
HAL Id: tel-03413229
https://theses.hal.science/tel-03413229v2

Submitted on 3 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the parameter learning for Perturb-and-MAP models
Tatiana Shpakova

To cite this version:
Tatiana Shpakova. On the parameter learning for Perturb-and-MAP models. Machine Learning
[cs.LG]. Université Paris sciences et lettres, 2019. English. �NNT : 2019PSLEE077�. �tel-03413229v2�

https://theses.hal.science/tel-03413229v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences Lettres
PSL Research University

Préparée à l’École normale supérieure

On Parameter Learning for Perturb-and-MAP Models
Sur l’apprentissage des paramètres pour les modèles Perturb-and-MAP

École doctorale n◦386

ÉCOLE DOCTORALE DE SCIENCES MATHÉMATIQUES DE PARIS CENTRE

Spécialité INFORMATIQUE

COMPOSITION DU JURY :

Mme. Florence d’Alché-Buc
TELECOM ParisTech, Rapporteur

M. Matthew Blaschko
KU Leuven, Rapporteur

M. Francis Bach
INRIA, Directeur de thèse

M. Ivan Laptev
INRIA, President du jury

M. Umut Şimşekli
TELECOM ParisTech, Membre du
jury

Soutenue par Tatiana Shpakova
le 21.02.2019

Dirigée par Francis BACH

ÉCOLE NORMALE

S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

A mathematician is a device for
turning coffee into theorems.

Alfréd Rényi

If I feel unhappy, I do mathematics
to become happy. If I am happy, I
do mathematics to keep happy.

Alfréd Rényi

Abstract
Probabilistic graphical models encode hidden dependencies between random vari-

ables for data modelling. Parameter estimation is a crucial and necessary part of
handling such probabilistic models. These very general models have been used in
plenty of fields such as computer vision, signal processing, natural language processing
and many more. We mostly focused on log-supermodular models, which is a specific
part of exponential family distributions, where the potential function is assumed to be
the negative of a submodular function. This property will be very handy for maximum
a posteriori and parameter learning estimations. Despite the apparent restriction of
the models of interest, they cover a broad part of exponential families, since there are
plenty of functions that are submodular, e.g., graph cuts, entropy and others. It is
well known that a probabilistic treatment is challenging for most models, however we
were able to tackle some of the challenges at least approximately.

In this manuscript, we exploit perturb-and-MAP ideas for partition function
approximation and thus efficient parameter learning. Moreover, the problem can
be also interpreted as a structure learning task, where each estimated parameter or
weight represents the importance of the corresponding term. We propose a way of
approximating parameter estimation and inference for models where exact learning
and inference is intractable in general case due to the partition function calculation
complexity.

The first part of the thesis is dedicated to theoretical guarantees. Given the
log-supermodular models, we take advantage of the efficient minimization property
related to submodularity. Introducing and comparing two existing upper bounds
of the partition function, we are able to demonstrate their relation by proving a
theoretical result. We introduce an approach for missing data as a natural subroutine
of probabilistic modelling. It appears that we can apply a stochastic technique over
the proposed perturb-and-map approximation approach and still maintain convergence
while make it faster in practice.

The second main contribution of this thesis is an efficient and scalable generalization
of the parameter learning approach. In this section we develop new algorithms to
perform parameter estimation for various loss functions, different levels of supervision
and we also work on the scalability. In particular, working with mostly graph cuts,
we were able to incorporate various acceleration techniques.

As a third contribution we deal with the general problem of learning continuous
signals. In this part, we focus on the sparse graphical models representations. We
consider common sparsity-inducing regularizers as negative log-densities for the prior
distribution. The proposed denoising techniques do not require choosing any precise
regularizer in advance. To perform sparse representation learning, the signal processing

v

community often uses symmetric penalties such as ℓ1, but we propose to parameterize
the penalty and learn the weight of each loss component from the data. This is feasible
via an approach which is similar to what we proposed in the previous sections.

For all aspects of the parameter estimation mentioned above we performed compu-
tational experiments to illustrate the ideas or compare with existing benchmarks, and
demonstrate its performance in practice.

vi

Résumé

Les modèles graphiques probabilistes codent des dépendances cachées entre des
variables aléatoires pour la modélisation des données. L’estimation des paramètres
est une partie cruciale et nécessaire du traitement de ces modèles probabilistes. Ces
modèles très généraux ont été utilisés dans de nombreux domaines tels que la vision
par ordinateur, le traitement du signal, le traitement du langage naturel et bien
d’autres. Nous nous sommes surtout concentrés sur les modèles log-supermodulaires,
qui constituent une partie spécifique des distributions de la famille exponentielle,
où la fonction potentielle est supposée être l’opposée d’une fonction sous-modulaire.
Cette propriété sera très pratique pour l’estimation par maximum a posteriori et
l’apprentissage des paramètres. Malgré la restriction apparente des modèles d’intérêt,
ils couvrent une grande partie des familles exponentielles, puisqu’il y a beaucoup de
fonctions qui sont sous-modulaires, par exemple, les coupes dans de graphes, l’entropie
et d’autres. Il est bien connu que le traitement probabiliste est un défi pour la plupart
des modèles, mais nous avons été en mesure de relever certains de ces défis au moins
approximativement.

Dans ce manuscrit, nous exploitons les idées “perturb-and-MAP” pour
l’approximation de la fonction de partition et donc un apprentissage efficace des
paramètres. De plus, le problème peut être considéré comme une tâche d’apprentissage
structuré, où chaque paramètre ou poids estimé représente l’importance du terme
correspondant. Nous proposons une méthode d’estimation et d’inférence approchée
des paramètres pour les modèles où l’apprentissage et l’inférence exacts sont insolubles
dans le cas général en raison de la complexité du calcul des fonctions de partition.

La première partie de la thèse est consacrée aux garanties théoriques. Étant
donnés les modèles log-supermodulaires, nous tirons parti de la propriété de min-
imisation efficace liée à la sous-modularité. En introduisant et en comparant deux
bornes supérieures existantes de la fonction de partition, nous sommes en mesure de
démontrer leur relation en prouvant un résultat théorique. Nous introduisons une
approche pour les données manquantes comme sous-routine naturelle de la modélisa-
tion probabiliste. Il semble que nous puissions appliquer une technique stochastique à
l’approche d’approximation par perturbation tout en maintenant la convergence et la
rendant plus rapide en pratique.

La deuxième contribution principale de cette thèse est une généralisation efficace
de l’approche de l’apprentissage paramétrique. Dans cette section, nous développons
de nouveaux algorithmes pour effectuer l’estimation des paramètres pour diverses
fonctions de perte, différents niveaux de supervision et travaillons sur l’efficacité

vii

à grande échelle. En particulier, en travaillant principalement avec des coupes de
graphes, nous avons pu intégrer différentes techniques d’accélération.

Comme troisième contribution, nous traitons d’un problème général d’apprentissage
des signaux continus. Dans cette partie, nous nous concentrons sur les représentations
de modèles graphiques parcimonieux. Nous traitons des penalités classiques en
estimation parcimonieuse en les considérant comme l’opposée de la log-vraiseullante
de la distribution a priori. Les techniques de débruitage proposées ne nécessitent pas
de paramêtre de régularisation précis à l’avance. Pour effectuer l’apprentissage de la
représentation parcimonieuse la communauté utilise souvent des pénalités symétriques
comme la meme ℓ1, mais nous proposons de paramétrer la perte et d’apprendre le
poids de chaque composante de la pénalité à partir des données. C’est faisable avec
l’approche sur laquelle nous avons travaillé auparavant.

Pour tous les aspects de l’estimation des paramètres mentionnés ci-dessus, nous
avons effectué des expériences pour illustrer l’idée ou la comparer aux algorithmes
existants, et démontrer sa performance en pratique.

viii

Acknowledgements

I am grateful that I had a chance to work on my PhD thesis under Francis Bach
supervision during these three and a half years. Francis gave me the best thing he
could, the enthusiasm and belief in academical research. I am thankful that you
introduce the exciting top-tier scientific world to me and I hope I was a good student
to accept and succeed. Thank you for making my dream to become a doctor come
true and encouraging me to continue my academic career. I will always be grateful for
that.

I also acknowledge support the European Union’s H2020 Framework Programme
(H2020-MSCA-ITN-2014) under grant agreement no642685 MacSeNet.

I would like to acknowledge Florence d’Alché-Buc and Matthew Blaschko for
reviewing this thesis. I am also thankful to the jury members Ivan Laptev and Umut
Şimşekli who agreeing to participate. I deeply thank you all for the correction and
remarks that I have got after your careful reading.

I would like also to mention Mike Davies here, who was not my co-advisor, but I
often felt that he was. He teached me a different side of view and showed himself in
the best qualities during our collaborative time. From Mike I have also learned to be
sensitive to the details which is always important.

I am pleased that Anton Osokin and Dmitry Ostrovsky were always there and
thank them for collaborations and interesting discussions related to this thesis. I
would like to express my deepest gratitude for their continuous help as well.

I would like to highlight that SIERRA team is flourishing space for personal grow
and idea sharing. The time I spent in SIERRA/WILLOW environment was the
most productive in my life. The concentration of motivation and smartness was the
highest ever and I am proud that I was a part of it. I am thankful for everyone who
accompanied me on my path to the graduation during all these years.

I would especially like to thank my partner and college from SIERRA Dmitry
Babichev for all his unlimited love and support, and thanks for pushing me forward
sometimes. This PhD journey would be half less joyful and half harder without you
by my side. I am thankful for my family as well, who always supports me, though
probably do not have an idea what is this manuscript about.

There are many more people who had influenced me to become a researcher and
conduct a PhD. I hope all of you feel my gratitude.

ix

x

Contents

1 Introduction 3
1.1 Probabilistic Graphical Models . 3

1.1.1 Markov Random Fields . 3
1.1.2 Conditional Random Fields 4
1.1.3 Conditional Independence . 4
1.1.4 Model Parameterization . 5
1.1.5 Examples . 7
1.1.6 Probabilistic Inference . 8

1.2 Submodular Functions and Log-supermodular Models 10
1.2.1 Submodularity . 10
1.2.2 Submodular Function Minimization 11
1.2.3 Examples of Submodular Functions 12
1.2.4 Log-supermodular Distributions 13
1.2.5 Examples of Log-supermodular Distributions 13

1.3 Parameter Learning and Inference . 13
1.3.1 Maximum Likelihood Estimation 14
1.3.2 Optimization . 14
1.3.3 Missing Data Treatment . 14
1.3.4 Conditional Maximum Likelihood 15

1.4 Partition Function Approximation . 15
1.4.1 L-Field bound . 15
1.4.2 Gumbel bound . 17

2 Parameter Learning for Log-supermodular Distributions 21
2.1 Introduction . 21
2.2 Contributions . 22
2.3 Submodular functions and log-supermodular models 22

2.3.1 Submodular functions . 23
2.3.2 Log-supermodular distributions 23
2.3.3 Examples . 24

2.4 Upper-bounds on the log-partition function 24
2.4.1 Base polytope relaxation with L-Field (Djolonga and Krause

[2014]) . 24
2.4.2 “Pertub-and-MAP” with logistic distributions 25
2.4.3 Comparison of bounds . 26

xi

2.4.4 From bounds to approximate inference 27
2.5 Parameter learning through maximum likelihood 28

2.5.1 Learning with the L-field approximation 29
2.5.2 Learning with the logistic approximation with stochastic gradients 30
2.5.3 Extension to conditional maximum likelihood 31
2.5.4 Missing data through maximum likelihood 31

2.6 Experiments . 32
2.7 Conclusion . 34

3 Marginal Weighted Maximum Log-likelihood for Efficient Learning
of Perturb-and-Map Models 35
3.1 Introduction . 35
3.2 Contributions . 37
3.3 Perturb-and-MAP . 37

3.3.1 Gumbel perturbations . 38
3.3.2 Parameter learning and Inference 39
3.3.3 Marginal probability estimation 41

3.4 Marginal Likelihood . 41
3.4.1 Hamming loss . 42
3.4.2 Weighted Hamming loss . 44
3.4.3 Scalable algorithms for graph cuts 44

3.5 Parameter Learning in the Semisupervised
Setup . 45

3.6 Experiments . 47
3.6.1 OCR dataset . 47
3.6.2 HorseSeg dataset . 48
3.6.3 Experiments analysis . 51

3.7 Conclusion . 52

4 Hyper-parameter Learning for Sparse Structured Probabilistic Mod-
els 53
4.1 Introduction . 53
4.2 Contributions . 54
4.3 Log-supermodular Distributions . 54

4.3.1 Supermodular and Submodular Functions 55
4.3.2 Discrete Log-supermodular Distributions 56
4.3.3 Continuous Log-supermodular Distributions 56
4.3.4 Log-partition Function for Bayesian Learning 56

4.4 Perturb-and-MAP . 57
4.4.1 Extension to the Continuous Case 58
4.4.2 Decoding with MMSE . 59

4.5 Experiments . 59
4.5.1 Synthetic Data. Experiments on decoding 59
4.5.2 Flow-based priors . 60
4.5.3 Real Data. Experiments on the parameter learning and decoding. 60

xii

4.6 Conclusion . 62

5 Conclusion and Future Work 63
5.1 Summary of the thesis . 63
5.2 Perspectives . 64

xiii

xiv

Contributions and thesis outline

Parameter estimation is a big part of probabilistic graphical model handling.
Given the optimal parameter one can perform inference and evaluate marginal and
conditional probabilities. Optimal parameters are often considered as a solution of the
maximum likelihood problem, which is log-concave for exponential family distributions.
However, the partition function term is hard to compute, and thus causes an unsolvable
problem for the maximum likelihood learning process in the general case, and thereby
we propose to use an effective and tight upper bound of the partition function based
on the Gumbel perturbations and apply it for the broad but specific log-supermodular
family of distributions.

Thus, this thesis brings new light on parameter learning for challenging probabilistic
graphical models. We mostly provide some guarantees on the approach and develop
new directions and possible applications in the rest of the thesis. Below we summarize
each of the chapter contribution.

Chapter 1: We introduce some basic mathematical concepts that will be essential
for this work. We provide an overview of probabilistic graphical models and its
properties, submodularity and based on it log-supermodular distributions, and we
also cover challenges and suitability of parameter learning for these models of interest.

Chapter 2: As the first contribution of this thesis, we present a new automatic
parameter estimation procedure. Based on the idea of efficient maximum likelihood
optimization, we propose to incorporate a suitable upper bound on the partition func-
tion, and thus make the parameter estimation problem feasible. The only assumption
required is the existence of a maximum a posteriori solver. The sufficient condition for
this is to consider the log-supermodular models, for which we can show the superiority
over existing approaches.

Chapter 3: The next contribution we present is a generalization in terms of
scalability, levels of supervision and various performance evaluation functions. To be
specific, our intention was to make our approach more practical: we worked on the
real losses like Hamming and weighted Hamming losses, we worked on a large-scale
image segmentation problem with unlabeled data or only bounding-box given data, as
these both cases are more common than the fully-labeled ones.

Chapter 4: This chapter considers the problem of a sparsity-inducing density
learning supported on the continuous domain. Basically, we propose to consider
the learned density function as a prior that encourages signal sparsity and thereby
incorporate the derived prior into decoding, e.g., denoising problem.

Chapter 5: In this chapter we conclude the thesis, list the main contribution

1

and sum up the work that was done. We also discuss the possible future directions.

We note that the content of this thesis is based on the publications/submissions
we list below:

(a) Chapter 2 is based on the work “Parameter Learning for Log-supermodular
Distributions”, T. Shpakova, F. Bach, published in Advances of the Conference
on Neural Information Processing Systems (NIPS), 2016.

(b) Chapter 3 is based on the work “Marginal Weighted Maximum Log-likelihood
for Efficient Learning of Perturb-and-Map Models”, T. Shpakova, F. Bach, A.
Osokin, published in Proceedings of the Conference on Uncertainty in Artificial
Intelligence (UAI), 2018.

(c) Chapter 4 is based on the work “Hyper-parameter Learning for Sparse Structured
Probabilistic Models”, T. Shpakova, F. Bach, M. Davies, which is under review
for the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2019.

2

Chapter 1

Introduction

In this chapter we introduce in details the topic of probabilistic graphical models
and the associated subroutines of the parameter learning problem. We will outline
log-supermodular models which are crucial for this thesis, and discuss submodularity
along with its properties.

1.1 Probabilistic Graphical Models
Probabilistic graphical models are a versatile tool proposed for modeling structured

data and capturing the dependencies between variables via concepts from graph theory.
Random variables of interest (𝑋1, . . . , 𝑋𝑛) = 𝑋, where 𝑋 is distributed according to a
distribution 𝑝(𝑥), are dependent and connected in a predefined way. The corresponding
graphical model can be described by a notation of a graph 𝐺 = (𝑉,𝐸) and encode the
random variables via the node set 𝑉 and the pairwise dependencies between them
via the edge set 𝐸. A probabilistic graphical model takes advantage of probability
theory to make a consistent probabilistic interpretation given the values of random
variables (Wainwright and Jordan [2008b]). The goal would be to manipulate the
model and evaluate various marginal and conditional probabilities. There are mainly
two broad families: undirected and directed graphical models. We will briefly cover
both, however undirected graphical models (they are also called Markov Random
Fields) are more in demand for our needs in this work. In general there are all four
types of distributions: that can be described by both UGM and DGM, or by only one
of them, or by neither of them. Thus, none of two GM is more powerful or general
than the other (see Murphy [2013] for more details). There are also models based on
the chain graphs, graphs that include both ideas of undirected and directed graphical
model. We present several examples in Figure 1-1.

1.1.1 Markov Random Fields
Undirected graphical models assume a representation where the local dependencies

between the nodes are symmetric. This assumption makes sense for some domains,
for example for images or other symmetric structured data as relational or spatial

3

(a) Example of UGM.
(b) Example of DGM. (c) Example of chain model.

Figure 1-1: Undirected and directed graphical models on the same set of nodes 𝑉 .

data. Another common way to model data is to use directed graphical models which
are considered conditional dependencies and based on directed graphs. It is worth
noting, that for DGMs is natural to decompose the density function using the chain
rule, where each factor is a conditional probability, however is not natural for UGMs
anymore. In this case we have to additionally normalize the model via the crafted
normalizer term which is called the partition function. Thus, it becomes much harder
to manipulate the model.

1.1.2 Conditional Random Fields
The general concept of Conditional Random Fields (CRFs, see Murphy [2013]) is

that instead of working with joint probability distribution, we model the a-posteriori
distribution, conditioned on the feature data. To make it more concrete, let us
introduce the observed variables 𝑋 = (𝑋1, . . . , 𝑋𝑛) which is called the evidence and
the corresponding unobserved variables 𝑌 = (𝑌1, . . . , 𝑌𝑛) which are labels. Thus, using
a discriminative model 𝑝(𝑦|𝑥) instead of a generative model 𝑝(𝑥, 𝑦), we can consider
the labels-to-predict behaviour only. This problem statement gives us more flexibility
and allows us to focus on the target variables only. See Figure 1-2 for the example of
a CRF, where the shaded nodes are meant to be the observed variables.

X1 X2 Xn−1 Xn

Y1 Y2 Yn−1 Yn

. . .

. . .

Figure 1-2: Example of a Linear-chain CRF.

1.1.3 Conditional Independence
By now the general idea was defined intuitively. Here we are going to discuss in

more details the UGM’s parameterization. As the chain rule can not be applied in

4

the undirected case, there is a way to formulate parametrization formally with the
help of the Hammersley-Clifford theorem (Lauritzen [1996]).

Before formulating this, it is necessary to introduce the concept of conditional
independence. Conditional independence’s goal is to state whether two sets of variables
are independent or not conditioned on a third set of variables. This can be decided by
means of factoring the distribution into pieces or factors. We have already said that
we assume some local dependencies between variables, as, e.g., in Figure 1-1, but now
we would like to define it clearly.

Definition 1 (Markov property). Two subsets of variables 𝑋𝐴 and 𝑋𝐵 are con-
ditionally independent given the third subset of variables 𝑋𝐶 or equivalently
𝑋𝐴 ⊥⊥ 𝑋𝐵|𝑋𝐶, if every path from a node in 𝑋𝐴 to a node in 𝑋𝐵 in the graph
𝐺 intersects the subset 𝑋𝐶 at least in one node.

We illustrate this definition with the following example in Figure 1-3. It is worth
noting, that two nodes which are not connected with an edge, are conditionally
independent given the rest of the graph.

XA XBXC

Figure 1-3: Conditionally independent subsets 𝑋𝐴 and 𝑋𝐵 given the subset 𝑋𝐶 .

The Markov property makes concrete the intuitive statement that variables interact
locally on the graph.

1.1.4 Model Parameterization
There is a common way for the undirected graphical model parametrization that

we present next. We associate a potential function to each region or maximal clique
in the graph and can formalize the probability mass function 𝑝(𝑥1, . . . , 𝑥𝑛) = 𝑝(𝑥),
where 𝑥𝑖 is a realization of a discrete variable 𝑋𝑖, by means of the Hammersley-Clifford
theorem (Hammersley and Clifford [1971]).

Theorem 1.1 (Hammersley-Clifford). Any positive distribution 𝑝(𝑥) > 0 that
satisfies the Markov property of an undirected graph 𝐺 = (𝑉,𝐸) can be expressed via

5

the product of factors, where one factor depends on one maximal clique of the graph:

𝑝(𝑥) = 1
𝑍

∏︁
𝑐∈𝐶

𝜑𝑐(𝑥𝑐),

where 𝐶 is a set of all maximal cliques of the graph 𝐺 and 𝑍 = ∑︀
𝑥∈X

∏︀
𝑐∈𝐶

𝜑𝑐(𝑥𝑐) is the
normalization constant.

Any non-negative function can serve as a potential function 𝜑𝑐. We are going
to represent the probability density function via the Gibbs distribution using log-
potentials 𝑓(𝑥) = ∑︀

𝑐∈𝐶
𝑓𝑐(𝑥𝑐) = ∑︀

𝑐∈𝐶
log 𝜑𝑐(𝑥𝑐). Thus, for a MRF it has the following

form:
𝑝(𝑥) = 𝑒𝑓(𝑥)

𝑍
= 𝑒𝑓(𝑥)∑︀

𝑥∈X
𝑒𝑓(𝑥) .

And a CRF model can be written as:

𝑝(𝑦|𝑥) = 𝑒𝑓(𝑦|𝑥)

𝑍(𝑥) = 𝑒𝑓(𝑦|𝑥)∑︀
𝑦∈Y

𝑒𝑓(𝑦|𝑥) .

While the interpretation with maximal cliques is classic but rather heavy, in
practice pairwise models are more popular, where all cliques are of size one or two
nodes, and thus the probability density function is written as:

𝑝(𝑥) ∝
∏︁

𝑖,𝑗∈𝐸

𝜑𝑖,𝑗(𝑥𝑖, 𝑥𝑗)
∏︁
𝑖∈𝑉

𝜑𝑖(𝑥𝑖).

This form is used due to its simplicity and strong coverage of various models. Another
common treatment is to represent the log potentials as a linear function of some
parameters 𝜃: 𝑓(𝑥|𝜃) = 𝜓(𝑥)𝑇 𝜃, where 𝜓(𝑥) is a feature vector of the data vector 𝑥.
In many applications these features are created by hand, depending on the domain
knowledge and user’s needs. We will cover this part in the experimental settings.
Thus, our final model has the form:

log 𝑝(𝑥|𝜃) = 𝜓(𝑥)𝑇 𝜃 − log𝑍(𝜃),

which is called the log-linear model and the potential vector 𝜓(𝑥) contains only pairwise
and unary terms.

The distribution of interest 𝑝(𝑥|𝜃) clearly belongs to the exponential family as
it can be rewritten as 𝑝(𝑥|𝜃) = exp[𝜓(𝑥)𝑇 𝜃 − 𝐴(𝜃)], where 𝜓(𝑥) is called a vector of
sufficient statistics and 𝐴(𝜃) = log𝑍(𝜃) is a log-partition function. The distribution
enjoys the exponential family’s properties, most importantly it attains maximum
entropy, and thus makes the weakest assumptions about the data (Murphy [2013]).
Besides that, using the probability density function allows us to make use of the
log-likelihood function concavity. For more details see Wainwright and Jordan [2008b],
Murphy [2013], Bishop [2006].

6

1.1.5 Examples
In this part we will present some prominent examples of Markov Random Fields

like Ising and Potts Models, and Gaussian MRFs.

Ising Model. This one is a pioneer and one of the classical graphical models created
for the statistical physics needs (Ising [1925]). The idea is to model the system of
directed magnetic spins, which are directed in one of the two possible directions:
𝑥𝑖 ∈ {+1,−1}. This can be written down in the following way:

log 𝑝(𝑥|𝑊, 𝑏) =
∑︁
𝑖∼𝑗

𝑤𝑖𝑗𝑥𝑖𝑥𝑗 +
∑︁

𝑖

𝑏𝑖𝑥𝑖 − log𝑍(𝑊, 𝑏) = 1
2𝑥

𝑇𝑊𝑥+ 𝑏𝑇𝑥− log𝑍(𝑊, 𝑏).

A sign of the weight 𝑤𝑖𝑗 will influence the tendency of the two connected nodes to
have the same or the opposite sign. It is worth noting, that the normalization constant
𝑍(𝑊, 𝑏) is a sum of potential functions of all possible values of vector 𝑥, i.e., 2𝐷

terms, and its calculation is #𝑃 hard in general case (Jerrum and Sinclair [1993]). A
variation of this model will be covered in our experiments.

Potts Model. It is a straightforward generalization of the Ising Model for multiple
number of discrete states: 𝑥𝑖 ∈ {0, 1, . . . , 𝐾} (Potts and Domb [1952]). This model
will also be covered in the experimental section of Chapter 4. Both Potts and Ising
models can be applied for an image segmentation problem, since it is feasible to
encourage an images smoothness using these types of models (Boykov and Kolmogorov
[2004]). This usually is done via Conditional Random Fields (CRFs discussed before),
where the features variables 𝑥𝑖 are observed and the labels 𝑦𝑖 are not. We present a
grid model common for image segmentation problems in the Figure 1-4.

xs

ys

xt

yt

Figure 1-4: Grid-structured CRF for image segmentation task.

Gaussian MRFs. In the case of Gaussian MRFs, the joint probability density
function is assumed to be Gaussian and has the following form:

𝑝(𝑥|𝜇,Σ) ∼ N(𝜇,Σ).

If Σ−1
𝑖,𝑗 is zero, then there is no edge between nodes 𝑖 and 𝑗 and as follows no pairwise

term of 𝑖 and 𝑗 (this follows from the conditional independence properties).

7

1.1.6 Probabilistic Inference
Given the probabilistic model we can perform inference with the tools provided

by probabilistic theory. Using the axioms of probability, any marginal or conditional
probability of interest can be defined, but not all calculations can be done in polynomial
time. Let us discuss this problem of computing in more details as this knowledge will
be crucial further in this thesis.

Let us consider the conditional probability of a subset 𝑋𝐴 given the values for a
subset 𝑋𝐵, while the rest random variables of the graphical model we denote as 𝑋𝐶 .
Our goal would be to evaluate the conditional probability 𝑝(𝑋𝐴|𝑋𝐵), which is the
classical problem of probabilistic inference.

XA

XB

XC

Figure 1-5: An example of the conditional probability calculation. The dark nodes
correspond to the nodes on which we condition, light-shaded nodes are the nodes we
marginalize over, and the white nodes are the nodes we want to calculate conditional
probability for.

To make this easy to present, we will use Figure 1-5 with 3 shades of grey for the
nodes coloring. The target variables 𝑋𝐴 are unshaded, the observed variables 𝑋𝐵,
which are also called the evidence nodes, are dark shaded, while light shaded are the
rest nodes values 𝑋𝐶 and they must be marginalized out to calculate 𝑝(𝑋𝐴|𝑋𝐵). We
derive the conditional probability in the following way:

𝑝(𝑋𝐴|𝑋𝐵) = 𝑝(𝑋𝐴, 𝑋𝐵)
𝑝(𝑋𝐵) =

∑︀
𝑋𝐶

𝑃 (𝑋𝐴, 𝑋𝐵, 𝑋𝐶)∑︀
𝑋𝐴,𝑋𝐶

𝑃 (𝑋𝐴, 𝑋𝐵, 𝑋𝐶) .

Thus, the point of discussion in this section is an efficient calculation of this expression,
which contains two expensive summations and can be of exponential complexity.

Exact Inference. There are plenty of algorithms for exact inference for the discrete
graphical models. The most naive approach would be an elimination algorithm, that
attains at a conditional probability of a single node (Wainwright and Jordan [2008b]),
which is a quite specific problem to solve. However, a good point is that this approach
is applicable for any graphical model. The most well-spread set of techniques are
called message passing approaches. For example, the follow-up of the elimination
algorithm is the belief propagation or sum-product message passing algorithm that
can be applied for any acyclic graphical model, i.e., tree-based ones (Wainwright and

8

Jordan [2008b]), and it can compute all single-node marginals altogether. The next
step of generalization would be the junction tree algorithm (Wainwright and Jordan
[2008b]), which is mostly the combination of the previous two algorithms.

All of these algorithms are restricted either to a special graph structure, mostly
to acyclic graphs or to the low-treewidth cases (the computation time is exponential
in the treewidth of the graph, see more details in Wainwright and Jordan [2008b]).
Moreover, these approaches do not work for continuous variables, except for jointly
Gaussian distributions. It is explainable by the fact that exact inference is NP-hard
in general (Wainwright and Jordan [2008b]). To perform general inference, one needs
to call for approximated techniques covered in the next paragraph.

Approximate Inference. When exact inference is often intractable or too ineffi-
cient, an alternative would be approximate inference. It is interesting to note, that
the sum-product message-passing algorithm from the previous paragraph can also be
seen as an approximate inference technique applied to a cycled factor graph (Szeliski
et al. [2008]). Here we aim to cover the most prominent of concepts like variational
and Monte Carlo inference.

Variational Inference. The idea of variational inference is to approximate the
intractable distribution of interest 𝑝(𝑥) with another close, but tractable distribution
𝑞(𝑥). Some examples of 𝑞(𝑥) could be from factored or Gaussian distributions. We
usually evaluate the “closeness” via the KL divergence KL(𝑞||𝑝) = ∑︀

𝑥
𝑞(𝑥) log 𝑞(𝑥)

𝑝(𝑥) and,
thus, can fit free parameters of 𝑞(𝑥) by minimizing the KL objective.

One of the most classic variational inference approaches is called “mean field”
approximation, where the idea is to use a fully factorized posterior as 𝑞(𝑥) =

𝑛∏︀
𝑖=1

𝑞(𝑥𝑖)
approximation, which is a product of marginals (Wainwright and Jordan [2008b]).
Thus, the KL optimization problem is solvable by the coordinate descent method. The
mean field approach belongs to the variational Bayes family of approaches, which aim
to find the optimal parameters of the distribution 𝑞(𝑥) (Murphy [2013]). Moreover,
there is also an extension: variational Bayes EM, where we aim to find both the
parameters and the latent variables simultaneously (Murphy [2013]).

Another milestone is the loopy belief propagation technique, which is a gener-
alization of the message passing (Murphy and Weiss [1999]). There are also more
techniques that variational inference paradigm contains, however we will not cover it
here (for more details see Wainwright and Jordan [2008b]). It is worth to mention,
that variational inference is always approximate even if run to convergence.

Monte Carlo Inference. To break the bounds caused by variational inference,
such as the special form of approximation or necessary properties as conjugate priors,
we are going to introduce an alternative class of algorithms based on Monte Carlo
approximation. The idea is to approximate any target value with averaged value
obtained from sampling E[𝑓 |D] ≈ 1

𝑁

𝑁∑︀
𝑛=1

𝑓(𝑥𝑛).

9

The most prominent example for sampling in high dimensions is Markov Chain
Monte Carlo (MCMC). This approach constructs a Markov chain on the state space X,
where the stationary distribution matches the target distribution 𝑝(𝑥). Thus, while
performing a random walk on the states and converging to the stationary distribution,
we are sampling from 𝑝(𝑥) and then integrate with respect to 𝑝(𝑥) (Robert and Casella
[2013]).

A special case of MCMC is Gibbs sampling, which is very similar to mean field
in the sense that we should compute each node’s conditional and average out the
neighbors. Random walk Monte Carlo methods include such approaches as Metropolis
Hastings algorithm, slice sampling and others (for more details see Wainwright and
Jordan [2008b], Doucet et al. [2001]).

Variational inference advantages would be its deterministic solution and a bound
on loglikelihood it gives, but MCMC can be applied for broader types of distributions
and usually is easier to implement, and, given enough time will converge to exact
inference.

1.2 Submodular Functions and Log-supermodular
Models

Moving away from the general theory of graphical models, in this section we
would like to present a brand-new family of distributions, which is called family of
log-supermodular distributions. They are practically based on the crucial notion of
submodularity, and here we present its definition and properties in details.

1.2.1 Submodularity
We first start to consider a set function defined on the ground set 𝑉 in the form

𝐹 (𝑆) : 2𝑉 → R,

where 𝑆 ⊆ 𝑉 and 2𝑉 is a set of all possible subsets of the ground set 𝑉 . Optimization
of this function is a crucial problem of discrete optimization. The solution could
represent the optimal set of pixels for the foreground/background image segmentation
problem, or optimal locations for the fire alarms. Without loss of generality we always
assume that 𝐹 (∅) = 0.

To make it looks more like a discrete optimization problem, we can biject each
subset 𝑆 ⊆ 𝑉 into a binary vector 𝑥 ∈ {0, 1}|𝑉 |, where 𝑥𝑖 = 1 means that the
𝑖-th element belongs to the subset 𝑆 and |𝑉 | is the ground set cardinality. In this
interpretation the target function 𝑓(𝑥) has its values on the nodes of the hypercube
{0, 1}|𝑉 | (see example in Figure 1-6).

We first introduce submodular functions, which are set functions with strong
properties, kind of analogous to convex functions in the continuous space. They are
both very common in practice and both are feasible to be minimized, as we can
minimize submodular function in polynomial time (Fujishige [2005], Bach [2016]).

10

x1

x3

x2

(0, 0, 0) ∼ { } (1, 0, 0) ∼ {a}

(0, 1, 0) ∼ {b}
(1, 1, 0) ∼ {a, b}

(0, 0, 1) ∼ {c}
(1, 0, 1) ∼ {a, c}

(0, 1, 1) ∼ {b, c} (1, 1, 1) ∼ {a, b, c}

Figure 1-6: Hypercube representation for the ground set 𝑉 = {𝑎, 𝑏, 𝑐}.

Definition 2. The set function 𝐹 (𝑆) : 2𝑉 → R is called submodular, if for any two
subset 𝐴,𝐵 ⊆ 𝑉 and an element 𝑠 ∈ 𝑉 , such that 𝐴 ⊆ 𝐵, 𝑠 /∈ 𝐵, the diminishing
marginal returns property holds:

𝐹 (𝐴 ∪ {𝑠}) − 𝐹 (𝐴) ≥ 𝐹 (𝐵 ∪ {𝑠}) − 𝐹 (𝐵),

or equivalently 𝐹 (𝑥) : {0, 1}|𝑉 | → R is submodular, if for any two vertices of
hypercube 𝑥, 𝑦 ∈ {0, 1}|𝑉 | and a canonical basis vector 𝑒𝑖 ∈ {0, 1}|𝑉 |, such that 𝑥 ≤ 𝑦
component-wise and 𝑦𝑖 = 0, the following is true:

𝐹 (𝑥+ 𝑒𝑖) − 𝐹 (𝑥) ≥ 𝐹 (𝑦 + 𝑒𝑖) − 𝐹 (𝑦).

We should also introduce a concept of a supermodular function, which is simply
the negative of a submodular one. Another concept convenient for our purposes is the
base polyhedron, which is a polyhedron that is associated to a submodular function.

Definition 3. A base polyhedron 𝐵(𝐹) associated with a submodular function 𝐹 (𝑆)
is defined in the following form:

𝐵(𝐹) = {𝑠 ∈ R|𝑉 |, 𝑠(𝑉) = 𝐹 (𝑉),∀𝐴 ⊆ 𝑉, 𝑠(𝐴) ≤ 𝐹 (𝐴)},

where 𝑠(𝐴) = ∑︀
𝑖∈𝐴

𝑠𝑖. Thus this polyhedron is defined as the intersection of hyper-

planes {𝑠 ∈ R|𝑉 |, 𝑠𝑇𝑥𝐴 = 𝑠(𝐴) ≤ 𝐹 (𝐴)}, where 𝑥𝐴 are normals of the corresponding
hyperplanes.

This polyhedron will play a crucial role for analysis and optimization, such as
probabilistic inference in the log-supermodular models.

1.2.2 Submodular Function Minimization
As already been mentioned, there is a polynomial time algorithm for submodular

function minimization, while maximization can be tackled only approximately. To

11

substantiate the statement, we introduce the Lovász extension, which is a convex
extension that can be defined for any submodular function (Lovász [1983]).

Definition 4. For any submodular function 𝐹 (𝑥) : {0, 1}|𝑉 | → R we can define a
Lovász extension 𝑓(𝑤) : R|𝑉 | → R, which is a convex function and matches the
initial function 𝐹 (𝑥) at all vertices of the hyper-cube. It has the following form:

𝑓(𝑤) =
|𝑉 |∑︁
𝑣=1

𝑤𝑖𝑣 [𝐹 ({𝑖1, . . . , 𝑖𝑣}) − 𝐹 ({𝑖1, . . . , 𝑖𝑣−1})],

where (𝑖1, . . . , 𝑖|𝑉 |) is the following permutation of components of 𝑤 : 𝑤𝑖1 ≥ 𝑤𝑖1 ≥
· · · ≥ 𝑤𝑖|𝑉 |.

It is worth noting, that the Lovász extension 𝑓(𝑤) is convex if and only if the
initial function 𝐹 (𝑥) is submodular (Lovász [1983]). Moreover, the solution of the
Lovász extension minimization is binary (i.e., can be restricted to belong to {0, 1}|𝑉 |)
and thus appears to be the minimizer for the submodular function 𝐹 (𝑥) as well.
This statement gives us a polynomial time guarantee. To sum up, we can link the
submodular and convex analysis and profit from some of the convexity guarantees.
This is used in machine learning both for regularizers (Bach [2010]) or losses (Yu and
Blaschko [2015]).

Another interesting connection to mention is that the Lovász function is a support
function of the base polyhedron 𝐵(𝐹) itself, and, thus, may be computed in the closed
form 𝑓(𝑤) = min𝑠∈𝐵(𝐹) 𝑤

𝑇 𝑠.

1.2.3 Examples of Submodular Functions
The simplest example of a submodular function would be the cardinality function.

Having a look at Definition 2, we notice the inequality always happens to be equality.
It is interesting to notice, that this function is supermodular as well. The functions
which are both submodular and supermodular we will call modular function and it
is known that they can be respesented as 𝐹 (𝑥) = 𝑤𝑇𝑥, where 𝑤 ∈ R|𝑉 | is a vector of
weights and 𝑥 is a binary representation of a set.

Another crucial example is a cut function, which is defined for the undirected
graph 𝐺 = (𝑉,𝐸) that builds on the ground set of nodes 𝑉 . Basically the cut function
𝐹 (𝑆) counts the number of edges connecting a node from 𝑆 and a node from 𝑉 ∖𝑆, i.e.

𝐹 (𝑆) = 𝐹 (𝑥𝑆) =
∑︁
𝑖∼𝑗

|𝑥𝑆
𝑖 − 𝑥𝑆

𝑗 |,

where 𝑥𝑆 is a binary vector representation of the subset 𝑆, and 𝑥𝑆
𝑖 and 𝑥𝑆

𝑗 are
representations of the nodes 𝑖 and 𝑗 correspondingly. This function is easily generalized
for the weighted case.

Other prominent examples of the submodular functions are network flows, concave
functions of a set cardinality, mutual entropy and matroids (see more details in
Fujishige [2005], Bach [2016]).

12

1.2.4 Log-supermodular Distributions

Now we marry the two big parts introduced before: probabilistic models and
submodular functions. Let us consider a probabilistic model defined on the binary
space X = {0, 1}𝐾 in the form of a Gibbs distribution:

𝑝(𝑥) = exp(−𝑓(𝑥))
𝑍(𝑓) ,

where now we assume that the potential 𝑓(𝑥) is a submodular function. Hence its
negative −𝑓(𝑥) is a supermodular one and, thus, the model is called log-supermodular
probabilistic model or log-supermodular distribution. It was recently introduced
by Djolonga and Krause [2014] and will be investigated throughout this thesis.

This common form defines a broad family of distributions on the one side, and allow
us to perform efficient parameter learning of the other side. Maximum a posteriori
estimation (MAP) for these models is known to be feasible (reduced to the submodular
minimization problem), however the partition function calculation is not (Kolmogorov
[2006]).

1.2.5 Examples of Log-supermodular Distributions

One of the examples to discuss is the binary pairwise MRF, which is also known
as the Ising model and can be defined via the log-supermodular distribution, if
the potentials satisfy the property of submodularity (so called attractive potentials
that encourage the same signal sign among pairwise neighbors). Binary models can
be naturally applied for computer vision purposes, e.g., for an image segmentation
problem.

It is also possible to extend these models in two ways: to consider not only binary
values, but discrete and even continuous (part of these work is focused on this), and also
consider higher-order potentials instead of pairwise ones. The submodular machinery
allow us to perform these extensions naturally. Thus, such models can be incorporated
for example as sparsity-inducing priors or applied for semantic segmentation (see
Chapter 4).

1.3 Parameter Learning and Inference

In this section we discuss a learning procedure for probabilistic graphical models
and for the log-supermodular models in particular. There are plenty of approaches
for parameter learning. We will cover the most prominent ones and will see that the
learning procedure is usually computationally expensive.

13

1.3.1 Maximum Likelihood Estimation
We again consider a probabilistic model written as

𝑝(𝑥|𝜃) = 1
𝑍(𝜃) exp(𝜃𝑇𝜓(𝑥)).

Given the datapoints 𝑥1, . . . 𝑥𝑁 , the averaged log-likelihood function ℓ(𝜃) has the form:

ℓ(𝜃) = 1
𝑁

𝑁∑︁
𝑛=1

log 𝑝(𝑥𝑛|𝜃) = 𝜃𝑇
(︂ 1
𝑁

𝑁∑︁
𝑛=1

𝜓(𝑥𝑛)
)︂

− log𝑍(𝜃) = 𝜃𝑇𝜓(𝑥) − log𝑍(𝜃),

where 𝜓(𝑥) is an empirical value of the expectation E𝜓(𝑥).

1.3.2 Optimization
Since we work with exponential families only, the given log-likelihood is concave and

thereby has one global optimum that can be achieved by an approach from gradient
ascent family. A gradient step would be possible since we evaluate the log-likelihood
derivative:

𝜕ℓ(𝜃)
𝜕𝜃

= 𝜓(𝑥) − 𝜕 log𝑍(𝜃)
𝜕𝜃

= 𝜓(𝑥) − E𝜓(𝑥|𝜃),

where we use the exponential family property of the log partition function derivative.
We can notice that to make a gradient step, we have to perform an inference and

evaluate the expectation E𝜓(𝑥|𝜃), which is usually computational expensive and can
be done in several ways we discussed in the probabilistic inference section. There is
also a moment matching effect, that we can observe while converging to the optimum.
For the optimal parameter 𝜃 the expectation E𝜓(𝑥|𝜃) is going to match the empirical
expectation 𝜓(𝑥).

1.3.3 Missing Data Treatment
With the tools given by the probabilistic approach we can also tackle the missing

data case:

𝑝(𝑥, 𝑧|𝜃) = 1
𝑍(𝜃) exp(𝜃𝑇𝜓(𝑥, 𝑧)),

where we denote 𝑥 as observed variables and 𝑧 as unobserved or hidden. In the given
circumstances, we will fit the optimal parameter 𝜃 to the observed data 𝑥1, . . . , 𝑥𝑁 by
solving an optimization problem in the form:

max
𝜃∈Θ

ℓ(𝜃) = max
𝜃∈Θ

1
𝑁

𝑁∑︁
𝑛=1

log
∑︁
𝑧∈Z

𝑝(𝑥𝑖, 𝑧|𝜃) = max
𝜃∈Θ

1
𝑁

𝑁∑︁
𝑛=1

log
∑︁
𝑧∈Z

𝜃𝑇𝜓(𝑥𝑖, 𝑧) − log𝑍(𝜃).

We should notice, that the summation term (where we marginalize out the hidden

14

values 𝑧) is of similar complexity as the partition function 𝑍(𝜃) and thus provides
another challenge to this optimization problem.

1.3.4 Conditional Maximum Likelihood
In this section we discuss the maximum likelihood formulation for the conditional

random field model:
𝑝(𝑦|𝑥, 𝜃) = 1

𝑍(𝑥, 𝜃) exp(𝜃𝑇𝜓(𝑥, 𝑦)),

where 𝜓(𝑥, 𝑦) is a potential vector of feature vector 𝑥 and the label vector is 𝑦. This
is the model of our particular interest in this thesis and we are going to stick with it
in most of the times.

The new log-likelihood optimization problem can be written in the following form:

max
𝜃

1
𝑁

𝑁∑︁
𝑛=1

log 𝑝(𝑦𝑛|𝑥𝑛, 𝜃) − 𝜆||𝜃||22,

where the last term is a regularization term and can be seen as a log prior 𝑝(𝜃) on
the parameters 𝜃. In this common formulation the Gaussian prior was used, however
there are plenty of priors that can be incorporated, such as Laplacian, mixed priors or
even parameterized customized prior (see Chapter 4).

1.4 Partition Function Approximation
As we seen in the previous section, the partition function term restricts the

tractability of the parameter estimation via maximum likelihood. In this section
we review various partition function calculation techniques. When the challenge of
exact partition function computation becomes impossible, we resort to approximation
techniques. Some of the approximations are upper bounds.

1.4.1 L-Field bound
This approximation was designed by Djolonga and Krause [2014] directly for the

log-supermodular distributions:

𝑝(𝐴) = exp(−𝐹 (𝐴))
𝑍(−𝐹) ,

where 𝐹 (𝐴) is a submodular function. The approach is named L-field as there is a
natural relation to mean field method discussed earlier and it is based on the Lovász
extension (explains the L in the approach’s name).

The main idea is to benefit from the submodular function property, that it can be
bounded from the both sides by modular functions 𝑙, 𝑢 : 2𝑉 → R.

15

Theorem 1.2. If we consider bounds 𝑙(𝐴) and 𝑢(𝐴) of the submodular function 𝐹 (𝐴):
𝑙(𝐴) ≤ 𝐹 (𝐴) ≤ 𝑢(𝐴) holds for any 𝐴 ⊆ 𝑉 , then the following is correct:

log𝑍(−𝑢) ≤ log𝑍(−𝐹) ≤ log𝑍(−𝑙), (1.4.1)

where log𝑍(−𝐹) = log ∑︀
𝐴∈𝑉

exp(−𝐹 (𝐴)) is the log-partition function of the target

distribution, and a log-partition function of any modular function 𝑠(𝐴) = 𝑠(𝑥) = 𝑠𝑇𝑥
has the form :

log𝑍(𝑠) = log
∑︁

𝑥∈{0,1}|𝑉 |

exp(−𝑠𝑇𝑥) = log
∑︁

𝑥∈{0,1}|𝑉 |

|𝑉 |∏︁
𝑖=1

exp(−𝑠𝑖𝑥𝑖) =

= log
|𝑉 |∏︁
𝑖=1

∑︁
𝑥𝑖∈{0,1}

exp(−𝑠𝑖𝑥𝑖) =
|𝑉 |∑︁
𝑖=1

log(1 + 𝑒𝑠𝑖).

Equation (1.4.1) becomes obvious if we imagine the summation and log term
before the bound inequalities 𝑙(𝐴) ≤ 𝐹 (𝐴) ≤ 𝑢(𝐴). Via Theorem 1.2 we can bound
the partition function from the both sides using some decomposable distributions
based on modular functions. But there is no guarantee on the bounds tightness. Our
motivation here would be to find the tightest possible modular function, to make our
approximation the most accurate. Thus, we got a variational approach, that can be
used to approximate the partition function from above:

log𝑍(−𝐹) ≤ min
𝑙

log𝑍(−𝑙) = min
𝑙

|𝑉 |∑︁
𝑖=1

log(1 + 𝑒−𝑙𝑖) subject to 𝑙(𝐴) ≤ 𝐹 (𝐴).

Theorem 1.3. The optimization problem min
𝑙

|𝑉 |∑︀
𝑖=1

log(1 + 𝑒−𝑙𝑖) subject to 𝑙(𝐴) ≤ 𝐹 (𝐴)
is equivalent to the following one:

min
𝑙∈𝐵(𝐹)

|𝑉 |∑︁
𝑖=1

log(1 + 𝑒−𝑙𝑖),

where 𝐵(𝐹) is a base polytope of the submodular function 𝐹 (𝐴).

This optimization problem is an existed problem of convex function optimization
over the polytope, and can be solved via Frank-Wolfe algorithm (Lacoste-Julien et al.
[2013]). Finally, we can write down the L-Field upper bound of the partition function
in the following way

𝐴L-field = min
𝑙∈𝐵(𝐹)

|𝑉 |∑︁
𝑖=1

log(1 + 𝑒−𝑙𝑖) ≥ log𝑍(−𝐹).

16

1.4.2 Gumbel bound
In this section we work with a general Gibbs distribution supported on dis-

crete (not binary) set X = 𝑋1 × · · · ×𝑋𝑛 in the form:

𝑝(𝑥) = exp(𝑓(𝑥))
𝑍(𝑓) .

The Gumbel approximation assumes that MAP (maximum a posteriori) inference
problem is feasible, i.e., there is a solver for the following problem:

arg max
𝑥∈X

𝑝(𝑥) = arg max
𝑥∈X

𝑓(𝑥),

as the partition function is a constant and does not influence the solution. Thus, this
makes the MAP inference problem much easier than the partition function calculation.
While the partition function evaluation is #𝑃 -hard problem (Jerrum and Sinclair
[1993]), MAP is NP-hard in general, however it can be solved efficiently for many
practical cases, e.g., for log-supermodular models.

Let us introduce the notation of Gumbel distribution as the approach we are going
to present is based on it.

Definition 5. We will call a distribution a Gumbel distribution, if it has the
following cumulative function

𝐹 (𝑡) = 𝑒−𝑒−(𝑡+𝑐)
,

where 𝑐 ≈ 0.577 is the Euler constant. The Gumbel distribution has a zero mean and
a mode at the negative Euler constant. Its cumulative distribution and probability
density functions are presented in Figure 1-7.

4 0 4 8
0.0

0.5

1.0

(a) Gumbel distribution cdf.

-3 -c 1 5
0.0

0.1

0.2

0.3

(b) Gumbel distribution pdf.

Figure 1-7: Gumbel distribution cdf and pdf.

The idea of the approximation is to use Gumbel-distributed perturbations to
substitute the partition function calculation with a bunch of related MAP inference
problems (Hazan and Jaakkola [2012]).

17

Theorem 1.4. Let {𝛾(𝑥)}𝑥∈X be a collection of i.i.d. random variables from the
Gumbel distribution. Then the random variable max

𝑥∈X
{𝑓(𝑥) + 𝛾(𝑥)} belongs to the

shifted Gumbel distribution, i.e., represents as Gumbel variable plus a constant, and
the partition function can be represented as:

log𝑍 = E𝛾[max
𝑥∈X

{𝑓(𝑥) + 𝛾(𝑥)}].

Proof. By definition we know that

𝐹 (𝑡) = 𝑃 (𝛾(𝑦) ≤ 𝑡).

Thus, we have, by independence,∏︁
𝑥∈X

𝐹 (𝑡− 𝑓(𝑥)) = 𝑃 (max
𝑥∈X

{𝑓(𝑥) + 𝛾(𝑥)} ≤ 𝑡).

Since the shifted Gumbel cumulative distribution function is closed under multiplica-
tion, the following term is a cumulative distribution function as well:
∏︁
𝑥∈X

𝐹 (𝑡−𝑓(𝑥)) = exp
(︂

−
∑︁
𝑥∈X

exp(−(𝑡−𝑓(𝑥)+𝑐))
)︂

= exp(− exp(𝑡+𝑐)𝑍) = 𝐹 (𝑡−log𝑍).

Expected value of the random variable max
𝑥∈X

{𝑓(𝑥)+𝛾(𝑥)} consequently equals to log𝑍.
In this way

log𝑍 = E𝛾[max
𝑥∈X

{𝑓(𝑥) + 𝛾(𝑥)}].

However, this theorem just proposes another appearance of the partition function
term. This is still a #𝑃 hard problem, since we have exponential many Gumbel
perturbations {𝛾(𝑥)}𝑥∈X. The next step would be to propose an upper bound with
lower-dimensional perturbations.

Theorem 1.5. Using the setup from the Theorem 1.4, we can rewrite and bound the
partition function in the following way:

log𝑍 = E𝛾1 max
𝑥1

. . .E𝛾𝑛 max
𝑥𝑛

{𝑓(𝑥) +
𝑛∑︁

𝑖=1
𝛾𝑖(𝑥𝑖)} ≤ E𝛾 max

𝑥∈X
{𝑓(𝑥) +

𝑛∑︁
𝑖=1

𝛾𝑖(𝑥𝑖)}

See Hazan and Jaakkola [2012] for the detailed proof. The final upper bound and
approximation has the following form:

𝐴Gumbel = E𝛾 max
𝑥∈X

{𝑓(𝑥) +
𝑛∑︁

𝑖=1
𝛾𝑖(𝑥𝑖)}.

Thus, if we can perform MAP inference max𝑥∈X{𝑓(𝑥)}, then it is typically feasible
to calculate MAP for single node perturbations max𝑥∈X{𝑓(𝑥) +∑︀𝑛

𝑖=1 𝛾𝑖(𝑥𝑖)} as well,

18

and also we can evaluate its expected value with Monte Carlo techniques.
Other partition function approximations can be constructed as well. The Mean

Field approach gives a bound on the partition function and this bound can be used
inside a learning algorithm. “Loopy” belief propagation algorithm also proposes an
approximate treatment for the problem of inference and thus, provides a partition
function approximation as a subroutine via message-passing technique. Other varia-
tions of this idea are Fractional Belief Propagation (Wiegerinck and Heskes [2003]),
Tree-Reweighted Belief Propagation (Wainwright and Jordan [2008a]) and Generalized
Belief Propagation (Yedidia et al. [2005]).

19

20

Chapter 2

Parameter Learning for
Log-supermodular Distributions

Abstract
We consider log-supermodular models on binary variables, which are probabilistic

models with negative log-densities which are submodular. These models provide
probabilistic interpretations of common combinatorial optimization tasks such as
image segmentation. In this thesis, we focus primarily on parameter estimation in the
models from known upper-bounds on the intractable log-partition function. We show
that the bound based on separable optimization on the base polytope of the submodular
function is always inferior to a bound based on “perturb-and-MAP” ideas. Then, to
learn parameters, given that our approximation of the log-partition function is an
expectation (over our own randomization), we use a stochastic subgradient technique
to maximize a lower-bound on the log-likelihood. This can also be extended to
conditional maximum likelihood. We illustrate our new results in a set of experiments
in binary image denoising, where we highlight the flexibility of a probabilistic model
to learn with missing data.

This chapter is based on the work “Parameter Learning for Log-supermodular
Distributions”, T. Shpakova, F. Bach, published in Advances in Neural Information
Processing Systems (NIPS), 2016.

2.1 Introduction
Submodular functions provide efficient and flexible tools for learning on discrete

data. Several common combinatorial optimization tasks, such as clustering, image
segmentation, or document summarization, can be achieved by the minimization or the
maximization of a submodular function (Bach [2013], Golovin and Krause [2011], Lin
and Bilmes [2011]). The key benefit of submodularity is the ability to model notions
of diminishing returns, and the availability of exact minimization algorithms and
approximate maximization algorithms with precise approximation guarantees (Krause

21

and Golovin [2014]).
In practice, it is not always straightforward to define an appropriate submodular

function for a problem at hand. Given fully-labeled data, e.g., images and their
foreground/background segmentations in image segmentation, structured-output pre-
diction methods such as the structured-SVM may be used (Szummer et al. [2008]).
However, it is common (a) to have missing data, and (b) to embed submodular
function minimization within a larger model. These are two situations well tackled by
probabilistic modelling.

Log-supermodular models, with negative log-densities equal to a submodular
function, are a first important step toward probabilistic modelling on discrete data
with submodular functions (Djolonga and Krause [2014]). However, it is well known
that the log-partition function is intractable in such models. Several bounds have been
proposed, that are accompanied with variational approximate inference (Djolonga
and Krause [2015]). These bounds are based on the submodularity of the negative
log-densities. However, parameter learning (typically by maximum likelihood), which
is a key feature of probabilistic modeling, has not been tackled yet.

2.2 Contributions
In this chapter we highlight the following contributions:

– In Section 2.4, we review existing variational bounds for the log-partition function
and show that the bound of Hazan and Jaakkola [2012], based on “perturb-and-
MAP” ideas, formally dominates the bounds proposed by Djolonga and Krause
[2014, 2015].

– In Section 2.5.1, we show that for parameter learning via maximum likelihood the
existing bound of Djolonga and Krause [2014, 2015] typically leads to a degenerate
solution while the one based on “perturb-and-MAP” ideas and logistic samples
of Hazan and Jaakkola [2012] does not.

– In Section 2.5.2, given that the bound based on “perturb-and-MAP” ideas is
an expectation (over our own randomization), we propose to use a stochastic
subgradient technique to maximize the lower-bound on the log-likelihood, which
can also be extended to conditional maximum likelihood.

– In Section 2.6, we illustrate our new results on a set of experiments in binary image
denoising, where we highlight the flexibility of a probabilistic model for learning
with missing data.

2.3 Submodular functions and log-supermodular
models

In this section, we review the relevant theory of submodular functions and recall
typical examples of log-supermodular distributions.

22

2.3.1 Submodular functions
We consider submodular functions on the vertices of the hypercube {0, 1}𝐷. This

hypercube representation is equivalent to the power set of {1, . . . , 𝐷}. Indeed, we can
go from a vertex of the hypercube to a set by looking at the indices of the components
equal to one and from set to vertex by taking the indicator vector of the set.

For any two vertices of the hypercube, 𝑥, 𝑦 ∈ {0, 1}𝐷, a function 𝑓 : {0, 1}𝐷 → R
is submodular if

𝑓(𝑥) + 𝑓(𝑦) > 𝑓(min{𝑥, 𝑦}) + 𝑓(max{𝑥, 𝑦}),

where the min and max operations are taken component-wise and correspond to
the intersection and union of the associated sets. Equivalently, the function 𝑥 ↦→
𝑓(𝑥+ 𝑒𝑖) − 𝑓(𝑥), where 𝑒𝑖 ∈ R𝐷 is the 𝑖-th canonical basis vector, is non-increasing.
Hence, the notion of diminishing returns is often associated with submodular func-
tions. Most widely used submodular functions are cuts, concave functions of subset
cardinality, mutual information, set covers, and certain functions of eigenvalues of sub-
matrices (Bach [2013], Fujishige [2005]). Supermodular functions are simply negatives
of submodular functions.

In this chapter, we are going to use a few properties of such submodular functions
(see Bach [2013], Fujishige [2005] and references therein). Any submodular function 𝑓
can be extended from {0, 1}𝐷 to a convex function on R𝐷, which is called the Lovász
extension. This extension has the same value on {0, 1}𝐷, hence we use the same
notation 𝑓 . Moreover, this function is convex and piecewise linear, which implies the
existence of a polytope 𝐵(𝑓) ⊂ R𝐷, called the base polytope, such that for all 𝑥 ∈ R𝐷,
𝑓(𝑥) = max

𝑠∈𝐵(𝑓)
𝑥⊤𝑠, that is, 𝑓 is the support function of 𝐵(𝑓).

The Lovász extension 𝑓 and the base polytope 𝐵(𝑓) have explicit expressions that
are presented in the Chapter 1. We will only use the fact that 𝑓 can be efficiently
minimized on {0, 1}𝐷, by a variety of generic algorithms, or by more efficient dedicated
ones for subclasses such as graph-cuts.

2.3.2 Log-supermodular distributions
Log-supermodular models are introduced in Djolonga and Krause [2014] to model

probability distributions on a hypercube, 𝑥 ∈ {0, 1}𝐷, and are defined as

𝑝(𝑥) = 1
𝑍(𝑓) exp(−𝑓(𝑥)),

where 𝑓 : {0, 1}𝐷 → R is a submodular function such that 𝑓(0) = 0 and the partition
function is 𝑍(𝑓) = ∑︀

𝑥∈{0,1}𝐷

exp(−𝑓(𝑥)). It is more convenient to deal with the convex

log-partition function

𝐴(𝑓) = log𝑍(𝑓) = log
∑︁

𝑥∈{0,1}𝐷

exp(−𝑓(𝑥)).

23

In general, the calculation of the partition function 𝑍(𝑓) or the log-partition function
𝐴(𝑓) is intractable, as it includes simple binary Markov random fields—the exact
calculation is known to be #𝑃 -hard (Jerrum and Sinclair [1993]). In Section 2.4, we
review upper-bounds for the log-partition function.

2.3.3 Examples
Essentially, all submodular functions used in the minimization context can be

used as negative log-densities (Djolonga and Krause [2014, 2015]). In computer
vision, the most common examples are graph-cuts, which are essentially binary
Markov random fields with attractive potentials, but higher-order potentials have been
considered as well (Kohli et al. [2009]). In our experiments, we use graph-cuts, where
submodular function minimization may be performed with max-flow techniques and
is thus efficient (Boykov et al. [2001]). Note that there are extensions of submodular
functions to continuous domains that could be considered as well (Bach [2016]).

2.4 Upper-bounds on the log-partition function
In this section, we review the main existing upper-bounds on the log-partition

function for log-supermodular densities. These upper-bounds use several properties
of submodular functions, in particular, the Lovász extension and the base polytope.
Note that lower bounds based on submodular maximization aspects and superdifferen-
tials (Djolonga and Krause [2014]) can be used to highlight the tightness of various
bounds, which we present in Figure 2-1.

2.4.1 Base polytope relaxation with L-Field (Djolonga and
Krause [2014])

This method exploits the fact that any submodular function 𝑓(𝑥) can be lower
bounded by a modular function 𝑠(𝑥), i.e., a linear function of 𝑥 ∈ {0, 1}𝐷 in the
hypercube representation. The submodular function and its lower bound are related
by 𝑓(𝑥) = max

𝑠∈𝐵(𝑓)
𝑠⊤𝑥, leading to:

𝐴(𝑓) = log
∑︁

𝑥∈{0,1}𝐷

exp (−𝑓(𝑥)) = log
∑︁

𝑥∈{0,1}𝐷

min
𝑠∈𝐵(𝑓)

exp (−𝑠⊤𝑥),

which, by swapping the sum and min, is less than

min
𝑠∈𝐵(𝑓)

log
∑︁

𝑥∈{0,1}𝐷

exp (−𝑠⊤𝑥) = min
𝑠∈𝐵(𝑓)

𝐷∑︁
𝑑=1

log (1 + 𝑒−𝑠𝑑) def= 𝐴L-field(𝑓). (2.4.1)

Since the polytope 𝐵(𝑓) is tractable (through its membership oracle or by maximizing
linear functions efficiently), the bound 𝐴L-field(𝑓) is tractable, i.e., computable in
polynomial time. Moreover, it has a nice interpretation through convex duality as the

24

logistic function log(1 + 𝑒−𝑠𝑑) may be represented as max
𝜇𝑑∈[0,1]

−𝜇𝑑𝑠𝑑 − 𝜇𝑑 log 𝜇𝑑 − (1 −

𝜇𝑑) log(1 − 𝜇𝑑), leading to:

𝐴L-field(𝑓) = min
𝑠∈𝐵(𝑓)

max
𝜇∈[0,1]𝐷

−𝜇⊤𝑠+𝐻(𝜇) = max
𝜇∈[0,1]𝐷

𝐻(𝜇) − 𝑓(𝜇),

where 𝐻(𝜇) = −∑︀𝐷
𝑑=1

{︁
𝜇𝑑 log 𝜇𝑑 + (1 − 𝜇𝑑) log(1 − 𝜇𝑑)

}︁
. This shows in particular the

convexity of 𝑓 ↦→ 𝐴L-field(𝑓). Finally, Djolonga and Krause [2015] shows the remarkable
result that the minimizer 𝑠 ∈ 𝐵(𝑓) may be obtained by minimizing a simpler function
on 𝐵(𝑓), namely the squared Euclidean norm, thus leading to algorithms such as the
minimum-norm-point algorithm (Fujishige [2005]).

2.4.2 “Pertub-and-MAP” with logistic distributions
Estimating the log-partition function can be done through optimization using

“pertub-and-MAP” ideas. The main idea is to perturb the log-density, find the
maximum a-posteriori configuration (i.e., perform optimization), and then average
over several random perturbations (Hazan and Jaakkola [2012], Papandreou and Yuille
[2011], Tarlow et al. [2012]).

The Gumbel distribution on R, whose cumulative distribution function is 𝐹 (𝑧) =
exp(− exp(−(𝑧 + 𝑐))), where 𝑐 is the Euler constant, is particularly useful. Indeed,
if {𝑔(𝑦)}𝑦∈{0,1}𝐷 is a collection of independent random variables 𝑔(𝑦) indexed by
𝑦 ∈ {0, 1}𝐷, each following the Gumbel distribution, then the random variable
max𝑦∈{0,1}𝐷 𝑔(𝑦) − 𝑓(𝑦) is such that we have

log𝑍(𝑓) = E𝑔

[︁
max

𝑦∈{0,1}𝐷
{𝑔(𝑦) − 𝑓(𝑦)}

]︁
,

from the [Hazan and Jaakkola, 2012, Lemma 1]. The main problem is that we need 2𝐷

such variables, and a key contribution of Hazan and Jaakkola [2012] is to show that
if we consider a factored collection {𝑔𝑑(𝑦𝑑)}𝑦𝑑∈{0,1},𝑑=1,...,𝐷 of i.i.d. Gumbel variables,
then we get an upper-bound on the log partition-function, that is,

log𝑍(𝑓) ≤ E𝑔 max
𝑦∈{0,1}𝐷

{
𝐷∑︁

𝑑=1
𝑔𝑑(𝑦𝑑) − 𝑓(𝑦)}.

Writing 𝑔𝑑(𝑦𝑑) = [𝑔𝑑(1) − 𝑔𝑑(0)]𝑦𝑑 + 𝑔𝑑(0) and using the fact that (a) 𝑔𝑑(0) has zero
expectation and (b) the difference between two independent Gumbel distributions has a
logistic distribution (with cumulative distribution function 𝑧 ↦→ (1+𝑒−𝑧)−1) (Nadarajah
and Kotz [2005]), we get the following upper-bound:

𝐴Logistic(𝑓) = E𝑧1,...,𝑧𝐷∼logistic
[︁

max
𝑦∈{0,1}𝐷

{𝑧⊤𝑦 − 𝑓(𝑦)}
]︁
, (2.4.2)

where the random vector 𝑧 ∈ R𝐷 consists of independent elements taken from the
logistic distribution. This is always an upper-bound on 𝐴(𝑓) and it uses only the fact

25

that submodular functions are efficient to optimize. It is convex in 𝑓 as an expectation
of a maximum of affine functions of 𝑓 .

2.4.3 Comparison of bounds
In this section, we show that 𝐴L-field(𝑓) is always dominated by 𝐴Logistic(𝑓). This

is complemented by another result within the maximum likelihood framework in
Section 2.5.

Proposition 2.1. For any submodular function 𝑓 : {0, 1}𝐷 → R, we have:

𝐴(𝑓) 6 𝐴Logistic(𝑓) 6 𝐴L-field(𝑓). (2.4.3)

Proof. The first inequality was shown by Hazan and Jaakkola [2012]. For the second
inequality, we have:

𝐴Logistic(𝑓) = E𝑧

[︁
max

𝑦∈{0,1}𝐷
𝑧⊤𝑦 − 𝑓(𝑦)

]︁
= E𝑧

[︁
max

𝑦∈{0,1}𝐷
𝑧⊤𝑦 − max

𝑠∈𝐵(𝑓)
𝑠⊤𝑦

]︁
from properties of the base polytope 𝐵(𝑓),

= E𝑧

[︁
max

𝑦∈{0,1}𝐷
min

𝑠∈𝐵(𝑓)
𝑧⊤𝑦 − 𝑠⊤𝑦

]︁
,

= E𝑧

[︁
min

𝑠∈𝐵(𝑓)
max

𝑦∈{0,1}𝐷
𝑧⊤𝑦 − 𝑠⊤𝑦

]︁
by convex duality,

6 min
𝑠∈𝐵(𝑓)

E𝑧

[︁
max

𝑦∈{0,1}𝐷
(𝑧 − 𝑠)⊤𝑦

]︁
by swapping expectation and minimization,

= min
𝑠∈𝐵(𝑓)

E𝑧

[︁ 𝐷∑︁
𝑑=1

(𝑧𝑑 − 𝑠𝑑)+
]︁

by explicit maximization,

= min
𝑠∈𝐵(𝑓)

[︁ 𝐷∑︁
𝑑=1

E𝑧𝑑
(𝑧𝑑 − 𝑠𝑑)+

]︁
by using linearity of expectation,

= min
𝑠∈𝐵(𝑓)

[︁ 𝐷∑︁
𝑑=1

∫︁ +∞

−∞
(𝑧𝑑 − 𝑠𝑑)+𝑃 (𝑧𝑑)𝑑𝑧𝑑

]︁
by definition of expectation,

= min
𝑠∈𝐵(𝑓)

[︁ 𝐷∑︁
𝑑=1

∫︁ +∞

𝑠𝑑

(𝑧𝑑 − 𝑠𝑑) 𝑒−𝑧𝑑

(1 + 𝑒−𝑧𝑑)2𝑑𝑧𝑑

]︁
by substituting the density function,

= min
𝑠∈𝐵(𝑓)

𝐷∑︁
𝑑=1

log(1 + 𝑒−𝑠𝑑), which leads to the desired result.

In the inequality above, since the logistic distribution has full support, there
cannot be equality. However, if the base polytope is such that, with high probability
∀𝑑, |𝑠𝑑| ≥ |𝑧𝑑|, then the two bounds are close. Since the logistic distribution is
concentrated around zero, we have equality when |𝑠𝑑| is large for all 𝑑 and 𝑠 ∈ 𝐵(𝑓).

Running-time complexity of 𝐴L-field and 𝐴logistic. The logistic bound 𝐴logistic
can be computed if there is efficient MAP-solver for submodular functions (plus

26

a modular term). In this case, the divide-and-conquer algorithm can be applied
for L-Field (Djolonga and Krause [2014]). Thus, the complexity is dedicated to
the minimization of 𝑂(|𝑉 |) problems. Meanwhile, for the method based on logistic
samples, it is necessary to solve 𝑀 optimization problems. In our empirical bound
comparison (next paragraph), the running time was the same for both methods. Note
however that for parameter learning, we need a single SFM problem per gradient
iteration (and not 𝑀).

Empirical comparison of 𝐴L-field and 𝐴logistic. We compare the upper-bounds on
the log-partition function 𝐴L-field and 𝐴logistic, with the setup used by Djolonga and
Krause [2014]. We thus consider data from a Gaussian mixture model with 2 clusters
in R2. The centers are sampled from N([3, 3], 𝐼) and N([−3,−3], 𝐼), respectively. Then
we sampled 𝑛 = 50 points for each cluster. Further, these 2𝑛 points are used as nodes
in a complete weighted graph, where the weight between points 𝑥 and 𝑦 is equal to
𝑒−𝑐||𝑥−𝑦||.

We consider the graph cut function associated to this weighted graph, which defines
a log-supermodular distribution. We then consider conditional distributions, one for
each 𝑘 = 1, . . . , 𝑛, on the events that at least 𝑘 points from the first cluster lie on the
one side of the cut and at least 𝑘 points from the second cluster lie on the other side
of the cut. For each conditional distribution, we evaluate and compare the two upper
bounds. We also add the tree-reweighted belief propagation upper bound (Wainwright
and Jordan [2008b]) and the superdifferential-based lower bound (Djolonga and Krause
[2014]).

In Figure 2-1, we show various bounds on 𝐴(𝑓) as functions of the number on
conditioned pairs. The logistic upper bound is obtained using 100 logistic samples: the
logistic upper-bound 𝐴logistic is close to the superdifferential lower bound from Djolonga
and Krause [2014] and is indeed significantly lower than the bound 𝐴L-field. However,
the tree-reweighted belief propagation bound behaves a bit better in the second case,
but its calculation takes more time, and it cannot be applied for general submodular
functions.

2.4.4 From bounds to approximate inference
Since linear functions are submodular functions, given any convex upper-bound

on the log-partition function, we may derive an approximate marginal probability
for each 𝑥𝑑 ∈ {0, 1}. Indeed, following Hazan and Jaakkola [2012], we consider an
exponential family model 𝑝(𝑥|𝑡) = exp(−𝑓(𝑥) + 𝑡⊤𝑥 − 𝐴(𝑓 − 𝑡)), where 𝑓 − 𝑡 is
the function 𝑥 ↦→ 𝑓(𝑥) − 𝑡⊤𝑥. When 𝑓 is assumed to be fixed, this can be seen
as an exponential family with the base measure exp(−𝑓(𝑥)), sufficient statistics 𝑥,
and 𝐴(𝑓 − 𝑡) is the log-partition function. It is known that the expectation of the
sufficient statistics under the exponential family model E𝑝(𝑥|𝑡)𝑥 is the gradient of the
log-partition function (Wainwright and Jordan [2008b]). Hence, any approximation of
this log-partition gives an approximation of this expectation, which in our situation is
the vector of marginal probabilities that an element is equal to 1.

27

0 20 40 60
0

50

100

150

200

250

Number of Conditioned Pairs

Lo
g−

Pa
rti

tio
n

Fu
nc

tio
n

Superdifferential lower bound
L−field upper bound
Tree−reweighted BP
Logistic upper bound

(a) Mean bounds with confidence intervals,
𝑐 = 1.

0 10 20 30 40 50

0

20

40

60

80

100

Number of Conditioned Pairs

Lo
g−

Pa
rti

tio
n

Fu
nc

tio
n

Superdifferential lower bound
L−field upper bound
Tree−reweighted BP
Logistic upper bound

(b) Mean bounds with confidence intervals,
𝑐 = 3.

Figure 2-1: Comparison of log-partition function bounds for different values of 𝑐. See
text for details.

For the L-field bound, at 𝑡 = 0, we have 𝜕𝑡𝑑
𝐴L-field(𝑓 − 𝑡) = 𝜎(𝑠*

𝑑), where 𝑠* is the
minimizer of ∑︀𝐷

𝑑=1 log(1 + 𝑒−𝑠𝑑), thus recovering the interpretation of Djolonga and
Krause [2015] from another point of view.

For the logistic bound, this is the inference mechanism from Hazan and Jaakkola
[2012], with 𝜕𝑡𝑑

𝐴logistic(𝑓 − 𝑡) = E𝑧𝑦
(𝑧), where 𝑦(𝑧) is the maximizer of

max𝑦∈{0,1}𝐷 𝑧⊤𝑦 − 𝑓(𝑦). In practice, in order to perform approximate inference, we
only sample 𝑀 logistic variables. We could do the same for parameter learning, but a
much more efficient alternative, based on mixing sampling and convex optimization,
is presented in the next section.

2.5 Parameter learning through maximum likeli-
hood

An advantage of log-supermodular probabilistic models is the opportunity to learn
the model parameters from data using the maximum-likelihood principle. In this
section, we consider that we are given 𝑁 observations 𝑥1, . . . , 𝑥𝑁 ∈ {0, 1}𝐷, e.g.,
binary images such as shown in Figure 2-2.

We consider a submodular function 𝑓(𝑥) represented as

𝑓(𝑥) =
𝐾∑︁

𝑘=1
𝛼𝑘𝑓𝑘(𝑥) − 𝑡⊤𝑥.

The modular term 𝑡⊤𝑥 is explicitly taken into account with 𝑡 ∈ R𝐷, and 𝐾 base
submodular functions are assumed to be given with 𝛼 ∈ R𝐾

+ so that the function 𝑓

28

remains submodular. Assuming the data 𝑥1, . . . , 𝑥𝑁 are independent and identically
(i.i.d.) distributed, then maximum likelihood is equivalent to minimizing:

min
𝛼∈R𝐾

+ , 𝑡∈R𝐷
− 1
𝑁

𝑁∑︁
𝑛=1

log 𝑝(𝑥𝑛|𝛼, 𝑡) = min
𝛼∈R𝐾

+ , 𝑡∈R𝐷

1
𝑁

𝑁∑︁
𝑛=1

{︁ 𝐾∑︁
𝑘=1

𝛼𝑘𝑓𝑘(𝑥𝑛) − 𝑡⊤𝑥𝑛 + 𝐴(𝑓)
}︁
,

which takes the particularly simple form

min
𝛼∈R𝐾

+ , 𝑡∈R𝐷

𝐾∑︁
𝑘=1

𝛼𝑘

(︂ 1
𝑁

𝑁∑︁
𝑛=1

𝑓𝑘(𝑥𝑛)
)︂

− 𝑡⊤
(︂ 1
𝑁

𝑁∑︁
𝑛=1

𝑥𝑛

)︂
+ 𝐴(𝛼, 𝑡), (2.5.1)

where we use the notation 𝐴(𝛼, 𝑡) = 𝐴(𝑓). We now consider replacing the intractable
log-partition function by its approximations defined in Section 2.4.

2.5.1 Learning with the L-field approximation

In this section, we show that if we replace 𝐴(𝑓) by 𝐴L-field(𝑓), we obtain a degenerate
solution. Indeed, we have

𝐴L-field(𝛼, 𝑡) = min
𝑠∈𝐵(𝑓)

𝐷∑︁
𝑑=1

log (1 + 𝑒−𝑠𝑑) = min
𝑠∈𝐵(

∑︀𝐾

𝑘=1 𝛼𝐾𝑓𝐾)

𝐷∑︁
𝑑=1

log (1 + 𝑒−𝑠𝑑+𝑡𝑑).

This implies that Eq. (2.5.1) becomes

min
𝛼∈R𝐾

+ , 𝑡∈R𝐷
min

𝑠∈𝐵(
∑︀𝐾

𝑘=1 𝛼𝐾𝑓𝐾)

𝐾∑︁
𝑘=1

𝛼𝑘

(︂ 1
𝑁

𝑁∑︁
𝑛=1

𝑓𝑘(𝑥𝑛)
)︂

−𝑡⊤
(︂ 1
𝑁

𝑁∑︁
𝑛=1

𝑥𝑛

)︂
+

𝐷∑︁
𝑑=1

log (1 + 𝑒−𝑠𝑑+𝑡𝑑).

The minimum with respect to 𝑡𝑑 may be performed in closed form with 𝑡𝑑 − 𝑠𝑑 =
log ⟨𝑥⟩𝑑

1−⟨𝑥⟩𝑑
, where ⟨𝑥⟩ = 1

𝑁

∑︀𝑁
𝑛=1 𝑥𝑛. Putting this back into the equation above, we get

the equivalent problem:

min
𝛼∈R𝐾

+

min
𝑠∈𝐵(

∑︀𝐾

𝑘=1 𝛼𝐾𝑓𝐾)

𝐾∑︁
𝑘=1

𝛼𝑘

(︂ 1
𝑁

𝑁∑︁
𝑛=1

𝑓𝑘(𝑥𝑛)
)︂

− 𝑠⊤
(︂ 1
𝑁

𝑁∑︁
𝑛=1

𝑥𝑛

)︂
+ const ,

which is equivalent to, using the representation of 𝑓 as the support function of
𝐵(𝑓):

min
𝛼∈R𝐾

+

𝐾∑︁
𝑘=1

𝛼𝑘

[︁ 1
𝑁

𝑁∑︁
𝑛=1

𝑓𝑘(𝑥𝑛) − 𝑓𝑘

(︁ 1
𝑁

𝑁∑︁
𝑛=1

𝑥𝑛

)︁]︁
.

Since 𝑓𝑘 is convex, by Jensen’s inequality, the linear term in 𝛼𝑘 is non-negative; thus
maximum likelihood through L-field will lead to a degenerate solution where all 𝛼’s
are equal to zero.

29

2.5.2 Learning with the logistic approximation with stochas-
tic gradients

In this section we consider the problem (2.5.1) and replace 𝐴(𝑓) by 𝐴Logistic(𝑓):

min
𝛼∈R𝐾

+ , 𝑡∈R𝐷

𝐾∑︁
𝑘=1

𝛼𝑘⟨𝑓𝑘(𝑥)⟩emp. − 𝑡⊤⟨𝑥⟩emp.+

+ E𝑧∼logistic
[︁

max
𝑦∈{0,1}𝐷

𝑧⊤𝑦 + 𝑡⊤𝑦 −
𝐾∑︁

𝑘=1
𝛼𝑘𝑓(𝑦)

]︁
,

(2.5.2)

where ⟨𝑀(𝑥)⟩emp. denotes the empirical average of 𝑀(𝑥) (over the data). Denoting
by 𝑦*(𝑧, 𝑡, 𝛼) ∈ {0, 1}𝐷 the maximizers of 𝑧⊤𝑦 + 𝑡⊤𝑦 − ∑︀𝐾

𝑘=1 𝛼𝑘𝑓(𝑦), the objective
function may be written:

𝐾∑︁
𝑘=1

𝛼𝑘

[︁
⟨𝑓𝑘(𝑥)⟩emp. − ⟨𝑓𝑘(𝑦*(𝑧, 𝑡, 𝛼))⟩logistic

]︁
−

−𝑡⊤
[︁
⟨𝑥⟩emp. − ⟨𝑦*(𝑧, 𝑡, 𝛼)⟩logistic] + ⟨𝑧⊤𝑦*(𝑧, 𝑡, 𝛼)⟩logistic.

This implies that at optimum, for 𝛼𝑘 > 0, then ⟨𝑓𝑘(𝑥)⟩emp. = ⟨𝑓𝑘(𝑦*(𝑧, 𝑡, 𝛼))⟩logistic,
while, ⟨𝑥⟩emp. = ⟨𝑦*(𝑧, 𝑡, 𝛼)⟩logistic, the expected values of the sufficient statistics match
between the data and the optimizers used for the logistic approximation (Hazan and
Jaakkola [2012]).

In order to minimize the expectation in Eq. (2.5.2), we propose to use the projected
stochastic gradient method, not on the data as usually done, but on our own internal
randomization. The algorithm then becomes, once we add a weighted ℓ2-regularization
Ω(𝑡, 𝛼):

— Input: functions 𝑓𝑘, 𝑘 = 1, . . . , 𝐾, and expected sufficient statistics ⟨𝑓𝑘(𝑥)⟩emp. ∈
R and ⟨𝑥⟩emp. ∈ [0, 1]𝐷, regularizer Ω(𝑡, 𝛼).

— Initialization: 𝛼 = 0, 𝑡 = 0
— Iterations: for ℎ from 1 to 𝐻

— Sample 𝑧 ∈ R𝐷 as independent logistics
— Compute 𝑦* = 𝑦*(𝑧, 𝑡, 𝛼) ∈ arg max

𝑦∈{0,1}𝐷
𝑧⊤𝑦 + 𝑡⊤𝑦 −∑︀𝐾

𝑘=1 𝛼𝑘𝑓(𝑦)

— Replace 𝑡 by 𝑡− 𝐶√
ℎ

[︁
𝑦* − ⟨𝑥⟩emp. + 𝜕𝑡Ω(𝑡, 𝛼)

]︁
— Replace 𝛼𝑘 by

(︁
𝛼𝑘 − 𝐶√

ℎ

[︁
⟨𝑓𝑘(𝑥)⟩emp. − 𝑓𝑘(𝑦*) + 𝜕𝛼𝑘

Ω(𝑡, 𝛼)
]︁)︁

+
.

— Output: (𝛼, 𝑡).

Since our cost function is convex and Lipschitz-continuous, the averaged iterates
are converging to the global optimum (Nemirovski et al. [2009]) at rate 1/

√
𝐻 (for

function values).

30

2.5.3 Extension to conditional maximum likelihood
In experiments in Section 2.6, we consider a joint model over two binary vectors

𝑥, 𝑧 ∈ R𝐷, as follows

𝑝(𝑥, 𝑧|𝛼, 𝑡, 𝜋) = 𝑝(𝑥|𝛼, 𝑡)𝑝(𝑧|𝑥, 𝜋) = exp(−𝑓(𝑥) − 𝐴(𝑓))
𝐷∏︁

𝑑=1
𝜋

𝛿(𝑧𝑑 ̸=𝑥𝑑)
𝑑 (1 − 𝜋𝑑)𝛿(𝑧𝑑=𝑥𝑑),

(2.5.3)
which corresponds to sampling 𝑥 from a log-supermodular model and considering 𝑧
that switches the values of 𝑥 with probability 𝜋𝑑 for each 𝑑, that is, a noisy observation
of 𝑥. We have:

log 𝑝(𝑥, 𝑧|𝛼, 𝑡, 𝜋) = −𝑓(𝑥) − 𝐴(𝑓) +
𝐷∑︁

𝑑=1

{︁
− log(1 + 𝑒𝑢𝑑) + 𝑥𝑑𝑢𝑑 + 𝑧𝑑𝑢𝑑 − 2𝑥𝑑𝑧𝑑𝑢𝑑

}︁
,

with 𝑢𝑑 = log 𝜋𝑑

1−𝜋𝑑
which is equivalent to 𝜋𝑑 = (1 + 𝑒−𝑢𝑑)−1.

Using Bayes rule, we have

𝑝(𝑥|𝑧, 𝛼, 𝑡, 𝜋) ∝ exp(−𝑓(𝑥) − 𝐴(𝑓) + 𝑥⊤𝑢− 2𝑥⊤(𝑢 ∘ 𝑧)),

which leads to the log-supermodular model

𝑝(𝑥|𝑧, 𝛼, 𝑡, 𝜋) = exp(−𝑓(𝑥) + 𝑥⊤(𝑢− 2𝑢 ∘ 𝑧) − 𝐴(𝑓 − 𝑢+ 2𝑢 ∘ 𝑧)).

Thus, if we observe both 𝑧 and 𝑥, we can consider a conditional maximization of the
log-likelihood (still a convex optimization problem), which we do in our experiments
for supervised image denoising, where we assume we know both noisy and original
images at training time. Stochastic gradient on the logistic samples can then be
used. Note that our conditional ML estimation can be seen as a form of approximate
conditional random fields (Lafferty et al. [2001]).

While supervised learning can be achieved by other techniques such as structured-
output-SVMs (Szummer et al. [2008], Taskar et al. [2003], Tsochantaridis et al. [2005]),
our approach also applies when we do not observe the original image, which we now
consider.

2.5.4 Missing data through maximum likelihood
In the model in Eq. (2.5.3), we now assume we only observed the noisy output

𝑧, and we perform parameter learning for 𝛼, 𝑡, 𝜋. This is a latent variable model for
which maximum likelihood can be readily applied. We have:

log 𝑝(𝑧|𝛼, 𝑡, 𝜋) = log
∑︁

𝑥∈{0,1}
𝑝(𝑧, 𝑥|𝛼, 𝑡, 𝜋)

= log
∑︁

𝑥∈{0,1}𝐷

exp(−𝑓(𝑥) − 𝐴(𝑓))
𝐷∏︁

𝑑=1
𝜋

𝛿(𝑧𝑑 ̸=𝑥𝑑)
𝑑 (1 − 𝜋𝑑)𝛿(𝑧𝑑=𝑥𝑑)

31

(a) original image (b) noisy image (c) denoised image

Figure 2-2: Denoising of a horse image from the Weizmann horse database (Borenstein
et al. [2004]).

= 𝐴(𝑓 − 𝑢+ 2𝑢 ∘ 𝑧) − 𝐴(𝑓) + 𝑧⊤𝑢−
𝐷∑︁

𝑑=1
log(1 + 𝑒𝑢𝑑).

In practice, we will assume that the noise probability 𝜋 (and hence 𝑢) is uniform across
all elements. While we could use majorization-minization approaches such as the
expectation-minimization algorithm (EM), we consider instead stochastic subgradient
descent to learn the model parameters 𝛼, 𝑡 and 𝑢 (now a non-convex optimization
problem, for which we still observed good convergence).

2.6 Experiments
The aim of our experiments is to demonstrate the ability of our approach to remove

noise in binary images, following the experimental set-up of Hazan and Jaakkola [2012].
We consider the training sample of 𝑁𝑡𝑟𝑎𝑖𝑛 = 100 images of size 𝐷 = 50 × 50, and
the test sample of 𝑁𝑡𝑒𝑠𝑡 = 100 binary images, containing a horse silhouette from the
Weizmann horse database (Borenstein et al. [2004]). At first we add some noise by
flipping pixels values independently with probability 𝜋. In Figure 2-2, we provide an
example from the test sample: the original, the noisy and the denoised image (by our
algorithm).

We consider the model from Section 2.5.3, with the two functions 𝑓1(𝑥), 𝑓2(𝑥) which
are horizontal and vertical cut functions with binary weights respectively, together with
a modular term of dimension 𝐷. To perform minimization we use graph-cuts (Boykov
et al. [2001]) as we deal with positive or attractive potentials.

Supervised image denoising. We assume that we observe 𝑁 = 100 pairs (𝑥𝑖, 𝑧𝑖)
of original-noisy images, 𝑖 = 1, . . . , 𝑁 . We perform parameter inference by maximum
likelihood using stochastic subgradient descent (over the logistic samples), with
regularization by the squared ℓ2-norm, one parameter for 𝑡, one for 𝛼, both learned
by cross-validation. Given our estimates, we may denoise a new image by computing
the “max-marginal”, e.g., the maximum a posteriori max𝑥 𝑝(𝑥|𝑧, 𝛼, 𝑡) through a single
graph-cut, or computing “mean-marginals” with 100 logistic samples. To calculate
the error we use the normalized Hamming distance and 100 test images.

32

noise 𝜋 max-marg. std mean-marginals std SVM-Struct std
1% 0.4% <0.1% 0.4% <0.1% 0.6% <0.1%
5% 1.1% <0.1% 1.1% <0.1% 1.5% <0.1%
10% 2.1% <0.1% 2.0% <0.1% 2.8% 0.3%
20% 4.2% <0.1% 4.1% <0.1% 6.0% 0.6%

Table 2.1: Supervised denoising results.

Results are presented in Table 2.1, where we compare the two types of decoding,
as well as a structured output SVM (SVM-Struct Tsochantaridis et al. [2005]) applied
to the same problem. Results are reported in proportion of correct pixels. We see that
the probabilistic models here slightly outperform the max-margin formulation 1 and
that using mean-marginals (which is optimal given our loss measure) lead to slightly
better performance.

𝜋 max-marg. std mean-marg. std
1% 0.5% <0.1% 0.5% <0.1%
5% 0.9% 0.1% 1.0% 0.1%
10% 1.9% 0.4% 2.1% 0.4%
20% 5.3% 2.0% 6.0% 2.0%

Table 2.2: Unsupervised denoising results. Level of noise 𝜋 is fixed.

𝜋 max-marg. std mean-marg. std
1% 1.0% - 1.0% -
5% 3.5% 0.9% 3.6% 0.8%
10% 6.8% 2.2% 7.0% 2.0%
20% 20.0% - 20.0% -

Table 2.3: Unsupervised denoising results. Level of noise 𝜋 is not fixed.

Unsupervised image denoising. We now only consider 𝑁 = 100 noisy images
𝑧1, . . . , 𝑧𝑁 to learn the model, without the original images, and we use the latent
model from Section 2.5.4. We apply stochastic subgradient descent for the difference
of the two convex functions 𝐴logistic to learn the model parameters and use fixed
regularization parameters equal to 10−2.

We consider two situations, with a known noise-level 𝜋 or with learning it together
with 𝛼 and 𝑡. The error was calculated using either max-marginals and mean-marginals.

1. Hazan and Jaakkola [2012] shows a stronger difference, which we believe (after consulting with
authors) is due to lack of convergence for the iterative algorithm solving the max-margin formulation.

33

Note that here, structured-output SVMs cannot be used because there is no supervision.
Results are reported in Tables 2.2 and 2.3. One explanation for a better performance
for max-marginals in this case is that the unsupervised approach tends to oversmooth
the outcome and max-marginals correct this a bit.

When the noise level is known, the performance compared to supervised learning
is not degraded much, showing the ability of the probabilistic models to perform
parameter estimation with missing data. When the noise level is unknown and learned
as well, results are worse, still better than a trivial answer for moderate levels of noise
(5% and 10%) but not better than outputting the noisy image for extreme levels (1%
and 20%). In challenging fully unsupervised case the standard deviation is up to 2.2%
(which shows that our results are statistically significant).

2.7 Conclusion
In this paper, we have presented how approximate inference based on stochas-

tic gradient and “perturb-and-MAP” ideas could be used to learn parameters of
log-supermodular models, allowing to benefit from the versatility of probabilistic
modelling, in particular in terms of parameter estimation with missing data. While
our experiments have focused on simple binary image denoising, exploring larger-scale
applications in computer vision (such as done by Zhang et al. [2015], Tschiatschek
et al. [2016]) should also show the benefits of mixing probabilistic modelling and
submodular functions.

34

Chapter 3

Marginal Weighted Maximum
Log-likelihood for Efficient
Learning of Perturb-and-Map
Models

Abstract
In this part we consider the structured-output prediction problem through proba-

bilistic approaches and generalize the “perturb-and-MAP” framework to more chal-
lenging weighted Hamming losses, which are crucial in applications. While in principle
our approach is a straightforward marginalization, it requires solving many related
MAP inference problems. We show that for log-supermodular pairwise models these
operations can be performed efficiently using the machinery of dynamic graph cuts.
We also propose to use double stochastic gradient descent, both on the data and
on the perturbations, for efficient learning. Our framework can naturally take weak
supervision (e.g., partial labels) into account. We conduct a set of experiments on
medium-scale character recognition and image segmentation, showing the benefits of
our algorithms.

This chapter is based on the work “Marginal Weighted Maximum Log-likelihood
for Efficient Learning of Perturb-and-Map Models”, T. Shpakova, F. Bach, A. Osokin,
published in Proceedings of the Conference on Uncertainty in Artificial Intelligence
(UAI), 2018.

3.1 Introduction
Structured-output prediction is an important and challenging problem in the field

of machine learning. When outputs have a structure, often in terms of parts or
elements (e.g., pixels, sentences or characters), methods that do take it into account
typically outperform more naive methods that consider outputs as a set of independent

35

elements. Structured-output methods based on optimization can be broadly separated
in two main families: max-margin methods, such as structured support vector machines
(SSVM from Taskar et al. [2003], Tsochantaridis et al. [2005]) and probabilistic methods
based on maximum likelihoods such as conditional random fields (CRF) (Lafferty et al.
[2001]).

Structured-output prediction faces many challenges: (1) on top of large input
dimensions, problems also have large outputs, leading to scalability issues, in particular
when prediction or learning depends on combinatorial optimization problems (which
are often polynomial-time, but still slow given they are run many times); (2) it is often
necessary to use losses which go beyond the traditional 0-1loss to shape the behavior
of the learned models towards the final evaluation metric; (3) having fully labelled
data is either rare or expensive and thus, methods should be able to deal with weak
supervision.

Max-margin methods can be used with predefined losses, and have been made
scalable by several recent contributions (see, e.g., Lacoste-Julien et al. [2013] and
references therein), but do not deal naturally with weak supervision. However, a few
works (Yu and Joachims [2009], Kumar et al. [2010], Girshick et al. [2011]) incorporate
weak supervision into the max-margin approach via the CCCP (Yuille and Rangarajan
[2003]) algorithm.

The flexibility of probabilistic modeling naturally allows (a) taking into consider-
ation weak supervision and (b) characterizing the uncertainty of predictions, but it
comes with strong computational challenges as well as a non-natural way of dealing
with predefined losses beyond the 0-1 loss. The main goal of this chapter is to provide
new tools for structured-output inference with probabilistic models, thus making them
more widely applicable, while still being efficient. There are two main techniques
to allow for scalable learning in CRFs: stochastic optimization (Vishwanathan et al.
[2006]) and piecewise training (Sutton and McCallum [2005, 2007], Kolesnikov et al.
[2014]); note that the techniques above can also be used for weak supervision (and we
reuse some of them in this work).

Learning and inference in probabilistic structured-output models recently received
a lot of attention from the research community (e.g., Bakir et al. [2007], Nowozin
and Lampert [2011], Smith [2011]). In this work we consider only models for which
maximum-a posteriori (MAP) inference is feasible (a step often referred to as decoding
in max-margin formulations, and which typically makes them tractable). A lot of
efforts were spent to explore MAP-solvers algorithms for various problems, leveraging
various structures, e.g., graphs of low tree-width (Bishop [2006], Wainwright and
Jordan [2008b], Sontag et al. [2008], Komodakis et al. [2011]) and function submodu-
larity (Boros and Hammer [2002], Kolmogorov and Zabih [2004], Bach [2013], Osokin
and Vetrov [2015]).

Naturally, the existence of even an exact and efficient MAP-solver does not mean
that the partition function (a key tool for probabilistic inference as shown below)
is tractable to compute. Indeed, the partition function computation is known to
be #𝑃 -hard (Jerrum and Sinclair [1993]) in general. For example, MAP-inference
is efficient for log-supermodular probabilistic models, while computation of their
partition function is not (Djolonga and Krause [2014]).

36

For such problems where MAP-inference is efficient, but partition function compu-
tation is not, “perturb-and-MAP” ideas such as proposed by Papandreou and Yuille
[2011], Hazan and Jaakkola [2012] are a very suitable treatment. By adding random
perturbations, and then performing MAP-inference, they can lead to estimates of the
partition function. In Section 3.3, we review the existing approaches to the partition
function approximation, parameter learning and inference.

An attempt to learn parameters via “perturb-and-MAP” ideas was made by Hazan
et al. [2013], where the authors have developed a PAC-Bayesian-flavoured approach for
the non-decomposable loss functions. While the presented algorithm has something in
common with ours (gradient descent optimization of the objective upper bound), it
differs in the sense of the objective function and the problem setup, which is more
general but that requires a different (potentially with higher variance) estimates of the
gradients. Such estimates are usual in reinforcement learning, e.g., the log-derivative
trick from the REINFORCE algorithm (Williams [1992]).

The goal of this chapter is to make the “perturb-and-MAP” technique applicable
to practical problems, in terms of (a) scale, by increasing the problem size significantly,
and (b) losses, by treating structured losses such as the Hamming loss or its weighted
version, which are crucial to obtaining good performance in practice.

3.2 Contributions
Overall, in this chapter we make the following contributions:

– In Section 3.4, we generalize the “perturb-and-MAP” framework to more challenging
weighted Hamming losses which are commonly used in applications. In principle,
this is a straightforward marginalization but this requires solving many related MAP
inference problems. We show that for graph cuts (our main inference algorithm
for image segmentation), this can be done particularly efficiently. Besides that, we
propose to use a double stochastic gradient descent, both on the data and on the
perturbations.

– In Section 3.5, we show how weak supervision (e.g., partial labels) can be naturally
dealt with. Our method in this case relies on approximating marginal probabilities
that can be done almost at the cost of the partition function approximation.

– In Section 3.6, we conduct a set of experiments on medium-scale character recogni-
tion and image segmentation, showing the benefits of our new algorithms.

3.3 Perturb-and-MAP
In this section, we introduce the notation and review the relevant background. We

study the following probabilistic model (a.k.a. a Gibbs distribution) over a discrete
product space 𝑌 = 𝑌1 × · · · × 𝑌𝐷,

𝑃 (𝑦) = 1
𝑍(𝑓)𝑒

𝑓(𝑦), (3.3.1)

37

which is defined by a potential function 𝑓 : 𝑌 → R. The constant 𝑍(𝑓) = ∑︀
𝑦∈𝑌

𝑒𝑓(𝑦) is

called the partition function and normalizes 𝑃 (𝑦) to be a valid probability function,
i.e., to sum to one. 𝑍(𝑓) is in general intractable to compute as the direct computation
requires summing over exponentially (in 𝐷) many elements.

Various partition function approximations methods have been used in parameter
learning algorithms (Parise and Welling [2005]), e.g., mean-field (Jordan et al. [1999]),
tree-reweighted belief propagation (Wainwright and Jordan [2008b]) or loopy belief
propagation (Weiss [2001]). We will work with the upper bound on the partition
function proposed by Hazan and Jaakkola [2012] as it allows us to approximate the
partition function via MAP-inference, calculate gradients efficiently, approximate
marginal probabilities and guarantee tightness for some probabilistic models. We
introduce this class of techniques below.

3.3.1 Gumbel perturbations
Recently, Hazan and Jaakkola [2012] provided a general-purpose upper bound

on the log-partition function 𝐴(𝑓) = log𝑍(𝑓), based on the “perturb-and-MAP”
idea (Papandreou and Yuille [2011]): maximize the potential function perturbed by
Gumbel-distributed noise. 1

Proposition 3.1 (Hazan and Jaakkola [2012], Corollary 1). For any function 𝑓 :
𝑌 → R, we have 𝐴(𝑓) 6 𝐴G(𝑓), where

𝐴G(𝑓) = E𝑧1,...,𝑧𝐷∼Gumbel

[︂
max
𝑦∈𝑌

(︂
𝑓(𝑦) +

𝐷∑︁
𝑑=1

𝑧𝑑(𝑦𝑑)
)︂]︂
. (3.3.2)

Gumbel denotes the Gumbel distribution and {𝑧𝑑(𝑦𝑑)}𝑑=1,...,𝐷
𝑦𝑑∈𝑌𝑑

is a collection of inde-
pendent Gumbel samples.

The bound is tight when 𝑓(𝑦) is a separable function (i.e., a sum of functions of
single variables), and the tightness of this bound was further studied by Shpakova
and Bach [2016] for log-supermodular models (where 𝑓 is supermodular). They have
shown that the bound 𝐴𝐺 is always lower (and thus provide a better bound) than the
“L-field” bound proposed by Djolonga and Krause [2014, 2015], which is itself based on
separable optimization on the base polytope of the associated supermodular function.

The partition function bound 𝐴𝐺 can be approximated by replacing the expectation
by an empirical average. That is, to approximate it we need to solve a large number
(as many as the number of Gumbel samples used to approximate the expectation) of
MAP-like problems (i.e., maximizing 𝑓 plus a separable function) which are feasible
by our assumption. Strictly speaking, the MAP-inference is NP-hard in general, but
firstly, it is much easier than the partition function calculation, secondly, there are
solvers for special cases, e.g., for log-supermodular models (which include functions 𝑓
which are negatives of cuts (Kolmogorov and Zabih [2004], Boykov and Kolmogorov

1. The Gumbel distribution on the real line has cumulative distribution function 𝐹 (𝑧) =
exp(− exp(−(𝑧 + 𝑐))), where 𝑐 is the Euler constant.

38

[2004]) and those solvers are often efficient enough in practice. In this chapter, we will
focus primarily on a subcase of supermodular potentials, namely negatives of graph
cuts.

3.3.2 Parameter learning and Inference
In the standard supervised setting of structured prediction, we are given 𝑁 pairs of

observations D = {(𝑥𝑛, 𝑦𝑛)}𝑁
𝑛=1, where 𝑥𝑛 is a feature representation of the 𝑛-th object

and 𝑦𝑛 ∈ 𝑌 = 𝑌1 × · · · ×𝑌𝐷𝑛 is a structured vector of interest (e.g., a sequence of tags,
a segmentation MAP or a document summarization representation). In the standard
linear model, the potential function 𝑓(𝑦|𝑥) is represented as a linear combination:
𝑓(𝑦|𝑥) = 𝑤𝑇 Ψ(𝑥, 𝑦), where 𝑤 is a vector of weights and the structured feature map
Ψ(𝑥, 𝑦) contains the relevant information for the feature-label pair (𝑥, 𝑦). To learn
the parameters using the predefined probabilistic model, one can use the (regularized)
maximum likelihood approach:

max
𝑤

1
𝑁

𝑁∑︁
𝑛=1

log𝑃 (𝑦𝑛|𝑥𝑛, 𝑤) − 𝜆

2 ‖𝑤‖2, (3.3.3)

where 𝜆 > 0 is a regularization parameter and the likelihood 𝑃 (𝑦|𝑥,𝑤) is defined
as

𝑃 (𝑦|𝑥,𝑤) = exp(𝑓(𝑦|𝑥))
𝑍(𝑓, 𝑥) = exp(𝑓(𝑦|𝑥) − 𝐴(𝑓, 𝑥)),

where 𝐴(𝑓, 𝑥) is the log-partition function (that now depends on 𝑥, since we consider
conditional models).

Hazan and Jaakkola [2012] proposed to learn parameters based on the Gumbel
bound 𝐴𝐺(𝑓, 𝑥) instead of the intractable log-partition function:

log𝑃 (𝑦|𝑥) = 𝑓(𝑦|𝑥) − 𝐴(𝑓, 𝑥) ≤ 𝑓(𝑦|𝑥) − 𝐴𝐺(𝑓, 𝑥)

= 𝑓(𝑦|𝑥) − E𝑧

[︂
max
𝑦∈𝑌

{︂ 𝐷∑︁
𝑑=1

𝑧𝑑(𝑦𝑑) + 𝑓(𝑦)
}︂]︂

≈ 𝑓(𝑦|𝑥)− 1
𝑀

𝑀∑︁
𝑚=1

max
𝑦(𝑚)∈𝑌

{︂ 𝐷∑︁
𝑑=1

𝑧
(𝑚)
𝑑 (𝑦(𝑚)

𝑑) + 𝑓(𝑦(𝑚))
}︂
.

Hazan and Jaakkola [2012] considered the fully-supervised setup where labels 𝑦𝑛

were given for all data points 𝑥𝑛. Shpakova and Bach [2016] developed the approach,
but also considered a setup with missing data (part of the labels 𝑦𝑛 are unknown)
for the small Weizmann Horse dataset from Borenstein et al. [2004]. Leveraging the
additional stochasticity present in the Gumbel samples, Shpakova and Bach [2016]
extend the use of stochastic gradient descent, not on the data as usually done, but
on the Gumbel randomization. It is equivalent to the choice of parameter 𝑀 = 1 for
every gradient computation (but with a new Gumbel sample at every iteration). In
our work, we use the stochastic gradient descent in a regime stochastic w.r.t. both the
data and the Gumbel perturbations. This allows us to apply the method to large-scale
datasets.

39

For linear models, we have 𝑓(𝑦|𝑥) = 𝑤𝑇 Ψ(𝑥, 𝑦) and Ψ(𝑥, 𝑦) is usually given or takes
zero effort to compute. We assume that the gradient calculation ∇𝑤𝑓(𝑦|𝑥) = Ψ(𝑥, 𝑦)
does not add complexity to the optimization algorithm. The gradient of log𝑃 (𝑦|𝑥) is
equal to

∇𝑤𝑓(𝑦|𝑥) − ∇𝑤 max
𝑦∈𝑌

{︂ 𝐷∑︁
𝑑=1

𝑧𝑑(𝑦𝑑) + 𝑓(𝑦|𝑥)
}︂

= ∇𝑤𝑓(𝑦|𝑥) − ∇𝑤𝑓(𝑦*|𝑥),

where 𝑦* lies in arg max of the perturbed optimization problem. The gradient of
⟨log𝑃 (𝑦|𝑥)⟩ (the average over a subsample of data, typically a mini-batch) has the form
⟨∇𝑤𝑓(𝑦|𝑥)⟩−⟨∇𝑤𝑓(𝑦*|𝑥)⟩ = ⟨Ψ(𝑥, 𝑦)⟩𝑒𝑚𝑝.−⟨Ψ(𝑥, 𝑦*)⟩, where ⟨Ψ(𝑥, 𝑦)⟩𝑒𝑚𝑝. denotes the
empirical average over the data. Algorithm 1 contains this double stochastic gradient
descent (SGD) with stochasticity w.r.t. both sampled data and Gumbel samples. The
choice of the stepsize 𝛾ℎ = 1

𝜆ℎ
is standard for strongly-convex problems (Shalev-Shwartz

et al. [2011]).

Algorithm 1 Double SGD: stochasticity w.r.t. data and Gumbel samples
Input: dataset D = {(𝑥𝑛, 𝑦𝑛)}𝑁

𝑛=1, number of iterations 𝐻, size of the mini-batch 𝑇 ,
stepsize sequence {𝛾ℎ}𝐻

ℎ=1, regularization parameter 𝜆
Output: model parameters 𝑤

1: Initialization: 𝑤 = 0
2: for ℎ = 1 to 𝐻 do
3: Sample data mini-batch of small size 𝑇 (that is, 𝑇 pairs of observations)
4: Calculate sufficient statistics ⟨Ψ(𝑥, 𝑦)⟩𝑒𝑚𝑝. from the mini-batch
5: for 𝑡=1 to 𝑇 do
6: Sample 𝑧𝑑(𝑦𝑑) as independent Gumbels for all 𝑦𝑑 ∈ 𝑌𝑑 and for all 𝑑
7: Find 𝑦* ∈ arg max𝑦∈𝑌

{︁ 𝐷∑︀
𝑑=1

𝑧𝑑(𝑦𝑑) + 𝑓(𝑦)
}︁

8: Make a gradient step:

𝑤ℎ+1 → 𝑤ℎ + 𝛾ℎ

(︂
⟨Ψ(𝑥, 𝑦)⟩𝑒𝑚𝑝. − ⟨Ψ(𝑥, 𝑦*)⟩ − 𝜆𝑤ℎ

)︂

Note, that the classic log-likelihood formulation (3.3.3) is implicitly considering
a “0-1 loss” 𝑙0-1(𝑦, 𝑦) = [𝑦 ̸= 𝑦] as it takes probability of the entire output object 𝑦𝑛

conditioned on the observed feature representation 𝑥𝑛.

However, in many structured-output problems 0-1 loss evaluation is not an ade-
quate performance measure. The Hamming or weighted Hamming losses that sum
mistakes across the 𝐷 elements of the outputs, are more in demand as they count
misclassification per element.

40

Table 3.1: Variants of the Objective Loss ℓ(𝑤, 𝑥, 𝑦) Function. {𝜃𝑑(𝑦𝑑)}𝐷
𝑑=1 are the

weights of the weighted Hamming loss, {𝑞𝑑(𝑦𝑑)}𝐷
𝑑=1 are the marginal probabilities

𝑃 (𝑦𝑑|𝑥).

Loss Labelled Data Unlabelled Data
0-1 log𝑃 (𝑤, 𝑦|𝑥) log ∑︀

𝑦∈𝑌
𝑃 (𝑤, 𝑦, 𝑥)

Hamming
𝐷∑︀

𝑑=1
log𝑃 (𝑤, 𝑦𝑑|𝑥𝑑)

𝐷∑︀
𝑑=1

∑︀
𝑦𝑑∈𝑌𝑑

𝑞𝑑(𝑦𝑑) log𝑃 (𝑤, 𝑦𝑑|𝑥𝑑)

Weighted Hamming
𝐷∑︀

𝑑=1
𝜃𝑑(𝑦𝑑) log𝑃 (𝑤, 𝑦𝑑|𝑥𝑑)

𝐷∑︀
𝑑=1

∑︀
𝑦𝑑∈𝑌𝑑

𝑞𝑑(𝑦𝑑)𝜃𝑑(𝑦𝑑) log𝑃 (𝑤, 𝑦𝑑|𝑥𝑑)

3.3.3 Marginal probability estimation

Either at testing time (to provide an estimate of the uncertainty of the model) or
at training time (in the case of weak supervision, see Section 3.5), we need to compute
marginal probabilities for a single variable 𝑦𝑑 out of the 𝑑 ones, that is,

𝑃 (𝑦𝑑|𝑥) =
∑︁
𝑦−𝑑

𝑃 (𝑦−𝑑, 𝑦𝑑|𝑥),

where 𝑦−𝑑 is a sub-vector of 𝑦 obtained by elimination of the variable 𝑦𝑑. Follow-
ing Hazan and Jaakkola [2012] and Shpakova and Bach [2016], this can be obtained
by taking 𝑚 Gumbel samples and the associated maximizers 𝑦𝑚 ∈ 𝑌 = 𝑌1 × · · · × 𝑌𝐷,
and, for any particular 𝑑, counting the number of occurrences in each possible value
in all the 𝑑-th components 𝑦𝑚

𝑑 of the maximizers 𝑦𝑚.
While this provides an estimate of the marginal probability, this is not an easy

expression to optimize at it depends on several maximizers of potentially complex
optimization problems. In the next section, we show how we can compute a different
(and new) approximation which is easily differentiable and on which we can apply
stochastic gradient descent.

3.4 Marginal Likelihood

In this section, we demonstrate the learning procedure for the element-decoupled
losses. We consider the regularized empirical risk minimization problem in a general
form:

max
𝑤

1
𝑁

𝑁∑︁
𝑛=1

ℓ(𝑤, 𝑥𝑛, 𝑦𝑛) − 𝜆

2 ‖𝑤‖2, (3.4.1)

where ℓ(𝑤, 𝑥, 𝑦) can take various forms from Table 3.1 and 𝜆 is the regularization
parameter. The choice of the likelihood form is based on the problem setting such as
presence of missing data and the considered test-time evaluation function.

41

3.4.1 Hamming loss
The Hamming loss is a loss function that counts misclassification per dimension:

𝑙ℎ(𝑦, 𝑦) = 1
𝐷

𝐷∑︁
𝑑=1

[𝑦𝑑 ̸= 𝑦𝑑].

For this type of loss instead of the classic log-likelihood objective it is more reasonable
to consider the following decoupling representation from Table 3.1:

ℓ(𝑤, 𝑥, 𝑦) =
𝐷∑︁

𝑑=1
log𝑃 (𝑦𝑑|𝑥,𝑤), (3.4.2)

where

𝑃 (𝑦𝑑|𝑥,𝑤) = ∑︀
𝑦−𝑑

exp(𝑓(𝑤, 𝑦−𝑑|𝑦𝑑, 𝑥) − 𝐴(𝑓, 𝑥))

= exp(𝐵(𝑓, 𝑦𝑑, 𝑥) − 𝐴(𝑓, 𝑥))

is the marginal probability of the single element 𝑦𝑑 given the entire input 𝑥, and

𝐵(𝑓, 𝑦𝑑) = log
∑︁
𝑦−𝑑

exp(𝑓(𝑤, 𝑦−𝑑|𝑦𝑑)),

where 𝑦−𝑑 ∈ 𝑌1 × . . . 𝑌𝑑−1 ×𝑌𝑑+1 ×· · ·×𝑌𝐷. Thus, the log-marginal probability may be
obtained from the difference of two log-partition functions (which we will approximate
below with Gumbel samples).

This idea of considering the marginal likelihood was proposed by Kakade et al.
[2002]. Our contribution is to consider the approximation by “perturb-and-MAP”
techniques. We thus have a new objective function ℓ(𝑤, 𝑥, 𝑦):

ℓ(𝑤, 𝑥, 𝑦) =
𝐷∑︁

𝑑=1
[(𝐵(𝑓, 𝑥, 𝑦𝑑) − 𝐴(𝑓, 𝑥))] ,

and now the following approximation could be applied:

𝐴(𝑓) ≈ 𝐴𝐺(𝑓) = E𝑧

{︂
max
𝑦∈𝑌

𝐷∑︁
𝑑=1

𝑧𝑑(𝑦𝑑) + 𝑓(𝑦)
}︂
,

𝐵(𝑓 |𝑦𝑑) ≈ 𝐵𝐺(𝑓 |𝑦𝑑)

= E𝑧

{︂
max

𝑦−𝑑∈𝑌−𝑑

𝐷∑︁
𝑠=1:𝑠 ̸=𝑑

𝑧𝑠(𝑦𝑠) + 𝑓(𝑦−𝑑|𝑦𝑑)
}︂
.

It is worth noting, that the approximation is not anymore an upper bound of the
marginal likelihood; moreover it is a difference of convex functions. Remarkably, the
objective function exactly matches the log-likelihood in the case of unary potentials
(separable potential function) as the log-likelihood function becomes the sum of
marginal likelihoods.

42

As noted, the objective ℓ(𝑤, 𝑥, 𝑦) is not convex anymore, but it is presented as the
difference of two convex functions. We can still try to approximate with stochastic
gradient descent (which then only converges to a stationary point, typically a local
minimum). Algorithm 2 describes the implementation details.

Algorithm 2 Double SGD for Marginal Likelihood
Input: dataset D = {(𝑥𝑛, 𝑦𝑛)}𝑁

𝑛=1, number of iterations 𝐻, size of the mini-batch 𝑇 ,
stepsize sequence {𝛾ℎ}𝐻

ℎ=1, regularization parameter 𝜆
Output: model parameters 𝑤

1: Initialization: 𝑤 = 0
2: for ℎ = 1 to 𝐻 do
3: Sample data mini-batch of small size 𝑇 (that is, 𝑇 pairs of observations)
4: for 𝑡=1 to 𝑇 do
5: Sample 𝑧𝑑(𝑦𝑑) as independent Gumbels for all 𝑦𝑑 ∈ 𝑌𝑑 and for all 𝑑
6: Find 𝑦*

𝐴 ∈ arg max𝑦∈𝑌

{︁ 𝐷∑︀
𝑑=1

𝑧𝑑(𝑦𝑑) + 𝑓(𝑦)
}︁

7: for 𝑑=1 to 𝐷 do
8: Find 𝑦*

𝐵 ∈ arg max
𝑦−𝑑∈𝑌−𝑑

{
𝐷∑︀

𝑠=1:𝑠̸=𝑑
𝑧𝑠(𝑦𝑠) + 𝑓(𝑦−𝑑|𝑦𝑑)}

9: Make a gradient step:

𝑤ℎ+1 → 𝑤ℎ + 𝛾ℎ

(︂⟨
⟨Ψ(𝑥, 𝑦*

𝐵)⟩ − Ψ(𝑥, 𝑦*
𝐴)
⟩

− 𝜆𝑤ℎ

)︂

Acceleration trick. Interestingly we can use the same Gumbel perturbation real-
izations for approximating 𝐴𝐺(𝑓) and 𝐵𝐺(𝑓 |𝑦𝑑) through an empirical average. On
the one hand, this restriction should not influence on the result as with a sufficient
large averaging number 𝑀 , 𝐴𝐺(𝑓) and 𝐵𝐺(𝑓 |𝑦𝑑) converges to their expectations. This
is the same for stochastic gradients: on every iteration, we use a different Gumbel
perturbation, but we share this one for the estimation of the gradients of 𝐴𝐺(𝑓) and
𝐵𝐺(𝑓 |𝑦𝑑). This allows us to save some computations as shown below, while preserving
convergence (the extra correlation added by using the same samples for the two
gradients does not change the unbiasedness of our estimates).

Moreover, if 𝑦*
𝐴 has the same label value 𝑦𝑑 as the ground truth, then the MAP

inference problem for 𝑦*
𝐴 exactly matches the one for 𝑦*

𝐵 (with the element 𝑦𝑑 fixed from
the ground truth). Then 𝑦*

𝐴 = 𝑦*
𝐵 and the corresponding difference of gradients gives

zero impact into the gradient step. This fact allows us to reduce the number of MAP-
inference problems. We should thus calculate 𝑦*

𝐵 only for those indices 𝑑 that leads to a
mismatch between 𝑑-th label of 𝑦*

𝐴 and the ground truth one. Remarkably, during the
convergence to the optimal value, the reduction will occur more often and decrease the
execution time with the number of iteration increase. Besides that, in the experiments
with graph cuts in Section 3.6 we use dynamic graph cut algorithm for solving several
optimization problems of similar structure (here 𝐷 marginal probabilities calculation).

43

We describe it in more details in Section 3.4.3.

3.4.2 Weighted Hamming loss
The weighted Hamming loss is used for performance evaluation in the models,

where each dimension has its own level of importance, e.g., in an image segmentation
with superpixels, proportional to the size of superpixels. It differs from the usual
Hamming loss in this way:

𝑙ℎ(𝑦, 𝑦) = 1
𝐷

𝐷∑︁
𝑑=1

𝜃𝑑(𝑦𝑑)[𝑦𝑑 ̸= 𝑦𝑑].

Thus we consider a dimension-weighted model as it can be adjusted for the problem
of interest that gives the model more flexibility. The optimization problem of interest
is transformed from the previous case by weighted multiplication:

ℓ(𝑤, 𝑥, 𝑦) =
𝐷∑︁

𝑑=1
𝜃𝑑(𝑦𝑑) [(𝐵(𝑓, 𝑥, 𝑦𝑑) − 𝐴(𝑓, 𝑥))] . (3.4.3)

To justify this objective function, we notice that in the case of unit weights, the
weighted loss and objective function (3.4.3) match the loss and the objective from the
previous section. Furthermore, 𝑦𝑑 with a large weight 𝜃𝑑(𝑦𝑑) puts more importance
towards making the right prediction for this 𝑦𝑑, and that is why we put more weight on
the 𝑑-th marginal likelihood. This corresponds to the usual rebalancing used in binary
classification (see, e.g., Bach et al. [2006] and references therein). Then, the algorithm
for this case duplicated the one for the usual Hamming loss and the acceleration trick
can be used as well.

3.4.3 Scalable algorithms for graph cuts
As a classical efficient MAP-solver for pairwise potentials problem we will use

graph cut algorithms from Boykov and Kolmogorov [2004]. The function 𝑓(𝑦|𝑥) should
then be supermodular, i.e., with pairwise potentials, all pairwise weights of 𝑤 should
remain negative.

In both Sections 3.4.1 and 3.4.2 we can apply the dynamic graphcut algorithm
proposed by Kohli and Torr [2007], which is a modification of the Boykov-Kolmogorov
graphcut algorithms. It is dedicated to situations when a sequence of graphcut
problems with slightly different unary potentials need to be solved. Then, instead of
solving them separately, we can use the dynamic procedure and find the solutions for
slightly different problems with less costs. This makes graphcut scalable for a special
class of problems.

It can easily be seen that our sequence of problems

𝑦*
𝐵 ∈ arg max

𝑦−𝑑∈𝑌−𝑑

{
∑︁

𝑠=1:𝑠 ̸=𝑑

𝑧𝑠(𝑦𝑠) + 𝑓(𝑦−𝑑|𝑦𝑑)}

44

for 𝑑 = 1, . . . , 𝐷 is a perfect application for the dynamic graph cut algorithm. At
each iteration we solve 𝑇 sets of graph cut problems, each of set contains 1 + 𝑎𝑡

problems solvable by the same dynamic cut, where 𝑎𝑡 is the number of not matched
pixels between 𝑦*

𝐴 and ground truth 𝑦𝑛. Finally, using acceleration trick and dynamic
cuts we reduce the gradient descent iteration complexity from

𝑇∑︀
𝑡=1

(1 +𝐷𝑡) graphcut
problems to 𝑇 dynamic graph cut problems. We make the approach scalable and can
apply it for large datasets.

3.5 Parameter Learning in the Semisupervised
Setup

In this section we assume the presence of objects with unknown labels in the
train dataset. We can separate the given data in two parts: fully annotated data
D1 = {(𝑥𝑛, 𝑦𝑛)}𝑁

𝑛=1 as in the supervised case and unlabeled data D2 = {𝑥𝑙}𝐿
𝑙=1. Then,

the optimal model parameter 𝑤 is a solution of the following optimization problem:

max
𝑤

𝐿1(𝑤) + 𝜅𝐿2(𝑤) − 𝜆

2 ‖𝑤‖2, (3.5.1)

where 𝐿1(𝑤) = ∑︀𝑁
𝑛=1 ℓ1(𝑤, 𝑥𝑛, 𝑦𝑛), 𝐿2(𝑤) = ∑︀𝐿

𝑙=1 ℓ2(𝑤, 𝑥𝑙) and the parameter 𝜅 governs
the importance of the unlabeled data. ℓ1(𝑤, 𝑥𝑛, 𝑦𝑛) can have a form from the left
column of the Table 3.1, and ℓ2(𝑤, 𝑥𝑙) from the right one.

Marginal calculations. It is worth reminding from Section 3.3.3, that we can
approximate marginal probabilities 𝑞(𝑦) of holding 𝑦𝑑 = 𝑘 along with the partition
function approximation almost for free. This can be obtained by taking 𝑚 Gumbel
samples and the associated maximizers 𝑦𝑚 ∈ 𝑌 = 𝑌1 ×· · ·×𝑌𝐷, and, for any particular
𝑑, counting the number of occurrences in each possible value in all the 𝑑-th components
𝑦𝑚

𝑑 of the maximizers 𝑦𝑚. The approximation accuracy depends on number of samples
𝑀 . To calculate this we already need to have a trained weight vector 𝑤 which we
can obtained from the fully annotated dataset D = {(𝑥𝑛, 𝑦𝑛}𝑁

𝑛=1). We will calculate
𝑞(𝑦) for the unlabelled data D2 = {𝑥𝑙}𝑙

𝑙=1. Those marginal probabilities contain much
more information than MAP inference for the new data as can be seen on the example
in Figure 3-2. We believe that proper use of the marginal probabilities will help to
gain better result than using labels from the MAP inference (which we observe in
experiments).

It is worth noting that for the inference and learning phases we use a different
number of Gumbel samples. During the learning phase, we incorporate the double
stochastic procedure and use 1 sample per 1 iteration and 1 label. For the marginal
calculation (inference) we should use large number of samples (e.g. 100 samples) to
get accurate approximation.

We provide the sketch of the proposed optimization algorithm in Algorithm 3. The
optimization of 𝐿1 is fully supervised and this can be done with tools of the previous

45

Algorithm 3 Sketch for the semisupervised algorithm.
Input: fully annotated dataset D1 = {(𝑥𝑛, 𝑦𝑛)}𝑁

𝑛=1, number of iterations 𝐻, size of
the mini-batch 𝑇 , stepsize sequence {𝛾ℎ}𝐻

ℎ=1, regularization param. 𝜆
Output: model parameters 𝑤1

1: Initialization: 𝑤1 = 0
2: Find 𝑤1 via Algorithm 2

Input: fully annotated dataset D1 = {(𝑥𝑛, 𝑦𝑛)}𝑁
𝑛=1, unlabeled dataset D2 = {𝑥𝑙}𝐿

𝑙=1,
number of iterations 𝐻, size of the mini-batch 𝑇 , stepsize sequence {𝛾ℎ}𝐻

ℎ=1,
regularization parameter 𝜆

Output: model parameters 𝑤1,2
3: Initialization: 𝑤1,2 = 𝑤1
4: Calculate: 𝑞(𝑦) for unlabeled data via 𝑤1
5: Find 𝑤1,2 via mixture of Algorithms 2 and 4

section. The optimization of 𝐿2 requires the specification of ℓ2(𝑤, 𝑥), which we take as

ℓ2(𝑤, 𝑥) =
𝐷∑︁

𝑑=1

∑︁
𝑦𝑑∈{0,...,𝐾}

𝑞𝑑(𝑦𝑑) log𝑃 (𝑤, 𝑦𝑑|𝑥𝑑) =
𝐷∑︁

𝑑=1

∑︁
𝑦𝑑∈{0,...,𝐾}

𝑞𝑑(𝑦𝑑)𝐵(𝑓 |𝑦𝑑) −𝐷𝐴(𝑓),

that is, the average of the fully supervised cost function with labels generated from
the model 𝑞. The term 𝐿2 corresponds to the common way of treating unlabeled
data through the marginal likelihood. The sub-algorithm for the optimization of ℓ2 is
presented as Algorithm 4.

Algorithm 4 Double SGD for Unsupervised Learning
Input: unlabeled dataset D2 = {𝑥𝑙}𝐿

𝑙=1, parameter estimate 𝑤1, number of iterations
𝐻, size of the mini-batch 𝑇 , stepsize sequence {𝛾ℎ}𝐻

ℎ=1, regularization parameter 𝜆
Output: model parameters 𝑤1,2

1: Initialization: 𝑤1,2 = 𝑤1
2: for ℎ = 1 to 𝐻 do
3: Sample data mini-batch of small size 𝑇 (that is, 𝑇 pairs of observations)
4: for 𝑡=1 to 𝑇 do
5: Sample 𝑧𝑑(𝑦𝑑) as independent Gumbels for all 𝑦𝑑 ∈ 𝑌𝑑 and for all 𝑑
6: Find 𝑦*

𝐴 ∈ arg max𝑦∈𝑌

{︁ 𝐷∑︀
𝑑=1

𝑧𝑑(𝑦𝑑) + 𝑓(𝑦)
}︁

7: for 𝑑=1 to 𝐷 and 𝑘=0 to 𝐾 do
8: Find 𝑦*

𝐵,𝑑,𝑘 ∈ arg max
𝑦−𝑑∈𝑌−𝑑

{
𝐷∑︀

𝑠=1:𝑠 ̸=𝑑
𝑧𝑠(𝑦𝑠) + 𝑓(𝑦−𝑑|𝑦𝑑 = 𝑘)}

9: Make a gradient step:

𝑤ℎ+1 → 𝑤ℎ + 𝛾ℎ

(︂⟨
⟨

𝐾∑︁
𝑘=0

𝑞𝑑(𝑘)Ψ(𝑥, 𝑦*
𝐵,𝑑,𝑘)⟩ − Ψ(𝑥, 𝑦*

𝐴)
⟩

− 𝜆𝑤ℎ

)︂

46

Acceleration trick. Suppose, that 𝑦𝑑 can take values in the range {0, . . . , 𝐾}. Again
we use the same Gumbel perturbation for estimating 𝐴𝐺(𝑓) and 𝐵𝑑𝑘𝐺(𝑓 |𝑦𝑑 = 𝑘) for
all 𝑘 ∈ {0, . . . , 𝐾}. The consequence of using the same perturbations is that if the
𝑑-th label 𝑦𝑑 of 𝑦*

𝐴 takes value 𝑘, than the corresponding 𝑑-th gradient will cancel
out with one of the 𝑦*

𝐵𝑘. Thus, we will calculate only 𝐾 (instead of 𝐾 + 1 labels)
structured labels 𝑦*

𝐵𝑙(𝑙 ̸= 𝑘) and reduce the number of optimization problems to be
solved. Dynamic graph cuts are applied here as well.

Finally in Table 3.1 we see the relationships between the proposed objective
functions. Firstly, the known labels 𝑦𝑛 in the supervised case are equivalent to the
binary marginal probabilities 𝑞(𝑦𝑛) ∈ {0, 1}𝐷𝑛 . Secondly, the unit weights 𝜃𝑑(𝑦𝑑) = 1
in the weighted Hamming loss are equivalent to the basic Hamming loss.

Partial labels. Another case that we would like to mention is annotation with
partial labels, e.g., in an image segmentation application, the bounding boxes of the
images are given. Then denote 𝑦𝑔𝑖𝑣𝑒𝑛 as the set of given labels. In this setup the
marginal probabilities become conditional ones 𝑞(𝑦𝑑|𝑦𝑔𝑖𝑣𝑒𝑛) and to approximate this
we need to solve several conditional MAP-inference problems. The objective function

ℓ2(𝑤) =
∑︁

𝑑

∑︁
𝑦𝑑∈{0,...,𝐾}

𝑞𝑑(𝑦𝑑|𝑦𝑔𝑖𝑣𝑒𝑛) log𝑃 (𝑤, 𝑦𝑑|𝑥𝑑, 𝑦
𝑔𝑖𝑣𝑒𝑛)

remains feasible to optimize.

3.6 Experiments
The experimental evaluation consists of two parts: Section 3.6.1 is dedicated to

the chain model problem, where we compare the different algorithms for supervised
learning; Section 3.6.2 is focused on evaluating our approach for the pairwise model
on a weakly-supervised problem.

3.6.1 OCR dataset
The given OCR dataset from Taskar et al. [2003] consists of handwritten words

which are separated in letters in a chain manner, see examples in Figure 3-1. The
OCR dataset contains 10 folds of ∼ 6000 words overall. The average length of the
word is ∼ 9 characters. Two traditional setups of these datasets are considered: 1)
“small” dataset when one fold is considered as a training data and the rest is for test,
2) “large” dataset when 9 folds of 10 compose the train data and the rest is the test
data. We perform cross-validation over both setups and present results in Table 3.2.

As the MAP oracle we use the dynamic programming algorithm of Viterbi [1967].
The chain structure also allows us to calculate the partition function and marginal
probabilities exactly. Thus, the CRF approach can be applied. We compare its perfor-
mance with the structured SVM from Osokin et al. [2016], perturb-and-MAP (Hazan
and Jaakkola [2012]) and the one we propose for marginal perturb-and-MAP (as
Hamming loss is used for evaluation).

47

Figure 3-1: Samples from OCR dataset (Taskar et al. [2003]).

The goal of this experiment is to demonstrate that the CRF approach with exact
marginals shows a slightly worse performance as the proposed one with approximated
marginals but correct Hamming loss.

Table 3.2: OCR Dataset. Performance Comparison.

method small dataset large dataset
CRF 19.5 ± 0.4 13.1 ± 0.8

S-SVM+BCFW 19.5 ± 0.4 12.0 ± 1.1
perturb&MAP 19.1 ± 0.3 12.5 ± 1.1

marg. perturb&MAP 19.1 ± 0.3 12.8 ± 1.2

For the OCR dataset, we performed 10-fold cross-validation and the numbers of
Table 3.2 correspond to the averaged loss function (Hamming loss) values over the
10 folds. As we can see from the result in Table 3.2, the approximate probabilistic
approaches slightly outperforms the CRF on both datasets. The Gumbel approxi-
mation (with or without marginal likelihoods) does lead to a better estimation for
the Hamming loss. Note that S-SVM performs better in the case of a larger dataset,
which might be explained by stronger effects of model misspecification that hurts
probabilistic models more than S-SVM (Pletscher et al. [2011]).

3.6.2 HorseSeg dataset
The problem of interest is foreground/background superpixel segmentation. We

consider a training set of images {𝑥𝑛}𝑛=1...𝑁 that contain different numbers of super-
pixels. A hard segmentation of the image is expressed by an array 𝑦𝑛 ∈ {0, 1}𝐷𝑛 ,
where 𝐷𝑛 is the number of superpixels for the 𝑛-th image.

The HorseSeg dataset was created by Kolesnikov et al. [2014] and contains horse
images. The “small” dataset has images with manually annotated labels and contains
147 images. The second “medium” dataset is partially annotated (only bounding

48

Table 3.3: HorseSeg Dataset. Performance Comparison.

method “small” “medium” “large”
S-SVM+BCFW 12.3 10.9 10.9
perturb&MAP 20.9 21.0 20.9

w.m. perturb&MAP 11.6 10.9 10.9

boxes are given) and contains 5974 images. The remaining “large” one has 19317
images with no annotations at all. A fully annotated hold out dataset was used for
the test stage. It consists of 241 images.

The graphical model is a pairwise model with loops. We consider log-supermodular
distribution and thus, the max oracle is available as the graph cut algorithm by Boykov
and Kolmogorov [2004]. Note that CRFs with exact inference cannot be used here.

Following Kolesnikov et al. [2014], for the performance evaluation the weighted
Hamming loss is used, where the weight is governed by the superpixel size and
foreground/background ratio in the particular image.

That is,

𝑙ℎ(𝑦, 𝑦) = 1
𝐷

𝐷∑︁
𝑑=1

𝜃𝑑(𝑦𝑑)[𝑦𝑑 ̸= 𝑦𝑑],

where

𝜃𝑑(𝑦𝑑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑉𝑑

2𝑉𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑

, if 𝑦𝑑 = 1.

𝑉𝑑

2𝑉𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

, if 𝑦𝑑 = 0.

𝑉𝑑 is the size of superpixel 𝑑, 𝑉𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 and 𝑉𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 are the sizes of the background
and the foreground respectively. In this way smaller object sizes have more penalized
mistakes.

Since we incorporate 𝜃(𝑦) into the learning process and for its evaluation we need
to know the background and foreground sizes of the image, this formulation is only
applicable for the supervised case, where 𝑦𝑑 is given for all superpixels. However, in
this dataset we have plenty of images with partial or zero annotation. For these set of
images D2 = {𝑥𝑙}𝐿

𝑙=1, we handle approximate marginal probabilities 𝑞𝑙
𝑑 associated to

the unknown labels. Using them we can approximate the foreground and background

volumes: 𝑉 𝑙
𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 ≈

𝐷𝑙∑︀
𝑑=1

𝑞𝑙
𝑑 and 𝑉 𝑙

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 ≈
𝐷𝑙∑︀

𝑑=1
(1 − 𝑞𝑙

𝑑).
We provide an example of the marginal and MAP inference in Figure 3-2. The

difference of the information compression between these two approaches is visually
comparable. We believe that the smoother and accurate marginal approach should
have a positive impact on the result, as the uncertainty about the prediction is well
propagated.

As an example of the max-margin approaches we take S-SVM+BCFW from the
paper of Osokin et al. [2016] which is well adapted to large-scale problems. For
S-SVM+BCFW and perturb-and-MAP methods we use MAP-inference for labelling
unlabelled data using 𝑤1 (see Section 3.5).

49

(a) Original image (b) Marginal inference (c) MAP inference

Figure 3-2: Example of the marginal and MAP inference for an image from the
HorseSeg database (Kolesnikov et al. [2014]).

For the HorseSeg dataset (Table 3.3), the numbers correspond to the averaged loss
function (weighted Hamming loss) values over the hold out test dataset. The results
of the experiment in Table 3.3 demonstrate that the approaches taking into account
the weights of the loss 𝜃𝑑(·) (S-SVM+BCFW and w.m. perturb&MAP) give a much
better accuracy than the regular perturb&MAP. S-SVM+BCFW uses loss-augmented
inference and thereby augments the weighted loss structure into the learning phase.
Weighted marginal perturb-and-MAP plugs the weights of the weighted Hamming loss
inside the objective log-likelihood function. Basic perturb-and-MAP does not use the
weights 𝜃𝑑(·) and loses a lot of accuracy. This shows us that the predefined loss for
performance evaluation has a significant influence on the result and should be taken
into account.

Small dataset size influence. We now investigate the effect of the reduced “small”
dataset. We preserve the setup from the previous section and the only thing that we
change is 𝑁 , the size of the “small” fully-annotated dataset D1 = {(𝑥𝑛, 𝑦𝑛)}𝑁

𝑛=1. The
new “small” dataset is 10% the size of the initial one, i.e., only 14 images. By taking
a small labelled dataset, we test the limit of supervised learning when few labels are
present.

For the HorseSeg dataset (Table 3.4), the numbers correspond to the averaged
loss function (weighted Hamming loss) values over the hold out test dataset. The
results of this experiments are presented in Table 3.4. In this setup, the probabilistic
approach “weighted marginal perturb-and-MAP” gains more than max-margin “S-
SVM+BCFW”. This could happen because of very limited fully supervised data. The
learned parameter 𝑤1 gives a noisy model and this noisy model produces a lot of noisy
labels for the unlabeled data, while weighted perturb-and-MAP is more cautious as it

50

Table 3.4: Reduced HorseSeg Dataset. Performance Comparison.

method 10% of “medium” “medium”
“small” with bbox w/o bbox

S-SVM+BCFW 17.3 14.0 16.1
perturb&MAP 23.2 23.4 23.0
w.m. p.&MAP 18.1 13.7 14.4

uses probabilities that contain more information (see Figure 3-2).

Acceleration trick impact

We now compare the execution time of the algorithm with and without our
acceleration techniques (namely Dynamic Cuts [DC] and Gumbel Reduction[GR]) to
get an idea on how helpful they are. Table 3.5 shows the execution time for calculating
all 𝑦*

𝐵 (Algorithm 2) for different numbers of iterations on the HorseSeg small dataset.
We conclude that the impact of DC does not depend on the total number of iterations
always leading to acceleration around 1.3. For GR, acceleration goes from 3.5 for
100 iterations to 7.6 for one million iterations. Overall, we get acceleration of factor
around 10 for one million iterations.

method ∖ it 100 103 104 105 106

basic 0.9 9.2 89.5 900 8993
DC 0.7 6.9 69.0 696 7171
GR 0.3 2.1 15.5 133.4 1186

DC+GR 0.2 1.5 10.9 83.5 727

Table 3.5: Execution time comparison in seconds. HorseSeg small dataset.

3.6.3 Experiments analysis
The experiments results mainly show that not taking into account the right loss in

the learning procedure is detrimental to probabilistic technique such as CRFs, while
taking it into account (our novelty) improves results. Also, Tables 3.2 and 3.3 show
that the proposed methods achieves (and sometimes surpasses) the level performance
of the max-margin approach (with loss-augmented inference).

Further, we observed that the size of the training set influences the SSVM and
perturb-and-MAP approaches differently. For smaller datasets, the max-margin
approaches tend to lose information due to usage of the hard estimates for the
unlabelled data (e.g. in Table 3.4: 16.1 against 14.4 for “medium” dataset without
bounding boxes labeling).

Table 3.4 reports an experiment about using weakly-labeled data at the training
stage (the results on the partially annotated “medium” dataset). This experiment
studied the impact on the final prediction quality of the training set of “medium” size

51

on top of the reduced “small” fully-labelled set. The results of Table 3.4 mean that
the usage of our approach adopted to the correct test measure outperforms the default
perturb-and-MAP by a large margin. Our approach also significantly outperformed
the comparable baseline of SSVM due to reduced size of the “small” fully-labelled set.

3.7 Conclusion
In this chapter, we have proposed an approximate learning technique for problems

with non-trivial losses. We were able to make marginal weighted log-likelihood for
perturb-and-MAP tractable. Moreover, we used it for semi-supervised and weakly-
supervised learning. Finally, we have successfully demonstrated good performance
of the marginal-based and weighted-marginal-based approaches on the middle-scale
experiments. As a future direction, we can go beyond the graph cuts and image
segmentation application and consider other combinatorial problems with feasible
MAP-inference, e.g., matching.

52

Chapter 4

Hyper-parameter Learning for
Sparse Structured Probabilistic
Models

Abstract
In this chapter we consider the estimation of hyperparameters for regularization

terms commonly used for obtaining structured sparse parameters in signal estimation
problems, such as signal denoising. By considering the convex regularization terms
as negative log-densities, we propose approximate maximum likelihood estimation
for estimating parameters for continuous log-supermodular distributions, which is a
key property that many sparse priors have. We then show how “perturb-and-MAP”
ideas based on the Gumbel distribution and efficient discretization can be used to
approximate the log-partition function for these models, which is a crucial step for
approximate maximum likelihood estimation. We illustrate our estimation procedure
on a set of experiments with flow-based priors and signal denoising.

This chapter is based on the work “Hyper-parameter Learning for Sparse Structured
Probabilistic Models”, T. Shpakova, F. Bach, M. Davies, is under review for the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019.

4.1 Introduction
Structured sparsity has emerged a versatile tool to go beyond plain parsimonious

models. Indeed, taking into account the potential structure between the signal
coefficients to be set to zero, both interpretability and predictive performance can be
improved. Structured sparse priors can be handled in the various frameworks that
have emerged for sparse methods, within convex optimization (Yuan and Lin [2006],
Jacob et al. [2009]) or non-convex optimization (Baraniuk et al. [2010], He and Carin
[2009], Huang et al. [2011]).

While encoding structure has several benefits, it comes with the extra task of

53

specifying a certain number of hyper-parameters, for example, for tree-structured
sparsity, the weights to be given to each depth of the tree. The goal of this chapter is
to propose data-driven estimation procedures for all of these hyper-parameters for a
class of priors based on submodular functions. These include tree-structured priors or
group-based priors and are commonly used in signal estimation problems (Kim and
Xing [2010], Zhao et al. [2006]).

4.2 Contributions
In this chapter, we make the following contributions:

– We propose in Section 4.3 approximate maximum likelihood estimation for esti-
mating parameters in continuous log-supermodular distributions, whose negative
log-densities are commonly used as structured sparse priors in signal processing
applications.

– We incorporate sparsity-inducing and challenging 𝑙𝑝 norms treatment.
– We show in Section 4.4 how “perturb-and-MAP” ideas based on the Gumbel

distribution and efficient discretization can be used to approximate the log-partition
function for these models, which is the key step for approximate maximum likelihood
estimation. Here, the fact that submodular functions can be efficiently minimized
is crucial.

– We illustrate our estimation procedure in Section 4.5 on a set of experiments with
flow-based priors and signal denoising.

4.3 Log-supermodular Distributions
As a probabilistic model, we are going to work with the family of log-supermodular

distributions discussed by Djolonga and Krause [2014]. These distributions are a
special case of a Gibbs distribution over some variable 𝑥 ∈ X, which could at this
point be discrete or continuously valued:

𝑑𝑝(𝑥) = 𝑒−𝑓(𝑥)

𝑍(𝑓) 𝑑𝜇(𝑥),

where 𝑑𝜇(𝑥) is a base measure, and 𝑓(𝑥) is a potential function and the normalizer

𝑍(𝑓) =
∫︁
X
𝑒−𝑓(𝑥)𝑑𝜇(𝑥).

It is worth noting that the partition function 𝑍(𝑓) is intractable in the general case,
continuous or discrete, and its handling constitutes the core computational difficulty
of probabilistic inference (Wainwright and Jordan [2008b]). If the potential function
𝑓(𝑥) is submodular (see definition in the next section), then the distribution above is
called log-supermodular (because −𝑓 is supermodular).

54

We use these models as they cover a broad family of distributions and allow us to
perform an efficient gradient descent optimization of the likelihood objective due to
submodularity (see below).

4.3.1 Supermodular and Submodular Functions
Submodular functions can be defined on sets X which are products of intervals.

These functions have the particular property to have polynomial-time minimization
algorithms (Krause and Golovin [2014]). In this work, we consider the special cases
X = R𝑛 and X = {0, 1}𝑛, which will lead respectively to continuous and discrete
submodular functions.

Discrete functions. A function 𝑓 : {0, 1}𝑛 → R can be uniquely identified to
a set-function defined over subsets of {1, . . . , 𝑛}, by defining 𝐹 (𝐴) = 𝑓(1𝐴) where
1𝐴 ∈ {0, 1}𝑛 is the indicator vector of the set 𝐴. It is then said submodular if it satisfies
the following diminishing return property ∀𝐴,𝐵 ⊆ {1, . . . , 𝑛} such that 𝐴 ⊆ 𝐵 and
for all 𝑖, then 𝐹 (𝐴 ∪ 𝑖) − 𝐹 (𝐴) ≥ 𝐹 (𝐵 ∪ 𝑖) − 𝐹 (𝐵). Classical submodular functions
include network flows, graph cuts, as well as concave functions of the cardinality and
appear in many areas of signal processing and machine learning (Fujishige [2005],
Bach [2013]). In particular, non-decreasing submodular functions are commonly used
to penalize the support of signal in compressed sensing (Obozinski and Bach [2012]).
Classical examples include group-based priors (counting the number of active groups)
or tree-based priors (cardinality of the smallest rooted tree containing a given set),
which are commonly used in signal processing (Baraniuk et al. [2010]).

Continuous functions. In the continuous setting, a twice differentiable function
𝑓 : R𝑛 → R is submodular if for all 𝑥 ∈ R𝑛, the cross second-order derivatives are
non-positive, that is, for all 𝑖 ̸= 𝑗, then 𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥) 6 0. For non-differentiable functions,

see more details in Bach [2016]. Important examples include the Lovász extensions
of discrete submodular functions defined on {0, 1}𝑛 (Bach [2013], Fujishige [2005]).
These extended functions are typically used for regularization as follows: when a
vector 𝑤 whose support 𝐴 = {𝑖, 𝑤𝑖 ̸= 0} should have a small value 𝐹 (𝐴) where 𝐹
is the corresponding set-function, then the penalty 𝑓(|𝑤|), where 𝑓 is the Lovász
extension, and the absolute values are taken component-wise, is a natural convex
relaxation (Bach [2013], Obozinski and Bach [2012]). Classical example is the Lovász
extension of a set cover function and it has the following form:

𝑓(|𝑤|) =
∑︁
𝐴∈A

𝑑𝐴 max
𝑎∈𝐴

|𝑤𝑎|,

where A is a set of subsets of {1, . . . , 𝑛} (Bach et al. [2012]); see more details in
Section 4.5.2. Other non-convex but tighter relaxations are of the form 𝑓(|𝑤|𝑝) where
the power is taken component-wise (El Halabi et al. [2018]):

𝑓(|𝑤|𝑝) =
∑︁
𝐴∈A

𝑑𝐴 max
𝑎∈𝐴

|𝑤𝑎|𝑝.

By changing the free parameter 𝑝 we can manipulate the desired level of sparsity

55

in some sense (as we know that the Laplacian prior does not really provide sparse
samples (Davies and Gribonval [2009])).

4.3.2 Discrete Log-supermodular Distributions
An important example of a submodular minimization problem is a graphcut

problem, which is very applicable in a variety of fields. For example it is popular to
incorporate graphcut functions as potential functions in Markov random fields (MRFs)
and perform an image segmentation as a side effect (Kolmogorov and Zabih [2004],
Boykov and Kolmogorov [2004]). Other examples can be mutual entropy, certain
functions of eigenvalues of submatrices and many others (Fujishige [2005]). Seeing
them as log-densities thus leads to a probabilistic treatment (see, e.g., Djolonga and
Krause [2014]), which similar to what we try to achieve in this paper for continuous
distributions.

4.3.3 Continuous Log-supermodular Distributions
Several examples have been considered in other settings and then called “multivariate-

totally positive of order 2”, and include the multivariate logistic, Gamma distributions,
as well as characteristic roots of random Wishart matrices (Karlin and Rinott [1980]).
We propose to extend their use in signal processing, in order to learn parameters of
the associated negative log-densities (which are submodular functions), in structured
sparsity problems.

4.3.4 Log-partition Function for Bayesian Learning
Let us consider the following standard denoising problem, with 𝑥 = 𝐷𝛼+ 𝜀, where

𝜀 is a Gaussian noise ∼ N(0, 𝜎2𝐼). Given the noisy signal 𝑥 ∈ R𝑛 and a dictionary
𝐷 ∈ R𝑛×𝑘, we try to recover the initial representation 𝛼 ∈ R𝑘. The decoding problem
often has the following form:

min
𝛼

1
2‖𝑥−𝐷𝛼‖2 + Λ(𝛼),

where Λ(𝛼) serves as a regularizer. This formulation can be considered from three
points of view: 1) as penalized least squares regression without any probabilistic mean-
ing, as 2) maximum a posteriori (MAP) or 3) minimum-mean-square-error (MMSE)
estimation within some probabilistic model (Gribonval [2011]). The probabilistic
interpretation allows to learn parameters of Λ(𝛼), which we aim to do here. The joint
probability has the form:

𝑃 (𝑥, 𝛼) = 𝑃 (𝛼)𝑃 (𝑥|𝛼) = 𝑃 (𝛼)𝑃 (𝜀 = 𝑥−𝐷𝛼),

where 𝑃 (𝛼) = exp(−Λ(𝛼))
𝑍

is a log-supermodular prior on 𝛼. Thus, we would like to
parameterize and learn the prior 𝑃 (𝛼) from the training dataset before performing
the denoising on the test dataset.

56

In a sparse set-up we would like to encourage the argument 𝛼 to contain plenty of
zero elements and thus we can use the usual ℓ1-formulation (Chen et al. [2001]):

min
𝛼

1
2‖𝑥−𝐷𝛼‖2 + Λ(𝛼),

𝑠.𝑡. Λ(𝛼) = 𝑓(|𝛼|),

where |𝛼| is meant component-wise. Here 𝑓(|𝛼|) is encoding the structured sparsity,
see an example in the Section 4.5.2. In this paper, for simplicity, we consider only
orthonormal dictionaries.

Maximum likelihood for parameter learning. The main goal here is to consider
Λ(𝛼) as a negative log-density with the functional parameter 𝑓(·) and to find its optimal
data-dependent parameters by maximum likelihood. To do so, we need to solve an
optimization problem that involves the log-partition function in the way described
below. We use the notation, for a submodular function 𝑓 defined on R𝑘

+,

log𝑍(𝑓) = 𝐴(𝑓) = log
∫︁
R𝑘

+

exp(−𝑓(𝛼))𝑑𝛼.

Note that, by a simple change of variable, we have:

log
∫︁
R𝑘

exp(−𝑓(|𝛼|))𝑑𝛼 = 𝑘 log 2 + log
∫︁
R𝑘

+

exp(−𝑓(𝛼))𝑑𝛼.

We thus have − log𝑃 (𝛼) = 𝑓(𝛼) + 𝐴(𝑓) + 𝑘 log 2. The next step is to go from
𝑝 = 1 to 𝑝 < 1. We can done the transformation by changing of variable 𝛽 = |𝛼|𝑝
(component-wise):

log𝑍(𝑓) = log
∫︁
R𝑘

exp(−𝑔(|𝛼|𝑝))𝑑𝛼 = 𝑘 log 2 + log
∫︁
R+

exp(−𝑔(𝛽))
𝑘∏︁

𝑖=1

(︁1
𝑝
𝛽

1/𝑝−1
𝑖

)︁
𝑑𝛽.

which changes 𝑔 to 𝑔 plus some separable terms. As a result, 𝑔 is submodular because
it is obtained by a monotonic separable change of variable. Later in the discretization,
this simply means adding a power 𝑝 in the discretization.

In order to learn the distribution of 𝛼 we need to perform maximum likelihood for
the densities defined above. To perform this we need to approximate the log-partition
function 𝐴, which is always convex, but usually hard to compute. Two questions arise:
(1) approximation of 𝐴(𝑓), and (2) parameterization of 𝑓 in a suitable form so that
our optimization problems are easily solved.

4.4 Perturb-and-MAP
To perform an effective parameter learning, we would like to approximate the

log-partition function 𝐴(𝑓) by making use of the “perturb-and-MAP” approach from
Hazan and Jaakkola [2012]. One necessary point is to have an access to an efficient

57

MAP-oracle, e.g., a graphcut solver for our particular example of flow-based priors
(see Section 4.5.2).

Our algorithm is based on an approximation result from Hazan and Jaakkola [2012],
which states that for any real-valued function 𝑔 defined on a discrete set T = ∏︀𝑛

𝑖=1 T𝑖,
then

log
∑︁
𝑡∈T

𝑒𝑔(𝑡) 6 Eℎ1,...,ℎ𝑛∼Gumbel

[︂
max
𝑡∈T

(︂
𝑔(𝑡) +

𝑛∑︁
𝑖=1

ℎ𝑖(𝑡𝑖)
)︂]︂
,

where Gumbel denotes the Gumbel distribution 1 and with a collection {ℎ𝑖(𝑡𝑖)}𝑖=1,...,𝑛
𝑡𝑖∈T𝑖

of independent Gumbel samples. This allows to define an upper-bound on the log-
partition function, which is based on perturbing 𝑔 and performing maximization; it is
thus efficient only for functions 𝑔 for which adding a separable terms leads to efficient
optimization. This is exactly the case for negatives of submodular functions.

Via the proposed approximation we achieve a direct way of parameter learning in
the discrete case. We can approximate the expectation over Gumbels using Monte-
Carlo ideas by replacing the expectation by sampling. An efficient number of Gumbel
samples depends on application, however in our experiments, 𝑀 = 100 seems to be
enough for most of the setups. Following Shpakova et al. [2018], in practice, when
embedding the approximation result above in an optimization problem (for maximum
likelihood) we can use stochastic gradient descent as a subroutine (Shpakova et al.
[2018]), rather than using a fixed set of Gumbel samples.

4.4.1 Extension to the Continuous Case
To work with continuous data, we need to perform a discretization of the partition

function to cast its calculation as a discrete optimization problem.

Approximation of 𝐴(𝑓) = log
∫︀
R𝑘

+
exp(−𝑓(𝛼))𝑑𝛼. In order to approximate 𝐴(𝑓),

we are going to discretize each 𝛼𝑖 into 𝑟 values 0 = 𝑢0 < 𝑢1 < · · · < 𝑢𝑟−1, and
consider the measure on R+ define as the weighted sum of Diracs

𝑟−1∑︀
𝑗=0

𝜋𝑗𝛿(𝛽 = 𝑢𝑗). A

simple example (based on the trapezoidal rule) for the weights (𝜋𝑗) is 𝜋0 = 𝑢1−𝑢0
2 ,

𝜋𝑟−1 = 𝑢𝑟−1−𝑢𝑟−2
2 , with the rest as 𝜋𝑗 = 𝑢𝑗+1−𝑢𝑗−1

2 . We then discretize the integral in
the following way

𝐴(𝑓) = log
∑︁

𝑧∈{0,...,𝑟−1}𝑘

(︁ 𝑘∏︁
𝑖=1

𝜋𝑧𝑖

)︁
exp(−𝑓(𝑢𝑧𝑖

, . . . , 𝑢𝑧𝑘
)).

This is done by considering 𝑘𝑟 Gumbel variables ℎ𝑖,𝑗 , 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {0, . . . , 𝑟−
1}, and the perturb-and-MAP approximation

𝐴𝐺(𝑓) = Eℎ

(︃
max

𝑧

{︃
− 𝑓(·) +

𝑘∑︁
𝑖=1

ℎ𝑖,𝑧𝑖
+

𝑘∑︁
𝑖=1

log 𝜋𝑧𝑖

}︃)︃
.

1. The Gumbel distribution on the real line has the cumulative distribution function 𝐹 (𝑧) =
exp(− exp(−(𝑧 + 𝑐))), where 𝑐 is the Euler constant.

58

The separable term ℎ𝑖,𝑧𝑖
+ log 𝜋𝑧𝑖

does not change the nature of the problem and the
function remains submodular (but now defined on a finite number of values).

4.4.2 Decoding with MMSE

In this section we discuss several ways of performing inference. Decoding with
MAP is straightforward, as we can get the approximation with a discrete solver or an
exact solution via divide-and-conquer algorithms (Groenevelt [1991]), if the objective
is convex. Instead of using MAP decoder we can use MMSE, which is known to be
the Bayesian optimal classifier for the ℓ2-loss function (see, e.g., Gribonval [2011]).
However, it is a challenge to calculate, and as one of our contributions in this work we
propose a way of its approximation via perturb-and-MAP ideas. Indeed, we have the
estimator

𝜓𝑀𝑀𝑆𝐸(𝑥) = E(𝛼|𝑥)

𝑃 (𝛼|𝑥) = 𝑃 (𝑥, 𝛼)∑︀
𝛼 𝑃 (𝑥, 𝛼) = exp(−𝑠(𝛼, 𝑥))

𝑍(𝑠) ,

where 𝑠(𝛼, 𝑥) = 1
2𝜎2 ||𝑥−𝐷𝛼||2 + Λ(𝛼) = 1

2𝜎2 ||𝐷𝑇𝑥− 𝛼||2 + Λ(𝛼) for an orthonormal
dictionary 𝐷. Then, the optimal estimator can be computed as:

𝜓𝑀𝑀𝑆𝐸(𝑥) = E(𝛼|𝑥) ≈

1
𝑀

𝑀∑︁
𝑚=1

arg min
𝛼𝑚

{︃
𝑠(𝛼𝑚) −

∑︁
𝑘

ℎ𝑘(𝛼𝑘𝑚)
}︃
,

as the expectation of the sufficient statistics is known to be a gradient of the log-
partition function (Wainwright and Jordan [2008b]). Thus, we can get an approximate
solution via approximate mean marginals and discretization.

4.5 Experiments

In the experiment section we illustrate the proposed parameter learning technique
and compare the performance of two decoding approaches.

4.5.1 Synthetic Data. Experiments on decoding

We consider a one dimensional distribution 𝑃 (𝛼) = exp−|𝛼|

𝑍
. Closed-form solution

for MMSE in discrete setup can then be calculated exactly for this one dimensional
setup. We present denoising results for 10,000 randomly sampled data points in
Table 4.1. We can clearly see that MMSE outperforms MAP in this synthetic setup,
in a set-up where the Gumbel approximation of the log-partition function is exact.

59

Approach ℓ2 loss value
continuous MAP solution 0.693

MAP-oracle 0.744
MMSE exact 0.626

MMSE approx [𝑀 = 100] 0.632
MMSE approx [𝑀 = 1000] 0.628

Table 4.1: Denoising results. Synthetic data.

4.5.2 Flow-based priors
We now show examples where our maximization problems can be cast a a max-flow

/ min-cut. Following Sections 6.3 and 6.4 of Bach [2013], we consider prior Λ(𝛼) as
functions 𝑓 of the form

𝑓(𝛼) =
∑︁
𝐴∈A

𝑑𝐴 max
𝑎∈𝐴

𝛼𝑎,

where 𝑑𝐴 are parameters that we are interested of. In order to minimize the function
𝑓(𝑢𝑧1 , . . . , 𝑢𝑧𝑘

)+∑︀𝑘
𝑖=1 𝑣𝑖,𝑧𝑖

, which is required in Section 4.4.1, following Ishikawa [2003],
we can create a weighted directed graph where the (𝑠𝑡)-minimum cut gives the optimal
solution, thus making the optimization efficient.

4.5.3 Real Data. Experiments on the parameter learning and
decoding.

Figure 4-1: Classical boat image for image denoising.

60

We work with patches 8 × 8 of the ’boat’ image(see Figure 4-1). Half of them are
considered as a train dataset to learn hyperparameteters of our priors, and another
half as a test dataset. The original image is 512 × 512. After Gaussian noise was
added to the test dataset, we try to denoise it with the proposed decoding techniques.
We compare two ways of denoising: 1) model the prior directly for the pixels values
and 2) model the prior for some wavelet coefficients.

We work under the following assumption

𝑃 (𝛼) = 𝑒−𝑓(𝛼)

𝑍(𝑓) ,

where 𝑓(𝛼) = ∑︀
𝐴∈A 𝑑𝐴 max𝑎∈𝐴 |𝛼𝑎|, where A is a set of predefined groups of variables

and 𝛼 could be either the pixels values, either the wavelet coefficients. These groups
could be based on the image grid or on the wavelet tree structure. Moreover, 𝐷 is a
orthogonal wavelet transform (we use Haar wavelets).

Before we report results in Tables 4.2 and 4.3, we first comment on the discretization
grid which influences a lot the performance. We use a uniform grid with a step Δ
(either 1 or 10). The quality and the running time consumption of the discrete MAP
and MMSE depends on the discretization grid and on Δ correspondingly. For a fair
comparison we spend the same amount of time for both: MAP and Δ = 1 consume
approximately the same amount of time as MMSE and Δ = 10. For MMSE we
use 𝑀 = 100 Gumbel perturbations. The method “c. MAP” refers to the exact
MAP solution achieved through direct continuous optimization via divide-and-conquer
algorithm (Groenevelt [1991]). In Tables 4.2 and 4.3 we compute signal-to-noise ratios
(SNR), where SNR = 20 log10

||𝑥||2
||𝑥̂−𝑥||2 and 𝑥 is a test image and 𝑥̂ its prediction. We

accompany the results with their standard deviation, across 10 different noise samples.

First set of experiments. We compare several models: “baseline”, “unary” and
“grid” models. “baseline” is a model with no learning and we set parameters 𝑑𝐴 equal
to zeros, “unary” corresponds to groups of size one (independent but not identically
distributed variables), and “grid” corresponds to groups of size one and two in a grid
manner.

method baseline unary grid
c. MAP 22.33 ± 0.02 22.32 ± 0.02 26.16 ± 0.02
MAPΔ10 21.95 ± 0.01 21.95 ± 0.01 25.36 ± 0.02
MAPΔ1 22.32 ± 0.02 22.31 ± 0.02 26.16 ± 0.02
MMSE 22.31 ± 0.02 22.30 ± 0.01 25.99 ± 0.01
Lhood 356.4 355.7 253.5

Table 4.2: Primal approach.

Second set of experiments. The model “tree” corresponds to groups of size one
and two that represent the wavelet quad-tree dependencies of two-dimensional Haar

61

wavelets.

method baseline unary grid
c. MAP 22.33 ± 0.02 24.96 ± 0.01 24.66 ± 0.01
MAPΔ10 21.98 ± 0.01 24.63 ± 0.08 24.44 ± 0.05
MAPΔ1 22.33 ± 0.02 25.02 ± 0.03 24.72 ± 0.03
MMSE 22.29 ± 0.03 25.17 ± 0.02 25.15 ± 0.02
Lhood 480 185.5 183.0

Table 4.3: Wavelets approach.

Summary: From Tables 4.2 and 4.3, we can see that we are able to learn the
structure. In the primal approach (directly on pixels), the Markov random field
(“grid”) performs best, while for the wavelet approach, unary potentials already
work best (with little gains in likelihood and denoising performance for the “tree”
approach). Note that MMSE sometimes outperform MAP, however it depends on the
discretization grid.

4.6 Conclusion
We proposed a new parameter learning approach in the non-trivial structured and

continuous setup. We demonstrated its performance for a denoising problem. We also
propose a way to perform approximate MMSE estimation which is the optimal decoder
for ℓ2-loss evaluation. There is still some space for further investigation: non-uniform
discretization grids, ℓ𝑝-looking norms such as done by Shervashidze and Bach [2015],
where more heavy-tailed priors were considered.

62

Chapter 5

Conclusion and Future Work

5.1 Summary of the thesis

In this thesis, we focused on efficient parameter learning methods specific to various
submodularity-based probabilistic models. We start our analysis with basic binary
models, and expand it to discrete and continuous cases by the end of the thesis.

As our first contribution, we consider the problem of the partition function approx-
imation for the specific log-supermodular distributions and provide some analysis. We
presented two existed bounds and have shown that the L-Field bound by Djolonga and
Krause [2014, 2015] is always inferior than the Gumbel bound by Hazan and Jaakkola
[2012]. Then, we investigate the ability of these two approaches to perform approxi-
mate parameter learning under the maximum likelihood framework, and demonstrated
that L-Field bound leads to a degenerate solution under linear parametrization, while
the Gumbel approach can be applied successfully.

Another part of the thesis covers the learning rate guarantees. We bring the problem
of parameter learning down to the optimization problem of a convex function and
tackle it by gradient descent techniques. Our novelty is to incorporate the stochastic
techniques over the Gumbel perturbations to accelerate the approach, thus, make it
significantly faster. We can do either stochastic over Gumbels either double-stochastic
over both data and Gumbels, if necessary.

Taking advantage of the probabilistic modelling, we also tackle the problem of
partially missing data and propose an approach for parameter learning treatment.
This extension does not conserve the convexity of the objective, but we use a local
optimum as a solution.

We highlight that we extended the base approach into such directions as high scale
and low levels of supervision. Besides that, we also covered various popular structured
losses and reformulated the MLE objective in accordance with the picked loss function.

And the last part of the thesis contributes to the possible structure learning
problem and sparsity-inducing solutions of the signal decoding problems. In this part
we also move away from standard MAP inference solution and propose to deal with
appropriate for squared loss MMSE approximation.

63

5.2 Perspectives
There are several possible directions that can be a prolongation of this work.

— Recently log-supermodular models with higher order potentials are gaining atten-
tion (Zhang et al. [2015], Tschiatschek et al. [2016]). They possibly can be modeled
and tackled by our approach.

— Another attractive field is to consider an application of the other submodular
functions with feasible MAP solvers besides graphcuts, e.g., matching (Taskar
et al. [2005]). And in this framework we also can consider models, where MAP
inference can be solved approximately, e.g., solvers based on linear programming
relaxations (Sontag et al. [2008]).

— We can also try to tackle a dictionary learning problem altogether with prior
learning in a expectation-maximization way (Mairal et al. [2009]). This can give
promising results.

— For the continuous distribution support our treatment is still limited and this can
be extended for wiser non-uniform grid approximations, as long as Monte Carlo
integration.

— Even larger-scale application can be considered if we see our approach as a last
layer of a neural network (Goodfellow et al. [2016]). We can also possibly achieve
better accuracy, if we incorporate neural networks during the feature engineering
process.

— We could incorporate non-convex optimization approaches for parameter learning
in the unsupervised case.

64

Bibliography

F. Bach. Structured sparsity-inducing norms through submodular functions. In
Advances in Neural Information Processing Systems, pages 118–126, 2010.

F. Bach. Learning with submodular functions: a convex optimization perspective.
Foundations and Trends in Machine Learning, 6(2-3):145 – 373, 2013.

F. Bach. Submodular functions: from discrete to continuous domains. Mathematical
Programming, pages 1–41, 2016.

F. Bach, D. Heckerman, and E. Horvitz. Considering cost asymmetry in learning
classifiers. Journal of Machine Learning Research (JMLR), 7:1713–1741, 2006.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through convex
optimization. Statistical Science, 27(4):450–468, 2012.

G. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V. N. Vish-
wanathan. Predicting Structured Data. The MIT Press, 2007.

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive
sensing. IEEE Transactions on Information Theory, 56(4):1982–2001, 2010.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

E. Borenstein, E. Sharon, and S. Ullman. Combining top-down and bottom-up
segmentation. In Proc. ECCV, 2004.

E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Applied Mathe-
matics (DAM), 123(1):155–225, 2002.

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 26(9):1124–1137, 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23
(11):1222–1239, 2001.

S. S. Chen, D. L Donoho, and M. A Saunders. Atomic decomposition by basis pursuit.
SIAM Review, 43(1):129–159, 2001.

65

M. Davies and R. Gribonval. Restricted isometry constants where ℓ𝑝 sparse recovery
can fail for 0 < 𝑝 ≤ 1. IEEE Transactions on Information Theory, 55(5):2203–2214,
2009.

J. Djolonga and A. Krause. From MAP to Marginals: Variational Inference in Bayesian
Submodular Models. In Adv. NIPS, 2014.

J. Djolonga and A. Krause. Scalable Variational Inference in Log-supermodular Models.
In Proc. ICML, 2015.

A. Doucet, N. De Freitas, and N. Gordon. An introduction to sequential monte carlo
methods. In Sequential Monte Carlo methods in practice, pages 3–14. Springer,
2001.

M. El Halabi, F. Bach, and V. Cevher. Combinatorial penalties: Which structures
are preserved by convex relaxations? In International Conference on Artificial
Intelligence and Statistics, pages 1551–1560, 2018.

S. Fujishige. Submodular Functions and Optimization. Annals of discrete mathematics.
Elsevier, 2005.

R. B. Girshick, P. F. Felzenszwalb, and D. A. Mcallester. Object detection with
grammar models. In Adv. NIPS, 2011.

D. Golovin and A. Krause. Adaptive Submodularity: Theory and Applications in
Active Learning and Stochastic Optimization. Journal of Artificial Intelligence
Research, 42:427–486, 2011.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

R. Gribonval. Should penalized least squares regression be interpreted as maximum a
posteriori estimation? IEEE Transactions on Signal Processing, 59(5):2405–2410,
2011.

H. Groenevelt. Two algorithms for maximizing a separable concave function over
a polymatroid feasible region. European Journal of Operational Research, 54(2):
227–236, 1991.

J. M Hammersley and P. Clifford. Markov fields on finite graphs and lattices. 1971.

T. Hazan and T. Jaakkola. On the partition function and random maximum a-
posteriori perturbations. In Proc. ICML, 2012.

T. Hazan, S. Maji, J. Keshet, and T. Jaakkola. Learning efficient random maximum
a-posteriori predictors with non-decomposable loss functions. In Adv. NIPS, 2013.

L. He and L. Carin. Exploiting structure in wavelet-based bayesian compressive
sensing. IEEE Transactions on Signal Processing, 57(9):3488–3497, 2009.

66

J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. Journal of
Machine Learning Research, 12(Nov):3371–3412, 2011.

H. Ishikawa. Exact optimization for markov random fields with convex priors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(10):1333–1336, 2003.

E. Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31(1):
253–258, 1925.

L. Jacob, G. Obozinski, and J. Vert. Group lasso with overlap and graph lasso. In
Proceedings of the 26th annual international conference on machine learning, pages
433–440. ACM, 2009.

M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM Journal on Computing, 22(5):1087–1116, 1993.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to
variational methods for graphical models. Machine Learning, 37(2):183–233, 1999.

S. Kakade, Y. W. Teh, and S. T. Roweis. An alternate objective function for markovian
fields. In Proc. ICML, 2002.

S. Karlin and Y. Rinott. Classes of orderings of measures and related correlation
inequalities. i. multivariate totally positive distributions. Journal of Multivariate
Analysis, 10(4):467–498, 1980.

S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with
structured sparsity. In ICML, pages 543–550, 2010.

P. Kohli and P. H. Torr. Dynamic graph cuts for efficient inference in markov random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
29(12):2079–2088, 2007.

P. Kohli, L. Ladicky, and P. H. S. Torr. Robust higher order potentials for enforcing
label consistency. International Journal of Computer Vision, 82(3):302–324, 2009.

A. Kolesnikov, M. Guillaumin, V. Ferrari, and C. H. Lampert. Closed-form training of
conditional random fields for large scale image segmentation. In Proc. ECCV, 2014.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization.
IEEE transactions on pattern analysis and machine intelligence, 28(10):1568–1583,
2006.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
26(2):147–159, 2004.

N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond
via dual decomposition. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 33(3):531–552, 2011.

67

A. Krause and D. Golovin. Submodular function maximization. In Tractability:
Practical Approaches to Hard Problems. Cambridge University Press, February 2014.

M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models.
In Adv. NIPS, 2010.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-
Wolfe optimization for structural SVMs. In Proc. ICML, 2013.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. ICML, 2001.

S. L. Lauritzen. Graphical models, volume 17. Clarendon Press, 1996.

H. Lin and J. Bilmes. A class of submodular functions for document summarization.
In Proc. NAACL/HLT, 2011.

L. Lovász. Submodular functions and convexity. In Mathematical Programming The
State of the Art, pages 235–257. Springer, 1983.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse
coding. In Proceedings of the 26th annual international conference on machine
learning, pages 689–696. ACM, 2009.

K. P. Murphy and M. I. Weiss, Y.and Jordan. Loopy belief propagation for approxi-
mate inference: An empirical study. In Proceedings of the Fifteenth conference on
Uncertainty in artificial intelligence, pages 467–475. Morgan Kaufmann Publishers
Inc., 1999.

K.P. Murphy. Machine learning : a probabilistic perspective. MIT Press, 2013.

S. Nadarajah and S. Kotz. A generalized logistic distribution. International Journal
of Mathematics and Mathematical Sciences, 19:3169 – 3174, 2005.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009.

S. Nowozin and C. H. Lampert. Structured learning and prediction in computer vision.
Foundations and Trends in Computer Graphics and Vision, 6(3–4):185–365, 2011.

G. Obozinski and F. Bach. Convex relaxation for combinatorial penalties. arXiv
preprint arXiv:1205.1240, 2012.

A. Osokin and D. P. Vetrov. Submodular relaxation for inference in Markov random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (TRAMI),
37(7):1347–1359, 2015.

68

A. Osokin, J.-B. Alayrac, I. Lukasewitz, P. K. Dokania, and S. Lacoste-Julien. Minding
the gaps for block Frank-Wolfe optimization of structured SVMs. In Proc. ICML,
2016.

G. Papandreou and A. Yuille. Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models. In Proc. ICCV, 2011.

S. Parise and M. Welling. Learning in Markov random fields: an empirical study. In
Joint Statistical Meeting (JSM), 2005.

P. Pletscher, S. Nowozin, P. Kohli, and C. Rother. Putting MAP back on the map. In
33rd Annual Symposium of the German Association for Pattern Recognition, 2011.

R. B. Potts and C. Domb. Some generalized order-disorder transformations. Proceedings
of the Cambridge Philosophical Society, 48:106, 1952.

C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2013.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated
sub-gradient solver for svm. Mathematical Programming, 127(1):3–30, 2011.

N. Shervashidze and F. Bach. Learning the structure for structured sparsity. IEEE
Transactions on Signal Processing, 63(18):4894–4902, 2015.

T. Shpakova and F. Bach. Parameter learning for log-supermodular distributions. In
Adv. NIPS, 2016.

T. Shpakova, F. Bach, and A. Osokin. Marginal weighted maximum log-likelihood
for efficient learning of perturb-and-map models. In Proc. Uncertainty in Artificial
Intelligence (UAI), 2018.

N. A. Smith. Linguistic structure prediction. Synthesis Lectures on Human Language
Technologies, 4(2):1–274, 2011.

D. Sontag, T. Meltzer, A. Globerson, Y. Weiss, and T. Jaakkola. Tightening LP
relaxations for MAP using message-passing. In Proceedings of the 24th Conference
on Uncertainty in Artificial Intelligence (UAI), pages 503–510, 2008.

C. Sutton and A. McCallum. Piecewise training of undirected models. In Proceedings
of the 21st Conference on Uncertainty in Artificial Intelligence (UAI), pages 568–575,
2005.

C. Sutton and A. McCallum. Piecewise pseudolikelihood for efficient training of
conditional random fields. In Proc. ICML, 2007.

R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tap-
pen, and C. Rother. A comparative study of energy minimization methods for
markov random fields with smoothness-based priors. IEEE transactions on pattern
analysis and machine intelligence, 30(6):1068–1080, 2008.

69

M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph cuts. In Proc.
ECCV, 2008.

D. Tarlow, R.P. Adams, and R.S. Zemel. Randomized optimum models for structured
prediction. In Proc. AISTATS, 2012.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. 2003.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction
models: A large margin approach. In Proceedings of the 22nd international conference
on Machine learning, pages 896–903. ACM, 2005.

S. Tschiatschek, J. Djolonga, and A. Krause. Learning probabilistic submodular
diversity models via noise contrastive estimation. In Proc. AISTATS, 2016.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research (JMLR), 6:1453–1484, 2005.

S.V.N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy. Accel-
erated training of conditional random fields with stochastic gradient methods. In
Proc. ICML, 2006.

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, IT-13(2):260–269,
1967.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305,
2008a.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends R○ in Machine Learning, 1(1–2):1–305,
2008b.

Y. Weiss. Comparing the mean field method and belief propagation for approximate
inference in MRFs. Advanced Mean Field Methods: Theory and Practice, pages
229–240, 2001.

W. Wiegerinck and T. Heskes. Fractional belief propagation. In Advances in Neural
Information Processing Systems, pages 438–445, 2003.

R. J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Transactions on information
theory, 51(7):2282–2312, 2005.

70

C.-N. J. Yu and T. Joachims. Learning structural SVMs with latent variables. In
Proc. ICML, 2009.

J. Yu and M. Blaschko. Learning submodular losses with the lovász hinge. In
International Conference on Machine Learning, pages 1623–1631, 2015.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(1):49–67, 2006.

A. L. Yuille and A. Rangarajan. The concave-convex procedure. In Adv. NIPS, 2003.

J. Zhang, J. Djolonga, and A. Krause. Higher-order inference for multi-class log-
supermodular models. In Proc. ICCV, 2015.

P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through
composite absolute penalties. Department of Statistics, UC Berkeley, Tech. Rep,
703, 2006.

71

72

List of Figures

1-1 Undirected and directed graphical models on the same set of nodes 𝑉 . 4
1-2 Example of a Linear-chain CRF. 4
1-3 Conditionally independent subsets 𝑋𝐴 and 𝑋𝐵 given the subset 𝑋𝐶 . . 5
1-4 Grid-structured CRF for image segmentation task. 7
1-5 An example of the conditional probability calculation. The dark nodes

correspond to the nodes on which we condition, light-shaded nodes are
the nodes we marginalize over, and the white nodes are the nodes we
want to calculate conditional probability for. 8

1-6 Hypercube representation for the ground set 𝑉 = {𝑎, 𝑏, 𝑐}. 11
1-7 Gumbel distribution cdf and pdf. 17

2-1 Comparison of log-partition function bounds for different values of 𝑐.
See text for details. 28

2-2 Denoising of a horse image from the Weizmann horse database (Boren-
stein et al. [2004]). 32

3-1 Samples from OCR dataset (Taskar et al. [2003]). 48
3-2 Example of the marginal and MAP inference for an image from the

HorseSeg database (Kolesnikov et al. [2014]). 50

4-1 Classical boat image for image denoising. 60

73

74

List of Tables

2.1 Supervised denoising results. 33
2.2 Unsupervised denoising results. Level of noise 𝜋 is fixed. 33
2.3 Unsupervised denoising results. Level of noise 𝜋 is not fixed. 33

3.1 Variants of the Objective Loss ℓ(𝑤, 𝑥, 𝑦) Function. {𝜃𝑑(𝑦𝑑)}𝐷
𝑑=1 are the

weights of the weighted Hamming loss, {𝑞𝑑(𝑦𝑑)}𝐷
𝑑=1 are the marginal

probabilities 𝑃 (𝑦𝑑|𝑥). 41
3.2 OCR Dataset. Performance Comparison. 48
3.3 HorseSeg Dataset. Performance Comparison. 49
3.4 Reduced HorseSeg Dataset. Performance Comparison. 51
3.5 Execution time comparison in seconds. HorseSeg small dataset. . . . 51

4.1 Denoising results. Synthetic data. 60
4.2 Primal approach. 61
4.3 Wavelets approach. 62

75

76

77

Résumé
Les modèles graphiques probabilistes codent les dépen-
dances entre les variables aléatoires et l’estimation des
paramètres fait partie du traitement des modèles proba-
bilistes. Ces modèles ont été utilisés dans des domaines
tels que la vision par ordinateur, le traitement du signal,
le traitement du langage naturel. Nous nous sommes
concentrés sur les modèles log-supermodulaires, qui
font partie des distributions familiales exponentielles,
où la fonction potentielle est la fonction négative d’une
fonction sous-modulaire. Malgré la restriction du mo-
dèle, est couvre une grande partie des familles expo-
nentielles, car il ya beaucoup de fonctions qui sont sous-
modulaires, par exemple, les coupes graphiques, entro-
pie et autres. Le traitement probabiliste est habituelle-
ment difficile, mais nous avons été en mesure de relever
certains des défis au moins approximativement.
Nous exploitons les idées perturb-and-MAP pour l’ap-
proximation des fonctions de partition et l’apprentis-
sage efficace des paramètres. Nous proposons une mé-
thode d’estimation et d’inférence approximative des pa-
ramètres pour les modèles où l’apprentissage et l’infé-
rence exacts sont difficiles à gérer dans le cas général.
La première partie de la thèse est consacrée aux
garanties théoriques. Étant donné les modèles log-
supermodulaires, nous tirons parti de la propriété de mi-
nimisation efficace liée à la sous-modularité. En intro-
duisant et en comparant deux limites supérieures exis-
tantes de la fonction de partition, nous démontrons leur
relation en prouvant un résultat théorique. Nous intro-
duisons une approche pour les données manquantes
comme sous-routine naturelle de la modélisation proba-
biliste. Il semble que nous puissions appliquer une tech-
nique stochastique à l’approche d’approximation par per-
turbation et carte proposée tout en maintenant la conver-
gence tout en la rendant plus rapide dans la pratique.
Une autre contribution est une généralisation efficace et
évolutive de l’approche d’apprentissage des paramètres.
Nous développons des algorithmes pour effectuer l’esti-
mation des paramètres pour diverses fonctions de perte,
différents niveaux de supervision et nous travaillons sur
l’évolutivité. Nous incorporons également certaines tech-
niques d’accélération.
Comme troisième contribution, nous abordons le pro-
blème général de l’apprentissage des signaux continus.
Nous nous concentrons sur les représentations de mo-
dèles graphiques clairsemés et nous considérons les ré-
gularisateurs à faible densité comme des densités loga-
rithmiques négatives pour la distribution antérieure. Les
techniques de débruitage proposées ne nécessitent pas
le choix d’un redresseur précis à l’avance. Pour effec-
tuer un apprentissage de représentation clairsemée, la
communauté du traitement du signal utilise souvent des
pertes symétriques telles que `1, mais nous proposons
de paramétrer la perte et d’apprendre le poids de chaque
composante de perte à partir des données.
Nous avons effectué des expériences informatiques pour
illustrer l’idée générale ou la comparer à des repères
existants, et démontrer sa performance dans la pratique.

Abstract
Probabilistic graphical models encode hidden dependen-
cies between random variables for data modelling. Pa-
rameter estimation is a crucial part of handling such prob-
abilistic models. These very general models have been
used in plenty of fields such as computer vision, signal
processing, natural language processing. We mostly fo-
cused on log-supermodular models, which is a specific
part of exponential family distributions, where the poten-
tial function is assumed to be the negative of a submodu-
lar function. This property is handy for maximum a pos-
teriori and parameter learning estimations. Despite the
apparent restriction of the model, is covers a broad part
of exponential families, since there are plenty of functions
that are submodular, e.g., graph cuts, entropy and oth-
ers. Probabilistic treatment is challenging for most mod-
els, however we were able to tackle some of the chal-
lenges at least approximately.
In this manuscript, we exploit perturb-and-MAP ideas for
partition function approximation and efficient parameter
learning. Moreover, the problem can be also interpreted
as a structure learning task, where each estimated pa-
rameter or weight represents the importance of the cor-
responding term. We propose a way of approximate pa-
rameter estimation and inference for models where exact
learning and inference is intractable in general case due
to the partition function calculation complexity.
The first part of the thesis is dedicated to theoretical guar-
antees. Given the log-supermodular models, we take
advantage of the efficient minimization property related
to submodularity. Introducing and comparing two exist-
ing upper bounds of the partition function, we are able to
demonstrate their relation by proving a theoretical result.
We introduce an approach for missing data as a natu-
ral subroutine of probabilistic modelling. It appears that
we can apply a stochastic technique over the proposed
perturb-and-map approximation approach and still main-
tain convergence while make it faster in practice.
The second main contribution is an efficient and scalable
generalization of the parameter learning approach. In
this section we develop new algorithms to perform pa-
rameter estimation for various loss functions, different
levels of supervision and we also work on the scalabil-
ity. In particular, working with mostly graph cuts, we were
able to incorporate various acceleration techniques.
As a third contribution we deal with the general problem
of learning continuous signals. We focus on the sparse
graphical models representations. We consider common
sparsity-inducing regularizers as negative log-densities
for the prior distribution. The proposed denoising tech-
niques do not require choosing any precise regularizer
in advance. To perform sparse representation learning,
the signal processing community often uses symmetric
losses such as `1, but we propose to parameterize the
loss and learn the weight of each loss component from
the data. This is feasible via an approach which is similar
to what we proposed in the previous sections.
For all aspects of the parameter estimation mentioned
above we performed computational experiments to illus-
trate the idea or compare with existing benchmarks, and
demonstrate its performance in practice.

	Introduction
	Probabilistic Graphical Models
	Markov Random Fields
	Conditional Random Fields
	Conditional Independence
	Model Parameterization
	Examples
	Probabilistic Inference

	Submodular Functions and Log-supermodular Models
	Submodularity
	Submodular Function Minimization
	Examples of Submodular Functions
	Log-supermodular Distributions
	Examples of Log-supermodular Distributions

	Parameter Learning and Inference
	Maximum Likelihood Estimation
	Optimization
	Missing Data Treatment
	Conditional Maximum Likelihood

	Partition Function Approximation
	L-Field bound
	Gumbel bound

	Parameter Learning for Log-supermodular Distributions
	Introduction
	Contributions
	Submodular functions and log-supermodular models
	Submodular functions
	Log-supermodular distributions
	Examples

	Upper-bounds on the log-partition function
	Base polytope relaxation with L-Field (djolonga2014MAP)
	``Pertub-and-MAP'' with logistic distributions
	Comparison of bounds
	From bounds to approximate inference

	Parameter learning through maximum likelihood
	Learning with the L-field approximation
	Learning with the logistic approximation with stochastic gradients
	Extension to conditional maximum likelihood
	Missing data through maximum likelihood

	Experiments
	Conclusion

	Marginal Weighted Maximum Log-likelihood for Efficient Learning of Perturb-and-Map Models
	Introduction
	Contributions
	Perturb-and-MAP
	Gumbel perturbations
	Parameter learning and Inference
	Marginal probability estimation

	Marginal Likelihood
	Hamming loss
	Weighted Hamming loss
	Scalable algorithms for graph cuts

	Parameter Learning in the Semisupervised Setup
	Experiments
	OCR dataset
	HorseSeg dataset
	Experiments analysis

	Conclusion

	Hyper-parameter Learning for Sparse Structured Probabilistic Models
	Introduction
	Contributions
	Log-supermodular Distributions
	Supermodular and Submodular Functions
	Discrete Log-supermodular Distributions
	Continuous Log-supermodular Distributions
	Log-partition Function for Bayesian Learning

	Perturb-and-MAP
	Extension to the Continuous Case
	Decoding with MMSE

	Experiments
	Synthetic Data. Experiments on decoding
	Flow-based priors
	Real Data. Experiments on the parameter learning and decoding.

	Conclusion

	Conclusion and Future Work
	Summary of the thesis
	Perspectives

