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Présentation de la thèse

Les travaux présentés dans cette thèse s'inscrivent dans le contexte du développement de

la 5G, et sont plus particulièrement axés sur la réduction de la latence dans les réseaux

c÷urs des opérateurs. L'un des objectifs pour la 5G est de garantir une latence bout

en bout la plus faible possible. Réduire la latence dans les réseaux permet non seule-

ment d'améliorer la qualité de service des utilisateurs, mais ouvre également la porte au

développement d'applications pour lesquelles le temps de réponse est critique (véhicules

autonomes, industrie 4.0, . . . ). Le cas d'application que nous étudions est le Cloud Radio

Access Network abrégé en C-RAN. Le but du C-RAN est de centraliser les unités de calcul

situées aux pieds de chaque antenne dans un ou plusieurs centres de calcul communs, a�n

de faciliter la maintenance et de réduire les coûts d'exploitation. Les antennes envoient

périodiquement des messages aux centres de calcul, qui calculent une réponse et l'envoient

aux antennes avec la même périodicité. Le temps écoulé entre l'envoi d'un message par

une antenne et la réception de sa réponse doit être inférieur à une durée imposée par le

protocole de communication radio. Ces messages envoyés sont très lourds et utilisent donc

beaucoup de bande passante dans les réseaux.

La méthode actuelle de gestion des messages dans les réseaux, le multiplexage statis-

tique, consiste à dimensionner chaque lien de façon à ce que le �ux moyen de messages

utilisant un lien puisse emprunter ce lien sans contrainte. Il arrive fréquemment que des �ux

envoient beaucoup de paquets d'un coup dans le réseau. Quand trop de paquets doivent

utiliser un lien en même temps, on parle de contention. Les messages qui ne peuvent pas

utiliser le lien directement sont mis dans une �le d'attente, que nous appelons bu�er de

contention. Faire attendre les messages dans ces bu�ers de contention augmente la latence

des paquets. Plus un réseau est chargé, plus il est probable d'avoir de hautes latences dues

à la contention. Dans les réseaux C-RAN, les sources envoient périodiquement une grande

quantité de messages nécessitant une garantie de faible latence, ils ne peuvent donc pas

être gérés grâce au multiplexage statistique. C'est pourquoi nous proposons des solutions

de gestion déterministe et périodique des �ux : le calcul d'un ordonnancement qui dé�nit

les dates de passage de chaque paquet dans chaque n÷ud du réseau. Les sources envoient

périodiquement des paquets dans le réseau, toutes selon la même période, �xée par le

protocole. Les ordonnancements que nous calculons garantissent l'absence de collision des
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paquets, quand l'ordonnancement est répété à l'in�ni de manière périodique.

Plusieurs groupes de travail proposent aujourd'hui des solutions techniques (présentées

dans le chapitre 7) pour aider à contrôler la latence dans les réseaux. Avec ces solutions, les

équipements du réseau sont capables d'allouer les ressources de transmission pour certains

�ux à un instant donné. Des travaux au sein de Nokia Bell Labs visent à aller plus loin

pour pouvoir réserver une partie des ressources à un temps donné pour un paquet donné.

Il faut toutefois calculer les dates auxquelles les paquets doivent arriver dans les n÷uds

du réseau. Cette thèse se concentre sur le fait d'organiser les paquets, de façon à ce qu'ils

n'entrent en collision dans aucun des n÷uds, a�n de supprimer les bu�ers de contention.

Se passer complètement des bu�ers de contention n'est pas toujours possible, notamment

lorsque les réseaux sont composés de beaucoup de n÷uds. Dans ce cas, l'objectif de nos

travaux est de minimiser le temps passé par les paquets dans les bu�ers de contention.

Il est important de souligner que dans ce cas-là, le temps d'attente dans les bu�ers de

contentions ne sont plus subis comme pour le multiplexage statistique, mais contrôlés et

prévisibles.

Nous modélisons un réseau par un multigraphe orienté acyclique pondéré dont les

sommets représentent les points de contention entre messages dans le réseau. Les poids

des arcs représentent le temps physique de transmission entre deux points de contention.

Deux messages rentrent en con�it s'ils doivent passer par le même point de contention au

même moment. Nous considérons que le routage est donné, et nous cherchons à organiser

les messages de façon à ce qu'il n'y ait pas de con�it dans le réseau. Nous étudions dans un

premier temps le problème sur des réseaux simples et courants, constitués de deux points

de contention en série. Nous dé�nissons le problème de décision consistant à choisir la date

de passage de chaque message dans chacun de ces deux points de contention de façon à ce

qu'aucun message n'ait de con�it avec un autre dans le réseau. Ce problème ressemble à

des problèmes classiques d'ordonnancement, mais l'envoi périodique de nos �ux en fait un

problème original et di�cile. Nous prouvons dans le chapitre 2 que le problème est NP-

complet, même sur des graphes orientés acycliques de faible degré ou de faible profondeur,

par réduction de problèmes de coloration d'arcs ou de sommets. Nous proposons donc des

heuristiques (algorithmes gloutons, métaheuristiques) qui nous permettent de trouver de

bonnes solutions en temps polynomial pour tout type d'instanceet des algorithmes FPT

(de complexité exponentielle en le nombre de routes, mais pas en les autres paramètres

du problème) qui trouvent une solution optimale au problème et qui sont su�samment
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rapides sur les instances simples que nous étudions.

Nous étudions dans le chapitre 3 le problème de l'organisation de �ux non-synchronisés

dans un réseau sans aucun bu�er. Même si pour l'instant les protocoles liés au C-RAN

ne permettent pas de désynchroniser les antennes (ce qui pourrait être le cas pour de

prochaines générations de réseaux mobiles), cette approche est applicable dans d'autres

contextes, comme une usine où des robots ne nécessitant pas de synchronisation doivent

communiquer rapidement avec un centre de contrôle. Nous cherchons à calculer un temps

de départ des messages au début de leur route de façon à ce qu'ils ne soient pas en con�it

avec les autres messages, sans que ce temps de départ ne soit considéré comme du temps

de contention. Les solutions de ce problème sont toutes optimales en matière de latence :

la latence des messages est égale au temps physique de transmission, car aucune latence

n'est ajoutée aux messages à cause de la contention. Nous décrivons des algorithmes

gloutons de plus en plus évolués visant à optimiser l'impact d'ajouter un message à la

solution partielle calculée. Ces algorithmes nous permettent de garantir qu'une solution au

problème existe quand la charge du réseau est inférieure à 40% (et même jusqu'à 61% pour

des messages de taille 1). Nous proposons aussi un algorithme FPT (quand le problème

est paramétré par le nombre de routes) qui nous permet de calculer la solution optimale en

un temps raisonnable quand le nombre de routes est inférieur à 20. Nos résultats montrent

que le problème ne peut pas être résolu sans bu�er de contention quand la charge du

réseau est supérieure à 80%. C'est pourquoi nous traitons dans le chapitre 4 le problème

d'organiser les �ux avec un bu�er sur la route, de façon à o�rir un plus grand degré de

liberté. Nous étudions plus particulièrement le problème de minimisation, c'est-à-dire,

trouver une solution qui minimise la latence maximale des routes. Nous proposons une

approche en deux parties. Premièrement, nous choisissons les temps d'envoi des messages

pour qu'il n'y ait pas de con�its sur le premier point de contention, et nous résolvons

dans un second temps le problème de choisir le temps d'attente de chaque message dans le

second point de contention. Pour cela, nous décrivons un algorithme polynomial basé sur

le problème d'ordonnancement classique de la littérature, adapté à notre cadre périodique.

Nous proposons aussi un algorithme FPT basé sur le même principe, mais qui garantit

de trouver la solution optimale. Nous montrons que nous sommes capables de trouver

des solutions pour lesquelles la latence est minimale pour 99.9% des instances dans des

réseaux très chargés, et que nos méthodes donnent des résultats excellents comparées au

multiplexage statistique.
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Dans le chapitre 5, nous étudions le problème d'organiser des �ux synchronisés sur

tout type de DAG. Dans ce cas, tous les messages sont envoyés en même temps par les

sources et nous nous permettons de faire attendre les messages dans des bu�ers à chaque

point de contention du réseau. Nous étudions le problème de minimiser la plus grande la-

tence dans le réseau. Nous commençons par décrire des algorithmes gloutons qui trouvent

une solution réalisable pour n'importe quelle charge, qui servent de point de départ aux

algorithmes de recherche locale utilisés ensuite. Nous introduisons une forme compacte

du problème qui nous permet de dé�nir une notion de voisinage entre les solutions a�n

d'explorer l'ensemble de ces dernières. Nous étudions les performances des algorithmes

de recherche d'optimum local (hill-climbing, recherche tabou, recuit simulé) et nous pro-

posons un algorithme Branch and Bound qui énumère l'ensemble des solutions sous forme

compacte, en faisant su�samment de coupes pour trouver la solution optimale rapide-

ment. Nous montrons expérimentalement que l'algorithme Branch and Bound est capable

de trouver une solution optimale en un temps raisonnable pour 12 routes, tandis que le re-

cuit simulé permet de trouver des solutions bien meilleures que le multiplexage statistique

pour n'importe quelle taille d'instance.

Nous étudions ensuite, dans le chapitre 6, l'impact de nos algorithmes d'ordonnancement,

lorsque les �ux C-RAN périodiques et prioritaires partagent le réseau avec des �ux Best-

E�ort, non prioritaires et dont les arrivées suivent un processus stochastique. Nous pro-

posons une méthode d'adaptation de nos algorithmes qui permet de lisser la charge des

�ux C-RAN tout au long de la période, sans augmenter la latence. Nos expériences mon-

trent que, même si organiser les �ux de façon déterministe comme nous le faisons requiert

d'utiliser un peu plus de bande passante pour réserver les ressources, la latence moyenne

des �ux Best-E�ort est meilleure qu'avec le multiplexage statistique. Nous montrons aussi

le même genre de résultats dans un anneau optique où l'ordonnancement des �ux C-RAN

est rendu trivial par les contraintes techniques de la conversion opto-électronique.

Toutes nos approches se basent sur des hypothèses techniques fortes : les �ux doivent

être parfaitement synchronisés, le réseau doit être intelligent et programmable. Le chapitre 7

fait le point sur les standards récemment développés qui se rapprochent de nos hypothèses.

Nous montrons aussi les limites de ces standards, et nous introduisons un équipement en

phase de développement qui nous permettrait de réduire la latence dans les réseaux au

temps physique de transmission.



Introduction

The work presented in this thesis takes place in the context of the development of 5G, and

is more particularly focused on the reduction of latency in operators' core networks. One of

the objectives for 5G is to ensure the lowest possible end-to-end latency. Reducing latency

in networks not only improves the quality of service for users, but also opens the door to

the development of applications for which response time is critical (autonomous vehicles,

Industry 4.0, . . . ). The application case we are studying is the Cloud Radio Access Network

abbreviated to C-RAN. The goal of C-RAN is to centralize the computing units located

at the feet of each antenna in one or more common data-centers, in order to facilitate

maintenance and reduce operating costs. The antennas periodically send messages to

the data-centers, which compute an answer and send it to the antennas with the same

periodicity. The time elapsed between the sending of a message by an antenna and the

reception of its answer must be less than a deadline imposed by the radio communication

protocol. These messages are very heavy and therefore use a lot of bandwidth in networks.

The current way to manage messages in a network is called statistical multiplexing. It

consists of dimensioning each link so that the average �ow of messages using a link can

use this link without constraint. It is not uncommon for �ows to send many packets at

once through the network. When too many packets have to use a link at the same time,

this is called contention. Messages that cannot use the link directly are put into a bu�er,

which we call a contention bu�er. Bu�ering messages in these contention bu�ers increases

packet latency. The more messages there is in a network, the highest are latencies due to

contention. In C-RAN networks, sources periodically send large amounts of messages that

require a guarantee of low latency, so they cannot be handled by statistical multiplexing.

This is why we o�er solutions for deterministic and periodic �ow management: we compute

a scheduling that de�nes the dates on which each packet passes through each node of the

network. The sources periodically send packets in the network, all according to the same

period, set by the protocol. The schedules that we calculate guarantee the absence of

packet collisions, when the scheduling is repeated in�nitely and periodically.

Several working groups are proposing technical solutions (presented in chapter 7) to

help control latency in networks. With these solutions, network equipments are able to

allocate transmission resources for certain �ows at a given time. Research at Nokia Bell
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Labs aims to go further, by being able to reserve part of the resources at a given time for a

given packet. However, it is necessary to calculate the dates on which packets must arrive

at the network nodes. This thesis focuses on scheduling packets so that they do not collide

in any of the nodes, in order to remove contention bu�ers. Completely get rid of contention

bu�ers is not always possible, especially when networks are composed of many nodes. In

this case, the goal of our work is to minimize the time spent by packets in the contention

bu�ers. It is important to note that in this case, the waiting time in contention bu�ers is

no longer undergone as in statistical multiplexing, but is controlled and predictable.

We model a network by a directed weighted acyclic multigraph whose vertices represent

the contention points between messages in the network. The weights of the arcs represent

the physical transmission time between two contention points. Two messages con�ict if they

must pass through the same contention point at the same time. We consider that routing

is given, and we try to organize the messages so that there is no con�ict in the network. We

�rst study the problem on simple and common networks with two serial contention points.

We de�ne the decision problem of choosing the date each message passes through each

of these two contention points so that no message con�icts with another in the network.

This problem looks like classical scheduling problems, but the periodic sending of our �ows

makes it an original and di�cult problem. We prove in chapter 2 that the problem is

NP-complete, even on acyclic oriented graphs of low degree or low depth, by reducing

problems of arc or vertex coloring. We therefore propose heuristics (glutton algorithms,

metaheuristics) that allow us to �nd good solutions in polynomial time for any type of

instance and FPT algorithms (of exponential complexity in the number of routes, but not

in the other parameters of the problem) that �nd an optimal solution to the problem and

that are fast enough on the simple instances we study.

We study in chapter 3 the problem of organizing non-synchronized �ows in a network

without any bu�er. Even if for the moment C-RAN-related protocols do not allow to

desynchronize antennas (which could be the case for future generations of mobile networks),

this approach is applicable in other contexts, such as a factory where robots that do not

require synchronization need to communicate quickly with a control center. We aim to

compute a sending dates for messages at the beginning of their route so that they do

not con�ict with other messages. This sending time is not considered as contention time.

The solutions to this problem are all optimal in terms of latency: the latency of messages

is equal to the physical time of transmission, because no latency is added to messages
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because of contention. We describe increasingly advanced greedy algorithms aimed at

optimizing the impact of adding a message to the partial solution we computed. These

algorithms allow us to ensure that a solution to the problem exists when the network load

is less than 40% (and even up to 61% for messages of size 1). We also propose an FPT

algorithm (when the problem is parameterized by the number of routes) which allows us

to compute the optimal solution in a reasonable time when the number of routes is less

than 20. Our results show that the problem cannot be solved without contention bu�ers

when the network load is higher than 80%. This is why we deal in chapter 4 with the

problem of organizing �ows with one contention bu�er on the route, in order to provide

a greater degree of freedom. We study more particularly the problem of minimization,

that is, �nding a solution that minimizes the maximum latency of the routes. We propose

a two-stage approach. First, we choose the sending time for messages such that there is

no con�ict on the �rst contention point, and then we solve the problem of choosing the

waiting time for each message on the second contention point. To do so, we describe a

polynomial algorithm based on the classical scheduling problem of the literature, adapted

for periodicity. We also propose an FPT algorithm based on the same principle, but which

guarantees to �nd the optimal solution. We show that we are able to �nd solutions for

which latency is minimal for 99.9% of instances in highly loaded networks, and that our

methods give excellent results compared to statistical multiplexing.

In chapter 5, we study the problem of organizing synchronized messages on any type

of DAG. In this case, all the messages are sent at the same time by the sources and we

allow the messages to wait in bu�ers at each contention point of the network. We study

the problem of minimizing the maximum latency in the network. We start by describing

greedy algorithms that �nd a realisable solution for any load, which are used as a starting

point for the local search algorithms used later. We introduce a compact form of the

problem that allows us to de�ne a notion of neighborhood between the solutions in order

to explore all of them. We study the performance of local search algorithms (hill-climbing,

tabu search, simulated annealing) and we propose a Branch and Bound algorithm that

lists all the solutions in a compact form, making enough cuts to �nd the optimal solution

quickly. We show experimentally that the Branch and Bound algorithm is able to �nd an

optimal solution in a reasonable time for 12 routes, while simulated annealing allows to

�nd much better solutions than statistical multiplexing for any instance size.

We then study, in chapter 6, the impact of our scheduling algorithms when periodic and
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high-priority C-RAN �ows share the network with Best-E�ort, non-priority �ows whose

arrivals follow a stochastic process. We propose a method for adapting our algorithms

that smooth the load of the C-RAN �ows all over the period, without increasing latency.

Our experiments show that, even if organizing the �ows in a deterministic way as we do

requires using a bit more bandwidth to reserve resources, the average latency of Best-E�ort

�ows is better than with statistical multiplexing. We also show the same kind of results

in an optical ring where the scheduling of C-RAN �ows is made trivial by the technical

opto-electronic conversion constraints.

All our approaches are based on strong technical assumptions: the �ows must be per-

fectly synchronized, the network must have a global controller and must be programmable.

Chapter 7 reviews the recently developed standards that are close to our hypotheses. We

also show the limits of these standards, and we introduce equipment in the development

phase that would enable us to reduce latency in networks to the physical transmission

time.



Chapter 1

Algorithmic and industrial context

1.1 Industrial context

1.1.1 What is 5G ?

Telecoms networks must manage more and more users while continually improving their

bandwidth, latency and reliability. Nowadays, 4G is the standard deployed in most of the

territory, and 5G is the new technology under deployment. The term 5G de�nes a set

of functional speci�cations. The organism that proposes these speci�cations is the ITU

(International Telecommunication Union), an agency of the United Nation responsible

for information and communications. For several years, the ITU-R (radiocommunication

component of the ITU) has been working to determine the functional aspects that 5G must

satisfy. Figure 1.1 from [1] illustrates some of those functional aspects, that ITU-R has

formally referenced under the name IMT-2020 [2] (the requirements of 4G are referenced

as IMT-advanced): a bitrate up to 20Gbps (×20 compared to 4G), low end to end latencies

down to 1ms (10 times lower than in 4G, we are focusing on this aspect in this thesis).

Also, 5G aims to o�er an higher connection density (up to 1 million device/km2), with

an higher tra�c capacity (from 0,1Mbit/s/m2 in 4G to 10Mbit/s/m2 in 5G) thanks to a

wider use of the spectrum. Other aspects as a better energy e�ciency (100 times better

in 5G than in 4G) or a better mobility are required.

All these characteristics allow various application cases. Figure 1.2 taken from [3]

establishes a non-exhaustive list of them, according to their di�erent technical constraints.

One of them is low latency, required for applications like motion control that work in real

time. Also, 5G aims to develop dynamic programmable networks, for greater �exibility

of use. This thesis focuses on developing algorithm to dynamically manage �ows in the

network in order to provide low latency.

On the other hand, a higher bandwidth is useful for applications like video streaming,
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Figure 1.1 � 5G performances required by ITU-R ([1])

augmented reality or ensuring the connectivity of a large number of terminals. By relaxing

latency and bandwidth constraints, it is possible to expand further the number of devices

(up to 1 million) for applications like sensors networks.

Figure 1.2 � Some examples of use cases for 5G ([3])

1.1.2 Which aspect of 5G do we focus on ?

To meet these 5G functional speci�cations, the network equipments must follow technical

standards. The 3GPP (3rd Generation Partnership Project) is an union between several

standard organizations which de�nes the technical speci�cations for 5G. 3GPP regularly

publishes releases, that regroup new speci�cations. The �rst release focused on 5G was
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Release 15 (R15), released in 2018 [4].

Figure 1.3 � 3GPP releases 15, 16 and 17 calendar ([4])

Release 15 focused on increasing throughput and interworking between 4G and 5G, and

introduced the notion of URLLC (Ultra-Reliable Low-Latency Communication). URLLC

consists in ensuring low packet loss and low latency communications. Indeed, several use

cases (smart factories, control operations, . . . ) needs highly reliable communications in

which the latency must be guaranteed. The objective of this thesis is to compute schemes

for low latency communications. To do so, the network equipments must be able to manage

the tra�c by discriminating di�erent kinds of �ows and following computed scheduling to

manage them. Even if current network does not yet have such capabilities, releases 16 an

17 have deepened the notion of URLLC and this topic is widely studied.

1.1.3 Current way to manage networks : Statistical Multiplexing

The constraints expressed for low latency architectures and 5G standard are hard to meet

in current networks. In IP or even Ethernet networks, the tra�c usually su�ers of delay

due to contention.

As we just mentioned, the current network nodes (routers for IP networks, switches

for Ethernet networks) are not able to schedule packets. The only function of the nodes is

to forward the packets to the right output port. The objective is to o�er a good average

quality of service for a minimal price. When a single input �ow uses an output port, there

is no issue. If several packets coming from several �ows require the same output port at

the same time, we talk about contention. Some packets are then put in a contention

bu�er until the port is available. The additional latency induced by contention bu�ers is

one of the most important causes of delay. In order to avoid this situation, the bitrates of

the links is dimensioned according to the use case. It is then calculated according to the

average bitrate of the �ows on the network. When there is too much packets in the bu�er,

the oldest packets of the bu�er are lost.
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Operator 1

RAN Aggregation

Operator 2

RANAggregation

Core

Figure 1.4 � An End to End communication between two mobiles.

Such an approach ensures an easy deployment and management of the networks and

most of the time a good quality of service for a minimal cost for network providers, but it

may induce packet losses and high latencies. This is called statistical multiplexing [5, 6].

URLLC aims to ensure good end to end latency communications. To achieve such a

goal, each component of the communication network must satisfy a low latency: the radio

communications, and the core network. This thesis focuses on the core network.

1.1.4 Radio Access Network

To understand the network this thesis focuses on, we now describe how a radio access

network works.

Current mobile network (aka cellular network) architecture consists in a distributed

radio access networks: the mobile terminals connect to a base station (BTS for Base

Transceiver Station as a generic name, eNB for evolved Node B in 3GPP LTE �4G� stan-

dard or gNB for 5G) that encompasses all the sub-systems needed to realize mobile com-

munication [7]. It mainly comprises the radio part, that furnishes the connection between

the mobile terminal and the BTS, and the network part that provides control and manage-

ment functions like mobility support (the main functionality being the support of handover

from one BTS to another, i.e. the ability to pursue a communication when moving from

the range of an antenna to another). The BTS are connected together by the Aggregation

Network of the operator, itself connected to the core network, in order to ensure com-

munications with other operators Radio Access Networks(RANs). Figure 1.4 illustrates a

communication between two mobiles using a di�erent operator.

1.1.4.1 Cloud RAN

One possible direction for next generation networks is to become centralized radio network

architectures (C-RAN, for Cloud Radio Access Network) to reduce consumption costs and
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power at the base stations [8]. These C-RAN architectures include simpli�ed base stations

on the �eld. Depending on the architecture choice, it can be restricted to the radio part and

the digital to analog conversion only. This can be identi�ed by di�erent names depending

on the reference document, including RU for Remote Unit or RRH for Remote Radio

Heads. The latter will be used in the thesis. The other components of the C-RAN are

the processing units. One can distinguish two levels of processing units: the DUs, for

Distributed Units that are able to ensure only a part of the computation tasks, and the

CUs for Centralized Units that computes the most centralized tasks. In this thesis, we

consider only CUs, that are also called BBUs for BaseBand Units, and we use this term

in the thesis. The BBUs are located in the cloud.

Figure 1.5 � Latency requirements between di�erent part of the network.

The cloud is de�ned as the execution of a program in a data center (gathering the BBUs)

ordered by another machine (RRHs) connected to the data center through a transparent

network. The execution may be indi�erently performed on virtualized machines, or bare

metal, or any combination of the two. The network between RRHs and BBUs is called

�Fronthaul Network�, or �Fronthaul� for short. Figure 1.6 illustrates an example of fronthaul

in which several BBUs are gathered in the same datacenter.

1.1.4.2 Split

As mentioned above, in C-RAN, most of the computation tasks of the BTS must be

centralized in the BBU. There are several components that can be centralized, but the more

we centralize the ressources, the higher the latency constraints are. Figure 1.7 illustrates

two di�erent choices of split for the BTS. The �rst one, called �Full centralization� leaves

only the radio functions to the RRH, while the second one, called �partial centralization�,

keeps the baseband processing function inside the RRH. The methods presented in this

thesis allow to send an high amount of data in the network while minimizing latency. Such



14 Chapter 1. Algorithmic and industrial context

Figure 1.6 � An example of fronthaul network for Cloud RAN

a result matches well with the �rst split, this is why we talk about BaseBand Units (BBU)

here. Even if we choose to work with the most critical split, the amount of data is just a

parameter of the problem presented here, and any kind of split could be managed by our

algorithms.

Figure 1.7 � Two di�erent split for Cloud-RAN

Figure 1.8 � The more centralized is the RAN, the hardest is the transport and the lowest
is the cost of coordination for the antennas

This kind of architecture must address the problem of the latency in the transfer process

between the RRHs on the �eld and BBUs in the cloud. Low latency is already critical for

the deployment of C-RAN approach in LTE �4G� networks. The standard requires hard

time constraints for functions like HARQ (Hybrid Automatic Repeat reQuest) that needs
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to be processed in less than 3ms [7]. Considering processing time into the BBU, the time

budget over the network can be as low as 400µs for a round trip. One speci�city in this C-

RAN context is not only the latency constraint, but also the periodicity of the data transfer

between RRH and BBU (this HARQ constraint must be enforced for each frame emitted

every millisecond). Looking beyond current mobile network generation, one must have in

mind that upcoming 5G standards will require to reach end-to-end expected latency as low

as 1ms (depending on targeted services) [9]. New scheduling and new technologies have

to be considered to guarantee delay constrained periodic data transfers.

1.1.5 Technical solution for low latency

Statistical multiplexing is the most common mechanism used to manage packet based

networks in the last 40 years. While tools [10] ensure a latency lower than a given value for

95% of the packets, such a guarantee is not su�cient in our context in which all packets

must satisfy latency constraints. Indeed, mechanisms like Express Forwarding [11] can be

used to prioritize some packets over the others, but they fail to guarantee the delivery of

a given packet in a given time delay when several packets compete for the same resource.

The best current solution is to rely on an almost full optical approach, where each

end-point (RRH on one side, BBU on the other side) is connected through direct �ber or

full optical switches [12, 13]. This architecture is very expensive and hardly scales in the

case of a mobile network. As illustrative purpose, a single (one operator) mobile network

in France is composed of about 10,000 base stations. This number will increase by a factor

of 2 to 20 with the emergence of �small cells� which increases base station density to reach

higher throughput [14, 15]. It is thus needed to �nd a solution to o�er low latency over

commoditized packet based networks.

Although 3GPP standards for 5G are not completely frozen yet, the core network is

designed to use ethernet technology. Time Sensitive Networking (TSN) [16, 17] is a task

group of IEEE that develops some standards for ethernet. We focus on several of those

standards which allow a control of the latency. The model and the algorithms of this

thesis make the hypothesis that the network components are detailed, able to collect some

information and send it to a centralized entity, to di�erentiate several kinds of �ow and to

forward it at an exact date, imposed by the controller. TSN standards propose technical

solution for those hypothesis, but an approach like TSN is still based on statistical laws and

is limited to ensure a perfect control of the latency. TSN technologies ensure an end-to-end
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latency bounded for all packets, but not minimal, as we propose. The limits of TSN and

the technical solution we propose are detailed in Chapter 7.

In this thesis, we work on deterministic �ows. Thus, we propose algorithms to compute

deterministic scheduling of the �ows in the network, while minimizing the latency due to

bu�ering. Remark that minimizing the bu�ering latency allows not only to meet latency

constraints of applications, but also to leave additional time for others sources of latency

(additional computations, longer length of �bers, etc...). When computing a scheduling,

we must take into account the periodicity which makes the problem di�cult to solve.

Not only a datagram must not collide with the datagrams sent by the others BBU/RRH

in the same period, but also in the other periods.

1.2 Algorithmic related works

We present in this section several families of problems and approaches, which are close

to what is studied in this thesis but which mostly fail to model our problem faithfully or

which are too general to derive useful algorithms. In order to understand how close these

approaches are to ours, we �rst describe the algorithmic problems studied in this thesis,

see Chapter 2 for details. We consider a network in which the routing is �xed. Several

�ows share the network, sending periodically a message of the same size from a source to a

target. This message represents several packets in practice, but in our model we consider

them contiguous. The messages can also be bu�ered in the nodes of the network in order

to let another message use a shared ressource. The objective is to compute the bu�ering

time of every message in every node of the network, such that the global latency (i.e.

the largest latency of a �ow) is minimal. Note that the periodic aspect of C-RAN makes

the problem more di�cult. Indeed, since the tra�c is periodic and the network highly

loaded, we must deal with contentions coming from successive periods while computing

the scheduling. The problem we address is to compute periodic schedulings. This means

we compute the solution on one period and the scheduling remains the same for every

period. There are several variations of the problem according to the shape of the network,

the synchronization of the messages in a period or the constraints on bu�ering.
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1.2.1 Algorithmic Approaches

We �rst looked at how classical problems like wormhole problems, or approaches based on

graph coloring are close to our problem.

Wormhole Because we consider contiguous messages, we �rst focused on wormhole prob-

lems [18, 19]. Wormhole problems consider graphs representing interconnection networks,

in which the vertices are the nodes of the network and the edges are the physical links.

Long messages are sent in the network, using ressources during a long time. A dead-

lock occurs when several messages are waiting for each others to release a ressource. The

main problem consists in avoiding deadlocks. The algorithmic solution proposed consists

in multiplexing the physical channels in several virtual channels, and to develop routing

algorithms to determine the virtual channel used by each message. The problem is very

similar, but we do not have the same degrees of freedom: in our network, the routing is

given. Moreover, our messages require the entire capacity of the links and we cannot use

multiplexing, except in a variation of our model presented in Chapter 6. Furthermore,

deadlocks can not occur in the networks we model, since the considered routings are co-

herent[20]. A routing is coherent if two routes share a single path (i.e. a sequence of

contiguous links) in the network.

On a technical aspect, wormhole switches [19] are designed to read only the header of

the messages before forwarding it instead of bu�ering the entire messages as in store-and-

forward [21]. This method has a huge impact on the latency, particularly on long messages,

and we go further by trying to remove all bu�ering in the switches.

Graph coloring for ressources allocation One of our approach consisted in repre-

senting the shared ressources of the network by a con�ict graph. The vertices of the graph

represent the routes of the networks and there is an edge between two vertices if their asso-

ciated routes share the same ressource (i.e. an output port on a switch). The edges of the

graph are labeled by the di�erence of the physical length of the links between the sources

of the routes and the con�ict point. A proper coloring of such a graph is a scheduling of

the network without collisions between the messages. Several graph colorings have been

introduced to model similar problems. In [22] the objective is to minimize the number

of wavelength in shared links for optical networks. Flow allocations problems are studied

in [23], applied to the allocation of the frequencies in radio networks. Unfortunately, they
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do not take into account the periodicity of the scheduling and the associated problems are

already NP-complete.

Circular Coloring The only coloring taking into account periodicity is the circular

coloring [24, 25]. As an example, circular coloring can model a road intersection as a

graph in which the vertices are the �ows and there is and edge between two vertices if

the �ow must not overlap. The problem is to �nd a proper vertex coloring of the graph.

Such an approach is close to our problem of coloring con�ict graphs. However, the models

presented do not consider the weight on the arcs, and cannot easily capture general graphs.

Also, because the problem is already NP-hard , this approach did not catch our attention.

Circular arc coloring [26] also manages jobs that can be related to periodic messages. The

authors consider a clock and several arcs around this clock, representing the time needed

by a job. The objective is to �nd the minimal number of men needed to complete the

job. If two arcs overlap, the same man cannot be a�ected to both jobs. Nevertheless, this

problem has been shown NP-hard [27] and the model is really far from ours.

1.2.2 Scheduling approaches

Our problem is very close to a scheduling problem, with an additional periodicity con-

straint. Therefore, we looked for scheduling approaches that can be used for, or adapted

to our problem.

Train Scheduling The train timetabling problem [28] and its restriction, the periodic

event scheduling problem [29] are generalizations of the problem we study. Indeed, they

take the period as input and can express the fact that two trains (like two messages) should

not cross. However, they are much more general: the trains can vary in size, speed, the

network can be more complex than a single track and there are precedence constraints.

Hence, the numerous variants of train scheduling problems are very hard to solve (and

always NP-hard). Most of the research done [28] is devising practical algorithms using

branch and bound, mixed integer programming, genetic algorithms. . .

Linear Programming for Latency Constrained Network We de�ne in this thesis a

simple network topology called the star shaped network. In star shaped networks, all �ows

go through the same link, and there is only two relevant contention points (one in the way

to the BBUs, and one in the way back to the RRHs).
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Variation on the problem of scheduling periodic messages for Cloud-RAN have been

investigated in [30, 31, 32, 33]. In these papers, authors study the practical problem of

scheduling a few number of �ows in a star shaped network. Given a network in which the

routing is set, the objective is to schedule several periodic �ows with a critical latency and

several best-e�ort �ows, as we do in Chapter 6. To do so, the authors use new technical

standards (TSN, detailed in Chapter 7) that allow to prioritize �ows, and linear program-

ming in order to compute a schedule between the critical �ows. In the same spirit, the use

of an SMT solver rather than linear programming is proposed in [34]. The �ows described

in these papers are di�erent from ours. While we consider that a single long message is

sent by a source every period, the authors propose �ows in which several little packets are

sent. The scheduling are computed on multiple periods while we compute a scheduling on

one period, which can be repeated periodically. Furthermore, the experiments are made

on small topologies, because these approaches does not scale neither with the number of

routes nor the number of con�ict points on each route, while we propose polynomial time

algorithms that give satisfying solution for every kind of topology. However, this kind of

approach, as explained in [31], can be used as a standardization tool to verify the viability

of solutions computed by faster algorithms.

A polynomial algorithm for single processor scheduling The problem we address

in this thesis is similar to classical single processor scheduling problems, de�ned as follows.

Given a set of jobs, a release time and a deadline for each job, �nd a scheduling to minimize

the global completion time (i.e. the time at which all jobs have been processed). The

approach we adopt in Chapter 4 to solve our problem on a star routed network, is a

two stage approach. The second stage, when forgetting about periodicity, is similar to

a scheduling problem with a single processor with the goal of minimizing the completion

time (makespan). The algorithm described in [35], solves this problem in polynomial time

when all tasks have the same processing time. We use it as a building block of several of

our algorithms in Chapter 4 and Chapter 5, where we adapt it to the case of periodic jobs.

When the jobs have di�erent processing times, the problem is NP-hard [36].

Two �ow shop scheduling On the star routed network studied in Chapter 3, the prob-

lem of scheduling messages for Cloud-RAN without bu�ers nor periodicity is similar to a

two �ow-shop scheduling problem. In two �ow-shop scheduling, the objective is to schedule

the jobs on two processors, each job must be �rst processed by the �rst processor and can
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then be processed by the second one after a delay which depends on the job. This two-�ow

shop problem is NP-hard [37], and while it can be reduced to the synchronized version

of our problem, presented in 5, the correspondence is less clear with the unsynchronized

version of Chapter 3. Moreover, our problem adds the constraint of periodicity, hence no

algorithm for two �ow shop scheduling can be used as is.

The problem of scheduling tasks on multiple processors periodically does not seem

related to our problem. In [38] the problem is the following: Given a set of tasks, with for

each of them a duration and a period, �nd a periodic scheduling minimizing the number

of processors on which the periodic tasks are scheduled. The model is di�erent from ours

because we consider messages of same size and period, and we want to schedule all messages

on the same ressource.

In general, the problem of cyclic scheduling [39, 40] have been extensively studied. The

problem has many variants, considering or not precedence constraint, di�erent message

sizes, or di�erent periodicity for each message, etc. . .Most of these problems have been

shown to be NP-hard. In all these problems, the objective remains the same: minimizing

the period. The main di�erence, which makes methods for cyclic scheduling quite di�erent

from our approach, is that the period is an input of our problem, which cannot be modi�ed.

While cyclic scheduling tries to optimize the throughput by changing the period, we try

to optimize the latency for a �xed period.

Conclusion

One of the trend of 5G and networks in general is to be able to ensure end to end commu-

nication with a low latency. To do so, it is important to reduce the latency sources in each

part of the network. In this thesis, we focus on the packet switched network connecting

the radio antennas to the operators' core network. In packet switched networks, the major

source of latency is the bu�ering latency due to contention. Current approach of net-

work management consists in multiplexing the �ows on a network dimensioned following

statistical laws, and this may induce high contention bu�ering time. In order to reduce

the contention, several technical solutions are currently in development to control critical

tra�cs more precisely than statistical multiplexing. With those solutions, the switches

follows all over the time a precise scheduling of each �ow it must forward at each date.

In this thesis, we study the problem of computing this scheduling. Knowing the topol-
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ogy of the network, and the di�erent �ows it supports, our objective is to compute the

scheduling of the tra�c for every node of the network, while minimizing the latency of the

�ows. Because we consider applications sending all over the time a datagram periodically,

the scheduling must be periodic. Scheduling problems for networks have been extensively

studied in wormhole routing, train scheduling or frequency allocation, but none of these

studies deal with the periodicity of the �ows we want to schedule, which makes the prob-

lem innovative and di�cult. Circular scheduling or coloring problems seems related to our

problem but the model are too far from ours, and the problem are not the same. Single

processor scheduling, with makespan constraint can be adapted for periodicity to build

some of our algorithms.





Chapter 2

Model and Problems De�nition

The model and the proofs presented in this chapter has been introduced in [41] and ex-

tended in a long version of the paper in [42].

2.1 Model

We �rst present in this section how we model a communication network, and we give the

algorithmic problems we study on.

Let [n] denote the interval of n integers {0, . . . ,n− 1}.

2.1.1 Routes and Contention Points

We study a communication network constituted of pairs of vertices between which messages

are sent periodically. The routing between each pair of such nodes is given: a route is a

sequence of vertices (s, c1, . . . , cl, t). A vertex appears only once in a route, that is there is

no loop in a route. Each vertex ci corresponds to a contention point, which is the beginning

of a link of the communication network shared by several routes. Hence, all vertices appear

in several routes, except s, the �rst vertex of the route, and t, the last vertex of the route,

which are exclusive to the route and represent the source and the target of the message.

When modeling a C-RAN network, the �rst vertex represents the sending of the message

by the RRH and the last vertex represents the same RRH that receives the answer sent

back by the BBU.

The set of routes is denoted byR. A route is interpreted as a directed path in a directed

multigraph constituted of all routes, where the sets of arcs of the routes are disjoint. The

routes contain no loop nor cycle, since all vertices of a route are di�erent. Thus, the

directed multigraph is acyclic. An arc in the multigraph may represent several physical

links or nodes of the modeled network, which do not induce contention points.
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Sources

B

Targets

Figure 2.1 � A routed network, each route is represented by a colored path. Weigth on the
arcs are ommited.

Each arc (u,v) of a route r is labeled by an integer weight ω(r,u). It represents the time

elapsed between the sending of the message of the route r in u and its reception in v. The

weight of a vertex ui in a route r = (u0, . . . ,ul) is de�ned by λ(r,ui) =
∑

0≤j<i
ω(r,uj). It

is the time needed by a message to go from the �rst vertex of the route to ui. The length

of the route r is de�ned by λ(r) = λ(r,ul).

On each route, we can bu�er the message only in the BBU. Since the BBU does not

correspond to a contention point, we identify the BBU with the next contention point in the

route. The set of these contention points with possible bu�ering is denoted by B.Thus, each
route has only one vertex in B. A routed network, which models the telecommunication

network, is a triple N = (R,B, ω), see Figure 2.1 for an example.

2.1.2 Dynamic of Datagrams Transmissions

In this thesis, we consider a discretized time. The unit of time is called a tic. This is the

time needed to send an atomic data in a link of the network. We assume that the speed

of the links is the same over all the network. We are developing a prototype of this work

based on ethernet base-X [43], see Chapter 7, using standard values for the parameters of

the network: the size of an atomic data is 64 bits, the speed of the links is 10Gbps, hence

the duration of a tic is about 5.1 nanoseconds.

In the process we study, a message, called a datagram, is sent on each route from the

source node. The size of a datagram is an integer, denoted by τ , it is the number of tics

needed by a node to emit the full datagram through a link. In this thesis, we assume that

τ is the same for all routes. It is justi�ed by our application to C-RAN, where all source

nodes are RRHs sending the same type of message. There is no fragmentation: Once a
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time

or ω(r, sr) ω(r, c1) wr
ω(r, c2)

Datagram emmission on r

Arrival in c1 Arrival in c2

Emission after waiting in c2

TR(r)

Arrival in tr

Figure 2.2 � Timeline of a datagram during its travel on a route r = (sr,c1,c2,tr), with
c2 ∈ B

datagram has been emitted, it cannot be fragmented during its travel in the network.

Let r = (s, . . . ,t) be a route. In order to avoid contention, it is possible to bu�er

datagrams in the contention points in B. An assignment A of a routed network N =

(R,B, ω) is a function which associates to each route r ∈ R, the pair of integers A(r) =

(or,wr). The value or is the o�set, the time at which the datagram is available in the

�rst vertex of r. The value wr is the waiting time: the datagram is bu�ered for wr tics

in uj ∈ B ∩ r, the vertex representing the BBU. The arrival time of a datagram in the

vertex ui of r, is the �rst time at which the datagram sent on r reaches ui, and is de�ned

by t(r,ui) = λ(r,ui) + or if i ≤ j and t(r,ui) = λ(r,ui) + or + wr otherwise.

Let ul be the last vertex of the route r, the transmission time of the datagram

on r is denoted by TR(r,A) and is equal to λ(r) + wr or equivalently t(r,ul) − or. This

is the total time taken by the process we study: the sending of the datagram from the

RRH to the BBU and the return of the answer back to the RRH. We can decompose this

time into λ(r), the physical latency of the process and wr, the logical latency. We de�ne

the transmission time of an assignment A as the worst transmission time of a route:

TR(A) = max
r∈R

TR(r,A). Figure 2.2 represents the di�erent events happening during the

lifetime of a datagram sent on a route r.

2.1.3 Periodic Emission of Datagrams

In the previous section, we have explained how one datagram follows its route. However,

the process we model in this thesis is periodic: for each period of P tics, a datagram is sent,

from each source node in the network, at its o�set. The process is assumed to be in�nite,

since it must work for an arbitrary number of periods. For a given route, we use the same
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o�set and waiting time in all periods, for simplicity of implementation in real networks

and to make our problem more tractable from a theoretical perspective. Hence, at the

same time of two di�erent periods, all datagrams are at the same position in the network:

the assignments built are themselves periodic of period P . Thus, we only need to consider

the behavior of the datagrams on each node of the network during a single period, and to

apply the same pattern to every subsequent period. Using a di�erent o�set for each route

corresponds to sending their datagram at a di�erent time in the period. This matches our

hypothesis that the emissions of the RRHs need not to be synchronized but they share a

common global clock, useful for coordination of their emissions.

Let A be an assignment of a routed network N = (R,B, ω). Let us denote by [r,u]P,τ ,

the set of tics used by a datagram on the route r at vertex u in a period P , that is

[r,u]P,τ = {t(r,u) + i mod P | 0 ≤ i < τ}. This set of tics depends on A, but A is omitted

in the notation, since it is always clear from the context. Let us consider two routes r1 and

r2, they have a collision at the contention point u if and only if [r1,u]P,τ ∩ [r2,u]P,τ 6= ∅.
The assignment A is said to be valid if, for all contention points u and routes r1 and r2

containing u, r1 and r2 have no collision at u. The validity of an assignment depends

on P the period and τ the size of the datagrams, thus we say that A is a valid (P,τ)-

assignment. When P and τ are clear from the context, we denote [r,u]P,τ by [r,u] and

say that A is a valid assignment.

Figure 2.3 illustrates two valid periodic assignments for di�erent values of P and τ ,

but the same network. The three routes are depicted by three di�erent colors. If we let

P = 2 and τ = 1, then there is a (2,1)-periodic valid assignment with waiting times zero

by taking 0 as o�set for each route. However, for the same routed network but P = 5 and

τ = 2, there is no solution to the problem with waiting times zero. If we allow 1 tic of

waiting time for one route, we can build the valid assignment A′(r1) = (0,0), A′(r2) = (2,1),

A′(r3) = (0,0)..

2.1.4 Periodic Assignment for Low Latency

The period P , as well as the size of a datagram τ are �xed in our C-RAN settings, but

not the bu�ering policy. Hence, the aim of this section is to �nd a valid assignment which

minimizes the worst latency of the transmissions over the network, that is TR(A). We

denote by mintra the problem of �nding the minimal value of TR(A), for a given period,

datagram size and routed network. For simpler hardness proofs and easier reductions, we
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Figure 2.3 � A routed network with A(r1) = (0,0), A(r2) = (0,0), A(r3) = (0,0) as a
(2,1)-periodic valid assignment and A′(r1) = (0,0), A′(r2) = (2,1), A′(r3) = (0,0) as a
(5,2)-periodic valid assignment

study the decision version of mintra, that we call pall for Periodic Assignment for Low

Latency. Each route must respect a time limit called a deadline. These limits are encoded

in a deadline function d, which maps to each route r an integer such that TR(r,A) must

be less than d(r). We de�ne the margin of a route r in a routed network N with deadline

function d as d(r) − λ(r). The margin is a bound on the waiting of a route in a valid

assignment.

Periodic Assignment for Low Latency

Input: A routed network N , the integers P , τ and a deadline function d.

Question: Does there exist a (P,τ)-periodic assignment of N such that for all r ∈ R,
TR(r,A) ≤ d(r)?

In the next section, this problem is proved to be NP-hard. In Chapter 4, we propose

heuristics solving the search version of pall (computing a valid assignment), also denoted

by pall for simplicity. In the de�nition of pall, we have chosen to bound the transmission

time of each route, in particular we can control the worst case latency. It is justi�ed by

our C-RAN application with hard constraints on the latency.

We say that an assignment is bu�erless when the waiting time of all routes are zero.

The assignment can then be seen as a function from the routes to the integers (the value of

the o�set, the waiting time is omitted). We consider a restricted version of pall, requiring

to �nd a bu�erless assignment and studied in Chapter 3. This is equivalent to using the

deadline function d(r) = λ(r), that is the transmission time must be equal to the size of the

route, which implies wr = 0 for all r ∈ R. This problem is called Periodic Assignment for

Zero Latency and is denoted by pazl. Studying pazl is simpler: in an instance, there is no

need to precise B in the routed network nor the deadline function and a solution is just an

o�set for each route. Moreover, a solution to pazl is more e�cient when implemented in

real telecommunication networks, since we do not need to deal with any contention bu�er
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at all. A switch taking full advantage of the absence of bu�er is presented in Chapter 7.

An unusual property of assignments is that given a routed network and a deadline, we

may have a (P,τ)-periodic assignment but no (P ′,τ)-periodic assignment with P ′ > P : the

existence of an assignment is not monotone with regard to P .

Proposition 1. For any odd P , there is a routed network with a (2,1)-periodic bu�erless

assignment but no (P,1)-periodic bu�erless assignment.

Proof. Let us build N , a generalization of the routed network given in Figure 2.3. Let n

be an integer, the vertices of the routes are vi,j , v1i and v2i , with 0 ≤ i < j < n. There

are n routes denoted by ri, for i ∈ [n]. The route ri is equal to (v1i ,vi,1, . . . ,vi,n−1,v
2
i ). The

weights of the arcs are set so that λ(ri, vi,j) − λ(rj ,vi,j) = P , where P is an odd number

smaller than n. It is always possible by choosing appropriate values for ω(ri,vi,j−1) and

ω(rj ,vi−1,j). In such a graph, there is no (P,τ)-periodic assignment with zero waiting time,

since the problem reduces to �nding a P -coloring in a complete graph with n > P vertices,

the colors being the o�sets of the routes.

If we consider a period of 2, for all i 6= j, λ(ri, vi,j)− λ(rj , vi,j) mod 2 = 1, hence two

datagrams of same o�set and size 1 do not have a collision at vi,j . Therefore, the bu�erless

assignment de�ned by A(ri) = 0 for all i ∈ [n] is a valid (2,1)-periodic assignment of N .

Let us introduce a few parameters quantifying the complexity of a routed network.

The contention depth of a routed network is the size of the longest route (number of

arcs) of the network minus one. It is the number of contention points on the route with

the most vertices on the network, since the �rst and the last vertex are private to the

route. The width of a vertex is the number of routes which contains it, equivalently its

indegree and its outdegree. By de�nition, the �rst and last vertex of a route are of width

1, while all other vertices are of width at least 2 (otherwise they can be removed). The

contention width of a routed network is the maximal width of its vertices. Remark that

a (P,τ)-periodic assignment of a routed network must satisfy that P/τ is larger or equal

to the contention width. Now, let us �x P and τ , for a given vertex of contention width c,

we de�ne its load as cτ/P . It represents the proportion of the period used by datagrams

at this contention point. The load of the routed network is the maximum of the loads

of its vertices. A routed network must have a load less or equal to one to admit a valid

assignment.
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Figure 2.4 � Left, a physical fronthaul network and right, the star routed network modeling
a round trip in the fronthaul network. The computation time in the BBU is given in red.

2.1.5 The Star Routed Network

In this section, we de�ne a family of simple routed networks modeling a Multipoint-to-

Multipoint fronthaul (see �gure 2.4), which has been designed for C-RAN [13]. Let N =

(R,B, ω) be a routed network, we say it is a star routed network if and only if the routes

are {r0, . . . ,rn−1}, ri is (si,c1,c2,ti) and B = {c2} (datagrams can wait in c2). Star routed

networks have contention depth two but a maximal contention width of n. The load on

each of the two contention points is thus nτ/P .

The fronthaul network we model with star routed network has a single shared link,

which connects all RRHs at one end and all BBUs at the other end. The links are all full-

duplex, meaning that the datagrams going from RRHs to BBUs do not interact with those

going in the other direction. This property does not need to be enforced in our theoretical

modeling, but it matches real fronthaul network and we will use such examples for our

experiments. The two contention points c1 and c2 model the beginning of the shared link

(used to go from the RRHs to the BBUs) and the other end of the shared link (used in the

other direction). The computation in the BBU of an answer to a datagram on the route r

takes some time. In the star routed network, this time is encoded in the weight of the arc

between c1 and c2 in r. The weight ω(r,c1) is the time needed to go through the shared

link, then to arrive at the BBU, plus the computation time and the time to return to the

shared link, see Figure 2.4.

Star routed network may seem simplistic, but every network in which all routes share

an arc and satisfy a coherent routing condition can be modeled by a star routed network.

It is common in fronthaul networks, since often all the BBUs are located in the same data-

center. In such a situation, we can see the weights of the arcs (c1,c2) either as all equals

(in that case pazl is trivial, see Chapter 3) or di�erent due to the structure of the network

inside the data-center and the various hardwares used for the BBUs.

When solving pall or pazl on a star routed network, a period, a datagram size and a
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Figure 2.5 � Transformation by the proof of Proposition 2 of the star routed network of
Figure 2.4 to its canonical form, initially with τ = 1, P = 5, d1 = 30, d2 = 34, d3 = 32.

deadline function are also given. When the period is �xed, we modify the deadline function

to do several simplifying assumptions on the parameters of the star routed network without

loss of generality. We say that a star routed network is canonical, for a period P , if the

weights of the arcs between c1 and c2 are in [P ] and the others are equal to zero. Hence,

λ(ri), the length of a route is equal to the length of its arc (c1,c2). Moreover, λ(r0) = 0.

See Figure 2.5 for an example of the canonical star routed network of Figure 2.4.

Proposition 2. Let I = (N,P, τ, d), with N = (R,B, ω) a star routed network, then there

is I ′ = (N ′, P, τ, d′), with N ′ = (R,B, ω′) a canonical star routed network, such that:

I ∈ pall⇔ I ′ ∈ pall and I ∈ pazl⇔ I ′ ∈ pazl

Proof. Let us de�ne ω′ and d′ from ω and d in such a way that there is a bijection between

valid assignments of I and I ′, which proves the proposition. In this bijection, the o�sets

oi for an assignment of I will be mapped to o′i, while the waiting times remain the same.

The routed network N ′ is equal to N except for the weight function ω′. We set the
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weights of the arcs (si,c1) to zero in N ′. We obtain the bijection between valid assignments

of I and I ′ by setting o′i + ω(ri,si) = oi and d′(ri) = d(i)− ω(ri,si). The weights ω′(ri,c2)

are also set to 0, it does not change the possible collisions for an assignment but it changes

the transmission time, hence we set d′(ri) = d′(ri) − ω(ri,c2) to preserve the bijection

between valid assignments of I and I ′.

We let ω′(ri,c1) = ω(ri,c1) mod P . Again, it does not change the collisions since

computing a possible collision is done modulo P . However, we must change d′ to be

d′(ri) = d′(ri)− ω(ri,c1) + ω′(ri,c1).

Finally, we assume w.l.o.g. that ω′(r0,c1) is the smallest weight among the weights of

the arcs (c1,c2). We let ω′(ri,c1) = ω′(ri,c1)− ω′(r0,c1), which implies that ω′(r0,c1) = 0.

All weights of arcs (c1,c2) are changed by the same value, hence collisions are not modi�ed.

We change d′(ri) to d′(ri) − ω′(r0,c1) for all i so that the constraint on the deadline stay

the same.

From now on, we may assume that a star routed network is canonical, using Propo-

sition 2. To give a instance of pall where the routed network is a canonical star routed

network, it is enough to give the weights of the arcs (c1,c2) for all routes, the period, the

datagram size, and d the deadline function.

Chapter 3 focuses on solving pazl on star routed network. Chapter 4 will focus on

solving pall on such topologies.

2.2 Hardness of PALL and PAZL

We show in this section that pall is NP-hard by proving NP-hardness for a restricted

version: pazl with τ = 1. We give two proofs that pazl is NP-complete. The �rst proof

works even for contention depth two, but not for star routed networks. For contention

depth one, the problem is trivial: either the load is less than one and there is a valid

bu�erless assignment or there is no valid assignment. The second proof works for graphs

with contention width 2: the con�icts are locally very simple, but the problem is complex

globally nonetheless. Solving pall is trivial on trees because they can be reduced to one

vertex of contention depth one. Thus, it may be interesting to study the complexity of pall

on bounded treewidth (or dagwidth) networks, a common property of real networks [44].

Theorem 1. pazl is NP-complete on the class of routed networks with contention depth

2.
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Proof. pazl is in NP since given an o�set for each route in an assignment, it is easy to

check whether there are collisions, in linear time in the routed network's size.

Let H = (V,E) be an undirected graph and let P be its maximum degree. We consider

the problem to determine whether H is arc-colorable with P or P + 1 colors. The arc

coloring problem is NP-hard [45] and we reduce it to pazl to prove its NP-hardness. To

do that, we de�ne from H a routed network N = (R, ω) as follows.

Let us choose an arbitrary total order < on V . For each edge (u,v) ∈ E, if u < v, there

is a route su,v,u,v,tu,v in R. All these arcs are of weight 0. Note that, N is of contention

depth 2, as required by the theorem statement.

The existence of a P -coloring of H is equivalent to the existence of a (P,1)-periodic

bu�erless assignment of N . Indeed, a P -coloring of H can be seen as a labeling of its

edges by the integers in [P ]. It induces a bijection between P -colorings of H and o�sets

of the routes of R, which represent the edges of H. Having no collision on some vertex v

implies that all o�sets of routes going through v are di�erent, since all arcs are of weight

0. Hence, edges of H incident to v, colored by the o�sets of a valid assignment are all

of distinct colors. Therefore we have reduced arc coloring to pazl by a polynomial time

transformation which concludes the proof.

Remark that we have used weights of zero for all arcs in the proof. It is a further

restriction to the class of graphs for which pazl is NP-hard. We could ask the weights

to be strictly positive, another possible restriction which makes more sense in our model,

since weights represent the delay of physical links. Then, we can prove NP-completeness

using the same proof, by setting all weights to the period P .

We now give a hardness proof for routed networks with contention width two but large

contention depth. Note that a vertex of contention depth one does not induce a collision

and can be removed from the routed network without loss of generality. The presented

reduction can be used to prove an inapproximability result. Let minpazl be the following

problem: given a routed network and τ , �nd the minimal period P such that there is a

(P,τ)-periodic bu�erless assignment (a positive instance of pazl).

Theorem 2. If P 6= NP, the problem minpazl on the class of routed networks of contention

width two cannot be approximated in polynomial time within a factor n1−o(1) where n is

the number of routes.

Proof. We reduce the problem of �nding the minimal vertex coloring of a graph to minpazl.
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Let H = (U,E) be a graph, an instance of the problem of �nding a minimal vertex coloring.

We de�ne the routed network N from H as in Proposition 1.

Let < be an arbitrary total order on U . The vertices of N are in the set {vu,w | (u,w) ∈
E} ∪ {u1, u2 | u ∈ U}. For each vertex u in H, there is a route ru in R, whose �rst and
last vertices are u1 and u2. In between, the route contains all vertices vu,w, following the

order < on the w. The weights of all arcs is zero. By construction, a contention vertex

corresponds to an edge and belongs to exactly two routes representing the vertices of the

edge, thus N is of contention width 2. This reduction is illustrated in Figure 2.6.

The existence of a P -coloring of H is equivalent to the existence of a (P,1)-periodic

assignment of N without waiting time: the o�set of a route can be identi�ed with the color

of the corresponding vertex. Indeed, since all weights are zero, the absence of collision at

contention point vu,w is equivalent to the fact that the o�sets of ru and rw are di�erent

and reciprocally.

Therefore, if we can approximate the minimum value of P within some factor such that

there is a (P,1)-periodic assignment, we could approximate the minimal number of colors

needed to color a graph within the same factor. The proof follows from the hardness of

approximability of �nding a minimal vertex coloring [46].

w1

v1

u1

w2

v2

u2

u

v

w →

H N

Figure 2.6 � Reduction from vertex coloring to minpazl

The previous theorem implies that pazl is NP-complete on the class of routed networks

with contention width two. This also underlines the fact that, for general graphs, the best

P such that there is a (P,τ)-periodic assignment may correspond to a very small load. We

can build on the reduction of the previous theorem to prove that mintra, the problem of

minimizing TR(A), is hard to approximate too.

Theorem 3. If P 6= NP, the problem mintra, on graphs of contention width two, cannot

be approximated in polynomial time within a factor n1−o(1) where n is the number of routes.

Proof. We reduce the problem of �nding the minimal vertex coloring of a graph to mintra.
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Let H = (U,E) be a graph, instance of the problem of �nding a minimal vertex coloring.

We de�ne the routed network N in two steps.

Let the elements of U be u0, . . . , un−1. There are n routes in N , denoted by ri for

i ∈ [n]. In their �rst part, they go from u0i to u
1
i , through some vertices in {vi,j,k}i,j,k∈[n]

that we later de�ne. Moreover, u1i ∈ B, that is the waiting time is added at u1i . Assume

that ri has o�set oi and rj has o�set oj and let us �x the datagram size to 1 and the period

to n. If ri and ri go through some vertex vi,j,k, and λ(ri,vi,j,k) = λ(rj ,vi,j,k) + k, then to

avoid a collision, the equation oi 6= oj +k mod n must be satis�ed. If ri and rj go through

vi,j,k satisfying the previous constraints for all k 6= l, it implies oi = oj + l mod n. It is

easy to choose the weights of the two arcs going to vi,j,k to realize the previous condition,

whatever the choice of weights of the previous arcs of the routes ri and rj .

We ensure, using the vertices vi,j,k for k 6= i− j, that oi = oj + i− j mod n. It implies

that there is some o, such that o = oi − i mod n for all i ∈ [n]. Now, for each route ri,

we set the weight of the arc going to v1i , from the last vertex of the form vi,j,k in ri, to be

n − i. With this construction, we have ensured, that the datagram of ri arrives at v1i at

time o modulo n, for all i ∈ [n].

The second part of the routes, from v1i to v
2
i is built exactly as in the proof of Theorem 2.

Hence, the waiting time in the vertices v1i plays the exact same role as the o�set in the

graph of Theorem 2: the valid (n,1)-assignments are in bijection with colorings of H, the

waiting times corresponding to the colors.

Finally, set the weights of the last arc going to v2i , for all i ∈ [n], such that, for all

i,j ∈ [n]2, λ(ri) = λ(rj). Since all routes are of the same size, TR(A) is equal to the

maximal waiting time of A. Hence, the maximum waiting time is equal to the number

of di�erent waiting times required to have a valid assignment. A valid (n,1)-assignment

which minimizes TR(A) is in bijection with a minimal proper coloring of H, which proves

the theorem.

We would like to prove hardness for even more restricted networks, in particular star

routed networks. The problem pazl on star routed networks is similar to the minimization

of makespan in a two �ow-shop with delays (see Section 4.4), a problem known to be NP-

complete [37]. It suggests that pazl is NP-complete on star routed network, however we

have not been able to prove it yet, because the makespan cannot easily be encoded in pazl.

If we relax the de�nition of routed network by allowing loops, we can model a network with
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a single half-duplex shared link, that is collisions can happen between datagrams going in

both directions. This variant can be shown to be NP-complete by a reduction from the

subset sum problem, as it is done for a similar problem of scheduling pair of tasks [47].

Conclusion

We model C-RAN networks by weighted directed acyclic multigraphs called routed net-

works. The process we study is Periodic. Datagrams are sent by the sources of the routes

at every period. Once a datagram have been sent, it can be bu�ered in only one contention

point of the network. The solutions to this problem are called periodic assignments and

are a choice of o�set and waiting time (on one contention point) for all datagrams such

that there are no collisions between them. An assignment is computed for one period, and

repeated all over the time for every period. The value of an assignment A is denoted by

TR(A) and corresponds to the largest value on all routes of the time elapsed between the

sending of a datagram and the reception of the answer in the RRH. We also introduce the

simplest non trivial topology: the star routed networks in which every route shares the

same two contention vertices.

We introduce the problem pall of �nding an assignment respecting a given constraint

on the latency of each route. We also give its variant pazl, where the constraint are as

strong as possible: the assignment must use no waiting time. We showed that pazl and

pall are NP-Hard, even for routed network of small contention depth or contention width,

using reductions to arc and vertex coloring problems.





Chapter 3

Scheduling Unsynchronized Periodic

Datagrams without Bu�er

This chapter corresponds to two articles: Section 3 of [41] and all of [48].

In this chapter, we propose algorithm to solve the problem pazl on star routed networks,

a problem denoted by PMA for Periodic Message Assignment in [48]. In this context,

once a datagram has been emitted, no bu�ering is allowed in the network for contention.

Remark that, if some bu�ering is necessary for dealing with some technical di�culty,

but its duration is deterministic, it can be encoded into the length of the links. The

bu�erless assignment we design may allow to design completely bu�erless networks, using

full optical networks or new generation of networks mentionned in Chapter 7, which provide

transparent transmission of data without latency inducing opto-electronic conversion or

forwarding computations.

In the problem pazl (and also in the problem pall studied in Chapter 4), the datagram

emissions are not synchronized. This means the sources don't send the datagram at the

same time in the period. This is why we can choose the o�set on the period without

adding latency to the datagram. Such a problem does not perfectly match with C-RAN in

actual 5G, but can be used in many other applications in which the sources do not need

to be synchronized (industry 4.0, monitoring, sensor network, multicore over a bus, two

processors scheduling, . . . ). Moreover, we hope that future evolutions of the 5G standard

will allow to use unsynchronized antennas.

Since pazl is a more constrained problem than pall, we simplify the notations. No

bu�ering is allowed, hence the notion of deadline on each route is not relevant anymore

because all datagrams have the smallest possible process time, if there is a solution. Thus,

an instance of pazl can be given, for each route i, by the length of the arc (c1,c2) on ri,

that is ω(ri,c1), denoted in this chapter by δi and called delay. A datagram is emitted an
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in�nite number of times periodically, hence it is enough to consider any interval of P units

of time to completely represent the state of our system by giving the times, in this interval,

at which each datagram goes through the two contention points. We call the representation

of an interval of P units of time in the �rst contention point the �rst period and the

second period for the second contention point.

Recall that an o�set of a datagram is a choice of time at which it arrives at the �rst

contention point (i.e. in the �rst period). Let us consider a datagram i of o�set oi, it

uses the interval of time [i]1 = {(oi + t) mod P | 0 ≤ t < τ} in the �rst period and

[i]2 = {(di + oi + t) mod P | 0 ≤ t < τ} in the second period. Two datagrams i and j

collide if either [i]1 ∩ [j]1 6= ∅ or [i]2 ∩ [j]2 6= ∅. If t ∈ [i]1 (resp. t ∈ [i]2), we say that

datagram i uses time t in the �rst period (resp. in the second period). An assignment is

a function from the datagrams to their o�sets, such that there is no collision.

The complexity of pazl on star routed networks is yet unknown. We prove in this

chapter that, when parameterized by n the number of datagrams, the problem is FPT. On

a slight generalization of the star routed network, with more contention points, but each

datagram only going through two of them, pazl is NP-hard, see Theorem 1. When the

shared link is not full-duplex, that is, there is a single contention point and each datagram

goes through it twice, we can encode the same non periodic problem, which is NP-hard [47].

Hence, we conjecture that pazl is NP-hard.

To overcome the supposed hardness of pazl, we study it when the load of the system is

small enough, which is de�ned here as the number of units of time used in a period by all

datagrams divided by the period that is nτ/P . There cannot be an assignment when the

load is larger than one; we prove in this chapter that, for moderate loads, there is

always an assignment and that it can be found by a polynomial time algorithm.

When an algorithm �nds an assignment to the problem pazl, for any input in some set,

we say it solves pazl positively on the set of inputs. This kind of result is very helpful

when solving the following optimization version of pazl: given a set of datagrams, �nd the

largest subset which admits an assignment. A weighted version, where the datagrams have

di�erent size can also be considered. An optimal solution to the optimization problem is a

set of datagrams corresponding to a load of at most 1. Assume we have an algorithm that

always �nds an assignment for an instance of load λ. Then, such an algorithm �nds an

assignment for any subset of load λ and is an approximation algorithm for the optimization

problem with approximation ratio λ.
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The chapter is composed of two parts. In Section 3.1, we study the case in which the

size of the datagrams is unconstrained. This covers the use cases previously mentioned.

Section 3.2 focuses on datagrams of size τ = 1 and we also provide methods to convert the

general problem to datagrams of size 1, at the cost of additional latency or load. Several

algorithms solving the case τ = 1 are proposed and analyzed.

3.1 Greedy Algorithms for Large Datagrams

In this section, we study the case of arbitrary values for τ . When modeling real problems,

it is relevant to have τ > 1 when the transmission time of a single datagram is large with

regard to its delay, which is the case in C-RAN networks.

A partial assignment A is a function de�ned from a subset S of [n] to [P ]. The

cardinal of S is the size of partial assignment A. A datagram in S is scheduled (by A),

and a datagram not in S is unscheduled. We only consider partial assignments such that

no pair of datagrams of S collide. If A has domain S, and i /∈ S, we de�ne the extension of

A to the datagram i by the o�set o, denoted by A[i→ o], as A on S and A[i→ o](i) = o.

We give several simple heuristics and an exact �xed parameter tractable algorithm,

in time exponential in the number of datagrams only. All presented algorithms except

Exhaustive Search of Compact Assignments build an assignment incrementally, by grow-

ing the size of a partial assignment. Moreover, algorithms of this section are greedy : once

an o�set is chosen for a datagram, it is never changed.

In the rest of the chapter, we sometimes compare the relative position of datagrams,

but one should remember that the time is periodic and these are relative positions on a

circle of size P . Moreover, when it is unimportant and can hinder comprehension, we may

omit to write mod P in some de�nitions and computations.

We show in the experiments of Section 3.1.6, that pazl can be very often solved posi-

tively, in particular for short routes and when the load is moderate.

3.1.1 Shortest-Longest policy

We �rst present a simple policy, which works when the period is large with regard to the

lengths of the routes. More generally, it works when the length of the routes modulo the

period are close. The algorithm is called ShortestLongest: it sends datagrams on the

shared link from the route with the smallest delay (i.e the shortest arc (c1,c2)) to the



40

Chapter 3. Scheduling Unsynchronized Periodic Datagrams without

Bu�er

largest (i.e. the longest one). There is no idle time in the �rst period, i.e. a datagram goes

through c1 right after the previous one has left c1.

Proposition 3. Assuming the datagrams are ordered by increasing delay and nτ + δn−1−
δ0 ≤ P , then then ShortestLongest solves pazl positively in time O(n log(n)).

Proof. Let us de�ne the assignment A(i) = iτ . Since nτ + δn−1 − δ0 ≤ P and δn−1 ≥ δ0,

we have nτ ≤ P . Hence, there is no collision in the �rst period.

The delays are sorted so that for all i, δi ≤ δi+1. We can also assume, without loss

of generality that δ0 = 0. The interval of time used by i in the second period is [i]2 =

{(δi + A(i) + t) mod P | 0 ≤ t < τ}. By hypothesis, and because the delays are in

increasing order, we have for all i ≤ n, nτ + δi ≤ P . Hence, [i]2 = [δi + iτ, δi + (i + 1)τ [.

Since the delays are in increasing order, δi+(i+1)τ ≤ δi+1+(i+1)τ , then [i]2∩ [i+1]2 = ∅
and we have proved that the assignment A does not induce any collision. The complexity

of the algorithm is dominated by the sorting of the delays in O(n log(n)).

If the period is slightly smaller that the bound of Proposition 3, there is a collision of

datagram n − 1 with datagram 0 in the �rst period. Hence, this policy is not useful as a

heuristic for longer routes, as con�rmed by the experimental results of Section 3.1.6.

3.1.2 First Fit

Consider some partial assignment A, the datagram i uses all times from A(i) to A(i)+τ−1

in the �rst period. If a datagram j is scheduled by A, with A(j) < A(i), then the last time

it uses in the �rst period is A(j)+ τ −1 and it should be less than A(i), which implies that

A(j) ≤ A(i) − τ . Symmetrically, if A(j) > A(i), to avoid collision between datagrams j

and i, we have A(j) ≥ A(i) + τ . Hence, datagram i forbids the interval ]A(i)− τ,A(i) + τ [

as o�sets for datagrams still not scheduled because of its use of time in the �rst period.

The same reasoning shows that 2τ − 1 o�sets are also forbidden because of the times used

in the second period. Hence, if |S| datagrams are already scheduled, then |S|(4τ − 2)

o�sets are forbidden for any unscheduled datagram. It is an upper bound on the number

of forbidden o�sets, since the same o�set can be forbidden twice because of a datagram on

the �rst and on the second period.

Let Fo(A) be the maximum number of forbidden o�sets when extending A. Formally,

assume A is de�ned over S and i /∈ S, Fo(A) is the maximum over all possible values of



3.1. Greedy Algorithms for Large Datagrams 41

i of | {o ∈ [P ] | A[i→ o] has no collision} |. The previous paragraph shows that Fo(A) is

always bounded by (4τ − 2)|S|.
Let First Fit be the following algorithm: for each unscheduled datagram (in the order

they are given), it tests all o�sets from 0 to P − 1 until one does not create a collision

with the current assignment and use it to extend the assignment. If Fo(A) < P , then

whatever the delay of the route we want to extend A with, there is an o�set to do so.

Since Fo(A) ≤ (4τ − 2)|S| and |S| < n, First Fit (or any greedy algorithm) will always

succeed when (4τ − 2)n ≤ P , that is when the load nτ/P is less than 1/4. It turns out

that First Fit always creates compact assignments (as de�ned in Proposition 4), that is

a datagram is always next to another one in one of the two periods. Hence, we can prove a

better bound on Fo(A), when A is built by First Fit, as stated in the following theorem.

Theorem 4. First Fit solves pazl positively on instances of load less than 1/3.

Proof. We show by induction on the size of S, that Fo(A) ≤ |S|(3τ − 1) + τ − 1. For

S = 1, it is clear since a single datagram forbid at most (3τ − 1) + τ − 1 = 4τ − 2 o�sets,

as explained before. Now, assume Fo(A) ≤ |S|(3τ − 1) + τ − 1 and consider a route i /∈ S
such that First Fit builds A[i→ o] from A. By de�nition of First Fit, if choosing o−1

as o�set creates a collision (W.l.o.g. say this is a collision in the �rst period), it means

that there is a scheduled datagram between o − τ and o − 1, hence all these o�sets are

forbidden by A. The same o�sets are also forbidden by the choice of o as o�set for i, then

only 3τ − 1 new o�sets are forbidden, that is Fo(A[i → o]) ≤ Fo(A) + (3τ − 1), which

proves the induction and the theorem.

3.1.3 Meta-O�set

We propose an alternative greedy algorithm to build a bu�erless assignment, which intro-

duce the notion of meta-o�set used for next algorithms and always �nds an assignment

when the load is less than 1/3. The idea is to restrict the possible o�sets which can be cho-

sen for the datagrams. It seems counter-intuitive, since it decreases arti�cially the number

of available o�sets to schedule new datagrams. However, it allows reducing the number of

forbidden o�sets for unscheduled datagrams. A meta-o�set is an o�set of value iτ , with

i an integer from 0 to P/τ . We call MetaOffset the greedy algorithm which works as fol-

lows: for each datagram, in the order they are given, it tries all meta-o�sets from 0 to P/τ

as o�set for the assignment until one does not create a collision with the current partial
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assignment. Note that MetaOffset works as First Fit, but consider only meta-o�sets

when scheduling datagrams. It is also equivalent to ShortestLongest when the delays are

sorted in increasing order and that the conditions of Proposition 3 are satis�ed.

Let Fmo(A) be the maximal number of meta-o�sets forbidden by A when trying to

schedule any new datagram.

Theorem 5. MetaOffset solves pazl positively on star routed network and load less than

1/3. The assignment is found in time O(n2).

Proof. Let us prove that MetaOffset always schedules the n datagrams when the load is

less than 1/3. Let us consider A de�ned on the datagrams 0 to i − 1. Let us evaluate

Fmo(A), that is the number of values j, such that A[i→ jτ ] is a correct partial assignment

(using only meta-o�sets). Since i datagrams are scheduled by A, there are i meta-o�sets

which cannot be chosen to avoid collision in the �rst period. In the second period, the

set of τ consecutive tics used by a datagram forbid at most two meta o�sets, since the

datagrams are all of size τ , see Figure 3.1. Hence, there are at most 2i meta-o�sets

forbidden by collisions in the second period. We have proved that Fmo(A) ≤ 3i. There

is always a way to extend A into A[i → jτ ] for some j when there is more meta-o�sets

than forbidden meta-o�sets, that is Fmo(A) < P/τ . Hence, MetaOffset terminates and

provides a valid bu�erless assignment as soon as P/τ > 3(n − 1), which can be rewritten

(n− 1)τ/P > 1/3: the load is larger than 1/3.

This algorithm works in time O(n2), since for the i-th datagram we schedule, we have

to try at most 3i meta-o�sets before �nding a correct one. We can test whether these 3i

o�sets cause a collision in the second period in time O(i) by maintaining an ordered list of

intervals of tics in the second period used by already scheduled datagram.

This algorithm, contrarily to the previous one, may work well, even for loads higher

than 1/3. In fact, experimental data in Section 3.1.6 suggest that the algorithm �nds a

solution when the load is less than 1/2.

A naive implementation of MetaOffset is in O(nP/τ), while First Fit is in O(nP ).

However, it is not useful to consider every possible (meta-)o�set at each step. By maintain-

ing a list of positions of scheduled datagrams in �rst and second period, both algorithms

can be implemented in O(n2) (n is the number of routes).
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At least 3n − 3i possible free positions

Second period

First period

?

3n − i free meta-offsets

Figure 3.1 � Meta o�sets used in the �rst and second period, when scheduling the i+ 1th

datagram in MetaOffset. There is already 3 datagram in S (in red, blue and green), and
the meta o�sets available for the yellow datagram are represented in grey.

3.1.4 Compact Tuples

We present in this section a family of greedy algorithms which solve pazl positively for

larger loads. We try to combine the good properties of the two previous algorithms: the

compactness of the assignments produced by First Fit and the absence of collision in

the �rst period of MetaOffset. The idea is to schedule several datagrams at once, using

meta-o�sets, to maximize the compactness of the obtained solution. We �rst describe the

algorithm which schedules pairs of datagrams and then explain quickly how to extend it

to any tuples of datagrams.

We now introduce Lemma 6 to assume P = mτ and we use it until the end of the

section. This hypothesis makes the analysis of algorithms based on meta-o�sets simpler

and tighter. The load increases from λ = nτ/P to at most λ(1+1/m): the di�erence is less

than 1/m < 1/n, thus very small for most instances. The transformation of Lemma 6 does

not give a bijection between assignments of both instances but only an injection, which is

enough for our purpose.

Lemma 6. Let I be an instance of pazl with n datagrams of size τ , period P and m =

P/τ . There is an instance I ′ with n datagrams of size τ ′ and period P ′ = mτ ′ such that

any assignment of I ′ can be transformed into an assignment of I in polynomial time.

Proof. Fig. 3.2 illustrates the reductions we de�ne in this proof on a small instance. Let

P = mτ + r with r ≤ τ . We de�ne the instance I ′ as follows: P ′ = mP , δ′i = mδi

and τ ′ = mτ + r. With this choice, we have P ′ = m(mτ + r) = mτ ′. Consider an

assignment A′ of the instance I ′. If we let τ ′′ = mτ , then A′ is also an assignment for
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I = (P, τ, (δ0, δ1))

P = 5

m = 2
r = 1

τ = 2
d0 = 1
d1 = 6

I ′ = (P ′, τ ′, (δ′0, δ
′
1))

P ′ = 10
τ = 5
d0 = 2
d1 = 12

I ′′ = (P ′, τ ′′, (δ′0, δ
′
1))

P ′ = 10
τ” = 4
d0 = 2
d1 = 12

A′

A′′

A

Message size reduction

Compactification

Division of all parameters by m

Figure 3.2 � Transformation from A′′ to A

I ′′ = (P ′,τ ′′,(δ′0, . . . ,δ
′
n−1)). Indeed, the size of each datagram, thus the intervals of time

used in the �rst and second period begin at the same position but are shorter, which cannot

create collisions. We then use a compacti�cation procedure on A′ seen as an assignment of

I ′′, with size of datagrams multiple of m (see Proposition 4 for a similar compacti�cation).

W.l.o.g., the �rst datagram is positioned at o�set zero. The �rst time it uses in the second

period is a multiple of m since its delay is by construction a multiple of m. Then, all other

datagrams are translated to the left by removing increasing values to their o�sets, until

there is a collision. It guarantees that some datagram j is in contact with the �rst one on

the �rst or second period. It implies that either A′(j) or A′(j) + δj mod P ′ is a multiple

of m and since δj is a multiple of m, then both A′(j) and A′(j) + δj mod P ′ are multiples

of m. This procedure can be repeated until we get an assignment A′′ to I ′′, such that all

positions of datagrams in the �rst and second period are multiples of m. Finally, we de�ne

A as A(i) = A′′(i)/m and we obtain an assignment of I.

We are interested in the remainder modulo τ of the delays, let δi = δ′iτ + ri be the

Euclidean division of δi by τ . We assume, from now on, that datagrams are sorted by

increasing ri. A Compact pair, as shown in Fig. 3.3 is a pair of datagrams (i,j) with

i < j that can be scheduled using meta-o�sets such that A(i) + (δ′i + 1)τ = A(j) + δ′jτ , i.e.
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j is positioned less than τ unit of times after i in the second period. The gap between i

and j is de�ned as g = δ′i + 1− δ′j mod m, it is the distance in meta o�sets between i and

j in the �rst period. By de�nition, we can make a compact pair out of i and j, if and only

if their gap is not zero.

First period Second period

Gap = 3 r0 r1 − r0 > 0

Figure 3.3 � A compact pair scheduled using meta-o�sets, with d′0 = 2 and d′0 = 0

Lemma 7. Given three datagrams of delay δ1, δ2 and δ3, two of them form a compact

pair.

Proof. If the �rst two datagrams or the �rst and the third datagram form a compact pair,

then we are done. If not, then by de�nition δ′1 = 1 + δ′2 = 1 + δ′3. Hence, datagrams 2 and

3 have the same delay and form a compact pair of gap 1.

Let Compact Pairs be the following greedy algorithm: From the datagrams in order of

increasing ri, a sequence of at least n/3 compact pairs is built using Lemma 7. Pairs are

scheduled in the order they have been built using meta-o�sets. If at some point all compact

pairs are scheduled or the current one cannot be scheduled, the remaining datagrams are

scheduled as in MetaOffset. The analysis of Compact Pairs relies on the evaluation of

the number of forbidden meta-o�sets. In the �rst phase of Compact Pairs, one should

evaluate the number of forbidden o�sets when scheduling a compact pair, that we denote

by Fmo2(A). In the second phase, we need to evaluate Fmo(A). When scheduling a

datagram in the second phase, a scheduled compact pair only forbids three meta-o�sets in

the second period. If datagrams in a pair are scheduled independently, they forbid four

meta-o�sets, which explains the improvement from Compact Pairs. We �rst state a simple

lemma, whose proof can be read from Fig. 3.4, which allows bounding Fmo2(A).

Lemma 8. A compact pair already scheduled by Compact Pairs forbids at most four meta-

o�sets in the second period to another compact pair when scheduled by Compact Pairs.

Theorem 9. Compact Pairs solves pazl positively on instances of load less than 3/8.

Proof. Let n2 be the number of compact pairs scheduled in the �rst phase. When schedul-

ing a new pair, the position of the 2n2 datagrams on the �rst period forbid 4n2 o�sets for



46

Chapter 3. Scheduling Unsynchronized Periodic Datagrams without

Bu�er

Forbidden meta-offsets

Second period

Figure 3.4 � Meta o�sets forbidden by a scheduled compact pair (in blue) when scheduling
another compact pair (in red)

a compact pair. Indeed, each scheduled datagram can collide with each of the two data-

grams which form a compact pair. On the second period, we can use Lemma 8 to bound

the number of forbidden o�sets by 4n2. Hence, we have established that during the �rst

phase, the partial solution A satis�es Fmo2(A) ≤ 8n2. This �rst phase continues while

there are available o�sets for compact pairs, which is guaranteed when Fmo2(A) ≤ m,

that is while n2 ≤ m/8. Hence, we assume that n2 = m/8.

In the second phase, a compact pair forbids 3 meta o�sets in the second period and 2 in

the �rst. Hence, if we let n1 be the number of datagrams scheduled in the second phase to

build partial assignment A, we have Fmo(A) ≤ n2 ∗ 5 +n1 ∗ 3. Compact Pairs can always

schedule datagrams when Fmo(A) is less than m, which is implied by n2 ∗ 5 +n1 ∗ 3 ≤ m.

Solving this equation, we obtain that n1 ≥ m
8 thus the number of datagrams scheduled is

at least 2n2 + n1 ≥ 3
8m. Assuming there are exactly 3

8m datagrams to schedule, then 2m
8

datagrams are scheduled as compact pairs. It is two third of the 3
8m datagrams, hence

Lemma 7 guarantees the existence of enough compact pairs. Therefore, an assignment is

always produced when the load is less or equal to 3
8 .

Compact Pairs can be improved by forming compact tuples instead of compact pairs.

A compact k-tuple is a sequence of datagrams i1 < · · · < ik (with ri1 , . . . ,rik increasing),

for which meta-o�sets can be chosen so that, there is no collision, the datagrams in the

second period are in order i1, . . . ,ik and for all l, A(il) + (δ′il + 1)τ = A(il+1) + δ′il+1
τ . The

algorithm Compact k-tuples works by scheduling compact k-tuples using meta o�sets

while possible, then scheduling compact k − 1-tuples and so on until k = 1.

Lemma 10. Given k + k(k − 1)(2k − 1)/6 datagrams, k of them always form a compact

k-tuple and we can �nd them in polynomial time.

Proof. We prove the property by induction on k. We have already proved it for k = 2

in Lemma 7. Now assume that we have found C a compact (k − 1)-tuple in the �rst

(k − 1)3/3 datagrams. Consider the next (k − 1)2 + 1 datagrams. If k of them have the

same delay modulo τ , then they form a compact k-tuple and we are done. Otherwise,
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there are at least k di�erent values modulo τ in those (k − 1)2 + 1 datagrams. Each

element of the compact (k − 1)-tuple forbids one value for the delay modulo τ of a new

kth element in the tuple. By pigeonhole principle, one of the k datagrams with distinct

delays modulo τ can be used to extend C. We have built a compact k-tuple from at most

(k−1)+(k−1)(k−2)(2k−3)/6+(k−1)2+1 datagrams. It is equal to k+k(k−1)(2k−1)/6

which proves the induction.

Theorem 11. Compact 8-tuples always solves pazl positively on instances of load less

than 4/10, for instances with n ≥ 220.

Proof. We need the following fact, which generalizes Lemma 8: A k-tuples forbids k+j+1

o�sets in the second period when scheduling a j-tuple. It enables us to compute a lower

bound on the number of scheduled i-tuples for i equal k down to 1 by bounding Fmoi(A),

the number of forbidden meta-o�sets when placing i-tuple in the algorithm. If we denote

by ni the number of compact i-tuples scheduled by the algorithm, we have the following

equation:

Fmoi(A) ≤
k∑
j=i

nj(j ∗ i+ j + i+ 1).

The equation for n1 is slightly better:

Fmo(A) ≤
k∑
j=1

nj(2j + 1).

A bound on ni can be computed, using the fact that A can be extended while Fmoi(A) <

m. Lemma 10 ensures there are enough compact k-tuples, when n −∑j≤i≤8 nj is larger

than i + i(i − 1)(2i − 1)/6. A numerical computation of the ni's shows that Compact

8-tuples always �nds an assignment when the load is less than 4/10 and for n ≥ 220.

Th. 11 is obtained for k = 8. Taking arbitrary large k and using re�ned bounds on

Fmoi(A) is not enough to get an algorithm working for a load of 41/100 (and it only works

from larger n).

The code computing the ni can be found on [49]. To make Compact 8-tuples work,

there must be at least 220 datagrams to produce enough compact 8-tuples in the �rst

phase. It is not a strong restriction for two reasons. First, the bound of Lemma 10 can

be improved, using a smarter polynomial time algorithm to �nd compact tuples, which

better takes into account repetitions of values and compute the compact tuples in both
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directions. Second, on random instances, the probability that k datagrams do not form

a compact k-tuples is low, and we can just build the tuples greedily. Therefore, for most

instances, forming compact k-uples is not a problem and in practice Compact 8-tuples

works even for small n.

We describe here a last algorithm called Compact Fit, which is a simpler variant of the

previous one. The idea is, as for Compact Pairs, to combine the absence of collision on

the �rst period of MetaOffset and the compactness of assignments given by First Fit.

The datagrams are ordered by increasing remainder of delay modulo τ , and each datagram

is scheduled so that it extends an already scheduled compact tuples. In other words, it

is scheduled using meta o�sets, so that using one less as a meta-o�set for some datagram

creates a collision in the second period. If it is not possible to schedule the datagram in

that way, the �rst possible meta-o�set is chosen. This algorithm is designed to work well

on random instances. Indeed, it is easy to evaluate the average size of the created compact

tuples, and from that, to prove that Compact Fit works with high probability when the

load is strictly less than 1/2. Figure 3.5 shows how Compact Fit builds an assignment from

Delay (δi)

Message (i)

di mod τ

0 1 2 3

0

00

32

1 1

1

First Period

Second Period

Step 1 : 0

Step 2 :

0

0

0 1

1

Step 3 : 0

0 1

1

2

2

Step 4 : 0

0 1

1

2

2 3

33

Figure 3.5 � Execution of Compact Fit creating two compact pairs with P = 12 and τ = 2

a given instance. The datagrams are ordered by increasing remainder of delay modulo τ .

A compact pair is built with datagrams 0 and 1. Datagram 2 cannot increase the size of

the compact pair, it so creates a new tuple, completed by datagram 3.
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Figure 3.6 � Transformation of a bu�erless assignment A into a compact assignment A′,
following the process of Proposition 4

3.1.5 Compact Assignment

In this section, we show how every bu�erless assignment can be put into a canonical form.

We use that form to design an algorithm solving pazl in �xed parameter tractable time

(FPT), with parameter n the number of routes (for more on parametrized complexity

see [50]). This is justi�ed since n is small in practice, from 10 to 20 in our settings, and

the other parameters such as P , τ or the weights are large.

Let (R,ω) be a star routed network and let A be a bu�erless (P,τ)-periodic assignment.

We say that that A is compact if there is a route r0 ∈ R such that the following holds: for

all subsets S ⊂ R with r0 /∈ S, the bu�erless assignment A′, de�ned by A′(r) = A(r) − 1

mod P if r ∈ S and A(r) otherwise, is not valid. In other words, an assignment is compact

if for all routes r but one, A(r) cannot be reduced by one, that is either in the �rst or the

second period, there is a route r′ using the tics just before r. See Figure 3.6 for an example

of a compact assignment, obtained by the procedure of the next proposition.

Proposition 4. Let N = (R, ω) be a star routed network. If there is a (P,τ)-periodic

bu�erless assignment of N , then there is a compact (P,τ)-periodic assignment of N .

Proof. Consider A a (P,τ)-periodic bu�erless assignment of N . We describe an algorithm

which builds a sequence COMPi of sets of routes and a sequence Ai of valid bu�erless

assignments. For all i ≤ n, the set COMPi has cardinal i and satis�es COMPi−1 ⊂
COMPi.

Let r be an arbitrary route of R and A0 = A, we set COMP0 = ∅. For i = 1 to n,

we choose a route r, denoted by ri, as follows. Let Ai = Ai−1. While there is no collision,

for all routes r ∈ R \ COMPi−1, let Ai(r) = Ai(r) − 1. Then choose any route r in

R \ COMPi−1 such that setting Ai(r) = Ai(r) − 1 creates a collision and let ri = r. By

construction Ai is a valid bu�erless assignment, since it is modi�ed only when no collision

is created. We let COMPi = COMPi−1 ∪ {ri}.
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We prove by induction on i, that Ai is compact when restricted to COMPi. We have

|COMP1| = 1, hence A1 is compact over COMP1. Let us consider Ai, by induction

hypothesis, since the o�sets of routes in COMPi−1 are not modi�ed at step i of the

algorithm, A is compact when restricted to COMPi−1.

Consider S ⊆ COMPi which does not contain r0. If S contains an element of

COMPi−1, then S \ ri is not empty and by compacity we cannot decrement all o�sets

of S \ ri without creating a collision. The same property is true for S. If S = {ri}, then by

construction of ri by the algorithm, removing one from Ai(ri) creates a collision. Hence,

Ai is compact restricted to COMPi, which proves the induction and the proposition.

We now present an algorithm to �nd a (P,τ)-periodic assignment by trying all compact

assignments.

Theorem 12. pazl ∈ FPT over star routed networks when parametrized by the number of

routes.

Proof. Let N = (R,ω) be a canonical star routed network and let P be the period and

τ the size of a datagram. First, remark that for a given assignment and a route r with

o�set or, by removing or to all o�sets, we can always assume that or = 0. By this remark

and Proposition 4, we need only to consider all compact assignments with an o�set 0 for

the route r0. We now evaluate the number of compact assignments and prove that it only

depends on n the number of routes to prove the theorem.

We describe a way to build any compact assignment A by determining its o�sets one

after the other, which gives a bound on their number and an algorithm to generate them

all. We �x an arbitrary total order on R. Let r0 be the smallest route of R, its o�set is set
to 0 and we let S = {r0}, S1 = {r0} and S2 = {r0}. S represent the routes whose o�sets

are �xed, o�sets of unscheduled routes are chosen so that they follow a route of S1 in the

�rst period or a route of S2 in the second period.

At each step, we add an element to S: let r be the smallest element of S1, if it is non

empty. Then, select any route r′ ∈ R \ S such that or′ = or + τ does not create collision

(by construction or′ = or + τ − 1 does create a collision in the �rst period). Then, we

update the sets as follows: S = S ∪ {r′}, S1 = S1 \ {r} ∪ {r′} and S2 = S2 ∪ {r′}. If S1 is
empty, r is smallest element of S2, and we set or′ = or+τ +ω(r,c2)−ω(r′,c2). We can also

remove r from S1 (or from S2 if S1 is empty) without adding any element to S. Remark

that the value of the o�set of the route added to S is entirely determined by the values of
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the o�sets of the routes in S.

Now, remark that any compact assignment can be built by this procedure, if the proper

choice of element to add is made at each step. Hence, this process generates all compact

assignments. We now bound the number of compact assignments it can produce. Remark

that, when |S| = i, we can add any of the n− i routes in R\S to S. Hence, the number of

sequences of choices of routes to add is n! (but some of these sequences can fail to produce

a valid assignment). We have not yet taken into account the steps at which an element

is removed from either S1 or S2, without adding something to S. At each step of the

algorithm, we can remove an element or not, there are at most 2n steps in the algorithm,

hence there are at most 4n sequences of such choices during the algorithm. As a conclusion,

there are at most 4nn! compact assignments.

The algorithm to solve pazl builds every possible compact assignment in the incre-

mental manner described here, and tests at each step whether, in the built partial assign-

ment, there is a collision, which can be done in time linear in the size of N . Therefore

pazl ∈ FPT.

We call the algorithm described in Theorem 12Exhaustive Search of CompactAssignments

or ESCA. The complexity of ESCA is in O(4nn!). While a better analysis of the number of

compact assignments could improve this bound, the simple star routed networks with all

arcs of weights 0 has (n − 1)! compact assignments. Hence, to improve signi�cantly on

ESCA, one should �nd an even more restricted notion of bu�erless assignment than compact

assignment.

To make ESCA more e�cient in practice, we make cuts in the search tree used to explore

all compact assignments. Consider a set S of k routes whose o�sets have been �xed at some

point in the search tree. We consider the times used by these routes in the �rst period. It

divides the period into [(a0,b0), . . . , (ak−1,bk−1)] where the intervals (ai,bi) are the times

not used yet in the �rst period. Therefore at most
k−1∑
i=0

b(bi − ai)/τc routes can still send

a datagram through the �rst period. If this value is less than n − k, it is not possible

to create a compact assignment by extending the current one on S and we backtrack in

the search tree. The same cut is also used for the second period. These cuts rely on the

fact that the partial assignment is wasting bandwidth by creating intervals which are not

multiples of τ .They signi�cantly speed up ESCA on instances of large load, which are also

the longest to solve.
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3.1.6 Experimental Results

3.1.6.1 Cloud-Ran Parameters

In this section, the performance on random instances of the algorithms presented in Sec. 3.1

is experimentally characterized.

The defaults parameters of experiments of this section are derived from the C-RAN

context: a tic correspond to the sending time of 64 Bytes of data on links of bandwidth

10 Gbps. The datagrams are of size 1 Mbit, which corresponds to 2,500 tics.In the Cloud-

RAN problem, the period �xed by the protocol HARQ correspond to 21,000 tics. This

means that a network with 8 routes is loaded at 95%, which seems unrealistic and cannot

be solved for pazl, as we experimentally show it in this section. Nevertheless, we choose

these parameters as a realistic reference and we modify them in order to evaluate our

algorithm performances.

All experiments are done on synthetic data generated randomly. We generate the

physical fronthaul network represented in Figure 2.4 of Chapter 2. We consider routes

which are shorter than τ : a datagram cannot be contained completely in a single arc

which is common in our applications. We generate random star routed networks, by

drawing uniformly at random the weights of the arcs in [700]. This corresponds to links

of the networks of less than 5km between a BBU and an RRH. Then, the corresponding

canonical star routed network is built from the generated fronthaul and the algorithms

tested on it. This process is mostly equivalent to drawing the delays randomly in [1400].

We consider the following algorithms:

• ShortestLongest

• First Fit

• MetaOffset

• Compact Pairs

• Compact Fit

• Greedy Uniform, the algorithm introduced and analyzed in Section 3.2, used for

arbitrary τ

• Exhaustive Search of Compact Assignments
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In the following experiments, we illustrate how well the algorithms work with regards

to the load. To change the load, both parameters τ and n are �xed and we modify the

period P , which allows for a smooth control of the load and does not impact the execution

time of the algorithms. We generate 10,000 random instances of pazl of load from 0.5 to

1. We represent, in Figure 3.7, the percentage of success of each algorithm as a function of

the load. We make three experiments with 8, 12 and 16 routes to understand the e�ect of

the number of routes on the quality of our algorithms. A bound on the maximal success

rate is given by ESCA (exhaustive search) which always �nds a solution if there is one.

The code in C is available on [49] under a copyleft license. The code has been run on a

standard 2016 laptop with a 2.2 Ghz Intel Core i5 and the sources are compiled with gcc

version 7.5.0. All experiments on 8 routes end in at most a few dozen seconds.
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Figure 3.7 � Success rate of algorithms solving pazl, for short routes and 8 routes, 12
routes and 16 routes

First, we remark that ESCA �nds a solution even when the load is high. It justi�es the

idea to look for a bu�erless assignment in this short routes regime. It seems that increasing

the number of routes increases the success rate of ESCA, meaning that the more the routes,

the more instances have a bu�erless assignment. Second, remark that ShortestLongest is
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as good as the exhaustive search. While it was expected to be good with short routes (see

Proposition 3), it turns out to be optimal for all the random star routed networks we have

tried. Therefore, we should use it in practical applications with short routes, instead of the

exhaustive search which is much more computationally expensive. Also, Compact Pairs

and Compact Fit have the same performances as ESCA and ShortestLongest. This is not

surprising when the routes are drawn on a lower range than τ . Indeed, since we sort the

routes by remainder modulo τ in Compact Pairs and Compact Fit (which are just there

values then), these two algorithms build the same assignment as ShortestLongest.

First Fit has also excellent performances (100% of success under loads lower to 0.8).

However, since we do not have strong theoretical results for this algorithms and it does

not performs as well as ShortestLongest in this regime, it is not interesting to rely on it.

MetaOffset and Greedy Uniform both seem to always work when the load is less than

1/2 and have a good probability to work up to a load of 2/3, which is twice better than

the theoretical bound. MetaOffset presents discontinuities in the probability of success at

several loads, which seems to smooth out when the number of routes increases. It can be

explained by the fact that MetaOffset becomes better when decreasing the load makes the

number of available meta-o�sets larger. The number of meta-o�sets increases when τ is

added to the period (to decrease the load, the period is increased), which is more frequent

when there are more routes.

Greedy Uniform and MetaOffset performances depend on the number of routes. The

more routes there is, the lower the success rate. This is even clearer in experiment of

Figure 3.11 in the next section in which there are 100 routes. Remember that Greedy

Uniform is an algorithm presented and analyzed in Section 3.2. This algorithm is designed

for τ = 1 and random delays and has no theoretical guarantee for arbitrary τ and small

delay.

3.1.6.2 Larger Route Number

After studying the C-RAN parameters, we want to experiment the performance of our

algorithm with a larger number of routes and/or delays drawn in a larger interval. We

experiment with several periods and datagram sizes. For each set of parameters, we try

every possible load by changing the number of datagrams and give the success rate of each

algorithm. Notice that all algorithm except ESCA are in polynomial time but are not always

able to �nd a solution, depending on the load or the size of the routes. On the other hand,
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ESCA �nds a solution if it exists, but works in exponential time in n. The success rate is

measured on 10000 instances of pazl generated by drawing uniformly and independently

the delays of each datagram in [P ] or [τ ] for Figure 3.11.

On a regular laptop, all algorithms terminates in less than a second when solving 10000

instances with 100 datagrams except ESCA, whose complexity is exponential in the number

of routes (but polynomial in the rest of the parameters). Hence, the optimal value of the

success rate given by ESCA is only available in the experiment with at most 10 routes (the

algorithm cannot compute a solution in less than an hour for twenty datagrams and high

load). Note that while First Fit, Compact Pairs, MetaOffset, Compact Fit all run in

almost the same time, Greedy Uniform seems to be three times longer than the other

algorithms to run on instances with 100 datagrams. It is expected since, at each step, it

must �nd all available o�sets to draw one uniformly at random instead of just choosing

one.

In the following experiments, since Lemma 6 explains how to transform any instance

into one with P = mτ , we chose for simplicity that P = mτ .

In Figure 3.8 and Figure 3.9 the performances of ShortestLongest are abysmal (falls

to 10% of success rate when the load is greater than 0.2, and 0% at 0.3 of load) and are

thus not represented in this �gures, in order to focus on other algorithms. This can be

explained by the fact it depends on the di�erence of size between the longest and the

smallest route, which is large here since the delays are drawn in [P ]. This observation is

reinforced by the results of Figure 3.10. Indeed, since the number of routes is lower than

in the two previous experiments, the probability of drawing a set of delays with a large

di�erence is lower, and thus the success rate of ShortestLongest is better.

For all sets of parameters, the other greedy algorithms have the same relative per-

formances. MetaOffset and Greedy Uniform perform the worst and have almost equal

success rate. Remark that they have a 100% success rate for load less than 1/2, while it

is easy to build an instance of pazl of load 1/3 + ε which makes them fail. The di�er-

ence between the worst case analysis and the average case analysis is explained for Greedy

Uniform, when τ = 1 in Section 3.2.

First Fit performs better than MetaOffset while they have the same worst case.

Compact Pairs, which is the best theoretically also performs well in the experiments,

always �nding assignments for load of 0.6. Compact Fit, which is similar in spirit to
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Figure 3.8 � Success rates of all al-
gorithms for increasing loads, τ =
1000, P = 100,000
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Figure 3.9 � Success rates of all algo-
rithms for increasing loads, τ = 10,
P = 1,000
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Compact Pairs but is designed to have a good success rate on random instances is indeed

better than Compact Pairs, when there are enough datagrams.

As illustrated by Figure 3.8 and Figure 3.9, the size of the datagrams have little impact

on the success rate of the algorithms, when the number of datagrams stay the same.

Comparing Figure 3.10 and Figure 3.8 shows that for more datagrams, the transition

between success rate of 100% to success rate of 0% is faster. Finally, the results of ESCA

in Figure 3.10 show that the greedy algorithm are far from always �nding a solution when

it exists. Moreover, we have found an instance with load 0.8 with no assignment, which

gives an upper bound on the highest load for which pazl can always be solved positively.

We also investigate the behavior of the algorithms when the delay of the datagrams

are drawn in [τ ] in Figure 3.11. The di�erence from the case of large delay is that Compact

Pairs and Compact Fit are extremely e�cient: they always �nd a solution for 99 data-

grams. It is expected, since all δ′i are equal in these settings and they will both build a

99-compact tuples and thus can only fail for load 1.

As illustrated on Figure 3.10, when the load is larger than 0.5, ESCA �nds more solutions

than the greedy algorithms, which justi�es its use. However, for load larger than 0.8 there

are instances for which there are no solutions to pazl. It means that with long routes and

high load, looking for a bu�erless assignment is far too restrictive. This justi�es the design

of algorithms for the general pall problem, which we present in the next section. We will

test them on 8 long routes and a load between 1 and 0.8, parameters for which, as shown

here, there are not always a bu�erless assignment.

The computation time of ESCA is bounded by O(4nn!) as shown in Theorem 12, but

it can be much better in practice, either because it �nds a solutions quickly or because a

large part of the tree of compact assignments is pruned during the algorithm. We study the

evolution of the running time of the algorithm when n grows in the following experiment.

The weights of the arcs are drawn following a uniform distribution in [P ] and the load is

set to 0.95. The table of Figure 3.12 shows the time before the exhaustive search ends, for

8 to 16 routes, averaged on 100 random star routed networks. This shows that for less than

20 routes, which corresponds to all current topologies, the algorithm is e�cient enough,

but we should improve it further to work on more routes.



58

Chapter 3. Scheduling Unsynchronized Periodic Datagrams without

Bu�er

n 8 10 12 14 16

Time (s) 6.10−5 8.10−4 2.10−2 0.4 11

Figure 3.12 � Running time of ESCA, averaged over 100 random instances.

3.2 Datagrams of Size One

When τ = 1 and the load is less than 1/2, any greedy algorithm solves pazl positively

since Fo(A) ≤ (4τ −2)|S| = 2|S| where S is the number of scheduled datagrams. We give,

in this section, a method which always �nds an assignment for a load larger than 1/2.

3.2.1 Deterministic Algorithm

To go above 1/2 of load, we optimize a potential measuring how many o�sets are available

for all datagrams, scheduled or not. Datagrams are scheduled while possible using any

greedy algorithm. Then, when all unscheduled datagrams have no available o�set, we use

a Swap operation de�ned later, which improves the potential. When the potential is high

enough, it ensures that there are two datagrams whose o�set can be changed so that a new

datagram can be scheduled.

The algorithm is not greedy, since we allow to exchange a scheduled datagram with

an unscheduled one. It cannot work online, since it requires to know all delays of the

datagrams in advance.

De�nition 1. The potential of a datagram of delay δ, for a partial assignment A is the

number of integers i ∈ [P ] such that i is used in the �rst period and i+ δ mod P is used

in the second period.

The computation of the potential of a datagram of delay 3, is illustrated in Fig. 3.13.

The potential of a datagram counts the con�gurations which reduce the number of for-

bidden o�sets. Indeed, when i is used in the �rst period and i + δ mod P is used in the

second period, then the same o�set is forbidden twice for a datagram of delay δ. Hence,

the potential of a datagram is related to the number of possible o�sets as stated in the

following lemma.

Lemma 13. Given a partial assignment A of size s, and i an unscheduled datagram of

potential v, then the set {o | A(i→ o) has no collision} is of size P − 2s+ v.

For our algorithm, we need a global measure of quality of a partial assignment, that we

try to increase when the algorithm fail to schedule new datagrams. We call our measure
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First period

Second period

Figure 3.13 � A datagram of delay 3 has potential 2 in the represented assignment

the potential of an assignment and we denote it by Pot(A), it is the sum of potentials

of all datagrams in the instance.

De�nition 2. The potential of a position i, for a partial assignment A, is the number of

datagrams of delay δ such that i+ δ mod P is used by a datagram scheduled by A.

First period

Second period

Delays (di) 2 3 1 3 21

Figure 3.14 � Shaded position potential 2, in this assignment

The potential of a position is illustrated in Figure 3.14. Instead of decomposing the

global potential as a sum over datagrams, it can be understood as a sum over positions,

as stated in the next lemma.

Lemma 14. The sum of potentials of all positions used in the �rst period by datagrams

scheduled by A is equal to Pot(A).

By de�nition of the potential of a position, we obtain the following simple invariant.

Lemma 15. The sum of potentials of all positions for a partial assignment with k scheduled

datagrams is nk.

As a consequence of this lemma, Pot(A) ≤ nk. Let us de�ne a Swap operation,

which guarantees to obtain at last half the maximal value of the potential. Let A be some

partial assignment of size s and let i be an unscheduled datagram of delay δ. Assume that

i cannot be used to extend A. The Swap operation is the following: select a free position o

in the �rst period, remove the datagram which uses the position o+ δ in the second period

from A and extend A by i with o�set o. We denote this operation by Swap(i,o,A).

Lemma 16. Let A be some partial assignment of size k and let i be an unscheduled data-

gram. If i cannot be used to extend A, then either Pot(A) ≥ kn/2 or there is an o such

that Pot(Swap(i,o,A)) > Pot(A).
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Proof. The positions in the �rst period can be partitioned into Pu the positions used by

some scheduled datagram and Pf the positions unused. Let Vf be the sum of the potentials

of the positions in Pf and let Vu be the sum of the potentials of the positions in Pu. By

Lemma 15, since Pf and Pu partition the positions, we have Vf + Vu = kn. Moreover, by

Lemma 14, Pot(A) = Vu, then Vf + Pot(A) = kn.

By hypothesis, i cannot be scheduled, then, for all p ∈ Pf , p + δi is used in the

second period. Let us de�ne the function F which associates to p ∈ Pf the position A(j)

such that there is a scheduled datagram j which uses p + d in the second period, that is

A(j) + δj = p + d mod P . The function F is an injection from Pf to Pu. Remark now

that, if we compare Swap(i,p,A) to A, on the second period the same positions are used.

Hence, the potential of each position stay the same after the swap. As a consequence, doing

the operation Swap(i,p,A) adds to Pot(A) the potential of the position p and removes the

potential of the position F (p).

Assume now, to prove our lemma, that for all p, Pot(Swap(i,p,A)) ≤ Pot(A). It

implies that for all p, the potential of p is smaller than the potential of F (p). Since F is

an injection from Pf to Pu, we have that Vf ≤ Vu = Pot(A). Since Vf + Pot(A) = kn, we

have that Pot(A) ≥ kn/2.

Let us precisely describe the algorithm Swap and Move: datagrams are scheduled while

possible by First Fit and then the Swap operation is applied while it increases the poten-

tial. When the potential is maximal, Swap and Move schedules a new datagram by moving

at most two scheduled datagrams to other available o�sets. If it fails to do so, Swap and

Move stops, otherwise the whole procedure is repeated. We analyze Swap and Move in the

following theorem.

Theorem 17. Swap and Move solves positively pazl, in polynomial time, for instances

with τ = 1 and load less than 1/2 + (
√

5/2− 1) ≈ 0,618.

Proof. We determine for which value of the load Swap and Move always works. We let

n = (1/2 + ε)P be the number of datagrams, the load is 1/2 + ε. We need only to study

the case when n − 1 datagrams are scheduled by A and Swap and Move tries to schedule

the last one, since the previous steps are similar but easier.

Let δ be the delay of the unscheduled datagram. We consider the pairs of times (o,o+d)

for o ∈ [P ]. Since the datagram cannot be scheduled, there are three cases. First, o is

unused in the �rst period but o + d is used in the second period. Since there are n − 1
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scheduled datagrams, there are P − n + 1 such value of o. If a datagram using the time

o+ d in the second period can be scheduled elsewhere, so that the unscheduled datagram

can use o�set o, then Swap and Move succeeds. Otherwise, the datagram has no possible

o�sets, which means its potential is equal to 2(εP −1). The second case is symmetric: o is

used in the �rst period but o+ d is unused in the second period. Finally, we have the case

o is used in the �rst period and o+d is used in the second period. There are 2(εP −1) such

values of o. If the two datagrams using times o and o+ d can be rescheduled so that o�set

o can be used for the unscheduled datagram, then Swap and Move succeeds. This is always

possible when one datagram is of potential at least 2εP − 1 and the other of potential at

least 2εP + 1. Since the datagrams must be of potential more than 2(εP − 1) and at most

n− 1, it is satis�ed when the sum of the two potentials is at least 2(εP − 1) + n.

If we assume that Swap and Move was unable to schedule the last datagram by moving

two scheduled datagrams, the previous analysis gives us a bound on twice Pot(A):

2Pot(A) ≤ 2(P − n+ 1)2(εP − 1) + 2(εP − 1)(2(εP − 1) + n)

Pot(A) ≤ (εP − 1)(P + n)

By Lemma 16, we know that Pot(A) ≥ n(n − 1)/2, hence Swap and Move must succeed

when

n(n− 1)/2 ≥ (εP − 1)(P + n).

By expanding and simplifying, we obtain a second degree inequation in ε, 1/4−2ε−ε2 ≥ 0.

Solving this inequation yields ε ≤
√

5/2− 1.

Let us prove that Swap and Move is in polynomial time. All Swap operations strictly

increase the potential. Moreover, when one or two datagrams are moved, the potential may

decrease but a datagram is added to the partial assignment. The potential is bounded by

O(n2) and the move operations all together can only remove O(n2) to the potential, hence

there are at most O(n2) Swap operations during Swap and Move. A Swap operation can

be performed in time O(n), since for a given datagram, all free o�sets must be tested and

the potential is evaluated in time O(1) (by maintaining the potential of each position).

This proves that Swap and Move is in O(n3).

Consider a partial assignment of size n′ = (1/2+ε)P , and a datagram of delay δ. If we

consider all n′ used o�sets o and all times time o+d in the second period, then o and o+d
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are both used for at least n′ − (P − n′) = 2εP values of o. The potential of any datagram

is thus larger or equal to 2εP . When a datagram cannot be scheduled, its potential is less

or equal to 2εP , hence it is equal to 2εP .

Hence, the potential of any assignment of size n′ is at least 2εPn. As a consequence,

the method of Lemma 16 will guarantee a non-trivial potential for 2εPn < nn′/2, that

is ε < 1/6. Any algorithm relying on the potential and the Swap operation cannot be

guaranteed to work for load larger than 2/3 = 1/2 + 1/6. However, we may hope to

improve on the analysis of Lemma 16, since it is not optimal: 2εP positions in Pu are not

taken into account in the proof.

We conjecture that Swap and Move works for load up to 2/3. On random instances,

we expect the potential to be higher than the stated bound and to be better spread on

the datagrams, which would make Swap and Move works for larger loads, as it is indeed

observed in experiments (see Section 3.2.3).

3.2.2 Randomized Algorithm for Random Instances

We would like to understand better the behavior of our algorithms on instances drawn

uniformly at random. To this aim, we analyze the algorithm Greedy Uniform, de�ned as

follows: for each datagram in the order of the input, choose one of the o�sets, which does

not create a collision with the current partial assignment, uniformly at random.

We analyze Greedy Uniform over random instances: all datagrams have their delays

drawn independently and uniformly in [m]. We compute the probability of success of

Greedy Uniform over all random choices by the algorithm and all possible instances. It

turns out that this probability, for a �xed load strictly less than one, goes to one when m

grows. For a given partial assignment, we are only interested in its trace: the set of times

which are used in the �rst and second period. Hence, if n datagrams are scheduled in a

period of size m, the trace of an assignment is a pair of subsets of [m] of size n. We now

show that these traces are produced uniformly by Greedy Uniform.

Theorem 18. The distribution of traces of assignments produced by Greedy Uniform when

it succeeds, from instances drawn uniformly at random, is also uniform.

Proof. The proof is by induction on n, the number of datagrams. It is clear for n = 1, since

the delay of the �rst datagram is uniformly drawn and all o�sets can be used. Assume now

the theorem true for some n > 1. Greedy Uniform, by induction hypothesis has produced
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uniform traces from the �rst n datagrams. Hence, we should prove that, if we draw delays

of the n+1th datagram randomly, extending the trace by a random possible o�set produces

a random distribution on the traces of size n+ 1.

If we draw an o�set uniformly at random (among all m o�sets) and then extend the

trace by scheduling the last datagram at this o�set or fail, the distribution over the traces

of size n+1 is the same as what produces Greedy Uniform. Indeed, all o�sets which can be

used to extend the trace have the same probability to be drawn. Since all delays are drawn

independently, we can assume that, given a trace, we �rst draw an o�set uniformly, then

draw uniformly the delay of the added datagram and add it to the trace if it is possible.

This proves that all extensions of a given trace are equiprobable. Thus, all traces of size

n + 1 are equiprobable, since they each can be formed from (n + 1)2 traces of size n by

removing one used time from the �rst and second period. This proves the induction and

the theorem.

Since Greedy Uniform can be seen as a simple random process on traces by Th. 19, it

is easy to analyze its probability of success.

Theorem 19. The probability over all instances with n datagrams and period m that

Greedy Uniform solves pazl positively is

n−1∏
i=m/2

(1−
(

n
2i−m

)(
m
i

) ).

Proof. We evaluate Pr(m,n) the probability that Greedy Uniform fails at the nth step

assuming it has not failed before. It is independent of the delay of the nth datagram.

Indeed, the operation which adds one to all times used in the second period is a bijection

on the set of traces of size n − 1. It is equivalent to remove one to the delay of the nth

datagram. We can thus assume that the delay is zero.

Let S1 be the set of times used in the �rst period by the n− 1 �rst datagrams and S2

the set of times used in the second period. We can assume that S1 is �xed, since all subsets

of the �rst period are equiprobable and because S2 is independent of S1 (Th. 19). There is

no possible o�set for the nth datagram, if and only if S1 ∪ S2 = [m]. It means that S2 has

been drawn such that it contains [m] \ S1. By Th.19, S2 is uniformly distributed over all

sets of size n−1. Hence, the probability that [m]\S1 ⊆ S2 is the probability to draw a set

of size n− 1 which contains m− n+ 1 �xed elements. This proves Pr(m,n) =
( n

2(n−1)−m)
( m
n−1)

.
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From the previous expression, we can derive the probability of success of Greedy

Uniform by a simple product of the probabilities of success (1− Pr(m,i)) at step i, for all

i ≤ n, which proves the theorem.

If we �x the load λ = n/m, we can bound P (m,n) using Stirling formula. We obtain

for some constant C, that P (m,n) ≤ C
(

λ2λ

(2λ−1)2λ−1

)m
. We let f(λ) = λ2λ

(2λ−1)2λ−1 . The

derivative of f is strictly positive for 1/2 < λ < 1 and f(1) = 1, hence f(λ) < 1 when

λ < 1. By a simple union bound, the probability that Greedy Uniform fails is bounded by

Cλmf(λ)m, whose limit is zero when m goes to in�nity. It explains why Greedy Uniform

is good in practice for large m.

3.2.3 Experimental Results

In this section, the performance on random instances of the algorithms presented in Sec. 3.2

is experimentally characterized. The settings are as in Section 3.1.6, with τ = 1. Because

τ = 1, the algorithms based on meta-o�sets are not relevant anymore. The evaluated

algorithms are:

• First Fit

• Greedy Uniform

• Greedy Potential, a greedy algorithm which leverages the notion of potential intro-

duced for Swap. It schedules the datagrams in arbitrary order, choosing the possible

o�set which maximizes the potential of the unscheduled datagrams

• Swap and Move

• ESCA

In Figure 3.15, the performances of ShortestLongest are the same as in Figure 3.8

and Figure 3.9( 10% for load 0.2, and 0% at 0.3 of load). The algorithm seems to performs

better on Figure 3.16 (25% of success at load 0.5), but the algorithm is not interesting

since Greedy Potential, First Fit or Greedy Uniform have much better success rate

for a similar complexity.

For the other algorithms, as in Section 3.1.6, the success rate on random instances is

much better than the bound given by worst case analysis. In the experiment presented in

Figure 3.15, all algorithms succeed on all instances when the load is less than 0.64. Greedy
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Uniform behaves exactly as proved in Theorem 19, with a very small variance. The perfor-

mance of Swap and Move and of its simpler variant Greedy Potential, which optimizes

the potential in a greedy way, are much better than First Fit or Greedy Uniform. Amaz-

ingly, Swap and Move always �nds an assignment when the load is less than 0.95. Swap

and Move is extremely close to ESCA, but for P = 10 and load 0.9 or 1, it fails to �nd some

assignments, as shown in Figure. 3.16.
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Finally, we evaluate the computation times of the algorithms to understand whether

they scale to large instances. We present the computation times in Fig. 3.17 and we choose

to consider instances of load 1, since they require the most computation time for a given

size. The empirical complexity of an algorithm is evaluated by a linear regression on the

function which associates to log(n), the log of the computation time of the algorithm on

n datagrams. First Fit, Greedy Uniform, ShortestLongest and Swap and Move scale

almost in the same way, with an empirical complexity slightly below O(n2), while Greedy

Potential has an empirical complexity of O(n3). The empirical complexity corresponds

to the worst case complexity we have proved, except for Swap and Move which is in O(n3)

worst case. There are two explanations: most of the datagrams are scheduled by the fast

First Fit subroutine and most Swap operations improve the potential by more than 1,

as we assume in the worst case analysis.
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of all algorithms on 10000 instances of load 1

3.3 From Large to Small Datagrams

In this section, we explain how we can trade load or bu�ering in the network to reduce

the size of datagrams down to τ = 1. This further justi�es the interest of Sec. 3.2, where

speci�c algorithms for τ = 1 are given.

3.3.1 Datagram of Size One by Increasing the Load

We describe here a reduction from an instance of pazl to another one with the same

period and number of datagrams but the size of the datagrams is doubled. This instance

is equivalent to an instance with τ = 1, by dividing everything by the datagram size. Thus

we can always assume that τ = 1, if we are willing to double the load.

Theorem 20. Let I be an instance of pazl with n datagrams and load λ. There is an

instance J with n datagrams of size 1 and load 2λ such that an assignment of J can be

transformed into an assignment of I in polynomial time.

Proof. From I = (P,τ,(δ0, . . . ,δn−1)), we build I ′ = (P, 2τ, (δ′0, . . . ,δ
′
n−1)), where δ

′
i =

δi − (δi mod 2τ). The instance I ′ has a load twice as large as I. On the other hand,

all its delays are multiples of 2τ hence solving pazl on I ′ is equivalent to solving it on

I ′′ = (P/2τ, 1,(δ0/2τ, . . . ,δn−1/2τ)), as already explained in the proof of Lemma 6.

Let us prove that an assignment A′ of I ′ can be transformed into an assignment A of I.

Consider the datagram i with o�set A′(i), it uses all times between A′(i) and A′(i)+2τ−1

in the �rst period and all times between A′(i)+δi− (δi mod 2τ) to A′(i)+2τ −1+δi− (δi
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mod 2τ) in the second period. If δi mod 2τ < τ , we set A(i) = A′(i), and the datagram i

of I is scheduled �inside� the datagram i of I ′, see Fig. 3.18. If τ ≤ δi mod 2τ < 2τ , then

we set A(i) = A′(i) − τ . There is no collision in the assignment A, since all datagrams

in the second period use times which are used by the same datagram in A′. In the �rst

period, the datagrams scheduled by A use either the �rst half of the same datagram in A′

or the position τ before, which is either free in A′ or the second half of the times used by

another datagram in A′ and thus not used in A.

First period

Second period

A(0) = A′(0) A(1) = A′(1) − τ

d0
d1 − τ

d′1d′0

Message in I ′

Message in I

Figure 3.18 � Building I from I ′ as explained explained in Th. 20

Remark that combining Greedy Random and Theorem 20 allows to solve pazl on

random instances, with probability one when the number of routes goes to in�nity and

the load is strictly less than 1/2. This explains why we have not presented nor analyzed

in details an algorithm designed for arbitrary τ on random instances, since any greedy

algorithm, relying on optimizing Fo(A), cannot guarantee anything for load larger than

1/2. However, in Sec. 3.1.4, we presented Compact Fit, a simple greedy algorithm which

exhibits good performance on random instances.

3.3.2 Trade-o� between Latency and Datagram Size

The problem pazl is a simpli�ed version of pall, the practical problem we address, allow-

ing a single degree of freedom for each datagram: its o�set. We may relax it slightly to be

more similar to what is studied in Chapter 4: we allow bu�ering a datagram i during a time

b between the two contention points, which translates here into changing δi to δi + b. The

quality of the solutions obtained for such a modi�ed instance of pazl are worst since the

bu�ering adds latency to the datagrams. We now describe how we can make a trade-o�

between the added latency and the size of the datagrams, knowing that having smaller

datagrams helps to schedule instances with higher load.

The idea is to bu�er all datagrams so that their δi have the same remainder modulo τ .

It costs at most τ − 1 of bu�ering, which is not so good, since algorithms optimizing the
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latency do better on random instances, see [42]. However, it is much better than bu�ering

for a time P , the only value for which we are guaranteed to �nd an assignment, whatever

the instance. When all delays are changed so that δi is a multiple of τ , we have an easy

reduction to the case of τ = 1, by dividing all values by τ , as explained in the proof of

Lemma 6.

We can do the same kind of transformation by bu�ering all datagrams, so that δi is a

multiple of τ/k. The cost in terms of latency is then at most τ/k − 1 but the reduction

yields datagrams of size k. For small size of datagrams, it is easy to get better algorithm

for pazl, in particular for τ = 1 as we have shown in Sec. 3.2. Here we show how to adapt

Compact Pairs to the case of τ = 2, to get an algorithm working with higher load.

Theorem 21. Compact Pairs on instances with τ = 2 always solves pazl positively on

instances of load less than 4/9.

Proof. We assume w.l.o.g that there are less datagram with even δi than odd δi. We

schedule compact pairs of datagrams with even δi, then we schedule single datagram with

odd δi. The worst case is when there is the same number of the two types of datagrams.

In the �rst phase, if we schedule n/2 datagrams, the number of forbidden o�sets is (2 +

3/2)n/2 = 7n/4. In the second phase, if we schedule n/2 additional o�sets, the number of

forbidden o�sets is bounded by (1 + 3/2)n/2 + (1 + 1)n/2 = 9n/4. Hence, both conditions

are satis�ed and we can always schedule datagrams when n ≤ (4/9)m.

We may want to add less latency to the datagram using the longest route. A natu-

ral idea is to choose the datagram with the longest route as the reference remainder by

subtracting its remainder to every delay. As a consequence, this datagram needs zero

bu�ering. However, the datagram with the second longest route may have a remainder of

τ − 1, thus the worst case increase of total latency is τ − 1.

Another aim would be to minimize the average latency rather than the worst latency.

We prove that we can do the transformation yielding τ = 1 while optimizing the average

latency. The only degree of freedom in the presented reduction is the choice of the reference

remainder since all other delays are then modi�ed to have the same remainder. Let us

de�ne the total latency for a choice t of reference time, denoted by L(t), as the sum of

bu�ering times used for the datagrams, when t has been removed from their delay. If we

sum L(t), from t = 0 to τ − 1, the contribution of each datagram is
∑τ−1

i=0 i. Since there

are n datagrams, the sum of L(t) for all t is nτ(τ − 1)/2. There is at least one term of
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the sum less than its average, hence there is a t0 such that L(t0) ≤ n(τ − 1)/2. Hence, the

average delay for a datagram, with t0 as reference is less than (τ − 1)/2.

Conclusion

In this chapter, we study the problem pazl that is �nding periodic assignments without

bu�ering on star routed networks, a routed network with two serial contention points. We

show that for messages of arbitrary size, there is always a solution as soon as the load of

the network is less than 0.4. To do so, we propose several greedy algorithms of increasing

sophistication. They rely on optimizing di�erent measures of how many positions there

are in the second period, given a partial assignment and any new datagram to schedule.

We give a canonical representation of an assignment, whose compactness allow to derive

an FPT algorithm to solve pazl parametrized by the number of routes. When the number

of routes is less than 20, we can thus �nd in reasonable time an optimal solution to pazl.

For messages of size 1, we prove that it is always possible to schedule them, when

the load is less than 0.61 using a polynomial time algorithm. The algorithm relies on

optimizing a potential, which represents, given a partial assignment, how many possible

positions there are for the datagrams not yet scheduled. The algorithm is not greedy,

contrarily to those presented for the case τ > 1, since optimizing the potential requires a

procedure of local optimization which exchange a scheduled datagram with an unscheduled

one. Furthermore, we study the simplest random greedy algorithm solving pazl, and show

that, for a given load lower than one, almost all instances admit a solution with high

probability, explaining why most greedy algorithms work so well in practice. The study of

the special case of τ = 1 is then justi�ed, by providing several reductions from τ > 1 to

τ = 1, while increasing the load or the latency only mildly.

The performance of the presented algorithms over average instances are shown to be

excellent empirically (Compact Fit for large τ and Swap and Move for τ = 1) for loads

up to 0.7, for tens to hundreds of datagrams. Hence, we can use the simple algorithms

presented here to schedule C-RAN datagrams without using bu�er nor additional latency

in polynomial time, if we are willing to use only half the bandwidth of the shared link.

Several questions on pazl are still unresolved, in particular its NP-hardness and the

problem of doing better than load 0.5 for arbitrary τ and random instances. We could also

consider more complex network topologies with several shared links, most presented algo-
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rithms (First Fit, MetaOffset, Compact Pairs, Swap and Move) could easily be adapted

to this context. On star routed network, our experiments show that most of the time, there

is a solution for pazl when the load is under 0.8, but not for higher loads. Hence, in the

next chapter, we study the problem pall on highly loaded star routed networks. Problem

pall gives an higher degree of liberty to build assignments by allowing a bu�er in one

contention point of the network, at the cost of some additional latency.



Chapter 4

Scheduling Unsynchronized Periodic

Datagrams with a single Bu�er

This chapter is taken from a published paper [41] and its extended version [42]. As ex-

plained in previous chapter, it is not always possible to solve pazl in star routed networks.

In this chapter, we consider the more general pall problem on star routed networks. The

datagrams are allowed to wait in the BBUs to yield more possible assignments. Hence, we

allow the process time of a route to be greater than the length of the route, but it must be

bounded by its deadline. An assignment is not anymore only a choice of o�set for every

datagram, but also a choice of waiting time in the contention vertex representing the BBU

of the route.

We propose a two stage approach in which we �rst set the o�sets of the datagrams such

that there is no collision in the �rst contention point c1, and we then de�ne the problem

wta of �nding the waiting time for each datagram. We propose several polynomial time

algorithms and one FPT (when wta is parametrized by the number of routes) algorithm

for wta based on scheduling algorithms adapted for periodicity. We also give an FPT (on

the number of routes too) algorithm that solve pall but for which the complexity is too

large to be computed.

We then show that our approach give excellent performances in terms of latency, far

better than statistical multiplexing.

4.1 Simple Star Routed Networks

Often in real networks, the length of the routes are not arbitrary and we may exploit that

to solve pall easily. For instance all the weights on the arcs (c1,c2) are the same if all the

BBUs are in the same data-center and all datagrams require the same time to be processed

in the BBUs. Finding an assignment in that case is trivial: send all datagrams so that
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they follow each other without gaps in c1. In the corresponding canonical routed network,

one can set oi = iτ . Since all arcs (c1,c2) are of weight zero in this case, the interval of

time used in c2 are the same as for c1 and there is no collision in c2.

Another possible assumption would be that all deadlines are larger than the longest

route. It may happens when, in the network we model, all RRHs are at almost the same

distance to the shared link.

Proposition 5. Let N = (R, ω) be a canonical star routed network with n routes, let

P ≥ nτ and let d be a deadline function. Let rn−1 be the longest route, and assume that

for all r ∈ R, d(r) ≥ λ(rn−1). Then, there is a (P,τ)-periodic assignment for N and d and

it can be built in time O(n).

Proof. The idea is to set the waiting times of all routes so their datagrams behave exactly

as the datagram of rn−1. The o�set of the route ri is set to iτ , which ensures that there is no

collision in c1 as soon as P ≥ nτ . The waiting time of the route ri is wi = λ(rn−1)−λ(ri).

The time at which the datagrams of ri arrives in c2 is t(ri, c2) = wi + iτ + λ(ri).

Substituting wi by its value, we obtain t(ri, c2) = iτ +λ(rn−1). Hence, there is no collision

in c2. We denote by A the de�ned assignment. By de�nition of the transmission time, we

have TR(ri,A) = wi +λ(ri) = λ(rn−1). By hypothesis, d(ri) ≥ λ(rn−1), which proves that

the assignment respect the deadlines.

Finally, the complexity is in O(n) since we have to �nd the maximum of the length of

the n routes and the computation of each wi is done by a constant number of arithmetic

operations.

4.2 Two Stages Approach

We may decompose an algorithm solving pall on a star routed network in two parts:

�rst set all the o�sets of routes so that there is no collision in c1 and then knowing this

information �nd waiting times so that there is no collision in c2 while respecting the

deadlines.

First, we give several heuristics to choose the o�sets, which are experimentally evaluated

in Section 4.6. For all presented algorithms, we assume that the star routed network is

given in canonical form. We send the datagrams through c1 in a compact way (no gap

between datagrams). It means that for n routes, denoted by r0, . . . , rn−1, the o�sets are

oi = σ(i)× τ , for some permutation σ ∈ Σn. We consider the following orders σ:
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• Decreasing Margin (DM): Decreasing order on the margin of the routes.

• Increasing Margin (IM): Increasing order on the margin of the routes.

• Decreasing Arc Weight (DA): Decreasing order on the weight of the arcs (c1,c2).

• Increasing Arc Weight (IA): Increasing order on the weight of the arcs (c1,c2). This

sending order yields a (P,τ) periodic assignment in which the waiting times are zero,

if the period is large enough (see Proposition 3).

We also propose to �x the o�sets of the routes according to some random order. If we

pack the datagrams as previously, we call Random Order (RO) the heuristic of choosing

an order uniformly at random. We may also allow some time between two consecutive

datagrams in c1. The order of the routes in c1 is still random and we consider two variations.

Either the time between two datagrams in c1 is random and we call this heuristic Random

Order and Random Spacing (RORS) or the time between two consecutive datagrams is

always the same and we call this heuristic Random Order and Balanced Spacing (ROBS).

We callWaiting Time Assignment or wta the problem pall on a star routed network,

with the o�sets of the routes also given as input. A solution to wta is a valid assignment

such that the o�sets coincide with those given in the instance.

In the rest of the section we study di�erent methods to solve wta either by polynomial

time heuristics or by an FPT algorithm. The methods to solve wta are then combined

with the heuristics proposed to �x the o�sets of the routes to obtain an algorithm solving

pall.

4.3 Greedy Scheduling of Waiting Times

We now solve the problem wta, we are given a cannonical routed network, a deadline

function and an o�set for each route. The release time of a route is de�ned as the �rst

time its datagram can go through c2: for a route r with o�set or, it is λ(r,c2) + or, it is

the same as the arrival time in c1, t(r,c1), but it is �xed in an instance of wta.

The �rst algorithm we propose to solvewta is a greedy algorithm which sets the waiting

times in a greedy way, by prioritizing the routes with the earliest deadline to best satisfy

the constraints on the process time. Since the network is in canonical form, ω(r,tr) = 0

for all routes r, thus choosing the earliest deadline is equivalent to choosing the route with

the smallest margin.
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Route 0 1 2 3 4

Deadline 10 15 5 7 30

Release time 0 2 3 16 17

Waiting time 0 5 1 0 15

0Step 1:

0Step 2: 2

0Step 3: 2 1

0Step 4: 2 1 3

0Step 5: 2 1 34

Figure 4.1 � A run of Greedy Deadline with P = 20, τ = 4.

We call the algorithm Greedy Deadline, and it works as follows. Set t = 0 and U = R.
While there is a route in U , �nd s ≥ t the smallest time for which there is r ∈ U with a

release time lower or equal to s. If there are several routes in U with a release time lower or

equal to s, then r with the smallest deadline is selected and set wr = s−λ(r,c2), t = s+ τ

and U = U \ {r}.

This algorithm does not take into account the periodicity, which may create collisions.

Let r0 be the �rst route selected by the algorithm, then t0 = t(r0,c2) is the �rst time at

which a datagram go through c2. Then, if all routes r are such that t(r, c2) ≤ t0 + P − τ ,
then by construction, there is no collision on the central arc. However, if a route r has

t(r, c2) larger than t0+P−τ , since we consider everything modulo P to determine collision,

it may collide with another route. Therefore we correct Greedy Deadline by this simple

modi�cation: s ≥ t is the smallest time for which there is r ∈ U with a release time

lower or equal to s such that there is no collision if a datagram goes through c2 at time s.

This rule guarantees that if Greedy Deadline succeeds to set all waiting times, it �nds a

solution to wta, as illustrated in Figure 4.1. However, it can fails to �nd the value s at

some point because the constraint on collisions cannot be satis�ed. In that case Greedy

Deadline stops without �nding a solution.

The complexity of Greedy Deadline is in O(n log(n)), using the proper data structures.

The set of routes R must be maintained in a binary heap to be able to �nd the one with

smallest deadline in time O(log(n)). To deal with the possible collisions, one maintains a

list of the intervals of time during which a datagram can go through c2. When the waiting
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time of a route is �xed, an interval is split into at most two intervals in constant time.

During the whole algorithm, each element of this list is used at most twice either when

doing an insertion or when looking for the next free interval. Hence, the time needed to

maintain the list is in O(n).

4.4 Earliest Deadline Scheduling

The problem wta is the same as a classical earliest deadline scheduling problem, if we

forget the periodicity. Given a set of jobs with release times and deadlines, schedule all

jobs on a single processor, that is choose the time at which they are computed, so that

no two jobs are scheduled at the same time. A job is always scheduled after its release

time and it must be dealt with before its deadline. Let us call n the number of jobs,

the problem can be solved in time O(n2 log(n)) [35] when all jobs have the same running

time and it gives a solution which minimizes the time at which the last job is scheduled.

On the other hand, if the running times are di�erent the problem is NP-complete [36].

The polynomial time algorithm which solves this scheduling problem is similar to Greedy

Deadline. However, when it fails because a job �nishes after its deadline, it changes the

schedule of the last jobs to �nd a possible schedule for the problematic job. The change in

the scheduling is so that the algorithm cannot fail on the same job a second time except

if there is no solution, which proves that the algorithm is in polynomial time. Note that

there are other algorithms to solve the same problem [51, 52], the second one being in

O(n log(n)) only, but it should not be faster on our small instances.

The problem wta is the same as this scheduling problem but adding constraints arising

from the periodicity. The jobs are the routes, the size of a datagram is the running time

of a job, the release time and the deadline are the same in both models, because the star

routed network is canonical. Let us call Minimal Latency Scheduling, denoted by MLS,

the algorithm which transforms an instance of wta into one of the described scheduling

problem to solve it in time O(n2 log(n)) using the algorithm of [35].

Recall that t(r,c2) is the time at which the datagram of r goes through c2. Let us denote

by tmin and tmax the smallest and largest value of t(ri,c2) for all i ∈ [n]. When MLS �nds

an assignment A, it always satis�es PT (r) < d(r) for all r. Moreover, by construction MLS

schedules the datagrams without collision if we forget about the periodicity (each route

send only one datagram). Let us assume that tmax − tmin ≤ P − τ , then all datagrams
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go through c2 during a interval of time less than P . Hence, when we compute potential

collisions modulo P , all the relative positions of the datagrams stay the same which implies

there is no collision. However, if tmax − tmin > P − τ , then computing t(ri,c2) modulo P

for all i may reveal some collision. Since the scheduling algorithm minimizes tmax, it tends

to �nd small values for tmax − tmin and MLS may succeed in �nding a valid assignment (as

shown in Section 4.6), but not for all instances.

We now present a variant of the previous algorithm, that we call Periodic Minimal

Latency Scheduling, denoted by PMLS. The aim is to deal with the periodicity, by modify-

ing the instance without changing the possible assignments, so that the chance of �nding

a solution with tmax − tmin ≤ P − τ are larger. Remark that if an instance has a valid

assignment, we can guarantee that one route has a waiting time zero in some valid assign-

ment.

Recall that t(r,c1) is the release time of r. Algorithm PMLS runs, for each route r ∈ R,
the algorithm MLS on an instance de�ned as follows. Subtract t(r,c1) to all the release times

and deadlines of the routes, to obtain an equivalent problem. Therefore, t(r,c1) is zero in

the instance we build and the waiting time wr is set to zero. Hence the datagram of r goes

through c2 at time 0 and tmin = 0. Then, as in Proposition 2, the instance is modi�ed

so that all release times are in [P − τ ]. Each release time t(ri,c1) is replaced by t(ri,c1)

mod P and d(ri) = d(ri) − (t(ri,c1) − t(ri,c1) mod P ). Furthermore, if the release time

of a route r is between P − τ and P , we set it to 0 and d(r) = d(r)− P . The deadline of
each route is set to the minimum of its deadline and P − τ . Hence, if MLS �nds a solution

for such a modi�ed instance, we have by construction of the instance tmax ≤ P − τ . Since
tmin = 0, the assignment is valid. Algorithm PMLS returns the �rst valid assignment it

�nds when running MLS for some r ∈ R.

The instance of wta we have de�ned in this transformation is equivalent to the original

instance, except we have �xed the waiting time of r to be zero. If there is some valid

assignment, then at least one route has waiting time zero, then if MLS �nds an assignment

then PMLS also �nds one. Algorithm MLS is used at most n times, thus the complexity of

PMLS is in O(n3 log(n)). Note that PMLS is a heuristic and may fail to �nd a solution even

if it exists. It is the case when, for the n modi�ed instances, there is no solution with times

t(ri,c2) using an interval of time less than P in c2.
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4.5 FPT algorithms for WTA and PALL

As a warm-up, we give a simple FPT algorithm for wta which is practical, and then

we build on it to give a more complicated FPT algorithm for pall. Unfortunately, the

dependency on n the number of routes in the second algorithm is yet too large to be useful

in practice.

Theorem 22. wta ∈ FPT over star routed networks when parametrized by the number of

routes.

Proof. Consider an instance of wta, given by a release time and a deadline for each route.

We show that we can build a set of instances from the original one such that one of these

instances has a valid assignment if and only if the original instance has a valid assignment.

As for PMLS, for each route r, we consider the instance where r has release time and

waiting time zero (t(r,c1) = wr = 0). The release times and deadlines of all routes are

modi�ed so that all release times are less than P as in the transformation described for

PMLS. If there is an assignment such that tmax < P − τ , then the periodicity does not come

into play for this assignment and the algorithm MLS will �nd the assignment as explained

in Section 4.4.

Now, remark that if there is a valid assignment for an instance with the properties

just stated, then there is a valid assignment satisfying for all i, t(ri,c2) ≤ 2P − τ . Indeed,
if there is a i such that t(ri,c2) ≥ 2P in a periodic assignment, then we have wi =

t(ri,c2) − λ(ri,c2) ≥ P . Hence, we can set wi = wi − P ≥ 0 and we still have a valid

assignment. Moreover, for all ri 6= r, it is not possible that 2P − τ < λ(ri,c2) ≤ 2P , since

it would imply a collision between r and ri.

From an instance I, with the properties of the �rst paragraph, we de�ne a new instance

I ′ whose valid assignments are a subset of the ones of I. Moreover, one of the valid

assignments of I ′ satis�es that, for all iin[n], t(ri,c2) ≤ P − τ and is thus found by MLS.

Let us now consider A a valid assignment of I, we can assume that, for all i ∈ [n],

t(ri,c2) ≤ 2P − τ . Let S be the set of routes ri such that P − τ < t(ri,c2) ≤ 2P − τ . The
instance I ′ is de�ned by changing, for all route r ∈ S, t(r,c1) and d(r) to t(r,c1)− P and

d(r) − P . Then, by construction A is also a valid assignment of I ′. Assignment A as a

solution of I ′, satis�es t(ri,c2) ≤ P − τ for all i ∈ [n].

The FTP algorithm is the following: for each route r build a modi�ed instance as in

PMLS. Then, for each subset S of routes, remove P to the release time and to the deadline
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of each route in S and run MLS on the instance so modi�ed. If there is a valid assignment,

then we have proved that there is some S, such that the instance built from S has a valid

assignment with t(ri,c2) ≤ P − τ for all i ∈ [n]. Hence, MLS �nds a valid assignment for

this instance.

The algorithm of Theorem 22 has a complexity of O(2nn3 log(n)). If we consider some

valid assignment, the routes r with t(r,c2) > P , must satisfy t(r,c2) > P + τ to avoid

collision with the �rst route. Hence, the deadline of these routes must be larger than

P + τ . These routes are exactly those that must be put in S, hence we can enumerate only

the subsets of routes with a deadline larger than P + τ . In practice, only k routes have a

deadline larger than P + τ with k << n, and we need only to consider 2k subsets. Let us

call this algorithm All Subsets PMLS, and let us denote it by ASPMLS.

Theorem 23. pall ∈ FPT over star routed networks when parameterized by the number

of routes.

Proof. Consider a star routed network, instance of pall with a valid assignment. We

characterize such a valid assignment by a set of necessary and su�cient linear equations

and inequations it must satisfy. These conditions are expressed on the values t(r,c1) and

t(r,c2) and setting those value is equivalent to setting the o�sets and the waiting times,

that is choosing an assignment.

First, we assume the star routed network is canonical. Hence, there is a valid assignment

A, such that for all routes r ∈ R, 0 ≤ t(r,c1) < P − τ and 0 ≤ t(r,c2) < 2P − τ .

By de�nition t(r,c2) = t(r,c1) + ω(r,c2) + wr. Since a waiting time is non-negative, we

have t(r,c2) ≤ t(r,c1) + ω(r,c2). Now, let S be the set de�ned as in Theorem 22, of the

routes r such that P − τ < t(r,c2) ≤ 2P − τ . We want to guarantee that for r ∈ R,
t(r,c2) ∈ [P − τ ]. To do that, we replace the inequation t(r,c2) ≤ t(r,c1) + ω(r,c2) by

t(r,c2) ≤ t(r,c1) + ω(r,c2) − P and d(r) by d(r) − P for all r ∈ S. Remark that the

presented linear constraints now depend on S, which itself depends on A.

Let σ and σ′ be two permutations of Σn such that σ is the order of the routes

r0, . . . , rn−1 according to the value t(r,c1) and σ′ according to the value t(r,c2). Since

all t(r,c1) and t(r,c2) are in [P − τ ], we have t(r,c1) = t(r,c1) mod P and t(r,c2) = t(r,c2)

mod P . Hence, we can express the constraints on the absence of collision between routes

by adding the following equations to the ones of the previous paragraph:

• for all i < n− 1, t(rσi ,c1) ≤ rσi+1 ,c1 + τ) (no collision in c1)
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• for all i < n− 1, t(rσ′i ,c2) ≤ rσ′i+1
,c2 + τ) (no collision in c2)

• for all i < n, t(ri,c2) < d(ri) (deadline respected)

Consider now the system of inequations ES,σ,σ′ we have built from A. The values

t(r,c1) and t(r,c2) given by A satisfy the system by construction. Moreover, any solution

to these equations yields a valid assignment, because the equations guarantee that there

is no collision, that the o�sets and the waiting times are non-negative and that all routes

meet their deadlines. However, a solution of ES,σ,σ′ may be rational, while o�sets and

waiting times must be integers. We use the following simple fact: x+ e1 ≤ y + e2 implies

dxe+e1 < dye+e2 when e1 and e2 are integers. Since all equations of ES,σ,σ′ have this form,

if we take the upper �oor of the components of a solution, it is still a solution of ES,σ,σ′

with integer values. As a consequence, any solution to ES,σ,σ′ yields a valid assignment of

the original instance of pall.

The algorithm to solve pall is the following. Build ES,σ,σ′ for all triples (S,σ,σ′).

Then, solve each linear system, and if it admits a solution, convert it back into a valid

assignment of the instance of pall by rounding. There are 2n sets S and n! orders σ.

Thus, 2n(n!)2 systems with 2n variables and a bitsize of the same order as the original

instance are solved at most. Since solving each system can be done in polynomial time in

the size of the instance, it proves that the algorithm is FPT in n. Moreover, it always �nds

a valid assignment if there is one, since we have shown that from a valid assignment, we

can �nd (S,σ,σ′) for which the values associated to A satisfy ES,σ,σ′ .

4.6 Experimental Evaluation

Evaluating the Necessary Margin We set the number of routes to 8 to make com-

parisons with the results of Chapter 3 easier. We draw uniformly the weights of the arcs

of the fronthaul network in [P ]. We use the same deadline for all routes, which is the most

common constraint, when modeling a C-RAN problem: all RRHs have the same latency

constraint and all BBUs take the same time to process the answer.

We de�ne the margin of an instance as the margin of the longest route of the routed

network. Since all routes have the same deadline, it is the di�erence between the length

of the longest route and the deadline. Note that the margin is de�ned before making the

network canonical, since this operation makes the deadlines all di�erents, and thus breaks
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the semantic of the margin. The margin represents the logical latency which can be used by

the communication process, without taking into account the physical length of the network,

since it cannot be changed. For a given star routed network, it is equivalent to set the

margin or all the deadlines to the length of the longest route plus the margin. However,

to compare di�erent star routed networks with di�erent length of routes, the margin is

more relevant than the deadline. Hence, in our experiments, we consider margins from 0

to 3,000 tics to understand how much logical latency is needed to �nd an assignment. We

look at two di�erent regimes, a medium load of 0.8 and a high load of 0.95. Considering

smaller load is not relevant since we can solve the problem using bu�erless assignments, as

shown in Section ??.

We �rst try to understand what is the best choice of heuristics for the �rst stage of

the algorithm. The �rst stage is followed in this experiment by Greedy Deadline, the

simplest algorithm to solve wta. In Figure 4.2, the success rate of all possible �rst stage

heuristics to solve pall is given, function of the margin of the instances. The success rate

is an average computed over 10,000 random star routed networks.
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Figure 4.2 � Success rate of di�erent sending orders, left 0.80 load, right 0.95 load.

According to our experiments, policy IA, that is sending the datagrams on increasing

order on the length of the arcs (c1,c2), does not work well. It corresponds to the policy

of Proposition 3 which we already know to be bad for pazl when the routes are long as

in this experiment. Sending in decreasing order on the margin of the routes (DM) or on

the length of the arcs (c1,c2) (DA) work better and it seems that DA is better than DM,

especially in a loaded network.

Remark that sending the datagrams using a random order does not perform well, but

better than IM and IA, which shows that the latters are a poor choice for the �rst stage
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of our algorithm. The interest of using a random order is that we can draw many of

them. In Figure 4.3 the same experiment is made for the three heuristics choosing an

order at random, but we now draw 1,000 di�erent random orders and solve each induced

wta instance using Greedy Deadline. The algorithm is considered to succeed as soon as

a valid assignment is found for one order. Each random order drawn is used for RO, RORS

and ROBS to make the comparison fairer.
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Figure 4.3 � Success rate of di�erent sending orders with the random orders generated 1000
times, left 0.80 load, right 0.95 load.

First remark that our algorithms �nd assignments with margin 0 for many instances

with load 0.95 and long routes which was not possible when only looking for bu�erless

assignments (see Section ??). It justi�es the interest of studying pall and not only pazl.

Using many random orders is much better than DA, the best policy using one speci�c

order. With a load 0.95, a solution is found with margin 0 most of the time. The three

random order policies have similar performances, but RORS has slightly better success

rate than the two others ones, under high load and small margin. Hence, in the following

experiments, we always draw 1,000 random orders using the policy RORS to set the o�sets

of the assignments.

We now compare the performances of the four di�erent algorithms used in the second

stage to set the waiting times. Since Greedy Deadline already �nds assignments with

margin 0 under mild loads, it is more interesting to focus on the behavior of the algorithms

under high load. In Figure 4.4, we represent the success rate of the four algorithms with

regards to the margin, computed over 10,000 random star routed networks generated with

the same parameters as previously.

The MLS algorithm performs poorly, worst than Greedy Deadline, PMLS and ASPMLS,
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Figure 4.4 � Success rate of four algorithms solving pall, load 0.95

which shows that taking into account the periodicity is fundamental. Algorithm Greedy

Deadline is close to 100% success rate for margins larger than 1,500 while PMLS and ASPMLS

algorithms �nd a solution for more than 99% of the random instances, even with a margin

0. In other words, for very high load and no margin, there are very few instances for which

we do not �nd an assignment. With a margin of 300, which corresponds to about 15µs of

additional delay with the chosen parameters, we always �nd a solution.

It turns out that the performances of PMLS and ASPMLS are almost identical. Even

with a load of 100% and a margin of 0, we have to draw 100,000 random instances before

�nding one which can be solved by ASPMLS and not by PMLS. Since ASPMLS is of exponential

complexity in n, it is not relevant to use it within the parameters of this experiment. To

verify that, we present the computing time of PMLS and ASPMLS for di�erent instance sizes.

To stress the algorithms, we set the margin to 0 and the load to 0.95. The table of

Figure 4.5 shows the computation times of PMLS and ASPMLS, averaged on 1,000 instances.

Recall that both PMLS and ASPMLS use the same �rst stage which produces 1000 instances

of wta, using the policy RORS.

# routes 8 12 16 20 24

ASPMLS (ms) 1.88 5.98 47.75 209.2 1815

PMLS (ms) 0.07 0.08 0.09 0.10 0.12

Ratio 27 78 523 2122 14882

Figure 4.5 � Computation time for PMLS and ASPMLS function of the number of routes
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The complexity of both these algorithm depends on the number of routes. As shown

in Figure 4.5, the time complexity of PMLS seems linear on average, while its theoretical

worst case complexity is cubic. ASPMLS scales exponentially with the number of routes as

expected. Both algorithms are usable for instances of 20 routes, but for 40 routes or more

ASPMLS becomes too slow. Since ASPMLS almost never �nds a solution when PMLS does not

and is much slower, one should prefer to use PMLS.

When evaluating the computing time of our method, we should take into account how

many random orders are drawn. In previous experiments, we have drawn 1,000 random

orders which may be 1,000 time slower than using a single �xed order. There is a trade-o�

between the number of random orders and the success rate. We investigate the success

rate of our algorithms with regards to the number of random orders drawn, a load of 0.95

and a margin 0. The table of Figure 4.6 presents the success rate for di�erent numbers of

sending orders, averaged over 10,000 instances, for Greedy Deadline, PMLS and ASPMLS.

# orders 1 10 100 1,000 104 105

Greedy Deadline 0.55 6.05 35.44 77.43 90.1 92.4

PMLS 82.04 98.84 99.71 99.80 99.83 99.83

ASPMLS 91.33 99.17 99.72 99.80 99.83 99.83

Figure 4.6 � Success rates function of the number of random orders drawn in the �rst stage
of the three algorithms

First, observe that the better the algorithm to solve wta is, the less random orders it

needs in stage one to achieve its best success rate. In particular, ASPMLS has better results

than PMLS for less than 1,000 random orders, but not beyond. This further justi�es our

choice to draw 1,000 random orders, to obtain the best success rate within the smallest

time.

The number of di�erent orders is 7! = 5,040 since we have 8 routes and the solutions

are invariant up to a circular permutation of the order. Hence, for 8 routes it is possible

to test every possible order. However the computation time of this exhaustive method

scales badly with n. The fact that PMLS and ASPMLS have already high success rates for 10

random orders hints that even for a larger number of routes, drawing 1000 random orders

is su�cient to obtain good assignments.

Harder Topologies Previous experiments use instances with weights of arcs uniformly

drawn in a large interval. However, it is quite natural to consider that most routes are
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Figure 4.7 � Success rate of PMLS,
with length of arcs drawn in [I]
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Figure 4.8 � Success rate of PMLS,
with length of arcs drawn in [I] or
[P/2,P/2 + I[

of roughly the same length or can be arranged in two groups of similar lengths, when the

fronthaul network involves one or two data-centers.

By Proposition 5, there is an assignment with margin equal to the maximum di�erence

between the sizes of the routes. Hence, if all routes have almost the same size, the needed

margin is small. If the routes are drawn uniformly in a large interval, then the expected

di�erence between the longest route and the second longest route is large. This di�erence

can be seen as a free waiting time for most routes, hence we expect to need little margin in

this regime too. As a consequence, the harder instances should be for routes with length

drawn in an interval of moderate size compared to the period.

Figures 4.7 and 4.8 show the probability of success of PMLS over 10,000 instances as

a function of the margin. In Figure 4.7 the length of arcs are drawn in [0,I], where I

goes from 0 to 6400. As expected the success rate decreases when the size of the interval

increases, until I = 1600, and then increases again. In the most di�cult settings, only 78%

of the instances can be solved with margin 0, and we need a margin of 1,900 to ensure that

PMLS always �nds a solution. Results for ASPMLS are not shown, since they are the same

as for PMLS, even on these hard instances.

In Figure 4.8, we do the same experiment, except that the weights of arcs of half of

the routes is drawn in [I] and the length of the other half is drawn in [P/2,P/2 + I[. The

situation is the same as for the previous experiment but with better success rates, hence

the case of two data centers seems simpler to deal with in practice.
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4.7 Performance of Statistical Multiplexing

Now that we have designed and tuned PMLS to solve pall e�ciently, we compare its

performances against the actual way to manage the messages in a network: statistical

multiplexing, with a FIFO bu�er in each node of the network to resolve collisions. For

statistical multiplexing, the time at which the datagrams are sent in the network is not

managed by the user as in our approach, thus we assume the o�sets of each route is �xed

to some random value, and they stay the same over time. We consider a second policy to

manage bu�ers called CriticalDeadline. In a bu�er with several datagrams, this policy

sends the one with the smallest remaining margin, which is the time it can wait before

missing its deadline.

We have implemented a statistical multiplexing simulator, to evaluate the performance

of these two policies and to compare them to �nding assignments with small margin by

solving pall. For statistical multiplexing, both contention points have a bu�er. The

process is not periodic: even if the o�set of a route is the same each period, it is possible

that some datagram do not arrive at the same time in a contention point in two consecutive

periods because of bu�ering. Therefore we must measure the process time of each route

over several periods if we want to compute the maximum latency of the network. We

choose to simulate it for 1,000 periods but we have observed that the process time usually

stabilizes in less than 10 periods. The margin, for statistical multiplexing, is de�ned as

the maximum process time, computed as explained, minus the size of the longest route of

the star routed network.

In Figure 4.9, we represent the probability of success of statistical multiplexing and PMLS

for di�erent margins. The success rates are computed from 10,000 star routed networks for

each margin. On the left part of Figure 4.9, the arcs of the network are uniformly drawn

in [P ], while on the right part, the arcs of the network are uniformly drawn in [1600] (the

hardest settings of the previous section). The others parameters of the experiences are the

same as previously. We represent the distribution under loads of 0.95.

The experiment shows that statistical multiplexing does not ensure a minimal latency.

For random topologies, the latency is extremely high when using FIFO (6538 tics in aver-

age), with a margin of about 10,000 for the worst 30% of instances, which corresponds to

half the period (0.5ms). Even when the messages are managed with CriticalDeadline,

20% of the instances have a margin of more than 4,000 (2838 tics in aveage) while PMLS
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Figure 4.9 � Probability of success of statistical multiplexing and PMLS for several margins
on random topologies when the size of the routes are distributed either on P (left) or on
a small range of values (right).

�nds an assignment with 0 margin 99% of the time!

For hard topologies (right �gure), the average margin of statistical multiplexing (9052

tics for FIFO, 6574 tics for CriticalDeadline) is worst than for random topologies. The

worst case of CriticalDeadline remains the same (' 16500 tics) while the worst case of

FIFO fall from 30828 tics for random topologies to 19105 tics on hard topologies. The

settings are stressful for PMLS, and we �nd an assignment with margin 0 in only 78% of the

instances, and it needs a margin of 2,000 tics to be sure to �nd an assignment. However,

PMLS still vastly outperforms the statistical multiplexing both for the average margin and

for the worst margin.

Even under a light load of 0.4, for which we can always �nd bu�erless assignment,

statistical multiplexing has a very high average margin (1290 tics for FIFO and 1052 tics

for CriticalDeadline) and worst case margin (10963 tics for FIFO and 6938 tics for

CriticalDeadline).

For each 1,000 tics of latency we save from the periodic process, we are able to lengthen

the routes of 10km, which has a huge economical impact. We feel that it strongly justi�es

the use of a deterministic sending scheme for latency critical applications such as our

C-RAN motivating problem.

Conclusion

In this chapter, we propose solutions for the pall problem. We decompose the problem in

two steps. The �rst one consists in arbitrary set the o�sets of the routes, and the second

one is to solve the problem wta in order to compute the waiting times. Several heuristics
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to choose the o�set have been proposed and experimentally veri�ed, and the best one is to

generate a large number of random o�sets for every route, to solve wta on them and to

keep the best solution. We propose polynomial time heuristics and an exact FPT algorithm

that solve wta when parametrized by the number of routes. This latter is built from a

scheduling algorithm (that we call MLS) of the literature. We adapted MLS for periodicity

under the name PMLS. In PMLS, we set one datagram to be the �rst in the period, and we

set the deadline of the other datagrams according to the sending time of the �rst message

and the period. We repeat this operation with every datagram at the �rst position on

the period, and we keep the best solution. Because we reinforce the deadline constraint,

PMLS does not ensure to �nd a solution if it exists. Thus, we proposed ASPMLS, an FPT

algorithm that solves wta if there is a solution. ASPMLS is based on the canonical form

of the assignments and explores all subset of routes in order to not forget valid instances.

We also propose an FPT algorithm to solve pall when parametrized by the number of

routes, but it consists of a list of constraints for linear programming and its combinatorial

complexity is too high to be programmed, even on instances with few routes.

We show that ASPMLS and PMLS have excellent performances for Cloud-RAN parame-

ters. They �nd a solution with 0 additional latency for 99.9% of the instances, even for load

0.95 on random instances. We also show that our solution largely outperforms statistical

multiplexing, even using a bu�ering policy taking into account the latency.

Even if the performance are excellent on practical instances, the algorithm we propose

here focuses on solving the problemwta of computing the waiting time when the o�sets are

chosen, but not the entire problem : pall. Furthermore, neither Greedy Deadline, PMLS

nor ASPMLS are easily adaptable for more complex topologies than star routed networks,

studied in next chapter for a synchronized version of pall.





Chapter 5

Scheduling Synchronized Periodic

Datagrams in Arbitrary Networks

In this chapter, we consider a problem similar to pall with an additional constraint: the

sending of the messages in all the sources of the routes must be synchronized. We need

to add bu�ering on the �rst contention point of each route, otherwise the synchronization

constraint makes collisions unavoidable. Since it is much harder to �nd assignments with

low latency in this context, we allow bu�ering in all contention points of the routed network

(and not only in the ones corresponding to BBUs). Hopefully, this higher degree of freedom

to schedule the datagrams helps decrease the process time of the assignments.

We modify the model in order to take into account the bu�ers, and we de�ne the

problem minstra, the synchronized version of mintra, studied in previous chapters.

The algorithms presented in this section solve minstra on the star routed network as

in Chapters 3 and 4, but also on any directed acyclic multigraphs representing a routed

network. We �rst show that greedy algorithms similar to those used for star shaped

networks are not e�cient in routed network of higher contention depth. Then, we present

several local search heuristics (Hill Climbing, Simulated Annealing, Tabu Search) that

improve on the greedy algorithms and �nd low latency assignments. Finally, we present an

FPT Branch and Bound algorithm that gives the optimal solution, which allows to assess

the performances of previous algorithms on small networks.

5.1 Model changes

5.1.1 A synchronized version of minstra

The fronthaul network is still represented in this chapter by a routed network N = (R, ω)

but the set B of vertices with possible bu�ering is omitted. Indeed, in this chapter, B is
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equal to C, the set of contention points, that is bu�ering is allowed in all vertices.

In Chapter 3 and 4, the routed network is assumed to be a star routed network, a

restriction that we now lift. We de�ne by Rc the subset of routes in R containing c.

Let r ∈ R, with r = (s,c0, . . . ,cl,t), then we say that ci is of contention depth i for

the route r, and we denote it by cd(r,ci) = i. The contention depth of a contention

point c is the maximum of its contention depth over all routes going through c: cd(c) =

max
r∈Rc and c∈r

cd(r,c). As a reminder, the contention depth of a routed network N =

(R,B, ω) is the maximal number of contention points on a route in the routed network.

Let r = (s,c0, . . . ,cl,t) be a route. As mentioned above, all sources emit a datagram

at the same date. This means that, w.l.o.g. or = 0. In order to avoid contention, it is

possible to bu�er datagrams in all contention points. An assignment, denoted by A, is

a function which associates a non negative integer value A(r,c) to each couple (r,c) with

r ∈ R and c a vertex of r. The values A(r,c) represent the bu�ering times: a datagram of

route r waits A(r,c) tics in the bu�er of c.

The arrival time of a datagram in vertex ci of r, is the �rst time at which the datagram

sent on r reaches ci, and is de�ned by t(r,ci) = λ(r,ci) +
∑i−1

k=0A(r,ck). The date at which

a datagram reaches a vertex ui is decomposed into a physical delay due to the time to go

through the links before ui and a logical delay caused by the use of bu�ers as determined

by assignment A. The sending time of a datagram at vertex ci of r, is the �rst time at

which the datagram is sent by ci. It is de�ned by s(r,ci) = t(r,ci) + A(r,ci). This is the

arrival time of the datagram plus the bu�ering time given by A.

Consider v the last vertex of the route r, the transmission time of the datagram on r

is denoted by TR(r,A) as in Chapter 4 and is equal to t(r,v). Then, the transmission

time of an assignment A is de�ned as TR(A) = max
r∈R

TR(r,A). This is the time elapsed

before the reception of the beginning of the last datagram. We denote by TR(N) the best

possible transmission time for the routed network N , that is the minimum of TR(A) over

all A valid assignments.

As in Chapter 4, given a network N , the objective is to minimize TR(A), we thus

de�ne minstra, the problem of computing A a (P,τ)-periodic valid assignment such that

TR(A) = TR(N).

Minimizing Synchronized TRansmission time of Assignments (minstra)

Input: A routed network N = (R, ω), a period P , a datagram size τ .

Problem: Find A with TR(A) = TR(N).
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We evaluate the arithmetic complexity of our algorithms to solve minstra, that is

arithmetic operations are considered to be in constant time. Surprisingly, the complexity

of the presented algorithms do not depend on P , τ or the weights of the routed network,

but only on n the number of routes and d the contention depth.

5.1.2 Fronthaul networks modeling

Contention Depth One Each contention point of a routed network of contention depth

one induces a connected component. Problem minstra can be independently solved on

each connected component of the network, hence the case with a single contention point is

equivalent to contention depth one. Problem minstra over a routed network with a single

contention point is equivalent to wta, a problem already studied in Chapter 4.

Star routed network The simplest case of contention depth 2 is a routed network with

two contention points. This is enough to modelize our process of sending a datagram from

an RRH to a BBU and back when there is a single contention point (a shared link between

the RRHs and the data centers). This topology is the star routed network on which we

have solved pazl in Chapter 3 and pall in Chapter 4.

Theorem 24. The problem minstra is NP-hard when restricted to star routed networks.

Proof. The two �ow shop problem studied in [37] is shown to be NP-hard. The problem is

de�ned as follows: a set of n jobs have to be processed in sequence on two machines. Each

job must be processed on machine 1 before being processed on machine 2. All jobs can be

processed from time 0 on machine 1, then for a job i, there is a delay di between the end

of the processing on machine 1 and the time at which it can be processed machine 2. The

time needed to process a job is the same for all jobs and both machines. The objective is

to minimize the makespan, that is the time at which the last job is scheduled.

We reduce an instance of the two �ow shop problem to an instance of minstra on a star

routed network (cf Section 2.1.5): A job is a route, the time to process a job is τ the size of a

datagram and the delay of the job i is the length of the arc (c1,c2) in the route ri. If all �rst

datagrams of a route can go through the routed network before the end of a period, then

the periodicity of minstra does not come into play. In other word, we want to ensure that

there is an assignment A such that for all r ∈ R, TR(A,r) ≤ P . We let P =
∑

1≤i≤n λ(ri)

and for all i ≤ n, we let A(ri,c1) =
∑

1≤j<i λ(rj) and A(ri,c2) = 0. By construction, A is
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a (P,τ)-periodic assignment since there is always only one datagram moving through the

network at some point in time and it satis�es for all r ∈ R, TR(A,r) ≤ P by construction.

Solving minstra on the instance we have de�ned is equivalent to �nding the minimal

makespan in the two �ow shop problem, which proves the theorem.

The fronthaul networks we study have coherent routings, a classical requirement in

telecommunication networks (see e.g. [20]). It means that if the routes r and r′ go through

two contention points u and v, they have the same subpath between u and v. This is

true for the fronthaul networks we modelize. The coherent property is respected from the

source to the arc representing the BBU and then from the arc representing the BBU to the

target. As a consequence, routed networks obtained from fronthaul networks are directed

acyclic multigraphs, as required in the de�nition of routed network.

Contention depth larger than one In this chapter, we deal with more general routed

networks than star routed networks. The algorithms proposed here solves minstra on

every routed network which are directed acyclic graphs. We focus our study on symmetric

fronthaul networks; networks in which the routes between the RRH and the BBU use

the same links in both ways, but this property does not need to be enforced. We say

that a routed network modeling a symmetric fronthaul network is a symmetric routed

network.

Star routed networks, considered when solving pazl and pall in previous chapters

are symmetric routed network: they are symmetric around the central arc (c1,c2). More

generally, if a symmetric fronthaul network is of contention depth 2, then all routes which

contain the same contention point of depth one also contain same contention point of depth

two. Thus, every symmetric fronthaul network of depth 2 can be represented by several

disjoint star routed networks.

Symmetric routed networks of higher contention depth are speci�cally studied in this

chapter. For higher contention depth, a reasonable simplifying assumption is to consider

that the length of the links in the datacenter are the same for all routes. Then, there is no

contention on the link going out of the BBU, as explained in Section 5.3.4 and the routed

networks are symmetrical around the contention point preceding the BBU.
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5.2 Compact Representation of an Assignment

We de�ne ≺, the pointwise order on assignments: A1 � A2 if for all r ∈ R, TR(A1,r) ≤
TR(A2,r). Moreover, we say that A1 ≺ A2 if A1 � A2 and there is an r ∈ R such that

TR(A1,r) < TR(A2,r). Remark that assignments which minimize TR(A) are also minimal

for ≺. Hence, it is enough to consider minimal assignments for ≺ to solve minstra.

We explain in this section how to represent most assignments in a compact way, for-

getting about the precise bu�ering time by only considering informations about the order

of the datagrams in each contention point. All minimal assignments have a compact rep-

resentation, which implies that we do not need to consider assignment without a compact

representation when solving minstra. It allows to design an FPT algorithm for min-

stra by going through all compact representations, but also to design good polynomial

time heuristics using Tabu Search or Simulated Annealing, since one can easily de�ne the

neighborhood of a compact representation.

De�nition 3 (Compact assignment). Let (G,R) be a routed network. A compact assign-

ment CA is a function which maps to each contention point c in G a pair (Oc,Sc), where

Oc is an order on Rc and Sc is a subset of Rc.

5.2.1 From a Valid Assignment to its Compact Representation

Let us de�ne a function which maps a valid assignment A to a compact assignment, called

the compact representation of A, denoted by CR(A). We assume that for all contention

points u, there is a route r ∈ Ru such that A(r,u) = 0. The routes in R are indexed by the

integers in [n]. Say w.l.o.g. that r0 is the route of smallest index such that A(r0,u) = 0.

The datagram of r0 arrives, and goes to the next contention point, at time t(r0,u). Let us

de�ne the normalized arrival time of r at u: for all r ∈ Ru, nt(r0,r,u) = (t(r,u)−t(r0,u))

mod P . It is the time at which the datagram of r arrives at u, in a period normalized so

that the datagram of r0 goes through u at time 0. Similarly, we de�ne the normalized

sending time as ns(r0,r,u) = (s(r,u)− t(r0,u)) mod P .

We de�ne Ou as the order on the routes of Ru induced by the values ns(r,u). The

set Su is de�ned as the set of routes going through u such that ns(r0,r,u) < nt(r0,r,u).

Intuitively, the time being seen as cut into periods [t(r0,u) + iP,t(r0,u) + (i + 1)P [ with

i ∈ N, then Su represents the set of routes with a datagram going through u in the period

after the one it has been available in.
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Fig. 5.1 illustrates how a compact representation is computed from an assignment on

a single node u. On top, the datagrams are represented by sending time s(ri,u) while the

bottom of the �gure shows the datagrams in a single period, represented by normalized

sending times ns(r0,ri,u).

t(r0, u) t(r2, u)

t(r1, u)t(r3, u)

r0 r2 r1 r3

A(r3, u)

A(r1, u)

P

r0 r2r1 r3

Su = {1, 3}

Ou = (0, 1, 3, 2)

Figure 5.1 � A compact representation of an assignment in which Ou = (0,1,3,2) and
Su = {1,3}

Remark that for CR(A) to be de�ned, we need that, on each contention point, at least

one datagram is not bu�ered. We call such an assignment a canonical assignment. It

turns out that any assignment A can be made canonical without increasing TR(A), hence

we can only consider canonical assignments when solving minstra.

Lemma 25. Let A be a valid assignment, then there is a valid canonical assignment A′

such that A′ � A.

Proof. Consider a vertex u of contention depth 1, such that for all r ∈ Ru, A(r,u) > 0. Let

us de�ne m as the minimum of these values, we de�ne A′(r,u) = A(r,u)−m. Assignment

A′ has no collision on u, since all departure times have been shifted by the same value and

A has no collision. Moreover, if v is the vertex after u in a route r, we de�ne A′(r,v) =

A(r,v) + m. Hence, all departure times for vertices of contention depths larger than one

are the same in A and A′, which implies that there are no collisions in these vertices. We

have proven that A′ is still valid. Since all departure times of A′ are less or equal to those

induced by A, we have A′ � A. Moreover, if r0 is the route with A(r0,u) = m, then

A′(r0,u) = 0.

We apply this transformation by increasing contention depth. Since, the transformation

applied at some contention depth do not change A′ for smaller contention depths, a trivial

induction proves that A′ is valid, canonical and that A′ � A.
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5.2.2 From a Compact Assignment to its Realization

We now explain how to transform a compact representation into a canonical assignment.

Moreover, we show that the obtained assignment is the smallest among all assignments of

same representation. We �rst explain how to do the transformation on a routed network

with a single contention point u.

Recall that the datagram of a route r is available at time t(r,u) in the vertex u. Let

us consider a compact assignment CA, which maps u to the pair (Ou,Su). The assign-

ment Real(CA) is built inductively from CA, it is called the realization of CA. If the

construction of Real(CA) fails, then Real(CA) is unde�ned and we say that CA is not

realizable. In the next paragraph, we build an assignment A by setting the bu�ering time

of the routes in the order (Ou). If the construction succeeds, we set Real(CA) = A

Let say that the order Ou is (r0, . . . , rl). We �x A(r0,u) to zero, that is the �rst

datagram in the period has no bu�ering time. Then, in each period beginning by the �rst

datagram, the datagrams will be in order Ou. When the �rst datagram of the period is

chosen, we use it to de�ne normalized arrival times and normalized sending times. Assume

that A(ri,u) have been set for i ≤ l, let us explain how to set A(ri+1,u). If ri+1 /∈ Su,

then A(ri+1,u) is chosen so that ns(r1,ri+1,u) is the maximum of ns(r1,ri,u) + τ and

nt(r1,ri+1,u). If ns(r1,ri+1,u) > P − τ , then CA is not realizable. If ri+1 ∈ Su, then

A(ri+1,u) is chosen so that ns(r1, ri+1,u) = ns(r1,ri,u)+τ . In both cases, if ns(r1, ri+1,u) ≥
nt(r1,ri+1,u), then CA is not realizable (the sending time is in the wrong period with regard

to Su).

Figure 5.2 shows how an assignment Real(CA) is built from a compact assignment

CA on a single contention point u. We have Ou = (2,1,0,3) and Su = {1}. First, the

datagram 2 is �xed, that is, A(r2,u) = 0. Then, since r1 ∈ Su, we set A(r1,u) such that

ns(r2,r1,u) = ns(r2,r2,u) + τ . Finally, since r0 and r3 /∈ Su, we set A(r0,u) and A(r3,u)

such that ns(r2,r0,u) = nt(r2,r0,u) and ns(r2,r3,u) = ns(r2,r0,u) + τ .

The function Real can easily be generalized to any routed network. Indeed, one can

�rst consider all vertices of contention depth 1, the routes going through them form disjoint

sets. Hence, we can de�ne Real independently on each vertex of contention depth 1. Then

using the bu�ering computed for these vertices, one can compute the arrival time of each

route in vertices of contention depth 2 and compute Real for these vertices in the exact

same way, and so on for all contention depths. In the following lemmas and theorems, we

always consider a single contention point, since it is trivial to extend any property for one
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Step 1: r2

Step 2: r2 r1

nt(r2, r1, u)

r2 r1

ns(r2, r0, u) = max(nt(r2, r0, u), ns(r2, r1, u) + τ)

r0

r2 r1

nt(r2, r3, u)

r0 r3

Step 3:

Step 4:

The datagram 1 follows the datagram 2 since 1 ∈ Su

ns(r3, r0, u) = max(nt(r2, r0, u), ns(r2, r0, u) + τ)

Figure 5.2 � Inductive construction of Real((2,1,0,3),{1}) from CA on a single contention
point u.

contention point to the whole routed network as we just explained.

Lemma 26. The assignment Real(CA) can be computed in time O(nd), where d is the

contention depth of the network. If CA is realizable, then Real(CA) is a valid canonical

assignment.

Proof. In the inductive construction of Real(CA), only a constant number of comparisons

and additions are needed to compute the bu�er time of a route from the previous one.

Hence, the time spent in a vertex u is linear in |Ru|. A route can go through only one

vertex of a given contention depth, hence the time spent computing bu�ers for all vertices

of a contention depth is in O(n) and for the whole graph it is in O(nd).

To prove that there is no collision between pair of routes for a given assignment, it is

enough to prove it for any interval of time of size P . Hence, it is enough to consider the

normalized sending time and to verify they do not induce a collision. By construction,

ns(r1,ri+1,u) is always larger than ns(r1,ri,u) + τ and less than P − τ , which proves the

absence of collision. Finally, Real(CA) is canonical, since by de�nition Real(CA)(r1,u) =

0, where r1 is the �rst route in Ou.

We can de�ne the following equivalence relation over canonical assignments: A and B

are equivalent if and only if CR(A) = CR(B). We say that a compact assignment CA =

(Ou,Su)u∈V (G) is canonical if it is a realizable compact assignment, CR(Real(CA)) =

(O′u,S
′
u)u∈V (G) and if for all vertices u, the �rst routes of Ou and O′u coincide. This notion

of canonicity is de�ned so that the function CR always sends a canonical assignment on

a canonical compact assignment. It is just restrictive enough (by �xing the �rst element

in each order), that the function CR is the inverse of Real over canonical compact assign-

ments. It implies that Real(CA) can be chosen as the representative of the equivalence
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class of the assignments having CA as a representation.

In fact, as implied by the following Lemma, we can be more precise on Real(CA): it

is minimal for ≺ in its equivalence class.

Lemma 27. Let A be a valid assignment, then Real(CR(A)) � A.

Proof. Given a vertex u and a route r ∈ Ru, we prove by induction thatReal(CR(A))(r,u) ≤
A(r,u). Let (Ou,Su) be the pair associated to u by CR(A), with Ou = (r1, . . . ,rl). By

de�nition of CR, r1 the �rst route in Ou, is such that A(r1,u) = 0. By de�nition of Real,

we have that Real(CR(A))(r1,u) = 0 = A(r1,u). Now assume that Real(CR(A))(ri,u) ≤
A(ri,u) for some i.

First, consider the case ri+1 /∈ Su. By de�nition of CR, ns(r1,ri+1,u) must be larger

than ns(r1,ri,u) + τ and because ri+1 /∈ Su it must also be larger than rs(r1,ri+1,u).

Since Real(CR(A))(ri+1,u) is the minimum value so that both constraints are true for

Real(CR(A)), using the induction hypothesis, we have Real(CR(A))(ri+1,u) ≤ A(ri+1,u).

The case ri+1 ∈ Su is similar and left to the reader.

5.3 Greedy Algorithms

In the next section, we propose several local search algorithms to explore the compact as-

signments in order to �nd a compact assignment CA with the smallest possible TR(Real(CA)).

A realizable compact assignment is needed to initialize these local search algorithms. To

�nd such initial compact assignment, we propose in this section three greedy algorithms

which try to build canonical valid assignments, which can be turned into a compact rep-

resentation by the CR function.

5.3.1 Greedy Deadline

We �rst present a simple algorithm, which is the natural approach in a context without

periodicity. The contention points are sorted by contention depth, and the contention

depths are dealt with in ascending order. The assignment, on contention points of the same

contention depth, is computed independently. The Greedy Deadline algorithm consists

in selecting among the routes of arrival time less than the current time the one with the

longest transmission time. If no route are available at the current time, select the one with

the smallest arrival time.
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Figure 5.3 � An instance for which Greedy Deadline fails to build an assignment

More precisely, Greedy Deadline works as follow. For a vertex u, select the route r such

that the arrival time t(r,u) is minimal and �x A(r,u) = 0. Assume that some datagrams

have now been scheduled, the last one on the route r at time s(r,u), we explain here how

to schedule the next route. If there are several routes r′ for which t(r′,u) < s(r,u) + τ , we

need to select one of those. For each r′ with the previous property, we compute the value

λ(r,u)−t(r′,u) and select the one which minimizes this value. Then, the selected datagram

r′ is sent with a delay A(r′,u) = t(r,u)+τ−t(r′,u). If no route satis�es t(r′,u) < s(r,u)+τ ,

the route with the lowest t(r,u) is sent without delay (A(r′,u) = 0). Due to the periodicity,

once the route r′ has been selected and s(r′,u) computed, it is possible that there is a

collision. If so, s(r′,u) is increased to the �rst time such that there is no collision. If there

is no such time, the algorithm fails.

5.3.2 Greedy Normalized

We present here a variant of Greedy Deadline: select as �rst datagram the one with

minimal t(r,u), then select the datagrams by lowest normalized arrival times instead of

arrival times. Let us call this algorithm Greedy Normalized. In practice, it performs

better than Greedy Deadline.

Both Greedy Deadline and Greedy Normalized may fail to �nd a valid assignment

for some routed networks, for which there exist a valid assignment. The way we select

departure times for the routes can create unused interval of time of size less than τ . These

intervals are not usable to schedule datagram of size τ . If too much time is wasted in this

way, the algorithms will fail, while there is always a valid assignment when the load is less
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or equal to 1. Since each datagram forbids at most 2τ − 1 tics in the period to the other

datagrams, by a pigeonhole argument, all routes can be scheduled by greedy algorithms

considering all departure times, when the load is less than 0.5 (see Chapters 3 for similar

arguments).

5.3.3 Greedy Packed

A compact assignment is needed to initialize the local search algorithms presented in the

next section. Hence, we propose the Greedy Packed algorithm that is guaranteed to �nd

an assignment, even if the transmission time may be worse on average than what is found

by the two previous greedy algorithms. The contention points are still managed level by

level. For a vertex u, we explain how to build the pair (Ou,Su). First, the route with

the lowest arrival time is selected, say r0 and we say that 0 is the �rst element of Ou

and 0 /∈ Su. From now on, r0 is used to de�ne the normalized arrival times of the other

routes. Assume that (r0, . . . ,ri), the �rst i routes of Ou are chosen, let us explain how

to choose the i + 1-th route. If there are routes with a normalized arrival time lower or

equal to ns(r0,ri,u) + τ , the route r with the smallest value of λ(r,u)− t(r,u) is chosen (as

in Greedy Normalized). If no route satisfy this property, then let r be the route which

minimizes λ(r,u)− t(r,u)−nt(r0,r,u), choose it, and Su = Su ∪{r}. In other words, select

the route with the smallest transmission time if scheduled without creating gap in the

period.

5.3.4 Random generation of routed network

This chapter presents several algorithms that each have several variants or parameters to

tune. Thus, each section or subsection describing a new algorithm also provide some ex-

perimental results. We describe here how the instances are generated for every experiment

of the chapter until Section 5.6 that present more general performance evaluations.

First, remark that, contrary to our choice for star routed networks, we consider that

the physical length of the links into the datacenter are the same for all routes. Indeed,

several BBUs are often gathered in one or several datacenters. The length of the links

between the entrance of the datacenter and all BBUs may or may not be the same. In

the �rst case, once the messages have been scheduled to go in the datacenter, they go out

in the exact same order and thus, even if all routes use the same link in the way back,

it is not considered as a contention point (see �gure 5.4), and the routes are symmetrical
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Same lenght on the links of BBU

Datacenter Datacenter
Way forward Way Backward

Datacenter
Way forward

Figure 5.4 � One or several contention points around the BBU according to the length of
the link
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Figure 5.5 � Left, a physical fronthaul network and right, the routed network modeling a
round trip in the fronthaul network. Each route is represented by the arcs of the same
color.

around the vertex representing the entrance in the BBU. If the length of the links into

some datacenter are di�erent, the aggregation node before the datacenter is represented

by two contention points. The datagrams may collide in both the entrance and the exit of

the datacenter and the routes are symmetrical around the arc between the two contention

points.

We propose several experiments to assess the practical performance (in speed and

quality) of the proposed algorithms. We present here the instances on which we test our

algorithms, which are derived from our application to Cloud-RAN. We consider networks

of contention depth three, as illustrated in Figure 5.19, in which each dotted arc represents

the arcs of two routes.

To generate random routed networks, several parameters must be chosen: The load

of the network, the number of routes, the distribution of the length of the arcs, and

the topology of the routed network. We would like to understand the impact of those

parameters, in terms of computation time and quality of found assignment, for each of

the algorithms studied. In order to reduce the number of experiences presented here, we

�x the topology of the routed network to the one shown in Figure 5.19. The di�erence

between the performances of the presented algorithms are not signi�cantly impacted if we
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change the number of contention points.

The impact of the load on the quality of the results has been investigated: When the

load is increased, the relative quality of solutions found by the local search algorithms does

not changes signi�cantly. Hence, we choose to �x the load to 0.8, which is an already high

load. This means that P = τ×n
0.8 , with n the maximal number of routes over a contention

point. The size of the C-RAN tra�c depends of the service requirement [8]. Here, we �x

τ = 2500 tics.

In a C-RAN context, the number of route is low. In the network we study, there is

n = 8 routes on the graph. This kind of graphs with few routes allows us to use the

Branch and Bound algorithm to �nd the optimal solution, which helps to interpret the

performances of the other algorithms. We study the impact of the number of routes in

the graph in Section 5.6. The length of the arcs is drawn uniformly between 0 and P .

This choice makes the periodicity of our problem impactful, and does not allow us to reuse

algorithms from a non periodic setting.

Since the notion of transmission time has changed in this chapter, compared to Chap-

ter 4, the notion of margin is also slightly di�erent. For a given routed network in which

rn is the longest route (i.e. the route for which λ(r) is the largest), the margin of an

assignment A is equal to TR(A) − λ(r), that is, the di�erence between the transmission

time and the physical delay of the route. In other words, this represent the time used

for logical delays, that are set by the assignment. When solving minstra, we want to

minimize TR(A) down to TR(N), which is equivalent to the minimization of the margin

of A. By de�nition, the margin measures the additional latency given by an assignment

and we will express the performance of our algorithms as the value of the margin of the

assignment found.

5.3.5 Success Rate and Performance of the Greedy Algorithms

We want to compare the success rate and the performance of the di�erent algorithms

presented in this section. First, we consider the impact of the load of the network on the

success rate of the three greedy algorithms. We have explained that all greedy algorithms

succeed when the load is less than 0.5 and that Greedy Packed always succeeds. Figure 5.6

shows the success rate of Greedy Deadline and Greedy Normalized on 1000 random

instances for loads from 0.7 to 1. Greedy Deadline fails less than Greedy Normalized on

highly loaded networks, while Greedy Normalized seems more robust on loads between
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Success
Load

0.7 0.8 0.9 1

Greedy Deadline 99.5% 92.4% 43.4% 15.7%
Greedy Normalized 99.3% 93.2% 51.2% 0%

Figure 5.6 � Success rate of the greedy algorithms for di�erent loads

0.8 and 0.9.

We now want to compare the quality of the solution found by these algorithms. Fig-

ure 5.7 shows the margin needed by the assignments given by the algorithms, when there

is one. As expected, Greedy Packed, that trades margin for success rate, performs worse

than Greedy Deadline and Greedy Normalized when they are able to �nd an assignment.

Greedy Normalized performs better than Greedy Deadline when it �nds an assignment.

On vertices with high load, the three algorithms almost always �nd the same assignment

(or fail). On vertices of small load, the constraint of packing the datagram imposed by

Greedy Deadline worsen the latency.

We propose an improved version of Greedy Deadline and Greedy Normalized that

always �nd a solution. For each contention point, we �rst try Greedy Deadline (or

Greedy Normalized), and if the algorithm fails, we apply Greedy Packed. Let us call

Hybrid Greedy Deadline and Hybrid Greedy Normalized those two algorithms. Fig-

ure 5.8 shows the performances of Hybrid Greedy Deadline, Hybrid Greedy Normalized,

and Greedy Packed on 1000 routed networks. Here, the load is of 0.9 to emphasize the

di�erence between algorithms.

Algorithm Hybrid Greedy Normalized seems much better than the other two. Hence,

in the rest of the paper Hybrid Greedy Normalized serve as a baseline of assignment

quality since it can be obtained in very short time. It is also used to initialize local search

algorithms with a �rst assignment of su�cient quality.

5.4 Local Search Heuristics

The number of compact assignments CA grows extremely quickly with n. Hence, to �nd

one which minimizes TR(Real(CA)), we propose several classical local search algorithm:

Hill Climbing, Tabu Search and Simulated Annealing. These methods work as long as

a relevant notion of neighborhood of a solution is proposed. The neighborhood relation
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must satisfy two properties: it must be quick to compute (hence not too large) and the

implicit graph of solutions de�ned by the neighborhood relation should be connected. We

now propose a simple neighborhood relation over compact assignments.

Let u be a contention point of a network, and let CA be a compact assignment for this

network, which associates the pair (Ou,Su) to u. Let Ou = (r1, . . . ,rl) and let 4 denotes

the symmetric di�erence. Let ri ∈ Ru, the ri-neighborhood of (Ou,Su) is the set of pairs

(O,S) such that:

1. O = Ou and Su = S or S4{ri}

2. O = (r1, . . . ,ri−2,ri,ri−1, . . . ,rl) and Su = S or S4{ri} or S4{ri−1} or S4{ri,ri−1}

Informally, a compact assignment is in the r-neighborhood of another one if it can be

obtained by moving down r once (or not changing it) in the order and adding or removing r

and the previous route from the set. Remark that the r-neighborhood of any pair (Ou,Su)

has at most 6 members (it can be 4 when the route r is in �rst position and cannot

be exchanged with the previous one). Figure 5.9 represent the r-neighborhood of a pair

(Ou,Su).

The r-neighborhood of a compact assignment CA is the set of all compact assignments

CA′ = (O′u,S
′
u)u∈V (G), such that (O′u,S

′
u) is in the r-neighborhood of (Ou,Su). Finally, the

neighborhood of a compact assignment CA is the union for all r ∈ R of the r-neighborhoods

of CA.

Let us denote by k1, . . . ,kn the number of contention points on the n routes of a routed

network. Then, a compact assignment has at most
∑n

i=1 6ki neighbors. Since the networks

we consider are of bounded contention depth (2 or 3 in practice), the size of a neighbor-

hood is linear in the number of routes. We further restrict the notion of neighborhood

to realizable compact assignments. Indeed, the unrealizable compact assignments do not

yield a real assignment, their transmission time is not de�ned and we cannot use them

in our local search algorithms. We call the graph de�ned by the neighborhood relation

over realizable compact assignments of a routed network the transposition graph of the

routed network. All algorithms presented in this section will do a walk in the transposition

graph, trying to �nd a vertex with optimal transmission time.

Lemma 28. There is a path from a realizable compact assignment CA, with CA(u) =

(Ou,Su) to CA′, such that CA′ is equal to CA except on u where it is equal to (Ou,Su∪E).
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Ou = (0,2,1)
S = {1}

Ou = (0,2,1)
S = {1,2}

Ou = (2,0,1)
S = {1}

Ou = (2,0,1)
S = {1}

Ou = (2,0,1)
S = {0,1}

Ou = (2,0,1)
S = {1,2}

Ou = (2,0,1)
S = {0,1,2}

Figure 5.9 � Neighborhood of a pair Ou = (0,2,1), Su = {1} for one contention point.

Proof. The path is by adding elements in E one by one. To prove the existence of the path,

it is enough to prove that for E = {v}. By de�nition, (Ou,Su∪v) is in the neighborhood of

(Ou,Su). However, one should also prove that CA′ is realizable. Since the order in which

the bu�ers are �xed by the algorithm of Real is the same for (Ou,Su) and (Ou,Su ∪ v),

it is easy to prove by induction that the normalized sending times of (Ou,Su ∪ v) are less

than the normalized sending times of (Ou,Su). Thus, CA realizable implies CA′ realizable.

Indeed, a compact assignment is realizable if and only if the last normalized sending time

is less than P − τ .

Theorem 29. The transposition graph of a routed network is connected.

Proof. We prove the result for a routed network with a single contention node u, it can be

generalized to any routed networks by applying the proof contention node by contention

node. Let (Ou,Su) and (O′u,S
′
u) be two realizable compact assignments, we show there is a

path between them. Let r be the �rst element of Ou and let E = Ru \ {r}. By Lemma 28,

there is a path from (Ou,Su) to (Ou,E). Consider now O′′u, the order O
′
u with r placed in

�rst position. There is a path from (Ou,E) to (O′′u,E). Indeed, any order is realizable, when

all elements but the �rst are in E because there are no constraints on their normalized

sending time. Now, let r′ be the �rst element of O′u. By de�nition, (O′u,E4{r,r′}) is in

the r′ neighborhood of (O′′u,E). Moreover, (O′u,E4{r,r′}) is realizable because E4{r,r′} is
equal to all routes but the �rst in O′u. Finally, using Lemma 28 once again prove there is a

path between (O′u,E4{r,r′}) and (O′u,S
′
u) since (O′u,S

′
u) is realizable and S′u ⊆ E4{r,r′},

which proves the theorem.

5.4.1 Hill Climbing

The most simple local search heuristic is Hill Climbing. This algorithm starts from a

compact assignment CA, explores the entire neighborhood of CA, and selects the realizable
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compact assignment CA′ of minimal transmission time. Then, we set CA = CA′ and repeat

this step until there are no CA′ such that TR(CA′) < TR(CA). Then, the algorithm stops

and returns Real(CA) which is a local minimum.

The quality of Hill Climbing depends on the the initial compact assignment. A �rst

choice is to consider the compact representation CR(A) of the assignment A given by

Hybrid Greedy Normalized (HGN). We can also choose a random compact assignment.

Since a compact assignment does not always give a valid assignment nor a good one, we

should draw many random compact assignments and return the best assignment found by

Hill Climbing using these initial solutions.

Figure 5.10 shows the di�erence between initializing Hill Climbing with Hybrid Greedy

Normalized, or with one or several random compact assignments. Those results are com-

puted from 1000 random instances, with load of 0.8.
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Figure 5.10 � Margin of solutions found by Hill Climbing, initialized with HGN, 1, 10 or 100
random compact assignments.

Initializing Hill Climbing with 100 random compact assignments seems to give better

results. However, choosing 100 random compact assignments can still fail to produce one

valid assignment. We investigate this issue in experiments presented in Figures 5.11 and

5.12. We represent the probability of drawing at least one compact assignment that gives a

valid assignment, when drawing 1, 10 or 100 random compact assignments. In Figure 5.11,

we �x the number of routes to 8, and we change the load from 0.8 to 1. In Figure 5.12,

we �x the load to 0.8 and the number of routes goes from 8 to 12 in the routed network.
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Load 0.8 0.9 1

HGN 100% 100% 100%
1 random 19% 12% 4%
10 random 75% 56% 37%
100 random 99% 98% 96%

Figure 5.11 � Success rate of Hill
Climbing for several initializations,
increasing the load with 8 routes.

#routes 8 10 12

HGN 100% 100% 100%
1 random 19% 6% 2%
10 random 75% 38% 21%
100 random 99% 92% 72%

Figure 5.12 � Success rate of Hill
Climbing for several initializations,
increasing the number of routes.
Load 0.8.

Each value is computed from 1000 random instances.

Those experiences show that Hill Climbing computed on 100 random instances per-

forms well when the number of routes and the load are low. However, this is not su�cient

when the load or the number of routes increases. Indeed, higher loads makes valid so-

lutions harder to �nd, and increasing the number of routes also increase the size of the

neighborhood, and thus, the number of compact assignments which are not valid. Further-

more, the computation time required by executing Hill Climbing on many random compact

assignments instead of one (using HGN) makes it less e�ective.

We thus propose an hybrid initialization scheme for Hill Climbing: Between the assign-

ments given by initializing the Hill Climbing either with HGN, or with k random compact

assignments, return the one that minimize TR(A). We call this initialization hybrid k.

Figure 5.13 shows the margin needed by the best solution given by Hill Climbing, with

di�erent initializations. The results are computed on 1000 random instances.

We now focus on how many steps Hill Climbing does before ending in a local optimum.

Tabular 5.14 shows the average number of steps done by Hill Climbing, for the initial

solution giving the best solution. The results in Table 5.14 are taken from the experiment

done to produce Figure 5.13.

Init HGN Hybrid 1 Hybrid 10 Hybrid 100

Average number of steps Step 1.16 1.23 1.77 3.52

Figure 5.14 � Average number of steps needed by Hill Climbing to reach a local optimum.

The more steps Hill Climbing does, the more the initial solution is improved. When

Hill Climbing starts from the result of Hybrid Greedy Normalized, it does not improve

much the solution. When drawing a large number of random compact assignments, the

probability of drawing one that can be improved a lot is better and it turns out that

compact assignments improved many times are often the one with the best margin.
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Figure 5.13 � Margin needed to �nd a solution for Hill Climbing, initialized with HGN,
hybrid 1, hybrid 10 or hybrid 100. Only the instance for which a solution is found are
represented here.

The idea of drawing a large number of random compact assignments to initialize Hill

Climbing is a naive version of Simulated Annealing. The next two presented meta-heuristics

are designed to explore the compact assignments, even if a local optimum is reached. Tabu

Search remembers the explored solutions, in order to avoid them, and Simulated Annealing

browses the compact assignments with a stochastic approach.

5.4.2 Tabu Search

Tabu Search is a variation on Hill Climbing using memory. We start from a compact

assignment CA given by Hybrid Greedy Normalized. Then, at each step, from the cur-

rent compact assignment CA, we select the compact assignment CA′ which minimizes

TR(CA′), even when TR(CA′) < TR(CA) is not satis�ed. To avoid looping around a

local minimum, we keep in memory the last M solutions explored and we forbid to visit

them again. This algorithm can still loop on a solution cycle larger than M , hence we

must �x some integer N and stop the algorithm after N steps. The parameters N and

M must be chosen appropriately to minimize the computation time of Tabu Search, while

maximizing the quality of the solutions found.

We �rst investigate on Figure 5.15 the impact of N alone. To do so, we �xe N = M

(in�nite memory) and we compute Tabu Search on an instance, with N = 100, 500, 1000
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and 2000. Those simulations have been made with 8 routes and a load 0.8, and results are

similar for 20 routes. It appears that with N = M , the more steps Tabu Search computes,

the better is the solution. For most instance, Tabu Search �nds the optimal solutions in

the �rst steps, however for some instances the solution is improved after a large number

of steps, which impacts strongly the average margin. At each step, Tabu Search explores

the entire neighborhood of the current compact assignment, which is of the same size

for any compact assignment, hence the computation time is linear in N . For N > 500,

the computation time may not be worth the improvement of the solution, as shown in

Figure 5.15.

N 100 500 1000 2000

Average number of step 6.80 10.75 10.75 29.36

Largest Number of step 89 257 257 1864

Average margin 2318 2297 2297 2295

Computation time (s) 2.0 10.9 27.8 81.7

Figure 5.15 � Average and largest number of step needed by Tabu Search to reach a local
optimum and average value of the margin of this local optimum with in�nite memory.

We now study the choice of the parameterM . Note that increasing may not necessarily

decrease the margin of the solution found by Tabu search. Indeed, a large value for M

could restrict the Tabu Search to some component of the transposition graph while a small

value of M may allow loops.

We �x N = 500 and we compute Tabu Search with M equals 10, 50, 100, 200 or 500.

Figure 5.16 shows the average and number of steps and margin and the largest number

of steps over all instances needed by Tabu Search to �nd its local optimum with di�erent

values for M . The values are computed on 100 random instances.

M 10 50 100 200 500

Average number of steps 2.54 4.97 7.42 11.38 11.38

Largest Number of step 26 67 165 165 165

Average margin 3064 2810 2722 2510 2510

Figure 5.16 � Average and largest number of steps needed by Tabu Search to reach a local
optimum and average value of the margin of this local optimum.

It seems that the more steps Tabu Search remembers, the smaller is the margin of the

assignment. In more of 60% of the cases, Tabu Search �nds its best assignment before 10
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steps. When increasing the memory, the average number of steps needed by Tabu Search

to �nd the best solution increases. Nevertheless, remark that for M > 100, the maximal

number of steps to �nd the best solution is 165. It seems that the memory size has a very

small e�ect on hard instances.

5.4.3 Simulated Annealing

In this section, we study the Simulated Annealing method which works as follow. An

initial temperature is set and an initial compact valid assignment CA is computed. At

each step, we try to replace the current valid compact assignment CA, by CA′ drawn

uniformly at random in the neighborhood of CA. Then, in function of the temperature t

and ∆ the di�erence between TR(Real(CA)) and TR(Real(CA′)), CA′ is either accepted

or rejected. More precisely, CA′ is accepted with probability e−
∆
t . After a given number of

steps, the temperature is decreased by multiplying it by some constant less than one. The

lower the temperature, the lower the chance to accept a compact assignment that worsen

the solution. This algorithm is an answer to the exploration/exploitation paradox: in the

beginning of the algorithm the whole solution space is explored but as the temperature

decreases, the search becomes more and more local around a good solution.

When using Simulated Annealing, we need to �x the following parameters: initial

solution, initial temperature, number of steps before decreasing the temperature, factor by

which the temperature is decreased, number of steps without improvement before ending

the process. In order to �x the initial temperature t0, we follow [53]:

1. Initiate 100 disturbances at random; evaluate the average ∆̄ of the corresponding

variations ∆

2. Choose an initial rate of acceptance τ0 of the �degrading perturbations� according to

the assumed �quality� of the initial con�guration; for example:

• �poor� quality: τ0 = 50% (starting at high temperature)

• �good� quality: τ0 = 20% (starting at low temperature)

3. Deduce t0 from the relation: e
− ∆̄
t0 = τ0

Tabular 5.17 shows the average margin of the solutions produced by Simulated An-

nealing when initialized with temperatures computed from the previous routine and the

computation time. The initial solution used by Simulated Annealing is the solution given
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by Hill Climbing initialized by Hybrid Greedy Normalized. The experiment is made on

100 random instances. We experimentally observed that increasing the initial temperature

does not signi�cantly improve the quality of the solution, but does increase the computa-

tion time. Hence, we assume from now on that the initial solution given by Hill Climbing

can be considered as �good� to �x the initial temperature.

Quality of initial con�guration Good Poor

Average t0 1788 4153

Average margin 4212 4217

Computation time (ms) 2817 4035

Figure 5.17 � Comparison of two initial temperatures, considering the quality of the initial
con�guration

In Simulated Annealing, the temperature should decrease slowly. At each level, N

compact assignments are drawn. At the end of a level, the temperature is decreased

by 1% and the algorithm stops if less than 1% of the compact assignments drawn are

accepted during two consecutive steps. Hence, drawing too few compact assignments in a

level decreases the temperature too fast and reduces the e�ciency of Simulated Annealing.

However, drawing too much compact assignments during a level increases the computation

time of the algorithm, there is tradeo� between time an quality and length of a level should

be set carefully.

When N is low (N = 10 or N = 20), the probability of drawing no compact assignment

that will be accepted is high and Simulated annealing stops too fast. To �x this issue, we

force Simulated Annealing to continue during 10 consecutive levels for which less than 1%

of the compact assignment are accepted. This increases the computation time for higher

values for N , even though Simulated Annealing does not exhibit the problem for these

values. Since the neighborhood of a solution is composed of a large number of solutions

of the same value, the acceptance rate is greater than 1% even under low temperatures.

Hence, we set a minimal temperature under which Simulated Annealing stops.

Figure 5.18 shows the margin needed by Simulated Annealing with di�erent values of

N . Those results are computed on 1,000 random instances, in which the initial temperature

is set by the routine of [53] presented before and the load is 0.8
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N 10 20 50 100 200 500 1000

Average Margin 656 378 270 257 255 249 249

Computation time (s) 0.11 0.33 1.3 2.8 5.9 15.2 30.1

Figure 5.18 � Average Margin of best solution found by Simulated annealing, with a dif-
ferent number of compact assignments drawn at each level.

As expected, the computation time is roughly linear in the number of steps N . The

higher N is, the better is the average margin of the best solution found. It appears that

drawing more than 100 compact assignments at each level does not signi�cantly improve

the solution related to the additional computation time.

5.5 Branch and Bound

5.5.1 Brute-forcing Compact Assignments

Solving minstra, means �nding an assignment for which TR(A) is minimal. Given an

instance of minstra, the local search algorithms presented in the previous sections explore

a few compact assignments CA and return one which minimize TR(Real(CA)). We begin

by providing a bruteforce algorithm testing all compact assignments, then we show how a

large number of compact assignments can be avoided using a Branch and Bound algorithm,

which allows to solve minstra optimally in practice for small number of routes.

Theorem 30. For routed networks of �xed contention depth d, the problem minstra

parametrized by n the number of routes is FPT: it can be solved in time O(nd(n!2n)d).

Proof. The algorithm to solve minstra is the following: all compact assignments CA are

generated, for each of them TR(Real(CA)) is computed in time O(nd) by Lemma 26 and

we keep the compact assignment for which this value is minimal. Because of Lemma 27,

to compute the minimum of TR(A) over all assignments A, it is enough to compute the

minimum of TR(Real(CA)) over all compact assignment CA.

Let us evaluate the number of compact assignments. On a single contention point c

with s = |Rc| routes going through, there are s!2s possible restrictions of a compact as-

signment by counting the number of pairs of set and order over Rc. On a given contention

depth consisting in the vertices {c1, . . . ,cl}, with si = |Rci |, there are
∏

1≤i≤l si!2
si com-

pact assignments. On a given contention depth, all routes use at most 1 vertex, hence∑
1≤i≤l si ≤ n. Since

∏
1≤i≤l si! ≤ (

∑
1≤i≤l si)!, we have

∏
1≤i≤l si!2

si ≤ n!2n. Since the
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contention depth is d, we have at most (n!2n)d compact assignments which proves the

theorem.

Note that for the vertices of the largest contention depth, compact assignments can be

considered independently, since they do not interact. Let {u1, . . . ,ul} be the vertices of

maximal contention depth, and let s1, . . . ,sl be their width, then we need only to consider

(n!2n)d−1(
∑

1≤i≤l si!2
si) compact assignments. This makes a large di�erence in our target

application and the experiments presented in this chapter, since in this context d equals

three and the si's are pretty balanced.

5.5.2 Compact Assignment Tree

From now on, we denote the contention points by C = {c1, . . . , cm}, and we assume they

are indexed by contention depth, that is if i < j ≤ m then cd(ci) ≤ cd(cj).

A Partial Compact Assignment CA is a compact assignment de�ned on a subset

Ci = {c1, . . . ,ci} of C. For a compact assignment CA, we denote by CAi the restriction

of CA to Ci. Let CA be a partial compact assignment de�ned on Ci−1, then CA[(O,S)] is

an extension of CA to Ci, de�ned by CA[(O,S)](ci) = (O,S). In this section, we build a

compact assignment CA by extending partial compact assignments incrementally from c1

to cm.

The bruteforce algorithm of Theorem 30 can be seen as going through a tree of partial

compact assignments, whose leaves are the compact assignments. We call this tree the

compact assignment tree. Each vertex v is labeled by a couple l(v) = (O,S) except the

root. There is a bijection between a vertex of the tree and a partial compact assignment,

such that a vertex at depth i is a partial assignment de�ned over Ci. We de�ne this bijection

recursively: let v be a vertex and u its parent, then if u is mapped to CA, and v is at

depth i, then v is mapped to CA[l(v)].

5.5.3 The Branch and Bound Algorithm

We now explain how to cut the compact representation tree while exploring it by two

di�erent means: the computation of a lower bound of the transmission time over a subtree,

to cut the whole subtree and several simple rules which eliminate solutions which are

dominated by others or which do not yield a valid assignment.
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Figure 5.19 � A restricted routed network N(CA) obtained from N and the partial compact
assignment CA, de�ned over {c1}, whith A(1,c1) = 0 and A(2,c1) = 1.

Lower Bounding the Transmission Time Once a partial compact assignment is set,

one can discard the nodes of the routed network on which it is de�ned and work with

a simpler routed network, called a Restricted Routed Network. Let N be a routed

network and CA a partial compact assignment de�ned over {c1}, we de�ne the restricted
routed network N(CA) by de�ning a new set of routes R′ and a new weight function ω′

as follows.

A route r ∈ R going through c1, that is equal to (s,c1,cj , . . . ,t), is replaced by the route

(s,cj , . . . ,t) in R′ while the routes not going through c1 stay the same in R′. We de�ne

ω′(r,s) = ω(r,s)+ω(r,c1)+A(r,c1) where A(r,c1) is computed from the function Real(CA1)

over the contention point c1, as explained in Section 5.2.2. To de�ne a restricted routed

network obtained from a partial compact assignment de�ned over Ci and a network N ,

we de�ne recursively Nj = Nj−1(CA �{cj}), with N0 = N . Remark that CA �{cj} is the

restriction of CA to the singleton {cj} which is the �rst contention point of Nj−1, which

makes Nj−1(CA �{cj}) well de�ned.

The restricted routed network represents the problem which is left to solve when �xing

a partial compact assignment.

Lemma 31. Let N be a routed network, CA a partial compact assignment of N , and

CA the set of compact assignments which are extensions of CA. Then, TR(N(CA)) =

minA∈CA TR(Real(A)).

Proof. Let Ci be the domain of CA, by de�nition of CA, for all CA′ ∈ CA, CA′i = CA.
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Figure 5.20 � Problem minstra relaxed to one contention point.

Let us de�ne the function Ext from the compact assignments of N(CA) to CA. The

assignment Ext(CA′) is de�ned as equal to CA over Ci and equal to CA′ over the other

contention points. The function Ext is a bijection and TR(CA′) = TR(Ext(CA′)), by

construction of the restricted routed network N(CA), which proves the lemma.

Let v be a vertex of the compact representation tree representing the partial compact

assignment CA. If we want to ignore the subtree rooted at v while exploring the partial

compact assignment tree, we must know a lower bound on the transmission time of the

compact assignments in this subtree. Lemma 31 shows that it is given by the transmis-

sion time of the restricted routed network N(CA), that is solving minstra on a simpler

network. Since this value is still too expensive to compute, we provide a relaxation of the

problem of solving minstra over N(CA), which is practical to solve.

Relaxation of minstra To lower bound the value of TR(N), we propose to transform

a routed network into a network with a single contention point, with a lower transmission

time (but as large as possible). The problem minstra over a single contention point is

the problem wta, that we have solved in Chapter 4, and that we can compute e�ciently.

Let N be any network and let cj be a contention point. Let N j be the routed network

with the single contention point cj , a set of routes R′ and a weight function ω′ de�ned as

follows. For each route r of N which goes through cj , there is a route r′ = (sr,cj ,tr) ∈ R′.
We de�ne ω′(sr,cj) = λ(r,cj) and ω′(cj ,tr) = λ(r) − λ(r,cj). The network N j represents

all the routes going through cj and forget all constraint before and after cj . Figure 5.20

shows a routed network N transformed into N1.



116

Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary

Networks

A(i,cj)

i c1 c2 c3 c4
1 0 - 0 -
2 1 - - 0
3 - 0 0 -
4 - 2 - 1

f(A) onN 4

t4

t2

s4

s2

c4

7+1+1 + 0

5+6+2 + 1 0

2

Optimal solution ofN 4

t4

t2

s4

s2

c4

7+1

5+6+2 0

2

Figure 5.21 � A network N4, obtained from N of Figure 5.20, and the optimal assignment
A of N . On the �rst representation of N4, f(A) the image of A on N4 and on the second
representation of N4, an optimal assignment.

Lemma 32. Let N be a routed network and cj one of its contention point, then TR(N) ≥
TR(N j).

Proof. We associate to any valid assignment A of N , the assignment f(A) of N j which

is de�ned as f(A)(r,cj) = s(r,cj) − λ(r,cj), that is the sum of waiting times in cj and in

contention nodes before cj . By construction of N , the transmission time of a route r using

A in N is larger than the transmission time of the route r using f(A) in N j , since all

the waiting times are the same up to cj and they are 0 for the contention nodes following

cj . Hence, we have for all assignments A of N , TR(A) ≥ TR(f(A)) which proves the

lemma.

Figure 5.21 illustrates Lemma 32. From the routed network N of Figure 5.20, we

build N4 and its optimal assignment A′, de�ned as A′(4,c4) = 2, which implies that

TR(N4) = 13. We also give the assignment A in the table of Figure 5.21, which is the

optimal solution for N . We have TR(f(A)) = 14, which is indeed higher than the optimal

solution of N4. Remark that, on N3, f(A) is optimal.

Let SCB(N), for Single Contention Bound, be the function which associates to N

the integer maxj TR(N j). By Lemma 32, we have for all j, TR(N) ≥ TR(N j), hence

SCB(N) ≤ TR(N). We can compute SCB(N) in time m2kk3log(k) where k is the

contention width of the network andm the number of contention nodes. Indeed, for each j,

solving minstra on N j is equivalent to solving wta, which can be done in time 2kk3log(k)
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by ASPMLS, where k is the number of routes in N j , which is equal to the contention width

of cj in N . In the example of Figures 5.20 and 5.21, SCB(N) = 13 while TR(N) = 14.

Description of the Branch and Bound Algorithm We now describe precisely how

the proposed branch and bound algorithm works. It starts by computing a solution using

Simulated Annealing, as described in Section 5.4.3, to initialize an upper bound on the

transmission time. Then, it does a depth �rst traversal of the compact assignment tree.

When it enters a node v, which represents a partial compact assignment CA, it computes

SCB(N(CA)) and if it is larger or equal to the upper bound, it backtracks, that is it

goes back to the parent of v without visiting the subtree rooted at v. When the algorithm

reaches a leaf representing some compact assignment CA, it computes TR(Real(CA)) and

updates the upper bound. Lemmas 31 and 32 proves that the leaves which have not been

explored correspond to compact assignments with higher transmission time than the one

found by the branch and bound algorithm, proving that it solves minstra.

Additional Cuts Even with the cuts due to the evaluation of SCB(N(CA)), the com-

pact assignment tree is still too long to traverse. We propose here several additional cuts

that improve the computation time of the algorithm.

Assume that the branch and bound algorithm reach vertex v in the compact assignment

tree, representing the partial compact assignment CA over Ci. Let u be a child of v, it

represents CA[(O,S)], some extension of CA to Ci+1. Then, (O,S) is a compact assignment

for ci+1 in N(CA) and we would like it to be valid, canonical and minimal for ≺. Indeed,
if (O,S) is not valid for ci+1, then none of the extensions of CA[(O,S)] will be valid and

we can discard the subtree rooted at u. If (O,S) is not a canonical compact assignment,

then by Lemma 27, there is a a compact assignment (O′,S′) which is smaller for ≺. In

the same way, if (O,S) is not minimal for ≺, then there is a compact assignment (O′,S′)

which is smaller. In both cases, the transmission time of the extensions of CA[(O,S)] will

always be larger than the transmission time of the extensions of CA[(O′,S′)] and again we

can discard the subtree rooted at u.

The cut consisting in verifying whether (O,S) is a compact assignment for ci+1 in

N(CA) is simple to implement in linear time by computing Real((O,S)).

To guarantee that we only consider canonical compact assignments, we must guarantee

that the bu�ering of the �rst route is zero. It is the same as requiring for a compact

assignment (O,S), that rO1 , the �rst route in O, is not in S. Hence, the cut consists in
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S = {∅} S = {1,2,3}

Figure 5.22 � Expansion of a vertex of the compact assignment tree, corresponding to a
contention vertex of width 3.

discarding assignments with rO1 ∈ S. This allows to compute normalized sending times

for all routes, with rO1 as a reference.

We would like to cut any subtree rooted at a non minimal assignment, but we are not

yet able to decide whether a compact assignment is minimal in polynomial time. Hence,

we propose several easy to compute heuristics to detect when a compact assignment is not

minimal. The �rst one is to consider the assignment (O,S) of N(CA) and for each route

ri ∈ S, we consider Real((O,S)) where ri has been removed. Then, we try to add back

ri, with ri /∈ S but no constraint on its position in the order. If we manage to do so,

we have found a compact assignment (O′,S \ {ri}) ≺ (O,S). Indeed, given a �xed �rst

element in the order, routes in S have their sending time larger than when they are not in

S, regardless of the order.

For the next cuts, we need to consider that the set S is built incrementally as shown

in Figure 5.22. We expand a vertex of the compact assignment tree, so that all orders on

routes of the contention node are children of the node, then a complete binary tree for each

of these orders represents all possible subsets of routes.

• Let us write Oi for the ith element of the order i. Assume we are traversing the

expansion of a vertex corresponding to the contention vertex c. In the binary tree,

a vertex has two children of depth i representing the fact that rOi /∈ S and rOi ∈ S.
We build the partial assignment over rO1 , . . . ,rOi and its realization for rOi /∈ S. If
ns(rO1 ,rOi−1,c) + τ = ns(rO1 ,rOi,c), then the two datagrams of the routes rOi−1 and

rOi follow one another without gap in the period.
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Hence, if we �x rOi ∈ S, it will not change ns(rO1 ,rOi,c) but s(rOi ,c) is increased

by P tics. Hence, any extension of this compact assignment are dominated by the

extension of the same compact assignment with rOi /∈ S Thus, we cut the branch

rOi ∈ S as in Figure 5.23.

ns(rO1 , rOi−1 , c)
ns(rO1 , rOi , c)

i − 1 i i − 1 i

rOi ∈ S rOi /∈ S

s(rOi , c)+ = P

Figure 5.23 � When ns(rO1 ,rOi−1,c)+τ = ns(rO1 ,rOi,c), every extension in the branch with
rOi ∈ S is dominated by the corresponding extension in the branch rOi /∈ S.

• When considering a route rOi (with rOi /∈ S or rOi ∈ S), we consider the realization
of the partial assignments over the elements rO1 , . . . ,rOi−1 . If it is possible to �x the

normalized sending time of rOi before the normalized sending time of rOi−1 , without

collision, then there is a compact assignment (O′,S) ≺ (O,S) (with Oi at a new,

smaller position in O', see Figure 5.24). It corresponds to a compact assignment,

with a gap in the period which can be used by some route which should be placed

after the gap because of the order. This cut can be computed in linear time, by

comparison of the normalized sending times.

t(2, c)

O = (132)

O′ = (123)

1 3 2

1 32

Figure 5.24 � An example of two orders O and O′ for which (O′,S) ≺ (O,S), with S = ∅.

• To ensure that we go through only canonical assignment, we force the �rst route rO1

to have zero bu�ering time, by setting rO1 /∈ S. But there can be several datagrams

with zero bu�ering time and we re�ne the notion of canonicity by requiring that the

one of smallest id is the �rst in the order as shown in Figure 5.25. Hence, when we
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consider Oi with Oi /∈ S and that in Real((O,S)), Oi as no bu�ering, then Oi > O1

otherwise we cut the subtree from Oi /∈ S.

2 3 1 <=> 1 2 3

O = (231) Canonical order : O = (123)

Figure 5.25 � An example of order in which O1 and O3 have no bu�ering and in which
O1 = 2 > O3 = 1. The assignment with O is thus non-canonical.

5.5.4 Scalability of Branch and Bound Algorithm

The complexity of the Branch and Bound algorithm depends on both the contention depth

of the routed network and the number of routes. We focus on networks of contention

depth 3, which is realistic in our C-RAN context, and we want to investigate how much

the computation time increases in practice when the number of routes grows. Note that

the running time of the algorithm is also very sensitive to the width of the network: for the

same number of routes, if the routes are well spread out over the contention nodes, there

are less compact assignment than if they are concentrated on some contention vertices.

In previous experiments, the maximal width is 4 in the vertices of depth 2, as shown

in Figure 5.19. We generalize the topology of Figure 5.19 by considering any number of

contention vertex at depth 1 instead of 4. Each of theses vertex is of width 2 and the 2

routes going through a vertex of depth 1 are distinct from the other routes and goes to the

two di�erent vertices of depth 2.

Tabular 5.26 shows the average computation time of Branch and Bound on 8, 10, and

12 routes. The results are computed on 100 instances in which the length of the arcs have

been drawn in [P ] and the load is 0.8.

Number of routes 8 10 12

Average computation time 2.2s 22s 47m

Figure 5.26 � Average computation time of Branch and Bound with di�erent number of
routes.

When the number of routes is lower than 10, we can �nd a solution in a reasonable

time. For 12 routes, the time needed to compute a solution is in the range of one hour. By

increasing the quality of the cuts or even by generating only minimal compact assignments,

with a perfectly optimized implementation we could solve problems with 14 routes, at most
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16. Beyond this value, the sheer number of compact assignments that Branch and Bound

must traverse is too large to compute a solution.

5.6 Experimental Evaluation

In this section, we compare the performance of all algorithms presented in this chapter.

We use the settings described in Section 5.3.4: There are 8 routes in the routed network,

the length of the arcs are drawn uniformly in [P ], and the load is 0.8. The algorithm

compared here are:

• Hybrid Greedy Normalized.

• Hill climbing initialized by HGN.

• Hybrid Hill climbing, initialized by 100 random compact assignments and HGN.

• Tabu Search, with in�nite memory and 500 steps.

• Simulated Annealing using 100 steps by level.

• Branch and Bound

Figure 5.27 shows the cumulative distribution of the margin of the solution found by

each algorithm. Tabular 5.28 shows the average computation time and the average margin

of the algorithms computed over 1000 instances.

Algorithm HGN Hill Climbing Hybrid HC Tabu Search Simulated Annealing Branch and Bound

Margin (tics) 5968 3666 372 2240 294 284

Computation time (s) 0.005 0.035 1.39 10.76 2.28 0.22

Figure 5.28 � Average margin and average computation time of each algorithm for 8 routes,
length of arcs drawn in [P ].

First, remark that Hybrid Greedy Normalized is far from �nding an optimal solution,

even when it is followed by a Hill Climbing algorithm, but then the improvement is impor-

tant. However, computing Hybrid Hill Climbing from 100 random compact assignments

yields solutions which are very close to the optimal. In these simple settings, it seems to

be enough to draw 100 random solutions to cover e�ciently the whole compact assignment

space. As expected, Tabu Search is better than Hill Climbing computed from the solution
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Figure 5.27 � Cumulative distribution of the margin for 8 routes, length of arcs drawn in
[P ].

of Hybrid Greedy Normalized, but since it is extremely slow to compute a solution, it is

not possible to use it on 100 di�erent random compact assignments. Simulated Annealing

is able to compute a good solution, very close to the optimal in the �fth of the time needed

by Tabu Search. Branch and Bound is far better than the other algorithms: its computa-

tion time, in this network with few routes and a small contention width, is 10 times smaller

than Simulated Annealing, while it �nds the global optimum.

We now want to compare the performance of those algorithms when the routes are

drawn in a small range of values. Thus, we set the length of the arcs to be drawn in [0.9P,P ].

We do the same experiment as previously, but from now on, simulated annealing computes

1000 compact assignment at each level. As we observed in section 5.4.3, increasing the

number of compact assignment considered at each level increases the quality of the solution.

While drawing 100 compact assignments was enough for the simple routed network of the

previous experiment, drawing 1000 random compact assignments at each level in the two

following experiments improves dramatically the performances of Simulated Annealing,

while still requiring a lower computation time than tabu search.

Figure 5.29 shows the cumulative distribution of the margin of the algorithms, while

Tabular 5.30 shows the average margin and the computation time of each algorithms on

1000 random instances.
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Figure 5.29 � Cumulative distribution of the margin for 8 routes, length of arcs drawn in
[0.9P,P ].

Algorithm HGN Hill Climbing Hybrid Hill Climbing Tabu Search Simulated Annealing Branch and Bound

Margin (tics) 6700 5636 4933 4914 4789 4703

Computation time (s) 0.004 0.048 0.965 10.71 6.60 0.104

Figure 5.30 � Average margin and average computation time of each algorithm for 8 routes
drawn in [0.9.P,P ].

We observe that the relative performance of the algorithm does not change. Instances

where the length of the arcs are drawn in the same range of value needs more margin

to be solved. We made the same observation in Chapters 3 3 for di�erent networks and

constraints on the assignments.

The following experiment shows the performance of the algorithms when increasing the

number of routes. In the instance generated, there are 24 routes. To do so, we replace

each route of the routed network of Figure 5.19 by three distinct routes.

This number of routes is too large to use Branch and Bound. Thus, we also represent

SCB in the graph, the lower bound on TR(N) introduced to design Branch and Bound

algorithm. Figure 5.31 and Table 5.32 show respectively the cumulative distribution of

the margin of the algorithms and the average margin and computation times for the same

experiment. The results are computed on 1000 instance, in which the length of the arcs

are drawn in [P ].
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Figure 5.31 � Cumulative distribution of the margin for 24 routes, length of the arcs drawn
in [P ].

Algorithm HGN Hill Climbing Hybrid Hill Climbing Tabu Search Simulated Annealing

Margin (tics) 10572 7402 7402 6311 3725

Computation time (s) 0.014 0.425 3.89 55.67 46.32

Figure 5.32 � Average margin and average computation time of each algorithm for 24
routes, length of the arcs drawn in [P ].

First, remark that Hill Climbing has the same performance when it is initialized with

100 random compact assignments and the solution given by HGN or only the solution given

by HGN. As explained in Section 5.4.1, the chances to draw a realizable compact assign-

ment is low when the number of routes is large, and we should draw much more random

compact assignment to �nd one which is realizable. It is not reasonable to do so, since we

already have Simulated Annealing, which does a random search in the space of all compact

assignments in a much smarter way. While the average margin is higher for 24 routes,

than for 8 routes, Simulated Annealing is still twice better than Tabu Search, its closest

competitor, while requiring less computation time.

5.6.1 Performance against Statistical Multiplexing

We now compare the performance of our best algorithm with the current way to manage

networks: Statistical Multiplexing. We use the simulator presented in Section 4.7. As

a reminder, we propose two policies to deal with bu�er in statistical multiplexing. The
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�rst one FIFO, sends the messages in a bu�er following the First In First Out policy.

The second one, CriticalDeadline computes the transmission time of the message in the

bu�er, if we assume they will not be bu�ered anymore, and send the message with the

largest transmission time �rst.

We �rst compare the performances of our best algorithm, Branch and Bound, to sta-

tistical multiplexing. Figure 5.33 shows the cumulative distribution of the margin of

the solutions produced by Branch and Bound, and statistical multiplexing using FIFO

or CriticalDeadline policy. The experiment has been made on 1000 instances of load

0.8, with the length of the arcs drawn in [P ].
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Figure 5.33 � Number of instances for which there is a solution less than a given margin,
for Branch and Bound and Statistical Multiplexing, in a routed network of depth 3, load
0.8 and 8 routes.

Statistical multiplexing using the CriticalDeadline policy has a better margin than

using FIFO, which is expected and similar to Chapter 4. However, it needs up to 2000 tics

of margin to deal with the 80% most favorable instances, while Branch and Bound �nds a

solution with margin 0 for the same instances.

We now investigate the performance of Simulated Annealing compared to statistical

multiplexing when the number of route is too large to execute Branch and Bound. On

Figure 5.33 are represented the cumulative distribution of the margin of the solutions found



126

Chapter 5. Scheduling Synchronized Periodic Datagrams in Arbitrary

Networks

by by Simulated Annealing, and statistical multiplexing using FIFO or CriticalDeadline

policy. The experiment has been made on 100 instances of load 0.8. Here, simulated

annealing has been allowed to do 5000 generations of random compact assignment at each

level, because it increases the quality of the results, with a reasonable computation time

(a few minutes for each instance).
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Figure 5.34 � Performance of Simulated Annealing Against Statistical Multiplexing for 24
routes.

Here, the number of instance for which there is an assignment with 0 margin is lower

than in previous experiment, because the instance are harder to solve. Nevertheless, we

observe that Simulated Annealing �nds solution with about half the margin of statistical

multiplexing using CriticalDeadline policy. The average margin is 3329 for Simulated

Annealing, 7516 for CriticalDeadline and 9744 for FIFO.

Conclusion

This chapter present a variant of the problems studied in previous chapters. Here, we

consider that the antennas send their message at the same date, which more faithfully

represents the current C-RAN context. By setting all o�sets to 0 and considering only one

contention vertex in which it is possible to delay the message, it seems hard to solve pall,
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even if we have not investigated this problem in detail. We propose to allow bu�ering

at every node of the network, and we study minstra, the synchronized version of the

minimization problem mintra. In both mintra and minstra, the objective is to minimize

TR(A). In the �rst case, the value of TR(A) is not impacted by the o�sets. Thus, it is a

local value of each route. In minstra, since all o�sets are set to 0, we want to minimize

the global value of the process.

We propose greedy algorithms for minstra, that are able to �nd solutions, whatever

the load. However, those solutions are far from the optimal solution. We de�ne a compact

representation of the assignment that allows to reduce the number of assignment we must

explore to �nd the optimal solutions for minstra. We then de�ne a neighborhood using

this compact representation, and we optimize the solutions found by greedy algorithms

with classical Hill Climbing, Tabu Search and Simulated Annealing. We also show that

minstra is FPT when parametrized by the number of routes, and we propose a Branch

and Bound algorithm that �nd the optimal solution for a reasonable number of routes

by enumerating all compact assignments. We reduce the number of compact assignment

generated by Branch and Bound with several cuts using the properties on the compact

form. The performance evaluations let us to conjecture that Simulated Annealing �nds

good solutions, even for instances with many routes.

One can still improve the computation time of Branch and Bound by computing only

solutions which are minimal for minstra or by further optimizing our implementation, but

it does not seem possible to compute a solution with Branch and Bound for a large number

of routes. Simulated Annealing can also be optimized by choosing a di�erent neighborhood,

or better analyzing the setting of the parameters, or choosing a more re�ned temperature

cooling schedule.





Chapter 6

Mixing Periodic Datagrams and

Stochastic Datagrams

In previous chapters, we presented algorithms that solve the problems of scheduling deter-

ministic tra�c in the network. In practice, networks are shared between deterministic and

stochastic tra�cs. This is possible in practice using Time Sensitive Networking technology,

that allows to manage tra�cs independently. The objective of this chapter is to study the

impact on stochastic tra�c of the algorithms we have designed to minimize the latency

of deterministic tra�c. We propose a method using the algorithms we have designed, to

improve the latency of all tra�cs of the network.

6.1 Periodic Assignment and Random Tra�c on Star Routed

Networks

This section is taken from [42]. The algorithms proposed in this thesis are designed to

manage deterministic periodic �ows in dedicated networks. In this section, the objective

is to determine the e�ect of adding in the network non-deterministic �ows (internet tra�c,

best-e�ort) managed by statistical multiplexing.

The algorithms solving pall are not designed to take into account best-e�ort tra�c.

In particular, they often build very compact assignments, with all messages following one

another in a contention point, which is bad for the latency of best-e�orts packets trying to

go through the same contention point. Thus, we propose an adaptation of any algorithm

solving pall, to �nd assignments where the unused tics are as evenly spaced as possible to

minimize the maximal latency of any random packet trying to go through the contention

point.



130 Chapter 6. Mixing Periodic Datagrams and Stochastic Datagrams

c1

c2

A′

ττ ′ ≥ τ

A

Figure 6.1 � A (P,τ ′)-assignment interpreted as a (P,τ)-assignment

6.1.1 Spaced Assignments

Most algorithms for pall, when determining the waiting times, send datagrams as early

as possible and thus create long sequences of datagrams in c2, without free tics between

them. We propose to modify any algorithm solving pall on an instance with datagram

size τ as follows: compute a (P,τ ′) assignment using the algorithm, for the largest possible

τ ′ ≥ τ .

Lemma 33. Let I ′ = (N,P,τ ′,d) be an instance of pall, for which there is an assignment,

and let τ ≤ τ ′, then there is also an assignment for I = (N,P,τ,d).

Proof. Let A be the assignment of I ′, the absence of collision is the absence of intersection

between intervals [ri,c1]P,τ ′ (and [ri,c2]P,τ ′). If we consider A as an assignment of I, then

the intervals are [ri,c1]P,τ and are strictly included in [ri,c1]P,τ ′ , hence they do not have

intersection either.

Lemma 33 gives a way to obtain a solution of the original instance from the instance

with a larger message size as illustrated in Figure 6.1, with the additional property that

all datagrams are separated by at least τ ′ − τ free tics in each contention point. We are

interested in �nding the maximal τ ′ for which there is an assignment. Since the property

of having an assignment is monotonous with regards to τ , we can do so by a dichotomous

search on τ .

We call SPMLS, for Spaced PMLS, the adaptation of PMLS which �nds an assignment

for the largest possible τ by dichotomous search on τ . We experimentally investigate

how large can be τ ′ so that SPMLS �nds a (P,τ ′)-assignment. In Figure 6.2, we represent

the probability to �nd a (P,τ ′)-assignment function of τ ′. The star routed networks are

generated as in Section 4.6, with 8 routes and length of the arcs drawn in [P ]. The network

has a load of 0.60 of C-RAN tra�c, hence the period is set to 33,333 for τ = 2500. The

network is less loaded with C-RAN tra�c than in the previous sections because it will also

support non deterministic tra�c, incurring an additional load.
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Figure 6.2 � Probability of �nding a (P,τ ′)-assignment over 10,000 instances

For more than 80% of the instances, there is an assignment for the maximal size of

a message τ ′ = P
n = 4166. This means that SPMLS perfectly balances the free tics in

the period. In the worst case, a solution with τ ′ = 3925 is found, which still yields

3925− 2500 = 1425 unused tics between datagrams. Hence, we expect SPMLS to work well

in conjunction with random tra�c. The excellent performance of PMLS when the load is

high explains this result and further justi�es the work we have done to solve pall e�ciently

under high load rather than just requiring mild load in applications.

6.1.2 Performance Evaluation

We evaluate in this section di�erent ways to manage both statistical and deterministic

tra�cs together in the same network.

6.1.2.1 Best-e�ort datagrams generation

Let us denote best-e�ort by BE. The BE tra�c is generated as follows. The size of a

BE datagram is small in practice, and set to 50 tics in our experiments. We generate 0.2

of average load of BE tra�c in our experiment, to obtain a total load of 0.8. The BE

datagrams do not make a round trip in the network as the C-RAN datagrams, they go

through a single contention point. We simulate that, by generating 0.2 of average load

of BE datagrams for each of the two contention points c1 and c2. The latency of a BE

datagram is de�ned as the time it must wait before going through its contention point.

On each contention point, the generation is split in two exponential distributions which
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give the time before the next arrival of datagrams. The �rst one models background tra�c,

it has an average load of 0.15 and generates one BE datagram every 333 tics on average.

The second models a burst of BE datagrams, it has an average load of 0.5 and generates

ten BE datagrams every 10,000 tics on average.

6.1.2.2 Statistical multiplexing policy

We test several policies to deal with all tra�cs using statistical multiplexing. The BE

tra�c is managed using FIFO, and we propose two policies to deal with C-RAN. First, all

datagrams, BE or C-RAN, are stored in the same bu�er and dealt with the FIFO policy

regardless of their type. We call this policy FIFO.

In order to minimize the latency of C-RAN tra�c, we can store the two types of

datagrams in two di�erent bu�ers, managed each with FIFO, but we prioritize the C-RAN

datagrams which are always sent �rst. It can be technically implemented using TSN

802.1Qbu [16], that allows to de�ne priority class in the tra�c to schedule �rst the tra�c

with the highest priority, here the C-RAN tra�c. We call this policy FramePreemption.

We also consider the case of C-RAN tra�c scheduled by PMLS or SPMLS. Then, we need

to forbid the transit of a BE datagram which collides with a C-RAN datagram. Thus, in

each contention point, we reserve 50 tics (the size of a BE datagram) before the arrival of

a C-RAN message. Observe that it wastes some ressources and thus slightly decreases the

maximal throughput and may worsen the latency of BE datagrams.

Figure 6.3 shows the cumulative distribution of the logical latency of BE datagrams,

that is the probability that a BE datagram has a latency less than some value. The

distribution is computed over 1000 random instances, and for each the tra�c is simulated

for ten periods.

If we compare FIFO and FramePreemption, we see that the latency of BE datagrams

is better (1977 tics on average) with FIFO. It is expected, since in FramePreemption the

C-RAN datagrams are prioritized and thus the latency of the BE datagrams is strictly

worse, 3256 tics on average. However, this is a trade-o� with the margin of the C-RAN

datagrams, which is strictly better for FramePreemption: 1919 tics on average versus 5265

tics for FIFO.

Using a deterministic approach for C-RAN with PMLS, the trade-o� is even stronger:

the CRAN margin is down to 0, but the BE tra�c is more impacted, at a latency of

4909 tics on average. This can be explained by both reservation of tics to deal with the
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Figure 6.3 � Cumulative distribution of the latency of BE datagrams for several network
management schemes

periodic sending scheme and the long sequences of CRAN datagrams without free time in

contention points.

When using SPMLS, the C-RAN tra�c is smoothed over the period, in order to regularly

leave some free tics for BE tra�c. By construction, we still have CRAN margin of 0 but

it improves the latency of BE datagrams to 949 tics on average, which is even better than

with FIFO. This result shows that managing deterministic tra�c deterministically is also

good for the other sources of tra�c on the network. We have already observed such a

phenomenon in [54], a similar problem on an optical ring, that we describe in the next

section.

6.2 Both Tra�cs On Optical Ring : An Industrial product

In this section, taken from [54], we study a C-RAN application based on an optical ring.

We work on an industrial product which was developed in the ANR project N-GREEN

described in [55, 56]. In contrast with the previous chapters, �nding emission timings so

that di�erent periodic sources do not use the same resource is easy in the context of the

N-GREEN optical ring with a single data-center. However, we deal with two additional

di�culties arising from practice: the messages from RRHs are scattered because of the
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electronic to optic interface and there are other tra�cs whose latency must be preserved.

It turns out that the deterministic management of CRAN tra�c we propose reduces the

latency of CRAN tra�c to the physical delay of the routes, while reducing the latency of

the other tra�cs by smoothing the load of the ring over the period. To achieve such a

good latency, our solution needs to reserve resources in advance, which slightly decreases

the maximal load the N-GREEN optical ring can handle. Such an approach of reservation

of the network for an application (CRAN in our context) relates to network slicing [57] or

virtual-circuit-switched connections in optical networks [58, 59].

In Section 6.2.1, we model the optical ring and the tra�c �ow. In Section 6.2.2, we

experimentally evaluate the latency when using stochastic multiplexing to manage packets

insertion on the ring, with or without priority for C-RAN packets. In Section 6.2.3, we

propose a deterministic way to manage C-RAN packets without bu�ers, which guarantees

to have zero latency from bu�ering. We propose several re�nements of this deterministic

sending scheme to spread the load over time, which improves the latency of best-e�ort

packet, or in Section 6.2.3.3, to allow the ring to support a maximal number of antennas

at the cost of a very small latency for the C-RAN tra�c.

6.2.1 Model of C-RAN tra�c over an optical ring

N-GREEN Optical ring The unidirectional optical ring is represented by an oriented

cycle. The vertices of the cycle represent the nodes of the ring, where the tra�c arrives.

The arcs (u,v) of the cycle have an integer weight ω(u,v) which represents the time to

transmit a unit of information from u to v. By extension, if u and v are not adjacent, we

denote by ω(u,v) the size of the directed path from u to v. The ring size is the length of

the cycle, that is ω(u,u) and we denote it by RS. A container, of capacity C expressed

in bytes, is a basic unit of data in the optical ring.

The time is discretized: a unit of time corresponds to the time needed to �ll a container

with data. As shown in Figure 6.4, the node u can �ll a container with a data packet of

size less than C bytes at time t if the container at position u at time t is free. If there

are several packets in a node or if a node cannot �ll a container, because it is not free, the

remaining packets are stored in the insertion bu�er of the node. A container goes from

u to v in ω(u,v) units of time. The ring follows a broadcast and select scheme with

emission release policy: When a container is �lled by some node u, it is freed when it

comes back at u after going through the whole cycle.
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Time t

Containers with packet
Free Containers

Insertion buffer

Time t +1

Packet insertion
u

Figure 6.4 � Dynamic behavior of the ring.

C-RAN tra�c The RRHs are the source of the deterministic and periodic C-RAN

tra�c. There are k RRHs attached to the ring and several RRHs can be attached to the

same vertex. An RRH is linked to a node of the ring through an electronic interface of

bit rate R Bps. The ring has a larger bit rate of F × R Bps. The integer F is called the

acceleration factor between the electronic and the optical domains. A node aggregates

the data received on the electronic interface during F units of time to create a packet of

size C and then puts it in the insertion bu�er. In each period P , an RRH emits data

during a time called emission time or ET . Hence the RRH emits ET/F packets, i.e.

requires a container of size C each F units of time during the emission time, as shown in

Figure 6.5.

At each period, the data of the RRH i begins to arrive in the insertion bu�er at a time

oi called o�set. The o�sets can be determined by the designer of the system and can be

di�erent for each RRH but must remain the same over all periods. We assume that all

BBUs are contained in the same data-center attached to the node v. The data from u is

routed to its BBU at node v through the ring and arrives at time oi +ω(u,v) if it has been

inserted in the ring upon arrival. Then, after some computation time, which w.l.o.g. is

supposed to be zero, an answer is sent back from the BBU to the RRH. The same quantity

of data is emitted by each BBU or RRH during any period.

The latency of a data packet is de�ned as the time it waits in an insertion bu�er.

Indeed, because of the ring topology, the routes between RRHs and BBUs are �xed, thus

we cannot reduce the physical transmission delay of a data which depends only on the

size of the arcs used. Moreover, there is only one bu�ering point in the N-GREEN optical

ring, the insertion bu�er of the node at which the data arrives. Hence, in this context, to

minimize the end-to-end delay, we need to minimize the (logical) latency. More precisely,

we want to reduce the latency of the C-RAN tra�c to zero, both for the RRHs (uplink)
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and the BBUs (downlink). In Section 6.2.3 we propose a deterministic mechanism with

zero latency for C-RAN which also improves the latency of other data going through the

optical ring. We shortly describe the nature of this additional tra�c in the next paragraph.

RRH

Datacenter

F

BBU

BBU

RRH

BBU

Figure 6.5 � Insertion of C-RAN tra�c in the N-GREEN optical ring.

Best-E�ort tra�c The optical ring supports other tra�cs, corresponding to the in-

ternet �ow. We call this tra�c Best-E�ort (BE). We want it to have the best possible

distribution of latency, but since BE tra�c is less critical than C-RAN tra�c, we impose

no hard constraint on its latency. At each node of the ring, a contention bu�er is �lled

by a batch arrival process of BE data. This batch arrival process consists in generating,

at each unit of time, a quantity of data drawn from a bimodal distribution to model the

fact that internet tra�c is bursty. Then, according to the �ll rate of the contention bu�er

and the maximum waiting time of the data, a packet of size at most C may be created by

aggregating data in the contention bu�er. This packet is then put in the insertion bu�er of

the node. Hence, the arrival of BE messages can be modeled by a temporal law that gives

the distribution of times between two arrivals of a BE packet in the insertion bu�er. The

computation of this distribution for the parameters of the contention bu�er used in the

N-GREEN optical ring is described in [60]. We use this distribution in our experiments to

model arrivals of BE packets in the insertion bu�er.

6.2.2 Evaluation of the latency on the N-GREEN optical ring

We �rst study the latency of the C-RAN and BE tra�cs when the ring follows an oppor-

tunistic insertion policy: When a free container goes through a node, it is �lled with a

packet of its insertion bu�er, if there is one. Two di�erent methods to manage the inser-

tion bu�er are experimentally compared. First, the FIFO rule, which consists in managing

the C-RAN and BE packets in the same insertion bu�er. Then, when a free container is



6.2. Both Tra�cs On Optical Ring : An Industrial product 137

available, the node �lls it with the oldest packet of the insertion bu�er, without distinction

between C-RAN and BE. This method is compared to a method called C-RAN priority

that uses two insertion bu�ers: one for the BE packets, and another for the C-RAN pack-

ets. The C-RAN insertion bu�er has the priority and is used to �ll containers on the ring

while it is non empty before considering the BE insertion bu�er.

We compare experimentally these two methods in the simplest topology: The lengths

of the arcs between nodes are equal and there is one RRH by node. The experimental

parameters are given in Table 6.1 and chosen following [55]. In each experiment, the o�sets

of the RRHs are drawn uniformly at random in the period. The results are computed over

1,000 experiments in which the optical ring is simulated during 1,000,000 units of time.

Fig. 6.6 gives the cumulative distribution of both C-RAN and BE tra�cs latencies for the

FIFO and the C-RAN priority methods. The source code in C of the experiments can be

found on the webpage [49].
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Figure 6.6 � Distribution of latencies for FIFO and C-RAN �rst

Bit rate of an electronic interface R 10 Gbps
Optical ring bit rate F ×R 100 Gbps

Acceleration factor F 10

Container size C 100 kb
Unit of time (UoT) C/(F ×R) 1 µs
Length traveled during one UoT 200 m

Time to go through the cycle RS 100 UoT
Emission time ET 500 UoT

Period P 1,000 UoT
Number of RRH 5

Number of nodes k 5

Load induced by C-RAN tra�c 0.50

Load induced by BE tra�c 0.40

Table 6.1 � Parameters of the N-GREEN architecture.

Unsurprisingly, the latency of the C-RAN tra�c is better when we prioritize the C-

RAN messages, while the BE tra�c is heavily penalized. Furthermore, there is still 10%

of the C-RAN tra�c with a latency higher than 50µs, a problem we address in the next

section.
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Remark that, due to the broadcast and select mode, a message coming from any node

induces the same load for all the nodes of the ring. Hence the latency of the tra�cs coming

from any RRHs or from the BBUs are the same, which may seem couterintuitive knowing

that all BBUs share the same node on the ring. This is why in Fig. 6.1 we do not ditinguish

between uplink C-RAN tra�c (RRH to BBU) and downlink C-RAN tra�c (BBU to RRH).

6.2.3 Deterministic approach for zero latency

6.2.3.1 Reservation

Finding good o�sets for the C-RAN tra�c is a hard problem even for simple topologies

and without BE tra�c, as we have shown in previous chapters. In this section, we give a

simple solution to this problem in the N-GREEN optical ring, and we adapt it to minimize

the latency of the BE tra�c.

Let u be the node to which is attached the RRH i. To ensure zero latency for the

C-RAN tra�c, the container which arrives at u at time oi must be free so that the data

from the RRH can be sent immediately on the optical ring.

To avoid latency between the arrival of the data from the RRH and its insertion on the

optical ring, we allow nodes to reserve a container one round before using it. A container

which is reserved cannot be �lled by any node except the one which has reserved it (but it

may not be free when it is reserved). If u reserves a container at time oi − RS, then it is

guaranteed that u can �ll a free container at time oi with the data of the RRH i. In the

method we now describe, the C-RAN packets never wait in the node: The message sent

by the RRH i arrives at its BBU at node v at time oi +ω(u,v) and the answer is sent from

the BBU at time oi + ω(u,v) + 1.

Recall that an RRH �lls a container every F units of time, during a time ET . Thus if

we divide the period P into slots of F consecutive units of time, an RRH needs to �ll at

most one container each slot. If an RRH emits at time oi, then we say it is at position

oi + ω(u,v) (mod F ). The position of an RRH corresponds to the position in a slot of

the container it has emitted, when it arrives at v, the node of the BBU. If an RRH is at

position p, then by construction, the corresponding BBU is at position p+1 (mod F ). For

now, we do not allow waiting times for C-RAN tra�c, hence each RRH uses a container

at the same position during all the emission time.

Given a ring, a set of RRH's, a period and an acceleration factor F , the problem we

solve here is to �nd an assignment of values of the o�sets oi's which is valid: two RRHs
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must never use the same container in a period. Moreover we want to preserve the latency

of the BE tra�c. It means that the time a BE packet waits in the insertion bu�er must

be minimized. To do so, we must minimize the time a node waits for a free container at

any point in the period, by spreading the C-RAN tra�c as uniformly as possible over the

period.

Figure 6.7 represents an assignment of two couples of RRH and BBU by showing the

containers going through the node of the BBU during a period. Each slot has a duration

of F unit of times, and, since an RRH/BBU emits a packet each F UoT during ET UoT,

if we take the granularity of a slot to represent the time, the emission of a BBU/RRH is

continuous in our representation, during ET/F slots. A date t in the period corresponds

in Figure 6.7 to the slot t/F and is at position t mod F .

1
2
3
4
5

Positions

P
F Slots

Slot

ET
F

RS
F

Reservation C-RAN Traffic

BBU 2

RRH 1
BBU 1

0

RRH 2

Free containers

Figure 6.7 � A valid assignment with F = 6.

6.2.3.2 Building valid assignment with zero C-RAN latency

Remark that two RRHs which are not at the same position never use the same containers.

Moreover, if we �x the o�sets of the RRHs to even positions so that they do not reserve

the same containers, then, because the answers of the BBU are sent without delay in our

model, it will �x the o�sets of the BBUs to odd positions which do not reserve the same

containers. Hence, we need to deal with the RRHs only. The next proposition gives a

simple method to �nd an assignment.

Proposition 6. There is a valid assignment of the o�sets o1, . . . , ok on the same position

if kET +RS ≤ P .

Proof. W.l.o.g we �x o1 to 0 and all the other o�sets will then be chosen at position 0.

Let u1, . . . ,uk be the nodes attached to the RRHs 1, . . . ,k. We assume that u1, . . . ,uk are

in the order of the oriented cycle. The last message emitted by the RRH 1 arrives at u2

at time ET − 1 + ω(u1,u2). Therefore we can �x o2 = ET + ω(u1,u2). In general we can
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set oi = (i − 1) × ET + ω(u1,ui) and all RRHs will use di�erent containers at position 0

during a period. By hypothesis k × ET + ω(u1,u1) ≤ P , thus the containers �lled by the

k-th RRH are freed before P . Hence, when the RRH 1 must emit something at the �rst

unit of time of the second period, there is a free container.

Remark that reserving free containers make them unusable for BE tra�c which is akin

to a loss of bandwidth. However, with our choice of emission times of the RRHs in the

order of the cycle, most of the container we reserve are used by the data from some RRH.

If all containers at some position are used, that is kET + RS = P , then there are only

RS free containers wasted. In the worst case, less than 2RS containers are wasted by the

assignment of Proposition 6.

It is now easy to derive the maximal number of antennas which can be supported by

an optical ring, when using reservation and the same position for an RRH for the whole

period.

Corollary 1. There is a valid assignment with bP−RSET c × F
2 antennas and zero latency.

Proof. Following Proposition 6, the maximal number of antennas for which there is an

assignment on the same position is k = bP−RSET c. In such an assignment, we need a second

position to deal with the tra�c coming from the BBUs coming back to those k antennas.

Since we got F positions in the slot, the number of antennas supported by the ring is thus

equal to k × F
2 .

With the parameters of the N-GREEN ring given in Figure 6.1, we can support 5 an-

tennas, while stochastic multiplexing can support 10 antennas albeit with extreme latency.

There are two sources of ine�ciency in our method. The �rst comes from the reservation

and cannot be avoided to guarantee the latency of the C-RAN tra�c. The second comes

from the fact that an RRH must emit at the same position during all the emission time

(to guarantee zero latency). We relax this constraint in Section 6.2.3.3 to maximize the

number of antennas supported by the ring, while minimizing the loss of bandwidth due to

reservation.

We now present an algorithm using reservation as in Proposition 6 to set the o�sets

of several RRHs at the same position. In a naive assignment, we put each RRH in an

arbitrary position, for instance one RRH by position. We then propose three ideas to

optimize the latency of the BE tra�c, by spacing as well as possible the free containers in

a period.
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Balancing inside the period With the parameters of the N-GREEN ring given in

Figure 6.1 (ET = P
2 , F = 10 and n = 5), there are no unused position. Any assignment

has exactly one BBU or RRH at each position. If all the RRHs start to emit at the �rst

slot, then during ET there will be no free container anywhere on the ring, inducing a

huge latency for the BE tra�c. To mitigate this problem, in a period, the time with free

containers in each position must be uniformly distributed over the period as shown in

Fig. 6.8.

Positions

0
2
4
6
8

Figure 6.8 � Balancing inside the period.

Compacting positions For each position which is used by some RRH, and for each

period, at least RS free containers are reserved which decreases the maximal load the

system can handle. Therefore to not waste bandwidth, it is important to put as many

RRHs as possible on the same position as shown in Fig. 6.9. Indeed, for any position

which is not used at all, no container needs to be reserved. This strategy is also good to

spread the load during the period since it maximizes the number of unused positions and

for each unused position there is a container free of C-RAN tra�c each F unit of times.

Figure 6.9 � Compacting positions.

Balancing used positions The free positions can be distributed uniformly over a slot,

to minimize the time to wait before a node has access to a container from a free position,

as shown in Fig. 6.10. To do so, compute the number of needed positions x = dk× ET
P−RS e,

with k the number of antennas using the previous strategy. Then, set the x used positions

in the following way: bFx c − 1 free positions are set between each used positions. If Fx has

a reminder r, then we set the r free remaining positions uniformly over the interval in the

same way and so on until there are no more free position. It is a small optimization, since
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it decreases the latency by at most F/2.

Figure 6.10 � Balancing used positions.

Experimental evaluation Our algorithm combines the three methods we have described

to spread the load over the period. In order to understand the interest of each improvement,

we present the cumulative distribution of the latency of the BE tra�c using them either

alone or in conjunction and we compare our algorithm to stochastic multiplexing with

C-RAN priority.
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Figure 6.11 � BE latencies with a naive assignment and balancing inside the period for 5
antennas.

Figure 6.11 shows the performance of balancing the C-RAN tra�c inside the period

against a naive assignment in which all the RRH begin to emit at the same slot. We keep

the same parameters as in Section 6.2.2 (see Table 6.1). As expected, the BE tra�c latency

is much better when we balance the C-RAN tra�c inside the period and already much

better than stochastic multiplexing.
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To show the interest of compacting the positions, we must be able to put several RRHs

at the same position. Hence, we change the emission time to ET = 200 and the number

of antennas to k = 12 to keep the load around 0.90 as in the experiment of Figure 6.6.

This is not out of context since the exact split of the C-RAN (the degree of centralization

of the computation units in the cloud) is not fully determined yet [8].

As shown in Figure 6.12, the performance of the naive assignment is really bad. Com-

pacting the RRHs on a minimal number of positions decreases dramatically the latency. If

in addition, we balance over a period, we get another gain of latency of smaller magnitude:

the average (respectively maximum) latency for BE tra�c goes from 4.76µs (respectively

48µs) to 3.28µs (resp. 37µs). We did not represent the bene�t of balancing used positions

because the reduction in latency it yields is small as expected: the average (respectively

maximum) latency for BE tra�c goes from 4.76µs (resp. 48µs) to 4.43µs (resp. 44µs).
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Figure 6.12 � BE latencies of compacting positions and balancing inside the period for 12
antennas.

In Figure 6.13, we compare the cumulative distribution of the latency of the BE tra�c

using the FIFO rule to our reservation algorithm with the three proposed improvements.

The parameter are the same as in the previous experiment. The performance of our

reservation algorithm is excellent, since the C-RAN tra�c has zero latency and the BE

tra�c has a better latency than with the FIFO rule despite the cost of reservation. It is

due to the balancing of the load of the C-RAN tra�c over the period, that guarantee a

more regular bandwidth for the BE tra�c.



144 Chapter 6. Mixing Periodic Datagrams and Stochastic Datagrams

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140

C
u
m

u
la

ti
v
e 

D
is

tr
ib

u
ti

o
n
 (

%
)

Latency (µs)

BE with FIFO
C-RAN with FIFO

BE with Reservation
C-RAN with Reservation

Figure 6.13 � FIFO bu�er compared to the best method with reservation for 12 antennas.

6.2.3.3 Building Valid Assignments with Additional C-RAN Latency

The previous approach limits the number of antennas supported by the ring when P −RS
mod ET 6= 0, which is the case with N-GREEN parameters. The method we present in

this section enables us to support more antennas and improves the latency of BE tra�c

(it reserves less free containers) by allowing the data from an RRH to use two positions. It

is at the cost of a slightly worse latency for C-RAN tra�c and it also requires in practice

to implement some bu�ering for the C-RAN packets.

In order to support as much antennas as possible on the ring, we use all containers in

a given position, improving on the compacting position heuristic.

Proposition 7. There is a valid assignment for k antennas when k ≤ bP−RSET × F
2 c.

Proof. We consider the RRHs in the order of the ring. Let l = bP−RSET c, then we set the

o�sets of the �rst l RRHs as in Proposition 6. These RRHs are at position zero and the

(l + 1)th RRH �rst emits at position zero, with o�set ol+1 = l ∗ ET + ω(u0,ul+1).

The (l+1)th RRH emits up to time P −ω(ul+1,u0) at position zero, so that there is no

con�ict with RRH 0 during the next period. Hence, it has used the position zero during

x = P −ω(ul+1,u0)− l∗ET −ω(u0,ul+1) = P − l∗ET −RS. From time P −ω(ul+1,u0)+2,

the (l + 1)th RRH emits at position 2 and during a time ET − x. Then the next RRH in
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the order is assigned to position 2, and begins to emit at time P − ω(ul+1,u0) + ET − x
instead of zero. The rest of the assignment is built in the same way �lling completely all

�rst positions, until there are no more RRH.

Figure 6.14 � Valid assignment for 9 antennas and the N-GREEN parameters.

Figure 6.14 illustrates the construction of Proposition 7 for the N-GREEN parameters.

The loss due to reservation is exactly RS containers by used positions. Hence, it is possible

to support 9 antennas (but no BE tra�c in this extreme case), rather than 5 with the

method of Section 6.2.3.2.

We call this new reservation algorithm saturating positions since it improves on

compacting positions of the previous subsection. Moreover, there are no free slots in used

positions, hence the idea of balancing into the period is not relevant. The only possible

optimisation would be to balance the used positions, but it is not worth it since it adds

additional latency for the RRHs using two di�erent positions.

Figure 6.15 represents the cumulative distribution of the latency of BE tra�c for the

FIFO rule, saturating position, and balancing into the period using the N-GREEN pa-

rameters. Saturating positions reduces the BE tra�c latency more than balancing into

the period. This is easily explained by its lesser use of reservation. It is at the cost of

a maximal latency of 2 µs for C-RAN tra�c, so the designer can choose any of the two

algorithms, according to the desired latency for C-RAN and BE tra�c.

Conclusion

The concept of Cloud-RAN is to use non-dedicated networks, that is, networks shared with

other applications. In this chapter, we study the impact of the scheduling of C-RAN �ows

on the latency of Best-E�ort �ows.

Our algorithm ASPMLS used to solve pall on star routed networks tend to create long

sequence of contiguous messages that monopolize the ressources during a long time. Hence,

the latency of the Best-E�ort �ows is consequently worsen. To solve this issue, we virtually
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Figure 6.15 � Latencies of saturating positions, balancing into the period and FIFO rule
for 5 antennas.

change the size τ of the datagram to the largest possible value τ ′ for which ASPMLS �nds

a solution. Then, we use the computed scheduling with the size of datagram τ , that

leaves τ ′ − τ free tics of time between every datagrams. Such an approach is possible

because we are free to chose any o�set in the period without impacting the latency. When

solving SPALL, this approach would not be reasonable in term of latency, and we did not

investigate yet the impact of our algorithms on Best-E�ort latency.

We also present similar results on optical ring, developed for ANR project N-Green.

In N-Green optial ring, the technical conception of the equipments makes the problem of

scheduling the C-RAN �ows trivial. We developped several techniques to smooth the load

of the C-RAN �ow over the period in order to let regular free tics for the Best-E�ort tra�c.

In both case, in order to ensure that a ressource scheduled for a route is free at the

exact moment it is needed, we propose some reservation mechanisms. Reservation creates

arti�cial use of bandwidth, which should result in lower latency for Best-E�ort �ows. In

fact, it appears that Best-E�ort latency is better when the C-RAN tra�c is managed while

smoothing the load on the period, even with the reservation than when all �ows follows

statistical multiplexing laws.

Mixing several kinds of �ow and following a scheduling for a part of them is one of

the major technical issue currently studied for deterministic networking. We detail in next
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chapter how released standards leads us to deterministic management of the �ows.





Chapter 7

Proof of Feasibility

The additional latency induced by contention bu�ers is one of the major manageable source

of delay in a switched packets network. In this thesis, we propose algorithms that minimize

contention in several topologies, either by removing the contention bu�ers or computing

tra�c organization to minimize bu�ering time. The objective is to delay datagrams as

little as possible in the network.

Our approach of the network consists in deterministically managing datagrams in each

node in order to prevent contention. When it is not possible to get rid of the contention

bu�ers, we want to �x the duration each datagram is bu�ered. The contention bu�ers

are not anymore a consequence of the tra�c but a tool to manage it. This approach may

look similar to the concept of Deterministic Networking. A working group from IETF

called DetNet [61] works in collaboration with TSN (Time Sensitive Networking) [16], a

task group of IEEE, to develop technical solutions for deterministic networking. The main

di�erence between DetNet and TSN is the layer it focuses on. While DetNet works on Layer

3, TSN develops solutions for Layer 2. Whatever the case, using the term "deterministic"

is inappropriate since all works related to DetNet or TSN are still based on statistical

models. The latency guarantee given by those approaches are an upper bound on the

latency, while we aim to minimize it.

In Section 7.1, we introduce the IEEE standards for TSN that allows for a better

network management based on controlled management of �ows in the switches. While TSN

standards are designed to drive stochastic �ows in network, we show that going further and

managing deterministic tra�c enable us to remove some technical constraint, and leads us

to a new technology, that we call Hyper-TSN. Section 7.2 presents a prototype of a switch

that goes beyond TSN, by delivering datagrams at exact planned dates. With Hyper-

TSN, the additional latency due to contention bu�ers is minimized, even at full loads.

Furthermore, we get rid of the synchronization constraint, with an innovative alignment

mechanism. With Hyper-TSN, the latency is at physical limits. [10]
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7.1 Customized Management of the Network

The model we present in Chapter 2 is based on several assumptions:

• The algorithms we develop are based on a central knowledge of the network and

suppose all nodes are able to follow instructions. There must be an entity that

centralizes and manages the con�guration of the nodes.

• We assume the nodes are able to distinguish and manage di�erent �ows.

• Because all nodes follows a global scheduling , we assume they are able to dynamically

rectify the shift between the clocks.

We explain in this chapter how the recent standards developed by TSN task group is

close from such a model, and we show the limits of TSN for deterministic networking that

leads us to Hyper-TSN. A detailed survey of all TSN standards can be found in [62].

7.1.1 Overview of TSN Standards

Centralized vision of the network The standard IEEE 802.1Qat SRP [63] (Stream

Reservation Protocol) provides a central management framework that allows a centralized

entity to collect data about the �ows. It has been improved by IEEE 802.1Qcc [64]. In

these standards, a centralized entity called the controller, collect all required information

needed by users about the network (the routing, the periodicity and the size of the data-

grams). This controller proposes a user interface that enable any user to collect all network

information in order to compute the con�guration of the network. Figure 7.1 shows a net-

work managed by a controller, communicating via its user interface with algorithms, and

able to send requirement to the nodes. Such an approach is related to Software De�ned

Network (SDN) [65]. We can �nd in [66] an example of an SDN for TSN.

Individual management of �ows Standard 802.1Qbv [67] allows us to manage di�er-

ent �ows in the nodes by a gate mechanism. Every output port of the switch is organized

as follows. The �ows are stored in tra�c queues, and for each tra�c queue, a gate is

ordered to be open or closed. To do so, the switch needs a Gate Control List (GCL). This

GCL is computed by the user, and sent to each switch of the network by the controller. It

is a list of dates, and for every date of the list are speci�ed the output ports (gates) of the

switch which are open or closed.
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Figure 7.1 � A TSN network managed by a controller, able to collect network informations,
and control the nodes behavior.

Figure 7.2 from [68] shows the mechanism of a switch using 802.1Qbv technology.

Considering a given period (Tcycle in the �gure), the switch selects at each time (T1, T2, . . .

the queues that must be open to transmit datagrams. In �gure 7.2, at time T1, all gates

except the one for scheduled tra�c are open, at time T2, all gates are closed and at time

T3 only the gate for scheduled tra�c is open.

With such a mechanism, it is possible to organize the �ows in order to control the

latency. The GCLs are computed upstream considering the tra�c (size of the datagrams,

periodicity, or average throughput of each �ow for non-deterministic tra�c). Several works

on Time Aware Shaping have been developed on this topic: [69] introduce how to manage

one scheduled �ow and one best-e�ort �ow (non-periodic generation of data, stochastic

model). This paper shows that by correctly setting the GCL of the nodes, it is possible to

ensure no contention for one scheduled �ow. Nevertheless, works about managing several

scheduled �ows together are mainly based on linear programming [31, 32, 30, 33], which

has an high complexity and does not scale well with number of routes and contention depth

of the networks.

Synchronization To be e�cient, the components of the network must be completely

synchronized. Such an hypothesis seems unrealistic. Standards like IEEE 802.1AS [70], or

IEEE 1588 [71] propose good solutions for clock synchronization, but this problem is still

di�cult to solve. Indeed, even if those protocols propose good solution to re-synchronize

clocks, there may be some shift between clocks of di�erent switches of the network. The

major source of shift is the need to precisely evaluate the length of a link between two

components. This value can be deduced from the travel time of datagrams between two
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Figure 7.2 � IEEE 802.1Qbv mechanism ([68])

switches, but this value highly depends on the temperature of the link which is not constant.

Network designers use Guard Time to prevent this problem. The GCL are computed such

that a gate is open before and after the theoretical arrival of datagrams. Such a mechanism

induce an arti�cial use of bandwidth, because a gate is open even when no datagram is

being transmitted.

7.1.2 Limits of TSN when managing Deterministic �ows

All the previously mentioned standards are designed for a statistical management of the

�ows. In this thesis, we work on deterministic �ows: our models and algorithms do not

rely to a statistical approach like current tra�c shaping, but a deterministic approach.

We compute the exact date at which each datagram is able to reach each node, without

loss of bandwidth due to guard time. Furthermore, a statistical approach does not allow

to control the contention and the exact forwarding time of the datagram in the network.

This implies that a datagram sent periodically does not always have the same latency over

time. The variation of the latency is called jitter. The jitter is an indicator of the stability

of the network. The higher the jitter, the higher the maximal value of the latency is.

A deterministic approach requires to rethink the network management. We control

the position of a datagram at every moment in order to let them pass through the nodes
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without contention thanks to a gate mechanism similar to TSN Qbv. We thus need the

nodes to be perfectly synchronized otherwise it could be counterproductive. Indeed, if a

datagram of a �ow arrives in a node before the planned date, the gate is closed and the

datagram is bu�ered, that induces additional latency due to contention bu�er. In the worst

case in which a datagram arrives after the planned date, it is bu�ered until the gate get

open. In our context of periodic �ows, the datagram will be bu�ered between up to one

period.

Also, switches in the physical layer of the network induce an additional latency due to

physical bu�ering. In store-and-forward concept [21], datagrams are stored at reception of

a node before being forwarded. However, solution like cut-through [72] allows to reduce

storage size and corresponding delay to the header size only. But this is e�ective if the

egress port is available to forward the datagram at the same time only. If not, the datagram

is bu�ered until the port is free. Even if it is possible to adapt our model to take into

consideration the physical bu�ering cost, it still induces additional latency, which is not

desirable.

Next section present a new kind of switch, called Hyper-TSN switch, that allows to

overcome all the above limits.

7.2 Deterministic management for a deterministic latency

Deterministic Networking are mentioned in the same survey cited ahead for TSN [62]. The

researches about DetNet are until now limited either to linear programming for �nding

scheduling policies for the network -as mentioned above- or tra�c shaping (see [73] for

a comparison of actual tra�c shaping methods). Tra�c shaping methods are based on

stochastic models, with bounds on the arrival of the �ows, that allows to bound the maximal

latency. Nevertheless, as we mentioned ahead, Deterministic Networking do not propose a

deterministic management of deterministic �ows in order to ensure a minimal latency and

0 jitter.

In this thesis we remove the contention bu�er, or, if this is not possible, we use the

contention bu�ers as a tool, by controlling the bu�ering time of each datagrams while

minimizing it. Furthermore, we remove jitters in network, which is a deeper aspect of

deterministic networking. Here, because of our desire to manage deterministic �ows, mul-

tiple standards of TSN are not useful yet. Indeed, since the exact date of arrival of all
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datagrams are computed, we can get rid of several tools designed to manage the tra�c on

a statistical manner.

We present in this section an Hyper-TSN switch that solves all the problematic of

TSN when managing deterministic tra�c. This technology is under an advanced phase of

research, and a prototype has been experimented in Nokia Bell Labs [74].

7.2.1 Hyper-TSN switch

A 2x2 Hyper-TSN switch has been developed. It is composed of a switching matrix con-

nected to a deterministic scheduler and two 10 Gbps ethernet two ways transceivers. The

switching matrix includes also a monitoring circuitry. The deterministic scheduler controls

the switching matrix and is con�gured with a timing table. This table is similar to a 802.1

Qbv Gate Control List (GCL). It de�nes the periodicity of the scheduling and, for each

egress ports, the planned date of arrival of the frames which are part of deterministic �ows.

At each of these dates the deterministic scheduler sets the switching matrix to transmit

data incoming on a speci�ed ingress port. Figure 7.3 shows an example of scheduling both

deterministic (but not periodic) and stochastic tra�c. In such a switch, the bu�ers are

totally absent for managed tra�c: when a datagram arrives in the switch, it is instantly

transmitted to the egress port, and there is no bu�ering operation. This process allows us

to reduce the physical delay to its lowest for scheduled tra�c, while it is still possible to

bu�er the Best-E�ort tra�c, which has not critical latency constraints.

Figure 7.3 � The scheduling of a 2x2 switch on which both deterministic and stochastic
tra�cs arrives. The deterministic tra�c is forwarded without contention.
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To coordinate switches, Hyper-TSN considers the �ow as a reference [75] as we now

explain. Since the exact arrival time of a datagram is known, if one datagram arrives before

or after this expected date, this means the physical transmission delay between the sender

of the datagram and the switch known by the controller is false. The monitoring circuitry

of the switch detects this issue and an alert signal is sent to the controller that is able

to reschedule correctly the GCL. This ensures a dynamical clock alignment between the

nodes, and it is possible because the switches are developed on components with industrial

clocks (Xilinx FPGA boards : Zynq UltraScale MPSoC zcu102, Zynq-7000 SoC zc706).

The switch also includes a frame analyzer that enables to check that the switched frames

are not corrupted and none is missing.

7.2.2 Implementation and reliability tests

To perform experiments, a generator of deterministic �ows has been developed. This

generator set the dates it sends the frames according to the controls received from the

monitoring circuitry. The period are de�ned in the timing table. The size of the frames is

set to fully load the ethernet links (i.e. 100% load). When starting, the monitoring circuitry

detects that frames do not arrive at the planned date and sends control commands to the

generator. These �rst frames are lost. Then, the generator corrects the dates it sends the

frames, and no more shifting has been observed during the running of a 2 hours experiment.

100% of the frames are correctly switched without being corrupted or lost. The switching

of each frame from the ingress port to the planed egress port is performed introducing only

one clock cycle delay (here 3,87 ns). Figure 7.4 shows the Hyper-TSN 2x2 switch used for

our experiments.

Figure 7.4 � An Hyper-TSN switch with a 2x2 switching matrix.
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Conclusion

The algorithms developed in this thesis are based on several assumptions. First, we consider

that a central entity is able to collect informations about the �ows and the routes of the

network. This is possible in practice by using SDN, which is one of the major solution for

dynamic programmable networks.

The nodes need to be able to di�erentiate �ows and to follow a scheduling to forward

them. The norm TSN 802.1Qbv allows such a mechanism. We also assume that the

nodes are synchronized with the precision of a tic. Even with advanced synchronization

protocols, it is hard to synchronize devices with such a precision, and at least the header

of the messages needs to be bu�ered to be read in classical packet switched networks.

As a solution to all these requirements, we present Hyper-TSN switches, which are

currently in development. Those switches are based on a new vision of the network, by

considering the �ow as a reference. Because we manage the arrival time of every datagram

in the nodes, we are able to detect a time shift if a datagram does not arrive a expected

date. This allow a precise clock alignment of the devices. Furthermore, those switches are

able to forward the datagrams without any bu�er due to physical operations, which is an

innovation in packet switched network.
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In this thesis, we presented the problem of minimizing latency of periodic �ows in a packet

switched network. Current networks in use for telecommunication are based on statistical

multiplexing: the links are dimensioned considering the average bit rate of the �ows so

that the �ows can share a link most of the time or be bu�ered until enough capacity is

available. Statistical multiplexing is a low-cost solution to deploy a network, but it does not

guarantee the latency of the packets using it. If a burst of data is sent by one �ow, shared

resources become critical and some packets are bu�ered while waiting for their availability.

These bu�ers are called contention bu�ers, and are a major source of latency.

We study the Cloud-RAN application case. In C-RAN, radio antennas periodically

send packets to datacenters, that compute an answer and send it back to the antennas.

The packets must have an end-to-end latency lower than a maximal value, required by

the protocols. Statistical multiplexing is not able to guarantee an end-to-end latency for

packets, and because of contention bu�ers, the more loaded is a network, the largest is

the latency. In our C-RAN use case, the �ows are periodic and a large amount of data

is sent at each period by the antennas and the datacenters. Thus, managing the packets

with statistical multiplexing is not appropriate.

Several working groups (DetNet, TSN, see Chapter 7), have developed standards and

mechanisms ensuring an upper bound on the latency in packet switched networks. The

network devices can reserve a port during a given time to forward the tra�c of a given �ow

without contention bu�er. The arrival date of the packets in a device of the network must

then be known and precise. To do so, a scheduling of every output port of the devices is

computed ahead. Current approaches to compute this scheduling are based on stochastic

laws, since most of the internet tra�c follows a stochastic behavior. In such a situation,

it is impossible to completely get rid of contention bu�ers. Nevertheless, since our �ows

are deterministic (the amount of data and the periodicity of the packets remain the same

all over time), we show that deterministic scheduling guarantees a minimal latency of

deterministic �ows and it also helps to reduce the latency of stochastic best-e�ort �ows.

Furthermore, TSN and DetNet mechanisms induce several sources of additional latency, like

guard time around packets to prevent the time shift between clocks or bu�ering time of the

header of the packets in every switch to read the destination. In this thesis, we go further by
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proposing solutions to reduce the end-to-end latency of packets to its physical transmission

time by proposing a new generation of switch that get rid of technical constraints imposed

by a statistical vision of the network.

This thesis focuses on the problem of computing a deterministic scheduling for periodic

�ows, a problem that we prove to be NP-hard for arbitrary networks. We study in Chap-

ters 3 and 4 this problem when the �ows are unsynchronized, that is, we can choose the

emission date of the packets in the sources of the �ows. This case does not perfectly match

with Cloud-RAN, but it corresponds to various use cases, like Industry 4.0, autonomous

vehicle. . . In Chapter 3, we give several greedy algorithms and one FPT algorithm that al-

lows to reduce the latency to the physical transmission time (i.e. without any contention)

on a common network topology with a single shared link, when the load induced by the

deterministic tra�c is low enough. We experimentally show using the exact FPT algo-

rithm, that on very loaded networks (when the load is greater than 80%), it is not possible

to get rid of contention bu�ers. We then propose solutions that bu�er packets in nodes

of the network, but we try to minimize this additional latency. Remark that in such an

approach, the bu�ers are not anymore a consequence of contention that we cannot control

or predict, but a tool to organize the packets. In Chapter 4, we study the problem of

organizing �ows in a network with a single shared link (as in Chapter 3), and allowing one

bu�er (positioned in the datacenters) on the route for every packet. We propose several

greedy algorithms and one FPT algorithm based on a classical scheduling algorithm that

we adapted for periodicity. The performances of our algorithm are excellent, we show it is

possible to reduce latency to the physical transmission time of the longest route in 99,9%

of the cases, while statistical multiplexing, even prioritizing critical �ows adds a latency to

the �ows, due to contention bu�ers, equal to 1/4 of the period.

We study in Chapter 5 the C-RAN use case, in which all antennas send their messages

at the same date, on arbitrary networks. We propose a compact form of the solutions

to our problem, that allows to de�ne a neighborhood of a solution. Then, several local

search heuristics are designed using this notion of neighborhood. A branch and bound

algorithm based on the compact form of the solutions is also proposed and run e�ciently

for small C-RAN network with ten to twenty routes. Then, we experimentally show that

our approach dramatically over performs statistical multiplexing in terms of latency.

We then show in Chapter 6 how to adapt our algorithm not to impact best-e�ort �ows

latency while scheduling the C-RAN tra�c. We explain how to adapt all our algorithms,
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by solving instances with arti�cially increased size of messages, in a way which does not

impact the latency of C-RAN datagrams, and smooth the load of C-RAN tra�c all over

the period. We show that, even if our approach induces an additional use of bandwidth

due to resource reservation, we are able to improve the average latency of best-e�ort tra�c

while minimizing the C-RAN tra�c latency. We also show similar results in an industrial

optical ring, in which scheduling the C-RAN packets is trivial because of the multiplexing

of the electronic signals over the optical ring.

We have proposed solutions to minimize the end-to-end latency in various use cases:

Cloud-RAN, Industry 4.0, motion control, autonomous vehicle, etc. . . Reducing the trans-

mission latency allows to:

• Respect latency constraints required by protocols

• Increase the Network Quality of Service

• Give more time to the other components of the chain (computation in datacenters

for C-RAN example)

• Augment the maximum physical links length, which means, for C-RAN; a wider area

of development and thus lower exploitation and development costs (CAPEX, OPEX).

Limits and Further researchs

Several questions remain open in our work. We conjecture that pazl and pall are NP-hard

on star routed networks, but are not yet able to prove it. The algorithms we developed

for pazl and pall are designed for star routed networks and most of them are not easy

to extend to general networks. The greedy algorithms we proposed to solve pazl can be

adapted for arbitrary networks respecting the coherent routing property, but they can be

proved to work only for small loads. These algorithms are not usable in their current state,

and we need to study them carefully. Furthermore, the FPT algorithm we give to solve

minstra can be adapted to solve pazl and pall on arbitrary networks. An experimental

study has to be done to see if the approach is promising and the algorithm could be

optimized for the case of unsynchronised messages.

This thesis arises in the context of SDN which aims to develop dynamical and pro-

grammable networks. In C-RAN for example, the radio network aims to be able to turn

o� antennas when the number of connected devices is low. Our algorithms for pazl and
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pall compute the scheduling for all �ows, and must reschedule the entire solution if a

�ow is removed or added to the network to ensure a minimal latency. In the case of the

algorithms presented for minstra, the compact form of the solutions we presented allows

us to e�ciently add a �ow to the best solution, but not to quickly re-compute the best

solution when a �ow is removed. A challenge is thus to design a dynamic algorithm, which

can produce a new solution quickly after a local change in the network.

The measure we want to minimize is the maximal end-to-end latency of all �ows. This

often means that the �ow using the longest route is never delayed in contention bu�er,

but the other �ows are more or less impacted by the solutions we give. One can imagine

use-cases in which the constraint on latency is not as strict, and where it makes more

sense to minimize the average latency of the �ows. For this variant of the problem, the

study of pazl is still relevant, but it may be simpler from a complexiy point of view and

the algorithms may be quite di�erent from the ones presented in this thesis. We can also

expand our model to allow �ows in the networks with di�erent periods or sizes of message.

Already several methods fail for mixing di�erent message sizes, since solving the problem

wta becomes NP-hard in this context and mixing several periods require to completely

change our algorithms.

In Section 6.2 we introduce the fact that links of the networks may have di�erent

capacity. This induces additional latency due to the physical conversion. It could allow

use cases requiring low latency to be developed on metropolitan networks. It is possible to

adapt our model to take into account this issue, and to consider this physical conversion

time while computing the solutions.

Last, we consider that the routing is given in our model. It could be interesting to

compute the routing along with the assignment to further improve the quality of the

results. We plan to study this question on star routed networks, where the number of

routings is limited and an exhaustive approach is conceivable.
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Titre: Ordonnancement periodiques de messages pour minimiser la latence dans les

réseaux dans un contexte 5G et au delà

Mots clés: Cloud Radio Access Network, Ordonnancement periodique, Heuristiques de recherche
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Résumé: Cette thèse est le fruit d'une collab-

oration entre les laboratoires DAVID et Nokia

Bell Labs France. L'idée originale est de trou-

ver des solutions algorithmiques pour gérer des

�ux periodiques de manière déterministe dans

les réseaux a�n de contrôler et de minimiser le

temps de transmission, appelé latence. L'un des

objectifs de la 5G (le C-RAN, pour Cloud Radio

Access Network) est de centraliser les unités de

calculs des antennes radio des réseaux de télé-

communications (appelé Radio Access Network)

dans un même centre de calcul (le Cloud). Le

réseau entre le centre de calcul et les antennes

doit être capable de satisfaire les contraintes de

latence imposées par les protocoles.

Nous dé�nissions le problème de trouver

un ordonnancement periodique pour les mes-

sages de façon à ce qu'ils ne se disputent ja-

mais la même ressource, et prouvons que les dif-

férentes variantes du problème étudiés sont NP-

complets. Nous étudions dans un premier temps

le problème pour une topologie particulière dans

laquelle tous les �ux partagent un même lien.

Nous proposons dans un premier temps des al-

gorithmes polynomiaux, de plus en plus évolués,

ainsi que des algorithmes FPT permettant de

trouver une solution quand le nombre de route

est raisonnable, ce qui est le cas des réseaux C-

RAN.

Les algorithmes développés dans cette pre-

mière partie n'étant pas applicables directement

aux topologies plus générales, nous proposons

ensuite une forme compacte au problème qui

nous permet de dé�nir une notion de voisinage

e�cace pour des heuristiques de recherches lo-

cales (descente, recherche tabou, recuit simulé).

Nous utilisons cette forme compacte pour dé�nir

un algorithme Branch and Bound e�cace quand

le nombre de routes est modéré. Nous pro-

posons aussi une évaluation de performance des

solutions proposés par rapport aux solutions

courantes de gestion des �ux et montrons que

notre modèle est réalisable en pratique grâce aux

nouveaux équipements en cours de développe-

ment.
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Title: Deterministic scheduling of periodic datagrams for low latency in 5G and beyond

Keywords: Cloud Radio Access Network, Periodic scheduling, Local search heuristics, com-

plexity analysis, Latency reduction, Graph theory

Abstract: This thesis is the result of a

collaboration between DAVID Laboratory and

Nokia Bell Labs France. The original idea is

to �nd algorithmic solutions to deterministi-

cally manage periodic �ows in networks in order

to control and minimize the transmission time,

called latency. One of the objectives of 5G (C-

RAN, for Cloud Radio Access Network) is to

centralize the calculation units of the radio an-

tennas of telecommunications networks (called

Radio Access Network) in the same computer

center (the Cloud). The network between the

computing center and the antennas must be able

to satisfy the latency constraints imposed by the

protocols.

We de�ne the problem of �nding a periodic

scheduling for messages so that they never com-

pete for the same resource, and prove that the

di�erent variants of the problem studied are NP-

complete. We �rst study the problem for a par-

ticular topology in which all the streams share

the same link. We �rst propose polynomial al-

gorithms of increased sophistication, and FPT

algorithms that allow us to �nd a solution when

the number of routes is reasonable, which is the

case for C-RAN networks.

Since the algorithms developed in this �rst

part are not directly adaptable to more general

topologies, we then propose a canonical form to

the problem which allows us to de�ne an e�cient

neighborhood notion for local search heuristics

(hill climbing, tabu search, simulated anneal-

ing). We use this canonical form to de�ne an

e�cient Branch and Bound algorithm when the

number of routes is moderate. We also propose

a performance evaluation of the proposed solu-

tions compared to current �ow management so-

lutions, and show that our model is feasible in

practice thanks to new equipment under devel-

opment.
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