
HAL Id: tel-03413010
https://theses.hal.science/tel-03413010v1
Submitted on 3 Nov 2021 (v1), last revised 3 Nov 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cryptographie appliquée à la sécurité des systèmes
d’information
Marc Beunardeau

To cite this version:
Marc Beunardeau. Cryptographie appliquée à la sécurité des systèmes d’information. Cryptographie
et sécurité [cs.CR]. Université Paris sciences et lettres, 2019. Français. �NNT : 2019PSLEE076�. �tel-
03413010v1�

https://theses.hal.science/tel-03413010v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres

Préparée à l’Ecole Normale Supérieure

Ecole doctorale n°386

l'École Doctorale Sciences Mathématiques de Paris Centre

Spécialité Informatique

Cryptographie Appliquée à la Sécurité des Systèmes d’Information

COMPOSITION DU JURY :

M. Joye Marc
OneSpan, Rapporteur

M. Coron Jean-Sebastien
Université du Luxembourg, Rapporteur

M. Pointcheval David
Ecole Normale Supérierue, Président du jury

M. Pierre-Alain Fouque
Université de Rennes I, examinateur

Mme. Lysyanskaya Anna
Brown University, examinatrice

M. Preneel Bart
KU Leuven, examinateur

Dirigée par David
NACCACHE

Soutenue par
Marc BEUNARDEAU
le 15 janvier 2019

1

Remerciements

Je tiens à remercier David Naccache, Professeur à l’Ecole Normale Supérieure, qui m’a encadré
tout au long de cette thèse et qui m’a fait partager ses brillantes intuitions qui m’ont aidées à
saisir de nombreux problèmes. Qu’il soit aussi remercié pour les nombreuses conversations sur
des sujets aussi variés qu’interessants.

J’adresse tous mes remerciements à Marc Joye et Jean-Sébastien Coron de l’honneur qu’ils
m’ont fait en acceptant d’être rapporteurs de cette thèse.

J’exprime ma gratitude à Pierre-Alain Fouque, Anna Lysanskaya, David Pointcheval et Bart
Preneel qui ont bien voulu participer à mon jury.

Je tiens aussi à remercier Michel Léger, Directeur du laboratoire d’innovation d’Ingenico, qui
m’a accueilli pendant trois ans au sein de son laboratoire. C’est grâce à lui que j’ai pu concilier
avec bonheur recherche théorique et appliquée pendant cette thèse. Merci également à toute
l’équipe du Lab et particulierement à Aisling, Hiba et Rémi avec qui j’ai particulièrement aprrecié
travailler et discuter.

Je tiens à remercier tous les membres de l’équipe de sécurité de l’Ecole Normale Supérieure, et
tous mes co-autheurs avec qui les nombreux échanges m’ont permis de progresser (et de publier :)).

Enfin, un grand merci a ma famille et mes amis qui m’ont soutenu pendant ces trois ans et
ont patiemment écouté mes tentatives de vulgarisation.

3

Contents

Acknowledgements . 3

I Introduction 7

1 Preliminaries 9
1.1 Foreword . 10
1.2 Symmetric Cryptography . 11
1.3 Asymmetric Cryptography . 14
1.4 Formalisation of Security . 16
1.5 Current Research Trends in Cryptography . 21

2 Results and Contributions 25
2.1 Organisation . 25
2.2 Additional Work . 25

3 Batch Processing in Cryptography 27
3.1 Introduction . 27
3.2 Optimal Batch Signatures . 29
3.3 Reusing Nonces in Schnorr Signatures . 53

4 Post Quantum Public-key based on Mersenne primes 69
4.1 Introduction . 69
4.2 On the Hardness of the Mersenne Low Hamming Ratio Assumption 71
4.3 Public-Key Cryptosystems Based on a New Complexity Assumption 79

5 Physical Security and Information Theory 91
5.1 Introduction . 91
5.2 A New Differential Fault Analysis on PRIDE: from Theory to Practice 93
5.3 From Clustering Supersequences to Entropy Minimizing Subsequences for Single

and Double Deletions . 115

Bibliography 147

5

Part I

Introduction

7

Chapter 1

Preliminaries

Contents
1.1 Foreword . 10
1.2 Symmetric Cryptography . 11

1.2.1 Shannon’s Principle . 11
1.2.2 Block Ciphers and Stream Ciphers 11
1.2.3 Examples : DES and AES . 12
1.2.4 Beyond Encryption . 12

1.3 Asymmetric Cryptography . 14
1.3.1 Diffie-Hellman . 15
1.3.2 RSA . 15
1.3.3 Beyond Public Key Encryption . 16

1.4 Formalisation of Security . 16
1.4.1 Complexity of an algorithm . 16
1.4.2 Security Model and Games . 18

1.5 Current Research Trends in Cryptography 21
1.5.1 More Adversaries . 21
1.5.2 Quantum Cryptography . 22
1.5.3 Optimisations and Usability . 23

9

The first thing people think of when they hear of cryptography is that it is used for secret
communications. While it is not the purpose of this thesis to re-explain in detail cryptography
and its applications, we begin by over-viewing several examples of the usage of cryptography.
The purpose of this part is to give the non-specialist reader an intuition about what cryptography
is, and how large its applications are. We will also seize the occasion to introduce mathematical
definitions of the various concepts. Some of these definitions are usually not given, or not discussed
in mainstream cryptographic papers, and are therefore not in our chapters. The reasons there are
not is usually the limited number of pages in a paper, and the fact that the community implicitly
assumes that everybody knows and understand them, or that they do not to use such formalism.
However, we enjoy the non-limitation of space in this thesis to go a bit deeper. By doing so it
allows the cryptographer to recall precise models such as Turing machines (e.g. Section 1.4.1),
and the non-cryptographer to understand more easily subtle notions such as security games and
security notions (e.g. Figure 1.3) that are usually left undiscussed in nowadays cryptographic
papers. Arguably modern cryptography started with the Kerckhoff’s principle [MP08] which
states that the security of a cryptosystem should only rely on the key’s secrecy, not on how this
key is used. Before that, security by obscurity (i.e. the way we encrypt is secret) was preferred.
It was vulnerable to reverse engineering and leaks from the designers and users of the system. On
the other hand, respecting this principle allows two things. First if an encryption device is stolen
by the adversary then we simply have to change the key instead of changing the cryptosystem.
Second, respecting this principle allows the analysis of cryptosystems by everyone, and therefore
better designs. Nowadays the vast majority of cryptosystems respect this principle, and it allowed
cryptography to become a science. It still happens that well analysed and efficient solutions are
not yet found, which sometimes makes the industry use security by obscurity. This is the case for
example in obfuscation and white-box cryptography (because no cryptographic solution exist)
and format preserving encryption where proven solutions are inefficient Section 1.5.1.1.

One could also argue that the real start of modern cryptography was the invention of the
computer and its ancestors (electro-mechanical machines), that allowed designing and attacking
systems with costly computations. The most famous example was probably the enigma machine
during the Second World War by the Germans. It could be used easily by German soldiers thanks
to an electro-mechanical device and was cryptanalysed by Polish and British cryptographers
(notably Alan Turing) thanks to another electro-mechanical device called the cryptologic bomb.

1.1 Foreword

This thesis can be seen as a collection of papers that the author co-wrote during his work at ENS
and Ingenico. While we did choose not to include all our results here, some of our work being too
far from others, it can still be seen as non-standard in the sense that this thesis is not focused on
one precise topic. The purpose of this introduction throughout examples is twofold. One is to
place the many different works in the different parts of cryptography. The other is to explain how
the different papers of this thesis are consistent. The last part (Section 1.5) introduces some of
the areas of cryptography, and aims to show how the topics treated in this thesis do not come
from the theoretical cryptography. Of course, we do use its results and methodologies, but the
topics can be considered as ’practice-oriented’, in the sense that our problems are inspired by
the real world problems. On the other hand, a part of cryptography aims at more fundamental
problems, which could serve a more philosophical or aesthetic purpose, and which should find
applications that have not yet been foreseen. An interesting reading that can help the reader to
better understand our point of view is Rogaway’s positional paper [Rog16]. A different view that
argues that cryptography takes its roots in a mathematical truth rather than the real world can
be found in [Gol06]. Since the author belongs to a security department and working in industry,

10

it is natural that our thesis adopts the first point of view (without denying the interest of the
second). Unfortunately, this will not be done by exposing projects done at Ingenico for two
reasons: industry projects are outside the scope of a scientific thesis, and disclosing information
that should not be is a risk we are not willing to take.

1.2 Symmetric Cryptography

Symmetric (or secret key) cryptography is the oldest and simplest form of cryptography. It exists
since Antiquity, and until the 70’s was the only known form of encryption. It assumes that both
parties have agreed beforehand on a shared secret (the secret key). Then they mix the secret with
their message, in a reversible way thus allowing decryption. Formally a secret key cryptosystem
is a family of permutations on the message space, indexed by the set of secret keys.

1.2.1 Shannon’s Principle

The first formalisation of secret key cryptosystem was made by Claude Shanon in 1949 [Sha49].
In this article, Shannon introduces two concepts. The first one is information theory. The second
one is block ciphers. Historically there have been two types of ciphers. Some use substitution
i.e. they replace a message chunk by another one. The correspondence between different chunks
constitutes the secret key. For example, if the set of messages is the English language, we can pick
a permutation on the alphabet, and replace every message letter by the image of the letters under
the chosen permutation. Choosing an appropriate permutation (a randomly chosen one would
have a good chance to do the trick) allows complex relation between the key and the message.
On the other hand, choosing one that keeps some structure (e.g. changing vowels to vowels
and consonants to consonants) will make deciphering easier. For bit strings (which is the most
widespread real-world application) the structure can be logical, or arithmetical. However, even
with a good permutation, it is not sufficient since the English language (or structured data such
as XML documents) has lots of structure (e.g. letters do not have the same frequency). A simple
cryptanalysis would be, for example, to guess that the image of ’e’ by the secret permutation
is the letter appearing the most in the ciphertext. If the guess is correct then the keys space is
reduced from 26! to 25! with very little information. The leakage rate is far from optimal.

To avoid this, we need a second kind of ciphers: permutations ciphers. Letting the message
space be strings of fixed length n on a fixed alphabet, we choose the secret key to be a permutation
σ of {1, · · · , n}. The encryption of a message a1 · · · an is simply aσ(1) · · · aσ(n). This alone is
insecure, but combined with substitution ciphers as it is done in modern ciphers, this allows to
thwart frequential analysis. Ideally, if one message bit is changed, about half of the bits of the
ciphertext are flipped.

1.2.2 Block Ciphers and Stream Ciphers

Moderns ciphers can be divided into two categories: stream ciphers and block ciphers. A stream
cipher takes as input a string of any length, whereas a block cipher takes a fixed length input
(usually around 128 bits) called the block size. Block ciphers are used as a primitive for modes of
operations, which call several time a block cipher, and add padding to encrypt messages longer
than the block size, and of length that is not a multiple of the block size. Achieving a goal using
primitives, as it is done for a symmetric scheme with a block cipher, is a standard technique1 in
cryptography and in computer science in general. It allows evaluating the efficiency and security

1Often referred as composition

11

of the different components modularly. Apart from specific cases (e.g. [CCF+16]), block ciphers
are generally preferred over stream ciphers.

1.2.3 Examples : DES and AES

Two of the most used block ciphers are the Data Encryption Standard (DES), and the Advanced
Encryption Standard (AES), known initially as Rijndael [DR99].

DES DES was introduced by the National Institute of Standards and Technology (NIST) in 1976
as the new standard block cipher. Due to various attacks, and the increase of computational power
the original version which using 56 bit keys is now considered insecure. A variant called triple
DES that applies two times the DES permutation, with in between the inverse DES permutation,
all three with different keys (using therefore a 168 bit key) is still in use in old infrastructure (e.g.
the EMV protocol for payment).

AES Due to the weakening of the DES, the NIST launched a competition to create a new
symmetric encryption standard in 1997. Four years later Rijndael is chosen and renamed AES.
Its structure is based on a Substitution Permutation Network. We give a visual example of such
an SPN in Figure 1.1

The precise AES specifications can be found in [MVM09].

1.2.4 Beyond Encryption

Cryptography is not only about encryption. In this section, we will briefly describe a few other
widely used primitives.

Message Authentication Code Message Authentication Codes (MACs) ensure integrity.
Since the Internet is open, attackers can do more than simply eavesdrop communications. For
example, they can modify messages, which can be catastrophic for security applications. Integrity
is the desired property that every modified message is detected as such and discarded by its
receiver. When a common secret key sk is shared, this can be achieved with MACs. We attach to
the message m a tag t, which is a function of m and sk, such that from the knowledge of multiple
m, t one cannot derive m′, t′ such that t′ is a correct tag for m′. Thus modifying a message will
result in a rejection by the legitimate receiver.

Authenticated Encryption The good practice is to use encryption with MAC, to make
authenticated encryption. For long confidentiality and integrity were not combined, and authen-
ticated encryption was done ’by hand’ combining ciphers and MAC. Due to a lot of misuses
(e.g. counterintuitive attacks leveraging reuse of the same secret key for both can be done, or
simply not thinking that you need integrity while you do) cryptographers now advocate the
use of Authenticated Encryption (AE). Following this paradigm, the CESAER competition
was organised, similarly to the AES one, to create a standard authenticated encryption scheme.
Details on this competition can be found in https://competitions.cr.yp.to/caesar.html.
Nowadays the most utilized scheme is the AES-Galois Counter Mode (AES-GCM), which uses
AES as a primitive to build an AE scheme.

12

https://competitions.cr.yp.to/caesar.html

Figure 1.1: Illustration of an SPN. First, the key is added to the message with a simple
eXclusive OR (XOR). Then the message is divided into small chunks, each being passed through
an S-box (a permutation on a {0, 1}x with small x). This step implements confusion: complex
non-linear operations can be done efficiently since they are done on small chunks. Then a linear
operation implements diffusion: every cipher part now depends on various message and key parts.
Our figure describes four rounds with different sub keys all derived from the key. Note that the

last permutation is removed, since it can be reversed.

13

Hash Function A (cryptographic) hash function h : {0, 1}∗ → {0, 1}n is a deterministic
function easy to compute with n usually equal to 256 or a bit less. Their purpose is to remove
any pattern linking inputs and outputs. Usually, this is achieved by mixing arithmetic and logical
operations, which are both fast to do, and which underlying structures ’destroy’ each other. Some
of the wanted properties are:

• Pre-image resistance: given h(m) it is hard to compute m

• Second pre-image resistance: given m1 it is hard to find m2 6= m1 such that h(m1) = h(m2)

• Collision resistance: it is hard to find m1, m2 such that h(m1) = h(m2)

• Random Oracle Model (ROM): This is a not a property that hash function can have in
real-life. For many proofs, the preceding properties are insufficient, so cryptographers use
idealised hash functions. We use and define this model in Section 3.3.

Trivially Collision resistance implies Second pre-image resistance. We reason by contrapositive,
assuming second pre-image resistance does not hold, we are given m1, and find m2 such that
h(m1) = h(m2). We can then use the same messages m1, m2 to show that collision resistance does
not hold. Hash functions can be used to build more complex cryptographic functions. A famous
example is the construction a hash function based MAC as introduced in [BCK96] and called
HMAC. The basic idea is to mix in a particular way the secret key and the message using hash
functions. One can notice that the constant length of the output of hash functions are desirable to
verify the integrity of long messages rapidly. If h is a hash function, K a secret key, K ′ = h(K),m a
message, ipad and opad two constants of size n, a||b is the concatenation of the strings a and b, a⊕b
is the bit wise XOR of the strings a and b, then HMAC(K,m) = H((K ′⊕opad)||(H(K ′⊕ipad)||m).
The security of this construction depends on the security of h and the length of k.

The current recommended hash functions are the Secure Hash Algorithm 2 (SHA-2) family
[oCoST12] and the SHA-3 family [BDPA09]. SHA-1 [EJ01] was introduced by the NSA, and is
has recently been fully broken [SBK+17]. SHA-3 (initially Keccak) was the winner of the SHA
competition organised by the NIST.

1.3 Asymmetric Cryptography

Asymmetric cryptography or public key cryptography was invented by James H. Ellis in 1970 at
the UK Government Communications Headquarters. However, it remained secret until Whitfield
Diffie and Martin Hellman rediscovered and published it in [DH06]. The purpose of public key
cryptography is to solve the problem of key distribution. Using secret key cryptography is possible
only if the communicating parties already met and agreed on a common secret. Although it is
not handy, such a key distribution scheme was still doable for military or diplomatic applications.
However, for Internet communication it is impossible since communicating parties do not know
each others in real life. To solve that, a public key algorithm has two keys: one secret, one public.
Knowing the public key only allows encrypting, but knowing the secret one allows decrypting.
Users publish their public keys so that everybody can send encrypted message to their, and no
one but the secret-key owner would be able to decrypt. To enable this, we rely on algebraic
relations between the public key and secret key, and trapdoor one-way functions (i.e. functions
that do can only be efficiently computed in one way unless one has a specific knowledge called
the trapdoor).

14

1.3.1 Diffie-Hellman

Diffie and Hellman published the first public key algorithm which realised a key exchange: two
participants, Alice and Bob, send messages over a public channel (e.g. the Internet), and at the
end of the exchange they both have knowledge of a common secret that one cannot derive by
eavesdropping.

Discrete Logarithm Diffie-Hellman’s function is trapdoor the exponentiation in a finite field.
Fixing a prime p and a generator g of the finite field of order p, computing gx mod p is easy
(i.e. polynomial time, see Section 1.4.1) by fast exponentiation. The converse, which is finding
x given gx mod p is hard. Now to exchange a key, two parties agree on public parameter p
and g. Alice generates a random x and sends to Bob gx mod p. Note that nor Bob neither an
eavesdropper can infer x. Bob does the same with another random y. After these two messages
Alice knows x and Z = gy mod p. She can then compute the exponentiation of z by x, and
get zx = (gy)x mod p = gyx mod p. Bob knows w = gx mod p and y, and can in the same way
compute wy = gxy = gxy = zx mod p. They agreed on a common value. The eavesdropper only
knows gx mod p and gy mod p. From this, there is no known efficient way allowing him to get
the common secret, which can therefor be used to derive a symmetric key.

1.3.2 RSA

The most used public key scheme is RSA, an acronym standing for Rivest, Shamir, Adleman
[RSA78a]. RSA is based on a very natural one-way function. If one publishes the product n = pq
of two large primes p and q, it will be very difficult to find p and q. It was published in 1978 shortly
after Diffie and Hellman’s seminal paper and allows in addition to key exchange to construct
public key encryption and digital signatures (Section 1.3.3).

The Mathematics of RSA

Uses of RSA’s one-way function The knowledge of p and q is used in a more indirect
way than in Diffie Hellman. In the finite ring of integer modulo n, it is known by Bézout’s identity
that an integer x is invertible if and only if it is co-prime with n. A quick computation then
shows that there are (p− 1)(q − 1) such integers with n = pq. Working in the set of invertible
equipped with the multiplication we are in a group of order (p− 1)(q − 1). One can note that
assuming it is hard to discover p+ q from n, the group’s order cannot be computed from n. Now
by Lagrange’s theorem, for all element x of the invertible group we have xk(p−1)(q−1) = 1 mod n
for any integer k.

RSA’s specifications We can now explain how RSA works. Pick an RSA modulus n = pq
and an integer e co-prime with (p− 1)(q− 1) and publish {e, n}. Keep d = e−1 mod (p− 1)(q− 1)
secret. To encrypt a message m compute c = me mod n. Recall the ed = 1 + k(p − 1)(q − 1).
Therefore with the secret information d, computing cd = (me)d mod n = mmk(p−1)(q−1) mod n =
m mod n, the receiver can recover n. Note that Recovering m from me mod n might be done
ways different than getting d, or factoring n, but no one could find such way to date, and therefore
RSA is still in use. Cryptography had to wait one more year to have a cryptosystem by Rabin
[Rab79] that cannot be broken unless the adversary can factor n.

15

1.3.3 Beyond Public Key Encryption

As for the symmetric case, a lot of other primitives are used and explored than mere key exchange
or public key encryption. We recall two just for the sake of example.

Digital Signatures A digital signature is the MAC’s (Section 1.2.4) public key equivalent. It
allows one to prove that he and no one else sent this message. To see the usefulness of it consider
the Diffie Hellman key exchange. Assume that an attacker can modify messages sent over the
public channel (which is possible in an open network such as the Internet). The attacker can
impersonate Alice when talking with Bob (i.e. generate a random x′, and replace gx mod p by
gx
′ mod p) and vice versa. In the end, Alice and Bob will have a shared secret with the attacker,

but not with each other, and the attacker will eavesdrop their communications. To prevent that
Alice and Bob can sign their messages. A digital signature scheme has a public key and a private
key. The private key allows signing a message, and the public key allows verifying that a signature
corresponds to a message. Note that unlike physical signatures, digital signatures differ with
each message. Otherwise, one could copy a signature on an old message and forge a signed
message. An easy way to create signatures is from the inverse of RSA. The signer ’decrypts’ a
message m to get a signature (i.e. computes s = md mod n). To verify this, we take the signature
s = md mod n and encrypt it. We get se = (md)e = m mod n, and check that the decrypted
signatures equals the original message.

Key Encapsulation Mechanisms (KEMs) Beside signatures, an important use of public
key cryptography is to exchange (or wrap) symmetric keys. A naive solution would be to encrypt
a key using a public key encryption scheme. However most public key schemes taken in their
textbook version are insecure for some specific messages, and symmetric keys can fall in this
category. For example, symmetric keys are particularly shorts. Typically we find today 3000
bits RSA modulus and 128 bits for AES keys. If k is a 128 bits number, encrypting it with RSA
and e = 3 (as it is done in many real life applications), we get k3 mod n = k3. In this case, it is
easy to get k from k3 with a simple cubic root computation. One way to prevent this kind of
mistake (which can easily be done by real life developers that are not cryptographers) is to use
a modification of RSA that is designed to send keys, a Key Encapsulation Mechanism. RSA is
secure if a message is chosen at random (i.e. it has an negligible chance not to be secure). One
can check that a 128 bits message has a negligible chance to be picked at random, since it would
require 3000 - 128 bits chosen at random to be 0’s. Therefore we will send a random message m
using RSA, this is the encapsulation. Then the receiver decrypts it, uses this m to derive a short
symmetric key (e.g. using a hash function Section 1.2.4), this is the decapsulation. The sender
then applies himself the same function on the m he generated, and they a have a shared secret.

1.4 Formalisation of Security

In this section we will formalise several notions that will allow us to define security notions in
cryptography from the very beginning.

1.4.1 Complexity of an algorithm

Turing Machine A Turing machine is an abstract representation of an algorithm. It is a
very straightforward model, but is still relevant regarding complexity and calculability. It was
introduced in 1936 by Alan Turing [Tur36].

16

Definition 1.1 A Turing machine is a tuple {Q,Γ, B ∈ Γ,Σ ⊂ Γ \ {B}, q0 ∈ Q,F ⊂ Q, δ :
Q \ F × Γ 7→ Q× Γ× {←,→}, }. Q is the finite set of states, Γ is the finite alphabet (it can be
{0, 1, B} without loss of generality), Σ is the set of input letters, q0 is the initial state, δ is a
partial function called the transition function, and F is the set of final states.

A Turing machine consists of:

• An infinite reading tape divided into cells one next to another, starting with a special
symbol. Each cell contains a letter from Γ. At the start the Turing machine contains its
input (in Σ∗) right after the special symbol, followed by an infinite number of B.

• A head, which is at some position on the tape. In the beginning, the head is at the first
letter of the input. The tape can read the letter at its position write and move left or right.

Given a state q, a tape, and a position for the head reading α, the Turing machine will apply
if it can the transition function, i.e. if δ(q, α) = (q′, α′, a ∈ {←,→}) is defined then the states
changes to q′, the α is replaced by α′, and the head goes on cell left or right depending on a.
If δ is undefined the Turing machine stops and does not return anything, if q′ is in F then the
Turing machine stops and returns the content of its tape (we can add a special return tape to ease
things). Another formalism to return things focuses on acceptance or reject. We can partition
the set of final state in the accepting states, and rejecting states. Then the Turing machine can
answer a decision problem, a problem which answer is ’yes’ or ’no’. If on one input the machine
ends in an accepting states, it answered ’yes’, otherwise it answered no. We then say that the
set of accepted inputs forms the language recognised by the Turing machine. Actually, lots of
problems can be decision problems. For example, computing a function f from X to Y is the
same as recognising the language {(x, f(x));x ∈ X}, or deciding if (x, y) is in X for all (x, y)2.

There are many equivalent definition of the Turing machine, and also other formalism (e.g.
circuit, λ-calculus, etc...) that do express the same calculability power, but we simply aim at
giving a glimpse at the way things are formalised to the bottom. In practice in cryptography, we
do not use as it the Turing machine formalism, but we would be able to write every algorithm in
this model, and their complexity would not be fundamentally changed3.

Probabilistic Turing Machines Many algorithms that we will consider are probabilistic.
Therefore we will use probabilistic Turing machines, which are Turing machines that have a
special random tape of fixed length, from which they will read to make random choices. Before
launching the probabilistic Turing, every cell of the random tape is filled independently with a
uniformly randomly chosen letter of the alphabet. This tape is often called the random coins
of the algorithm, and a particular word written on the random tape is called a coin toss. For
example, if we want a Turing Machine on the binary alphabet to choose a random number
uniformly in {0, · · · , 2n − 1}, we will get a random tape of length n, and read this tape as a
n-bits number written in binary. When we formalise the notion of advantage Section 1.4.2, we
will talk about probability of events involving a certain number of probabilistic Turing machines.
Theses probabilities will be ’taken over the random coins of the algorithm’, meaning that they
are computed as number of coin tosses such that the evenement happens

total number of possible coin tosses .

2Some problem complexities can show differences when switching from one formalism to another, but this is
outside the scope of this thesis

3Even tough that would be extremely painful.

17

Interactive Turing Machines Another type of Turing machines that we do not formalise
here are interactive Turing machines. They are used to formalise protocols and therefore are
naturally used in cryptography. We need to add communication tapes so that Turing machines
can write on each others’ communication tapes (i.e. send messages).

Polynomial Time, Non deterministic Polynomial Time The running time of an algorithm
on an input is the number of application to the transition function before it reaches a final state.
We say that an algorithm is in polynomial time if there exists a polynomial P such that for all
n ∈ N, and for all input of length n then its running time is less than P (n). The set of problems
solved by this defines the complexity class P The polynomial time algorithm can be seen as
the efficient ones, the one we can run in practice. Of course this is an approximation and it
depends on the length of the input, but it is good enough for theoretical work, which has the great
pros of being independent of the computer we use and the technological evolutions. However, to
evaluate the efficiency of an algorithm we need either a precise polynomial, or even better, to
implement it in real life (which allow to take into account practical details of the machine like
the number of processors, or the amount of cache memory). On the other hand we can define
the class of non-practical algorithms (with the same precision limitation). This is the famous
NP (for non deterministic polynomial) class. The only change is that the transition function
is non-deterministic, i.e. δ(q, α) is now a subset of (q′, α′, a ∈ {←,→}). Each input then gives
several results. We then say that an input is accepted if and only if at least one of the computation
accepts it. We can now define NP , which is the class of languages (or decision problems) that
are recognised in polynomial time by a non-deterministic Turing machine. Another way to see
NP is the class of problems that are difficult (possibly exponential time), but checking that a
solution is indeed a solution is easy. To see this, you can in a polynomial amount of steps make an
exponential amount of ’trials’ by giving two choices to the transition function, and then you check
if one of them is a solution in polynomial time. NP problems are usually considered non-practical
(there are some counter-examples). It has not been proven yet that P 6= NP (nor P = NP),
meaning that we do not know if an NP machine is strictly more powerful than a regular one. In
turn it means that our definition of practical and non practical, besides its few ’practicalities’
issues, might be unfunded theoretically. The fact that this is not answered yet prevents any
formally proven cryptography, since we would like our honest parties to be efficient (in P), and
the dishonest ones that try to break our systems without keys to be impractical (in NP). This is
why we make use of assumptions, of the form ’this problem is not in P ’ .

1.4.2 Security Model and Games

In this section, we give a few security definitions. These and more specific one can be found
when relevant in the following chapter of this thesis. Our definitions will be game based. This
is one of the two paradigms used in cryptography, the other one being simulation based (also
called real-world/ideal-world paradigm). It is often argue that simulation based definitions are
easier to use when using basic primitives (e.g. encryption, signatures etc...) to form more complex
protocols. for example the universal composability (UC) framework of Ran Canetti [Can00] makes
heavy use of simulation. However, since we focus on primitives, it is not a problem for us to use
game based definitions. In fact, our game based definitions have well-known equivalents in the
real-world/ideal world paradigm. One could also argue that game based definitions are easier to
understand intuitively when talking about primitives such as encryption or signatures. A game
will specify the rules, i.e. what the adversary can do, and on what condition he wins. We then
say our scheme is secure if the adversary almost (the almost is formalised in Section 1.4.2) never

18

wins. In figure Figure 1.2 we give a game based description of the notion of semantic security 4

defined by Goldwasser and Micali in [GM82].

Advantage All our experiments are parametrised with the security parameter λ. The same
security parameter is given in unary to the key generation algorithm. Since we require algorithms
to be polynomial, this sets the allowed time to generate the keys. First we define the advantage
of an adversary against a security game as the probability (as a function of λ) that he wins minus
0.5. Indeed a trivial adversary that answers at random has a probability of 0.5 to win, so we
want to measure how the adversary performs compared to this trivial adversary. We now define a
negligible functionDefinition 1.2.

Definition 1.2 We say that a function f from N to R is negligible if for any polynomial P , there
exists an integer N such that for all n ≥ N :

f(n) ≤ 1
P (n)

We need this definition because an adversary could try for example to guess the secret key λ
times. If he succeeds then he can easily win the game. Otherwise, he tries at random. Then his
advantage would be higher than 0, but we still want to say that the scheme is secure, since this
attack is unavoidable, and has very few chances of success. We can now say if a scheme is secure
by choosing a game and say that the advantage of any adversary is negligible.

SEMSECAdv
E (1λ):

(sk, pk) $←− E .KeyGen(1λ)
(m0,m1)← Adv(pk)
b

$←− {0, 1}
Adv← E .Enc(pk,mb)

return b == b′

Figure 1.2: The SEMSEC experiment represents the semantic security game for a (public key)
encryption scheme. It is parametrised by the adversary Adv, the encryption scheme E and, the

security parameter λ. E .KeyGen is the key generation algorithm of E , and E .Enc is the
encryption algorithm of E . The adversary gets the public key, then he chooses a pair of messages
m0,m1. One of this message is chosen at random and its encryption is given to the adversary.
Then he tries to guess which one it was. He wins if the game returns true, i.e. if he guessed
correctly which message was encrypted. This captures a very strong notion of security, indeed

even if the adversary has very little knowledge about the encryption, he can win it easily.
Imagine if the adversary knows that the odd messages are encrypted as odd ciphertext, and even
messages are encrypted as even ciphertext. This information does not allow decryption of any
messages, but by choosing m0 odd and m1 even, the adversary wins the game every time. This
also means that in the public key setting a randomisation is needed to be semantically secure.

This is primordial as the adversary can otherwise encrypt both messages, and see which
encryption match the challenge he is given.

This is the most basic security game for cryptography. In the following, we will introduce
different games that give more power to the adversary Section 1.4.2 and to define the security of
signatures Section 1.4.2.

4To be precise we actually define here the most used, and equivalent notion of indistinguishability.

19

Definition 1.3 (Semantic security) We say that a (secret key) encryption scheme E is se-
mantically secure if for all polynomial time adversary (Turing machines) Adv, its advantage for
the SEMSECAdv

E game Figure 1.2 is a negligible function.

CCA, CPA In this paragraph, we introduce oracles, which will model how the adversary can
access information about the cryptosystem, such as getting access to decrypted ciphertext. First,
we define in figure Figure 1.3 the semantic security under a chosen plaintext attack, meaning that
the adversary can choose some plaintexts to encrypt. Note that this notion only makes sense in
a symmetric setting, in an asymmetric setting the adversary can encrypt anyway since he has
access to the public key.

CPAAdv
E (1λ):

L← ∅
(sk) $←− E .KeyGen(1λ)
(m0,m1)← AdvEnc(·)(1λ)
if m0 6∈ L m1 6∈ L
b

$←− {0, 1}
Adv← E .Enc(pk,mb)

return b == b′

return 0

Enc(m):

c
$←− E .Enc(sk,m)

L← L ∪ {m}
return c

Figure 1.3: The chosen plaintext attack semantic security experiment. The Enc(·) in the
exponent of the adversary defines an oracle. The adversary can call it at anytime, and gets

written the oracle’s answer on a special tape. This is a convenient way to give to the adversary
’limited’ access to the secret key, in the sense that he can call the oracle to encrypt a message,
which uses the secret key, but he cannot do arbitrary computation with the secret key. One could
see this as an equivalent of an API. We can also note the use of a global variable L, which stores
some information about the call made to the oracle. This is needed so that the adversary cannot
challenge on some m0 or m1 which has been given to the oracle. We could remove this condition,
but by doing so we would need randomisation to get semantic security, as in the public key
setting without chosen messages. Since often symmetric scheme, such as block cipher, are

deterministic, we choose to present this experiment.

Definition 1.4 (Semantic security under chosen plaintext attack) We say that a (secret
key) encryption scheme E is semantically under chosen plaintext attack is secure if for all
polynomial time adversary (Turing machines) Adv, its advantage for the CPAAdv

E game Figure 1.3
is a negligible function.

Unforgeability under Chosen Message Attack As a last example of security notion, we
define Section 1.4.2 the security of a signatures scheme Σ with the strong Existantially UnForge-
ability under Chosen Message Attack (EUFCMA) game, meaning that the adversary can get
signatures on messages of his choice, and then he tries to produce a signature on a message of his
choice (that he did not queried).

As illustration we briefly state several (weaker) variations of security experiment for digital
signatures:

• weak EUFCMA : the adversary can produce a signature σ for m even if (m,σ′) is in L

20

EUF-CMAAdv
Σ (1λ):

L← ∅
(sk, pk) $←− Σ.KeyGen(1λ)
(m∗, σ∗)← AdvSign(·),Verify(·,·),H(·)(1λ)
if (m∗, σ∗) 6∈ L

return Σ.Verify(pk,m∗)
return 0

Sign(m):

σ
$←− Σ.Sign(sk,m)

L← L ∪ {m,σ}
return σ

Verify(m,σ):
return Σ.Verify(pk,m, σ)

Figure 1.4: The strong EUF-CMA experiment for digital signature schemes.

• EUF : the adversary does not have access to the signing algorithm

• Universal Unforgeability : The adversary does not choose the message for which he tries to
forge a signature

1.5 Current Research Trends in Cryptography

In this section, we briefly expose some topics with which the cryptography community is interested
nowadays so that the reader can have a broader view of where our results are in the field, and
why those fields are of interest.

1.5.1 More Adversaries

As exposed in Section 1.4.2 different types of adversaries are considered in cryptography. Knowing
that the communicants start their messages by ’hello’ gives you access to known plaintext/cipher-
text pairs. Cryptography being built on top of Internet protocols allows chosen plaintext/ciphertext
attacks, and one could think that this is the worst possible case. This section will expose unintuitive
adversaries that are considered in cryptography.

1.5.1.1 Computers are not Black Box

A hidden assumption in the models presented in Section 1.4.2 is that computations are done in a
black box, and the adversary only has access to the public channel (e.g. the Internet). However
this doesn’t hold when cryptographic devices are used ’in the field’ (e.g. IoT devices, smart cards
etc...) and computers do leak information others than by the intended Input/Output interface.
These unintentional leakage channels are called side channels.

Side Channel Analysis In its seminal paper [Koc96] Paul Kocher demonstrated that the time
of computation of a computer (or any computing device) is linked to the data it is processing.
This allowed to obtain secret key just by measuring how long an RSA encryption took. He later
shown in [KJJ99a] that a similar attack could be done with the power consumption. This was
then extended in many ways, using, for example, electromagnetic emission, and more advanced
statistical methods.

21

Fault Injection A somewhat similar method to side channel analysis is fault injection. Instead
of passively listening to the targeted device, it is possible to perturbate it, so that computations are
faulty. This sometimes allows extremely powerful cryptanalysis, as we demonstrate in Section 5.2.
Side channels, as well as fault injection models, are sometimes referred as gray box models, since
there is some leakage but in a noisy and particular form.

White Box Cryptography What can be thought of as natural extension of gray box cryp-
tography is white box cryptography. It was introduced in [CEJvO02]. Its purpose is to model
an almighty adversary, that can see and modify your source codes. Under this model, one could
carry cryptographic computations in an untrusted environment such as an infected smart-phone.
However, as of today no secure implementation of a white box cipher are known.

1.5.1.2 Post Quantum Cryptography

Another hidden assumption in the classical models is the fact that we model our adversary by
Turing machines. However, a new type of computer is under development: quantum computers.
We will not explain how they work nor what they can do, but it is sufficient for our purpose to
know that Schorr’s algorithm [Sho97a] can leverage them to efficiently solve factorisation and
discrete logarithm (or more generally the hidden subgroup problem). This prevent classical and
efficient public key algorithm such as RSA and Diffie-Hellman key exchange to be used, and the
community is now looking at cryptosystem based on other assumptions.

NIST Competition As it is now usual, the NIST launched the first competition for standar-
isation of post quantum public key algorithms. More information can be found at https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography.

Type of Post Quantum Cryptography We give as references some paradigms that are
considered quantum safe:

• Lattice based: this is the most widely studied. ’A new hope’ [ADPS15] based on the
Ring-LWE assumption and ’Frodo’ [BCD+16] based on the LWE assumption are two
representatives of it.

• Code based: This is a very old type of cryptography (1978), but was left aside due to
efficiency reasons, until it was find out that we needed quantum resistance. The McElice
crpytosystem [McE78] is its principal representative.

• Isogeny based: This is very recent (2011) in its post quantum version [FJP11], and is
based on the assumption that it is hard to find isogeny between supersingular curves. The
assusmption does not hold with non supersingular curves against quantum computers.

• Mersenne prime arithmetic based: This is the most recent type of post quantum cryptography
(and the newest public key cryptosystem). We discuss it in Chapter 4, where we present an
attack on an early version, as well as a variation of the ’fixed’ version. The ’fixed’ version is
meant to be presented at the NIST competition at the time of the writing of this thesis.

1.5.2 Quantum Cryptography
Like many topics in cryptography (such as elliptic curves or lattice), quantum technologies have
raised interest in cryptanalysis, but can also be used to derive new schemes. Even if quantum
computers might be found in the market in a foreseeable future, because of cost issues, it is

22

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

hard to believe that one wants to base a cryptographic scheme on them. However, quantum
exchange of information could solve the key exchange problem in a different way than encrypting
the key. Indeed exchanging information with quantum means, allows removing the eavesdropper
assumption, since unlike in classical physics, observing quantum information changes it. This is
the basic idea for quantum key exchange. We investigate the security of such schemes from an
information theoretic point of view in Section 5.3.

1.5.3 Optimisations and Usability
While it might not be intuitive, cryptography’s most recurrent problems for real world applications
do not lie in security proofs or assumptions. Most of the time cryptography is misused or not
used at all when it is needed. There are lots of different reasons for that. We give three of them
which are performances, usability and lack of awareness. We did work on performances, and give
usability and lack of awareness to place our work in a greater context. We give them in decreasing
order regarding the general amount of work the community put in these.

Performances Since cryptography is a part of computer science, it was natural for the com-
munity to look for algorithmic ’tricks’ to speed-up computations. This was further justified by
the fact that cryptographic algorithms (especially public keys’ one) are costly, and had to be
executed in constrained environment such as smart cards. Nowadays processors are much more
powerful, and efficiency problems are not as present as they used to be. However, there still are
incentives for optimisations, such as:

• Cryptography is used more and more, only because more and more sensitive information is
being sent trough various networks. So cryptography needs to be faster.

• This information can be treated by even more constrained environments than smart cards,
typically IoT devices.

• Some companies that do not manipulate extremely sensible data can easily choose not to
add any cryptographic layer, to improve customer experience thanks to faster reaction from
their devices.

Due to these reasons, we became interested in two ’batch’ optimisations5 in Chapter 3. The
first, Section 3.2 verifies several digital signatures at the same time, and the second Section 3.3
optimizes the creation of several digital signatures at the same time.

Usability Usability is naturally a less scientific topic and therefore has attracted less interest
in the community. However, due to numerous mistakes from general purpose developers, some
scientific communities got interested in this topic. [ABF+17] is an example of a comparative
study on the usability of several cryptographic libraries study.

Lack of Awareness This is not a scientific topic either but is nonetheless of crucial importance
for the digital world security and privacy. For example [PRRR15] studies real life privacy breaches
by governments. This allows to point out breaches in real life defense, as well as advertise
the importance of cryptography and computer security so that Snowden’s revelations are not
forgotten.

5optimisations that works when several cryptographic primitives have to be executed

23

Chapter 2

Results and Contributions

Contents
2.1 Organisation . 25
2.2 Additional Work . 25

2.1 Organisation

• Chapter 3 presents two optimisations for digital signature schemes. Section 3.3 improves
Schnorr signatures: we show how to securely reuse the nonce, which furthermore enables
signing in fewer operations. This paper was published at ESORICS 2017. Section 3.2
introduces the question of optimal batch signature verification with a priori probabilities,
for which we provide an analysis, algorithms, and heuristics. This paper is currently under
review.

• Chapter 4 presents a practical cryptanalysis of a recent public key cryptosystem proposed
by Aggarwal et al. This paper was published at LATINCRYPT 2017. We also present an
unpublished variation of this cryptosystem.

• Section 5.2 presents a differential fault analysis of the lightweight cipher PRINCE. This
paper was published at CRiSIS 2016.

• Section 5.3 studies the entropy loss when being eavesdropped during a quantum key exchange.
This paper is currently under review.

2.2 Additional Work

The following research works published during the thesis will not be presented here for thematic
alignment reasons.

• In [BBBK16] we study a new probabilistic approach to timed language inclusion (an
undecidable problem) based on volumetry. This work was published at QUEST 2016.

• In [BFGN16] we study honey encryption, a technique that prevents adversaries from checking
the correctness in an attempted decryption, and in turn, achieves security beyond brute
force bound. This work was published at MyCrypt 2016.

25

• In [BCGN17a] we argue why system commands should be encrypted despite Kerckhoffs’
principle, and give guidelines to measure their (in)security. This was an invited talk at
AsisaCCS 2017.

• [BCGN16b, BCGN16a, BCGN16c] are three popular science articles on cryptography for
IEEE Security and Privacy Magazine. The three articles are about Fully Homomorphic
Encryption, Obfuscation, and White-Box Cryptography.

• In [ABGN16] we argue for modifications of the rules to participate in the Nijmeegse
Vierdaagse (a famous walking event), where the rules were subsequently changed. This was
published in the The New Codebreakers 2016

In addition to scientific publications the author filed 6 patents and participated in the writing
of an accepted funded proposal for the Analysis oN BLind Cloud (ANBLIC) project which aim
at using Fully Homomorphic encryption and Functional Encryption at an industrial scale (http://
competitivite.gouv.fr/le-24e-appel-a-projets-fui-regions/les-resultats-du-24e-appel-a-projets-du-fui-regions-1116.
html).

26

http://competitivite.gouv.fr/le-24e-appel-a-projets-fui-regions/les-resultats-du-24e-appel-a-projets-du-fui-regions-1116.html
http://competitivite.gouv.fr/le-24e-appel-a-projets-fui-regions/les-resultats-du-24e-appel-a-projets-du-fui-regions-1116.html
http://competitivite.gouv.fr/le-24e-appel-a-projets-fui-regions/les-resultats-du-24e-appel-a-projets-du-fui-regions-1116.html

Chapter 3

Batch Processing in Cryptography

Contents
3.1 Introduction . 27
3.2 Optimal Batch Signatures . 29

3.2.1 Introduction and motivation . 29
3.2.2 Intuition . 30
3.2.3 Preliminaries . 32
3.2.4 Optimal batch verification . 35
3.2.5 Pruning the generation tree . 39
3.2.6 Approximation heuristics . 42
3.2.7 Equivalences and symmetries for n = 3 44
3.2.8 Best testing procedure at a point . 48
3.2.9 Enumerating procedures for n = 3 50
3.2.10 Conclusion and open questions . 50

3.3 Reusing Nonces in Schnorr Signatures . 53
3.3.1 Introduction . 53
3.3.2 Preliminaries . 54
3.3.3 Using multiple q’s . 55
3.3.4 Generic security of the partial discrete logarithm problem 62
3.3.5 Provably secure pre-computations . 63
3.3.6 Implementation results . 66
3.3.7 Heuristic security . 68
3.3.8 Reduction-friendly moduli . 68
3.3.9 Conclusion . 68

3.1 Introduction

Cryptographic operations can be costly, and this is often the case that these costs induce
insecurities. Indeed in practice non-critical industries tend to prefer efficiency over security.
This can translate into weaker keys or no cryptographic layer at all. In the 70’s a number of
optimisations were proposed to enable cryptographic applications on smart cards. Nowadays
it is argued that the Internet of things will make use of another wave of optimisations, such
as lightweight ciphers. We actually leverage two old techniques proposed around the 70’s. In

27

Section 3.2 we tackle the issue of verifying a large number of signatures at the same, which
is suited for large-scale industrial applications. This has already been done resulting in being
able to say if at least one signature is incorrect in a large group. We add a priori probabilities
of correctness of signatures and propose batch signatures algorithm leveraging this additional
assumption. In Section 3.3 we propose a modification of the Schnorr signature scheme [Sch90]
which is well suited with pre computations techniques for exponentiation. We then study how our
new scheme compares to the original scheme with different existing pre computations schemes.

28

3.2 Optimal Batch Signatures

Abstract

Batch cryptography started with the observation that RSA’s homomorphic properties
allow checking many signatures at once.

Therefore several verification algorithms were designed to check a batch of RSA or DSA
signatures simultaneously. If all the signatures are correct, batch verification succeeds after a
few operations. However, if a single signature is incorrect, failure does not indicate which
signatures are wrong.

This paper describes how to optimally detect incorrect signatures in batches, i.e. in a
minimum expected number of tests, given a list indicating the a priori probabilities with
which each of the signatures in the batch is correct. The resulting algorithms are non-intuitive
and quite surprising.

This is joint work with Éric Brier, Noémie Cartier, Simon Cogliani, Aisling Connolly,
Nathanaël Courant, Rémi Géraud and David Naccache. This work is under review at the
Algorithmica journal.

3.2.1 Introduction and motivation
Batch cryptography, introduced by Fiat in [Fia90, Fia97], leverages RSA’s homomorphic properties
[RSA78b] to speed-up signature schemes. On the verification side, the product of individual RSA
signatures can be checked in a single operation as explained in [BGR98]. This idea can be applied
to many other schemes enjoying homomorphic properties.

In [NMVR95], Naccache et al. described the first batch verifier for DSA signatures. Laih and
Yen [YL95] proposed a batch verification method of DSA and RSA signatures, later broken by
[BP00]. Similarly, another construction of Harn for RSA and DSA was soon proven insecure and
retracted [HLH00, HLT01]. This called for a more systematic approach, where security of batch
verification could be modelled and proved.

This question was answered when Bellare, Garay and Rabin [BGR98] presented three generic
methods for batching modular exponentiations: the random subset test, the small exponents test,
and the bucket test. [BGR98] showed how to apply these methods to batch verification of DSA
signatures.

The problem of bad signature identification arises when at least one signature in the batch is
incorrect, in which case the batch test fails1. The naive approach is then to test individually each
signature, which can be costly.

For this reason several solutions were proposed to sieve out bad signatures quickly: At
Eurocrypt 1998, Bellare et al. introduced RSA screening [BGR98], soon broken and fixed by
Coron and Naccache [CN99]; at PKC 2000 Pastuszak et al. described a simple “divide-and-
conquer” algorithm to identify one incorrect signature in a batch [PMPS00]. Another approach
by Law and Matt [LM07], using identity-based signature schemes, also allows identifying invalid
signatures in a batch.

Our contribution: This paper departs from the above approaches by assuming the availability
of extra information: the a priori probability that each given signature is correct. In practice, we
may either assume that such probabilities are given, estimated from signer trust metrics, or are
learned from past verifications. We assume in this work that these probabilities are known.

1Actually testing two incorrect signatures might answers true due to cancellation: if σ1 and σ2 are correct
signatures for m1 and m2, for any α testing σ1

α
× ασ2 for m1 ×m2 will yield true. We will ignore this issue since

it can only happen either with negligible probabilities or from manipulation from legitimate signatures.

29

In this paper, we show that it is possible to find incorrect signatures in an optimal way — i.e.
by performing on average the minimum number of tests — by exploring the combinatorial and
algebraic properties of verification algorithms. This turns out to be faster than RSA screening or
divide-and-conquer verifiers in the majority of settings.

On top of cryptographic applications, we note that optimal batch testing can improve the
time, cost and reliability of other tests, such as medical screening, traitor-tracing or fraud control
in large networks.

3.2.2 Intuition
Before introducing models and general formulae, let us provide the intuition behind our algorithms.

Let us begin by considering the basic case of two signatures. These can be verified individually
or together, in a batch. Individual verification claims a minimum of two units of work—check
one signature, then check the other. Batch-checking them requires a minimum of one verification.
If it is highly probable that both signatures are correct, then batch verification is interesting: If
both signatures are indeed correct, we can conclude after one test and halve the verification cost.
However, if that fails, we are nearly back to square one: One of these signatures (at least) is
incorrect, and we don’t know which one.

In this paper, we identify when to check signatures individually, and when to batch-check
them instead—including all possible generalizations when there are more than 2 signatures. We
assume that the probability of a signature being incorrect is known to us in advance. The result
is a testing ‘metaprocedure’ that offers the best alternative to sequential and individual testing.

To demonstrate: the testing procedure that always works is to verify every signature individu-
ally, one after the other: This gives the ‘naive procedure’, which always performs 2 verifications,
as illustrated in Figure 3.1. In this representation, the numbers in parentheses indicate which
signatures are being tested at any given point. The leaves indicate which signatures are correct
(denoted 1) or incorrect (denoted 0), for instance, the leaf 01 indicates that only the second
signature is valid. Note that the order in which each element is tested does not matter: There are
thus 2 equivalent naive procedures, namely the one represented in Figure 3.1, and the procedure
obtained by switching the testing order of (1) and (2).

(1)

(2)

0001

(2)

1011

Figure 3.1: The “naive procedure” for n = 2 consists of testing each entity separately and
sequentially.

Alternatively, we can leverage the possibility to test both signatures together as the set {1, 2}.
In this case, batching the pair {1, 2} must be the first step: Indeed, testing {1, 2} after any other
test would be redundant, and the definition of testing procedures prevents this from happening. If
the test on {1, 2} is correct, both signatures are correct and the procedure immediately yields the
outcome 11. Otherwise, we must identify which of the signatures 1 or 2 (or both) is responsible
for the test’s incorrectness. There are thus two possible procedures, illustrated in Figure 3.2.

Intuitively, the possibility that this procedure terminates early indicates that, in some situations
at least, only one test is performed, and is thus less costly than the naive procedure. However, in

30

(1,2)

(1)

(2)

0001

10

11

(1,2)

(2)

(1)

0010

01

11

Figure 3.2: Two batching testing procedures having (1, 2) as root.

some situations up to three tests can be performed, in which case it is more costly than the naive
procedure.

Concretely, we can compute how many verifications are performed on average by each approach,
depending on the probability x1 that the first signature is incorrect, and x2 that the second is
incorrect. To each procedure, naive, batch-left, batch-right, we associate the following polynomials
representing the expected stopping time:

• Lnaive = 2

• Lbatch-left = (1− x1)(1− x2) + 2(1− x1)x2 + 3x1(1− x2) + 3x1x2

• Lbatch-right = (1− x1)(1− x2) + 3(1− x1)x2 + 2x1(1− x2) + 3x1x2

It is possible to see analytically which of these polynomials evaluates to the smallest value
as a function of (x1, x2). Looking at Figure 3.3, we use these expectations to define zones in
[0, 1]2 where each algorithm is optimal (i.e. the fastest on average). More precisely, the frontier
between zones C and B has equation x1 = x2, the frontier between A and B has equation
x2 = (x1 − 1)/(x1 − 2), the frontier between A and C has equation x2 = (2x1 − 1)/(x1 − 1), and
the three zones meet at x1 = x2 = (3−

√
5)/2.

B

C

A

x1

x2

0 1
0

1

Figure 3.3: Optimality zones for n = 2. A: naive procedure; B: batching procedure (right); C:
batching procedure (left).

Having identified the zones, we can write an algorithm which, given x1 and x2, identifies
in which zone of Figure 3.3 (x1, x2) lies, and then apply the corresponding optimal verification

31

sequence. In the specific case illustrated above, three algorithms out of three were needed to
define the zones; however, for any larger scenario, we will see that only a very small portion of
the potential algorithms will be considered.

Our objective is to determine the zones, and the corresponding verification algorithms, for
arbitrary n, to identify which signatures in a set are correct and which are not, while minimizing
the expected number of verification operations.

3.2.3 Preliminaries
This section will formalize the notion of a testing procedure, and the cost thereof so that the
problem at hand can be mathematically described. We aim at the greatest generality, which leads
us to introduce ‘and-tests’, a particular case of which are signatures that can be batch verified.

3.2.3.1 Testing procedures

We consider a collection of n signatures. Let [n] denote {1, . . . , n}, and Ω = P([n])\{∅}, where P
is the power set (ie. P(X) is the set of subsets of X).

Definition 3.1 (Test) A test is a function φ : Ω→ {0, 1}, that associates a bit to each subset
of Ω.

We are mainly interested in tests satisfying homomorphic properties. We focus in this work on
the following:

Definition 3.2 (And-Tests) An and-test φ : Ω → {0, 1} is a test satisfying the following
property:

∀T ∈ Ω, φ(T) =
∧
t∈T

φ({t}).

In other terms, the result of an and-test on a set is exactly the logical and of the test results on
individual members of that set.

Example 3.1 Let WasSigned be a function that returns True if and only if all messages were
signed at some point by the legitimate signer. Consider a set of RSA signatures T = {σ1, . . . , σn}
on a (respective) set of messages M = {m1, . . . ,mn}, then we have

WasSigned(M) = Verify
(∏
m∈M

m,
∏
σ∈T

σ

)
.

Hence the test φ(T) = WasSigned(T) is an and-test, that returns False if at least one signature
was not generated by the legitimate owner, and True otherwise.

Remark We have to introduce the WasSigned primitive, because if one signature is multiplied by
any α and another divided by the same α, then both are incorrect and Verify applied on the product
will return True. However, an attacker without forgery capabilities cannot generate signatures for
which WasSigned returns True and are not computed from signatures generated by the legitimate
signer with more than negligible probability.

Remark Note that ‘or-tests’, where ∧ is replaced by ∨ in the definition, are exactly dual to our
setting. ‘xor-tests’ can be defined as well but are not investigated here. Although theoretically
interesting by their own right, we do not address the situation where both and-tests and or-tests
are available, since we know of no concrete application where this is the case.

32

Elements of Ω can be interpreted as n-bit strings, with the natural interpretation where the i-th
bit indicates whether i belongs to the subset. We call selection an element of Ω.

Definition 3.3 (Outcome) The outcome Fφ(T) of a test φ on T ∈ Ω is the string of individual
test results:

Fφ(T) = {φ(x), x ∈ T} ∈ {0, 1}n.

When T = [n], Fφ will concisely denote Fφ([n]).

Our purpose is to determine the outcome of a given test φ, by minimizing in the expected number
of queries to φ. Note that this minimal expectation is trivially upper bounded by n.

Definition 3.4 (Splitting) Let T ∈ Ω be a selection and φ be a test. Let S be a subset of Ω.
The positive part of S with respect to T , denoted S>T , is defined as the set

S>T = {S|S ∈ S, S ∧ T = T} .

where the operation ∧ is performed element-wise. This splits S into two. Similarly the complement
S⊥T = S − S>T is called the negative part of S with respect to T .

We are interested in algorithms that find Fφ. More precisely, we focus our attention on the
following:

Definition 3.5 (Testing procedure) A testing procedure is a binary tree T with labelled nodes
and leaves, such that:

1. The leaves of T are in one-to-one correspondence with Ω in string representation;

2. Each node of T which is not a leaf has exactly two children, (S⊥, S>), and is labelled (S, T)
where S ⊆ Ω and T ∈ Ω, such that

a) S⊥ ∩ S> = ∅
b) S⊥ t S> = S
c) S⊥ = S⊥T and S> = S>T .

Remark It follows from the Definition 3.5 that a testing procedure is always a finite binary tree
and that no useless calls to φ are performed. Indeed, doing so would result in an empty S for one
of the children nodes. Furthermore, the root node has S = Ω.

3.2.3.2 Interpreting and representing testing procedures

Consider a testing procedure T , defined as above. T describes the following algorithm. At each
node (S, T), perform the test φ on the selection T of signatures. If φ(T) = 0, go to the left child;
otherwise go to the right child. Note that at each node of a testing procedure, only one invocation
of φ is performed.

The tree is finite and thus this algorithm reaches a leaf Sfinal in a finite number of steps. By
design, Sfinal = Fφ.

Remark From now on, we will fix φ and assume it implicitly.

33

S = Ω,
T = (1, 2)

(1)

(2)

(3)

000001

(3)

010011

(3)

100101

(3)

110111

Figure 3.4: Graphical representation of a testing procedure. The collection is [3] = {1, 2, 3},
Ω = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, the initial set of selections is S = Ω. Only the

T labels are written on nodes. Only the S labels are written for leaves.

Remark We represent a testing procedure graphically as follows: Nodes (in black) are labelled
with T , whereas leaves (in blue) are labelled with S written as a binary string. This is illustrated
in Figure 3.4 for n = 3.

This representation makes it easy to understand how the algorithm unfolds and what are the
outcomes: Starting from the root, each node tells us which entity is tested. If the test is positive,
the right branch is taken. Otherwise, the left branch is taken. Leaves indicate which signatures
tested positive and which signatures tested negative from now on.

Remark The successive steps of a testing procedure can be seen as imposing new logical constraints.
These constraints ought to be satisfiable (otherwise one set S is empty in the tree, which cannot
happen). The formula at a leaf is maximal in the sense that any additional constraint would make
the formula unsatisfiable. This alternative description in terms of satisfiability of Boolean clauses
is in fact strictly equivalent to the one that we gave.

In that case, T is understood as a conjunction
∧
T [i]=1 ti, S is a proposition formed by a

combination of terms ti, connectors ∨ and ∧, and possibly ¬. The root has S = >. The left child
of a node labelled (T, S) is labelled S⊥T = S ∧ (¬T); while the right child is labelled S>T = S ∧ T .
At each node and leaf, S must be satisfiable.

3.2.3.3 Probabilities on trees

To determine how efficient any given testing procedure is, we need to introduce a probability
measure and a metric that counts how many calls to φ are performed.

We consider the discrete probability space (Ω,Pr). The expected value of a random variable
X is classically defined as:

E[X] =
∑
ω∈Ω

X(ω) Pr(ω)

Let T a testing procedure, and let S ∈ Ω be one of its leaves. The length `T (S) of T over S is
the distance on the tree from the root of T to the leaf S. This corresponds to the number of
tests required to find S if S is the outcome of φ. The expected length of a testing procedure T is
defined naturally as:

LT = E [`T] =
∑
ω∈Ω

`T (ω) Pr(ω)

34

It remains to specify the probabilities Pr(ω), i.e. for any given binary string ω, the probability
that ω is the outcome.

If the different tests are independent, we can answer this question directly with the following
result:

Lemma 3.1 Assume that the events ‘φ({i}) = 1’ and ‘φ({j}) = 1’ are independent for i 6= j.
Then, ∀ω ∈ Ω, Pr(ω) can be written as a product of monomials of degree 1 in x1, . . . , xn, where

xi = Pr(φ({i}) = 1) = Pr(i-th bit of ω = 1).

Thus LT is a multivariate polynomial of degree n with integer coefficients.

In fact, or-tests provide inherently independent tests. Therefore we will safely assume that the
independence assumption holds.

Example 3.2 Let n = 5 and ω = 11101, then Pr(ω) = x1x2x3(1− x4)x5.

Remark LT is uniquely determined as a polynomial by the integer vector of length 2n defined by
all its lengths: `(T) = (`T (0...0), . . . , `T (1...1)).

3.2.4 Optimal batch verification

We have now introduced everything necessary to state our goal mathematically. Our objective
is to identify the best performing testing procedure T (i.e. having the smallest LT) in a given
situation, i.e. knowing Pr(ω) for all ω ∈ Ω.

3.2.4.1 Generating all procedures

We can now explain how to generate all the testing procedures for a given n ≥ 2.

One straightforward method is to implement a generation algorithm based on the definition
of a testing procedure. Algorithm 1 does so recursively by using a coroutine. The complete list of
testing procedures is recovered by calling FindProcedure(Ω,Ω \ {∅}).

35

Algorithm 1: FindProcedure

Input: S ∈ Ω, C ∈ Ω.
Output: A binary tree.

1. if |S| == 1 then return S
2. S′⊥ = S′> = C′ = ∅
3. for each T ∈ C
4. S⊥ = S⊥T

5. S> = S>T

6. if S⊥ /∈ S′⊥ and S> /∈ S′>
7. S′⊥ = S′⊥ ∪ {S⊥}
8. S′> = S′> ∪ {S>}
9. C′ = C′ ∪ {T}

10. for i ∈ {1, . . . , |C′|}
11. C = C − C′[i]
12. for each T⊥ ∈ FindProcedure(S′⊥[i], C)
13. for each T> ∈ FindProcedure(S′>[i], C)
14. yield (C′[i], T⊥, T>)

We implemented this algorithm in Python. The result of the testing procedure generations for
small values of n is summarized in Table 3.1. The number of possible testing procedures grows
very quickly with n.

Table 3.1: Generation results for some small n

n Number of procedures Time
1 1 0
2 4 ∼ 0
3 312 ∼ 0
4 36585024 ∼ 30 mn

An informal description of Algorithm 1 is the following. Assuming that one has an unfinished
procedure (i.e. nodes at the end of branches are not all leaves). For those nodes S, compute
for each T the sets S>T and S⊥T . If either is empty, abort. Otherwise, create a new (unfinished)
procedure, and launch recursively on nodes (not on leaves, which are such that S has size 1).

Algorithm 1 terminates because it only calls itself with strictly smaller arguments. We will
discuss this algorithm further after describing some properties of the problem at hand.

3.2.4.2 Metaprocedures

Once the optimality zones, and the corresponding testing procedures, have been identified, it is
easy to write an algorithm which calls the best testing procedure in every scenario. At first sight,
it may seem that nothing is gained from doing so — but as it turns out that only a handful of
procedures need to be implemented.

This construction is captured by the following definition:

36

Definition 3.6 (Metaprocedure) A metaprocedure M is a collection of pairs (Zi, Ti) such
that:

1. Zi ⊆ [0, 1]n, Zi ∩ Zj = ∅ whenever i 6= j and
⊔
i Zi = [0, 1]n.

2. Ti is a testing procedure and for any testing procedure T ,

∀x ∈ Zi, LTi(x) ≤ LT (x).

A metaprocedure is interpreted as follows: Given x ∈ [0, 1]n find the unique Zi that contains x and
run the corresponding testing procedure Ti. We extend the notion of expected length accordingly:

LM = min
i
LTi ≤ n

One way to find the metaprocedure for n, is to enumerate all the testing procedures using
Algorithm 1, compute all expected lengths LT from the tree structure, and solve polynomial
inequalities.

Surprisingly, a vast majority of the procedures generated are nowhere optimal: This is
illustrated in Table 3.2. Furthermore, amongst the remaining procedures, there is a high level of
symmetry. For instance, in the case n = 3, 8 procedures appear 6 times, 1 a procedure appears
3 times, and 1 procedure appears once. The only difference between the occurrences of these
procedures — which explains why we count them several times — is the action of the symmetric
group S6 on the cube (see Section 3.2.7 for a complete description).

The metaprocedure for n = 3 cuts the unit cube into 52 zones, which correspond to a highly
symmetric and intricate partition, as illustrated in Figures 3.5 to 3.7. An STL model was
constructed and is available upon request.

The large number of suboptimal procedures shows that the generate-then-eliminate approach
quickly runs out of steam: Generating all procedures for n = 6 seems out of reach with Algorithm 1.
The number of zones, which corresponds to the number of procedures that are optimal in some
situation, is on the contrary very reasonable.

Lemma 3.2 (Number of naive procedures) Let n ≥ 1, then there are

P (n) =
n∏
k=1

k2n−k

equivalent naive procedures.

Proof: By induction on n: There are (n+ 1) choices of a root node, P (n) choices for the left
child, and P (n) choices for the right child. This gives the recurrence P (n+ 1) = (n+ 1)P (n)2,
hence the result. �

This number grows rapidly and constitutes a lower bound for the total number of procedures (e.g.
for n = 8 we have P (n) > 2184). On the other hand, the naive procedure is the one with maximal
multiplicity, which yields a crude upper bound αP (n) on the number of procedures, where α is
the 2k-th Catalan number.

The zones can be determined by sampling precisely enough the probability space. Simple
arguments about the regularity of polynomials guarantee that this procedure succeeds when
working with infinite numerical precision. In practice, although working with infinite precision is
feasible (using rationals), we opted for floating-point numbers, which are faster. The consequence
is that sometimes this lack of precision results in incorrect results on the zone borders — however,
this is easily improved by increasing the precision or checking manually that there is no subzone
near the borders.

37

Figure 3.5: Slices of the cube decomposition for the n = 3 metaprocedure. The slices are taken
orthogonally to the cube’s main diagonal, with the origin at the center of each picture. Each

color corresponds to a procedure. The symmetries are particularly visible.

Figure 3.6: Slices through the cube at the z = 0.17 (left) and the z = 0.33 (right) planes, showing
the metaprocedure’s rich structure. The origin is at the top left.

38

n Number of procedures Zones
1 1 1
2 4 3
3 312 52
4 36585024 181
5 8.926 · 1020 ?
6 2.242 · 1055 ?

Table 3.2: Procedures and metaprocedures for some values of n. The number of zones for n = 5
and 6 cannot be determined in a reasonable time with the generate-then-eliminate approach.

3.2.5 Pruning the generation tree

We now focus on some of the properties exhibited by testing procedures, which allows a better
understanding of the problem and interesting optimizations. This in effect can be used to prune
early the generation of procedures and write them in more compactly by leveraging symmetries.
We consider in this section a testing procedure T .

Lemma 3.3 Let B0 and B1 be two binary strings of size n, that only differ by one bit (i.e.
B0[i] = 0 and B1[i] = 1 for some i). Then `T (B0) ≤ `T (B1).

Proof: First notice that for all T , T ′, and b, b′ ∈ {>,⊥} we have (SbT)b′T ′ = (Sb′T ′)bT . We will
denote both by Sbb′TT ′ .

We have the following : If there exists k, T1, . . . , Tk, and β1, . . . , βk such that

(Ω)β1···βk
T1···Tk = {B1}

then there exists i ≤ k such that

(Ω)β1···¬βi···βk
T1···Ti···Tk = {B0}

Indeed there exists i ≤ k such that βi = > and Ti = {i0}∪E where for all j in E, B0[j] = B1[j] = 0.
This yields

(Ω)β1···βi−1βi+1···βk
T1···Ti−1Ti+1···Tk = {B0, B1}

and the result follows. �

Remark Lemma 3.3 indicates that testing procedures are, in general, unbalanced binary trees:
The only balanced procedure being the naive one.

Lemma 3.4 If N is the naive procedure, then for any testing procedure T and for all x1, . . . , xn
such that xi > 1

2 ,
LN (x1, . . . , xn) ≤ LT (x1, . . . , xn) .

In other terms {∀i ∈ [n], 1
2 ≤ xi ≤ 1} is contained in the naive procedure’s optimality zone.

39

Proof: An immediate corollary of Lemma 3.3 is that for all i ∈ [n], we have ∂xiLT (x1, . . . , xn) ≥
0, where ∂xi indicates the derivative with respect to the variable xi. Since the native procedure
has a constant length, it suffices to show that it is optimal at the point { 1

2 , . . . ,
1
2}. Evaluating

the length polynomials at this point gives

LT

(
1
2 , . . . ,

1
2

)
= 1

2n
∑
ω∈Ω

`T (ω) =
∫

[0,1]n
LT dx.

Now, remember that the naive procedure gives the only perfect tree. It suffices to show that
unbalancing this tree in any way results in a longer sum in the equation above. Indeed, to
unbalance the tree one needs to:

• Remove two bottom-level leaves, turning their root node into a leaf

• Turn one bottom-level leaf into a node

• Attach two nodes to this newly-created leaf

The total impact on the sum of lengths is +1. Hence the naive algorithm is minimal at { 1
2 , . . . ,

1
2},

and therefore, in the region {∀i ∈ [n], 1
2 ≤ xi ≤ 1}. �

Remark This also shows that if we assume that the probabilities are supposed uniform (i.e. we
assume no a priori knowledge), the optimal procedure is the naive one. Therefore we can see that
the gain for n = 3 is approximately 0, 34 since the optimal procedure in average gives 2, 66. In
percentage the gain is 15%. If the probabilities are very low, we have a gain of almost 2 which is
3 times faster. As expected it is much more interesting if we think that the signatures have a good
chance to be correct, which is the case in most real-life scenarii.

Lemma 3.5 If the root has a test of cardinality one, then the same algorithms starting at both
sons have same expected stopping time. This applies if the next test is also of cardinal one.

Proof: Without loss of generality we can assume that the test is {1}. We have {0, 1}n>{1} =
{0b2 · · · bn|b2 · · · bn ∈ {0, 1}n−1} and {0, 1}n⊥{1} = {1b2 · · · bn|b2 · · · bn ∈ {0, 1}n−1}. A test T
that doesn’t test 1 applied on those sets will give the same split for both, and the prob-
ability that the test answers yes or no is the same. This is also true for the sets and the
tests T such that i is not in T for i in {1, . . . , k}. {0kb2 · · · bn|b2 · · · bn ∈ {0, 1}n−k} and
{01kb2 · · · bn|b2 · · · bn ∈ {0, 1}n−k}. A test T such that there exists i in T {1, . . . , k} brings
no information for the set of possibilities {01kb2 · · · bn|b2 · · · bn ∈ {0, 1}n−k}, but testing this i is
useless for the set {0kb2 · · · bn|b2 · · · bn ∈ {0, 1}n−k}. So we can apply the test T − {1, . . . , k}. �

Corollary 3.6 If the root has a test of cardinal one, then an optimal algorithm can always apply
the same test for the right and the left child. If this test is also of cardinal one then the property
is still true.

This result helps in identifying redundant descriptions of testing procedures, and can be used to
narrow down the generation, by skipping over obvious symmetries as they appear in the naive
procedure (see Figure 3.8).

40

Figure 3.7: A 3D visualisation of the cube. Left: exterior, where it is visible that each face has
the same decomposition as the 2D problem; Middle: with the naive algorithm region slightly

removed, showing that it accounts for slightly less than half of the total volume; Right: exploded
view of the 52 substructures (looking from (−1,−1,−1)).

(1)

(3)

(2)

000010

(2)

001011

(2)

(3)

100101

(3)

110111

Figure 3.8: Naive algorithm, where the order of tests are unimportant in the left and right
branches.

41

Lemma 3.7 If a node labelled T1 has two children that are both labelled T2, then we can
interchange T1 and T2 without changing the testing procedure’s expected length.

Yet another simple observation allows to reduce the set of subsets T at each step:

Lemma 3.8 Consider a node labelled (T,S). Assume that there is i ∈ [n] such that, for all S in
S, i /∈ S. Then we can replace T by T ∪ {i}.

Proof: We can easily see that S>T = S>T∪{i} and S⊥T = S⊥T∪{i}. �

Finally we can leverage the fact that the solutions exhibit symmetries, which provides both
a compact encoding of testing procedures and an appreciable reduction in problem size.

Lemma 3.9 Let σ ∈ Sn be a permutation on n elements. If we apply σ to each node and leaf of
T , which we can write σ(T), then

Lσ(T)(x1, . . . , xn) = LT (σ (x1, . . . , xn)) .

Proof: Note that for any S ∈ Ω and T ∈ Ω \ {∅} we have σ
(
S>T
)

= S>σ(T) and σ
(
S⊥T
)

= S⊥σ(T),
where σ operates on each binary string. It follows that for any leaf S, `T (S) becomes `T (σ(S))
under the action of σ, hence the result. �

Lemma 3.10 Let S be a simplex of the hypercube, T a procedure, E = {σ(T)|σ ∈ Sn}, then
there exists T0 in E, such that for all x in S, T1 in E we have

LT0(x) ≤ LT1(x).

Moreover we have for all σ in Sn, x in σ(S), T1 in E

Lσ(T0)(x) ≤ LT1(x).

Remark The last two propositions allow us to solve the problem on a simplex of the hypercube
(of volume 1/n!) such as {p1, . . . , pn | 1 ≥ p1 · · · ≥ pn ≥ 0}.

3.2.6 Approximation heuristics

The approach consisting in generating many candidates, only to select a few, is wasteful. In fact,
for large values of n (even from 10), generating all the candidates is beyond reach, despite the
optimizations we described.

Instead, one would like to obtain the optimal testing procedure directly. It is a somewhat
simpler problem, and we can find the solution by improving on our generation-then-selection
algorithm (see Section 3.2.8). However, if we wish to address larger values of n, we must relax the
constraints and use the heuristic algorithms described below, which achieve near-optimal results.
This would be useful in real life scenarii for signatures verifications since we would like to verify
hundreds or more signatures to have real gain.

42

3.2.6.1 Information-Based Heuristic

We first associate a ‘cost’ to each outcome S, and set of outcomes S:

cost(S,S) = f(S,S) + g(S,S)
f(S,S) = #{i ∈ [n] s.t. s[i] = 1 and ∃S ∈ S, S′[i] = 0}

g(S,S) =
{

1 if ∃i ∈ {i ∈ [n] s.t. S[i] = 0},∃S′ ∈ S, S′[i] = 1
0 otherwise

This function approximates the smallest integer n such that there exists n calls to φ with arguments
T1, . . . , Tn, and β1, . . . , βn in {⊥,>} with Sβ1,...,βn

T1···Tn = {S}. This function is used to define a ‘gain’
function evaluating how much information is gathered when performing a test knowing the set of
outcomes:

gain(T,S) =
∑
S∈S>

T

(
1− cost(S,S>T)

cost(S,S)

)
Pr(S) +

∑
S∈S⊥

T

(
1− cost(S,S⊥T)

cost(S, S)

)
Pr(S)

Intuitively, we give higher gains to subsets T on which testing gives more information. Note that,
if a call to φ doesn’t give any information (i.e. S>T or S⊥T is empty), then gain(T, S) = 0.

This heuristic provides us with a greedy algorithm that is straightforward to implement. For
given values x1, . . . , xn we thus obtain a testing procedure TH .

Testing the heuristic. We compared numerically TH to the metaprocedure found by exhaustion
in the case n = 3. The comparison consists of sampling points at random and computing the
sample mean of each algorithm’s length on this input. The heuristic procedure gives a mean of
2.666, which underperform the optimal procedure (2.661) by only 1%.

Counter-example to optimality. In some cases, the heuristic procedure behaves very dif-
ferently from the metaprocedure. For instance, for n = 3, x1 = 0.01, x2 = 0.17, x3 = 0.51,
the metaprocedure yields a tree which has an expected length of 1.889. The heuristic however,
produces a tree which has expected length 1.96. Both trees are represented in Figure 3.9.

Beyond their different lengths, the main difference between the two procedures of Figure 3.9
begin at the third node. At that node the set S is the same, namely {010, 011, 100, 101, 110, 111},
but the two procedures settle for a different T : The metaprocedure splits S, with T = {1, 3}, into
S⊥T = {010} and S>T = {011, 100, 101, 110, 111}; while the heuristic chooses T = {1} instead, and
gets S⊥T = {010, 011} and S>T = {100, 101, 110, 111}.

To understand this difference, first notice that besides 010 and 011, all leaves are associated
with a very low probability. The heuristic fails to capture that by choosing T = {1, 3} early; it
could later rule out the leaf 010 in one step and 011 in two. There does not seem to be a simple
greedy way to detect this early on.

3.2.6.2 Pairing heuristic

Another approach is to use small metaprocedures on subsets of the complete problem. Concretely,
given n objects to test, place them at random into k-tuples (from some small value k, e.g. 5).
Then apply the k-metaprocedure on these tuples. While sub-optimal, this approach does not
yield worst results than the naive procedure.

In cases where it makes sense to assume that all the xi are equal, then we may even recursively
use the metaprocedures, i.e. the metaprocedures to be run are themselves places into k-tuples,
etc. By using lazy evaluation, only the necessary tests are performed.

43

(1,2,3)

(1,2)

(1,3)

(1)

(2,3)

(2)

(3)

000001

010

011

100

101

110

111 (1,2,3)

(1,2)

(1)

(2,3)

(2)

(3)

000001

010

011

(3)

100101

110

111

Figure 3.9: The optimal metaprocedure tree (left), and heuristic metaprocedure (right) for the
same point x = (0.01, 0.17, 0.51). The optimal procedure has expected length 1.889, as compared

to 1.96 for the heuristic procedure.

3.2.7 Equivalences and symmetries for n = 3
A procedure can undergo a transformation that leaves its expected length unchanged. Such
transformations are called equivalences. On the other hand, Lemma 3.9 shows that some trans-
formations operate a permutation σ on the variables xi — such transformations are called
symmetries.

Equivalences and symmetries are responsible for a large part of the combinatorial explosion
observed when generating all procedures. By focusing on procedures up to symmetry, we can
thus describe the complete set in a more compact way and attempt a first classification.

In the following representations (Figures 3.10 to 3.12), blue indicates fixed parts, and red
indicates parts undergoing some permutation. Double-headed arrows indicate that swapping
nodes is possible. The number of symmetries obtained by such an operation is indicated under
the curly brace below.

44

(1)

(2)

(3)(3)

(2)

(3)(3)

2 2

22

(1)

(2)

(3)

(3)(3)

(3)

(2,3)

(2)

(3)(3)

2

2

22

(1)

(2,3)

(2)

(3)(3)

(2)

(3)(3)

(3)(3) 2

2
22

(1)

(2,3)

(2)

(3)(3)

(2,3)

(2)

(3)(3)

2 2

22

Figure 3.10: Trees representation with a grouping by one element on the root. For a fixed
element, we have 22 possible permutations. Since we have 4 patterns, we get 22 × 4 possible
permutations for one grouping. Hence, we finally have 22 × 4× 3 for all possible groupings by

one element.

45

(1,2)

(1)

(2)

(3)(3)

(3)

4645

4847

(3)

2

(1,2)

(1)

(2,3)

(2)

(3)(3)4645

(3)

4645

4847

(3)

2

(1,2)

(2)

(1)

(3)(3)

(3)

4645

4847

(3)

2

(1,2)

(2)

(1,3)

(1)

(3)(3)4645

(3)

4645

4847

(3)

2

(1,2)

(3)

(1)

(2)(2)

(1)

(2)(2)

(3)

2 2

22

(1,2)

(1,3)

(1)

(2)

(3)(3)4645

4645

4847

(3)

2

(1,2)

(1,3)

(1)

(2,3)

(2)

(3)(3)

4645

4645

4847

(3)

2

(1,2)

(1,3)

(2)

(1)

(3)(2)

(3)4645

4847

(3)

2

2
22

(1,2)

(1,3)

(2,3)

(1)(2)(3)

(2)(1)(1)

(3)(3)(2)(3)

(1)

(1)

4645

4645

4847

(3)

23× 2

(1,2)

(2,3)

(1)

(2)

(3)(2)

(3)4645

4847

(3)

2

(1,2)

(2,3)

(2)

(1)

(3)(3)

(3)4645

4847

(3)

2

(1,2)

(2,3)

(2)

(1,3)

(1)

(2)(2)

4645

4645

4847

(3)

2

(1,2)

(2,3)

(3)

(1)

(2)(2)

(1)

46(1)

4645

4847

(3)

2

(1,2)

(2,3)

(1,3)

(1)(2)(3)

(2)(1)(1)

(3)(3)(2)(3)

(1)

(1)

4645

4645

4847

(3)

23× 2

Figure 3.11: Tree representations with a grouping by two elements on the root. For 10 fixed
elements, we have 2 possible permutations, for 2 fixed elements, we have 2 possible permutations,

and for 2 possible permutations, we have 6 possible permutations. Hence, we finally have
2× 10 + 4× 2 + 6× 2 for all possible groupings by two elements.

46

(1,2,3)

(1)(2)(3)

(2)

(3)(3)

4645

(2)

(3)(5)

(3)

22

22

(1,2,3)

(1)(2)(3)

(2,3)

(2)

(3)(3)

(3)

(2)

(3)45

(3)(3)

(3)(3)

(3)

2

2

22

(1,2,3)

All permutations with g = 2(3)

Figure 3.12: Trees representation with a grouping by three elements on the root. For a fixed
element at the upper left corner side, we have 22 possible permutations. For the upper right

corner side, we get 22. We replace the sub-root of the fixed trees and get (22 + 22)× 3. We also
have the 40× 3 trees from the grouping of two. Hence, we have 40× 3 + (22 + 22)× 3

47

3.2.8 Best testing procedure at a point

We examine the following problem: Find the testing procedure T for a given k ≤ n, (pi1 , . . . , pik) ∈
[0, 1]n, and a selection P ⊆ 2[k] that satisfies:

• ST = P ,

• T is optimal at point (pi1 , . . . , pik)

This can be computed using a dynamic programming technique, by examining the outcome of each
possible test that is the root node of the testing procedure T . This approach gives Algorithm 2.

The same dynamic programming algorithm can also be used to compute the number of testing
procedures (including those leading to duplicate polynomials) that exist in a given dimension. It
is actually even easier (meaning that we can apply the algorithm to an even higher dimension
than our solution to the given point problem) since there is a huge number of symmetries that
can be exploited to count.

We will introduce the following definition, in use in our algorithm:

Definition 3.7 (Decided point) We say that x is a decided point for S a set of selections if
either of the following is true:

• x ∈ S for all S ∈ S

• x 6∈ S for all S ∈ S

In the first case, we will say that x is a positive decided point and a negative decided point in
the second case.

We denote by D+
S the set of positive decided points of S, D−S its set of negative decided points,

and DS = D+
S ∪ D

−
S its set of decided points.

48

Algorithm 2: FindOptimal

Input: k ≥ 0, (p1, . . . , pk) ∈ [0, 1]k, S ⊂ 2[k].
Output: The optimal testing procedure T at point (p1, . . . , pk) which satisfies ST = S.

1. if k == 0 then return the naive algorithm
2. if |DS | > 0
3. U ← {u1, . . . , u`} = [k] \ DS
4. R← {{r1, . . . , rp} | {ur1 , . . . , urp} ∪ D+

S }
5. T ← FindOptimal (`, (pu1 , . . . , pu`),R)
6. replace {t1, . . . , tr} by {ut1 , . . . , utr} in T
7. replace {`1, . . . , `r} by {u`1 , . . . , u`r} ∪ D+

S in T
8. else
9. W ← ∅
10. for each T ⊆ [k]
11. S⊥ ← S⊥T
12. S> ← S>T
13. if S⊥ = ∅ or S> = ∅ then continue
14. T⊥ ← FindOptimal(k, (p1, . . . , pk),S⊥)
15. T> ← FindOptimal(k, (p1, . . . , pk),S>)
16. W ←W ∪ {(T , T⊥, T>)}
17. return the best algorithm in W at point (p1, . . . , pn)

Counting the number of algorithms in a given dimension works the same way; the only
difference is that there is no need to look at the probabilities, and thus, the resulting Algorithm 3
does fewer recursive calls and is faster. We are not aware of a closed-form formula providing the
same values as this algorithm.

49

Algorithm 3: CountAlgorithms

Input: k ≥ 0, S ⊂ 2[k].
Output: The number of testing procedures which satisfy ST = S.

1. if k == 0 then return 1
2. if |DS | > 0
3. U ← {u1, . . . , u`} = [k] \ DS
4. R = {{r1, . . . , rp} | {ur1 , . . . , urp} ∪ D+

S }
5. return CountAlgorithms(`,R)
6. c← 0
7. for each T ⊆ [k]
8. S⊥ ← S⊥T
9. S> ← S>T
10. if S⊥ = ∅ or S> = ∅ then continue
11. c⊥ ← CountAlgorithms(k, (p1, . . . , pk),S⊥)
12. c> ← CountAlgorithms(k, (p1, . . . , pk),S>)
13. c← c+ c>c⊥

14. return c

3.2.9 Enumerating procedures for n = 3
All the procedures for n = 3 that are optimal at some point, up to symmetries, are represented in
Figure 3.13.

3.2.10 Conclusion and open questions
We have introduced the question of optimal batch verification with a priori probabilities, where
one is given a set of signatures and must determine in the least average number of operations
which signatures are correct, and which are not. We formalized this problem and pointed out
several interesting combinatorial and algebraic properties that speed up the computation of an
optimal sequence of operations — which we call a metaprocedure. We determined the exact
solution for up to 4 objects.

For larger values, our approach requires too many computations to be tractable, and thus an
exact solution is out of reach; however, we gave several heuristic algorithms that scale well. We
showed that these heuristics are sub-optimal in all cases, but they always do better than standard
screening. The existence of a polynomial-time algorithm that finds optimal metaprocedures for
large values of n is an open question — although there is probably more hope in finding better
heuristics. An alternative would be to modify our generation algorithm to kill branches when the
resulting expected lengths are all worse than some already-known procedure.

Once the metaprocedure for a given n is known, which only needs to be computed once,
implementation is straightforward and only invokes a handful of (automatically generated)
cases. Besides the performance gain resulting from implementing metaprocedures for signature
verification, the very general framework allows for applications in medical and engineering tests.

50

(1)

(2)

(3)

000001

(3)

010011

(2)

(3)

100101

(3)

110111

(1,2)

(1,3)

(1)

(2)

(3)

000001

(3)

010011

100

101

(3)

110111

(1,2)

(1)

(2)

(3)

000001

(3)

010011

(3)

100101

(3)

110111

(1,2,3)

(1,2)

(1)

(2,3)

(2)

(3)

000001

010

011

(3)

100101

110

111

(1,2,3)

(1,2)

(1,3)

(2,3)

(1)

(2)

(3)

000001

010

100

011

101

110

111

(1,3)

(2,3)

(1)

(3)

(2)

000100

001

(2)

100110

011

(2)

101111

(1,2)

(1,3)

(1)

(2,3)

(2)

(3)

000001

010

011

100

101

(3)

110111

(1,2,3)

(1,2)

(1,3)

(1)

(2,3)

(2)

(3)

000001

010

011

100

101

110

111

(1,2)

(1)

(2,3)

(2)

(3)

000001

010

011

(3)

100101

(3)

110111

(1,2,3)

(1)

(2,3)

(2)

(3)

000001

010

011

(2)

(3)

100101

110

111

Figure 3.13: Optimal procedures (without permutations) for each zone when n = 3.

51

3.3 Reusing Nonces in Schnorr Signatures

Abstract

The provably secure Schnorr signature scheme is popular and efficient. However, each
signature requires a fresh modular exponentiation, which is typically a costly operation. As
the increased uptake in connected devices revives the interest in resource-constrained signature
algorithms, we introduce a variant of Schnorr signatures that mutualises exponentiation
efforts.

Combined with precomputation techniques (which would not yield as interesting results
for the original Schnorr algorithm), we can amortise the cost of exponentiation over several
signatures: these signatures share the same nonce. Sharing a nonce is a deadly blow to
Schnorr signatures, but is not a security concern for our variant.

Our scheme is provably secure, asymptotically-faster than Schnorr when combined with
efficient precomputation techniques, and experimentally 2 to 6 times faster than Schnorr for
the same number of signatures when using 1MB of static storage.

This is joint work with Aisling Connolly, Rémi Géraud, David Naccache, and Damien
Vergnaud. This work was presented at the 22nd European Symposium on Research in
Computer Security, ESORICS 2017, Oslo (Norway) and published as [BCF+17].

3.3.1 Introduction

The increased popularity of lightweight implementations invigorates the interest in resource-
preserving protocols. Interestingly, this line of research was popular in the late 1980’s, when
smart-cards started performing public-key cryptographic operations (e.g. [FS87]). Back then,
cryptoprocessors were expensive and cumbersome, and the research community started looking
for astute ways to identify and sign with scarce resources.

In this work, we revisit a popular signature algorithm published by Schnorr in 1989 [Sch90] and
seek to lower its computational requirements assuming that the signer is permitted to maintain
some read-only memory. This storage allows for time-memory trade-offs, which are usually not
very profitable for typical Schnorr parameters.

We introduce a new signature scheme, which is provably secure in the random oracle model
(ROM) under the assumption that the partial discrete logarithm problem (see below) is intractable.
This scheme can benefit much more from precomputation techniques, which results in faster
signatures.

Implementation results confirm the benefits of this approach when combined with efficient
precomputation techniques and enough static memory is available (of the order of 250 couples of the
form (x, gx)). We provide comparisons with Schnorr for several parameters and pre-computation
schemes.

3.3.1.1 Intuition and general outline of the idea

Schnorr’s signature algorithm uses a large prime modulus p and a smaller prime modulus q
dividing p− 1. The security of the signature scheme relies on the discrete logarithm problem in a
subgroup of order q of the multiplicative group of the finite field Zp (with q | p− 1). Usually, the
prime p is chosen to be large enough to resist index-calculus methods for solving the discrete-log
problem (e.g. 3072 bits for a 128-bit security level), while q is large enough to resist the square-root
algorithms [Sha71] (e.g. 256 bits for 128-bit security level).

53

The intuition behind our construction is to consider a prime p such that p − 1 has several
different factors qi large enough to resist these birthday attacks, i.e.

p = 1 + 2
∏̀
i=1

qi

then several “orthogonal” Schnorr signatures can share the same commitment component r =
gk mod p. This is not the case with standard Schnorr signatures where, if a k is reused then the
secret signing key is revealed.

It remains to find how r can be computed quickly. In the original Schnorr protocol k is picked
uniformly at random in Zq. However, to be secure, our construction requires that k is picked in
the larger set Zp−1. which means that a much higher effort is required to compute r. Here we
cut corners by generating an r with precomputation techniques, which allow an exponentiation
to be sub-linear. The trick is that once the exponentiation is sub-linear, we are more effective in
our setting than in the original Schnorr setting.

We start by reminding how the original Schnorr signature scheme works and explain how we
extend it assuming that k is randomly drawn from Zp−1. We then present applications of our
construction, by comparing several pre-processing schemes.

3.3.2 Preliminaries
We denote the security parameter by κ ∈ N which is given to all algorithms in the unary form 1κ.
Algorithms are randomized unless otherwise stated, and PPT stands for “probabilistic polynomial-
time,” in the security parameter. We denote random sampling from a finite set X according to the
uniform distribution with x $←− X. We also use the symbol $←− for assignments from randomized
algorithms, while we denote assignment from deterministic algorithms and calculations with the
symbol ←. If n is an integer, we write Zn for the ring Z/nZ. We let Z∗n the invertible elements
of Zn. As is usual, f ∈ negl(κ) denotes a function that decreases faster than the inverse of any
polynomial in κ; such functions are called negligible. The set of numbers 1, 2, . . . , k is denoted
[k]. Most of our security definitions and proofs use code-based games. A game G consists of an
initializing procedure Init, one or more procedures to respond to oracle queries, and a finalizing
procedure Fin.

3.3.2.1 Schnorr’s signature scheme

Schnorr signatures [Sch90] are an offspring ElGamal signatures [ElG86] which are provably secure
in the Random Oracle Model under the assumed hardness of solving generic instances of the
Discrete Logarithm Problem (DLP) [PS96]. The Schnorr signature scheme is a tuple of algorithms
defined as follows:

• Setup(1κ): Large primes p, q are chosen, such that q ≥ 2κ and p− 1 = 0 mod q. A cyclic
group G ⊂ Zp of prime order q is chosen, in which it is assumed that the DLP is hard, along
with a generator g ∈ G. A hash function H : {0, 1}∗ → G is chosen. Public parameters are
pp = (p, q, g,G, H).

• KeyGen(pp): Pick an integer x uniformly at random from [2, q − 1] as the signing key sk,
and publish y ← gx as the public key pk.

• Sign(pp, sk,m): Pick k uniformly at random in Z∗q , compute r ← gk mod q, e← H(m, r),
and s← k − ex mod q. Output σ ← {r, s} as a signature.

54

• Verify(pp, pk,m, σ): Let (r, s)← σ, compute e← H(m, r) and return True if gsye = r, and
False otherwise.

3.3.2.2 Security model

We recall the strong2 EF-CMA security notion:

Definition 3.8 (Strong EF-CMA Security) A signature scheme Σ is secure against exist-
ential forgeries in a chosen-message attack (strongly EF-CMA-secure) if the advantage of any
PPT adversary A against the EF-CMA game defined in Figure 3.14 is negligible: AdvEF

A,Σ(κ) =
Pr
[
EFAΣ (κ) = 1

]
∈ negl(κ).

EFAΣ (κ):
L← ∅
(sk, pk) $←− Σ.KeyGen(1κ)
(m∗, σ∗)← ASign(·),Verify(·,·),H(·)(1κ)
if (m∗, σ∗) 6∈ L

return Σ.Verify(pk,m∗)
return 0

Sign(m):

σ
$←− Σ.Sign(sk,m)

L← L ∪ {m,σ}
return σ

Verify(m,σ):
return Σ.Verify(pk,m, σ)

Figure 3.14: The strong EF-CMA experiment for digital signature schemes.

3.3.3 Using multiple q’s
Our construction relies on using a prime p of the form mentioned in the introduction. This is not
a trivial change and requires care as we discuss below.

Technically, our construction is a stateful signature scheme (see e.g. [KL07, Chapter 12]), in
which we simultaneously sign only one message and keep a state corresponding to the values k,
gk and the index i for the current prime number. However, it is more compact and convenient to
describe it as a signature for ` simultaneous messages.

3.3.3.1 Our scheme

Similar to the Schnorr signature scheme, our scheme is a tuple of algorithms (Setup, KeyGen,
Sign, and Verify), which we define as follows:

• Setup(1κ): Generate ` primes q1, . . . , q` of size ≥ 2κ and ` groups G1, . . . ,G` respectively of
order q1, . . . q` such that the DLP is hard in the respective Gi, and such that p = 1 + 2

∏
qi

is prime. This is easily achieved by selecting (`−1) primes qi and varying the last one until p
is prime.3 Choose a cryptographic hash function H : {0, 1}∗ → {0, 1}q1 . The hash function
will be used to produce elements of Zqi . For this we will denote by Hi the composition of H
and a conversion function from {0, 1}q1 to Zqi4 Finally, choose g a generator of the group
Z∗p of order p− 1. The public parameters are therefore

pp =
(
p, {qi}`i=1, H, g, {Gi}`i=1

)
.

2In contrast to the weak version, the adversary is allowed to forge for a message that they have queried before,
provided that their forgery is not an oracle response.

3See Section 3.3.8 for a discussion on some particularly interesting moduli.
4This conversion function can read the string as a binary number and reduce it modqi for example.

55

• KeyGen(pp): The signer chooses x $←− Z∗p−1 and computes y ← gx mod p. The key sk = x is
kept private to the signer, while the verification key pk = y is made public.

• Sign(pp, sk,m1, . . . ,m`): The signer chooses k $←− Zp, such that k 6= 0 mod qi for all i, and
computes r ← gk mod p.
The signer can now sign the ` messages mi as:

ρi
$←− {0, 1}κ, ei ← Hi(mi, r, ρi), and si ← k − eix mod qi

outputting the ` signatures σi = {r, si, ρi}—or, in a more compact form,

σ = {r, s1, . . . , s`, ρ1, . . . , ρ`}.

• Verify(pp, pk,mi, (r, si, ρi), i) : Verifying a signature is achieved by slightly modifying the
original Schnorr scheme: First check that si ∈ {0, . . . qi−1} and compute ei ← Hi(mi, r, ρi),
then observe that for a correct signature5:

(gsiyei)
p−1
qi = r

p−1
qi mod p.

The signature is valid if and only if this equality holds, otherwise the signature is invalid
(see Lemma 3.11).

Remark Note that unlike Schnorr, in the Sign algorithm we add a random ρi for a signature
to make the argument of the hash function unpredictable. This will be useful for the proof of
Theorem 3.12 in the ROM.

Remark Note also that one almost recovers the original Schnorr construction for ` = 1—the
only differences being in the verification formula, where both sides are squared in our version, and
the addition of a fresh random to hash.

Lemma 3.11 (Correctness) Our scheme is correct.

Proof: Let g, y, r, si, and ρi be as generated by the KeyGen and Sign algorithms for a given
message mi. We check that, (

(gsiyei)si
r

) p−1
qi

= 1 mod p.

By the definition of si, there exists λ ∈ Z such that gsi = gk−eix+λqi , hence

gsiyeig−k = gλqi mod p.

Raising this to the power of p−1
qi

we get gλ(p−1) = 1 since the order the multiplicative group Z∗p is
p− 1. �

5One can note, p−1
qi

= 2q1 · · · qi−1qi+1 · · · q`.

56

3.3.3.2 Security

To aid in the proof of security, we introduce the following problem which we call the partial
discrete logarithm problem (PDLP). Intuitively it corresponds to solving a discrete logarithm
problem in the subgroup of our choice.

Definition 3.9 (PDLP) Let ` ≥ 2 be an integer, q1, . . . , q` distinct prime numbers and q =
q1 . . . q`. Let G be a group of order q and g a generator of G. Given g, q, q1, . . . , ql, and y = gx,
the partial discrete logarithm problem (PDLP) consists in finding i ∈ [`] and xi ∈ Zqi such that
xi = x mod qi.

In our context, we are chiefly interested in a subgroup of order q of a multiplicative group of a
finite field Z∗p, where q divides p− 1—ideally, q = (p− 1)/2. The best known algorithms to solve
the PDLP are index-calculus based methods in Z∗p and square-root algorithms in subgroups of
prime order qi for some i ∈ [`]. With p of bit-size 3072, q = (p− 1)/2, ` = 12 and q1, . . . , q` of
bit-size 256, we conjecture that solving the PDLP requires about 2128 elementary operations. In
Section 3.3.4, we provide security argument in the generic group model on the intractability of
the PDLP for large enough prime numbers q1, . . . , q`.

Theorem 3.12 (Existential unforgeability) Our scheme is provably EF-CMA-secure assum-
ing the hardness of solving the PDLP, in the ROM.

To prove this result, we will exhibit a reduction from an efficient EF-CMA forger to an efficient
PDLP solver. To that end, we first show a sequence of indistinguishability results between the
output distributions of

• Our signature algorithm Sign = Sign0 on user inputs.

• A modified algorithm Sign1 (see Figure 3.15), where the hash of user inputs is replaced by
a random value. This situation is computationally indistinguishable from the previous one
in the ROM.

• A modified algorithm Sign2 (see Figure 3.15), that has no access to the signing key x. The
output distribution of this algorithm is identical to the output of Sign1 (Theorem 3.13).

Then we use the forking lemma [PS00, BN06] to show that an efficient EF-CMA-adversary against
Sign2 can be used to construct an efficient PDLP solver. Finally, we leverage the above series of
indistinguishability results to use an adversary against Sign0. Let CRT (for Chinese Remainder
Theorem) be the isomorphism that maps Zq1 × · · · × Zq` × Z2 to Zp−1.

Theorem 3.13 The output distributions of Sign1 and Sign2 are identical.

Proof: This theorem builds on several intermediate results described in Lemmata 3.14 to 3.18.
We denote δ the output distribution of Sign1 and δ′ the output distribution of Sign2. The structure
of the proof is the following :

• In Lemma 3.14 we show that the output of Sign2 is a subset of the output of Sign1.

• Lemma 3.15 shows that in Sign1 there is a unique random tape per output.

• Lemma 3.16 shows that in Sign2 there are exactly two random tapes per output.

• Lemma 3.18 shows that there are twice as many random tapes possible for Sign2 than for
Sign1

57

Sign1 :
ρ

$←− {0, 1}κ

k
$←− Zp \

(⋃`

i=1{qi, 2qi, . . . , p− 1}
)

r ← gk mod p
for i = 1 to `

ei
$←− Zqi

si ← k − eix mod qi
ρi

$←− {0, 1}κ
end for
return (r, e1, . . . , e`, s1, . . . , s`, ρ1 . . . , ρ`)

Sign2 :
for i = 1 to `

ei
$←− Zqi

si
$←− Zqi

ρi
$←− {0, 1}κ

end for
a

$←− {0, 1}
b

$←− {0, 1}
S ← CRT(s1, . . . , s`, a)
E ← CRT(e1, . . . , e`, b)
r ← gSyE

for i = 1 to `
check that r 6= 1 mod qi,
otherwise abort

end for
return (r, e1, . . . , e`, s1, . . . , s`, ρ1 . . . , ρ`)

Figure 3.15: The algorithms used in Theorem 3.13, as part of the proof of Theorem 3.12.

This demonstrates that by uniformly choosing the random tape, the resulting distributions for
Sign1 and Sign2 are identical, which is the uniform distribution on the set of valid signatures.

Lemma 3.14 Every tuple of δ′ is a valid signature tuple. Therefore δ′ ⊆ δ.

Proof: [of Lemma 3.14] Let (r, e1, . . . , e`, s1, . . . , s`, ρ1, . . . , ρ`) ∈ δ′. Let i ∈ [`]. By the Chinese
Remainder Theorem we have:

S = si mod qi and E = ei mod qi.

So there exists λ, µ ∈ Z such that

S = si + λqi and E = ei + µqi.

Hence:

r
p−1
qi =

(
gSyE

) p−1
qi

=
(
gsi+λqiyei+µqi

) p−1
qi

= (gsiyei)
p−1
qi gλ(p−1)yµ(p−1)

= (gsiyei)
p−1
qi

The last equality holds since the order of the multiplicative group Z∗p is p− 1, and this concludes
the proof with the fact that r 6= 1 mod qi. �

Lemma 3.15 There is exactly one random tape upon which Sign1 can run to yield each particular
tuple of δ.

58

Proof: [of Lemma 3.15] Let k, e1, . . . , e`, ρ1, . . . , ρ` and k′, e′1, . . . , e′`, ρ′1, . . . , ρ′` be random choices
of δ that both yield (r, e1, . . . , e`, s1, . . . , s`, ρ1, . . . , ρ`). It is immediate that ei = e′i and ρi = ρ′i
for all i ∈ [`]. Also since gk = gk

′ , g is of order p− 1 and since k and k′ are in [p] then k = k′. �

Lemma 3.16 There are exactly two random tapes over k, ρ1, . . . , ρ`, e1, . . . , e` that output each
tuple of δ′.

Proof: [of Lemma 3.16] Let e1, . . . , e`, s1, . . . , s`, a, b, ρ1, . . . , ρ` and e′1, . . . , e′`, s′1, . . . , s′`, a′, b′,
ρ′1, . . . , ρ

′
` be random choices that both give (r, e1, . . . , e`, s1, . . . , s`, ρ1, . . . , ρ`). It is immediate

that ei = e′i, si = s′i, and ρi = ρ′i for all i ∈ [`]. Let S, S′, E, and E′ be the corresponding CRT
images. We have gSyE = gS

′
yE
′ , which is gS+xE = gS

′+xE′ , and S + xE = S′ + xE′ mod (p− 1).
Since x is odd (it is invertible mod p− 1), it follows that S +E and S′ +E′ have the same parity.
Therefore a+ b = a′ + b′ mod 2 and we have two choices: a = b, or a = 1− b, both of which are
correct.

�

Lemma 3.17 #
(
Zp \

(⋃`
i=1{qi, 2qi, . . . , p− 1}

))
= 2

∏`
i=1(qi − 1).

Proof: [of Lemma 3.17] The number of invertible elements modp is
∏`
i=1(qi − 1)× (2− 1) so

the number of invertible mod qi for all i (and not necessarily for 2) is 2
∏`
i=1(qi − 1). This is

exactly the cardinality of the set(
Zp \

(⋃̀
i=1
{qi, 2qi, . . . , p− 1}

))
,

�

Lemma 3.18 There are twice as many possible random choices in δ′ than in δ.

Proof: [of Lemma 3.18] For the number of random choices in δ we use Lemma 3.17 to count the
number of k and then count the number of ei and get 2

∏`
i=1(qi − 1)×

∏`
i=1 qi. For δ′, having

r 6= 1 mod qi is equivalent to having si 6= −eix. Therefore it has the same number of random
choices as a distribution picking the si from Zqi \{eix} which is

∏`
i=1 qi×

∏`
i=1(qi− 1)× 2× 2. �

It follows from the above results that the two distributions are the same, i.e. the uniform
distribution over the set of valid signatures.
This concludes the proof of Theorem 3.13. �

Theorem 3.19 (Security under Chosen Message Attack) An efficient attacker against Sign2
can be turned into an efficient PDLP solver in the ROM.

59

Proof: Let A be an attacker that wins the EF-CMA game for our scheme, illustrated in Fig-
ure 3.16. We construct in Figures 3.17 and 3.18 an algorithm R that uses A to solve the PDLP.
A′ is equivalent to A (with the same random tape which we omit in the notation), the difference
being that it interacts with different oracles. Abusing notation we denote by R.Hi the composition
of the hash function and the conversion function. If L is a list of pairs, we denote by L−1[e] the
index of the element e in the list, and by L[i] the i-th element of the list. If they cannot (i.e. if e
is not in the list, or the list does not have an i-th element) they abort.

A

H

Osign

pp, pk m∗, r∗, s∗, ρ∗, i

Figure 3.16: An efficient EF-CMA adversary A against our scheme, with random oracle H and a
signing oracle O.

RAR.Hi

R.Sign

A′R.H ′i

R.Sign′

R.Init R.Fingx, g, p, q1, . . . , q` xi, i

Figure 3.17: An efficient solver R for the PDLP, using a polynomial number of queries to A. R
implements the random oracle as R.H and the signing oracle as R.Sign. The rewinded adversary

and oracles are indicated with a prime symbol.

The algorithm R aborts in four possible ways during the simulation (denoted (?), (†), (‡) and
(§)) in Figures 3.17 and 3.18. We upper-bound the probability of these events in the following list:

• (?) This occurs with negligible probability since the ρ is a fresh random which is unpredictable
by the adversary.

• (†) This occurs with non overwhelming probability since the adversary is efficient.

• (‡) The element is in the list with non negligible probability because if the adversary forges
on an unqueried hash in the ROM, it has a negligible chance to succeed.

• (§) This happens with non overwhelming probability due to the forking lemma [PS00].

If R does not abort, then
(
gs
∗
ye
∗) p−1

qi∗ = (r∗)
p−1
qi∗ =

(
gs̃
∗
yẽ
∗) p−1

qi∗ mod p. Then s∗ + e∗x =
s̃∗ + ẽ∗ mod qi∗ . It follows that the value returned by R is equal to x mod qi∗ .
R succeeds with non negligible probability, as explained earlier. The probability of forking is
polynomial in the number of queries to the random oracle, the number of queries to the signature

60

R.Init(y = gx, g, p, q1, . . . , q`) :
set L← ∅
Σ← ∅
j ← 1
k ← 0
l← 0
pk← y

pp← {p, {qi}`i=1, g}
return (pk, pp)

R.Fin(pk, pp) :
(m∗, r∗, s∗, ρ∗, i∗) $←− A(pp, pk)
e∗ ←R.Hi∗(m∗, r∗ mod qi∗ , ρ∗)
a← L−1[((m∗, r∗ mod qi∗ , ρ∗), e∗)]‡
if not Verifypp,pk(m∗, r∗, s∗, i∗)
abort†

(m′∗, r′∗, s′∗, ρ′∗, i′∗) $←− A′(pp, pk)
if i∗ 6= i′∗ then abort§
if r∗ 6= r′∗ then abort§
e′∗ ←R.Hi∗(m′∗, r∗ mod qi∗ , ρ′∗)
if e∗ = e′∗ then abort§
if not Verifypp,pk(m′∗, r∗, s′∗, i∗)
abort†

∆s← s∗ − s′∗
∆e← e′∗ − e∗
return (i∗,∆s/∆e)
R.Sign′(m) :
l← 0
return Σ.[i]
l← l + 1

R.H(x) :
if ∃(x′, h′) ∈ L s.t. x′ = x
return h′

else
h

$←− Zp
L← L ∪ {(x, h)}
return h

R.H ′(x) :
k ← 0
L′ ← ∅
if ∃(x′, h′) ∈ L′ s.t. x′ = x

return h′
else
if i ≤ a

(x′, h′)← L.[i]
return h′
k ← k + 1
L′ ← L′ ∪ {(x, h)}

else
h

$←− Zp
L′ ← L′ ∪ {(x, h)}
return h

R.Sign(m) :
if j = 1

(r, e1, . . . , e`, s1, . . . , s`, ρ1, . . . , ρ`)
$←− δ′

if ∃h s.t. ((m, r mod q1, ρ1), h) ∈ L
abort?

L← L ∪ {((m, r mod q1, ρ1), e1)}
j ← j + 1 mod `
return (s1, r, ρ1, 1)
Σ← Σ ∪ {(s1, r, ρ1, 1)}

else
if ∃h s.t. ((m, r mod qj , ρj), h) ∈ L
abort?

L← L ∪ {(m, r mod qj , ρj), ej}
j ← j + 1 mod `
return (sj , r, ρj , j)
Σ← Σ ∪ {(sj , r, ρj , j)}

Figure 3.18: An efficient solver for the PDLP, constructed from an efficient EF-CMA adversary
against our scheme.

oracle, and `. Note that the reduction is ` times looser than [PS00]. This concludes the proof of
Theorem 3.19. �

61

Proof: [of Theorem 3.12] Using Theorem 3.13, we can use Sign0 instead of Sign2 as a target for
the attacker in Theorem 3.19. �

3.3.4 Generic security of the partial discrete logarithm problem
In this section, we prove that the partial discrete logarithm problem introduced in Section 3.3.3.2
is intractable in the generic group model. This model was introduced by Shoup [Sho97b] for
measuring the exact difficulty of solving classical discrete logarithm problems. Algorithms in
generic groups do not exploit any properties of the encodings of group elements. They can access
group elements only via a random encoding algorithm that encodes group elements as random
bit-strings.

Proofs in the generic group model provide heuristic evidence of some problem hardness when
an attacker does not take advantage of group elements’ encoding. However, they do not necessarily
say anything about the difficulty of specific problems in a concrete group.

Let ` be some non-negative integers, let q1, . . . , q` be some distinct prime numbers and let
q = q1 · · · q`. We consider a cyclic group G of (composite) order q generated by g. We assume
without loss of generality that q1 = max(q1, . . . , q`). A classical method [PH78] to solve the
partial discrete logarithm problem in G given h = gx ∈ G is to compute hq2···q` , an element of
order diving q1 (that belongs to the subgroup generated by gq2···q`) and to compute its discrete
logarithm x1 in base gq2···q` using a square root method such as Shanks “baby-step giant-step”
algorithm [Sha71]. It is easy to see that x1 is equal to x mod q1 and is obtained within time
complexity O(√q1 + log(q2 · · · q`)) group operations.

Our goal is to prove that this time complexity is essentially optimal in the generic group model.
Let A be a generic group adversary that solves the partial discrete logarithm problem in G. As
usual, the generic group model is implemented by choosing a random encoding σ : G −→ {0, 1}m.
Instead of working directly with group elements, A takes as input their image under σ. This way,
all A can test is string equality. A is also given access to an oracle computing group multiplication
and division: taking σ(g1) and σ(g2) and returning σ(g1 · g2) and σ(g1/g2) respectively. Finally,
we can assume that A submits to the oracle only encodings of elements it had previously received.
This is because we can choose m large enough so that the probability of choosing a string that is
also in the image of σ is negligible.

Theorem 3.20 Let A be a generic algorithm that takes as input two encodings σ(g) and σ(h)
(where g is a generator of G and h = gx ∈ G) and makes at most τ group oracle queries, then A’s
advantage in outputting a partial discrete logarithm (i, xi) with i ∈ {1, . . . , `} and xi = x mod qi
is upper-bounded by O(τ2/q1).

Proof: We consider an algorithm B playing the following game with A. Algorithm B picks
two bit strings σ1, σ2 uniformly at random in {0, 1}m. Internally, B keeps track of the encoded
elements using elements in the ring Zq1 [X1]× · · · × Zq` [X`]. To maintain consistency with the
bit strings given to A, B creates a lists L of pairs (F, σ) where F is a polynomial vector in the
ring Zq1 [X1]× · · · × Zq` [X`] and σ ∈ {0, 1}m is the encoding of a group element. The polynomial
vector F represents the exponent of the encoded element in the group Zq1 × · · · × Zq` . Initially,
L is set to

{((1, 1, . . . , 1), σ1) , ((X1, . . . , Xn), σ2)}

Algorithm B starts the game providing A with σ1 and σ2. The simulation of the group operations
oracle goes as follows:

62

Group operation: Given two encodings σi and σj in L, B recovers the corresponding vectors
Fi and Fj and computes Fi + Fj for multiplication (or Fi − Fj for division) termwise. If
Fi + Fj (or Fi − Fj) is already in L, B returns to A the corresponding bit string; otherwise
it returns a uniform element σ R←− {0, 1}m and stores (Fi + Fj , σ) (or (Fi − Fj , σ)) in L.

After A queried the oracles, it outputs a pair (i∗, x∗i) ∈ {1 . . . , `} × Zqi∗ as a candidate for
the partial discrete logarithm of h in base g. At this point, B chooses uniform random values
x1, . . . , xn ∈ Zq1 × · · · × Zq` . The algorithm B sets Xi = xi for i ∈ {1, . . . , n}.

If the simulation provided by B is consistent, it reveals nothing about (x1, . . . , x`). This means
that the probability of A guessing the correct value for (i∗, x∗i) ∈ {1, . . . , `} × Zqi∗ is 1/qi∗ . The
only way in which the simulation could be inconsistent is if, after we choose values for x1, . . . , xn,
two different polynomial vectors in L happen to produce the same value.

It remains to compute the probability of a collision happening due to a unlucky choice of
values. In other words, we have to bound the probability that two distinct vectors Fi, Fj in L
evaluate to the same value after the substitution, namely Fi(x1, . . . , xn) − Fj(x1, . . . , xn) = 0.
This reduces to bound the probability of hitting a zero of Fi−Fj . By the simulation, this happens
only if Fi − Fj is a vector of polynomials where at least one coordinate — say the k-th — is a
non-constant polynomial (and thus of degree one) denoted (Fi − Fj)(k).

Recall that the Schwartz-Zippel lemma says that, if F is a degree d polynomial in Zqk [Xk]
and S ⊆ Zqk then

Pr[F (xk) = 0 mod qk] ≤ d

|S|
where xk is chosen uniformly from S. Going back to our case, we obtain by applying the
Schwartz-Zippel lemma :

Pr[(Fi − Fj)(k)(xk) = 0 ∈ Zqk] ≤ 1/qk ≤ 1/q1.

Therefore, the probability that the simulation provided by B is inconsistent is upper-bounded by
τ(τ − 1)/q1 (by the union bound) and the result follows. �

3.3.5 Provably secure pre-computations
Often the bottleneck in implementations centers around modular exponentiation. In this section,
we briefly outline several proposed pre-computation techniques, as well as presenting in more
detail two pre-computation schemes which were used in our implementation to compare timings
between classical Schnorr and our scheme.

3.3.5.1 Brief overview

The problem of computing modular exponentiations is well-known to implementers of both
DLP-based and RSA-based cryptosystems. In the specific case that we want to compute gx mod p,
the following strategies have been proposed but their security is often heuristic:

• Use signed expansions (only applicable to groups where inversion is efficient);

• Use Frobenius expansions or the GLV/GLS method (only applicable to certain elliptic
curves);

• Batch exponentiations together, as suggested by M’Raïhi and Naccache [MN96].

63

The above approaches work for arbitrary values of x. Alternatively, one may choose a particular
value of x with certain properties which make computation faster; however, there is a possibility
that doing so weakens the DLP:

• Choose x with low Hamming weight as proposed by Agnew et al. [AMOV91];

• Choose x to be a random Frobenius expansion of low Hamming weight, as discussed by
Galbraith [Gal12, Sec. 11.3];

• Choose x to be given by a random addition chain, as proposed by Schroeppel et al. [SOOS95];

• Choose x to be a product of low Hamming weight integers as suggested by Hoffstein and
Silverman [HS03]—broken by Cheon and Kim [CK08];

• Choose x to be a small random element in GLV representation—broken by Aranha et al.
[AFG+14];

Finally, a third branch of research uses large amounts of pre-computation to generate random pairs
(x, gx mod p). The first effort in this direction was Schnorr’s [Sch90], quickly broken by de Rooij
[de 97]. Other constructions are due to Brickell et al. [BGMW93], Lim and Lee [LL94], and de
Rooij [de 95]. The first provably secure solution is due to Boyko et al. [BPV98], henceforth BPV,
which was extended and made more precise by [NSS01, CMT01, NS99]. This refined algorithm is
called E-BPV (extended BPV).

3.3.5.2 The E-BPV pre-computation scheme

E-BPV6 relies on pre-computing and storing a set of pairs (ki, gki mod p); then a “random” pair
(r, gr mod p) is generated by choosing a subset of the ki, setting r to be their sum, and computing
the corresponding exponential by multiplying the gki mod p.

To guarantee an acceptable level of security, and resist lattice reduction attacks, the number
n of precomputed pairs must be sufficiently large; and enough pairs must be used to generate a
new couple.

(E-)BPV.Preprocessing:

k1, . . . , kn
$←− Z∗p

L← ∅
for j ∈ [n]
L← L ∪ {(kj ,Kj = gkj mod p)}

return L

E-BPV.GetRandomPair:

pick S ⊆ [n] s.t. |S| = k

(di, Di)
$←− D

r ← 0
R← 1
for j ∈ S
xj

$←− [h− 1]
r ← r + kjxj mod φ(p)
R← R ·Kxj

j mod p
return(r,R)

Figure 3.19: The E-BPV algorithm for generating random pairs (x, gx mod p). The BPV
algorithm is a special case of E-BPV for h = 2.

6BPV is a special case of E-BPV where h = 2. As such they share the same precomputing step.

64

Nguyen et al. [NSS01] showed that using E-BPV instead of standard exponentiation gives an
adversary an advantage bounded by

m

√
K(

n
k

)
(h− 1)k

with m the number of signature queries by the adversary, (k, n, h) E-BPV parameters, and K the
exponent’s size.7

We fix conservatively m = 2128. For our scheme, at 128-bit security, we have K = P = 3072.
As suggested in [NSS01] we set n = k, and constrain our memory:

hk ≥ 23400

Optimizing 2k + h under this constraint, we find (h, k) = (176, 455). This corresponds to 1087
modular multiplications, i.e., an amortized cost of 90 multiplications per signature, for about
170 kB of storage.

Alternatively, we can satisfy the security constraints by setting n = 2048, h = 100, k =
320, which corresponds to about 770 kB of storage, giving an amortized cost of 62 modular
multiplications per signature.

In the implementation (Section 3.3.6), we solve the constrained optimisation problem to find
the best coefficients (i.e., the least number of multiplications) for a given memory capacity.

Remark To achieve the claimed bounds on modular multiplications, one should not compute
R← K

xj
j mod p directly; instead, an efficient speedup due to Brickell et al. [BGMW93] (BGMW)

must be used. To illustrate the importance of this remark, we also give timings for a “naive”
implementation in Table 3.5.

Remark (Halving storage cost) The following idea can halve the amount of storage required
for the couples (x, gx): instead of drawing the values x at random, we draw a master secret s
once, and compute xi+1 ← gxi ⊕ s (or, more generally/securely, a PRF with low complexity
xi+1 = PRFs(gxi)). Only s, x0, and the values gxi need to be stored; instead of all the couples
(xi, gxi). This remark applies to both BPV and E-BPV.

3.3.5.3 Lim and Lee precomputation scheme

We also consider a variation on Lim and Lee’s fast exponentiation algorithm [LL94]. Their scheme
originally computes gr for r known in advance, but it is easily adapted to the setting where
r is constructed on the fly. The speed-up is only linear, however, which ultimately means we
cannot expect a sizable advantage over Schnorr. Nevertheless, Lim and Lee’s algorithm is less
resource-intensive and can be used in situations where no secure E-BPV parameters can be found
(e.g., in ultra-low memory settings).

The Lim-Lee scheme (LL) has two parameters, h and v. In the original LL algorithm, the
exponent is known in advance, but it is easily modified to generate an exponent on the fly.
Intuitively, it consists in splitting the exponent into a “blocks” of size h, and dividing further
each block in b sub-blocks of size v. The number of modular multiplications (in the worst case) is
a+ b− 2, and we have to store (2h − 1)v pairs. The algorithms are given in Figure 3.20.

For a given amount of memory M , it is easy to solve the constrained optimization problem,
and we find

hopt = 1
ln(2)

(
1 +W

(
1 +M

e

))
7For Schnorr, the exponent’s size is Q; for our scheme, it is P .

65

where W is the Lambert function. For a memory M of 750 kB, this gives h ≈ 8.6. The optimal
parameters for integers are h = 9 and v = 4.8

Remark For LL, Remark 14 on halving storage requirements does not apply, as x need not be
stored.

LimLee.Preprocessing(h, v):

g0 ← g
L = ∅
for i = 0 to h− 1
gi ← g2a

i−1
for i = 0 to 2h − 1
let i = eh−1 . . . e1 in binary
g0,i = g

eh−1
h−1 . . . ge1

1
for i = 0 to 2h − 1
for j = 0 to v − 1
gj,i ← g2b

j−1,i
L← L ∪ {gj,i}

return L

LimLee.GetRandomPair:

R← 1
r ← 0
for i = b− 1 to 0
R← R2

r ← r + r
for j = v − 1 to 0
ri,j

$←− {0, . . . , 2h − 1}
R← R× gj,ri,j
r ← r + ri,j

return (r,R)

Figure 3.20: The LL algorithm for generating random pairs (x, gx mod p).

A summary of the properties for the pre-computations techniques E-PBV and LL can be
found in Table 3.3.

Algorithm Storage Multiplications Security

Square-and-multiply 0 1.5 logP Always
BPV [BPV98] nP k − 1 m

√
P

(nk)
< 2−κ

E-BPV [NSS01] nP 2k + h− 3 m
√

P

(nk)(h−1)k
< 2−κ

Lim and Lee [LL94] 2h × v × P logP
h

(1 + 1
v

)− 3 Always

Table 3.3: Precomputation/online computation trade-offs.

3.3.6 Implementation results
Reschnorr, using the algorithms described in Sections 3.3.3 and 3.3.5, has been implemented in
C using the GMP library. In the interest of timing comparison, we have also implemented the
classical Schnorr scheme. The results for several scenarios are outlined in Table 3.4 (at 128-bit
security) and Table 3.5 (at 192-bit security). Complete source code and timing framework are
available upon request from the authors.

These experiments show that our scheme is faster than Schnorr when at least 250 pairs (i.e.,
750 kB at 128-bit security) have been precomputed. This effect is even more markedly visible at
higher security levels: our scheme benefits more, and more effectively, from the E-BPV+BGMW

8In practice, it turns out that h = v = 8 performs slightly better, due to various implementation speed-ups
possible in this situation

66

optimisation as compared to Schnorr. The importance of combining E-BPV and BGMW is also
visible: E-BPV using naive exponentiation does not provide any speed-up.

Schnorr and our scheme achieve identical performance when using Lim and Lee’s optimisation,
confirming the theoretical analysis. When less than 1MB of memory is allocated, this is the
better choice.

Table 3.4: Timing results for Schnorr and our scheme, at 128-bit security (P = 3072, Q = 256).
Computation was performed on an ArchLinux single-core 32-bit virtual machine with 128MB

RAM. Averaged over 256 runs.

Scheme Storage Precomp. Time (per sig.)

Schnorr – – 6.14ms
Schnorr + [NSS01] 170 kB 33 s 105ms
Schnorr + [NSS01] + [BGMW93] 170 kB 33 s 2.80ms
Schnorr + [NSS01] + [BGMW93] 750 kB 33 s 2.03ms
Schnorr + [NSS01] + [BGMW93] 1MB 34 s 2.00ms
Schnorr + [NSS01] + [BGMW93] 2MB 37 s 2.85ms
Schnorr + [LL94] 165 kB 3 s 949 ns
Schnorr + [LL94] 750 kB 3 s 644 ns
Schnorr + [LL94] 958 kB 3 s 630 ns
Schnorr + [LL94] 1.91MB 3 s F 472 ns

Our scheme – – 5.94ms
Our scheme + [NSS01] 170 kB 33 s 9.2ms
Our scheme + [NSS01] + [BGMW93] 170 kB 33 s 1.23ms
Our scheme + [NSS01] + [BGMW93] 750 kB 33 s 426 ns
Our scheme + [NSS01] + [BGMW93] 1MB 34 s 371 ns
Our scheme + [NSS01] + [BGMW93] 2MB 37 s F 327 ns
Our scheme + [LL94] 165 kB 3 s 918 ns
Our scheme + [LL94] 750 kB 3 s 709 ns
Our scheme + [LL94] 958 kB 3 s 650 ns
Our scheme + [LL94] 1.91MB 3 s 757 ns

Table 3.5: Timing results for Schnorr and our scheme, at 192-bit security (P = 7680, Q = 384).
Computation was performed on an ArchLinux single-core 32-bit virtual machine with 128MB

RAM. Averaged over 256 runs.

Scheme Storage Time (/sig.)

Schnorr – 35.2ms
Schnorr + [LL94] 715 kB 508 ns
Schnorr + [NSS01] + [BGMW93] 750 kB 2.08ms
Schnorr + [NSS01] + [BGMW93] 1.87MB 1.62ms
Schnorr + [LL94] 1.87MB F 476 ns

Our scheme – 33.0ms
Our scheme + [LL94] 715 kB 486 ns
Our scheme + [LL94] 1.87MB 467 ns
Our scheme + [NSS01] + [BGMW93] 1.87MB F 263 ns

67

3.3.7 Heuristic security
Several papers describe server-aided precomputation techniques (e.g., [KU16]), which perform
exponentiations with the help of a (possibly untrusted) server, i.e., such techniques allow for
outsourcing the computation of gx mod n, with public g and n, without revealing x to the server.

Interestingly, the most efficient algorithms in that scenario (which of course we could leverage)
use parameters provided by Hohenberger and Lysyanskaya [HL05] for E-BPV. A series of papers
took these parameters for granted (including [KU16]), but we should point out that these are not
covered by the security proof found in [NSS01].

Despite this remark, it seems that no practical attack is known either; therefore if we are willing
to relax our security expectations somewhat, it is possible to compute the modular exponentiation
faster. Namely, a Q-bit exponent can be computed in O(logQ2) modular multiplications.

Our scheme uses an exponent that is ` times bigger than Schnorr, which is amortized over `
signatures. Comparing our scheme to Schnorr, the ratio is ` log(Q)2

(log `Q)2 . With Q = 256 we get a ratio
of approximately 5.7.

Note that as Q increases, so does `, and therefore so does the advantage of Our scheme over
Schnorr in that regime.

3.3.8 Reduction-friendly moduli
As part of computing gk mod p, a very costly operation is the reduction mod p. An interesting
question is whether some particular moduli p can be found, for which reduction is particularly
easy.

An example of such moduli are those that start with a 1 followed by many 0.

Example 3.3 For P = 3072 and Q = 256, using (in hexadecimal notation)

∆i = {12d, 165, 1e7, 247, 2f5, 31b, 327, 34f, 3a3, 439, 56b, 4fe7}

and qi = 2Q + ∆i, we have that p equals:

2[60]e0e8[56]18058164[53]1479d1e16e8[51]aa09581f139be[48]3a9dc2e99b
080dd[47]dfe705c4e9b3a45678[43]25a378c4e6b62835f401[42]471d330fbde5
6ef2c80281e[39]5c5388621a308a5425f007648[37]4e506ba1a5b68dc5faca115
5e64[35]270051399124b193e6716e08b4408[34]8a07b85ed815e7eac1135861bd
67e3

where [x] denotes a sequence of x hexadecimal zeros.

3.3.9 Conclusion
We have introduced a new digital signature scheme variant of Schnorr signatures, that reuses
the nonce component for several signatures. Doing so does not jeopardise the scheme’s security;
attempting to do the same with classical Schnorr signatures would immediately reveal the signing
key. However, the main appeal of our approach is that precomputation techniques, whose benefits
can only be seen for large enough problems, become applicable and interesting. As a result,
without loss of security, it becomes possible to sign messages using fewer modular multiplications.
Our technique is general and can be applied to several signature schemes using several speed-up
techniques.

68

Chapter 4

Post Quantum Public-key based on
Mersenne primes

Contents
4.1 Introduction . 69
4.2 On the Hardness of the Mersenne Low Hamming Ratio Assumption 71

4.2.1 Introduction . 71
4.2.2 Outline of the Analysis . 72
4.2.3 Putting it Together . 75
4.2.4 Conclusion . 78

4.3 Public-Key Cryptosystems Based on a New Complexity Assumption 79
4.3.1 Introduction . 79
4.3.2 Preliminaries . 79
4.3.3 Prior Work . 80
4.3.4 The Projected-Mersenne Cryptosystem 83
4.3.5 Projected-Mersenne Encryption . 84
4.3.6 Key Encapsulation Mechanism . 86
4.3.7 Security analysis . 87
4.3.8 Attacks on the Underlying Assumption 89
4.3.9 Conclusion . 90

4.1 Introduction

Diffie and Hellman introduced Public key cryptography in [DH06] in 1976. In 1979 Rabin
published the first cryptosystem reducible to a known hard problem [Rab79]. He showed that if
an opponent could decrypt randomly chosen ciphertexts, then he could factorise large composite
integers. Since it is believed that no one can efficiently factorise large composite integers, then it
follows that no one can computationally break this cryptosystem. Since then it is good practice
to reduce any proposed system to well defined hard problems. This practice has become almost
mandatory in public key cryptography. Over the past decades a number of hard problems were
proposed, and a distinction was made between standard assumptions (the ones that have been
studied for a long time and are widely believed to hold) and non standard ones (younger ones
whose veracity is douted). In Section 4.2 we deal with a new public key cryptosystem that is

69

reduced to a newly proposed problem. We experimentally showed that this new assumption does
not hold. A more precise analysis of our attack followed in [dBDJdW17]. A modified version
with adjusted parameters of the original cryptosysytem was consequently published in [AJPS17a],
and proposed to the post-quantum NIST competition. In Section 4.3 we propose an unpublished
variation of this cryptosystem. This version reduces to a similar problem. Unfortunately this new
problem does not seem to better resist to the attack we proposed in Section 4.2. We expose it in
our thesis as we believe that our variant is of independant conceptual interest.

70

4.2 On the Hardness of the Mersenne Low Hamming Ratio
Assumption

Abstract

In a recent paper [AJPS17b], Aggarwal, Joux, Prakash, and Santha (AJPS) describe
an ingenious public-key cryptosystem mimicking NTRU over the integers. This algorithm
relies on the properties of Mersenne primes instead of polynomial rings. The security of the
AJPS cryptosystem relies on the conjectured hardness of the Mersenne Low Hamming Ratio
Assumption, defined in [AJPS17b].

This work shows that AJPS’ security estimates are too optimistic and describes an
algorithm allowing to recover the secret key from the public key much faster than foreseen in
[AJPS17b].

In particular, our algorithm is experimentally practical (within reach of the computational
capabilities of a large organization), at least for the parameter choice {n = 1279, h = 17}
conjectured in [AJPS17b] as corresponding to a 2120 security level. The algorithm is fully
parallelizable.

This is joint work with Aisling Connolly, Rémi Géraud and David Naccache. The
corresponding paper was presented at the 5th International Conference on Cryptology and
Information Security in Latin America, Latincrypt 2017, in La Havana, Cuba; and has been
published as [BCGN17b].

4.2.1 Introduction
A Mersenne prime is a prime of form 2n − 1, where n > 1 is itself prime.

In a recent paper [AJPS17b], Aggarwal, Joux, Prakash, and Santha (AJPS) describe an
ingenious public-key cryptosystem mimicking NTRU over the integers. This algorithm relies on
the properties of Mersenne numbers instead of polynomial rings. This scheme is defined by the
following algorithms:

• Setup(1λ) → pp, which chooses the public parameters pp = (n, h) so that p = 2n − 1 is
prime and so as to achieve a λ-bit security level. In [AJPS17b] the following lower bound is
derived (

n− 1
h− 1

)
> 2λ

which for instance is satisfied by λ = 120, pp = (n = 1279, h = 17).

• KeyGen(pp)→ (sk, pk), which picks F,G two n-bit strings chosen independently and uni-
formly at random from all n-bit strings of Hamming weight h, and returns sk ← G and
pk← H = F/G mod (2n − 1).

• Encrypt(pp, pk, b ∈ {0, 1}) → c, which picks A,B two n-bit strings chosen independently
and uniformly at random from all n-bit strings of Hamming weight h, then computes

c← (−1)b(AH +B) mod (2n − 1).

• Decrypt(pp, sk, c)→ {⊥, 0, 1}, which computes D = ‖Gc mod (2n − 1)‖ and returns
0 if D ≤ 2h2,

1 if D ≥ n− 2h2,

⊥ otherwise

71

We refer the reader to [AJPS17b] for more details on this cryptosystem which does not require
further overview because we directly attack the public key to infer the secret key.

In particular, security rests upon the conjectured intractability of the following problem:

Definition 4.1 The Mersenne Low Hamming Ratio Assumption states that given an n-bit
Mersenne prime p = 2n − 1 and an integer h, the advantage of any probabilistic polynomial time
adversary attempting to distinguish between F/G mod p and R is at most poly(n)

2λ , where R is a
uniformly random n-bit strings, and (F,G) are independently chosen n-bit strings each having
Hamming weight h.

As we will see, we argue that (F,G) can be experimentally computed from H, at least for the
parameter choice {n = 1279, h = 17} conjectured in [AJPS17b] as corresponding to a 2120 security
level.

The full code (Python for partition sampling and Mathematica for lattice reduction) is available
from the authors upon request.

4.2.2 Outline of the Analysis
The analysis uses the Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL, [LLL82]).
We do not recall here any internal details of LLL but just the way in which it can be used to solve
a linear equation with k unknowns when the total size of the unknowns is properly bounded.

4.2.2.1 Using LLL to Spread Information

Let x1, . . . , xk ∈ N∗ be k unknowns. Let p ∈ N be a modulus and a0, . . . , ak ∈ N. Consider the
equation:

a0 =
k∑
i=1

aixi mod p.

All the reader needs to know is that the LLL algorithm will find x1, . . . , xk if
∏k
i=1 xi < p.

In particular, LLL can be adapted to provide any uneven split of sizes between the xi as long
as the sum of those sizes does not exceed the size of p. More details on the theoretical analysis
of LLL in that setting and variants are given in [NS01, Sec. 3.2] and [Jou09, Chap. 13], in the
context of generalised knapsack problems.

4.2.2.2 Partition and Try

The first observation that attracted our attention is that the size1 of F (and G) has an unusually
small expectation σ(n, h):

σ(n, h) = n

(
1 +

(1− h
n)n+1 − 1

h
n (n+ 1)

)
The difference in size between n = 1279 and σ(1279, 17) is not huge2 and cannot be immediately
exploited. However, the same phenomenon also occurs at the least significant bits and further
shortens the expected nonzero parts of F and G by 70 bits.

Similarly, assume that in the key generation procedure, both F and G happen to have bits set
to 1 only in their lower halves. When this (rare event) happens, we can directly apply LLL to H
to recover F and G. We call this event T .

1That is, the length of a number, once its leading zeros are discarded.
21279− σ(1279, 17) ≈ 75 bits.

72

Is that event rare? Since F and G are chosen at random, T happens with probability at least
2−2h. While T ’s probability is not cryptographically negligible, this pre-attack only allows to
target one key out of 22h. For the first suggested parameter set (λ = 120), one public key out of
67 million can be attacked in this fashion, and its F and G recovered, i.e., a total break. The
question is hence, can this phenomenon be extended to any key? And if so, at what cost? In
particular, can we sacrifice work to increase the size of the vulnerable key space? The answers to
these questions turn out to be positive, as we will explain hereafter.

Random partitions. Instead of a fixed partition of {0, . . . , n − 1}, we can sample random
partitions, for instance by sampling (without replacement) m positions, which are interpreted as
boundaries between regions of zeros and regions that possibly contain a 1. The total number of
regions, m+ 1, determines the dimension of the lattice being reduced.

For the sake of simplicity we consider balanced partitions:

Definition 4.2 A partition of {0, . . . , n− 1} into m/2 type 1 blocks and m/2 + 1 type 2 blocks
is balanced if the total size of the type 1 blocks and the total size of the type 2 blocks differ by at
most one.3

A randomly sampled partition is not necessarily a balanced partition: we use rejection sampling
to ensure the balancing property.4 The sought-after property of these partitions is the following:

Definition 4.3 Let X be a binary string of length n. A partition of X into m/2 type 1 blocks
and m/2 + 1 type 2 blocks is correct for X if the type 2 blocks are completely made of zeros.

Figure 4.1 illustrates the partitions that we are interested in on a simple example. Also note
that the definition above does not put any constraint on type 1 blocks, which may contain zeros or
not; since they are not guaranteed to be zero, we refer to them as “non-zero” blocks. Accordingly,
blocks of type 2 in a correct partition is referred to as “zero” blocks.

F

f

G

g

Figure 4.1: An illustration of the partitions that we are interested in: in these diagrams, a black
square in F or G represents a 1, while white squares represent 0s. The partitions f and g are
balanced and correct for F and G respectively, with “zero” blocks coloured white, and “non-zero”
blocks coloured black. The vertical dashed lines show how F and G align with their respective

partitions.

The observation at the beginning of this section is that using a balanced partition that is
correct for F and another one that is correct for G and we can recover F and G from H.

3Since n is odd, we must accept a ± 1 excess.
4There is room for improvement here as well since rejection sampling is a very inefficient approach. Nevertheless,

it will be sufficient for our discussion, and any approach to generating such partitions would work without impacting
the analysis.

73

Since F and G are unknown, we cannot construct a correct partition from them directly; but
the probability that a random balanced partition is correct for F (resp. G) is lower bounded5
by 2−h. Assuming that F and G are independent, which they should be according to the key
generation procedure, we found a correct partition for both F and G with a probability of 2−2h.

Remark We may also consider imbalanced partitions which allow an extra speed-up for a subtle
reason: Given that the unknowns found by LLL have a low Hamming density, the odds that these
numbers naturally begin by a sequence of zeros (and are hence shorter than expected) is high. The
interesting point is that the total length of such natural gains sums up and allows to unbalance the
partition in favor of type 1 blocks. Consider the analogy of a fishing boat that can carry up to
1000 kilograms of fish. The fishermen fishes with 3 nets having maximal capacities of 200, 300
and 500 kilograms each. Because waters are sparse in fish, the nets are expected to catch only 70%
of their maximal capacity. Hence, we see that larger nets (285, 428, 714) can be used to optimize
the boat’s fishing capacity. However, unlike the boat, with LLL fish cannot be thrown back to the
water and... excess weight sinks the boat (the attack fails). Hence if this speed-up strategy is used,
we need to catch more than normal but not be too greedy. Note as well that if all variables end by
at least ` trailing (LSB) zeros then these m` zeros add-up to the gain as well (because there is
no constant term in the equation a division of all variables by 2 has no effect on the solution’s
correctness). We did not exploit nor analyze these tricks in detail.

Trying partitions. The attack then consists in sampling a balanced partition, running LLL,
and checking whether the values of F and G obtained from the reduction have the correct
Hamming weight and yield H by division. Concretely, the matrix to be reduced is obtained as
follows from the partitions f of F and g of G:

1. Compute the size of the each non-zero blocks in f and g, we call these sizes u = {ui} and
v = {vi} respectively, with i = 0, . . . ,m/2− 1. Let w = maxi{ui, vi}.

2. Construct the vector s = si as follows:

si =
{

2w−vi if i < m/2
2w−ui if m/2 ≤ i < m

3. Construct the vector a = {aj} as follows: let fi (resp. gi) denote the starting position of
the non-zero blocks in F (rep. G), and set

aj =
{
H × 2gi mod p if j < m/2
p− 2fi if m/2 ≤ j < m

4. Choose an integer K, and assemble the matrix M as follows:

M =
(

diag(s) Ka
0 Kp

)
where diag(x) is the diagonal matrix whose diagonal entries are given by x. The coefficient
K is a tuning parameter, which we set to 21200.

5We ignore the fact that we sample without replacement here, as h� n. Under this approximation, all the
bits are sampled uniformly and independently and may fall with probably 1/2 either in a type 1 or a type 2 block.

74

5. Finally, we use LLL on M (using the Mathematica command LatticeReduce) and recover
the reduced matrix’s row that complies with the Hamming density of F and G. This row
is expected to give the values of the non-zero blocks of F and G, and we can check its
correctness by computing its Hamming weight, and checking that the ratio of the candidate
values modulo p give H.

By the above analysis, a given partition is correct with probability 2−2h, which for λ = 120 is only
2−34; if we can run LLL reasonably fast, which is the case for m = 16, an efficient attack happens
to be within reach of a well-equipped organization. Experimental evidence indeed suggests the
feasibility of the attack, see Section 4.2.3.

Remark For larger security parameters λ, the ratio h/n deduced from the analysis in [AJPS17b]
asymptotically vanishes. It should be checked if this influences imbalanced partition finding to the
attacker’s relative advantage for larger values of λ. We did not explore this avenue left to the
reader as a potential research question.

4.2.3 Putting it Together

To illustrate the attack feasibility, we fix a random tape in a deterministically verifiable way and
implement our algorithm (see Figure 4.2).

Use π as seed

Attack’s random tape
F and G

H

The attack described in this paper

F and G

Figure 4.2: The feasibility demonstration consists in deriving the attack’s random tape from a
verifiable source in a deterministic way, as well as the keys.

We generated a nothing-up-our-sleeves key with the procedure of Figure 4.3. The sample(S, h)

1. n, h← pp
2. I1 = {i1, . . . , ih} ← sample({0, . . . , n− 1}, h)
3. I2 = {i1, . . . , ih} ← sample({0, . . . , n− 1}, h)

4. F ←
∑h

i∈I1
2i

5. G←
∑h

i∈I2
2i

6. return (sk = G, pk = F ·G−1 mod p)

Figure 4.3: The KeyGen(pp) procedure.

75

procedure selects h indices without replacement in the range S. It is implemented6 by returning
the h first entries of a deterministic Fisher–Yates shuffle of S. The randomness in sample(S, h)
is simulated by iterating the SHA256 function, starting with the seed given by the ASCII
representation of the 100 first decimals of π:

31415926535897932384626433832795028841971693993751

05820974944592307816406286208998628034825342117068

In a real attack, we would simply use a fast non-cryptographic random number generator, but
the above choice serves the purpose of reproducibility.

This gives the following (in hexadecimal notation, the zero MSBs have not been written):

I1 = {33, 47, 8e, 95, a1, 134, 19f, 1ab, 1ac, 1ce, 25d, 301, 30a, 3ee, 444, 46b, 471}
I2 = {89, b5, de, 116, 141, 1dd, 1de, 2ae, 322, 37a, 388, 38a, 3f9, 48c, 48d, 4e9, 4f2}

F = 2080000000010000000000000000000004000000000000000000000000000000

0000000000000000000000000040200000000000000000000000000000000000

0000020000000000000000000000000000000000040000000180080000000000

0000000000000001000000000000000000000000000000000000200204000000

00000000000800008000000000000

G = 4020000000000000000000000300000000000000000000000000000000000020

0000000000000000000000000050004000000000000000000000400000000000

00000000000000000400

0000060000000000000000000000000000000000000020000000000400000000

0000040000000002000000000020000000000000000000000000000000000

H = 1610fecf11dbd70f5d09da1244a85c3aa7aed7de75a6d1fe4e988b5f66d66e1b

c27d46afd96800ff8b2b67316dff1046b88d205e620ba78a813c15f47ab8a7d2

a8f7eb12fe0fcff882307d92d4c0f9296a7cf4390ce3140e11e4b7c802fa67d3

a8517d30b00980380bdf8992ed6a2d3f74e25f14bae21786672bddae4f2bf897

f38741cdc10b319f8272d42f738cd296d4907331518c3439621aefad5c3d1a7c

4.2.3.1 Recovering F and G from H

Finding a Winning Partition. At this step, we generate random balanced partitions and try
LLL on the resulting decomposition. Doing so we quickly find the following partitions

f = {2a, bf, 134, 1ec, 233, 253, 25a, 270, 2ee, 32d, 3e4, 41e, 42b, 4a7, 4f6, 4fd}
g = {7c, 142, 1d0, 22a, 289, 2c8, 2de, 2e7, 2eb, 33c, 372, 3a0, 3da, 3ff, 48a, 4fd}

6Other implementations are of course possible and do not affect the analysis. For other classical sampling
without replacement algorithms, the reader may consult [SW12].

76

respectively for F and G, which upon lattice reduction yield candidates of the correct Hamming
weight. Their ratio indeed gives H; however one may debate our claim that this partition was
found at random and argue that we constructed it from our prior knowledge of F and G.

To counter this argument and insist that finding partitions is reasonably easy, we derived
them deterministically from the same seed as the key. To achieve this, we proceed as follows:
we draw two independent sets of m/2− 1 indices in the range [0, n/2], which gives the sizes of
the zero blocks and the non-zero blocks. This guarantees that the partitions are balanced. The
randomness used for this sampling is obtained by iterating SHA256 as for key generation.

As in the example above, we construct partitions for m = 16 — this choice is not dictated by
probability (as the likelihood to find a correct partition is in theory independent of m), but rather
by a trade-off between the cost of LLL and the number of partitions explored. It is possible for
instance to start with m = 2 partitions, then m = 3, and so forth, but we settled for a random
search which is easier to implement.

We found the following partition for F at run #1,152,006 (in 116 s):

f = {27, b2, 10e, 13c, 198, 1cf, 24b, 27b, 2ac, 30f, 3e1, 456, 45a, 4ba, 4d6, 4fd}

Recovering F alone took about two minutes.7 Given that we have a totally deterministic random
tape, we regard our experiment as legitimately reflecting reality. Because F and G are independent,
this brings the total effort to about the square of this number, i.e. about 234 attempts to get
both partitions with certainty. Each of these attempts must also involve one LLL, which is the
main cost factor.

Using the same sequence, #64,249 gave a partition for G too (in 7.6 s):

g = {7b, 11c, 13b, 181, 1cc, 1e1, 284, 2e6, 318, 329, 36f, 3e5, 3f1, 404, 476, 4fd}

Finally, note that the task is fully parallelizable and would benefit from running on several
independent computers, a remark that we will later use in our final work factor estimates.

Computing the Secret Key By running our program as explained in Section 4.2.2, we recover
F , G, and confirm that H = F/G mod p.

4.2.3.2 Predicting the Total Execution Time

Putting all the above figures together and assuming no further algorithmic improvements, the
total expected effort is:

(LLL_Time + 2× Partition_Time)×Average_Partition_Tries2

Number_of_Processors

Where in our basic scenario Average_Partition_Tries = 2h.
We performed LLL on Mathematica using the LatticeReduce function, which took less than

a second in the worst case on a simple laptop. We safely assume that this figure can be divided
by 10 using a dedicated and optimized code. We also assume that a credible attacker can, for
example, very easily afford buying or renting 150 TILE-Gx72 multicore processors.

1
10 × 1,152,006× 64,249

150× 72 × 1
60× 60× 24 ≈ 7 days 22 hours

Hence, according to the evidence exhibited in this paper, breaking a 1279 bit key takes a week
using 150 currently available multicore processors (e.g. TILE-Gx72).

7Experiments with random partitions show that this number is quite variable and follows a Poisson distribution,
with a correct partition being typically found earlier, with an average of 217 tries.

77

4.2.4 Conclusion
While we did not formally evaluate efficiency nor asymptotic complexities, our quick and dirty
experiments clearly suffice to show that key recovery is fast and within reach. An obvious
countermeasure consists of increasing parameter sizes. Hence a precise re-evaluation of parameter
sizes and safety margins of the Mersenne Low Hamming Ratio Assumption seems in order.

More systemic protections may consist in modifying the definition of H (and possibly the
underlying cryptosystem), which is a very interesting open problem.

Nonetheless, the beautiful idea of Aggarwal, Joux, Prakash, and Santha exploiting the fact
that arithmetics modulo Mersenne numbers is (somewhat) Hamming-weight preserving, is very
elegant and seems very rich in possibilities and potential cryptographic applications.

78

4.3 Public-Key Cryptosystems Based on a New Complexity
Assumption

Abstract

In 2017, Aggarwal, Joux, Prakash, and Santha introduced a new public-key cryptosys-
tem relying on the conjectured hardness of an ad hoc but credible indistinguishability
game [AJPS17c]. Subsequent work by Beunardeau et al. [BCGN17c], and de Boer et al.
[dBDJdW17], led to a revision of the effective hardness and led Aggarwal et al. to amend
substantially their original cryptosystem substantially [AJPS17d]. A bit later Ferradi and
Naccache suggested slightly improved variants [FN17] along with several research directions.

In this paper we introduce a cryptosystem similar in spirit to the original Aggarwal–Joux–
Prakash–Santha cryptosystem (AJPS-1) but relying on a different hardness assumption.
Unfortunately, lattice reduction (à la Beunardeau et al.) experimentally applies in the same
way as it does to AJPS. The resulting construction is conceptually simpler than the “fixed”
AJPS cryptosystem (AJPS-ECC) and than Ferradi and Naccache’s “high-bandwidth” variant
(AJPS-FN-BT).
This is joint work with Aisling Connolly, Rémi Géraud and David Naccache.

4.3.1 Introduction

In 2017, Aggarwal, Joux, Prakash, and Santha [AJPS17c, AJPS17d] introduced a new public-
key cryptosystem, inspired by NTRU [HPS98] but conceptually much simpler, and tentatively
immune to some of the most classical attacks against NTRU. Since public-key cryptosystems are
relatively rare, Aggarwal et al.’s construction (henceforth AJPS-1, following [FN17]) garnered
much attention from the cryptographic community. In a matter of weeks, it was found that AJPS-
1’s initial security estimates were too optimistic, and a modified scheme with larger parameters
was proposed [AJPS17d]. Section 4.3.2 recalls in further details the construction and history of
these cryptosystems, which we refer to as Mersenne-based cryptosystems.

In this paper, we suggest a further modification of the underlying hardness assumption,
which enables the construction of similarly-elegant encryption schemes. The new assumption,
dubbed “Projected Mersenne”, and a corresponding public-key encryption scheme are introduced
in Section 4.3.4.

4.3.2 Preliminaries

Notations We denote by ‖x‖ the Hamming weight of x, and by Hn,w the set of all n-bit strings
of Hamming weight h. The notation x $←− X means that x is the result of uniformly sampling
from the set X. Unless stated otherwise, log refers to the natural logarithm, whereas log2 to
the base 2 logarithm. The symbols ⊕ and ∧ stand for the binary XOR and AND operations,
respectively. We denote the concatenation of x and y by x‖y. A q-ary error correcting code
with block length d, dimension k, and minimum Hamming distance δ will be denoted [d, k, δ]q.
Algorithms are given as input the (unary) representation of the security parameter λ. PPT stands
for probabilistic polynomial time

79

4.3.3 Prior Work
4.3.3.1 The Mersenne Low Hamming Ratio Assumption

Recall that a Mersenne number is an integer of the form 2n − 1 for some n, and that a Mersenne
prime is a Mersenne number which is prime.8

Definition 4.4 (Mersenne Low Hamming Ratio Search Problem) Let p = 2n − 1 be a
Mersenne prime.9 Given n,w ∈ N and h ∈ Zp, find f, g ∈ Zp such that ‖f‖ = ‖g‖ = w and
f/g = h mod p, under the promise that such a couple exists.

We will refer to the problem in Definition 4.4 as the MLHR problem. A brute-force attack on
MLHR tries all possible couples {f, g}, which corresponds to a security level of

λ =
(
n− 1
w − 1

)
≈ w · lognbits.

A quantum variant of this search, exploiting the generic speed-ups provided by Grover’s algorithm,
correspondingly halves λ. Should these attacks be optimal — as initially suggested by Aggarwal
et al. — the MLHR would enable the construction of conceptually-simple and computationally-
efficient post-quantum secure public-key cryptosystems.

4.3.3.2 The Aggarwal–Joux–Prakash–Santha cryptosystem (AJPS-1)

The original AJPS-1 scheme [AJPS17c] is defined by the following algorithms:

• Setup(1λ)→ pp. Outputs the public parameters pp = {n, h}, so that in particular p = 2n−1
is prime. The choice of n and w is such that the cryptosystem achieves some λ-bit security
level.

• KeyGen(pp)→ {sk, pk}. This algorithm generates the private and public keys. It samples
{F,G} $←− H2

n,w, and returns:

sk← G

pk← H = F/G mod p

• Enc(pp, pk,m) → C. This algorithm takes as input the public parameters pp, the public
key pk, and a message m ∈ {0, 1}. It samples {A,B} $←− H2

n,w, and computes:

C ← (−1)m(AH +B) mod p.

• Dec(pp, sk, C)→ {⊥, 0, 1}. This algorithm computes d← ‖G · C mod p‖ and returns:
0 if d ≤ 2w2,

1 if d ≥ n− 2w2,

⊥ otherwise.
8In particular, if 2n − 1 is prime, then so is n.
9The use of a Mersenne prime is not necessary for the scheme’s correctness, and in fact no attack is currently

known if p is a Mersenne composite. The conservative choice of a Mersenne prime is recommended to avoid
potentially unforeseen attacks exploiting the factorisation of p, cf. [AJPS17d, Section 8].

80

Table 4.1: Synoptic comparison of NTRU and AJPS-1.

NTRU [HPS98] AJPS-1 [AJPS17c]
Ciphertext space R = Z[X]/(XN − 1) R = F2[X]/(Xp − 1), p = 2n − 1
Message space m ∈ Rm m ∈ {0, 1}
Private key f ∈ Rf F ∈ Hn,w
Public key h = g/fq mod q (g ∈ Rg) H = G/F (G ∈ Hn,w)
Encryption c = prh+m mod q (r ∈ Rr) C = (−1)m(AH +B) (A,B ∈ Hn,w)

Decryption m = f−1
p (fc mod q) mod p m =

0 if ‖FC‖ ≤ 2w2

1 if ‖FC‖ ≥ n− 2w2

⊥ otherwise

Remark (Similarities with the NTRU cryptosystem) Mersenne-based cryptosystems are
reminiscent of NTRU [HPS98], which owes its name to the polynomial ring R = Z[X]/(XN − 1)
in which operations are performed.10 In comparison, Mersenne-based cryptosystems work in
Zp ' F2[X]/(Xp − 1), where p = 2n − 1 is prime.11

Table 4.1 shows the parallels between the two cryptosystems. Notations for NTRU follow
[HPS98], except Rf , Rg, Rr, Rm which are subsets of R having a prescribed number of coefficients
set to ±1.

The hard problem underlying NTRU is the Closest-Vector Problem (CVP) in some special
convolution modular lattices; namely, f and g form a relatively short vector in a known lattice
constructed from q and h. Parameters for NTRU must be chosen to resist lattice reduction attacks
(e.g., [CS97, KF17]).

In the original version of their paper [AJPS17c], Aggarwal et al. consider and then dismiss two
possible types of attack that could be better than brute force, inspired by the crpytanalysis of
NTRU: a combinatorial meet-in-the-middle attack, which is claimed to fail due to the presence
of “approximate collisions”; and a lattice-based attack, claimed to fail due to the presence of
“parasitic vectors”.

4.3.3.3 Beunardeau–Connolly–Géraud–Naccache attack.

The latter claim was rapidly challenged, when a faster experimental attack using lattice reduction
was discovered by Beunardeau et al. [BCGN17c], which successfully recovered private keys for the
initially suggested λ = 128 bit security level parameters. This attack runs in time (2 + δ+ o(1))2w,
for some very small constant δ > 0 [dBDJdW17], thereby collapsing the security of the original
AJPS construction to about 2w bits.

4.3.3.4 de Boer–Ducas–Jeffery–de Wolf attack.

The former claim was also challenged by de Boer et al. [dBDJdW17], who showed how to
circumvent the “approximate collision” problem by leveraging locality-sensitive hashing. This
results in a meet-in-the-middle attack, whose complexity is about(

n/2
w/2

)
≈
(
n

w

)1/2
≈ 1

2w logn.

10NTRU stands for N -th Degree Truncated Polynomial Ring Units.
11Bernstein et al. [BCLvV16] argue against the use of such rings for NTRU.

81

A quantum version of this algorithm has a runtime of(
n/3
w/3

)
≈
(
n

w

)1/3
≈ 1

6w logn.

Pointing out similar work for the related NTRU cryptosystem [Buh98], de Boer et al. conjecture
that a combination of the MITM approach with lattice reduction could lead to an even faster
attack, reminiscent for instance of Howgrave-Graham’s [How07].

4.3.3.5 Aggarwal–Joux–Prakash–Santha with error correction (AJPS-ECC)

To answer these attacks, Aggarwal et al. proposed a new version of their cryptosystem [AJPS17d].
The new version accomodates larger parameters and also improves the cryptosystem’s band-

width. As it makes use of an error correction scheme ECC = {D, E}, we refer to it as AJPS-ECC
(following [FN17]). The Setup algorithm is unmodified. The other algorithms are modified as
follows:

• KeyGen(pp)→ {sk, pk}. Sample {F,G} $←− H2
n,w, R

$←− {0, 1}n and return:

sk← F

pk← {R, T} = {R,F ·R+G mod p}

• Enc(pp, pk,m)→ C. Sample {A,B1, B2}
$←− H3

n,w, and compute

C ←

{
C1 = A ·R+B1 mod p
C2 = (A · T +B2 mod p)⊕ E(m)

• Dec(pp, sk, C)→ {⊥,m} is modified accordingly and returns

D((F · C1 mod p)⊕ C2)

An analysis of the parameter choices for ECC and for the cryptosystem, including some additional
discussion irrelevant for our purpose, can be found in Aggarwal et al’s updated paper[AJPS17d].
AJPS-ECC relies for security on another assumption that the hardness of MLHR search; however,
Aggarwal et al. point out that slight modifications to Beunardeau et al.’s attack apply to this
modified scheme and choose the parameters accordingly.

4.3.3.6 Ferradi–Naccache (AJPS-FN-BT)

An interesting collection of variants is described by Ferradi and Naccache [FN17]. Noticing that
some of the random coins used during encryption may be recovered, Ferradi and Naccache suggest
turning this into a feature, thereby increasing the cryptosystem’s bandwidth. However, the
security of most of these variants is left undiscussed. The core idea can be found in Ferradi and
Naccache’s “bivariate” variant AJPS-FN-BT2.

AJPS-FN-BT2 relies on the availability of an efficient function Solvex,y which finds a low
Hamming weight solution to a given Diophantine equation of the form αx+ βy + γ = 0 for given
parameters α, β, γ. They suggest implementing this function as a heuristic-based backtracking
algorithm. Using this, it becomes possible to recover the values A and B used during encryption,
which have low Hamming weight. One possibility is to use A and B to design a key-encapsulation
mechanism as follows:

82

• Setup and KeyGen are identical to those of AJPS-1, except that we additionally agree on a
block cipher F : {0, 1}λ × {0, 1}λ → {0, 1}λ, a cryptographic hash function H2 : {0, 1}∗ →
{0, 1}λ, and a cryptographic hash function H1 : {0, 1}∗ → H2

n,w.

• Enc(pp, pk,m) → C is modified as follows. Sample r $←− {0, 1}λ and compute {A,B} ←
H1(r‖m). Then compute k ← H2(A‖B). Finally, output

C = {C1, C2} = {AH +B mod p, Fk(r‖m)}

• Dec(pp, sk, C)→ {⊥,m} is modified as follows: first recover

{A,B} ← Solvex,y [GC1 = Fx+Gy mod p] .

In case of failure, return ⊥. Otherwise, compute k ← H2(A‖B), and recover u← F−1
k (C2).

If H1(u) 6= {A,B} then return ⊥. Otherwise return m.

The correctness of this scheme (and other variants in [FN17]) is not formally analysed but is
backed by numerical simulations.

4.3.4 The Projected-Mersenne Cryptosystem
4.3.4.1 The Projected-Mersenne Assumption

We introduce the following problem:

Definition 4.5 (Projected-Mersenne Low Hamming Ratio Search Problem) Let p =
2n − 1 be a Mersenne prime. Given n,w, d ∈ N, M = 2d − 1, and h ∈ Zp, find f, g ∈ Zp
such that

1. ‖g‖ = w

2. ‖f ∧M‖ = 1

3. f/g = h mod p

under the promise that such a couple exists.

This search problem can be solved by brute-force enumeration much like MLHR, as it suffices to
find g, i.e., find one in

(
n−1
w−1

)
≈ 2w logn possibilities. We introduce the following assumption:

Definition 4.6 (α-Projected Mersenne Assumption) The α-projected Mersenne assump-
tion12 states that given a Mersenne prime p = 2n − 1, an integer a in poly(λ), any PPT distin-
guisher has a negligible chance to distinguish between R/G and R′, where R $←− {0, . . . , 2α − 1},
G

$←− Hn,w, and R′
$←− Zp.

where the distinguishing advantage is defined as usual:

Definition 4.7 For a PPT distinguisher D that outputs a bit b ∈ {0, 1}, the distinguishing
advantage to distinguish between two random variables X and Y is defined as:

∆D(X;Y) = |Pr[D(X) = 1]− Pr[D(Y) = 1]|
12We choose to explicit only one parameter, namely the random numerator’s size. The other parameter is the

denominator’s Hamming weight, which will be the same throughout our different variants, and therefore will not
be explicitly noted.

83

n bits
n− a bits

c bits
b bits

F = random random

Figure 4.4: An illustration of the structure in F , as used in our KeyGen algorithm: a central
region of size n− a contains only a single set bit. Note that this figure and the following are not

to scale, we give concrete parameters later.

4.3.5 Projected-Mersenne Encryption
We now describe our encyption scheme.

• Setup(1λ)→ pp. Choose p = 2n − 1 a Mersenne prime, and parameters w, a, b, c, d so as to
achieve a λ-bit security level. Additional constraints on a, b, c, d to ensure correctness are
discussed below. We also agree on an error-correcting code13 ECC = (E ,D) with codewords
of size d bits.

• KeyGen(pp) → {sk, pk}. Sample G $←− Hn,w and a random a-bit number R. Let F ←
R · 2b + 2c mod p. Note that, in general, F /∈ Hn,w. An illustration of F ’s structure is given
in Figure 4.4. The KeyGen algorithm returns

sk← G

pk← F/G mod p

• Enc(pp, pk,m)→ C. Sample B $←− Hn,w and return C ← E(m) · pk +B mod p.

• Dec(pp, sk, C)→ {m,⊥}. First compute D ← 2n−cC · sk mod p. This should be

D = 2n−cCsk
= 2n−c (E(m) ·H +B) ·G mod p
= 2n−cE(m)F + 2n−cBG mod p
= 2n−cE(m) ·

(
2bR+ 2c

)
+ 2n−cBG mod p

= E(m) + 2n+b−cRE(m) + 2n−cBG mod p

Let M = 2d − 1, then the algorithm outputs D(M ∧D). Figure 4.5 illustrates this process.

4.3.5.1 Correctness

The correctness of this scheme is based upon two facts. The first is that we can appropriately
choose a, b, c, d so that the first and second terms in the expanded expression of D are disjoint (as

13A possibility is to use BCH codes [Hoc59, BRC60] which are efficient and give fine control over the code’s
parameters, or Reed–Solomon codes [RS60] which are MDS.

84

da+ d

D = E(m)2n+b−cRE(m)

2n−cBG (at most w2 bits set)

M

Figure 4.5: An illustration of the structure in D, as used in our Dec algorithm. For appropriately
chosen parameters, projecting by M only retains a noisy version of E(m).

depicted in Figure 4.5). When this is the case, masking by M removes the 2n+b−cRE(m) term.
The conditions for this to happen are easily found by inspecting Figures 4.4 and 4.5:

n ≤ a+ 2d and a+ b− n < c < b

Assuming an ECC E is given with block length d, we can choose the following parameters, which
correspond to maximising a:

a = n− 2d and b
$←− {0, . . . , n} and c = b− d mod p. (4.1)

The second key fact is that BG has low Hamming weight, namely at most w2. This is not affected
by multiplication by a power of 2, and therefore (2n−cBD) ∧M has Hamming weight at most
η = min(d,w2).14 If E can correct at least η errors, then the decoding algorithm succeeds.15,16

4.3.5.2 Semantic Security

As described above, the cryptosystem is vulnerable to a trivial chosen ciphertext attack. Assume
the attacker gets a challenge encryption C∗ of mb with b ∈ {0, 1} being the challenge bit she has
to guess. Indeed, we get

C∗ = E(m) · pk +B mod p

Thanks to the knowledge of the public key she will be able to recover the randomness (and break
the semantic security). She computes the encrpytion with the randomness being set to 0.

C0 = E(m0) · pk mod p
C1 = E(m1) · pk mod p

She then subtract the ciphertexts:

C∗ − C0 = (E(mb)− E(m0)) · pk +B mod p
C∗ − C1 = (E(mb)− E(m1)) · pk +B mod p

14If E is a linear code, then ?? implies w2 ≤ d− k + 1, or in other terms, k ≤ d− w2 + 1. Therefore, η = d.
15Even in the case where E can only correct t < η errors, there is still a non zero probability that Dec successfully

recovers m, which corresponds to the events where all η − t bits lay between 2d and 2n − 1; this probability is
roughly (1− 2d−n)η−t.

16In fact, the noise considered here is additive, and may result in more than w2 bits being affected due to carry
propagation. We may choose a stronger error correction capacity to account for such unlikely events.

85

One of these equations is equal to B and has low hamming weight, which allows the adversary
to distinguish. This phenomenon is common to other cryptosystems, such as the McEliece
code-based encryption scheme. Therefore our system is inherently non CCA-secure. We can treat
this problem by usign a key encapsulation mechanism which encrypts a random message, and
derive the randomness used in the encryption by hashing the random message. AJPS uses the
same method, but they only need it for chosen ciphertext attacks.

4.3.6 Key Encapsulation Mechanism
We can treat this problem by usign a key encapsulation mechanism which encrypts a random
message, and derive the randomness used in the encryption by hashing the random message.
Since the same is done in AJPS, we use the same notation to define KEM to ease comparison.

Definition 4.8 (Key encapsulation Mechanism) A KEM comprises three algorithms: the
key generation algorithm KeyGen, the encapsulation algorithm Encaps, and the decapsulation
algorithm Decaps, and a key space K. The KeyGen algorithm outputs a public-key pk, and a
secret key sk. The encapsulation algorithm Encaps takes as input a public key pk to produce a
ciphertext C and a key K ∈ K. The decapsulation algorithm Decaps takes as input a ciphertext
C and sk, and outputs a key K0 or a special symbol ⊥ indicating rejection. We say that the
KEM is (1 − δ)-correct if Pr[Decaps(sk, C) = K : (C,K) $←− Encaps(pk)] ≥ 1 − δ , where the
probability is over the randomness of pk, sk and the encapsulation algorithm. Again, we denote
the security parameter by λ. All other parameters including key lengths and ciphertext size are
given as polynomially bounded functions of λ.

Definition 4.9 (Key Encapsulation Mechanism Semantic Security) The key-encapsulation
mechanism (KeyGen,Encaps,Decaps) is said to be semantically secure if for any probabilistic poly-
nomial time distinguisher, given the public key pk, the advantage for distinguishing (C,K0) and
(C,K1), where (C,K0) $←− Encaps(pk) and K1 is uniform and independent of C is negligible in λ.

Definition 4.10 (KEM Semantic Security Under Chosen Ciphertext Attack) The key-
encapsulation mechanism KEM = (KeyGen,Encaps,Decaps) is said to be secure under chosen
ciphertext attacks if for any probabilistic polynomial time distinguisher that is given access to the
decapsulation oracle and the public key pk, the advantage for distinguishing (C,K0) and (C,K1),
where (C,K0) $←− Encaps(pk) and K1 is uniform and independent of C is negligible in λ under
the assumption that the distinguisher does not query the oracle with C.

We now describe our KEM. Its purpose is to avoid encrpytion with randomness set to 0 as in
the attack against our encyption scheme. To achieve this, we will get a key at random, and use it
with random oracle to get randomness to encrpyt the key. Let H be a random oracle from the key
space {0, 1}λ to the random tape of our encryption scheme (ie. low hamming weight numbers).

• KeyGen is the same as the encryption scheme.

• Encaps(pk) draws uniformly at random a key K, produces the ciphertext E(K) · pk +H(K)
and the key K.

• Decaps(sk, C) produces the key K ′ = Dec(sk, C), reencrypts its own randomness C ′ =
E(K ′) · pk +H(K ′), and checks C = C ′. If C 6= C ′ output ⊥, else output K.

Our KEM is trivially 1− δ-correct with δ negligible in λ from the correctness of the encryption
scheme.

86

4.3.7 Security analysis

In this section we show that the KEM’s semantic security (Definition 4.9) relies on the Projected-
Mersenne Assumption (Definition 4.6), and discuss the attacks that can apply to this assumption.

4.3.7.1 Semantic Security of the Key Encapsulation Mechanism

Theorem 4.1 (Semantic Security) Our KEM is semantically secure (Definition 4.9) under
the a-Projected-Mersenne Assumption (Definition 4.6), with a as defined in 4.4.

Before proving Theorem 4.7 we give a few lemmas that we will use later. The main thing to
prove is that the public key is indistinguishable from random, which is shown in Lemma 4.5.

Lemma 4.2 Given a PPT computable function f on two random variables X and Y , if there
is no PPT distinguisher D that can distinguish between X and Y with non negligible advantage,
then there is no PPTdistinguisher D′ that can distinguish between X and Y with non negligible
advantage.

The proof of Lemma Lemma 4.2 is well known and can be found easily.

Lemma 4.3 If x ∈ Z∗p is of hamming weight 1, then x−1 is of hamming weight 1.

Proof: Since the multiplicative group Z∗p is of order p− 1, we have x−1 = xp−2. Since we work
modulo a Mersenne prime, multipliying by a number of hamming weight 1 is equivalent to shifting.
Therefore taking the product of two numbers of hamming weight 1 is of hamming weight 1. Since
x−1 is the product of numbers of hamming weight 1, it is itself of hamming weight 1. �

Lemma 4.4 17Every bit of the public key is the sum of an average of a/2 bits of R omitting the
contribution of the carry18.

Proof: First we notice that although 1/G is not random looking (as shown in [BCGN17c]),
it has a random hamming weight (n/2 on average). Indeed 1/G = Gp−2. So its low hamming
weight increases since we perform approximately n squarings to come to the inverse. Second,
since R is of size a, every bit of the public key is influenced by a copy of R if a bit in the a bits
preceding it is set to 1 in 1/G. Combining the two observations gives the result. �

Lemma 4.5 Assuming the a-Projected-Mersenne Assumption (Definition 4.6), given a Mersenne
prime p = 2n − 1, an integer a output by Setup, any PPT disinguisher has a negligible chance to
distinguish between

pk and R′

where pk is the public key generated from KeyGen and R′ $←− Zp.

17This lemma also gives an intuition about our security. For example doing the same computation on the public
key of AJPS-1, we would get a much smaller number of contributions (17/2 for 128-bits of security).

18We omit the the carry’s influence to simplify analysis : we only need a bound.

87

Proof: Letting pk = 2b ·R/G+ 2c · 1/G mod p. Aplpying 4.2 with f being the division by 2b,
the adversary tries to distinguish chal = R/G+ 2c−b

G . By 4.3, 2c−b is of hamming weight 1. So
we can rewrite chal = R+2i

G for some i. Applying 4.4, with overwhelming probability19, every
additional 1 coming from 2i/G will be in a copy of R. Since there are as many copies of R as
there are 1s coming from 2i/G (this number being ||1/G||, the hamming weight of 1/G), we can
rewrite the challenge:

chal =
||1/G||∑
i=0

2uiRi

for some ui
with Ri = R + 2x with x $←− 0, a− 1. 20We now show that we can replace one Ri by R. Since

x is taken at random with overwhelming probability an Ri is indistinguishable from R since their
distributions are statistically close21. Indeed R $←− [0, 2a − 1] and Ri

$←− [2x, 2x + 2a − 1]. X is on
average a/2, and the statistical distance is a/2. With overwhelming probability the statistical
distance is negligible.
Since there are polynomially many Ris, one can replace them one by one to get from chal to R/G
while staying indistinguishable. �

Lemma 4.6 Assuming the a-Projected Mersenne Assumption (Definition 4.6), given a Mersenne
prime p = 2n − 1, an integer a, any PPT distinguisher has a negligible chance to distinguish
between G/R and R′ where R $←− {0, . . . , 2a − 1}, G $←− Hn,w and R′ $←− Zp.

Proof: This is shown by applying Lemma 4.2 with f being the modular inversion. � �

We can now prove our main theorem.

Proof: [of Theorem 4.7] For any PPT distinguisher D, we have by the triangle inequality:

∆D((pk, c); (pk, R)) ≤ ∆D((pk, c); (R, E(m)R+B))
+ ∆D((R, E(m)R+B); (R,R′))
+ ∆D((R,R′); (pk, R))

where pk is a public key genrated from KeyGen, m is drawn at random, B $←− Hn,w, c = E(m)pk+B
is a ciphertext, and R,R′ $←− Zp. This suffice to show the semantic security.

We now have to show that the three bounding terms are negligible:

• ∆D((pk, c); (R, E(m)R+B)). By Lemma 4.5 we have that pk is indistinguishable from a
random, applying Lemma 4.2 with f(X) = (X, E(m)X +B) with m a message drawn at
random and B $←− Hn,w.

19Here we see that the reduction is not tight : for 128-bits of security the probability is 1− 269
20The intuition of the security of our scheme is in this lemma. Indeed the message is written using this 2c in

the public key. We basically show that dividing by G makes that the 2c that will contain the message covered in
randoms R.

21Once again the reduction is not tight. One could try to make it tighter by choosing which R goes with which
1, to minimize x

88

• ∆D((R, E(m)R+B); (R,R′)). By Lemma 4.6 we have that B/R is indistinguishable from
a random, applying Lemma 4.2 with f(X) = (R,X ·R′ + E(m)) we get that

∆D((R, E(m)R+B); (R,R ·R′ + E(m)))

is negligible. By observing that R ·R′ + E(m) is uniformly distributed, ∆D((R, E(m)R+
B); (R,R′)) is negligible.

• ∆D((R,R′); (pk, R)). This is shown to be negligible by Lemma 4.5 and Lemma 4.2 with
f(X) = (X,R) where R $←− Zp

This concludes the proof. �

4.3.7.2 Chosen Ciphertext Security

We now show that security holds against chosen ciphertext (Definition 4.10). For this we only
need to show that the queries will not help the adversary, and then conclude with semantic
security. The key point is that the decapsulation oracle to which the adversary has access will
answer with overwhelming probability ⊥ if the ciphertext are not made ’honnestly’. Since once
the key is fixed and the random oracle called with it the encapsulation procedure is deterministic,
the adversary can simulate it easily.

Theorem 4.7 (Semantic Security under Chosen Ciphertext Attack) Our KEM is semantic-
ally secure under chosen ciphertext attack (Definition 4.10) under the a-Projected-Mersenne
Assumption (Definition 4.6), with a as defined in 4.4.

Proof: There are two cases, either the random oracle was called on the answer of a query to
the decapsluation mechanism, or it was not (ie. the adversary tries ’malicious’ queries).

• If the adversary queries Decaps with a ciphertext, and gets K, which he queried to the
random oracle, then he can simulate the query easily.

• The probability of the second event is Pr[K ← Decaps(C $←− Adv)] = Pr[E(Dec(C)) · pk +
H(K) = C

$←− Adv] ≤
(
n
w

)
since it requires guessing the random oracle response. The second

event is therefore negligible.

�

4.3.8 Attacks on the Underlying Assumption
Due to the similarity with AJPS, it is natural to discuss the attacks that are most efficient against
it, and to measure to what extent such attacks apply to our new construction.

4.3.8.1 Lattice Attacks.

As for the other versions of Mersenne encryption Beunardeau et al.’s attack [BCGN17c], is also
applicable to our scheme and has an experimental cost of finding the right partitions for the low
hamming weight. We then set w = lambda.

89

4.3.8.2 Brute Force Attacks.

A brute force exhaustion of sk is always possible, and takes an effort of
(
n−1
w−1

)
. Thus the bare

minimum requirement for security is that this quantity exceeds 2λ.

4.3.8.3 Meet-in-the-Middle Attacks.

The key result of de Boer et al. is backed by [dBDJdW17, Lemma 3.1], which assumes that
F has constant small Hamming weigth w. Without this assumption, the likelihood that a
locality-sensitive hash function H is “good” for g does not have a lower bound, so that it the
meet-in-the-middle attack is no longer guaranteed to succeed. We can compare simulations from
[dBDJdW17, Appendix A.1] with the same experiment on our scheme, which shows that de Boer
et al.’s Heuristic 3.2, which is reasonable against AJPS-1, does not hold for our scheme.

4.3.9 Conclusion
Altough our scheme is vulnerable to the same attacks as AJPS, it is simpler in the sense that
we do not need two ciphertexts. We hoped that the size of the random R would have twart our
lattice attack. This is not the case experimentally, but since the analysis of our attack is not
complete, there is still hope that our scheme is of interest. We also think that it is simpler to
analyse our assumption than AJPS’s.

90

Chapter 5

Physical Security and Information
Theory

Contents
5.1 Introduction . 91
5.2 A New Differential Fault Analysis on PRIDE: from Theory to Practice . . . 93

5.2.1 Introduction . 93
5.2.2 Fault attacks against cryptographic algorithms 94
5.2.3 The PRIDE block cipher . 95
5.2.4 Differential Fault Analysis of PRIDE 96
5.2.5 Practical implementation of the DFA on PRIDE 102
5.2.6 Countermeasures . 105
5.2.7 Conclusion . 108
5.2.8 Appendices . 108

5.3 From Clustering Supersequences to Entropy Minimizing Subsequences for
Single and Double Deletions . 115
5.3.1 Introduction . 115
5.3.2 Related Work . 117
5.3.3 Framework . 118
5.3.4 Clustering Supersequences and Counting Subsequences 120
5.3.5 Entropy Minimization . 129
5.3.6 Concluding Remarks . 136
5.3.7 Appendices . 137

5.1 Introduction

In this chapter, we look at non standard physical models.
In the traditional cryptographic model, the adversary called Eve is an eavesdropper, meaning

that she stands between the two (or more) honest parties, and is able to hear (or intercept and
modify) conversations between those parties. This is called the black box model, since every
computation made by the parties are non-observable, and the result of those computations seems
to come from a block box to Eve.

91

In Section 5.2 we look at a stronger adversary, which is able to get and modify some information
from the internal computations of the parties. This model is called grey box since the information
she gets is noisy.

This model is useful when cryptographic computations are done on the field as for smart cards,
or IoT devices.

An even stronger model named white box was proposed more recently in 2002 in [CEJvO02].
In this model the adversary is all mighty, to model insecure execution environment, such as smart
phones, but this is outside of the scope of this thesis.

In Section 5.3 we look at parties that are able to communicate using means that obeys to the
laws of quantum physic. In traditional communications, the information is physically sent with
a lot of redundancy, to average noise and quantum effects. An undesirable consequence is that
an adversary can eavesdrop without being noticed since there is enough information to be split
between the adversary and the receiver. For example, one can measure the voltage between two
points in an electronic circuit, without interfering with the circuit functionality. Therefore, key
exchange requires cryptographic techniques to prevent the key to be intercepted. Quantum key
exchange sends keys in the clear but has so little information that anyone listening would prevent
the recipient from getting the information thanks to observer effects happening in quantum
mechanics. This can be achieved using optic fiber and the polarization of photons to represent
the key. Then every measurement from the adversary randomly changes the polarization of the
photons.

92

5.2 A New Differential Fault Analysis on PRIDE: from Theory to
Practice

Abstract

PRIDE is one of the most efficient lightweight block cipher proposed so far for connected
objects with high performance and low-resource constraints. In this paper, we describe
the first ever complete Differential Fault Analysis against PRIDE. We describe how fault
attacks can be used against implementations of PRIDE to recover the entire encryption
key. Our attack has been validated first through simulations, and then in practice on a
software implementation of PRIDE running on a device that could typically be used in IoT
devices. Faults have been injected using electromagnetic pulses during the PRIDE execution,
and the faulty ciphertexts have been used to recover the key bits. We also discuss some
countermeasures that could be used to thwart such attacks. This is joint work with Benjamin
Lac, Anne Canteaut, Jacques Fournier, Renaud Sirdey. This is an extended version of a work
presented at the 11th International Conference Risks and Security of Internet and Systems,
CRiSIS 2016 and published as [LBC+16]

5.2.1 Introduction
With the emergence of the Internet of Things (IoT), new cryptographic primitives are needed
to suit the high performance, low power and low resource constraints of IoT devices. Ciphers
like AES, which are good enough for devices like smart cards, do not satisfy the constraints of
devices like RFID tags or nodes in sensor networks. During the past years, several lightweight
block ciphers have been proposed, like for example PRESENT [BKL+07], PRINCE [BCG+12],
SIMON [BSS+15] or SPECK [BSS+15]. Among those, the NSA proposal SPECK is a highly
efficient software-oriented cipher, but it does not have any ‘linear diffusion layer’ implying that
it requires a huge number of rounds to guarantee an appropriate security level. In order to
keep a small number of rounds, the PRIDE cipher [ADK+14] exploits an optimal linear layer
which provides a high diffusion and has highly efficient implementations. Although hardware
implementations are more efficient in terms of clock cycles than software implementations, design
and study of software-oriented ciphers is nevertheless important since these implementations are
used in practice because they are less expensive and more flexible than hardware implementations.
To date, when looking at software implementations, PRIDE is one of the most efficient lightweight
cryptographic ciphers as shown the performance comparisons given in [ADK+14, BS15]. This led
us to study the security provided by PRIDE and its resistance to malicious attacks. In terms of
security, two of the differential attacks proposed so far in the literature do not allow to recover the
entire key [YHS+15, ZWWD14], while a third one [DC14] does achieve this but under stringent
conditions. Since PRIDE is to be used in IoT devices in pervasive environments, we ought to
also look at implementation-related issues. In that respect, we propose in this paper the first
Differential Fault Analysis (DFA) on PRIDE. DFA is a particular physical attack, in which we
compare the results of a correct computation to one which has been disturbed at a precise time,
in order to infer information about the key bits used in the algorithm. It is closely related to
differential cryptanalysis, but much more efficient since it exploits differential characteristics on
very few rounds only.

In this paper, we first present PRIDE before describing the theoretical DFA using different fault
models. We then validate our hypotheses and equations using data onto which fault models have
been ‘simulated’. In order to validate the practical feasibility of our attack, we used electromagnetic
pulses to inject faults during the execution of the PRIDE cipher running on an off-the-shelf chip
embedding an ARM Cortex-M3 micro-controller and applied our DFA on the corrupted results

93

obtained. So as to taking advantage of the 32-bit architecture of the micro-controller, we have
implemented PRIDE in ARM assembly language. Thereby, we show the practical feasibility of our
attack from 32-bit random faults. Finally, we discuss countermeasures that can be implemented
to thwart such attacks before concluding the paper with some perspectives.

5.2.2 Fault attacks against cryptographic algorithms
5.2.2.1 Physical attacks

Unlike mathematical attacks which target the actual definition of a cryptographic cipher, physical
attacks target the way the cipher is implemented. Physical attacks can be divided into two
categories: invasive and non-invasive ones. In this paper, we further focus on non-invasive
techniques which mainly consist either in analysing side-channel information leakages or in
injecting faults during a cryptographic computation.

Side-Channel Analyses [KS05], [MOP07] exploit the fact that some physical values or “side chan-
nels” such as the power consumption [KJJ99b], the electromagnetic radiation [GMO01], [QS01] or
the computation time [DKL+98], [Koc96] of an integrated circuit depends on the operations and
data manipulated during a given computation. Information about the internal processes of the
chip and the data it is manipulating can be derived by observing such external physical character-
istics. Such analyses can be quickly mounted with cheap equipment, without altering the physical
integrity of the circuit. This dependency between the side channels and the internal computations
can be analysed to infer information about the data manipulated using mathematical tools like
correlation [BCO04], mutual information [GBTP08], variance [MDF+09] or entropy [MGDF10]
or using architecture-dependant behaviors such as cache accesses [BZB+05], [Pag02, Pag04] or
branch predictions [AeKKS07, AKS07].

5.2.2.2 Fault attacks

Fault Attacks, introduced in [BDL97], consist in disturbing the behavior of the circuit in order
to alter the correct progress of the cipher. The faults are injected into the device by various
means such as light pulses [SA03], laser [Sko05], clock glitches [ADN+10], spikes on the voltage
supply [BS03] or electromagnetic (EM) perturbations [DDRT12]. Some of those techniques, like
the one using a laser, are invasive requiring the “decapsulation” of the chip using mechanical or
chemical means. Lasers allow to target one bit in a given register if well manipulated. However,
it is a very costly means of injection. Other techniques are not invasive such as glitches (power,
clock, electromagnetic). Clock and voltage glitches disturb the whole component, and many
injections have to be made before getting the faults required by theoretical attacks. EM glitches,
on the other hand, allow having relatively high spatial and temporal precisions using equipment
at “affordable costs” [DDRT12].

One of the objectives of fault attacks, especially when considering cryptographic ciphers, is
to perform a Differential Fault Analysis (DFA). DFA, originally described in [BS97], consists in
retrieving a cryptographic key by comparing the correct ciphertexts with the faulty ones. DFA
techniques have been described and applied to most publicly known cryptographic ciphers going
from symmetric-key algorithms like the DES [BS97] or the AES [SLIO12] to asymmetric algorithms
like RSA [BDL97] or even more complex schemes like pairing-based cryptography [LFG13]. In the
particular field of lightweight cryptography, differential fault attacks have been proposed against
ciphers like PRESENT [ZWG11] (used in conjunction with a cube attack), SPECK [TBM14]
(although about a hundred faults are needed which is way more than usual), TRIVIUM [MBB11]
or PRINCE [SH13]. The latter PRINCE block cipher has an SPN structure similar to PRIDE,
and in that respect, the DFA proposed in [SH13] is quite similar to the one proposed hereafter:

94

in our case, the attack is not only adapted to the PRIDE cipher but has also been validated in
practice on an embedded device running PRIDE.

DFA techniques are very efficient in retrieving the keys used during a cryptographic com-
putation, usually requiring a few executions only. It is also quite complex to devise physical
countermeasures against such attacks because of the diversity of the possible injection methods
and because the usually deployed countermeasures (like masking, redundancy, error-correcting
codes etc) have a serious impact on the performance of the targeted cryptographic cipher. For all
those reasons, in our approach of analysing the security of implementations of PRIDE, we decided
to first focus on its resistance against fault attacks in order to identify possible attack paths and
devise the most efficient countermeasures in order to keep the high performance characteristics of
the original cipher.

5.2.3 The PRIDE block cipher
PRIDE is an iterative block cipher composed of 20 rounds and introduced by Albrecht &
al. [ADK+14] in 2014. It takes as input a 64-bit block and uses a 128-bit key k = k0||k1. The first
64 bits k0 are used for pre- and post-whitening. The last 64 bits k1 are used by a key schedule to
produce the subkeys fr(k1) for each round r. The key schedule simply adds round-constants to
parts of the key.

We denote k1i the i-th byte of k1 then

fr(k1) = k10 ||g(0)
r (k11)||k12 ||g(1)

r (k13)||k14 ||g(2)
r (k15)||k16 ||g(3)

r (k17)

for round r with

g(0)
r (x) =(x+ 193r) mod 256
g(1)
r (x) =(x+ 165r) mod 256
g(2)
r (x) =(x+ 81r) mod 256
g(3)
r (x) =(x+ 197r) mod 256

In this paper, X[n] denotes the n-th nibble (4 bits) of a binary word X while X{b} denotes
its b-th bit. Moreover, the bits and nibbles are numbered from left to right starting from 0. The
following notation is used for the intermediate values of the state within the round function R of
PRIDE (see Figure 5.2):

Ir the input of the r-th round
Xr the state after the key addition layer of the r-th round
Yr the state after the substitution layer of the r-th round input
Zr the state after the permutation layer of the r-th round
Wr the state after the matrix layer of the r-th round
Or the output of the r-th round

The r-th round, 1 ≤ r ≤ 19, of PRIDE is then composed of the following steps (see Figure
5.2).

i. Apply the inverse permutation layer P−1 given in Appendix 5.2.8.1 to fr(k1) and XOR the
permuted round subkey to the input state: Xr = Ir ⊕ P−1(fr(k1)),

ii. Apply the S-box S given in Table 5.1 to each of the 16 nibbles of Xr (i.e. apply the
substitution layer S−layer to Xr): Yr = S−layer(Xr),

95

iii. Apply the permutation layer P to Yr: Zr = P(Yr),

iv. Multiply vector

 Zr{16i}
...

Zr{16i+ 15}

 by Li in Appendix 5.2.8.1 for i ∈ {0, · · · , 3}:

Wr = L0

 Zr{0}
...

Zr{15}

 ||L1

Zr{16}
...

Zr{31}

 ||L2

Zr{32}
...

Zr{47}

 ||L3

Zr{48}
...

Zr{63}

,

v. Apply the inverse permutation P−1 to Wr: Or = P−1(Wr).

Table 5.1: S-box of the block cipher PRIDE

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
S(x) 0x0 0x4 0x8 0xf 0x1 0x5 0xe 0x9 0x2 0x7 0xa 0xc 0xb 0xd 0x6 0x3

For the final round, denoted by R′, only the first two steps are applied.
In order to encrypt a plaintext M , the cipher applies P−1 to M , then performs an XOR

between the result and k0. It then applies the 20 rounds as previously described and performs an
XOR with k0 again. Finally, P is applied to the result to obtain the ciphertext C. Figure 5.1
shows the general structure of PRIDE.

M P−1 R⊕

k0 f1(k1)

R

f2(k1)

R

f19(k1)

R′

f20(k1)

⊕

k0

P C

Figure 5.1: The structure of PRIDE

The PRIDE round function R is depicted on Figure 5.2.

5.2.4 Differential Fault Analysis of PRIDE
In this subsection, we present a technique adapted from the proposed attack in [SH13] to retrieve
the secret key using fault injections on PRIDE computations. Our analysis aims at minimizing
the number of fault injections needed. We use ideal fault models, and we describe how to exploit
them to retrieve the key.

5.2.4.1 General principle

Despite their similarities, a DFA is different from a classical differential analysis. Indeed, for the
latter, the differences must be injected into the input of the cipher while for a DFA they can be
injected whenever the attacker wants. The DFA that we propose in this paper also differs from
most classical DFA since it is not based on statistical methods: it is deterministic.

The attack is composed of two stages, one consists in corrupting data manipulated in the
penultimate round to retrieve k0 and the other in attacking the antepenultimate round to retrieve

96

S S S S S S S S S S S S S S S S
R′

R

Ir

P−1(fr(k1))
Xr

Yr

P

Zr

Wr

P−1

Or

L0 L1 L2 L3

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

.
⊕

.

.

.

.

.

Figure 5.2: The PRIDE round function

k1. The general structure of the attack is to exploit the diffusion of a 16-bit word within the
inverse permutation layer in order to get a known 4-bit difference at the input of each S-box on the
following round. Together with the knowledge of the output difference of each S-box, which are
derived from the correct and faulty ciphertexts, C and C∗, this allows us to retrieve information
about the key. To this end, we exploit the difference distribution table of the PRIDE S-box given
in Appendix 5.2.8.2. Indeed, obtaining information on k0 is possible from the following equation:

∆X20 = S−layer−1(P−1(C)⊕ k0)⊕ S−layer−1(P−1(C∗)⊕ k0),

where S−layer = S−layer−1 denotes the substitution layer. We can use this equation for each
nibble 0 ≤ i ≤ 15:

x = P−1(C)[i]⊕ k0[i] and y = P−1(C∗)[i]⊕ k0[i] satisfy

x⊕ y = ∆Y20[i] = P−1(∆C)[i] and S−1(x)⊕ S−1(y) = ∆X20[i].

From the knowledge of a nonzero input difference ∆Y20[i] and of an output difference ∆X20[i] for
S−1, we deduce 2 or 4 candidates for the input value x, because the differential uniformity of S−1

equals 4 (see the difference distribution table in Appendix 5.2.8.2). Moreover, Proposition 5.1
enables us to exhibit pairs of differentials for the S-box which are simultaneously satisfied for a
single element. The proof of this proposition is given in Appendix 5.2.8.2.

Proposition 5.1 Let S be an n-bit S-box with differential uniformity 4. Let (a1, b1) and (a2, b2)
be two differentials with a1 6= a2 such that the system of two equations

S(x⊕ a1)⊕ S(x) = b1 (5.1)

S(x⊕ a2)⊕ S(x) = b2 (5.2)

97

has at least two solutions. Then, each of the three equations (5.1), (5.2) and

S(x⊕ a1 ⊕ a2)⊕ S(x) = b1 ⊕ b2

has at least four solutions.

In other words, if we can find two differentials (a1, b1) and (a2, b2) such that one out of the
three entries in the difference distribution table (a1, b1), (a2, b2) and (a1 ⊕ a2, b1 ⊕ b2) equals to 2,
then we can guarantee that the input satisfying these two differentials simultaneously is unique.

Note: if one of the three equations does not have any solution, then the system of two equations
(5.1) and (5.2) does not have any solution neither.

Once k0 has been recovered (we will see in the next parts some strategies to achieve this end),
X20 and X∗20 can be computed from the ciphertexts C and C∗. Let L denote the whole linear
layer, i.e.,

L = P−1 ◦

L0 0 0 0
0 L1 0 0
0 0 L2 0
0 0 0 L3

 ◦ P.
Then ∆Y19 can be computed and the following equation

∆X19 = S−layer−1(L−1(S−layer−1(P−1(C)⊕ k0)⊕ P−1(f20(k1))))
⊕S−layer−1(L−1(S−layer−1(P−1(C∗)⊕ k0)⊕ P−1(f20(k1)))),

allows the attacker to recover P−1(f20(k1)) and therefore k1, with the same method but from
fault injections in the 18-th round. Indeed, for 0 ≤ i ≤ 15:

x = L−1(S−layer−1(P−1(C)⊕ k0)⊕ P−1(f20(k1)))[i] and
y = L−1(S−layer−1(P−1(C∗)⊕ k0)⊕ P−1(f20(k1)))[i] satisfy

x⊕ y = ∆Y19[i] = L−1(S−layer−1(P−1(C ⊕ k0))⊕ S−layer−1(P−1(C∗ ⊕ k0)))[i]
and S−1(x)⊕ S−1(y) = ∆X19[i].

5.2.4.2 Ideal fault model

The strategies we propose require at least 2 fault injections for each stage of the attack to retrieve
a round key (i.e 4 to retrieve the complete key). For the first stage, whose objective is to find k0,
one of the following approaches can be used:

(i.) Flip Z0
19 then Z3

19 or (ii.) Flip W 0
19 then W 3

19,

where Zir (resp. W i
r) denotes the input (resp. output) of the matrix Li at round r. Then, to

retrieve the key k1, and so the complete key, the possible fault injections are the same but are
carried out on Z18 or W18. A flip of Z0

r gives us a difference equal to 0xffff on the input of the
matrix L0. The matrix being linear, we know that the output difference is also 0xffff. The latter
being the same value than the one obtained with a flip of W 0

r . The other matrices have differences
in input and output equal to zero. Then, the inverse permutation layer also being linear, we
know the input difference of each S-box of the substitution layer at round r + 1. These values
are equal to 0x8, so we obtain ∆Xr+1[i] = 0x8 for all i ∈ {0, · · · , 15}. Moreover, we recall that
the output differences are known from the correct and faulty ciphertexts. Figure 5.3 shows the

98

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

∆Y19

P

∆Z19

∆W19

P−1

∆O19 = ∆I20

P−1(f20(k1))
∆X20

∆Y20 = ∆O20

k0

P−1(∆C)

P

∆C

L0 L1 L2 L3

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

.
⊕

.

.

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

0

⊕

0

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

1

⊕

1

Figure 5.3: Propagation on PRIDE of the difference obtained by a flip of Z0
19

propagation of the difference (displayed in red) obtained by a flip of Z0
19. In the same way, a flip

of Z3
r or W 3

r yields a difference of 0x1 on each S-box at round r + 1. Finally, with strategy (i.)
or (ii.), we obtain pairs of differentials (∆Y20[i], ∆X20[i])1 = (a1, 0x1) and (∆Y20[i], ∆X20[i])2
= (a2, 0x8) for all i ∈ {0, · · · , 15} with a1 and a2 known. We get the same pairs for (∆Y19[i],
∆X19[i]) from faults on the 18-th round. Since 0x1⊕0x8 = 0x9, from the Proposition 5.1 (and
the difference distribution table in Appendix 5.2.8.2), there is only one element in the intersection
of the two sets of solutions obtained for each nibble. Therefore, we have shown that we get
only one candidate for each nibble of x = P−1(C)⊕ k0 from faults on the 19-th round and one
candidate for each nibble of x = L−1(S−layer−1(P−1(C)⊕ k0)⊕ P−1(f20(k1)))[i]. Finally, from
the knowledge of C we retrieve k0 and from the key schedule, we retrieve k1.

The strategies we have presented require 4 fault injections to retrieve the complete key. In
case the attacker obtains fewer faults, Table 5.2 shows the time complexity, expressed as a number
of encryptions, that an attacker can obtain to retrieve the secret key k with 1 to 3 faults following
the ideal fault model. A proof of these values is given in Appendix 5.2.8.5.

99

Table 5.2: Trade-offs between the time complexity, expressed as a number of encryptions, and the
number of faults with the ideal fault model.

Number of faults 1 2 3
Time complexity 264 232 227.7

5.2.4.3 Random fault model

In order to achieve the attack, we must flip all the bits of four 16-bit words for the ideal fault
model used in the preceding part. However, we can see that reversing one bit provides an active
S-box, it is, therefore, enough to inverse all the bits of the desired 16-bit words. Indeed, if we
flip the bit i of W 0

19 from one fault, we obtain 4 candidates for the nibble i of the subkey k0.
Moreover, if we flip the bit i of W 3

19 from another fault, we retrieve (by intersection) the value of
the nibble i of k0.

It is easy to target a specific instruction from a simple power (or EM) analysis for example in
practice. If the instruction is less than 16 bits, we can then reduce the key space from each active
S-box, until it is small enough for an exhaustive search. Finally, we will see in the subsection 5
that the attack is still effective from 32-bit faults, only the exploitation of the faults is different.

5.2.4.4 Properties exploited by our attack

Our attack mainly exploits two properties of the building-blocks of PRIDE:

The design of the linear layer based on the so-called interleaved construction. Indeed,
this construction aims at designing a diffusion layer with a high branch number (see Theorem 1 in
[ADK+14]). For a SPN whose substitution layer is composed of n S-boxes over Fk2 , the linear layer
obtained by the interleaved construction is defined as L = P−1 ◦L◦P where P is an isomorphism
from (Fk2)n into (Fn2)k. Then, we deduce from the definition of P that flipping the n bits of any
word at the input of P−1 in W = (W1, · · · ,Wk) activates all S-boxes in the next round. Indeed,
by construction, the n bits of any Wi go to different S-boxes. Hence flipping n consecutive bits in
the linear layer of the penultimate round allows the attacker to recover information on all the n
nibbles of the subkey used in the last round. The number of candidates for this last-round subkey
is upper-bounded by δ(S)n, where δ(S) is the differential-uniformity of the S-box (δ(S) = 4 in
the case of PRIDE and of most block ciphers using 4-bit S-boxes).

The differential properties of the S-box, which avoids the existence of differentials
with high probability over a large number of rounds. The counterpart of this resistance
against classical differential cryptanalysis is that the number of inputs which satisfy two valid
differentials simultaneously is usually reduced to a single element. This property enables the
attacker to drastically reduce the number of subkey candidates. In the case of PRIDE, two faults,
each on n consecutive bits in the linear layer, are enough to obtain a single candidate for the
subkey.

5.2.4.5 Simulation of the DFA on PRIDE

In order to validate our theoretical DFA against PRIDE and test the correctness of the proposed
equations, we performed a validation by simulation.

100

In this section we assume that a device executes PRIDE with a key k = k0||k1 where k0
= 0xefcdab8967452301 and k1 = 0x0123456789abcdef. We further assume that an attacker
successfully flips all the bits of Z0

19, Z3
19, W 0

18 and W 3
18.

Then, she obtains the following ciphertexts from 5 executions of the same plaintext 0xfed-
cba9876543210:

i. 0xc40f2551f39c63a9 the correct ciphertext,

ii. 0xe7f325510dc3b7a8, 0xc40fdaaec89376f7 from a flip of Z0
19, Z3

19,

iii. 0x2857589433cbdead, 0x461720d9729c1956 from a flip of W 0
18, W 3

18.

The knowledge of the plaintext is not necessary, it is sufficient to ensure that the same plaintext
is used for each execution.1 The attacker obtains the following differentials for the last substitution
layer from the first two faulty ciphertexts:

i. (∆X20, ∆Y20)1 = (0x8888888888888888, 0x33a323a88a8aaa23),

ii. (∆X20, ∆Y20)2 = (0x1111111111111111, 0x4467656745457776).

From the first differential, she obtains a set of candidates for each nibble of P−1(C) ⊕ k0
where C is the correct ciphertext. She can then sectioned a set of candidates for each nibble of k0
from P−1(C) = 0xab720c373416ba8d. Table 5.3 shows the obtained sets of candidates.

Table 5.3: Sets of candidates obtained from (∆X20, ∆Y20)1
k0[0] k0[1] k0[2] k0[3] k0[4] k0[5] k0[6] k0[7] k0[8] k0[9] k0[10] k0[11] k0[12] k0[13] k0[14] k0[15]
0x5 0x4 0x4 0x5 0x0 0x0 0x0 0x1 0x5 0x5 0x4 0x5 0x0 0x1 0x0 0x1
0x6 0x7 0x6 0x6 0x2 0x3 0x2 0x2 0x6 0x7 0x7 0x7 0x2 0x3 0x2 0x2
0xd 0xc 0xc 0xd 0x8 0x8 0x8 0x9 0xd 0xd 0xc 0xd 0x8 0x9 0x8 0x9
0xe 0xf 0xe 0xe 0xa 0xb 0xa 0xa 0xe 0xf 0xf 0xf 0xa 0xb 0xa 0xa

From the last differential, the attacker obtains another set of candidates for each nibble of k0.
Table 5.4 shows the resulting candidates.

Table 5.4: Sets of candidates obtained from (∆X20, ∆Y20)2
k0[0] k0[1] k0[2] k0[3] k0[4] k0[5] k0[6] k0[7] k0[8] k0[9] k0[10] k0[11] k0[12] k0[13] k0[14] k0[15]
0xa 0xa 0xa 0xa 0xa 0xa 0x8 0x8 0x2 0x2 0x0 0x0 0x2 0x2 0x0 0x0
0xb 0xb 0xb 0xb 0xb 0xb 0x9 0x9 0x3 0x3 0x1 0x1 0x3 0x3 0x1 0x1
0xe 0xe 0xc 0xc 0xc 0xe 0xe 0xe 0x6 0x6 0x4 0x4 0x4 0x4 0x6 0x6
0xf 0xf 0xd 0xd 0xd 0xf 0xf 0xf 0x7 0x7 0x5 0x5 0x5 0x5 0x7 0x7

By doing the intersection of the obtained two sets for each nibble, the attacker gets k0. Then,
with this value of k0, she obtains the following differences for the antepenultimate substitution
layer from the flip of W 0

18 and W 3
18:

i. (∆X19, ∆Y19)1 = (0x8888888888888888, 0x23a2288338832828),

ii. (∆X19, ∆Y19)2 = (0x1111111111111111, 0x7777456474776476).

From the first differential, she obtains sets of candidates for each nibble Nibi ofL−1(S(P−1(C)⊕
k0)⊕ P−1(f20(k1))) with i ∈ {0, · · · , 15}. Table 5.5 shows the sets of candidates she gets.

1If it is not the case, the attacker can mount an attack if she knows, for each faulty ciphertext, the corresponding
correct ciphertext - to obtain differentials for the S-boxes. However, the key may not be recovered in this case
since the information obtained by the attacker depends on the value of the correct ciphertext.

101

Table 5.5: Sets of candidates obtained from (∆X19, ∆Y19)1
Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15
0x0 0x4 0x1 0x0 0x0 0x5 0x5 0x4 0x4 0x5 0x5 0x4 0x0 0x5 0x0 0x5
0x2 0x7 0x3 0x2 0x2 0x6 0x6 0x7 0x7 0x6 0x6 0x7 0x2 0x6 0x2 0x6
0x8 0xc 0x9 0x8 0x8 0xd 0xd 0xc 0xc 0xd 0xd 0xc 0x8 0xd 0x8 0xd
0xa 0xf 0xb 0xa 0xa 0xe 0xe 0xf 0xf 0xe 0xe 0xf 0xa 0xe 0xa 0xe

From the last differential, the attacker obtains other sets of candidates for each nibble Nibi of
L−1(S(P−1(C)⊕k0)⊕P−1(f20(k1))) with i ∈ {0, · · · , 15}. Table 5.6 shows the sets of candidates
obtained.

Table 5.6: Sets of candidates obtained from (∆X19, ∆Y19)2
Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15
0x8 0x8 0x8 0x8 0x0 0x2 0xa 0x0 0x8 0x0 0x8 0x8 0xa 0x0 0x8 0xa
0x9 0x9 0x9 0x9 0x1 0x3 0xb 0x1 0x9 0x1 0x9 0x9 0xb 0x1 0x9 0xb
0xe 0xe 0xe 0xe 0x4 0x6 0xc 0x4 0xe 0x4 0xe 0xe 0xc 0x4 0xe 0xc
0xf 0xf 0xf 0xf 0x5 0x7 0xd 0x5 0xf 0x5 0xf 0xf 0xd 0x5 0xf 0xd

By intersecting the obtained two sets for each nibble, the attacker gets

L−1(S(P−1(C)⊕ k0)⊕ P−1(f20(k1))) = 0x8f9806d4f5efa58d.

Then, she computes

S(P−1(C)⊕ k0)⊕ P−1(f20(k1)) = 0x24c39cc978f41dd4

and from S(P−1(C)⊕ k0) = 0x11c3a9c65f5f772b, she retrieves

P−1(f20(k1)) = 0x3500350f27ab6aff.

finally she deduces f20(k1) = 0x0137454b89ffcd53, she gets k1 from the key scheduling and so she
retrieves the complete key.

5.2.5 Practical implementation of the DFA on PRIDE
In order to test the feasibility of our attack against the PRIDE block cipher, we have implemented
and run the cipher on an STM32 chip embedding an ARM Cortex-M3 micro-controller. That
particular chip was chosen because it is quite representative of the off-the-shelf devices used for
IoT applications. Note that the chip does not embed any countermeasures against the kind of
the fault attacks implemented in this paper. We validated the attack on an implementation in
ARM assembly language taking advantage of the 32-bit architecture of the micro-controller. We
present in this section the full analysis conducted on this implementation. The source code is
given in Appendix 5.2.8.6, and Table 5.7 compares the performances of this implementation with
that of the implementation in AVR assembly language whose source code and performances are
given in [ADK+14].

Table 5.7: Comparison between AVR and ARM assembly implementation

Time (cycle) Size (bytes)
AVR assembly implementation (given in [ADK+14]) 1514 266
ARM assembly implementation (Appendix 5.2.8.6) 2375 490

So as to inject exploitable faults into such a chip, we used EM pulses because with this
approach we did not need to decapsulate the chip and we were able to inject faults at precise

102

enough instants to target specific instructions of the cipher during its execution. The set-up we
used is quite similar to the one described in [DDRT12], with the difference that we did not need
any motorized X-Y stage: injecting faults ‘in the center’ of the chip was good enough for having
a fault model close to a random fault model (one chance over two to flip a bit). Indeed, it is
possible to target a precise 32-bit word (more precisely a specific instruction), but the injected
faults follow a random pattern. In order to obtain pairs of differentials (∆X20[i],∆Y20[i]) (resp.
(∆X19[i],∆Y19[i])) for i ∈ {0, · · · , 15}, we injected the faults on the first and the second 32-bit
word of the state before the inverse permutation in the 19-th (resp. 18-th) round; injecting as
many faults as necessary. Each fault on the first word provided us differences on each nibble
of ∆X20 equal to 0x0, 0x4, 0x8 or 0xc and equal to 0x0, 0x1, 0x2 or 0x3 from each fault on
the second word. We validated the attack from these 32-bit faults, we will see that the faults
exploitation is different (some pairs of differentials do not allow us a single candidate) but the
attack is nevertheless still effective.

In our experiment, we used a key k = k0||k1 where k0 = 0xf3f721cb1c882658 and k1 =
0xe417d148e239ca5d. The plaintext used for all executions was 0x0132546 798badcfe and the
correct ciphertext was 0x9aecb37ea45a6c89. We used a simple EM analysis to identify in time
the 18-th and 19-th rounds. figure 5.4 shows the curve obtained on the oscilloscope and the 20
rounds are displayed in red.

Figure 5.4: EM curve measured of PRIDE cipher

Then we used an electromagnetic pulse generator to disrupt the PRIDE’s execution. Table
5.8 (resp. Table 5.9) shows the faults we have obtained from the electromagnetic injection on
W19 (resp. W18) numbered from 1 to 25. For each fault, Table 5.8 (resp. Table 5.9) provides the
value of ∆X20 and ∆Y20 (resp. ∆X19 and ∆Y19), only obtained from the correct and the faulty
ciphertexts. We denote respectively by θ, β, γ, δ the possible pair of values (0x2,0x3), (0x4,0x8),
(0x4,0xc), (0x8,0xc). Indeed, some differences in the output of the S-boxes can be obtained from
two distinct differences in input. Finally, we give in each table the fault value computed after
retrieving the key.

Remark Out of 2,000 shots, we don’t get any cipher for 1,219 cases and we get 247 faulty ciphers
including 13 exploitable (i.e. which satisfied the conditions for our DFA). Non exploitable faulty
ciphers came from a dysfunction of the UART due to the faults.

We now give, among the obtained faults, those that give as much information as all faults
and all sets of candidates that we can extract from each fault. Table 5.10 shows all sets of
candidates obtained for each nibble of k0 from the differentials (∆Y20, ∆X20) and with P−1(C)
= 0xe17c93c49ec6fc61 where C is the correct ciphertext. Symbol ∅ means that the fault does not
provide any information about the nibble (i.e. the 16 values are possible).

We eventually get 4 possible values for k0 with k0[8] ∈ {0x0, 0x1} and k0[10] ∈ {0x8, 0x9}.
In order to reduce the number of possible keys, we then used faulty ciphers obtained from fault

103

No. Faulty ciphertext Value of the fault on W19 Value of ∆Y20 Value of ∆X20
1 0x1aad3b972c92ec09 0x00000000804108e8 0xf00060007e40600c 0xθ00010001θ10100θ
2 0x7b4c93dea55a6d89 0x00000000e1a0a0a0 0x88c0000bc0c00000 0xθθθ0000θθ0θ00000
3 0x1b6c733e255aadc9 0x0000000081804040 0xf500000b85000000 0xθ100000θθ1000000
4 0x71ecd27ee55a6d89 0x00000000eb00e900 0x8ec0808f00000000 0xθθθ0θ0θθ00000000
5 0x9aecb324a4426cdb 0x000000000000005a 0x0000000005076050 0x0000000001011010
6 0x9a57b33fa4626cf1 0x0000000000bb005a 0x0000000085bbb08c 0x00000000θ1θθθ0θθ
7 0x9a57b365a4606cb9 0x0000000000bb0000 0x0000000080bfe0ec 0x00000000θ0θθθ0θθ
8 0x77aa24313111ed8c 0x00000000ed461f4d 0xf8868e4f0e006de7 0xθθθ1θθ1θ0θ001θθ1
9 0x9ae8b37ac15a6989 0x6500040400000000 0x0220030300000c00 0x0δδ00δ0δ00000γ00
10 0x8aecb27e415abc89 0xe400d10000000000 0x3329020600000000 0xδδδγ0δ0400000000
11 0xa3e692ed909ee688 0x355fab9300000000 0x10ea921c620482c5 0x40cβγδ4γ4δ0c8δγc
12 0x05ecb27e565a7289 0xf3001f0000000000 0xa22b99bc00000000 0xβδδcγγcγ00000000

Table 5.8: Faults obtained on the 19-th round

No. Faulty ciphertext Value of the fault on W18 Value of ∆Y19 Value of ∆X19
13 0xf24690de8df8cc89 0x0000000082000000 0xc00000b000000000 0xθ00000θ000000000
14 0x2df93aebf5935009 0x0000000041c0d0d0 0x7807000bd8050000 0x1θ01000θθθ010000
15 0xa9a4a34f84604dde 0x0000000003010707 0x000004cd0000065c 0x000001θθ0000011θ
16 0x52c367c49a9b8786 0x0000000000b55858 0x05077000b6d84808 0x01011000θ1θθ1θ0θ
17 0x00632c247f18e99e 0x0000000058580000 0x0e0bb0000d0ef000 0x0θ0θθ0000θ0θθ000
18 0xecbc98d50864ad3a 0x00000000a7a70000 0xc0f008bbb0d00888 0xθ0θ00θθθθ0θ00θθθ
19 0x43b733ec34c1ec11 0x0093000000000000 0x00000000300a0022 0x00000000δ00β00δδ
20 0xcabdf870ee423736 0x75e5575700000000 0x0c8c0b123baf049e 0x0γ8γ0c4δδcβ40cγc
21 0x46eb59132610ef55 0x01e0c60100000000 0x6f0001133aa00006 0x4400044δδββ00004
22 0x9d13b57cf2211618 0x13974cd400000000 0x0f036133290c0422 0x040δ44δδδγ0γ0cδδ
23 0x1247352b2400c0ed 0x0000006700000000 0x0000000009900c96 0x000000000γγ00γγ4
24 0x770a084c5528c599 0x6363000000000000 0x0a8000330aa00022 0x0β8000δδ0ββ000δδ
25 0xc80ca16eb67b9711 0x3600a90000000000 0x6043623a00000000 0x40cδ4δδβ00000000

Table 5.9: Faults obtained on the 18-th round

injection on the 18-th round. For this, we compute the difference output ∆Y19 from the remaining
4 candidates for the key. Then we can observe that some differentials (∆X19, ∆Y19) are not
possible and therefore remove the corresponding candidate.

104

Table 5.10: Sets of candidates obtained from (∆Y20, ∆X20)

No. k0[0] k0[1] k0[2] k0[3] k0[4] k0[5] k0[6] k0[7] k0[8] k0[9] k0[10] k0[11] k0[12] k0[13] k0[14] k0[15]

1

0x0

∅ ∅ ∅

0x2

∅ ∅ ∅

0x0 0x2 0x8

∅

0x2

∅ ∅

0x4
0x1 0x3 0x1 0x3 0x9 0x3 0x5
0xe 0x4 0x6 0xc 0xc 0x4 0x8
0xf 0x5 0x7 0xd 0xd 0x5 0x9

3

0x0 0x2

∅ ∅ ∅ ∅ ∅

0x0 0x1 0x0 0x1 0x8

∅ ∅ ∅ ∅ ∅ ∅0x1 0x3 0x2 0x3 0x2 0x3 0x9
0xe 0x6 0x8 0x9 0x8 0x9 0xc
0xf 0x7 0xa 0xb 0xa 0xb 0xd

6 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0x0 0x1 0x8 0x0 0x1 0x0 0x1 0x0 0x1

∅

0x4 0x5 0x4
0x2 0x3 0x9 0x2 0x3 0x2 0x3 0x2 0x3 0x6 0x7 0x5
0x8 0x9 0xc 0x8 0x9 0x8 0x9 0x8 0x9 0xc 0xd 0x8
0xa 0xb 0xd 0xa 0xb 0xa 0xb 0xa 0xb 0xe 0xf 0x9

8

0x0 0x0 0x1 0x4 0x5 0x0 0x0 0x1 0x0 0x8 0x4

∅

0x2

∅ ∅

0x2 0x6 0x4 0x8
0x1 0x2 0x3 0x6 0x7 0x1 0x2 0x3 0x1 0x9 0x5 0x3 0x3 0x7 0x5 0x9
0xe 0x8 0x9 0xc 0xd 0x6 0x8 0x9 0xe 0xc 0xa 0xc 0x4 0xa 0xa 0xe
0xf 0xa 0xb 0xe 0xf 0x7 0xa 0xb 0xf 0xd 0xb 0xd 0x5 0xb 0xb 0xf

11 ∅

0x1 0x1 0x4

∅

0x4
0xa 0x5 0x2 0x3 0x8 0x2 0x0 0x6 0x1 0x6 0x0
0xb 0x1 0x7 0x4 0x4 0x9 0x7 0x1 0x9 0x8 0x2 0x9 0x5 0x8
0xe 0xf 0xb 0xb 0x6 0xc 0xb 0x6 0xb 0xc 0x9 0xb 0x9 0xd
0xf 0xd 0xd 0x9 0xd 0xe 0x7 0xc 0xa 0xc 0xc

0xf 0xb 0xe 0xe

12

0x3 0x1 0x0

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0x5 0x3 0x2 0x2 0x1 0x2
0x7 0x4 0x5 0x7 0x4 0x7 0x7 0x7
0x9 0x6 0x7 0xc 0xb 0x8 0xc 0xb
0xd 0x9 0xd 0xd 0xe 0xe
0xf 0xb 0xf

Indeed, from the faulty ciphertext 0xf24690de8df8cc89 obtained from a fault on W18, we
obtain the 4 following values for ∆Y19 for each possible value of k0:

k0
f3f721cb0c882658
f3f721cb0c982658
f3f721cb1c882658
f3f721cb1c982658

∆Y19
0xc000009022000000
0xe000009022220000
0xc00000b000000000
0xe00000b000220000

and since we know that we injected faults on the last 32 bits of W18, we know that each nibble of
∆X19 is either 0x0, 0x1, 0x2 or 0x3. From the difference distribution table of the S-box, we see
that an input difference equal to 0x1, 0x2 or 0x3 can lead to an output difference in {0x4, 0x5,
0x6, 0x7, 0x8, 0xb, 0xc, 0xd, 0xe, 0xf} only. Consequently, we retrieve k0 (displayed in red).

Then, Table 5.11 shows all sets of candidates obtained for each nibble Nibi of L−1(S(P−1(C)⊕
k0)⊕P−1(f20(k1))) with i ∈ {0, · · · , 15}, from differentials (∆Y19, ∆X19). We again denote by ∅
when the fault does not provide any information about the nibble (i.e. the 16 values are possible).

Finally, by intersecting sets for each nibble, we deduce 8 candidates for k1 from k0 and C
and we retrieve the correct value of k by testing all. With this we provide, to the best of our
knowledge, the first practical validation of a DFA against PRIDE, even against any lightweight
SPN-block cipher.

Remark We observed that injecting 32-bit random faults allows us to have lower complexity than
with 16-bit random faults. Indeed, although the differential pairs obtained do not always provide a
single candidate in the case of 32-bit faults, the probability to obtain a differential is greater than
with 16-bit faults. Finally, we showed that flipping one bit give us a known difference on a nibble,
nd so we canlead the attack with faults from 1 to 32 bits.

5.2.6 Countermeasures

In this section, we present and briefly analyze three possible countermeasures. This list of
countermeasures is not exhaustive, and any combination of those three can be used in practice to
thwart the DFA proposed in this paper.

105

Table 5.11: Sets of candidates obtained from (∆Y19, ∆X19)

No. Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15

16 ∅

0x2

∅

0x8 0x8

∅ ∅ ∅

0x4 0x5 0xa 0x6 0x0 0x1 0x0 0x0 0x1

∅

0x0 0x1
0x3 0x9 0x9 0x6 0x7 0xb 0x7 0x2 0x3 0x1 0x2 0x3 0x2 0x3
0x6 0xe 0xe 0xc 0xd 0xc 0xa 0x8 0x9 0x4 0x8 0x9 0x8 0x9
0x7 0xf 0xf 0xe 0xf 0xd 0xb 0xa 0xb 0x5 0xa 0xb 0xa 0xb

17 ∅

0x2

∅

0x4 0x5 0x4 0x5

∅ ∅ ∅ ∅

0x6

∅

0x2 0x0

∅ ∅ ∅0x3 0x6 0x7 0x6 0x7 0x7 0x3 0x1
0xa 0xc 0xd 0xc 0xd 0xa 0xa 0xe
0xb 0xe 0xf 0xe 0xf 0xb 0xb 0xf

18

0x4

∅

0x0

∅ ∅

0x0 0x1 0x4 0x5 0x4 0x5 0x4 0x5

∅

0x6

∅ ∅

0x0 0x1 0x0 0x1 0x0 0x1
0x5 0x1 0x2 0x3 0x6 0x7 0x6 0x7 0x6 0x7 0x7 0x2 0x3 0x2 0x3 0x2 0x3
0x8 0xe 0x8 0x9 0xc 0xd 0xc 0xd 0xc 0xd 0xa 0x8 0x9 0x8 0x9 0x8 0x9
0x9 0xf 0xa 0xb 0xe 0xf 0xe 0xf 0xe 0xf 0xb 0xa 0xb 0xa 0xb 0xa 0xb

20 ∅ ∅

0x0 0x1 0x1

∅

0x3 0x5 0x3 0x0 0x2 0x2 0x3 0x2
0x6 0x6 0x6 0x0 0x1 0x5 0x4 0x0 0x7 0x3 0xa 0x4 0x6
0xa 0xd 0xa 0xb 0x4 0x7 0x7 0xb 0x9 0xc 0xe 0xb 0x8
0xf 0xe 0xf 0x5 0x8 0xc 0xb 0xd

0xa 0xf 0xd

22 ∅ ∅

0x1 0x1 0x1 0x0

∅ ∅

0x0 0x0
0x2 0x8 0x0 0x2 0x2 0x2 0x2 0x3 0x2 0x2

0x3 0x4 0x9 0x1 0x4 0x4 0x5 0x4 0x6 0xa 0x5 0x5
0xc 0x7 0xe 0x4 0x7 0x7 0x7 0xb 0xa 0xe 0x7 0x7

0xc 0xf 0x5 0xc 0xc 0x8 0xd 0xf 0x8 0x8
0xf 0xf 0xf 0xa 0xa 0xa

23 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0x2 0x2

∅ ∅

0x3 0x2 0x8
0x4 0x4 0x6 0x4 0x9
0xb 0xb 0xa 0xb 0xe
0xd 0xd 0xf 0xd 0xf

25 ∅

0x1 0x0 0x1 0x1

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0x8 0x2 0x8 0x2 0x2 0x3
0x9 0xa 0x4 0x9 0x5 0x4 0x7
0xe 0xe 0x7 0xe 0x7 0x7 0x9
0xf 0xc 0xf 0x8 0xc 0xb

0xf 0xa 0xf 0xd

5.2.6.1 Duplication of computations

Description: A simple countermeasure is to make two computations for the last two rounds.
We save the state of the cipher W17 in memory, possibly k times for more security - since we
are in lightweight cryptography is seems reasonable to take k = 1 or k = 2. Then we make the
computations up to O20 and save the state again. We repeat the computation with the saved state
(W17) and compare with the first result - possibly k times again. If two different computations
give different results we trap the cipher and the system produces no output. Otherwise, the
execution performs normally. We can also apply a majority vote by duplicating the computations
twice, possibly 2k times and give as output one that most appears. 5.5 shows a majority vote
using duplication.

W17

W17

O20

O′20

enc.

enc.
O20 = O′20?

O′20
Tr
ue

False

W17 O′′20
enc.

O′′20 = O′20?
O20

O′′20

Fa
lse

True

Figure 5.5: Majority vote using duplication

Cost: This countermeasure uses, for encryption and decryption, two additional matrix layer
and three additional substitution layers, subkey updates and subkey additions. The cost can be
bounded from above by 15% of the total PRIDE cost.

5.2.6.2 Desynchronisation

Description: This countermeasure consists in adding time randomisation during the cipher
so that the temporal position of the 18-th and the 19-th round will not be the same for each

106

execution. For the time randomisation generation, we can use a simple Linear Feedback Shift
Register (LFSR) whose value indicates the ‘random’ delay time. Those random delay functions
can be added before the 18-th round. 5.6 illustrates the countermeasure.

PRNGInit Out

Plaintext
enc. Wait(Out) enc.Wait(Out)

enc.
W17Ciphertext enc.

Figure 5.6: Desynchronisation

Cost: The cost depends on the time randomization generation - a simple LFSR implemented in
hardware has a low cost with respect to IoT constraints, it also depends on the duration of the
‘random delay’, and on the time needed to access the random output of the LFSR.

5.2.6.3 Masking

Description: Another countermeasure proposed by Guilley and al. in [GSDS10] is to add a
random mask to the message to prevent two consecutive executions of the same plaintext. More
precisely, in its original description, it consists in generating a 64-bit random mask different at
each execution, XOR it with the asked plaintext and the ciphertext obtained is sent with the
mask.

In our case, we use a simple LFSR defined by a minimal primitive polynomial of degree 64
(X64 +X63 +X61 +X60 + 1 for example), and by an initialization made public. The LFSR thus
generates 264 − 1 different masks. It must not be again accessible by the user to prevent its reset.
For this, it must be correctly implemented in hardware. We apply the mask by an XOR on the
input of the 10-th round. This prevents the adversary from getting two encryptions of the same
plaintext, and therefore to make a DFA. For decryption, we apply an XOR between the mask
and the output of the 10-th round and get the correct plaintext. We then have two options. The
first is to send the mask with the ciphertext. Unfortunately, in this case, this method does not
protect against an attack on decryption. Indeed, the attacker can choose the same mask on each
decryption. However, in the context of IoT it is common that the card is only used for encryption
and decryption is carried out on a protected server. The second is to synchronize the encryption
and the decryption. They both use the same LFSR with the same initialization and the decryption
must be applied in the same order as ciphertexts received. Therefore, the countermeasure protects
both the encryption, and the decryption but with an additional synchronisation constraint. 5.7
illustrates the countermeasure.

PRNGInit Out

Plaintext
enc.

I10⊕Out enc. Ciphertext, Out

Figure 5.7: Masking based on that of Guilley

107

Cost: The cost depends on the choice of the random mask generation. A simple LFSR - like
the one we cited - implemented in hardware has a low cost with respect to IoT constraints.
Moreover, applying the mask requests an additional cost of an XOR for encryption and the same
for decryption in the second case.

5.2.7 Conclusion
In this paper, we propose the first differential fault analysis on the block cipher PRIDE. We
explain how this attack can be optimized and we demonstrate it, with 4 faults only to retrieve the
full secret key. We show that our attack is indeed feasible from 32-bit random faults obtained with
electromagnetic injection, which is a low-cost means of injection. We believe that the resistance
against DFA is important for a cipher like PRIDE, which is expected to be largely deployed in
low-end devices thanks to its lightness. At last we propose some countermeasures which leave the
cipher still very efficient for IoT devices. They can be combined to provide more security and are
not exhaustive. An optimization of these countermeasures is possible to make them less costly
and keep the light side of the cipher. It is also necessary to be careful that the protections to
prevent the DFA do not open doors to further attacks. Finally, it appears that our attack applies
to any SPN-based block ciphers with a linear layer similar to the one used in PRIDE, like the
LS-Designs family introduced by Grosso & al [GLSV15] in 2014. The details of this generalization
will be studied in a future work.

5.2.8 Appendices
5.2.8.1 Details of PRIDE

This subsection provides permutations and matrices used by PRIDE. Tables 5.12 and 5.13
respectively describe the permutation P and its inverse P−1 used in the round function of PRIDE
as well as in the beginning and the end of the cipher.

Table 5.12: Permutation P of PRIDE

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(x) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P(x) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55
x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P(x) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59
x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P(x) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

108

Table 5.13: Permutation P−1 of PRIDE

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P−1(x) 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P−1(x) 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P−1(x) 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P−1(x) 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

The matrices defining the linear layer of PRIDE are:

L0 =

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

, L1 =

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0

L2 =

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

, L3 =

1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

109

5.2.8.2 Differential properties of the PRIDE S-box

5.2.8.3 Difference distribution table of the PRIDE S-box

Table 5.14 shows the difference distribution table T of the PRIDE S-box, which is defined by
T (i, j) = # {(x, y) ∈ {0, 1}4 × {0, 1}4 | x⊕ y = i,S(x)⊕ S(y) = j}.

Table 5.14: difference distribution table of the PRIDE S-box

T 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
0x0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0
0x2 0 0 0 0 0 0 0 0 4 0 0 4 2 2 2 2
0x3 0 0 0 0 0 0 0 0 4 0 0 4 2 2 2 2
0x4 0 4 0 0 0 0 4 0 0 2 2 0 2 0 0 2
0x5 0 4 0 0 0 4 0 0 0 2 2 0 2 0 0 2
0x6 0 4 0 0 4 0 0 0 0 2 2 0 0 2 2 0
0x7 0 4 0 0 0 0 0 4 0 2 2 0 0 2 2 0
0x8 0 0 4 4 0 0 0 0 4 0 4 0 0 0 0 0
0x9 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
0xa 0 0 0 0 2 2 2 2 4 0 4 0 0 0 0 0
0xb 0 0 4 4 0 0 0 0 0 0 0 0 2 2 2 2
0xc 0 0 2 2 2 2 0 0 0 2 0 2 2 0 2 0
0xd 0 0 2 2 0 0 2 2 0 2 0 2 0 2 0 2
0xe 0 0 2 2 0 0 2 2 0 2 0 2 2 0 2 0
0xf 0 0 2 2 2 2 0 0 0 2 0 2 0 2 0 2

5.2.8.4 Proof of Proposition 5.1

We can see that, from the knowledge of a nonzero input (x ⊕ y) and of an output difference
(S(x)⊕S(y)) for S we deduce 0, 2 or 4 candidates for the input value x. Moreover, we can easily
find pairs of differentials (a1, b1) and (a2, b2) which are satisfied by a single input x. For this, we
use Proposition 5.1 that we prove here.

Proof: [of Proposition 5.1] Let D(a, b) denote the set of solutions of the equation

S(x⊕ a)⊕ S(x) = b.

Let us consider (a1, b1) and (a2, b2) be two differentials with a1 6= a2 such that

#D(a1, b1) ∩ D(a2, b2) ≥ 2.

Let us first prove that both D(a1, b1) and D(a2, b2) have at least 4 elements. If these two sets
have two elements only, D(a1, b1) = {x, x⊕ a1} and D(a2, b2) = {x, x⊕ a2}, implying that they
cannot be the same since a1 6= a2. Then, at least one of the two sets contains at least four
elements. Suppose that #D(a1, b1) = 4 and #D(a2, b2) = 2. Then, x ⊕ a2 ∈ D(a1, b1), with
D(a2, b2) = {x, x⊕ a2}. Consequently,

S(x⊕ a1 ⊕ a2)⊕ S(x⊕ a2) = b1 = S(x⊕ a1)⊕ S(x)

110

implying that
S(x⊕ a2)⊕ S(x) = S(x⊕ a1 ⊕ a2)⊕ S(x⊕ a1).

Thus, x⊕ a1 ∈ D(a2, b2) is a contradiction. We have proved that #D(a2, b2) = 4.
Now, it is clear that any element x in D(a1, b1) ∩ D(a2, b2) is a solution of

S(x⊕ a2)⊕ S(x⊕ a1) = b1 ⊕ b2,

i.e., x⊕ a1 ∈ D(a1 ⊕ a2, b1 ⊕ b2) and x⊕ a2 ∈ D(a1 ⊕ a2, b1 ⊕ b2).
Suppose now that {x, x⊕ a4} ⊆ D(a1, b1)∩D(a2, b2) for some a4 6= 0, we deduce that the four

elements x⊕ a1, x⊕ a2, x⊕ a1 ⊕ a4 and x⊕ a2 ⊕ a4 belong to D(a1 ⊕ a2, b1 ⊕ b2). These four
elements are either distinct or satisfy a4 = a1⊕a2 which implies that x⊕a4⊕a2 = x⊕a1 belongs
to D(a2, b2), i.e., x⊕ a1 ∈ D(a1, b1) ∩ D(a2, b2). Therefore, x⊕ a1, x⊕ a2, x and x⊕ a1 ⊕ a2 all
belong to D(a1 ⊕ a2, b1 ⊕ b2) and #D(a1 ⊕ a2, b1 ⊕ b2) = 4. � �

5.2.8.5 Other trade-offs between the number of faults and the time complexity

We have shown that 4 faults with an appropriate strategy enable the attacker to recover the
whole key. In this subsection, we evaluate the number of key candidates that an attacker can
obtain with fewer faults. This number then corresponds to the time complexity of the complete
key recovery. Indeed, if the attacker knows a pair of plaintext-ciphertext, encrypting the known
plaintext under each key candidate until the correct ciphertext is recovered leading to a complete
key recovery2. Firstly, the number of remaining candidates for the subkey k0 (resp. k1) that an
attacker can obtain with one fault on the 19-th round (resp. 18-th round) is 232. We now use
this result to estimate the cost of the full key recovery from a few faults only.

With a single fault. We want to determine the cost of the key recovery if the attacker can
inject a single fault. If this fault is injected in the 19-th round, then the possible values of k0 is
reduced to a list of 232 candidates. This corresponds to a total of 296 candidates for the whole
128-bit key. If the attacker knows two plaintext-ciphertext pairs, he can then encrypt the first
known plaintext under each of these 296 key candidates, until the corresponding ciphertext is
recovered. Only 296−64 = 232 key candidates then remain, and the second plaintext-ciphertext
pair can then be exploited for recovering the key. The main part of the time complexity in
this attack is the cost of the exhaustive search over the 296 candidates, which corresponds to
296 encryptions.

If the fault is now injected in the 18-th round, then the attack consists in successively
examining all 264 possible values for k0. For each of these 264 candidates, the attacker inverts
the last encryption round for both the correct and the faulty ciphertexts C and C∗. He deduces
the value of ∆X20, and then of ∆Y19. When choosing a random k0, ∆X20 varies in the set of all
input differences which can appear when the output difference equals ∆Y20. From the difference
distribution table of the S-box, the average number of valid input differences corresponding to a
fixed output difference is

1
16(1 + 4× 2 + 6× 8 + 8× 5) = 6.0625.

2provided that the number of key candidates is smaller than 264. Otherwise, two plaintext-ciphertext pairs are
needed.

111

Therefore, ∆X20 (and then ∆Y19) takes in average 6.062516 = 241.6 different values, and each of
these differences appears for 222.4 values of k0 in average.

However, the difference ∆X20 is not valid if the corresponding value of ∆Y19 does not have
the form expected from the value of the fault. As the fault has been injected on Z0

18 or Z3
18, each

nibble of ∆X19 is equal either to 0x1, or to 0x8. Then, the corresponding nibble ∆Y19 can take
4 values only. Therefore, the proportion of valid values for ∆Y19 is 416 × 2−64 = 2−32. It follows
that, among the 241.6 values of ∆Y19 which are obtained from the partial decryption, only 29.6

are valid, implying that only 232 values of k0 need to be considered. For each of these 232 values
of k0, the value of the fault, and then of ∆X19 provides 232 candidates for k1 as proved in the
previous subsection. This step then leads to a list of 264 candidates for the whole 128-bit key,
with a time complexity which mainly corresponds to the cost for decrypting one round of PRIDE
264 times. The bottleneck of the attack is then the final key recovery procedure, which consists in
testing the 264 remaining keys on two plaintext-ciphertext pairs. The overall cost of the attack is
then roughly the cost of 264 encryption.

With two faults. If the two faults are injected in the 18-th round, then the previously described
technique which enables the attacker to eliminate some candidates for k0 is repeated twice. Only
a proportion of 2−64 values of ∆Y19 will be valid, implying that only the correct value of ∆Y19
will remain after this step. As previously explained, each value of ∆Y19 is obtained for 222.4 values
of k0 in average. Therefore, this sieving procedure leads to a list of 222.4 candidates for k0. Now,
exploiting the two faults injected in the 18-th round provides one candidate for k1. Therefore, we
get 222.4 candidates for the whole key. The total time complexity of the attack then corresponds
to 264 decryption of a single round, and to an exhaustive search among the 222.4 remaining keys.
The first step is then the bottleneck and its cost is less than the cost of 264/20 = 259.7 complete
encryptions.

If the first fault is now injected in the 19-th round, then the list of possible values for k0 is first
reduced to a list of size 232 as explained in the previous subsection. The second fault, injected on
the 18-th round, then enables to reduce this list to 232−32 = 1 possible value for k0. For this value
of k0, a list of 232 candidates for k1 is obtained from the second fault. The number of candidates
for the whole key, which need to tested, is then 232. The bottleneck of the attack is then the
exhaustive search over the 232 remaining key candidates, which corresponds to a time complexity
equal to the cost of 232 encryptions.

With three faults. The best strategy with three faults consists in injecting one fault in the
19-th round, and two in the 18-th round. From the fault in the 19-th round, the attacker gets
a list of 232 candidates for k0. By decrypting the last round under these 232 values of k0, we
roughly get 232 pairs of values for ∆Y19 among which one is expected to be consistent with the
two faults injected in the 18-th round. Moreover, these two faults lead to one candidate for k1,
i.e., one candidate for the whole key. The time complexity of the attack then corresponds to the
cost of 232 encryptions of a single round, i.e., 227.7 full encryptions.

5.2.8.6 ARM source code

L-layer

112

; L0 and L1
; State s0
; Temporary registers t0, · · · , t6
(1) MOV t0, #0x00F0
(2) MOVT t0, #0xF0F0
(3) AND t1, t0, s0, LSL#4
(4) LSR t0, #4
(5) AND t2, t0, s0, LSR#4
(6) AND t0, s0, #0xFF000000
(7) AND t3, s0, #0XFF0000
(8) EOR t1, t1, t2
(9) AND s0, s0, #0xFF00
(10) EOR s0, s0, t1
(11) AND t1, s0, #0x8000
(12) AND t2, s0, #0x01
(13) AND t4, s0, #0xFF00
(14) AND t5, s0, #0x00FF
(15) MOV t6, #0xFF000000
(16) AND t6, t6, s0, LSL#8
(17) EOR s0, s0, r10
(18) AND t6, s0, #0xFF000000
(19) EOR t0, t0, t6
(20) BIC s0, s0, #0xFF0000
(21) EOR s0, s0, t0, LSR#8
(22) EOR s0, s0, t3, LSL#8
(23) MOV t0, #0xFF00
(24) AND t0, t0, t4, LSL#1
(25) EOR t0, t0, t1, LSR#7
(26) LSR t3, t5, #1
(27) EOR t3, t3, t2, LSL#7
(28) EOR s0, s0, t3, LSL#8
(29) AND t3, s0, #0xFF00
(30) EOR s0, s0, t0
(31) EOR s0, s0, t3, LSR#8

; L2 and L3
; State s1
; Temporary registers t0, · · · , t5
(1) MOV t0, #0xF0F0
(2) MOVT t0, #0xF000
(3) AND t1, t0, s1, LSL#4
(4) LSR t0, #4
(5) AND t2, t0, s1, LSR#4
(6) AND t0, s1, #0xFF00
(7) AND t3, s1, #0X00FF
(8) AND s1, s1, #0xFF0000
(9) EOR t1, t1, t2
(10) EOR s1, s1, t1
(11) AND t1, s1, #0x80000000
(12) AND t2, s1, #0x00010000
(13) MOV t4, #0xFF000000
(14) AND t5, s1, t4
(15) AND t4, t4, t5, LSL#1
(16) EOR t1, t4, t1, LSR#7
(17) MOV t4, #0x00FF0000
(18) AND t5, s1, t4
(19) AND t4, t4, t5, LSR#1
(20) EOR t2, t4, t2, LSL#7
(21) EOR s1, s1, t2, LSL#8
(22) AND t2, s1, #0xFF000000
(23) EOR s1, s1, t1
(24) EOR s1, s1, t2, LSR#8
(25) AND t4, s1, #0x00FF
(26) EOR s1, s1, t4, LSL#8
(27) AND t4, s1, #0xFF00
(28) EOR t3, t3, t4, LSR#8
(29) EOR t0, t0, t3
(30) BIC s1, s1, #0x00FF
(31) EOR s1, s1, t0

S-layer ; State s0, s1
; Temporary registers t0, t1
(1) MOV t1, s0
(2) AND t0, s0, s0, LSL#16
(3) EOR t0, t0, s1
(4) AND s0, s0, s1, LSR#16
(5) EOR s0, s0, t0
(6) AND t0, s0, s0, LSL#16
(7) EOR t0, t0, t1
(8) AND s1, s0, t0, LSR#16
(9) EOR s1, s1, t0

113

5.3 From Clustering Supersequences to Entropy Minimizing
Subsequences for Single and Double Deletions

Abstract

A binary string transmitted via memoryless i.i.d. deletion channel is received as a
subsequence of the original input. From this, one obtains a posterior distribution on the
channel input, corresponding to a set of candidate supersequences weighted by the number of
times the received subsequence can be embedded in them. In a previous work it is conjectured
on the basis of experimental data that the entropy of the posterior is minimized and maximized
by the constant and the alternating strings, respectively. In this work, we present an algorithm
for counting the number of subsequence embeddings using a run-length encoding of strings.
We then describe two different ways of clustering the space of supersequences and prove that
their cardinality depends only on the length of the received subsequence and its Hamming
weight, but not its exact form. Then, we consider supersequences that contain a single
embedding of a fixed subsequence, referred to as singletons, and provide a closed form
expression for enumerating them using the same run-length encoding. We prove an analogous
result for the minimization and maximization of the number of singletons, by the alternating
and the uniform strings, respectively. Next, we prove the original minimal entropy conjecture
for the special cases of single and double deletions using similar clustering techniques and
the same run-length encoding, which allow us to characterize the distribution of the number
of subsequence embeddings in the space of compatible supersequences to demonstrate the
effect of an entropy decreasing operation.

5.3.1 Introduction
The original motivation for this work goes back to an analysis of quantum key distribution (QKD)
protocols [RC13], which among other things, suggested some modifications of the quantum bit
error rate (QBER) estimations. These modifications led to an information theory problem that
was first investigated in [ARR15].

The mathematical problem encountered in the aforementioned analysis is the following. A
random bit string y of length n emitted from a memoryless source is transmitted via an i.i.d.
deletion channel such that a shorter bit string x of length m (m ≤ n) is received as a subsequence
of y, after having been subject to n−m deletions. Consequently, the order in which the remaining
bits are revealed is preserved, but the exact positions of the bits are not known. Given a
subsequence x, the question is to find out how much information about y is revealed. More
specifically, the quantity we are interested in is the conditional entropy [CT12] over the set of
candidate supersequences upon observing x, i.e., H(Y |X = x) where Y is restricted to the set of
compatible supersequences as explained below.

The said information leakage is quantified as the drop in entropy [Sha01] for a fixed x
according to a weighted set of its compatible supersequences, referred to as the uncertainty set.
The uncertainty set, denoted by Υn,x, contains all the supersequences that could have given rise
to x upon n−m deletions. In [ARR15], an alternative proof shows that this set’s cardinality is
independent of the details of x and that it is only a function of n and m. The weight distribution
used in the computation of entropy is given by the number of occurrences or embeddings of a fixed
subsequence in its compatible supersequences, i.e., the number of distinct ways x can be extracted
from y upon a fixed number of deletions, denoted by ωx(y). Furthermore, in the same work it is
conjectured that the constant subsequences consisting of all 1’s (or all 0’s), x = 11...1, and the
alternating 1’s and 0’s, i.e., x = 1010..., minimize and maximize the said entropy, respectively.

Despite the specific context in which the problem was first encountered, the underlying
mathematical puzzle is a close relative of several well-known challenging problems in formal

115

languages, DNA sequencing and coding theory. In fact, the distribution of the number of times
a string x appears as a subsequence of y, lies at the center of the long-standing problem of
determining the capacity of deletion channels. More precisely, knowing this distribution would
give us a maximum likelihood decoding algorithm for the deletion channel [Mit08]. In effect,
upon receiving x, every set of n−m symbols is equally likely to have been deleted. Thus, for
a received sequence, the probability that it arose from a given codeword is proportional to the
number of times it is contained as a subsequence in the originally transmitted codeword. More
specifically, we have p(y|x) = p(x|y) p(y)

p(x) = ωx(y)dn−m(1− d)m p(y)
p(x) , with d denoting the deletion

probability. Thus, as inputs are assumed to be a priori equally likely to be sent, we restrict our
analysis to ωx(y) for simplicity.

In this work, we first study several closely-related counting problems involving (super/sub)-
sequences and then we revisit the aforementioned entropy question. It is worth pointing out that
while questions on the combinatorics of random subsequences requiring closed-form expressions
are already quite challenging, the problem tackled in this work and first raised in [ARR15], is
further complicated by the dependence of entropy on the distribution of subsequence embeddings,
i.e., the number of supersequences having specific embedding weights. To put this in contrast, in
a related work [SF03], a closed-form expression is provided for computing the number of distinct
subsequences that can be obtained from a fixed supersequence for the special case of two deletions,
whereas here we need to account for the entire space of supersequences and characterize the
number of times a given subsequence can be embedded in them in order to address the entropy
question. Moreover, one would have to work out how these weights (number of embeddings) get
shifted across their compatible supersequences when we move from one subsequence to another.

5.3.1.1 Results and Contributions

We first present an algorithm based on a run-length encoding of strings for counting the number of
embeddings of x into y as a subsequence. Similar to how the cardinality of the set of supersequences
that can project to a given subsequence, i.e., |Υn,x|, depends only on their respective lengths,
we prove that the number of supersequences that admit an initial embedding of a subsequence
such that the last index of their initial embedding overlaps with their last bit, also depends only
on |y| = n and |x| = m. We then describe two clustering techniques that give rise to subspaces
in Υn,x whose sizes depend only on n,m and the Hamming weight of x, but not the exact form
of x. We derive analytic expressions, as well as a recurrence, for the cardinality of these sets.
The approach and methodology used for deriving our clustering results depend heavily on the
notion of initial or canonical embeddings of subsequences in their compatible supersequences,
which provide further insight into the importance of initial embeddings.

Next, we consider the problem of enumerating supersequences that admit exactly a single
occurrence of a subsequence, referred to as singletons, and give an analytic expression for their
count. Furthermore, we prove a similar result for the maximization and minimization of the
number of singletons by the constant and alternating strings, respectively.

Finally, we revisit the original entropy extremization question and prove the minimal entropy
conjecture for the special cases of single and double deletions, i.e., for n = m+ 1 and n = m+ 2.
The entropy result is obtained via a characterization of the number of strings with specific weights,
along with an entropy decreasing operation. This is achieved using clustering techniques and
a run-length encoding of strings: we identify groupings of supersequences with specific weights
by studying how they can be constructed from a given subsequence using different insertion
operations, which are in turn based on analyzing how runs of 1’s and 0’s can be extended or split.
The methods used in the analysis of the underlying combinatorial problems, based on clustering
techniques and the run-length encoding of strings may be of interest in their own right.

116

5.3.1.2 Structure

We begin by providing a survey of related work in Section 5.3.2. In Section 5.3.3, we introduce our
notation and describe the main definitions, models, and building blocks used in our study. Next, in
Section 5.3.4, we present an algorithm for counting the number of subsequence embeddings, which
relies on the run-length encoding of strings. We then explore counting problems and clustering
techniques in the space of supersequences including an analysis of a class of supersequences,
referred to as singletons, that admit exactly a single embedding of a given subsequence and prove
similar extremization results for their count. Finally, we turn to the original entropy question in
Section 5.3.5 and prove the minimal entropy conjecture for the special cases of single and double
deletions. Finally, we conclude by summarizing our findings and stating some open problems in
Section 5.3.6.

5.3.2 Related Work

Studies involving subsequences and supersequences encompass a wide variety of problems that arise
in various contexts such as formal languages, coding theory, computer intrusion detection and DNA
sequencing to name a few. Despite their prevalence in such a wide range of disciplines, they remain
largely unexplored and still present a considerable wealth of unanswered questions. In the realm of
stringology and formal languages, the problem of determining the number of distinct subsequences
obtainable from a fixed number of deletions, and closely related problems, have been studied
extensively in [Cha76, FHS04, Hir99, HR00]. Perhaps it is worth noting that the same entropy
minimizing and maximizing strings conjectured in [ARR15] and characterized in the present
work, has been shown to lead to the minimum and maximum number of distinct subsequences,
respectively. The problems of finding shortest common supersequences (SCS) and longest common
subsequences (LCS) represent two well-known NP-hard problems [JL95, Mid95, MM04] that
involve subproblems similar to our work. Finally, devising efficient algorithms for subsequence
combinatorics based on dynamic programming for counting the number of occurrences of a
subsequence in DNA sequencing is yet another important and closely related line of research
[Rah06, ERW08].

In coding theory, and more specifically in the context of insertion and deletions channels,
similar long-standing problems have been studied extensively, and yet many problems still remain
elusive. This includes designing optimal coding schemes and determining the capacity of deletion
channels, both of which incorporate the same underlying combinatorial problem addressed in the
present work. Considering a finite number of insertions and deletions for designing correcting
codes for synchronization errors [Ull67, SF03, KM13] and reconstructing the original string
from a fixed subsequence [Gra15] represent two specific and related research areas. More recent
work on the characterization of the number of subsequences obtained via the deletion channel
[SD13, SGSD15, LL15], e.g., in terms of the number of runs in a string, shows great overlap
with our work. A graph-theoretic approach for deletion correcting codes, closely related to our
clustering analysis, including an alternative proof for the Hamming weight clustering given in
Theorem (5.6) based on a different approach, is given in [CKK12].

An important body of research in this area is dedicated to deriving tight bounds on the capacity
of deletion channels [DMP07, KMS10, RD13, CK14] and developing bounding techniques [OS14].

Perhaps rather surprisingly, the problem of determining the number of occurrences of a fixed
subsequence in random sequences has not received the same amount and level of attention from
the various communities. The state-of-the-art in the finite-length regime remains rather limited in
scope. More precisely, the distribution of the number of occurrences constitutes a central problem
in coding theory, with a maximum likelihood decoding argument, which represents the holy grail

117

in the study of deletion channels. A comprehensive survey, which among other things, outlines
the significance of figuring out this particular distribution is given by Mitzenmacher in [Mit08].

5.3.3 Framework

We consider a memoryless source that emits symbols of the supersequence, drawn independently
from the binary alphabet Σ = {0, 1}. Given an alphabet Σ = {0, 1}, Σn denotes the set of all
Σ-strings of length n. Let pα denote the probability of the symbol α ∈ Σ being emitted, which in
the binary case simplifies to pα = 0.5. This means that the probability of occurrence of a random
supersequence y is given by P (y) =

∏n
i=1 pyi . The probability of a subsequence of length m is

defined in a similar manner. Throughout, we use h(s) to denote the Hamming weight of the
binary string s.

Notation We use the notation [n] = {1, 2, . . . , n} and [n1, n2] to denote the set of integers
between n1 and n2; individual bits from a string are indicated by a subscript denoting their
position, starting at 1, i.e., y = (yi)i∈[n] = (y1, . . . , yn). We denote by |S| the size of a set S,
which for binary strings also corresponds to their length in bits. We also introduce the following
notation: when dealing with binary strings, [a]k means k consecutive repetitions of a ∈ {0, 1}.

Subsequences and Supersequences Given x ∈ Σm and y ∈ Σn, let x = x1x2 · · ·xm denote
a subsequence obtained from y = y1y2 · · · yn with a set of indexes 1 ≤ i1 < i2 < · · · < im ≤ n
such that yi1 = x1, yi2 = x2, . . . , yim = xm. Subsequences are obtained by deleting characters
from the original string and thus adjacent characters in a given subsequence are not necessarily
adjacent in the original string.

Projection Masks We define yπ = (yi)i∈π = x to mean that the string y filtered by the mask
π gives the string x. Let π denote a set of indexes {j1, . . . , jm} of increasing order that when
applied to y, yields x, i.e., x = yj1yj2 · · · yjm and 1 ≤ j1 < j2 · · · jm ≤ n.

Deletion Masks A deletion mask δ represents the set of indexes that are deleted from y to
obtain x, i.e., δi ∈ [n] \ π and |δ| = n −m, whereas a projection mask π denotes indexes that
are preserved. Thus, similarly, δ is a subset of [n] and the result of applying a mask δ on y is
denoted by yδ = x.

Compatible Supersequences We define the uncertainty set, Υn,x, as follows. Given x and n,
this is the set of y strings that could project to x for some projection mask π.

Υn,x := {y ∈ {0, 1}n : (∃π)[yπ = x]} = {y ∈ {0, 1}n : (∃δ)[yδ = x]}

Number of Masks or Embeddings Let ωx(y) denote the number of distinct ways that y
can project to x:

ωx(y) := |{π ∈ P([n]) : yπ = x}| = |{δ ∈ P([n]) : yδ = x}|

we refer to the number of masks associated with a pair (y, x) as the weight of y, i.e., the number
of times x can be embedded in y as a subsequence.

118

Initial Projection Masks or Canonical Embeddings Given yπ = x, we define π to be
initial if there is no lexicographically earlier mask π′ such that yπ′ = x. π′ is a lexicographically
earlier mask than π if, for some r, the smallest r members of π and π′ are the same, but the
(r + 1)-th of π′ is strictly smaller than that of π. Throughout, we will use π̃ to denote an initial
projection mask. The first embedding of a subsequence x in y is also often referred to as the
canonical embedding in the literature. Note that for a fixed mask or embedding π, the members
of y up to the last member of π are completely determined if π is initial.

Run-Length Encodings A substring T of a string Y = y1y2 . . . yn over Σ is called a run of Y
if T is a consecutive sequence of the same character (i.e., T ∈ α+ for an α ∈ Σ). Let Rx,α denote
the set of runs of α in x. The notion of run-length encoding will be central to our analysis. Given
an n-bit binary string y, its run-length encoding (RLE) is the sequence rj = (aj , bj), 1 ≤ j ≤ m,
such that

y = [a1]b1 [a2]b2 · · · [am]bm , m ≤ n.

with aj ∈ {0, 1} and bj ∈ {1, . . . , n}. This encoding is unique if we assume that ai 6= ai+1, at
which point we only need to specify a single ai (e.g., the first one) to deduce all the others.

Thus the RLE3 for a string y is denoted by

y = [a1; b1, b2, . . . , bm].

When the value of a1 is irrelevant, which will often be the case later on4, we will drop it from the
notation. Consecutive zeros or ones in a binary string will be referred to as blocks or runs.

Example 5.1 Let y = 0011010001; then we have y = [0; 2, 2, 1, 1, 3, 1] as the first bit is zero;
and we have 2 zeros, 2 ones, 1 zero, 1 one, 3 zeros, 1 one. Alternatively, [2, 2, 1, 1, 3, 1] designates
simultaneously 0011010001 and 1100101110.

Entropy For a fixed subsequence x of length m, the underlying weight distribution used in the
computation of the entropy is defined as follows. Upon receiving a subsequence x, we consider
the set of compatible supersequences y of length n (denoted by Υn,x) that can project to x upon
n−m deletions. Every y ∈ Υn,x is assigned a weight given by its number of masks ωx(y), i.e., the
number of times x can be embedded in y as a subsequence. We consider the conditional Shannon
entropy H(Y |X = x) where Y is confined to the space of compatible supersequences Υn,x. The
total number of masks in Υn,x is given by

µn,m =
(
n

m

)
· 2n−m (5.3)

Thus, forming the normalized weight distribution

Px =
{
ωx(y1)
µn,m

, . . . ,
ωx(yn)
µn,m

}
. (5.4)

Finally, for simplicity, we use Hn(x) throughout this work to refer to the entropy of a distribution
P corresponding to a subsequence x as defined below

Hn(x) = −
∑
i

pi · log2(pi) (5.5)

3The notation [n] is overloaded, but the difference will be clarified when it is not clear from the context.
4Indeed, if x = yπ , then x = yπ and ωx(y) = ωx(y).

119

0
0
0
0
0

1
1
1
1
1

0
0
0
0
1

1
0
0
0
0

0
1
1
1
1

1
1
1
1
0

0
0
0
1
1

1
1
0
0
0

0
0
1
1
1

1
1
1
0
0

0
1
0
0
0

1
1
1
0
1

0
0
0
1
0

1
0
1
1
1

1
0
0
0
1

0
1
1
1
0

1
1
0
1
1

0
0
1
0
0

1
1
0
0
1

1
0
0
1
1

0
1
1
0
0

0
0
1
1
0

0
1
0
1
1

1
1
0
1
0

0
0
1
0
1

1
0
1
0
0

0
1
0
0
1

0
1
1
0
1

1
0
0
1
0

1
0
1
1
0

0
1
0
1
0

1
0
1
0
1

x

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

E
n
tr
op
y

H

R
H∞

Subsequence Entropy Analysis for n=8 and m=5

Figure 5.8: Shannon entropy H, second-order Rényi entropy R, and Min-entropy H∞

where pi is given by

pi = ωx(yi)
µn,m

.

5.3.4 Clustering Supersequences and Counting Subsequences

We now briefly review the results of the entropy analysis presented in [ARR15], in which it is
conjectured that the constant/uniform string consisting of all 1’s (or all 0’s), x = 11...1, and the
alternating x string, i.e., x = 1010... minimize and maximize the entropy Hn(x), respectively.
To illustrate this, the plot given in Figure 5.8 shows the values of the min-entropy (H∞), the
second-order Rényi entropy (R) and the Shannon entropy (H) computed for all x strings of length
5, with n = 8.

Counting multisets: Throughout, we use the combinatorics of counting multisets, also
referred to as the method of stars and bars, to enumerate all possibilities for placing n indis-
tinguishable objects into bins marked by m distinguishable separators such that the resulting
configurations are distinguished only by the number of objects present in each bin, which is given
by
(
n+m−1

n

)
.

5.3.4.1 Compatible Supersequences and Subsequence Embeddings

Recall that for a fixed subsequence x of length m; we consider the set of y strings of length n
(n ≥ m), referred to as compatible supersequences, that can contain x as a subsequence embedding.
The set of compatible supersequences is denoted by Υn,x. It is known that the cardinality of Υn,x

120

is independent of the form of x and that it is only a function of n and m.

|Υn,x| =
n∑

r=m

(
n

r

)
(5.6)

We provided an alternative proof for this based on a simple recursion in [ARR15]. The original
motivation for the clustering scheme presented here was to have a more fine-grained view of the
distribution of masks in the space of supersequences. This approach led to the discovery of similar
structures in Υn,x, in that their cardinality does not depend on the form of x, analogous to how
|Υn,x| depends only on n and m.

5.3.4.2 Counting Subsequence Embeddings via Runs

Efficient dynamic programming algorithms for computing the number of subsequence embeddings
are known in the literature, e.g., a recursive algorithm requiring Θ(n×m) operations [ERW08].
Here we provide an alternative algorithm, which is primarily based on the run-length encoding of
strings.

Using the RLE notation, there are a few cases in which this question is easy to answer. For
instance, if y = [a; k1, . . . , k`] and x = [a; k′1, . . . , k′`], with the same value of `, i.e., we have the
same number of blocks in x and y, then it is easy to see that there is a one-to-one sequential
mapping of blocks between x and y. This allows us to enumerate the different masks depending
on how they map the blocks to each other as follows:

ωx(y) =
∏̀
i=1

(
ki
k′i

)
. (5.7)

If y = [a; k1, . . . , k`] and x = [a; k′1, . . . , k′`′] do not start with the same character, we have to
delete the first block to recover the case y = [a; k2, . . . , k`], and x = [a; k′1, . . . , k′`′]. We will now
suppose that x and y start with the same character. However, in the general case, this property
does not hold and the number of blocks in x, and y can also be different.

Here we describe an algorithm wherein for a fixed pair of x and y strings, we structure and
enumerate the corresponding space of masks by accounting for the number of different ways we
can delete characters in order to merge blocks/runs such that we can recover the simple case
given in Equation (5.7). In the more general case, let y = [k1, . . . , k`] and x = [k′1, . . . , k′`′].

Definition 5.1 Let S be the set of maps f : [`′]→ [`] that satisfy the following properties: f is
strictly increasing and f(i) ≡ i mod 2. A function f will define a subset of masks, by specifying
blocks that will have to be completely deleted. We group the masks according to a set of functions
f that map indexes of blocks of x to indexes of blocks of y. Intuitively, f maps the i-th block of
x to the block of y that contains the last letter of the i-th block of x. Therefore, all blocks of y
between f(i) + 1 and f(i) that are not composed of the right letter have to be deleted such that we
can recover the simple case in Equation (5.7).

For the subsequent analysis, recall that ki denotes the length of the run at index i, whereas k∗i
refers to the actual set of indexes of the i-th run.

Definition 5.2 Let k∗i denote the set of indexes belonging to the i-th block of y, i.e., {
∑i−1
j=1 kj ,

∑i−1
j=1 kj+

1, . . . ,
∑i
j=1 kj}, and F (i)∗ = {f(i − 1) + 2, f(i − 1) + 4, . . . , f(i) − 1}, then a deletion mask δ

corresponds to f if:

• ∀i : ∪j∈F (i)∗k
∗
j ⊂ δ

121

• ∀i : k∗f(i) 6⊂ δ (this allows us to have a partition)

We call ωf the set of masks corresponding to f .

Theorem 5.2 The family (ωf)f∈S defines a partition on the set of masks from y to x.

Proof: We first show that for f 6= f ′ ∈ S, every deletion mask δ corresponding to f is
different from every mask δ′ associated with f ′ (i.e., ωf ∩ ωf ′ = ∅). Since f 6= f ′, we have
a smallest integer i ∈ [`] such that f(i) 6= f ′(i). We assume without loss of generality that
f ′(i − 1) = f(i − 1) < f(i) < f ′(i). Due to the condition on parity, f(i + 1) 6= f ′(i). We
distinguish between two cases:

• If f ′(i− 1) < f(i+ 1) < f ′(i), then kf(i+1) 6⊂ δ, and kf(i+1) ⊂ δ′ since f(i+ 1) ∈ F ′∗(i− 1).

• Conversely if f(i−1) < f ′(i) < f(i+1), then kf ′(i) 6⊂ δ′, and kf ′(i) ⊂ δ since f ′(i) ∈ F ∗(i+1).

Therefore, we have δ 6= δ′. We now show that ∪f∈Sωf is the set of masks from y to x. We will
use projection masks here as they are more suitable for this proof. Let π be a projection mask
such that yπ = x. We let π = {π1, . . . , πm}, where the πi are in increasing order. Therefore,
we have for all i, yπi = xi. We define φ : [n] → [`] to be the mapping that takes an index of y
and returns the index of the block/run it belongs to, i.e., φ(a) returns the smallest i such that∑i
j=1 kj ≥ a. We define f such that f ∈ S and π is in ωf , by f(i) = φ(π∑i

j=1
k′
j

). To prove that
f is in S, note that given i:

• We have that f(i) ≤ f(i+ 1) since the πi are in increasing order.

• Moreover, π∑i

j=1
k′
j

and π∑i+1
j=1

k′
j

correspond to indexes (of y) of opposite letter (if the

first one is a 1, the second is a 0 and vice versa) since
∑i
j=1 k

′
j and

∑i+1
j=1 k

′
j correspond to

indexes (of x) of opposite letter.

Therefore, f(i) and f(i+ 1) are of opposite parity and f(i) < f(i+ 1).
We now prove that π corresponds to f . For a fixed i ∈ [`], let k∗f(i−1) = bkf(i−1) , i.e., the

f(i− 1)-th block of y is made of letters b. Therefore, k∗t = bkt for t ∈ F (i)∗, since t has the same
parity as f(i− 1). Moreover, we have b = x∑i−1

j=1
k′
j

according to the definition of f . So for every

index h between
∑i−1
j=1 kj + 1 and

∑i
j=1 kj , xh = yπh = b, and for t ∈ F (i)∗, we have k∗t ∩ π = ∅

(equivalently with the deletion mask δ, k∗t ⊂ δ). By definition, π∑i

j=1
kj
∈ k∗f(i) so π ∩ k∗f(i) 6= ∅

(equivalently with the deletion mask δ, k∗f(i) 6⊂ δ). �

Definition 5.3 We now introduce the quantity Ωf , which is the number of masks corresponding
to f for f ∈ S.

Ωf =
∏̀
i=0

(∑
j∈F (i) kj

k′i

)
−
(∑

j∈F (i)\{f(i)} kj

k′i

)
(5.8)

where
F (i) = {f(i− 1) + 1, f(i− 1) + 3, . . . , f(i)}

Theorem 5.3 Ωf = |ωf | for all f ∈ S.

122

Proof: Upon the deletion induced by f , we obtain a string of the form [
∑
j∈F (1) kj , . . . ,

∑
j∈F (`) kj].

Therefore, we have the same number of blocks in both the y string as well as the x string, and
the number of masks can be computed easily as shown in Equation (5.7). We first count the
number of ways to choose k′i elements from kF (i) and then subtract the number of combinations
not using any of the kf(i). �

Remark We can note that F (i) and F (i)∗ form a partition of [`].

Following from the preceding theorems, the total number of masks can be computed as follows

ωx(y) =
∑
f∈S

Ωf . (5.9)

By summing over all f ∈ S, we get the total number Ω of compatible masks. Note that it may
happen that Ωf = 0; this happens when we try to trace a large block of x from a smaller block of
y.

The Set S: We now determine the size of S, as a function of ` and `′. Let this size be denoted
by σ(`′, `). We denote u = b(`− `′)/2c. If f(1) = 1, then we get σ(`′ − 1, `− 1); if f(1) = 3, we
get σ(`′ − 1, `− 3), etc. We also know that σ(x, x) = 1 for all x, and that σ(x, y) = 0 for all x, y
such that y < x. We, therefore get the following recurrence:

σ(`′, `) =
u∑
i=0

σ(`′ − 1, `− 1− 2i)

Iterating this recursion, we get

σ(`′, `) =
u∑
i=0

u−i∑
j=0

σ(`′ − 2, `− 2− 2i− 2j),

and grouping the terms yields

σ(`′, `) =
u∑
i=0

(i+ 1)σ(`′ − 2, `− 2− 2i).

We now describe a direct combinatorial argument which gives a closed form formula for σ(`′, `) =
|S|. First note that if ` 6≡ `′ mod 2 then ` cannot be in the image of f . So let ˜̀= ` if ` ≡ `′ mod
2 and ˜̀= `− 1 if not. Now the problem is to choose [`′] elements from [˜̀] such that all the gaps
have even width. Equivalently, we are interleaving the `′ chosen elements with u = (˜̀− `′)/2
gap-segments of width 2. The number of ways to do this is plainly

|S| = σ(`′, `) =
(
`′ + u

u

)
. (5.10)

Example 5.2 For y = 0000111100001111 and x = 0011, we obtain ωy(x) = 300. We now
compute the number of embeddings using the run-based algorithm described above. We have ` = 4,
`′ = 2 and u = (˜̀− `′)/2, which means the size of S is |S| = σ(`′, `) =

(
l′+u
u

)
=
(2+1

1
)

= 3. The
three deletions S = {f1, f2, f3} are computed as follows: yf1 = [k1, k2] = 00001111, which amounts
to ωf1 =

(4
2
)(4

2
)

= 36. Similarly, for f2 and f3, we get yf1 = [k1 + k3, k4] = 000000001111 and
yf1 = [k1, k2 +k4] = 000011111111, the two of which add up to 2×

((8
2
)(4

2
)
−
(4

2
))

= 2×132 = 264.
So the total is ωy(x) =

∑
f∈S Ωf = 36 + 132 + 132 = 300.

123

5.3.4.3 From Maximal Initials to Hamming Clusters

Definition 5.4 Let Υc
n,x be the cluster of supersequences that have c extra 1’s with respect to x,

where 0 ≤ c ≤ n−m.
Υc
n,x = {y ∈ Υn,x | h(y)− h(x) = c}.

The set of compatible supersequences is thus broken down into n−m+ 1 disjoint sets indexed
from 0 to n−m such that strings in cluster c contain h(x) + c 1’s:

Υn,x =
n−m⋃
c=0

Υc
n,x.

Definition 5.5 Maximal initials represent y strings for which the largest index of their initial
mask, π̃, overlaps with the last bit of y. In other words, the last index of the canonical embedding
of x in y overlaps with the last bit of y. Recall that we use π̃ to denote a mask π that is initial.

Mn,x = {y ∈ Υn,x | (∃π̃)[yπ̃ = x ∧max(π̃) = |y| = n]} .

Similarly, we define a clustering for maximal initials based on the Hamming weight of the y strings

Mc
n,x = {y ∈Mn,x | h(y) = h(x) + c}.

Example 5.3 For example, the initial embedding of x = 1011 in y = 110011 given by π̃ =
{1, 3, 5, 6} is maximal, whereas its initial embedding in y′ = 101011 given by π̃′ = {1, 2, 3, 5} is
not maximal as the last index of π̃′ does not overlap with the position of the last bit of y′.

A more exhaustive example illustrating these concepts is given in Table 5.15. In addition to
the distribution of weights, i.e., the number of masks per y, clusters and maximal initials are
indicated by horizontal separators and bold font, respectively.

Theorem 5.4 For given n, the cardinality ofMn,x is independent of the exact x.

Proof: It is clear that every n-element sequence that has x as an m-element subsequence has a
unique initial mask π̃ that gives x. Furthermore, if we fix π, then the members of y up to the last
member of π are completely determined if π is initial. To see this, consider the case i ∈ π̃, then
yi (the i-th member of y) must correspond to xj , where i is the j-th smallest member of π̃. If
i /∈ π̃, but smaller than max(π̃), then the i-th member of y must correspond to xj+1, where j is
the number of members of π̃ smaller than i. The latter follows because if this bit were xj+1, then
the given π would not be initial.

We also need to observe that for a given π̃, there always exists a y that has x initially in π̃:
suppose that x starts with a 0, we set all the bits of y before π̃ to be 1. For a given value ` of
max(π̃) - which can range from m to n - there are exactly

(
`−1
m−1

)
π̃’s, one for each selection of

the other m− 1 members of π̃ amongst the `− 1 values less than `.
Moreover, here we have an additional constraint, namely that the initial masks should be

maximal as well, i.e., max(π̃) = n. This means that ` = n and so we can count the number of
distinct initials for the remaining m− 1 elements of x in the remaining (n− 1)-long elements of y
strings, which is simply given by

|Mn,x| = |Mn,m| =
(
n− 1
m− 1

)
(5.11)

124

Table 5.15: Clusters, maximal initial projection masks and distribution of weights.

x = 110
y π̃ ω

00110 {3,4,5} 1
01010 {2,4,5} 1
01100 {2, 3, 4} 2
10010 {1,4,5} 1
10100 {1, 3, 4} 2
11000 {1, 2, 3} 3
01101 {2, 3, 4} 1
01110 {2,3,5} 3
10101 {1, 3, 4} 1
10110 {1,3,5} 3
11001 {1, 2, 3} 2
11100 {1, 2, 4} 6
11011 {1, 2, 3} 1
11101 {1, 2, 4} 3
11110 {1,2,5} 6

x = 101
y π̃ ω

00101 {3,4,5} 1
01001 {2,3,5} 2
01010 {2, 3, 4} 1
10001 {1,2,5} 3
10010 {1, 2, 4} 2
10100 {1, 2, 3} 1
01011 {2, 3, 4} 2
01101 {2,4,5} 2
10011 {1, 2, 4} 4
10101 {1, 2, 3} 4
11001 {1,3,5} 4
11010 {1, 3, 4} 2
10111 {1, 2, 3} 3
11011 {1, 3, 4} 4
11101 {1,4,5} 3

Clearly the cardinality of the set of maximal initials is independent of the form of x and depends
only on n and m. �

Remark Note that if we extend the analysis in the proof of Theorem 5.4 and let ` run over the
range [m,n], we can count all the distinct initial embeddings in Υn,x, given by

∑n
`=m

(
`−1
m−1

)
.

Moreover, since the bits beyond max(π̃) are completely undetermined, for a given π̃, there are
exactly 2n−max(π̃) y’s that have π̃ in common, which, incidentally, provides yet another proof for
the fact that |Υn,x| is a function of only n and m since |Υn,x| =

∑n
`=m

(
`−1
m−1

)
2n−`. This allows

us to choose the x comprising m 0’s and the result in Equation (5.6) follows immediately.

Theorem 5.5 All x strings of length m that have the same Hamming weight, give rise to the
same number of maximal initials in each cluster.

∀x, x′ ∈ Σm, h(x) = h(x′) =⇒ |Mc
n,x| = |Mc

n,x′ |.

Proof: We now describe a simple combinatorial argument for counting the number of maximal
initials in each cluster indexed by c, i.e., a grouping of all y ∈ Υc

n,x such that h(y) = h(x) + c.
Let p and q denote the number of additional 0’s, and 1’s contributed by each cluster, respectively.
Furthermore, let a and b denote the number of 1’s and 0’s in x, respectively.

Similar to the method used in the proof of Theorem 5.4, due to maximality we fix the last
bit of y and x, and consider y′ = y − tail(y) and x′ = x− tail(x) where tail(s) denotes the last
bit of s. Now the problem amounts to counting distinct initials of length m− 1 in (n− 1)-long
elements in each cluster by counting the number of ways distinct configurations can be formed as
a result of distributing c 1’s and (n−m− c) 0’s around the bars/separators formed by the b 0’s
and a 1’s in x, respectively.

125

We now need to observe that to count such strings with distinct initials, we can fix the
m− 1 elements of x′ as distinguished elements and count all the unique configurations formed by
distributing p indistinguishable 0’s and q indistinguishable 1’s among bins formed by the fixed
1’s and 0’s of x′ such that each such configuration is distinguished by a unique initial.

Equivalently, we are counting the number of ways we can place the members of x′ among n− 1
positions comprising p 0’s and q 1’s without changing the relative order of the elements of x′ such
that these configurations are uniquely distinguished by the positions of the m− 1 elements.

Intuitively, the arrangements are determined by choosing the positions of the m− 1 bits of
x′: by counting all the unique distributions of bits of opposite value around the elements of x′,
we are simply displacing the elements of x′ in the n − 1 positions, thereby ensuring that each
configuration corresponds to a unique initial.

Note that this coincides exactly with the multiset coefficient (computed via the method of
stars and bars) as we can consider the elements of the runs of x to be distinguished elements
forming bins among which we can distribute indistinguishable bits of opposite value to count the
number of configurations that are distinguished only by the number of 1’s and 0’s present in the
said bins.

Thus we count the number of unique configurations formed by distributing p 0’s and q 1’s
among the a 1’s and b 0’s of x, respectively. The total count for each cluster c is given by:(
p+a−1
p

)(
q+b−1
q

)
, which expressed in terms of the Hamming weight of x gives

|Mc
n,x| =

(
(n−m− c) + h(x)− 1

n−m− c

)(
c+ (m− h(x))− 1

c

)
(5.12)

With the total number of maximal initials in Υn,x given by

|Mn,x| =
n−m∑
c=0
|Mc

n,x| =
(
n− 1
m− 1

)
.

�

Theorem 5.6 The size of a cluster is purely a function of n,m, c and h(x)

∀x, x′ ∈ Σm, h(x) = h(x′) =⇒ |Υc
n,x| = |Υc

n,x′ |

Proof: Let ` denote the position of the last bit of y ranging from |x| = m to |y| = n. Starting
from a fixed x string, we enumerate all y strings in cluster c by considering maximal initials
within the range of `, i.e., ` ∈ [m, . . . , n].

Let g denote the number of 1’s belonging to the surplus bits in cluster c constrained within the
range of the maximal initial, [1, . . . , `]. For each `, compute |Mg

`,x| and count the combinations of
choosing the remaining c− g additional bits in the remaining n− ` bits. Let UB = min(c, `−m)
and LB = max(0, c− (n− `)) and thus we get the following:

|Υc
n,x| =

n∑
`=m

min(c,`−m)∑
g=max(0,c−(n−`))

|Mg
`,m|

(
n− `
c− g

)
(5.13)

Finally, inserting Equation (5.12) into Equation (5.13) gives

|Υc
n,x| =

n∑
`=m

UB∑
g=LB

(
(`−m− g) + h(x)− 1

`−m− g

)(
g + (m− h(x))− 1

g

)(
n− `
c− g

)
. (5.14)

126

As shown in Equation (5.14), |Υc
n,x| depends on the length and the Hamming weight of x, but it

is independent of the exact form of x. �

5.3.4.4 Simple closed form expression for the size of a cluster

We have shown that |Υc
n,x| is independent of the form of x. We can now derive a more simplified ana-

lytic expression for this count by considering an x string of the following form: x = 11...11a00...0m,
i.e., a 1’s followed by b 0’s, with a > 0 and b = m− a.

The y strings in each cluster are precisely the strings of length n that have a+ c 1’s in them
(and n− a− c 0’s) where the a-th 1 (i.e., the last one in an initial choice for x) occurs before at
least b 0’s. Clearly, there are

(
n
a+c
)
strings with exactly a+ c 1’s, but some of these will violate

the second principle. To find an expression for counting the valid instances, we sum over the
positions of the a-th 1, which must be between a and a+ z, where z = n− a− b− c is the number
of added 0’s. Thus we get the following expression

|Υc
n,x| =

h(x)+z∑
p=h(x)

(
p− 1

h(x)− 1

)(
n− p
c

)
. (5.15)

With z = n−m− c and p denoting the index of the a-th 1, we thus count the number of ways of
picking 1’s before p and the c 1’s after p. Note that for h(x) = 0, the cardinality of cluster c is
simply given by

(
n
c

)
.

5.3.4.5 Recursive expression for the size of a cluster

We present a recurrence for computing the size of a cluster by considering overlaps between
the first bits of x and y, respectively. Let • and ε denote concatenation and the empty string,
respectively. Moreover, let x′ be the tail of x (resp. y′ the tail of y).

• Υc
n,0•x = Υc

n−1,x + Υc−1
n−1,0•x

– First term: first bit of y is 0, find x′ in y′

– Second term: first bit of y is 1 (part of cluster), so we reduce c and find x in y′

• Υc
n,1•x = Υc

n−1,x + Υc
n−1,1•x

– Same arguments as above, but for x starting with 1

• Base cases:

– Υ0
n,0•x = Υ0

n−1,x

– Υ0
n,1•x = Υ0

n−1,x + Υ0
n−1,1•x

– Υc
n,ε =

(
n
c

)
– if c+ |x| > n then return 0 else Υc

n,x

It is worth pointing out that since this recursion depends on the form of x, i.e., whether or not x
starts with a 0 or 1, it does not explicitly capture the bijection between clusters of x strings that
have the same Hamming weight, as proved in Theorem 5.6.

127

5.3.4.6 Enumerating Singletons via Runs

Let singletons define supersequences in Υn,x that admit exactly a single mask for a fixed sub-
sequence x of length m, i.e.; they give rise to exactly a single occurrence of x upon n−m deletions.
We use Sn,x to denote this set.

Sn,x = {y ∈ Υn,x| ωx(y) = 1}.

To compute the cardinality of Sn,x, we describe a counting technique based on splitting runs of
1’s and 0’s in x according to the following observations: (i) inserting bits of opposite value to
either side of the framing bits in x, i.e., before the first or after the last bit of x, does not alter
the number of masks. (ii) splitting runs of 0’s and 1’s in x, i.e., insertion of bits of opposite value
in between two identical bits, does not modify the count. This amounts to counting the number
of ways that singletons can be obtained from a fixed x string via weight preserving insertions.

The number of possible run splittings corresponds to the number of distinct ways that c 1’s
and (n−m− c) 0’s can be placed in between the bits of the runs of 0’s and 1’s in x, respectively.
Again, this count is given by the multiset number

(
a+b−1
a

)
, where we count the number of ways

a indistinguishable objects can be placed into b distinguishable bins. Note that the number of
singletons depends heavily on the number of runs in x and their corresponding lengths. The
counting is done by summing over all n−m clusters and computing the configurations that lead
to singletons as a function of the runs in x and the number of additional 1’s and 0’s contributed
by each cluster at index c.

In order to do this computation, we first count the number of insertions slots in x as a function
of its runs of 1’s and 0’s, given by ρ0(x) and ρ1(x), respectively. Let rji be a run with i and
j denoting its first and last index and let ρα(x) denote the number of insertion slots in x as a
function of its runs of α. To compute ρα(x), we iterate through the runs of α and in x and count
the number of indexes at which we can split runs as follows

ρα(x) =
∑

r∈Rx,α

f(r) (5.16)

where

f(r) =

|rji |+ 1, if i = 1 ∧ j = n

|rji |, if (i = 1 ∧ j < n) ∨ (i > 1 ∧ j = n)
|rji | − 1, otherwise

(5.17)

Note that if either the first bit or the last bit of a run overlaps with the first or last bit of x, the
number of bars is equal to the length of the run. If the said indexes overlap with neither the
first nor the last bit of x, the count is equal to the length of the run minus 1, and finally, if both
indexes overlap with the first and last bit of x the count is equal to the length of the run plus 1.

We can now count the total number of singletons for given n and x as follows. Let c and b
(b = n−m− c) denote the number of 1’s and 0’s contributed by the c-th cluster, and the total
number of singletons is given by

|Sn,x| =
(
n−m+ ρ1(x)− 1

n−m

)
+
n−m−1∑
c=1

(
b+ ρ1(x)− 1

b

)(
c+ ρ0(x)− 1

c

)
+
(
n−m+ ρ0(x)− 1

n−m

)
(5.18)

The first and last terms correspond to the number of singletons in the first and last cluster,
respectively, where we insert either 1’s or 0’s, but not both. The summation over the remaining
clusters counts the configurations that incorporate both additional 1’s and 0’s.

Theorem 5.7 The constant (i.e., x = 11...1 or x = 00...0) and the alternating x strings
maximize and minimize the number of singletons, respectively.

128

Proof: This follows immediately from a maximization and minimization of the number of runs
in x, i.e., ρα(x). In the case of the all 1’s x string, which comprises a single run, every index
in x can be used for splitting. Conversely, the alternating x has the maximum number of runs
|R| = m, where ∀.r ∈ Rx : |r| = 1, thus splittings are not possible, i.e., no operations of type (ii),
and the insertions are confined to pre-pending and appending bits of opposite values to the first
and last bit of x, respectively. �

5.3.5 Entropy Minimization
We now prove the minimal entropy conjecture for the special cases of one and two deletions. Our
approach incorporates two key steps: first, we work out a characterization of the number of y
strings that have specific weights ωx(y). We then consider the impact of applying an entropy
decreasing transformation to x, denoted by g(x), and prove that this operation shifts the weights
in the space of supersequences such that it results in a lowering of the corresponding entropy.
This is achieved using clustering techniques and a run-length encoding of strings: we identify
groupings of supersequences with specific weights by studying how they can be constructed from
a given subsequence using different insertion operations, which are in turn based on analyzing
how runs of 1’s and 0’s can be extended or split.

Definition 5.6 We now define the transformation g on strings of length m as follows:

g([k1, . . . , k`]) =
{

[k1 + k2, k3, . . . , k`] if ` > 1
g([m]) = [m]

(5.19)

Hence g is a “merging” operation that connects the two first blocks together. As we shall see, g
decreases the entropy. Thus, one can start from any subsequence x and apply the transformation
g until the string becomes [m], i.e., [0]m or [1]m. As a result, [m] exhibits minimal entropy and
thus the highest amount of leakage in the original key exchange problem. Note that, as indicated
implicitly in the definition above, this transformation always reduces the number of runs by one
by flipping the first run to its complement.

Thus we avoid cases where merging two runs would lead to connecting to a third neighboring
run, thereby resulting in a reduction of runs by two. For example, g transforms the string
x = 1001110 = [1; 1, 2, 3, 1] into x = 0001110 = [0; 3, 3, 1], as opposed to x = 1111110 = [1; 6, 1].

The plots shown in Figure 5.9 illustrate the impact of the transformation g on the weight
distribution as we move from x = 101010 to x′ = 000000 (101010 → 001010 → 111010 →
000010→ 111110→ 000000).

5.3.5.1 Single Deletions

In this subsection, we consider the case of a single deletion. Let x be a fixed string of length
m. We study the space of y strings of length n = m + 1 that can be masked to yield x, i.e.,
Y1 = {y ∈ {0, 1}n | ∃δ ∈ P([n]), yδ = x and |δ| = 1}. Recall that we associate a weight ω1(x, y)
to each y ∈ Y1, defined as the number of ways that y can be masked into x. Finally, we define the
entropy associated to x as the Shannon entropy of the variable Z ∈ {0, 1}n having distribution

Pr[Z = y] = 1
µ1
wx(y).

where µ1 =
∑
y∈Υn,x , which for the case m = n− 1 gives ω1(x, y) =

(
n
m

)
2n−m =

(
n
n−1
)
2n−(n−1) =

2n.

129

1 2 3 4 5 6 7
ωx(y)

0

2

4

6

8

10

12

14

F
re

q
u

en
cy

(#
y
)

Step 1, x = 101010

1 2 3 4 5 6 7
ωx(y)

0

2

4

6

8

10

12

F
re

q
u

en
cy

(#
y
)

Step 2, x = 001010

2 4 6 8 10
ωx(y)

0

2

4

6

8

10

12

F
re

q
u

en
cy

(#
y
)

Step 3, x = 111010

0 2 4 6 8 10 12 14 16
ωx(y)

0

2

4

6

8

10

12

14

F
re

q
u

en
cy

(#
y
)

Step 4, x = 000010

0 3 6 9 12 15 18 21
ωx(y)

0

3

6

9

12

15

18

21

F
re

q
u

en
cy

(#
y
)

Step 5, x = 111110

0 4 8 12 16 20 24 28
ωx(y)

0
3
6
9

12
15
18
21
24
27

F
re

q
u

en
cy

(#
y
)

Step 6, x = 000000

Figure 5.9: Impact of the transformation g on the weight distribution for converting x = 101010
to x′ = 000000, with n = 8,m = 6.

Clustering Supersequences via Single Insertions Let x = [k1, . . . , k`]. A string y ∈ Y1
can take only one of the following forms:

1. y = [k1, . . . , ki−1, ki + 1, ki+1, . . . k`] for some i ∈ [`];

2. y = [k1, . . . , ki−1, k
′
i, 1, k′′i , ki+1, . . . , k`], for some i ∈ [`] and where k′i + k′′i = ki and k′i 6= 0

and k′′i 6= 0;

3. y = [1, k1, . . . k`];

4. y = [k1, . . . , k`, 1].

The first case will be referred to as a “weight increasing insertion”, denoted by 1/0, which
corresponds to extending runs/blocks. The last three cases will be referred to as “weight
preserving insertions”, and denoted by 0/1, corresponding to splitting runs or adding a new run
of length 1. For the remainder of our discussion, a/b means: “a weight increasing insertions and
b weight preserving insertions”.

Lemma 5.8 Y1 is composed of5:

• ` weight increasing insertions, resulting in strings of respective weights k1 + 1, k2 + 1, k3 +
1, . . . , k` + 1; and

• m− `+ 2 weight preserving insertions, i.e., strings of weight 1.

5A sanity check can be done to verify that we do not miss any strings, since
(
m+1
m

)
+
(
m+1
m+1

)
= `+m− `+ 2.

130

Minimal Entropy For Single Deletions

Lemma 5.9 The transformation g decreases the entropy Hn(x) for single deletions, i.e., m =
n− 1.

Proof: The proof consists of computing the difference between the entropy before and after
applying g, i.e., ∆1 = Hn(x) − Hn(g(x)), and showing that this difference is positive. From
Lemma 5.8, after applying g,

• The weight increasing insertions give `− 1 strings of respective weights k1 + 1 + k2 + 1−
1, k3 + 1, . . . , k` + 1.

• The weight preserving insertions give m+ 2− (`− 1) strings of weight 1.

We now compute the difference of the entropies thanks to the analyses of [k1, k2, k3, . . . , k`] and
[k1 + k2, k3, . . . , k`], which after simplification gives

∆1(k1, . . . , k`) = (k1 + 1) log 1
k1 + 1 + (k2 + 1) log 1

k2 + 1 − (k1 + k2 + 1) log 1
k1 + k2 + 1

To show that this is positive when k1 ≥ 1 and k2 ≥ 1, it suffices to compute the partial derivatives
along each axis, which are positive, and evaluate the function in k1 = k2 = 1, which is also
positive. �

Corollary 5.10 For all n and any subsequence x of length m = n− 1, we have

Hn(x) ≥ Hn ([m]) ,

with equality only if x ∈ {0m, 1m}.

Proof: Given any x 6= [m] of length m = n − 1, it can be transformed into the string [m]
by a series of consecutive g operations, as defined in Definition 5.6. Each such operation can
only decrease the entropy, as shown in Lemma 5.9, and thus we get a proof for the fact that
Hn(x) ≥ Hn (0m). �

Remark It is worth pointing out that for the special case of single deletions, the minimization of
entropy by the constant string, x = [m], can also be proved using a simple combinatorial argument
as follows. For m = n − 1, in cluster c = 1 we get a single y string with maximum weight,
ωy(x) =

(
n
m

)
, corresponding to y = [n] and x = [m], and the remaining strings in cluster c = 0

are all singletons, ωx(y) = 1. This is clearly the most concentrated distribution and hence the
least entropic one.

5.3.5.2 Double Deletions

In the case of two deletions, there are three types of insertions to consider; using the notation
introduced in the previous subsection, these are 2/0, 1/1, and 0/2 insertions. For a fixed
string x = [k1, . . . , k`], we now analyze each case to account for the corresponding number
of supersequences and their respective weights in each cluster. We will then study how this
distribution changes when we go from x to g(x) in order to prove the following lemma:

131

Lemma 5.11 The transformation g decreases the entropy Hn(x) for single deletions, i.e., m =
n− 2.

Note that while this technique could be applied to a higher number of insertions, the complexity
of the analysis blows up already for two deletions, as the next subsection will show.

Clustering Supersequences via Double Insertions

Case 2/0 The case 2/0 corresponds to the situation where the insertions do not create new
blocks. This happens when both bits are added to the same block, or when they are added to
two different blocks, as follows.

The former corresponds to

y = [k1, . . . , ki−1, ki + 2, ki+1, . . . , k`]

for some i ∈ [`], which has weight ωx(y) =
(
ki+2

2
)
. There are ` strings of this type.

The latter corresponds to

y = [k1, . . . , ki−1, ki + 1, ki+1, . . . , kj−1, kj + 1, kj+1, . . . , k`]

for 1 ≤ i < j ≤ `, and has weight ωx(y) = (ki + 1)(kj + 1). There are `(`−1)
2 strings with this

weight. In total, there are `(`+1)
2 strings for the case 2/0.

Case 0/2 In the 0/2 case, there are only weight preserving insertions, hence all strings have
weight 1. Weight preserving insertions may happen in a single block, or in two separate blocks.
To ease notation, we introduce

k̃i =
{
ki − 1 if i ∈ [2, `− 1]
ki if i = 1 or i = `

The different treatments for “endpoints” 1 and ` correspond to cases [1, k1, . . . , k`] and [k1, . . . , k`, 1],
whereas a weight preserving insertion in the i-th block can happen at only ki − 1 places.

• If we insert into the first or the last block, we choose respectively k1 and k` positions, i.e.,
there are respectively k1 and k` different strings.

• If we insert into any other block i, we choose amongst ki − 1 positions, which yields ki − 1
different strings.

• If we insert in different blocks, we apply the same analysis twice, independently, which gives
k̃ik̃j different strings.

• If we insert twice in the same block, we get
(
k̃i+1

2
)
different strings.

In the end, the total number of 0/2 insertions is

∑
1≤i<j≤`

k̃ik̃j +
∑̀
i=1

(
k̃i + 1

2

)

132

Example 5.4 If k1 = · · · = k` = 1, so that k̃1 = k̃` = 1 and k̃2 = · · · = k̃`−1 = 0, we count 3
strings.

Example 5.5 () For example, for 1 < i < j < l we get for all a1, a2, b1, b2 > 0 such that
a1 +a2 = ki and b1 +b2 = kj , the string k1 . . . ki−1a11a2ki+1 . . . kj−1b11b2kj+1 . . . kl. The number
of such strings is (k̃i)(k̃j).

Another example: for the particular cases i = j = 1 we get for all a1, a2, a3 ∈ N with a2
strictly positive such that a1 + a2 + a3 = k1, the string a11a21a3k2kl or (case a2 = 0) a12a3k2kl.
The number of such strings is

(
k̃1+1

2
)
.

Case 1/1 As in the previous case, we choose a block in which we apply a weight increasing
insertion, yielding ki + 1 masks; then we choose a block for a weight preserving insertion,
yielding k̃i strings. However, one must be careful: to see why, consider the following string
x = 000111 = [3, 3].

• If we insert a weight increasing 0 in the first block, and then a weight preserving 1 in the
last-but-one position of the first block, we get the string y = 00010111 = [3, 1, 1, 3]. This
string is of weight (3 + 1) + (3 + 1), since we can delete the 0 then one of the four 1, or the
1 then one of the four 0.

• If we insert a weight increasing 1 in the second block, followed by a weight preserving 0 in the
second position of the second block, we obtain the same string y = 00010111 = [0; 3, 1, 1, 3].

Hence, there are two ways to get each y. We will, therefore, exercise a preference toward the first
situation, where we perform a weight increasing insertion in the first block, followed by a weight
preserving insertion in the first block’s last-but-one position. Let i ∈ [`].

• If i = 1, we get
∑`
j=1 k̃j(= m− `+ 2) strings of weight k1 + 1, as well as a string of weight

k1 + k2 + 2. In total, we get m− `+ 3 strings.

• If 1 < i < `, we perform a weight increasing insertion in the block i, the number of strings we
will get is (

∑
i k̃i). Indeed the string [k1, . . . , ki−1, 1, 1, ki, ki+1, . . . , k`] will be counted for the

case i− 1. Each of these strings has weight ki + 1, except one ([k1, . . . , ki, 1, 1, ki+1, . . . , k`])
which has weight ki + 1 + ki+1 + 1 (the string that we will not count for the next example).

• If i = `, we can keep the same formula by introducing k`+1 = 0 for the weight of the string
[k1, . . . , k`, 1, 1].

Remark (Sanity check for the number of strings) As in the case of one deletion, we will
count the number of strings considered to make sure that we do not miss anything. We have:

• case 2/0 : `(`+1)
2

• case 0/2 :
∑

1≤i<j≤` k̃ik̃j +
∑`
i=1
(
k̃i+1

2
)

• case 1/1 : 1 + `(m− `− 2)

We give an algebraic proof in Section 5.3.7.2 showing that if there exist positive integers (ki)i∈{1,...,`}
such that m =

∑`
i=1 ki, then we have `(`+1)

2 +
∑

1≤i<j≤` k̃ik̃j +
∑`
i=1
(
k̃i+1

2
)

+ 1 + `(m− `− 2) =(
m+2
m

)
+
(
m+2
m+1

)
+
(
m+2
m+2

)
, to make sure we have not missed or double-counted any strings.

133

Minimal Entropy For Double Deletions As in Section 5.3.5.1, we analyze the effects of the
merging operation g on entropy. For this, we consider the impact of g(x) = [k1 + k2, k3, . . . , k`] on
the clustering results developed in Section 5.3.5.2. We will omit the analyses when no insertions
are made in the first or second block since we will get the same weight and this will disappear in
the difference.

Case 2/0 For x, we had `(`+1)
2 strings of this type, we now have `(`−1)

2 , there are ` less
strings and `− 1 that grow bigger. The rest remains the same.

Case 0/2 Similar to x, we have a certain number of strings with weight 1 counted as before

∑
3≤i≤j≤`

k̃ik̃j +
∑

3≤i≤`

(
k̃i + 1

2

)

However, a part of the formula changes:(
k1 + k2 + 1

2

)
+ (k1 + k2)

∑
3≤i≤`

k̃i (5.20)

Then, for the part of the analysis of g(x) equivalent with that of x we get(
k1 + 1

2

)
+
(
k2

2

)
+ (k1 + k2 − 1)×

∑
3≤i≤`

k̃i + k1(k2 − 1) (5.21)

now we take the difference between Equation (5.20) and Equation (5.21)

∑
3≤i≤`

k̃i +
(
k1 + k2 + 1

2

)
−
((

k1 + 1
2

)
+
(
k2

2

)
+ k1(k2 − 1)

)

After simplifications, we obtain
∑

1≤i≤` k̃i + 1.

Case 1/1 In the case of x, we had

(`− 1)
∑

1≤i≤`
(k̃i − 1) +

∑
1≤i≤`

k̃i.

We now have
(`− 2)(

∑
1≤i≤`

(k̃i − 1) + 1) +
∑

1≤i≤`
k̃i + 1.

Taking the difference between now and before we get
∑

1≤i≤` k̃i+1−l. We have (
∑

1≤i≤l(k̃i−1)+1)
weights (the weight increasing insertion in the first block) that grow bigger, the rest stays the
same.

Remark (Sanity check) We can check that the numbers of string is constant:

• Case 0/2:
∑

1≤i≤` k̃i + 1 more strings

• Case 1/1: (
∑

1≤i≤` k̃i + 1− `) less strings

134

• Case 2/0: ` less strings.

and
∑

1≤i≤` k̃i + 1− (
∑

1≤i≤` k̃i + 1− `)− ` = 0.

We can now compute the difference of the two entropies. Note that instead of working with the
probabilities, we will multiply everything by 4

(
m+2
m

)
. We can focus on the very few strings that

show a change in weight (when an insertion is made in the first or second block).
Case 2/0: For x, we have 1 string for each of the weights

(k1 + 1)(k2 + 1), (k1 + 1)(k3 + 1), . . . ,
(k1 + 1)(kl + 1), (k2 + 1)(k3 + 1), (k2 + 1)(k4 + 1), . . . ,

(k2 + 1)(kl + 1),
(
k1 + 2

2

)(
k2 + 2

2

)

For g(x), we still have 1 string for each of the following weights:

(k1 + k2 + 1)(k3 + 1), (k1 + k2 + 1)(k4 + 1), . . . , (k1 + k2 + 1)(kl + 1),
(
k1 + k2 + 2

2

)

Case 0/2: For g(x), we have
∑

1≤i≤` k̃i + 1.
Case 1/1: For x, the remaining strings are:

Multiplicity Weight∑`

i=1 k̃i k1 + 1∑`

i=1 k̃i − 1 k2 + 1
1 k1 + k2 + 2
1 k2 + k3 + 2

There remains, for g(x), one string for each of the following weights k3 + 1, k4 + 1, . . . , kl + 1
and

∑
1≤i≤` k̃i + 1 strings of weight k1 + k2 + 1 along with 1 string of weight k1 + k2 + k3 + 2.

The difference of entropies is equal to the difference between A and B defined in the following

135

equations:

A =
∑

2≤i≤`
(k1 + 1)(ki + 1) log 1

(k1 + 1)(ki + 1) +
(
k1 + 2

2

)
log 1(

k1+2
2
) +

(
k2 + 2

2

)
log 1(

k2+2
2
)

+
∑

1≤i≤`
k̃i(k1 + 1) log 1

(k1 + 1) + (k1 + k2 + 2) log 1
(k1 + k2 + 2)

+ (
∑

1≤i≤`
k̃i − 1)(k2 + 1) log 1

(k2 + 1)

+ (k2 + k3 + 2) log 1
(k2 + k3 + 2)

B =
∑

3≤i≤l
(ki + 1) log 1

(ki + 1) + (
∑

1≤i≤l
k̃i + 1)(k1 + k2 + 1) log 1

(k1 + k2 + 1)

+ (k1 + k2 + k3 + 2) log 1
(k1 + k2 + k3 + 2)

+
∑

3≤i≤l
(k1 + k2 + 1)(ki + 1) log 1

(k1 + k2 + 1)(ki + 1)

+
(
k1 + k2 + 2

2

)
log 1(

k1+k2+2
2

)
where A corresponds to x, and B corresponds to g(x). We are now in a position to conclude the
proof of Lemma 5.11.

Lemma 5.12 The transformation g decreases the entropy Hn(x) for double deletions, i.e., m =
n− 2.

Proof: To prove this, it suffices to show that for ` ≥ 2, A−B > 0. The proof mostly consists
of computing partial derivatives to show that the function is increasing. We refer the reader to
Section 5.3.7.1 for details. �

Corollary 5.13 For all n and any subsequence x of length m = n− 2, we have

Hn(x) ≥ Hn ([m]) ,

with equality only if x ∈ {0m, 1m}.

Proof: Given any x 6= [m] of length m = n− 2, it can be transformed into the string [m] by a
series of consecutive g operations (cf. Definition 5.6). Similar to the single-bit deletion case, each
such operation can only decrease the entropy, as proved in Lemma 5.11, and thus we get a proof
for the fact that Hn(x) ≥ Hn (0m). �

5.3.6 Concluding Remarks
From the original cryptographic motivation of the problem, the minimal entropy case corresponding
to maximal information leakage is arguably the case that interests us the most. While our results

136

shed more light on various properties of the space of supersequences and the combinatorial
problem of counting the number of embeddings of a given subsequence in the set of its compatible
supersequences, the original entropy maximization conjecture remains an open problem. Finally,
proving the entropy minimization conjecture for an arbitrary number of deletions as well as a
more general characterization of the distribution of the number of subsequence embeddings in
supersequences of finite-length present some further open problems.

5.3.7 Appendices
5.3.7.1 Proof of Lemma 5.12

Proof: The proof consists of two steps: first we show that A−B > 0 when k1 = · · · = k` = 1;
then we show that ∇(A−B) is positive along all directions, so that an increase in any of the ki,
results in an increase of A−B.

• Step 1. For k1 = · · · = k` = 1, we have:

A = −
∑

2≤i≤`
4 log 4− 3 log 3− 3 log 3

−
∑

1≤i≤`
2k̃i log 2− 4 log 4

− 2 log 2
∑

1≤i≤`
(k̃i − 1)

− 4 log 4

= − 8(`− 1)− 6 log 3− 2
∑̀
i=1

k̃i − 8 + 2`− 2
∑̀
i=1

k̃i − 8

= − 6`− 6 log 3− 16.

Similarly,

B = −
∑

3≤i≤`
2 log 2− 3 log 3

∑
1≤i≤`

(k̃i + 1)

− 5 log 5

−
∑

3≤i≤`
6 log 6

− 6 log 6

= − 2(`− 2)− 3` log 3− 3 log 3
∑̀
i=1

k̃i − 5 log 5− 6(`− 1) log 6

= − 2`− 6` log 6− 3` log 3 + 4− 6 log 3− 5 log 5 + 6 log 6
= − (2 + 6 + 6 log 3 + 3 log 3)`+ 4− 6 log 3− 5 log 5 + 6 + 6 log 3
= − (8 + 9 log 3)`+ 10− 5 log 5

Thus,

A−B = − 6`− 6 log 3− 16− (−(8 + 9 log 3)`+ 10− 5 log 5)
= (2 + 9 log(3))`− 26 + 5 log(5)− 6 log(3)

137

Therefore, A−B > 0 iif ` > (26 + 6 log(3)− 5 log(5))/(2 + 9 log(3)) ≈ 1.46. For ` ≥ 2, and
k1 = · · · = k` = 1, we therefore have A−B > 0.

• Step 2. To simplify computations, we introduce the function e(x) = −x log2 x. We also
use the fact that e(xy) = xe(y) + ye(x), and develop the binomial coefficients: e

((
a+b

2
))

=(
a+b

2
)

+ e((a + b)(a + b − 1)). Then we match the sum indexes. We also introduce the
notation ei = e(ki + 1).

Thus we can write:

A =
∑

2≤i≤l
e((k1 + 1)(ki + 1)) + e

((
k1 + 2

2

))
+ e

((
k2 + 2

2

))
+ e(k1 + 1)

∑
1≤i≤l

k̃i + e(k1 + k2 + 2)

+ e(k2 + 1)
∑

1≤i≤l
(k̃i − 1)

+ e(k2 + k3 + 2)

=
∑

3≤i≤`−1
e((k1 + 1)(ki + 1)) + e((k1 + 1)(k2 + 1)) + e((k1 + 1)(k` + 1))

+
(
k1 + 1

2

)
+ e((k1 + 1)(k1 + 2))

+
(
k2 + 1

2

)
+ e((k2 + 1)(k2 + 2))

+ e(k1 + 1)
∑

3≤i≤`−1
k̃i + e(k1 + k2 + 2) + e(k1 + 1)k̃1 + e(k1 + 1)k̃2 + e(k1 + 1)k̃`

+ e(k2 + 1)
∑

3≤i≤`−1
k̃i − `e(k2 + 1) + e(k2 + 1)k̃1 + e(k2 + 1)k̃2 + e(k2 + 1)k̃`

+ e(k2 + k3 + 2)

= (k1 + 1)
∑

3≤i≤`−1
ei + e1

∑
3≤i≤`−1

(ki + 1)

+ (k2 + 1)e1 + (k1 + 1)e2 + (k1 + 1)e` + (k` + 1)e1

+
(
k1 + 1

2

)
+ (k1 + 2)e1 + (k1 + 1)e(k1 + 2)

+
(
k2 + 1

2

)
+ (k2 + 2)e2 + (k2 + 1)e(k2 + 2)

+ e1
∑

3≤i≤`−1
ki − (`− 3)e1 + e(k1 + k2 + 2) + e1k1 + e1k2 − e1 + e1k`

+ e2
∑

3≤i≤`−1
ki − (`− 3)e2 − `e2 + e2k1 + e2k2 − e2 + e2k`

+ e(k2 + k3 + 2)

138

At this point we regroup all terms in ei together:

A =

2k1 + 2k2 + 2k` − 3 + 2
∑

3≤i≤`−1
ki

 e1

+

2k1 + 2k2 + k` − 2`− 1 +
∑

3≤i≤`−1
ki

 e2

+ (k1 + 1)
∑

3≤i≤`−1
ei

+ (k1 + 1)e`
+ e(k1 + k2 + 2) + (k1 + 1)e(k1 + 2) + (k2 + 1)e(k2 + 2) + e(k2 + k3 + 2)

+
(
k1 + 1

2

)
+
(
k2 + 1

2

)

We simplify the expression for B in the same fashion:

B = 2e(k1 + k2 + 1)
∑

3≤i≤`−1
ki + k1e(k1 + k2 + 1) + k2e(k1 + k2 + 1) + k`e(k1 + k2 + 1)

+ e(k1 + k2 + k3 + 2)

+ (`− 3)e(k1 + k2 + 1) + (k1 + k2 + 2)
∑

3≤i≤`
ei

+
(
k1 + k2 + 2

2

)
+ e((k1 + k2 + 1)(k1 + k2 + 2))

= (k1 + k2 + 2)
∑

3≤i≤`−1
ei

+

2k1 + 2k2 + k` + `− 1 + 2
∑

3≤i≤`−1
ki

 e(k1 + k2 + 1)

+ e(k1 + k2 + k3 + 2) + (k1 + k2 + 1)e(k1 + k2 + 2) + (k1 + k2 + 2)e`

+
(
k1 + k2 + 2

2

)

139

so that we can now compute the difference:

A−B =

−3 + 2
∑

1≤i≤`
ki

 e1

+

k1 + k2 − 2`− 1 +
∑

1≤i≤`
ki

 e2

− (k2 + 1)
∑

3≤i≤`
ei

+ (k1 + 1)e(k1 + 2) + (k2 + 1)e(k2 + 2)
+ 1− k1k2

−

−k` + `− 1 + 2
∑

1≤i≤`
ki

 e(k1 + k2 + 1)

− (k1 + k2)e(k1 + k2 + 2)− e(k1 + k2 + k3 + 2) + e(k2 + k3 + 2)

= P (k)e1 +Q(k)e2 − (k2 + 1)
∑̀
i=3

ei + (k1 + 1)e(k1 + 2) + (k2 + 1)e(k2 + 2)

+ 1− k1k2 −R(k)e(k1 + k2 + 1)− (k1 + k2)e(k1 + k2 + 2)− e(k1 + k2 + k3 + 2)
+ e(k2 + k3 + 2).

Where

P (k) = −3 + 2
∑

1≤i≤`
ki,

Q(k) = k1 + k2 − 2`− 1 +
∑

1≤i≤`
ki

R(k) = −k` + `− 1 + 2
∑

1≤i≤`
ki.

The gradient can be computed term by term thanks to linearity, observing that for any
polynomial S(k),

∂iei = − log2(k1 + 1)− 1
ln(2)

∂iej = 0 (i 6= j)

∇S(k)ej = (ej∂iS(k) + S(k)∂iej)`i=1

140

Hence, by denoting u1, . . . ,u` the canonical basis, we have:

∇P (k)e1 = (e1∂iP (k) + P (k)∂ie1)`i=1 = ∂1e1P (k)u1 + e1(∂iP (k))`i=1

= ∂1e1P (k)u1 + 2(u1 + · · ·+ u`)
= (2 + ∂1e1P (k))u1 + 2u2 + · · ·+ 2u`

∇Q(k)e2 = (e2∂iQ(k) +Q(k)∂ie2)`i=1 = ∂2e2Q(k)u2 + (∂iS(k))`i=1

= ∂2e2Q(k)u2 + u1 + u2 + u1 + · · ·+ u`
= 2u1 + (2 + ∂2e2Q(k))u2 + u3 + · · ·+ u`

−∇

(
(k2 + 1)

∑̀
i=3

ei

)
= −(k2 + 1)∇

∑̀
i=3

ei − (∇(k2 + 1))
∑̀
i=3

ei

= −((k2 + 1)∂ieiui)`i=3 −

(∑̀
i=3

ei

)
u2

∇ ((kj + 1)e(kj + 2)) = −
(

log2(kj + 2) + 1
ln(2)

kj + 1
kj + 2

)
uj

∇(1− k1k2) = −k2u1 − k1u2

−∇ (R(k)e(k1 + k2 + 1)) = −R(k)∇e(k1 + k2 + 1)− e(k1 + k2 + 1)∇R(k)

= R(k)
(

log2(k1 + k2 + 1) + 1
ln(2)

)
(u1 + u2)

− e(k1 + k2 + 1)(∂iR(k))`i=1

= R(k)
(

log2(k1 + k2 + 1) + 1
ln(2)

)
(u1 + u2)

− e(k1 + k2 + 1)(2u1 + · · ·+ 2u`−1 + u`)
−∇(k1 + k2)e(k1 + k2 + 2) = −(k1 + k2)∇e(k1 + k2 + 2)− e(k1 + k2 + 2)∇(k1 + k2)

= (k1 + k2)
(

log2(k1 + k2 + 2) + 1
ln(2)

)
(u1 + u2)

− e(k1 + k2 + 2)(u1 + u2)

=
(

(k1 + k2)
(

log2(k1 + k2 + 2) + 1
ln(2)

)
− e(k1 + k2 + 2)

)
(u1 + u2)

−∇e(k1 + k2 + k3 + 2) =
(

log2(k1 + k2 + k3 + 2) + 1
ln(2)

)
(u1 + u2 + u3)

∇e(k2 + k3 + 2) = −
(

log2(k2 + k3 + 2) + 1
ln(2)

)
(u2 + u3)

As it is clearly visible from the above equations, we only need to consider the components
along u1, u2, u3, u`, and along ui for any 3 < i < `. For the latter, we have

(∇(A−B))i = 2 + 1− (k2 + 1)∂iei − 2e(k1 + k2 + 1)

= 3 + 2(k1 + k2 + 1) log2(k1 + k2 + 1) + (k2 + 1)
(

log2(ki + 1) + 1
ln(2)

)
> 0.

141

Now, along the very similar u` axis,

(∇(A−B))` = 2 + 1− (k2 + 1)∂`e` − e(k1 + k2 + 1)

= 3 + (k1 + k2 + 1) log2(k1 + k2 + 1) + (k2 + 1)
(

log2(k` + 1) + 1
ln(2)

)
> 0.

Along u3,

(∇(A−B))3 = 2 + 1− (k2 + 1)∂3e3 − 2e(k1 + k2 + 1) + log2(k1 + k2 + k3 + 2) + 1
ln(2)

− log2(k2 + k3 + 2) + 1
ln(2)

= 3 + 2(k1 + k2 + 1) log2(k1 + k2 + 1) + (k2 + 1)
(

log2(k3 + 1) + 1
ln(2)

)
+ log2(k1 + k2 + k3 + 2)− log2(k2 + k3 + 2)

> 0.

Along u2,

(∇(A−B))2 = 2 + 2 +Q(k)∂2e2 − (k2 + 1)∂2e2

−
∑̀
i=3

ei −
(

log2(k2 + 2) + 1
ln(2)

k2 + 1
k2 + 2

)
− k1

+R(k)
(

log2(k1 + k2 + 1) + 1
ln(2)

)
− 2e(k1 + k2 + 1)

+
(

(k1 + k2)
(

log2(k1 + k2 + 2) + 1
ln(2)

)
− e(k1 + k2 + 2)

)
+ log2(k1 + k2 + k3 + 2) + 1

ln(2) − log2(k2 + k3 + 2)− 1
ln(2)

= 4− (Q(k)− k2 − 1)
(

log2(k2 + 1) + 1
ln(2)

)
− 1

ln(2)
k2 + 1
k2 + 2 − k1

+
∑̀
i=3

(ki + 1) log2(ki + 1)

+R(k)
(

log2(k1 + k2 + 1) + 1
ln(2)

)
− 2e(k1 + k2 + 1)

+ (k1 + k2)
(

log2(k1 + k2 + 2) + 1
ln(2)

)
− e(k1 + k2 + 2)

+ log2(k1 + k2 + k3 + 2)− log2(k2 + k3 + 2)− log2(k2 + 2)

142

Finally, along u1,

(∇(A−B))1 = 2 + ∂1e1P (k) + 2− (k2 + 1)∂1e1 −
(

log2(k1 + 2) + 1
ln(2)

k1 + 1
k1 + 2

)
− k2

+R(k)
(

log2(k1 + k2 + 1) + 1
ln(2)

)
− 2e(k1 + k2 + 2)

+ (k1 + k2)
(

log2(k1 + k2 + 2) + 1
ln(2)

)
− e(k1 + k2 + 2)

+ log2(k1 + k2 + k3 + 2) + 1
ln(2)

= 4− (P (k)− k2 − 1)
(

log2(k1 + 1) + 1
ln(2)

)
− k2

+R(k)
(

log2(k1 + k2 + 1) + 1
ln(2)

)
− 2e(k1 + k2 + 2)

+ (k1 + k2)
(

log2(k1 + k2 + 2) + 1
ln(2)

)
− e(k1 + k2 + 2)

+ log2(k1 + k2 + k3 + 2)− log2(k1 + 2) + 1
ln(2)

(
1− k1 + 1

k1 + 2

)

Lemma 5.14 (∇(A−B))1 > 0.

Proof: [Proof of Lemma 5.14] It suffices to check that (k1+k2)(λ+log2(k1+k2+1))−k2 > 0,
that log2(k1 + k2 + k3 + 2) − log2(k1 + 2) > 0, and that all the remaining quantities are
positive. �

Lemma 5.15 (Sublemma) (∇(A−B))2 > 0.

Proof: [Proof of Lemma 5.15]

− (Q(k)− k2 − 1)(log2(k2 + 1) + λ)− λk2 + 1
k2 + 2 − k1 +

∑̀
i=3

(ki + 1) log2(ki + 1)

+R(k)(λ+ log2(k1 + k2 + 1))

= λ

(
R(k)−Q(k) + k2 + 1− k2 + 1

k2 + 2

)
+R(k) log2(k1 + k2 + 1)

+
∑̀
i=3

(ki + 1) log2(ki + 1)−Q(k) log2(k2 + 1)

= λ

(
`−1∑
i=2

ki + 3`+ 1− k2 + 1
k2 + 2

)
+
∑̀
i=3

(ki + 1) log2(ki + 1)

+R(k) log2(k1 + k2 + 1)−Q(k) log2(k2 + 1).

143

The last line is positive since in particular R(k) log2(k1 + k2 + 1) − Q(k) log2(k2 + 1) >
(R(k)−Q((k)) log2(k2 + 1). �

As a result, we have that A−B > 0 for all k such that ki ≥ 1, which establishes the theorem. �

5.3.7.2 Proof of Remark 24

We prove that for all positive integer sequences (ki)i∈{1,...,`} such that
∑`
i=1 = m we have :

`(`+ 1)
2 +

∑
1≤i<j≤`

k̃ik̃j +
∑̀
i=1

(
k̃i + 1

2

)
+ 1 + `(m− `− 2) =

(
m+ 2
m

)
+
(
m+ 2
m+ 1

)
+
(
m+ 2
m+ 2

)

We fix ` and m, then proceed by induction on the sequences of (ki)i∈{1,...,`}. We fist show the
equality for k1 = m− `+ 1, and ki = 1 for all i > 1.

Proof: We have

`(`+ 1)
2 +

∑
1≤i<j≤`

k̃ik̃j +
∑̀
i=1

(
k̃i + 1

2

)
+ 1 + `(m− `− 2)

= `(`+ 1)
2 + 1 + `(m− `− 2) + (m− `+ 1)

∑̀
j=2

k̃j +
(

2
2

)
+
(
m− `+ 2

2

)
= 1

2 (`(`+ 1) + (m− `+ 2)(m− `+ 1)) + (`+ 1)(m− `+ 2) + 1

= 1
2(m2 + 3m+ 2) +m+ 3

=
(
m+ 2
m

)
+
(
m+ 2
m+ 1

)
+
(
m+ 2
m+ 2

)
which concludes the initialization. �

We now fix a sequence (ki)i∈{1,...,`}, and i0 ∈ {1, . . . , `}. We assume that the equality holds for
this sequence and show that it is true for the sequence (k′i)i∈{1,...,`} defined as k′i = ki if i 6= i0
and i 6= i0 + 1, k′i0 = ki0 − 1 and k′i0+1 = ki0+1 + 1.

Proof: We first note that only a part of the formula on the left hand side depends on (ki)i∈{1,...,`}.
Letting F

(
(ki)i∈{1,...,`}

)
=
∑

1≤i<j≤` k̃ik̃j +
∑`
i=1
(
k̃i+1

2
)
, we just have to prove that

F
(
(ki)i∈{1,...,`}

)
− F

(
(k′i)i∈{1,...,`}

)
= 0.

144

Expanding the above difference, we have:

(k̃i0 − k̃′i0)(
i0−1∑
i=1

k̃i) + (k̃i0+1 − k̃′i0+1)(
i0−1∑
i=1

k̃i) + k̃i0 k̃i0+1 − k̃′i0 k̃
′
i0+1

+ (k̃i0 − k̃′i0)(
∑̀

i=i0+1
k̃i) + (k̃i0+1 − k̃′i0+1)(

∑̀
i=i0+2

k̃i)

+
(
k̃i0 + 1

2

)
−
(
k̃′i0 + 1

2

)
+
(
k̃i0+1 + 1

2

)
−
(
k̃i0+1 + 1

2

)
This is equal to

k̃i0 k̃i0+1 − (k̃i0 − 1)(k̃i0+1 + 1) + k̃i0+1 + 1
2

(
k̃i0(k̃i0 + 1)− (k̃i0 + 1)k̃i0

)
− 1

2

(
k̃i0+1(k̃i0+1 + 1)− (k̃i0+1 + 2)k̃i0+1 + 1

)
= −k̃i0 + k̃i0+1 + 1 + 1

2(2k̃i0 − 2k̃i0+1 − 2)

= 0.

This concludes the proof. �

145

Bibliography

[ABF+17] Yasemin Acar, Michael Backes, Sascha Fahl, Simson L. Garfinkel, Doowon Kim,
Michelle L. Mazurek, and Christian Stransky. Comparing the usability of crypto-
graphic apis. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 154–171, 2017.

[ABGN16] Antoine Amarilli, Marc Beunardeau, Rémi Géraud, and David Naccache. Failure is
also an option. In Peter Y. A. Ryan, David Naccache, and Jean-Jacques Quisquater,
editors, The New Codebreakers - Essays Dedicated to David Kahn on the Occasion
of His 85th Birthday, volume 9100 of Lecture Notes in Computer Science, pages
161–165. Springer, 2016.

[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander, Christof
Paar, and Tolga Yalçın. Block Ciphers – Focus on the Linear Layer (feat. PRIDE),
pages 57–76. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[ADN+10] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and Assia
Tria. When clocks fail: On critical paths and clock faults. In Dieter Gollmann,
Jean-Louis Lanet, and Julien Iguchi-Cartigny, editors, CARDIS 2010, volume 6035
of Lecture Notes in Computer Science, pages 182–193, Passau, Germany, April
14-16, 2010. Springer, Heidelberg, Germany.

[ADPS15] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum
key exchange - a new hope. Cryptology ePrint Archive, Report 2015/1092, 2015.
https://eprint.iacr.org/2015/1092.

[AeKKS07] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of simple
branch prediction analysis. In 2007 ACM SYMPOSIUM ON INFORMATION,
COMPUTER AND COMMUNICATIONS SECURITY (ASIACCS’07, pages 312–
320. ACM Press, 2007.

[AFG+14] Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard, Jean-Gabriel Kammerer,
Mehdi Tibouchi, and Jean-Christophe Zapalowicz. GLV/GLS decomposition, power
analysis, and attacks on ECDSA signatures with single-bit nonce bias. In Palash
Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, Part
I, volume 8873 of Lecture Notes in Computer Science, pages 262–281, Kaoshiung,
Taiwan, R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany.

[AJPS17a] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A new
public-key cryptosystem via mersenne numbers. Cryptology ePrint Archive, Report
2017/481, 2017. https://eprint.iacr.org/2017/481.

147

https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2017/481

[AJPS17b] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A new
public-key cryptosystem via Mersenne numbers. Cryptology ePrint Archive, Report
2017/481, 2017. http://eprint.iacr.org/2017/481.

[AJPS17c] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A new
public-key cryptosystem via Mersenne numbers, version 20170530:001542. Crypto-
logy ePrint Archive, Report 2017/481, 2017. https://eprint.iacr.org/2017/
481.

[AJPS17d] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A new
public-key cryptosystem via Mersenne numbers, version 20171206:004924. Crypto-
logy ePrint Archive, Report 2017/481, 2017. https://eprint.iacr.org/2017/
481.

[AKS07] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret keys via
branch prediction. In Masayuki Abe, editor, Topics in Cryptology – CT-RSA 2007,
volume 4377 of Lecture Notes in Computer Science, pages 225–242, San Francisco,
CA, USA, February 5–9, 2007. Springer, Heidelberg, Germany.

[AMOV91] Gordon B. Agnew, Ronald C. Mullin, I. M. Onyszchuk, and Scott A. Vanstone.
An implementation for a fast public-key cryptosystem. Journal of Cryptology,
3(2):63–79, 1991.

[ARR15] Arash Atashpendar, AW Roscoe, and Peter YA Ryan. Information leakage due
to revealing randomly selected bits. In Security Protocols XXIII, pages 325–341.
Springer, 2015.

[BBBK16] Benoît Barbot, Nicolas Basset, Marc Beunardeau, and Marta Kwiatkowska. Uni-
form sampling for timed automata with application to language inclusion meas-
urement. In Gul Agha and Benny Van Houdt, editors, Quantitative Evaluation of
Systems - 13th International Conference, QEST 2016, Quebec City, QC, Canada,
August 23-25, 2016, Proceedings, volume 9826 of Lecture Notes in Computer Science,
pages 175–190. Springer, 2016.

[BCD+16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring!
practical, quantum-secure key exchange from lwe. Cryptology ePrint Archive,
Report 2016/659, 2016. https://eprint.iacr.org/2016/659.

[BCF+17] Marc Beunardeau, Aisling Connolly, Houda Ferradi, Rémi Géraud, David Naccache,
and Damien Vergnaud. Reusing nonces in schnorr signatures - (and keeping it
secure...). In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors,
Computer Security - ESORICS 2017 - 22nd European Symposium on Research
in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part
I, volume 10492 of Lecture Notes in Computer Science, pages 224–241. Springer,
2017.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knežević,
Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A
low-latency block cipher for pervasive computing applications - extended abstract.

148

http://eprint.iacr.org/2017/481
https://eprint.iacr.org/2017/481
https://eprint.iacr.org/2017/481
https://eprint.iacr.org/2017/481
https://eprint.iacr.org/2017/481
https://eprint.iacr.org/2016/659

In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASIAC-
RYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages 208–225,
Beijing, China, December 2–6, 2012. Springer, Heidelberg, Germany.

[BCGN16a] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. Cdoe
obofsucaitn: Securing software from within. IEEE Security & Privacy, 14(3):78–81,
2016.

[BCGN16b] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. Fully
homomorphic encryption: Computations with a blindfold. IEEE Security &
Privacy, 14(1):63–67, 2016.

[BCGN16c] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. White-box
cryptography: Security in an insecure environment. IEEE Security & Privacy,
14(5):88–92, 2016.

[BCGN17a] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. The case
for system command encryption. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza
Sadeghi, and Xun Yi, editors, Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United
Arab Emirates, April 2-6, 2017, page 6. ACM, 2017.

[BCGN17b] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. On the
hardness of the mersenne low hamming ratio assumption. In Fifth International
Conference on Cryptology and Information Security in Latin America, Latincrypt
2017, La Habana, Cuba. September 20–22, 2017. To appear.

[BCGN17c] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. On the
hardness of the Mersenne low Hamming ratio assumption. Cryptology ePrint
Archive, Report 2017/522, 2017. https://eprint.iacr.org/2017/522.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 1–15, London, UK,
UK, 1996. Springer-Verlag.

[BCLvV16] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van
Vredendaal. NTRU prime. IACR Cryptology ePrint Archive, 2016:461, 2016.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic
Hardware and Embedded Systems – CHES 2004, volume 3156 of Lecture Notes in
Computer Science, pages 16–29, Cambridge, Massachusetts, USA, August 11–13,
2004. Springer, Heidelberg, Germany.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
checking cryptographic protocols for faults (extended abstract). In Walter Fumy,
editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes
in Computer Science, pages 37–51, Konstanz, Germany, May 11–15, 1997. Springer,
Heidelberg, Germany.

[BDPA09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak
specifications, 2009.

149

https://eprint.iacr.org/2017/522

[BFGN16] Marc Beunardeau, Houda Ferradi, Rémi Géraud, and David Naccache. Honey
encryption for language - robbing shannon to pay turing? In Raphael C.-W. Phan
and Moti Yung, editors, Paradigms in Cryptology - Mycrypt 2016. Malicious and
Exploratory Cryptology - Second International Conference, Mycrypt 2016, Kuala
Lumpur, Malaysia, December 1-2, 2016, Revised Selected Papers, volume 10311 of
Lecture Notes in Computer Science, pages 127–144. Springer, 2016.

[BGMW93] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David Bruce
Wilson. Fast exponentiation with precomputation (extended abstract). In Rainer A.
Rueppel, editor, Advances in Cryptology – EUROCRYPT’92, volume 658 of Lecture
Notes in Computer Science, pages 200–207, Balatonfüred, Hungary, May 24–28,
1993. Springer, Heidelberg, Germany.

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular
exponentiation and digital signatures. In Kaisa Nyberg, editor, Advances in
Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science,
pages 236–250, Espoo, Finland, May 31 – June 4, 1998. Springer, Heidelberg,
Germany.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT:
An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, edit-
ors, Cryptographic Hardware and Embedded Systems – CHES 2007, volume 4727 of
Lecture Notes in Computer Science, pages 450–466, Vienna, Austria, September 10–
13, 2007. Springer, Heidelberg, Germany.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 06: 13th Conference on Computer and
Communications Security, pages 390–399, Alexandria, Virginia, USA, October 30 –
November 3, 2006. ACM Press.

[BP00] Colin Boyd and Chris Pavlovski. Attacking and repairing batch verification schemes.
In Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume
1976 of Lecture Notes in Computer Science, pages 58–71, Kyoto, Japan, December 3–
7, 2000. Springer, Heidelberg, Germany.

[BPV98] Victor Boyko, Marcus Peinado, and Ramarathnam Venkatesan. Speeding up
discrete log and factoring based schemes via precomputations. In Kaisa Nyberg,
editor, Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes
in Computer Science, pages 221–235, Espoo, Finland, May 31 – June 4, 1998.
Springer, Heidelberg, Germany.

[BRC60] Raj Chandra Bose and Dwijendra K. Ray-Chaudhuri. On a class of error correcting
binary group codes. Information and control, 3(1):68–79, 1960.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume
1294 of Lecture Notes in Computer Science, pages 513–525, Santa Barbara, CA,
USA, August 17–21, 1997. Springer, Heidelberg, Germany.

150

[BS03] Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the advanced
encryption standard (AES). In Rebecca Wright, editor, FC 2003: 7th International
Conference on Financial Cryptography, volume 2742 of Lecture Notes in Computer
Science, pages 162–181, Guadeloupe, French West Indies, January 27–30, 2003.
Springer, Heidelberg, Germany.

[BS15] Adnan Baysal and Sühap Sahin. Roadrunner: A small and fast bitslice block cipher
for low cost 8-bit processors. In Tim Güneysu, Gregor Leander, and Amir Moradi,
editors, LightSec 2015, volume 9065 of Lecture Notes in Computer Science, pages
58–76, Bochum, Germany, September 10-11, 2015. Springer, Heidelberg, Germany.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. SIMON and SPECK: Block ciphers for the internet of things.
Cryptology ePrint Archive, Report 2015/585, 2015. http://eprint.iacr.org/
2015/585.

[Buh98] Joe Buhler, editor. Algorithmic Number Theory, Third International Symposium,
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume 1423 of
Lecture Notes in Computer Science. Springer, 1998.

[BZB+05] Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, and Gianluca
Palermo. AES power attack based on induced cache miss and countermeasure. In
ITCC 2005, Volume 1, pages 586–591, Las Vegas, Nevada, USA, April 4-5, 2005.
IEEE Computer Society.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. https://eprint.
iacr.org/2000/067.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María Naya-
Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A practical solution
for efficient homomorphic-ciphertext compression. In Thomas Peyrin, editor,
Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum,
Germany, March 20-23, 2016, Revised Selected Papers, volume 9783 of Lecture
Notes in Computer Science, pages 313–333. Springer, 2016.

[CEJvO02] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. White-
box cryptography and an AES implementation. In Kaisa Nyberg and Howard M.
Heys, editors, Selected Areas in Cryptography, 9th Annual International Workshop,
SAC 2002, St. John’s, Newfoundland, Canada, August 15-16, 2002. Revised Papers,
volume 2595 of Lecture Notes in Computer Science, pages 250–270. Springer, 2002.

[Cha76] Phillip J Chase. Subsequence numbers and logarithmic concavity. Discrete
Mathematics, 16(2):123–140, 1976.

[CK08] Jung Hee Cheon and HongTae Kim. Analysis of low hamming weight products.
Discrete Applied Mathematics, 156(12):2264–2269, 2008.

[CK14] Daniel Cullina and Negar Kiyavash. An improvement to levenshtein’s upper bound
on the cardinality of deletion correcting codes. IEEE Transactions on Information
Theory, 60(7):3862–3870, 2014.

151

http://eprint.iacr.org/2015/585
http://eprint.iacr.org/2015/585
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067

[CKK12] Daniel Cullina, Ankur A. Kulkarni, and Negar Kiyavash. A coloring approach
to constructing deletion correcting codes from constant weight subgraphs. In
Proceedings of the 2012 IEEE International Symposium on Information Theory,
ISIT 2012, Cambridge, MA, USA, July 1-6, 2012, pages 513–517. IEEE, 2012.

[CMT01] Jean-Sébastien Coron, David M’Raïhi, and Christophe Tymen. Fast generation of
pairs (k, [k]p) for koblitz elliptic curves. In Serge Vaudenay and Amr M. Youssef,
editors, Selected Areas in Cryptography, 8th Annual International Workshop, SAC
2001 Toronto, Ontario, Canada, August 16-17, 2001, Revised Papers, volume 2259
of Lecture Notes in Computer Science, pages 151–164. Springer, 2001.

[CN99] Jean-Sébastien Coron and David Naccache. On the security of RSA screening. In
Hideki Imai and Yuliang Zheng, editors, PKC’99: 2nd International Workshop on
Theory and Practice in Public Key Cryptography, volume 1560 of Lecture Notes in
Computer Science, pages 197–203, Kamakura, Japan, March 1–3, 1999. Springer,
Heidelberg, Germany.

[CS97] Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In Walter Fumy,
editor, Advances in Cryptology - EUROCRYPT ’97, International Conference on
the Theory and Application of Cryptographic Techniques, Konstanz, Germany, May
11-15, 1997, Proceeding, volume 1233 of Lecture Notes in Computer Science, pages
52–61. Springer, 1997.

[CT12] Thomas M. Cover and Joy A. Thomas. Elements of information theory. John
Wiley & Sons, 2012.

[dBDJdW17] Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald de Wolf. Attacks on the
ajps mersenne-based cryptosystem. Cryptology ePrint Archive, Report 2017/1171,
2017. https://eprint.iacr.org/2017/1171.

[DC14] Yibin Dai and Shaozhen Chen. Cryptanalysis of full PRIDE block cipher. Crypto-
logy ePrint Archive, Report 2014/987, 2014. http://eprint.iacr.org/2014/987.

[DDRT12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. Electro-
magnetic transient faults injection on a hardware and a software implementations
of AES. In Guido Bertoni and Benedikt Gierlichs, editors, FDTC 2012, pages 7–15,
Leuven, Belgium, September 9, 2012. IEEE Computer Society.

[de 95] Peter de Rooij. Efficient exponentiation using procomputation and vector addition
chains. In Alfredo De Santis, editor, Advances in Cryptology – EUROCRYPT’94,
volume 950 of Lecture Notes in Computer Science, pages 389–399, Perugia, Italy,
May 9–12, 1995. Springer, Heidelberg, Germany.

[de 97] Peter de Rooij. On Schnorr’s preprocessing for digital signature schemes. Journal
of Cryptology, 10(1):1–16, 1997.

[DH06] White Diffie and Martin Hellman. New directions in cryptography. IEEE Trans.
Inf. Theor., 22(6):644–654, September 2006.

[DKL+98] Jean-François Dhem, François Koeune, Philippe-Alexandre Leroux, Patrick Mestré,
Jean-Jacques Quisquater, and Jean-Louis Willems. A practical implementation
of the timing attack. In Jean-Jacques Quisquater and Bruce Schneier, editors,
CARDIS ’98, volume 1820 of Lecture Notes in Computer Science, pages 167–182,
Louvain-la-Neuve, Belgium, September 14-16, 1998. Springer, Heidelberg, Germany.

152

https://eprint.iacr.org/2017/1171
http://eprint.iacr.org/2014/987

[DMP07] Suhas Diggavi, Michael Mitzenmacher, and H Pfister. Capacity upper bounds for
deletion channels. In Proceedings of the International Symposium on Information
Theory, pages 1716–1720, 2007.

[DR99] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael, 1999.

[EJ01] D. Eastlake, 3rd and P. Jones. Us secure hash algorithm 1 (sha1), 2001.

[ElG86] Taher ElGamal. On computing logarithms over finite fields. In Hugh C. Williams,
editor, Advances in Cryptology – CRYPTO’85, volume 218 of Lecture Notes in
Computer Science, pages 396–402, Santa Barbara, CA, USA, August 18–22, 1986.
Springer, Heidelberg, Germany.

[ERW08] Cees Elzinga, Sven Rahmann, and Hui Wang. Algorithms for subsequence combin-
atorics. Theoretical Computer Science, 409(3):394–404, 2008.

[FHS04] Abraham Flaxman, Aram Wettroth Harrow, and Gregory B. Sorkin. Strings with
maximally many distinct subsequences and substrings. Electr. J. Comb., 11(1),
2004.

[Fia90] Amos Fiat. Batch RSA. In Gilles Brassard, editor, Advances in Cryptology –
CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 175–185,
Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

[Fia97] Amos Fiat. Batch RSA. Journal of Cryptology, 10(2):75–88, 1997.

[FJP11] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. Cryptology ePrint Archive, Report
2011/506, 2011. https://eprint.iacr.org/2011/506.

[FN17] Houda Ferradi and David Naccache. Integer reconstruction public-key encryption.
Cryptology ePrint Archive, Report 2017/1231, 2017. https://eprint.iacr.org/
2017/1231.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology – CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages
186–194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.

[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge
University Press, 2012.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information
analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware
and Embedded Systems – CHES 2008, volume 5154 of Lecture Notes in Computer
Science, pages 426–442, Washington, D.C., USA, August 10–13, 2008. Springer,
Heidelberg, Germany.

[GLSV15] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
LS-designs: Bitslice encryption for efficient masked software implementations. In
Carlos Cid and Christian Rechberger, editors, Fast Software Encryption – FSE 2014,
volume 8540 of Lecture Notes in Computer Science, pages 18–37, London, UK,
March 3–5, 2015. Springer, Heidelberg, Germany.

153

https://eprint.iacr.org/2011/506
https://eprint.iacr.org/2017/1231
https://eprint.iacr.org/2017/1231

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play
mental poker keeping secret all partial information. In Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing, STOC ’82, pages 365–377, New
York, NY, USA, 1982. ACM.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis:
Concrete results. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2001, volume 2162 of
Lecture Notes in Computer Science, pages 251–261, Paris, France, May 14–16, 2001.
Springer, Heidelberg, Germany.

[Gol06] Oded Goldreich. On post-modern cryptography. IACR Cryptology ePrint Archive,
2006:461, 2006.

[Gra15] Benjamin Graham. A binary deletion channel with a fixed number of deletions.
Combinatorics, Probability and Computing, 24(03):486–489, 2015.

[GSDS10] Sylvain Guilley, Laurent Sauvage, Jean-Luc Danger, and Nidhal Selmane. Fault
injection resilience. In Luca Breveglieri, Marc Joye, Israel Koren, David Nac-
cache, and Ingrid Verbauwhede, editors, FDTC 2010, pages 51–65, Santa Barbara,
California, USA, August 21, 2010. IEEE Computer Society.

[Hir99] Daniel S. Hirschberg. Bounds on the number of string subsequences. In Maxime
Crochemore and Mike Paterson, editors, Combinatorial Pattern Matching, 10th
Annual Symposium, CPM 99, Warwick University, UK, July 22-24, 1999, Proceed-
ings, volume 1645 of Lecture Notes in Computer Science, pages 115–122. Springer,
1999.

[HL05] Susan Hohenberger and Anna Lysyanskaya. How to securely outsource crypto-
graphic computations. In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryp-
tography Conference, volume 3378 of Lecture Notes in Computer Science, pages
264–282, Cambridge, MA, USA, February 10–12, 2005. Springer, Heidelberg,
Germany.

[HLH00] Min-Shiang Hwang, Iuon-Chang Lin, and Kuo-Feng Hwang. Cryptanalysis of the
batch verifying multiple RSA digital signatures. Informatica, Lith. Acad. Sci.,
11(1):15–19, 2000.

[HLT01] Min-Shiang Hwang, Cheng-Chi Lee, and Yuan-Liang Tang. Two simple batch
verifying multiple digital signatures. In Sihan Qing, Tatsuaki Okamoto, and Jiany-
ing Zhou, editors, Information and Communications Security, Third International
Conference, ICICS 2001, Xian, China, November 13-16, 2001, volume 2229 of
Lecture Notes in Computer Science, pages 233–237. Springer, 2001.

[Hoc59] Alexis Hocquenghem. Codes correcteurs d’erreurs. Chiffres, 2(2):147–56, 1959.

[How07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO
2007, 27th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science,
pages 150–169. Springer, 2007.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Buhler [Buh98], pages 267–288.

154

[HR00] Daniel S. Hirschberg and Mireille Regnier. Tight bounds on the number of string
subsequences. Journal of Discrete Algorithms, 1(1):123–132, 2000.

[HS03] Jeffrey Hoffstein and Joseph H. Silverman. Random small hamming weight products
with applications to cryptography. Discrete Applied Mathematics, 130(1):37–49,
2003.

[JL95] Tao Jiang and Ming Li. On the approximation of shortest common supersequences
and longest common subsequences. SIAM J. Comput., 24(5):1122–1139, 1995.

[Jou09] Antoine Joux. Algorithmic cryptanalysis. CRC Press, 2009.

[KF17] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched
NTRU parameters. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Ad-
vances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April
30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture Notes in Computer
Science, pages 3–26, 2017.

[KJJ99a] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[KJJ99b] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 388–397, Santa Barbara, CA, USA,
August 15–19, 1999. Springer, Heidelberg, Germany.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chap-
man and Hall/CRC Press, 2007.

[KM13] Yashodhan Kanoria and Alessandro Montanari. Optimal coding for the binary
deletion channel with small deletion probability. IEEE Transactions on Information
Theory, 59(10):6192–6219, 2013.

[KMS10] Adam Kalai, Michael Mitzenmacher, and Madhu Sudan. Tight asymptotic bounds
for the deletion channel with small deletion probabilities. In IEEE International
Symposium on Information Theory, ISIT 2010, June 13-18, 2010, Austin, Texas,
USA, Proceedings, pages 997–1001. IEEE, 2010.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of Lecture Notes in Computer Science, pages 104–113, Santa Barbara,
CA, USA, August 18–22, 1996. Springer, Heidelberg, Germany.

[KS05] François Koeune and François-Xavier Standaert. A tutorial on physical security
and side-channel attacks. In Foundations of Security Analysis and Design III,
FOSAD 2004/2005 Tutorial Lectures, volume 3655 of Lecture Notes in Computer
Science, pages 78–108. Springer, Heidelberg, Germany, 2005.

155

[KU16] Mehmet Sabir Kiraz and Osmanbey Uzunkol. Efficient and verifiable algorithms for
secure outsourcing of cryptographic computations. Int. J. Inf. Sec., 15(5):519–537,
2016.

[LBC+16] Benjamin Lac, Marc Beunardeau, Anne Canteaut, Jacques J. A. Fournier, and
Renaud Sirdey. A first DFA on PRIDE: from theory to practice. In Frédéric
Cuppens, Nora Cuppens, Jean-Louis Lanet, and Axel Legay, editors, Risks and
Security of Internet and Systems - 11th International Conference, CRiSIS 2016,
Roscoff, France, September 5-7, 2016, Revised Selected Papers, volume 10158 of
Lecture Notes in Computer Science, pages 214–238. Springer, 2016.

[LFG13] Ronan Lashermes, Jacques Fournier, and Louis Goubin. Inverting the final
exponentiation of Tate pairings on ordinary elliptic curves using faults. In Guido
Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and Embedded
Systems – CHES 2013, volume 8086 of Lecture Notes in Computer Science, pages
365–382, Santa Barbara, CA, USA, August 20–23, 2013. Springer, Heidelberg,
Germany.

[LL94] Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precomputa-
tion. In Yvo Desmedt, editor, Advances in Cryptology – CRYPTO’94, volume 839
of Lecture Notes in Computer Science, pages 95–107, Santa Barbara, CA, USA,
August 21–25, 1994. Springer, Heidelberg, Germany.

[LL15] Yuvalal Liron and Michael Langberg. A characterization of the number of sub-
sequences obtained via the deletion channel. IEEE Transactions on Information
Theory, 61(5):2300–2312, 2015.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261(4):515–534,
1982.

[LM07] Laurie Law and Brian J. Matt. Finding invalid signatures in pairing-based batches.
In Steven D. Galbraith, editor, Cryptography and Coding, 11th IMA International
Conference, Cirencester, UK, December 18-20, 2007, Proceedings, volume 4887 of
Lecture Notes in Computer Science, pages 34–53. Springer, 2007.

[MBB11] Mohamed Saied Emam Mohamed, Stanislav Bulygin, and Johannes A. Buchmann.
Using SAT solving to improve differential fault analysis of trivium. In Tai-Hoon
Kim, Hojjat Adeli, Rosslin John Robles, and Maricel O. Balitanas, editors, ISA
2011, volume 200 of Communications in Computer and Information Science, pages
62–71, Brno, Czech Republic, August 15-17, 2011. Springer, Heidelberg, Germany.

[McE78] Robert McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report, 44:114–116, January 1978.

[MDF+09] Houssem Maghrebi, Jean-Luc Danger, Florent Flament, Sylvain Guilley, and
Laurent Sauvage. Evaluation of countermeasure implementations based on Boolean
masking to thwart side-channel attacks. In International Signals, Circuits and
Systems Conference - SCS 2009, pages 1–6, 2009.

[MGDF10] Houssem Maghrebi, Sylvain Guilley, Jean-Luc Danger, and Florent Flament.
Entropy-based power attack. In Jim Plusquellic and Ken Mai, editors, HOST 2010,
pages 1–6, Anaheim Convention Center, California, USA, June 13-14, 2010. IEEE
Computer Society.

156

[Mid95] Martin Middendorf. On finding minimal, maximal, and consistent sequences over
a binary alphabet. Theoretical Computer Science, 145(1):317–327, 1995.

[Mit08] Michael Mitzenmacher. A survey of results for deletion channels and related
synchronization channels. In Joachim Gudmundsson, editor, Algorithm Theory
- SWAT 2008, 11th Scandinavian Workshop on Algorithm Theory, Gothenburg,
Sweden, July 2-4, 2008, Proceedings, volume 5124 of Lecture Notes in Computer
Science, pages 1–3. Springer, 2008.

[MM04] Martin Middendorf and David F Manlove. Combined super-/substring and super-
/subsequence problems. Theoretical computer science, 320(2):247–267, 2004.

[MN96] David M’Raïhi and David Naccache. Batch exponentiation: A fast dlp-based
signature generation strategy. In Li Gong and Jacques Stearn, editors, CCS ’96,
Proceedings of the 3rd ACM Conference on Computer and Communications Security,
New Delhi, India, March 14-16, 1996., pages 58–61. ACM, 1996.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007.

[MP08] S. Mrdovic and B. Perunicic. Kerckhoffs’ principle for intrusion detection. In
Networks 2008 - The 13th International Telecommunications Network Strategy and
Planning Symposium, volume Supplement, pages 1–8, Sept 2008.

[MVM09] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced Encryption
Standard. Alpha Press, 2009.

[NMVR95] David Naccache, David M’Raïhi, Serge Vaudenay, and Dan Raphaeli. Can D.S.A.
be improved? Complexity trade-offs with the digital signature standard. In
Alfredo De Santis, editor, Advances in Cryptology – EUROCRYPT’94, volume 950
of Lecture Notes in Computer Science, pages 77–85, Perugia, Italy, May 9–12, 1995.
Springer, Heidelberg, Germany.

[NS99] Phong Q. Nguyen and Jacques Stern. The hardness of the hidden subset sum
problem and its cryptographic implications. In Michael J. Wiener, editor, Advances
in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science,
pages 31–46, Santa Barbara, CA, USA, August 15–19, 1999. Springer, Heidelberg,
Germany.

[NS01] Phong Q. Nguyen and Jacques Stern. The two faces of lattices in cryptology. In
Joseph H. Silverman, editor, Cryptography and Lattices, International Conference,
CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised Papers, volume
2146 of Lecture Notes in Computer Science, pages 146–180. Springer, 2001.

[NSS01] Phong Q. Nguyen, Igor E. Shparlinski, and Jacques Stern. Distribution of modular
sums and the security of the server aided exponentiation. In Cryptography and
Computational Number Theory, pages 331–342. Springer, 2001.

[oCoST12] U.S. Department of Commerce, National Institute of Standards, and Technology.
Secure Hash Standard - SHS: Federal Information Processing Standards Publication
180-4. CreateSpace Independent Publishing Platform, USA, 2012.

157

[OS14] Or Ordentlich and Ofer Shayevitz. Bounding techniques for the intrinsic uncertainty
of channels. In 2014 IEEE International Symposium on Information Theory,
Honolulu, HI, USA, June 29 - July 4, 2014, pages 3082–3086. IEEE, 2014.

[Pag02] Dan Page. Theoretical use of cache memory as a cryptanalytic side-channel.
Cryptology ePrint Archive, Report 2002/169, 2002. http://eprint.iacr.org/
2002/169.

[Pag04] Daniel Page. Defending against cache based side-channel attacks. Information
Security Technical Report, 8(1):30–44, April 2004.

[PH78] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing
logarithms over gf(p) and its cryptographic significance (corresp.). IEEE Trans.
Information Theory, 24(1):106–110, 1978.

[PMPS00] Jaroslaw Pastuszak, Dariusz Michatek, Josef Pieprzyk, and Jennifer Seberry. Iden-
tification of bad signatures in batches. In Hideki Imai and Yuliang Zheng, editors,
PKC 2000: 3rd International Workshop on Theory and Practice in Public Key
Cryptography, volume 1751 of Lecture Notes in Computer Science, pages 28–45,
Melbourne, Victoria, Australia, January 18–20, 2000. Springer, Heidelberg, Ger-
many.

[PRRR15] Bart Preneel, Phillip Rogaway, Mark Dermot Ryan, and Peter Y. A. Ryan. Privacy
and security in an age of surveillance (dagstuhl perspectives workshop 14401).
Dagstuhl Manifestos, 5(1):25–37, 2015.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070
of Lecture Notes in Computer Science, pages 387–398, Saragossa, Spain, May 12–16,
1996. Springer, Heidelberg, Germany.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
measures and counter-measures for smart cards. In E-smart 2001, volume 2140
of Lecture Notes in Computer Science, pages 200–210, Cannes, France, September
19-21, 2001. Springer, Heidelberg, Germany.

[Rab79] Michael O. Rabin. Digitalized signatures and public-key functions as intractable
as factorization. Technical report, Cambridge, MA, USA, 1979.

[Rah06] Sven Rahmann. Subsequence combinatorics and applications to microarray produc-
tion, DNA sequencing and chaining algorithms. In Moshe Lewenstein and Gabriel
Valiente, editors, Combinatorial Pattern Matching, 17th Annual Symposium, CPM
2006, Barcelona, Spain, July 5-7, 2006, Proceedings, volume 4009 of Lecture Notes
in Computer Science, pages 153–164. Springer, 2006.

[RC13] Peter YA Ryan and Bruce Christianson. Enhancements to prepare-and-measure
based qkd protocols. In Security Protocols XXI, pages 123–133. Springer, 2013.

[RD13] Mehdi Rahmati and Tolga M Duman. Bounds on the capacity of random insertion
and deletion-additive noise channels. IEEE Transactions on Information Theory,
59(9):5534–5546, 2013.

158

http://eprint.iacr.org/2002/169
http://eprint.iacr.org/2002/169

[Rog16] Phil Rogaway. Practice-oriented provable security and the social construction of
cryptography. IEEE Security Privacy, 14(6):10–17, Nov 2016.

[RS60] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of the society for industrial and applied mathematics, 8(2):300–304, 1960.

[RSA78a] Ron Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, February
1978.

[RSA78b] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signature and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

[SA03] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2002, volume 2523 of Lecture Notes in
Computer Science, pages 2–12, Redwood Shores, CA, USA, August 13–15, 2003.
Springer, Heidelberg, Germany.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
The first collision for full SHA-1. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I,
volume 10401 of Lecture Notes in Computer Science, pages 570–596. Springer,
2017.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of
Lecture Notes in Computer Science, pages 239–252, Santa Barbara, CA, USA,
August 20–24, 1990. Springer, Heidelberg, Germany.

[SD13] Frederic Sala and Lara Dolecek. Counting sequences obtained from the synchron-
ization channel. In Proceedings of the 2013 IEEE International Symposium on
Information Theory, Istanbul, Turkey, July 7-12, 2013, pages 2925–2929. IEEE,
2013.

[SF03] Theo G. Swart and Hendrik C. Ferreira. A note on double insertion/deletion
correcting codes. IEEE Transactions on Information Theory, 49(1):269–273, 2003.

[SGSD15] Frederic Sala, Ryan Gabrys, Clayton Schoeny, and Lara Dolecek. Three novel
combinatorial theorems for the insertion/deletion channel. In IEEE International
Symposium on Information Theory, ISIT 2015, Hong Kong, China, June 14-19,
2015, pages 2702–2706. IEEE, 2015.

[SH13] Ling Song and Lei Hu. Differential fault attack on the PRINCE block cipher.
Cryptology ePrint Archive, Report 2013/043, 2013. http://eprint.iacr.org/
2013/043.

[Sha49] C. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, Vol 28, pp. 656–715, Oktober 1949.

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera. In Proc.
Symp. Pure Math, volume 20, pages 415–440, 1971.

159

http://eprint.iacr.org/2013/043
http://eprint.iacr.org/2013/043

[Sha01] Claude E Shannon. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):3–55, 2001.

[Sho97a] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[Sho97b] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of
Lecture Notes in Computer Science, pages 256–266, Konstanz, Germany, May 11–15,
1997. Springer, Heidelberg, Germany.

[Sko05] Sergei Skorobogatov. Semi-invasive attacks - A new approach to hardware security
analysis. Technical Report 630, University of Cambridge, April 2005.

[SLIO12] Kazuo Sakiyama, Yang Li, Mitsugu Iwamoto, and Kazuo Ohta. Information-
theoretic approach to optimal differential fault analysis. IEEE Transactions on
Information Forensics and Security, 7(1):109–120, 2012.

[SOOS95] Richard Schroeppel, Hilarie K. Orman, Sean W. O’Malley, and Oliver Spatscheck.
Fast key exchange with elliptic curve systems. In Don Coppersmith, editor,
Advances in Cryptology – CRYPTO’95, volume 963 of Lecture Notes in Computer
Science, pages 43–56, Santa Barbara, CA, USA, August 27–31, 1995. Springer,
Heidelberg, Germany.

[SW12] Dennis Stanton and Dennis White. Constructive combinatorics. Springer Science
& Business Media, 2012.

[TBM14] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Differential
fault analysis on the families of SIMON and SPECK ciphers. Cryptology ePrint
Archive, Report 2014/267, 2014. http://eprint.iacr.org/2014/267.

[Tur36] Alan M. Turing. On computable numbers, with an application to the Entscheidung-
sproblem. Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

[Ull67] Jeffrey D. Ullman. On the capabilities of codes to correct synchronization errors.
IEEE Transactions on Information Theory, 13(1):95–105, 1967.

[YHS+15] Qianqian Yang, Lei Hu, Siwei Sun, Kexin Qiao, Ling Song, Jinyong Shan, and
Xiaoshuang Ma. Improved differential analysis of block cipher PRIDE. In Javier
Lopez and Yongdong Wu, editors, ISPEC 2015, volume 9065 of Lecture Notes
in Computer Science, pages 209–219, Beijing, China, May 5-8, 2015. Springer,
Heidelberg, Germany.

[YL95] Sung-Ming Yen and Chi-Sung Laih. Improved digital signature suitable for batch
verification. IEEE Trans. Computers, 44(7):957–959, 1995.

[ZWG11] XinJie Zhao, Tao Wang, and ShiZe Guo. Improved side channel cube attacks on
PRESENT. Cryptology ePrint Archive, Report 2011/165, 2011. http://eprint.
iacr.org/2011/165.

[ZWWD14] Jingyuan Zhao, Xiaoyun Wang, Meiqin Wang, and Xiaoyang Dong. Differential
analysis on block cipher PRIDE. Cryptology ePrint Archive, Report 2014/525,
2014. http://eprint.iacr.org/2014/525.

160

http://eprint.iacr.org/2014/267
http://eprint.iacr.org/2011/165
http://eprint.iacr.org/2011/165
http://eprint.iacr.org/2014/525

Résumé

Cette thèse, à la frontière entre sécurité de

l’information et cryptographie s’intéresse à

l’utilisation de cette dernière dans la sécurité

informatique. Cette thèse est divisée en trois

parties scientifiquement indépendantes, qui

partagent la même propriété de résoudre des

problèmes auxquels sont ou seront

confrontés les industries du digital. Nous

étudions ainsi le traitement par batch de

signatures, afin de répondre à la future

omniprésence d’appareils à faible puissance

de calcul étant connecté à des réseaux

ouverts ; et devant donc authentifier un grand

nombre de messages. Nous nous intéressons

ensuite à la menace post-quantique, en

examinant un nouveau problème difficile

impliquant des ratios de nombre de faible

poids de Hamming. Enfin nous regardons la

sécurité physique d’algorithme symétrique et

d’échange de clé quantique, le premier étant

un défi de longue date, et l’autre une

possibilité pour la futur distribution de clé

cryptographique s’affranchissant des

problèmes classique de la cryptographie.

Mots clés

Sécurité de l’information, sécurité physique,

cryptographie à clé publique

Abstract

This thesis, on the border between

information security and cryptography,

focuses on the use of information security in

computer security. This thesis is divided into

three scientifically independent parts, which

share the same property of solving problems

that are or will be faced by the digital

industries. We study the batch processing of

signatures, in order to respond to the future

omnipresence of devices with low computing

power being connected to open networks;

and therefore having to authenticate a large

number of messages. We then focus on the

post-quantum threat, examining a new

challenging problem involving low-weight

Hamming number ratios. Finally we look at

the physical security of symmetric algorithm

and quantum key exchange, the former being

a long-standing challenge, and the other a

possibility for future cryptographic key

distribution free from the classic problems of

cryptography

Keywords

Information security, physical security, public

key cryptography

161

162

	Acknowledgements
	Introduction
	Preliminaries
	Foreword
	Symmetric Cryptography
	Asymmetric Cryptography
	Formalisation of Security
	Current Research Trends in Cryptography

	Results and Contributions
	Organisation
	Additional Work

	Batch Processing in Cryptography
	Introduction
	Optimal Batch Signatures
	Reusing Nonces in Schnorr Signatures

	Post Quantum Public-key based on Mersenne primes
	Introduction
	On the Hardness of the Mersenne Low Hamming Ratio Assumption
	Public-Key Cryptosystems Based on a New Complexity Assumption

	Physical Security and Information Theory
	Introduction
	A New Differential Fault Analysis on PRIDE: from Theory to Practice
	From Clustering Supersequences to Entropy Minimizing Subsequences for Single and Double Deletions

	Bibliography

