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Résumé

Les systèmes embarqués sont de plus en plus déployés, comme par exemple
les objets connectés ou les systèmes de contrôle critique. Leur sécurité de-
vient une préoccupation importante soit parce qu’ils contrôlent des systèmes
sensibles ou parce qu’ils peuvent être exploités pour mettre en oeuvre des
attaques à grande échelle.

L’une des spécificités majeures des systèmes embarqués reste les inter-
actions fréquentes entre le micro-logiciel et les périphériques matériels qui
font l’interface avec le monde extérieur. Ces interactions sont souvent la
source de défauts de conception aussi appelés bugs. Une manière commune
de tester ces systèmes est l’analyse dynamique. Cependant, les approches
existantes se concentrent généralement sur les logiciels dont les sources ne
sont pas disponibles ou testent les composants séparemment les uns des
autres comme le code binaire, le code source écrit en C, ou les périphériques
matériels. Atteindre l’analyse à l’échelle du système est nécessaire pour
tester ces systèmes méticuleusement. Les principaux défis dans ce domaine
sont la limitation des performances, les différences sémantiques et le niveau
de contrôle/visibilité sur les périphériques matériels.

Dans cette thèse, nous nous attaquons à ces trois défis tout en consid-
érant le point de vue du concepteur. Pour commencer, la thèse offre une
discussion générale sur l’analyse de système sur puce à l’échelle du sys-
tème où nous pointons les défis et soulignons les directions de recherche.
Pour palier la limitation des performances lors des interactions avec les
périphériques (i.e., test avec le matériel dans la boucle), nous proposons
Steroids, une sonde USB3 haute performance. Ensuite, nous avons conçu
et développé Inception, une méthode complète pour tester le code-source des
micro-logiciels à l’échelle du système. Inception supporte différent niveaux
de sémantique (e.g., assembleur et langage C) qui sont souvent combinés
lors de la programmation de micro-logiciel. Troisièmement, nous proposons
HardSnap une solution pour générer des instantanés de l’ensemble du sys-
tème testé, incluant aussi bien l’état du matériel que celui du logiciel.





Abstract

Connected embedded systems are increasingly widely deployed, for example,
in IoT devices or critical control systems. Their security is becoming a
serious concern, either because they control some sensitive system or because
they can be massively exploited to mount large scale attacks.

One of the specificities of embedded systems is the high interactions
between the firmware and the hardware peripherals that generally inter-
face them with the real world. These interactions are often the source of
critical bugs. One common way of testing such systems is dynamic analy-
sis. However, current approaches generally focus on closed-source firmware
and rely on testing components separately such as binary code, C-based
code, or hardware peripherals. Achieving system-level testing is necessary
to thoroughly test these systems. Major challenges in this topic include per-
formance limitations, semantics differences, and limited control/visibility on
hardware peripherals.

In this thesis, we tackle these three main challenges for system-level dy-
namic analysis of embedded systems while taking the point of view of a
designer. To begin with, this thesis offers a general discussion on achieving
a system-wide analysis of System-on-Chip (SoC) where we point out chal-
lenges and highlight research directions. To overcome performance limita-
tions when interacting with peripherals (i.e., hardware-in-the-loop testing),
we propose Steroids, a USB3-based high-performance low-latency system
probe. Second, we designed and developed Inception, a complete solu-
tion for testing system-wide firmware programs source-code. Inception

supports different semantics levels (e.g., assembly and C), which are often
combined when writing the firmware program. Third, we propose a solution
for snapshotting the entire system under test, including both hardware and
software state. We implement this solution in HardSnap, a system that
enables system restoration at a precise point for testing multiple execution
paths concurrently while preserving analysis consistency.
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Computer systems are ever more present in all aspects of our modern life.
Some compelling examples of such products are cars, personal computers,
home appliances, or smartphones. These systems range from the well-known
general-purpose computing devices (e.g., personal computer, smartphone, or
server) to purpose-built computing devices, so called embedded system.

Historically, embedded systems have been closely linked to the commod-
ity they embedded. They are designed for specific purposes. For instance,
the micro-controller in a washing machine that tunes motors speed up. Em-
bedded systems are also an ubiquitous blocks of general-purpose-computer.
They handle interactions with mechanical (e.g., hard drive) or electronic
systems (e.g., optical drive, or image sensor).

However, embedded systems are now becoming ever more complex, con-
nected and often attached to the Internet network. This forms the so called
"Internet of Things" where today’s objects are connected to online services
through the Internet network. From connected cars to home appliances,
and wearables, there is a considerable number of computer systems that
emerge in our lifes. It is difficult to precisely quantify the number of de-
ployed connected devices. However, a reference could be the forecast dataset
published by Gartner which tracks connected devices in the following mar-
kets: healthcare, smart buildings, smart cities, retail, agriculture, utilities,
transportation, manufacturing, automotive. According to Gartner [48], 4.81
billions of connected devices are on the market in august 2019. In addition,
it forecasts 5.8 billions of endpoints in 2020 that represents a 21% increase
from 2019.

The semiconductor market is growing with tremendous volumes making
it attractive but also extremely competitive with short time-to-market. As
repeatedly proved by the recent litterature, this strain generally lets little
room for testing. In addition, the growing complexity of embedded systems
makes security analysis challenging. These systems are very often based
on micro-controllers running firmware programs that are often written in
programming languages that do not protect from memory corruptions (e.g.,
C/C++, assembly).

The consequence of a vulnerability can be disastrous. First, embedded
systems often control a physical or electrical systems in the real world. An
unexpected behavior may cause human harm (e.g., industrial robotic arm)
or impact the security of real-world infrastructure (e.g., traffic light system).
Second, they may collect personal information issued from sensors or inter-
actions with other connected devices, and therefore may reveal individual
private life such as habits, location, interests or even credit card numbers.
Third, vulnerable connected devices that interact with each other enabling
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large scale attacks.
In addition, fixing a vulnerability on embedded systems is not always

possible. It is rare to find devices with an automated remote update mech-
anism enabling security updates. Furthermore, some parts of these systems
are hardwired, and it requires hardware replacement to fix bugs. This is
the case for any silicon-based hardware components and firmware stored on
mask ROM. Fixing these parts requires costly re-fabrication as it involves
a new wafer mask set that usually costs more than 1× 105 $. As a conse-
quence, the economical impact for the manufacturer or product owner can
be dramatic and may affect its brand image. One compelling example of
such issue is the recent vulnerability discovered in the Nvidia Tegra chips
embedded in the Nintendo Switch [80]. This security issue is a memory cor-
ruption present in the mask ROM bootloader. Nintendo could only correct
this issue in new versions of the console equiped with an updated system on
chip. And had no choice other than leaving the vulnerability exploitable in
all previously manufactured devices.

1.1 Context

In this thesis, we take the point of view of a chip manufacturer who is
interested in testing chips before manufacturing. For the sake of clarity,
we provide a description of this process. Generally, the design of the core
is provided by a third-party (e.g., ARM Architecture). Then, this design
is extended with custom and re-utilizable hardware blocks also called IP
blocks. These blocks form the hardware peripherals that offer a gate to
the real world. The level of customization for these blocks can be impor-
tant especially for Application-Specific Integrated Circuit (ASIC). In this
case, IP blocks are customized to fit specific needs. During the chip de-
velopment cycle, hardware and software are built concurrently to fit short
time-to-market. For this reason, chip manufacturers generally test firmware
programs and hardware peripherals separately on an emulation or simula-
tion platform. However, testing components separately is often inefficient
for detecting bugs that are due to the interactions of different components
such as hardware and firmware. For this reason, performing system-wide
testing is crucial but challenging due to the short time-to-market and the
lack of dedicated tools.

For all these reasons, there is a need for security testing tools to thor-
oughly test embedded systems software in pre-production.
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1.2 Problem Statement

The growing complexity of embedded systems has been possible with the
deployment of chip that mixes firmware programs and hardware periph-
erals. This latter offer either an interface to the real world, accelerated
computation or custom functionalities. By analogy, hardware peripherals
are what software libraries are for desktop applications. They may have
intricate semantics and complex interactions with the firmware. Further-
more, these interactions may be the source of critical bugs that may have
dramatic impacts in the real world.

In computer science, previous work highlighted promising perspectives
for testing complex systems using dynamic analysis techniques ([39], [93],
[98], [53], [101], [87], [58], [31], [90]). Research in this field is hindered by
a lack of methods for applying these approaches on embedded systems and
even more for source-based analysis. Furthermore, most of those solutions
address binary only testing. In particular, they often rely on closed-source
only testing and limit the analysis to some components of the systems.

In this thesis, we try to answer this question: How much effort do we
need to apply system-wide dynamic analysis to embedded systems while
considering the point of view of a chip manifacturer?

1.3 Thesis Outline

In Chapter 2 "State-of-the-Art", an overview of the state of the art in the
field of the source-based security analysis of embedded systems is presented;
in Chapter 3 "SoC Security Evaluation: Reflections on Methodology and
Tooling" we present a reflection on security analysis of embedded systems,
and we point out the main challenges that we seek to tackle in this the-
sis; in Chapter 4 "Steroids", a fast probe for optimizing existing dynamic
security analysis approaches; the work presented in Chapter 5 "Inception:
System-Wide Security Testing of Real-World Embedded Systems Software"
illustrates a novel approach to support real-world firmware program analysis
where in practice different semantics levels are mixed (e.g., inline assembly,
C/C++ and binary code); in Chapter 6 "HardSnap: Leveraging Hardware
Snapshotting for Embedded Systems Security Testing", we present a tech-
nique for snapshotting both firmware and hardware peripherals to enable
advanced dynamic analysis techniques without inconsistencies and with per-
formance in mind.

The thesis ends in Chapter 7 with the conclusions and future perspec-
tives.
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This chapter describes the background relevant to this thesis. To be-
gin with, we detail the threats and the risks that computing systems and
more specifically embedded systems face. Then, we define and explain what
are embedded systems and how they differ from the traditional desktop
computer. Thereafter, we discuss computer testing methods in general and
what challenges to overcome when applying these methods to embedded
systems. Finally, we present the state of the art on dynamic embedded
systems source-code analysis.

2.1 Threats and Risks

Nowadays, computer systems are ever more present in all aspects of our
modern life. The increasing complexity and connectivity make them more
exposed to attacks. After 40 years of history, the main fundamental root
cause of attacks remains memory corruption in software programs. The re-
cent MITRE [67] study shows up memory corruptions among the 3 most
widespread and critical weaknesses in software. According to [84], 50%
of discovered security bugs in Google Chrome, a popular web-browser
written in C/C++, are memory corruptions (i.e., use-after-free, buffer over-
flow, uninitialized memory). Even if memory-safe languages are available,
memory-unsafe languages such as C remains very popular. For instance,
the C-language is commonly used for programming software such as Op-
erating Systems (e.g., Linux, Windows, Mac OS, or Android) or payment
systems. Exploiting memory corruptions may lead to private information
theft, physical infrastructure outage (e.g., bank, health emergency systems),
real-world damage (e.g., traffic lights, robotic arms).

Embedded systems are no exception ([10],[11], [12], [13]). Firmware pro-
grams are often written with low-level programming languages (e.g., C,
C++, assembly) to handle low-level interactions with the hardware. These
languages lack memory safety mechanisms (e.g., types checking) and there-
fore, they frequently lead to memory corruptions. Although memory safe
languages have been used in the past for safety-critical systems ([92]) and
have been gaining popularity recently ([57, 43, 20, 23]). An overwhelming
part of the development of embedded systems is done as a mix of assembly
and C.

The consequences of such vulnerabilities can be disastrous. Since em-
bedded systems may drive mechanical systems in the real world, they may
cause human harm or damage physical infrastructures. For instance, the
Stuxnet [60] worm caused substantial damage to the nuclear program of
Iran. Vulnerability may also lead to considerable economic losses for the
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chip manufacturer, especially when fixing the vulnerability requires costly
re-fabrication [80].

There is therefore an important need for security testing tools to auto-
matically detect memory corruptions on firmware programs before produc-
tion.

2.2 Embedded Systems

Embedded systems are now as ubiquitous as the traditional personal com-
puter. The high spread of these systems is tightly coupled with the deploy-
ment of micro-controllers. These computer systems reduce the size, cost,
and power-consumption of design by embedding all the necessary compo-
nents to fulfill specific needs inside a single chip. The latter is also referred
to as a System-on-Chip. This approach differs from the traditional micro-
processor that depends on other external components to run (e.g., memory,
motherboard, Graphics Processing Unit) and is designed for genereral pur-
pose.

Embedded systems are heterogeneous systems with a wide variety of
architecture where the following components are generally customized: the
computer architecture bit widths, the presence of a data/instruction cache,
the Instruction Set Architecture, the peripherals, the memory protection
mechanisms, the memory size/type, the presence of a co-processor. In the
following, we present the two common key components of chip that are
mixed together to achieve specific tasks.

2.2.1 Firmware

Embedded systems are often software-driven and combine hardware periph-
erals and firmware programs. They are often purpose-built computers and
therefore involve a high level of customization for both software and hard-
ware. These systems may run a variety of software that can be divided
into three categories. We follow the classification from [70] where authors
identify three main classes of firmware in embedded devices.

• General-Purpose Operating Systems. These operating systems
are designed for versatility, and they can, therefore, address a large
variety of applications. Some prominent examples of general-purpose
OSs are Linux-based OSs such as Debian [1], Fedora [2], and Arch-
Linux [3]. Linux is well-spread because of its free-cost and customiza-
tion capability. However, such complex OSs generally requires impor-
tant resources such as memory, CPU time and power-consumption.
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Therefore, they are reserved to a powerful category of embedded de-
vices. Such operating systems introduce an abstraction layer mak-
ing running applications independent from the underlying hardware,
and they offer a testing environment relatively similar to desktop pro-
grams.

• Embedded Systems Operating Systems. To address time/space
constraints, custom operating systems have been developed (e.g. Vx-

Works [91], QNX [24], FreeRTOS [21]). Generally, these systems
provide an isolation layer between user-space and kernel space thanks
to a Memory Protection Unit (MPU) or a logical separation (i.e., con-
text switching). Commonly, embedded devices have the kernel code
and the applications code together in a monolithic block [94].

• Bare-metal Firmware. It is also common to find firmware programs
running in bare-metal without any Operating System. This approach
fits well when the firmware programs have strong time constraints or
space constraints. It is generally the case for boot-loader that aims at
high performance and low-memory footprint.

2.2.2 Peripherals

To meet specific requirements, system-on-chip blend software and hardware
peripherals together. Such peripherals are predesigned digital circuits, of-
ten referred to as Intellectual Property (IP) blocks, acquired from internal
sources or from third parties. Generally, a peripheral can be intern to the
chip or extern, in this case, the communication with an external peripheral
passes by a bus generally driven by an internal peripheral (e.g., SPI, I2C,
UART). There is a large number of IP, however, they are generally designed
for one of these three purposes.

• Hardware Accelerator. For performance and security purposes,
algorithms may be implemented using digital circuits. This solution
offers higher performance than full-software stack and it enables the
algorithm to be separated from the rest of the machine. This is gen-
erally the case for cryptographic blocks to avoid any leakage to the
software.

• Hardware Input/Output Peripherals. Peripherals are often a
gate to the real world where they sample information from sensors or
interact with actuators. Some compelling examples are temperature
sensors, gyroscopes, proximity sensors, and buttons. I/O peripherals
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may also offer a communication interface to drive external peripherals
(e.g., SPI, I2C, UART) or transfer data to another device (e.g., USB,
Bluetooth, or WiFi).

• Hardware Assisted Features. Finally, peripherals can be classified
as hardware support to software to optimize repeated operations (e.g.,
Direct Memory Access), or to enable event-based programming (e.g.,
interrupt controller).

2.2.3 Hardware/Software Interactions

Generally, firmware programs are interrupt-driven and interact with the un-
derlying hardware through different mechanisms. These interactions are fre-
quent, numerous and somewhat complex. In fact, peripherals may affect the
system’s memory (i.e., change the data-flow) and interrupt the firmware ex-
ecution (i.e., change the control-flow). Therefore, testing firmware programs
involves a clear understanding and consideration for these interactions. In
the following, we describe such mechanisms.

• Interrupt Signal. Firmware programs are event-driven software
where execution is frequently interrupted by interrupt signals emitted
by peripherals. These asynchronous signals notify the software that
a specific task is done. This concept is largely present in embedded
systems to reduce the power consumption (an inefficient alternative
would be polling) and to fit relatively strong time constraints for some
specific tasks.

• Memory Mapped Input/Output (MMIO). A common way for
the firmware to drive peripherals is to expose some registers to the
firmware address space. This mapped memory enables the firmware
to directly interact with internal peripherals.

• Port Mapped Input/Output (PMIO).An alternative to the MMIO
is the use of dedicated instructions enabling data transfer to periph-
erals registers through the processor.

• Direct Memory Access (DMA). One specific case of interaction
is the Direct Memory Access that is extremely prevalent in embedded
systems. It enables firmware/hardware to initiate a transfer of mem-
ory chunks between RAM and peripherals’ memory or the opposite.
It is often implemented by peripherals that require large data transfer
such as Ethernet, or WiFi cards.
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2.3 Static and Dynamic Analysis

Over the years, many security analysis techniques have been proposed.
These approaches can be divided into static and dynamic analyses.

Static analysis examines the computer program code without actually
executing it. It is possible to achieve a sound analysis. Sound means that
giving an expression the analyzer is able to verify that it is always true. In
other words, if the analysis claims that an expression X is true then it is
actually true. However, in practice such tools often approximate the tested
program environment, and are therefore often not complete in the sense that
they may report false positives, i.e., a violation that would never happen
in reality. In fact, completeness is such that if an expression X is true, the
analysis claims that X is true. However, static analysis is often used as a
context insensitive method, and is therefore often imprecise. In particular,
the program environment is generally modeled using an over-approximation
that significantly increases the false positive rate. Some values may not be
possible when executing the program under test.

On the contrary, the dynamic analysis methods execute the program
concretely in order to limit the execution to realistic values (i.e., context
sentitive approach). In fact, the tested program often interacts with its real
environment during the analysis. One of the most widely-deployed dynamic
analysis technique is certainly fuzzing. The term ‘fuzz‘ was introduced in
1990 by Milleret et al. [66]. Fuzzing runs a test program in a loop while feed-
ing this program with different grammatically or syntactically malformed
inputs at each iteration. Intuitively, the efficiency of fuzzing relies on the
quality of the test inputs. These inputs exercise part of the code and there-
fore affect the code-coverage and the accuracy of the vulnerability detec-
tion. Generating relevant test cases is challenging. One hindering factor
is the presence of complex control-flow (e.g., hashing functions on program
inputs) that requires a program inspection to explore the state space of
the program systematically. This systematic exploration of the program
under test is achieved by a technique called Dynamic Symbolic Execution
(DSE) [29] that basically reasons about the program execution to determine
which inputs cause which part of the program to be executed. For the sake
of clarity, we detail this technique later on. Before going further, we discuss
the analysis context and how it affects results.
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2.4 Binary and Source Analysis

The context under which the security analysis is performed varies a lot.
Many approaches base their analysis on binary code ([98], [69], [33], [22],
[90], [87], [53], [58], [101]). We emphasize the fact that in the wild many
firmware programs are only available in binary form. This approach is gen-
erally performed by third parties (e.g., audit, pentesters). However, during
the compilation process, most of the source-code semantics, which is cru-
cial for detecting bugs, is gone. This makes binary code analysis more
challenging. On the contrary, when the source code is available, the anal-
ysis benefits from the availability of high-level semantics (e.g., the types
of variables). This semantics information highly simplifies the detection of
memory corruptions. There are very few tools for source-based analysis
and even less for embedded systems ([39], [93]). Furthermore, the analysis
of firmware source-code is not straightforward. In fact, firmware programs
are often a mix between high-level programming languages (e.g., C/C++)
and low-level programming languages (e.g., inline assembly) to handle in-
teractions with the underlying hardware. In addition, it is common to
find binary dependencies (e.g., Board Support Package). Existing firmware
source-based analysis approaches either replace unsupported low-level code
with handwritten code [39] or stop their analysis when executing low-level
code [27].

2.5 Dynamic Symbolic Execution

Symbolic execution has been first introduced by J. C. King et al. [56]. This
technique is recently getting more popular due to the recent progress on
constraint solving. Symbolic execution automatically discovers which inputs
cause which parts of the program to be executed. As the name suggests, this
technique replaces concrete input values by symbolic input expressions. As
a result, the program execution outputs expressions as a function of these
symbolic inputs. These expressions are solved by a constraint solver that
generates concrete test cases.

Originally, symbolic execution was a static code examination where the
analyzer maps symbolic expressions for each variable [29]. However, this
approach has two main limitations. First, the programs may generate ex-
pressions that cannot be solved by the constraint solver. Second, it fails at
handling interactions with external functions. These two problems are alle-
viated by dynamic analysis techniques such as Execution-Generated Testing
introduced by [28] and followed by [27]. EGT executes the program oper-
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ations just like the original program and performs symbolic computation
only when one of the operands is symbolic. This reduces considerably the
size of the symbolic expressions and enables the computation of non-linear
arithmetic that would be difficult or expensive in a symbolic form. Fur-
thermore, EGT supports interactions with external functions by using the
concrete form.

In software testing, symbolic execution offers a high code coverage but
often suffers from the well-known path explosion. In fact, the number of
execution paths grows exponentially with the program size (i.e., conditional
branch instructions). This is exacerbated when the firmware environment
is abstracted ([39]). In particular, peripheral can be treated as a stateless
untrusted function where writes are ignored and reads return unconstrained
symbolic values. However, this leads to the explosion of the number of
possible paths and consider paths that are not actually feasible with the
real peripherals (false positives). Different strategies have been proposed to
limit this problem. Among them, Partial-Emulation that we present below.

2.6 Partial-Emulation Testing

Firmware programs are often designed to run in a resources-limited en-
vironment where time and size constraints are consequent. Furthermore,
low-power micro-controllers generally lack virtualization and memory isola-
tion making fault detection extremely difficult when running the program
on the real device [71]. To overcome this problem, recent work proposed
emulation ([52], [72], [31]). The firmware program is executed in a virtual
machine that is composed of an Instruction Set Architecture (ISA) emulator
and behavioral models for peripherals. This virtual-machine offers higher
introspection (i.e., visibility and control) on the firmware. However, pe-
ripherals may have intricate semantic making a behavioral model difficult
to write and error-prone. Furthermore, the interactions between firmware
and peripherals are essential for the analysis as vulnerabilities may source
from the specific interaction between firmware and hardware. In fact, the
interactions between firmware and hardware are numerous and frequent.
These interactions affect both firmware and hardware control-flow. A gen-
eral approach to this problem is partial-emulation. This method has been
first introduced by Avatar [98] and followed by [58] [93] [90] and consists
in re-hosting the firmware execution in a virtual machine while forwarding
interactions to the real device. In particular, when the firmware program ac-
cesses memory-mapped addresses, Inputs/Outputs are seamlessly forwarded
to the real device through a debugger. This method reduces the complex-



2.6. Partial-Emulation Testing 13

ity of the analysis at the price of completeness. However, in practice, the
latency introduced by the I/O forwarding is generally too important and
affects significantly the analysis performance.
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2.7 Challenges

In the previous part, our literature review points out that modern software
testing approaches merely focus on testing desktop applications. Few meth-
ods are designed for specifically testing the security of embedded systems
and even less for system-wide or source-based analysis. In this thesis, we
identify and tackle the three main challenges for applying modern dynamic
analysis methods to embedded systems. For the sake of clarity, we present
a comparison of existing firmware analysis techniques in Table 2.1. The
comparison of previous work highlights fundamental challenges that narrow
the dynamic analysis of firmware programs.

Low latency dynamic analysis for embedded systems. Partial-
emulation is commonly used for testing firmware programs. This technique
runs the firmware to test in a controlled environment such as an emulator.
However, we showed that hardware and firmware have complex interactions
that are difficult to abstract. For this reason, partial-emulation techniques
generally forward I/O to the real peripherals using a remote debugger. How-
ever, this communication is generally extremely slow making the analysis
impractical.

Firmware source-code semantic differences. Most existing tech-
niques focus on analyzing either binary code or source code but neither
considers realistic cases where the source-code contains inline assembly or
depends on closed-source binary libraries (e.g., Board Support Package). In
fact, as we will show in our study in Chapter 5, real-world programs often
mix C/C++ and inline assembly to interact with the underlying hardware.
Designing a hybrid analysis technique (i.e., binary and source together) is
necessary for achieving a system-wide analysis of real-world programs.

Controlling/observing both firmware/hardware peripherals. Gen-
erally, testing embedded systems involves a full-control and full-visibility
over the system under test. This enables to inspect the internal state of
the system in order to detect design flaw. However, achieving this level of
introspection is challenging for embedded systems that mix firmware and
peripherals. Existing methods face a trade-off between performance and
visibility/control.

2.8 Contributions

In this thesis, we tackle the main challenges research face to apply modern
source code security analysis techniques to embedded systems software. In
particular, we make the following contributions:
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• A reflection on System-on-Chip dynamic analysis where we point out
challenges and possible research directions.

• Steroids, a low-latency and high performance USB3-based Debugger.
Our solution overcomes the current performance limitation of dynamic
analysis techniques where the interactions with hardware pass through
a debugger device.

• Inception, a novel framework for system-wide dynamic analysis of
firmware programs. This tool is the first dynamic symbolic execution
engine that fully supports the security analysis of firmware programs
source code. We analyzed different widespread firmware programs and
observed that even when the source code is available, it is often a mix
of different programming languages having different semantics levels.

• HardSnap a technique for both hardware/software snapshots. This
novel method is relevant for many embedded systems dynamic analysis
tools that require system-level state manipulation. We implemented
this method on top of Inception and demonstrate the performance
enhancement during analysis. Furthermore, we identify and explain
possible inconsistencies when HardSnap is not enabled.

2.9 Publications

This thesis has led to three publications.

• Corteggiani Nassim, Giovanni Camurati, Marius Muench, Sebas-
tian Poeplau and Aurélien Francillon. "SoC Security Evaluation: Re-
flections on Methodology and Tooling." Invited paper submitted at
IEEE Design & Test. Chapter 3.

• Corteggiani Nassim, Giovanni Camurati and Aurélien Francillon.
"Inception: System-wide security testing of real-world embedded sys-
tems software." 27th USENIX Security Symposium (USENIX Security
18). 2018. Chapter 4 and 5.

• Corteggiani Nassim and Aurélien Francillon. "HardSnap: Leverag-
ing Hardware Snapshotting for Embedded Systems Security Testing."
2020 50th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN). IEEE, 2020. Chapter 6.
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The growing complexity of Systems-on-Chip challenges our ability to
ensure their correct operation, on which we rely for more and more sen-
sitive activities. Many security vulnerabilities appear in subtle and unex-
pected ways in the interaction among blocks and across layers, where cur-
rent verification tools fail at catching them or do not scale. For this reason,
security evaluation still heavily relies on manual review. Inspired by the
Hack@DAC19 contest, here bellow, described here below, we present our
reflections on this topic from a software and system security perspective.
We outline an approach that extends the dynamic analysis of firmware to
the hardware.

3.1 Introduction

One of the driving factors for the growth of the electronics industry is its
pervasiveness in other sectors. Embedded and connected devices are largely
present in physical systems, such as cars and industrial plants, where they
have a huge impact on safety. In addition, more and more sensitive activi-
ties, such as payments and voting, are carried out with digital equipment.

In this context, a major challenge is ensuring the correct operation of
an SoC and its software, while satisfying strict requirements in terms of
functionality, cost, and time to market. Abstraction and separation of lay-
ers, in particular hardware and software, are effective ways to cope with
complexity and make the design and verification of such systems possible.
However, many security vulnerabilities originate precisely from unexpected
interactions between layers and components.

On one side, traditional techniques fail at catching these cross-layer
problems, or do not scale to real-world designs. On the other side, iden-
tifying novel methodologies is hard because researchers often do not have
enough access to all the parts of the system. This is particularly true for
proprietary hardware micro-architectures. Hack@DAC is a security contest
designed to overcome this problem and stimulate research on the automa-
tion of security analysis. The contestants have to find software-controllable
hardware vulnerabilities in an open-source design, in which the organizers
have injected real-world security bugs.

Based on our experience at Hack@DAC19, in this chapter we present
our thoughts on SoC security testing from the point of view of software and
system security. We first review the typical goals as well as the constraints
of a security analysis (Section 3.2). Then we describe our methodology,
as applied to the two rounds of the Hack@DAC19 contest (Section 3.3).
Finally, we explore research opportunities to reduce or eliminate manual
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aspects in SoC security analysis and to benefit from synergies between the
hardware and the software testing communities (Section 3.4). We believe
that our background in software and system security gives us an interesting
perspective on the problem of hardware/software co-design.

3.2 Background

In this section, we describe the setup and the objectives of the security
evaluation before discussing our methodology in the next section.

3.2.1 Security evaluation of SoCs and their firmware

The goal of any security evaluation is to establish a system’s conformance to
a specification of security properties.1 In the context of SoCs, both hardware
and software play an important role.

Software typically abstracts from the low-level details of the hardware
it is running on. However, the validation of software against functional and
security specifications needs to violate this abstraction for several reasons.
First, an increasing number of security features relies on the interaction with
complex hardware mechanisms, which cannot be blindly trusted. Even small
hardware bugs may undermine the security of the software layers above.
Second, embedded software is often intimately connected with hardware
components such as the peripherals, and cannot be easily analyzed without
taking this relation into account.

On the hardware side, designers need to take software concerns into ac-
count. While the traditional verification and testing flow is mature and
guarantees a high level of functional correctness at the hardware level, con-
ventional techniques fail to capture the cross-component, cross-layer inter-
actions that may transform small hardware problems into catastrophic se-
curity flaws.

Bugs in the blocks that compose the memory interconnect are a typical
scenario. For example, unprivileged code may gain access to an encryption
key if a secure register is erroneously mapped to unprotected memory. Sim-
ilar problems can occur when address ranges overlap, or when a peripheral
with access to protected memory can be manipulated [41].

1In this chapter, we use the terms security analysis and security evaluation to refer to
the general process of investigating the level of security of a system, independently of the
techniques and specifications used (e.g., formal verification, simulation, FGPA emulation,
validation, dynamic analysis).
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In this chapter, we focus on a methodology that is targeted at finding
precisely those bugs that arise from cross-layer interplay between software
and hardware.

3.2.2 Analysis context

Security analysis may take place in different scenarios. Literature on em-
bedded software security tends to focus on the black-box case, in which
only the binary firmware (or the source at best) and the silicon device are
available, but the internals of the hardware are unknown. On the other
hand, chip manufacturers have access to the RTL code 2 of the hardware
design (provided that they do not use black-box IPs) but may not know the
software that will run on it. Vendors providing integrated solutions have
access to both firmware source code and hardware internals.

Likewise, the security specification of the system under test may or may
not be available. Its level of detail can vary greatly, and security properties
may be expressed in a formal or informal way. Ideally, system designers
have access to models of the system and its required properties at a high
level of abstraction. Finally, the goal of the analysis can vary from finding
individual violations of security properties (e.g., in an adversarial context
where a single vulnerability is sufficient to compromise a system) to the
quest of full validation, i.e., proving the absence of violations under all
circumstances.

In this chapter, we take the point of view of third party security an-
alysts who have access to an RTL description of the hardware, C source
code developed for it, and informal specifications of the expected security
properties. The goal of the analysis is to find as many security issues as pos-
sible in a limited amount of time, but the specification is not precise enough
(and the time is not sufficient) to allow for formal verification. Hack@DAC
provides an example of this setting for public research, as we explain in the
following.

3.2.3 SoC and firmware at Hack@DAC19

Hack@DAC is a security contest that simulates the task of security analysts
at a chip vendor under pressure to ship the product. Participants have to
find security vulnerabilities in an SoC, with a focus on bugs that can be ex-
ploited from software, called HardFails [41]. The 2019 edition was based on
Ariane, a 64-bit RISC-V processor that is able to boot Linux. The design

2Register Transfer Level (RTL) is a method for describing the behaviour of a micro-
electronic circuit.
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had been extended with additional features, such as a password-protected
JTAG debug port, an AES cryptographic engine, a secure ROM with se-
cure registers, a peripheral to select encryption keys, and access control for
mapped memory. The contestants had access to the RTL Verilog code, a
toolchain and a testbench to simulate the execution of C programs, and a
brief natural-language description of the security features of the system. For
the finals, the firmware with the APIs to access the peripherals in the in-
tended way was also available. In addition to any vulnerabilities that may
already have been present in the system, the organizers injected several
real-world vulnerabilities “donated” by hardware vendors.

3.3 Security evaluation methodology

In the following, we give a detailed description of the methodology we fol-
lowed to find bugs on the Hack@DAC platform.

3.3.1 Requirements on tooling

The preliminary step of any security analysis consists in choosing the right
tools for the investigation. In the given context, we formulated the following
requirements:

1. Tools must support RTL, C and hand-written assembly code (e.g.,
Ariane SoC bootloader). The system under test is made of different
blocks of hardware and software that interact with each other. These
interactions are sometimes complex and may lead to security issues
that expose the entire SoC. The trigger conditions associated to these
kinds of bugs require putting multiple components of the system in
a specific state, potentially involving firmware and various hardware
blocks. Therefore, analysis tools need to support both RTL analysis
and firmware execution.

2. We need an easy way to express security properties. Time constraints
and the vague specification forbid elaborate formulations of expected
behavior in a formal language.

3. Time is of the essence, so that we need to find bugs quickly. Given
a security property and the platform under test, the tool should de-
termine in a relatively short amount of time and with high confidence
whether the property holds.
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Tool C&RTL
sup-
port

Sufficiently
expres-
sive

Analysis
Com-
plexity

Set-Up
Time

FPGA Y Y Low Long
Verilator Y Y Low Short
Model Checking Y Y High Long
Theorem Prover N Y High Very Long
KLEE N Y High Short

Table 3.1: Non-exhaustive comparison of state-of-the-art analysis techniques
for SoC testing.

4. For the same reason, we need tools that are fast to set up. It is very
difficult to estimate the efficiency of any single tool on a given design
and security specification. Therefore, we chose to avoid tools that
require a significant set-up time and rather allow for combinations of
several tools.

3.3.2 Available tools

With these goals in mind, we compared available techniques; see Table 3.1.
It is important to remember that, due to time pressure, our goal is to
show the presence of security violations, not to prove their absence. The
latter is much more difficult because it needs to exhaustively reason about
all possible states of the system. Discovering individual vulnerabilities, in
contrast, is less time-consuming as we only need to find a single execution
state in which a security property is violated. The intuition is that by
iterating the process we approach a state that is indistinguishable from a
fully validated system.

We quickly excluded theorem provers and model checking for several
reasons. Both techniques generally assume deep knowledge of the system,
require significant time to set up and, most importantly, they make it hard
to express correctness properties over complex states, such as interactions
between multiple hardware blocks. Furthermore, model checking is affected
by the state-explosion problem, which we consider a severe obstacle when
reasoning about a system as complex as an SoC in limited time.

We like to use software as a means of describing behavior at a high
level of abstraction, which makes it easier to test security properties and
push the system in a specific state: instead of considering low-level inter-
actions in the electronic circuits, we focus on communication between logic
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blocks (e.g., AES engine, DMA, access control system) and use custom
firmware to find cases where specific security properties fail. We settled on
a software-centric workflow built around quick experiments with component
interaction, driven by software.

3.3.3 Methodology

Our methodology for analyzing the security of an SoC comprises three main
steps:

1. Security properties. A common challenge for all analysis techniques
is the need to describe the desired security properties. Ideally, testers
receive a specification containing a precise description of the security
properties that the implementation should respect. But in reality, the
specification is usually an ambiguous document mixing functionality
and security requirements. Therefore, testers typically need to em-
ploy intuition, experience and a good amount of skepticism in order
to develop hypotheses of potential failures. This step requires study-
ing the literature, documentation, and the implementation (RTL and
firmware) to identify suspicious control or data flows that could re-
sult in bugs. We complement this manual work with static analysis
(Verilator sanity checks and symbolic execution of the firmware with
predefined sanity checks). However, while firmware analysis tools can
efficiently find memory corruption in firmware, they encounter limita-
tions when searching bugs related to digital hardware components.

2. Writing a Proof of Concept (PoC). Once we have an hypothesis on a
potential violation of a security property, we test this hypothesis in a
two step process. First, a block of C code drives the hardware to reach
the specific state that is assumed to be vulnerable. At this level of ab-
straction, it is easy to drive all hardware components as needed. Then
our program checks whether the security property in question has in-
deed been violated. Again, the higher level of abstraction in software
tests lets us conveniently express cross-component constraints.

3. Running the PoC on a dynamic analysis platform. To evaluate our
PoC against the system under test, we use a cycle-accurate simulation
of the RTL code with the goal of executing C code on the Ariane SoC.

Figure 3.1 illustrates the methodology. While this methodology is by no
means a way of guaranteeing the absence of bugs, we believe that it mirrors
the reality in many cases where full verification is too costly to make sense
economically.
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Figure 3.1: Overview of the security evaluation methodology based on dy-
namic analysis. Manual work and human expertise from different fields are
marked in italic.

3.3.4 Results from Hack@DAC19

We applied the presented methodology at the Hack@DAC19 competition
and provide insights about the awarded scores and achieved results in the
following. The competition had two different phases: the qualification (10
weeks) and the final (3 days). The design for the qualification has 44975
lines of SystemVerilog code, while the design for the final has 47282 lines
of code. We participated as the academic team NOPS and led the quali-
fication phase for the first 5 weeks, finishing second (240 points) after the
team Hackin’ Aggies (300 points), and before the other 13 teams (less than
200 points). During the finals, we achieved the first place in the academic
bracket with 330 points, just after the academic/industrial team Hackin’
Aggies (465 points), and before the other 11 teams (less than 290 points).

The 2018 edition presented similar classes of bugs on a different plat-
form. To the best of our knowledge, we found all those that were based on
similar problems. A detailed list of the bugs can be found in [41], together
with a description of the techniques used to find them. The authors observe
that classic techniques often fail to capture cross-module cross-layer bugs,
and that formal properties are often hard if not impossible to write, even
when already knowing the bug. On the contrary, our test vectors in software
were often straightforward to write, as this is a good layer to stress several
blocks at the same time and to bring the system in the desired overall state.
In total, we found 29 bugs not listed in [41] out of 32 reported bugs.



3.4. Research directions 25

Not requiring neither complex tools nor a detailed knowledge of the
hardware design, our methodology was well suited for a fast-paced com-
petition, which mimics strict deadlines typically encountered in industrial
settings. Our focus on system/software aspects was useful to find a variety
of bugs at the system level (e.g., wrongly configured access permissions),
cryptographic engines (e.g., broken AES mode), and even vulnerabilities in
the included firmware (e.g., privilege escalation via system calls). Given the
structured approach of our methodology, we could quickly write test-vectors
and create bug reports and fixes. Our approach tends to abstract the core
(code execution) and focus on the peripherals (accesses to memory mapped
registers), therefore we missed most bugs in the core.

3.4 Research directions

Our approach to SoC security analysis centers around formulating hypothe-
ses of potential weaknesses and verifying them with software. We believe
that the use of software as a means of high-level expression facilitates cross-
component and cross-layer evaluation, allowing us to try out different at-
tacks on the system in short iterations. Generating hardware stimulus from
the software abstraction levels is efficient to detect software-exploitable
hardware vulnerabilities, at the price of loosing granularity and level of
control on specific hardware blocks. Indeed, from software we do not have
the freedom to stimulate all the inputs of a block, but only those that are
exposed. On the other hand, software can easily drive multiple intercon-
nected blocks at the same time. Visibility is instead preserved if using cycle-
accurate simulation of the RTL code. While this approach does not cover
all types of hardware bugs, it can be used by security experts without deep
knowledge of the design, to overcome the limitations of conventional tech-
niques [41]. However, the process still requires significant amounts of manual
work and a high degree of security expertise. Moreover, the cycle-accurate
simulation of the full system is very slow and it limits the potential applica-
tion of more complex software-based approaches. In this section, we discuss
how future research could alleviate some of the burden on the analyst and
facilitate the execution of the tests, in particular by combining established
approaches from the hardware-design community with ideas from software
security testing.
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3.4.1 On abstraction

During a security analysis, especially when searching for cross-component
bugs, analysts attempt to regard the system as a whole where components
can be verified together. We believe that flaws that affect the security of
an SoC via cross-component interaction can best be discovered when the
system is viewed from a perspective as abstract as possible, even if the
implementation error that introduced the vulnerability is restricted to a
single component: a block may function correctly when tested individually
while still compromising the entire system’s security in the interplay with
other components.

We therefore think that software is the right layer for checking the se-
curity of the system as a whole. Software-based tests should enhance, not
replace, the tests at the hardware layer that are already customarily per-
formed during SoC development. In the following, we illustrate approaches
that can potentially simplify software-based testing.

3.4.2 Generating tests

One task that currently requires manual effort is the creation of test soft-
ware. Analysts need to read the security specification (if available), then
often interpret it to obtain a more precise formulation of the desired secu-
rity properties. Only then can they formulate hypotheses where the system
may fail to meet the requirements, and finally devise corresponding test
software. Note that, in the context of cross-component vulnerabilities, the
security specification should remain at the high level of abstraction that
includes all components of the system. Refining it to the level of individ-
ual components and their implementation is useful for component testing
but undesirable for the purpose of assessing the security of the system as a
whole.

In general, deriving meaningful tests from a specification becomes easier
the more precisely the specification describes the system’s expected proper-
ties. At the extreme, a machine-readable specification could automatically
be translated to test cases [79]. Less precise descriptions leave room for
interpretation and thus require expert knowledge to be used in security
testing.

Once an actionable formulation of the security properties is available, it
can be used to assess whether the implementation meets the requirements.
Manually designed test programs, as used in our methodology, are only one
option. In this context, it is worth mentioning symbolic execution and fuzz
testing [19], both of which are popular approaches in software testing: they
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check software by automatically exploring many possible paths through a
program. However, while it is relatively easy to express security require-
ments in a software-only scenario, the same is not true when possibly faulty
hardware components enter the picture [71]. We believe that a good specifi-
cation could be used to drive the analysis carried out by such tools, helping
with the difficulty of defining expected behavior. For example, symbolic ex-
ecution could explore various interactions with the hardware, all the while
checking that the security assertions put forth by the specification hold true
in each tested case ([30, 62]).

3.4.3 Executing tests efficiently and effectively

Software-based tests have to be executed on some representation of the
underlying hardware. Recent approaches for hardware simulation face the
difficulty of scaling to increasingly complex designs [63]. In general, parti-
tioning the system and describing blocks at different layers of abstraction
helps to find good trade-offs among execution speed, the ability to catch
low-level flaws, and simplicity of introspection and debugging. Partitioning
and abstraction of hardware has been especially prominent in recent ad-
vances in dynamic binary firmware analysis. In the following, we show how
these concepts map to the conventional hardware approach, and we discuss
how SoC analysis can benefit from them.

To manage complexity, the traditional design and validation flow of elec-
tronic systems follows a top-down approach. Abstract specifications are
iteratively refined, gradually introducing partitioning into separate compo-
nents and implementation details [55]. At each iteration and layer, exten-
sive validation is performed to ensure the correctness of the implementation.
Partitioning allows testing a detailed component against blocks described
at higher levels of abstraction. At the end, the components are integrated
into a final product.

In contrast, many approaches developed for dynamic firmware analysis
take the point of view of a security expert who analyses an already finalized
commercial product, where part of the system may be unknown to the ana-
lyst. As a result, recent methodologies often use a bottom-up approach that
reintroduces partitioning and abstraction. In this context, the CPU of an
SoC is commonly emulated or completely replaced by a more abstract vir-
tual machine, and the executed code is often translated into an intermediate
representation at a desired level of abstraction [52]. However, other parts of
the SoC under test (e.g., peripherals) are typically opaque to the analyst in
this scenario and thus cannot be emulated. To overcome this issue, modern
tooling allows either to specify models for the behavior of unknown parts
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of the hardware [40, 69], or deploys near real-time forwarding mechanisms
between the emulator and the real silicon for hardware accesses [58].

We believe that SoC testing and validation can greatly benefit from these
two approaches—abstracting hardware components and selectively forward-
ing to real hardware while using an emulator—as shown in [62]. Addition-
ally, the capabilities of existing tools (e.g., [69] ) could be easily extended
to cooperate with peripherals or other blocks at the RTL level. We present
this approach in Chapter 6. Such extended tools would then serve as a
natural platform for software-based security testing of SoCs. They were al-
ready designed with a focus on security and include a number of automated
security checks (e.g., checks for memory corruptions). Moreover, they allow
for more automated exploration techniques such as symbolic execution and
fuzzing.

3.5 Conclusion

We have outlined how software-based tests are an effective approach for
the security evaluation of an SoC. The software abstraction is very con-
venient, as it bridges the gap between the high-level security properties of
the system and the low-level interactions across hardware components, as
well as the gap between system and software security and hardware design
and validation. Software-based approaches and tools are well known to soft-
ware experts, and they are generally easy to set up starting from the final
product, even without in-depth knowledge of the underlying hardware and
without expensive simulation tools. Therefore, they could lower the entry
barrier for analyzing the hardware components of an SoC, and facilitate the
dissemination of knowledge across research communities.

Although this thesis mainly focuses on the challenges related to the
dynamic analysis of firmware programs, in Chapter 6, we address the op-
timization of software-based methods to the hardware case. In particular,
regarding test generation and automated design exploration, but also with
the goal of efficient execution. Software security tools often take into ac-
count that analysts may not have full access to the design, as the hardware
platforms running the software to be tested are often proprietary. How-
ever, these tools could greatly benefit from the availability of RTL code and
models of the hardware components. The security and hardware communi-
ties could work together to create more and more accessible SoC platforms
with representative vulnerabilities, to lower the barrier for developing new
approaches and tools.
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4.1 Introduction

Embedded systems are becoming increasingly complex, connected and at-
tached to online services. They are ever more present, especially with the
rising of the so-called Internet-of-Things where today’s products are at-
tached to online services. However, this situation arises questions regarding
their security? Recent literature repeatedly showed security issues with such
systems. Nevertheless, there are a few tools available to analyze their secu-
rity and existing solutions are generally limited by hindering factors. The
specificities of embedded systems make techniques designed for traditionnal
desktop applications difficult to apply.

Fuzzing is a common software testing method that demonstrates promis-
ing results for testing desktop applications. The core idea is to feed a pro-
gram with malformed inputs and then monitor its execution in order to de-
tect unexpected behavior (e.g., exceptions or crashes). This technique has
proved its efficiency on desktop applications, however, results for embedded
systems are hindered by limiting factors ([71]). One major challenge is the
limited debug environment that often leads to silent vulnerabilities. In fact,
vulnerabilities do not always lead to an external and observable events (e.g.,
exceptions, crash, unexpected outputs). To address this, fuzzing embedded
systems requires instrumenting the firmware.

Firmware Instrumentation. Instrumentation techniques are com-
mon for advanced dynamic analysis techniques like fuzzing or sanitizers.
These techniques use instrumentation to modify the code to retrieve cover-
age information or to add mechanisms to detect faults on time [69]. The
instrumentation can be done using either dynamic instrumentation tech-
niques, binary rewriting or at compile-time. Doppelgänger [38] uses
binary rewriting to inject runtime integrity checks into an embbedded oper-
ating system. However, this method is difficult to apply. First, instrument-
ing binary code to add runtime memory protection mechanisms requires
reconstructing the program semantic. In fact, types and data structures
are lost during the compilation process. Without the source-code, this re-
quires decompiling the binary code that is very difficult. Second, binary
rewriting and compile-time instrumentation require inserting code precisely
to avoid breaking time/space constraints that are relatively strong on some
embedded systems. In addition, the heterogeneity of embedded systems
makes these techniques difficult to adapt across architectures and requires
a considerable amount of work to adapt the method for new devices.

Symbolic Execution consists of executing the firmware in a dynamic
symbolic virtual machine while replacing concrete peripherals inputs by
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symbolic inputs. However, this introduces other problems. First, the num-
ber of execution paths grows exponentially with the number of conditional
branches depending on symbolic inputs. In practice, this technique is lim-
ited to the analysis of relatively small firmware. Second, context-insensitive
analysis generally leads to large number of false alarms that are more diffi-
cult to filter for the analyst.

Partial-emulation. Another approach consists of re-hosting the firmware
execution in a virtual machine [98], [93], [69], [90], [58]. This machine
either simulates the Instruction Set Architecture or executes a semantic
model while forwarding all the interactions with peripherals to the real de-
vice. This forwarding mechanism avoids arduous modeling of peripherals
by using real peripherals. However, to interact with the embedded device,
these techniques generally rely on remote debuggers. Moreover, debuggers
are designed for interactive debugging by developers and are usually low
performance.

In this chapter, we propose a novel debugger designed for automated
embedded software testing. This debugger is designed to offer high per-
formance and low latency to run existing testing tools on Steroids. Fur-
thermore, it deals with embedded systems heterogeneity through flexible
and re-programmable logic. We based our solution on off-the-shelf compo-
nents to ease the reproducibility of our experiments. All the source-code
(for hardware and software) is open-sourced to serve as a basis for future
scientific contributions. We demonstrate the usefulness of our approach on
avatar2, a testing framework that orchestrates different security analysis
tools. In addition, we compare Steroids performance with state-of-the-art
approaches.

4.2 Previous Work

Debuggers play a major role in computer systems development by allowing
developers to inspect their program as it is being executed. They are mech-
anisms to offer visibility and control over a program under test. Debuggers
typically allow to to inspect any variables at any time during the tested
program execution. Similarly, controllability refers to the ability to modify
any variables at any time during execution. Debuggers can be divided into
three categories.

Software-based debuggers are common on traditional desktop com-
puters. Generally, they are specific software running on the same system
than the software being debugged. Such debuggers are frequent for inter-
preted codes (e.g., Java Debugger), Instruction Set Simulator (e.g., QEmu
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debugger), or OS-based applications (e.g., GDB). However, this approach
is in practice difficult to apply for embedded systems. First, software-based
debugger such as GDB requires OS-based capability that allows the debug-
ger to access low-level information about another process. Without such an
OS, the debugger has to deal with complex integration problems due to the
co-existence of the debugger and debuggee in the same software context [99].
Furthermore, interactions with remote debugger require a communication
channel that may be already busy.

In-Circuit Emulators (ICE). The ICE is a hardware tool that offers
visibility into the internal operations of the device being tested. During
development, the emulator replaces the target processor that often routes
internal buses to output pins (i.e., bound-out chip). This emulator is at-
tached to both the tested device and a host computer. Due to the tremen-
dous cost of providing fast emulation memory, ICE are generally limited
to relatively small microprocessors [46]. More complex micro-controllers
generally integrate on-chip debugger.

An On-Chip Debuggers (OCD) is a debugging circuitry internal to
the micro-controller. Generally, it offers generic debugging capability (e.g.,
breakpoints, watchpoints and memory inspection) and is accessible through
a standard physical interface called JTAG that can be disabled on produc-
tion chips , e.g., by blowing a fuse. Embedded systems generally adopt the
standard IEEE 1149.1 that defines the Joint Test Action Group (JTAG)
interface. The latter is an industry standard, widely used on embedded
devices. It connects the internal debug logic of the chip to a JTAG probe.
However, most existing JTAG debuggers [34] [81] [6] are based on USB 2.0
connection. USB 2.0 devices can transfer data on the bus only when an
explicit request from the host controller has been sent (i.e. slave mode).
For this reason, a USB 2.0 device has a relatively high latency.

Surrogates [58] introduces an efficient host-device debugger link. To
achieve this, it uses an FPGA connected to the host through PCI Express
and to the device through JTAG. Unfortunately, the hardware is not avail-
able anymore and the software has never been publicly released. Surro-

gates relies on DDC1 a communication mechanism used with JTAG (using
DCC registers), which is not available on modern ARM cores (i.e., Cor-
tex cores). The DCC register was a feature of old ARM on-chip-debugger
which has no equivalent on recent ARM CPUs. Finally, Surrogates requires
a software stub to run on the device and does not offer basic debugging capa-
bility (i.e., breakpoints, watchpoints). Althought the Surrogates authors

1On ARM7TDMI, the DCC is a control register accessible to the processor and the
debugger.
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kindly shared their source code, extending it to support debugging capabil-
ities would face to the same challenges than software-based debugger. This
inflexibility, the lack of compatible hardware, and licensing problems, makes
it difficult to adapt Surrogates to newer systems. Therefore, we were unable
to replicate experiments with Surrogates and it wasn’t possible to use it as
a basis for research.

DStream [5] is a closed-source USB3-based debugger enabling remote
debugging and instructions tracing of ARM-based chip. This system aims
high performance. However, it only works with a proprietary and expensive
Integrated Environment Development (IDE), making this solution unsuit-
able for open research. Furthermore, its integration with a third-party tool
is difficult and not flexible as it requires communicating with the IDE’s ex-
posed interfaces (i.e., files). This layer of indirection increases the latency.
Moreover, DStream has a closed hardware and software source-code mak-
ing it very difficult to extend.

4.3 Design Objectives

After exploring the state-of-the-art, we seek to improve previous work in
several ways. To this end, we select five desirable properties for the design
of our solution.

1. Low-latency: minimize the duration time between the request emitted
by a dynamic analysis tool (e.g., Avatar) and the response.

2. Open source: open as much as possible the design of our solution.

3. Off-the-shelf components to make our experiments easier to replicate.

4. Supporting fundamental features of debuggers (i.e., breakpoints, watch-
points, memory access).

5. Flexibility in the design to easily support more targets (On-chip de-
bugger).
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Figure 4.1: Overview of Steroids

4.4 Design Overview

In the following, we give an overview of the design of Steroids that seeks
to respect our five desired properties. We provide a comparison with the
previous work in Table 4.1. Steroids is a new, affordable, flexible, very
high performance, and open-source debugger which is designed be used for
security research on embedded devices. From a high-level perspective, we
want to establish an end-to-end communication channel between a dynamic
analysis tool on the host computer and the embedded system under test.
This leads to the substantial question: which end-to-end protocol should we
use?

End-to-End Protocol. General-purpose computer systems are often
made of many independent peripherals that interact with each other using
buses. Generally, this bus tends to be ever more generic with high through-
put and low latency. Among them, PCI-Express and USB 3.0 are two good
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candidates. PCI-Express offers lower latency than USB 3.0, however, it
involves expensive and very specific hardware that does not fit our needs.
Furthermore, even if the USB 3.0 latency is higher, our debugger is designed
to interact with an on-chip debugger that generally admits a much lower
bit rate. USB 3.0 interfaces are common nowadays, and there are available
and affordable development kits.

Surrogates [58] DSTREAM [5] Steroids
Host Interface PCI-E USB 3.0 USB 3.0
Target Interface IEEE 1149.1(JTAG) IEEE 1149.1 (JTAG) IEEE 1149.1 (JTAG)
Low Latency 3 3 3

Breakpoints,Watchpoints 7 3 3

Access memory and peripherals on-the-fly 7 3 3

Support ARMv7-M/ARMv8-M 7 3 3

Do not require a Software Stub 3 3 3

Open Source 7 7 3

Open Hardware 7 7 3

Table 4.1: Comparison of Steroids with the related work.

After having selected the underlying technology, we design our USB3-
debugger. Figure 4.1 presents an overview of Steroids In particular, Steroids

is composed of three main components.

1. A host driver. The driver exposes a high-level API to the dynamic
analyzer. This API offers fundamental debugging features such as
read/write memory, breakpoints, watchpoints. To deal with target
device heterogeneity, a configuration file defines how the on-chip de-
bugger works and how these high-level commands are translated to
low-level pseudo-JTAG commands. This latter is a set of abstract
commands that describe JTAG interactions with the device. These
pseudo-JTAG commands do not reflect directly the JTAG protocol
but instead express JTAG actions such as the values of the Instruc-
tion/Data Register and their size. Since they rely directly on the
JTAG protocol, our solution supports any on-chip debugger that is
accessible through a JTAG interface.

2. A USB 3.0 to FPGA bridge. This bridge receives pseudo-JTAG com-
mands through a USB 3.0 socket. Then, it forwards these commands
to an FPGA through a custom protocol. To fit the desired goal of
having low latency, our bridge is implemented using programmable
hardware, and therefore it does not involve any software interaction.

3. A Steroids commands dispatcher. The dispatcher is the master on the
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bus with the USB 3.0 bridge. It gets notified when data is available
by checking status signals. It balances the priority between receiving
and sending data. For instance, it can decide to not receive data as its
working queue is full or to prioritize the transmission of certain data to
minimize latency. The latter are usually used to forward asynchronous
interrupt signals as fast as possible. The bus between the dispatcher
and the USB 3.0 bridge supports an addressing that reflect the USB
3.0 endpoints. This enables the dispatcher to forward the data to
different internal logics. In our design, we expose two channels with
two endpoints each (i.e., one for the host and one for the target). The
first channel is for pseudo-JTAG commands while the second one is
for interrupts.

4. A JTAG Master. The JTAG master receives pseudo-JTAG commands
and operates like a processor. It decodes the commands and then
executes them.

4.5 Implementation

In the following, we describe how we implemented Steroids. We now focus
on the lower layers of the communication mechanism between the host and
the real device.

In order to read and write the device memory, we directly connect to the
system bus through the AHB-AP2, which can be accessed with the JTAG
protocol.3 The AHB-AP port is available in ARM Cortex-based devices
and allows a direct access to the peripherals. Inspired by Surrogates [58],
we designed a custom device based on a Xilinx ZedBoard FPGA [42], to
efficiently translate high-level read/write commands into low-level JTAG
signals.4 The FPGA is connected through a custom parallel port to a Cy-
press FX3 device [82] which provides an USB 3.0 interface. Unlike USB
2.0 where devices are slaves, USB 3.0 is a point-to-point protocol and,
therefore, has a very low latency. With this setup we handle the burden of
the low-level and inefficient JTAG protocol in hardware close to the device,

2The AHB-AP is a memory access port architecture that directly connects to an AHB
based memory system

3An alternative would be a port using the faster SWD protocol, but this technology is
less widespread than JTAG.

4Surrogates [58] was never open sourced but the authors shared their implemen-
tation. However, due to lack of hardware availability and other problems we eventually
re-designed the debugger from scratch.
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while we transmit high-level commands over a low-latency high-bandwidth
bus to/from the host.

4.6 Evaluation

In the previous part, we have described how we implemented Steroids, a
low-latency and high-performance USB 3.0 JTAG debugger. In this section,
we evaluate the capability of our solution. In particular, we seek to answer
two questions:

How long does it take to read/write memory using our debug-

ger? In order to answer this question, we measured the duration time to
read/write the memory device from the host computer. Then, we compared
with the state-of-the-art (i.e., Surrogates) and commercial debuggers.

How does it impact the performance of dynamic analysis tools?

For this purpose, we added our driver on top of avatar2 and evaluate its
performance by comparing execution time on a sample from the official
avatar repository.

4.6.1 Average I/O per Second

For our first experiment, we measure the duration time for reading/saving
device memory through Steroids. We compare the result with the state-
of-the-art: Surrogates.

Protocol Details We proceed as follows. We measured the time to make
100,000 read/write requests to the device mapped registers. The device
is an LPC1850 SoC. To compare with Surrogates, we tune the JTAG
frequency to 4 Mhz.

Observations and results Steroids has a read/write performance com-
parable to the fastest similar debugger (Surrogates [58]). Using JTAG
at 4 MHz, reads are 20% slower and writes are 37% faster (Figure 4.2). It
seems that in our implementation the bottleneck comes from the USB soft-
ware stack, rather than from JTAG, which can easily run faster, or from the
USB protocol, which has itself a very low latency. Indeed, the GNU/Linux
userspace library (libusb-0.1-4) performs system calls and DMA requests
for each I/O operation, introducing a significant latency. Using bulk trans-
fers of 340 reads is five times faster, since the latency for a USB operation
appears only once. Unfortunately, code execution requires single memory
accesses, but bulk tranfers could be used in many cases (e.g., state transfer
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or DMA). Surrogates uses a custom driver that exposes FPGA registers
through MMIO over PCI-Express. Though the exact same approach is not
possible, using a custom driver may improve Steroids performance.
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Figure 4.2: Average time to complete 1× 106 read or write requests for Sur-

rogates and Inception (4 MHz JTAG). (libusb-0.1-4, Ubuntu16.04 LTS,
Intel Corporation 8 Series/C220 USB Controller)

4.6.2 Improvment in Avatar

In this experiment (Table 4.2), we demonstrate the usefulness of Steroids.
In particular, we verify our initial assumption where we identify the debug
link as a bottleneck for existing partial-emulation solutions. Therefore, in
this experiment, we measure the gain over Avatar a well-known and open-
source binary-based firmware analysis framework.

Protocol Details For the purpose of our experiment, we use a public ex-
ample of Avatar2 called nucleo_l152re. This example runs a firmware bi-
nary on a Nucleo STM32L152RE device, then after reaching a certain point
Avatar2 forwards the software context from the real device to QEMU. The
execution continues in QEMU that forwards I/O to memory-mapped reg-
isters to the real devices. We measure the duration time to run 1000 times
the state forwarding mechanism that copies 81920 bytes from the device
memory to the QEMU memory. In addition, we measure the duration time
to read/write 81920 bytes of the device memory. We report results in 4.2.
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Observations and results The results of this experiment show an im-
portant performance improvement when using Steroids. In particular, the
state transfer process is 16 times faster than the original approach (i.e.,
Avatar2 + STLink). This operation was introduced by Avatar to reduce
the slowdown of its full memory forwarding mechanism by executing code
natively and then transferring the software state to another target where
the code of interest is analyzed. However, without Steroids this mechanism
is extremely slow, and it increases with the software context size. In addi-
tion, Steroids improves the read/write process performance by 16. These
operations are frequently used during the firmware analysis and drastically
limit the performance of the analysis on the original example. Steroids of-
fers significant performance improvement that enables us to speed-up the
analysis of complex firmware programs.

Data Rate [KB/s]Operation Avatar + STLink Avatar + Steroids
Read 2.5 40.21
Write 2.49 72.02
Transfer State 2.37 40.06

Duration Time [s]Operation Avatar + STLink Avatar + Steroids
Read 32.06 1.99
Write 32.07 1.11
Transfer State 33.77 2

Table 4.2: Average duration time in second to perform read/write/transfer-
state operations on 81920 bytes repeated 1000 times for Steroids and
Avatar2 (STLink debugger). Ubuntu18.04 LTS. 16GB RAM, I54500U
2.3GHz.

4.7 Conclusion

In this chapter, we introduced a high-performance and low-latency JTAG
debugger. We demonstrate performance improvement over an existing hardware-
in-the-loop/partial-emulation method called avatar2. Furthermore, we
demonstrate relatively similar performance than the state-of-the-art solu-
tion Surrogates while basing our approach on off-the-shelf and affordable
components. Contrary to Surrogates that is not public and based on
unavailable hardware, our experiments are fully reproducible. We believe,
our solution is suitable for other research areas such as side-channel analysis
(e.g., power analysis) or data-flow tracing.
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In this chapter we introduce Inception, a framework to perform security
testing of complete real-world embedded firmware. Inception introduces
novel techniques for symbolic execution in embedded systems. In particu-
lar, Inception Translator generates and merges llvm bitcode from high-level
source code, hand-written assembly, binary libraries, and part of the proces-
sor hardware behavior. This design reduces differences with real execution
as well as the manual effort. The source code semantics are preserved, im-
proving the effectiveness of security checks. Inception Symbolic Virtual Ma-
chine, based on klee, performs symbolic execution, using several strategies
to handle different levels of memory abstractions, interaction with peripher-
als, and interrupts. Finally, we integrate Steroids a high-performance JTAG
debugger which performs redirection of memory accesses to the real hard-
ware.
We first validate our implementation using 53000 tests comparing Incep-
tion’s execution to concrete execution on an Arm Cortex-M3 chip. We then
show Inception’s advantages on a benchmark made of 1624 synthetic vulner-
able programs, four real-world open source and industrial applications, and
19 demos. We discovered eight crashes and two previously unknown vul-
nerabilities, demonstrating the effectiveness of Inception as a tool to assist
embedded device firmware testing.

5.1 Introduction

Embedded systems combine software and hardware and are dedicated to a
particular purpose. They generally do not have the traditional user inter-
faces of desktop computers. Instead, they interact with the environment
through several peripherals, which are hardware components that handle
sensors, actuators, and communication protocols. The constant decrease in
the cost of microcontrollers, combined with the pervasiveness of network
connectivity, has led to a rapid deployment of networked embedded systems
being used in many aspects of modern life and industry. These trends have
greatly increased embedded systems’ exposure to attacks. The consequences
of a vulnerability in embedded software can be devastating. For example,
the boot Read Only Memory (ROM) vulnerability used to jailbreak some
iPhones cannot be patched in software, because the bootloader is hard-
coded in the mask ROM without any patch mechanism [44]. Therefore,
it is very important to thoroughly test such low-level embedded software.
Unfortunately, the lack of tools, the intricacy of the interactions between
embedded software and hardware, and short deadlines make this difficult.

Binary or source-based testing. The conditions under which testing
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[39] [58] [98]
Using source code 3 7 7 3

Inline assembly 7 3 3 3

Binary code 7 3 3 Some
Symbolic execution 3 7 3 3

Can use real peripherals 7 3 3 3

Early bug detection 3 n/a 7 3

Fast forwarding n/a 3 7 3

Fast concrete execution 3 n/a 7 3

Testing unmodified code 7 3 3 3

Low false positives 7 n/a 3 3

Highly automated 7 n/a 7 3

Open-source 3 7 3 3

Table 5.1: Comparison of Inception with the related work.

is performed can vary a lot depending on the context. The tester may have
access to the source code, or just the binary code, and may use the device
during testing or rely on simulators. Binary-only testing is frequently per-
formed by third parties (pen-testing, vulnerability discovery, audit), whereas
source code-based testing is more commonly done by the software develop-
ers or when the project is open-source. Access to source code provides
many advantages; such as knowing the high-level semantics (e.g., the type
of variables) of the program. This simplifies testing significantly.

An advantage of binary-only testing is that it can be performed indepen-
dently of source code availability, and is, therefore, more generic. Indeed,
even when source code is available, it can be compiled and the analysis can
be performed on binary software. Unfortunately, this is inefficient, because
during compilation, most code semantics are lost and this renders identifi-
cation of memory safety violations and corruptions difficult. In fact, it has
been shown that this effect is more severe with embedded software than with
regular desktop software, due to the frequent lack of hardening of embedded
software and hardware support for memory access controls such as memory
management units [70]. Also program hardening (e.g., with Sanitizers [83])
is often impossible due to code space constraints and the lack of support for
embedded targets.
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Hand-written assembly. Unfortunately, the presence of hand-written
assembly and third-party binary libraries is widespread in embedded appli-
cations. This severely limits the applicability of traditional source-based
testing frameworks. There are two main reasons for the use of assembly
language in embedded software development. First, although memory be-
comes cheaper and compiler efficiency improves, it is still often necessary
to manually optimize the code (e.g., to fit in the cache, to avoid timing
side-channels) and microcontrollers’ memory size is still very constrained.
Assembly is also necessary to directly interact with some low-level processor
features (e.g., system-control or co-processor registers, supervisor calls).

Figure 5.1 highlights this problem on a set of sample programs from
our test-suite (described in Section 5.4). Every sample contains at least
one function with inline assembly. We further distinguish four categories of
instructions, based on how they affect the system. From left to right: logical
(e.g., arithmetic, logic), memory (load, store, barrier), hardware (supervisor
call, co-processor registers access), control-flow (branch and conditional).

Logical and memory instructions are easy to translate to higher-level
code. However, hardware impacting instructions strongly interact with the
processor and affect the execution and the control flow. Common source-
based frameworks cannot easily handle these low-level instructions. How-
ever, they are essential to handle tasks such as context-switching between
threads. As a consequence, replacing those instructions with high-level code
is difficult. We found that such instructions are present in all of the sam-
ples. Other places where assembler instructions or binary code is present
is in Board Support Packages (BSP) provided by chip manufacturers or in
library code directly present in ROM memory.1

Previous work. Table 5.1 summarizes the limitations of firmware se-
curity analysis tools. Avatar [98] and Surrogates [58] focus on forwarding
memory accesses to the real device, but only support binary code. Avatar
relies on S2E [33] and, therefore, supports symbolic execution of binary
code. On the other hand, FIE [39] tests embedded software using the source
code, essentially adapting the klee virtual machine to support specific fea-
tures of the MSP430 architecture. However, FIE does not try to simulate
hardware interaction: writes to a peripheral are ignored and reads return
unconstrained symbolic values. Moreover, FIE does not support assembly
code which is very often present in such software and is, therefore, either
entirely skipped or manually replaced by equivalent C code, if possible. This
requires additional manual work, makes the state explosion worse, and leads

1For example, the NXP MC1322x contains drivers and a Zigbee software stack in a
mask ROM [73].
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Figure 5.1: Presence of assembly instructions in real-world embedded soft-
ware.

to a less accurate emulation.
Inception’s approach. Inception’s goal is to improve testing em-

bedded software when source code is available, e.g., during development
phases. We focus on the ability to perform security testing on complete
systems made of real-world embedded software that contain a mix of high-
level source code, hand-written assembly code, and, possibly, binary code
(e.g., libraries). Unlike previous work, in Inception we preserve most of
the high-level semantics from source code. We, therefore, can test software
against real hardware peripherals with high performance and correct syn-
chronization. Finally, to be broadly used, such integration tests need to be
performed with a limited amount of manual work.

Contributions. In summary, in this chapter we present the following
contributions:

• A new methodology to automatically merge low-level llvm bitcode,
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poor in semantic information and relying on the features of a target ar-
chitecture, with high-level llvm bitcode, rich in semantic information
useful to detect vulnerabilities during symbolic execution

• A modified symbolic virtual machine, able to run the resulting bitcode
code and to handle peripherals’ memory and interrupts using different
analysis strategies

• A thorough validation of the system to guarantee meaningful and
reproducible results, and an evaluation of the approach on both syn-
thetic and real-world cases

• A tool based on affordable off-the-shelf hardware components and
source code that will be fully published as open-source

Chapter organization. The remainder of the chapter is organized as
follows. Section 5.2 provides an overview of the approach and introduces the
Inception tool. Section 5.3 presents the main implementation challenges and
our validation methodology. Section 5.4 evaluates Inception on synthetic
and real-world cases. Section 5.5 discusses limitations and future work.
Finally, Section 5.6 concludes the chapter.

5.2 Overview of Inception

5.2.1 Approach and components

The main goal of Inception is to leverage the semantic information of high-
level source code to detect vulnerabilities during symbolic execution, while
also supporting low-level assembly code and frequent interactions with the
hardware peripherals. Common symbolic execution environments usually
run an architecture-independent representation of the code, which can be
derived from the sources without losing semantic information. Alterna-
tively, architecture-dependent binary code can be lifted to an intermediate
representation that can be at least partially executed into a symbolic virtual
machine, but that has lost the source code semantic information. These two
cases differ greatly (e.g., in their memory model) and cannot easily coexist.

Inception solves the problem of coexistence by creating a consistent
unified representation. In particular, Inception is composed of two parts.
First, the Inception Translator, which generates unified llvm-ir using
a lift-and-merge process to integrate the assembly and binary parts of the
program into the intermediate representation coming from the high-level
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sources. This process also takes into account the low-level hardware mech-
anisms of the ARMv7-M architecture. Second, the Inception Symbolic

Virtual Machine, which is able to execute this mixed-level llvm-ir, and
to handle interrupts and memory-mapped peripherals with different strate-
gies, to adapt to different use cases. It can also generate interrupts on
demand and model reads from peripherals’ memory as unconstrained sym-
bolic values. This VM is based on klee, a well-known open-source symbolic
execution virtual machine which runs llvm-ir bitcode. It provides high-
speed access to the peripherals and could be easily extended for multiple
targets.

In the following we give an overview of our lift-and-merge approach, of
how klee performs security checks, and on how we extended it to support
interrupts and peripheral devices.

5.2.2 Lift-and-merge process

Figure 5.2 shows the main stages of our bitcode merging approach and how
source code with inline assembly 1 is transformed into a consistent bitcode
3 that can be executed by Inception VM. The example code contains the
excerpt of a function written in assembly that requests a system call with
r0 holding a data byte.2

The rest of the code is composed of a main function, which calls the first
assembly function, and the message to be sent. Using the appropriate llvm

front end (CLang for C/C++), source code 1 is translated into llvm-ir

bitcode. The resulting bitcode 2 shows that only C/C++ source code has
been really translated into llvm-IR. Indeed, the original purpose of llvm-

ir bitcode is to enable advanced optimizations before code lowering to the
target architecture, whereas assembly is already at a low semantic level that
cannot be represented or optimized by the llvm compiler.

To solve this problem, we introduce a novel lift-and-merge approach,
which we implement in Inception-Translator. This translator takes as input
the ELF binary and the llvm-ir bitcode generated by CLang. It gener-
ates a consistent llvm-ir bitcode where assembly instructions have been
abstracted to an llvm-ir form. This step is done by a static lifter, which
replaces each assembly instruction by a sequence of llvm-ir instructions.
We call the resulting bitcode a Mixed Semantic Level bitcode (mixed-IR),
shown in 3 , which contains:

2Figure 2 in the appendix shows the complete example, including the system call
handler (in assembler) which sends the data byte over a UART by writing into the data
register of the UART peripheral.



48 48

void uart_send(unsigned char letter) { 
__asm volatile("svc #0"); 
__asm volatile("bx  lr");
}
int main(){
        uart_send(message[i++]);
        return 0;
} 1

...
  call void asm sideeffect "svc #0", ""()
  call void asm sideeffect "bx  lr", ""()
...
  call void @uart_send(i8 zeroext %1)
  ret void
... 2

...
entry:
  %1 = zext i8 %0 to i32
  store i32 %1, i32* @R0
  br label %"uart_send+0"
...
"uart_send+0":
  call void (...)* @inception_sv_call()
  %LR1 = load i32* @LR
  ret void
...
  call void @uart_send(i8 zeroext %1)
  ret void

3

High Semantic
Level

Low Semantic
Level

main.c

1

main.bcCLang 
Compiler

main.elf Inception
Translator

Emit IR

Compile 

2

Mixed
Semantic

Level 
Bytecode

3 High Semantic Level
(Compiled C/C++)

Glue IR

Low Semantic Level
(Lifted Asm)

output.bc

Figure 5.2: Overview of Inception Translator: merging high-level and low-
level semantic code to produce mixed semantic bitcode. Excerpt of the
translation of a program which includes mixed source and assembly.

High Semantic Level IR (high-IR) obtained from C/C++ source
code. This is mainly the same code emitted by CLang, which has been
augmented with external global variables that are defined in assembly source
files. We reallocate these global variables in the IR.

Low Semantic Level IR (low-IR) deriving from assembly source
code. This part is automatically generated by our static lifter. It contains
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the translation of assembly instructions and some architecture-dependent
elements that are necessary for execution. First, the CPU and co-processors’
registers are modeled as global variables. Second, specific functions model
the seamless hardware mechanisms that are normally handled by the CPU.
For example, when entering into an Interrupt Service Routine (ISR), the
processor transparently updates the Stack Pointer and it stacks a subset of
CPU registers. When the ISR returns, the context is automatically restored,
so that the code which was suspended by the interrupt can resume.

The Glue IR that acts as a glue to enable switching between the high-
level semantics and the low-level semantics domains. This IR bitcode is
generated by a specific Application Binary Interface (ABI) adapter, able
to promote or demote the abstraction level. Indeed, communication and
switching between layers mainly happens at the interface between functions,
that is, when a high-level function calls a low-level one or the opposite.

5.2.3 Inception Symbolic Virtual Machine

The bitcode resulting from the lift-and-merge process is almost executable,
but it still requires some extra support in the virtual machine. The main
challenge is that high-IR accesses only typed variables and does not model
memory addresses or pointers. On the other hand, the IR generated from
assembly instructions has lost all information about types and variables, and
only accesses pointers and non-typed data. Another challenge is handling
memory-mapped memory, which is used but not allocated by the code, and
interrupts and context switches, which are not modeled in klee.

To address these problems, we have extended klee with aMemory Man-
ager and an Interrupt Manager. During (symbolic) execution the original
Memory Monitor of klee performs advanced security checks on memory
accesses. When a violation is detected, the constraint solver generates a
test case that can be replayed.

The Memory Manager leverages the ELF binary and the mixed-IR
to build a unified memory layout where both semantic domains can access
memory. Specific data regions are allocated in order to run low-IR code,
such as pointers contained in the code section, and some memory sections
(stack, heap, BSS). Each memory address is configurable to mimic the nor-
mal firmware’s environment. For example, a memory-mapped location could
be redirected to the real peripheral, to prune the symbolic exploration and
to use realistic values. Alternatively, it could be allocated on the virtual
machine and marked as symbolic to model inputs from untrusted periph-
erals. Inception also supports Direct Memory Access (DMA) peripherals,
provided that each DMA buffer is flagged as redirected to the real device
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Figure 5.3: Inception Symbolic Virtual Machine, overview of the testing
environment.

memory. Similarly to the other redirected locations, DMA buffers cannot
hold symbolic values.

The Interrupt Manager gives klee the ability to handle interrupt
events, by interrupting the execution and calling the corresponding interrupt
handlers. Interrupt’s addresses are resolved using the interrupt vector table.
Interrupt events are either collected on the real hardware, or generated by
the user when desired (by calling a special handler function). In the first
case, the virtual machine and the real device are properly synchronized to
avoid any inconsistency. We further extended klee to execute handlers that
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switch the context between threads in multithreaded applications.
Memory Monitor and security checks. All security analyses mainly

rely on the Memory Monitor of klee, which is able to perform security
check for each access, based on the semantic information associated to it.
The monitor observes the semantic information of the requests (requested
type) and the semantic information of the accessed data (accessed type).
When enough information is available, the monitor is able to detect memory
access violations, e.g., out-of-bounds accesses, use-after-free, or use-after-
return. Requests coming from high-IR, and accessing memory elements
defined in high-IR, have enough information to detect most violations. On
the contrary, requests that come from low-IR tend to have less information
and a lower detection rate. However, thanks to the information coming from
the high-IR, it is still possible to detect more problems than with binaries
only.

5.3 Implementation and validation

5.3.1 Lift-and-merge process

In order to be able to glue assembly and binaries with source code into
a unified LLVM-IR representation (mixed-IR), we apply two distinct pro-
cesses.

The lifting process takes machine code (compiled assembly or bina-
ries) and produces an equivalent intermediate representation (low-IR). This
representation uses only low-level features of the llvm-ir language and it
mimics the original architecture (ARMv7-M), which contains some hard-
ware semantics of the Cortex-M3 processor, such as the behavior of instruc-
tions with side effects. It is, therefore, (almost) self-contained, and a large
part of it can be executed on any virtual machine able to interpret llvm-ir.
As explained in the following parts, we introduce some features to klee

to make this code fully executable, in particular when dealing with context
switches. Our lifter is based on three main components. First, a static recur-
sive disassembler that finds all the instructions to translate and stores them
into an internal graph representation. Second, a simple decompiler that
reconstructs the control flow, including for indirect branches and complex
hardware mechanisms (e.g., returns from interrupts and context switches).
Finally, the lifter statically transforms a given machine instruction into a
semantically equivalent sequence of llvm-ir instructions. One important
advantage of the static approach is that it enables further processing with
the sources to produce mixed-IR. Moreover, it has a lower run-time over-
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head compared to dynamic lifters that lift instructions during execution.
Implementing all these components in a correct and reliable way requires
significant engineering work3, of which we omit most of the uninteresting
details. In the next section we will describe some interesting aspects of the
lifter.

The merging process takes the (almost) self-contained low-IR and the
high-IR compiled from C/C++, to glue them together (with some glue-IR).
This is the most challenging part, as they have different levels of semantic
information and different views of memory. The first step is, therefore,
to create a unified memory layout between the two IR-levels in the klee

virtual machine. In addition to this, peripheral device addresses are made
accessible in klee. The second step consists of identifying the best interface
between the two representations and the mechanisms to exchange data at
this boundary. We chose to use the Application Binary Interface (ABI)
that regulates the communication between functions in a uniform way.4
Our merger is able to generate glue-IR code that lets high-IR functions
communicate with low-IR functions and vice-versa.

5.3.2 Unified Memory Layout

We now explain how we leverage both the lift-and-merge process and klee

to create a unified memory layout. This memory layout is central for the
low-IR and high-IR to coexist and communicate.

Processor registers are represented by global variables instead of
llvm-ir registers. In fact, the llvm-ir is a Single Static Assignment (SSA)
language, in which each instruction stores its result in a uniquely assigned
register. These registers are not globally acessible. Therefore, llvm regis-
ters cannot be used to represent CPU registers, which are assigned many
times, and globally accessible by instructions.

The heap. Inception supports two dynamic memory allocation mech-
anisms. The first one is the native allocation function from the application
(which can be written in assembly or C language). In this case, allocated

3We first used Fracture [59], a framework for lifting binaries to llvm-ir. However,
we eventually only reused a minor part of Fracture code. Indeed, Fracture’s approach
does not scale to all instructions, especially those interacting with hardware, and does
not address the merging problem. Fracture was also designed for static analysis which
did not need complete translation and is currently not maintained.

4Another option would be to set the interface at the native instruction level. An
advantage would be to preserve most of the code translated from the high-IR in a function
that includes only one inline assembler directive. However, the interfacing would depend
on the compiler version and would be less robust.
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variables lose semantic information and are encased in the heap memory re-
gion. This method is interesting for testing native allocation systems. How-
ever, it decreases the precision of corruption detection, because the heap
memory is a container for indistinguishable contiguous variables, making
it difficult to detect even simple out-of-bounds accesses. The second ap-
proach consists of replacing the native allocation functions by klee’s own
allocator. Klee allocator was specifically designed to detect memory safety
violations. In particular, klee isolates each allocated variable with a fixed-
memory region (the red zone). Even though this mechanism does not detect
all violations, any access to this zone will be detected as a memory corrup-
tion. Another advantage of klee allocation is that it can detect memory
management errors such as invalid free of local or global variables.

The normal klee stack is used when high-IR code is running. Each
function has its own function frame object, which contains metadata about
the execution. This includes information about the caller, the SSA registers
values (which hold temporary local variables), and the local variables (which
are allocated using the normal klee mechanism). A separate stack is used
by the low-IR code. This stack is modeled as a global array of integers,
allocated by the memory manager at the same address and size than the
.stack section of the symbol table. Variables in this stack are not typed.
However, the ABI adapter mechanism presented in the next section allows
different IR levels to access variables on both stacks.

The Data region contains mixed semantic-level variables. Indeed,
when the high-IR allocates data, the resulting memory object is typed and
allocated at the same address as indicated by the symbol table, to keep
the compatibility with assembly code. On the other hand, data can be
defined by the assembly code and accessed by high-IR. In this case, we use
the semantic information present in the external declaration of the high-
IR to allocate a typed object. The third possible case is data allocated
by assembly code, but never accessed by high-level code. In this case no
semantic information is present, and allocation depends on the information
from the ELF symbol table.

5.3.3 Application Binary Interface adapter

Low-IR functions follow the standard Arm Application Binary Interface
(ABI) [16], whereas high-IR functions follow the llvm convention. There-
fore, whenever the Static Binary Translator finds a call or return that crosses
the IR levels, it invokes the ABI adapter to generate some glue-IR that
adapts parameters and return values.

When a high-IR function calls a low-IR function, the high-IR arguments
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(typed objects) must be lowered to the architecture-dependent memory
(stack/CPU registers). In the opposite case, stack and CPU registers must
be promoted to high-IR arguments. Similar considerations apply to return
values. This process is similar to serializing and deserializing the llvm

typed objects, to store them as words in the llvm variables that represent
the CPU registers and the stack, where they are used by low-IR. Note that
during serialization the types are lost, but deserialization is still possible
thanks to the high-level information present in the source code. For ex-
ample, consider an assembly function that passes a struct by value to a
C function. Knowing the size and address of the destination, the adapter
generates the glue-IR that copies CPU registers and stack words from the
low-IR to the high-IR destination. Another example is an assembly function
that returns a pointer. In low-IR, the pointer is stored as a simple integer
word in the r0 register. Since the adapter knows that the expected return
type is a pointer, it can write the glue-IR that performs the cast to it. All
main C types are supported. There are four possible connections between
low-IR and high-IR (code examples available in the appendix in section .1):

1. High-IR to low-IR parameters passing. A glue-IR prologue takes
the input arguments from the klee stack (where the high-IR caller
stored them) and brings them to the CPU registers and/or low-IR
stack (where the low-IR callee expects them).

2. Low-IR to high-IR return value. A glue-IR epilogue takes the
return value (stored in r0 by the low-IR callee) and promotes it to a
typed object in klee stack (used by the high-IR caller).

3. Low-IR to high-IR parameter passing. Before calling the high-
IR function, some glue-IR takes the input arguments from the CPU
registers or the low-IR stack (where the low-IR caller stored them)
and promotes them to typed objects on the KLEE stack (used by the
high-IR callee).

4. High-IR to low-IR return value. Just after the high-IR callee
returns, some glue-IR moves its return value from the klee stack to
r0.

5.3.4 Noteworthy control-flow cases

We focus on the explanation of noteworthy control-flow instructions and
hardware mechanisms to show their impact for the security checks. We
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omit the details for the other instructions.5
Control-flow instructions. The main challenge when dealing with

control flow consists in finding a good mapping between high-level control
flow operators present in llvm-ir (e.g., call, if/else) and low-level ARMv7-
M instructions, which are at a lower abstraction layer (they directly modify
the program counter, and sometimes rely on implicit hardware features).

We translate to an LLVM call instruction any Arm instruction that
saves the program counter before changing its value (i.e., direct and indi-
rect branch-and-link instructions) to an LLVM call instruction. In order
to support indirect calls, we leverage an optimization technique called indi-
rect call promotion [15, 61, 26, 86]. This technique consists in transforming
each indirect call into direct conditional branches and direct calls. Indirect
call promotion has been introduced to improve the performance of branch
prediction [15]. Conditional branches compare the target address of the in-
direct call with the entry point of each possible function in the program.
If the condition is true, this function is called directly. This is equivalent
to enforcing a weak control flow integrity policy, and akin to what klee

already does for C/C++ function pointers. It would be possible to enforce
stricter control flow integrity checks by retrieving the control flow graph
with a static analysis or a compiler pass.

We translate all instructions that restore the previous program counter,
for example bx lr and pop pc, to return instructions. These returns still
work as intended even if the return address is corrupted. However, we do
not rely on side effects (return to a corrupted address) to detect corruption.
We rather detect the corruptions by relying on the memory checks, e.g., to
detect buffer overflows.

We implement all other direct (conditional) branches and it-blocks6 with
simple direct branches available in llvm-ir.

Interrupts and multithreading. The control flow of the program is
also modified by interrupts, which asynchronously block the normal execu-
tion and call-defined handler functions. Interrupts are used very frequently
in embedded programs to synchronize the peripherals with the embedded
software in an event-driven fashion, or to implement multithreading.

Inception VM can receive interrupts from the real device (when real
peripherals are used and generate interrupts) or generated by the user using
helper functions (e.g., to stress specific functions in a deterministic way).

5The lifting of these instructions is similar to re-implementing a Cortex-M3 in llvm-ir

based on the ARMv7-M reference manual.
6In ARMv7-M an “it-block” is a group of up to four instructions executed only if the

condition of a preceding it instruction is true.
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We extended klee so that the main execution loop checks for the presence of
interrupts to serve. In this case, klee executes an llvm-ir helper function
that accesses the interrupt vector table in the firmware memory to resolve
the address of the interrupt handler to call, based on its identifier (ID). This
dynamic resolution is necessary only if the firmware overwrites the vector
table. If the vector is fixed, a slight speedup in execution can be obtained
by storing the vector in a configuration file, loaded by klee at startup.

Before giving control to an interrupt handler, and when returning from
it, a Cortex-M3 processor performs several seamless operations (e.g., stack-
ing and unstacking the context, managing two stack modes). In Inception,
a special glue-IR helper function generated by our lift-and-merge process
performs these steps.

To implement multithreading, operating systems such as FreeRTOS
heavily rely on the interrupt and stack management features. In summary,
the operating system, which has its own stack, manages a separate stack
for each thread. Context switching is possible because when a thread is
interrupted, its context is saved to its stack, and the context of the resum-
ing thread, including the program counter, is pulled from another stack.
The switch is done in part by the processor and in part by the operating
system. Inception fully supports this process, since all the required features
are self-contained in the mixed-IR. Inception VM extends klee’s call stack
management, to be able to handle one call stack for each thread. Briefly,
whenever a new thread is spawned, a new call stack structure is generated
and assigned to it.

Synchronization with the real device. To collect interrupts on the
real device, we insert a stub on the device that registers one handler for
each possible interrupt. When an interrupt is fired, the handler is called
and notifies klee thanks to the forwarding system. The main challenge of
this architecture is to keep the virtual machine and the device synchronized,
without inconsistencies and race conditions, even in presence of multiple
priorities. This needs to be done carefully and uses several mechanisms. In
particular, the interrupt handler on the device should not return until the
corresponding klee handler terminates. This is necessary, for example, to
mask interrupts with the same or lower priority until the handler ends, as
it happens in the real device, and to avoid the flooding of new interrupts.

A complete example. Figure 5.4 shows an example of context switch
triggered by an interrupt generated on the device. On the right we see how
the identifier of the interrupt is used both to notify klee at the beginning
and to acknowledge the stub at the end. The acknowledgement is per-
identifier, so that the stub can be interrupted by higher priority interrupts.
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Figure 5.4: Context switch due to an IRQ.

On the left, we can observe the switch between threads enabled by the
seamless context stacking and unstacking.

In summary, Inception fully handles interrupt synchronization with the
host virtual machine thanks to Steroids, while previous work had only lim-
ited interrupt support [98].

5.3.5 Forwarding mechanism with Steroids

In the previous parts we described how we integrated peripheral devices and
interrupts in the virtual machine. We now focus on the lower layers of the
communication mechanism between the host and the real device.

In order to read and write the device memory, we directly connect to the
system bus through the AHB-AP, which can be accessed with the JTAG
protocol.7 The AHB-AP port is available in Arm Cortex-based devices and
allows a direct access to the peripherals. Inspired by Surrogates [58],
we designed a custom device based on a Xilinx ZedBoard FPGA [42], to
efficiently translate high-level read/write commands into low-level JTAG
signals.8 The FPGA is connected through a custom parallel port to a

7An alternative would be a port using the faster SWD protocol, but this technology is
less widespread than JTAG.

8Surrogates [58] was never open sourced but the authors shared their implemen-
tation. However, due to lack of hardware availability and other problems we eventually
re-designed the debugger from scratch.
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Cypress FX3 device [82] which provides an USB 3.0 interface. Unlike USB
2.0 where devices are slaves, USB 3.0 is a point-to-point protocol and,
therefore, has a very low latency. With this setup we handle the burden of
the low-level and inefficient JTAG protocol in hardware close to the device,
while we transmit high-level commands over a low-latency high-bandwidth
bus to/from the host. Our debugger (i.e., Steroids) is able to communicate
with the stub running on the device and handle interrupts using a dedicated
asynchronous line and shared memory locations.

Handling Interrupts. Forwarding interrupts is more complex because
they are asynchronous events and close to the hardware. Indeed, interrupts
are generated on the device and partially processed by the interrupt con-
troller (NVIC) and the core before being serviced by a user-defined interrupt
handler. For example, the NVIC orders the interrupts in terms of priority
and the core can mask them. In our system, we use the real NVIC on the
device, configured by the software as a normal peripheral. We also add
a special forwarding command to write the control register of the core re-
sponsible for masking, which is accessible via JTAG. Finally, we use dummy
interrupt handlers that are executed on the device. These handlers have a
dual function. First, they catch the interrupt events which they send to
the host via the forwarding mechanism. Second, they execute at the same
time as the handlers in the host virtual machine, keeping host and device
synchronized in the same state. As long as the handler is executing on the
host, a corresponding dummy handler is executed on the device. This is fun-
damental, as the way NVIC and core handle new incoming interrupts also
depends on the execution of the handler. For example no other interrupt
of the same or lower priority can be served while the handler is still exe-
cuting, whereas an interrupt with higher priority will interrupt the current
one. To be precise, there is a small time window during which the device
has already an active interrupt and the virtual machine not, due to the
transmission latency. This does not introduce inconsistency, providing that
any read of the active interrupt register by the software returns the state of
the virtual machine and not the one of the device. While Avatar introduces
the idea of an interrupt stub to collect interrupts, it does not solve these
synchronization problems in detail. While prior work had basic interrupt
support [98], this mechanism allows us to support high speed interrupts and
complex priorities, which was not possible before. To sum up, we can handle
high-speed interrupts with complex priorities, and we correctly synchronize
the real device with the host virtual machine, whereas previous work had
only limited interrupt support [98]. Once the dummy handler is called, it
notifies the FPGA using a handshake protocol based on two general purpose
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input/output signals (GPIOs). The main command execution loop on the
FPGA is interrupted, the FPGA reads the interrupt number in memory lo-
cation written by the handler and forwards it to the host through the normal
system. During the communication with the FPGA interrupts are masked
to guarantee atomicity, but in any other moment the dummy handler can
be interrupted by higher priority interrupts. Once it has sent the event to
the FPGA, the dummy handler enters a loop, waiting for the handler on the
host to terminate. When the host handler returns, the system notifies the
dummy handler by writing a flag in memory. There is one location for each
interrupt number, to support nesting of higher priority interrupts. We plan
to explore the use of a trace port instead of GPIOs to send interrupt events,
however, the dummy handlers would still be necessary for synchronization.

In summary, we provide a clean design for an efficient, cheap , and open-
source solution, which can be used to experiment and replicate research that
requires customizable debuggers (e.g., [74]).

5.3.6 Validation

We carefully validated Inception to obtain a reliable tool.
Regression Tests. We created a framework for automated regression

testing of the code. Around 53200 tests are performed at several levels of
abstraction, from unit tests up to tests involving all components. Results
are compared to a Golden model (i.e., a known and trusted reference). For
example, we compared single instructions against the real Cortex-M3 pro-
cessor, assembly functions against the C code from which they originate or
alternative implementations, and complete applications against their behav-
ior on the native hardware. We stress symbolic execution on known control
flow cases, and bug detection on known vulnerabilities.

Arm Cortex-M3 lifter. The correctness of the lifter is particularly
important to obtain correct execution. Our framework generates all possible
supported instructions, starting from a description of the instruction set.
Then, for each type, it creates several tests with random initialization of
registers and stack. Finally, in executes them both on the device and in
Inception, and it compares the final state of registers and stack. Table 1 in
the appendix summarizes all the tests we performed.

5.4 Evaluation and comparison

After validation, we evaluated Inception over a set of interesting samples,
which we explain in this section. We first focus on the effects of seman-
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tic information on vulnerability detection and on the speed performance of
the tool. Then, we show analyses on more complex examples including, for
example, assembly code for multithreading and statically linked libraries.
Finally, we explain how Inception found corruptions in three industrial ap-
plications under development, including a boot loader. Evaluating and com-
paring tools for embedded software analysis is hard because of the lack of
an established benchmark suite. This is rendered harder due to the large
number of different hardware platforms. While some of the examples we use
below are proprietary, we also built a large set of validation and evaluation
examples, sometimes based on existing open-source code. Those examples
will be made available together with Inception and may provide a basis for
such a benchmark.

5.4.1 Vulnerability detection

Detection rate at different semantic levels. We evaluate how vul-
nerability detection is affected by the semantic level of high-IR and low-IR
and their interaction. In particular, we explore if klee can detect memory
corruptions on a vulnerable path, depending on how variables are allocated
and accessed by different types of IR. Our analysis samples are based on
the Klocwork Test Suite for C/C++9, which includes out-of-bound, over-
flow, and wrong dynamic memory management errors. We initially compile
them to high-IR (and binary). We then selectively force the decompilation
from binary to low-IR of some functions, obtaining 40 different interaction
cases. Table 5.2 summarizes the different combinations of allocation and
access of memory objects at different semantic levels, and the corresponding
detection results, which we comment in the following.

9https://samate.nist.gov/SRD/view.php?tsID=106

https://samate.nist.gov/SRD/view.php?tsID=106
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Table 5.2: Overview of memory checks between llvm code at different IR
semantic level.
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First, detection works only for those memory objects allocated in high-
IR for which we have semantic information. However, the memory accesses
can come from both high-IR and low-IR or be related to the return value of
low-IR functions. For example, a C function allocates a buffer that is then
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improperly used by an assembly function. If the called function overflows
the buffer, it will access an unallocated memory space of the high-IR domain
where memory objects have a defined size, type and which are separated
from each other by a red zone. The semantic information of high-IR memory
objects greatly improves the detection of vulnerabilities even if it occurs in
low-IR code. However, if the buffer is allocated by a low-IR code (assembly
or binary code), the lack of semantic information about the variable prevents
the detection of the overflow. The same mechanism is applied to local
(static) allocation and global allocation.

Second, when using klee dynamic allocation functions, all vulnerabil-
ities can be detected in both high-IR and low-IR, whereas if we use some
implementation in the code of the application, the detection rate drops to
almost zero for both high-IR and low-IR. However, in this case we can test
the code itself of the allocation functions, either in high-IR or low-IR de-
pending on the case.

In summary, in 40 synthetic tests, 70% of the inserted vulnerabilities
were found and no false vulnerability was reported.

Comparison with binary-only approaches. When testing embed-
ded binary code, it is hard to catch memory corruptions because of the lack
of semantic information, code hardening, and operating system protections.
For example, [70] highlights the problem when fuzzing a STM32 board,
and it uses several heuristics to catch corruptions. To compare this ap-
proach with Inception, we analyze the same firmware (expat XML parser
with artificial vulnerabilities). Each vulnerabilty (stack/heap-based buffer
overflow, null pointer dereference, and double free) has its own independent
trigger condition. We start with the source code compiled to high-IR, but
we also generate cases with low-IR by forcing the decompilation of vulner-
able functions. To use Inception, we mark the input as symbolic and run
the samples with a timeout of 9.0× 101 s. Results are visible in Figure 5.5.
Our approach successfully uses all the semantic information available, keep-
ing a good detection rate even in presence of some low-IR code. We could
integrate the heuristics from [70] to improve results even further. One of
the vulnerabilities could be detected, but it is not triggered because of state
explosion (47k states) and the constraint solver (using 67.5% of the time),
which are problems inherent to symbolic execution and common to klee.
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Figure 5.5: Evolution of corruption detection vs. number of assembly func-
tions in the Expat XML parser (4 vulnerabilities [70], symbolic inputs, and
a timeout of 9.0× 101 s).

5.4.2 Timing overhead

Overhead of the executor. We evaluate the execution speed of the virtual
machine using the Dhrystone10 v2.1 benchmark, compiled without any op-
timization in llvm-ir. Inception has 38% of slowdown overhead compared
to klee, but if we disable the multithreading support the overhead becomes
insignificant. Inception is 17 times slower than the real hardware11. This is
mostly due to execution in the klee virtual machine.

Overhead of low-IR (advantage of high-IR). One of the advantages
of our source-based approach is that we maximize the use of high-IR, which
is more compact and faster than low-IR. To provide a rough example, we
force 3 functions out of 12 in Dhrystone v2.1 to be translated from binary,
which is a realistic proportion. This adds 343 more IR lines to the initial
1636, reducing the speed by around 43%. Low-IR does not seem to affect
the time spent in the constraint solver. For example, we run bubble sort

and insertion sort, with a symbolic array of 10 integers and a timeout of
9.0× 101 s. Both the high-IR and the low-IR versions spend about 90% of

10Dhrystone is a synthetic computing benchmark program, available at http://www.
netlib.org/benchmark/dhry-c.

11Value reported by the manufacturer for a STM32 with Cortex-M3.

http://www.netlib.org/benchmark/dhry-c
http://www.netlib.org/benchmark/dhry-c
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the time in the constraint solver.
Benchmark of some real applications. We evaluate the overall

performance (software stack and forwarding) of three popular protocols:
ICMP, HTTP, and UART. For the first two, we use the Web12 example
for the LPC1850 board. We use the Ethernet interface of the real device,
forwarding memory accesses and interrupts. In particular, we identify the
DMA buffers and configure Inception to keep them on the memory of the real
device. For the UART, we use the driver of the STM32 board, again using
the real peripheral. For all protocols we use simple clients (ping, wget, and
minicom) on a laptop, and we repeat measurements for 100 runs. Results
are shown in Figure 5.6. There are two reasons why ICMP and HTTP are
slower than UART. First, they have a more complex software stack. Second,
they require forwarding of many interrupts and of large DMA buffers.
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Figure 5.6: Performance comparison between native execution and Incep-
tion. (libusb-0.1-4, Ubuntu16.04 LTS, Intel Corporation 8 Series/C220
USB Controller)

5.4.3 Analysis on real-world code

We evaluate the capabilities of the Inception system on two publicly avail-
able real-world programs. These two samples cover the different scenarios

12It is part of the lpc1800-demos pack available at https://diolan.com/media/

wysiwyg/downloads/lpc1800-demos.zip

https://diolan.com/media/wysiwyg/downloads/lpc1800-demos.zip
https://diolan.com/media/wysiwyg/downloads/lpc1800-demos.zip
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Type Total Detected Rate
Division by Zero 88 88 100%
Null Pointer Dereference 131 131 100%
Use After Free 62 62 100%
Free Memory Not on Heap 1.131 1.131 100%
Heap-Based Buffer Overflow 38 38 100%
Integer Overflow 112 0 0%
Total 1.562 1.450 92%

Table 5.3: Corruption detection of real-world security flaws based on FreeR-
TOS and the Juliet 1.3 test suites.

in which Inception can be applied.
FreeRTOS is a market-leading real-time operating system supporting

33 different architectures.13 It provides a microkernel with a small memory
footprint and thread support. For this, it uses small assembly routines that
strongly interact with the features of the target processor and it is, therefore,
a good test case for Inception. We show that Inception can execute low-level
functions that deal with multithreading before reaching vulnerable areas.
We experiment with the injection of vulnerabilities in one thread, symbolic
execution with producers and consumers, and corruption of the context of
a thread.

We take the injected vulnerabilities from the NSA Juliet Test Suite 1.3
for C/C++, which collects known security flaws for Windows/Linux pro-
grams.14 We selected tests related to divide by zero, null pointer dereference,
free memory not on heap, use after free, integer overflow, heap-based buffer
overflow. We skip tests that cannot run on our target STM32L152RE (e.g.,
those that require a file system or a network interface) and those that the
LLVM 3.6 bitcode linker cannot handle (poor support of the C++ name
mangling feature) for a total of 10384 and 1214 deletions, respectively. Fur-
thermore, we update namespace names to comply with CLang 3.6. We
obtain 1562 tests which we embed in FreeRTOS threads.

To trigger the vulnerabilities, Inception has to first execute low-level
code containing assembly, and in some cases also to flag as symbolic the
output of a software or hardware random generator. The interrupts required
for context switches and timers can be either collected on the real device
or simulated (with the appropriate generation functions). We chose the

13https://www.freertos.org/
14https://samate.nist.gov/SRD/around.php#juliet_documents

https://www.freertos.org/
https://samate.nist.gov/SRD/around.php#juliet_documents
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second option to be able to run many tests quickly. We set a timeout of
3.00× 102 s and we observed that we can reach these regions without manual
effort or modification to the multithreaded code (Table 5.3). The detection
rate is 100% for divisions by zero, null pointer dereference, use after free,
free of non-heap allocated memory, and heap buffer overflow vulnerabilities.
Integer overflows are not detected at all in klee (version 1.3). However,
we note that in general it may be possible to detect a consequence of the
overflow later.

We also wrote a simple multithreading library that uses the same hard-
ware features as FreeRTOS. On top of it, we created a simple example with
three threads, where two consumers use the data put in a circular buffer
by a producer. This simulates, for example, an application that processes
sensor data. Depending on a symbolic value, threads execute in different
order with different data. Inception can easily find a condition that triggers
an overflow in the circular buffer. We also simulate the presence of a vul-
nerable code that corrupts the context of a thread, in particular its program
counter on the stack. In this case, when the corrupted thread resumes, In-
ception detects that the program counter is invalid (not part of a thread
that was correctly started before). Note that they may be false positives (if
such behavior was intentional) or negatives (if the corrupted address is still
valid).

libopencm3 is an open-source library that provides drivers for many
Cortex-M devices.15 We test some examples in which the library is a stat-
ically linked binary. It is very similar for Inception Translator to lift and
merge a function in a statically linked library or from a function that con-
tains inline assembly. For example, we write a sample that uses the CRC
peripheral to compute the Code Redundancy Check (CRC) on a buffer. The
CRC peripheral computes one word at a time, so the driver iterates over
the buffer locations. Besides this, the application calls other libopencm3

functions to initialize the STM32 device and to configure and blink LEDs.
Though the driver and the other functions are translated from the binary,
the buffer is part of the application code written in C; therefore, we have
semantic information on its type and size. Similarly, Inception knows the
memory layout and the location of the other variables. If the low-IR driver
is called with an incorrect length parameter, this leads to an out-of-bound
access which is detected by Inception. Similarly, if the buffer is dynamically
allocated and erroneously freed, Inception detects a use after free. The se-
mantic information used for detection would not have been exploited by a
binary-only tool.

15https://github.com/libopencm3/libopencm3

https://github.com/libopencm3/libopencm3
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5.4.4 Usage during product development

Commercial bootloader. Bootloaders are good targets for Inception,
since they contain low-level code and they often parse untrusted inputs.
Moreover, they are hard to test when the real hardware is not available
yet and tests on prototypes may be not accurate. To show the potential of
Inception in these conditions, we analyzed a bootloader under development,
and we found a problem that would have been difficult to detect on FPGA-
based prototypes.

Our target is a secure bootloader with several options, stored in a One
Time Programmable (OTP) memory. When it executes, the bootloader
holds in SRAM a structure containing some information about the appli-
cation (e.g., start address, stack address). This structure is pointed by
p_header in the pseudo-code that follows:

1 void start(){

2 switch(boot_modes) {

3 case NO_SECURE_BOOT:

4 context.p_header->start_addr = FLASH_MEM_BASE;

5 context.stack = SRAM_STACK;

6 jump_to_application();

7 break;

8 case SECURE_BOOT:

9 do_secure_boot();

10 break;

11 default:

12 error();

13 }

14 }

To prepare the analysis, we configured Inception with the memory layout
of peripherals. We also flagged the OTP memory as symbolic, to explore
all possible paths deriving from different boot options. Despite the lack of
hardware, Inception did not require any change to the source code. During
symbolic execution, Inception detected a corruption (write to an invalid
address) at line 4, and the solver gave us a test case to reach this condition.
We manually inspected the code and confirmed that the p_header pointer
is not initialized.

In summary, the bootloader writes a value to an address held in a non-
initialized SRAM location. If the invalid write does not trigger other errors,
the bootloader can still execute and successfully load the application at
start_address, making this problem hard to detect. In particular, it does
not crash on the FPGA prototype, because p_header is null (SRAM zeroed
at reset), which is mapped to writable memory. A write to 0 would instead
produce a memfault on the real device, as 0 would be mapped to a read-only
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memory. Bug had only been detected later in the development process, like
on silicon, it would have been very expensive to fix it. Indeed, it would have
required costly re-design and re-fabrication.

From a security perspective, an attacker may at least partially control
the value of p_header. For example, we could imagine a scenario in which
certain options lead to writing to this location, and a fast reboot preserves it
(SRAM is not initialized). Besides changing the destination before the write,
an attacker could change it after, so that the bootloader would dereference
a wrong start_address at which to load the application.

Chip SDK. We tested a Software Development Kit (SDK) for a com-
mercial chip, at a stage when a prototype of the hardware was not even
available yet. Therefore, we configured reads to peripherals to return un-
constrained symbolic values. Inception found a test case in which a bit-wise
shift depended on an untrusted value (overshift), which we confirmed by
manual inspection. In this case, the error leads to the wrong configuration
of a peripheral and unexpected behavior. More generally, overshifts could
lead to overflows or out-of-bound accesses. Early detection is useful to avoid
expensive fixes later.

Commercial payment terminal To show the potential of Inception
when hardware is available, we tested a payment terminal under develop-
ment, using the FPGA prototype to redirect most peripherals and their
interrupts. The application communicates with an external smart card
through a card reader, which we mark symbolic since it is not trusted.
This mix of concrete and symbolic peripherals effectively explores the code,
avoiding state explosion. Inception found eight potential vulnerabilities
(out-of-bound accesses), that have been reported to developers and still
have to be confirmed.

5.5 Discussion

In the following we discuss the advantages and limitations of Inception.
Application vs. (software/hardware) environment. The key to

using symbolic execution in realistic settings is to limit the expensive sym-
bolic exploration to a small critical code region, treating the (software/hard-
ware) environment separately. S2E [33] investigates how different strategies
to cross this partition affect the analysis. Inception offers several options.
Dynamic allocation can be either part of the environment (host functions
with concrete or concretized inputs), or part of the code under test (where
symbolic values can propagate). The former reduces the symbolic space
at the price of completeness, whereas the second one preserves complete-
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ness at the price of higher complexity. A peripheral can be treated as a
stateless untrusted function that ignores inputs and returns unconstrained
symbolic values. This leads to the exploration of all possible paths, also
those that would not be globally feasible with the real peripherals (mak-
ing false positives possible). Though useful for drivers when the hardware
is not yet available, this option does not scale because of state explosion.
Alternatively, Inception can use the real peripherals with concrete values,
reducing the problem. Globally unfeasible paths are reduced too, but they
could still appear if the states of peripheral and code become inconsistent
(e.g., if symbolic execution switches state during the access pattern to a
stateful peripheral). However, symbolic exploration visits the higher-level
logic of the application rather than the drivers, making the problem less
common. A more thorough study is left as future work. A complete testing
of a firmware program would require considering interrupts at any single
instruction, which in practice is not feasible. Previous work [76] reduces
the frequency of timer-based interrupts by executing them only when the
firmware goes in low-power interrupt-enabled mode. However, this solution
can miss issues that may occur when interrupts are processed during the
firmware execution. Inception enables users to generate interrupts on de-
mand that are useful to obtain deterministic sequences or to stress the code,
but it is neither complete nor guaranteed to try cases that are actually pos-
sible. Collecting the interrupts from the real hardware covers realistic cases
without additional complexity, but suffers from possible inconsistencies as
explained for peripherals. We plan to analyze enable/trigger patterns to
detect which symbolic states must serve an interrupt when it arrives.

Semantic gap. Inception increases the overall vulnerability detection
rate for applications containing assembly parts because it is able to preserve
as much as possible of the semantic information. However, the detection
level for the bitcode generated from low-IR could be improved, for example,
reconstructing typed objects from assembly, using DWARF debug informa-
tion, and adding extra detection heuristics (e.g., from [70]).

Support for binaries. Even though Inception targets the analysis of
source code during development, binary code may appear as a precompiled
library (e.g., we have encountered this case with libopencm3). Since the
binary is statically linked with the application, Inception can collect enough
information about function prototypes, symbols, and their addresses to suc-
cessfully decompile and merge the library functions used by the application.
This case is handled not much differently from that of functions containing
inline assembly.

Support for C/C++. Inception supports all main C types but inherits
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from klee the support for symbolic floating-point values. Regarding C++,
we support the C subset. Name mangling is poorly supported by the llvm

3.6 linker, and the syntax of some namespaces is not accepted by the Clang
3.6 front end, which is more strict than GCC 4.8. The subset that works in
Inception is generally enough for embedded software and for our samples.

Manual effort. Inception reduces the manual effort required for analyz-
ing embedded software, since it does not require any change to the original
code to support assembly and peripherals. The main challenge for a user
is the general problem of tuning symbolic execution. On a more practical
side, Inception requires extending compilation to CLang (e.g., in presence
of GCC-specific features) and to extract the memory layout of mapped
memory from the datasheet. This can be at least partially automated with
custom or existing tools. Moreover, compiling with CLang is worthwhile to
profit from its advanced static checks.

Lifter and its validation. The way we validated Inception’s lifter is
similar to the validation of the ARMv7-M formal instruction set [45] or
to the testing of CPU emulators [65]. Using a machine-readable architec-
ture specification to generate the lifter [78], or to generate test cases, would
provide a higher level of assurance. However, none of the current formal de-
scriptions for Arm processors [77, 45] support the ARMv7-M architecture.
Lifters are often used for particular applications. For example, PIE [36]
relies on S2E to perform static analysis, whereas FirmUSB [53] lifts binary
code to perform symbolic execution. Research in lifter design is quite active.
Fracture [59] tries to leverage the semantic information already present in
compilers in the other direction. This approach is successful for generating
bitcode for static analysis, but we found it unsuitable for generating exe-
cutable LLVM bitcode and for integration with our merging step. Other
approaches [86, 53, 17, 25, 50] are based on static translation, while tools
such as QEMU [22] use dynamic translation, which we avoid, since inte-
grating them with our merging approach would be complex.

5.6 Conclusions

In this chapter we highlighted the need for handling programs as a whole
in embedded systems development and testing. Like prior work, our exper-
iments show that testing based on the source code leads to a much better
bug-detection level than when working only on the binary code. These
two constraints together imply that embedded programs need to be con-
sidered with both their high-level source code and their hand-written as-
sembler code. For this purpose, we compile plain C functions with llvm
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toolchain into llvm-ir and functions which include assembler into native
code, which we then directly lift to llvm-ir. Finally, we merge this code
and execute it in Inception VM (a modified klee), which handles both
abstraction levels and is able to interact with the hardware using a fast
debugger (Steroids). We performed extensive tests and found two new
vulnerabilities and eight crashes in embedded programs, including boot-
loaders which were written to be included on a Mask ROM. The entire
project is open-sourced to make our results easily reproducible and avail-
able at https://github.com/Inception-framework/.

https://github.com/Inception-framework/
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Advanced dynamic analysis techniques such as fuzzing and Dynamic
Symbolic Execution (DSE) are a cornerstone of software security testing and
are becoming popular with embedded systems testing. Testing software in
a virtual machine provides more visibility and control. VM snapshots also
save testing time by facilitating crash reproduction, performing root cause
analysis and avoiding re-executing programs from the start.

However, because embedded systems are very diverse, virtual machines
that perfectly emulate them are often unavailable. Previous work there-
fore either attempt to model hardware or perform partial emulation (see
Chapter 5), which leads to inaccurate or slow emulation. However, such
limitations are unnecessary when the whole design is available, e.g., to the
device manufacturer or on open hardware.

In this chapter, we therefore propose a novel approach, called Hard-
Snap, for co-testing hardware and software with a high level of introspec-
tion. HardSnap aims at improving security testing of hardware/software
co-designed systems, where embedded systems designers have access to the
whole HW/SW stack. HardSnap is a virtual-machine-based solution that
extends visibility and controllability to the hardware peripherals with a
negligible overhead. HardSnap introduces the concept of a hardware snap-
shot that collects the hardware state (together with software state). In our
prototype, Verilog hardware blocks are either simulated in software or syn-
thesized to an FPGA. In both cases, HardSnap is able to generate HW/SW
snapshot on demand. HardSnap is designed to support new peripherals au-
tomatically, to have high performance, and full controllability and visibility
on software and hardware. We evaluated HardSnap on open-source periph-
erals and synthetic firmware to demonstrate improved ability to find and
diagnose security issues.

6.1 Introduction

From automotive to house appliances, embedded systems are becoming ever
more present in our modern life. The semiconductor market is highly com-
petitive with a very short time-to-market, in particular for micro-controllers
addressing niche markets. Moreover, embedded systems complexity is grow-
ing, making them more difficult to verify. The security of embedded systems
is a big concern. First, fixing security problems is often difficult. Silicon-
based hardware cannot be patched. Some firmware programs are often also
stored on read only memory (e.g., mask ROM) and is similarly impossible
to modify. Fixing such problems generally requires expensive redesign and
fabrication steps and therefore increases the time-to-market. Second, em-
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bedded systems are hidden away in more complex systems such as phones,
computers, payment terminals or system controllers, and therefore are sub-
ject to storing personal data, drive physical systems or part of complex
industrial plants. Third, the growing connectivity and attachment to online
services, make them more exposed to attacks. For all these reasons, there
is an important need for security tool to test embedded systems before pro-
duction.

Virtual machine introspection has formed the basis of many dy-
namic analysis methods such as coverage-guided fuzzing [64, 101, 100],
symbolic execution [27, 18], forensics analysis [51, 85, 68], and malware
analysis [95, 75]. This approach offers a full visibility and controllability
over the system under test, thus enabling sanity checks, tracing, concurrent
testing, and coverage measurement. Similarly, research on dynamic anal-
ysis of embedded systems tends to use emulators to gain in visibility and
controllability of the execution. However, research in this field generally
faces limited performance, difficulty to automate peripherals interactions,
and limited introspection on hardware peripherals (i.e., visibility or control-
lability).

Hardware Peripherals Interactions. When re-hosting embedded
systems in a virtual machine environment, one recurrent challenge is the
difficulty to correctly handle hardware interactions. In fact, embedded sys-
tems are purpose-built computers, mixing specific hardware peripherals and
firmware programs. There are typically many interactions between firmware
and peripherals which occur frequently during firmware execution. As a con-
sequence, the analysis of firmware without proper peripherals interaction is
often impossible.

Modeling Hardware Peripherals. Depending on the context, hard-
ware peripherals are modeled using different approaches. When hardware
design source code such as peripherals’ Hardware Description Language
(HDL) is not available, the behavior of those peripherals needs to be repli-
cated. Previous efforts replaced peripherals with hand-written [22] or au-
tomated [49, 14, 35] behavioral models. However, these methods are error-
prone, time-consuming and difficult, especially for complex peripherals.
To avoid peripherals modeling or partial emulation, hardware-in-the-loop
schemes forward Input/Output to the real device [98], [58], [37], [93]. De-
spite the gain in performance and automation, this method significantly
limits the visibility and controllability of peripherals that cross the bound-
aries of the virtual machine. In particular, this makes complete state snap-
shotting impossible: part of the state of the system is in the hardware. If
the tester can have access to the peripherals source code, it provides him
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many advantages. This enables peripherals to be either simulated or emu-
lated on an FPGA. Simulation offers a high visibility and control over the
overall simulated hardware blocks. However, HDL simulation suffers from
a significant performance slowdown. Another solution consists in emulating
the peripherals on an FPGA that may run at a speed similar to that of the
silicon chip. Contrary to a simulator, FPGA does not offer a high visibil-
ity/controllability on the running design. All these solutions make system
snapshotting challenging, and therefore limits the performance of existing
firmware testing methods.

System Snapshotting. Snapshots are useful to replicate events (e.g.,
corruption) for more detailed analysis. They also improve analysis per-
formance. This is typically interesting for symbolic execution and fuzzing
engines that may use snapshotting techniques to reduce the overhead of re-
executing the program from zero when concurrently testing multiple paths
of a program. Tools combining partial-emulation and symbolic execution
generally break the virtual machine boundaries, and therefore, introduce
significant consistency problems mainly due to the difficulty to control pe-
ripheral state. One obvious solution to this problem would be a record-
and-replay approach, however, it is extremely slow and error-prone as the
number of interactions to replay may be considerable and time sensitive.
Talebi et al. [93] report 8800 I/O operations just for the initialization of
the camera driver in the Nexus 5X. Replaying all the interactions would con-
sume a significant amount of time. Alternatively, when the HDL is available
a logic model [88, 32, 47] can be automatically generated. The resulting
model is accurate and offers a full-visibility and control over the simulated
design. Unfortunately, simulators have an important performance penalty
that slowdowns the dynamic analysis.

In this chapter, we introduce hardware state snapshotting, a mecha-
nism to save and restore hardware state, which extend traditional software
and VM snapshotting to hardware-in-the-loop snapshotting. We implement
this technique in HardSnap, our framework based on a symbolic virtual ma-
chine, based on Inception (see Chapter 5), to co-test hardware and soft-
ware. HardSnap was designed for performance, automation, full-visibility,
and full-controllability over the whole design under test (firmware and hard-
ware). In particular, we combine symbolic software execution and hardware
emulation targets (i.e., FPGA and HDL simulator). HardSnap, further en-
ables analysts to easily drive hardware components, express security prop-
erties using a high level of abstraction, or test firmware programs. Using its
symbolic execution engine, HardSnap can be used to generate software test
vectors to test hardware. HardSnap also makes possible to clone the hard-
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ware state between different targets to get the best of each world (FPGA
performance vs. full traces in a simulator). HardSnap can be either used
for testing the whole design or only a sub-system. We believe this would
facilitate its integration in a product development flow where components
and firmware are build concurrently.

Since our methodology aims at assisting hardware/software designers,
we evaluate it on a complete system. Unfortunately, despite the growing
presence of open source hardware, there are no complete SoC and firmware
which we could reuse for testing. We therefore demonstrate the capability of
our tool on a synthetic design composed of open-source hardware peripherals
and firmware. We argue that this is a realistic scenario, as such components
are commonly used on commercial microcontrollers.

Contributions. In summary, in this chapter we present the following
contributions:

1. A system-wide co-verification framework that supports hardware and
firmware analysis. This framework generates new test cases thanks to
a symbolic execution engine.

2. A novel methodology to save/restore embedded system state including
hardware peripherals and firmware program. Our method automati-
cally insert introspection mechanisms in hardware peripherals. This
enables hardware state observation and control at any time. We pro-
pose two methods based on a simulator and an FPGA, to get the best
of each world.

3. A novel multi-target support for hardware emulation enabling state
transfer at any time during the analysis to get the best of each hard-
ware targets.

6.1.1 Related Work

Research in dynamic analysis of embedded systems has been an active topic
over the previous decades. This has led to different approaches that we can
group in four main categories. They are presented in table 6.1.

Full Emulation. This approach relies on full-system emulation to
mimic the behavior of the original machine. A compelling example of such
approach is S2E [33] that is based on QEMU [22]. S2E enables symbolic
execution while emulating peripherals through behavioral models written in

10No hardware interactions.
11Using either a sub-approximation or an over-approximation.
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C. It snapshots the entire emulator program to offer full visibility, control
and ensure consistency during the symbolic execution that is able to con-
currently and exhaustively explore multiple execution paths. S2E enables
full-system analysis (i.e., peripherals and firmware), however, it requires
hand-written behavioral model for peripherals that is not easy and error-
prone.

Partial Emulation. To address the problem of supporting hardware
peripherals automatically, Avatar [98] redirects hardware interactions to
the real device. This method has later been followed by Surrogates [58]
and Inception (see Chapter 5). The former and the latter support ad-
vanced analysis of embedded systems thanks to a dynamic symbolic exe-
cution (DSE) engine. However, contrary to S2E they do not ensure hard-
ware/software state consistency during the entire analysis because of the
lack of control and visibility on the real device. In fact, the real hardware
peripherals are accessed concurrently by many software states (one by ex-
ecution path), changing the internal state of peripherals. The result may
lead to inconsistent states (unrealistic values) affecting the dataflow and
control flow, and therefore, leading to false positives or false negatives.

Automated Re-Hosting. Previous efforts replaced peripherals with
automated models. Peripherals are replaced by either an over-approximation
[39] or a sub-approximation [49, 14, 35]. These methods have limitations.
First, the approximation of the interactions with the underlying hardware
may lead to false positives (i.e., using not realistic values) or false nega-
tives (i.e., all the realistic values are not considered). Second, they limit
the visibility to the tested software only, and therefore make bug analysis
challenging when they are related to hardware components. These methods
address analysis of firmware programs when the peripherals source code is
not available.

Simulation. Hardware simulators [88], [9] generally transform the
Hardware Description Language (HDL) into a cycle-accurate behavioral
model that is tested using RTL or software-driven testbench. Contrary
to the silicon chip, cycle-accurate simulators offers full visibility and control
over the hardware, enabling DSE to generate snapshots and ensure consis-
tency during the analysis. However, hardware simulation is slow. Moreover,
peripherals (accelerators) are often designed to accelerate complex and slow
computations, simulation of such peripherals is very slow. To overcome this
performance limitation, the HDL can be synthesized to run on an FPGA.
Nonetheless, FPGAs offer a limited visibility over the design making snap-
shotting difficult.

Hybrid. To get the best of both worlds, researchers sought to mix
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different approaches. A tool combining simulation and emulation has been
developed by Chiang et al. [32] to enable cycle-accurate and full emulation.
This method offers a full visibility and control over the hardware, however
it does not perform advanced dynamic analysis.

6.2 Motivation

In the following, we give details about the motivation behind this work.
How do peripherals affect firmware execution? Embedded sys-

tems are purpose-built computers mixing hardware peripherals and firmware
programs. There are different reasons for the presence of peripherals. They
may offer an interface to the external world (e.g., actuators and sensors), a
inter-device communication interface (e.g., UART and wireless communica-
tion), a hardware accelerator (e.g., cryptographic accelerators) or internal
resources (e.g., interrupt controller, Direct Memory Access, Memory Pro-
tection Unit). Peripherals affect the firmware data-flow and control-flow
in different ways. Generally, firmware programs read inputs from periph-
eral through a Memory-Mapped IO or a Port-Mapped IO. Peripherals can
also modify the system memory (DMA). Moreover, the firmware execu-
tion can be interrupted by the peripherals when a task completes. Those
important interactions between firmware and peripherals make firmware ex-
ecution dependent on the hardware. Additionally, bugs may originate from
these interactions. For all these reasons, co-testing hardware and firmware
is important.

How does snapshotting reduce the overhead of re-execution?

Snapshots enables a program under test to be revived at an earlier point.
This is typically interesting for symbolic execution and fuzzing engines that
may use snapshot techniques to reduce the overhead of re-executing the
program from zero when concurrently testing multiple paths of a program.
As observed by Muench et al. [71], fuzzing embedded systems requires to
restart the target under test after each fuzzing input to reset a clean state for
further test inputs. Without HardSnap, restarting the embedded systems
requires a complete reboot of the device which is extremely slow. For sym-
bolic execution, snapshots are heavily used. Each time the symbolic engine
executes a branch where the condition is symbolic, it forks the entire pro-
gram memory in two states (one snapshot for each part of the condition).
Then, the analysis explores all paths concurrently according to the state
exploration heuristics. This approach requires intensive snapshot reload.
While traditional symbolic execution keeps all the tested system within the
virtual machine boundaries, symbolic execution with hardware-in-the-loop
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breaks this assumption. This may lead to inconsistency (e.g., peripherals
and software state mismatch) or extremely high overhead due to the need
to re-execute the program from zero.

Inconsistency due to incomplete snapshots. When peripherals of-
fer limited controllability and visibility, it is almost impossible to generate
a complete snapshot of the embedded system. This limitation leads to dif-
ferent scenarios for dynamic analysis of embedded systems. For the sake of
clarity, we illustrate these scenarios with a simple use case that we present
in Fig. 6.1. In this use case, a firmware program consists of two different
execution paths that request a specific computation to a unique periph-
eral. In return, this peripheral emits an interrupt signal to notify that the
computation is done. Then, the firmware executes the corresponding inter-
rupt request (IRQ) that reads the result from the peripheral. We identify
three different approaches for co-testing hardware and firmware programs.
First, the naive-and-consistent approach tests firmware execution path one
after the other, and it ensures a clean state by rebooting the entire sys-
tem and restarting the execution from the program start. This approach
is often adopted by fuzzer [71]. Unfortunately, it may involve a significant
number of time consuming reboots. Furthermore, it re-executes code hav-
ing the same effect for different execution paths (e.g., the INIT sequence),
this is not efficient. Second, the naive-and-inconsistent approach tests dif-
ferent execution paths concurrently. This approach is the one adopted by
hardware-in-the-loop-based DSE [98, 37]. These tools evaluate concurrently
different execution paths of the firmware under test while forwarding I/O
to the real device. The resulting analysis improves performance over the
previous method, however it introduces inconsistencies. In fact, if the same
hardware is driven in parallel by different software execution path, thus
leading to erroneous output values and execution flow. In our example, the
routine ’REQ A’ and ’REQ B’ are executed concurrently. In result, the
peripheral receives data emitted by the routine ’REQ B’, and it aborts the
computation of ’Task A’. The control flow gets affected since only one of the
two interrupts is emitted by the hardware. This is in fact a simple example,
but in reality, the naive-and-inconsistent approach may lead to complicated
inconsistencies affecting complex control flow and data flow of the embedded
system. These inconsistencies drastically affect the analysis correctness by
introducing false positives and false negatives. Finally, our approach, called
HardSnap, enables hardware/software snapshotting. This snapshot avoids
any time-consuming reboot, and it enables consistent concurrent analysis of
firmware programs.
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6.3 Design Objectives

We identify four desirable properties that the system should have.

1. Instrospective: hardware/software state introspection at any time.

2. Fast: minimize performance slowdown on the dynamic analysis tool.
In particular, when saving/restoring tested system state.

3. Scalability: fit with both small and large hardware designs.

4. Automation: minimize manual intervention and automate required
modification on the hardware design.

With these objectives in mind, we build HardSnap an extensible tool
for system-wide testing of hardware and firmware. In particular, it aims to
offer a fast and reliable way to fully control hardware state during testing.
Our approach can be used to verify both firmware and hardware. Although
limited by the need for hardware design sources, our solution is suitable
in the context of industry or open hardware. In the following, we give
architecture details regarding the implementation of main components.
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6.4 Design Overview

In this section, we provide an overview of HardSnap, an advanced frame-
work designed for security testing of hardware/software co-designed sys-
tems. In particular, it offers an efficient and consistent solution for source-
based selective symbolic analysis of embedded systems. Generally, symbolic
analysis leans on snapshotting mechanisms in order to finely manipulate the
system under test. This is particularly relevant for testing multiple execu-
tion paths of a system at the same time, or to reduce the time spent in
rebooting the system. However, this mechanism requires a full-visibility
and full-controllability over the tested system. This is generally difficult to
achieve with silicon-based hardware peripherals, that expose a very limited
memory interface to traditional software and remote debugger.

HardSnap overcomes this problem, and it offers a selective symbolic
execution engine with a high introspection level on hardware peripherals.
In particular, HardSnap is built around three main components. First,
a Peripheral Snapshotting Mechanism that takes as input a model
of the hardware peripheral written in Verilog, and inserts an introspec-
tion mechanism to observe and control the internals of the peripheral. The
resulting peripheral model supports snapshotting, and it can run on a sim-
ulator or an FPGA device following the design complexity and user-defined
configuration. Then, a Selective Symbolic Virtual Machine executes
the firmware programs while redirecting hardware interactions to hardware
peripherals. This virtual machine is based on Inception (see Chapter 5),
a framework for firmware program analysis based on the Klee [27] sym-
bolic execution engine. We emphasize that our approach is not specific
to Inception, and can be extended to any hardware-in-the-loop dynamic
firmware analysis tool, such as, fuzzers, or other symbolic execution en-
gines which requires hardware interaction. HardSnap inherits from Klee

the runtime detection mechanism for memory corruptions, and it offers an
interface to write assertions that are especially relevant for the detection
of peripherals misuse. Furthermore, it enables security analysts to write a
software-based testbench, and it generates test cases thanks to the symbolic
execution engine. HardSnap enables pre-production co-testing of hardware
and firmware, where both are generally designed and implemented simulta-
neously. For example, an embedded software developer can test hardware
drivers even if the full design is not available. Finally, a Snapshotting

Controller enables the virtual machine to generate complete snapshots of
the system under test, including hardware peripherals and firmware mem-
ory. Snapshots can reduce the time to fix bugs by offering a complete view
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of the peripheral state. To guide the reader during our explanation, we
provide a description of HardSnap in Fig. 6.2.

6.4.1 Peripheral Snapshotting Mechanism

This component is the core element of HardSnap. It instruments periph-
erals with an introspection mechanism. The latter refers to two impor-
tant notions: controllability and observability. Controllability refers to the
ability of controlling the state of (all memory elements) of a peripheral at
any time. Visibility refers to the ability of inspecting peripheral’s state
at any time. By combining both visibility and controllability, our snap-
shotting mechanism can inspect the internals of peripherals to save/restore
peripherals’ state. Generally, peripherals are modeled using a Hardware De-
scription Language (HDL) that offers an Intermediate Representation (IR),
abstracting the underlying layers (i.e., transistor or gate level). Among ex-
isting HDLs, Verilog is certainly one of the most adopted in the industry.
This language adopts the register-transfer level (RTL) abstraction that de-
scribes synchronous digital circuit in term of hardware registers linked with
each other through digital signals (data flow) mixed with logical operations.
These hardware registers are memory elements that generally synchronize
the circuit operations at each rising/falling edges of the clock signal. They
directly reflect the internal state of the hardware peripheral, and they enable
inferring combinatorial logic values. Our hardware snapshotting mechanism
focuses on inspecting and controlling the value of these hardware registers.
To support efficiently small or complex hardware design alike, we designed
two different approaches to get full controllability and visibility on hardware
registers.

Simulator Target. Hardware simulators are software programs able to
compile and evaluate expressions written in HDL. They are good candidates
for hardware snapshotting as simulated peripherals state is represented by
memory variables that are easily accessible on a host computer. Further-
more, they often expose an interface to access operating system’s capabil-
ities. This is particularly interesting for attaching a remote interface (i.e.,
our selective symbolic virtual machine). However, simulators are extremely
slow at testing complex design such as a complete System-on-Chip. To cope
with design complexity, HardSnap falls back on system partitioning. In
particular, it simulates peripherals only, whereas it executes firmware in a
symbolic virtual machine. For this purpose, HardSnap abstracts the pe-
ripherals environment (i.e., memory bus interface) that is exposed through
a remote interface to our symbolic virtual machine. In particular, Hard-

Snap takes as input a set of Verilog-based peripherals’ models and auto-
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matically generates a self-contained simulator with a remote interface. This
toolchain leverages Verilator, an open-source simulator, which translates
Verilog-based HDL into a cycle-accurate C++-based model. The generated
C++ code is then compiled and linked with HardSnap static library, which
implements the remote interface and a memory bus abstraction layer that
enables the remote interface to communicate with peripherals. HardSnap

aims at flexibility, and it offers a modular approach where the remote in-
terface and the memory bus abstraction can be easily replaced. We provide
support for the AXI4-Lite bus interface.

Field Programmable Gate Arrays (FPGA) Target. We designed
a second hardware target that focuses on performance at the cost of full
execution tracing. We present this target on the bottom side of Fig. 6.2.
FPGAs are post-production re-programmable integrated circuits enabling
digital design emulation at a speed similar to that of the silicon chip. How-
ever, they generally offer a limited introspection and debug capability. Some
FPGA manufacturers provide logical analyzers that monitor internal signals
but they are very limited in the number of signals. Furthermore, these so-
lutions are specific to the manufacturer. FPGAs generally offers limited
instrospection capability like a debugger for software program. Some man-
ufacturers offer logic readback capability to dump the FPGA fabric con-
figuration and memory values. However, this feature is only present on a
few high-end FPGAs. To avoid this limitation, HardSnap instruments
the HDL of peripherals directly, so that the resulting code stays indepen-
dent from the hardware target. In particular, our instrumentation toolchain
takes as input Verilog-based peripheral model, and it automatically inserts
a scan-chain that is basically an alternative path in which all the hardware
registers form a shift register. This scan-chain is activated by a scan_enable
signal and receives/emits input or output from a scan_input/scan_output
signal. For completeness HardSnap also supports the readback feature of
high end FPGAs and we compare the performance of readback to that of
our scan-chain in Section 6.6.

6.4.2 Selective Symbolic Virtual Machine

In this context, HardSnap has been implemented on top of Inception (see
Chapter 5), but with significant modifications and improvements as we will
explain. In particular, we use directly from Inception its existing mem-
ory forwarding and interrupt mechanism, which enables rehosted analysis
while keeping real hardware communication. Our major changes include
extending the software state representation to a combined hardware/soft-
ware state, a user-customizable multi-target support that routes memory
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accesses to the user-selected hardware targets (i.e., FPGA or simulator),
a hardware state forwarding that enables switching between hardware tar-
gets, a concretization policy that generates concrete value when a symbolic
value reaches the boundary of the virtual machine domain. In addition,
we enhanced Inception with engineering improvements to support recent
version of Klee and to simplify future updates of Klee components.

Selective Symbolic Execution. The term selective symbolic exe-
cution has been first introduced by S2E [33]. It refers to the ability to
execute symbolically the code of interest while executing concretely exter-
nal resources. HardSnap symbolically executes firmware programs while
executing concretely peripherals. For this purpose, it offers a concretization
policy that we describe latter in this section.

Multi-target orchestration. An important improvement we made to
Inception is the multi-target approach that enables user to precisely con-
trol and observe running analysis. This feature is built on top of the Incep-

tion memory forwarding mechanism. The former originally supports I/O
forwarding to a unique target through Steroids. We extended this mech-
anism to our simulator and FPGA target. We developed custom drivers
for both targets. The simulator target is remotely accessible through a
shared memory. The FPGA target emulates the Inception USB 3.0 low
latency debugger that we modified to receive USB 3.0 commands, and to
generate AXI transactions so that it can directly access peripherals with-
out any JTAG interface. Additionally, we created the target orchestration
system. In particular, it supports state transfer from one target to another
one at any time during the analysis. We believe this feature is interesting
for different reasons. First, it enables to cope with targets limitations that
generally offer either speed or full traces. For example, the Verilator-based
target enables full visibility along the execution (i.e., traces), however, it
is significantly slower than the FPGA-based target that does not offer full
traces. The target orchestration enables to start the analysis on the FPGA
target and once a particular point is reached the FPGA state is transferred
to the Verilator target.

Concretization policy. When the symbolic domain (i.e., symbolic
values) requests access to the concrete domain (i.e., hardware peripherals),
our system needs to concretize the symbolic expression to a set of possible
concrete values. This step is automatically done by HardSnap during sym-
bolic execution, and it is user-customizable to choose between completeness
(i.e., all possible values are tested) or performance (i.e., only one possible
value is tested).
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6.4.3 Snapshotting Controller

In Fig.6.2, we present a general description of HardSnap and its snap-
shotting controller. This controller is in charge of saving/restoring snap-
shots that are identified by a unique identifier. Our system supports two
different hardware targets. Each target has a specific snapshotting method.
The core of the snapshotting controller is part of the virtual machine and
it communicates with target-specific snapshot controllers.

For the simulator target, we use CRIU a Linux userspace framework
which is able to checkpoint and restore a process. Before any save/restore of
the simulator process, the snapshot controller flushes all pending read/write
operations, and then it freezes the simulator process. In fact, the simulator
has a remote interface to send read/write commands that is an operating
system capability outside the scope of the simulator. Once the simulator
process has been frozen, a checkpoint is stored on a persistent storage (i.e.,
the file system).

On the FPGA-based hardware platform, an internal hardware block
(“IP”) manages hardware snapshots. This IP is driven through memory
mapped registers that are directly accessible on the system memory bus, or
through the USB 3.0 debugger. This IP saves and restores the peripherals
state, by driving the scan-chain previously inserted. It takes as input the
snapshot source address and a destination address for the scan-chain output.
Once started, it suspends the hardware execution and saves all its content
at the specified memory address. At the same time, it loads the specified
snapshot to overwrite the hardware registers. For performance reasons,
the scanning IP saves peripherals snapshots in an SRAM memory. This
optimization significantly reduces the time taken for saving or restoring
hardware peripheral state.

6.5 Architecture and Implementation

In the following, we describe the details of our system architecture and
implementation. We first describe hardware snapshotting and then our
symbolic virtual machine.

6.5.1 Hardware Snapshotting Instrumentation

To support small and complex hardware designs alike, we use two ap-
proaches (Fig. 6.3): purely software simulation or FPGA backed simulation.

Simpler hardware components can be simulated purely by software. For
this, we extend Verilator [88], an open-source Verilog simulator designed
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Figure 6.3: HardSnap’s instrumentation toolchain.

with performance in mind. Verilator transforms a hardware component
written in the Verilog Hardware Description Language into a self-contained
multithreaded C++-based simulator A.1 . HardSnap automatically ex-
tends this simulator with a remote interface to connect the simulated hard-
ware to an external client. This interconnects a simulated memory bus (i.e.,
AXI, Wishbone) to a remote communication interface (i.e., socket, shared
memory). With such an interface an external application, such as our sym-
bolic virtual machine, can reach the peripherals (i.e., memory mapped reg-
isters). The resulting C++ code is then compiled using g++ to generate a

self-contained simulator program A.2 . This solution is suitable for testing
relatively simple hardware designs, but is too slow for complex peripherals.

To test more complex designs, HardSnap emulates the hardware block
on an FPGA. This approach scales well for complex designs, as long as
the component fits in the FPGA, but it does not offer any visibility on
the internals. For this reason, we built a tool which instruments HDL
files to insert a scan-chain, which provides access to all memory elements
of the design (memories, registers, etc). Knowing the value of hardware
registers, enables us to infer the value of combinatorial elements. This
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instrumentation is done directly at the RTL level (i.e., Verilog) B.1 , the
instrumentation is therefore independent from the FPGA toolchain. User-
defined parameters allow to limit the instrumentation to a sub-component
of the entire design. Finally, the normal FPGA toolchain is used to generate
a bitfile describing the configuration of the FPGA fabric B.2 .

6.5.2 Selective Symbolic Virtual Machine

We extended Inception’s symbolic virtual machine state representation
from software only to also consider hardware state. We first define the
notion of software state and hardware state:

• Software State: A software state, under Klee, is a 3-tuple Ssw

{PC,F,G} of a program P at a time t, where PC is the program
counter, F is a set of Stack Frames (i.e., local variables) and G is the
global memory (global variables and heap).

• Hardware State A hardware state, under HardSnap, is a set Shw

of all the hardware registers values of the hardware peripherals un-
der test at a time t. We refer to this as a snapshot when it is an
offline representation and refer to target when designing the hardware
platform.

Update of the state representation in Inception (from Klee) is straight-
forward. Each software state Ssw is associated to a unique hardware snap-
shot identifier. Thereafter, we refer to S which includes Ssw and Shw.
Algorithm 1 describes the main execution loop algorithm of our modified
version of Inception. A set AS contains the active states and is initialized
with the initial state (PC at program entry point and stack empty, no cor-
responding hardware snapshot). A variable Sprevious keeps reference of the
previous state that is being processed and is initialized as empty. Then, the
main process iterates until AS becomes empty, i.e., there is no more state
to test. This process is as follows.

First, a call to SelectNextState returns the next state to evaluate, with
respect to the user-defined state selection heuristic. This is the original
behavior of Klee, that has been extended by Inception to avoid selecting a
different state if the previous one is processing an interrupt. This mechanism
makes interrupt atomic to reduce timing violations. Then, we added a
mechanism to detect modifications on S by comparing its ID with Sprevious

ID’s. When the comparison fails, it indicates that current hardware state
does not belong to current software execution.
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We build two mechanisms to manipulate hardware state on demand.
First the function UpdateState: suspends hardware target, generates a new
snapshot and finally resumes the target execution. The new snapshot over-
rides the snapshot associated with Sprevious. Then, RestoreState overrides
the current hardware state with the snapshot associated with S. Doing so,
we ensure that further interactions will only affect the corresponding state.
This hardware context switch is a crucial mechanism to guarantee that
testing software state interacts with the correct hardware state. The same
mechanism is applied when the symbolic machine forks software state (e.g.,
symbolic condition on a branch). In this case, resulting state flows with a
unique and non-shared hardware snapshot.

Algorithm 1: Pseudocode of HardSnap’s main execution loop.
1 AS = {Sinit};
2 Sprevious = ∅;
3 while AS 6= ∅ do
4 S = SelectNextState(AS,Sprevious);
5 if Sprevious 6= ∅ and S 6= Sprevious then

6 UpdateState(Sprevious );
7 RestoreState(S);
8 end

9 Sprevious = S;
10 ServePendingInterrupt(S);
11 StepInstruction(S);
12 Snew = ExecuteInstruction(S);
13 AS ⇐ AS ∪ Snew;
14 end

6.6 Evaluation

In the previous part, we have described how we implemented hardware shap-
shotting on top of Inception. In this section, we undertake experiments on
a corpus of 4 synthetic real world and open-source peripherals. We selected
these peripherals because they are common on embedded systems and have
different design complexities. We made three experiments on these periph-
erals. With these experiments, we seek to answer three questions.

How long does it take to save/restore a hardware state? In
order to answer this question, we measured the saving/restoring process
duration for our corpus of peripherals on each proposed hardware snap-
shotting methods (i.e., simulator, FPGA with scan-chain, and the readback
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feature that is manufacturer dependant). For each of them, we compared
the hardware design size with the duration to determine how it may impact
performance. In addition, we complete the performance evaluation by mea-
suring the I/O forwarding latency and execution speed between the FPGA
and the simulator target.

How beneficial is hardware snapshotting for firmware analy-

sis? For this purpose, we measured the execution speed and the analysis
consistency that are two crucial factors for dynamic firmware analysis. We
run these experiments on HardSnap and Inception. First, the execu-
tion speed increases the number of test cases the system can evaluate per
unit of time. This increases the probability of discovering bugs. Second,
we demonstrate how corrupted hardware states affect the analysis accuracy.
This may increase the number of false negatives or false positives. For ex-
ample, a firmware executing an interrupt handler while the peripheral is not
active. Using this experiment, we show how hardware interactions may af-
fect the accuracy of the firmware analysis and at the same time we evaluate
the correctness of our approach.

How usefull is HardSnap for hardware testing? We present a case
study to demonstrate the versatility of HardSnap which can be used for
hardware and software co-testing.

All experiments were run on Ubuntu 18.04 (Linux kernel 4.15.0-42-
generic) with an Intel core I5 4500U 3.00GHz and 12GB RAM. All the
presented experiments are based on a corpus of 4 hardware peripherals pre-
sented below.

• SHA256 peripheral [89] is a Verilog-based implementation of a stan-
dard cryptographic hash function with a wrapper to interface it with
a memory bus (i.e., AXI-Lite Slave). The peripheral is part of the
Cryptech open HSM platform [8] that is deployed on commercial HSM.

• AES Counter Mode [54]. This IP enables encryption/decryption using
the AES in CTR mode. It is commonly used in wireless communica-
tion protocol such as WPA2 for WiFi.

• Programmable Interrupt Controller (PIC) is a software programmable
interrupt controller. Since firmware programs are generally interrupt-
driven, this peripheral is extremely important for firmware analysis.

• TIMER peripheral is a simple Verilog-based timer with status and con-
trol registers. Firmware can configure the interrupt timer frequency,
turn it on/off.
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We used two FPGA development boards for our experiments: A Zed-
Board with a Zynq-7000 ARM/FPGA SoC and an Ultra96 Zynq Ultra-
Scale+ ZU3EG development board. The ZedBoard is used for all exper-
iments except for measuring the performance of the readback command
which is only supported by the UltraScale+ board.

6.6.1 Experiment I: Hardware Snapshotting Performance

For our first experiment, we measure hardware snapshots performance for
each proposed hardware snapshotting methods.

Experiments Details Each experiment consists of the following: first,
the hardware target is started (i.e., FPGA, Verilator-based simulator), and
a control program is started (CRIU service runs as a Linux daemon in
background). This program is a C++ based application which drives the
save/restore process and measure time per operation. It is able to save
and restore the hardware state for any supported platforms. It commands
CRIU services through a socket to deal with the simulator platform and it
communicates with the USB3-based Inception-debugger to save and restore
an FPGA snapshot. The program measures the time to save the current
peripheral state and time to restore previously saved state. We repeat this
step 106 times for each peripheral and report the average time and standard
derivation in Figure 6.4. Additionally to this experiment, we provide in
Table 6.2 information regarding the size of the design under test that we
measure in terms of the number of Flip Flops (i.e., the scan-chain length),
simulator binary size, and bitfile size. The latter is relevant to the evaluation
of the readback feature that dumps all the FPGA configuration and its
memory values. This operation generates a bitfile that contains the whole
FPGA configuration, including for the unused FPGA logic. Therefore, the
bitfile size depends on the FPGA model and not directly on the complexity
of the tested design.

Design Number of Flip Flops Simulator Size Bitfile Size

ALL1 10817 7986 kB 5568 kB
AES CTR 9712 1541 kB 5568 kB
SHA 256 999 1209 kB 5568 kB
PIC 41 1189 kB 5568 kB
TIMER 65 1185 kB 5568 kB

Table 6.2: Size of the test design corpus.
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Observations and results By saving/restoring the hardware state, we
observe that the hardware is still responding between each test, indicating
that this process works correctly, even during stress tests.

We can first observe on Figure 6.4 the readback method does not perform
well. In fact, it collects more information than needed as all the FPGA
fabric configuration and memory values have to be accessed. According
to the FPGA documentation, the number of hardware registers (Data Flip
Flop) is 1.41× 105. Extrapolating the results, we find that our scan-chain
method would remain 5 times faster than the FPGA readback.

We also see that, for our corpus, the scan-chain method is the fastest on
average. It is faster or has comparable performance than the CRIU simula-
tor snapshotting. At first glance this is surprising because data transfers us-
ing the scan-chain (5MB/s) is much slower than CRIU snapshot (7.5GB/s).
However, the scan-chain snapshots strictly the necessary information (de-
sign state) while CRIU snapshots the whole simulator process. This makes
the software-based snapshot 738 times larger than the scan-chain based
snapshot (for the larger example ALL). This also explains why snapshot
time for with CRIU seems to be independent of design size.

Our scan-chain can also store snapshots in the FPGA’s internal SRAM,
without involving any software. Another optimisation we implemented is to
simultaneously save and restore the hardware state, scanning in the state to
restore while the state to save is scanned out. With those optimisations, in
our experiments, the FPGA-based scan-chain is faster than snapshotting the
simulator process when the number of hardware registers (i.e., D Flip Flop)
does not exceed 9, 712 (i.e., AES size). In fact, the simulated design also has
a scan chain that is used when forwarding state to/from the FPGA target.
This could significantly reduce the duration time for restoring/saving the
simulated peripherals, even if current results are perfectly acceptable.

Additionally to this experiment, we measure IO forwarding latency and
the execution speed of our hardware targets. For the forwarding latency,
we measure the average duration time to read/write mapped registers and
repeat this operation 106 times. Using the USB 3.0 DAP, the reads take
80.36 ms while writes take 40.07 ms. Respectively, the simulator target
takes 0.19 and 0.17 ms. The duration time to perform 106 reads/write re-
quests for the simulator platform is 2 order of magnitude shorter than the
duration time for the same action on the FPGA device. This experiment
highlights the time penalty when communicating with external device. Ob-
viously, the operating speed of the FPGA device is significantly faster than
running a design in a simulator. For this reason, we complete our exper-

1Synthetic digital design composed of all the peripheral corpus.
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iment by measuring the execution speed on both hardware targets (e.g.,
FPGA and Verilator). We measured the duration time to compute 1× 106

sha256 hash. The fpga target returned in 1.088µs while the simulator tar-
gets ruturned in 30 ms. Our multi-target approach enables user to balance
between performance following the design complexity.

To conclude, HardSnap supports different snapshotting methods where
performance range from 1.5MB/s to 7.5GB/s and where the duration time
to restore/save any peripheral of our corpus does not exceed 240 µs. This
experiment highlights the improvments that HardSnap offers for hardware-
in-the-loop analysis.

6.6.2 Experiment II: Gain for Firmware Analysis Tools

In our second experiment, we seek to evaluate the benefit of using hardware
snapshotting on firmware analysis. In particular, we focus on measuring the
execution speed and the analysis consistency.

Experimental Details For the purpose of this evaluation, we created a
program generator that given a program complexity ’N’ generates a code
composed of N levels of nested branches where each branch condition de-
pends on a program input value. This value is the operating mode that
indicates which hardware components is used (i.e., AES or SHA256). In
addition, we generate random operations at each branch to prevent compiler
optimizations, and to randomly change the value of the operating mode.
Those operations are randomnly selected between AES and SHA256 com-
putations. Both operations rely on the corresponding hardware accelerator,
and therefore accesses are redirected to the hardware target.

In order to detect inconsistencies during analysis, we added assertions
in the code. In particular, we detect incorrect IRQs and incorrect hardware
outputs. Incorrect IRQs are detected using a token mechanism that counts
the number of AES/SHA operations that we compare with the number of
executed interrupt handlers. The difference is the number of interruptions
that have been (incorrectly) not executed. In addition, we add assertions
to verify that each interrupt request belongs to the correct execution path
and hardware peripheral. Incorrect hardware outputs are detected by com-
paring outputs with expected values. We run experiments with ’N’ ranging
from 0 to 10 for Inception (no hardware snapshot) and HardSnap with
three different Klee state selection heuristics: Min-Distance-to-Uncovered
(MD2U), Depth-First Search (DFS), Random Path (RP). We present the
cumulative results in Figure 6.5.
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Then, we run the same experiment but this time we increase the number
of interactions to 106. This value is inspired by the number of interactions
reported by Talebi et al. [93]. For this part of the experiment, we modify In-

ception to use a record-and-replay approach for restoring hardware states
when switching branches. In fact, in Inception, no synchronization mech-
anisms are used to avoid inconsistent state during testing (see Chapter 5).
Instead of restarting the execution from zero (which is extremely slow), we
choose to implement the record-and-replay mechanism from Avatar [98].
We report the results in Figure 6.6.

Observations and results First, we present the results for the consis-
tency analysis. Our results show inconsistencies only when our hardware
snapshotting mechanism is not enabled (Inception). This demonstrates
the capability of HardSnap. Contrarily, Inception obtains an important
and increasing number of inconsistencies for all the tested search heuristics.
The number of inconsistencies in the worst case are 2038 for Random-Path,
682 for DFS and 2017 for MD2U. It is notable that the Depth-First Search
(DFS) presents less inconsistencies than the two others search heuristics.
This is consistent with the fact that DFS only change execution path when
the current one returns. Thus limiting the number of context switches, and
therefore the number of inconsistencies. Those inconsistencies are impor-
tant as they can lead to false positives or false negatives. Furthermore, they
would require significant work for an analyst to understand and filter them.

Second, we present results for the execution speed measurements. Our
results show an average performance enhancement of 3.34 for HardSnap

over the record-and-replay approach. Moreover, when N=9 (i.e., 512 ex-
plored states), HardSnap is 8.9 times faster, and when N=10 Inception

does not complete after running for 24 hours while HardSnap finishes in
roughly 2 hours.
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6.6.3 Experiment III: Case Study

While so far we looked at how HardSnap improves firmware testing, this
case study demonstrates how HardSnap can be used to test the hardware.
For this purpose, we inject a synthetic bug in the previously described PIC.
This synthetic bug corrupts the current interrupt ID. The PIC has two
operating modes: priority and polling mode. In this example, we aim at
verifying the correctness of the priority mode, which selects the active inter-
rupt based on configurable interrupts priorities. For this purpose, we wrote
a small testing code (Figure 6.7). This is a good example of a difficult bug
to discover as it requires exploring several logical states to be triggered.

Using this test with HardSnap generates 343 test cases and in 67.61
seconds (5 test cases per second; 21432 instructions in total). In total 127
assertions failed and, for each the state is transferred to the simulator. The
simulator can produce a waveform, which gives a good view of the internal
hardware state.

This simple case study shows two important features of HardSnap.
First, the symbolic execution provides a large coverage with just one test
case (i.e., the combinations of interrupt priorities). This significantly re-
duces the workload when compared to manually writing each test. Second,
when a violation is found on the high performance FPGA, the multi-target
approach allows to transfer a state from hardware to the simulator, with
much better visibility. This makes debugging easier.
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// the PIC supports 7 interrupt sources [1:7]
uint8_t i1, i2, i3 = klee_int();
klee_assume(i1>=1&i1<8&i2>=1&i2<8&i3>=1&i3<8);

// set the interrupt priority table
// right to left : highest to lowest priority
pic[1] = (i3<<6) | (i2<<3) | i1; pic[0] = 2;

// trig interrupt i1 , i2, and i3
pic[2] = (1 << i1) | (1 << i2) | (1 << i3); pic[2] = 0;

// wait interrupt signal or timeout
while( (pic[0] & 0xFF) == 0);

// check if i1 is the active interrupt
if ( i1 != (pic[0]&0x7)) {
klee_report_error(__FILE__, __LINE__, "bug", "hardsnap");
transfer_state_to_target("simulator");

}

Figure 6.7: Use case written in C to verify the correctness of the PIC
peripheral.

6.7 Limitations

Limitations of FPGA-based Emulation. FPGA-based emulation has
limitations. First, this technique focuses on emulating digital functions
rather than analog functions. This makes the emulation of some components
difficult. Second, the scan-chain may impose strong constraints for the
synthesizer, and it may require a slowdown of the nominal frequency. While
ASIC-based design generally relies on specific scan Flip-Flop to form the
scan-chain, such blocks are not common on FPGA, making it less efficient.

Asynchronous Logic. The design under test may interact with a
circuitry that cannot be instrumented. For instance, our USB 3.0 interface
is asynchronous, and cannot be fully controlled by HardSnap. This may
lead to inconsistent state (i.e., interrupt mismatch). To overcome this issue,
we made two modifications. First, we added a hardware register in the scan-
chain to store the ID of the current executions state. Then, we forward this
ID in addition to the interrupt request.

6.8 Conclusion

In this chapter, we introduced the concept of hardware snapshot to im-
prove hardware/software co-testing. We demonstrated how HardSnap im-
proves system-wide analysis with a high visibility over the overall system,
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enabling hardware introspection at any time during the analysis. The re-
sults of our experiments show that HardSnap improves both hardware and
firmware analysis. It significantly reduces the bottleneck or inaccuracy with
hardware-in-the-loop approaches. We also demonstrate that inconsistencies
may affect the analysis when naively testing firmware programs. These in-
consistencies may affect the analysis correctness, and they may lead to false
positives or false negatives. With HardSnap frequent reboots and replay
are not needed anymore. HardSnap is open-sourced to make our results
easily reproducible, and is available at https://github.com/hardsnap/.

https://github.com/hardsnap/
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In this chapter we conclude the thesis. Then, we discuss possible research
directions and future work.

7.1 Conclusion

In this thesis, we explore the problem of embedded systems security anal-
ysis and consider the point of view of a security analyst having access to
the source code and to Hardware Description Languages (HDL). For this
purpose, we consider programs and hardware peripherals issued from the
real-world.

To begin with, in Chapter 3, we study the security analysis of a com-
plex system-on-chip. For this purpose, we propose a naive methodology for
testing such systems. This methodology has proved its efficiency during a
hardware bug finding competition (HackDack 2019). From this experience,
we outline the research directions and challenges that we tackle in the rest of
this thesis. In particular, we outline three main limiting factors: (1) partial-
emulation latency, (2) semantic differences, (3) limited visibility and control
on the system under test. We designed and developed three independent
solutions that we evaluated with real-world systems.

First, Steroids makes partial-emulation testing practical by reducing
the I/O latency between the dynamic analysis tools and the system under
test (i.e., embedded systems). In particular, Steroids offers mechanisms
to redirect interactions (i.e., mapped memory, DMA, interrupt) between the
real device and the remote analysis tool.

Second, Inception enables system-wide analysis of firmware programs.
Previous work was either testing binary or source-code, whereas Inception

supports hybrid analysis where source-code may contain assembly lines and
even binary dependencies. Inception tool has been used in an industrial
production flow where it detected memory corruptions on bootloader stored
in mask ROM. In addition, we evaluated the correctness of our approach
through 5.2× 104 test cases that compare the operational semantic in In-

ception with the real hardware. Furthermore, we evaluate the fault de-
tection of Inception by testing 1.5× 103 test case from the NIST test
suite. Finally, we demonstrate how efficient source-based analysis is com-
pared to binary-based analysis and how our hybrid approach may improve
fault detection in binary code.

Third, we tackle the complex problem of limited visibility and control
when testing embedded system. These two notions are crucial for detecting
bugs, analysis performance and consistency.

To conclude, we believe that this thesis offers considerable improvements
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to the methods used for analyzing the security of embedded systems in pre-
production.

7.2 Future Work

This thesis presents fundamental improvements for achieving system-wide
source-based security analysis of embedded software. However, despite the
considerable undertaken work in this thesis, there are several lines of re-
search arising from this work and potential improvements.

First and foremost, omitting large comparisons with related work arise
questions on the efficiency of our approach. However, due to the diversity
of embedded systems architectures, it is often impossible to test embedded
software on all the existing security analysis tools without important mod-
ifications. For this reason, we focus our comparison with related work that
supports the same architecture. To facilitate replicability of our work for
future research [4], we provide detailed information regarding the set-up; we
based our material on off-the-shelf components; we provide all the source
code and test cases [7]. We would like to emphasize the fact that test suites
are common for desktop applications, however, as far as we know there are
no such tests for evaluating embedded systems security analysis tools.

Second, Inception has been actively used to test industrial applications
under development (i.e., bootloader) where it shows interesting results. In
Chapter 5, we present an evaluation of different publicly available firmware.
Among them, embedded operating systems (OS) are pervasive today. There
is an increasing number of OSs and therefore we thought that evaluating
their security with Inception would be extremely interesting.

In this thesis, we introduced the notion of hybrid analysis of source-code
and binary code. Our implementation, detailed in Chapter 5, presents a
hand-written lifter that translates binary code to Intermediate Representa-
tion (IR). Writing a lifter is error-prone and difficult as it requires a deep
understanding of the Instruction Set Architecture (ISA) for which the spec-
ification may contain errors. Errors in the lifted IR can affect the analysis
accuracy (i.e., false-positive or false-negative). For this reason, we decided to
compare thoroughly each emulated instruction with a real implementation
(i.e., a silicon chip). However, we believe that lifter could be automatically
generated from the ISA architecture and verified using semantic equivalence
techniques. This approach would also improve architecture support.

Finally, this thesis aims at analyzing system-wide embedded systems.
Our solution Inception focuses on firmware analysis while our approach
HardSnap extends Inception to hardware and software co-testing. We
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believe that research directions arise from this work. First, symbolic exe-
cution, which is widely used for testing software, could be applied to verify
hardware peripherals. Second, analyzing analog components would enable
a fine-restriction of the symbolic domains to reduce analysis complexity.
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STM32-L152RE Nucleo Board

Xilinx Zedboard FPGA

FX3 (connected to the host USB3 port)

Figure 1: Hardware components of the Inception system using an STM32
demo board using an Arm Cortex-M3.
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Figure 2: Example program with mixed source and assembly. 1 the orig-
inal C source code with inline assembly code. 2 CLang generated llvm

bitcode. 3 mixed-IR: llvm bitcode with produced by merging lifted bit-
code with CLang generated bitcode. We use the naked keyword to limit the
size of the example.
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.1 Examples of IR level adaptation

1. High-IR to low-IR parameters passing.
define i32 @foo(i32 %a, i32 %b) #0 {

entry: // PROLOGUE BB

store i32 %a, i32* @R0

store i32 %b, i32* @R1

br label %"i32x4_reti32+0"

"i32x4_reti32+0":

...

//EPILOGUE

%0 = load i32* @R0

ret i32 %0

}

2. Low-IR to high-IR parameter passing.
void @high_function(){

... // High IR code

%R0_2 = load i32* @R0

%R1_1 = load i32* @R1

%R2_1 = load i32* @R2

%R3_2 = load i32* @R3

%SP15 = load i32* @SP

%SP16 = inttoptr i32 %SP15 to i32*

%SP17 = load i32* %SP16

%0 = call i32 @low_function(

i32 %R0_2,

i32 %R1_1,

i32 %R2_1,

i32 %R3_2,

i32 %SP17)

store i32 %0, i32* @R0

... // High IR code

}

define i32 @foo(i32 %a, i32 %b,

i32 %c, i32 %d, i32 %e) #0 {

... // low-IR

}
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Introduction. 
Les ordinateurs sont de plus en plus présents dans nos vies modernes. Quelques 
exemples notoires sont les ordinateurs personnels, les téléphones dit intelligents (ou 
ordiphone), les appareils électroménagers. Ces systèmes vont de l’ordinateur à 
usage général aux systèmes à usage spécifiques aussi appelé systèmes 
embarqués. 
 
Historiquement, les systèmes embarqués étaient extrêmement liés aux produits 
dans lesquels ils étaient intégrés. Ces systèmes étaient conçu pour des usages très 
spécifiques comme par exemple contrôler la vitesse du moteur d’une machine à 
laver. En effet, leur usage permet généralement de contrôler un système mécanique 
(e.g., disque dur) ou électronique (e.g., lecteur optique ou capteur d’image). 
 
Cependant, la récente chute du prix des semi-conducteurs a permis une 
amélioration notable de ces systèmes avec une montée en complexité et 
connectivité. Un exemple majeur de cette évolution est l’internet des objets où les 
objets du quotidien sont connectés à des services en ligne via le réseau Internet. 
Cette connectivité des objets est de plus en plus importante en connectant par 
exemple les voitures, les villes, les montres, les appareils électroménagers, les 
dispositifs de santé. D’après Gartner, en août 2019 4.81 milliards d’objets connectés 
auraient été déjà fabriqués. 
 
Cette forte demande a permis une forte expansion du marché des semi-conducteurs 
mais aussi un renforcement de la concurrence avec la présence toujours plus forte 
de nouveaux acteurs. Cette tension n’est pas sans conséquence sur les cycles de 
développement qui sont de plus en plus courts pour répondre à la concurrence. De 
plus, la complexité montante de ces systèmes les rendent de plus en plus difficiles à 
vérifier afin de prévenir d’éventuelles failles de sécurité. Il est primordial d’effectuer 
cette vérification avant la mise en production car certains éléments des systèmes 
embarqués ne peuvent être mis à jour en post-production. C’est le cas des 
mémoires mortes et des composants matériels. 
 
En effet, certains éléments des systèmes embarqués tel que le code en mémoire 
morte ou les circuits électroniques ne peuvent pas être mis à jour facilement. Par 
exemple, les mémoires mortes qui sont programmées lors de la production de la 
puce électronique par photolithographie. Ce procédé permet d’obtenir des mémoires 
à faible un coût en comparaison avec d’autres solutions, cependant ces mémoires 
sont  inaltérables. Généralement, le chargeur d’amorçage est stocké sur ce type de 
mémoire afin d’éviter toute altération de son contenu, ce qui permet également de 
fournir une racine de confiance. Cependant, si le logiciel n’est pas suffisamment 
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testé une faille de sécurité logicielle devient alors persistante est difficilement 
corrigeable sans fabriquer une nouvelle puce. Il en est de même pour les 
composants matériels. C’est pourquoi les bugs sur ce type de composants sont 
généralement critiques et peuvent engendrer des conséquences dramatiques. 
 
Les conséquences d’une vulnérabilités peuvent être dramatiques. En effet, les 
systèmes embarqués contrôlent souvent des structures physiques dans le monde 
réel dont le dysfonctionnement peut engendrer des dommages humains, matériels 
ou financiers. Quelques exemples de ces systèmes sont les systèmes de transport 
de passagers, les robots industriels, les feux de circulation. De plus, ces systèmes 
peuvent collecter des informations personnelles issues de capteur ou d’interactions 
avec d’autres objets connectés et de ce fait peuvent révéler des informations 
personnelles tel que les habitudes, les emplacements géographiques, les intérêts ou 
même des numéros de carte bancaire. Cette interconnection entre plusieurs 
appareils identiques peut aussi amener à la construction d’attaques à grande 
échelle. 
 
Pour toutes ces raisons, il est nécessaire de tester scrupuleusement les systèmes 
embarqués avant leur mise en production afin de prévenir la présence de faille de 
sécurité. 

Contexte. 
Dans cette thèse, nous prenons le point de vue d'un fabricant de puces qui 
s'intéresse au test des puces avant leur fabrication. Dans un soucis de clarté, nous 
fournissons une description de ce processus. Généralement, le coeur est conçu par 
un tiers (par exemple, ARM). Ensuite, ce coeur est étendue avec des blocs matériels 
personnalisés et réutilisables également appelés bloc de propriété intellectuelle. Ces 
blocs forment les périphériques matériels qui offrent une porte vers le monde réel. 
Le niveau de personnalisation de ces blocs peut être important, en particulier pour 
les circuits intégrés à application spécifique (ASIC). Dans ce cas, les blocs sont 
personnalisés pour répondre à des besoins spécifiques. Pendant le cycle de 
développement des puces, le matériel et le logiciel sont conçus simultanément pour 
s'adapter aux contraintes de temps. Pour cette raison, les fabricants de puces 
testent généralement les programmes de micrologiciel et les périphériques matériels 
séparément sur une plate-forme d'émulation ou de simulation. Cependant, tester les 
composants séparément est souvent inefficace pour détecter les défauts dus aux 
interactions de différents composants tels que le matériel et le micrologiciel. Pour 
cette raison, effectuer des tests à l’échelle du système est crucial mais difficile en 
raison du court délai de mise sur le marché et du manque d'outils dédiés. Pour 
toutes ces raisons, il existe un besoin d'outils de test de sécurité pour tester 
minutieusement les logiciels de systèmes embarqués en pré-production. 
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Problématique. 
La complexité croissante des systèmes embarqués a été possible grâce à la 
combinaison de périphériques matériels et de micrologiciel au sein d’une puce 
électronique. Ces périphériques offrent soit une interface avec le monde réel, un 
calcul accéléré ou des fonctionnalités personnalisées. Par analogie, les 
périphériques matériels sont ce que sont les bibliothèques de logiciels pour les 
applications de bureau. Ils peuvent avoir une sémantique complexe et des 
interactions complexes avec le micrologiciel. De plus, ces interactions peuvent être à 
l'origine de bogues critiques pouvant avoir des impacts dramatiques dans le monde 
réel. En informatique, des travaux antérieurs ont mis en évidence des perspectives 
prometteuses pour tester des systèmes complexes à l'aide de techniques d'analyse 
dynamique ([1], [2], [3], [4], [5], [6], [7], [8], [9]). La recherche dans ce domaine est 
entravée par le manque de méthodes pour appliquer ces approches sur les 
systèmes embarqués et encore plus pour l'analyse basée sur les sources. De plus, 
la plupart de ces solutions traitent uniquement des tests binaires. En particulier, ils 
s'appuient souvent sur des tests en source fermée uniquement et limitent l'analyse à 
certains composants des systèmes. Dans cette thèse, nous essayons de répondre à 
cette question: combien d'efforts faut-il pour appliquer une analyse dynamique à 
l'échelle du système aux systèmes embarqués tout en considérant un contexte 
industriel? 
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Plan de la thèse. 
Dans le chapitre 4 «Etat de l'art», un aperçu de l'état de l'art dans le domaine de 
l'analyse de la sécurité basée sur la source des systèmes embarqués est présenté; 
dans le chapitre 5 «Évaluation de la sécurité SoC: réflexions sur la méthodologie et 
les outils», nous présentons une réflexion sur l'analyse de sécurité des systèmes 
embarqués, et nous soulignons les principaux défis que nous cherchons à relever 
dans cette thèse; au chapitre 6 «Stéroïdes», une sonde haute performance pour 
optimiser les approches existantes d'analyse dynamique dédiées à la sécurité; les 
travaux présentés au chapitre 7 "Inception: Tests de sécurité à l'échelle du système 
des logiciels de systèmes embarqués du monde réel" illustrent une nouvelle 
approche pour prendre en charge l'analyse de microprogrammes du monde réel où 
en pratique différents niveaux sémantiques sont mélangés (par exemple, code 
assembleur, C / C ++ et code binaire); dans le chapitre 7 "HardSnap: tirer parti du 
matériel pour les tests de sécurité des systèmes embarqués", nous présentons une 
technique pour prendre des instantanés à la fois du micrologiciel et des 
périphériques matériels pour permettre des techniques d'analyse dynamique 
avancées sans inconsistances et avec des performances raisonnables. La thèse se 
termine au chapitre 9 avec la conclusion et les perspectives d'avenir. 
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Évaluation de la sécurité des systèmes sur puce: 
réflexions sur la méthodologie et les outils. 
Dans le chapitre 3, nous présentons une réflexion sur l’évaluation de la sécurité des 
systèmes sur puce (SoC). En particulier, nous prenons comme référence le 
concours de sécurité Hack@DAC de 2019 auquel nous avons participé. Ce 
concours propose à ces participants d’analyser la sécurité d’une puce électronique 
dans des conditions similaire à celles rencontrées dans l’industrie. A savoir, le 
code-source des composants matériels et logiciels est disponible. Cependant, les 
épreuves (la phase de qualification et la finale) se déroulent sur une durée très 
courte similaire aux contraintes de temps dans l’industrie. 
 
Dans ce contexte, un défi majeur consiste à assurer le bon fonctionnement d'un SoC 
et de son logiciel, tout en satisfaisant des exigences strictes en termes de 
fonctionnalités, de coût et de délai de commercialisation. Dans ce chapitre, nous 
présentons la méthode qui nous a permis de remporter la première place (du 
classement académique), mais aussi les principaux défis dans ce domaine de 
recherche.  

Générer des tests. 
Une tâche qui nécessite un effort manuel est la génération de tests. Généralement, 
les analystes doivent lire la spécification de sécurité (lorsqu'elle existe), puis souvent 
l'interpréter pour obtenir une formulation plus précise des propriétés de sécurité 
souhaitées. Ce n'est qu'alors qu'ils peuvent formuler des hypothèses dans les cas où 
le système ne répond pas aux exigences, et enfin concevoir le logiciel de test 
correspondant. En général, il est plus facile d'obtenir des tests significatifs à partir 
d'une spécification, car celle-ci décrit plus précisément les propriétés attendues du 
système. À l'extrême, une spécification lisible par une machine pourrait être 
automatiquement traduite en cas de test. Des descriptions moins précises laissent 
une marge d'interprétation et nécessitent donc l'utilisation de connaissances 
spécialisées pour les tests de sécurité.  
 
Une fois qu'une formulation des propriétés de sécurité est disponible, elle peut être 
utilisée pour évaluer si la mise en œuvre répond aux exigences. Les programmes de 
test conçus manuellement, tels qu'ils sont utilisés dans notre méthodologie, ne sont 
qu'une option. Dans ce contexte, il convient de mentionner l'exécution symbolique et 
le fuzzing, qui sont deux approches populaires dans le domaine des tests de 
logiciels: ils vérifient les logiciels en explorant automatiquement de nombreux 
chemins possibles à travers un programme. Cependant, s'il est relativement facile 
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d'exprimer des exigences de sécurité dans un scénario uniquement logiciel, il n'en 
va pas de même lorsque des composants matériels éventuellement défectueux 
entrent en jeu. Nous pensons qu'une bonne spécification pourrait être utilisée pour 
guider l'analyse effectuée par de tels outils, ce qui permettrait de surmonter la 
difficulté de définir le comportement attendu. Par exemple, l'exécution symbolique 
pourrait explorer diverses interactions avec le matériel, tout en vérifiant que les 
affirmations de sécurité mises en avant par la spécification restent vraies dans 
chaque cas testé. C’est ce que nous proposons dans les chapitres 5 et 6 de la 
thèse. 

Exécuter les tests de manière efficace. 
Nous pensons que les tests et la validation d’un SoC peuvent grandement bénéficier 
de deux approches - abstraction des composants matériels et transfert sélectif vers 
le vrai matériel tout en utilisant un émulateur. En outre, les capacités des outils 
existants pourraient être facilement étendues pour coopérer avec des périphériques 
ou d'autres blocs au niveau RTL. Nous présentons cette approche au chapitre 8. 
Ces outils étendus serviraient alors de plate-forme pour les tests de sécurité des 
SoC basés sur des logiciels. Ils ont déjà été conçus en mettant l'accent sur la 
sécurité et comprennent un certain nombre de contrôles de sécurité automatisés 
(par exemple, des contrôles de corruption de la mémoire). En outre, ils permettent 
des techniques d'exploration plus automatisées telles que l'exécution symbolique et 
le "fuzzing". 
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Stéroïdes: un débogueur USB à faible latence 
rapide. 
Dans le Chapitre 4, nous présentons un système de communication appelé Steroids 
qui permet la réalisation d’une plate-forme de test découplant le logiciel et le matériel 
tout en conservant un interaction rapide entre les deux. Steroids se base sur le 
protocole USB 3.0 afin de garantir un latence acceptable. Son design est basé sur 
des composants sur étagère, abordables et son code-source est ouvert. Ainsi, les 
résultats de nos expériences sont reproductibles et Steroids peut servir de base à 
d’autres projets de recherche. 
 
Ce système est notamment utilisé dans le chapitre 5, où nous présentons une 
plate-forme de test pour micrologiciel. Et dans le chapitre 6, où nous proposons une 
amélioration de cette plate-forme avec notamment un meilleur prise en charge des 
composants matériel. 
 
Pour finir, nous présentons les améliorations en terme de temps d’analyse sur un 
outil d’analyse de code binaire nommé avatar². L’utilisation de Steroids sur cet outil 
permet de diviser par 16 la latence lors des accès en écriture et lecture vers le 
matériel. 
 

Photographie du système Stéroïdes avec de gauche à droite: le système embarqué en 
cours de test, le FPGA (ZedBoard) avec un JTAG maître et le pont USB 3.0. 
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Inception: test de sécurité à l'échelle du système 
des logiciels de systèmes embarqués du monde 
réel. 
Dans ce chapitre, nous présentons Inception, un outil permettant d'effectuer des 
tests de sécurité sur des microprogrammes complets. Inception introduit de 
nouvelles techniques d'exécution symbolique pour les systèmes embarqués. En 
particulier, un compilateur génère et fusionne du code LLVM à partir de code binaire 
et de code source de haut niveau. La présence de différents niveaux de sémantique 
dans un microprogramme est fréquent. En effet, des lignes d’assembleur sont 
souvent mélangées avec du code plus haut niveau (par exemple, le langage C/C++) 
afin d’interagir avec le matériel sous-jacent. De plus, des librairies logicielles peuvent 
être fournies au format binaire uniquement. Notre système permet la prise en charge 
de ce type de code où différents niveaux de sémantique co-existent. La génération 
d’un modèle sémantique en LLVM IR permet l’interopérabilité avec l’ensemble des 
outils d’analyse supportant ce format qui est devenu commun aujourd’hui. 
 
Inception dispose aussi d’une machine d’exécution symbolique, basée sur Klee, qui 
effectue une exécution symbolique du LLVM IR, en utilisant plusieurs stratégies pour 
gérer différents niveaux d'abstraction mémoire et l'interaction avec les périphériques 
(par exemple, les interruptions et la mémoire mappée). Enfin, nous intégrons 
Steroids, un débogueur JTAG haute performance qui redirige les accès mémoire 
vers le matériel réel.  
 
Nous avons validé notre implémentation à l'aide de 53 000 tests comparant 
l'exécution d'Inception à l'exécution concrète sur une puce Arm Cortex-M3. Nous 
montrons ensuite les avantages de Inception sur un benchmark composé de 1624 
programmes vulnérables synthétiques, de 4 applications industrielles et open 
source, et de 19 démonstrations. Nous avons découvert 8 crashs et 2 vulnérabilités 
inconnues jusqu'alors, démontrant ainsi l'efficacité d'Inception en tant qu'outil d'aide 
aux tests de micrologiciels de dispositifs embarqués. 
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HardSnap: Un framework pour le test de système 
embarqué basé sur les instantanés du matériel. 
Les techniques d'analyse dynamique avancées telles que le fuzzing et l'exécution 
symbolique dynamique (DSE) sont une pierre angulaire des tests de sécurité des 
logiciels et sont de plus en plus utilisées pour les tests de systèmes embarqués. Le 
test de logiciels dans une machine virtuelle offre une meilleure visibilité et un 
meilleur contrôle. Les instantanés de la machine virtuelle permettent également de 
gagner du temps lors des tests en facilitant la reproduction des pannes, en 
effectuant une analyse des causes profondes et en évitant de ré-exécuter les 
programmes dès le départ. Toutefois, les systèmes embarqués étant des machines 
très diverses, il est souvent impossible de les émuler parfaitement. Les travaux 
antérieurs dans ce domaine tentent soit de modéliser le matériel, soit d'effectuer une 
émulation partielle (voir chapitre 7), ce qui entraîne une émulation souvent imprécise 
ou lente.  
 
Dans ce chapitre, nous proposons donc une nouvelle approche, appelée HardSnap, 
pour tester conjointement le matériel et les logiciels avec un niveau élevé 
d'introspection.  HardSnap vise à améliorer les tests de sécurité des systèmes 
conçus conjointement par le matériel et les logiciels, où les concepteurs de 
systèmes embarqués ont accès à l'ensemble de la pile HW/SW. HardSnap est une 
solution basée sur une machine virtuelle qui étend la visibilité et la contrôlabilité des 
périphériques matériels avec un surcoût négligeable. HardSnap introduit le concept 
d'un instantané du matériel qui recueille l'état du matériel (ainsi que l'état du logiciel). 
Dans notre prototype, les blocs matériels en Verilog sont soit simulés dans un 
logiciel, soit synthétisés sur un FPGA. Dans les deux cas, HardSnap est capable de 
générer un instantané du HW/SW à la demande. HardSnap est conçu pour prendre 
en charge de nouveaux périphériques de manière automatique, pour avoir des 
performances élevées et une contrôlabilité et une visibilité totales sur les logiciels et 
le matériel. Nous avons évalué HardSnap sur des périphériques open-source et des 
micrologiciels synthétiques pour démontrer une meilleure capacité à trouver et à 
diagnostiquer les problèmes de sécurité. 
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Conclusion. 
Cette thèse présente des améliorations fondamentales pour réaliser une analyse de 
la sécurité des logiciels embarqués à l'échelle du système mais aussi des 
composants matériel. Nous explorons le problème de l'analyse de la sécurité des 
systèmes embarqués tout en considérant le point de vue d'un analyste de sécurité 
ayant accès au code source et aux langages de description du matériel (HDL). Nos 
travaux ont permis la réalisation d’une plateforme de test qui permet de surmonter 
certains des problèmes majeurs qui entravent la recherche dans ce domaine. A 
savoir, l’analyse de code logiciel ayant différent niveaux de sémantiques, la mise en 
place d’une communication à faible latence pour les outils utilisant l’émulation 
partielle et enfin l’exécution concurrente de différent chemin d’exécution d’un 
microprogramme tout en conservant un cohérence avec l’état du matériel. 
 
L’ensemble des travaux présentés dans cette thèse sont disponible sous des 
licences libres afin de garantir la reproductibilité des expériences mais aussi de 
promouvoir la recherche ouverte. 
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