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Calcul en Ligne au-delà des Modèles Standards

par Shendan JIN

Dans le cadre standard du calcul en ligne, l’entrée de l’algorithme n’est pas en-
tièrement connue à l’avance, mais elle est révélée progressivement sous forme d’une
séquence de requêtes. Chaque fois qu’une requête arrive, l’algorithme en ligne doit
prendre des décisions irrévocables pour servir la requête, sans connaissance des re-
quêtes futures. Dans le domaine des algorithmes en ligne, le cadre standard utilisé
pour évaluer les performances des algorithmes en ligne est l’analyse compétitive. De
manière informelle, le concept d’analyse compétitive consiste à comparer les perfor-
mances d’un algorithme en ligne dans le pire des cas à une solution optimale hors
ligne qui aurait pu être calculée si toutes les données étaient connues d’avance.

Dans cette thèse, nous étudierons de nouvelles façons d’approcher les problèmes
en ligne. Dans un premier temps, nous étudions le calcul en ligne dans le modèle
avec ré-optimisation, dans lequel l’irrévocabilité des décisions en ligne est relâchée.
Autrement dit, l’algorithme en ligne est autorisé à revenir en arrière et changer les
décisions précédemment prises. Plus précisément, nous montrons comment identi-
fier le compromis entre le nombre de réoptimisation et les performances des algo-
rithmes en ligne pour le problème de couplage maximale en ligne.

De plus, nous étudions des mesures autres que l’analyse compétitive pour éva-
luer les performances des algorithmes en ligne. Nous observons que parfois, l’ana-
lyse compétitive ne peut pas distinguer les performances de différents algorithmes
en raison de la nature la plus défavorable du ratio de compétitivité. Nous démon-
trons qu’une situation similaire se pose dans le problème de la recherche sur la ligne.
Plus précisément, nous revisitons le problème de la recherche sur la ligne et introdui-
sons une mesure, qui peut être appliquée comme un raffinement du ratio de compé-
titivité.

Enfin, nous étudions le calcul en ligne dans le modèle avec des conseils, dans
lequel l’algorithme reçoit en entrée non seulement une séquence de requêtes, mais
aussi quelques conseils sur la séquence de requêtes. Plus précisément, nous étudions
un modèle récent avec des conseils non fiables, dans lequel les conseils peuvent être
fiables ou non. Supposons que dans ce dernier cas, les conseils peuvent être générés
à partir d’une source malveillante. Nous montrons comment identifier une stratégie
optimale de Pareto pour le problème online bidding dans le modèle de conseil non
fiable.

Mots-clés : calcul en ligne ; ratio de compétitivité ; ré-optimisation ; mesures de
performance ; algorithme en ligne avec conseil ; recherche sur la ligne.
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Online Computation Beyond Standard Models

by Shendan JIN

In the standard setting of online computation, the input is not entirely available
from the beginning, but is revealed incrementally, piece by piece, as a sequence of
requests. Whenever a request arrives, the online algorithm has to make immedi-
ately irrevocable decisions to serve the request, without knowledge on the future
requests. Usually, the standard framework to evaluate the performance of online
algorithms is competitive analysis, which compares the worst-case performance of an
online algorithm to an offline optimal solution.

In this thesis, we will study some new ways of looking at online problems. First,
we study the online computation in the recourse model, in which the irrevocability
on online decisions is relaxed. In other words, the online algorithm is allowed to
go back and change previously made decisions. More precisely, we show how to
identify the trade-off between the number of re-optimization and the performance
of online algorithms for the online maximum matching problem.

Moreover, we study measures other than competitive analysis for evaluating the
performance of online algorithms. We observe that sometimes, competitive analysis
cannot distinguish the performance of different algorithms due to the worst-case
nature of the competitive ratio. We demonstrate that a similar situation arises in
the linear search problem. More precisely, we revisit the linear search problem and
introduce a measure, which can be applied as a refinement of the competitive ratio.

Last, we study the online computation in the advice model, in which the algo-
rithm receives as input not only a sequence of requests, but also some advice on
the request sequence. Specifically, we study a recent model with untrusted advice,
in which the advice can be either trusted or untrusted. Assume that in the latter
case, the advice can be generated from a malicious source. We show how to iden-
tify a Pareto optimal strategy for the online bidding problem in the untrusted advice
model.

Keywords: online algorithms; competitive ratio; online algorithms with recourse;
performance measures; online algorithms with advice; linear search.
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Chapter 1

Introduction

1.1 Online Computation

In a typical optimization problem, one is given a specific input and has to out-
put a solution, satisfying some constraints and optimizing some objective function,
which can be either a cost minimization or a profit maximization. The aspect of
this setting which we would like to emphasize is that the input is entirely given in
advance. Let us illustrate by an example of such a problem.

At Sorbonne University, each student majoring in Computer Science has to com-
plete a programming project by the end of the semester. The student can either work
by himself or in a group of two. Each student has his own preference for program-
ming languages and two students can collaborate if they have a common preferred
programming language. To encourage collaboration, the instructor wants to max-
imize the number of student duos. This problem can be formulated as a matching
problem in a graph. More precisely, the vertices are all students and an edge between
two vertices means that the two corresponding students have a common preferred
programming language. More formally, the above problem can be formalized as fol-
lows. We are given a graph with vertices and edges, and the objective is to find a set
of vertex-disjoint edges of maximum cardinality in the graph. This maximization
problem is also known as the maximum matching problem, which is a fundamental
combinatorial optimization problem.

However, in many real-life applications, the entire input is not available from the
beginning. In contrast, the input is only revealed incrementally, piece by piece, as a
sequence of requests. For each such request, the algorithm has to immediately make
decisions without any knowledge on future requests, and usually, these decisions
are irrevocable (i.e. the algorithm is not allowed to go back to change the previously
made decisions).

Let us see how it can be applied to the previous example in the context of match-
ing. The instructor puts students in a queue. The students are queried by the in-
structor one by one for their preference in programming languages. As soon as the
instructor learns the preferences of some student, the instructor has to assign the
student to someone that the instructor has queried before, who has a common pre-
ferred programming language and is not yet paired, whenever it is possible. Again,
this problem can be formulated as a matching problem in the vertex arrival model,
in which the vertices are revealed one by one with its incident edges. (A more de-
tailed discussion on different matching models is in Chapter 2.) More precisely, here,
each request represents an arriving vertex in a graph. Whenever a vertex appears,
the corresponding incident edges to the previous vertices are revealed together. For
each such request, the algorithm has to either accept it, by choosing an incident edge
that has no common endpoint with any selected edges and adding it in the current
solution or reject it.
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FIGURE 1.1 – The standard online computation model and some re-
cent new approaches on online problems.

Problems of this form are known as online optimization problems, or simply online
problems. The algorithm that we use to solve such an online problem is known as
an online algorithm. An offline optimal algorithm is the one that optimally solves the
online problem assuming that the whole input sequence is given in advance.

Online algorithms have been studied for decades in the context of matching,
scheduling and other topics [34, 64]. A formal description of the standard online
computation model is given as follows. In an online problem, the input is not
entirely available from the beginning, but is only revealed incrementally, piece by
piece, as a sequence of requests σ1, σ2, . . . , σn, where n is the number of such requests.
Whenever a request σi arrives, the online algorithm has to make immediately irre-
vocable decisions to serve the request, without knowledge on the future requests
σi+1, . . . , σn. The next request σi+1 arrives only after that the item σi is completely
processed. Usually, the standard framework to evaluate the performance of online
algorithms is competitive analysis, which compares the worst-case performance of
an online algorithm to an offline optimal solution. A more formal description of the
competitive analysis is given in Section 1.1.1.

For the standard online computation model, we emphasize that:
1. The decisions made by the online algorithm are irrevocable;
2. Competitive analysis is the standard framework for the performance mea-

sure;
3. There is no additional knowledge on the request sequence for the online al-

gorithm.
The above standard model captures many online problems, but it does not cap-

ture certain applications. For instance, sometimes, the online algorithm wants to go
back and change some decisions that it made before. Typically, this action is not cap-
tured by the standard online computation model. Recently, there are more ways of
looking at online problems. In this thesis, we will study some new ways of looking
at online problems, which are listed as follows. (See also Figure 1.1.)

1. Online computation with recourse: In this model, the irrevocability on on-
line decisions is relaxed. In other words, the online algorithm is allowed to
go back and change previously made decisions. Intuitionally, the more re-
optimization can be done, the better performance can be achieved. The objec-
tive is to study the trade-off between the number of re-optimization and the
performance of online algorithms. We will show how to do this for the online
maximum matching problem. A more detailed introduction on the model and
on the online matching problem is given in Section 1.2.
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2. Other measures: Sometimes, competitive analysis cannot separate the per-
formance of different online algorithms because of the worst-case nature of
the competitive ratio. More precisely, for a given problem, sometimes there
are many algorithms with optimal competitive ratio, which show different
behavior in practice. To remedy this situation, we will study other measures.
We will introduce a measure for the linear search problem, which can be ap-
plied as a refinement of the competitive ratio. See Section 1.3 for a more de-
tailed introduction on the measure and on the linear search problem.

3. Online computation with advice: In the advice setting, the algorithm re-
ceives as input not only a sequence of requests, but also some advice on
the request sequence, which encodes some information on the input. For
instance, it may encode information on optimal decisions that the online al-
gorithm should make. We will work on a specific application of a recent ad-
vice model, namely online bidding with untrusted advice, in which the advice
can be either trusted or untrusted (i.e. the advice can be generated from some
malicious source). See Section 1.4 for a more detailed introduction.

1.1.1 Competitive Analysis

In the area of online algorithms, the standard framework used to evaluate the
performance of online algorithms is competitive analysis. Informally, the concept of
competitive analysis consists of comparing the worst-case performance of an online
algorithm with an offline optimal solution. The competitive analysis framework
was first introduced by Graham in 1966 [34] to analyze algorithms for the job shop
scheduling problem. Eventually, competitive analysis became the standard measure
in the evaluation of online algorithms following the work of Sleator and Tarjan in
1985 [60].

Formally, consider a cost minimization online problem (or a profit maximization
online problem, respectively). For any request sequence σ , let OPT(σ) denote the
optimal cost (profit, respectively) on σ. For an online algorithm ALG, let ALG(σ)
denote the cost (profit, respectively) of ALG on instance σ. The competitive ratio is
defined as follows.

Definition 1.1 (Competitive ratio). For a cost minimization problem, an online algo-
rithm ALG is said to be asymptotically c-competitive if there is a constant d such that
OPT(σ) ≥ ALG(σ)/c + d, for all finite request sequences σ.

For a profit maximization problem, an online algorithm ALG is said to be asymp-
totically c-competitive if there is a constant d such that ALG(σ) ≥ OPT(σ)/c− d, for
all finite request sequences σ.

Whenever d = 0 the algorithm is called strictly c-competitive. The smallest c for
which an online algorithm ALG is c-competitive is called the competitive ratio of ALG.
The strict competitive ratio is defined similarly. If it so happens that this minimum
value does not exist, the competitive ratio is actually defined by the corresponding
infimum.

Usually, there is no restriction on the computing time and space used by the
online algorithm. However, in practice, we aim for efficient algorithms that achieve
the optimal or a nearly optimal competitive ratio.

Note that there is also an alternative interpretation of competitive analysis [16,
64]. The online problem can be considered as a game played between an algorithm
and a malicious adversary. The algorithm makes online decisions, while the adver-
sary constructs the worst possible input sequence, based on the knowledge of the
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player’s algorithm. For instance, in a profit maximization problem, the goal for the
player is to minimize the competitive ratio while the adversary wants to maximize
it.

There are not only deterministic online algorithms but also randomized online
algorithms. A randomized algorithm is an algorithm that employs some random-
ness for decision making. Typically a randomized algorithm uses uniform random
bits as an auxiliary input to guide its behavior. Although this is an important part of
the online computation, in this thesis, we only study deterministic algorithms, we
will not discuss issues related to randomized algorithms. The book of Borodin and
El-Yaniv [16] covers many problems analyzed in competitive analysis.

1.1.2 Techniques in Design and Analysis of Online Algorithms

There are many online algorithms and analysis techniques, some of them are tai-
lormade for specific problems. However, there are some generic frameworks which
apply to many different online problems. In this section, we list out some categories
of online algorithms and analysis techniques that we use in the thesis. Note that this
is not an exhaustive list in the design and analysis of online algorithms.

Greedy Algorithms

Informally, a greedy algorithm builds up a solution piece by piece, by making the
locally optimal choice at each step in the hope that this local choice will eventually
lead to a globally optimal or near-optimal solution. For an optimization problem, we
have an objective function that needs to be optimized. A greedy algorithm makes
locally greedy choices at each step to ensure that the objective function is optimized.
Usually, the greedy algorithm does not produce an optimal solution, but it is one
of the simplest and the most straightforward methods to provide an approximate
solution. Very often, the greedy algorithm is computationally efficient, since the
local optimization problem is often easy to solve.

In this thesis, we use certain variants of greedy algorithms for the online match-
ing problem under the recourse setting. Here, the amortized analysis is used to ana-
lyze the performance. This technique of analysis was first introduced by Tarjan in
1985 [61]. Instead of looking at the cost of each operation individually, the prin-
ciple of amortized analysis consists of considering both the costly and less costly
operations together over the whole process of the algorithm. See a more detailed
description and application on amortized analysis in Chapter 2.

Doubling Algorithms

Doubling is one of the useful methods for designing online and offline approx-
imation algorithms. Informally, the idea is to produce a solution, piece by piece,
with the help of a geometrically increasing estimate on the optimal solution. The
term “doubling” comes from the fact that sometimes the geometric estimate se-
quence (2i)i∈N is used when this approach was first proposed for some specific
problems [11, 23]. However, for many problems, we often need a geometric esti-
mate sequence with a common ratio different from 2.

The survey of Marek Chrobak and Claire Mathieu [24] illustrates this method on
different online and offline optimization problems.

In Chapter 2, we will see how this idea can be applied to the online matching
with recourse problem. In addition, in Chapter 3, we will analyze a simple doubling
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algorithm for the linear search problem. We provide different techniques of analysis
in different contexts. More details of designing and analyzing doubling algorithms
are given in the following chapters.

Design and Analysis of Online Algorithms via Linear Programming (LP)

Some problems can be elegantly solved through a linear programming formula-
tion. The goal is to assign values to variables so to optimize some linear objective
value and to satisfy some linear constraints. There are several equivalent formula-
tions of a combinatorial problem, for example, consider the following general linear
program for a cost minimization problem, where the coefficients ai,j, bj and ci are
related to the parameters of the problem:

(P) : min
n

∑
i=1

cixi s.t.

n

∑
i=1

aijxi ≥ bj, ∀1 ≤ j ≤ m,

xi ≥ 0 ∀1 ≤ i ≤ n.

Such a linear program is also known as a Covering problem if aij, bj, ci ≥ 0 for all
i = 1 . . . n and j = 1 . . . m. Any vector x = (x1, x2, . . . , xn) that satisfies all the
constraints of (P) is referred to as a feasible solution to the linear program (P). Every
linear program has a corresponding dual linear program, and the original linear
program is called the primal linear program. The dual linear program of (P) is a
profit maximization linear program: it has m dual variables that correspond to the
primal constraints and it has n constraints that correspond to the primal variables.
The dual program (D) corresponding to the linear program formulation (P) is

(D) : max
m

∑
j=1

bjyj s.t.

m

∑
j=1

aijyj ≤ ci, ∀1 ≤ i ≤ n,

yj ≥ 0 ∀1 ≤ j ≤ m.

Such a linear program is also known as Packing problem if aij, bj, ci ≥ 0 for all i =
1 . . . n and j = 1 . . . m.

Designing and analyzing online algorithms using linear programming has been
well studied for decades, see [63]. In particular, the primal-dual method is used
to design algorithms. The principle of this method consists of improving a feasi-
ble dual solution jointly with a potential primal solution, using the complementary
slackness conditions as guidance and terminating when the primal becomes feasi-
ble. This technique has proved to be extremely useful for a wide variety of problems
in the area of approximation algorithms. The survey of Buchbinder and Naor [19]
demonstrates that this approach is still applicable in the area of online computation.

In this thesis, we are not going to solve linear programs using duality. In con-
trast, for the problems at hand, we will prove certain properties about the optimal
solutions. More precisely, we will look into the structure of the optimal solutions to
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linear programming. For instance, in some cases, we can argue that optimal solu-
tions saturate some constraints. Sometimes, these equalities are useful for establish-
ing some complex but still efficiently computable recurrence relations on variables.
In some cases, it allows us to compute an optimal solution to the linear program-
ming by solving these recurrence relations. We emphasize that, in this case, we do
not need a solver to solve the linear programming, and that the linear programming
is only used as a guide in the design and analysis of the algorithm. In Chapter 3, we
will see how this idea can be applied to the linear search problem. In Chapter 4, we
provide another application on a variant of the contract scheduling problem.

1.2 Online Computation with Recourse

In the standard setting of online computation, the input to the algorithm is not
entirely known in advance, but it is revealed incrementally as a sequence of requests.
For each such request, the algorithm has to make a decision, which is usually irre-
vocable. More precisely, the decision that the algorithm makes is associated with the
request and the algorithm cannot change previously made decisions during later
requests. Informally, this setting can be described as “the past cannot be undone”.
Indeed, there are many real-life applications in which it makes sense to forbid re-
optimizing the online solution during the execution of the algorithm. For instance,
consider the taxi customer assignment task. One cannot undo the assignment once
the customer’s journey is completed.

Recently, an online computation model with the possibility to undo previous de-
cisions was introduced. The model in which the online algorithm is allowed to do
some modifications on previously made decisions is known as the recourse model.
The algorithm is expected to have a better performance by re-optimizing the current
solution. However, there must be some limitation on the use of such modification,
otherwise, we can obtain the optimal solution all the time. Hence a natural ques-
tion here is to quantify the trade-off between the competitive ratio and a measure on
the modifications allowed on the solution. Typically, each modification leads to an
additional cost. There are two approaches to the trade-off between the guaranteed
competitive ratio and the cost of re-optimizing the current solution. One such ap-
proach has studied the minimum total re-optimization cost required to maintain an
optimal solution after each request, see also Bernstein et al. [12]. Another approach
has focused on the best achievable competitive ratio when there is some budget on
the allowed re-optimization, which has been studied by Avitabile et al. [7], and is the
main model we consider in this thesis.

Several online combinatorial optimization problems have been studied under
recourse settings. For instance, there is a fundamental work for general online set
packing problem in the recourse model by Avitabile et al. [7]. The problem consists
of a universe C and a collection of subsets of C with different sizes and weights.
The objective is to produce a collection of disjoint sets of maximum weight. In their
recourse setting, the algorithm is allowed to remove sets from the current solution.
Note that this generalizes the matching problem when all sizes are equal to 2. In [7],
the problem is formulated by a linear program and each decision variable is allowed
to be changed a constant number of times.

Another work studies the online Steiner tree problem. In the online Steiner tree prob-
lem, the input is a complete graph together with edge lengths. A sequence of terminal
vertices arrive one by one, and we are required to maintain a subgraph connecting
the terminals. More precisely, whenever a new terminal arrives, we need to buy
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edges to add to the current solution so that the newly arrival terminal is connected
to the previous terminals. The objective is to minimize the total length of the bought
edges. In this standard setting of the online Steiner tree problem, we know that the
simple greedy algorithm is optimal and that it has competitive ratio Θ(log k), where
k is the number of terminals [39]. Usually, we consider the vertex arrival model, al-
though Imase and Waxman in [39], studied the variant in which terminals may also
leave. In the context of re-optimization, Gupta et al. studied the recourse model for
online Steiner trees in the vertex arrival model and they showed that with a single
edge swap (i.e. undo a bought edge and buy a new edge) per request we can bring
the competitive ratio down to a constant [35].

Other problems have been studied in the recourse setting, such as the minimum
spanning tree problem, the traveling salesman problem [55], the knapsack problem [37, 40]
and the assignment problems in bipartite unweighted graphs [36].

1.2.1 Online Matching with Recourse

In this thesis, we will study the recourse model for the online maximum matching
problem. The offline matching problem is one of the most fundamental algorithmic
problems. It has played a central role in the development of the theory of algo-
rithms [28, 29, 50]. Moreover, it is also central to resource allocation in the schedul-
ing and Operations Research literature. One such typical example is allocating jobs
to machines in the context of cloud computing. Moreover, the online version of the
problem has generated a lot of interest in the algorithms community, with the intro-
duction of a large number of new problems, models and algorithmic techniques [56].

We define the online matching problem with k edge-recourse, for a given k ∈ N∗.
Here, the request sequence is an order on the edge set E in a graph G = (V, E).
The online algorithm knows the set V and the parameter k, but not the set E. At
each time point, one edge of E is revealed according to the ordering, and the online
algorithm must maintain a matching M ⊆ E′, where E′ ⊆ E is the set of currently
revealed edges. Specifically, for each revealed edge e in the sequence, the online
algorithm either accepts e, by adding it in its matching, or rejects it. In addition, the
algorithm must obey the edge recourse constraint: every edge has an integer type,
which is set to 0 upon the arrival of an edge. Whenever the algorithm decides either
to include an edge e to its matching or to remove it, the type of e is increased by 1.
The algorithm can perform these operations at any time subject to the constraint that
no edge type exceeds k.

The objective of the problem is to design an online algorithm of minimum com-
petitive ratio, which is the worst-case ratio OPT(σ)/ALG(σ), over all request se-
quences σ. Recall that OPT(σ) denotes the cardinality of the optimal matching for
the request sequence σ, and ALG(σ) denotes the cardinality of the matching output
by the online algorithm on the request sequence σ. We emphasize that in this the-
sis we consider the maximum cardinality matching problem. Some previous work
has considered the generalized weighted matching problem, in which each edge has a
weight and the objective is to maximize the weight of matched edges [42, 65].
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1.3 Other Performance Measures

As mentioned before, competitive analysis is the standard framework used for
evaluating the performance of online algorithms. Informally, the principle of com-
petitive analysis consists of comparing the worst-case performance of an online al-
gorithm with an offline optimal solution. However, for certain online problems,
sometimes competitive analysis cannot distinguish the performance of different al-
gorithms, which show different behavior in practice. This is due to the pessimistic,
worst-case nature of the competitive ratio.

For instance, consider the Paging problem in a virtual memory system. There
are k cache locations, each of them can hold one page. A sequence of requested
pages arrives one by one. If a requested page is in the cache then this is called a hit,
otherwise, it is called a fault. In case of a fault, a page already in the cache must be
ejected, and we put the requested page in the cache, which costs 1. Otherwise, we do
nothing and the cost is 0. The goal is to minimize the total cost. The paging problem
has been well studied. The paging strategy Least-Recently-Used, which ejects the page
whose past use was least recent in the case of a fault, is very efficient in practice.
However, it has the same competitive ratio as many extremely naive strategies, such
as Flush-When-Full, which evicts the entire cache whenever the cache is full [60].

The above example shows that the theoretical performance evaluation is not
compatible with the empirical performance evaluation. It has motivated a lot of
research on alternative measures to the competitive ratio (see [27] for a survey). In
this thesis, we demonstrate that a similar situation arises in the context of online
search. More specifically, we revisit one of the simplest and fundamental search
problems, namely the linear search, also known as the cow-path problem [9]. A formal
description of the problem is given below. To remedy the undesired situation where
competitive analysis cannot separate the performance of different algorithms, we
introduce the discovery ratio, which is a pairwise comparison of strategies (see Sec-
tion 1.3.2). We emphasize that we apply the discovery ratio as a refinement of the
competitive ratio, instead of using it as a measure that replaces the competitive ratio
altogether.

1.3.1 The Linear Search Problem

In general, a search problem consists of an environment, a mobile searcher and
an immobile hider (sometimes also called target). The searcher may have knowledge
of the environment, and the target hides at some position that is not known to the
searcher. The objective is to define a search strategy, which is a traversal of the envi-
ronment, that optimizes a certain efficiency criterion.

In the linear search problem, the environment is an unbounded line, with a point
O designated as its origin. A mobile searcher is initially placed at the origin and
an immobile hider is at some position on the line that is unknown to the searcher.
More specifically, the searcher does not know whether the hider is at the left branch
(i.e. branch 1) or at the right branch (i.e. branch 0) of the line (see Figure 1.2 for
illustration). The searcher’s strategy S defines its exploration of the line, whereas the
hider’s strategy H is determined by its placement on the line. Given strategies S, H,
the cost of locating the hider, denoted by c(S, H), is the total distance traversed by
the searcher at the first time it passes over H. Let dist(H) denote the distance of the
hider from the origin. The competitive ratio of S, denoted by cr(S), is the worst-case
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FIGURE 1.2 – Illustration of the linear search problem.

FIGURE 1.3 – Both doubling and aggressive are competitively opti-
mal.

normalized cost of S, among all possible hider strategies. Formally,

cr(S) = sup
dist(H)≥1

c(S, H)

dist(H)
. (1.1)

Note that there is a standard assumption that the hider must be at distance at least 1
from O, since no strategy can have bounded competitive ratio if this distance can be
arbitrarily small.

It has been known since 1964 [9, 32] that the competitive ratio of linear search
is 9. The following simple doubling strategy achieves the competitive ratio 9: in
iteration i, the searcher starts from O, explores branch i mod 2 at a length equal to 2i,
and then returns to O. However, this strategy is not uniquely optimal. It is known
that there is an infinite number of competitively optimal strategies for linear search
(see also Lemma 3.3 in Section 3.3.1). In particular, consider an aggressive strategy,
which searches a branch to the maximum possible extent in each iteration, while
maintaining a competitive ratio equal to 9. This can be achieved by searching, in
iteration i, branch i mod 2 to a length equal to (i + 2)2i+1 (see also Corollary 3.5 in
Section 3.3.1). See Figure 1.3 for an illustration.

1.3.2 The Discovery Ratio

As mentioned above, both doubling and aggressive are optimal in terms of
competitive ratio. However, the latter may be better than the former in some real-
life applications. For instance, consider a search-and-rescue mission for a missing
backpacker who has disappeared in one of two concurrent hiking paths. Assuming
that we select our search strategy from the space of 9-competitive strategies, it makes
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sense to choose one that is eager to discover new territory, rather than a conservative
strategy that tends to often revisit already explored areas.

To capture the eagerness of a strategy to discover new territory, we introduce the
discovery ratio as follows:

Definition 1.2. Let S1, S2 denote two search strategies, we define the discovery ratio
of S1 against S2, denoted by dr(S1, S2), as

dr(S1, S2) = sup
`∈R+

D(S1, `)
D(S2, `)

,

where D(S, `) denotes the cost incurred by S the first time the searcher has explored
an aggregate length equal to ` combined in both branches. Moreover, given a class
S of search strategies, the discovery ratio of S against the class S is defined as

dr(S, S) = sup
S′∈S

dr(S, S′).

In the case S is the set Σ of all possible strategies, we simply call dr(S, S) the discovery
ratio of S, and we denote it by dr(S).

Intuitively, an efficient strategy should be such that D(S, `) is small, for all `,
meaning it has a small discovery ratio. However, it is insufficient to consider this
criterion itself: consider a strategy that first searches one branch to a length equal to
L, where L is very large. Then D(S, `) is as small as possible for all ` < L; however,
this is hardly a good strategy, since it ignores one of the branches and its competitive
ratio becomes unbounded as L → ∞. To this end, we will apply the discovery
ratio as supplementary to the competitive ratio. In other words, we will restrict our
interest to the set of competitively optimal strategies and use the discovery ratio to
separate the performance of those competitively optimal strategies.

In Chapter 3, we will show how to distinguish the performance of doubling and
aggressive using discovery ratio.

1.3.3 An Application from Artificial Intelligence

As discussed in Section 1.1.2, for some problems, it is convenient to formulate
them using linear programming. Sometimes, we can look into the structure of the
optimal solutions to linear programming. For the linear search problem, we can
argue that optimal solutions saturate some constraints, which are useful to derive
some recurrence relations on variables of the linear programming. As mentioned be-
fore, we show how this idea can be applied to the linear search problem in Chapter 3.
Moreover, in Chapter 4, we also provide an application from Artificial Intelligence
of this idea in the design of the interruptible system using contract algorithms. The
next section gives an introduction to this topic.

Design of Interruptible System using Contract Algorithms

An anytime algorithm is an algorithm that can return a valid solution to a prob-
lem even if it is interrupted before it ends. The algorithm is expected to find better
solutions the longer it keeps running. For instance, consider the local search algo-
rithm, which consists in moving from solution to solution in the space of candidate
solutions by applying local changes, until an optimal solution is found or a time
bound is elapsed. The local search is then an anytime algorithm, and it is often used
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FIGURE 1.4 – Two contract algorithms (blue/red) are scheduled in
a single processor. Each block represents a contract (i.e. a piece of

execution).

to design interruptible systems. In contrast, the system produced by Dynamic Pro-
gramming is not interruptible. One natural question here is to find a way to provide
anytime capability using only algorithms that are not interruptible.

Anytime capability plays a central role in the design of intelligent systems. An
interruptible system is required to output a solution if it is interrupted during its
execution. There are many ways to create an interruptible system. In particular, we
will consider an interruptible system produced by contract algorithms.

A contract algorithm receives an intended queried time as one of its input param-
eters. The contract algorithm may give a meaningless result if it is queried before
this time, which implies that the contract algorithm is not interruptible and moti-
vates research on using contract algorithm to produce an interruptible system. For
this purpose, a general technique was first given in [58]. The idea is to run multiple
times the contract algorithm by iteratively increasing the available execution time of
the contract algorithm. Each piece of execution is then called a contract. Thus, there
is a trade-off between the quality of output and the total available computation time,
and usually we know the latter in advance. The performance is evaluated by means
of acceleration ratio, which is defined as the worst-case ratio between the interrup-
tion time t and the contract length of the contract algorithm that has made the least
progress by time t. See Figure 1.4 for an illustration.

Assuming that an interruption can occur arbitrarily in the future, previous work
focuses on the strict performance guarantees for different variants of this problem.
However, in some real-life application, the schedule reaches a point beyond which
further progress will only be marginal. In other words, the schedule can be consid-
ered complete beyond a certain point during the execution.

In Chapter 4, we will show how to optimize the time at which the system reaches
the desired performance objective, while maintaining interruptible guarantees through-
out the execution. More precisely, we consider the setting in which there are n con-
tract algorithms scheduled in a single processor. Each contract algorithm has to
attain a predefined end guarantee upon completion, where the end guarantee is de-
fined as the minimum required value to attain upon completion on the length of
the largest contract completed. In other words, for a given end guarantee L, each
contract algorithm has to complete a contract of length at least L upon completion.
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1.4 Online Computation with Advice

As mentioned in Section 1.1, in the standard online computation model, for each
arrival request, the algorithm has to immediately make irrevocable decisions with-
out any knowledge on future requests. However, in practice, some additional infor-
mation on the input sequence is sometimes given to online algorithms, which may
encode partial information on optimal decisions that the online algorithm should
take. Typically, this situation is not captured by the standard online computation
model. A new model is then required to quantify the power of this additional infor-
mation.

This type of information that is given along with the input sequence to the online
algorithm, is called advice. There is a trade-off between the number of advice bits
and the performance of online algorithms. Intuitionally, the more advice bits are
available, the better performance can be achieved. A natural question is then to
quantify the trade-off between the performance of online algorithms and advice size,
which has been studied since 2009. In the last decade, many online optimization
problems have been studied in the advice model, such as k-server, paging, makespan
scheduling, etc. The survey of Boyar et al. [18] provides a further discussion on this
topic.

However, all previous work assumed that the advice is always correct. This as-
sumption is unrealistic in practice because the advice can be generated by some un-
trusted source, or in the worst case, a malicious adversary may take control of the
advice oracle, which may have a catastrophic impact on the performance of the on-
line algorithm. This motivates the topic on the untrusted advice model, in which the
advice may not be treated as infallible (see Section 5.1.1 for a more detailed intro-
duction on the advice model).

1.4.1 A New Model with Untrusted Advice

In the machine-learning community, a new advice model was proposed to cap-
ture the above observations by Lykouris and Vassilvitskii [52], and Purohit et al. [57].
In their work, they use predictors to design and analyze online algorithms. If the
predictor is bad, then the online algorithm should perform close to the one without
predictions; if the predictor is good, then the online algorithm should perform close
to the optimal offline algorithm.

Motivated by the above work from machine learning, in this thesis, we consider
the advice model in which the advice can be either trusted or untrusted. In this setting,
the performance of an online algorithm can be characterized by a pair of competitive
ratios, namely the competitive ratio when the advice is trusted and the competitive
ratio when the advice is untrusted. We also assume that, in the latter case, the un-
trusted advice is generated by a malicious adversary to be in accordance with the
worst-case nature of the incompetitive analysis.

Thus the competitiveness of an algorithm can be presented as a point in the 2-
dimensional space with coordinates depicted by the competitive ratios when the
advice is either trusted or untrusted. We are interested in finding a Pareto frontier of
the set of all possible algorithms assuming that the advice has an infinite number of
bits so that the advice can encode the optimal solution. A more formal description
of the model and of the competitiveness will be given in Section 5.1.2.

In this thesis, we will work on a specific application of this model, namely the
online bidding with untrusted advice problem, which is presented as follows.
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FIGURE 1.5 – In this example, the player submits the sequence (2i)i≥0
to guess the hidden unknown value u = 5. The player’s cost is equal

to 1 + 2 + 4 + 8 = 15, while the offline optimal cost is 5.

1.4.2 Online Bidding with Untrusted Advice

In the standard online bidding problem, a player has to guess an unknown hidden
value u by submitting a sequence X = (xi) of increasing bids. The strategy of the
player is defined by this sequence of bids, and the cost of guessing the value u is
equal to ∑

j
i=1 xi, where j is such that xj−1 < u ≤ xj. In other words, the cost is equal

to the sum of all bids less than u plus the first bid that exceeds u as illustrated in
Figure 1.5. The competitive ratio of the player’s strategy X is

wX = sup
u≥1

∑
j
i=1 xi

u
, where j is such that xj−1 < u ≤ xj.

Note that there is a standard assumption that u is at least 1, since no strategy can
have bounded competitive ratio if u can be arbitrarily small.

In Chapter 5, we will study the online bidding problem in the untrusted advice
setting described as in the previous section. More precisely, we will study the com-
petitiveness of algorithms for both trusted and untrusted advice. Consider the whole
set of algorithms, each algorithm can be represented by a point in a 2-dimensional
space. The objective is to identify a Pareto frontier of this set (see Chapter 5 for more
details).

1.5 Summary of the Thesis

The thesis consists of studying some recent approaches to online problems.
In Chapter 2, we study the setting in which the online algorithm is allowed to go

back and change decisions that it made before. The objective is to study the power
and limitation of such re-optimization. More specifically, we study the online match-
ing problem with edge k-bounded recourse. First, we revisit the doubling algorithm
of [7] that was originally analyzed in the general context of online packing problems.
We give a better analysis using concepts and ideas related to the matching problem.
Moreover, we propose and analyze a variant of the greedy algorithm which we call
L-Greedy. While this algorithm is thus not superior to the doubling algorithm for
large k (and more specifically, to its improved analysis in the context of the matching
problem), for small k it does achieve an improved competitive ratio. In terms of tech-
niques, we analyze both the doubling algorithm and L-Greedy using amortization
arguments in which the profit of the algorithms is expressed in terms of weights ap-
propriately distributed over nodes in the graph. We achieve these improvements by
exploiting properties of augmenting paths in matching algorithms. Last, we study
the problem in the edge arrival/departure model, which is the fully dynamic variant
of the online matching problem. We obtain improved lower bounds by modeling
the game between the algorithm and the adversary as a game played over strings of
numbers 0 up to k.
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In Chapter 3, instead of using competitive ratio as a standard framework of the
performance measure, we introduce the discovery ratio and use it as a supplemen-
tary measure. The objective is to remedy a situation where the theoretical perfor-
mance evaluation using competitive analysis is not compatible with the empirical
performance evaluation. More specifically, we revisit the linear search problem.
First, we obtain strategies of optimal discovery ratio against all possible strategies.
Specifically, we show that there are strategies of discovery ratio 2 + ε, for arbitrarily
small ε > 0, which is tight. However, they have an unbounded competitive ra-
tio. Moreover, we restrict our interest to the set of competitively optimal strategies,
which we further analyze using the discovery ratio as a supplementary measure.
We prove that the strategy aggressive, which explores the branches to the furthest
possible extent while satisfying the competitiveness constraint, has discovery ratio
8
5 . We show that this is the optimal discovery ratio in this setting. In contrast, we
show that the strategy doubling has discovery ratio 7

3 . We provide evidence that
such “aggressiveness” is necessary: more precisely, we show that any competitively
optimal strategy that is also optimal with respect to the discovery ratio must have
the exact same behavior as the aggressive strategy in the first five iterations. In ad-
dition, we show the non uniqueness of such competitively optimal strategies with
optimal discovery ratio.

In terms of techniques, we observe that for some problems, it is convenient to for-
mulate them using linear programming. Sometimes, we can look into the structure
of the optimal solutions to the linear programming. For the linear search problem,
we can argue that optimal solutions saturate some constraints, which is useful to de-
rive some recurrence relations on variables of the linear programming. In Chapter 4,
we show how this idea can be applied to an application from Artificial Intelligence in
the design of interruptible algorithms. The main contribution is an optimal schedule
for the problem described above (see Section 1.3.3), namely for earliest completion
scheduling of contract algorithms with end guarantees. We propose a schedule that
is theoretically optimal and can be computed in polynomial time in the size of the
end guarantee L. Assuming that the number of problem instances n is constant and
independent of L, the time complexity is then polynomial in the size of the input.
In addition, we present some computational results on its implementation, which
demonstrate that it achieves a considerable improvement over the known schedule
that optimizes the acceleration ratio, but is oblivious of L.

In Chapter 5, we study an online computation setting in which some additional
information (i.e. advice) on request sequence is given to the online algorithm. More
specifically, we work on a specific application of a very recent model, in which the
advice can be either trusted or untrusted as described in Section 1.4. We work on
the online bidding problem under this setting. The main contribution is to identify
a Pareto frontier assuming that the advice encodes the hidden target.
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Chapter 2

Online Maximum Matching with
Recourse

This chapter contains material from the joint paper, Online Maximum Matching
with Recourse, with Christoph Dürr and Spyros Angelopoulos. This work appeared
in the 43rd International Symposium on Mathematical Foundations of Computer Science
conference (MFCS), 2018 [3].

2.1 Introduction

As discussed in Section 1.2, the recourse model has been studied for many on-
line combinatorial optimization problems, in which the algorithm is allowed to do
some modifications on previously made decisions. In this chapter, we will study the
recourse model for the online maximum matching problem. Specifically, we will study
the online maximum cardinality matching with edge k-bounded recourse problem, which
is presented in Section 1.2.1.

2.1.1 Related Work

Models

Concerning online matching, two different request models have been studied in
the past. In the vertex arrival model, vertices arrive in online fashion, revealing, at the
same time, the edges incident to previously arrived vertices. This model has mainly
been considered for bipartite graphs, with left side vertices arriving online, and right
side vertices being initially known (see the survey [56]). In the edge arrival model, the
edges arrive online in arbitrary order, revealing at the same time incident vertices 1.

In the standard online model, every request (either vertex or edge, depending
on the request model) is served in an irrevocable manner. In contrast, for online
matching with recourse and edge arrivals, several models have been proposed that
relax the irrevocable nature of a decision. In the late reject model [17], which is also
called the preemptive model [21], an edge can be accepted only upon its arrival but
can be later rejected. The problem we study in this work, namely online matching
with k edge-recourse was introduced in [7]. Boyar et al. [17] refer to this model for
k = 1 as the late accept model, and for k = 2 as the late accept/reject model. Clearly,
the competitive ratio is monotone in k. Figure 2.1 provides an illustration of the
algorithm’s actions under the different models.

1. We emphasize that in our work we consider the maximum cardinality matching problem; some
previous work (with or without recourse) has considered the generalized weighted matching problem,
in which each edge has a weight and the objective is to maximize the weight of matched edges.
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FIGURE 2.1 – Illustration of the actions of an online matching algo-
rithm under the different edge-arrival models with recourse.

Known results

For online maximum matching without recourse, and for the vertex arrival model,
the seminal work of Karp et al. [45] gave a randomized online algorithm with com-
petitive ratio e/(e− 1) in the vertex arrival model together with a matching lower
bound on any online algorithm. In contrast, for the edge arrival model and the ran-
domized competitive ratio, [20] showed a lower bound of (3 + 1/ϕ2)/2 as well as
an upper bound of 1.8 for the special case of forests, where ϕ is the golden ratio.

It is well known that any inclusion-wise maximal matching has cardinality at
least half of the optimal maximum cardinality matching. From this, it follows that
the greedy online algorithm, which accepts an edge as long as it can be added to the
current matching, has competitive ratio at most 2, which in the standard model is
optimal among all deterministic online algorithms.

Late reject In the vertex arrival model, the greedy algorithm achieves trivially the
competitive ratio of 2, which is optimal for all deterministic online algorithms. The
situation differs in the edge arrival model. Epstein et al. [31] showed that for online
weighted matching, the deterministic competitive ratio is exactly 3 + 2

√
2 ≈ 5.828,

as the upper bound of [54] matches the lower bound of [62]. The same paper [31]
shows that the randomized competitive ratio is between 1 + ln 2 ≈ 1.693 and 5.356.
Chiplunkar et al. [21] presented a randomized 28/15-competitive algorithm based
on a primal-dual analysis.
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k edge-recourse This model was introduced and studied by Avitabile et al. [7] for
the edge arrival setting, in the context of a much broader class of online packing
problems. They gave an algorithm, which we call AMP, that combines doubling
techniques with optimal solutions to offline instances of the problem, and which has
competitive ratio 1 + O

(
log k

k

)
(see Section 2.2.1 for an analysis of AMP). We note

that this result is formulated in [7] in a “dual” setting. More precisely, [7] asks the
question: how big should the edge budget k be such that there is a 1 + ε compet-
itive online algorithm that makes at most k changes per edge? They showed that
k = O(ln(1/ε)/ε) suffices. On the negative side, they showed that no randomized
algorithm can be better than 1+ 1/(9k− 1)-competitive; we note also that their con-
struction implies a lower bound of 1 + 1/k for all deterministic algorithms.

Boyar et al. [17] showed that the deterministic competitive ratio is 2 for k = 1
and 3/2 for k = 2, and these optimal ratios are achieved by the greedy algorithm.
Moreover [17] studied several other problems for a value of the recourse parameter
equal to 2, such as independent set, vertex cover and minimum spanning forest.

Minimizing recourse Bernstein et al. [12] studied a different recourse model in
which the algorithm has to maintain an optimal matching, while minimizing a re-
course measure, namely the total number of times edges enter or leave the match-
ing maintained by the algorithm. They considered the setting of a bipartite graph
and the vertex arrival model and showed that a simple greedy algorithm achieves
optimality using O(n log2 n) replacements, where n is the number of nodes in the
arriving bipartition, whereas the corresponding lower bound for any replacement
strategy is Ω(n log n).

2.1.2 Contributions

In the first part of this work, we study the online matching problem with edge
k-bounded recourse under the edge arrival model. For this problem, we provide
improvements on both upper and lower bounds on the competitive ratio. First, we
revisit the doubling algorithm of [7] that was originally analyzed in the general con-
text of online packing problems. We give better analysis, specifically for the problem
at hand, that uses concepts and ideas related to the matching problem; we also show
that the AMP algorithm has competitive ratio 1 + O( log k

k ). On the negative side,
we show that no deterministic algorithm is better than 1 + 1/(k − 1) competitive,
improving upon the known bound of 1 + 1/k of [7].

At first sight, these improvements may seem marginal; however one should take
into consideration that k is typically a small parameter, and thus the improvements
are by no means negligible. In this spirit, we propose and analyze a variant of the
greedy algorithm which we call L-Greedy. This algorithm applies, at any step, aug-
menting paths as long as their length is at most 2L + 1. We show that for a suitable
choice of L, this algorithm is 1 +O(1/

√
k)-competitive. While this algorithm is thus

not superior to AMP for large k (and more specifically, to its improved analysis in
the context of the matching problem), for small k (and in particular, for k ≤ 20) it
does achieve an improved competitive ratio, see Figure 2.2. Moreover, we extend a
result of Boyar et al. [17] that showed that the greedy algorithm is 3/2 competitive
for k = 2 to all even k (for odd k, the competitive ratio is 2).

In terms of techniques, we analyze both AMP and L-Greedy using amortization
arguments in which the profit of the algorithms is expressed in terms of weights
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FIGURE 2.2 – Comparison of the competitive ratios of the algorithm
AMP and the algorithm L-GREEDY

appropriately distributed over nodes in the graph. We achieve these improvements
by exploiting the properties of augmenting paths in matching algorithms.

The second part of the work is devoted to the edge arrival/departure model, which
is the fully dynamic variant of the online matching problem. First, we observe that
the analysis of L-Greedy and AMP carries through in this model as well. On the
negative side, we show a lower bound of (k2 − 3k + 6)/(k2 − 4k + 7) for all even
k ≥ 4. For k ∈ {2, 3}, the competitive ratio is 3/2. We obtain these lower bounds
by modeling the game between the algorithm and the adversary as a game played
over strings of numbers 0 up to k. These strings represent alternating paths, and
each number represents how many times the algorithm has modified its decision on
the corresponding edge. This provides a simpler combinatorial aspect to the game
played between the adversary and the algorithm.

We note that, for the analysis of AMP and L-GREEDY, we assume that k is even.
This assumption is borrowed from [7] and is required for the analysis. Of course for
odd k ≥ 3 these algorithms can be run with budget k− 1, providing a valid upper
bound on the competitive ratio. Note that our lower bound in the arrival model
holds for all values of k.

2.1.3 Preliminaries

A matching in a graph G = (V, E) is a set of edges M ⊆ E with disjoint endpoints.
A vertex v ∈ V is said to be matched by M if there is an edge e ∈ M incident to v,
and is unmatched otherwise. A key concept in maximum matching algorithms is the
notion of an augmenting alternating path, or simply augmenting path. A path P in G is
a sequence of vertices v1, v2, . . . , v` for some length ` ≥ 2, such that (vi, vi+1) ∈ E for
all i = 1, . . . , `− 1. It is said to be alternating with respect to M if every other edge of
P belongs to M. Moreover, an alternating path is augmenting if the first and the last
vertex in the path is unmatched by M. Applying P to M consists in removing from
M the edges in M ∩ P and adding the edges in P \ M. The resulting matching has
cardinality M + 1, and every previously matched vertex remains matched.

We define some concepts that will be useful in the analysis of algorithms through-
out the chapter. We will associate each edge with a type which is an integer in [0, k].
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An edge is of type i if it has undergone i decision flips by the algorithm. Hence, for
an edge of type k, where k is the recourse budget, its decision has been finalized, and
cannot change further; we call such an edge blocked. The type of a path P is defined
by the sequence of the types of its edges, and to make this concept unambiguous,
we choose between the two orientations of the path the one that results in the lexi-
cographically minimal such sequence. Note that when the algorithm applies some
augmenting path P to its current matching M, then the type of every edge in P is
increased by 1. Moreover, the two extreme edges of an augmenting path are of type
0, because the endpoints of P are unmatched. We will call a path blocked if it contains
a blocked edge.

Given a request sequence σ, let G(σ) denote the graph induced by σ. For an
online algorithm ALG, and a connected component C of G(σ), we define the local
ratio in C as the ratio between the cardinality of the optimum matching and the
cardinality of ALG′s matching, restricted to edges in C.

2.2 Online matching in the edge arrival model

2.2.1 The Algorithm AMP

We study the performance of an algorithm proposed by Avitabile et al. [7] for the
more general online set packing problem. In this problem sets arrive online, and the
objective is to maintain a collection of disjoint sets that has maximum cardinality.
More specifically, [7] proposed a doubling algorithm which is defined for even k only.
The algorithm has a parameter r > 1 and there is a decision variable for every set
which can be changed at most k times. The algorithm works in phases, sequentially
numbered by an integer p. Initially p = 0, and the algorithm’s current solution is
AMP0 = ∅. Let ` be the largest integer such that the optimal solution has value at
least r`, where ` is defined to be −∞ if the optimal solution is empty. Whenever this
value increases, the algorithm starts a new phase. We define `(p) as the value of `
during phase p, and thus

`(p) + i ≤ `(p + i) (2.1)

for every positive integer i. At the beginning of a new phase, all decision variables
that have been changed fewer than k times are set as in OPT, resulting in the current
solution AMPp (note that the algorithm crucially depends on k being even in order
to produce a feasible solution). In between phases, AMP does not make any changes
to its current solution.

Avitabile et al. show that the value |AMP| of the solution returned by the algo-
rithm is at least (

1−
(

r− 1
r

+
r

rk(r− 1)

))
|OPT|,

which implies that

|OPT|
|AMP| ≤

1

1−
(

r−1
r + r

rk(r−1)

) =
rk(r− 1)

rk−1(r− 1)− r
.

Thus, for a given r > 1, the competitive ratio of AMP is at most rk(r−1)
rk−1(r−1)−r . Let r0

denote the root of rk−1(r− 1)− r = 0. If r < r0, then for all k ≥ 4, we have rk−1(r−
1) − r < 0 since this function is increasing in r. We conclude that the competitive
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ratio of AMP is upper bounded by

min
r>r0

rk(r− 1)
rk−1(r− 1)− r

. (2.2)

We will show how to obtain an improved analysis of this algorithm in the context
of the matching problem. Since we know optimal algorithms for k = 1, 2 [17] and,
since we can show optimality of the greedy algorithm for k = 3 (see Section 2.2.4),
we can assume, for the purposes of the analysis, that k ≥ 4. We begin by a re-
statement of the update phase that will help us exploit the structure of solutions
obtained via augmenting paths. More specifically, on every edge arrival, the algo-
rithm updates a current optimal solution OPT. At the beginning of a new phase,
the algorithm produces a matching AMPp obtained from AMPp−1 as follows: every
edge e ∈ AMPp−1 \ OPT is removed from the current matching, and every edge
e ∈ OPT \AMPp−1 which is of type strictly smaller than k is added to the current
matching. Note that edges incident with e have been removed, hence AMPp is in-
deed a matching. Also note that all edges added or removed by the algorithm have
their type increased by one.

Since AMPp−1 and OPT are matchings, their symmetric difference, excluding
type k edges, consists of alternating cycles and alternating paths which can be of
even or odd length. This means that the algorithm simply applies at the beginning
of every phase all those alternating paths and cycles.

Let OPTp denote the matching produced by OPT as phase p is about to begin.
From the statement of AMP, we obtain the following series of inequalities, for every
phase p.

r`(p) ≤ |OPTp| ≤ |OPT| < r`(p)+1. (2.3)

For any given phase p ≥ 1, we aim to bound the ratio |OPT|/|AMPp|, since this
will allow us to bound the competitive ratio of AMP, for a worst-case choice of p.
Note that the type of an edge increases by at most 1 with each phase. Hence, in
the beginning of the k first phases AMP “synchronizes” with OPT as there are no
blocked edges yet, and as a result during these phases the ratio |OPT|/|AMPp| does
not exceed r, from (2.3).

For the remaining phases we need the following argument.

Proposition 2.1. For even k and any phase p ≥ k + 1, AMP maintains a matching AMPp

of cardinality at least r`(p) − r`(p−k+1)+1.

Proof. We denote by the type of a vertex v the maximum type of the edges incident
with v and by ni,p the number of vertices of type i in phase p. With every phase
change the type of a vertex increases at most by 1. Hence every vertex of type k in
phase p had positive type in phase p− k + 1. Thus

nk,p ≤
k

∑
i=1

ni,p−k+1 ≤ 2 · |OPTp−k+1|,

where the last inequality uses the fact that the left hand side counts the number of
vertices matched by the algorithm. In phase p, the difference between the cardinal-
ity of the optimal matching and the cardinality of AMP’s matching is at most the
number of blocked augmenting paths, and each of them contains at least two type k
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vertices. Hence,

|AMPp| ≥ |OPTp| −
1
2
· nk,p

≥ |OPTp| − |OPTp−k+1|
> r`(p) − r`(p−k+1)+1,

where the last inequality follows from (2.3).

Combining Proposition 2.1 with the bounds (2.3) we obtain the following.

Proposition 2.2. The competitive ratio of AMP for k ≥ 4 is upper bounded by the expres-
sion

min
r>1

rk

rk−1 − r
. (2.4)

Proof. Consider an arbitrary phase p and a fixed parameter r > 1. The expression
rk/(rk−1 − r) is at least r. As observed earlier, at the end of the first k phases, the
competitive ratio is at most r, hence the proof holds for p ≤ k. For the remaining
case p ≥ k + 1, we have that

|OPT|
|AMPp|

≤ r`(p)+1

r`(p) − r`(p−k+1)+1

≤ r`(p)+1

r`(p) − r`(p)−k+2
(From (2.1))

=
r

1− r−k+2

=
rk

rk−1 − r
.

Next, we show that Proposition 2.2 can yield an improved analysis of AMP over
the original bound (2.2).

Proposition 2.3. For all even k ≥ 4, we have that the competitive ratio as expressed by (2.2)
is at least the expression (2.4).

Proof. For k = 4, we obtain numerically that (2.2) is 2.64526 whereas (2.4) is 2.59808.
For even k ≥ 6, first we show that the minimizer (for r > 1) of

rk(r− 1)
rk−1(r− 1)− r

is between r0 and 2. The derivative of the above expression is

(r− 1)2r2k + (k− 1− kr)rk+2

(r2 − (r− 1)rk)
2 ,

which we claim to be positive for any r ≥ 2. This follows by the inequality rk−3 ≥ k
which holds for any r ≥ 2 and k ≥ 6.
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Similarly, for even k ≥ 6, we show that the minimizer (for r > 1) of

rk

rk−1 − r

is between 1 and 2. The derivative in r of the above expression is

rk (rk − (k− 1)r2)
(r2 − rk)

2 ,

which we claim to be positive for any r ≥ 2. Again this follows by the inequality
rk−2 ≥ k − 1, which holds for any r ≥ 2 and k ≥ 6. The proof follows since for
1 < r ≤ 2, we have

rk(r− 1)
rk−1(r− 1)− r

≥ rk(r− 1)
rk−1(r− 1)− r(r− 1)

=
rk

rk−1 − r
.

The following theorem concludes the asymptotic analysis of the performance of
AMP.

Theorem 2.4. For all even k, AMP has competitive ratio 1 + O( log k
k ).

Proof. We first sketch a simple argument based on the Puiseux series expansion [59]:
this is a type of power series that allows fractional powers, as opposed to only in-
teger ones (e.g., Taylor series). Let r denote the optimal choice of the parameter,
namely the one that minimizes (2.4). By analyzing the derivative, it follows that

r = (k − 1)1/(k−2), hence the competitive ratio is at most (k−1)
k−1
k−2

k−2 , whose Puiseux

series expansion at k = ∞ is 1 + log k+1
k + O( 1

k2 ).
For completeness, we give a second proof that relies only on standard calculus.

Let f be such that r = 1 + f /k, then since r = (k − 1)1/(k−2), we have that the
competitive ratio is at most

r · k− 1
k− 2

=

(
1 +

f
k

)
k− 1
k− 2

= 1 + O
(

f
k
+

1
k

)
. (2.5)

Suffices then to show that f = O(log k). Consider the function

g(x) = xk−2 − k + 1,

and note that r must be a root of g. We can rewrite g(r) as

g(r) =
(

1 +
f
k

)k−2

− k + 1 = e(k−2) ln(1+ f /k) − k + 1.

Hence, we have
g(r) ≥ e(k−2)2 f /(2k+ f ) − k + 1.

Here we used the following logarithmic inequality [51] for n ≥ 0:

ln(1 + 1/n) ≥ 2
2n + 1

.
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Suppose now that f = 4 ln k. In this case, we claim that (k− 2) 2 f
2k+ f ≥

f
2 , or equiva-

lently 2k ≥ 8 + f , which holds for sufficiently large k. Thus we have

g
(

1 +
4 ln k

k

)
≥ e f /2 − k + 1 = k2 − k + 1 > 0.

On the other hand, g(0) = −k + 1 < 0. As a result, since g is continuous, there exists
f ∈ [0, 4 ln k] such that g(r) = 0. Therefore, f = O(log k), which concludes the proof.

2.2.2 The Algorithm GREEDY

We consider the algorithm GREEDY, which repeatedly applies an arbitrary aug-
menting path whenever possible. More precisely, let E denote the set of edges that
have been revealed to the algorithm, and let e denote a newly arriving edge. Then as
long as there is a non-blocked augmenting path in the graph (V, E ∪ {e}), where V
is the vertex set, GREEDY will apply such a path until, eventually, no such path any
longer exists. Note, in particular, that GREEDY does nothing if no such path exists
upon the arrival of e.

This algorithm achieves an upper bound of 3/2 for k = 2, as shown in [17].
We show that the same guarantee holds for all even k. In what concerns the lower
bound, the idea is to force the algorithm to augment an arbitrarily long path in order
to create a configuration with an arbitrarily large number of blocked augmenting
paths of lengths 5, which have local ratio 3/2.

Proposition 2.5. The competitive ratio of GREEDY is 3/2 if k is even, and 2, if k is odd.

Proof. First note that GREEDY has the property that every edge in the optimal match-
ing has at least one endpoint matched by GREEDY. As a result, the competitive ratio
is at most 2 for any k, and in particular for any odd k.

For even positive k we give a stronger upper bound of 3/2. Consider the sym-
metric difference of the matching produced by GREEDY and an optimal matching
which consists of alternating cycles and paths. In each of these components the local
ratio is 1 for the alternating cycles and alternating paths of even length. We claim
that alternating paths of odd length have length ` at least 5, and therefore the local
ratio is at most 3/2. To see this, observe that the case ` = 1 corresponds to an edge
with both endpoints unmatched, and GREEDY would have included it in its match-
ing. In the case ` = 3, the center edge has an odd budget, meaning that GREEDY

would have applied this augmenting path.
The proof of the lower bound for even positive k consists of an instance on which

GREEDY achieves the competitive ratio 3/2 − ε for any small constant ε > 0; see
Figure 2.3. Let n be a sufficiently large integer. First the adversary releases 2n + 1
vertex disjoint edges, which the algorithm includes in its matching. Then these edges
are connected with 2n + 2 new edges to form an augmenting path of length 4n + 3.
From now on, each time the algorithm applies this augmenting path in its matching,
the path is extended with one additional edge on each end, until there is at least one
edge of type k on the path. At this point the edge types on the path form a sequence
which starts with types from 1 to k − 1, then alternates between types k and k − 1
and finally ends with types from k− 1 to 1. To complete the instance, the adversary
attaches a new edge on each endpoint of every second type k edge. As a result there
are n augmenting paths of length 5, which are all blocked by a type k edge, together
with 2 alternating paths of length k. The size of the matching produced by GREEDY
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is 2n + k, whereas the optimal matching has size 3n + k, showing a lower bound of
3/2.

For odd k the construction can be further strengthened. In the final step, the ad-
versary attaches an edge on each endpoint of every type k edge, creating an arbitrary
large number of blocked augmenting paths of length 3.

Note that the lower bounds hold even for the asymptotic competitive ratio, by
repeating these constructions as in the proof of Lemma 2.8.

1 3 3 3 3 3 3 12

0 0

4

0 0

4

0 0

24 4 4

FIGURE 2.3 – Lower bound construction on the competitive ratio of
GREEDY for k = 4 and n = 2. Edges are labeled by their type.
Solid/blue edges depict the algorithm’s matching, dashed/red edges
depict the optimal matching, dotted/black edges belong to none of

the matchings.

2.2.3 The algorithm L-GREEDY

How can the greedy algorithm be improved? As illustrated in the proof of Propo-
sition 2.5, the greedy algorithm has inferior performance because it augments along
arbitrarily long augmenting paths, therefore sometimes sacrificing edge budget for
only a marginal increase in the matching size. A natural idea towards an improve-
ment would be to apply only short augmenting paths, as they are more budget effi-
cient. For technical reasons, we restrict the choice of augmenting paths even further.

We define the algorithm L-GREEDY for some given parameter L, which applies
any non-blocked augmenting path of length at most 2L + 1 that is in the symmet-
ric difference between the current matching and some particular optimal matching
OPT. The latter is updated after each edge arrival by applying an augmenting path
to OPT.

To make the above more precise, let E denote the set of edges that have been
revealed to the algorithm, and let e denote a newly arriving edge. First, we explain
how the optimal matching is updated: If OPT(E) denotes the optimal matching af-
ter all edges in E have been revealed, then OPT(E ∪ {e}) is obtained by applying
an augmenting path to OPT(E). Then, L-GREEDY serves request e by consecutively
applying non-blocked augmenting path of length at most 2L + 1 that is in the sym-
metric difference between its current matching (prior to the arrival of e) and OPT(E).

Note that L-GREEDY may not change its solution even if there is a short aug-
menting path in the current graph if it contains edges which are not in this particular
optimal matching OPT. We will later optimize the parameter L as a function of k.

Analysis of L-GREEDY

We begin by observing that for L = 0 the algorithm collects greedily vertex dis-
joint edges without any recourse, which is precisely the behavior of GREEDY for
k = 1 and has competitive ratio 2. For L = 1 the algorithm L-GREEDY applies only
augmenting paths of length at most 3. In this case, the same argument as in the proof
of Proposition 2.5 shows that the competitive ratio of L-GREEDY is 3/2.
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In what follows we analyze the general case L ≥ 2. To this end, we assign
weights to vertices in a way that the total vertex weight equals the size of the cur-
rent matching. Therefore, whenever the size of the matching is increased by 1, a total
weight of 1 is distributed on the vertices along the augmenting path as follows. First,
vertices in this path that were already matched receive a weight α, where α ≥ 0 is
some constant that we specify later. Second, the two vertices on the endpoints of the
augmenting path receive the remaining weight, that is 1/2− `α, where 2`+ 1 is the
length of the path. It follows, from this weight assignment, that every unmatched
vertex has weight 0, that every matched vertex has weight at least 1/2− Lα, and that
every endpoint of a type k edge has weight at least 1/2− Lα + (k− 1)α.

Suppose that L-GREEDY reaches a configuration in which it cannot apply any
augmenting path, as specified in its statement. We consider the symmetric difference
between the matching produced by the algorithm and the optimal matching main-
tained internally by the algorithm. This symmetric difference consists of alternating
paths and/or alternating cycles, and we will upper bound for each such component
its local ratio. In particular, a component in the symmetric difference falls in one of
the following cases: Either it is an augmenting path of length 2` + 1 ≤ 2L + 1, or
an augmenting path of length 2`+ 1 > 2L + 1, or an alternating cycle or alternating
path of even length.

Case 1: Augmenting path of length 2`+ 1 ≤ 2L + 1. Note that such a path contains
at least one edge of type k, otherwise the algorithm would augment it. It follows
that ` ≥ 2, since an augmenting path of length 1 is a single type 0 edge, and an
augmenting path of length 3 has edge types respectively 0, t, 0 for some odd t (and
k is assumed to be even). The path contains 2` matched vertices, and at least 2
of them are incident with a type k edge. Hence the total vertex weight is at least
2`
( 1

2 − Lα
)
+ 2(k− 1)α, and the local ratio of this component is at most

`+ 1
`− 2`Lα + 2(k− 1)α

. (2.6)

Case 2: Augmenting path of length 2`+ 1 > 2L + 1. Such a path contains 2` matched
vertices and therefore the local ratio is at most

`+ 1
`− 2`Lα

. (2.7)

Case 3: Alternating cycle or path of even length. Such a component contains 2` matched
vertices and therefore the local ratio is at most

`

`− 2`Lα
,

which is dominated by (2.7). We obtain the following performance guarantee.

Theorem 2.6. The competitive ratio of L-GREEDY with L = b
√

k− 1c is at most

k(L + 2)− 2
(L + 1)(k− 1)

= 1 + O
(

1√
k

)
,

for even k ≥ 6 and at most 3/2 for k = 4.
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Proof. We choose α so as to minimize the maximum of the local ratios, as defined
by (2.6) and (2.7). Then for this choice of α we optimize L as stated in the theo-
rem. Note that for k = 4, this leads to the choice L = 1, which we analyzed in the
beginning of the section.

For k ≥ 6, we have to minimize over α and L the maximum over ` of the two
ratios given by (2.6) and (2.7). First we upper bound (2.7) as

`+ 1
`− 2`Lα

≤ L + 2
L + 1− 2L2α− 2Lα

, (2.8)

where the inequality follows from ` ≥ L + 1 and the fact that the left hand side is
decreasing in ` as can be seen by dividing both the numerator and denominator by
`.

In order to upper bound (2.6), we find its derivative in ` which is equal to

2α(L + k− 1)− 1
(`+ 2α(k− L`− 1))2 .

This means that (2.6) is increasing or decreasing in ` depending on the sign of 2α(L+
k− 1)− 1. Hence we distinguish two cases.

Case 1: α < 1/(2(L + k− 1)) In this case (2.6) is decreasing in `, and by ` ≥ 2 is at
most

3
2α(k− 2L− 1) + 2

. (2.9)

Subcase 1a: k− 2L− 1 < 0 In this case (2.9) and (2.8) are increasing in α and hence
minimized at α = 0. For this choice of α (2.9) is 3/2, while (2.8) is (L + 2)/(L + 1)
which by L ≥ 2 is less than 3/2. In conclusion, the competitive ratio in Subcase 1a is
at most 3/2.

Subcase 1b: k − 2L − 1 ≥ 0 In this case (2.9) is non-increasing in α while (2.8) is
increasing in α. Hence the maximum of (2.9) and (2.8) is minimized at the equality
of the expressions, which happens for

α =
L− 1

2L2 + 4k + 2kL− 4L− 4
.

It can readily be verified that this choice of α indeed satisfies the assumption of
Case 1 for all even k ≥ 2 and L ≥ 2. The corresponding ratio is

L2 + 2k + kL− 2L− 2
(k− 1)(L + 1)

. (R1b)

Case 2: α ≥ 1/(2(L + k − 1)) In this case (2.6) is increasing in `, and at ` = L
becomes

L + 1
L + 2α(k− L2 − 1)

. (2.10)
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Subcase 2a: k − L2 − 1 < 0 In this case, (2.10) and (2.8) are increasing in α. At
α = 1/(2(L + k− 1)), the former becomes

L + 1

L + k−L2−1
L+k−1

=
(L + 1)(L + k− 1)

L(L + k− 1) + k− L2 − 1

=
(L + 1)(L + k− 1)
(L + 1)(k− 1)

=
L + k− 1

k− 1
. (2.11)

Similarly, (2.8) becomes

L + 2

L + 1− L(L+1)
L+k−1

=
(L + 2)(L + k− 1)

(L + 1)(L + k− 1)− L(L + 1)

=
(L + 2)(L + k− 1)
(L + 1)(k− 1)

, (R2a)

which dominates (2.11) and therefore upper bounds the competitive ratio in Subcase
2a.

Subcase 2b: k− L2 − 1 ≥ 0 In this case, (2.10) is non-increasing in α while (2.8) is
increasing in α. We have equality of the expressions for

α =
1

2k(L + 2)− 4
,

which implies that the competitive ratio in Subcase 2b is at most

k(L + 2)− 2
(L + 1)(k− 1)

. (R2b)

This concludes the case analysis. Thus it remains to optimize L.
For k = 4, the assumptions of the Subcases 1b and 2b are not valid. Hence, we

have to choose L so to minimize the minimum of 3/2 and (R2a), which is larger than
3/2. This means that any choice L ≥ 2 leads to a competitive ratio at most 3/2. Note
that the same guarantee is obtained for L = 1.

Finally we consider k ≥ 6 and choose L so to minimize the minimum of 3/2 and
the ratios (R1b), (R2a), (R2b). We claim that (R1b) is dominated by 3/2. Indeed its
derivative in k is

− L(L− 1)
(k− 1)2(L + 1)

< 0.

Hence (R1b) is maximized for k, L such that k− 2L− 1 = 0, and this maximum value
is precisely 3/2.

By comparing the numerators of the ratios (R1b), (R2a) and (R2b) the minimum
ratio is (R2b). Its derivative in L is

− k− 2
(L + 1)2(k− 1)

≤ 0.

Hence the minimum of (R2b) is attained at the upper bound for L given by the Sub-
case 2b assumption, namely

L = b
√

k− 1c.
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It follows that the competitive ratio is at most

k(b
√

k− 1c+ 2)− 2
(b
√

k− 1c+ 1)(k− 1)
≤ 1 +

2k +
√

k− 1− 1
(
√

k− 1 + 1)(k− 1)
= 1 + O

(
1√
k

)
.

We complete the analysis of L-GREEDY by showing that the upper bound is es-
sentially tight.

Lemma 2.7. For even k ≥ 4, the strict competitive ratio of L-GREEDY with L = b
√

k− 1c
is at least

1 + Ω
(

1√
k

)
.

Proof. For the proof we show that for any positive parameter L ≥ 3 the (strict) com-
petitive ratio of L-GREEDY is at least

3b L−1
2 c+ k− 2

L + k− 3
. (2.12)

The statement follows then by lower bounding this expression for L = b
√

k− 1c.
We will show how to create an instance in which L-GREEDY has the competi-

tive ratio expressed by (2.12). The adversarial construction is depicted in Figure 2.4,
and consists of the following steps. First the adversary releases L− 2 vertex disjoint
edges, denoted by e1, . . . , eL−2, which the algorithm includes in its matching. Then
these edges are connected with L− 1 new edges (which are denoted by f1, f2, . . . , fL−1
in Figure 2.4) so as to form an augmenting path P of length 2L− 3, which is short
enough to ensure that the algorithm applies it. Note that the precise order in which
the edges arrive is not important. At this stage the edges of P have alternating types
1 and 2, and by the choice of L ≥ 3 there is at least one edge of type 2 in P.

In the next phase, the adversary releases edges from the sets A and B, in an
interleaved manner; specifically, P is extended with two additional edges on each
end, so as to form augmenting paths of length 2L − 1 and 2L + 1, until there are
edges of type k on the path. At this point, the edge types on the medium part of
length 2L − 3 form an alternating sequence of k − 1 and k, and note that there are
k/2− 1 edges of type 2 and k/2− 1 edges of type 1 in each set A and B. To complete
the instance, the adversary attaches a new edge on each of the type k − 1 edges
in P, alternating between the left endpoint and on the right endpoint of P. As a
result, all augmenting paths are blocked with a type k edge. The size of the matching
produced by L-GREEDY is L + k− 3, whereas the optimal matching has size at least
3b L−1

2 c+ k− 2, concluding the proof.

The previous lemma can be extended to the asymptotic competitive ratio, using
a standard technique based on multiple copies of the adversarial instance.

Lemma 2.8. For even k and L = b
√

k− 1c ≥ 3, the asymptotic competitive ratio of L-
GREEDY is at least the expression (2.12) and hence is 1 + Ω(1/

√
k).

Proof. Assume that the asymptotic competitive ratio of L-GREEDY is R for R being
strictly smaller than expression (2.12). Then by definition there exists a constant d
such that

|L-GREEDY(σ)| ≥ |OPT(σ)|/R− d
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FIGURE 2.4 – Lower bound construction for even k and L = 6.
Numbers on edges describe the edge types at the end of the algo-
rithm’s execution. Solid/blue edges depict the algorithm’s match-
ing, dashed/red edges depict the optimal matching and dotted/black

edges belong to none of the matchings.

for all request sequences σ. Let σ′ be the adversarial construction defined in the proof
of Lemma 2.7. For an arbitrary positive integer p let σ be the result of repeating each
edge of σ′ p times, such that the resulting graph consists of p disjoint copies of the
graph produced by σ′. By the above assumption we have

|L-GREEDY(σ)| ≥ |OPT(σ)|/R− d ≡
p · |L-GREEDY(σ′)| ≥ p · |OPT(σ′)|/R− d ≡
|L-GREEDY(σ′)| ≥ |OPT(σ′)|/R− d/p.

Since d/p can be arbitrarily close to 0, this would mean that L-GREEDY is R-competitive,
a contradiction.

2.2.4 Lower Bound on the Competitive Ratio of Deterministic Algorithms

Boyar et al. [17] show that the deterministic competitive ratio of the problem is 2
for k = 1 and 3/2 for k = 2. We complete this picture by showing a lower bound of
1 + 1

k−1 for all k ≥ 3. Note that the lower bound is tight for k = 3, as the algorithm
GREEDY, which works by assuming that k is only 2, has competitive ratio 3/2.

Theorem 2.9. The deterministic competitive ratio of the online matching problem with k
edge-recourse is at least 1 + 1

k−1 for all k ≥ 3.

Proof. We consider three cases, namely the cases k = 3, k is even and at least 4, and
finally k is odd and at least 5. For each case we present an appropriate adversarial
argument.

Case k = 3. Suppose, by way of contradiction, some algorithm claims a compet-
itive ratio strictly smaller than (3n + 2)/(2n + 2) for some arbitrary n ≥ 1. The
adversary releases a single edge, creating an augmenting path of length 1. Then the
algorithm applies the augmenting path, which the adversary extends by appending
one edge on each side, creating an augmenting path of type 0,1,0, as shown in Fig-
ure 2.5(a). Since the current competitive ratio is 2, the algorithm needs to apply this
path, which the adversary again extends by appending an edge on each side, creat-
ing an augmenting path of type 0,1,2,1,0, as shown in Figure 2.5(b). Since the current
competitive ratio is 3/2, the algorithm applies this path. In response the adversary
appends an edge at each endpoint of the type 3 edge, and at each endpoint of one
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of the type 1 edges, as shown in Figure 2.5(c). The resulting graph has a blocked
augmenting path of type 0,3,0, and an augmenting path of type 0,1,0, as shown in
Figure 2.5(c). The algorithm needs to apply the latter one as the competitive ratio is
currently 5/3 > 3/2.

(a) (b) (c)
1

0

0

01

2 1 0

1

2

0

3

0 2

0

1 0

FIGURE 2.5 – Lower bound construction on the competitive ratio for
the case k = 3.

At this point, the adversary repeats this construction n− 1 times, by identifying
the shaded part of Figure 2.5(c) as the graph of Figure 2.5(a), and reapplying the
above construction. The final graph consists of n blocked augmenting paths of type
0,3,0 and n + 2 edges of type 1 that belong both to the optimal and the algorithm’s
matchings. Hence, the competitive ratio is (3n + 2)/(2n + 2), which contradicts the
claimed ratio and shows a lower bound on the competitive ratio of 3/2.

Case k is even and at least 4. Fix an algorithm that claims a competitive ratio
strictly smaller than k/(k− 1). The adversary releases a single edge, creating an aug-
menting path of length 1. Whenever the algorithm applies the augmenting path 2,
the adversary extends it by appending one edge on each end, eventually creating
an alternating path of type 1, 2, . . . , k − 1, k, k − 1, . . . , 2, 1. Then the adversary ap-
pends an edge to each endpoint of the type k − 1 edges. The resulting graph has
two augmenting paths of type 0, k − 1, 0, see Figure 2.6(a). The algorithm needs to
apply them as the competitive ratio is currently (k + 2)/k, which is strictly greater
than k/(k− 1) if k ≥ 4. Each augmentation is responded, by the adversary, with an
extension of the path resulting in the configuration depicted in Figure 2.6(b) of ratio
(k+ 4)/(k+ 2) ≥ k/(k− 1) where all augmenting paths are blocked by type k edges.
Hence the competitive ratio of the algorithm is not strictly smaller than k/(k− 1).

Case k is odd and at least 5. Fix an algorithm that claims a competitive ratio strictly
smaller than k/(k − 1). The adversary proceeds as in the previous case, until the
graph consists of a path of type 1, 2, . . . , k− 1, k, k− 1, . . . , 2, 1. This time, the adver-
sary appends one edge to each endpoint of the type k − 1 edges, but also appends
one edge at each endpoint of the path. As a result, there are two augmenting paths
of type 0, 1, 2, . . . , k − 2, 0 and a single blocked augmenting path of type 0, k, 0, see
Figure 2.6(c).

The algorithm needs to apply an augmenting path as the competitive ratio is
currently (k + 3)/k, which is strictly greater than k/(k − 1) for k ≥ 5. The adver-
sary responds each augmentation of a path by appending an edge on both ends of

2. We can assume, without loss of generality, that this is the only viable choice for the online algo-
rithm. This is because the only way an algorithm can transform a given matching M1 to a matching M2
is via a sequence which can only consist of the following: i) augmenting paths; ii) alternating cycles;
and iii) alternating, or even “decreasing” paths (i.e., paths such that if the algorithm applies them, then
the cardinality of the matching remains the same, or decreases, respectively). This is a well-known
result from matching theory. In principle an online algorithm, say A, could apply paths and cycles in
cases (ii) and (iii), but such an algorithm can be converted to another algorithm A′ which is at least as
good as A in terms of matching size, and which maintains edges of smaller types than A.
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FIGURE 2.6 – Lower bound constructions for the deterministic com-
petitive ratio. Solid/blue edges depict the algorithm’s matching,
dashed/red edges depict the optimal matching, dotted/black edges
belong to none of the matchings and wiggled lines represent parts of

the graph that are contracted for readability.

this path. At this moment, the ratio decreased slightly, but still exceeds the claimed
ratio, forcing the algorithm to continue augmenting. Eventually this leads to a con-
figuration formed by two blocked augmenting paths of type 0, 1, 2, . . . , k, 2, 1, 0 and
a blocked augmenting path of type 0, k, 0, see Figure 2.6(d). The competitive ratio of
this configuration is (k + 7)/(k + 4) which exceeds k/(k− 1) for k ≥ 5.

2.2.5 Comparing the Algorithms L-GREEDY and AMP

We have analyzed two deterministic online algorithms: the algorithm AMP, which
has competitive ratio 1 +O (log k/k), and the algorithm L-GREEDY, which has com-
petitive ratio 1 + Θ(1/

√
k). Since the analysis of L-GREEDY is tight, it follows that

AMP is asymptotically (i.e., for large k) superior to L-GREEDY. However, for small
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values of k, namely k ≤ 20, we observe that L-GREEDY performs better, in compari-
son to the performance bound we have shown for AMP. These findings are summa-
rized in Table 2.1 and Figure 2.2 (Section 2.1.2).

k LB (arr.) LB (arr./dep.) L-GREEDY AMP
4 1.333333 1.428571 1.5 2.598076
6 1.2 1.263158 1.466667 1.869186
8 1.142857 1.179487 1.428571 1.613602
10 1.111111 1.134328 1.333333 1.480583
12 1.090909 1.106796 1.318182 1.398080
14 1.076923 1.088435 1.307692 1.341500
16 1.066666 1.075377 1.300000 1.300080
18 1.058823 1.065637 1.247059 1.268330
20 1.052631 1.058104 1.242105 1.243150
22 1.047619 1.052109 1.238095 1.222640

TABLE 2.1 – Summary of lower bounds (LB) and upper bounds on the
competitive ratio for the problem, for all even k with 4 ≤ k ≤ 22. The
lower bounds for the (limited) arrival/departure model are discussed
in Section 2.3. The analysis of L-GREEDY and AMP carry through to
the (limited) arrival/departure model. For k ≥ 22, the upper bound

of AMP is superior to the upper bound of L-GREEDY.

2.3 Online Matching in the Edge Arrival/Departure Model

In this section we consider the online matching problem with k edge-recourse in
the setting in which edges may arrive but also depart online. More precisely, a request
sequence for this problem is of the form (pi, ei)i≥1, namely the i-th request consists
of an edge ei and its mode pi ∈ {arrive, depart}. If pi = arrive then the edge ei
becomes available; this corresponds to the arrival setting studied in Section 2.2. If
pi = depart, then ei is removed from the graph, and can be used by neither the
online algorithm or the optimal offline algorithm. We emphasize that in this model,
an edge of the form (u, v) may arrive and depart several times in the course of serv-
ing a request sequence, but every time it arrives it is considered as a “fresh” edge.
As a consequence, upon each arrival, such an edge is assigned type 0. Moreover, a
departing edge ceases to exist in any matchings.

As explained in the Introduction, we will further distinguish between two mod-
els. In the limited departure model, an edge cannot depart while it is being used in the
matching of the online algorithm, whereas in the stronger full departure model any
edge can depart.

It turns out that the full departure model is quite restrictive. This is because it is
possible for the adversary to force an online algorithm to augment some augmenting
path and then to remove one of the edges in its matching. Eventually the algorithm
can end up with blocked edges (type k), without having the chance to augment its
matching. This intuition is formalized in the following lemma.

Lemma 2.10. The competitive ratio of online matching with k edge-recourse in the full
departure model is 2.

Proof. To show an upper bound of 2, consider an algorithm which adds to its match-
ing any edge whose endpoints are unmatched. The edge types are either 0 or 1, and
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therefore the algorithm is not sensitive to the given edge budget. The matching pro-
duced by the algorithm is (inclusion wise) a maximal matching, and it is well known
that its size is at least 1/2 the size of the maximum matching.

To show a lower bound of 2, consider a graph consisting of vertices 1, 2, 3, 4,
with the edge (2, 3) arriving at the beginning. Then the edges (1, 2), (3, 4) arrive and
depart repeatedly, alternating between two configurations. When the graph consists
of the single edge (2, 3), the algorithm needs to include it in its matching. When the
graph consists of the path (1, 2, 3, 4), the algorithm needs to apply this augmenting
path if it claims to have a competitive ratio strictly lower than 2. As a result, the
type of the edge (2, 3) keeps increasing, and when it reaches k, the algorithm cannot
augment the matching anymore. Thus, for even k, the algorithm has a matching of
size 0, while the optimal matching consists of the edge (2, 3). Similarly, for odd k, the
algorithm has a matching of size 1, while the optimal matching has size 2. Hence,
no algorithm can achieve a competitive ratio strictly lower than 2.

Since the full departure model is very restrictive for the algorithm, as shown
in Lemma 2.10, we will concentrate on the limited departure model, as defined in
the introduction. For this model, we observe that the algorithms L-GREEDY and
AMP have the same performance guarantee as in the edge arrival model. This is
because the analysis of L-GREEDY uses weights on vertices which are not affected
by edge departures, and the analysis of AMP is based on an upper bound over the
number of type k edges, which still holds under edge departures. We thus focus on
obtaining stronger lower bounds in this model (also included in Table 2.1). We begin
by observing that the bound of 3/2 of the competitive ratio in the edge arrival model
for k ∈ {2, 3} still holds for the limited departure model, in which the adversary is
stronger. Hence, the smallest interesting value for k in this model is k = 4, for which
we provide the following specific lower bound. The proof will also provide some
intuition about the adversarial argument for general k.

Theorem 2.11. The competitive ratio of online matching with k edge-recourse in the limited
departure model is at least 10/7 for k = 4.

Proof. We will prove the theorem by applying a game between the online algorithm
and the adversary. In particular, the adversary will enforce arrivals and deletions of
edges in such a way that, at every moment in time, the symmetric difference between
the matching produced by the algorithm and the optimal matching consists only of
augmenting paths. In particular, this symmetric difference will have no alternating
cycles or alternating paths of even length.

Any such augmenting path can be represented as a string of integers in {0, 1, . . . , k},
which is precisely the type of this path. Note that for an augmenting path, this string
begins and ends with 0. We can thus think of the above-defined symmetric differ-
ence as a collection of strings, which in turn allows us to define the game between
the algorithm and the adversary over this collection of strings as opposed to defining
it over the actual graph.

Whenever the algorithm applies an augmenting path, this translates into the in-
crement of all edge types of the corresponding string, for example the string 01210
becomes 12321. The adversary will respond to this augmentation by a combination
of the following three types of operations.

— The adversary may append 0’s to both ends of a string, for example 101 →
01010. To do so, the adversary releases two new edges (of type 0). Each edge
is incident with only one endpoint of the path described by the string, and is
not incident with any other edge in the current graph.
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— The adversary may split the string into smaller strings, for example 12321 →
{123, 1} or 12321 → {1, 3, 1}. This can be done via the departure of certain
edges which are not in the algorithm’s matching (of even type). For instance,
the operation 12321 → {123, 1} can be done by having one edge of type 2
depart, and the operation 12321→ {1, 3, 1} can be done by having both edges
of type 2 depart.

— The adversary may merge certain strings, for example {1, 1} → 101. This can
be done via the arrival of a new edge (of type 0).
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FIGURE 2.7 – An illustration of the three phases in the game be-
tween the algorithm and the adversary, for the proof of Theorem 2.11.
Blocked strings are depicted in bold face. The arcs illustrate the ac-
tions of the adversary, after an augmentation by the algorithm. For
example, if the algorithm augments the string 01010 in phase 1, then
the adversary replaces the resulting string by the strings 010 and
01210, whereas in phases 2 and 3 it replaces it with the string 0121210.
The numbers x, y, z count the number of strings which belong to the

corresponding shown boxes.

The game between the algorithm and the adversary The main idea behind the
adversarial construction is as follows. We suppose that the online algorithm has
competitive ratio at most (10− ε)/7 for arbitrarily small ε > 0. We will then show
that the adversary can eventually force the algorithm to a competitive ratio at least
10/7, thus leading to a contradiction.

The game begins with the adversary presenting the string 0, which the algorithm
has to augment, resulting in a single string 010. From this point onwards, the game
proceeds in three phases, which are depicted in Figure 2.7. In each phase, a sequence
of algorithm/adversary actions takes place. Each action is of the following form: The
algorithm chooses some string s to augment, which results in a string s′. Then the
adversary will perform a sequence of the above defined operations on s′, which will
result in either a single new string (say s), or to several new strings, say s1, s2, . . . sk
(in our construction, it will be that k ∈ [1, 3]). This adversarial action is depicted by
means of an arrow from s to each of the s1, s2, . . . sk in Figure 2.7.

As an example, in phase 1, if the algorithm augments string s = 010 (thus ob-
taining string s′ = 121), the adversary appends two zeros at both ends of s′, which
results in the string s1 = 01210. If the algorithm augments string s = 01210, thus
obtaining string s′ = 12321, then the adversary first splits s′ to two strings 1, 3 and
1, which he then transforms into the strings s1 = 01010 and s2 = 030, by merging
them and appending zero’s. If the algorithm augments string s = 030, thus obtain-
ing string s′ = 141, then the adversary appends two zeros at both ends of s′, which
results in the string s1 = 01410. Last, if the algorithm augments string s = 01010
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(thus obtaining s′ = 12121) then the adversary first splits s′ to two strings 1 and
121, then appends two zero’s to the end of each string. This results in two strings
s1 = 010 and s2 = 01210. The above are all possible actions that can occur in phase
1. Actions for phases 2 and 3 are similar and defined by the graphs in Figure 2.7.

We also need to explain how the game transitions between phases; i.e., under
which conditions the game moves from phase i to phase i + 1. To this end, we define
some variables which count the numbers of some specific strings. More precisely:

— x denotes the number of strings 01010, 0121210, 012323210 or 01234343210;
such strings have local ratio 3/2, 4/3, 5/4 and 6/5, respectively.

— y denotes the number of strings 0, 010 or 01210; such strings have local ratio
∞, 2 and 3/2, respectively.

— z denotes the number of strings 030 or 01410; such strings have local ratio 2
and 3/2, respectively.

In Figure 2.7 we use “boxes” to illustrate this grouping of strings.
In particular, we will call strings 030 or 01410 bad strings. This is motivated by

the observation that 01410 is blocked and has large local ratio equal to 3/2; note that
the algorithm cannot augment such a string. Moreover, the string 030 has local ratio
2, and immediately after an augmentation it becomes 01410.

The goal of the adversary is to reach a configuration with only blocked strings
01410 and 01234343210 with a maximum proportion of bad strings 01410, since this
maximizes the competitive ratio. It is relatively easy for the adversary to generate
bad strings, but this comes at the expense of generating strings 01010. His goal is
to minimize the proportion of these strings, and this is done through three different
phases. At a high level, the objective of phase 1 is to create a large number of bad
strings. This is is also the objective of phase 2, but with a more efficient generation
of bad strings, in the sense that less 01010 strings are generated per bad string. The
objective of phase 3 is simply to bring the game in a situation with only blocked
strings.

The game starts with the adversary entering phase 1 and generating the single
string 0. In phase 1, immediately after each action of the adversary, the algorithm
has competitive ratio at least 3/2, meaning that he is forced to augment strings, since
3/2 > (10− ε)/7, which is the competitive ratio claimed by the algorithm. This is
because in this phase all strings have local ratio at least 3/2. Throughout phase 1 we
have the invariant

2x + y = z + 1, (Inv 1)

which can be verified by inspecting each possible action of phase 1. For example the
augmentation of 01010 decrements x and increments y by 2. Eventually the inequal-
ity 7z+ 3 > 2/ε will start to hold, simply because after at most x + 1 augmentations,
the counter z increases strictly. At that moment, the adversary moves to phase 2.

Throughout phase 2 we have the invariants

7z + 3 > 2/ε (Inv 2.1)

and
2x + y ≤ z + 1. (Inv 2.2)

(Inv 2.1) holds because the left-hand side will not decrease throughout the phase.
To show (Inv 2.2), we first observe that by invariant (Inv 1) phase 2 starts with equal-
ity, and the actions of phase 2 preserve the inequality (Inv 2.2), which can be easily
shown by inspecting each possible action during phase 2.
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Phase 2 continues for as long as z < 8(x + y), and phase 3 begins at the point in
which z ≥ 8(x + y). This condition will eventually be reached, because the quantity
x + y is invariant during phase 2, whereas any sequence of at least x + 1 actions
increases z by at least 1.

We will now argue that in phase 2, right after each action of the adversary, the
competitive ratio of the algorithm is strictly greater than (10− ε)/7, which implies
that the algorithm must, in turn, respond with an augmentation to every action
of the adversary in phase 2, since we assumed that the algorithm is (10 − ε)/7-
competitive. To this end, we observe that at each point in phase 2, the algorithm
maintains certain types of strings whose local ratio we lower bounded above. In
particular, there are y + z strings of local ratio at least 3/2 and x strings of local ratio
at least 4/3. Therefore, a lower bound to the competitive ratio during phase 1, can
be stated as follows, where we use the property (P1): f (x, y) := ax+cy

bx+dy is decreasing
on x and increasing on y, if a, b, c, d > 0 and a

b ≤
c
d .

4x + 3y + 3z
3x + 2y + 2z

=
8x + 6y + 6z
6x + 4y + 4z

=
4(2x + y) + 2y + 6z
3(2x + y) + y + 4z

≥ 4(z + 1) + 2y + 6z
3(z + 1) + y + 4z

(from P1 and Inv 2.2)

=
2y + 10z + 4

y + 7z + 3

≥ 10z + 4
7z + 3

(from P1)

=
10
7
−

2
7

7z + 3

>
10
7
−

2
7
2
ε

(from Inv 1)

=
10− ε

7
.

Recall that when the condition z ≥ 8(x + y) becomes satisfied, the game moves
to the final phase, namely phase 3. Moreover, the condition z ≥ 8(x + y) holds
throughout phase 3, since x + y is invariant and z can only increase in this phase.
We also obtain that

y + z ≥ y + 8(x + y) ≥ 8x,

which will be useful. Similar to the previous argument, we can lower bound the
competitive ratio after each action of the adversary by

3(y + z) + 6x
2(y + z) + 5x

≥ 3 · (8x) + 6x
2 · (8x) + 5x

(From y + z ≥ 8x and P1)

=
10
7

.

Therefore, the algorithm must augment after each action of the adversary, and even-
tually must find itself in a configuration which consists only of blocked strings (ei-
ther 01410 or 01234343210). At this configuration, the algorithm cannot do any fur-
ther augmentations, hence its competitive ratio is at least 10/7, a contradiction.
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We can generalize the ideas in the proof of Theorem 2.11 so as to obtain a non-
trivial lower bound for general even k ≥ 4.

Theorem 2.12. The competitive ratio online matching with k edge-recourse in the limited
departure model is at least k2−3k+6

k2−4k+7 , for all even k ≥ 4.

Since k2−3k+6
k2−4k+7 > 1+ 1

k−1 for all k ≥ 4, Theorem 2.12 shows a stronger lower bound
for even k than Theorem 2.9 under the limited departure model.

Proof. First, we observe that for k = 4, the expression k2−3k+6
k2−4k+7 is equal to 10/7, which

is precisely the value obtained in Theorem 2.11. Therefore, it suffices to prove the
result for even k ≥ 6.

The proof generalizes the ideas behind the proof of Theorem 2.11, and in partic-
ular the concept of a game between the online algorithm and the adversary. Again,
we suppose that the online algorithm has competitive ratio at most k2−3k+6−ε

k2−4k+7 for ar-
bitrarily small ε > 0. We will then show that the adversary can eventually force the
algorithm to a competitive ratio at least k2−3k+6

k2−4k+7 , thus leading to a contradiction.
The game begins with the adversary presenting the string 0, which the algorithm

has to augment, resulting in a single string 010. From this point onwards the game
proceeds in two phases, which are depicted in Figure 2.8. In each phase, a sequence
of algorithm/adversary actions takes place. Actions are defined to be consistent
with Figure 2.8 for the two phases of the game. It is worth pointing out that the
game for k ≥ 6 consists of two phases, while in contrast, the game for k = 4 (as
described in the proof of Theorem 2.11) consists of three phases. The second phase
for k = 4 is necessary for the adversary to force the algorithm to keep augmenting
strings.

We also need to explain under which conditions the game transitions from phase
1 to phase 2. To this end, we define again some variables which count the numbers
of certain specific strings. More precisely:

— x denotes the number of strings 0123 . . . i(i− 1)i . . . 3210 for all 1 ≤ i ≤ k− 2;
such strings have local ratio i+2

i+1 .
— ai, where i is even in [2, k], denotes the number of strings 0(i − 1)0 or 01i10;

such strings have local ratio 2 and 3/2, respectively.
— v denotes the number of strings 0123 . . . (k− 3)0, 0123 . . . (k− 2)10, 0123 . . . (k−

1)210 or 0123 . . . k3210; such strings have local ratio k/2
k/2−1 , k/2+1

k/2 , k/2+2
k/2+1 and

k/2+3
k/2+2 , respectively.

In phase 1, immediately after each action of the adversary, the algorithm has
competitive ratio at least 3/2. This is because in this phase all strings have local ratio
at least 3/2. However, after each augmentation by the algorithm the competitive
ratio can be much better, and possibly smaller than k2−3k+6

k2−4k+7 . For this reason, the
adversary will move eventually the game to phase 2. In particular, phase 2 begins
once the following condition is satisfied.

k/2

∑
j=1

(2j(k− 1)− 3k + 7) · a2j >
2(k− 3)

ε
− (k− 1).

Note that this condition will be satisfied because the coefficient (2j(k− 1)− 3k + 7)
is non-negative for j ≥ 2 and increasing in j for j ≥ 1, and whenever a2j decreases
by one, a2(j+1) increases by one during the execution of phase 1. Intuitively, the
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FIGURE 2.8 – The lower bound construction in the arrival/departure
model. Blocked strings are depicted in bold face. The arcs illus-
trate the adversarial strategy. For example if the algorithm aug-
ments the string 01 . . . (k − 2)(k − 3)(k − 2) . . . 10 the adversary re-
places the resulting string by two strings 0(k − 1)0 and two strings
01 . . . (k − 4)(k − 3)0. The numbers a2, a4, a6, . . . , ak , x, v count the
number of strings which belong to the corresponding shown boxes.
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objective in phase 1 is to create a large number of strings counted by a4, a6, . . . , ak,
whereas in phase 2 the objective is to force the algorithm in a configuration with
only blocked strings.

Throughout phase 2, we have the invariants

k/2

∑
j=1

(2j(k− 1)− 3k + 7) · a2j >
2(k− 3)

ε
− (k− 1), (Inv 3.1)

2x ≤ 1 +
k/2

∑
j=1

(2j− 3)a2j − (k− 2)v. (Inv 3.2)

Invariant (Inv 3.1) holds because the left-hand side will not decrease throughout the
phase. To show Invariant (Inv 3.2), we first observe that at the end of phase 1, it
holds that

2x ≤ 1 +
k/2

∑
j=1

(2j− 3)a2j;

this can be easily shown by induction on the number of actions during phase 1.
Thus, at the beginning of phase 2, Invariant (Inv 3.2) holds, since v = 0 at that point.
Again, a simple inductive argument on the number of actions throughout phase 2
can show that the invariant is maintained.

We will argue that Invariants (Inv 3.1) and (Inv 3.2) imply that throughout phase
2, the competitive ratio is strictly larger than k2−3k+6−ε

k2−4k+7 , and hence throughout phase
2 the algorithm is forced to augment strings, until all strings are blocked. This is
because the competitive ratio in phase 2 can be lower bounded by

( k
2 + 3)v + 3 ∑k/2

j=1 a2j + kx

( k
2 + 2)v + 2 ∑k/2

j=1 a2j + (k− 1)x

=
(k + 6)v + 6 ∑k/2

j=1 a2j + 2kx

(k + 4)v + 4 ∑k/2
j=1 a2j + 2(k− 1)x

≥
(k + 6)v + 6 ∑k/2

j=1 a2j + k
(

1 + ∑k/2
j=1 (2j− 3)a2j − (k− 2)v

)
(k + 4)v + 4 ∑k/2

j=1 a2j + (k− 1)
(

1 + ∑k/2
j=1 (2j− 3)a2j − (k− 2)v

)
(From P1 and Inv 3.2)

=
(−k2 + 3k + 6)v + ∑k/2

j=1 (k(2j− 3) + 6) a2j + k

(−k2 + 4k + 2)v + ∑k/2
j=1 ((k− 1)(2j− 3) + 4) a2j + k− 1

To complete the proof, it remains to show that

(−k2 + 3k + 6)v + ∑k/2
j=1 (k(2j− 3) + 6) a2j + k

(−k2 + 4k + 2)v + ∑k/2
j=1 ((k− 1)(2j− 3) + 4) a2j + k− 1

>
k2 − 3k + 6− ε

k2 − 4k + 7
. (2.13)

By a simple mathematical manipulation, for (2.13) to hold, it suffices that

v · Cv +
k/2

∑
j=1

a2j · C2j > 2(k− 3)− (k− 1)ε, (2.14)
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where Cv and C2j are defined as

Cv = 3(k2 − 7k + 10)− (k2 − 4k− 2)ε
C2j = 2(k− 3)(k− 2j) + (2j(k− 1)− 3k + 7)ε.

We observe that Cv and the first additive term in the expression of C2j (i.e. 2(k −
3)(k− 2j)) are non-negative for sufficiently small ε, k ≥ 6 and 1 ≤ j ≤ k/2. Remov-
ing these terms from the left hand side of (2.14), it suffices to show that

k/2

∑
j=1

(2j(k− 1)− 3k + 7)ε · a2j > 2(k− 3)− (k− 1)ε.

This inequality is precisely Invariant (Inv 3.1), which concludes the proof.

2.4 Conclusion

In this chapter we provided improved upper and lower bounds for online maxi-
mum matching with k edge-recourse. More specifically, we analyzed two online al-
gorithms for the edge arrival model, namely AMP and L-GREEDY which seem to be
incomparable: the former is asymptotically superior, in terms of k, but the latter has
a better performance analysis for small k. It would be interesting to analyze an algo-
rithm that combines the ingredients of these two algorithms, namely, an algorithm
that combines the doubling techniques with augmenting only along short paths.
The difficulty in the analysis of such an algorithm lies in that reasonable charging
schemes tend to have “local” properties, wheres the doubling algorithm applies a
“global” criterion which does not easily translate into some structural property that
can be useful in analysis.

The problems we consider remain challenging even for k as small as 4, and some
gap between the upper and lower bounds remains. Bringing this gap will probably
require new ideas and techniques. To this end, the amortization arguments we used
in our analysis may have connections to LP-based algorithms (since the dual of the
maximum matching problem is a weighted vertex minimization problem). Thus,
it would be very interesting to use a duality-based approach, such as dual fitting,
towards the design and analysis of improved algorithms.
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Chapter 3

Searching on the Line Using
Discovery Ratio

This chapter contains material from the joint paper, Best-of-two-worlds Analysis of
Online Search, with Spyros Angelopoulos and Christoph Dürr. This work appeared
in the 36th International Symposium on Theoretical Aspects of Computer Science (STACS),
2019 [4].

3.1 Introduction

Competitive analysis is the standard framework used for evaluating the perfor-
mance of online algorithms. However, as discussed in Section 1.3, sometimes com-
petitive analysis cannot distinguish the performance of different algorithms due to
the worst-case nature of the competitive ratio. In this chapter, we demonstrate that
a similar situation arises in the context of online search. More specifically, we study
the linear search problem. The linear search problem and the corresponding compet-
itive analysis is presented in Section 1.3.1.

In Section 1.3.1, we discussed that both doubling and aggressive are optimal in
terms of competitive ratio, while the latter is better than the former in some situa-
tions. In other words, the competitive analysis, on itself, sometimes is not enough
to separate performance of different algorithms. To remedy this situation, we in-
troduced the discovery ratio as defined in Section 1.3.2 to quantify the eagerness of
discovering new territory for a search strategy. We emphasize that we apply the
discovery ratio as supplementary to the competitive ratio, instead of using it as a
measure that replaces the competitive ratio altogether.

3.1.1 Related Work

The linear search problem, also known as cow path problem, was first introduced
by Bellman [11] and Beck [9]. The optimal deterministic competitive ratio for the
linear search problem is equal to 9 and the optimal strategies were first given by Beck
and Newman [10]. Moreover, an optimal randomized algorithm was also given by
Kao et al. [44]

The Star search problem is a natural generalization of the linear search problem, in
which the search environment consists of m concurrent branches. The linear search
problem can be considered as a special case for m = 2. The optimal strategies under
competitive analysis of the star search problem was given by Gal [33], which was
later rediscovered by Baeza-Yates et al. [8].
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Some variants of the linear search problem have been studied before. For in-
stance, instead of considering only one searcher, a multi-searcher model was stud-
ied by López-Ortiz and Schuierer in [49]; The model with multi-target searching was
also studied in [46, 53]; Recently, the model in which there is an additional cost for
each turn was studied in [25, 2]. In addition, the variant in which the algorithm has
some probabilistic information on target placement was explored in [41, 43]. u The
linear search problem and its generalization are also related to resource allocation
under uncertainty. There are some applications in the field of Artificial Intelligence.
For instance, there are some works in the design of interruptible algorithms [13, 1].
See also Chapter 4 for another application from Artificial Intelligence on contract
scheduling.

Concerning the search strategy aggressive, it has been studied in [38, 41]. In
these work, aggressive is used so as to maximize the reach of a strategy, which
is defined as the maximum possible extent to which the branches can be searched
without violating competitiveness constraints. In contrast, we use the discovery ra-
tio to compare strategy aggressive with other competitively optimal strategies. To
our knowledge, this is the first work that quantifies the intuition that aggressive
strategy is indeed good.

3.1.2 Contribution

In Section 3.2, we obtain strategies of optimal discovery ratio against all possible
strategies. Specifically, we show that there are strategies of discovery ratio 2 + ε,
for arbitrarily small ε > 0. However, they have an unbounded competitive ratio.
Moreover, we show that the strategy doubling, which is optimal under competitive
analysis, has discovery ratio equal to 3. This demonstrates that the discovery ratio,
on itself, does not lead to a useful classification of strategies, when we consider the
entire space of strategies. This motivates us to study the discovery ratio against
competitively optimal strategies.

In Section 3.3.1, we restrict our interest to the set of competitively optimal strate-
gies, which we analyze using the discovery ratio as a supplementary measure. As a
result, we prove that the strategy aggressive, has discovery ratio 8

5 ; moreover, we
show that this is the optimal discovery ratio in this setting. In contrast, we show that
the strategy doubling has discovery ratio 7

3 . In addition, we provide evidence that
such “aggressiveness” is necessary: more precisely, we show that any competitively
optimal strategy that is also optimal with respect to the discovery ratio must have
the exact same behavior as the aggressive strategy in the first five iterations. More-
over, in Section 3.3.3 we show the non uniqueness of such competitively optimal
strategies with optimal discovery ratio.

In Section 3.4, we provide some computational results to separate the perfor-
mance of doubling and aggressive. Based on worst case analysis, we show that
doubling has a worse discovery ratio because of the worse performance at the very
first steps. Computationally, we observe a strong separation on the performance of
these two algorithms on average case analysis.

3.1.3 Preliminaries

For the linear search problem, the search environment consists of two branches,
which are numbered by 0, 1, respectively. The search strategy can be described as
an infinite sequence of search segments {x0, x1, . . .} such that xi > 0 and xi+2 > xi
for all i ∈ N. More precisely, in iteration i, the searcher starts from the origin O and
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searches branch i mod 2 to distance xi from the origin. The searcher completes the
iteration by returning back to O. Note that the searcher always prefers to explore
a new portion of the line in each iteration, which is characterized by the constraint
xi+2 > xi. Because any other strategy X that does conform to this property, namely
the one in which xi+2 ≤ xi, or iterations i and i + 1 search the same branch, can be
transformed to a strategy X′ such that for any hider H, we have c(X′, S) ≤ c(X, H).

We say that the searcher turns in iteration i when it switches directions during
iteration i. More precisely, it is the moment when it completes the exploration of
length xi and returns back to the origin. Eventually, both branches of the line have
to be completely explored. Formally speaking, for every d ∈ R+, there exist i, j ∈N

such that x2i ≥ d, and x2j+1 ≥ d.
We denote by Σ the set of all search strategies, and by Σc the set of strategies

with competitive ratio c. Σc is then a subset of Σ. Since it is well known that the op-
timal competitive ratio is 9 for the linear search problem, we denote by Σ9 the set of
competitively optimal strategies. Recall that there is also a standard assumption that
the hider must be at distance at least 1 from O, since no strategy can have bounded
competitive ratio if this distance can be arbitrarily small.

For convenience of notation, we define xi := 0, for all i < 0. Given a strategy X,
we define Tn(X) (or simply Tn, when X is clear from context) to be equal to ∑n

i=0 xi.
For n < 0, we define Tn := 0.

3.2 Strategies of Optimal Discovery Ratio in Σ

In this section, we setup some properties of the measure and obtain strategies of
optimal discovery ratio in Σ.

Let X, Y, denote two strategies in Σ, with X = (x0, x1, . . .). From the definition
of the discovery ratio we have that

dr(X, Y) = sup
i∈N

sup
δ∈(0,xi−xi−2]

D(X, xi−1 + xi−2 + δ)

D(Y, xi−1 + xi−2 + δ)
.

Note that for i = 0, we have

D(X, xi−1 + xi−2 + δ)

D(Y, xi−1 + xi−2 + δ)
=

D(X, δ)

D(Y, δ)
≤ δ

δ
= 1.

This is because for all δ ≤ x0, D(X, δ) = δ, and for all δ > 0, D(Y, δ) ≥ δ. Therefore,

dr(X, Y) = sup
i∈N∗

sup
δ∈(0,xi−xi−2]

D(X, xi−1 + xi−2 + δ)

D(Y, xi−1 + xi−2 + δ)
. (3.1)

The following theorem provides an expression of the discovery ratio in terms of the
search segments of the strategy.

Theorem 3.1. Let X = (x0, x1, . . .). Then

dr(X, Σ) = sup
i∈N∗

2 ∑i−1
j=0 xj + xi−2

xi−1 + xi−2
.
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Proof. Fix Y ∈ Σ. From the definition of search segments in X, we have that

D(X, xi−1 + xi−2 + δ) = 2
i−1

∑
j=0

xj + xi−2 + δ, for δ ∈ (0, xi − xi−2]. (3.2)

Moreover, for every Y, we have

D(Y, xi−1 + xi−2 + δ) ≥ xi−1 + xi−2 + δ. (3.3)

Substituting (3.2) and (3.3) in (3.1) we obtain

dr(X, Y) ≤ sup
i∈N∗

sup
δ∈(0,xi−xi−2]

2 ∑i−1
j=0 xj + xi−2 + δ

xi−1 + xi−2 + δ

≤ sup
i∈N∗

2 ∑i−1
j=0 xj + xi−2

xi−1 + xi−2
.

For the lower bound, consider a strategy Yi = (yi
0, yi

1, . . .), for which yi
0 = xi−1 +

xi−2 + δ (the values of yi
j for j 6= 0 are not significant, as long as Yi is a valid strategy).

Clearly, we have
D(Yi, xi−1 + xi−2 + δ) = xi−1 + xi−2 + δ.

Therefore, (3.1) implies

dr(X, Yi) ≥ sup
δ∈(0,xi−xi−2]

2 ∑i−1
j=0 xj + xi−2 + δ

xi−1 + xi−2 + δ

=
2 ∑i−1

j=0 xj + xi−2

xi−1 + xi−2
.

The lower bound on dr(X, Σ) follows from dr(X, Σ) ≥ supi∈N∗ dr(X, Yi).

In particular, note that for i = 2, Theorem 3.1 shows that for any strategy X,

dr(X, Σ) ≥ 3x0 + 2x1

x0 + x1
≥ 2.

We will show that there exist strategies with discovery ratio arbitrarily close to 2,
thus optimal for Σ. To this end, we will consider the geometric search strategy de-
fined as Gα = (1, α, α2, . . .), with α > 1.

Lemma 3.2. For Gα defined as above, we have dr(Gα, Σ) = 2α2+α−1
α2−1 .

Proof. From Theorem 3.1 we have

dr(Gα, Σ) = sup
i∈N∗

2 ∑i−1
j=0 αj + αi−2

αi−1 + αi−2

= sup
i∈N∗

2( αi−1
α−1 ) + αi−2

αi−1 + αi−2

= sup
i∈N∗

2(αi − 1) + αi−1 − αi−2

αi − αi−2 .
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The derivative of the function f (i) := 2(αi−1)+αi−1−αi−2

αi−αi−2 in i is

f ′(i) =
2α2−i log α

α2 − 1
,

which is positive. Thus, supi∈N∗ f (i) = limi→∞ f (i), which gives

dr(Gα, Σ) = lim
i→+∞

f (i)

= lim
i→+∞

2(αi − 1) + αi−1 − αi−2

αi − αi−2

=
2α2 + α− 1

α2 − 1
.

Figure 3.1 depicts the tradeoff between the competitive and discovery ratios as
attained by the search strategy Gα.
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FIGURE 3.1 – Illustration of the tradeoff between the competitive and
discovery ratios in Gα. Here, each point corresponds to a value of

α > 1.

In particular, Lemma 3.2 shows that the discovery ratio of Gα tends to 2, as
α → ∞, hence Gα has asymptotically optimal discovery ratio. However its com-
petitive ratio is unbounded. Furthermore, strategy doubling (i.e. G2) has optimal
competitive ratio equal to 9, whereas its discovery ratio is equal to 3. This motivates
the topic of the next section.

3.3 The Discovery Ratio of Competitively Optimal Strategies

3.3.1 Properties of Competitively Optimal Strategies

In this section we focus on strategies in Σ9, namely the set of competitively op-
timal strategies. For any strategy X ∈ Σ9, it is known that there is an infinite set of
linear inequalities that relate its search segments, as shown in the following lemma
(see, e.g, [41]).
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Lemma 3.3. The strategy X = (x0, x1, x2, . . .) is in Σ9 if and only if its segments satisfy
the following inequalities

1 ≤ x0 ≤ 4, x1 ≥ 1 and xn ≤ 3xn−1 −
n−2

∑
i=0

xi, for all n ≥ 1.

Proof. It is well-known that the competitive ratio of X is determined by seeking, for
all n ≥ 0, a target that is placed at distances xn + ε, where ε → 0, and in the same
branch that is searched by X in iteration n, namely branch n mod 2; call this target
the n-th target. The cost incurred by X for locating the (n− 1)-th target, where n ≥ 1
is equal to 2(∑n

i=0 xi) + xn−1 + ε, whereas the optimal cost is xn−1 + ε. From the
definition of the competitive ratio, and since ε→ 0, we obtain that

2
n

∑
i=0

xi + xn−1 ≤ 9 · xn−1 ⇒ xn ≤ 3xn−1 −
n−2

∑
i=0

xi.

Moreover, we can obtain one more inequality that involves x0, by assuming a target
placed at distance 1 from O in branch 1. Thus, we obtain that 2x0 + 1 ≤ 9, or,
equivalently, x0 ≤ 4.

Last, note that x0, x1 ≥ 1 from the assumption that the target is at distance at
least 1 from the origin.

We now define a class of strategies in Σ9 as follows. For given t ∈ [1, 4], let Rt
denote the strategy whose search segments are determined by the linear recurrence

x0 = t, and xn = 3xn−1 −
n−2

∑
i=0

xi, for all n ≥ 1.

In words, Rt is such that for every n > 1, the inequality relating x0, . . . , xn is tight.
The following lemma determines the search lengths of Rt as a function of t. The
lemma also implies that Rt is indeed a valid search strategy, for all t ∈ [1, 4], in that
xn > xn−2, for all n, and xn → ∞, as n→ ∞.

Lemma 3.4. The strategy Rt is defined by the sequence xn = t(1 + n
2 )2

n, for n ≥ 0.
Moreover, Tn(Rt) = t(n + 1)2n.

Proof. The lemma is clearly true for n ∈ {0, 1}. For n ≥ 2, the equality xn = 3xn−1 −
∑n−2

i=0 xi implies that Tn = ∑n
i=0 xi = 4xn−1. Therefore,

Tn − Tn−1 = 4xn−1 − 4xn−2 ⇒ xn = 4(xn−1 − xn−2).

The characteristic polynomial of the above linear recurrence is ξ2 − 4ξ + 4, with the
unique root ξ = 2. Thus, xn is of the form xn = (a + bn)2n, for n ≥ 0, where a and b
are determined by the initial conditions x0 = t and x1 = 3t. Summarizing, we obtain
that for n ≥ 0 we have that xn = t(1 + n

2 )2
n, and Tn = 4xn−1 = t(n + 1)2n.

Among all strategies in Rt we are interested, in particular, in the strategy R4.
This strategy has some intuitively appealing properties: It maximizes the search seg-
ments in each iteration (see Lemma 3.6) and minimizes the number of turns required
to discover a certain length (as will be shown in Corollary 3.7). Using the notation
of the introduction, we can say that R4 ≡ aggressive. In this section, we will show
that aggressive has optimal discovery ratio among all competitively optimal strate-
gies. Let us denote by x̄i the search segment in the i-th iteration in aggressive.
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Corollary 3.5. The strategy aggressive can be described by the sequence x̄n = (n +
2)2n+1, for n ≥ 0. Moreover, Tn(aggressive) = (n + 1)2n+2, for n ≥ 0.

The following lemma shows that, for any given n, the total length discovered by
any competitively optimal strategy X at the turning point of the n-th iteration cannot
exceed the corresponding length of aggressive. Its proof can also be found in [41],
but we give a different proof using ideas that we will apply later (Lemma 3.8).

Lemma 3.6. For every strategy X = (x0, x1, . . .) with X ∈ Σ9, it holds that xn ≤ x̄n, for
all n ∈ N, where x̄n is the search segment in the n-th iteration of aggressive. Hence, in
particular, we have xn + xn−1 ≤ x̄n + x̄n−1, for all n ∈N.

Proof. For a given n ≥ 0, let Pn denote the following linear program.

max xn

subject to 1 ≤ x0 ≤ 4,
x1 ≥ 1,

xi ≤ 3xi−1 −
i−2

∑
j=0

xj, 1 ≤ i ≤ n.

We will show, by induction on i, that for all i ≤ n,

xn ≤ (i + 2)2i−1xn−i − i2i−1Tn−i−1(X).

The lemma will then follow, since for i = n we have

xn ≤ (n + 2)2n−1x0 ≤ (n + 2)2n−1 · 4 = (n + 2)2n+1 = x̄n,

where the last equality is due to Corollary 3.5. We will now prove the claim. Note
that, the base case, namely i = 1, follows directly from the LP constraint. For the
induction hypothesis, suppose that for i ≥ 1, it holds that

xn ≤ (i + 2)2i−1xn−i − i2i−1Tn−i−1(X). (3.4)

We will show that the claim holds for i + 1. Since

xn−i ≤ 3xn−i−1 − Tn−i−2(X), (3.5)

then

xn ≤ (i + 2)2i−1(3xn−i−1 − Tn−i−2(X))− i2i−1Tn−i−1(X) (subst. (3.5) in (3.4))

= (i + 2)2i−1(3xn−i−1 − Tn−i−2(X))− i2i−1(Tn−i−2(X) + xn−i−1) (def. Tn−i−1)

= (i + 3)2ixn−i−1 − (i + 1)2iTn−i−2(X), (arranging terms)

which completes the proof of the claim.

Given strategy X and l ∈ R+, define m(X, l) as the number of turns that X has
performed by the time it discovers a total length equal to l. Also define

m∗(l) = inf
X∈Σ9

m(X, l),

that is, m∗(l) is the minimum number of turns that a competitively optimal strategy
is required to perform in order to discover length equal to l. From the constraint
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x0 ≤ 4, it follows that clearly m∗(l) = 0, for l ≤ 4. The following corollary to
Lemma 3.6 gives an expression for m∗(l), for general values of l.

Corollary 3.7. For given l > 4, m∗(l) = m(aggressive, l) = min{n ∈ N≥1 : (3n +
5)2n ≥ l}.

Proof. From Lemma 3.6, the total length discovered by any X ∈ Σ9 at the turning
point of the n-th iteration cannot exceed x̄n + x̄n−1 for n ≥ 1, which implies that
m∗(l) = n, if l ∈ (x̄n−1 + x̄n−2, x̄n + x̄n−1] for n ≥ 1. In other words,

m∗(l) = min{n ∈N≥1 : x̄n + x̄n−1 ≥ l}.

From Corollary 3.5, we have x̄n = (n + 2)2n+1, for n ≥ 0. Hence,

m∗(l) = min{n ∈N≥1 : (3n + 5)2n ≥ l}.

The following lemma is a central technical result that is instrumental in estab-
lishing the bounds on the discovery ratio. For a given l ∈ R+, define

d∗(l) = inf
X∈Σ9

D(X, l).

In words, d∗(l) is the minimum cost at which a competitively optimal strategy can
discover a length equal to l. Trivially, d∗(l) = l if l ≤ 4. Lemma 3.8 gives an expres-
sion of d∗(l) for l > 4 in terms of m∗(l); it also shows that there exists a t ∈ (1, 4]
such that the strategy Rt attains this minimum cost.

We first give some motivation behind the purpose of the lemma. When consid-
ering general strategies in Σ, we used a lower bound on the cost for discovering
a length l as given by (3.3), and which corresponds to a strategy that never turns.
However, this lower bound is very weak when one considers strategies in Σ9. This
is because a competitive strategy needs to turn sufficiently often, which affects con-
siderably the discovery costs.

We also give some intuition about the proof. We show how to model the question
by means of a linear program. Using the constraints of the LP, we first obtain a lower
bound on its objective in terms of the parameters l and m∗(l). In this process, we also
obtain a lower bound on the first segment of the strategy (x0); this is denoted by t
in the proof. In the next step, we show that the strategy Rt has discovery cost that
matches the lower bound on the objective, which suffices to prove the result.

Lemma 3.8. For l > 4, it holds

d∗(l) = D(Rt, l) = l · 6m∗(l) + 4
3m∗(l) + 5

, where t = l · 22−m∗(l)

3m∗(l) + 5
∈ (1, 4].

Proof. Let X = (x0, x1, . . .) ∈ Σ9 denote the strategy which minimizes the quantity
D(X, l). Then there must exist a smallest n ≥ m∗(l) such that the searcher discovers
a total length l during the n-th iteration. More precisely, suppose that this happens
when the searcher is at branch n mod 2, and at some position p (i.e., distance from
O), with p ∈ (xn−2, xn]. Then we have xn−1 + p = l, and

d∗(l) = D(X, l) = 2
n−1

∑
i=0

xi + p = 2
n−1

∑
i=0

xi + (l − xn−1) = 2
n−2

∑
i=0

xi + xn−1 + l.
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Therefore, d∗(l) is the objective of the following linear program.

min 2
n−2

∑
i=0

xi + xn−1 + l

subject to xn + xn−1 ≥ l,
1 ≤ x0 ≤ 4,
xi−2 ≤ xi, i ∈ [2, n]

1 ≤ xi ≤ 3xi−1 −
i−2

∑
j=0

xj, i ∈ [1, n].

Recall that n ≥ m∗(l) is a fixed integer. Let Obj denote the objective value of the
linear program. We claim that, for 1 ≤ i ≤ n,

xn−i ≥
22−i

3i + 5
l +

3i− 1
3i + 5

Tn−i−1 and Obj ≥ 6i + 4
3i + 5

l +
9 · 2i

3i + 5
Tn−i−1.

The claim provides a lower bound of the objective, since for i = n it implies that

x0 ≥
22−n

3n + 5
l and Obj ≥ 6n + 4

3n + 5
l ≥ 6m∗(l) + 4

3m∗(l) + 5
l,

where the last inequality follows from the fact n ≥ m∗(l). We will argue later that
this lower bound is tight.

First, we prove the claim, by induction on i, for all i ≤ n. We first show the base
case, namely i = 1. Since xn ≤ 3xn−1 − Tn−2 and xn + xn−1 ≥ l, it follows that

xn−1 ≥ l − xn ≥ l − (3xn−1 − Tn−2)⇒ xn−1 ≥
l
4
+

Tn−2

4
,

hence,

Obj = l + 2Tn−2 + xn−1 ≥ l + 2Tn−2 +
l
4
+

Tn−2

4
=

5
4

l +
9
4

Tn−2,

thus the base case holds. For the induction step, suppose that

xn−i ≥
22−i

3i + 5
l +

3i− 1
3i + 5

Tn−i−1 and Obj ≥ 6i + 4
3i + 5

l +
9 · 2i

3i + 5
Tn−i−1.

Then,

3xn−i−1 − Tn−i−2 ≥ xn−i (by LP constraint)

≥ 22−i

3i + 5
l +

3i− 1
3i + 5

Tn−i−1 (ind. hyp.)

=
22−i

3i + 5
l +

3i− 1
3i + 5

(Tn−i−2 + xn−i−1) (def. Tn−i−1)
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By rearranging terms in the above inequality we obtain

(3− 3i− 1
3i + 5

)xn−i−1 ≥
22−i

3i + 5
l + (1 +

3i− 1
3i + 5

)Tn−i−2 ⇒

6i + 16
3i + 5

xn−i−1 ≥
22−i

3i + 5
l +

6i + 4
3i + 5

Tn−i−2 ⇒

xn−i−1 ≥
21−i

3i + 8
l +

3i + 2
3i + 8

Tn−i−2,

and

Obj ≥ 6i + 4
3i + 5

l +
9 · 2i

3i + 5
Tn−i−1 (ind. hyp.)

=
6i + 4
3i + 5

l +
9 · 2i

3i + 5
(Tn−i−2 + xn−i−1) (def. Tn−i−1)

≥ 6i + 4
3i + 5

l +
9 · 2i

3i + 5
Tn−i−2 +

9 · 2i

3i + 5
(

21−i

3i + 8
l +

3i + 2
3i + 8

Tn−i−2) (ind. hyp.)

=
6i + 10
3i + 8

l +
9 · 2i+1

3i + 8
Tn−i−2.

This concludes the proof of the claim, which settles the lower bound on d∗(l). It re-
mains to show that this bound is tight. Consider the strategy Rt, with t = 22−m∗(l)

3m∗(l)+5 l.
In what follows we will show that Rt is a feasible solution of the LP, and that D(Rt, l) =
6m∗(l)+4
3m∗(l)+5 l.

First, we show that t ∈ (1, 4]. For the upper bound, from Corollary 3.7, we have
(3m∗(l) + 5)2m∗(l) ≥ l, which implies that

1 ≥ l · 2−m∗(l)

3m∗(l) + 5
⇒

4 ≥ l · 22−m∗(l)

3m∗(l) + 5
⇒

4 ≥ t.

In order to show that t > 1, consider first the case l ∈ (4, 5]. Then m∗(l) = 1, which
implies that

t =
22−m∗(l)

3m∗(l) + 5
l

=
l
4
≥ 1.

Moreover, if l > 5, by Corollary 3.7, m∗(l) is the smallest integer solution of the
inequality (3n + 5)2n ≥ l, then

(3m∗(l) + 2)2m∗(l)−1 < l, (3.6)
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hence

t =
22−m∗(l)

3m∗(l) + 5
· l (by definition of t)

=
4l

(3m∗(l) + 5)2m∗(l)
(arranging terms)

=
2l

(3m∗(l) + 2)2m∗(l)−1 · 3m∗(l)+5
3m∗(l)+2

(arranging terms)

>
2l

l · 3m∗(l)+5
3m∗(l)+2

(substituting Inequation 3.6)

=
6m∗(l) + 4
3m∗(l) + 5

(arranging terms)

> 1.

The last inequality holds since we have m∗(l) ≥ 1, for l > 5. This concludes that
t ∈ (1, 4], and Rt is a feasible solution of the LP since Rt satisfies all other constraints
by its definition.

It remains thus to show that D(Rt, l) = 6m∗(l)+4
3m∗(l)+5 · l. By Lemma 3.4, we have

xm∗(l) + xm∗(l)−1 = t
(

1 +
m∗(l)

2

)
2m∗(l) + t

(
1 +

m∗(l)− 1
2

)
2m∗(l)−1

= t · 2m∗(l) · 3m∗(l) + 5
4

=

(
22−m∗(l)

3m∗(l) + 5
l

)
· 2m∗(l) · 3m∗(l) + 5

4

= l.

Then Rt has exactly discovered a total length l right before the m∗(l)-th turn. Hence,

D(Rt, l) = 2Tm∗(l)−2 + xm∗(l)−1 + l

= t · (m∗(l)− 1) 2m∗(l)−1 + t ·
(

1 +
m∗(l)− 1

2

)
2m∗(l)−1 + l

(by Lemma 3.4)

= t · (3m∗(l)− 1)2m∗(l)

4
+ l (arranging terms)

=
22−m∗(l)

3m∗(l) + 5
l · (3m∗(l)− 1)2m∗(l)

4
+ l (substituting t)

=

(
3m∗(l)− 1
3m∗(l) + 5

+ 1
)
· l = 6m∗(l) + 4

3m∗(l) + 5
· l. (arranging terms)

This concludes the proof of the lemma.

We are now ready to prove the main results of this section. Recall that for any
two strategies X, Y, dr(X, Y) is given by (3.1). Combining with (3.2), as well as with
the fact that for Y ∈ Σ9, we have that D(Y, l) ≥ d∗(l), (from the definition of d∗), we
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obtain that

dr(X, Σ9) = sup
i∈N∗

sup
δ∈(0,xi−xi−2]

Fi(X, δ), where Fi(X, δ) =
2 ∑i−1

j=0 xj + xi−2 + δ

d∗(xi−1 + xi−2 + δ)
. (3.7)

Recall that for the strategy aggressive ≡ R4 = (x̄0, x̄1, . . .), its segments x̄i are
given in Corollary 3.5.

3.3.2 Discovery Ratio of Strategies in Σ9

We are now able to compute the discovery ratio of the strategy aggressive against
Σ9.

Theorem 3.9. For the strategy aggressive it holds that dr(aggressive, Σ9) = 8/5.

Proof. We will express the discovery ratio using (3.7). For i = 1, and δ ∈ (0, x̄1], we
have that

F1(aggressive, δ) =
2x̄0 + δ

d∗(x̄0 + δ)
=

8 + δ

d∗(4 + δ)
.

From Lemma 3.8,

d∗(4 + δ) = (4 + δ) · 6 · 1 + 4
3 · 1 + 5

=
5(4 + δ)

4
;

this is because 1 ≤ m∗(4 + δ) ≤ m∗(16) = 1. Then,

F1(aggressive, δ) =
8 + δ
5(4+δ)

4

=
32 + 4δ

20 + 5δ
.

Hence,

sup
δ∈(0,x̄1]

F1(aggressive, δ) =
8
5

. (3.8)

For given i ≥ 2, and δ ∈ (0, x̄i − x̄i−2], we have

Fi(aggressive, δ) =
2Ti−1 + x̄i−2 + δ

d∗(x̄i−1 + x̄i−2 + δ)
,

where Ti−1 is given by Corollary 3.5. Moreover, from Lemma 3.8 we have that

d∗(x̄i−1 + x̄i−2 + δ) = (x̄i−1 + x̄i−2 + δ) · 6m∗(x̄i−1 + x̄i−2 + δ) + 4
3m∗(x̄i−1 + x̄i−2 + δ) + 5

= (x̄i−1 + x̄i−2 + δ) · 6i + 4
3i + 5

,

where the last equality follows from the fact that m∗(x̄i−1 + x̄i−2 + δ) = i. This is
because

i ≤ m∗(x̄i−1 + x̄i−2 + δ)

≤ m∗(x̄i−1 + x̄i−2 + x̄i − x̄i−2)

= m∗(x̄i + x̄i−1)

= i.

Substituting with the values of the search segments as well as Ti−1, we obtain that
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Fi(aggressive, δ) =
i · 2i+2 + i · 2i−1 + δ

((i + 1)2i + i · 2i−1 + δ) · 6i+4
3i+5

=
9i · 2i−1 + δ

((3i + 2)2i−1 + δ) · 6i+4
3i+5

.

Since
∂Fi(aggressive, δ)

∂δ
= − 2i+1(3i− 1)(3i + 5)

(3i + 2)(2n(3i + 2) + 2δ)2 ≤ 0,

then Fi(aggressive, δ) is monotone decreasing in δ. Thus

sup
δ∈(0,x̄i−x̄i−2]

Fi(aggressive, δ) =
9i · 2i−1

((3i + 2)2i−1) · 6i+4
3i+5

=
9i(3i + 5)

(3i + 2)(6i + 4)
,

and then

sup
i∈Ni≥2

sup
δ∈(0,x̄i−x̄i−2]

Fi(aggressive, δ) =
(9 · 2)(3 · 2 + 5)

(3 · 2 + 2)(6 · 2 + 4)
=

99
64

<
8
5

. (3.9)

Combining (3.7), (3.8) and (3.9) yields the proof of the theorem.

The following theorem shows that aggressive has optimal discovery ratio among
all competitively optimal strategies.

Theorem 3.10. For every strategy X ∈ Σ9, we have dr(X, Σ9) ≥ 8
5 .

Proof. Let X = (x0, . . .). We will consider two cases, depending on whether x0 < 4
or x0 = 4. Suppose, first, that x0 < 4. In this case, for sufficiently small ε, we have
m∗(x0 + ε) = 0, which implies that d∗(x0 + ε) = x0 + ε, and therefore.

F1(X, ε) =
2x0 + ε

d∗(x0 + ε)
=

2x0 + ε

x0 + ε
,

from which we obtain that

sup
δ∈(0,x1]

F1(X, δ) ≥ F1(X, ε) ≥ 2x0 + ε

x0 + ε
→ 2, as ε→ 0+.

Next, suppose that x0 = 4. In this case, for δ ∈ (0, x1], it readily follows that
F1(X, δ) = F1(aggressive, δ). Therefore, from (3.8), we have that

sup
δ∈(0,x1]

F1(X, δ) = sup
δ∈(0,x1]

32 + 4δ

20 + 5δ
=

8
5

.

The lower bound follows directly from (3.7).

Recall that doubling ≡ G2 = (20, 21, 22, . . .). The following theorem shows that
within Σ9, doubling has worse discovery ratio than aggressive. The proof follows
along the lines of the proof of Theorem 3.9, where instead of using the search seg-
ments x̄i of aggressive, we use the search segment xi = 2i of doubling.

Theorem 3.11. We have dr(doubling, Σ9) =
7
3 .
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Proof. We will express the discovery ratio using (3.7). For i = 1, and δ ∈ (0, x1], we
have that

F1(G2, δ) =
2x0 + δ

d∗(x0 + δ)
=

2 + δ

d∗(1 + δ)
.

From the definition, d∗(1 + δ) = 1 + δ; this is because 0 ≤ m∗(1 + δ) ≤ m∗(3) = 0.
Then,

F1(G2, δ) =
2 + δ

1 + δ
, hence sup

δ∈(0,x̄1]

F1(G2, δ) = 2. (3.10)

For i = 2 and δ ∈ (0, x2 − x0], we have that

F2(G2, δ) =
3x0 + 2x1 + δ

d∗(x0 + x1 + δ)
=

7 + δ

d∗(3 + δ)
.

From Lemma 3.8, d∗(3 + δ) either equals to 3 + δ if δ ∈ (0, 1], or equals to (3 + δ) ·
6·1+4
3·1+5 = 5(3+δ)

4 if δ ∈ (1, x2 − x0]. This is because 0 ≤ m∗(3 + δ) ≤ m∗(6) = 1. Then,
for δ ∈ (0, 1],

F2(G2, δ) =
7 + δ

3 + δ
, hence sup

δ∈(0,1]
F2(G2, δ) =

7
3

. (3.11)

For δ ∈ (1, x2 − x0],

F2(G2, δ) =
7 + δ
5(3+δ)

4

=
28 + 4δ

15 + 5δ
, hence sup

δ∈(1,x2−x0]

F2(G2, δ) =
28
15

. (3.12)

Combining (3.11) and (3.12) yields

sup
δ∈(0,x2−x0]

F2(G2, δ) =
7
3

. (3.13)

For given i ≥ 3, and δ ∈ (0, xi − xi−2], we have

Fi(G2, δ) =
2Ti−1 + xi−2 + δ

d∗(xi−1 + xi−2 + δ)

=
2i+1 − 2 + 2i−2 + δ

d∗(2i−1 + 2i−2 + δ)

=
9 · 2i−2 − 2 + δ

d∗(2i−1 + 2i−2 + δ)
.

Moreover, from Lemma 3.8 we have that

d∗(2i−1 + 2i−2 + δ) = (2i−1 + 2i−2 + δ) · 6m∗(2i−1 + 2i−2 + δ) + 4
3m∗(2i−1 + 2i−2 + δ) + 5

.

and
m∗(xi−1 + xi−2 + δ) ≥ m∗(xi−1 + xi−2) = m∗(3 · 2i−2).

For i ∈ {3, 4} and δ ∈ (0, xi − xi−2], we have

m∗(xi−1 + xi−2 + δ) ≥ m∗(3 · 2i−2) ≥ 1,

then

d∗(2i−1 + 2i−2 + δ) ≥ (2i−1 + 2i−2 + δ) · 6 · 1 + 4
3 · 1 + 5

=
15 · 2i−2 + 5δ

4
.
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Hence, for i = 3,

F3(G2, δ) =
9 · 2i−2 − 2 + δ

d∗(2i−1 + 2i−2 + δ)
≤ 16 + δ

30+5δ
4

=
64 + 4δ

30 + 5δ
.

We obtain that
sup

δ∈(0,x3−x1]

F3(G2, δ) ≤ 64
30

. (3.14)

For i = 4,

F4(G2, δ) =
9 · 2i−2 − 2 + δ

d∗(2i−1 + 2i−2 + δ)
≤ 32 + δ

60+5δ 4
=

128 + 4δ

60 + 5δ
.

We obtain that
sup

δ∈(0,x4−x2]

F4(G2, δ) ≤ 128
60

. (3.15)

For i ≥ 5 and δ ∈ (0, xi − xi−2], we have

m∗(xi−1 + xi−2 + δ) ≥ m∗(3 · 2i−2) ≥ 2,

then

d∗(2i−1 + 2i−2 + δ) ≥ (2i−1 + 2i−2 + δ) · 6 · 2 + 4
3 · 2 + 5

=
48 · 2i−2 + 16δ

11
,

and

Fi(G2, δ) =
9 · 2i−2 − 2 + δ

d∗(2i−1 + 2i−2 + δ)
≤ 9 · 2i−2 − 2 + δ

48·2i−2+16δ
11

=
99 · 2i−2 − 22

48 · 2i−2 ≤ 99
48

,

hence, for i ≥ 5,

sup
δ∈(0,xi−xi−2]

Fi(G2, δ) ≤ 99
48

. (3.16)

Combining (3.10), (3.13), (3.14), (3.15) and (3.16) yields the proof of the theorem.

3.3.3 On the Uniqueness of Strategies with Optimal Discovery Ratio

A natural question arises: Is aggressive the unique strategy of optimal discov-
ery ratio in Σ9? The following theorem provides evidence that optimal strategies
cannot be radically different than aggressive, in that they must mimic it in the first
few iterations.

Theorem 3.12. Strategy X = (x0, x1, . . .) ∈ Σ9, has optimal discovery ratio in Σ9 only if
xi = x̄i, for 0 ≤ i ≤ 4.

Proof. Consider a strategy X(x0, x1, . . .) ∈ Σ9. Recall that the discovery ratio of X is
given by Equation (3.7). We will prove the theorem by induction on i.

We first show the base case, namely i = 0. The base case holds by the argument
used in the proof of Theorem 3.10 which shows that if x0 < 4, then dr(X, Σ9) ≥ 2.
For the induction step, suppose that, if X has optimal discovery ratio then for j ∈
[0, i], xj = x̄j, with i < 4. We will show xi+1 = x̄i+1 by contradiction, hence assume
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xi+1 < x̄i+1. For sufficiently small ε > 0, we have

m∗(xi+1 + xi + ε) = m∗(xi+1 + x̄i + ε) (by induction hypothesis)
≤ m∗(x̄i+1 + x̄i) (by monotonicity of m∗ and Lemma 3.6)
= i + 1, (by definition of m∗)

which implies that, by Lemma 3.8,

d∗(xi + xi−1 + ε) = (xi + xi−1 + ε) · 6 ·m
∗(xi+1 + xi + ε) + 4

3 ·m∗(xi+1 + xi + ε) + 5
≤ (xi + xi−1 + ε) · 6 · (i + 1) + 4

3 · (i + 1) + 5
.

(3.17)
Therefore

Fi+2(X, ε) =
2 ·∑i+1

j=0 xj + xi + ε

d∗(xi+1 + xi + ε)

=
2Ti(aggressive) + 2xi+1 + x̄i + ε

d∗(xi+1 + x̄i + ε)
(by ind. hyp.)

≥ 2Ti(aggressive) + 2xi+1 + x̄i + ε

(xi+1 + x̄i + ε) · 6·(i+1)+4
3·(i+1)+5

(Inequation (3.17))

=
(i + 1)2i+3 + (i + 2)2i+1 + 2xi+1 + ε

(xi+1 + (i + 2)2i+1 + ε) · 6·(i+1)+4
3·(i+1)+5

(Corollary 3.5)

≥ (i + 1)2i+3 + (i + 2)2i+1 + (i + 3)2i+3 + ε

(i + 3)2i+2 + (i + 2)2i+1 + ε
· 3i + 8

6i + 10
.

(monoton. on xi+1)

Hence

sup
δ∈(0,xi+2−xi ]

Fi+2(X, δ) ≥ (i + 1)2i+3 + (i + 2)2i+1 + (i + 3)2i+3

(i + 3)2i+2 + (i + 2)2i+1 · 3i + 8
6i + 10

=
9i + 18
6i + 10

,

which is greater than 8
5 if i ≤ 3. We conclude, from (3.7) that dr(X, Σ9) > 8/5, which

is a contradiction.

By Theorem 3.12, we observe that it could be possible that there exists some
strategy X with optimal discovery ratio in Σ9 such that x5 differs from x̄5. What
if we only slightly decreases the value of x5 and remain aggressive for xi with i ∈
[6,+∞), is this strategy in Σ9 and does it have optimal discovery ratio? The answer
is positive. Formally, consider the strategy Xε = (x′0, x′1, . . .), defined by xi = x̄i,
for 0 ≤ i ≤ 4, x5 = x̄5 − ε and xi = 3xi−1 − Ti−2(Xε), for i ≥ 6, where ε is some
sufficiently small positive parameter.

Lemma 3.13. The strategy Xε can be described by the sequence x′n = (n + 2)2n+1, for
n ∈ [1, 4], and x′n = (n + 2)2n+1 − (n − 3)2n−6ε, for n ≥ 5. Moreover, Tn(Xε) =
(n + 1)2n+2, for n ∈ [1, 4], and Tn(Xε) = (n + 1)2n+2 − (n− 4)2n−5ε, for n ≥ 5.

Proof. Since Xε mimics aggressive in the first five iterations, then x′n = x̄n = (n +
2)2n+1 and Tn(Xε) = Tn(aggressive) = (n + 1)2n+2, for n ∈ [1, 4].
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We will show, by induction on n, that for all n ≥ 5, x′n = (n + 2)2n+1 − (n −
3)2n−6ε and Tn(Xε) = (n + 1)2n+2 − (n− 4)2n−5ε. Note that, the base case, namely
n = 5, follows directly from the definition of Xε. For the induction hypothesis,
suppose that for i ∈ [5, n], it holds that

x′i = (i + 2)2i+1 − (i− 3)2i−6ε

and
Tn(Xε) = (n + 1)2n+2 − (n− 4)2n−5ε.

We will show that the claim holds also for n + 1. Since

x′n+1 = 3x′n − Tn−2(Xε) (by definition of x′n+1)

= 3(n + 2)2n+1 − 3(n− 3)2n−6ε− Tn−2(Xε). (by induction hypothesis)

We distinguish two cases. For n = 5,

x′n+1 = 3(n + 2)2n+1 − 3(n− 3)2n−6ε− Tn−1(Xε)

= 3(n + 2)2n+1 − 3(n− 3)2n−6ε− Tn−1(aggressive) (by definition of Xε)

= 3(n + 2)2n+1 − 3(n− 3)2n−6ε− n2n+1 (Subst. of Tn−1(aggressive))

= (n + 3)2n+2 − 3(n− 3)2n−6ε (arranging terms)

= (5 + 3)25+2 − 3ε. (Subst. of n = 5 in 3(n− 3)2n−6)

Then

T6(Xε) = T5(Xε) + x′6 (by definition of T6(Xε))

= (5 + 1)25+2 − (5− 4)25−5ε + (5 + 3)25+2 − 3ε (by ind. hyp.)

= 7 · 28 − 4ε. (arranging terms)

For n ≥ 6,

x′n+1 = 3(n + 2)2n+1 − 3(n− 3)2n−6ε− Tn−1(Xε)

= 3(n + 2)2n+1 − 3(n− 3)2n−6ε− (n2n+1 − (n− 5)2n−6ε)
(Subst. of Tn−1(Xε))

= (n + 3)2n+2 − (n− 2)2n−5ε. (arranging terms)

Then

Tn+1(Xε) = Tn(Xε) + x′n+1 (by definition of Tn+1(Xε))

= (n + 1)2n+2 − (n− 4)2n−5ε + (n + 3)2n+2 − (n− 2)2n−5ε
(by ind. hyp.)

= (n + 2)2n+3 − (n− 3)2n−4ε, (arranging terms)

which completes the proof of the lemma.

Corollary 3.14. The strategy Xε = (x′0, x′1, . . .) with ε = 1, is in Σ9. Moreover, we have
x′n = (n + 2)2n+1, for n ∈ [1, 4], and x′n = (127n + 259)2n−6, for n ≥ 5. In addition,
Tn(X1) = (n + 1)2n+2, for n ∈ [1, 4], and Tn(X1) = (127n + 132)2n−5, for n ≥ 5.

Proof. We choose the parameter ε = 1, then by Lemma 3.13, we have x′n = (n +
2)2n+1, for n ∈ [1, 4] and x′n = (n + 2)2n+1 − (n− 3)2n−6 = (127n + 259)2n−6 ≥ 0,
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for n ≥ 5. Then the strategy is well defined. Moreover, Tn(X1) = (n + 1)2n+2− (n−
4)2n−5 = (127n + 132)2n−5, for n ≥ 5.

The following theorem provides evidence that the strategy of optimal discovery
ratio in Σ9 is not unique.

Theorem 3.15. We have dr(X1, Σ9) =
8
5 .

Proof. We will express the discovery ratio using (3.7). Since X1 mimics aggressive
in the first five iterations, then for n ∈ [1, 4], we have

sup
n∈[1,4]

sup
δ∈(0,x′n−x′n−2]

Fn(X1, δ) =
8
5

.

For n = 5 and δ ∈ (0, x′5 − x′3], we have x′4 + x′3 + δ ∈ (x′4 + x′3, x′4 + x′5], which
implies that m∗(x′4 + x′3 + δ) = 5. Then

F5(X1, δ) =
2T4(X1) + x′3 + δ

d∗(x′4 + x′3 + δ)
(by Equation (3.7))

=
2T4(X1) + x′3 + δ

(x′4 + x′3 + δ)
6m∗(x′4+x′3+δ)+4
3m∗(x′4+x′3+δ)+5

(by Lemma 3.8)

=
2T4(X1) + x′3 + δ

(x′4 + x′3 + δ)
· 20

34
(Subst. of m∗(x′4 + x′3 + δ))

=
2 · (4 + 1)24+2 + (3 + 2)23+1 + δ

(4 + 2)24+1 + (3 + 2)23+1 + δ
· 20

34
(by Lemma 3.13)

=
720 + δ

272 + δ
· 20

34
(arranging terms)

≤ 720 · 20
272 · 34

(monotonicity on δ)

=
450
289

<
8
5

.

For n = 6 and δ ∈ (0, x′6 − x′4], we have x′5 + x′4 + δ ∈ (x′5 + x′4, x′6 + x′5], which
implies that m∗(x′5 + x′4 + δ) ∈ [5, 6]. Then

F6(X1, δ) =
2T5(X1) + x′4 + δ

d∗(x′5 + x′4 + δ)
(by Equation (3.7))

=
2T5(X1) + x′4 + δ

(x′5 + x′4 + δ)
6m∗(x′5+x′4+δ)+4
3m∗(x′5+x′4+δ)+5

(by Lemma 3.8)

≤ 2T5(X1) + x′4 + δ

(x′5 + x′4 + δ)
· 3 · 5 + 5

6 · 5 + 4
(Subst. of m∗(x′n−1 + x′n−2 + δ))

=
2 · (5 + 1)25+2 − 2 + (4 + 2)24+1 + δ

(5 + 2)25+1 − 1 + (4 + 2)24+1 + δ
· 20

34
(by Lemma 3.13)

=
1726 + δ

639 + δ
· 20

34
(arranging terms)

≤ 1726 · 20
639 · 34

(monotonicity on δ)

=
17260
10863

<
8
5

.
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For n ≥ 7 and δ ∈ (0, x′n − x′n−2], we have

x′n−1 + x′n−2 + δ > x′n−1 + x′n−2 (by δ > 0)

= (n + 1)2n − (n− 4)2n−7 + n2n−1 − (n− 5)2n−8

(by Lemma 3.13)

= (381n + 269)2n−8. (arranging terms)

Since (3(n− 2) + 5)2n−2 < (381n + 269)2n−8 < (3(n− 1) + 5)2n−1, it implies that
m∗(x′n−1 + x′n−2 + δ) ≥ n− 1. Then

Fn(X1, δ) =
2Tn−1(X1) + x′n−2 + δ

d∗(x′n−1 + x′n−2 + δ)
(by Equation (3.7))

=
2Tn−1(X1) + x′n−2 + δ

(x′n−1 + x′n−2 + δ)
6m∗(x′n−1+x′n−2+δ)+4
3m∗(x′n−1+x′n−2+δ)+5

(by Lemma 3.8)

≤
2Tn−1(X1) + x′n−2 + δ

(x′n−1 + x′n−2 + δ)
· 3(n− 1) + 5

6(n− 1) + 4
(Subst. of m∗(x′n−1 + x′n−2 + δ))

=
2n2n+1 − (n− 5)2n−5 + n2n−1 − (n− 5)2n−8 + δ

(n + 1)2n − (n− 4)2n−7 + n2n−1 − (n− 5)2n−8 + δ
· 3(n− 1) + 5

6(n− 1) + 4
(by Lemma 3.13)

=
9(127n + 5)2n−8 + δ

(381n + 269)2n−8 + δ
· 3(n− 1) + 5

6(n− 1) + 4
(arranging terms)

≤ 9(127n + 5)2n−8

(381n + 269)2n−8 ·
3(n− 1) + 5
6(n− 1) + 4

(monotonicity on δ)

<
8
5

. (monotonicity on n)

3.4 Computational Evaluation

In this section we present computational results on the implementation of strate-
gies aggressive, doubling and the function d∗(L). Recall that d∗(L) is the minimum
cost at which a competitively optimal strategy can discover a length equal to L. In
particular, we compare the discovery cost and the discovery ratio of aggressive and
doubling for some given L. We choose L to be integral in the range [1, 107].

Figure 3.2 illustrates the discovery cost of two strategies aggressive, doubling
and also the optimal cost d∗ for L ∈ [1, 107]. We observe that the optimal cost d∗

is almost linear, unlike D(aggressive, L) or D(doubling, L) which are piecewise
linear functions with slopes increasing in L. In addition, we observe that there is no
clear dominance between D(aggressive, L) and D(doubling, L) for some fixed L.

Figure 3.3 illustrates the ratio D(aggressive, L)/d∗(L) and D(doubling, L)/d∗(L)
for L ∈ [1, 107]. We observe that the fluctuations of the ratio, as a function of L, tend
to decrease in L. In addition, the worst case ratio occurs at the very first steps for
both aggressive and doubling. Strategy doubling has a worse discovery ratio be-
cause of the worse performance at the very first steps.

The above results are based on the worst-case analysis. However, for a given
L, we cannot really distinguish the performance of aggressive and doubling. This
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FIGURE 3.2 – D(aggressive, L), D(doubling, L) and d∗(L) as a func-
tion of L.

FIGURE 3.3 – Ratios D(aggressive, L)/d∗(L) and
D(doubling, L)/d∗(L) as a function of L.

motivates a further study on average discovery cost to distinguish the performance
of these two algorithms. Let avg(X, L) :=

∫ L
1 D(X, l) · dl/(L− 1) denote the average

discovery cost of a strategy X on the segment [1, L].
Figure 3.4 illustrates the average discovery cost avg(aggressive, L) and avg(doubling, L)

for L ∈ [1, 107]. We observe that avg(aggressive, L) dominates avg(doubling, L) for
L ∈ [1, 107]. This may imply a strong separation on the performance of these two
algorithms on average-case analysis.

3.5 Conclusion

In this chapter, we revisited the linear search problem and provided a separa-
tion on the performance of doubling and aggressive by applying the discovery
ratio as supplementary to the competitive ratio. More specifically, both doubling
and aggressive have an optimal competitive ratio 9. However, we showed that the
strategy aggressive has an optimal discovery ratio 8

5 against the set of 9-competitive
strategies. In contrast, we showed that the strategy doubling has discovery ratio 7

3
against the set of 9-competitive strategies. In addition, we proved that any compet-
itively optimal strategy that is also optimal with respect to the discovery ratio must
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FIGURE 3.4 – Average discovery cost of aggressive and doubling as
a function of L.

have the exact same behavior as the aggressive strategy in the first five iterations.
Moreover, we showed that such competitively optimal strategies with optimal dis-
covery ratio is not unique.

In terms of techniques, the main technical result in establishing the discovery
ratios consisted of answering the following question: given a length l ∈ R+, what
is the strategy S that minimizes, D(S, l), the cost for discovering a total length equal
to l in S, and how can one express this minimum discovery cost? This is a type of
inverse problem that can be of independent interest in the context of search problems,
which is also known as the reach of a strategy [38], or extent in [41]. This inverse
problem is very useful in the competitive analysis of search strategies. We modeled
this problem as a linear program for whose objective value we first gave a lower
bound; then we showed this bound is tight by providing an explicit 9-competitive
strategy which minimizes D(S, l).

Furthermore, we discuss a variant of the linear search problem related to the
stochastic dominance. Stochastic dominance defines a partial order on random vari-
ables. A random variable X is stochastically dominated by a random variable Y if,
for all c ∈ R, we have Pr[X ≤ c] ≥ Pr[Y ≤ c]. Suppose that instead of the infinite
line, the search environment consists of a bounded line of length L, which may or
may not be known to the searcher, and that the origin is located in the middle of the
line. Besides, we assume that there is a uniform distribution over the target position.
We believe that our approach is still applicable to obtain a stronger conclusion on
stochastic dominance using the discovery cost. The main technical obstacle is that
we have to consider the edge case very carefully, where the target is located close to
the endpoint of the line.
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Chapter 4

Contract Scheduling with End
Guarantees

This chapter contains material from the joint paper, Earliest Completion Scheduling
of Contract Algorithms with End Guarantees, with Spyros Angelopoulos. This work
appeared in the 28th International Joint Conference on Artificial Intelligence (IJCAI),
2019 [6].

As discussed in Section 1.1.2, for some problems, it is convenient to formulate
them using linear programming. Sometimes, we can look into the structure of the
optimal solutions to linear programming to obtain an optimal solution. We have
shown in Chapter 3 how this idea can be applied to the linear search problem. In
this Chapter 4, we show another application from Artificial Intelligence in the design
of the interruptible system using contract algorithms, optimizing a certain efficiency
criterion.

4.1 Introduction

As discussed in Section 1.3.3, algorithms with anytime capabilities are important
in the design of intelligent systems. Recall that such an algorithm can return a valid
solution even if it is interrupted during its execution. Usually, the algorithm is ex-
pected to find better solutions the longer it keeps running. For instance, consider
the local search algorithm, which consists of moving from solution to solution in the
space of candidate solutions by applying local changes, until an optimal solution
is found or a time-bound is elapsed. However, local search can not guarantee the
optimality of the returned solution.

One natural goal is then to build an interruptible system using algorithms that
may not be interruptible. This motivated research in the design of interruptible sys-
tems with contract algorithms [58]. Specifically, a contract algorithm has an intended
queried time as one of its input parameters. If a contract algorithm is queried be-
fore this time, then it may output a meaningless result. We can see that the contract
algorithm itself is not interruptible.

A general technique for obtaining interruptible systems by contract algorithms
was first given in [58]. The idea is to run multiple times the contract algorithm by
iteratively increasing the available execution time of the contract algorithm. Each
piece of such execution is called a contract. More precisely, a natural approach is to
iteratively double the available execution time of the contract algorithm. In other
words, there is a schedule of executions of the same algorithm in which the i-th exe-
cution is run for a time equal to 2i (see Figure 4.1 for illustration). More specifically,
if an interruption occurs at time t, then it is still guaranteed that a contract of length



64 Chapter 4. Contract Scheduling with End Guarantees

FIGURE 4.1 – A schedule of executions of the same algorithm in which
the i-th execution time is 2i.

FIGURE 4.2 – A schedule of interleaved executions of 2 contract algo-
rithms represented by a red (respectively, blue) blocks. In this exam-
ple, the largest contract completed before interruption by red (respec-

tively, blue) algorithm is of length 1 (respectively, 3).

at least t/4 has completed its execution. The performance of such interruptible algo-
rithms is often measured using acceleration ratio, which was first introduced in [58].
The acceleration ratio is defined as the multiplicative gap between the interruption
t and the largest contract length completed by time t in the worst case. For instance,
the above described algorithm has an acceleration ratio equal to 4, which is optimal
under this measure [58].

The above setting can be generalized to an optimization problem with n differ-
ent instances, where each instance is associated with a contract algorithm [66]. The
objective is to design a schedule of interleaved executions of these n contract algo-
rithms, and the corresponding acceleration ratio is defined as the worst-case ratio
between the interruption time t and the contract length of the problem instance that
has made the least progress by time t (see Section 4.1.2 for a formal definition), as
illustrated in Figure 4.2.

Contract scheduling has been studied under different variants. For instance,
[66] gave an optimal schedule for multiple problem instances in a single proces-
sor, and [14] showed optimal schedules for a single problem instance in several
parallel processors, which was later generalized to the multi-processor and multi-
instance model in [13, 47]. Moreover, contract scheduling can also be considered as
an application of resource allocation under uncertainty. For instance, minimizing
the acceleration ratio for a single problem instance is equivalent to the online bidding
problem (presented in Section 1.4.2), which is used in [22] as a framework of efficient
algorithms based on iterative doubling for some combinatorial optimization prob-
lems.

As described earlier, the interruption may occur arbitrarily far in the future. All
previous work on contract scheduling assumed that the schedule is unbounded.
However, in practice, it is often the case where the execution of a schedule of con-
tract algorithms may reach some point, beyond which any progress will be only
marginal. In other words, the execution can be considered completed beyond this
point. For instance, consider the class of Polynomial Time Approximation Schemes
(PTAS). Many of them are based on Dynamic Programming and thus are not in-
terruptible [47]. These algorithms take as input a parameter ε > 0 and output a
solution within a factor of (1 + ε) of the optimal. Thus, for a given ε, we are able to
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compute the required time (i.e., contract length) that is required to achieve the de-
sired approximation. This implies that we can know exactly what is the minimum
execution time to achieve a given target approximation.

Motivated by the above observation, our objective is to obtain a finite schedule
with the following properties:

1. It should attain the optimal acceleration ratio;
2. It should minimize the time required to satisfy the end guarantees, among all

schedules that satisfy the first property.
The end guarantee is defined as the minimum required value be attained upon com-
pletion on the length of the largest contract completed. In other words, for a given
end guarantee L, each contract algorithm has to complete a contract of length at least
L upon completion.

4.1.1 Contribution

The main contribution of this chapter is an optimal schedule for the problem de-
scribed above, namely for the earliest completion scheduling of contract algorithms
with end guarantees. We propose a schedule that is theoretically optimal and can
be computed in polynomial time in the size of the end guarantee L, for L > 0. As-
suming that the number of problem instances n is constant and independent of L,
we will show that the time complexity is then polynomial in the size of the input.
In addition, we present some computational results on its implementation, which
demonstrate that it achieves a considerable improvement over the known schedule
that optimizes the acceleration ratio, but is oblivious of L.

This chapter is structured as follows: We begin in Section 4.2 by showing the
existence of an optimal cyclic schedule. Note that a strategy is called cyclic if con-
tracts are assigned to problems in round-robin fashion. This allows us to formulate
the problem by a linear program (LP). In Section 4.3 we show that an optimal cyclic
strategy saturates the constraints of the LP. This allows us to define an appropriate
recurrence relation over the contract lengths, which yields the optimal schedule. In
Section 4.4, we provide a computational evaluation of the obtained schedule.

4.1.2 Preliminaries

We assume a single processor and n problem instances or simply problems, num-
bered from 0 to n− 1. A schedule X of m contracts can be described as a sequence
of the form ((xi, pi))i∈[1,m], meaning that the i-th scheduled contract in X has length
xi > 0 and is assigned to problem pi ∈ {0, . . . , n− 1}. We also define Ni(X) as the
index of the next contract that is assigned to the problem pi after the i-th contract
(xi, pi) in the schedule X. In other words, Ni(X) = min{j > i|pj = pi}. If there
is no j > i with pj = pi, then we define Ni = i. For interruption time t, let `p,t(X)
denote the length of the longest execution of a contract algorithm for problem p that
has completed by time t in X. Then the acceleration ratio of X [58] is defined as

ρ(X) = sup
t,p∈[0,n−1]

t
`p,t(X)

. (4.1)

We denote by Tj(X) the completion time of the j-th contract in X and by T(X) the
completion time of X. In other words, T(X) is also the completion time of its last
contract. It is not hard to see that the worst-case interruptions occur infinitesimally
prior to the completion of a contract, hence we obtain the following useful formula
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for a schedule of m contracts:

ρ(X) = sup
j∈[n+1,m],p∈[0,n−1]

Tj(X)

`p,T−j (X)(X)
, (4.2)

where T−j (X) denotes a time right before Tj(X) but arbitrarily close. We also make
the standard assumption that no interruption occurs unless each problem instance
has completed a contract in the schedule. Without loss of generality, we can assume
that X will never schedule a contract of length l for problem p if it has already fin-
ished a contract for p of length at least l by that time.

A schedule is called cyclic if its i-th contract is assigned to the problem i mod n,
and monotone if xi+1 ≥ xi, for all i. The optimal acceleration ratio, denoted by ρ∗n, can
be attained by a cyclic (and monotone) strategy such that xi = bi, with b = n+1

n [66],

from which it follows that ρ∗n = n
( n+1

n

)n+1
. We will denote by S∗n the set of all

schedules of optimal acceleration ratio ρ∗n.
Given a schedule X, and an end guarantee L ∈ R+, we say that X is feasible for L if

for each problem p there is a contract for p in X that has length at least L. A schedule
X that is feasible for L is called earliest for L if for any other schedule X′ feasible for
L, T(X) ≤ T(X′). Using this notation, we can state our problem as follows: Find
schedule X∗ (feasible for L) such that X∗ ∈ S∗n, and for every X′ ∈ S∗n, T(X) ≤ T(X′).
We call such a schedule optimal.

Example 4.1. Consider the simple case n = 1, and L = 30. An example of a schedule
feasible for L is a schedule X with contract lengths 1, 2, 4, 8, 16, 30, which has com-
pletion time T(X) = 61. Note also that X is in S∗1 , since it has an optimal acceleration
ratio equal to 4.

4.2 Cyclic Schedules and the LP Formulation

In this section we show that for a given end guarantee L, there is a cyclic schedule
that is optimal for L. This will allow us to focus exclusively on this class of schedules,
which we will later analyze by our technique on LP. To this end, we first define a
property that will be useful in the proof.

Definition 4.2. A schedule X = ((xi, pi))i∈[1,m] is called normalized if for each i ∈
[1, m], `pi ,Ti−1(X)(X) ≤ `q,Ti−1(X)(X), for all q 6= pi.

Informally, a normalized schedule X assigns, at each time, a contract to the prob-
lem that has been worked the least among all problems up to that time. The follow-
ing lemma shows that for every L there exists an optimal normalized schedule. Its
proof expands the property that is already known, namely that there exists a nor-
malized schedule that has optimal acceleration ratio [47].

Lemma 4.3. For every schedule X feasible for L, there exists a normalized schedule X′

feasible for L such that ρ(X′) ≤ ρ(X) and T(X′) ≤ T(X).

Proof. Suppose that X is not normalized for the i-th contract. Then, there exists a
problem q 6= pi such that `q,Ti−1(X)(X) < `pi ,Ti−1(X)(X). Consider X′ that is derived
from X as follows: X′ is identical to X for the first i − 1 contracts and its i contract
is (xi, q). Furthermore, for all j > i, the j-th contract in X is (xj, r), where r = pj,
if pj /∈ {pi, q}, r = q, if pj = pi, and r = pi, if pj = q. In words, X′ swaps the
problem assignments of contracts for pi and q for all such contracts scheduled after
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time Ti−1(X) in X. Note that T(X′) = T(X). We first argue that if X is feasible for L,
then so is X′. We consider two cases: if a contract for q is scheduled after time Ti(X)
in X, then both pi, q have completed a contract of length at least L in both X and X′,
hence X′ is feasible for L. Otherwise, since X is feasible for L, X′ clearly completes
a contract of length at least L for pi, and remains to argue the same about q. This
is indeed the case, since for X to be feasible, it must be that there is a contract of
length at least L for q that was scheduled prior to time Ti−1(X) in X, hence one such
contract for q is in X′ as well.

It remains to show that ρ(X′) ≤ ρ(X). Again we consider two cases, depending
on whether a contract for q is scheduled after time Ti(X) in X. Suppose first that this
is not the case, then we observe that an interruption t ≥ Ti that occurs right before
a contract for pi in X corresponds to an interruption t that occurs right before a con-
tract for q in X′. Since max{`pi ,t(X), `q,t(X)} ≤ max{`pi ,t(X′), `q,t(X′)}, it follows
that in this case ρ(X′) ≤ ρ(X). It remains to consider the case that there is a contract
for q that is scheduled after time Ti(X) in X; let T′q denote the end time of this con-
tract. From the previous argument, interruptions that occur prior to T′q contribute to
the acceleration ratio of X at least as much as the corresponding interruptions in X′.
Moreover, for all interruptions t with t ≥ T′q have the same contribution in X as in
X′, since maxi∈[0,...,n−1] `i,t(X) = maxi∈[0,...,n−1] `i,t(X′). Thus, it follows that in this
case as well ρ(X′) ≤ ρ(X) and the proof is completed.

Corollary 4.4. The acceleration ratio of a normalized schedule X = ((xi, pi))i∈[1,m] of m
contracts can be computed as follows:

ρ(X) = sup
j∈[n+1,m]

Fj(X),

where Fj(X) =
Tj(X)

x
N−1

j (X)
and N−1

j (X) is the index of the last scheduled contract for the prob-

lem pj before j in the schedule X.

Proof. By definition of a normalized schedule, for j ∈ [n + 1, m], we have

inf
p∈[0,n−1]

`p,T−j (X)(X) = `pj ,T−j (X)(X) = xN−j (X).

Combining with (4.2), we get

ρ(X) = sup
j∈[n+1,m]

sup
p∈[0,n−1]

Tj(X)

`p,T−j (X)(X)

= sup
j∈[n+1,m]

Tj(X)

`pj ,T−j (X)(X)

= sup
j∈[n+1,m]

Tj(X)

xN−1
j (X)

,

which concludes the proof.

The following property follows easily from the definition of a normalized sched-
ule.

Lemma 4.5. Any optimal normalized schedule X is such that for every problem p, X sched-
ules at most one contract for p of length at least L, where L is the end guarantee.
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Proof. By way of contradiction, suppose that there is a problem p for which X sched-
ules two contracts of length at least L. Let C1, C2 denote these contracts, in the order
they appear in the schedule. Since X is normalized, at the moment C2 is about to
start, every other problem in X has completed a contract of length at least the length
of C1, and thus at least L. Thus, at that moment, X has met the end guarantee. One
could then obtain a schedule X′ that is identical to X up to, but not including C2. X′

is also feasible for L; moreover, ρ(X′) ≤ ρ(X). However, T(X′) < T(X), a contradic-
tion.

Lemma 4.6. For every normalized schedule X optimal for L, there exists a normalized and
monotone schedule X∗ optimal for L such that ρ(X∗) ≤ ρ(X) and T(X∗) ≤ T(X).

Proof. The proof is very similar to the proof by López-Ortiz et al. [48] for searching
on bounded rays. Let X = (xi, pi) be a normalized schedule optimal for L. If X
is monotone, then there is nothing to show. Otherwise, we assume that there is a
contract k, 1 ≤ k ≤ m such that xk+1 < xk. Let X∗ be a schedule which is equal to X
except that, for all contracts i ≥ k (i.e. scheduled after contract k), the role of pk and
pk+1 is exchanged as are xk and xk+1. More precisely, this can be achieved by setting,
(x∗k , Nk(X∗)) = (xk+1, Nk+1(X)); (x∗k+1, Nk+1(X∗)) = (xk, Nk(X)); For all i ∈ [1, m],
p∗i = pi. For i 6∈ {k, k + 1}, (x∗i , Ni(X∗)) = (xi, Ni(X)), unless x∗k+1 ≥ L (x∗k ≥ L,
respectively), in which case we set Nk+1(X∗) = k + 1 (Nk(X∗) = k, respectively).

By definition of X∗, we have T(X∗) = T(X). Moreover, X is feasible for L, which
implies that X∗ is also feasible for L by construction. It remains to show that ρ(X∗) ≤
ρ(X). By Corollary 4.4, it suffices to show that

sup
j∈[n+1,m]

Fj(X∗) ≤ sup
j∈[n+1,m]

Fj(X),

with Fj(X) =
Tj(X)

x
N−1

j (X)
.

By observing that Fj(X) and Fj(X∗) differ only for the indices k, k + 1, Nk and
Nk+1. We are going to show that

Fk(X∗) < Fk(X);

Fk+1(X∗) = Fk+1(X);

FNk(X∗)(X∗) ≤ FNk+1(X)(X);

FNk+1(X∗)(X∗) = FNk(X)(X),

which conclude the proof. To this end, for i ∈ {k, k + 1}, we distinguish two cases,
namely for Ni(X) 6= i and Ni(X) = i. We have

Fk(X∗) =
Tk(X∗)
x∗

N−1
k (X∗)

(By definition of Fk(X∗))

=
Tk(X)

xN−1
k (X)

(By definition of X∗)

<
Tk−1(X) + xk

xN−1
k (X)

(From xk+1 < xk)

= Fk(X); (By definition of Fk(X))
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Fk+1(X∗) =
Tk+1(X∗)
x∗

N−1
k+1(X∗)

(By definition of Fk+1(X∗))

=
Tk−1(X) + xk+1

xN−1
k (X)

(By definition of X∗)

= Fk(X); (By definition of Fk(X))

For the case Nk 6= k, we have

FNk(X∗)(X∗) =
TNk(X∗)(X∗)

x∗k
(By definition of FNk(X∗)(X∗))

=
TNk+1(X)(X)

xk+1
(By definition of X∗)

= FNk+1(X)(X); (By definition of FNk+1(X)(X))

For the case Nk = k, we have

FNk(X∗)(X∗) =
Tk(X∗)

N−1
k (X∗)

(By definition of FNk(X∗)(X∗))

=
Tk(X∗)
N−1

k (X)
(By definition of X∗)

<
Tk(X)

N−1
k (X)

(From xk+1 < xk)

= FNk(X)(X); (By definition of FNk(X)(X))

For the case Nk+1 6= k + 1, we have

FNk+1(X∗)(X∗) =
TNk+1(X∗)(X∗)

x∗k+1
(By definition of FNk+1(X∗)(X∗))

=
TNk(X)(X)

xk
(By definition of X∗)

= FNk(X)(X). (By definition of FNk(X)(X))

For the case Nk+1(X) = k + 1, we have

FNk+1(X∗)(X∗) = Fk+1(X∗)

=
Tk+1(X∗)
x∗

N−1
k+1(X∗)

(By definition of Fk+1(X∗))

=
Tk+1(X)

xN−1
k+1(X)

(By definition of X∗)

= FNk(X)(X); (By definition of FNk(X)(X))

We conclude the proof by an exchanging argument as what we do for a bubble
sort.

The next theorem is central in that it allows us to obtain an LP formulation from
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the problem. The theorem implies that optimal schedules can be found in the space
of cyclic and monotone schedules.

Theorem 4.7. Given the end guarantee L, there is a cyclic and monotone schedule that is
optimal.

Proof. Let X = ((xi, pi))i∈[1,m] denote an optimal schedule for the given L. From
Lemma 4.3, 4.5 and 4.6, we can assume that X is monotone, normalized, and that for
every problem p, it schedules at most one contract of length at least L. Again, we
follow the proof by López-Ortiz et al. [48]. If X is cyclic, then there is nothing to show.
Otherwise, let X∗ = (x∗i , p∗i )i∈[1,m] be a schedule which is equal to X except that it is
considered cyclic. More precisely, for all i ∈ [1, m], x∗i = xi, and for i ∈ [n + 1, m],
p∗i = p∗i−n. By observing that T(X∗) = T(X) and that X∗ is feasible for L, it remains
to show that ρ(X∗) ≤ ρ(X). It suffices to show that, for every k ∈ [n + 1, m], there is
a j ∈ [n + 1, m] with Fk(X∗) ≤ Fj(X), by Corollary 4.4.

For each problem p ∈ [0, n− 1], let jp be the last contract scheduled on problem
p before contract k. Thus, there exists one problem p such that jp ≤ k − n. By
monotonicity of X, we have xjp ≤ xk−n. Let kp ≥ k be the index of the first contract
scheduled on problem p after contract k. Note that kp must exist, otherwise we have
xjp ≥ L and for all i ≥ jp, xi ≥ L by monotonicity of X. In particular, there are at least
n + 1 contracts of length at least L, namely for the indices i ∈ [jr, k]. By Lemma 4.5,
there are at most n contracts of length at least L if X is a normalized schedule and
optimal for L. Thus, we obtain a contradiction. Hence,

Fk(X∗) =
Tk(X∗)
x∗

N−1
k (X∗)

(By definition of Fk(X∗))

=
Tk(X)

xk−n
(By definition of X∗)

≤ Tk(X)

xjp

(From xjp ≤ xk−n)

≤
Tkp(X)

xjp

(From k ≤ kp and monotonicity of X)

= Fkp(X), (By definition of Fkp(X∗))

which completes the proof.

Theorem 4.7 allows us to formulate our problem using an LP. More precisely, it
suffices to show that there exists a cyclic schedule X∗ of m∗ contracts of the form
X∗ = (x∗1 , . . . , x∗m∗) whose contracts lengths are the optimal solution to the following
LP, which we denote by Pm.

min
m

∑
i=1

xi

subject to xi ≥ L, i ∈ [m− n + 1, m] (Fi)
i

∑
j=1

xj ≤ ρ∗n · xi−n, i ∈ [n + 1, m] (Ci)

xi ≤ xi+1, i ∈ [1, m− 1] (Mi)
x1 ≤ τ. (I)
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Here, constraints (Fi) model the feasibility of X for L; constraints (Ci) imply that
X has optimal acceleration ratio, using (4.2); and constraints (Mi) model the mono-
tonicity of X. Last, we need an initialization constraint for x1, namely (I), which
states that x1 has length at most a fixed number τ, which is a constant that does not
depend on other parameters. This is a reasonable assumption but is also required to
exclude some unacceptable solutions. Otherwise, a cyclic schedule that starts with
n contracts of length L would be feasible and optimal for the LP, but this is by no
means an interruptible schedule.

4.3 Obtaining an Optimal Schedule

We will show how to obtain an optimal schedule given L. We will denote by
T∗(L) the completion time of an optimal schedule. Let C∗m denote the class of all
cyclic schedules with m contracts that have optimal acceleration ratio ρ∗n. For sim-
plicity we denote Ti(X) by Ti when X is clear from context, with T0 = 0.

We first give a road map of our approach. We begin by showing a lower bound
on the lengths xi of any schedule of optimal acceleration ratio (Lemma 4.9). This
lower bound is expressed inductively in terms of Ti and two sequences a, b, which
are defined appropriately in order to satisfy the inductive arguments. Next, we need
to find the best value of m. To this end, we first show that if Pm is feasible, then the
lower bounds on the xi’s hold with equality. This allows us to express the objective
in terms of the parameters n, L and the sequences a, b (Lemma 4.10). Finally, to find
the best value of m, we argue that it suffices to identify the smallest m for which Pm
is feasible (Lemma 4.11).

We define the sequence a and b recursively as follows:

ai =

 1, i ∈ [0, n− 1]
∑n−1

j=0 ai−n+j ∏
j−1
k=0(bi−n+k+1)

ρ∗n−∏n−1
k=0 (bi−n+k+1)

, i ≥ n
(4.3)

and

bi =

{
0, i ∈ [0, n− 1]

∏n−1
k=0 (bi−n+k+1)

ρ∗n−∏n−1
k=0 (bi−n+k+1)

, i ≥ n.
(4.4)

Lemma 4.8. For every i ≥ 0, it holds that ai > 0 and bi ∈ [0, 1
n ]. In addition, (bi)i≥0 is

monotone increasing with limi→+∞ bi =
1
n .

The following lemma lower bounds the contract lengths of schedules in C∗m.

Lemma 4.9. For any positive integers m, n with m > n and for every schedule X =
(x1, . . . , xm), with X ∈ C∗m, it holds that xi ≥ am−i · xm−n+1 + bm−i · Ti−1 for i ∈ [1, m].
In addition, xi = am−i · xm−n+1 + bm−i · Ti−1 if constraints (Cj) for j ∈ [i, m] and (Mi) for
i ∈ [m− n + 1, m− 1] are tight.

Proof. The proof is by induction on i, for i ∈ [1, m]. The base cases can be read-
ily verified. For the inductive step, suppose that for i ≤ m − n it holds that xj ≥
am−jxm−n+1 + bm−jTj−1 with j ∈ [i + 1, m]. We will show that xi ≥ am−ixm−n+1 +
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bm−iTi−1.

ρ∗nxi ≥ Ti+n = xi+n + Ti+n−1

≥ am−i−n · xm−n+1 + (bm−i−n + 1)Ti+n−1

= am−i−n · xm−n+1

+ (bm−i−n + 1)(xi+n−1 + Ti+n−2).

Inductively, it follows that

ρ∗nxi ≥
(

n−1

∑
j=0

am−n−i+j

j−1

∏
k=0

(bm−n−i+k + 1)

)
xm−n+1

+
n−1

∏
k=0

(bm−n−i+k + 1)Ti,

which is equivalent to xi ≥ am−i · xm−n+1 + bm−iTi−1.

Lemma 4.9 allows us to find the optimal objective value of Pm, for a given m,
assuming Pm has a feasible solution. This is shown in the next lemma.

Lemma 4.10. Given m ≥ n, assuming that Pm has a feasible solution, then the objective
value of Pm is minimized if constraints (Fi) for i ∈ [m− n + 1, m], (Mi) for i ∈ [m− n +
1, m− 1] and (Ci) for i ∈ [n + 1, m] are tight. Moreover, the minimum objective value is(

n +
m−1

∑
j=n

aj

j−1

∏
k=n

(bk + 1)

)
L,

Proof. Given m ≥ n, for any feasible solution X = (x1, . . . , xm) of Pm, by Lemma 4.9,
we have

Tm =
m

∑
i=m−n+1

xi + Tm−n

≥ nL + Tm−n

= nL + (xm−n + Tm−n−1)

≥ (n + an)L + (bn + 1)Tm−n−1

= (n + an)L + (bn + 1)(xm−n−1 + Tm−n−2).

It follows inductively that

Tm ≥
(

n +
m−1

∑
j=n

aj

j−1

∏
k=n

(bk + 1)

)
L.

We note that this lower bound is reached if constraints (Fi) for i ∈ [m − n + 1, m],
(Mi) for i ∈ [m− n + 1, m− 1] and (Ci) for i ∈ [n + 1, m] are tight.

From Lemma 4.9 and 4.10, it follows that for a given m, under the assumption
that Pm has a feasible solution, the optimal solution is derived by means of the re-
currence relation

xi = am−ixm−n+1 + bm−iTi−1, with x1 = am−1L.
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The initial condition on x1 comes from the constraint (Cn+1) in the LP Pm. Note that
if am−1L > τ, then Pm is not feasible, from Lemma 4.9.

Moreover, from the statement of xi, we have that Ti = ρ∗n · xi−n for all i ∈ [n +
1, m], which implies that xi = ρ∗n(xi−n − xi−n−1), for all i ∈ [n + 2, m]. Moreover,
from Lemma 4.9, xi > 0. Therefore, xi−n > xi−n−1 for i ∈ [n + 2, m]. This in turn
means that the solution defined above satisfies constraints (Mi) of Pm (since xi = L
for i ∈ [m− n + 1, m]).

Lemma 4.11. The optimal objective value of Pm is monotone increasing in m. Thus, T∗(L)
is attained by the optimal objective value of PM, where M is the smallest integer m such that
Pm has a feasible solution.

Proof. For m ≥ n, by Lemma 4.10, the optimal objective value of Pm is α(m) · L, with
α(m) = n + ∑m−1

j=n aj ∏
j−1
k=n(bk + 1). By Lemma 4.8, it follows that α(m) is monotone

increasing in m. This concludes the proof.

It remains to find the smallest integer m such that Pm has feasible solutions; de-
note such m by m∗. To this end, we give an upper bound to m∗, as follows: we ob-
serve that the exponential cyclic strategy in which the i-th contract has length bi−1,
where b = n+1

n has optimal acceleration ratio ρ∗n (see the discussion in Section 4.1.2).
Thus, there are at most d log L

log b + ne = O(n log L) candidate values for m∗, and the

overall complexity of the algorithm is O(n2 log2 L). Algorithm 1 summarizes the
steps needed to obtain the optimal schedule.

Algorithme 1 : Earliest-completion scheduling of contract algorithms with
end guarantee L

1 Input: n ≥ 1, L > 0 and τ > 0
2 U ← d log L

log b + ne
3 Compute (ai)i∈[1,U], (bi)i∈[1,U] using the recurrence relations (4.3) and (4.4)
4 for m = n + 1 . . . U do
5 if am−1L ≤ τ then
6 Output xi, using the recurrence relation

xi = am−ixm−n+1 + bm−iTi−1(X), and stop.
7 end
8 end

4.4 Computational Evaluation

In this section we present computational results on the implementation of our
schedule. Recall that we denote completion time by T∗(L). In particular, we compare
T∗(L) to the completion time of the exponential cyclic schedule with base b = n+1

n ,
whose completion time we denote by Texp(L). Recall that the latter is the known
strategy with optimal acceleration ratio, which, however is oblivious of L. We choose
τ to be equal to 1, and L to be integral in the range [1, 106].

Figure 4.3 illustrates the completion times of the two schedules for n = 5. We
observe that T∗(L) is almost linear, unlike Texp(L) which is a step function. Simi-
lar almost-linear shapes were observed for T∗(L) for the values of n for which we
evaluated our schedule, with slopes increasing in n.
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FIGURE 4.3 – Completion times T∗(L) and Texp(L) as a function of L
for n = 5.

FIGURE 4.4 – Ratio Texp(L)/T∗(L) as a function of L.

Figure 4.4 illustrates the ratio Texp(L)/T∗(L) for n ∈ {1, 2, 20}. We observe that
the fluctuations of the ratio, as a function of L, tend to decrease in n.

Figure 4.4 motivates the evaluation of the ratio Texp(L)/T∗(L), for large L. This is
shown in Figure 4.5. The experiments suggest that a constant multiplicative gain is
achieved by the optimal schedule, and for L = 106 the ratio tends to approximately
1.65, for large n.

We conclude this section with an observation on the running time of the im-
plementation. In our computational evaluation, we observed that the values (ai)
described by (4.3) appear to be monotone decreasing in i, although this is hard to
prove analytically. If this indeed holds, then one can show the following fact con-
cerning the LP: If there exists m such that Pm has a feasible solution, then so does
Pm+1. This implies a heuristic in which instead of O(n log L) candidate values for
m, one needs to check only O(log n + log log L) values, using binary search, which
improves the complexity to O(n log(log n + log log L)).
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FIGURE 4.5 – Ratio Texp(L)/T∗(L), for L = 106.

4.5 Conclusion

In this chapter, we studied contract scheduling in a model in which the inter-
ruptible system is considered to be complete once certain performance guarantee
has been reached on all problem instances. In particular, we demonstrated that the
idea of using LP formulation only as guidance from Chapter 3 works so as to de-
sign a schedule that has best-of-both worlds guarantees (i.e. it completes the earliest
possible, and guarantees optimal interruptible performance according to the accel-
eration ratio).

Furthermore, we can solve optimally a “dual” problem in which the interrupt-
ible system is given a deadline, and the objective is to maximize the worst-case per-
formance among all problem instances while maintaining optimality according to
the acceleration ratio. More precisely, given a deadline D, we would like to obtain a
schedule X of contract algorithms for n problems with the following properties:

1. T(X) ≤ D (i.e. the schedule respects the deadline);
2. ρ(X) = ρ∗n; (optimal for acceleration ratio);
3. X maximizes the parameter minp `(p, D).

In other words, the objective is to obtain an interruptible system which has optimal
interruptible behavior up to the deadline, and which maximizes the progress that
has been made by the deadline among all problem instances. There are some real-
life applications of this setting. For instance, consider the medical diagnostic sys-
tems, in which the deadline models the absolute time by which a diagnosis needs
to be obtained. To solve this dual problem, we can apply Algorithm 1 in combina-
tion with the binary search over the space of end guarantees, namely with O(log D)
applications of our algorithm.
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Chapter 5

Online Bidding with Untrusted
Advice

This chapter contains material from the joint paper, Online Computation with Un-
trusted Advice, with Spyros Angelopoulos, Christoph Dürr, Shahin Kamali and Marc
Renault. This work appeared in the 11th Innovations in Theoretical Computer Science
conference (ITCS), 2020 [5]. The untrusted advice model was proposed by Spyros
Angelopoulos, Christoph Dürr and Shahin Kamali, and is presented in Section 1.4.
My contribution is to study the online bidding problem under the untrusted advice
model and to identify a Pareto optimal strategy assuming that the advice encodes
the hidden target. This part of the contribution is presented in Section 5.1.3.

5.1 Introduction

5.1.1 Online Computation with Advice

We first revisit the standard setting of online computation. As mentioned in Sec-
tion 1.1, in the standard online computation model, the entire input is not available
at the beginning. In contrast, the input is only revealed incrementally, piece by piece,
as a sequence of requests. For each such request, the algorithm has to immediately
make decisions without any knowledge on future requests, and these decisions are
irrevocable. Usually, the performance of an online algorithm is evaluated by the
competitive ratio as discussed in Section 1.1.1.

The above model captures many online problems, but it does not capture certain
situations. In practice, some additional information on the input sequence is some-
times given to online algorithms, which may encode partial information on optimal
decisions that the online algorithm should take. For instance, the online algorithm
may know the size of the input sequence at the beginning; or the online algorithm
may have some look ahead on the input sequence instead of looking at only one
request item at each time. Thus, the online algorithm is expected to use this kind
of additional information to improve its performance. Typically, this action is not
captured by the standard online computation model. A new model is then required
to quantify the power of this additional information.

This type of information that is given along with the input sequence to the online
algorithm, is called advice. In general, the advice is an arbitrary function of the input,
and is designed together with the algorithm. There is a trade-off between the num-
ber of advice bits and the performance of online algorithms. For instance, consider
the following two extreme cases:

— If the advice is empty, then the advice model reduces to the standard online
computation setting;
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— if the number of advice bits is infinite, then the advice may encode the of-
fline optimal decisions that the online algorithm should make, in which the
algorithm should have an optimal performance by following the advice.

A natural question here is to quantify the trade-off between the performance of on-
line algorithms and advice size, which has been studied since 2009. The term advice
complexity was introduced by Dobrev et al. [26] and the formal models were later
given by Böckenhauer et al. [15] and Emek et al. [30]. More precisely, an online prob-
lem P is c-competitive with advice of size f (n) if there is a c-competitive online
algorithm for P with advice of size at most f (n), where n is the length of the input
sequence. In the last decade, many online optimization problems have been studied
in the advice model, such as k-server, paging, makespan scheduling, etc. The survey
of Boyar et al. [18] provides a further discussion on this topic.

All previous work assumed that the advice is always correct. In other words, the
advice is assumed to be generated by some trusted oracle. Thus, there is no reason
for any online algorithm with advice to ignore the given advice. This assumption is
unrealistic in practice: the advice can be generated by some untrusted source, or in
the worst case, a malicious adversary may take control of the advice oracle, which
may have a catastrophic impact on the performance of the online algorithm.

Let us illustrate this situation by considering the ski rental problem, which is a
fundamental resource allocation problem. You are going skiing for D days, where
D is an unknown integer. Suppose that renting skis costs 1 per day and buying
skis costs B > 1. At the beginning of each day, you have to decide whether to
continue renting skis for one more day or to buy a pair of skis unless you have
already bought them. The objective is to minimize the ratio between what you pay
using the algorithm and what you would pay optimally if you knew D in advance in
the worst-case instance. In the traditional advice model, one advice bit suffices to be
optimal: 0 for renting throughout the D days, 1 for buying right away. However, if
this advice bit is wrong, the algorithm can perform extremely badly. In other words,
it can have unbounded competitive ratio. In contrast, an online algorithm without
advice can have competitive ratio 2− 1

B , which can be achieved by renting skis until
day B− 1 and buying skis on day B.

5.1.2 A New Model with Untrusted Advice

Recently, a new advice model was proposed to capture the above observations
in the context of online algorithm with machine-learned predictors by Lykouris and
Vassilvitskii [52], and Purohit et al. [57]. In their work, they use predictors to de-
sign and analyze online algorithms. More precisely, if the predictor is bad, then the
online algorithm should perform close to the one without predictions; if the predic-
tor is good, then the online algorithm should perform close to the optimal offline
algorithm.

Motivated by the above work from machine learning, in this chapter, we consider
the advice model in which the advice can be either trusted or untrusted. Thus, it
is natural to characterize the performance of an online algorithm A by a pair of
competitive ratios, denoted by (rA, wA), respectively. Here, rA is the competitive
ratio of A when the advice is trusted. In contrast, wA is the competitive ratio of A
when the advice is untrusted. More precisely, we assume that the untrusted advice
is generated by a malicious adversary to be in accordance with the worst-case nature
of the competitive analysis.

More formally, let σ denote the input sequence and φ(σ) denote the advice. Let
A(σ, φ(σ)) denote the cost incurred by A on input sequence σ, using an advice φ(σ).
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FIGURE 5.1 – Each algorithm is represented by a point in the 2-
dimensional space. In this example, algorithm A Pareto dominates

algorithm B.

Denote by rA, wA as

rA = sup
σ

inf
φ

A(σ, φ(σ))

OPT(σ)
, and wA = sup

σ
sup

φ

A(σ, φ(σ))

OPT(σ)
. (5.1)

We say that algorithm A is (r, w)-competitive for every r ≥ rA and w ≥ wA.
Let us illustrate the above definition on ski rental problem. The previously de-

scribed 1-bit advice algorithm is (1, ∞)-competitive. In contrast, the standard com-
petitively optimal algorithm without advice is (2, 2)-competitive. In general, we
observe that, by definition, every online algorithm A without advice or ignoring its
advice is (w, w)-competitive, where w is the competitive ratio of A in the standard
online setting.

Hence, we can associate every algorithm A to a point in the 2-dimensional space
with coordinates (rA, wA). We say that algorithm A dominates algorithm B if rA ≤
rB and wA ≤ wB. We illustrate this graphical representation in Figure 5.1. A natural
goal is to describe the Pareto frontier in this 2-dimensional space. More precisely, we
would like to characterize it by a single family A of algorithms, with similar state-
ments (e.g., algorithms in A are obtained by appropriately selecting a parameter).
We say that A is Pareto-optimal if it consists of pairwise incomparable algorithms,
and for every algorithm B, there exists A ∈ A such that A dominates B. We illustrate
this definition in Figure 5.2. For a given A, we will describe its competitiveness by a
function f : R≥1 → R≥1 such that for every ratio w there is an ( f (w), w)-competitive
algorithm in A.

5.1.3 Online Bidding with Untrusted Advice

The standard online bidding problem is presented in Section 1.4.2, which was in-
troduced in [22] as a typical example for formalizing efficient doubling in the context
of online and offline optimization problems. In this chapter, we are going to study
the online bidding problem in the untrusted advice setting. As discussed above,
the competitiveness of each algorithm is represented by a point in a 2-dimensional
space. Our objective is to identify the Pareto frontier of the set of all possible algo-
rithms in this space assuming that there is an infinite number of advice bits encoding
the hidden target.

It is well known that, in the standard online setting, the best competitive ratio
is 4 [22], which can be achieved using the doubling strategy xi = 2i. In contrast,
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FIGURE 5.2 – Each point depicts the competitiveness of an algorithm.
Blue points are the Pareto-frontier of the set of all possible algorithms.

Note that these points are above the diagonal since w ≥ r.

in the advice model, if the advice encodes the value u, we have an optimal strategy
with x1 = u, assuming that the advice is trusted. Hence, in the untrusted advice
setting, there are simple strategies that are (4, 4)-competitive and (1, ∞)-competitive,
respectively.

The objective of this chapter is to show a Pareto-optimal bidding strategy X∗u for
a given fixed parameter w ≥ 4, assuming that the advice encodes the hidden value
u, which is (w−

√
w2−4w
2 , w)-competitive (see Theorem 5.8).

5.1.4 Preliminaries

For convenience, we will say that an algorithm A is w-competitive if it is (r, w)-
competitive, for some r.

Suppose that w ≥ 4 is a fixed given parameter. For m ∈ N+, let Sm,u denote
the set of bidding strategies with advice u which are w-competitive, and which, if
the advice is trusted, succeed in finding the value with precisely the m-th bid. Let p
denote the value w−2−

√
w2−4w

2 , which will be useful in the technical proof.
We say that a strategy X ∈ Sm,u that is (r, w)-competitive dominates Sm,u if for

every X′ ∈ Sm,u, such that X′ is (r′, w)-competitive, r ≤ r′.

5.2 Identifying a Pareto-optimal Bidding Strategy

5.2.1 Algorithm Overview

We first show a high-level idea of the algorithm. The algorithm consists of two
phases. In the first phase of the algorithm, we identify a dominant strategy, denoted
by X∗m,u in Sm,u (if a such dominant strategy exists) for any given m. In the second
phase, we identify the best choice of m, denoted by m∗, which minimizes the total
cost to find the hidden value u by the strategy X∗m,u. Then X∗m∗ ,u is a Pareto-optimal
bidding strategy.

5.2.2 Phase 1: Identifying a dominant strategy X∗m,u in Sm,u

For a given m, in order to identify a dominant strategy Xm,u in Sm,u, we will
follow the same idea as what we did in Chapter 3 and Chapter 4. More precisely, the
road-map is as follows:
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1. Use linear programming to formulate the problem.
2. Argue that optimal solutions saturate certain constraints.
3. Establish recurrence relations on LP variables using equations obtained in the

previous step.
4. Solve the recurrence relations to obtain an optimal solution.
Let us first formulate the problem using linear programming. Let X∗m,u denote

such a strategy, and denote by (r∗m,u, w) its competitiveness. Then X∗m,u and r∗m,u are
the solutions to an infinite linear program which we denote by (Pm,u), and which is
shown below. For convenience, for any strategy X, we define x0 to be equal to 1.

min rm,u (Pm,u)
s.t. xi < xi+1, i ∈N+

xm−1 < u ≤ xm
m

∑
j=1

xj ≤ rm,u · u

i

∑
j=1

xj ≤ w · xi−1, i ∈N+

xi ≥ 0, i ∈N+.

Note that in (Pm,u) the constraints ∑i
j=1 xj ≤ w · xi−1 guarantee that the com-

petitive ratio of X is at most w, if the advice is untrusted, whereas the constraints
∑m

j=1 xj ≤ rm,u · u and xm−1 < u ≤ xm guarantee that if the advice is trusted, then
X succeeds in finding u precisely with its m-th bid, and in this case the competitive
ratio is rm,u.

We also observe that an optimal solution X∗m,u = (x∗i )i≥1 for (Pm,u) must be such
that

x∗m = u,

otherwise one could define a strategy X′m,u in which x′i = x∗i /α, for all i ≥ 1, with
α = u/x∗m. Then the strategy X′m,u with x′m = u is still feasible for (Pm,u) and has
better objective value than X∗m,u, a contradiction.

Furthermore, in an optimal solution, the constraint ∑m
i=1 xi ≤ rm,u · u must hold

with equality, which implies that

rm,u =
∑m

i=1 xi

u
.

Therefore, X∗m,u and r∗m,u are solutions to the linear program, (Lm,u), as follows.

min
1
u
·

m

∑
i=1

xi (Lm,u)

s.t. xm = u (F)
xi < xi+1, i ∈N+ (Mi)

i

∑
j=1

xi ≤ w · xi−1, i ∈N+ (Ci)

xi ≥ 0, i ∈N+.
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For convenience, we define

r∗u = inf
m

r∗m,u and r∗ = sup
u

r∗u.

Informally, r∗u, r∗ are the optimal competitive ratios, assuming trusted advice. More
precisely, the dominant strategy in the space of all w-competitive strategies is (r∗u, w)-
competitive, and r∗ is an upper bound on r∗u, assuming the worst-case choice of u.

Our objective is then equivalent to compute the value of r∗ for any given u ≥ 1.
As discussed above, we can compute r∗ by solving the linear program (Lm,u) with a
specific value of m that minimizing the objective value of the LP.

Given u, m ≥ 1, assuming that (Lm,u) is feasible, we are going to show how to
compute the optimal objective value of (Lm,u). The high-level idea is to first estab-
lish recurrence relations on LP variables using equations from constraints, then we
obtain the optimal solution by solving the obtained recurrence relations.

For convenience, let Ti denote ∑i
j=1 xj, with T0 = T−1 = 0.

We define the sequences (ai)i≥0, (bi)i≥0, (ci)i≥0 and (di)i≥0 as follows, which will
be useful to establish recurrence relations on variables of (Lm,u) as shown in Lemma 5.2.

ai =
ai−1

w− 1− bi−1
, with a0 = 1, (5.2)

bi =
1 + bi−1

w− 1− bi−1
, with b0 = 0, (5.3)

ci = ci−1 + di−1 · ai−1, with c0 = 0, (5.4)

di = di−1 · (1 + bi−1), with d0 = 1. (5.5)

The above sequences satisfy the following technical properties.

Lemma 5.1. For i ≥ 0, we have

ai =

{ 2
i+2 ·

1
2i , w = 4

p2−1
pi+2−1 · (

p
w )

i
2 , w > 4

, bi =

{ i
i+2 , w = 4

p · pi−1
pi+2−1 , w > 4

,

ci =

{
2− 2

i+1 , w = 4

1 + p− pi(p2−1)
pi+1−1 , w > 4

and di =

{
2i

i+1 , w = 4
p−1

pi+1−1 · (pw)
i
2 , w > 4

,

with p = w−2−
√

w2−4w
2 .

Proof. It is easy to verify that p = w−2−
√

w2−4w
2 satisfies the following equation

p =
1 + p

w− 1− p
. (5.6)

From (5.3), we have

bi − p =
(p + 1)(bi−1 − p)

w− 1− p− (bi−1 − p)
,
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which implies that

1
bi − p

=
w− 1− p

p + 1
· 1

bi−1 − p
− 1

p + 1
.

Define the sequence (ui)i≥0 as ui =
1

bi−p for i ≥ 0, then

ui =
1
p
· ui−1 −

1
p + 1

, with u0 =
−1
p

.

Thus,

ui =

{
− i+2

2 , w = 4

− pi+2−1
(p2−1)pi+1 , w > 4

,

which implies that

bi =

{ i
i+2 , w = 4

p · pi−1
pi+2−1 , w > 4

.

Then
i

∏
j=1

bj =

{ 2
(i+1)(i+2) , w = 4

pi · (p−1)(p2−1)
(pi+1−1)(pi+2−1) , w > 4

, (5.7)

In addition, from (5.2) and (5.5), for i ≥ 1, we have

ai =
i

∏
j=1

1
w− 1− bj−1

and di =
i

∏
j=1

(1 + bj−1).

Then, for i ≥ 2,

aidi =
i

∏
j=1

(1 + bj−1)

w− 1− bj−1
=

i

∏
j=1

bj. (5.8)

Moreover, from (5.3), we have

1 + bi =
w

w− 1− bi−1
,

then
i

∏
j=1

(1 + bj) = wi ·
i

∏
j=1

1
w− 1− bj−1

,

which implies that
di+1 = wi · ai. (5.9)

Combining (5.5), (5.8) and (5.9), we have

ai =

√
(1 + bi) ·∏i

j=1 bj

wi and di =

√
wi ·∏i

j=1 bj

1 + bi
.

Thus, if w > 4, then we have

ai =

√√√√ (1 + p · pi−1
pi+2−1 ) · pi · (p−1)(p2−1)

(pi+1−1)(pi+2−1)

wi =
p2 − 1

pi+2 − 1
·
( p

w

) i
2
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and

di =

√√√√√wi · pi · (p−1)(p2−1)
(pi+1−1)(pi+2−1)

(1 + p · pi−1
pi+2−1 )

=
p− 1

pi+1 − 1
· (pw)

i
2 .

If w = 4, then we have

ai =

√
(1 + i

i+2 ) ·
2

(i+1)(i+2)

wi =
2

i + 2
· 1

w
i
2

and

di =

√√√√wi · 2
(i+1)(i+2)

1 + i
i+2

=
1

i + 1
w

i
2

From (5.4), for i ≥ 1, we have

ci =
i

∑
j=1

aj−1dj−1 = 1 +
i

∑
j=2

j−1

∏
k=1

bk = 1 +
i−1

∑
j=1

j

∏
k=1

bk.

Then, by combining with (5.7), we have

ci =

{
1 + ∑i−1

j=1
2

(j+1)(j+2) , w = 4

1 + ∑i−1
j=1 pj · (p−1)(p2−1)

(pj+1−1)(pj+2−1) , w > 4

=

{
1 + ∑i−1

j=1
2

j+1 −
2

j+2 , w = 4

1 + ∑i−1
j=1(p2 − 1)

(
pj

pj+1−1 −
pj+1

pj+2−1

)
, w > 4

=

{
2− 2

i+1 , w = 4

1 + p− pi(p2−1)
pi+1−1 , w > 4

.

This concludes the proof.

Assuming that (Lm,u) is feasible, the following lemma shows that for every fea-
sible solution X of (Lm,u), there is a lower bound on xi for all i ∈ [1, m], as well as a
lower bound on Tm. In addition, we argue that these lower bounds can be attained
by saturating all constraints (Ci) with equality for all i.

Lemma 5.2. For every feasible solution X = (x1, x2, . . .) of (Lm,u), it holds that,

xi ≥ am−i · u + bm−i · Ti−1, for i ∈ [1, m],

and
Tm ≥ cm−i · u + dm−i · Ti, for i ∈ [0, m].

In addition, for i ∈ [1, m],

xi = am−i · u + bm−i · Ti−1, and Tm = cm−i · u + dm−i · Ti,

if and only if constraints (Cj) for j ∈ [i + 1, m] are all satisfied with equality.

Proof. The proof is by induction on i, for i ∈ [0, m]. The base case, namely for i = m,
is verified, since

xm = u = 1 · u + 0 · Tm−1 and Tm = 0 · u + 1 · Tm.
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For the inductive step, suppose that for i ∈ [1, m − 1] it holds that xj ≥ am−j · u +
bm−j · Tj−1 and Tm ≥ cm−j · u + dm−j · Tj with j ∈ [i + 1, m]. We will show that
xi ≥ am−i · u + bm−i · Ti−1 and Tm ≥ cm−i · u + dm−i · Ti. By the constraint (Ci+1), we
have

w · xi ≥ Ti+1

= xi+1 + Ti (By definition of Ti+1)
≥ am−i−1 · u + bm−i−1 · Ti + Ti (Induction hypothesis on xi+1)
= am−i−1 · u + (1 + bm−i−1) · Ti

= am−i−1 · u + (1 + bm−i−1) · (xi + Ti−1) (By definition of Ti)

It implies that

xi ≥
am−i−1

w− 1− bm−i−i
· u +

1 + bm−i−1

w− 1− bm−i−i
· Ti−1,

which is equivalent to
xi ≥ am−i · u + bm−i · Ti−1.

It is straightforward to see that the previous inequality holds with equality if and
only if constraints (Cj) are tight for j ∈ [i + 1, m]. Moreover, from induction hypoth-
esis, we have

Tm ≥ cm−i−1 · u + dm−i−1 · Ti+1

= cm−i−1 · u + dm−i−1 · (xi+1 + Ti) (By definition of Ti+1)
≥ cm−i−1 · u + dm−i−1 · (am−i−1 · u + bm−i−1 · Ti + Ti) (By ind. hyp. on xi+1)
= (cm−i−1 + dm−i−1 · am−i−1) · u + dm−i−1 · (1 + bm−i−1)Ti,

which is equivalent to
Tm ≥ cm−i · u + dm−i · Ti.

The inequality holds with equality if and only if constraints (Cj) are tight for j ∈
[i + 1, m]. This concludes the proof.

We obtain the following result immediately from the proof of Lemma 5.2, as
shown in Corollary 5.3.

Corollary 5.3. If X = (xi)i≥1 satisfies constraints (Cj) with equality, for j ∈ [2, m], then
x1 = am−1 · u if and only if xm = u.

For u ≥ 1 and m ≥ 1, consider the strategy X∗m,u = (x∗i )i≥0 defined as follows:

x∗i = w(x∗i−1 − x∗i−2) for i ≥ 3, with x∗2 = (w− 1) · x∗1 , and x∗1 = am−1 · u.

We are going to show that the strategy X∗m,u satisfies all constraints of (Lm,u) except
for (C1).

Lemma 5.4. The strategy X∗m,u satisfies constraints (F), (Mi) for i ∈ [1, m − 1]. It also
satisfies constraints (Cj) with equality for j ∈ [2, m].
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Proof. For i ≥ 2, we have

∑
j∈[1,i]

x∗j = x∗1 + x∗2 +
i

∑
j=3

x∗j

= x∗1 + x∗2 +
i

∑
j=3

w(x∗j−1 − x∗j−2)

= x∗1 + (w− 1) · x∗1 + w · x∗i−1 − w · x∗1
= w · x∗i−1.

Thus X∗m,u satisfies constraints (Cj) with equality for j ≥ [2, m]. By Corollary 5.3, we
have x∗m = u. It remains to show that X∗m,u satisfies x∗i < x∗i+1 for i ∈ [1, m− 1]. In
fact, it suffices to show that x∗i > 0 for i ≥ 3, since we have x∗i = w(x∗i−1 − x∗i−2)

for i ≥ 3. To this end, we will show that for i ≥ 1, x∗i ≥ x∗1 ·
(

w−
√

w2−4w
2

)i−1
, which

implies that x∗i > 0, for i ≥ 3.
For this purpose, we argue that x∗i

x∗i−1
≥ w−

√
w2−4w
2 , for i ≥ 2. The proof is by

induction on i. For the base case, namely for i = 2, we have x∗2 = (w− 1)x∗1 , then for
w ≥ 4, it holds that

x∗2
x∗1

= w− 1 ≥ w−
√

w2 − 4w
2

.

For the inductive step, suppose that for all j ∈ [1, i− 1], we have
x∗j+1
x∗j
≥ w−

√
w2−4w
2 .

Then,

x∗i+1

x∗i
=

w(x∗i − x∗i−1)

x∗i

= w
(

1−
x∗i−1

x∗i

)
≥ w

(
1− 2

w−
√

w2 − 4w

)
=

w−
√

w2 − 4w
2

,

which concludes the proof.

We are now able to identify an optimal solution to (Lm,u), which is the main
result in this section.

Lemma 5.5. Given u ≥ 1 and m ≥ 1, (Lm,u) is feasible if and only if it holds that am−1 ·u ≤
w. In addition, if (Lm,u) is feasible, then X∗m,u is an optimal solution to (Lm,u), and the
optimal objective value is cm.

Proof. Suppose that (Lm,u) is feasible, then from Lemma 5.2, it holds that x1 ≥ am−1 ·
u. Moreover, by constraint (C1), we have x1 ≤ w, which implies that am−1 · u ≤ w.

Suppose that am−1 · u ≤ w holds, then by Lemma 5.4, X∗m,u is a feasible solution to
(Lm,u). In addition, by Lemma 5.2, X∗m,u is optimal, and the optimal objective value
is cm.
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5.2.3 Phase 2: Identifying an optimal strategy X∗u
The objective of phase 2 is to identify an optimal strategy X∗u for a given u ≥ 1.

To this end, it suffices to identify m for which (Lm,u) is feasible and its objective value
is minimized. The following lemma shows that it suffices to choose a smallest m∗

for which (Lm∗ ,u) is feasible.

Lemma 5.6. For a given u ≥ 1, the optimal objective value of (Lm,u) is monotone increasing
in m, assuming that (Lm,u) is feasible.

Proof. From Lemma 5.2, we have Tm ≥ cm · u, and the corresponding lower bound
can be attained by the strategy X∗m,u by Lemma 5.5. Thus for m ≥ 1, assuming that
(Lm,u) is feasible, the optimal objective value of (Lm,u) is cm, which is monotone
increasing in m by Lemma 5.1.

We can now give the statement of the optimal strategy X∗u. By Lemma 5.6, it
suffices to find the objective value of the smallest m∗ for which Lm∗ ,u is feasible. This
can be accomplished with a binary search in the interval [1, dlog ue] , since we know
that the doubling strategy in which the i-th bid equals 2i is w-competitive for all
w ≥ 4; hence m∗ ≤ dlog ue. Then X∗u := X∗m∗ ,u where m∗ is the smallest value such
that (Lm,u) is feasible.

The advice complexity of the algorithm is O(log log u), since we can describe
each ai, bi, and hence am−1 in closed form, avoiding the recurrence which would add
an O(log u) factor.

Last, the following lemma allows us to obtain the exact value of r∗.

Lemma 5.7. It holds that r∗ = w−
√

w2−4w
2 .

Proof. By Lemma 5.2 and Lemma 5.5, we have r∗m,u = cm. Combining with Lemma 5.1,
we have

r∗m,u =

{
2− 2

m+1 , w = 4

1 + p− pm(p2−1)
pm+1−1 , w > 4

,

which implies that,
r∗u = inf

m
r∗m,u = r∗m∗ ,u.

If w = 4, then the worst case ratio is

r∗ = sup
u

r∗u

= sup
u

r∗m∗ ,u

= lim
m∗→+∞

2− 2
m∗ + 1

= 2.
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FIGURE 5.3 – The Pareto curve f (w) = w2−
√

w2−4w
2 , for w ≥ 4.

If w > 4, then the worst case ratio is

r∗ = sup
u

r∗u

= sup
u

r∗m∗ ,u

= lim
m→+∞

1 + p− pm(p2 − 1)
pm+1 − 1

= 1 + p

=
w−
√

w2 − 4w
2

.

This concludes the proof.

By Lemma 5.7 we obtain the main result in this chapter.

Theorem 5.8. The strategy X∗u is Pareto-optimal and is (w−
√

w2−4w
2 , w)-competitive.

5.3 Conclusion

In this chapter, we studied the online bidding problem in the untrusted advice
model. We identified a Pareto-optimal strategy for a given fixed w ≥ 4, which
is (w−

√
w2−4w
2 , w)-competitive, thus forming a Pareto frontier in the 2-dimensional

space (see Section 5.1.1). Figure 5.3 illustrates the above results.
In particular, for w = 4, which is the best competitive ratio without advice, we

identified a strategy which is (2, 4)-competitive. However, the algorithm requires
u as advice, which can be unbounded. A natural question here is what competi-
tiveness can we achieve with only k advice bits, for some fixed k. we answered this
question both from the point of view of upper and lower bounds in our paper [5].
For the upper bounds, we showed that for every w ≥ 4, there exists a strategy with
k bits of advice which is (r, w)-competitive, where r is expressed by some more com-

plicated expression on w. In particular, for w = 4, we have (21+ 1
2k , 4)-competitive,

whereas X∗u is (2, 4)-competitive. This result makes sense, since X∗u requires infinite
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precision. We also gave a lower bound on the competitiveness of any bidding strat-
egy with k bits. The results confirm that indeed an infinite number of advice bits is
necessary to achieve (2, 4)-competitiveness, for w = 4.

In terms of techniques, we used same of the proof ideas from Chapters 3 and 4.
For these problems that we studied, the corresponding LPs can be solved by using
the fact that optimal solutions saturate some constraints and we do not need any LP
solvers to solve the LP.
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Chapter 6

Conclusion

6.1 Summary of Results

In this thesis, we have studied some new ways of looking at online problems.
More precisely, we have explored the following three topics:

1. Online computation with recourse (Chapter 2);
2. Performance measures other than standard competitive analysis (Chapter 3);
3. Online computation with advice (Chapter 5).
More precisely, concerning the study on the online computation under the re-

course model, we studied the online matching problem with edge k-bounded re-
course under the edge arrival model. We provided improvements on both upper
and lower bounds on the competitive ratio. More specifically, we analyzed two on-
line algorithms for the edge arrival model, namely AMP and L-GREEDY which seem
to be incomparable: the former is asymptotically superior, in terms of k, but the latter
has a better performance analysis for small k. Unfortunately, there is still a gap be-
tween the lower and upper bound on the competitive ratio. The optimal competitive
ratio for any fixed k ≥ 4 still remains unknown.

Concerning the study on other performance measures than standard competi-
tive analysis, we revisited the linear search problem. We introduced the discovery
ratio, and apply it as supplementary to the competitive ratio in order to provide a
separation on the performance of different competitively optimal strategies. More
specifically, we analyzed doubling and aggressive, which are both competitively
optimal. We showed that the strategy aggressive has an optimal discovery ratio 8

5 .
In contrast, we showed that the strategy doubling has discovery ratio 7

3 . We also
showed that any competitively optimal strategy that is also optimal with respect to
the discovery ratio must have the exact same behavior as the aggressive strategy in
the first five iterations. Moreover, we also showed that such competitively optimal
strategies with optimal discovery ratio are not unique.

In terms of techniques, we observed that for some problems, it is convenient to
formulate them using linear programming. Sometimes, we can look into the struc-
ture of the optimal solutions to linear programming to obtain an optimal solution.
This motivated the study in Chapter 4, which can be considered as an application
of the above idea from Artificial Intelligence. We studied contract scheduling in a
model in which the interruptible system is deemed complete once certain perfor-
mance guarantee has been reached on all problem instances. We designed a sched-
ule that has best-of-both worlds guarantees: it completes the earliest possible and
guarantees optimal interruptible performance according to the acceleration ratio.

Concerning the study on online computation with advice, we have studied the
online bidding problem under the untrusted advice model. We identified a Pareto
optimal strategy assuming that the advice encodes the hidden target.
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6.2 What Next?

In this section, we discuss several open questions related to the above topics
which we believe to be interesting.

1. Design a higher lower bound for the online matching problem with recourse in the
limited departure model. In section 2.3, we obtained a lower bound using a two-
phases game on strings played between the online algorithm and a specific
adversary. We may design a higher lower bound using the same idea.

2. Use randomization to improve the upper bound analysis for the online matching
problem with k edge-recourse. For k ≥ 4, there is a gap between the lower
bound and upper bound on the competitive ratio. It would be interesting to
consider the case for k ≥ 4, and improve the upper bound by some random-
ized algorithm. In fact, for k ≥ 4, we have studied the Min-Index framework
which has been originally developed by Buchbinder et al. [20] for the online
standard matching problem. Unfortunately we only got limited results when
the underlying graph is a single path. The analysis seems to be hard for a
forest graph.

3. Applying discovery ratio to the star search problem. As presented in Section 3.1.1,
the star search problem can be considered as a generalization of the linear
search problem. We believe that our approach used in Chapter 3 can be still
applicable. In contrast, it will require more complicated calculations to obtain
the result in the context of the star search.

4. Study the discovery cost in the average case analysis. As discussed in Section 3.4,
for a given total discovered length L, there is no dominance between the per-
formance of doubling and aggressive using the discovery cost in the worst-
case analysis. However, it would be very interesting to study the discovery
cost in the average case in order to provide a strong separation on the per-
formance of doubling and aggressive as illustrated in Figure 3.4. The main
technical obstacle is to obtain a close formula of the average discovery cost
for a given L and a given strategy.

5. Study stochastic dominance using discovery cost for the bounded linear search prob-
lem. This problem was presented in Section 3.5. We believe that the approach
used in Chapter 3 is still applicable to obtain a stronger conclusion on stochas-
tic dominance using the discovery cost. The main technical obstacle is that we
have to consider the edge case very carefully, in which the target is located
close to the endpoint of the line.

6. Variants of contract scheduling with end guarantees. We can consider a more
general model of end guarantees. For instance, each problem instance may
be associated with its own end guarantee. We believe that our approach is
still applicable. In terms of techniques, some more complicated equations
need to be solved, which may be a technical obstacle.
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