Brice Leclerc

Je tiens tout d'abord à remercier mon directeur de thèse, Dominique Barth ainsi que mes encadrants Yann Strozecki, Olivier Marcé et

A (P,τ)-assignment interpreted as a (P,τ)-assignment

6.2

Probability of nding a (P,τ)-assignment over 10,000 instances

7.3

The scheduling of a 2x2 switch on which both deterministic and stochastic tracs arrives. The deterministic trac is forwarded without contention. . .

7.4

An Hyper-TSN switch with a 2x2 switching matrix. paquets, quand l'ordonnancement est répété à l'inni de manière périodique.

Plusieurs groupes de travail proposent aujourd'hui des solutions techniques (présentées dans le chapitre 7) pour aider à contrôler la latence dans les réseaux. Avec ces solutions, les équipements du réseau sont capables d'allouer les ressources de transmission pour certains ux à un instant donné. Des travaux au sein de Nokia Bell Labs visent à aller plus loin pour pouvoir réserver une partie des ressources à un temps donné pour un paquet donné.

Il faut toutefois calculer les dates auxquelles les paquets doivent arriver dans les n÷uds du réseau. Cette thèse se concentre sur le fait d'organiser les paquets, de façon à ce qu'ils n'entrent en collision dans aucun des n÷uds, an de supprimer les buers de contention.

Se passer complètement des buers de contention n'est pas toujours possible, notamment lorsque les réseaux sont composés de beaucoup de n÷uds. Dans ce cas, l'objectif de nos travaux est de minimiser le temps passé par les paquets dans les buers de contention.

Il est important de souligner que dans ce cas-là, le temps d'attente dans les buers de contentions ne sont plus subis comme pour le multiplexage statistique, mais contrôlés et prévisibles.

Nous modélisons un réseau par un multigraphe orienté acyclique pondéré dont les sommets représentent les points de contention entre messages dans le réseau. Les poids des arcs représentent le temps physique de transmission entre deux points de contention.

Deux messages rentrent en conit s'ils doivent passer par le même point de contention au même moment. Nous considérons que le routage est donné, et nous cherchons à organiser les messages de façon à ce qu'il n'y ait pas de conit dans le réseau. Nous étudions dans un premier temps le problème sur des réseaux simples et courants, constitués de deux points de contention en série. Nous dénissons le problème de décision consistant à choisir la date de passage de chaque message dans chacun de ces deux points de contention de façon à ce qu'aucun message n'ait de conit avec un autre dans le réseau. Ce problème ressemble à des problèmes classiques d'ordonnancement, mais l'envoi périodique de nos ux en fait un problème original et dicile. Nous prouvons dans le chapitre 2 que le problème est NPcomplet, même sur des graphes orientés acycliques de faible degré ou de faible profondeur, par réduction de problèmes de coloration d'arcs ou de sommets. Nous proposons donc des heuristiques (algorithmes gloutons, métaheuristiques) qui nous permettent de trouver de bonnes solutions en temps polynomial pour tout type d'instanceet des algorithmes FPT (de complexité exponentielle en le nombre de routes, mais pas en les autres paramètres du problème) qui trouvent une solution optimale au problème et qui sont susamment Présentation de la thèse 3 rapides sur les instances simples que nous étudions.

Nous étudions dans le chapitre 3 le problème de l'organisation de ux non-synchronisés dans un réseau sans aucun buer. Même si pour l'instant les protocoles liés au C-RAN ne permettent pas de désynchroniser les antennes (ce qui pourrait être le cas pour de prochaines générations de réseaux mobiles), cette approche est applicable dans d'autres contextes, comme une usine où des robots ne nécessitant pas de synchronisation doivent communiquer rapidement avec un centre de contrôle. Nous cherchons à calculer un temps de départ des messages au début de leur route de façon à ce qu'ils ne soient pas en conit avec les autres messages, sans que ce temps de départ ne soit considéré comme du temps de contention. Les solutions de ce problème sont toutes optimales en matière de latence : la latence des messages est égale au temps physique de transmission, car aucune latence n'est ajoutée aux messages à cause de la contention. Nous décrivons des algorithmes gloutons de plus en plus évolués visant à optimiser l'impact d'ajouter un message à la solution partielle calculée. Ces algorithmes nous permettent de garantir qu'une solution au problème existe quand la charge du réseau est inférieure à 40% (et même jusqu'à 61% pour des messages de taille 1). Nous proposons aussi un algorithme FPT (quand le problème est paramétré par le nombre de routes) qui nous permet de calculer la solution optimale en un temps raisonnable quand le nombre de routes est inférieur à 20. Nos résultats montrent que le problème ne peut pas être résolu sans buer de contention quand la charge du réseau est supérieure à 80%. C'est pourquoi nous traitons dans le chapitre 4 le problème d'organiser les ux avec un buer sur la route, de façon à orir un plus grand degré de liberté. Nous étudions plus particulièrement le problème de minimisation, c'est-à-dire, trouver une solution qui minimise la latence maximale des routes. Nous proposons une approche en deux parties. Premièrement, nous choisissons les temps d'envoi des messages pour qu'il n'y ait pas de conits sur le premier point de contention, et nous résolvons dans un second temps le problème de choisir le temps d'attente de chaque message dans le second point de contention. Pour cela, nous décrivons un algorithme polynomial basé sur le problème d'ordonnancement classique de la littérature, adapté à notre cadre périodique.

Nous proposons aussi un algorithme FPT basé sur le même principe, mais qui garantit de trouver la solution optimale. Nous montrons que nous sommes capables de trouver des solutions pour lesquelles la latence est minimale pour 99.9% des instances dans des réseaux très chargés, et que nos méthodes donnent des résultats excellents comparées au multiplexage statistique. Toutes nos approches se basent sur des hypothèses techniques fortes : les ux doivent

Introduction

The work presented in this thesis takes place in the context of the development of 5G, and is more particularly focused on the reduction of latency in operators' core networks. One of the objectives for 5G is to ensure the lowest possible end-to-end latency. Reducing latency in networks not only improves the quality of service for users, but also opens the door to the development of applications for which response time is critical (autonomous vehicles, Industry 4.0, . . .). The application case we are studying is the Cloud Radio Access Network abbreviated to C-RAN. The goal of C-RAN is to centralize the computing units located at the feet of each antenna in one or more common data-centers, in order to facilitate maintenance and reduce operating costs. The antennas periodically send messages to the data-centers, which compute an answer and send it to the antennas with the same periodicity. The time elapsed between the sending of a message by an antenna and the reception of its answer must be less than a deadline imposed by the radio communication protocol. These messages are very heavy and therefore use a lot of bandwidth in networks.

The current way to manage messages in a network is called statistical multiplexing. It consists of dimensioning each link so that the average ow of messages using a link can use this link without constraint. It is not uncommon for ows to send many packets at once through the network. When too many packets have to use a link at the same time, this is called contention. Messages that cannot use the link directly are put into a buer, which we call a contention buer. Buering messages in these contention buers increases packet latency. The more messages there is in a network, the highest are latencies due to contention. In C-RAN networks, sources periodically send large amounts of messages that require a guarantee of low latency, so they cannot be handled by statistical multiplexing.

This is why we oer solutions for deterministic and periodic ow management: we compute a scheduling that denes the dates on which each packet passes through each node of the network. The sources periodically send packets in the network, all according to the same period, set by the protocol. The schedules that we calculate guarantee the absence of packet collisions, when the scheduling is repeated innitely and periodically.

Several working groups are proposing technical solutions (presented in chapter 7) to help control latency in networks. With these solutions, network equipments are able to allocate transmission resources for certain ows at a given time. Research at Nokia Bell

Introduction

Labs aims to go further, by being able to reserve part of the resources at a given time for a given packet. However, it is necessary to calculate the dates on which packets must arrive at the network nodes. This thesis focuses on scheduling packets so that they do not collide in any of the nodes, in order to remove contention buers. Completely get rid of contention buers is not always possible, especially when networks are composed of many nodes. In this case, the goal of our work is to minimize the time spent by packets in the contention buers. It is important to note that in this case, the waiting time in contention buers is no longer undergone as in statistical multiplexing, but is controlled and predictable.

We model a network by a directed weighted acyclic multigraph whose vertices represent the contention points between messages in the network. The weights of the arcs represent the physical transmission time between two contention points. Two messages conict if they must pass through the same contention point at the same time. We consider that routing is given, and we try to organize the messages so that there is no conict in the network. We rst study the problem on simple and common networks with two serial contention points.

We dene the decision problem of choosing the date each message passes through each of these two contention points so that no message conicts with another in the network.

This problem looks like classical scheduling problems, but the periodic sending of our ows makes it an original and dicult problem. We prove in chapter 2 that the problem is NP-complete, even on acyclic oriented graphs of low degree or low depth, by reducing problems of arc or vertex coloring. We therefore propose heuristics (glutton algorithms, metaheuristics) that allow us to nd good solutions in polynomial time for any type of instance and FPT algorithms (of exponential complexity in the number of routes, but not in the other parameters of the problem) that nd an optimal solution to the problem and that are fast enough on the simple instances we study.

We study in chapter 3 the problem of organizing non-synchronized ows in a network without any buer. Even if for the moment C-RAN-related protocols do not allow to desynchronize antennas (which could be the case for future generations of mobile networks), this approach is applicable in other contexts, such as a factory where robots that do not require synchronization need to communicate quickly with a control center. We aim to compute a sending dates for messages at the beginning of their route so that they do not conict with other messages. This sending time is not considered as contention time.

The solutions to this problem are all optimal in terms of latency: the latency of messages is equal to the physical time of transmission, because no latency is added to messages because of contention. We describe increasingly advanced greedy algorithms aimed at optimizing the impact of adding a message to the partial solution we computed. These algorithms allow us to ensure that a solution to the problem exists when the network load is less than 40% (and even up to 61% for messages of size 1). We also propose an FPT algorithm (when the problem is parameterized by the number of routes) which allows us to compute the optimal solution in a reasonable time when the number of routes is less than 20. Our results show that the problem cannot be solved without contention buers when the network load is higher than 80%. This is why we deal in chapter 4 with the problem of organizing ows with one contention buer on the route, in order to provide a greater degree of freedom. We study more particularly the problem of minimization, that is, nding a solution that minimizes the maximum latency of the routes. We propose a two-stage approach. First, we choose the sending time for messages such that there is no conict on the rst contention point, and then we solve the problem of choosing the waiting time for each message on the second contention point. To do so, we describe a polynomial algorithm based on the classical scheduling problem of the literature, adapted for periodicity. We also propose an FPT algorithm based on the same principle, but which guarantees to nd the optimal solution. We show that we are able to nd solutions for which latency is minimal for 99.9% of instances in highly loaded networks, and that our methods give excellent results compared to statistical multiplexing.

In chapter 5, we study the problem of organizing synchronized messages on any type of DAG. In this case, all the messages are sent at the same time by the sources and we allow the messages to wait in buers at each contention point of the network. We study the problem of minimizing the maximum latency in the network. We start by describing greedy algorithms that nd a realisable solution for any load, which are used as a starting point for the local search algorithms used later. We introduce a compact form of the problem that allows us to dene a notion of neighborhood between the solutions in order to explore all of them. We study the performance of local search algorithms (hill-climbing, tabu search, simulated annealing) and we propose a Branch and Bound algorithm that lists all the solutions in a compact form, making enough cuts to nd the optimal solution quickly. We show experimentally that the Branch and Bound algorithm is able to nd an optimal solution in a reasonable time for 12 routes, while simulated annealing allows to nd much better solutions than statistical multiplexing for any instance size.

We then study, in chapter 6, the impact of our scheduling algorithms when periodic and Introduction high-priority C-RAN ows share the network with Best-Eort, non-priority ows whose arrivals follow a stochastic process. We propose a method for adapting our algorithms that smooth the load of the C-RAN ows all over the period, without increasing latency.

Our experiments show that, even if organizing the ows in a deterministic way as we do requires using a bit more bandwidth to reserve resources, the average latency of Best-Eort ows is better than with statistical multiplexing. We also show the same kind of results in an optical ring where the scheduling of C-RAN ows is made trivial by the technical opto-electronic conversion constraints.

All our approaches are based on strong technical assumptions: the ows must be perfectly synchronized, the network must have a global controller and must be programmable.

Chapter 7 reviews the recently developed standards that are close to our hypotheses. We also show the limits of these standards, and we introduce equipment in the development phase that would enable us to reduce latency in networks to the physical transmission time.

Chapter 1

Algorithmic and industrial context Telecoms networks must manage more and more users while continually improving their bandwidth, latency and reliability. Nowadays, 4G is the standard deployed in most of the territory, and 5G is the new technology under deployment. The term 5G denes a set of functional specications. The organism that proposes these specications is the ITU (International Telecommunication Union), an agency of the United Nation responsible for information and communications. For several years, the ITU-R (radiocommunication component of the ITU) has been working to determine the functional aspects that 5G must satisfy. Figure 1.1 from [START_REF] Dahlman | 5G NR: The next generation wireless access technology[END_REF] illustrates some of those functional aspects, that ITU-R has formally referenced under the name IMT-2020 [START_REF] Romano | IMT-2020 Requirements and Realization[END_REF] (the requirements of 4G are referenced as IMT-advanced): a bitrate up to 20Gbps (×20 compared to 4G), low end to end latencies down to 1ms (10 times lower than in 4G, we are focusing on this aspect in this thesis).

Also, 5G aims to oer an higher connection density (up to 1 million device/km 2), with an higher trac capacity (from 0,1M bit/s/m 2 in 4G to 10M bit/s/m 2 in 5G) thanks to a wider use of the spectrum. Other aspects as a better energy eciency (100 times better in 5G than in 4G) or a better mobility are required.

All these characteristics allow various application cases. Figure 1.2 taken from [START_REF]White paper: 5G for Connected Industries and Automation[END_REF] establishes a non-exhaustive list of them, according to their dierent technical constraints.

One of them is low latency, required for applications like motion control that work in real time. Also, 5G aims to develop dynamic programmable networks, for greater exibility of use. This thesis focuses on developing algorithm to dynamically manage ows in the network in order to provide low latency.

On the other hand, a higher bandwidth is useful for applications like video streaming, Chapter 1. Algorithmic and industrial context Release 15 focused on increasing throughput and interworking between 4G and 5G, and introduced the notion of URLLC (Ultra-Reliable Low-Latency Communication). URLLC consists in ensuring low packet loss and low latency communications. Indeed, several use cases (smart factories, control operations, . . .) needs highly reliable communications in which the latency must be guaranteed. The objective of this thesis is to compute schemes for low latency communications. To do so, the network equipments must be able to manage the trac by discriminating dierent kinds of ows and following computed scheduling to manage them. Even if current network does not yet have such capabilities, releases 16 an 17 have deepened the notion of URLLC and this topic is widely studied.

Current way to manage networks : Statistical Multiplexing

The constraints expressed for low latency architectures and 5G standard are hard to meet in current networks. In IP or even Ethernet networks, the trac usually suers of delay due to contention.

As we just mentioned, the current network nodes (routers for IP networks, switches for Ethernet networks) are not able to schedule packets. The only function of the nodes is to forward the packets to the right output port. The objective is to oer a good average quality of service for a minimal price. When a single input ow uses an output port, there is no issue. If several packets coming from several ows require the same output port at the same time, we talk about contention. Some packets are then put in a contention buer until the port is available. The additional latency induced by contention buers is one of the most important causes of delay. In order to avoid this situation, the bitrates of the links is dimensioned according to the use case. It is then calculated according to the average bitrate of the ows on the network. When there is too much packets in the buer, the oldest packets of the buer are lost. Such an approach ensures an easy deployment and management of the networks and most of the time a good quality of service for a minimal cost for network providers, but it may induce packet losses and high latencies. This is called statistical multiplexing [START_REF] Krishnamurthy | Latency-based statistical multiplexing[END_REF][START_REF] Venkatramani | Supporting real-time trac on Ethernet[END_REF].

URLLC aims to ensure good end to end latency communications. To achieve such a goal, each component of the communication network must satisfy a low latency: the radio communications, and the core network. This thesis focuses on the core network.

Radio Access Network

To understand the network this thesis focuses on, we now describe how a radio access network works.

Current mobile network (aka cellular network) architecture consists in a distributed radio access networks: the mobile terminals connect to a base station (BTS for Base Transceiver Station as a generic name, eNB for evolved Node B in 3GPP LTE 4G standard or gNB for 5G) that encompasses all the sub-systems needed to realize mobile communication [START_REF] Bouguen | LTE pour les reseaux 4G[END_REF]. It mainly comprises the radio part, that furnishes the connection between the mobile terminal and the BTS, and the network part that provides control and management functions like mobility support (the main functionality being the support of handover from one BTS to another, i.e. the ability to pursue a communication when moving from the range of an antenna to another). The BTS are connected together by the Aggregation Network of the operator, itself connected to the core network, in order to ensure communications with other operators Radio Access Networks(RANs). Figure 1.4 illustrates a communication between two mobiles using a dierent operator.

Cloud RAN

One possible direction for next generation networks is to become centralized radio network architectures (C-RAN, for Cloud Radio Access Network) to reduce consumption costs and 1.1. Industrial context 13 power at the base stations [START_REF] Mobile | C-RAN: the road towards green RAN[END_REF]. These C-RAN architectures include simplied base stations on the eld. Depending on the architecture choice, it can be restricted to the radio part and the digital to analog conversion only. This can be identied by dierent names depending on the reference document, including RU for Remote Unit or RRH for Remote Radio Heads. The latter will be used in the thesis. The other components of the C-RAN are the processing units. One can distinguish two levels of processing units: the DUs, for Distributed Units that are able to ensure only a part of the computation tasks, and the CUs for Centralized Units that computes the most centralized tasks. In this thesis, we consider only CUs, that are also called BBUs for BaseBand Units, and we use this term in the thesis. The BBUs are located in the cloud.

Split

As mentioned above, in C-RAN, most of the computation tasks of the BTS must be centralized in the BBU. There are several components that can be centralized, but the more we centralize the ressources, the higher the latency constraints are. to be processed in less than 3ms [START_REF] Bouguen | LTE pour les reseaux 4G[END_REF]. Considering processing time into the BBU, the time budget over the network can be as low as 400µs for a round trip. One specicity in this C-RAN context is not only the latency constraint, but also the periodicity of the data transfer between RRH and BBU (this HARQ constraint must be enforced for each frame emitted every millisecond). Looking beyond current mobile network generation, one must have in mind that upcoming 5G standards will require to reach end-to-end expected latency as low as 1ms (depending on targeted services) [START_REF] Boccardi | Five disruptive technology directions for 5G[END_REF]. New scheduling and new technologies have to be considered to guarantee delay constrained periodic data transfers.

Technical solution for low latency

Statistical multiplexing is the most common mechanism used to manage packet based networks in the last 40 years. While tools [START_REF]ALTO Performance Cost Metrics draft-ietf-alto-performance-metrics-12[END_REF] ensure a latency lower than a given value for 95% of the packets, such a guarantee is not sucient in our context in which all packets must satisfy latency constraints. Indeed, mechanisms like Express Forwarding [START_REF]Understanding Cisco Express Forwarding (CEF)[END_REF] can be used to prioritize some packets over the others, but they fail to guarantee the delivery of a given packet in a given time delay when several packets compete for the same resource.

The best current solution is to rely on an almost full optical approach, where each end-point (RRH on one side, BBU on the other side) is connected through direct ber or full optical switches [START_REF] Pizzinat | Things you should know about fronthaul[END_REF][START_REF] Tayq | Real time demonstration of the transport of ethernet fronthaul based on vRAN in optical access networks[END_REF]. This architecture is very expensive and hardly scales in the case of a mobile network. As illustrative purpose, a single (one operator) mobile network in France is composed of about 10,000 base stations. This number will increase by a factor of 2 to 20 with the emergence of small cells which increases base station density to reach higher throughput [START_REF] Leclerc | Transmission of coherent data ow within packet-switched network[END_REF][START_REF] Leclerc | Signaling for transmission of coherent data ow within packet-switched network[END_REF]. It is thus needed to nd a solution to oer low latency over commoditized packet based networks.

Although 3GPP standards for 5G are not completely frozen yet, the core network is designed to use ethernet technology. Time Sensitive Networking (TSN) [START_REF]Time-Sensitive Networking Task Group[END_REF][START_REF]Time-Sensitive Networking Task Group of IEEE 802.1. Time-Sensitive Networks for Fronthaul[END_REF] is a task group of IEEE that develops some standards for ethernet. We focus on several of those standards which allow a control of the latency. The model and the algorithms of this thesis make the hypothesis that the network components are detailed, able to collect some information and send it to a centralized entity, to dierentiate several kinds of ow and to forward it at an exact date, imposed by the controller. TSN standards propose technical solution for those hypothesis, but an approach like TSN is still based on statistical laws and is limited to ensure a perfect control of the latency. TSN technologies ensure an end-to-end Chapter 1. Algorithmic and industrial context latency bounded for all packets, but not minimal, as we propose. The limits of TSN and the technical solution we propose are detailed in Chapter 7.

In this thesis, we work on deterministic ows. Thus, we propose algorithms to compute deterministic scheduling of the ows in the network, while minimizing the latency due to buering. Remark that minimizing the buering latency allows not only to meet latency constraints of applications, but also to leave additional time for others sources of latency (additional computations, longer length of bers, etc...). When computing a scheduling, we must take into account the periodicity which makes the problem dicult to solve.

Not only a datagram must not collide with the datagrams sent by the others BBU/RRH in the same period, but also in the other periods.

Algorithmic related works

We present in this section several families of problems and approaches, which are close to what is studied in this thesis but which mostly fail to model our problem faithfully or which are too general to derive useful algorithms. In order to understand how close these approaches are to ours, we rst describe the algorithmic problems studied in this thesis, see Chapter 2 for details. We consider a network in which the routing is xed. Several ows share the network, sending periodically a message of the same size from a source to a target. This message represents several packets in practice, but in our model we consider them contiguous. The messages can also be buered in the nodes of the network in order to let another message use a shared ressource. The objective is to compute the buering time of every message in every node of the network, such that the global latency (i.e. the largest latency of a ow) is minimal. Note that the periodic aspect of C-RAN makes the problem more dicult. Indeed, since the trac is periodic and the network highly loaded, we must deal with contentions coming from successive periods while computing the scheduling. The problem we address is to compute periodic schedulings. This means we compute the solution on one period and the scheduling remains the same for every period. There are several variations of the problem according to the shape of the network, the synchronization of the messages in a period or the constraints on buering.

Algorithmic Approaches

We rst looked at how classical problems like wormhole problems, or approaches based on graph coloring are close to our problem.

Wormhole Because we consider contiguous messages, we rst focused on wormhole problems [START_REF] Ni | A survey of wormhole routing techniques in direct networks[END_REF][START_REF] Richard J Cole | On the benet of supporting virtual channels in wormhole routers[END_REF]. Wormhole problems consider graphs representing interconnection networks, in which the vertices are the nodes of the network and the edges are the physical links.

Long messages are sent in the network, using ressources during a long time. A deadlock occurs when several messages are waiting for each others to release a ressource. The main problem consists in avoiding deadlocks. The algorithmic solution proposed consists in multiplexing the physical channels in several virtual channels, and to develop routing algorithms to determine the virtual channel used by each message. The problem is very similar, but we do not have the same degrees of freedom: in our network, the routing is given. Moreover, our messages require the entire capacity of the links and we cannot use multiplexing, except in a variation of our model presented in Chapter 6. Furthermore, deadlocks can not occur in the networks we model, since the considered routings are coherent [START_REF] Schwiebert | A Necessary and Sucient Condition for Deadlock-Free Wormhole Routing[END_REF]. A routing is coherent if two routes share a single path (i.e. a sequence of contiguous links) in the network.

On a technical aspect, wormhole switches [START_REF] Richard J Cole | On the benet of supporting virtual channels in wormhole routers[END_REF] are designed to read only the header of the messages before forwarding it instead of buering the entire messages as in store-andforward [START_REF] Elbert | Store and forward video system[END_REF]. This method has a huge impact on the latency, particularly on long messages, and we go further by trying to remove all buering in the switches.

Graph coloring for ressources allocation One of our approach consisted in representing the shared ressources of the network by a conict graph. The vertices of the graph represent the routes of the networks and there is an edge between two vertices if their associated routes share the same ressource (i.e. an output port on a switch). The edges of the graph are labeled by the dierence of the physical length of the links between the sources of the routes and the conict point. A proper coloring of such a graph is a scheduling of the network without collisions between the messages. Several graph colorings have been introduced to model similar problems. In [START_REF] Erlebach | The complexity of path coloring and call scheduling[END_REF] the objective is to minimize the number of wavelength in shared links for optical networks. Flow allocations problems are studied in [START_REF] Borndörfer | Frequency assignment in cellular phone networks[END_REF], applied to the allocation of the frequencies in radio networks. Unfortunately, they Chapter 1. Algorithmic and industrial context do not take into account the periodicity of the scheduling and the associated problems are already NP-complete.

Circular Coloring

The only coloring taking into account periodicity is the circular coloring [START_REF] Zhu | Circular chromatic number: a survey[END_REF][START_REF] Zhou | Multiple Circular Colouring as a Model for Scheduling[END_REF]. As an example, circular coloring can model a road intersection as a graph in which the vertices are the ows and there is and edge between two vertices if the ow must not overlap. The problem is to nd a proper vertex coloring of the graph.

Such an approach is close to our problem of coloring conict graphs. However, the models presented do not consider the weight on the arcs, and cannot easily capture general graphs. Also, because the problem is already NP-hard , this approach did not catch our attention.

Circular arc coloring [START_REF] Tucker | Coloring a Family of Circular Arcs[END_REF] also manages jobs that can be related to periodic messages. The authors consider a clock and several arcs around this clock, representing the time needed by a job. The objective is to nd the minimal number of men needed to complete the job. If two arcs overlap, the same man cannot be aected to both jobs. Nevertheless, this problem has been shown NP-hard [START_REF] Kumar | Approximating circular arc colouring and bandwidth allocation in all-optical ring networks[END_REF] and the model is really far from ours.

Scheduling approaches

Our problem is very close to a scheduling problem, with an additional periodicity constraint. Therefore, we looked for scheduling approaches that can be used for, or adapted to our problem.

Train Scheduling The train timetabling problem [START_REF] Richard | Railway track allocation: models and methods[END_REF] and its restriction, the periodic event scheduling problem [START_REF] Serani | A mathematical model for periodic scheduling problems[END_REF] are generalizations of the problem we study. Indeed, they take the period as input and can express the fact that two trains (like two messages) should not cross. However, they are much more general: the trains can vary in size, speed, the network can be more complex than a single track and there are precedence constraints.

Hence, the numerous variants of train scheduling problems are very hard to solve (and always NP-hard). Most of the research done [START_REF] Richard | Railway track allocation: models and methods[END_REF] is devising practical algorithms using branch and bound, mixed integer programming, genetic algorithms. . . Linear Programming for Latency Constrained Network We dene in this thesis a simple network topology called the star shaped network. In star shaped networks, all ows go through the same link, and there is only two relevant contention points (one in the way to the BBUs, and one in the way back to the RRHs).

Variation on the problem of scheduling periodic messages for Cloud-RAN have been investigated in [START_REF] Ganesh Nayak | Incremental ow scheduling and routing in time-sensitive software-dened networks[END_REF][START_REF] Steiner | Trac planning for time-sensitive communication[END_REF][START_REF] Silviu S Craciunas | Formal scheduling constraints for time-sensitive networks[END_REF][START_REF] Ganesh Nayak | Time-sensitive softwaredened network (TSSDN) for real-time applications[END_REF]. In these papers, authors study the practical problem of scheduling a few number of ows in a star shaped network. Given a network in which the routing is set, the objective is to schedule several periodic ows with a critical latency and several best-eort ows, as we do in Chapter 6. To do so, the authors use new technical standards (TSN, detailed in Chapter 7) that allow to prioritize ows, and linear programming in order to compute a schedule between the critical ows. In the same spirit, the use of an SMT solver rather than linear programming is proposed in [START_REF] Cassimiro | TSNSCHED: Automated Schedule Generation for Time Sensitive Networking[END_REF]. The ows described in these papers are dierent from ours. While we consider that a single long message is sent by a source every period, the authors propose ows in which several little packets are sent. The scheduling are computed on multiple periods while we compute a scheduling on one period, which can be repeated periodically. Furthermore, the experiments are made on small topologies, because these approaches does not scale neither with the number of routes nor the number of conict points on each route, while we propose polynomial time algorithms that give satisfying solution for every kind of topology. However, this kind of approach, as explained in [START_REF] Steiner | Trac planning for time-sensitive communication[END_REF], can be used as a standardization tool to verify the viability of solutions computed by faster algorithms.

A polynomial algorithm for single processor scheduling The problem we address in this thesis is similar to classical single processor scheduling problems, dened as follows.

Given a set of jobs, a release time and a deadline for each job, nd a scheduling to minimize the global completion time (i.e. the time at which all jobs have been processed). The approach we adopt in Chapter 4 to solve our problem on a star routed network, is a two stage approach. The second stage, when forgetting about periodicity, is similar to a scheduling problem with a single processor with the goal of minimizing the completion time (makespan). The algorithm described in [START_REF] Simons | A fast algorithm for single processor scheduling[END_REF], solves this problem in polynomial time when all tasks have the same processing time. We use it as a building block of several of our algorithms in Chapter 4 and Chapter 5, where we adapt it to the case of periodic jobs.

When the jobs have dierent processing times, the problem is NP-hard [START_REF] Karel Lenstra | Complexity of machine scheduling problems[END_REF].

Two ow shop scheduling On the star routed network studied in Chapter 3, the problem of scheduling messages for Cloud-RAN without buers nor periodicity is similar to a two ow-shop scheduling problem. In two ow-shop scheduling, the objective is to schedule the jobs on two processors, each job must be rst processed by the rst processor and can 20 Chapter 1. Algorithmic and industrial context then be processed by the second one after a delay which depends on the job. This two-ow shop problem is NP-hard [START_REF] Yu | Minimizing makespan in a twomachine ow shop with delays and unit-time operations is NP-hard[END_REF], and while it can be reduced to the synchronized version of our problem, presented in 5, the correspondence is less clear with the unsynchronized version of Chapter 3. Moreover, our problem adds the constraint of periodicity, hence no algorithm for two ow shop scheduling can be used as is.

The problem of scheduling tasks on multiple processors periodically does not seem related to our problem. In [START_REF] Korst | Periodic multiprocessor scheduling[END_REF] the problem is the following: Given a set of tasks, with for each of them a duration and a period, nd a periodic scheduling minimizing the number of processors on which the periodic tasks are scheduled. The model is dierent from ours because we consider messages of same size and period, and we want to schedule all messages on the same ressource.

In general, the problem of cyclic scheduling [START_REF] Levner | Complexity of cyclic scheduling problems: A state-of-the-art survey[END_REF][START_REF] Hanen | Cyclic scheduling on parallel processors: an overview[END_REF] have been extensively studied. The problem has many variants, considering or not precedence constraint, dierent message sizes, or dierent periodicity for each message, etc. . . Most of these problems have been shown to be NP-hard. In all these problems, the objective remains the same: minimizing the period. The main dierence, which makes methods for cyclic scheduling quite dierent from our approach, is that the period is an input of our problem, which cannot be modied.

While cyclic scheduling tries to optimize the throughput by changing the period, we try to optimize the latency for a xed period.

Conclusion

One of the trend of 5G and networks in general is to be able to ensure end to end communication with a low latency. To do so, it is important to reduce the latency sources in each part of the network. In this thesis, we focus on the packet switched network connecting the radio antennas to the operators' core network. In packet switched networks, the major source of latency is the buering latency due to contention. Current approach of network management consists in multiplexing the ows on a network dimensioned following statistical laws, and this may induce high contention buering time. In order to reduce the contention, several technical solutions are currently in development to control critical tracs more precisely than statistical multiplexing. With those solutions, the switches follows all over the time a precise scheduling of each ow it must forward at each date.

In this thesis, we study the problem of computing this scheduling. Knowing the topol-1.2. Algorithmic related works 21 ogy of the network, and the dierent ows it supports, our objective is to compute the scheduling of the trac for every node of the network, while minimizing the latency of the ows. Because we consider applications sending all over the time a datagram periodically, the scheduling must be periodic. Scheduling problems for networks have been extensively studied in wormhole routing, train scheduling or frequency allocation, but none of these studies deal with the periodicity of the ows we want to schedule, which makes the problem innovative and dicult. Circular scheduling or coloring problems seems related to our problem but the model are too far from ours, and the problem are not the same. Single processor scheduling, with makespan constraint can be adapted for periodicity to build some of our algorithms.

Chapter 2

Model and Problems Denition

The model and the proofs presented in this chapter has been introduced in [START_REF] Barth | Deterministic Scheduling of Periodic Messages for Cloud RAN[END_REF] and extended in a long version of the paper in [START_REF] Barth | Deterministic Scheduling of Periodic Messages for Cloud RAN[END_REF].

Model

We rst present in this section how we model a communication network, and we give the algorithmic problems we study on.

Let [n] denote the interval of n integers {0, . . . ,n -1}.

Routes and Contention Points

We study a communication network constituted of pairs of vertices between which messages are sent periodically. The routing between each pair of such nodes is given: a route is a sequence of vertices (s, c 1 , . . . , c l , t). A vertex appears only once in a route, that is there is no loop in a route. Each vertex c i corresponds to a contention point, which is the beginning of a link of the communication network shared by several routes. Hence, all vertices appear in several routes, except s, the rst vertex of the route, and t, the last vertex of the route, which are exclusive to the route and represent the source and the target of the message.

When modeling a C-RAN network, the rst vertex represents the sending of the message by the RRH and the last vertex represents the same RRH that receives the answer sent back by the BBU.

The set of routes is denoted by R. A route is interpreted as a directed path in a directed multigraph constituted of all routes, where the sets of arcs of the routes are disjoint. The routes contain no loop nor cycle, since all vertices of a route are dierent. Thus, the directed multigraph is acyclic. An arc in the multigraph may represent several physical links or nodes of the modeled network, which do not induce contention points. Each arc (u,v) of a route r is labeled by an integer weight ω(r,u). It represents the time elapsed between the sending of the message of the route r in u and its reception in v. The weight of a vertex u i in a route r = (u 0 , . . . ,u l) is dened by λ(r,u i) = 0≤j<i ω(r,u j). It is the time needed by a message to go from the rst vertex of the route to u i . The length of the route r is dened by λ(r) = λ(r,u l).

On each route, we can buer the message only in the BBU. Since the BBU does not correspond to a contention point, we identify the BBU with the next contention point in the route. The set of these contention points with possible buering is denoted by B.Thus, each route has only one vertex in B. A routed network, which models the telecommunication network, is a triple N = (R, B, ω), see Figure 2.1 for an example.

Dynamic of Datagrams Transmissions

In this thesis, we consider a discretized time. The unit of time is called a tic. This is the time needed to send an atomic data in a link of the network. We assume that the speed of the links is the same over all the network. We are developing a prototype of this work based on ethernet base-X [START_REF][END_REF], see Chapter 7, using standard values for the parameters of the network: the size of an atomic data is 64 bits, the speed of the links is 10Gbps, hence the duration of a tic is about 5.1 nanoseconds.

In the process we study, a message, called a datagram, is sent on each route from the source node. The size of a datagram is an integer, denoted by τ , it is the number of tics needed by a node to emit the full datagram through a link. In this thesis, we assume that τ is the same for all routes. It is justied by our application to C-RAN, where all source nodes are RRHs sending the same type of message. There is no fragmentation: Once a Let r = (s, . . . ,t) be a route. In order to avoid contention, it is possible to buer datagrams in the contention points in B. An assignment A of a routed network N = (R, B, ω) is a function which associates to each route r ∈ R, the pair of integers A(r) = (o r ,w r). The value o r is the oset, the time at which the datagram is available in the rst vertex of r. The value w r is the waiting time: the datagram is buered for w r tics in u j ∈ B ∩ r, the vertex representing the BBU. The arrival time of a datagram in the vertex u i of r, is the rst time at which the datagram sent on r reaches u i , and is dened by t(r,u i) = λ(r,u i) + o r if i ≤ j and t(r,u i) = λ(r,u i) + o r + w r otherwise.

Let u l be the last vertex of the route r, the transmission time of the datagram on r is denoted by T R(r,A) and is equal to λ(r) + w r or equivalently t(r,u l)o r . This is the total time taken by the process we study: the sending of the datagram from the RRH to the BBU and the return of the answer back to the RRH. We can decompose this time into λ(r), the physical latency of the process and w r , the logical latency. We dene the transmission time of an assignment A as the worst transmission time of a route:

T R(A) = max r∈R T R(r,A).

Periodic Emission of Datagrams

In the previous section, we have explained how one datagram follows its route. However, the process we model in this thesis is periodic: for each period of P tics, a datagram is sent, from each source node in the network, at its oset. The process is assumed to be innite, since it must work for an arbitrary number of periods. For a given route, we use the same oset and waiting time in all periods, for simplicity of implementation in real networks and to make our problem more tractable from a theoretical perspective. Hence, at the same time of two dierent periods, all datagrams are at the same position in the network:

the assignments built are themselves periodic of period P . Thus, we only need to consider the behavior of the datagrams on each node of the network during a single period, and to apply the same pattern to every subsequent period. Using a dierent oset for each route corresponds to sending their datagram at a dierent time in the period. This matches our hypothesis that the emissions of the RRHs need not to be synchronized but they share a common global clock, useful for coordination of their emissions.

Let A be an assignment of a routed network N = (R, B, ω). The assignment A is said to be valid if, for all contention points u and routes r 1 and r 2 containing u, r 1 and r 2 have no collision at u. The validity of an assignment depends on P the period and τ the size of the datagrams, thus we say that A is a valid (P,τ)assignment. When P and τ are clear from the context, we denote [r,u] P,τ by [r,u] and say that A is a valid assignment.

Figure 2.3 illustrates two valid periodic assignments for dierent values of P and τ , but the same network. The three routes are depicted by three dierent colors. If we let P = 2 and τ = 1, then there is a (2,1)-periodic valid assignment with waiting times zero by taking 0 as oset for each route. However, for the same routed network but P = 5 and τ = 2, there is no solution to the problem with waiting times zero. If we allow 1 tic of waiting time for one route, we can build the valid assignment A (r 1) = (0,0), A (r 2) = (2,1), A (r 3) = (0,0)..

Periodic Assignment for Low Latency

The period P , as well as the size of a datagram τ are xed in our C-RAN settings, but not the buering policy. Hence, the aim of this section is to nd a valid assignment which minimizes the worst latency of the transmissions over the network, that is T R(A). We denote by mintra the problem of nding the minimal value of T R(A), for a given period, datagram size and routed network. For simpler hardness proofs and easier reductions, we Figure 2.3 A routed network with A(r 1) = (0,0), A(r 2) = (0,0), A(r 3) = (0,0) as a (2,1)-periodic valid assignment and A (r 1) = (0,0), A (r 2) = (2,1), A (r 3) = (0,0) as a (5,2)-periodic valid assignment study the decision version of mintra, that we call pall for Periodic Assignment for Low Latency. Each route must respect a time limit called a deadline. These limits are encoded in a deadline function d, which maps to each route r an integer such that T R(r,A) must be less than d(r). We dene the margin of a route r in a routed network N with deadline function d as d(r)λ(r). The margin is a bound on the waiting of a route in a valid assignment.

Periodic Assignment for Low Latency

Input: A routed network N , the integers P , τ and a deadline function d.

Question: Does there exist a (P,τ)-periodic assignment of N such that for all r ∈ R, T R(r,A) ≤ d(r)?

In the next section, this problem is proved to be NP-hard. In Chapter 4, we propose heuristics solving the search version of pall (computing a valid assignment), also denoted by pall for simplicity. In the denition of pall, we have chosen to bound the transmission time of each route, in particular we can control the worst case latency. It is justied by our C-RAN application with hard constraints on the latency.

We say that an assignment is buerless when the waiting time of all routes are zero.

The assignment can then be seen as a function from the routes to the integers (the value of the oset, the waiting time is omitted). We consider a restricted version of pall, requiring to nd a buerless assignment and studied in Chapter 3. This is equivalent to using the deadline function d(r) = λ(r), that is the transmission time must be equal to the size of the route, which implies w r = 0 for all r ∈ R. An unusual property of assignments is that given a routed network and a deadline, we may have a (P,τ)-periodic assignment but no (P ,τ)-periodic assignment with P > P : the existence of an assignment is not monotone with regard to P .

Proposition 1. For any odd P , there is a routed network with a (2,1)-periodic buerless assignment but no (P,1)-periodic buerless assignment.

Proof. Let us build N , a generalization of the routed network given in Figure 2.3. Let n be an integer, the vertices of the routes are v i,j , v 1 i and v 2 i , with 0 ≤ i < j < n. There are n routes denoted by r i , for i ∈

[n]. The route r i is equal to (v 1 i ,v i,1 , . . . ,v i,n-1 ,v 2 i).
The weights of the arcs are set so that λ(r i , v i,j)λ(r j ,v i,j) = P , where P is an odd number smaller than n. It is always possible by choosing appropriate values for ω(r i ,v i,j-1) and ω(r j ,v i-1,j). In such a graph, there is no (P,τ)-periodic assignment with zero waiting time, since the problem reduces to nding a P -coloring in a complete graph with n > P vertices, the colors being the osets of the routes.

If we consider a period of 2, for all i = j, λ(r i , v i,j)λ(r j , v i,j) mod 2 = 1, hence two datagrams of same oset and size 1 do not have a collision at v i,j . Therefore, the buerless assignment dened by A(r i) = 0 for all i ∈ [n] is a valid (2,1)-periodic assignment of N .

Let us introduce a few parameters quantifying the complexity of a routed network.

The contention depth of a routed network is the size of the longest route (number of arcs) of the network minus one. It is the number of contention points on the route with the most vertices on the network, since the rst and the last vertex are private to the route. The width of a vertex is the number of routes which contains it, equivalently its indegree and its outdegree. By denition, the rst and last vertex of a route are of width 1, while all other vertices are of width at least 2 (otherwise they can be removed). The contention width of a routed network is the maximal width of its vertices. Remark that a (P,τ)-periodic assignment of a routed network must satisfy that P/τ is larger or equal to the contention width. Now, let us x P and τ , for a given vertex of contention width c, we dene its load as cτ /P . It represents the proportion of the period used by datagrams at this contention point. The load of the routed network is the maximum of the loads of its vertices. A routed network must have a load less or equal to one to admit a valid assignment.

The Star Routed Network

In this section, we dene a family of simple routed networks modeling a Multipoint-to-Multipoint fronthaul (see gure 2.4), which has been designed for C-RAN [START_REF] Tayq | Real time demonstration of the transport of ethernet fronthaul based on vRAN in optical access networks[END_REF]. deadline function are also given. When the period is xed, we modify the deadline function to do several simplifying assumptions on the parameters of the star routed network without loss of generality. We say that a star routed network is canonical, for a period P , if the weights of the arcs between c 1 and c 2 are in [P] and the others are equal to zero. Hence, λ(r i), the length of a route is equal to the length of its arc (c 1 ,c 2). Moreover, λ(r 0) = 0. Proof. Let us dene ω and d from ω and d in such a way that there is a bijection between valid assignments of I and I , which proves the proposition. In this bijection, the osets o i for an assignment of I will be mapped to o i , while the waiting times remain the same.

The routed network N is equal to N except for the weight function ω . We set the weights of the arcs (s i ,c 1) to zero in N . We obtain the bijection between valid assignments of I and I by setting o i + ω(r i ,s i) = o i and d (r i) = d(i)ω(r i ,s i). The weights ω (r i ,c 2)

are also set to 0, it does not change the possible collisions for an assignment but it changes the transmission time, hence we set d (r i) = d (r i)ω(r i ,c 2) to preserve the bijection between valid assignments of I and I .

We let ω (r i ,c 1) = ω(r i ,c 1) mod P . Again, it does not change the collisions since computing a possible collision is done modulo P . However, we must change d to be

d (r i) = d (r i) -ω(r i ,c 1) + ω (r i ,c 1)
.

Finally, we assume w.l.o.g. that ω (r 0 ,c 1) is the smallest weight among the weights of the arcs (c 1 ,c 2). We let ω (r i ,c 1) = ω (r i ,c 1)ω (r 0 ,c 1), which implies that ω (r 0 ,c 1) = 0.

All weights of arcs (c 1 ,c 2) are changed by the same value, hence collisions are not modied.

We change d (r i) to d (r i)ω (r 0 ,c 1) for all i so that the constraint on the deadline stay the same.

From now on, we may assume that a star routed network is canonical, using Proposition 2. To give a instance of pall where the routed network is a canonical star routed network, it is enough to give the weights of the arcs (c 1 ,c 2) for all routes, the period, the datagram size, and d the deadline function.

Chapter 3 focuses on solving pazl on star routed network. Chapter 4 will focus on solving pall on such topologies.

Hardness of PALL and PAZL

We show in this section that pall is NP-hard by proving NP-hardness for a restricted version: pazl with τ = 1. We give two proofs that pazl is NP-complete. The rst proof works even for contention depth two, but not for star routed networks. For contention depth one, the problem is trivial: either the load is less than one and there is a valid buerless assignment or there is no valid assignment. The second proof works for graphs with contention width 2: the conicts are locally very simple, but the problem is complex globally nonetheless. Solving pall is trivial on trees because they can be reduced to one vertex of contention depth one. Thus, it may be interesting to study the complexity of pall on bounded treewidth (or dagwidth) networks, a common property of real networks [START_REF] De Montgoler | Treewidth and hyperbolicity of the internet[END_REF].

Theorem 1. pazl is NP-complete on the class of routed networks with contention depth Chapter 2. Model and Problems Denition Proof. pazl is in NP since given an oset for each route in an assignment, it is easy to check whether there are collisions, in linear time in the routed network's size.

Let H = (V,E) be an undirected graph and let P be its maximum degree. We consider the problem to determine whether H is arc-colorable with P or P + 1 colors. The arc coloring problem is NP-hard [START_REF] Holyer | The NP-completeness of edge-coloring[END_REF] and we reduce it to pazl to prove its NP-hardness. To do that, we dene from H a routed network N = (R, ω) as follows.

Let us choose an arbitrary total order < on V . For each edge (u,v) ∈ E, if u < v, there is a route s u,v ,u,v,t u,v in R. All these arcs are of weight 0. Note that, N is of contention depth 2, as required by the theorem statement.

The existence of a P -coloring of H is equivalent to the existence of a (P,1)-periodic buerless assignment of N . Indeed, a P -coloring of H can be seen as a labeling of its edges by the integers in [P]. It induces a bijection between P -colorings of H and osets of the routes of R, which represent the edges of H. Having no collision on some vertex v implies that all osets of routes going through v are dierent, since all arcs are of weight 0. Hence, edges of H incident to v, colored by the osets of a valid assignment are all of distinct colors. Therefore we have reduced arc coloring to pazl by a polynomial time transformation which concludes the proof.

Remark that we have used weights of zero for all arcs in the proof. It is a further restriction to the class of graphs for which pazl is NP-hard. We could ask the weights to be strictly positive, another possible restriction which makes more sense in our model, since weights represent the delay of physical links. Then, we can prove NP-completeness using the same proof, by setting all weights to the period P .

We now give a hardness proof for routed networks with contention width two but large contention depth. Note that a vertex of contention depth one does not induce a collision and can be removed from the routed network without loss of generality. The presented reduction can be used to prove an inapproximability result. Let minpazl be the following problem: given a routed network and τ , nd the minimal period P such that there is a (P,τ)-periodic buerless assignment (a positive instance of pazl).

Theorem 2. If P = NP, the problem minpazl on the class of routed networks of contention width two cannot be approximated in polynomial time within a factor n 1-o (1) where n is the number of routes.

Proof. We reduce the problem of nding the minimal vertex coloring of a graph to minpazl.

Let H = (U,E) be a graph, an instance of the problem of nding a minimal vertex coloring.

We dene the routed network N from H as in Proposition 1.

Let < be an arbitrary total order on U . The vertices of N are in the set {v u,w | (u,w) ∈

E} ∪ {u 1 , u 2 | u ∈ U }.
For each vertex u in H, there is a route r u in R, whose rst and last vertices are u 1 and u 2 . In between, the route contains all vertices v u,w , following the order < on the w. The weights of all arcs is zero. By construction, a contention vertex corresponds to an edge and belongs to exactly two routes representing the vertices of the edge, thus N is of contention width 2. This reduction is illustrated in Figure 2.6.

The existence of a P -coloring of H is equivalent to the existence of a (P,1)-periodic assignment of N without waiting time: the oset of a route can be identied with the color of the corresponding vertex. Indeed, since all weights are zero, the absence of collision at contention point v u,w is equivalent to the fact that the osets of r u and r w are dierent and reciprocally.

Therefore, if we can approximate the minimum value of P within some factor such that there is a (P,1)-periodic assignment, we could approximate the minimal number of colors needed to color a graph within the same factor. The proof follows from the hardness of approximability of nding a minimal vertex coloring [START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF].

w 1 v 1 u 1 w 2 v 2 u 2 u v w → H N Figure 2.

Reduction from vertex coloring to minpazl

The previous theorem implies that pazl is NP-complete on the class of routed networks with contention width two. This also underlines the fact that, for general graphs, the best P such that there is a (P,τ)-periodic assignment may correspond to a very small load. We can build on the reduction of the previous theorem to prove that mintra, the problem of minimizing T R(A), is hard to approximate too.

Theorem 3. If P = NP, the problem mintra, on graphs of contention width two, cannot be approximated in polynomial time within a factor n 1-o (1) where n is the number of routes.

Proof. We reduce the problem of nding the minimal vertex coloring of a graph to mintra.

Chapter 2. Model and Problems Denition

Let H = (U,E) be a graph, instance of the problem of nding a minimal vertex coloring.

We dene the routed network N in two steps.

Let the elements of U be u 0 , . . . , u n-1 . There are n routes in N , denoted by r i for i ∈ [n]. In their rst part, they go from u 0 i to u 1 i , through some vertices in {v i,j,k } i,j,k∈[n]

that we later dene. Moreover, u 1 i ∈ B, that is the waiting time is added at u 1 i . Assume that r i has oset o i and r j has oset o j and let us x the datagram size to 1 and the period to n. If r i and r i go through some vertex v i,j,k , and λ(r i ,v i,j,k) = λ(r j ,v i,j,k) + k, then to avoid a collision, the equation o i = o j + k mod n must be satised. If r i and r j go through v i,j,k satisfying the previous constraints for all k = l, it implies o i = o j + l mod n. It is easy to choose the weights of the two arcs going to v i,j,k to realize the previous condition, whatever the choice of weights of the previous arcs of the routes r i and r j .

We ensure, using the vertices v i,j,k for k = ij, that o i = o j + ij mod n. It implies that there is some o, such that o = o ii mod n for all i ∈ [n]. Now, for each route r i , we set the weight of the arc going to v 1 i , from the last vertex of the form v i,j,k in r i , to be ni. With this construction, we have ensured, that the datagram of r i arrives at v 1

i at time o modulo n, for all i ∈ [n].
The second part of the routes, from v 1 i to v 2 i is built exactly as in the proof of Theorem 2.

Hence, the waiting time in the vertices v 1 i plays the exact same role as the oset in the graph of Theorem 2: the valid (n,1)-assignments are in bijection with colorings of H, the waiting times corresponding to the colors.

Finally, set the weights of the last arc going to v 2 i , for all i ∈ [n], such that, for all i,j ∈ [n] 2 , λ(r i) = λ(r j). Since all routes are of the same size, T R(A) is equal to the maximal waiting time of A. Hence, the maximum waiting time is equal to the number of dierent waiting times required to have a valid assignment. A valid (n,1)-assignment which minimizes T R(A) is in bijection with a minimal proper coloring of H, which proves the theorem.

We would like to prove hardness for even more restricted networks, in particular star routed networks. The problem pazl on star routed networks is similar to the minimization of makespan in a two ow-shop with delays (see Section 4.4), a problem known to be NPcomplete [START_REF] Yu | Minimizing makespan in a twomachine ow shop with delays and unit-time operations is NP-hard[END_REF]. It suggests that pazl is NP-complete on star routed network, however we have not been able to prove it yet, because the makespan cannot easily be encoded in pazl.

If we relax the denition of routed network by allowing loops, we can model a network with 2.2. Hardness of PALL and PAZL 35 a single half-duplex shared link, that is collisions can happen between datagrams going in both directions. This variant can be shown to be NP-complete by a reduction from the subset sum problem, as it is done for a similar problem of scheduling pair of tasks [START_REF] Orman | On the complexity of coupled-task scheduling[END_REF].

Conclusion

We model C-RAN networks by weighted directed acyclic multigraphs called routed networks. The process we study is Periodic. Datagrams are sent by the sources of the routes at every period. Once a datagram have been sent, it can be buered in only one contention point of the network. The solutions to this problem are called periodic assignments and are a choice of oset and waiting time (on one contention point) for all datagrams such that there are no collisions between them. An assignment is computed for one period, and repeated all over the time for every period. The value of an assignment A is denoted by T R(A) and corresponds to the largest value on all routes of the time elapsed between the sending of a datagram and the reception of the answer in the RRH. We also introduce the simplest non trivial topology: the star routed networks in which every route shares the same two contention vertices.

We introduce the problem pall of nding an assignment respecting a given constraint on the latency of each route. We also give its variant pazl, where the constraint are as strong as possible: the assignment must use no waiting time. We showed that pazl and pall are NP-Hard, even for routed network of small contention depth or contention width, using reductions to arc and vertex coloring problems.

Chapter 3

Scheduling Unsynchronized Periodic Datagrams without Buer

This chapter corresponds to two articles: Section 3 of [START_REF] Barth | Deterministic Scheduling of Periodic Messages for Cloud RAN[END_REF] and all of [START_REF] Guiraud | Scheduling periodic messages on a shared link[END_REF].

In this chapter, we propose algorithm to solve the problem pazl on star routed networks, a problem denoted by PMA for Periodic Message Assignment in [START_REF] Guiraud | Scheduling periodic messages on a shared link[END_REF]. In this context, once a datagram has been emitted, no buering is allowed in the network for contention.

Remark that, if some buering is necessary for dealing with some technical diculty, but its duration is deterministic, it can be encoded into the length of the links. The buerless assignment we design may allow to design completely buerless networks, using full optical networks or new generation of networks mentionned in Chapter 7, which provide transparent transmission of data without latency inducing opto-electronic conversion or forwarding computations.

In the problem pazl (and also in the problem pall studied in Chapter 4), the datagram emissions are not synchronized. This means the sources don't send the datagram at the same time in the period. This is why we can choose the oset on the period without adding latency to the datagram. Such a problem does not perfectly match with C-RAN in actual 5G, but can be used in many other applications in which the sources do not need to be synchronized (industry 4.0, monitoring, sensor network, multicore over a bus, two processors scheduling, . . .). Moreover, we hope that future evolutions of the 5G standard will allow to use unsynchronized antennas.

Since pazl is a more constrained problem than pall, we simplify the notations. No buering is allowed, hence the notion of deadline on each route is not relevant anymore because all datagrams have the smallest possible process time, if there is a solution. Thus, an instance of pazl can be given, for each route i, by the length of the arc (c

[i] 1 ∩ [j] 1 = ∅ or [i] 2 ∩ [j] 2 = ∅. If t ∈ [i] 1 (resp. t ∈ [i]
2), we say that datagram i uses time t in the rst period (resp. in the second period). An assignment is a function from the datagrams to their osets, such that there is no collision.

The complexity of pazl on star routed networks is yet unknown. We prove in this chapter that, when parameterized by n the number of datagrams, the problem is FPT. On a slight generalization of the star routed network, with more contention points, but each datagram only going through two of them, pazl is NP-hard, see Theorem 1. When the shared link is not full-duplex, that is, there is a single contention point and each datagram goes through it twice, we can encode the same non periodic problem, which is NP-hard [START_REF] Orman | On the complexity of coupled-task scheduling[END_REF].

Hence, we conjecture that pazl is NP-hard.

To overcome the supposed hardness of pazl, we study it when the load of the system is small enough, which is dened here as the number of units of time used in a period by all datagrams divided by the period that is nτ /P . There cannot be an assignment when the load is larger than one; we prove in this chapter that, for moderate loads, there is always an assignment and that it can be found by a polynomial time algorithm.

When an algorithm nds an assignment to the problem pazl, for any input in some set, we say it solves pazl positively on the set of inputs. This kind of result is very helpful when solving the following optimization version of pazl: given a set of datagrams, nd the largest subset which admits an assignment. A weighted version, where the datagrams have dierent size can also be considered. An optimal solution to the optimization problem is a set of datagrams corresponding to a load of at most 1. Assume we have an algorithm that always nds an assignment for an instance of load λ. Then, such an algorithm nds an assignment for any subset of load λ and is an approximation algorithm for the optimization problem with approximation ratio λ.

The chapter is composed of two parts. In Section 3.1, we study the case in which the size of the datagrams is unconstrained. This covers the use cases previously mentioned.

Section 3.2 focuses on datagrams of size τ = 1 and we also provide methods to convert the general problem to datagrams of size 1, at the cost of additional latency or load. Several algorithms solving the case τ = 1 are proposed and analyzed.

Greedy Algorithms for Large Datagrams

In this section, we study the case of arbitrary values for τ . When modeling real problems, it is relevant to have τ > 1 when the transmission time of a single datagram is large with regard to its delay, which is the case in C-RAN networks.

A partial assignment A is a function dened from a subset S of [n] to [P]. The cardinal of S is the size of partial assignment A. A datagram in S is scheduled (by A), and a datagram not in S is unscheduled. We only consider partial assignments such that no pair of datagrams of S collide. If A has domain S, and i / ∈ S, we dene the extension of

A to the datagram i by the oset o, denoted by A[i → o], as A on S and A[i → o](i) = o.
We give several simple heuristics and an exact xed parameter tractable algorithm, in time exponential in the number of datagrams only. All presented algorithms except Exhaustive Search of Compact Assignments build an assignment incrementally, by growing the size of a partial assignment. Moreover, algorithms of this section are greedy: once an oset is chosen for a datagram, it is never changed.

In the rest of the chapter, we sometimes compare the relative position of datagrams, but one should remember that the time is periodic and these are relative positions on a circle of size P . Moreover, when it is unimportant and can hinder comprehension, we may omit to write mod P in some denitions and computations.

We show in the experiments of Section 3.1.6, that pazl can be very often solved positively, in particular for short routes and when the load is moderate.

Shortest-Longest policy

We rst present a simple policy, which works when the period is large with regard to the lengths of the routes. More generally, it works when the length of the routes modulo the Proof. Let us dene the assignment A(i) = iτ . Since nτ + δ n-1δ 0 ≤ P and δ n-1 ≥ δ 0 , we have nτ ≤ P . Hence, there is no collision in the rst period.

The delays are sorted so that for all i, δ i ≤ δ i+1 . We can also assume, without loss of generality that δ 0 = 0. The interval of time used by i in the second period is

[i] 2 = {(δ i + A(i) + t) mod P | 0 ≤ t < τ }.
By hypothesis, and because the delays are in increasing order, we have for all i ≤ n, nτ

+ δ i ≤ P . Hence, [i] 2 = [δ i + iτ, δ i + (i + 1)τ [.
Since the delays are in increasing order,

δ i + (i + 1)τ ≤ δ i+1 + (i + 1)τ , then [i] 2 ∩ [i + 1] 2 = ∅
and we have proved that the assignment A does not induce any collision. The complexity of the algorithm is dominated by the sorting of the delays in O(n log(n)).

If the period is slightly smaller that the bound of Proposition 3, there is a collision of datagram n -1 with datagram 0 in the rst period. Hence, this policy is not useful as a heuristic for longer routes, as conrmed by the experimental results of Section 3.1.6.

First Fit

Consider some partial assignment A, the datagram i uses all times from A(i) to A(i)+τ -1

in the rst period. If a datagram j is scheduled by A, with A(j) < A(i), then the last time it uses in the rst period is A(j) + τ -1 and it should be less than A(i), which implies that

A(j) ≤ A(i) -τ . Symmetrically, if A(j) > A(i), to avoid collision between datagrams j and i, we have A(j) ≥ A(i) + τ . Hence, datagram i forbids the interval]A(i) -τ, A(i) + τ [
as osets for datagrams still not scheduled because of its use of time in the rst period.

The same reasoning shows that 2τ -1 osets are also forbidden because of the times used in the second period. Hence, if |S| datagrams are already scheduled, then |S|(4τ -2)

osets are forbidden for any unscheduled datagram. It is an upper bound on the number of forbidden osets, since the same oset can be forbidden twice because of a datagram on the rst and on the second period.

Let F o(A) be the maximum number of forbidden osets when extending A. Formally, assume A is dened over S and i / ∈ S, F o(A) is the maximum over all possible values of

i of | {o ∈ [P] | A[i → o] has no collision} |. The previous paragraph shows that F o(A) is always bounded by (4τ -2)|S|.
Let First Fit be the following algorithm: for each unscheduled datagram (in the order they are given), it tests all osets from 0 to P -1 until one does not create a collision with the current assignment and use it to extend the assignment. If F o(A) < P , then whatever the delay of the route we want to extend A with, there is an oset to do so.

Since F o(A) ≤ (4τ -2)|S| and |S| < n, First Fit (or any greedy algorithm) will always succeed when (4τ -2)n ≤ P , that is when the load nτ /P is less than 1/4. It turns out that First Fit always creates compact assignments (as dened in Proposition 4), that is a datagram is always next to another one in one of the two periods. Hence, we can prove a better bound on F o(A), when A is built by First Fit, as stated in the following theorem.

Theorem 4. First Fit solves pazl positively on instances of load less than 1/3.

Proof. We show by induction on the size of S,

that F o(A) ≤ |S|(3τ -1) + τ -1. For S = 1, it is clear since a single datagram forbid at most (3τ -1) + τ -1 = 4τ -2 osets, as explained before. Now, assume F o(A) ≤ |S|(3τ -1) + τ -1 and consider a route i / ∈ S such that First Fit builds A[i → o] from A. By denition of First Fit, if choosing o -1
as oset creates a collision (W.l.o.g. say this is a collision in the rst period), it means that there is a scheduled datagram between oτ and o -1, hence all these osets are forbidden by A. The same osets are also forbidden by the choice of o as oset for i, then only 3τ -

1 new osets are forbidden, that is F o(A[i → o]) ≤ F o(A) + (3τ -1), which
proves the induction and the theorem.

Meta-Oset

We propose an alternative greedy algorithm to build a buerless assignment, which introduce the notion of meta-oset used for next algorithms and always nds an assignment when the load is less than 1/3. The idea is to restrict the possible osets which can be chosen for the datagrams. It seems counter-intuitive, since it decreases articially the number of available osets to schedule new datagrams. However, it allows reducing the number of forbidden osets for unscheduled datagrams. A meta-oset is an oset of value iτ , with i an integer from 0 to P/τ . We call MetaOffset the greedy algorithm which works as follows: for each datagram, in the order they are given, it tries all meta-osets from 0 to P/τ as oset for the assignment until one does not create a collision with the current partial Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer assignment. Note that MetaOffset works as First Fit, but consider only meta-osets when scheduling datagrams. It is also equivalent to ShortestLongest when the delays are sorted in increasing order and that the conditions of Proposition 3 are satised.

Let F mo(A) be the maximal number of meta-osets forbidden by A when trying to schedule any new datagram.

Theorem 5. MetaOffset solves pazl positively on star routed network and load less than

1/3. The assignment is found in time O(n 2).
Proof. Let us prove that MetaOffset always schedules the n datagrams when the load is less than 1/3. Let us consider A dened on the datagrams 0 to i -1. Let us evaluate F mo(A), that is the number of values j, such that A[i → jτ] is a correct partial assignment (using only meta-osets). Since i datagrams are scheduled by A, there are i meta-osets which cannot be chosen to avoid collision in the rst period. In the second period, the set of τ consecutive tics used by a datagram forbid at most two meta osets, since the datagrams are all of size τ , see Figure 3.1. Hence, there are at most 2i meta-osets forbidden by collisions in the second period. We have proved that F mo(A) ≤ 3i. There is always a way to extend A into A[i → jτ] for some j when there is more meta-osets than forbidden meta-osets, that is F mo(A) < P/τ . Hence, MetaOffset terminates and provides a valid buerless assignment as soon as P/τ > 3(n -1), which can be rewritten

(n -1)τ /P > 1/3: the load is larger than 1/3.

This algorithm works in time O(n 2), since for the i-th datagram we schedule, we have to try at most 3i meta-osets before nding a correct one. We can test whether these 3i

osets cause a collision in the second period in time O(i) by maintaining an ordered list of intervals of tics in the second period used by already scheduled datagram.

This algorithm, contrarily to the previous one, may work well, even for loads higher than 1/3. In fact, experimental data in Section 3.1.6 suggest that the algorithm nds a solution when the load is less than 1/2.

A naive implementation of MetaOffset is in O(nP/τ), while First Fit is in O(nP).

However, it is not useful to consider every possible (meta-)oset at each step. By maintaining a list of positions of scheduled datagrams in rst and second period, both algorithms can be implemented in O(n 2) (n is the number of routes).

At least 3n -3i possible free positions

Second period First period ? 3ni free meta-offsets

Compact Tuples

We present in this section a family of greedy algorithms which solve pazl positively for larger loads. We try to combine the good properties of the two previous algorithms: the compactness of the assignments produced by First Fit and the absence of collision in the rst period of MetaOffset. The idea is to schedule several datagrams at once, using meta-osets, to maximize the compactness of the obtained solution. We rst describe the algorithm which schedules pairs of datagrams and then explain quickly how to extend it to any tuples of datagrams.

We now introduce Lemma 6 to assume P = mτ and we use it until the end of the section. This hypothesis makes the analysis of algorithms based on meta-osets simpler and tighter. The load increases from λ = nτ /P to at most λ(1+1/m): the dierence is less than 1/m < 1/n, thus very small for most instances. The transformation of Lemma 6 does not give a bijection between assignments of both instances but only an injection, which is enough for our purpose. Lemma 6. Let I be an instance of pazl with n datagrams of size τ , period P and m = P/τ . There is an instance I with n datagrams of size τ and period P = mτ such that any assignment of I can be transformed into an assignment of I in polynomial time.

Proof. Fig. 3.2 illustrates the reductions we dene in this proof on a small instance. Let P = mτ + r with r ≤ τ . We dene the instance I as follows: P = mP , δ i = mδ i and τ = mτ + r. With this choice, we have P = m(mτ + r) = mτ . Consider an assignment A of the instance I . If we let τ = mτ , then A is also an assignment for W.l.o.g., the rst datagram is positioned at oset zero. The rst time it uses in the second period is a multiple of m since its delay is by construction a multiple of m. Then, all other datagrams are translated to the left by removing increasing values to their osets, until there is a collision. It guarantees that some datagram j is in contact with the rst one on the rst or second period. It implies that either A (j) or A (j) + δ j mod P is a multiple of m and since δ j is a multiple of m, then both A (j) and A (j) + δ j mod P are multiples of m. This procedure can be repeated until we get an assignment A to I , such that all positions of datagrams in the rst and second period are multiples of m. Finally, we dene A as A(i) = A (i)/m and we obtain an assignment of I.

I = (P, τ, (δ 0 , δ 1)) P = 5 m = 2 r = 1 τ = 2 d 0 = 1 d 1 = 6 I ′ = (P ′ , τ ′ , (δ ′ 0 , δ ′ 1)) P ′ = 10 τ = 5 d 0 = 2 d 1 = 12 I ′′ = (P ′ , τ ′′ , (δ ′ 0 , δ ′ 1)) P ′ = 10 τ " = 4 d 0 = 2 d 1 = 12 A ′ A ′′ A Message
We are interested in the remainder modulo τ of the delays, let δ i = δ i τ + r i be the Euclidean division of δ i by τ . We assume, from now on, that datagrams are sorted by increasing r i . A Compact pair, as shown in Fig. 3.3 is a pair of datagrams (i,j) with i < j that can be scheduled using meta-osets such that A(i) + (δ i + 1)τ = A(j) + δ j τ , i.e. j is positioned less than τ unit of times after i in the second period. The gap between i and j is dened as g = δ i + 1δ j mod m, it is the distance in meta osets between i and j in the rst period. By denition, we can make a compact pair out of i and j, if and only if their gap is not zero. Let Compact Pairs be the following greedy algorithm: From the datagrams in order of increasing r i , a sequence of at least n/3 compact pairs is built using Lemma 7. Pairs are scheduled in the order they have been built using meta-osets. If at some point all compact pairs are scheduled or the current one cannot be scheduled, the remaining datagrams are scheduled as in MetaOffset. The analysis of Compact Pairs relies on the evaluation of the number of forbidden meta-osets. In the rst phase of Compact Pairs, one should evaluate the number of forbidden osets when scheduling a compact pair, that we denote by F mo 2 (A). In the second phase, we need to evaluate F mo(A). When scheduling a datagram in the second phase, a scheduled compact pair only forbids three meta-osets in the second period. If datagrams in a pair are scheduled independently, they forbid four meta-osets, which explains the improvement from Compact Pairs. We rst state a simple lemma, whose proof can be read from Fig. 3.4, which allows bounding F mo 2 (A). Compact Pairs can be improved by forming compact tuples instead of compact pairs.

A compact k-tuple is a sequence of datagrams i 1 < • • • < i k (with r i 1 , . . . ,r i k increasing),
for which meta-osets can be chosen so that, there is no collision, the datagrams in the second period are in order i 1 , . . . ,i k and for all l, A(i l) + (δ i l + 1)τ = A(i l+1) + δ i l+1 τ . The algorithm Compact k-tuples works by scheduling compact k-tuples using meta osets while possible, then scheduling compact k -1-tuples and so on until k = 1.

Lemma 10. Given k + k(k -1)(2k -1)/6 datagrams, k of them always form a compact k-tuple and we can nd them in polynomial time.

Proof. We prove the property by induction on k. We have already proved it for k = 2 in Lemma 7. Now assume that we have found C a compact (k -1)-tuple in the rst kth element in the tuple. By pigeonhole principle, one of the k datagrams with distinct delays modulo τ can be used to extend C. We have built a compact k-tuple from at most

(k-1)+(k-1)(k-2)(2k-3)/6+(k-1) 2 +1 datagrams. It is equal to k+k(k-1)(2k-1)/6
which proves the induction.

Theorem 11. Compact 8-tuples always solves pazl positively on instances of load less than 4/10, for instances with n ≥ 220.

Proof. We need the following fact, which generalizes Lemma 8: A k-tuples forbids k + j + 1 osets in the second period when scheduling a j-tuple. It enables us to compute a lower bound on the number of scheduled i-tuples for i equal k down to 1 by bounding F mo i (A),

the number of forbidden meta-osets when placing i-tuple in the algorithm. If we denote by n i the number of compact i-tuples scheduled by the algorithm, we have the following equation:

F mo i (A) ≤ k j=i n j (j * i + j + i + 1).
The equation for n 1 is slightly better:

F mo(A) ≤ k j=1 n j (2j +

1).

A bound on n i can be computed, using the fact that A can be extended while F mo i (A) < m. Lemma 10 ensures there are enough compact k-tuples, when n -j≤i≤8 n j is larger than i + i(i -1)(2i -1)/6. A numerical computation of the n i 's shows that Compact 8-tuples always nds an assignment when the load is less than 4/10 and for n ≥ 220.

Th. 11 is obtained for k = 8. Taking arbitrary large k and using rened bounds on F mo i (A) is not enough to get an algorithm working for a load of 41/100 (and it only works from larger n).

The code computing the n i can be found on [START_REF] Guiraud | s website[END_REF]. To make Compact 8-tuples work, there must be at least 220 datagrams to produce enough compact 8-tuples in the rst phase. It is not a strong restriction for two reasons. First, the bound of Lemma 10 can be improved, using a smarter polynomial time algorithm to nd compact tuples, which better takes into account repetitions of values and compute the compact tuples in both Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer directions. Second, on random instances, the probability that k datagrams do not form a compact k-tuples is low, and we can just build the tuples greedily. Therefore, for most instances, forming compact k-uples is not a problem and in practice Compact 8-tuples works even for small n.

We describe here a last algorithm called Compact Fit, which is a simpler variant of the previous one. The idea is, as for Compact Pairs, to combine the absence of collision on the rst period of MetaOffset and the compactness of assignments given by First Fit.

The datagrams are ordered by increasing remainder of delay modulo τ , and each datagram is scheduled so that it extends an already scheduled compact tuples. In other words, it is scheduled using meta osets, so that using one less as a meta-oset for some datagram creates a collision in the second period. If it is not possible to schedule the datagram in that way, the rst possible meta-oset is chosen. This algorithm is designed to work well on random instances. Indeed, it is easy to evaluate the average size of the created compact tuples, and from that, to prove that Compact Fit works with high probability when the load is strictly less than 1/2.

d i mod τ 0 1 2 3 0 0 0 3 2 1 1 1 First Period Second Period
Step 1 : 0

Step 2 :

0 0 0 1 1 Step 3 : 0 0 1 1 2 2
Step 4 : 0

0 r 0 c 1 c 2 r 1 r 1 r 2 r 2 r 0 r 0 r 1 r 1 r 2 r 2 r 0 r 0 r 1 r 1 r 2 r 2 r 0 r 0 r 1 r 1 r 2 r 2 r 0 r 0 r 1 r 1 r 2 r 2 A A ′ COM P 0 = {r 0 } COM P 1 = {r 0 , r 1 } COM P 2 = {r 0 , r 1 , r 2 } Figure 3.
6 Transformation of a buerless assignment A into a compact assignment A , following the process of Proposition 4

Compact Assignment

In this section, we show how every buerless assignment can be put into a canonical form.

We use that form to design an algorithm solving pazl in xed parameter tractable time (FPT), with parameter n the number of routes (for more on parametrized complexity see [START_REF] Rodney | Parameterized complexity[END_REF]). This is justied since n is small in practice, from 10 to 20 in our settings, and the other parameters such as P , τ or the weights are large.

Let (R,ω) be a star routed network and let A be a buerless (P,τ)-periodic assignment.

We say that that A is compact if there is a route r 0 ∈ R such that the following holds: for all subsets S ⊂ R with r 0 / ∈ S, the buerless assignment A , dened by A (r) = A(r) -1 mod P if r ∈ S and A(r) otherwise, is not valid. In other words, an assignment is compact if for all routes r but one, A(r) cannot be reduced by one, that is either in the rst or the second period, there is a route r using the tics just before r. See Proposition 4. Let N = (R, ω) be a star routed network. If there is a (P,τ)-periodic buerless assignment of N , then there is a compact (P,τ)-periodic assignment of N .

Proof. Consider A a (P,τ)-periodic buerless assignment of N . We describe an algorithm which builds a sequence COM P i of sets of routes and a sequence A i of valid buerless assignments. For all i ≤ n, the set COM P i has cardinal i and satises COM P i-1 ⊂ COM P i .

Let r be an arbitrary route of R and A 0 = A, we set COM P 0 = ∅. For i = 1 to n, we choose a route r, denoted by r i , as follows.

Let A i = A i-1 . While there is no collision, for all routes r ∈ R \ COM P i-1 , let A i (r) = A i (r) -1.
Then choose any route r in R \ COM P i-1 such that setting A i (r) = A i (r) -1 creates a collision and let r i = r. By construction A i is a valid buerless assignment, since it is modied only when no collision is created. We let COM P i = COM P i-1 ∪ {r i }.

Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer

We prove by induction on i, that A i is compact when restricted to COM P i . We have

|COM P 1 | = 1, hence A 1 is compact over COM P 1 .
Let us consider A i , by induction hypothesis, since the osets of routes in COM P i-1 are not modied at step i of the algorithm, A is compact when restricted to COM P i-1 .

Consider S ⊆ COM P i which does not contain r 0 . If S contains an element of COM P i-1 , then S \ r i is not empty and by compacity we cannot decrement all osets of S \ r i without creating a collision. The same property is true for S. If S = {r i }, then by construction of r i by the algorithm, removing one from A i (r i) creates a collision. Hence,

A i is compact restricted to COM P i , which proves the induction and the proposition.

We now present an algorithm to nd a (P,τ)-periodic assignment by trying all compact assignments.

Theorem 12. pazl ∈ FPT over star routed networks when parametrized by the number of routes.

Proof. Let N = (R,ω) be a canonical star routed network and let P be the period and τ the size of a datagram. First, remark that for a given assignment and a route r with oset o r , by removing o r to all osets, we can always assume that o r = 0. By this remark and Proposition 4, we need only to consider all compact assignments with an oset 0 for the route r 0 . We now evaluate the number of compact assignments and prove that it only depends on n the number of routes to prove the theorem.

We describe a way to build any compact assignment A by determining its osets one after the other, which gives a bound on their number and an algorithm to generate them all. We x an arbitrary total order on R. Let r 0 be the smallest route of R, its oset is set to 0 and we let S = {r 0 }, S 1 = {r 0 } and S 2 = {r 0 }. S represent the routes whose osets are xed, osets of unscheduled routes are chosen so that they follow a route of S 1 in the rst period or a route of S 2 in the second period.

At each step, we add an element to S: let r be the smallest element of S The algorithm to solve pazl builds every possible compact assignment in the incremental manner described here, and tests at each step whether, in the built partial assignment, there is a collision, which can be done in time linear in the size of N . Therefore pazl ∈ FPT.

We call the algorithm described in Theorem 12 Exhaustive Search of Compact Assignments or ESCA. The complexity of ESCA is in O(4 n n!). While a better analysis of the number of compact assignments could improve this bound, the simple star routed networks with all arcs of weights 0 has (n -1)! compact assignments. Hence, to improve signicantly on ESCA, one should nd an even more restricted notion of buerless assignment than compact assignment.

To make ESCA more ecient in practice, we make cuts in the search tree used to explore all compact assignments. Consider a set S of k routes whose osets have been xed at some point in the search tree. We consider the times used by these routes in the rst period. It All experiments are done on synthetic data generated randomly. We generate the physical fronthaul network represented in Figure 2.4 of Chapter 2. We consider routes which are shorter than τ : a datagram cannot be contained completely in a single arc which is common in our applications. We generate random star routed networks, by drawing uniformly at random the weights of the arcs in [700]. This corresponds to links of the networks of less than 5km between a BBU and an RRH. Then, the corresponding canonical star routed network is built from the generated fronthaul and the algorithms tested on it. This process is mostly equivalent to drawing the delays randomly in [1400].

divides the period into [(a 0 ,b 0), . . . , (a k-1 ,b k-1)]
We consider the following algorithms: First Fit has also excellent performances (100% of success under loads lower to 0.8).

• ShortestLongest • First Fit • MetaOffset • Compact Pairs • Compact Fit
However, since we do not have strong theoretical results for this algorithms and it does not performs as well as ShortestLongest in this regime, it is not interesting to rely on it.

MetaOffset and Greedy Uniform both seem to always work when the load is less than 1/2 and have a good probability to work up to a load of 2/3, which is twice better than the theoretical bound. MetaOffset presents discontinuities in the probability of success at several loads, which seems to smooth out when the number of routes increases. It can be explained by the fact that MetaOffset becomes better when decreasing the load makes the number of available meta-osets larger. The number of meta-osets increases when τ is added to the period (to decrease the load, the period is increased), which is more frequent when there are more routes.

Greedy Uniform and MetaOffset performances depend on the number of routes. The more routes there is, the lower the success rate. This is even clearer in experiment of Figure 3.11 in the next section in which there are 100 routes. Remember that Greedy

Uniform is an algorithm presented and analyzed in Section 3.2. This algorithm is designed for τ = 1 and random delays and has no theoretical guarantee for arbitrary τ and small delay.

Larger Route Number

After studying the C-RAN parameters, we want to experiment the performance of our algorithm with a larger number of routes and/or delays drawn in a larger interval. We experiment with several periods and datagram sizes. For each set of parameters, we try every possible load by changing the number of datagrams and give the success rate of each algorithm. Notice that all algorithm except ESCA are in polynomial time but are not always able to nd a solution, depending on the load or the size of the routes. On the other hand, In the following experiments, since Lemma 6 explains how to transform any instance into one with P = mτ , we chose for simplicity that P = mτ .

In Figure 3.8 and Figure 3.9 the performances of ShortestLongest are abysmal (falls to 10% of success rate when the load is greater than 0.2, and 0% at 0.3 of load) and are thus not represented in this gures, in order to focus on other algorithms. This can be explained by the fact it depends on the dierence of size between the longest and the smallest route, which is large here since the delays are drawn in [P]. This observation is reinforced by the results of Figure 3.10. Indeed, since the number of routes is lower than in the two previous experiments, the probability of drawing a set of delays with a large dierence is lower, and thus the success rate of ShortestLongest is better.

For all sets of parameters, the other greedy algorithms have the same relative performances. MetaOffset and Greedy Uniform perform the worst and have almost equal success rate. Remark that they have a 100% success rate for load less than 1/2, while it is easy to build an instance of pazl of load 1/3 + ε which makes them fail. The dierence between the worst case analysis and the average case analysis is explained for Greedy Uniform, when τ = 1 in Section 3.2.

First Fit performs better than MetaOffset while they have the same worst case.

Compact Pairs, which is the best theoretically also performs well in the experiments, always nding assignments for load of 0. As illustrated by Figure 3.8 and Figure 3.9, the size of the datagrams have little impact on the success rate of the algorithms, when the number of datagrams stay the same.

Comparing Figure 3.10 and Figure 3.8 shows that for more datagrams, the transition between success rate of 100% to success rate of 0% is faster. Finally, the results of ESCA in Figure 3.10 show that the greedy algorithm are far from always nding a solution when it exists. Moreover, we have found an instance with load 0.8 with no assignment, which gives an upper bound on the highest load for which pazl can always be solved positively.

We also investigate the behavior of the algorithms when the delay of the datagrams are drawn in [τ] in Figure 3.11. The dierence from the case of large delay is that Compact Pairs and Compact Fit are extremely ecient: they always nd a solution for 99 datagrams. It is expected, since all δ i are equal in these settings and they will both build a 99-compact tuples and thus can only fail for load 1.

As illustrated on Figure 3.10, when the load is larger than 0.5, ESCA nds more solutions than the greedy algorithms, which justies its use. However, for load larger than 0.8 there are instances for which there are no solutions to pazl. It means that with long routes and high load, looking for a buerless assignment is far too restrictive. This justies the design of algorithms for the general pall problem, which we present in the next section. We will test them on 8 long routes and a load between 1 and 0.8, parameters for which, as shown here, there are not always a buerless assignment.

The computation time of ESCA is bounded by O(4 n n!) as shown in Theorem 12, but it can be much better in practice, either because it nds a solutions quickly or because a large part of the tree of compact assignments is pruned during the algorithm. We study the evolution of the running time of the algorithm when n grows in the following experiment.

The weights of the arcs are drawn following a uniform distribution in [P] and the load is set to 0.95. The table of Figure 3.12 shows the time before the exhaustive search ends, for

Datagrams of Size One

When τ = 1 and the load is less than 1/2, any greedy algorithm solves pazl positively since F o(A) ≤ (4τ -2)|S| = 2|S| where S is the number of scheduled datagrams. We give, in this section, a method which always nds an assignment for a load larger than 1/2.

Deterministic Algorithm

To go above 1/2 of load, we optimize a potential measuring how many osets are available for all datagrams, scheduled or not. Datagrams are scheduled while possible using any greedy algorithm. Then, when all unscheduled datagrams have no available oset, we use a Swap operation dened later, which improves the potential. When the potential is high enough, it ensures that there are two datagrams whose oset can be changed so that a new datagram can be scheduled.

The algorithm is not greedy, since we allow to exchange a scheduled datagram with an unscheduled one. It cannot work online, since it requires to know all delays of the datagrams in advance.

Denition 1. The potential of a datagram of delay δ, for a partial assignment A is the number of integers i ∈ [P] such that i is used in the rst period and i + δ mod P is used in the second period.

The computation of the potential of a datagram of delay 3, is illustrated in Fig. 3.13.

The potential of a datagram counts the congurations which reduce the number of forbidden osets. Indeed, when i is used in the rst period and i + δ mod P is used in the second period, then the same oset is forbidden twice for a datagram of delay δ. Hence, the potential of a datagram is related to the number of possible osets as stated in the following lemma.

Lemma 13. Given a partial assignment A of size s, and i an unscheduled datagram of potential v, then the set {o | A(i → o) has no collision} is of size P -2s + v.

For our algorithm, we need a global measure of quality of a partial assignment, that we try to increase when the algorithm fail to schedule new datagrams. We call our measure By denition of the potential of a position, we obtain the following simple invariant. Lemma 15. The sum of potentials of all positions for a partial assignment with k scheduled datagrams is nk.

As a consequence of this lemma, P ot(A) ≤ nk. Let us dene a Swap operation, which guarantees to obtain at last half the maximal value of the potential. Let A be some partial assignment of size s and let i be an unscheduled datagram of delay δ. Assume that i cannot be used to extend A. The Swap operation is the following: select a free position o in the rst period, remove the datagram which uses the position o + δ in the second period from A and extend A by i with oset o. We denote this operation by Swap(i,o,A). Lemma 16. Let A be some partial assignment of size k and let i be an unscheduled datagram. If i cannot be used to extend A, then either P ot(A) ≥ kn/2 or there is an o such that P ot(Swap(i,o,A)) > P ot(A).

Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer

Proof. The positions in the rst period can be partitioned into P u the positions used by some scheduled datagram and P f the positions unused. Let V f be the sum of the potentials of the positions in P f and let V u be the sum of the potentials of the positions in P u . By Lemma 15, since P f and P u partition the positions, we have V f + V u = kn. Moreover, by Lemma 14, P ot(A) = V u , then V f + P ot(A) = kn.

By hypothesis, i cannot be scheduled, then, for all p ∈ P f , p + δ i is used in the second period. Let us dene the function F which associates to p ∈ P f the position A(j)

such that there is a scheduled datagram j which uses p + d in the second period, that is A(j) + δ j = p + d mod P . The function F is an injection from P f to P u . Remark now that, if we compare Swap(i,p,A) to A, on the second period the same positions are used.

Hence, the potential of each position stay the same after the swap. As a consequence, doing the operation Swap(i,p,A) adds to P ot(A) the potential of the position p and removes the potential of the position F (p).

Assume now, to prove our lemma, that for all p, P ot(Swap(i,p,A)) ≤ P ot(A). It implies that for all p, the potential of p is smaller than the potential of F (p). Since F is an injection from P f to P u , we have that n -1, it is satised when the sum of the two potentials is at least 2(εP -1) + n.

V f ≤ V u = P ot(A). Since V f + P ot(A) =
If we assume that Swap and Move was unable to schedule the last datagram by moving two scheduled datagrams, the previous analysis gives us a bound on twice P ot(A):

2P ot(A) ≤ 2(P -n + 1)2(εP -1) + 2(εP -1)(2(εP -1) + n) P ot(A) ≤ (εP -1)(P + n)
By Lemma 16, we know that P ot(A) ≥ n(n -1)/2, hence Swap and Move must succeed when n(n -1)/2 ≥ (εP -1)(P + n).

By expanding and simplifying, we obtain a second degree inequation in ε, 1/4-2ε-ε 2 ≥ 0. Hence, the potential of any assignment of size n is at least 2εP n. As a consequence, the method of Lemma 16 will guarantee a non-trivial potential for 2εP n < nn /2, that is ε < 1/6. Any algorithm relying on the potential and the Swap operation cannot be guaranteed to work for load larger than 2/3 = 1/2 + 1/6. However, we may hope to improve on the analysis of Lemma 16, since it is not optimal: 2εP positions in P u are not taken into account in the proof.

We conjecture that Swap and Move works for load up to 2/3. On random instances, we expect the potential to be higher than the stated bound and to be better spread on the datagrams, which would make Swap and Move works for larger loads, as it is indeed observed in experiments (see Section 3.2.3).

Randomized Algorithm for Random Instances

We would like to understand better the behavior of our algorithms on instances drawn uniformly at random. To this aim, we analyze the algorithm Greedy Uniform, dened as follows: for each datagram in the order of the input, choose one of the osets, which does not create a collision with the current partial assignment, uniformly at random.

We analyze Greedy Uniform over random instances: all datagrams have their delays drawn independently and uniformly in [m]. We compute the probability of success of Greedy Uniform over all random choices by the algorithm and all possible instances. It turns out that this probability, for a xed load strictly less than one, goes to one when m grows. For a given partial assignment, we are only interested in its trace: the set of times which are used in the rst and second period. Hence, if n datagrams are scheduled in a period of size m, the trace of an assignment is a pair of subsets of [m] of size n. We now show that these traces are produced uniformly by Greedy Uniform.

Theorem 18. The distribution of traces of assignments produced by Greedy Uniform when it succeeds, from instances drawn uniformly at random, is also uniform.

Proof. The proof is by induction on n, the number of datagrams. It is clear for n = 1, since the delay of the rst datagram is uniformly drawn and all osets can be used. Assume now the theorem true for some n > 1. Greedy Uniform, by induction hypothesis has produced uniform traces from the rst n datagrams. Hence, we should prove that, if we draw delays of the n+1 th datagram randomly, extending the trace by a random possible oset produces a random distribution on the traces of size n + 1.

If we draw an oset uniformly at random (among all m osets) and then extend the trace by scheduling the last datagram at this oset or fail, the distribution over the traces of size n+1 is the same as what produces Greedy Uniform. Indeed, all osets which can be used to extend the trace have the same probability to be drawn. Since all delays are drawn independently, we can assume that, given a trace, we rst draw an oset uniformly, then draw uniformly the delay of the added datagram and add it to the trace if it is possible.

This proves that all extensions of a given trace are equiprobable. Thus, all traces of size n + 1 are equiprobable, since they each can be formed from (n + 1) 2 traces of size n by removing one used time from the rst and second period. This proves the induction and the theorem.

Since Greedy Uniform can be seen as a simple random process on traces by Th. [START_REF] Richard J Cole | On the benet of supporting virtual channels in wormhole routers[END_REF], it is easy to analyze its probability of success.

Theorem 19. The probability over all instances with n datagrams and period m that Greedy Uniform solves pazl positively is

n-1 i=m/2 (1 - n 2i-m m i).
Proof. We evaluate Pr(m,n) the probability that Greedy Uniform fails at the n th step assuming it has not failed before. It is independent of the delay of the n th datagram. Indeed, the operation which adds one to all times used in the second period is a bijection on the set of traces of size n -1. It is equivalent to remove one to the delay of the n th datagram. We can thus assume that the delay is zero.

Let S 1 be the set of times used in the rst period by the n -1 rst datagrams and S 2 the set of times used in the second period. We can assume that S 1 is xed, since all subsets of the rst period are equiprobable and because S 2 is independent of S Finally, we evaluate the computation times of the algorithms to understand whether they scale to large instances. We present the computation times in Fig. 3.17

From Large to Small Datagrams

In this section, we explain how we can trade load or buering in the network to reduce the size of datagrams down to τ = 1. This further justies the interest of Sec. 3.2, where specic algorithms for τ = 1 are given.

Datagram of Size One by Increasing the Load

We describe here a reduction from an instance of pazl to another one with the same period and number of datagrams but the size of the datagrams is doubled. This instance is equivalent to an instance with τ = 1, by dividing everything by the datagram size. Thus we can always assume that τ = 1, if we are willing to double the load.

Theorem 20. Let I be an instance of pazl with n datagrams and load λ. There is an instance J with n datagrams of size 1 and load 2λ such that an assignment of J can be transformed into an assignment of I in polynomial time.

Proof. From I = (P,τ,(δ 0 , . . . ,δ n-1)), we build I = (P, 2τ, (δ 0 , . . . ,δ n-1)), where δ i = δ i -(δ i mod 2τ). The instance I has a load twice as large as I. On the other hand, all its delays are multiples of 2τ hence solving pazl on I is equivalent to solving it on I = (P/2τ, 1,(δ 0 /2τ, . . . ,δ n-1 /2τ)), as already explained in the proof of Lemma 6.

Let us prove that an assignment A of I can be transformed into an assignment A of I.

Consider the datagram i with oset A (i), it uses all times between A (i) and A (i) + 2τ -1 in the rst period and all times between A (i)

+ δ i -(δ i mod 2τ) to A (i) + 2τ -1 + δ i -(δ i

First period

Second period Remark that combining Greedy Random and Theorem 20 allows to solve pazl on random instances, with probability one when the number of routes goes to innity and the load is strictly less than 1/2. This explains why we have not presented nor analyzed in details an algorithm designed for arbitrary τ on random instances, since any greedy algorithm, relying on optimizing F o(A), cannot guarantee anything for load larger than 1/2. However, in Sec. 3.1.4, we presented Compact Fit, a simple greedy algorithm which exhibits good performance on random instances.

A(0) = A ′ (0) A(1) = A ′ (1) -τ d 0 d 1 -τ d ′ 1 d ′ 0 Message in I ′ Message in I

Trade-o between Latency and Datagram Size

The problem pazl is a simplied version of pall, the practical problem we address, allowing a single degree of freedom for each datagram: its oset. We may relax it slightly to be more similar to what is studied in Chapter 4: we allow buering a datagram i during a time b between the two contention points, which translates here into changing δ i to δ i + b. The quality of the solutions obtained for such a modied instance of pazl are worst since the buering adds latency to the datagrams. We now describe how we can make a trade-o between the added latency and the size of the datagrams, knowing that having smaller datagrams helps to schedule instances with higher load.

The idea is to buer all datagrams so that their δ i have the same remainder modulo τ .

It costs at most τ -1 of buering, which is not so good, since algorithms optimizing the Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer latency do better on random instances, see [START_REF] Barth | Deterministic Scheduling of Periodic Messages for Cloud RAN[END_REF]. However, it is much better than buering for a time P , the only value for which we are guaranteed to nd an assignment, whatever the instance. When all delays are changed so that δ i is a multiple of τ , we have an easy reduction to the case of τ = 1, by dividing all values by τ , as explained in the proof of Lemma 6.

We can do the same kind of transformation by buering all datagrams, so that δ i is a multiple of τ /k. The cost in terms of latency is then at most τ /k -1 but the reduction yields datagrams of size k. For small size of datagrams, it is easy to get better algorithm for pazl, in particular for τ = 1 as we have shown in Sec. Proof. We assume w.l.o.g that there are less datagram with even δ i than odd δ i . We schedule compact pairs of datagrams with even δ i , then we schedule single datagram with odd δ i . The worst case is when there is the same number of the two types of datagrams.

In the rst phase, if we schedule n/2 datagrams, the number of forbidden osets is (2 + 3/2)n/2 = 7n/4. In the second phase, if we schedule n/2 additional osets, the number of forbidden osets is bounded by (1 + 3/2)n/2 + (1 + 1)n/2 = 9n/4. Hence, both conditions are satised and we can always schedule datagrams when n ≤ (4/9)m.

We may want to add less latency to the datagram using the longest route. A natural idea is to choose the datagram with the longest route as the reference remainder by subtracting its remainder to every delay. As a consequence, this datagram needs zero buering. However, the datagram with the second longest route may have a remainder of τ -1, thus the worst case increase of total latency is τ -1.

Another aim would be to minimize the average latency rather than the worst latency.

We prove that we can do the transformation yielding τ = 1 while optimizing the average latency. The only degree of freedom in the presented reduction is the choice of the reference remainder since all other delays are then modied to have the same remainder. Let us dene the total latency for a choice t of reference time, denoted by L(t), as the sum of buering times used for the datagrams, when t has been removed from their delay. If we sum L(t), from t = 0 to τ -1, the contribution of each datagram is τ -1 i=0 i. Since there are n datagrams, the sum of L(t) for all t is nτ (τ -1)/2. There is at least one term of the sum less than its average, hence there is a t 0 such that L(t 0) ≤ n(τ -1)/2. Hence, the average delay for a datagram, with t 0 as reference is less than (τ -1)/2.

Conclusion

In this chapter, we study the problem pazl that is nding periodic assignments without buering on star routed networks, a routed network with two serial contention points. We

show that for messages of arbitrary size, there is always a solution as soon as the load of the network is less than 0.4. To do so, we propose several greedy algorithms of increasing sophistication. They rely on optimizing dierent measures of how many positions there are in the second period, given a partial assignment and any new datagram to schedule.

We give a canonical representation of an assignment, whose compactness allow to derive an FPT algorithm to solve pazl parametrized by the number of routes. When the number of routes is less than 20, we can thus nd in reasonable time an optimal solution to pazl.

For messages of size 1, we prove that it is always possible to schedule them, when the load is less than 0.61 using a polynomial time algorithm. The algorithm relies on optimizing a potential, which represents, given a partial assignment, how many possible positions there are for the datagrams not yet scheduled. The algorithm is not greedy, contrarily to those presented for the case τ > 1, since optimizing the potential requires a procedure of local optimization which exchange a scheduled datagram with an unscheduled one. Furthermore, we study the simplest random greedy algorithm solving pazl, and show that, for a given load lower than one, almost all instances admit a solution with high probability, explaining why most greedy algorithms work so well in practice. The study of the special case of τ = 1 is then justied, by providing several reductions from τ > 1 to τ = 1, while increasing the load or the latency only mildly.

The performance of the presented algorithms over average instances are shown to be excellent empirically (Compact Fit for large τ and Swap and Move for τ = 1) for loads up to 0.7, for tens to hundreds of datagrams. Hence, we can use the simple algorithms presented here to schedule C-RAN datagrams without using buer nor additional latency in polynomial time, if we are willing to use only half the bandwidth of the shared link.

Several questions on pazl are still unresolved, in particular its NP-hardness and the problem of doing better than load 0.5 for arbitrary τ and random instances. We could also consider more complex network topologies with several shared links, most presented algo-Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer rithms (First Fit, MetaOffset, Compact Pairs, Swap and Move) could easily be adapted to this context. On star routed network, our experiments show that most of the time, there is a solution for pazl when the load is under 0.8, but not for higher loads. Hence, in the next chapter, we study the problem pall on highly loaded star routed networks. Problem pall gives an higher degree of liberty to build assignments by allowing a buer in one contention point of the network, at the cost of some additional latency.

Chapter 4

Scheduling Unsynchronized Periodic Datagrams with a single Buer This chapter is taken from a published paper [START_REF] Barth | Deterministic Scheduling of Periodic Messages for Cloud RAN[END_REF] and its extended version [START_REF] Barth | Deterministic Scheduling of Periodic Messages for Cloud RAN[END_REF]. As explained in previous chapter, it is not always possible to solve pazl in star routed networks.

In this chapter, we consider the more general pall problem on star routed networks. The datagrams are allowed to wait in the BBUs to yield more possible assignments. Hence, we allow the process time of a route to be greater than the length of the route, but it must be bounded by its deadline. An assignment is not anymore only a choice of oset for every datagram, but also a choice of waiting time in the contention vertex representing the BBU of the route.

We propose a two stage approach in which we rst set the osets of the datagrams such that there is no collision in the rst contention point c 1 , and we then dene the problem wta of nding the waiting time for each datagram. We propose several polynomial time algorithms and one FPT (when wta is parametrized by the number of routes) algorithm for wta based on scheduling algorithms adapted for periodicity. We also give an FPT (on the number of routes too) algorithm that solve pall but for which the complexity is too large to be computed.

We then show that our approach give excellent performances in terms of latency, far better than statistical multiplexing.

Simple Star Routed Networks

Often in real networks, the length of the routes are not arbitrary and we may exploit that to solve pall easily. For instance all the weights on the arcs (c 1 ,c 2) are the same if all the BBUs are in the same data-center and all datagrams require the same time to be processed in the BBUs. Finding an assignment in that case is trivial: send all datagrams so that Chapter 4. Scheduling Unsynchronized Periodic Datagrams with a single Buer they follow each other without gaps in c 1 . In the corresponding canonical routed network, one can set o i = iτ . Since all arcs (c 1 ,c 2) are of weight zero in this case, the interval of time used in c 2 are the same as for c 1 and there is no collision in c 2 .

Another possible assumption would be that all deadlines are larger than the longest route. It may happens when, in the network we model, all RRHs are at almost the same distance to the shared link.

Proposition 5. Let N = (R, ω) be a canonical star routed network with n routes, let P ≥ nτ and let d be a deadline function. Let r n-1 be the longest route, and assume that for all r ∈ R, d(r) ≥ λ(r n-1). Then, there is a (P,τ)-periodic assignment for N and d and it can be built in time O(n).

Proof. The idea is to set the waiting times of all routes so their datagrams behave exactly as the datagram of r n-1 . The oset of the route r i is set to iτ , which ensures that there is no collision in c 1 as soon as P ≥ nτ . The waiting time of the route r i is w i = λ(r n-1)λ(r i).

The time at which the datagrams of r i arrives in c 2 is t(r i , c 2) = w i + iτ + λ(r i).

Substituting w i by its value, we obtain t(r i , c 2) = iτ + λ(r n-1). Hence, there is no collision in c 2 . We denote by A the dened assignment. By denition of the transmission time, we have T R(r i ,A) = w i + λ(r i) = λ(r n-1). By hypothesis, d(r i) ≥ λ(r n-1), which proves that the assignment respect the deadlines.

Finally, the complexity is in O(n) since we have to nd the maximum of the length of the n routes and the computation of each w i is done by a constant number of arithmetic operations.

Two Stages Approach

We may decompose an algorithm solving pall on a star routed network in two parts:

rst set all the osets of routes so that there is no collision in c 1 and then knowing this information nd waiting times so that there is no collision in c 2 while respecting the deadlines.

First, we give several heuristics to choose the osets, which are experimentally evaluated in Section 4.6. For all presented algorithms, we assume that the star routed network is given in canonical form. We send the datagrams through c 1 in a compact way (no gap between datagrams). It means that for n routes, denoted by r 0 , . . . , r n-1 , the osets are o i = σ(i) × τ , for some permutation σ ∈ Σ n . We consider the following orders σ: • Increasing Margin (IM): Increasing order on the margin of the routes.

• Decreasing Arc Weight (DA): Decreasing order on the weight of the arcs (c 1 ,c 2).

• Increasing Arc Weight (IA): Increasing order on the weight of the arcs (c 1 ,c 2). This sending order yields a (P,τ) periodic assignment in which the waiting times are zero, if the period is large enough (see Proposition 3).

We also propose to x the osets of the routes according to some random order. If we pack the datagrams as previously, we call Random Order (RO) the heuristic of choosing an order uniformly at random. We may also allow some time between two consecutive datagrams in c 1 . The order of the routes in c 1 is still random and we consider two variations.

Either the time between two datagrams in c 1 is random and we call this heuristic Random

Order and Random Spacing (RORS) or the time between two consecutive datagrams is always the same and we call this heuristic Random Order and Balanced Spacing (ROBS).

We call Waiting Time Assignment or wta the problem pall on a star routed network, with the osets of the routes also given as input. A solution to wta is a valid assignment such that the osets coincide with those given in the instance.

In the rest of the section we study dierent methods to solve wta either by polynomial time heuristics or by an FPT algorithm. The methods to solve wta are then combined with the heuristics proposed to x the osets of the routes to obtain an algorithm solving pall.

Greedy Scheduling of Waiting Times

We now solve the problem wta, we are given a cannonical routed network, a deadline function and an oset for each route. The release time of a route is dened as the rst time its datagram can go through c 2 : for a route r with oset o r , it is λ(r,c 2) + o r , it is the same as the arrival time in c 1 , t(r,c 1), but it is xed in an instance of wta.

The rst algorithm we propose to solve wta is a greedy algorithm which sets the waiting times in a greedy way, by prioritizing the routes with the earliest deadline to best satisfy the constraints on the process time. Since the network is in canonical form, ω(r,t r) = 0 for all routes r, thus choosing the earliest deadline is equivalent to choosing the route with the smallest margin. We call the algorithm Greedy Deadline, and it works as follows. Set t = 0 and U = R.

While there is a route in U , nd s ≥ t the smallest time for which there is r ∈ U with a release time lower or equal to s. If there are several routes in U with a release time lower or equal to s, then r with the smallest deadline is selected and set w r = sλ(r,c 2), t = s + τ and U = U \ {r}. This algorithm does not take into account the periodicity, which may create collisions. Let r 0 be the rst route selected by the algorithm, then t 0 = t(r 0 ,c 2) is the rst time at which a datagram go through c 2 . Then, if all routes r are such that t(r, c 2) ≤ t 0 + Pτ , then by construction, there is no collision on the central arc. However, if a route r has t(r, c 2) larger than t 0 +P -τ , since we consider everything modulo P to determine collision, it may collide with another route. Therefore we correct Greedy Deadline by this simple modication: s ≥ t is the smallest time for which there is r ∈ U with a release time lower or equal to s such that there is no collision if a datagram goes through c 2 at time s.

This rule guarantees that if Greedy Deadline succeeds to set all waiting times, it nds a solution to wta, as illustrated in Figure 4.1. However, it can fails to nd the value s at some point because the constraint on collisions cannot be satised. In that case Greedy Deadline stops without nding a solution.

The complexity of Greedy Deadline is in O(n log(n)), using the proper data structures.

The set of routes R must be maintained in a binary heap to be able to nd the one with smallest deadline in time O(log(n)). To deal with the possible collisions, one maintains a list of the intervals of time during which a datagram can go through c 2 . When the waiting 4.4. Earliest Deadline Scheduling 75 time of a route is xed, an interval is split into at most two intervals in constant time.

During the whole algorithm, each element of this list is used at most twice either when doing an insertion or when looking for the next free interval. Hence, the time needed to maintain the list is in O(n).

Earliest Deadline Scheduling

The problem wta is the same as a classical earliest deadline scheduling problem, if we forget the periodicity. Given a set of jobs with release times and deadlines, schedule all jobs on a single processor, that is choose the time at which they are computed, so that no two jobs are scheduled at the same time. A job is always scheduled after its release time and it must be dealt with before its deadline. Let us call n the number of jobs, the problem can be solved in time O(n 2 log(n)) [START_REF] Simons | A fast algorithm for single processor scheduling[END_REF] when all jobs have the same running time and it gives a solution which minimizes the time at which the last job is scheduled.

On the other hand, if the running times are dierent the problem is NP-complete [START_REF] Karel Lenstra | Complexity of machine scheduling problems[END_REF].

The polynomial time algorithm which solves this scheduling problem is similar to Greedy Deadline. However, when it fails because a job nishes after its deadline, it changes the schedule of the last jobs to nd a possible schedule for the problematic job. The change in the scheduling is so that the algorithm cannot fail on the same job a second time except if there is no solution, which proves that the algorithm is in polynomial time. Note that there are other algorithms to solve the same problem [START_REF] Carlier | Problème à une machine dans le cas où les tâches ont des durées égales[END_REF][START_REF] Michael | Scheduling unittime tasks with arbitrary release times and deadlines[END_REF], the second one being in O(n log(n)) only, but it should not be faster on our small instances.

The problem wta is the same as this scheduling problem but adding constraints arising from the periodicity. The jobs are the routes, the size of a datagram is the running time of a job, the release time and the deadline are the same in both models, because the star routed network is canonical. Let us call Minimal Latency Scheduling, denoted by MLS, the algorithm which transforms an instance of wta into one of the described scheduling problem to solve it in time O(n 2 log(n)) using the algorithm of [START_REF] Simons | A fast algorithm for single processor scheduling[END_REF].

Recall that t(r,c 2) is the time at which the datagram of r goes through c 2 . Let us denote by t min and t max the smallest and largest value of t(r i ,c 2) for all i ∈ [n]. When MLS nds an assignment A, it always satises P T (r) < d(r) for all r. Moreover, by construction MLS schedules the datagrams without collision if we forget about the periodicity (each route send only one datagram). Let us assume that t maxt min ≤ Pτ , then all datagrams Chapter 4. Scheduling Unsynchronized Periodic Datagrams with a single Buer go through c 2 during a interval of time less than P . Hence, when we compute potential collisions modulo P , all the relative positions of the datagrams stay the same which implies there is no collision. However, if t maxt min > Pτ , then computing t(r i ,c 2) modulo P for all i may reveal some collision. Since the scheduling algorithm minimizes t max , it tends to nd small values for t maxt min and MLS may succeed in nding a valid assignment (as shown in Section 4.6), but not for all instances.

We now present a variant of the previous algorithm, that we call Periodic Minimal Latency Scheduling, denoted by PMLS. The aim is to deal with the periodicity, by modifying the instance without changing the possible assignments, so that the chance of nding a solution with t maxt min ≤ Pτ are larger. Remark that if an instance has a valid assignment, we can guarantee that one route has a waiting time zero in some valid assignment.

Recall that t(r,c 1) is the release time of r. Algorithm PMLS runs, for each route r ∈ R, the algorithm MLS on an instance dened as follows. Subtract t(r,c 1) to all the release times and deadlines of the routes, to obtain an equivalent problem. Therefore, t(r,c 1) is zero in the instance we build and the waiting time w r is set to zero. Hence the datagram of r goes through c 2 at time 0 and t min = 0. Then, as in Proposition 2, the instance is modied so that all release times are in [Pτ]. Each release time t(r i ,c 1) is replaced by t(r i ,c 1) mod P and d(r i) = d(r i) -(t(r i ,c 1)t(r i ,c 1) mod P). Furthermore, if the release time of a route r is between Pτ and P , we set it to 0 and d(r) = d(r) -P . The deadline of each route is set to the minimum of its deadline and Pτ . Hence, if MLS nds a solution for such a modied instance, we have by construction of the instance t max ≤ Pτ . Since t min = 0, the assignment is valid. Algorithm PMLS returns the rst valid assignment it nds when running MLS for some r ∈ R.

The instance of wta we have dened in this transformation is equivalent to the original instance, except we have xed the waiting time of r to be zero. If there is some valid assignment, then at least one route has waiting time zero, then if MLS nds an assignment then PMLS also nds one. Algorithm MLS is used at most n times, thus the complexity of PMLS is in O(n 3 log(n)). Note that PMLS is a heuristic and may fail to nd a solution even if it exists. It is the case when, for the n modied instances, there is no solution with times t(r i ,c 2) using an interval of time less than P in c 2 . 4.5. FPT algorithms for WTA and PALL 77 4.5 FPT algorithms for WTA and PALL As a warm-up, we give a simple FPT algorithm for wta which is practical, and then we build on it to give a more complicated FPT algorithm for pall. Unfortunately, the dependency on n the number of routes in the second algorithm is yet too large to be useful in practice. Theorem 22. wta ∈ FPT over star routed networks when parametrized by the number of routes.

Proof. Consider an instance of wta, given by a release time and a deadline for each route.

We show that we can build a set of instances from the original one such that one of these instances has a valid assignment if and only if the original instance has a valid assignment.

As for PMLS, for each route r, we consider the instance where r has release time and waiting time zero (t(r,c 1) = w r = 0). The release times and deadlines of all routes are modied so that all release times are less than P as in the transformation described for PMLS. If there is an assignment such that t max < Pτ , then the periodicity does not come into play for this assignment and the algorithm MLS will nd the assignment as explained in Section 4.4. Now, remark that if there is a valid assignment for an instance with the properties just stated, then there is a valid assignment satisfying for all i, t(r i ,c 2) ≤ 2Pτ . Indeed, if there is a i such that t(r i ,c 2) ≥ 2P in a periodic assignment, then we have w i = t(r i ,c 2)λ(r i ,c 2) ≥ P . Hence, we can set w i = w i -P ≥ 0 and we still have a valid assignment. Moreover, for all r i = r, it is not possible that 2Pτ < λ(r i ,c 2) ≤ 2P , since it would imply a collision between r and r i .

From an instance I, with the properties of the rst paragraph, we dene a new instance I whose valid assignments are a subset of the ones of I. Moreover, one of the valid assignments of I satises that, for all iin[n], t(r i ,c 2) ≤ Pτ and is thus found by MLS.

Let us now consider A a valid assignment of I, we can assume that, for all i ∈ [n], t(r i ,c 2) ≤ 2Pτ . Let S be the set of routes r i such that Pτ < t(r i ,c 2) ≤ 2Pτ . The instance I is dened by changing, for all route r ∈ S, t(r,c 1) and d(r) to t(r,c 1) -P and d(r) -P . Then, by construction A is also a valid assignment of I . Assignment A as a solution of I , satises t(r i ,c 2) ≤ Pτ for all i ∈ [n].

The FTP algorithm is the following: for each route r build a modied instance as in PMLS. Then, for each subset S of routes, remove P to the release time and to the deadline Chapter 4. Scheduling Unsynchronized Periodic Datagrams with a single Buer of each route in S and run MLS on the instance so modied. If there is a valid assignment, then we have proved that there is some S, such that the instance built from S has a valid assignment with t(r i ,c 2) ≤ Pτ for all i ∈ [n]. Hence, MLS nds a valid assignment for this instance.

The algorithm of Theorem 22 has a complexity of O(2 n n 3 log(n)). If we consider some valid assignment, the routes r with t(r,c 2) > P , must satisfy t(r,c 2) > P + τ to avoid collision with the rst route. Hence, the deadline of these routes must be larger than P + τ . These routes are exactly those that must be put in S, hence we can enumerate only the subsets of routes with a deadline larger than P + τ . In practice, only k routes have a deadline larger than P + τ with k << n, and we need only to consider 2 k subsets. Let us call this algorithm All Subsets PMLS, and let us denote it by ASPMLS. Theorem 23. pall ∈ FPT over star routed networks when parameterized by the number of routes.

Proof. Consider a star routed network, instance of pall with a valid assignment. We characterize such a valid assignment by a set of necessary and sucient linear equations and inequations it must satisfy. These conditions are expressed on the values t(r,c 1) and t(r,c 2) and setting those value is equivalent to setting the osets and the waiting times, that is choosing an assignment.

First, we assume the star routed network is canonical. Hence, there is a valid assignment A, such that for all routes r ∈ R, 0 ≤ t(r,c 1) < Pτ and 0 ≤ t(r,c 2) < 2Pτ .

By denition t(r,c 2) = t(r,c 1) + ω(r,c 2) + w r . Since a waiting time is non-negative, we have t(r,c 2) ≤ t(r,c 1) + ω(r,c 2). Now, let S be the set dened as in Theorem 22, of the routes r such that Pτ < t(r,c 2) ≤ 2Pτ . We want to guarantee that for r ∈ R,

t(r,c 2) ∈ [P -τ].
To do that, we replace the inequation t(r,c 2) ≤ t(r,c 1) + ω(r,c 2) by t(r,c 2) ≤ t(r,c 1) + ω(r,c 2) -P and d(r) by d(r) -P for all r ∈ S. Remark that the presented linear constraints now depend on S, which itself depends on A.

Let σ and σ be two permutations of Σ n such that σ is the order of the routes r 0 , . . . , r n-1 according to the value t(r,c 1) and σ according to the value t(r,c 2). Since all t(r,c 1) and t(r,c 2) are in [Pτ], we have t(r,c 1) = t(r,c 1) mod P and t(r,c 2) = t(r,c 2) mod P . Hence, we can express the constraints on the absence of collision between routes by adding the following equations to the ones of the previous paragraph:

• for all i < n -1, t(r σ i ,c 1) ≤ r σ i+1 ,c 1 + τ) (no collision in c 1)
• for all i < n -1, t(r

σ i ,c 2) ≤ r σ i+1 ,c 2 + τ) (no collision in c 2)
• for all i < n, t(r i ,c 2) < d(r i) (deadline respected) Consider now the system of inequations E S,σ,σ we have built from A. The values t(r,c 1) and t(r,c 2) given by A satisfy the system by construction. Moreover, any solution to these equations yields a valid assignment, because the equations guarantee that there is no collision, that the osets and the waiting times are non-negative and that all routes meet their deadlines. However, a solution of E S,σ,σ may be rational, while osets and waiting times must be integers. We use the following simple fact:

x + e 1 ≤ y + e 2 implies

x +e 1 < y +e 2 when e 1 and e 2 are integers. Since all equations of E S,σ,σ have this form, if we take the upper oor of the components of a solution, it is still a solution of E S,σ,σ with integer values. As a consequence, any solution to E S,σ,σ yields a valid assignment of the original instance of pall.

The algorithm to solve pall is the following. Build E S,σ,σ for all triples (S,σ,σ).

Then, solve each linear system, and if it admits a solution, convert it back into a valid assignment of the instance of pall by rounding. There are 2 n sets S and n! orders σ.

Thus, 2 n (n!) 2 systems with 2n variables and a bitsize of the same order as the original instance are solved at most. Since solving each system can be done in polynomial time in the size of the instance, it proves that the algorithm is FPT in n. Moreover, it always nds a valid assignment if there is one, since we have shown that from a valid assignment, we can nd (S,σ,σ) for which the values associated to A satisfy E S,σ,σ .

Experimental Evaluation

Evaluating the Necessary Margin We set the number of routes to 8 to make comparisons with the results of Chapter 3 easier. We draw uniformly the weights of the arcs of the fronthaul network in [P]. We use the same deadline for all routes, which is the most common constraint, when modeling a C-RAN problem: all RRHs have the same latency constraint and all BBUs take the same time to process the answer.

We dene the margin of an instance as the margin of the longest route of the routed network. Since all routes have the same deadline, it is the dierence between the length of the longest route and the deadline. Note that the margin is dened before making the network canonical, since this operation makes the deadlines all dierents, and thus breaks Chapter 4. Scheduling Unsynchronized Periodic Datagrams with a single Buer the semantic of the margin. The margin represents the logical latency which can be used by the communication process, without taking into account the physical length of the network, since it cannot be changed. For a given star routed network, it is equivalent to set the margin or all the deadlines to the length of the longest route plus the margin. However, to compare dierent star routed networks with dierent length of routes, the margin is more relevant than the deadline. Hence, in our experiments, we consider margins from 0 to 3,000 tics to understand how much logical latency is needed to nd an assignment. We look at two dierent regimes, a medium load of 0.8 and a high load of 0.95. Considering smaller load is not relevant since we can solve the problem using buerless assignments, as shown in Section ??.

We rst try to understand what is the best choice of heuristics for the rst stage of the algorithm. The rst stage is followed in this experiment by Greedy Deadline, the simplest algorithm to solve wta. In Figure 4.2, the success rate of all possible rst stage heuristics to solve pall is given, function of the margin of the instances. The success rate is an average computed over 10,000 random star routed networks. According to our experiments, policy IA, that is sending the datagrams on increasing order on the length of the arcs (c 1 ,c 2), does not work well. It corresponds to the policy of Proposition 3 which we already know to be bad for pazl when the routes are long as in this experiment. Sending in decreasing order on the margin of the routes (DM) or on the length of the arcs (c 1 ,c 2) (DA) work better and it seems that DA is better than DM, especially in a loaded network.

Remark that sending the datagrams using a random order does not perform well, but better than IM and IA, which shows that the latters are a poor choice for the rst stage of our algorithm. The interest of using a random order is that we can draw many of them. In Figure 4.3 the same experiment is made for the three heuristics choosing an order at random, but we now draw 1,000 dierent random orders and solve each induced wta instance using Greedy Deadline. The algorithm is considered to succeed as soon as a valid assignment is found for one order. Each random order drawn is used for RO, RORS and ROBS to make the comparison fairer. First remark that our algorithms nd assignments with margin 0 for many instances with load 0.95 and long routes which was not possible when only looking for buerless assignments (see Section ??). It justies the interest of studying pall and not only pazl.

Using many random orders is much better than DA, the best policy using one specic order. With a load 0.95, a solution is found with margin 0 most of the time. The three random order policies have similar performances, but RORS has slightly better success rate than the two others ones, under high load and small margin. Hence, in the following experiments, we always draw 1,000 random orders using the policy RORS to set the osets of the assignments.

We now compare the performances of the four dierent algorithms used in the second stage to set the waiting times. Since Greedy Deadline already nds assignments with margin 0 under mild loads, it is more interesting to focus on the behavior of the algorithms under high load. In Figure 4.4, we represent the success rate of the four algorithms with regards to the margin, computed over 10,000 random star routed networks generated with the same parameters as previously.

The MLS algorithm performs poorly, worst than Greedy Deadline, PMLS and ASPMLS, which shows that taking into account the periodicity is fundamental. Algorithm Greedy Deadline is close to 100% success rate for margins larger than 1,500 while PMLS and ASPMLS algorithms nd a solution for more than 99% of the random instances, even with a margin 0. In other words, for very high load and no margin, there are very few instances for which we do not nd an assignment. With a margin of 300, which corresponds to about 15µs of additional delay with the chosen parameters, we always nd a solution.

It turns out that the performances of PMLS and ASPMLS are almost identical. Even with a load of 100% and a margin of 0, we have to draw 100,000 random instances before nding one which can be solved by ASPMLS and not by PMLS. Since ASPMLS is of exponential complexity in n, it is not relevant to use it within the parameters of this experiment. To verify that, we present the computing time of PMLS and ASPMLS for dierent instance sizes.

To stress the algorithms, we set the margin to 0 and the load to 0.95. The table of Figure 4.5 shows the computation times of PMLS and ASPMLS, averaged on 1,000 instances.

Recall that both PMLS and ASPMLS use the same rst stage which produces 1000 instances of wta, using the policy RORS. First, observe that the better the algorithm to solve wta is, the less random orders it needs in stage one to achieve its best success rate. In particular, ASPMLS has better results than PMLS for less than 1,000 random orders, but not beyond. This further justies our choice to draw 1,000 random orders, to obtain the best success rate within the smallest time.

The number of dierent orders is 7! = 5,040 since we have 8 routes and the solutions are invariant up to a circular permutation of the order. Hence, for 8 routes it is possible to test every possible order. However the computation time of this exhaustive method scales badly with n. The fact that PMLS and ASPMLS have already high success rates for 10 random orders hints that even for a larger number of routes, drawing 1000 random orders is sucient to obtain good assignments.

Harder Topologies Previous experiments use instances with weights of arcs uniformly drawn in a large interval. However, it is quite natural to consider that most routes are By Proposition 5, there is an assignment with margin equal to the maximum dierence between the sizes of the routes. Hence, if all routes have almost the same size, the needed margin is small. If the routes are drawn uniformly in a large interval, then the expected dierence between the longest route and the second longest route is large. This dierence can be seen as a free waiting time for most routes, hence we expect to need little margin in this regime too. As a consequence, the harder instances should be for routes with length drawn in an interval of moderate size compared to the period. of the instances can be solved with margin 0, and we need a margin of 1,900 to ensure that PMLS always nds a solution. Results for ASPMLS are not shown, since they are the same as for PMLS, even on these hard instances.

In Figure 4.8, we do the same experiment, except that the weights of arcs of half of the routes is drawn in [I] and the length of the other half is drawn in [P/2,P/2 + I[. The situation is the same as for the previous experiment but with better success rates, hence the case of two data centers seems simpler to deal with in practice. Now that we have designed and tuned PMLS to solve pall eciently, we compare its performances against the actual way to manage the messages in a network: statistical multiplexing, with a FIFO buer in each node of the network to resolve collisions. For statistical multiplexing, the time at which the datagrams are sent in the network is not managed by the user as in our approach, thus we assume the osets of each route is xed to some random value, and they stay the same over time. We consider a second policy to manage buers called CriticalDeadline. In a buer with several datagrams, this policy sends the one with the smallest remaining margin, which is the time it can wait before missing its deadline.

We have implemented a statistical multiplexing simulator, to evaluate the performance of these two policies and to compare them to nding assignments with small margin by solving pall. For statistical multiplexing, both contention points have a buer. The process is not periodic: even if the oset of a route is the same each period, it is possible that some datagram do not arrive at the same time in a contention point in two consecutive periods because of buering. Therefore we must measure the process time of each route over several periods if we want to compute the maximum latency of the network. We choose to simulate it for 1,000 periods but we have observed that the process time usually stabilizes in less than 10 periods. The margin, for statistical multiplexing, is dened as the maximum process time, computed as explained, minus the size of the longest route of the star routed network.

In Figure 4.9, we represent the probability of success of statistical multiplexing and PMLS for dierent margins. The success rates are computed from 10,000 star routed networks for each margin. On the left part of Figure 4.9, the arcs of the network are uniformly drawn in [P], while on the right part, the arcs of the network are uniformly drawn in [1600] (the hardest settings of the previous section). The others parameters of the experiences are the same as previously. We represent the distribution under loads of 0.95.

The experiment shows that statistical multiplexing does not ensure a minimal latency.

For random topologies, the latency is extremely high when using FIFO (6538 tics in average), with a margin of about 10,000 for the worst 30% of instances, which corresponds to half the period (0.5ms). Even when the messages are managed with CriticalDeadline, 20% of the instances have a margin of more than 4,000 (2838 tics in aveage) while PMLS nds an assignment with 0 margin 99% of the time! For hard topologies (right gure), the average margin of statistical multiplexing (9052 tics for FIFO, 6574 tics for CriticalDeadline) is worst than for random topologies. The worst case of CriticalDeadline remains the same (16500 tics) while the worst case of FIFO fall from 30828 tics for random topologies to 19105 tics on hard topologies. The settings are stressful for PMLS, and we nd an assignment with margin 0 in only 78% of the instances, and it needs a margin of 2,000 tics to be sure to nd an assignment. However, PMLS still vastly outperforms the statistical multiplexing both for the average margin and for the worst margin.

Even under a light load of 0.4, for which we can always nd buerless assignment, statistical multiplexing has a very high average margin (1290 tics for FIFO and 1052 tics for CriticalDeadline) and worst case margin (10963 tics for FIFO and 6938 tics for CriticalDeadline).

For each 1,000 tics of latency we save from the periodic process, we are able to lengthen the routes of 10km, which has a huge economical impact. We feel that it strongly justies the use of a deterministic sending scheme for latency critical applications such as our C-RAN motivating problem.

Conclusion

In this chapter, we propose solutions for the pall problem. We decompose the problem in two steps. The rst one consists in arbitrary set the osets of the routes, and the second one is to solve the problem wta in order to compute the waiting times. Several heuristics 4.7. Performance of Statistical Multiplexing 87 to choose the oset have been proposed and experimentally veried, and the best one is to generate a large number of random osets for every route, to solve wta on them and to keep the best solution. We propose polynomial time heuristics and an exact FPT algorithm that solve wta when parametrized by the number of routes. This latter is built from a scheduling algorithm (that we call MLS) of the literature. We adapted MLS for periodicity under the name PMLS. In PMLS, we set one datagram to be the rst in the period, and we set the deadline of the other datagrams according to the sending time of the rst message and the period. We repeat this operation with every datagram at the rst position on the period, and we keep the best solution. Because we reinforce the deadline constraint, PMLS does not ensure to nd a solution if it exists. Thus, we proposed ASPMLS, an FPT algorithm that solves wta if there is a solution. ASPMLS is based on the canonical form of the assignments and explores all subset of routes in order to not forget valid instances.

We also propose an FPT algorithm to solve pall when parametrized by the number of routes, but it consists of a list of constraints for linear programming and its combinatorial complexity is too high to be programmed, even on instances with few routes.

We show that ASPMLS and PMLS have excellent performances for Cloud-RAN parameters. They nd a solution with 0 additional latency for 99.9% of the instances, even for load 0.95 on random instances. We also show that our solution largely outperforms statistical multiplexing, even using a buering policy taking into account the latency.

Even if the performance are excellent on practical instances, the algorithm we propose here focuses on solving the problem wta of computing the waiting time when the osets are chosen, but not the entire problem : pall. Furthermore, neither Greedy Deadline, PMLS nor ASPMLS are easily adaptable for more complex topologies than star routed networks, studied in next chapter for a synchronized version of pall.

Chapter 5

Scheduling Synchronized Periodic Datagrams in Arbitrary Networks

In this chapter, we consider a problem similar to pall with an additional constraint: the sending of the messages in all the sources of the routes must be synchronized. We need to add buering on the rst contention point of each route, otherwise the synchronization constraint makes collisions unavoidable. Since it is much harder to nd assignments with low latency in this context, we allow buering in all contention points of the routed network (and not only in the ones corresponding to BBUs). Hopefully, this higher degree of freedom to schedule the datagrams helps decrease the process time of the assignments.

We modify the model in order to take into account the buers, and we dene the problem minstra, the synchronized version of mintra, studied in previous chapters.

The algorithms presented in this section solve minstra on the star routed network as in Chapters 3 and 4, but also on any directed acyclic multigraphs representing a routed network. We rst show that greedy algorithms similar to those used for star shaped networks are not ecient in routed network of higher contention depth. Then, we present several local search heuristics (Hill Climbing, Simulated Annealing, Tabu Search) that improve on the greedy algorithms and nd low latency assignments. Finally, we present an FPT Branch and Bound algorithm that gives the optimal solution, which allows to assess the performances of previous algorithms on small networks.

Model changes

A synchronized version of minstra

The fronthaul network is still represented in this chapter by a routed network N = (R, ω)

but the set B of vertices with possible buering is omitted. Indeed, in this chapter, B is Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks equal to C, the set of contention points, that is buering is allowed in all vertices.

In Chapter 3 and 4, the routed network is assumed to be a star routed network, a restriction that we now lift. We dene by R c the subset of routes in R containing c.

Let r ∈ R, with r = (s,c 0 , . . . ,c l ,t), then we say that c i is of contention depth i for the route r, and we denote it by cd(r,c i) = i. The contention depth of a contention point c is the maximum of its contention depth over all routes going through c: cd(c) = max r∈Rc and c∈r cd(r,c). As a reminder, the contention depth of a routed network N = (R, B, ω) is the maximal number of contention points on a route in the routed network.

Let r = (s,c 0 , . . . ,c l ,t) be a route. As mentioned above, all sources emit a datagram at the same date. This means that, w.l.o.g. o r = 0. In order to avoid contention, it is possible to buer datagrams in all contention points. An assignment, denoted by A, is a function which associates a non negative integer value A(r,c) to each couple (r,c) with r ∈ R and c a vertex of r. The values A(r,c) represent the buering times: a datagram of route r waits A(r,c) tics in the buer of c.

The arrival time of a datagram in vertex c i of r, is the rst time at which the datagram sent on r reaches c i , and is dened by t(r,c i) = λ(r,c i) + i-1 k=0 A(r,c k). The date at which a datagram reaches a vertex u i is decomposed into a physical delay due to the time to go through the links before u i and a logical delay caused by the use of buers as determined by assignment A. The sending time of a datagram at vertex c i of r, is the rst time at which the datagram is sent by c i . It is dened by s(r,c i) = t(r,c i) + A(r,c i). This is the arrival time of the datagram plus the buering time given by A.

Consider v the last vertex of the route r, the transmission time of the datagram on r is denoted by T R(r,A) as in Chapter 4 and is equal to t(r,v). Then, the transmission time of an assignment A is dened as T R(A) = max r∈R T R(r,A). This is the time elapsed before the reception of the beginning of the last datagram. We denote by T R(N) the best possible transmission time for the routed network N , that is the minimum of T R(A) over all A valid assignments.

As in Chapter 4, given a network N , the objective is to minimize T R(A), we thus dene minstra, the problem of computing A a (P,τ)-periodic valid assignment such that T R(A) = T R(N).

Minimizing Synchronized TRansmission time of Assignments (minstra)

Input: A routed network N = (R, ω), a period P , a datagram size τ . Problem: Find A with T R(A) = T R(N).

Model changes 91

We evaluate the arithmetic complexity of our algorithms to solve minstra, that is arithmetic operations are considered to be in constant time. Surprisingly, the complexity of the presented algorithms do not depend on P , τ or the weights of the routed network, but only on n the number of routes and d the contention depth. Star routed network The simplest case of contention depth 2 is a routed network with two contention points. This is enough to modelize our process of sending a datagram from an RRH to a BBU and back when there is a single contention point (a shared link between the RRHs and the data centers). This topology is the star routed network on which we have solved pazl in Chapter 3 and pall in Chapter 4.

Theorem 24. The problem minstra is NP-hard when restricted to star routed networks.

Proof. The two ow shop problem studied in [START_REF] Yu | Minimizing makespan in a twomachine ow shop with delays and unit-time operations is NP-hard[END_REF] is shown to be NP-hard. The problem is dened as follows: a set of n jobs have to be processed in sequence on two machines. Each job must be processed on machine 1 before being processed on machine 2. All jobs can be processed from time 0 on machine 1, then for a job i, there is a delay d i between the end of the processing on machine 1 and the time at which it can be processed machine 2. The time needed to process a job is the same for all jobs and both machines. The objective is to minimize the makespan, that is the time at which the last job is scheduled.

We reduce an instance of the two ow shop problem to an instance of minstra on a star routed network (cf Section 2.1.5): A job is a route, the time to process a job is τ the size of a datagram and the delay of the job i is the length of the arc (c 1 ,c 2) in the route r i . If all rst datagrams of a route can go through the routed network before the end of a period, then the periodicity of minstra does not come into play. In other word, we want to ensure that there is an assignment A such that for all r ∈ R, T R(A,r) ≤ P . We let P = 1≤i≤n λ(r i)

and for all i ≤ n, we let A(r i ,c 1) = 1≤j<i λ(r j) and A(r i ,c 2) = 0. By construction, A is Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks a (P,τ)-periodic assignment since there is always only one datagram moving through the network at some point in time and it satises for all r ∈ R, T R(A,r) ≤ P by construction.

Solving minstra on the instance we have dened is equivalent to nding the minimal makespan in the two ow shop problem, which proves the theorem.

The fronthaul networks we study have coherent routings, a classical requirement in telecommunication networks (see e.g. [START_REF] Schwiebert | A Necessary and Sucient Condition for Deadlock-Free Wormhole Routing[END_REF]). It means that if the routes r and r go through two contention points u and v, they have the same subpath between u and v. This is true for the fronthaul networks we modelize. The coherent property is respected from the source to the arc representing the BBU and then from the arc representing the BBU to the target. As a consequence, routed networks obtained from fronthaul networks are directed acyclic multigraphs, as required in the denition of routed network.

Contention depth larger than one In this chapter, we deal with more general routed networks than star routed networks. The algorithms proposed here solves minstra on every routed network which are directed acyclic graphs. We focus our study on symmetric fronthaul networks; networks in which the routes between the RRH and the BBU use the same links in both ways, but this property does not need to be enforced. We say that a routed network modeling a symmetric fronthaul network is a symmetric routed network.

Star routed networks, considered when solving pazl and pall in previous chapters are symmetric routed network: they are symmetric around the central arc (c 1 ,c 2). More generally, if a symmetric fronthaul network is of contention depth 2, then all routes which contain the same contention point of depth one also contain same contention point of depth two. Thus, every symmetric fronthaul network of depth 2 can be represented by several disjoint star routed networks.

Symmetric routed networks of higher contention depth are specically studied in this chapter. For higher contention depth, a reasonable simplifying assumption is to consider that the length of the links in the datacenter are the same for all routes. Then, there is no contention on the link going out of the BBU, as explained in Section 5.3.4 and the routed networks are symmetrical around the contention point preceding the BBU.

Compact Representation of an Assignment

We dene ≺, the pointwise order on assignments:

A 1 A 2 if for all r ∈ R, T R(A 1 ,r) ≤ T R(A 2 ,r). Moreover, we say that A 1 ≺ A 2 if A 1 A 2 and there is an r ∈ R such that T R(A 1 ,r) < T R(A 2 ,r).
Remark that assignments which minimize T R(A) are also minimal for ≺. Hence, it is enough to consider minimal assignments for ≺ to solve minstra.

We explain in this section how to represent most assignments in a compact way, for- O c is an order on R c and S c is a subset of R c .

getting

From a Valid Assignment to its Compact Representation

Let us dene a function which maps a valid assignment A to a compact assignment, called the compact representation of A, denoted by CR(A). We assume that for all contention points u, there is a route r ∈ R u such that A(r,u) = 0. The routes in R are indexed by the integers in [n]. Say w.l.o.g. that r 0 is the route of smallest index such that A(r 0 ,u) = 0.

The datagram of r 0 arrives, and goes to the next contention point, at time t(r 0 ,u). Let us dene the normalized arrival time of r at u: for all r ∈ R u , nt(r 0 ,r,u) = (t(r,u)-t(r 0 ,u)) mod P . It is the time at which the datagram of r arrives at u, in a period normalized so that the datagram of r 0 goes through u at time 0. Similarly, we dene the normalized sending time as ns(r 0 ,r,u) = (s(r,u)t(r 0 ,u)) mod P .

We dene O u as the order on the routes of R u induced by the values ns(r,u). The set S u is dened as the set of routes going through u such that ns(r 0 ,r,u) < nt(r 0 ,r,u).

Intuitively, the time being seen as cut into periods [t(r 0 ,u) + iP,t(r 0 ,u) + (i + 1)P [with i ∈ N, then S u represents the set of routes with a datagram going through u in the period after the one it has been available in. Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks Fig. 5.1 illustrates how a compact representation is computed from an assignment on a single node u. On top, the datagrams are represented by sending time s(r i ,u) while the bottom of the gure shows the datagrams in a single period, represented by normalized sending times ns(r 0 ,r i ,u). Remark that for CR(A) to be dened, we need that, on each contention point, at least one datagram is not buered. We call such an assignment a canonical assignment. It turns out that any assignment A can be made canonical without increasing T R(A), hence we can only consider canonical assignments when solving minstra. Lemma 25. Let A be a valid assignment, then there is a valid canonical assignment A such that A A.

t(r 0 , u) t(r 2 , u) t(r 1 , u) t(r 3 , u) r 0 r 2 r 1 r 3 A(r 3 , u) A(r 1 , u) P r 0 r 2 r 1 r 3 S u = {1, 3} O u = (0, 1, 3, 2)
Proof. Consider a vertex u of contention depth 1, such that for all r ∈ R u , A(r,u) > 0. Let us dene m as the minimum of these values, we dene A (r,u) = A(r,u)m. Assignment

A has no collision on u, since all departure times have been shifted by the same value and

A has no collision. Moreover, if v is the vertex after u in a route r, we dene A (r,v) = A(r,v) + m. Hence, all departure times for vertices of contention depths larger than one are the same in A and A , which implies that there are no collisions in these vertices. We have proven that A is still valid. Since all departure times of A are less or equal to those induced by A, we have A A. Moreover, if r 0 is the route with A(r 0 ,u) = m, then A (r 0 ,u) = 0.

We apply this transformation by increasing contention depth. Since, the transformation applied at some contention depth do not change A for smaller contention depths, a trivial induction proves that A is valid, canonical and that A A.

From a Compact Assignment to its Realization

We now explain how to transform a compact representation into a canonical assignment.

Moreover, we show that the obtained assignment is the smallest among all assignments of same representation. We rst explain how to do the transformation on a routed network with a single contention point u.

Recall that the datagram of a route r is available at time t(r,u) in the vertex u. Let say that the order O u is (r 0 , . . . , r l). We x A(r 0 ,u) to zero, that is the rst datagram in the period has no buering time. Then, in each period beginning by the rst datagram, the datagrams will be in order O u . When the rst datagram of the period is chosen, we use it to dene normalized arrival times and normalized sending times. Assume that A(r i ,u) have been set for i ≤ l, let us explain how to set A(r i+1 ,u). If r i+1 / ∈ S u , then A(r i+1 ,u) is chosen so that ns(r 1 ,r i+1 ,u) is the maximum of ns(r 1 ,r i ,u) + τ and nt(r 1 ,r i+1 ,u). If ns(r 1 ,r i+1 ,u) > Pτ , then CA is not realizable. If r i+1 ∈ S u , then A(r i+1 ,u) is chosen so that ns(r 1 , r i+1 ,u) = ns(r 1 ,r i ,u)+τ . In both cases, if ns(r 1 , r i+1 ,u) ≥ nt(r 1 ,r i+1 ,u), then CA is not realizable (the sending time is in the wrong period with regard to S u).

Figure 5.2 shows how an assignment Real(CA) is built from a compact assignment CA on a single contention point u. We have O u = (2,1,0,3) and S u = {1}. First, the datagram 2 is xed, that is, A(r 2 ,u) = 0. Then, since r 1 ∈ S u , we set A(r 1 ,u) such that ns(r 2 ,r 1 ,u) = ns(r 2 ,r 2 ,u) + τ . Finally, since r 0 and r 3 / ∈ S u , we set A(r 0 ,u) and A(r 3 ,u)

such that ns(r 2 ,r 0 ,u) = nt(r 2 ,r 0 ,u) and ns(r 2 ,r 3 ,u) = ns(r 2 ,r 0 ,u) + τ .

The function Real can easily be generalized to any routed network. Indeed, one can rst consider all vertices of contention depth 1, the routes going through them form disjoint sets. Hence, we can dene Real independently on each vertex of contention depth 1. Then using the buering computed for these vertices, one can compute the arrival time of each route in vertices of contention depth 2 and compute Real for these vertices in the exact same way, and so on for all contention depths. In the following lemmas and theorems, we always consider a single contention point, since it is trivial to extend any property for one 96 Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks

Step 1: r2

Step 2: r2 r1 nt(r2, r1, u) r2 r1 ns(r2, r0, u) = max(nt(r2, r0, u), ns(r2, r1, u) + τ) r0 r2 r1 nt(r2, r3, u) r0 r3

Step 3:

Step 4:

The datagram 1 follows the datagram 2 since 1 ∈ Su ns(r3, r0, u) = max(nt(r2, r0, u), ns(r2, r0, u) + τ) Proof. In the inductive construction of Real(CA), only a constant number of comparisons and additions are needed to compute the buer time of a route from the previous one.

Hence, the time spent in a vertex u is linear in |R u |. A route can go through only one vertex of a given contention depth, hence the time spent computing buers for all vertices of a contention depth is in O(n) and for the whole graph it is in O(nd).

To prove that there is no collision between pair of routes for a given assignment, it is enough to prove it for any interval of time of size P . Hence, it is enough to consider the normalized sending time and to verify they do not induce a collision. By construction, ns(r 1 ,r i+1 ,u) is always larger than ns(r 1 ,r i ,u) + τ and less than Pτ , which proves the absence of collision. Finally, Real(CA) is canonical, since by denition Real(CA)(r 1 ,u) = 0, where r 1 is the rst route in O u .

We can dene the following equivalence relation over canonical assignments: A and B are equivalent if and only if CR(A) = CR(B). We say that a compact assignment CA = In fact, as implied by the following Lemma, we can be more precise on Real(CA): it is minimal for ≺ in its equivalence class.

(O u ,S u) u∈V (G) is canonical if it is a realizable compact assignment, CR(Real(CA)) = (O u ,S u) u∈V (G)
Lemma 27. Let A be a valid assignment, then Real(CR(A)) A.

Proof. Given a vertex u and a route r ∈ R u , we prove by induction that Real(CR(A))(r,u) ≤ A(r,u). Let (O u ,S u) be the pair associated to u by CR(A), with O u = (r 1 , . . . ,r l). By denition of CR, r 1 the rst route in O u , is such that A(r 1 ,u) = 0. By denition of Real,

we have that Real(CR(A))(r 1 ,u) = 0 = A(r 1 ,u). Now assume that Real(CR(A))(r i ,u) ≤ A(r i ,u) for some i.

First, consider the case r i+1 / ∈ S u . By denition of CR, ns(r 1 ,r i+1 ,u) must be larger than ns(r 1 ,r i ,u) + τ and because r i+1 / ∈ S u it must also be larger than rs(r 1 ,r i+1 ,u).

Since Real(CR(A))(r i+1 ,u) is the minimum value so that both constraints are true for Real(CR(A)), using the induction hypothesis, we have Real(CR(A))(r i+1 ,u) ≤ A(r i+1 ,u).

The case r i+1 ∈ S u is similar and left to the reader.

Greedy Algorithms

In the next section, we propose several local search algorithms to explore the compact assignments in order to nd a compact assignment CA with the smallest possible T R(Real(CA)).

A realizable compact assignment is needed to initialize these local search algorithms. To nd such initial compact assignment, we propose in this section three greedy algorithms which try to build canonical valid assignments, which can be turned into a compact representation by the CR function.

Greedy Deadline

We rst present a simple algorithm, which is the natural approach in a context without More precisely, Greedy Deadline works as follow. For a vertex u, select the route r such that the arrival time t(r,u) is minimal and x A(r,u) = 0. Assume that some datagrams have now been scheduled, the last one on the route r at time s(r,u), we explain here how to schedule the next route. If there are several routes r for which t(r ,u) < s(r,u) + τ , we need to select one of those. For each r with the previous property, we compute the value λ(r,u)-t(r ,u) and select the one which minimizes this value. Then, the selected datagram r is sent with a delay A(r ,u) = t(r,u)+τ -t(r ,u). If no route satises t(r ,u) < s(r,u)+τ , the route with the lowest t(r,u) is sent without delay (A(r ,u) = 0). Due to the periodicity, once the route r has been selected and s(r ,u) computed, it is possible that there is a collision. If so, s(r ,u) is increased to the rst time such that there is no collision. If there is no such time, the algorithm fails.

Greedy Normalized

We present here a variant of Greedy Deadline: select as rst datagram the one with minimal t(r,u), then select the datagrams by lowest normalized arrival times instead of arrival times. Let us call this algorithm Greedy Normalized. In practice, it performs better than Greedy Deadline.

Both Greedy Deadline and Greedy Normalized may fail to nd a valid assignment for some routed networks, for which there exist a valid assignment. The way we select departure times for the routes can create unused interval of time of size less than τ . These intervals are not usable to schedule datagram of size τ . If too much time is wasted in this way, the algorithms will fail, while there is always a valid assignment when the load is less or equal to 1. Since each datagram forbids at most 2τ -1 tics in the period to the other datagrams, by a pigeonhole argument, all routes can be scheduled by greedy algorithms considering all departure times, when the load is less than 0.5 (see Chapters 3 for similar arguments).

Greedy Packed

A compact assignment is needed to initialize the local search algorithms presented in the next section. Hence, we propose the Greedy Packed algorithm that is guaranteed to nd an assignment, even if the transmission time may be worse on average than what is found by the two previous greedy algorithms. The contention points are still managed level by level. For a vertex u, we explain how to build the pair (O u ,S u). First, the route with the lowest arrival time is selected, say r 0 and we say that 0 is the rst element of O u and 0 / ∈ S u . From now on, r 0 is used to dene the normalized arrival times of the other routes. Assume that (r 0 , . . . ,r i), the rst i routes of O u are chosen, let us explain how to choose the i + 1-th route. If there are routes with a normalized arrival time lower or equal to ns(r 0 ,r i ,u) + τ , the route r with the smallest value of λ(r,u)t(r,u) is chosen (as in Greedy Normalized). If no route satisfy this property, then let r be the route which minimizes λ(r,u)t(r,u)nt(r 0 ,r,u), choose it, and S u = S u ∪ {r}. In other words, select the route with the smallest transmission time if scheduled without creating gap in the period.

Random generation of routed network

This chapter presents several algorithms that each have several variants or parameters to tune. Thus, each section or subsection describing a new algorithm also provide some experimental results. We describe here how the instances are generated for every experiment of the chapter until Section 5.6 that present more general performance evaluations.

First, remark that, contrary to our choice for star routed networks, we consider that the physical length of the links into the datacenter are the same for all routes. Indeed, several BBUs are often gathered in one or several datacenters. The length of the links between the entrance of the datacenter and all BBUs may or may not be the same. In the rst case, once the messages have been scheduled to go in the datacenter, they go out in the exact same order and thus, even if all routes use the same link in the way back, it is not considered as a contention point (see gure 5.4), and the routes are symmetrical We propose several experiments to assess the practical performance (in speed and quality) of the proposed algorithms. We present here the instances on which we test our algorithms, which are derived from our application to Cloud-RAN. We consider networks of contention depth three, as illustrated in Figure 5.19, in which each dotted arc represents the arcs of two routes.

To generate random routed networks, several parameters must be chosen: The load of the network, the number of routes, the distribution of the length of the arcs, and the topology of the routed network. We would like to understand the impact of those parameters, in terms of computation time and quality of found assignment, for each of the algorithms studied. In order to reduce the number of experiences presented here, we

x the topology of the routed network to the one shown in The impact of the load on the quality of the results has been investigated: When the load is increased, the relative quality of solutions found by the local search algorithms does not changes signicantly. Hence, we choose to x the load to 0.8, which is an already high load. This means that P = τ ×n 0.8 , with n the maximal number of routes over a contention point. The size of the C-RAN trac depends of the service requirement [START_REF] Mobile | C-RAN: the road towards green RAN[END_REF]. Here, we x τ = 2500 tics.

In a C-RAN context, the number of route is low. In the network we study, there is n = 8 routes on the graph. This kind of graphs with few routes allows us to use the Branch and Bound algorithm to nd the optimal solution, which helps to interpret the performances of the other algorithms. We study the impact of the number of routes in the graph in Section 5.6. The length of the arcs is drawn uniformly between 0 and P .

This choice makes the periodicity of our problem impactful, and does not allow us to reuse algorithms from a non periodic setting.

Since the notion of transmission time has changed in this chapter, compared to Chapter 4, the notion of margin is also slightly dierent. For a given routed network in which r n is the longest route (i.e. the route for which λ(r) is the largest), the margin of an assignment A is equal to T R(A)λ(r), that is, the dierence between the transmission time and the physical delay of the route. In other words, this represent the time used for logical delays, that are set by the assignment. When solving minstra, we want to minimize T R(A) down to T R(N), which is equivalent to the minimization of the margin of A. By denition, the margin measures the additional latency given by an assignment and we will express the performance of our algorithms as the value of the margin of the assignment found.

Success Rate and Performance of the Greedy Algorithms

We want to compare the success rate and the performance of the dierent algorithms presented in this section. First, we consider the impact of the load of the network on the success rate of the three greedy algorithms. We have explained that all greedy algorithms succeed when the load is less than 0.5 and that Greedy Packed always succeeds. Figure 5.6

shows the success rate of Greedy Deadline and Greedy Normalized on 1000 random instances for loads from 0.7 to 1. Greedy Deadline fails less than Greedy Normalized on highly loaded networks, while Greedy Normalized seems more robust on loads between Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks Success Load 0.7 0.8 0.9 1

Greedy Deadline 99.5% 92.4% 43.4% 15.7% Greedy Normalized 99.3% 93.2% 51.2% 0%

Figure 5.6 Success rate of the greedy algorithms for dierent loads 0.8 and 0.9.

We now want to compare the quality of the solution found by these algorithms. Figure 5.7 shows the margin needed by the assignments given by the algorithms, when there is one. As expected, Greedy Packed, that trades margin for success rate, performs worse than Greedy Deadline and Greedy Normalized when they are able to nd an assignment.

Greedy Normalized performs better than Greedy Deadline when it nds an assignment.

On vertices with high load, the three algorithms almost always nd the same assignment (or fail). On vertices of small load, the constraint of packing the datagram imposed by Greedy Deadline worsen the latency.

We propose an improved version of Greedy Deadline and Greedy Normalized that always nd a solution. For each contention point, we rst try Greedy Deadline and Greedy Packed on 1000 routed networks. Here, the load is of 0.9 to emphasize the dierence between algorithms.

Algorithm Hybrid Greedy Normalized seems much better than the other two. Hence, in the rest of the paper Hybrid Greedy Normalized serve as a baseline of assignment quality since it can be obtained in very short time. It is also used to initialize local search algorithms with a rst assignment of sucient quality.

Local Search Heuristics

The number of compact assignments CA grows extremely quickly with n. The quality of Hill Climbing depends on the the initial compact assignment. A rst choice is to consider the compact representation CR(A) of the assignment A given by Hybrid Greedy Normalized (HGN). We can also choose a random compact assignment.

Since a compact assignment does not always give a valid assignment nor a good one, we should draw many random compact assignments and return the best assignment found by Hill Climbing using these initial solutions. Initializing Hill Climbing with 100 random compact assignments seems to give better results. However, choosing 100 random compact assignments can still fail to produce one valid assignment. We investigate this issue in experiments presented in Figures 5.11 and 5.12. We represent the probability of drawing at least one compact assignment that gives a valid assignment, when drawing 1, 10 or 100 random compact assignments. In Figure 5.11, we x the number of routes to 8, and we change the load from 0.8 to 1. In Figure 5.12, we x the load to 0.8 and the number of routes goes from 8 to 12 in the routed network. Load 0.8.

Each value is computed from 1000 random instances.

Those experiences show that Hill Climbing computed on 100 random instances performs well when the number of routes and the load are low. However, this is not sucient when the load or the number of routes increases. Indeed, higher loads makes valid solutions harder to nd, and increasing the number of routes also increase the size of the neighborhood, and thus, the number of compact assignments which are not valid. Furthermore, the computation time required by executing Hill Climbing on many random compact assignments instead of one (using HGN) makes it less eective.

We thus propose an hybrid initialization scheme for Hill Climbing: Between the assignments given by initializing the Hill Climbing either with HGN, or with k random compact assignments, return the one that minimize T R(A). We call this initialization hybrid k. We now focus on how many steps Hill Climbing does before ending in a local optimum.

Tabular 5.14 shows the average number of steps done by Hill Climbing, for the initial solution giving the best solution. The results in Table 5.14 are taken from the experiment done to produce The more steps Hill Climbing does, the more the initial solution is improved. When Hill Climbing starts from the result of Hybrid Greedy Normalized, it does not improve much the solution. When drawing a large number of random compact assignments, the probability of drawing one that can be improved a lot is better and it turns out that compact assignments improved many times are often the one with the best margin. Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks The idea of drawing a large number of random compact assignments to initialize Hill Climbing is a naive version of Simulated Annealing. The next two presented meta-heuristics are designed to explore the compact assignments, even if a local optimum is reached. Tabu Search remembers the explored solutions, in order to avoid them, and Simulated Annealing browses the compact assignments with a stochastic approach.

Tabu Search

Tabu Search is a variation on Hill Climbing using memory. We start from a compact assignment CA given by Hybrid Greedy Normalized. Then, at each step, from the current compact assignment CA, we select the compact assignment CA which minimizes T R(CA), even when T R(CA) < T R(CA) is not satised. To avoid looping around a local minimum, we keep in memory the last M solutions explored and we forbid to visit them again. This algorithm can still loop on a solution cycle larger than M , hence we must x some integer N and stop the algorithm after N steps. The parameters N and M must be chosen appropriately to minimize the computation time of Tabu Search, while maximizing the quality of the solutions found.

We rst investigate on Figure 5.15 the impact of N alone. To do so, we xe N = M (innite memory) and we compute Tabu Search on an instance, with N = 100, 500, 1000 and 2000. Those simulations have been made with 8 routes and a load 0.8, and results are similar for 20 routes. It appears that with N = M , the more steps Tabu Search computes, the better is the solution. For most instance, Tabu Search nds the optimal solutions in the rst steps, however for some instances the solution is improved after a large number of steps, which impacts strongly the average margin. At each step, Tabu Search explores the entire neighborhood of the current compact assignment, which is of the same size for any compact assignment, hence the computation time is linear in N . For N > 500, the computation time may not be worth the improvement of the solution, as shown in We now study the choice of the parameter M . Note that increasing may not necessarily decrease the margin of the solution found by Tabu search. Indeed, a large value for M could restrict the Tabu Search to some component of the transposition graph while a small value of M may allow loops.

We x N = 500 and we compute Tabu Search with M equals 10, 50, 100, 200 or 500. It seems that the more steps Tabu Search remembers, the smaller is the margin of the assignment. In more of 60% of the cases, Tabu Search nds its best assignment before 10 110 Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks steps. When increasing the memory, the average number of steps needed by Tabu Search to nd the best solution increases. Nevertheless, remark that for M > 100, the maximal number of steps to nd the best solution is 165. It seems that the memory size has a very small eect on hard instances.

Simulated Annealing

In this section, we study the Simulated Annealing method which works as follow. An initial temperature is set and an initial compact valid assignment CA is computed. At each step, we try to replace the current valid compact assignment CA, by CA drawn uniformly at random in the neighborhood of CA. Then, in function of the temperature t and ∆ the dierence between T R(Real(CA)) and T R(Real(CA)), CA is either accepted or rejected. More precisely, CA is accepted with probability e -∆ t . After a given number of steps, the temperature is decreased by multiplying it by some constant less than one. The lower the temperature, the lower the chance to accept a compact assignment that worsen the solution. This algorithm is an answer to the exploration/exploitation paradox: in the beginning of the algorithm the whole solution space is explored but as the temperature decreases, the search becomes more and more local around a good solution.

When using Simulated Annealing, we need to x the following parameters: initial solution, initial temperature, number of steps before decreasing the temperature, factor by which the temperature is decreased, number of steps without improvement before ending the process. In order to x the initial temperature t 0 , we follow [START_REF] Ibrahim | Meta-heuristics theory and applications[END_REF]:

1. Initiate 100 disturbances at random; evaluate the average ∆ of the corresponding variations ∆

2. Choose an initial rate of acceptance τ 0 of the degrading perturbations according to the assumed quality of the initial conguration; for example:

• poor quality: τ 0 = 50% (starting at high temperature)

• good quality: τ 0 = 20% (starting at low temperature) 100 random instances. We experimentally observed that increasing the initial temperature does not signicantly improve the quality of the solution, but does increase the computation time. Hence, we assume from now on that the initial solution given by Hill Climbing can be considered as good to x the initial temperature.

Quality of initial conguration Good Poor

Average t 0 1788 4153

Average margin

4217

Computation time (ms)

2817 4035 However, drawing too much compact assignments during a level increases the computation time of the algorithm, there is tradeo between time an quality and length of a level should be set carefully.

When N is low (N = 10 or N = 20), the probability of drawing no compact assignment that will be accepted is high and Simulated annealing stops too fast. To x this issue, we force Simulated Annealing to continue during 10 consecutive levels for which less than 1%

of the compact assignment are accepted. This increases the computation time for higher values for N , even though Simulated Annealing does not exhibit the problem for these values. Since the neighborhood of a solution is composed of a large number of solutions of the same value, the acceptance rate is greater than 1% even under low temperatures.

Hence, we set a minimal temperature under which Simulated Annealing stops.

Figure 5.18 shows the margin needed by Simulated Annealing with dierent values of N . Those results are computed on 1,000 random instances, in which the initial temperature is set by the routine of [START_REF] Ibrahim | Meta-heuristics theory and applications[END_REF] presented before and the load is 0.8 contention depth is d, we have at most (n!2 n) d compact assignments which proves the theorem.

Note that for the vertices of the largest contention depth, compact assignments can be considered independently, since they do not interact. Let {u 1 , . . . ,u l } be the vertices of maximal contention depth, and let s 1 , . . . ,s l be their width, then we need only to consider

(n!2 n) d-1 (1≤i≤l s i !2 s i) compact assignments.
This makes a large dierence in our target application and the experiments presented in this chapter, since in this context d equals three and the s i 's are pretty balanced.

Compact Assignment Tree

From now on, we denote the contention points by C = {c 1 , . . . , c m }, and we assume they are indexed by contention depth, that is if i < j ≤ m then cd(c i) ≤ cd(c j).

A Partial Compact Assignment CA is a compact assignment dened on a subset The bruteforce algorithm of Theorem 30 can be seen as going through a tree of partial compact assignments, whose leaves are the compact assignments. We call this tree the compact assignment tree. Each vertex v is labeled by a couple l(v) = (O,S) except the root. There is a bijection between a vertex of the tree and a partial compact assignment, such that a vertex at depth i is a partial assignment dened over C i . We dene this bijection recursively: let v be a vertex and u its parent, then if u is mapped to CA, and v is at

C i = {c 1 , . . . ,c i } of C.
depth i, then v is mapped to CA[l(v)].

The Branch and Bound Algorithm

We now explain how to cut the compact representation tree while exploring it by two dierent means: the computation of a lower bound of the transmission time over a subtree, to cut the whole subtree and several simple rules which eliminate solutions which are dominated by others or which do not yield a valid assignment. Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks A route r ∈ R going through c 1 , that is equal to (s,c 1 ,c j , . . . ,t), is replaced by the route (s,c j , . . . ,t) in R while the routes not going through c 1 stay the same in R . We dene ω (r,s) = ω(r,s)+ω(r,c 1)+A(r,c 1) where A(r,c 1) is computed from the function Real(CA 1) over the contention point c 1 , as explained in Section 5.2.2. To dene a restricted routed network obtained from a partial compact assignment dened over C i and a network N , we dene recursively N j = N j-1 (CA {c j }), with N 0 = N . Remark that CA {c j } is the restriction of CA to the singleton {c j } which is the rst contention point of N j-1 , which makes N j-1 (CA {c j }) well dened.

The restricted routed network represents the problem which is left to solve when xing a partial compact assignment. Lemma 31. Let N be a routed network, CA a partial compact assignment of N , and CA the set of compact assignments which are extensions of CA. Then, T R(N (CA)) = min A∈CA T R(Real(A)).

Proof. Let C i be the domain of CA, by denition of CA, for all CA ∈ CA, CA i = CA. Let v be a vertex of the compact representation tree representing the partial compact assignment CA. If we want to ignore the subtree rooted at v while exploring the partial compact assignment tree, we must know a lower bound on the transmission time of the compact assignments in this subtree. Lemma 31 shows that it is given by the transmission time of the restricted routed network N (CA), that is solving minstra on a simpler network. Since this value is still too expensive to compute, we provide a relaxation of the problem of solving minstra over N (CA), which is practical to solve.

Relaxation of minstra To lower bound the value of T R(N), we propose to transform a routed network into a network with a single contention point, with a lower transmission time (but as large as possible). The problem minstra over a single contention point is the problem wta, that we have solved in Chapter 4, and that we can compute eciently.

Let N be any network and let c j be a contention point. Let N j be the routed network with the single contention point c j , a set of routes R and a weight function ω dened as follows. For each route r of N which goes through c j , there is a route r = (s r ,c j ,t r) ∈ R .

We dene ω (s r ,c j) = λ(r,c j) and ω (c j ,t r) = λ(r)λ(r,c j). The network N j represents all the routes going through c j and forget all constraint before and after c j . Figure 5.20

shows a routed network N transformed into N 1 . Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks Lemma 32. Let N be a routed network and c j one of its contention point, then T R(N) ≥ T R(N j).

A(i,c j) i c 1 c 2 c 3 c 4 1 0 - 0 - 2 1 - - 0 3 - 0 0 - 4 - 2 - 1 f (A) on N 4
Proof. We associate to any valid assignment A of N , the assignment f (A) of N j which is dened as f (A)(r,c j) = s(r,c j)λ(r,c j), that is the sum of waiting times in c j and in contention nodes before c j . By construction of N , the transmission time of a route r using A in N is larger than the transmission time of the route r using f (A) in N j , since all the waiting times are the same up to c j and they are 0 for the contention nodes following c j . Hence, we have for all assignments A of N , T R(A) ≥ T R(f (A)) which proves the lemma.

Figure 5.21 illustrates Lemma 32. From the routed network N of Figure 5.20, we build N 4 and its optimal assignment A , dened as A (4,c 4) = 2, which implies that T R(N 4) = 13. We also give the assignment A in the table of Figure 5.21, which is the optimal solution for N . We have T R(f (A)) = 14, which is indeed higher than the optimal solution of N 4 . Remark that, on N 3 , f (A) is optimal.

Let SCB(N), for Single Contention Bound, be the function which associates to N the integer max j T R(N j). By Lemma 32, we have for all j, T R(N) ≥ T R(N j), hence SCB(N) ≤ T R(N). We can compute SCB(N) in time m2 k k 3 log(k) where k is the contention width of the network and m the number of contention nodes. Indeed, for each j, solving minstra on N j is equivalent to solving wta, which can be done in time 2 k k 3 log(k) • To ensure that we go through only canonical assignment, we force the rst route r O 1 to have zero buering time, by setting r O 1 / ∈ S. But there can be several datagrams with zero buering time and we rene the notion of canonicity by requiring that the one of smallest id is the rst in the order as shown in Figure 5.25. Hence, when we 16. Beyond this value, the sheer number of compact assignments that Branch and Bound must traverse is too large to compute a solution.

Experimental Evaluation

In this section, we compare the performance of all algorithms presented in this chapter.

We use the settings described in Section 5.3.4: There are 8 routes in the routed network, the length of the arcs are drawn uniformly in [P], and the load is 0.8. The algorithm compared here are:

• Hybrid Greedy Normalized.

• Hill climbing initialized by HGN.

• Hybrid Hill climbing, initialized by 100 random compact assignments and HGN.

• Tabu Search, with innite memory and 500 steps.

• Simulated Annealing using 100 steps by level.

• Branch and Bound First, remark that Hybrid Greedy Normalized is far from nding an optimal solution, even when it is followed by a Hill Climbing algorithm, but then the improvement is important. However, computing Hybrid Hill Climbing from 100 random compact assignments yields solutions which are very close to the optimal. In these simple settings, it seems to be enough to draw 100 random solutions to cover eciently the whole compact assignment space. As expected, Tabu Search is better than Hill Climbing computed from the solution Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks of Hybrid Greedy Normalized, but since it is extremely slow to compute a solution, it is not possible to use it on 100 dierent random compact assignments. Simulated Annealing is able to compute a good solution, very close to the optimal in the fth of the time needed by Tabu Search. Branch and Bound is far better than the other algorithms: its computation time, in this network with few routes and a small contention width, is 10 times smaller than Simulated Annealing, while it nds the global optimum.

We now want to compare the performance of those algorithms when the routes are drawn in a small range of values. Thus, we set the length of the arcs to be drawn in [0.9P,P].

We do the same experiment as previously, but from now on, simulated annealing computes 1000 compact assignment at each level. As we observed in section 5.4.3, increasing the number of compact assignment considered at each level increases the quality of the solution.

While drawing 100 compact assignments was enough for the simple routed network of the previous experiment, drawing 1000 random compact assignments at each level in the two following experiments improves dramatically the performances of Simulated Annealing, while still requiring a lower computation time than tabu search. We observe that the relative performance of the algorithm does not change. Instances where the length of the arcs are drawn in the same range of value needs more margin to be solved. We made the same observation in Chapters 3 3 for dierent networks and constraints on the assignments.

The following experiment shows the performance of the algorithms when increasing the number of routes. In the instance generated, there are 24 routes. To do so, we replace each route of the routed network of First, remark that Hill Climbing has the same performance when it is initialized with 100 random compact assignments and the solution given by HGN or only the solution given by HGN. As explained in Section 5.4.1, the chances to draw a realizable compact assignment is low when the number of routes is large, and we should draw much more random compact assignment to nd one which is realizable. It is not reasonable to do so, since we already have Simulated Annealing, which does a random search in the space of all compact assignments in a much smarter way. While the average margin is higher for 24 routes, than for 8 routes, Simulated Annealing is still twice better than Tabu Search, its closest competitor, while requiring less computation time.

Performance against Statistical Multiplexing

We now compare the performance of our best algorithm with the current way to manage networks: Statistical Multiplexing. We use the simulator presented in Section 4.7. As a reminder, we propose two policies to deal with buer in statistical multiplexing. The 5.6. Experimental Evaluation 125 rst one FIFO, sends the messages in a buer following the First In First Out policy.

The second one, CriticalDeadline computes the transmission time of the message in the buer, if we assume they will not be buered anymore, and send the message with the largest transmission time rst.

We rst compare the performances of our best algorithm, Branch and Bound, to statistical multiplexing. Statistical multiplexing using the CriticalDeadline policy has a better margin than using FIFO, which is expected and similar to Chapter 4. However, it needs up to 2000 tics of margin to deal with the 80% most favorable instances, while Branch and Bound nds a solution with margin 0 for the same instances.

We now investigate the performance of Simulated Annealing compared to statistical multiplexing when the number of route is too large to execute Branch and Bound. On Here, the number of instance for which there is an assignment with 0 margin is lower than in previous experiment, because the instance are harder to solve. Nevertheless, we observe that Simulated Annealing nds solution with about half the margin of statistical multiplexing using CriticalDeadline policy. The average margin is 3329 for Simulated Annealing, 7516 for CriticalDeadline and 9744 for FIFO.

Conclusion

This chapter present a variant of the problems studied in previous chapters. Here, we consider that the antennas send their message at the same date, which more faithfully represents the current C-RAN context. By setting all osets to 0 and considering only one contention vertex in which it is possible to delay the message, it seems hard to solve pall, 5.6. Experimental Evaluation 127 even if we have not investigated this problem in detail. We propose to allow buering at every node of the network, and we study minstra, the synchronized version of the minimization problem mintra. In both mintra and minstra, the objective is to minimize T R(A). In the rst case, the value of T R(A) is not impacted by the osets. Thus, it is a local value of each route. In minstra, since all osets are set to 0, we want to minimize the global value of the process.

We propose greedy algorithms for minstra, that are able to nd solutions, whatever the load. However, those solutions are far from the optimal solution. We dene a compact representation of the assignment that allows to reduce the number of assignment we must explore to nd the optimal solutions for minstra. We then dene a neighborhood using this compact representation, and we optimize the solutions found by greedy algorithms with classical Hill Climbing, Tabu Search and Simulated Annealing. We also show that minstra is F P T when parametrized by the number of routes, and we propose a Branch and Bound algorithm that nd the optimal solution for a reasonable number of routes by enumerating all compact assignments. We reduce the number of compact assignment generated by Branch and Bound with several cuts using the properties on the compact form. The performance evaluations let us to conjecture that Simulated Annealing nds good solutions, even for instances with many routes.

One can still improve the computation time of Branch and Bound by computing only solutions which are minimal for minstra or by further optimizing our implementation, but it does not seem possible to compute a solution with Branch and Bound for a large number of routes. Simulated Annealing can also be optimized by choosing a dierent neighborhood, or better analyzing the setting of the parameters, or choosing a more rened temperature cooling schedule.

Chapter 6

Mixing Periodic Datagrams and Stochastic Datagrams

In previous chapters, we presented algorithms that solve the problems of scheduling deterministic trac in the network. In practice, networks are shared between deterministic and stochastic tracs. This is possible in practice using Time Sensitive Networking technology, that allows to manage tracs independently. The objective of this chapter is to study the impact on stochastic trac of the algorithms we have designed to minimize the latency of deterministic trac. We propose a method using the algorithms we have designed, to improve the latency of all tracs of the network.

Periodic Assignment and Random Trac on Star Routed Networks

This section is taken from [START_REF] Barth | Deterministic Scheduling of Periodic Messages for Cloud RAN[END_REF]. The algorithms proposed in this thesis are designed to manage deterministic periodic ows in dedicated networks. In this section, the objective is to determine the eect of adding in the network non-deterministic ows (internet trac, best-eort) managed by statistical multiplexing.

The algorithms solving pall are not designed to take into account best-eort trac.

In particular, they often build very compact assignments, with all messages following one another in a contention point, which is bad for the latency of best-eorts packets trying to go through the same contention point. Thus, we propose an adaptation of any algorithm solving pall, to nd assignments where the unused tics are as evenly spaced as possible to minimize the maximal latency of any random packet trying to go through the contention point. Most algorithms for pall, when determining the waiting times, send datagrams as early as possible and thus create long sequences of datagrams in c 2 , without free tics between them. We propose to modify any algorithm solving pall on an instance with datagram size τ as follows: compute a (P,τ) assignment using the algorithm, for the largest possible τ ≥ τ . Lemma 33. Let I = (N,P,τ ,d) be an instance of pall, for which there is an assignment, and let τ ≤ τ , then there is also an assignment for I = (N,P,τ,d).

Proof. Let A be the assignment of I , the absence of collision is the absence of intersection between intervals [r i ,c 1] P,τ (and [r i ,c 2] P,τ). If we consider A as an assignment of I, then the intervals are [r i ,c 1] P,τ and are strictly included in [r i ,c 1] P,τ , hence they do not have intersection either.

Lemma 33 gives a way to obtain a solution of the original instance from the instance with a larger message size as illustrated in Figure 6.1, with the additional property that all datagrams are separated by at least ττ free tics in each contention point. We are interested in nding the maximal τ for which there is an assignment. Since the property of having an assignment is monotonous with regards to τ , we can do so by a dichotomous search on τ . We call SPMLS, for Spaced PMLS, the adaptation of PMLS which nds an assignment for the largest possible τ by dichotomous search on τ . We experimentally investigate how large can be τ so that SPMLS nds a (P,τ)-assignment. In Figure 6.2, we represent the probability to nd a (P,τ)-assignment function of τ . The star routed networks are generated as in Section 4.6, with 8 routes and length of the arcs drawn in [P]. The network has a load of 0.60 of C-RAN trac, hence the period is set to 33,333 for τ = 2500. The network is less loaded with C-RAN trac than in the previous sections because it will also support non deterministic trac, incurring an additional load. For more than 80% of the instances, there is an assignment for the maximal size of a message τ = P n = 4166. This means that SPMLS perfectly balances the free tics in the period. In the worst case, a solution with τ = 3925 is found, which still yields 3925 -2500 = 1425 unused tics between datagrams. Hence, we expect SPMLS to work well in conjunction with random trac. The excellent performance of PMLS when the load is high explains this result and further justies the work we have done to solve pall eciently under high load rather than just requiring mild load in applications.

Performance Evaluation

We evaluate in this section dierent ways to manage both statistical and deterministic tracs together in the same network.

Best-eort datagrams generation

Let us denote best-eort by BE. The BE trac is generated as follows. The size of a BE datagram is small in practice, and set to 50 tics in our experiments. We generate 0.2 of average load of BE trac in our experiment, to obtain a total load of 0.8. The BE datagrams do not make a round trip in the network as the C-RAN datagrams, they go through a single contention point. We simulate that, by generating 0.2 of average load of BE datagrams for each of the two contention points c 1 and c 2 . The latency of a BE datagram is dened as the time it must wait before going through its contention point.

On each contention point, the generation is split in two exponential distributions which 132 Chapter 6. Mixing Periodic Datagrams and Stochastic Datagrams give the time before the next arrival of datagrams. The rst one models background trac, it has an average load of 0.15 and generates one BE datagram every 333 tics on average.

The second models a burst of BE datagrams, it has an average load of 0.5 and generates ten BE datagrams every 10,000 tics on average.

Statistical multiplexing policy

We test several policies to deal with all tracs using statistical multiplexing. The BE trac is managed using FIFO, and we propose two policies to deal with C-RAN. First, all datagrams, BE or C-RAN, are stored in the same buer and dealt with the FIFO policy regardless of their type. We call this policy FIFO.

In order to minimize the latency of C-RAN trac, we can store the two types of datagrams in two dierent buers, managed each with FIFO, but we prioritize the C-RAN datagrams which are always sent rst. It can be technically implemented using TSN 802.1Qbu [START_REF]Time-Sensitive Networking Task Group[END_REF], that allows to dene priority class in the trac to schedule rst the trac with the highest priority, here the C-RAN trac. We call this policy FramePreemption.

We also consider the case of C-RAN trac scheduled by PMLS or SPMLS. Then, we need to forbid the transit of a BE datagram which collides with a C-RAN datagram. Thus, in each contention point, we reserve 50 tics (the size of a BE datagram) before the arrival of a C-RAN message. Observe that it wastes some ressources and thus slightly decreases the maximal throughput and may worsen the latency of BE datagrams. Figure 6.3 shows the cumulative distribution of the logical latency of BE datagrams, that is the probability that a BE datagram has a latency less than some value. The distribution is computed over 1000 random instances, and for each the trac is simulated for ten periods.

If we compare FIFO and FramePreemption, we see that the latency of BE datagrams is better (1977 tics on average) with FIFO. It is expected, since in FramePreemption the C-RAN datagrams are prioritized and thus the latency of the BE datagrams is strictly worse, 3256 tics on average. However, this is a trade-o with the margin of the C-RAN datagrams, which is strictly better for FramePreemption: 1919 tics on average versus 5265 tics for FIFO.

Using a deterministic approach for C-RAN with PMLS, the trade-o is even stronger: the CRAN margin is down to 0, but the BE trac is more impacted, at a latency of When using SPMLS, the C-RAN trac is smoothed over the period, in order to regularly leave some free tics for BE trac. By construction, we still have CRAN margin of 0 but it improves the latency of BE datagrams to 949 tics on average, which is even better than with FIFO. This result shows that managing deterministic trac deterministically is also good for the other sources of trac on the network. We have already observed such a phenomenon in [START_REF] Barth | Deterministic Contention Management for Low Latency Cloud RAN over an Optical Ring[END_REF], a similar problem on an optical ring, that we describe in the next section.

Both Tracs On Optical Ring : An Industrial product

In this section, taken from [START_REF] Barth | Deterministic Contention Management for Low Latency Cloud RAN over an Optical Ring[END_REF], we study a C-RAN application based on an optical ring.

We work on an industrial product which was developed in the ANR project N-GREEN described in [START_REF] Chiaroni | Network Energy: Problematic and solutions towards sustainable ICT[END_REF][START_REF] Uscumlic | Scalable deterministic scheduling for WDM slot switching Xhaul with zero-jitter[END_REF]. In contrast with the previous chapters, nding emission timings so that dierent periodic sources do not use the same resource is easy in the context of the N-GREEN optical ring with a single data-center. However, we deal with two additional diculties arising from practice: the messages from RRHs are scattered because of the 134 Chapter 6. Mixing Periodic Datagrams and Stochastic Datagrams electronic to optic interface and there are other tracs whose latency must be preserved.

It turns out that the deterministic management of CRAN trac we propose reduces the latency of CRAN trac to the physical delay of the routes, while reducing the latency of the other tracs by smoothing the load of the ring over the period. To achieve such a good latency, our solution needs to reserve resources in advance, which slightly decreases the maximal load the N-GREEN optical ring can handle. Such an approach of reservation of the network for an application (CRAN in our context) relates to network slicing [START_REF] Jiang | Network slicing management & prioritization in 5G mobile systems[END_REF] or virtual-circuit-switched connections in optical networks [START_REF] Cadéré | Virtual circuit allocation with QoS guarantees in the ECOFRAME optical ring[END_REF][START_REF] Szymanski | An ultra-low-latency guaranteed-rate Internet for cloud services[END_REF].

In Section 6.2.1, we model the optical ring and the trac ow. In Section 6.2.2, we experimentally evaluate the latency when using stochastic multiplexing to manage packets insertion on the ring, with or without priority for C-RAN packets. In Section 6.2.3, we propose a deterministic way to manage C-RAN packets without buers, which guarantees to have zero latency from buering. We propose several renements of this deterministic sending scheme to spread the load over time, which improves the latency of best-eort packet, or in Section 6.2.3.3, to allow the ring to support a maximal number of antennas at the cost of a very small latency for the C-RAN trac. The arcs (u,v) of the cycle have an integer weight ω(u,v) which represents the time to transmit a unit of information from u to v. By extension, if u and v are not adjacent, we denote by ω(u,v) the size of the directed path from u to v. The ring size is the length of the cycle, that is ω(u,u) and we denote it by RS. A container, of capacity C expressed in bytes, is a basic unit of data in the optical ring.

The time is discretized: a unit of time corresponds to the time needed to ll a container with data. As shown in Figure 6.4, the node u can ll a container with a data packet of size less than C bytes at time t if the container at position u at time t is free. If there are several packets in a node or if a node cannot ll a container, because it is not free, the remaining packets are stored in the insertion buer of the node. A container goes from u to v in ω(u,v) units of time. The ring follows a broadcast and select scheme with emission release policy: When a container is lled by some node u, it is freed when it comes back at u after going through the whole cycle. At each period, the data of the RRH i begins to arrive in the insertion buer at a time o i called oset. The osets can be determined by the designer of the system and can be dierent for each RRH but must remain the same over all periods. We assume that all BBUs are contained in the same data-center attached to the node v. The data from u is routed to its BBU at node v through the ring and arrives at time o i + ω(u,v) if it has been inserted in the ring upon arrival. Then, after some computation time, which w.l.o.g. is supposed to be zero, an answer is sent back from the BBU to the RRH. The same quantity of data is emitted by each BBU or RRH during any period.

The latency of a data packet is dened as the time it waits in an insertion buer. Indeed, because of the ring topology, the routes between RRHs and BBUs are xed, thus we cannot reduce the physical transmission delay of a data which depends only on the size of the arcs used. Moreover, there is only one buering point in the N-GREEN optical ring, the insertion buer of the node at which the data arrives. Hence, in this context, to minimize the end-to-end delay, we need to minimize the (logical) latency. More precisely, we want to reduce the latency of the C-RAN trac to zero, both for the RRHs (uplink) 136 Chapter 6. Mixing Periodic Datagrams and Stochastic Datagrams and the BBUs (downlink). In Section 6.2.3 we propose a deterministic mechanism with zero latency for C-RAN which also improves the latency of other data going through the optical ring. We shortly describe the nature of this additional trac in the next paragraph. Best-Eort trac The optical ring supports other tracs, corresponding to the internet ow. We call this trac Best-Eort (BE). We want it to have the best possible distribution of latency, but since BE trac is less critical than C-RAN trac, we impose no hard constraint on its latency. At each node of the ring, a contention buer is lled by a batch arrival process of BE data. This batch arrival process consists in generating, at each unit of time, a quantity of data drawn from a bimodal distribution to model the fact that internet trac is bursty. Then, according to the ll rate of the contention buer and the maximum waiting time of the data, a packet of size at most C may be created by aggregating data in the contention buer. This packet is then put in the insertion buer of the node. Hence, the arrival of BE messages can be modeled by a temporal law that gives the distribution of times between two arrivals of a BE packet in the insertion buer. The computation of this distribution for the parameters of the contention buer used in the N-GREEN optical ring is described in [START_REF] Ait El Mahjoub | Performance and energy eciency analysis in NGREEN optical network[END_REF]. We use this distribution in our experiments to model arrivals of BE packets in the insertion buer.

Evaluation of the latency on the N-GREEN optical ring

We rst study the latency of the C-RAN and BE tracs when the ring follows an opportunistic insertion policy: When a free container goes through a node, it is lled with a packet of its insertion buer, if there is one. Two dierent methods to manage the insertion buer are experimentally compared. First, the FIFO rule, which consists in managing the C-RAN and BE packets in the same insertion buer. Then, when a free container is 6.2. Both Tracs On Optical Ring : An Industrial product 137 available, the node lls it with the oldest packet of the insertion buer, without distinction between C-RAN and BE. This method is compared to a method called C-RAN priority that uses two insertion buers: one for the BE packets, and another for the C-RAN packets. The C-RAN insertion buer has the priority and is used to ll containers on the ring while it is non empty before considering the BE insertion buer.

We compare experimentally these two methods in the simplest topology: The lengths of the arcs between nodes are equal and there is one RRH by node. The experimental parameters are given in Table 6.1 and chosen following [START_REF] Chiaroni | Network Energy: Problematic and solutions towards sustainable ICT[END_REF]. In each experiment, the osets of the RRHs are drawn uniformly at random in the period. The results are computed over 1,000 experiments in which the optical ring is simulated during 1,000,000 units of time. Unsurprisingly, the latency of the C-RAN trac is better when we prioritize the C-RAN messages, while the BE trac is heavily penalized. Furthermore, there is still 10%

of the C-RAN trac with a latency higher than 50µs, a problem we address in the next section.

138 Chapter 6. Mixing Periodic Datagrams and Stochastic Datagrams Remark that, due to the broadcast and select mode, a message coming from any node induces the same load for all the nodes of the ring. Hence the latency of the tracs coming from any RRHs or from the BBUs are the same, which may seem couterintuitive knowing that all BBUs share the same node on the ring. This is why in Fig. 6.1 we do not ditinguish between uplink C-RAN trac (RRH to BBU) and downlink C-RAN trac (BBU to RRH).

6.2.3 Deterministic approach for zero latency

Reservation

Finding good osets for the C-RAN trac is a hard problem even for simple topologies and without BE trac, as we have shown in previous chapters. In this section, we give a simple solution to this problem in the N-GREEN optical ring, and we adapt it to minimize the latency of the BE trac.

Let u be the node to which is attached the RRH i. To ensure zero latency for the C-RAN trac, the container which arrives at u at time o i must be free so that the data from the RRH can be sent immediately on the optical ring.

To avoid latency between the arrival of the data from the RRH and its insertion on the optical ring, we allow nodes to reserve a container one round before using it. A container which is reserved cannot be lled by any node except the one which has reserved it (but it may not be free when it is reserved). If u reserves a container at time o i -RS, then it is guaranteed that u can ll a free container at time o i with the data of the RRH i. In the method we now describe, the C-RAN packets never wait in the node: The message sent by the RRH i arrives at its BBU at node v at time o i + ω(u,v) and the answer is sent from the BBU at time o i + ω(u,v) + 1.

Recall that an RRH lls a container every F units of time, during a time ET . Thus if we divide the period P into slots of F consecutive units of time, an RRH needs to ll at most one container each slot. If an RRH emits at time o i , then we say it is at position

o i + ω(u,v) (mod F).
The position of an RRH corresponds to the position in a slot of the container it has emitted, when it arrives at v, the node of the BBU. If an RRH is at position p, then by construction, the corresponding BBU is at position p+1 (mod F). For now, we do not allow waiting times for C-RAN trac, hence each RRH uses a container at the same position during all the emission time.

Given a ring, a set of RRH's, a period and an acceleration factor F , the problem we solve here is to nd an assignment of values of the osets o i 's which is valid: two RRHs Remark that reserving free containers make them unusable for BE trac which is akin to a loss of bandwidth. However, with our choice of emission times of the RRHs in the order of the cycle, most of the container we reserve are used by the data from some RRH.

If all containers at some position are used, that is kET + RS = P , then there are only RS free containers wasted. In the worst case, less than 2RS containers are wasted by the assignment of Proposition 6.

It is now easy to derive the maximal number of antennas which can be supported by an optical ring, when using reservation and the same position for an RRH for the whole period.

Corollary 1. There is a valid assignment with P -RS ET × F 2 antennas and zero latency. Proof. Following Proposition 6, the maximal number of antennas for which there is an assignment on the same position is k = P -RS ET . In such an assignment, we need a second position to deal with the trac coming from the BBUs coming back to those k antennas.

Since we got F positions in the slot, the number of antennas supported by the ring is thus

equal to k × F 2 .
With the parameters of the N-GREEN ring given in Figure 6.1, we can support 5 antennas, while stochastic multiplexing can support 10 antennas albeit with extreme latency.

There are two sources of ineciency in our method. The rst comes from the reservation and cannot be avoided to guarantee the latency of the C-RAN trac. The second comes from the fact that an RRH must emit at the same position during all the emission time (to guarantee zero latency). We relax this constraint in Section 6.2.3.3 to maximize the number of antennas supported by the ring, while minimizing the loss of bandwidth due to reservation.

We now present an algorithm using reservation as in Proposition 6 to set the osets of several RRHs at the same position. In a naive assignment, we put each RRH in an arbitrary position, for instance one RRH by position. We then propose three ideas to optimize the latency of the BE trac, by spacing as well as possible the free containers in a period. Compacting positions For each position which is used by some RRH, and for each period, at least RS free containers are reserved which decreases the maximal load the system can handle. Therefore to not waste bandwidth, it is important to put as many RRHs as possible on the same position as shown in Fig. 6.9. Indeed, for any position which is not used at all, no container needs to be reserved. This strategy is also good to spread the load during the period since it maximizes the number of unused positions and for each unused position there is a container free of C-RAN trac each F unit of times. Balancing used positions The free positions can be distributed uniformly over a slot, to minimize the time to wait before a node has access to a container from a free position, as shown in Fig. 6.10. To do so, compute the number of needed positions x = k × ET P -RS , with k the number of antennas using the previous strategy. Then, set the x used positions in the following way: Experimental evaluation Our algorithm combines the three methods we have described to spread the load over the period. In order to understand the interest of each improvement, we present the cumulative distribution of the latency of the BE trac using them either alone or in conjunction and we compare our algorithm to stochastic multiplexing with C-RAN priority. Figure 6.11 shows the performance of balancing the C-RAN trac inside the period against a naive assignment in which all the RRH begin to emit at the same slot. We keep the same parameters as in Section 6.2.2 (see Table 6.1). As expected, the BE trac latency is much better when we balance the C-RAN trac inside the period and already much better than stochastic multiplexing.

Both Tracs On Optical Ring : An Industrial product 143

To show the interest of compacting the positions, we must be able to put several RRHs at the same position. Hence, we change the emission time to ET = 200 and the number of antennas to k = 12 to keep the load around 0.90 as in the experiment of Figure 6.6. This is not out of context since the exact split of the C-RAN (the degree of centralization of the computation units in the cloud) is not fully determined yet [START_REF] Mobile | C-RAN: the road towards green RAN[END_REF].

As shown in Figure 6.12, the performance of the naive assignment is really bad. Compacting the RRHs on a minimal number of positions decreases dramatically the latency. If in addition, we balance over a period, we get another gain of latency of smaller magnitude: the average (respectively maximum) latency for BE trac goes from 4.76µs (respectively 48µs) to 3.28µs (resp. 37µs). We did not represent the benet of balancing used positions because the reduction in latency it yields is small as expected: the average (respectively maximum) latency for BE trac goes from 4.76µs (resp. 48µs) to 4.43µs (resp. 44µs). In Figure 6.13, we compare the cumulative distribution of the latency of the BE trac using the FIFO rule to our reservation algorithm with the three proposed improvements.

The parameter are the same as in the previous experiment. The performance of our reservation algorithm is excellent, since the C-RAN trac has zero latency and the BE trac has a better latency than with the FIFO rule despite the cost of reservation. It is due to the balancing of the load of the C-RAN trac over the period, that guarantee a more regular bandwidth for the BE trac.

Building Valid Assignments with Additional C-RAN Latency

The previous approach limits the number of antennas supported by the ring when P -RS mod ET = 0, which is the case with N-GREEN parameters. The method we present in this section enables us to support more antennas and improves the latency of BE trac (it reserves less free containers) by allowing the data from an RRH to use two positions. It is at the cost of a slightly worse latency for C-RAN trac and it also requires in practice to implement some buering for the C-RAN packets.

In order to support as much antennas as possible on the ring, we use all containers in a given position, improving on the compacting position heuristic. Proposition 7. There is a valid assignment for k antennas when k ≤

P -RS ET × F 2 .
Proof. We consider the RRHs in the order of the ring. Let l = P -RS ET , then we set the osets of the rst l RRHs as in Proposition 6. These RRHs are at position zero and the (l + 1)th RRH rst emits at position zero, with oset o l+1 = l * ET + ω(u 0 ,u l+1).

The (l + 1)th RRH emits up to time Pω(u l+1 ,u 0) at position zero, so that there is no conict with RRH 0 during the next period. Hence, it has used the position zero during x = Pω(u l+1 ,u 0)l * ETω(u 0 ,u l+1) = Pl * ET -RS. From time Pω(u l+1 ,u 0) + 2, the (l + 1)th RRH emits at position 2 and during a time ETx. Then the next RRH in 6.2. Both Tracs On Optical Ring : An Industrial product 145 the order is assigned to position 2, and begins to emit at time Pω(u l+1 ,u 0) + ETx instead of zero. The rest of the assignment is built in the same way lling completely all rst positions, until there are no more RRH. The loss due to reservation is exactly RS containers by used positions. Hence, it is possible to support 9 antennas (but no BE trac in this extreme case), rather than 5 with the method of Section 6.2.3.2.

We call this new reservation algorithm saturating positions since it improves on compacting positions of the previous subsection. Moreover, there are no free slots in used positions, hence the idea of balancing into the period is not relevant. The only possible optimisation would be to balance the used positions, but it is not worth it since it adds additional latency for the RRHs using two dierent positions. Figure 6.15 represents the cumulative distribution of the latency of BE trac for the FIFO rule, saturating position, and balancing into the period using the N-GREEN parameters. Saturating positions reduces the BE trac latency more than balancing into the period. This is easily explained by its lesser use of reservation. It is at the cost of a maximal latency of 2 µs for C-RAN trac, so the designer can choose any of the two algorithms, according to the desired latency for C-RAN and BE trac.

Conclusion

The concept of Cloud-RAN is to use non-dedicated networks, that is, networks shared with other applications. In this chapter, we study the impact of the scheduling of C-RAN ows on the latency of Best-Eort ows.

Our algorithm ASPMLS used to solve pall on star routed networks tend to create long sequence of contiguous messages that monopolize the ressources during a long time. Hence, the latency of the Best-Eort ows is consequently worsen. To solve this issue, we virtually 146 Chapter 6. Mixing Periodic Datagrams and Stochastic Datagrams change the size τ of the datagram to the largest possible value τ for which ASPMLS nds a solution. Then, we use the computed scheduling with the size of datagram τ , that leaves ττ free tics of time between every datagrams. Such an approach is possible because we are free to chose any oset in the period without impacting the latency. When solving SPALL, this approach would not be reasonable in term of latency, and we did not investigate yet the impact of our algorithms on Best-Eort latency.

We also present similar results on optical ring, developed for ANR project N-Green.

In N-Green optial ring, the technical conception of the equipments makes the problem of scheduling the C-RAN ows trivial. We developped several techniques to smooth the load of the C-RAN ow over the period in order to let regular free tics for the Best-Eort trac.

In both case, in order to ensure that a ressource scheduled for a route is free at the exact moment it is needed, we propose some reservation mechanisms. Reservation creates articial use of bandwidth, which should result in lower latency for Best-Eort ows. In fact, it appears that Best-Eort latency is better when the C-RAN trac is managed while smoothing the load on the period, even with the reservation than when all ows follows statistical multiplexing laws.

Mixing several kinds of ow and following a scheduling for a part of them is one of the major technical issue currently studied for deterministic networking. We detail in next 6.2. Both Tracs On Optical Ring : An Industrial product 147 chapter how released standards leads us to deterministic management of the ows.

Chapter 7

Proof of Feasibility

The additional latency induced by contention buers is one of the major manageable source of delay in a switched packets network. In this thesis, we propose algorithms that minimize contention in several topologies, either by removing the contention buers or computing trac organization to minimize buering time. The objective is to delay datagrams as little as possible in the network.

Our approach of the network consists in deterministically managing datagrams in each node in order to prevent contention. When it is not possible to get rid of the contention buers, we want to x the duration each datagram is buered. The contention buers are not anymore a consequence of the trac but a tool to manage it. This approach may look similar to the concept of Deterministic Networking. A working group from IETF called DetNet [START_REF] Finn | Deterministic Networking Architecture[END_REF] works in collaboration with TSN (Time Sensitive Networking) [START_REF]Time-Sensitive Networking Task Group[END_REF], a task group of IEEE, to develop technical solutions for deterministic networking. The main dierence between DetNet and TSN is the layer it focuses on. While DetNet works on Layer 3, TSN develops solutions for Layer 2. Whatever the case, using the term "deterministic" is inappropriate since all works related to DetNet or TSN are still based on statistical models. The latency guarantee given by those approaches are an upper bound on the latency, while we aim to minimize it. In Section 7.1, we introduce the IEEE standards for TSN that allows for a better network management based on controlled management of ows in the switches. While TSN standards are designed to drive stochastic ows in network, we show that going further and managing deterministic trac enable us to remove some technical constraint, and leads us to a new technology, that we call Hyper-TSN. Section 7.2 presents a prototype of a switch that goes beyond TSN, by delivering datagrams at exact planned dates. With Hyper-TSN, the additional latency due to contention buers is minimized, even at full loads. Furthermore, we get rid of the synchronization constraint, with an innovative alignment mechanism. With Hyper-TSN, the latency is at physical limits. [START_REF]ALTO Performance Cost Metrics draft-ietf-alto-performance-metrics-12[END_REF]

Customized Management of the Network

The model we present in Chapter 2 is based on several assumptions:

• The algorithms we develop are based on a central knowledge of the network and suppose all nodes are able to follow instructions. There must be an entity that centralizes and manages the conguration of the nodes.

• We assume the nodes are able to distinguish and manage dierent ows.

• Because all nodes follows a global scheduling , we assume they are able to dynamically rectify the shift between the clocks. We explain in this chapter how the recent standards developed by TSN task group is close from such a model, and we show the limits of TSN for deterministic networking that leads us to Hyper-TSN. A detailed survey of all TSN standards can be found in [START_REF] Nasrallah | Ultra-Low Latency (ULL) Networks: The IEEE TSN and IETF DetNet Standards and Related 5G ULL Research[END_REF].

Overview of TSN Standards

Centralized vision of the network The standard IEEE 802.1Qat SRP [START_REF] Bujosa | CSRP: an Enhanced Protocol for Consistent Reservation of Resources in AVB/TSN[END_REF] (Stream Reservation Protocol) provides a central management framework that allows a centralized entity to collect data about the ows. It has been improved by IEEE 802.1Qcc [64]. In these standards, a centralized entity called the controller, collect all required information needed by users about the network (the routing, the periodicity and the size of the datagrams). This controller proposes a user interface that enable any user to collect all network information in order to compute the conguration of the network. Figure 7.1 shows a network managed by a controller, communicating via its user interface with algorithms, and able to send requirement to the nodes. Such an approach is related to Software Dened Network (SDN) [START_REF] Li | Software-dened network function virtualization: A survey[END_REF]. We can nd in [START_REF] Nayak | Software-dened environment for recongurable manufacturing systems[END_REF] an example of an SDN for TSN.

Individual management of ows Standard 802.1Qbv [START_REF]IEEE Standard for Local and metropolitan area networks Bridges and Bridged Networks -Amendment 25: Enhancements for Scheduled Trac[END_REF] allows us to manage dierent ows in the nodes by a gate mechanism. Every output port of the switch is organized as follows. The ows are stored in trac queues, and for each trac queue, a gate is ordered to be open or closed. To do so, the switch needs a Gate Control List (GCL). This GCL is computed by the user, and sent to each switch of the network by the controller. It With such a mechanism, it is possible to organize the ows in order to control the latency. The GCLs are computed upstream considering the trac (size of the datagrams, periodicity, or average throughput of each ow for non-deterministic trac). Several works on Time Aware Shaping have been developed on this topic: [START_REF] Kenan | Modeling time aware shaping in an Ethernet fronthaul[END_REF] introduce how to manage one scheduled ow and one best-eort ow (non-periodic generation of data, stochastic model). This paper shows that by correctly setting the GCL of the nodes, it is possible to ensure no contention for one scheduled ow. Nevertheless, works about managing several scheduled ows together are mainly based on linear programming [START_REF] Steiner | Trac planning for time-sensitive communication[END_REF][START_REF] Silviu S Craciunas | Formal scheduling constraints for time-sensitive networks[END_REF][START_REF] Ganesh Nayak | Incremental ow scheduling and routing in time-sensitive software-dened networks[END_REF][START_REF] Ganesh Nayak | Time-sensitive softwaredened network (TSSDN) for real-time applications[END_REF], which has an high complexity and does not scale well with number of routes and contention depth of the networks. Synchronization To be ecient, the components of the network must be completely synchronized. Such an hypothesis seems unrealistic. Standards like IEEE 802.1AS [START_REF]IEEE Standard for Local and Metropolitan Area Networks -Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks[END_REF], or IEEE 1588 [START_REF]IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems[END_REF] propose good solutions for clock synchronization, but this problem is still dicult to solve. Indeed, even if those protocols propose good solution to re-synchronize clocks, there may be some shift between clocks of dierent switches of the network. The major source of shift is the need to precisely evaluate the length of a link between two components. This value can be deduced from the travel time of datagrams between two

Limits of TSN when managing Deterministic ows

All the previously mentioned standards are designed for a statistical management of the ows. In this thesis, we work on deterministic ows: our models and algorithms do not rely to a statistical approach like current trac shaping, but a deterministic approach.

We compute the exact date at which each datagram is able to reach each node, without loss of bandwidth due to guard time. Furthermore, a statistical approach does not allow to control the contention and the exact forwarding time of the datagram in the network. This implies that a datagram sent periodically does not always have the same latency over time. The variation of the latency is called jitter. The jitter is an indicator of the stability of the network. The higher the jitter, the higher the maximal value of the latency is.

A deterministic approach requires to rethink the network management. We control the position of a datagram at every moment in order to let them pass through the nodes 7.2. Deterministic management for a deterministic latency 153 without contention thanks to a gate mechanism similar to TSN Qbv. We thus need the nodes to be perfectly synchronized otherwise it could be counterproductive. Indeed, if a datagram of a ow arrives in a node before the planned date, the gate is closed and the datagram is buered, that induces additional latency due to contention buer. In the worst case in which a datagram arrives after the planned date, it is buered until the gate get open. In our context of periodic ows, the datagram will be buered between up to one period. Also, switches in the physical layer of the network induce an additional latency due to physical buering. In store-and-forward concept [START_REF] Elbert | Store and forward video system[END_REF], datagrams are stored at reception of a node before being forwarded. However, solution like cut-through [START_REF] Kermani | Virtual cut-through: A new computer communication switching technique[END_REF] allows to reduce storage size and corresponding delay to the header size only. But this is eective if the egress port is available to forward the datagram at the same time only. If not, the datagram is buered until the port is free. Even if it is possible to adapt our model to take into consideration the physical buering cost, it still induces additional latency, which is not desirable.

Next section present a new kind of switch, called Hyper-TSN switch, that allows to overcome all the above limits.

Deterministic management for a deterministic latency

Deterministic Networking are mentioned in the same survey cited ahead for TSN [START_REF] Nasrallah | Ultra-Low Latency (ULL) Networks: The IEEE TSN and IETF DetNet Standards and Related 5G ULL Research[END_REF]. The researches about DetNet are until now limited either to linear programming for nding scheduling policies for the network -as mentioned above-or trac shaping (see [START_REF] Thangamuthu | Analysis of Ethernet-switch trac shapers for in-vehicle networking applications[END_REF] for a comparison of actual trac shaping methods). Trac shaping methods are based on stochastic models, with bounds on the arrival of the ows, that allows to bound the maximal latency. Nevertheless, as we mentioned ahead, Deterministic Networking do not propose a deterministic management of deterministic ows in order to ensure a minimal latency and 0 jitter.

In this thesis we remove the contention buer, or, if this is not possible, we use the contention buers as a tool, by controlling the buering time of each datagrams while minimizing it. Furthermore, we remove jitters in network, which is a deeper aspect of deterministic networking. Here, because of our desire to manage deterministic ows, multiple standards of TSN are not useful yet. Indeed, since the exact date of arrival of all 154 Chapter 7. Proof of Feasibility datagrams are computed, we can get rid of several tools designed to manage the trac on a statistical manner. We present in this section an Hyper-TSN switch that solves all the problematic of TSN when managing deterministic trac. This technology is under an advanced phase of research, and a prototype has been experimented in Nokia Bell Labs [START_REF] Guiraud | An Experimental Platform for Hyper TSN Flows Scheduling and Control Automation[END_REF].

Hyper-TSN switch

A 2x2 Hyper-TSN switch has been developed. It is composed of a switching matrix connected to a deterministic scheduler and two 10 Gbps ethernet two ways transceivers. The switching matrix includes also a monitoring circuitry. The deterministic scheduler controls the switching matrix and is congured with a timing table. This table is similar to a 802.1 Qbv Gate Control List (GCL). It denes the periodicity of the scheduling and, for each egress ports, the planned date of arrival of the frames which are part of deterministic ows.

At each of these dates the deterministic scheduler sets the switching matrix to transmit data incoming on a specied ingress port. Figure 7.3 shows an example of scheduling both deterministic (but not periodic) and stochastic trac. In such a switch, the buers are totally absent for managed trac: when a datagram arrives in the switch, it is instantly transmitted to the egress port, and there is no buering operation. This process allows us to reduce the physical delay to its lowest for scheduled trac, while it is still possible to buer the Best-Eort trac, which has not critical latency constraints. To coordinate switches, Hyper-TSN considers the ow as a reference [START_REF] Leclerc | Optical packet switching based on trac properties[END_REF] as we now explain. Since the exact arrival time of a datagram is known, if one datagram arrives before or after this expected date, this means the physical transmission delay between the sender of the datagram and the switch known by the controller is false. The monitoring circuitry of the switch detects this issue and an alert signal is sent to the controller that is able to reschedule correctly the GCL. This ensures a dynamical clock alignment between the nodes, and it is possible because the switches are developed on components with industrial clocks (Xilinx FPGA boards : Zynq UltraScale MPSoC zcu102, Zynq-7000 SoC zc706).

The switch also includes a frame analyzer that enables to check that the switched frames are not corrupted and none is missing.

Implementation and reliability tests

To perform experiments, a generator of deterministic ows has been developed. This generator set the dates it sends the frames according to the controls received from the monitoring circuitry. The period are dened in the timing table. The size of the frames is set to fully load the ethernet links (i.e. 100% load). When starting, the monitoring circuitry detects that frames do not arrive at the planned date and sends control commands to the generator. These rst frames are lost. Then, the generator corrects the dates it sends the frames, and no more shifting has been observed during the running of a 2 hours experiment.

100% of the frames are correctly switched without being corrupted or lost. The switching of each frame from the ingress port to the planed egress port is performed introducing only one clock cycle delay (here 3,87 ns).

Conclusion

The algorithms developed in this thesis are based on several assumptions. First, we consider that a central entity is able to collect informations about the ows and the routes of the network. This is possible in practice by using SDN, which is one of the major solution for dynamic programmable networks.

The nodes need to be able to dierentiate ows and to follow a scheduling to forward them. The norm TSN 802.1Qbv allows such a mechanism. We also assume that the nodes are synchronized with the precision of a tic. Even with advanced synchronization protocols, it is hard to synchronize devices with such a precision, and at least the header of the messages needs to be buered to be read in classical packet switched networks.

As a solution to all these requirements, we present Hyper-TSN switches, which are currently in development. Those switches are based on a new vision of the network, by considering the ow as a reference. Because we manage the arrival time of every datagram in the nodes, we are able to detect a time shift if a datagram does not arrive a expected date. This allow a precise clock alignment of the devices. Furthermore, those switches are able to forward the datagrams without any buer due to physical operations, which is an innovation in packet switched network.

Conclusion

In this thesis, we presented the problem of minimizing latency of periodic ows in a packet switched network. Current networks in use for telecommunication are based on statistical multiplexing: the links are dimensioned considering the average bit rate of the ows so that the ows can share a link most of the time or be buered until enough capacity is available. Statistical multiplexing is a low-cost solution to deploy a network, but it does not guarantee the latency of the packets using it. If a burst of data is sent by one ow, shared resources become critical and some packets are buered while waiting for their availability.

These buers are called contention buers, and are a major source of latency.

We study the Cloud-RAN application case. In C-RAN, radio antennas periodically send packets to datacenters, that compute an answer and send it back to the antennas.

The packets must have an end-to-end latency lower than a maximal value, required by the protocols. Statistical multiplexing is not able to guarantee an end-to-end latency for packets, and because of contention buers, the more loaded is a network, the largest is the latency. In our C-RAN use case, the ows are periodic and a large amount of data is sent at each period by the antennas and the datacenters. Thus, managing the packets with statistical multiplexing is not appropriate.

Several working groups (DetNet, TSN, see Chapter 7), have developed standards and mechanisms ensuring an upper bound on the latency in packet switched networks. The network devices can reserve a port during a given time to forward the trac of a given ow without contention buer. The arrival date of the packets in a device of the network must then be known and precise. To do so, a scheduling of every output port of the devices is computed ahead. Current approaches to compute this scheduling are based on stochastic laws, since most of the internet trac follows a stochastic behavior. In such a situation, it is impossible to completely get rid of contention buers. Nevertheless, since our ows are deterministic (the amount of data and the periodicity of the packets remain the same all over time), we show that deterministic scheduling guarantees a minimal latency of deterministic ows and it also helps to reduce the latency of stochastic best-eort ows.

Furthermore, TSN and DetNet mechanisms induce several sources of additional latency, like guard time around packets to prevent the time shift between clocks or buering time of the header of the packets in every switch to read the destination. In this thesis, we go further by This thesis focuses on the problem of computing a deterministic scheduling for periodic ows, a problem that we prove to be NP-hard for arbitrary networks. We study in Chapters 3 and 4 this problem when the ows are unsynchronized, that is, we can choose the emission date of the packets in the sources of the ows. This case does not perfectly match with Cloud-RAN, but it corresponds to various use cases, like Industry 4.0, autonomous vehicle. . . In Chapter 3, we give several greedy algorithms and one FPT algorithm that allows to reduce the latency to the physical transmission time (i.e. without any contention) on a common network topology with a single shared link, when the load induced by the deterministic trac is low enough. We experimentally show using the exact FPT algorithm, that on very loaded networks (when the load is greater than 80%), it is not possible to get rid of contention buers. We then propose solutions that buer packets in nodes of the network, but we try to minimize this additional latency. Remark that in such an approach, the buers are not anymore a consequence of contention that we cannot control or predict, but a tool to organize the packets. In Chapter 4, we study the problem of organizing ows in a network with a single shared link (as in Chapter 3), and allowing one buer (positioned in the datacenters) on the route for every packet. We propose several greedy algorithms and one FPT algorithm based on a classical scheduling algorithm that we adapted for periodicity. The performances of our algorithm are excellent, we show it is possible to reduce latency to the physical transmission time of the longest route in 99,9% of the cases, while statistical multiplexing, even prioritizing critical ows adds a latency to the ows, due to contention buers, equal to 1/4 of the period.

We study in Chapter 5 the C-RAN use case, in which all antennas send their messages at the same date, on arbitrary networks. We propose a compact form of the solutions to our problem, that allows to dene a neighborhood of a solution. Then, several local search heuristics are designed using this notion of neighborhood. A branch and bound algorithm based on the compact form of the solutions is also proposed and run eciently for small C-RAN network with ten to twenty routes. Then, we experimentally show that our approach dramatically over performs statistical multiplexing in terms of latency.

We then show in Chapter 6 how to adapt our algorithm not to impact best-eort ows latency while scheduling the C-RAN trac. We explain how to adapt all our algorithms, Conclusion 159 by solving instances with articially increased size of messages, in a way which does not impact the latency of C-RAN datagrams, and smooth the load of C-RAN trac all over the period. We show that, even if our approach induces an additional use of bandwidth due to resource reservation, we are able to improve the average latency of best-eort trac while minimizing the C-RAN trac latency. We also show similar results in an industrial optical ring, in which scheduling the C-RAN packets is trivial because of the multiplexing of the electronic signals over the optical ring.

Limits and Further researchs

Several questions remain open in our work. We conjecture that pazl and pall are NP-hard on star routed networks, but are not yet able to prove it. The algorithms we developed for pazl and pall are designed for star routed networks and most of them are not easy to extend to general networks. The greedy algorithms we proposed to solve pazl can be adapted for arbitrary networks respecting the coherent routing property, but they can be proved to work only for small loads. These algorithms are not usable in their current state, and we need to study them carefully. Furthermore, the FPT algorithm we give to solve minstra can be adapted to solve pazl and pall on arbitrary networks. An experimental study has to be done to see if the approach is promising and the algorithm could be optimized for the case of unsynchronised messages. This thesis arises in the context of SDN which aims to develop dynamical and programmable networks. In C-RAN for example, the radio network aims to be able to turn o antennas when the number of connected devices is low. Our algorithms for pazl and 160 Conclusion pall compute the scheduling for all ows, and must reschedule the entire solution if a ow is removed or added to the network to ensure a minimal latency. In the case of the algorithms presented for minstra, the compact form of the solutions we presented allows us to eciently add a ow to the best solution, but not to quickly re-compute the best solution when a ow is removed. A challenge is thus to design a dynamic algorithm, which can produce a new solution quickly after a local change in the network.

The measure we want to minimize is the maximal end-to-end latency of all ows. This often means that the ow using the longest route is never delayed in contention buer, but the other ows are more or less impacted by the solutions we give. One can imagine use-cases in which the constraint on latency is not as strict, and where it makes more sense to minimize the average latency of the ows. For this variant of the problem, the study of pazl is still relevant, but it may be simpler from a complexiy point of view and the algorithms may be quite dierent from the ones presented in this thesis. We can also expand our model to allow ows in the networks with dierent periods or sizes of message.

Already several methods fail for mixing dierent message sizes, since solving the problem wta becomes NP-hard in this context and mixing several periods require to completely change our algorithms.

In Section 6.2 we introduce the fact that links of the networks may have dierent capacity. This induces additional latency due to the physical conversion. It could allow use cases requiring low latency to be developed on metropolitan networks. It is possible to adapt our model to take into account this issue, and to consider this physical conversion time while computing the solutions.

Last, we consider that the routing is given in our model. It could be interesting to compute the routing along with the assignment to further improve the quality of the results. We plan to study this question on star routed networks, where the number of routings is limited and an exhaustive approach is conceivable.

Ordonnancement periodiques de messages pour minimiser la latence dans les réseaux dans un contexte 5G et au delà Mots clés: Cloud Radio Access Network, Ordonnancement periodique, Heuristiques de recherche locale, Analyse de complexité, Réduction de la latence, Theorie des graphes Résumé: Cette thèse est le fruit d'une collaboration entre les laboratoires DAVID et Nokia Bell Labs France. L'idée originale est de trouver des solutions algorithmiques pour gérer des ux periodiques de manière déterministe dans les réseaux an de contrôler et de minimiser le temps de transmission, appelé latence. L'un des objectifs de la 5G (le C-RAN, pour Cloud Radio Access Network) est de centraliser les unités de calculs des antennes radio des réseaux de télécommunications (appelé Radio Access Network) dans un même centre de calcul (le Cloud). Le réseau entre le centre de calcul et les antennes doit être capable de satisfaire les contraintes de latence imposées par les protocoles.

Nous dénissions le problème de trouver un ordonnancement periodique pour les messages de façon à ce qu'ils ne se disputent jamais la même ressource, et prouvons que les différentes variantes du problème étudiés sont NPcomplets. Nous étudions dans un premier temps le problème pour une topologie particulière dans laquelle tous les ux partagent un même lien. Nous proposons dans un premier temps des algorithmes polynomiaux, de plus en plus évolués, ainsi que des algorithmes FPT permettant de trouver une solution quand le nombre de route est raisonnable, ce qui est le cas des réseaux C-RAN.

Les algorithmes développés dans cette première partie n'étant pas applicables directement aux topologies plus générales, nous proposons ensuite une forme compacte au problème qui nous permet de dénir une notion de voisinage ecace pour des heuristiques de recherches locales (descente, recherche tabou, recuit simulé). Nous utilisons cette forme compacte pour dénir un algorithme Branch and Bound ecace quand le nombre de routes est modéré. Nous proposons aussi une évaluation de performance des solutions proposés par rapport aux solutions courantes de gestion des ux et montrons que notre modèle est réalisable en pratique grâce aux nouveaux équipements en cours de développement. Abstract: This thesis is the result of a collaboration between DAVID Laboratory and Nokia Bell Labs France. The original idea is to nd algorithmic solutions to deterministically manage periodic ows in networks in order to control and minimize the transmission time, called latency. One of the objectives of 5G (C-RAN, for Cloud Radio Access Network) is to centralize the calculation units of the radio antennas of telecommunications networks (called Radio Access Network) in the same computer center (the Cloud). The network between the computing center and the antennas must be able to satisfy the latency constraints imposed by the protocols.

We dene the problem of nding a periodic scheduling for messages so that they never compete for the same resource, and prove that the dierent variants of the problem studied are NPcomplete. We rst study the problem for a par-ticular topology in which all the streams share the same link. We rst propose polynomial algorithms of increased sophistication, and FPT algorithms that allow us to nd a solution when the number of routes is reasonable, which is the case for C-RAN networks.

Since the algorithms developed in this rst part are not directly adaptable to more general topologies, we then propose a canonical form to the problem which allows us to dene an ecient neighborhood notion for local search heuristics (hill climbing, tabu search, simulated annealing). We use this canonical form to dene an ecient Branch and Bound algorithm when the number of routes is moderate. We also propose a performance evaluation of the proposed solutions compared to current ow management solutions, and show that our model is feasible in practice thanks to new equipment under development.

O 1 = 2 > O 3 = 1 .

 1231 Average Margin of best solution found by Simulated annealing, with a different number of compact assignments drawn at each level. 112 5.19 A restricted routed network N (CA) obtained from N and the partial compact assignment CA, dened over {c 1 }, whith A(1,c 1) = 0 and A(2,c 1) = 1. 114 5.20 Problem minstra relaxed to one contention point. 115 5.21 A network N 4 , obtained from N of Figure 5.20, and the optimal assignment A of N . On the rst representation of N 4 , f (A) the image of A on N 4 and on the second representation of N4 , an optimal assignment. 116 5.22 Expansion of a vertex of the compact assignment tree, corresponding to a contention vertex of width 3. 118 5.23 When ns(r O 1 ,r O i-1 ,c) + τ = ns(r O 1 ,r O i ,c), every extension in the branch with r O i ∈ S is dominated by the corresponding extension in the branch r O i / ∈ S. 119 5.24 An example of two orders O and O for which (O ,S) ≺ (O,S), with S = ∅. . 119 5.25 An example of order in which O 1 and O 3 have no buering and in which The assignment with O is thus non-canonical. 120 5.26 Average computation time of Branch and Bound with dierent number of routes. 120 5.28 Average margin and average computation time of each algorithm for 8 routes, length of arcs drawn in [P]. 121 5.27 Cumulative distribution of the margin for 8 routes, length of arcs drawn in [P]. 122 5.29 Cumulative distribution of the margin for 8 routes, length of arcs drawn in [0.9P,P]. 123 5.30 Average margin and average computation time of each algorithm for 8 routes drawn in [0.9.P,P]. 123 5.31 Cumulative distribution of the margin for 24 routes, length of the arcs drawn in [P]. 124 5.32 Average margin and average computation time of each algorithm for 24 routes, length of the arcs drawn in [P]. 124 5.33 Number of instances for which there is a solution less than a given margin, for Branch and Bound and Statistical Multiplexing, in a routed network of depth 3, load 0.8 and 8 routes. 125 List of Figures ix 5.34 Performance of Simulated Annealing Against Statistical Multiplexing for 24 routes. 6.1

Dans le chapitre 5 ,

 5 nous étudions le problème d'organiser des ux synchronisés sur tout type de DAG. Dans ce cas, tous les messages sont envoyés en même temps par les sources et nous nous permettons de faire attendre les messages dans des buers à chaque point de contention du réseau. Nous étudions le problème de minimiser la plus grande latence dans le réseau. Nous commençons par décrire des algorithmes gloutons qui trouvent une solution réalisable pour n'importe quelle charge, qui servent de point de départ aux algorithmes de recherche locale utilisés ensuite. Nous introduisons une forme compacte du problème qui nous permet de dénir une notion de voisinage entre les solutions an d'explorer l'ensemble de ces dernières. Nous étudions les performances des algorithmes de recherche d'optimum local (hill-climbing, recherche tabou, recuit simulé) et nous proposons un algorithme Branch and Bound qui énumère l'ensemble des solutions sous forme compacte, en faisant susamment de coupes pour trouver la solution optimale rapidement. Nous montrons expérimentalement que l'algorithme Branch and Bound est capable de trouver une solution optimale en un temps raisonnable pour 12 routes, tandis que le recuit simulé permet de trouver des solutions bien meilleures que le multiplexage statistique pour n'importe quelle taille d'instance. Nous étudions ensuite, dans le chapitre 6, l'impact de nos algorithmes d'ordonnancement, lorsque les ux C-RAN périodiques et prioritaires partagent le réseau avec des ux Best-Eort, non prioritaires et dont les arrivées suivent un processus stochastique. Nous proposons une méthode d'adaptation de nos algorithmes qui permet de lisser la charge des ux C-RAN tout au long de la période, sans augmenter la latence. Nos expériences montrent que, même si organiser les ux de façon déterministe comme nous le faisons requiert d'utiliser un peu plus de bande passante pour réserver les ressources, la latence moyenne des ux Best-Eort est meilleure qu'avec le multiplexage statistique. Nous montrons aussi le même genre de résultats dans un anneau optique où l'ordonnancement des ux C-RAN est rendu trivial par les contraintes techniques de la conversion opto-électronique.

Figure 1 . 1

 11 Figure 1.1 5G performances required by ITU-R ([1])

Figure 1 . 2

 12 Figure 1.2 Some examples of use cases for 5G ([3])

Figure 1 . 3

 13 Figure 1.3 3GPP releases 15, 16 and 17 calendar ([4])

Figure 1 . 4

 14 Figure 1.4 An End to End communication between two mobiles.

Figure 1 . 5

 15 Figure 1.5 Latency requirements between dierent part of the network.

 Figure 1.6 An example of fronthaul network for Cloud RAN

Figure 1 . 7 Figure 1 . 8

 1718 Figure 1.7 Two dierent split for Cloud-RAN

Chapter 2 .TargetsFigure 2 . 1 A

 221 Figure 2.1 A routed network, each route is represented by a colored path. Weigth on the arcs are ommited.

Arrival in c 1 in c 2 Emission after waiting in c 2 TRFigure 2 . 2

 12222 Figure 2.2 Timeline of a datagram during its travel on a route r = (s r ,c 1 ,c 2 ,t r), with c 2 ∈ B

Figure 2 .

 2 2 represents the dierent events happening during the lifetime of a datagram sent on a route r.

Figure 2 . 4

 24 Figure 2.4 Left, a physical fronthaul network and right, the star routed network modeling a round trip in the fronthaul network. The computation time in the BBU is given in red.

d 1 = 4 , d 2 = 6 ,

 1426 d 3 = 6

Figure 2 . 5

 25 Figure 2.5 Transformation by the proof of Proposition 2 of the star routed network of

Figure 2 .

 2 Figure 2.4 to its canonical form, initially with τ = 1, P = 5, d 1 = 30, d 2 = 34, d 3 = 32.

See Figure 2 .

 2 5 for an example of the canonical star routed network of Figure 2.4. Proposition 2. Let I = (N, P, τ, d), with N = (R, B, ω) a star routed network, then there is I = (N , P, τ, d), with N = (R, B, ω) a canonical star routed network, such that: I ∈ pall ⇔ I ∈ pall and I ∈ pazl ⇔ I ∈ pazl

 period are close. The algorithm is called ShortestLongest: it sends datagrams on the shared link from the route with the smallest delay (i.e the shortest arc (c 1 ,c 2)) to the Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer largest (i.e. the longest one). There is no idle time in the rst period, i.e. a datagram goes through c 1 right after the previous one has left c 1 . Proposition 3. Assuming the datagrams are ordered by increasing delay and nτ + δ n-1δ 0 ≤ P , then then ShortestLongest solves pazl positively in time O(n log(n)).

Figure 3 . 1

 31 Figure 3.1 Meta osets used in the rst and second period, when scheduling the i + 1 th datagram in MetaOffset. There is already 3 datagram in S (in red, blue and green), and the meta osets available for the yellow datagram are represented in grey.

Figure 3 . 2

 32 Figure 3.2 Transformation from A to A

r 1 -r 0 > 0 Figure 3 . 3 ALemma 7 .

 10337 Figure 3.3 A compact pair scheduled using meta-osets, with d 0 = 2 and d 0 = 0

Lemma 8 .Figure 3 . 4 3 8

 8343 Figure 3.4 Meta osets forbidden by a scheduled compact pair (in blue) when scheduling another compact pair (in red)

(k - 1)

 1 3 /3 datagrams. Consider the next (k -1) 2 + 1 datagrams. If k of them have the same delay modulo τ , then they form a compact k-tuple and we are done. Otherwise, there are at least k dierent values modulo τ in those (k -1) 2 + 1 datagrams. Each element of the compact (k -1)-tuple forbids one value for the delay modulo τ of a new

Figure 3 .

 3 [START_REF] Krishnamurthy | Latency-based statistical multiplexing[END_REF] shows how Compact Fit builds an assignment from Delay (δ i) Message (i)

Figure 3 . 5

 35 Figure 3.5 Execution of Compact Fit creating two compact pairs with P = 12 and τ = 2

 r

Figure 3 .

 3 [START_REF] Venkatramani | Supporting real-time trac on Ethernet[END_REF] for an example of a compact assignment, obtained by the procedure of the next proposition.

Figure 3 . 7

 37 Figure 3.7 Success rate of algorithms solving pazl, for short routes and 8 routes, 12 routes and 16 routes

Figure 3 .

 3 Figure 3.14 Shaded position potential 2, in this assignment

Figure 3 .

 3 Figure 3.15 Success rates of all algorithms for increasing loads, τ = 1 and P = 100

Figure 3 .

 3 Figure 3.16 Success rates of all algorithms for increasing loads, τ = 1 and P = 10

Figure 3 .

 3 Figure 3.17 Computation time (logarithmic scale) function of the number of datagrams of all algorithms on 10000 instances of load 1

3. 3 .

 3 From Large to Small Datagrams 67 mod 2τ) in the second period. If δ i mod 2τ < τ , we set A(i) = A (i), and the datagram i of I is scheduled inside the datagram i of I , see Fig.3.18. If τ ≤ δ i mod 2τ < 2τ , then we set A(i) = A (i)τ . There is no collision in the assignment A, since all datagrams in the second period use times which are used by the same datagram in A . In the rst period, the datagrams scheduled by A use either the rst half of the same datagram in A or the position τ before, which is either free in A or the second half of the times used by another datagram in A and thus not used in A.

Figure 3 .

 3 Figure 3.18 Building I from I as explained explained in Th. 20

3 . 2 .

 32 Here we show how to adaptCompact Pairs to the case of τ = 2, to get an algorithm working with higher load.Theorem 21. Compact Pairs on instances with τ = 2 always solves pazl positively on instances of load less than 4/9.

4. 3 . 73 •

 373 Greedy Scheduling of Waiting Times Decreasing Margin (DM): Decreasing order on the margin of the routes.

Chapter 4 .Figure 4 . 1 A

 441 Figure 4.1 A run of Greedy Deadline with P = 20, τ = 4.

Figure 4 . 2

 42 Figure 4.2 Success rate of dierent sending orders, left 0.80 load, right 0.95 load.

Figure 4 . 3

 43 Figure 4.3 Success rate of dierent sending orders with the random orders generated 1000 times, left 0.80 load, right 0.95 load.

Chapter 4 .Figure 4 . 4

 444 Figure 4.4 Success rate of four algorithms solving pall, load 0.95

#

Figure 4 . 6

 46 Figure 4.6 Success rates function of the number of random orders drawn in the rst stage of the three algorithms

Chapter 4 .

 4 Scheduling Unsynchronized Periodic Datagrams with a single Buer

Figure 4 . 7

 47 Figure 4.7 Success rate of PMLS, with length of arcs drawn in [I]

Figure 4 . 8

 48 Figure 4.8 Success rate of PMLS, with length of arcs drawn in [I] or [P/2,P/2 + I[

Figures 4 .

 4 Figures 4.7 and 4.8 show the probability of success of PMLS over 10,000 instances as a function of the margin. In Figure 4.7 the length of arcs are drawn in [0,I], where I goes from 0 to 6400. As expected the success rate decreases when the size of the interval increases, until I = 1600, and then increases again. In the most dicult settings, only 78%

4. 7 . 4 . 7

 747 Performance of Statistical Multiplexing 85 Performance of Statistical Multiplexing

Figure 4 . 9

 49 Figure 4.9 Probability of success of statistical multiplexing and PMLS for several margins on random topologies when the size of the routes are distributed either on P (left) or on a small range of values (right).

Figure 5 . 1 A

 51 Figure 5.1 A compact representation of an assignment in which O u = (0,1,3,2) and S u = {1,3}

Figure 5 . 2

 52 Figure 5.2 Inductive construction of Real((2,1,0,3),{1}) from CA on a single contention point u.

Figure 5 . 3

 53 Figure 5.3 An instance for which Greedy Deadline fails to build an assignment

100 Chapter 5 .Figure 5 . 4 Figure 5 . 5

 55455 Figure 5.4 One or several contention points around the BBU according to the length of the link

Figure 5 .

 5 [START_REF] Richard J Cole | On the benet of supporting virtual channels in wormhole routers[END_REF]. The dierence between the performances of the presented algorithms are not signicantly impacted if we 5.3. Greedy Algorithms 101 change the number of contention points.

 (or Greedy Normalized), and if the algorithm fails, we apply Greedy Packed. Let us call Hybrid Greedy Deadline and Hybrid Greedy Normalized those two algorithms. Figure 5.8 shows the performances of Hybrid Greedy Deadline, Hybrid Greedy Normalized,

Figure 5 . 7

 57 Figure 5.7 Performance of Greedy Deadline, Greedy Normalized and Greedy Packed. Curves of Greedy Deadline and Greedy Normalized are incomplete because only the instances for which a solution is found are represented here.

Figure 5 . 8

 58 Figure 5.8 Performance of the updated greedy algorithms that always gives an assignment

Figure 5 .Figure 5 .

 55 Figure 5.10 shows the dierence between initializing Hill Climbing with Hybrid Greedy Normalized, or with one or several random compact assignments. Those results are computed from 1000 random instances, with load of 0.8.

Figure 5 .

 5 Figure 5.12 Success rate of Hill Climbing for several initializations, increasing the number of routes.

Figure 5 .

 5 Figure 5.13 shows the margin needed by the best solution given by Hill Climbing, with dierent initializations. The results are computed on 1000 random instances.

Figure 5

 5

Figure 5 .

 5 Figure 5.14 Average number of steps needed by Hill Climbing to reach a local optimum.

Figure 5 .

 5 Figure 5.13 Margin needed to nd a solution for Hill Climbing, initialized with HGN, hybrid 1, hybrid 10 or hybrid 100. Only the instance for which a solution is found are represented here.

Figure 5

 5 Figure 5.15.

Figure 5 .

 5 Figure 5.15 Average and largest number of step needed by Tabu Search to reach a local optimum and average value of the margin of this local optimum with innite memory.

Figure 5 .

 5 Figure 5.16 shows the average and number of steps and margin and the largest number of steps over all instances needed by Tabu Search to nd its local optimum with dierent values for M . The values are computed on 100 random instances.

Figure 5 .

 5 Figure 5.16 Average and largest number of steps needed by Tabu Search to reach a local optimum and average value of the margin of this local optimum.

3 .

 3 Deduce t 0 from the relation: e -∆ t 0 = τ 0 Tabular 5.17 shows the average margin of the solutions produced by Simulated Annealing when initialized with temperatures computed from the previous routine and the computation time. The initial solution used by Simulated Annealing is the solution given 5.4. Local Search Heuristics 111 by Hill Climbing initialized by Hybrid Greedy Normalized. The experiment is made on

Figure 5 .

 5 Figure 5.17 Comparison of two initial temperatures, considering the quality of the initial conguration

 For a compact assignment CA, we denote by CA i the restriction of CA to C i . Let CA be a partial compact assignment dened on C i-1 , then CA[(O,S)] is an extension of CA to C i , dened by CA[(O,S)](c i) = (O,S). In this section, we build a compact assignment CA by extending partial compact assignments incrementally from c 1 to c m .

Figure 5 .

 5 Figure 5.19 A restricted routed network N (CA) obtained from N and the partial compact assignment CA, dened over {c 1 }, whith A(1,c 1) = 0 and A(2,c 1) = 1.

Figure 5 .

 5 Figure 5.20 Problem minstra relaxed to one contention point.

Figure 5 .

 5 Figure 5.21 A network N 4 , obtained from N of Figure 5.20, and the optimal assignment A of N . On the rst representation of N 4 , f (A) the image of A on N 4 and on the second representation of N 4 , an optimal assignment.

Figure 5 .

 5 Figure 5.24 An example of two orders O and O for which (O ,S) ≺ (O,S), with S = ∅.

Figure 5 .

 5 Figure 5.27 shows the cumulative distribution of the margin of the solution found by each algorithm. Tabular 5.28 shows the average computation time and the average margin of the algorithms computed over 1000 instances.

Figure 5 .

 5 Figure 5.28 Average margin and average computation time of each algorithm for 8 routes, length of arcs drawn in [P].

Figure 5 .

 5 Figure 5.27 Cumulative distribution of the margin for 8 routes, length of arcs drawn in [P].

Figure 5 .

 5 Figure 5.29 shows the cumulative distribution of the margin of the algorithms, while Tabular 5.30 shows the average margin and the computation time of each algorithms on 1000 random instances.

Figure 5 .

 5 [START_REF] Richard J Cole | On the benet of supporting virtual channels in wormhole routers[END_REF] by three distinct routes. This number of routes is too large to use Branch and Bound. Thus, we also represent SCB in the graph, the lower bound on T R(N) introduced to design Branch and Bound algorithm.

Figure 5 .

 5 31 and Table 5.32 show respectively the cumulative distribution of the margin of the algorithms and the average margin and computation times for the same experiment. The results are computed on 1000 instance, in which the length of the arcs are drawn in [P]. Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary Networks

Figure 5 .

 5 Figure 5.32 Average margin and average computation time of each algorithm for 24 routes, length of the arcs drawn in [P].

Figure 5 .Figure 5 .

 55 Figure 5.33 Number of instances for which there is a solution less than a given margin, for Branch and Bound and Statistical Multiplexing, in a routed network of depth 3, load 0.8 and 8 routes.

Figure 5 .Figure 5 .

 55 Figure 5.33 are represented the cumulative distribution of the margin of the solutions found

Figure 6 . 1 A

 61 Figure 6.1 A (P,τ)-assignment interpreted as a (P,τ)-assignment

6. 1 .Figure 6 . 2

 162 Figure 6.2 Probability of nding a (P,τ)-assignment over 10,000 instances

Figure 6 . 3

 63 Figure 6.3 Cumulative distribution of the latency of BE datagrams for several network management schemes

6. 2 . 1

 21 Model of C-RAN trac over an optical ring N-GREEN Optical ring The unidirectional optical ring is represented by an oriented cycle. The vertices of the cycle represent the nodes of the ring, where the trac arrives.

Figure 6 . 4

 64 Figure 6.4 Dynamic behavior of the ring.

Figure 6 . 5

 65 Figure 6.5 Insertion of C-RAN trac in the N-GREEN optical ring.

Fig. 6 .

 6 Fig. 6.6 gives the cumulative distribution of both C-RAN and BE tracs latencies for the FIFO and the C-RAN priority methods. The source code in C of the experiments can be found on the webpage [49].

6. 2 .Figure 6 . 1 (FigFigure 6 . 8

 26168 Figure 6.1 (ET = P 2 , F = 10 and n = 5), there are no unused position. Any assignment has exactly one BBU or RRH at each position.If all the RRHs start to emit at the rst slot, then during ET there will be no free container anywhere on the ring, inducing a huge latency for the BE trac. To mitigate this problem, in a period, the time with free containers in each position must be uniformly distributed over the period as shown in Fig.6.8.

Figure 6 . 9

 69 Figure 6.9 Compacting positions.

F x - 1

 1 free positions are set between each used positions. If F x has a reminder r, then we set the r free remaining positions uniformly over the interval in the same way and so on until there are no more free position. It is a small optimization, since 142 Chapter 6. Mixing Periodic Datagrams and Stochastic Datagrams it decreases the latency by at most F/2.

Figure 6 .

 6 Figure 6.10 Balancing used positions.

Figure 6 .

 6 Figure 6.11 BE latencies with a naive assignment and balancing inside the period for 5 antennas.

Figure 6 .

 6 Figure 6.12 BE latencies of compacting positions and balancing inside the period for 12 antennas.

144 Chapter 6 .

 6 Mixing Periodic Datagrams and Stochastic Datagrams

Figure 6 .

 6 Figure 6.13 FIFO buer compared to the best method with reservation for 12 antennas.

Figure 6 .

 6 Figure 6.14 Valid assignment for 9 antennas and the N-GREEN parameters.

Figure 6 .

 6 Figure 6.14 illustrates the construction of Proposition 7 for the N-GREEN parameters.

Figure 6 .

 6 Figure 6.15 Latencies of saturating positions, balancing into the period and FIFO rule for 5 antennas.

 is a list of dates, and for every date of the list are specied the output ports (gates) of the switch which are open or closed.

Figure 7 . 1 A

 71 Figure 7.1 A TSN network managed by a controller, able to collect network informations, and control the nodes behavior.

Figure 7 .

 7 Figure 7.2 from[START_REF] Dürr | No-wait packet scheduling for IEEE timesensitive networks (TSN)[END_REF] shows the mechanism of a switch using 802.1Qbv technology.Considering a given period (T cycle in the gure), the switch selects at each time (T 1 , T 2 , . . . the queues that must be open to transmit datagrams. In gure 7.2, at time T 1 , all gates except the one for scheduled trac are open, at time T 2 , all gates are closed and at time T 3 only the gate for scheduled trac is open.

Figure 7 . 2

 72 Figure 7.2 IEEE 802.1Qbv mechanism ([68])

Figure 7 . 3

 73 Figure 7.3 The scheduling of a 2x2 switch on which both deterministic and stochastic tracs arrives. The deterministic trac is forwarded without contention.

7. 2 .

 2 Deterministic management for a deterministic latency 155

 Figure 7.4 shows the Hyper-TSN 2x2 switch used for our experiments.

Figure 7 . 4

 74 Figure 7.4 An Hyper-TSN switch with a 2x2 switching matrix.

 reduce the end-to-end latency of packets to its physical transmission time by proposing a new generation of switch that get rid of technical constraints imposed by a statistical vision of the network.

 We have proposed solutions to minimize the end-to-end latency in various use cases: Cloud-RAN, Industry 4.0, motion control, autonomous vehicle, etc. . . Reducing the transmission latency allows to:• Respect latency constraints required by protocols• Increase the Network Quality of Service• Give more time to the other components of the chain (computation in datacenters for C-RAN example)• Augment the maximum physical links length, which means, for C-RAN; a wider area of development and thus lower exploitation and development costs (CAPEX, OPEX).

 Title: Deterministic scheduling of periodic datagrams for low latency in 5G and beyond Keywords: Cloud Radio Access Network, Periodic scheduling, Local search heuristics, complexity analysis, Latency reduction, Graph theory

 .3 Cumulative distribution of the latency of BE datagrams for several network management schemes . 6.4 Dynamic behavior of the ring. 6.5 Insertion of C-RAN trac in the N-GREEN optical ring. 6.6 Distribution of latencies for FIFO and C-RAN rst

	6.7

A valid assignment with F = 6. .

6.8

Balancing inside the period. 6.9 Compacting positions. 6.10 Balancing used positions. 6.11 BE latencies with a naive assignment and balancing inside the period for 5 antennas. 6.12 BE latencies of compacting positions and balancing inside the period for 12 antennas. 6.13 FIFO buer compared to the best method with reservation for 12 antennas. 6.14 Valid assignment for 9 antennas and the N-GREEN parameters. 6.15 Latencies of saturating positions, balancing into the period and FIFO rule for 5 antennas. 7.1 A TSN network managed by a controller, able to collect network informations, and control the nodes behavior. 7.2 IEEE 802.1Qbv mechanism ([68]) .

 Let us denote by [r,u] P,τ , the set of tics used by a datagram on the route r at vertex u in a period P , that is [r,u] P,τ = {t(r,u) + i mod P | 0 ≤ i < τ }. This set of tics depends on A, but A is omitted in the notation, since it is always clear from the context. Let us consider two routes r 1 and r 2 , they have a collision at the contention point u if and only if [r 1 ,u] P,τ ∩ [r 2 ,u] P,τ = ∅.

 Let N = (R, B, ω) be a routed network, we say it is a star routed network if and only if the routes are {r 0 , . . . ,r n-1 }, r i is (s i ,c 1 ,c 2 ,t i) and B = {c 2 } (datagrams can wait in c 2). Star routed networks have contention depth two but a maximal contention width of n. The load on each of the two contention points is thus nτ /P .

		Chapter 2. Model and Problems Denition
	s 1	t 1
	s 2	t 2
	s 3	t 3
	The fronthaul network we model with star routed network has a single shared link,
	which connects all RRHs at one end and all BBUs at the other end. The links are all full-
	duplex, meaning that the datagrams going from RRHs to BBUs do not interact with those
	going in the other direction. This property does not need to be enforced in our theoretical
	modeling, but it matches real fronthaul network and we will use such examples for our
	experiments. The two contention points c 1 and c 2 model the beginning of the shared link
	(used to go from the RRHs to the BBUs) and the other end of the shared link (used in the
	other direction). The computation in the BBU of an answer to a datagram on the route r
	takes some time. In the star routed network, this time is encoded in the weight of the arc
	between c 1 and c 2 in r. The weight ω(r,c 1) is the time needed to go through the shared
	link, then to arrive at the BBU, plus the computation time and the time to return to the
	shared link, see Figure 2.4.	
	Star routed network may seem simplistic, but every network in which all routes share
	an arc and satisfy a coherent routing condition can be modeled by a star routed network.
	It is common in fronthaul networks, since often all the BBUs are located in the same data-
	center. In such a situation, we can see the weights of the arcs (c 1 ,c 2) either as all equals
	(in that case pazl is trivial, see Chapter 3) or dierent due to the structure of the network
	inside the data-center and the various hardwares used for the BBUs.
	When solving pall or pazl on a star routed network, a period, a datagram size and a

 1 ,c 2) on r i , that is ω(r i ,c 1), denoted in this chapter by δ i and called delay. A datagram is emitted an Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer innite number of times periodically, hence it is enough to consider any interval of P units of time to completely represent the state of our system by giving the times, in this interval, at which each datagram goes through the two contention points. We call the representation of an interval of P units of time in the rst contention point the rst period and the second period for the second contention point.Recall that an oset of a datagram is a choice of time at which it arrives at the rst contention point (i.e. in the rst period). Let us consider a datagram i of oset o i , it uses the interval of time [i] 1 = {(o i + t) mod P | 0 ≤ t < τ } in the rst period and [i] 2 = {(d i + o i + t) mod P | 0 ≤ t < τ } in the second period. Two datagrams i and j collide if either

 1 , if it is non empty. Then, select any route r ∈ R \ S such that o r = o r + τ does not create collision (by construction o r = o r + τ -1 does create a collision in the rst period). Then, we update the sets as follows: S = S ∪ {r }, S 1 = S 1 \ {r} ∪ {r } and S 2 = S 2 ∪ {r }. , remark that any compact assignment can be built by this procedure, if the proper choice of element to add is made at each step. Hence, this process generates all compact assignments. We now bound the number of compact assignments it can produce. Remark that, when |S| = i, we can add any of the ni routes in R \ S to S. Hence, the number of sequences of choices of routes to add is n! (but some of these sequences can fail to produce a valid assignment). We have not yet taken into account the steps at which an element is removed from either S 1 or S 2 , without adding something to S. At each step of the algorithm, we can remove an element or not, there are at most 2n steps in the algorithm, hence there are at most 4 n sequences of such choices during the algorithm. As a conclusion, there are at most 4 n n! compact assignments.

If S 1 is empty, r is smallest element of S 2 , and we set o r = o r + τ + ω(r,c 2)ω(r ,c 2). We can also remove r from S 1 (or from S 2 if S 1 is empty) without adding any element to S. Remark that the value of the oset of the route added to S is entirely determined by the values of 3.1. Greedy Algorithms for Large Datagrams 51 the osets of the routes in S.

Now

 where the intervals (a i ,b i) are the times not used yet in the rst period. Therefore at most The defaults parameters of experiments of this section are derived from the C-RAN context: a tic correspond to the sending time of 64 Bytes of data on links of bandwidth 10 Gbps. The datagrams are of size 1 Mbit, which corresponds to 2,500 tics.In the Cloud-RAN problem, the period xed by the protocol HARQ correspond to 21,000 tics. This means that a network with 8 routes is loaded at 95%, which seems unrealistic and cannot be solved for pazl, as we experimentally show it in this section. Nevertheless, we choose these parameters as a realistic reference and we modify them in order to evaluate our algorithm performances.

	k-1 In this section, the performance on random instances of the algorithms presented in Sec. 3.1 Buer 3.1.6 Experimental Results 3.1.6.1 Cloud-Ran Parameters (b Chapter 3. Scheduling Unsynchronized Periodic Datagrams without is experimentally characterized.
	i=0

ia i)/τ routes can still send a datagram through the rst period. If this value is less than nk, it is not possible to create a compact assignment by extending the current one on S and we backtrack in the search tree. The same cut is also used for the second period. These cuts rely on the fact that the partial assignment is wasting bandwidth by creating intervals which are not multiples of τ .They signicantly speed up ESCA on instances of large load, which are also the longest to solve.

 In the following experiments, we illustrate how well the algorithms work with regards to the load. To change the load, both parameters τ and n are xed and we modify the period P , which allows for a smooth control of the load and does not impact the execution time of the algorithms. We generate 10,000 random instances of pazl of load from 0.5 to 1. We represent, in Figure3.7, the percentage of success of each algorithm as a function of the load. We make three experiments with 8, 12 and 16 routes to understand the eect of the number of routes on the quality of our algorithms. A bound on the maximal success rate is given by ESCA (exhaustive search) which always nds a solution if there is one.The code in C is available on[START_REF] Guiraud | s website[END_REF] under a copyleft license. The code has been run on a standard 2016 laptop with a 2.2 Ghz Intel Core i5 and the sources are compiled with gcc version 7.5.0. All experiments on 8 routes end in at most a few dozen seconds.

	3.1. Greedy Algorithms for Large Datagrams	53
	• Greedy Uniform, the algorithm introduced and analyzed in Section 3.2, used for
	arbitrary τ	
	• Exhaustive Search of Compact Assignments	

 Scheduling Unsynchronized Periodic Datagrams without Buer as good as the exhaustive search. While it was expected to be good with short routes (see Proposition 3), it turns out to be optimal for all the random star routed networks we have tried. Therefore, we should use it in practical applications with short routes, instead of the exhaustive search which is much more computationally expensive. Also, Compact Pairs and Compact Fit have the same performances as ESCA and ShortestLongest. This is not surprising when the routes are drawn on a lower range than τ . Indeed, since we sort the routes by remainder modulo τ in Compact Pairs and Compact Fit (which are just there values then), these two algorithms build the same assignment as ShortestLongest.

8 routes, 12 routes and 16 routes First, we remark that ESCA nds a solution even when the load is high. It justies the idea to look for a buerless assignment in this short routes regime. It seems that increasing the number of routes increases the success rate of ESCA, meaning that the more the routes, the more instances have a buerless assignment. Second, remark that ShortestLongest is Chapter 3.

 3.1. Greedy Algorithms for Large Datagrams 55 ESCA nds a solution if it exists, but works in exponential time in n. The success rate is measured on 10000 instances of pazl generated by drawing uniformly and independently the delays of each datagram in [P] or [τ] for Figure 3.11.On a regular laptop, all algorithms terminates in less than a second when solving 10000 instances with 100 datagrams except ESCA, whose complexity is exponential in the number of routes (but polynomial in the rest of the parameters). Hence, the optimal value of the success rate given by ESCA is only available in the experiment with at most 10 routes (the algorithm cannot compute a solution in less than an hour for twenty datagrams and high load). Note that while First Fit, Compact Pairs, MetaOffset, Compact Fit all run in almost the same time, Greedy Uniform seems to be three times longer than the other algorithms to run on instances with 100 datagrams. It is expected since, at each step, it must nd all available osets to draw one uniformly at random instead of just choosing one.

 6. Compact Fit, which is similar in spirit to Compact Pairs but is designed to have a good success rate on random instances is indeed better than Compact Pairs, when there are enough datagrams.

	Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer 3.1. Greedy Algorithms for Large Datagrams 57
									100					
									80					
	Success rate (%)							Success rate (%)	40 60					
		Shortest Longest							20	Shortest Longest				
		First Fit								First Fit				
		Meta Offset								Meta Offset				
		Greedy Uniform								Greedy Uniform				
		Compact Pairs								Compact Pairs				
		Compact Fit								Compact Fit				
									0					
	0.5	0.6	0.7	0.8	0.9		1	0.5	0.6	0.7	0.8	0.9	1
				Load							Load			
	Figure 3.8 Success rates of all al-	Figure 3.9 Success rates of all algo-	
	gorithms for increasing loads, τ =	rithms for increasing loads, τ = 10,	
	1000, P = 100,000				P = 1,000				
									100					
									80					
	Success rate (%)							Success rate (%)	40 60					
		Shortest Longest First Fit							20	Shortest Longest				
		Meta Offset								First Fit				
		Greedy Uniform								Meta Offset				
		Compact Pairs								Greedy Uniform				
		Compact Fit								Compact Pairs				
		Exhaustive Search								Compact Fit				
									0					
	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	0.5	0.6	0.7	0.8	0.9	1
				Load							Load			
	Figure 3.10 Success rates of all al-	Figure 3.11 Same parameters as in	
	gorithms for increasing loads, τ =	Fig. 3.8, delays uniformly drawn in	
	1000, P = 10,000					[τ]					

 Figure 3.12 Running time of ESCA, averaged over 100 random instances.

	58	Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer
	n		8	10	12	14	16
	Time (s)	6.10 -5	8.10 -4	2.10 -2	0.4	11

8 to 16 routes, averaged on 100 random star routed networks. This shows that for less than 20 routes, which corresponds to all current topologies, the algorithm is ecient enough, but we should improve it further to work on more routes.

 Figure 3.13 A datagram of delay 3 has potential 2 in the represented assignment the potential of an assignment and we denote it by P ot(A), it is the sum of potentials of all datagrams in the instance.Denition 2. The potential of a position i, for a partial assignment A, is the number of datagrams of delay δ such that i + δ mod P is used by a datagram scheduled by A.

	3.2. Datagrams of Size One				59
			First period			
			Second period			
				First period			
	Delays (d i)	2	3	1	3	1	2
				Second period			

 Proof. We determine for which value of the load Swap and Move always works. We let n = (1/2 + ε)P be the number of datagrams, the load is 1/2 + ε. We need only to study the case when n -1 datagrams are scheduled by A and Swap and Move tries to schedule the last one, since the previous steps are similar but easier. If a datagram using the time o + d in the second period can be scheduled elsewhere, so that the unscheduled datagram can use oset o, then Swap and Move succeeds. Otherwise, the datagram has no possible osets, which means its potential is equal to 2(εP -1). The second case is symmetric: o is used in the rst period but o + d is unused in the second period. Finally, we have the case o is used in the rst period and o + d is used in the second period. There are 2(εP -1) such values of o. If the two datagrams using times o and o + d can be rescheduled so that oset o can be used for the unscheduled datagram, then Swap and Move succeeds. This is always possible when one datagram is of potential at least 2εP -1 and the other of potential at least 2εP + 1. Since the datagrams must be of potential more than 2(εP -1) and at most

kn, we have that P ot(A) ≥ kn/2. Let us precisely describe the algorithm Swap and Move: datagrams are scheduled while possible by First Fit and then the Swap operation is applied while it increases the potential. When the potential is maximal, Swap and Move schedules a new datagram by moving at most two scheduled datagrams to other available osets. If it fails to do so, Swap and Move stops, otherwise the whole procedure is repeated. We analyze Swap and Move in the following theorem. Theorem 17. Swap and Move solves positively pazl, in polynomial time, for instances with τ = 1 and load less than 1/2 + (√ 5/2 -1) ≈ 0,618. Let δ be the delay of the unscheduled datagram. We consider the pairs of times (o,o+d) for o ∈ [P]. Since the datagram cannot be scheduled, there are three cases. First, o is unused in the rst period but o + d is used in the second period. Since there are n -1 3.2. Datagrams of Size One 61 scheduled datagrams, there are Pn + 1 such value of o.

 Swap operations during Swap and Move. A Swap operation can be performed in time O(n), since for a given datagram, all free osets must be tested and the potential is evaluated in time O(1) (by maintaining the potential of each position). This proves that Swap and Move is in O(n 3). Scheduling Unsynchronized Periodic Datagrams without Buer are both used for at least n -(Pn) = 2εP values of o. The potential of any datagramis thus larger or equal to 2εP . When a datagram cannot be scheduled, its potential is less or equal to 2εP , hence it is equal to 2εP .

	Solving this inequation yields ε ≤	√	5/2 -1.

Let us prove that Swap and Move is in polynomial time. All Swap operations strictly increase the potential. Moreover, when one or two datagrams are moved, the potential may decrease but a datagram is added to the partial assignment. The potential is bounded by O(n 2) and the move operations all together can only remove O(n 2) to the potential, hence there are at most O(n 2) Consider a partial assignment of size n = (1/2 + ε)P , and a datagram of delay δ. If we consider all n used osets o and all times time o + d in the second period, then o and o + d 62 Chapter 3.

 1 (Th. 19). There is no possible oset for the n th datagram, if and only if S 1 ∪ S 2 = [m]. It means that S 2 has been drawn such that it contains [m] \ S 1 . By Th.19, S 2 is uniformly distributed over all sets of size n -1. Hence, the probability that [m] \ S 1 ⊆ S 2 is the probability to draw a set of size n -1 which contains mn + 1 xed elements. This proves Pr(m,n) =Uniform behaves exactly as proved in Theorem 19, with a very small variance. The performance of Swap and Move and of its simpler variant Greedy Potential, which optimizes the potential in a greedy way, are much better than First Fit or Greedy Uniform. Amazingly, Swap and Move always nds an assignment when the load is less than 0.95. Swap and Move is extremely close to ESCA, but for P = 10 and load 0.9 or 1, it fails to nd some assignments, as shown in Figure.3.16.

		1		
		0.8		
	Success rate(%)	0.4 0.6		
		0.2		
		Shortest Longest		
		FirstFit		
		Greedy Potential		
		Greedy Uniform		
		Swap and Move		
		0		
		0.7	0.8	0.9	1
			Load	
					(n 2(n-1)-m)
					(m n-1)

.

 Computation time for PMLS and ASPMLS function of the number of routesThe complexity of both these algorithm depends on the number of routes. As shown in Figure4.5, the time complexity of PMLS seems linear on average, while its theoretical worst case complexity is cubic. ASPMLS scales exponentially with the number of routes as expected. Both algorithms are usable for instances of 20 routes, but for 40 routes or more ASPMLS becomes too slow. Since ASPMLS almost never nds a solution when PMLS does not and is much slower, one should prefer to use PMLS.When evaluating the computing time of our method, we should take into account how many random orders are drawn. In previous experiments, we have drawn 1,000 random orders which may be 1,000 time slower than using a single xed order. There is a trade-o between the number of random orders and the success rate. We investigate the success rate of our algorithms with regards to the number of random orders drawn, a load of 0.95 and a margin 0. The table of Figure4.6 presents the success rate for dierent numbers of sending orders, averaged over 10,000 instances, for Greedy Deadline, PMLS and ASPMLS.

	routes ASPMLS (ms) 1.88 8 PMLS (ms) 0.07 Ratio 27 Greedy Deadline 0.55 1 PMLS 82.04 98.84 99.71 99.80 99.83 99.83 12 16 20 24 5.98 47.75 209.2 1815 0.08 0.09 0.10 0.12 78 523 2122 14882 10 100 1,000 10 4 10 5 6.05 35.44 77.43 90.1 92.4 Figure 4.5 # orders ASPMLS 91.33 99.17 99.72 99.80 99.83 99.83

 5.1.2 Fronthaul networks modelingContention Depth One Each contention point of a routed network of contention depth one induces a connected component. Problem minstra can be independently solved on each connected component of the network, hence the case with a single contention point is equivalent to contention depth one. Problem minstra over a routed network with a single contention point is equivalent to wta, a problem already studied in Chapter 4.

 about the precise buering time by only considering informations about the order of the datagrams in each contention point. All minimal assignments have a compact representation, which implies that we do not need to consider assignment without a compact representation when solving minstra. It allows to design an FPT algorithm for minstra by going through all compact representations, but also to design good polynomial time heuristics using Tabu Search or Simulated Annealing, since one can easily dene the neighborhood of a compact representation.

Denition 3 (Compact assignment). Let (G, R) be a routed network. A compact assignment CA is a function which maps to each contention point c in G a pair (O c ,S c), where

 Letus consider a compact assignment CA, which maps u to the pair (O u ,S u). The assignment Real(CA) is built inductively from CA, it is called the realization of CA. If the construction of Real(CA) fails, then Real(CA) is undened and we say that CA is not realizable. In the next paragraph, we build an assignment A by setting the buering time of the routes in the order (O u). If the construction succeeds, we set Real(CA) = A

 contention point to the whole routed network as we just explained. Lemma 26. The assignment Real(CA) can be computed in time O(nd), where d is the contention depth of the network. If CA is realizable, then Real(CA) is a valid canonical assignment.

 and if for all vertices u, the rst routes of O u and O u coincide. This notion of canonicity is dened so that the function CR always sends a canonical assignment on

a canonical compact assignment. It is just restrictive enough (by xing the rst element in each order), that the function CR is the inverse of Real over canonical compact assignments. It implies that Real(CA) can be chosen as the representative of the equivalence 5.3. Greedy Algorithms 97 class of the assignments having CA as a representation.

 Hence, if we x r O i ∈ S, it will not change ns(rO 1 ,r O i ,c) but s(r O i ,c)is increased by P tics. Hence, any extension of this compact assignment are dominated by the extension of the same compact assignment with r O i / ∈ S Thus, we cut the branch r O i ∈ S as in Figure 5.23. Figure 5.23 When ns(r O 1 ,r O i-1 ,c) + τ = ns(r O 1 ,r O i ,c), every extension in the branch with r O i ∈ S is dominated by the corresponding extension in the branch r O i / ∈ S. • When considering a route r O i (with r O i / ∈ S or r O i ∈ S), we consider the realization of the partial assignments over the elements r O 1 , . . . ,r O i-1 . If it is possible to x the

	r Oi ∈ S	r Oi / ∈ S
	i -1 i	i -1 i
	ns(r O1 , r Oi-1 , c) ns(r O1 , r Oi , c)	s(r Oi , c)+ = P

 Figure 5.29 Cumulative distribution of the margin for 8 routes, length of arcs drawn in [0.9P,P].

	5.6. Experimental Evaluation					123
					Cumulative distribution of the margin		
		1000						
		900						
		800						
		700						
	Number of instances	400 500 600						
		300						
		200				Hybrid Greedy Normalized
						Hill Climbing Init HGN
						Hybrid Hill Climbing 100
		100						Tabu Search
							Simulated Annealing
							Branch and Bound
		0						
		0	2000	4000	6000	8000	10000	12000	14000
					Margin (tics)		
	Algorithm	HGN Hill Climbing Hybrid Hill Climbing Tabu Search Simulated Annealing Branch and Bound
	Margin (tics)	6700	5636		4933	4914		4789	4703
	Computation time (s)	0.004	0.048		0.965	10.71		6.60	0.104
	Figure 5.30 Average margin and average computation time of each algorithm for 8 routes
	drawn in [0.9.P,P].						

 Figure 5.31 Cumulative distribution of the margin for 24 routes, length of the arcs drawn in [P].

			Cumulative distribution of the margin		
				Hybrid Greedy Normalized	
				Hill Climbing Init HGN	
				Hybrid Hill Climbing 100	
					Tabu Search	
				Simulated Annealing	
					Lower Bound	
	Algorithm	HGN	Hill Climbing	Hybrid Hill Climbing	Tabu Search	Simulated Annealing
	Margin (tics)	10572	7402	7402	6311	3725
	Computation time (s)	0.014	0.425	3.89	55.67	46.32

Table 6 .

 6 1 Parameters of the N-GREEN architecture.

	C-RAN with C-RAN priority
	BE with C-RAN priority
	C-RAN with FIFO
	BE with FIFO

 6.2. Both Tracs On Optical Ring : An Industrial product 139 must never use the same container in a period. Moreover we want to preserve the latency of the BE trac. It means that the time a BE packet waits in the insertion buer must be minimized. To do so, we must minimize the time a node waits for a free container at any point in the period, by spreading the C-RAN trac as uniformly as possible over the period. Figure6.7 represents an assignment of two couples of RRH and BBU by showing the containers going through the node of the BBU during a period. Each slot has a duration of F unit of times, and, since an RRH/BBU emits a packet each F UoT during ET UoT, if we take the granularity of a slot to represent the time, the emission of a BBU/RRH is continuous in our representation, during ET /F slots. A date t in the period corresponds in Figure6.7 to the slot t/F and is at position t mod F . Remark that two RRHs which are not at the same position never use the same containers.Moreover, if we x the osets of the RRHs to even positions so that they do not reserve the same containers, then, because the answers of the BBU are sent without delay in our model, it will x the osets of the BBUs to odd positions which do not reserve the same containers. Hence, we need to deal with the RRHs only. The next proposition gives a simple method to nd an assignment. Proposition 6. There is a valid assignment of the osets o 1 , . . . , o k on the same position if kET + RS ≤ P .Proof. W.l.o.g we x o 1 to 0 and all the other osets will then be chosen at position 0. In general we can 140 Chapter 6. Mixing Periodic Datagrams and Stochastic Datagrams set o i = (i -1) × ET + ω(u 1 ,u i) and all RRHs will use dierent containers at position 0 during a period. By hypothesis k × ET + ω(u 1 ,u 1) ≤ P , thus the containers lled by the k-th RRH are freed before P . Hence, when the RRH 1 must emit something at the rst unit of time of the second period, there is a free container.

				P F Slots
		1 0	BBU 1 RRH 1	
	Positions	2 3			Slot
		4	RRH 2	
		5	BBU 2	
			Free containers	RS F Reservation	ET F	C-RAN Traffic
	Figure 6.7 A valid assignment with F = 6.
	6.2.3.2 Building valid assignment with zero C-RAN latency

Let u 1 , . . . ,u k be the nodes attached to the RRHs 1, . . . ,k. We assume that u 1 , . . . ,u k are in the order of the oriented cycle. The last message emitted by the RRH 1 arrives at u 2 at time ET -1 + ω(u 1 ,u 2). Therefore we can x o 2 = ET + ω(u 1 ,u 2).

Les travaux présentés dans cette thèse s'inscrivent dans le contexte du développement de la 5G, et sont plus particulièrement axés sur la réduction de la latence dans les réseaux c÷urs des opérateurs. L'un des objectifs pour la 5G est de garantir une latence bout en bout la plus faible possible. Réduire la latence dans les réseaux permet non seulement d'améliorer la qualité de service des utilisateurs, mais ouvre également la porte au développement d'applications pour lesquelles le temps de réponse est critique (véhicules autonomes, industrie 4.0, . . .). Le cas d'application que nous étudions est le Cloud Radio Access Network abrégé en C-RAN. Le but du C-RAN est de centraliser les unités de calcul situées aux pieds de chaque antenne dans un ou plusieurs centres de calcul communs, an de faciliter la maintenance et de réduire les coûts d'exploitation. Les antennes envoient périodiquement des messages aux centres de calcul, qui calculent une réponse et l'envoient aux antennes avec la même périodicité. Le temps écoulé entre l'envoi d'un message par une antenne et la réception de sa réponse doit être inférieur à une durée imposée par le protocole de communication radio. Ces messages envoyés sont très lourds et utilisent donc beaucoup de bande passante dans les réseaux. La méthode actuelle de gestion des messages dans les réseaux, le multiplexage statistique, consiste à dimensionner chaque lien de façon à ce que le ux moyen de messages utilisant un lien puisse emprunter ce lien sans contrainte. Il arrive fréquemment que des ux envoient beaucoup de paquets d'un coup dans le réseau. Quand trop de paquets doivent utiliser un lien en même temps, on parle de contention. Les messages qui ne peuvent pas utiliser le lien directement sont mis dans une le d'attente, que nous appelons buer de contention. Faire attendre les messages dans ces buers de contention augmente la latence des paquets. Plus un réseau est chargé, plus il est probable d'avoir de hautes latences dues à la contention. Dans les réseaux C-RAN, les sources envoient périodiquement une grande quantité de messages nécessitant une garantie de faible latence, ils ne peuvent donc pas être gérés grâce au multiplexage statistique. C'est pourquoi nous proposons des solutions de gestion déterministe et périodique des ux : le calcul d'un ordonnancement qui dénit les dates de passage de chaque paquet dans chaque n÷ud du réseau. Les sources envoient périodiquement des paquets dans le réseau, toutes selon la même période, xée par le protocole. Les ordonnancements que nous calculons garantissent l'absence de collision des

Maison du doctorat de l'Université Paris-Saclay, 2ème étage aile ouest, Ecole normale supérieure Paris-Saclay, 4 avenue des Sciences, 91190 Gif sur Yvette, France

Remerciements

-Sidhoum d'avoir

Chapter 3. Scheduling Unsynchronized Periodic Datagrams without Buer

From the previous expression, we can derive the probability of success of Greedy Uniform by a simple product of the probabilities of success (1 -Pr(m,i)) at step i, for all i ≤ n, which proves the theorem.

If we x the load λ = n/m, we can bound P (m,n) using Stirling formula. We obtain for some constant C, that P (m,n) ≤ C λ 2λ (2λ-1) 2λ-1 m . We let f (λ) = λ 2λ (2λ-1) 2λ-1 . The derivative of f is strictly positive for 1/2 < λ < 1 and f (1) = 1, hence f (λ) < 1 when λ < 1. By a simple union bound, the probability that Greedy Uniform fails is bounded by Cλmf (λ) m , whose limit is zero when m goes to innity. It explains why Greedy Uniform is good in practice for large m.

Experimental Results

In this section, the performance on random instances of the algorithms presented in Sec. 3.2 is experimentally characterized. The settings are as in Section 3.1.6, with τ = 1. Because τ = 1, the algorithms based on meta-osets are not relevant anymore. The evaluated algorithms are:

• First Fit

• Greedy Uniform

• Greedy Potential, a greedy algorithm which leverages the notion of potential introduced for Swap. It schedules the datagrams in arbitrary order, choosing the possible oset which maximizes the potential of the unscheduled datagrams

• Swap and Move

• ESCA

In Figure 3.15, the performances of ShortestLongest are the same as in Figure 3.8 and Figure 3.9(10% for load 0.2, and 0% at 0.3 of load). The algorithm seems to performs better on Figure 3.16 (25% of success at load 0.5), but the algorithm is not interesting since Greedy Potential, First Fit or Greedy Uniform have much better success rate for a similar complexity.

For the other algorithms, as in Section 3.1.6, the success rate on random instances is much better than the bound given by worst case analysis. In the experiment presented in Figure 3.15, all algorithms succeed on all instances when the load is less than 0. has at most 6 members (it can be 4 when the route r is in rst position and cannot be exchanged with the previous one). Figure 5.9 represent the r-neighborhood of a pair

The r-neighborhood of a compact assignment CA is the set of all compact assignments CA = (O u ,S u) u∈V (G) , such that (O u ,S u) is in the r-neighborhood of (O u ,S u). Finally, the neighborhood of a compact assignment CA is the union for all r ∈ R of the r-neighborhoods of CA.

Let us denote by k 1 , . . . ,k n the number of contention points on the n routes of a routed network. Then, a compact assignment has at most n i=1 6 k i neighbors. Since the networks we consider are of bounded contention depth (2 or 3 in practice), the size of a neighborhood is linear in the number of routes. We further restrict the notion of neighborhood to realizable compact assignments. Indeed, the unrealizable compact assignments do not yield a real assignment, their transmission time is not dened and we cannot use them in our local search algorithms. We call the graph dened by the neighborhood relation over realizable compact assignments of a routed network the transposition graph of the routed network. All algorithms presented in this section will do a walk in the transposition graph, trying to nd a vertex with optimal transmission time.

Lemma 28. There is a path from a realizable compact assignment CA, with CA(u) = (O u ,S u) to CA , such that CA is equal to CA except on u where it is equal to (O u ,S u ∪ E).

Local Search Heuristics

105

.9 Neighborhood of a pair O u = (0,2,1), S u = {1} for one contention point.

Proof. As expected, the computation time is roughly linear in the number of steps N . The higher N is, the better is the average margin of the best solution found. It appears that drawing more than 100 compact assignments at each level does not signicantly improve the solution related to the additional computation time.

5.5 Branch and Bound

Brute-forcing Compact Assignments

Solving minstra, means nding an assignment for which T R(A) is minimal. Given an instance of minstra, the local search algorithms presented in the previous sections explore a few compact assignments CA and return one which minimize T R(Real(CA)). We begin by providing a bruteforce algorithm testing all compact assignments, then we show how a large number of compact assignments can be avoided using a Branch and Bound algorithm, which allows to solve minstra optimally in practice for small number of routes. Additional Cuts Even with the cuts due to the evaluation of SCB(N (CA)), the compact assignment tree is still too long to traverse. We propose here several additional cuts that improve the computation time of the algorithm.

Assume that the branch and bound algorithm reach vertex v in the compact assignment tree, representing the partial compact assignment CA over C i . Let u be a child of v, it represents CA[(O,S)], some extension of CA to C i+1 . Then, (O,S) is a compact assignment for c i+1 in N (CA) and we would like it to be valid, canonical and minimal for ≺. Indeed, if (O,S) is not valid for c i+1 , then none of the extensions of CA[(O,S)] will be valid and we can discard the subtree rooted at u. If (O,S) is not a canonical compact assignment, then by Lemma 27, there is a a compact assignment (O ,S) which is smaller for ≺. In the same way, if (O,S) is not minimal for ≺, then there is a compact assignment (O ,S) which is smaller. In both cases, the transmission time of the extensions of CA[(O,S)] will always be larger than the transmission time of the extensions of CA[(O ,S)] and again we can discard the subtree rooted at u.

The cut consisting in verifying whether (O,S) is a compact assignment for c i+1 in N (CA) is simple to implement in linear time by computing Real((O,S)).

To guarantee that we only consider canonical compact assignments, we must guarantee that the buering of the rst route is zero. It is the same as requiring for a compact assignment (O,S), that r O 1 , the rst route in O, is not in S. discarding assignments with r O 1 ∈ S. This allows to compute normalized sending times for all routes, with r O 1 as a reference.

We would like to cut any subtree rooted at a non minimal assignment, but we are not yet able to decide whether a compact assignment is minimal in polynomial time. Hence, we propose several easy to compute heuristics to detect when a compact assignment is not minimal. The rst one is to consider the assignment (O,S) of N (CA) and for each route r i ∈ S, we consider Real((O,S)) where r i has been removed. Then, we try to add back r i , with r i / ∈ S but no constraint on its position in the order. If we manage to do so, we have found a compact assignment (O ,S \ {r i }) ≺ (O,S). Indeed, given a xed rst element in the order, routes in S have their sending time larger than when they are not in S, regardless of the order.

For the next cuts, we need to consider that the set S is built incrementally as shown in Figure 5.22. We expand a vertex of the compact assignment tree, so that all orders on routes of the contention node are children of the node, then a complete binary tree for each of these orders represents all possible subsets of routes.

• Let us write O i for the ith element of the order i.

Scalability of Branch and Bound Algorithm

The complexity of the Branch and Bound algorithm depends on both the contention depth of the routed network and the number of routes. We focus on networks of contention depth 3, which is realistic in our C-RAN context, and we want to investigate how much the computation time increases in practice when the number of routes grows. Note that the running time of the algorithm is also very sensitive to the width of the network: for the same number of routes, if the routes are well spread out over the contention nodes, there are less compact assignment than if they are concentrated on some contention vertices.

In previous experiments, the maximal width is 4 in the vertices of depth 2, as shown in Figure 5.19. We generalize the topology of When the number of routes is lower than 10, we can nd a solution in a reasonable time. For 12 routes, the time needed to compute a solution is in the range of one hour. By increasing the quality of the cuts or even by generating only minimal compact assignments, with a perfectly optimized implementation we could solve problems with 14 routes, at most