
HAL Id: tel-03413385
https://theses.hal.science/tel-03413385v2

Submitted on 3 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Networks of realistic robots
Adam Heriban

To cite this version:
Adam Heriban. Networks of realistic robots. Artificial Intelligence [cs.AI]. Sorbonne Université, 2020.
English. �NNT : 2020SORUS325�. �tel-03413385v2�

https://theses.hal.science/tel-03413385v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
DE SORBONNE UNIVERSITÉ

Spécialité : Informatique
École doctorale nº130: Informatique, Télécommunications et Électronique de Paris

réalisée

au Laboratoire d’Informatique de Paris 6

sous la direction de Sébastien Tixeuil

présentée par

Adam Heriban

pour obtenir le grade de :

DOCTEUR DE SORBONNE UNIVERSITÉ

Sujet de la thèse :

Réseaux de Robots Réalistes

sous la direction de Sébastien Tixeuil

soutenue le 09/12/2020

devant le jury composé de :

Mme Paola FLOCCHINI Rapportrice
M. David ILCINKAS Rapporteur
M. Quentin BRAMAS Examinateur
Mme Maria POTOP-BUTUCARU Examinatrice
M. Sébastien TIXEUIL Directeur de thèse

Contents

Page

Acknowledgments v

1 Introduction: Networks of Realistic Robots 1
1.1 Distributed Robotics . 1
1.2 Motivation . 3
1.3 The OBLOT Model . 3
1.4 More Realistic Mobile Robots . 4

1.4.1 Sensors . 4
1.4.2 Transparency and Size . 6
1.4.3 Environment . 6
1.4.4 Memory and Communication . 7
1.4.5 Synchronicity . 7
1.4.6 Fairness and Boundedness . 8
1.4.7 Rigid Motion . 8
1.4.8 Faults . 9

1.5 A Realistic Example: Collision Avoiding Blind Robots 9
1.6 Our Contributions . 10

1.6.1 Published Work . 11

I The Power of Lights 13

2 The LUMINOUS Model 15
2.1 OBLOT FSYNC versus LUMINOUS SSYNC 16

3 Benchmark: Two-Robot Gathering 19
3.1 2-color Impossibility ? . 20
3.2 Our Algorithm: 2-color Rendezvous . 21

4 Model Checking Rendezvous Algorithms 23
4.1 System Model . 24

4.1.1 Configurations and Executions . 24
4.1.2 Self-Stabilization . 24

4.2 From the System Model to the Verification Model 25
4.2.1 Simple vs. Complete Self-Stabilization 25
4.2.2 Self-Stabilization and Rigidity . 31
4.2.3 Proving Rendezvous Algorithms . 33

4.3 Verification Model . 34
4.3.1 Position . 34
4.3.2 Activation and Synchrony . 34
4.3.3 Movement Resolution . 37

i

ii CONTENTS

4.3.4 State Variables . 38
4.3.5 Activation Phases . 38
4.3.6 The Case of Non-Rigid, Non-Self-Stabilizing Algorithms 39

4.4 Checking Rendezvous Algorithms . 40
4.4.1 Verified Algorithms . 40
4.4.2 Verification by Model Checking . 42
4.4.3 Performance . 43

4.5 Investigating Lights with Weaker Consistency Guarantees 43

5 Safe and Unbiased Leader Election with Lights 45
5.1 Details of the Model . 46
5.2 Problem Definition . 46
5.3 Leader Election Based on Motion . 47
5.4 Leader Election Based on Lights . 50
5.5 Safe Leader Election . 55
5.6 Unbiased Leader Election . 59
5.7 Safe Unbiased Leader Election . 61

Conclusion: The Power of Lights 62

II Unreliable Vision 63

6 Uncertain Visibility 65
6.1 Model Definition and Basic Results . 66
6.2 FSYNC n robots Gathering . 67
6.3 FSYNC Uniform Circle Formation . 71
6.4 FSYNC Leader election . 73
6.5 FSYNC LUMINOUS Rendezvous . 75

7 Obstructed Visibility 78
7.1 Model and Problem Definition . 78
7.2 Simplifying the Problem: Line Theorem . 79
7.3 Obstruction Detection for the Line Configuration 80
7.4 Non-Line Obstruction Detection: a Simple Approach 80
7.5 Non-Line Obstruction Detection: Using a Token 83

7.5.1 Difficulty of Creating a Token with Obstructed Visibility 83
7.5.2 Algorithm Architecture . 84
7.5.3 A Possible Solution . 84
7.5.4 Gathering Information and Transmitting the Token 85
7.5.5 The Issue of Proving Obstructed Algorithms 90
7.5.6 Sidenote: Ensuring Token Unicity for a Line 90

Conclusion: Unreliable Vision 92

III Real World Performance 93

8 Monte-Carlo Simulation of Mobile Robots 95
8.1 Motivation . 95
8.2 Overview of the Framework . 96
8.3 Scheduling . 97
8.4 Simulation Conditions . 98

CONTENTS iii

8.5 Existing Simulators . 98
8.6 Limitations of the Simulation . 98

8.6.1 Halting the Simulation: Victory and Defeat Conditions 98
8.6.2 The Consequences of the Discretized Euclidean Plane 101

9 Fuel Efficiency in the Usual Settings 104
9.1 Rendezvous Algorithms . 104
9.2 Convergence For n Robots . 106

10 Analyzing Algorithms in Realistic Settings 107
10.1 Visibility Sensor Errors . 107
10.2 Convergence for n=2 Robots . 108
10.3 Compass Errors . 110
10.4 Geoleader Election . 110
10.5 Errors in Color Perception . 112

11 Improved Convergence and Leader Election 117
11.1 Fuel Efficient Convergence . 117
11.2 Error Resilient Geoleader Election . 120

11.2.1 Geoleader Election for Four Robots 120
11.2.2 Proposed Algorithm . 127

Conclusion: Real World Performance 129

12 Conclusion: Networks of Realistic Robots 130
12.1 Our contributions . 130

12.1.1 Published Work . 131
12.2 Short-Term Perspectives . 131

12.2.1 Analyzing More Models and Algorithms 131
12.2.2 Gathering of n Robots Using Two Colors 132

12.3 Long-Term Perspectives . 133
12.3.1 A Proven Simulator . 133
12.3.2 Stronger Simulator Adversaries . 133
12.3.3 Obstruction Detection . 133
12.3.4 Expanding Uncertain Visibility . 133
12.3.5 Robots with Finite Memory Snapshots 134

A Appendix: Details and Results of the Model Checker 135
A.1 Movement Resolution . 135
A.2 Verified Algorithms Written in Promela . 137
A.3 Compile Options . 140
A.4 Output . 141

A.4.1 Vig2Cols in ASYNC (failure) . 141
A.4.2 Her2Cols in ASYNC (Success) . 142

B Appendix: Example of an Instance of the Simulator 143

C Appendix: Details of Color Perception Error 147

List of Acronyms 159

Bibliography 160

iv CONTENTS

Acknowledgments

First, let me acknowledge that, had I not been fascinated as a child by the opening sequence
of the 1986 movie Short Circuit, I probably would not have pursued Electrical Engineering,
Robotics, and eventually Computer Science.

Let me thank Sylvie Delaët, who introduced me to mobile robots and self-stabilization back
in 2016, which eventually lead me to choosing this subject.

I want to thank my advisor, Sébastien Tixeuil, for bearing with me during these almost four
years, for his guidance and his advice.

I want to thank TEAM and Erasmus Mundus, for the incredible opportunity to spend a year
of research in the gorgeous landscapes of Kansai. I am extremely grateful to Michiko Inoue
and Fukuhito Ooshita, and all the NAIST personnel I had the pleasure to interact with for their
invaluable help and hospitality, and to Xavier Défago for his hospitality at TiTech, and his help
during our collaborations.

For accepting to take the time to review this thesis, and for their thorough feedback, I want
to thank David Ilcinkas and Paola Flocchini.

For their decisive influence on my career choices, I want to thank the administrative staff of
Sorbonne Université and EDITE de Paris

I want to give credit to my desktop computer, which spent all of the 2019 summer processing
billions of simulations day and night during the scorching heat waves, and survived to this day.

Because he had to endure me during the past decade, I want to thank my dear friend
Bertrand.

Finally, and most importantly, I thank my spouse, Magalie, for her unconditional support,
keeping me sane during all these years.

v

vi CONTENTS

Chapter 1

Introduction: Networks of Realistic
Robots

1.1 Distributed Robotics

In the far future, you are ALICE, newly appointed leader of a technologically advanced civi-
lization, and you just declared war on the kingdom of BOB. But, this is not the 20th century
anymore, you do not send people to war. You send robots.

How do you make sure the hundred of thousands of robots you are sending to some unknown
planet actually follow your orders? Charlie, one of your advisors comes up with a brilliant plan:
build a massive computer-spaceship and put it in orbit. Then, robots send their sensor data in
real-time to this central brain, which processes everything and sends back commands to the
robots on the ground.

Because you have matters to attend to – civilization management is not trivial business –
you accept, allot the funds and stop thinking about it. A few weeks later, you hear from Charlie
that the armies of BOB did not, in fact, need to fight the robots on the ground. For some unclear
reason – possibly involving child-soldiers – the computer-ship was destroyed, which, in turn,
disabled all your billions-worth of robots1. You jettison your advisor with no oxygen.

This scenario is actually very representative of a fundamental problem when dealing with
multiple ’agents’, or robots: how to coordinate everyone?

The key flaw of your late advisor’s proposal was centralization: every single robot in your
army relies on the proper function of the computer-ship: a single point of failure.

Figure 1.1 – A Centralized Network of Combat Robots
Destruction of the central computer-ship leads to a global shutdown

1This may sound familiar to people who watched a certain 1999 movie.

1

2 CHAPTER 1. INTRODUCTION: NETWORKS OF REALISTIC ROBOTS

Your newly appointed advisor, Dave, suggests another approach: instead of a single, massive
and fragile central brain for the entire army, each regiment of a thousand robots is given a local,
smaller computer-ship, which are then all connected to coordinate the offensive. This means
better latency, and taking down the entire army requires taking down dozens of well defended
computer-ships. Your robot army would then be decentralized.

Figure 1.2 – A Decentralized Network of Combat Robots
Destruction of a computer-ship only hinders parts of the network

But you are now wary, and hiring a new advisor is a slow and expensive process. You tell Dave
that these computer-ships are still points of failure, and so, priority targets, even if there are now
more of them. You want no point of failure. Each robot must fight until the end. Each robot
must be able to use the data from its sensors, process it, and coordinate with its neighbors to
decide what to do next. You want the decision making to be entirely distributed.

Figure 1.3 – A Distributed Network of Combat Robots
No single entity is more important than another

Dave, who recently learned the reason of his recruitment, is skeptical of your idea: how would
a robot on one side of the battlefield know not to fire on the robots on the other side? How
would you even make sure that when robots try to make a decision as a group, an agreement is
eventually reached?

Have you seen what happens when a group of friends try to decide which movie to watch?

Fortunately, you stumble upon this manuscript of ancient distributed robotics science.

1.2. MOTIVATION 3

1.2 Motivation

One of the most pressing issues in current distributed robotics is the divide between the theoret-
ical networks of robots being studied by computer scientists on one side, and the actual robots
being built by robotics engineers on the other.

This is due to each group having very different design philosophies. To solve an issue for
theoretical networks, we assume an algorithm and a set of hypotheses governing the robots, and
prove whether or not the algorithm solves the issue under the given hypotheses. From an engi-
neer’s standpoint, this approach, while mathematically exact, is not necessarily the most useful.
Engineering specifications are not necessarily compatible with formal hypotheses, and even the
simplest robots are extremely complex, and models do not encompass their full behavior, as this
would be orders of magnitude too complex for formal proofs2. But, from the point of view of a
computer scientist, this could be seen as reckless. A million simulations does not guarantee that
the worst case scenario has actually been found, and no set of tests of actual components can
fully represent the entire set of conditions the whole system may be subject to3.

Overall, there is no "single best approach". There is always a level of details that falls out-
side the scope of formal proofs, and the more complex the systems, the less useful simulations
and test become. However, the prevalence of formal proving has been increasing during the past
two decades, as the tools become more accessible, easier to use, and allow for more complex
systems to be formally proven.

As such, the more long term approach is to improve the viability of formal methods for
proving actual systems.

We decide to investigate the current existing realistic models that can be formally used, and
develop new such models to decide which ones should be used in the long term to bridge the
realism gap between theoretical networks of robots and actual robots.

1.3 The OBLOT Model

The seminal paper for studying robotic swarms from a Distributed Computing perspective is
from Suzuki and Yamashita [83]. They introduce a mathematical model for studying geometric
pattern formation by networks of n possibly oblivious robots.

In the Suzuki and Yamashita initial model, commonly named OBLOT , robots are repre-
sented as dimensionless points evolving in a bidimensional Euclidean space (that is, R2), and can
accumulate on the same location. They operate in LOOK-COMPUTE-MOVE (LCM) cycles.
In each cycle, a robot "Looks" at its surroundings and obtains (in its own coordinate system)
a snapshot containing some information about the locations of all robots. Based on this visual
information, the robot "Computes" a destination location (still in its own coordinate system),
and then "Moves" towards the computed location. The robots are oblivious, so the computed
destination in each cycle only depends on the snapshot obtained in the current cycle (and not
on the past history of actions). The motivation for using oblivious robots is their apparent fault-
tolerance: for example, a robot’s memory might become corrupted, so ignoring past actions
makes algorithms inherently more reliable. The visual snapshots obtained by the robots are not
necessarily consistently oriented in any manner. Then, an execution of a distributed algorithm
by a robotic swarm consists in having every robot repeatedly execute its LCM cycle. In general,
executions are infinite (even if robots do not move after a while, they still look, compute and
decide not to move) and fair (every robot executes an infinite number of LCM cycles).

Although this mathematical model is perfectly precise, it is deeply unrealistic. First, robots
are endowed with infinitely precise, and instantaneous sensors. Even assuming such sensors
existed, each snapshot would require an infinite amount of volatile memory to be used. Second,

2See most side-channel attacks on proven systems
3See the Ariane 5 maiden flight

4 CHAPTER 1. INTRODUCTION: NETWORKS OF REALISTIC ROBOTS

movement is also infinitely precise, which again, is not actually feasible. Finally, the origi-
nal OBLOT model robots required some sort of synchronization mechanism, which implies
the existence of a centralized clock, which in turn contradicts the distributed nature of mobile
robots. However, thanks to its simplicity, this model also allows for a great number of variants
(developed over a period of more than 20 years by different research teams [43]), which we
investigate now [28].

1.4 More Realistic Mobile Robots

1.4.1 Sensors

Robots perceive their surroundings through sensors, whose abilities have strong impact on task
solvability. The most commonly considered types of sensors vary along several capabilities,
described below. Obviously, there are other kinds of sensors not described here. For instance,
in a completely opaque environment, one may imagine that the only available information is by
direct contact through bumpers.

Range

The most obvious parameter of sensors is their range, that denotes how far a robot can sense
another robot’s location:

• Full visibility: robots are able to sense every other robot’s location, regardless of distance.

• Limited visibility: there exists λ > 0 such that a robot is able to sense every other robot’s
location if their distance to the observing robot is smaller than λ , and is unable to sense
other robots locations [3, 46]. This model is also called myopic robots.

Note that in general, robots are not aware of λ . Obviously, if an algorithm can achieve a task
under limited visibility, it can also achieve it under full visibility.

Multiplicity Detection

Multiplicity refers to the ability of robots to distinguish (to some extent) the number of robots
sharing a given location. There are three variants of multiplicity detection, depending on how
accurate it is, ordered by decreasing strength:

• No multiplicity detection: sensors can only distinguish occupied and unoccupied loca-
tions, but no information about the number of robots at each occupied location is known.

• Weak multiplicity detection: sensors can distinguish between unoccupied locations, lo-
cations occupied by a single robot and locations occupied by more than one robots, but
cannot know the exact number of robots in the second case [60].

• Strong multiplicity detection: sensors can accurately count the number of robot at any
location.

Multiplicity detection can also vary depending on range:

• Local multiplicity detection: indicates that an observing robot can only obtain multi-
plicity information about its own location [60].

• Global multiplicity detection: indicates that an observing robot can obtain multiplicity
information about all locations within its viewing range.

1.4. MORE REALISTIC MOBILE ROBOTS 5

Overall, we thus have five variants for multiplicity: no multiplicity, weak local multiplicity,
weak global multiplicity, strong local multiplicity, and strong global multiplicity. Obviously,
an algorithm assuming no multiplicity detection is more powerful than one requiring any of the
other assumptions. However, some assumptions are not comparable, e.g. weak global multi-
plicity and strong local multiplicity.

Orientation

Orientation refers to the ability of robots to share some common notion of direction or orienta-
tion. Again, there are many variants:

• No common direction: robots share no common axis and may not agree on handedness.

• Common direction: robots have a common axis (such as the North-South axis) but the
direction along these axes may be inverted. Because robots use a Cartesian coordinate
system, a second common direction can immediately be deduced. This model is also
called two-axes direction.

• Common orientation: in addition to having the same two axes direction, robots may also
share orientation on either one axis (e.g. North only) or two axes (e.g. North and West).

• Common chirality: robots have the same notion of clockwise and counter-clockwise.

Notice that it is entirely possible to have common chirality without sharing a common direction.
When having common direction, orientation on one axis, and chirality, robots are said to have
full compass. Note that orientation on one axis and chirality is equivalent to having orientation
on two axes.

Consistency

Depending on the model, robots may not be able to keep their own coordinate system consistent
between two LCM cycles. This yields two separate models:

• Inconsistent coordinate system: the local Cartesian coordinate system of a robot is not
consistent between two LCM cycles.

• Consistent coordinate system: the local Cartesian coordinate system of a robot is con-
sistent between two LCM cycles. In particular, each robot always uses the same local
distance unit and axes throughout the execution.

Errors

To study the impact of inaccurate sensors, we consider three different models for vision error.
For a robot r1 looking at a robot r2 located in (x,y) in the Cartesian coordinate system centered
at r1, and located at (r,θ) in the polar coordinate system centered at r1, we define:

• The absolute error model [68] uses a constant value err so that the perceived position of
r2 is in the disc centered of r2 of radius err.

• The relative error model [25] uses two constants errdist and errangle. The polar coordi-
nates of r2 are then perceived to be in (r+ r · [−errdist ,errdist],θ +[−errangle,errangle])

• The absolute-relative error model is similar to the relative error model, but the perceived
polar coordinates are (r+[−errdist ,errdist],θ +[−errangle,errangle])

6 CHAPTER 1. INTRODUCTION: NETWORKS OF REALISTIC ROBOTS

These models are illustrated in figure 10.1.

There appears to be no obvious hierarchy in difficulty between these models.

Another type of errors has been considered in the case where robots are assumed to have a full
compass. In this case, there may be an error on the orientation of the axes perceived by each
robot. Two different types of inaccurate compasses are introduced [61]. They both require an
upper bound err so that:

• In the static error model, each robots picks an offset in [−err,err] at the beginning of the
execution which is always applied to the axes.

• In the dynamic error model, each robots picks an offset in [−err,err] at the beginning of
each LCM cycle, which is then applied to the axes.

Given the same upper bound, any algorithm that can achieve a task in the dynamic model obvi-
ously can also achieve it in the static model.

1.4.2 Transparency and Size

The most common models assume robots to be transparent. In other words, when multiple
robots are collinear, every robot can see all other robots.

• Transparent punctual: robots are points, or discs with a null diameter, and do not im-
pede each other’s vision.

• Opaque punctual: robots are points, and if three robots are collinear, the middle robot
prevents the other robots from seeing one another. This model is also called obstructed
vision.

• Transparent Disc: robots are discs of non-null diameter, and do not impede each other’s
vision.

• Opaque Disc: robots are discs of non-null diameter, and a robot r1 can only see a robot
r2 if there are no robots between r1 and r2. Note that some models require full vision of
r2 for detection [3], while others require only partial vision [29, 58]. This model is also
called solid robots.

1.4.3 Environment

The original model for mobile robots [83] assumes the robot to be moving in an infinite, con-
tinuous Euclidean plane. However, this model allows for configurations that may not exist in
a world of imperfect sensing and movement. A second model, where robots move on a discrete
graph, has been introduced, and acknowledges the potentially discrete nature of robot snap-
shots. However, these two models do not entirely overlap. Some problems, such as Gathering,
exist in both the continuous [42, 83] and discrete [10, 23] settings. Some problems, such as
Exploration [59] can only exist in the discrete setting, while others like Convergence can
only exist in the continuous [42] setting. Similarly, some variants of the OBLOT model such
as limited visibility have been also used in discrete models [62, 72].

1.4. MORE REALISTIC MOBILE ROBOTS 7

1.4.4 Memory and Communication

The benefit of using oblivious robots is that they easily recover from crashes and memory
corruption. Nevertheless, several extensions with memory have been proposed, ordered from
strongest to weakest:

• Oblivious: only volatile memory is available. Memory is reset at the beginning of each
LCM cycle. Robots thus have no memory of past actions. Practically, robots can only use
their current snapshot in the COMPUTE phase.

• Finite memory: robots may have persistent memory between LCM cycles. We investi-
gate a variant of this model called the LUMINOUS model further in the following
chapter.

• Infinite memory: robots may make use of an infinite amount of memory. This allows
robots to remember a full snapshot, as robot position have to be encoded as actual real
numbers (in each robot’s own coordinate system).

Since robots are assumed to be anonymous, there is no way of performing point-to-point com-
munication with a particular neighbor. Therefore, communication is handled through broad-
cast, which is described as the robots having lights whose color may be adjusted during the
COMPUTE phase. In addition to the number of available colors for a robot’s light (hence the
amount of states of information transmitted), there are three models of LUMINOUS robots:

• Internal lights: are only visible by the emitting robot itself, thus actually represent finite
memory (the robot only communicates with itself).

• External lights: are only visible by other robots but not the emitting robot, thus they
represent communication without memory.

• Full lights: combine internal and external lights: they are visible by all robots.

1.4.5 Synchronicity

The considered model is based on discrete logical time, that is, on a sequence of events, an
event being any change in the conformation of any robot. The possible interleavings of those
events define the synchronicity level of an execution. If the LCM cycles are considered atomic,
that is no event can occur during a cycle, the model is said to be semi-synchronous (SSYNC):
a non-empty subset of the network enters (and finishes) their cycle and each phase within it
simultaneously while the others are idle, hence the notion of round. In the constrained version
of SSYNC where no robot is ever idle, that is where all robots are activated simultaneously,
the execution is said to be fully-synchronous (FSYNC). In the case where the cycles are not
atomic and may overlap, the execution is said to be asynchronous (ASYNC) [45]. Clearly,
ASYNC is the strongest model and FSYNC is the weakest. A fourth synchronicity model has
been considered: Centralized. It is a subset of the SSYNC scheduler for which the subset
only ever includes a single robot. It is therefore weaker than SSYNC but is not comparable to
FSYNC.

These synchronicity hypotheses between the LCM cycles of robots are of paramount impor-
tance for proofs. Many proofs made in weak synchronization models were claimed to hold also
under stronger synchronization models but turned out to be incorrect. This is actually the main
source of errors in the literature [1]. In the FSYNC, SSYNC, and Centralized models, the actual
duration of each phase does not matter since no observation occurs while a robot is moving,
which justifies using discrete logical time. On the other hand, the ASYNC model represents the
complete lack of synchronization between robots, and the duration of each phase is important,
as a robot may observe others while they are moving.

8 CHAPTER 1. INTRODUCTION: NETWORKS OF REALISTIC ROBOTS

(a) FSYNC Scheduler (b) SSYNC Scheduler

(c) Centralized Scheduler (d) ASYNC Scheduler

Figure 1.4 – Synchronization Models [28]

1.4.6 Fairness and Boundedness

In all models except FSYNC where all robots are active at all times, the subset of active robots is
chosen by the environment. In all generality, nothing prevents the environment, a.k.a the demon,
or scheduler, from starving some or all robots. Obviously, never activating certain robots is akin
to triggering crash faults (see below). Thus, there are fairness constraints on demons. First,
no demon can prevent progression of the network. In other words, if all robots do nothing and
wait for one robot to be activated, the demon must eventually activate this robot, as otherwise,
demons could simply prevent any algorithm from progressing by ’crashing’ the entire network.
A demon is fair if every robot is activated infinitely often. This is equivalent to saying that,
for every robot r1 and time t, there exists t ′ > t at which r1 is activated. Although fairness is
usually enough for most protocols, it does not give any guarantee on the relative rates of robots
activations: a robot may be activated arbitrarily more often than another. We introduce the
boundedness condition: a scheduler is k-bounded if a single robot cannot be activated more
than k times between two activations of other robots. In other words, a robot r1 can be activated
at most k times before another robot r2 must be activated. In the case where k is not known by
robots, the scheduler may simply be called bounded.

A scheduler that is both k-bounded and fair is k-fair: each robot is activated at least once,
and between two successive activations of a robot r1, every other robot has been activated at
most k times.

Note that boundedness is not directly related to fairness for network of n > 2 robots.

1.4.7 Rigid Motion

The atomicity of cycles does not imply that the computed destination is actually reached by
a robot before the start of its new cycle: the robot may be interrupted during its move by the
environment. An execution where all robots always attain the destination returned by the pro-
tocol is said to be rigid. Conversely, if robots can start a new cycle before they completed
their scheduled journey, the execution is non-rigid. In such a case, so as to avoid Zeno-like
counter-examples, it is assumed that robots travel at least some minimal distance δ > 0 towards
the expected destination before stopping. In particular, any destination closer than δ is always
reached. This minimal uninterruptible distance is unknown to robots most of of the time. They
may however take into account that such a minimum exists.

1.5. A REALISTIC EXAMPLE: COLLISION AVOIDING BLIND ROBOTS 9

1.4.8 Faults

In an adversarial environment, faults must be considered, either because malicious agents are
present or because one agent has been corrupted. The most common fault hypotheses made in
models are (from strongest to weakest):

• Byzantine Faults: some robots do not follow the protocol and are controlled by an ad-
versary.

• Crash Faults: some robots may crash and never be activated anymore.

• No faults: every robot follows the protocol forever.

Notice that the faults described above are permanent. We also consider transient faults for
which a robot’s state may become arbitrary following a one time corruption. Note that this is
equivalent to starting from an arbitrary configuration where robots may carry pending actions.
Algorithms that are resilient to transient fault, and so, that can function from any initial config-
uration, are self-stabilizing. Unless specified otherwise, all algorithms considered in this thesis
are designed to be self-stabilizing.

1.5 A Realistic Example: Collision Avoiding Blind Robots

In 2007, Yared et al. [86] introduced a model for blind mobile robots. This model heavily differs
from the OBLOT model on several points:

• Blind robots do not have a visual sensor.

• Blind robots are able to send and receive messages.

• Blind robots are endowed with a position and angle sensor which allows robots to know
their absolute position and orientation in the euclidean plane.

• Blind robots’ sensors are not infinitely precise and have errors with known upper bounds.

• Blind robots do no move with absolute precision, but can make an error in both distance
and angle.

• Blind robots are not points, but solid discs moving in the euclidean plane.

These hypotheses encompass multiple models we have defined previously. Most notably abso-
lute sensor error, a movement error similar to the absolute-relative model for vision, and solid
robots. The sensors model both inaccurate position and compasses, similar to a GNSS (Global
Navigation Satellite System, such as GPS, GLONASS, BeiDou or Galileo) sensor for actual
robots. The hypothesis of using no visual sensors also has merit in terms of realism.

Under these hypotheses, Yared et al. describe and prove an algorithm to ensure movement
with no collisions under the ASYNC scheduler. This algorithm relies on robots agreeing on
reserved zones in which they could be located given the known upper bound of their error in
both location and motion (see figure 1.5).
As we have noted, this model is extremely realistic when modeling cooperating mobile agents.
Therefore, we hope to extend the presented algorithm to even more realistic settings. In partic-
ular, we wish to improve the algorithm to be able to deal with transient faults, crash faults, and
even byzantine faults. This algorithm in particular is explicitly unable to tolerate crash faults.

However, after closer inspection of the algorithm, two issues arise. First, the algorithm
relies on a discovery primitive NDiscover to establish how many robots are in the vicinity.
However, upon closer inspection, this primitive requires that if a robot r2 is located within a

10 CHAPTER 1. INTRODUCTION: NETWORKS OF REALISTIC ROBOTS

Figure 1.5 – Reservation Zone Given Known Error Upper Bounds

defined area, and the primitive is used by robot r1 on this area, then after a known bounded time
delay, robot r1 is aware of the presence of robot r2. If r2 is crashed, r1 should be aware of its
presence but infinitely wait its answer to any message sent. So this primitive is actually based
on a quasi-perfect failure detector. Therefore, for this step in particular, the algorithm does not
actually function under the ASYNC scheduler. If we accept the premise that the scheduler in
not completely asynchronous, and that bounded-time responses can be expected, then a perfect
failure detector could be implemented, and crash faults could be dealt with.

So, the scheduling model in use already could tolerate crash fault, but is not actually ASYNC.
On the other hand, when looking at byzantine fault tolerance, a second problem arises. This

algorithm relies on the basic premise that robots communicate their possible location (within
bounded error) to robots around them so that they can decide whether or not a collision could
occur. So the algorithm relies on absolute trust in every robot in the network, since robots have
no sensor to verify the location messages they receive. Furthermore, since robots communicate
their location every time they move, a byzantine robot would know where other robots are
located in real time and could easily move towards their reserved area to trigger a collision.
Therefore, we can trivially conclude that, under this fully cooperative model, any byzantine
interference would trivially lead to a collision. Actually, collision avoidance against byzantine
mobile agents is trivially impossible because a byzantine agent could home towards the closest
robot, making the problem akin to avoiding a homing missile.

Because of this last point, we realize that, while extremely interesting, because of the limited
capabilities of these realistic robots, some models may not be expanded to new settings. A real-
istic model which prevents the most basic problems from being solved is not a good compromise
between mobile robots and actual robots.

So, we need to strike a balance between more realistic robots, and capable robots.

1.6 Our Contributions

We develop a new, optimal algorithm for 2-robot Gathering, or Rendezvous. However, be-
cause of major difficulties encountered when attempting to prove this algorithm with pen and
paper, we build and prove a complete model checking framework for 2-robot Gathering in
the continuous plane based on the SPIN model checker. We confront known state-of-the-art
Rendezvous algorithms and find results consistent with the literature. We also introduce a new
model for colors which matches the common notions of safe, regular and atomic registers and

1.6. OUR CONTRIBUTIONS 11

test a Rendezvous algorithm for regular lights. Similarly, we use lights to build more robust
Leader Election algorithms, which allow for stricter constraints on the election.

We then designed a new vision model for mobile robots, named Uncertain Vision, which
introduces a vision adversary for sensors to register false negatives, i.e. not see robots that are
actually there, and proved tight bounds under this new model for various benchmark problems.
We also focus on the already existing obstructed visibility, or opaque robot model, and define
a new problem, Obstruction Detection, which requires robots to not move, and compute
which visible robot is obstructing them from seeing another robot. However, after proving
several fundamental results and two unsuccessful attempts at solving the problem, including an
algorithm based on token transmission, we acknowledge the massive difficulty inherent to both
the problem and the model itself.

Because of how difficult working with more complex algorithms under realistic models
turns out to be, we decide to change our approach: we develop a framework for Monte-Carlo
simulations of mobile robots from the ground up. This framework is modular which allows
us to simulate any robot model, scheduler or algorithm with minimal effort. This simulator
is not a model checker and has known limitations. As such, it should currently be viewed as a
replacement for researcher "intuition", and used to look for unexpected behavior in mobile robot
networks that would be then verified using formal techniques. We find several result which had
not been predicted by pen and paper analysis, but can be confirmed after closer inspection of
the published algorithms. We then use this simulator to implement and test errors in vision.
We demonstrate that Geoleader Election is not possible in this vision model. Some details in
behavior of Rendezvous algorithms in this error model remain to be explained. Finally, we
introduce another two algorithms: the first algorithm uses two colors to ensure Convergence
for two robots and guarantees the distance traveled is minimal ; the second allows for Leader
Election with errors in vision: robots use the simulator itself to verify for possible errors in the
election and move randomly if an error is detected. This particular design philosophy can be
used to adapt some algorithms to function in a continuous setting using discretized snapshots,
and therefore can be used to realistically implement the SyncSim protocol [31] to simulate a
FSYNC scheduler in LUMINOUS ASYNC.

1.6.1 Published Work

Our two-color algorithm for ASYNC Rendezvous presented in chapter 2.1 was published with
its original proof at ICDCN 2018 [53]. An extended version is currently under review for pub-
lication in TCS.

Our model-checking system for verifying Rendezvous algorithms presented in chapter 3.2 was
first published as a brief announcement at DISC 2019 [33]. The full version was published at
SRDS 2020 [34].

Our new model for uncertain vision presented in chapter II was first published at SIROCCO
2019 [55]. The full version was accepted for publication in PPL [56].

Our preliminary results for Obstruction Detection presented in chapter 6.5 were presented at
the IEICE COMP / IPSJ-AL 2018 workshop [54].

12 CHAPTER 1. INTRODUCTION: NETWORKS OF REALISTIC ROBOTS

Part I

The Power of Lights

13

Chapter 2

The LUMINOUS Model

The idea of endowing mobile robots with lights was first suggested by Peleg [76] in 2005. This
idea stems from the disturbing results that the OBLOT model brings along with its extreme
simplicity. Peleg first suggests introducing O(1) bits of memory to the previously purely oblivi-
ous model, or a simple communication system such as colored flags or lights.

In 2012, Das et al. [30, 31] introduced the LUMINOUS model, based on Peleg’s sugges-
tions, and demonstrated its potential.

The model reads as follows: each robot carries a ’light’ which can emit one color among a
given, finite, set. At the end of its COMPUTE phase, the robot can change the color of its light
according to the algorithm it is executing. When performing a LOOK, a robot not only perceives
the position of other robots, but also the color of their light.

This results in four possible models for memory and communication between robots:
• Oblivious: robots have no memory and cannot communicate.

• FSTATE or internal light: robots carry O(1) bits of memory they can read and write to,
but cannot communicate.

• FCOMM or external light: robots can emit a light of a given color, but cannot read the
color of their own light.

• The ’FULL-LIGHT’ model is, where robots can emit a light of a given color and read the
color of their own light.

The full-light model is the most common, and is the one we study unless specified otherwise.
This new model yields important results [31]: first, a robot endowed with a light and 5 colors

working under the ASYNC scheduler is more powerful than an oblivious robot working under
the SSYNC scheduler. In other words, the LUMINOUS ASYNC robot can perform all the
tasks that the oblivious SSYNC robot can, and there are tasks only the LUMINOUS ASYNC
robot can perform. Using this result, we deduce that any LUMINOUS SSYNC algorithm can
be run successfully by a LUMINOUS ASYNC robot. Second, a robot endowed with a light
and 3 colors and the ability to remember its previous snapshot, working under the ASYNC
scheduler is more powerful than an oblivious robot under the FSYNC scheduler. Whether or
not ASYNC LUMINOUS robots are more powerful than oblivious FSYNC robots remained
an open question until now.

From the point of view of more realistic robots, this model is extremely interesting. It is
paramount that any model for "more realistic robots" we introduce does not impede the abil-
ity of robots to perform the most basic tasks. Realistic models need to balance more realistic
hypotheses with capability. LUMINOUS robots perfectly fit this requirement, as they are
realistic in bringing in memory and communication to the OBLOT model, and they massively
increase the capabilities of the robot network. In particular, being able to simulate a FSYNC
scheduler using only finite memory and communication would be an elegant way to solve any

15

16 CHAPTER 2. THE LUMINOUS MODEL

problem under the ASYNC scheduler.

However, this new model raises two issues:

• As discussed in section 1.4, a single snapshot of infinite accuracy requires an infinite
amount of memory to store.

– This actually does not make the current model less realistic, as robots already need
infinite volatile memory to process their snapshot in their COMPUTE phase.

– We further discuss this issue in section 11.2

• Using Lamport’s register terminology [64], lights represent atomic memory and commu-
nication, which is not a realistic assumption to make in ASYNC.

– This actually does not make the current model less realistic either, as robots al-
ready carry a certain level of atomicity in communication through their instanta-
neous LOOK phases.

We decide to keep using the LUMINOUS model throughout the rest of this thesis, as it pro-
vides an elegant and simple model to manage memory and communication without necessitating
many additional assumptions.

2.1 OBLOT FSYNC versus LUMINOUS SSYNC

In 2012, Das et al. [30, 31] show that some problems can be solved by aLUMINOUS SSYNC
robot, but not by an oblivious FSYNC robot. However, it remained an open question whether
or not a LUMINOUS SSYNC robot could perform all the tasks an oblivious FSYNC robot
could. If this was true, then any problem could simply be studied under the FSYNC model, and
then solved under the LUMINOUS ASYNC model.

Theorem 2.1. There exists problems that can be solved under the oblivious FSYNC model and
cannot be solved under the LUMINOUS SSYNC model.

Proof. First, we look at the fundamental differences between the FSYNC and SSYNC model.

Property 2.1 (Identical Inputs). Throughout the execution, the sequences of perceived positions
and colors of the network are identical for all robots, with respect to their own coordinate
systems.

Property 2.2 (Simultaneous Action). Given a configuration C, all robots in C are in the same
phase.

Lemma 2.1. Under the full visibility model, properties 2.1 and 2.2 are true for the FSYNC
oblivious model, and false for the SSYNC LUMINOUS model.

Proof. By definition of the FSYNC model, robots’ phases are always simultaneous, so proper-
ties 2.1 and 2.2 are trivially true.

To show that property 2.1 is false for the SSYNC LUMINOUS model, let us simply
consider a configuration in which at least one robot r1 can change its state, i.e. move or change
color, at its next activation. Let the scheduler have robot r1 perform a full cycle and not activate
any other robot in the network. Let the scheduler now activate another robot r2 to perform a full
cycle. Since robot r1 changed its state the sequence of snapshots of r2 does not include the same
snapshots as r1. So, as long as the algorithm allows for a change of state, property 2.1 is false.

Property 2.2 is similarly false for the SSYNC LUMINOUS model whenever the sched-
uler only activates a subset of robots.

2.1. OBLOT FSYNC VERSUS LUMINOUS SSYNC 17

Let us now build a problem that cannot be solved under the LUMINOUS SSYNC model
because of property 2.2.

Definition 2.1 (Balancing Problem).
Let us assume a network of three robots with rigid motion.
The robot with the smallest angle between the two other robots is the LEADER.
The unit vector is defined as the altitude from the opposite base to the LEADER.
We define the base opposite to the LEADER as having a y coordinate of 0. So the LEADER has
a y coordinate of 1, following the unit vector.
The problem is solved if:

1. The y coordinates of NON-LEADER robots are always identical.

2. All robots are eventually located at coordinates y = 1.

Figure 2.1 – Example of a Solved Instance of the Balancing Problem.

Lemma 2.2. There exists configurations for which the Balancing Problem can be solved for
the FSYNC oblivious model and cannot be solved for the SSYNC LUMINOUS model.

Proof. For both models, the problem is not defined in the case of an equilateral triangle, or the

case of an isosceles triangle where the angle of the apex is greater than
2 ·π

3
, as the LEADER is

not defined.
Let us consider a configuration where robots are not forming any such triangle and not initially
collinear. In FSYNC Robots first compute which robot is the LEADER. NON-LEADER robots
are at y = 0 and move a distance of 1 along the −→y axis. The problem is solved.

We now show the impossibility for the SSYNC LUMINOUS model.
Let us assume, for the purpose for contradiction, that it is possible to solve the problem in
SSYNC using luminous robots. For this algorithm to be successful, any execution must include
a configuration where the NON-LEADER robots are located at a y coordinate of 0, such that
they both move to a different y coordinate after their next activation. Otherwise, if robots are
not configured in a way that they all move to a different y coordinate when all activated, then
either they do not change their y coordinate and the problem is not solved, or they move at
different times, which is a violation of the ’always identical’ condition. So the configuration
must exist for any execution.
Let us now consider this configuration and only activate a single base robot. It moves to a
different y coordinate while both other robots stay at 0. The ’always identical’ condition is
violated so the problem cannot be solved.

18 CHAPTER 2. THE LUMINOUS MODEL

Note that this counter example relies on property 2.2, and extreme safety conditions. Regard-
ing property 2.1, the question remains if there exists problems that can be solved in oblivious
FSYNC but not in LUMINOUS SSYNC, if for all problems that can be solved in oblivious
FSYNC, there exists an algorithm that also solves it in LUMINOUS SSYNC, or if there ex-
ists a general algorithm which allows every problem that can be solved in oblivious FSYNC to
be solved in LUMINOUS SSYNC.

Chapter 3

Benchmark: Two-Robot Gathering

The Gathering problem is one of the benchmarking tasks in mobile robot networks, and has
received a considerable amount of attention (e.g. [2, 3, 16, 21, 24, 32, 35, 43, 46, 53, 61, 73, 82,
83]). The Gathering task consists in all robots reaching a single point, not known beforehand,
in finite time.

Definition 3.1.

Gathering is achieved if and only if, for any pair of robots in the network, the distance between
the two robots is eventually always zero.

The Rendezvous problem is another name for the Gathering of two robots. Intuitively, the
problem may seem simpler to solve due to the smaller number of robots, but this is actually the
opposite, due to symmetry. Indeed, with only two robots and no lights, the lack of a common
coordinate system implies all configurations are symmetrical and hence convey no information
other than distance.

A foundational result [26, 83] shows that in the SSYNC model, no deterministic algorithm
can solve Rendezvous without additional assumptions. This impossibility result naturally ex-
tends to the ASYNC model [46].

To circumvent the aforementioned impossibility results, it was proposed to endow each
robot with a light. This additional capacity first allowed to solve Gathering of two robots in
the most general ASYNC model provided that robots lights are capable to emit at least four
colors [31]. This result was further improved by Viglietta [84] in 2013 who provided a three
color ASYNC algorithm. In the same paper, Viglietta also proved that being able to emit two
colors is sufficient to solve the Rendezvous problem in the more restricted SSYNC model,
and that that no algorithm that only uses observed colors to decide its next move can gather
two robots under the ASYNC scheduler using only two colors. Both solutions in ASYNC [31,
84] and SSYNC [84] output a correct behavior independently of the initial value of the lights’
colors.

Recently, Okumura et al. [74] presented an algorithm with two colors that gathers robots in
ASYNC assuming rigid moves (that is, the move of every robot is never stopped by the sched-
uler before completion), or assuming non-rigid moves but robots are aware of δ (the minimum
distance before which the scheduler cannot interrupt their move). Also, the solution of Okumura
et al. [74] requires lights to have a specific color in the initial configuration.

The remaining open case was the feasibility of Rendezvous with only two colors in the
most general ASYNC model, without additional assumptions.

19

20 CHAPTER 3. BENCHMARK: TWO-ROBOT GATHERING

3.1 2-color Impossibility ?

Viglietta observes [84] that, in order to solve the Rendezvous problem in SSYNC, an algorithm
must accomplish two things:

• In case robots are synchronized, they need to move towards the midpoint.

• In case robots are activated alternatively, one needs to move towards the other. In that
case, the other robot must not move.

In ASYNC, Viglietta [84] also shows that no algorithm using only two colors can solve
Rendezvous if the destination computation solely relies on this form of calculation:

me.destination = (1−λ) ·me.position+λ ·other.position

With:

λ = f (me.color,other.color)

Where f is a function (that is, it associates to a 2-tuple a single image).
It is similarly assumed that the next color of a robot only depends on the current colors of

the two robots and not on the distance between the robots.
Algorithms that follow these rules of computation are called class L algorithms. Then, from

Viglietta [84] algorithm 3.1 is the only algorithm of class L that satisfies the above criteria, and
is presented in figure 3.1.

other is BLACK

other is WHITE

⇒ move to midpoint

other is BLACK

⇒ move to other

other is WHITE

Figure 3.1 – Viglietta’s [84] Algorithm

Algorithm 3.1 L Class Algorithm for Two Colors

if me.color = WHITE

if other.color = WHITE

me.destination⇐ other.position/2
me.color⇐ BLACK

else if other.color = BLACK

me.destination⇐ other.position
else if me.color = BLACK and other.color = BLACK

me.color⇐WHITE

3.2. OUR ALGORITHM: 2-COLOR RENDEZVOUS 21

Now, there exists an execution of this algorithm that does not solve ASYNC Rendezvous (see
lemma 4.9 in Viglietta’s paper [84]) when both robots start in the BLACK color:

1. Let both robots perform a LOOK phase, so that both plan to turn WHITE and not move.

2. Let robot r1 perform its COMPUTE phase and a new cycle with a LOOK and COMPUTE,
while r2 waits. Hence, r1 remains WHITE and plans to move to r2’s position. Now, we
let r2 perform its COMPUTE phase and perform a new LOOK and COMPUTE. So, r2 turns
WHITE then BLACK and plans to move to the midpoint m between r1 and r2.

3. Let r1 finish the current cycle, thus reaching r2, and perform a whole new cycle, thus
turning BLACK and moving to the midpoint m′ between r1 and r2. Since r1 reached r2, r1
moves towards its own position.

4. Finally, let r2 finish the current cycle, thus turning BLACK and moving to m.

As a result, both robots are again set to BLACK, are in a WAIT phase, both have executed at
least one cycle, and their distance has halved. Thus, by repeating the same pattern of moves,
they approach one another but never gather.

Because of this execution, it is not possible to solve Rendezvous with two colors with an
L class algorithm.

As a result, we do not design our algorithm to be of class L, as our computation of the next
color not only depends on the respective colors of the two robots, but also on multiplicity, that
is whether or not robots share the same coordinates.

3.2 Our Algorithm: 2-color Rendezvous

We observe that in the problematic aforementioned execution, there is an instant when both
robots are actually gathered, but are later separated because of pending moves.

We thus introduce a behavior change in the WHITE state of Viglietta’s [84] algorithm to
obtain our proposal, presented in figure 3.2 and algorithm 3.2.

other is BLACK

other is WHITE ∧ ¬Gathered:
⇒ move to midpoint

other is BLACK ∧ ¬Gathered:
⇒ move to other

Gathered
⇒ do nothing

other is WHITE

Figure 3.2 – Our ASYNC Robot Rendezvous with Two Colors

Our proposal breaks the infinite loop in the problematic execution, as it prevents robot r1 from
switching to color BLACK after reaching r2 and forces it to remain WHITE. This implies that
activating r2 afterwards actually separates the robots into different colors, and prevents them
from going back to both being Black.
Let us observe that our new algorithm no longer belongs to class L, since the same observed
2-tuple of colors may yield different outcomes depending on the distance between r1 and r2. In
particular, when both robots are observed WHITE, the next color depends on whether the two
robots are gathered. So, the assumption of Viglietta [84] that a new color is solely determined

22 CHAPTER 3. BENCHMARK: TWO-ROBOT GATHERING

Algorithm 3.2 Our ASYNC Robot Rendezvous with Two Colors
Changes with Algorithm 3.1 Underlined

if me.color = WHITE

if (me.position = other.position)
do nothing

else if other.color = WHITE

me.destination⇐ other.position/2
me.color⇐ BLACK

else if other.color = BLACK

me.destination⇐ other.position
else if me.color = BLACK and other.color = BLACK

me.color⇐WHITE

by the current colors no longer holds.1.

We now need to prove that this new algorithm actually solves the Rendezvous problem in
ASYNC in a self-stabilizing manner. Our main result can be stated as follows:

Theorem 3.1. Algorithm 3.2 solves the Gathering problem for two robots in a self-stabilizing
fashion for the non-rigid ASYNC model.

1It is worth noting that, while the definition of class L does not explicitly mention that the new color is also
obtained as a function of the two observed colors, the lemma 4.4 of Viglietta’s paper [84] entirely relies on this
implicit fact, and so does the 3-color algorithm for the ASYNC model.

Chapter 4

Model Checking Rendezvous
Algorithms

Despite its simplicity, proving the validity of algorithm 3.2 is extremely tricky.
Because of the problematic execution described above, the scheduler can execute a finite,

but arbitrarily large number of cycles where the distance between the two robots decreases
down to zero and increases back again. Because of this, most common methods for proving
Convergence, let alone Gathering, are unusable, and we have not been able to find an invariant
to reliably prove this algorithm in an elegant way.
Our first approach [53] was to manually map out the entire possible state space for the network,
then show that every execution in that space leads to a gathered configuration. However, this
type of proof is extremely tedious and prone to errors.

As a matter of fact, recent reports of errors in mobile robot papers published in established
venues such as DISC, Distributed Computing, and SIAM Journal of Computing have been pre-
sented [12, 22, 40]. It is remarkable that the set of authors of both series of papers are disjoint,
demonstrating the general difficulty of reasoning about asynchronous mobile robotic systems
by human beings.

Formal methods encompass a long-lasting path of research that is meant to overcome errors
of human origin. Unsurprisingly, this mechanized approach to protocol correctness was used in
the context of mobile robots [6, 9, 11, 12, 15, 26, 36, 70, 78, 79].

When robots move freely in a continuous two-dimensional Euclidean space, to the best of
our knowledge the only formal framework available is Pactole1.

It relies on higher-order logic to certify impossibility results [6, 9, 26], as well as the correct-
ness of algorithms [27, 36] in the FSYNC and SSYNC models, possibly for an arbitrary number
of robots (hence in a scalable manner). Pactole was recently extended by Balabonski et al. [7] to
handle the ASYNC model, thanks to its modular design. However, in its current form, Pactole
lacks automation; that is, in order to prove a result formally, one still has to write the proof (that
is automatically verified), which requires expertise both in Coq (the language Pactole is based
upon) and about the mathematical and logical arguments one should use to complete the proof.

On the other side, model checking and its derivatives (automatic program synthesis, pa-
rameterized model checking) hint at more automation once a suitable model has been defined
with the input language of the model checker. In particular, model-checking proved useful to
find bugs (usually in the ASYNC setting) [12, 39, 40] and to formally check the correctness of
published algorithms [12, 36, 78]. Automatic program synthesis [15, 70] was used to obtain
automatically algorithms that are "correct-by-design". However, those approaches are limited
to instances with few robots. Generalizing them to an arbitrary number of robots with similar
models is doubtful as Sangnier et al. [79] proved that safety and reachability problems are un-

1http://pactole.lri.fr

23

http://pactole.lri.fr

24 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

decidable in the parameterized case. Another limitation of the above approaches is that they
only consider cases where mobile robots evolve in a discrete space (i.e., graph). This limitation
is due to the model used, that closely matches the original execution model by Suzuki and Ya-
mashita [83]. As a computer can only model a finite set of locations, a continuous 2D Euclidean
space cannot be expressed in this model.

Overall, the only way to obtain automated proofs of correctness in the continuous space
context through model checking is to use a more abstract model.

We study the possibility of using model checking methods in the case of Rendezvous for mo-
bile robots in a continuous Euclidean plane.

4.1 System Model

We consider three new synchrony models: Centralized (where LCM cycles execute in mutual
exclusion) and the more recent LC-atomic ASYNC and Move-atomic ASYNC schedulers [74],
which are variants of the ASYNC for which the LOOK and COMPUTE, or the entire MOVE

phase, respectively, must happen atomically. All schedulers are assumed to be fair in the sense
that they activate every robot infinitely often.

Additionally, we consider that a robot is in a WAIT phase after finishing its MOVE phase
and before entering its LOOK phase.

Additionally, during the compute phase, the snapshot may lead to a deterministic change in
color. Then, we say the new color is pending during the COMPUTE phase. Similarly, we call
target (or pending move) the destination dictated by a robot’s snapshot that it tries to reach in
its next MOVE phase. This target is also pending during the COMPUTE phase, actual during the
MOVE phase, and undefined otherwise.

This chapter considers both the full and external light models.
While the existing literature only considers atomic lights, we introduce lights with weaker

consistency guarantees in section 4.5.
An execution of robot r is defined as a possibly infinite sequence of activation cycles of r.

4.1.1 Configurations and Executions

The union of the local states (position, color, phase, pending move and color) of all robots
defines a configuration. An execution is a sequence, possibly infinite, starting in an initial
configuration and where each transition corresponds to the activation of a robot according to the
constraints of the scheduler (see figure 4.4).

4.1.2 Self-Stabilization

A Rendezvous algorithm is self-stabilizing if robots eventually reach and stay forever at the
same location regardless of the initial configuration. Algorithms that set constraints on the ini-
tial configuration (e.g., must start with a specific color) are not self-stabilizing.

We introduce a more refined definition of self-stabilization.

Definition 4.1 (Simple Self-Stabilization).
An algorithm is simply self-stabilizing for problem P if it solves P starting from any initial
position and any initial color, with all robots in the WAIT phase.

Definition 4.2 (Complete Self-Stabilization).
An algorithm is completely self-stabilizing for problem P if it solves P from any initial position,
color, phase, target and pending color.

4.2. FROM THE SYSTEM MODEL TO THE VERIFICATION MODEL 25

Following the same terminology, all initial configurations are complete, and an initial configu-
ration where both robots are in the WAIT phase is called a simple initial configuration.

Similarly all executions are complete, and if the initial configuration of an execution is a
simple initial configuration, then it is a simple execution. If a complete execution has a common
suffix with a simple execution, we say it is simple-reachable.

4.2 From the System Model to the Verification Model

Implementing the system model we consider into a verification model that can be checked by
a model-checker is difficult, as some elements are continuous (position of both robots, pending
moves of both robots). This section is dedicated to proving that those problematic elements can
be discretized in a way that enables mechanized verification.

4.2.1 Simple vs. Complete Self-Stabilization

This subsection is dedicated to proving that pending moves and pending colors can be removed
from the verification model in the case of self-stabilizing Rendezvous algorithms. This is
true for all self-stabilizing algorithms under the FSYNC, Centralized, and SSYNC schedulers
(lemma 4.2), and true for specific self-stabilizing algorithms under the ASYNC scheduler (the-
orem 4.2).

Lemma 4.1. Any completely self-stabilizing algorithm is also simply self-stabilizing.

Proof. Since the set of initial configurations allowed for simple self-stabilization is a subset of
the one allowed for complete self-stabilization, if all complete initial configurations lead to a
successful execution, then all simple starting executions also do.

We now want to prove that every complete execution is simple-reachable. If this is the case, then
any complete execution eventually has a common suffix with a simple execution, and we only
need to verify simple initial configurations to verify eventual gathering starting from a complete
initial configuration.

Lemma 4.2. Under the FSYNC, Centralized and SSYNC schedulers, any simply self-stabilizing
rendezvous algorithm is also completely self-stabilizing.

Proof. Under the FSYNC, Centralized and SSYNC scheduler, any complete initial configura-
tion becomes a simple initial configuration after all robots finish their current cycle.

Intuitively, it seems that this also holds for the case of ASYNC algorithms. Since both robots
are oblivious, with the exception of color, it seems logical that the system eventually "forgets"
its initial configuration, and becomes reachable from a simple initial configuration.

Surprisingly, we show that it is possible, for a well-chosen algorithm, ASYNC scheduling,
and complete initial configuration to create an infinite execution that never becomes simple-
reachable.

Theorem 4.1. There exist algorithms for which, under the ASYNC scheduler, there exist com-
plete executions which are not simple-reachable.

For a well-chosen algorithm, scheduler, and complete initial configuration, it is possible for the
system to have an emerging property of memory. This is because it is possible to have the
current configuration depend on the initial configuration indefinitely. We prove this theorem for
both oblivious and LUMINOUS robots.

26 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

Proof: Oblivious Robots.

Let us assume two robots r1 and r2 running the ToOther algorithm, i.e., the target is always the
other robot. Let us also assume an initial configuration where r1 is in the WAIT phase and r2 is in
the COMPUTE phase and has targeted point P1 such that |r1P1|= |r2P1|= |r1r2|. In other words,
r1r2P1 is an equilateral triangle. Note that this is a complete, but not simple initial configuration.

We first activate r1, which is now in its COMPUTE phase and targets the current location of
r2. We then activate r2 which starts moving towards P1. We then activate r2 again as it reaches
P1 and is now in its WAIT phase.

This current configuration is identical to the initial configuration. Thus, we have an ex-
ecution that repeats infinitely often while never being reachable from both robots starting in
the WAIT phase, because starting from the WAIT phase cannot yield a target outside the [r1r2]
segment.

While this is the simplest example of the behavior that we could devise, it should be noted
that a similar execution could be achieved using a move-to-half algorithm, the only difference
being the r1r2P1 would be shrinking with each activation. Similarly, any initial configuration
that included a target outside of the (r1r2) line could lead to a similar execution, given the right
algorithm and ASYNC scheduling.

Figure 4.1 visually shows the execution: the colored cross shows the target of the robot of
the corresponding color.

Figure 4.1 – Proof for Oblivious Complete Self-Stabilization

4.2. FROM THE SYSTEM MODEL TO THE VERIFICATION MODEL 27

Proof: LUMINOUS Robots.

1 2

3

other is 2

other is 3other is 1

other is {1,2}other is {1,3}

other is {2,3}

Figure 4.2 – Algorithm for the LUMINOUS Complete Self-Stabilization

Let us assume the three-color algorithm in figure 4.2, and a complete initial configuration of
two robots r1 and r2, where r1 starts in color 1, in the WAIT phase, and r2 in color 2, in the
COMPUTE phase, with 3 as a pending color.
We then follow the execution described in figure 4.3. We see that the last configuration is
identical to the first one with r1 and r2 swapped, which means the execution can be repeated
infinitely.

Figure 4.3 – Execution for the LUMINOUS Proof of Theorem 4.1
W indicates the WAIT phase, C COMPUTE, and M MOVE

1, 2 and 3 indicate the color and, if applicable, the arrow indicates a pending color
The activated robot is highlighted in green

Let us now prove that this execution cannot be reached from a WAIT/WAIT simple initial con-
figuration.

A three-color algorithm allows for 6 different color combinations.

• Starting from {1,2}, robot r2 is stuck in color 2 and robot r1 turns to color 2. So {1,2}
leads to {2,2}.

• Starting from {2,3}, robot r2 is stuck in color 3 and robot r1 turns to color 3. So {2,3}
leads to {3,3}.

• Starting from {3,1}, robot r2 is stuck in color 1 and robot r1 turns to color 1. So {3,1}
leads to {1,1}.

• Starting from {1,1}, no robot can change color.

• Starting from {2,2}, no robot can change color.

• Starting from {3,3}, no robot can change color.

We now see that, if starting from WAIT/WAIT, no cycle of changing colors can be reached.
Therefore, the previously described complete execution cannot be reached either.

28 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

In practice, most Rendezvous algorithms in the literature prevent this behavior by command-
ing robot r1 to wait for robot r2 without changing its color or moving, enforcing strong syn-
chronization between r1 and r2. As the scheduler relies on its ability to feed outdated in-
formation infinitely often to the robot performing the LOOK to create executions that are not
simple-reachable, when synchronization is enforced by the algorithm, the scheduler loses this
capability.
Because no deterministic solution exists in the oblivious setting, we study the case of ASYNC
LUMINOUS Rendezvous algorithms using at least two colors.

To tackle the case of color ’memory’, we first consider two ASYNCLUMINOUS Rendez-
vous algorithms: Viglietta 3-color [84] and Heriban 2-color [53]. For both algorithms, we find
a structural condition that we prove sufficient to prevent the scheduler from creating any execu-
tion where memory of the initial color emerges.

During the following proof, we consider that, whenever a robot has no pending color, its pending
color is set to its visible color.

Definition 4.3 (Identical Color Condition).
We define the identical color condition (ICC) as: "For any pair of robots r1 and r2 whose

colors are C1 and C2, respectively, r1 can decide on a new color (different from C1) if and only
if its snapshot shows C1 and C2 are identical."

Theorem 4.2 (Identical Color Condition). For any LUMINOUS Rendezvous algorithm,
if the algorithm satisfies ICC and is simply self-stabilizing, any complete execution with initial
pending colors is reachable by a complete configuration where each robot has identical pending
and visible color.

Proof. Let us first assume a complete configuration where both robots r1 and r2 are in their
COMPUTE phase, with each a pending color. We notice that after at most three activations, at
least one robot (r2) is in WAIT, while the other (r1) is in WAIT, COMPUTE (with a pending
color) or MOVE (with no pending color). We ignore the cases where r1 is in WAIT or MOVE, as
they trivially have identical pending and visible colors.

So, without loss of generality, we can only consider complete configurations where r2 is in
WAIT while r1 is in COMPUTE, with a pending color.

Let us consider the case where one robot r1 is in COMPUTE with different pending and
visible colors A1 and A0, and robot r2 is in WAIT with identical visible and pending colors,
B0.
We first show that the first activated robot must be r2, as we see in table 4.1. The left execution
can be reached by the right execution with robots having the same arbitrary targets.

r1 r2

Pending Visible Pending Visible
A1 A0 B0 B0

A2(B0) A1 B0 B0

r1 r2

Pending Visible Pending Visible
A1 A1 B0 B0

A2(B0) A1 B0 B0

Table 4.1 – Activating Robot r1 First (left) Leads to a Reachable Configuration (right)

We show an execution that is not reachable in table 4.2
We now note that, if the algorithm follows the identical color condition, in order for B1 to be
different from B0, we require A0 to be identical to B0. If we do not force change in color
and have B1 = B0, the configuration does not change and the first activation of r1 leads to the
counter example shown in table 4.1. Because of this, the scheduler now has two choices : Either
activate r1 or r2.
These two executions are shown if tables 4.3 and 4.4.

4.2. FROM THE SYSTEM MODEL TO THE VERIFICATION MODEL 29

r1 r2

Pending Visible Pending Visible
A1 A0 B0 B0
A1 A0 B1(A0) B0

A2(B0) A1 B1(A0) B0
A2(B0) A1 B2(A1) B1(A0)

A3(B1(A0)) A2(B0) B2(A1) B1(A0)

Table 4.2 – A Possible Memory Execution
Note the continuing dependency on colors A0, B0, and A1

r1 r2

Pending Visible Pending Visible
A1 A0 B0=A0 B0
A1 A0 B1(A0) A0

A2(A0) A1 B1(A0) A0

Table 4.3 – After Activating r2 then r1

r1 r2

Pending Visible Pending Visible
A1 A0 B0=A0 B0
A1 A0 B1(A0) A0
A1 A0 B2(A0) B1(A0)

Table 4.4 – After Activating r2 Twice

In the case shown in table 4.3, following the condition leads to A1 being identical to A0, which
is a contradiction.

In the case shown in table 4.4, for B2 to be different than B1, following the condition leads
to B1 being identical to A0, so B2 is also identical to B1, a contradiction.

Definition 4.4 (Move and Stay Condition).
We define the Move and Stay Condition (MSC) as: "For any three colors C1, C2 and C3:

• if a robot in color C1 seeing the other robot with color C2 can switch to color C3 and
perform a move to midpoint, then a robot in color C3 cannot move or change its color if
it sees the other robot with color C2, and cannot move if the other robot is in color C3.

• if a robot in color C1 seeing the other robot with color C2 can switch to color C3 and
perform a move to other, then a robot in color C2 seeing the other robot with color C1
cannot move or change its color.

This condition holds for both Vig3 and Her2.

Theorem 4.3 (Move and Stay Condition). For any LUMINOUS Rendezvous algorithm
A, if A satisfies both ICC and MSC, and is simply self-stabilizing, then A is also completely
self-stabilizing.

Proof. Let us look at the implication of ICC when applied to MSC.
We first note that C3 can only be different from C1 if C1 and C2 are identical.
In the first condition of MSC, C1 and C3 cannot be identical, as a robot in color C3 = C1

seeing a robot in color C2 would not be able to move, so, because of ICC, C1 and C2 must be
identical.

In the second condition of MSC, if C1 and C2 are identical, then the robot in color C2
seeing the other in color C1 is able to move to other, so C1 and C2 must be different, and,
because of ICC, C3 is identical to C1.

Because the algorithm satisfies ICC and by Theorem 4.2, the execution can be reached by
a configuration in which each robot has an identical pending and visible color. So we consider
this configuration, which may include pending targets.

30 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

Let us first consider a complete configuration where both robots r1 and r2 are in their
COMPUTE phase, with each an arbitrary pending target, and no pending color. After at most
three activations, at least one robot (r1) is in WAIT, while the other (r2) is in WAIT, COMPUTE

(with its original arbitrary target), or MOVE (and moving towards its original arbitrary target).
We ignore the case where r2 is in WAIT, as it is trivially simple-reachable, since r2 would have
completed its move and hence deleted its pending target.

So, without loss of generality, let us now consider complete configurations where r1 is in
WAIT while r2 is either in COMPUTE or MOVE, with an arbitrary target and no pending color.

Again, without loss of generality, let us only consider complete configuration where r1 is in
WAIT while r2 is in MOVE, as r2 carries no pending color. The colors of r1 and r2 at this stage
are named C1 and C2, respectively.

We first note that the scheduler has to activate r1 first, as otherwise r2 reaches WAIT and the
configuration becomes simple-reachable.

1. If r1 decides not to move and not to change color, it does so indefinitely and the execution
is simple-reachable after r2 is activated and reaches the WAIT phase.

2. If r1 decides not to move and to change color, then, from ICC, colors C1 and C2 are
identical, and r1 must be activated again, as activating r2 leads both robots to carry no
arbitrary targets. So the configuration is similar to the initial configuration.

3. If r1 decides to move towards r2, then, from MSC, it keeps color C1, and r2 cannot move
when activated next, so the execution is simple-reachable.

4. If r1 decides to move to the midpoint, then, from ICC and MSC, colors C1 and C2 are
identical, and r1 prepares to switch to color C3, and r2 must now be activated before r1
finishes its cycle, as r1 cannot move or switch color after switching to color C3.

(a) If r2 is activated while r1 is in MOVE, ICC implies it cannot change its color, as C3
is different from C2. So, from MSC, it must perform a move to other. So, r1 is not
be able to move when activated next, so the execution is simple-reachable.

(b) If r2 is activated while r1 is in COMPUTE, it also targets the midpoint and prepares
to switch to color C3. The robot that finishes its cycle first is then stuck until the
other starts moving and switches to color C3 because of MSC. Let us assume r1 is
moving while r2 is in WAIT, both with color C3. The scheduler should obviously
not activate r1, so it activates r2, which prepares to switch to color C4 without
moving (MSC). If C4 is identical to C3, then r2 is stuck and the execution is simple-
reachable once r1 completes its cycle. If r1 is activated, it also prepares to switch
to C4 without moving. Neither robots have movement targets, so this execution is
simple-reachable.
If r2 is activated, then both are stuck with separate colors because of ICC. So, the
only possible move is "to other" for one of the robots, while the other has to stay,
and the execution is simple-reachable.

In this chapter, the model checker only uses simple initial configurations. From theorem 4.3, we
can extend the positive results to complete initial configurations when considering algorithms
that satisfy ICC and MSC such as Viglietta 3-color [84] and Heriban 2-color [53]. Of course,
negative results are not impacted, as a counter-example in the simply self-stabilizing context is
also a counter-example in the completely self-stabilizing context.

4.2. FROM THE SYSTEM MODEL TO THE VERIFICATION MODEL 31

4.2.2 Self-Stabilization and Rigidity

The non-rigid assumption is another source of a continuous variable in the model: when the
robot targets a point at some distance d ≥ δ > 0, the scheduler may stop the robot anywhere
between δ and d. In this section, we explore under which circumstances we can restrict the
verification model to rigid moves only without losing generality, and show that completely self-
stabilizing Rendezvous algorithms satisfy the condition (theorem 4.4).

Using criteria such as (complete) self-stabilization and rigidity, we can define four different
settings for Rendezvous algorithms according to the combination of {rigid,non-rigid} and
{self-stabilizing, non self-stabilizing}. Studying the literature on Rendezvous algorithms, we
were not able to find examples of self-stabilizing algorithms requiring rigid moves that failed
with non-rigid moves. We now prove that, in fact, such algorithms cannot exist.

Lemma 4.3. The three types of motion stay put (STAY), move to the midpoint (M2H), and move
to the other robot (M2O) are both necessary and sufficient to achieve Rendezvous in SSYNC
and ASYNC.

Proof. First, these three motions are obviously sufficient since they are the only ones used by
both Heriban et al. [53] and Viglietta [84] with two and three colors, respectively.

Next, we prove that it is necessary to use all of these motions to achieve Rendezvous.
Consider the case where both robots are at distinct positions, anonymous and have the same

color. As proven by Viglietta [84] in proposition 4.1: "We may assume that both robots get
isometric snapshots at each cycle, so they both turn the same colors, and compute destination
points that are symmetric with respect to their midpoint. If they never compute the midpoint
and their execution is rigid and fully synchronous, they never gather." Therefore, Move to Half
is necessary.

Similarly, consider now a case where snapshots are not isometric because of different colors.
Let us assume that their algorithm makes them target any point between them, but not their own
positions.

Because of the case where they are both activated at the same time, their targets need to be

identical to gather. We model this as
D
x

for robot r1 and D · (x−1)
x

for robot r2, with D the
distance between r1 and r2 and x is a real positive number. This is mandatory in the case where
r1 and r2 are activated at the same time.

However, if r1 and r2 are activated sequentially for a full cycle and x 6= 1, then r1 and r2
have different targets. As long as no motion where x = 1 exists, no Rendezvous can happen if
r1 and r2 are separated. When x = 1, r1 uses Move to Other and r2 uses Stay and Rendezvous
can be achieved. Therefore, M2O and Stay are both necessary.

Theorem 4.4. Any completely self-stabilizing algorithm that achieves Rendezvous assuming
rigid moves also achieves it assuming non-rigid moves.

Proof. Because lemma 4.3 shows STAY, M2H and M2O are necessary and sufficient, we now
assume that all ASYNC Rendezvous algorithms use only these three types of motion.

• Stay (STAY)

• Move to the midpoint (M2H)

• Move to the other robot (M2O)

First, it is trivial to see that, using these three types of motion, if both robots start in a WAIT

phase at a distance X , then the distance between r1 and r2 cannot become greater than X .
Next, we look at what happens after each robot completes at least one full cycle. We assume r1

32 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

r1 has a pending STAY r1 has a pending M2H r1 has a pending M2O

r2 executes k STAY X
X
2

0

r2 executes k M2H
X
2k {X

2
,0,

X
2k }

? X− X
2k

r2 executes k M2O 0
X
2

{0,X}

Table 4.5 – Distance after a full cycle of r1 and k cycles of r2 with an initial distance of X ≤ δ

? X
2

for k = 0 and 0 for k = 1

r1 has a pending STAY r1 has a pending M2H r1 has a pending M2O

r2 executes k STAY X
[

X
2
,max(

X
2
,X−δ)

]
[0,X−δ]

r2 executes k M2H
[

X
2k ,max(δ ?,X− k ·δ)

]
[0,max(δ ?,X− (k+1) ·δ)]

[
0,X− X

2k

]
r2 executes k M2O [0,max(0,X− k ·δ)]

[
0,

X
2

]
[0,X]

Table 4.6 – Distance after a full cycle of r1 and k cycles of r2 with an initial distance of X > δ
?This upper bound is not strict, as the distance may decrease to less than δ depending on X , δ and k

performs a LOOK, and r2 performs k cycles before r1 finishes its MOVE. The distance after r1
finishes its cycle is presented in tables 4.6 and 4.5.
In the case where r2 performs k cycles with different types of motion (that is, a sequence of se-
quence of cycles of different types), the resulting interval is a composition where X in sequence
i is substituted by the upper bound of the interval from sequence i−1, and the lower bound of
the second interval is the minimum of the lower bounds of both sequences.

For the purpose of contradiction, let us assume the existence of a completely self-stabilizing
algorithm AR that achieves Rendezvous with rigid moves, but not with non-rigid moves. This
implies that there exists a non-rigid execution that does not lead to Rendezvous.

Since the algorithm works in the rigid case, it cannot allow any of the following executions:

• No robot moves.

• Robot r1 has a pending M2O and robot r2 reaches robot r1, either by:

– executing at least one M2O.

– executing an arbitrarily large number of M2H.

Indeed, from table 4.5, any infinite sequence of these three executions allows the scheduler
to ensure the distance between robots never decreases, so the algorithm cannot allow them to be
repeated infinitely.

Since these infinite sequences are not part of the algorithm, they should also not happen
when the algorithm is used with non-rigid motion. So, from table 4.6, any execution of the
algorithm necessarily decreases the distance towards δ , with δ being the distance between r1 and
r2 below which the behavior becomes rigid. Thus, AR ensures that, for all non-rigid executions,
the distance between r1 and r2 is eventually at most δ . When that is the case, the behavior of
the algorithm is strictly the same as the rigid-motion behavior. Since there exists an execution
that does not achieve Rendezvous, this means that there exists a state (possibly with pending
colors and targets), which is part of the states of the rigid-motion behavior that does not achieve
Rendezvous. Hence, a contradiction.

4.2. FROM THE SYSTEM MODEL TO THE VERIFICATION MODEL 33

Theorem 4.4 implies that in order to prove complete self-stabilization, it is only necessary to
prove the property assuming rigid moves.

4.2.3 Proving Rendezvous Algorithms

The last mile to the verification model is to show that the remaining continuous variable of the
current configuration (the distance between the two robots) can be abstracted into two states
only.

We observe that, for any Rendezvous algorithm execution that solely uses the three required
movements, and where robots r1 and r2 start in the WAIT phase, the entire execution happens
on the line (r1r2).

Theorem 4.5 (Rigid motion model). When proving the correctness of a Rendezvous algorithm
with rigid-motion that solely uses the three required movements, only using the two model states
gathered and not-gathered is sufficient to properly represent the Euclidean plane.

Proof. We know that a single line is sufficient to model the plane for the Rendezvous problem
in the general case. Therefore, all positions of r1 and r2 where the |r1r2| distance is the same are
identical.
Since robots have no common notion of length, the actual distance between the two robots, other
than being gathered or not, is not useful for deciding to move or change their color.
We assume robots only use the three required movements (lemma 4.3). Because the motion is
rigid (theorem 4.4), robots always reach their destinations. Therefore, if an execution leads to
Rendezvous, changing the initial distance between the two robots does not change the outcome
of the execution.
So, any initial distance is equivalent to a not-gathered state.

Thanks to theorem 4.5, we now have a finite number of states to model the entire Euclidean plane
in the case of rigid Rendezvous. Note that this holds for both self-stabilizing and non-self-
stabilizing algorithms. In turn, this implies that we may use model checking to verify the validity
of a Rendezvous algorithm in the particular case of rigid motion. Furthermore, we can verify
(simple) self-stabilization by checking all possible pairs of colors, complete self-stabilization if
the algorithm satisfies ICC (by theorem 4.2) and non-rigid completely self-stabilizing algorithms
(by theorem 4.4).
The only remaining family of algorithms is non-rigid, non-self-stabilizing algorithms.

Theorem 4.6. To prove non-rigid non-self-stabilizing algorithms to achieve Rendezvous, ver-
ifying rigid behavior is necessary but not sufficient to prove the correctness of the algorithm.

Proof. Consider an algorithm that achieves Rendezvous with non-rigid moves when both
robots start from color C, but fails to do so for any other initial color combination. To achieve
Rendezvous, the algorithm must work for any initial distance between both robots, including
a distance smaller than δ . Therefore, we know that checking the rigid behavior for color C is
necessary to prove non-rigid behavior.
On the other hand, Vig2Cols [84] achieves Rendezvous with rigid moves when both robots
start from color BLACK. However, we also know this algorithm fails with non-rigid moves
when starting with the same initial colors. Therefore, solely checking the rigid behavior would
lead us to incorrectly consider Vig2Cols [84] to be a working non-rigid non-self-stabilizing
algorithm. Hence, the condition is not sufficient.

We present a possible approach for checking these algorithms in section 4.3.6. To the best of
our knowledge, the 4-color external light algorithm by Okumura et al. [73] is the only known
Rendezvous algorithm that satisfies these two criteria.

34 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

Note that our reasoning is only true in the case where the behavior of the algorithm is the same
for any distance between r1 and r2 that is greater than zero. Recently, Okumura et al. [75]
introduced an algorithm under the additional assumption that robots have the knowledge of δ .
Because of this, the behavior of the algorithm is different when the distance is less than δ , and
when it is between δ and 2δ , which means that the rigid and the non-rigid behavior of the
algorithm are different. To prove non-rigid, non-self-stabilizing algorithms, we need to both
prove the rigid and non-rigid behaviors.

Theorem 4.7. To prove completely self-stabilizing Rendezvous algorithms whose behavior
differs depending whether the distance between r1 and r2 is smaller than δ , between δ and 2δ ,
or greater than 2δ , it is sufficient to consider the case where robots are initially 3δ apart.

Proof. In this particular case, we need to check three things:

1. That the rigid algorithm achieves Rendezvous.

2. That the farthest non-rigid algorithm leads to the closest.

3. That the closest non-rigid algorithm leads to the rigid.

The first point is proven in the rigid part of the chapter. We now only need to prove the
second and third points.
This is easily done by remembering from the proof of theorem 4.4 that any algorithm using
only the three moves either allows static executions or not. If it does, then the distance is never
reduced, and checking at 3δ is equivalent to any other distance. If it does not, then the distance
is eventually reduced to zero and hence eventually enters the second behavior.
Similarly, we check that the second behavior leads to rigid by reducing distance. We only need
to check that this decrease happens once for every initial configuration to ensure that distance is
reduced towards rigid behavior.

4.3 Verification Model

4.3.1 Position

Our verification model only needs to consider two different positions (called NEAR, SAME) de-
pending on the distance between the two robots. This choice is justified by the definition of
the model (two robots, no shared coordinate system, no landmarks, oblivious robots) and theo-
rem 4.5.

4.3.2 Activation and Synchrony

Let us now define the model we use in the model checking framework.

We consider the activation cycle of a robot r to be a sequence of four consecutive atomic
events: LOOK, COMPUTE, MOVEB, and MOVEE. Each of the four events is as follows:

LOOK (L) The robot obtains a snapshot observation of the environment which consists of the
color of both robots and the location of the other robot with respect to r’s local coordinate
system where r is always at the origin.

COMPUTE (C) The robot executes the algorithm which is defined as a function of the latest
observation that returns a new color and a movement target. In the verification model, we
assume that the light of the robot changes as part of the compute event.

4.3. VERIFICATION MODEL 35

MOVEB (B) The robot begins moving according to the movement target. Although it can be
observed while moving, the actual position of the robot is actually undefined until the
movement is completed with the MOVEE event.

MOVEE (E) The robot ends its move and has moved a distance of at least δ towards the target.
If the distance to the target was equal or less than δ , the robot has reached its target.

We use this four-events verification model instead of the classical three phases model because of
the flexibility it allows when defining variants of the ASYNC model. We can set the LOOK phase
to be instantaneous by linking a COMPUTE event to happen right after each LOOK event, or set
to LC-atomic ASYNC by linking LOOK, COMPUTE and MOVEB, or Move-atomic ASYNC by
linking MOVEB and MOVEE, and so on.

A global execution is a sequence of events on both robots, such that the event of each robot r
is a robot execution of r, and the interleaving of events follows the rules of the activation model:

Centralized The activation cycle of a robot is atomic. In other words, a single robot is activated
at a time and executes a full activation cycle each time (see figure 4.4b).

FSYNC The activation cycles of both robots are executed simultaneously. Equivalently, the
robots always follows the following atomic sequence: each robot executes a LOOK event
and then, in turn, each robot sequentially execute COMPUTE, MOVEB, and MOVEE. This
is depicted in figure 4.4c.

SSYNC Activation cycles can be either centralized or combined (as FSYNC).

ASYNC Each event is atomic but there is no atomicity between events (see figure 4.4a).

LC-atomic ASYNC Same as ASYNC, but the LOOK and COMPUTE events execute atomi-
cally.

Move-atomic ASYNC Same as ASYNC, but the MOVEB and MOVEE events execute atomi-
cally.

Again, we assume that robots are always activable and that the scheduling is fair. Consequently,
both robots are activated infinitely many times.

Theorem 4.8. The FSYNC scheduler can be properly simulated by activating sequentially the
LOOK phase of robot r1, the LOOK phase of robot r2, the COMPUTE, MOVEB, and MOVEE of
robot r1 and finally the COMPUTE, MOVEB, and MOVEE of robot r2, infinitely often.

Proof. In the FSYNC model, the LOOK, COMPUTE, MOVEB, and MOVEE phases of all robots
are executed simultaneously. However, since LOOK is a read-only operation, and COMPUTE

a write-only operation, with regards to color, these operations can be executed sequentially as
long as no LOOK happens after a COMPUTE (i.e., all read operations happen before the first
write operation). A similar reasoning holds for the MOVEB to MOVEE being the beginning and
end of a continuous write operation.

Theorem 4.9. Two simultaneous events E1 and E2 can be properly simulated by exploring both
sequences (E1,E2) and (E2,E1).

36 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

Robot r1 L C B E L C

scheduler

Robot r2 L C B E

(a) ASYNC

activation step

activation cycle

non-deterministic choice

Robot r1 L C B E

scheduler

Robot r2 L C B E

(b) Centralized

Robot r1 L C B E

scheduler

Robot r2 L C B E

(c) FSYNC

Figure 4.4 – Simulation of Main Schedulers as a Promela Process.

Proof. We consider two cases:

1. In the first case, one event (E1) is a read operation (LOOK), and one event (E2) is a write
operation (COMPUTE, MOVEB or MOVEE). Since information is being read and written
at the same time, the result of the read operation cannot be determined. In the case of
mobile robots, where the write operation is a color transition from color C1 to color C2,
we assume for now that the only colors that can be seen by the LOOK are C1 or C22.
We then need to consider the case where the LOOK saw a C1 (E1 then E2) and the case
where it saw a C2 (E2 then E1).
Similarly, if the write operation is either beginning of ending the MOVE phase, then the
reading robot can either see the writing robot as moving or not moving, so the read event
either happens before or after the write event.

2. In any other case, since no read and write operation are happening at the same time,
activating E1 and E2 simultaneously is identical to activating either E1 then E2, or E2
then E1.

Theorem 4.10. Except for non-rigid non-self-stabilizing Rendezvous, a fair scheduler can
be properly simulated by an 8N-bounded scheduler, where N denotes the number of colors
available to the algorithm.

Proof. To properly limit the number of activations of the scheduler, we need to ensure that any
change in the configuration made by r1 that may impact the snapshot of r2 has been explored.
When performing its cycle, there are two such elements: r1’s color, and the distance between r1
and r2.
Since there are only two distance states {SAME, NEAR }, a fixed number N of colors, and it takes
4 activations to perform a cycle, limiting the fair scheduler to an 8·N-fair scheduler, that is, a
fair scheduler that can perform at most 8·N activations of robot r1 between two activations of
robot r2 still ensures that every possible snapshot has been explored.

Because we check for a maximum of 5 colors, the model checker uses a 40-bounded scheduler.

2This assumption is analogous to assuming regularity with registers.

4.3. VERIFICATION MODEL 37

4.3.3 Movement Resolution

The key to our verification model is the idea of movement resolution. When a robot completes
its movement, this translates into a change of the verification model according to specific rules,
which are described below.

Stationary moves

When the computed move is invariant or stationary (e.g., M2O when the observed position is
SAME), its pending move is systematically translated to an equivalent STAY move. A robot that
has a STAY pending move is stationary, and hence is not observed as moving between MOVEB
and MOVEE.

From NEAR or SAME position

The key aspect of the verification model is the case when the robots are in rigid motion (NEAR

and SAME), and we only detail the resolution of moves for this combined case.

STAY No change.

MISS The pending move is a sure miss. A miss happens for instance if r observes the other
robot while it moves. It also happens indirectly during movement resolution. The result
of a MISS move is always NEAR (in particular, it can happen if the position was SAME).

M2O If the position is SAME, then the move is treated as a STAY. If the other robot is either
STAY or ⊥, then the position is now SAME. Else, if the other robot has a pending move, it
is converted to a MISS and the position is now SAME.

M2H If the pending move of the other robot is STAY or ⊥, then neither the distance nor the
pending move of the other robot changes.
If the pending move of the other robot is also M2H, then the move is potentially successful
and the pending move of the other robot is changed into an M2O move that targets the
location just newly reached. Thus, provided that the first robot does not move in the
meantime, the movement of the other robot later leads to SAME.
Else, the distance is still NEAR and the pending move or the other robot is now MISS.

from NEAR or SAME
(* , STAY, *) (– , ⊥, –)
(* , MISS, STAY | ⊥) (NEAR, ⊥, –)
(* , MISS, *) (NEAR, ⊥, MISS)
(* , M2O, STAY | ⊥) (SAME, ⊥, –)
(SAME, M2O, *) (SAME, ⊥, –)
(NEAR, M2O, *) (SAME, ⊥, MISS)
(* , M2H, M2H) (– , ⊥, M2O)
(* , M2H, STAY | ⊥) (– , ⊥, –)
(* , M2H, *) (– , ⊥, MISS)

Table 4.7 – Movement resolution.
Each tuple represents (position, me.pending, other.pending).

Major changes appear in boldface
A bottom value (⊥) represents the absence of pending moves.

Wildcard (*) replaces any value and placeholder (–) retains the original value.
Rule precedence is from top to bottom.

38 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

4.3.4 State Variables

The state of the system is represented by the following explicit variables:

• distance ∈ {NEAR,SAME}
The distance between the two robots. NEAR means that it is equal or smaller and they have
distinct positions, and SAME that they share the same location. When checking non-rigid
non-self-stabilizing algorithm, the distance FAR can also be used.

• robot[_].color ∈ {BLACK,WHITE,RED,YELLOW, GREEN}
The observable color of the robot. The color RED is used only in 3 colors, 4 colors, and
5 colors algorithms. The color YELLOW is used only in 4 colors and 5 colors algorithms.
The color GREEN is used only in 5 colors algorithms.

and the following implicit variables:

• robot[_].phase ∈ {LOOK,COMPUTE,MOVEB, MOVEE}
Keeps track of the next event to execute in the activation cycle of the robot. This variable
is managed by the scheduler and is particularly important for the ASYNC scheduler.

• robot[_].pending_move ∈ {STAY,M2O,M2H,MISS,⊥}
Holds the movement computed by the robot. This is not observable but used to resolve
movements during the MOVEE phases. The variable is updated during the LOOK phase,
based on the movement computed by the algorithm.

• robot[_].pending_color ∈ {BLACK,WHITE,RED,YELLOW,GREEN,⊥}
New color for the robot, as computed by the algorithm. The color is computed during the
LOOK phase of the robot and used during the COMPUTE phase to update the visible color
of the robot.

Depending on the model and algorithms, this can lead to at most 2 · (5 · 4 · 5 · 6)2 = 720′000
different states.

4.3.5 Activation Phases

LOOK Reads the current state of the environment and saves it as an observation. Applies the
algorithm to compute the pending move and the new color.

COMPUTE Updates the color of the robot in the environment.

MOVEB Begins moving. Unless the pending move is STAY, the robot’s position is undeter-
mined until MOVEE and any that occurs in the interval causes an automatic MISS move
for the other robot.

MOVEE The pending move is resolved into a new position for the robot and the environment
is updated accordingly.

4.3. VERIFICATION MODEL 39

4.3.6 The Case of Non-Rigid, Non-Self-Stabilizing Algorithms

Because of theorem 4.6, we cannot directly use our model checker in its current form to check
this type of algorithms.

This is because a non-rigid algorithm can reach its rigid behavior in an unpredictable con-
figuration. Our method for solving this issue is to notice that the number of those configurations
is finite. More precisely, parameters include:

• The current color of each robot.

• The pending color of each robot.

• The phase of each robot.

• The pending move of each robot.

This means we have a number Ncon f of possible configurations.
We use this fact by creating a counter, which starts at 0 and increases up to Ncon f .
We start the validation process in the FAR state. When executing the first movement resolu-

tion that leads to NEAR, we create two branches:

1. In the first branch, the robot reaches NEAR and we continue the process.

2. In the second branch, the robot actually did not reach NEAR and is kept at FAR. We
increment the counter by 1.

We repeat this process until the counter reaches Ncon f − 1. We have then created 2Ncon f − 1
branches to verify. However, we have ensured that any possible rigid motion behavior config-
urations has been checked. Repeating this process for every possible non-rigid motion initial
configuration is enough to ensure that any possibly failing execution would have been detected.

40 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

4.4 Checking Rendezvous Algorithms

4.4.1 Verified Algorithms

To assess the verification model, we have checked three trivial baseline algorithms as well as
seven known algorithms from the literature. For each of these algorithms, it is widely-known in
which models they achieve Rendezvous or fail. Unless explicitly stated otherwise, algorithms
are non-rigid and self-stabilizing. The latter seven algorithms are detailed in figure 4.5:

1. "NoMove": the robots never move and the algorithm never achieves Rendezvous regard-
less of the model.

2. "ToHalf": the robots always target the midpoint and the algorithm fails in all models but
FSYNC.

3. "ToOther": the robots always target the other robot’s position and the algorithm fails in
all models but Centralized.

4. "Vig2Cols": the algorithm (figure 4.5b) was originally proved correct in SSYNC [84] but
was later proved to also achieve Rendezvous in LC-atomic ASYNC [74]. The algorithm
is known to fail in ASYNC [84].

5. "Vig3Cols": the algorithm (figure 4.5a) is known to succeed in ASYNC and consequently
in all other weaker models [84].

6. "Her2Cols": the algorithm (figure 4.5c) is an extension of "Vig2Cols" that uses only two
colors but succeeds in ASYNC [53]. The algorithm is optimal in the sense that Rendez-
vous in ASYNC cannot possibly be achieved with fewer colors.

7. "Flo3ColsX": the algorithm (figure 4.5d) achieves Rendezvous in SSYNC with external
colors. The algorithm is known to succeed in SSYNC and to fail in ASYNC [48].

8. "Oku5colsX": the algorithm achieves Rendezvous in LC-atomic ASYNC in a model
with external colors. The algorithm is known to succeed in LC-atomic ASYNC and to
fail in ASYNC [73].

9. "Oku4colsX": the algorithm achieves Rendezvous in LC-atomic ASYNC in a model
with external colors. It is quasi-self-stabilizing, meaning it requires the starting colors of
the robots to be identical. The algorithm is known to succeed in LC-atomic ASYNC and
to fail in ASYNC [73].

10. "Oku3colsX": the algorithm achieves Rendezvous in LC-atomic ASYNC in a model
with external colors. It is a rigid, non-self-stabilizing algorithm. The algorithm is known
to succeed in LC-atomic ASYNC and to fail in ASYNC [73].

4.4. CHECKING RENDEZVOUS ALGORITHMS 41

(BLACK, BLACK) WHITE, M2H
(BLACK, WHITE) –, M2O
(BLACK, RED) skip
(WHITE, BLACK) skip
(WHITE, WHITE) RED, STAY

(WHITE, RED) –, M2O
(RED, BLACK) –, M2O
(RED, WHITE) skip
(RED, RED) BLACK, STAY

(a) Vig3Cols
3 colors algorithm for ASYNC [84]

(BLACK, BLACK) WHITE, STAY

(BLACK, WHITE) skip
(WHITE, BLACK) –, M2O
(WHITE, WHITE) BLACK, M2H

(b) Vig2Cols
2 colors algorithm for LC-atomic ASYNC [84]

(BLACK, BLACK) WHITE, STAY

(BLACK, WHITE) skip
gathered skip
(WHITE, BLACK) –, M2O
(WHITE, WHITE) BLACK, M2H

(c) Her2Cols
2 colors algorithm for ASYNC [53]

(*, BLACK) WHITE, M2H
(*, WHITE) RED, STAY

(*, RED) BLACK, M2O

(d) Flo3ColsX
3 colors external for SSYNC [48]

(*, BLACK) WHITE, M2H
(*, WHITE) RED, STAY

(*, RED) YELLOW, M2O
(*, YELLOW) GREEN, STAY

(*, GREEN) BLACK, STAY

(e) Oku5ColsX
5 colors external for LC-atomic ASYNC [73]

(*, BLACK) WHITE, M2H
(*, WHITE) RED, STAY

(*, RED) YELLOW, M2O
(*, YELLOW) BLACK, STAY

(f) Oku4ColsX
4 colors external Quasi-Self-Stabilizing for

LC-atomic ASYNC [73]

(*, BLACK) WHITE, M2H
(*, WHITE) RED, STAY

(*, RED) WHITE, M2O

(g) Oku3ColsX
3 colors external rigid Non-Self-Stabilizing for

LC-atomic ASYNC [73]

Figure 4.5 – Rendezvous Algorithms from the Literature
Guards match the (me.color, other.color). Wildcard (*) replaces any value.

Placeholder (–) retains the original value, "skip" means no change, "gathered" holds only when
both robots have the same position. Rule precedence is from top to bottom.

42 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

4.4.2 Verification by Model Checking

Given a Rendezvous algorithm and a verification model, the SPIN model checker essentially
verifies that the following liveness property (expressed in LTL) holds in every possible execu-
tion:

ltl gathering { <> [] (position == SAME) }

The formula defines a predicate called gathering with the meaning that there is a time after
which the position is always SAME. Concretely, to verify the property, the model checker runs
an exhaustive search in the transition graph of configurations such that all initial configurations
lead to some cycle such that the predicate gathering holds or, in other words, that the variable
position is equal to SAME in every configuration of such cycle(s). The results are detailed in
table 4.8

LC-atomic Move-atomic
Centralized FSYNC SSYNC ASYNC ASYNC ASYNC

Non-Rigid Self-Stabilizing
- - - - - - NoMove
- X - - - - ToHalf
X - - - - - ToOther
X X X X - - Vig2Cols
X X X X X X Vig3Cols
X X X X X X Her2Cols
X X X - - - Flo3ColsX
X X X ?? - - Oku5ColsX
X - - - - - Oku4ColsX
X - - - - - Oku3ColsX

Rigida Quasi-Self-Stabilizing
X X X X - - Oku4ColsXa

Rigid Non-Self-Stabilizing
X X X X - - Oku3ColsX

a Oku4ColsX is supposed to be non-rigid. However, proving algorithms that are both non-rigid and non-self-
stabilizing cannot be done by the current version of our model checker.

? Our model checker could not find counter examples for Oku5colsX. However, because it does not follow the
Identical Color Condition, this does not prove validity for non-rigid motion

Table 4.8 – Results of Model-Checking Liveness

Two of those results were actually unexpected: Oku3colsX [73] and Oku4colsX [73] are not
supposed to be self-stabilizing at all3, yet are verified to be self-stabilizing under the centralized
scheduler by our model checker. Looking in details at the algorithms, it turns out that the key
counter-examples to self-stabilization rely on a simultaneous execution of both robots, which
explains the result.

This concludes the proof of theorem 3.1.
We include more details of the model checker in chapter 12.3.5 of the appendix.

3However, Oku4colsX is quasi-self-stabilizing, that is, both robots always start with the same initial color chosen
arbitrarily.

4.5. INVESTIGATING LIGHTS WITH WEAKER CONSISTENCY GUARANTEES 43

4.4.3 Performance

Using SPIN as a basis for our work, we were able to confirm known results for ten differ-
ent Rendezvous algorithms proposed in the literature (performance results are presented in
table 4.9).

States Runtime Memory
Sorted Matched Transitions Atomic steps [ms] [MB]

NoMove 12,080 2,738 17,604 73,027 220 145
ToHalf 6,141 979 10,979 57,152 130 135
ToOther 4,046 57 8,367 34,372 110 134
Vig2Cols 188,010 4,014,448 5,452,656 33,925,728 3,110 151
Vig3Cols 612,209 13,678,976 18,419,016 114×106 11,200 190
Her2Cols 395,150 8,589,648 11,652,481 72,971,392 6,840 170
Flo3ColsX 13,053 48,509 80,419 440,286 210 135
Oku5ColsX 414,247 8,981,645 12,126,155 73,027,637 7,870 172
Oku4ColsX 307,795 6,607,778 8,936,310 54,718,251 5,080 162
Oku3ColsX 83,072 1,714,653 2,329,400 14,330,584 1,380 142
Oku4Cols QSS 307,793 6,607,778 8,936,308 54,718,251 5,110 162
Oku3Cols NSS 83,070 1,714,653 2,329,398 14,330,584 1,380 142

Table 4.9 – Model Checker Runtime Performance for the ASYNC Scheduler
(Intel i7-8650U running SPIN 6.4.9 on Arch Linux)

4.5 Investigating Lights with Weaker Consistency Guarantees

While previous sections were motivated for the purpose of verifying whether previously pub-
lished results were indeed correct, this section is devoted to demonstrating how our tool can be
used to explore problem solvability in new models not considered before, in particular, models
that have strictly weaker consistency guarantees.

In particular, we concentrate on the current model considered for robots with lights, where
lights are atomically modified. Similarly to Lamport’s safe and regular versions of registers [64],
we define safe and regular version of lights, in addition to the current atomic version used in the
literature:

1. A light is atomic if its change of value can always be reduced to a single point in time in
every execution.

2. A light is regular if a LOOK occurring during the change of its color can return either the
color before the change or the color after the change. In particular, a new-old inversion
phenomenon may occur: if robot r1 changes its color from White to Black, then, robot
r2 may LOOK and see color Black, and later robot r3 may look and see color White
(including the case where r3 = r2.

3. A light is safe if a LOOK occurring during the change of its color can return any color in
the possible subset of the algorithm.

Obviously, regular and safe lights provide weaker consistency guarantees, yet could result from
actual physical phenomenon occurring in practice, such as light flickering (for regular lights) or
lights whose color changes in a continuous palette (for safe lights). It is thus important to check
algorithms against those weaker consistency guarantees.

44 CHAPTER 4. MODEL CHECKING RENDEZVOUS ALGORITHMS

We implemented all three lights models in our asynchronous model (obviously, in the semi-
synchronous and fully synchronous models, these weaker models are irrelevant as a look never
occurs during a color update). Alas, it turns out that none of the published algorithms we
considered so far can handle even regular lights: indeed, additional cycles of non-gathered
configurations appear for all algorithms, preventing Rendezvous from ever occurring.

Then, we tried to design a Rendezvous algorithm that could work with weaker consistency
requirements with respect to the light category used. The underlying principle is to add sup-
plementary colors between the colors used by previous algorithms (seen as important colors),
in order to somewhat increase the chances that those important colors remain in the same se-
quence. Starting from Viglietta’s 3-color algorithm [84], we derived the protocol presented in
listing 4.1 using four colors.

Listing 4.1 – A New Algorithm for Rendezvous with Weaker Consistency Lights.
inline Alg_WeakConsistency(obs, command)
{

command.move = STAY;
command.new_color = obs.color.me;
if
:: (obs.color.me == COL_A_P) -> command.new_color = COL_B
:: (obs.color.me == COL_A) ->

if
:: (obs.color.other == COL_A)

-> command.new_color = COL_A_P;
command.move = TO_HALF;

:: (obs.color.other == COL_B)
-> command.move = TO_OTHER

:: else -> skip
fi

:: (obs.color.me == COL_B) ->
if
:: (obs.color.other == COL_B) ->

command.new_color = COL_C
:: (obs.color.other == COL_C) -> command.move = TO_OTHER
:: else -> skip
fi

:: (obs.color.me == COL_C) ->
if
:: (obs.color.other == COL_C) ->

command.new_color = COL_A
:: (obs.color.other == COL_A) -> command.move = TO_OTHER
:: else -> skip
fi

:: else -> command.new_color = COL_A
fi

}

Note that this protocol does not follow ICC, so our verification only checks rigid, simple-self-
stabilization. It turns out that our new protocol, unlike any published algorithm so far, is a
valid ASYNC Rendezvous protocol for the regular light model. However, it still fails with the
safe light model. As the code provided in listing 4.1 indicates, trying new protocols against the
model-checker is not difficult as the code is self-explanatory, yet our tool gives an answer in a
matter of seconds. Because our implementation is conservative, if the answer is positive, then,
the protocol is valid for the considered model. However, a counter-example may or may not be
valid and has to be analyzed further.

Chapter 5

Safe and Unbiased Leader Election
with Lights

Leader Election is a fundamental problem of distributed computing in general. For mobile
robots in particular, Leader Election is paramount as it is a requirement for other problems
such as arbitrary pattern formation [47] and flocking [18, 49]. Surprisingly it appears no attempt
had yet been made to build more powerful Leader Election algorithms using lights.

Deterministic Leader Election is known to be generally impossible for OBLOT mobile
robots [47]. This is due to possible initial configuration that contain symmetries such that no
robot can be singled out. A trivial example is a network of two robots, which is always sym-
metrical. The exact conditions under which Leader Election is deterministically possible have
been detailed by Dieudonné et al. [37].

To solve this issue, robots are endowed with the ability to make decisions non-deterministi-
cally [19]. More specifically, they are able to perform Bernoulli trials of which the scheduler
cannot predict or control the outcome. Current state-of-the-art algorithms by Canepa and Gradi-
nariu Potop-Butucaru [19] allow for non-deterministic Leader Election for three or more robots
using motion under either the SSYNC scheduler or the k-bounded ASYNC scheduler. For three
robots, the algorithm relies on angles between robots and uses a Bernoulli trial to break the sym-
metries in the case where robots form an equilateral triangle. For more than three robots, the
LEADER is the closest robot to the center of the smallest enclosing circle (SEC) of the network.
If two or more robots are closest, a Bernoulli trial is used to reduce the number of candidates by
allowing a random number of robots to move towards the center of the SEC.

In this chapter, we present the first Leader Election algorithms for LUMINOUS robots
without using motion and positions. Because a network of two LUMINOUS robot can be
asymmetrical, as opposed to networks of two OBLOT robots, which are always symmetrical,
the proposed algorithms achieve Leader Election for a network of any size. We introduce a
2-color algorithm for the SSYNC scheduler, a 3-color for ASYNC. We also introduce the safe
and unbiased properties for Leader Election. Safe Leader Election must prevent multiple
LEADER robots from existing at any point during the execution. Unbiased Leader Election
ensures all robots have the same chance of getting elected, regardless of scheduling.

We present a 3-color safe SSYNC, a 4-color safe ASYNC, a 4-color unbiased ASYNC and
a 5-color safe, unbiased ASYNC Leader Election algorithm.

We also propose incremental upgrades to the state-of-the-art algorithms [19], which allow
them to solve Leader Election in unbounded ASYNC and require less restrictive initial condi-
tions.

45

46 CHAPTER 5. SAFE AND UNBIASED LEADER ELECTION WITH LIGHTS

5.1 Details of the Model

In this chapter, we consider LUMINOUS robots as defined in chapter I. Robots are also
endowed with the ability to perform Bernoulli trials. At the start of its COMPUTE phase, a robot
can choose between two different actions, such as target locations, or colors, with a winning
option being given a certain probability, and the losing action the complementary probability.

5.2 Problem Definition

Definition 5.1 (Leader Election).

An algorithm achieves Leader Election if there exists a LEADER state (color, or position for
instance), and, for any possible execution, there exists a suffix for which there exists a single
robot r1 such that r1 is always the only robot in the LEADER state.

Looking at this definition, it appears that a valid execution may include configurations that
contain multiple leaders, as long as there eventually only exists one. This definition matches the
soft Leader Election of chapter II.

We now introduce safe elections, in which we require the election algorithm to never include
more than one LEADER during the execution, with the obvious exception of initial arbitrary
configurations which may already include multiple LEADER robots.

Definition 5.2 (Safe Leader Election).

A Leader Election algorithm is safe if, for any execution whose initial configuration does not
contain multiple robots that are either in a LEADER state, or carrying pending transitions to a
LEADER state, no configuration contains more than one LEADER, regardless of scheduling.

Another interesting aspect of Leader Election is that the scheduler may be able to bias the
election towards a subset of robot. In practice, this may imply that a faster robot has a greater
chance of being elected, and it may be something we wish to avoid. We introduce the unbiased
elections for this particular purpose.

Definition 5.3 (Unbiased Leader Election). A Leader Election algorithm is unbiased if,
starting from a configuration in which robots are in the same state (same color, or same distance
from the center of the SEC, for instance), robots have the same probability of being elected
LEADER, regardless of scheduling.

Note that the probability in this definition is different from the probability of the Bernoulli
trial. In practical, the probability of a robot r1 being elected through an unbiased algorithm

should always be
1
n

for a network of n robots, regardless of the parameters of the Bernoulli trial.

Trivially, because the FSYNC scheduler has no decision power, any Leader Election algo-
rithm is unbiased under the FSYNC scheduler.

5.3. LEADER ELECTION BASED ON MOTION 47

5.3 Leader Election Based on Motion

To the best of our knowledge, the only algorithms for motion-based Leader Election in the
ASYNC model were proposed by Canepa and Gradinariu Potop-Butucaru [19] and are de-
scribed as algorithms 5.1 and 5.2. Algorithm 5.1 works for a network of three robots, while
the algorithm 5.2 requires at least four robots. No motion based algorithm can exist for two
robots.

Algorithm 5.1 Original Leader Election Algorithm by Canepa and Gradinariu Potop-
Butucaru [19] for Three Robots

Compute the angles between two robots
if my_angle is the smallest

Become LEADER
Exit

else if my_angle is not the smallest but the other two are identical
Become LEADER
Exit

else if All angles are identical

Perform a Bernoulli trial with a probability of winning of p =
1
3

if Trial won
Move perpendicular to the opposite side of the triangle in opposite direction

Algorithm 5.2 Original Leader Election Algorithm by Canepa and Gradinariu Potop-
Butucaru [19] for Four or More Robots

Compute the smallest enclosing circle SEC
Compute the distance dk to the center of SEC, for all robots 1≤ k ≤ n
if ∀k 6= mysel f ,dmysel f < dk, where 1≤ k ≤ n

Become LEADER
Exit

if ∀k 6= mysel f ,dmysel f ≤ dk, where 1≤ k ≤ n

Perform a Bernoulli trial with a probability of winning of p =
1
n

if Trial won
move a distance of dmysel f · p towards the center of the SEC

In the first algorithm, the selected LEADER is either the robot which is on vertex with the
smallest unique angle or, in the case of an isosceles triangle, the robot on the apex. It relies on
Bernoulli trials to sort the case of the equilateral triangle. In the second algorithm, the LEADER
state is defined as being the closest robot to the center of the SEC. It relies on Bernoulli trials to
decide in the case of multiple robots closest to the center of the SEC.

These algorithms rely on the assumption that the scheduler is k-bounded, that is a robot r2
can only be activated at most k times between each activation of robot r1.

In the case of algorithm 5.2, we show why the k-bounded hypothesis is necessary by con-
sidering the case where two robots r1 and r2 are at an equal, smallest distance to the center of
the SEC. We show the necessity of the hypothesis in the scheduling presented in figure 5.1. In
this scheduling, after robot r1 wins its Bernoulli trial, the ASYNC scheduler stops it and repeats
the LCM cycle of r2 until it wins its own Bernoulli trial.

Because of the k-bounded hypothesis, the scheduling has a probability of success of
1− (1− p)k, which, while being closer and closer to 1 as k grows, is smaller than 1. This
implies that this election algorithm eventually works under this hypothesis. Now, removing the

48 CHAPTER 5. SAFE AND UNBIASED LEADER ELECTION WITH LIGHTS

k-bounded assumption is equivalent to k being infinite, and the probability of success of the
scheduling being 1, so the algorithm fails. A similar scheduling exists for algorithm 5.1 in the
case of robots forming an equilateral triangle.

Figure 5.1 – Unbounded Scheduling Which Defeats Algorithm 5.2 in Unbounded ASYNC

Furthermore, it should be noted that these algorithms do not explicitly consider the case where
multiple robots might be located at the same position.

Theorem 5.1. If the adversary scheduler can control the coordinate system of each robot at any
point in the execution, a network of two or more disoriented oblivious robots located at the same
position (tower) cannot be separated, even using Bernoulli trials, under the unbounded ASYNC
scheduler.

Proof. Let us consider, without loss of generality, a network of three robots forming a tower,
i.e. located at the same position. Because they are located at the same position, their snapshots
are identical.

Without Bernoulli trials, because robots are disoriented, the FSYNC scheduler can prevent
separation by manipulating the coordinate systems in such a way that robots always move to the
same location.

Using Bernoulli trials, given an unbounded ASYNC scheduler, if a robot r1 decides, to
move out of the tower in a random direction, the scheduler can execute a scheduling identical to
figure 5.1 and make all three robots win the trial. This way, all three robots decide to move to the
same location. When activated simultaneously, they form a new tower at this new location.

So, it is impossible to solve Leader Election for any number of robots if all robots are located
at the same position.

In the case of the three robot algorithm, if a tower of two robots exist, i.e. two robots are
located at the same position, then the angle is not defined for the robots on the tower. However,
since the other robot is differentiated, then it can trivially be elected.

In the case of the algorithm for four or more robots, if multiple robots are located on the
center of the SEC, because of theorem 5.1, then they cannot be separated, and so they should be
ignored. Thus, in the case of a network of n≥ 4, but where only three robots are not located on
the center of the SEC, the algorithm for three robots should be used.

We modify the algorithms to work without any additional scheduling hypothesis, by adding
a losing action in the algorithm, and ignoring robots located on the center of the SEC. Our new
algorithms are described as algorithms 5.3 and 5.4. This version of the algorithms cannot be

5.3. LEADER ELECTION BASED ON MOTION 49

defeated in the unbounded ASYNC scheduler, because a robot cannot repeatedly try to win the
Bernoulli trial: if a robot loses the Bernoulli trial, it moves in such a way that it is no longer a
candidate for the election. These algorithms are also able to deal with any configuration where
robots are at least on two separate locations.

On the other hand, the probabilistic proofs of Canepa and Gradinariu Potop-Butucaru [19]
still apply. Thus, these enhanced algorithms work under an unbounded scheduler assumption.

Algorithm 5.3 Upgraded Motion-Based Leader Election for Three Robots ; Changes are Un-
derlined

Compute the angles between two robots
if Other robots have identical positions, different than mine

Become LEADER
Exit

if my_angle is the smallest
Become LEADER
Exit

else if my_angle is not the smallest but the other two are identical
Become LEADER
Exit

else if All angles are identical

Perform a Bernoulli trial with a probability of winning of p =
1
3

if Trial won
Move perpendicular to the opposite side of the triangle in opposite direction

else if Trial lost
Move towards the other robots, perpendicular to the opposite side of the triangle

Algorithm 5.4 Upgraded Motion-Based Leader Election for Four or more Robots ; Changes
are Underlined

Compute the smallest enclosing circle SEC
Compute the distance dk to the center of SEC, for all robots 1≤ k ≤ n
if dmysel f > 0 & ∀k 6= mysel f ,dmysel f < dk, where 1≤ k ≤ n & dk > 0

Become LEADER
Exit

if dmysel f > 0 & ∀k 6= mysel f ,dmysel f ≤ dk, where 1≤ k ≤ n & dk > 0

Perform a Bernoulli trial with a probability of winning of p =
1
n

if Trial won
Move a distance of dmysel f · p towards the center of the SEC

else if Trial lost
Move a distance of at least dmysel f · p opposite to the center of the SEC

50 CHAPTER 5. SAFE AND UNBIASED LEADER ELECTION WITH LIGHTS

5.4 Leader Election Based on Lights

We now study the case of LUMINOUS Leader Election.

As shown by Dieudonné et al. [37], there exists a well defined category of initial configura-
tions in which the robots’ positions may be used to deterministically elect a LEADER. However,
we require algorithms to work regardless of initial configuration, so the position of the robots is
not used. In practice this is useful for cases when the position of robots is symmetrical, such as
when robots are forming a regular n-gon.

As such, while we previously considered that robots execute a MOVE phase during their
cycles, we now make the hypothesis that robots are not moving during the execution, as it
would not impact the election. Therefore, no MOVE phase is included.

This model can be summarized as robots being activated to either perform a snapshot, or
change their color according to their snapshot.

Therefore, combining this with the hypothesis that robots should not move, the election
should only be based on robots color.

In the case of LUMINOUS robots, the LEADER state is a color conveniently named
LEADER.

Let us first look at the fairly trivial SSYNC Leader Election algorithm 5.5, also described
in figure 5.3:

This LUMINOUS algorithm is essentially identical to the motion-based algorithm :

• There is a DEFAULT color.

• If there is no robot in the LEADER color, robots in the DEFAULT color have a given

probability p =
1
n

of switching to the LEADER color upon activation, with n the size of
the network.

• If a robot in the LEADER color sees another LEADER, it switches to the DEFAULT color.

5.4. LEADER ELECTION BASED ON LIGHTS 51

To keep figures readable, some abbreviations are defined:

• "X and Y " is true if both X and Y are true.

• "X or Y " is true if either X or Y is true.

• " 6 ∃X" is true if no robot of color X exist in the snapshot.

• " 6 ∃(X ,Y)" is true if no robot of color X or Y exist in the snapshot.

• "∃X" is true if at least one robot of color X exists in the snapshot.

• "∃(X ,Y)" is true if at least one robot of color X or Y exists in the snapshot.

• "∀X" is true if the snapshot only contains robots of color X .

• "∀(X ,Y)" is true if the snapshot contains no robots of color other than X and Y .

Note that a robot is not included in its own snapshot.

Figure 5.2 – Symbol for the Bernoulli Trial

Figure 5.3 – SSYNC Leader Election

Algorithm 5.5 SSYNC Leader Election
if me.color = DEFAULT

if @ other.color = LEADER

Perform a Bernoulli trial with a probability of winning of p =
1
n

if Trial won
me.color⇐ LEADER

else if me.color = LEADER

if ∃ other.color = LEADER

me.color⇐ DEFAULT

Theorem 5.2. Algorithm 5.5, described in figure 5.3 achieves motionless Leader Election
under the SSYNC scheduler, using the optimal number of colors, for any number of robots1.

1In fact, this algorithm also functions properly for a network of a single robot !

52 CHAPTER 5. SAFE AND UNBIASED LEADER ELECTION WITH LIGHTS

Proof. Let us first consider a configuration containing only robots in the DEFAULT color.
If no robot is in the LEADER color, robots in the DEFAULT color attempt switching to the

LEADER color with a probability of
1
n

. This leads to three possible cases :

1. The new configuration contains no robot in the LEADER color. This is identical to the
initial configuration.

2. The new configuration contains a single robot in the LEADER color. Then, no robot can
change color upon activation, and the election is over.

3. The new configuration contains multiple robots in the LEADER color. Upon activation,
any robot LEADER that sees other LEADER robots switches back to DEFAULT. This
eventually degrades to either the first of second case.

Because of the Bernoulli trial, the scheduler cannot chose which of the three case occurs after
activating a subset of DEFAULT robots. The first and third case lead back to another Bernoulli
trial, and the second case has a non-zero probability of happening. Thus the network eventually
reaches the second configuration in which the is a single robot in the LEADER color.

Since using one color is trivially identical to using no color, and Leader Election is trivially
impossible using no color for two robots, using 2 colors is optimal.

This algorithm, similarly to the motion based approach, is self-stabilizing, achieves Leader
Election for the SSYNC scheduler and fails under a unbounded ASYNC scheduler and would
require k-boundedness, for the same reasons.

In fact, under the ASYNC scheduler, the proof for theorem 5.2 does not hold because the
scheduler can reliably induce the third configuration, where multiple robots are in the LEADER

color, with a probability of 1. The scheduler activates a first robot repeatedly until it wins the
trial and holds the color change. The Bernoulli trial happens during the COMPUTE phase, before
the color change. Unless the two events were atomic, there exists a moment in the execution
when the scheduler is aware of the following color change and can choose to stop the COMPUTE

phase before the change of color. The scheduler then activates a second robot repeatedly until
it also eventually wins, and similarly holds the color change. This is then repeated for every
robot in the network. Then, all robots in the network are activated and switch to the LEADER

color. Therefore, the scheduler can deterministically have all robots win the Bernoulli trial. This
obviously prevents the SSYNC algorithm from being used in ASYNC.

However, it improves upon its motion based by achieving Leader Election for any number
of robots, where motion-based requires at least three. It also does not require robots to have
separate positions.

This algorithm is obviously not safe, as there is a non-zero chance that several robots become
LEADER after activating multiple DEFAULT robots simultaneously.

Similarly, this algorithm is obviously not unbiased. The scheduler can activate one robot
repeatedly until it is elected. So, the scheduler can choose a robot and ensure with a probability
of 1 that it is elected as LEADER.

Note that, using the same reasoning than with our improved motion based algorithm, it
is possible to achieve Leader Election in unbounded ASYNC, by adding the following new
constraints:

• If a robot loses the Bernoulli trial, it switches to the FOLLOWER color.

• A robot in the FOLLOWER color switches to the DEFAULT color if all robots are in the
FOLLOWER color.

5.4. LEADER ELECTION BASED ON LIGHTS 53

Algorithm 5.6 includes these modifications and is presented in figure 5.4.

Figure 5.4 – ASYNC Leader Election algorithm

Algorithm 5.6 ASYNC Leader Election
if me.color = DEFAULT

if @ other.color = LEADER

Perform a Bernoulli trial with a probability of winning of p =
1
n

if Trial won
me.color⇐ LEADER

else
me.color⇐ FOLLOWER

else if me.color = FOLLOWER

if ∀ other.color = FOLLOWER

me.color⇐ DEFAULT

else if me.color = LEADER

if ∃ other.color = LEADER

me.color⇐ DEFAULT

Theorem 5.3. Algorithm 5.6, described in figure 5.4 achieves motionless Leader Election
under the ASYNC scheduler for any number of robots.

Proof. First, a rapid analysis of the algorithm shows that the only locked configuration contains
a single robot in the LEADER color and all other robots in either the FOLLOWER or DEFAULT

color. So, if this configuration has a non-zero probability of happening regardless of scheduling,
the network is deadlocked and Leader Election is eventually achieved. Let us now look at
possible configurations:
If the configuration contains a single robot in the LEADER color with no pending transition to
DEFAULT and no robots in the DEFAULT color with pending transitions to LEADER, the election
is over.
If the configuration contains multiple robots in the LEADER color, all other robots are stuck and
the configuration eventually degrades to one or zero robots in the LEADER color.
If the configuration contains a single robot in the LEADER color and robots in the DEFAULT

color with pending transitions to LEADER, it eventually degrades to the previous case of multiple
robots in the LEADER color.
If the configuration contains no robot in the LEADER color, given enough activations, at least
one robot eventually attempts the Bernoulli trial. Regardless of scheduling, there is a non-
zero probability of reaching a configuration where a single robot has a pending transition from
DEFAULT to LEADER. At this point, robots in the FOLLOWER color are either stuck, or carrying
a pending transition to DEFAULT. Other robots in DEFAULT may either carry no transition, or
transitions to FOLLOWER. Because any new snapshot taken by a FOLLOWER robot leads to no
transition, all sequences of activations by scheduler have a non-zero probability of leading to

54 CHAPTER 5. SAFE AND UNBIASED LEADER ELECTION WITH LIGHTS

no other robots winning the Bernoulli trial and being stuck in the FOLLOWER color. Then, the
robots with a pending transition to LEADER must be elected.
This means that this algorithm prevents the scheduler from reliably getting a second robot to
win the Bernoulli trial after a first robot did. Therefore, the scheduler cannot reliably prevent
the election from finishing.

Note that the provided SSYNC algorithm is actually somewhat ’wait-free’, in the sense that as
long as at least one robot in the network is not crashed, and no robots are crashed in the LEADER

color, then Leader Election is eventually achieved. This is not the case of the provided ASYNC
algorithm. We provide a more general result:

Definition 5.4 (Self-Stabilizing, Non-Blocking LUMINOUS Leader Election).
Leader Election is self-stabilizing and non-blocking [57] if there exists configurations con-
taining no robot in the LEADER color, and for any such configuration, there exists at least one
robot r1 such that, after enough activations of only r1, r1 reaches the LEADER color.

Theorem 5.4 (Non-Blocking LUMINOUS Leader Election).
There is no LUMINOUS probabilistic algorithm that achieves self-stabilizing, non-blocking,
Leader Election under the unbounded ASYNC scheduler.

Proof. To ensure Leader Election for any initial configuration, it is required to use at least one
Bernoulli trial [37]. Let us assume a self-stabilizing, non-blocking, algorithm exists. this algo-
rithm ensures that a single non crashed robot can reach the LEADER color if no robots are in the
LEADER color. So, if a robot fails the Bernoulli trial, it must be able to attempt it again without
requiring any activation of other robots. Otherwise, the algorithm would not be non-blocking.
Then is it possible for the ASYNC scheduler to activate a first robot repeatedly until it wins the
trial, hold the color change and activate a second robot repeatedly until it also eventually wins,
and hold the color change.
Then, two robots in the network go to the LEADER color. Therefore, the scheduler can deter-
ministically have multiple robots win the Bernoulli trial and reach the LEADER color. Let us
now consider the algorithm can try to eliminate all LEADER robots but one. If the process is
deterministic, then activating both robots simultaneously results in no robot being singled out,
so the process must use a Bernoulli trial. If one outcome of the Bernoulli trial leads a robot
to stay in the LEADER color, then the same reasoning applies, and both robot eventually leave
the LEADER color to the same color. If no outcome leads to the LEADER color, then the colors
reached by robots both allow for trying the initial trial again, as otherwise the algorithm would
not be non-blocking. So, the scheduling can be repeated infinitely, and no robot can ever be
singled out. Therefore, Leader Election is impossible.

It should be noted that nothing in this proof explicitly relies on the LUMINOUS model, but
only on the fact that the scheduler can predict and hold the change of state, and multiple , so the
same reasoning also applies to some OBLOT algorithms:

Definition 5.5 (Self-Stabilizing, Non-Blocking Leader Election).
Leader Election is self-stabilizing and non-blocking [57] if there exists configurations con-
taining no robot in the LEADER state, and for any such configuration, there exists at least one
robot r1 such that, after enough activations of only r1, r1 reaches the LEADER state.

Theorem 5.5 (Non-Blocking Leader Election).
There is no probabilistic algorithm that achieves self-stabilizing, non-blocking Leader Election
under the
unbounded ASYNC scheduler.

5.5. SAFE LEADER ELECTION 55

Proof. To ensure Leader Election for any initial configuration, it is required to use at least one
Bernoulli trial [37]. Let us assume a non-blocking algorithm exists. this algorithm ensures that
a single non crashed robot can reach the LEADER state (color, position, etc.). So, if a robot fails
the Bernoulli trial, it must be able to attempt it again without requiring any activation of other
robots. Otherwise, the algorithm would not be non-blocking.
Then is it possible for the ASYNC scheduler to activate a first robot repeatedly until it wins the
trial. Since all changes of state for mobile robots happen after the Bernoulli trial, the scheduler
can hold the state change and activate a second robot repeatedly until it also eventually wins,
and hold the state change.
Then, two robots in the network go to the LEADER state. Therefore, the scheduler can deter-
ministically have multiple robots win the Bernoulli trial and reach the LEADER state. Let us
now consider the algorithm can try to eliminate all LEADER robots but one. If the process is
deterministic, then activating both robots simultaneously results in no robot being singled out,
so the process must use a Bernoulli trial. If one outcome of the Bernoulli trial leads a robot to
stay in the LEADER state, then the same reasoning applies, and both robot eventually leave the
LEADER state to a new, identical, state. If no outcome lead to the LEADER state, then the state
reached by robots both allow for trying the initial trial again, as otherwise the algorithm would
not be non-blocking. So, the scheduling can be repeated infinitely, and no robot can ever be
singled out. Therefore, Leader Election is impossible.

As an example, let us confront this proof to algorithm 5.2, for four or more robots by Canepa
and Gradinariu Potop-Butucaru [19].
If the LEADER state is defined as being the only robot closest to the center of the SEC, then
the algorithm is indeed self-stabilizing and non-blocking. In a configuration with no robot in
the LEADER state, at least two robots are closest to the center of the SEC and, as shown in
figure 5.1, the unbounded scheduler can ensure that both deterministically move towards the
center at the same distance. So, no robot actually ever reaches the LEADER state.
If the LEADER state is defined as being closest to the center of the SEC, then all configuration
contain at least one robot in the LEADER state.

5.5 Safe Leader Election

In order to achieve safe Leader Election, we define a new color, WIN, and redefine the prop-
erties of the algorithm accordingly. Changes for the original are underlined.

• There is a DEFAULT color.

• If they see no robot neither in the LEADER color nor the WIN color, robots in the DEFAULT

color have a given probability p =
1
n

of switching to the WIN color upon activation, with
n the size of the network.

• If a robot in the WIN color sees another WIN robot or a LEADER robot, it switches to
DEFAULT. Otherwise it switches to the LEADER color.

• If a robot in the LEADER color sees another LEADER, it switches to the DEFAULT color.

In general terms, the purpose of the WIN color is to act as a buffer which ensures only one robot
can reach the LEADER color.

Lemma 5.1. Under the ASYNC scheduler, unless the initial configuration contains two or more
robots which are in the LEADER color, or have pending transitions to the LEADER color, it is
impossible for more than one robot to reach the LEADER color for a Leader Election algorithm
using the WIN color.

56 CHAPTER 5. SAFE AND UNBIASED LEADER ELECTION WITH LIGHTS

Proof. Without loss of generality, let us prove this property for two robots trying to both reach
the LEADER color.
For the purpose of contradiction, let us assume there exists an execution that includes a config-
uration of two LEADER robots, but for which the initial configuration Cinit does not include two
or more robots in the LEADER color or with pending transitions to the LEADER color.
It is possible to rewind this execution, starting from the the configuration containing two robots
in the LEADER color. Then, among the configurations that can be reached through this process,
we should find the configuration Cinit .
Starting from a configuration that contains two robot in the LEADER color, let us rewind the
execution by one activation. Two different configurations can be reached:

• C-
1 : robot r1 is in the LEADER color, and r2 in the WIN color with a pending transition to

the LEADER color.

• C-
2 : both robots are in the WIN color with a pending transition to the LEADER color.

Both these configurations can lead to a configuration with two robots in the LEADER color with
the right activations. However, both contain two robots in the LEADER color or with pending
transitions to the LEADER color. Therefore, neither are Cinit , so we need to rewind at least one
more activation.

Rewinding the configuration C-
1 by one activation leads to the following reachable configu-

rations:

• C-
1−1 : both robots are in the WIN color with a pending transition to the LEADER color.

• C-
1−2 : robot r1 is in the LEADER color, and r2 in the WIN color with no pending transi-

tions.

• C-
1−3 : both robots are in the WIN color. r1 has a pending transition to the LEADER color

and r2 has no pending transitions.

Configuration C-
1−1 is identical to C-

2 and is analyzed below.
Configuration C-

1−2 does not lead to two robots in the LEADER color, as the activation of r2 leads
to a pending transition to the DEFAULT color since a LEADER robot is detected. Therefore, it
cannot be part of the execution.
Similarly, activating r2 in configuration C−1−3 leads to a pending transition to the DEFAULT color,
while activating r1 leads to configuration C-

1−2. So it cannot be part of the execution either.

We now rewind the second configuration C-
2 by one activation :

• C-
2−1 : both robots are in the winning color with no pending transitions.

• C-
2−2 : both robots are in the winning color. r1 has a pending transition to the LEADER

color and r2 has no pending transitions.

In configuration C-
2−1, the activation of either robot leads to a pending transition to the DEFAULT

color, as another winning robot can be detected. Therefore, this cannot be part of the execution.
Configuration C-

2−2 is identical to C-
1−3 and has already been proven to not be part of the execu-

tion.
Therefore, there is no configuration that does not contain two robots in the LEADER color or
with pending transitions to the LEADER color that leads to two robots in the LEADER color.
Following the same principle, this proof can easily be expanded to any number of robots in the
LEADER color.

5.5. SAFE LEADER ELECTION 57

Note that since this lemma is true for the general ASYNC, it is also true for SSYNC. Therefore,
ensuring the above properties of the WIN color to either the SSYNC algorithm or the ASYNC
algorithm ensure that it becomes safe, with the cost of an additional color.

Theorem 5.6. Algorithms 5.7 and 5.8, presented in figures 5.5 and 5.6 allow for safe Leader
Election under the SSYNC and ASYNC schedulers, respectively.

Proof. According to theorems 5.2 and 5.3 both these algorithms ensure that, eventually, there
is a single robot in the WIN color, as it replaces the former LEADER color. All other robots are
then stuck. Following lemma 5.1, these algorithms ensure the safety property, as the WIN color
ensures that only one robot can transition to the LEADER color. So the WIN robot switches to
LEADER and the election is achieved.
Hence, both algorithms allow for safe Leader Election under their respective scheduler.

Figure 5.5 – Safe SSYNC Leader Election

Algorithm 5.7 Safe SSYNC Leader Election
if me.color = DEFAULT

if @ other.color = WIN and and @ other.color = LEADER

Perform a Bernoulli trial with a probability of winning of p =
1
n

if Trial won
me.color⇐WIN

else if me.color = WIN

if ∃ other.color = WIN or ∃ other.color = LEADER

me.color⇐ DEFAULT

else
me.color⇐ LEADER

else if me.color = LEADER

if ∃ other.color = LEADER

me.color⇐ DEFAULT

58 CHAPTER 5. SAFE AND UNBIASED LEADER ELECTION WITH LIGHTS

Figure 5.6 – Safe ASYNC Leader Election

Algorithm 5.8 Safe ASYNC Leader Election
if me.color = DEFAULT

if @ other.color = WIN and and @ other.color = LEADER

Perform a Bernoulli trial with a probability of winning of p =
1
n

if Trial won
me.color⇐WIN

else
me.color⇐ FOLLOWER

else if me.color = FOLLOWER

if ∀ other.color = FOLLOWER

me.color⇐ DEFAULT

else if me.color = WIN

if ∃ other.color = WIN or ∃ other.color = LEADER

me.color⇐ DEFAULT

else
me.color⇐ LEADER

else if me.color = LEADER

if ∃ other.color = LEADER

me.color⇐ DEFAULT

5.6. UNBIASED LEADER ELECTION 59

5.6 Unbiased Leader Election

We introduce an algorithm that ensures unbiased ASYNC Leader Election. It is based around
the principle that robots should all attempt the Bernoulli trial and, unless the election is success-
ful, all switch back to DEFAULT, and start again. This is done through the addition of a RESET

color. Unfortunately, the use of the FOLLOWER color appears mandatory, even in SSYNC.

• There is a DEFAULT color.

• If there is no robot in the RESET color, robots in the DEFAULT color have a given proba-

bility p =
1
n

of switching to the LEADER color upon activation.

• If a robot loses the Bernoulli trial, it goes to a FOLLOWER color.

• If a robot in the LEADER color sees another LEADER and no DEFAULT, or sees a RESET,
it switches to the RESET color.

• A robot in the FOLLOWER color switches to the RESET color if all robots are in the
FOLLOWER color, or if there is a RESET robot.

• A robot in the RESET color switches to the DEFAULT color if all robots are either in the
RESET or DEFAULT color.

Theorem 5.7. Algorithm 5.9, described in figure 5.7 allows for unbiased Leader Election
under the ASYNC scheduler.

Proof. First, a rapid analysis of the algorithm shows that the only locked configuration contains
a single robot in the LEADER color and all other robots in the FOLLOWER color. In all other
configurations, there exists at least one robot that can change color upon activation.
If the initial configuration contains no, or more than one LEADER, then all robots should gather
in DEFAULT or RESET within finite time.
If a RESET robot exists alongside LEADER or FOLLOWER robots and no DEFAULT, it is stuck
and the other robots must switch to RESET. Then, all robots are in the RESET color.
If a DEFAULT robot exists alongside the RESET robots, it must wait for all other robots to switch
to RESET, and then for RESET robots to switch to DEFAULT. Then all robots are in the DEFAULT

color.
If no RESET robot exist, and there are some robots in the DEFAULT color, alongside robots in
the LEADER or FOLLOWER colors, then the DEFAULT robots must switch to either color before
these robots can change color. Ignoring the obvious case of a single LEADER robot and the rest
of the network in the FOLLOWER color, once the network is parted in these two colors, the first
activation switches a robot to the RESET color and all robots must switch to the RESET color.
We have shown that, unless the election is finished, robots eventually all gather in a single color.
We now assume all robots are in a single color.
If all robots are in the LEADER color, then the first activated robot goes to the RESET color and
is stuck until all other robots have reached RESET.
If all robots are in the FOLLOWER color, then the first activated robot goes to the RESET color
and is stuck until all other robots have reached RESET.
When all robots are in the RESET color, they switch to the DEFAULT color and are stuck until
there are no more robot in the RESET color.
When all robots are in the DEFAULT color, they non-deterministically switch to the LEADER

and FOLLOWER. Since there are no more robots in the RESET color, they are stuck in their
respective color until there are no more DEFAULT robots left.

Three cases then arise :

60 CHAPTER 5. SAFE AND UNBIASED LEADER ELECTION WITH LIGHTS

1. There are no robot in the LEADER color.

2. There is only one robot in the LEADER color.

3. There are multiple robots in the LEADER color.

In the first case, there are only FOLLOWER robots and the first activated robot switches to RESET

and is stuck until all robots switch to RESET.
In the second case, the election is over and the configuration is locked.
In the third case, FOLLOWER robots are stuck and the first LEADER robot to be activated
switches to RESET. Then all robots must switch to RESET.
This ensures that the only way for a robot to attempt a Bernoulli trial is for all other robots also

attempt it, with the same parameters. Therefore, all robots have a
1
n

(
n−1

n

)n

probability of

being elected each time they cycle through the algorithm.

Figure 5.7 – Unbiased ASYNC Leader Election

Algorithm 5.9 Unbiased ASYNC Leader Election
if me.color = DEFAULT

if @ other.color = RESET

Perform a Bernoulli trial with a probability of winning of p =
1
n

if Trial won
me.color⇐ LEADER

else
me.color⇐ FOLLOWER

else if me.color = FOLLOWER

if ∀ other.color = FOLLOWER or ∃ other.color = RESET

me.color⇐ RESET

else if me.color = RESET

if ∀ other.color = {RESET,DEFAULT}
me.color⇐ DEFAULT

else if me.color = LEADER

if ∃ other.color = RESET or (∃ other.color = LEADER and @ other.color = DEFAULT)
me.color⇐ RESET

5.7 Safe Unbiased Leader Election

This algorithm is built as the inclusion of the WIN color in the unbiased Leader Election
algorithm described in figure 5.7. This algorithm is described in figure 5.8.

Proving this algorithm is combination of the proofs for the safe and unbiased algorithms,
and is not detailed.

Figure 5.8 – Safe Unbiased ASYNC Leader Election

Algorithm 5.10 Unbiased Safe ASYNC Leader Election
if me.color = DEFAULT

if @ other.color = RESET

Perform a Bernoulli trial with a probability of winning of p =
1
n

if Trial won
me.color⇐WIN

else
me.color⇐ FOLLOWER

else if me.color = FOLLOWER

if ∀ other.color = FOLLOWER or ∃ other.color = RESET

me.color⇐ RESET

else if me.color = RESET

if ∀ other.color = {RESET,DEFAULT}
me.color⇐ DEFAULT

else if me.color = WIN

if ∃ other.color = RESET or (∃ other.color = WIN and @ other.color = DEFAULT)
me.color⇐ RESET

else if ∀ other.color = FOLLOWER

me.color⇐ LEADER

else if me.color = LEADER

if ∃ other.color = RESET or ∃ other.color = LEADER or ∃ other.color = WIN)
me.color⇐ RESET

61

62 CHAPTER 5. SAFE AND UNBIASED LEADER ELECTION WITH LIGHTS

Conclusion: The Power of Lights

We introduced the LUMINOUS model, which allows robots to store and transmit limited
amounts of information with no cost to the realism of the model. This allows for reliable com-
munication and helps dealing with the issue of unrealistic scheduling.

In this context, we proved a new result: LUMINOUS robots under the SSYNC scheduler
are not more powerful than oblivious robots under the FSYNC scheduler. We then designed an
algorithm which allows for two LUMINOUS robots to gather under the ASYNC scheduler,
using only two colors, i.e. a single bit information.

Due to the difficulty of proving this algorithm, we created and proved a model checking
system for two-robot Gathering under most schedulers. We used this system to verify the
proofs of several known algorithms, and to prove an algorithm to solve Rendezvous in the
case of non-atomic lights. While proving the model checker, we also demonstrated the counter
intuitive result that, under the ASYNC scheduler, a system of oblivious robots is not necessarily
self-stabilizing.

We demonstrated an upgraded version of the state-of-the-art, motion based algorithm for
Leader Election, and used the LUMINOUS model to introduce new solutions, with the
added properties of safe and unbiased elections. Combined with the possibility of electing a
LEADER in a network of two robots, these algorithms allow safe and unbiased elections under
the ASYNC scheduler.

Part II

Unreliable Vision

63

Chapter 6

Uncertain Visibility

Ever since theOBLOT model was introduced, its full visibility sensor was considered unrealis-
tic by practitioners: since robot visual sensors have physical limitations (e.g. limited resolution
for omnidirectional 3D cameras [58, 71]), this intrinsically yields a limitation of the visibility
range. As a result, in the literature, three models have been used for visibility sensors: the full
visibility model, where all robots can see all other robots, the limited visibility model [3, 46,
50, 51, 82], where there exists a limit λ > 0 such that all robots closer than λ are seen and all
robots further than λ are not seen, and the obstructed visibility model as described in chapter 6.5.

However, limited visibility only partly addresses this issue, as further robots that are at the same
distance (greater than λ) may be seen or not seen due to unpredictable reasons. Two incorrect
outputs could be obtained by an observer about a particular robot:

1. False positives: no robot exists at a position, but one is output by the vision sensor.

2. False negatives: a robot exists at a position, but none is output by the vision sensor.

False positives can be dealt with using known techniques (such as marker-based detection [63]),
so we do not consider them in this work.

Figure 6.1 – Example of markers used for preventing false positives

False negatives, that are not addressed by the limited visibility model, are the focus of this
chapter. We define uncertain visibility sensors for mobile robots as sensors that satisfy the two
following properties:

1. Every robot closer than λ is output by the sensor.

2. A subset of the robots further than λ is output by the sensor.

Note that a subset including all such robots represents the full visibility model, while the empty
subset represents the limited visibility model.

Since we are interested in characterizing the exact limits of models for the computability of
tasks in the OBLOT model, we consider that the subset of robots beyond λ that remain visible
is decided by an adversary. Also, a robot r3 that is at the same distance from two distinct robots
r1 and r2 may be output by r1’s visibility sensor, but not by r2’s.

Our work is inspired by the idea introduced by Santoro and Widmayer [80], describing the
consequences of transmission faults that are controlled by an adversary in a synchronous system

65

66 CHAPTER 6. UNCERTAIN VISIBILITY

for the agreement problem in a distributed system.

They considered:

• Omission faults i.e. messages that are sent but not received.

• Corruption faults i.e. messages that are different from when they were sent.

• Addition faults i.e. messages that are received but that were not sent.

In our context, omission faults by visibility sensors correspond to false negatives. Addition
faults can be considered as false positives in our context. Corruption faults are tantamount to
erroneous positions returned by the sensors.

In this chapter, we consider omission faults in the case of visibility sensors. Similarly to
the paper of Santoro and Widmayer [80], we retain the synchronous scheduling of individual
entities. Our model differs from the work of Santoro and Widmayer [80] with our usage of
the λ parameter from the OBLOT model. The reason being to integrate well with previous
abstraction for mobile robotic entities sensors, in order to enable comparison with previous
results obtained in this model.

6.1 Model Definition and Basic Results

With the notable exception of restricted visibility sensors, our model matches the classical
OBLOT model [43]. Robots are modeled as points in a bidimensional Euclidean space, are
anonymous and uniform (that is, they execute the same code and have no identifiers), and unless
specified otherwise, cannot communicate explicitly (but can observe other robots positions in
their ego-centered coordinate system) and are oblivious (that is, they cannot remember their past
actions).

The scope of this section is limited to the FSYNC scheduler, as it more closely matches
the synchronous setting of the paper by Santoro and Widmayer [80]. So, in every synchronous
step, every robot is scheduled for execution, and performs a complete LOOK-COMPUTE-MOVE

cycle. Movements are rigid, meaning a robot always reaches its target at the end of a LCM
cycle.

We introduce a new visibility model that is an extension of the already existing full visibility
and limited visibility. We refer to this model as the uncertain visibility model. In limited visibil-
ity, there exists a distance λ , which may or may not be known to robots, so that if the distance
between two robots r1 and r2 is greater than λ , r1 and r2 cannot see each other. Now, if r1 and
r2 are closer than λ , then they can see each other. In the full visibility model, this distance λ is
infinite.

In our new visibility model, we define the distance λ such that if the distance between two
robots r1 and r2 is greater than λ , depending on the adversary, it is uncertain whether r1 and r2
can see each other. Yet, if r1 and r2 are closer than λ , then they always see each other. Under
this model, full visibility corresponds to the case where λ = ∞, while the limited visibility
corresponds to the case where the adversary prevents visibility whenever r1 and r2 are further
away than λ .

In this chapter, our focus is on the uncertain part of the visibility model. As in theOBLOT
model, we consider that λ > 0 is unknown to the robots and that no two robots are closer than
λ in the initial configuration. To introduce selective vision among robots, we consider that
correctly viewing a robot r1 is similar to correctly receiving a "visibility message" from r1.
Then, the adversary may simply block a subset of the visibility messages among robots when
they are further than λ away from one another. We introduce two classes of visibility messages
adversaries:

6.2. FSYNC N ROBOTS GATHERING 67

Definition 6.1 (k-random).
k-random adversaries can make up to k visibility messages disappear in each synchronous
round. The number of messages is chosen for each round by the vision adversary, but the
messages are chosen uniformly at random. A k-random adversary corresponds to probabilistic
visibility in the sequel.

Definition 6.2 (k-enemy).
k-enemy adversaries can make up to k visibility messages disappear in each synchronous round.
The number of messages is chosen for each round by the vision adversary, and those messages
are also chosen by the adversary. A k-enemy adversary corresponds to adversarial visibility in
the sequel.

From these definitions, we make the following observations, considering a FSYNC network of
n robots and n · (n−1) visibility messages sent each round.

Observations.

1. 0-random and 0-enemy adversaries are identical, and equivalent to full visibility.

2. n · (n−1)-random and n · (n−1)-enemy both encompass limited visibility.

3. Any task that can be solved against the k-enemy adversary can be solved against the
k-random adversary.

4. Because vision adversaries can block up to a maximum number of visibility messages, if a
task can be solved against the k-random (respectively, the k-enemy), it can also be solved
against any i-random (respectively, i-enemy) adversary where 0≤ i≤ k.

Definition 6.3 (Necessary and Sufficient).
If a task T cannot be solved against the (k+1)-random (respectively, the (k+1)-enemy) adver-
sary but can be solved against the k-random (respectively, the k-enemy) adversary, we say the
k-random (respectively, the k-enemy) adversary is necessary and sufficient for T .

A key difference between this uncertain model and the limited visibility model is the lack of
symmetry in vision: in the limited visibility model: if a robot r1 sees another robot r2, then it is
certain that r2 is also able to see r1. This is not the case in the uncertain visibility model.

Our notion of uncertain visibility also relates to the notion of obstructed visibility [66], where a
robot r1 cannot see a robot r3 if there exists a third robot r2 inside the line of sight between r1
and r3. In a network of n robots, there are at most n · (n− 1)− 2− 2 · (n− 2) = n2− 3 · n+ 2
obstructions (when all robots are collinear). When all robots are more than λ away from each
other, any obstructed configuration can be represented by an identical transparent configuration
and a particular (n2−3 ·n+2)-enemy adversary. So, if an algorithm can perform a task against
the (n2−3 ·n+2)-enemy adversary, it can perform the task under obstructed visibility. It should
be noted that obstructed visibility actually allows more information to be sensed by robots, as the
obstructing robots know they are causing obstructions, while in the case of the (n2−3 ·n+2)-
enemy vision adversary, no robot is aware of which messages are dropped. So the reverse, i.e.
if an algorithm can perform a task under obstructed visibility, it can perform a task against the
(n2−3 ·n+2)-enemy adversary, is not true.

6.2 FSYNC n robots Gathering

In this section, we consider the benchmarking problem of eventually Gathering n robots at
the same location, not known beforehand, starting from any initial configuration. As seen in

68 CHAPTER 6. UNCERTAIN VISIBILITY

chapter 2.1, in general, the problem is impossible to solve deterministically in the SSYNC
OBLOT model [77, 83], but remains solvable in the FSYNC OBLOT model [8, 24, 83]
when robots execute the "center of gravity" algorithm: each robot simply moves to the center
of gravity of every observed robot [24] (if robots are endowed with multiplicity detection), or
to the center of gravity of occupied positions [8] (if robots cannot detect multiplicity points).
In the SSYNC model (and hence the FSYNC model), the center of gravity algorithm is known
to solve the weaker problem of Convergence: in any execution, for any ε > 0, all robots are
eventually within ε of one another.

We study the behavior of this move to center of gravity algorithm in the case of probabilistic
and adversarial visibility.

Theorem 6.1. In FSYNC, if n robots can achieve Convergence against a k-enemy adversary
using the move to center of gravity algorithm, then they also achieve Gathering.

Proof. In each FSYNC round, robots may or may not see other robots. However, we know that
the visibility parameter λ is positive. Now, if robots can achieve Convergence, there exists ε

(0 < ε < λ) such that in any execution, all robots are within ε of one another (by definition of
Convergence). Therefore, after a finite number of steps, the smallest enclosing circle (SEC)
for the entire network has a diameter smaller than λ . At this point, all robots can reliably see one
another and the same result as in previous works [8, 24] applies. So, Gathering is eventually
achieved.

Theorem 6.2. In FSYNC, deterministic Gathering can be achieved for any k-random adversary
such that k ≤ n · (n−1)−1.

Proof. Let us consider the smallest enclosing circle (SEC) of the n robots network.

Definition 6.4 (Smallest Enclosing Circle). Given a set S of positions on the plane, the smallest
enclosing circle (SEC) of S, named SEC (S) is the unique smallest circle enclosing all positions
of S.

Definition 6.5 (Robot Position on the SEC).
Given a set S of positions p on the plane:

1. A point p is inside the SEC if p is in the disc bounded by SEC or the SEC itself.

2. A point p is strictly inside the SEC if p is in the disc bounded by the SEC but not on the
SEC itself.

3. A point p is critical iff SEC (S) 6= SEC (S\{p}).

Note that critical points can obviously not be strictly inside the SEC.
To prove theorem 6.2, we prove that the diameter of the SEC decreases towards zero and even-
tually becomes smaller than λ . In the remaining of this proof, we call r1 and r2 the robots that
receive and send a visibility message, respectively. We note the three following cases:

1. If r1 is strictly inside the SEC, and because r2 is, by definition, inside the SEC, when r1
targets the center of gravity, it targets the midpoint between r1 and r2, which is strictly
inside the SEC. Therefore, the movement of r1 does not change the diameter of the SEC.

2. Now, if r1 is on the SEC itself, and r1 is not critical, then because r2 is inside the SEC, the
target of r1 is strictly inside the SEC. Therefore, the number of robots on the SEC itself
decreases.

3. Last, if r1 is critical. As r1 moves strictly inside the SEC, the new SEC diameter decreases.

6.2. FSYNC N ROBOTS GATHERING 69

If the adversary is (n · (n− 1)− 1)-random, then as long as the SEC has a positive diameter
d > 0, then case 2 has a positive probability of happening, and leads to case 3. So, the following
events occur with positive probability: the number of robots on the SEC decreases towards 2,
and the diameter of the SEC decreases to diameter d′ < d.
For the purpose of contradiction, let us assume that the diameter of the SEC continuously de-
creases towards a diameter z that is greater than λ and never becomes smaller than z. Then for
any ε > 0, if the diameter d of the current SEC is z+ ε , then the diameter of the next SEC,
d′ < d, is still greater than z.
Let us consider the third case, where r1 is critical.

We consider the worst possible case, where a number k of other robots are closer than λ

from r1, and r2 is located infinitely close the the boundary of the SEC, at distance larger than λ .

Then, r1 chooses a target T1 that is located on the [r1 r2] chord, at a distance of at least
λ

k+2
.

Figure 6.2 – Minimum Traveled Distance Towards the Center of the SEC for k = 0.

Then, from the intersecting chords theorem, T1 is chooses a target at a distance of at least

d
2
−

√
d2−4 · λ

2 · (k+1)
(k+2)2

2
closer to the center of the SEC. From the Taylor series, this distance

is strictly greater than X =
1
d
· λ

2 · (k+1)
(k+2)2 . The event that all critical robots sequentially target

a robot further than λ has a positive probability of occurring, so it eventually does. Critical
robots then each move of at least X towards the center of the original SEC. So, for ε < X , this
contradicts the hypothesis, therefore the diameter of the SEC decreases towards zero.
Because of these properties, the diameter of the SEC has a non-zero probability of decreasing
for every FSYNC cycle and cannot increase. So it eventually decreases towards zero with prob-
ability 1, and n-robot Convergence is eventually achieved against the (n · (n−1)−1)-random
adversary. Because of theorem 6.1, Gathering can also be achieved.

Theorem 6.3. In FSYNC, it is impossible to solve Gathering deterministically against a
(n · (n−1))-random adversary.

Proof. Indeed, against the (n · (n− 1))-random adversary, robots can be initially all blind (if
they are located more than λ away from one another). Then, either they never move (pre-
venting Convergence, and so, Gathering), or they move deterministically, but the adversary
can provide them a symmetric coordinate system so they always move away from every other
robot.

Since the (n · (n− 1)− 1)-random adversary is necessary and sufficient to solve deterministic
Gathering, we now consider the more powerful k-enemy adversary.

Theorem 6.4. In FSYNC, Gathering can be achieved against any k-enemy adversary with
k ≤ 2 ·n−3.

70 CHAPTER 6. UNCERTAIN VISIBILITY

Proof. For each round, let us consider two cases :

• The (2 ·n−3)-enemy adversary prevents at most one robot from receiving any message.

• The (2 ·n−3)-enemy adversary prevents two or more robots from receiving any message.

The second case requires dropping 2 · (n−1)> (2 ·n−3) messages per round, so it is impossi-
ble. For the first case, we consider that robots run the move to center of gravity algorithm.
If all robots receive at least one message from a robot at a distance greater than λ , following a
similar reasoning to the proof of theorem 6.2, all critical robots target points strictly inside the
current SEC, and the diameter of the SEC eventually decreases towards zero. For the adversary
to prevent Convergence, it should prevent this case from happening.
Therefore, to prevent Convergence, the adversary should ensure one robot receives no mes-
sages indefinitely. Let us assume this robot, r1, sees no other robots and does not move. If r1
is always strictly inside the SEC, then for each sequence where all critical robots target points
strictly inside the SEC and, following the reasoning from the proof of theorem 6.2, the diameter
of the SEC decreases towards zero. Thus, this is also a case which the adversary should prevent.
If r1 is on the SEC itself, let us look at a robot r2 such that r2 is also on the SEC itself. If r2 sees
any robot inside the SEC, its target is strictly inside the SEC and, following the reasoning from
the proof of theorem 6.2, once all critical robots except r1 have been activated sequentially, the
diameter of the SEC decreases towards zero, albeit with the center of the SEC drifting towards
r1. For r2 not to move strictly inside the SEC, this requires r2 not to see any robot at another
location.

There are now two new cases:

1. r2 is the only robot at its location.

2. there are M (1 < M ≤ n−1) robots at the same location as r2.

In the first case, preventing r2 from seeing another robot requires dropping another n− 1 mes-
sages for a total 2 · (n−1)> (2 ·n−3) messages per round, so this is impossible.
In the second case, the adversary must prevent all present robots from moving. Otherwise, this
second case eventually degrades into the first case, with robots eventually leaving the location
of r2.
This requires dropping a total of M · (n−M) messages. For M = 1 and M = n− 1, the total
of messages to be dropped is n− 1. This number is trivially greater for any M between these
two values. Therefore, it is impossible to prevent all these robots from moving, as it would
require dropping a minimum of n−1 more messages (than the already n−1 messages dropped
from r1), so this is impossible for the (2 ·n−3)-enemy adversary. The same reasoning holds if
there are other robots at the same location as r1. It is impossible to prevent r2 from choosing a
target strictly inside the SEC and the diameter of the SEC strictly decreases following the same
reasoning as the proof of theorem 6.2.

Therefore, Convergence is possible for the (2 · n− 3)-enemy adversary. Because of theo-
rem 6.1, Gathering is also possible.

Theorem 6.5. In FSYNC, it is impossible to solve Gathering deterministically against a (2 ·
n−2)-enemy adversary.

Proof. In the case of the (2 ·n−2)-enemy adversary, it is possible to prevent a robot r1 from both
sending and receiving any visibility messages. Let us consider that the starting configuration is
such that the starting location of r1 is more than λ away from the initial positions and trajectories
of the other robots. First, none of the remaining robots ever sees r1. As a result, their Gathering
location does not depend on the location of r1. Also, since r1 never sees other robots, it either

6.3. FSYNC UNIFORM CIRCLE FORMATION 71

stays still (and thus never gather with the remaining of the robots since it remains invisible), or
deterministically moves (in the latter case, its coordinate system can be set up so that it moves
away from the other robots trajectories). Therefore Gathering is never achieved.

Overall, a (2 · n − 3)-enemy adversary is necessary and sufficient to solve deterministic
Gathering. Note than neither adversaries required multiplicity detection to be defeated.

6.3 FSYNC Uniform Circle Formation

In this section, we demonstrate the difficulty of deterministic Uniform Circle Formation with
uncertain visibility, under the FSYNC scheduler.
Uniform Circle Formation requires a network of n robots to eventually form a regular n-gon
while ensuring no collision happens during the execution.
This necessary condition for Uniform Circle Formation is that a robot should never move to
the same location as another robot. If this event, called a collision, occurs, then the pattern
formation fails, as there is now no way to deterministically separate these robots ; see theorem
5.1.
We first consider that the pattern must eventually always be formed. We call this problem
Strong Uniform Circle Formation.
Let us first observe that for networks of n = 1 and n = 2 robots, Strong Uniform Circle
Formation is always trivially solved whenever robots start from distinct positions. In order
to obtain a terminating algorithm, when a robot sees one or two robots in distinct positions, it
must remain still.

Theorem 6.6. In FSYNC, for a network of n = 3 robots, Strong Uniform Circle Formation
is possible against the 4-random adversary, and impossible against the 5-random adversary.

Proof. For n = 3 robots, the pattern corresponds to an equilateral triangle. If it is not already
formed, there is at least one robot that must move in order to form it. In the case where this
robot does not see one of the other two robots, since robots have no knowledge of n, this robot
believes n = 2 and does not move.
In the case of the 5-random adversary, it is possible that a single visibility message is transmitted
for the entire network at each round, so no robot ever has a complete vision of the network. So
no robot ever moves.
In the case of the 4-random adversary, at least two messages are transmitted each round. This
implies each robot can be in one of the three following situation:

• The robot receives no message.

• The robot receives a single message.

• The robot receives two messages.

In a FSYNC round, the probability that one particular robot r1 receives two messages is strictly
positive. We consider the algorithm by Flocchini et al. [44] for 3 robots. Then, a robot r1
receiving two messages performs its movement as planned by Flocchini et al. properly. Once
every robot has been in the third situation, all robots have moved according to Flocchini et
al. once, and remained still the rest of the time. So, eventually, the pattern is formed with
probability one.

Theorem 6.7. In FSYNC, for a network of n≥ 4 oblivious robots, no self-stabilizing algorithm
can solve Strong Uniform Circle Formation against the 1-random adversary.

72 CHAPTER 6. UNCERTAIN VISIBILITY

Proof. Let us assume the regular n-gon is formed. If robot r is prevented by the adversary from
seeing the entire network, it perceives the current network as the wrong pattern, i.e. a regular
n-gon with a missing robot on one vertex instead of the assumed required regular n− 1-gon.
There is a positive probability that the dropped message forces the robot to move out of the
pattern to attempt forming the n− 1-gon instead. So the pattern cannot be kept infinitely and
strong Uniform Circle Formation is impossible.

Let us now consider Weak Uniform Circle Formation, for which we only require the pattern
to be formed eventually at least once.

Theorem 6.8. In FSYNC, a network of n robots using state-of-the-art algorithms by Mamino
and Viglietta [67] for n = 4 and by Flocchini et al. [44] for n 6= 4 does not solve Weak Uniform
Circle Formation against the 1-random adversary for n≥ 4.

Proof. For n= 4 we show a configuration that has a non-zero probability of triggering a collision
in figure 6.3. In this configuration, robots form a convex shape, and each robot rk should move
to the target Tk to form a square. However, this configuration is also such that T4r3r4 form an
equilateral triangle, and |r3r1| = |r4r1|. If the dropped message is such that r1 does not see r2,
then r1 mistakenly tries to create an equilateral triangle following the algorithm from Flocchini

et al. [44], by moving to T4. r4 and r1 then collide. This has a
1
12

chance of happening and
cannot be recovered from.

Figure 6.3 – Collision Inducing Configuration for n = 4.

For n = 5 we show a configuration that has a non-zero probability of triggering a collision
in figure 6.4. In this configuration, using the algorithm from Flocchini et al. [44], robots try to
move to the smallest enclosing circle, defined by its diameter [r1,r5]. However, this configura-
tion is also such that, if r1 is removed from the network, other robots form a convex, and T4,
the target of r4 on the supporting square is located on the intersection of the SEC and the radius
passing through r2. So, by dropping the message from r1 to r4, r4 executes the algorithm from
Mamino and Viglietta [67] and moves to T4 while r2 executes the algorithm from Flocchini et

al. [44], and also moves to T4, hence a collision. This has a
1
20

chance of happening and cannot
be recovered from.

For n ≥ 6 robots, a necessary step is to have all robots reach the smallest enclosing circle
(SEC) without collision. According to the algorithm by Flocchini et al. [44], if multiple robots
are located on the same half line starting from the center of the SEC, the furthest robot from the
center moves to the SEC while the others perform steps to move to other locations of the SEC.

6.4. FSYNC LEADER ELECTION 73

Figure 6.4 – Collision Inducing Configuration for n = 5.

In the case of a 1-random adversary, if the second furthest robot from the center does not see the
furthest robot, they both move to the same point of the SEC, and a collision occurs.

Overall, the 1-random adversary defeats state-of-the-art solutions [44, 67] for n ≥ 4, even in
FSYNC. However, it may be possible to design algorithms where all robots verify against col-
lisions considering all possible missing visibility messages in the network (assuming their own
view is complete). Since only one robot has an incomplete view of the system, it is the sole
possible cause of collision, and other robots with complete views could predict the possibility
of the collision and avoid it.

We conjecture that this is indeed the case.

Conjecture 6.1. In FSYNC, for a network of n≥ 4 robots, it is possible to solve Weak Uniform
Circle Formation against a 1-random adversary.

Additionally, without making any assumption on the algorithms used, it seems that a funda-
mental limit of collision prevention would be the 2-random adversary. Against this adversary,
there is a non-zero probability of two robots picking identical targets without being aware of the
existence of the other robot. While it remains to be formally proven, in this case, it seems no
strategy could prevent the collision.

Conjecture 6.2. In FSYNC, for a network of n ≥ 4 robots, it is impossible to solve Weak
Uniform Circle Formation against a 2-random adversary.

We also conjecture that the 1-enemy adversary precludes any solution for Weak Uniform
Circle Formation.

Conjecture 6.3. In FSYNC, for a network of n ≥ 3 robots, no algorithm can solve Weak
Uniform Circle Formation against the 1-enemy adversary.

6.4 FSYNC Leader Election

Let us assume a network of n robots attempting to use their respective positions to single out
one robot and elect it as a LEADER. Within the mobile robot literature, there are several pro-
posed definitions of Leader Election specification. In the more general Distributed Computing

74 CHAPTER 6. UNCERTAIN VISIBILITY

context, several specifications for Leader Election have also been used. Gupta et al. [52] pro-
posed the notion of agreement that can be translated in the context of a robot network as "In any
execution, eventually all non-faulty robots permanently know which robot is the LEADER". We
use this condition to define Strict Leader Election and prove that it is trivially impossible to
satisfy this specification against a 1-random adversary.

Definition 6.6 (Strict Leader Election).
A Leader Election process is strict if at any given time in the execution after Leader Election,
every robot in the network knows which robot is the LEADER.

Theorem 6.9. In FSYNC, strict Leader Election is impossible against the 1-random adversary.

Proof. Among the n ·(n−1) visibility messages that are sent in each round, n−1 are sent by the

LEADER. Therefore, for each round, there is a
1
n

probability that a 1-random adversary drops a
visibility message sent by the LEADER. Then, another robot is, at least temporarily, not aware
of its existence.

A less restrictive specification for Leader Election is defined by Attiya and Welch [5]. States
are partitioned into ELECTED states and NON-ELECTED states. Leader Election is com-
plete once one robot always remains in an ELECTED state, while all other robots remain in a
NON-ELECTED state. We define Soft Leader Election following this principle:

Definition 6.7 (Soft Leader Election).
Soft Leader Election is achieved if, eventually, there is always exactly one robot in the LEADER
state.

Definition 6.8 (Self-Stabilizing, Non-Blocking Leader Election).
Leader Election is self-stabilizing and non-blocking [57] if for any configuration containing
no LEADER robot, there exists at least one robot r1 such that, after enough activations of only
r1, r1 becomes LEADER.

Theorem 6.10. In FSYNC, no self-stabilizing, non-blocking algorithm can solve Soft Leader
Election against the 1-random adversary.

Proof. Let us assume a configuration such that a robot r1 is the only robot in the LEADER state.
Because the algorithm is both self-stabilizing and non-blocking, there exists another robot r2
such that removing r1 from the network and activating r2 enough times makes r2 eventually
leave the NON-ELECTED state and reach the LEADER state.
Let us then consider the case where the visibility message from r1 to r2 is blocked by the 1-

random adversary. This has a
1

n · (n−1)
probability of happening in each round.

Then, robot r1 is the rightful LEADER of the network, and is fully aware of it. On the other
hand, robot r2 now mistakenly believes, that there is no LEADER in the network. Therefore, it
starts the Leader Election process and, eventually reaches the LEADER state. At this point,
two LEADER robots appear in this network. By repeating this sequence infinitely often, Soft
Leader Election cannot be achieved.
Note that this true regardless of whether or not the algorithm is deterministic.

Note that, according to this definition, both the algorithm from Canepa and Gradinariu Potop-
Butucaru [19] and our improved algorithm for four or more robots are both self-stabilizing and
non-blocking. And, these algorithms indeed fail against the 1-random adversary when assuming
the following configuration: r1 is the single robot closest to the center of the smallest enclosing
circle, and r2 is the single robot second closest to the center of the smallest enclosing circle. If
the visibility message from r1 to r2 is blocked, then the snapshot of r2 mistakenly results in it
being LEADER.

6.5. FSYNC LUMINOUS RENDEZVOUS 75

Theorem 6.11. In SSYNC (hence, in FSYNC), it is possible to solve strict (hence, soft) Leader
Election non-deterministically against a 0-random adversary.

Proof. A 0-random adversary is tantamount to a full visibility adversary. Then the algorithms
by Canepa and Gradinariu Potop-Butucaru [19] solve Strict Leader Election in SSYNC.

For the more general case, without making any assumptions on the algorithm we give an upper
bound for the vision adversary:

Theorem 6.12. In FSYNC, for a network of n robots, no self-stabilizing algorithm can solve
Soft Leader Election against the (n−1)-random adversary.

Proof. The (n− 1)-random adversary allows for an arbitrary long sequence of configurations
to exist, with non-zero probability, in which no other robot in the network sees the LEADER.
Because the algorithm is self-stabilizing, robots must attempt an election and, given enough
activations, a second robot eventually reaches the LEADER state.

Conjecture 6.4. In FSYNC, for a network of n robots, it is possible to solve self-stabilizing Soft
Leader Election using LUMINOUS robots against the (n−2)-enemy adversary.

6.5 FSYNC LUMINOUS Rendezvous

As explained in chapter I, a recent, fundamental development in mobile robots has been the
addition of lights [31]. LUMINOUS robots are able to broadcast a light that can emit a sin-
gle color among a fixed set. This color is then perceived in the snapshot of other robots which
can perform computations according to their own color and the color of other robots. Because
most LUMINOUS algorithms rely on this new capability to create what is functionally a dis-
tributed state machine, this is an obvious candidate for uncertain visibility.
While a comprehensive study of the effect of uncertain visibility on LUMINOUS algorithms
is desirable, we focused on the specific problem of Rendezvous.
Under the LUMINOUS model, uncertain visibility allows the adversary to drop visibility
message and block one robot from seeing another robot. This should also hide the color broad-
cast by this second robot.
Rendezvous is a special case of Gathering with exactly two robots. We recall that at least
three solutions are known to work in the full visibility model under the ASYNC scheduler:

• Das4: The 4-color algorithm from Das et al. [31] described in figure 6.5.

• Viglietta3: The 3-color algorithm from Viglietta [84] described in figure 6.6.

• Heriban2: The 2-color algorithm from Heriban et al. [53] described in figure 6.7.

Figure 6.5 – Das4: 4-color Algorithm from Das et al. [31]

Each figure describes the algorithm through the state machine that is followed by each robot.
The content of each circle matches the current color of the computing robot and the guard of
each arrow matches the color of the other robot. In figure 6.6, movements are written as 0 for
stay, 1 for move to other and 1/2 for move to midpoint.

76 CHAPTER 6. UNCERTAIN VISIBILITY

Figure 6.6 – Viglietta3: 3-color Algorithm from Viglietta [84]

other is BLACK

other is WHITE ∧ ¬Gathered:
⇒ move to midpoint

other is BLACK:
⇒ move to other

Gathered
⇒ do nothing

other is WHITE

Figure 6.7 – Heriban2: 2-color algorithm from Heriban et al. [53]

Theorem 6.13. In FSYNC, no deterministic Rendezvous algorithm can tolerate a 2-random
adversary (hence, a 2-enemy adversary).

Proof. With two robots, a 2-random adversary is tantamount to the n · (n− 1)-random adver-
saries, so the starting configuration could be that all robots are blind, and remain blind there-
after. If they do not move, Rendezvous is never achieved. If they move, they do so blindly so
the adversary can set them away.

Theorem 6.14. In FSYNC, the 1-random adversary is the strongest possible against which
aforementioned Rendezvous algorithms perform correctly.

Proof. The 1-random adversary implies that, in each round, each robot has a 1/2 probability of
not seeing the other robot, i.e., being blind. If a robot is blind, it is convinced that Gathering
is achieved, and does not move, regardless of its color. Because the robot does not see a second
robot, and all color transitions are decided according to the color (or position) of the second
robot in every aforementioned algorithm, the robot cannot change its color. This is tantamount
to the robot not being activated.
Note that there is an exception if the robot has color RED in the Das4 algorithm [31]. We also
assume that if a robot is RED and sees no other robot, is does not change its color1.
Therefore, when a robot is blind, it behaves as if it had not been activated. This implies that the
1-random adversary can be seen as a particular case of the SSYNC model where a single robot is
left out from the set of executed robots (each such SSYNC execution is still fair with probability
1). As aforementioned algorithms are correct in ASYNC, they are also correct in SSYNC,
hence in FSYNC against a 1-random adversary. Because no algorithm can solve deterministic

1Assuming the robot actually changes its color to BLUE does not impact the behavior of the algorithm, as it only
adds a blind behavior for the robot.

6.5. FSYNC LUMINOUS RENDEZVOUS 77

Rendezvous against a 2-random adversary (theorem 6.13), 1-random is the strongest possible
adversary against which the algorithms can succeed.

Theorem 6.15. In FSYNC, LUMINOUS Rendezvous using the aforementioned algorithms
is impossible using the 1-enemy adversary.

We actually prove a stronger theorem on this issue :

Theorem 6.16. Any self-stabilizing algorithm that solves LUMINOUS Rendezvous in the
SSYNC full visibility model fails against the FSYNC 1-enemy adversary.

Proof. We reuse proposition 4.3 from Viglietta [84]:
“For any algorithm solving Rendezvous in rigid SSYNC, there exists two colors X and Y

and a distance d > 0 such that any robot set to X that sees the other robot at distance d and set
to Y does not move.”
Note that this is true for all three aforementioned algorithms.
Now, in FSYNC, if the 1-enemy adversary drops the message from the robot having color X
(say, robot r1) to the robot having color Y (say, robot r2), then r2 never moves or changes its
color, because it does not see a second robot. Because of this, robot r1 never moves either, and
Rendezvous is impossible.

The statement of theorem 6.16 may seem contradictory with results obtained in the previous
sections. Using the Gathering proof for n robots, we obtain that FSYNC Gathering is pos-
sible for two robots in 1-enemy with the classical (i.e., not LUMINOUS) OBLOT model.
However, no LUMINOUS Rendezvous algorithm seems to exist in FSYNC against the
same 1-enemy adversary. The difference is that in the second case, the algorithm must also be
correct in SSYNC with full visibility, which is not required for oblivious FSYNC Gathering.
This observation shows that LUMINOUS algorithms are not sufficient to obtain universal
solutions (a Gathering solution is universal if it works both in the SSYNC full visibility model,
and in the FSYNC 1-enemy model). As a result, uncertain visibility is orthogonal to asynchrony.

Overall, with respect to visibility adversaries, it seems Leader Election and Uniform Circle
Formation are the most challenging tasks, as a 0-random adversary may be necessary and
sufficient to solve the task in the more general settings, while Rendezvous and Gathering
are more tolerant to uncertain visibility. This makes this model ideal for our goal of realistic
robots, as it allows imperfection in sensors while still allowing multiple benchmark problems to
be solved.

Chapter 7

Obstructed Visibility

7.1 Model and Problem Definition

In this chapter, let us consider the punctual opaque robot model [3]. Robots are dimensionless,
and if three robots r1, r2 and r3 are collinear so that r2 is on the [r1,r3] segment, then r1 can
see r2 robot but cannot see r3. Similarly, r3 can see r2 but cannot see r1 and r2 can see both
r1 and r3. In other words, we consider unlimited vision range that can only be interrupted by
another robot. Such an arrangement of three robots is called an obstruction and a configuration
including obstructions is obstructed.

The most common way to manage obstructed robot networks is to convert the obstructed
network into an unobstructed network so that further tasks can be performed under an unob-
structed hypothesis.

To achieve this, robots must solved the Mutual Visibility problem, introduced by Di Luna
et al. [66]: for a set of autonomous robots occupying distinct positions in the two dimensional
plane, robots must coordinate their movement to form a configuration, in which no three robots
are collinear. Other properties, such as avoiding collisions, or finishing within finite time can be
required.

A solution for Mutual Visibility in the oblivious SSYNC model was published by Di Luna
et al. [66]. Solutions have then been introduced in the ASYNC model by Bhagat et al. [13], but
require one common axis and the knowledge of the total number of robots in the network.

After the introduction of the light model for mobile robots [30, 31, 76], solutions using
lights have been proposed. Di Luna et al. [65] presented a solution using three colors in SSYNC
with no additional assumption, and three colors in ASYNC assuming one common axis. This
was later improved by Sharma et al. [81] to two colors, with similar assumptions.

However, in general, solving Mutual Visibility requires the robots to move.
In difficult environments where obstructed visibility is only a secondary hindrance for solv-

ing the main problem, this means that time and resources are expanded for a task that might not
be mission critical. In those difficult environments, careful and predetermined motion planning
might also be critical, and changing it might not be a viable option.

Furthermore, this is not resilient to the fact that some robots might not be able to move
freely, either because of damaged motors or difficult terrain.

Because of this, in this section, we discuss a new problem, called the Obstruction Detection
problem, which does not require robots to move and is defined as follows:

Definition 7.1 (Obstruction).
For two robots r1 and r2 so that there are no other robots on the [r1,r2] segment, if there is one
or more robots other than r1 and r2 on the [r1,r2) ray, we say that r2 is OBSTRUCTING r1 or
that r2 is OBS for r1. If there are no robots other than r1 and r2 on the [r1,r2) ray, then robot
r2 is NOT OBSTRUCTING robot r1, or r2 is NOBS for r1.

78

7.2. SIMPLIFYING THE PROBLEM: LINE THEOREM 79

Definition 7.2 (Visibility).
The visibility of a robot r is the set of robots that only contains robots visible by r.

Definition 7.3 (Obstruction Detection).
Let us consider a set of robots occupying distinct positions in the two dimensional plane. The
Obstruction Detection problem is solved if, for each robot ri in this set, ri eventually deter-
mines, without moving, for every robot r j in its visibility, whether r j is OBS for ri or NOBS for
ri.

In other words, the problem is solved if, eventually, for every robot r in the network, every robot
in the visibility of r is classified as either OBS or NOBS with absolute certainty.
Robots considered in this section are endowed with lights as defined in chapter I

This problem sounds fairly trivial at first since it requires robots to only transmit a single bit
of information. However, this single bit may need to only be transmitted to a single robot in the
visibility. So the problem is, in a sense, similar to directional transmission.

7.2 Simplifying the Problem: Line Theorem

Let us first simplify the problem by considering two cases: whether or not robots form a single
line.

Theorem 7.1. Unless all robots in the network are collinear, for any line L formed by robots
positions in the network, there exists at least one robot r such that all robots on L are in the
visibility of r.

Proof. If not all robots are collinear, then for any line L formed by robot positions, there is at
least one robot outside L. Among those robots, the robot which is the closest to L without being
part of it can see the entire line. Let us call this robot r.
By contradiction, let us assume that this is not true. This means that there is a robot rL on L
that r cannot see. Since the only way that a robot can be hidden from another robot is to have a
third robot between the two, this implies that there is a robot between r and rL. Therefore, r is
not the closest robot to L. This is a contradiction.

On the other hand, if all robots are collinear, then there is a unique line L where all robots are
located. Therefore, there are no robots outside L and, if the size of the network is greater than
3, no robot can see both robots at each end of the line.

Definition 7.4 (Proximity).
Let s be an ordered sequence of robots starting at r1 and ending at r2 such that every robot in s
can see both the previous and following robot in the sequence. The proximity of two robots r1
and r2 is defined as the number of robots (excluding r1 and r2) in the smallest such sequence,
starting from r1 and ending with r2.

As an example, if r1 can see r2, the proximity of r1 and r2 is zero. If a robot r3 is obstructing r1
and r2, such that r1 can see r3 and r3 can see r2, but r1 cannot see r2, then the proximity of r1
and r2 is one, and so on.
Using theorem 7.1, we can see that either:

• The network is a single line. Therefore the proximity between two robots can be anywhere
between 0 and the size of the network minus two.

• The network is not a line. Then, since any two robots can be seen at the same time by a
third robot, this means that no proximity greater than one can exist.

80 CHAPTER 7. OBSTRUCTED VISIBILITY

7.3 Obstruction Detection for the Line Configuration

We managed to divide the configurations into two distinct subsets of configurations, that can be
handled by our algorithm in different manners.

Theorem 7.2. Every robot in the network can determine using a single snapshot whether the
network is a single line.

Proof. Any robot can determine if the network is a line during its compute phase if one of the
three following conditions are met :

1. The snapshot contains exactly one robot, including the computing robot itself.

2. The snapshot contains exactly two robot, including the computing robot itself.

3. The snapshot contains exactly three robots, including the computing robot itself, and all
three robots are collinear.

If the snapshot contains more than three distinct robots, then the network cannot be a single
line, as four or more robots in a line would require at least one obstruction and no robot would
be able to see all four. If the snapshot contains only three robots that are not collinear, then, by
definition, this cannot be a single line.

In the first case, the problem is trivially solved: there can be no obstructions. We also notice that
in the second case, the computing robot is NOBS for the visible robot. Finally, the computing
robot is OBS for the two visible robots in the third case. Therefore, we use the following
subroutine when the observed network is a line, called the line solving subroutine:

Theorem 7.3. Let us define the following two-color subroutine:

• In the case of two visible robots (including myself), I am NOBS and I change my color
to WHITE.

• In the case of three visible robots (including myself), and the three robots are collinear, I
am OBS for those two robots, and I change my color to BLACK.

• If a robot broadcasts WHITE, I classify it as NOBS.

• If a robot broadcasts BLACK, I classify it as OBS.

This subroutine solves Obstruction Detection for any line configuration.

Proof. Since the network is a line, a robot can either be NOBS for everyone, or OBS for
every visible robot. No robot can be both NOBS and OBS for different robots at the same
time. So broadcasting the NOBS/OBS status is sufficient for every robot to eventually solve
the Obstruction Detection Problem.

7.4 Non-Line Obstruction Detection: a Simple Approach

Let us now construct a simple deterministic approach for the Obstruction Detection problem
in ASYNC, based on the following principles:

• The visibility of a robot r1, for k visible robots is defined as two vectors ~p and ~c that
contain respectively the positions and colors for each robot from 1 to k, 1 being the robot
itself.

7.4. NON-LINE OBSTRUCTION DETECTION: A SIMPLE APPROACH 81

• The color of r1 should only be a function of the position vector (p1, p2, ..., pk).

• To solve the problem of Obstruction Detection, the robot should use the two vectors as
inputs.

By restricting the robot’s color to be solely a function of visible positions, we ensure that the
color of a robot does not change after having executed a full cycle. This allows the algorithm to
be both self-stabilizing and silent for any fair scheduler. The most obvious candidate algorithm
following these principles is the subroutine used to solve the line case.

Theorem 7.4. The subroutine used for the single-line network does not solve the Obstruction
Detection Problem in the case of a non-line network.

Figure 7.1 – Example: Insufficient First Fit

Proof. In the example presented in figure 7.1, in the left example, r2 prevents r1 from seeing r3,
and r3 from seeing r1. Therefore, r2 is OBS for r1 and r3. However, r2 is NOBS for r4, as it
does not prevent it from seeing any robot. Since they cause no obstructions at all, r1, r3 and r4
are obviously NOBS for everyone.
So the fact that r2 is broadcasting OBS allows r1 and r3 to know for sure that r2 is OBS for
them. This is because they do not see r2 as part of any obstruction, so the fact that r2 is OBS
for someone implies that r2 is necessarily OBS for them.
On the other hand, this information is insufficient for r4. Indeed, r4 sees r2 as part of an ob-
struction, so r4 does not know whether this is the only obstruction r2 is a part of, or if r2 is also
hiding another robot from r4. This is demonstrated in the right example where the visibility of
r4 has not changed, but, because of r5, r2 is now OBS for r4.

Since broadcasting the obstruction status is insufficient, a sensible approach would be to add
more bits of information in order to solve the problem. One possible way is for each visible
robot to broadcast some information about the number of obstructions it is part of, and then for
each robot to check the consistency of this information with its position vector.

To achieve this, one possible approach would be to broadcast the parity of the number of
obstructions a robot is causing.

If robot r1 sees robot r2 broadcasting that it is OBS and part of an odd number of obstruc-
tions, it can then check whether it can see robot r2 being part of an odd number of obstructions.
If the information is consistent, then r1 determines r2 is actually NOBS for r1. If r1 notices a
discrepancy, however, then r1 determines r2 is part of an obstruction it cannot see. Therefore r2

82 CHAPTER 7. OBSTRUCTED VISIBILITY

is OBS for r1.

Figure 7.2 shows the same configuration where this approach solves the problem.

Figure 7.2 – Example: Sufficient Second Bit ?

Note that it would be possible to consider zero obstructions to be an even number of obstructions
and remove the first bit entirely.

This second bit is, unfortunately, also insufficient.

We now prove why the current logic behind the algorithm cannot work.

Theorem 7.5 (Properly using the snapshot). Using only the position vector, and the color of a
robot r is insufficient to determine whether r is OBS.

Proof. We now prove that the algorithms we previously used (that uniquely deduce the obstruc-
tion status of an observed robot from its color) are fundamentally flawed: Let us assume an
infinite number of available colors in a way that any two different snapshots imply two differ-
ent colors. Note that as a consequence of the second design principle, if two snapshots appear
identical when looking only at positions, then they must imply the same color.

Figure 7.3 – Counter-Example to Prove Theorem 7.5

In the first configuration of figure 7.3, robots r1 and r5 must have identical colors since their
position vectors are identical. On the other hand, every other robot has a unique position vector,

7.5. NON-LINE OBSTRUCTION DETECTION: USING A TOKEN 83

so they may all broadcast a different color.
The second configuration is created by changing the position of robot r7. Note that, in that case,
the position vectors of r1 and r5 have not changed, since they cannot see r7. Also, because
robots do not use chirality, the position vectors of r3, r4 and r7 cannot be distinguished, and the
position vectors of r2 and r6 have been swapped. This implies that the only difference, in terms
of color, is r2 and r6 swapping their colors.
However, in the first configuration, r4 is OBS for r5 and NOBS for r1, and OBS for r1 and
NOBS for r5 in the second configuration.
Because neither the position snapshots of r1 and r5 nor the color of r4 have changed between
the two configurations, it is not possible to solve the Obstruction Detection problem if the
algorithm only uses a robot’s color to determine its obstruction status.

Because of this, the algorithm should explicitly use the entire color vector. It should be noted
that, given an infinite (similar to R2n) number of colors, robots could broadcast their entire po-
sition vector, which would trivially solve the Obstruction Detection problem.

We have currently been unable to find and prove an algorithm following the design principles
that reliably solves Obstruction Detection using a finite number of colors.

7.5 Non-Line Obstruction Detection: Using a Token

One can notice that if one robot is differentiated from the others, for instance, if it carries a
token, then the problem can be trivially solved for this particular robot. Each robot that can see
the token holder would only need to broadcast one bit of information: "Am I OBS for the token
holder ?" Solving the problem for all robots would then only require that, eventually, every
robot has held the token at least once.

We previously defined robots as having only a finite number of colors. However, to solve
the problem in such a way, this require robots to either use an internal memory of n bits, with
n the size of the network, so that a robot can store the obstruction information after passing the
token.

Once a network contains a single token holder, if we chose to not transmit the token and
have the robot keep it, we could effectively consider that this robot is now the LEADER of the
network. As such, such a token creation algorithm can also be used to elect a LEADER.

7.5.1 Difficulty of Creating a Token with Obstructed Visibility

For a network with no obstructions, it is easy to detect whether a token exists in the entire
network, and thus decide to create one. This task becomes more complex in the case of a
network with obstructed visibility, as some robots may not know whether a token already exists.

The more intuitive approach is to require token creation to be managed in such a way that
each robot sees exactly one token at any given point in time. This is, however, not possible for
arbitrary configurations. An easy counter-example is shown in figure 7.4. For this particular
configuration, it is not possible to assign tokens in a way that each robot sees exactly one token.
Another approach is to have exactly one token for the entire network.
We use theorem 7.1 again, as we know that every two robots in the network are within a prox-
imity of one or zero. This implies that if a token exists, every robot in the network either sees
the token, or sees a robot that sees the token. Remember that this is only true in a network
configuration that does not consist of a single line.

For this observation, we can define a three layers network architecture: The token holder is
the first layer, the robots that see the token holder, and transmit their obstruction status to the
token holder as the second layer, and a third layer of robots that only see second and third layer
robots.

84 CHAPTER 7. OBSTRUCTED VISIBILITY

Figure 7.4 – Counter Example
No configuration where each robot sees exactly one token can exist.

To build a procedure despite incomplete visibility, we observe that there are two cases of
conflict to take into account: two tokens should not see one another, and second layer robots
should only see one token holder.

7.5.2 Algorithm Architecture

We first define the global architecture the network needs to self-stabilize to. We first define three
layers: THOLDER (Token holder), PRIMARY and DEFAULT. These layers obey the following
principles:

• If a robot is in the THOLDER layer, its visibility should only include robots in the
PRIMARY layer. If it sees another THOLDER, it resets to the DEFAULT layer.

• Once a THOLDER robot has received its obstruction information, it transmits its token to
a randomly chosen PRIMARY robot and goes to the PRIMARY layer.

• If a robot is in the PRIMARY layer, its visibility should include exactly one THOLDER
robot, otherwise it goes to the DEFAULT layer.

• If a robot is in the DEFAULT layer and sees no PRIMARY, then it should attempt to create
a token.

However, because of conflicts, some robots might lose the token they are trying to create and
become PRIMARY. Because of that, we also define layers SECONDARY and CANDIDATE
that are transitions layers between DEFAULT and PRIMARY/THOLDER, respectively. This is
summed up in figure 7.5.
It should be noted that deterministically creating a single token is tantamount to electing a
LEADER. Because of possible symmetries in the network, no deterministic algorithm can solve
this problem [37, 47]. Therefore, robots are endowed with the ability to perform Bernoulli
trials: a robot can choose between two different actions, such as target locations, or colors, with
a winning option being given a certain probability, and the losing action the complementary
probability. This ability is also necessary to chose which robot the token should be transmitted
to.

7.5.3 A Possible Solution

To solve Obstruction Detection in ASYNC, we require two separate algorithms. First an Ob-
structed Token Creation algorithm, which ensure that eventually, a single THOLDER exists and

7.5. NON-LINE OBSTRUCTION DETECTION: USING A TOKEN 85

Figure 7.5 – Architecture of the Algorithm
Red indicates cases that should only happen for self-stabilization.

the network follows the aforementioned structure. Second, an Obstructed Token Transmission
algorithm which ensures PRIMARY robots transmit their obstruction status to the THOLDER,
and that the token is transmitted from the THOLDER to a randomly chosen PRIMARY.

So, when performing Obstruction Detection, robots do the following:

• Check whether or not the network is a line.

• If it is a line, perform the 2 color Line Solving algorithm.

• If it is not a line, performs the Obstructed Token Creation once and Obstructed Token
Transmission algorithm indefinitely.

This ensures that the Obstruction Detection problem is eventually solved for the whole net-
work.

7.5.4 Gathering Information and Transmitting the Token

Let us first consider the configuration in which the token has been successfully created and all
the network follows the proper structure. This implies a single THOLDER robot, its visibility
only including PRIMARY robots, and all other robots in the DEFAULT state.

The THOLDER robot is in the TOK color, while PRIMARY robots are in the RTT (Ready
To Transmit) color. The next step is to send the payload. Once this is done, we just need to send
the token to a PRIMARY robot and start again. We use a Bernoulli trial for robots to decide
whether or not they want to receive the token, and send it once only one robot is willing to
receive it. Our transmission algorithm is described in figure 7.7.

86 CHAPTER 7. OBSTRUCTED VISIBILITY

To keep figure 7.7 readable, some abbreviations similar to the ones used in section 5.4 are
defined:

• "X and Y " is true if both X and Y are true.

• "X or Y " is true if either X or Y is true.

• " 6 ∃X" is true if no robot of color X exist in the snapshot.

• " 6 ∃(X ,Y)" is true if no robot of color X or Y exist in the snapshot.

• "∃X" is true if at least one robot of color X exists in the snapshot.

• "∃(X ,Y)" is true if at least one robot of color X or Y exists in the snapshot.

• "∀X" is true if the snapshot only contains robots of color X .

• "∀(X ,Y)" is true if the snapshot contains no robots of color other than X and Y .

Figure 7.6 – Symbol for the Bernoulli Trial

Figure 7.7 – Obstructed Token Transmission Algorithm

7.5. NON-LINE OBSTRUCTION DETECTION: USING A TOKEN 87

Algorithm 7.1 Obstructed Token Transmission Algorithm: THOLDER

if me.color = TOK
if ∀ other.color = RTT

me.color⇐ TTR
else if me.color = TTR

if ∀ other.color = {NOBS,OBS}
me.color⇐ RTS

else if me.color = RTS
if @ other.color = {FINISHED,NOBS,OBS}

if ∃! other.color = RTR
me.color⇐ RTT

else
me.color⇐ RESET

else if me.color = RESET
if ∀ other.color = FINISHED

me.color⇐ RTS

Algorithm 7.2 Obstructed Token Transmission Algorithm: PRIMARY

if me.color = RTT
if ∃ other.color = TTR

if I see a robot other than the THOLDER on the (me THOLDER) line
me.color⇐ OBS

else
me.color⇐ NOBS

else if me.color = NOBS or me.color = OBS
if ∃ other.color = RTS

me.color⇐ FINISHED
else if me.color = FINISHED

if ∃ other.color = RTS and @ other.color = RTR
Perform a Bernoulli trial with a probability of winning of p =

1
FINISHED+1

if Trial won
me.color⇐ RTR

else
me.color⇐ LOST

else if ∃ other.color = RTR
me.color⇐ LOST

else if me.color = LOST
if ∃ other.color = RESET

me.color⇐ FINISHED
else if @ other.color = {RESET,RTS}

me.color⇐ RTT
else if me.color = RTR

if ∃ other.color = RESET
me.color⇐ FINISHED

else if @ other.color = {RESET,RTS}
me.color⇐ TOK

The algorithm functions as follows:

1. One robot is in the TOK color and all visible robots in the RTT color.

88 CHAPTER 7. OBSTRUCTED VISIBILITY

2. The TOK robot switches to TTR (Token TRansmit).

3. All robots now broadcast their payload of one bit (NOBS or OBS).

4. Once every PRIMARY has broadcast its payload, the token holder switches to RTS
(Ready To Send).

5. PRIMARY robots move to FINISHED and then perform a Bernoulli trial.

(a) They can become RTR (Ready To Receive).

(b) Otherwise, They become LOST.

(c) If a FINISHED robot is activated after a RTR has appeared, it directly becomes
LOST.

6. If there is more than one RTR, or no RTR at all, the RTS robot, which can see all
PRIMARY robots, by definition, switches to RESET until every PRIMARY robot is back
in FINISHED and cannot change color.

7. The RESET robot switches back to RTS.

8. If only one RTR has appeared, then RTS switches to RTT and the LOST switch to RTT
and RTB to TOK.

9. This leads to DEFAULT robot seeing a THOLDER. They must then switch to RTT.

10. This also leads to PRIMARY robots seeing no THOLDER, they must then go to DEFAULT

11. Once a TOK exists and can only see RTT, the transmission process can start again.

Note that the winning probability is 1/(FINISHED+1), and not 1/FINISHED. Indeed, if two
PRIMARY robots were being obstructed by either the THOLDER and another PRIMARY, and
all other robots would have failed the trial, then both robots would have a winning probability
of 1 and could not be sorted. Choosing FINISHED+1 ensures that the winning probability is
always smaller than 1.

As a sidenote, in the algorithm described in figure 7.7, the size of the payload is only one
bit, which is sufficient for our problem. However, it can be easily extended by adding more
two-choices steps to a given algorithm. For example, sending a 10 bits message would require
adding 18 colors to the PRIMARY part and 9 to the THOLDER part.

Conjecture 7.1. The Obstructed Token Transmission algorithm described in figure 7.7 functions
under the ASYNC scheduler and allows for the THOLDER to know the obstruction status of all
visible robots. Eventually, a PRIMARY robot is chosen to be the next THOLDER. The adversary
scheduler cannot reliably decide which PRIMARY robot is chosen to be the next THOLDER

Proof. For reasons explained in section 7.5.5, we only prove the OTT algorithm for the FSYNC
scheduler.
Let us first assume this algorithm is started following a successful Token Creation. So the
network follows the structure described in figure 7.5: there is a single THOLDER robot, in the
TOK color, which can only see PRIMARY robots in the RTT color. All other robots are stuck in
the DEFAULT state.

1. After the first cycle, the THOLDER robot is TOK and changes color to TTR, as it saw
RTT robots. PRIMARY robots are RTT and cannot change color as they do not see a
TTR robot.

7.5. NON-LINE OBSTRUCTION DETECTION: USING A TOKEN 89

2. After the second cycle, the THOLDER robot is TTR and cannot change color, as it sees
RTT robots. PRIMARY robots are RTT and change to either OBS or NOBS depending
on their obstruction status.

3. After the third cycle, the THOLDER robot is TTR and changes color to RTS, as it sees
only OBS and NOBS robots. PRIMARY robots are OBS or NOBS and cannot change
color as they see no RTS robot. At this point, the THOLDER has found all its obstructions.

4. After the fourth cycle, the THOLDER robot is RTS and cannot change color, as it sees
OBS and NOBS robots. PRIMARY robots are OBS or NOBS and change to FINISHED
as they see a RTS robot.

5. After the fifth cycle, the THOLDER robot is RTS and cannot change color, as it sees
FINISHED robots. PRIMARY robots are FINISHED and change to either LOST or
RTR depending on the Bernoulli trial.

6. After the sixth cycle, if there were no RTR robots:

• The THOLDER robot is RTS and changes color to RESET. PRIMARY robots are
LOST and cannot change color.

• After the seventh cycle, the THOLDER is RESET and cannot change color.
PRIMARY robots are LOST and change color to FINISHED.

• After the eighth cycle, the THOLDER is RESET and changes color to RTS.
PRIMARY robots are FINISHED and cannot change color.

• Robots are now back to the configuration at the end of the fourth cycle.

7. After the sixth cycle, if there were multiple RTR robots:

• The THOLDER robot is RTS and changes color to RESET. PRIMARY robots are
LOST or RTR and cannot change color.

• After the seventh cycle, the THOLDER is RESET and cannot change color.
PRIMARY robots are LOST or RTR and change color to FINISHED.

• After the eighth cycle, the THOLDER is RESET and changes color to RTS.
PRIMARY robots are FINISHED and cannot change color.

• Robots are now back to the configuration at the end of the fourth cycle.

8. After the sixth cycle, if there was a single RTR robot:

• The THOLDER robot is RTS and changes color to RTT. It is now a PRIMARY
robot. PRIMARY robots are LOST or RTR and cannot change color.

• After the seventh cycle, LOST robots change color to RTT and the RTR robot
changes color to TOK. It is now a THOLDER robot.

• After the eighth cycle, DEFAULT robots which can see the THOLDER change color
to RTT. They are now PRIMARY robots.

• Robots are now back to the a configuration similar to before the first cycle.

During the third cycle, the THOLDER robot becomes aware of all visible obstructions.
There is a positive probability of a single RTR robot appearing after the fifth cycle. Since other
cases reset the network, there is eventually a single RTR robot, and the token transmission is
successful.
Since the FSYNC scheduler cannot chose which robots change color to RTR, it cannot reliably
chose the next THOLDER.
So conjecture 7.1 is true for this scheduler.

90 CHAPTER 7. OBSTRUCTED VISIBILITY

7.5.5 The Issue of Proving Obstructed Algorithms

While we described what the Obstructed Token Creation algorithm should do, we did not de-
scribe a proven algorithm.

During our work on Obstruction Detection, we quickly noted that any proof in this setting
is orders of magnitude harder than proofs in the regular transparent setting.

The key issue surrounding the obstructed visibility model is the fact that two different robots
may have two different snapshots. In fact, in a line configuration, two robots may share no
robots in their snapshot. This implies that any proof must be done considering not a set of
configurations for the network, but a set of snapshots for each robot in the network. The size of
this set increases even more when proving self-stabilizing algorithms.

As we have shown for the Obstructed Token Transmission algorithm it may still be possible
to prove complex algorithms in the obstructed FSYNC setting. However, this issue of different
snapshots is magnified by stronger schedulers, such as SSYNC or ASYNC, as snapshots are not
only different, but may now evolve over time differently, or become outdated.

Overall, we believe a key reason why Mutual Visibility has been relied on for using the
obstructed visibility model is simply the sheer difficulty of proving any other algorithm in this
setting. Mutual Visibility provides a global variable – the number of obstructions – that can be
proven to be eventually decreasing.

Problems which do not provide such variables, such as Obstruction Detection, require
different strategies for proving.

As a matter of fact, to the best of our knowledge, the proven algorithm which uses the most
colors is a 7-color Mutual Visibility algorithm [14], while our Obstructed Token Transmission
already uses 10 colors. Most attempts made to build a ASYNC Obstructed Token Creation al-
gorithm resulted in 10 additional colors, which is practically not provable in an already difficult
setting.

So, we believe that it is not currently possible to reliably prove such complex algorithms in
the ASYNC obstructed visibility setting. It seems necessary to either develop new techniques,
or use weaker proofs, such as the simulations we introduce in part III.

7.5.6 Sidenote: Ensuring Token Unicity for a Line

All previous results rely on the fact that the network should not be a single line and on theo-
rem 7.1. However, it is interesting to look at how such algorithms would behave in the case of
a network with a single line topology. In this setting, since the hypothesis that no two robots
can have a proximity greater than one does not exist any longer, the key concept of a three layer
structure also falls apart.

Indeed, the proximity can now be as large as (n− 2), with n the size of the network. We
now show an algorithm designed to guarantees that, if the number of tokens in the network is
different from one, at least one robot can detect the anomaly.

We build algorithm 7.3 using the following principles:

• Robots use colors 1, 2 and 3 to create a direction using a 1,2,3,1,2,3 pattern.

• Colors are ordered such that 1 > 2, 2 > 3 and 3 > 1, with greater colors pointing towards
the token.

• The token should only see the color 1.

• Robots on the edge of the line should ensure the color they see is greater than their own.

• Each robot should ensure the colors it sees are properly ordered.

7.5. NON-LINE OBSTRUCTION DETECTION: USING A TOKEN 91

• In case of violation, a reset is triggered.

Algorithm 7.3 ASYNC Token Anomaly Detection

if me.color is visible or two identical colors are visible
Reset

if me.color = TOKEN and 2 or 3 is visible
Reset

if I see a single robot
if me.color = 1 and 2 is visible

Reset
if me.color = 2 and 3 is visible

Reset
if me.color = 3 and 1 is visible

Reset

An example of the pattern is shown in figure 7.8.

Figure 7.8 – Properly Ordered Pattern Pointing Towards the Token

Theorem 7.6. If the line configuration contains either no token, or more than one token, then
the reset is eventually triggered.

Proof. Let us first consider the case when there is no token in the network.
If colors are not properly ordered, i.e. in a 1,2,3,1,2,3 pattern, at least one robot can detect the
error in the pattern and trigger the reset.
If colors are properly ordered, then one of the two edge robots sees a color that is smaller than
its own, which should not happen as colors should increase towards the token, and triggers the
reset. An example of this behavior is shown in figure 7.9.

Figure 7.9 – The Right Edge Robot Can Detect an Anomaly

Let us now consider the case where two or more tokens exist.
Let us consider two tokens T1 and T2 so that there are no other tokens between T1 and T2. Since
colors decrease both from T1 and T2, there is a local minimum between the two tokens where
colors break the ordered pattern. This discrepancy is visible by at least one robot which triggers
the reset. An example of this behavior is shown in figure 7.10.

Figure 7.10 – One Robot Can Detect an Anomaly

Conclusion: Unreliable Vision

In this chapter, we studied two different, more realistic models of vision for mobile robots.

First, we introduced a new model, called uncertain visibility. This model is based on the
idea of robots being able to ’miss’ a robot during their snapshot. This behavior is either random,
or governed by an adversary, and can be seen as a generalization of limited visibility. We
showed tight bounds for several problems under this new model and the FSYNC scheduler. We
also proved that uncertain visibility is orthogonal to synchrony, as LUMINOUS algorithms
capable of solving two-robot Gathering in SSYNC are inherently unable to solve two-robot
Gathering against adversarial visibility.

More specifically, for specifications that must maintain a global invariant (such as leader
election or uniform circle formation), state-of-the-art solutions fail even against the weakest
non-trivial adversary (1-random). For specifications with eventual safety properties (such as
gathering and rendezvous), the results are contrasted: when the algorithm allows all robots
to move at every round, strong adversaries can be handled, when there exists a synchroniza-
tion mechanism (as in rendezvous algorithms for luminous robots), even the weakest non-
probabilistic adversary (1-enemy) precludes any deterministic solution.

In fact, in this context, the 1-enemy adversary can be seen as a crash fault for the blind robot
r, as r behaves identically as if it is never activated. For this problem, it is fairly intuitive to
realize that luminous algorithms are more sensitive to crash faults than oblivious algorithms.
Now, wait-free algorithms [16, 17] are able to withstand the crash of N−1 robots, still solving
the problem for the subset of correct robots, so they should be able to handle stronger uncertain
visibility adversaries. However, to our knowledge, there exists no wait-free rendezvous algo-
rithm in the SSYNC full visibility model (only the case of N > 2 is handled by previous work).
As highlighted by our results, if such a solution exists, it may not use lights.

The second model, obstructed visibility, is not a new model, but all research on this model
seemed limited to the single problem of Mutual Visibility. We devised a new problem, named
Obstruction Detection, and attempted to solve it. First, through a single cycle approach,
which would allow for a trivial proof under the ASYNC scheduler. We proved a criteria that
any algorithm must follow to solve Obstruction Detection in this single-cycle specification,
but were not able to design such an algorithm.

We then attempted to solve the problem through a token creation and transmission method.
While our approach initially appeared sound, the complexity of both the model and the can-
didate algorithms is such that current proving techniques may be unusable in practice. In the
end, neither approaches yielded definitive results, as the obstructed visibility models massively
increases the difficulty of designing and proving algorithms.

92

Part III

Real World Performance

93

Chapter 8

Monte-Carlo Simulation of Mobile
Robots

8.1 Motivation

As we have seen, several attempts have been made to make the OBLOT model more realistic,
e.g. by limiting the range of sensors through the limited visibility model [3, 50, 51], by allowing
the sensors to miss other robots [55], by using inaccurate compasses [25, 50, 51, 68, 85] (so,
the orientation of the robots is not arbitrary), or by discarding the hypothesis that robots are
transparent [66].

However, most attempts are hindered by increased complexity due to manually proving the
algorithms in those more complex settings. For instance, to the best of our knowledge, the
consequences of error-prone vision have only been studied through the very simple problems of
Gathering and Convergence [25, 50, 51, 68, 85].

To allow more complex problems to be studied under more realistic settings, it appears
necessary to favor an automated approach. We have already discussed these approaches in
chapter 3.2.
However, model-checking based approach for continuous Gathering [33, 34] requires proving
several abstractions beforehand to simplify the continuous setting to a binary gathered / non-
gathered, and is thus currently only applicable for Rendezvous algorithms.

At this moment, using formal methods for problems such as Obstruction Detection does
not seem a feasible solution.

We investigate another approach: since our goal is to bridge the gap between theoretical
mobile robots, and actual robotics, we move one step towards robotics and use a very common
tool: simulation. First, robot simulators, such as Gazebo, are industry standard tools for design-
ing physical robots. Then, simulating mobile robots is not necessarily a new idea, and has been
done since the very beginning of mobile robots [3].

Our goal is to design and implement a practical simulator for networks of mobile robots that
is focused on finding counter-examples and monitoring network behavior, rather than proving
algorithms or providing visual representation. Our vision is that this tool is especially useful in
the early stages of algorithm design to eliminate obviously wrong paths, and detect anomalies.
It should not be seen as a replacement for formal tools, but as a replacement for researcher
intuition when working on a network model or algorithm.

As such, it should be easy to use, understand and modify to include any algorithm or model.
It should also be capable of monitoring network behavior and output quantitative data points

to compare real world performance, according to a given set of metrics, of proven algorithms in
a given setting.

We first focus on the known limitations of this approach and highlight the difficulty of

95

96 CHAPTER 8. MONTE-CARLO SIMULATION OF MOBILE ROBOTS

encoding victory and defeat conditions for the computed executions and how it impacts our
ability to reliably detect counter-examples, as well as the expected consequences of working
in a discretized euclidean space, such as the impossibility of distinguishing Convergence and
Gathering.
We show the limits of this framework through the problems ofOBLOT FSYNC Convergence,
and Geoleader Election.

8.2 Overview of the Framework

Our simulation framework is written from scratch in Python 3. Our design goal is to remain as
close as possible to the theoretical model of Suzuki and Yamashita [83], in order to maximize
readability and usability by the mobile robot distributed computing community.

Each mobile entity is thus encapsulated as an instance of the Robot class. In the case of the
basic OBLOT model, robots have the following properties:

• A unique name.

• x and y, representing coordinates in the Euclidean plane.

• A list of Robots named snapshot that contains visible Robots.

• A target, which is a tuple of the x and y coordinates of the target.

The Robot class also contains three methods:

• The LOOK method uses the network as an input. It creates a list of the other Robots in
network and assigns it to self.snapshot.

• The COMPUTE method uses self.snapshot to compute and assign self.target, ac-
cording to the algorithm we want to check.

• The MOVE method updates self.x and self.y according to self.target.

This is summarized in figure 8.1

Figure 8.1 – Robot Class

Because robots are anonymous, name cannot be used for computing purposes, and is simply a
way for the scheduler to reliably monitor the robots in the network. Similarly, robots cannot use
x and y directly as they are disoriented.
The simulation consists of two parts: an initializing sequence and a loop.

8.3. SCHEDULING 97

The initializing sequence creates a network list, which contains all robots, according to
simulation parameters. To circumvent the problem of the infinite number of initial positions,
our simulation framework is based on the Monte-Carlo method for choosing initial configura-
tions [69]. So, unless otherwise specified, the initial location of each robot is chosen uniformly
at random within the bounds of the type used to represent positions. Using the Monte-Carlo
method allows us to both minimize biases in the initial parameters, and arbitrarily increase the
precision of the simulation by simply increasing the number of simulations. For each itera-
tion of the main loop, a scheduling function is executed once. In the case of FSYNC, for each
loop iteration, all robots in the network simultaneously perform a LOOK, then simultaneously
perform a COMPUTE, and then simultaneously perform a MOVE. Using different schedulers, such
as SSYNC or ASYNC only requires changing the scheduling function: SSYNC creates a non
empty list of robots to be activated for a whole cycle, and ASYNC picks a single robot to be
activated for a single phase. The loop terminates whenever a victory condition holds, which
confirms the algorithm completed its intended task. In the case where an algorithm may fail, a
defeat condition can also be used. For practical reasons, the loop has a maximum number of
iterations. However, reaching this maximum should not be interpreted as either a failure or a
success.

8.3 Scheduling

Modeling the FSYNC scheduler can be trivially done by performing all LOOK operations, then
all COMPUTE operations, then all MOVE operations.

For the ASYNC and SSYNC schedulers, we rely on randomness to test as many executions
as possible. To model the SSYNC scheduler, for each time step, we chose a non-empty subset
of the network uniformly at random and perform a full cycle.

To model the ASYNC scheduler, we chose one robot uniformly at random and perform its
next operation1.

In the case of the ASYNC scheduler, we must also consider what happens if a robot performs
a LOOK operation while another robot is moving. theOBLOT model usually considers that an
adversary can chose the perceived location of the second robot to be anywhere between its initial
position and its destination (on a straight line). Modeling this behavior could be easily done by
changing the perceived coordinates in the LOOK operation uniformly at random between the
location and the target of the perceived robot (on a straight line). However, existing literature
about the ASYNC model shows that the most problematic scenarios appear when the outdated
position perceived for a robot is its initial location. With our simulation framework, we also
observed that always choosing the initial location when observing a given robot while it is in its
MOVE phase yielded the most adversarial results, so, while our framework is able to simulate
both perceptions, we assume this adversarial behavior in the sequel.

For all schedulers, our simulation framework supports both the rigid and the non-rigid set-
tings. The rigid setting mandates a robot that selected a distinct target in the COMPUTE phase to
always reach it in the MOVE phase. The non-rigid setting partially removes this condition: the
robot may be stopped by the scheduler before it reaches the target, but not before it traverses a
distance of at least δ , for some δ > 0.

1Note that this model does not explicitly include simultaneous operations: we consider that the output of two
simultaneous events E1 and E2 can be either the output of E1 then E2 or the output of E2 then E1, as proven in
theorem 4.9.

98 CHAPTER 8. MONTE-CARLO SIMULATION OF MOBILE ROBOTS

8.4 Simulation Conditions

Our framework uses Monte-Carlo simulation for both the initial conditions and the scheduling.
This means we can perform an arbitrarily large number of simulations, which in turn induces
an arbitrarily more precise simulation. Therefore any criterion on either time, number of itera-
tions, or precision is equivalent. Unless specified otherwise, 4 identical simulations are run in
parallel, for one hour, on a modern quad-core CPU. We use the PyPy3 JIT compiler instead of
the CPython interpreter, for better performance. Results of the 4 simulations are then compiled
and analyzed.

8.5 Existing Simulators

There are two notable existing simulators for distributed agents: Sycamore and JBotSim.
JBotSim is a Java library for simulating distributed networks in general. While it appears to

be able to simulate OBLOT robots, it is not designed to.
Sycamore is a Java program focused explicitly on mobile robots. However, it appears to be

far more complex to build, use and modify than our proposal. Moreover, the latest version we
could find seems to date back from 2016 and require unsupported versions of Java.

We found a third Java-based simulator, named oblot-sim2. We are, however, unsure of its
provenance and design goals. All three simulators emphasize ease of use through a complete
graphical interface. Our proposal focuses on extreme simplicity: In its current version, a com-
plete instance of the simulator requires five separate files for a total of less than 30KB. We also
believe that using Python instead of Java greatly improves portability and ease of understanding,
which in turns allows researchers to more easily implement and test unusual settings.

Finally, our goal is not to visualize executions, but to simulate as many as possible to process
the data from the executions.

8.6 Limitations of the Simulation

While the initial approach described in the previous section initially might seem sound and
simple to work with, it results in two distinct problems. As stated previously, our objective
with robot simulation is to reliably provide counter-examples whenever they should occur. This
requires reliably detecting problematic executions, which is difficult for two reasons. First,
success and defeat conditions for most mobile robot algorithms are written in a way that might
not be directly usable in a computer simulation. Then, we show that issues predictably arise
due to the nature of discretized floating point numbers compared to true real numbers used in
mathematical models.

8.6.1 Halting the Simulation: Victory and Defeat Conditions

One of the goals of this simulation framework is to find counter-examples for a given algorithm
and setting. To do so, we need to simulate the evolution of the network until one of two things
happen:

• A sufficient condition has been met. This implies that the current execution is successful
and a new simulation with a different initial configuration should begin. This is called a
victory condition.

• A necessary condition has been violated. This implies that the current execution consti-
tutes a counter-example. This is called a defeat condition.

2https://github.com/werner291/oblot-sim

https://github.com/werner291/oblot-sim

8.6. LIMITATIONS OF THE SIMULATION 99

We illustrate the difficulty of using such conditions in practice through the scope of one of the
most common problems of mobile robots: Gathering.

The common victory condition for Gathering is the following, for two robots r1 and r2:

Condition 8.1 (Theoretical Gathering Victory).
Gathering is achieved if and only if, for any pair of robots in the network, the distance between
the two robots is eventually always zero.
This can also be written as ∃t0 ∈ R≥0 : ∀t1 ≥ t0,∀(r1,r2)|r1r2|t1 = 0

Where |r1r2|t is the distance between r1 and r2 at time t of the execution.

However, this particular condition would require the ability for the simulator to infinitely
simulate the future of the network, which is obviously impossible.

Moreover, the matching defeat condition would simply be

@t0 ∈ R≥0 : ∀t1 ≥ t0,∀(r1,r2)|r1r2|t1 = 0

or

∀t0 ∈ R≥0 : ∃t1 ≥ t0,∃(r1,r2)|r1r2|t1 6= 0

which is unusable for the same reasons.
We instead define a more practical defeat condition:

Condition 8.2 (Practical Gathering Defeat).
∃(t0, t1) ∈ (R≥0)

2 : t1 > t0, inputs(t0) = inputs(t1),∃t ∈ [t0, t1]/∃(r1,r2)|r1r2|t 6= 0

Where inputs(t) is the set of all input parameters relevant to the algorithm. This is different
from the configuration, which would contain all parameters of the network at a given point of
the execution.

This input set is used as a practical way to detect cycles in the execution. For a deterministic
algorithm, if all inputs of the algorithm are identical to a previously encountered set of inputs,
then a cycle has been found.

The input set we use must be chosen such that for two sets S1 and S2, S1(t) = S2(t) =⇒
∀S1(t +1),∃S2(t +1) : S1(t +1) = S2(t +1). In other words, regardless of the scheduling, two
identical sets should not be able to generate different sets.

Theorem 8.1. For two robots executing a deterministic algorithm, if condition 8.2 is true then
condition 8.1 is false.

Proof. For a deterministic algorithm, if condition 8.2 is true, there exists a scheduling starting
from the initial configuration which reaches inputs(t0) and inputs(t1). Because inputs(t0) =
inputs(t1), there exists a cycle containing non-gathered configurations. Then the adversary
scheduler can repeat this cycle infinitely and condition 8.1 is false.

Theorem 8.2. If the number of input sets is finite, then for two robots executing a deterministic
algorithm, if condition 8.1 is false, then condition 8.2 is true.

Proof. Any scheduling is infinite. So, if the total number of input sets is finite, then all schedul-
ings each contain at least one cycle. If condition 8.1 is false, then there are no non-gathered
cycles, so there is at least one gathered cycle which must be repeated, and condition 8.2 is
true.

One may naively use a similar reasoning to define a sufficient victory condition:

100 CHAPTER 8. MONTE-CARLO SIMULATION OF MOBILE ROBOTS

Condition 8.3 (Naive Gathering Victory).
∃(t0, t1) ∈ R2

≥0 : t1 > t0, inputs(t0) = inputs(t1),∀t ∈ [t0, t1],∀(r1,r2)|r1r2|t = 0

However, this condition ignores the fact that the scheduler may be able to not repeat this cycle
by carefully choosing the activation order of the robots.
A proper condition that could be usable regardless of the scheduler is the following:

Condition 8.4 (Practical Gathering Victory).
∀(r1,r2)∃t0 ∈ R≥0 : |r1r2|t0 = 0∧∀S,∃t1 > t0 : inputs(t0) = inputs(t1),∀t ∈ [t0, t1], |r1r2|t = 0
With S a scheduling.
In other words, there exists a time after which all robots are stuck in gathered cycles.

Analyzing configurations and finding cycles in the execution is not an issue for our simulator.
The main difficulty here lies in our ability to properly model the configuration using the input
set. If the set is too restrictive and omits relevant parameters, then we find cycles that do not
actually exist. Similarly, a set that is not restrictive enough may hide actual cycles. This depends
on both the robot model and the algorithm used to solve the problem.
In the case of Rendezvous or Gathering for two robots, the standard algorithm for the FSYNC
scheduler targets the midpoint between the two robots and is described in algorithm 8.1.

Algorithm 8.1 Basic FSYNC Rendezvous
self.target[0] = (self.x + snapshot[0].x)/2
self.target[1] = (self.y + snapshot[0].y)/2

In the euclidean space, the number of configurations appears to be infinite. However, as we
showed in chapter 3.2, because robots are disoriented, the algorithm uses no information on
distance, or coordinate systems, all configurations are identical. Then, the input set is actually
empty. This implies that an algorithm succeeds if and only if the network is gathered after the
first activation of both robots. Otherwise, the defeat condition is immediately true for rigid
movement.

For the sake of providing a second example, let us consider that robots are endowed with
weak local multiplicity detection, meaning can distinguish a non-gathered configuration from a
gathered configuration. This allows us to modify the algorithm to algorithm 8.2.

Algorithm 8.2 FSYNC Rendezvous with Multiplicity

if ¬gathered
self.target[0] = (self.x + snapshot[0].x)/2
self.target[1] = (self.y + snapshot[0].y)/2

In this case, the gathered state is a relevant input parameter, and should be included in the
input set. Now, all gathered configurations are considered identical and all non-gathered con-
figurations are considered identical. This means that the robots must still gather after the first
activation. However, while this was already considered a cycle with the empty set, if robots are
now gathered, the input set is different and no cycle has yet been reached. The first cycle is
reached after the second activation. If the robots stay gathered, then this is a gathered cycle and
should not trigger the defeat condition. However, if for some reason the robots were to separate
after the second activation, this would constitute a non-gathered cycle with the first input set,
and the defeat condition would be triggered.

Using this reasoning, we check our simulator against our 2-color ASYNC algorithm [53]
and the 2-color SSYNC algorithm from Viglietta [84]. For Heriban 2-color, we accurately find
no counter-example and all executions lead to the victory condition in ASYNC, SSYNC and
FSYNC. For Viglietta 2-color, we accurately find no counter-example and all executions lead to

8.6. LIMITATIONS OF THE SIMULATION 101

the victory condition in, SSYNC and FSYNC, and we find counter-examples which trigger the
defeat condition in ASYNC.

We perform a similar study for a weaker version of Gathering, called Convergence. The
common condition for Convergence is the following:

Condition 8.5 (Theoretical Convergence Victory).
Convergence is achieved if and only if, for any distance ε greater than zero, the distance
between any pair of robots is eventually always smaller than ε .
This can also be written as ∀ε ∈ R>0,∃t0 ∈ R≥0 : ∀t1 ≥ t0,∀(r1,r2)|r1r2|t1 ≤ ε

Note that, as we expect, Gathering implies Convergence, but Convergence does not imply
Gathering. In this case, the distance between the two robots is a relevant parameter to check
whether or not the problem is solved. However, since it does not change the behavior of the
algorithm, it is still not part of the input set.

We define the following defeat condition:

Condition 8.6 (Practical Convergence Defeat).
∃(r1,r2) : ∃(t0, t1) ∈ (R≥0)

2 : t1 > t0∧ inputs(t0) = inputs(t1)∧|r1r2|t0 ≤ |r1r2|t1

Theorem 8.3. For a deterministic algorithm, if condition 8.6 is true, then condition 8.5 is false.

Proof. Similarly to Gathering, this condition implies a cycle where distance does not decrease,
so the adversary scheduler can repeat it infinitely and prevent Convergence.

This does not imply that the distance between the two robots must always be strictly decreasing
in the general case, as this would neither be a sufficient nor a necessary condition.

Because ε can be infinitely small, we cannot chose the ’right’ ε to properly define a victory
condition.

8.6.2 The Consequences of the Discretized Euclidean Plane

While we could be tempted to define a similar victory condition than for Gathering, the ques-
tion of ε remains. Floating point numbers are obviously incapable of infinite precision. So,
because any number greater that zero is a valid choice, if ε is smaller than the minimum positive
number that can be represented in the chosen floating point precision, it cannot be distinguished
from a true zero. This means that small enough distances between two robots cannot be distin-
guished from a gathered state.

So it is intrinsically impossible to distinguish Convergence from proper Gathering.
Let us modify algorithm 8.1 so that both robot move towards the midpoint, but only move

a distance of
|r1r2|

2
− δ

2
instead of

|r1r2|
2

. In theory, this algorithm does not lead to Rendez-

vous, as robots reach a distance of δ after their first activation. However, if δ is small enough,

the precision of floating point numbers is such that
|r1r2|

2
− δ

2
and
|r1r2|

2
appear identical, and

the distance |r1r2| appears to be zero. This is essentially a Convergence algorithm that is fast
enough to be mistaken for a Rendezvous algorithm. In practice, there is very little that can
be done against this sort of behavior and conditions for Gathering should not be considered
reliable.

On the other hand, under different circumstances, the discrete nature of the simulation can
instead lead theoretically good executions to fail in practice. Let us consider a network of two
robots r1 and r2 such that r2 does not move and r1 moves to the midpoint. This should trivially
lead to Convergence. Let us now assume that r1.y = r2.y and r1.x and r2.x are such that r2.x is

102 CHAPTER 8. MONTE-CARLO SIMULATION OF MOBILE ROBOTS

the smallest float greater than r1.x. This possibly leads to
r1.x+ r2.x

2
= r1.x, so r1 stops moving

and the defeat condition for Convergence is wrongly activated.
We test this by setting r1.y = r2.y = 0, picking r1.x at random in [0,1] and picking r2.x at

random in [2,3] so that r1.x < r2.x.
In the first case, r1 moves to the midpoint and r2 does not move. This results in approxi-

mately 37.5% of one million attempts wrongly failing Convergence.
In the second case, r2 moves to the midpoint and r1 does not move. This results in approxi-

mately 25.0% of one million attempts wrongly failing Convergence.
This asymmetry may be explained by biases in the binary64 approximation. Regardless,

this is a real, hard to predict problem with a non-negligible chance of happening and requires
careful analysis of found counter-examples.

Problems with limited float precision also appear when simulating Geoleader Election.
Geoleader Election is successful if given a set of robots, each with their own coordinate

system, robots can all deterministically agree on a same robot, called the GEOLEADER.
Geoleader Election is known to be impossible in the general case [38] because of possible

symmetries in the network. As we have shown in chapter 4.5, in practice, this is solved by using
randomized algorithms to break such symmetries.
Let us consider the state-of-the-art algorithm 5.1 by Canepa and Gradinariu Potop-Butucaru [19]
for three robots.

For this particular algorithm, there are three cases:

1. The common case, where one angle is greater than the two others.

2. A rare case where two angles are identical and the third one is smaller.

3. The rarest case where all angles are identical. In that case, a Bernoulli trial is required to
degrade to the other cases.

Let us assume a network of three robots, [r1,r2,r3] such that r1 is placed at coordinates (−0.5,0)
and r2 at (0.5,0).

We show where each case appears in figure 8.2a). The third case occurs if r3 is at (0,±
√

3
2

)

which are noted as points eq1 and eq2. Positions of r3 which lead to the second case are noted
as iso1, iso2 and iso3.

However, it is not possible, using floating point numbers, to have x such that x2 = 3. It is
then impossible, regardless of the quality of the simulation, to place r3 on eq1 or eq2, despite
being possible in theory.

Similarly, an infinitely large number of point mathematically located on the circular arcs of
the second case cannot be represented properly using floating point numbers.

To test this, each robot is given a new property ’Leader’, which is a string containing the
name of the LEADER robot. We perform the simulation and display the results in figure 8.2b.
As we predicted, the fact that real numbers cannot be properly represented in our discrete,
floating point space prevents the simulator from finding the known counter-example in the case
of 3-robots Leader Election. Furthermore, the three circular arcs on which the second case
occurs have a combined surface theoretically equal to zero. Therefore, they are statistically
impossible to find using our Monte-Carlo simulation.

However, it should be noted that, even in a world of perfect sensors, building an equilateral
triangle would require placing the third robot with physically impossible precision. So, while
this counter-example exists from a mathematical standpoint, it could never occur in a more
realistic setting. So when considering practical robot, this could be considered a minor issue.

8.6. LIMITATIONS OF THE SIMULATION 103

(a) LEADER Depending on the Location of r3.
Red, green and blue represent r1, r2 and r3,

respectively

(b) Simulation for 3-robot Leader Election
with Perfect Vision Sensors.

No isosceles or equilateral point was found

On the contrary, the use of a discretized euclidean space could be viewed as massive ad-
vantage compared to the regular, continuous model. We recall chapter I, where we discussed
the inherent unrealistic hypothesis of robots being able to store and process snapshots of infinite
precision. In this approximated context, snapshots have a known, maximum size, depending on
the chosen precision for the coordinates of other robots.

So, in this context, storing a snapshot for a full cycle becomes a trivial matter, and using
algorithm SyncSim described by Das et al. [30, 31], to simulate an FSYNC scheduling under
an ASYNC scheduler, becomes possible without additional unrealistic hypotheses.

As a result, we believe designing algorithms that function in this context should be a priority, as
it would allow mobile robots to only need to function using the FSYNC scheduler, and would
remove of the hypothesis of infinite precision. One such algorithm is shown in chapter 10.5.

Chapter 9

Fuel Efficiency in the Usual Settings

An overwhelming majority of the research on mobile robots has been focused on proving, under
a given set of conditions, whether there exists a counter example to a given problem. On the
other hand, the practical efficiency of a given algorithm (with respect to real-world criteria
such as fuel consumption) was rarely studied by the distributed computing community, albeit
commanded by the robotics community [4, 87].

Fuel-constrained robots have been considered in the discrete graph context, for both explo-
ration [41] and distributed package delivery [20], but, to our knowledge, no study considered
the two-dimensional Euclidean space model that was promoted by Suzuki and Yamashita [83].
A possible explanation for this situation is that the more complex the algorithm (or the system
setting), the more difficult it becomes to rigorously find the worst possible execution.

9.1 Rendezvous Algorithms

We first quantify the maximum traveled distance and the average traveled distance for several
known Rendezvous algorithms. We chose the Center Of Gravity algorithm [83], our two-
color ASYNC algorithm (Her2) [53], the two-color algorithm (Vig2) by Viglietta [84], which
is known to solve Rendezvous in SSYNC and Convergence in ASYNC, the three-color al-
gorithm (Vig3) by Viglietta [84], the four-color algorithm (Das4) by Das et al. [30, 31]. We
also investigate the algorithms for unreliable compasses by Izumi et al. [61]: the SSYNC static-
error compass algorithm (Stat SSYNC), which, despite its name, works in ASYNC, the SSYNC
dynamic-error compass algorithm (Dyn SSYNC), which does not work in ASYNC, and the
ASYNC static-error compass algorithm (Dyn ASYNC).

We take advantage of the modularity of the simulator. The robot class now carries several
new properties: color, which is the color a robot presently broadcasts ; compass, which is the
type of compass and error, i.e. ’none’, ’static’ or ’dynamic’ ; compass_error, which is the
maximum error allowed for the compass ; and compass_offset, which is the current compass
error. The color is changed at the end of the COMPUTE method. Depending on the value of
compass, compass_offset is either chosen during the initialization, or at the beginning of
every LOOK method.

Each algorithm is first carefully analyzed on paper to find the worst possible execution. Sim-
ulations are then run according to the aforementioned protocols. Due to limitations described in
section 8.6.2, we actually assess those protocols for a degraded notion of Convergence rather
than Gathering. The distance traveled is expressed relative to the initial distance between the
two robots. In practice, the first robot is always located at {0,0} and the second robot is placed
at random on the circle of radius 1 centered on {0,0}. Algorithms are only tested using simple
initial configuration1, as complete self-stabilization implies existing arbitrary pending moves
and renders fuel efficiency mostly pointless.

1see section 4.2.1

104

9.1. RENDEZVOUS ALGORITHMS 105

Results are summed up in table 9.1. Red denotes cases where the simulation was stuck
in non-gathered cycles and had to be manually unstuck. Details as to why this happened are
provided below.

For scale, running 4 instances of Vig3 for one hour under the ASYNC scheduler resulted in
' 14 million total executions.

(a) Maximum Traveled Distance
Found / Predicted

(b) Average Traveled Distance

Table 9.1 – Maximum and Average Traveled Distances

While most results match the predictions, our pen and paper analysis missed a worst case execu-
tion for ASYNC Vig3, which was found by the simulator (highlighted in bold in figure 9.1). This
highlights the difficulty of manually finding the maximum distance even with simple algorithms
and settings. It should be noted that rigid motion yields worst results than non-rigid. This is
normal because increasing the traveled distance relies on picking a target outside of the [r1,r2]
segment, and when this is the case, performing the full motion increases the traveled distance
more than performing it partially. Thus, unless stated otherwise, all further simulations assume
rigid motion.

The difference between SSYNC and ASYNC with respect to efficiency becomes apparent,
as under the ASYNC scheduler, optimal fuel consumption mandates using four colors, while a
simple oblivious algorithm is sufficient in SSYNC.

The algorithms using compasses yield the most interesting results. First, numerous simula-
tions of the SSYNC static algorithm became stuck.

These failures were due to the fact that the sine and cosine operations used in the algorithms
tend to sum errors, and there is a possibility that a robot moves in a way that results in an angle
of exactly 0, which actually randomly yields an angle of either 0− ε or 0+ ε , where ε is a very
small positive number. This in turn results in unsolvable cycles that prevent Convergence. As
ε was never larger than 10−9, we chose to prevent this behavior by slightly enlarging the interval
of the condition that should be triggered on an angle of zero to an angle in [−10−6,10−6]. We
do the same for all conditions for consistency. So any condition that should be true for angles in

106 CHAPTER 9. FUEL EFFICIENCY IN THE USUAL SETTINGS

[A,B[are now true for angles in [A−10−6,B−10−6[, in [A,B] now in [A−10−6,B+10−6], in
]A,B] now in]A+10−6,B+10−6] and in]A,B[now in]A+10−6,B−10−6[.

Interestingly, this new condition only had notable impact on the static error algorithm. In-
deed, these errors could be seen as small dynamic random angle errors. Since the static error
algorithm is not designed to be resilient against dynamic errors, it fails whenever they appeared.
This also demonstrate the resilience of the dynamic error algorithms.

9.2 Convergence For n Robots

Cohen and Peleg [24] proved the Center of Gravity (CoG) algorithm solves Convergence for
n robots under the ASYNC scheduler. We analyze the fuel consumption of the algorithm under
both the SSYNC and ASYNC schedulers. Results for the minimum, maximum, and average
distance traveled are show in table 9.2. We use the sum of the distances to the CoG in the initial
configuration as a baseline unit of distance, i.e. the distance traveled in FSYNC.

Table 9.2 – Traveled Distances for CoG

It should be noted that, while previous results are based on at least hundreds of thousands of
simulations, due to the increase in simulation complexity, in ASYNC, for n = 25, only 31
simulations could be computed under an hour. So they were discarded. Similarly, for n = 50,
no simulation could be finished under an hour.

Looking at the results, one element immediately jumps out: for n ≥ 3, the CoG algorithm
wastes movements. This is easy to understand: robots move towards the center of gravity,
which for 3 or more robots is different from the geometric median (a.k.a. the Weber point),
which would actually minimize movement. Our tests seem to indicate that aiming for the me-
dian instead of the CoG can reduce traveled distance by up to 30%. However, it is a known
result that no explicit formula for the geometric median exists.

In practice, when trying to minimize traveled distance, Convergence for n robots should rely
on an approximation of the geometric median rather than the center of gravity.

Chapter 10

Analyzing Algorithms in Realistic
Settings

In chapter 8.6.2, the simulation of inaccurate compasses yielded extremely interesting results.
To follow this track, we now focus in this chapter on the setting where visual sensors are in-
accurate. In more details, we analyze the Center of Gravity (CoG) algorithm for Rendezvous
in this setting, as well as the Geoleader Election algorithm by Canepa and Gradinariu Potop-
Butucaru [19].

We then analyze LUMINOUS Rendezvous algorithms against a new type for error
where robots may read the wrong color in their snapshot.

10.1 Visibility Sensor Errors

To study the impact of inaccurate sensors, we consider three different models for vision error.
For a robot r1 looking at a robot r2 located in (x,y) in the Cartesian coordinate system centered
at r1, and located at (r,θ) in the polar coordinate system centered at r1, we define:

• The absolute error model [68] uses a constant value err. A first number Rerr is picked
uniformly at random in [0,err], and a second θerr in [0,2π]. The perceived position of r2
is then (x+Rerr · cos(θerr),y+Rerr · sin(θerr)).

• The relative error model [25] uses two constants errdist and errangle. Two numbers Rerr

and θerr are picked at uniformly at random in [−errdist ,errdist] and [−errangle,errangle].
The polar coordinates of r2 are then perceived to be (r+ r ·Rerr,θ +θerr)

• The absolute-relative error model is similar to relative error, but the perceived polar coor-
dinates are (r+Rerr,θ +θerr)

These error models are depicted in figure 10.1.
It should be noted that each model could be used to accurately model errors in different types of
sensors.
The absolute error model is interesting because it is simple to compute, requires no change of
coordinate system, uses a single parameter, and closely matches the behavior of robots where the
LOOK phase is an abstraction of GPS-type coordinates exchanges [86]. The two relative models
are more complex from a computing perspective, but closely match the use of either computer
vision or telemetry sensors. Both carry an angular error matched with either proportional or
absolute distance error. Which type of distance error is more appropriate would depend on the
exact type of sensor. This requires adding three properties to the Robot class:

107

108 CHAPTER 10. ANALYZING ALGORITHMS IN REALISTIC SETTINGS

(a) Absolute error

(b) Relative error

(c) Absolute-relative error

Figure 10.1 – Types of Errors
The r2 point is the actual location of robot r2, and the red hashed area is the set of possible

detected positions by robot r1.

• LOOK_error_type, which is a string that defines the type of error and can be either
’none’, ’relative’, ’absolute’, or ’abs-rel’.

• LOOK_distance_error, which is a float and matches either err or errdist , depending on
the type of error.

• LOOK_angle_error, which is a float and matches errangle.

Robots then chose the corresponding error (with parameters chosen uniformly at random) when
performing their LOOK operation.

10.2 Convergence for n=2

Convergence with vision error using the CoG algorithm has already been studied by Cohen
and Peleg [25]. The error model they considered is identical to our relative error model. The
paper states that Convergence with distance error using the CoG algorithm is impossible in the
general case. This is, however, only true for n ≥ 3, which the authors omit to mention. In the
case n = 2, it appears to be theoretically impossible to make the algorithm diverge for a distance

10.2. CONVERGENCE FOR N=2 ROBOTS 109

error smaller than a 100%, or err = 1. We can reasonably ignore the case of an error greater
than 100%, as it would allow for a robot to perceive another one directly behind itself.

To our knowledge, no formal result exists regarding the angle error. In theory, the maximum
angle error is π . We simulate Convergence for n = 2 robots using the CoG algorithm for the
relative error model. The error for each robot is chosen uniformly at random at the beginning of
the execution.

(a) Maximum Traveled Distance (b) Average Traveled Distance

(c) Proportion of Diverging Executions

Figure 10.2 – Movement and Divergence of the CoG Algorithm for Two Robots with
Inaccurate Visibility Sensors

We must also consider the now possible case of a diverging algorithm. Since the execution is
random, any setting should eventually converge. However, we must put a reasonable stopping
condition in case the execution is clearly diverging. We chose to activate the defeat condition
if the distance between the two robots becomes ten times larger than the distance in the initial
configuration.

Note that the apparent decrease in maximum and average traveled distance for higher angle
error is most likely due to the increase of diverging executions (fewer executions converge, but
the traveled distance for those is shorter).

It appears clearly that the angular error has a much greater potential for both preventing
Convergence, and making robots waste fuel. Indeed, when the angular error remains below
3π/5, a distance error up to 100% can be tolerated with no performance loss.
To give some perspective, the realistic setting of a 10% vision error with a 1◦ angle error yields
a maximum traveled distance of 1.221 and an average of 1.036, with no divergent executions
out of more than 500 million data points.

110 CHAPTER 10. ANALYZING ALGORITHMS IN REALISTIC SETTINGS

10.3 Compass Errors

In the particular case of compass based algorithms of Izumi et al. [61], rendezvous is possible
when the compasses are inaccurate. More specifically, the maximum tolerated errors are π

2 , π

4
and π

6 for the static SSYNC, dynamic SSYNC, and dynamic ASYNC algorithms, respectively.
In our simulation we chose static errors, for consistency, with values up to 49·π

100 , 24·π
100 and 16·π

100 ,
to avoid possible edge cases.

Results of maximum and average traveled distances for these algorithms are detailed in
table 10.1.

(a) Maximum Traveled Distance

(b) Average Traveled Distance

Table 10.1 – Maximum and Average Traveled Distances for Rendezvous
with Inaccurate Compasses

We observe that the unreliable compasses are used in a way that makes robots rotate around
each other until they are oriented in such a way that one robot moves while the other stays,
regardless of the error. However, there are no provisions in these algorithms to limit distance
increases during the rotating phases, which explains the results. Detailed observation shows
the distance between the two robots can gradually diverge towards infinity during rotation and
then converge to zero in a single cycle. This also proved a challenge to our Convergence
criterion: robots could converge at rather large coordinates such that the coordinates of robots
are in succession, but, since the accuracy of floating point numbers decreases as the number
increase, the distance between the two robots was greater than 10−10. We changed the criterion
to |r1r2|< max(10−10, |Or1| ·10−10), with O the point of coordinates {0,0}.

10.4 Geoleader Election

Let us consider the state-of-the-art algorithm 5.1 by Canepa and Gradinariu Potop-Butucaru [19]
for n = 3.

Looking at the previous results from section 8.6.2, we notice that the borders between each
zone should be an issue for imperfect sensors, as different errors for different robots may lead
to robots electing different LEADER robots.
We demonstrate this phenomenon in figure 10.3 for the case of absolute vision error. On top is
the actual configuration, where angles r̂1r2r3 and r̂2r1r3 are equal1, and angle r̂1r3r2 is smaller
than both, so r3 should be elected. The red circle shows the possible perceived position of r3
by r1 and r2 due to vision error. In the bottom left case, we show a possible perception by r1
where r1 should be elected LEADER, as r̂2r1r3 is now greater than r̂1r2r3. On the lower right, r2
similarly thinks it should be elected. Now, two different robots consider themselves LEADER
and the election process fails.

We now use the absolute model to simulate Geoleader Election with err = 0.001, for
n = 3.

1Because robots have no chirality, angles cannot reliably be distinguished from their opposite. So, two opposite
angles may always be considered equal.

10.4. GEOLEADER ELECTION 111

Figure 10.3 – Example of Leader Election Failure Due to Imperfect Vision

This simulation yields ' 0.1% of errors in total, where two robots compute different LEADER
robots, and is shown in figure 10.4.

Figure 10.4 – Simulation for 3-robot Leader Election with Absolute Vision Error
Yellow points represent configurations where the error generates two different LEADER robots.

112 CHAPTER 10. ANALYZING ALGORITHMS IN REALISTIC SETTINGS

10.5 Errors in Color Perception

Because our simulation framework can be easily modified to accommodate different functions
for the LOOK phase, we decide to verify the robustness of the Das4 [31], Vig3 [84], Vig2 [84]
and Her2 [53] algorithms against vision errors. More specifically, we define a new model for
LUMINOUS robots where robot can perceive the wrong color for the other robot when per-
forming their LOOK phase.

Our error model is the following:

• The parameter for the error model is called D and is defined with regards to the initial
distance between the two robots, i.e. D = 2 means that D is equal to twice the initial
distance between robots.

• If the distance X between the two robots is greater than D, then robots have a probability
of 0.5 of perceiving a wrong color at the end of their LOOK phase.

• If the distance X between the two robots is smaller than D, then robots have a probability

of
X

2 ·D
of perceiving a wrong color at the end of their LOOK phase.

This model is summed up in figure 10.5.

Figure 10.5 – Probability of perceiving a wrong color depending on the distance between robots.

Before performing simulation under this vision model, we made the following assumptions on
the results :

1. We assumed Her2 and Vig2 behave identically. In the FSYNC and SSYNC cases, al-
gorithms are identical, and the differentiating ASYNC case should not be statistically
significant.

2. We assumed that all algorithms should be similarly impacted by the vision errors, so the
hierarchy of fuel efficiency established in chapter 8.6.2 should hold.

3. We assumed the average traveled distance and average activations with errors are always
greater than with no errors.

10.5. ERRORS IN COLOR PERCEPTION 113

4. We assumed the sharp transition at D = 1 in the error model should be visible in the
results.

Any deviation from these hypotheses we made as researchers should be investigated to figure
out the root cause, and better our understanding of this model.
We perform the same number of 100,000,000 simulations per scheduler and algorithm. For each
simulation, D is chosen at random between 0 and 10. For each graph, we also show the baseline
average in the case with no vision error.

Using the same simulator, we also plot the average number of activations required to achieve
Convergence. Under the ASYNC scheduler, this is the number of time a robot performed a
phase. Under FSYNC, this is the number of FSYNC cycles. Under the SSYNC scheduler, this
is the number of cycles per robot. In other words, a cycle where one robot is activated counts
as one activation while a cycle where both robots are activated counts as two. Detailed figures
with confidence intervals are provided in the appendix.

114 CHAPTER 10. ANALYZING ALGORITHMS IN REALISTIC SETTINGS

(a) Average traveled distance under the FSYNC
rigid scheduler.

(b) Average traveled distance under the FSYNC
non-rigid scheduler.

(c) Average traveled distance under the SSYNC
rigid scheduler.

(d) Average traveled distance under the SSYNC
non-rigid scheduler.

(e) Average traveled distance under the ASYNC
rigid scheduler.

(f) Average traveled distance under the ASYNC
non-rigid scheduler.

10.5. ERRORS IN COLOR PERCEPTION 115

(a) Average Activations under the FSYNC rigid
scheduler.

(b) Average Activations under the FSYNC
non-rigid scheduler.

(c) Average Activations under the SSYNC rigid
scheduler.

(d) Average Activations under the SSYNC
non-rigid scheduler.

(e) Average Activations under the ASYNC rigid
scheduler.

(f) Average Activations under the ASYNC
non-rigid scheduler.

116 CHAPTER 10. ANALYZING ALGORITHMS IN REALISTIC SETTINGS

It should be noted that, for a given distance, the probability of an error is greater for smaller D.

(a) Probability of perceiving a wrong color
depending on the error parameter D.

(b) Average traveled distance for Vig2 under the
rigid FSYNC scheduler.

First we note that several algorithm and scheduler combinations confirm our last assumption.
Figure 10.8a shows the probability of a color perception error depending on the parameter D.
Figure 10.8b shows a zoomed plot of the average distance traveled for the Vig2 algorithm under
the rigid FSYNC scheduler, and clearly displays the expected change in behavior when D = 1.

Then, let us look at our first assumption about Her2 and Vig2. Both algorithms appear in-
distinguishable for every model except distance for rigid ASYNC. This is reasonable: ASYNC
is the only model involving different behavior, and rigid allows for the most adversarial counter
examples.

Regarding our second assumption, the hierarchy between Das4 and the rest is always pre-
served. However, it appears the hierarchy between Vig3 and Vig2/Her2 is violated for greater
error probability for distance in ASYNC and activations in FSYNC.

Our third assumption appears validated for rigid schedulers, as graphs show both distance
and activations decrease with a decrease in error probability. However, issues arise when looking
at non-rigid scheduling. While graphs appear normal for distance, several graphs, such as Das4
for ASYNC and both vig3 and Her2/Vig2 for FSYNC show an average number of activations
smaller than the baseline, and increasing with a decrease of the error probability.

The average of activations in the latter FSYNC case appears to not even be monotonous,
and actually crosses the baseline for Das4 in SSYNC.

We currently have no reliable explanation for these anomalies in the behavior of algorithms,
and they should be investigated further.

Chapter 11

Improved Convergence and Leader
Election for Faulty Visibility Sensors

Following the observations of problematic behaviors in chapter 8.6.2 and 9.2, we provide two
new algorithms: a fuel efficient Convergence algorithm for two robots, and a Geoleader
Election algorithm that is resilient to faulty visibility sensors.

11.1 Fuel Efficient Convergence

We provide a new algorithm (11.1) for the ASYNC Convergence of two robots. Our algorithm
is a simplified version of the two color algorithm by Viglietta [84]. Our algorithm however
ensures that no target can ever be outside of the segment between the two robots, ensuring no
wasted moves, and that there exists a scheduling such that convergence is eventually achieved. It
is denoted by FEC (Fuel Efficient Convergence, presented in figure 11.1). Our algorithm still
uses two colors (BLACK and WHITE), and when observing the other robot’s color, the observing
robot either remains still (the ’Self’ target) or goes to the computed midpoint between the two
robots (the ’Midpoint’ target), possibly switching its color to the opposite one.

BLACK→Self

WHITE→Midpoint
BLACK→Self

WHITE→Self

Figure 11.1 – FEC: Fuel Efficient Convergence Algorithm for Two Robots

Algorithm 11.1 FEC: Fuel Efficient Convergence Algorithm for Two Robots

if me.color = WHITE

me.color⇐ BLACK

if other.color = WHITE

me.destination⇐ other.position/2
else if me.color = BLACK

if other.color = BLACK

me.color⇐WHITE

As a sanity check, we ran this algorithm through our simulator for one hour (' 30 million data
points) under a randomized ASYNC scheduler and could not find a single execution where the

117

118 CHAPTER 11. IMPROVED CONVERGENCE AND LEADER ELECTION

traveled distance was greater than the initial distance.

Theorem 11.1. The Fuel Efficient Convergence Algorithm (11.1) guarantees the distance trav-
eled for Convergence is never greater than the initial distance between the two robots under
the ASYNC scheduler, assuming simple initial configurations 1.

Proof. First, we see that to achieve Convergence with an optimal distance, robots should al-
ways be moving towards each other. So, for robots to converge using more than the initial
distance, it is required that, at one point in the execution, one robot moves not towards the other
robot.
In theorem 4.5, we note that a network of two disoriented robots can be simplified as a line. In
that sense, the only movement that can increase the maximum Convergence distance is when
a robot moves opposite the other robot. In other words, when robots ’switch sides’.
Let us now prove that no robot can target a robot while it is in its MOVE phase: Only the
{WHITE,WHITE } snapshot can trigger a MOVE phase. Since this transition implies a change
of color to BLACK at the end of the COMPUTE phase, robots that move can only be BLACK.
So, if a robot is moving, it is BLACK and the other robot, regardless of color, cannot start mov-
ing because its snapshot is different from {WHITE,WHITE }.
Furthermore, because robots switch to BLACK after moving, and can only switch to WHITE if
the other robot is BLACK, no robot can execute multiple MOVE in sequence unless the other
robot has executed at least a full cycle in between. So a robot cannot move multiple times while
the other has pending moves.
We use the same reasoning as for proving theorem 4.4, but only with STAY, M2H.
We look at what happens after each robot completes at least one full cycle. We assume r1 per-
forms a LOOK, and r2 performs k cycles before r1 finishes its MOVE. The distance after r1
finishes its cycle is presented in table 11.1.

r1 has a pending STAY r1 has a pending M2H

r2 executes k STAY X
[

X
2
,X−δ

]
r2 executes 1 M2H2

[
X
2
,X−δ

]
[0,X−2 ·δ]

Table 11.1 – Distance after a full cycle of r1 and k full cycles of r2 with an initial distance of X

In the case of simultaneous M2H, the distance can be reduced down to zero, but robots cannot
switch sides.
In both other cases where a MOVE happens, the distance is reduced at most down to half, and
robots cannot switch sides.
Overall, in no cases can the robots move not towards one another, so the maximum distance
traveled is always the initial distance between the two robots.

However, while the randomized scheduler we use for the simulator ensures convergence is
always achieved, a rapid analysis of the algorithm shows this algorithm ensure fuel efficiency,
but does not actually ensures convergence. In fact, a simple SSYNC scheduling can infinitely
prevent robots from moving. This further highlights that simulations and formal proofs are
complementary. We conjecture that Fuel Efficient Convergence is not actually possible for two
colors, and that algorithms using three colors may even yield Fuel Efficient Rendezvous.

1See section 4.2.1
2As explained above, moving a second time requires at least a full cycle from the other robot.

11.1. FUEL EFFICIENT CONVERGENCE 119

We also compare the resilience of this algorithm to vision error with the center of gravity algo-
rithm in figures 11.2a and 11.2b, which shows this algorithm is also slightly more resilient to
vision errors.

(a) Maximum Distance Traveled by COG (top)
and FEC (bottom)

(b) Average Distance Traveled by COG (top) and
FEC (bottom)

120 CHAPTER 11. IMPROVED CONVERGENCE AND LEADER ELECTION

11.2 Error Resilient Geoleader Election

The Geoleader Election algorithm by Canepa and Gradinariu Potop-Butucaru [19] was not
designed under the assumption that the visibility sensors could be prone to errors. In this sec-
tion, we use this knowledge to create a new, error-resilient, version of this algorithm, using our
simulation framework.

11.2.1 Geoleader Election for Four Robots

One intuitive way of building a fully resilient algorithm for Leader Election could be based on
robots computing the bounds of the error zone. While this seems feasible for a 3-robot election,
it becomes far less trivial for four robots or more.

Figures 11.3 through 11.8 show the result of attempting to elect a GEOLEADER using al-
gorithm 5.2 by Canepa and Gradinariu Potop-Butucaru [19] which should fail whenever two
robots are identically close to the center of the smallest enclosing circle. However, as we have
shown, such cases are statistically impossible with perfect sensors and simply become a small
subset of the error points of error-prone sensors.

Robots r1 and r2 are fixed at coordinate (−0.5,0) and (0.5,0), respectively. Robot r3 has a
fixed location for each image, on a grid in the lower left quarter of the image. Symmetries of
the network allow us to easily extrapolate results for the remainder of the positions of r3. The
position of r4 is chosen at random, and each point show the result for a given position. The error
is absolute with err = 0.001.

As before, colors red, green, and blue denote that robot r1, r2 and r3 are the chosen
GEOLEADER, respectively. Color cyan denotes that robot r4 is the chosen GEOLEADER, and
yellow denotes that two different GEOLEADER robots have been elected due to sensor error.
Similarly to previous simulations, each image contains one million points.

As can be seen from the following figures, computing precisely the bounds of the error zone is
extremely complex in practice, as the formula would be different and more complex the larger
the network is.

11.2. ERROR RESILIENT GEOLEADER ELECTION 121

Figure 11.3

122 CHAPTER 11. IMPROVED CONVERGENCE AND LEADER ELECTION

Figure 11.4

11.2. ERROR RESILIENT GEOLEADER ELECTION 123

Figure 11.5

124 CHAPTER 11. IMPROVED CONVERGENCE AND LEADER ELECTION

Figure 11.6

11.2. ERROR RESILIENT GEOLEADER ELECTION 125

Figure 11.7

126 CHAPTER 11. IMPROVED CONVERGENCE AND LEADER ELECTION

Figure 11.8

11.2. ERROR RESILIENT GEOLEADER ELECTION 127

11.2.2 Proposed Algorithm

In chapter 9.2, we used the framework to detect failed elections caused by visibility sensor
errors. Since mobile robots are able to run any algorithm during their COMPUTE phase, then
they can also run the simulation framework to do precisely that.

The improved algorithm relies on the knowledge of the vision error model and its upper
bounds to simulate random errors in a robot’s position and snapshot and determine whether
there exists a possibility of the other robots electing different LEADER robots.

Note that absolutely knowing that the election cannot fail (i.e., the election cannot yield two
different LEADER robots for two different robots) would require checking the entire surface of
possible errors, which is not feasible in practice. So, we assume that robots perform a finite
number of trials and decide accordingly.

Each robot internally simulates a position error for each robot in its snapshot within the
known margins, performs a simulated election for each robot in its snapshot, and checks for
discrepancies in the resulting LEADER robots. This is repeated with new random errors for a
given number of tries, similar to a Monte-Carlo approach.

Once a robot believes the election process can succeed, it chooses the LEADER normally.
Otherwise, it picks a random direction and distance, and performs a MOVE to "scramble"

the network.
This process repeats until all robots believe the election can succeed.

This is detailed in algorithm 11.2.

Algorithm 11.2 Reliable Leader Election algorithm

L = sel f .COMPUTE(′LeaderElection′)
my_network = sel f .snapshot ∪ sel f
counter = 0
while counter < nb_tries do

for r1 in my_network do
rv = r1
Change rv.x and rv.y randomly according to error parameters
rv.snapshot = my_network/{r1}
for r2 in rv.snapshot do

Change r2.x and r2.y randomly according to error parameters
Lv = rv.COMPUTE(′LeaderElection′)
if L 6= Lv

Move randomly
Exit

counter += 1
L is elected LEADER

We now perform simulations using this algorithm.

Each point is sorted according to the following:

• If no robot detects a possible error, it is a valid point.

• If at least one robot has detected a possible error, and decided to move as a result, it is a
detected possible error point.

• If no robot moves, but two robots have different LEADER robots, it is an undetected error
point.

128 CHAPTER 11. IMPROVED CONVERGENCE AND LEADER ELECTION

We measure the proportion of undetected error and possible error points for nbtries between 0
and 30. Results are presented in figure 11.9.

Figure 11.9 – Performance of the Error-Resilient Election Algorithm
err = 0.001

Note that the number of undetected error points, while decreasing, has not reached zero under
our testing conditions. Also, using a single internal simulation typically results in a ∼ 80%
reduction in the number of undetected error points. Using 10 internal simulations resulted in a
reduction of 99.5% of undetected error points.

Which number of internal simulations is the best suited would depend on both the speed and
reliability requirements.

Importantly, we notice that, were we to choose an error model and error bounds such that it
models the possible errors of representing real numbers using limited precision floats, then this
particular algorithm, when used with an infinitely large, similar to R2 number of random tries,
can be made to reliably detect anomalies due to the errors of evolving in the continuous plane,
yet only perceiving a discretized plane. Actually, me make the conjecture that this algorithm
can be adapted to allow any algorithm that makes decisions based on robot locations to function
in a perceived discretized plane.

Furthermore, using this algorithm allows us to reduce the size of a snapshot to a finite,
storable amount to realistically use the SyncSim protocol [31], and fully simulate the FSYNC
scheduler in LUMINOUS ASYNC.

Conclusion: Real World Performance

In this chapter, we introduce a modular framework designed to simulate mobile robots for any
given setting.

We discuss the limitations and constraints of this approach, and use it to compute the max-
imum distance traveled, or fuel efficiency, of multiple algorithms in several settings, with in-
teresting results. In particular, we note that the algorithm by Izumi et al. [61] can lead to an
unbounded increase in distance before eventually gathering. Similarly, the center of gravity al-
gorithm is inherently sub-optimal for n > 2 robots, and robots should use an algorithm based on
the geometric median instead.

We then use this framework to simulate inaccurate sensors for mobile robots and verify the
behavior of Convergence and motion based Leader Election under this new model. We also
introduce errors in the perception of colors for LUMINOUS robots performing state-of-the-
art two-robot Gathering.

Finally, we designed two new algorithms. The first one is designed to perform two-robot
Convergence under the ASYNC scheduler with optimal fuel efficiency. The second algorithm
uses the simulator itself to allow robots to solve motion based Leader Election with inaccu-
rate sensors. The latter can be adapted to allow for decision making algorithm, such as Leader
Election, to function using discretized snapshots, and so, to use the SyncSim protocol to simu-
late the FSYNC scheduler in LUMINOUS ASYNC.

Overall, this framework achieves its planned objective of being both easy to use and able to
produce useful results for researchers. As a test, we timed the full implementation, and testing
in FSYNC, SSYNC and ASYNC, of the Obstructed Token Transmission algorithms 7.1 and 7.2
to require less than an hour, including basic network monitoring.

The source code and instructions for our simulator are provided in the appendix and at the
following repository: https://github.com/UberPanda/PyBlot-Sim

129

https://github.com/UberPanda/PyBlot-Sim

Chapter 12

Conclusion: Networks of Realistic
Robots

12.1 Our contributions

The goal of this thesis is to, first, survey and analyze the current work done by the distributed
robotics community to find the more realistic variations of the standard OBLOT model [83].
Then we aim to further investigate existing, and develop new such variations to decide which
approach should be used in the long term to bridge the realism gap between mobile robots and
actual robots.

We first perform an extensive investigation on state-of-the-art models designed for more
realistic perception, movement, communication and synchronization.

We develop a new, optimal algorithm for 2-robot Gathering. However, because of ma-
jor difficulties encountered when attempting to prove this algorithm with pen and paper, we
build and prove a complete model checking framework for 2-robot Gathering in the continu-
ous plane based on the SPIN model checker. In the process of proving the framework, we prove
several fundamental results, including that an algorithm for oblivious robots is not necessar-
ily self-stabilizing under the ASYNC scheduler. We confront known state-of-the-art Rendez-
vous algorithms and find results consistent with the literature. We also introduce a new model
for colors which matches the common notions of safe, regular and atomic registers and test a
Rendezvous algorithm for regular lights. Similarly, we use lights to build more robust Leader
Election algorithms, which allow for stricter constraints of safety and preventing scheduler bias
on the election.

We then design a new vision model for mobile robots, named Uncertain Visibility, which
introduces a vision adversary for sensors to register false negatives, i.e. not see robots that
are actually there, and prove tight bounds under this new model for the problems of n-robot
Gathering, Uniform Circle Formation, Leader Election and LUMINOUS Rendezvous.
We also focus on the already existing obstructed visibility, or opaque robot model, and define
a new problem, Obstruction Detection, which requires robots to not move, and compute
which visible robot is obstructing them from seeing another robot. However, after proving
several fundamental results and two unsuccessful attempts at solving the problem, including an
algorithm based on token transmission, we acknowledge the massive difficulty inherent to both
the problem and the model itself.

Because of how difficult working with more complex algorithms under realistic models
turns out to be, we decide to change our approach: we develop a framework for Monte-Carlo
simulations of mobile robots from the ground up. This framework is modular which allows
us to simulate any robot model, scheduler or algorithm with minimal effort. This simulator
is not a model checker and has known limitations. Because of these limitations, finding no
failed executions does not immediately guarantee the algorithm is correct, and finding failed

130

12.2. SHORT-TERM PERSPECTIVES 131

executions does not imply the algorithm fails for a given model. As such, it should currently be
viewed as a replacement for researcher "intuition", and used to look for unexpected behavior in
mobile robot networks that would be then verified using formal techniques.

For instance, this simulator allows us to notice that the Rendezvous algorithms for unreli-
able compasses by Izumi et al. [61] do not guarantee a consistent decrease in distance throughout
the execution, and can actually increase the distance between two robots with no upper bounds,
before decreasing to zero in a few cycles. This behavior is easy to understand once a researcher
knows to look for it, but is not easily found by simply studying the algorithm. Our pen and paper
analysis also fails to detect an inefficient execution of the three-color Rendezvous algorithm
by Viglietta [84], which gathers robots using a full initial distance more than necessary, under
the ASYNC scheduler, which further proves our point. We notice that using the Center of Grav-
ity algorithm for Gathering is not optimal in distance, as the optimal point is the geometric
median, which is known to not be computable.

We then use this simulator to implement and test errors in vision. We test the Center of
Gravity algorithm for Rendezvous with errors in perceived distances and angles, which lead
us to assume that angles are more sensitive to errors than distances. Similarly, we demon-
strate that Geoleader Election is not possible in this vision model. We test state-of-the-art
LUMINOUS algorithms against a model which allows for distance-dependent errors in color
perception, and find that algorithms can be substantially delayed using this model. Some details
in behavior in this error model remain to be explained.

Finally, we introduce another two algorithms: the first algorithm uses two colors to ensure
ASYNC Convergence for two robots and guarantees the distance traveled is minimal ; the
second allows for Leader Election with errors in vision: robots use the simulator itself to verify
for possible errors in the election and move randomly if an error is detected. This particular
design philosophy can be used to adapt some algorithms to function in a continuous setting
using discretized snapshots, and therefore can be used to realistically implement the SyncSim
protocol and simulate a FSYNC scheduler in LUMINOUS ASYNC.

12.1.1 Published Work

Our two-color algorithm for ASYNC Rendezvous presented in chapter 2.1 was published with
its original proof at ICDCN 2018 [53]. An extended version is currently under review for
publication in TCS.

Our model-checking system for verifying Rendezvous algorithms presented in chapter 3.2
was first published as a brief announcement at DISC 2019 [33]. The full version was published
at SRDS 2020 [34].

Our new model for uncertain vision presented in chapter II was first published at SIROCCO
2019 [55]. The full version was accepted for publication in PPL [56].

Our preliminary results for Obstruction Detection presented in chapter 6.5 were pre-
sented at the IEICE COMP / IPSJ-AL 2018 workshop [54].

12.2 Short-Term Perspectives

12.2.1 Analyzing More Models and Algorithms

As we discuss in the previous section, our simulator is modular to allow for use for any given
algorithm and model. So it seems logical that it should, ideally, implement every existing model
and test all major algorithms in the literature. In particular, we should analyze existing Mutual
Visibility algorithms to confirm a proper model for obstructed visibility and begin testing of
Obstruction Detection algorithms in this model.

132 CHAPTER 12. CONCLUSION: NETWORKS OF REALISTIC ROBOTS

12.2.2 Gathering of n Robots Using Two Colors

As a continuation to the 2-color algorithm for ASYNC 2-robot Gathering provided in chap-
ter 2.1, we design a similar 2-color algorithm proposal for SSYNC n ≥ 3-robot Gathering,
using strong global multiplicity detection.

This algorithm proposal functions as follows:

• Activated robots perform a LOOK.

• Robots look through their snapshot for the position with the most robots, i.e. the largest
tower.

• If there is a single largest tower, it is the destination for their MOVE.

• If it is not unique, they compare these largest tower to find the ones with the most robots
in the BLACK color. This is the largest BLACK tower.

• If there is a single largest BLACK tower, it is the destination for their MOVE.

• Otherwise:

– if the robot is WHITE, it moves towards the centroid of the largest BLACK towers
and switches its color to BLACK.

– if the robot is BLACK, it moves towards the closest largest BLACK tower and switches
its color to WHITE.

Algorithm 12.1 SSYNC n-Robot Gathering with Two Colors: Proposal
largest-tower = [position with largest number of robots]
if largest-tower is unique

me.destination = largest-tower
else

largest-BLACK-tower = [largest-tower with largest number of BLACK robots]
if largest-BLACK-tower is unique

me.destination = largest-BLACK-tower
else

if me.color = WHITE

me.destination = centroid of largest-BLACK-tower
me.color⇐ BLACK

else if me.color = BLACK

me.destination = closest largest-BLACK-tower
me.color⇐WHITE

For similar reasons, this proposal is extremely tricky to prove.
Our approach with the SPIN model checker is not immediately usable as the fundamental

theorems do not hold for n≥ 3 robots.
Using our simulator, we tested this proposal for all values of n between 2 and 20 under the

ASYNC and SSYNC schedulers. No counter-examples were found, which encourages us in
trying to formally prove its validity.

12.3. LONG-TERM PERSPECTIVES 133

12.3 Long-Term Perspectives

12.3.1 A Proven Simulator

As previously stated, while interesting for researchers, our simulator is not a tool for formal
proofs. However, one could also argue that in its current state, we have not proven that the
simulator actually simulates mobile robots, even within our degraded hypotheses. We believe
that the simulator itself should be formally proven to match the model of mobile robots it claims
to simulate. Note that the usefulness of this proof would be limited, as the addition of any new
module may require proving the entire simulator again.

12.3.2 Stronger Simulator Adversaries

In its current form, the simulator relies on a randomized adversary for scheduling, non-rigid
behavior, and simultaneous LOOK and MOVE for ASYNC. This is obviously very limiting, as
seen for the Fuel Efficient Convergence algorithm. In practice, scheduling only requires the
adversary to choose among a finite set of possible activations, while the other two choices, in
theory, require choosing a single value in a continuous interval1. From the point of view of
the adversary, the algorithm could be seen as a game adversary, defeated when it fails to solve
a given problem. Recent advances in artificial adversaries using Machine Learning may be
used to create a practical adversary designed to defeat an algorithm under the ’game rules’ of
mobile robots. In particular, techniques of Monte-Carlo Tree Search for scheduling and Gradient
Descent for motion seem the most promising approach.

12.3.3 Obstruction Detection

There is currently no proven algorithm to solve the Obstruction Detection problem for a non-
line network. As explained in chapter 6.5, we currently have found no functional deterministic
algorithm, and proving randomized, color based algorithms, is extremely tricky. However, once
a proper obstructed visibility model is implemented in our simulator, it could be used to quickly
eliminate invalid algorithms and massively speed-up the design process.

12.3.4 Expanding Uncertain Visibility

The current model of Uncertain Visibility is limited to the FSYNC scheduler, as it relies on
the notion of rounds to be properly defined. We believe this model to be interesting enough
to warrant further investigation. In particular, it should be carefully expanded to the SSYNC
scheduler, which would require extreme care regarding the fairness and boundedness of the
scheduler to prevent trivial counter-examples where the scheduler simply repeats a LOOK until
the vision adversary removes a relevant message.

Both vision adversaries introduced rely on an adversary. A fully randomized model of
Uncertain Visibility, requiring a randomized choice of the number of messages to be dropped
would be the weakest model yet, and should also be rigorously studied.

Moreover, we have shown that uncertain visibility is orthogonal to asynchrony in the case
of LUMINOUS Rendezvous. A possible relationship with self-stabilization may be worth
investigating: self-stabilizing algorithms can tolerate a single transient fault putting the network
in an arbitrary state, while uncertain visibility can be seen as a limited transient fault, but hap-
pening each round.

Finally, our analysis in this model only tests algorithms designed for the unlimited vision
model. It is paramount that algorithms designed for the limited visibility model be tested. It

1It is in fact a finite by the nature of numerical simulations, but the size of the set can be seen as infinite for in
this case.

134 CHAPTER 12. CONCLUSION: NETWORKS OF REALISTIC ROBOTS

would seem, at first, that such algorithms, as they seem to succeed against the n · (n−1)-enemy,
should trivially succeed against any uncertain adversary. However, the limited visibility model
ensures symmetry in vision, while the uncertain model does not. So, if an algorithm relies on
the fact that, when it sees another robot, the other robot also sees it, it might fail against weaker
uncertain adversaries. And in fact, may not work against the n · (n− 1)-enemy, as it can block
up to n · (n−1) vision messages.

12.3.5 Robots with Finite Memory Snapshots

As explained in chapter 10.5, our Leader Election algorithm for errors in vision is able to
function in a continuous setting using discretized snapshots. The design philosophy behind
this algorithm of using randomized tries to simulate sensor errors is not specific to the Leader
Election problem, and it could be used for other algorithms that rely on making decisions based
on the locations of robots in the network and that are sensitive to errors in perception. Building
new algorithms that can use these finite snapshots allows us to use the SyncSim protocol [31]
and simulate a FSYNC scheduler in LUMINOUS ASYNC and would be a major advantage
for resilience to asynchrony.

Appendix A

Details and Results of the Model
Checker

A.1 Movement Resolution

The movement resolution rules described in Figure 4.7 are implemented by the Promela code
described in Listing A.1 below, during the MOVEE phase of the cycle.

In Promela, the meaning of if and the guarded actions guard -> action that follow is
different from other languages in the sense that, when several guards are enabled, the execution
faces a non-deterministic choice and the exploration of the model checker branches into several
executions to explore all enabled guards. The guard else is exclusive in that it is enabled only
when no other guards are enabled.

135

136 APPENDIX A. APPENDIX: DETAILS AND RESULTS OF THE MODEL CHECKER

Listing A.1 – Movement resolution
if
:: (robot[me].is_moving) ->

local position_t new_position = position;
assert(robot[me].pending != STAY);
if
:: (position == NEAR || position == SAME) ->

if
:: (robot[me].pending == MISS) ->

{ robot[other].pending = MISS }
unless (robot[other].pending == STAY);

new_position = NEAR;
:: (robot[me].pending == TO_OTHER) ->

{ robot[other].pending = MISS }
unless (robot[other].pending == STAY
|| position == SAME);

new_position = SAME;
:: (robot[me].pending == TO_HALF) ->

if
:: (robot[other].pending == TO_HALF)

-> robot[other].pending = TO_OTHER
:: (robot[other].pending == STAY)

-> skip /* do nothing */
:: else

-> robot[other].pending = MISS
fi

:: else -> assert(false)
fi;

fi;
if
:: (position != new_position) ->

eventPositionChange:
position = new_position

:: else -> skip /* do nothing */
fi

:: else -> skip
fi;
robot[me].is_moving = false;
robot[me].pending = STAY;

A.2. VERIFIED ALGORITHMS WRITTEN IN PROMELA 137

A.2 Verified Algorithms Written in Promela

Listing A.2 – No Move Algorithm
inline Alg_NoMove(obs, command)
{

command.move = STAY;
command.new_color = BLACK

}

Listing A.3 – Move to Half Algorithm
inline Alg_ToHalf(obs, command)
{

command.move = TO_HALF;
command.new_color = BLACK

}

Listing A.4 – Move to Other Algorithm
inline Alg_ToOther(obs, command)
{

command.move = TO_OTHER;
command.new_color = BLACK

}

Listing A.5 – Viglietta’s 2 colors algorithm [84] for LC-atomic ASYNC
inline Alg_Vig2Cols(obs, command)
{

command.move = STAY;
command.new_color = obs.color.me;
if
:: (obs.color.me == BLACK) ->

if
:: (obs.color.other == BLACK)

-> command.new_color = WHITE
:: (obs.color.other == WHITE)

-> skip
fi

:: (obs.color.me == WHITE) ->
if
:: (obs.color.other == BLACK)

-> command.move = TO_OTHER
:: (obs.color.other == WHITE)

-> command.move = TO_HALF;
command.new_color = BLACK

fi
:: else -> command.new_color = BLACK
fi

}

Listing A.6 – Viglietta’s 3 colors algorithm [84] for ASYNC
inline Alg_Vig3Cols(obs, command)
{

command.move = STAY;
command.new_color = obs.color.me;
if
:: (obs.color.me == BLACK) ->

if
:: (obs.color.other == BLACK)

138 APPENDIX A. APPENDIX: DETAILS AND RESULTS OF THE MODEL CHECKER

-> command.move = TO_HALF;
command.new_color = WHITE

:: (obs.color.other == WHITE)
-> command.move = TO_OTHER

:: (obs.color.other == RED)
-> skip

fi
:: (obs.color.me == WHITE) ->

if
:: (obs.color.other == BLACK)

-> skip
:: (obs.color.other == WHITE)

-> command.new_color = RED
:: (obs.color.other == RED)

-> command.move = TO_OTHER
fi

:: (obs.color.me == RED) ->
if
:: (obs.color.other == BLACK)

-> command.move = TO_OTHER
:: (obs.color.other == WHITE)

-> skip
:: (obs.color.other == RED)

-> command.new_color = BLACK
fi

:: else -> command.new_color = BLACK
fi

}

Listing A.7 – Heriban’s 2 colors algorithm [53] for ASYNC
inline Alg_Optimal(obs, command)
{

command.move = STAY;
command.new_color = obs.color.me;
if
:: (obs.color.me == BLACK) ->

if
:: (obs.color.other == BLACK)

-> command.new_color = WHITE
:: (obs.color.other == WHITE)

-> skip
fi

:: (obs.color.me == WHITE) ->
if
:: obs.same_position -> skip
:: else ->

if
:: (obs.color.other == BLACK)

-> command.move = TO_OTHER
:: (obs.color.other == WHITE)

-> command.move = TO_HALF;
command.new_color = BLACK

fi
fi

:: else -> command.new_color = BLACK
fi

}

Listing A.8 – Flocchini’s external lights 3 colors algorithm [48] for SSYNC
inline Alg_FloAlgo3Ext(obs, command)
{

A.2. VERIFIED ALGORITHMS WRITTEN IN PROMELA 139

command.move = STAY;
command.new_color = obs.color.me;
if
:: (obs.color.other == BLACK)

-> command.move = TO_HALF;
command.new_color = WHITE

:: (obs.color.other == WHITE)
-> command.new_color = RED

:: (obs.color.other == RED)
-> command.move = TO_OTHER;

command.new_color = BLACK
:: else -> command.new_color = BLACK
fi

}

Listing A.9 – Okumura’s external lights 5 colors algorithm [73] for LC-atomic ASYNC
inline Alg_Wada5Ext(obs, command)
{

command.move = STAY;
command.new_color = obs.color.me;
if
:: (obs.color.other == BLACK)

-> command.move = TO_HALF;
command.new_color = WHITE

:: (obs.color.other == WHITE)
-> command.new_color = RED

:: (obs.color.other == RED)
-> command.move = TO_OTHER;

command.new_color = YELLOW
:: (obs.color.other == YELLOW)

-> command.new_color = GREEN
:: (obs.color.other == GREEN)

-> command.new_color = BLACK
:: else -> command.new_color = BLACK
fi

}

Listing A.10 – Okumura’s external lights 4 colors algorithm [73] for quasi-self-stabilizing
LC-atomic ASYNC
inline Alg_Oku4ColsX(obs, command)
{

command.move = STAY;
command.new_color = obs.color.me;
if
:: (obs.color.other == BLACK)

-> command.move = TO_HALF;
command.new_color = WHITE

:: (obs.color.other == WHITE)
-> command.new_color = RED

:: (obs.color.other == RED)
-> command.move = TO_OTHER;

command.new_color = YELLOW
:: (obs.color.other == YELLOW)

-> command.new_color = BLACK
:: else -> command.new_color = BLACK
fi

}

Listing A.11 – Okumura’s external lights 3 colors algorithm [73] for non-self-stabilizing rigid
LC-atomic ASYNC

140 APPENDIX A. APPENDIX: DETAILS AND RESULTS OF THE MODEL CHECKER

inline Alg_Oku3ColsX(obs, command)
{

command.move = STAY;
command.new_color = obs.color.me;
if
:: (obs.color.other == BLACK)

-> command.move = TO_HALF;
command.new_color = WHITE

:: (obs.color.other == WHITE)
-> command.new_color = RED

:: (obs.color.other == RED)
-> command.move = TO_OTHER;

command.new_color = WHITE
:: else -> command.new_color = BLACK
fi

}

A.3 Compile Options

spin -a -DALGO=ALGORITHM
-DSCHEDULER=SCHEDULER MainGathering.pml

clang -DMEMLIM=1024 -DXUSAFE -DNOREDUCE
-O2 -w -o pan pan.c

./pan -m100000 -a -f -E -n gathering

A.4. OUTPUT 141

A.4 Output

A.4.1 Vig2Cols in ASYNC (failure)

Depth= 19582 States=
1e+06 Transitions= 3.86e+06

Memory= 146.311 t= 2.25 R= 4e+05
pan:1: acceptance cycle (at depth 2723)
pan: wrote MainGathering.pml.trail

(Spin Version 6.4.9 -- 17 December 2018)
Warning: Search not completed

Full statespace search for:
never claim

+ (gathering)
assertion violations

+ (if within scope of claim)
acceptance cycles

+ (fairness enabled)
invalid end states

- (disabled by -E flag)

State-vector 107 byte,
depth reached 25730, errors: 1
189620 states, stored (1.45028e+06 visited)
4046596 states, matched
5496875 transitions (= visited+matched)
34174756 atomic steps
hash conflicts: 16160 (resolved)

Stats on memory usage (in Megabytes):
24.413 equivalent memory usage

for states (stored*(State-vector
+ overhead))

17.660 actual memory usage
for states (compression: 72.34%)

state-vector as stored
= 70 byte + 28 byte overhead

128.000 memory used for
hash table (-w24)

6.104 memory used for
DFS stack (-m100000)

151.682 total actual memory usage

pan: elapsed time 3.25 seconds
pan: rate 446239.69 states/second

After a failed execution, SPIN provides a (very verbose) counter-example that can be inves-
tigated with the following command.

spin -t MainGathering.pml

142 APPENDIX A. APPENDIX: DETAILS AND RESULTS OF THE MODEL CHECKER

A.4.2 Her2Cols in ASYNC (Success)

Depth= 16958 States=
1e+06 Transitions= 3.84e+06

Memory= 146.115 t=
2.26 R= 4e+05

(Spin Version 6.4.9 -- 17 December 2018)

Full statespace search for:
never claim

+ (gathering)
assertion violations

+ (if within scope of claim)
acceptance cycles

+ (fairness enabled)
invalid end states

- (disabled by -E flag)

State-vector 107 byte,
depth reached 17016, errors: 0
232931 states, stored (1.80493e+06 visited)
5061150 states, matched
6866078 transitions (= visited+matched)
42744752 atomic steps
hash conflicts: 30286 (resolved)

Stats on memory usage (in Megabytes):
29.989 equivalent memory usage

for states (stored*(State-vector
+ overhead))

21.666 actual memory usage
for states (compression: 72.25%)

state-vector as stored
= 70 byte + 28 byte overhead

128.000 memory used
for hash table (-w24)

6.104 memory used
for DFS stack (-m100000)

155.686 total actual memory usage

pan: elapsed time 4.07 seconds
pan: rate 443471.25 states/second

Appendix B

Example of an Instance of the
Simulator

We present a minimum working example of an instance of the simulator. It simulates exe-
cutions of the Vig2 algorithm [84] in the standard OBLOT model with rigid motion, under the
FSYNC scheduler. It monitors the number of cycles needed to complete degraded gathering1.
Results predictably show the possible need of two full cycles in the case where both robots start
in the BLACK color. For better readability, more advanced features of the simulator are not
included.

1i.e. robots are closer than 10−10 with the initial distance being 1.

143

144 APPENDIX B. APPENDIX: EXAMPLE OF AN INSTANCE OF THE SIMULATOR

Listing B.1 – Robot Class File: Common/lib_robot.py
import Common.lib_algorithms as lib_algos

class Robot:
def __init__(self, name, x, y, color=0):

self.name = name
self.x = x ## Real position in the network
self.y = y

self.phase = ’WAITING’

Available info for COMPUTE :

self.snapshot = [] ## snapshot
self.color = color ## color
self.target = ()

def LOOK(self,network,scheduler):
self.snapshot = []
for R2 in network:

if self != R2:
R2x = R2.x
R2y = R2.y
self.snapshot.append(Robot(R2.name, R2x, R2y, R2.color))

self.phase = ’COMPUTING’

def COMPUTE(self,algo):
try:

result = getattr(lib_algos, algo)(self)
except:

raise AttributeError(’This algorithm does not exist in the current version (or you
↪→ made a typo ?)’)

return result

def MOVE(self):

self.x = self.target[0]
self.y = self.target[1]

self.target = ()
self.phase = ’WAITING’

145

Listing B.2 – Miscellaneous Functions File: Common/lib_misc_functions.py
from math import sqrt

def rob_dist(R1,R2): # Using Robots
return dist((R1.x,R1.y),(R2.x,R2.y))

def dist(T1,T2): # USing Tuples
return sqrt((T1[0] - T2[0])**2+(T1[1] - T2[1])**2)

Listing B.3 – Algorithms File: Common/lib_algorithms.py

def vig2(R1):
R2 = R1.snapshot[0]
if R1.color == 0:

if R2.color == 0:
R1.target = ((R1.x+R2.x)/2, (R1.y+R2.y)/2)
R1.color = 1
R1.phase = ’MOVING’

else:
R1.target = (R2.x, R2.y)
R1.phase = ’MOVING’

else:
R1.phase = ’WAITING’
if R2.color == 1:

R1.color = 0

Listing B.4 – Scheduler File: Common/lib_schedulers.py

def scheduler(sched,network,algo):

if sched == ’FSYNC’:
for R1 in network:

R1.LOOK(network,’FSYNC’)
for R1 in network:

R1.COMPUTE(algo)
for R1 in network:

if R1.phase == ’MOVING’:
R1.MOVE()

else:
raise Exception(’Unknown Scheduler’)

Listing B.5 – Simulation Functions File: Common/lib_sim_functions.py
None Needed for this Example

146 APPENDIX B. APPENDIX: EXAMPLE OF AN INSTANCE OF THE SIMULATOR

Listing B.6 – Simulation File: Vig2.py
from random import SystemRandom, choice, uniform
from math import sqrt, pi, cos, sin
from Common.lib_robot import Robot
from Common.lib_schedulers import scheduler
from Common.lib_misc_functions import rob_dist

_sysrand = SystemRandom()

##

SSTAB = True
COLOR_RANGE = range(2) # Total number of colors.

##

simus = 0
act_list = []

while simus < 1000000:
simus += 1

Network initialization

network = []
network.append(Robot(’r1’,0,0,0))

ang = uniform(-pi,pi)
network.append(Robot(’r2’,cos(ang),sin(ang),0))

for R1 in network:
if SSTAB == True:

R1.color = choice(COLOR_RANGE)

Beginning of the simulation

steps = 0
while True:

scheduler(’FSYNC’,network,’vig2’)

Live state monitoring

steps += 1

Victory condition

if rob_dist(network[0],network[1]) < 10**(-10):
break

Defeat condition

act_list.append(steps)

print(’FSYNC R Vig2’)
print(’Min : ’ + str(min(act_list)))
print(’Max : ’ + str(max(act_list)))
print(’Avg : ’ + str(sum(act_list) / len(act_list)))

Appendix C

Details of Color Perception Error

This appendix contains the detailed results of our simulations for the color perception error
model.
Each figure shows the 99.9% confidence interval.
Das4 is shown top-left, Vig3 top-right, Vig2 bottom-left, Her2 bottom Right.

Figure C.1 – Distance for non-rigid ASYNC

147

148 APPENDIX C. APPENDIX: DETAILS OF COLOR PERCEPTION ERROR

Figure C.2 – Activations for non-rigid ASYNC

149

Figure C.3 – Distance for rigid ASYNC

150 APPENDIX C. APPENDIX: DETAILS OF COLOR PERCEPTION ERROR

Figure C.4 – Activations for rigid ASYNC

151

Figure C.5 – Distance for non-rigid SSYNC

152 APPENDIX C. APPENDIX: DETAILS OF COLOR PERCEPTION ERROR

Figure C.6 – Activations for non-rigid SSYNC

153

Figure C.7 – Distance for rigid SSYNC

154 APPENDIX C. APPENDIX: DETAILS OF COLOR PERCEPTION ERROR

Figure C.8 – Activations for rigid SSYNC

155

Figure C.9 – Distance for non-rigid FSYNC

156 APPENDIX C. APPENDIX: DETAILS OF COLOR PERCEPTION ERROR

Figure C.10 – Activations for non-rigid FSYNC

157

Figure C.11 – Distance for rigid FSYNC

158 APPENDIX C. APPENDIX: DETAILS OF COLOR PERCEPTION ERROR

Figure C.12 – Activations for rigid FSYNC

List of Acronyms

ASYNC Asynchronous Scheduler.

FSYNC Fully Synchronous Scheduler.

LCM LOOK-COMPUTE-MOVE.

M2H Move To Half.

M2O Move To Other.

OBLOT Oblivious Robot Model.

SEC Smallest Enclosing Circle.

SSYNC Semi Synchronous Scheduler.

159

Bibliography

[1] Jordan Adamek, Mikhail Nesterenko, and Sébastien Tixeuil. “Evaluating and Optimiz-
ing Stabilizing Dining Philosophers”. In: 11th European Dependable Computing Confer-
ence, EDCC 2015, Paris, France, September 7-11, 2015. IEEE Computer Society, 2015,
pp. 233–244. DOI: 10.1109/EDCC.2015.11.

[2] Noa Agmon and David Peleg. “Fault-Tolerant Gathering Algorithms for Autonomous
Mobile Robots”. In: SIAM J. Comput. 36.1 (2006), pp. 56–82. DOI: 10.1137/050645221.

[3] Hideki Ando, Yoshinobu Oasa, Ichiro Suzuki, and Masafumi Yamashita. “Distributed
memoryless point convergence algorithm for mobile robots with limited visibility”. In:
IEEE Trans. Robotics and Automation 15.5 (1999), pp. 818–828. DOI: 10.1109/70.
795787.

[4] Divansh Arora, Parikshit Maini, Pedro Pinacho Davidson, and Christian Blum. “Route
planning for cooperative air-ground robots with fuel constraints: an approach based on
CMSA”. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2019, Prague, Czech Republic, July 13-17, 2019, ed. by Anne Auger et al. ACM,
2019, pp. 207–214. DOI: 10.1145/3321707.3321820.

[5] Hagit Attiya and Jennifer L. Welch. Distributed computing - fundamentals, simulations,
and advanced topics (2. ed.) Wiley series on parallel and distributed computing. Wiley,
2004. ISBN: 978-0-471-45324-6.

[6] Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sébastien Tixeuil, and Xavier Urbain.
“Certified Impossibility Results for Byzantine-Tolerant Mobile Robots”. In: Stabiliza-
tion, Safety, and Security of Distributed Systems - 15th International Symposium, SSS
2013, Osaka, Japan, November 13-16, 2013. Proceedings, ed. by Teruo Higashino et
al. Vol. 8255. Lecture Notes in Computer Science. Springer, 2013, pp. 178–190. DOI:
10.1007/978-3-319-03089-0_13.

[7] Thibaut Balabonski, Pierre Courtieu, Robin Pelle, Lionel Rieg, Sébastien Tixeuil, and
Xavier Urbain. “Brief Announcement Continuous vs. Discrete Asynchronous Moves: A
Certified Approach for Mobile Robots”. In: Stabilization, Safety, and Security of Dis-
tributed Systems - 20th International Symposium, SSS 2018, Tokyo, Japan, November 4-
7, 2018, Proceedings, ed. by Taisuke Izumi et al. Vol. 11201. Lecture Notes in Computer
Science. Springer, 2018, pp. 404–408. DOI: 10.1007/978-3-030-03232-6_29.

[8] Thibaut Balabonski, Amélie Delga, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain.
“Synchronous Gathering without Multiplicity Detection: a Certified Algorithm”. In: The-
ory Comput. Syst. 63.2 (2019), pp. 200–218. DOI: 10.1007/s00224-017-9828-z.

[9] Thibaut Balabonski, Robin Pelle, Lionel Rieg, and Sébastien Tixeuil. “A Foundational
Framework for Certified Impossibility Results with Mobile Robots on Graphs”. In: Pro-
ceedings of the 19th International Conference on Distributed Computing and Network-
ing, ICDCN 2018, Varanasi, India, January 4-7, 2018, ed. by Paolo Bellavista et al. ACM,
2018, 5:1–5:10. DOI: 10.1145/3154273.3154321.

160

https://doi.org/10.1109/EDCC.2015.11
https://doi.org/10.1137/050645221
https://doi.org/10.1109/70.795787
https://doi.org/10.1109/70.795787
https://doi.org/10.1145/3321707.3321820
https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/978-3-030-03232-6_29
https://doi.org/10.1007/s00224-017-9828-z
https://doi.org/10.1145/3154273.3154321

BIBLIOGRAPHY 161

[10] Evangelos Bampas, Lélia Blin, Jurek Czyzowicz, David Ilcinkas, Arnaud Labourel,
Maria Potop-Butucaru, and Sébastien Tixeuil. “On asynchronous rendezvous in gen-
eral graphs”. In: Theor. Comput. Sci. 753 (2019), pp. 80–90. DOI: 10.1016/j.tcs.
2018.06.045.

[11] Béatrice Bérard, Pierre Courtieu, Laure Millet, Maria Potop-Butucaru, Lionel Rieg,
Nathalie Sznajder, Sébastien Tixeuil, and Xavier Urbain. “[Invited Paper] Formal Meth-
ods for Mobile Robots: Current Results and Open Problems”. In: International Journal
of Informatics Society 7.3 (2015), pp. 101–114.

[12] Béatrice Bérard, Pascal Lafourcade, Laure Millet, Maria Potop-Butucaru, Yann Thierry-
Mieg, and Sébastien Tixeuil. “Formal verification of mobile robot protocols”. In: Dis-
tributed Comput. 29.6 (2016), pp. 459–487. DOI: 10.1007/s00446-016-0271-1.

[13] Subhash Bhagat, Sruti Gan Chaudhuri, and Krishnendu Mukhopadhyaya. “Formation
of General Position by Asynchronous Mobile Robots Under One-Axis Agreement”. In:
WALCOM: Algorithms and Computation - 10th International Workshop, WALCOM 2016,
Kathmandu, Nepal, March 29-31, 2016, Proceedings, ed. by Mohammad Kaykobad et al.
Vol. 9627. Lecture Notes in Computer Science. Springer, 2016, pp. 80–91. ISBN: 978-3-
319-30138-9. DOI: 10.1007/978-3-319-30139-6_7.

[14] Subhash Bhagat and Krishnendu Mukhopadhyaya. “Optimum Algorithm for Mutual Vis-
ibility Among Asynchronous Robots with Lights”. In: Stabilization, Safety, and Security
of Distributed Systems - 19th International Symposium, SSS 2017, Boston, MA, USA,
November 5-8, 2017, Proceedings, ed. by Paul G. Spirakis et al. Vol. 10616. Lecture
Notes in Computer Science. Springer, 2017, pp. 341–355. DOI: 10.1007/978-3-319-
69084-1_24.

[15] François Bonnet, Xavier Défago, Franck Petit, Maria Potop-Butucaru, and Sébastien
Tixeuil. “Discovering and Assessing Fine-Grained Metrics in Robot Networks Proto-
cols”. In: 33rd IEEE International Symposium on Reliable Distributed Systems Work-
shops, SRDS Workshops 2014, Nara, Japan, October 6-9, 2014. IEEE Computer Society,
2014, pp. 50–59. DOI: 10.1109/SRDSW.2014.34.

[16] Zohir Bouzid, Shantanu Das, and Sébastien Tixeuil. “Gathering of Mobile Robots Tol-
erating Multiple Crash Faults”. In: IEEE 33rd International Conference on Distributed
Computing Systems, ICDCS 2013, 8-11 July, 2013, Philadelphia, Pennsylvania, USA.
IEEE Computer Society, 2013, pp. 337–346. DOI: 10.1109/ICDCS.2013.27.

[17] Quentin Bramas and Sébastien Tixeuil. “Wait-Free Gathering Without Chirality”. In:
Structural Information and Communication Complexity - 22nd International Colloquium,
SIROCCO 2015, Montserrat, Spain, July 14-16, 2015, Post-Proceedings, ed. by Christian
Scheideler. Vol. 9439. Lecture Notes in Computer Science. Springer, 2015, pp. 313–327.
DOI: 10.1007/978-3-319-25258-2_22.

[18] Davide Canepa, Xavier Défago, Taisuke Izumi, and Maria Potop-Butucaru. “Flocking
with Oblivious Robots”. In: Stabilization, Safety, and Security of Distributed Systems -
18th International Symposium, SSS 2016, Lyon, France, November 7-10, 2016, Proceed-
ings, ed. by Borzoo Bonakdarpour et al. Vol. 10083. Lecture Notes in Computer Science.
2016, pp. 94–108. ISBN: 978-3-319-49258-2. DOI: 10.1007/978-3-319-49259-9_8.

[19] Davide Canepa and Maria Gradinariu Potop-Butucaru. “Stabilizing Flocking Via Leader
Election in Robot Networks”. In: Stabilization, Safety, and Security of Distributed Sys-
tems, 9th International Symposium, SSS 2007, Paris, France, November 14-16, 2007,
Proceedings, ed. by Toshimitsu Masuzawa et al. Vol. 4838. Lecture Notes in Computer
Science. Springer, 2007, pp. 52–66. ISBN: 978-3-540-76626-1. DOI: 10.1007/978-3-
540-76627-8_7.

https://doi.org/10.1016/j.tcs.2018.06.045
https://doi.org/10.1016/j.tcs.2018.06.045
https://doi.org/10.1007/s00446-016-0271-1
https://doi.org/10.1007/978-3-319-30139-6_7
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1109/SRDSW.2014.34
https://doi.org/10.1109/ICDCS.2013.27
https://doi.org/10.1007/978-3-319-25258-2_22
https://doi.org/10.1007/978-3-319-49259-9_8
https://doi.org/10.1007/978-3-540-76627-8_7
https://doi.org/10.1007/978-3-540-76627-8_7

162 BIBLIOGRAPHY

[20] Jérémie Chalopin, Shantanu Das, Matús Mihalák, Paolo Penna, and Peter Widmayer.
“Data Delivery by Energy-Constrained Mobile Agents”. In: Algorithms for Sensor Sys-
tems - 9th International Symposium on Algorithms and Experiments for Sensor Systems,
Wireless Networks and Distributed Robotics, ALGOSENSORS 2013, Sophia Antipolis,
France, September 5-6, 2013, Revised Selected Papers, ed. by Paola Flocchini et al.
Vol. 8243. Lecture Notes in Computer Science. Springer, 2013, pp. 111–122. ISBN: 978-
3-642-45345-8. DOI: 10.1007/978-3-642-45346-5_9.

[21] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. “Minimum-Traveled-
Distance Gathering of Oblivious Robots over Given Meeting Points”. In: Algorithms
for Sensor Systems - 10th International Symposium on Algorithms and Experiments for
Sensor Systems, Wireless Networks and Distributed Robotics, ALGOSENSORS 2014,
Wroclaw, Poland, September 12, 2014, Revised Selected Papers, ed. by Jie Gao et al.
Vol. 8847. Lecture Notes in Computer Science. Springer, 2014, pp. 57–72. DOI: 10.
1007/978-3-662-46018-4_4.

[22] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. “Asynchronous Arbitrary
Pattern Formation: the effects of a rigorous approach”. In: Distributed Comput. 32.2
(2019), pp. 91–132. DOI: 10.1007/s00446-018-0325-7.

[23] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. “Asynchronous Robots
on Graphs: Gathering”. In: Distributed Computing by Mobile Entities, Current Research
in Moving and Computing, ed. by Paola Flocchini et al. Vol. 11340. Lecture Notes in
Computer Science. Springer, 2019, pp. 184–217. DOI: 10.1007/978-3-030-11072-
7_8.

[24] Reuven Cohen and David Peleg. “Convergence Properties of the Gravitational Algorithm
in Asynchronous Robot Systems”. In: SIAM J. Comput. 34.6 (2005), pp. 1516–1528. DOI:
10.1137/S0097539704446475.

[25] Reuven Cohen and David Peleg. “Convergence of Autonomous Mobile Robots with In-
accurate Sensors and Movements”. In: SIAM J. Comput. 38.1 (2008), pp. 276–302. DOI:
10.1137/060665257.

[26] Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. “Impossibility of
gathering, a certification”. In: Inf. Process. Lett. 115.3 (2015), pp. 447–452. DOI: 10.
1016/j.ipl.2014.11.001.

[27] Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. “Certified Universal
Gathering in R2 for Oblivious Mobile Robots”. In: Distributed Computing - 30th Interna-
tional Symposium, DISC 2016, Paris, France, September 27-29, 2016. Proceedings, ed.
by Cyril Gavoille et al. Vol. 9888. Lecture Notes in Computer Science. Springer, 2016,
pp. 187–200. DOI: 10.1007/978-3-662-53426-7_14.

[28] Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. “Swarms of Mobile
Robots: towards Versatility with Safety”. Under review. 2020.

[29] Jurek Czyzowicz, Leszek Gasieniec, and Andrzej Pelc. “Gathering few fat mobile robots
in the plane”. In: Theor. Comput. Sci. 410.6-7 (2009), pp. 481–499. DOI: 10.1016/j.
tcs.2008.10.005.

[30] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Ya-
mashita. “The Power of Lights: Synchronizing Asynchronous Robots Using Visible
Bits”. In: 2012 IEEE 32nd International Conference on Distributed Computing Systems,
Macau, China, June 18-21, 2012. IEEE Computer Society, 2012, pp. 506–515. ISBN:
978-1-4577-0295-2. DOI: 10.1109/ICDCS.2012.71.

https://doi.org/10.1007/978-3-642-45346-5_9
https://doi.org/10.1007/978-3-662-46018-4_4
https://doi.org/10.1007/978-3-662-46018-4_4
https://doi.org/10.1007/s00446-018-0325-7
https://doi.org/10.1007/978-3-030-11072-7_8
https://doi.org/10.1007/978-3-030-11072-7_8
https://doi.org/10.1137/S0097539704446475
https://doi.org/10.1137/060665257
https://doi.org/10.1016/j.ipl.2014.11.001
https://doi.org/10.1016/j.ipl.2014.11.001
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1016/j.tcs.2008.10.005
https://doi.org/10.1016/j.tcs.2008.10.005
https://doi.org/10.1109/ICDCS.2012.71

BIBLIOGRAPHY 163

[31] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Ya-
mashita. “Autonomous mobile robots with lights”. In: Theor. Comput. Sci. 609 (2016),
pp. 171–184. DOI: 10.1016/j.tcs.2015.09.018.

[32] Xavier Défago, Maria Gradinariu, Stéphane Messika, and Philippe Raipin Parvédy.
“Fault-Tolerant and Self-stabilizing Mobile Robots Gathering”. In: Distributed Comput-
ing, 20th International Symposium, DISC 2006, Stockholm, Sweden, September 18-20,
2006, Proceedings, ed. by Shlomi Dolev. Vol. 4167. Lecture Notes in Computer Science.
Springer, 2006, pp. 46–60. DOI: 10.1007/11864219_4.

[33] Xavier Défago, Adam Heriban, Sébastien Tixeuil, and Koichi Wada. “Brief Announce-
ment: Model Checking Rendezvous Algorithms for Robots with Lights in Euclidean
Space”. In: 33rd International Symposium on Distributed Computing, DISC 2019, Oc-
tober 14-18, 2019, Budapest, Hungary, ed. by Jukka Suomela. Vol. 146. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 41:1–41:3. DOI: 10.4230/LIPIcs.
DISC.2019.41.

[34] Xavier Défago, Adam Heriban, Sébastien Tixeuil, and Koichi Wada. “Using Model
Checking to Formally Verify Rendezvous Algorithms for Robots with Lights in Euclidean
Space”. In: 39th Symposium on Reliable Distributed Systems, SRDS 2020, Shanghai,
China, September 21-24, 2020. IEEE, 2020.

[35] Xavier Défago, Maria Potop-Butucaru, and Philippe Raipin Parvédy. “Self-stabilizing
gathering of mobile robots under crash or Byzantine faults”. In: Distributed Comput.
33.5 (2020), pp. 393–421. DOI: 10.1007/s00446-019-00359-x.

[36] Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, and Sébastien Tixeuil.
“Optimal Grid Exploration by Asynchronous Oblivious Robots”. In: Stabilization, Safety,
and Security of Distributed Systems - 14th International Symposium, SSS 2012, Toronto,
Canada, October 1-4, 2012. Proceedings, ed. by Andréa W. Richa et al. Vol. 7596. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 64–76. DOI: 10.1007/978-3-
642-33536-5_7.

[37] Yoann Dieudonné, Florence Levé, Franck Petit, and Vincent Villain. “Deterministic ge-
oleader election in disoriented anonymous systems”. In: Theor. Comput. Sci. 506 (2013),
pp. 43–54. DOI: 10.1016/j.tcs.2013.07.033.

[38] Yoann Dieudonné and Franck Petit. “Self-stabilizing gathering with strong multiplicity
detection”. In: Theor. Comput. Sci. 428 (2012), pp. 47–57. DOI: 10.1016/j.tcs.2011.
12.010.

[39] Ha Thi Thu Doan, François Bonnet, and Kazuhiro Ogata. “Model Checking of a Mo-
bile Robots Perpetual Exploration Algorithm”. In: Structured Object-Oriented Formal
Language and Method - 6th International Workshop, SOFL+MSVL 2016, Tokyo, Japan,
November 15, 2016, Revised Selected Papers, ed. by Shaoying Liu et al. Vol. 10189.
Lecture Notes in Computer Science. 2016, pp. 201–219. DOI: 10.1007/978-3-319-
57708-1_12.

[40] Ha Thi Thu Doan, François Bonnet, and Kazuhiro Ogata. “Model Checking of Robot
Gathering”. In: 21st International Conference on Principles of Distributed Systems,
OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, ed. by James Aspnes et al.
Vol. 95. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 12:1–12:16.
DOI: 10.4230/LIPIcs.OPODIS.2017.12.

[41] Miroslaw Dynia, Miroslaw Korzeniowski, and Christian Schindelhauer. “Power-Aware
Collective Tree Exploration”. In: Architecture of Computing Systems - ARCS 2006, 19th
International Conference, Frankfurt/Main, Germany, March 13-16, 2006, Proceedings,
ed. by Werner Grass et al. Vol. 3894. Lecture Notes in Computer Science. Springer, 2006,
pp. 341–351. ISBN: 3-540-32765-7. DOI: 10.1007/11682127_24.

https://doi.org/10.1016/j.tcs.2015.09.018
https://doi.org/10.1007/11864219_4
https://doi.org/10.4230/LIPIcs.DISC.2019.41
https://doi.org/10.4230/LIPIcs.DISC.2019.41
https://doi.org/10.1007/s00446-019-00359-x
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1016/j.tcs.2013.07.033
https://doi.org/10.1016/j.tcs.2011.12.010
https://doi.org/10.1016/j.tcs.2011.12.010
https://doi.org/10.1007/978-3-319-57708-1_12
https://doi.org/10.1007/978-3-319-57708-1_12
https://doi.org/10.4230/LIPIcs.OPODIS.2017.12
https://doi.org/10.1007/11682127_24

164 BIBLIOGRAPHY

[42] Paola Flocchini. “Gathering”. In: Distributed Computing by Mobile Entities, Current Re-
search in Moving and Computing, ed. by Paola Flocchini et al. Vol. 11340. Lecture Notes
in Computer Science. Springer, 2019, pp. 63–82. DOI: 10.1007/978-3-030-11072-
7_4.

[43] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, eds. Distributed Computing by
Mobile Entities, Current Research in Moving and Computing. Vol. 11340. Lecture Notes
in Computer Science. Springer, 2019. ISBN: 978-3-030-11071-0. DOI: 10.1007/978-
3-030-11072-7.

[44] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. “Distributed
computing by mobile robots: uniform circle formation”. In: Distributed Computing 30.6
(2017), pp. 413–457. DOI: 10.1007/s00446-016-0291-x.

[45] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. “Hard Tasks
for Weak Robots: The Role of Common Knowledge in Pattern Formation by Autonomous
Mobile Robots”. In: Algorithms and Computation, 10th International Symposium, ISAAC
’99, Chennai, India, December 16-18, 1999, Proceedings, ed. by Alok Aggarwal et al.
Vol. 1741. Lecture Notes in Computer Science. Springer, 1999, pp. 93–102. DOI: 10.
1007/3-540-46632-0_10.

[46] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. “Gathering
of asynchronous robots with limited visibility”. In: Theor. Comput. Sci. 337.1-3 (2005),
pp. 147–168. DOI: 10.1016/j.tcs.2005.01.001.

[47] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. “Arbitrary
pattern formation by asynchronous, anonymous, oblivious robots”. In: Theor. Comput.
Sci. 407.1-3 (2008), pp. 412–447. DOI: 10.1016/j.tcs.2008.07.026.

[48] Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Masafumi Yamashita. “Ren-
dezvous with constant memory”. In: Theor. Comput. Sci. 621 (2016), pp. 57–72. DOI:
10.1016/j.tcs.2016.01.025.

[49] Vincenzo Gervasi and Giuseppe Prencipe. “Coordination without communication: the
case of the flocking problem”. In: Discrete Applied Mathematics 144.3 (2004), pp. 324–
344. DOI: 10.1016/j.dam.2003.11.010.

[50] Noam Gordon, Yotam Elor, and Alfred M. Bruckstein. “Gathering Multiple Robotic
Agents with Crude Distance Sensing Capabilities”. In: Ant Colony Optimization and
Swarm Intelligence, 6th International Conference, ANTS 2008, Brussels, Belgium, Septem-
ber 22-24, 2008. Proceedings, ed. by Marco Dorigo et al. Vol. 5217. Lecture Notes in
Computer Science. Springer, 2008, pp. 72–83. ISBN: 978-3-540-87526-0. DOI: 10.1007/
978-3-540-87527-7_7.

[51] Noam Gordon, Israel A. Wagner, and Alfred M. Bruckstein. “Gathering Multiple Robotic
A(ge)nts with Limited Sensing Capabilities”. In: Ant Colony Optimization and Swarm
Intelligence, 4th International Workshop, ANTS 2004, Brussels, Belgium, September 5 -
8, 2004, Proceedings, ed. by Marco Dorigo et al. Vol. 3172. Lecture Notes in Computer
Science. Springer, 2004, pp. 142–153. ISBN: 3-540-22672-9. DOI: 10.1007/978-3-
540-28646-2_13.

[52] Indranil Gupta, Robbert van Renesse, and Kenneth P. Birman. “A Probabilistically Cor-
rect Leader Election Protocol for Large Groups”. In: Distributed Computing, 14th Inter-
national Conference, DISC 2000, Toledo, Spain, October 4-6, 2000, Proceedings, ed. by
Maurice Herlihy. Vol. 1914. Lecture Notes in Computer Science. Springer, 2000, pp. 89–
103. ISBN: 3-540-41143-7. DOI: 10.1007/3-540-40026-5_6.

https://doi.org/10.1007/978-3-030-11072-7_4
https://doi.org/10.1007/978-3-030-11072-7_4
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/s00446-016-0291-x
https://doi.org/10.1007/3-540-46632-0_10
https://doi.org/10.1007/3-540-46632-0_10
https://doi.org/10.1016/j.tcs.2005.01.001
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1016/j.tcs.2016.01.025
https://doi.org/10.1016/j.dam.2003.11.010
https://doi.org/10.1007/978-3-540-87527-7_7
https://doi.org/10.1007/978-3-540-87527-7_7
https://doi.org/10.1007/978-3-540-28646-2_13
https://doi.org/10.1007/978-3-540-28646-2_13
https://doi.org/10.1007/3-540-40026-5_6

BIBLIOGRAPHY 165

[53] Adam Heriban, Xavier Défago, and Sébastien Tixeuil. “Optimally Gathering Two Robots”.
In: Proceedings of the 19th International Conference on Distributed Computing and Net-
working, ICDCN 2018, Varanasi, India, January 4-7, 2018, ed. by Paolo Bellavista et al.
ACM, 2018, 3:1–3:10. DOI: 10.1145/3154273.3154323.

[54] Adam Heriban, Michiko Inoue, Fukuhito Ooshita, and Sébastien Tixeuil. “Obstruction
detection by asynchronous opaque robots using lights”. In: IEICE Technical Report, The-
oretical Foundations of Computing, Nagoya Institute of Technology. Vol. 118-68. Lecture
Notes in Computer Science. 2018, pp. 71–78. URL: https://www.ieice.org/ken/
paper/20180526t1EQ/eng/.

[55] Adam Heriban and Sébastien Tixeuil. “Mobile Robots with Uncertain Visibility Sen-
sors”. In: Structural Information and Communication Complexity - 26th International
Colloquium, SIROCCO 2019, L’Aquila, Italy, July 1-4, 2019, Proceedings, ed. by Keren
Censor-Hillel et al. Vol. 11639. Lecture Notes in Computer Science. Springer, 2019,
pp. 349–352. ISBN: 978-3-030-24921-2. DOI: 10.1007/978-3-030-24922-9_27.

[56] Adam Heriban and Sébastien Tixeuil. “Mobile Robots with Uncertain Visibility Sensors”.
In: Parallel Process. Lett. (2020).

[57] Maurice Herlihy and Jeannette M. Wing. “Linearizability: A Correctness Condition for
Concurrent Objects”. In: ACM Trans. Program. Lang. Syst. 12.3 (1990), pp. 463–492.
DOI: 10.1145/78969.78972.

[58] Anthony Honorat, Maria Potop-Butucaru, and Sébastien Tixeuil. “Gathering fat mobile
robots with slim omnidirectional cameras”. In: Theor. Comput. Sci. 557 (2014), pp. 1–27.
DOI: 10.1016/j.tcs.2014.08.004.

[59] David Ilcinkas. “Oblivious Robots on Graphs: Exploration”. In: Distributed Computing
by Mobile Entities, Current Research in Moving and Computing, ed. by Paola Flocchini
et al. Vol. 11340. Lecture Notes in Computer Science. Springer, 2019, pp. 218–233. DOI:
10.1007/978-3-030-11072-7_9.

[60] Taisuke Izumi, Tomoko Izumi, Sayaka Kamei, and Fukuhito Ooshita. “Randomized
Gathering of Mobile Robots with Local-Multiplicity Detection”. In: Stabilization, Safety,
and Security of Distributed Systems, 11th International Symposium, SSS 2009, Lyon,
France, November 3-6, 2009. Proceedings, ed. by Rachid Guerraoui et al. Vol. 5873.
Lecture Notes in Computer Science. Springer, 2009, pp. 384–398. DOI: 10.1007/978-
3-642-05118-0_27.

[61] Taisuke Izumi, Samia Souissi, Yoshiaki Katayama, Nobuhiro Inuzuka, Xavier Défago,
Koichi Wada, and Masafumi Yamashita. “The Gathering Problem for Two Oblivious
Robots with Unreliable Compasses”. In: SIAM J. Comput. 41.1 (2012), pp. 26–46. DOI:
10.1137/100797916.

[62] Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada.
“Gathering on Rings for Myopic Asynchronous Robots With Lights”. In: 23rd Interna-
tional Conference on Principles of Distributed Systems, OPODIS 2019, December 17-
19, 2019, Neuchâtel, Switzerland, ed. by Pascal Felber et al. Vol. 153. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 27:1–27:17. DOI: 10.4230/LIPIcs.
OPODIS.2019.27.

[63] Johannes Köhler, Alain Pagani, and Didier Stricker. “Detection and Identification Tech-
niques for Markers Used in Computer Vision”. In: Visualization of Large and Unstruc-
tured Data Sets - Applications in Geospatial Planning, Modeling and Engineering (IRTG
1131 Workshop), VLUDS 2010, March 19-21, 2010, Bodega Bay, CA, USA, ed. by Ari-
ane Middel et al. Vol. 19. OASICS. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany, 2010, pp. 36–44. ISBN: 978-3-939897-29-3. DOI: 10.4230/OASIcs.VLUDS.
2010.36.

https://doi.org/10.1145/3154273.3154323
https://www.ieice.org/ken/paper/20180526t1EQ/eng/
https://www.ieice.org/ken/paper/20180526t1EQ/eng/
https://doi.org/10.1007/978-3-030-24922-9_27
https://doi.org/10.1145/78969.78972
https://doi.org/10.1016/j.tcs.2014.08.004
https://doi.org/10.1007/978-3-030-11072-7_9
https://doi.org/10.1007/978-3-642-05118-0_27
https://doi.org/10.1007/978-3-642-05118-0_27
https://doi.org/10.1137/100797916
https://doi.org/10.4230/LIPIcs.OPODIS.2019.27
https://doi.org/10.4230/LIPIcs.OPODIS.2019.27
https://doi.org/10.4230/OASIcs.VLUDS.2010.36
https://doi.org/10.4230/OASIcs.VLUDS.2010.36

166 BIBLIOGRAPHY

[64] Ajay D Kshemkalyani and Mukesh Singhal. Distributed computing: principles, algo-
rithms, and systems. Cambridge University Press, 2011.

[65] Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Federico Poloni,
Nicola Santoro, and Giovanni Viglietta. “Mutual visibility by luminous robots without
collisions”. In: Inf. Comput. 254 (2017), pp. 392–418. DOI: 10.1016/j.ic.2016.09.
005.

[66] Giuseppe Antonio Di Luna, Paola Flocchini, Federico Poloni, Nicola Santoro, and Gio-
vanni Viglietta. “The Mutual Visibility Problem for Oblivious Robots”. In: Proceedings
of the 26th Canadian Conference on Computational Geometry, CCCG 2014, Halifax,
Nova Scotia, Canada, 2014. Carleton University, Ottawa, Canada, 2014. URL: http:
//www.cccg.ca/proceedings/2014/papers/paper51.pdf.

[67] Marcello Mamino and Giovanni Viglietta. “Square Formation by Asynchronous Oblivi-
ous Robots”. In: Proceedings of the 28th Canadian Conference on Computational Ge-
ometry, CCCG 2016, August 3-5, 2016, Simon Fraser University, Vancouver, British
Columbia, Canada, ed. by Thomas C. Shermer. Simon Fraser University, Vancouver,
British Columbia, Canada, 2016, pp. 1–6. URL: http://www.cccg.ca/proceedings/
2016/proceedings2016.pdf.

[68] Sonia Martínez. “Practical multiagent rendezvous through modified circumcenter algo-
rithms”. In: Automatica 45.9 (2009), pp. 2010–2017. DOI: 10.1016/j.automatica.
2009.05.013.

[69] Nicholas Metropolis and S. Ulam. “The Monte Carlo Method”. In: Journal of the Ameri-
can Statistical Association 44.247 (1949), pp. 335–341.

[70] Laure Millet, Maria Potop-Butucaru, Nathalie Sznajder, and Sébastien Tixeuil. “On the
Synthesis of Mobile Robots Algorithms: The Case of Ring Gathering”. In: Stabilization,
Safety, and Security of Distributed Systems - 16th International Symposium, SSS 2014,
Paderborn, Germany, September 28 - October 1, 2014. Proceedings, ed. by Pascal Felber
et al. Vol. 8756. Lecture Notes in Computer Science. Springer, 2014, pp. 237–251. DOI:
10.1007/978-3-319-11764-5_17.

[71] El Mustapha Mouaddib, Ryusuke Sagawa, Tomio Echigo, and Yasushi Yagi. “Stereo-
vision with a Single Camera and Multiple Mirrors”. In: Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, ICRA 2005, April 18-22, 2005,
Barcelona, Spain. IEEE, 2005, pp. 800–805. DOI: 10.1109/ROBOT.2005.1570215.

[72] Shota Nagahama, Fukuhito Ooshita, and Michiko Inoue. “Ring Exploration of Myopic
Luminous Robots with Visibility More Than One”. In: Stabilization, Safety, and Security
of Distributed Systems - 21st International Symposium, SSS 2019, Pisa, Italy, October
22-25, 2019, Proceedings, ed. by Mohsen Ghaffari et al. Vol. 11914. Lecture Notes in
Computer Science. Springer, 2019, pp. 256–271. DOI: 10.1007/978-3-030-34992-
9_20.

[73] Takashi Okumura, Koichi Wada, and Xavier Défago. “Optimal RendezvousL-Algorithms
for Asynchronous Mobile Robots with External-Lights”. In: 22nd International Con-
ference on Principles of Distributed Systems, OPODIS 2018, December 17-19, 2018,
Hong Kong, China, ed. by Jiannong Cao et al. Vol. 125. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018, 24:1–24:16. ISBN: 978-3-95977-098-9. DOI:
10.4230/LIPIcs.OPODIS.2018.24.

https://doi.org/10.1016/j.ic.2016.09.005
https://doi.org/10.1016/j.ic.2016.09.005
http://www.cccg.ca/proceedings/2014/papers/paper51.pdf
http://www.cccg.ca/proceedings/2014/papers/paper51.pdf
http://www.cccg.ca/proceedings/2016/proceedings2016.pdf
http://www.cccg.ca/proceedings/2016/proceedings2016.pdf
https://doi.org/10.1016/j.automatica.2009.05.013
https://doi.org/10.1016/j.automatica.2009.05.013
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1109/ROBOT.2005.1570215
https://doi.org/10.1007/978-3-030-34992-9_20
https://doi.org/10.1007/978-3-030-34992-9_20
https://doi.org/10.4230/LIPIcs.OPODIS.2018.24

BIBLIOGRAPHY 167

[74] Takashi Okumura, Koichi Wada, and Yoshiaki Katayama. “Brief Announcement: Opti-
mal Asynchronous Rendezvous for Mobile Robots with Lights”. In: Stabilization, Safety,
and Security of Distributed Systems - 19th International Symposium, SSS 2017, Boston,
MA, USA, November 5-8, 2017, Proceedings, ed. by Paul G. Spirakis et al. Vol. 10616.
Lecture Notes in Computer Science. Springer, 2017, pp. 484–488. DOI: 10.1007/978-
3-319-69084-1_36.

[75] Takashi Okumura, Koichi Wada, and Yoshiaki Katayama. “Rendezvous of Asynchronous
Mobile Robots with Lights”. In: Adventures Between Lower Bounds and Higher Altitudes
- Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday. 2018,
pp. 434–448. DOI: 10.1007/978-3-319-98355-4_25.

[76] David Peleg. “Distributed Coordination Algorithms for Mobile Robot Swarms: New Di-
rections and Challenges”. In: Distributed Computing - IWDC 2005, 7th International
Workshop, Kharagpur, India, December 27-30, 2005, Proceedings, ed. by Ajit Pal et al.
Vol. 3741. Lecture Notes in Computer Science. Springer, 2005, pp. 1–12. DOI: 10.1007/
11603771_1.

[77] Giuseppe Prencipe. “Impossibility of gathering by a set of autonomous mobile robots”.
In: Theor. Comput. Sci. 384.2-3 (2007), pp. 222–231. DOI: 10.1016/j.tcs.2007.04.
023.

[78] Sasha Rubin, Florian Zuleger, Aniello Murano, and Benjamin Aminof. “Verification
of Asynchronous Mobile-Robots in Partially-Known Environments”. In: PRIMA 2015:
Principles and Practice of Multi-Agent Systems - 18th International Conference, Berti-
noro, Italy, October 26-30, 2015, Proceedings, ed. by Qingliang Chen et al. Vol. 9387.
Lecture Notes in Computer Science. Springer, 2015, pp. 185–200. DOI: 10.1007/978-
3-319-25524-8_12.

[79] Arnaud Sangnier, Nathalie Sznajder, Maria Potop-Butucaru, and Sébastien Tixeuil. “Pa-
rameterized verification of algorithms for oblivious robots on a ring”. In: 2017 Formal
Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017,
ed. by Daryl Stewart et al. IEEE, 2017, pp. 212–219. DOI: 10.23919/FMCAD.2017.
8102262.

[80] Nicola Santoro and Peter Widmayer. “Time is Not a Healer”. In: STACS 89, 6th An-
nual Symposium on Theoretical Aspects of Computer Science, Paderborn, FRG, Febru-
ary 16-18, 1989, Proceedings, ed. by Burkhard Monien et al. Vol. 349. Lecture Notes in
Computer Science. Springer, 1989, pp. 304–313. ISBN: 3-540-50840-6. DOI: 10.1007/
BFb0028994.

[81] Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay. “Mutual Visibility with an
Optimal Number of Colors”. In: Algorithms for Sensor Systems - 11th International Sym-
posium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS
2015, Patras, Greece, September 17-18, 2015, Revised Selected Papers, ed. by Prosenjit
Bose et al. Vol. 9536. Lecture Notes in Computer Science. Springer, 2015, pp. 196–210.
ISBN: 978-3-319-28471-2. DOI: 10.1007/978-3-319-28472-9_15.

[82] Samia Souissi, Xavier Défago, and Masafumi Yamashita. “Using eventually consistent
compasses to gather memory-less mobile robots with limited visibility”. In: ACM Trans.
Auton. Adapt. Syst. 4.1 (2009), 9:1–9:27. DOI: 10.1145/1462187.1462196.

[83] Ichiro Suzuki and Masafumi Yamashita. “Distributed Anonymous Mobile Robots: For-
mation of Geometric Patterns”. In: SIAM J. Comput. 28.4 (1999), pp. 1347–1363. DOI:
10.1137/S009753979628292X.

https://doi.org/10.1007/978-3-319-69084-1_36
https://doi.org/10.1007/978-3-319-69084-1_36
https://doi.org/10.1007/978-3-319-98355-4_25
https://doi.org/10.1007/11603771_1
https://doi.org/10.1007/11603771_1
https://doi.org/10.1016/j.tcs.2007.04.023
https://doi.org/10.1016/j.tcs.2007.04.023
https://doi.org/10.1007/978-3-319-25524-8_12
https://doi.org/10.1007/978-3-319-25524-8_12
https://doi.org/10.23919/FMCAD.2017.8102262
https://doi.org/10.23919/FMCAD.2017.8102262
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/978-3-319-28472-9_15
https://doi.org/10.1145/1462187.1462196
https://doi.org/10.1137/S009753979628292X

[84] Giovanni Viglietta. “Rendezvous of Two Robots with Visible Bits”. In: Algorithms for
Sensor Systems - 9th International Symposium on Algorithms and Experiments for Sen-
sor Systems, Wireless Networks and Distributed Robotics, ALGOSENSORS 2013, Sophia
Antipolis, France, September 5-6, 2013, Revised Selected Papers, ed. by Paola Flocchini
et al. Vol. 8243. Lecture Notes in Computer Science. Springer, 2013, pp. 291–306. DOI:
10.1007/978-3-642-45346-5_21.

[85] Kenta Yamamoto, Taisuke Izumi, Yoshiaki Katayama, Nobuhiro Inuzuka, and Koichi
Wada. “The optimal tolerance of uniform observation error for mobile robot conver-
gence”. In: Theor. Comput. Sci. 444 (2012), pp. 77–86. DOI: 10.1016/j.tcs.2012.
04.038.

[86] Rami Yared, Xavier Défago, Julien Iguchi-Cartigny, and Matthias Wiesmann. “Collision
Prevention Platform for a Dynamic Group of Asynchronous Cooperative Mobile Robots”.
In: J. Networks 2.4 (2007), pp. 28–39. DOI: 10.4304/jnw.2.4.28-39.

[87] Chanyeol Yoo, Robert Fitch, and Salah Sukkarieh. “Online task planning and control
for fuel-constrained aerial robots in wind fields”. In: Int. J. Robotics Res. 35.5 (2016),
pp. 438–453. DOI: 10.1177/0278364915595278.

https://doi.org/10.1007/978-3-642-45346-5_21
https://doi.org/10.1016/j.tcs.2012.04.038
https://doi.org/10.1016/j.tcs.2012.04.038
https://doi.org/10.4304/jnw.2.4.28-39
https://doi.org/10.1177/0278364915595278

Adam Heriban 09/12/2020

Sujet : Réseaux de Robots Réalistes

Résumé : Le but de cette thèse est d’analyser le travail existant par la communauté de robotique distribuée
pour trouver des variations réalistes du modèle standard OBLOT, et développer de nouvelles variations
viables à long terme.
Nous développons un nouvel algorithme optimal pour le rendezvous avec des lumières, et le prouvons en
utilisant le framework de model-checking SPIN. En utilisant ce modèle, nous construisons des algorithmes
d’élection de leader robustes, permettant des contraintes plus strictes.
Nous définissons un nouveau modèle de vision pour les robots mobile : Uncertain Visibility, qui utilise un
adversaire pour représenter des faux-négatifs des capteurs, et prouvons les bornes de plusieurs problèmes
étalons dans ce modèle. Nous définissons et analysons un nouveau problème : Obstruction Detection pour
le modèle des robots opaques.
Nous développons un simulateur Monte-Carlo pour les robots mobiles, conçus pour facilement simuler
n’importe quel modèle ou algorithme. N’étant pas un model-checker, il vise d’abord a remplacer
"l’intuition" des chercheurs pour détecter des comportement imprévus. Nous testons plusieurs algo-
rithmes et modèles, avec des résultats encourageants.
Enfin, nous présentons deux nouveaux algorithmes : le premier assure que la distance parcourue pour la
convergence en ASYNC est minimale ; le second permet d’élire un Leader avec des capteurs imprécis.

Mots clés : Robots Mobiles, Vision Imparfaite, Robots Lumineux, Adversaire Asynchrone, Analyse de
Performance, Simulation Monte-Carlo

Subject : Networks of Realistic Robots

Abstract: The goal of this thesis is to survey and analyze the current work done by the distributed robotics
community to find the more realistic variations of the standard OBLOT model, develop new such varia-
tions, and determine which approach should be used in the long term.
We develop a new, optimal Rendezvous algorithm using lights, and prove it using a model checking
framework based on the SPIN model checker. The same luminous model is used to build robust Leader
Election algorithms, which allow for stricter constraints.
We design a new vision model for mobile robots, Uncertain Visibility, which introduces a vision adversary
to model false negatives in sensors, and prove tight bounds under this new model for several benchmark
problems. We then define and investigate a new problem, Obstruction Detection, for the obstructed visi-
bility model.
To facilitate analysis of robot networks, we develop a framework for Monte-Carlo simulations of mobile
robots, designed to simulate any model or algorithm with minimal effort. It is designed as a complement to
researcher "intuition" to look for unexpected behavior. We test this simulator against numerous algorithms
and settings, yielding encouraging results. Finally, we introduce another two algorithms: the first ensures
the distance traveled for convergence in ASYNC is minimal ; the second allows for Leader Election with
errors in vision.

Keywords : Mobile Robots, Restricted Visibility, Luminous Robots, Asynchronous Scheduler, Perfor-
mance Analysis, Monte-Carlo Simulation

	Acknowledgments
	Introduction: Networks of Realistic Robots
	Distributed Robotics
	Motivation
	The OBLOT Model
	More Realistic Mobile Robots
	Sensors
	Transparency and Size
	Environment
	Memory and Communication
	Synchronicity
	Fairness and Boundedness
	Rigid Motion
	Faults

	A Realistic Example: Collision Avoiding Blind Robots
	Our Contributions
	Published Work

	I The Power of Lights
	The Luminous Model
	OBLOT FSYNC versus Luminous SSYNC

	Benchmark: Two-Robot Gathering
	2-color Impossibility ?
	Our Algorithm: 2-color Rendezvous

	Model Checking Rendezvous Algorithms
	System Model
	Configurations and Executions
	Self-Stabilization

	From the System Model to the Verification Model
	Simple vs. Complete Self-Stabilization
	Self-Stabilization and Rigidity
	Proving Rendezvous Algorithms

	Verification Model
	Position
	Activation and Synchrony
	Movement Resolution
	State Variables
	Activation Phases
	The Case of Non-Rigid, Non-Self-Stabilizing Algorithms

	Checking Rendezvous Algorithms
	Verified Algorithms
	Verification by Model Checking
	Performance

	Investigating Lights with Weaker Consistency Guarantees

	Safe and Unbiased Leader Election with Lights
	Details of the Model
	Problem Definition
	Leader Election Based on Motion
	Leader Election Based on Lights
	Safe Leader Election
	Unbiased Leader Election
	Safe Unbiased Leader Election

	Conclusion: The Power of Lights

	II Unreliable Vision
	Uncertain Visibility
	Model Definition and Basic Results
	FSYNC n robots Gathering
	FSYNC Uniform Circle Formation
	FSYNC Leader election
	FSYNC Luminous Rendezvous

	Obstructed Visibility
	Model and Problem Definition
	Simplifying the Problem: Line Theorem
	Obstruction Detection for the Line Configuration
	Non-Line Obstruction Detection: a Simple Approach
	Non-Line Obstruction Detection: Using a Token
	Difficulty of Creating a Token with Obstructed Visibility
	Algorithm Architecture
	A Possible Solution
	Gathering Information and Transmitting the Token
	The Issue of Proving Obstructed Algorithms
	Sidenote: Ensuring Token Unicity for a Line

	Conclusion: Unreliable Vision

	III Real World Performance
	Monte-Carlo Simulation of Mobile Robots
	Motivation
	Overview of the Framework
	Scheduling
	Simulation Conditions
	Existing Simulators
	Limitations of the Simulation
	Halting the Simulation: Victory and Defeat Conditions
	The Consequences of the Discretized Euclidean Plane

	Fuel Efficiency in the Usual Settings
	Rendezvous Algorithms
	Convergence For n Robots

	Analyzing Algorithms in Realistic Settings
	Visibility Sensor Errors
	Convergence for n=2 Robots
	Compass Errors
	Geoleader Election
	Errors in Color Perception

	Improved Convergence and Leader Election
	Fuel Efficient Convergence
	Error Resilient Geoleader Election
	Geoleader Election for Four Robots
	Proposed Algorithm

	Conclusion: Real World Performance
	Conclusion: Networks of Realistic Robots
	Our contributions
	Published Work

	Short-Term Perspectives
	Analyzing More Models and Algorithms
	Gathering of n Robots Using Two Colors

	Long-Term Perspectives
	A Proven Simulator
	Stronger Simulator Adversaries
	Obstruction Detection
	Expanding Uncertain Visibility
	Robots with Finite Memory Snapshots

	Appendix: Details and Results of the Model Checker
	Movement Resolution
	Verified Algorithms Written in Promela
	Compile Options
	Output
	Vig2Cols in ASYNC (failure)
	Her2Cols in ASYNC (Success)

	Appendix: Example of an Instance of the Simulator
	Appendix: Details of Color Perception Error
	List of Acronyms
	Bibliography

