)
·
(

maxn #steps(ρ, n)
)
≤ 2|Q|2, so that we established

the desired bounds for Lemma 3.9.

Let us illustrate the inductive construction of a witness execution in the proof of
Lemma 3.9 for lossy semantics on an example.

Example 3.10. Consider the broadcast protocol from Figure 3.3. The construction of
a lossy covering execution for this protocol is presented in Figure 3.4. Configurations
here are represented vertically: they involve 10 nodes, and the static communication
topology is given for the first configuration only, for the sake of readability. For a compact
representation of the figure, several broadcasts (of the same message type, from different
nodes) may happen in a macro step that merges several consecutive steps. This is for
instance the case in the first macro step, where a is being broadcast from the node in set
S1, as well as from the first node in set S2. Dashed arrows are used to represent that a
node is not involved in some macro step and thus stays in the same state. In the execution,
the nodes that are performing a real broadcast are coloured yellow, the ones which change
their state upon reception of a message are coloured grey, and blue nodes indicate the
main nodes for the coverable states. Note also that the main nodes never perform a real
broadcast, and they are indeed only connected to ‘×’ nodes.

We now show that the set S is indeed the set of all coverable states in lossy seman-
tics. Recall that REACHlb(P) denotes the set of coverable states in the loss-on-broadcast
semantics of the broadcast protocol P :

REACHlb(P) = {q ∈ Q | ∃γ0
∗−→lb γ ∈ Execlb(P) with γ = (N,E, L) s.t. q ∈ L(γ)}.

We present the above statement in the style of Lemma 3.5 for reconfigurable networks.

Lemma 3.11. The set S returned by Algorithm 2 is the set of all coverable states of P
in loss-on-broadcast semantics. Formally, S = REACHlb(P). Moreover, there exists an
execution ρ = γ0 →lb γ1 · · · →lb γ with γ = (N,E, L), such that L(γ) = S.

Proof. First notice that from Lemma 3.9, there is an execution ρ = γ0
∗−→lb γ with

γ = (N,E, L), such that L(γ) ⊇ S. In other words, all states in S are coverable: S ⊆
REACHlb(P). To prove the other direction, assume q ∈ REACHlb(P). Then there exists a
loss-on-broadcast execution ρ = γ0 →lb γ1 · · · →lb γ with γ = (N,E, L), such that q ∈ L(γ).
By Lemma 2.10, we can construct a reconfigurable execution ρ′ = γ′0 →r γ

′
1 · · · →r γ

′

with γ′ = (N,E′, L) such that γ and γ′ have the same set of nodes with the same labels,
therefore, q ∈ L(γ′). Hence, q ∈ REACHr(P). By Lemma 3.5, we conclude q ∈ S.

3.2. Tight bounds on cutoff and covering length 53

q0 q1q2q3 q4 q5q6
!a?a!b ?b !c?c

Figure 3.3: Illustrating example for the saturation algorithm.

S0

S1

S2

S3

S4

S5

S6

γ0 γ1 · · · · · · γn

q0

q0

q0

q0

q0

q0

q0

q0

q0

q0

q1

×

q2

q2

q2

q0

q0

q0

q2

q2

q2

q1

q1

q1

q2

q3

×

q4

q4

q4

q2

q4

q4

q3

q5

×

q6

q0

q1

×

q2

q3

×

q4

!a

lost

!a

?a

?a

?a

!a

lost

!a

lost

!a

lost

?a !b

lost

!b

lost

!b

?b

?b

?b

!c

lost

!c

?c

Figure 3.4: Lossy covering execution from the saturation algorithm on the protocol
in Figure 3.3. Configurations are represented vertically; for readability, macro steps merge
several broadcasts.

Let us prove the last statement. Again from Lemma 3.9, there is an execution
ρ = γ0

∗−→lb γ with γ = (N,E, L), such that L(γ) ⊇ S. Furthermore, since S = REACHlb(P),
all states in L(γ) are in S. Hence, L(γ) = S.

54 3. Tight Bounds on Cutoff and Covering Length

By Lemma 3.9, one can effectively construct a lossy execution with linear number of
nodes and quadratic length that reaches a configuration such that for every state q ∈ S
(S is the set returned by Algorithm 2), there is a node labelled with q. Furthermore, from
Lemma 3.11, the set S is exactly the set of coverable states of the broadcast protocol P in
lossy semantics. Thus, we conclude that for positive instances of coverability, there exists a
covering execution ρ with the same bounds on the size and length, i.e., #nodes(ρ) ≤ 2|Q|
and #steps(ρ) ≤ 2|Q|2, where Q is the set of states in the broadcast protocol. This yields
a linear upper bound on the cutoff and a quadratic upper bound on the covering length
in loss-on-broadcast semantics. This can be formalized as follows.

Theorem 3.12. Let P = (Q, I,Σ,∆) be a broadcast protocol, F ⊆ Q a set of target states.
If COVERlb(P , F) 6= ∅, then CUTOFFlb(P , F) ≤ 2|Q| and COVLENlb(P , F) ≤ 2|Q|2.

Having shown the upper bounds for cutoff and covering length in both semantics, we
now show lower bounds for them. We show that the linear bound on cutoff and quadratic
bound on covering length are tight in both semantics.

3.2.3 Matching lower bounds for cutoff and covering length

In this section, we show that the linear bound on the cutoff and the quadratic bound
on the length of witness executions are tight, both for the reconfigurable and the lossy
broadcast networks. We give an example of a family of protocols for which any covering
execution needs at least linearly many nodes and a quadratic number of steps (in both
semantics).

Theorem 3.13. There exists a family of broadcast protocols (Pn)n with Pn = (Qn, In,Σn,∆n),
and target states Fn ⊆ Qn with |Qn| ∈ O(n), such that for every n, COVERr(Pn, Fn) 6= ∅,
COVERlb(Pn, Fn) 6= ∅, and any witness reconfigurable (resp., lossy) execution has size O(n)
and length O(n2).

Proof. Consider Pn, as depicted in Figure 3.5 with 2n+1 states: Qn = {q0, q1, . . . q2n}
where we identify q2n with , Σn = {ai, bi | 1 ≤ i ≤ n}, and let Fn = { }. The transition

relation is defined as follows: for every 1 ≤ i ≤ n, q2i−2
!ai−→ q2i−1, q2i−1

!bi−→ q2i−1 and

q2i−1
?bi−→ q2i. Recall that the self-loops upon receiving any message are implicit.

q0 q1 q2 q3 q4 ···
!a1 ?b1 !a2 ?b2 !an ?bn

!b1 !b2 !bn

Figure 3.5: Broadcast protocol with linear cutoff and quadratic covering length.

Any covering reconfigurable execution involves at least n+1 nodes. Indeed, to reach
, all the bi’s have to be broadcast at least once and the node responsible for the last

3.3. Succinctness of reconfigurations compared to message losses 55

broadcast of bi stays forever in state q2i−1. Therefore, a separate node is required for each
!bi. An additional node must reach , so that, at least n+1 nodes are required.

Any covering reconfigurable execution involves at least n2+5n
2

steps. Indeed, in a
minimal covering execution, there will be exactly one node in each qi. Moreover, a
broadcast of message bi to happen, at least n+2−i broadcasts of ai also need to happen
by that node. As a consequence, the covering length in reconfigurable semantics is at
least n+

∑n
i=1(n+2−i) = n+ n2 + 2n− n(n+1)

2
= n2+5n

2
.

By Lemma 2.10, from an execution in the lossy semantics, one can construct one
in the reconfigurable semantics with same number of nodes and same execution length.
Therefore, the above bounds also provide lower bounds on the cutoff and covering length
for lossy networks.

The linear bound for cutoff and quadratic bound for covering length are indeed tight
in both semantics. However, we now show that reconfigurable executions can be more
succinct than the lossy ones, in terms of number of nodes.

3.3 Succinctness of reconfigurations compared to mes-

sage losses

In the previous section, we have seen the reconfigurable and lossy networks mostly enjoy
the same properties: the coverability problem is decidable in both semantics, and for
positive instances of the coverability problem, the same tight bounds on cutoff and covering
length hold. We, however, now show that the reconfigurable executions can be more
succinct by a linear factor than the lossy ones, in terms of number of nodes. This can be
formalized as follows.

Theorem 3.14. There exists a family of broadcast protocols (Pn)n with Pn = (Qn, In,Σn,∆n)
and target states Fn ⊆ Qn such that for every n:

• there exists a reconfigurable covering execution in Pn with 3 nodes; and

• any lossy covering execution in Pn requires O(n) nodes.

Proof. Consider Pn, as depicted in Figure 3.6 with 3n+2 states: Qn = {q0}∪{q2i−1, q2i, ri |
1 ≤ i ≤ n} ∪ { ,⊥}, where we identify rn with , Σn = {a} ∪ {bi | 1 ≤ i ≤ n}, and let

Fn = { }. The transition relation is defined as follows: q0
!a−→ q0; q0

?b1−−→ r1; for every

1 ≤ i ≤ n, q0
?bi−→ ⊥, q2i−2

?a−→ q2i−1, q2i−1
!bi−→ q2i; and for every 2 ≤ i ≤ n, ri−1

?bi−→ ri.
Recall that the self-loops upon receiving any message are implicit.

In reconfigurable semantics, there exists a covering execution with 3 nodes for the
protocol in Figure 3.6, which is depicted in Figure 3.7. Coloured nodes here broadcast a

56 3. Tight Bounds on Cutoff and Covering Length

q0 q1 q2 q3 q4 ··· q2n

r1

⊥

r2 ···

!a

?a !b1 ?a !b2 ?a !bn

?b1 ?b2 ?bn

?bi

Figure 3.6: Example where reconfigurable semantics needs less nodes than lossy semantics.

message in the step leading to the next configuration. Along that execution, the top node
always remains at q0 and alternatively broadcasts a to the middle node and disconnects;
the middle node follows the chain of qi’s and alternatively broadcasts bi’s to the bottom
node, which gradually progresses along the chain of states ri and reaches .

q0

q0

q0

!a−→r
q1

q0

q0

!b1−→r
q2

r1

q0

!a−→r
q3

r1

q0

!b2−→r
· · · !bn−→r

q2n

q0

Figure 3.7: A covering reconfigurable execution with 3 nodes on the protocol from
Figure 3.6.

Let us now argue that in the lossy semantics, O(n) nodes are needed to cover . Firstly,
one node, say n , is needed to reach the target state, after having received sequentially
all the bi’s (which should then correspond to real broadcasts). Towards a contradiction,
assume there is a node n which makes n progress twice, that is, n is connected to n and
performs at least two real broadcasts, say !bi and !bj with i < j. Node n needs to receive
j − i > 0 times the message a after the real !bi has occurred, hence there must be at least
one node in state q0 connected to n after the real !bi by n. This is not possible, since this
node has received the real !bi while being in q0, leading to ⊥ if i > 1, otherwise ⊥ or r1.
Hence, each broadcast !bi needs to be sent by a different node. This requires at least
n+1 nodes, say {ni | 1 ≤ i ≤ n} ∪ {n }: node ni is responsible for broadcasting (with no
loss) bi and n progresses towards . Notice that n might be the node responsible for
broadcasting all the a’s. We conclude that n+1 is a lower bound on the number of nodes
needed to cover in the lossy semantics.

In fact, we can prove that n+1 nodes do actually suffice in lossy semantics to cover .
Let N = {ni | 1 ≤ i ≤ n} ∪ {n } and consider the static communication topology defined
by ni ∼ n for every i. In the covering lossy execution, node n initially broadcasts a’s,
so that all its neighbours, the ni’s can move to q2i−1, using lossy broadcasts. Then each
node ni broadcasts its message bi to n , starting with n1 until nn, so that n reaches

. Figure 3.8 depicts a lossy execution with n+1 nodes. In this picture, yellow nodes
perform real broadcasts, light blue nodes perform lossy broadcasts and grey nodes receive
messages corresponding to the real broadcasts.

3.4. Complexity of deciding the size of minimal witnesses 57

q0

q0 q0 q0 · · · q0

!a−→lb

q0

q1 q1 q1 · · · q1

(!b1−→lb

)n−1

lost

q0

q1 q2 q2 · · · q2

!a−→lb

q0

q1 q3 q3 · · · q3

(!b2−→lb

)n−2

lost

q0

q1 q3 q4 · · · q4

· · ·
q0

q1 q3 q5 · · · q2n−1

!b1−→lb

r1

q2 q3 q5 · · · q2n−1

!b2−→lb
· · · !bn−→lb

q2 q4 q6 · · · q2n

Figure 3.8: A covering loss-on-broadcast execution on the protocol from Figure 3.6.

Despite satisfying the same tight bounds, we have shown that reconfiguration can be
more succinct than message losses on broadcast. In the following section we study the
complexity of the MinNodes problem.

3.4 Complexity of deciding the size of minimal wit-

nesses

We now consider the decision problem of determining the minimal size of coverability
witnesses for the reconfigurable, as well as the lossy semantics.

Theorem 3.15. MinNodes is NP-complete for both reconfigurable and lossy broadcast

58 3. Tight Bounds on Cutoff and Covering Length

networks.

Proof. The NP-hardness of MinNodes is proved by reduction from SetCover, which
is known to be NP-complete [Kar72]. Recall that SetCover takes as input a finite set
of elements U , a collection S of subsets of U and an integer k, and returns yes iff there
exists a sub-collection of S of size at most k that covers U .

SetCover
Input: A finite set of elements U , a family S of subsets of U and k ∈ N.
Output: Yes if and only if there exists a subfamily C of S whose union is U and |C| ≤ k.

Lemma 3.16. SetCover reduces to MinNodes in logarithmic space.

Proof. Given an instance of the SetCover problem (U ,S, k), let us explain how to
construct in logarithmic space, a protocol P with a set of target states F and some integer
k′ such that (U ,S, k) is a positive instance of SetCover if and only if (P , F, k′) is a
positive instance of MinNodes.

For U = {a1, a2, . . . , an} and S = {S1, S2, . . . , Sm}, we define the protocol P =
(Q, I,Σ,∆) (depicted in Figure 3.9) as follows:

• Q = {s1, s2, . . . , sm}] {q1, q2, . . . , qn}] { };

• I = {s1, s2, . . . , sm} ∪ {q1};

• Σ = U ;

• ∆ = {(sj, !a, sj) | a ∈ Sj, 1 ≤ j ≤ m} ∪ {(qi, ?ai, qi+1) | 1 ≤ i < n} ∪ {(qn, ?an,)}.

We further let F = { }, and k′ = k+ 1. Clearly this reduction can be done in logarithmic
space. It remains to show that U ,S has a cover of size k if and only if there exists a
reconfigurable/lossy execution for P covering F and with k′ nodes.

s1 s2 ... sm

q1 q2 q3 ··· qn

!a11,!a12,··· !a21,!a22,··· !am1,!am2,···

?a1 ?a2 ?a3 ?an

Figure 3.9: Reduction from SetCover to MinNodes.

Suppose the SetCover instance is positive, and C = {S ′1, . . . , S ′k} is a cover of size k
(notice that if there exists a cover of size less than k, there is one of size exactly k). Let us
build a static execution ρ (with no message losses) that covers F in P . Of course, then ρ is

3.5. Concluding remarks 59

also a reconfigurable/lossy execution. Choose γ0 = (N,E, L0) where N = {n1, . . . , nk}∪{n},
L0(n) = q1, L0(ni) = s′i for all 1 ≤ i ≤ k (assuming s′i = sj whenever S ′i = Sj). Since
C covers each ai ∈ U , there exists j such that ai ∈ S ′j. Thus, the broadcast transition
(s′j, !ai, s

′
j) will be enabled, and some node may take the corresponding reception transition

(qi, ?ai, qi+1). As for the static communication topology, it is sufficient to assume that
nj ∼ n for all 1 ≤ j ≤ k. Messages ai’s are then being broadcast one after the other, and
node n sequentially receives them, so that we reach a configuration γ = (N,E, L) such that
L(n) = . The execution has k+1 nodes.

Assume now, that the SetCover instance is negative, thus there is no cover of size k
or less. For a contradiction, assume there exists an initial configuration γ0 = (N,E0, L0)
of size k+1 and a reconfigurable (resp., lossy) execution ρ from γ0 that covers . A
necessary condition is that q1 ∈ L0(γ0) and a single such node is sufficient, so we let
N = {n1, . . . , nk, n} with L0(n) = q1, L0(nj) = s′j for some s′j where 1 ≤ j ≤ k. Since the
SetCover instance is negative, there exists ai ∈ U such that ai /∈

⋃
1≤j≤k S

′
j. Therefore,

none of the nodes will be able to broadcast the message ai (assuming s′i = sj whenever
S ′i = Sj) and the corresponding reception (qi, ?ai, qi+1) will never be performed. This
contradicts the fact that ρ covers .

To prove the NP-membership of the MinNodes problem, it suffices to observe that both
the size and length of a minimal covering execution ρ are polynomially bounded, thanks
to the Theorems 3.7 and 3.12, respectively. The size of any configuration γ = (N,E, L) in
ρ is thus polynomially bounded: N is polynomially bounded, hence so is E, and finally, the
labelling function L can be represented as pairs (n, q) such that L(n) = q, which is again of
size polynomial in the size of P . Furthermore, a step γ → γ′, with γ′ = (N′,E′, L′), can be
verified efficiently: in reconfigurable semantics, we have to check whether there exists n ∈ N,
n′ ∈ N′ such that (L(n), !a, L′(n)) ∈ ∆, for every n′ ∈ Neighγ(n), (L(n), ?a, L′(n′)) ∈ ∆, and
for every n′′ /∈ Neighγ(n), L′(n′′) = L(n′′); similarly for the lossy semantics (in that case,
we need to first guess if the transition is a lossy one). It is thus possible to implement a
guess-and-check non-deterministic polynomial time algorithm for the MinNodes problem,
that non-deterministically guesses an execution with k nodes, and of length polynomial
in the size of the broadcast protocol. Hence, the MinNodes problem is in NP. This
concludes the proof of Theorem 3.15.

The problem of determining the size of a minimal witness is therefore NP-complete in
both reconfigurable and loss-on-broadcast semantics.

3.5 Concluding remarks

We have defined the notions of cutoff and covering length with respect to coverability for
broadcast protocols. In this chapter, we have shown tight bounds on these measures for
reconfigurable and lossy semantics. To be precise, we have shown a linear upper bound on
the cutoff and a quadratic upper bound on the covering length for the reconfigurable and

60 3. Tight Bounds on Cutoff and Covering Length

lossy networks. The proof is mainly based on a monotonicity property of the networks: if
a state can be covered from a configuration, it can also be covered from any configuration
with more nodes, called copycat property. We show in Section 3.1 that both reconfigurable
and loss-on-broadcast semantics satisfy this property. We then exploit this property to do
a fine analysis on the number of nodes required to cover a particular state of the broadcast
protocol P . We modify the saturation algorithm of [DSTZ12] in a way that additionally
keeps track of the size of an execution sufficient to cover any state in the set returned by
the algorithm. The modified saturation algorithm is presented in Algorithm 2.

We present the main results of this chapter in Section 3.2. The upper bound results
are constructive. We show by induction that for any state q in the set returned by
Algorithm 2, one can construct a covering execution with linear number of nodes and
of length quadratic in size of the protocol such that the final configuration has a node
in q. Conversely, we show that the set returned by Algorithm 2 is exactly the set of
coverable states: for reconfigurable semantics, the result follows from the correctness of
saturation algorithm of [DSTZ12], and for loss-on-broadcast semantics, we show that in
Lemma 3.11. We then prove matching lower bounds for the cutoff and covering length: we
give a family of protocols that achieves those bounds. Although as a bonus of the upper
bound results, we conclude that the set of states which can be covered in reconfigurable
and loss-on-broadcast semantics is actually the same, yet we show in Section 3.3 that the
reconfigurable semantics can be in some cases more succinct by a linear factor, in terms
of number of nodes (see Theorem 3.14). Finally, we show that deciding whether, given
some k, the cutoff is at most k is a NP-complete problem.

Application to other models of communication

We remark here that some of the results presented in this chapter apply to various other
communication models. Let us mention some of them here. In [DT13], the authors
consider asynchronous rendez-vous protocols, where at a certain instance, at most two
entities communicate via message passing, and additionally, each process contains a
mailbox where it stores the actions that are yet to be read. So, intuitively, the broadcasts
of messages are non-blocking and when a broadcast happens, the message is stored in
the mailboxes of the neighbours of the broadcasting node, which will eventually be read
by the receiving nodes. The authors show that when the mailbox is described as a bag
of actions, or a lossy FIFO channel, the coverability problem reduces to the same in
reconfigurable semantics of the same protocol seen as a broadcast protocol. Moreover, for
a protocol P , from a covering execution in reconfigurable semantics when P is seen as a
broadcast protocol, one can construct another execution of P in asynchronous rendez-vous
semantics, such that the latter has the same number of nodes as the former. Therefore, in
those cases, the upper bounds for cutoff for the coverability problem apply. More precisely,
for positive instances of coverability in an asynchronous rendez-vous network with the
mailbox described as a bag or a lossy FIFO channel, there is a covering execution with
linear number of nodes.

3.5. Concluding remarks 61

Another example is broadcast protocols with intermittent nodes considered in [DSTZ12].
The authors show that the coverability problem in this semantics reduces to the same in
reconfigurable semantics. That is, there exists a covering execution in one semantics if
and only if there is one in the other with same number of nodes. Therefore, the upper
bound for cutoff for coverability problem applies. More precisely, for positive instances of
coverability in broadcast networks with intermittent nodes, there is a covering execution
with linear number of nodes.

This work opens roads towards various research directions. Let us discuss some of
them here.

Tradeoff between cutoff and covering length

Consider the family of broadcast protocols Pn represented in Figure 3.10 with 2n+1 states:
Qn = {q0} ∪ {qi, ri | 1 ≤ i ≤ n} where we identify rn with , Σn = {a} ∪ {bi | 1 ≤ i ≤ n},
and let Fn = { }. The transition relation is defined by: q0

!a−→ q0; for every 1 ≤ i ≤ n,

qi−1
?a−→ qi; qn

!bi−→ q0; qn
?b1−−→ r1; and for every 2 ≤ i ≤ n, ri−1

?bi−→ ri.

q0 q1 q2 ··· qn

!a

?a ?a ?a

!bi

r1 ···
?b1 ?bn

Figure 3.10: Tradeoff between cutoff and covering length: constant number of nodes need
quadratic length, whereas linear number of nodes only require linear length.

Under static semantics (hence also in reconfigurable/lossy semantics), 3 nodes are
sufficient to cover , independently of the value of n. One node always performs the
broadcasts of a, a second node performs all the broadcasts of bi’s and the third receives
the bi’s to reach . One can show 3 nodes are also necessary in any semantics to reach .
Indeed, a node, call it n , has to reach by receiving all bi’s, the node that broadcasts
message a remains at q0 and a final node has to traverse through the cycle of qi’s to
perform !bi for n to successfully reach . An example static execution with 3 nodes
is given in Figure 3.11. However, with 3 nodes, the length of any covering execution is
quadratic in n: the node that performs the broadcasts of bi’s needs to go n times through
the cycle of qi’s of length n.

In contrast, with a linear number of nodes (precisely n+2), there exists a static
(hence also in reconfigurable/lossy semantics) covering execution of length also linear in n
(precisely 2n). One node initially sends all others to qn broadcasting a for n times, and
then n successive broadcasts of b1 to bn are sufficient to cover , see Figure 3.12. The
precise interplay between number of nodes and length of covering execution is thus an
interesting direction for future work.

62 3. Tight Bounds on Cutoff and Covering Length

q0

q0

q0

(!a−→s

)n qn

qn

q0

!b1−→s
q0

r1

q0

(!a−→s

)n qn

r1

q0

!b2−→s
q0

r2

q0

· · · !bn−→s
q0

q0

Figure 3.11: A static execution of size 3 and length O(n2) covering for the protocol of
Figure 3.10.

q0

q0 q0 q0

q0

· · · q0

(!a−→s

)n
q0

qn qn qn · · · qn

qn

!b1−→s

q0

q0 qn qn · · · qn

r1

!b2−→s
· · · !bn−→s

q0

q0 q0 q0 · · · q0

Figure 3.12: A static execution of size n+2 and length 2n covering for the protocol of
Figure 3.10.

(In-)Approximability

In Section 3.4, the MinNodes problem was shown to be NP-complete. That is, given
a broadcast protocol with a set of target states, we cannot design any algorithm which
runs in polynomial time and returns a covering execution with minimal number of nodes.
A natural question is thus can we design a polynomial time approximation algorithm
for the problem? Recall that the hardness result was shown by a reduction from the
SetCover problem, for which O(log n)- factor approximation algorithms are known
(see for instance the book [Vaz01]). This raises hope for existence of a similar factor
approximation scheme for MinNodes problem as well. We leave the problem of finding
an approximation scheme, if it exists, for MinNodes as future work.

Part II

Parameterized Concurrent Games

63

Chapter 4

Preliminaries

Games on Graphs. In computer science, games on graphs are a powerful but elegant
framework to model interactions between entities (also called players or agents in game
terminology). One of the motivations to study this model is to tackle the reactive
synthesis problem. In a reactive system, a controller communicates continuously with an
environment. For instance, one can think of an elevator (system) taking inputs from a
person (environment), or a computer receiving inputs from a user. In such scenarios, the
system has to react (and produce an output for an input given by the environment) in such
a way that the input-output sequence satisfies some desired properties (or specifications).
For instance, in the example of an elevator, one can think of a property that says “if it is
requested to stop at a certain floor, it must eventually stop at that floor”. These properties
are usually specified in some logic. Note here that the actions of the environment are
uncontrollable whereas the actions of the system are controllable, meaning we can program
them. One can then be interested in various problems, for instance, given a specification,
one can ask whether it is possible to design a system that could produce an output for
every possible input from the environment such that the input-output sequence satisfies
the specification; furthermore, for positive instances, automatically construct one. This
is known as the synthesis problem. This was first formalized by Church in [Chu62] for a
simple system with only one process. It turns out that one can reduce Church’s synthesis
problem into a game between system and environment on a finite graph such that a
positive answer to the problem corresponds to the existence of a winning strategy for the
system, see for instance the tutorial [Tho09].

In general, we consider a finite graph with a token moving along the edges. The token
is controlled by the players (or agents). We often consider infinite games, i.e., there are
infinitely many rounds. The game therefore results in an infinite sequence of vertices
called a play, and the way the players choose their moves are called strategies. One can
consider different models of games, for instance, one where the players take moves in turn
(turn-based games); or where they could play simultaneously (concurrent games). In this
chapter, we recall the basic notions and some classical results on those models.

Two-player turn-based games. The model of two-player turn-based games on graphs
is very much appreciated and well-studied in the literature. A turn-based game is played

65

66 4. Preliminaries

between two players - Eve and Adam- on a graph. In most of the scenarios and, more
specifically, in this thesis, we only consider games on finite graphs. A graph is composed
of a (finite) set of vertices and an edge relation between them. Some vertices belong to
Eve and the rest to Adam. The game starts at a designated initial vertex. At any step, the
player who owns the vertex chooses an outgoing edge, the game proceeds to the successor
vertex and the game continues from there. A history (resp., play) is any finite (resp.,
infinite) sequence of consecutive vertices.

A strategy for a player is a partial function that dictates the player’s next move: it
associates to every history ending at the player’s vertex a unique successor vertex. A
pair of strategies, one for each player, induces a play: the sequence of vertices selected
by the strategies. We often consider the game to be of infinite duration, i.e., the plays
have infinite length. This is a natural assumption: for instance in the synthesis problem,
the environment provides inputs forever and the system has to respond correspondingly,
producing an infinite sequence of inputs and outputs.

We associate to the game a winning condition Win for Eve which is a (possibly infinite)
set of plays. In zero-sum games, the winning condition for Adam is defined dually: a play
is winning for Adam if it is not in Win. We say Eve wins the game if she has a strategy
such that for any counter-strategy of Adam, the induced play belongs to Win. One of the
central problems is then, given a game graph and a winning set of plays Win, to decide if
Eve has a winning strategy.

Concurrent games. The model of turn-based games may not be appropriate in some
scenarios, for instance in situations where the system and the environment choose their
actions independently of each other and their combined actions determine the next state.
In distributed systems, processes run concurrently, interact with each other and also with
the environment. In such systems, it is typical that each component has private variables
that are not visible to the other components. This concurrent behaviour of processes can
be captured in the model of concurrent games.

In a two-player concurrent game, we are given a game graph with finitely many vertices
and the edges are labelled with pairs of actions, one for each player. At a certain vertex,
the players simultaneously choose their actions that are enabled at that vertex, and the pair
of chosen actions then determines the next vertex. The model can be non-deterministic:
from a vertex, a certain pair can lead to more than one successor in the game graph,
then the game moves to one of the successor vertices non-deterministically. Note that
turn-based games are particular types of concurrent games, where at each vertex, at
most one player has enabled actions. A history (resp., play) is a finite (resp., infinite)
sequence of vertices. A strategy for a player is a mapping that associates with a history
an action for that player. Similarly to the turn-based games, we define winning conditions
for the players as a (possibly infinite) set of plays, and we adapt the definition of winning
strategies. Then in a zero-sum setting, the problem one can be interested in is, given
a game graph and a winning condition Win, whether Eve has a winning strategy in the
game.

67

Games with arbitrarily many players. In the above models, the number of players
is fixed a priori. In fact, in these cases, there are exactly two-players. Although the
concurrent game model can easily be extended to a multi-player setting where, instead of
pairs of actions, the edges are labelled with tuples of actions, this model clearly cannot
capture a scenario where the number of participants is not fixed a priori. For instance, a
server may receive requests from an arbitrary number of clients or any number of devices
may connect to a wireless ad hoc network.

In this part of the thesis, we extend the model of concurrent two-player games to a
setting with an arbitrary number of players (or agents). The number of players is not
fixed a priori, however, we do not allow agents to join or leave in the middle of the game,
that is to say, when the game has started, the number of agents remains fixed throughout
the play. More specifically, this number k, which is fixed at the beginning of the game, is
initially unknown to the players, but they can gain some knowledge about k as the game
proceeds. We call them parameterized concurrent games, or simply parameterized games.

In this setting, once again, we are given a game graph with finitely many vertices,
but now the edges are labelled with languages of finite, yet a priori unbounded words to
represent the choices of agents. Here we implicitly assume that the agents have identifiers
which are known to them: the i-th letter of a word represents the action of the i-th player.
For instance, the label a+ represents that all players choose action a, similarly, (ab)+ is
the situation where each player with an odd identifier chooses a, and all other players
(with an even identifier) play b. If from a vertex v, (aa)+ leads to the unique successor v′

in the arena, it represents that if there are an even number of players and each of them
plays a at vertex v, then the game moves to v′. More precisely, in this part of the thesis,
we consider the edge labellings are regular languages over a finite set of actions. The
model we consider here is in general non-deterministic: from a vertex, a certain word can
lead to more than one successor in the game graph, the non-determinism is resolved by an
environment. A history is then a finite sequence of vertices, similarly a play is defined as
an infinite sequence of vertices. A strategy for a player is a mapping that associates with
a history an action for that player. Similarly to the previous games, we define a winning
condition as an infinite set of plays, and we adapt the definition of winning strategies of a
player: a strategy of a player applies with no prior information on the number of players,
therefore it should be winning independently of the number of players; we will formally
define them later.

We then consider two different scenarios, first, where a distinguished player, Eve, wants
to achieve a goal irrespective of the number of players and their choices, and second, a
coalition game, where all players together form a coalition and want to come up with a
strategy to fulfil a common goal. In both settings, the winning condition is given by a
(possibly infinite) set of plays. We are then interested in finding if Eve in the first setting
or the coalition in the second has a winning strategy in the game.

68 4. Preliminaries

Related work

The objectives considered in this part are qualitative: one can think of a payoff function
with values 1 (in case a play is winning for a player) or 0 (otherwise). More generally, a
quantitative objective assigns payoffs to players corresponding to each play, which need
not be Boolean in general. A model of quantitative games is where the edges of a graph
are labelled with rational payoffs for each player, and then the goal of a player is to
maximize her reward, examples are mean-payoff games where Eve needs to maximize
the limit average weight [EM79, ZP96, CDHR10], or energy games where Eve needs to
keep the sum of weights positive [BJK10, CDHR10]. One can also combine qualitative
and quantitative objectives: for example, Chatterjee et al. considers energy parity games
in [CD10] while in [CRR12], the authors study the strategy synthesis problem for games
with a multidimensional mean-payoff or energy objective along with a parity condition.

The turn-based games we consider in this part are perfect information, where each
player has all information about the other player’s actions and also about the current
state of the game. In some scenarios, it is reasonable to relax this assumption: in
an imperfect information model, some vertices may be indistinguishable to the system.
While the concurrent setting introduces some level of imperfect information between the
players, where they do not see each other’s actions, one can also consider such restrictions
in the turn-based setting, and ask if the system has a winning strategy in the game.
For instance, [Rei84] studies the complexity of such games; a fixed-point algorithm for
computing winning regions in such games with ω-regular objectives is given in [CDHR06];
in [BD08], the authors prove tight bounds for games with safety condition. One can
also consider quantitative objectives, for example, energy and mean-payoff objectives in
imperfect information games has been studied in [DDG+10]. Note that the number of
players in parameterized concurrent games is imperfect information to the players.

Non-zero-sum games with a fixed number of players, where each player has a different
goal, has been studied in the literature. In such setting, a payoff function is defined
that associates with any play a payoff to each player, and one asks whether there exists
an equilibrium. An example is a Nash equilibrium, which is a set of strategies of the
players that are rational to them in the sense that no one has an incentive to deviate
from it [Nas50]. Chatterjee et al. in [CMJ04] show that for a turn-based two-player game
with ω-regular objectives, a Nash equilibrium in pure strategies always exists. Further,
the complexity of Nash equilibria in turn-based games were studied in [Umm08] where an
equilibrium may need to additionally satisfy some qualitative constraints. Bouyer et al.
in [BBMU11, BBMU15] extend the study to the concurrent game setting.

The models of games on graphs have also been extended to numerous other settings.
To mention a few among them, Condon in [Con92] considers a stochastic model of graph
games with three types of vertices, the vertices of the third type is a probabilistic choice
vertex: the environment picks an outgoing edge from such vertex uniformly at random.
That paper studies the model for a reachability condition; later in [CJH03], the authors
consider stochastic games with a parity condition. In [MPS95], the authors consider timed
games where the outcome of a game not only depends on the players’ actions but also on

4.1. Two-player turn-based games 69

their timing; de Alfaro et al. in [dAFH+03] extend the model with an element of surprise
where a player cannot anticipate when the opponent’s action will occur at a certain round.
Gutierrez et al. in [GKW19] consider a cooperative setting with a fixed number of agents
in a concurrent game.

Our model of parameterized concurrent games mixes interactions and an arbitrary
number of agents. As far as we are aware, only a few other works in parameterized
verification have defined a game semantics, and they all largely differ from the current
setting. First, to study broadcast networks of many identical Markov decision processes,
broadcast networks of two-player games were introduced [BFS14]. There, the behaviour of
each agent is the same and is described by a two-player turn-based game. Second, a control
problem for an arbitrary size population of identical agents was studied in [BDG+19].
In that work, a controller plays against a parameterized number of agents, similarly
to Eve playing against an unknown number of opponents. However, in contrast to our
parameterized games, in the population control problem, the semantics is a turn-based
game, and, most importantly, the arena is not centralized. Third, in [BBLS20], a game
theoretic approach has been considered to study the synthesis problem over parameterized
alphabets, which reflects a static but unknown number of processes. However, in that
work also, the semantics is a turn-based game between system and environment, and
moreover, they are asynchronous, i.e., system has no influence on when environment acts.

Organization of the chapter

We begin with a two-player turn-based setting of games on finite graphs in Section 4.1.
We recall useful definitions and results from the literature. This is followed by a two-player
concurrent games setting played on finite graphs in Section 4.2. We then extend this
to a parameterized setting in Section 4.3 where the parameter is the number of players
participating in the game. We define the decision problems on this model that we are
interested in this part of the thesis. Finally, we close the chapter with a discussion on our
contributions to this model in Section 4.4 that will be presented in the following chapters.

4.1 Two-player turn-based games

In this section, we recall the basic notions of a two-player turn-based game. The reader
can refer to [GThW02, Chap. 2] for further reading. We, among many terminologies used
in literature, will call the players Eve and Adam.

Definition 4.1. A game arena is a tuple A = 〈V,E〉 where

• V is a finite sets of vertices, which is a disjoint union of two sets: V = VE]VA; and

• E ⊆ V × V is an edge relation on the set of vertices.

70 4. Preliminaries

The vertices in VE are controlled by Eve and vertices in VA are by Adam. In the
graphical representation of an arena, vertices in VE (resp., VA) are represented by circles
(resp., squares). We assume that the arena has no dead-end : for every v ∈ V , there exists
v′ such that (v, v′) ∈ E. This is a natural assumption since in practice, for instance,
in reactive synthesis, one is particularly interested in infinite behaviours of the players.
Figure 4.1 represents a game arena with VE = {v0, v3, v4} and VA = {v1, v2}.

v0

v1

v2

v3

v4

Figure 4.1: Example of a two-player turn-based game arena.

Intuitively, the game starting from a designated initial vertex v0 proceeds as follows.
One can think of a token moving along the arena. At the beginning, the token is at v0.
At a certain step, when the token is at v, the player who controls this vertex chooses a
successor vertex v′ and the token moves to v′. The game then proceeds similarly from
v′. To formally capture this, one needs to define histories, plays, and strategies for the
players.

Fix a game arena A = 〈V,E〉. Then we define the following.

Definition 4.2. A history is a finite sequence of vertices h = v0v1 . . . vt such that for
every 0 ≤ i < t, (vi, vi+1) ∈ E. A play is an infinite sequence of vertices ρ = v0v1 . . . such
that for every i ≥ 0, (vi, vi+1) ∈ E.

We now define a strategy for a player in a game arena. Intuitively, a strategy dictates
a player how to play the game. More precisely, yet informally, a strategy for a player is a
mapping that associates every history ending at the player’s vertex to a successor vertex.
It can be formally defined as follows.

Definition 4.3. A strategy for Eve from a vertex v0 in A is a partial function σ : V + → V
that associates to every history v0 . . . v, with v ∈ VE, a vertex v′ ∈ V such that (v, v′) ∈ E.
A play ρ = v0v1 . . . from v0 is induced by (or, compatible with or, follows) strategy σ if
for every i ≥ 0, whenever vi ∈ VE, we have vi+1 = σ(v0 . . . vi).

A strategy τ for Adam is defined analogously, for any history ending in a vertex of
Adam. One can also similarly define an induced play by τ .

Given an arena A and a vertex v0, a pair of strategies (σ, τ) from v0 for Eve and Adam,
respectively, defines a unique play ρ = v0v1 . . . such that for every i ≥ 0, if vi ∈ VE, then

4.1. Two-player turn-based games 71

vi+1 = σ(v0 . . . vi) and if vi ∈ VA, then vi+1 = τ(v0 . . . vi). We call ρ the outcome of σ and
τ from v0 and denote it by OutA(v0, σ, τ).

We distinguish a special form of strategies, called memoryless strategies, which depend
only on the current position of the token on the arena. This type of strategies does not
need any memory of the history. Formally, it is defined as follows.

Definition 4.4. A strategy σ for Eve (resp., Adam) from v0 is memoryless or positional
if there exists a function f : VE → V (resp., f : VA → V) such that for every history
v0 . . . v with v ∈ VE (resp., v ∈ VA), σ(v0 . . . v) = f(v).

For memoryless strategies, we will not distinguish between σ and f .

Sometimes a strategy might need finite memory. We can represent a finite-memory
strategy as an automaton with output where each state acts as a memory state, additionally
equipped with an act function that defines the strategy corresponding to the current
memory state and the current vertex and an upd function which updates the memory
state when necessary.

Definition 4.5. Let A = 〈V,E〉 be a two-player turn-based arena and v0 an initial
vertex. A Mealy automaton (also called a strategy automaton) for Eve in A is a tuple
M = (M, V,m0, act, upd) where

• M is a finite set of memory states;

• m0 ∈ M is the initial state;

• upd : M× V → M is the memory update function; and

• act : M× VE → V is the transition choice function.

A Mealy automaton M describes a strategy σM from v0 as follows: first, for any
history h ∈ V +, inductively define m[h] ∈ M by m[v0] = m0, and m[h · v] = upd(m[h], v); and
then σM is defined as σM(h) = act(m[h], last(h)) whenever last(h) ∈ VE, where last(h) is
the last vertex of history h.

We say a strategy σ from v0 for Eve is finite memory if there exists a strategy automaton
M such that σ = σM.

A strategy automaton for Adam can be defined analogously.

One can show that a strategy is memoryless if and only if it can be represented by a
strategy automaton with a single memory state. Intuitively, since a memoryless strategy
only depends on the current position of the game, the memory state is irrelevant, hence
one can forever loop in a single memory state. For the other direction, if a strategy
automaton consists of only one state, then the corresponding strategy cannot distinguish
among the prefixes of a history inducing a memoryless one.

72 4. Preliminaries

Lemma 4.6. Given a turn-based arena A and an initial vertex v0, a strategy σ for Eve in
A is memoryless if and only if there exists a strategy automaton M = (M, V,m0, act, upd)
with a single memory state: M = {m0} such that σ = σM.

We will now define when a play, more generally, a game is winning for a player. For
that, we associate a winning criterion with a game arena that defines winning plays for
the players. Later, we define some natural winning conditions that we will use in this part
of the thesis. Here we only consider zero-sum games, where a play is winning for Eve if
and only if it is not winning for Adam.

Definition 4.7. A winning condition (or a winning objective) on an arena A is a subset
Win ⊆ V ω of plays. A play ρ is winning for Eve if and only if ρ ∈ Win, otherwise Adam
wins the play. A strategy σ from v is winning for Eve if every play starting at v and
induced by σ belongs to Win. In other words, σ is winning for Eve from v if for every
counter-strategy τ of Adam from v, the outcome ρ of (σ, τ) belongs to Win. Finally, Eve
wins from a vertex v if she has a winning strategy from v.

An arena A, together with a winning condition Win defines a game: G = (A,Win).
We denote the set of vertices that are winning for Eve by WE and the set of vertices which
are winning for Adam by WA. They are called the winning region for Eve and Adam,
respectively.

Definition 4.8. A game G = (A,Win) with A = 〈V,E〉 is determined if and only if from
every vertex either Eve or Adam has a winning strategy. In other words, G is determined
if and only if V =WE]WA.

Given a game G = (A,Win), and an intial vertex v0, one can ask whether Eve has a
winning strategy from v0. We can formalize this as follows.

Two-player turn-based game problem
Input: A game G = (A,Win) and an initial vertex v0.
Question: Does Eve have a winning strategy from v0 in G?

We recall here some of the winning conditions, which we will use in this part of this
thesis. One can consider the objectives that a certain vertex is surely visited (reachability),
or a certain vertex is always avoided (safety), or a vertex is visited infinitely often (Büchi).
Notice that while it can be decided from a finite prefix of a play whether it satisfies a
reachability condition, or violates a safety condition, for Büchi condition, that is not the
case. Let us formally define these winning conditions.

Fix a two-player turn-based arena A = 〈V,E〉. Then:

• Reachability: A reachability condition is specified by a subset F of V that describes
the winning condition Reach(F) = {v0v1 . . . | ∃i ≥ 0 : vi ∈ F}. Intuitively, a play
is winning if and only if it visits a vertex from F .

4.1. Two-player turn-based games 73

• Safety: A safety condition is specified by a subset F of V that describes the winning
condition Safe(F) = {v0v1 . . . | ∀i ≥ 0 : vi ∈ F}. Intuitively, a play is winning if
and only if it only visits vertices from F .

Notice that safety condition is the dual of reachability in the sense that given any
finite subset F of V , Safe(F) = V ω \Reach(V \F). Indeed, a play only visits vertices
from the set F if and only if it never visits a vertex from V \ F .

• Büchi: A Büchi condition is specified by a subset F of V that describes the winning
condition Büchi(F) = {v0v1 . . . | ∃ωi ≥ 0 : vi ∈ F}, where the notation ∃ωi denotes
‘there exists infinitely many i’. Intuitively, a play is winning if and only if it visits
vertices from F infinitely often.

Let us illustrate the winning conditions on an example. Consider again the example
in Figure 4.1. Assume the vertex v0 is the initial vertex of the arena depicted with an
incoming arrow to this vertex.

Example 4.9 (Reachability). Consider first a reachability winning condition for Eve with
the set of target vertices F = {v4}. Eve has a winning strategy in this case. A winning
strategy σ is as follows: σ(v0) = v2;σ(v3) = v4; σ(v4) = v4. Indeed, no plays induced by
σ ever visit vertex v1, and Adam has two choices from vertex v2, in both cases the game
eventually reaches v4. Notice that this is a memoryless strategy. In fact one can show that
for reachability conditions, memoryless strategies are enough, in the sense that if a player
has a strategy to win a reachability game then he or she has a memoryless one. One can
further show that this is the unique memoryless winning strategy for Eve in this example.
Indeed, if Eve chooses to always move to v1 from v0, Adam can force the game to stay
within the loop between v0 and v1, that never visits vertex v4.

Example 4.10 (Safety). Consider the safety winning condition for Eve described by the
set of ‘safe’ vertices F = V \ {v4}. Eve has a winning strategy in this case. A winning
strategy σ is as follows: σ(v0) = v1;σ(v3) = v1; σ(v4) = v4. Indeed, the game induced by
σ never visits vertex v2, and from v3, Eve avoids vertex v4 by moving to v1; therefore, no
induced play ever visits v4. Notice that this is a memoryless strategy. In fact, one can
show that for safety conditions as well, memoryless strategies are enough. One can also
show this is the unique memoryless winning strategy for Eve in this example. Indeed, if
Eve chooses to always move to v2 from v0, Adam can force the game to vertex v4.

Example 4.11 (Büchi). Let us now consider a Büchi winning condition for Eve on this
arena described by the set F = {v1}. Once again, Eve has a winning strategy to visit vertex
v1 infinitely often. A winning strategy σ is as follows: σ(v0) = v1;σ(v3) = v1; σ(v4) = v4.
One can easily verify that all plays induced by σ visits v1 infinitely often. Notice that
this is again a memoryless strategy. In fact, one can show that also for Büchi conditions,
memoryless strategies are enough. One can further show this is the unique memoryless
winning strategy for Eve in this example. Indeed, if Eve chooses to always move to v2 from
v0, Adam can simply move to v4 and stay there forever, which is a losing play for Eve.

Let us now recall some complexity results on the two-player turn-based game problem
defined earlier for the aforementioned winning conditions, which we will use in the following
chapters of the thesis.

74 4. Preliminaries

Theorem 4.12. For reachability (resp., safety) winning conditions, the two-player turn-
based game problem can be solved in linear time in the size of the arena. More precisely,
one can compute memoryless winning strategies for both players. Furthermore, these
games are determined.

Let us briefly sketch the idea for the proof of the result for reachability objective,
which we will later use in proving our results. Given a set of target vertices F for Eve, we
inductively construct the winning region WE as follows. We start with F and gradually
append vertices to it. At i-th iteration, for a vertex v ∈ V , if v ∈ VE and there is an
outgoing edge to a vertex in W i

E; or if v ∈ VA and all the outgoing edges reach vertices
in W i

E, we add v to this set. Finally, we stop at saturation (since the arena is finite, it
eventually saturates) and the set it returns is the winning region for Eve. One can then
show that Eve indeed has a winning strategy from every vertex in WE and, further, Adam
has a winning strategy from any vertex outside WE. This construction is called attractor
computation, and the sets calculated in this procedure are called attractors.

A similar result as Theorem 4.12 also holds for Büchi winning condition:

Theorem 4.13. Büchi games are determined in polynomial time in the size of the arena,
and one can effectively compute memoryless winning strategies for both players.

In the next section, we recall basic definitions and important results for another model
of games, called concurrent games, that differs from the model of turn-based games in a
way that captures the notion of parallelism among the players.

4.2 Two-player concurrent games

In the previous section, we have seen a model of games on graphs where the players
play in turn. That is, at a certain instant, when the token is at a certain vertex of the
arena, exactly one player who owns that vertex chooses the next transition. However,
this model of games may not be appropriate in some scenarios, for instance to describe
parallelism between the players or concurrency in distributed systems. Consider a toy
example. Suppose Eve and Adam decide to play the following game: each of them chooses
a natural number between 1 and 10, and whoever chooses the larger number wins the
game. Notice that in a turn-based setting, whoever first chooses the number has an unfair
advantage in this game. Here concurrent game model comes to the rescue; it models
the concurrency between the players. To model the above game, one can consider an
arena where the edges are labelled with pairs of naturals between 1 and 10, and from the
initial vertex, edges with labels (n1, n2) with n1 > n2 lead to a vertex that represents the
winning vertex of player 1, for pairs (n1, n2) with n1 < n2 lead to a vertex that represents
the winning vertex of player 2, and the rest of them lead to a neutral vertex.

Another example is the game of rock-paper-scissors, where two (or more) players
simultaneously choose their moves. A game of rock-paper-scissors between two players is

4.2. Two-player concurrent games 75

v0 v1v2

〈p,r〉;〈s,p〉;〈r,s〉〈r,p〉;〈p,s〉;〈s,r〉

〈∗,∗〉〈∗,∗〉 〈r,r〉;〈p,p〉;〈s,s〉

Figure 4.2: A game of rock-paper-scissors.

shown in Figure 4.2. Here r, p, s are the actions of the players representing rock, paper
and scissor, respectively. Different components of an arena will be formally defined in
the sequel. Intuitively, from v0, if both players choose the same action, the game loops
at v0; for the choices of actions that are winning for player 1 (paper wins against rock,
rock wins against scissor, and scissor wins against paper) lead the game to v1, and the
rest to v2. In computer science, often in some concurrency models, the system and the
environment choose their actions simultaneously and their combined actions determine
the next transition. Other examples are distributed systems where multiple processes of a
system cannot see each other’s actions and therefore at a certain instance they must play
actions simultaneously and independently of each other.

A concurrent game arena is again described by a finite graph, however, in contrast
to the turn-based model, every vertex is of the same type, that is to say we do not
distinguish vertices corresponding to the players, Eve and Adam. Additionally, we are
given a finite set of actions Σ for each of the players. In the case of a two-player scenario,
the edges of the graph are labelled with pairs of actions from Σ, for Eve and Adam, in
that order. Notice that this formalism can easily be extended to a setting where there
are more than two-players, in which case the edges would be labelled with a tuple of
actions, one for each player. Although a deterministic model of concurrent games was
initially considered for instance in [AHK98, AHK02], one can easily extend this to a
non-deterministic framework, where from a vertex, a pair of actions may lead to different
vertices in the graph; such a model was considered, for example, in [BBMU15]. One can
also consider a probabilistic transition relation in this model that associates with a vertex
and a pair of actions a probability distribution over vertices [dAHK07]. However, in this
thesis, since we are interested in non-probabilistic models, in the rest of this section, we
will consider the model of concurrent games equipped with non-deterministic transitions
without probabilities.

Given an arena A and an initial vertex v0, a concurrent game with two players proceeds
as follows. Consider a token moving along the edges of the graph. Initially, the token is
at v0. At any instance when the token is at some v, each player independently chooses
an action enabled for her/him at that vertex and the token non-deterministically moves
to one of the successor vertices according to the transition relation. We can analogously
define a history (resp., play) as a finite (resp., infinite) sequence of vertices and a (pure
or non-randomized) strategy for each player as a mapping that associates with every
finite history an action that is enabled at the last vertex of the history. Similarly to
the turn-based model, we define winning objectives Win as the set of winning plays for
Eve. While we mainly consider reachability and safety conditions for the problems we are
interested in, some of our results will also apply for various other objectives. We say a

76 4. Preliminaries

strategy of Eve is winning for her w.r.t. Win if for any counter-strategies of Adam, all
induced plays are in Win. Finally, given an initial vertex and a winning objective, we say
Eve wins a two-player concurrent game if she has a winning strategy for that objective.

We now formally define the model.

Definition 4.14. A (two-player) concurrent game arena is a tuple A = 〈V,Σ,ΓE,ΓA,∆〉

• V is a finite set of vertices;

• Σ is a finite set of actions for the players;

• ΓE : V → 2Σ (resp., ΓA : V → 2Σ) assigns with each vertex a set of actions that are
enabled for Eve (resp., Adam);

• ∆ : V ×Σ×Σ→ 2V is the transition function, a mapping that associates with every
vertex v ∈ V and any two actions a ∈ ΓE and b ∈ ΓA, a set of successor vertices.

Let us give another example of a concurrent game arena.

Example 4.15. Figure 4.3 represents a two-player concurrent game arena with the set of
vertices V = {v0, v1, v2}. The set of actions for the players is given by Σ = {p1, p2, q1, q2}.
Without loss of generality, we assume that the first component of each pair represents the
actions of Eve and the second component of Adam. Unlike Figure 4.2, in this example,
we assume that the set of actions are disjoint for the players, more precisely, we assume
that pi (i ∈ {1, 2}) are never enabled for Adam and similarly qi for Eve. The edge labels
described in the picture define the transition relation. For instance, the tuple (p2, q2) from
v0 to v2 represents that at vertex v0, if Eve chooses p2 and Adam chooses q2, then the game
moves to v2. In this picture and throughout this part of the thesis, the label ‘∗’ will stand
for any enabled action for the respective player. Note that there is a non-deterministic
choice from v0 when Eve chooses the action p1 and Adam plays q1. Notice also that action
q1 from v1 is not enabled for Adam.

v0 v1v2

〈p1,q1〉;〈p1,q2〉 〈p2,q2〉〈∗,q1〉 〈p1,q1〉;〈p2,q1〉

〈p2,q2〉

〈p2,q2〉

〈∗,q2〉

Figure 4.3: Example of a two-player concurrent game arena.

Remark that the definition of a concurrent arena for two players can naturally be
extended for more than two players. More precisely, one can consider a set Agt of players
and modify the transition function as follows: ∆ : V ×ΣAgt → 2V that maps a vertex and
an action for each player to a set of vertices. However, in the rest of the section, we will
consider the two-player setting and recall results for that setting.

4.2. Two-player concurrent games 77

Since we are interested in infinite behaviours of the players, like in the turn-based
setting, we assume that a concurrent arena is complete for enabled actions. Formally, for
every v ∈ V , and any two actions a ∈ ΓE(v) and b ∈ ΓA(v), we assume ∆(v, a, b) 6= ∅.

A special case of a concurrent arena is a deterministic one. In a deterministic arena,
from every vertex, for each pair of actions of the players, there is at most one successor
vertex. Formally, an arena A = 〈V,Σ,∆〉 is deterministic if for every v ∈ V , and any
two actions a ∈ ΓE(v) and b ∈ ΓA(v), there is at most one vertex v′ ∈ V such that
v′ ∈ ∆(v, a, b). For example, the game arena in Figure 4.2 is a deterministic one.

The game on a concurrent arena from a designated initial vertex v0 proceeds as follows.
Think of a token moving along the arena, initially it is at v0. At any instance, when
the token is at v, each player independently chooses an action, say a and b respectively,
enabled at v. Then a vertex v′ from ∆(v, a, b) is selected non-deterministically and the
game proceeds to v′.

In the following, we recall the definitions of a history, play and a strategy for a player
from a vertex in a given concurrent arena analogous to the turn-based setting. While in
this part of this thesis, we will only focus on non-randomized strategies, we will note some
remarks on randomized strategies in the sequel.

Definition 4.16. A history is a finite sequence of vertices h = v0v1 . . . vt such that for
every 0 ≤ i < t, there exist a ∈ ΓE(vi) and b ∈ ΓA(vi) such that vi+1 ∈ ∆(vi, a, b). A
play is an infinite sequence of vertices ρ = v0v1 . . . such that for every i ≥ 0, there exist
a ∈ ΓE(vi) and b ∈ ΓA(vi) such that vi+1 ∈ ∆(vi, a, b).

A strategy dictates a player how to move the token along the game. More precisely, a
(pure or non-randomized) strategy for a player is a mapping that assigns to any history
an action enabled for her/him at that vertex. It can be defined formally as follows.

Definition 4.17. A strategy for Eve from a vertex v0 in A is a function σ : V + → Σ
that associates to every history h = v0 . . . v an action a ∈ ΓE(v) enabled for her at v. We
say a play ρ = v0v1 . . . from v0 is compatible with or induced by strategy σ of Eve if for
every i ≥ 0, there exists bi ∈ ΓA(vi) such that vi+1 ∈ ∆(vi, σ(v0 . . . vi), bi).

Notice that a strategy can only assign actions that are enabled for the player at a
particular vertex. A strategy for Adam can be defined similarly.

Given an arena A and an initial vertex v0, a pair of strategies (σ, τ) from v0 for Eve
and Adam, respectively, defines outcome, denoted by OutA(v0, σ, τ) ⊆ V ω, the set of plays
compatible with σ and τ . Formally, a play ρ = v0v1 . . . is in OutA(v0, σ, τ) if for every
i ≥ 0, there exists ai ∈ ΓE(vi) and bi ∈ ΓA(vi) such that ai = σ(v0 . . . vi), bi = τ(v0 . . . vi)
and vi+1 ∈ ∆(vi, ai, bi). Notice that, unlike turn-based setting, the outcome of a pair of
strategies in the concurrent setting may not be unique. This is because a concurrent arena
can be non-deterministic. For deterministic arenas, however, the outcome of a pair of
strategies is unique.

78 4. Preliminaries

A memoryless strategy only depends on the last vertex of a history. Formally, a
strategy σ for a player from v0 is memoryless if there exists a function f : V → Σ
such that for every history v0 . . . v, σ(v0 . . . v) = f(v). A Mealy automaton for finite
memory strategies can be defined similarly as in the turn-based setting. However, in
concurrent game framework, one needs to modify the act function in the definition of a
Mealy automaton from Page 71 with upd : M × V → Σ which associates to a memory
state and a vertex an action in ΓE (in case of Eve’s strategy) or in ΓA (in case of Adam’s
strategy). Given a strategy automaton M, we can define the corresponding strategy
described by it, σM, similarly to the turn-based setting. We then say a strategy σ from
v0 for a player is finite-memory if there exists a strategy automaton M with σ = σM.

We can define a winning objective for Eve on a zero-sum concurrent arena, analogous
to the turn-based setting. Recall that in a zero-sum game a play is winning for Eve if and
only if it is not winning for Adam.

Definition 4.18. A winning condition on an arena A is a subset Win ⊆ V ω of plays. A
play ρ is winning for Eve if and only if ρ ∈ Win, otherwise Adam wins the play. A strategy
σ from v is winning for Eve if every play starting at v and induced by σ belongs to Win.
In other words, σ is winning for Eve from v if for every counter-strategy τ of Adam from
v, OutA(v, σ, τ) ⊆ Win. Finally, Eve wins from a vertex v if she has a winning strategy
from v.

An arena A, together with a winning condition Win, defines a game: G = (A,Win).
We denote the set of vertices that are winning for Eve by WE and the set of vertices
which are winning for Adam by WA. They are called winning region for Eve and Adam,
respectively. While in this part of the thesis we mostly focus on reachability and safety
winning conditions, one can also consider other ω-regular conditions, for example a Büchi
condition. We give an example of a concurrent game with a Büchi objective below.

Example 4.19. Consider again the game arena from Figure 4.3. Let Eve’s objective here
is to satisfy a Büchi condition described by the set of vertices F = {v0, v1}. One can show
that Eve has a winning strategy σ from v0 to satisfy the condition. Define σ as follows:
σ(hv0) = p1, σ(hv1) = p2, σ(hv2) = p1 for any history h ∈ V ∗. At v0, on Eve’s action,
the game either stays at v0 or it might move to v1 (because of the non-determinism in
the arena on Adam’s action q1); at v1, on Eve’s action p2, the game can either stay at v1

or may go back to v0. Therefore, there are only three types of induced plays: first, after
finitely many rounds, the game stays at v0; or after finitely many rounds, it stays at v1;
or both of them are visited infinitely often. In all cases, the Büchi condition described by
set F is satisfied, and σ is indeed a winning strategy for Eve.

Given a concurrent game G = (A,Win), and an initial vertex v0, we are interested
in the problem of deciding whether Eve has a winning strategy in G from v0. We can
formalize the problem as follows.

Two-player concurrent game problem
Input: A concurrent game G = (A,Win) and an initial vertex v0.
Question: Does Eve have a winning strategy from v0 in G?

4.3. Parameterized concurrent games 79

We recall here a result from [AHK98] for the above problem with reachability objectives.

Theorem 4.20 ([AHK98]). For reachability objectives, the two-player concurrent game
problem can be solved in linear time in the size of the arena. More precisely, one can
compute memoryless (pure) winning strategies for Eve.

The winning set of Eve in a concurrent reachability game can be computed in a similar
way as in the turn-based setting. Given a set of target vertices F for Eve, we inductively
construct the winning region WE as follows. We start with F and gradually append
vertices to it. At i-th iteration, let W i

E be the set of vertices computed so far. Then for a
vertex v ∈ V , if there exists an action ai in ΓE(v) such that for any action bi in ΓA(v),
the vertices in ∆(v, ai, bi) belong to W i

E, we add v to the set and call it W i+1
E . Finally, we

stop at saturation (since the arena is finite, the set eventually saturates) and call it WE.
We claim that WE is the winning region for Eve. One can then show that Eve indeed has
a memoryless pure winning strategy from every vertex in WE and, further, Adam has a
memoryless randomized spoiling strategy from any vertex outside WE. Furthermore, the
set WE can be computed in linear time on the size of the arena.

We here note a couple of remarks on the model of concurrent games. First, a turn-
based game is a particular case of the concurrent ones. Indeed, consider a deterministic
concurrent arena in which at every vertex, at most one player has more than one action
enabled, then the arena is equivalent to a turn-based one. For example, if only Eve has
more than one action enabled from a vertex in the concurrent arena, it can be recognized
as a vertex of Eve in the corresponding turn-based arena; and similarly for Adam.

In this thesis, we only consider pure strategies of the players. However, one can also
consider randomized strategies on a concurrent game arena, which maps every history to a
probability distribution over actions enabled to the players at the last vertex of the history.
In [AHK98], the authors consider such a definition of strategies and study various decision
problems. They give an example of a concurrent game with a reachability condition such
that Eve has no pure strategy that is winning against all strategies of Adam, but she has
a randomized strategy that reaches F with probability 1 regardless of Adam’s strategies.

In the following section, we extend the model of a two-player concurrent game to a
parameterized setting, where the parameter is precisely the number of players participating
in the game. We can then naturally extend the definitions of histories and plays. Finally,
we introduce the two kinds of problems we are interested in that we will discuss in the
next chapters.

4.3 Parameterized concurrent games

In the previous section, we have recalled the basic concepts of a (fixed) two-player
concurrent game played on a finite graph. In such setting, players are aware of the fact
that there are exactly two players throughout the game. We here extend this model to the

80 4. Preliminaries

setting where the number of players is not fixed a priori. Generalizing concurrent games
to a parameterized number of players can be done by replacing, on edges of the arena,
tuples representing the choice of each of the players by languages of finite yet a priori
unbounded words. Indeed, pairs of actions in the two-player setting can equivalently be
represented by words of length 2. In this part of the thesis, we consider regular languages,
given by NFAs, and represented by regular expressions in the examples. For instance,
the label a+ represents that all players choose action a, while ab+ is the situation where
the first player chooses a and all other players play b. Such a parameterized arena can
represent infinitely many interaction situations, one for each possible number of agents:
length k-words are for interactions among k players. We will further assume that the
parameterized arenas are complete w.r.t. the actions of the players, that is from every
vertex v, for any k ∈ N>0, and for every word w ∈ Σk of length k, there is a successor v′

of v with edge label L such that w ∈ L.

In parameterized concurrent games, the agents do not know a priori the number of
agents participating in the interaction. Furthermore, we will restrict the model such
that once the game has started, the number of players is fixed throughout the game.
Yet, the difficulty lies in the fact that this number is not known to the players and can
be unbounded a priori. The actions of selecting the number of players and resolving
non-determinism in the game graph are performed by an adversarial environment. Each
player can only observe the sequence of vertices played so far and the actions it has played.
These pieces of information may refine the knowledge each player has on the number of
involved players. To be precise, they infer knowledge on the possible number of players
from a history and play the next move accordingly. Before going into formal definitions,
let us first illustrate the model through examples.

v0

v1

v2

v3

v4

v5

v6

aΣ

Σ≥2\{aΣ+aΣ≥2}

aΣ ≥
2

Σ ≥
2

Σ
≥2

aΣ

bΣ
≥2

bΣ
aΣ ≥

2

Σ≥2

Σ≥2
Σ≥2

Figure 4.4: An example of a parameterized concurrent game.

Example 4.21. Consider the parameterized arena depicted in Figure 4.4. Vertices are
V = {v0, . . . , v6}, and the set of actions is Σ = {a, b}. As such, the arena is not complete,
we assume that all unspecified words from any vertex lead to vertex v6. The arena is
deterministic in this example, that is for every vertex v and every word w ∈ Σ+, there is at
most one outgoing edge from v with label L with w ∈ L. The regular language on the edge
from v0 to v1, for example, represents that if there are exactly two-players and if Eve (not
knowing a priori how many players are there, unless they inferred from the past history)
plays action a, then for any action of the second player, the game moves from v0 to v1.
At vertex v3, if the first player Eve plays action a, then against one opponent it moves to
v4, and otherwise to v5. Similarly, at v3, if she plays b, then against one opponent the
game goes to v5, and otherwise to v4.

4.3. Parameterized concurrent games 81

On the previous example, one can consider decision problems of existence of winning
strategies of Eve against any number of opponents and their actions, for a given set of
winning plays. Moreover, she does not know a priori how many opponents she has,
therefore, she has to play uniformly, whatever the number of opponents she has. A
strategy of a player is a function from histories to the set of actions. Given an objective
for Eve, a strategy for her is winning w.r.t. objective Win, if for any number of opponents
k ∈ N>0 and for every strategy of the opponents, all induced plays belong to Win. In
this setting, Eve wants to achieve a particular objective, whereas her opponents want to
prevent her from achieving her goal.

Let us illustrate how a game proceeds on a parameterized arena over an example.
Consider the arena in Figure 4.4, and let v0 be the initial vertex. The game from v0

proceeds as follows: a positive integer k, the number of players, is first selected by an
environment that is unknown to the players. At vertex v0, all k players choose actions
simultaneously, then this forms a k-length word: assuming Eve is the first player, if the
i-th player plays action ai, then the word formed is w = a1 . . . ak. Notice that we assume
all players have identifiers, and they know their own identifiers; they are implicitly used
to model the game. Then depending on whether the word w belongs to aΣ (in case Eve
plays action a and k is exactly 2) or aΣ≥2 (in case Eve plays action a and k is more than
2), the game proceeds to vertex v1 or v2, respectively, and to v6 otherwise. This process
is repeated ad infinitum, generating an infinite play on the arena. In this example, and
more generally, in the setting where Eve wants to achieve a goal against arbitrarily many
opponents, we assume that there are at least one opponent of Eve in the game. Notice
that in this example, the regular languages on the edges are particularly simple: they only
constrain the number of opponents Eve has, that is, a move here only depends on Eve’s
action at a certain vertex and the number of her opponents.

Consider a reachability objective for Eve, on that example, described by the set of
target vertices F = {v4}. Let us informally argue here that Eve indeed has a winning
strategy to reach v4 in this example. For instance, at v0, v1 and v2, she chooses action a,
(notice that in this example her choice at v1 and v2 is irrelevant) and at v3, depending
on the history, she infers whether she has a single opponent or more than one opponent
and plays accordingly. More precisely, if the history is v0v1v3, she knows she has a single
opponent in which case she plays action a at v3, and if the history is v0v2v3, she infers
that the number of her opponents is more than one, and she plays b. In both cases, she
ensures the game reaches to vertex v4, irrespective of her number of opponents and their
actions.

Let us give here another example of a game on a parameterized arena. This is an
example of a coalition game where, given a game arena and an objective, every potential
agent involved in the game applies a strategy such that collectively a global objective is
satisfied. That is, the players have the same objective, and they must cooperate with each
other and select respective strategies to win collectively against the environment. The
collective strategies of the agents is called a strategy profile. Then a natural problem one
can be interested in is to decide if there exists a strategy profile that is winning for the
coalition, and if it exists, synthesize it.

82 4. Preliminaries

In some situations, it can be more effective for the players to form a coalition. Let us
first give an example of the coalition setting with a fixed number of players. Suppose 3
individuals are planning a tour to the same place. If they book their mode of transportation
individually, it costs 80 euros each. However, if 2 of them (form a coalition and) share
it, it costs 50 euros for each in the coalition, and for a coalition of 3, it costs 40 euros
each. Clearly, it is the most effective for all of them to make a coalition in this situation.
The notion of coalition games appears in literature, see for instance [OR94, Part IV].
One can also refer to [Pri14, Chap. 35] for more involved, but interesting examples of
coalition games. Coalition games are also called cooperative games in the literature. In
the following, we consider coalition games on parameterized arenas with a qualitative
objective for the coalition.

We study a parameterized extension of coalition games where the parameter is again
the number of players participating in the game. Given a parameterized arena informally
defined in the beginning of the section and a global objective, the problem consists in
synthesizing for every potential agent involved in the game, a strategy that she should
apply, so that, collectively, a global objective is satisfied. Informally, a strategy of
individual i assigns with every history an action ai; then a coalition strategy is an infinite
tuple of individual strategies of the players. We will later argue that this definition is
equivalent to the one that maps each history to an ω-word in Σω of which the i-th letter
represents the action for agent with identifier i. Given a winning objective Win for the
coalition, a coalition winning strategy must satisfy that for every k ∈ N>0, all induced
plays with k players satisfy the objective. Let us illustrate the coalition setting on an
example.

v0

v1

v2

v3

v4

v5

(Σ
Σ)

+

Σ(ΣΣ) ∗

Σ +

Σ
+

(bb
)
+

a(
aa

)
∗

(aa) +
b(bb) ∗

Σ+

Σ+

Figure 4.5: Example of a coalition game.

Example 4.22. Consider the parameterized arena depicted in Figure 4.5. Vertices are
V = {v0, . . . , v5}, and the set of actions is Σ = {a, b}. As such the arena is not complete,
we assume that all unspecified words from every vertex lead to the sink vertex v5. The
arena is deterministic in this example, that is for every vertex v and every word w ∈ Σ+,
there is at most one outgoing edge from v with label L with w ∈ L. The regular language
on the edge from v0 to v1, for example, represents that if there are an even number of
players, then for any action by each of them moves the game from v0 to v1. At vertex
v3, if everyone chooses a, then with even (resp., odd) number of players, the game moves
to v5 (resp., v4); similarly if all of them choose b, then with even (resp., odd) number of
players, the game moves to v4 (resp., v5).

Consider a safety objective for the coalition, on that example, described by the set
of target vertices F = V \ {v5}. Let us informally argue here that the coalition indeed

4.3. Parameterized concurrent games 83

has a winning strategy to avoid v5 in this example. For instance, at v0, v1 and v2, the
coalition can play aω (they can in fact choose any word in Σω), and at v3, depending on
the history, the coalition infers whether the number of players is even (resp., odd), in that
case the coalition plays bω (resp., aω), and reaches v4. More precisely, if the history is
v0v1v3, the coalition infers the number of players is even, in which case they play bω, and
if the history is v0v2v3, they infer that the number of players is odd, in which case they
play aω. In both cases, it ensures the game avoids vertex v5, irrespective of the number of
players at the start of the game. Notice that the choice of the coalition at v1 and v2 is
irrelevant.

We now formally define a parameterized arena and formalize the problems we will
consider in this part of the thesis on such arenas.

Definition 4.23. A parameterized arena is a tuple A = 〈V,Σ,∆〉 where

• V is a finite set of vertices;

• Σ is a finite set of actions;

• ∆ : V × V → 2Σ+
is a transition function.

In this work, we assume that for every (v, v′) ∈ V ×V , ∆(v, v′), when non-empty, describes
a regular language given by a non-deterministic finite automaton (NFA).

Definition 4.24. An NFA is a tuple N = (QN ,ΣN ,∆N , qinit,FN) where QN is a finite
set of states; ΣN is a finite alphabet; ∆N : QN × ΣN → 2QN is a transition function; qinit

is an initial state in QN ; and finally, FN ⊆ QN is a set of accepting states.

A word w = a1 . . . an over ΣN is accepted by N if there exists a run R = q0q1 . . . qn of
N on w such that q0 = qinit and qn ∈ FN .

Fix a parameterized arena A = 〈V,Σ,∆〉. We assume that there is at least one player
participating in the game, this is ensured in the definition of the transition function. The
arena A is deterministic if for every v ∈ V , and every word u ∈ Σ+, there is at most one
vertex v′ ∈ V such that u ∈ ∆(v, v′). The arena is assumed to be complete: for every
v ∈ V and u ∈ Σ+, there exists v′ ∈ V such that u ∈ ∆(v, v′). This assumption is natural:
such an arena will be used to play games with an arbitrary number of agents, hence for
the game to be non-blocking, successor vertices should exist whatever that number is and
irrespective of the choices of actions. For conciseness, examples (for instance, the one in
Figure 4.6) might depict incomplete arenas, however, a sink vertex can be added, and all
unspecified moves can lead to that vertex to obtain a complete one.

Examples of deterministic arenas were presented in Figure 4.4 and 4.5. In the following,
let us give an example of a non-deterministic one. We illustrate different components of
the arena on this example.

84 4. Preliminaries

v0 v1v2

(ab)+ (aa)+a(aa)∗ (ab)++(ba)+

(bb)+

Σ(ΣΣ)∗

b(bb)∗

Figure 4.6: Example of a non-deterministic parameterized arena.

Example 4.25. Figure 4.6 presents a non-deterministic parameterized arena. The vertices
are V = {v0, v1, v2,>} and the alphabet is Σ = {a, b}; > is a sink vertex which is not
depicted here, all unspecified transitions from any vertex go to > and loop forever. The edge
labels define the transition function, for instance, the language that labels the edge from v2

to v0 is b(bb)∗. That is to say, at vertex v2, if there is an odd number of players and all of
them play b then the game will move to v0. Notice that at v0, there is a non-deterministic
transition on any word in the language (ab)+, that is to say, at vertex v0, if there is an
even number of players and if they choose actions a and b alternatively, starting with an a
(i.e., the first player chooses action a), then the game can either stay at v0 or move to v1;
the non-determinism is resolved by an adversarial environment.

Notice that in parameterized concurrent games, we assume each player has a distinct
identifier, yet they only know their own identifiers. However, players do not communicate;
their identifiers are only used to select the vertices the game proceeds to. Moreover, the
agents do not know a priori the number of agents participating in the interaction. Each
agent observes the action it plays and the vertices the play goes through. These pieces of
information may refine the knowledge each agent has on the number of involved agents.

Fix a parameterized arena A = 〈V,Σ,∆〉 and an initial vertex v0. A game on A
proceeds as follows. At the starting of the game, environment chooses k the number of
players that remains unknown to them. At v0, player i chooses action ai (all players choose
their actions simultaneously); this forms a k-length word w = a1 . . . ak. Then the game
moves to v1 such that w ∈ ∆(v0, v1). If there exists more than one vertex satisfying the
above, one of them is chosen non-deterministically, and the non-determinism is resolved
by the environment. The game then proceeds from v1, with the same k. This process is
repeated ad infinitum, generating an infinite play in the arena.

We now define histories, plays and strategies of the players. Histories and plays are
defined similarly to the two-player concurrent game setting. More precisely, a history is a
finite sequence of vertices satisfying the transition function, and similarly a play is defined
as an infinite sequence of vertices.

Fix a parameterized arena A = 〈V,Σ,∆〉.

Definition 4.26. A history in A is a finite sequence of vertices, that is compatible with
the edges: formally, h = v0v1 . . . vp ∈ V + such that for every 0 ≤ j < p, ∆(vj, vj+1) 6= ∅.
We write HistA for the set of all histories. A play is an infinite sequence of vertices
compatible with the edges: ρ = v0v1 . . . ∈ V ω such that for every j ≥ 0, ∆(vj, vj+1) 6= ∅.

4.3. Parameterized concurrent games 85

The set of plays is denoted PlayA.

The above definition does not say anything about the number of agents forming a
history, or a play. It is possible that there is no such k corresponding to a history (or,
a play). This motivates us to define the following notion of realizability. Intuitively, a
history (resp., a play) is realizable if there is some number of agents k that is compatible
with the history (resp., play).

Definition 4.27. For k ∈ N>0, a history h = v0 · · · vp is k-realizable if it corresponds to
a history for k agents, i.e., if for all 0 ≤ j < p, there exists u ∈ Σk with u ∈ ∆(vj, vj+1).
A history is realizable if it is k-realizable for some k ∈ N>0. Similarly to histories for
finite sequences of consecutive vertices, one can define the notions of (k-)realizable plays
for infinite sequences.

Let us now define strategies for the players. A strategy dictates a player potentially
involved in the game which action to choose from a vertex depending on the past history.
A strategy profile is a tuple of strategies, one for each agent. Since the number of agents
is not fixed a priori, a strategy profile is an infinite tuple of strategies. We will implicitly
assume that each agent potentially involved in the game has a unique identifier that will
be used to select the vertices the game proceeds to. A strategy for an agent and a strategy
profile is formally defined below.

Definition 4.28. A strategy for agent i from vertex v0 is a mapping σi : V + → Σ that
associates to every history h = v0v1 . . . vp in HistA an action a in Σ. A strategy profile is
an infinite tuple of strategies: σ̃ = 〈σ1, σ2, . . .〉 ∈ (V + → Σ)ω.

A strategy profile σ̃ = 〈σ1, σ2, . . .〉 from vertex v0 induces a set of plays, called outcome.
First, for any natural number k, we define the k-outcome OutkA(v0, σ1, . . . , σk) as the set
of plays induced by σ1, . . . , σk that are k-realizable; and then, the outcome OutA(v0, σ̃) of
the strategy profile σ̃ is simply the union of all k-outcomes. Note that the completeness
assumption in parameterized arenas ensures that the set OutkA(v, σ1, . . . , σk) is non-empty,
and hence OutA(v0, σ̃) is also not empty. They are formally defined below.

Definition 4.29. Given a strategy profile σ̃ = 〈σ1, σ2, . . .〉, an initial vertex v0 and a
number of agents k ∈ N>0, we define the k-outcome OutkA(v0, σ1, . . . , σk) = {v0v1 · · · |
∀j ≥ 0, σ1(v0 · · · vj)σ2(v0 · · · vj) . . . σk(v0 · · · vj) ∈ ∆(vj, vj+1)}. Then the outcome of
strategy profile σ̃ is OutA(v0, σ̃) =

⋃
k∈N>0

OutkA(v0, σ1, . . . , σk).

We have informally described the notion of strategy profiles on the examples of
Figure 4.4 and 4.5. We now illustrate these notions on the example of Figure 4.6.

Example 4.30. Consider again the example in Figure 4.6. Let the initial vertex be v0.
Consider the strategy σi for agent i defined as follows: for every h ∈ V ∗, σi(hv0) = a,
if i is odd, σi(hv0) = b, if i is even; and σi(hv1) = σi(hv2) = a for every i ≥ 1. This
defines a strategy profile σ̃ = 〈σ1, σ2, . . .〉. Recall that the initial choice of the number

86 4. Preliminaries

of players k and the resolution of non-determinism during the game is performed by an
adversarial environment. Examples of plays induced by σ̃ are vω0 if k is even and adversary
chooses to stay at v0 forever; v0v0v

ω
1 if k is even and adversary chooses to loop once at

v0 and then move to v1; v0v
ω
2 if k is odd, etc. When k is even, the k-outcome is the set

{vω0 } ∪ {v
j
0v
ω
1 | j ≥ 1}, whereas for any odd k, the k-outcome is the singleton {v0v

ω
2 }.

Therefore, the outcome of σ̃ is the set {vω0 , v0v
ω
2 } ∪ {v

j
0v
ω
1 | j ≥ 1}.

We can define a winning objective as a set of plays and a winning condition then
naturally defines a game.

Definition 4.31. A winning objective is a set of plays Win ⊆ V ω. Given a parameterized
arena A, a winning objective Win defines a parameterized game G = (A,Win).

As for traditional concurrent games, one can consider natural questions such as,
for instance, the distributed synthesis problem informally explained on the example of
Figure 4.4, or the existence and computation of Nash equilibria etc. In this part of the
thesis, we consider two of them. First, Player 1 (called Eve in the sequel) is distinguished,
and she aims at achieving an objective independently of the number of opponents she has
and of their strategies. Second, the players collectively form a coalition and try to come
up with a strategy profile to achieve a common goal, not knowing a priori how many they
are. Let us now describe the problems in more details.

Eve against unknown number of opponents

We first consider a setting where the first player, called Eve, is distinguished, and she
wants to achieve a given objective against the coalition of the other players, not knowing
a priori the number of her opponents. She therefore must play uniformly, whatever the
number of opponents she has. Given a winning objective Win, it defines a parameterized
game G = (A,Win) for Eve. We then study the problem of existence of a winning strategy
for Eve. Chapter 5 is dedicated to the resolution of this problem and to the study of
complexity bounds for the same for the reachability objectives. We give here a brief
description of the setting along with an example.

We assume in this setting, there are at least two players in the game, i.e., there
is at least one opponent of Eve. Given a parameterized arena A and an initial ver-
tex v0, we define the outcome OutA(v0, σ1) of a strategy σ1 of Eve as the set of plays⋃
k≥2

⋃
σ2,...,σk

OutkA(v0, σ1, . . . , σk), where OutkA(v0, σ1, . . . , σk) is the k-outcome induced by the

strategies of k players. A strategy σ1 of Eve from v0 is winning w.r.t. Win for the coalition,
if all plays in the outcome of σ1 belongs to Win. We then define the following decision
problem:

Eve against unknown number of opponents
Input: A parameterized game G = (A,Win) and an initial vertex v0.
Question: Yes if and only if ∃σ1 for Eve such that OutA(v0, σ1) ⊆ Win.

4.3. Parameterized concurrent games 87

We have earlier illustrated the coalition game on a parameterized arena for a reachability
objective on the example of Figure 4.4. We have informally argued that in that example,
Eve indeed has a winning strategy from v0 for the reachability objective described by
the set F = {v4}. Let us now illustrate this setting on another example with a Büchi
objective.

Example 4.32. Consider a Büchi objective for Eve on the example of Figure 4.6 described
by the set F = {v0,>}. We can show that Eve has a winning strategy from v0 for the
above objective. Consider the strategy σ1 of Eve defined as follows: σ1(v0) = σ1(hv0) =
a;σ1(hv1) = σ1(hv2) = b, for any (non-empty) history h in V +. We show that σ1 is indeed
winning for Eve. At v0, Eve plays an a. Then

• either it goes to >, which is immediately winning for Eve;

• or, it loops at v0;

• or, for an odd number of opponents, it moves to v2. At v2, for any prefix, Eve
chooses b (since Eve infers that the number of players k is odd). Then the game
either goes back to v0 (if all her opponents play b), or to >, which is winning for
her;

• or, it goes to v1, where again Eve infers that the number of players k is even, and
hence she plays b. Similarly to the previous case, if all her opponents also play b,
the game goes back to v0, otherwise it moves to >, which is winning for her;

At every visit of v0, Eve can play the same action, and one of the above holds. Thus, the
game either eventually moves to > and stays there forever, or it visits v0 infinitely often.
In both cases, Eve wins the Büchi game. Notice that since > is winning for Eve, in this
example the choices of actions for her opponents are quite restricted (in the sense that
they would try to avoid > as long as possible). Also remark that, at v0, Eve can also play
action b, yet the game would have the same effect. Finally, the set of realizable plays is
restricted: after v0 repeats for the first time, since k is fixed throughout the game, either
v1 or v2 is visited infinitely often, but not both (or, neither of them, in case the game
eventually moves to >).

Second, we introduce another game setting on a parameterized arena, namely coalition
games. In this setting, the agents play actions so that they collectively achieve a common
goal, irrespective of the number of them participating in the game. We describe the
problem in more details.

Coalition games

We consider a coalition game setting where the agents play as a coalition to achieve a
common goal. At each round, depending on the history and their knowledge on the

88 4. Preliminaries

number of agents, which is unknown to them at the beginning of the game, each agent
chooses an action. Given a set of winning plays Win, it defines a parameterized game
G = (A,Win) for the coalition. The goal for the coalition is to ensure Win for any number
of agents involved in the game. We then study the decision problem of whether there
exists a strategy profile that is winning for the coalition. Chapter 6 is dedicated to the
resolution of this problem and studies the complexity when Win is a safety objective. We
give here a brief description of the setting along with an example.

Given a parameterized arena, one can observe that in the coalition setting, the existence
of a strategy profile of agents is equivalent to the existence of a coalition strategy, described
by a function σ : V + → Σω, that maps each history to an ω-word over Σ of which the
k-th letter represents the action for agent k. Given an initial vertex, we similarly define
the (k-)outcome of a coalition strategy σ in this setting. A coalition strategy σ from v0

is winning w.r.t. Win for the coalition, if all plays in the outcome of σ belongs to Win.
We then define the following decision problem:

Coalition problem
Input: A parameterized game G = (A,Win) and an initial vertex v0.
Question: Yes if and only if ∃σ for the coalition such that OutA(v0,σ) ⊆ Win.

We have earlier illustrated the coalition game on a parameterized arena for a safety
objective on the example of Figure 4.5. We have informally argued that in that example,
the coalition indeed has a winning strategy from v0 for the safety objective described by
the set F = V \ {v5}. Let us now illustrate the setting on an example with a reachability
objective.

v0

v1

v2

v3

b

Σ+

ba a≥2∨b∨bba+

a+

ba+∨a∨bb

Figure 4.7: Example of a reachability coalition game.

Example 4.33. Consider the parameterized arena depicted in Figure 4.7. Vertices are
V = {v0, v1, v2, v3,⊥}, actions of the players are Σ = {a, b}. The arena is as such not
complete, to obtain a complete arena, all unspecified words from each vertex go to a
sink vertex ⊥, which is not depicted here. The labels on the edges in the figure define
the transition function. Consider a reachability objective described by F = {v3} for the
coalition. We can show that the coalition has a winning strategy from v0 for the above
objective.

4.4. Discussion 89

We will describe the coalition strategies as functions V + → Σω. Consider the coalition
strategy σ defined as follows: σ(v0) = baω; for any (non-empty) history h ∈ V +: σ(hv1) =
σ(v0v0) = aω; σ(v0v1v0) = bω;σ(v0v2) = aω;σ(v0v0v2) = σ(v0v1v0v2) = bω; and arbitrary
otherwise. We show that σ is indeed winning for the coalition. At v0, the coalition first
plays baω. Then:

• either it loops at v0. In that case the coalition infers k = 1 and plays aω, hence the
game reaches vertex v2;

• or, the game goes to v1 and the coalition infers k = 2, and plays aω from v1. Either
it reaches v3, in which case the coalition wins, or it goes back to v0. At v0, the
coalition plays bω (since according to the history, they infer k = 2) and reaches v2;

• or, the game directly goes to v2 after the first choice of actions of the players. Then
the coalition infers k ≥ 2.

At v2, depending on history, they either play aω (when the common knowledge is k ≥ 2),
or bω (when the common knowledge is k ∈ {1, 2}). In both cases, the game reaches v3 and
the coalition wins. We conclude σ is a winning strategy for the coalition.

Notice that σ uses memory. Indeed, at v0, if the coalition always plays baω, it is losing
against k = 1, similarly for other words. Even at v2, if the coalition always plays aω

(resp., bω), then it is losing for k = 1 (resp., k ≥ 3).

In the next section, we briefly describe the results which we present in the following
chapters.

4.4 Discussion

In this chapter, we described games played on a finite graph. In Section 4.1, we revisited
the basic definitions and results from literature on a two-player turn-based setting where
two-players choose their moves in turn and then Section 4.2 was dedicated to a concurrent
game setting where at each round, the players play their moves simultaneously and
independently of each other. We then extend the latter in Section 4.3 in a way suitable
for a parameterized setting, where the parameter is the number of players participating
in the game. In a parameterized arena, edges are labelled with regular languages given
by NFA’s, and represented by regular expressions in the examples. An arena can be
non-deterministic, and the non-determinism is resolved by an adversarial environment.
Such a parameterized arena can represent infinitely many interaction situations, one for
each possible number of agents. We are then interested in two different settings for the
parameterized games, first where a distinguished player (Eve) plays uniformly against all
other players, not knowing how many are there; and second, we consider a coalition game

90 4. Preliminaries

where the coalition collectively wants to satisfy a winning condition for any number of
agents.

In the first setting, we shall show that the decision problem of finding whether there
exists a winning strategy for Eve with a reachability objective against any number of
opponents is PSPACE-complete, when the languages that label the edges are regular.
For simpler languages, we show that the problem is even easier. More precisely, if the
languages are such that their projections to the lengths of the words are only intervals,
then the problem can be solved in polynomial time and if they are finite union of intervals,
then it is NP-complete, if the arena is deterministic and PSPACE-complete, otherwise.
The proof technique involves a reduction of such a game to a two-player turn-based
game. Intuitively, Eve must win against her opponents playing as a coalition and also
against an adversarial environment who chooses the number of players and resolves the
non-determinism. Therefore, the game naturally seems close to a two-player setting
between Eve and the environment, where the environment also chooses her opponents’
actions and the environment’s objective is to prevent her from winning. The two-player
game constructed from a parameterized game is called a knowledge game (Eve’s vertices
in that game correspond to her knowledge in the original game) and then the complexity
results follow from an analysis of the knowledge game.

In the coalition game setting, we consider the winning condition for the coalition is a
safety condition. We then prove that the safe coalition problem can be solved in space
exponential in the size of the input, and it is hard for the complexity class PSPACE. We
also show that for positive instances, one can synthesize a coalition strategy profile using
exponential space and the strategy uses an exponential memory, which is tight in the
sense that there is a family of games (Gn)n of size polynomial in n for which any coalition
winning strategy needs exponential size memory. The upper bound result for the safe
coalition problem is shown by first unfolding the game graph to a finite tree and then
analysing the complexity of finding a coalition strategy for a game suitably defined on
that finite tree structure. A key observation here is that, since the winning condition for
the coalition is safety, the coalition can play the same strategy every time the game comes
back to a certain vertex, and if it was winning in the first round, then it is also in the
subsequent rounds - this is the main idea behind the finite tree unfolding. However, this
argument does not hold in the case of, for instance, a reachability condition which makes
the coalition problem harder for a reachability condition.

Chapter 5

Playing against Arbitrarily Many
Opponents

This chapter studies parameterized games for a setting where a distinguished player (we
call that player Eve throughout this chapter) wants to achieve a goal irrespective of her
number of opponents and their choices of actions. The opponents play as a coalition
against Eve, and she must play uniformly, whatever the number of opponents she has.
Recall that, we assume that the languages on the transitions of a parameterized arena
are regular languages given by an NFA and represented by regular expressions in the
examples.

We first argue that such games reduce to a simpler setting, called semi-parameterized
arenas, where the languages on the edges of the arena are particularly simple: they only
constrain the number of opponents Eve has. The existence of a uniform winning strategy
for Eve in the latter then reduces to the resolution of the knowledge game, a two-player
turn-based game. We show that Eve has a winning strategy in the semi-parameterized
game if and only if she also has one in the corresponding knowledge game for the same
winning objective. Intuitively, a vertex of Eve in the knowledge game corresponds to her
knowledge about the number of opponents in the parameterized game.

We investigate the existence of a winning strategy for Eve in such games. We will
show tight bounds for the decision problem on semi-parameterized arenas, hence on
parameterized arenas, with reachability objective for Eve. Furthermore, we distinguish
several cases, depending on whether the arena is deterministic or not, and on whether
constraints on the number of opponents are intervals, unions of intervals, or semilinear
sets. We show that the knowledge game is a priori exponential in the size of the original
arena. Intuitively, the vertices correspond to the knowledge Eve has on the possible
number of her opponents, and there are in general exponentially many such knowledge
sets. Furthermore, we show that this exponential blow-up in the size of knowledge game is
unavoidable. However, when constraints are only intervals, the size of the knowledge game
is polynomial, in that case, we prove the semi-parameterized reachability game problem
to be PTIME-complete. For finite unions of intervals, and when the parameterized arena
is deterministic, we show that if Eve has a winning strategy, she has one that can be
represented by a polynomial size strategy tree. This small model property, together with

91

92 5. Playing against Arbitrarily Many Opponents

the encoding of 3SAT allows us to prove the problem to be NP-complete. Finally, for finite
unions of intervals and non-deterministic arenas, or for semilinear sets (with no assumption
of non-determinism) the semi-parameterized reachability problem is PSPACE-complete.
The lower bound is obtained by a reduction from QBF-SAT, while the upper bound derives
from a depth-first search algorithm on an exponential size tree, non-trivially extracted
from the knowledge game.

This chapter is based on the publication [BBM19a] co-authored with Nathalie Bertrand
and Patricia Bouyer appeared in FSTTCS 2019.

Organization of the chapter

In Section 5.1, we first recall briefly the setting Eve against unknown number of opponents
on parameterized arenas and define a simpler setting, called semi-parameterized games.
We then show a reduction from the former to the latter. Section 5.2 describes a decision
procedure for the semi-parameterized game problem by construction of a two-player
turn-based game, called knowledge game. Then we restrict the winning objective to
reachability and show tight bounds for the game problem on a semi-parameterized arena
in Section 5.3. This bounds entail bounds on the original problem on parameterized
arenas. Finally, we close the chapter with a discussion in Section 5.4.

5.1 Game setting

Let us first briefly recall the game setting Eve against unknown number of opponents on
parameterized arenas from Section 4.3 that we aim to study in this chapter. Note that in
this setting, it is reasonable to assume Eve is not alone in the game. Therefore, we will
assume there is at least one opponent of Eve in the parameterized game. That is, the
languages labelling the edges of the arena consist of words of length greater than or equal
to 2.

Fix a parameterized arena A = 〈V,Σ,∆〉. A strategy for agent i is a mapping
σi : V + → Σ from histories to the set of actions. We distinguish the actions of player 1
(called Eve) and consider a winning objective Win for her. This defines a parameterized
game G = (A,Win). We define the outcome of a strategy σ1 from v0 for Eve as the union
of k-outcomes over all k ≥ 2 and all possible strategies σi for player i with 2 ≤ i ≤ k;
formally: OutA(v0, σ1) =

⋃
k≥2

⋃
σ2,...,σk

OutkA(v0, σ1, . . . , σk). A strategy σ1 from v0 for Eve is

winning for her if all plays in the outcome OutA(v0, σ1) belong to Win. More precisely, σ1 is
winning for Eve if for any k−1 ∈ N>0 number of opponents, and their strategies σ2, . . . , σk,
the following is satisfied: OutkA(v0, σ1, σ2, . . . , σk) ⊆ Win. We define the following decision
problem:

5.1. Game setting 93

Eve against unknown number of opponents
Input: A parameterized game G = (A,Win) and an initial vertex v0.
Question: Yes if and only if ∃σ1 for Eve such that OutA(v0, σ1) ⊆ Win.

Notice that Eve does not know the number of opponents a priori and their strategies,
so the opponents play as a coalition against Eve. Furthermore, the environment chooses
the number of her opponents before the game starts, and also resolves the non-determinism
of the transitions. Eve must win whatever the adversarial environment. One can therefore
think of environment also choosing strategies of the coalition of her opponents and, this
reduces to the problem to a simpler setting where Eve’s strategy only takes into account
the number of her opponents, not their strategies. This motivates to define simpler game
arenas where the edges are labelled with pairs of Eve’s actions and sets of number of
opponents.

In the following, we introduce semi-parameterized arenas and define a game for Eve
on such arenas. Edges are labelled with pairs (a, S) for a an action of Eve, and S a set
of number of opponents. Notice that unlike the game on a parameterized arena, here k
denotes the number of opponents (and, k + 1 is the total number of agents including Eve
participating in the game). Then we later show a reduction from the first setting to the
latter such that the winning region for Eve is preserved, that is Eve has a winning strategy
in the former setting if and only if she has one in the reduced game.

5.1.1 Semi-parameterized arenas

We introduce semi-parameterized arenas, a simpler and restricted version of parameterized
arenas, where the languages on the edges of the arena only constrain the number of
opponents Eve has. Furthermore, for simplicity, we distinguish the actions of Eve. More
precisely, the edges here are labelled with pairs (a, S) for a an action of Eve, and S a
set of number of opponents. In other words, if at vertex v, Eve chooses action a, and if
there is a set of naturals S ⊆ N>0 such that ∆(v, a, v′) = S, then for any k ∈ S number
of opponents, the game can move to v′. We will later show a correspondence between
winning strategies of Eve in parameterized arenas and semi-parameterized arenas.

Definition 5.1. A semi-parameterized arena is a tuple A = 〈V,Σ,∆〉 where

• V is a finite set of vertices;

• Σ is a finite set of actions;

• ∆ : V × Σ× V → 2N>0 is a transition function.

Fix a semi-parameterized arena A = 〈V,Σ,∆〉. The assumption that there is at least
one opponent of Eve participating in the game is ensured in the definition of the transition
function. For some v, v′ ∈ V and a ∈ Σ, ∆(v, a, v′) is the set of numbers of Eve’s opponents

94 5. Playing against Arbitrarily Many Opponents

that may lead the game from v to v′ on Eve’s action a: if at vertex v, Eve chooses action
a, and if the number of her opponents k belongs to the set ∆(v, a, v′), then the game can
move to v′ (up to non-determinism, which is resolved by the environment).

The arena A is deterministic if for every v ∈ V , every action a ∈ Σ of Eve and for any k
number of her opponents, there is at most one vertex v′ ∈ V such that k ∈ ∆(v, a, v′). The
completeness assumption can be described as follows: for every v ∈ V , action a ∈ Σ, and
k ∈ N>0, there exists v′ ∈ V such that k ∈ ∆(v, a, v′). The idea behind the assumption
is that Eve does not know how many opponents she has, and so the successor vertex
must exist whatever that number is, and for every possible action of her. Recall that for
conciseness, examples (for instance, the one in Figure 4.6) might depict incomplete arenas,
however, a sink vertex can be added and all unspecified transitions can lead to that vertex
to obtain a complete one.

For algorithmic reasons, we assume that the transition function ∆ of A can be described
in a finite way. We consider different types of constraints to represent the transition
function. We first consider constraints described by closed intervals (since we deal with
sets of natural numbers, it is no restriction to assume intervals to be closed) or finite unions
of closed intervals. If [a, b] (resp., [a,∞)) is an interval, then we say a is a left endpoint
and b (resp., ∞) is a right endpoint. As a complexity parameter, we use #endpointsA, the
number of endpoints used in constraints in A. All the complexities will be functions of this
parameter, independently of the precise values of the endpoints (or their encoding sizes).
More generally, we also consider semilinear predicates over N. We recall the definition
of a semilinear set in the following. In that context, as a complexity parameter, we use
#predA, the number of predicates used on edges of A. All numbers used in the predicates
are assumed to be represented in binary.

Definition 5.2. A set L ⊆ N is called linear if it is of the form

L = L(b, P) = {b+
m∑
i=1

λipi : λi ∈ N, pi ∈ P}

where b ∈ N and P ⊆ N is a finite set. We call b the basis and p ∈ P the periods of L. A
set S ⊆ N is called semilinear if it is a finite union of linear sets.

Example 5.3. A simple example of a semilinear predicate is the predicate “divisible by
p”, where p ∈ N>0.

Note here that the above is defined for subsets of natural numbers, and one can
naturally extend it for any fixed dimension d ∈ N>0, however, in this chapter, we will only
use semilinear sets in dimension 1. Remark that a finite union of arithmetic progressions
of the form {c + dN : c, d ∈ N} is semilinear. Moreover, the converse is also true: any
semilinear set over N can be equivalently represented as a finite union of arithmetic
progressions, for example see [Mat94].

Let us now give an example of a semi-parameterized arena.

5.1. Game setting 95

Example 5.4. An example of a deterministic semi-parameterized arena is presented in
Figure 5.1, with V = {v0, . . . , v6}, Σ = {a, b}. The edge labels represent the transition
function: for instance, the label ‘a,= 1’ on the transition from v0 to v1 represents
∆(v0, a, v1) = {1}, and the label ‘a, 6= 1’ on the transition from v0 to v2 means that
∆(v0, a, v2) = N>0 \ {1} = [2,∞). As such, the arena is not complete, we assume that all
unspecified transitions from any vertex lead to v6. Moreover, we omit the trivial components
in a transition, for instance, ∆(v0, b, v6) = N>0; further, we denote a transition by ‘∗’ if it
is trivial, for example, for every action a ∈ Σ of Eve, ∆(v1, a, v3) = N>0. Notice that this
example coincides with the one in Figure 4.4, except here we have replaced the languages
on the edges by their projections to lengths of words.

v0

v1

v2

v3

v4

v5

v6

a,=
1

b

a,6=1

∗

∗

a,=
1

b, 6=
1

b,=1
a,6=1

∗

∗
∗

Figure 5.1: An example of a semi-parameterized arena.

We define the notions of history and play in a semi-parameterized arena similarly as
in the parameterized arenas.

Definition 5.5. Fix a semi-parameterized arena A = 〈V,Σ,∆〉. A history in A is a
finite sequence of vertices h = v0v1 . . . vp ∈ V + such that for every 0 ≤ j < p, there exists
aj ∈ Σ such that ∆(vj, aj, vj+1) 6= ∅. We write HistA for the set of all histories. A play is
an infinite sequence of vertices compatible with the edges: ρ = v0v1 . . . ∈ V ω such that for
every j ≥ 0, there exists aj ∈ Σ such that ∆(vj, aj, vj+1) 6= ∅. The set of plays is denoted
PlayA.

Next, we adapt the definition of realizability of histories and plays from Chapter 4
to the context of semi-parameterized arenas. A history (resp., play) is k-realizable if it
corresponds to a history (resp., play) compatible with some k number of Eve’s opponents.
Notice that for the game setting on a semi-parameterized arena, the parameter k denotes
the number of opponents Eve has whereas in the definitions of Chapter 4, k was the total
number of agents participating in the game including Eve.

Definition 5.6. For k ∈ N>0, a history h = v0 · · · vp is k-realizable if there exists k ∈ N>0

such that for all 0 ≤ j < p, there exists aj ∈ Σ with k ∈ ∆(vj, aj, vj+1) (or equivalently,
k ∈

⋂
0≤j<p

∆(vj, aj, vj+1)). A history is realizable if it is k-realizable for some k ∈ N>0.

Similarly to histories for finite sequences of consecutive vertices, one can define the notions
of (k-)realizable plays for infinite sequences.

Let us define the notion of strategy for Eve, but on a semi-parameterized arena. A
strategy dictates her how to move from a vertex depending on the past history. A strategy
for Eve must be defined with no prior information on the number of her opponents. It is
formally defined below.

96 5. Playing against Arbitrarily Many Opponents

Definition 5.7. A strategy for Eve from vertex v0 is a mapping σ : V + → Σ that
associates to every history h = v0v1 . . . vp in HistA an action a in Σ.

Given a strategy σ for Eve, an initial vertex v and k ∈ N>0 a number of opponents of
Eve, the notions of (k-)outcome are defined similarly: the k-outcome OutkA(v0, σ) is the
set of plays that σ induces from v0 that are k-realizable; and then the outcome is simply
the union of k-outcomes for all k ∈ N>0. It is defined formally below.

Definition 5.8. Given a strategy σ for Eve, an initial vertex v0 and k ∈ N>0 a number
of opponents of Eve, the k-outcome of strategy σ is the set OutkA(v0, σ) = {v0v1 · · · | ∀j ≥
0, k ∈ ∆(vj, σ(v0 . . . vj), vj+1)}. Outcome of strategy σ is OutA(v0, σ) =

⋃
k∈N>0

OutkA(v0, σ).

A game on a semi-parameterized arena proceeds as follows. Fix an arena A = 〈V,Σ,∆〉
and an initial vertex v0. Before the game starts, the environment chooses k the number
of opponents of Eve that remains unknown to her. She chooses an action a1; and then
the game moves to v1 such that k ∈ ∆(v0, a1, v1); if there exists more than one vertex
satisfying the above, the environment chooses one of them non-deterministically. The
game then proceeds similarly from v1.

Fix a semi-parameterized arena A and an initial vertex v0. Then a set Win ⊆ V ω

of plays defines a semi-parameterized game G = (A,Win) for Eve. A strategy σ for Eve
from v0 is winning if all the plays in the outcome of σ is in Win, that is if for all k ∈ N>0

number of opponents, OutkA(v0, σ) ⊆ Win. In that case, we say that v0 belongs to the
winning region of Eve. We now define the following decision problem:

Semi-parameterized game problem
Input: A semi-parameterized game G = (A,Win) and an initial vertex v0.
Question: Yes if and only if ∃σ for Eve such that OutA(v0, σ) ⊆ Win.

Let us illustrate this setting on an example.

Example 5.9. Resuming Example 5.4, one can show that Eve has a winning strategy from
v0 ensuring the reachability objective described by F = {v4}, depicted in green in the picture.
Her winning strategy σ is given by σ(v0) = σ(v0v1) = σ(v0v2) = a, σ(v0v1v3) = a and
σ(v0v2v3) = b, and arbitrary otherwise. Intuitively, the decision at vertex v3 depends on
whether the play went through v1 –in this case Eve deduces that she has a single opponent–
or v2; in the first case, she chooses action a, and b in the second. In both cases, the game
moves to v4 and loops there forever. Note that no memoryless strategy is winning for Eve:
if she always chooses a at v3, she is losing against more than 1 opponents; and similarly,
if she always chooses b at v3, she is losing when she has exactly 1 opponent. The winning
region for the reachability objective described above for Eve is {v0, v4}.

Among all ω-regular winning objectives, the reachability objective is of special interest
to us. We show tight complexity bounds for the game problem with reachability objectives

5.1. Game setting 97

on semi-parameterized arenas. A reachability game, with no loss of generality, can be
described by a unique target vertex t. A strategy σ for Eve is winning if all plays in the
outcome of σ eventually visits t. Then the reachability game problem asks whether there
exists a winning strategy for Eve from an initial vertex. This can be defined as follows:

Semi-parameterized reachability game problem
Input: A semi-parameterized reachability game G = (A, t) and an initial vertex v0.
Question: Yes if and only if ∃σ for Eve such that OutA(v0, σ) ⊆ V + · t · V ω.

Notice first that parameterized games generalize semi-parameterized ones. Indeed,
It is well-known that from a semilinear set S in dimension 1, one can construct an
automaton B over a unary alphabet such that the lengths of words in the language of B
is S i.e., |L(B)| = S, for instance see [Mat94]. Then one can replace the transitions of
the form ∆A(v, a, v′) in a semi-parameterized arena A by regular languages aL (i.e., set
∆A′(v, v

′) = aL) to construct a parameterized arena A′, such that L is a regular language
over a unary alphabet with |L| = ∆A(v, a, v′). Indeed, one can show that if L is regular,
then for any a ∈ Σ, aL is also regular. Since the alphabet is unary, L essentially only
constrains the number of opponents of Eve. The winning region for Eve is also preserved.

Lemma 5.10. Semi-parameterized games reduce in polynomial time to the parameterized
ones.

In the following, we show that the converse also holds, i.e., the existence of a winning
strategy for Eve in a parameterized arena reduces to the one in a semi-parameterized
arena, by simply taking the projection of the languages to lengths of the words.

5.1.2 Reduction to semi-parameterized arenas

Let G = 〈A,Win〉 be a parameterized game. We shall construct an equivalent (i.e.,
preserving the winning region for Eve) semi-parameterized game in polynomial time such
that the edges are labelled with semilinear constraints. Intuitively, the constraints in the
latter are the set of lengths of words in the corresponding regular languages in the original
arena quotiented by an action of Eve.

For a language L ⊆ Σ∗, and a ∈ Σ, the left quotient of L by a is the set a−1L = {w |
aw ∈ L}. It is well-known that for a regular L, the quotient language a−1L is also regular.

We will use another result from literature, namely that the set of lengths of words of a
regular language L, denoted |L|, is a semi-linear set in dimension 1 [Par66]. Moreover,
given an automaton A for L with n states, one can compute in polynomial time the set
|L| represented as union of O(n2) arithmetic progressions of the form {c + dN | c, d ∈
N} [Chr86, Mar02, Saw10].

Lemma 5.11. The decision problem ‘ Eve against unknown number of opponents’ on a
parameterized arena reduces in polynomial time to the semi-parameterized game problem

98 5. Playing against Arbitrarily Many Opponents

(with semilinear predicates).

Proof. Let G = (A,Win) be a parameterized game with A = 〈V,Σ,∆〉, we construct
G ′ = (A′,Win) a semi-parameterized game with A′ = 〈V,Σ,∆′〉 as follows. The edges in
A′ are labelled with pairs (a, S) for a ∈ Σ an action for Eve and S is obtained by first
taking a left quotient of language on that edge in A by action a, and then projecting
the obtained language to lengths of words. Formally, for v, v′ ∈ V and a ∈ Σ, define
∆′(v, a, v′) = |a−1∆(v, v′)|. Note that given an automaton for ∆(v, v′), one can compute in
polynomial time a representation for ∆(v, a, v′) as a union of polynomially many arithmetic
progressions of the form {c + dN}. Thus, a parameterized game G can be transformed
into G ′ a semi-parameterized one in polynomial time in the size of G. We fix the winning
conditions to be the same in both games.

Assume Eve has a winning strategy σ1 from an initial vertex v0 in G. The same strategy
can also be applied in G ′. We show σ1 is winning in G ′. Let ρ = v0v1 . . . ∈ OutkA′(v0, σ1) be
a k-realizable play in the outcome of σ1 in G ′. Then for all j ≥ 0, ∃L: ∆′(vj, aj, vj+1) =
|a−1
j L|, where aj = σ1(v0 . . . vj−1) for which k ∈ |a−1

j L|. Therefore, there exists b1, . . . , bk
actions of opponents such that ajb1 . . . bk ∈ L. We conclude ρ is a (k + 1)-realizable play
induced by σ1 in G, and hence ρ ∈ Win.

For the converse, assume σ1 from v0 is winning for Eve in G ′. Apply σ1 in G, we
show it is winning for Eve in G. Consider a play ρ = v0v1 . . . ∈ OutkA(v0, σ1, σ2, . . . σk)
for arbitrary strategies of her opponents. Then for all j ≥ 0, ∃L: ∆(vj, vj+1) = L and
the word w = a1a2 . . . ak ∈ L where ak = σi(v0 . . . vj−1) for each 1 ≤ i ≤ k. Therefore,
k − 1 ∈ |a−1

1 L|. We conclude ρ is a (k − 1)-realizable play induced by σ1 in G ′, and hence
conclude ρ ∈ Win.

Lemma 5.11 establishes the correspondence between games on parameterized and
semi-parameterized arenas. Further, we concentrate on the latter arenas and discuss a
decision procedure of the game problem. In the next section, we begin with the description
of the knowledge game, a two-player turn-based game associated with a semi-parameterized
arena.

5.2 The knowledge game

Recall that to win a game on the semi-parameterized arena, Eve must win against any
number of opponents as well as an adversarial environment who (selects that number at the
beginning and also) resolves the non-determinism of transitions. It therefore seems quite
natural to reduce this game to a two-player turn-based game between Eve and Adam, who
corresponds to the environment in the original setting. In the so-called knowledge game, a
vertex of Eve intuitively embeds her knowledge against the number of her opponents at
the corresponding position in the semi-parameterized game. Later we will show that this
reduction preserves the winning region for Eve.

5.2. The knowledge game 99

Let us first define the knowledge arena, a two-player turn-based game arena constructed
from a semi-parameterized arena.

Definition 5.12. Let A = 〈V,Σ,∆〉 be a semi-parameterized arena. Then the knowledge
arena associated with A is the two-player turn-based arena KA = 〈VK, EK〉, where VK =
VE]VA such that VE ⊆ V ×2N>0 and VA ⊆ VE×Σ are vertices of Eve and Adam, respectively,
and EK ⊆ (VE × VA) ∪ (VA × VE) is the edge relation. The vertices and edge relation are
defined inductively as follows.

• {(v,N>0) | v ∈ V } ⊆ VE;

• ∀(v,K) ∈ VE, and ∀a ∈ Σ, (v,K, a) ∈ VA and
(
(v,K), (v,K, a)

)
∈ EK;

• ∀(v,K, a) ∈ VA, ∀v′ ∈ V such that K ∩∆(v, a, v′) 6= ∅, (v′, K ∩∆(v, a, v′)) ∈ VE and(
(v,K, a), (v′, K ∩∆(v, a, v′))

)
∈ EK.

In words, the knowledge arena has a vertex (v,N>0) for every v ∈ V which belongs
to Eve. A vertex of Eve (v,K) intuitively represents the situation when the token in the
semi-parameterized arena is currently on vertex v and the knowledge she has about her
number of opponents is K. For instance, (v,N>0) in the knowledge arena represents that
the corresponding position in the semi-parameterized arena is v and Eve does not have any
particular knowledge about the number of her opponents. Then for any choice of action
by Eve, the game moves to a vertex of Adam, which intuitively represents the position
where the environment resolves the non-determinism in the semi-parameterized arena.
That is, for any (v,K) ∈ VE and any a ∈ Σ, there is a successor (v,K, a) which belong
to Adam. Each transition from of a vertex of Adam corresponds to a similar transition
in the original arena and the successor is again a vertex of Eve where she updates her
knowledge accordingly. For instance, if there is a transition in G from v to v′ on Eve’s
action a such that K ∩∆(v, a, v′) 6= ∅, then (v′, K ∩∆(v, a, v′)) is a successor of (v,K, a)
in the knowledge arena. The game played on that arena is a two-player turn-based game
discussed in Section 4.1. Notice further that we construct the knowledge arena such that
any successor of a vertex of Eve must be a vertex of Adam and vice versa.

Let us illustrate the construction of knowledge arena on an example.

Example 5.13. Figure 5.2 represents a part of the knowledge arena associated with the
semi-parameterized arena of Figure 5.1. Circles represent Eve’s vertices, and rectangular
vertices belong to Adam. Note that circles in Figure 5.2 should not be confused with the
ones in the semi-parameterized arena. Also note that, for a concise representation, the
knowledge arena depicted here is only a part of the full knowledge arena of the corresponding
semi-parameterized arena; only the vertices which are constructed inductively from (v0,N>0)
are depicted, and furthermore, the outgoing transitions from (v4, K), (v5, K

′) for all possible
K,K ′ and transitions from (v6,N>0) are also not depicted. They are the only reachable
vertices of Eve in the knowledge arena when the game starts at vertex v0 in the corresponding
semi-parameterized arena.

100 5. Playing against Arbitrarily Many Opponents

v0,N>0v6,N>0 v0,N>0,av0,N>0,b

v1,=1

v2, 6=1

v1,=1,a

v1,=1,b

v2,6=1,a

v2,6=1,b

v3,=1

v3,6=1

v3,=1,a

v3,=1,b

v3, 6=1,a

v3,6=1,b

v4,=1

v5,=1

v4,6=1

v5,6=1

Figure 5.2: A part of the knowledge arena corresponding to the arena in Figure 5.1.

We recall the notions of histories and plays of a two-player turn-based game in this
context. A history in the knowledge arena is a finite alternating sequence of vertices of
Eve and Adam compatible with the edge relation. Formally, h = v0v1 . . . vt ∈ V +

K such that
for every 0 ≤ i < t, (vi, vi+1) ∈ EK. The set of histories is denoted HistK. Similarly, a
play is an infinite sequence of vertices that preserves the edge relation. The set of plays is
denoted PlayK.

A strategy for Eve from v0 in KG is a partial function λ : V +
K → VA compatible with

EK that associates to every history v0 . . . v, with v ∈ VE, a vertex λ(v) ∈ VA such that
(v, λ(v)) ∈ EK. A play ρ = v0v1 . . . from v0 is induced by strategy λ if for every i ≥ 0,
whenever vi ∈ VE, we have vi+1 = λ(v0 . . . vi).

Size of the knowledge arena. Fix a semi-parameterized arena A = 〈V,Σ,∆〉, and
let KA be the corresponding knowledge arena. First, there is a vertex of Eve (v,N>0) for
every v ∈ V . Notice that a vertex of Eve (v,K) is constructed such that the set K is
formed by taking an intersection of some set K ′ present in its predecessor vertex with a
S ⊆ N>0 from the description of input A. Since the number of subsets S ⊆ N>0 given in
the semi-parameterized arena A is finite, one can construct only finitely many sets by
taking intersection of such sets S. Therefore, we conclude that the number of vertices of
Eve is finite. A vertex (v,K, a) of Adam is constructed such that (v,K) is a vertex of Eve
and a ∈ Σ is an action; therefore, the number of vertices of Adam is also finite since Σ is
finite. Hence, the knowledge arena is indeed finite.

Next we present a lemma investigating closely the size of KA, that is the number of its
vertices and edges, w.r.t. the complexity measures we introduced for the parameterized
arena A.

Lemma 5.14. Let A = 〈V,Σ,∆〉 be a semi-parameterized arena. Then the size of the
associated knowledge arena KA is polynomial in both |V | and |Σ|, and

1. exponential in #predA, for sets of number of opponents defined by semilinear predi-
cates;

2. exponential in #endpointsA, for sets of number of opponents defined by finite unions
of disjoint intervals; and

5.2. The knowledge game 101

3. polynomial in #endpointsA, for sets of number of opponents defined by intervals.

Furthermore, the exponential blow-up is unavoidable in the two first cases.

Proof. Let KA = 〈VK, EK〉 be the knowledge arena associated with A where VK = VE]VA.
By definition, all pairs (v,N>0) for v ∈ V belong to VE representing that Eve has no initial
knowledge of the number of her opponents. Further knowledge sets for vertices in KA are
obtained by taking the intersection of existing knowledge sets with subsets S ⊆ N>0 from
the description of A. Then we show the following.

1. First, when the sets of number of opponents in the arena are given by semilinear
predicates, the number of knowledge sets is bounded by 2#predA . Indeed, one can
consider at most those many combinations of the predicates. A vertex of Eve is
of the form (v,K) for some v ∈ V and K a knowledge set. Hence, in this case,
|VE| ≤ 2#predA |V |; and a vertex of Adam is of the form (v,K, a) for some (v,K) ∈ VE
and a ∈ Σ an action, therefore |VA| ≤ |VE||Σ| ≤ 2#predA|V ||Σ|, yielding an overall
exponential bound on |KA|. Note that it is exponential in the number of predicates,
but not in the size of their encodings.

2. Let us now show that when the sets of number of opponents are defined by finite
unions of disjoint intervals, the number of knowledge sets is bounded by 3#endpointsA .
Note that a finite union of intervals can be encoded by a word on the alphabet
formed of the set of endpoints, with a repetition for singletons. Let us illustrate
the statement by an example. Let Y = {2, 5, 8, 11, 17, 23,∞} be a set of endpoints
appearing in an arena, then writing ai for the i-th number in Y in that particular
order, the set S = [2, 8] ∪ {11} ∪ [17,∞), for instance, can be represented by the
string a1a3a4a4a5a7. Also recall that any intersection of unions of disjoint intervals
with endpoints in Y is again a union of disjoint intervals with endpoints from the
same set Y . Then indeed, given a finite set Y , one can construct at most 3|Y | disjoint
unions of intervals: in the word representation, each letter can occur either 0, 1 or 2
times in a word; and since the intervals must be disjoint, when valid, a word uniquely
represents a union of intervals (some words might not be valid, for instance, the
word a1a3a2a4 in the previous example does not correspond to any union of disjoint
intervals). Hence, |VE| ≤ 3#endpointsA|V | and |VA| ≤ 3#endpointsA |V ||Σ|, yielding an
overall exponential upper bound on |KA|. Note that it is exponential in the number
of endpoints, but not in the size of their encodings or their precise values.

3. Finally, when the sets of number of opponents are defined by intervals, a better
upper bound can be obtained. Again observe that intersection of two intervals with
endpoints in Y is again an interval with endpoints from the same set Y . All knowledge
sets in KA are therefore intervals whose endpoints appear in the description of A.
There can be at most #endpoints2

A such intervals, so that |VE| ≤ #endpoints2
A|V |

and |VA| ≤ #endpoints2
A|V ||Σ|, yielding an overall polynomial upper bound on |KA|.

The exponential upper bound is met by the family (An)n∈N>0 of deterministic semi-
parameterized arenas depicted on Figure 5.3, and for which the constraints are unions

102 5. Playing against Arbitrarily Many Opponents

v0

v1 v′1

v2 v′2

vn v′n

t

a1

b, 6=
1

b,=1

a2 b,=2

b, 6=2

a
n

b,=n

b, 6=n

∗

∗

∗

∗...

...
Figure 5.3: A deterministic semi-parameterized arena An (n ∈ N>0), whose size is
polynomial in n and whose knowledge arena is exponential in n.

of disjoint intervals. Here a set {6= i}, for instance, is a representation of the union of
intervals {1} ∪ [3,∞), and sets of the form {= i} are self-explanatory. The sets here are a
particular case of semilinear predicates. For example, a set {6= i} is ultimately periodic
with threshold i and period 1; similarly for sets of the form {= i}.

As in earlier figures, all unspecified transitions go to a sink vertex ⊥, which is not
depicted here. In this example, from v0 Eve can choose action ak (1 ≤ k ≤ n) and go to vk.
From vk, if she chooses action b, if there are exactly k opponents, the game moves to v′k,
otherwise comes back to v0; from v′k, for any choice of action of Eve, it moves to t. Here
both the number of endpoints, and the number of predicates are linear in n. However, the
associated knowledge arena KAn contains vertices (v0, K) for every non-empty subset K of
{1, . . . , n}. Indeed, from vertex (v0, K) with K 6= ∅, for any k ∈ K, consider the successor
vertex in two steps by ak and b (to be precise, two steps in the semi-parameterized arena,
but four steps in knowledge arena). Observe that in case the number of opponents is not
k, that vertex is (v0, K \ {k}). Such an example is depicted in Figure 5.4, a part of the
knowledge game corresponding to the arena in Figure 5.3. In that figure, notice that from
(v0,N>0), after consecutive actions a2 and b of Eve, it reaches vertex (v0, 6= 2); similarly
for the vertex (v0, 6= 2) and for the actions a5 and b. Finally, notice also that there is a
vertex (vk, K) for every k ∈ K and every non-empty K ⊆ N>0. The number of possible
subsets of {1, . . . , n} is exponential in n, and hence |KAn| ∈ O(n2n).

This concludes the proof of Lemma 5.14.

We have constructed from a semi-parameterized arena the knowledge arena, a two-
player turn-based game arena. The knowledge arena is finite, yet exponentially large in
the size of input. In the following, we define a winning condition for Eve on the knowledge
arena that reflects her winning objective in the semi-parameterized game in the sense
that she has a winning strategy from v0 in the original arena if and only if she has one
from (v0,N>0) in the knowledge arena. The knowledge set N>0 here represents that
to win from a vertex in the semi-parameterized arena, she must have a strategy with
no prior knowledge of her number of opponents. The knowledge game associated to a

5.2. The knowledge game 103

v2,N>0v0,N>0 v2,N>0,bv0,N>0,a2

v0,6=2

v′2,=2

v0,6=2,a5 v5, 6=2 v5,6=2,b

v0, 6={2,5}

v′5,=5

Figure 5.4: A part of the knowledge arena constructed from the arena An in Figure 5.3.

semi-parameterized game can be formally defined as follows.

Definition 5.15. Let G = (A,Win) be a semi-parameterized game with A = 〈V,Σ,∆〉.
Then the knowledge game associated with G is the two-player turn-based game KG =
(KA,Win′) such that KA = 〈VK, EK〉 is the knowledge arena associated with A, and the
set Win′ is defined as follows: Win′ = {vE0 vA0 vE1 vA1 . . . ∈ PlayK | ∃v0v1 . . . ∈ Win s.t. 1)
vE0 = (v0,N>0), and 2) for each i ≥ 0: vEi = (vi, Ki) for some Ki ⊆ N>0}.

A strategy λ for Eve in KG is winning from v0 if all plays from v0 induced by λ is
in Win′. The winning region of Eve in KG is the set of vertices v0 from which she has a
winning strategy.

There is a one-to-one correspondence between the plays in A and KA. Intuitively, a
history hvv′ in A has a corresponding history hvEvAv′E in KA where vE and v′E are vertices
of Eve with first component v and v′, respectively, and vA is a vertex of Adam, with first
component v, that is a successor of vE. Relying on this correspondence, one can translate
winning strategies from a semi-parameterized game to its associated knowledge game. We
formally show that below.

Lemma 5.16. Eve has a winning strategy σ from v0 in G = (A,Win) if and only if she has
a winning strategy λ from (v0,N>0) in the associated knowledge game KG = (KA,Win′).

Proof. There is a correspondence between histories in A and KA. Every history h =
v0v1 · · · vi in A which is realizable can be lifted to a history in KA using the lifting function
κ defined as κ(h) = (v0, K0)(v0, K0, a0)(v1, K1) · · · (vi, Ki) where: K0 = N>0, and for every
1 ≤ j ≤ i, aj ∈ Σ and Kj = Kj−1 ∩ ∆(vj−1, aj−1, vj). Note that κ(h) is well-defined
because h is realizable and therefore, each Kj must be non-empty. Conversely, any history
h = (v0, K0)(v0, K0, a0)(v1, K1) · · · (vi, Ki) in KA projects to ι(h) = v0v1 · · · vi which is a
history in G. Moreover, for every k ∈ Ki, ι(h) is k-realizable in A. Using κ and ι, one
shows the correspondence between winning strategies in G and KG as follows.

Assume Eve has a winning strategy λ from (v0,N) in KG. We define σ a strategy for
Eve from v0 in G by applying λ to the lifting of histories to KG: for a history h ∈ HistA,
we define σ(h) as the third component of λ(κ(h)). To prove that σ is winning in G from

104 5. Playing against Arbitrarily Many Opponents

vertex v0, let k ∈ N>0 be a number of opponents, and ρ = v0v1 . . . ∈ OutkA(v0, σ) a play in
the k-outcome. Let κ(ρ) be the lifting of ρ to KG. By construction, κ(ρ) is a play in KG
induced by λ such that the second components of the vertices in κ(ρ) contain k. Since
λ is winning in KG, κ(ρ) ∈ Win′; and hence ρ ∈ Win. Since this is true for all plays in
OutkA(v0, σ) for every k ∈ N>0, σ is a winning strategy from v0 for Eve in G.

Assume now that Eve has a winning strategy σ from v0 in G. We define λ a strategy for
her in KG by applying σ to the projection of histories to G: for a history h · (v,K) ∈ HistK,
define λ(h · (v,K)) = (v,K, σ(ι(H))). To prove that λ is winning in KG, consider a play
R = (v0, K0)(v0, K0, a0)(v1, K1) · · · induced by λ in KG. Let ι(R) be the projection of
R to G. By construction, for each k ∈

⋂
i≥0

Ki, ι(R) ∈ OutkA(v0, σ). Moreover,
⋂
iKi 6= ∅.

Since σ is winning in G, ι(R) ∈ Win; and hence R ∈ Win′. Since this is true for all induced
plays by λ, it is a winning strategy for Eve from (v0,N) in KG.

The above lemma establishes the correspondence between winning strategies in G and
the associated knowledge game KG. The definition of winning objective in the knowledge
game (Definition 5.15) is such that Lemma 5.16 holds for any winning condition Win for
Eve in G. Moreover, for usual ω-regular objectives, Win′ falls into the same class as Win.
In particular,

• for Win a reachability objective described by the set of target vertices F ⊆ V , Win′

is again a reachability condition described by the set F ′ = VE∩{(v,K) | v ∈ F, K ⊆
N>0}. Indeed, it is easy to see that a play R ∈ Win′ eventually reaches a vertex
in F ′. For the converse, consider a play R that eventually reaches F ′. Then its
projection ι(R) to G reaches a vertex in F , and hence belongs to Win, hence we
conclude R ∈ Win′.

• for Win a safety objective described by the set of safe vertices F ⊆ V , Win′ is
again a safety condition described by the set F ′ = (VE ∩ {(v,K) | v ∈ F, K ⊆
N>0})∪ (VA ∩ {(v,K, a) | v ∈ F, K ⊆ N>0, a ∈ Σ}). Indeed, it is easy to see that a
play R ∈ Win′ only visits vertices from the set F ′. For the converse, consider a play
R that only visits vertices in F ′. Then its projection ι(R) to G only visits vertices
from F , and hence belongs to Win, hence we conclude R ∈ Win′.

• for Win a Büchi objective described by the set of vertices F ⊆ V , Win′ is again
a Büchi condition described by the set F ′ = (VE ∩ {(v,K) | v ∈ F, K ⊆ N>0}).
Indeed, it is easy to see that a play R ∈ Win′ visits vertices in F ′ infinitely often.
For the converse, consider a play R that visits vertices in F ′ infinitely often. Then
its projection ι(R) to G visits vertices from F infinitely often, and hence belongs to
Win, hence we conclude R ∈ Win′.

Since the knowledge game is finite, and since one can effectively compute Eve’s winning
regions in a two-player turn-based game with the above winning conditions, we conclude
that the semi-parameterized game problem is decidable for these classes of winning

5.3. Tight bounds for reachability games 105

objectives. Indeed, one can simply construct the associated knowledge game and decide if
Eve has a winning strategy from (v0,N>0).

Proposition 5.17. The semi-parameterized game problem is decidable for reachability,
safety and Büchi winning objectives.

In the rest of the chapter, we consider Win a reachability objective for Eve and prove
tight complexity bounds for the semi-parameterized game problem, unless otherwise spec-
ified. Recall that with no loss of generality, a reachability condition in the parameterized
game G can be described by a single target vertex t ∈ V . In that case, Win′ is described
by the set of target vertices F = VE ∩ {(t,K) | K ⊆ N>0}.

5.3 Tight bounds for reachability games

We now study the complexity of reachability objectives for semi-parameterized arenas.
Let us first summarize the results we are going to prove in this section. The complexity
of the semi-parameterized reachability game problem is stated in Table 5.1. Notice that
the complexity may vary depending on the type of the constraints and also on whether
the arena is deterministic or not.

Deterministic arenas Non-deterministic arenas

C
on

st
ra

in
ts Intervals PTIME-complete

Finite unions of intervals NP-complete PSPACE-complete

Semilinear sets PSPACE-complete

Table 5.1: Complexity of the semi-parameterized reachability game problem

Here note that the complexities for constraints given as (finite unions of) intervals are
independent of values of endpoints used in the description of the input, but depend on
their number. When constraints are given as semilinear sets, the complexity does depend
on #predA as well as the size of the encodings of the semilinear sets.

Fix for the rest of the section a semi-parameterized reachability game G = (A, t)
with A = 〈V,Σ,∆〉 and v0 an initial vertex. Let KG = (KA, F) be the knowledge game
corresponding to G such that KA = 〈VK, EK〉 with VK = VE] VA. The rest of this section
is devoted to proving these complexity results. We start with the simple case of intervals.

106 5. Playing against Arbitrarily Many Opponents

5.3.1 Constraints as intervals

When the constraints defining the sets of number of opponents are given as intervals, the
semi-parameterized reachability problem is complete for the complexity class PTIME.

Proposition 5.18. When constraints are intervals, the semi-parameterized reachability
game problem is PTIME-complete.

Proof. When constraints are intervals only, the size of the knowledge arena KA is poly-
nomial in the size of the semi-parameterized arena A (see Lemma 5.14) and it can be
computed in polynomial time. Further, the two-player reachability game on the knowledge
arena can be solved in linear time in the size of KA (see Theorem 4.12). Hence, the
semi-parameterized reachability game problem is in PTIME.

It is moreover complete for this class, since two-player reachability games are PTIME-
hard (by a reduction from the CIRCUIT-SAT problem), and the knowledge games are
generalizations of the same. We thus obtain the above complexity result, independently
of whether the arena is deterministic or not.

Next, we study the case of constraints given as finite unions of intervals or as semilinear
sets.

5.3.2 General PSPACE upper bound

We show that when constraints are given as semilinear predicates, or in non-deterministic
arenas with constraints given as finite unions of intervals, the reachability problem is
in PSPACE. The result is not straightforward since from Lemma 5.14, the knowledge
arena can be exponential. To show a PSPACE upper bound, we first break the knowledge
game into smaller (polynomial size) subgames, solve those subgames in polynomial time,
and come up with a method (based on depth-first search) to aggregate the results of
those subgames to decide the reachability problem on the knowledge arena using only
polynomial space in |G|. We first describe the construction of the subgame arenas, followed
by the method to combine the outputs of reachability game problems on those sub-arenas
to decide the reachability problem on the knowledge game and then prove the correctness
of this method. We finally show that the above procedure runs in polynomial space in |G|.

Subgame arenas KA[v,K]

For each vertex (v,K) ∈ VE of Eve in KG, we define a game arena KA[v,K], which is
the restriction of KA to vertices (v′, K, a) and (v′, K ′) that are reachable from (v,K) via
vertices with same knowledge set K only. Formally, KA[v,K] is the restriction of KA to

5.3. Tight bounds for reachability games 107

the following sets of vertices, defined inductively:
V 0
E = {(v,K)}
V i
A = {(v′, K, a) | v′ 6= t and (v′, K) ∈ V i

E and
(
(v′, K), (v′, K, a)

)
∈ EK}

V i+1
E = {(v′, K ′) | ∃(v′′, K, a) ∈ V i

A s.t.
(
(v′′, K, a), (v′, K ′)

)
∈ EK}

In this definition, as usual, sets of vertices with a suffix E belong to Eve and others to
Adam. Notice that in KA[v,K], every vertex of Adam has knowledge set K. Also, vertices
(v′, K ′) of Eve with knowledge K ′ (K or with v′ = t have no successors: we refer to
them as the output vertices of KA[v,K], and we write O[v,K] for the set of such vertices.
However, to be consistent with the notion of a two-player turn-based game – in which
there are no dead-ends – with no loss of generality, we put self-loops on the vertices in
O[v,K].

v0,N>0v6,N>0 v0,N>0,av0,N>0,b

v1,=1

v2,6=1

(a) A part of the subgame arena KA[v0,N>0]
corresponding to the knowledge arena in Fig-
ure 5.2.

v1,=1

v1,=1,a

v1,=1,b

v3,=1

v3,=1,a

v3,=1,b

v4,=1

v5,=1

(b) A part of the subgame arena KA[v1, {1}]
corresponding to the knowledge arena in Fig-
ure 5.2.

Figure 5.5: Examples of subgame arenas.

Examples of subgame arenas are given in Figure 5.5. On the left, a part of the
subgame arena corresponding to the vertex (v0,N>0) of the knowledge arena of Figure 5.2
is presented; and on the right, a part of the subgame arena KA[v1, {1}] from the same
knowledge arena is presented (outgoing vertices from (v6,N>0) and (v5, {1}) are not shown,
respectively, in the pictures).

We prove the following lemma analysing the size of this sub-arenas.

Lemma 5.19. Each subgame arena KA[v,K] is polynomial in the size of KA. Furthermore,
one can compute each KA[v,K]

1. in polynomial time in #endpointsA for constraints defined by finite unions of intervals;
and

2. in polynomial space in #predA and size of their encodings for constraints defined by
semilinear predicates.

Proof. First notice that there are at most |V | many vertices of Eve ((v,K) for every
v ∈ V), and |Σ||V | many vertices of Adam ((v, a,K) for every v ∈ V, a ∈ Σ) in KA[v,K]
with second component exactly K. Since vertices of Eve with second component strictly
smaller than K have no successors, only the immediate successors of v in A such that the
knowledge of Eve refines are considered in KA[v,K], and there are at most |E||V | ≤ |V |3
(|E| is the number of edges in A) many such vertices of Eve. There is no vertex of

108 5. Playing against Arbitrarily Many Opponents

Adam with knowledge set different from K. Therefore, the size of the arena KA[v,K] is
polynomial in the size of KA.

1. The intersection of two unions of disjoint intervals with endpoints from a set S is
again a finite union of disjoint intervals with endpoints from S. One can compute
the intersection by scanning the endpoints of the input sets in an increasing order.
Therefore, it can be computed in polynomial time in #endpointsA.

2. For semilinear sets, KA[v,K] can be computed in polynomial space in the size of
the encodings of the predicates. In this case, for P a semilinear predicate from
the arena and K a knowledge set one needs to check whether (P ∩ K) 6= ∅ and
also if (P ∩K) (K (to decide whether one obtains an output vertex of KA[v,K]).
First notice that semilinear sets are closed under intersection and moreover, one can
effectively compute the intersection of two semilinear sets, see for instance [GS64,
Theorem 6.1]. It is well-known from [Huy82] that the inequality problem for
semilinear sets is complete for the complexity class ΣP

2 in the polynomial hierarchy.
For the non-emptiness checking, one can reduce it to the inequality problem. Indeed,
P ∩K = ∅ iff P ∩K = P , where K denotes the complement of set K. Therefore,
both of the above checks can be done in polynomial space in #predA and the size of
their encodings.

This concludes the proof of Lemma 5.19.

One can consider a winning objective for Eve on a sub-arena KA[v,K] to form a
two-player turn-based game KG[v,K]. We will consider reachability objectives for Eve in
KG[v,K]. Because of its polynomial size, once constructed, KG[v,K] with a reachability
objective can be solved in polynomial time in |G|, see Theorem 4.12. We use these games
as sub-routines for solving the semi-parameterized reachability game problem. Let us now
describe that in the following.

Tagged tree of subgames

Using the subgames KG[v,K], we consider the following exponential-size tree T . The
root of the tree is (v0,N>0), the initial vertex of the knowledge game. A node (v,K) has
children the vertices in O[v,K]. Our aim is then to tag each node n = (v,K) of T with
Win or Lose, to reflect whether Eve has a winning strategy from (v,K) in KG. We first
formally define the construction of T followed by a tag function.

T is defined inductively as follows: the root n0 = (v0,N>0) is the initial vertex of KA,
and (v′, K ′) is a child of (v,K) if (v′, K ′) ∈ O[v,K] is an output vertex in KA[v,K]. We
then define the following tagging function on the vertices of T . Intuitively, a node is
tagged Win if its first component is t or if Eve has a strategy in the subgame KG[v,K] to
reach an output vertex in O[v,K] that has been tagged Win.

5.3. Tight bounds for reachability games 109

tag((v,K)) =


Win if v = t

Win if Eve has a winning strategy in KG[v,K] from (v,K) to reach

the set {α ∈ O[v,K] | tag(α) = Win}, if non-empty

Lose otherwise.

We now show the correctness of the tagging function in the sense that a node (v,K)
in T is tagged Win if and only if Eve has a winning strategy in KG from (v,K).

Lemma 5.20. For each node (v,K) in T , tag((v,K)) = Win if and only if Eve has a
winning strategy in KG from (v,K).

Proof. We show by induction on the height of the tree that for every node (v,K) in T ,
tag((v,K)) = Win if and only if the corresponding vertex (v,K) in KG is in Eve’s winning
region. First pick a leaf (v,K): if v = t, it is in winning region for Eve in KG, and by
definition, it is tagged Win in T ; otherwise, since KA[v,K] has no output vertex, the game
never exits that subgame and hence is not winning for Eve, and by definition, it is tagged
Lose in T .

Now pick an intermediary node (v,K), and by induction hypothesis, assume all the
children of that node are already tagged and satisfy the claim. We show it also holds
for (v,K). Let tag((v,K)) = Win. Then there is a winning strategy of Eve in KG[v,K]
to reach the set S of output vertices which are tagged Win, and by induction hypothesis,
she has a winning strategy from each of those vertices in KG. Therefore, she also has a
winning strategy from (v,K) in KG : it first reaches a vertex in S and follows the winning
strategy from that vertex.

Conversely, assume there is a winning strategy σ from (v,K) in KG; one can play
it in KG[v,K] as well. Since σ is winning in KG, it eventually reaches (t,K ′′) for some
K ′′, hence when we apply it in KG[v,K], output vertices in O[v,K] are reached eventually.
Towards a contradiction, assume it reaches one such output vertex (v′, K ′) such that
tag((v′, K ′)) = Lose. Then by the induction hypothesis, there should not be any winning
strategy from (v′, K ′) in KG; this is a contradiction since (v′, K ′) is reached by applying
σ which is a winning strategy from (v,K) in KG. We conclude that tag((v,K)) = Win if
and only if Eve has a winning strategy in KG from (v,K).

As a direct corollary of the above lemma, we conclude that the root of T is tagged
Win if and only if Eve has a winning strategy in KG from (v0,N>0), which is equivalent to
saying she has a winning strategy in G to reach the target vertex t, by Lemma 5.16.

We now show the root of the tree can be tagged in polynomial space, by a depth-first
search algorithm on T . An illustration of the algorithm is given in Figure 5.6. The
intuitive idea is that once the tag of a node has been computed, its whole subtree can be
forgotten and one can reuse the space to repeatedly solve the games KG [v,K] for different

110 5. Playing against Arbitrarily Many Opponents

v and K. We show that polynomial space is sufficient to compute the value of the tag
function for the root node in T .

v0,K0,?

v1,K1,Win v2,K2,Lose v3,K3,?

v5,K5,Lose v6,K6,?

t,K9,Win v10,K10,?
...

v11,K11,?

v7,K7,? v8,K8,?

v4,K4,?

Figure 5.6: Illustration of the polynomial space DFS tagging algorithm: the Win/Lose
tags of green nodes have already been computed (and their subtrees have been removed);
the tags of red nodes are being computed (hence the label ‘?’); and the blue nodes are
waiting to be processed (we also use label ‘?’). For instance, before tagging (v6, K6), one
needs to first compute the tag of (v10, K10) (which is ongoing), then compute the tag of
(v11, K11) (which is waiting).

Lemma 5.21. One can determine tag(n0) = tag((v0,N>0)) in polynomial space in |G|.

Proof. First recall that assuming all its children nodes are already tagged, the tag of a
node n = (v,K) can be determined in polynomial time by solving the polynomial size
game KG[v,K].

Storing the full tagged tree T may require exponential space, however the height of
T , denoted h(T) is polynomially bounded, in #endpointsA in the case of finite unions of
intervals, and in #predA in the case of semilinear predicates. Indeed, along a branch the
knowledge sets decrease, and we only take intersections of constraints given in the input.
A polynomial space algorithm thus consists in a depth-first search tagging. Once the tag
of a node has been computed, its whole subtree is forgotten. In the DFS tagging, the size
of the stack is at most the height of the tree times the maximal number of successors of a
vertex v in G. That is, the size of the stack is at most |V |h(T), which is polynomial in |G|.
Now, to store one node of the tree, polynomial space is sufficient, since the only critical
part is the knowledge set. In both cases (unions of intervals and general predicates), a
knowledge set can be stored in polynomial space (even linear for unions of intervals):

• for constraints given by finite unions of intervals, it is sufficient to store a list of left
endpoints and right endpoints, ordered properly. Since each endpoint is used in G,
this list can be stored in space linearly bounded by |G|.

• for constraints given by semilinear predicates, a knowledge set is characterized by
the list of predicates which are satisfied, hence if P is the finite set of predicates

5.3. Tight bounds for reachability games 111

P = {P1, . . . , Pl} in A, it is sufficient to store a subset of {1, . . . , l}, which can be
done in space l log(l), with l ≤ |G|.

Hence, tag(n0) can be determined in polynomial space in |G|.

Lemma 5.21 proves that one can compute tag(n0) in polynomial space in the size
of the input. Then, by the correctness of the tagged tree (see Lemma 5.20), and the
correctness of the knowledge game construction (see Lemma 5.16), we conclude that the
semi-parameterized reachability game can be solved in polynomial space:

Proposition 5.22. When constraints are given by finite unions of disjoint intervals or
semilinear sets, the semi-parameterized reachability game problem is in PSPACE.

Before proving the lower bound results, let us show in the following that the problem
falls into a lower complexity class for deterministic arenas when constraints are given by
finite union of intervals.

5.3.3 An NP upper bound for deterministic arenas for constraints
given by finite unions of intervals

The previous PSPACE upper bound can be improved when the arena is deterministic and
constraints are given by finite unions of intervals. We show that if there is a winning
strategy for Eve in G then there is one which is polynomially bounded in |G|. Therefore,
one can guess a “small” strategy for Eve and check in polynomial time if it is winning for
her. We detail this idea below.

We assume that Eve has a winning strategy in the semi-parameterized reachability
game G. We pick σ, an arbitrary one that is winning, and we consider the tree Tσ it
induces: nodes are histories, and the children of a node are the possible next histories
(depending on the number of opponents); we label each of the nodes with the knowledge
of Eve w.r.t. the number of opponents.

Formally, the root of Tσ is the history v0, and it is labelled with knowledge N>0.
Consider a node hv ∈ HistA in Tσ labelled with knowledge K; its children will be all hvv′,
where v′ ∈ V is such that there is K ′ with K ∩K ′ 6= ∅ and (v, σ(hv), K ′, v′) ∈ ∆; such a
node hvv′ will then be labelled with K ∩K ′.

The tree Tσ for a winning strategy σ satisfies the following properties:

Lemma 5.23. Let σ be a winning strategy for Eve from v0 in G and Tσ be the corresponding
strategy tree. Then:

1. along any path in Tσ, the number of distinct knowledge sets is at most #endpointsA;

112 5. Playing against Arbitrarily Many Opponents

2. the knowledge at sibling nodes form a partition of the knowledge at their parent node.

Proof. 1. The knowledge sets labelling the nodes of the tree are intersections of finite
unions of intervals from A. More precisely, a node v0v1 . . . vt of Tσ has label the set⋂t−1
i=0 ∆(vi, ai, vi+1) where ai = σ(v0 . . . vi). In particular, all intervals are defined

using endpoints of intervals appearing in a constraint of A (if [i1, i2] is an interval of
the above set, then i1 is a left endpoint, and i2 is a right endpoint of some interval
in A).

2. To prove the second property, it is sufficient to notice that the arena is deterministic
and complete w.r.t. Eve’s actions. More precisely, for any k ∈ N>0 number of
opponents, from a history hv in G, the action σ(hv) of Eve leads to a unique v′ such
that k ∈ ∆(v, a, v′). Hence, the knowledge sets attached to all successors hvv′ form
a partition of the knowledge attached to node hv.

This concludes the proof of Lemma 5.23.

The second property has the following consequences, that we use in the sequel. First,
at each level of the tree, the knowledge of all nodes form a partition of N>0 using endpoints
from the arena description, so that the number of nodes at each level is bounded by
#endpointsA. Second, if a node has the same knowledge as its parent, it cannot have
siblings.

These properties allow us to transform an arbitrary winning strategy of Eve in G into
one whose tree is “small”, more precisely, polynomially bounded by the size of the arena:

Lemma 5.24. Eve has a winning strategy in G if and only if she has a winning strategy
σ such that Tσ is of height at most #endpointsA|V |, and of width at most #endpointsA.

Proof. From Lemma 5.23, the tree induced by an arbitrary winning strategy σ′ has width
bounded by #endpointsA. We now explain how to transform the strategy such that the
height is bounded by #endpointsA|V |. Assume there is a path in Tσ′ of length more
than #endpointsA|V |. By Lemma 5.23, there must be two nodes along that path whose
histories end with the same vertex, and labelled with the same knowledge. Moreover,
there is no branching on the path portion between these two nodes, because the knowledge
is unchanged. It thus suffices to shorten the path by removing the corresponding path
portion. Applying this reduction iteratively, one obtains a strategy tree of height bounded
by #endpointsA|V |. This tree can be transformed into a strategy in a straightforward
way.

Using Lemma 5.24, we derive an algorithm in non-deterministic polynomial time to
decide the semi-parameterized reachability game problem when arenas are deterministic
and constraints are finite unions of intervals. It suffices to guess a small strategy tree (see
Figure 5.7), of size polynomial in the size of A, and check in polynomial time that it is
consistent with the arena and satisfies the reachability criterion.

5.3. Tight bounds for reachability games 113

v0

•

• • •

··· ···
...

...
...

a0

a1 a2 a3 ≤#endpointsA|V |

Partition of N of size ≤#endpointsA

Figure 5.7: Strategy tree of a small winning strategy in deterministic arenas with finite
unions of intervals.

We derive the following complexity result.

Theorem 5.25. The parameterized reachability game problem is in NP, when constraints
are finite unions of intervals and when restricting to deterministic arenas.

The rest of this section is devoted to proving lower bounds for the reachability problem
on semi-parameterized arenas. We shall show a PSPACE lower bound for the general
constraints and an NP lower bound for deterministic arenas with constraints finite unions
of intervals. This proves that the bounds proved so far are tight for the respective
complexity classes.

5.3.4 Lower bounds

We prove all lower bounds mentioned in Table 5.1. We start with the PSPACE-hardness
when constraints are finite unions of intervals and arenas are a priori non-deterministic.

Proposition 5.26. When constraints are finite unions of intervals, the semi-parameterized
reachability game problem is PSPACE-hard.

Proof. The proof is by reduction from QBF-SAT, which is known to be PSPACE-complete
from [SM73]. Let ϕ = ∃x1∀x2∃x3 . . . ∀x2r ·

(
C1 ∧ C2 ∧ . . . ∧ Cm

)
be a quantified Boolean

formula in prenex normal form, where for every 1 ≤ h ≤ m, Ch = `h,1 ∨ `h,2 ∨ `h,3 are the
clauses, and for every 1 ≤ j ≤ 3, `h,j ∈ {xi,¬xi | 1 ≤ i ≤ 2r} are the literals. From ϕ, we
construct a semi-parameterized arena Aϕ = 〈V,Σ,∆〉 as follows:

• V = {v0, v1, . . . , v2r−1, v2r} ∪ {vx1 , vx̄1 , . . . , vx2r , vx̄2r} ∪ {vC1 , vC2 , . . . , vCm , vCm+1} ∪
{⊥,>}, where we identify v2r with vC1 , and vCm+1 with >.

• Σ = {u, c} ∪
⋃

1≤i≤2r{ai, āi}.

114 5. Playing against Arbitrarily Many Opponents

• For every 0 ≤ s ≤ r−1, 1 ≤ i ≤ 2r, 1 ≤ h ≤ m and 1 ≤ j ≤ 3:

1. ∆(v2s, a2s+1, vx2s+1) = ∆(v2s, ā2s+1, vx̄2s+1) = N>0;

2. ∆(v2s+1, u, vx2s+2) = ∆(v2s+1, u, vx̄2s+2) = N>0;

3. ∆(vxi , c, vi) = N>0 \ {2i} and ∆(vxi , c,>) = {2i};
4. ∆(vx̄i , c, vi) = N>0 \ {2i−1} and ∆(vx̄i , c,>) = {2i−1};
5. ∆(vCh

, ai, vCh+1
) = N>0 \ {2i} if `h,j = xi; and

∆(vCh
, āi, vCh+1

) = N>0 \ {2i−1} if `h,j = ¬xi.

To obtain a complete arena, all unspecified transitions lead to a sink vertex ⊥.

v0 v1 v2 v3 vC1
vC2 >

vx1

vx̄1

vx2

vx̄2

vx3

vx̄3

vx4

vx̄4

a 1

ā
1

u

u

a 3

ā
3

u

u

c, 6=
2

c,
6=1

c, 6=
4

c,
6=3

c, 6=
6

c,
6=5

c, 6=
8

c,
6=7

c,=2

>

c,=4

>

c,=6

>

c,=8

>

c,=1

>

c,=3

>

c,=5

>

c,=7

>

a1,6=2

ā2,6=3

ā3,6=5

⊥

a2,6=4

a3,6=6

ā4,6=7

⊥

Figure 5.8: Reduction for formula ϕ = ∃x1∀x2∃x3∀x4 · (x1 ∨¬x2 ∨¬x3)∧ (x2 ∨ x3 ∨¬x4).
Knowledge of Eve at vC1 contains for every variable xi, either 2i or 2i−1 (and not both);
containing 2i (resp., 2i−1) encodes that xi has been set to false (resp., true).

An example of the construction is given in Figure 5.8 for the formula ϕ = ∃x1∀x2∃x3∀x4·
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4). The nodes are depicted in square for a better repre-
sentation of the picture. Constraints of the form N>0 \ {2i} are presented as 6= 2i, for
instance, ∆(vx1 , c, v1) = N>0 \ {2}.

Intuitively, from v0, a first phase consists in choosing a valuation for the variables: Eve
can choose the truth values of existentially quantified variables in vertices v2s (with actions
a2s+1 for true and ā2s+1 for false), and the environment resolves the non-determinism
of action u (u stands for universal) to choose the truth values of universally quantified
variables in vertices v2s−1. Due to the constraints on the edges, the knowledge of Eve at
vC1 contains for every variable xi, either 2i or 2i−1 (and not both); where containing
2i (resp., 2i−1) encodes the fact that xi has been set to false (resp., true) by Eve or the
environment.

From vC1 , a second phase starts, where one checks whether the generated valuation
makes all clauses in ϕ true. Sequentially, Eve chooses for every clause a literal that makes
the clause true and these choices must be consistent with the first phase. To enforce this,
plays with 2i−1 and 2i opponents check the consistency of the assignment for variable xi.
For instance, if action ai (encoding xi set to true) against 2i−1 opponents leads from vCh

5.3. Tight bounds for reachability games 115

to vCh+1
, this means that vxi was visited, hence that xi was set to true. On the contrary,

if xi was set to false, hence vxi was not visited, then against 2i−1 opponents, action ai
will lead to ⊥. The role of āi is dual; it encodes assigning false to xi, and will be checked
with plays against 2i opponents.

Let us now formally show that the above reduction ensures the following equivalence:
Eve has a winning strategy from v0 in the semi-parameterized reachability game Gϕ =
(Aϕ,>) if and only if ϕ is true.

Here, for `h,j a literal of ϕ, we write γ(`h,j) for the constraint associated with `h,j in
the second phase of the reduction. More precisely,

γ(`h,j) =

{
6= 2i if `h,j = xi

6= 2i−1 if `h,j = ¬xi

We rely on the following correspondence between plays from v0 to vC1 and valuations
over {x1, · · · , x2r}: the valuation ιπ associated with a history π = v0v

′
1v1v

′
2v2 · · · vC1 is

such that ιπ(xi) = 1 if v′i = vxi and ιπ(xi) = 0 if v′i = vx̄i . This correspondence defines
a bijection, so that, given a valuation ι over {x1, · · · , x2r}, there is a unique history
πι = v0v

′
1v1v

′
2v2 · · · vC1 with v′i = vxi if ι(xi) = 1, and v′i = vx̄i if ι(xi) = 0.

Moreover, after a finite history π = v0v
′
1v1v

′
2v2 · · · vC1 , the information Eve has about

the number of her opponents is Kπ = {2i−ιπ(xi) | 1 ≤ i ≤ 2r} ∪ {k | k ≥ 4r+1}. Indeed:

Kπ = N \
(
{2i−1 | v′i = vx̄i , 1 ≤ i ≤ 2r} ∪ {2i | v′i = vxi , 1 ≤ i ≤ 2r}

)
= N \

(
{2i−1 | ιπ(xi) = 0, 1 ≤ i ≤ 2r} ∪ {2i | ιπ(xi) = 1, 1 ≤ i ≤ 2r}

)
= {2i | ιπ(xi) = 0, 1 ≤ i ≤ 2r} ∪ {2i− 1 | ιπ(xi) = 1, 1 ≤ i ≤ 2r} ∪ {k | k ≥ 4r+1}
= {2i−ιπ(xi) | 1 ≤ i ≤ 2r} ∪ {k | k ≥ 4r+1}

There is thus also a bijection between valuations and possible knowledges at vC1 , so
that we abusively write Kι when ι is a fixed valuation over {x1, · · · , x2r}. Note that for
every 1 ≤ i ≤ 2r, Kι ∩ {2i−1, 2i} is a singleton: {2i−1} if ι(xi) = 1 and {2i} if ι(xi) = 0.
Also, an extension of a history π = v0v

′
1v1v

′
2v2 · · · vC1 either leads to ⊥, or continues in

the main part of the game, in which case it does not refine the knowledge set Kπ further.
We then show the following equivalence for the second phase of the reduction:

Lemma 5.27. Let ι be a valuation of {x1, · · · , x2r}. Then ι |= C1 ∧ · · · ∧ Cm if and only
if Eve has a strategy that ensures winning from vC1 against k opponents, for all k ∈ Kι.

Proof. Assume ι |= C1 ∧ · · · ∧ Cm. For every 1 ≤ h ≤ m, there is `h,j (literal of Ch) such
that ι(`h,j) = 1. We define the following strategy for Eve from vC1 : at vertex vCh

, she
plays action αh defined by αh = ai if `h,j = xi, and αh = āi if `h,j = ¬xi. By property on
Kι, Kι ⊆ γ(`h,j). Thus, the strategy avoids ⊥, and is therefore winning for every k ∈ Kι.

Conversely, pick a winning strategy for Eve from vC1 against Kι. This strategy plays
uniformly for all k ∈ Kι, say action αh from vCh

. If αh = ai, then xi is a literal of Ch,

116 5. Playing against Arbitrarily Many Opponents

which is such that Kι ⊆ γ(xi); the construction guarantees that ι(xi) = 1. A similar
reasoning applies to the case αh = āi. In all cases, Ch is satisfied by ι.

Lemma 5.27 formalizes the link between winning strategies for Eve in the second phase
(that is, from vC1) and satisfying valuations. It remains to relate strategies for Eve in the
first phase and decision functions for the variable quantifications in ϕ.

The two-player game underlying the quantifications of ϕ coincides with the game in
the first phase. In particular, strategies coincide in the two games. Fix a strategy σ in
the quantification game or equivalently in the first phase. For every valuation ι which
is generated by σ in the quantification game, there is an outcome π ending in vC1 such
that ι = ιπ. Conversely, for every outcome π ending in vC1 , ιπ is generated by σ in the
quantification game.

Note that the reduction could also be done with three actions only, which is the
maximal number of actions necessary from any vertex. Also the reduction uses unions of
intervals (due to 6= i constraints). Finally, the arena is non-deterministic at each vertex
corresponding to universal quantifiers in ϕ.

We extend this reduction in two ways to get rid of nondeterminism. First, instead of
QBF-SAT, one can encode 3SAT (which is known to be NP-complete [Coo71]) and obtain
a deterministic parameterized game:

Proposition 5.28. When constraints are finite unions of intervals, and arenas are
deterministic, the semi-parameterized reachability game problem is NP-hard.

Proof sketch. The proof of the proposition builds on the previous reduction with the
simple modification that, since all Boolean variables are existentially quantified in a SAT
formula, the non-determinism at vertices v2s+1 is resolved by actions of Eve. Formally, we
modify the statement (2) in the definition of the transition function of Aϕ from Page 113
with:

∆(v2s+1, a2s+2, vx2s+2) = ∆(v2s+1, ā2s+2, vx̄2s+2) = N>0.

Then one can mimic the rest of the proof of Proposition 5.26 to establish the NP-hardness
for deterministic arenas when constraints are finite union of intervals.

Second, we extend the reduction to show a PSPACE lower bound for the problem with
semilinear predicates, even for deterministic arenas:

Proposition 5.29. When constraints are semilinear sets and arenas are deterministic,
the semi-parameterized reachability game problem is PSPACE-hard.

Proof sketch. The proof again builds on the reduction used in the proof of Proposition 5.26
where we replace the unions of intervals with appropriate semilinear predicates. More
precisely, for every 1 ≤ i ≤ 2r, we use the semilinear set Pi consisting of the set of

5.3. Tight bounds for reachability games 117

multiples of pi, where pi is the i-th prime number. The reduction from the same QBF
formula as in Figure 5.8 to an arena with constraints as semilinear predicates is illustrated
in Figure 5.9. Formally, the definition of the transition relation of Aϕ from Page 113 are
modified as follows: for every 0 ≤ s ≤ r−1, 1 ≤ i ≤ 2r, 1 ≤ h ≤ m and 1 ≤ j ≤ 3:

1. ∆(v2s, a2s+1, vx2s+1) = P2s+1, and ∆(v2s, a2s+1,>) = ¬P2s+1;

∆(v2s, ā2s+1, vx̄2s+1) = ¬P2s+1, and ∆(v2s, ā2s+1,>) = P2s+1;

2. ∆(v2s+1, u, vx2s+2) = P2s+2, and ∆(v2s+1, u, vx̄2s+2) = ¬P2s+2;

3. ∆(vxi , c, vi) = ∆(vx̄i , c, vi) = N>0;

4. ∆(vCh
, ai, vCh+1

) = Pi if `h,j = xi; and

∆(vCh
, āi, vCh+1

) = ¬Pi if `h,j = ¬xi.

To obtain a complete arena, all unspecified transitions lead to a sink vertex ⊥.

v0 v1 v2 v3 vC1
vC2 >

vx1

vx̄1

vx2

vx̄2

vx3

vx̄3

vx4

vx̄4

a1
,P

1

ā
1 ,¬P

1

u,
P2

u,¬P
2

a3
,P

3

ā
3 ,¬P

3

u,
P4

u,¬P
4

c

c

c

c

c

c

c

c

a1,¬P1

>

ā1,P1

>

a3,¬P3

>

ā3,P3

>

a1,P1

ā2,¬P2

ā3,¬P3

⊥

a2,P2

a3,P3

ā4,¬P4

⊥

Figure 5.9: Reduction for formula ϕ = ∃x1∀x2∃x3∀x4 · (x1 ∨¬x2 ∨¬x3)∧ (x2 ∨ x3 ∨¬x4).
Predicate Pi is “divisible by i-th prime number”.

Intuitively, at the end of the first phase, the truth value of variable xi is witnessed by
the fact that the set of possible number of opponents is a multiple of pi if xi is set to true
(that is Pi is satisfied), and it is not a multiple of pi if xi is set to false (that is, ¬Pi is
satisfied). The rest of the proof is identical to that of Proposition 5.26.

We have now proved all the bounds mentioned in Table 5.1 for a semi-parameterized
reachability game. In particular, in the most general case, when the constraints in the
arena are semilinear predicates, the problem is PSPACE-complete. However, it falls into
lower complexity classes for simpler constraints, for instance, (finite unions of) intervals.

118 5. Playing against Arbitrarily Many Opponents

5.4 Concluding remarks

In this chapter, we considered the decision problem of existence of a winning strategy for
Eve on a parameterized arena against an unknown number of opponents. Her opponents
play as a coalition and the task of an adversarial environment is two-fold: first, it chooses
the number of agents participating in the game at the beginning and second, it resolves the
non-determinisms in the arena. We show that such a game can be reduced to a two-player
game between Eve and an adversary in which, we show that, Eve has a winning strategy
only if she has one in the earlier. We call the latter the semi-parameterized game. A semi-
parameterized game can then be reduced to a turn-based game with appropriate winning
objective for Eve, and we show a correspondence between the winning strategies for Eve
in both games. We have established tight complexity bounds for the semi-parameterized
games when the winning objective is a reachability one. The complexity of the problem
differs on the type of the constraints, whether they are (finite unions of) intervals or
semilinear sets, and the type of the arena, whether it is deterministic or not. Table 5.1
presents the complexity results for semi-parameterized reachability problem in a nutshell.

Bounds on parameterized reachability problem

While we have only shown the bounds for semi-parameterized reachability problem, using
the ingredients from this chapter, we can also show a similar tight complexity bound for
the game problem Eve against unknown number of opponents on parameterized arenas for
reachability objective. Indeed, recall from Lemmas 5.10 and 5.11 that parameterized games
and semi-parameterized ones, with constraints as semilinear predicates, are inter-reducible
in polynomial time, furthermore, the winning region of Eve is preserved. Therefore, the
upper and lower bounds shown in Proposition 5.22 and Proposition 5.29, respectively,
apply to the game problem on parameterized arenas. This can be formalized as follows.

Proposition 5.30. For reachability objectives for Eve, the decision problem ‘Eve against
unknown number of opponents’ on a parameterized arena is PSPACE-complete.

Beyond reachability

The upper and lower bounds were established for semi-parameterized game problem in
Section 5.3 and Proposition 5.30 shows that the similar tight bounds hold for games on
parameterized arenas where, in both cases, the winning objective for Eve is reachability.
A natural question is then to ask whether the same bounds also apply for other winning
objectives or Eve.

Notice that the knowledge game abstraction is correct for any winning objective,
as witnessed in Theorem 5.16. As a consequence, we immediately get a corollary that
semi-parameterized games are decidable for usual ω-regular objectives, for which a decision

5.4. Concluding remarks 119

procedure exists in a two-player turn-based setting. The decidability result is stated
in Proposition 5.17. Again, due to Lemma 5.11, those games are also decidable on
parameterized arenas.

Although the knowledge game abstraction leads us to the decidability of the decision
problem for the aforementioned objectives, the DFS algorithm using a tagged tree would
not directly apply for arbitrary winning objectives. Indeed, by construction, we stop
exploring a node (v, k) in that tree whenever v = t (t is the target vertex for reachability
objective) is visited or if there is no output vertices in the subgame arena KG [v,K]. Here,
we implicitly use the intuition that in a reachability game, the winning status of a play
is determined by only a finite prefix of the play (whether the target is reached, and
for positive instances, it can be reached within a linear bound in the size of the arena).
However, for other objectives, this might not be the case in general, and hence, it is
not straight forward to conclude the same upper bounds for those objectives. However,
for safety and Büchi objectives, the same PSPACE lower bound result apply. Indeed,
first notice that the same reduction as in Proposition 5.29 works with a safety objective
described by the set F = V \ {⊥}; and second, for Büchi objectives, it is enough to see
that they subsume reachability objectives. Nonetheless, a naive exponential upper bound
can be proved for (semi-)parameterized safety (resp., Büchi) games: one can reduce the
semi-parameterized arena to the exponential size knowledge arena and apply standard
algorithms on the latter that runs in linear (resp., polynomial) time in the size of the
knowledge game.

Proposition 5.31. For safety and Büchi objectives for Eve, the decision problem ‘Eve
against unknown number of opponents’ on a parameterized arena is in EXPTIME and
PSPACE-hard.

While exponential upper bounds for the safety and Büchi objectives are almost im-
mediate consequences of the knowledge game abstraction, we believe one can achieve
PSPACE upper bounds for these objectives by first modifying the winning conditions for
Eve in the subgames KG[v,K] appropriately, then defining a tagged tree of polynomial
height similarly to the reachability case, and applying a DFS tagging algorithm that
runs in polynomial space in the size of the input. Formalizing this idea, and closing the
complexity gap in Proposition 5.31 is therefore an immediate follow-up question we would
like to investigate. Further, one can also consider other ω-regular objectives for the game
problem.

Chapter 6

Synthesizing Safe Coalition
Strategies

In Chapter 4, we introduced parameterized arenas, an extension of classical two-player
concurrent game arenas, with an arbitrary number of agents. However, the agents are
assigned a unique identifier that is implicitly used in describing the model. In contrast to
two-player arenas, edges in parameterized arenas are labelled with (regular) languages of
finite yet possibly unbounded words. In parameterized games, the agents do not know a
priori the number of agents participating in the interaction.

Chapter 5 was devoted to solving the parameterized game problem on a setting where
the first player, called Eve, is distinguished, and we ask if there exists a winning strategy
for her against any number of opponents and any strategies of them. We have shown the
game problem is PSPACE-complete when the winning objective for Eve is a reachability
objective.

We are further interested in another setting, called coalition game, where agents play
collectively and try to achieve a common goal. More precisely, at any vertex, depending
on the past history, agents choose actions according to their strategies, and a strategy
profile is winning if every play in its outcome is winning for the coalition. This chapter
studies this setting, mainly for safety winning objectives for the coalition.

We first define coalition strategies. In contrast to the notion of a strategy profile, which
is an infinite tuple of individual strategies of the agents, a coalition strategy is a function
that assigns to every history an ω-word. We remark that, in the coalition setting, these
two notions are equivalent: there exists a strategy profile for coalition if and only if there
exists a coalition strategy. The main result of this chapter is that the coalition problem is
decidable for safety objectives. Moreover, we provide an algorithm to decide the above
that runs in exponential space in the size of input, and we also show a PSPACE lower
bound.

The exponential space algorithm consists in two major steps. The first step is to
unfold the game arena A into a finite tree T with the same winning objective for the
coalition. The tree is finite because, since the winning objective is a safety one, if a vertex

121

122 6. Synthesizing Safe Coalition Strategies

repeats along a history, the coalition can play the same strategy as it played in the first
occurrence of the vertex. This idea will be formalized later in this chapter. Based on the
above idea, we show the correctness of the tree unfolding: there is a winning strategy for
the coalition in the parameterized arena if and only if there is one in the tree.

In the second step, we construct a deterministic finite automaton B from the NFA’s
corresponding to the regular languages in the arena. The automaton B accepts ω-words
over alphabet Σm where Σ is the set of actions and m is the number of internal nodes in
the finite tree unfolding. We set the accepting condition to a safety condition, and show
that an ω-word in the language of B corresponds to a winning coalition strategy in T and
vice-versa.

The EXPSPACE upper bound for the safe coalition problem is then achieved by proving
that an accepting run of B can be guessed using exponential space. A PSPACE lower
bound for the safe coalition problem follows from the idea used in Chapter 5 to prove
Propositions 5.26 and 5.29. Moreover, a winning strategy can be synthesized, when it
exists, from an accepting run of B using exponential space. We prove an optimal bound
on the (exponential) size of the memory required for the coalition to win a parameterized
safety game: if the coalition has a winning strategy, it has one of size at most exponential;
furthermore, there exists a family of games, whose size is linear in n, such that any winning
coalition strategy requires a memory of size O(2n).

This chapter is based on the publication [BBM20] co-authored with Nathalie Bertrand
and Patricia Bouyer appeared in FSTTCS 2020.

Organization of the chapter

This chapter is organized as follows. Section 6.1 first recalls briefly the coalition game
setting on parameterized arenas and illustrative examples are discussed. We then proceed
to prove the decidability of the safe coalition problem. We construct a finite tree unfolding
of an arena and show its correctness in Section 6.2. Then in Section 6.3, we provide an
algorithm to solve the coalition problem on the tree unfolding that runs in exponential
space in the size of the arena, proving an EXPSPACE upper bound for the problem. A
PSPACE lower bound result is shown in Section 6.4. Section 6.5 talks about synthesis of a
winning strategy for coalition, if exists, in parameterized safety games. Finally, we close
the chapter with a discussion on future research directions in Section 6.6.

6.1 Game setting

Let us first briefly recall the coalition setting on parameterized arenas from Section 4.3
that we aim to study in this chapter.

Fix a parameterized arenaA = 〈V,Σ,∆〉. A strategy for agent i is a mapping σi : V + →

6.1. Game setting 123

Σ from histories to the set of actions. Then a strategy profile is an infinite tuple of strate-
gies: σ̃ = 〈σ1, σ2, . . .〉 ∈ (V + → Σ)ω. For a tuple 〈σ1, . . . , σk〉 of strategies from v0 of k
agents, we define k-outcome the set of k-realizable plays compatible with the strategies; for-
mally, OutkA(v0, σ1, . . . , σk) = {v0v1 · · · | ∀j ≥ 0, σ1(v0 · · · vj)σ2(v0 · · · vj) . . . σk(v0 · · · vj) ∈
∆(vj, vj+1)}. Then a strategy profile σ̃ = 〈σ1, σ2, . . .〉 from v0 defines outcome, the set of
induced plays: OutA(v0, σ̃) =

⋃
k∈N>0

OutkA(v0, σ1, . . . , σk).

Observe that a strategy profile can equivalently be described as a coalition strategy
σ : V + → Σω, a partial function that maps each history to an ω-word over Σ, as illustrated
in Table 6.1. Indeed, if an enumeration of histories (hj)j∈N is fixed, a strategy profile can
be seen as a table with infinitely many rows –one for each agent– and infinitely many
columns indexed by histories. Reading the table vertically provides the coalition strategy
view: each history is mapped to an ω-word, obtained by concatenating the actions chosen
by each of the agents.

h0 h1 h2 h3 . . .

σ1 a b b b . . .
σ2 b b b b . . .
σ3 b a a a . . .
...

...
...

...
...

Table 6.1: From strategy profile to coalition strategy.

While considering the existence problem of a winning strategy profile σ̃ for the coalition,
it is equivalent to ask whether such a table exists that corresponds to a winning strategy
for them, or equivalently, whether there exists a coalition strategy σ that is winning.
Since, in this chapter, we are interested in such problems, in the sequel, we mostly take
the coalition strategy view, but may interchangeably also consider strategy profiles.

Remark that this might not be the case for some other decision problems. For instance,
where actions of Eve are distinguished and we want to decide whether there exists a
strategy σ1 for her that is winning for any k and any σ2, . . . , σk, the coalition view of a
strategy profile is of lesser use. Indeed, for a fixed σ1, one needs to check if it is winning
for all possible σ2, σ3, . . . strategies of opponents of Eve.

We define here the outcome of a coalition strategy σ. Recall that for two words u ∈ Σ∗

and w ∈ Σ+ ∪Σω, we write u v w to denote u is a prefix of w, and for any k ∈ N>0, [w]≤k
denotes the prefix of length k of w (belongs to Σk).

Given a coalition strategy σ, an initial vertex v0 and a number of agents k ∈ N>0, we
define the k-outcome OutkA(v0,σ) as the set of all k-realizable plays induced by σ from v0.
Formally, OutkA(v0,σ) = {v0v1 · · · | ∀j ≥ 0, [σ(v0 · · · vj)]≤k ∈ ∆(vj, vj+1)}. Note that the
completeness assumption ensures that the set OutkA(v,σ) is not empty. Then the outcome
of coalition strategy σ is simply OutA(v0,σ) =

⋃
k∈N>0

OutkA(v0,σ).

We recall the definition of a Mealy automaton in the setting of a coalition game, for a

124 6. Synthesizing Safe Coalition Strategies

finite memory coalition strategy σ. A Mealy automaton is a tupleM = (M, V,m0, act, upd)
where M is a finite set of memory states; m0 ∈ M is the initial state; act : M× V → Σω is
the transition choice function; and upd : M× V → M is the memory update function. A
Mealy automaton M describes a strategy σM from v0 as follows: first, for any h ∈ HistA,
inductively define m[h] ∈ M by m[v0] = m0, and m[h · v] = upd(m[h], v); and then σM is
defined as σM(h) = act(m[h], last(h)), where last(h) is the last vertex of history h.

We say that a coalition strategy σ uses memory M if there exists a Mealy automaton
M such that σ = σM, and σ is memoryless whenever M is a singleton.

Given a parameterized arena A = 〈V,Σ,∆〉, and an initial vertex v0, a set Win ⊆ V ω

of plays defines a game G = (A,Win) for the coalition. A coalition strategy σ from v0 in G
is said winning if OutA(v0,σ) ⊆ Win. Our goal is to study the decidability and complexity
of the existence of winning coalition strategies, and to synthesize such winning coalition
strategies when they exist. We therefore introduce the following decision problem:

Coalition problem
Input: A parameterized game G = (A,Win) and an initial vertex v0.
Question: Yes if and only if ∃σ such that OutA(v0,σ) ⊆ Win.

This is a coordination problem: agents should agree on a joint strategy which, when
played in the arena and no matter how many agents are involved, the resulting play
is winning. Note that, due to the correspondence between coalition strategies and
infinite tuples of individual strategies mentioned on Page 123, the coalition strategies are
distributed: the only information required for an agent to play her strategy is the history
so far, not the number of agents selected by the environment; however she can infer some
information about the number of agents from the history. Note that there is no direct
communication between agents.

In this chapter, we consider safety objectives for the coalition, unless otherwise specified.
A safe coalition game is described as G = (A, S) where A = 〈V,Σ,∆〉 is a parameterized
arena and S ⊆ V is a set of ‘safe’ vertices. Without loss of generality, we assume that
the vertices in V \ S are sinks. A coalition strategy σ from v0 in the safety game G
is winning if all induced plays only visit vertices from S: OutA(v,σ) ⊆ Sω. The safe
coalition problem can be described as follows.

Safe coalition problem
Input: A parameterized safety game G = (A, S) and an initial vertex v0.
Question: Yes if and only if ∃σ such that OutA(v0,σ) ⊆ Sω.

We have already seen examples of the coalition game in Examples 4.22 and 4.33 for a
safety and a reachability objective, respectively. Here we present another example which
will be the running example of this chapter.

Example 6.1. Figure 6.1 presents a non-deterministic parameterized arena. Here V =
{v0, v1, v2,⊥} with ⊥ a sink vertex which is not depicted here, and Σ = {a, b}. The edge

6.1. Game setting 125

v0 v1

v2

a∗ba∗

a
Σ+

b∨aa+

a∗ba∗

Figure 6.1: Example of a non-deterministic parameterized arena. Only safe vertices
(coloured in green) have been depicted here. All unspecified transitions lead to an unsafe
vertex ⊥.

labels represent the transition function: for instance, if for some number of agents k
(selected by the environment, initially not known to the agents), the k-length prefix of the
word collectively chosen by the agents at v0 belongs to a∗ba∗, then the play either stays at
v0 or moves to v1 (non-determinism is resolved by the environment). The arena in the
picture is not complete, we assume all unspecified transitions from any vertex go to ⊥ to
achieve a complete arena. We consider a safety objective for the coalition described by the
set S = V \ {⊥}, i.e., ⊥ is the only unsafe vertex. The safe vertices are depicted in the
picture and they have been coloured green.

In this example, one can show that the agents have a winning coalition strategy σ from
v0 to stay within green (i.e., safe) vertices. Consider the coalition strategy σ such that for
any history h ∈ V ∗, σ(hv0) = abaω, σ(hv0v2) = aω, σ(hv0v1) = aω, and σ(hv0v2v1) = bω.
Intuitively, on playing abaω from v0, in one step, the game either stays in v0 (which is
‘safe’) or moves to v2 (in case the number of agents k = 1) or to v1 (in case k ≥ 2); from
v1, depending on history, the coalition plays either bω (when the history is v0v2v1 and
hence they infer k = 1) or aω (otherwise) which leads the game back to v0 (note that at
vertex v2, choice of actions of the agents is not important, they can collectively play any
ω-word). Finally, the coalition plays the same each time the game goes back to v0, and
hence one of the above holds. In all cases, the game never reaches ⊥. However, one can
show that there is no memoryless coalition winning strategy. Indeed, the coalition strategy
aω from v1 is losing for k = 1, similarly bω from v1 is losing for k ≥ 2, and any other
strategy is also losing. For instance, baω from v0 is losing because if the game moves to v1,
coalition has no information on the number of agents and hence any word from v1 will be
losing (aω is losing for k = 1, bω is losing for k ≥ 2, and similarly for other words).

The rest of the chapter is devoted to solve the safe coalition problem and proving
complexity upper and lower bounds for the same. We show that the problem is decidable
and solvable in exponential space, and prove a PSPACE lower bound. Moreover, for
positive instances, we give a procedure to synthesize a winning coalition strategy in
exponential space which uses exponential memory; furthermore, we show this exponential
blow-up in the size of the memory is unavoidable in general.

To prove the decidability and establish the complexity upper bound, we first construct
a finite tree unfolding of the arena, which is equivalent for deciding the existence of a
winning coalition strategy for safety objectives. The unfolding is finite because, if a vertex

126 6. Synthesizing Safe Coalition Strategies

is repeated along a play, the coalition can play the same ω-word as in the first visit. We
then show how to solve the safe coalition problem at the finite tree level.

6.2 The tree unfolding

From a safe coalition game G = (A, S), we construct a finite tree as follows: we unfold
the arena A until either some vertex is repeated along a branch or an unsafe vertex is
reached. The nodes of the tree are labelled with the corresponding vertices and the edges
are labelled with the same regular languages as in the arena A. We then consider a safety
objective for the coalition on the tree, described by the nodes that are labelled with
vertices from S. The intuition behind this construction is that if a vertex is repeated in
a winning play in A, since the winning condition is a safety one, the coalition can play
the same strategy as it played in the first occurrence of the vertex. Note however that
multiple nodes in the tree may have the same label but different (winning) strategies
depending on the history; for example, in Example 6.1, strategy at v1 indeed depends on
the history. This is why we need to consider a tree unfolding abstraction, and a DAG
abstraction would not suffice.

Recall that, for any two nodes n, n′ of a tree, we say n′ is a child of n (and n the parent
of n′) if n′ is an immediate successor of n according to the edge relation; and n an ancestor
of n′ if there exists a path from n to n′ in the tree. The tree unfolding of a parameterized
arena is formally defined as follows.

Definition 6.2. Let G = (A, S) be a parameterized safety game with A = 〈V,Σ,∆〉 and
v0 ∈ V an initial vertex. The tree unfolding of G w.r.t. v0 is the tree T = 〈N,E, `N, `E〉
rooted at n0 ∈ N, where N is the finite set of nodes, E ⊆ N × N is the set of edges,
`N : N→ V is the node labelling function, `E : N× N→ 2Σ+

is the edge labelling function,
and:

• the root n0 satisfies `N(n0) = v0;

• ∀n ∈ N, if `N(n) ∈ S and for every ancestor n′′ of n, `N(n′′) 6= `N(n), then ∀v′ ∈ V
such that ∆(v, v′) 6= ∅, there is n′ a child of n with `N(n′) = v′ and `E(n, n′) = ∆(v, v′);
otherwise, the node n has no successor.

In words, the root of the unfolding tree is labelled with the initial vertex v0 of A.
Then we construct the tree inductively as follows. For every n ∈ N such that `N(n) is
in the set S and all ancestors of n has a different label (i.e. a label did not repeat), we
extend the branch: for each transition from `N(n) in A, we add a child n′ of n and set
the labellings according to that transition - the node is labelled with the corresponding
vertex and the edge with the corresponding language; for example, letting `N(n) = v, if
there is a transition from v to v′ in A, then we add a child n′ of n with label v′, and the
corresponding edge is labelled ∆(v, v′).

6.2. The tree unfolding 127

Note that each node in T corresponds to a unique history in A, and the unfolding is
stopped along a branch when a vertex repeats or an unsafe vertex is encountered. The set
of nodes is further partitioned into N = Nint] Nleaf where Nint is the set of internal nodes
and Nleaf the set of leaves of T ; some leaves are unsafe, others have an ancestor with the
same label.

Let us illustrate the construction on an example.

v0 n0

v0 n′0 v1 n1 v2 n2 ⊥

v0 n′′0 ⊥ v1 n′1

v0 n′′′0 ⊥

a
∗ ba
∗ a
∗
ba
∗

a

Σ
+b∨

aa
+

b∨
aa

+

Figure 6.2: Tree unfolding of the arena in Figure 6.1. The nodes labelled with safe vertices
are coloured green. Notice here that the unsafe leaves (and the edges leading to them)
are presented with dashed squares (resp., arrows).

Example 6.3. Figure 6.2 represents the tree unfolding of the parametrized arena depicted
in Figure 6.1. On that example, the nodes are represented by squares, their names are
written on the side of the nodes (other than nodes with label ⊥) and labels within the
nodes. The leaves that correspond to unsafe vertices (resp., the edges leading to them) are
presented with dashed squares (resp., arrows). Notice that any leaf node is either labelled
with an unsafe vertex (for instance, nodes with label ⊥) or it has a unique ancestor with
the same label (this is the case for nodes n′0, n′′0 and n′′′0). However, multiple internal nodes
in different branches can have the same label, for instance, both n1 and n′1 are labelled with
v1.

In the following lemma, we show an upper bound on the size of the tree unfolding for
a parameterized safety game w.r.t. an initial vertex.

Lemma 6.4. Let G = (A, S) be a parameterized safety game with A = 〈V,Σ,∆〉 and
v0 ∈ V an initial vertex, and T be the tree unfolding of G w.r.t. v0. Then the size of T is
at most |V ||V |+1. Moreover, an exponential blow-up in size of T is unavoidable in general.

Proof. Fix a parameterized safety game G = (A, S) with A = 〈V,Σ,∆〉 and v0 ∈ V an
initial vertex. Let T be the corresponding tree unfolding w.r.t. v0. Any branch in the
tree has at most two nodes with the same label, since in that case we stop the unfolding.
Therefore, the height of a branch of T is bounded by |V |+ 1. Further, notice that any
node can have at most one child for each outgoing transition. Hence, the branching degree
of T is at most |V |. We conclude that the size of the tree is upper bounded by |V ||V |+1.

128 6. Synthesizing Safe Coalition Strategies

B1

v1

v̄1

B2 ··· Bn

vn

v̄n

C1 C2 ··· Cn >

a
P 1

a +
\a P

1

Σ +

Σ
+

a
Pn

a +
\a P

n

Σ +

Σ
+

aP1

b+\bP1

aPn

b+\bPn

Figure 6.3: Example arena such that the tree unfolding is exponential. All unspecified
transitions lead to a sink losing vertex ⊥. Set Pi denotes multiples of the i-th prime
number. For any play reaching C1, for every i, the number of agents is in Pi iff the play
went through vi.

The exponential bound is reached by a family (An)n∈N>0 of deterministic arenas, shown
in Figure 6.3, with 2n blocks and O(n) vertices. Let pi be the i-th prime number and
Pi the set of multiples of pi. For simplicity, we write aPi to denote the set of words in
(api)+, that is words from a+ whose length is a multiple of pi. Intuitively, the transition at
Bi determines whether the number of agents is a multiple of i-th prime: all agents must
choose a at that vertex, and if the game moves to vi (resp., v̄i), the number of agents is in
set Pi. Depending on the history, at vertex Ci (1 ≤ i ≤ n), the coalition may choose action
a (resp., b) in case the play visited vi (resp., v̄i). Observe that, to win the game, coalition
needs to keep track of the full histories in the first n blocks, and there are exponentially
many such histories; moreover, each such history corresponds to a different node in its
unfolding tree which causes the exponential blow-up in its tree unfolding.

Formally, Figure 6.3 represents a parameterized safety game Gn = (An = 〈Vn,Σ,∆n〉, Sn)
where Vn = {Bi, vi, v̄i,Ci | 1 ≤ i ≤ n} ∪ {>,⊥}, and Σ = {a, b}. The edge labellings
represent the transition function, for instance, for each 1 ≤ i ≤ n, ∆n(Bi, vi) = aPi and
∆n(Bi, v̄i) = a+ \aPi ; similarly, ∆n(Ci,Ci+1) = aPi + (b+ \ bPi). The unspecified transitions
move to the sink vertex ⊥ which is not depicted here. We consider the initial vertex
B1; the safety condition is described by the set Sn = Vn \ {⊥}, presented in green in the
picture.

B1

v1 v̄1

B2 B2

v2 v̄2 v2 v̄2

...
...

a
P 1

a +
\a P

1

Σ+ Σ+

a
P 2

a +
\a P

2 a
P 2

a +
\a P

2

Figure 6.4: A part of the tree unfolding constructed from Gn in Figure 6.3.

6.2. The tree unfolding 129

In the tree unfolding of Gn w.r.t. B1, there is a unique node for each different history
in the first phase of the game (i.e., until the visit of C1) and there are exponentially many
of them. Therefore, the tree is of size O(2n), exponential in the size of Gn. A part of the
tree is depicted in Figure 6.4. In that picture, node names are omitted, and node labels
are written inside the nodes.

We now define histories and plays in T . Histories in T are defined similarly as in G
(except vertices are replaced by nodes); the set of such histories is denoted HistT . Note
that since the tree is finite, a play cannot be defined as in G. In this context, we call a
maximal history ending in a leaf a play in T . Note that, contrary to the definition of a
play in A, a play in T is a finite sequence of nodes ending in a leaf. They are defined
formally as follows.

Definition 6.5. A history in T is a finite sequence of nodes H = n0n1 . . . np ∈ N+ such
that for every 0 ≤ j < p, (nj, nj+1) ∈ E. We denote by HistT the set of all histories in T .
A play in T is a maximal history, i.e., a finite sequence of nodes ending with a leaf, thus
in N+

int · Nleaf . We denote by PlayT the set of all play in T .

First note that there is a trivial bijection ι from N to HistT , and we will swap between
the two notions using ι when convenient. Indeed, a node n uniquely determines a history
n0 . . . n in HistT and vice-versa.

Similarly to the parameterized arena setting, we define naturally the notions of k-
realizability and of realizability for histories and plays. Formally, a history (or, play)
H = n0n1 . . . np ∈ N+ is k-realizable if for all 0 ≤ j < p, there exists u ∈ Σk with
u ∈ `E(nj, nj+1); H is realizable if it is k-realizable for some k ∈ N>0.

For a tree unfolding T of a parameterized safety game G, we extend the definition of
the node labelling function `N to histories (resp., plays) naturally: for a history (or, play)
H = n0n1 . . . np ∈ N+, define `N(H) = `N(n0)`N(n1) . . . `N(np).

Below we define strategies for the coalition on the tree. It seems natural to define a
coalition strategy in T , similar to one in parameterized arenas, as a mapping from histories
in T to the set of ω-words over Σ. However, recall that a node in the tree corresponds
to a unique history in A. Therefore, to reflect a strategy of the coalition at history h in
A, such that it has a corresponding node n in T , it is enough to assign the ω-word the
coalition plays at h to node n. More precisely, we define a coalition strategy in the tree
unfolding as a mapping from its internal nodes to Σω, which is by definition a memoryless
one. Although it is not immediate that this definition is sufficient to capture all strategies
in G (since in general not all histories in G correspond to a node in T), we later show this
is indeed the case w.r.t. the winning strategies: there is a coalition winning strategy in G
from v0 if and only if there is a (memoryless) winning strategy in T from n0.

Definition 6.6. A coalition strategy in the unfolding tree is a mapping λ : Nint → Σω

that assigns to every internal node n ∈ Nint an ω-word λ(n).

130 6. Synthesizing Safe Coalition Strategies

Given a strategy λ for coalition from n0 in T , and k ∈ N>0 a number of agents, the
notions of (k-)outcome are defined similarly: the k-outcome OutkT (n0,λ) is the set of plays
that λ induces from n0 that are k-realizable; and then the outcome of λ is simply the
union of k-outcomes for all k ∈ N>0. Formally, it is defined as follows.

Definition 6.7. Given a strategy λ for the coalition in T from n0, and k ∈ N>0 a number
of agents, the k-outcome of strategy λ is the set OutkT (n0,λ) = {n0n1 . . . np | ∀0 ≤ j <
p, [λ(nj)]≤k ∈ `E(nj, nj+1)}. Outcome of strategy λ is OutT (n0,λ) =

⋃
k∈N>0

OutkT (n0,λ).

Finally, we define a safe coalition game on the tree unfolding. Let G = (A, S) be a
parameterized safety game and v0 an initial vertex. Let T be the tree unfolding of G
w.r.t. v0. The set S defines a safe coalition game on T . We say the coalition wins the
safety game on T if it has a strategy that ensures visits of nodes only from S. A winning
strategy is defined formally as follows.

Definition 6.8. A coalition strategy λ in T from n0 is winning for the safety objective
defined by the set S if every play in OutT (n0,λ) ends in a leaf with label in S, i.e., if for
every R = n0 . . . np ∈ OutT (n0,λ), `N(np) ∈ S, equivalently, `N(OutT (n0,λ)) ⊆ S+.

Indeed, the two conditions in the above definition are equivalent: whenever the label of
the leaf node of a play is in S, so are the labels of the intermediary nodes, since otherwise
we would have stopped the unfolding at an ancestor node.

Below we show the correctness of the tree unfolding of a parameterized safety game in
the sense that there is a winning strategy for coalition in the parameterized game if and
only if there is one in its tree unfolding. One direction of the statement is immediate: since
a node in the tree corresponds to a unique history, a winning strategy in the parameterized
game can be seen as one in the tree. For the other direction, we use the idea that since the
winning objective is a safety condition, if a vertex repeats in a play in the parameterized
arena, the coalition can play the same strategy as in its first occurrence. Based on this idea,
we define for every history in the parameterized arena a virtual history that maintains
the property that each vertex appears at most once and hence corresponds to a node in
the tree. We then project a strategy in the tree to the parameterized arena using virtual
histories.

Lemma 6.9. Let G = (A = 〈V,Σ,∆〉, S) be a parameterized safety game and v0 ∈ V and
T = 〈N,E, `N, `E〉 be the associated tree unfolding with root n0. There exists a winning
coalition strategy from v0 in G iff there exists a winning coalition strategy from n0 in T .

Proof. Assume first that the coalition of agents has a winning strategy σ in G. Any
history H ∈ HistT can be projected to the history `N(H) ∈ HistA. We can hence define
for every n ∈ Nint, λ(n) = σ(`N(ι(n))), where recall that ι is the bijection mapping from
nodes to histories in T . To prove that λ is winning in T , consider any play R = n0 · · · np
in OutT (n0,λ) and let ρ = `N(R) = v0 · · · vp be its projection in G. By construction,
`E(ni, ni+1) = ∆(vi, vi+1) for every i < p, and hence from the definition of λ, ρ is a history

6.2. The tree unfolding 131

in G induced by σ. Since σ is winning, ρ only visits safe vertices. In particular, `N(np) ∈ S.
Since this is true for every play induced by λ, strategy λ is winning from n0 in T .

For the other direction, assume that λ is a winning coalition strategy from n0 in T .
The tree will be the basis of a memory structure sufficient to win the game; we thus
explain how histories in G can be mapped to nodes of T . We first define a mapping
zip : HistA → HistA that summarizes any history in A to its virtual history, where each
vertex appears at most once. Intuitively, zip greedily shortens a history by appropriately
removing the loops until an unsafe vertex is encountered (if any). The mapping zip is
defined inductively, starting with zip(v0) = v0, and letting for every h ∈ HistA and every
v′ ∈ V such that h · v′ ∈ HistA,

zip(h · v′) =

{
zip(h) · v′ if v′ does not appear in zip(h)

v0 . . . v
′ v zip(h) otherwise

The mapping zip is well-defined: by construction, for every history h, any vertex
appears at most once in zip(h), so that when v′ appears in zip(h), there is a unique prefix
of zip(h) ending with v′. Note that, since unsafe vertices are sinks, as soon as h reaches
an unsafe vertex, the value of zip(h) stays unchanged.

Let us explain the zip function on an example.

Example 6.10. We illustrate the zip function on the arena in Figure 6.1. Take h =
v0v1v0v1. First, zip(v0) = v0; then zip(v0v1) = zip(v0)·v1 = v0v1; zip(v0v1v0) = v0 (which is
the unique prefix of zip(v0v1) = v0v1, ending at v0); finally zip(v0v1v0v1) = zip(v0v1v0)·v1 =
v0v1.

We can then define a bijection between the safe nodes of T and virtual histories of A
as follows.

Lemma 6.11. The application β : N 7→ HistA defined by β(n) = `N(ι(n)) is a bijection
between Y = Nint ∪ {n ∈ Nleaf | `N(n) /∈ S} and the set Z = {zip(h) | h ∈ HistA}.

Proof. First, it is immediate that this application is injective, since two nodes of the tree
in Y correspond to different histories in A which, due to construction of T , do not have
any repetition of vertices, therefore, belong to Z.

Moreover, the application β is surjective: pick h ∈ Z; then, h has no repetition;
furthermore, it forms a real history in HistA, which implies that it can be read as the label
of some history in the tree unfolding, either leading to an internal node (if h is safe) or an
unsafe leaf (if h is unsafe).

We write α = β−1. Using the zip function and α, from a coalition strategy λ in
T , we define a coalition strategy σ in G by applying λ to the nodes corresponding to
virtual histories: for every history h = v0 . . . vp in G we let σ(h) = λ(α(zip(h)) whenever

132 6. Synthesizing Safe Coalition Strategies

α(zip(h)) ∈ Nint and σ(h) is set arbitrarily otherwise (recall that if α(zip(h)) is a leaf node,
then h is already a losing history).

Towards a contradiction, assume that σ is not winning in G. Consider, some number
of agents k ∈ N>0, and a losing play with k agents: ρ = v0v1 . . . ∈ OutkA(v0,σ). Let
h′ = v0v1 . . . vq v ρ be the shortest prefix of ρ ending in an unsafe vertex vq /∈ S, and write
zip(h′) = v0vi1 . . . vq for the corresponding virtual history. By definition of σ, zip(h′) is a
k-outcome of σ from v0. Moreover, the corresponding play R = ι(α(zip(h′))) = n0ni1 . . . nq
in T , belongs to the k-outcome of λ from n0. Since vq /∈ S, λ is not winning in T , we
reach a contradiction. We conclude that σ is a winning coalition strategy in G.

The rest of the chapter is dedicated to proving decidability and complexity results for
safe coalition problem. We have seen in Lemma 6.9 that there is an equivalence between
strategies in a safety game G and its finite unfolding tree T . In the following, we give an
algorithm to decide the existence of a winning coalition strategy for a safety objective on
T that runs in exponential space in the size of G.

6.3 An EXPSPACE upper bound for the safe coalition

problem

In the previous section, we showed that the safe coalition problem reduces to solving the
existence of a winning coalition strategy in the associated finite tree unfolding. To solve the
latter, from the tree unfolding T , we construct a deterministic (safety) automaton B over
the alphabet Σm, where m = |Nint|, which accepts the ω-words corresponding to winning
coalition strategies in T . We will write (Σω)m to denote the set of m-tuples of ω-words
over Σ. Then observe that sets (Σm)ω and (Σω)m are in one-to-one correspondence: indeed,
an infinite word w ∈ (Σm)ω corresponds to m infinite words wn, one for each component,
thus representing a word in (Σω)m, and on the other hand, a word in (Σω)m can also be
read componentwise. Hence, an ω-word in the language accepted by B also represents a
word in (Σω)m and, the ω-word in each component describes a coalition strategy at the
corresponding internal node of T .

6.3.1 Construction of a safety automaton

Fix G = (A, S) a parameterized safety game with A = 〈V,Σ,∆〉 and v0 ∈ V an initial
vertex. Recall that for every (v, v′) ∈ V × V such that ∆(v, v′) 6= ∅, ∆(v, v′) is described
by an NFA over Σ, we assume they are given as inputs to the algorithm. We then
first construct the corresponding complete deterministic finite automata (DFA’s) for the
languages. A complete DFA is a special kind of NFA, in which to each state and letter,
the transition function assigns exactly one state.

6.3. An EXPSPACE upper bound for the safe coalition problem 133

Let T = 〈N,E, `N, `E〉 be the associated unfolding tree with root n0. For the rest of
this section, we fix an arbitrary ordering on the internal nodes of T and on the edges:
Nint = {n1, . . . , nm} and E = {e1, . . . , er}, with |Nint| = m and |E| = r.

Assuming there are t leaves –thus t plays– in T , for every 1 ≤ i ≤ t, the i-th play is
denoted ni0 . . . n

i
zi

with ni0 = n0, ∀j < zi, nij ∈ Nint and nizi ∈ Nleaf . Also, for 0 ≤ j < zi, we
note eij = (nij, n

i
j+1), the j-th edge in i-th play.

The automaton for the winning coalition strategies in T builds on the finite automata
that recognize the regular languages that label edges of T . For each edge e ∈ E, we write
Be = (Qe,Σ, δe, q

0
e , Fe) for the complete DFA over Σ such that L(Be) = `E(e). Here Qe

is the set of states, δe the transition function, q0
e ∈ Qe the initial state and Fe the set of

accepting states of Be. Note that some Be’s may be identical when they correspond to the
same original transition in G.

We then define a deterministic safety automaton B = (Q,Σm, δ, q0, F) that simulates
all Be’s in parallel and accepts ω-words over alphabet Σm if every prefix satisfies the
following: on every branch of the tree, if all corresponding Be’s accept, then the leaf is
labelled by a safe vertex. The intuitive idea is as follows. First recall that the coalition has
to win for every k, the number of agents; in particular, a prefix of length k of an ω-word
w over Σm checks for the condition with k agents. A state q in B has r components, one
for each edge of T , and it reads a letter u ∈ Σm, one for each node; the e-th component
of q reads the n-th component of u if e is an outgoing edge of n. After reading a k-length
word wk, if for some e ≤ r, Be (with e = (n, n′)) is in a final state, it represents that at
n, if the coalition plays n-th component of w, with [w]≤k = wk, then with k agents the
game may move to n′. We can then identify the edges in a play in T and check for a
word of length k if the following is satisfied: if corresponding Be’s along a play are in final
states, then the play ends in a safe leaf. We then ensure in the accepting condition of B
the above is true for every play in T and for every k ∈ N>0. The latter is represented as
a Boolean formula.

Formally, Q ⊆ Q1 × . . .×Qr is the set of states; q0 = (q0
1, . . . , q

0
r) is the initial state;

the transition relation δ executes the r automata componentwise: if letter u ∈ Σm is read,
then make the s-th component mimic Bes by reading the l-th letter of u, where l is the
index (in the enumeration fixed above) of the source node of es; and the accepting set F
is composed of all states q = (q1, . . . , qr) that satisfy the following Boolean formula:

ϕ =
∧

1≤i≤t

ϕi where ϕi =

([∧
0≤j<zi

qeij ∈ Feij

]
⇒ `N(nizi) ∈ S

)
(6.1)

First notice that since all the Be’s are deterministic, so is B. Furthermore, B is equipped
with a safety acceptance condition: an infinite run ζ = q0q1q2 . . . of B is accepting if for
every k ≥ 1, qk ∈ F , and L(B) consists of all words w whose unique corresponding run is
accepting (this is a slight abuse of language since q0 need not be in the accepting set F).

In Equation 6.1, ϕi corresponds to the condition for the i-th play ni0 . . . n
i
zi

with ni0 = n0

134 6. Synthesizing Safe Coalition Strategies

and nizi ∈ Nleaf . Intuitively, ϕi expresses that if for some number of agents k, the languages
along the i-th maximal path contain the k-length prefixes of the corresponding ω-words
(which means the induced play is k-realizable), then it should lead to a safe leaf ; and then
ϕ ensures that this should be true for all plays. This is formalized in the next lemma.

Lemma 6.12. Let λ : Nint → Σω be a coalition strategy in T . Then, λ is winning if and
only if (λ(n1),λ(n2), . . . ,λ(nm)) ∈ L(B).

Notice that in the above statement, we slightly abuse notation: (λ(n1),λ(n2), . . . ,λ(nm))
belongs to (Σω)m, however it uniquely maps to a word in (Σm)ω, the alphabet of B.

Proof. Assume first λ : Nint → Σω is a winning coalition strategy in T , and consider
the word w = (λ(n1),λ(n2), . . . ,λ(nm)). We show w ∈ L(B). Consider the infinite run
ζ = q0q1 . . . of B on w. Fix a number of agents k ∈ N>0. Since λ is winning, all plays in
OutkT (n0,λ) is winning. Therefore, for any 1 ≤ i ≤ t such that ni0 . . . n

i
zi

is in OutkT (n0,λ),
the play satisfies for all 0 ≤ j < zi, [λ(nij)]≤k ∈ `E(eij) and furthermore, `N(nizi) ∈ S; and

hence qk |= ϕi. Otherwise, for some i ≤ t, if the i-th play is not in OutkT (n0,λ), then ϕi is
vacuously true. We conclude qk |= ϕ. Since this is true for every k ∈ N>0, w ∈ L(B).

Now let λ be an arbitrary coalition strategy on T , and w = (λ(n1),λ(n2), . . . ,λ(nm)) ∈
L(B) with ζ = q0q1 . . . the accepting run on w. Then for any number of agents k ∈ N>0,
qk ∈ F , and hence qk |= ϕ. Therefore for all 1 ≤ i ≤ t, qk |= ϕi. Fix any such i; let
ni0 . . . n

i
zi

be the i-th maximal path, and write qk = (qk1 , . . . , q
k
r). Then for 0 ≤ j < zi,

the condition qk
eji
∈ Feji

implies [λ(nij)]≤k ∈ `E(eij). In case the above is true for all

0 ≤ j < zi, we conclude ni0 . . . n
i
zi
∈ OutkT (n0,λ) and ϕi ensures that `N(nizi) ∈ S.

Otherwise, ni0 . . . n
i
zi

/∈ OutkT (n0,λ). Therefore, for k ∈ N>0, whenever a play is in

OutkT (n0,λ), it is winning. Since this is true for any number of agents k, λ is a winning
coalition strategy in T .

Let us now illustrate the above construction on an example.

6.3.2 An example of the automaton construction

We illustrate here the construction of a safety automaton for the tree in Figure 6.2, the
unfolding of the arena in Figure 6.1.

Example 6.13. Figure 6.6 represents part of the automaton B corresponding to the tree
T in Figure 6.2, the tree unfolding of the arena in Figure 6.1. The deterministic automata
Be’s for the languages labelling the edges of T are depicted in Figure 6.5. Here notice that
some Be’s in the picture may not be complete, however, we can naturally make them so by
adding a sink state, here denoted ‘×’ for all of them (this is again an abuse of notation but
is clear from context), and leading all unspecified transitions to that sink (as mentioned in
Figure 6.5).

6.3. An EXPSPACE upper bound for the safe coalition problem 135

p0 p1
b

aa

(a) Automaton for a∗ba∗.

q0 q1
a

(b) Automaton for a.

r0 r1
Σ

Σ

(c) Automaton for Σ+.

s0

s1

s2

s3

a

b

a

a

(d) Automaton for b ∨ aa+.

Figure 6.5: Automata corre-
sponding to the input languages
of Figure 6.1. The automata are
not complete for sake of read-
ability; all unspecified letters
lead to a (sink) non-accepting
state ‘×’.

p0

p0

q0

s0

r0

s0

p0

p0

q1

s1

r1

s3

p1

p1

×
s2

r1

×

p1

p1

×
s1

r1

s3

p1

p1

×
s3

r1

s3

p1

p1

×
×
r1

×

· · ·

· · ·


a

a

Σ

Σ




a

a

Σ

b




b

a

Σ

Σ




b

a

Σ

b




b

b

Σ

b




a

Σ

Σ

Σ



Figure 6.6: Automaton B corresponding to the tree
given in Figure 6.2. Here we have only shown the
accepting states (marked in blue) and some of the
non-accepting states. Further explanations are given
in Example 6.13.

Each state of B has as many components as the number of edges leading to a safe node
in T , we did not consider the edges leading to ⊥. This is without loss of any generality:
the language on any ‘unsafe’ edge leading to ⊥, in this example, are disjoint from the
languages on the edges leading to its siblings (other children of its parent node). The
first three positions in a state of B, presented as a single cell in the picture, correspond
to the outgoing edges of the root n0 of T (hence they follow the same component – the
first component – of Σm), and the other positions correspond to the other edges, in some
chosen order - second cell corresponds to the edge (n1, n

′′
0), third cell corresponds to the

outgoing edge from n2, and the last cell corresponds to edge (n′1, n
′′′
0).

We have only shown the accepting states (marked in blue) and some of the non-accepting
states in the picture. Indeed, one can verify that the states which are coloured blue satisfy
the formula ϕ; for instance, the state (p1, p1,×, s2, r1,×) on the right corresponds to the
two maximal paths in T : n0n′0 (the edge described by the first position of that state) and
n0n1n′′0 (where (n0, n1) corresponds to p1 in the second position and (n1, n

′′
0) corresponds to

s2 in the second cell of that state). In both cases, the plays lead to safe leaves, hence that
state satisfies ϕ.

Finally, the infinite run highlighted in blue is an accepting run of B, and hence from

136 6. Synthesizing Safe Coalition Strategies

Lemma 6.12, it also corresponds to a winning coalition strategy in T . In particular, the
word read by the accepting run, i.e., in this example, any word in (a, a,Σ, b) · (b, a,Σ,Σ) ·
(a, a,Σ,Σ)ω corresponds to a winning coalition strategy in the tree: for instance, λ(n0) =
abaω; λ(n1) = aω; λ(n2) = aω; and λ(n′1) = bω is one of them (note here, for instance,
that at node n2, any word from Σω could be played).

We have constructed from a finite tree unfolding T a deterministic safety automaton
B such that the accepting condition of B characterizes winning coalition strategies in T .
One then needs to check non-emptiness of B to decide if coalition has a winning strategy
in T . Next, we show that this algorithm runs in exponential space in size of G.

6.3.3 An EXPSPACE upper bound

Fix a parameterized safety game G = (A = 〈V,Σ,∆〉, S), v0 ∈ V an initial vertex and
T = 〈N,E, `N, `E〉 the tree unfolding of G w.r.t. v0, rooted at n0. As mentioned earlier, we
assume that the arena A is initially given with all associated NFA’s in the input. Then
we prove the following theorem.

Theorem 6.14. The safe coalition problem is in EXPSPACE.

Proof. Solving the safe coalition problem reduces to checking non-emptiness of the language
recognized by the deterministic safety automaton B. We adapt to our setting the standard
algorithm which runs in non-deterministic logarithmic space, when B is given as an input.

We write N for the number of states of B and show that N is doubly exponential in
|V |, the number of vertices of the initial arena A. Indeed, notice first that each state of B
is of size exponential in |V | since it has a component corresponding to each edge in T .

We know |E| = |N| − 1, therefore by Lemma 6.4, number of edges in T is at most |V ||V |+1.
Letting the size of each NFA representing the regular languages in A is bounded by |QA|,
the size of each Be, the corresponding DFA’s, is then bounded by 2|QA|. Then the number

of possible states in B is bounded by (2|QA|)|V |
|V |+1

(i.e., 2|QA| choices for each component),

which is equal to 2|QA|·|V |
|V |+1

. Although the size of B is doubly-exponential in |V |, we do
not build B a priori. Instead, we non-deterministically guess a safe prefix of length at
most N , and then a safe lasso on the last state of that prefix, again of length at most N .
To guess the above, we only keep written two consecutive states of B and keep a counter
to count up to N in each case. Then, provided one can check ‘easily’ whether a state of B
is safe, the described procedure runs in non-deterministic exponential space, hence can be
turned into a deterministic exponential space algorithm, by Savitch’s theorem [Sav70].

It remains to explain how one checks that a given state in B is safe. Recall that the
acceptance condition of B is described by a SAT formula ϕ. Notice that formula ϕ has
size exponential in the size of A. Indeed, there are exponentially many sub-formulas ϕi,
one for each maximal path in T . Since the hight of T is at most linear in size of A, each
ϕi performs linearly many checks (one for each play in T); furthermore, each such check

6.4. A PSPACE lower bound for the safe coalition problem 137

can be done in constant time. Therefore, the satisfiability of ϕ can overall be checked in
exponential time.

We therefore conclude that the safe coalition problem is in EXPSPACE.

Remark here that in the above proof, we have assumed that the languages of A were
described as NFA’s. However, assuming their descriptions as DFA would not affect the
exponential space upper bound for the safe coalition problem. Indeed, letting each Be
(DFA) has size at most |qA|, the bound on the possible number of states in B is |qA||V |

|V |+1

,
which is again exponential in |V |. The rest of the proof being the same, we conclude the
safe coalition problem, when the input languages are described as DFA’s, is in EXPSPACE.

We have presented an algorithm to solve the safe coalition game on the tree unfolding
of a parameterized arena that runs in exponential space in the size of the arena. In the
next section, we prove a lower bound result, namely that it is PSPACE-hard.

6.4 A PSPACE lower bound for the safe coalition

problem

We show the safe coalition problem is PSPACE-hard by reduction from QBF-SAT, which
is known to be PSPACE-complete [SM73]. The construction follows a similar pattern as
in the proof of the lower bound results in Propositions 5.26 and 5.29. We formalize the
result as follows.

Proposition 6.15. The safe coalition problem is PSPACE-hard.

Proof sketch. Let ϕ = ∃x1∀x2∃x3 . . . ∀x2r ·
(
C1 ∧ C2 ∧ . . . ∧ Cm

)
be a quantified Boolean

formula in prenex normal form, where for every 1 ≤ h ≤ m, Ch = `h,1 ∨ `h,2 ∨ `h,3 are the
clauses, and for every 1 ≤ j ≤ 3, `h,j ∈ {xi,¬xi | 1 ≤ i ≤ 2r} are the literals.

In the reduction, we use sets of natural numbers (that represent the number of agents)
corresponding to multiples of primes. Let thus pi be the i-th prime number and Pi the
set of all non-zero natural numbers that are multiples of pi. For simplicity, we write aPi

to denote the set of words in (api)+, that is words from a+ whose length is a multiple
of pi. It is well-known that the i-th prime number requires O(log(i)) bits in its binary
representation, hence the description of each of the above languages is polynomial in the
size of ϕ.

From ϕ, we construct a parameterized arena Aϕ = 〈V,Σ,∆〉 as follows:

• V = {v0, v1, . . . , v2r−1, v2r} ∪ {x1, x̄1, . . . , x2r, x̄2r} ∪ {C1,C2, . . . ,Cm,Cm+1} ∪ {⊥,>},
where we identify some vertices: v2r = C1, and Cm+1 = >.

138 6. Synthesizing Safe Coalition Strategies

v0 v1 v2 C1 C2 >

x1

x̄1

>

>

x2

x̄2

x3

x̄3

>

>

Σ+

Σ+

Σ+

Σ+

Σ+

a
P1

b +
\b P

1

c
P2

c +
\c P

2

a
P3

b +
\b P

3

Σ+

Σ+

Σ+

Σ+

Σ+

Σ+

a+\aP1

bP1

a+\aP3

bP3

a
P1
1

a+
2 \a

P2
2

a+
3 \a

P3
3

a
P1
1

a+
2 \a

P2
2

a
P3
3

Figure 6.7: Parameterized arena for the formula ϕ = ∃x1∀x2∃x3 · (x1 ∨¬x2 ∨¬x3)∧ (x1 ∨
¬x2 ∨ x3). All unspecified transitions lead to the sink losing vertex ⊥. Set Pi denotes
multiples of the i-th prime number. Vertex xi (resp., x̄i) represents setting variable xi to
true (resp., false). For any play reaching C1, for every i, the number of agents is in Pi iff
the play went through xi.

• Σ = {a, b, c} ∪
⋃

1≤i≤2r{ai}.

• For every 0 ≤ s ≤ r−1, every 1 ≤ i ≤ 2r and every 1 ≤ h ≤ m:

1. ∆(v2s, x2s+1) = aP2s+1 and ∆(v2s, x̄2s+1) = b+ \ bP2s+1 ;

2. ∆(v2s,>) = (a+ \ aP2s+1) ∪ bP2s+1 ;

3. ∆(v2s+1, x2s+2) = cP2s+2 ; and ∆(v2s+1, x̄2s+2) = c+ \ cP2s+2 ;

4. ∆(xi, vi) = Σ+ and ∆(x̄i, vi) = Σ+;

5. ∆(Ch,Ch+1) =
⋃

1≤j≤3 Lh,j where Lh,j = aPi
i if `h,j = xi; Lh,j = a+

i \ a
Pi
i if

`h,j = ¬xi.

To obtain a complete arena, all unspecified transitions lead to a sink vertex ⊥.

On the arena Aϕ, we consider the safe coalition game Gϕ = (Aϕ, S) with S = V \ {⊥}.
The construction is illustrated on the simple formula ϕ = ∃x1∀x2∃x3 · (x1 ∨ ¬x2 ∨ ¬x3) ∧
(x1 ∨ ¬x2 ∨ x3) with 3 variables and 2 clauses in Figure 6.7. Only the safe vertices are
depicted here.

From v0, a first phase up to v2r = C1 consists in choosing a valuation for the variables.
The coalition chooses the truth values of existentially quantified variables x2s+1 in vertices
v2s: it plays aω for true, and bω for false. In the first (resp., second) case, if the number
of agents involved in the coalition is (resp., is not) a multiple of p2s+1, then the game
proceeds to state x2s+1 (resp., x̄2s+1) and from there on any choice of an ω-word, to v2s+1

for the next variable choice; otherwise the safe > state is reached (and stays forever).

For universally quantified variables the coalition must play cω in vertices v2s+1, as
any other choice would immediately lead to the sink losing vertex ⊥; the choice of the

6.4. A PSPACE lower bound for the safe coalition problem 139

assignment then only depends on whether the number of agents involved in the coalition
is a multiple of p2s+2 (in which case variable x2s+2 is assigned true) or not (in which case
variable x2s+2 is assigned false).

Hence, depending on the number of agents involved in the coalition, either the play will
proceed to state v2r = C1, in which case the number of agents characterizes the valuation
of the variables (it is a multiple of pi if and only if variable xi is set to true); or it will
have escaped to the safe state >.

Note that in terms of information, the coalition learns progressively assignments of
variables, thanks to the visit to either vertex xi or vertex x̄i. Note also that the coalition
can never learn assignments of next variables in advance - it can only know whether the
number of players is a multiple of previously seen prime numbers, hence of previously
quantified variables, not of variables quantified afterwards.

From C1, a second phase starts where one checks whether the generated valuation
makes all clauses in ϕ true. If it is the case, sequentially, the coalition chooses for every
clause a literal that makes the clause true. The arena forces these choices to be consistent
with the valuation generated in the first phase. For instance, on the example of Fig. 6.7,
to set x1 to true in the first phase, the coalition must play aω, and only plays with a
number of agents in P1 do not move to > and continue the first phase from x1. Then,
in the second phase, for instance for the first clause, one can choose literal `1,1 = x1 by
playing aω1 . The same language –a1

P1– labels the edge from C1 to C2, so that the play
proceeds to C2. More generally, if aωi leads from Ch to Ch+1 with number of agents in Pi,
this means that xi was visited, hence indeed xi was set to true. On the contrary, if aωi
leads from Ch to Ch+1 with number of agents not in Pi, this means that x̄i was visited,
hence indeed xi was set to false.

The above idea yields the equivalence: there is a winning coalition strategy in the
game Gϕ = (Aϕ, S) if and only if ϕ is true, formalized in the following.

For `h,j a literal of ϕ, we write γ(`h,j) for the constraint associated with `h,j in the
second phase of the reduction. More precisely,

γ(`h,j) =

{
Pi if `h,j = xi

¬Pi if `h,j = ¬xi
We rely on the following correspondence between histories from v0 to C1 and valuations
over {x1, · · · , x2r}: the valuation ιπ associated with a history π = v0v

′
1v1v

′
2v2 · · ·C1 is

such that ιπ(xi) = 1 if v′i = xi and ιπ(xi) = 0 if v′i = x̄i. This correspondence defines
a bijection, so that, given a valuation ι over {x1, · · · , x2r}, there is a unique history
πι = v0v

′
1v1v

′
2v2 · · ·C1 with v′i = xi if ι(xi) = 1, and v′i = x̄i otherwise.

Moreover, after a finite history π = v0v
′
1v1v

′
2v2 · · ·C1, the coalition can deduce the

number of agents is in the set Kπ =
⋂
i≤2rMi where for each i, Mi = Pi if v′i = xi and

Mi = ¬Pi if v′i = x̄i.

140 6. Synthesizing Safe Coalition Strategies

There is thus also a bijection between valuations and possible knowledges about the
number of agents at C1, so that we abusively write Kι when ι is a fixed valuation over
{x1, · · · , x2r}. Note that for every 1 ≤ i ≤ 2r, Kι ∩ {Pi,¬Pi} is either a subset of Pi
(when ι(xi) = 1) or a subset of ¬Pi (when ι(xi) = 0). Also, an extension of a history
π = v0v

′
1v1v

′
2v2 · · ·C1 either leads to ⊥, or continues in the main part of the game, in

which case it does not refine the knowledge set Kι further. We then show the following
equivalence for the second phase of the reduction:

Lemma 6.16. Let ι be a valuation of {x1, · · · , x2r}. Then ι |= C1 ∧ · · · ∧ Cm if and only
if coalition has a winning strategy in Gϕ starting from C1, if the number of agents k is in
Kι .

Proof. Assume ι |= C1 ∧ · · · ∧ Cm. For every 1 ≤ h ≤ m, there is `h,j (literal of Ch) such
that ι(`h,j) = 1. We define the following strategy σ for coalition: from vertex Ch, the
strategy plays the word αωh defined by αh = ai if `h,j = xi or ¬xi. By property on Kι,
Kι ⊆ γ(`h,j). Thus, σ avoids ⊥, and is therefore winning for every k ∈ Kι.

Conversely, pick a winning strategy σ for coalition from C1 against Kι. This strategy
plays uniformly for all k ∈ Kι, say coalition chooses αh

ω from Ch. If for some 1 ≤ i ≤ 2r,
αh = ai, then either xi or ¬xi is a literal of Ch. If ∆(Ch,Ch+1) is described by ai

Pi , then
xi is the literal in Ch and hence, Kι ⊆ γ(xi); the construction guarantees that ι(xi) = 1.
A similar reasoning applies to the case where ∆(Ch,Ch+1) is described by a+

i \ aiPi to show
ι(xi) = 0. In all cases, Ch is satisfied by ι.

Lemma 6.16 formalizes the link between winning strategies for coalition in the second
phase (that is, from C1) and satisfying valuations. It remains to relate strategies for
coalition in the first phase and decision functions for the variable quantifications in ϕ.

The two-player game underlying the quantifications of ϕ coincides with the coalition
game played in the first phase. In particular, strategies coincide in the two games. Fix
a coalition strategy σ in the quantification game or equivalently in the first phase. For
every valuation ι which is generated by σ in the quantification game, there is an outcome
π ending in C1 such that ι = ιπ. Conversely, for every outcome π ending in C1, ιπ is
generated by σ in the quantification game.

We have proved an EXPSPACE upper bound and a PSPACE lower bound for the safe
coalition game. In the next section, we give an algorithm to synthesize a winning coalition
strategy for a safe coalition game, if exists. We will use the tree unfolding construction
and, in particular, we show that the tree can be seen as a memory structure. We show
such a strategy can be computed in exponential space. Furthermore, we show there exists
games where exponential memory is necessary to win.

6.5. Synthesizing a winning coalition strategy 141

6.5 Synthesizing a winning coalition strategy

Fix a parameterized safety game G = (A = 〈V,Σ,∆〉, S), v0 ∈ V an initial vertex and
T = 〈N,E, `N, `E〉 the tree unfolding of G w.r.t. v0, rooted at n0. Further, N is divided
into disjoint union of Nint and Nleaf . We denote by m the number of nodes and by r the
number of edges in T . Recall that an ordering of the internal nodes and edges of T are
fixed. We further recall the construction of the automaton B from the tree. First notice
that from an accepting word of the form u ·vω in L(B), where u ∈

(
Σm
)∗

and v ∈
(
Σm
)+

,
one can synthesize a winning strategy λ in T by:

λ(ni) = ui · vωi for every 1 ≤ i ≤ m,

where ni ∈ Nint is the i-th internal node of T in the fixed ordering. Then it is easy to
transfer the coalition strategy λ in T to σ a coalition strategy in G by defining

σ(h) = λ(α(zip(h))) for every history h ∈ HistA,

that is, the ω-word corresponding to the internal node representing its virtual history.
Using the result of Lemma 6.9, σ is a winning coalition strategy in G. Recall here that,
zip assigns to every history its virtual history (by greedily removing all the loops) and α
associates to a virtual history its corresponding node in the tree T .

We present here the main result of this section.

Proposition 6.17. Let G = (A, S) be a parameterized safety game with A = 〈V,Σ,∆〉
and v0 ∈ V an initial vertex. Then, if there is a winning coalition strategy in G, then
there is one which uses exponential memory, and can be computed in exponential space.
Furthermore, winning might require exponential memory.

Proof. The tree unfolding can be seen as a memory structure for a winning strategy.
Indeed, consider the Mealy automaton M with set of states M = Nint, and initial memory
state m0 = n0. Define the application upd : Nint × V → Nint by upd(n, v′) = n′ such that
for v′ ∈ S,

• either n′ ∈ Nint is a child of n with `N(n′) = v′,

• or n′ ∈ Nint is an ancestor of n′′ ∈ Nleaf such that `N(n′′) = `N(n′) = v′, and n′′ is a
child of n,

and for v′ /∈ S,

• either n′ ∈ Nleaf is a child of n ∈ Nint with `N(n′) = v′,

• or n, n′ ∈ Nleaf , and n′ = n.

142 6. Synthesizing Safe Coalition Strategies

We also define the application act : Nint × V → Σω by act(n, v) = λ(n), where λ is a
winning coalition strategy in T extracted from L(B).

We recall that a Mealy automatonM describes a strategy σM from v0 as follows: first,
for any h ∈ HistA, inductively define m[h] ∈ M by m[v0] = m0, and m[h · v] = upd(m[h], v);
and then σM is defined as σM(h) = act(m[h], last(h)), where last(h) is the last vertex of
history h.

Intuitively, the upd function updates the memory according to the zip function that it
computes on-the-fly: whenever a safe vertex is visited, it computes the virtual history and
finds the node in T corresponding to that virtual history; the tag function then assigns
the ω-word according to strategy λ on that particular node of T . More precisely, the
second condition in the definition of upd, when v′ ∈ S, makes use of the idea that if a
vertex is repeated in a history of G, the strategy plays as in the first occurrence of that
vertex. We now formally show that M indeed induces a winning strategy, in particular,
we show σM = σ where σ is defined from λ by σ(h) = λ(α(zip(h))), for every history
h ∈ HistA.

Lemma 6.18. σM = σ, where σ is defined from λ by σ(h) = λ(α(zip(h))), for every
history h ∈ HistA, and σM the strategy induced by the Mealy automaton M defined earlier.

Proof. We shall show for every history h ∈ HistA, σM(h) = σ(h). By definition, σM(h) =
act(m[h], last(h)) = λ(m[h]); on the other side, σ(h) = λ(α(zip(h))). Therefore, we need to
show the following equivalence: for any h ∈ HistA, m[h] = α(zip(h)).

We show the equivalence by induction on the structure of h. The base case is trivial:
h = v0, then m[h] = m0 = α(v0). Now suppose the statement is true for every prefix
of h ∈ HistA and shall show for hv′ ∈ HistA such that v′ ∈ V . We need to show,
m[hv′] = α(zip(hv′)).

We let α(zip(h)) = n; then β(n) = zip(h) (β is the inverse mapping of α) which, by
definition of β, implies `N(ι(n)) = zip(h) (recall that ι is the trivial bijection that maps a
node in T to the unique history n0 . . . n). We shall use this relation in the proof. We first
deduce the following:

m[hv′] = upd(m[h], v′) = upd(α(zip(h)), v′) = upd(n, v′). (6.2)

The first equality is by definition of upd, and the second equality is due to the induction
hypothesis. Denote upd(n, v′) by n′. Therefore we need to show: α(zip(hv′)) = n′.

1. First let v′ ∈ S. We consider two following cases:

• assume n′ ∈ Nint is a child of n with `N(n′) = v′. Then

β(n′) = `N(ι(n′)) = `N(ι(n)) · `N(n′) = zip(h) · v′ (6.3)

6.5. Synthesizing a winning coalition strategy 143

The second equality holds because ι(n′) = n0 . . . n.n
′. Since β is a bijection

from set Y to Z (recall, Y = Nint ∪ {n ∈ Nleaf | `N(n) /∈ S} and Z = {zip(h) |
h ∈ HistA}), zip(h) · v′ is a virtual history in Z and hence, v′ does not appear
in zip(h). Therefore, we can write zip(h) · v′ = zip(hv′). We can then rewrite
Equation 6.3 as α(zip(hv′)) = n′.

• assume n has a child n′′ ∈ Nleaf and n′ ∈ Nint is an ancestor of n′′ with
`N(n′′) = `N(n′) = v′. Then,

β(n′) = `N(ι(n′)) = `N(n0 . . . n
′) = `N(n0) . . . `N(n′). (6.4)

Also,
β(n) = `N(n0 . . . n) = `N(n0) . . . `N(n). (6.5)

Since n′ is an ancestor of n, `N(n′) appears in β(n). By induction hypothesis,
the latter is equal to zip(h), and hence, `N(n′) appears in zip(h). Moreover,
since `N(n0) . . . `N(n′) is an element in Z, no vertices repeat, therefore, zip(hv′)
is equal to `N(n0) . . . `N(n′) that is same as β(n′), by Equation 6.4.

2. If v′ /∈ S, we again consider two cases.

• If n′ ∈ Nint is a child of n ∈ Nint with `N(n′) = v′, the proof is similar to the first
subcase of when v ∈ S.

• If n = n′ and both are leaf nodes, n must be such that `N(n) /∈ S. Since unsafe
vertices in G are sinks, zip(hv′) = zip(h) = β(n) = β(n′).

Therefore, we conclude in all cases, m[hv′] = α(zip(hv′)). By induction hypothesis, for any
h ∈ HistA, σM(h) = σ(h), and hence, σM = σ.

We now show that a coalition winning strategy in G can be synthesized using exponential
space. Recall from the proof of Theorem 6.14 that finding an accepting run of B, if it
exists, requires exponential space in the size of G: one only needs to guess such a run
on-the-fly storing only two consecutive states of B. One can then extract a winning
strategy for the coalition in T from the accepting run as described above; the words u and
v may have size doubly-exponential in the size of G (because of the size of B), however,
again, one only needs to keep written two consecutive letters at a time. Therefore, the
computation of λ needs exponential space and since the Mealy automaton M builds on
λ, it also needs exponential space. In particular, the definition of the act function uses λ
and takes exponential space, also the set of memory states M and the upd function only
use the tree structure, which is of size exponential in |G|. We conclude, overall, the Mealy
automaton can be computed in exponential space.

For the lower bound on the size of memory of a winning coalition strategy, we show
the following lemma.

Lemma 6.19. There is a family of games (Gn)n such that the size of Gn is polynomial in
n but winning coalition strategies require exponential memory.

144 6. Synthesizing Safe Coalition Strategies

Proof. We again consider the game of Figure 6.3, described formally in the proof of
Lemma 6.4. whose description can be made in polynomial time (since the i-th prime
number uses only log(i) bits in its binary representation). We have already seen that its
tree unfolding has exponential size. We will argue why exponential memory is required,
that is, any winning strategy for coalition would require an exponential size memory.

First notice that there is a winning coalition strategy: play aω at every vertex Bi, and
aω (resp., bω) at vertex Ci if the history went through vi (resp., v̄i). This strategy can be
implemented using the memory given by its tree unfolding, part of which was depicted in
Figure 6.4.

Assume now one can do better and have a memory structure of size strictly smaller
than 2n. Since there are 2n many histories from v0 leading to vertex C1, there exist two
different histories h and h′, arriving in C1, that lead to the same memory state, and hence
all the suffixes of h, h′ also lead to same memory states. In particular, the memory states
reached by extensions of h and h′ to vertices C1, C2, ..., Cn are the same, and hence
the coalition strategy will select exactly the same ω-words in all vertices C1, C2, ..., Cn.
Consider ρ, ρ′ two plays in An that are extensions of h, h′ respectively. Since the two
histories disagree at least on a predicate “be a multiple of the i-th prime number”, the
same ω-words from all vertices C1, C2, ..., Cn cannot be winning for both of the plays.
This is a contradiction to the assumption that the size of the memory is smaller than
2n.

This concludes the proof of Proposition 6.17.

We have shown that the safe coalition problem can be solved in exponential space in
the size of input. We have further shown that the problem is PSPACE-hard. Moreover, if
there is a coalition winning strategy, then there is one that uses exponential size memory,
the exponential size in memory is somehow optimal: there exists a family of games,
whose size is linear in n, such that any winning strategy requires a memory of size O(2n).
Furthermore, we have seen a procedure to synthesize a winning strategy, if it exists, that
uses exponential space in the size of input.

6.6 Concluding remarks

In this chapter, we considered the decision problem of the existence of a winning strategy
for coalition on a parameterized arena such that the players collectively achieve a safety
objective. We first show that such a game can be reduced to a coalition game on a finite
tree, which is an unfolding of the arena, such that the coalition has a winning strategy
in the parameterized arena if and only if they have one in the latter. We then show
that the safe coalition problem on the tree is decidable. We construct a deterministic
finite automaton B equipped with a safety acceptance condition that keeps track of the
languages on the edges of the arena in parallel, and show that an accepting run of B

6.6. Concluding remarks 145

corresponds to a winning coalition strategy on the tree and vice-versa. A strategy for
coalition on the tree can then easily be transferred to the parameterized arena. The
automaton constructed above can be doubly-exponential in size of the input, however,
we show that the algorithm that non-deterministically guesses an accepting run of B is
sufficient to solve the safe coalition problem which runs in exponential space. A PSPACE
lower bound result is then shown by a reduction from QBF-SAT, which is known to
be complete for that complexity class. Finally, we have shown that one can synthesize
a winning strategy, when it exists, from an accepting run of B, and compute it using
exponential space. In particular, the tree unfolding of an arena can be seen as a memory
structure associated to a strategy for coalition on a parameterized arena, which has size
at most exponential in the size of the arena, moreover, the exponential bound on the
memory size is optimal, as witnessed in Lemma 6.19. This work opens roads towards
various research directions. Let us discuss some of them here.

Tight complexity bounds for safe coalition problem

The coalition problem on parameterized arenas with safety objective can be solved in
exponential space in the size of the arena and is PSPACE-hard. However, no tight
complexity bound is shown in this chapter. The EXPSPACE upper bound is naive, the
automaton B described in Section 6.3 keeps track of all maximal paths in the exponential
size tree unfolding of the arena. It is not clear whether every state in automaton B is
indeed visited, which is not the case, for instance, in Example 6.13 (also see Figure 6.6).
Closing the gap in complexities for the safe coalition problem and proving tight bounds
is left open in this thesis, which we would like to pursue as a possible future research
direction.

Beyond safety

We have considered safety objectives for coalition in a parameterized game and shown
an EXPSPACE upper bound and a PSPACE lower bound for the coalition game problem.
Further, one can synthesize a winning strategy, if it exists, which is of size at most
exponential in the size of the input. A natural question is then to ask whether the
decidability result still holds when the winning condition for the coalition is described by,
for instance, a reachability objective.

A natural approach for solving the coalition game with different objectives would be
to construct a tree unfolding of the arena, similar to the one used for safety objective.
However, for other objectives, the tree needs not necessarily be finite. The finitary
condition was ad hoc to the safety objectives, where the coalition can play the same
ω-word every time a certain vertex is visited with no loss of generality. This might not be
the case, for instance, for a reachability objective. Let us illustrate the scenario over an
example.

146 6. Synthesizing Safe Coalition Strategies

v0 v1v2
a∗bΣ+\(a∗b+a∗ba+)

a∗ba+ Σ+Σ+

Figure 6.8: Example of a reachability coalition game: a winning coalition strategy is that
agent i plays a for the first i−1 rounds, then b for one round, and finally a forever.

Consider the coalition game on the arena depicted in Figure 6.8. In this example,
A = 〈V,Σ,∆〉 where V = {v0, v1, v2}, Σ = {a, b}, and regular languages labelling the
edges are depicted in the picture. Consider a coalition game with a reachability objective
described by F = {v1}, depicted in green in the picture, and v0 the initial vertex. Notice
that coalition can win the game for any number of agents only if, at v0, the last agent
involved plays a b whereas all the others play a. On the other hand, at v0, it is safe if
exactly one agent plays a b and others play a - in that case, the game stays at v0.

One can verify that the coalition has a winning strategy in this reachability game:
agent i plays action a for the first i−1 rounds, then plays b, and finally plays a for the
remaining steps. Doing so, each agent will in turn play action b, and when the last agent
does so, the play will reach v1. Notice that the order of identifiers of the agents is crucial
here and is used in defining a coalition strategy.

Notice that, for each agent, the strategy informally described above when going through
v0 differs at some step (i-th step for agent i), and hence, same for the coalition - it chooses
a different ω-word at each visit of v0. In fact, every winning strategy must have this
property in the sense that if a strategy always plays the same ω-word at each visit of v0,
in this example, the strategy is never winning. Indeed, to reach v1, each agent has to play
b at some point; if akbaω is chosen every time it visits v0 (for a fixed k), the game is not
winning when there are more (or, less) than k agents. Therefore, a tree unfolding of the
arena must take into account this fact and hence, the stopping criterion used for a safety
objective will no longer hold, inducing an infinite size unfolding tree. It is therefore not
immediate whether the reachability coalition problem is decidable. Exploring decidability
and, further, synthesizing automatically winning coalition strategies, when they exist, in
such games is a challenging direction of research to pursue.

Chapter 7

Conclusion

This chapter summarizes the contributions of this thesis and discusses possible directions
for future work. We considered two models in the context of parameterized verification.
In Part I, we focused on broadcast protocols, an automata-based model representing the
main characteristics of ad hoc networks, originally proposed in [DSZ10], whereas Part II
introduces parameterized games, an extension of concurrent games, with parameterized
number of players. Each chapter contains a separate conclusion, and in particular,
Chapters 3, 5 and 6 mention some future research directions, whereas here we discuss
more general perspectives for future work.

7.1 Summary of contributions and immediate follow-

ups

7.1.1 Broadcast protocols

In Chapter 2, we first described the syntax and various semantics of broadcast protocols.
We follow, among many formalisms, the model described in [DSZ10]. We recalled the static,
reconfigurable and loss-on-reception semantics from the literature, and additionally, we
introduced loss-on-broadcast semantics to model arbitrary message losses during broadcast.
We then recalled the coverability problem for broadcast protocols, that, given a state, asks
if there exists an initial configuration and an execution such that at least one process in the
final configuration is in that given state. In reconfigurable semantics, the above problem is
decidable, and we recalled a saturation algorithm, that runs in polynomial time [DSTZ12].
We then introduced two notions: cutoff and covering length, the former being the minimal
number of nodes and the latter the minimal length of a covering execution for positive
instances of the coverability problem.

The main contribution of this part of the thesis was to prove tight bounds on the cutoff
and the covering length for positive instances of coverability in reconfigurable and lossy
semantics. We detailed the results in Chapter 3. We have shown a linear tight bound

147

148 7. Conclusion

for cutoff and a quadratic tight bound for covering length in both semantics. The upper
bounds are achieved by exploiting a monotonicity property of the networks, called copycat
property, which states that any node in a reachable configuration can be duplicated,
i.e., for any reachable configuration and for any state present in that configuration, one
can construct another execution with one more process in that state, while preserving
the behaviours of the other nodes. Based on the copycat property, we first refined the
saturation algorithm of [DSTZ12] in a simple manner that also keeps track of the size of
a minimal execution that covers any state in the set returned by the algorithm, and then
by a fine analysis of the algorithm, we proved the upper bounds. We further showed that
these bounds are tight: we exhibited a family of protocols that achieves those bounds.
However, we showed that the executions in the loss-on-broadcast semantics can in general
be more succinct: we exhibited a family of protocols for which, in reconfigurable semantics,
the cutoff is 3, yet in loss-on-broadcast semantics, the cutoff is linear in the size of the
protocol. Finally, we showed NP-completeness of the problem of determining the exact
cutoff of a protocol in both semantics.

As mentioned in the conclusion of Chapter 3, investigating the interplay between these
two notions is one of our main interests. Coming up with approximation schemes that run
in polynomial time for determining cutoff (or, proving an inapproximability result) is of
independent interest that has potential to produce efficient algorithms for parameterized
model checking of broadcast protocols, up to some non-optimality. We mention more
general perspectives for future works in Section 7.2.

7.1.2 Parameterized games

In the second part of the thesis, we studied a model of games on finite graphs where the
number of players is a parameter. It is an extension of two-player concurrent games to
the parameterized setting. In contrast to the model considered in the first part, here the
players do not directly communicate with each other but have identifiers that we implicitly
use to define the model. Let us summarize the results we have achieved in this part.

In Chapter 4, we defined parameterized games. In such games, we label the edges of a
graph with languages (regular languages in this work) of words of finite but unbounded
length. A word of length k represents the interaction between k players. The players,
however, do not know a priori the number of players participating in the game, but
they can infer some knowledge on that as the game proceeds. The arena can be non-
deterministic, that is, a word can lead from a vertex to more than one vertices. The
non-determinism and the number of players are selected by an adversarial environment.
We then considered two independent settings on this model of games, in the first setting,
a distinguished player wants to achieve a goal against any strategies of her opponents and
of the environment, and the second one is a coalition setting, where the players play as a
coalition and try to achieve a common goal against the environment.

We presented our results on the decision problem of existence of a winning strategy
for the distinguished player, called Eve, against any strategies of her opponents in the first

7.1. Summary of contributions and immediate follow-ups 149

game setting in Chapter 5. Eve, in this case, has to play uniformly, against any number
of opponents, which is a priori unknown to her. We showed that such games reduce to
a simpler setting where the languages on the transitions only constrain the number of
opponents of Eve. We then solved the decision problem in the latter. We called such
a game a semi-parameterized game. The decidability of the semi-parameterized game
problem is shown by a reduction of the game to a two-player turn-based game, called
knowledge game, that keeps track of Eve’s knowledge of her number of opponents in the
original game. The knowledge game abstraction is correct for any winning objective,
which proves that the semi-parameterized game problem is decidable. However, we are
interested in proving complexity results for the above, and we restricted the winning
condition to reachability objectives. We distinguished various cases depending on the type
of constraints in the arena, namely whether they are (finite unions of disjoint) intervals
or semilinear sets. We showed that the problem is PSPACE-complete when constraints
are semilinear sets or finite unions of intervals, NP-complete for deterministic arenas
with constraints finite unions of intervals, and PTIME-complete with interval constraints.
Since the projection of a regular language to the lengths of words is a semilinear set,
this shows PSPACE-completeness for the parameterized game problem in this setting. As
mentioned in the conclusion of that chapter, investigating the game problem for other
winning objectives and proving complexity bounds would be an immediate follow-up.

Chapter 6 presents our results on the coalition setting. We focused on safety objectives,
and showed that the safety coalition problem is decidable. We give an algorithm that runs
in exponential space in the size of the input. The algorithm consists of two major steps.
First, we constructed a finite tree unfolding of the game arena and showed the correctness
of this unfolding; and second, we constructed an automaton that runs the automata
for the languages on the edges in parallel to capture a winning strategy for coalition
on the unfolding tree. We set the acceptance condition of the automaton as a safety
condition described by a Boolean formula and showed correctness of the construction.
Then existence of a winning coalition strategy amounts to checking if there is an accepting
run, which is a composition of a finite path and a safe lasso, in that automaton. The
latter can be decided in exponential space in the size of the input arena. A PSPACE lower
bound was also shown. Finally, we described a procedure to synthesize a winning strategy
for the safe coalition game that can be computed again in exponential space. We show
that a strategy might need exponential memory, and this bound on the memory size is
optimal. As mentioned in the conclusion of that chapter, we are interested in closing the
complexity gap for the safety coalition problem that was left open in this work. Another
interesting direction of study is to solve the reachability coalition problem, where the
winning condition for the coalition is given by a reachability objective. The same approach
will not work, since the unfolding tree may be infinite. This is because, unlike safety, a
coalition strategy may need to play differently when a vertex repeats. This is indeed the
case in the example given in Figure 6.8, as explained in Page 146.

150 7. Conclusion

7.2 Perspectives

The work accomplished in this thesis opens many possibilities for future works. While
some of them were already mentioned in the respective chapters, here we discuss more
general research directions.

7.2.1 Broadcast protocols

Various properties. The notion of cutoff can be extended for various other properties
of broadcast protocols, for instance, the target reachability problem of [DSZ10], that asks,
given a control state q, if there exists an initial configuration and an execution of the
protocol such that every process in the final configuration of that execution is in q. Then
a cutoff for the (positive instances of) target reachability problem can naturally be defined
as the minimal number of nodes for which the above is true. In reconfigurable semantics,
the monotonicity property ensures that the above is well-defined since one can copycat a
process in an execution to construct another execution with more nodes, and ensure if the
former is a positive instance, so is the latter. More general properties of that kind can be
described as Boolean combinations of formulas, each of them constraining the number of
processes labelled with a particular state, called cardinality constraints [DSTZ12]. The
cardinality reachability problem then asks, given a formula ϕ, if there exists an initial
configuration and an execution of the protocol such that the final configuration of that
execution satisfies ϕ. The above formalization subsumes the coverability problem as
well as target reachability problem. The authors show that this problem is decidable for
reconfigurable semantics of broadcast protocols. Then a natural idea would be to study
the notion of cutoff for positive instances of that problem. However, one needs to be
careful since the monotonicity property of a protocol may imply, for some formulas, that
it is satisfied with some number of nodes but cannot be satisfied with more number of
nodes. This is the case, for instance, when there is an upper bound on the number of
processes in some states. Yet, one can define a cutoff for suitable formulas (for instance,
formulas that correspond to coverability, or target reachability) and ask whether similar
bounds on the cutoff hold.

Getting rid of lossy broadcasts. A key feature of the reconfigurable (as well as the
lossy) semantics of broadcast protocols that led us to show the existence and find the
bounds on the cutoff is the monotonicity property, described as the copycat property. We
have argued that the copycat node performs some ‘lossy’ broadcasts (no process receives
the message), and to perform such broadcasts in the reconfigurable semantics, the node
is disconnected from its neighbours. However, it may be more realistic to assume, in
contrast to our definitions, that each broadcast must be paired with at least one reception
of the message. It would therefore be interesting to investigate whether the bound on the
cutoff still holds for coverability of broadcast protocols if we get rid of ‘lossy’ broadcasts.
Such an assumption was made, for instance, in [HS20], for rendez-vous networks, where

7.2. Perspectives 151

exactly two entities communicate at a certain instance via message passing. In that case,
a cutoff may not always exist for some protocol. Then it is more meaningful to consider
the problem of deciding whether, given a protocol and a property, there exists a cutoff for
that particular pair. The problem has been proved decidable for target reachability on
rendez-vous protocols [HS20]. The complexity results were further improved in [BER21].
It would be interesting to investigate whether our technique can be adapted to prove
upper bounds on cutoff for positive instances of the problem.

Communication topology and beyond. The copycat property does not hold for
static semantics (recall that in static semantics, the communication topology is fixed).
Indeed, the key argument that the copycat node performs some ‘lossy’ broadcasts does
not apply here because that node cannot be disconnected from other nodes. However,
the coverability problem is decidable for static broadcast networks if we restrict the
communication topology to, for instance, cliques [EFM99] or k-bounded path topologies
(for a fixed k) [DSZ10]. Therefore, one can naturally consider the decision problem of
the existence of a cutoff in these decidable fragments and look for (tight) bounds on
the cutoff. Finally, it would be interesting to also look at the existence and bounds on
cutoff for decidable properties on other parameterized models, such as probabilistic broad-
cast protocols [BFS14], rendez-vous networks [GS92], or asynchronous shared-memory
systems [EGM13].

7.2.2 Parameterized games

The work accomplished in the second part of the thesis, to the best of our knowledge, is a
first step towards the study of concurrent games with a parameterized number of players.
It naturally opens a lot of directions for future research. While Chapters 5 and 6 discuss
some of them, here we discuss more general perspectives for future works.

Language description. We have considered regular languages to describe interactions
of the players. A natural extension would be to consider more general languages, for
example, context-free languages (CFL) described by context-free grammars (CFG). Notice
that, the setting where a distinguished player is trying to win against her opponents
playing as a coalition is still decidable by construction of knowledge game. Indeed, by
Parikh’s theorem, the projection of a CFL to the length of the words is a semilinear
set [Par66]. However, the size of the semilinear set needs not be polynomial in the size
of the CFG. For instance, one can construct a CFG on one variable and linear number of
terminals such that the corresponding language is a union of exponentially many linear
sets [KT10]. Therefore, the algorithm described in Chapter 5 gives a naive exponential
space upper bound for reachability condition. The PSPACE lower bound will still apply. It
would, therefore, be interesting to investigate more closely the complexity of the problem.
One can also consider other representations of languages such as logical formulas (for
instance, MSO on words) as edge labellings.

152 7. Conclusion

Randomized strategies. So far, we have considered only pure (non-randomized) strate-
gies of the agents. In classical two-player concurrent games, randomized strategies might
be more powerful than deterministic ones in the sense that one can construct an example
of a game with reachability objective such that Eve has no pure winning strategy, but she
has a randomized strategy that is winning with probability 1 [AHK98]. In that context,
one can consider decision problems of checking whether a player has a strategy that is
winning with probability 1 (almost-sure winning); or for any threshold δ > 0, it is winning
with probability greater than 1− δ (limit-sure winning), see [AHK98]. One can similarly
consider randomized strategies of agents in parameterized games and adapt almost-sure
and limit-sure winning conditions for an agent, or even for the coalition.

Quantitative objectives. Quantitative extensions can also be considered. For instance,
transitions can be assigned weights (rewards) over real numbers for a player (for the one
player vs others setting) or even for the coalition (for the coalition setting). The reward
after a play is then simply the sum of the weights on the transitions of the play. One
can then consider, for instance, mean-payoff objectives (limit average of the weights) or
energy objectives (all prefixes of the play must have non-negative weights).

Non-zero sum games. Other game theoretic concepts can also be considered. For
instance, one can consider non-zero sum games, and the concept of (Nash) equilibria can
be studied. Given a winning condition for each player, a Nash equilibrium is a strategy
profile such that no player has incentive to deviate. Then one can ask questions like
existence, or complexity of computing a Nash equilibrium.

Getting rid of identifiers. In our model of parameterized games, the agents have
identifiers. However, in some practical examples of distributed systems, agents (processes)
have no identifiers, for instance, in cache-coherence protocols, and ad hoc networks (this
was the case in the first part of the thesis). Another example is a network of automated
vehicles, where identifiers may affect the privacy of the individuals. Therefore, one can
expect a game model with a parameterized number of players without identifiers of the
agents. Towards that direction, one can consider shuffle-closed (regular) languages so
that the ordering of the players do not impact on the transitions. For instance, the word
w = anbn is in a language L if and only if for any w with #a(w) = #b(w) = n, w ∈ L.
More generally, one can also consider a dependence relation on the set of actions and
consider (regular) trace languages as edge labellings described by asynchronous automata.

Practical applications. Finally, we look forward to finding practical applications of
the model of parameterized games. In the introductory chapter, we designed certain
characteristics of a typical server-client model using parameterized games, yet, the model
was quite restrictive in that example. We however envision that such games may be applied
to a variety of contexts, such as telecommunications, networking protocols, distributed
algorithms, etc. For instance, in O-persistent CSMA protocols, each node is assigned a

7.2. Perspectives 153

transmission order and they transmit data in their assigned order. Note that the number
of nodes is unbounded a priori. Here, the assigned order can be seen as identifiers of
the nodes, and one can hope to design a parameterized game for the model. Another
possibility is ad hoc networks, where a transition between two configurations can be
labelled with a language of the form ⊥∗(!a)⊥∗(?a)∗⊥∗, where ⊥ represents the behaviours
of the nodes which are not involved in that transition. Then one can hope to achieve some
correlations between the satisfiability of various properties of the network and coalition
winning strategies in the corresponding coalition game. Here again, the number of nodes
in the network can be unbounded in general. However, a difficulty here is that the nodes
in an ad hoc network do not have identifiers, and one also has to be careful about the
evolution of the communication topology, and define a set of rules on the languages that
will correspond to a transition in the network.

Bibliography

[AAD+04] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René
Peralta. Computation in networks of passively mobile finite-state sensors.
In Proceedings of the 23rd Annual Symposium on Principles of Distributed
Computing (PODC’04), pages 290–299. ACM, 2004.

[AAE06] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable
predicates are semilinear. In Proceedings of the 25th Annual Symposium on
Principles of Distributed Computing (PODC’06), pages 292–299. ACM, 2006.

[ADR+11] Parosh Aziz Abdulla, Giorgio Delzanno, Othmane Rezine, Arnaud Sangnier,
and Riccardo Traverso. On the verification of timed ad hoc networks. In
Proceedings of the 9th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS’11), volume 6919 of Lecture Notes in
Computer Science, pages 256–270. Springer, September 2011.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin,
Ion Stoica, and Matei Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical report, University of California, Berkeley, February
2009.

[AHH13] Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Hoĺık. All for the price
of few. In Proceedings of the 14th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’13), volume 7737 of
Lecture Notes in Computer Science, pages 476–495. Springer, 2013.

[AHK98] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent
reachability games. In Proceedings of the 39th Annual Symposium on Foun-
dations of Computer Science (FOCS’98), pages 564–575. IEEE Computer
Society, 1998.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time
temporal logic. Journal of the ACM, 49(5):672–713, 2002.

[AJKR14] Benjamin Aminof, Swen Jacobs, Ayrat Khalimov, and Sasha Rubin. Parame-
terized model checking of token-passing systems. In Proceedings of the 15th

155

156 BIBLIOGRAPHY

International Conference on Verification, Model Checking, and Abstract In-
terpretation (VMCAI’14), volume 8318 of Lecture Notes in Computer Science,
pages 262–281. Springer, 2014.

[AK86] Krzysztof R. Apt and Dexter Kozen. Limits for automatic verification of
finite-state concurrent systems. Information Processing Letters, 22(6):307–309,
1986.

[AKR+14] Benjamin Aminof, Tomer Kotek, Sasha Rubin, Francesco Spegni, and Helmut
Veith. Parameterized model checking of rendezvous systems. In Proceedings
of the 21st International Conference on Concurrency Theory (CONCUR’14),
volume 8704 of Lecture Notes in Computer Science, pages 109–124. Springer,
September 2014.

[ALW89] Mart́ın Abadi, Leslie Lamport, and Pierre Wolper. Realizable and unrealizable
specifications of reactive systems. In Proceedings of the 16th International
Colloquium on Automata, Languages and Programming (ICALP’89), volume
372 of Lecture Notes in Computer Science, pages 1–17. Springer, 1989.

[BBLS20] Béatrice Bérard, Benedikt Bollig, Mathieu Lehaut, and Nathalie Sznajder.
Parameterized synthesis for fragments of first-order logic over data words. In
Proceedings of the 23rd International Conference on Foundations of Software
Science and Computation Structure (FOSSACS’20), volume 12077 of Lecture
Notes in Computer Science, pages 97–118. Springer, 2020.

[BBM19a] Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Concurrent
parameterized games. In Proceedings of the 39th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’19), volume 150 of LIPIcs, pages 31:1–31:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[BBM19b] Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Reconfiguration
and message losses in parameterized broadcast networks. In Proceedings of
the 30th International Conference on Concurrency Theory (CONCUR’19),
volume 140 of LIPIcs, pages 32:1–32:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, August 2019.

[BBM20] Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Synthesizing
safe coalition strategies. In Proceedings of the 39th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’20), volume 182 of LIPIcs, pages 39:1–39:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[BBM21] Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Reconfiguration
and message losses in parameterized broadcast networks. Logical Methods in
Computer Science, 17(1), 2021.

[BBMU11] Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels.
Nash equilibria in concurrent games with büchi objectives. In Proceedings of

BIBLIOGRAPHY 157

the 31st Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’12), volume 13 of LIPIcs, pages 375–386. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

[BBMU15] Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels.
Pure Nash equilibria in concurrent games. Logical Methods in Computer
Science, 11(2), 2015.

[BD08] Dietmar Berwanger and Laurent Doyen. On the power of imperfect infor-
mation. In Proceedings of the 27th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’08, volume 2 of
LIPIcs, pages 73–82. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2008.

[BDG+19] Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, Hugo Gimbert, and
Adwait Amit Godbole. Controlling a population. Logical Methods in Computer
Science, 15(3), 2019.

[BEG+20] Michael Blondin, Javier Esparza, Blaise Genest, Martin Helfrich, and Stefan
Jaax. Succinct population protocols for presburger arithmetic. In Proceedings
of the 37th International Symposium on Theoretical Aspects of Computer
Science(STACS’20), volume 154 of LIPIcs, pages 40:1–40:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

[BER21] A. R. Balasubramanian, Javier Esparza, and Mikhail A. Raskin. Finding
cut-offs in leaderless rendez-vous protocols is easy. In Proceedings of the 24th
International Conference on Foundations of Software Science and Computa-
tion Structure (FOSSACS’21), volume 12650 of Lecture Notes in Computer
Science, pages 42–61. Springer, March 2021.

[BFS14] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Playing with
probabilities in reconfigurable broadcast networks. In Proceedings of the 17th
International Conference on Foundations of Software Science and Computa-
tion Structure (FOSSACS’14), volume 8412 of Lecture Notes in Computer
Science, pages 134–148. Springer, April 2014.

[BHV03] Ahmed Bouajjani, Peter Habermehl, and Tomás Vojnar. Verification of
parametric concurrent systems with prioritized FIFO resource management.
In Proceedings of the 14th International Conference on Concurrency Theory
(CONCUR’03), volume 2761 of Lecture Notes in Computer Science, pages
172–187. Springer, 2003.

[BJK10] Tomás Brázdil, Petr Jancar, and Antońın Kucera. Reachability games on
extended vector addition systems with states. In Proceedings of the 37th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP’10),
volume 6199 of Lecture Notes in Computer Science, pages 478–489. Springer,
2010.

158 BIBLIOGRAPHY

[BJK+15] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin,
Helmut Veith, and Josef Widder. Decidability of Parameterized Verification.
Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2015.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[BKP11] Dietmar Berwanger, Lukasz Kaiser, and Bernd Puchala. A perfect-information
construction for coordination in games. In Proceedings of the 31th IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’11), volume 13 of LIPIcs, pages 387–398. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

[BL69] J. Richard Buchi and Lawrence H. Landweber. Solving sequential conditions
by finite-state strategies. Transactions of the American Mathematical Society,
138:295–311, 1969.

[BMR+16] Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and
Daniel Stan. Reachability in networks of register protocols under stochastic
schedulers. In Proceedings of the 43rd International Colloquium on Automata,
Languages, and Programming, (ICALP 2016), volume 55 of LIPIcs, pages
106:1–106:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[CD10] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. In Pro-
ceedings of the 37th International Colloquium on Automata, Languages, and
Programming (ICALP’10), volume 6199 of Lecture Notes in Computer Science,
pages 599–610. Springer, 2010.

[CDHR06] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. Algorithms for omega-regular games with imperfect
information, . In Proceedings of the 20th International Workshop on Com-
puter Science Logic (CSL’06), volume 4207 of Lecture Notes in Computer
Science, pages 287–302. Springer, 2006.

[CDHR10] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. Generalized mean-payoff and energy games. In Proceedings of
the 30thnd Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’10), volume 8 of LIPIcs, pages 505–516. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2010.

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model check-
ing: algorithmic verification and debugging. Communications of the ACM,
52(11):74–84, 2009.

[CFO20] Thomas Colcombet, Nathanaël Fijalkow, and Pierre Ohlmann. Controlling a
random population. In Proceedings of the 23rd International Conference on
Foundations of Software Science and Computation Structures (FOSSACS’20),

BIBLIOGRAPHY 159

volume 12077 of Lecture Notes in Computer Science, pages 119–135. Springer,
2020.

[Chr86] Marek Chrobak. Finite automata and unary languages. Theoretical Computer
Science, 47(3):149–158, 1986.

[Chu62] Alonzo Church. Logic, arithmetic, and automata. In Proceedings of the
International Congress of Mathematicians, volume 29, page 23–35, 1962.

[CJH03] Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. Simple
stochastic parity games. In Proceedings of the 17th International Workshop on
Computer Science Logic (CSL’03), volume 2803 of Lecture Notes in Computer
Science, pages 100–113. Springer, 2003.

[CMJ04] Krishnendu Chatterjee, Rupak Majumdar, and Marcin Jurdzinski. On nash
equilibria in stochastic games. In Proceedings of the 18th International
Workshop on Computer Science Logic (CSL’04), volume 3210 of Lecture
Notes in Computer Science, pages 26–40. Springer, 2004.

[Con92] Anne Condon. The complexity of stochastic games. Information and Compu-
tation, 96(2):203–224, 1992.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the 3rd Annual ACM Symposium on Theory of Computing (STOC’71),
pages 151–158. ACM, 1971.

[CQSS19] Tristan Charrier, Arthur Queffelec, Ocan Sankur, and François Schwarzen-
truber. Reachability and coverage planning for connected agents. In Pro-
ceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI’19), pages 144–150. ijcai.org, 2019.

[CRR12] Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy
synthesis for multi-dimensional quantitative objectives. In Proceedings of
the 23rd International Conference on Concurrency Theory (CONCUR’12),
volume 7454 of Lecture Notes in Computer Science, pages 115–131. Springer,
2012.

[CTTV04] Edmund M. Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith.
Verification by network decomposition. In Proceedings of the 21st International
Conference on Concurrency Theory (CONCUR’04), volume 3170 of Lecture
Notes in Computer Science, pages 276–291. Springer, September 2004.

[dAFH+03] Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and
Mariëlle Stoelinga. The element of surprise in timed games. In Proceedings
of the 14th International Conference on Concurrency Theory (CONCUR’03),
volume 2761 of Lecture Notes in Computer Science, pages 142–156. Springer,
2003.

[dAHK07] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent
reachability games. Theoretical Computer Science, 386(3):188–217, 2007.

160 BIBLIOGRAPHY

[DDG+10] Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin,
and Szymon Torunczyk. Energy and mean-payoff games with imperfect
information. In Proceedings of the 24th International Workshop on Computer
Science Logic (CSL’10), volume 6247 of Lecture Notes in Computer Science,
pages 260–274. Springer, 2010.

[DN12] Thuan Duong-Ba and Thinh P. Nguyen. Distributed client-server assignment.
In Proceedings of the 37th Annual IEEE Conference on Local Computer
Networks (LCN’12), pages 296–299. IEEE Computer Society, 2012.

[DST13] Giorgio Delzanno, Arnaud Sangnier, and Riccardo Traverso. Parameterized
verification of broadcast networks of register automata. In Proceedings of the
7th International Workshop on Reachability Problems (RP’13), volume 8169
of Lecture Notes in Computer Science, pages 109–121. Springer, September
2013.

[DSTZ12] Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Za-
vattaro. On the complexity of parameterized reachability in reconfigurable
broadcast networks. In Proceedings of the 32nd Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’12),
volume 18 of LIPIcs, pages 289–300. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, December 2012.

[DSZ10] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized
verification of ad hoc networks. In Proceedings of the 21st International
Conference on Concurrency Theory (CONCUR’10), volume 6269 of Lecture
Notes in Computer Science, pages 313–327. Springer, September 2010.

[DSZ11] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. On the power
of cliques in the parameterized verification of ad hoc networks. In Proceedings
of the 14th International Conference on Foundations of Software Science and
Computational Structures (FOSSACS’11), volume 6604 of Lecture Notes in
Computer Science, pages 441–455. Springer, March 2011.

[DSZ12] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Verification of
ad hoc networks with node and communication failures. In Proceedings of the
32nd International Conference on Formal Techniques for Distributed Systems
(FMOODS/FORTE’12), volume 7273 of Lecture Notes in Computer Science,
pages 235–250. Springer, June 2012.

[DT13] Giorgio Delzanno and Riccardo Traverso. Decidability and complexity results
for verification of asynchronous broadcast networks. In Proceedings of the 7th
International Conference on Language and Automata Theory and Applications
(LATA’13), volume 7810 of Lecture Notes in Computer Science, pages 238–249.
Springer, April 2013.

[EFM99] Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of
broadcast protocols. In Proceedings of the 14th Annual IEEE Symposium

BIBLIOGRAPHY 161

on Logic in Computer Science (LICS’99), pages 352–359. IEEE Computer
Society, July 1999.

[EGLM17] Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verifi-
cation of population protocols. Acta Informatica, 54(2):191–215, 2017.

[EGM13] Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verifi-
cation of asynchronous shared-memory systems. In Proceedings of the 25th
International Conference on Computer Aided Verification (CAV’13), volume
8044 of Lecture Notes in Computer Science, pages 124–140. Springer, July
2013.

[EK00] E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many
to the few. In Proceedings of the 17th International Conference on Automated
Deduction (CADE’00), volume 1831 of Lecture Notes in Computer Science,
pages 236–254. Springer, June 2000.

[EM79] Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff
games. International Journal of Game Theory, 8:109–113, 1979.

[EN95] E. Allen Emerson and Kedar S. Namjoshi. Reasoning about rings. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’95), pages 85–94. ACM Press, January
1995.

[Esp14] Javier Esparza. Keeping a crowd safe: On the complexity of parameterized
verification (invited talk). In Proceedings of the 31st International Symposium
on Theoretical Aspects of Computer Science (STACS’14), volume 25 of LIPIcs,
pages 1–10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[FK13] Ofer Feinerman and Amos Korman. Theoretical distributed computing meets
biology: A review. In Proceedings of the 9th International Conference on
Distributed Computing and Internet Technology (ICDCIT’13), volume 7753
of Lecture Notes in Computer Science, pages 1–18. Springer, 2013.

[GKW19] Julian Gutierrez, Sarit Kraus, and Michael J. Wooldridge. Cooperative
concurrent games. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS’19), pages 1198–1206.
International Foundation for Autonomous Agents and Multiagent Systems,
2019.

[GS64] Seymour Ginsburg and Edwin H. Spanier. Bounded algol-like languages.
Transactions of the American Mathematical Society, 113(2):333–368, 1964.

[GS92] Steven M. German and A. Prasad Sistla. Reasoning about systems with many
processes. Journal of the ACM, 39(3):675–735, 1992.

[GThW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research, volume 2500 of
Lecture Notes in Computer Science. Springer, 2002.

162 BIBLIOGRAPHY

[HS20] Florian Horn and Arnaud Sangnier. Deciding the existence of cut-off in
parameterized rendez-vous networks. In Proceedings of the 21st Interna-
tional Conference on Concurrency Theory (CONCUR’20), volume 171 of
LIPIcs, pages 46:1–46:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
September 2020.

[Huy82] Thiet-Dung Huynh. The complexity of semilinear sets. Journal of Information
Processing and Cybernetics, 18(6):291–338, 1982.

[JM96] David B Johnson and David A Maltz. Dynamic source routing in ad hoc
wireless networks. In Mobile computing, pages 153–181. Springer, 1996.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Complexity
of Computer Computations, The IBM Research Symposia Series, pages 85–103,
1972.

[KKW10] Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Dynamic cutoff
detection in parameterized concurrent programs. In Proceedings of the 25th
International Conference on Computer Aided Verification (CAV’10), volume
6174 of Lecture Notes in Computer Science, pages 645–659. Springer, 2010.

[KT10] Eryk Kopczynski and Anthony Widjaja To. Parikh images of grammars:
Complexity and applications. In Proceedings of the 25th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS’10), pages 80–89. IEEE Computer
Society, 2010.

[LFI+17] Giuseppe Antonio Di Luna, Paola Flocchini, Taisuke Izumi, Tomoko Izumi,
Nicola Santoro, and Giovanni Viglietta. Population protocols with faulty
interactions: The impact of a leader. In Proceedings of the 10th Internation
Conference on Algorithms and Complexity (CIAC’17), volume 10236 of Lecture
Notes in Computer Science, pages 454–466, 2017.

[Lip76] Richard J. Lipton. The reachability problem requires exponential space. Re-
search report. Department of Computer Science, Yale University, 1976.

[Mar02] Andrew Martinez. Efficient computation of regular expressions from unary
NFAs. In Proceedings of the 5th International Workshop on Descriptional
Complexity of Formal Systems (DCFS’02), pages 174–187. Department of
Computer Science, The University of Western Ontario, Canada, 2002.

[Mat94] Armando B. Matos. Periodic sets of integers. Theoretical Computer Science,
127(2):287–312, 1994.

[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
Inc., 1967.

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete
controllers for timed systems (an extended abstract). In Proceedings of the
12th International Symposium on Theoretical Aspects of Computer Science

BIBLIOGRAPHY 163

(STACS’95), volume 900 of Lecture Notes in Computer Science, pages 229–242.
Springer, 1995.

[MW03] Swarup Mohalik and Igor Walukiewicz. Distributed games. In Proceedings of
the 23rd Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’03), volume 2914 of Lecture Notes in Computer
Science, pages 338–351. Springer, 2003.

[Nas50] John F. Nash. Equilibrium points in n-person games. Proc. of the National
Academy of Sciences, 36:48–49, 1950.

[NH06] Sebastian Nanz and Chris Hankin. A framework for security analysis of
mobile wireless networks. Theoretical Computer Science, 367(1-2):203–227,
2006.

[NK18] Giang-Truong Nguyen and Kyungbaek Kim. A survey about consensus
algorithms used in blockchain. Journal of Information Processing Systems,
14(1):101–128, 2018.

[OR94] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT
Press, 1994.

[Par66] Rohit Parikh. On context-free languages. Journal of the ACM, 13(4):570–581,
1966.

[PB99] Charles E. Perkins and Elizabeth M. Belding-Royer. Ad-hoc on-demand
distance vector routing. In Proceedings of the 2nd Workshop on Mobile
Computing Systems and Applications (WMCSA’99), pages 90–100. IEEE
Computer Society, 1999.

[PR79] Gary L. Peterson and John H. Reif. Multiple-person alternation. In Pro-
ceedings of the 20th Annual Symposium on Foundations of Computer Science
(FOCS’79), pages 348–363. IEEE Computer Society Press, 1979.

[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to
synthesize. In Proceedings of the 31st Annual Symposium on Foundations of
Computer Science (FOCS’90), pages 746–757. IEEE Computer Society, 1990.

[Pri14] Erich Prisner. Game Theory through Examples. Classroom Resource Materials.
Mathematical Association of America, 2014.

[Rab72] Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem.
American Mathematical Society, USA, 1972.

[Rei84] John H. Reif. The complexity of two-player games of incomplete information.
Journal of Computer and System Sciences, 29(2):274–301, 1984.

[Rep96] Inquiry Board Report. Ariane 5 - flight 501 failure. https://esamultimedia.
esa.int/docs/esa-x-1819eng.pdf, Paris, July 19, 1996.

https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

164 BIBLIOGRAPHY

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177–192,
1970.

[Saw10] Zdenek Sawa. Efficient construction of semilinear representations of languages
accepted by unary NFA. In Proceedings of the 4th International Workshop on
Reachability Problems (RP’10), volume 6227 of Lecture Notes in Computer
Science, pages 176–182. Springer, 2010.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring expo-
nential time (preliminary report). In Proceedings of the 5th Annual ACM
Symposium on Theory of Computing (STOC’73), pages 1–9. ACM, 1973.

[SRS08] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A process calculus for
mobile ad hoc networks. In Proceedings of the 10th International Conference
on Coordination Models and Languages (COORDINATION’08), volume 5052
of Lecture Notes in Computer Science, pages 296–314. Springer, 2008.

[SRS09] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. Query-based model
checking of ad hoc network protocols. In Proceedings of the 20th International
Conference on Concurrency Theory (CONCUR’09), volume 5710 of Lecture
Notes in Computer Science, pages 603–619. Springer, 2009.

[Suz88] Ichiro Suzuki. Proving properties of a ring of finite-state machines. Information
Processing Letters, 28(4):213–214, 1988.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in infinite games. In
Proceedings of the 12th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’95), volume 900 of Lecture Notes in Computer Science, pages
1–13. Springer, 1995.

[Tho09] Wolfgang Thomas. Facets of synthesis: Revisiting church’s problem. In
Proceedings of the 24th International Conference on Foundations of Software
Science and Computation Structure (FOSSACS’09), volume 5504 of Lecture
Notes in Computer Science, pages 1–14. Springer, 2009.

[Umm08] Michael Ummels. The complexity of nash equilibria in infinite multiplayer
games. In Proceedings of the 24th International Conference on Foundations
of Software Science and Computation Structure (FOSSACS’08), volume 4962
of Lecture Notes in Computer Science, pages 20–34. Springer, 2008.

[Vaz01] Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

[YMG08] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor
network survey. Computer Networks, 52(12):2292–2330, 2008.

[ZP96] Uri Zwick and Mike Paterson. The complexity of mean payoff games on
graphs. Theoretical Computer Science, 158(1&2):343–359, 1996.

Index

REACHsem(P), 34
Neighγ(n), 25
#steps(ρ), 26
#nodes(ρ), 26
KA[v,K], 106
#nonlost steps(ρ, n), 30
zip, 131
(k-)Outcome, 85, 96, 123
(k-)Realizability, 85, 95
MinNodes problem, 37

COVERsem(P , F), 33
#steps(ρ, n), 26

Büchi, 73
Broadcast Protocols, 24

Coalition strategies, 123
Concurrent games, 74
Copycat property, 40, 43
Coverability, 33
Covering length, 36
Cutoff, 36

Histories, 84, 95, 122

Knowledge arena, 99

Lossy ad hoc networks, 27, 30

Mealy automaton, 71, 123
Memoryless strategies, 71, 77

Parameterized arenas, 83
Parameterized concurrent games, 79
Plays, 84, 95, 122

Reachability, 72
Reconfigurable ad hoc networks, 27
Refined saturation algorithm, 45

Safety, 73
Saturation algorithm, 34
Semi-parameterized arenas, 93
Semilinear sets, 94
Static ad hoc networks, 26
Strategies, 85, 96, 122
Strategy profile, 85

Tagged tree, 108
Turn-based games, 69

Unfolding tree, 126

165

Titre: Vérification et Synthèse de Systèmes Concurrents Paramétrés

Mots clés: model checking, systèmes distribués, vérification paramétrée, réseaux ad hoc, jeux sur
graphes, synthèse de stratégies

Résumé: Cette thèse se situe au croisement de
la vérification et de la synthèse des systèmes concur-
rents paramétrés. Le problème de la vérification de
modèles paramétrés demande si un système satisfait
une spécification donnée indépendamment du nom-
bre de ses composants, alors que la synthèse vise la
conception de protocoles pour ses composants afin
que la spécification soit satisfaite.

Nous étudions un modèle paramétré de réseaux
où les processus sont distribués sur un graphe non
orienté; ils exécutent le même protocole et commu-
niquent par des diffusions sélectives de messages. Le
problème de couverture demande si un état donné
du protocole est peut être atteint. Nous montrons
que pour les instances positives du problème de cou-
verture, en supposant que la topologie de commu-
nication est reconfigurable, la taille et la longueur
d’une exécution couvrante minimale sont bornées
linéairement et quadratiquement, respectivement.
Nous introduisons une sémantique de perte à l’envoi

et montrons des bornes similaires pour la taille et la
longueur d’une exécution couvrante.

Les interactions entre différents agents peuvent
être modélisées par des jeux. Nous introduisons
et étudions deux cadres de ce que l’on appelle les
jeux concurrents paramétrés, un modèle de jeux con-
currents avec un nombre arbitraire d’agents. Tout
d’abord, nous considérons le scénario où un joueur
distingué Eve tente d’atteindre un objectif contre un
nombre arbitraire d’adversaires, quelles que soient
leurs stratégies. Nous prouvons que l’existence d’une
stratégie gagnante pour Eve est décidable, et nous
fournissons des bornes de complexité exactes pour
ces jeux d’accessibilité. Deuxièmement, nous con-
sidérons un jeu de coalition où tous les joueurs es-
saient collectivement d’atteindre un objectif com-
mun. Dans ce cadre, nous considérons des objec-
tifs de sûreté et montrons que l’existence d’une
stratégie de coalition gagnante est décidable, et nous
établissons des bornes de complexité pour ce même
problème.

Title: Verification and Synthesis of Parameterized Concurrent Systems

Keywords: model checking, distributed systems, parameterized verification, ad hoc networks, games
on graphs, strategy synthesis

Abstract: This thesis is at the crossroad of ver-
ification and synthesis of parameterized concurrent
systems. The parameterized model checking prob-
lem asks whether a system satisfies a given specifica-
tion independently of the number of its components,
whereas synthesis requires an algorithmic design of
protocols for its components so that the specification
is satisfied.

We study a parameterized model of networks
where processes are distributed over an undirected
graph, running the same broadcast protocol, and
communicating via selective broadcasts of messages.
The coverability problem asks whether a given state
of the protocol is coverable. We show that for pos-
itive instances of the coverability problem in recon-
figurable semantics, the size (cutoff) and the length
(covering length) of a minimal covering execution

is linearly and quadratically bounded, respectively.
We introduce loss-on-broadcast semantics, and show
similar bounds for the cutoff and the covering length.

The interactions between agents can be mod-
elled using games. We introduce and study two dif-
ferent settings of the so-called parameterized con-
current games, a model of concurrent games with
arbitrarily many agents. First, we consider a sce-
nario of a distinguished player Eve trying to achieve
a goal against arbitrarily many opponents, irrespec-
tive of their strategies. We prove the existence of
a winning strategy for Eve is decidable, and show
tight complexity bounds for reachability objectives.
Second, we consider a coalition game where all play-
ers collectively try to achieve a common goal. We
consider safety objectives and show the existence of
a winning coalition strategy is decidable, and prove
complexity bounds for the same.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Abstract
	Acknowledgements
	Introduction
	Background
	Contributions of the thesis
	Organization of the thesis

	I Verification of Ad Hoc Networks
	Preliminaries
	Broadcast protocols
	Semantics
	Coverability
	Cutoff and covering length
	Discussion

	Tight Bounds on Cutoff and Covering Length
	Refined saturation algorithm
	Tight bounds on cutoff and covering length
	Succinctness of reconfigurations compared to message losses
	Complexity of deciding the size of minimal witnesses
	Concluding remarks

	II Parameterized Concurrent Games
	Preliminaries
	Two-player turn-based games
	Two-player concurrent games
	Parameterized concurrent games
	Discussion

	Playing against Arbitrarily Many Opponents
	Game setting
	The knowledge game
	Tight bounds for reachability games
	Concluding remarks

	Synthesizing Safe Coalition Strategies
	Game setting
	The tree unfolding
	An EXPSPACE upper bound for the safe coalition problem
	A PSPACE lower bound for the safe coalition problem
	Synthesizing a winning coalition strategy
	Concluding remarks

	Conclusion
	Summary of contributions and immediate follow-ups
	Perspectives

	Bibliography
	Index

