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Résumé de la thèse en Francais  

D'ici 2025, le monde de l'informatique de pointe s'appuiera probablement sur les 

technologies émergentes des nœuds nanométriques et sur les CMOS les plus 

avancées et leurs innovations. Depuis 1967, Gordon Moore a prédit 

l'augmentation du nombre de transistors tous les deux ans [1], une règle qui est 

toujours valable pour la microélectronique (voir Figure 1). Cette prédiction 

empirique reste d'une précision surprenante, et a permis d'énormes progrès dans 

le HPC, les serveurs, les plates-formes de traitement parallèles, les accélérateurs 

et les capteurs intelligents, en fait tout, d'un smartphone de petite taille à plusieurs 

gadgets technologiques innovants [2] et ça continue. De nos jours, des transistors 

encore plus petits et plus avancés sont utilisés dans les puces. 

Le concept de l'Internet des Objets (IoT, « Internet of Things ») et les circuits 

intégrés sont largement utilisés dans l'espace d'aujourd'hui, les automobiles, 

l'avionique, les soins de santé, l'industrie mobile, etc. Pour rendre possible 

l'intégration de tels nœuds avancés dans des applications hautes performances, 

différentes technologies ont été déployées dans le but de contenir les problèmes 

de dissipation de puissance et de fiabilité tout en maintenant des performances 

proches des performances existantes. La technologie FDSOI (Fully Depleted 

Silicon On Insulator) est l'une des technologies utilisées à cette fin. D'autres 

technologies dites émergentes (PCM, memristive, nanofils, etc.) sont en phase 

développement pour accompagner la même tendance. Avec les technologies 

actuelles, la taille d'un transistor pourrait se réduire à quelques  nanomètres (par 

exemple, TSMC produit des processeurs Intel Core i3 sur un nœud de processus 

de 5 nm en 2021). Cela a été possible grâce à de nombreux processus et 

technologies de conception innovants ont été utilisés, y compris des matériaux 

d'interface thermique de soudure et de matrice plus minces pour réduire les coûts 

et augmenter les performances. En effet, l'efficacité énergétique et le rendement 

par watt ont été bien améliorés. Cependant, les contraintes de paramètres 

physiques dans le transistor, les connexions et les couches conduisent à une 

certaine perte de performances et de fiabilité, et le vieillissement est devenu un 

réel problème. 

La plupart des produits électroniques ne sont pas conçus et optimisés par rapport 

à leur durée de vie spécifique, qui peut changer de façon importante selon 

l’application cible. Par exemple, le cas des téléphones portables ou de 

l'électronique grand public, où il est supposé fonctionner correctement pendant 

environ 2-3 ans avec une durée de vie maximale de 10 ans. Dans plusieurs autres 

applications, telles que les applications militaires, avioniques, automobiles et 

médicales hybrides, plus de 15 à 20 ans de service fiable sont attendus, selon les 

normes qui régissent leur fonctionnalité. De telles applications doivent maintenir 

constantes les performances non dégradées des applications au cours d'une durée 

de vie aussi étendue, malgré le vieillissement du matériel et les différents bruits et 

erreurs aléatoires. 
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Au cours de la dernière décennie, plusieurs études de recherche ont été menées 

sur les défaillances de circuits dans le temps. Il avait inclus plusieurs perspectives, 

telles que le processus, la tension, la température (PVT, « Process, Voltage, 

Temperature »), l'impact sur l'environnement d'exploitation, les erreurs logicielles, 

les défauts de fabrication et les impacts sur les charges de travail, etc. Ainsi, il 

existe un besoin évident de développer non seulement des techniques de 

robustesse pour assurer leur fonctionnalité pour la durée de vie cible, mais aussi 

une infrastructure de test hiérarchique pour des mesures en ligne robustes au sein 

des circuits et systèmes intégrés. À leur tour, ces mesures en ligne permettront 

l'auto-test, l'amélioration des fonctionnalités de fiabilité et, en général, la 

facilitation d'un fonctionnement ininterrompu de hautes performances tout en 

garantissant les exigences de sécurité. Cependant, ces infrastructures de test 

doivent être gérées correctement sur puce, pour permettre une adaptation du 

système suffisamment à l'avance, avant que l'échec réel de la synchronisation ne 

se produise. 

Cette thèse traite d'une solution ambitieuse à ce problème en prédisant le 

vieillissement des portes dans les chemins critiques en mélangeant les 

connaissances acquises en intelligence artificielle avec des paramètres de 

fonctionnement adaptatifs, tels que les tensions et les fréquences. 

Motivation de la thèse 

L'apprentissage automatique (ML, « Machin » Learning ») est l'une des tendances 

d'actualité dans le domaine de la science des données. Il est largement utilisé dans 

l'analyse de données, la classification et la prédiction de diverses données sur la 

base des données précédemment observées ou des actions ou réactions 

précédentes selon un algorithme fixe. Le ML permet aux machines de rechercher 

et d'identifier des informations cachées lorsqu'elles sont exposées à de nouveaux 

ensembles de données. Aujourd'hui, la plupart des entreprises utilisent 

l'Intelligence Artificielle (IA) dans de nombreux aspects de leur travail 

professionnel pour améliorer la qualité et la productivité et créer de nouveaux 

produits et services basés sur le ML. Par exemple : marketing, services financiers, 

soins de santé, transports, pétrole et gaz, reconnaissance de la parole et de l'écriture 

manuscrite, robotique, etc. L'une des subdivisions de l'IA est l'apprentissage en 

profondeur. Dans la plupart des cas, il est basé sur des réseaux de neurones avec 

de nombreux neurones empilés en couches et capables de calculer une sortie. 

L'apprentissage profond est un sous-ensemble de l'apprentissage automatique, qui 

est également un sous-ensemble de l'IA [3]. 

Un changement considérable est en train de se produire dans la conception du 

matériel, poussé par le défi croissant de fournir de bonnes performances et une 

faible consommation d'énergie sans aucune pénalité en termes de fiabilité et de 

vieillissement. Cependant, les effets liés au vieillissement augmentent et, par 

conséquent, la durée de vie d'un circuit intégré est réduite. De nombreuses 
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recherches ont été menées pour compenser la perte de fiabilité due au 

vieillissement. Dans des conditions de fonctionnement normales, plusieurs 

facteurs, tels que la température de tension de procédé (PVT), l'injection de 

porteurs chauds (HCI, «  Hot Carrier Injection »), l'instabilité de la température de 

polarisation (BTI, « Bias Temperature Instability ») et la rupture diélectrique 

dépendante du temps (TDDB, « Time-Dependent Dielectric Breakdown ») sont 

amplifiés dans les technologies nanométriques et peuvent causer des défaillances 

fonctionnelles et temporelles. 

En particulier, le NBTI (Negative BTI) et le HCI provoquent une dégradation plus 

importante que d'autres sources pour les technologies récentes[4]. Par conséquent, 

les concepteurs sont plus prudents dans la conception d'un circuit intégré et sont 

obligés d'introduire une large gamme de bandes de garde de sécurité pour assurer 

un fonctionnement correct dans différentes sources de conditions de 

fonctionnement et de dégradation des performances. L'ajout de nombreuses 

marges de sécurité pessimistes et de moniteurs à l'intérieur de la conception du 

circuit intégré signifie que la puce finale présentera de sérieuses pertes de 

performances, avec une augmentation de la surface et du coût de conception. En 

fait, les marges temporelles doivent être conçues pour prendre en compte toutes 

les conditions les plus défavorables, qui dans la plupart des cas sont sous-

optimales et pas toujours réalistes. De plus, le processus de vieillissement est 

significativement affecté par le comportement dynamique des circuits [5], ce qui 

rend l'analyse a priori extrêmement difficile car la charge de travail normale des 

circuits n'est pas toujours connue lors de la phase de conception de la puce. 

De plus, la réduction de la tension d'alimentation n'a pas pu être avancée comme 

prévu à cause de contraintes d'efficacité énergétique [6]. Les architectures 

adaptatives de tension et de fréquence (AVFS, « Adaptive Voltage and Frequency 

Scaling ») ou les techniques Adaptive Body Bias (ABB) sont utilisées depuis la 

fin des années 2000 pour diminuer les marges de sécurité et compenser les 

variations [7][8]. Ces méthodes utilisent des moniteurs de performances intégrés 

insérés à des points stratégiques de la conception pour suivre les fluctuations de 

synchronisation du circuit, combinés à des tensions adaptatives (VDD et Back 

Body) et à des schémas de gestion de fréquence pour réduire la consommation 

d'énergie et éviter les erreurs de synchronisation [8][9]. L'efficacité de ces 

approches est directement impactée par la qualité et les performances de ces 

Instruments de Test Embarqués (ETI) : ils doivent être modélisés, caractérisés et 

utilisés successivement pour les adaptations de l'environnement d'exécution, car 

l'extraction des données des moniteurs peut être un véritable défi.  

En raison de la difficulté d'évaluer correctement tous ces paramètres, y compris 

l'influence de la charge de travail sur les processus de vieillissement [10], 

l'apprentissage automatique (ML) est devenu l'une des options possibles pour 

traiter les données massives obtenues à partir de la simulation et des mesures. Il 

peut être utilisé pour analyser et prédire des données sur la base des données 
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précédemment observées et des actions ou réactions précédentes et agir selon un 

plan fixe. Le ML permet aux machines de rechercher et d'identifier des 

informations cachées lorsqu'elles sont exposées à de nouveaux ensembles de 

données. 

L'objectif principal de la thèse est de construire un algorithme de Machine 

Learning capable de prédire la dégradation du délai pour les portes numériques 

simples et complexes. Pour réaliser la prédiction de dégradation du retard pour 

l'ensemble du circuit, nous avons commencé avec les portes universelles de base 

NAND et NOR, pour lesquelles nous pourrions avoir accès à des mesures 

expérimentales complètes et à des caractérisations dans les technologies FDSOI. 

En fait, pour les deux portes NAND et NOR à 2 entrées, des simulations SPICE 

effectuées avec la bibliothèque UDRM (User-Defined Reliability Model) ont été 

utilisées à des fins de comparaison avec notre modèle. Nous avons formé un 

framework d'apprentissage automatique (ML) prenant en entrée les principaux 

paramètres physiques, électriques, environnementaux et topologiques et 

fournissant une estimation du vieillissement des transistors ou des grilles en 

termes de dégradation du délai. Ensuite, nous avons comparé les résultats prédits 

par porte simple avec ceux obtenus par simulation SPICE. Nous avons étendu le 

travail pour chaque retard de porte, y compris les plus complexes, et les avons 

appliqués à l'estimation du chemin critique. 

Résumé 

Les technologies CMOS modernes telles que FDSOI sont affectées par de graves 

effets de vieillissement qui dépendent des problèmes de niveau physique liés aux 

technologies nanométriques et à l'environnement du circuit et à son activité 

d'exécution. Par conséquent, il est difficile d'établir a priori des bandes de garde 

suffisantes pour les estimations de chemin critique, ce qui conduit généralement à 

une surestimation importante des délais (et donc à une perte de performances) ou 

à une durée de vie de fonctionnement trop courte. Dans le même temps, 

l'apprentissage automatique est l'un des algorithmes tendance pour le traitement 

des mégadonnées et ses applications associées. Il est pratiquement impossible de 

traiter des données brutes avec une grande précision. L'approche combinée de 

conception et de simulation de système numérique comportemental améliore et 

développe un modèle mathématique pour les performances du système, la fiabilité 

et les données minimales pour l'apprentissage du comportement du système, du 

composant ou du sous-système à la fois. 

L'objectif principal de la thèse est de construire le modèle mathématique pour 

chaque porte complexe et les portes de base du circuit numérique entraînées avec 

des algorithmes d'apprentissage automatique pour résoudre les problèmes de 

défaillance et de vieillissement de circuit mentionnés ci-dessus. L'efficacité et la 

précision de la dégradation du délai des portes sont de plus en plus cruciales lors 

du passage à des technologies telles que le FDSOI 28 nm. Tous nos circuits sont 
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composés de portes logiques basiques : si on peut prédire leur vieillissement, on 

pourra donc le prédire pour l'ensemble du circuit. Ainsi, nous partons des portes 

universelles de base NAND et NOR. Une porte universelle est une porte logique 

qui peut construire toutes les autres portes logiques. 

Dans ce travail, nous avons développé et validé un cadre de vieillissement 

d'apprentissage automatique en plusieurs étapes : grâce à une analyse théorique, 

nous avons développé un modèle de vieillissement d'apprentissage automatique 

pour les portes universelles dans les technologies cibles FDSOI 28n ; Nous avons 

entraîné le modèle à l'aide des données de portes NAND et NOR fournies par les 

fondeurs et l'avons validé par rapport à la simulation SPICE  avec un taux d'erreur 

minimum ; Grâce à une approche appelée Effort Logique, nous avons étendu ces 

résultats à n'importe quelle porte générique ; Nous avons appliqué le cadre de 

vieillissement résultant à deux circuits de référence, un filtre FIR et un circuit 

numérique AES (Advanced Encryptions Standard), et avons étudié leur 

comportement de vieillissement dans différentes conditions et charges de travail. 

À partir de là, nous avons développé et démontré plusieurs stratégies d'adaptation 

dynamique de tension et de fréquence tenant compte du vieillissement. Les 

moniteurs de vieillissement sont souvent utilisés, mais leur placement est essentiel 

car ils doivent être instanciés sur les chemins quasi critiques (NCP) qui sont plus 

sujets au vieillissement. Nous avons donc appliqué notre approche pour 

sélectionner le meilleur sous-ensemble NCP pour l'insertion du moniteur. Les 

résultats finaux démontrent la validité de l'approche proposée, reproduisant avec 

précision les données de la littérature avec seulement une fraction des besoins de 

calcul des anciennes approches basées sur la simulation. Cela nous a permis de 

proposer des approches dynamiques innovantes basées sur le vieillissement qui 

peuvent adapter dynamiquement le comportement du système en fonction de son 

vieillissement, avec des gains significatifs par rapport aux bandes de garde 

classiques dans le pire des cas. 

 

Contributions de la thèse : 

Proposer une méthodologie pour générer un modèle mathématique pour la 

prédiction du retard induit par le vieillissement des portes complexes en 

utilisant plusieurs algorithmes de régression linéaire 

De nombreuses solutions existent dans la littérature pour surveiller les 

dégradations de délai dues à la PVT et aux variations induites par le vieillissement. 

Dans la plupart des cas, les solutions proposées traitent de l'évaluation des 

contributions individuelles du PVT et des phénomènes induits par le 

vieillissement sur la fiabilité des circuits à différents niveaux d'abstraction avec 

un accent particulier sur les techniques au niveau du circuit. D'autres études 

portent sur des circuits basés sur des capteurs pour surveiller périodiquement ou 
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pendant l'exécution les violations de synchronisation, avec un certain impact sur 

la zone du circuit ou les performances du système. 

Dans cette étude, nous avons développé une solution adaptée aux conditions de 

PVT et au vieillissement pour estimer rapidement l'impact des effets PVTA sur 

les performances du système grâce à un algorithme d'apprentissage automatique 

entraîné. Pour cela, nous avons établi le modèle mathématique du circuit et un 

algorithme d'apprentissage automatique pour prédire le vieillissement des circuits 

numériques en technologie FDSOI. Des données telles que le coin de processus, 

la tension, la température, le taux de basculement, la probabilité statique, la charge 

de travail et le temps sont transmises à plusieurs algorithmes de régression linéaire 

pour la prédiction de base du retard des portes. En plus de cela, le retard des portes 

complexes et la dégradation du chemin critique sont également obtenus pour 

différentes cibles de durée de vie. 

Développement et évaluation de l'algorithme proposé pour les circuits 

pouvant fonctionner sous des modes de mise à l'échelle dynamique de tension 

et de fréquence 

Un algorithme a été développé pour incorporer la dynamique induite par les 

techniques de modification dynamique (DVFS) de tension et de fréquence dans le 

calcul du retard de chaque porte complexe et chemin critique d'un circuit 

numérique donné. Avec l'aide de l'algorithme proposé, nous sommes en mesure 

de prédire avec précision la fin de vie des circuits et donc changer la tension ou la 

fréquence de fonctionnement en raison d'objectifs de 

performance/puissance/fiabilité. 

Cette caractérisation aide le circuit à fonctionner avec les paramètres de tension et 

de fréquence optimaux et à anticiper les défaillances temporelles. L'algorithme a 

été expliqué en détail, ainsi que la méthodologie permettant d'obtenir les résultats 

de performance/puissance sur des circuits complexes tels que des filtres 

numériques et des processeurs cryptographiques AES. 

Démontrer l'application d'un autre algorithme de ML : algorithme de Forêt 

Aléatoire (RFA, « Random Forest Algorithm ») et comparaison avec un 

algorithme de régression linéaire multiple 

L'estimation de prédiction de retard proposée peut être utilisée hors ligne pour 

anticiper les défaillances temporelles potentielles. Nous avons également appliqué 

le modèle RFA et évalué les résultats de performance par rapport à l'algorithme 

de régression linéaire multiple. La comparaison montre que l'algorithme de 

régression linéaire multiple est une approche mieux adaptée et plus simple pour 

nos données. 

Schéma de la thèse 

En dehors de cette introduction, le manuscrit est divisé en cinq chapitres. 
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Le Chapitre 1 : Introduit les bases fondamentales et présente brièvement le 

mécanisme de vieillissement des nœuds CMOS numériques et leurs effets sur les 

performances. Tout d'abord, il présente la dégradation des transistors MOS et les 

mécanismes de dégradation NBTI, HCI et TDDB. Ensuite, il présente les sources 

de variabilité pour les dispositifs CMOS, ce qu'on appelle la variation de 

processus, de tension et de température et son impact sur les performances des 

circuits. Enfin, l'effet de ces phénomènes sur les portes logiques CMOS et les 

moniteurs de retard sont discutés. Les types de moniteurs In-Situ intégrés et leur 

importance pour le flux d'insertion sont discutés. Enfin, leur analyse des erreurs 

de synchronisation est présentée en détail. 

Le chapitre 2 : est consacré aux algorithmes d'apprentissage automatique (ML) 

et leur classification générale telle que les algorithmes supervisés, non supervisés, 

semi-supervisés et de renforcement est brièvement expliquée. Chaque algorithme 

ML et ses sous-divisions sont définis avec des exemples. Dans la première partie 

de ce chapitre, l'état de l'art des algorithmes ML est passé en revue. Leur avantage 

et inconvénient de chacun de ces algorithmes sont analysés. Ensuite, nous 

présentons leurs méthodes d'évaluation. Dans la deuxième partie de ce chapitre, 

les algorithmes de ML dans les applications embarquées avec des innovations 

récentes sont discutés. Enfin, l'application de l'algorithme ML a été expliquée. 

Le Chapitre 3 : Décrit le cadre ML proposé comme le modèle mathématique et 

les algorithmes de régression linéaire multiple pour prédire les délais de porte 

logique et de chemin critique dans un circuit numérique donné. Comment choisir 

l'algorithme approprié pour nos données et l'importance des paramètres utilisés 

dans notre algorithme ML sont expliqués. En outre, il explique que le cadre ML a 

été implémenté dans deux circuits numériques différents tels que le filtre FIR et le 

circuit crypto AES pour explorer les résultats formés et testés. Ensuite, les 

Chemins Critiques (CP, « Critical Path ») les plus importants sont classés à l'aide 

de différentes charges de travail. Ceci est utilisé pour analyser les effets du 

vieillissement afin de connaître l'importance de la variation de classement sur les 

CP dans différentes circonstances. Cette approche aide à la sélection des CP pour 

le suivi. Il explique également la méthode d'évaluation expérimentale avec la 

comparaison de simulation SPICE avec nos résultats d'algorithme ML entraînés 

sont analysés. Enfin, il démontre l'utilisation du modèle proposé par rapport à 

l'algorithme de forêt aléatoire et évalue les résultats. 

Le Chapitre 4 : Dans ce chapitre, nous proposons un algorithme de changement 

dynamique de tension et de fréquence (DVFS) adapté aux circuits numériques à 

utiliser avec la technologie FDSOI. La sélection de Chemin Critique traditionnelle 

et le flux d'insertion du moniteur in-situ sont expliqués au début du chapitre. Ceci 

est suivi par une méthodologie de caractérisation de chemin au niveau du circuit 

pour différents PVT afin d'explorer la défaillance du circuit du système. Le 

schéma DVFS est démontré à l'aide des implémentations de simulation au niveau 

du circuit en utilisant deux approches : l'overclocking du point de fonctionnement 
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tenant compte du vieillissement et les performances maximales avec un point de 

fonctionnement plafonné sont expliqués en détail. En conséquence, une méthode 

simplifiée est développée pour estimer la dégradation induite par le vieillissement 

en suivant à la fois la variation de tension et de fréquence dans le temps. 

Le Chapitre 5 : Conclusion et proposition de futures orientations de travail. 
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Introduction 

By 2025, the advanced computing world will probably rely on the most advanced 

CMOS nanometer nodes emerging technologies and their innovations. Since1967, 

Gordon Moore has predicted the increasing number of transistors every two years 

[1], a rule that is still valid in the microelectronics hardware field (see Figure 1). 

This prediction framework remains impressively accurate, a fact that had made 

possible tremendous advances in HPC, servers, parallel processing platforms, 

accelerators, and smart sensors, in fact everything from a small size smartphone 

to several innovative technology gadgets[2] and it goes on. Nowadays, even 

smaller and more advanced transistors are used on a microchip.  

 

Figure 1: Source: Ray Kurzweil, "The singularity is near: when humans transcend biology", 

P.67, The vikiking Press, 2006. Data points between 2000 and 2012 represent BCA estimates. 

The Internet of Things (IoT) concept and VLSI system applications are widely 

used in today's space, automobiles, avionics, healthcare, mobile industry and so 

on. To make possible the integration of such advanced nodes in high-performance 

applications different flavors of technologies have been deployed in the attempt 

to contain the power dissipation and reliability issues while maintaining close to 

existent performances.  Fully Depleted Silicon on-chip (FDSOI) Technology is 

one of the technologies used for this purpose. Other technologies including 

emerging ones (PCM, memristive, nanofils, etc.) are pointing up to support the 

same trend. With these current technologies, the size of a transistor could shrink 

to few tens of nanometers (for example, TSMC produces Intel core i3 CPUs on a 

5nm process node in 2021). As many innovative processes and design 
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technologies have been used, this was possible, including thinner die and solder 

thermal interface materials to reduce the cost and increase the performance. 

Indeed,  the energy efficiency and the performance per watt were well improved. 

However,  physical parameter constraints in the transistor, wires and layers lead 

to a certain performance and reliability loss, and aging became a real problem.  

Most electronics products are not designed and optimized with respect to their 

specific lifetime. For example, the case of mobile phones or Consumer electronics, 

where it is assumed to work properly for about 2-3 years with a maximum lifetime 

of 10 years. In several other applications, such as military, avionics, automotive, 

and hybrid medical applications, more than 15-20 years of reliable service is 

expected, according to standards that are ruling their functionality. Such 

applications need to keep constant, the non-degraded performance of the 

applications within such an extended lifetime, despite hardware aging and 

different random noise and errors.  

In the last decade, several research studies have been done related to circuit failure 

in time. It had included several perspectives, such as process, voltage, temperature 

(PVT), operating environment impact, soft errors, manufacturing flaws and 

workloads impacts, etc. Thus, there is an obvious need to develop not only 

robustness techniques to ensure their functionality for the target lifetime, but also 

a hierarchical test infrastructure for robust online measurements within integrated 

circuits and systems. In turn, these online measurements will enable self-testing, 

enhancing dependability features, and, in general, facilitating uninterrupted high-

performance operation while guaranteeing security requirements. However, these 

test infrastructures need to be managed properly on chip, to allow system 

adaptation sufficiently ahead of time, before the actual timing failure could 

happen. 

 

This thesis deals with an ambitious solution to this problem by predicting the aging 

of gates within critical paths by mixing trained artificial intelligence knowledge 

with adaptive operating parameters, such as voltages and frequencies.  
 

Thesis Motivation 
 

Machine Learning(ML) is one of the hot topic trends in the data science domain. 

It is widely used in data analysis, classification and prediction of diverse data 

based on the previously observed data or previous actions or reactions according 

to a fixed algorithm. ML enables machines to search and identify hidden 

information when exposed to new data sets. Today, most companies use Artificial 

Intelligence (AI) vision in many of aspects of their professional work to improve 

the quality and productivity and create new products and services based on ML. 

For example: marketing, financial services, healthcare, transportation, oil and gas, 

speech and handwriting recognition, robotics, etc.  One of the subdivisions in AI 
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is deep learning. In most cases, it is based on neural networks with numerous 

neurons stacked in layers and able to compute an output. Deep learning is a subset 

of machine learning, which is also a subset of AI [3].  

 

A tremendous change is taking place in hardware design, driven by the growing 

challenge of providing good performances and low power consumption without 

any penalties in terms of reliability and aging. However, the aging related effects 

are growing and as a consequence, the lifetime of an IC design is shrinked. A great 

amount of research has been done to compensate for reliability loss due to aging. 

Under normal operating conditions, several factors, such as Process Voltage 

Temperature (PVT), Hot Carrier Injection(HCI), Bias Temperature 

Instability(BTI), and Time-Dependent Dielectric Breakdown(TDDB) are 

magnified in nanometric technologies and generate functional and timing failures. 

 

In particular, NBTI and HCI cause more catastrophic degradation than other 

sources for recent technologies[4]. Therefore, designers are more cautious in 

designing an IC and are forced to introduce a large range of safety guard-bands to 

ensure correct operation under different sources of operating conditions and 

performance degradation. Adding lots of pessimistic safety margins and monitors 

inside the IC design means that the final chip becomes will present serious losses 

in performance, with an increase of area and design cost. In fact, timing margins 

need to be designed to consider all worst-case conditions, which in most of the 

cases are suboptimal and not always possible. In addition, the aging process is 

significantly affected by the circuits' dynamic behaviour [5], which makes a-priori 

analysis extremely difficult as the normal circuit workload is not always known at 

the chip design phase.  

 

Moreover, scaling down the voltage supply could not be pushed forward as 

intended for energy efficiency purposes[6].  Adaptive voltage and frequency 

architectures (AVFS) or Adaptive Body Bias techniques (ABB) have been used 

since the late 2000s to decrease safety margins and compensate for the 

variations[7][8]. Such methods use embedded performance monitors inserted at 

strategic points within the design to track circuit timing fluctuations, combined 

with adaptive voltages (VDD and Back Body) and frequency management schemes 

to reduce energy consumption and avoid timing errors[8][9]. These approaches' 

efficiency is directly impacted by the quality and performances of these Embedded 

Test Instruments (ETIs): they have to be modeled, characterized, and successively 

utilized for run-time environment adaptations, as extracting data from the 

monitors can be a real challenge.  

 

Due to the difficulty of properly assess all these parameters including   workload 

influence on the aging processes[10] Machine Learning(ML) became one of the 

possible options to deal with massive data obtained from simulation and measures. 

It can be used to analyze and predict data based on the previously observed data 

and previous actions or reactions and act according to a fixed plan. ML enables 

the machines to search and identify hidden information when exposed to new data 

sets.  
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The thesis's principal objective is to build up a Machine Learning algorithm able 

to predict the delay degradation for digital simple and complex gates. To achieve 

the delay degradation prediction for the whole circuit,  we have started with the 

basic universal gates NAND and NOR, for which we could have access to full 

experimental measures and characterizations in FDSOI technologies. In fact, for 

both 2 input NAND and NOR gates, spice simulations performed with the User-

defined Reliability Model (UDRM) library were used for comparison with our 

model.  We trained a Machine learning (ML) framework taking as inputs the main 

physical, electrical, environmental, and topological parameters and providing an 

estimation of transistor or gate aging in terms of delay degradation. Then, we have 

compared the simple gate predicted results with those obtained through spice 

simulation. We extended the work for each gate's delay including the complex 

ones and applied them in the critical path estimation.  

 

Summary  
 

Modern CMOS technologies such as FDSOI are affected by severe aging effects 

that depend on physical level issues related to nanometric technologies and the 

circuit environment and its run-time activity. Therefore, it is challenging to 

establish a-priori sufficient guard bands for Critical Path estimations, usually 

leading to large delay overestimation (and loss of performances) or a too-short 

operating lifetime. At the same time, Machine learning is one of the trending 

algorithms for big data processing and its related applications. Processing raw data 

with high accuracy is impractically not possible. Modern machine learning 

algorithms are intrinsically integrated. The combined behavioral digital system 

design and simulation approach improves and develops a mathematical model for 

system performance, reliability, and minimum data for learning the system 

behavior, component, or subsystem at a time. 

 

The thesis's principal objective is to build up the mathematical model for each 

complex gate and basic gates of the digital circuit trained with Machine learning 

algorithms to tackle the afore-mentioned circuit failure and aging problems. The 

efficiency and accuracy of delay degradation of gates are increasingly crucial 

when moving to technologies such as 28nm FDSOI.  All of our circuits are 

composed of basic logic gates: if we can predict their aging, we will therefore be 

able to predict it for the whole circuit. Thus, we start from basic universal gates 

NAND and NOR. A universal gate is a logic gate that can construct all other logic 

gates.  

 

In this work, we developed and validated a Machine Learning aging framework 

through several step: Through theoretical analysis, we developed a Machine 

Learning Aging Model for Universal Gates in the target FDSOI 28n technologies; 

We trained the model using foundry-provided NAND and NOR gate data, and 

validated it against Spice simulation with minimum error rate; Thanks to an 
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approach called Logical Effort, we extended these results to any generic gate; We 

applied the resulting Aging Framework to two Reference Designs, a FIR filter and 

AES (Advanced Encryption Standard) digital circuit, and studied their aging 

behaviour under different conditions and workload.  Starting from this, we 

developed and demonstrated several aging-aware dynamic voltage and frequency 

adaption strategies; Aging monitors are often used, but their placement is critical 

as they need to be instantiated over the Near Critical Paths (NCP) that are more 

prone to aging. We therefore applied our approach to select the best NCP subset 

for monitor insertion.  The final results demonstrate the validity of the proposed 

approach, accurately replicating Literature data with just a fraction of the 

computational needs of legacy simulation-based approaches. This allowed us to 

propose innovative aging-based dynamic approaches that can dynamically adapt 

the system’s behavior based in its aging, with significant gains if compared to 

classical worst-case guard bands.  

 

The main contribution of this work is : 

 

Propose a methodology to generate a mathematical model for complex gates 

aging induced delay prediction by using multiple linear regression algorithms 
 

Many solutions exist in the literature to monitor delay degradations due to PVT 

and aging induced variations. In most of the cases, the proposed solutions deal 

with the evaluation of individual contributions of PVT and aging induced 

phenomena on the reliability of the circuits at different abstraction levels with a 

particular focus on circuit-level techniques. Other studies deal with sensor-based 

circuits to monitor periodically or at runtime the timing violations, with a certain 

impact on the circuit area or the system performance. 

 

In this study, we have developed a PVT and aging-aware solution to quickly 

estimate the impact of the PVTA effects on the system performances through a 

trained machine learning algorithm. For that, we established the mathematical 

model of the circuit and a machine-learning algorithm to predict digital circuit 

aging in FDSOI technology. Data such as process corner, voltage, temperature, 

toggle rate, static probability, workload, and time are fed to multiple linear 

regression algorithms for basic gates delay prediction. Further to that, delay of 

complex gates and critical path degradation are also obtained for different lifetime 

targets.  

 

Developed and evaluated the proposed algorithm for circuits that can operate 

under dynamic voltage and frequency scaling modes   
 

An algorithm was developed to incorporate dynamics induces by voltage and 

frequency scaling modes in the delay calculation of each complex gate and critical 

path of a given digital circuit. With the proposed algorithm's help, we are able to 

accurately predict the end of life for circuits that need to change the voltage or the 

operating frequency due to performance/power/reliability targets. 
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This characterization helps the circuit operate with the optimum voltage and 

frequency parameters and anticipate potential timing-induced failures. The 

algorithm was explained in detail, together with the methodology of achieving the 

performance/power results on complex circuits such as digital filters and AES 

crypto processors. 

 

Demonstrate the application of another ML algorithm:  random forest 

algorithm (RFA) and comparison with multiple linear regression algorithm 
 

The proposed delay prediction estimation can be used offline to anticipate 

potential timing failures. We have also applied the RFA model and evaluated the 

performance results compared to the multiple linear regression algorithm. The 

comparison shows that the multiple linear regression algorithm is a better suitable 

and more straightforward approach for our data.  

 

 

Thesis Outline 
 

Apart from this introduction, the manuscript is divided into five chapters.  

Chapter1: Introduces the fundamental basics and briefly presents the overview 

of the aging mechanism of digital CMOS nodes and their effects on performance. 

Firstly, it presents the degradation of MOS transistors and the NBTI, HCI, and 

TDDB degradation mechanisms. Then, it presents the sources of variability for 

CMOS devices the so called process, voltage and temperature variation and its 

impact on circuit performances. Finally, the effect of these phenomena on CMOS 

logic gates and delay monitors are discussed. Types of embedded In-Situ monitors 

and their insertion flow importance are discussed. At last their timing errors 

analysis are presented in detail. 

Chapter 2: is dedicated to the Machine Learning (ML) algorithms and their broad 

classification such as supervised, unsupervised, semi-supervised and 

reinforcement algorithms are briefly explained.  Each ML algorithms and their 

sub-divisions are defined with examples. In the first part of this chapter, the state 

of the art of ML algorithms are reviewed. Their advantage and disadvantage of 

each of these algorithms are analysed. Then, we present their evaluation methods. 

In the second part of this chapter, ML algorithms in embedded applications with 

recent innovations are discussed. Finally, the application of the ML algorithm has 

been explained.  

Chapter 3: Describes the proposed framework ML like the mathematical model 

and multiple linear regression algorithms to predict logic gate and the critical path 

delays in a given digital circuit. How to choose the suitable algorithm for our data 



22 
 

and the importance of parameters used in our ML algorithm are explained. 

Further, it explains that the ML framework was implemented in two different 

digital circuits such as FIR filter and AES crypto circuit to explore the trained and 

tested results. Then, the most important critical paths are ranked using different  

workloads. This is used to analyse the effects of aging to know the importance of 

ranking variation on CPs under different circumstances. This approach which 

helps in the selection of CPs for monitoring. Also it explains the experimental 

evaluation method with SPICE simulation comparison with our trained ML 

algorithm results are analysed. Finally, it demonstrates the use of the proposed 

model compared to the random forest algorithm and evaluated the results. 

Chapter 4: In this chapter, we propose an algorithm for dynamic voltage and 

frequency scaling (DVFS) adapted to digital circuits to be used with FDSOI 

technology. The traditional path selection and In-situ monitor insertion flow are 

explained at the beginning of the chapter. This is followed by circuit-level path 

characterization methodology for different PVT to explore the circuit failure of 

the system. The DVFS scheme is demonstrated using the circuit level simulation 

implements using two approaches: Aging aware operating point overclocking and 

maximum performance with capped operating point is explained in detail. As a 

result, a simplified method is developed to estimate the  aging induced degradation 

by tracking both the voltage and frequency variation over time.  

Chapter 5: Conclusion and propose future work directions. 
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Chapter 1: Aging Mechanism of Digital 

CMOS FDSOI Technology 

 

A.Introduction 
 

Integrated digital circuits profit from technology over increasing transistor count 

and complexity in reducing its size. In modern systems, the circuit parameter 

variation during its lifetime becomes critical. In terms of the ideal case, the 

constant supply voltage is given to the circuit but in the real case, on-chip 

variations take place due to glitches, resistivity, fluctuations of supply prominently 

vary the supply voltages. Design and implement the digital circuits using sub-

nanometer CMOS technology. The size of the chip is scaled down prominently 

than the supply voltage. Electric fields are stronger inside the circuit: this increases 

the aging effects, so parameters shifts are fast and important. The changes that 

occur in the device parameter influence whole concert degradation throughout the 

lifetime period. System on chip (SoC) has been cost-effective 10 years back, but 

this idea of SoC single chip is not enough to reduce the cost and satisfy consumer 

quality products. In recent years, there is a demand for cheap and quality 

Electronics products. Reliability is essential in the quality of the products. The 

reliability issue in terms of cost, area, and power with respect to performance goals 

changes from one technology to another technology scale.  Significantly, 

advanced nanometric technology nodes need more attention towards cost-

effective solutions.  

On the other hand, the optimized design will degrade the reliability of the circuit. 

This shows that we are in need of low cost, consistent and resilient design method. 

So, several research types have been done on aging issues faced by CMOS 

technology[11][12]. The lifetime of an IC depends on many factors, as was 

pointed out in the introduction section. In this section, we will provide a brief 

fundamental description of CMOS circuit transistor aging.  

A.1 CMOS Circuit Transistor Aging 

Complementary MOS (CMOS) is a combination of p-type and n-type MOSFET 

transistors, sometimes called pull-up and pull-down networks. Scaling down the 

transistor size tends to provoke more reliability issues due to aging-related 

physical phenomena within CMOS devices[13]. Significantly, the NMOS device 

presents more dominant aging issues when compared to a PMOS device.  In this 
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section, the impact of NBTI on standard library components is discussed, focusing 

on the relationship between gate delays and the threshold voltage, which 

incorporates NBTI degradation performance. 

One of the essential properties of a logic gate is its delay. Reducing delay increases 

the overall performance of the circuit. On the combinational circuit, the 

propagation delay between input and output increases or decreases depends on the 

circuit stress along with time, temperature, VDD, its topology, etc. Under stress 

conditions, NBTI in PMOS of a pull-up network has more impact in reliability 

terms [14]. Practical stress patterns of NMOS and PMOS transistors in the same 

circuit may vary over time and depend on the structure of the circuit and the input 

pattern of the circuit. Different circuit structures and workloads will result in 

different shifts in the threshold voltage of PMOS and NMOS devices. Moreover, 

various shifts will result in different gate delays for different logic gates.  

The delay for the CMOS inverter is derived using the α-power law model [14]. 

The charging and discharging time delay is given by the following equation (2). 

 

 
𝑡𝑝𝐻𝐿 , 𝑡𝑝𝐿𝐻 = (

1

2
−

1 − 𝑣𝜏

1 + 𝛼
) 𝑡𝑇 +

𝐶𝐿𝑉𝐷𝐷

2𝐼𝐷0
,    

(1) 

 

Where 𝑣𝑇 , 𝛼 - Constant, tT – The input waveform proportional to the transition 

time from high to low/low to high ,  CL – Output capacitance or Load capacitance 

of CMOS inverter, 𝑉𝐷𝐷- Drain saturation voltage, ID0 – Drain saturation current, 

For the short-channel MOSFET case, VT and α can be 0.2 and 1[14]. Thus, the 

delay increases when the threshold voltage reaches a high value also depending 

on the transition time period tT. Delay degradation for CMOS logic gates has been 

investigated with an electrical simulation using the Spice wear-out model[14]. 

 

.  

Figure 2: (a) CMOS Inverter, (b) Propagation Delay of Rising and Fall Time 

Figure 2 (a) shows the block diagram of the CMOS inverter along with the 

propagation delay of the rise and fall time output signal. The inverter's rise and 
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the fall time are noted and plotted in the right-side diagram at times t1 and t2. The 

supply voltage VDD and the gate to source voltage are either -VDD or 0. The NMOS 

transistor has input from the ground, and the PMOS transistor has input from VDD.  

The terminal Vin and Vout is input and output. When high voltage is given at the 

input terminal Vin of the inverter, the PMOS becomes an open circuit and NMOS 

switched OFF so the output will be pulled down to VSS. When a low-level voltage 

applied to the inverter. The NMOS switched OFF and PMOS switched ON. So 

the output becomes VDD or the circuit is pulled up to VDD. The ON and OFF state 

of the transistor determines the speed and static power consumption of the 

transistor. The ON and OFF current ratio of the transistor determines its 

performance.  

According to the α-power law, the delay is inversely proportional to the threshold 

voltage Vth. i.e., the delay is dependent on the threshold voltage [14]. 

 

 
𝜏 ≈

𝐶𝐿𝑉𝐷𝐷

𝐼𝐷0
𝛼 

𝑉𝐷𝐷

(𝑉𝐷𝐷 − 𝑉𝑡ℎ)𝛼
 

(2) 

 

Using the above equation (2), the delay degradation, along with the threshold 

voltage, can be formed[15]. Equation (3) gives the relationship between the 

threshold voltage and the delay degradation.  

 ∆𝜏𝑑

𝜏𝑑
∝

𝛼∆𝑉𝑡ℎ

(𝑉𝐷𝐷 − 𝑉𝑡ℎ)𝛼
 

(3) 

 

Thus, the aging of the transistor plays a prominent role in delay degradation. The 

above equation is applicable for all the basic gates in the circuit one can estimate 

the delay degradation. 

In microelectronics, the effects of aging are an important factor in designing the 

chip on a nanometre scale. The gate oxide thickness of the transistor is the superior 

factor of aging phenomena. This thesis concentrates on the aging of each gate in 

a complex FDSOI technology scale and how it impacts the circuit gradually, 

leading to the increased circuit failure rate. It is necessary to understand the 

transistor functioning and the physical phenomena of aging, detailed in this 

chapter before moving forward. 

There is a change of characteristics of transistor age due to the physical parameter 

of the transistor. The transistor aging phenomena can be classified as Bias 

Temperature Instability (BTI), Hot Carrier Injection (HCI), and Time-Dependent 

Dielectric Breakdown (TDDB). The mechanism of HCI and BTI plays a vital role 

in circuit aging. Thus, it is necessary to know the degradation facts before they 

arise in the circuit. Each of these aging effects and changes in the physical 

parameters is discussed in the following sub-sections. 
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A.2 Inverter Delay model 

One of the input parameters is Aging Delay, modeled and expressed into a 

polynomial expression. However, there will be more than one parameter are 

involved with aging.   

A model for delay estimation of a MOSFET  model has been proposed and defined 

with T. Sakurai and R. Newton's alpha-power law in 1990 [14]. The propagation 

delay of a cell is expressed by alpha power law as:  

 
𝐷𝑒𝑙𝑎𝑦𝐶𝑒𝑙𝑙 𝐶𝑜𝑢𝑡

𝑉

𝐼𝑑
 

          

(1) 

 

Where, 𝐶𝑜𝑢𝑡- output load capacitances, v – supply voltage and 𝐼𝑑- Drain current. 

Equation (1) is the basic equation to derive an equation for an Inverter. From this 

model, the propagation delay with voltage and temperature is given in equation 

(2). 

 

 
𝐷𝑒𝑙𝑎𝑦(𝑉, 𝑇) 𝛼 𝐶𝑡𝑜𝑡 ∗  

𝑉

µ(𝑇) ∗ (𝑉 − 𝑉𝑡ℎ(𝑇))𝛼
 

 

(2) 

Where µ(T) – carrier mobility, Vth(T) – Threshold voltage at temperature T, α – 

positive constant (carrier velocity saturation), V – The supply voltage for all cells. 

The delay model, including aging variation, is expressed as in equation (3). In 

contrast, the same as the delay model and the time parameter is added[75]. 

 𝐷𝑒𝑙𝑎𝑦(𝑉, 𝑇, 𝑡)  

=  𝑝𝛽 + 𝑝µ−1(𝑇)  
𝑉

𝑉 − (𝑝𝑣𝑡ℎ(𝑇)) + 𝛥𝑝𝑣𝑡ℎ(𝑉, 𝑇, 𝑡)𝑝𝛼
 

 

  

(3) 

Where, 𝑝𝛽 , 𝑝𝛼  are constant while 𝑝µ−1(𝑇) and 𝑝𝑣𝑡ℎ are exponential temperature 

dependence and related to transistors mobility and threshold voltage, respectively.  

The above equation (3) is for an Inverter delay degradation[74] and it consists of 

8 parameters. Each of them is described by the extended below formula.  

 𝑝µ−1(𝑇) =  𝐶1 + 𝑘1𝑇𝑛1 

 

 (4) 

 𝑝𝑣𝑡ℎ(𝑇) =  𝐶2 + 𝑘2𝑇𝑛2  (5) 

 
𝑝𝑣𝑡ℎ = 𝑉 ∗ 𝑒−

𝐸𝑎
𝑘𝑇 ∗ (𝐶1 ∗ 𝑡𝑛1 + 𝐶2 ∗ 𝑡𝑛2) 

 (6) 

Where, 𝐶1, 𝐶2, 𝑘1, 𝑘2, - fit parameters for a given technology (i.e., FDSOI 28nm) 

obtained with a high degree of confidence,   - voltage acceleration factor, 𝐸𝑎- 

temperature activation energy, k- Boltzmann's constant. (𝑛1, 𝑛2) - two different 
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time exponents. Both HCI and NBTI effects degrade the reliability and 

performance of the circuit by varying the threshold voltage of a transistor with 

respect to time. Thus, the final Delay model, including aging variations, is 

expressed in equation (3).  

Each Delay model parameter change from one process corner to another. The three 

process corners with their corresponding eight parameters shown in Table 1 are 

already validated and explained [74].  

 

 𝑝 𝐶1 𝑘1 𝑛1 𝐶2 𝑘2 𝑛2 𝑝 

SS 6.96e-11 2.72e-11 6.60e-11 1.88 0.57 1.12e-4 1.30 2.60 

TT 6.76e-11 2.66e-11 4.18e-11 1.94 0.46 1.15e-4 1.30 2.68 

FF 6.88e-11 2.80e-11 7.98e-11 1.94 0.46 1.15e-4 1.30 2.68 
Table 1: Parameters for the delay model[75] 

This equations (3) does not include any workload dependent parameter. Workload 

influence inside the circuit is an important factor in the aging analysis. Thus, how 

this thesis incorporates this parameter to develop our proposed model is explained 

in the next sub-section.  

A.2 Bias Temperature Instability (BTI): 

BTI is a destructive phenomenon that mainly affects the threshold voltage of a 

transistor and continuous on/off delay of the gate, and the path delay of a circuit. 

BTI is classified into Negative Bias Temperature Instability (NBTI) and Positive 

Bias Temperature Instability (PBTI). Among these two, NBTI causes more 

degradation in the circuit than PBTI. 

Negative Bias Temperature Instability (NBTI): It is a serious reliability 

problem for digital and analog CMOS circuits[16]. It occurs mainly in p-channel 

MOS devices. Degradation follows a logarithmic relationship with time. The 

principal parameters affecting NBTI are  

 transconductance gm 

 linear drain current Id,lin 

 saturation current Id,sat 

 Channel mobility µeff 

 subthreshold slope S  

 off current Ioff 

 the threshold voltage Vth 

Figure 3 [17]shows the physical setup for NBTI exploration[18]. The gate is 

negatively biased while the source, drain, and substrate are connected to the 

ground. At a well-known temperature, this condition is applied for a few seconds. 

So, there are no hot carriers stimulated. NBTI occurs mostly in PMOS transistors 
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with a negative voltage source at the gate. Thinner oxides are near the gate where 

non-nitride gate oxides are presented. The trapping mechanism, along with 

degradation, takes place. When there is stress in the PMOS transistor, the 

threshold voltage increases linearly because of its positive charges. Thus, it 

decreases the drain current and damages the gate. At higher negative threshold 

voltage and the elevated temperature is maintained. A high gate to source voltage 

VGS and low drain to source voltage VDS stress condition exists. Every defect is 

caught with time depending on whether it is positive or negative charged.  

 

 

Figure 3: Schematic of the Physical mechanism of NBTI 

Positive Bias Temperature Instability (PBTI): It occurs mostly in the NMOS 

transistor. PBTI causes much lesser degradation compared to NBTI if no high-k 

or metal gate is used[19]. Trap generation takes place with a combination of pre-

existing electron traps in NBTI and PBTI[20].  The gate's material is coated with 

metal, and high k-oxides reduce the leakage near the gate [21]. So, along with high 

k-oxides, PBTI is also noted with high care in the future. 

A.3 Hot Carrier Injection (HCI): 

HCI is one of the reasons for the degradation of CMOS transistors. Switching on 

or off the Field Effect Transistor, the current reaches the gate's peak value, causing 

hot electron injection. Thus, an energy-efficient electron in Si/SiO2 interface 

increases the collision in the transistor channel. Figure 4 shows the mechanism of 

HCI in the NMOS device [22][23][24]. When the Gate to source voltage is higher 

than the threshold voltage, the transistor in ON state and hot carriers are produced 

under a high electric field, which is accumulated near the drain region. Few are 

injected into the gate region. There is a slight change or shifting in the threshold 

voltage, and these hot carriers degrade the dielectrics. Drain and gate are repelled 

by the holes, which produce a substrate current. Continuous observation of 

degradation takes place when there is an electric field in a digital CMOS circuit. 

HCI degradation mainly depends on the slew rate or fan-out parameter in the 

circuit[25]. 
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Figure 4: HCI Mechanism 

The hot carrier degradation is correlated to the length of the channel, oxide 

thickness, and supply voltage. There are four hot carrier injection 

mechanisms[26]. These are  

 Drain avalanche hot carrier injection; 

 Channel hot-electron injection;  

 Substrate hot electron injection;  

 Secondary generated hot electron injection.   

The Drain avalanche hot carrier (DAHC): Under normal operating 

temperature, Hot carriers are considered to introduce the worst degradation 

temperature.  At high drain to source voltage and lesser gate to source voltage 

under stress conditions, the DAHC effect is more significant[27]. A high electric 

field is applied near the drain region, i.e., the drain voltage is greater than the gate 

voltage under a non-saturated condition. In turn, the channel carriers produce the 

drain depletion region. Various research shows that the drain voltage is double the 

gate voltage times, where there are bad effects occur [28]. The hot carriers' 

movement hit with a Si lattice atomic, generating an electron-hole pair in the 

process. This phenomenon is known as impact ionization.  

Channel hot electron injection (CHEI): It exists when the gate and the drain 

voltage is higher than the source voltage. When there is a high gate voltage, the 

channel carriers move from source to drain or, on occasion, are driven through the 

gate oxide. The channel hot electrons produce an electron-hole pair known as 

impact ionization at the drain channel's edge. Thus the substrate collects all the 

holes and produces the substrate current[29]. 

Substrate hot carrier injection (SHCI) occurs with a very high positive or 

negative bias applied at the substrate back[30]. Thus, the carriers leave the 

substrate and reach the Si-SiO2 interface. This moving process produces more 

kinetic energy in the depletion area. These hot carriers can overcome the energy 

barrier at the interface and are injected into the gate oxide, where few are trapped. 
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The Secondary Generated Hot Carrier Injection: It is a photo-induced 

generation process[31]. Impact ionization occurs, as mentioned in the CHEI, 

involving a secondary carrier made by a former incident of impact ionization. The 

typical condition for impact ionization is that the drain voltage is higher than the 

gate voltage. This condition is similar to DAHC, but the only difference is that the 

hot electron injection process occurs at the substrate back bias.  

A.4 Time-Dependent Dielectric Breakdown (TDDB):  

It is a failure mechanism in MOSFET and a major reliability issue in 

MOSFET[32]. Under a constant electric field, the strength of the material gets 

breakdown with time. Thus, the dielectric gets the transition from an insulating 

phase to a more conductive phase. It is field, temperature, energy, and polarity 

dependent[33]. The electric field acceleration parameter does not depend on 

temperature, indicating any correlation between time to failure of TDDB and 

oxide trapped charges[34]. Under stress conditions, the density function can be 

approximated as shown in [34] for a particular temperature and voltage.  

 
(𝑓𝑠ln (𝑡) =

1

𝜎√2𝜋(𝑡 − 𝑡0)
[−

1

2
(

𝑙𝑛(𝑡 − 𝑡0) − 𝑙𝑛µ

𝜎
)

2

])     − ∞

<  ln 𝑡 <  ∞ 

(4) 

 

Where σ- variance, µ - mean, and t0 – initial failure time, the oxide quality 

and applied electric field determine the activation energy of TDDB. The lifetime 

of TDDB depends on its particular temperature range [34]. Scaling down the 

dimension and usage of low k-material may be problematic for TDDB [35][36]. 

B.Sources of Variability for CMOS Devices 
 

The current trend of shrinking transistor size and advanced technology nodes 

increases the digital circuit's performance and speed. Significantly, advanced 

CMOS-based devices are very much affected by various factors in recent 

technology nodes.  In this section, the source of variability for CMOS devices and 

how important this variation's impact affects the circuit's performance are as 

follows. Source of Variations for CMOS device can be sub-divided into two broad 

categories: Process and the other is Environmental. There are three sources of 

variability: Process, voltage, temperature, and Aging (PVTA) variations. PVTA 

variations affect the overall performance and reliability of the circuit, making the 

temporal behavior of gates and circuits quite non-deterministic.  

Furthermore, BTI, HCI, and TBBD degrade the circuit by increasing the voltage 

threshold of transistors, as discussed in detail in the previous section. Again 

process can be sub-divided into two they are systematic and non-systematic. Non-
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systematic is further sub-divided into two global (Within-die) variations and local 

(Die-to-Die) variations. Figure 5 shows the general taxonomy of variation in 

CMOS processes. Each of these variations is discussed further in detail. 

 

Figure 5: General taxonomy of variation [37] 

B.1 Process Variation 

Process variation has been increased a lot due to the scaling of process 

technologies. This impact variation increases the delay and frequency 

performances of the digital design. These slight delay variations affect the target 

frequency and yield. After fabrication, the number of chips operated within the 

target frequency also decreased a lot. The primary source of process variation in 

CMOS processes are listed below [37] 

Random dopant fluctuation (RDF): It is one of the processes which can change 

the threshold voltage and alter the transistor's properties. This is due to the 

variation in the impurity concentration. It is one of the local forms of process 

variation.  

 

Line edge roughness (LER): It is a process of variation on the edges from an 

ideal form. That is, varying edge features of the semiconductor. Its been one of 

the issues while using extreme ultraviolet lithography in making IC chips.  

 

Oxide thickness variation (OTV): Control over atom-level interface between 

silicon and dielectrics of the gate. It also increases the variations in the device 

mobility and threshold voltage.  

Further, the process variation is broadly classified into two Global process and 

Local processes which are discussed further. 

Global Process: It is also called an on-die or inter-die, or die-to-die variation 

(including die from different wafers and different wafer lots). Global variability 
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or global process defines changes in the physical parameter of the transistor 

channel length, width, layer thickness, resistivity, doping density, and body 

effect[38]. To know the variation of a global process, device characterization is 

important between current and voltage to model between fast/fast (FF) and 

slow/slow (SS) cases of a transistor.  

Local Process: Local process is also called Intra-die or within-die variation. That 

is a variation of gate lengths of different devices within the same die. Local 

process variation can be further classified as spatially correlated variations (SCV) 

and random or independent variations (RIV). SCV is one of the within-die 

variation process that behaves as the same kind of characteristics within-die in the 

particular area as those are located far away from die. RIV variations are 

statistically liberated from other variations of the device.  

B.2 Voltage Variation 

In CMOS technology nodes, the supply voltage and threshold voltage play a vital 

role in the circuit aspects' performance and reliability. There will be many circuit 

design challenges when the voltage variation takes place. For nanotechnology IC 

chips decreasing the supply voltage and threshold voltage leads to an increase in 

the current leakage. Figure 6 shows the International Roadmap for Devices and 

System (IRDS) prediction of the technology node's supply voltage and threshold 

voltage [39]. The threshold voltage does not follow the trend of supply voltage, 

which decreases the leakage current.  The effect of CMOS threshold voltage 

variation on high-performance circuits 

 

Figure 6: The Supply Voltage and threshold voltage in time [39] 
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B.3 Temperature Variation 

In low-power applications, temperature variation is one of the main variations in 

CMOS devices. Moreover, the temperature and threshold voltage variation may 

inverse the N and P transistor current [40]. These may entirely change the circuit's 

characteristic corners and call it a Temperature Inversion Phenomenon (TIP). The 

temperature-dependent values are the threshold voltage and the transistor's carrier 

mobility [40][41]. By increasing the temperature, both threshold voltage and 

carrier mobility decrease, affecting the circuit timing performance naturally. This 

leads to sub-threshold leakage current exponentially. Thus, this problem of 

leakage of a device operating at high temperature.  The environmental temperature 

around us also causes an essential role in fluctuating the die temperature and 

performances.  

The high temperature in the circuit causes slower transistors, higher interconnect 

resistance and higher subthreshold leakage. Figure 7 shows the IBM chip 

temperature variations from 0.8C to 30.3C of 0.13nm CMOS technology [42]. The 

hot spot of the chip varies depending on the circuit's activity and discharge more 

power leakage. The switching speed of each gate in the critical path increases with 

the circuit's voltage, temperature, and process variation. The fluctuations in the 

temperature cause significant variation in the CMOS device characteristics and 

vary the IC design performances.  

 

 

Figure 7: Full chip temperature Increase profile [42] 

 

To consider the impact of PVTA variations become necessary to find an efficient 

way to overcome these issues. These variations affect the circuit's performance. 

The voltage variations are due to circuit impedance and temperature variations 
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produced by different circuit activities. This leads to power dissipation between 

the circuit blocks. At last, aging effects, particularly BTI and NBTI, causes’ 

gradual degradation of the circuit characteristics and had a significant impact on 

variations in the circuit.  

 

C.CMOS Logic gates  
 

In an Integrated circuit (IC) design, the system contains many kinds of logic gates 

and interconnects. Basic logic gates are for example, NOT, AND, OR, NOR, 

NAND, XOR, and XNOR, but more complex gates have been designed too (AOI 

(Input AND into Input NOR), OAI (Input OR into Input NAND), MAJ (Majority 

gate), FA (Full Adder), etc.). Logic gates have n inputs, but in general, they have 

only one digital output (except the FA gate). Each individual logic gate can be 

connected to form a combinational or sequential type to produce a different logic 

gate function from standard gates. Each gate's delay time should be calculated to 

estimate such a system's ability to operate at the specified frequency. The IC 

design's size becomes smaller and smaller due to the technology scaling, making 

larger transistors and interconnects resistances. Thus, larger resistance results in a 

larger effect on the gate delay, which is important for IC performance. Therefore, 

advanced models are necessary for calculating the gate delay accurately and 

efficiently. The delay calculation techniques are summarized in [43]. Delay 

monitors are used inside the circuit to achieve nanometric on-chip reliability and 

circuit performance to ensure fault-free operation [44]. Delay monitors and their 

insertion flow are explained in detail in the following section 

 

D.Delay Monitors 
 

Delay monitors is one of the method used to avoid pre-error or post-error timing 

faults. The timing errors caused by variability and the physical phenomena 

degrade the circuit. As aging-induced phenomena influence the performance and 

Reliability of CMOS digital monitors, or sensors are placed in the middle or at the 

end of the circuit to measure the system's degradation level and reliability 

performance. Degradation of physical and electrical parameters in the circuit is 

the main reason so far. The main researches on monitors for aging-induced effects 

are listed as follows. Inline resistance faults and struck-open faults inside the 

circuit can also be monitored and detected [45]. Other defects are monitored 

through the current degradation Iddt, which can be detected while measuring the 

aging of the circuit [46]. For example, Built-in current sensors (BICS) are used 

for fault detection in CMOS integrated circuits [47]. However, a few types of 

researches had been done to highlight the lifetime of the circuit.  
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In this section, solutions for reliable and process variation-aware design of CMOS 

integrated circuits are discussed in detail. In-Situ Monitors are used either to 

extracting or to reacting at the circuit delay degradation. This information is 

converted into a digital domain where the degradation part is identified precisely. 

Hence, the delay faults are measured, and the necessary mitigation is taken. The 

circuit's life period is prolonged by taking the necessary actions, and system failure 

is avoided. In this section, different approaches for the implementations are 

discussed. 

D.1  Embedded In-Situ Monitors 

Embedded in-situ monitors are placed (Inserted) at the end of the critical paths to 

monitor the particular path's error delay and pre-error delay. It is very difficult and 

costly to directly predict the errors before they arrive in a digital circuit. One 

possible solution to this problem is the Pre-error approach used in In-Situ 

Monitors[48]. Consequently, scaling down the voltage supply could not be pushed 

forward as intended for energy efficiency purposes[6]. In this thesis, embedded 

monitors with error detection and pre-error detection, along with their examples, 

are discussed in detail  

 

D.1.1 Embedded monitor with Error Detection 
 

Examples of error-detection embedded monitors are double sampling with time 

borrowing monitors (DSTB), TDTB monitors, Razor-I and Razor-II, etc. To 

overcome the challenges in critical path replication approaches, a Razor flip-flop 

can be used. Here a single path is identified as the critical path to be monitored 

[45]. Figure 8 shows the Razor flip flop block diagram with main and shadow flip 

flop in followed to XOR gate. An on-chip timing checker is used to check the 

critical path timings. A delayed clock is used for both master and shadow flip flop 

to capture the data and comparisons. The value latched in the main and shadow 

flip flop may vary due to its scaled supply voltage leads to giving an error signal 

at the end. Thus, the error rate depends on the supply voltage limits till the point 

where the error becomes unacceptable. When the design has more critical paths, 

more shadow latches are needed, which results in efficiency reduction. If the error 

rate increases, this might affect the overall system performance because of the 

increased latches. 
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Figure 8: Razor-I flip-flop[28] 

 

D.1.2 Embedded Monitor with pre-error detection 

 

The error detection scheme helps the circuit to predict the circuit failure before it 

arises. For pre-error detection, embedded monitors are In-situ monitor with buffer 

delay, In-situ monitor with passive delay, In-situ monitor with master delay, and 

In-situ monitor with a canary flip flop, etc.  Figures 9, show a block diagram of a 

canary flip flop [9]. The difference in the value between captured and shadow flip 

flop at the end of the output generator.  This warning generator or pre-error flag 

indicator is used to find the circuit speed, variations, and aging-aware voltage 

adaptation. This type of flip flop is simple and easy to implement in the circuit to 

automate the process. These types of monitors are embedded inside the circuit, 

which is more precise and accurate than the external monitors. The timing 

variations are captured without any failures. 

 

 

Figure 9: Block diagram of canary flip flop monitor [9] 
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E. Traditional path selection and ISM Insertion 

flow 

E.1 Critical path selection 

Choosing the right subset of Near Critical Path (NCPs) of a circuit to instrument 

is a complex question, related to both the lifetime utilisation and the optimization 

processes used at fabrication time. Researches have been done for selecting a 

critical path for performance optimization [87]. Further, this selection process is 

not only based on optimization problems but also on Process variations [88]. A 

circuit is required to operate as fast as possible by monitoring the delay of the CPs 

of the targeted circuit. The delay of the circuit should not be longer than a given 

clock period. The slow and fast process is based on the CP delay performance. If 

the delay of CP is slower than the clock period, its performance are reduced by 

that margin, which would potentially be exploited.   

Before proceeding to the characterization and optimization algorithm, it is 

necessary that we need to select the critical path selection.  In this thesis, worst-

case critical paths are considered. After synthesis, all the critical paths inside the 

circuit are analyzed using the Statistical Timing Analysis (STA) option inside the 

Design Vision software. Static timing paths are usually noted in four ways: 

1.Register – Register (Reg - Reg) 

2.Primary Input – Register (PI - Reg) 

3.Register – Primary Output (Reg - PO) 

4.Primary Input – Primary Output (PI - PO) 

 

Register – Register (Reg - Reg) :  

The start point is the clock input pin of the launch Flip Flop and the end point is 

D input pin of the latch flop as shown in Figure 14. For setup constraints, the goal 

is to make sure that the start point's delay is at least the setup time of latch flop 

less than the clock period of the latch clock. 

 

 

Figure 10: Register – Register (Reg - Reg) 
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Primary Input – Register (PI - Reg) 

 

The start point will be input ports and an end point will be the D pin of the latch 

flop. One can assume an input delay from the input port to the combinatorial cloud 

as shown in Figure 15. The input delay can include pad delay or any net delay. 

 

 

Figure 11: Primary Input – Register (PI - Reg) 

 

 

Register – Primary Output (Reg - PO) 

 

The start point will be the clock pin of the launch flop and an end point will be the 

output port. One can assume an output delay from the output of the combinatorial 

cloud as shown in figure 16. Output delay can include pad delay or the net delay 

from combinatorial cloud to pad. 

 

 

Figure 12: Register – Primary Input (Reg - PO) 

 

Primary Input – Primary Output (PI - PO) 

 

The start point is the input port, whereas the end points are output ports, as shown 

in figure 17. One can assume input delay for input ports and output delay for 
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output ports. Typically, the combinatorial paths between inputs and output ports 

are constrained to meet the minimum and maximum delay constraints. 
 

 

Figure 13: Primary Input – Primary Output (PI - PO) 

 

Figure 14 and Figure 15 show the Path Slack analysis provided by Design Vision: 

the path slack for most worst-case is noted and highlighted in yellow color, 

whereas the start and end of the critical path are highlighted in blue . It shows the 

graph between the number of paths and the slack time. For our project, the worst-

case critical path slack is taken was highlighted in yellow color on the left side 

and marked as blue color on the right-hand side was taken. Here all the worst-case 

paths are Reg – Reg blocks. 

 

 

Figure 14: Path Slack of FIR Filter 
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Figure 15: Path slack of AES Circuit 

In this thesis, the worst-case critical path are considered and the paths are chosen 

manually. For the FIR filter, 21 NCP are considered to analyze the performance 

of the circuit, whereas, from the AES circuit, 150 NCP are taken. The choice of 

PVT is based on application specifications. These NCPs are considered more 

important for predicting a circuit's characterization and performance with a limited 

life cycle. The following section describes the critical path characterization of 

FDSOI technology. 

E.2. Critical Path Monitoring  

Large-scale CMOS ASIC and other digital systems are suffering from a power 

consumption problem. Power saving can be managed by various factors such as 

PVT, aging, and other electrical, physical parameters. By controlling the supply 

voltage and frequency, we can achieve saving the power for many devices. Thus 

ADVS technique can control the voltage and frequency to increase the power 

efficiency and the performance of the circuit. The voltage and frequency 

relationship can be determined using critical path analysis of a circuit. We can 

measure this by using a ring Oscillator or inserting a delay line between the critical 

path. Figure 16 shows the critical path monitoring technique for AVFS is shown 

below.  

 

 

Figure 16: Example of a Critical Path Monitoring Technique[45] 

The delay chain comprises different digital gates such as inverters, NAND, NOR 

gate, wire segments, etc., and the output can be selected from one of the points. 
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Thus the critical path delay is noted and captured. A configurable delay chain is 

used in a critical path monitoring technique. During the AVS operation, the start 

and the end of the clock are captured and stored using a set of the buffer at the 

end. The AVS system's feedback adjusts the supply voltage to meet the timing 

constraints between the delay chain and critical path meet margins. 

In order to measure the delayed launch, an edge at the start of the clock cycle and 

then capture the edge at the end of the clock cycle at the output of the delay chain 

and a set of buffers. Then the buffer outputs that are captured are analyzed to 

determine the exact positioning of the rising edge. Now the feedback employed 

by the AVS system continually adjusts the supply voltage such that the delay chain 

and critical path meet the timing constraints with adequate margins. The 

adjustment of the supply voltage is made such that the launch, rising edge makes 

it to a specified buffer stage, which ensures the timing of the delay line. 

There are lots of challenges in critical path monitor: Enough safety margin has to 

be included. Otherwise, there is a chance of a mismatch between delay lines and 

actual delay path and huge process variation. Thus, in order to maintain a safe 

operation, an additional delay margin is to be maintained. Selecting a single 

critical path and placing a monitor becomes very challenging. Sometimes the 

overall delay being close to each other due to a different combination of logic and 

interconnect delay paths. 

E.3. In-Situ Monitor (ETI) Insertion flow 

The efficiency of ETI relies on activity on the paths where they are inserted. The 

conventional method to insert ETI is to find a list of setup critical paths from static 

timing analysis and target the worst critical paths for ETI insertion, especially the 

In-situ monitors. The generic approach is illustrated in Figure 17. The classical 

Front-end steps are executed with logic synthesis or physical synthesis steps. In 

the end, a gate netlist is provided as input to the placement and route tool. After 

placement of gates and of the clock tree synthesis (CTS) and CTS optimization 

(Setup and hold optimization), timing analysis (TA) is performed. For the chosen 

functional corner, a decision is made to insert ETIs and to regenerate connectivity 

and delay calculation on a sub-set of critical paths. It comes up with an updated 

netlist, timings, and power. The flow is normally executed: detailed routing and 

optimization (timing, power, IR drop, signal integrity, etc.).  
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Figure 17: ETI Insertion methodology flow in digital design [44] 

Based on this method and for a complex digital design, the number of ETI to be 

inserted can become rapidly huge. These designs have hundreds of thousands of 

Flip-Flops, and a careful selection of those FF to be used as ETI has to be done. 

Also, synthesis tools have tendencies to propose physical gate netlists 

implementations with well-balanced paths. Therefore, the number of subcritical 

paths to be monitored can be significant. Even if from the first number of FF we 

can consider only the subset of FF that are endpoints of these sub-critical paths, 

the number of the FF can still be quite high, generating significant area overhead 

and making it challenging to handle ETI alarms at a reasonable time. It is essential 

to be able to select only meaningful aging, sensitive critical, and subcritical paths 

to be monitored for setup delay violations.  

The delay of a given path may degrade depending on the environmental 

conditions, time, and the application running on the circuit. Path delay degradation 

due to aging has a logarithmic relationship with time, being more important at the 

beginning of the utilization time, and saturating after that. In paper [49], accurate 

RTL simulation has been performed to extract the endpoint signal probability. 

Then the aging-induced shifts of the critical paths are estimated for each workload 

by using BTI-aware static timing analysis. Therefore, the global aging model is 

built with signal probabilities of the selected endpoint. 

The workload has an additional crucial impact on the delay degradation of the 

path. Different workloads executions degrade the delay of the paths in completely 

different ways, and as a result, the higher-ranked paths at design time may be 

different from the critical path after the execution of specific workloads. Figure 

18 shows how far a given circuit, the ranking of age paths, changes due to the 

workload.  
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Figure 18: Pattern dependence of critical path ranking[50] 

Assuming N workloads are available and can be used to extract the activity 

profiles of gates and paths in the circuit, we can identify the more sensitive paths 

to aging-induced degradation delay and which one can become critical near-

critical paths at a given moment in the future. The path has to be identified and 

buy its endpoint individually, as the monitor has to be inserted right at that 

endpoint Flip-flop. Figure 19 shows different path activations during different 

workloads that one circuit may experience. 

 

Figure 19: different path activations scenario based on the workload[50] 

To detail a bit more this analysis, the following methodology is used:  

First, an average activity of the outputs of the gates is extracted from the workload 

by using a combination of application simulation and activity extraction tools. 

 

1. With this activity, the delay degradation of logic gates due to aging is  

estimated for the standard logic cells of the library 

2. Finally, the full delay degradation can be projected at the targeted-end of-   

life time,  

3. Static Timing Analysis is performed with this new delay degradation data,   

and the first collection of critical and near-critical paths is obtained. 

                                           Stratégies de sélection et d‘intégration des moniteurs in-situ 
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(a) 

 
(b) 

Figure 3.14 : Chemin de propagation vers deux bascules de capture (Endpoint 1&2), à partir 

de trois bascules de lancement (Startpoint 1,2 et 3) 

 

Au vue de cette observation, il est important de s‘intéresser à la distribution des délais des 

arcs pour toutes les bascules du circuit. En effet, dans la figure 3.15, nous présentons la 

distribution de 50 arcs pour les deux registres de capture de la figure 3.14, faisant partie du 

circuit BCH utilisé pour toutes les analyses de ce chapitre. Cette figure montre que pour 

l‘Endpoint 1, l‘écart entre le délai du chemin critique et le 50
ème

 est de 300 ps alors qu‘elle est 

de 20ps pour le registre 2. Ce qui montre que tous les arcs de la bascule 2 sont à considérer 

car ils ont un délai très proche du chemin le plus lent. Cette observation démontre la criticité 

de la bascule et peut nous aider à parvenir à une décision plus rapide pour sélectionner les 

bascules à monitorer. 

 

 

Figure 3.15 : Distribution des délais de cinquante arcs pour deux bascules. 
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4. Fan-in cone analysis is performed to identify all the endpoints that cover all 

the sets of paths. 

5. The final set of flip-flops is obtained, and ETI can be inserted at the endpoints  

E.4 Example of In-Situ Monitor (ETI) Insertion 

The In-situ monitor (ETI) and sensors are used to monitor the digital circuit's aging 

and its functioning point. At the beginning of our work, we targeted the FIR filter 

to extract the worst-case critical path using the Synopsis Design Vision tool shown 

in figure 20 and evaluated the results with a test bench using ModelSim to get the 

waveform of the circuit as viewed in figure 21. Then, ETI were placed at the end 

of the worst-case critical path of the FIR filter and placed exactly at the register 

named 16, 17, 18 as highlighted and separated in yellow colour dash lines in 

Figure 22. At time t = 0, these 3 monitors are inserted manually. The delayed 

critical path with no alert signal and the next stage output is noted in register 16.  

We aim to predict the aging of the circuit. Thus we need to compare the monitor 

output alert signal at time t = 0 and t = 1.  

 

 

Figure 20: Critical path of FIR Filter 

 

 

Figure 21: Waveform of FIR Filter 
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Figure 22: Waveform of FIR along with ETI monitor 

 

This task allowed us to validate that once an Endpoint has been identified thanks 

to NCP ranking, ETI insertion can be done in a fully mechanical way without any 

further analysis: even though we stopped at manual insertion this process could 

be easily automated.  

 

F.Low power CMOS Design 
 

The low power design is a technique to reduce the dynamic and static power 

consumption of a digital IC. The below equation gives the power components.  

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝛼𝑓𝐶𝐿𝑉𝐷𝐷
2 +  𝑡𝑠𝑐𝑉𝐷𝐷𝐼𝑝𝑒𝑎𝑘 + 𝑉𝐷𝐷𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 

Where α is the activity factor, f – frequency, 𝑡𝑠𝑐- transmission time, 𝐶𝐿- capacitive 

load, 𝑉𝐷𝐷- supply voltage, 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 – leakage current, 𝐼𝑝𝑒𝑎𝑘- peak current. The 

power component is related to the activity, frequency, transition time, capacitive 

load voltage, leakage current, and peak current. Nowadays, many industries and 

researchers are pushing their boundaries on new techniques to reduce power 

consumption. Most of the low power techniques have emerged, where the 

dynamic power is adjusted during the run-time of the system [51][52]. There will 

be a need for low power design because it affects the overall cost of the systems. 

The low-power design techniques are discussed in detail below. 

There are many advanced techniques for low power design. Among them, two of 

them are listed below, 

1. Dynamic voltage and frequency scaling (DVFS) 

2. Adaptive voltage and frequency scaling (AVFS) 

F.1 Dynamic voltage and frequency scaling:  

DVFS, the name itself, allows the digital circuit to modify the system's frequency 

and supply voltage. DVFS technique is an effective way to reduce power 

consumption for the low power circuit. There will be a trade-off between voltage 
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and frequency operation of the circuits. Lower the voltage will generally run the 

circuits slowly and there will be a need to check the frequency of operation need 

to be often rechecked when the voltage reduces. The equation for switching power 

in CMOS circuit is 
 

𝑃 = 𝑘𝐶𝐹𝑉2 

 

Where, k – percent time switched, C – capacitance, F – frequency, V – voltage. 

The equation was showing that optimization energy will be adopted by reducing 

the voltage as low as possible. In reducing the chip size to nanometer processes, 

the effects of voltage and frequency change over increases the leakage heavily, 

resulting in a decrease in the optimization energy.  

F.2 Adaptive Voltage and Frequency Scaling: 

AVFS is a dynamic power minimization technique that changes the supply voltage 

in coherence with the chip's power supply during run-time. It is also called as 

closed-loop dynamic power minimization technique. The performance of the chip 

is directly determined by the run-time and the optimal voltage-frequency 

correlation. AVFS is used for many applications such as ASIC, microprocessor, 

and System-on-chip (SoC), etc., Often the chip is supposed to have an NBTI issue 

while increasing the voltage supply. This problem is solved by using AVFS to 

contest with the system supplies. The NBTI degradation is seized possible by 

fixing the sensor in the AVS system[53].  

 

 



47 
 

Figure 23: Closed-loop for AVFS schematic [54] 

Figure 23 shows the closed-loop for AVFS schematic for our proposed model. 

Developing real-time analytics for embedded system start with a workflow of 

training. In the training flow, stored data is used to develop for preprocessing then 

categorize the data which is numeric or categorical. Analyze and process the data 

to get ready for finding the right algorithm. After understanding the data, the next 

step is choosing the right algorithm that is fit for our predictive solution. For our 

data we chose a Multiple Linear Regression ML algorithm for predicting the 

adaptive voltage based on the degradation of each worst-case critical path of our 

target digital circuit. The error flags are predicted by our proposed ML model. 

Thus, the supply voltage under each particular time period was noted and adjusted 

based on our predictive algorithm.  

G.Conclusion 
 

This chapter introduces aging mechanisms in digital CMOS circuits, namely, BTI, 

HCI, and TDDB mechanical variations. These three mechanical variations are the 

major resource for the gradual degradation of the circuit. It also explains the source 

of variability for CMOS devices and CMOS logic complex gates. This variability 

also one of the reasons for the changes to the circuit degradation and its 

performances. Then, CMOS logic complex gates and delay monitor types and 

their importance are explained. The safety guard bands are imposed on the circuit 

to prevent the circuit from degradation. But, it is not appropriate for the large 

circuit. The following chapter discusses the machine learning algorithm and its 

importance. Further, state of the art is explained with an existing solution of 

handling the circuit without safety guard-bands to avoid timing closures. This 

solution increases energy efficiency drastically by avoiding safety guard bands. 
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Chapter II : Machine Learning Algorithms 
 

A.Introduction 
 

Machine Learning (ML) is fundamental to artificial intelligence. As intelligence 

needs information, the system needs to gain information, allowing self-learning. 

When new data is entered, it automatically assisted to learn, grow, change, and 

develop by themselves. The Learning system model block diagram is shown 

below in Figure 24. When designing a learning system, we first need to collect our 

input data. The next stage consists of training and testing, which is essential 

whenever ML takes place. We need to train and test the ML algorithm with the 

selected input data.  

Real-life examples of  ML systems are the Page Ranking algorithm (Example: 

Google), Recommendation system (Example: Amazon and Netflix), and in-stock 

exchanges[55] (Example: Prediction using Deep learning), but today they are 

present in all aspects of our life.   

 

Figure 24: Learning System Model[56] 

In an input dataset, a training subset is implemented to build up a model or a 

function, while a test sub-set (also called a validation) is to validate the model built. 

Data points in the training set are excluded from the test (validation) set. In 

Machine Learning, we try to create a model (or a function) to predict the test data. 

So, we will use the training data to fit the model (by using one of the ML algorithms 

based on its input data and problem) and testing data to test it. The functions 

generated are to predict the unknown results, which are actually the test sub-set. So 

the input dataset is divided into train and test set to check and improve accuracy 

and precisions by the final system. 

The proportion to be divided is completely dependent on the input set and the task 

to be solved. It is common sense to have 70% of the data for training and the rest 

for testing, but it is not necessary to be in this proportion. So, assume that we 
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trained it on 50% data and tested it on the rest 50%. The precision will be different 

from training it on 90% or so. This is mostly because, in Machine Learning, the 

bigger the input dataset to train, the better.  

Machine learning uses data to generate an internal mathematical calculation that 

learns to make predictions. It usually defines the common mathematical 

structures that approximate the distribution of data. An example of this would be 

weather prediction.  

In this chapter, all the learning methods of machine learning are detailed with 

example and their pros and cons are explained. In addition to describing a specific 

application of machine learning is illuminated.  

B.Machine Learning Types 
Machine learning (ML) has different learning styles based on its data problem. In 

ML, there are two types of grouping: Learning type-based grouping and problem-

type-based grouping [57]. There could be many ML algorithms that are possible 

for the same problem. Thus, finding the right fit for our problem and data would 

be a great challenge. Figure 25 shows the types of machine learning algorithms 

with example cases. Each type of ML algorithm is detailed in this thesis.  

 

 

Figure 25: Machine Learning Types [57] 

B.1 Supervised Learning Algorithm  

In supervised learning, is where you have input data and you know what are their 

desired outputs variable (classes, or output data). Mainly supervised learning 

algorithms are used in predictive modeling or in classification. The features or 

attributes are trained to predict the future from the input data. The predicted new 

data is based on the previous and historical data sets. Supervised learning 

algorithms can be broadly classified into two sub-groups. 
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1.Regression algorithm 

2.Classification algorithm 

The human designer has to identify the problem before applying it to either 

regression or classification approach. Regression algorithm aims to predict and 

estimate a continuous quantity. In contrast, the Classification algorithm aims to 

predict discrete categories [58]. Some supervised learning algorithms applications 

are search engines, stock market trading, speech recognition, traffic prediction, 

bioinformatics, spam detection, object-recognition for vision, etc. The pros of the 

supervised learning algorithm are a simple method and more accurate prediction. 

The cons are sometimes you could overfit your algorithm easily, large 

computational time, unwanted data could reduce the accuracy, pre-processing 

challenges, in case of incorrect data which will make prediction incorrect and 

useless.  

B.2 Unsupervised Learning Algorithm  

In opposition to supervised learning is unsupervised learning, i.e., finding input 

data on its own is called an unsupervised learning task. Clustering, probability 

distribution estimation, dimension reduction, and handwriting recognition are 

examples of unsupervised learning[58].  

Figure 26 shows the pictorial representation of supervised, unsupervised, and 

semi-supervised learning systems. It consists of data of different labels which is 

identified by the algorithms. From the picture, similar grouping features and their 

classification (i.e., from the figure 26: Dotted, crossed and stared data are 

grouped) is called supervised learning. By grouping same or similar objects or 

things else, features that are more frequent together (i.e., data of similar kinds of 

characters are grouped from unlabeled data) are called unsupervised learning. 

Semi-supervised learning is the mixture of both supervised and unsupervised 

learning (i.e., data are labeled and unlabeled with different features) where there 

is a training input with some of the missing inputs and  outputs. 

 



51 
 

Figure 26: Pictorial representation of Supervised, Unsupervised and Semi-supervised 

Learning[59] 

The main two types of unsupervised learning algorithms are listed below. 

1. Clustering algorithm 

2. Association rule learning algorithm 
 

The clustering algorithm is to cluster or group input data points to form classes 

with input data and other external information. Some of the clustering algorithms 

are hierarchical clustering, k-medoids, k-means, etc. An association rule learning 

algorithm is used to extract and identify the new patterns from the input data. 

Some of the association rule algorithms are the Eclat algorithm, à priori algorithm, 

FP-growth algorithm, etc. The pros of unsupervised learning algorithms 

automatically split data into groups based on their similarity, identify association 

mining, and unusual data points detection. The cons are sometimes it's challenging 

to get accurate information or results from the data. Humans need to spend more 

time handling and interpreting the data. Spectral properties also change over time 

and may ruin the classification problem.  Unsupervised learning algorithms 

applications are social network analysis, association mining, climatology, 

customer segmentation in marketing, to name such a few of them. 

B.3 Semisupervised Learning Algorithm 

In semi-supervised learning, data can be either classified and unclassified or 

labeled and unlabelled data. In most of the cases, labeled data are significantly less 

when compared to the unlabelled data. These labeled datasets allow the algorithm 

to identify the relationship between your data and give certain information. In case 

of lacking enough labeled data to produce a precise model, we can use a Semi-

supervised learning algorithm to increase the size of your training data. Also, this 

algorithm helps to label the data and retrain the model with a newly labeled 

dataset. Figure 26 shows the example of unlabelled and labeled data in semi-

supervised learning. The semisupervised learning algorithm can be classified into 

two types they are 

1. Classification Algorithm 

2. Clustering Algorithm 
 

The semi-supervised learning-based classification algorithm is used for 

classification and predictive modeling to observe the input data pattern. The semi-

supervised clustering algorithm is used to separate the data set into homogeneous 

subgroups. It is applied to partially labeled and unlabeled data. The semi-

supervised learning-based clustering algorithm works on the inter and intra-cluster 

similarities of the input data. The application of a semi-supervised learning 

algorithm is a text document classifier, natural language processing, web crawling, 

document processing, and modern genetics, etc. 
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B.4 Reinforcement Learning Algorithm 

Reinforcement learning is used to observe the collected information from the 

environment. It is a method that receives a delayed reward the next time to 

evaluate its previous action. It was mostly used in games. There are two kinds of 

reinforcement learning one is positive, and the other is negative. Positive 

reinforcement learning increases the strength, frequency and maximizes the 

performance of the model. Negative reinforcement learning should have stopped 

or avoided behaving negatively and defines the model's minimum performance. 

Choosing the best method from large rewards is possible using this algorithm. The 

reinforcement learning algorithm is classified into two they are 

1. Classification Algorithm 

2. Control Algorithm 

The reinforcement classification algorithm varies with the supervised learning 

algorithm, where the input data is mapped with output data by trained labeled 

features [60]. Whereas reinforcement learning control algorithm is used for many 

automatic controlled processes such as reinforcement in combination with 

feedback controllers developed to heating and cooling buildings[61]. Applications 

of reinforcement learning algorithms are aircraft control and robot motion control, 

data processing and machine learning, business planning, robotics for industrial 

automation, traffic light control, smart sensing, the computer played board games 

(chess, Go), robotic hand, self-driving cars, etc. 

C. Choosing the suitable ML algorithm 
 

It is necessary to deal with our data practically applied to ML learning problems. 

Below are the steps and methods to identify the right ML algorithm among 

different data types. They are [62] 

1. Categorize the problem 

2.Understand your data 

3.Find the available algorithm 

4.Implement the ML algorithm 

5.Optimize hyperparameters 

Categorize the problem: First, we need to categorize the data by their input and 

output. For input labeled data, it’s a supervised learning problem. If it’s input 

unlabelled data, it’s an unsupervised problem. If the outcome imply an objective 

function by communicate with an environment, it’s a reinforcement learning 

problem. If the output of the model is a number, its’ a regression problem. If it is 

a class output model, its’ a classification problem. If set of input groups is output 

model, it’s a clustering problem. 

Understand your data: The raw data or raw material is essential in the entire 

process of analysis. Understanding the insight information inside the data plays a 
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vital role in selecting the correct algorithm for the valid problem. A limited set of 

data are dealt with some algorithms whereas few algorithms can work with a 

massive amount of sample data. Some algorithm works with categorical while 

other work with numerical input data. In this process of understanding the data, 

the first step is to analyse the data, the second step is to process the data, and the 

final step is to transform the data.  

Find the available algorithm: After succeeding categorization and 

understanding your data, the next step is to identify the suitable algorithm 

practically possible to implement concerning to time. Few factors which affect the 

choice of a model are the accuracy, Interpretability, complexity, scalability, the 

training, testing and prediction time of the model, at last need to analyse it meets 

the output goal or not. From the available algorithms of supervised machine 

learning, we found that the multiple linear regression and Random forest model 

meet all the choices of our requirements to meet the higher prediction accuracy in 

supervised regression machine learning algorithms. 

Implement the ML algorithm: Implement the data by building a suitable ML 

model based on our input and output datasets. Another method of approach is to 

apply the different subgroups of data to the same algorithm. Finally, validate the 

data with the same algorithm for verification. Thus, we implemented our input 

data with two different regression algorithms such as Multiple linear regression 

and Random forest algorithms. Finally, we validated the data with both algorithms 

and compared their results. 

Optimize hyper parameters: Grid search, random search, and Bayesian 

optimization are the method used to optimize hyper parameters [62].  

D.Machine Learning in Embedded Application 
 

ML permits the electronics systems to gain knowledge from the present and 

previous data to make predictions,  and compute values, or interfere in the control 

steps.  These highly performance-intensive applications are usually performed on 

computers and cloud servers. Nowadays, one of the challenges would be to 

directly implement machine learning on embedded devices with the help of well-

chosen light algorithms and devoted CPUs.   Embedded systems for machine 

learning applications are used to accomplish various responsibilities. Moreover, 

the rise of IoT applications is one of the reasons for the evaluation of embedded 

machine learning algorithms. Such embedded machine learning IoT applications 

could be found in [63] where the authors present an embedded sensor board,  or 

in speech recognition or audio analysis [64][65] (e.g., Apple Siri and Amazon 

Alexa) embedded applications, monitoring applications [66][67], robotics, 

network applications [68], drone navigation, etc. 

The main key idea of an ML model is input data availability. ML model's main 

function is model building, and the other is the inference of new information or 

new data adaptation of the output [69]. For example, data can come from the 
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embedded camera, microphone, or sensors, etc. The inference operation is using 

a model to make a prediction on new data. There will be two possibilities: 1. 

Inference on the cloud, and 2. Inference on edge. Inference on the cloud requires 

network bandwidth, latency issues, and cloud computes costs and sometimes may 

undergo security threats. In contrast, Inference on edge has increased privacy and 

security, faster response time and throughput, lower power, and don't need internet 

connectivity, hence low power.  

The ML is a complex algorithm that uses lots of computations to train a model. 

But, computations on embedded devices are limited with the amount of memory 

and compute power available. The embedded system refers to the special 

computing processing system such as IoT applications. Different types of ML 

models require an additional amount of memory and time to make predictions. For 

example, single decision trees have a faster prediction speed. They require a small 

amount of memory whereas, the nearest neighbor methods have a slower 

prediction speed and require a medium amount of memory. We need to make a 

clever decision when determining which model has to be used on a given 

embedded device.  

Most embedded systems are programmed in low-level languages such as C/C++ 

language, but usually ML is programmed with high-level interpreted languages 

such as Matlab, Python and R. After that, requirements of the ML model system 

are considered, such as the available memory and the model type and complexity. 

Sometimes, the memory size is too small, or the model will take a too long time 

to produce an on-chip prediction, making the system not adapted to real-time 

operation. Therefore we need to try other types of models to meet the hardware 

requirements. Depending on user IoT applications, a designer must carefully 

consider which tactics may be appropriate for a given hardware consideration, 

network connections, and budget, which are all key factors to be considered for 

an embedded design decision.  

This thesis's key objective is to explain the real-time problems and solutions of a 

machine learning algorithm on embedded IoT applications. ML programming can 

be a hard problem for embedded environments, where memory, energy, clock, and 

power are very constrained.  

Figure 27 shows the major challenges in ML embedded systems [69]. It was 

grouped into six major groups: execution time of the ML and its dependencies of 

the memory and data representation, the memory size vs. model size and its 

inherent characteristics, the power consumption envelope and all considerations 

related to the power budget, the accuracy of the model computation vs. noise or 

data representation, the health of the system in terms of susceptibility to internal 

errors and intrusions,  and finally the flexibility and scalability of a given solution. 

There is a trade-off between these metrics to compensate for the energy 

performance of the embedded system. Characteristics of ML-based embedded 

system design such as memory, speed, size, cost, energy, time are well balanced 

to get better performance. The highly optimized and efficient systems frequently 

drive embedded applications.  
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Figure 27: Major Challenges in ML embedded system[69] 

ML inferences impact a wide range of markets and devices, especially low-power 

microcontrollers and power-constrained devices for IoT applications. These 

devices can often only consume milliwatts of power, and therefore not achieve the 

traditional power requirements of cloud-based approaches. ML can be enabled on 

these IoT endpoints by performing inference on-device, delivering greater 

responsiveness, security, and privacy while reducing network energy 

consumption, latency, and bandwidth usage. 

Processor options for ML workloads: 

ML model can be located on two different computing processes: Cloud and Edge-

device. Cloud processing is done in data farms or servers(e.g., compute, storage, 

and networking application services). Edge processing is done on local devices 

(e.g., sensors and applications). An ML model is a representation or an 

approximation of a pattern. A system-on-chip is often quite a complex thing, and 

there are different specialized processors or slightly tuned processors to deal with 

a lot of different activities. It contains multiple compute engines such as a common 

processor or Central processing unit (CPU), Graphical Processing Unit (GPU), 

Digital signal processor (DSP), Accelerators, etc. Choosing the best processor for 

running ML demands accuracy and response time varies by user cases. It also 

considers the cost of silicon, area, or power. It is also about the amount of 

processing one needs to do with the processor and the concerns in terms of silicon 

area in power. For example, considering several ML workloads and many ML 

user cases, the observed trend is to push them to smaller and smaller workloads 

(detection with incredibly low power uses Cortex M3). Speech recognition 

requires a bit more processing. Visual requires further processing elements to fit 

with good processor options, real-time requirements and important bandwidth.  
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E.Evaluation of Machine Learning Algorithm 
 

Performance evaluation (error measures) of ML algorithm is a vital part of any 

task. In ML experiments, error measurements are used to compare the trained 

model predictions with the actual data (observed) from the testing data set. Based 

on the algorithm, the error evaluation method varies. Especially prediction models 

are essential for evaluating how much the data deviate from observation to access 

the chosen methods' quality. Most of the survey [70][71][72] says that there are 

three most essential strategies for performance metric are listed below 

1. Mean Square Error (MSE) or Root MSE (RMSE) 

2. Mean absolute error (MAE) 

3. Mean absolute percentage error (MAPE) 

E.1 Mean Square Error (MSE) or Root MSE (RMSE) 

The RMSE is one of the error measures of the average magnitude. The equation 

for the RMSE is the difference between forecast and observed values, squared and 

averaged over the sample. At last, the square root of the average is taken. In 

relation, it gives a high weight to large errors. Thus, this RMSE error means it is 

useful when a system is exposed to large errors. It can range from 0 to infinity. 

The lower the MSE value represents, the better the model is. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸(𝜃) =  √𝐸((𝜃) − 𝜃)2 

n- predicted sample data points and Y – the vector of observed values of the 

variable �̂� – the predicted values. Where, 𝜃 – estimated parameter  

E.2 Mean Absolute Error (MAE) 

MAE is another method for metric evaluating performance. Instead of squared 

error, it takes only the absolute value of the difference between the actual and 

predicted value. If we have lots of outliers, we should prefer MAE to RMSE. If 

we do not have a lot of outliers, then RMSE should be the preferred choice.  

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1

𝑛
 

E.3 Mean Absolute Percentage Error (MAPE) 

MAPE is also known to be the mean absolute percentage deviation (MAPD), is a 

calculation of the prediction truth of a forecasting method in statistics.  It is usually 
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expressed as a ratio of the difference between the actual value and the forecast 

value and the actual value.  

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1

 

 

Where 𝐴𝑡 is the actual value and 𝐹𝑡 is the forecast value. Sometimes, it is reported 

as a percentage. The absolute value is summed up for each point in the forecast 

with respect to time and divided by the number of fitted points n.  

F.Application of Machine Learning Algorithm 
 

Machine Learning is a combination of computer science and statistics. Since the 

ML algorithm's evaluation, it made human life easier by calculating and 

evaluating various tasks. Despite the rapid development of ML, intelligence also 

plays a fundamental role between humans and machines in doing their chores. The 

era of intelligence had begun in the middle of the twentieth century. Since then, 

the artificial intelligence branch of computer science has advanced fast. Some 

examples of the application of machine learning algorithms are discussed in this 

paper [73].  

The recent research in machine learning focuses on natural language processing, 

image processing, pattern recognition, etc. All these researches focus on collecting 

the data based on humans' sense of knowledge and then process the data with 

artificial intelligence tools to make predictions. Validation and evaluation are 

needed to know the machine learning algorithm's learned model is worthy or not.  

G.Conclusions 
 

This chapter showed that there are many different types of machine learning (ML) 

problems and algorithms. More importantly, no one algorithm is best suited for all 

situations. Each application and each input data set has different issues and 

therefore requires other solutions. We need to choose a suitable algorithm based 

on its pros and cons. It also depends on the training data's size to get reliable 

predictions, accuracy and interpretability of the output, speed of training time, 

linearity, and features.  

Choosing a suitable ML algorithm is also the most important and essential step in 

this thesis. In the context of this thesis, the input data available to us is continuous 

to time and related to regression problems. Moreover, the research focuses on 

generating time-series predictions based on a reduced set of reference data but 

with the possibility of exploiting a theoretical analysis of the problem itself.  For 

these reasons, we chose a supervised machine learning algorithm to deal with our 

data. We will first develop the framework using Linear Regression, and then we 
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will explore changing the algorithm which is best suitable for our data based on 

the evaluation method of  RMSE value, which had been debated in this chapter, 

section C. The lower the value of RMSE, the better the model is.  
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Chapter III: Machine Learning Model for 

Aging Estimation 

A.Introduction 
 

In Chapter 1, we highlighted the complexity of the physical phenomena related to 

circuit aging and their correlation with circuit activity, which makes a-priori 

evaluation extremely difficult. In Chapter 2, an overview of Machine Learning 

algorithms allowed us to identify how these approaches can help solve our 

problem. Using monitors and sensors, we can only sense the delay and other 

transistor features at a given time t. Moreover, it is not possible to insert monitors 

on all critical paths or to measure all the time. This would not be cost-effective, it 

would occupy too much area and consume a lot of power. Similarly, a precise 

analytical analysis of the aging effects would be much too complex in computing 

terms, and require too much information to be effective.  

Therefore, we need to estimate the effect of aging from a limited set of data and 

with reduced computational effort, but still obtain data that is reliable and precise 

enough to take mitigation action before delay faults occur. ML algorithms are 

perfectly suited for this task. ML is a growing technology, which has been playing 

with a vast and huge amount of data. Modern deep learning and ML algorithms 

can now give approximate and accurate results 

In this Chapter, we present our original contribution: based on the Theoretical 

analysis of Chapter 1, we will build a Machine Learning model able to predict the 

aging of FDSOI circuits based on activity parameters measurable in simulation or 

during run time. The goal is to be able to efficiently estimate the aging of the Most 

Critical Paths and predict how aging will affect them so that it is possible to take 

appropriate mitigation measure at both design and run time.  

This chapter is organized as follows: first, Section B will provide the details about 

the implementation of Machine Learning, allowing the prediction of aging for any 

given Critical Path based on both experimental data for a subset of reference gates 

and activity measures. Section C first validates the prediction capabilities of the 

MVL framework against foundry data for the reference gates, and then applies to 

it two target designs: a Finite Impulse Response (FIR) filter and an AES 

cryptographic module. Lastly, Section D explores the impact of the MVL 

algorithm on the framework by replacing Linear Regression with Random Forest.  

B.Prediction Framework for Circuit Aging 
 

This chapter offers a new methodology for offline estimation of aging-related 

delay variation in a digital circuit, applicable from the gate to the circuit level. 
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Aging degradation takes into account both BTI and HCI efforts, calculating aging-

induced degradation under different PVT and activity conditions of the 

propagation delay for each logic gate. While SPICE simulations for reliability 

estimation of digital circuit degradation are available for given Operating Points, 

physical aging models are difficult to apply for online estimates [74]. Therefore, 

we need an online estimation of the critical path delay with a minimum error rate. 

We aim to model each gate's propagation delay individually and sum it up to get 

the critical path's total delay.  

This is done in 3 steps: First, we will develop an offline prediction framework, 

which we will validate against known data coming from SPICE simulations; 

Second, we will use the validated framework to predict data for gates or Operating 

Points (PVT and Activity) for which simulation data is not available; Last, we will 

adopt this framework for online estimation. 

B.1 Aging Prediction for Reference Gates 

In this chapter, we focus on the Offline Prediction framework. The propagation 

delay prediction structure can be split into two: Aging Delay Prediction and 

Logical Effort Conversion. Aging Delay Prediction takes into account aging-

induced degradation and propagation delay concerning PVT (Process Voltage 

Temperature) for gates for which validation SPICE aging simulation data exists. 

The aim to obtain a verified prediction framework able to provide accurate 

predictions for any given OPP for the selected gates.  Logical Effort Conversion 

is an abstraction model that allows conversion of delays computed for a reference 

gate (an Inverter)to other more complex gates. Therefore, we developed a Logical 

Effort framework, which we validated thanks to SPICE simulation data obtained 

from Eldo UDRM (User-Defined Reliability Model) API.  By composing these 

two steps (Aging Delay Prediction + Logical Effort Conversion), we can predict 

aging delay for any given gate, as detailed in the following Sections.  

We introduce an approach and a framework to predict the desired lifetime of all 

types of generic gates as well as the critical path (CP) delay of a digital circuit. A 

novel Delay aging prediction framework flow chart is illustrated in Figure 28. The 

overall framework begins with the input parameters such as Delay Aging and 

logical effort. The proposed methodology has been validated by the universal 

gates and compared with the SPICE simulation with 0 to 1 percentage error rate. 

This has been taken as a reference model data, and we further extend our work to 

model the delayed aging to other standard gates. Critical paths are extracted from 

our target digital circuit design (FIR Filter).  The numerical data that we got from 

our model is taken as training and testing input features for the supervised learning 

prediction algorithm called a Linear Regression. Finally, the CP delay aging, 

along with its desired lifetime, was successfully predicted.  
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Figure 28: Novel Delay Aging Prediction Framework flowchart 

In the following sections, we present the physical and analytical models describing 

aging's effect on gate Delay and used inside our Prediction framework.  

 

B.1.1 Duty Cycle 
 

The workload and aging dependence on Duty cycle (DC) for a standard cell  is 

defined as a fraction of pulse width to the total period and is usually expressed as 

a percentage.  In digital design, a set of standard cell timing library files of their 

delay values are available to the designer. A specific aged timing library file with 

the input signal probabilities of 50% was available along with these files, using a 

reference. Starting from the delay for 50% activity, the delay from other DC can 

be computed using equation (7)[76], 

 
𝐷𝑒𝑙𝑎𝑦(𝐷𝐶) = 𝐷𝑒𝑙𝑎𝑦(0.5) ∗

tanh (𝑥)

tanh (1)
 

(7) 

Where, 

DC: Duty cycle or input signal probability at the inputs of standard cells 

X: stands for the expression DC/(1-DC) 

: Cell dependent fit parameter where,  = function (input slope, output 

capacitance) 

DC of each gate varies when we consider the activity of a circuit: the impact of 

workload during aging of a standard cells is an important factor. In order to 

consider it the activity of a each individual gate is extracted during simulation is 

extracted by dumping a VCD file of gate toggling. The delay of each gates can 

then be calculated by means of equation (12) and the α static probability value 

which is extracted from the VCD file.  
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B.1.2 Extension to Generic Gates: Logical Effort 
 

In 1991, Ivan Sutherland and Bob Sproull invented a new term called "Logical 

Effort" a method used to estimate delay in a CMOS circuit. The normalized delay 

of a gate was derived in the following way. 

 𝑑𝑎𝑏𝑠 = 𝑑.            

(8) 
  

The normalized delay of a gate can be expressed in the unit as . In typical 28nm 

Technology and below process  is in Pico seconds.  The standardized delay can 

be expressed in two ways: Parasitic Delay (p) and Stage effort (f) [78]. The 

parasitic delay, which is an intrinsic delay where the gate has no driving loads, 

and the stage effort depends on the loads. 

 𝑑 = 𝑓 + 𝑝 
                                                                   

(9) 

 𝑓 = 𝑔ℎ 
                                                                 

(10) 

 𝑑 = 𝑔ℎ + 𝑃𝑖𝑛𝑣 
 

(11) 

Where f – stage effort and p – parasitic delay. The stage effort can be further split 

into two:  Logical Efforts (g) and Electrical Effort (h), which can be defined in 

equation (11).  

 ℎ = 
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
 

 

        

(12) 

 
𝑃𝑖𝑛𝑣 =

𝑂𝑢𝑡𝑝𝑢𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑔𝑎𝑡𝑒

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 𝑖𝑓 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟
 

 

        

(13) 

The exact modelling of the propagation delay from the device level to the circuit 

level model is quite complicated for a 28nm FDSOI technology. Thus, we 

introduce a novel model to get an accurate and approximate propagation delay of 

generic gates with an error rate of 0 to 2%. The novel aging Delay model for the 

gate is estimated and proposed by a combination of Inverter and Logical effort 

(LE) delay, as expressed in equations (14) & (15).   

 

 𝑑𝑔 =  (𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝐷𝑒𝑙𝑎𝑦) ∗ (𝐿𝑜𝑔𝑖𝑐𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡)𝑔          (14) 

 
𝐷𝑒𝑙𝑎𝑦(𝑉, 𝑇, 𝑡)𝑔 =  (𝑝𝛽 + 𝑝µ−1(𝑇)  

𝑉

𝑉 − (𝑝𝑣𝑡ℎ(𝑇)) + 𝛥𝑝𝑣𝑡ℎ(𝑉, 𝑇, 𝑡)𝑝𝛼
) ∗ (𝐿𝐸)𝑔 

 

      

  (15)          

(15) 
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Equation (11) consists of 8 parameters and logical effort, which is already 

discussed in section (B). The degradation of each gate in the circuit is estimated 

with the equation (11). Thus estimation of the delay of the generic gate is possible. 

This method of evaluation of each gates of a standard cell delay is effective with 

switching activity along with any corner analysis with accuracy.  

In the framework of this thesis, we applied Logical Effort to extend delay 

predictions from the reference fully characterized NAND/NOR gates to the other 

cells for which we did not have any reference data.  

For example: Equation (7) is adopted to get the delay of each gates. For two input 

NAND gate,  

𝐷𝑒𝑙𝑎𝑦(0.5) = 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝐷𝑒𝑙𝑎𝑦 [𝐸𝑞 (3)] ∗ 𝐿𝑜𝑔𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡 𝑜𝑓 𝑁𝐴𝑁𝐷 𝑔𝑎𝑡𝑒 

𝑥 = 𝐷𝐶/(1 − 𝐷𝐶) 

𝐷𝐶 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑁𝐴𝑁𝐷 𝑔𝑎𝑡𝑒 

𝐷𝑒𝑙𝑎𝑦(𝑁𝐴𝑁𝐷) = 𝐷𝑒𝑙𝑎𝑦(0.5) ∗
tanh (𝑥)

tanh (1)
 

 

By substituting all the above values in equation (7). We can get the delay of 

NAND gate mathematically. In such a way, we extended our mathematical model 

to all other complex gates.  

From this data set, we can automate the process of prediction for  gates and CPs 

using a well-known approach called the multiple linear regression algorithm. The 

linear regression conversion model is explained in the following section. 

 

B.1.3 Critical Path Aging as a sum of Individual gates 
 

The thesis's objective is to analyse the degradation of complex digital circuits due 

to aging and environmental conditions, and most notably its effect on the Near 

Critical Paths which limit the maximum working frequency. As each NCP is in 

fact a sequence of individual gates, we propose to compute the aging effect of the 

whole path as the sum of contributions from each individual gate composing it.  

Aging, environmental conditions and workloads determine the failure mode of the 

device. Aging-induced degradation for individual gates is investigated with our 

proposed model.  

This step will allow us to observe the effect of aging at the system level in terms 

of Near Critical Path evolution and distribution. This information will then be used 
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to define mitigation strategies which will be adapted to both the circuit aging and 

the target usage model, as explained in Chapter 4.  

B.2 Proposed Machine Learning Framework 

The ML framework for our model is given by equation (16). Y is the output, f is 

the prediction function, and x is the aging model's feature.  

 𝑦 = 𝑓(𝑥) (16) 

 

We chose a multiple linear regression algorithm to predict the transistor's aging 

because we need to reconstruct a tendency starting from a limited set of 

measurement points. The methodology is shown in Figure 29. First, we selected a 

set of Training features based on the theoretical analysis: process, voltage , 

temperature, delay of each complex gates (from equation (7)), toggle rate 

(extracted from the VCD and SAIF file), Static probability (extracted from the 

VCD and SAIF file), workload parameter and time. These features populate the 

Model, which is then Trained using a subset of the data available from 

technological characterization [77].  The Learned Model is then Tested using the 

data not used for training. As per ML best practice, the ratio between Training and 

Test data is 70/30.  

To proceed with our target design, follow the procedure which is explained below. 

The algorithm will examine patterns in the data to correlate with the output results. 

After training, the algorithm which motivates to predict it for testing new data 

inputs.   

 

Figure 29: Linear Regression Model 

B.2.1 Predictive Modeling 
Predictive modeling uses statistical and analytical techniques to predict 

outcomes[79] based on input data. Using past and present features,  future data 

will be expected or predicted. Predictive modeling is also referred to as predictive 
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analytics. One of the difficult tasks in predictive modeling is collecting exact or 

sound data before developing an algorithm to work on. There are various 

algorithm methods for the prediction model[80]. This thesis uses two different 

algorithms to compare their impact in the final results: linear regression and 

random forest 

B.2.2 Multiple Linear Regression Algorithm 
Linear Regression (LR) takes into account the relationship between dependent and 

independent variables, for which it creates a generalized continuous function [81]. 

LR model can be expressed with an equation (14) concerning variables x and y. 

 𝑦 = 𝛼 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + 𝛽3 ∗ 𝑥3 + ⋯ + 𝛽𝑛 ∗ 𝑥𝑛 (14) 

 

Where, y is the gate delay, α is y-intercept, 1, 2, 3,….. n,  are the coefficients of gate 

parameters and X1, X2, X3,……,Xn are feature of gates (e.g. Voltage, Temperature, 

Time, Toggling rate, slope, load, corners, Input Activity). A regression with more than 

one variable is called multiple regression. The aim of LR it to minimize the error sum of 

squared errors (SSE) between observed and predicted results[80]. 

 

C.Experimental Validation 
 

In this Section, we will validate our Machine Learning algorithm by applying the 

methods detailed in Chapter 3-B. To reach this goal, we need to test each step 

carefully to predict the data from independent sources.  

This section reproduced the same structure as the previous one, giving 

experimental results for each theoretical framework. Section 1 details the setup 

and results of the ML Prediction algorithm with respect to experimental data, 

while Section 2 reports the application of Logical Effort to extend the model to 

generic gates. Section 3 introduces the methodology to extract Switching Activity 

for complex systems, which is then applied to two reference designs (an FIR filter 

and an AES crypto processor) in Sections 4 and 5, respectively.  

The first step is to test each individual gate of a standard cell if Before proceeds 

with our target design. We started with the prediction of universal gates and 

compared their results with SPICE simulation data with 1 percent error difference. 

Followed by predicting each individual gate as explained in detail in the following 

sections.  

C.1 Activity Aware Aging for NAND and NOR gates 

As explained before, it is theoretically possible to obtain precise Aging Delay 

figures by performing Spice simulations on the gates' low-level models. 

Unfortunately, these simulations are too computationally intensive and require 

sensitive information, which only founders have. As a result, simulation data is 
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usually scarce and limited to a few gate types in a typical setup. We had access to 

data from the FDSOI 28nm foundry for our ML model, providing detailed 

measures for NAND and NOR gates[77] for relevant setups. All the data used in 

our simulation were extracted from Eldo with library User-defined Reliability 

Model (UDRM) API. We used this data as input to the Methodology of Figure 

29 and Figure 30, obtained a Learned Model for using Linear Regression. Figures 

31 and 32 compare the Model prediction results (left-hand side) with the reference 

SPICE data (right-hand side) for Rising-to-Falling and Falling-to-Rising delays 

for NAND and NOR gates, respectively.  

 

 

Figure 30: Aging Delay prediction from the limited training set for NAND Gate 
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Figure 31: Aging delay prediction from the limited training set for NOR Gate 

All experiments have been done for the same Process Voltage Temperature (PVT) 

point: SS, 1V, 125°C, and each curve plots results for different Duty Cycles, from 

10% to 90%. The Model is clearly replicating the same tendency, but an objective 

validation can only come by computing the Root Mean Square Error (RMSE). The 

lower the RMSE, the better our model is. Figure 32 plots RSME for NAND and 

NOR gates for DC at 10% and 90%: is all points, RSME is lower than 1%. This 

is the same for all the other DC sets, not plotted here for simplicity.  

 

 

Figure 32: Delay Degradation comparison between our proposed ML algorithm and SPICE 

simulation for NAND and NOR gates 

These results validate our Machine Learning Framework's capability to reliably 

predict the aging of the reference NAND and NOR gates.  
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Pearson’s Correlation: 

It was developed by Karl Pearson. It is a method to measure the statistical 

relationship between two continuous variables. It is also called as “Pearson’s r” or 

“Bivariate correlation” or “Peasrson product-moment correlation coefficient”. 

The resultant value or the correlation coefficient range is in between -1 and 1. 

Table 2 shows the Gate and its corresponding Pearson’s correlation between 

SPICE and our modelled data. There is a positive correlation between two data 

points. These correlations are far away from 0 value. Thus, the relationship 

between two data points are stronger.  

  

Gate_Duty Cycle Correlation 

NAND_10% 0.9645 

NAND_90% 0.9818 

NOR_10% 0.9958 

NOR_90% 0.9952 
Table 2: Pearson’s Correlation table 

C. 2 Activity Aware Aging for Generic Gates 

As introduced in chapter 3 B.2, Logical Effort conversion is an effective way to 

convert delay data from an Inverter gate to other gates. During the digital design 

phase, the standard cell library files (FDSOI28nm technology) are available to the 

designer, providing both the input and hidden output capacitances needed by the 

method and the gate's topology. We can deduce the logical and electrical effort for 

each gate from these library files. Therefore, we apply equation (11) to get the 

individual gate delay and finally compute each gate's aging delay separately. Thus 

the ground data is extracted. 

The results reported for NOR/NAND gates are trained and kept as historical data. 

These historical data are trained along with each gate's ground data to predict other 

gates. By combining these two steps, we are finally able to obtain Aging Delay 

for any given gate. Figure 23 plots the degradation delay for 10 years for ten 

different gates: INV, NAND, NAND4AB (4-input NAND), AND, FA (Full 

Adder), OAI (OR-AND-Invert), NOR, NOR3 (3-input NOR), NOR2A (2-input 

NOR with one input as Inverted), and XOR2. The delay degradation structure 

looks quite similar, with the degradation of around 0 to 5%.  
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Figure 33: An aging-induced degradation prediction model for several standard cell gates 

 

The results depicted in Figure 33 demonstrate our capability of extending the 

prediction to generic gates in our target technology. Even though we do not have 

reference results for all these gates, they are obtained by combining the ML 

prediction framework validated and the Logical Effort approach proved in 

literature [14]. This allows us to obtain reasonable predictions even in the absence 

of full foundry data. 
 

C.3 Switching Activity Extraction for Complex Designs 

The Switching Activity of each gate and net is comprised of two parameters: Static 

probability and  Transition rate [82]. The signal's expected state is referred to as 

static probability and the number of transitions per unit time is called transition 

rate or toggle rate. There will be two transitions with each cycle one is rising and 

the other is falling signal.  

We simulated our designs using Siemens (formally Mentor) Modelsim simulator 

and recorded signal activity as a VCD (Value Change Dump) file for this 

experiment. We then applied Synopsys’s back-end flow by first extracting 

Switching Activity from the VCD file into a SAIF (Switching Activity 

Interchange Format) file. Primetime PX then merges these measurements with 

Synthesis information from Design Compiler to compute Static Activity and 

Transition Rates for all observed Nodes.  Figure 34 depicts the full Synopsys flow: 

the only difference is the usage of VCS instead of Modelsim for simulation. The 

obtained VCD file, illustrated in Figure 35, is the same regardless of the chosen 

RTL simulator.  
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Figure 34: Full  Synopsys flow  [83] 

 

 

Figure 35: The FIR Filter VCD file waveform 

C.4 Test Case 1: FIR Filter 

To validate the workflow of our proposed Machine learning algorithm we first 

applied it to a simple design, a Finite Impulse Response (FIR) filter. It is a pretty 

standard system, as shown in its Architecture diagram in Figure 36. The RTL 

(Register Transfer Level) and schematics are depicted in Figure 37 and Figure 38.  
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Figure 36: Architecture of the FIR filter 

 

Figure 37: RTL (Top-level) view of FIR Filter 

 

Figure 38: Schematic view of FIR Filter 

 

 



72 
 

C.4.1 Experimental results for FIR Filter 
 

For the FIR filter, we applied our ML prediction framework to estimate the aging 

of its 20 Near-Critical Paths. Figure 29 depicts the delay degradation for the 

Critical Path over time (x-axis), with a stack bar chart highlighting the contribution 

of each gate. Stacked bar charts help to notice changes at the gate level that are 

likely to have the most influence on individual CPs. This chart helps to compare 

the total delay and notice sharp changes at the gate delay level that are likely to 

have the most influence on toggling activity. In this case, we can see how the aging 

is uniformly distributed among the gates: this is because for the FIR filter, the 

Critical Path resides in the Multiplier/Accumulator (labeled MULT and ACC in 

Figure 26) on the same data path. Therefore there are no big changes in activity 

among the gates.  

Figure 30 depicts the aging in terms of Degradation for the 21 Near-Critical Paths, 

with CP1 being the most Critical. We can observe that the Most Critical Paths are 

also the ones that age faster: one more this is easily explained by an architectural 

analysis: each one of the NCPs is related to a bit in the Accumulator, CP1 being 

the Less Significant Bit. Of course, LSBs are more active than MSB, so it is 

reasonable that aging is correlated with the CP ranking.  

 

Figure 39: FIR filter: Stacked bar graph for CP1 
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Figure 40: FIR filter: Stacked bar graph for different CP 

 

These results validate our setup's capability to produce good results which, thanks 

to the FIR filter's simplicity, we were able to explain through an architectural 

analysis. 

C.5 Test Case 2: AES Circuit 

The first FIR circuit design was chosen because while it is  complex enough to 

debug the Workflow,  it is still simple enough to allow manual interpretation of 

its aging results. 

As a complete use case, we selected an  AES (Advanced Encryption Standard) 

crypt-processor performing a set of encryption and decryption operations.  It is 

broadly used in wireless security, processor security, file encryption, etc. The 

architecture of the AES circuit is shown in Figure 41. The RTL view of the circuit 

in Figure 42. This particular implementation has been developed to validate the 

AES code while reducing pin count: a Decryption operation always follows an 

Encryption Operation, and the result is compared with the original data and only 

the comparison results are presented as outputs. The AES circuit is interesting not 

only for the above-mentioned practical applications but also because it is fairly 

complex with a lot of balanced Near-Critical Paths whose aging is extremely 

difficult to predict using conventional means. 
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Figure 41: Architecture of the AES Circuit 

 

Figure 42: RTL view of the AES circuit 

C.5.1 Experimental results for AES Circuit 
 

Figure 43 and 44 shows the AES circuit aging variation for the 150 worst-case 

critical paths for 6-months and 1-year degradation for PVT (ss28_1.0V_125 ֩C) 

bar graph. It exposes the percentage of activity of each gate inside each critical 

path that can be visualized clearly. From this graph, we can see that the NOR gate 

is more active than other gates, and the percentage rate of degradation also higher 
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Figure 43: AES circuit critical path aging for PVT (ss28_1.0V_125C) 

 

 

Figure 44: AES circuit critical path aging for PVT (ss28_1.0V_125C) 

 

C.5.2 Activity-Aware Critical path Ranking Variation 
 

CP ranking variations for test case 2: AES circuit is taken to rank 150 NCP for 

different PVT conditions. Ranking based on the delay of each critical path. Figure 

44 shows the ranking variation for the fresh delay, 6 months and 1-year ranking 

variation for workload 1. The two workloads are given to the data in and key in of 

the circuit.  They have been carefully selected to provoke uniform and extreme 

functionality of AES circuit. The Data_in, Key_in, and their corresponding values 

are given below. 

Data_in1 <= X"3243f6a8885a308d313198a2e0370734";   

Data_in2 <= X"00112233445566778899aabbccddeeff";   

Key_in1 <= X"2b7e151628aed2a6abf7158809cf4f3c";   

Key_in2 <= X"000102030405060708090a0b0c0d0e0f"; 

The following observations are noted. 

The X-axis shows the 150 NCP, and the y-axis stands for the ranking. The first 

row of the graph stands for fresh delay variation. It is almost ranking linearly. The 

second row of the graph showing ranking variation for 6 months. The third row of 

the graph showing ranking variation for 1 year. We ranked the CPs based on the 

delay variation from fresh delay to age 6 months and 1 year. All the three graph 

shows different ranking it is because of the PVTA variation. The red color bars 

are marked to show up the top 10 highest delay among 150 NCP. It is interesting 

to see how PVT profiles and toggling activity of each gate have strongly impacted 
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aging, resulting even in raking inversions of the critical path concerning time 

faults are more prone to occur on NCPs with strong DC activity than on less active 

CPs identified by a static timing analysis. 

 

 

Figure 45: Ranking Variation for Workload 1 

Each Graph looks different because the voltage and temperature variation impact 

the chart showing many variations in ranks. Figure 45 shows the ranking variation 

for workload 2 given to the data in and key in the circuit, which is different from 

workload 1. The following observations are noted. The above-mentioned five 

points are applied to this workload 2. The graph looks different from figure 44 

because the workload variation affects the ranking of the NCPs. Even if we change 

the workloads, we can notice that only a subset of NCPs are essential to monitor. 

Therefore, our method can identify the NCPs that will be more critical during the 

circuit lifetime and take counter-measures early in the design phase to alter the 

PVT profiles' changes. We can detect the most important NCP to fix the monitor 

before ahead. This proposed methodology is technology-dependent.  
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Figure 46: Ranking Variation for Workload 2 

 

As NCPs age differently and their absolute difference is small, Ranking Inversions 

might happen, i.e., paths that were not critical at Time 0 can become problematic 

after some time due to aging. This phenomenon reported in [84] by the authors of 

the paper is extremely difficult to observe and predict using traditional flows 

because it depends on both low-level physical phenomena and high-level setups 

such as the workload. The computational complexity of such simulations and their 

analysis is by itself a show-stopper. On the other hand, our ML framework is 

extremely lightweight and we proved its ability to efficiently predict Path Aging 

depending on aging time. As the ordering of paths on the X-axis is unchanged, it 

is the effect of workload on path aging is clear. Path distribution is almost chaotic: 

each gate aged depending on its activity and the aging profile is extremely 

different between the two workloads. 

This observed phenomenon is one of the greatest drawbacks of Monitor Insertion 

flow. In each aged distribution, we highlighted in red the 10 Most Critical Paths 

on which Aging Monitors should be inserted. From this figure, it is obvious to 

understand that a choice made at Time 0 based on STA evaluation would not be 

coherent with an Aged system, making most inserted monitors unnecessary. 
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D.Alternative MVL Algorithms: Random Forest  

D.1 Introduction 

Many algorithms have been developed for prediction problems in machine 

learning. One of the predictive machine learning algorithms is the random forest 

(RF) algorithm. RF algorithm was developed by Tin Kam Ho [85] in 1995. RF is 

a supervised learning algorithm used for classification, prediction, and regression 

problems[86]. It is also known to be a tree-based machine learning algorithm. The 

trees in random forests are in parallel to run. It trained multiple decision trees and 

combined them to acquire more precise and steady predictions. One of the 

advantages is that it can be used in both prediction and regression problems.  Let’s 

look at the random forest in regression and prediction view. While expanding the 

tree in the random forest increases the model unpredictability.  

The remaining sections define the random forest algorithm framework and metric 

evaluation results compared to multiple linear regression algorithms. The 

advantage of our model is concluded with one of the algorithms at the end.  

D.2 Random Forest Algorithm  

RF algorithm is one of the most used and supervised learning algorithms for 

prediction. Therefore, we analyzed the impact of our model prediction provided 

by the same digital circuit on the RF algorithm and compared it with a multiple 

linear regression algorithm. This thesis's proposed circuit-level model can be used 

either on-line and off-line to estimate the digital circuit degradation effects.  

It is a meta-estimator that combines the results of multiple predictions. Multiple 

decision trees are constructed during the training of random forests. RF is great 

and precise. It also solves many problems, including linear and non-linear 

features. The issue related to our data is linear to time. Thus, the linear random 

forest method is applied here to see the prediction accuracy. Finally, the RMSE of 

our model is compared with a random forest algorithm and multiple linear 

regression prediction to know which algorithm is best for prediction.  

We aim to predict the delay of the critical path in the digital circuit based on the 

PVTA of our model. It’s a regression problem to solve this. The RF algorithm is 

used via the scikit-learn python library and machine learning pipeline. The dataset 

is collected and trained to get the results. The error metrics for regression RMSE 

(Root mean square error), MSE (Mean squared Error), and Mean Absolute error 

(RBE) are used to evaluate the RF regression model. The error value is lower or 

higher value defines the accuracy of the model. The lower the value, the better is 

our model.  

D.3 Advantage and disadvantage of using RF algorithm 

There are a few advantages and disadvantages of using the RF algorithm that are 

discussed here. Each tree inside the bunch of trees is trained on a subset of data. 
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Thus, therefore, the overall efficiency of the  RF algorithm is not biased. It’s a 

stable algorithm even if new datasets are added. It does not affect the impact of 

the algorithm. Numerical features are work well for the RF algorithm. There will 

no problem when data has missing values or it had not been scaled well. The 

complexity of the algorithm is a major disadvantage. It requires much more time 

to train due to their complexity.  

D.4 Comparison with Linear Regression 

The metric evaluation of each complex gate is calibrated and validated with 

multiple linear regression algorithms and random forest algorithms. Figure 47 

shows the bar chart plotted between different complex gates inside our targeted 

complex gates and our model's error rate. For metric evaluation, both algorithms 

are proposed with our model. bar chart shows the RMSE, MSE, and MAE of each 

complex gate separately and makes a comparison between the two algorithms. It 

can be seen that the overall error rate for Multiple linear regression is smaller than 

the random forest algorithm. The results demonstrate that our method can 

determine the relative performance of the LR algorithm with high accuracy 

compared with the RF algorithm. 

 

Figure 47: Evaluation of machine learning algorithms for complex gates 
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Figure 48: Evaluation of machine learning algorithms for Critical path in FIR Filter 
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Figure 49: Evaluation of machine learning algorithm for Critical path in AES circuit 

Figure 48 and 49 shows the evaluation of two different machine learning 

algorithm for FIR filter and AES circuit critical path analysis and comparison. 

Linear Regression, despite being simpler, performs systematically better than 

Random Forest in terms of RMSE for in all test cases, from simple gates to a 

complex target like AES.  This proves that in the context of our prediction 

framework the impact of the ML algorithms itself is low, and validates our 

decision to select Linear Regression.  

F. Conclusion 
 

In this chapter, we proposed an ML algorithm that includes a mathematical model 

to predict the aging of the two different digital circuits, and applied it to circuit 

level simulation results for different operating points. Then, we evaluated the 

results with SPICE simulation and compared the error differences. Finally, we 

compared the results obtained with the simple Linear Regression Model with the 

more complex  ML algorithm Random forest algorithm, demonstrating that the 

results are independent from the chosen ML approach.. This validates out choice 

of the Multiple Linear Regression algorithm as a simple yet effective method for 

our ground data.  
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Chapter IV: System-Level Strategies and 

Applications  

 

A.Introduction 
 

This chapter demonstrates the use of our model on a system-level application. In 

recent years, many works focus on the PVTA issues in the digital circuit. Some of 

them [12][53][10] are analyzing the degradation of the circuit during the run time. 

The reliability of the circuit depends mainly on its PVTA of the IC design. 

Usually, the chip is designed to operate under a different constraint even under 

worst-case processes, voltage, and temperature conditions. The peak PVTA 

computation, in combination with the core, memories, architecture, and 

interconnections, decides the digital circuit's operating frequency. The total 

number of gates and workload finally determines the maximum frequency and 

voltage of the circuit.   

Chapter 3 gave an explanation about the proposed state of the art of our work 

implemented in two different digital circuits and evaluated results. In this chapter, 

the built model was used and implemented in low-power CMOS design techniques 

such as dynamic voltage and frequency scaling. This work introduces a design 

scheme that improves critical path energy optimization for a fixed performance 

and maximum performance optimization of the digital circuit.  To achieve this 

scheme, we developed an algorithm based on our mathematical model and linear 

regression algorithm. The digital circuit voltage levels include a significant margin 

to deal with the worst-case critical path process variation, temperature variation, 

workload induced voltage variation provided with an energy-saving performance.  

It also generalizes the worst-case critical path energy optimization scheme by 

providing details of the methodology, prior comparison, Fmax (maximum 

frequency) tracking accuracy, and power-saving realized by this method in 28nm 

technology. We also report PVTA with BTI & HCI aging, a novel approach to 

actively calibrate the platform energy optimization unique to each digital circuit. 

The proposed algorithm is used to determine the optimal voltage needed to support 

the frequency under operating conditions. These optimization techniques, which 

are applied offline and check during the circuit's run-time, are possible.  

This chapter proposes and demonstrates some cases of application of the 

methodology presented in chapter 3.  The proposed algorithm models are used for 

both off-line and on-line estimating the circuit degradation. This model can 

perform reliability simulations of complex gates and critical paths in a digital 

circuit. However, few paths under different operating conditions are possible due 
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to the required simulation time. Section B and C discuss the critical path selection 

and their insertion flow inside our target designs. Section D explains the novel 

dynamic voltage and frequency to track the maximum operating frequency. The 

circuit lifetime can be calculated, taking into account the actual condition of 

operation. The novel method of Maximum optimization algorithm and capped 

performance optimization algorithm using our model in detail. 

B. Workload-dependent NCP selection 
 

As highlighted in the previous Section, the key point for ETI Monitor insertion is 

the correct selection of the subset of NCPs to modify. However, the results of 

Section III  and most notably in Figures 44 and 45 demonstrate that NCP ranking 

changes over time based on the actual workload: a selection made at time 0 

exclusively from STA ranking as presented in Figures 44 and 45 might be 

suboptimal: paths that were deemed critical might age slower and therefore 

instrumenting them would be useless. On the other hand, some paths that were not 

instrumented might age faster and become critical and potentially lead to timing 

errors.  

In this section we applied our ML approach to age the target AES circuit under 

two different workload, and selected the 10% NCP at different times. We then 

chose to represent these subset in a Venn diagram form. A Venn diagram is used 

to show the relationship between two different things or finite groups of things. 

Circles that overlap have a commonality, while circles that do not overlap do not 

share those traits. It is a great way to visualize informative comparisons between 

data sets. . 

Figure 50 shows the  Venn diagram for fresh, 3 years, 6 years, and 10 years of 

predicted degradation  of the AES circuit under two different workloads. Each 

circle from the figure represent the 10% NCPs at a given aging time.  In both 

cases, out of 63 NCPs selected at Time 0, only a subset of roughly 70% will still 

be critical regardless of aging. The remaining 30% changes based on both aging 

time and workload, and will be missed by traditional STA-based path selection.  

Another interesting result is that depending on the aging time, and therefore the 

expected system lifetime the NCP subset changes: for instance, a system aiming 

for a 3-year mission will have to monitor a different set of Paths than a system 

aiming for 10-year lifetime.  

Modern technologies are more sensitive to PVTA variations. Accurate and 

inexpensive performance monitoring for different variability is difficult to do. 

There are no standard solutions for finding the critical CPs for two different 

workloads. This Venn diagram will help the designer decide which CP to 

concentrate on determining the essential CPs to monitor the global and local 

variations. This type of Venn diagram approach can resolve the critical path 
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selection method. It is a simple and effective solution to the 28-nanometer 

technology scaled system on a chip. 

 

 

 
 

Figure 50: NCP subset evolution over time for two workloads  

 

C. Aging-Aware Adaptation of Operating 

Performance Points 
 

In the era of large-scale integrated digital circuits in a single system-on-chip and 

fabricated in continuously shrinking nanometer technology nodes. It is essential 

to test the circuit and ensure it is operating in a fault-free system or not.  Today 

there will be a vast amount of cost involved in testing semiconductors, and 

designers facing many complex problems and challenges.  In the meantime, 

advanced and innovative techniques are needed to manage the new failure 

mechanisms under PVTA constraints. The absolute value of NCPs is more 

important as mentioned in the before section. The delay of worst-case NCPs 

determines the Operating Performance Point (OPP) of a system.  

OPPs are usually represented as a couplet of Voltage/Frequency and play a major 

role in both defining the System performances and avoiding delay faults during 

circuit runtime. To simplify, the higher the Frequency, the more performing a 

system will be, but at the same time it will be more exposed to Delay Faults. 

Raising the Voltage will make transistor switch faster and therefore reduce the 

system’s susceptibility to Delay faults, but it will boost its power consumption.   

Delay faults occur when the propagation delay exceeds the working frequency 

period. ETI inserted at the end of the CPs will raise a flag when such faults occur. 
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Thus, it is necessary for the circuit to maintain the flag count to zero. Unluckily, 

it is not only dependent on the OPP but also the PVTA conditions. In order to 

consider all the conditions of PVTA and flag rise of 150 CPs are considered using 

our model to be monitored in this work. 

This work focuses on the characterization methodologies that will help detect the 

accuracy and resolution of issues that may arise due to voltage failure. We 

extracted the fresh delay from our targeted AES circuit and used the Design Vision 

tool to compare it with our model. We set up the PVT (SS_1V_25ᵒC) clock 

constraint for 500 MHz and simulated to get the 150 near worst-case critical path 

delays. Further, the delays are added by 70 ps to reach the failure of the circuit 

[77].  The frequency range is bounded for different process corners. We identified 

the frequency making the first flag rise depending on the process : the results are 

list in Table 2. At the end we compared these results with STMicroelectronics 

SPICE simulation and the error difference is nearly 1% [77].  

 

Process Frequency (MHz) 

SS (slow-slow) 694.4444 

FF  (fast-fast) 909.0909 

TT (typical-typical) 833.3333 
Table 3: Process Vs. Frequency 

 

After validating our model's fresh delay, we aged our circuit to 12 years to observe 

frequency shift.  Figure 51 shows the AES circuit's flag characterization for all 

three processes, 1 volt, 25ᵒC temperature for a fixed frequency of 500 MHz.  The 

graph is plotted in-between frequency and flag count of 150 near the worst-case 

critical path of the circuit with our mathematical come trained linear regression 

model. The impact of corners is observed easily on this graph. The variation in 

fresh and aged frequency drift explains the importance of PVTA. Thus, the aging 

critical path of a circuit can affect the frequency directly and the circuit's 

performance. The frequency drift between fresh and aged is very near to the failure 

of the circuit.  
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Figure 51: Frequency Vs. Flag_count of all process for fresh and aged critical path 

Figures 52 and 53 show the impact of Operating Voltage on the frequency shift 

for a fixed process (slow-slow and typical-typical) respectively. As expected, 

raising the Operating Voltage is an effective way to reduce the flag count (and 

therefore the timing violations) for an aged circuit while maintaining the same 

frequency. The older the circuits, the higher the voltage.  

 

 

Figure 52: Shift in the frequency of different voltages for the slow process 
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Figure 53: Shift in the frequency of different voltages for typical process 

in a 12–years AES circuit, the flag count depends on the voltage. For instance, in 

reference to Figure 52,to assure the circuit to be operational at 440 MHz, the 

designer will be forced to choose the least voltage of 0.75 V to guarantee zero flag 

count until 12 years aged circuit. However, the Fresh circuit might have worked 

at the lower 0,67V voltage, with a significant power consumption gain over 12 

years.  

The role of slack is important in the real setup of a circuit working flow. OPP 

selection is a critical criterion, as shown in figures 52 and 53. Simultaneously, the 

presence of negative slack (or in our case, a positive flag count) indicates that the 

design cannot operate at the specified clock frequency. In converse, a zero flag 

count indicates that  the design can operate at the predetermined frequency and 

further [89].   

In this work, we propose to apply our  prediction framework to find the OPP based 

on the concept of Time Window (TW). The idea  is to predict the effect of a given 

OPP periodically and react immediately to know the circuit's failure range before 

redesigning. At any give time t, we predict the flags count at time t+TW: if Flag 

Count (t+TW)=0, the corresponding OPP is viable  will be used by shifting the 

voltage range. If the Flag Count is positive, we will explore a more relaxed OPP 

by either lowering the frequency or raising the voltage. Once we selected a new 

OPP, we move the analysis to the next time window (t+TW) and repeat this 

process until a the desired age limit. For each step, a new prediction step is 

processed by our model. It is a lightweight model to be executed on an embedded 

processor to allow periodic online prediction and further adaptation. 

D.Power Minimization for fixed frequency OPP 
 

In this section, we are targeting the power optimization of a circuit. Several digital 

electronics applications demand minimum energy/power consumption for a given 

performance (i.e. for a fixed Frequency). The demand for reduced energy/power 



87 
 

consumption with minimum voltage and temperature is not feasible for a more 

extended period while aging. Thus, special attention is given to the voltage of a 

circuit to achieve energy optimization. Dynamic voltage and frequency scaling 

with our model are proposed to accomplish the energy optimization for a 28nm 

FDSOI Technology. The entire region of the circuit operation depends on the 

transistor's threshold voltage and other factors. Performance estimation by 

designing energy-harvesting of a digital circuit-level must account for PVTA 

variation.  

Traditionally, predicting a large-scale circuit behavior under PVTA and workload 

conditions requires much theoretical analysis, gate-level modeling, and logical 

verification. Especially when designing a digital circuit for a minimum operating 

point, the ultimate problem is predicting the circuit behavior at the critical path 

level. This proposed algorithm solves this issue. A complete workflow is 

presented in this thesis, along with methods used to improve operational 

reliability. We implemented the algorithm as shown in Figure 54. This algorithm 

handles many OOP of the circuit, such as voltage, temperature, and process, at a 

time. . The input is the fixed frequency (f), timing interval (TI), voltage (V), and 

observation time (OT). Then it enters into the loop and checks if the critical path 

delay that is flag count is zero or not. If the flag count is one, the current OPP is 

not viable because there will be a timing violation during the observation Time 

Window:   the voltage is added 0.01 times and then enters the loop to simulate to 

check again for flag rise in the critical path. If the flag count is zero the OPP is 

validated for time t and the observation point will be moved forward by adding 

three months' age to every 150 near-critical paths. So, at each operating time we 

look at the circuit 3 months in the future and decide if we can keep the same 

voltage or increase it further. 
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Figure 54: Flow chart for the fixed frequency algorithm 

 

Figure 55 depicts the algorithm results for a 500 and 600 MHz fixed frequency for 

an SS (slow-slow) process. The black color squared dots represent 500 MHz 

frequency and its corresponding voltage we can operate at the corresponding time. 

At 0.73V with 2 years, 1 month, the flag rises, the voltage is a step up to 0.74V, 

and operates further. Again, there will be a flag rise at 7years 8months period, and 

the algorithm identifies the flag and the voltage stepped to 0.75V to perform the 

critical path without any flag rise. 

In the same way, 600 MHz frequency was also simulated to get the results. Thus 

from the two frequencies, we can note that the circuit we can operate without a 

flag is only at 0.75 for 500 MHz and 0.77V for 600 MHz. We can see that for 

lower frequencies the circuit ages slower, so we can maintain a more efficient OPP 

longer. Finally, we compared our results with STMicroelectronics [77] with the 

same circuit. On the other hand, our aim is to operate the circuit at lower voltages, 

with significant gains in terms of total power dissipation.  
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Figure 55: Fixed frequency graph for SS_25C 

 

E. Fine-grain Timing Prediction 
 

In the previous section, we chose a fixed frequency and time window. But while 

the circuit aging fast at the beginning while time passes, this process slows down. 

For the proposed fixed frequency algorithm, we used a specified time window of 

3 months: this is too long for a fresh circuit aging really fast, but unreasonably 

small for an old circuit for which aging will be much slower As a result, we are 

losing potential optimization on the Fresh circuit by running our adaption too 

seldom, and wasting computational resources on an aged circuit by running it too 

often. We therefore developed a fine-grain prediction refinement algorithm which 

uses a  variable window. At the beginning, the time window is weeks instead of 

months. For every 3 prediction periods, the time increases of the prediction 

window of 1, 2, 3, 4…..,15 weeks, etc., to reach until 10 years of period. Here we 

start by predicting a brief period of 1 week and then gradually increasing our 

prediction window to 15 weeks. That is the TW is extremely small at the beginning 

and gradually increases further up to 5/6 months. Figure 56 shows the graph for a 

fine-grain prediction graph for a fixed frequency of 500 and 600 MHz.  Figure 57 

shows the fine-grain prediction graph with a time window in months. We can see 

the time window precisely and accurately with our proposed fixed frequency 

algorithm from the above two charts.  
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Figure 56: Fine-grain prediction graph with a time window in weeks 

 

Figure 57: Fine-grain prediction graph with a time window in months 

 

F.Aging Aware OPP Overclocking 
 

The fine grain prediction of our work allows for innovative optimization strategies 

thanks to its fast reaction time. With the help of our proposed model, it is possible 

to dynamically select OPP and change them before any fault arises. A possible 

application is overclocking.. Manually accelerating the high performance of the 

digital circuit with specified limits to achieve faster execution time is called 

overclocking.. Thus, the interesting factor with overclocking to know the 

maximum frequency range of a circuit. The clock frequency is limited by the 

longest path in the circuit with a given OPP (PVT) conditions. Here, we consider 

the worst-case critical path for performance improvement that over clockers 

activity. During the runtime of the circuit, there will be a high probability of circuit 

failure is possible. The impact of on-chip to find the overclocking reliability and 

considering the timing errors to address the faster circuit [90][91]. 
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The design of worst-case, along with processor performance with the help of 

overclocking, is possible. To force the circuit within a frequency limit helps to 

detect and recover from timing errors. The overclocked on-chip circuit exposes a 

large amount of heat and increases power consumption.  It reduces the system's 

lifetime. The highest performance of the digital circuit can be achieved through 

the optimum voltage and frequency range limit of the design. Solving this 

optimization problem becomes one of the challenges in the semiconductor IC 

industry. It is targeted to every digital design to have the minimum energy delay 

in achieving maximum optimization. The fine-grain prediction approach which 

lead us for innovative optimization strategies. Dynamically it is possible to change 

voltage and frequency before any delay fault arises. Aging aware overclocking of 

any OPP is possible by setting high frequency and high voltage, with significant 

performance boosts. Regrettably, aging affects the working condition and 

controlling probability and these solutions it is applied rarely.  

Based on our prediction framework, we can define an overclocking OPP selection: 

at any time window, choosing the OPP with the highest possible working 

frequency. Figure 58 shows the plotted results. This optimization strategy was run 

on AES synthetized for 2GHZ/1V for almost 4 years (200 weeks). We can observe 

from the figure that there is a stress on the system and the curve on aging is quite 

steep, thus to avoid delay errors, we forced to lower both the frequency and voltage 

in the second half. A model was tuned by adjusting voltage and frequency. The 

temperature and process are fixed. This algorithm is tuned in a typical high-

performance energy-delay optimization. The propagation delay of 150 worst-case 

critical paths is tested with our algorithm to get the results. Here the influence of 

voltage and degradation of critical paths are highly noted. It is purposefully 

extreme and it is useful for energy performance with a short and long lifetime to 

perform the tasks and workloads.  

The traditional way of detecting voltage and frequency for a digital circuit is quite 

hard and time-consuming. Thus, our approach will help predict it in a simple way.  
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Figure 58: Maximum performance optimization strategy algorithm 

 

G.Maximum Performance with OPP Cap 
 

In the previous Section, we showed how it is possible to overlock our AES circuit 

with a significant performance gain, but with the side effect of a great stress and 

an accelerated aging in the second part of its lifetime. However, in most 

application cases there is no need for such an aggressive approach : instead of 

aiming for the absolute maximal performances, the optimization can be “capped” 

to stop at a pre-defined performance level which satisfy the system’s 

specifications Figure 59 shows the OPP optimization with a cap at 1V/1.5 GHz, 

where the voltage is stepping from 0.1V. The regulation is performed to maintain 

the same voltage without any flags. Thus it reaches 1.6V, where a flag arises is 

highlighted in the red bar, and the voltage is stepped down to 1.5V for some weeks. 

In order to maintain the minimum voltage, the frequency is adjusted to the next 

frequency level. Here both the voltage and frequency are adjusted to find the 

maximum performance of the circuit within the pre-defined cap. The performance 

of different OPP in terms of PVTA results in saving energy-optimization of the 

design. 

. 
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Figure 59: OPP optimization capped at 1V/1.5 GHz 

Here, we proposed a novel optimization methodology, which predicts the voltage 

and frequency effectively. These proposed models can also be used for on-line 

estimation of the circuit degradation. Besides, it is also used to perform reliability 

simulations of complex systems. Through our simulation results, we could 

conclude that it could be compared with traditional DVFS strategies with an error 

rate of 1 percentage difference.  It is one of the strategies, which perform 

performance, energy, and reliability test. The traditional system on the chip 

requires a monitor or time sensor to estimate the performance accurately. At the 

same time, our proposed model needs the only simulation to monitor the circuit 

effectively with a minimum error rate. 

H. Conclusion 
 

This chapter proposes and demonstrates some cases of system-Level application 

of the proposed methodology presented in chapter 3. First, the proposed models 

are used for off-line estimating the circuit degradation. They can be used in a 

dynamic system to track the maximum operating frequency and minimum voltage. 

The estimation was taken into account the actual conditions of operation. To avoid 

the failure of the circuit, the maximum operating conditions are predicted. It also 

is used for the on-line estimation of any digital circuit on 28nm FDSOI 

technology. We considered 150 NCP to predict the lifetime of a circuit under 

different OPP conditions. Here, two different strategies were implemented one is 

maximum performance optimization and the other one is optimization with 

capped performances.  
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Chapter V: Conclusion and Perspectives 

 

The variation due to PVTA affects the advanced nanometric technology in terms 

of the reliability issue. The traditional safety margin approach is not a permanent 

solution to this problem due to higher design costs. Hence, the novel mathematical 

model along with the ML algorithm is used to solve the issues. 

A thorough explanation of CMOS aging mechanisms of FDSOI technology is 

given in chapter 1The PVTA variation and its impact while implementing it on 

the digital circuit are explained. In addition to that, a recent approach of embedded 

and In-situ monitors with their performance violations are discussed. 

The state-of-the-art review of the traditional ML approach and its types is 

explained in chapter 2. The ML algorithm is broadly categorized into supervised, 

unsupervised, semi-supervised, and reinforcement learning methods are described 

in detail in the first part of chapter 2. ML algorithm in embedded applications and 

its approach on system-on-chip are discussed. At last, evaluation of ML algorithm 

such as root mean square error, mean absolute error, and mean absolute percentage 

error are discussed. 

The proposed ML algorithm is used to train the model to predict the delay of each 

CPs in the digital circuits. This makes this algorithm the best candidate to be used 

in the dynamic compensation schemes. Hence, this approach of prediction of 

aging using two different digital circuits in chapter 3. The analysis of ranking 

variations of critical paths is demonstrated and understand the interpretation of 

PVTA is discussed. Moreover, the performance of our proposed model is 

compared with the SPICE simulation and validates the improved accuracy of our 

prediction method. 

Various dynamic compensation schemes using our proposed model are 

demonstrated in Chapter 4. Two novel approaches to our prediction methods are 

executed. One is the Aging aware OPP overclocking, and the other is the 

maximum performance with OPP Cap methods. This approach of our model helps 

to predict the circuit failure by analyzing the flag count variations in the circuit. It 

also illustrates the flexibility to adjust the supply voltage and frequency based on 

design requirements. 
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Perspectives 
 

 This thesis work has demonstrated the proposed ML algorithm for two 

different digital circuits offline. However, a thorough analysis needs to be 

done online to know the usage of our model in an On-chip process. 

 

 The dynamic voltage and frequency scheme proposed in this thesis using 

the ML algorithm has been simulated offline. In order to confirm the 

results, the online simulation with the chip needs to be analyzed on a 

silicon measurement. It is also essential to measure the power consumption 

and reliability of the circuit. But, accurate power consumption can be 

evaluated by using our ML algorithm is possible. 

 

 Future works will include exploring new OPP Optimization strategies and 

integrating with classical Monitor Insertion Flow, most notably identifying 

an optimal Path selection strategy. We also plan to exploit its 

computational simplicity for embedded applications to allow online aging-

ware OPP adaptation  

 

 The examples used in chapter 3 for analyzing the degradation of the circuit 

does not contain memories. In general, most of the complex circuits on-

chip contain multiple memories. The path between a flip-flop and memory 

timing analysis is possible by using our proposed model that needs to be 

tested.  

 

 Investigation of layout of the circuit and Critical path selections to be done 

along with the net model, parasitic, and routing of the systems. 
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