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Introduction

The Standard Model of particle physics (SM) is an elegant theory describing the fundamental structure
of the matter surrounding us. It focuses on the description of the elementary particles, for instance
quarks ¢, and the way they combine into more complex elements, for instance baryons (gqq) or mesons
(@q). Among baryons, protons and neutrons form the ordinary matter as we know it. The interactions
between those particles are also described within the SM. Although the large amount of successful
predictions has made of the SM a well established theory, there are few experimental observations
which are not accounted for. Among those, the significant asymmetry between matter and antimatter
that we observe in our Universe, is not explained within the SM. The violation of the charge and
parity symmetries, called CP violation, could help understanding why matter and antimatter are not
present in same quantities, however it is still not enough to explain such a large difference.

The need of physics models going beyond the Standard Model theory pushes the experimental
searches to test the limits of the SM predictions and look for New Physics (NP) beyond it. Within
those searches, the measurement of the magnetic dipole moment (MDM) of charmed baryons and
ultimately of the charm quark, allows to test the validity of the SM predictions and especially of the
Quantum Chromo Dynamics (QCD) theory. The magnetic moments of leptons have been measured
for electrons and muons and the latter has been found to be in tension with the SM prediction. The
tau’s MDM is technically harder to measure due to the very short lifetime of tau leptons; as of today
the tau leptons anomlaous MDM is known with a precision of only 1072, which is not competitive with
the 10~® precision of the SM prediction. Similarly, for the MDM of charm baryons and charm quark,
few predictions exist however there is no experimental measurement available to confirm or reject
them, hence a measurement is needed. In Chapter [2 the Standard Model is described in details with
a particular focus on charmed baryons and the status of the magnetic dipole moment and polarization
measurement for baryons.

An experiment for measuring the charmed baryons magnetic moment is proposed in Refs. [I1 [2]
3, 14, [B]; all proposals are based on a well known physics principle, which is the precession of charged
particles in a magnetic field. The idea of these experiments is to measure the precession angle of
the baryons spin vector, which gives access to the MDM of the baryon. However, since the lifetime
of charmed baryons is very short (around few hundreds fm), the precession must happen before the

baryon decays to other particles and this requires a very strong magnetic field which is not achievable

11



CHAPTER 1. INTRODUCTION

with conventional magnets. A possible solution is to channel the baryons in a crystal, where the
magnetic field between the planes is high enough to make the precession happen before the baryon
decay; this method was successfully used in the past for the measurement of the X baryon MDM [6].
The way charmed baryons could be produced at the Large Hadron Collider (LHC) and then redirected
to the precession crystal is the subject of extensive R&D which go behind the scope of this thesis. One
of the proposed setups includes a sequence of two crystals where a deflecting crystal is used to extract
protons from the halo of the LHC beam to direct them on a second one, a target-crystal, which is used
to produce the charmed baryons. The crystal dedicated to the precession of the polarization vector is
placed right after these two other crystals.

In order to measure the magnetic moment, the initial polarization of the baryon (before it enters
the crystal) is needed. In principle, the initial polarization could be obtained from other experiments
which runs in similar conditions as in the double crystal setup, i.e. an experiment producing baryons
from the interaction of a proton beam with a target. The LHCb experiment [7] is suited for this mea-
surement since it can run in fixed-target mode thanks to the SMOG system, which allows to inject
tiny quantities of gas close to the interaction point. The pNe fixed-target sample collected with the
LHCb detector at a center of mass energy of /s =68 GeV in 2017 reproduces similar condition as
the one needed for the input polarization measurement discussed above. However, due to the lack of
statistics in the fixed-target sample (around 250 A are seen in the data) and to the complexity of the
amplitude analysis which is necessary to measure the polarization, a preliminary measurement of the
polarization is performed using the high statistic pp samples collected by LHCb. This allows to fix
some of the parameters of the model which do not depend on the production mechanism involved in the
baryon production and which are thus independent on the experiment. This is the subject of this work.

The model built on the pp data can be then used to measure the polarization in the fixed-target sample.

In this thesis, the amplitude analysis of the three-body decay Al — pK 7" is presented. The
goal of this analysis is to establish a model describing this three-body decay and extract the A po-
larization vector. The choice of this channel is guided by the need of a weak decay to be sensitive to
the polarization, since the amplitude is proportional to the asymmetry parameter o which is non zero
only in case of parity violating interactions; and the fact that this channel has a large branching ratio.
Furthermore, this decay allows for intermediate states which can interfere with each other, enhancing
the sensibility to the polarization. The measurement is performed on the data containing pp collisions
collected with the LHCb detector in 2016, at a center of mass energy of 13 TeV. The analysis is per-
formed for A baryons produced right after the collisions, called "prompt", and not for baryons coming
from the decay of heavier particles, called "secondaries". Around 800 000 A} — pK ~ 7+ prompt decays
have been selected with negligible background contributions and negligeable residual contamination
from secondary decays. The large amount of statistics allows to describe this decay and its numer-
ous intermediate resonant states. First, in Chapter [5] the equations describing the amplitude of the
A} — pK~ 7t decays are derived within the helicity formalism, based on Ref. [], making sure that no
unphysical dependence or bias are introduced in this complex amplitude. Then the obtained formalism
is used to describe the data. For the analysis of the data, first an amplitude model is built using an

iterative procedure where the intermediate resonances are added one by one until the model is not
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sensitive to them anymore. Then, the nominal model obtained is used to measure the polarization
vector and the helicity couplings, along with the asymmetry parameters and the fit fractions. The
measurement is performed separately for A7 and A, decays, since different production mechanisms
are involved for baryons and anti-baryons and their polarization may differ. In Chapter [3| the LHCb
detector is described, highlighting the excellent capabilities which allowed to study charm baryons
and, finally, in Chapter [6] the amplitude analysis is presented.

Shifting toward the future, LHCb has been upgraded to take data during the next 3 years at the
conditions foreseen for Run 3 (2022-2025). The upgraded detector will operate at a five times higher
luminosity level than the previous runs, Run 1 and Run 2. However the performances of the LHCb
detector, even for the upgraded version, degrades at high occupancy since it was designed to work at
a lower luminosity level than the other general purpose experiments installed at the LHC. For this
reason, the luminosity is voluntarily reduced at the LHCb interaction point and this procedure requires
the measurement of the luminosity in real time. Furthermore, during Run 3 the LHCb detector will
switch to an entire software trigger scheme, which requires very precise knowledge of the running
conditions of the experiment. Those are only few of the reasons that motivated the construction of
a new luminosity detector, the PLUME detector, which will be installed near the LHCb interaction
point for Run 3. The PLUME detector is designed to determine if there was an interaction or not
in a bunch crossing and it is based on the measurement of the Cherenkov light produced by charged
particles crossing the detector. In the Chapter [ of this thesis, the work on the front-end electronics
(FEE) of the PLUME detector is presented. The FEE of PLUME has been defined; it will be based
on the front-end electronics of the LHCb electromagnetic calorimeter which have been proven to be
adapted for the expected signal shape obtained during tests beam. Finally, the possibility to use
the PLUME detector to measure the shift of the LHCb clock with respect to the main LHC clock is
also explored. This measurement will be beneficial for the performances of the LHCb detector during
Run 3.
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Theoretical and experimental
overview

2.1 The Standard Model of particle physics

The Standard Model (SM) of particle physics is a quantum field theory (QFT) describing precisely
fundamental particles and their interactions. Its construction has been guided by principles of sym-
metry expressed using the mathematics of group theory. It accounts for many phenomenological
predictions which have been extensively tested and which are found to agree well with experimental
measurements. The SM has become the main theory used to describe and predict particle physics
phenomena, the recent discovery of the Higgs boson in 2012 by ATLAS [9] and CMS [I0] represents
one of its greatest achievements and corroborates fifty years of successful discoveries. Although the
SM is an elegant and precise theory, it cannot be the ultimate theory describing nature; there exist
few experimental observations, discussed in Sec. which are not accounted for in the SM. Further-
more, the SM describes very well three out of four fundamental interactions (electromagnetic, weak
and strong interactions) however it does not include gravity, which is currently understood within
classical physics by the theory of General Relativity (GR). Even though the effects of gravity are not
seen at small distance scales, a theory unifying the four forces is needed to provide a complete descrip-
tion of nature. On top of that, a growing number of cosmological and astrophysical evidences point
towards the need of an extension of the SM theory. Consequently, the SM of particle physics is the
subject of an extensive research program across the world, grouping together the efforts of theorists
and experimentalists, whose goal is to discover and understand the missing blocks of this beautiful
theory. All the particles discovered up to now, have a place in the SM description. The classification
of particle is an outstanding result of symmetry considerations within group theory, rather than a
simple listing or labelling process. The way particles arise within the SM as well as the interactions

between them are discussed in the next sections.

2.1.1 Particle content in the Standard Model

In QFT, particles appear as quantized excitations of a field and they are fundamental entities without
any substructure. Depending on the nature of the underlying field, they can have different properties.

To begin with, particles are classified in two major categories: bosons, with integer spin, and fermions,
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Quarks Leptons

Gen. Flavour Mass Charge Flavour Mass Charge
st u 2.210-AMeV/c? +2/3 Ve <2eV/c? 0
d 4.755 MeV/? ~1/3 e 0.511 MeV/c? -1
- ¢ 12755098 GeV/e2 +2/3 Uy, < 190keV/c? 0
s 9572 MeV/c? —-1/3 e 105.66 MeV/c? -1
- t 173.0+0.4GeV/c?  +2/3 vy < 18.2MeV/c? 0
b 4181503 Gev/c?2  —1/3 T 1776.94+0.1MeV/c® -1

Table 2.1: Summary of leptons and quarks properties, from [11].

with half-integer spin. Together with the spin, particles have other quantum numbers such as the
electric, colour and hyper charges, the lepton and baryon numbers and other properties such as their
flavours and masses. For each particle, there exists an antiparticle which shares the same mass and
spin but opposite electrical charge, as well as lepton and baryon number. The antiparticles form the
so-called antimatter which is present in tiny quantities in the Universe; the predominance of particle
over antiparticles is not understood up to now. A difference in the behaviour of matter with respect
to antimatter seems to be a necessary condition to justify this imbalance and would directly imply
the violation of charge and parity symmetries; this is discussed in Sec.

Fermions are considered as the "building blocks" of matter, since they are the main constituents of
nuclei and consequently of atomsﬂ They are divided in two categories: leptons, which do not interact
strongly and have a zero colour charge, and quarks, which are sensitive to any type of interaction. The
masses anc charges of fermions are summarized in Tab. There are 6 types (or "flavours") of leptons
and 6 of quarks, for a total of 12 fundamental fermions. They are organized in three generations with
increasing mass and in pairs of two, called "doublets" (this is related to the SU(2) nature of the weak
interaction). The reason why matter is organized in three generations with similar properties but
different masses is not explained within the SM. For quarks, the first and lighter generation, are the
up (u) and down (d) quarks, forming the ordinary matter. The second generation, is made of a charm
(¢) and a strange (s) quark and the third one by the top (¢) and bottom (b), also called beauty, quarks.
The up-type quarks have the same electric charge, %, and the down-type quarks have charge —%. Since
quarks interact strongly, they carry a colour charge which can take 6 discrete values: red, green, blue
and anti-red, anti-green, anti-blue. In nature, only colourless objects are observed, thus the elementary
quarks cannot be observed alone. When quarks are produced, they "combine" (hadronise) very quickly
(in less than 10723 s) with other quarks to form colourless and bound combinations, called hadrons.
This is however not the case for the heaviest quark ¢ which is so heavy that it decays before having the
time to form a hadron. Typical colourless combinations are a pair of quark and antiquark (¢q) called
mesons, or a group of three quarks (qqq) called baryons. There exist other "exotic" combinations,
such as tetraquarks (¢qgq) and pentaquarks (¢qqqq), which have been observed first by Belle [12] and
BaBar [13] and recently by LHCb [14] [I5]. Baryons composed by the heavier quarks b or ¢, allow for

I'Nuclei are composed of u and d quarks, forming protons (uud) and neutrons (udd), and electrons.
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Gauge bosons

Name Mass Charge Spin
Gluon 0 0 1
Photon 0 0 1
Z boson  91.1876 +0.0021 GeV/c? 0 1
W boson  80.379+0.012GeV/c? +1 1
Higgs 125.1040.14GeV/c? 0 0

Table 2.2: Gauge bosons properties, from [11].

a large amount of decay modes and they are widely studied within LHCb and Belle II; in this thesis,
the A} (udc) baryon properties are studied. Depending on the quark content, baryons have different
quantum numbers, this is understood within the so-called quark model, described in Sec.

For leptons, the same classification in three generations holds. Each leptonic doublet is formed by
an electrically (—1) charged lepton the electron (e), muon (u) or tau (7), and an associated neutral
neutrino v, v, or v;. Since neutrinos are electrically neutral, they interact only via the weak force.
Up to now, it has been observed that the difference between the number of leptons and the number
of antileptons, called lepton number L = n; —nj, is a conserved quantity. Thus, the concept of family
lepton numbers was introduced: L., L, and L., where the lepton number L; of a family i is 1 for
the particle and -1 for the antiparticle. For instance the electron has L., = +1 and the antimuon
L, = —1. For other particles which are not leptons, the lepton number is zero. Family lepton numbers
are conserved quantities so that the sum of lepton numbers (for each family) before and after any
interaction must be the same. This is called "lepton flavour number conservation" and it is believed
to be respected for the charged leptons (up to now, no lepton-flavour violating decays have been
observed), however it is violated in the case of neutrino oscillations. These oscillations have been
measured by different experiments [16] [I7] [I8] and imply that neutrinos have a non-zero mass. The
origin of the neutrino masses is not completely understood within the SM yet.

The second type of particles are bosons, with integer spin. In the SM, spin-1 bosons, or gauge
bosons, are the "carriers" of the interactions. Thus, there are 3 force carriers: photons () for electro-
magnetic interactions, Z and W bosons for neutral and charged weak interactions and finally gluons
(g) for strong interactions. One extra spin-0 boson, the Higgs boson, exists in the SM and it is not
precisely a force carrier. It is the boson responsible for the Brout-Englert-Higgs (BEH) mechanism,
causing the electroweak symmetry breaking discussed in Sec. It is the way masses were intro-
duced and justified in the SM, before which only massless fermions and bosons were considered. The

masses, charges and spins of the SM bosons are summarized in Tab.

2.1.2 The Standard Model interactions

There are four fundamental forces in nature: gravitational, electromagnetic, strong and weak forces.
Mathematically, the last three forces arise as quantum fields in the SM and their dynamics and
kinematics are determined by the Lagrangian density and local symmetries. The latter are transfor-
mations determined by a specific group and if the system is unchanged by those transformations, then

the transformation is a symmetry. The SM Lagrangian is invariant under local transformation of the
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Force Relative Mediator  Type of charge Coupling Time scale decay
strength constant
Strong 1 8 Gluons  colour Qs ~ 10?5
Electromagnetic 1072 Photon Electric Qe ~ 10716
Weak 10-5 W and Z Hypercharge a ~10-6— 10-8
bosons Y
Gravity 10742 Graviton(?) Mass X X

Table 2.3: The 4 fundamental forces seen in nature. The graviton has not been observed up to now.

composite group
SU(3)~xSU(2); x U(1)y (2.1)

where the colour charge C, the weak isospin I and hypercharge Y are conserved quantities. The three
interactions arise as gauge fields when requiring the Lagrangian to be invariant under transformations
belonging to those 3 groups. The SU(3), symmetry is associated with QCD and strong interactions
and SU(2); x U(1), with electroweak interactions (EW), describing the electromagnetic and weak
forces. The bosons carrying the forces, listed in Table. 2.2 correspond to the generators of these
groupsﬂ The strength of those interactions is characterized by a coupling constant, which is, despite
the name, a non-constant adimensional parameter which depends on the energy scale. The charac-
teristics of the four forces are summarized in Table. where the last column shows the typical time
scale of decays where the interaction is involved, and the other quantities have been defined in the
text. In the following, the Lagrangian formulation of the electroweak and strong interactions as well
as the Higgs mechanism are presented in a concise way, a more detailed description can be found in
the classical textbooks [19][20][21].

Electroweak theory The Lagrangian (L) describing a freely propagating fermion v of mass M,

18

Lo = P78 — M)y, (2.2)
where v# are the Dirac matrices which satisfy the anticommutation relation: {y*,v"} =~yH~+" +~4"y* =
2n* Iy, where n*¥ is the Minkowski metric, and Iy is the 4 x 4 identity Matrix. Ly is invariant under
global U(1) transformation which transforms the 1 field as () v Y/ (x) = €%)(x), corresponding to
a rotation of the field phase by an arbitrary real constant 6. The gauge principle however, requires the
U(1) phase invariance to hold locally. This means that the phase transformation becomes space-time

coordinates dependent (f(z)) and that the partial derivative term in Ly transforms as:
U .
Oui(a) 7 1 (0, +ig0,0(2)) (@) (2.3)
where an extra term that breaks the invariance appears. The "free" Lagrangian transforms now as

Lo v U (iv"0, — M)W — \Tf’y“&MqH(x)\I/ (2.4)

I The group generators are elements of the group which form a subset such that every element of the group can be
expressed as a combination (under the group operation) of it and their inverses.
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2.1. THE STANDARD MODEL OF PARTICLE PHYSICS

Field Generations T Ts SUB)e SUR2), U(l)y Q=T3+Y
ur, cL L +1/2 +2/3

“ < dr ) ( 5L ) ( b ) 2 ( —1/2 ) ’ 2o ( —1/3 >

UR URr CR tR 0 0 3 +2/3 +2/3

Dr  dn SR bR 0 0 3 1 ~1/3 ~1/3
Vel UL UrL +1/2 _ 0

L <6L>(ML><TL>1/2 (_1/2 T

Er ep UR TR 0 0 1 1 —1 -1

Table 2.4: Representations of the fermion sector with relative charges.

where the second term breaks the invariance under the U(1) local phase transformation. This indicates
that local phase invariance is not possible for a free theory, which does not include any interaction
term by definition. To compensate for this extra term, a new degree of freedom A, is introduced,

which transforms under local U(1) as:
A YA = A, 1 0,0(2). (2.5)

It can be seen that £y becomes invariant under the local U(1) transformation if the derivative is

replaced by the covariant derivative D,;:
D, =0,—1iqA,. (2.6)

Finally, the "free" Lagrangian £y becomes

La=(@)(iy" Dy — M)y (x) = Lo+ qAu()(x)y"4(x) (2.7)

interaction term

where L4 fulfils the local U(1) invariance requirements and a new term appears, corresponding to the
interaction of the fermion with a gauge field A,,. The new field corresponds to the photon, interacting
with other fermions with a strength ¢ =e. This is a typical example of how a gauge boson, force
carrier of an interaction, arises in the SM as a consequence of local symmetries.

In a similar way, the unification of electromagnetic and weak forces results by requiring local gauge
invariance under the group SU(2); x U(1)y.. In this case, the gauge bosons appear as combinations of

four fields W/}’Q'?’ and B, and the covariant derivative is
. T Y
Du:(?u—ngaW;f—zg’EBu, a=1,2,3 (2.8)

where 7, are the group generators of SU(2), and Y of U(1)y; g and ¢’ are the coupling constants of
SU(2); and U(1)y respectively. The W and B bosons are massless, so they do not correspond to the
W and Z bosons of the weak interactions yet. The origin of gauge bosons masses requires a specific
mechanism which is explained in the following.

The EW theory is a chiral theory, meaning that the right-handed and left-handed particles are
not interacting in the same way. The W fields couple only to left-handed particles (or right-handed
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antiparticles), while the B, field couples to particles carrying the weak hypercharge. The left-handed
fermions are organized in doublets whereas right-handed fermions are organized in singlets, the particle
representations under the EW group are shown in the sixth column of Table 2.4 The EW chirality
results in the violation of parity, a phenomenon observed experimentally for the first time in 1956 [22];
a complete discussion about parity violation is given in Sec. [2.2]

It appears clearly here that the way particles are organized in the SM is a direct consequence of the
underlying groups chosen to describe them and their interactions. Hence one can refer to a particle
either by its name, or by the way it behaves with respect to the standard model group(s), thus a
bottom quark can be referred to as (3,2,+1/6), meaning that it is a triplet under SU(3)., a doublet
under SU(2); and a singlet with hypercharge +1/6 for U(1),.

Strong force The strong interactions are described by a theory called Quantum Chromodynamics
(QCD). The force carriers are the gluons G, which have a colour charge and can couple to quarks or
other gluons. They lie in the adjoint representation of SU(3). As for the electroweak theory, there

exists a covariant derivative allowing for gauge invariance under SU(3):
. >\a a
Duzﬁu—zgngw a=1...8 (2.9)

where A, are the 8 generator Gell-Mann matrices and g5 is the strong coupling constant.
Then, the QCD Lagrangian can be written as:

I 1

Locp =Y (iv" Dy —mdy;) ¥ — Gy, GL” (2.10)

4

where m is the mass of the quark corresponding to the field ¥. Quarks and gluons carry a colour
charge however it has been observed up to now that only colourless combinations of particles can
exist in nature. This means that a colour charged particle alone cannot exist in nature, it needs
to combine with other particles to form colourless combinations (the hadrons). This feature can be
understood when looking at the behaviour of the strong coupling constant (as o g2) as a function of
the energy scale (Q, shown in Fig. At small @Q values, corresponding to large distanceﬂ a; takes
large values whereas for large (), corresponding to short distances, it decreases. This means that at
large energy (short distances), quarks and gluons interact less intensively and can be treated as free
particles, this is called asymptotic freedom and it is specific to QCD. On the other hand, at low energy
(large distances), quarks and gluons must form bound states (hadrons) and cannot be isolated, this
phenomenon is known as colour confinement. When «y is small (i.e. in the energy 100GeV — 1 TeV
range, where the coupling is around 0.1), QCD calculations can be simplified and developed in a
perturbative way (pQCD), while for large o (below 1 GeV) more sophisticated methods are needed,

as for instance lattice QCD.

Higgs mechanism The theory as presented up to now do not account for fermion and boson masses.

Indeed, if a simple mass term ma1) is added for fermions, then mixed terms such as mipe;, would

'Momentum and position are conjugate variables, related by a Fourier transform (FT). The properties of FT lead to
the famous Heisenberg relation: AzAp > hi/2, thus for large distance x the momentum p has to be small and vice versa.
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cms
o 024 - —— CMS Incl.Jet, Vs =8TeV, ag(M,) =0.1164" 7
S - —e— CMS Incl.Jet, Vs = 8TeV '
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B CMS Incl.Jet, Vs = 7TeV
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Figure 2.1: Strong coupling constant as as a function of the energy scale of the interaction Q). Several
measurements are superimposed, the brown dashed line represents the world average, from [23].

appear and the gauge invariance would be broken, due to the fact that the EW theory treats right and
left handed particles in a different way. Nevertheless, the masses of the W and Z bosons have been
measured experimentally and found to be different from zero, 80.4 and 91.2 GeV [24][25] respectively.
This was a sign that the SM theory was not complete yet. A way out, allowing to generate the gauge
bosons masses within the SM, is the now famous Brout-Englert-Higgs mechanism [26][27]. It consists

in adding a scalar field ®, hereon called Higgs, resulting in a Lagrangian of the form:

Liiiggs = (D)1 (Do) — V(9) (2.11)
\_v_/ | S
Kinetic term Potential

where the scalar potential V' (¢) is defined as:
241 )2 wi "
V(9) = p26To+A(¢f¢) with ¢= ¢0 (2.12)
with A > 0 and p? < 0 and ¢, the Higgs field, is an SU(2) doublet composed of two complex scalar
fields ¢ and ¢°. The vacuum expectation value of the Higgs potential is at v = \/—p2/X and there

are infinite degenerate states that have the minimum energy, choosing one state would break the EW

symmetry "spontaneously'. For the arbitrary choice

1 0
b = 7 ( . > (2.13)
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there is still a subgroup which stays unbroken and which is associated to QED hence SU(2),; x U(1)y, —
U(l)Q. The potential can be expanded around the ground state to obtain the Higgs doublet:

1 0
p(x) = 7 ( ot h(a) > (2.14)

From there, the gauge boson masses are obtained expanding the kinetic term of Eq. while the
potential term of the same equation describes the Higgs self-interactions; thus inserting the definition

of D, given in Eq. and after few simplifications one obtains

2 1

(Do) (D) = % (Oph) (0"h) + gz(v +h)PWIWHET + 3 (92 + 9’2) (v+h)2Z,2" (2.15)
p? A
V($) =5 (v +h)?+ S w+n)? (2.16)

The physical gauge fields are then two charged fields, W+, and two neutral gauge bosons, Z and 7.
For this reason, weak interactions are classified as "neutral currents" mediated by the Z boson, and
"charged currents", mediated by the charged bosons W*. The EW gauge bosons appear in Eq.

as combinations of W;j and B, fields:

Wi = \}i (W Fiw?)

b —g’BM—i-gWg
Vi +g?

e gBM+g’W3

For the neutral bosons, this relation is also expressed as a rotation of the mass basis by the weak

mixing angle 6,,,

Z cosf, —sinf w3

= v # ) where cosfy = ——3—— (2.17)
A, sinfl,  cosfy B, 9*+g”

The gauge bosons masses arise naturally from the covariant derivative expansion, Eq. and the

Higgs boson mass (along with the self-interaction couplings) from the potential term one, Eq.
They read:

1
M2:*22
w 49’0

1
2 _ Lo\ 2
My =5 (g +9") e
My=0

MHiggs =V 2)\1]2

The spontaneous symmetry breaking (SSB) allowed to generate boson masses, starting with a complex
scalar doublet ® with 4 degree of freedoms (dofs), one massless B with 2 dofs and three massless W*

gauge fields with 6 dofs, for a total number of 12 dofs. After SSB, the dofs repartition is changed: one
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real scalar Higgs field (1 dof), 3 massive weak bosons (9 dofs) and 1 massless photon with 2 dofs, for
a total of 12 again. The scalar dofs have been absorbed by the massive gauge field to describe their
longitudinal polarization. Finally, fermion masses are also obtained thanks to the Higgs field by mean

of the Yukawa Lagrangian:
Ly = =Y2QriéDr;j =Y Quit™Un; = Vi LLioEr; +h.c]] (2.18)

where the quark and lepton left- and right-handed fields are the one shown in Table 2.4 and appear
multiplied by the Yukawa couplings Y;;, where the indices 4, j run over the three fermion generations.
The fermion masses can be expressed as m; = yZ\% It should be noted that the Yukawa couplings and
in turn the fermion masses are free parameters in the SM and they cannot be predicted theoretically.
Therefore, they have been measured experimentally and the origin of the large mass difference between

the three generations is not predicted within the SM.

2.2 Symmetries and CP violation

Symmetries and conservation laws are at the core of physics and especially particle physics. As de-
rived in the previous sections, particle fields arise in the SM by applying symmetry transformations
to the Lagrangian. The symmetries discussed above are continuous symmetries, parametrized by a
set of continuous parameters. More generally, the invariance of a system under a continuous sym-
metry leads to the conservation law for a physics quantity, this is stated in the notorious Noether’s
theorem. For instance, the invariance under rotation leads to the angular momentum conservation,
similarly the space and time translations to the momentum and energy conservation. A list of particle
quantum numbers and their conservation laws for different interactions is given in Table Beside
continuous symmetries, discrete symmetries, which are instead parametrized by discrete values, play
also an important role especially in modern particle physics. In particular, there are three important
discrete symmetries widely exploited in particle physics: parity (P), charge conjugation (C) and time
reversal (T'). Parity operation inverts spatial coordinates, which is equivalent to applying a mirror
transformation followed by a rotation of w. The effect of parity transformation (along with charge and
time reversal) on physical quantities is summarized in Tab. For instance, position and momentum
change sign under parity, while spin is unaffected. The action of parity on a quantum state is simply
Py(7) =1(—7) and the eigenvalues of P satisfy,

Plip(7,t)) = nplp(=7,1)) (2.19)

where 7p = ¢%” is a phase factor: |np|? =1, with £p real. This is required since the normalisation of

the physical state [¢)) must stay unchanged:

L= (v|y) = (WP Ply) = [np*(y]v) (2.20)

'h.c. = hermitian conjugate.
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Quantum number Strong EM Weak
Electric charge (Q) v v v
Energy (E) v v v
Momentum (p) v v v
Spin (.J) v v v
Baryon number (B) v v v
Lepton numbers (L, Ly, L) v v v
Strange (s) v v X
Charm (c) v v X
Beauty (b) v v X
Top (t) v v X
Strong isospin (1) v X X
Isospin projection (I3) v v X

Table 2.5: Conservation laws for the three fundamental forces and SM quantum numbers, v means
that the quantum number is conserved, X that is not.

Obs. P C T
Time (t) t t —t
Position (7) —7 7 T
Energy (E) E E E
Momentum (p) —p P —p
Angular momentum (.J) J J —J
Helicity () - A A
Electric charge (e) e —e e

Table 2.6: Transformation of physical observables under parity (P), charge conjugation (C) and time
reversal (T") operations.

Furthermore, the parity operator applied a second time restores the original state, implying that
P? =1, which, along with the condition PTP =1 imposed by the normalisation, means that P is an
hermitian operator. A physical state can either have a defined parity, meaning that it is an eigenstate
of P with either even, np =1, or odd parity, np = —1, or it can have no defined parity, in which case
it is not an eigenstate of P. In the contest of quantum field theory, every particle is described as
a state in the Hilbert space with a parity eigenvalue, called intrinsic parity. For instance, fermions
have even intrinsic parity, while anti-fermions odd. According to their parity, spin-0 particles can
be scalars (even) or pseudo-scalars (odd), while spin-1 can be vectors (odd) or axial vectors (even).
For hadrons, the intrinsic parity is often determined experimentally by observing a decay process and

using conservation laws.

The charge conjugation operation reverses the sign of all charges associated to the quantum state
(electric, colour and weak hyper-charges), transforming a particle in its antiparticle. Similarly to the
P case, a C-parity quantum number can be defined for the charge eigenstates. Its effect on a state

with definite momentum p, spin projection s and charge ¢ is

C\p,s,q) = ncl|p,s, —q) (2.21)
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Discrete symmetry Strong EM Weak
Parity, P v v X
Charge parity, C v v X
Time reversal invariance, T’ v v X
Combined parity, CP v v X
CPT invariance v v v

Table 2.7: Conservation laws for the three fundamental forces, v' means that the symmetry is con-
served, X that it is not.

where 7¢ = €% is a phase factor, |nc|? = 1, with &¢ real.

The last operation, time reversal, inverses the time direction; the spatial coordinates are unchanged
but the direction of momenta are reversed, as a consequence the initial and final states are exchanged,
T(a —b) = (b— a). Time inversion operator is unitary as P and C, however it is antilinear EL for
this reason, it cannot be an observable in the same way as P and C. Requiring the conservation
of one of these three symmetries, or the combination of two of them, for a physics process results
in the prohibition of certain transitions in nature. For instance, if P is a symmetry of the system,
the transition to states with different parities is forbidden and any observable which is odd under
parity must have a zero expectation value. This gives rise to a set of selection rules for the observables
describing the transition amplitude, which are usually derived starting from the Lagrangian terms. Not
all the three fundamental interactions (weak, strong and EM) conserve the P, C' and T symmetries.
Parity violation was first theorized in 1956 by Lee and Yang [28] as a solution to the famous "7 — 6"
puzzle; two particles, with same lifetime and mass, were found to decay to two different final states with
different parities: 6+ — 7170 and 7+ — 77~ 7. At the time, parity was believed to be conserved
implying that the two particles could not be the same one as the measurement suggested. Lee and
Yang proposed an easier solution, 6 and 7 were actually the same particle, a K meson, which decays
violating parity. Then, in 1957, parity violation in weak interactions was observed for the first time in
the 5 decay of cobalt-60 by C.S.Wu et al. [29]. Thereafter, it was clear that the weak interaction was
violating parity, and the C' violation was also shown right after, whereas there were still no evidence
for C'P violation. This is strictly linked to the chiral structure of the weak interactions, allowing for the
existence of a left-handed neutrino but not of a right-handed neutrino or a left-handed antineutrino.
Since the right-handed antineutrino, the CP conjugate of the left-handed neutrino, exists in the SM,
one would expect the CP symmetry to be conserved. However, in 1964, C'P violation was observed in
kaon decays [30] and although unexpectedly small, it was a breakthrough. The Fermi theory which
was successfully describing the weak interaction as a point-like interaction, needed to be extended, it
was for this reason that the V-A structure was introduced in the weak interaction.

Up to now, only the combination of the three symmetries, CPT, is considered an exact symmetry
of nature and no violation of it has been observed. The CPT symmetry follows from the most
fundamental assumption of the current quantum field theory, local Lorentz invariance, and the breaking

of the CPT symmetry would imply the breaking of the entire SM theory. It is worth to notice that if

I This appears when imposing the conservation of the commutation relation between momentum and position [z,p] =
ih. The time reversal of this relation implies that T" maps i to —i.
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CP is violated then, as a consequence of the CPT theorem, T" must also be violated. As a conclusion,

a summary of the symmetries laws for the three fundamental interactions is given in Table

2.2.1 Quark mixing and the CKM matrix

At the time the SM was built, only 3 quarks were known: u, d and s. They were classified as
representations of SU(2), as a doublet (Z) and a singlet {s}. Nevertheless, this organization would

not allow the interaction of u and d with a s, contradicting the observation of the strangeness violation
in the K™ — pfv, decay. A solution to this problem was proposed by N. Cabibbo in 1963 [3I], who
proposed the idea that the observed isospin eigenstates (the primed states here) are actually an
admixture of the mass eigenstates. Thus when they interact, the u and d are a u quark, d’ doublet

and a s’ singlet. The mixing is represented as a rotation matrix of angle 6o ~ 13°, the so-called

Cabibbo angle,
d [ cosbc  sinfc d [ dcosfc +ssinfc (2.92)
s’ - B —sinfg  cosbo S B —dsinf¢ + scosbc '
In this way, the interaction of u and s quarks is allowed. Since cosfc > sinf, the u-d transition is
classified as Cabibbo favoured, while the u-s is Cabibbo suppressed. However this rotation implies the
existence of transitions d — s, known as flavour changing neutral current (FCNC), which were not
observed experimentally. In 1970, the Glashow-Iliopoulos-Maiani (GIM) mechanism [32] proposing

the existence of a fourth quark ¢ forming a doublet with the s, was proposed. Now two quark doublets

exist (u,d) and (c,s), with interaction eigenstates

" and ¢ (2.23)
dcosOc + ssinfo scosfc — dsinfo

and the FCNC are forbidden. The ¢ quark was discovered in 1974 by the Brookhaven National
Laboratory and SLAC [33][34]. They both observed it as the J/i F_-I resonance decaying into an
electron-positron pair. As for the third family of quarks, ¢t and b, it was predicted in 1973, by M.
Kobayashi and T. Maskawa [35] to explain the observed CP violation in kaon decays. The observation
came in 1977, with the b discovery at Fermilab as the Y resonance [36]. The ¢ quark was harder to
discover because, due to its high mass, it decays before hadronising; it was first seen in 1994 by the
CDF and DO collaborations [37].

In order to include the third family, the Cabibbo rotation matrix is to be replaced by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, which fully describes the quark mixing between the three SM

families. It is usually written as

d/ Vud Vus Vub d
s’ = Vi Ves Va s (2.24)
v ) Via Vis Vi b )

I The resonance was called J at Brookhaven and 1 at SLAC, thus finally it was named J/).
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2.2. SYMMETRIES AND CP VIOLATION

and as for the Cabibbo case, it represents the change of basis between the quark interaction eigenstates,
or flavour eigenstates (F'), and the quark mass eigenstates (M). The V;; matrix elements determine
the strength of the quark couplings between different families. Once the arbitrary phases of the quark
fields are fixed, the CKM matrix can be parametrized by three real mixing angles and one complex
phase, corresponding to 3 real numbers (A, A and p) and one phase (), as proposed by L. Wolfenstein
[38]:

1—-A2/2 A AX3(p—in)
Voerm = -\ 1—X2/2 AN? . (2.25)
AN (1 —p—in) —AN? 1

This form was obtained by expanding each element as a power series in A\ = |V,5| ~ sinfc. With this
parametrization, the hierarchy of transition strength becomes clear: the diagonal elements are of the
order of 1 corresponding to transitions inside the same family; transitions between the first and second
families are of order ), between second and third A\? and between the second and the third families
A3. The only matrix elements allowing for CP violation are V,; and Viq, since they contain a complex
phasdﬂ, however they are suppressed by a factor A2 ~ 0.01 which means that they provide a very small
amount of CP violation and they are hard to measure.

From the unitarity of the CKM matrix VCKMVgKM =1, two relations are obtained:
Y3 ViV =0 and 3 ViV = dar. (226)

For the case i # j, these six relations can be represented in the (p,7) complex plane as triangles and
their areas quantify the amount of CP violation. These 6 triangles have all the same surface, which
is not zero if CP is not conserved. Nevertheless, the triangles have very different shapes due to the
different orders of magnitude of the V;; coefficients, the only not-flat triangles are those including
O()\3) elements:

VauaVei + VasVis + Var Vi, = 0

(2.27)
VauaViy + Ved Vi, +ViaVi = 0

The triangles are usually represented as a function of the transformed coordinates p= (1—A?/2)p and
7= (1—\2/2)n, one of them is shown in Fig. where the angles shown are defined as:

a=Arg —V;divti’ (2.28)
VUd ub

B=Arg (—V‘fdcb> (2.29)
ViaViy,

= Arg [ —YudVab (2.30)
‘/Cd cb

At present, the CKM matrix elements account for the CP violation observed experimentally. The
status of the CKM measurements as for 2019 is shown in Fig. (right). However, the amount

LCP violation implies that a complex phase is present in the decay amplitudes, as a consequence a particle and its
antiparticle decay differently. For a N x N matrix there are (N —1)(N —2)/2 complex phases, hence if only 2 generations
existed (N =2), there would be no room for C'P violation.
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Figure 2.2: Left: illustration of the unitarity triangle. Right: global fit of the CKM triangle in black,
based on the experimental constraints in colours, from the CKMfitter collaboration [39, [40].

of CP violation observed is really small and it cannot explain the large predominance of matter on
anti-matter in the Universe as it was hoped for. Indeed, CP violation is one necessary condition
needed to explain the observation of such an asymmetry between matter and anti-matter. The origin
of this asymmetry stays unrevealed and it is one of the open questions of the SM (Sec. [2.2.2)). For
the neutrino sector, there exists an equivalent matrix called the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix explaining the neutrino oscillations, observed experimentally by Super-Kamiokande
and SNO [41][42]. Up to now, no CP violation has been observed in the neutrino sector.

Beside the electroweak forces, the SM Lagrangian actually allows for CP violation in strong inter-
actions, however it has never been measured experimentally. The terms breaking CP symmetry in the
Lagrangian are proportional to the QCD angle 8, which has been tightly constrained to be smaller
than 10719 by the measurement of the electric dipole moment of the neutron E|[43]. The reason why

this angle is so small it is not understood and it is known as the "strong CP problem".

2.2.2 Open questions of the Standard Model

Although the SM is a very corroborated and successful theory, there are few questions which remain
unanswered. Some of them have been mentioned in the previous sections: the strong CP problem,
which requires an unjustified fine tuning of the strong angle ; the incompatibility with the general
relativity theory describing the gravitational force; the origin of the differences between fermion masses;
the origin of neutrino masses; the very small amount of CP violation. Indeed, the universe is mainly
composed of matter, however within the SM, matter and antimatter should be present in a similar
amount and this prediction contradicts the experimental observations. The CP violation could account
for this, however the observed violation until now within the SM is too small to justify such a difference.

Along with those problem there are few other open questions: the SM account for only 4.5 % of the

I The presence of a CP violation term for the strong interactions in the Lagrangian would produce a non zero neutron
electric dipole moment.
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2.3. CHARMED BARYONS AND THEIR POLARIZATION

visible world, the rest seems to interact weakly or not interact at all with the SM fields and it is
called dark matter, representing 26 % of the visible world. The remaining 69%, goes in the so-called
dark energy, responsible for the accelerating expansion of the universe. Furthermore, the SM has a
large number of free parameters, 19 in total, which can only be measured experimentally, for instance
the quark and lepton masses. The Higgs mass as well is an open problem, since it gets very large
corrections which must be compensated with a fine tuning of the bare mass. This is known as the
hierarchy problem. These open questions are at the center of the current research program in particle
physics and they motivate the search for physics beyond the SM, also called New Physics (NP). There
are two ways to address them, either performing "direct searches", going to the highest possible energy
to find new particles; or "indirect searches", performing precision measurements at low-energy by
looking at virtual processes where new particles could contribute and shift the results from the SM
prediction. These second methods are widely used in flavour physics and at LHCb, where the most
powerful searches involve very suppressed, even forbidden, processes so that even a tiny deviation
could reveal the presence of NP effects. Recently, two major results have been produced by LHCb
using these techniques. The first one is the measurement of the rare decay B? — u*u~, which is
predicted to be very small in the SM and which has been measured to be (3.097045791%) x 109
[44]. There is a set of theories predicting a significant modification of this branching ratio making
it a smoking gun for NP searches; from now on, any new theory will have to account for this new
measurement which is compatible with the SM. The second NP measurement consists in probing the
lepton-flavour-universality (LFU) predicted by the SM, i.e. the interaction couplings are independent
of the flavour of the lepton involved. In order to do so, LHCb studied the decay of BT mesons to
muons and to electrons, namely B* — KTete™ and BT — K+ puTpu~. If their couplings are different,
then the ratio of the two decays should be different from 1, meaning that new particles contribute to
the virtual loop describing the transition b— s¢*¢~. The ratio is measured to be Ry = 0.84670011
[45], being the most precise measurement to date and is 3.10 away from the SM prediction, thus this is
a new evidence for the violation of lepton flavour universality, which need to be confirmed by further
measurements. Another interesting sign for new physics came from the measurement of the anomalous
magnetic dipole moment of muons performed by the Fermilab experiment g — 2. For charged leptons,
the magnetic moment g should be close to 2, and the deviation from 2 is due to higher order QED
corrections which are very precisely predicted by the SM, see Sec. This recent measurement [46]
resulted in a tension between experiment and theory at 4.2 standard deviation. These recent results,
along with the still unanswered questions listed here, point to the fact that the SM theory is not

complete and flavor physics is a very powerful tool to search for new physics.

2.3 Charmed baryons and their polarization

The quark model classifies hadrons in terms of their valence quarks properties, for instance their quan-
tum numbers, flavour or colour. It successfully describes a large number of light hadrons, containing
the u and d quarks. It was proposed, independently, by two physicists: M. Gell-Mann [47] and G.
Zweig [48]. The model is constructed starting from the representations of flavour SU(3) and the Pauli

exclusion principle, which states that two identical fermions cannot occupy the same quantum state
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with the same quantum numbers. The quark model is also known as the "Eightfolds Way", after
the group representations of the mesons in an octet plus one singlet. The 3 quark flavours lie in the
fundamental representatiorﬂ (3) of SU(3), and the antiquark in the complex conjugate representation
(3); the nine states of a pair of quark and anti-quark can be decomposed in one trivial representation,
the singlet (1) and the adjoint representation, the octet (8). The decomposition can be written in
group theory as: 3@3 =8@ 1. This work aims at measuring the AT baryon properties, for this reason
only the quark model for baryon will be described in detail and the meson case will not be treated

here, although it relies on very similar considerations.

Baryons are made of three quarks and as a three-body system it can have two angular momenta
(I and I') between the 2 pairs of particles. Let’s start with the easier case where [ =1' =0, the ground
state of a baryon for which the angular momentum of the baryon depends entirely on the spin of the
three constituent quarks. Quarks have spin 1/2 thus they can occupy two states, spin up 1, with
spin projection +1/2 or spin down |, with spin projection —1/2, giving 8 possible combinations: 4
symmetric combinations, for which the interchange of two particles leaves the state unchanged, and 4

partially antisymmetric, where the interchange of two particles flip the sign of the state.

83) =)
31
SLY =L+ +)/Vv3 3

Full ) = Us 2.31
I SR 1N (e (2:31)
5-35) =W

), =M —INt/V2

1
Antisymmetric in particle 1 and 2 , spin =, 91490 (2.32)
:m—mwﬂ} 3 V1o

)y, =T —41)/V2

1
2 . .. . 1
Antisymmetric in particle 2 and 3 , spin —, 12,3 (2.33)
5-3),, =+-in/ve } 2 7

The two-dimensional representation of SU(2) is thus decomposed into the direct sum of 1 four-
dimensional representation and 2 two-dimensional representations as: 2®2®2 =4@ 2@ 2, or using
spin labels %@ % ®% = %EB % @ % Beside spin, a baryon is described by other quantum numbers, colour

and flavour, and the total wave function is a product of 4 sub-wave functions:

Q;Z)balryon = wspin Q!)ﬂavour wcolour wspace (234)

where space describes the spatial part, ¥colour and Ygavour the colour and flavour parts and tspin the
spin part. The possible combinations of each component of the wave function are strongly reduced
by the conditions imposed by the spin statistic theorem, which states that half-integer-spin particles

(fermions) have an antisymmetric wave function and integer spin particles (bosons) a symmetric one.

"More details on group theory and its applications to particle physics can be found in Ref. [49] [50].
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Figure 2.3: The SU(3) multiplet formed by the three quarks u, d and s. Left: the decuplet. Right:
the octet. Adapted from Refs. [51] [52].

It follows that the total wave function of Eq. 2.34] must be antisymmetric under the exchange of any
pair of quarks. For the ground states, with zero angular momentum, the spatial wave function is
symmetric. The colour wave function is the same for all baryons, this is a consequence of the fact that
only colourless combinations of quarks exist and thus the combination of the three colours can only
exist as a colour singlet statd]
1
Yeolour = 7

which is antisymmetric. Thus the product of the spatial and space parts is always antisymmetric

(RGB — RBG+ BRG — BGR+GBR—GRB) (2.35)

for the ground state baryons. This implies that the remaining product of 1spin and Ygayour has to be
symmetric, in order to obtain an antisymmetric total wave function. The explicit form for the possible
spin states s, ¥ory3 and Y1449 is given in Eq. Regarding the flavour states, the 3 lightest quarks
u, d and s form an approximate SU(3) symmetry. They lie in the 3 dimensional representation which
can be reshuffled, as in the spin case, into a set of symmetric, antisymmetric and mixed symmetry
states. In terms of group theory, the direct product of three SU(3) representations is decomposed in
3®3®3=1068®8®1, corresponding to one decuplet of ¢§ symmetric states, two octuplets with
w{ 49 and 1/15[ o3 states of mixed symmetry, and one singlet, with a completely antisymmetric state wﬁ.
Combining all together, there are two possibilities to create a symmetric combination of the flavour
and the spin parts. The easiest way is to combine the fully symmetric parts: ¥gecuplet = Vs X ¢f. This
form the spin—% baryon decuplet. For the mixed symmetry states, the combination of one state alone
can be symmetric under the exchange of 2 particles, for instance o3 X 1/15 .3 for the 2 to 3 exchange.
By adding the three possibilities, ¥octet = wgﬁgwg o3 +¢1H2¢{ &9 +¢1H3¢{ .3, the state is symmetric
under the exchange of any pair of quarks, giving rise to the baryon octet. The baryon decuplet and
octet obtained are shown in Fig. Few considerations can be derived from this, for instance the
corners of the decuplet contain states with identical quarks in a symmetric flavour state, hence they

can only exist in the symmetric spin state j = 3/2. Furthermore, this classification naturally implies

Leolours generate a SU(3) symmetry, as for flavours, but in this case it is an exact symmetry, whereas for the flavour
case the symmetry is only approximate due to the differences in quark masses.
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SU(3)
decuplet

Figure 2.4: The SU(3) multiplet formed by the four quarks u, d, s and c. Left: the 20-plet 20y;.
Right: the 20-plet 20g5. Adapted from Ref. [11].

an ordering based on the charge @), strangeness S and isospin projection I3, also shown in Fig.

The multiplets classification considered only the three lightest quarks, which form an approximate
SU(3) symmetry. The addition of the ¢ quark would require the extension of the flavour symmetry
to SU(4) and since the ¢ mass is large, this would break the symmetry even more. However the
approximate SU(4) symmetry can give predictions for charmed baryon spectrum up to corrections of
the order of 20 % [11].

Let’s describe first charmed baryons with only one charm quark. Single-charmed baryons g;gac can
be decomposed as a di-quark pair plus a charm quark. The two light quarks are SU(3) representations
decomposed as 3 ®3 = 6 © 3, hence they can either form a spin-0 colour antitriplet antisymmetric
which can combine with the ¢ to form 1/2% states, or a spin-1 colour antitriplet that is symmetric,
combined with the ¢ into 1/2% or 3/2% states. The wave function for the 3 charmed baryons with
JP =1 /27 is composed of a flavour part and a spin part which are both antisymmetric under the
exchange of light quark flavours (see Eq. for the spin part):

1 1 1
‘Ai; 3 +2> = 5 (wdyey —wydpey — dyuyop + dyupey) (2.36)
11\ 1
=, ;§,+§ =3 (upspcp —uysper — spupcp + s upcy) (2.37)
o1 1\ 1
Bcig Tty ) = 5 (drsier —dysrer = spdyey + sy drey) (2.38)

where ¢4(q;) indicates a quark in spin up (down) state. In order to extend the quark model rep-
resentation to baryons with 2 or 3 charm quarks, quarks are rather embedded in the approximate
SU(4) symmetry broken as SU(4) — SU(3) x U(1)
205 ® 20, ® 20y @ 4, where the subscript M stand for mixed symmetry states and S symmetric
states. The 20g representation obtained is shown in Fig. (left); on the bottom layer there is the
baryon decuplet of Fig. [2.3] and in the next one lies the single charmed baryon 6 representation, the
last two layers are for the doubly and triply-charmed baryons. On the right of Fig. the 20y,

and the tensor product becomes: 4®4®4 =

charm
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Baryon flavour SU(3), I

—
@

Mass [MeV] Cross section [pb] Life-length or

rep. Fixed target Collider decay width
AF [ud]c 3 0 0 2286.5+0.1 10.13 758.1  60.0+£1.2um
=F [us]c 3 3 +1 2467.940.2 0.588 65.5  132.5+7.8um
=9 [ds]c 3 5 —3 2470.9+0.3 0.510 65.6  33.643.6um
SE O wue 6 1 +1 2454.0+0.1 0.863 420 1.940.1MeV
Dy {ud}c 6 10 24529404 0.697 422 <4.6MeV
»0 dde 6 1 —1 2453.8+0.1 0.461 41.6  1.840.1MeV
= {us}e 6 T +3 25784405 0.083 6.3  —
=00 {ds}e 6 3 —5 2579.240.5 0.072 6.6 -
QY ssc 6 0 0 26952417 0.028 3.0  80.3+10um
ELY ccu 3 3 43 36214408  <107* ~107%  76.74+10um
= ced 3 5 —3 35189409  <107* <1073 —
Qr ccs 3 0 - <107 ~1073 —

Table 2.8: Properties of singly and doubly charmed baryons. The flavour functions are defined by
the two lightest quarks as [q1¢2] = %(Q1QQ —q2q1) (antisymmetric) and {q1¢q2} = %(‘hQQ +q2q1) (sym-
metric). The explicit wave function for the first three charmed baryons is given in Eq. The
production cross sections are obtained with a Pythia simulation for the LHC fixed-target mode at
v/s =110GeV and in collider mode at /s = 13TeV, from [3].

representation is shown, the bottom is the SU(3) light baryon octet and the subsequent layer the
3 and 6 representations derived above, where the A} baryon lies. Properties of single and double
charmed baryons are summarized in Tab. The multiplet classification shown above holds only
for the ground states. For the excited states, i.e. baryons with angular momentum different from zero,
it is more tricky. Baryons can get radial or orbital excitations, on top of that there can be a further
splitting due to spin-spin or spin-orbit couplings, giving rise to a spectrum of possible excited baryons

which are studied experimentally. For a complete review of charmed baryons physics, see [53].

2.3.1 Baryon polarization

The rich structure of baryons, composed of three fermions, allows for different configurations for the
spin of the constituents and their orbital angular momentum. The mechanism responsible for the
alignment of the spin, and the consequent emergence of a polarization, is the subject of extensive
research programs. Experimentally, more and more polarization measurements for baryons appeared
to give intriguing results, not explained by the theory. In general, the information on the polarization
is extracted by looking at the angular distribution of weak decay products, which depends on both the
original baryon polarization and the parity violating decay asymmetry. For instance for the A} baryon,
the angular distribution for the two body decay Af — BP (with B a baryon and P a pseudoscalar

meson) in the A7 rest frame is

1 dN 1

——=—(1+aPcost 2.39

N dcosd 2( +aPcosf) ( )
where P is the A polarization projection, 6 is the angle between the polarization axis and the final
baryon B direction, and « is the decay-asymmetry parameter. This equation holds for a longitudinally

(along the direction of motion) polarized AF. On the one hand, the asymmetry parameter « is
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Figure 2.5: Direction of the production polarization for a A produced via strong interaction at the
LHC, where pj, and p,+ are the proton (belonging to the beam) and A} momenta in the laboratory
frame.

independent of the production conditions and it represents the asymmetry between the parity violating
and the parity conserving amplitudes of the decay. This means that if the decay conserves parity, «
will be null and the angular distribution would be flat, preventing the polarization measurement.
The asymmetry is non zero for decays induced by parity violating interactions and the sensitivity
to the polarization depends on the value of «, the bigger is « the higher is the sensitivity. On the
other hand, the polarization depends strictly on the production mechanism and consequently on the
experiment, that is to say it depends on the beam type, the collision mode (fixed-target or not),
the parent decay chain, the center-of-mass energy of the system. For baryons produced via parity
conserving interactions, strong or electromagnetic, the polarization vector P must be perpendicular
to the production plane, see Fig. 2.5] This constraint is a consequence of symmetry considerations as
explained in the following.

For parity symmetric interactions, the Lagrangian is invariant under the action of the parity operator
P, consequently the transition matrix 7 describing the process should be invariant too. The matrix
T can be always decomposed in a parity-even and a parity-odd part, 7 =7+ +7-, and since parity
reverses momenta, the momentum dependence of the transition amplitudes will guide the behaviour
of the matrix element under the action of parity. Given a generic transformation described in term of

momenta p and spin S by a matrix A(p;, 5;), in order to conserve parity, A must satisfy:
A5, Si) = A=, S). (2.40)

This implies that odd terms combining 7 or S are not allowed and must have zero expectation value,
for instance S- 7 or 7 - (P2 X p3) [54]. For the A} production, there are few vectors available: the
(beam) proton momentum p), the baryon direction p’ A+ and the polarization vector P, giving the spin
direction. The only scalar term allowed in parity conserving decays would be P (Pp X P, Aj)’ which
requires the polarization to be perpendicular to the production plane defined by pj, and p’ At Thus the

polarization vector has no component in the production plane and its projection is maximized along
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the direction f = p, X p AT ﬂ Equation W gets more complicated when considering several two-body
decays happening in sequence. This is the case for the three-body decay A — pK 7", which can
be decomposed in subsequent decays passing through an intermediate resonant state, for each pair of
final state particles. In this case, there are multiple asymmetry parameters and the different chains
interfere between each other, hence the angular distribution is not trivial anymore. The development
of the equations for the Af — pK~ 7" case is the subject of Chapter It is important to notice
that in order to observe a parity violating transition producing an asymmetry p'— —p, the parity-odd
part 77~ alone is not sufficient since the amplitude of the process will be the squared modulus of it.
Hence the presence of both the parity conserving and the parity violating terms are necessary and
the asymmetry is generated by the interferences between them; this is strictly linked to the meaning
of the o asymmetry parameter of Eq. [2.39) and it will be further discussed for the specific case of the
A}Y = pK—n" decay.

Experimental status

The polarization of different kinds of baryons has been measured in a variety of experiments. The
measurements are usually shown as a function of the center of mass energy E*, the fraction of incident
proton momentum carried by the baryon in the center of mass system x or the transverse momentum
pr. The first measurements were performed in fixed-target experiments focusing on hyperonsﬂ A% In
1976, the A° baryon polarization has been measured in a Fermilab experiment [55] sending 300 GeV
protons on a Beryllium target, the result showed an increasing polarization with pr, up to 28%: this
was the first unexpected result. Two years later, the same experiment with 400GeV protons [56] has
confirmed the previous result, measuring a polarization of 24% at pr = 2.1 GeV/c and more intriguing,
the anti-hyperon A? polarization was found to be zero. These results triggered the interest on baryon
polarization and other hyperons and anti-hyperons have been studied in fixed-target experiments with
different targets (Cu, Be) with proton beams up to 940 GeV, and polarization ranging from 0 to 28%
[57, 68| BI| 60, 61, 62, 63, 64, 65, 66, 67, 68]. The experimental results are summarized in Table
to give an idea of the trend depending of the type of baryon and the energy of the proton beam used.

The characteristics that seem to emerge from those measurements are: an increasing polarization
with increasing transverse momentum, a (not well-defined) dependence on the target type and a
different polarization between hyperon and anti-hyperon. The latter was explained at the time, see
for instance [70], by arguing that baryons are more easily produced from the valence quarks of the
proton than anti-baryons, which need antiquarks from the sea, and for this reason antibaryons are
expected to be produced unpolarized. However, at a later stage, a similar polarization was measured
for =t and Z~ [7I][72], contradicting this naive explanation which predicts zero polarization for
all anti-baryons. When looking at heavier baryons, less measurements have been performed since,
due to their higher mass, they are harder to produce. For the A} baryon, the first measurement was
performed in 1992 at CERN-SPS, in the NA32 experiment colliding 230 GeV/c 7~ on a Cu target, they
collected 121 A} — pK~n+ decays and found the product aP to be —0.657013 for a pr > 1.1GeV/c

!The "hat" notation indicate a unit vector, thus p = p/|p].
2Hyperoms are baryons with at least one strange quark and no charm, bottom nor top quark, belonging to the baryon
octect and decuplet shown in Fig. @
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Beam
Baryon System energy Result Z[) éei;a/r;g]e Ref.
[GeV |
AV pBe 300 18% 15 [55]
pBe 400 24% 2.1 I56]
pC and pW 920 ~0 ~0.8 [63]
pN 450 up to 0.29% 0.86 [64]
A? pBe 400 0 up to 1.2 [56]
p-X 400 0 up to 2.4 [60]
Q- pBe 800 ~0 0.5,1.3]  [61]
s+ pCu 800 16% 1.0 62]
=0 pCu and pBe 400 ~ 20% 1.6 [69]
=t pBe 800 up to 0.09% 0.76 [67]
Ca pBe 400 up to 10%  1.21 [65]
pCu 400 up to 0.07% 0.63 [66]
pBe 800 up to 0.1%  >0.8 [68]

Table 2.9: Summary of hyperon polarization measurements at different energies and targets. The
polarization results cited are approximate and without the uncertainties, more details about the mea-
surements can be found in the references given in the last column. This list is non exhaustive.

[73]. Then in 1999, the E791 experiment studied the same decay for 500 GeV/c pion-nucleus collisions,
with as target five thin target foils (one platinum, four diamond), with 946 4 38 reconstructed decays.
The results showed an increasingly negative polarization as a function of p?p, the highest polarization
being —0.67 £0.15 in the bin 1.24 < p7. < 5.20 GeV?/c?, the results are shown in Fig. (right).
The polarization dependence as a function of pp is well described by the model proposed in [74],
where the spin dependent fragmentation functions are calculated in a quark-diquark model. However
the formalism used in the E791 experiment was incomplete, as explained in Chapter [5] furthermore
they mixed baryons and anti-baryons which are expected to have different polarizations, as in the
A° case, since the production mechanisms involved are different. Recently, in 2008, data from the
E831 experiment with photons beam, have been re-analyzed to measure A} polarization from the two
body decays: Al — A%r and A} — Kp. A small polarization, consistent with zero, was found for the
photoproduced baryons and antibaryons in the range pr < 4GeV/c [75].

The hyperon polarization has been measured in e™e™ colliders at the Belle and BESIII experiments.
In the first, a non zero A and A polarization was measured for the first time in a collider experiment,
at a center of mass energy of 10.58 GeV [76]. In the second experiment, the AA baryons are produced

in an entangled state from ete~ — J/) AA; a polarization up to 25% was measured [77].

Regarding pp colliders, there are few measurements, however in the absence of any polarization
mechanism at high center-of-mass energy collisions, polarization is expected to be zero since it is diluted
in the decay and in the hadronization processes. At /s =153 and 62 GeV, a mean A polarization of
—(0.357 £0.055) was measured at the CERN intersecting storage ring [78]. However, the ATLAS
experiment measured A and A polarizations, at Vs =7 TeV, to be compatible with zero for 0.8 <
pr < 15GeV/c [79]. This result nicely compare with other measurements, see Fig. giving an idea

of the dependence of the hyperon polarization as a function of the variable Feynman zp = p. /Dpeam-
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Figure 2.6: Left: comparison of different experimental results for the A transverse polarization as
a function of zp, from [79]. Right: Al polarization as a function of the pr obtained by the E791
experiment, the two full lines are the theory prediction from [74].

The AY polarization was also measured at 7, 8 and 13 TeV by LHCb [0, 81], ATLAS [82] and CMS
[83], all measurements are compatible with zero.

Baryon polarization has been also measured in ion-ion collisions at the STAR experiment, they
measured a A polarization component in the beam direction in Au-Au collisions at ,/syy = 200
GeV [84]. The polarization was found to increase in more peripheral collisions, and shows no strong
transverse momentum dependence at pr > 1 GeV/c. The ALICE collaboration measured a A and A
polarization compatible with zero in Pb-Pb collisions at \/syy = 2.76 and 5.02 TeV [85]. These result
are interpreted theoretically in [86][87], however the heavy ions case is very different from the pp or
fixed-target one, since the production process is influenced by the dynamics of Quark Gluon Plasma
that forms in heavy-ion collisions.

There are no straightforward conclusions to draw from these experimental results and the only
theory prediction available for heavy baryons is [74], published in 2000. For the hyperon case, a first
prediction aiming at describing the hyperon polarization measured in fixed-target data using spin
fragmentation function is given in [88], published in 2001. Although fixed-target results did not show
an energy dependence, the ATLAS result, shown in Fig. [2.6] indicates a dependence on the energy for
the A polarization. In general, the polarization, when present, seems to increase with the [py| and it is
expected to be small at LHC energies. What is clear is that more measurements are needed to better
constrain and understand the polarization behaviour. In this work, the polarization of the A} baryon
will be measured in pp collissions at a center-of-mass energy of /s = 13TeV, adding one measurement

to help understanding the origin of baryon polarization.

2.4 Magnetic and electric dipole moments to probe new physics

The magnetic dipole moment (MDM) p of a particle is a property induced by the spin. For spin

S =1/2 particles the magnetic moment g is, in natural units A =c =1,
=558 and p=5-L (2.41)
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where ¢ is the electric charge of the fermion, m is its mass and g is the gyromagnetic factor, also
known as g-factor. At the classical level, g = 2, however quantum corrections from loop effects can
modify this value. The anomalous magnetic moment is defined as a, = %, where the subscript p
indicates the particle, and is commonly used to quantify the higher order contributions, which are
very precisely calculated by QED. Any deviation of a, from the SM prediction would indicate the
presence of NP effects. The magnetic moments of the electron and the muon have been measured
very precisely: g./2=1.00115965218073(28) [89] and a, = 116592061(41) x 10~*! [90]. The theoretical
predictions are also computed with a very good accuracy, resulting in a 4.20 tension between theory
and experiment for the muon magnetic moment. This is one of the most significant evidence for new

physics as of today.

Moving to composite particles, such as baryons, their magnetic moment can be predicted, within
the quark model, starting from the magnetic moment of the constituents. The magnetic moment of a

baryon |B) is thus:

N N N o~ i i
up = (Bl(ia+fiz +is) - S|B) = 3 (B|5 5| B) (2.42)

1
where the sum runs over the flavour of the quarks composing the baryon. For instance, the proton

magnetic moment is :

1 9q Q
pp = 5 (441 = pra)  where pig = 527‘; (2.43)

In the isospin symmetry limit m, =mqg =M and g, = g4 = g, thus p, = %2—;‘1, where the main
uncertainty is coming from the quark mass. The proton MDM has been measured very precisely
gp = 5.585694702(17) and it is different from 2 due to the substructure of the proton. Within the
quark model M = m,/3, thus the quark gyromagnetic factor is: g, = g,/3 ~ 1.862, which is close to
2, indicating that the light quark (u,d) have little substructure. However it is difficult to conclude
whether or not the quark g-factor is SM-like for three main reasons: one can only measure the ratio
gq/mq thus the result depends on the quark mass (reversely, assuming the classical limit g, = 2 one
obtains m, = 0.336 GeV for the u or d quarks mass); differently from the lepton case, the anomalous
MDM is introduced by strong interactions and it may be very large; it has been claimed that the spin
of the proton is not carried by quarks but mainly by gluons. The neutron magnetic moment relates

to the proton’s one as:

ey =2 L 22, (.44

Hn=3 2 3mg 3

This relation between ji,, and p, is quark mass and g-factor independent and it is very well satisfied by
the experimental measurements: p, = (2.79284734462 £ 0.00000000082) 1 n and py, = () —1.91304273 +
0.00000045) 4, where pn is the nuclear magneton, a physical constant defined as uy = eh/2m,,. For
the A} baryon, Eq. translates to:

1 1, a1
par = (AL o4 G+ o+ fis) - S2AS; 5, +5) (2.45)

where |A}; 1 —i—%) is the AT wave function, explicitly given in Eq. [2.36] Let’s compute each term

c
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separately:

(1512 4 p2S1z + pu3Siz) furdcr) = (pu — pta + pie) |urdcr) (2.46)
(11512 + p2S1z 4+ p3Siz)|uydyer) = — (= pu + pra + pe) luy dicy) (2.47)
(11512 + p2S1z + p3Siz)|druycr) = —(pd — pu + pre) [dyuycr) (2.48)
(111812 + p2S1z + p3S12) | dyurer) = (—pa + p + pe) |dyurcy) (2.49)
(2.50)

Putting this back in Eq. leads to

1

pa = g (a = pat pe) + (=pu+ pa+ pe) + (a = pu+ pe) + (= Ha + pru+ pe)] = pe (2.51)

meaning that the A7 MDM is equal to the charm quark one. This results in an interesting relation
between the g factor of the Al and of the charm quark: g, = qc:nnicAch ~ (0.9 g., meaning that although
the A} has a substructure, its g-factor is very close to the ¢ quark one. Finally, by inserting the

constituent mass me = m,+ —my, —mg = 1.66 GeV, one obtains:
C

e :0.37%,1,N. (2.52)

Beyond the quark model, there are few models giving a prediction for the A7 MDM. The contribution
of the light quarks (u,d) is considered to be small with respect to the charm quark one, as predicted
by the heavy quark effective theory (HQET) [91][92][93]. This is because in heavy baryons with light
quarks, there are two distinct scales, and the heavy quark mass (m. ~ 1.27 GeV) is much larger than the
mass scale Aqep ~ 200MeV associated with the light quarks. Thus the MDM of the charmed baryon
is expected to be close to the charm quark one, in agreement with the quark model prediction. The
various model predictions are summarized in Tab. no attempt to explain those models in details is
done here. The latest prediction is obtained in Ref.[3], u A= 0.48+0.03, where radiative charmonium
decays results from BES III are used. This result is remarkable since it doesn’t suffer from the charm
quark uncertainty and it offers an alternative method based on experimental results. Furthermore, the
result is slightly different from the majority of other theoretical predictions (especially when comparing
to rows 1 to 8 in Tab. . If the precision on the radiative charmonium decays measurement is
further improved, for instance at BES III or at future charm factories, this discrepancy could eventually
transform in a sizeable tension. A direct measurement of the AT MDM would certainly help to probe
these predictions and discriminate between the different models available. However this measurement
is really challenging due to the very short lifetime of charmed-baryon, a proposal to perform such a

measurement using bending crystals is discussed in the next section.

2.5 Measuring charmed-baryons magnetic moment

The magnetic dipole moment of a particle can be seen classically as a small magnet which will precess

in the presence of an external magnetic field. The precession phenomenon is well known in quantum
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nb. i+ [pn] Approach Ref.
1 0.154+0.05 QCD spectral sum rule [94]
2 0.2440.02 NNLO in the HHCPT [95]
5 0.33-0.34 Interquark potential and Fadeev formalism [96]
3 0.34 Independent quark model, power-law potential [97]
4  0.369—-0.385 Hyper central Coulomb plus power potential [98]
5 0.36-0.41 5q components contributions [99]
6 0.37 Chiral perturbation theory [100]
7 0.38 Soliton model and chiral perturbation theory [101]
8 0.392 SU(4) chiral constituent quark model [102]
9 0.40£0.05 Light cone QCD sum rules [103]
10 0411 Bag model reexamined [104]
11 0.4240.01 Relativistic three-quark model [105]
12 0.48£0.03 Radiative charmonium decays [3]
13 0.52 Dirac point-form dynamics [106]

Table 2.10: Summary of existing theoretical predictions for the A} magnetic moment.

electrodynamics and in the non-relativistic case it is described by:
— —IxXB*+6xE* (2.53)

where the electromagnetic fields B* and E* are expressed in the particle rest frame. The first term
accounts for the MDM precession and second term for the electric dipole moment (EDM) ¢ precession.

The precession frequency, or Larmor frequency, for the MDM is :

eB eB
we= S (1=7)

= 2.54
2me mcey ( )

where the second term is due to a relativistic correction called "Thomas precession", and all the other
quantities have been previously defined. This basic physics phenomenon is exploited to measure the
MDM of particles. For instance, the muon magnetic moment has been measured using this physics
principle, by the (g-2) experiment at Fermilab [90]. The polarized muons are produced from the pion
decay 7" — ptv, and analyzed through the weak decay u* — e*rv,1,, where the positron direction
follows the muon spin. The precession has to happen before the muon decay (the lifetime of a muon
is 2.19 x 1079 ), this can be achieved via a strong magnetic field of 1.45 T. The extension of this
technique to charmed baryons is not trivial. Charmed baryons have a very short lifetime of order
1013 s, thus, in order to make the precession happen before the decay, a much stronger magnetic field
would be required. For instance, for the A baryon, with a lifetime of 200 fs, the precession frequency
should satisfy: ws > 5x 102571, At the LHC center of mass energy of 13 TeV, Yot = 40 (looking
at the average Alenergy), thus using Eq. a magnetic field B > 5 x 10° T would be necessary
to observe a sizeable precession. Knowing that the strongest magnetic field achieved in a laboratory
up to now is around 45 T, it would be impossible to use a conventional magnetic field to make the
A} precession happen before it decays. A new technique was proposed to overcome this problem,

consisting in using the effective magnetic field produced inside a crystal to induce the precession of
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rotation axis

Figure 2.7: Sketch of the precession of the polarization vector (in red) in the bending crystal, the
precession angle ©,, is also shown. From Ref.[2].

the polarization vector and measure the magnetic moment [107] [L08][109].

This technique has already been used to measure the MDM of X1 (uus) baryons at Fermilab [6].
The strange baryons were produced on a Cu target and have an average polarization of 124+ 1%. The
precession was performed in a bent silicon single crystal providing an effective magnetic field of 45
T resulting in a precession of the polarization vector by =~ 60°. The X+ MDM was measured to be:
(2.4040.464¢at £0.405ys¢ ) pov, which was consistent with the world average. Let’s discuss the extension

of this technique to the charmed baryons case.

The principle of the charmed-baryons MDM measurement is the following. First polarized baryons
are produced in fixed target collision with a polarization f; Then they are captured in the bent crystal
where they precess under the effect of an effective magnetic field. This step is sketched in Fig. 2.7]
After the crystal, the polarization has changed 5}, the precession angle ©, gives direct access to the

g factor of the baryon as [110],

@Nzy(g—l—;;ﬁi) %7<g—1>® (2.55)
where © = L/R is the deflection angle of the baryon momentum after the channelling, L is the length
and R the bending radius of the crystal. The precession angle ©,, can be obtained by measuring the
initial and final polarization of the baryon. Hence a complete experiment for measuring the MDM of
short-live baryon would require: a proton beam on a target to produce polarized baryons, a bending
crystal to make the precession and an apparatus to measure the polarization of the outgoing baryons
after the channelling. The initial polarization can be measured in a system which has similar conditions
as the fixed-target production, in both polarization measurements the polarization is extracted using
the angular distribution of Eq.

This measurement presents many challenges and new developments are necessary. For instance,
the crystal bending radius and orientation must be optimized to maximize the precession efficiency,
which includes the deflection efficiency of the crystal. Then the polarization of the final and initial
state baryons (along with the a parameter) should be measured with high accuracy. There are several

studies ongoing on the crystal optimization and on the feasibility of such an experiment [I], 2], 3], [4, [5].

Two options are considered to perform the experiment at CERN [I11]: one at IR3, which is the
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Figure 2.8: Absolute statistical error on the g-factor as a function of the number of reconstructed
events N, for AT — A%7T decays and for IR3 configuration. The red line corresponds to the case
where pre-measured values of the product a& are used. The black line instead, corresponds to a
simultaneous measurement of o and the g-factor. From Ref. [3].

insertion region 3 where a collimation system for momentum cleaningﬂ is located, and one at IPS,
which is the interaction point of the LHCb experiment. In the first case, a dedicated detector would
need to be built, whereas in the second case the LHCb detector could be used to analyze the channeled

A}, In both cases the sensitivity on the baryon g factor depends on (from Ref. [3])

A 12
97\ @2Brindy,
3 5T515 IV def TTMDM

, TIMDM = <§§72>w2 (2.56)

where a; = «||{||, Brj is the branching ratio and n; the detector efficiency for the j decay channel;
nmvupM is the efficiency of the target plus crystal setup. The first 3 terms in the denominator only
depend on the A} decay channel and on the detector efficiency. The last two terms, Ngef DM,
depend on the channelling efficiency of the crystal and on the properties of the accelerator used (e.g.
the energy of the protons), the product of the two is the precession efficiency. The knowledge of the
weak decay parameter « is crucial to achieve the desired accuracy, which is Ag=0.1. In [3], it is shown
that this same result can be more efficiently achieved by measuring the product a& simultaneouslyEl, if
reconstructing at least 10* A decays (after channelling), because at higher statistics the systematic
error on A« becomes dominant. This can be seen in Fig. 2.8 where the absolute statistical error on
the g factor (Ag) is computed as a function of the number of reconstructed A} — A7 T decays for the
two cases where the product «€ is measured simultaneously with the g factor (in black) or it is taken
from another experiment (red curve). For N > 10%, the simultaneous measurement (black curve) leads
to a smaller error on g. The measurement of the weak decay parameter and the polarization of the AT
baryon can be performed in combination exploiting LHCb data in pp and fixed-target collisions. In
this work, a model to measure A} polarization is built using the high statistics sample of pp collisions
at /s =13 TeV of Run 2. Then, the model built will be used in the future to extract the polarization

!The "momentum cleaning” consists in intercepting off-momentum particles close to the top or bottom of the RF
buckets.
2 . . . . .
When measuring the product af, Eq. is slightly modified and the error on g increases.
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Figure 2.9: Invariant mass distribution from the reconstructed A} — pK 7t decays in the pNe
sample at /s = 68 GeV. The red line represents the total fit, the dashed-green line is the polynomial
background contribution and the full blue line the Gaussian signal (from this thesis).

from the pNe fixed-target sample collected with the SMOG system at /s = 68 GeV. The fixed-target
collisions are obtained with one filled bunch in one beam and one empty bunch on the other beam;
the empty bunches are alternated with full ones so the fixed-target collisions are run at the same
time as proton proton collisions. This ended up to be a problem, because the bunches which were
supposed to be empty for the fixed-target collisions are sometime filled with some debunched protons
from the previous full bunch. These parasitic proton-proton collisions have been studied in detail here
[112] where the fraction of Ghost-Charge (GC) residual contamination is given as a function of the
collision zone studied, 7.e. the z position of the primary vertex. The invariant mass plot obtained
from the AT — pK 7" reconstructed decays before cleaning the GC is shown in Fig. the number
of signal events (in a 3 standard deviations window around the mean value obtained from the fit to
the data) is 169 23 and the number of background event 586+ 31. This plot is obtained with a
non refined selections based on the daughters PID and on the DIRA variable (defined in Sec. [6.2.1]).
After applying the selections to remove GC, the number of reconstructed A is significantly reduced.
An optimization of the signal extraction using neural network needs to be performed to maximize
the signal over noise ratio. Furthermore, the number of signal events will be increased during Run 3
thanks to the SMOG?2 system (see Sec. ; for instance for pAr collisions at /s =115 GeV, 300 000
A} are expected. The measurement of the asymmetry parameter o AF = 0.71540.005, performed in
this thesis using the pp sample at /s = 13 TeV, proves that the three-body decay A} — pK 7Tt is
sensitive to the polarization (since the asymmetry is not zero) and that the strategy for the A7 MDM
measurement described above is valid. The model obtained in the pp analysis is currently being used
to measure the polarization in the pNe sample collected by the LHCb experiment and the results will

be an important input for the MDM experiments using bent crystals discussed above.
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The LHCDb experiment at the
LHC

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC)[II3] is a circular accelerator designed to collide proton (and ion)
beams. It is, to this day, the most powerful hadron accelerator for research in particle physics. It is
located 100 m underground in the 26.7 km tunnel originally designed for the Large Electron-Positron
collider (LEP) and built in 1984-1985. The LHC is the last step of an accelerator complex shown in
Figure The protons are first extracted from a bottle of hydrogen gas using an electric field to
remove the valence electron from each hydrogen atom[ﬂ They are then sent to LINAC2 and accelerated
up to 50 MeV using radiofrequency cavities made of an alternation of conductors charged positively
and negatively, which are respectively pushing and pulling the protons to accelerate them. To keep
the protons focused in a beam, small quadrupole magnets are used at this stage. From there, protons
are injected in the Proton Synchroton Booster (PSB), this is a set of 4 superimposed synchrotron rings
accelerating the protons to 1.4 GeV. Then they enter two successive circular accelerators: the Proton
Synchrotron (PS) and the Super Proton Synchrotron (SPS), with a circumference of 628 m and 7 km,
accelerating protons to 25 GeV and 450 GeV respectively. Finally the proton beams are injected in
two different beam pipes circulating in opposite directions. On the other hand, the ion accelerator
chain is slightly different. Ions are produced via electron cyclotron resonance (ECR) and then sent
to another adapted linear accelerator, the LINAC3. From there, they are sent into the Low Energy
Ion Ring (LEIR) which makes the bunches shorter and denser and accelerates them from 4.2 MeV
to 72 MeV. From here on, the ions follow the proton chain going to the PS, with a lower number of
bunches with respect to the protons case. The final energy is reached in the LHC. The beam pipes in
which protons circulate, operate in ultra high vacuum with a pressure of the order of 10710 to 10~
mbar, a vacuum almost as rarefied as on the Moon’s surface. This is to avoid unwanted collisions.
The protons are accelerated up to 6.5 TeV using radiofrequency cavities and they are guided using a

strong magnetic field (up to 8.3 T) provided by 1232 superconducting dipole magnets which operate

lAsa curiosity, at the LHC there are ~ 3 x 10" protons per beam and one cubic centimeter of gas contains 5 X 10%°
hydrogen atoms, which means that one hydrogen bottle could refill the LHC for ~200 000 years. In 2016, 1.34 x 1020
protons were accelerated, this is equivalent to the number of protons in a grain of sand and only 0.1% of these protons
are actually used by the LHC, the rest goes to other smaller experiments shown in Fig.
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The CERN accelerator complex
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Figure 3.1: The CERN accelerator complex as in 2019, from [114]. Other accelerators not mentioned
in the text are also presents, they provides beams for other experiments mentioned at the bottom.

at -271.3 °C. This temperature is achieved using superfluid helium all along the LHC. In addition,
392 quadrupole magnets are used to focus the beam. Once the desired energy is reached, the two
beams are travelling nearly at the speed of light and they are ready to cross at the four collision
points where the biggest experiments are located, namely ATLAS [I15], CMS [116], ALICE [117] and
LHCb [7]. The final beam energy increased over time: 3.5 TeV in 2010 and 2011, 4 TeV in 2012 (Run
1) and 6.5 TeV in 2015, 2016 and 2017, 2018 (Run 2), corresponding to a center-of-mass collision
energy of 7 TeV, 8 TeV and 13 TeV. At the end of the chain, the proton bunches were spaced 50
ns apart for Run I and 25 ns for Run 2. The maximum number of bunches was 2556 for Run 2 and
1300 for Run 1. At this point, when the two beams cross, a fraction of the 1.15 x 10!! protons in
the bunches collides and produces new particles, transforming their kinetic energy into mass. The
result of the collisions are studied by the four large detectors with a different focus. ATLAS and
CMS are general purpose detectors covering the 47 solid angle around the beam pipe, designed to
measure high-transverse-momentum particles. They discovered the Higgs boson [10][9] in 2012 and
they still study its properties. Their physics programs also include searches for New Physics (e.g.
SUSY particles [118], dark photons [I19]) and study of top quark physics. The ALICE experiment
instead has been designed to study heavy-ion collisions where matter reaches extreme densities and a
new phase called Quark Gluon Plasma (QGP) forms. The 4 experiment, LHCD, is designed to study
flavour physics phenomena and it operates at lower luminosity with respect to ATLAS and CMS. It
is better suited for the study of B physics thanks to its good performance in vertex reconstruction
and particle identification. The ATLAS and CMS experiments have very tight thresholds in their
trigger selections (to cope with the busy environment), at LHCb instead the lower pile-up E| and the

I'The pile-up is the superposition of several collisions in the detector during the same bunch crossing.
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consequently lower track multiplicity allows to have looser trigger selections and study a wider range

of flavour physics processes. The LHCb detector will be described in details in the following sections.

3.2 The LHCDb detector

At B factories, at the YT (45) energy, B mesons are produced in pairs. This characteristic is used to flag
one of the B mesons as a "flavor-tag" and use it to identify the other B flavour, since they are coherently
produced. To do so, a crucial need is to be able to distinguish one meson from its companion. This is
only possible if the detector is able to separate the origin of the two decays (in space and hence in time)
and this requires a sufficiently long decay length. At eTe™ colliders, again at the T(4S) energy, mesons
are produced almost at rest in the laboratory frame thus, to distinguish the BB pair, an unachievable
resolution would be necessary. A workaround was proposed for the first time in 1992 by P. J. Oddone
[120]. He suggested to use asymmetric beam energies to boost the particles in a specific direction
and make the decay length sizeable, in this way the separation of the B and B mesons would become
possible. This was a breakthrough for the design of future flavour physics experiments. At the LHC,
the beam have the same energies, however the dominant process for pp collisions at the TeV scale is
gluon fusion. Gluons can have very asymmetric momenta, hence the bb pairs are still produced with
a boost along the direction of the higher momentum gluon, which can be forward or backward with
respect to the beam axis. It is for this reason that LHCDb has been design as a forward spectrometer.
Despite is narrow coverage, from 10 mrad to 300 mrad, corresponding to 4% of the 47 solid angle, it
covers 24 % of the bb production cross section at /s =14 TeV. As a comparison, ATLAS and CMS
cover 95 % of the solid angle and 41% of the bb production cross section. The bb cross section as a
function of the polar angles and pseudorapiditieﬂ is shown in Fig. However, the average detection
efficiency for B hadrons is lower for ATLAS and CMS with respect to LHCDb, this is due to the hard
selections applied on the pr and n of particles which reduce considerably the number of visible B
hadrons. Even if LHCb has been originally designed for observing beauty hadrons, it is also suited
for studying charm physics. The c¢ cross section has been measured to be o(pp — ccX) = 1.4mb at
7 TeV [122] and o(pp — ccX) ~ 2.4mb at 13 TeV [123], both in the kinematic range pr < 8 GeV/c
and 2.0 <y < 4.5. These measurements are performed using the fragmentation functions (f;) obtained
from eTe™ data [I1]. The f; have not been proved to be independent of the production system and
hence they could differ in the hadron colliders case. For instance, the f(b — Ap) has been measured
and proven to be different between the pp and eTe™ case [124]. Even though the f; are not necessary
adapted to the pp case, we use those numbers here to estimate the amount of charm hadrons produced

at the LHC. The number of expected A7 — pK 7" events can be computed using:

N X LXBAS = pK 71 )e (3.1)

c

“ONA

I The pseudorapidty is a quantity used in high energy physics to describe the angle () of a particle with respect to the
beam axis. It is defined as: n=—1In (tan(%)). For n — oo, the particles are close to the beam axis and 8 — 0, whereas
for n — 0, particles are produced at a 90° angle. It is also convenient to express 1 as a function of the longitudinal

\P\JrPL).

momentum pj, as: = ln(lPl*;DL
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LHCb MC

(s =14 TeV

0, [rad] ™2

T 6, [rad]

Figure 3.2: Left: production cross section as a function of the polar angles of b and b with respect to
the beam direction. Right: same cross section as a function of the pseudorapidity. The yellow square
indicates the ATLAS and CMS acceptance, the red one the LHCb acceptance. The simulation is done
using PYTHIAS and CTEQ6 NLO parton density function, including the following processes weighted
according to their cross sections: ggq — bb, gg — bb, Gq — bl_)g(where q#b), bb — bbg and gg — bbg,

from [121].

where o ,:2><gcé><f(c—>A;F),

AFA, ATA,
where f(c— AJ) is the fragmentation function describing the probability for a ¢ quark to hadronize in

is the ATA, production cross section, also expressed as o

a A} baryon and the factor 2 accounts for the charge-conjugate decay. L is the integrated luminosity
and e the total detection efficiency. It is shown in [I25] that at 7 TeV f A+ =010 describes better
LHCb data, instead of the f A+ = 0.05 pre-LHC result, hence this value is chosen here. The branching
ratio of A7 — pK~ 7" has been measured to be B(Al — pK~7t) =6.8440.24 +0.23% in 2014 by
Belle [126] with ~ 1359 decays reconstructed, and B(A} — pK~7+) = 5.8440.247021% in 2016 by
BESIII [127] with ~ 6300 decays reconstructed. The PDG fit, combining the two measurements and
scaling the error by a factor 1.4, gives as final average: B(AT — pK~7") = 6.28 +0.32%, which is
closer to the Belle result. For instance, the total efficiency for the reconstruction (and selection) of the
A} — pK~ 7 decays in this analysis is estimated to be 0.03. Thus, from Eq. one would expect
O(10%) A} — pK~—7" decays to be seen with LHCb Run 2 (2016 only, corresponding to an integrated
luminosity of 3 fb~!) data. The final number of reconstructed decays will be discussed in Chapter @7
yet this estimation already proves that LHCb (and the LHC) is after all a charm factory.

3.2.1 General layout

As aforementioned, the LHCb detector as been designed for the study of beauty (and charm) hadrons.
It is a spectrometer covering the forward direction corresponding to a pseudorapidity range 2 < n < 5.
It separates particle by their mass, momentum or energy. To do so, it is equipped with several
subdetectors, each of which is used to measure (or help measuring) one of these properties. The

general layout is shown in Fig. The coordinate system of LHCb is defined with origin at the
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Figure 3.3: Layout of the LHCb detector. The coordinate system is also shown. From [7].

interaction point. The z axis is oriented along the beam direction pointing from the interaction point
towards the LHCb muon stations. The y axis is vertical, perpendicular to the LHC and pointing
towards the surface. The x axis is defined using the two others to form a right-handed coordinate
system. The B (and other) hadrons are reconstructed using their decay products, mainly charged
leptons, charged and neutral hadrons and photons. Some particles traverse all the detector and pass
through almost each subdetectors (typically the muons). Others, are stopped before the end of the
detector but they still cross the majority of it, they are called "stable" particles (in LHCD jargon) as
opposed to "unstable" particles, which have a short lifetime and decay before crossing the detector.
The latter are detected only via their decay products. Within the stable and directly detectable
particles, there are: charged pions (7%), charged kaons (K*), protons (p,p), electrons (et)
(™)
a longer lifetime and cross some detectors before decaying, they are classified as "long-lived". The

, muons

and photons (y). Within the unstable particles, some hadrons such as K(S), A or =7, have

neutrinos are not reconstructed directly in LHCb. To give a global idea of the detector design, the
sequence of sub-detectors is introduced here, however the detailed description of each subdetector is
given in the next sections. The collisions happen in the VErtex LOcator (VELO), a precise tracking
detector capable of measuring the coordinates of vertices near the interaction point. It is used to
distinguish between prompt and secondary particles, i.e. particles produced directly after the collision
(at the primary vertex) or produced from the (displaced) decay of other particles. The discrimination
is performed using the impact parameter (IP), which is the transverse distance of closest approach
between the particle trajectory and a vertex (in this case the interaction vertex). The tracking system
is completed by two other tracking detectors: the Tracker Turicensis (TT) upstream of the dipole
magnet and the three tracking stations upstream the magnet (T1-T3). The magnet is used to bend
the charged particles, determine their charge sign and estimate their momentum using the induced
track curvature. The charged particle identification is performed by two RIng Cherenkov Detectors

(RICH1 and RICH2), placed upstream and downstream the magnet. Two calorimeters provide the
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information on the energy of the particles and participate to the Level 0 hardware trigger: those are
the Electromagnetic CALorimeter (ECAL) and the Hadronic CALorimeter (HCAL). At the end of
the detector, the muon chambers (M2-M5) are used to detect muons with one additional station M1
placed before ECAL. Each sub-detector is described in details in the following.

3.2.2 Tracking and vertex reconstruction

The tracking system goal is to reconstruct the trajectories of charged particles from their hits left in
the tracking detectors. It is composed by the VELO and the tracking stations. Depending on their
length, tracks are classified in three categories shown in Fig. [3.4 (right). Long tracks which have hits
in the VELO and in the tracking stations T1-T3. Downstream tracks, without hits in the VELO
but with hits in the rest of the tracking system. Upstream tracks, which have hits in the VELO and
TT stations without any hits in the tracking stations T1-T3. VELO tracks, which only have hits in
the VELO. The last type, the T tracks are only measured in the T stations and they are typically
produced in secondary interactions. Usually in physics analysis (and in this analysis) long tracks are
used due to their better momentum resolution. The downstream tracks are typically used for the
analysis of long-lived particles. The VELO tracks instead, are used to reconstruct the primary vertex
(PV). If a particle is reconstructed more than once with different track types, the track crossing the
larger number of subdetectors is chosen. The number of unique (long) tracks in an event, nTracks, is

used as a measure for the event multiplicity.

R sensors im
6 sensors

cross section at y=0 Q«s"’é
v LR
LU OO T magnet T stations
= || THITNQHIee 1 1 o
e SRR hheraclon region VELO
stations most upstream

VELO station upstream track

- long track

VELO track

8.4c¢m
i

downstream track

‘ 6em

VELO fully closed VELO fully open
(stable beam)

Figure 3.4: Left: a schematic view of the VELO half modules on the bottom and of the position of
the VELO stations along the z axis on the top. Right: a sketch of the track types of LHCb. From [7].

Vertex locator

The VELO [12§] is placed close to the interaction region and it measures track coordinates. It is
probably one of the most peculiar detector of LHCb, it allows to distinguish secondary displaced
vertices from prompt ones with an outstanding precision. This characteristic is an essential feature

in flavour physics and it is widely used in this analysis. VELO is made of a series of silicon modules
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Baryon T cT 0% Flight distance
Af 200fs  59.9pum &~ 20 ~ 0.2mm
A 1.47ps 441.0um =~ 40 ~ 8.82mm

Table 3.1: Comparison between the flight distances of A and Ag baryons produced at the LHC, at a
center of mass energy of 13 TeV, where 7y is obtained using the average particle energy.

along the beam direction. Upstream of the main VELO sensors there are two planes perpendicular
to the beam as shown in Fig. (left). These are the pile-up veto stations and they were built for
the LO trigger and for measuring the centrality of heavy-ion collisions, even though they have not
been used for this purpose in the end due to the poor performances, and in the fixed target mode
they are used to reduced the background induced by pp collisions by vetoing on only forward tracks,
(i.e. tracks without hits in these stations). The modules are movable and specialized in measuring
either the r or ¢ coordinates, using respectively the R-sensors or the ¢-sensors. The third coordinate
is deduced knowing the position of each sensor plane within the experiment. These modules operate
under vacuum and they are separated from the beam by a thin aluminium sheet called RF-foil (used
to protect the electronics from radio frequency interferences). The foil must be as thin as possible to
reduce to the minimum the interactions length of particles going into the sensors, which is in average
0.0175 Xy. When the modules are aligned, 7.e. VELO is "closed", the space left for the beam is smaller
than the size of the beam during the injection phase. This implies that the detector would be damaged
if closed during the injection phase and the beam would be destabilized. For this reason the VELO
modules are movable and the detector is only closed when the beam has reached the desirable size.
When closed, the modules overlap as shown in Fig. The position of the modules is constrained by
the angular acceptance and by the requirement that a track in the LHCb acceptance crosses at least
three stations. This is sketched in the upper part of Fig. (left), the interaction region is also shown
in blue. Due to its vicinity to the beam, the radiation environment is extremely hard (an accumulated
luminosity of 2 fb~! is equivalent to a 1.3 x 10 Neq/ cm? flux of 1-MeV neutrons). For this reason, the
detector is cooled down between —10 and 0 °C. In this work, the VELO detector is used to measure
the impact parameter (IP) of the daughter particles. The IP is used to separate prompt A}, which are
originating from the primary interaction, from secondaries A}, produced by the decay of long-lived
hadron, e.g. Ag — Ay, In Fig. a sketch of the decay topology is shown, with the prompt decay
depicted in red and the secondary decays in green, the IP of the pion is also shown. The performances
of the VELO detector for Run 1 are discussed in [I29] and the resolution on the impact parameter
(IP) (per track) was around ~ 30 um for Run 2, as shown in Fig. [3.6| (right). The intrinsic resolution
of the detector on the decay time is of the order of ~ 40 fs, see Fig. [3.6| (left) for the D° meson case.
This is enough to distinguish not only prompt from secondaries decays, but also to reconstruct the
prompt AT vertex which is displaced from the primary vertex (PV) of less than a mm at the LHC
energies, see Table
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Figure 3.5: Sketch of the Al decay for prompt (red) and secondary production (green). The impact
parameter (IP) of the pion is also shown (purple) as an example.
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Figure 3.6: Example of decay time resolution obtained from simulation, for D° mesons, from [I30].
Resolution on the impact parameter along the y direction as a function of 1/py, from [129].
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Silicon Tracker

The Silicon Tracker (ST) is formed by two detectors: the Tracker Turicensis (TT) [131], placed
upstream the magnet, and the Inner Tracker (IT)[I32], close to the beam axis at the level of the
tracking stations (see Fig. and the purple part of Fig. . Both use silicon microstrip sensors
with a strip pitch of about 200 pm. The charged particles crossing the silicon p-n junction create
electron-holes pairs in the depletion zone, those pairs can move freely and they are directed by an
electric field to the microstrip to be collected and to finally generate an electric signal that can be read
out. The TT has an active area of 8.4 m? and the IT of 4.0 m?. Each station has four detection layers
with vertical strips in the first and last layers and tilted strips in the second and third layer (4+5° and
-5°) to obtain optimal spatial resolution, the layout is shown in Fig. (right). Both detectors have

a spatial resolution of about 50 um.
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Figure 3.7: Left: the TT detector with the first three stations (T1-T3) followed by the Outer Tracker
(OT) and Inner Tracker (IT) forming the downstream tracking stations T1-T3. Right: a schematic
view of the TT stations. From [7].

Outer Tracker

The Outer Tracker (OT) [I33] covers the region further away from the beam axis, shown in blue in
Fig. (left). It is an array of gas straw-tube modules containing a gas mixture of Argon (70%)
and CO2 (30%) which has been chosen in order to have a drift time below 50 ns and a 200 um
resolution. The straw tubes are arranged in two layers and the modules are tilted in the same way as
in the IT. The charged particles ionizing the gas produce charges which are collected by anode wires.

This technology is much cheaper than the silicon sensors, but it has a worse resolution and it is less

radiation hard.
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Tracking strategy and performance

The track reconstruction begins with the search of track seeds in the VELO and in the T stations,
building the first track candidates. When the tracks are found, the trajectories are fitted using tracking
algorithms based on the Kalman filter [134], which takes into account multiple scattering and energy
loss effects and can reject fake tracks, called "ghost tracks". The quality of the fit is monitored by
a x? test, and the normalized x?/ndf is used in the physics analysis to apply requirements on the
track quality. The trajectories of particles are bent in the horizontal z-z plane by the dipole magnet
providing a magnetic field of 4 Tm which is known at a very high precision, 6B/B ~ 4 x 10~%. Tt is used
to measure the momentum of the particles using the relation: p = % where B is the magnetic field,
p the bending radius, ¢ the electric charge and p the particle momentum. Combining the magnet and
the tracking system, the final relative momentum resolution dp/p ranges from 0.4% to 1%, as shown in
Fig. |3.8 (left). Track reconstruction efficiencies at LHCb have been measured using a tag-and-probe
method with J/) — ptpu~ or D° — K7t decays [135]. The average efficiency is better than 95 %
in the momentum region 5GeV/c < p < 200GeV/c, as shown in Fig. [.§] for 2012 and 2015 data. The

final uncertainty per track is below 0.5% for muons and below 1.5% for pions and kaons [135].
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Figure 3.8: Left: Relative momentum resolution versus momentum for long tracks in data, from [129].
Right: tracking efficiency versus momentum, from [136].

3.2.3 Particle identification and energy measurement

A particle is "identified" when its mass (m) is known, then once the particle’s momentum (p) is

measured (by the tracking system previously described), the energy (E) can be deduced using the

E =\/p?>c?+m?ct (3.2)

Thus the identification of particles is performed combining the information from several subdetectors.

relativistic relation:

A system of calorimeters allows to distinguish between photons and electrons (interacting only electro-
magnetically) and hadrons. On top of that the RICH detectors perform the separation between pions,
kaons and protons. Photons belong to a special category, since they are massless and not charged, they
do not leave hits in the tracking stations. Only their energy is measured, using the electromagnetic

calorimeter, and their momentum is deduced from Eq. for the massless case: E = pc. Electrons
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are special too, since they suffer from Bremsstrahlung E| they need a dedicated reconstruction algo-
rithm based on the information in the ECAL and trackers. Finally, muons are measured by the muon

chambers.

Calorimeters

There are two calorimeters, the electromagnetic calorimeter (ECAL) and the hadronic calorimeter
(HCAL)[I37]. As the names suggest, the ECAL is dedicated to the detection of particles interact-
ing electromagnetically whereas HCAL to the ones interacting hadronically (via strong and weak
interactions). They identify hadrons against electrons or photons and measure their energy. The
measurement of the transverse energyﬂ is used by the first level trigger (L0O) to decide, within 4 ps,
if the event is kept or rejected, hence the calorimeters play a crucial role in the trigger system. The
calorimeters are preceded by the PreShower (PS) and the Scintillator Pad Detector (SPD). These are
planes of scintillator pads with wavelength shifting fibers (WLS) to transmit the scintillation light to
the photomultiplier tubes (PMTs). They are separated by a layer of lead used as converter, corre-
sponding to 2.5 radiation lengths Xy and 0.06 of the hadronic interaction lengthﬂ Thus, electrons
and photons start the electromagnetic shower in the lead plate, whereas hadrons do not. This is used
to distinguish between them. Furthermore, any charged track will leave hits in the SPD, allowing the
separation of electrons from photons and the rejection of the high background of charged pions. How-
ever, several processes can lead to an energy deposit in the SPD and result in the misidentification of
photons, these effect are studied using simulations. The energy deposit of particles in the calorimeters
is sketched in Fig. [3.9| (left) and it schematically summarizes how to identify electrons, photons and

hadrons depending on which part of the calorimeter system has detected something.

Q
%Q Q% ECAL HCAL Outer section : —————
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Figure 3.9: Left: a schematic view of the calorimeters system and the particle identification method,
from [138]. Center and right: lateral segmentation of the SPD/PS/ECAL and of HCAL respectively.

One quarter of the detector front face is shown, from [7].

2688 channels 608 channels

The ECAL is made of an alternation of lead plates and scintillating tiles (the so-called shashlik

technology) along a 42 cm stack corresponding to 25 radiation lengths and a Moliere radius of 3.5 cm.

1Bremsstrahlung is the phenomenon of photon emission by a charged particle interacting with nuclei, with consequent
loss of kinetic energy. The probability of this process is « 1/M 2, hence it is more pronounced for electrons than muons.
Above a few tens of MeV, it is the dominant process for electrons. It becomes important for muons (and pions) at few
hundred GeV.

2The transverse energy is is defined as Ep = Y E;sin6;, where E; is the energy deposited in the cell ¢ and 6; is the
angle between the z axis and a line joining the center of the calorimeter cell to the interaction point.

3The radiation length X represents the average distance x that an electron needs to travel in a material to reduce
its energy to 1/e of its original energy E.
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This is enough to contain all the electromagnetic shower and measure the full energy deposit. The
light from the scintillator tiles is collected by WLS fibers (as for the SPD and PS) and readout with
Hamamatsu R7899-20 phototubes. The granularity of the detector (i.e. the size of the cells) is adapted
depending on the distance to the beam pipe. The PS and SPD have the same segmentation, shown
in Fig. [3.9] (center), to achieve a one-to-one projective correspondence with the ECAL segmentation.
The designed energy resolution is o /E = 10%/vVE ®1% (E is expressed in GeV). This results in an
expected B mass resolution of 65 MeV/c? for the BY — K*v decay and 75 MeV/c? for B — 7Fn 70
decay. The final invariant mass resolution for B® — K*v decays is shown Fig. it has improved
from about 91 MeV/c? for Run 1 to 87 MeV/c? for Run 2.
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Figure 3.10: Invariant mass of B® — K*v candidates in Run 1 (left) and Run 2 (right). The fit model
includes the (red) signal component, (dashed green) combinatorial background, (dot-dashed turquoise
and purple) misidentified physics backgrounds, from [136].

On the other hand, the HCAL is made from iron (absorber) and scintillating tiles (active material).
It has a thickness of 5.6 hadronic interaction lengths (plus 1.2 interactions lengths coming from the
ECAL upstream). The segmentation is different from the ECAL one and it is shown in Fig.
(right). The designed resolution is op/FE = 65%/vVE ®9% (E is expressed in GeéV). The HCAL is
used in combination with ECAL to identify hadrons, which start the shower in the lead layer and
ends it in the HCAL. It is mainly used for the hardware trigger stage since its energy resolution is too

modest to use it for other purposes.

RICH detectors

The RICH detectors [139], RICH1 and RICH2, are used to separate protons, kaons and pions and
to help identifying muons and electrons. When charged particles travel in a medium faster than the
phase velocity of light (in this medium), they produce light by Cherenkov effect. The RICH detectors
measure this light. If the refraction index of the medium is n and the particle travels at a speed v,
then the threshold for the emission of photons is v, > ¢/n. The Cherenkov photons are emitted in the

direction defined by a cone with opening angle 6:

1
cosf = oA (3.3)

56



3.2. THE LHCb DETECTOR

where = v,/c. Hence by measuring the opening angle of the cone one can deduce the velocity of the
particle. From the velocity and the momentum (measured by the tracking system), the mass of the
particle can be inferred using;:
P pncosf
m = ——=
Bye cy

RICH 1 is placed upstream right after VELO, the medium (called absorber) is an aerogel and fluorobu-

(3.4)

tane CyqF1o gas with refractive index n = 1.0014 and it covers low momentum charged particles around
~1—60 GeV. For Run 2, the aerogel part was removed since it did not have any significant impact.
The RICH 2 radiator instead is made of C'Fy gas with a smaller refraction index n = 1.0005, this im-
plies that particles must have a higher momentum to pass the emission threshold v, > ¢/n and RICH
2 covers a higher momentum range ~ 15 —100GeV/c. RICH 2 is placed after the TT stations, covering
the higher pseudo-rapidity range which correspond to an area where the more energetic particles are
expected. A schematic view of the RICH detectors is presented in Fig. In both detectors the
Cherenkov light is focused by a system of spherical and flat mirrors to be redirected to Hybrid Photon
Detectors (HPDs). In Fig. (bottom right) the reconstructed Cherenkov angle as a function of the
particle momentum is shown, it can be seen by eye that there are kinematic regions where a reliable
separation of different hadrons is not possible. At low momentum, kaons and protons do not have a
sufficient velocity to create a Cherenkov ring, hence their identification is challenging. On the other
hand, at high momentum the Cherenkov angles look very similar for all particles types. In Fig. [3.11
(up right) a simulated event display of RICH 1 is shown. A dedicated algorithm is used to reconstruct
the rings and compute the Cherenkov angle. A track is then assigned to the reconstructed rings and
a likelihood (of being a certain particle type), called DLLX, is computed for each track. Differences
of likelihoods are used as discriminating variables in the offline selection, typically the likelihood of
the kaon (proton) compared to the pion one, called PIDK (PIDp). From these, a neural network is
trained to combine the information of several subdetectors and return a probability for each charged
particle candidate (pion, kaon, proton, muon, electron or deuteron), called ProbNNX, which will have
a higher discrimination power than the DLLX [I40]. The ProbNNX are used in the Af — pK 7"
analysis to eliminate backgrounds coming from other decays where one particle, either proton, kaon

or pion, has been mis-identified.

The performance of the RICH detectors is studied using a high-statistic sample of decays selected
without PID requirements, namely K — 77—, A — pr~ and D** — DY(K~n")n" where the signal is
extracted using the sPlot technique (see Sec. . As an example, the kaon identification efficiency
(kaons identified as kaons) and the pion misidentification rate (pions misidentified as kaons) are
shown as a function of particle momentum in Fig. (left) for pp collisions at 7 TeV in 2011.
These are shown with two different requirements: (DLLK — DLL7) > 0 or 5, which corresponds to
requiring the likelihood of each track with the kaon mass hypothesis to be larger than the one with
the pion hypothesis. In this case, the average kaon efficiency is 95% and the pion misidentification
fraction 10%. The tighter requirement (DLLK-DLL7) > 5 reduces the pion misidentification fraction
to 3% and the kaon efficiency goes to 85%. Similar performances are obtained for the following data
taking periods, see [142]. For comparison, the same plot for proton identification efficiency and kaon

misidentification rate is shown in Fig. [3.12| (center). From this, one can notice that separating protons
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Figure 3.11: Left: schematic view of the RICH detectors [7]. Right top: Cherenkov rings from
simulation [I39]. Right bottom: measured Cherenkov angles as a function of the track momentum for
RICH1, using 2011 LHCb data [141].

from kaons is harder than separating kaons from pions. This behaviour can be guessed intuitively
looking at the separation of the scattered lines in Fig. (bottom right). Fig. |3.12] (right) shows
the pion misidentification fraction versus the kaon identification efficiency as a function of the track

multiplicity, indicating that the PID efficiency degrades at higher multiplicity.
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Figure 3.12: Left: Kaon identification efficiency and pion misidentification rate measured on data as
a function of track momentum, with two different requirements, DLLK — DLL7 > 0 (open marker)
and DLLK — DLL7 > 5 (filled marker), as measured in 7 TeV LHCb collisions. Center: same plot
for proton identification efficiency and kaon misidentification fraction. Right: pion misidentification
fraction versus kaon identification efficiency as a function of the track multiplicity. From [I41].

Muon system

The muon system [143] is shown in Fig. It is composed of five stations M1-M5, located along
the beam axis. The first station M1 is placed before the calorimeter, to provide a better transverse
momentum measurement, which is used by the hardware trigger to select high-py particles. The

other stations M2-M5 are placed after the calorimeters and they are interleaved with layers of 80 mm
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thick iron absorbers. The total absorber thickness of the muon system (including the calorimeters) is
equivalent to 20 interaction lengths, this means that only muons with a momentum higher than 6 GeV
can cross all the stations. This is also the reason why all the muons stations are not placed upstream
other detectors, otherwise they would stop any particle. To cover the LHCb angular acceptance set
by the previous subdetectors, they cover a large area of in total 435 m?. The inner and outer angular
acceptances area of 20 (16) mrad and 306 (258) mrad in the bending (non-bending) plane respectively.
This allows to detect 20 % of the muons from inclusive b semileptonic decays. Each station is divided
in 4 regions R1-R4, each of which is segmented in a different way to have a uniform overall occupancy.
To achieve that, the size of the segmentation cells decreases from the external regions towards the
beam pipe, where the occupancy is much higher, see right side of Fig. The stations are multi-wire
proportional chambers (MWPC) except for the inner region (R1) of M1 equipped with triple-GEM
detectors, which can stand higher particle rates (for radiation protection issues). The trigger algorithm
requires that the efficiency of each station is high enough to give a total efficiency of at least 95%
within the 25 ns window. This is achieved using a fast gas mixture (Ar/CO2/CF4 with 40% Ar and

variable concentrations of CO2/CF4 ) and an optimized charge-collection geometry. The efficiency of
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Figure 3.13: Left: Schematic side view of the muon system. Right: A quadrant of one of the muon
stations, where each square represents one muon chamber. The segmentation of the chambers for each
different R region is shown on the right-hand side of the picture, for M1 from|[7].

the muon system for the full 2010 sample was between 98.66 to 100% depending on the station and
the region [144], and it is similar for the other data taking periods. The muon identification algorithm
[145] exploits tracks with p > 3GeV/c in the muon stations. The identification strategy works as
follows. First the muon candidates are selected based on the penetration in the calorimeter and iron
filters, a variable called isMuon is created. Similarly, two other boolean variables are constructed:
IsMuonLoose and IsMuonTight, whose requirements are respectively looser and tighter with respect
to IsMuon. Then the tracking information is used to extrapolate the particle trajectories to the muons
station and study their hits pattern. A variable called muDLL is used as discriminating variable, it

is defined as the logarithm of the ratio of likelihoods for the muon to the non-muon hypotheses. At
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the end, a combined likelihood is built using the information from calorimeters and RICH systems.
Then, the logarithm of the ratio between the likelihood for the muon and pion hypotheses forms
a discriminating variable called PIDmu. This information is used by the software trigger HLT. The
average muon identification efficiencies are around 98% level for pion and kaon misidentification below
1%. The high-level trigger algorithm, based on the variables described above, has been improved for
Run 2 [I46] since larger computing power has been made available, an increase in efficiency around
15% has been obtained with respect to Run 1.

3.2.4 The SMOG system

The SMOG system (System for Measuring Overlap with Gas), shown in Fig. (right), is a sys-
tem allowing to inject gas inside the VELO vessel. It was originally designed for precise luminosity
measurements [147]. Since 2015, LHCD has started exploiting SMOG to study fixed-target collisions
using special fills not devoted to pp physics. When injecting the gas the LHC vacuum pressure rises
by two orders of magnitude, from about 10~ mbar to slightly above 10~7 mbar. The injected gas
pressure can be monitored by four cold-cathode gauges (Penning type) and one hot-filament ioniza-
tion (Bayard-Alpert type) gauge around VELO. The first system calibration is not precise enough
to perform a density measurement, the second one instead allows to have a measurement of the gas
density at 10% precision level [148].

Gas flow to
VELO detectar

Connectionto
high pressure

gas (neon, argon, © S
*  helium) bottle -
I— el

Figure 3.14: Left: simulation. Right: the SMOG gas feed system.

The SMOG system opened a new set of possible measurements for LHCb, making LHCb the only
LHC detector capable of doing fixed-target physics. The first physics measurement using SMOG was
the antiproton cross-section in collisions of 6.5 TeV proton beam on helium corresponding to a dataset
of 0.4 nb~! [149] published in 2018. This was the first measurement of antimatter production in pHe
and it has strong implications for the astrophysics experiments PAMELA and AMS-02. The second
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measurement is the J/i and D° production in collisions of 6.5 TeV proton beam on Argon [150],
published in 2019.

3.2.5 Trigger system

LHCb 2012 Trigger Diagram LHCb 2015 Trigger Diagram
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Figure 3.15: Sketch of the trigger sequence starting from the collision to the final event reconstruction
for Run 1 (left) and Run 2 (right) from [I51].

At the LHC, the bunches cross every 25 ns corresponding to a frequency of 40 MHz. However at
the LHCD interaction point, not all the bunches are filled. This is due to the forward geometry of the
LHCDb detector which imposes a shift of the interaction point away from the center of the cavern (on
the z direction). Hence the LHCb bunch crossing frequency is lower, ~ 30 MHz and the maximum
number of colliding bunches is 2036, whereas for ATLAS and CMS it is 2208. In each collision, the
majority of the events are not interesting for physics and saving them all would require an enormous
amount of disk space (the 40 MHz rate corresponds to ~ 1.92 Tbytes/s) resulting in a considerable
waste of resources. Each single bunch collides at a frequency of ~ 11 kHz, however in each collision
not all the protons interact. The average number of visible interactions per bunch crossing (called p)
allows to estimate the fraction of visible interaction per bunch crossing, 1 —exp(—pu) ~ 0.7 (for Run 1,
p~1—2), meaning that the frequency of visible interactions per bunch crossing is eventually reduced
to 7.26 kHz (a more complete discussion about luminosity can be found in Chapter . Looking at
the A} case, for a luminosity of 4 x 1032 cm=2s~! for Run 2, the rate of c¢ pairs is 0.96 MHz i.e. almost
1 millions of pairs produced per second. Out of this, the production rate of A} decaying into pK 7™,
reduces to Ny+(Hz) = BR(AL — pK~7") x f,+ x 0.96 MHz = 0.0628 x 0.10 x 0.96 MHz = 602 Hz in
total. Thus the rate of interesting events is significantly lower than the official LHCb bunch crossing
rate. The role of the trigger is to find and keep the events that may contain interesting physics and
save it to disk while discarding the rest. The LHCb trigger is implemented in two levels: the Level
0 trigger (LO), which is an hardware trigger, and the High Level Trigger HLT, which is software and
divided in two steps HLT 1 and HLT 2. The first level brings the rate down to 1 MHz, the second

level to few kHz. The rate reduction after the trigger sequence is schematically shown in Fig. [3.15
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TCK LOhadron LOmuon LOElectron  LOphoton nSPD Hits yearly luminosity
Er[MeV | pr[MeV/c]  Ep[MeV ] Er[MeV | (upper limit) fraction [%]

0x1603 3216 1320 2112 2304 450 2.1

0x1604 3552 1560 2256 2784 450 1.5

0x1605 3696 1800 2592 2976 450 4.7

0x1609 3696 1560 2352 2832 450 44.7

0x160E 3696 1800 2592 2976 450 3.3

0x160F 3744 2160 2400 2784 450 34.8

0x1611 3888 1800 2616 2976 450 2.7

0x1612 3888 1920 2616 2976 450 5.4

Table 3.2: Most relevant 2016 TCKs with associated energy and transverse momentum thresholds
(minimum value) for LOhadron, LOmuon, LOelectron, LOphoton.

for 2012 and 2015 settings, the final output rate of the LHCb trigger was of 5 kHz for 2012 and 12.5
kHz for 2015 scheme. These 3 stages (L0, HLT 1 and HLT 2) run several parallel lines and each of
them run only if the previous trigger step gave a positive decision (except for L0). The combination
of the trigger selections (also called trigger lines) are configured at the start of each fill using a unique
sequence called Trigger Configuration Key (TCK), this information is then used offline to know exactly
the trigger configuration used during the data taking. The TCKs are used to reproduce the trigger

response in the simulation. The two trigger steps are detailed in the following.

Level 0 trigger

The first level of trigger in LHCDb, the Level 0 (LO0), is an hardware trigger. It uses information
from the VELO pile-up system, the calorimeters and the muon stations to make decisions and reduce
the rates from 40 MHz to 1 MHz. The L0 requirements are based on physics considerations: since
the B hadrons have large masses, their decay products will have large transverse momentum (pr)
and transverse energy (FEr) thus the calorimeter and muon triggers reconstruct and select high Ep
electrons, hadrons and photons and high pr muons or di-muons respectively. Two other quantities are
extracted at this stage: the number of hits in the SPD (nSPD), which is an estimation of the number
of charged particles produced (nTracks), and the total measured energy using the calorimeters. The
maximum number of SPD hits is limited (by the L0 trigger) to reject events with a too large multiplicity
which would require a long computing time for HLT1. The total energy (the sum of Ep) is used to
identify empty bunch crossing to determine the luminosity. The L0 Decision Unit (DU) evaluates the
final trigger decision for each bunch crossing within 2 ps (the total latency including cables is 4 us).
If the event passes the L0 decision (i.e. more than one trigger line is fired) then the entire detector
is read out and the data are sent to the HLT computing farm. The requirement of the most relevant
TCK for 2016 used in this analysis are summarized in table The calorimeter builds clusters of
2 x 2 cells and selects the highest E7 candidate, the identification (electron, photon, pion or hadron) is
determined combining the information from the SPS, PS, ECAL and HCAL as explained in Sec.
The muon trigger performs a standalone decision, it looks for high pr tracks which have hits in the 5

muon stations and which point towards the interaction point.
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High Level Trigger

The second stage of the trigger is implemented as software applications written in C++ code. It runs
on the Event Filter Farm (EFF) and reduces the 1 MHz rate of LO to 5 (12.5) kHz for Run 1 (Run 2).
The HLT1 performs a simplified track reconstruction looking for VELO segments and forming pp
vertices (starting from at least 5 VELO tracks). Segments not associated to a PV or not matched
to any track in the muons stations are discarded. The remaining ones are matched to hits in the
T-stations to form long tracks. To save computing time, arising due to combinatorics, the search
window is reduced to 3 < p < 6GeV/c and 0.5 < pr < 1.25GeV/c. Events passing HLT1 are sent to
the HLT2, at a rate of 80 kHz. Since more time is available, the full reconstruction using all the
information available in the sub-detectors is performed. This step changed between Run 1 and Run 2.
In Run 1 a simplified reconstruction was performed "online" and the calibration and alignment of
the detector was not taken into account at this stage. This required yet another reconstruction step
and reprocessing of the full dataset "offline". At this point, the entire raw event is saved to be able
to reprocess the data later on to improve the reconstruction (full stream). To reduce the dataset
size an extra step is needed. Based on the HLT2 lines, a central selection, called stripping, is run
to reconstruct the decays. The output lines are grouped into streams having similar selections. The
HLT?2 lines are classified as either inclusive, where generic signatures are searched and exclusive, where
decays are fully reconstructed. This processing chain is complicated since the set of selection offline
and online is not matching. In Run 2 an automatic real-time procedure for calibration and alignment
was developed. The calibration, ran while data are kept in the HLT1 buffer, can now be applied
during the reconstruction step performed by HLT2. Thus the online reconstruction was significantly
improved and it ended up performing at the same level as the offline one. Furthermore, since the
additional offline processing is not necessary anymore, the raw detector information is not saved, this
stream is called "Turbo stream" (since it is "faster"). The information saved to disk depends on the
configuration, one can save the entire event, only signal candidates, or only signal candidates together
with pre-defined tracks of interest. In this analysis, the data are selected from the Turbo stream called
"Hlt2CharmHadLcp ToPpKmPipTurbo" with exclusive selections optimized to select the AT — pK ~ 7™

candidates.

3.2.6 Data processing and simulation

The software framework used to run all LHCb applications is called Gaudi [I52]. The various steps of
data processing within Gaudi are shown in Fig. The trigger is run by the Moore application [154]
and its output is reconstructed by the Brunel application to be stored in "data summary type" files
(dst). It is at this point that the new Turbo stream has been added in Run 2. For the full stream, the
Stripping is run using the DaVinci application. For the Turbo stream instead, data are directly ready
for analysts to make ntuplesﬂ out of it (using DaVinci). Since the stripping is performed offline, it can
be run again if new lines or a change in the selections of existing lines are required. The re-stripping

usually happens around 4 times per year. After the ntuples are created from the stripping or from the

1ntuples are used in high energy physics for data organisation, they are files written by python scripts using LHCb
classes and stored in ROOT files. They contain the properties of the particles e.g. energy, mass, momentum etc...
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Figure 3.16: Data flow and processing in LHCb [153]

Turbo stream, data are ready to be analysed, usually using ROOT or python code. The above tasks
require a large computing power which is obtained by combining computers from all over the world.
LHCD is part of the Worldwide LHC Computing Grid (WLCG) project [I55], a global computing
infrastructure counting 47 countries, 170 computing centers and 1 million computer cores with over
2 million jobs running every day. The simulation, reconstruction and the physics analysis are done
on this "grid" of computers. The (large) output of these processes is also stored on the grid, making
the data available for all the collaboration. This synergy of resources has made possible to perform

computations that no single local cluster could perform alone.

Simulation In order to study the detector response and to include it in the physics analysis, Monte
Carlo simulations modelling real data are used. The generic pp collisions and the signal events are
generated within the Gauss application [156] using the PYTHIA package [157] with a specific LHCb
configuration [I58]. Other generators are also available, for instance EPOS [I59] to generate heavy-ion
collision, HIJING [I160] for beam gas events or STARLIGHT [161] for v and ~P initial states. The
decay of signal particle is handled by EVTGEN [162], along with PHOTOS [163], used to generate
final state radiations. The full LHCb detector response is simulated with the GEANT4 software [164]
[165]. The digitization of the simulated data is done by the BOOLE application to obtain raw data
similar to that produced by the detector. Then the same reconstruction as in data is ran in order
to have a description as close as possible to the real data. In LHCb jargon TRUE variables are the
generator level variables corresponding to the output of PYTHIA. On the other hand, the reconstructed
variables are the output of the full simulation chain. In this thesis some work has been done to allow
the production of polarized spin one half baryons in the Gauss framework and a new EvtGen decay
model has been developed (called LAMBDAC_PHH) to simulate A} — pK~ 7" decays with three

intermediate resonances.

3.3 LHCDb upgrade I

Particle physics and especially flavour physics has advanced enormously thanks to the LHCb collabo-
ration. Although a large amount of precise measurements has been performed, LHCb is limited since

it is running at a lower luminosity level than ATLAS and CMS. This limitation is due to the detector
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Figure 3.17: Schematic view of the LHCb upgrade detector from [166].

capabilities rather than the LHC performances. Furthermore, few years ago, it has been decided to
run the LHC at a higher luminosity level to perform more precise measurements. Hence the LHCb
detector needs to be upgraded to profit from this increase in luminosity and perform studies beyond
the reach of the current detector. After the long shutdown 2 (LS2) 2018-2021 the instantaneous lu-

2571, achieved with a

minosity will be increased by a factor 5, from 4 x 1032cm™2s7! to 2 x 1033 cm™
25 ns spacing with an average number of interactions per bunch crossing p = 3.8 —7.6. To cope with
this luminosity, most of the subdetectors have to be upgraded to increase the radiation hardness, the
readout speed, the granularity and the trigger configuration. During Run 1 and Run 2 the luminosity
was intentionally reduced by two orders of magnitude at the LHCb interaction point with a procedure
called luminosity levelling (see Sec. . On top of that, the hardware trigger was reducing the read-
out rate from the 40 MHz collision rate to 1 MHz. To fully exploit the higher luminosity delivered
by the LHC, the hardware trigger will be replaced by a software trigger operating online (called RTA,
Real Time Trigger) and allowing for more flexible and complete trigger decisions. Along with the new
trigger paradigm, almost all the subdetectors will be upgraded, the layout of the upgraded detector is
shown in Fig. The new layout is very close to the original one, the main changes are: the trajec-
tories and momenta of particles will be measured by a new tracking system composed of VELO, the
new planar tracking stations (UT) upstream the magnet and three new stations downstream (SciF1i).
The LO hardware trigger will be removed along with the PS and SPD. Finally the injection gas system,
SMOG, will be also upgraded to improve the target gas density and allow for a wider choice of gas

species. A summary of the upgraded sub-detectors is given below.

65



CHAPTER 3. THE LHCb EXPERIMENT AT THE LHC

EIOO: I e EIOOZ ——— :
=: 90F  LHCb simulation 1 = 9%F  LHCb simulation E
= 80F 1 g sof :
E 70 ;— —g E 70 E_ _;
2 60F ] Gt
= 50F - = 50F =
= E ] a o ]
= 40F 3 el 40f :
- 3 — o 3

30F E 30E =

20 Ex- 3 20F ;

10 ;:\—\ S — 10 f—l—l —

0 P R S T N T SR SN SO S s s s = 0 P S S T R T T T SO S s s s =

0 1 2 3 0 | 2 3

lp. [GeV'c] 1/p. [GeVic]

Figure 3.18: Left: IP, resolution. Right: 3D IP resolution as a function of the inverse transverse
momentum. In black with round markers, the resolution of the original VELO is shown. In ref
with round squared the resolution of the upgraded VELO is shown. In light grey, the population of
b-hadron daughter tracks is shown. Taken from [167].

The upgraded vertex locator The upgraded VELO [I67] will be made of 26 planar stations (5
more than before) of hybrid silicon pixel detectors. In total there are 41 million pixels with a size of
55 x 55 um, read out by the new custom VeloPix ASIC [168]. The detector will be placed closer to
the beam (5.1 mm distance) and the thickness of the aluminium foil will be reduced from 300 pm
to 200-250 pum. The lowered material budget and shorter distance from the beam will result in an

improvement of the impact parameter resolution, shown in Fig. 3.18] to be compared with Fig. [3.6]

The upstream tracker The Upstream Tracker (UT) [166] will replace the TT. It will be made of
four detection layers of silicon strip detectors. In the outer region, silicon strips of 10 cm with a 190
um pitch are used. In the intermediate region the pitch is reduced to 95 um. In the inner region the
length is reduced to 5 cm with 95 wm pitch. Close to the beam pipe, the sensors are cut in the form
of a quarter circle to improve the acceptance at small polar angles. The readout is made by a new
front-end ASIC, the SALT [I69] compatible with the 40 MHz rate. Simulations show that the UT can
help reducing the number of ghost tracks and improve the resolution on the transverse momentum,
see Fig. |3.19

The downstream tracker The downstream tracker (SciFi) is going to replace the IT and OT. It
is a scintillating fiber tracker made of three stations of four planar detection layers each. The detector
modules will have 2.5 m long scintillating fibers with a diameter of 250 um. The fibers are readout
by Silicon Photomultipliers (SiPMs) at the top and bottom of the detector, operating at -40 °C to

avoid radiation damage. The goal is to have a resolution smaller than 100 pm over a surface of 340
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Figure 3.19: Left: simulation of the number of real reconstructed downstream tracks and ghost tracks
as a function of the number of VELO tracks for a luminosity of 2 x 1033cm=2s~!, for inclusive b-
hadron decays in pp collisions at 14 TeV center-of-mass energy. Two categories of tracks are shown,
with UT or without UT match. Right: resolution on the py as a function of pr, for the current TT
(closed circles) and the upgraded UT (red triangles). From [166].

m?. Simulations show, Fig. that the tracking efficiency will be lower for events with a small
number of PV due to the less fine granularity. Nevertheless the detector is more performing for a

higher number of PVs hence the global efficiency as a function of the pseudorapidity is higher.

Calorimeters The PS and SPD detectors, which were used by the LO trigger, are removed. The
present calorimeters will be kept as they are. The PMT gain will be reduced by a factor five to limit
the PMT degradation and the Front-End electronics will be upgraded to compensate the gain for the
readout at 40 MHz. The upgraded Front-End boards will be described in detail in the next Chapter.

RICH detectors and muon system The upgraded RICH detectors [I70] will be similar to their
predecessors, at the same position and with the same gas radiators. The system of mirrors used by
RICH1 will be replaced by a new optical design to deal with the higher particle density. The light
detection will be ensured by Multi-anode Photo Multiplier Tubes (MaPMT), replacing the HPDs,
with a granularity of 2.9 x 2.9mm? [171]. The front-end electronics will be updated to readout at 40
MHz using a new front end chip: CLARO [I72]. Regarding the muon system, the first of the five
muons station, M1, will be removed. Indeed it was essentially used for the L0 trigger which will not
exist anymore. The M2 inner region will be equipped with Triple-GEM detectors to cope with the

increased particle flux. The electronics will be also updated to readout at 40 MHz.

SMOG2 The SMOG2 system constitutes an upgrade of its predecessor SMOG. It is made of a
storage cell installed upstream of the VELO which is designed to reach a much higher gas density
than SMOG, by a factor of about 8 (with Ha) to 35 (with Ar). Other novelties with respect to SMOG

are: a more advanced gas feed system allowing for a precise determination of the target density, the

67



CHAPTER 3. THE LHCb EXPERIMENT AT THE LHC

2 1 r T iy 2 1 [ ‘ T T

G - —.— e, - Gy F - .
ads +4 L + 0.6E —— ]
Lo -+ ~+ 1 “F E
0.85[ +++ a4+ E 0.5F E
o 1 04 =
0.8 } '+'currcnt E 0.3 2_ ‘+‘currcnt _2
075k E 02F 4 w simulation S
TI5E LHCb simulation +upgradc 1 ol upgrade LHCb simulation E
il n L L " L L n s " | n L L s I E | n L L L 1 s " L L | ]

0.7 2 3 4 5 0 0 5 10

n

#PV

Figure 3.20: Expected track reconstruction efficiency as a function of the pseudorapidity (n) of the
track (left) and of the number of reconstructed pp interaction vertices (right). From [166].

possibility to inject Ho and Dy in addition to the noble gases, a better defined interaction region, the
possibility to run in parallel during pp collisions. More details on the complex design of the storage
cell can be found in Ref. [148], whereas the new physics opportunities achievable with SMOG2 are
discussed in Ref. [173].

Trigger The hardware trigger LO will be removed and replaced by a full software trigger [174], which
will reduce the rate to 30 MHz instead of 1 MHz. The main goal is to select beauty and charm hadron
decays with the highest efficiency and purity possible. The conditions that the new software trigger
has to fulfil are summarized in Tab.

Instantaneous luminosity 2x10%cem 25!
Pile-up 7.6
Input rate 30MHz
Maximum processing time per event 13ms
Output bandwidth 20kHz x 100kbytes = 2GByte/s

Table 3.3: Conditions to be fulfilled by the software trigger for the upgraded LHCb detector. From
[175).

In the new software trigger, the High Level Trigger (HLT), the event selection is ran on two software
stages. The first one, HLT1, selects event based on the one or two-track algorithms. Here, only the
calibration and alignment constants obtained from the previous run are used. The event rate is reduced
by a factor 30 to 60. In the second stage, the detector is calibrated and aligned almost online and
HLT2 will identify decays without keeping the raw data (following the example of the Turbo stream
of Run 2). The total output volume is 80 Gbit/s. In the baseline proposal, the data from subdetectors
are treated by 250 event building x86 servers to reconstruct the full event. Complete events are sent
to a separate "event filter farm" (EFF) where both HLT1 and HLT?2 stages are run. Recently a new
project called Allen [I76] proposed to run the reconstruction and selections using Graphics Processing
Units (GPUs). LHCb embraced this project and decided to run the track reconstruction of HLT1 on
500 GPUs. This will reduce the global data volume of a factor 30-60, reducing considerably the cost
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associated to the sending of the data to the EFF. The reconstruction and the physics selections are
run at a rate of 40 Gbit/s. The limits of the rate is mainly due to the rate at which the CPU hosting
server can communicate with GPU, rather than the GPUs themselves. A comparison of the data
acquisition system between the baseline proposal and the new GPU proposal is shown in Fig. |3.21

where the event building step is shown in the second light blue box. The physics performances of the

( pp collisions ] [ pp collisions )
40 Thit/s 40 Thit/s
0(250) ildi O(250) event building )
[)(36 servers ( event building )J x86 servers ( J

-
. O(500)
40 Thit/s ¢ GPUs HIT1 J

~ \.

-

0(1000) x86 servers /
- N
* O(1000) x86 servers
buffer on disk buffer on disk
calibration and alignment [ca.l.i.bration and alignment
( HLT2 ) ( HLT2
| y - S

[ storage ] ( storage ]

Figure 3.21: Baseline proposal (left) and GPU based proposal (right) for the upgraded LHCb data
acquisition system [1706].

Allen reconstruction are shown in Fig. (left). The momentum resolution is better than 1% and it
can be compared to the 0.5-1% resolution obtained from offline track reconstruction in Run 2. The PV
reconstruction efficiency versus track multiplicity is also shown Fig. (right). The performances
for track and vertex reconstruction efficiencies, muon identification and momentum resolution are

sufficient for efficient trigger selections for LHCb physics analyses.
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Figure 3.22: Left: relative momentum resolution of tracks passing through the VELO, UT and SciFi
detectors versus momentum. Right: PV reconstruction efficiency versus track multiplicity of the
Monte Carlo (MC) PV for minimum bias events, from [176].
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Front-End electronics for the
PLUME detector

In this chapter, my work on the choice of the front-end electronics for the PLUME detector will
be presented. In Sec. an introduction on the luminosity as measured in LHCb is given. Then
in Sec. the PLUME detector is described, including an overview of the intermediate steps that
preceded the final detector design. In Sec. the front-end electronics is described in details and in
the following section, my work on the adaptability of the ECAL electronics for PLUME is presented.
Finally, in Sec. a promising timing measurement that could be performed thanks to the ECAL

electronics is discussed.

4.1 Luminosity at LHCb

When proton bunches collide at the LHC, three processes can happen: protons can either pass close
to each other without interacting, they can interact elastically without changing their structure, or
finally they can collide and interact inelastically. Each of these processes is quantified by its cross
section, which is representative of the probability for a process to occur. By multiplying the cross
section of a process by the number of collisions taking place within a bunch crossing, one obtains
the rate at which this same process occurs. Hence, the differential rate of LHC pp collisions, dR/dt,
is proportional to the cross section of proton collisions o,s(pp — X), the subscript vis indicates a
collision which is visible by the LHCb detector,

dR
Ezﬁxavis(pp%X) (4.1)
where £ is called instantaneous luminosity, expressed in units of cm™2?s~!. From this, the total

number of collisions R is obtained integrating the differential rate as R = o x [ Ldt, where L is the
integrated luminosity, L = [ Ldt. In other words, luminosity is a quantity giving a measure of the
number of collisions happening during a period of time; it is proportional to the average number of
visible proton-proton interactions per beam-beam crossing, called fi,;s. It is measured in units of cm ™2
because the number of collisions strictly depends on the probability for a proton proton interaction to

happen, which in turn is quantified as a function of the size of the crossing area. The instantaneous
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Figure 4.1: Left: sketch of two bunches crossing, N1 and N3 are the number of protons in the colliding
bunches, the overlap area is also shown. Right: naming convention for the four possible bunches
configurations described in the text (bb, eb, be, ee) with relative trigger rates.

luminosity for a pair colliding bunches can be generally written as:

. NINQUCOZI

Ioverlap

L (4.2)
where vy is the frequency of collisions, which is equal to the revolution frequency; N1 and Ny are
the number of protons in the colliding bunches of beam 1 and 2 respectively; Iyyeriqp is the overlap
integral, embodying the area of the two bunches which actually overlaps when the crossing happens.
On one hand, v.y;, N1 and Ny are measured by the LHC, with an uncertainty smaller than 0.5%. On
the other hand, the overlap integral (at IP8) is unknown, but it can be measured within LHCb. A
drawing showing these quantities is shown in Fig. (left). The luminosity measurement is crucial
for the physics analysis, especially for cross section measurements which are directly derived from Eq.
and need to be performed with the best possible accuracy. In general, there exist two methods to
measure luminosity classified as indirect or direct. The first, is based on external quantities e.g. the
measurement of the elastic and total cross sections [I77] or the comparison with a process for which the
absolute cross-section is known precisely from another measurement, or, when possible, from theory.
The direct methods instead consist in measuring some of the beam parameters to determine the
luminosity, these are the "van der Meer scan method" (VDM) [I78] and the beam-gas imaging method
(BGI) [I79]. The VDM method consists in making a scan of the beam by moving them across the
transverse plane (i.e. along x and y) and record the rates of collisions as a function of the transverse
beam separation to infer the cross section. This method was first used at CERN ISR [I78] and it is
now widely used at the LHC. The BGI method instead consists in reconstructing interaction vertices
between beam particles and the gas in the beam vacuum, in order to measure the shapes, angles and
positions of the beams without having to move them. From this, the overlap integral of Eq. [£.2] can
be inferred. This method makes use of the unique capability of the LHCb experiment of injecting gas
in the VELO using the SMOG system, described in Sec. [3.2.4 An illustration of the BGI method
is shown in Fig. where the shape of the beam emerges from the distribution of reconstructed
vertices. These two methods combined, VDM and BGI, allowed to determined the luminosity with a

precision of 1.16% for pp collisions at /s =8 TeV [147], more details are given in the following section.
At the LHCD interaction point (IP8) the luminosity is voluntarily reduced in order to optimize the

physics reach. This is done via a procedure called luminosity levelling, which consists in increasing
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Figure 4.2: Positions of the reconstructed vertices in the x — z (top) and y — z (bottom) planes for two
different fills of 2012 (left-right) at /s = 8TeV. From [147].

the distance between the two colliding beams in the plane perpendicular to the beam direction, at the
beginning of a fill, and then progressively reduce it in order to maintain the luminosity level constant.
This procedure results in a reduction of the luminosity from the 103*cm=2s~! delivered by the LHC
for ATLAS and CMS to 4 x 1032cm~2s~! at IP8 (for Run 2). This procedure is necessary in order
to reduce and maintain constant the pile up in the LHCDb detectorﬂ The LHCb trigger efficiencies
decrease quickly when the pile-up increases since a higher occupancy requires a larger bandwidth
and the total bandwidth is limited. Thus, the low pile-up condition is essential for LHCb to be
able to associate primary vertices of the proton-proton collisions to the corresponding displaced b or ¢
hadron vertices, without mixing primary vertices and decay products coming from different collisionsﬂ
The full luminosity recorded by LHCb during Run 1 and Run 2 is shown in Fig. (left), a total of
respectively 3.2 fb~! and 5.9 fb~! has been collected. In Fig. (right), the instantaneous luminosity
for one fill (fill 2006) is shown as a function of time for ATLAS, CMS and LHCb. One can see that
while the instantaneous luminosity in ATLAS and CMS decreases exponentially, at LHCb it has an

approximately constant value thanks to the luminosity levelling technique.

4.1.1 From calibration runs to a luminosity measurement for physics analysis

The VDM scans and BGI methods are used during dedicated short runs to perform calibration mea-
surements, then the results obtained need to be translated to the complete data-taking period. The
translation is performed using some standard processes for which the interaction rate is measured con-
tinuously during physics runs. As mentioned above, luminosity is proportional to the average number
of visible pp interactions per beam crossing ji,;s. Any interaction rate measurable at LHCb (and any

"counting" detector) can in principle be used as a luminosity monitor for the luminosity measurement,

IThe pile up is the superposition of several collisions in the detector during the same bunch crossing.

2For each bunch crossingx there can be more than one interaction between protons, also called "collision". An event
is the ensemble of interactions for a given bunch crossing. In LHCb jargon, an "empty event" indicates a bunch crossing
where no interaction happened.
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LHCb Integrated Recorded Luminosity in pp, 2010-2018
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Figure 4.3: Left: recorded integrated luminosity for pp collisions between 2010 and 2018, from the
LHCDb public website http://lhcb-public.web.cern.ch/lhcb-public/. Right: Instantaneous luminosity
of fill 2006 (in 2011) as a function of time, for three different LHC experiments, from [I80]. The in-
stantaneous luminosity in ATLAS and CMS decreases exponentially, whereas at LHCDb the luminosity
levelling technique allows to have an approximately constant value.

thus the subscript vis doesn’t point to a specific physics process here. In LHCDb, there are specific
trigger lines dedicated to measure quantities used for luminosity purposes. These lines, called "lumi-
nosity triggers", are run on random beam crossings with an overall frequency of 1kHz. Of this rate,
70% is assigned to slots where two bunches cross (bb), 15% to slots with only a beam-1 bunch (be),
10% to those with only a beam-2 bunch (eb) and the remaining 5% to empty slots (ee). A sketch of
these 4 possible configurations is shown in Fig. [£.1] along with the respective trigger rates. The be,
eb and ee types are used for background subtraction and beam monitoring. Those luminosity triggers
store a small number of observables comprising: the number of vertices and tracks reconstructed in
the VELO, the number of muons reconstructed in the muon stations, the number of hits in the PS
and in the SPD (in front of the ECAL) and finally the total transverse energy deposit in the calorime-
ters. All of these observables are obtained directly in the hardware trigger unit LO, except for the
VELO related ones which require a software reconstruction; all these observables are proportional to
the luminosity. In principle, luminosity can be obtained by integrating one of the observables above,
however this method heavily relies on the stability of the observable itself and on its linearity in the
presence of multiple interactions. What is used instead, is the fraction of empty (or invisible) events
during beam-beam crossings (bb), denoted here as Py. The empty events are measured by setting a
threshold below which it is considered that no pp interaction occurs in the bunch crossing. The way
luminosity is measured from those events is explained in the following. The number of interactions in
one bunch crossing follows the Poisson probability distribution:
e

P(n,u) = He_“ (4.3)

where n is the number of pile-up interactions occurring in one bunch crossing and pu is the average

number of interactions (proportional to the luminosity, £, and the inelastic cross section, o;pe;: g
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Loiner). Thus p is given by:

Ny 171 1
= —1 Py =—-1 —_— )= — — — 4.4
p=—log(Py) 0g<N) 2<N0 N) (4.4)
where Ny and N are the numbers of empty and all events and the second term are second order
corrections [I8I]. This is called the "logZero method" [I82] and it is more robust than the propor-
tionality method described above, since it is not sensitive to any non-linearity due to multiple events
or any gain and efficiency variations of the observables. The possible backgrounds coming from beam

parasitic interactions are subtracted using the information from the other bunch types:
fyis = — <log PP —log PP° —log P$® +log Pge) (4.5)

where P¢ with (i = bb,ee,be,eb) are the probabilities to find an empty event in a bunch-crossing slot
for the four different bunch crossing types. The contribution from Fj° is negligible. Note that this
formula is only valid if the bunch crossing of the same type have similar properties, otherwise the
thresholds set to determine if an event is empty or not could vary between different bunches of the
same type.

The most stable results for this method are obtained using as observable the number of tracks and
vertices reconstructed in VELO, where an empty event is defined to have less than 2 tracks in the
VELO. After processing, the luminosity information from the best luminometer is added to the end
of every LHCD file, the File Summary Record (FSR), and it is used offline.

4.1.2 Beam monitoring systems during Run 1 and Run 2

During Run 1 and Run 2, the monitoring of the beam-induced background and radiation at IP8
was ensured by three systems: the Radiation Monitoring System (RMS) [I83], a set of Beam Loss
Scintillators (BLS) [184] and a Beam Condition Monitoring System (BCM) [I85]. The RMS is based on
Metal Foil Detector (MDF') technology, which consists in a 5-layer structure of 50 pm thick aluminum
foils. When particles impinge in the metal foil surface, electrons are emitted causing the presence
of positive charge in an isolated metal. Those charges are then collected and readout by Charge
Integrators (ChI). It is placed at the second Inner Tracker (IT) station close to the beam, in order to
monitor the dose of radiation absorbed by the IT and the related increase of leakage current. This
detector will be upgraded for Run 3. The BLS is dedicated to the study of beam losses at a rate of 40
MHz and it was the only real time system providing feedback bunch by bunch. It is placed close to
VELO and it is made of two quartz radiators and four plastic scintillators, readout by photomultipliers
tubes (PMTs). It is an inexpensive detector which runs continuously to give feedback to the LHC
operators about fast and small beam losses, along with the BCM which covers large and accumulated
losses instead. The BLS is also used as online luminometer during collisions. However, the BLS
presents strong non linearity and important detector effects, thus it cannot be used as a reliable
luminometer by itself. Finally, the BCM is a safety system monitoring continuously the radiation
conditions for LHCb. It is composed of diamond sensors symmetrically distributed around the beam
pipe, placed 2131 mm upstream (BCM-U) and 2765 mm downstream (BCM-D) from the interaction
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point. They are positioned close to the beam at respectively 50.5 mm and 37.0 mm of radial distance.
The readout operates at 25 kHz. If the three adjacent sensors detect an activity above threshold, the
BCM triggers a beam dump. This system will be upgraded for Run 3.

The online luminosity was monitored using minimum bias transverse energy thresholds (LOCALO
trigger) requiring at least one hit in the SPD and one energy cluster in the HCAL. From those events,
1 is measured using the "logZero method" explained above, then the cross section for this selection
0ser 18 simulated using PYTHIA [157] and the luminosity is inferred using p o< Loge;.

In conclusion, during Run 1 and Run 2, these three beam monitoring systems operated successfully.
The RMS was the only fully electrical device and the main purpose of it was the measurement of the
radiation load for the inner tracker sensors. The BLS was the only live system doing bunch-by-bunch
measurements of beam induced background with a readout system independent of LHCb and thus
running 24/7. However in 2018, the BLS plastic scintillators were not usable anymore due to aging.
Finally, the BCM system was the LHCb lifeguard, triggering a beam dump if dangerous radiation
levels were reached. In 2018, two of the upstream BCM sensors were unusable due to the radiation

damage.

4.1.3 Luminosity measurement and monitoring system for Run 3

During Run 3 and Run 4, LHCD will see a five-fold increase of the luminosity up to £=2x10>3cm=2s1.
The same luminosity levelling as in Run 1 and Run 2 will be perform to lower the luminosity delivered
by the LHC, which will be of 2 x 103*cm~2s~!. This procedure allows to maintain a constant ; during
the operations within a +5% range and it relies on the possibility to measure some necessary quantities
in real time. These quantities are expected to vary from fill to fill, and more importantly from one
bunch crossing to another, even more than during Run 1 and Run 2; hence they need to be monitored
to give a real time feedback to the LHC operators. It has been estimated that a precision of 5% on
the particle multiplicity is needed for the online operation. Moreover, for the upgrade of the LHCb
fixed-target program the multiplicity determination will be also crucial to separate the signal (i.e.
beam-gas collisions) from parasitic proton or ion beam collisions. Furthermore, the upgraded LHCb
detector will be running with a fully software trigger, as explained in Sec. this also requires that
the running conditions are precisely known and maintained stable in "real time". On top of that, the
increase of luminosity makes the monitoring of the radiation level and beam-induced background even
more crucial to keep the LHCb detector running safely and prevent fast aging of the fragile detector
components. As a consequence of the new requirements listed above, the necessity of a new detector
dedicated to the online luminosity measurement and monitoring of the beam conditions has become

evident. This new system should be able to fulfil the following requirements:

1. Provide a measurement of the luminosity (and p) online for the luminosity levelling procedure.
2. Measure the luminosity per bunch.

3. Measure the radiation background and ghost charges leveﬂ and produce alarms.

'The base RF of the LHC is 400 MHz. This gives 35640 buckets, spaced of 2.5 ns, which can be empty or filled with
bunches. Only one bucket out of ten is filled with a bunch, for a total of 3564 bunches. All particles should be contained
within the filled bunches. However, the nominally empty buckets may contain some protons, these are called "satellite
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Monitor the LHC filling scheme in real time.
Help determining the centrality of heavy-ion collisions.
Provide accurate offline luminosity.

Run independently of the LHCb DAQ system to provide continuous monitoring.

o N o gt

If possible, provide a timing measurement to monitor the LHCb clock shift.

The PLUME project started working in 2019 on a possible system to cover the above requirements
and provide a luminosity measurement during Run 3. The path leading to the final detector design

as well as the final detector choice are presented in the following sections.

4.2 The PLUME detector

The luminosity measurement is performed using the "logZero method" which is based on the quan-
tification of number of empty events, as discussed in the previous section. In order to determine if
a bunch crossing is empty or not (i.e. if the protons within the bunches interacted or not), PLUME
will measure the number of charged particles produced (within the PLUME acceptance) in a bunch
crossing and if this number is below a certain threshold then the collision is considered as "empty".
On top of that, it also has to monitor the activity of the beam by measuring if there are particles
produced outside the nominal filled bunches defined by the LHC. The physics principle used to de-
tect charged particles is the Cherenkov effect, i.e. the emission of light by charged particles passing
through a medium at a phase velocity bigger then the velocity of light in this same medium. The
PLUME detector aims at collecting the Cherenkov light produced by the charged particles, which has
a wavelength lying between 300 - 650 nm. Several solutions have been studied both for the choice of
the medium (radiator) and of the photodetector; they are briefly discussed in Sec. The final
choice is to use photomultiplier tubes (PMTs) to detect the light and fused silica (quartz) as radiator.
The detector design has been mainly guided by the constraints on the radiation resistance, available
space and time (it has to be ready before the start of Run 3 beginning of 2022). The final design
is described in Sec. 2.2l The main contributions of this work to the PLUME detector concern the

choice and testing of the readout electronics and the timing measurement described in Sec. and
Sec. respectively.

4.2.1 First prototypes

At the time the project started, few options for the radiator and photodetector have been considered.
Several setups have been tested at DESY facilities, in December 2019, with a beam of electrons bunches
of 6.5 GeV at 2 kHz and using an Hamamatsu R7378 PMT. The following setups have been tested
and more details can be found in Ref. [I86]. The first option implies a quartz fiber bundle as radiator
positioned at 45° with respect to the incoming particles (corresponding to the opening angle of the

Cherenkov cone) to maximize the light yield. The bundles allow to transport the light outside the high

bunches" if they are within one of the other 9 buckets (hence within 25 ns), or "ghost charges", if they are in an empty
slot within two groups of 10 buckets.
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radiation zone. A yield of about 7 photoelectronsﬂ (p-e.) per incoming electron has been measured.
The second configuration consists in adding a garnet scintillator as radiator and use the bundles to
transport the light to the PMT. The measured light yield was lower, 4 p.e. per incoming electron, due
to the small size of the tested crystal. Moreover, the signal was too long in time. The third tested
configuration consisted in placing the garnet directly on the PMT. This gave a much higher yield, 400
p-e. per incoming electron, with a decay time of 14 ns for the output signal pulse. As fourth option,
the PMT alone with its quartz window has been tested. The latter option has been inspired by the
design of the LUCID detector [I87][188], a luminosity detector placed in the ATLAS experiment. This
gave a short signal pulse (3 ns) and a reasonable yield of 24 p.e. per incoming electron; the signal

obtained is shown in Fig. [£.4] The fifth and last option tested consisted in a system of parabolic
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Figure 4.4: Signal from the DESY test beam for the PMT coupled to a quartz tablet. Left: response
of the PMT, the charge was measured in V -ns over 50 Ohm, hence one unit corresponds to 20 pC.
Right: signal shape out from the PMT. From Ref. [186].

mirrors to transport the light, produced in a radiator or in a scintillating crystal, to the PMT thus
avoiding again the high radiation zone. The light yield was found to be lower due to the poor optical
tuning of the system. Furthermore, this option would require more space and a complex mechanical
configuration. Out of this test beam, the PMT with a quartz tablet on top appeared to be the most
suitable option in terms of signal speed, radiation resistance, light yield and mechanical complexity.
In this system, the native PMT quartz window serves as radiator and the additional quartz tablet is
used to increase the signal yield. This increase is however moderated by the quality of the contact
between the tablet and the PMT window.

!Photoelectrons are the electrons created in the PMT photocathode by the incoming photon (via photoelectric effect),
see Sec. @ for a detailed description of the working principle of a PMT.
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Figure 4.5: Total simulated dose in the region upstream the LHCb VELO detector that will be
accumulated during the LHC Run 3 corresponding to an integrated luminosity of 50 fb~! [I89]. Left:
ionizing dose in Gy. Right: radiation dose expressed in 1MeV neutron equivalents per cm™2. The
yellow dashed transparent boxes show the approximate position of the PLUME detector. Overlaid on
the top right of each figure, a slice of the xy plane at z = —1570cm is shown. The red dots indicate
the approximate PMTs positions. Adapted from Ref. [190].

4.2.2 Final design of the detector

The PLUME detector will be composed of 48 PMTs placed around the beam pipe in a double cross
structure formed by a two-layers hodoscope as shown in Fig. It will be placed upstream the
collision region and it will be used in a counting mode (yes or no response with a changeable threshold).
This is possible thanks to the small detector size, so that the probability to have two particles crossing
one detector cell is small. The main constraints for the detector design were the available space, the
radiation hardness and the need of a fast signal lying within 25 ns to avoid spillover El and ensure an
efficient readout. The expected radiation dose around the VELO detector for 50 fb~! of data collected
during Run 3 is shown in Fig. The technology based on the measurement of the Cherenkov light
allows to produce and collect a signal within a short time (~ 10ps). The choice of the PMT (instead
of MaPMT for instance) has been guided by the DESY test beam described in the previous section
and by the precious experience inherited from the LUCID detector [I88], a luminometer placed at
the ATLAS experiment that ran successfully during Run 1 and Run 2. Another constraint was set
by the positioning of the detector with respect to the VELO detector. In order to use VELO tracks
for calibration, the two layers of the PLUME hodoscope should be placed between 5 ° and 10 © with

respect to the beam axis. This means that the PMTs will be placed at a distance between 7 cm and

IThe spillover are collisions from an adjacent bunch crossing leaking and producing signal in the next or previous
bunch crossing.
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Figure 4.6: Schematic view of the PLUME elementary detection module.

15 cm from the beam pipe, where the radiation dose ranges from 80 and 200 kGy and the neutron
fluence is around 1 x 10'* neutrons/cm?, see the radiation map in Fig. An additional not negligible
constraint was the short time available to produce and test the detector. From these requirements
the design of the PLUME detector has been defined. Ultimately, PLUME will be a relatively simple
detector based on the collection of Cherenkov light using the same PMTs as in LUCID and positioned
in a double ring shape for calibration with the VELO tracks. The single detector modules along with
the characteristics of the PMTs, the final layout of the detector, the choice of the readout electronics

and the calibration system are discussed in the following sections.

Single detection module

A single detection module is shown in Fig. The PMT is connected to its socket (named PMT
divider circuit in the picture) and placed along with the quartz tablet in an Aluminum light tight
tube. At the end of it, there is a hole to inject light with fibers for monitoring purposes (see the
paragraph on calibration and monitoring below). The PMT is surrounded by a permalloy screen to
provide a shielding against the residual magnetic field at the PLUME position. The total length of
the detection module is 153 mm with a diameter of 24 mm. Then the module will be encapsulated

in a polyetheretherketone (light) material comprising the PMT, its socket and the quartz tablet.

The photomultipliers tubes The photomultipliers chosen for PLUME are the R760 PMT pro-
duced by HAMAMATSU and successfully used in the LUCID detector [I87][188]. A picture of a R760
PMT and a schematic view of its working principle are shown in Fig. .77 The charged particles
striking the PMT window, produce Cherenkov light (either in the window itself or in the PLUME
case after crossing the additional quartz tablet placed in front of the PMT). These Cherenkov pho-
tons are converted to electrons (called photoelectrons) in the photocathode, as a consequence of the
photoelectric effect. Then they are accelerated by an electric field and directed to a chain of dynodes.
After striking the first dynode, more low energy electrons are emitted, and these electrons are in turn
accelerated toward the second dynode and so on until the last dynode. An exponentially increasing
number of electrons is produced at each dynodes and at the end all the electrons (around 10° electrons
depending on the gain) are collected and form a sharp current pulse which can be detected. The R760

PMT has a 1.2 mm thick silica glass (i.e. quartz) window and a photocathode of 10 mm of diameter.
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Figure 4.7: Left: a picture of the R760 HAMAMATSU PMT. Right: a schematic view of the PMT
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of the wavelength. On the right, the gain curve as a function of the biasing voltage.
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It has 10 dynode stages and the gain for an average voltage of 900 V is around 1 x 10%. The variation
of the gain as a function of the applied voltage is shown in Fig. [4.8| (right). The PMT is sensible to
wavelengths within 160 to 650 nm. Its quantum efficiency (QE)D as a function of the wavelength is
shown in Fig. (left). The higher is the Q.E. the higher will be the current at the output of the
PMT and hence the easier it will be to read a signal above the pedestal of the electronics. For this
PMTs, the Q.E. reaches its maximum (~ 23%) around 420 nm. These PMTs have been tested under

0'* neutrons/cm? fluence [191].

irradiation with gamma rays up to 2 x 10> Gy dose and up to 2.7 x 1
The only sizeable effect observed after radiation is the increase of the dark currentﬂ of about one order

of magnitude.

Quartz tablet The addition of a quartz tablet glued on top of the PMT window is expected to
increase the light yield, this has been confirmed by a complete GEANT4 simulation. The simulation
showed that assuming an ideal optical coupling between a 5 mm quartz and the PMT, the light yield
should be increased by a factor 5 [I86]. The gluing procedure is complex, several radiation resistant
materials are under study for achieving the best optical contact possible minimizing the loss photons or
inducing reflections. The choice of the quartz tablet on the other hand, has been guided by a second
test beam performed at DESY, in September 2020, with 5.4 GeV electrons. A PMT coupled to a
polished quartz tablet (Corning HPFS 7980) of 10 x 10 mm? and 5 mm thickness with a TSF451-50M
grease is the option retained from the tests. The radiation resistance of the quartz and of several
optical contact materials has been studied with neutrons at the Kharkov Institute of Physics and
Technology, with a 1 MeV equivalent neutron fluence of 10'* neutrons/cm?. A degradation between
4% and 18% has been observed for the transmittance measured at 200 and 250 nm. The final choice for
the quartz material is the Corning HPFS 7980. For the grease the Seiko-Silicone grease (TSF451-50M)

is chosen as baseline candidate based on the irradiation test results.

Final layout

The final detector layout is shown in Fig. and Fig. The two PMT layers are placed at
z=1680 mm and z = 1900 mm from the nominal interaction point. Each layer forms a double
cross shape in the x — y plane, as shown in the left picture of Fig. The double cross should
allow to detect asymmetries in the beam positions and may provide information on the beam crossing
angle, this is yet to be proven. In total there are 48 PMTs positioned at angles between 10° and 5°,
covering a pseudorapidity (1) range between 2.4 and 3.1. The two layers allow to use the detector
as an hodoscopeﬁ, the coincidence of the two layers allows to perform a standalone calibration. The
addition of the VELO track segments reconstructed upstream and entering in the PLUME acceptance,
allows to get a further clean sample for calibration purposes; more details on that are given in the
next section. The final box containing the detector is shown on the right side of Fig. [4.10] The entire

'The PMT quantum efficiency is the ratio of the number of photoelectrons emitted from the photocathode (primary
electron) to the number of incident photons, where the number of emitted electrons per incident photon is either one or
Z€ro.

2The dark current is the current present in the PMT even if no light falls on the photomultiplier tube.

3A hodoscope (from the Greek "hodos" for way or path, and "skopos" for observer) is an instrument used to detect
passing charged particles and determine their trajectories.
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Figure 4.9: Position of the two projective layers of PMTs forming the PLUME detector. Side view
showing the position along the LHCb beam direction at z = —1680 and z = —1900 mm. The VELO
stations are shown as black vertical lines and the red lines illustrate which VELO stations are ex-
pected to reconstruct a track entering in the acceptance of the two projective layers of PLUME. From
Ref. [190].

detector can be dismounted in less than one day if an urgent intervention on VELO is necessary.

Calibration and monitoring

The stability of the detector changes with time, thus a monitoring system is needed to monitor
the variations and perform regular calibrations during the entire data taking period. The gain and
efficiency of the PMT are the two quantities that can undergo large variation depending on the
detector occupancy, current, temperature or radiation dose. The monitoring system designed for
PLUME follows the solutions implemented for the LHCb ECAL [192], based on LEDs light injection,
and complements it with an additional calibration method using upstream VELO tracks. The LED
light is injected into the elementary PLUME modules using fibers (shown in blue in Fig. . The
response of the PMTs to the injected light is monitored at regular time intervals and since the LED
signal can last more than 25 ns (FWHM of the pulses is ~ 15ns), the monitoring is performed during
the abort gapsﬂ of the LHC filling scheme. The stability of the LED pulses is in turn monitored
by PIN photodiodes (Hamamatsu S1223-01) placed on the balcony next to the LEDs. Based on the
monitoring response, the gain can be corrected by adjusting the high voltage with steps of 0.5 V,
corresponding to a 2 % gain variation. The calibration using the upstream VELO tracks imposes
a strong constraint on the detector geometry. The calibration sample will require 4-5 reconstructed
upstream VELO tracks pointing towards PLUME and a coincidence signal matching the PMT of the
second hodoscope layer. The coincidence allows to suppress secondaries (i.e. tracks which are not

coming from the primary pp interaction vertex). This requirement strongly influenced the positioning

IThe abort gap is a sequence of buckets in a row which are supposed to be unfilled for the beam dump procedure.
When a beam dump is triggered, it takes a certain amount of time to switch on the deviating magnets used to deflect
the beam into the dump. During this time the superconducting magnets should not receive any particle, that is why the
abort gap exists. During Run 2 it was 3.05 us long (121 slots).
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e e

Figure 4.10: Left: PLUME (crossed shape) detector view on the x —y plane. Right: view of the entire
detector box upstream VELO. From [190].

of the PMTs with respect to the VELO detector, in order to have 4 or 5 upstream VELO tracks in
the PLUME acceptance the PMTs layers must be placed as shown in Fig. A simulation (based
on PYTHIA8 and GEANT4) has been performed and according to it the coincidence between the
two layers is detected in 1.5 % of the cases leading to a ratio of primaries to secondaries of 1:2. This
proves that the coincidence is needed to deliver a clean signal of particles coming from the interaction
point. In addition to the quartz fibers transmitting the LEDs light, one plastic fiber (Eska CK-40)
per LED sends light to the PIN diode to monitor the LED itself and four short fibers (passing in the
PLUME box) are used to loop the light back into the bundle. This light is measured by four R760
PMTs to monitor the quartz fiber transparency variation due to radiation. The entire monitoring
system will be readout by an extra ECAL front-end board and will be configured by a LED timing
unit (LEDTSB).

4.3 Front-end electronics for PLUME

Three options have been considered for the PLUME front-end electronics (FEE), all based on existing
boards to be adapted to the PLUME case. Indeed, due to the short time available, the production of a
new customized board was not possible. The first option considered was to use the updated Front End
electronics of the LHCb electromagnetic calorimeter (ECAL). The second option considered, was to
use a RICH-like electronics, based on the CLARO chip [I72]. Both options allow for a fast integration
in the data acquisition system (DAQ) and the Experiment Control (ECS) of LHCb. The third option
was based on the LUCID detector readout experience. The PLUME readout should be able to run
online, offline and as well independently of the other detectors, especially for the luminosity levelling

procedure and the beam monitoring tasks. The advantage of using existing LHCb boards is that they
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Figure 4.11: Picture of one ECAL FEB with a zoom on the front end block, showing a functional
schematics of the front-end block, the power circuitry, the slow control (GBT-SCA) and trigger module,
adapted from[193].

are already adapted to readout a signal at the LHC rate within the LHCb data acquisition system.
However the expected signal shape from the PLUME’s PMT is different from the usual ECAL PMT
one. A much shorter pulse is expected, see Fig. (right), with a pulse widtlﬂ varying between 3 and
5 ns. In this work, the ECAL electronics has been tested to prove that it can be used to read-out the
PLUME-like signal. Ultimately, the RICH and LUCID electronics have not been directly tested since
the first option was already working and it was more easily accessible since the boards are tested at
IJCLab.

4.3.1 ECAL-like read-out chain

The electronics chain consists of a front-end part (FE) located close to the detector, and a back-end
part (BE). The FE part is composed by the front-end boards (FEB) and the control unit board (3CU).
The BE is ensured by a TELL40 (PClIe40) board.

Front-end boards The ECAL Front-End Boards (FEB) have been re-designed for the readout of
the upgraded calorimeter [I93]. Their role is to amplify, shape, integrate and digitize the signal coming
from the detector’s PMTs. A picture of a FEB is shown in Fig. A functional schematic of one
front end block is also shown to help following the description. Each board is composed of 4 FE
blocks treating 8 channels each, thus one board can handle 32 channels. One front-end block has 2

ICECAL analog chips, for a total of 8 chips treating 4 channels each. Then two 12 bits Analog to

'Here width is the Gaussian Full Width at Half Maximum (FWHM)
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Bits ECAL PLUME

0. .95 ADCs: 12 bits per channel ADCs: 12 bits per channel
Over threshold: 1 bit per
channel, 8 channels

BClIds, same as ECAL

96 .. 103 LLT information

BClds, only 8 bits out of the 12 bits

104 .. 111 are transferred

Table 4.1: Data format, comparison between ECAL and PLUME organisation.

Digital Converter (ADCs) AD9238, convert the analog output into a digital one. The digital output
of the 2 ADCs is processed by one FPGA (4 in total). As each FEB treats 32 channels, the ADC
data requested bandwidth is 12 x 32 = 384 bits, 12 bits per channel and 32 channels, at 40 MHz. The
FPGA re-synchronises the signal of each ADC channel to the LHC clock and performs a subtraction
of the pedestal (when required) based on the previous samples reducing the low-frequency noise. The
data are then sent via GBT-X chips and optical fibers to the DAQ back-end boards (PCle40) for
processing by the software trigger. There are 4 GBT-X chips, one per optical fiber. To summarize,
one front-end block reads 8 channels and it is composed of 2 ICECAL, 2 dual-channel ADC chips, 2
FPGA, one GBT-X. A FEB contains 4 of these front-end blocks.

Back-end electronics and data format The back-end electronics (BE) is ensured by PCle boards
[194], widely used for the LHCb upgrade. It receives data from the FEE in a 12-bit ADC word per
channel. The data processing is done in a TELL 40 board with a firmware specifically designed for
PLUME. This board has three main tasks: compute the instantaneous luminosity, format the data to
be sent to the high level trigger for offline storage and send an alarm in case of too high occupancy.
The first task consists in filling histograms with the number of hits in coincidence (between the two
hodoscope layers) measured by PLUME. The luminosity is inferred from the number of events without
any hits over the total number of events, as explained in Sec. The luminosity histograms can be
also produced per bunch since the FEB RAW data contains the Bunch Crossing Id (BCId) information.
The content of the histogram is read and updated at a rate of 1 Hz, then the content is sent to the
LHC control system and stored in the central ECS database. Histograms are also sent to the online
monitoring system to check that the calculations are done correctly by comparing with other quantities
measured by PLUME. The second task performed by the TELLA40 is to format the data. The firmware
for the data formatting is similar to the one used by the calorimeter, the only difference being that
the calorimeter LLT (Low Level Trigger) information is not needed. The bits used to transfer the LLT
information for the calorimeter are used to store the threshold information instead. Each FEB has 4
optical fibers with 112 bits organized as shown in Table Along with the TELL40, one other board,
the SOLA40, is needed for handling the configuration, timing and control commands. This board does
not need to be modified for PLUME. The BE must provide measurements even when the LHCb DAQ

is not running, hence the system will be running independently and constantly.

Calorimeter Control Card Unit The Calorimeter Control Card Unit (3CU) is in charge of sending

the commands received from the main LHCb control system to the front-end boards via the backplane.
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Figure 4.12: Schematic view of the analog electronics. From Ref. [193].

Each calorimeter crate needs to have at least one 3CU board plugged in, positioned in the central
slot. The information sent to the FEBs are the 40 MHz clock, the Time Fast Control (TFC) and
the Experiment Control System (ECS) commands. First the 3CU receives the clock and the TFC
commands through optical transmitter (VTRx) decoded inside the GBTX. Then the data are processed
by a FPGA (IGLOO2 family) and finally the board communicates with the FEBs via the 3U backplane.
A more detailed description of the board components can be found in Ref. [I95]. The 3CU do not need
to be additionally tested for the PLUME detector since it only treats commands which are not related
to the signal shape itself or the detector choice. However, one 3CU board is needed for PLUME to

communicate with the FEBs.

ICECAL chip The ICECAL chip [196] is schematically shown in Fig. 4.12} The signal coming
from PLUME is transported by a ~ 25 m CK50 cable to be injected in the ICECAL chip, which is
positioned at the very beginning of the front-end block, shown in Fig. m (right). Inside the ICECAL
chip, the signal is first amplified with a current amplifier. Then, the ICECAL contains two processing
lines running at 20 MHz each, synchronized with the 40 MHz global LHC clock (called "Ref clock"
in the figure) which arrives from the GBT-X of the front-end module. Each processing line shapes
the signal with a pole zero compensation, then it either integrates the signal or is reset. The signal is
then sent in a "track-and-hold module", which stores the signal and does the sampling. The two lines
are followed by a multiplexer which selects the correct sub channel and presents the integrated signal
at the output. An ADC driver matches the input impedance to the ADC one and sends the input
charges to it. The ADC needs a clock to properly sample the ICECAL output. The phase of this clock
can be tuned (ClockADC); it is synchronized with the phase of the track and hold clock (ClockTH)
to perform the sampling correctly. The polarity of the FPGA clock (positive or negative depending
on the phase shift between the two clocks), can also be set. The entire chip is configured through the
TrigSeq FPGA with the SPI protocol (Serial Peripheral Interface). This allows to set the pole zero
compensation parameters, the gain of the integration processing and the clock phase to synchronise

the signal integration within 25 ns. This chip plays a crucial role in the timing measurement discussed

in Sec. [4.5.4]
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4.4 Test of the adaptability of ECAL FEBs for PLUME

In order to assess if the ECAL FEBs can be used for PLUME, a first test has been performed using the
signal shape observed in the data collected during the DESY test beam, for the configuration with a
PMT with a quartz window, see Sec. The signal shape, shown in Fig. has been emulated with
a Tektronik (DP0 4104) generator. The shape obtained with the generator is a Gaussian pulse of width
3.34 ns and an amplitude of 210 mV, which corresponds to a total charge of roughly 6.68 x 10712 C.
The data acquisition is performed using the miniDAQ system available for the ECAL FEB test bench

Signal with pedestal substraction Pedestal for bxid==3355
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Figure 4.13: Example of reading out the expected signal shape with the ECAL FEE. Left: signal after
pedestal subtraction. Right: pedestal from following bunch crossing.

which is equivalent to the LHCb DAQ system that will be used in Run 3 (the firmware version used
was updated in February 2020). At first the acquisition of 100 000 events was performed running
with random bunch crossing identification value (called, BCIDs or bxid) from 0 to 3565ﬂ The bxid
are synchronized with the LHC clock and sent to the FEBs by the miniDAQ. This has to be done
since there is an unknown delay between the moment the input signal is collected and the moment
it arrives in the FEBs, hence the corresponding bxid of the input signal has to be determined. The
delay is mainly due to the length of the cables sending the signal from the generator to the board.
Each ICECAL has 2 time integrators working in parallel, each at 20 MHz: one for odd and one for
even bunch crossings. The input signal width is short with respect to the time window of the ADC
integrators (25 ns). However, one needs to check that the signal is well comprised in a single BX
sampling (i.e. one single integrator), otherwise a part of the signal could be lost. The signal was found
to be at bxid 3353, hence the second data acquisition was performed in a window of 3350 46 bxids in
order to acquire the entire signal data. In this acquisition, the clock’s phase was set to 12 ns for the
odd integrator and 0 ns for the even one, in order to collect all the signal with the odd integrator. The
pedestal was subtracted using the next odd bx-id (see Fig. right) and it was found to be around
311.1 ADC counts. The signal after pedestal subtraction is also shown in Fig. (left) and found to
be at 593.4 ADC counts. More details on the pedestal subtraction are given in Sec. The gain is
thus estimated to be % =11.26 fC/ADC. This test has been repeated with a more complete
setup including a LED or a laser, one Hamamatsu PMT and the low attenuation CK50 cable that

13564 is the total number of bunches at the LHC
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will be used to send the signal from PLUME to the FEE. This second test was also successful. The
details are not given here since the setup is further discussed in Sec. and some examples of
signals are also shown there. These tests proved that the LHCD calorimeter FEBs can be used for the
PLUME readout without additional hardware modifications, making this option the most convenient
and easily adaptable one for the PLUME readout. This studies have thus defined the final choice for
the PLUME front-end electronics.

4.5 Timing measurement

In order to readout synchronously the entire LHCb detector when a collision happens, a global clock set
by the LHC is used to track the crossing bunches. Each of the subdetectors electronics is synchronized
relative to the LHC clock to sample correctly the signal within 25 ns. The LHC clock arrives to the
LHCb experiment via optical fibers travelling underground. Due to variations of temperature, the
clock can undergo a shift up to few ns before arriving to LHCb inducing a desynchronization of the
detector readout with respect to the LHC collisions. This shift has to be monitored in order to achieve
optimal performances during Run 3, especially with respect to the calibration and alignment of the
detector. For this reason, a measurement of the clock delay using the PLUME detector is proposed

here.

4.5.1 Run 1 and Run 2 case

During Run 1 and Run 2, a clock shift has been observed and it has been corrected using the Outer
Tracker timing measurement. The OT is a gaseous straw tube detector composed of drift tubes, see
Sec. 3.2.2] for more details. The OT electronics measures the drift-times of the ionization clusters
produced by the charged particles hitting the straw tubes with respect to the beam crossing signal.
This time is converted into position information to reconstruct particle’s trajectories. The shift of the
global LHCb clock contributes to the total drift time and it can be extracted from the average of the
drift-time residual distribution over the whole OT calculated for every run. During Run 1 and Run 2,
this drift was automatically corrected if it changes by more than 0.5 ns. An example of average drift
time residuals as measured for Run 1 is shown in Fig. It has been shown that, if kept under 0.5
ns, the overall shift of the LHCDb clock is well below the time resolution of 3 ns and therefore it does

not contribute significantly to the detector resolution [197].

4.5.2 PLUME timing strategy

The OT detector will be removed during Run 3. The new tracking detector, the SciFi, does not
use the straw tubes technology but rather scintillating fibers, hence the timing measurement cannot
be performed anymore by means of the tracking system. A new way of monitoring the time drift
of the LHCD clock using the PLUME detector is proposed here. The PLUME detector is based on
the Cherenkov technology, this means that the production of light, by charged particle hitting the
quartz tablet, and the transmission to the PMT happens within 7-10 ps (depending on the detector

geometry). The PMT itself takes around 22 ns to produce a signal, with a raising time of 2.1 ns.
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Figure 4.14: Average drift time residuals measured by the LHCb OT. Every point is a one hour run.
The arrows show the adjustment of the LHCb clock, from [197].

Hence, the production and collection of the signal within PLUME is very fast. Furthermore, in the
front-end electronics, a delay of the sampling time with respect to the central LHCb clock can be
easily adjusted for each of the 32 channels independently with a step size of 1 ns. These two features,
the fast signal and the tunable delays, can be exploited to perform a timing measurement as explained
in the following. The integration of the signal is performed in the ICECAL chip. As explained in
Sec. there are two integration lines running in parallel at 20 MHz each, alternating 25 ns of
integration and 25 ns of rest mode. The alternation of these two integrators has been designed to
minimize the losses due to dead-time within two consecutive integrations. A schematic view of the
integration process happening in the ICECAL is shown in Fig. From top to bottom, the LHC
clock, the PMT pulse, the integration and the track-and-hold systems (T/H) are shown as a function
of time, with the 2 integrating lines drawn in green and red. This drawing is not to scale, it is aimed
at guiding the reader through the explanation. The input pulse (from PMTs) is integrated by the first
integrator during 25 ns. At the same time, the output charge is transferred to the hold capacitors of
the T/H system. Meanwhile the other integrator stays in reset state. During the following 25 ns, the
first integrator switches to reset mode and the second one performs the integration of the tail of the
signal which did not fit in the first integration window. Here again, the signal is transferred to the
(second) T/H system. Then the multiplexer combines the two signals to send them to the ADC drivers
after selecting the correct integration channel. Each integrator is tagged using the bunch crossing ID.
Since the BCID changes every 25 ns and the two integration lines operation last 50 ns with 25 ns
per line E], it is possible to associate a BCID to the first integrator and the subsequent BCID to the
second integrator. In this way, once the initial assignment is done, one integrator will always have
odd BCIDs and the other even ones. The phase of the T/H clock can be adjusted, which implies that
the output charge of the integrator is moved to the track and hold phase earlier (or later depending
on the delay). This is equivalent to changing the starting time (tJ*') of the signal integration process
and thus applying a delay with respect to the LHC clock. By moving t&", the first integrator is not

integrating the whole signal anymore and the second integrator integrates a bigger part of the signal

!The first BCID is assigned randomly to one of the two integrators at the beginning of a run, hence the odd/even
association with the first/second integrator can be inverted depending on the run. However it is also possible to require
having always the same odd/even association by changing the settings of the FEBs at the beginning of each run.
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Figure 4.15: Sketch of the integration process within the ICECAL chip (arbitrary units on y axis) for
an ECAL-like signal.

rather than only the tail. Thus by gradually increasing the delays from 0 to 25 ns, it is possible
to perform a scan, monitoring the gradual shift of the signal (previously fully contained in the first
integrator) from one integrator to the other. This shift is shown schematically in Fig. where the
area of the Gaussian signa]lﬂ integrated by the integrator tagged as BCID 39 is shown in magenta and
for the BCID 40 in cyan, three different delays are shown (10.5, 12.5 and 14.5 ns), to help visualizing
the shift of the signal integration window. If the LHCDb clock is perfectly synchronized with the LHC
clock, for a delay of dgp;; = 12.5 ns the signal should be half-half split between the two integrators. By
drawing the difference of signals between the two integrators (i.e. between two consecutive BCIDs) as
a function of the delay applied, it is possible to measure where is the half-half splitting point situated.
This should give a curve, with a typical S-shape, where the inflection point correspond to dgp;. The
ideal S-shape curve that one should obtain is shown in Fig. [£.I7] The tails correspond to a signal
fully integrated by only one integrator. A shift from the expected dp;; = 12.5 ns value would indicate
a desynchronization of the LHCb clock with respect to the LHC one. The resolution required for this
measurement should be at least as good as the 0.5 ns obtained with the OT for Run 1 and Run 2.

I'Note that the signal shape is only approximately Gaussian.
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Figure 4.16: Gaussian signal shape for different delays (10.5, 12.5 and 14.5 ns). The magenta region
represent the signal integrated by the integrator tagged as BCID 39 and the cyan as the BCID 40.
The dashed vertical lines represent the 25 ns window.

2 ]
O l— —
-Signal in BCID 39 .
-05 = ! : ! -

0 10 20
delay [ng]

Figure 4.17: Ideal S-shape for delays from 0 to 25 ns. The dashed vertical line indicates the point
dspiit = 12.5 ns. The magenta region correspond to a signal integrated by the integrators tagged as
BCID 39 and the cyan one to the integrator BCID 40. The grey part of the curve represents the region
where the signal integration is gradually shifting from one integrator to the other.

4.5.3 First timing measurement

General setup

The setup used to perform the time measurement is sketched in Fig. and described in the
following. A laser with a wavelength of 405nm and an output power of 700 mW is used as light
source. It is brought inside a light tight box via an optical fiber. The laser is controlled via a EIG
1000D controller (Advanced Laser Diode Systems A.L.S. GmbH). The trigger is given to the laser
controller by the 3CU control board at a 11.25 kHz rate synchronized with the BCIDs. The laser’s
controller input for trigger can only read signals in a range of +5 V and the output signal provided by
the 3CU is much smaller (~ 800mV) hence an intermediate step is needed. The 3CU trigger is used
to trigger a generator which will in turn produce a pulse with an amplitude up to 4 V synchronized
with the BCID, that can be used to trigger the laser. In the light tight box, in front of the laser,
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Figure 4.18: Schematic view of the setup. A picture of the inside of the box showing the laser (in
yellow) and the PMT on the right is shown. The CK 50 cable (in brown), the PMT high voltage
supply, the amplifier, the laser controller box and the FEBs (on the right) are also shown.

one Hamamatsu R760 (shown in Fig. [4.7)) is placed in a socket with customized divider circuit. The
inside of the box is shown in Fig. [£.I8] top left corner. The PMT high voltage is provided by a
high voltage power supply module (T1DP 050 205 EPU) set to negative polarity. The PMT signal is
sent to the FEBs via a 25 m long CK50 cable (the length expected for the final PLUME detector);
these cables are chosen because they have very low attenuation effects. The cable is then connected
to the FEB channels using mini-LEMO connectors. The data acquisition is performed using the same
miniDAQ system as the previous test, with the firmware version of November 2020. This setup is used
to perform two measurements. For the first one, the signal is directly injected to one of the FEBs
channels (this option will be called internal delay mode), in the second one the signal is split in 8
sub-channels via 4 subsequent one-to-two splitters (this options will be called split mode), each sent
to one of the 8 input channels of one front-end block. In the first case, the delays are applied changing
the FEBs settings for one channel via the miniDAQ, and taking data for each new delay configuration.
In the second case, different delays are applied to each of the 8 channels simultaneously and data are
taken only once. The disadvantage of the second configuration is that the input signal amplitude is
decreased at each splitting step, hence the PMT signal amplitude should be at least 8 times bigger
than the electronics pedestal to be readable after splitting. This problem could be partially solved by
increasing the high voltage of the PMT up to 1.2 kV to have a larger signal amplitude, however this
would cause a fast aging of the PMT. On the other hand, even if the first configuration has larger
amplitude it would require further developments of the firmware to perform an automated scan for

different delays starting from the single signal acquired and it would probably lead to a worse precision
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Figure 4.19: Example of the pedestal shapes for the two integrators: (left) odd and (right) even, from
run 1049.

since it is impossible to have identical signals at the input. Data are taken with the calorimeter FEBs
(at IJCLab) in March 2021. The FEBs are used without the internal pedestal subtraction. The
pedestals are carefully removed offline using the previous odd or even BCID corresponding to the odd
or even "tagged" integrator. It is not possible to simply use the pedestal of the previous (or next)
BCID, mixing odd and even BCIDs, because the two integrators have different pedestals. An example
of pedestals are shown in Fig. the even pedestal mean varies around 260 ADC counts with a
standard deviation of 1.7 ADC counts, the odd one varies around 336 ADC with a similar standard
deviation. The two setups, internal delay mode and split mode, are discussed below, where the first

one can be seen as a test to see if the general approach works.

Internal delay mode

The PMT are powered with a high voltage of HV = 1.0011kV resulting in an output signal amplitude
of ~100 mV and a width of 6ns (for a 50 Ohm impedance), corresponding to roughly ~ 6 pC. The
entire signal is sent to one of the 32 channels of one FEB and several runs are taken with different
delay settings. The purpose of this preliminary test is to prove that when the signal is split within
the two integrators, it is still measurable. This proof is necessary since the FEBs were not designed
for this end, on the contrary in the ECAL case, the delay settings are used to make the PMT signal
(except the tails) fit in one integrator. When the signal is integrated by two different integrators, the
dead time around 1 ns to switch from one to the other could cause a loss of part of the signal, however
this can be partially recovered after calibration. In total, 19 runs are taken with delays from 5 to
30 ns. For each run, 4 BCIDs are taken, and an example of signal without pedestal subtraction is
shown in Fig. for runs 2486 and 2469, corresponding to a delay of 5 and 26 ns. The results are
summarized in Table £.2] from the left to the right the mean in ADC counts measured for the two
integrators (i.e. for two subsequent BCIDs), the delay and run number are shown. This test shows
that the signal can be split between the two integrators and still readout by the electronics. The
under-pulse, which is a signal below the pedestal, seen when shifting the signal is due to the pole-zero
(PZ) compensation circuit in the ICECAL, the parameters of which can be changed easily. These
parameters were optimized for the ECAL PMT signal which is larger than the expected PLUME one,
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Mean BCId Mean BCId

31 [ADCs] 32 [ADCs] Dol (] Run number
164.73 562.29 5 2469
592.01 441.00 6 2470
707.42 342.21 7 2471
773.40 280.29 8 2472
881.00 206.95 9 2473
911.78 179.04 10 2474
955.79 155.94 11 2475
999.61 145.26 12 2476
1000.74 152.30 13 2477
994.13 166.37 14 2478
966.41 188.84 15 2479
963.56 201.39 16 2480
944.86 219.10 17 2481
910.17 241.67 18 2482
889.51 256.20 19 2483
878.95 266.66 20 2484
883.53 265.44 21 2485
842.07 206.10 26 2486
388.95 651.88 30 2487

Table 4.2: Mean value of the signal without pedestal subtraction for two integrators (BCIDS 31 and
32) with different delays.

hence it will be necessary to tune again those parameters to remove the effect of the PZ filter which

is not necessary for PLUME.
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Figure 4.20: Example of signal shift without pedestal subtraction, for 4 different BCIDs. The z axis
shows the number of ADC counts. Top run 2469, bottom run 2486. For both the top and bottom
plots, starting from the top left corner, the BCIDs are 30, 31, 32 and 33.

Split mode

In this configuration, the signal is first split into two sub-channels using a Suhner power divider with
a 6 dB attenuation (corresponding to an attenuation factor of 3.98) and 50 Ohm impedance for each
branch. From these two branches the signal is further split into a total of 8 copies using Wye splitters.
A picture of the splitters, with a sketch of the circuit and a schematic view of the complete splitting
chain are shown in Fig. Then the signal is connected to 8 channels of one FEB and the delays
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L&
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Figure 4.21: Picture of the splitters used to separate the signal in 8 signal copies.

are applied to each channel (using WinCCﬂ panels ). The PMTs are supplied with 989 V. Four runs
are taken, with different delay ranges and steps, the running conditions are summarized in Table

4.3] Then, event by event, an histogram is filled with the difference of ADC counts between two

Run Step [ns] First [ns] Last [ns]
1008 3 0 21
1049 3 0 21
1051 2 10 24
1053 2 6 20

Table 4.3: Run conditions.

subsequent integrators, AS = Sy — Sy11. Only 8 channels are used, hence the other channels will
have a distribution around 0 ADC count after pedestal subtraction, showing the mean noise. The
result for Run 1008 is shown in Fig. [£.22] where the signal was connected to the channels 8 to 15,
corresponding to the red shaded sub-plots. The histograms are fitted with a double Gaussian function,
and the result (mean and width) are overlaid on the plotsEl Similar plots for runs 1049, 1051 and 1053
are shown in appendix [A] The mean values obtained for the signal channels from the fit are summarized
in Tab. From these measurements AS can be plotted as a function of the delay. The S-shape
obtained is shown in Fig.

LWinCC is a system, created by Siemens, which provides a human-machine interface (HMI) to control processes and
perform data acquisition of several machines (in this case several FEBS) at a time and on a large scale.

2The width is computed using quantiles since the distributions are not always Gaussian, it is obtained by removing
the 100 worst outliers with extreme ADC values, then the width is defined as the region containing all the data but 100
events (i.e. X% of the data where X =1—110/nevents). This width is then scaled to the number of corresponding sigma
for X%, in other words it is scaled back to contain 68% of the data which would correspond to the 1 sigma region for a
Gaussian distribution.
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Figure 4.22: AS distributions for Feb 4, 32 channels (Run 1008) as a function of the ADC counts after
pedestal subtraction. The red bold lines are double Gaussian fit to the distributions and the bias and
the width results are shown on the sub-plots. The red shaded channels have a non zero mean and
correspond to the channels where a signal is seen.

Channel

AS[ADCs]

Error [ADCs]

Delay [ns]

8

9

10
11
12
13
14
15

-155.15
-141.85
-137.42
-134.27
-94.92
131.26
201.83
213.25

0.09
0.29
0.29
0.52
0.52
0.29
0.15
0.41

0
3
6
9
12
15
18
21

Table 4.4: Result of the fit to the signal after pedestal subtraction for Run 1008.
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Figure 4.23: S-shape distributions for runs 1008, 1049, 1051 and 1053. The bottom right plot shows
—AS =S40 — S39 as a function of the delay.
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Parameter Fit results
Run 1008 Run 1049 Run 1051 Run 1053
a —361.244+0.55 —209.548+1.17 —190.824+0.33 178.04=£0.66
b 0.87+0.02 7.691+0.75 0.59+0.01 16.32+0.62
c 1.1440.08 0.04+0.01 3.47+0.35 0.0223 £0.00
d —208.824+0.55 —130.43+1.17 —109.984+0.04 105.92+0.62
f 13.89+£0.11 13.07+£0.03 18.24£0.23 13.80£0.02
x?/ndf 1877.82 722.76 477.95 146.84

Table 4.5: Result of the fit to the S shape for runs 1008, 1049, 1051 and 1053.

The S shape is fitted with a composite function:

(1+exp(b(z — f))°) —d

flx) = (4.6)
where the parameters b, d, a and f corresponds to the slope, a constant, the maximum asymptote
and the inflection point. The results of the fit are shown in Table Note that for run 1053 the
shape is inverted since it is —AS = Sy9 — S39 that is shown. Even though the fit is not describing the
data perfectly (one can see that looking at the large values of x?/ndf), this shape is found to give an
approximation of the inflection point, corresponding to the fitted parameter f to be compared with
the expected value of 12.5 ns.  The resolution on the inflection point needs to be measured with
more runs in the same conditions in order to monitor how is the inflection point varying for each
measurement. The spread around the inflection points will give an idea of the resolution that could be
achieved with this measurement. Here as a preliminary measurement only two runs have been taken
with the same conditions, run 1008 and run 1049, and the results are shifted of 1.39 ns and 0.57 ns
from the expected value, meaning that the resolution of the measurements could be eventually larger
than 0.5 ns, which is the resolution achieved by the OT in Run 1, but no conclusions on the expected
resolution can be given here. The other two runs, 1051 and 1053, show an even larger variation
around the expected value of 12.5, meaning that noise effects are dominant and need to be further
investigated. A possible improvement could be obtained by selecting only runs where the input signal
is stable within a few percent level for instance. Furthermore, the noise could be better controlled
by using an improved splitter system which would allow to have less variations of the input signal
shape after the splitting. A more detailed study measuring the expected resolution with an improved
splitter is on-going at IJCLab, few measurements with a resolution below 80 ps have been obtained
and all the measurements show a resolution at least smaller than 250 ps. This work will be continued

by other PhD. students in the near future.

4.5.4 Conclusions on the timing measurement

The results obtained for the S-shapes are promising, however there is still room for improvement.
The split mode option will be chosen as baseline for this measurement with two dedicated PMTs,
within the ones positioned in the smaller tilted cross (see Fig. , and 8 channels of the front-end

boards will be (permanently) dedicated to this measurement. The internal delay mode relies on the
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reproducibility of the input signal which cannot be ensured whereas for the split mode the signal copies
after the splitting are all approximately the same making the measurement more stable, this is way
the latter is chosen as baseline solution. The choice of the delay steps size can be further optimized.
In total there are 8 channels available and the delay steps is chosen depending on which region is
scanned within the 25 ns. For instance, with a step of 3 ns, one can scan a window from 0 to 24 ns
or for a delay step of 2ns, from 0 to 16 ns. To optimize the S-shape measurement one needs an high
number of points (and hence a smaller delay step) around the inflection region to better constrain the
fit in this region. Choosing 1 ns steps would allow to perform the scan only on a small time window
(maximum 1 x 8ns), the inflection point region would be better constrained however in order to fit
the S-shape few points outside the inflection region are needed, thus this would probably not be the
optimal step size. A possible way to determine the optimal step size would be to perform first a scan
with a large step size, for instance 3 ns, to find the inflection point region and few other extreme
points at the beginning of one of the first runs of PLUME. Then, perform the successive scans with
smaller steps around the inflection region, including some points outside it obtained from the previous
measurement to constrain the S-shape fit. Another possibility would be to take the first two points
with a 6 ns step covering from 0 to 12 ns, then 4 points with 1 ns steps from 9 to 13, and finally two
other points with a 6 ns step; this options would allow to cover the full 0 to 25 ns window with an
higher precision around the inflection region. The splitting of the signal could be also optimized using
a printed circuit instead of the "homemade" splitter used for the tests discussed above, to be placed
inside the FEBs. Finally, one could eventually verify if better connectors and cables (mini-LEMO)

would reduce the noise and improve the precision of the timing measurement.

4.6 Conclusions

The PLUME detector, which will be installed for Run 3 in 2021, is an inexpensive detector which
will provide a fundamental measurement for physics analysis, the luminosity, and which in addition
allows to monitor the beam conditions and the time shift of the LHCb clock with respect to the LHC
clock. In this work the FEBs of the LHCb ECAL have been shown to be suitable for the readout of
the PLUME detector. The FEBs have been first tested with a simple generator emulating the signal
obtained in the test beams and then with a more realistic setup where the signal is obtained with a laser
pointing to one of the PLUME PMTs. A preliminary timing measurement has been performed and
the setup will be used for further measurements which will allow to determine the expected resolution
achievable with the PLUME electronics and which are already on going. The aimed resolution is at
least below 250 ps and can be improved up to 70 ps (following the results obtained while writing this
manuscript). Even if very preliminary and incomplete (due to the lack of time partially linked to the
COVID-19 pandemic), these results open the way to a promising and unexpected additional timing
measurement that the PLUME detector could perform. As an outcome of this work, the ECAL FEBs
have been chosen for the front-end electronics of the future PLUME detector and a preliminary timing

measurement has been performed giving promising results.
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Helicity formalism for baryonic
three body subsequent decays

5.1 Introduction

The conventional way to describe a decay to multi-body final states relies on the isobar model which
is describing the process as a succession of two-particles decays. The intermediate resonance states
are called "isobars" and they are described by dynamic functions, usually called “lineshapes". For a
three-body decay A — a+ b+ ¢ there are three possible combinations giving three different isobars:
A— (Ry —a+b)+c, A—a+(Re —b+c)and A— (R3 — c+a)+b. The decay amplitude is factorized

in a dynamic part A,,(m,,) and an angular part ), (Q):

‘Qf(ﬁ) = Zwﬂ(ﬁ)An(mﬂ) (5'1)

where () are the phase space variables, r; is the i resonance and m,, its mass. The choice of the
lineshape A, (m,,) parametrization is guided by experimental data or existing models and it introduces
a bias in the amplitudes since it requires a specific modeling. The angular amplitudes v,, instead are
derived from first principles of quantum mechanics without any a priori assumption on the physical
process studied. They can be described using different approaches (helicity amplitudes, covariant
formalism, Zemach tensor formalism, ...) and they only depend on the spin and angular momentum
of the particles. In this work the helicity formalism is chosen. Starting from the decomposition in Eq.
the final amplitude for the three body decay is obtained by summing coherently over the different
isobars, which can have different spin, and incoherently over the final and initial state helicities.
Another usual choice for the description of the spin amplitudes is the partial-wave basis, the main
difference with the helicity basis is that the spin of the daughters particles are defined in their own
rest-frame and not in the rest frame of the mother particle. It is possible to write a decomposition of
one basis as a function of the other and since the final state spins are summed over, the two descriptions
must give the same angular distribution. In this chapter, after a brief introduction on the arise of the
concept of spin in quantum mechanics and in group theory, the helicity formalism is explained and
the polarized helicity amplitudes for the A} — pK~ 7" decay are derived in details. As a conclusion,
a set of benchmark tests, which should be verified by any model, are shown for the A} — pK 7"
helicity amplitudes.

103



CHAPTER 5. HELICITY FORMALISM FOR BARYONIC THREE BODY SUBSEQUENT
DECAYS

5.2 Spin in relativistic processes

In quantum mechanics, spin is an intrinsic property of a particle and it has been introduced in the
early 20's to explain the results of the Stern-Gerlach experiment [198]. In this experiment, a non-
relativistic beam of silver atoms (treated as a single valence electron of charge —e in the s orbital)
is sent through a magnet producing an inhomogeneous magnetic field. The deflection of the beam
was found to have a peculiar shape. If the particles were classical magnetic dipoles, their distribution
after deflection would have been expected to be continuous, instead the particles were deflected either
up or down by a certain amount without any intermediate possibility. This was one of the first
proof of the effect of spin, albeit it seems that the early Stern-Gerlach experiments did not have a
great influence on the discovery of the spin due to its poor precision. The concept of spin formally
appeared instead when studying the separations in line spectra to explain an effect known today as LS
splitting. In 1924, Kronig first proposed the spin to explain the observed spectra but he did not dare
publishing his results, the reason for that seems to be that Pauli did not appreciate his work. One
year later, Uhlenbeck and Goudsmit confirmed that the spin was responsible for the splitting seen in
the spectra. Some months later Thomas [199] understood the last missing piece to match the theory
to the experiment which was the mysterious factor % missing in the measured magnetic moment w.r.t.
the theory prediction. Nowadays spin is a well established quantum number describing the intrinsic

angular momentum rotational degree of freedom of particles.

5.2.1 State vector and representations of the Poincaré group

To describe particles with spin, a set of mathematical tools has been developed in the framework of
group theory. In quantum mechanics, a particle is described by a state vector, which is a vector in an
Hilbert space E] associated with a physical system. The nature of the Hilbert space to which this vector
belongs will give more information on the possible physical states that one can associate to it. The
Hilbert space can be decomposed in a direct sum of two sub-spaces one labelled by the momentum
and mass ., and the other one by the spin ., then the Hilbert space # can be defined as the direct
sum ' = I, @ H;. 1f 74, (often called h, little Hilbert space) is spanned by vectors |p,) and J%; by
|a), then the total Hilbert space .7 is spanned by the direct product of these two vectors: |p,) ® |a).
A general vector of # transforms under a unitary representation of the Poincaré group U(A,a) as

follows:

U(A,a)(Ipp) ® |a)) = exp(—iPuat)(|pu) ® o))
= exp(—ip“,a“) (‘pul> ® ’0‘/»

where p' = Ap and |o/) = Z(R)|a) where Z(R) is a representation of the rotation group on % and
A is a Lorentz transformation. Starting with an irreducible representation of the rotation group one

can construct an irreducible representation of the Restricted Poincaré Group (RPG), labelled by the

LA Hilbert space is a generalized notion of Euclidean space with any infinite or finite number of dimension. The
algebra of observables in quantum mechanics is described on Hilbert spaces, more details can be found in [200] [201].
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eigenvalues of the M? and J? operators which are m and j. Any representation of the RPG can
be expressed as a direct sum over these irreducible representations. The vector corresponding to an

irreducible representation can be written as:

[7,m) @ |4, 1) = [m, 350, 1) (5.2)

and the transformation law under an element of the RPG reads:

U (A, a)lm, j; 5,y = exp(—ipj,a ) S D3, (B)m, 5, 1) (5.3)
I

where R= R(A,p) = AIZ,IAAP and 27(R) is a matrix of the irreducible representation of the rotation
group labelled by j. More details and a precise derivation of this can be found in [2I]. What is
interesting here, is that the physical system described by these vectors is labelled by two quantities: m,
corresponding to the mass of the particle, a well known property, and a new number j. This parameters
is labeling the rotations and it introduces a (254 1) degeneracy in the momentum eigenstates, thus
it would be compatible with the spin of a particle. To confirm this hypothesis we should look at how

the state vector transforms in the rest frame under a rotation R using Eq.

U(R)|m, j;0, 1) ZD R)[m, j;0,u") (5.4)

This means that they transform under an irreducible representation j of the rotation group, exactly
as a particle with spin j would do. What is important to retain from this discussion is that starting from
the most general Hilbert space and building the irreducible representation acting on the corresponding
vector, the description of a particle with mass m and spin j is naturally obtained. In other words, the
concept of particle with spin arises from basic principles of invariance and group theory considerations
when looking for an irreducible representation of the (restricted) Poincaré group on the Hilbert space.
Here on the label m, indicating the mass of the particle, will be dropped since it leads to confusion
with the projection of the spin, usually denoted as m too. Hence from now, a particle with momentum
P and spin j is represented by the state vector |j;p,m), with m the eigenvalue of the spin operator qu

previously denoted as .

5.2.2 Rotation operator

A n dimensional rotation group is a group composed by all the rotations around a fixed point in a
space of dimension n which can be complex or real. An example of a rotation group is SO(3), which is
the group of all rotations about the origin of three-dimensional Euclidean space and it is represented
by 3 x 3 orthogonal rotation matrices (RT R = I) of determinant 1. Hence each rotation is represented
by an operator R and it can be described univocally by three Euler angles o, 5,v. In this work, the
active rotations convention is used where the Cartesian coordinate axes are fixed and the state is
rotated, i.e. the rotation acts on the system itself and not on the coordinate axes. The angles of the

rotation are specified by attaching new axes {x”,y”, 2"} to the physical system. The Euler angles of
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the rotated system with respect to the original one will be the angles of the rotated {x”,y”, 2"} with

respect to {x,y,z}. In the z-y-z convention, an arbitrary rotation can be written as:

R(a, 8,7) = RI(a) Ry, (B)R-(7) (5-5)

where R, () means a rotation of an angle # around the n-axis. Hence the rotation R(«,[3,v) means a
rotation of vy around the z-axis, then a rotation of 3 around the rotated 1/'-axis followed by a rotation of
a around the z”-axis which has been rotated twice. It is shown in [8] that by exploiting the unitarity of
the rotation operators, R(«, 3,7) can be expressed as a rotation with respect to the original coordinate
axis x,y,z which are fixed, without passing through the intermediate system z’,%/, 2" and the final one

x”,y",2". Then R can be written as

R, 8,7) = R.(a) Ry (B)R=(7) (5.6)

The 3 Euler angles are defined in the ranges: « € [—m, 7], 8 € [0,7] and v € [-7,7]. It can be

shown that the inverse rotation is simply
Ril(avﬂ/}/) = R(_ﬁ)/?_B?_a) (57)

The generators of infinitesimal rotations of angle € are the components of the angular momentum
operator J such that Ry(e)=1-— ieJn. From this, the operator corresponding to a finite rotation can
be written as R, (0) = exp(—i&j . ﬁ) and the complete rotation in Eq. becomes:

R(o,B,7) = ¢~ 180r 1 (5.5)
The J; are hermitian operators satisfying the commutation relations:

[ji,jj} == iﬁeijk (5'9)

From these three operators .J;, an invariant operator (also called "Casimir" operator) J2 = J2 +
Jg + JZ2 commuting with each JAZ can be defined. Then J2 and one of the ji, for instance jz, can be
used to define a complete commuting set of these operators. Using the commutation relations and the

ladders operators Jy=J,+ jy the eigenvalues of these operators can be derived [201]:

J2jm) = j(j+1)|jm)
J.|jm) = m|jm)

where [jm) are eigenstates of spin j = {0,1/2,1,3/2,...} and m is the spin projection along a chosen
axis (conventionally called z axis) and it takes values m ={—j,—j+1,....,7 —1,j}. For a given j,
there are (2j+ 1) vectors spanning a subspace 7 () which is invariant under rotations. The group of
operators R acting in () forms an irreducible representation of the rotation group labelled by the

angular momentum j. The kets |jm) form an orthonormal set of eigenvectors of the group and they
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transform as, following Eq.

R(a, B,7)ljm) = Z D}, (o, B,7)]im) (5.10)

(Jm”\R(a,ﬁﬁ) !Jm> =D, (0, 8,7) (5.11)

where D7 (o, 3,7) = D7(R) are the rotation matrices and they are representations of the SU(2) group,
which is the set of all 2 x 2 complex matrices of determinant 1 that satisfies ATA =1. A useful way of

writing the SU(2) rotation matrices is, using Eq.

(0 By7) = (/e e 10T m) (5.12)
=e oM, (B)—e™ (5.13)

where d?(3),/m are the Wigner d-matrix elements, defined as:

1 (B) = (G [e™ 0 [jm) = [(G+m/)! (G —m) 1 +m)!(j — m)!ﬁ
s 2j+m—m/—2s , m' —m42s
Z (=1)m—m+ (cos ﬁ) ( ,3)

3 Sin b
S

(G+m—s)sl(m/ —m+s)!(j —m/—s)!

(5.14)

Although the definition seems complicated, they take very simple trigonometric forms and they
inherit some useful symmetries properties from the rotation group. Starting from Eq. some

useful relations can be obtained, for instance:

&y (=6) = (1) "d), (), (5.15)
By (1) = (1) S (5.16)
&y (T B) = (1T &, (B), (5.17)
&, 2r+B)=(— 1)2ﬂdf (B). (5.18)

From the unitarity of SU(2) instead, the following relation is obtained:
Bt () = (Z) st (B) = s (B) (5.19)

The last property in Eq. is particularly relevant since it shows that a 27 rotation is not always
leaving the system invariant. For integer value of j, the equation gives the identity but for half-
integer values a minus sign arises. This means that for half integer spins, a rotation of 2m, written
as D7(0,0,27) = (—1)%, is not returning the system to its original state. From a group theory point
of view, this is because the rotation operators over half-integer spin states belong to SU(2), which
is the covering group of SO(3). Between these two groups it exists a two-to-one homomorphism
SU(2) — SO(3), implying that representations of SO(3) are also representations of SU(2), but there

are (spinor) representations of SU(2) that have no analog in SO(3). In other words, for half-integer
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values of j the representation is double-valued hence for any rotation there are two possible matrices
differing by a sign. This will impact the definition of the helicity amplitudes later on since if the 27
invariance is broken, one needs to be careful when defining the angles.
Finally it is important to mention that the D-Wigner functions are orthogonal, the orthogonality
relation is (from Ref. [§]):
872

2w 2m ™ .
: i j _ S 5
/0 da/o d'y/o sin 3d3 {Dmn(aﬁfy)Dm/n,(aﬁy)} = 2j+15mm Ot 051 (5.20)

5.2.3 Spin in relativistic quantum mechanics

Summarizing the results discussed above, the state vector |j;p,m) of a particle is labelled by the total
angular momentum j. The total angular momentum operator J is defined to be the sum of the orbital
angular momentum L and the spin S. The spin is usually seen as an intrinsic degree of freedom of
the particle whereas L is an external degree of freedom. The two angular momenta act on different

spaces hence they commute:

-

J=L+§ and [L.8]=0 (5.21)

These three angular momenta obey the same kind of algebra:
[ji, jj} = ihﬁijkjk and [ﬁ“ﬁ]} = iﬁﬁz’jk[:k and [SZ, SAJ} = iﬁez’jkgk . (5.22)

The spin state |sm) is a simultaneous eigenstate of the commuting operators S? and S, with
eigenvalues hs(s+1) and m, where s can be zero, integer or half integer and m can take values
—s<m < s in steps of 1. The second quantum number, m = s, describes the projection of the spin
on a given axis z, this implies working with a well-defined coordinate reference system with a fixed
origin O. However, this description of the spin only holds for the non-relativistic case. The transition
to a relativistic description of spin is not trivial, this is because for relativistic particles the spin is
only defined if the particle is at rest. The heart of the problem is then the generalization from the rest
state case to any state. The general approach to solve this is to generate states with any momentum,
starting from the spin states at rest, by applying Lorentz transformations to it. Consider a particle A
at rest in a state |s,s,) and an observer B moving with velocity —% with respect to A. It is clear that
from the point of view of B, A is moving with velocity ¢. The choice of B is not unique, a rotation
of this frame could give another equivalent frame where the particle A is seen moving with the same

velocity but with a different spin configuration. To fix this choice, there are two usual conventions:

e the canonical choice, where the B reference frame is obtained from the reference frame of A via

a boost [(—v). In this case, the state seen by B would be [p]s,).

e the helicity choice where B first transforms via a boost to a frame S’ in the direction of the
negative z axis of A, and then S’ is rotated by R(a = ¢, = 60,7) to have the momentum
p'=(0,¢,p) aligned to the z4-axis of A. In other words, the particle spin quantization axis z4
is aligned to be along the particle direction in the observer frame B. This means that if the

observer B sees the particle A in a state [p,\), then A is found to be at rest with s, = A and
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|ﬁ7)‘> = |p2075>52 :)‘>'

In this work the helicity convention is chosen to describe a relativistic particle with spin. It is
important to notice that the v angle in the rotation R(a,3,7) is not fixed by the helicity choice, any
rotation around the momentum of A would lead to the same spin state. Here again, it is a choice and
there are two conventions used in the literature v =0 and v = —¢, where the first one lead to easier
equations. For completeness, the helicity amplitudes will be written using first the v = —¢ convention,

then the simplified case v =0 will be deduced.

5.3 The helicity formalism

In this section the helicity formalism will be introduced in details and then used to derive the amplitude
of the three-body baryonic decay Af — pK~7t. Consider a particle of total angular momentum
J=L+S where S is the spin vector and L the orbital angular momentum. The usual way of
describing a particle in quantum mechanics is to use a basis formed by the simultaneous eigenstates
of J_Q, Js, L2 and S? or [_;2, L,, S2 and S, where we can switch from one basis to another using
the Clebsch-Gordon coefficients. There is a third basis which is convenient to describe relativistic
processes involving particles with spin, the so called helicity basis. The helicity operator A is defined

as the projection of the total angular momentum along the particle momentum:

A:W]’):(Dré)-ﬁ:ﬁ-ﬁ. (5.23)
A commutes with J and S2 hence we can build a basis of simultaneous eigenstates of jQ,JZ,S_"2 and
A. A very useful property of the helicity operator is the invariance under rotations, since p and S are
rotated at the same time, the product of the two is invariant. As discussed in the previous section,
the spin state |p,A) describes the particle in its helicity frame, i.e. the frame where the particle
momentum is aligned to the z-axis and the particle is at rest. The state [p,\) is an eigenstate of the
helicity operator A with eigenvalue A\ and it is called helicity state. Thus the projection of the total

angular momentum of the particle along the z axis coincides by construction with the helicity.

5.3.1 Helicity frame

The helicity frame of a particle can be reached by mean of boosts and rotations, the reasons are
explained in Sec. [5.2.3] These transformations can be applied either to the particle four-momenta itself
or to the reference frames leading to active transformations, i.e. the coordinates of the reference frames
are fixed and the particle momenta change under boosts and rotations, or passive transformations,
i.e. the particle four-momenta are fixed and the coordinates of the reference frame change. Consider
a particle A and a frame S7, (where the label L stands for laboratory), in this frame the particle is
described by the state vector |p,\), where p'is the momentum and A helicity. The helicity frame of A,
S4, is defined as the frame where p'is aligned with the z-axis and A is at rest. The transformation to

go to the helicity frame is
h(p) = R(¢,0,0)L.(v) (5.24)
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where R(¢,0,0) is a rotation , see and L,(v) is a boost of speed v along the z direction. Hence

the relation between the two frames, A and Sy, can be written as :
Sy =h"Yp)Sa=R(4,0,0)L.(v)Sx=R1(0,0,—¢)L.(v)S4 (5.25)

For the active convention instead, the transformation is applied to the states as follows, using Eq.
b7k
[P, A) = L(p)R(¢,0,0)[p'=0,7), (5.26)

where L(p) is a boost along p’ with velocity ¥ = p/m. The particle in its helicity frame will acquire a
momentum g after the boost. The above comparison between the two conventions, active and passive,
can be summarized as follows: if the helicity state for particle A is defined in another frame (here S7,)
via the transformation in Eq. then M is the z-component of the spin of particle A measured in the
rest frame S4 which is obtained using Eq. In the following the active convention is chosen. The
interchange of Lorentz boost and the rotation has no impact on the definition of the helicity states,

mathematically this is because:

‘ﬁasa)‘> = L(@R((ﬁvea _¢)|ﬁ: 0757>‘>
(gbv ‘97 _¢)R_1(¢> 07 _¢)L(mR(¢7 97 _gb) |ﬁ: 07 S, )‘> (527)
(¢705 _QS)L(p_;Nﬁ: 0757)‘>

|
X =

using the fact that L(p) = R™1(¢,0,—¢)L(p.)R(¢,0,—¢). This can be also understood intuitively: in
the first case the boost is applied along = pZ which has been previously rotated, in the second case
the boost will be along p(0,¢) and the alignment is done afterwards by applying the same rotation of

(0,¢) but using the angle computed in the Sy, frame, giving an equivalent result.

5.3.2 Helicity states

The definition of helicity states can be now described in details. Starting from the rest state |p'=0,\)
with spin s and spin projection s, = A and exploiting the rotational invariance of the helicity operator,
one can define a state with any momentum p as in Eq. This invariance is due to the fact that
the quantization axis p(6,¢) rotates along with the spin § of the system, hence the product is invariant

under rotation. Those states are normalized using the Lorentz invariant normalization:
(5", 8" N|p,s,\) = (21)32E8(p" — P)0ge Oan - (5.28)

Following the definition of the one-particle helicity state, the two-particle plane-wave helicity states

are the direct products of the one-particle states
D1, A3 D2, A2) = [P, 81, A1) ® [P, 82, Aa) (5.29)

where s1 and s are the spins of the two particles. They are fixed and the label can be dropped. When

defining two particles states care must be taken. Particles one and two will be back-to-back in the
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two-particle center-of-mass frame, hence if pj = (p,0, ) then ps = —pi = (p,m —0,¢ £ 7), this relation
can be easily verified for the particular case § =0 and ¢ = 0, where we define p = |p1| = |p2|. There is

an ambiguity on the choice of ¢9 which can be removed imposing the condition:
lim |—p2,A\) = lim [p2,—\) (5.30)
p=—0

requiring that for a particle at rest, if the spin projection along p, is A then the projection along —p, is
—A. This condition gives rise to a phase, (—1)5_’\,between particle 1 and particle 2, see [§] for detailed
calculations :

| =P, 0) = (—1)" Y exp{—imJy } P, 5. \). (5:31)

This phase is optional and it can be either dropped (no-phase convention) or kept (particle-2-phase-
convention). It is important to be consistent with this choice, especially when looking at the action
of the parity operator on the two particles state. Now, because the particles are back-to-back the
two-particle state can be specified using only the coordinates p, 8 and ¢, thus the state is written
as |p,0,6; A1, 2). These states are called plane-wave helicity states and they are not eigenstates of
total angular momentum, meaning that they do not have definite angular momentum. It is possible to
define a new basis, the spherical-wave helicity basis, formed by vectors which instead are eigenstates of
the total angular momentum. The states of this basis are |p,J, M, A1, A2), where p is the magnitude of
the momentum of one of the two particles, J the total angular momentum of the two-particle system,
M is the projection of the total angular momentum along z and A1, Ao are the helicities of the particles.
These states transform irreducibly under rotations according to Eq. [5.10} The plane-wave states can

be written in terms of the spherical-waves states [§]:

|pa 9’ QS’ >‘1a )‘2> = Z CJM(pa 97 ¢a )‘h )‘2) |p’ J7 Ma )‘1’ >‘2> (532)

J,M
The coefficients ¢y are determined starting from the easier case § = ¢ = 0. In this case, the two
particles are moving in opposite directions (in plane-wave states) along the z-axis. The orbital angular

momentum L = 7 X p'is zero by definition. Hence |p,6,¢,A1,\2) is an eigenstate of J, with eigenvalue
A= A1 — X2. On the right-hand side M = A and

1,60 =0,0=0,A1,A2) = > csa(p,0 =0, =0,A1, ) |p, J, A, A1, Ag). (5.33)
7

Thanks to the invariance of the helicity under rotation discussed in Sec. one can rotate back to

the original state leaving the helicities unchanged using the D-Wigner matrices:

2J+1
47

p,0=0,0=0,A1,A) = > D3pix (6,0, =8)p, J, M, A1, Ag) (5.34)

JM'

where the coefficients cy)(p,0 = 0,¢ = 0,A1,\2) are determined up to a phase and found to be [§]

ean(p,0 =0,0 =0,A\1,\2) =cy = 2{1:1. To invert Eq. |5.34] the orthogonality relations of the D
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functions in Eq. can be used, giving:

, 2J+1 27 ! J
A e = [ 2 /0 dqﬁ/_ldcos@DM//\*(gb,H,—<z>)|07¢>,>\1,/\2>. (5.35)

5.3.3 Helicity amplitudes

The amplitude for a two-body decay a — 1 2 can be obtained working in the rest frame of a and using
Eq. The decaying particle a has a spin J and spin projection M along an arbitrary chosen

z-axis. The final and initial two-particle plane-wave helicity states are:
i) = [J,M) and |f) = |psOrpsAi1A2) (5.36)

where A1, Ay are the helicities of the final state particles, p1 = p; and pa = —py, 0y and ¢y are the
polar and azimuthal angles of py. The amplitude for a — 1 2 is, neglecting the overall constants which

are not affecting the angular distribution,
D pe = ([|O0) = (prbrdrAiAa|O|J, M) (5.37)

where ¢ is the operator describing the transition a — 1 2. As explained in Sec. the conservation
of angular momentum is applicable only to spherical-wave states, hence it is useful to insert a complete

set of spherical-wave states |JrMgA1A2), such that

Dpraro(a—12) = > (ppbrdrhidal Ty Mphido)(JrMpAido| O], M)

JrMy
2/ +1

JpMy

2J+1
47

Dpagpe(a—12) = Dl (05,05, —05) Hry o (5.38)

where A = A\ — Ao, Hy, \, = (M A2|0|M) is rotational invariant, this means that it cannot depend
on the projection on a given axis and the M index can be dropped. The complex parameters Hy, x,
encode the dynamics of the transition and they are usually called "helicity couplings". If the final state

helicities of the particles cannot be measured, one needs to sum over the final state helicities A1, Ao.

As explained in the introduction, a three-body decay a — 1+ 2+ 3 can proceed via intermediate
states. In this case, the decay can be decomposed in two sequential two body decays, for instance
a — (R — 1+2)+3, where the final state and intermediate particles have helicities A1, A2, A3, Ag and

spins s1,S2,83,Sr. The amplitude of this process can be written using the two-body decay amplitude
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in Eq. as

MM,)\L)\Q,)\;:,(CL — 1+2+3) = Z<6’3¢3)\3)\4’ﬁ(R>’51,M1 = )\1><91¢1)\1)\2|6"(a)\J,M> (539)
A1

D0 c Apns (@ — 1424 3) ZDM)\R 2 (01,01, —91) DR, (03,03, —d3) HY S HI S (5.40)

where HY “*R?’ are the helicity couplings for the decay of the mother particle to the resonance R and
H ﬁj\f the one for the decay of the resonance R to its decay products. The angles are computed each
time in the rest frame of the decaying particle, thus 8, and ¢; are computed in the a reference frame
reached from the laboratory frame and 63 and ¢3 are computed in the R reference frame reached
from the a reference frame. This is a crucial point; the spin states of the a and R decay products are
defined in helicity frames reached from different starting points, therefore the helicity are projected
on different axes, the consequences of this are discussed in Sec. [5.4.2] Finally, the total angular

momentum is conserved by construction thus the allowed helicities are constrained by

P‘R’SSR ‘)\3‘§83 ’)\R—A3’§Sa (5.41)

Helicity couplings The definition of the helicity couplings depends on the convention chosen for
the particle 2 phase. Labelling the helicity couplings for the no-phase convention by capital H and

the particle-2-phase-convention ones by small h, the relation between the two is given in [202]

T, e
WA = H{I I (=) g = (I (1) (5.42)

Furthermore, the number of allowed helicity couplings can be reduced if parity is conserved in the
decay. The action of the parity operator on spherical-wave helicity states is not trivial since they are
not eigenstates of parity. It is worked-out in Ref [§]; starting from the plane-wave states at rest and
exploiting the properties of the d functions, the action of the parity operator II on the two-particle

spherical helicities state is
II |p7 Ja M7 )\17/\2> = nan(_l)J_SI_SQ ‘pa J, Ma _/\17 _)‘2> . (543)

where 7); are the eigenvalues of the parity operator. This means that the parity changes the sign of the
daughter’s helicity but not the sign of the spin projection of the mother M. By applying this relation

to the helicity couplings (for a strong decay), the following constraints are obtained:

By ag = M2 O|TM) = (M A II(ITT GINTIT | M) = (A Xo| TIOTTT|.J M)
h>\17>\2 = 77a771772(_1)81+8278a h—)\1,—>\2 (5.44)

For the no-phase convention case the constraints are slightly modified and they can be derived from

Eq. 522 and Eq,

Hy, p, = 1amip(=1)7F2 750 H_y, y, (—1)%2. (5.45)
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In the introduction, the Partial Wave (PW) basis was discussed as another possible option to derive
the amplitudes. The advantage of this basis is that the parity conservation is automatically included
and there is no need to enforce it using the relations in Eq. The relation between the helicity
basis and the PW basis (also called LS-basis) is [203]

R |Jr+J3]  |L+S| rs [20+1
a—R, a—R, . .
Mane = 22 2 i U\ 5y UroARds = As | SAR = Aa) (L,0:8,Ar = Ag | ], Ak — As)
S=|Jp—Js| J=|L-5] ( )
5.46

where the first Clebsch-Gordan coefficient is for the coupling of jr and j3 to a spin S which is the
total spin of the system (JgrJ3) and the second one for the coupling of L and S to the total angular
momentum J = Jrp+ J3. Note that here the projection L, of the orbital angular momentum is always

zero since z is perpendicular to p. Similarly, the LS decomposition for the isobar helicity couplings is

|[Ji+J2|  |L'+S57|

2L'+1 , . )
hfl_’;\lf = Y > hf/}lﬂ/ m@l,/\luz,—)\z | S0 = A2) (L',0;8 01 = Ao | T/, A1 — A2)
\

S’:‘Jl—.]2| J:‘L’—S’
(5.47)

where the first Clebsch-Gordan coefficient is for the coupling of j; and jo to a spin S’ which is the
total spin of the system (J;.J2) and the second one for the coupling of L’ and S’ to the total angular
momentum .J' = .J; +.J5. The decomposition of the helicity couplings in the LS basis, allows to separate
the different waves i.e. different L of the decay (partial wave decomposition). This further allows to
identify a parity violating and a parity conserving part in the decay. This differentiation is particularly
relevant for the A weak decay to the isobars, where parity is not conserved and both contributions are
there. For the strong decay of the isobars itself, there is only one possible wave and the decomposition

is equivalent to the parity conservation relations in Eq.

5.3.4 Polarized decay rate

In this work, the main goal is to measure the polarisation of the charmed baryon A}. In scattering
experiments usually an un-polarized or spin averaged cross section is measured. Up to now, it is not
possible to create an experiment where all the particles are produced (on purpose) in a well defined
spin state, hence polarized. Instead, it is possible to polarize the target particles or the beam itself,
for instance using a strong magnetic field. At the LHC, the proton beams are produced in a mixture
of spin states without a well-defined polarization. The particles created in a collision form a statistical
ensemble where each of them can be produced in a different spin state, on an event-by-event basis. In
this case particles are produced in a mizture of spin states, as opposed to a pure state system where
the particles are all in the same spin state. The unpolarized partial decay rate of a particle of mass
M in an initial state |i) decaying in some n-body final state |f) is given in its rest frame by [11]:
(27)*

T~ | #?d®,, (P;p1,....,Dn 4
d Wi | A |*d®y, (P;p1,...,pn) (5.48)

where d®,, is an element of the n-body phase space and the matrix element .# describes the amplitude

of the process, where the squared of the amplitude gives the decay probability. For a three-body decay,
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this is the helicity amplitude @y x, x,.0;(@ — 1+2+3) described above and it is written using defined
spin states |i) = |J,M) and |f) = |[pipap3; A1, A2, A3). To take into account the fact that A}’s are
produced in a mixture of states, the probability in Eq. has to be modified.

When a particle is produced in a mixed state |x), it can be written as a coherent sum of pure states
le;) occurring with a statistical weights p; (where Y ;p; =1). The expectation value of an observable
A can then be written as [21]:

Ay =i OalAba) = 3 (el Aler) 3 (exlxadpixle;) Za]kpk;] (5.49)

7.k i

where aj, = >, (ejlAler) and pr; = > (ex|xi)pi(xilej) is the density matrix, which is hermitian
p=p', it has trace tr(p) = 1 and tr(p? < 1) (leaving only N? — 1 independent parameters, with N
the dimension of p). The diagonal elements py represent the probability to find the system in a pure

state |eg) and the expectation value of A can be written as:

A) =" ajkpr; = tr(Ap) (5.50)
ik

Therefore, the spin orientation of an ensemble of spin j particles is described by a (2j+1)(25+1)
density matrix containing (25 4+ 1)? — 1 independent real parameters, with |e;) = |s,m).
In the Af — pK 7t case, j = % hence p is a 2 x 2 matrix parametrized by 3 real numbers. The

most general way to write p is using the Pauli matrices o; and the identity matrix Z

1, = i1 pi 1\ 1[14P. Py—iP
p=:(T+Pd)= Pra Pr—p | L1145 el (5.51)
2 ) p 2\P,+iP, 1-P,

P = tr(por) (5.52)

P= {P;,P,,P.} is the polarization vector representing the degree and direction of the state’s spin
orientation. The condition tr(p?) <1 ensures that P <1. A pure state corresponds to a state fully

polarized with P = 4+1. Introducing the spin density matrix using Eq. the decay rate becomes:

X Z Z pm,m’ ma>\17)\27>\3'52%7:1’,>\1,)\2,)\3 (553)
{)\i}m,m’

where €2 describes the phase space.

5.3.5 Isobars dynamics

In the previous section, the amplitude for the three body resonant decay of a particle a with mass m,
has been derived. As explained in the introduction, in the isobar model the amplitude is factorized
into an angular part, which is spin dependent and derived from first principles, and a dynamical part

describing the intermediate states, the so-called isobars. The isobars are not stable particles with
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defined mass, but rather resonant states with complex mass distributions. In most of the cases, the
mass distribution can be described by a relativistic Breit-Wigner function (RBW). This parametriza-
tion is valid for narrow resonances far from all relevant thresholds or other resonances. If this is not
the case and if there are overlapping resonances with the same quantum numbers, a more complex
parametrization has to be used. In general, a resonance is parametrized by its pole position sg which is
independent of the reaction studied and its residues, which quantify the couplings to various channels
and can be used to calculate branching ratios. The relation with the usual mass mg and width I'g of
the resonance is \/sg = mpg — iFTR. It is important to note that the BW poles (mg,[g) agrees with its
pole position (mpg,I'r) only for narrow and well separated resonances, far away from the opening of
decay channels. The RBW lineshape is
1
m& —m? —imol'(m)’

BW(m) =

2Lp+1
p mo o
I'(m)=Ty| — —F 5.54
(m) =Ty (po) % (p;po) (5.54)
where all the quantities are defined in the following. The RBW is multiplied by the barrier factors, also
called "angular momentum barrier", which suppress the amplitude at low values of break-up momenta
(p and ¢). However, the barrier factors grow rapidly with increasing break-up momenta for positive
values of L. The Blatt-Weisskopf form factors, Fr, are introduced to compensate for this behavior.

The final lineshape after multiplication is

g(m)\ "t (p(m)\""
Aw (m) = o P FL , (4,90) FLg (P, po) BW(m) (5.55)
barrier factors form factors

where L AF is the orbital angular momentum between the resonance and the spectator particle, while
Lp is the orbital angular momentum between the resonances decay products. Then g(m) is the
momentum of one of the products of the AT — Rh decay in the (Rh) system. Similarly p(m) is the
momentum of one of the products of the R decay in the R’s rest frame. The explicit expression of p
is simply [11]

(42— Gm1-4m)?) (42— 1 = ma)?)] ™
2M

where M is the mass of the decaying particle, m; and mo the masses of the decay products. Next,

pl = (5.56)

g0 = q(mp) and pg = p(mg) are the momenta calculated at the resonance BW mass, finally mg and the
width Ty are the BW mass and width. The Blatt-Weisskopf form factors FT, (z,z2¢) are parametrized

as:

FO (Zv Z()) =1
Fi(z,29) = ﬁ (5.57)
Fy(z,20) = % |
— 2 -
Fy (Z, Z()) = \/zoz($11;)2:5é2;05)5)

where for the A} decay, z = (¢(m)d)? and zp = (qod)? and d is the radius of interaction and is taken
to be d =5.0 hc/ GeV. For the resonance decay z = (p(m)d)? and 29 = (pod)? with d the "radius of the
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resonance’ are taken to be: dli*o =3.4 he/GeV, dyiy =5.22 he/GeV and d)y. = 6.29 hc/GeV, as in
Ref. [204]. These values are chosen as reference values for the main model. The choice of the radius
values has a minor influence on the final amplitude, this is shown in Fig. where the BW function
in Eq. W with L Ar=01is plotted for one resonance per channel and for three different values of d.
The grey curves are for d’ =1, it can be seen that changing d’ has a small effect on the BW shape,
affecting mostly the tail of the distribution. The same value of d’ for each channel will be set in the
fit so that the effect is the same for every resonance in the same channel. The influence of the barrier

factor’s radii on the final amplitude will be studied as a systematic effect.
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Figure 5.1: Breit Wigner functions for A*(1520), K*(892) and A™*(1232) with three different values
of d are shown: d = [0.006,0.005,0.003] MeV~!, as a comparison the case d =1 MeV~! is shown in
grey. The masses and width are from [I1].

The same comparison is done for the AT radial parameter in Fig. this time Eq. is shown

for Lr = 0. The effect of d is even smaller and it is expected to have a small influence in the fit result.

1 1 <o
°  0.006 B * 0006 e 0006
. [ E
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. \ .
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Figure 5.2: Breit Wigner functions for A*(1520), K*(892) and A*+(1232) for three different values of
d 0.006,0.005,0.003 MeV !, as a comparison the case d =1 MeV ! is shown in grey. The masses and
width are fixed to the values in Ref. [I1].

For some of the resonances present in the A} — pK~n" decay, the RBW is not a suitable

parametrization. For instance, the scalar mesons of the Kn channel are difficult to describe since
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they can have large widths and thus interfere with the non-resonant component or other resonances.
The S-wave scattering has two possible isospins, I = 1 containing K (1430) and K;(700) and I = 3,

which contains no known resonances. They are commonly parametrized by the LASS lineshape [205].

X 2 m 2i0p moro% 5.58
I (m >_qcot53—iq+e m%—mz—imoFO%% (5.58)
(5.59)

where cotdp = aiq + %rq, a is the scattering length and r the effective range and the other quantities
are defined as in Eq.

Another special case is the A*(1405) resonance which has its pole mass about 30 MeV below the
threshold of the pK~ mass (~ 1432MeV/c?). Even if the mass peak is below the threshold, its high
mass tail can contribute to the spectrum. To parametrize this effect, the pole mass mg in the RBW

is replaced by an effective mass mgﬁ, given by:

mm1n+mmax

. 1 : -5
mgff — ypin + 5 (mmax . mmln) [1 4 tanh (m;max — TZmin >‘| (560)

where m™" = mg - +mp and m™** =m, 1+ —m + are the minimum and maximum allowed masses.
c

Another parametrization exists for the A(1405) which accounts for the opening of another decay
channel above 1328 MeV/c? with final state X7 ~. This increases the width above the threshold and
thus modifies the shape of the RBW. This effect is taken into account by adding a lineshape for the
other possible opening channels, BW 5 (1520)(m) = BW, g~ (m) + BWy+1,-(m), where ¢ and ¢o in the
second term are calculated assuming the decay to X7 and the resonance width I'y is set to the A(1405)
width for both cases. This is called Flatté lineshape [2006].

5.4 The Af — pK 7" case

The decay studied in this analysis is the Cabibbo favored decay Al — pK~nT. As discussed when
deriving the helicity amplitudes in Sec. this three-body decay can be decomposed in subse-
quent two-body decays passing through intermediate resonances. The possible intermediate chains
are (pK~), (K~ 7") and (77 p) and each resonance is labeled either by the two decay products or by
the name of the resonant particle: A* chain, K* chain and A chain. Note that the ordering of the
decay products is important, if the cyclic order is broken, the final result may change, especially when
defining the angles and the helicity coupling relations. This can be understood looking for instance
at Eq. where the choice of the particle ordering changes the relations between the couplings.
Regarding the angles, those of one decay product differ from the ones of the other decay product by
a factor of 7; thus for a — 1+ 2, in the rest frame of a, particle 1 is traveling in the (61,¢1) direction
and particle 2 must be traveling in the (62,¢2) = (7 —601,¢1 + ) direction. This is further discussed
in Sec. The total amplitude is the sum of the amplitudes of each resonance, where the single

resonance angular distributions are multiplied by the corresponding lineshape. To describe the total
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Figure 5.3: Definitions of the Euler angles in the polarization frame. Left: 6, and ¢, angles. Right:
x angle. The (p,z) plane is shown in green and the (K~ ,7) plane in orange. The unitary vectors, Ay
and 79, perpendicular to those planes are also shown.

amplitude for the AT — pK 7" decay, first the necessary frame and the angles are defined, then the
individual amplitudes of each chain are derived following Eq. and finally the polarized decay rate

can be obtained.

5.4.1 Three-body phase space description

The kinematics of the A} three-body decay is described by the four-momenta of the 3 daughter
particles, leading to 3 x 4 = 12 degrees of freedom (dofs). Fixing the 3 masses and using the energy-
momentum conservation, there are only 5 dofs left. In the A, rest frame, the decay products are in
the same plane and the angles between them are determined by two pairs of invariant masses. The
orientation of the plane is given by 3 Euler angles, the polar and azimuthal angle of the proton (6,,
¢p), and the angle x, which is the angle between the planes formed by the z axis and the proton
direction and the plane formed by the resonance decay product, as shown in Fig. [5.3] The angles are

defined in the polarization frame {Z,§, 2}, described in the next section, as:

6, =arccos(pp-2)
by = atan2 (-5 ) (5.61)
X = arccos(f - fg)

where P, is the unit vector along the proton direction, 71 = p, X 2 and fig = p,+ X pr—. The five phase

space variables are thus
Q= (miK_,mgﬂJr,cosep,qﬁp,X) (5.62)
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These three angles describe a rotation which brings the initial frame (x,y,z) into the frame
(”,y",2") where the 2" axis direction is the proton direction, and p, K and = lie in the (z”,2")
plane. The rotation is the rotation of angle ¢, around the z axis, followed by the rotation of angle
0, around the y’ axis, and followed by the rotation of angle x around the 2z’ = 2 axis. For zero
polarization the dependence on the three Euler angles is dropped (see Sec. and the decay is fully
determined by two variables, usually the two invariant masses. For non-zero polarisation, the decay
will have a non trivial dependence on the angles. This means that the effects of the polarization can
be seen in the angular distribution of the decay and not on the invariant masses distributions. The
choice of the axis is arbitrary but it can be guided by physics considerations, it is detailed in Sec.
.42

The magnitudes of the p, K and m momenta in the A} polarization frame are given by:

\/m%{ —4Mﬁcmz2,+2m%{(m?r —mZ,—m2.)+ (mf77r +m§K —m2)2

L P pm
= 5.63
\/<M/2\C — (mpr + mK)2) (]\4/2\C — (mpr — mK)z)
D1 | = 5.64
i S , (5.64)
\/(M?\C — (mpK +m,r)2) (M/Q\C — (mpK — m,r)Q)
| = . 5.65
In the (2”,y”,2") frame instead,
0
pp=10 |- (5.66)
i
The angle between the proton and pion directions is equal to ¢,, and
2 2 2
—ms_+mi+mi+2E,F
cosbOpr = i L u P (5.67)

2|pip| x|

with
Ep=\/|pp[* +m3 (5.68)
and
Eyr = /|72 +m2. (5.69)
Thus
—|Prly/1—cos? Opr
P = 0 . (5.70)
|Drx| cos Opr
Similarly,
costyc = —m§K+m§+m%(+2EpEK’ (5.71)

2|ppl Pk |
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with
Ex =\/|pk|?+m3% (5.72)

and

=/
P =

|PK|\/1—cos?Opk
0 .

|DKc | cosOpk

(5.73)

The vectors in the original frame are then obtained with the rotations given above and using the

rotation matrix

cos ¢, cos x cost, —sing,siny  —sin ¢, cosy — cos ¢, cost,siny cosp,sinb,
R = | sin¢y,cosxcosb,+cosg,siny  cospy,cosy —sing,cosb,siny  sing,sinb, | : (5.74)

—siné),cos x sin x sin 6, costp,
0 |Dp| cos ¢psin by,

pp=R| 0 | =] |pp|sing,sinb, |, (5.75)

D)l |Pp| cos bl

—|Px|1/1 —cos? Oy
R 0 )

| D | cOS Opr

|DK |y/1—cos? Opx
0 .

[Pk | cosbpk

Pr= (5.76)

Pk =R (5.77)

The minus sign in Eq. depends on the configuration of the resonance decay products. Looking at
Fig. , the direction of the unit vector 75 depends on the position of the m and K~ vectors. There
are two possible configuration for the K-m ordering corresponding the blue and orange case in the
figure, giving a minus sign in a different position when projecting the momentum on the z axis for

the 7+ or for the K~ respectively. Eq. and are written in the "blue" configuration.

5.4.2 Frames definition

To describe the AT — pK 7" decay two frames are needed: the polarization frame, for the A}
decay to the isobars, and the resonance frame, for the decay of the isobar itself. As explained in the
introduction (Sec. , for promptly produced A. in a pp collider, the polarization vector is expected
to be perpendicular to the production plane due to parity conservation in strong interactions. Hence
it is convenient to define a z axis along the normal to the production plane using the beam direction

and the A, direction in the lab frame
2 = Pheam A DL (5.78)
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Figure 5.4: Sketch of the pK7 momenta in the 2" — 2” plane. The two possible configurations are
shown in blue and orange, the ny vector, perpendicular to the (K~ ,7") plane, is shown for the two
configurations.

where Pheam is the beam direction in the laboratory frame (z axis for the LHCb reference frame) and
]51/?19 is the A. direction in the laboratory frame. The choice of the z and y axes is not important since
parity conservation ensures the independence on the azimuthal angle. A possible choice is taking as

Z axis the direction of the A. in the lab frame, the ¢ axis is then automatically defined

& =pP and § =212 (5.79)
Then the polarization frame, shown in Fig. is the frame where the A} is at rest and the axes
{#,9,2} have been defined above. The helicity frame of the isobars is defined starting from the
polarization frame, using a sequence of boosts and rotations, where the z axis is the direction of the
resonance in the laboratory frame. This new coordinate system (z’,y’,2’) is thus obtained by rotating
the axis by the Euler rotation R(¢r,0r,—¢r) i.e. a rotation of angle ¢r around the z axis, followed
by a rotation of angle 8z around the rotated y axis and followed by a rotation of angle —¢r around

the rotated z axis. The angles O, ¢r are the polar angles of the resonance in the polarization frame,

Or = arcos (Ppr - %) (5.80)
¢r = atan2 (Pr - 9, Pr - ) (5.81)

This defines six angles: 0r = {0k, 05,0a++} and ¢r = {dK«,dr,Pa++}. These rotations are
followed by a boost along the new z axis, i.e. 2’ is the direction of pr in the A. rest frame. The
momentum p’ of one of the R decay product in this frame is described by the angles (6’,¢"). Note

that ¢’ is the same in the A. rest frame and in the R rest frame since the boost is perpendicular to
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Figure 5.5: Definitions of the reference frames and angles for AT — pK 7t

the plane defining ¢’. The angles in the resonance frame are defined as:

0} = acos (7} ") = arcos (72 (5.82)
¢, = atan2 (7} /. 7} - &) (5.83)

In total 6 angles are needed to describe the one resonance per decay channel: 6. ¢’ for the K*
decay, 0, ,¢., for the A decay and 0,,,¢, for the A decay. The resonance and polarization frames

are shown in Fig. [5.5] The resonance frame of the three chains is equally shown in Fig. [5.§

5.4.3 Quantization axis and proton’s helicity frame

The proton helicity frame is then reached from the resonance helicity frame via a rotation R(¢,60',—¢')
and boost along the proton momentum. For each chain the proton helicity frame is reached passing
through a different sequence of boosts and rotations leading to a different definition of the proton
helicity state. In the end, the decay amplitudes are obtained summing coherently the amplitudes of
the different resonances, hence the proton helicity state must be defined using the same quantization
axis (which is defined w.r.t the A}) for the three chains.

o For the AT — pK*9(— K—nt) decay, the proton quantization axis is the direction of the proton

in the A, rest frame,

o for the AT — K~ A*T(— pr™) decay, the proton quantization axis is the direction of the proton

in the A (or pm) rest frame,

o for the AT — 7T A*(— pK ™) decay, the proton quantization axis is the direction of the proton
in the A* (or pK) rest frame.

If we measure the proton spin projection using as quantization axis for all decays in the proton
rest frame, the direction of the proton in the A. frame, one needs to rotate the projection axis (or

equivalently the proton helicity state) of the chain which is not aligned with this quantization axis.
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These are called Wigner rotations and they are due to the fact the boosts used to reach the proton

rest frame within one chain are not collinear.

7
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Figure 5.6: View of the (x — z) plane of the proton rest frame reached from the K™ resonant decay on
the left and from the A* resonant decay on the right. The Wigner angles Sa++ and fGp+ are shown.

For the K* chain the sequence of boosts is shown in Fig. [5.8] The proton quantization axis in the
p rest frame reached from the K* rest frame is aligned with the one reached from the Al rest frame.
For the other two chains this is not the case and an additional rotation is needed to align the proton
quantization axis as in the K™ chain, see right side of in Fig. 5.8 The polar Wigner angles, named
Br here, are shown in Fig. On the left, the proton helicity frame is reached from the K* chain,
the momentum of A} is parallel to —2 and there is no need of a rotation, hence Sx+ = 0. On the right
of the figure, the A chain is shown, where the resonance daughter momentum pg- is aligned to —% in
the proton rest frame. Here )+ is the angle in the p rest frame between the direction of the A, and
that of the K. In the right figure, the A chain is shown, where the p+ is aligned to —Z and Sa++ is
the angle in the p rest frame between the direction of the A, and that of the .

The azimuthal part of these rotations is less obvious. One could think that since p, K~ and 7"
are in the same plane, there is no need of an azimuthal rotation. However, looking at the z —y plane
it is clear that the K™ chain is in a different configuration, since the azimuthal part of the daughter
is not zero after boosting to the p rest frame. This is shown in Fig. The A and A chains need to

be rotated by ¢’ around the z-axis. Hence the final Wigner rotation is:

R(0, Bres, $) (5.84)

and it appears when combining the amplitudes of the three chains in Eq. [5.103

5.4.4 The A} — pK 7t amplitudes

Now that all the necessary elements have been introduced, the helicity amplitudes for the AT — pK 7t
decays are derived first for each chain separately and finally for the total amplitude, including the spin-
density matrix. Compared to the equations given in Ref.[204], these amplitudes include the Wigner
rotations and the additional « factors, defined in Eq. [5.4.4] which compensate for the two-to-one
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Figure 5.7: Sketch of the rotation and boost sequence for the K* and A* chains, the azimuthal angle
of the Wigner rotation ¢’ is shown on the last drawing, showing the final particles configuration in
the z —y plane plane.

prest frame

“\\; ‘ A++ A+ rest frame

p rest frame

A} rest frame

p

A} rest frame

Figure 5.8: Definition of the frames and angles for the three decay chains, K* on the left, A™" and
A* on the right.

homomorphism SU(2) — SO(3).
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Partial amplitude for A} — K*0(— K—nt)p

Consider the chain A} — K*Op(— K~77). The spin projection of A. on the z axis (polarization axis)
is labeled by m, +. In this case, Eq. gives with sp = 8%, AR = Ax+, A1 =Ag- =0, o =X+ =0,
A3 =Xp =g and J=Jy4 =3,

SK* )‘K*
1y %0 — 4 AT fg*0
K*Y—K c p
Dy s —np (O, 05, == ) HY, 37 7 Hye 5% (5.85)

where Bg+ (M) is the K* RBW, Hfg:}\}j*op is the helicity coupling for the decay A} — K*°p, and
HK*if\K ™ the one for the K*0 — K—n+ decay, where the no-phase convention is used. Note that
the sum over sg» takes in consideration the fact that within a chain, different resonances with different
spins can contribute.

The projection of the total angular momentum of the pK*° system on the axis defined by the
momentum of p is given by Mg+ — A, (the projection of the orbital angular momentum is 0). Since
the total angular momentum of the A} is conserved, the projection [Ag+—\,| < J A+ can only take
certain values (see Eq. - This reduces the number of allowed terms in Eq. - For spin
one K* resonances, there are 4 allowed values, for spin zero only 2, this is shown in Table. [5.1]

Hence the only allowed helicity couplings are: H ,

o ooy i
Ap 1 1
Agce 2 2
i J(E) X
0 V(E5)  V(E5®)
1 X v(E®)

Table 5.1: Allowed helicity values for K* decay. The notation E]“® is defined in the text below.

For the strong decay K*0 — K~nt there is only one contribution Hyy EK0=K~7" and it is absorbed in

+ o x0
HAC —K

. . A S K*0 o *0 -+
Ao Ay P For convenience, the couplings are renamed as E'°*, as H ' Py Hpy [y R = pres,

0 1
HA —>K*0p HK*0—>K 7r+ — ges HA1—>I_<*OP HK*O—>K mt — Eres and HA —>K Op HK*0—>K P
0,-1 s -1,—-% =
2
E7¢%, where the superscript res is used distinguish between different K* resonances for example

res = K*(892), K*(1410).
Partial amplitude for AT — AT+ (— prt) K~

For the A chain, Eq. gives with sp = s 1, AR =Aa+r, M =Apr =0, o=, =21, Ay =2 =0
and J = Jyy =3,

AT+ S ++* /
Am7>‘P = BA++ Z Z i++9 Ap ﬂ-’eﬂ—’ ¢ )
Satt Ant+ (5.86)
T A++—>p7r+ AF A+ K-
Dpix gy (Pave,0nr+,—0ar+) Hy | 3 et A
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AF AR
where H/\C_> A\
AT+ N —

for the AT — prt decay. The sum over sx++ runs over the possible resonances in the A™* chain.

is the helicity coupling for the decay Af — ATTK~ and H)\A;j)z P the one
The projection of the total angular momentum of the K~ ATT system on the axis defined by the
momentum of K~ is [Aa++ — Ax| = Aa++ (the projection of the orbital angular momentum is 0).
Here again, since the total angular momentum Jy, = % is is conserved, the projection Ap++ can only
take the values —I—% or —%, whatever the value of Ja++ is. This reduces the number of allowed terms
Eq. (5.86). In addition, because of parity conservation in the strong decay A+ — pr™ see Eq. [5.45
the number of possible couplings can be further reduced using Eq.

Attt sprt Sh 4 FSn, —SA++ 2\
PO S /7 o/ Gl D e & S (5.87)
3_
= naer (m1)2 A R (5.88)
++ yprt 3 ++ yprt ot Lyt
where 7, = —1 and 1, = 1. Hence H{f)\p TP = A (—1)2 7 Sat +2ApH(fi)\p%p7r _ :I:HéﬁA:p” where

the sign is determined by the spin of the resonance. This reduces the number of possible helicity

Tes

couplings to 2, F{% and F3¢°, here again the superscript res is used to distinguish between the

possible AT resonances.

)\A++ 1 1
Ap 2 2
++ + + e ++ + + e
% HoAl —pT Hll\co—>A K EF{BS HOAI —pT HAﬁgA K EFQ’"ES
i) 2 1) 9
++ + + ++ - ++ + £ ++ -
1 £HS TP Y AT = pyes ke HD TP HN AT =y
19 2 5 R

Regarding the couplings of A} decay to the A™T resonances, they can be rewritten in the LS basis
separating the parity conserving and the parity violating part using Eq. In this chain, J3 = Ji- =
0, the spin of the (R3) = (ATTK~) system can only be S = S{* and since J = § by conservation of
the total angular momentum, L is constrained by |3 — ST < L < |1+ S{7], thus

|3 +Sa++]
pAESATE 2f++ pid st r 2L Gy 0,0 Sas Aaes) (D 0:Sass Anes | T =1/2, A p0s)
Aat+.0 LS 9 JRs AR Y, AT+ AA++ s Uy DA+ AA++ y AA++
L=|5~Sp++]

(5.89)
where \/# (JR,AR;0,0 | SA++,Aa++) is a constant term and Aa++ can only take the values —i—% or
—%. Writing

(L,0; SA++, Aa++ | J =1/2, Apt+) = CLS tt Aats (5.90)

2L +1
ks (JRsAR;0,0 | Sa++,Aa++) =dL, (5.91)
2

then the decomposition would look like:

AT SATTR= AT AT K-
h)\Z+70 = Z hrs XCOLSy s Ayt AL (5.92)
L
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This is a sum over all possible waves, {S(L =0), P(L=1), D(L =2), F(L=3)...} weighted by

the Clebsh-Gordon coefficients C7, g The parity conservation relation

A AN+
pr = Nareng- (=1 = nave (=1)FH (5.93)

can be used to identify the L values corresponding to the parity violating and the parity conserving
couplings.
As an example, let’s look at the AT+(1232) case, with J© = %Jr. The possible values for the orbital

angular momentum are L = 1,2, which implies as possible Clebsh-Gordon coefficients: C3/5 +1/2 =
1/3 and Cy3/9 +1/2 = £+/1/5. Then Eq. gives

AFSATTE— AFSATTRE— AFSATHE— N
hA++ 0 V2(hy 3/2 X CLgjanges Thalm X Cog/aaps) =

3 A;" ATt K~ 1 5 A;" ATt K~ 1
\@(hl,g/g (—\/;>+\£h2,3/_5 <i\/;> (5.94)

The parity relation is +1 = (—1)%*!, hence L odd corresponds to the parity conserving part (PC) and L

+ +
even to the parity violating one (PV), thus by defining iLA+Jr pAE ATTET and h§$+ phe AT

1,3/2 2,3/2 )
the LS decomposition gives:
AT SATTK- A+t A+t
hyy ——f(h — hA) ) s
5.95
Ac+—>A++K— _ 1 AT A++
Wy =—y/1 <h + A )

Partial amplitude for AT — 7T A*(— pK ™)

For the A chain, Eq. [5.40| gives with sg = SA y AR = Apt+4, Al = Ap = i%, A=Ag-=0,3=A+=0
and J = JAj = %

Am)\ —BA* ZZD}S\//\;*)\ ¢p70;)7_¢;))
AT Ap (5.96)
FA oPK A —m—A*
Dy (@, One, =ae) H S0 HYTT,

+ — Ak * —
where H)[\‘AC*?)\LA is the helicity coupling for the decay A} — 7~ A*, and H;}p;}f f( the one for the

A* — pK~ decay. The sum over sy~ run over the possible resonances in the A* chain. The projection
of the total angular momentum of the 7~ A* system on the axis defined by the momentum of K~ is
A+ — Ar = Ap+ (the projection of the orbital angular momentum is 0). Here again, since the total
angular momentum Jy, = % is is conserved, the projection Ap+ can only take the values —i—% or —%,
whatever the value of Jp« is. This reduces the number of allowed terms in Eq. . In addition, in

this case as well parity conservation in the strong decay A* — pK ™~ helps to further reduce the number
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of allowed couplings.

A" =pK™ +Fon o~ A*—pK~ 2
H/\p;;’_ = NA A A (—1)"r g oatt H*)\:g\x— (—1)%x (5.97)
3 _sax ppN —=pK ™
=na-(=1)2 7 HI P (5.98)
where ng—- = —1 and 1, = 1. Hence Hﬁ};:pﬁ = :l:H;};:pﬁ, where the sign is determined by the spin

of the resonance. This reduces the number of possible couplings to 2: G'* and G5*°, where again the

superscript res is used to distinguish between the possible A* resonances.

A 1 1
Ap 2 2
1 A*—pK~— AT A T res AN pK— AT A T res
3 H; Hie =G H; H™s =G,
3.0 5"1 3.0 -2.0
* — * .+ * — * 4
1 £HY PR HN TN = xares 2l PR N N = 26
2 2 2 — 2

Similarly to the AT case, the A* couplings can be rewritten in the LS basis using Eq. Since
the 71 and K~ have the same spin parity J© =07, Eq. holds for the A* and by changing the

labels, the LS decomposition reads:

A AT SR S By g e re (5.99)
L
with
(L,0; Sp% Ans | J =172, 0%) = FL S pu A pe s (5.100)
2L27+1 (IR, AR;0,0 [ Sax, Ap-) =er, (5.101)

As an example, lets’ look at the LS coupling decomposition for A*(1520)(%_). The parity con-
servation relation gives: 7 AT = TAx N+ (—1)% = (=1)¥, meaning that even L corresponds to the parity
conserving couplings and odd L to the parity violating ones. After the same steps as for the A*+

case, one obtains:

AT At 1[5 A% A*
Wy =3 (hpc Ry
AT At 1A% A*
h_%,o - _\E(hpc_hpv

* AT S A* gt * AT S A* gt
where h%czhﬁ/_g ™ and h%vzhlg/_g .

(5.102)

Total amplitude

The final amplitude is obtained summing over the final helicities (since they cannot be measured)
and including the polarization. In this case, the only final non null helicity is the one of the proton.

To be able to do this sum, the Wigner rotation must be included to have a coherent definition of
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the quantization axis, hence using the usual D functions to represents rotations, the amplitude for
+
each helicity configurations .AA _”;\I;f/\ L= Am,»,, where to improve readability the Af - pK— 7t

superscript is dropped:

Am, () = Am)\ (Qp+) +Z«4A* (Qa~)D (Oél,ﬁA*,cb}«)+ZAﬁt\Z(QAH)D(az?ﬁA*,(ﬁ}f)
bV X\

P P
(5.103)
where
2 if — > 2m if — >
oy = 199 = &xl g = 195 = 9x] (5.104)
0 else 0 else

The alpha conditions are coming from the fact that spin % particles are not invariant under a 27
rotation but under a 47 one. This is explained in Sec. and further investigated in Sec. The
total decay rate including the spin density matrix described in Sec. [5.3.4] is given by

I'= %%(‘A% ’ +|.A1 1‘ )
p1_ 1( 11 A ;;+«41 1A, _1)
27 2 272 2 )
o o (5.105)
+p 11( AT+ AL AT _1>
272 272 292 27 2 27 2
+p_1 1 ;;|2+\«4 2_1\2)
2'7 3 2792 27 2

and by applying parity conservation for the production of A, which is done via strong interactions, the
cross terms p1 1 (..) and ! (..) =0 are zero. The final differential rate for the A} — pK~7tdecay

is:

dr o (14 P.) (|As 1 alP) (=P (g P 1Ay

—= 3

|2) (5.106)

1
2

w\»—‘
w\»—‘
N

5.4.5 D(¢,60,0) convention

As mentioned in Sec. there exists two equivalent conventions to describe the rotations: D(¢,6,—¢)
and D(¢,0,0.). The second convention leads to easier equations, Eq. [5.85| [5.86] [5.96| become:

AR, = B (Micr) x DD D3ET (¢, 05, 0)

SK* )‘K*
Ly *0 + + [0
K*0 K- AT —-K*%
D727L,AK*—AP(¢K*’0K*7 )H A +7r H)\K*)\p (5107)
AN =B )} 3 ST DA (6h,6,,0)
m)\p A* /\A* /\ ) Up»s
A* AA*

A oK AFsa—A*
m)\A* (¢A* Opx, 0) Ap ;;f_ H/\A*7—;\7r+ (5108)
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AtTT SA++*
Am7>‘1’ B BA++ Z Z Apt+—Ap ¢7T7 ™ )
SA++ A ++
Ly A++ + At AR
2 —pT AS—>ATTK
Dm,/\AJrJr (¢A++a9A++aO) H)\WJN,\ZJ H)‘A++7)‘K— (5109)

The definition of the primed angles Eq. [5.82] also changes since the helicity frame is reached via a
different rotation and as a consequence the {2’,y’, 2’} axis are changed. The definition of the resonance

angles is unchanged.

5.4.6 Isobars

When building the amplitude for the single chains, one needs to sum over different possible resonances.
This is due to the fact that hadrons can have different mass states, depending on their quantum
mechanical properties, engendering a spectrum of possible resonances with different masses and spins.
The already observed resonances of each chain are listed in Table where the mass and width
values are from Ref. [IT]. Only the resonances which are classified as “Likely (***)" or “Certain
(****)" are shown, plus the A*(2000) which will be used in the fit later on. Any state with a different
mass (and spin) from the ground state is called excited state or resonance. For the A baryons the
ground state is the AO(%JF) particle and it has a mass of 1116 MeV/c2. It is below the pK ~ threshold,
hence the decay will proceed only via A* resonances, the PDG lists 13 of them in the range m,x- €
[1432,2147]MeV/c?. For A baryons, the ground state is A++(%+) with mass 1232 MeV/c?, it is included
in the pr* spectrum my,,+ € [1078,1792]MeV/c?, with 3 other resonances (4 in total). For the K*
mesons, the ground state is K*(0") with mass 824 MeV/c? which is inside the K 7" mass window
which is m g+ € [634,1348] MeV/c?. For the K* there are 4 resonances in total which may contribute
to the amplitude.

All the resonances can possibly be there in the data, but some of them have a smaller influence
on the final fit. During the analysis, a procedure is established to select only the resonances that give
major contributions to the likelihood and to build the final model (i.e. a list of resonances) which
will be used to fit the polarization. For the pK channel, there exists two possible baryons with the
same quark content (uds), depending on the (strong) isospin configuration. Those are the ¥ baryons
with isospin (I = 1,13 =0) and the A baryons with isospin (I =0,I3 =0). Since they are produced
via weak decays, the (strong) isospin is not conserved. In the literature [207] some considerations on
the isospin suppressions are done in similar decays. These are based on the fact that the isospin is
carried by the u (I = 3,I3=13) and d (I = 1,13 = —1) quarks. The 7" has isospin (I = 1,13 =1).
In the transition A* — pK~, the quark content of the A} baryon (ucd) is transformed to (uds). The
isospin of the A} is zero hence the (ud) pair should be zero too. In the quark spectator limit, the
spin of the pair of quarks (ud) is expected to be unchanged by the weak transition, therefore the final
isospin of the (uds) baryons is likely to be zero. Thus the isospin transition giving > resonances are
expected to be suppressed. Nevertheless, the decay A} — Y97+ has been measured experimentally,
with a branching fraction of 1.29+0.07% [I1] very close to the AT — Ar™ branching fraction which is
1.304+0.07% [11]. Thus the ¥ baryons contributions should be studied in details to be able to assert

that their influence on the final amplitude is minor; this will be considered as a systematic effect.
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Resonance ~ Mass (approx)[MeV] Width (approx)[MeV] J” L,+ Lp PDG status

pK channel

A*(1405) 1405.1713 50.5+2.0 /2= 01 0 R
A*(1520) 151744 15730 3/27 12 2 ook
A*(1600) 1544 +3 112132 /2t 01 1 ook
A*(1670) 166913 19728 /2= 01 0 ook
A*(1690) 1697 +6 65+ 14 3/27 1,2 2 HAAk
A*(1800) 1720-1850 200-400 /2= 01 0 ok
A*(1810) 1750-1850 50-250 /2t 01 1 Bk
A*(1820) 182412 7742 5/2F 23 3 R
A*(1830) 1899 + 40 80190 5/2= 23 2 Fokx
A*(1890) 1850-1910 60-200 3/2F 1,2 1 ok
A*(2000) 2000 0.150 - - - *
A*(2100) 2090-2110 100-250 7/2- 34 4 Rk
A*(2110) 2090-2140 150-250 5/2% 23 3 ox
>*(1660) 1660 € [1640 — 1680] 220 € [100 — 300] /2t 01 1 ok
¥*(1670) 1675 € [1665 — 1685 70 € [40 — 100] 3/27 1,2 2 .
»*(1750) 1750 € [1700 — 1800] 150 € [100 — 200] /2= 01 0 ok
Y(1775) 1775 € [1770 — 1780] 120 € [105 — 135] 5/27 2,3 2 ook
»*(1910) 1910 € [1870 — 1950] 220 € [150 — 300] 3/2= 1,2 2 HAKK
¥*(1915) 1915 € [1900 — 1935] 120 € [80 — 160] 5/2t 23 3 Hokk
¥*(2030) 2030 € [2015 — 2040] 180 € [150 — 200] 7/2t 34 3 ok
pm channel

ATT(1232) 1209-1211 98-102 3/2t 12 1 HAKK
AFF(1600) 1460-1560 200-340 3/2F 1,2 1 oAk
ATT(1620) 1590-1610 100-140 /2= 01 0 otk
ATF(1700) 1640-1690 200-300 3/2= 1,2 2 Hokk
K7 channel

K*(700) 824+ 30 478 +50 0F 0 0 otk
K*(892) 891.66 +0.26 50.8+0.9 - 01,2 1 HAKK
K*(1410) 1414 +15 232+ 21 1= 01,2 1 oAk
K5(1430) 1425450 270+ 80 0t (O ook

Table 5.2: Summary of the known resonances that may contribute to the AT — pK~ 7t decay am-
plitude. The mass, widths and spins are from Ref. [I1], the values of L A+ and L are obtained from
angular momentum conservation rules, as explained in the text. The last column shows the status of
the knowledge on the resonances where (*) and (**) mean that evidence of existence is poor and fair,
(***) means "likely" and (****) "Certain".
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Lps=1

e no barrier factors
Las=1

®  no barrier factors

"
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Figure 5.9: Comparison of the relativistic RBW lineshape for different values of L At One resonance
per channel is shown: A*(1520), K*(892) and AT%(1232) with masses and width from Ref. [TIT]. The
value of the barrier factors radii are the one used for the main model, mentioned in Sec. [5.3.5] The
red line is the RBW without barrier factors. The yellow curve represent the case L A =1 and the
green one L AF = 2.

The mass-dependent width and the form factors entering in the lineshape functions in Eq.
depend on the orbital angular momentum of the 2 two-body decays. For the A} decay to the res-
onances, since the decay is weak, the orbital angular momentum L AF I8 only constrained by the
conservation of angular momentum in the decay Al — Rh. For A* and A* resonances the possible
values are |Jp— 3| < L ar <lJr+ 3|, where Jp is the spin of the resonance. For K* resonances the
possible values reduce to L+ =0 for spin zero resonances and [Jg — 1| < L+ <|[Jg+ 1| for higher
spins. For the isobar decays, in the A* and A* cases, the decay is strong hence the orbital angular
momentum Lp is further constrained by parity conservation. Thus, |Jg— 1| < Lg < |Jg+ 3| and
nr = npni.r = (—1)FRT where 7; is the parity of particle i, and 1, = nx = —1 and 7, = +1. For K*
resonances, Jr = L since J.+ = Jx— = 0, parity conservation holds, giving the relation: ng = (—1)7,
which forbids some decays. The higher L AF contributions have a minor influence on the amplitude,
the effect on the lineshapes for three resonances, one per channel, are shown in Fig. The higher
L have a slightly different tail of the distribution for the 3 channels, however one needs to add the
two possible values of L weighted by the C-G coefficients following the LS coupling decomposition in
Eq. [5.46] after adding them the effect will be mitigated. The influence on the complete amplitude is
expected to be small thus only the lowest L A+ are kept, however this effect will be included in the
systematic uncertainties studies. The values of L AF and Lg for each resonance are shown in the 5%
and 61 column of Table [5.2]

5.4.7 Dalitz plot decomposition

In Ref. [202] a decomposition of the amplitude separating the invariant mass and the orientation
angles dependence is proposed, called "Dalitz plot decomposition” (DPD). The main idea behind this
approach is to disentangle the effect due to the production polarization from phase space effects. The

factorization consists in using the same rotation D (al,ﬂl,’yl) = D (¢1,01,¢23) for the 3 chains to go
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from the polarization frame to the frame where the decay products are in the (x — z) plane and the
proton momentum points to —2, called "aligned center-of-mass frame". For the AT — pK 7" decay,

the DPD amplitude is written as:
M3 —ZDW* (¢1,01,¢23) OX({o}) (5.110)

where (¢1,61) are the proton angles in the polarization frame, ¢o3 = x and

K*—>Km
OX({o}) = Z Zf 60 nHoy P X (01)d2 o (623) H )

A~>7rp

+ 3 S V2R d 2 (Boy) Hey OV X (02)ds_y (03B T A () (5.111)
s TN

A—pK
+ > > Vendl 2 (050 H, 0_)(12) 3Xs(03)df—7x(912)H(12)_>1de (G3(1))

s TN

OX({c}) is called the “Dalitz plot function'. The H are the usual helicity couplings, X is the
lineshape. Regarding the angles, Czl(l) = Ba++ and C?}(l) = —fa~ are the angles for the Wigner rotation,
and o3 = Q/K, 031 = 9; and 619 = 9;. The correspondence between the DPD and the amplitude in Sec.
is given by the following equivalences:

D(alvﬁl 1)<—>Dii{;{’o(¢;{,0l[(70)D;)\K* )\ (¢K*70K*7O)
( ’61’7 ) (é 2(1 ))<—>D§\i,)\p( ;70;7 0) D m)\A (a,0a,0) (5112)
D(ad,51,7") x d(By)) ¢ D3 5 (8).04.0) D2 (64.0a-.0)
The amplitudes have been compared numerically, the result is shown in Fig. [5.10, where 1M phase
space events have been simulated with P = {0,0,1} and BW=1, three resonances are included K*(892),

A*(1520) and A*T1(1232), with random helicity couplings: E; = 0.9, E5° = 0.7, E7* = 0.8, E]* =
0.5, H}** =1., H{** =0.6, F;*° = 0.8 and F{% = 0.6.
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[An

80r

60r

40t

207

Qt) 4b 6‘0 8‘0 [ S———
|Ag|?

Figure 5.10: Comparison between the DPD amplitude |A/|? (y axis) and the one obtained with this
formalism |Ag|? (z axis), using 1M simulated phase space events with P = {0,0,1} and BW=1. In the
total amplitude, named A here, three resonances are included: K*(892), A*(1520) and A*T(1232).

The helicity couplings values are given in the text.
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5.5 Properties of the helicity amplitudes and benchmark tests

In this section the properties of the helicity amplitude for the A} — pK~ 7" decay are discussed,
with a particular focus on the polarization. The polarization of the Al depends on the production

mechanism. The angular distribution takes the general form:
dl' x N(1+aP,cosb,+...) (5.113)

where « is the asymmetry parameter. It is clear that to be able to measure the polarization, one needs
to know « ahead and if a = 0 the information on the polarization is lost. If the polarization depends on
the specific conditions of the experiment where the particle is produced, the asymmetry parameter on
the contrary is universal and independent of the production mode. At the LHC, AT can be produced
via strong interactions right after the collision or via weak interactions in a secondary decay (for
instance A, — Afly; ). To acquire a polarization, the A} must be produced from a particle with spin
and polarized. For the weak interaction, this particle is the weak boson W*. For the strong interaction,
the A can be produced through different mechanisms (e.g. gluon fusion,qg interaction etc..) however
by the time the quark c is created and hadronized to a A} many intermediate interactions happen and
the polarization is diluted. Since the number of particle produced and interactions increases with the
energies, the loss of polarization increases likewise. After production, the A itself decays via strong or
weak interaction. In the first case, as the parity is conserved, the decay amplitude must be symmetric
under space inversion and the polarization cannot be measured since there is no asymmetry in the
decay i.e. @ =0. For weakly produced A} instead, parity violation can occur and a # 0, hence the
polarization is measurable. The A7 — pK 7" decay is a weak decay, this means that the polarization

is accessible.

Linearity The angular distributions take a simple form if derived for each single chain separately
with one resonance per chain. As an example, the K*(892)(17) angular distribution is computed here
[208], with the lineshape set to 1. Starting from the polarized decay rate of Eq. |5.106] let’s compute
the first term of the equation:

A —pK*
(gbK*O QK*O, gbK*O)H i—)p —|—

AL 1|? = | D5 (¢, O, — 0k ) D

M‘HM‘,_

11 1
272 T g

DY (5, 0,5 DF ' (D10, 0y, oo HY, P B (5.114)

then using the relation between D and d-Wigner matrices in Eq. one finds:

D (¢, 0%, —d'k) = dio (0) = cos b (5.115)
l 1 . 9 * e
D" (hxe0,0500,—bgn0) =d3 , (Bce0)el?K = —sin<1;0)e’¢K0 (5.116)
27 2 27 2
* 1 1. id
Dii (¢, O, — ) = dise’x (0) = g sinfice Pk (5.117)
%* % HK*O
D%7%(¢K*O,9K*O7_¢K*O) :d%7%(9K*O) = COS 2 (5118)
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The other three terms of Eq. [5.106 mA 14l and A1 _1, can be obtained using the d-Wigner functions

272

properties: d} 0= =—d!, 0 d2 L= di; ~; and d% = —d%l 1, the results are shown in Table
’2 27 2 27 2 272
m )\p Am Ap
; 3 cos 8. 81n(9K2*0) 0% 4 fsmeK cos KQ*O i
1 -1 costcos K P04 fsmﬁKsm(eT —i(@) %)
-3 3 cosbcos HKQ*O - %sm@Ksm((jK;O (P —P%
-3 -1 cosb sin(efg‘o ) —idK % sin 0 cos GKQ*O e K

Table 5.3: Summary of the A, », terms obtained.

Integrating over dQ) = sinfy dfxd¢f dor- in Eq. [5.106, many of the terms of Table integrate

to zero and the angular distribution takes the simple form:

dar 4

— K* *
S~ (14 Pa.ok costic-) (5.119)
where
AF—K*0p 2 AF—EK*0p AF—K*0p|9 AT —=EK*0p|9
WK Hivs PP 1Hy s PPHIHG gy PP HD 0 PP B2 — | Baf? 4 | Ba2 — | Eaf?
Ae ™ AT S KO AT R0 AT KO A SROpy B4 2 2 2 2
H PR H 2 D g ] 2 2 |Ey|? + | Ea|? + | B3] + | E4
(5.120)
where the res superscript (here res = K*(892)(17)) has been dropped for sake of readability and the
* + [ *
HK O KTt coupling has been dropped too since it is absorbed in H;\JC K" The same can be done

for the two other chains, with always one resonance per chain. For the A chain, let’s take the case of
At+(1232)(37), the angular distribution is,

dar 4
=~ (14 Py.0f " costps-) (5.121)
where e o
A ATTK™ A —ATTK™
QAT _ ‘Hl/QO ? ‘H—1/20 ? AP | (5.122)
Ac HA‘%A++K 9 HA SATTK= |9 |F1|2—|—]F2|2 .
‘ 1/2,0 *+ ~1/2,0 |

where the res superscript (here res = AT+ (1232)(3 Jr)) has been dropped for sake of readability and
the coupling H IA/; Oﬁp ™ has been absorbed in the H; A7 ATEKS since it is the same for all the config-
urations. Following the decomposition in the LS ba81s in Eq. aﬁ:+ can be rewritten as:

AT+ A++
are__ Re{hBo Ry
Ae  — ’hA++’2+|hA++|2

(5.123)

this shows that both the parity violating and the parity conserving parts of the decay are needed. This
supports the previous argument, for a parity conserving decay the polarization cannot be measured

since hpy would be zero and so would «. This argument has also been discussed in the introduction,

Sec. 2311
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Similarly for the A* chain, let’s look at A*(1520)(%_):

dr 4 *
dcosf ~ 3 (1 +PACakC COSQA*) (5.124)
where N . + "
Ac —A*m 2 Ac —A*m 2
A _ |H1/2,0 "~ |H—1/2,0 | _ |G1[? — |Gaf? (5.125)
NN PN g IGIPHIGEP |

1/2,0 —1/2,0

where the res superscript (here res = A*(1520)(2 7)) has been dropped for sake of readability and the
* — + *

coupling H {&/2—0>p K™ has been absorbed in the H l/\]c A7 Gince it is the same for all the configurations.

Following the decomposition in the LS basis in Eq. [5.102 aﬁCH can be rewritten as:

A Re{hiehiy }
A R S (5.126)
|hpe? + [Py |

The linearity of a single chain can be used as a test to check if the implementation of the amplitude
is correct. This was useful to assert the necessity of the polar and azimuthal Wigner rotations as well
as the 27 factors coming from the representation of spin % particles.

Setting the polarization to be P = {0,0,1} the cos distributions in Eq. [5.120, Eq. [5.125| and Eq.

[5.122) should be straight lines with positive slope, if only one chain is included in the amplitude. The

distribution for 10 000 simulated phase space A7 — pK~ 7" decays with P, =1 are shown in Fig.
(.11} The dynamic part is not included, meaning that all the Breit-Wigners are set to 1. The helicity

couplings have been chosen in order to obtain ax+ = ap = ap++ =1, namely:Ef(*(SQQ) = E?f(*(892) =1
and Ef*(ng) = Ef*(sgz) =0, FIAH(HSQ) = Gi\*(wm) =1 and F2A++(1232) = G;\*“SZO) = 0. From the

right to the left the K* A* and the A™T polar angles are shown, the amplitude has been computed
including only one chain at the time, for instance cos@++ only contains the ATT contribution in
the amplitude. The linearity is kept when adding the three chains together but the computations are

more complex and they are not shown here.

The zero polarization case When the polarization is zero, the dependence on the Euler angles
0y, Pp, x is dropped and the angular distributions are uniform. This is because the polarization axis
becomes a random axis and there is no reference direction to define for instance the 6, angle. This
means that for each event the angles are equally probable and in the end the angular distribution will
be uniform. This can be easily seen for the case with only one chain and one resonance, if P =0 in
Eq. [5.119] 5.124] [5.121], the angular distribution is indeed flat. This is a benchmark test that any

amplitude formalism should pass, it can be used to spot problems in the amplitude model and in the

implementation of the code itself. A test with 1 000 000 (1M simulated phase space events with zero
polarization has been performed including only three resonances: K*(892), A*(1520) and A1 (1232)

with random helicity couplings and BW lineshapes set to 1. The helicity couplings random values

are: BN g9  pIER) g pEE2 _gg pEE g5 gl 1020 —q g0 _ g6,
F2A++(1232) = 0.8 and F1A++(1232) = 0.6. The results are shown in Fig. This test has been used to

assess the necessity of the azimuthal part of the Wigner rotation and of the "27" condition, discussed
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Figure 5.11: Angular distribution cosf),, cosf; and cos g simulated for 10 000 phase space events with

polarization P= {0,0,1}, the amplitude contains only the resonance studied, i.e. the decays A} —
pK*0(892)(— K—nt), Al — ntA*(1520)(— pK~) and A} — K~ AT+ (1232)(— prt) respectively.
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Figure 5.12: Phase space simulation of 1M events with P= {0,0,0} and BW=1,including only three
resonances: K*(892), A*(1520) and A*+(1232) with random helicity couplings. From the left to the
right column the angular distributions for the three Euler angles are shown. From the top to the
bottom line the K*, A* and A™T chains are shown.
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Figure 5.13: Phase space simulation of 1M events with P= {0,0,0} and BW=1,including only three
resonances: K*(892), A*(1520) and A**(1232) with random helicity couplings given in the text. From
the left to the right column the angular distributions for the three Euler angles are shown. From the
top to the bottom line the K*, A* and AT chains are shown. Left: the azimuthal part of the Wigner
rotation has been removed. Right: the "27" condition has been removed.

in Sec.[5.4:2]and Sec. [5.4.4] If one of the two condition is removed, then the angular distributions have
some unphysical dependence for the zero polarization case and they are not flat as expected. This
is shown in Fig. where on the left the azimuthal Wigner rotation has been removed and on the
right the "27" condition, parametrized by the « factors of Eq. has been removed. This has to
be compared to the expected flat distributions shown in Fig. [5.12

Parity conservation of the Al decay If parity is conserved in the AT — Rh decays then the
angular distribution is flat and it is not possible to measure the A} polarization. This can be seen

easily in the case of single resonance asymmetry parameters, looking at Eq. [5.122] and [5.125] for a

parity conserving decay hgv =0, implying that the asymmetry parameters ar would be zero and the
angular distribution would be flat. Hence if the conservation of parity for the A} decay is enforced,
the angular distribution should be flat for the single resonance amplitudes. The same holds when
adding three resonances from different chains. This physics condition allows to perform another useful
test of the amplitude formalism, that is for a non-zero polarization if the conservation of parity for
the A decay to the resonances is required, then the angular distributions must be flat as for the zero
polarization case in Fig. [5.12] This test has been useful to prove that the 27 condition is needed.
Parity conservation implies additional relations for the helicity couplings, using Eq. [5.45] for the decay
A — Rh

Hypon, = 77Af{mm7h(_1)5R+Sh_SAZr H_xgz—x, (_1)2)\h7 (5.127)
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Figure 5.14: Phase space simulation of 1M events with P= {0,0,1} and BW=1,including only three
resonances: K*(892), A*(1520) and A" (1232) with helicity couplings relations of Eq. From
the left to the right column the angular distributions for the three Euler angles are shown. From the
top to the bottom line the K*, A* and ATT chains are shown. The "27" condition has been removed,
resulting in a not flat distribution.

one can deduce the relations for K*(892), A*(1520) and A% (1232) helicity couplings:

AT K*0p _ AT —K*0p K*(892) . K*(892)
Ho,i/2 Y - _H0,11/2_ . Ey =k
AF—K*0p _ AT K*0p K*(892) - K*(892)
H1,1/2 - _H—l,—1/2 By =Ly (5.128)
HA;*—>A++K* o HAj—>A++K* FA++(1232) B FA++(1232) )
1/2,0 —-1/20 1 =19
AF—sA*pt _ AF A=t A*(1520) - A*(1520)
H1/02,0 - —i/z,o Gl - _Gz

Similarly to the zero polarization case, a phase space simulation has been performed with 1M events,
P= {0,0,1}, requiring parity conservation using the relations in Eq. and removing the "27"
condition. The results are shown in Fig. [5.14] the angular distribution are not flat as expected,
whereas they are flat when the "27" condition is included. This means that this condition is necessary

otherwise the amplitude would present unphysical dependences in the angular distributions.

Origin of the "27 condition" The origin of this condition is linked to the half-integer nature of

fermions spin, which breaks the 27 invariance. This is explained in Sec. [5.2.2 An extra minus sign
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can arise depending on the configuration of the angles and this has to be compensated somehow in the
amplitude. In this formalism, the "27 condition" by introducing an extra term in the Wigner rotation,
corresponding to the o angles in Eq. In practice this condition imposes that for the A* and
AT chains, an extra rotation of 27 is applied if ¢, — dx > 7 or ¢, — ¢pr > w. The domain where the

condition applies is shown in Fig. [5.15

©  Need the 27 correction
& ©® Don't need the 2 correction

b= 0n
bp— 0

O e
@  Need the 27 correction

Figure 5.15: Simulation of 1M phase space events. The middle plot shows ¢, — ¢ as a function of on
the left py /pZ and on the right 28 /PE. The top plot shows the dependence of ¢, as a function of on
the left pjj/p7 and on the right pl/ph. Bottom: ¢, as function of ¢k and ¢ is shown. In both plots,
the points in orange corresponds to the points requiring the "27 condition".
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5.6. CONCLUSIONS

Note on particle ordering The ordering of the daughter particles matters when writing the am-
plitude of Eq. a phase difference (minus sign) between amplitudes could be introduced if a pair
of particles is swapped. For a decay M — 123 the cyclic ordering should be respected, meaning that
the resonances daughters pairs are: (12)3, 1(23) and (31)2. For the A} — pK 7" case this implies
the ordering: (pK~)r™, p(K~7") and (77p)K . For instance in the A™" channel, (7*p), daughter
one (djp) is the pion and two (d3) the proton. By exchanging the ordering, d; =p and do = 7", Eq.
get modified as:
Sa++* !l / Sa++* i /
D)‘i++7)‘7f7)‘P (¢TK‘7 971'7 _(ZSTI’) - D,\i++,)\p7)\ﬂ (d)p? 9p7 _¢p) (5129)
The indices change and the angles of the proton and the pion are not the same: (6,,¢},) = (7 —0;, ¢/ +
7). Using the properties of the d-Wigner matrices, Eq. and Eq. and the relations between
the proton and pion angles, it can be shown that the two rotations are not equivalent, mathematically
there is a sign difference between the two D-functions which depends on A, and sp++,
S * by 1 —2i\, S *
D)\iii’)\pf)\ﬂ(qﬁg,,%,—gb;) = (—1)*at+HAptlo=2i P‘”Dﬁﬁ,xﬂap(@m@%a—¢§r) (5.130)
Furthermore, the relations between the helicity couplings are also modified, see Eq. [5.87 This short
example shows that breaking the cyclic ordering of the resonance daughters introduces an unphysical

phase difference between the amplitudes.

5.6 Conclusions

In this chapter the helicity formalism for two subsequent two-body decays has been introduced. The
helicity amplitude for the A7 — pK 7t decays including the initial state polarization have been
derived and studied in detail. A set of test has been performed to prove that this formalism is correct:
the linearity of the single resonance amplitude, the zero polarization test and the parity conserving
A} decay test. The relations between the helicity couplings have been derived explicitly for the no-
phase convention and the particle-2-phase-convention. These two conventions can lead to confusions,
in [§] the relations for parity conservation is given for the particle-2-phase-convention whereas in the
amplitude the no-phase convention is used. The relations between the couplings in the two conventions
are given in Eq. The necessity of the azimuthal part of the Wigner rotation has been assessed
thanks to the zero polarization test. An extra factor of 27 has been found to be necessary to describe
the amplitude correctly. This factor is due to the spin 1/2 nature of fermions and needs to be included
to pass the third test which enforce parity conservation for the A decay to the isobars, and the zero
polarization test. This formalism has been proven to be exactly equivalent to the DPD formalism

proposed in [202], if the 27 condition is included.
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Amplitude analysis for
AT — pK~ 7" decay

6.1 Introduction to the measurement

In this chapter the A} polarization measurement, via the amplitude analysis of the Cabibbo favored
A}f — pK— 7t is presented. The dataset used contains pp collisions collected by the LHCb detector
in 2016 (Run 2) at a center of mass energy of 13 TeV, for an integrated luminosity of 1.7 fb~1. The
LHCb detector collected millions of Al — pK~7" events and among it, only the AT produced directly
after a pp collisions (called prompt), and not from the decay of B particles (secondaries), are selected.
A tight selection is applied in order to have an almost pure prompt signal with a contamination from
secondaries under 2%. This requirement eliminates a major part of the dataset, nevertheless the
final sample contains more than 600 000 events, allowing to perform a full 5 dimensional amplitude
analysis where the helicity couplings and the polarization vector are measured simultaneously on the
Dalitz plane. A first amplitude analysis of the AT — pK 7t decays has been performed by the
E791 experiment at Fermilab [204], on a data sample containing ~ 1000 events for Al produced
in m-N collisions. An evidence of non-zero polarization was found and three main resonances were
identified: K*(892), A*(1520), A(1232) and a non-resonant component. However, the model used in
this analysis has been proven to be incomplete, since the Wigner rotations discussed in Sec. [5.4.3] were
not included, and the low statistics sample did not allow to see other resonant contributions, which are
instead visible in the LHCb data. The helicity amplitudes derived in Chapter [5| are used to describe
the amplitude of the decay and measure the A polarization vector. As discussed in the same chapter,
the AT — pK 7t decay presents a very rich structure; each of the three possible channels (pK, K
and 7p) can involve several intermediate states. Even though all the well-established resonances listed
in Ref.[I1] could contribute to the amplitude, some of them give a negligible contribution or cannot
even be distinguished from other resonances. For this reason, the resonance content of the amplitude
needs to be assessed in a recursive way; ultimately three models, all giving similar results, are retained.
The choice of the model gives the larger systematic uncertainties on the polarization measurement.
In order to avoid introducing any bias in the analysis, the value of the polarization is blinded. The
unblinding will be performed once the model and the details of the analysis will be definitively fixed.
Such a high-statistics sample require large computational resources and an unavoidable optimization

of the amplitude fit procedure, the code has been developed in C++ within the ROOFIT framework,
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Figure 6.1: The my,x— .+ invariant mass distribution with (red) and without (blue) the DTF vertex
constraint. The bottom pad shows the difference between the two distributions divided by the error.

using OpenMP libraries for multi—threadingﬂ

6.2 Selection of Al — pK 7" events in pp

The data sample used for this analysis contains pp collisions collected with the LHCb experiment in
2016, for a luminosity of 1.7fb~! at a center of mass energy /s = 13TeV H Data are selected from
the Turbo stream, this means that there is no offline stripping and the reconstruction is performed
online by the HLT steps. The ntuples are build using the DaVinci software. An additional step is
applied to the whole dataset (and to the simulated samples) which adds two constraints: the vertex
constraint, which imposes that the daughters’ reconstructed momenta point to the A decay vertex
(DV), and the mass constraint, which requires that the Al reconstructed invariant mass coincides
with the "known" value from Ref. [I1]. This is done within the LHCb software using the "Decay Tree
Fitter" (DTF) algorithm [209], which re-fits the entire decay chains including the mass and vertex
constraints, resulting in a better estimate of the track momenta. This procedure can induce some
biases which should be carefully studied, an example of the effect of the vertex constraint on the
My -+ invariant mass distribution is given in Fig. ﬂ The mass resolution changes from 5.59 MeV
(without DTF) to 5.51 MeV (with DTF).

1Multi-threading is a feature that allows to run several tasks at a time, it allows to compute the amplitude concurrently
on several batches of data.

2The detector conditions during the data taking are summarized in the tag: "dddb-20200424-3" with conditions "cond-
20191004-1". The bookepping path where the data are stored is : /LHCb/Collision16/Beam6500GeV — VeloClosed —
Mag(Up/Down)/Real Data/Turbo03a,/94000000/CHARMSPECPARKED.MDST.
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6.2.1 Trigger

Due to the very high rate of collisions at the LHC, 40 MHz, the LHCb detector cannot register all the
events hence some criteria are set to decide whether an event is kept (because it contains "interesting"
physics) or not: this is done by the trigger system of LHCb. The first step for the trigger, is the
level 0 hardware trigger L0. Since it is an hardware trigger, only the events passing its requirements
are saved and go to the next processing stage. In general, the trigger can be fired either using the
signal candidates, called Triggered On Signal (TOS) events, or without using the signal candidates,
called Triggered Independent of Signal (TIS) events. In the first case the signal candidate alone (via
its decay products) is sufficient to fire the trigger line. In the second case, the signal candidate is not
used (and actually removed) and the trigger is fired by the rest of the event. These "non signal" events
can still contain signal candidates because at LHCb, b hadrons are produced in pairs, one hadron of
the pair can produce the signal candidate and the other can produce other decay products that fire
the trigger by itself (if the signal is not enough to fire the trigger). Note that an event can be TIS
and TOS at the same time (Triggered On Both TOB). In this analysis, the A" candidates are selected

using the following L0 requirements:

e L0 Hadron TOS: requiring that at least one of the charged tracks of the signal decay creates a
cluster in the HCAL with a transverse energy higher than the L0 Hadron threshold, which is
ranging from 3216 MeV to 3888 MeV depending on the TCK used during the data taking period.
For any TCK it is also required to have less then 450 SPD hits to exclude busy events.

e LO TIS: requiring energetic muons or electrons, which are not from the signal decay, but which
indicates that something that may be signal has been produced in the event. More precisely the
lines used in the analysis are: LOMuonTIS, LODiMuonTIS, LOFElectronTIS, LOPhotonTIS.

The specific requirements of these lines are summarized in Sec. Table It is of major
importance to understand how these requirements influence the shape of the phase space distribution
of the A candidates (and the backgrounds) since they could introduce a bias in the amplitude fit
and consequently in the polarization measurement. The MC simulation is used to study these effects
and the results are shown and discussed in Sec. In order to master these efficiency effects,
which depend on the type of trigger required, the two trigger categories, TIS and TOSEL are studied
separately. The samples are also separated according to their polarities, positive (MagUp) or negative
(MagDown). In total four separated samples are studied: MagUp TIS, MagUp TOS, MagDown TIS
and MagDown TOS. If not stated otherwise, all along this chapter the figures shown are for the
MagDown TOS category, the other three categories give similar results and the relative plots are
shown in the Appendices when needed.

On top of the L0 trigger requirement, the events are required to fire some HLT lines, see Sec. [3.2.5]
for a detailed explanation of the HLT. A summary of the LLO and HLT trigger lines used in the analysis
is given in Tab.[6.2] The HLT1 lines are based on generic track information, the transverse momentum

pr, the track quality Xfmck, the ghost probability, the x%P of the track, the 2, and the DIRA angle.

"Where TIS and TOS hereon refers to the specific TIS and TOS requirements applied in this analysis and listed in
the text.
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Name Symbol Definition
2

Vertex quality thx or x? or x?/ndf of the fit of the decay vertex.
Vtx/ndf

Track quality X?’rack Quality of the track reconstruction

Ghost probability  pgrest(a) hits

Probability to be a fake track, coming from a random combination of

Tmpact Parameter 1P tory and the Primary Vertex (PV), sketched in Fig. (right).
2

The transverse distance of closest approach between a particle trajec-

Xip The change in vertex x? when adding or not a track in the vertex fit.

The angle between a line drawn from the PV to the DV of the particle
and the sum of the 4-momentum of its decay products, sketched in

Direction angle DIRA

Fig. (left). One typically uses the cosine of the direction angle in

selections.
Fligh Di
(Fl]%)t stance XI%D Flight distance of a particle divided by its uncertainty.

Probability of the track a of being a particle of type b, where a can
PID ProbN Ny(a) be p,K,m,p,e,d, obtained using a neural network combining the in-

formation from sub-detectors.

PIDy(a) Same as the probN N variables, without the neural network training,.

Table 6.1: Definition of the variables used in the trigger and offline selections.

Trigger level Lines
L0 TOS LOHadron (TOS)
LO TIS (LOMuon OR LODiMuon OR LOElectron OR LOPhoton)(TIS)
HLT1 Hlt1TrackMVA (TOS) OR Hlt1TwoTrackMVA (TOS)
HLT2 Hlt2CharmHadLcpToPpKmPipTurbo (TOS)

Table 6.2: Trigger requirements applied on all samples. Details about the selection contained in the
HLT 1 and HLT 2 lines are given in Table (right).

Some of these variables have been already defined in Chap. 3] however to facilitate the reading a short
definition of each of them is given in Tab. The complete list of selections contained in the HLT
lines, with the numerical values, is given Tab. (right).

The HLT2 requirements instead are designed to select the three-body decay AT — pK~ 7 specif-
ically, the selections are listed in Tab. (left). The decay products have requirements on the same
variables as for the HLT 1 with on top some loose PID selections to remove particles which have been
very luckily misidentified. All tracks are required to point away from the PV. Additional selections ap-
plied to the combination of the three decay products are applied on the flight distance (FD), the A life-
time (7), the DIRA angle and finally a mass window around the A} mass m A =2286.46+£0.14MeV/c
[11] is set. Since the majority of these variables will be also used in the offline selection, the detailed

explanation and justification of it is given in Sec. [6.2.2]
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Figure 6.2: Sketch of the DIRA angle (left) and the impact parameter (right), as defined within LHCb.

Particle Selection
Proton p>10GeV/c TrackMVA
PID, > 5 pr > 1000 MeV/c
PID, —PIDg > 5 pr < 25000 MeV/e
2
Kaon PIDg > 5 Xip > T4
K Xtrack >2.5
Pion PIDk <5 Ghost probability < 0.2
All tracks pr > 200 MeV/c
p>1GeV
X12p >6

X‘?rack/ndf <3
At least two tracks pr > 400 MeV/c

TwoTrackMVA
p > 5000 MeV/c

2
Xip > pr > 500 MeV/c
At least one track p:g > 1000 MeV/c Xgrack ~925
Xip > 16 Xip > 4
Combination 2211 MeV/c? <m < 2543 MeV/c? 2 S 5
> daughters PT > 3000 MeV/c Xvtx ; 10
acos(DIRA) < 0.01 mrad DIRA >0
7>0.15ps Meorr > 1000 MeV/C
Xip > 25

Table 6.3: Left: selections in the HLT 2 trigger lines. Right: selections in the HLT 1 trigger lines.

6.2.2 Offline selection

On top of the trigger requirements described above, additional selections are applied offline to achieve
an optimal signal purity. The selections are first designed by tightening the HLT ones on the transverse
momenta of the decay products and they are listed in Tab. Then, additional requirements on the

daughter’s momenta are applied to select the range where the particle identification performs better,
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see Fig. to have an idea of the PID efficiency as a function of the particle momentum. The
quality of the particle identification (PID) is enforced by mean of the ProbN N, (b) variables, the value
chosen for these selections is the result of an optimization procedure discussed in Sec. Finally
the x% of the decay products is required to be between 9 and 200, where the lower limit allows to
select candidates with tracks pointing to the A} decay vertex and not to the PV, and the upper limit
allows to remove tracks far from the PV arising from the creation of particles due to the interaction
with the detector. The proton candidates are also required to have a small probability to be fake
tracks, pghost(p). Regarding the mother particle A, it is required to have a significant flight distance
in order to remove the combinatorics arising from the large amount of particles produced at the PV
during collisions, this is quantified by the x2p. The Al decay vertex (DV) is required to have a good
X2, meaning that the fit performed to the reconstructed DV is good. The A} momentum is required to
be aligned with the momentum obtained when joining the PV and the A DV, by mean of the DIRA
variable, which is sketched in Fig.[6.2] The measured A7 lifetime is 0.20+0.03 ps [LI], based on that
a requirement for 7 to be smaller than 1.5 ps is added. Finally, a selection on the 10g(x%P) of the
AF candidates is applied to remove secondary decays. This is probably the most important selection
for this analysis since the polarization depends on the production mechanism and the secondary and
prompt AF are produced via different interactions (weak and strong respectively). The optimization

of the log(x?%) selection is discussed in detail in the next section.

The sPlot technique

The sPlot technique [210)] is a method (used in this analysis) which allows to unfold the contributions
from different sources in a given data samples. A "discriminating" variable is used to separate the
events into different categories of choice. A typical example is the use of the invariant mass as
discriminating variable to separate the signal candidates from the background. The mass is described
by a model which includes the two components, signal and background, and which is used to classify
the events. An event-by-event weight (usually called "sWeights") is extracted from this model and it
can be used on other variables (called "control" variables) to separate the contribution of each category.
An essential assumption for this technique to work is that the control variable is uncorrelated with
the discriminating variables. In this analysis, the sPlot technique is used to separate signal from
background events using the my, i +invariant mass as discriminating variable, see Sec. and to
separate prompt from secondary A} decays using the log(x%P)as discriminating variable, see Sec.

6.2.3 Separation of prompt and secondary A}

In this analysis, only the A} produced directly in the pp interaction (called prompt) are studied, hence
the A produced from the decay of other baryons (secondaries) are considered as background. The
separation between prompt and secondaries is performed using the AT impact parameter: if the IP is
large then the A have been produced from a secondary decay, for instance the decay A) — ATI~ 7,
however if the IP is small, then the A7 momentum is pointing to the primary vertex, meaning that it
has been produced promptly. In practice, the variable used is the X%P, defined in Tab. which takes
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Particle Selections
Af log(x7p) < —2.
7 < 0.0015ns

x% p > 40

X2 /ndf < 5
acos(DIRA) > 10mrad

Proton X3p > 9
Xip < 200
pghost(p) <04
10000 < p < 100000 MeV/c
pr > 1000 MeV/c

Kaon Xip > 9
Xip < 200
3000 < p < 150000 MeV/c
pr > 500 MeV/c

Pion X12p >9
Xip < 200
3000 < p < 150000 MeV/c
pr > 500 MeV/c

PID (ProbN Ny(p) — ProbN Nk (p)) > 0.1
(MC15TuneV1) (ProbNNy(p) —pProbN N (p)) > 0.4
ProbNNg(K) > 0.1

Table 6.4: Offline selections. The variables used are described in the text.
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Figure 6.3: Comparison of the log(x%) distributions in 2016 Monte-Carlo simulations for prompt
produced (green) and weakly produced (cyan) A} baryons.

into account the associated error coming from the track fit procedure, where the simple IP variable
instead does not. An even better discrimination between prompt and secondaries A is obtained using
the logarithm of the x%», which allows to distinguish these two categories clearly even by eye. Indeed,
in Fig. the comparison of the log(x%P) for prompt and secondary A} simulated decay shows two
well separated peaks and one can already see that promptly produced A} starts to be dominant at
log(x%P) < 0. The selection is optimized in order to have a prompt signal as pure as possible and
the optimization is performed in 3 steps. First the MC distributions for prompt and secondaries are
fitted using a Bukin function in order to extract the shape parameters. Then a fit of the log(xfp)
distribution of the signal data, selected using the sWeights obtained from the invariant mass fit, is
performed. Finally, the contamination of the prompt sample is estimated by computing the number of
prompt (N,) over the number of secondary decays (Ns), Np/(Ng+ Np), as a function of the log(x%p)

selection. The Bukin function is a modified Novosibirsk distribution defined as

ov2In2
ln(1+2§272§\/§2+1)

—In2

2
ln(1+2§\/§2+1 T_p )]

e < < IR

fBukin(T; 11,0,&, p1,, pR) = eVE2+1(z—27)V2In2 (I’IL>—1 9 (6.1)
s 505G ) ea( ?2_*1_5)2111( %52+1+5)+p Ty n $<$L
= M

3 /£2+1(ac7mR)\/21112 +p (mixR'>fln2
oo (Ve H1-62Im(Ve2t1+4¢) t\w==

I'ZCCR,

where

TLR = p+0oV2In2 (\/5257“ F 1) . (6.2)

where p and o are the mean and the width of the central peak, £ is the asymmetry parameter, pr,

and pr are the left and right tail exponential coefficients. The results of the MC fits are shown in
Fig.[6.4 and Table[6.5] The fit on data is done fixing p; for the prompt and secondary component and
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Parameter Value

Prompt Secondary
3 —0.17£3.74x 107 0.03£2.37x 1073
U 0.05+£2.24x1073  3.35+6.06 x 1073
p1 —0.10+1.04x 1074  —0.30+£6.79 x 1073
02 0.1243.29x107°  —1.70£2.76 x 1072
o 0.104+1.71x 1073  1.94+2.96x 1073

Table 6.5: Results of the fit to the simulation using a Bukin function for prompt and secondary A} .
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Figure 6.4: Fit of the log(x?) simulated MC distributions for prompt (left) and secondary (right)
produced A}

letting the other parameters free with as a starting value the results of the MC fit. An example of
fit to the log(x%) distribution in data (without any selection) is shown in Fig. [6.5, Then the number
of secondary and prompt decays is extracted from this fit for different log(x?%) selections to compute
the ratio Np/(Ng+ Np). The results are shown in Fig. the selection chosen for the analysis is
log(x%p) < —2.0, resulting in a residual contamination from secondary of 1.05% and a signal purity of
98.9%.

To ensure that the log(x%p) selection does not introduce any dependence on the phase space
variables, the efficiency of the log(X%P) selection has been studied as a function of the 5 phase-space
variables in MC and data. For the MC simulation, the efficiency of the selection —7 < log(x%p) < —2
for prompt signal particles is shown in Fig. [6.7  The efficiency distributions obtained are not flat
over the phase space as expected. The efficiency over ¢, drops in the middle, similarly it drops on
the extreme right for the invariant masses case. For the other variables, x and cos(6,) the efficiency
looks flat as expected. This efficiency variation could be introduced by the refitting procedure that is
performed on the tuples, the "Decay Tree Fitter" (DTF) [209]. The quality of the (re)fit of the tracks,
especially after the vertex constraint, is strongly correlated with the X%P variable. This could introduce
a bias in the phase space distributions depending on the log(x%P) selections chosen, the larger is the
selection on the logIpChiSq variable the larger is the correlation between the two variables. This

effect has been studied by plotting the x?/ndfprr against the five phase space variables in four bins of
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Figure 6.5: Fit to the log(x% ) distribution on the data, two Bukin functions are used. The red dashed
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Figure 6.6: Purity of the signal computed as Np/(Ns+ Np) as a function of the log(x%) selection.
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Figure 6.8: Profile histograms featuring the X2/ndeTp versus the phase space variables

2

(mpK,,miﬁ,cost,gzﬁp,X), the mass m%,
[-7,-2] (in green), [-2,0] (in red), [0,2] (in blue), [2,4] (in cyan).
category and positive polarity.

.+ is also shown. The colors represent the log(XIQP) bins:
The results shown are for the TOS
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log(x%p): [-7,-2], [-2,0], [0,2] and [2,4]. The result are shown in Fig. An effect on the border of the
mass distribution and a non flat dependence on the angular variable ¢, is seen, the effect is larger for
the [2,4] log(x%) bin. For the bin used in the analysis [-7,-2], no effect is seen on the angular variables,
however a variation at the border of the mass distributions is seen. What is important to verify is
whether this effect is also present in data. In order to do so, the prompt and secondary decays are
selected in the data using sweights obtained form the fit to the log(x%) in data. Then the log(x%)
selection efficiency for the prompt decays is obtained on a sample with loose preselections by dividing
the number of events in the log(xfp) bin over the total number of events. The comparison is shown
in Fig. [6.9] where the green histograms are the efficiencies from simulated events, the blue histograms
from data and the red histograms are the ratio of the two previous histograms where the corresponding
y-axis is displayed in red on the right side of the plot. Both samples, MC and data, have passed the
same DTF procedure and it appears that the effect is well reproduced in the simulation. In conclusion,
the log(X%P) selection is introducing an effect over the phase space which is well reproduced in the
simulation, this means that it will be taken into account when correcting for the efficiencies and no

unphysical behavior will be introduced over the phase space variables.

6.2.4 Optimization of the PID selections

The selections on the particle identification variables, ProbN N, aims at increasing the probability
to have tracks which are correctly identified as proton, kaon or pion. This allows to reduce the
background considerably, however since the Iog(x%P) selections already remove a major part of the
dataset, an optimization of this selection is performed to avoid any unnecessary further reduction
of it. The PID requirements have been optimized using a recursive method. Starting with the
proton variables, probN Ny (p), probN Nk (p) and probN N (p) two variables are constructed: A,x =
probN Ny (p) — probN Nk (p) and Apr = probN Ny(p) — probN N(p). These variables are chosen to
better contrast the hypothesis that the proton has been well identified against the hypothesis where
the proton has been misidentified as a kaon or a pion, this allows to better remove the background from
misidentification of a proton as a pion or a kaon described in Sec. First the A,k is optimized
against A,r by looking at how the purity of the signal and the significance varies in the mass region
[2281.47,2293.33] MeV/c for each combination of selections. A fit to the my,x—,+ invariant mass is
performed to extract the number of signal (Ng) and background (Np) events, from which the purity is
estimated as the ratio Ng/Np and the significance as Ng/v/Ng+ Ng. The optimization is performed
only on a reduced sample for the TIS category MagUp, since it is not expected to vary among trigger
categories or magnet polarities. The model used to fit the invariant mass includes two Crystal Ball
functions sharing the mean and standard deviation and one Gaussian, sharing the mean but not the
standard deviation. The invariant mass fit is not shown since a detailed description of it is given in
Sec. Several values have been studied, the optimal point is found around A, > 0.1 hence a zoom
on this region has been performed. The results are shown in Fig. (left), the optimal selection for
A,k and Ay is found around the region A,x > 0.1 and A, > 0.4, which has been chosen based on the
significance ratio plot (upper, left). The purity increases monotonically so it cannot be used to make a

decision alone. Note that the selection A, > 0.08 could also work, however the purity plot indicates
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Figure 6.9: Comparison between the log(x%») selection efficiency obtained in the simulation (green)
and in data (blue). The red histograms are the ratio of the green and blue ones, with the corresponding
y axis displayed in red on the right side of the plot.
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a higher purity for higher values of A,x, hence the selection A, > 0.1 has been chosen. Once the
selection on the proton variables has been fixed, the pion and kaon variables are also studied using the
same technique. Based on the significance ratio shown in the upper right plot of Fig. [6.10 the values
probN Nk (K) > 0.1 and probN N (m) > 0.0 have been chosen, which select 98% of signal events and

leave 2.2% of background events. A similar optimization has been performed using another set of PID

=
z
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453.!

453 =z
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Do ProbNN, (K)
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0.4 0.5
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Figure 6.10: Left: the combination of ProbNN variables A, vs A,k are shown as a function of (top)
Ng/v/Np+ Ng and (bottom) Ng/Np. Right: the probN N (m) selections are shown as a function of
(top) Ns/v/Np+ Ng and (bottom) Ng/Np, with the additional selection A,x > 0.1 and Ay, > 0.4
fixed.

variables, the PIDx variables. They are obtained in a different way than the ProbNN variables, as
explained in Sec. [3.2.3] and they are used in the HLT lines already. The equivalent optimized selection
is obtained for PIDy(p) > 13.5 and (PIDy,(p) — PID,(K)) > 6, corresponding also to 98% of signal
events and 2.2% of background events. The two set of variables are thus equivalent with respect to
this optimization procedure. Finally, the probNN variables have been chosen since they show a better

agreement between data and simulation.

6.2.5 Backgrounds

There exists three types of possible backgrounds:

1. Mis-ID background: three-body decays where one of the final-state particles is wrongly identified.

158



6.2. SELECTION OF A} — pK~r+ EVENTS IN pp

Mis-ID Final Possible decays BR Comments
state
at - Kt pK- Kt Af —-pK KT (1.06 +0.06) x 103
K- —7 pro T AF = prtot (4.61+£0.28) x 1073
poat K-t Dt o Kortrt(n®)  9.13+0.19 (5.094+0.18)  OClN, additional
not reconstructed
+ TRt (0 iti 0
b K+ K+ K-t Dir — K+K77T+(7T ), 5.39%+0.15 (6.2 :|:703.6), SEEN, additional =
Dt - K K™« (9.54£0.26) x 10 not reconstructed
p— KT & + _ . DF=sKfrrt, (5.28£0.23) x 1074, .
K= —n~ Krm ™ pr S Ktrat (6.5+0.4) x 103 D+ mode is DO}
p—7t & _ Dt s n ntnt, (3.18£0.18) x 103,
T ’/TJrﬂ'Jr
K= —n~ Df 5 atant 1.08 £0.04
+ +

”K___:i_ b pKta~ A 5 pKtr (1.1140.18) x 10~* DCHY

JF .
pom & mpK~  AF - wtpK - 6.28 +0.32 SEEN,  signal final
T =P state
p— Kt &
K-—n& K'Kta~ Df—-KtTKtn™ (1.2840.04) x 10~* DCS
Tt - KT

Table 6.6: Mis-ID backgrounds, BR are from Ref. [I1]. DCS stands for "Doubly Cabibbo Suppressed"
decays.

2. Partially reconstructed backgrounds: those are four-body decays where one of the final particles
(Y) has not been reconstructed, X — pK 7Y

3. Combinatorial background: random combinations of p, K and 7 particles which are not origi-

nating from a A} decay.

For the first type of background, there are few decays that may mimic the signal or peak in the
signal region. The mis-identification can happen for one particle (6 possibilities), two particles (12
possibilities) or even three particles at the time (24), for a total of 42 possibilities. However not all
the misidentification have the same probability to occur; for instance the double misidentification is
less likely than the single one and the probability to misidentify three particles at a time is very small.
Furthermore, each particle has a different mis-id probability itself, see Sec. Fig. for instance
the proton is more likely misidentified than the kaon. Not all the combinations correspond to a specific
decay mode, the list of physically possible decay mode is given in Tab. along with the associated
branching ratios. For the partially reconstructed backgrounds, the mass of the non reconstructed
particle has to be small or the reconstructed mass m,, g~ + would be outside the region of interest.
There are three-body decays to hadronic final states with an additional non reconstructed photons, for
instance D* — K7t 770 and D — KT K~ 7 7%, where, in addition to the non reconstructed photon,
a proton has been misidentified either as a pion or as a kaon (p — 7" and p — K); however those
decay would peak outside the mass window since the D mass is mp+ = 1869.65 + 0.05MeV/c?[T1],
and the DI mass, m p+ = 1968.34+0.07MeV/ ¢ [11]. In addition those decays are suppressed with
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respect to the signal, since they are Doubly Cabibbo Suppressed (DCEED. The presence of these
physical backgrounds is studied by reconstructing the invariant mass of the three daughter particles
with different mass hypotheses, where the particle’s four-vector is computed again changing the value
of the mass to a new mass hypothesis. Then, two-dimensional plots featuring the three-body invariant
mass M,k -.+ against the same invariant mass with the new mass hypothesis are drawn, the mis-
ID contributions appear as lines on these two-dimensional plots. The three mis-ID combinations
giving a sizable background contributions to the A7 — pK 7" decays are shown in Fig. for
the TOS category (magnet up): (p — 7") (bottom-left),(p — K*) (bottom-right) and the double
mis-ID (p — 7+) and (7" — p) (top-right), along with one combination which has no significant
contribution (p — 77) and (K~ — 7~ ) (top-left). In Fig. the one-dimensional projections, with
the new modified hypothesis (same as the x axis on the left plots), are shown. The same figures for
the TIS category, along with other misidentification combinations of Table that may contribute,
are shown in Appendix [Bl Two lines appear clearly in Fig. one around the DT mass, mp+ =
1869.65 + 0.05 MeV/c2[11], for the (p — 7 ") misidentification, the second one around the D} mass,
mp+ = 1968.34 +0.07MeV/c?[11], for the (p — KT) misidentification. For the third line appearing in
the double misidentification case (p — 71) and (7 — p), this exchange results in the same final state
as the signal, however this is still a background, especially when taking a pair of particles to compute
z K> mfr+p or m%(_ﬂJr. The same misidentification plots after applying the final
offline selections, listed in Tab. [6.4] are shown in Fig. [6.13] and Fig. [6.14] The mis-id contributions

are considerably reduced but still present. The residual contribution has been estimated using the

the invariant masses: m

following method.

1. Using the data after the final selections, a fit of the invariant mass is performed to obtain the

mean value (p,+), the standard deviation (o ,+) and the number of signal events in the window
Ams, = p£ 30, the fit results are shown in Fig. (left).

2. In order to fit the misidentification peaks appearing in the one dimensional distribution of
M(posat)k—n+ A M+ -7+, & pre-fit of the data without selections and outside the signal

window Amg, is performed to find the mean value and the standard deviation of those peaks.

3. A second fit of the misidentification peaks is then performed to the data after offline selections,
always outside the signal window Ams,, fixing the mean and sigma values to the results found
in the previous step. The results are shown in Fig. [6.15[ (right), the number of D* (N g’ﬁ) and
Df (N g’;{) is extracted from the corresponding fit.

4. Finally, the number of residual background is extrapolated to the Ams, signal region as

N3cr _ N!3U « Am30’
D+/Df D+/DF AMgown + Amup

(6.3)

where Amgoyn and Amy,, are the sideband regions outside Ams,, shown in Fig. |6.15( (left).

!The singly Cabibbo suppressed (SCS or CS) decays have been discussed in Sec. I The DCS decays are more
suppressed than the singly CS decays (which are O(X)) since they involve two suppressed quark transitions implying a
CKM factor O(A\?).
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Figure 6.11: Left: reconstructed mpg-,+ invariant mass vs different mass substitutions for recon-
structed AT — pK 7" decays without offline selections. Top: double misidentification p — 7 and
K~ — 7, double misidentification p —+ 7" and 7™ — p. Bottom: simple misidentification p — 7"
and p — K. The horizontal band is the signal, vertical and diagonal bands are the misidentification
backgrounds described in the text.

The percentage of remaining mis-ID background from D' and D} in the Amg, window is shown
in Tab. The number of signal A} and residual background obtained from the invariant mass fit are

also shown. The residual contamination from Dt and D decays is less than 1% and 2% respectively.

Trigger TIS [%] TOS[%]
Polarity Mag Up Mag Down Mag Up Mag Down
Dt 0.85 0.90 0.69 0.80

Df 1.37 1.37 1.25 1.35

AF 97.23 97.08 97.27 97.11
Background 2.78 2.92 2.73 2.89

Table 6.7: Fraction of events in the Ams, window for the D*, D}, AT and residual background. The
percentages have been computed on the data after applying the offline selections. The two polarities
and two trigger categories are shown.
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Figure 6.12: One dimensional projection of the m,,x—+ invariant mass with different mass substitu-
tions for reconstructed Al — pK 7" decays without offline selections. Top: double misidentification
p— 7t and K~ — 7, double misidentification p — 7" and 7" — p. Bottom: simple misidentification
p— 7t and p— K~. Two peaks appear around the mass of the D (bottom left) and D} (bottom
right), which correspond to the mother particles of the misidentified decays listed in Tab.

6.2.6 Purity of the signal

After the offline selections, the residual background is evaluated by mean of fit to the p K ~ 7" invariant
mass, which is also used to separate the signal candidates from the background. The signal shape is
modeled by two Crystal-Ball (CB) functions and a Gaussian function, the background is modeled by
an exponential function. The CB is a probability density function (PDF) which has a Gaussian core
and power-low tails allowing for asymmetric tails, both the function itself and the first derivative are

continuous,

exp (— (Iij) for a > 0, &=2)

202

5 >
A(B—@)in for a>0,@=% < 4

g

CB(z;z,0,a,n) =N , (6.4)

in which A = (ﬁ)nexp <—|a22‘), B=1— |a| and N is a normalisation factor. Then & can be seen
as the mean value of the Gaussian part of the CB distribution, and it is common to the 2 CBs and to
the Gaussian. Finally, the n is the exponent of the power law tail and « sets the limits between the
Gaussian and the power law shapes. There is one set of parameter per CB: (nj,a;,01) for CB1 and

(n1,a1,09) for CB2. The fit to the pK 7" invariant mass for the candidates passing the selections
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Figure 6.13: Left: reconstructed mpg-,+ invariant mass vs different mass substitutions for recon-
structed AT — pK 7" decays after offline selections. Top: double misidentification p — 7+ and
K~ — 7, double misidentification p —+ 7" and 7™ — p. Bottom: simple misidentification p — 7"
and p — K. The horizontal band is the signal, vertical and diagonal bands are the misidentification
backgrounds described in the text.

is shown in Fig. [6.16] where on the right side the same fit with the y-axis in logarithmic scale is

shown. The results of the fit are given in Tab. where the last 4 lines shows the total number of
signal (Nyig) and background (Ngignqe) events, and the total number of signal (Ng’,;’g
(N ;‘;ml) events in the 3 sigma region defined using the Gaussian sigma (o3) obtained from the fit.
The same fit for the other trigger and polarity categories are shown in Appendix [D] From this fit, the
number of residual background events in the mass window [2281.47,2293.33] MeV/c? is 2.89%. This

window is selected using the standard deviation of the Gaussian o3 (which dominates the fit) and

) and background

taking a window of 4¢3 around z. The signal purity in the mass window is 97.12%. The fit to the
My -+ invariant mass is used to extract signal events against background using the sPlot technique
[210]. Fig. shows the 2.89% residual background (in green) over the one-dimensional projection
of the five phase space variables. The background is very small but it must be taken into account
since it can contribute to the resonances lineshapes, as for instance for the K*(892) resonance in the

MK, Spectrum.
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Figure 6.14: One dimensional projection of the m, g+ invariant mass with different mass substi-
tutions for reconstructed Al — pK 7" decays after offline selections. Top: double misidentification
p— 7t and K~ — 7, double misidentification p — 7" and 77 — p. Bottom: simple misidentification
p— 7t and p— K~. Two peaks appear around the mass of the D (bottom left) and D} (bottom
right), which correspond to the mother particles of the misidentified decays listed in Tab.

6.2.7 Corrections to simulation

A Monte Carlo (MC) simulation is used to reproduce the A7 — pK 7t decays and the detector
response. In this analysis the simulation is mainly used to compute efficiencies in order to include
it in the final amplitude fit. The simulation is performed within the LHCb software, more details
can be found in Sec. however due to the complexity of the LHCDb detector and the variety of
effects induced at each step of the detection chain, the simulation does not reproduce perfectly the
data. For this reason the simulation sample has to be corrected for the LO trigger response, the PID
response and the AT kinematics, which includes the correction of the generated event multiplicity.
The corrections are computed separately and added as weights to the simulation sample and will be
included to the amplitude fit.

LO trigger

The LO trigger enters in the very beginning of the detection chain and it relies on the information
of HCAL, ECAL and muon stations. The L0 Hadron TOS response is not well reproduced in the

simulation and needs to be corrected using calibration samples obtained from D° and D* decays
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Figure 6.15: Left: invariant mass fit with three zones defined as: Amg, for the signal region, Agown
and A, outside the signal region. Right: fit to the invariant my, g+ masses with swap hypothesis
p— 7wt and p — K, for reconstructed A} — pK 7" decays before applying the offline selections.
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Figure 6.16: Left: fit to the m, - + invariant mass. Right: same fit, with the y-axis in logarithmic
scale. Data are shown in black, the fit model (2CBs and a Gaussian function) is shown in red and the
background (exponential) in green. The lower pads show the residues of the fit.
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Fit result
Trigger TIS [%] TOS[%]
Polarity Mag Up Mag Down Mag Up Mag Down
Variable
a1 3.68+0.79 2.58+0.12 2.49+0.030 3.69+£0.79
a9 —4.78+0.93 —4.784+4.78 —-4944+529 —4.78+0.93
ny 3.41+5.69 2.06 £0.48 3.07£0.47 3.41+£5.70
ng 1.08 £6.47 10.00+5.52 4.11£6.16 1.81+6.47
o1 3.50+0.60 4.45£0.13 3.89+£0.02 3.50£0.60
lop) 9.52+0.40 10.36 +0.57 9.96 £0.04 9.52+0.40
o3 5.51+0.22 6.23+£0.31 5.73+£0.01 5.50£0.22
fes 0.30£0.20 0.84+0.05 0.30£0.20 0.30£0.20
fGauss 0.28£0.05 0.60+£0.08 0.28£0.05 0.28 £0.05
x 2287.24+0.02 2287.4+£0.01 2287.2+0.01 2287.24+0.02
Npig 14967 £ 155 231614192 12716 £ 144 14967 £ 155
Nignar  152121£0.00 21911240.00 136159+0.00 152121 +0.00
Ny 3.23% 3.46% 2.85% 2.89%
N3 i 96.77% 96.53% 97.16% 97.12%

Table 6.8: Results of the fit to the my i+ invariant mass for the two trigger categories and polarities.
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Figure 6.17: One-dimensional projections of the phase space variables. The red curves are the data
after the offline selections, the green curve is the background estimated using the sPlot technique.
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where well identified pion and kaon are obtained. For calibrating protons, A — pr~ and A} — pK 7™
decays are used instead. Tables containing the L0 Hadron TOS decision efficiency as a function of the
real transverse energy of the particles when arriving at the HCAL surface are provided. There exists
one table per particle type, per region in the calorimeter (inner and outer), per data taking year and
magnet polarity. More details on how the efficiency are computed from data can be found in Ref. [211].
The information per track contained in the tables needs to be combined and additional effects must be
taken into account when doing that. For a three-body decay a — 1+ 2+ 3, the efficiency of triggering
on the event is a combination of the efficiencies of each one of the final tracks. Thus denoting ¢; the

efficiency of track i, the combined L0 hadron efficiency ¢, is:

€a=e€1 X (1—(ea+e3)+eax (1—(eg+e3))+ezx (1—(e1+€2))+

61><€2><(1—63)—|—61X63X(1—€2)—|—€2X63><(1—61)—1—61)(62)(63 (6.5)

which includes the efficiency of triggering on only one particle (first three terms), on two particles
and not the third one (next three terms) or triggering on the three at the same time (last term).
The additional effects have been computed in separate tables and they include the overlap between
signal track clusters, the average occupancy of the calorimeter separated in inner and outer regions,
the relative calibration between HCAL cells which varies due to the aging of the detector, and the
fraction of signal tracks with no energy deposit in the HCAL, since not all tracks reach the HCAL.
All these additional tables are available per data taking year and magnet polarity, and instructions
on how to correct the efficiency of Eq. are given in [2I1]. The difference between the efficiency
obtained from the simulation and the one obtained using the calibration tables is shown in Fig. [6.1§]
for a subsample of simulated events. In general, the simulation overestimates the efficiencies. Finally,
an event-by-event weight containing the L0 Hadron TOS efficiency of the A} is added to the TOS
category simulation samples. No reweighting procedure is necessary for the TIS trigger category used

in this analysis since no LOHadron TIS line are used.

PID

As for the LO simulation, the PID response is not perfectly reproduced in the simulation and a
calibration using data-drive methods is necessary. Within LHCDb, there are few approaches available,
described in Ref. [212] and [213], all based on dedicated calibration samples recorded in parallel to the
data taking. In this analysis the PIDCorr package, described in Ref. [214] and provided within the
LHCb collaboration is used. The classic PIDCalib approach uses the kinematics of the signal tracks
to obtain event-by-event weights to correct for the PID response, whereas in the PIDCorr package the
PID variables are transformed directly to match the data by mean of an unbinned calibration PDEF.
The calibration sample used in this analysis is obtained using the Ag — Af7m~ decays for protons
and D° — K7t decays for kaons and pions. In Fig. the simulated PID variables used in
this analysis are compared with the background subtracted data, for the case with the PIDCorr
correction (magenta) or without (cyan). Both curves have also the kinematic weights, explained

in the next paragraph, applied. Overall, the agreement is improved, especially for ProbN Np;(p)
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Figure 6.18: L0 Hadron efficiencies as a function of the transverse energy for the K, p and 7+ decay

products, and as a function of the transverse momentum for the Af, are shown. The efficiencies

obtained with the LHCDb simulation are shown in blue and with the calibration tables in red.

and ProbN Ny (K), or equivalent, for ProbNN,(p) and ProbN Nj(p), when applying the PIDCorr

algorithm.

Kinematic reweighting

In order to have a better agreement over the kinematic variables (p, pr, y, ...) between the simulated
sample and the data, an additional correction is applied to the event multiplicity, the Al transverse
momentum, rapidity and lifetime. This variables are not well reproduced in the simulation and
by correcting them the simulation of the other variables will be also improved. The correction is
calculated by comparing the simulation to the data and computing an event-by-event weight which
will compensate for the difference between the two. This procedure is called kinematic and multiplicity
reweighting and it is performed using the GBReweighter from the hep_ml library [215], which is a
machine learning tool. The reweighter is trained with a subsample of the simulation against the
sweighted data (to select only signal events). The input variables used are: the reconstructed A}
transverse momentum p%j, the rapidity y AT the lifetime 7(A}) and the number of VELO tracks in
the event (nTracks). The training is performed per trigger category and magnet polarity separately.

Fig. [6.20] shows the distributions of the input variables from simulation, before (dashed green lines)
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Figure 6.19: Comparison plots between data and simulation: the background subtracted data are
shown in black for the signal, the simulation with PIDCorr is shown in magenta and without it in
cyan.

and after (blue lines) the reweighting procedure, compared to the sPlot A7 — pK 7t data. The lower
pad shows the pulls between the simulation (with or without reweighting) and data. The Data/MC
differences which where present before are now corrected for and the weighted simulation matches the
data better. The effect of the reweighting procedure on the other relevant variables of the analysis is
shown in Fig. and Fig. [6.22] By looking at the pulls, one can see that the comparison for the
probNN variables is less good than for the other variables, for this reason an additional verification
is performed. To be sure that the simulation does not induce any bias over the phase space, profile
histograms for each of the PID combination of variables used in the offline selection (see Tab.
featuring the phase space variables are build for simulation and data in order to compare them and
verify that they behave similarly. An example for the (ProbNNy,(p) — ProbN N, (p)) combination of
variables is shown in Fig.[6.23] The two profiles look very similar and no bias seems to be introduced,
hence the PID selections can be applied safely. Similar plots for the (ProbNN,(p) — ProbN Nk (p))
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and ProbN N (K') variables are shown in Appendix
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Figure 6.20: Comparison plots between data and MC for TOS Magnet Down Al — pK 7" samples.
The sPlot data is shown in black for the signal and in red for the background, the simulation without
corrections is shown in dashed green lines and the reweighted MC is shown in blue.
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Figure 6.21: Comparison plots between data and MC for TOS Magnet Down A} — pK ~ 7" samples.
The sPlotted data is shown in black for the signal and in red for the background, the simulation
without corrections is shown in dashed green lines and the reweighted MC is shown in blue.
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Figure 6.22: Comparison plots between data and MC for TOS Magnet Down A} — pK ~ 7" samples.
The sPlotted data is shown in black for the signal and in red for the background, the simulation
without corrections is shown in dashed green lines and the reweighted MC is shown in blue.
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Figure 6.23: Profile histograms featuring the probNN distributions (ProbN Ny,(p) — ProbN N (p))
versus the phase space variables (mi K,,mgﬁ,cos Hp,gbp,x), the mass m%(,ﬁ is also shown. The red

dots are sPlot signal data, the blue dots the MC after the reweighting procedure. The results shown
are for the TOS category and positive polarity.

6.2.8 Efficiencies

The total efficiency, eror, is the product of several efficiencies: the geometrical acceptance €,cc, the
kinematic offline selections €4, including the stripping selections, the trigger €;igger, including the LO

and HLT, the particle identification ep;p and the reconstruction €;... Thus,

ETOT = €acc X €trigger X €sel X EPID X €rec. (66)

For the polarization measurement, there is no need to separate each contribution and the total ef-
ficiency is sufficient to describe the detector and selections effects. The total efficiency is obtained
using the phase space MC simulation by dividing the number of reconstructed candidates matched to
a true A} signal which passed all the selection chain (including the trigger and stripping steps) by
the number of generated (signal) A}. The kinematic reweights and L0 corrections discussed above are
included. The efficiency over the Dalitz plot and the 3 angular variables are shown in Fig. [6.24] for the
other magnet polarities and trigger categories see Appendix [E] The efficiencies largely affect the shape
of the angular distributions. In particular, the ¢, angle is asymmetric and depending on the trigger
category studied the asymmetry changes, and this is mostly due to the LO efficiency. This is one of
the reason why the analysis is performed separately for the two L0 trigger categories, as explained in
Sec. The total efficiency is included in the PDF via the normalization sample, this is explained
in Sec. [6.3.1] thus there is no need to parametrize it explicitly. However for the systematic studies, the
efficiency needs to be included when producing the generated samples (toys). This is done using the
efficiency maps, shown in Fig. for the pair of variables (1m,x-,m,.+) and for ¢,, cos(f,) and x
separately. Then, if the variables are not correlated, the total efficiency is simply the product of these

four efficiencies. Consequently, one needs to check the correlations between each pair of variables to
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Figure 6.24: Efficiency distributions over the 2-dimensional plane (m,,x-,m,.+) and the three angles
®p, cos(8,) and y for the trigger TOS category and A} — pK~ 7" decays. The units of the efficiency
are arbitrary.

prove that this factorization holds. The correlation plots, 9 in total, are shown in Fig [6.25 where the
correlation factor is overlaid on each sub-plot. The correlation coefficient, or Pearson’s r correlation
coefficients, for a given pair of variables X and Y are obtained as the ratio of the covariance between
X and Y divided by the standard deviation of X and the one of Y. For a sample of variables (which

corresponds here to the bin content (x;,y;) of the 2D histogram) the correlation factor becomes:

b S ) i)
VI (=22 (i —5)?

(6.7)

where n is the number of bins, (x;,y;) are the bin content of the i** bin and z = 1/n Y " 2; is the mean
value of x and similarly 4 is the mean value of y. The coefficient r,, takes value between -1 (inverse
correlation) and 1 (direct correlation), for values around 0 the correlation is null or very weak. In
general, the correlations are found to be small, below 0.01 with the highest value around 0.11 for

the correlation between x and ¢,. When performing the systematic uncertainties studies, the small
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correlation between x and ¢, has been found to affect the measurement of the y component of the

polarization hence the efficiency cannot be factorized.An alternative method to produce toys samples

with the efficiency effects is used, see Sec. [6.3.7}
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Figure 6.25: Correlation plots for the phase space variables obtained from the simulation sample after
the selection chain. The correlation factor, described in the text, is overlaid in each sub-plot.

6.3 Amplitude fit

6.3.1 Likelihood and efficiency folding

The signal is described by the probability density function (PDF) composed by amplitude of Eq.
squared multiplied by the selection efficiency e¢(mg-,+) and the phase space function ®(mg-.+). The
amplitude is a 5 dimensional (5D) function of the five variables 2 = (mgK_,mfer,cos Op, Dps X) and of
the fit parameters & = {wy,ws, ...,wn } which are the helicity couplings described in Sec. the three

components of the polarization vector and eventually some masses and widths of the resonances if they

175



CHAPTER 6. AMPLITUDE ANALYSIS FOR A} — pK~ 7" DECAY

are left free in the fit. The number of fit parameters N, depends on the number of resonances included
in the final model; for the A*, AT and the non resonant chains there are 2 parameters per resonance,
for the K* chain there are 4 parameters for spin 1 resonances, and 2 for spin 0. Each parameter is a
complex number described by two real numbers (H, ¢) as H e'®. The resonance lineshapes squared are
numerically normalized to unity within the MINUIT fit. The amplitude parameters are determined by
mean of an unbinned maximum likelihood fit to the 5D data which minimizes the negative logarithmic
likelihood with respect to @,

—2InL = -2 InPyiy(Q/) (6.8)

i

where the signal PDF is
M Q&) Pe( Q)P (12— + )
1(@)

®(m-+)=pq is the phase space function and it is simply the product of the K (i.e. K*) momentum
p in the Al rest frame and the K momentum ¢ in the K* rest frame, and I(&) is the normalization
integral. The background is subtracted using the sPlot technique, explained in Sec. which assign
a weight sw; according to the m,, g+ value of the candidate. Since the background is subtracted,

the total PDF is the signal PDF, and using the logarithmic properties the likelihood can be written

as:
Zi SWj; o
—2InL = —22' o sti InPgiq () (6.10)
_ _%252 3 s [In [ M(QI) P+ In[e(Q) ()]~ 1()] (6.11)
(6.12)
s

by writing Wi =, sw; and sy =

. SWw

é and dropping the term which does not depend on the fitted

parameters &, the likelihood reduces to:

—2InL=—-2sw Y _ sw;In|M(Q|&) > + 25y In 1 (&) Wiot (6.13)

The integral I(&) can be complicated to compute analytically since it would require the parameteri-

zation of the efficiency €(2),
@) = / IM(QD)2e(Q)D (g i ) (6.14)

In order to avoid the parameterization of the efficiency over the phase space, a change of variable can
be performed dQ’ = ¢(Q)®(my— .+ )dQ. Thus instead of integrating over the generated phase space the
integration is performed over the simulated events that are generated uniformly in phase space and
passed through the detector reconstruction and data selection procedure. In this way the simulation
contains the efficiency effects which no longer need to be parametrized explicitly. Furthermore, the

integration is performed numerically by summing the matrix element over the simulated events, and
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the integral becomes:

1 e MC / 2

MC

where the w;”~ are the kinematic weights computed in Sec. to improve the data/MC agreement,

the index i runs over the simulated events and Nj;¢ is the number of simulated events.

The likelihood is implemented in C++ code in the ROOFIT framework [216] and it is a 5 dimensional
function with up to 100 fit parameters. This makes the fit procedure very challenging and a simple
fit using a hard-coded function analyzing the data sequentially could take up to a day. For this
reason the amplitude fit is implemented using three tricks: first, as stated above, the normalization is
optimized by running it over another sample, containing simulated events with the efficiency effects,
as a different likelihood, this avoids to recompute the integral and the efficiency at each minimization
step while fitting the data. The second trick consists in keeping in memory all the constant part of
the complicated amplitude model (angles, lineshapes, d-wigners functions etc..) without computing
them at each step. Finally the code analyses several groups of data (called "batches") in parallel on
different CPUs at a time rather than sequentially computing the amplitude event after event. This is
implemented using the customizable "batch evaluation" function of ROOFIT (available starting from
version 6.20) and the OpenMP C++ library for the multi-threading. These optimizations allowed
to speed up the code from 2 hours to 15 minutes. The minimization is performed using MINUIT
[217], which employs the NLL minimization algorithm MIGRAD with the HESSE method to have a
better estimate of the errors. The difference between the two is that MIGRAD computes at each step
an approximation of the error matrix whereas HESSE calculates the full second-derivative matrix by

finite differences and inverts it.

6.3.2 Fit fractions

The fit results are monitored by looking at the one dimensional projections of the fit results overlaid
on data and numerically by looking at the fit fractions and the convergence status of MIGRAD. The
fit fractions F) give an idea of how much is a resonance contributing to the model, they are computed
after the parameters have been obtained from the fit and they are defined as the ratio of the integral

of the one resonance amplitude (A:n )\p) to the integral of the full amplitude over the phase space O:

ds?

‘2_.\

XBW(m,«)A’"

m,Ap

] 2 S
Zm XBW(mﬁ)AQL,)\p‘ ds

Fo— me,)\p

= (6.16)
fzm,)\p

where Xpw(m,) is the resonance lineshape and the sum on r; runs over the resonances included in the
model. The error on the fit fractions are estimated using a Gaussian multivariate approach, explained
in the following. Around 100 toy samples are generated with different fit parameters obtained following
a multi-dimensional Gaussian distribution, with means p; and covariance matrix elements ¢;7, in order

to take into account the correlations between the parameters. First, the covariance matrix C' obtained
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from the fit needs to be diagonalized as:
C=PDP1 (6.17)

where the D is the diagonal matrix formed by the eigenvalues of C' (e;) and P is the transition
matrix formed by the eigenvectors of C (€;). The square root of the eigenvalues gives the uncorrelated
uncertainty, s = ,/e;, of the parameter p;. Random numbers following a Gaussian distribution with a
diagonal .
in

zero mean and standard deviation s = /e; are generated. Writing the generated numbers r;

a vector édiagonal, they need to be rotated back to the non-diagonal space as:
G = p(itiagenat (6.18)

Then a new set of parameters, 4 is obtained by adding to each parameter p; the corresponding shift
obtained (r;). In this way, the u parameters are generated randomly accounting for the correlations
among them. The distribution of the y} is Gaussian and its standard deviation p gives the error on
E..

6.3.3 Asymmetry parameters

The asymmetry parameters for the resonance two body decays have been defined in Eq.
and They can be easily computed starting from the helicity couplings obtained from the fit to
the data. The more general asymmetry parameter of the three-body decay A} — pK 7 cannot be
expressed as a simple combination of the resonance helicity couplings. An effective o can be estimated
by computing the sensitivity to the polarization S, as it is described in Ref. [218]; the relation between
S and the effective o can be derived easily. Factorizing the total decay amplitude of Eq. named
here P(Q), as

P(Q) = F(9) +pg(Q) (6.19)

where p is the polarization, € the usual five phase space variables and f and g are two functions to
be specified depending on the decay studied. The total probability density function P is normalized

to unity and the function f and g satisfy the normalization and positivity conditions:

P(Q)dQ = 1, F)dQ =1, g(Q)dQ2 =0 (6.20)
/ / /

with f >0 and |g| < f. By introducing the variable w = %, the decay distribution becomes:

PQ) = f(Q)(1+pw) (6.21)

The second order momenta of f is S%(p =0), which is the average information per event S? at zero

polarization. Finally the sensitivity to the polarization is defined as:

so— L _ <?Z(Q)> = /g;dQ (6.22)
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For the A7 — pK~ 7" decay amplitude f and g can be found by factorizing P, in Eq. |5.106

droc (14 P.) (|4 1P+ 1Ay 1)+ (=P (A1 P+IA L ) (6.23)
o (\Al P4 AL P A P AL _;|2> (6.24)
272 27 2 272 27 2
1@
2 2 2 2
P (M P Ay P =LA P -1y ). (6:25)

g(2)

Finally f and g are combinations of the decay amplitude for 0, -1 and 1 polarization:
f(Q) xP(Q,P,=0) and g(Q) x[P(Q,P,=1)—P(Q, P, =-1)] (6.26)

The relation between the S average information and the decay asymmetry parameter «, is obtained
inserting Eq. [5.113| (which has been already integrated w.r.t. ¢,,x and the masses) in Eq.

2 1 2 2 29 2
52=/9fd§2:/(2( 0" cos"fp) a0 = o’ (6.27)
2

thus

V3

and la] = 5 S (6.28)

5= o
As test, the asymmetry parameter obtained with this method is compared to the results obtained
using the helicity couplings in the case of only one resonance decay at a time. The two values are
found to agree as expected. As explained in Chapter [5] the asymmetry parameters « are composed

of a parity violating and a parity conserving part, see for instance Eq. [5.123] or Eq. [5.126] If parity is

conserved, then the asymmetry is zero. However if an alpha different from zero is measured, this is a

sign of parity violation in the decay.

6.3.4 Model building

As explained in Sec. [5.4.4] all the resonances listed in Tab. [5.2] could be present in the data, however
they do not have all the same impact on the total amplitude and some of them give such a small
contribution that the fit is not sensitive to it. Furthermore, the contribution of a single resonance is
influenced by the other resonances (in the same or in another channel) present in the model due to the
interference effects. The amplitude is described by mean of the helicity amplitudes of Eq. [5.106 where
the sum over the number of resonances in each channel depends on which isobars are included in the
model. The "model building" consists in assessing which resonances are dominant in the data and
which ones give a negligible contribution. In order to do so, the quality of the fit is monitored each
time a new model (i.e. a new list of resonances) is tested by looking first at the visible discrepancies
between the data and the model in the one dimensional projections of the phase space variables, and
then looking at the x2/ndf and the fit fractions. The model histogram is obtained by weighting the
phase space simulation, which contains efficiency effects, by the amplitude values obtained from the

fit. Then the x2/ndf is computed for the one dimensional projections of ¢p, cos(f,) and x and the
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two dimensional one of the pair (m,x—, M.+ ) as:

1 N datali] — modelli]
N — Npar — 1 5= er7data 1] + €rrimoder 1]

X*/ndf = (6.29)

where the index 7 runs over the histogram bins, {datali],erryaq[i]} and {model[i],errmoder[i]} are the
values of the bin ¢ with its associated error for the data and for the fit model respectively, N is the
number of bins (as default value N= 150), Np,, the number of floating parameters in the fit. For
the two dimensional case, the same formula applies with a double sum on the x and y bins. The
distributions of the pull for each bin are displayed under each data/model comparison to give a fast
qualitative visualization of the data/model discrepancies over the phase space. Furthermore, for a
reasonable model the sum of fit fractions, given in Eq. should be close to one, a value far from
one indicates that there were large interference effects and in general models with small interferences

are preferred.

For the model building procedure, the polarization vector is fixed to zero, since the polarization
has no influence on the mass distributions but only on the angles. As a consequence the three angles,
¢p, cos(fp,) and x, have a minor influence in the model building procedure. This is clear since even
a first minimal model does describe correctly the angular variables within the errors even though the
description of the invariant masses is not satisfactory. For this reason, the fit quality is mostly assessed
looking at the masses rather than the angle’s x2. The sample used is the TIS category with negative
polarity with 150 000 events, and since similar results are expected for the TOS category, the building
procedure is performed only on the TIS one. Furthermore, the decay (A} — pK ") and anti-decays
(Ae — pK*7n~) are mixed in order to have more statistics and to avoid biasing the model towards
one of the two types of decays. In order to avoid local minima, four fits with randomized initial values
are performed for each model and only the fit for which the computation of the covariance matrix
converged and with the smallest negative likelihood is kept. For each model, the sum of fit fractions,
the log-likelihood value and the x?/ndf given in Eq. are calculated and compared. The resonance

masses and widths are fixed to the known values from Ref. [I1].

Regarding the choice of the models, the first resonances included are the one clearly visible by eye
in the one dimensional distributions and in the 2 dimensional Dalitz plot shown in Fig. In the
pK spectrum two clear excesses appear as peaks in the one dimensional distributions and as bands
on the Dalitz plot. They are compatible with the A*(1520) and A*(1670). Another excess appears on
the high mass region above 1800MeV/c?, which is not clearly identified for now. The ¥ resonances
are expected to be suppressed since it is a transition involving an isospin difference of AT =1 (see
discussion in Sec. , and they are not included in the model building. Furthermore they would be
hard to separate from the favored Al = 0 transitions, corresponding to the A* resonances. However
their influence on the final model needs to be studied, this is done when assessing the systematic
uncertainties. For the K7 channel, the K*(892) resonance appears also clearly around 890 MeV/c?
and as a diagonal band in the 2 dimensional Dalitz, here again an excess on the high K7 mass
seems to indicate the presence of the K*(1430) resonance. Finally, for the pm projection only the well
established AT7(1232) appears on the left of the mass spectrum, the right side around 1600 MeV/c?
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m3 - [GeV/cT]

Figure 6.26: Dalitz plot of the background subtracted AT — pK ~n" decays, the y axis shows the m%ﬁ
invariant mass and the z axis the mg K one.

may contains several resonances which cannot be distinguished by eye. Starting from this qualitative
observation giving a "minimal model", labeled as "MO0", other resonances can be added or removed.
However, it is evident looking at the fit results for MO, shown in Fig. [F.3] in Appendix [F] that such
a minimal model is not sufficient to described the data. Within the resonances listed in Tab.
all the ones that are well established, 7.e. marked as "certain", are studied. An additive approach is
first used to exclude models which are certainly not sufficient to describe the data. Then within the
models giving reasonable results, few of them are very similar in which case the simplest one, with

the smallest number of parameters, is kept.

Results of the model building The results of the model building are summarized concisely in
Tab. and Tab. where each column, named as Mi ( for instance: MO, M1, M2 etc..), is a
different model. The resonance content is given by the ensemble of resonances with a green check
mark whereas the red cross marks indicate that the resonance is not included in this model. The fit
quality results are shown on the bottom part of the table.

M1 includes the well known A(1405) resonance which has its pole mass outside the p K mass region

and whose tail can contribute to the lower pK spectrum, it is parametrized using the Flatté lineshape
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described in Sec. In the second model a second resonance for the low pK mass spectrum, the
A(1600) is added. This fit model is already giving an acceptable x2/ndf (mg K>M2y), however there is
still room for improvement. Starting from M3, the 0T K7 contribution, including the two resonances
K*(700), K*(1430), is added since it is expected to fill the high mass region of the K7 spectrum. The
0" is described using the LASS parametrization discussed in Sec. Then, for models M4-M6, more
A*F resonances are added recursively, the model M6 seems to have a very good x?/ndf (m}% K mfm) and
starting from this model, the majority of the following models looks very similar (within 3 standard
deviations) when inspecting the data/model comparison by eye. Models M7-M11 are used to study
the effects of additional A* resonances in the presence of all the A™" contributions, the M7 and M10
appears to have a x? /ndf(mf,K,n"Lf)7r
has a sum of fit fractions closer to one. A test removing the A(1620) from M7 is performed in M12

) smaller than 5, and similar x?/ndf for the rest. However M10

and the fit quality is considerably worsened. From model M13 to M20, the A* contribution around
1800 MeV/c? are studied; first the A*(2100) is included to try to fill the high pK mass, then the other
5 very close resonances around 1800 MeV/c? are added one by one. The best fits are the M17 and
M18, however they both have significantly larger values with respect to the previous models for the
one dimensional x?/ndf. Finally M21-M25 also study the A* contribution around 1800 MeV/c?, this
time without the A*(2100) contribution replaced by a A*(2000) which is listed in the PDG as "poorly
known" but which has been found to be significant in Ref. [219]. The best model is the M21, with a
x*/ndf(m2 ., m? ) smaller than 5 and a sum of fit fractions close to 1. The A*(2100) resonance seems

P
to fit well the high pK mass, this is why it has been included starting from the first models.

Conclusions on the model building The models which have a x?/ndf(m?y,m;) larger than
10 are automatically excluded, since better models are available. The models with a XQ(mIQJK,mfm)
value around 10 are the M3, M4, M5 and the M15; these model are considered as satisfactory but not
retained. Finally, the models with the best x? (m}%K,mgﬂ) are, in decreasing order, the M7 and M21,
and then M10, M6, M17, M18 and M2. Within the latter ones, M17 and M18 have large fit fractions,
1.13 and 1.4 respectively, resulting in large interference effects which are visible by eye in Fig. in
Appendix [F} The M21 has two more resonances, A*(1690) and A*(1890) with respect to M10, and by
eye the two models give identical results. However, M21 has slightly worse single x? with respect to
M10, and requires more parameters (62 against 54), hence the M10 model is chosen over the M21,
however the M21 is kept as second choice since it is the only model with one A*(1800) resonance giving
good fit results. Within the last three models, M2 does not describe the mg, mass as well as the two
others, there are discrepancies visible by eye in the very low and very high mass regions. Finally, M6
and M7 are very similar, the latter has one resonance more the A*(1690) and both models seems to
indicate that the K*(1410) contribution is not necessary. As a conclusion, M10, M6 and M21 have
been retained after the model building procedure. Since the three models are indistinguishable the
simplest one, M6, is retained as baseline solution. The projections of the five phase space variables
along with the third mass m%ﬁ are shown in Fig. The black dots are the data points, the red line

shows the full PDF model, the colored lines show the contributions of each resonance separately and
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Res MO Ml M2 M3 M4 M5 M6 M7 M8 M9 M0 MIl Mi12
pK channel

A*(1405) X

A*(1520)

A*(1600) X X X X

A*(1670)

A*(1690) X X X X X X X X X

A*(1800) X X X X X 3 X X X X X X X
A*(1810) X X X X X X X X X X X X X
A*(1820) X X X X X X X X X X X X X
A*(1830) X X X X X X X X X X X X X
A*(1890) X X X X X X X X X X X X X
A*(2000) X

A*(2100) X X X 3 X X X X X X X X X
A*(2110) X X X X X X X X X

p7 channel

AT+(1232)

ATT(1600) X X X X

ATT(1620) X X X X X X X
ATT(1700) X X X X X

K7 channel

K*(700) X X X

K*(892)

K*(1410) X X X X X X X X X X X
K;(1430) X X X

Fit X2/ndf

Npar 18 26 30 34 38 42 46 50 46 42 54 58 46
me 217.17 40.66 9.18 10.80 12.18 12.30 11.85 13.39 15.23 12.44 12.92 16.24 14.5
m2. 27.27 25.15 12.32 12.43 14.72 13.31 11.60 13.35 12.01 11.06 12.61 16.36 11.8
m2. 55.82 22.64 10.60 12.24 12.50 11.82 11.12 12.02 12.10 10.47 14.44 15.12 13.9
cos(0,) 750 6.48 6.28 6.62 720 7.73 819 856 807 7.34 9.19 10.11 8.13
% 6.59 b5.44 550 557 6.35 6.68 7.05 7.63 7.04 6.62 830 9.18 7.36
bp 6.27 552 6.08 6.04 656 7.19 809 873 800 7.58 9.53 10.39 7.88
meg,me. 389.18 29.97 36.17 136.68 41.0
FF 1.030 0.932 1.100 1.030 1.119 1.102 1.129 1.125 1.106 1.113 1.065 1.136 1.094

Table 6.9: Summary of the model building procedure, each column identifies a different model (named
M1, M2, M3 etc..), each line is a resonance from Ref. [I1], the green tick marks indicate that the
resonance is included in the model and the red crosses that it is excluded. The last 9 lines show the
fit quality results for each model, including: the number of parameters, the single variables x?/ndf,
the two-dimensional y?/ndf and the sum of fit fractions (FF). The x2?/ndf values in green indicate
the best models and in orange the reasonable ones.
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Res M13 Mi14 M15 Mil16 M17 M18 M19 M20 M21 M22 M23 M24 M25
pK channel

A*(1405)

A*(1520)

A*(1600)

A*(1670)

A*(1690) X

A*(1800) X X X X X X X X X

A*(1810) X X X X X X X X X X X

A*(1820) X X X X X

A*(1830) X X X X X X X

A*(1890) X X X

A*(2000) X X X X X X X

A*(2100) X X X X X
A*(2110) X X X X X X X X X X X X X
prm channel

ATT(1232)

ATT(1600)

ATT(1620)

ATT(1700)

K channel

K*(700)

K*(892)

K*(1410)

K§(1430)

Fit x?/ndf

Npar 62 54 58 62 66 70 74 78 62 66 70 74 78
mgK 17.41 30.64 30.60 32.60 35 41.30 50.80 60.10 16.40 18.90 20.50 35.30 29.30
mi., 14.66 12.44 15.70 13.90 19.10 22.80 31.60 44.10 18.10 18.50 22.80 32.30 38.30
mfm 15.23 20.46 20.80 22.50 25.70 31.90 41.30 47.90 17.60 20.80 23.0 26.80 40.80
cos(6p) 11.37 896 9.99 10.60 12.20 14.0 16.90 19.90 11.40 12.80 14.30 17.90 19.60
X 10.58 8.16 8.98 10.40 11.80 13.30 14.90 18.20 10.70 11.70 13.10 15.60 18.10
op 12.43 9.21 10.40 12.20 13.80 15.60 17.30 20.80 12.20 13.30 15.0 15.60 20.80
mf)K,mfm 16.06 30.50 405.0 385.0 855.0 5620 29.10 806.0
FF 1.225 1.098 1.141 1.116 1.132 1.142 1.088 1.147 1.090 1.145 1.231 1.505 1.359

Table 6.10: Summary of the model building procedure, each column identifies a different model (named
M1, M2, M3 etc..), each line is a resonance from Ref. [I1], the green tick marks indicate that the
resonance is included in the model and the red crosses that it is excluded. The last 9 lines show the
fit quality results for each model, including: the number of parameters, the single variables x?/ndf,
the two-dimensional y?/ndf and the sum of fit fractions (FF). The x2?/ndf values in green indicate
the best models and in orange the reasonable ones.
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the colour code is specified in the legend shown in the m%ﬁ mass projection, in general blue lines are
K* resonances, green lines A™" and brown-red lines A*. The lower pads show the pulls between the

data and the total model. The fit projections for models M10 and M21 can be found in the Appendix
1l
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Data
Total fit
K*(892) 1
K*(1430) 0*
A(1232)
A(1600)

T
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Events
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A(1520)
A(1600)
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15 2 25 3

500 g

Figure 6.27: Example of fit with the model M6 on the TIS category, negative polarity, for AT and
Kc_ decays mixed. The black dots are the data points, the red line shows the full PDF model, the
colored lines shows the contributions of each resonance separately and the colour code is specified in
the legend shown in the m%{ﬂ mass projection, in general blue lines are K* resonances, green lines
ATT and brown-red lines A*. The lower pads show the pulls between the data and the total model,
the dashed horizontal lines show the limit of 3 standard deviations (3 o).
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6.3.5 Zero polarization test on the selected models

For the three models retained, the "zero polarization" test shown in Sec. is performed using the
helicity couplings obtained from the fit to the data. A generation of 10 M events without the efficiency
effects for the three models (M10, M6 and M21) is performed to ensure that the angular distributions

are flat if the polarization is set to 0. All three models behave correctly, an example of generation is

shown in Fig.

3 3
=19 T T . 200 T T T T
200 = -1 150 [ _-
] 100 -
100 |- — F ]
] sof- i
O [ L L A 0 A L L L L ]
2 3 4 o 1 15 2 25 3
m2. [GeveicT] m2 . [GeV</c?]
x10° x10°
= L] L) L] - L] L) L) L) L]
[ ] 100~ -
200 |- - - .
] 50|~ -
100 |- - [ ]
O [ L L L ] O ) L L L i
05 1 15 o -1 -05 0 05 1
2
mz. . [GeV</c] cosf,
x10° x10°
L] L] L] L] L) L]
100 |- - 100 |- .
50 |- - 50| .
O L L L i 0 [ L L L i
-2 0 2 -2 0 2
@ X

Figure 6.28: Toy generation of 10 M events using the model M10 with helicity couplings fixed to the fit
results and zero polarization, without efficiency effects. The angular distributions are flat as expected.
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MagDown MagUp
MC TIS TOS TIS TOS
A}F 34646 27686 35680 27 158
A, 34398 28523 34483 28643
Data TIS TOS TIS TOS
AF 110720 73 783 105 426 65 866

A, 108394 78340 104852 70295

C

Table 6.11: Number of events for the final fit for data and simulation, depending on the polarity, the
trigger category and separating the A} from the A, decays.

6.3.6 Fit Results

Within the model retained from the model building procedure, the simplest one is chosen as nominal
model, M6, and the two others, M10 and M21, are used for the systematic uncertainty studies. The
fit to the polarization is performed on the TIS and TOS trigger categories separately, for each magnet
polarity (magnet up and magnet down) and separating the A} from the A, decays. In total, 8 different
and independent fits are performed. The number of events for each fit category are summarized in
Tab. The results of the fit to the TOS category for negative polarity and A} decays are shown
in Tab. The fit fractions, obtained using Eq. are shown in Tab. where the error is
computed as explained in Sec and the last line is the sum of fit fractions (called "SumofFF").
The helicity coupling are complex numbers of the form ngseiqﬁzes , the superscript res indicate the
resonance and the subscript £ the number of couplings, which depends on the spin projection Ap, the
details on the helicity couplings are given in Sec. The asymmetry parameters obtained following
Eq.[5.120] [5.122] and [5.125] and the effective o computed as explained in Sec. are reported in
Tab. Similar tables for the other fit categories can be found in Appendix [G]

The fit projections of the five phase space variables along with the third mass m%ﬁ are shown in
Fig. The black dots are the data points, the red line shows the full PDF model, the colored lines

shows the contributions of each resonance separately and the colour code is specified in the legend

shown in the m3. mass projection, in general blue lines are K* resonances, green lines AT and
brown-red lines A*. The lower pads show the pulls between the data and the total model, the dashed
horizontal lines show the limit of 3 standard deviations (3 o). Overall the model matches the data
reasonably well (within 3 o) given the complicated fit. Discrepancies over 3 o in the pulls can be seen
at high m?%._ mass and at low mgK mass, both seems to be due to the A*(1405) resonance however

this is still under investigation at the time of writing this thesis.

6.3.7 Systematic uncertainties

The sources of systematic uncertainties affecting the measurement of the polarization and the helicity
couplings are studied in this section. The general method used to estimate a systematic uncertainty
on a measured value Z,,es i to obtain the measurement of x in N different ways, where each way
is simply a variation of the main method which explores other possible choices. A new toy sample

is generated from the result of the measurement z,,.s, then the measurement is performed again N
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Parameter Central Statistiéal Parametor Central Statisti(‘:al

value uncertainty value uncertainty
YO 756 0.02 Hy P 560 0.025
HYTO g 659 0.02 Hy U .22 0.019
a0 695 0.01 U0 o 0.019
HETWO g7 0.016 U .04 0.02
(1430 0.074 0.007 [ (1430) 0.024 0.007
Hy % 0,595 0.028 1 06sT 0.021
P 53 0.03 O 0 623 0.014
Hy M o501 0.021 a3 0.034
Hy M0 0356 0.034 HCM 016 0.016
Hy W0 o007 0.014 H 0T 0383 0.011
Hy 0 0341 0.013 HYT 0614 0.012
Hy % 0648 0.017 o U 0520 0.061
oy PP 3505 0.087 S g 0.066
or 1 1082 0.084 ¢1A++(1620) -3.995 0.057
op 1P 0683 0.081 o T Las 0.05
oy T 1ssa 0.127 or Y 5269 0.098
oy 517 0.316 by -0.113 0.062
g 892 6.5 0.008 o -3.353 0.1
B (1405) 4994 0.167 @l (1405) -4.325 0.168
o W 556 0438 o U st 033
¢1 *(1600) 4346 0.076 ¢;\* (1600) -5.887 0.546
" (1670) 6159 0.168 Pl (1670) -6.373 0.148
¢1 *(2000) 0.544 0.17 gb];* (2000) -5.922 0.159
P, 0.0 0.009 Py 0.0 0.007
P, 0.005 0.011

Table 6.12: Result of the fit for model M6, MagDown polarity, TIS category and A} decays.
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FF parameter Central value Statistical uncertainty

ATT(1232) 0.12245 0.00011
ATF(1600) 0.08202 0.00009
ATF(1620) 0.15003 0.00454
ATF(1700) 0.04804 0.00043
K*(1430) 0.00322 0.00005
K*(892) 0.19532 0.00012
A*(1405) 0.19201 0.00056
A*(1520) 0.03197 0.00011
A*(1600) 0.00738 0.00009
A*(1670) 0.06240 0.00059
A*(2000) 0.22201 0.00036
S F, 1.11685 0.00706

Table 6.13: Result of the fit for model M6, MagDown polarity, TIS category and Al decays.

Parameter Q « statistical uncertainty
ATT(1232)  0.2768 0.0474
ATT(1600) 0.4184 0.0448
ATT(1620) 0.3819 0.0412
ATT(1700) 0.6613 0.0484
K*(1430) 0.8096 0.1056
K*(892) 0.3945 0.1282
A*(1405) 0.0527 0.0419
A*(1520) -0.0430 0.1378
A*(1600) 0.9472 0.0542
A*(1670) -0.0237 0.0504
A*(2000) -0.0538 0.0326
Qe f fective 0.7147 0.0048

Table 6.14: Result of the fit for model M6, a parameters for MagDown polarity, TIS category and A}
decays.
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times on the toy data. The results of each new measurement x; is slightly different from z,,.s and the
variation of the x; with respect to s give a measure of the systematic uncertainty. The distribution
of the {x1,z2,...,2n} new measurements is expected to be Gaussian with mean close to zero, the
standard deviation oy, s gives the systematic error on x. If only few "new" measurements are available,
the uncertainty is chosen here as the maximum of the differences between the new fit results and the
nominal ones. The source of systematic uncertainties and the method used to estimate it are listed
below. The systematic uncertainties are studied for the polarization and the helicity couplings only
since the fit fractions and the a parameters are derived from those. In the following, when a toy
samples is generated, the number of events is the one of the real data or simulation, summarized in
Table depending if a toy emulating the data or of the simulation is generated.

Regarding the systematics due to the simulation samples, the sources studied are:

1. Reweighting procedure: the reweighting procedure described in Sec. implies an im-
plicit choice of the GBreweighter algorithm. To assess the effect of this choice, the weights are
computed again in three different ways, using only 3 variables instead of four, with different
combinations: (7, Pr,y), (nTracks,Pr,y) or (nTracks,Pp,7). The fit with the nominal model
is performed with these two alternative procedures. For these two new measurements, the dif-
ference with respect to the central value obtained with the nominal fit is computed and the

maximum difference between the three is taken as systematic uncertainty.

2. LO trigger: the LO trigger has been corrected using tables obtained with a data-driven method.
The weights used to correct the LO TOS efficiencies are computed again by generating 100
new tables where the new values are obtained drawing random numbers following a normal
distribution centered in the value of the original table with the value errors as standard deviation.

The mean of the obtained distribution of new measurements is assigned as systematic uncertainty.

3. PID Corr procedure: the PID corrected variables are obtained using a calibration samples
which has limited statistics. Alternative variables are generated using bootstrapped sampleeﬂ
with a different number of events. Furthermore, the PID variables are corrected for using a
kernel PDF which can also be modified. A second set of variables is obtained using a modified
kerneﬂ width (50% wider). As for the first case, the maximum of the differences between the
new measurements and the central value obtained with the nominal fit is taken as systematic

uncertainty.

4. MC size: the simulation sample is used to include the efficiency effects in the PDF. However,
this sample has a limited size. The systematic effect due to the finite size of the simulation
sample is studied by generating toys with different efficiency maps and a large number of events
(~500000). The new efficiency maps are obtained from the main simulation sample by drawing
random numbers per each bin following a normal distribution centered in bin value with as

standard deviation the statistical error of the bin. The N = 100 toys generated are fit back and

IBootstrapping is a type of resampling technique where several smaller samples of the same size are repeatedly
extracted from a single original sample.

2Kernel density estimation is a non parametric technique for density estimation in which a known density function
(called the kernel) is averaged across the observed data points to create a smooth approximation of it.
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the fit results distributions should be Gaussian. The mean of the parameters errors distribution

is taken as systematic uncertainty.

Further sources of systematic uncertainties are the fit to the m, .+ invariant mass from which

the s-weights are extracted and the model choice, the latter gives the larger systematics. Finally

the fit machinery could introduce a bias in the measurement, this effect is estimated building pull

distributions as explained in the last bullet.

1. Invariant mass fit: the fit to the m,x—,+ invariant mass is performed again with two new

192

model which differs from the nominal one (which includes two CB functions, one Gaussian and
an exponential function for the background). The first model uses only one CB and the second

a polynomial function instead of exponential for the background.

. Model choice: the nominal model (M6) has been chosen within the three models that passed

the model: M6, M10 and M21. The effect of this choice is assessed by generating 100 toy
data samples with the other alternative models (M10 and M21) and fitting it with the nominal
model, setting as initial values the results obtained with the alternative models M10 and M21.
The maximum variation of the result with respect to the nominal model is assigned as systematic

uncertainty.

Mass and widths of the resonances (RMW): the masses and widths of the resonances are
taken from Ref. [I1], however the values reported have large uncertainties. For the resonances
which have a major influence on the amplitude, i.e. the larger fit fractions, other fits are per-
formed varying the mass and width values within their uncertainties. The maximum deviation

from the fit results is assigned as systematic uncertainty.

Bias of the fit machinery: the final results obtained with the nominal model are used to
generate N toy samples of the same size as the data sample, fixing the helicity couplings and
polarization to the values obtained from the fit results, called p,ominai- The efficiency is included
in the generation using the efficiency histogram obtained as explained in Sec. A new phase
space simulation sample, without the correlation effects, is produced using the same efficiency
maps. This sample is then used in the likelihood to compute the integral of Eq. which
is needed for the full likelihood. The generated samples are then fit NV times using the full
fit machinery, with the likelihood defined as in Eq. From the new fit results, pioy, pull

distributions are build for each helicity coupling parameter p as:

pull _ Ptoy — Pnominal (630)

Otoy
where ppominai is the result of the nominal fit to data for the parameter p and o0, the error on
the fit to the toy data. Then the distributions of the pull obtained (for each parameter) should
be a Gaussian with mean zero, if the fit is unbiased, and standard deviation close to one, if the
error are computed correctly. If the standard deviation is larger (smaller) than 1 then the error

are underestimated (overestimated). If this is the case, the statistical uncertainties are rescaled
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by the pull standard deviation. If a bias is seen, the deviation from zero, multiplied by the

statistical uncertainty on the fit result, is assigned as systematic uncertainty.

Finally, the detector resolution could affect the measurement of narrow resonances, for instance
A*(1520) or A*(1670) which have widths 1573° and 1918, MeV, see Tab. The resolution on the
A} mass is around 5 MeV, which is close to the lower limits of the A*(1520) or A*(1670) widths. The
resolution on the mpx mass in a 30 MeV and 40 MeV window around the A*(1520) and A*(1670)
masses respectively is found to be 1.33 MeV and 1.93 MeV. Ultimately, the resolution is found to be
smaller than the expected width hence the resolution effects are not considered.

A summary of the mean and standard deviation (called p and o) for the pulls of bullet 2, is given
in Tab. The total systematic uncertainty is the sum in quadrature of all the systematics. Table
and Table [6.17] shows the single systematic values as well as the final one for the helicity coupling
and the polarization. The systematic uncertainty due to the model choice is not considered for the
single helicity couplings since the resonant content changes when an alternative model is chosen and
the value of the helicity couplings varies a lot since new degrees of freedom have been artificially added
or removed. The larger source of systematic uncertainty on the polarization measurement is the model

choice.

6.4 Results

The final results for the nominal fit to the samples of the TIS category, for negative polarity and A}
decays are shown in Table and Table The preliminary measurement of the polarization is

found to be compatible with zero, the measured values are:

P, =—-0.0233+£0.0046 £ 0.0341
P, =0.0560=£0.0044 £ 0.0919 (6.31)
P, =0.0095=£0.0063 £ 0.0590

where the first uncertainty is statistical and the second systematic. The final precision is dominated
by the systematic uncertainty which is in turn largely dominated by the model choice, see tab. [6.16]
The systematic uncertainties for the other categories are still under study, hence no results are shown.
This result is compatible with other baryons polarization measurements performed at the LHC. For
instance, a zero polarization has been measured for A, baryons at 7, 8 and 13 TeV by LHCD [80, [81],
ATLAS [82] and CMS [83]; similarly for A baryons a zero polarization was measured by ATLAS [79).
As discussed in Sec. there exists very few theoretical predictions to compare this result with, hence
an input from theory would be very valuable. In the near future, the polarization measurement will
be also performed in bins of transverse momentum in order to compare it to the results obtained in
Ref. [204] and the theory prediction in [74].

The effective asymmetry parameter « is also measured and found to be aeffective = 0.71510.005,
where the quoted uncertainty is statistical. The fit fractions are given in Table [6.13] Since the
polarization is close to zero, the helicity couplings are degenerate. This can be understood looking at

Eq.[5.106] where for P, = P, = P, = 0, many terms cancel and some of the helicity couplings cannot be
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Table 6.15: Results of the pulls for the uncertainties studies on helicity couplings and polarization for

Parameter  Pulls u Pulls o Parameter  Pulls p Pulls o
H1A++(1232) 05587 3.9680 H2A++(1232) -2.9574 3.7598
H1A++(1600) -8.0000 79137 H2A++(1600) -3.5825 2.7508
HATTU620) 6 4856 5.7826 HATTO80) 38408 3.3337
H1A++(1700) -8.0000 3.8707 H2A++(1700) -3.1986 2.9016
HK*(1430) 2.0537 1.7147 HQK*(M?’O) 0.4622 1.5378
HEE 8185 2.5343 Hy ™ 0.5820 1.8680
HE® 7063 3.1078 HY M%) 0.3018 2.6595
H;‘*(MO‘”’) 1.2118 4.8410 RS N W Yy 2.4137
H2 *(1520) 1.9105 29364 i (600) 2.1601 3.6046
H2 "800y 9209 2.4301 U 2.2490 5-0748
H2 *(1670) 1.3856 31968 H{\*(zooo) -1.1563 4.1903
FA" (2000 _0.2667 3 6883 ¢1A++(1232) 1.5636 2.3536
¢2A++(1232) 28317 2.3506 ¢1A++(1600) -0.0121 3.8001

2A++(1600) _0.8509 3.1850 1A++(1620) 0.8705 3.7151
pATHIS0) 6oy 3.1173 R TTATO 3515 3.0156
G2TTATO0 ag6 2.4544 K (1430) 1.0235 2.3184
gy M0 0.7085 1.8023 by P 0.6868 2.7648
¢§(*(892) 29961 2.2294 PR (892) -0.1623 3.0591
¢1 %) 70346 4.7345 gy 7 44290 53364
¢1 (1520) L 7936 5 8046 g0 3 g08y 3.3489
¢1 *(1600) 2.1545 2.5680 ¢A*(1600) -1.2651 5.6300
¢1 "(1670) 8.0000 6.0450 ¢y 1670 8.0000 5.8281
g (2000) 3.3954 3.0595 ph (2000 1.8798 3.3733
P, -2.6501 1.9528 P, 0.7588 1.6803
P, 0.3719 1.7320

M6, MagDown polarity, TIS category and A} decays.

uniquely determined. Despite this, the effective asymmetry parameter is measurable since it includes
all the amplitude components across the Dalitz plane. The large asymmetry measured implies that
the method proposed to measure the polarization in the fixed-target sample can be used. If a small
or zero value of aeffective Was found instead, the sensitivity to the polarization would have been lost,

preventing the use of this channel for the MDM measurement.
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Resonance mean fit itj(?' STyoStal ReweightMass fit Pulls  Model PID RMW  MCsize
HATTUBD 07450 0.0050 0.4874 0.0040 0.0025 -0.0111 — 0.0064 0.4869 0.0179
HYTTU22 04959 0.0066 0.3153 0.0021 0.0042 -0.0734 — 0.0685 0.2981 0.0205
HATTU00 05096 0.0027 01753 0.0031 0.0055 -0.1568 — 0.0228 0.0723  0.0190
HATTA000) 03549 0.0068 0.6662 0.0048 0.0031 -0.0672 — 0.0373  0.6614 0.0186
HATTU20) 05575 0.0018  0.0863 0.0017 0.0050 -0.0676 — 0.0109 0.0510 0.0117
HATTA620) 03470 0.0056  0.2235 0.0053 0.0051 -0.0715 — 0.0301  0.2090 0.0132
HATTAT00 04990 0.0040 02283 0.0026 0.0009 -0.1250 — 0.0114 0.1902 0.0147
HATTA00 01818 0.0070 05714 0.0027 0.0043 -0.0652 — 0.0321 0.5664 0.0204
=20 0.0599  0.0040 0.0171 0.0012 0.0008 -0.0140 — 0.0028 0.0065 0.0066
HE30 00275 0.0047 0.0890 0.0006 0.0008 0.0034 — 0.0046 0.0886 0.0064
HE® 05727 00109 0.1767 0.0046 0.0109 -0.0227 — 0.0461 0.1673 0.0214
HE® 06749 00115 0.0721 0.0070 0.0085 -0.0125 — 0.0115 0.0662 0.0200
HE® 05132 0.0096 0.0976 0.0016 0.0014 -0.0210 — 0.0739  0.0498 0.0336
M%) 06286 0.0054 0.1212  0.0035 0.0037 0.0056 — 0.0129 0.1198 0.0113
HY M) 06168 0.0043 0.2699 0.0067 0.0028 0.0254 — 0.0405 0.2648 0.0194
Y20 09977 0.0143  0.3512  0.0060 0.0026 -0.0430 — 0.0596 0.3426 0.0231
HY 52004208 0.0115 0.0773 0.0069 0.0051 0.0643 — 0.0319 0.0135 0.0240
HA OO0 01989 0.0045 0.0684 0.0006 0.0052 0.0351 — 0.0273 0.0501 0.0127
HY 000 0444 0.0059 0.0243 0.0004 0.0026 0.0175 — 0.0101 0.0019 0.0131
MO0 03579 0.0018 0.0281 0.0015 0.0012 0.0246 — 0.0014 0.0094 0.0094
HY U5 03580  0.0040 0.2358 0.0022 0.0010 0.0175 — 0.0291 0.2331 0.0109
HAY @00 05995 0.0030 0.0454 0.0029 0.0006 -0.0143 — 0.0112 0.0392 0.0134
HY @00 06437 0.0046 0.2081 0.0038 0.0040 -0.0046 — 0.0459 0.2940 0.0173
P, -0.0233 0.0046 0.0341 0.0013 0.0008 -0.0238 0.0170 0.0059 0.0147 0.0075
P, 0.0560 0.0044 0.0919 0.0004 0.0007 0.0056 0.0810 0.0136 0.0403 0.0069
P, 0.0095 0.0063 0.0590 0.0020 0.0003 0.0041 0.0561 0.0156 0.0046 0.0072

Table 6.16: Systematic uncertainties on helicity couplings and polarization for M6, MagDown polarity,

TIS category and A} decays.
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Figure 6.29: Example of fit with the model M6 on the TIS category, negative polarity, for AT decays
only. The black dots are the data points, the red line shows the full PDF model, the colored lines
shows the contributions of each resonance separately and the colour code is specified in the legend
shown in the mﬁ(ﬂ mass projection, in general blue lines are K* resonances, green lines AT+ and
brown-red lines A*.
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stat.

Total

Resonance mean fit e, ys. ReweightMass fit Pulls  Model PID RMW  MCsize
¢ B 04345 0.0257 03992 0.0002 0.0113 0.0947 0.0357 0.3816 0.0584
g5 U2 39779 0.0371 0.6824 0.0044 0.0046 0.2466 0.0760 0.6283 0.0647
GRG0 4 4104 0.0173 05541 0.0239 0.0034 -0.0008 0.0284 0.5498 0.0583
g2 T80 1 1534 0.0263 0.7006 0.0147 0.0030 -0.0714 0.0865 0.6878 0.0707
g™ 1620039450 0.0153 0.7614 0.0179 0.0038 0.0495 0.0331 0.7576  0.0449
g2 1820 06330 0.0259 1.1869 0.0002 0.0022 0.0503 0.0867 1.1814 0.0547
g™ TIT00) 1 3656 0.0164 0.4796 0.0097 0.0016 0.0174 0.0301 0.4755 0.0507
g TUT0) 11780 0.0516 0.7973 0.0092 0.0063 0.1756 0.1514 0.7578 0.0868
o (M0 51686 0.0424 11430 0.0113 0.0126 0.1005 0.1307 1.1270 0.0947
¢§* (1430049927 0.1670 0.6987 0.0598 0.0126 0.2240 0.1785 0.5939 0.2230
g 92 00708 0.0224 0.3808 0.0134 0.0036 0.0425 0.0751 0.3683 0.0423
¢y %) 64829 0.0034 0.0325 0.0000 0.0000 0.0171 0.0000 0.0000 0.0277
¢K*<892) -3.3695 0.0326 6.5842 0.0032 0.0042 -0.0162 0.1625 6.5818 0.0661
¢1 (40 31158 0.0354 1.3353  0.0246 0.0261 1.1779 0.1616 0.6024 0.0732
¢2 (1935827 0.0314  1.0054 0.0200 0.0319 0.7422 0.1275 0.6545 -0.1157
¢1 "(1520) 50181 0.0478 0.3145 0.0304 0.0102 0.2383 0.1772  0.0651 0.0736
¢2 "(1520) 10,6333 0.0398 0.9580 0.0363 0.0073 0.5204 0.0942 0.7951 0.0670
¢1 (160004 5098 0.0297 0.4374 0.0169 0.0265 -0.1642 0.0568 0.3958 0.0594
¢2 "(1600) 65783 0.0971 1.7540 0.0251 0.1070 -0.6913 0.6130 0.6130 -1.3546
¢1 "I6T0) 48071 0.0278  1.3568 0.0241 0.0205 1.3450 0.1597 0.0123 0.0710
¢2 "(I670) 51888 0.0254 1.2014 0.0237 0.0255 1.1840 0.1272 0.1272 0.0896
¢1 "(2000) 11213 0.0556  0.8083 0.0312 0.0276 0.5776 0.1655 0.5335 0.0773
¢y P00 56232 0.0472 0.6675 0.0252 0.0339 0.2990 0.1186 0.5778 0.0804

Table 6.17: Systematic uncertainties on helicity couplings and polarization for M6, MagDown polarity,

TIS category and A} decays.
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Conclusions

In this thesis, the polarization of the charmed baryon A} has been measured for baryons produced
promptly in proton-proton collisions, using the dataset collected by the LHCb detector in 2016, at a
center of mass energy of 13 TeV. The main motivations for this measurements are threefold. On one
hand, charmed baryon polarization is poorly known experimentally, the most relevant measurement
has been performed 20 years ago [204], and no improvement has been made since then. On the other
hand, there is no theory prediction available for charm baryons polarization at the LHC energy. Finally
the Al polarization is a necessary input for the measurement of the Magnetic Dipole Moment (MDM)
of the charm quark proposed in Ref. [I] [2] [3] [4] [5]. Along with the A polarization measurement,
this thesis presents the work done on the determination of the front-end electronics of the Plume
detector, which will be installed for Run 3 in the LHCb experiment.

The five-dimensional amplitude analysis of the Cabibbo favoured three-body decay A} — pK 7t
has been performed. The analysis can be broken down in three major steps: the development of the
equations describing the amplitude of the decay, the treatment of the data to extract the promptly
produced A} and finally the fit to the data to perform the polarization measurement. First the
equations describing the amplitude of the A7 — pK ~7" decays have been derived within the helicity
formalism. This was necessary since the formalism used in [204] was found to be incomplete, and
many points needed to be clarified before proceeding with the analysis. In particular, the need of
the Wigner rotations and the 27 factors described in Chapter [5| has been assessed. The formalism
developed has been proven to be correct by testing it for specific configurations for which the output
is known; it has also been proven to be equivalent to the one proposed in Ref. [202]. Regarding
the signal extraction, during Run 2 the LHC has produced almost 1 MHz of c¢¢ pairs of which 600
Hz has been seen by the LHCb detector; this translates into a large amount of A} baryons and a
very significant signal. Hence, the signal extraction was fairly straight-forward since the background
contributions were small with respect to the signal. The most important selection for this analysis is
the one on the A} impact parameter which allows to separate the prompt from the secondary decays.
This is because the polarization depends on the production mechanism involved which differs between
prompt and secondary production. A tight selection leaving less than 2% of contamination from
secondaries has been applied. Finally the residual background, mostly from proton misidentification,

is also below 2%. The main challenge of the selections procedure was the understanding of the L0
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trigger effects on the angular variables, especially ¢,. In the end, the analysis has been performed for
the two separated trigger categories in order to master those effects. The helicity amplitudes derived
are then used to measure the AT and A, polarization, the helicity couplings and the fit fractions
of each intermediate resonant state, by means of a fit to the data. The asymmetry parameters of
the single resonances as well as an effective asymmetry parameter for the whole decay have been
extracted from the fit results. The resonance content of the model has been determined by adding
only the resonances giving a significant contribution to the main amplitude and describing as good
as possible the data. One nominal model and two additional models giving similar results have been
retained. Once the nominal model determined, the final measurement has been performed for the two
magnet polarities separately since the reconstruction is not exactly identical for the two polarities and
the simulation does not reproduce those effects perfectly. The decays (A} — pK~7") and anti-decays
(A — pK*+7~) have been also separated since the production of a A} baryon and a A, antibaryon
is different, hence the polarization may differs between the two. The measurement is performed for 8
different categories, depending on the trigger, polarity and type of decay. The polarization has been

measured for the TIS, negative polarity sample of A decays, as:

P, =—-0.0233+£0.0046 £ 0.0341
P, =0.0560=£0.0044 4-0.0919 (7.1)
P, =0.0095=£0.0063 £ 0.0590

where the first uncertainty is statistical and the second, systematic. The measurement is dominated
by the systematic uncertainties which give an error up to 9% where the larger source of systematic
uncertainties is the model choice. The most challenging parts of the analysis have been the under-
standing of the helicity amplitudes, the model construction and the development of the fit machinery.
An incorrect amplitude can still give reasonable results when fitting the data. The equations have
been carefully tested and studied to be sure that no unphysical definitions, which would not be seen
in the fit, were used. The assessment of the resonance content of the model was also challenging since
several equivalent models may give similar results, ultimately a choice is made by choosing the sim-
plest model among the few similar models left. The fit machinery has been developed from scratch in
C++ and it was also a challenging part of the analysis. The large amount of data and the complicated
computations required an unavoidable optimization of the code using the most recent features of C++
libraries and ROOF1T. The code is parallelized, to run on several CPUs in parallel, and optimized in
order to keep in memory any element of the amplitude which is not changing during the minimiza-
tion of the likelihood. The usage of GPUs has been considered, however the larger number of CPUs
available gave better performances than the small number of GPUs, hence this option has not been

further investigated.

The amplitude analysis has been completed for the 8 categories, and the methods for the system-
atic uncertainties estimation have been developed. However the systematic uncertainties have been
studied only for the TIS negative polarity sample of A} decays, they will be assessed for the other 7
categories during the analysis review. For the future prospects of this measurement, a higher statistic

sample could be easily obtained by relaxing the selection on the impact parameter. The increased
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contamination from secondary could be treated as a background component in the final likelihood.
Furthermore, the entire analysis could be performed for the = — pK ~ 7T baryons decays, which share
the same final state and same helicity amplitudes. Finally, the model obtained in this analysis, will
be used to measured the polarization in a completely different system, the pNe collisions collected by
LHCDb in 2017 at a center of mass energy of 68 GeV. The estimated statistical uncertainty for the
2017 pNe sample ranges from 10% to 14% depending on the final number of signal events extracted,
which can vary from 200 to 400 signal events. Thus, the measurement of the A} polarization in this
sample will be dominated by the statistical uncertainty. During Run 3, thanks to SMOG2, a data
sample with a larger signal is expected. For a sample containing 300 000 Al baryons, a statistical
uncertainty of 0.4% is expected, in this case the polarization measurement will be dominated by the
systematic uncertainty due to the model choice, which is around 5%. In other words, the precision on
the polarization measurement for future SMOG2 samples will be systematically limited to 5%.
Along with the data analysis and the development of the helicity amplitudes formalism, a more
hardware related work has been done in this thesis, concerning the determination of the front-end
electronics of the Plume detector. The Plume detector is a luminosity detector conceived for the LHCb
experiment. The journey from the conception to the construction of the Plume detector was definitely
exciting. The tests performed aimed at proving that the front-end electronic of the electromagnetic
calorimeter of LHCb could be adapted for the PLUME needs. The ECAL FEBs have been designed
to integrate a signal within 25 ns, and removing eventual leaks outside this window. The expected
signal for PLUME however is much shorter, around 3 ns, and the electronics was not optimized for
such a short pulse. In this work, it has been proven that it is possible to use the ECAL FEBs for
PLUME. Furthermore, a new timing measurement is proposed aiming at monitoring the shift of the
LHCDb clock with respect to the main LHC clock. The first results are promising, an expected time
resolution of less than the 0.5 ns obtained with the OT during Run 1 seems achievable. Few possible
improvements for the timing measurement have been identified, including the conception of a better
splitter to divide the signal in 8 copies and an optimization of the step size of the timing scan. This
measurement will be beneficial for the performances of the LHCb detector during Run 3 since it will

allow to monitor the time synchronization in quasi real time with a good precision.
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Synthese

Le modele standard de la physique des particules (MS) est une théorie élégante qui décrit la structure
fondamentale de la matiere qui nous entoure. Il se concentre sur la description des particules élémen-
taires, par exemple les quarks ¢, et la facon dont ils se combinent en éléments plus complexes, par
exemple les baryons (gqq) ou les mésons (¢q). Parmi les baryons, les protons et les neutrons forment
la matiere ordinaire telle que nous la connaissons. Les interactions entre ces particules sont également
décrites dans le MS : pour chaque type de force (électromagnétique, faible et forte), il existe un "por-
teur de force", qui véhicule 'interaction entre les particules. Bien que le grand nombre de prédictions
réussies ait fait du MS une théorie bien établie, il existe quelques observations expérimentales qui ne
sont pas prises en compte. Parmi celles-ci, 'asymétrie significative entre la matiére et 'antimatiere
que nous observons dans notre Univers, n’est pas expliquée par le MS. La violation des symétries
de charge et de parité, appelée violation de CP, pourrait aider & comprendre pourquoi la matiere
et 'antimatiére ne sont pas présentes en méme quantité, mais elle n’est toujours pas suffisante pour

expliquer une différence aussi importante.

Le besoin de modeles physiques allant au-dela du MS pousse les recherches expérimentales a tester
les limites de ses prédictions et a rechercher de la nouvelle physique (NP) au-dela de celui-ci. Dans le
référentiel de ces recherches, la mesure du moment dipolaire magnétique (MDM) des baryons charmés
et finalement du quark charmé, permet de tester la validité des prédictions du MS et surtout de la
théorie de la chromodynamique quantique (QCD). Le moment magnétique d’une particule p est une
propriété induite par le spin. Pour les particules de spin S = 1/2, le moment magnétique p s’écrit, en

unités naturelles h =c =1,
945 o ,-91
22m 22m

ou ¢ est la charge électrique du fermion, m est sa masse et g est le facteur gyromagnétique. Au niveau

(8.1)

classique, g = 2, cependant les corrections quantiques dues aux effets de boucle peuvent modifier cette
valeur. Le moment magnétique anormal est défini comme a, = %, ou l'indice p indique la particule,
et est couramment utilisé pour quantifier les contributions d’ordre supérieur, qui sont calculées tres
précisément par la QED. Toute déviation de a, par rapport a la prédiction MS indiquerait la présence
d’effets de nouvelle physique. Les moments magnétiques de 1’électron et du muon ont été mesurés tres

précisément : g./2 =1,00115965218073(28) [89] et a, = 116592061(41) x 10~ [90]. Les prédictions
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théoriques sont également calculées avec une tres bonne précision, ce qui se traduit par une tension
de 4.2 o entre la théorie et 'expérience pour le moment magnétique du muon. Il s’agit de I'une des
preuves les plus significatives de nouvelle physique a ce jour. Le MDM du tau est techniquement plus
difficile & mesurer en raison de sa tres courte durée de vie ; a ce jour, le MDM anormal du tau est
connu avec une précision de seulement 1072, ce qui n’est pas compétitif avec la précision de 10~® du
MS. De méme, pour le MDM des baryons et des quark charmés, quelques prédictions existent mais il
n’y a pas de mesure expérimentale disponible pour les confirmer ou les rejeter, d’ou la nécessité d’une
nouvelle mesure.

Du point de vue théorique, le MDM des baryons peut étre prédit, dans le référentiel du modele
des quarks, & partir du moment magnétique des constituants. Le moment magnétique d’un baryon
|B) s’écrit donc :

9i 4

— (Bl + 2+ i) 51B) = S (B
= (B -+ o+ ) S1B) = S(B15 51

|B) (8.2)

Dans cette these, le baryon charmé A} est étudié, son moment magnétique s’écrit simplement: p AT =
pte- La mesure du MDM du A} permettrait donc d’accéder au MDM du quark charm. Il existe un
grand nombre de prédictions théoriques pour le MDM du Al basées sur des modeles différents, donnant
des valeurs comprises entre [0.15—0.52]uy et jusqu’a présent il n’existe pas de mesure expérimentale
permettant de déterminer lequel parmi ces modeéles est correct.

Une expérience de mesure du MDM des baryons charmés est proposée dans les références suivantes
: [{12][3][4][5]. Toutes ces propositions sont basées sur le méme principe physique bien connu (utilisé
en outre pour mesurer le moment magnétique du muon), a savoir la précession des particules chargées
dans un champ magnétique. L’idée de ces expériences est de mesurer 'angle de précession du vecteur
spin des baryons, ce qui donne acces au MDM du baryon méme. Cependant, la durée de vie des baryons
charmés est trés courte (environ quelques centaines de fm) donc pour que la précession se produise
avant la désintégration du baryon un champ magnétique trés puissant (de 'ordre 103 T) est nécessaire.
Jusqu’a présent, les aimants conventionnels ne peuvent pas produire un tel champ magnétiqueﬂ Une
solution possible est de canaliser les baryons dans un cristal, ou le champ magnétique entre les plans
de la structure cristallographique est suffisamment élevé pour que la précession se produise avant la
désintégration du baryon ; cette méthode a été utilisée avec succes dans le passé pour mesurer le MDM
du baryon ¥t [6]. La maniére dont les baryons charmés pourraient étre produits au Large Hadron
Collider (LHC) et ensuite redirigés vers le cristal de précession fait I'objet d’un vaste programme
de recherche. L’un des montages proposés comprend une séquence de deux cristaux ou un cristal
déflecteur est utilisé pour extraire les protons du halo du faisceau du LHC afin de les diriger sur un
second cristal, un cristal-cible, qui est utilisé pour produire les baryons charmés. Le cristal dédié
a la précession du vecteur polarisation est placé juste apres ces deux autres cristaux; un dessin est
montré un figure 8] Afin de mesurer le moment magnétique, la polarisation initiale du baryon
(avant qu’il ne pénétre dans le cristal) est une donnée nécessaire. En principe, la polarisation initiale
pourrait étre obtenue a partir d’autres expériences fonctionnant dans des conditions similaires a celles
de linstallation a double cristal, par exemple une expérience produisant des baryons a partir de

I'interaction d’un faisceau de protons avec une cible. L’expérience LHCb [7] est adaptée a cette

ILe champ magnétique plus puissant jamais produit sur terre s’éleve & 45.5 T [220].
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8.1. LA POLARISATION DES BARYONS

rotation axis

Figure 8.1: Esquisse de la précession du vecteur polarisation (en rouge) dans le cristal, 'angle de
précession O, est également représenté. D’apres Ref.[2].

mesure car elle peut fonctionner en mode cible fixe grace au systeme SMOG, qui permet d’injecter
de petites quantités de gaz a proximité du point d’interaction. L’échantillon pNe a cible fixe collecté
avec le détecteur LHCb & une énergie dans le centre de masse de /s =68 GeV en 2017 reproduit
des conditions similaires a celles requises pour la mesure de la polarisation d’entrée discutée ci-dessus.
Cependant, en raison du manque de statistiques dans cet échantillon (environ 250 A} sont observés
dans les données) et de la complexité de l'analyse d’amplitude qui est nécessaire pour mesurer la
polarisation, une mesure préliminaire de la polarisation est effectuée en utilisant les échantillons a
haute statistique contenant des collisions pp. Cela permet de fixer certains des parametres du modele
(les couplages d’hélicité ainsi que la liste de résonances inclues) qui ne dépendent pas du mécanisme
impliqué dans la production de baryons et qui sont donc indépendants de 'expérience. C’est le sujet
de ce travail. Le modele construit sur les données pp sera ensuite utilisé pour mesurer la polarisation

dans 1’échantillon a cible fixe.

8.1 La polarisation des baryons

De maniére générale, la polarisation de production d’un baryon avec un spin 1/2 donne une indication
de quelle projection est la plus fréquente entre les deux valeurs possibles: +1/2 et +1/2. L’information
sur la polarisation est extraite en examinant la distribution angulaire des produits de désintégration,
qui dépend a la fois de la polarisation originale du baryon et de ’asymétrie de désintégration. Dans
le cas d’une désintégration a deux corps du type AT — X +Y la distribution angulaire s’écrit, dans

le référentiel du A}, comme

1 dN 1
- —-(1+aP :
N deosd 2( + aPcosf) (8.3)

ol P est la projection de la polarisation A}, 6 est 'angle entre I’axe de polarisation et la direction finale

du baryon X, et « est le parametre d’asymétrie de désintégration. D’une part, le parametre d’asymétrie
a est indépendant des conditions de production et représente 'asymétrie entre les amplitudes de la
désintégration qui violent la parité et celles qui la conservent. Cela signifie que si la désintégration
conserve la parité, a sera nul et la distribution angulaire sera plate, ce qui empécherait la mesure de la
polarisation. En effet, ’asymétrie est non nulle pour les désintégrations induites par des interactions

violant la parité et la sensibilité a la polarisation dépend de la valeur de «; plus « est grand plus la
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sensibilité est élevée. D’autre part, la polarisation dépend strictement du mécanisme de production et
par conséquent de I’expérience, c’est-a-dire qu’elle dépend du type de faisceau, du mode de collision
(cible fixe ou non), du canal de désintégration, de I’énergie du centre de masse du systéme.

Au LHC, A} peut étre produit via des interactions fortes juste apres la collision ou via des in-
teractions faibles dans une désintégration secondaire (par exemple A, — Al ). Pour acquérir une
polarisation, les A} doivent étre produits a partir d’'une particule ayant un spin et polarisée. Pour
I'interaction faible, cette particule est le boson faible W*. Dans le cas de l'interaction forte, les AT
peuvent étre produits par différents mécanismes (par exemple, la fusion des gluons, 'interaction qg,
etc.). Cependant, au moment ou le quark c est créé et hadronisé en un A, de nombreuses interactions
intermédiaires se produisent et la polarisation est diluée. Comme le nombre de particules produites
et d’interactions augmente avec les énergies, la perte de polarisation augmente également. Apres sa
production, la particule se désintegre via une interaction forte ou faible. Dans le premier cas, comme
la parité est conservée, 'amplitude de désintégration doit étre symétrique sous inversion d’espace et la
polarisation ne peut pas étre mesurée puisqu’il n’y a pas d’asymétrie dans la désintégration, c’est-a-
dire que @ = 0. En revanche, pour les Al faiblement produits, une violation de parité peut se produire
et a# 0, donc la polarisation est mesurable. La désintégration de AT — pK ~ 7T est une désintégration
faible, ce qui signifie que la polarisation est accessible.

Il existe des mesures de polarisation pour différents baryons, en particulier pour les baryons con-
tenant un quark étrange, les hypérons. Pour le baryon A, la premiére mesure a été effectuée en 1992
au CERN-SPS, dans l'expérience NA32 qui a fait entrer en collision 230 GeV/c 7w~ sur une cible en
Cu, ils ont recueilli 121 désintégrations A7 — pK~ 7t et ont trouvé le produit aP a —0.65f8:%§ pour
un pr > 1.1GeV/c [73]. Puis, en 1999, l'expérience E791 a étudié la méme désintégration pour des
collisions pion-noyau de 500GeV/c, avec 946 438 de désintégrations reconstruites. Les résultats ont
montré une polarisation de plus en plus négative en fonction de p%, la polarisation la plus élevée étant
de —0.6740.15 dans le bin 1.24 < p% <5.20 GeV?/c?. La dépendance de la polarisation en fonction de
pr est bien décrite par le modele proposé dans [74], ou les fonctions de fragmentation dépendantes du
spin sont calculées dans un modele quark-diquark. Cependant, le formalisme utilisé dans I’expérience
E791 était incomplet; une partie du travail de cette these a été dédié a I'étude et au développe-
ment du formalisme d’hélicité utilisé pour décrire la désintégration A7 — pK~7+. Dans un deuxiéme
temps, les équations obtenues sont utilisées pour décrire les données collectées par I’expérience LHCb
contenant des collisions pp collectées avec le détecteur LHCb en 2016, a une énergie dans le centre
de masse de 13 TeV. Cette mesure, et en particulier la mesure du parameétre d’asymétrie « est une
donnée fondamentale pour la mesure des MDM des baryons charmés en utilisant les cristaux, non
seulement pour ’expérience en elle mémes mais aussi pour la phase de développement des prototypes
de l'expérience. En effet, la précision sur le facteur gyromagnétique g dépend de la précision avec
laquelle « est connu. Apres cette these, il sera possible de déterminer plus précisément le nombre de
jours de prise de données nécessaires afin d’atteindre une précision de 0.1 sur g.

En conclusion, cette these s’articule sur trois axes principaux : d’un coté les développements du
formalisme d’hélicité et I’analyse en amplitude des données LHCb, de l'autre un travail hardware
portant sur la détermination de ’électronique frontale du détecteur PLUME a été aussi effectué. Ces

trois axes sont résumés ci-dessous.
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8.2 Formalisme d’hélicité

Dans le référentiel du modele isobar, la désintégration a 3 corps AT — pK 7" peut étre décomposée
en désintégrations successives a deux corps. Les états de résonances intermédiaires sont appelés
"isobars" et sont décrits par des fonctions dynamiques, généralement appelées lineshapes, qui doivent
étre paramétrées en choisissant un modele spécifique. Pour une désintégration & trois corps A —
a+b+c, il existe trois combinaisons possibles donnant trois isobars différentes : A — (R1 — a+b) +c,
A—a+(Ry—b+c) et A— (R3 —c+a)+b. Lamplitude de désintégration est factorisée en une

partie dynamique A, (m,.) et une partic angulaire 1, (€2) :

() = Z%(ﬁ)ﬁm (mr;) (8.4)

ot § sont les variables de I'espace des phases, r; est la résonance ¢ et m,, sa masse. Le choix de la
paramétrisation de la linsehape A,,(m,,) est guidé par des données expérimentales ou des modeles
existants et introduit un biais dans les amplitudes puisqu’il nécessite une modélisation spécifique. Les
amplitudes angulaires 1), sont au contraire dérivées des premiers principes de la mécanique quantique
sans aucune hypothese a priori sur le processus physique étudié. Elles peuvent étre décrites par
différentes approches et elles ne dépendent que du spin et du moment angulaire des particules. Dans
ce travail, le formalisme de I’hélicité est choisi. Ce formalisme a été développé dans les années 60
dans la référence [203], mais il présente toutefois des subtilités pour les désintégrations incluant des
particules avec un spin différent de zéro dans 1’état finale, dans cette these ce formalisme est étudié et
développé en détail pour la désintégration AS — pK ~7+ (avec spin-parité J© : %+ — %+ +0t+07).
En partant de la décomposition de I’équation [8.4] 'amplitude finale de la désintégration & trois corps
est obtenue en additionnant de maniere cohérente les différents isobars, qui peuvent avoir un spin

différent, et de maniere incohérente les hélicités des états initial et final.

Cinématique de la désintégration La cinématique de la désintégration & trois corps de AT est
décrite par les quatre impulsions des 3 particules filles, ce qui donne 3 x 4 = 12 degrés de liberté (dofs).
En fixant les 3 masses et en utilisant la conservation de I’énergie et du moment, il ne reste que 5 degrés
de liberté. Dans le référentiel au repos du A, les produits de désintégration sont dans le méme plan et
les angles entre eux sont déterminés par deux paires de masses invariantes. L’orientation du plan est
donnée par 3 angles d’Euler, I’angle polaire et ’angle azimutal du proton (6,, ¢;), et Pangle x, qui est
I’angle entre les plans formés par ’axe z et la direction du proton et le plan formé par le produit de
désintégration de résonance, comme le montre la figure Les cinq variables de I’espace des phases
sont donc ) = (mf} K,,miﬁ,cos Op, Dps X)- Pour une polarisation nulle, il n’y a pas de dépendance aux
trois angles d’Euler et la désintégration est entierement déterminée par deux variables, généralement
les deux masses invariantes. Pour une polarisation non nulle, la désintégration aura une dépendance
angulaire non triviale. Cela signifie que les effets de la polarisation peuvent étre vus dans la distribution
angulaire de la désintégration et non sur les distributions des masses invariantes. Le choix de ’axe est
arbitraire mais il peut étre guidé par des considérations de physique; dans le cas d’une production de

baryons via des interactions fortes, la polarisation est attendue perpendiculaire au plan de production,
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A~ ~lab
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Figure 8.2: Définitions des angles d’Euler dans le référentiel de polarisation. A gauche : angles 0, et
®p. A droite : angle x. Le plan (p,z) est représenté en vert et le plan (K~ ,7") en orange. Les vecteurs
unitaires, 71 et 7, perpendiculaires a ces plans sont également représentés.

dans lequel les vecteurs impulsion du proton incident et du baryon se trouvent.

L’opérateur d’hélicité Considérons une particule de moment angulaire total J=L+S5 ou S est le
vecteur spin et L le moment angulaire orbital. L’opérateur d’hélicité A est défini comme la projection

du moment angulaire total le long du moment de la particule :

>

L =(L+8)-p=5-p. (8.5)

A commute avec J et §2, nous pouvons donc construire une base d’états propres simultanés de jQ,
g, S2 et A. Une propriété tres utile de I'opérateur d’hélicité est son invariance sous les rotations,
puisque D et S sont tournés en méme temps, le produit des deux est invariant. Ainsi si 'impulsion
de la particule est alignée avec I’axe de projection (souvent noté z), alors la projection du moment
angulaire total de la particule le long de I'axe z coincide par construction avec I’hélicité. Ensuite, en
utilisant une séquence de rotations et de transformations de Lorentz il est possible de définir I’état de
spin d’une particule pour n’importe quelle valeur de I'impulsion, ce qui n’était pas trivial car le spin

d’une particule relativiste pas au repos n’est pas une quantité bien définie.

Amplitude de la désintégration La désintégration a — 1+ 2+ 3 peut étre décomposée en deux
désintégrations séquentielles & deux corps, par exemple a — (R — 1+2)+ 3, ou état final et les

particules intermédiaires ont des hélicités Aq, Ao, A3, Ar et des spins s1,5s9,83,5r. L’amplitude de ce
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processus peut étre écrite comme suit
R3 rrR—12
WM:)\LA%AB(G_) 1+2+3 ZDM AR—A3 ¢17917_¢1)D:;1?A1*A2(¢35937_¢3)H§;A3 H)\l,—)>\2 (86)

u HY “*R?’ sont les couplages d’hélicité pour la désintégration de la particule mere vers la résonance R

et H ﬁ’_j\}f celui pour la désintégration de la résonance R vers ses produits de désintégration. Les angles
sont calculés a chaque fois dans le référentiel au repos de la particule, ainsi 1 et ¢ sont calculés dans
le référentiel de référence a atteint a partir du référentiel de laboratoire et 03 et ¢3 sont calculés dans
le référentiel de référence R atteint & partir du référentiel de référence a. Il s’agit d’un point crucial
; les états de spin des produits de désintégration a et R sont définis dans des référentiels d’hélicité

obtenus a partir de points de départ différents, les hélicités sont donc projetées sur des axes différents.

Le référentiel d’hélicité du proton est atteint a partir du référentiel d’hélicité des résonances via
une rotation et un boost le long du moment du proton. Lorsque 'on effectue le boost pour aller
dans le référentiel au repos de la résonance et ensuite dans le référentiel au repos du proton, le
proton a un roéle différent selon la chalne que nous examinons. Le référentiel au repos du proton
atteint & partir de la chaine du K* et celle du A* et AT est montré en figure En revanche,
I’amplitude de désintégration finale est obtenue en additionnant de maniere cohérente les amplitudes
des différentes résonances, défini en utilisant le méme axe de quantification (qui est défini par rapport
au A1) pour les trois chaines. Si nous mesurons la projection du spin du proton en utilisant comme axe
de quantification pour toutes les désintégrations dans le référentiel du proton au repos, la direction du
proton dans le référentiel A., on doit faire tourner ’axe de projection (ou de maniere équivalente I’état
d’hélicité du proton) de la chaine qui n’est pas alignée avec cet axe de quantification. Ces rotations
sont appelées rotations de Wigner et elles contiennent une partie azimutale (¢') et une partie polaire
(Bres), elles s’écrivent comme R(0, Bres, @) et elles apparaissent lorsqu’on combine les amplitudes des
trois chaines.

Maintenant que tous les éléments nécessaires ont été introduits, les amplitudes d’hélicité pour les
désintégrations AT — pK 7t sont dérivées d’abord pour chaque chaine séparément et finalement pour
I’amplitude totale, y compris la matrice de densité de spin.

L’amplitude finale est obtenue en additionnant les hélicités finales (puisqu’elles ne peuvent étre
mesurées) et en incluant la polarisation. Dans ce cas, la seule hélicité finale non nulle est celle du
proton. Pour pouvoir faire cette somme, il faut inclure la rotation de Wigner pour avoir une définition
cohérente de I'axe de quantification, d’ou 'utilisation des fonctions D habituelles pour représenter les

+
rotations, 'amplitude pour chaque configuration d’hélicité .A c %Kij/\ L= Am,

Ay (0) = AR (Qee) + 3 AN () Dlon, B G- )+ 3 A (Qae+) Doz, Bas, b ) (8.7)

X, o
ou
2 if |¢p— x| > 2 if |¢pp — Pk | >
a1 = Qo = (88)
0 else 0 else
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prest frame

D A++ A+ rest frame

K 7t

p rest frame

A} rest frame

p

A} rest frame

Figure 8.3: Définition des référentiels et des angles pour les trois chaines de désintégration, K* a
gauche, ATT et A* & droite.

Les conditions alpha («j,a2) proviennent du fait que les particules de spin % ne sont pas invariantes
sous une rotation de 27 mais sous une rotation de 4.

La polarisation est incluse au moyen de la matrice spin densité p; dans le cas de Af — pK 7T,
Jj= % donc p est une matrice 2 X 2 paramétrée par 3 nombres réels. La facon la plus générale d’écrire

p est d’utiliser les matrices de Pauli o; et la matrice identité Z.

1 - 11 1_1 1( 1+P, P.—iPF,
p=5(T+P5)= Pra Pr—p | L1145 el (8.9)
2 p 2\P,+iP, 1-P.

P= {P,,P,,P,} est le vecteur polarisation représentant le degré et la direction de l'orientation du
spin de I’état. Un état pur correspond a un état totalement polarisé avec P = +1. En introduisant la

matrice de densité de spin, le taux de désintégration devient :

dI'(€2) o Z Z P! D x Ao s Pt A1 da,As (8.10)
{Ai} m,m’

ou ) décrit I'espace des phases. Par rapport aux équations données dans la Réf.[204], ces amplitudes
incluent les rotations de Wigner et les facteurs additionnels «, définis dans I'Eq. [B-8, qui compensent
I’homomorphisme deux a un SU(2) — SO(3).

Tests du formalisme Trois tests ont été développés pour s’assurer que le formalisme développé soit
correct. Ces tests se basent sur les propriétés physiques de la désintégration dans certaines conditions

particuliéres, notamment :

o La linéarité de la distribution angulaire dans le cas d’une désintégration incluant un seul état
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intermédiaire (i.e. une seule résonance)

o Sila conservation de la parité est imposée pour la désintégration Al — Rh alors les distributions

angulaires doivent étre uniformes
e Sila polarisation du A} est nulle, alors les distributions angulaires doivent aussi étre uniformes

Un exemple de ces tests est montré en figure 8.4 dans lequel les distributions angulaires pour
les trois chaines intermédiaires avec une polarisation nulle sont montrées avec le formalisme complet
(gauche) et en enlevant la condition 27 (droite). Les distributions ne sont plus plates dans le deuxieme

cas, ceci indique que la condition 27 est nécessaire pour que le formalisme soit correct. En conclusion,
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Figure 8.4: Simulation de I’espace de phase de 1M événements avec P= {0.0,0} et BW=1, incluant
seulement trois résonances : K*(890), A*(1520) et AT+ (1232) avec les couplages d’hélicité aléatoires
indiqués dans le texte. De la colonne de gauche a celle de droite, les distributions angulaires pour les
trois angles d’Euler sont montrées. De la ligne du haut vers la ligne du bas, les chaines K*, A* et
A1t sont représentées. A gauche : la partie azimutale de la rotation de Wigner a été supprimée. A
droite: la condition "27 " a été supprimée.

les résultats de ces tests démontrent que le formalisme développé dans cette these est correct, en
outre les tests développés peuvent étre utilisés pour s’assurer que n’importe quel autre formalisme soit

correcte car les principes utilisés sont toujours vrais.

8.3 Analyse en amplitude de la désintégration A} — pK 7+

Dans cette these, 'analyse d’amplitude de la désintégration a trois corps Al — pK 7" est présentée.
Le but de cette analyse est d’établir un modele décrivant cette désintégration et d’extraire le vecteur
polarisation du baryon A}. Le choix de ce canal est guidé par deux raisons : premiérement la

nécessité pour une désintégration faible afin d’étre sensible a la polarisation, puisque 'amplitude est
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proportionnelle au parameétre d’asymétrie o qui est non nul seulement dans le cas d’interactions violant
la parité ; deuxiémement, le fait que ce canal a un grand rapport d’embranchement ce qui permet
d’avoir un échantillon de données plus grand. De plus, cette désintégration permet 'existence d’états
intermédiaires qui peuvent interférer entre eux, ce qui augmente la sensibilité a la polarisation. Malgré
la complexité de I'analyse a trois corps, le gain en sensibilité est important. En effet, une désintégration
a deux corps (comme A} — K%) pourrait aussi étre utilisée pour mesurer la polarisation et serait
plus simple a analyser. En revanche, le rapport d’embranchement étant plus petits, elles ne seront pas
visibles dans les données cible fixe et en plus dans le cas o le parametre d’asymétrie « serait nul alors
la polarisation ne pourrait pas étre mesurée, ce qui n’est pas vrai pour les désintégrations a 3 corps
qui présentent une structure plus riche permettant de mesurer la polarisation pour n’importe quelle
valeur du parametre d’asymétrie a.

La mesure est effectuée sur les données contenant des collisions pp collectées avec le détecteur LHCb
en 2016, & une énergie dans le centre de masse de 13 TeV. L’analyse est effectuée pour les baryons AT
"prompts" et "secondaires". Une série de coupures est appliquée sur les candidats p, K~ et 7 ainsi que
la particule meére A, afin de choisir uniquement les particules provenant de la désintégration étudiée
: A — pK~7", que I'on appelle événements de signal. Ces coupures s’appliquent sur les quantités
suivantes: le moment transverse, 'impulsion, la qualité des traces et la qualité de I'identification des
particules (appelé PID). Concernant le Al la coupure la plus importante est celle qui permet de
séparer les AT produit directement apres la collision de ceux qui viennent de la désintégration d’un
autre baryon (Al secondaires). Cette coupure est optimisée afin d’avoir une contamination résiduelle
provenant de A} secondaires inferieure a 2%. Apres avoir appliqué toutes les coupures, le bruit de
fond résiduel est inférieur & 3 %. Environ 800 000 désintégrations prompts ont été sélectionnées avec
des contributions de fond négligeables et une contamination résiduelle des désintégrations secondaires
négligeable. L’ajustement de la masse invariante, montré en figure [8.5] est effectué sur I’échantillon
apres sélections ; il est utilisé pour séparer les événements de signal du bruit de fond restant dans la
suite de I'analyse en utilisant la technique du sPlot.

Une simulation Monte Carlo (MC) des évenements de signal est utilisée pour évaluer les efficacités
de reconstruction et de sélection des candidats. Cette simulation est corrigée a ’aide d’un algorithme
de machine learning qui permet d’améliorer la comparaison entre les données et la simulation. Ces
corrections sont appliquées sous forme de poids événement par évéenement et elles portent sur la

cinématique de la désintégration, la simulation du PID ainsi que celle du trigger hardware (L0 trigger).

Mesure de polarisation La polarisation est mesurée au moyen d’un ajustement a cinq dimensions
utilisant la méthode du maximum de vraisemblance, qui minimise le logarithme de la densité de
probabilité (PDF) par rapport aux parametres qui doivent étre mesurés (les couplages d’hélicité). La
PDF contient 'amplitude décrite a ’aide des équations développées dans cette these, l'efficacité et
I'intégrale de normalisation.

Pour chaque état intermédiaire (ou chaque chaine), ils peuvent y avoir plusieurs états résonants,
en revanche tous ces états ne contribuent pas forcément de facon significative a I'amplitude finale ;
certains ne sont pas visibles dans les données étudiées. Ainsi, un modeéle d’amplitude doit étre construit

en utilisant une procédure itérative dans laquelle les résonances intermédiaires sont ajoutées une par
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Figure 8.5: Gauche : ajustement de la masse invariante myg—,+. A droite : méme ajustement, avec
laxe y en échelle logarithmique. Les données sont représentées en noir, le modele d’ajustement (2
Crystal Ball et une fonction Gaussienne) est représenté en rouge et le bruit de fond (exponentiel) en
vert. Les subfigures inférieures montrent les résidus de I’ajustement.

une jusqu’a ce que le modele n’arrive plus a les discerner. Les premieres résonances ajoutées sont
celles que I'on peut voir en regardant directement le plan de Dalitz, qui est donnée dans la figure
les résonances apparaissent comment des lignes foncées, les plus visibles sont: A*(1520), A*(1670),

K*(890) and A*%(1232). Pour chaque nouveau modele (i.e. chaque nouvelle liste de résonances) 4

m2- . [GeV/c?

m2 - [GeV?/c’]

Figure 8.6: Diagramme de Dalitz des désintégrations A} — pK 7t soustraites du bruit de fond, 'axe
y montre la masse invariante m%ﬁ et 'axe z celle m?) K-

ajustements sont effectués pour éviter de se retrouver dans un minimum local lors de la minimisation de

la PDF. Le x2/ndf est utilisé pour évaluer la qualité du modele, les 3 meilleurs modeles sont gardés. Le
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MagDown MagUp
MC TIS TOS TIS TOS
A}F 34646 27686 35680 27 158
A, 34398 28523 34483 28643
Data TIS TOS TIS TOS
AF 110720 73 783 105 426 65 866

A, 108394 78340 104852 70295

C

Table 8.1: Nombre d’événements pour I’ajustement final des données et de la simulation, en fonction
de la polarité, de la catégorie de déclenchement et de la séparation des désintégrations A} et A .

modele nominal contient les résonances : A*(1405), A*(1520), A*(1600), A*(1670), A*(2000), K*(700),
K*(890), K*(1430) et ATT(1232), ATT(1600), ATT(1620), ATT(1700). Ce modele est utilisé pour
mesurer le vecteur polarisation et les couplages d’hélicité, ainsi que les parametres d’asymétrie et les
fractions d’ajustement. L’ajustement obtenu avec le modéle nominal est montré dans la figure [8.7]
chaque ligne de couleur représente une résonance. Les deux autres modeles, sont utilisés pour les
études systématiques ; le premier inclue une résonance K~ 7" en plus, le K*(1410), le deuxiéme deux
autres résonances pK~ (en plus du K*(1410)), le A*(1690) et A*(1890).

La mesure est effectuée séparément pour les désintégrations A} et A, , car des mécanismes de

(]
production différents sont impliqués pour les baryons et les antibaryons et leur polarisation peut
différer. En outre, les échantillons de données sont séparés selon la polarité de 'aimant LHCb (MagUp
ou MagDown) et selon la catégorie de trigger hardware étudiée (TIS ou TOS). Le tableau montre

le nombre d’événements final par catégories pour les données et la simulation (MC).

Erreurs systématiques Les erreurs systématiques sont évaluées a ’aide de pseudo-expériences pour
chacune des 8 catégories séparément. Elles peuvent étre séparées en trois catégories : les erreurs liées a
la simulation, aux données ou a la fagon de faire ’ajustement. Dans le premier cas, les ajustements sont
faits & nouveau en changeant le poids de correction de la simulation (incluant les poids corrigeant PID
et le trigger). La taille de ’échantillon de simulation rajoute aussi une systématique qui est évaluée
en générant une pseudo-expérience avec un grand nombre d’évenements et ajustant la 100 fois avec
100 tableaux d’efficacité différents génerés a partir du tableau principal. Pour les systématiques liées
au données, I'ajustement de la masse invariante est effectué en utilisant une PDF différente. Le choix
du modele, entre les trois modeles sélectionnés apres la procédure itérative décrite ci-dessus, introduit
une systématique. Cette derniére est évaluée en générant des pseudo-expériences avec les deux autres
modeles alternatifs qui sont ensuite ajustés avec le modele nominal. Enfin les masses et les largeurs
des résonances sont connues avec des larges incertitudes, les ajustements sont effectués a nouveau
avec des nouvelles valeurs. La derniére systématique est due au biais qui pourrait étre introduit par
I’ajustement. Un grand nombre de pseudo-échantillons sont générés a partir de cet ajustement. Enfin,
chacun de ces pseudo-échantillons est ajusté a nouveau et les résultats sont comparés aux valeurs
initiales utilisées pour générer les pseudo-échantillons. Le biais ainsi mis en évidence est assigné

comme une erreur systématique.
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Résultats La mesure de polarisation est obtenue pour ’échantillon contenant des A, avec une
polarité de laimant LHCDb négative (MagDown) et pour la catégorie de trigger TIS. Les valeurs

obtenues sont:

P, =—-0.0233+£0.0046 £ 0.0341
P, =0.0560=£0.0044 4-0.0919 (8.11)
P, =0.0095=£0.0063 £ 0.0590

ou la premiére incertitude est statistique et la seconde systématique. L’erreur systématique est plus

grande que l'erreur statistique et elle est dominée I'incertitude due au choix modele. La figure
montre la comparaison des résultats (pour la composante P,) entre les différentes catégories en incluant
seulement les erreurs statistiques et la seule erreur systématique qui n’est pas corrélée (celle liée a la
taille de ’échantillon de simulation). Les résultats sont compatibles dans un maximum de deux écarts
types.

Ce résultat est compatible avec d’autres mesures de polarisation de baryons réalisées au LHC.
Par exemple, une polarisation nulle a été mesurée pour les baryons Ay a 7, 8 et 13 TeV par LHCDb
[80, B1], ATLAS [82] et CMS [83] ; de méme pour les baryons A une polarisation nulle a été mesurée
par ATLAS [79]. 11 existe trés peu de prédictions théoriques avec lesquelles comparer ce résultat, donc
un apport de la théorie serait tres précieux. Dans un futur proche, la mesure de la polarisation sera
également effectuée dans des bins de moment transverse afin de la comparer aux résultats obtenus
dans la Réf. [204] et a la prédiction théorique dans [74].

Le parametre d’asymétrie effective o est également mesuré: a.f fective = 0.71540.005, I'incertitude
citée étant statistique. Les fractions d’ajustement sont aussi mesurées. Comme la polarisation est
proche de zéro, les couplages d’hélicité sont dégénérés et ils ne peuvent pas étre déterminés de maniere
unique. Malgré cela, le parametre d’asymétrie effective est mesurable puisqu’il inclut toutes les com-
posantes d’amplitude a travers le plan Dalitz. La grande asymétrie mesurée implique que la méthode
proposée pour mesurer la polarisation dans I’échantillon & cible fixe peut étre utilisée. Si une valeur
faible ou nulle de v fective avait été trouvée a la place, la sensibilité a la polarisation aurait été perdue,

empéchant 'utilisation de ce canal pour la mesure MDM.
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Figure 8.7: Exemple d’ajustement avec le modele nominal sur la catégorie TIS, polarité négative,
pour les désintégrations Al et K; mélangées. Les points noirs sont les points de données, la ligne
rouge montre le modele PDF total, les lignes colorées montrent les contributions de chaque résonance
séparément et le code couleur est spécifié dans la légende de la projection de masse m%ﬁ, en général
les lignes bleues sont les résonances K*, les lignes vertes ATT et les lignes marron-rouge A*. Les
subfigures inférieurs montrent les différences entre les données et le modele total, les lignes horizontales
en pointillés montrent la limite de 3 écarts types (3 o).
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Figure 8.8: Comparaisons de la mesure de P, pour les 8 catégories d’ajustement. Le point en cyan

montre la mesure pour les Al et en rose pour A,. Les erreurs n’incluent pas les systématiques
corrélées.
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8.4 L’électronique frontale du détecteur PLUME

L’expérience LHCb a été mise a niveau pour pouvoir prendre des données au cours des trois prochaines
années dans les conditions prévues pour le Run 3 (2022-2025). Le nouveau détecteur fonctionnera a un
niveau de luminosité cinq fois supérieur a celui des cycles précédents, Run 1 et Run 2. Toutefois, les
performances du détecteur LHCDb, méme dans sa version améliorée, se dégradent en cas d’occupation
élevée, car il a été congu pour fonctionner & un niveau de luminosité inférieur & ATALS et CMS.
Pour cette raison, la luminosité est volontairement réduite au point d’interaction de LHCb et cette
procédure, appelée luminosity levelling, s’appuie sur la mesure de la luminosité en temps réel. En outre,
au cours du Run 3, le détecteur LHCb passera a un systéme de déclenchement entierement software,
ce qui nécessite une connaissance tres précise des conditions de fonctionnement de I'expérience. Ce
ne sont la que quelques-unes des raisons qui ont motivé la construction d’un nouveau détecteur de
luminosité, le détecteur PLUME, qui sera installé prés du point d’interaction de LHCb. Le détecteur
PLUME est congu pour déterminer s’il y a eu ou non une interaction lors des collisions des paquets
de protons du faisceau et il est basé sur la mesure de la lumiere Cherenkov produite par les particules
chargées qui traversent le détecteur.

Dans cette these, 1’électronique frontale (FEE) du détecteur PLUME est présenté a été défini ;
elle sera basée sur 1’électronique frontale du calorimeétre électromagnétique de LHCb qui s’est avérée
étre adapté a la forme du signal obtenu lors des tests de faisceau. L’adaptabilité de I’électronique du
calorimetre LHCb n’était pas trivial car cette électronique a été congue pour un signal plus long ;
typiquement 25 ns contre le 3 ns du signal attendu pour PLUME. Le premier test effectué consiste en
I'utilisation d’un montage, reproduisant les conditions de fonctionnement de PLUME, composé par :
un laser, un des photomultiplicateurs (PMTs) de PLUME, les cartes d’acquisition du calorimetre et
une carte de controle (3CU). Les données ont été prises avec un systéme d’acquisition (DAQ) similaire
a celui de LHCD. Les résultats de ces tests prouvent que le FEB du ECAL peuvent étre utilisées pour
PLUME.

Ensuite, la possibilité d’utiliser le détecteur PLUME pour mesurer le décalage de 'horloge de LHCb
par rapport a I’horloge principale du LHC est également explorée. Afin de lire de maniere synchrone
I’ensemble du détecteur LHCDb lorsqu’une collision se produit, une horloge globale réglée par le LHC
est utilisée pour suivre les bunches qui se croisent. L’électronique de chacun des sous-détecteurs est
synchronisée par rapport a ’horloge du LHC pour échantillonner correctement le signal dans un délai
de 25 ns. L’horloge du LHC arrive a 'expérience LHCb par des fibres optiques souterraines. En
raison des variations de température, ’horloge peut subir un décalage de quelques ns avant d’arriver a
LHCb, ce qui entraine une désynchronisation de la lecture du détecteur par rapport aux collisions du
LHC. Pendant le Run 1 et le Run 2, un décalage d’horloge a été observé et il a été corrigé en utilisant
la mesure de timing du Outer Tracker (OT) avec une résolution de 0.5 ns. Ce décalage doit étre
surveillé afin d’obtenir des performances optimales pendant le Run 3, notamment en ce qui concerne
I’étalonnage et 'alignement du détecteur. Le OT sera retiré pendant le Run 3. Pour cette raison, une
mesure du retard d’horloge utilisant le détecteur PLUME est proposée dans cette these. Cette mesure
exploite les caractéristiques de la puce ICECAL, détaillées ci-dessous.

L’intégration du signal est réalisée dans la puce ICECAL qui contient deux lignes d’intégration

218



8.4. L’ELECTRONIQUE FRONTALE DU DETECTEUR PLUME

fonctionnant en paralléle a 20 MHz chacune, alternant 25 ns d’intégration et 25 ns de mode repos. Une
vue schématique du processus d’intégration se déroulant dans 'TCECAL est présentée a la figure
De haut en bas, I'horloge du LHC, I'impulsion PMT, l'intégration et les systemes track and hold
(T/H) sont représentés en fonction du temps, avec les deux lignes d’intégration dessinées en vert
et en rouge. Ce dessin n’est pas a ’échelle, il a pour but de guider le lecteur dans I’explication.
L’impulsion d’entrée (provenant des PMTs) est intégrée par le premier intégrateur pendant 25 ns. En
méme temps, la charge de sortie est transférée vers les condensateurs de maintien du systéme T/H.
Pendant ce temps, l’'autre intégrateur reste en état de réinitialisation. Pendant les 25 ns suivantes,
le premier intégrateur passe en mode de réinitialisation et le second réalise l'intégration de la queue
du signal qui ne rentrait pas dans la premiere fenétre d’intégration. Ici encore, le signal est transféré
au (deuxiéme) systeme T/H. Ensuite, le multiplexeur combine les deux signaux pour les envoyer aux

pilotes ADC apres avoir sélectionné le canal d’intégration correct. La phase de I'horloge T/H peut
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Figure 8.9: A gauche : schéma du processus d’intégration dans la puce ICECAL (unités arbitraires
sur 'axe des y) pour un signal de type ECAL. Droite : Croquis du processus d’intégration dans la
puce ICECAL (unités arbitraires sur 1’axe des y) pour un signal de type ECAL.

étre ajustée, ce qui implique que la charge de sortie de l'intégrateur est déplacée vers le T/H et de
maintien plus tot (ou plus tard selon le retard). Cela revient & modifier le début (") du processus
d’intégration du signal et donc a appliquer un retard par rapport a I’horloge du LHC. En déplacant
i, le premier intégrateur n’intégre plus la totalité du signal et le deuxieéme intégrateur intégre une
plus grande partie du signal plutot que seulement la queue. Ainsi, en augmentant progressivement les
délais de 0 a 25 ns, il est possible d’effectuer un balayage, en surveillant le déplacement progressif du
signal d’un intégrateur a l'autre.

SiI’horloge du LHCb est parfaitement synchronisée avec celle du LHC, pour un retard de dgp,;; = 12,5 ns,
le signal devrait étre divisé en deux entre les deux intégrateurs. En tracant la différence de signaux
entre les deux intégrateurs en fonction du retard appliqué, il est possible de mesurer ou se situe le
point de partage en deux. Cela devrait donner une courbe, avec une forme typique en S, ou le point
d’inflexion correspond a dp;¢. La courbe idéale en forme de S que I'on devrait obtenir est représentée
sur la figure (gauche); celle obtenue dans cette étude est montrée dans la méme figure, a droite.

La résolution visée est au moins inférieure a 250 ps et peut étre améliorée jusqu’a 70 ps. Bien que

tres préliminaires, ces résultats ouvrent la voie a une mesure de temps supplémentaire prometteuse et
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Figure 8.10: Gauche: S-shape idéale pour des retards de 0 a 25 ns. La ligne verticale pointillée indique
le point dpi; = 12,5 ns. La région magenta correspond a un signal intégré par les intégrateurs marqués
BCID 39 et la région cyan a l'intégrateur BCID 40. La partie grise de la courbe représente la région
ou l'intégration du signal passe progressivement d’un intégrateur a l'autre. Droite: S-shape obtenu
dans cette these avec les montage décrit dans le texte.

inattendue que le détecteur PLUME pourrait effectuer. A l'issue de ce travail, les FEBs de 'ECAL
ont été choisies pour I’électronique frontale du futur détecteur PLUME et une mesure préliminaire du

temps a été effectuée, donnant des résultats prometteurs.

8.5 Conclusions

Dans cette these, la polarisation du baryon charmé A} a été mesurée pour des baryons prompt dans
des collisions proton-proton, en utilisant ’échantillon de données collecté par le détecteur LHCb en
2016, a une énergie dans le centre de masse de 13 TeV. Les principales motivations de cette mesure
sont: d’une part la polarisation des baryons charmés est mal connue expérimentalement, la mesure
la plus pertinente a été réalisée il y a 20 ans [204], et aucune amélioration n’a été apportée depuis.
D’autre part, aucune prédiction théorique n’est disponible pour la polarisation des baryons charmés
a Dénergie du LHC. Enfin, la polarisation A} est une donnée nécessaire pour la mesure du moment
dipolaire magnétique (MDM) du quark charmé proposée dans la Réf. [I] [2] [3] [4] [5]. En plus de la
mesure de polarisation A, cette thése présente le travail effectué sur la détermination de I’électronique
frontale du détecteur Plume, qui sera installé pour le Run 3 de I'expérience LHCb.

L’analyse en amplitude de la désintégration A} — pK 7+ peut étre décomposée en trois étapes
majeures : le développement des équations décrivant I'amplitude de la désintégration, le traitement
des données pour extraire le AT prompt et enfin ajustement aux données pour effectuer la mesure
de la polarisation. Tout d’abord, les équations qui décrivent 'amplitude de la désintégration de
AY — pK— 7" ont été dérivées dans le cadre du formalisme de 1’hélicité. Cela était nécessaire car le
formalisme utilisé dans [204] s’est avéré incomplet, et de nombreux points devaient étre clarifiés avant

de poursuivre l'analyse. En particulier, la nécessité des rotations de Wigner et des facteurs de 27 a
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été démontrée. De plus, il a été prouvé que le formalisme développé est correct en le testant pour des
configurations spécifiques. L’extraction du signal a été relativement simple puisque les contributions
du bruit de fond étaient faibles par rapport au signal. La sélection la plus importante pour cette
analyse est celle du parametre d’impact Al qui permet de séparer les désintégrations prompt des
secondaires. En effet, la polarisation dépend du mécanisme de production impliqué, qui différe entre
la production prompte et secondaire. Une sélection rigoureuse laissant moins de 2% de contamination
par les secondaires a été appliquée. Enfin, le bruit de fond résiduel, provenant principalement d’une
mauvaise identification des protons, est également inférieur a 2%. Le principal défi de la procédure
de sélection a été la compréhension des effets du déclenchement du L0 sur les variables angulaires,
en particulier le ¢,. Finalement, I’analyse a été effectuée pour les deux catégories de déclencheurs
séparés afin de maitriser ces effets. Les amplitudes d’hélicité dérivées sont ensuite utilisées pour
mesurer la polarisation A} et A, les couplages d’hélicité et les fractions d’ajustement de chaque
état résonant intermédiaire, au moyen d’un ajustement aux données. Les parameétres d’asymétrie des
résonances individuelles ainsi que le parametre d’asymétrie effectif pour ’ensemble de la désintégration
ont été extraits des résultats de 'ajustement. Le contenu de résonance du modele a été déterminé en
ajoutant seulement les résonances donnant une contribution significative a I’amplitude principale et
décrivant aussi bien que possible les données. Un modele nominal et deux modeles supplémentaires
donnant des résultats similaires ont été retenus. Une fois le modéle nominal déterminé, la mesure
finale a été effectuée pour les deux polarités de I'aimant séparément car la reconstruction n’est pas
exactement identique entre les deux et la simulation ne reproduit pas parfaitement ces effets. Les
désintégrations (AS — pK ~7) et sont anti-désintégration (A, — pK+7~) ont également été séparées
car la production d’un baryon A} et d’un antibaryon A, est différente, donc la polarisation peut différer
entre les deux. Ainsi, la mesure est effectuée pour 8 catégories différentes, en fonction du trigger, de la
polarité et du type de désintégration. La polarisation a été mesurée pour I’échantillon TIS, de polarité

négative, de désintégrations A} :

P, =—-0.0233+£0.0046 £ 0.0341
P, =0.0560=£0.0044 4-0.0919 (8.12)
P, =0.0095=£0.0063 £ 0.0590

ou la premiere incertitude est statistique et la seconde systématique. La mesure est dominée par
les incertitudes systématiques qui donnent une erreur allant jusqu’a 9% ou la plus grande source
d’incertitudes systématiques est celle liée au le choix du modele. La partie la plus difficile de ’analyse
a été la compréhension des amplitudes d’hélicité, la construction du modele et le développement du
mécanisme d’ajustement. Une amplitude incorrecte peut encore donner des résultats raisonnables
lors de 'ajustement des données. Les équations ont été soigneusement testées et étudiées pour
s’assurer qu’aucune définition non physique, qui n’apparaitrait pas dans l'ajustement, n’était util-
isée. L’évaluation du contenu de résonance du modele a également été un défi, car plusieurs modeles
équivalents peuvent donner des résultats similaires. Le mécanisme d’ajustement a été développé a
partir de zéro en C++ et il a également constitué une partie difficile de ’analyse. La grande quantité

de données et les calculs complexes ont nécessité une optimisation inévitable du code en utilisant
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les fonctionnalités les plus récentes des bibliotheques C++ et ROOFIT. Le code est parallélisé, pour
fonctionner sur plusieurs CPU en méme temps, et optimisé afin de garder en mémoire tout élément
de l'amplitude qui ne change pas pendant la minimisation de la PDF. L’utilisation de GPUs a été
envisagée, mais le grand nombre de CPUs disponibles a donné de meilleures performances que le petit
nombre de GPUs, donc cette option n’a pas été étudiée plus.

Pour les perspectives de cette mesure, un échantillon statistique plus élevé pourrait étre facilement
obtenu en relachant la sélection du parametre d’impact. L’augmentation de la contamination sec-
ondaire pourrait étre traitée comme une composante de fond dans la PDF finale. En outre, I'analyse
compléte pourrait étre effectuée pour les désintégrations des baryons =F — pK 7", qui partagent
le méme état final et donc les mémes équations. Enfin, le modele obtenu dans cette analyse, sera
utilisé pour mesurer la polarisation dans des collisions pNe collectées par LHCb en 2017 & une énergie
dans le centre de masse de 68 GeV. L’incertitude statistique estimée pour ’échantillon pNe de 2017
est comprise entre 10% et 14% selon le nombre final d’événements de signal extraits, qui peut varier
de 200 & 400 événements. Ainsi, la mesure de la polarisation A dans cet échantillon sera dominée
par lincertitude statistique. Au cours du Run 3, grace a SMOG2, un échantillon de données avec
un signal plus important est attendu. Pour un échantillon contenant 300 000 baryons de A}, une
incertitude statistique de 0,4% est attendue, dans ce cas la mesure de la polarisation sera dominée
par l'incertitude systématique due au choix du modele, qui est d’environ 5%. En d’autres termes, la
précision de la mesure de la polarisation pour les futurs échantillons SMOG2 sera systématiquement
limitée a 5%.

Parallelement a ’analyse des données et au développement du formalisme des amplitudes d’hélicité,
un travail hardware a été effectué dans cette these, concernant la détermination de 1’électronique
frontale du détecteur Plume. Le détecteur Plume est un détecteur de luminosité congu pour 'expérience
LHCb. Le parcours de la conception a la construction du détecteur Plume a été passionnant. Les
tests effectués visaient a prouver que I’électronique frontale du calorimeétre électromagnétique de LHCb
pouvait étre adaptée aux besoins de PLUME. Les FEB de 'ECAL ont été congus pour intégrer un
signal dans un délai de 25 ns, et éliminer les éventuelles fuites en dehors de cette fenétre. Le signal
attendu pour PLUME est cependant beaucoup plus court, environ 3 ns, et 1’électronique n’a pas été
optimisée pour un signal aussi court. Dans ce travail, il a été prouvé qu’il est possible d’utiliser les
FEB de PTECAL pour le PLUME. De plus, une nouvelle mesure de temps est proposée afin de surveiller
le décalage de I'horloge de LHCb par rapport a I’horloge principale du LHC. Les premiers résultats
sont prometteurs, une résolution temporelle inférieure a 0.5 ns obtenue avec I’OT pendant le Run 1
semble réalisable. Quelques améliorations possibles pour la mesure du temps ont été identifiées, y
compris la conception d’un meilleur séparateur pour diviser le signal en 8 copies et une optimisation
de la taille du pas du scan de temps. Cette mesure sera bénéfique pour les performances du détecteur
LHCDb pendant le Run 3 car elle permettra de controler la synchronisation temporelle en temps quasi

réel avec une bonne précision.
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Plume FEB tests

More plot for the signal shapes obtained in the Split mode. The runs shown are the last three of Table
1049, 1051 and 1053. The numerical results of the fits are shown in Tab. Table and

Table [A31

Channel ~ AS[ADCs] Eig)és] Delay [ns]
8 86.4 0.2 0

9 79.4 0.2 3

10 73.9 0.4 6

11 74.6 0.2 9

12 79.2 0.1 12

13 6.9 0.1 15

14 -75.0 0.3 18

15 -106.5 0.1 21

Table A.1: Fit result after pedestal substraction for Run 1049.

Channel AS[ADCs] ][EX;)O és] Delay [ns]
8 75.4 0.9 0

9 68.3 0.8 3

10 36.8 0.1 6

11 -30.4 0.1 9

12 -74.7 0.5 12

13 -113.0 0.2 15

14 -109.8 0 0. 18

15 -109.0 0.3 21

Table A.2: Fit result after pedestal substraction for Run 1051.
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Figure A.1: AS distributions for Feb 4, 32 channels (Run 1049) as a function of the ADC counts
after pedestal substraction. The red bold lines are double gaussian fits to the distributions and the
bais and width values are shown on the subplots. The red shaded channels have a non zero mean and
correspond to the channels where a signal is seen.
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Figure A.2: AS distributions for Feb 4, 32 channels (Run 1051) as a function of the ADC counts
after pedestal substraction. The red bold lines are double gaussian fits to the distributions and the
bais and width values are shown on the subplots. The red shaded channels have a non zero mean and
correspond to the channels where a signal is seen.
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Figure A.3: AS distributions for Feb 4, 32 channels (Run 1053) as a function of the ADC counts
after pedestal substraction. The red bold lines are double gaussian fits to the distributions and the
bais and width values are shown on the subplots. The red shaded channels have a non zero mean and
correspond to the channels where a signal is seen.

Channel AS[ADCs] Delay [ns]

8 76.6 0.4
9 72.0 0.4
10 71.5 0.4
11 68.7 0.4 9

12 61.3 0.2 12
13 -30.0 0.1 15
14 -65.62 0.2 18
15 -89.2 0.2 21

S W O

Table A.3: Fit result after pedestal substraction for Run 1053.
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Mis-1D backgrounds

Full mid-identification plots for TIS and TOS categories.
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Figure B.1: TIS category, before selections, invariant mass with different mass hypothesis.
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Figure B.2: TIS category, after final selections, invariant mass with different mass hypothesis.
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Figure B.3: TIS category, one dimensional projections. Left: before selections. Rigth: after selections.
Only the relevant masses giving significant backgrounds from misidentification are shown.
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Figure B.4: TOS category, before selections, invariant mass with different mass hypothesis.

m,. [Mev/c]

T T T
3 3 3
=) = =)
< < <
€ £ €
- 2 or B o
7100 2200 2300 . 2400 2000 2500 3000 1700 1800 1900 2000 2100
Me - ) kgrep [MeVIC] My ki e IMEVIE] My m o [MeVIc]
T T
3 3
£ =3
< <
£ £
: S tal : e
00 1200 1400 1600 1800 2000 2600 2700

Mg~ ey e [MeVIS]

Moic .. MEV/C]

Figure B.5: TOS category, after final selections, invariant mass with different mass hypothesis.
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APPENDIX B. MIS-ID BACKGROUNDS
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Figure B.6: TOS category, one dimensional projections. Left: before selections. Rigth: after selections.
Only the relevant masses giving significant backgrounds from misidentification are shown.
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Additional Data/MC

comparisons
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Figure C.1: Profile histograms featuring the probNN distributions (ProbNN,(p) — ProbNNg(p))

2

versus the phase space variables (mp K_,mfmﬁ,cos Gp,¢p,x), the mass m%(_ﬂJr is also shown. The red
dots are sPlot signal data, the blue dots the MC after the reweighting procedure. The results shown
are for the TOS category and negative polarity.
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Invariant mass fits

In this appendix, the invariant mass fit for the categories TIS MagDown, TIS MagUp and TOS MagUp

are shown.
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Figure D.1: Left: fit to the myx—,+ invariant mass. Right: same fit, with the y-axis in logarithmic
scale. Data are shown in black, the fit model (2CBs and a Gaussian function) is shown in red and
the background (exponential) in green. The lower pads show the residues of the fit. Trigger category
TOS and negative polarity
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Figure D.2: Left: fit to the m, .+ invariant mass. Right: same fit, with the y-axis in logarithmic
scale. Data are shown in black, the fit model (2CBs and a Gaussian function) is shown in red and the
background (exponential) in green. The lower pads show the residues of the fit. Trigger category TIS
and positive polarity
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Figure D.3: Left: fit to the m, .+ invariant mass. Right: same fit, with the y-axis in logarithmic
scale. Data are shown in black, the fit model (2CBs and a Gaussian function) is shown in red and
the background (exponential) in green. The lower pads show the residues of the fit. Trigger category
TOS and negative polarity
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Additional efficiency plots

Efficiency distributions for the other magnet polarity and trigger category: magnet up TOS, magnet
down TIS, magnet up TIS.
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Figure E.1: Efficiency distributions over the 2 dimensional plane (m,x-,m,.+) and the three angles
¢p, cos(8p) and x for the trigger TOS category, magnet up. The units of the efficiency are arbitrary.
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Figure E.2: Efficiency distributions over the 2 dimensional plane (m,x-,m,.+) and the three angles
¢p, cos(0p) and x for the trigger TIS category, magnet down. The units of the efficiency are arbitrary.

x10° .
o T =S T T T
L < 0.06f E
< 3000 -
%—‘ + +
2500 + +
oo 0o4f A
€ —+ +F
+
2000 s
0.02 * E
1500,
n 5 , , ,
2000 3000 4000 Ox10 o5 o 05 1
m%p [MeV</cT coﬁp
=1 T T T S5 T T T
] + o I+ +H+ §
006 ** . + *
. . ooaf A + o+ + 4
+ +
+
s + +
0.04F * * - . + o+
M + + ++ 4 + 4+
- * . 0.02F + + .
0025+ . 7 A
-
C 1 1 1 0 1 1 1
-2 0 2 -2 0 2
@, X

Figure E.3: Efficiency distributions over the 2 dimensional plane (m,,x-,m,.+) and the three angles
¢p, cos(8p) and x for the trigger TIS category, magnet up. The units of the efficiency are arbitrary.
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Model building

F.1 Fit results for the two supplementary models M10 and M21

The fit for the other two models selected from the model building procedure are shown here. In all
Figures, the black dots are the data points, the red line shows the full PDF model, the colored lines
shows the contributions of each resonance separately and the colour code is specified in the legend
shown in the m3._ mass projection, in general blue lines are K* resonances, green lines AT+ and
brown-red lines A*. The lower pads show the pulls between the data and the total model, the dashed

horizontal lines show the limit of 3 standard deviations (3 o).

F.2 Discarded models

Examples of fit results for which have been discussed in the text and discarded are shown here.
Especially, one example of how the minimal model (MO0) is not sufficient to describe the data and two
other models (M17,M18) which may seem good but which have large interferencce effects, only the
M17 is shown.

234



F.2. DISCARDED MODELS
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Figure F.1: Example of fit with the model M21 on the TIS category, negative polarity, for A7 and A,
decays mixed.
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APPENDIX F. MODEL BUILDING
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Figure F.2: Example of fit with the model M10 on the TIS category, negative polarity, for A7 and A,
decays mixed.
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F.2. DISCARDED MODELS
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Figure F.3: One dimensional projections of the masses m]% K,mfm and m%{ﬂ. The first column shows the
projections for the minimal model M0, the right column for M17. The latter shows large interference

effects from the A(1232) and A(1600) resonances.
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Fit results

The fit results for the other catergories of model 6 (M6) and for the alternative models (M10 and

M21) are shown here. The uncertainties cited are only statistical.

G.1 Results for model 6

FF parameter Central value Statistical uncertainty

ATT(1232) 0.16004 0.00106
AT+(1600) 0.12063 0.00024
ATF(1620) 0.16727 0.00081
AT+(1700) 0.05793 0.00048
K*(1430) 0.00008 0.00004
K*(890) 0.18556 0.00016
A*(1405) 0.13295 0.00031
A*(1520) 0.03817 0.00151
A*(1600) 0.00933 0.00006
A*(1670) 0.05921 0.00068
A*(2000) 0.20962 0.00042
S F, 1.14080 0.00576

Table G.1: Result of the fit for model M6, MagDown polarity, TIS category and A, decays.
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G.1. RESULTS FOR MODEL 6

Parameter Q@ « statistical uncertainty
ATT(1232)  0.4810 0.0403
ATT(1600) 0.5669 0.0416
ATT(1620) 0.5305 0.0301
ATT(1700)  0.6936 0.0473
K*(1430) -1.0000 0.0000
K*(890) 0.3994 0.1241
A*(1405) 0.2283 0.0391
A*(1520) 0.4991 0.0699
A*(1600) -0.7733 0.0920
A*(1670) -0.0749 0.0485
A*(2000) -0.0321 0.0318
Qlef fective 0.7071 0.0042

Table G.2: Result of the fit for model M6, o parameters for MagDown polarity, TIS category and A,

decays.
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APPENDIX G. FIT RESULTS

240

Parametor Central Statisti(.:al Parameter Central Statistiéal
value uncertainty value uncertainty

Y 0946 0.026 Hy U 0,56 0.025
Y0 ggsa 0.022 Hy 00 0aa9 0025
YOO 0706 0012 my M 0sr 001
YT 0616 0.015 w0 a6 002
080 g 0.008 HY U89 g 019 0.007
SO o517 0021 a0 0660 0.023
oY 0505 0.034 M 0560 0.012
Hé\*(1405) 0.451 0.016 H{\*(1520) 0.474 0.015
HY0520) oy 0.024 HY 00,064 0.014
HAO800 7 0.012 H U 0321 0.011
Héx*(mm) 0.346 0.012 H{\*(QOOO) 0.613 0.014
HY P 0633 0014 or 061 0.06
gy 0P 3364 0114 or U 3860 0.061
gy U0 1123 0.008 o U a6t 0059
g U0 o3 0.095 or U 0977 0.053

2TOT0 493 0135 or " 6.8 9.59
gn B0 367 0578 o 0 0202 0065
pETE0 0.012 o 0 9803 0.073
(bzlx* (1405) -4.953 0.048 ¢§*(1405) -4.915 0.063
gr 00 5929 0.055 ¢ Y 2118 0091
g 1 3954 02 o 5566 0.08
g g 0.01 gy 10 64 0.055
o % L0059 0.05 o M 6464 0.056
P, 0.004 0009 Py -0.019  0.007
P, 0012 0.007

Table G.3: Result of the fit for model M6, MagDown polarity, TIS category and A, decays.



G.1.

RESULTS FOR MODEL 6

Parameter Central Statisti@l Parameter Central Statisti@l
value uncertainty value uncertainty

YT 0832 0018 Hy 054 0.022
g0 0663 0.022 Hy 1% o501 0.019
YOO 0587 0012 my O osTa 001
a5 0.016 my U 0mr .03
HlK*(1430) 0.009 0.006 HQK*(M?’O) 0.012 0.007
G0 a7 0.025 H ™ 0706 0.018
SO 0556 0035 YW 053 0.014
Hé\*(M%) 0.5292 0.017 H{‘*(lﬁo) 0.259 0.024
Hy 10 03 0.024 M are 0015
Y09 0101 0013 U 0300 0,012
Hé\*(w?o) 0.382 0.011 H{\*(QOOO) 0.616 0.017
Hé\* (2000) 0.597 0.014 qﬁfH (1232) 672 0.068
G2 g 0.117 g0 yo14 0065
gy 0 os21 0078 or UV 3021 0.059
¢2A++(1620) 20.614 0.091 ¢1A++(1700) -1.241 0.052

2A++(1700) 1.927 0.09 ¢{<*(1430) 6.5 0.218
B ¥ 0.62 o 052 0131
pETE0 o 0.064 or 0 203 0.089
o 1 3000 0129 9y " .08 0.12
B I R gy 120 1041 0.078
o 1 384 0.068 ¢ M 5813 0431
or 1 5676 0.138 ¢ TV asss 0.09
gt 0 0996 0121 o @ 5495 012
P, 0.02 0.008 P, 0032 0.007
P, 0.004  0.007

Table G.4: Result of the fit for model M6, MagUp polarity, TIS category and A} decays.
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APPENDIX G. FIT RESULTS

FF parameter Central value Statistical uncertainty

ATT(1232) 0.14793 0.00091
ATF(1600) 0.10154 0.00018
ATF(1620) 0.14129 0.00111
AT+(1700) 0.05903 0.00029
K*(1430) 0.00012 0.00011
K*(890) 0.19792 0.00015
A*(1405) 0.16574 0.00035
A*(1520) 0.02273 0.00004
A*(1600) 0.01165 0.00012
A*(1670) 0.07294 0.00055
A*(2000) 0.22550 0.00017
S F, 1.14640 0.00399

Table G.5: Result of the fit for model M6, MagUp polarity, TIS category and A} decays.

Parameter «@ « statistical uncertainty
ATT(1232) 0.4072 0.0385
ATT(1600) 0.2731 0.0466
ATT(1620) 0.4225 0.0331
ATT(1700) 0.5013 0.0764
K*(1430) -0.2800 0.8164
K*(890) 0.5412 0.1167
A*(1405) 0.0576 0.0411
A*(1520) -0.1459 0.1198
A*(1600) 0.4872 0.1186
A*(1670) -0.2090 0.0462
A*(2000) 0.0313 0.0362

Qoffective 0.7343 0.0018

Table G.6: Result of the fit for model M6, a parameters for MagUp polarity, TIS category and A}
decays.
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G.1.

RESULTS FOR MODEL 6

Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

Y PP o838 0.021 m " 0gss 00u
a0 o726 0.024 Hy 0 0azg 0018
YOO 0547 0012 my M 0ste 0012
YT 0567 0.013 my 0 0053 002
O 0002 0.007 Hy M0 0054 0.007
HE®O o446 002 Hy ™0 0568 0.019
O 0565 0.036 M 0560 0012
Hé\*(1405) 0.424 0.018 H{\*(1520) 0.381 0.016
A2 g0y 0.024 Y0164 0.014
HATAS00) gy 0.014 HY U0 0347 0.009
Hé\*(lﬁ?()) 0.348 0.013 H{‘*@OOO) 0.555 0.014
HAOO0 e 0.014 or PP o082 0.064
G2 hor (084 gt IO 314 0,056
GATHES0) sk (06 g g3 0054
g5 10 o815 0075 or U207 0.049

ATEAT0) 930 (113 pRA430) - 65 0.791
o M0 6073 0132 g 0155 0.066
o5 &0 65 0.036 of 0 278 0.08
o M 4601 0.044 o MV s 0.085
G gisg 077 gy 10 122 0189
G000 s 0,069 ¢y U900 6239 0.107
R 0.026 o 6237 0.048
SN0 e 0.05 @) 0 6139 0.052
P, 0.015 0.008 P, 0.01 0.007
P, 0.017 0.008

Table G.7: Result of the fit for model M6, MagUp polarity, TIS category and A, decays.
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APPENDIX G. FIT RESULTS

FF parameter Central value Statistical uncertainty

ATT(1232) 0.17351 0.00253
ATF(1600) 0.10851 0.00028
ATF(1620) 0.13212 0.00125
ATF(1700) 0.05787 0.00099
K*(1430) 0.00172 0.00012
K*(890) 0.19182 0.00012
A*(1405) 0.14467 0.00042
A*(1520) 0.02379 0.00012
A*(1600) 0.01198 0.00014
A*(1670) 0.07451 0.00071
A*(2000) 0.20430 0.00011
S F, 1.12478 0.00680

Table G.8: Result of the fit for model M6, MagUp polarity, TIS category and A_ decays.

Parameter «@ « statistical uncertainty
ATT(1232)  0.2444 0.0418
ATT(1600)  0.4645 0.0413
ATT(1620) 0.3513 0.0338
ATT(1700)  0.6679 0.0519
K*(1430) -0.9973 0.0192
K*(890) 0.4370 0.1052
A*(1405) 0.2729 0.0440
A*(1520) 0.8084 0.0686
A*(1600) 0.3484 0.1314
A*(1670) -0.0029 0.0455
A*(2000) -0.0560 0.0346
Qlef fective 0.7202 0.0018

Table G.9: Result of the fit for model M6, o parameters for MagUp polarity, TIS category and A,
decays.
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G.1.

RESULTS FOR MODEL 6

Central Statistical Central Statistical
Parameter . Parameter :
value uncertainty value uncertainty
T
AP ene 0.002 HY OB 065 0.001
a0 o688 0.002 my MM 0ass 0002
g0 6o 0.001 my M 0as2 0001
YOO 0565 0.002 my 0 008 0002
HlK*(1430) 0.053 0.001 H2K*(1430) 0.039 0.001
HE®0 4o 0.002 HY ™ 0645 0.002
HE®0 g 6ag 0.002 H M 0705 0.001
HA*(1405) 0.654 0.002 H{x*(wzo) 0.369 0.002
2
0 0346 0.003 w0164 0001
Hé\*(moo) 0.0 0.98 H{\*(1670) 0.314 0.001
A (1670) 0.386 0.001 g™ (2000) 0.659 0.001
9 1
. ++
HAE00 oo 0.001 or P L0099 0.003
++
gy 3005 0.004 o "™ 3806 0.003
¢2A++ (1600) _0.498 0.004 ¢1A++ (1620) -3.432 0.002
pATHS0) g ae (003 gt U0 9891 0.003
> 0966 0.006 o 65 0.0
gy 080 9502 0.025 o ™7 0051 0.007
PR o 0.001 GRTE0) 3995 0.005
o M 4683 0.003 oy MV aate 0.002
or P s 0.009 o PV 1ses 001
¢1\*(1600) -4.382 0.008 ¢§*(1600) -6.476 7.17
or W0 6412 0.005 o 64Tl 0.004
g 47 0.002 o @™ 6031 0.002
P, 0.009  0.001 P, 0.009  0.001
P, 0017 0.001

Table G.10: Result of the fit for model M6, MagDown polarity, TOS category and A} decays.
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APPENDIX G. FIT RESULTS

FF parameter Central value Statistical uncertainty

ATT(1232) 0.13665 0.00050
ATF(1600) 0.03888 0.00002
ATF(1620) 0.14433 0.00004
ATF(1700) 0.04999 0.00003
K*(1430) 0.00214 0.00001
K*(890) 0.17695 0.00007
A*(1405) 0.22446 0.00007
A*(1520) 0.03141 0.00008
A*(1600) 0.00671 0.00002
A*(1670) 0.06341 0.00010
A*(2000) 0.23578 0.00010
S F, 1.16070 0.00103

Table G.11: Result of the fit for model M6, MagDown polarity, TOS category and A} decays.

Parameter « « statistical uncertainty
ATT(1232)  0.2107 0.0028
ATT(1600) 0.3306 0.0045
ATT(1620)  0.3304 0.0025
ATT(1700)  0.5898 0.0051
K*(1430) 0.2975 0.0290
K*(890) 0.3834 0.1048
A*(1405) 0.0749 0.0034
A*(1520) 0.0643 0.0102
A*(1600) 1.0000 0.0000
A*(1670) -0.2036 0.0039
A*(2000) -0.0430 0.0021
Qe f fective 0.7196 0.0002

Table G.12: Result of the fit for model M6, o parameters for MagDown polarity, TOS category and
A} decays.
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G.1.

RESULTS FOR MODEL 6

Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

H1A++(1232) 0.769 0.023 H2A++(1232) 0.682 0.044
H1A++(1600) 0.635 0.024 H2A++(1600) 0.549 0.051
HYTO%Y 0589 0.016 Hy U0 0478 0.043
H1A++(1700) 0.573 0.02 H2A++(1700) 0.259 0.033
HIK*(MSO) 0.044 0.008 HQK*(M?’O) 0.0 0.002
7Y 0525 0.042 Hy" ™ 0618 0.024
HE®0 g 0.061 a7 M 0,602 0.027
Hé\*(1405) 0.681 0.033 H{\*(1520) 0.42 0.042
MO8 g 0.037 HY 09 0193 0.016
Y U 0024 0017 HY 0335 0.015
YOO 0309 0.02 UMY 0sss 0021
A0 e 0.029 g3 0 105 0.188
¢2A++(1232) 9807 0.208 ¢1A++(1600) -3.696 0.168
¢2A++(1600) _0.083 0.182 ¢1A++(1620) -3.325 0.168
¢2A++(1620) 0215 0.191 ¢1A++(1700) -0.784 0.137

ATHATOO) g 4es 0,315 gr U0 6297 0218
¢§(*(1430) 6.5 9.239 ¢§*(890) 0.725 0.199
gETE0 se0 0157 PRI 3 454 0.099
g M 3073 0126 o M 30a2 01
g 5004 0112 g 146 0.14
or 10 373 0.123 gy " 65 1.745
g 5917 0431 o 5023 0,103
qbzlx*(zooo) 0.795 0.125 ¢;\*(2000) -5.517 0.116
P, 0.03 0.011 P, -0.002 0.011
P, -0.036 0.011

Table G.13: Result of the fit for model M6, MagDown polarity, TOS category and A, decays.
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APPENDIX G. FIT RESULTS

FF parameter Central value Statistical uncertainty

ATT(1232) 0.13544 0.00023
ATF(1600) 0.08843 0.00015
ATF(1620) 0.14308 0.00128
ATF(1700) 0.04950 0.00097
K*(1430) 0.00098 0.00005
K*(890) 0.19089 0.00224

(1405) 0.20169 0.00029
A*(1520) 0.03405 0.00008
A*(1600) 0.00951 0.00005
A*(1670) 0.06983 0.00056
A*(2000) 0.20368 0.00043
S F, 1.12710 0.00632

Table G.14: Result of the fit for model M6, MagDown polarity, TOS category and A, decays.

Parameter o « statistical uncertainty
ATT(1232)  0.1195 0.0701
ATT(1600) 0.1445 0.0982
ATT(1620)  0.2058 0.0900
ATT(1700)  0.6607 0.0744
K*(1430) 1.0000 0.0000
K*(890) 0.2567 0.1554
A* (1405) -0.1227 0.0650
A*(1520) 0.2800 0.1422
A*(1600) 0.9695 0.0428
A*(1670) -0.1731 0.0652
A*(2000) -0.1215 0.0559
Qlef fective 0.6971 0.0010

Table G.15: Result of the fit for model M6, o parameters for MagDown polarity, TOS category and
A, decays.
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G.1.

RESULTS FOR MODEL 6

Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

RO 0815 0021 Hy U 0493 003
HATT00) s 0.027 HATTAS0 g 416 0.029
YU 0599 0.014 Hy U 0sts 0017
YT 0496 0.019 Hy U 0,33 0.028
A0 0y 0.008 HET0 0 993 0.008
HE®0 5 0.038 HY ™ 0,652 0.022
OO o581 0044 M 0558 0,022
HY' M o579 0022 U 0508 0.028
YU 0231 0.054 M oaes 0.021
Hé\*(woo) 0.088 0.018 H{\*(lmo) 0.383 0.019
H2A*(1670) 0.302 0.021 H{\*(QOOO) 0.625 0.018
Hy ™% 057 0.017 or P 0213 0.099
gy P 3514 0193 or U a5t 0.106
parrasn o) 0.129 g0 3979 0.001
g5 10 o816 0.158 or 0 1205 0.002

;U ea 0431 o U 6147 0250
gy 3701 0.389 o 0 o6l 0143
pETE0 o 0.068 o B0 3060 0.134
o M am 0,166 9 " 350 0.134
or P 5406 0.107 o U am 0215
g 1 3898 0.097 o 6019 0.219
d)/l\*(1670) _5.43 0.122 ¢9*(1670) -5.823 0.145
gl 1395 0146 o @ 075 0152
P, 0019 0011 P, 0.03 0.011
P, 0028 0.009

Table G.16: Result of the fit for model M6, MagUp polarity, TOS category and A} decays.
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FF parameter Central value Statistical uncertainty

ATT(1232) 0.13028 0.00014
ATF(1600) 0.07227 0.00013
ATF(1620) 0.13881 0.00104
AT+(1700) 0.04951 0.00029
K*(1430) 0.00094 0.00001
K*(890) 0.18533 0.00049
A*(1405) 0.17600 0.00051
A*(1520) 0.04285 0.00011
A*(1600) 0.00984 0.00019
A*(1670) 0.06835 0.00084
A*(2000) 0.20847 0.00035
S F, 1.08263 0.00409

Table G.17: Result of the fit for model M6, MagUp polarity, TOS category and A} decays.

Parameter « « statistical uncertainty
ATT(1232)  0.4563 0.0519
ATT(1600) 0.3298 0.0745
ATT(1620) 0.4304 0.0413
ATT(1700)  0.3863 0.0792
K*(1430) 0.3721 0.3618
K*(890) 0.4885 0.1294
A*(1405) -0.0369 0.0547
A*(1520) 0.6573 0.1364
A*(1600) 0.5612 0.1647
A*(1670) 0.2332 0.0808
A*(2000) 0.0919 0.0411
Qe f fective 0.7198 0.0034

Table G.18: Result of the fit for model M6, o parameters for MagUp polarity, TOS category and A}
decays.
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G.1.

RESULTS FOR MODEL 6

Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

YT 0763 0021 YU 0550 0.026
HETO o068 0025 Hy U g4 0.031
YO 0535 0014 Hy U0 g 0.019
HE 55 0.019 my M 01 0.028
) 0.008 MY 0044 0.008
HQK*(890) 0.407 0.023 H;{*(ggo) 0.604 0.019
HES D o418 0,032 M oss 001
Hy M o574 0.023 B 0412 0028
Hy U o1 0044 O 0001 0021
Hy U o 0.022 w0367 0016
Hy U o354 0.017 Y 0608 0.015
A0 0.017 or P 612 0134

2A++(1232) 3629 0.19 ¢1A++(1600) -4.229 0.143
oy U os02 0207 or O 3oss 0aa7
P80 e a0 gr 0T 1961 0.118
¢2A++(1700) _1.532 0.256 gbf(* (1430) -6.5 0.166
(1430 4551 0.236 PR (890) -0.052 0.221
of O an 01m o " 3185 06
¢/1\* 1405) 4098 0.119 ¢;\* 1405) -4.122 0.11
¢§x* (1520) 5461 0.113 gb;\* (1520) -1.393 0.165
¢1 *(1600) _3.885 0.085 qu *(1600) -6.199 0.162
HNAT) 0.112 ¢y U 6158 0.108
¢/1\* (2000) 0.794 0.106 ¢>;\* (2000) -5.688 0.112
P, 0.042 0.01 P, -0.027 0.0
P, 0.052 001

Table G.19: Result of the fit for model M6, MagUp polarity, TOS category and A, decays.
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FF parameter Central value Statistical uncertainty

ATT(1232) 0.13738 0.00018
ATF(1600) 0.09635 0.00025
ATF(1620) 0.13298 0.00085
ATF(1700) 0.05795 0.00054
K*(1430) 0.00174 0.00056
K*(890) 0.18300 0.00013
A*(1405) 0.18693 0.00035
A*(1520) 0.03166 0.00008
A*(1600) 0.01589 0.00035
A*(1670) 0.08030 0.00079
A*(2000) 0.21578 0.00044
S F, 1.13996 0.00451

Table G.20: Result of the fit for model M6, MagUp polarity, TOS category and A, decays.

Parameter o « statistical uncertainty
ATT(1232)  0.3014 0.0491
ATT(1600) 0.3106 0.0690
ATT(1620) 0.2829 0.0499
ATT(1700)  0.5626 0.0699
K*(1430) -0.3081 0.2798
K*(890) 0.5519 0.0994
A*(1405) -0.0301 0.0514
A*(1520) 0.5844 0.1444
A*(1600) 0.5326 0.1605
A*(1670) 0.0360 0.0648
A*(2000) 0.0715 0.0387
Qlef fective 0.7277 0.0035

Table G.21: Result of the fit for model M6, o parameters for MagUp polarity, TOS category and A,
decays.
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G.2 Results for model 10

Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

HATOE) (e 0.043 HY OB 91q 0.109
gATTA00 o504 004 my O 6T 0.105
H1A++(1620) 0.335 0.031 HQAH“GQO) 0.978 0.093
FATTOT0) o 0.033 HY AT 815 0.099
HlK*(1410) 0.959 0.053 H2K*(1410) 0.449 0.061
HETA10 507 0.055 HY MM 0102 0.047
HETO80 o6 0.012 MY 0,08 0.014
o0 o827 0.075 Hy ™ 1063 0.093
oY 1504 0163 M 0662 0.042
Hé\*(MOE)) 1.002 0.104 H{\ (1520) 0.629 0.056
1y 0 0613 0.068 ;Y 0.303 0.03
1 0515 005 w0208 0.04
Hé\*(lﬁ?()) 0.437 0.029 H{\ (2000) 0.844 0.075
Hé\*@ooo) 0.849 0.07 ¢1A++(1232) 0.497 0.111

2A++(1232) 4027 0.074 ¢1A++(1600) 2.958 0.12
¢2A++(1600) 6.5 0.007 ¢1A++(1620) -3.053 0.153
¢2A++(1620) 0.755 0.031 ¢1A++(1700) 5.216 0.055
¢2A++(1700) 0.162 0.038 ¢{(*(1410) 0.123 0.22
gn 0638 0132 oy MV 1me 082
qbf*(uuo) 1.13 0.676 ¢{(*(1430) 3.068 0.166

KTO80 966 0.151 0“7 1336 0.4
S (390 1219 0.095 P (E90) 2,229 0.059
gbf*(Mos) _0.538 0.1 ¢;\*(1405) -1.367 0.074
g 044 0105 o 00T 04
o 00 184 0.101 ¢ 1425 0.067
ot 0 o2 0178 o Y 0ss 0077
pAE00) 0.089 gn 0 1006 0.085
P, 0042 0.009 P, 0019 0.01
P, 0.073 0.008

Table G.22: Result of the fit for model M10, polarity, TIS category and A} decays.
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Table G.23: Result of the fit for model M10, MagDown polarity, TIS category and A} decays.

Table G.24: Result of the fit for model M10, o parameters for MagDown polarity, TIS category and
A} decays.
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FF parameter

Central value

ATT(1232)
A*F(1600)
ATF(1620)
A*F(1700)
K*(1410)
K*(1430)
l(*(890)

A*(1405)
A*(1520)
A*(1600)
A*(1670)
A*(2000)
> B,

0.11437
0.08243
0.11701
0.06131
0.01341
0.00221
0.19374
0.15502
0.04183
0.03942
0.02650
0.16477
1.01201

0.00045
0.00389
0.00407
0.00051
0.00004
0.00002
0.00045
0.00034
0.00043
0.00747
0.00376
0.00136
0.02278

Parameter Q « statistical uncertainty
ATT(1232)  -0.4477 0.0854
ATT(1600) -0.5268 0.0861
ATT(1620) -0.7900 0.0499
ATT(1700) -0.1920 0.1262
K*(1410) -0.5007 0.1841
K*(1430) -0.2647 0.2448
K*(890) -0.1608 0.3191
A* (1405) -0.3923 0.1029
A*(1520) 0.0258 0.1421
A*(1600) -0.4857 0.1060
A*(1670) -0.6306 0.1225
A*(2000) -0.0059 0.1212
Qe f fective 0.6981 0.0059

Statistical uncertainty



G.2. RESULTS FOR MODEL 10

Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

o T 0697 0.034 w07y 008
HATTA80) g 905 0.022 Hy Y0319 0.021
HATUR0 600 0015 a0 o423 0023
HATTAT0 g cor 0.017 HY OO 249 0.021
g MY 0916 0018 Hy MY 0se 0.0
Hy MY 00 0.005 X 0.003
H U0 0,04 0.007 Hy M0 0023 0.007
HE GO o624 0025 Hy ™0 0516 0025
SO 0465 0.028 Hy 0,55 0.016
Hé\*(1405) 0.402 0.018 H{\*(wzo) 0.507 0.013
HAOR0) g0 0.018 HY 00,039 0.016
Y 0% 0135 0015 N g5 0.018
Hé\*(lﬁ?()) 0.998 0.011 H{‘*@OOO) 0.583 0.014
Hé\*@ooo) 0.612 0.015 ¢1A++(1232) -0.575 0.092
gy PP 3353 0.083 or U 2631 0.069
¢2A++(1600) 5 863 0.199 ¢1A++(1620) -3.418 0.079
g5 U0 o138 0117 or ™ 5419 0075

ATHATOO) g4 (183 o UM 9839 0.117
gy (MO 1031 0.099 X 10.425
oy MO 1y 9.125 o B 2m36 0472

FOB0 0635 0289 o 0215 0.008
o 0 0098 0.108 o 309 0.12
gt M 0451 0.082 ¢ 0 0603 0.084
o 0 o042 0.069 o g7 0.173
gt 109398 0355 o 0734 0.095
ot 10 055 0.094 ¢ 078 0.9
GME00 gges 0,089 gy 0 L0806  0.077
P, 0.049  0.009 Py -0.023 - 0.008
P, 0.002  0.008

Table G.25: Result of the fit for model M10, polarity, TIS category and A, decays.

255



APPENDIX G. FIT RESULTS

FF parameter Central value Statistical uncertainty

ATT(1232) 0.15310 0.00054
A*F(1600) 0.13492 0.00034
ATF(1620) 0.15945 0.00013
ATF(1700) 0.05901 0.00050
K*(1410) 0.01401 0.00164
K*(1430) 0.00121 0.00001
K*(890) 0.18964 0.00084
A*(1405) 0.13229 0.00084
A*(1520) 0.04237 0.00057
A*(1600) 0.00578 0.00020
A*(1670) 0.05097 0.00131
A*(2000) 0.21780 0.00102
S F, 1.16055 0.00794

Table G.26: Result of the fit for model M10, MagDown polarity, TIS category and A, decays.

Parameter Q « statistical uncertainty
ATT(1232) -0.0503 0.0681
ATT(1600) 0.7790 0.0276
ATT(1620) 0.3491 0.0524
ATT(1700)  0.6932 0.0463
K*(1410) -0.3576 0.1005
K*(1430) 0.5031 0.2622
K*(890) 0.3529 0.1086
A*(1405) 0.3036 0.0485
A*(1520) 0.7446 0.0429
A*(1600) -0.8459 0.1209
A*(1670) -0.0446 0.0586
A*(2000) -0.0485 0.0342
Qe f fective 0.6885 0.0026

Table G.27: Result of the fit for model M10, o parameters for MagDown polarity, TIS category and
A, decays.
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Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

g 0768 0026 Hy " 0ese 001
YOO 0504 0.024 my 0 ome 0.0
a0 0,466 0.016 100536 0.031
RO 0660 0.023 Hy 0357 0.036
g0 0403 0043 Hy UMY g7 0.084
HEONO 6 0.026 HITUMO g 395 0.041
O 0029 0.007 Hy 0 0046 0.008
HE®0 609 0.042 HY ™ 0,666 0.029
H ™0 0,67 0.057 0519 0.026
HY' M 0616 0028 HY O o404 0.02
Y 0114 0.024 w055 0.016
HAAS00) o, 0.019 H U 0.306 0.02
7 o416 0017 Y063 0.02
oY o723 0.082 or 0056 0.059
oy 3654 0077 o " 5046 0.062
oy 1 65 0.033 or UV 3023 0.046
gy U0 0595 0.034 or T 5463 0.042

> 0205 0077 o M0 01
¢§*(1410) -0.526 0.113 ¢§(*(1410) 5.478 0.184
GETOA0 oass (106 PO 986 0.243
¢§(*(1430) 1.465 0.168 ¢§*(890) 0.912 0.082
IS (890) 0.476 0.07 P (890) 2.48 0.071
¢1\*(1405) 1.82 0.109 ¢9*(1405) 1.916 0.126
or 0911 0076 gy 186 0.305
g I 9049 0.069 o 1826 0142
o) 00 Lo0m9 0133 ¢ 02 0.091
o % 0539 0126 o @ 0408 0109
P, 0.041 0.008 P, -0.026 0009
P, 0.022  0.008

Table G.28: Result of the fit for model M10, polarity, TIS category and A} decays.
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Table G.29: Result of the fit for model M10, MagUp polarity, TIS category and A} decays.

Table G.30: Result of the fit for model M10, o parameters for MagUp polarity, TIS category and A}
decays.
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FF parameter

Central value

ATT(1232)
A*F(1600)
ATF(1620)
A*F(1700)
K*(1410)
K*(1430)
l(*(890)

A*(1405)
A*(1520)
A*(1600)
A*(1670)
A*(2000)
> B,

0.13497
0.09558
0.12444
0.07138
0.03120
0.00148
0.19499
0.17310
0.02160
0.02010
0.06807
0.23852
1.17543

0.00044
0.00023
0.00022
0.00065
0.00029
0.00001
0.00085
0.00031
0.00038
0.00017
0.00359
0.00082
0.00798

Parameter Q « statistical uncertainty
ATT(1232)  0.1124 0.0703
ATT(1600) -0.3374 0.0579
ATT(1620) -0.1390 0.0660
ATT(1700)  0.5567 0.0735
K*(1410) 0.6457 0.1229
K*(1430) -0.4312 0.2422
K*(890) 0.2756 0.1605
A*(1405) -0.0619 0.0637
A*(1520) 0.8525 0.0591
A*(1600) 0.6175 0.1024
A*(1670) -0.2978 0.0702
A*(2000) -0.1368 0.0534
Qe f fective 0.6999 0.0033

Statistical uncertainty



G.2. RESULTS FOR MODEL 10

Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

R T 0899 0021 my M 06 003
HATTA80) g 768 0.024 Hy 0 0,402 0.022
g e g5 0011 0 372 0.018
YT 0588 0.015 my 0 0212 002
HICMO 0076 0.028 Hy MY 0136 0.027
HET10 09 0.022 MO 0.6 0.035
O 0001 0.008 Hy M0 0074 0.007
HEG0 (53 0.019 HY ™ 0451 0.022
B 59 0.036 HY M) 6 0.011
Hé\*(1405) 0.37 0.017 H{\*(wzo) 0.405 0.024
B o1 045 m M oarr 0.0
HATAS00) 40 0.012 H U 0357 0.01
Héx*(mm) 0.307 0.01 H{\*(QOOO) 0.574 0.012
Hé\*@ooo) 0.568 0.012 ¢1A++(1232) -1.101 0.047
g 0P 91476 0.056 or U 1oa1 0.058
gy M 5079 007 or UV 4176 0.051
g U0 o787 0047 or 0 4945 0.088

ATHATOO) 9938 (102 or MO 0326 0315
gy MO o578 0473 A ¥ 0.353
¢f*(1410) 29912 0.182 ¢f(*(1430) -2.041 0.337

S0 0046 0.09 o 0252 0062
gICEO gq7s 0068 AT X 0.065
g M) 097 0.084 g 1108 0a01
gt 1 o194 0.101 o PV 0003 0467
G800 g 0.091 gy U0 o772 0125
g0 o771 0.081 gp U 0373 0.069
o P L0368 0.082 o M0 0333 0057
P, 0.024  0.008 P, 0.005 0.007
P, 0.018  0.008

Table G.31: Result of the fit for model M10, polarity, TIS category and A, decays.
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FF parameter Central value Statistical uncertainty

ATT(1232) 0.17177 0.00028
ATF(1600) 0.11789 0.00069
ATF(1620) 0.12771 0.00014
ATH(1700) 0.06109 0.00053
K*(1410) 0.01262 0.00288
K*(1430) 0.00366 0.00003
K*(890) 0.19056 0.00014
A*(1405) 0.15190 0.00033
A*(1520) 0.02536 0.00062
A*(1600) 0.01358 0.00037
A*(1670) 0.07118 0.00365
A*(2000) 0.21298 0.00100
S F, 1.16031 0.01068

Table G.32: Result of the fit for model M10, MagUp polarity, TIS category and A, decays.

Parameter Q « statistical uncertainty
ATT(1232)  0.2629 0.0544
ATT(1600)  0.5699 0.0426
ATT(1620) 0.3264 0.0472
ATT(1700)  0.7699 0.0510
K*(1410) 0.2523 0.2382
K*(1430) -0.8509 0.1083
K*(890) 0.3724 0.1001
A*(1405) 0.4490 0.0395
A*(1520) 0.9985 0.0402
A*(1600) 0.4501 0.1081
A*(1670) 0.1498 0.0420
A*(2000) 0.0105 0.0297
Qe f fective 0.7139 0.0075

Table G.33: Result of the fit for model M10, o parameters for MagUp polarity, TIS category and A,
decays.
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Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

g o782 0.033 my U076 004
a0 g 0.042 my M 0617 0046
a0 0571 0.022 Hy U 0513 0.086
RO 0597 0.035 Hy 0 g.421 0.042
HETOHO g 378 0.04 Hy MO 0,166 0.031
HEUMO 0145 0.034 MY 0as6 .00
A0 oo 0.01 HFTU89 g 095 0.009
G0 595 0.044 ™0 0,602 0.037
H ™0 075 0.063 Y s 0.4
HAT409) ) seg 0.048 HY U0 046 0.031
N0 5 0.036 HY U 0912 0.023
HATA00 g5 0.027 H U 0,329 0.021
Hé\*(w?o) 0.38 0.024 H{X (2000) 0.737 0.034
P 0706 0.046 or 0208 0.09
gy U 3753 0102 or %% 3165 0.084
¢2A++(1600) 6.5 0.025 ¢1A++(1620) -2.742 0.064
g U0 0695 0.043 or ™ 5806 0.08

2A++(1700) -0.197 0.084 ¢f*(1410) -0.336 0.237
gy MO o841 018 o M aes2 0224
gr 009819 0462 or U056 0141
g0 1929 0367 o 0103 0149
o B0 pom 037 of ®ame on
g M) as 0097 o s 024
(z)fl\*(1520) 0.206 0.103 ¢9*(1520) 4.047 0.215
g 1349 0117 ¢ 2183 027
GOS0 sy 0.116 ¢y VIO 052 0.092
gr % 0223 0.106 o @ 0212 0107
P, 0038 0.01 Py 0.036 001
P, -0.02 0.009

Table G.34: Result of the fit for model M10, polarity, TOS category and A} decays.
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FF parameter Central value Statistical uncertainty

ATT(1232) 0.13573 0.00025
ATF(1600) 0.09961 0.00060
ATF(1620) 0.13121 0.00759
ATF(1700) 0.05975 0.00045
K*(1410) 0.01600 0.00061
K*(1430) 0.00291 0.00005
K*(890) 0.17719 0.00084
A*(1405) 0.23142 0.00095
A*(1520) 0.03401 0.00055
A*(1600) 0.01863 0.00239
A*(1670) 0.05809 0.00335
A*(2000) 0.24377 0.00157
S F, 1.20831 0.01921

Table G.35: Result of the fit for model M10, MagDown polarity, TOS category and A} decays.

Parameter Q « statistical uncertainty
ATT(1232)  0.0338 0.0686
ATT(1600)  0.1409 0.0932
ATT(1620) 0.1067 0.0791
ATT(1700)  0.3357 0.1027
K*(1410) 0.6766 0.1164
K*(1430) 0.8093 0.1321
K*(890) 0.1957 0.1663
A*(1405) 0.3450 0.0831
A*(1520) 0.3726 0.1153
A*(1600) 0.0834 0.1747
A*(1670) -0.1431 0.0880
A*(2000) 0.0429 0.0797
Qe f fective 0.7195 0.0045

Table G.36: Result of the fit for model M10, o parameters for MagDown polarity, TOS category and
A} decays.
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Parameter Central Statisti@l Parameter Central Statistk':al
value uncertainty value uncertainty

YU o787 0.025 Hy M 0.609 0.04
YO0 81 0.032 Hy U0 0,207 0.043
HATTOR0) ) 0.024 Hy U0 g 028 0.044
YU o4 0.022 w0 0se 0036
M0 g9s3 0057 Hy MO 0108 0.047
HET00) 500 0.061 MY 0,291 0.041
a0 0036 0.009 Hy M0 0041 0.008
HE®D g5u0 0025 Hy ™0 05T 0.029
Y o5 0.044 M 0665 0.083
M 0420 0.062 PO 0407 0.028
HNO520) e 0.039 HY U 0,106 0.021
HYO00) 906 0.021 a0 0.38 0.022
Héx*(mm) 018 0.02 H{\*(QOOO) 0.517 0.016
HY PP o543 0.023 o U0 oase 001
g 3062 0.095 or U 2851 0.089
¢2A++(1600) 6.5 0.484 ¢1A++(1620) -2.919 0.103
o3 10 0,795 1.0 or ™ 517 0.096

g 0T 913 0125 or "M ass 0126
oy MO 116 0.472 gy M 4608 0230
gbf*(MlO) 0.7392 0.168 ¢{(*(1430) 5.824 0.262

p 1033 0.213 o 0165 0093
oy &0 0225 0.104 of Y 3.204 0.151
gr M 1191 051 gp M 2503 0222
NI use 0097 gp U2 1199 0.8
or U sgug 0.246 o 0825 015
gt 10 3093 0129 o 0826 0162
g 1301 0227 o @ 1218 02m
P, 0068 001 P, 0021 001
P, 0.004 001

Table G.37: Result of the fit for model M10, polarity, TOS category and A, decays.
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FF parameter Central value Statistical uncertainty

ATT(1232) 0.14490 0.00022
AT+(1600) 0.10658 0.00015
ATF(1620) 0.16009 0.00027
ATH(1700) 0.04633 0.00051
K*(1410) 0.02567 0.00016
K*(1430) 0.00171 0.00001
K*(890) 0.19385 0.00039
A*(1405) 0.17335 0.00038
A*(1520) 0.03969 0.00141
A*(1600) 0.01542 0.00027
A*(1670) 0.02623 0.00116
A*(2000) 0.16796 0.00181
S F, 1.10179 0.00675

Table G.38: Result of the fit for model M10, MagDown polarity, TOS category and A, decays.

Parameter « « statistical uncertainty
ATT(1232)  0.2509 0.0684
ATT(1600) 0.7630 0.0627
ATT(1620) 0.9972 0.0087
ATT(1700)  0.3918 0.1047
K*(1410) 0.7458 0.2128
K*(1430) -0.1293 0.3118
K*(890) 0.3637 0.1254
A*(1405) 0.4219 0.1269
A*(1520) 0.7496 0.0931
A*(1600) -0.5813 0.1475
A*(1670) 0.2723 0.1338
A*(2000) -0.0490 0.0523
Qe f fective 0.7376 0.0049

Table G.39: Result of the fit for model M10, o parameters for MagDown polarity, TOS category and
A, decays.
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Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

7T 062 0.0 my U125 ot
YU 0736 0.05 Hy 0.0 0.142
A0S0 0588 0.038 Hy U0 o73r 0131
YOO 0989 0.068 Hy M0 059 0.126
HlK*(1410) 0.423 0.048 HQK*(MIO) 0.576 0.102
H;{*(1410) 0.324 0.047 Hf*““o) 0.0 0.044
HET0) o6 0.014 HE80 g 074 0.013
H®O o652 0.086 a0 026 0.079
B0 0.196 M 0,424 0.064
o M 0809 0134 0,321 0.062
HY ) o7 0.075 YO 0153 0.03
HATO600 (503 0.034 HY U (.39 0.033
Hé\*(w?o) 0.161 0.06 H{X (2000) 0.707 0.058
HY 0 0615 0.001 o U0 06T 0193
g 0P 1875 0186 or U 2401 0207
gy U0 462 0187 or UV a3 0153
g5 180 y999 0173 or "™ 5320 0279

> T 9056 0.126 R . 0.155
oy MO 0.4 0.134 oy M 3801 0252
g OO 1082 10.145 o ‘U 68y 0228
gn B0 qg7r 0.238 o 1708 0262
g "B g 0213 op 7 3.965 0.06
g M) oa18 037 o 1502 0423
d)/l\*(wzo) _0.46 0.215 ¢9*(1520) 2.479 0.113
gl 9839 0.207 o 0149 0422
GMNUGTO i sss 0,189 gy U0 999 0.317
or 0017 057 o 1113 0as2
P, 0019 0011 P, -0.04 0.011
P, 0.023 0011

Table G.40: Result of the fit for model M10, polarity, TOS category and A} decays.
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Table G.41: Result of the fit for model M10, MagUp polarity, TOS category and A} decays.

Table G.42: Result of the fit for model M10, o parameters for MagUp polarity, TOS category and A}

decays.
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FF parameter

Central value

ATT(1232)
A*F(1600)
ATF(1620)
A*F(1700)
K*(1410)
K*(1430)
K*(890)

0.15770
0.10831
0.13755
0.06809
0.03175
0.00289
0.17198
0.12655
0.05082
0.01144
0.02874
0.15512
1.05095

0.00096
0.00025
0.00636
0.00058
0.00026
0.00003
0.00109
0.00104
0.00019
0.00023
0.00415
0.00240
0.01754

Parameter Q « statistical uncertainty
ATT(1232) -0.0633 0.1779
ATT(1600) -0.2195 0.1605
ATT(1620) -0.2221 0.1798
ATT(1700) -0.8092 0.0948
K*(1410) -0.2993 0.1915
K*(1430) -0.1908 0.2785
K*(890) -0.0409 0.2931
A*(1405) -0.5690 0.1515
A*(1520) -0.6890 0.1143
A*(1600) -0.3599 0.2162
A*(1670) 0.7113 0.1887
A*(2000) 0.0463 0.1575
Qe f fective 0.7130 0.0088

Statistical uncertainty



G.2. RESULTS FOR MODEL 10

Parameter Central Statisti@l Parameter Central Statistk':al
value uncertainty value uncertainty

YR o8y 0.043 my M s 00m
HATTA80) g g5g 0.044 Hy 100,951 0.081
Y0 o558 0.021 my M0 0gss 0036
YT 0988 0.027 my 0 0850 00as
OO o353 0.051 Hy MY 0z 0.065
MO 0373 0.048 a MY 0159 0081
HIK*(1430) 0.051 0.011 HQK*(M?’O) 0.073 0.011
HETE0) sy 0.041 HY ™ 0604 0.041
H ™ 0.96 0.073 YO 0432 0.03
Hé\*(1405) 0.681 0.044 H{\*(wzo) 0.528 0.033
MOS0 g 0.03 U9 0154 0.023
Y 09 o142 0022 U 0008 0.019
HNOS0 54 0.029 =Y 9 592 0.023
Y 0634 0.033 or (U0 as3 013
gy U 1683 0.099 or U 2001 002
OIS0 0.099 g A0 32 0106
g U0 L0937 0101 o ™ 4673 0208

2A++(1700) 1739 0.038 ¢{<*(1410) -1.237 0.116
I (1410) 1158 0.152 P 1410) 4.444 0.156
gp (M0 amug 029 o U 1490 0225

OB 539 0173 o 56 0158
g B0 954 014 o M 3607 0072
G145 o7 0.109 gy 1409y 473 0.102
o 0 o322 0.007 o PV 2656 0.3
g0 g ) 0.139 gy 190 191 0.152
¢1&*(1670) 5 683 0.124 ¢9*(1670) 3.554 0.109
d)/l\*(zooo) 1.397 0.12 ¢9*(2000) 1.593 0.126
P, 0095 0011 P, 0015 0.01
P, 0.043 001

Table G.43: Result of the fit for model M10, polarity, TOS category and A, decays.
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Table G.44: Result of the fit for model M10, MagUp polarity, TOS category and A, decays.

Table G.45: Result of the fit for model M10, o parameters for MagUp polarity, TOS category and A,

decays.
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FF parameter

Central value

ATT(1232)
ATF(1600)
ATF(1620)
ATF(1700)
K*(1410)
K*(1430)
K*(890)
A*

0.18745
0.16517
0.12903
0.07411
0.02347
0.00284
0.16917
0.11471
0.04026
0.00792
0.03880
0.14203
1.09496

0.00029
0.00038
0.00578
0.00054
0.00015
0.00003
0.00050
0.00099
0.00066
0.00009
0.00510
0.00152
0.01603

Parameter Q « statistical uncertainty
ATT(1232) -0.2524 0.0757
ATT(1600) 0.0073 0.0968
ATT(1620) -0.1332 0.0666
ATT(1700) -0.7979 0.0397
K*(1410) 0.0917 0.2462
K*(1430) -0.3440 0.2320
K*(890) 0.0992 0.1907
A*(1405) -0.4261 0.0776
A*(1520) 0.2340 0.0902
A*(1600) 0.0809 0.2138
A*(1670) -0.1482 0.1030
A*(2000) -0.0684 0.0646
Qe f fective 0.7119 0.0040

Statistical uncertainty



G.3. RESULTS FOR MODEL 21

G.3 Results for model 21

FF parameter Central value Statistical uncertainty

ATT(1232) 0.10458 0.00010
ATF(1600) 0.06091 0.00012
ATT(1620) 0.09569 0.00013
ATF(1700) 0.03993 0.00037
K*(1410) 0.00771 0.00181
K*(1430) 0.00192 0.00002
K*(890) 0.19860 0.00362
A*(1405) 0.17559 0.00087
A*(1520) 0.04361 0.00037

(1600) 0.06097 0.00045
A*(1670) 0.03535 0.00258

(1690) 0.01892 0.00029

(1890) 0.00627 0.00003
A*(2000) 0.23244 0.00026
S F, 1.08250 0.01100

Table G.46: Result of the fit for model M21, MagDown polarity, TIS category and A} decays.

Parameter Q « statistical uncertainty
ATT(1232)  0.1525 0.0661
ATT(1600) 0.1101 0.0812
ATT(1620) 0.2101 0.0664
ATT(1700) -0.1956 0.0784
K*(1410) 0.3764 0.4484
K*(1430) -0.1327 0.2251
K*(890) 0.0077 0.2118
A*(1405) -0.0278 0.0564
A*(1520) -0.1938 0.1153
A*(1600) -0.2728 0.0813
A*(1670) -0.6144 0.0528
A*(1690) 1.0000 0.0000
A*(1890) -0.7598 0.0920
A*(2000) -0.1797 0.0489
Qe f fective 0.7441 0.0047

Table G.47: Result of the fit for model M21, o parameters for MagDown polarity, TIS category and
A} decays.
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Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

g 0P 0821 0035 gy U o704 0037
YO o621 0.03 my MM 0556 0087
a0 o578 0.024 w0 046 002
g A0 o499 0.02 w0 053 003
HlK*(1410) 0.104 0.041 HzK*(l‘ﬂo) 0.07 0.024
H;{*(Mlo) 0.0 0.002 Hf*(MlO) 0.343 0.034
HEO80 049 0.008 HEWB0 0 056 0.009
HEE0) gy 0.037 ™ 0,809 0.035
7O 018 0.058 Y o708 0021
YU 0728 0.035 w0 0452 004
Hy 190055 0.043 MY 0356 0.026
7y 00 o471 0.023 0195 0.014
HAOST0 509 0.018 a9 0,462 0.019
Hé\*(wgo) 0.0 0.006 H{\*(mgo) 0.092 0.019
HAAS0 9 0.017 HY 0 793 0.024
Y0 0867 0.033 or PP sasT 0007
g P osa5 0a11 or U 0505 0.079
go U0 3731 0.084 or " 0003 006
gy (%0 3333 o071 or 0 307 0.093

p 0T 9535 0.064 o M o5 0307
¢§(* U R 0.424 A X 10.573
gr 001812 0085 o ‘P63 019
gn U0 1036 0.161 o 2404 0.004
SITE0) o g 0.082 ¢f*(890) 3.12 0.053
g9 5336 0.061 o M saes 0072
gt 1 ya7s 0095 o P 2am 0074
gr 1 9643 0.062 ¢ " 0465 0.056
op 1T 395 0.121 o " g4 0.081
R 0.012 ¢>Q*(1690) 6.166  10.261
g0y 562 0173 o a5 0084
pAE00) g 0.068 ¢y 2% 3705 0.076
P, -0.007  0.008 P, 0.085 0.008
P, 0014 0.007

Table G.48: Result of the fit for model M21, polarity, TIS category and A} decays.



G.3. RESULTS FOR MODEL 21

Central Statistical Central Statistical
Parameter . Parameter .

value uncertainty value uncertainty

+

U 658 0.059 Hy P 206 0.035
Y0 o765 0.041 my 0 1012 0061
a0 0548 0.024 w0 0902 0042
g A o590 0027 w0 oes2 004
MO 0068 0.03 1y MO 04t 0.067
H;{*(Mlo) 0.365 0.042 Hf*(MlO) 0.329 0.046
K130 s 0.01 MY 0015 0.01
0 0999 0.047 H 0Tt 0051
7O 304 0075 M 0mas 0036
Y M 0647 0.036 w0 0562 0.034
Hé\*(1520) 0.548 0.04 H{\*(moo) 0.317 0.032
U 0311 0.039 Hy T 0.437 0.02
HYUS0 g7 0.021 7Y 0 0.024
HYO0) g 0.038 =Y 0059 0.024
FAAS0) o 0.023 =Y 997 0.044
HAC00 (g 0.038 gtTTOBD g 47 0.108
gy U 1962 0.057 or U 2838 0.068
gy U0 La985  0.06 or U 203 0.094
gp U q483 0.059 or T 5883 0084
¢2A++(1700) 0.831 0.065 ¢{<*(1410) -0.791 0.211
¢§(* MO 52 0.093 gy 6343 0001
gr MO 1353 0.108 or U 3308 0.52
SR80 s 0.699 P (890) -4.907 0.066
g "B 4631 0.098 ¢>f 2626 0.0m
G5 o 0.011 ¢y M) 6457 0.063
o 120 6t 0.068 o PV 2303 007
G000 g g 0.079 gy 1900 g 9gq 0.075
o 10 5025 0.054 o " 4 0.089
G690 og 12.528 ¢§*<1690) -1.882 0.072
pATas0) 0.269 g U0 3147 0163
o P a9t 0.038 o M sl 0.6
P, 0.021 0.009 Py -0.001 - 0.007
P, 0019 0.007

Table G.49: Result of the fit for model M21, polarity, TIS category and A, decays.
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Table G.50: Result of the fit for model M21, MagDown polarity, TIS category and A, decays.

Table G.51: Result of the fit for model M21, o parameters for MagDown polarity, TIS category and

A, decays.
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FF parameter

Central value

ATT(1232)
ATF(1600)
ATF(1620)
ATF(1700)
K*(1410)
K*(1430)
K*(890)
A*(1405)
A*(1520)
A*(1600)
A*(1670)
(1690)
(1890)
(2000)

0.14544
0.10843
0.14882
0.04952
0.02214
0.00118
0.19767
0.12820
0.04080
0.02654
0.03699
0.01181
0.00136
0.21819
1.13707

0.00491
0.00982
0.00596
0.00051
0.00055
0.00002
0.00471
0.00019
0.00043
0.00742
0.00009
0.00007
0.00001
0.00103
0.03572

Parameter « « statistical uncertainty
ATT(1232) -0.5901 0.0647
ATT(1600) -0.2727 0.0747
ATT(1620) -0.4608 0.0503
ATT(1700) -0.2612 0.0792
K*(1410) -0.7793 0.0892
K*(1430) 0.8989 0.1314
K*(890) -0.2724 0.2579
A*(1405) 0.1440 0.0720
A*(1520) 0.0252 0.0947
A*(1600) 0.0191 0.1609
A*(1670) 0.4297 0.0724
A*(1690) -1.0000 0.0000
A*(1890) -0.6495 0.2571
A*(2000) 0.2785 0.0620
0.7242 0.0041

Qe f fective

Statistical uncertainty



G.3. RESULTS FOR MODEL 21

Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

H1A++(1232) 0.965 0115 H2A++(1232) 1.521 0.156
H1A++(1600) 0.776 0.056 HQAH(MOO) 1.514 0.163
H1A++(1620) 0.824 0.091 H2A++(1620) 1.152 0.127
g o514 0041 Hy U0 0.143
HEO0 g eg 0.144 Hy U0 0306 0.067
HY MO 0219 0.056 H MY 0651 0189
SO 0033 0014 Hy U 07 0.015
GO 1995 0145 Hy ™ 0986 0138
SO 911 0.257 Y 9917 0103
A0S 6 0.146 HY 00 0,404 0.05
Hy U007 0.088 MY 0151 0.035
Hé\*(lﬁOO) 0.314 0.083 H{‘*(wm) 0.737 0.083
HAAST0) g ey 0.061 HY U 0129 0.039
7y % 0106 0.038 HY O 0007 0083
7y 0 0159 0.033 1266 0-14
HY P y016 0158 or P 1305 0.089
¢2A++(1232) 2166 0.066 ¢1A++(1600) -2.383 0.101
SRR s 0,056 g0 879 0.064
¢2A++(1620) 101 0.046 ¢1A++(1700) -6.5 0.016

ATFATO0) () 50y 0.052 o MO 0226 0.083
g MO o623 0179 o5 "M 65 0.042
g N0 g7 0134 or M 08 0389
o 0 ga90 0.276 o a8l 0081
g B0 4566 0.107 op 238 0.059
¢1x*(1405) 6.5 0.006 ¢9*(1405) 6.5 0.012
gr 00 6429 0116 o V2318 0.064
or 109 2336 0.282 o 2305 0.4
(bzlx*(mm) 4.909 0.053 ¢;\*(1670) 4.677 0.069
gr 00333 0198 o Y 3118 0381
g0 55a7 0238 o " se1r 021
g 5109 0.031 o M 5220 0035
P, 0.003 0.009 P, -0.02 0.007
P, 0005 0.008

Table G.52: Result of the fit for model M21, polarity, TIS category and A} decays.
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FF parameter Central value Statistical uncertainty

Table G.53: Result of the fit for model M21, MagUp polarity, TIS category and A} decays.

Table G.54: Result of the fit for model M21, o parameters for MagUp polarity, TIS category and A}
decays.
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ATT(1232) 0.12617 0.00265
ATF(1600) 0.11012 0.01044
A*F(1620) 0.15132 0.00438
ATF(1700) 0.05591 0.00062
K*(1410) 0.03415 0.00401
K*(1430) 0.00050 0.00001
K*(890) 0.19209 0.00072
A*(1405) 0.16293 0.00113
A*(1520) 0.02442 0.00022

A*(1600) 0.00924 0.00074

A*(1670) 0.06070 0.00505
A*(1690) 0.00108 0.00007
A*(1890) 0.00141 0.00032
A*(2000) 0.24419 0.00020
S F, 1.17424 0.03056

Parameter o « statistical uncertainty
ATT(1232) -0.4260 0.1287
ATT(1600) -0.5839 0.0854
ATT(1620) -0.3231 0.1398
ATT(1700) -0.6416 0.0897
K*(1410) 0.7894 0.1025
K*(1430) -0.3396 0.4697
K*(890) -0.4598 0.4218
A*(1405) -0.2365 0.1587
A*(1520) -0.5003 0.1323
A*(1600) -0.6244 0.2145
A*(1670) 0.3974 0.1423
A*(1690) 0.1939 0.4513
A*(1890) -0.3766 0.3190
A*(2000) 0.0403 0.1703
Qe f fective 0.7117 0.0032




G.3. RESULTS FOR MODEL 21

Parameter Central Statisti?al Parameter Central Statisti(?al
value uncertainty value uncertainty

YU 5sg 0.066 L 0.059
g I 915 0.054 my O 1158 0.
Y0 0878 0.036 my M0 0807 0039
RO 0485 0.029 Hy 0 0928 0.052
OO0 g 0.05 Hy M9 0,086 0.041
Hy MO 00 0.009 H MO 0374 0.046
a0 0.005 Hy U oz 0.012
HEG0) 65 0.049 H ™ 1126 0.046
a0 907 0077 YO 0as o 0.03
Hé\*(1405) 0.949 0.045 H{\*(BQO) 0.575 0.044
HA0520) () 6ag 0.046 U9 0314 0.041
Hé\*(lﬁoo) 0.462 0.039 H{\*(lmo) 0.311 0.029
HAOS 67 0.032 HY U939 0.041
Hé\*(1690) 0.136 0.031 Hf*(lggo) 0.088 0.035
H'U 0163 0038 HY P 0,912 0.037
Hy %1 0.043 or U ss45 0099
gy 0368 0.144 or " 018t 0.091
gy U0 3658 0.073 o U0 0243 0.001
G20 g 0.085 g0 5931 0123

ATHIT00) 9 gog 0.079 P40 g g7 0.426
<Z>§* MO 0,076 0425 g5 M 6082 10184
¢f* O 9589 0133 o MU 3952 10706
gn U0 637 0431 o V2086 0132
o B0 9969 0.075 o ™ 3405 0.059
SN0 6y 0.051 gy 14 g5 0.023
o P 4805 0.081 o PV 201 0077
G800 g g 0.154 ¢§*<1600) -0.311 0.113
¢1&*(1670) 4,676 0.106 ¢2 *(1670) 4.661 0.045
R 0.059 o (U amae 0184
G0 gen 0.36 gy U0 0354 0127
(bzlx*(QOOO) 4.875 0.065 ¢é\* (2000) 4.739 0.046
P, 0.022  0.008 P, 0.046 0.008
P, 0.008 0009

Table G.55: Result of the fit for model M21, polarity, TIS category and A, decays.
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Table G.56: Result of the fit for model M21, MagUp polarity, TIS category and A, decays.

Table G.57: Result of the fit for model M21, o parameters for MagUp polarity, TIS category and A,

decays.

276

FF parameter

Central value

ATT(1232)
ATF(1600)
ATF(1620)
ATF(1700)
K*(1410)
K*(1430)
K*(890)
A*

0.16662
0.09465
0.13570
0.04749
0.00463
0.00216
0.19038
0.12328
0.03119
0.02710
0.04881
0.00750
0.00152
0.20113
1.08216

0.00060
0.00013
0.00016
0.00024
0.00028
0.00001
0.00281
0.00070
0.00061
0.00014
0.00436
0.00018
0.00001
0.00024
0.01047

Parameter Q « statistical uncertainty
ATT(1232)  0.2931 0.0608
ATT(1600) -0.2313 0.0811
ATT(1620) -0.0214 0.0597
ATT(1700) -0.5709 0.0552
K*(1410) 0.3138 0.5729
K*(1430) -1.0000 0.0000
K*(890) -0.2837 0.3032
A*(1405) -0.2336 0.0587
A*(1520) -0.0958 0.1046
A*(1600) -0.3681 0.1344
A*(1670) -0.6472 0.0608
A*(1690) 0.7832 0.0971
A*(1890) -0.5486 0.3223
A*(2000) -0.2521 0.0511
0.6972 0.0038

Qe f fective

Statistical uncertainty



G.3. RESULTS FOR MODEL 21

Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

HATOB) | o 0.041 Hy 0% 839 0.043
HETTONO o740 0047 Hy 0 0916 0.0
a0 o572 0.03 my M0 0atg 0033
H1A++(1700) 0.603 0.029 H2A++(1700) 0.421 0.072
OO 0068 0.049 Hy MY 0z 0.088
HY MO 0405 0.043 H MO 0357 0.046
OO 0047 0011 Hy M 003 oon
HETGO) g 0.039 HY O o821 0.059
H®O 0939 0.083 M 0795 0.004
HNO105) ) rag 0.059 HY U0 0935 0.099
Y0 6rg 0.038 HY 009 .98 0.05
FATAS00 44 0.046 HY W0 919 0.027
HMA60 56 0.023 HY 09 0301 0.042
HYA00 6 0.05 a0 0147 0.021
HAA0 o 0.025 a0 895 0.037
HAC00 7y 0.04 g% 599 0.179
G2 g 0s (o9 g0 598 0.2
s 190 9595 0151 or U 1008 056
280 06 0.108 g0 3439 0135

ATEIT00) g g 0.207 or MO 1002 0.201
R R T 0.464 o5 0 403 0.137
gr MO 1996 0.096 o U 285 0228
gn U0 4562 0.283 o 3476 0.386
o 0 3934 0203 o ™ s012 0061
G705 g e 0.134 ¢y M0 5 549 0.134
gr 00 q165 0.282 gy " 2,322 0.087
gt 109566 0153 o 0389 0.108
o 10 3053 0.204 g 3.3 0.122
pAT00) o 0.018 ¢y 190 4303 0.244
g0 5036 0.235 gy 1506 0.130
g 3650 0.123 o " se64 0161
P, 0033 001 P, 0026 001
P, 0.013  0.009

Table G.58: Result of the fit for model M21, polarity, TOS category and A} decays.
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FF parameter Central value Statistical uncertainty

ATF(1232) 0.16995 0.00047
ATT(1600) 0.13225 0.00043
ATF(1620) 0.10502 0.00014
ATF(1700) 0.05126 0.00077
K*(1410) 0.02125 0.00019
K*(1430) 0.00136 0.00002
K*(890) 0.18202 0.00126
A*(1405) 0.23454 0.00148
A*(1520) 0.04535 0.00043

A*(1600) 0.03807 0.01285

A*(1670) 0.03443 0.00193
A*(1690) 0.01720 0.00026
A*(1890) 0.00576 0.00004
A*(2000) 0.24327 0.00030
S F, 1.28172 0.02059

Table G.59: Result of the fit for model M21, MagDown polarity, TOS category and A} decays.

Parameter o « statistical uncertainty
ATT(1232)  0.2084 0.0624
ATT(1600) -0.2076 0.0835
ATT(1620) 0.1756 0.0839
ATT(1700)  0.3446 0.1566
K*(1410) 0.1942 0.3860
K*(1430) 0.2348 0.3575
K*(890) 0.2098 0.2038
A*(1405) -0.0038 0.1394
A*(1520) -0.7725 0.1715
A*(1600) -0.2168 0.2115
A*(1670) -0.4913 0.1079
A*(1690) 0.7101 0.1629
A*(1890) -0.2753 0.1774
A*(2000) 0.1083 0.0694
Qe f fective 0.7389 0.0067

Table G.60: Result of the fit for model M21, o parameters for MagDown polarity, TOS category and
A} decays.
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Parameter Central Statisti?al Parameter Central Statisti(?al
value uncertainty value uncertainty

HETOED g on 0.057 Hy U 0654 0.055
HYTO 045 0.035 Hy U o3t 0.6
YU 0509 0.038 w0 0ges 0.0
g O 0315 0.034 Hy 0561 0046
MO 00 0.018 Hy 0.0 0.007
MO 0220 0,057 HMY 0219 0041
HlK*(1430) 0.068 0.012 H2K*(1430) 0.032 0.011
HTED 0531 0.048 Hy ™0 0932 005
HEEO q009 0092 Y 0577 0.039
HY ™M 0804 0.056 HUP 0aga 0.052
o0 o754 0.048 N oss 0083
oy 00 0492 0.034 w0208 0.027
Hy 1 047 0.028 o 0s1s 0.038
HY 099 0148 0038 Hy 0,02 0.025
Héx*(wgo) 0.235 0.025 H{\*(QOOO) 0.707 0.036
Y 0876 0051 o 0 zes0 a2
¢2A++(1232) 0.075 0.216 qﬁlAH(lGOO) -0.751 0.199
g U0 g101 01 or UV 0260 0.142
g5 10 9837 012 or 0 4 0.224

ATEAT00) 9 p4 0.118 P M0 g 199 9.816
d);(* 14100 5 geg 10.518 g 0 65 0.029
¢f* MO 17 0.18 or U 3488 0169
S0 aes (361 gy 0 2704 0.254
o 0 9992 0157 o ™ 3075 0.066
G405 0.138 gy 109589y 0.106
o P 5134 0.309 o P 1e04 0102
gt 1009993 0119 ¢;\*(1600) -0.159  0.103
¢1&*(1670) 3.961 0.231 ¢2 *(1670) 3.76 0.122
R 0.708 o " aea0 0206
or U0 5317 1407 o 302 0
7 VIR (R E gy 409 0.115
P, 0012 0.009 P, 0.002 0.009
P, 0023 0.01

Table G.61: Result of the fit for model M21, polarity, TOS category and A, decays.
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FF parameter Central value Statistical uncertainty

ATT(1232) 0.12289 0.00034
ATF(1600) 0.06855 0.00013
ATF(1620) 0.12132 0.00010
ATF(1700) 0.03179 0.00028
K*(1410) 0.00507 0.00094
K*(1430) 0.00173 0.00008
K*(890) 0.19518 0.00075
A*(1405) 0.16813 0.00094
A*(1520) 0.04866 0.00328
A*(1600) 0.04955 0.00016
A*(1670) 0.04111 0.00420
A*(1690) 0.00953 0.00114
A*(1890) 0.00433 0.00003
A*(2000) 0.20152 0.00014
S F,, 1.06937 0.01250

Table G.62: Result of the fit for model M21, MagDown polarity, TOS category and A, decays.

Parameter « « statistical uncertainty
ATT(1232) 0.4568 0.0788
ATF(1600)  -0.5490 0.0740
ATT(1620)  -0.1056 0.0906
ATT(1700)  -0.5245 0.0981
K*(1410) -999.0000 19.2939
K*(1430) 0.6374 0.2294
K*(890) 0.0119 0.2434
A*(1405) -0.4119 0.0765
A*(1520) -0.7546 0.0840
A*(1600) -0.0993 0.1170
A*(1670) -0.6856 0.0772
A*(1690) 0.6439 0.1621
A*(1890) -0.9856 0.0358
A*(2000) -0.2111 0.0739
Qe f fective 0.7392 0.0062

Table G.63: Result of the fit for model M21, o parameters for MagDown polarity, TOS category and
A, decays.
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G.3. RESULTS FOR MODEL 21

Parameter Central Statistical Parameter Central Statistical
value uncertainty value uncertainty

HATOBD aes 0044 HYTUBD 974 0115
a0 .499 0.047 00,656 0.072
a0 0531 0.055 U005t 0067
g A g988 0031 w0 0450 0072
H MO 00 0.006 7y M0 0201 0.061
MO o1 005 H MY 0213 0.042
HlK*(1430) 0.052 0.012 HQK*(M?’O) 0.061 0.014
Y 0487 0,053 a0 0833 0.089
7O 1009 0176 YO 703 0.044
U o6 0.09 M 0ees 0.0m2
Hé\*(1520) 0.485 0.068 H{x*(moo) 0.378 0.038
1 0501 0.053 0,206 0.032
o 0461 0.053 YUY 0408 0036
Hy U021 0.039 HY O 037 0.029
Hy U0 013 0.036 H 0,69 0.048
HY 0 0939 0.09 or (U0 srsa 0253
oy P 235 0.151 or 1% o3 0.212
gy 00 3397 0148 o UV oss2 0am
g5 U 4062 0153 o T asT 025

ATEAT00) g e 0.141 o MO 0004 9671
gy MO o202 087 oy M 5685 0414
gy 003996 0465 o 4T 022
I (1430) 1083 0.24 P (890) -1.895 0.206
o 0 9033 0.4 o 369 0.112
gt M) 5016 0104 ¢ N 5457 028
d)/l\*(wzo) 4579 0.147 ¢9*(1520) 0.957 0.218
GATA000) g o 0.154 gy U 0793 0.001
G870 6o 0.204 gy OO 3647 0.148
or U 6426 0124 o 2654 0207
G180 o 0.117 gy U0 1255 0.206
AT ¥: /G W (R E o M ses2 007
P, 0078 0.011 P, 0.041 001
P, 0022 001

Table G.64: Result of the fit for model M21, polarity, TOS category and A} decays.
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Table G.65: Result of the fit for model M21, MagUp polarity, TOS category and A} decays.

Table G.66: Result of the fit for model M21, o parameters for MagUp polarity, TOS category and A}

decays.
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FF parameter

Central value

Statistical uncertainty

ATT(1232)
ATF(1600)
A*F(1620)
ATF(1700)
K*(1410)
K*(1430)
K*(890)
A*(1405)
A*(1520)
A*(1600)
A*(1670)
A*(1690)
A*(1890)
A*(2000)

SF,

0.15032
0.05407
0.09170
0.02331
0.00750
0.00203
0.16259
0.13760
0.05094
0.07836
0.04171
0.01702
0.00593
0.22531
1.04840

0.00016
0.00017
0.01052
0.00037
0.00000
0.00003
0.00041
0.00075
0.00186
0.00168
0.00370
0.00031
0.00005
0.00011
0.02011

Parameter « « statistical uncertainty
ATT(1232)  -0.4920 0.0888
ATT(1600) -0.2669 0.1343
ATT(1620) -0.0297 0.1603
ATH(1700) -0.4350 0.1542
K*(1410) -1.0000 0.0000
K*(1430) -0.1583 0.3173
K*(890) 0.1487 0.2687
A*(1405) 0.1139 0.1546
A*(1520) 0.2776 0.1654
A*(1600) -0.4194 0.1110
A*(1670) -0.6671 0.1072
A*(1690) 0.5811 0.1362
A*(1890) 0.5374 0.2153
A*(2000) -0.2987 0.1079
Qe f fective 0.7543 0.0147




G.3. RESULTS FOR MODEL 21

Parameter Central Statisti?al Parameter Central Statisti(?al
value uncertainty value uncertainty

AU gy 0.006 Hy 0P 093 0.007
a0 o624 0.006 oy O Lots 0.007
YOO 0704 0.004 Hy U 0,901 0.004
g T 0517 0.007 T 0781 0.008
SO 0133 0013 Hy MY 0ass 001
HETO00 0.01 HEMO 0508 0.01
g0 o072 0.004 Hy 0.0 0.278
0 0965 0.008 Hy ™08 0.009
GO a8 0.005 Y 0909 0.006
H2A*(1405) 1.012 0.004 H{\*(1520) 0.321 0.014
0 0906 0.007 MY 0422 0.006
Hé\*(lGOO) 0.402 0.005 H{\ (1670) 0.588 0.004
A0 4y 0.005 HY U909 0.007
00 a4 0.007 Y 0181 0.006
1y 00 0,095 0.006 HY P 149 0.004
7% 964 0.004 or U 2188 0.008
gy U a3 0012 or U 2067 0.012
gy 5091 0.008 or U0 153 0.008
pATTaR0) 0.007 g0 5381 0013

ATHAT00) g g 0.008 A I R b 0.065
dé(* MO 0876 0.064 oy M 4087 0.06
gbff* 14100 0q 0.023 PR30 g 919 0.057
gy U0 Gag1 10151 o W assT 0012
o 03923 0015 o M 2863 0.009
o M) 698 0.005 o 65 0.001
o 0 smar 0.042 o PV 2080 0.016
G800 g 0.014 ¢§*<1600) -0.019  0.014
g0 a7 oom ¢ " aso1 0.015
g 6315 0.031 o U Ter 0017
g0 g aay 0.03 gp U0 1409 0.069
o P00 4801 0.006 o M 4001 0007
P, -0.078 0003 Py -0.002  0.003
P, -0.02 0.003

Table G.67: Result of the fit for model M21, polarity, TOS category and A, decays.
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Table G.68: Result of the fit for model M21, MagUp polarity, TOS category and A, decays.

Table G.69: Result of the fit for model M21, o parameters for MagUp polarity, TOS category and A,

decays.
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FF parameter

Central value

ATT(1232)
ATF(1600)
ATF(1620)
ATF(1700)
K*(1410)
K*(1430)
K*(890)
A*

0.12162
0.07433
0.12715
0.04200
0.01020
0.00098
0.18706
0.17294
0.04360
0.03256
0.05075
0.01175
0.00205
0.22477
1.10177

0.00087
0.00003
0.00004
0.00007
0.00024
0.00001
0.00171
0.00007
0.00056
0.00044
0.00110
0.00010
0.00000
0.00020
0.00544

Parameter « « statistical uncertainty
ATT(1232)  0.3019 0.0081
ATT(1600) -0.4967 0.0087
ATT(1620) -0.2153 0.0068
ATT(1700) -0.3906 0.0144
K*(1410) -0.1706 0.1131
K*(1430) 1.0000 0.0000
K*(890) -0.4171 0.2711
A*(1405) -0.1069 0.0076
A*(1520) -0.7769 0.0176
A*(1600) 0.0485 0.0188
A*(1670) 0.3414 0.0123
A*(1690) -0.6676 0.0212
A*(1890) 0.5680 0.0483
A*(2000) 0.1738 0.0053
0.7143 0.0006

Qe f fective

Statistical uncertainty
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Résumé: La polarisation des baryons charmés
n’est pas prédite par la théorie et constitue une
donnée nécessaire pour la mesure du moment
dipolaire magnétique (MDM) des baryons char-
més qui est prévue au LHC. Elle a été mesurée
pour les baryons étranges (A) et beaux (AY)
dans différents systéemes de collision, mais au-
cune mesure n’existe a ce jour pour les baryons
charmés. Dans cette theése, la polarisation du
baryon A} est mesurée au moyen d’une analyse
d’amplitude a cinq dimensions de la désintégra-
tion faible & trois corps Al — pK 7" pour des
A} produits dans des collisions pp & une énergie
de 13 TeV dans le centre de masse.

La désintégration Af — pK 7t passe par
des états résonants intermédiaires qui inter-
ferent entre eux et qui doivent étre inclus
dans amplitude. Tout d’abord, les équations
décrivant ’amplitude de cette désintégration a
trois corps ont été dérivées dans le cadre du for-
malisme d’hélicité. La polarisation est prise en
compte au moyen de la matrice de densité de
spin et les états résonants intermédiaires sont
décrits a l'aide du modele isobare. Ce tra-
vail a permis de mieux comprendre les ampli-
tudes d’hélicité et peut étre facilement étendu
a d’autres désintégrations baryoniques a trois
corps comportant des particules avec spin dans
I’état final.

Ensuite, les amplitudes d’hélicité obtenues sont
utilisées pour décrire les données collectées par
le détecteur LHCb au CERN en 2016 (Run 2),
correspondant a une luminosité intégrée de 1.7
fb~!. Comme la polarisation dépend du mécan-
isme de production impliqué, il est important
de séparer les A} produits directement apres
les collisions pp via des interactions fortes (pro-
duction dite "prompt"), des A} produits via une
désintégration faible d’autres baryons (produc-
tion secondaire) ; dans cette analyse, les A"
prompt" sont étudiés. La désintégration Al —
pK 7", avec un rapport d’embranchement de
6.28 +0.32%, est le mode de désintégration de
A} le plus abondant et ’échantillon de don-
nées final, apres l'optimisation de la chaine

de sélection, contient environ ~500 000 événe-
ments de signal ; la pureté du signal est de
~97% et la contamination due aux A} venant
de B est inférieure a 2%. Les parametres
d’asymétrie, qui sont des combinaisons des
couplages d’hélicité contenus dans 'amplitude,
sont également mesurés ainsi que les contribu-
tions individuelles des résonances a ’amplitude
totale. Les résultats de I'analyse en amplitude
de la désintégration Af — pK 7T seront util-
isés pour mesurer la polarisation des Al pro-
duits dans des collisions proton-gaz (pNe), en
utilisant un échantillon de données collectées
par le détecteur LHCb en 2017, & une énergie
de 68 GeV dans le centre de masse.

La prochaine phase d’acquisition de données,
prévue en 2022, verra une augmentation du
taux de collision d’un facteur 5 & LHCb. Un
nouveau détecteur, appelé PLUME, a été congu
pour effectuer une mesure de luminosité dans
les nouvelles conditions de fonctionnement.
Dans cette these, 1’électronique frontale du
calorimetre de LHCDb a été testée pour prou-
ver qu’elle est adaptée aux besoins du détecteur
PLUME et elle est maintenant 1’électronique
de base pour PLUME. Enfin, une mesure du
décalage de I'horloge de LHCb a l'aide du dé-
tecteur PLUME est proposée. L’horloge de
LHCb peut étre désynchronisée de I'horloge
principale du LHC ; un décalage allant jusqu’a 1
ns a été mesuré pendant les Run 1 et 2, en util-
isant le Outer Tracker (OT'), avec une résolution
temporelle de 0,5 ns. Au cours du Run 3, ’'OT
sera supprimé et LHCD collectera des données a
40 MHz avec un nouveau schéma de déclenche-
ment entiérement « software ». Des condi-
tions de fonctionnement stables sont essentielles
pour qu'un tel schéma fonctionne, et le décalage
de I’horloge pourrait avoir un impact impor-
tant sur les performances du détecteur LHCD.
PLUME pourrait étre utilisé pour surveiller le
décalage de I’horloge du LHCb. Dans cette
these, la faisabilité de la mesure du décalage
en temps est étudiée.
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Abstract: Charmed baryon polarization is
not predicted by theory and it is a neces-
sary input for the measurement of the charmed
baryons magnetic dipole moment (MDM) which
is foreseen at the LHC. Baryon’s polarization
has been measured for strange (A) and beauty
(AY) baryons in different colliding systems,
however, no measurement exists for charmed
baryons as of today. In this thesis, the A}
polarization is measured by means of a five-
dimensional amplitude analysis of the three-
body weak decay A} — pK 7" of A} produced
in pp collisions at a center of mass energy of 13
TeV.

The A} — pK~n" decay passes through in-
termediate resonant states which interfere with
each other, and which need to be included in the
amplitude. First, the equations describing the
amplitude of this three-body decay have been
derived within the helicity formalism. The po-
larization is accounted for by means of the spin
density matrix and the intermediate resonant
states are described using the isobar model fac-
torization. This work allowed to better under-
stand the helicity amplitudes and can be easily
extended to other three-body baryonic decays
featuring particles with spin in the final state.
Then, the helicity amplitudes obtained are used
to describe the data collected by the LHCb de-
tector at CERN during the 2016 data taking
period (Run 2), corresponding to an integrated
luminosity of 1.7 fb~!. Since the polarization
depends on the production mechanism involved,
it is important to separate the Al produced
directly after the pp collisions via strong in-
teractions (prompt production), from the A}
produced via a weak decay of other baryons
(secondary production). In this analysis, the
promptly produced A} are studied.

The A} — pK~ 7" decay, with a branching ra-
tio of 6.28 £0.32%, is the most abundant A
decay mode and the final data sample, after

the optimization of the selection chain, contains
around ~500 000 signal events, it has a sig-
nal purity of ~97% and the contamination due
to secondary AT is less than 2%. The asym-
metry parameters of the intermediate decays,
which are combinations of the helicity couplings
contained in the amplitude, are also measured
along with the fit fractions, which describe the
contribution of each resonance to the total am-
plitude. The results of the A7 — pK 7" am-
plitude analysis will be used to measure the po-
larization of A} baryons produced in proton gas
(pNe) collisions, using a data sample collected
by the LHCb detector during 2017 at a center
of mass energy of 68 GeV.

The next data acquisition phase, foreseen in
2022, will see an increase of the collision rate
by a factor of 5 at LHCb. A new detector,
called PLUME, has been designed to perform
a luminosity measurement in the new running
conditions. In this thesis, the front-end elec-
tronics of the LHCDb calorimeter has been tested
to prove that it is adapted for the PLUME de-
tector needs and it is now the baseline electron-
ics for PLUME. Finally, a measurement of the
LHCD clock shift using the PLUME detector is
proposed. The LHCD clock can be desynchro-
nized from the LHC main clock; a shift up to 1
ns has been measured during Run 1 and Run 2,
using the Outer Tracker (OT), with a time res-
olution of 0.5 ns. During Run 3 the OT will be
removed and LHCDb will collect data at 40 MHz
with a new triggering scheme based on an en-
tire software trigger. Stable running conditions
are essential for such a scheme to work, and
the clock shift could have a large impact on the
LHCb detector performances. PLUME could
be used to monitor the LHCD clock shift and in
this thesis a preliminary timing measurement
is performed probing the feasibility of such a
measurement and opening the route to further
studies.
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