
HAL Id: tel-03414534
https://theses.hal.science/tel-03414534v1

Submitted on 4 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compilation and optimizations for variable precision
floating-Point arithmetic : from language and libraries to

code generation
Tiago Trevisan Jost

To cite this version:
Tiago Trevisan Jost. Compilation and optimizations for variable precision floating-Point arithmetic :
from language and libraries to code generation. Computer Arithmetic. Université Grenoble Alpes
[2020-..], 2021. English. �NNT : 2021GRALM020�. �tel-03414534�

https://theses.hal.science/tel-03414534v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Tiago TREVISAN JOST

Thèse dirigée par Frédéric PETROT, Professeur, Grenoble INP/Ensimag,
Université Grenoble Alpes
et codirigée par Albert COHEN, Ingénieur HDR, Google
et Christian FABRE, ingénieur-chercheur, CEA LIST Grenoble
préparée au sein du Laboratoire d'Intégration des Systèmes et des
Technologies / CEA LIST Grenoble dans l'École Doctorale
Mathématiques, Sciences et technologies de l'information,
Informatique

Compilation et optimisations pour
l'arithmétique à virgule flottante en précision
variable : du langage et des bibliothèques à la
génération de code

Compilation and optimizations for Variable
Precision Floating-Point Arithmetic: From
Language and Libraries to Code Generation

Thèse soutenue publiquement le 02/07/2021
devant le jury composé de :

Monsieur FREDERIC PETROT
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE
ALPES, Directeur de Thèse
Monsieur PHILIPPE CLAUSS
PROFESSEUR DES UNIVERSITES, UNIVERSITE
STRASBOURG, Rapporteur
Monsieur ERVEN ROHOU
DIRECTEUR DE RECHERCHE, CNRS BRETAGNE et PAYS DE
LA LOIRE, Rapporteur
Monsieur SEBASTIAN HACK
PROFESSEUR, Universität des Saarlandes, Examinateur
Monsieur DAVID MONNIAUX
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES,
Président
Madame NATHALIE REVOL
CHARGE DE RECHERCHE, INRIA CENTRE GRENOBLE-
RHONEALPES, Examinatrice
Monsieur ALBERT COHEN
INGENIEUR HDR, Google France, Co-directeur de thèse
Monsieur CHRISTIAN FABRE
INGENIEUR DE RECHERCHE, CEA-List, Invité et Co-Encadrant
de Thèse

Abstract

Floating-Point (FP) units in processors are generally limited to supporting a subset of formats
defined by the IEEE 754 standard, along with a few target-specific ones (X86 with an 80-bit FP
format, and PowerPC performing 128-bit FP arithmetic). As a result, high-efficiency languages
and optimizing compilers for high-performance computing are also limited by the FP types
supported by these units. However, the pursuit of efficiency and stability on applications has
led researchers to investigate a finer control of exponent and fraction bits for finding the right
balance between accurate results and execution time and/or energy consumed. For example,
numerical computations often involve iterative solvers where the residual error is a function of
the input data, or where dynamically adaptive precision can accelerate convergence. Numerical
analysts have to resort to explicit conversions and multi-versioning, resulting in code bloat and
making the intent of the program even less clear. Little attention in languages and compilers
has been given to formats that disrupt the traditional FP arithmetics with runtime capabilities
and allow the exploration of multiple configurations, a paradigm recently referred to as variable
precision computing. This thesis proposes to overcome the limiting language and compiler
support for traditional FP formats with novel FP arithmetic with runtime capabilities, showing
the intersection between compiler technology and variable precision arithmetic. We present an
extension of the C type system that can represent generic FP operations and formats, supporting
both static precision and dynamically variable precision. We design and implement a compilation
flow bridging the abstraction gap between this type system and low-level FP instructions or
software libraries. The effectiveness of our solution is demonstrated through an LLVM-based
implementation, leveraging aggressive optimizations in LLVM including the Polly loop nest
optimizer. We provide support for two backend code generators: one for the ISA of a variable
precision FP arithmetic coprocessor, and one for the MPFR multi-precision floating-point library.
We demonstrate the productivity benefits of our intuitive programming model and its ability
to leverage an existing compiler framework. Experiments on two high-performance benchmark
suites yield strong speedups for both our software and hardware targets. We also show interesting
insights on the use of variable precision computing in linear algebra kernels.

i

Résumé

Les unités de calcul à virgule flottante (FP) prennent en charge un sous-ensemble de formats
définis par la norme IEEE 754, ainsi que quelques formats qui leur sont spécifiques (le format de
80 bits sur de l’architecture x86, et le format 128 bit propriétaire des PowerPC). De fait, les
langages et les compilateurs optimisants utilisés en calcul intensif sont limités par les formats
supportés sur les machines cibles. Cependant, la recherche de l’efficacité et de la stabilité
des applications a conduit les numériciens à explorer d’autres tailles pour les exposants et les
parties fractionnaires afin de trouver un bon équilibre entre la précision des résultats, le temps
d’exécution et l’énergie consommée. C’est le cas pour les calculs numériques qui font appel à des
solveurs itératifs dont l’erreur résiduelle est une fonction des données d’entrée, ou ceux pour
lesquels une précision adaptable dynamiquement peut accélérer la convergence. Les numériciens
doivent recourir à des conversions explicites et prévoir plusieurs versions du code, ce qui entraîne
un accroissement de la taille de ce dernier au détriment de sa lisibilité Peu d’attention a été
accordée au support d’autre formats flottants dans les langages et à leur compilation, ainsi qu’à
leurs conséquences sur le processus d’analyse numérique. Le calcul en précision variable est un
paradigme récent qui propose de faire varier les formats à l’exécution et d’en analyser les effets.
Les travaux que nous présentons visent à surmonter les limites actuelles des langages et de leur
compilation en y ajoutant le support aux formats à précision variable, et en abordant certains
des problèmes que ces formats font apparaître à la jonction de la compilation et de l’arithmétique
à précision variable. Pour cela nous proposons une extension du système de types du langage C
permettant de représenter de manière générique les formats flottants et leurs opérations, aussi
bien en précision statique que dynamique. Nous avons mis en œuvre un flot de compilation
qui implémente ce système de type jusqu’à la génération de code vers des jeux d’instructions
ou des bibliothèques supportant de tels formats. Notre solution basée sur LLVM a démontré
son efficacité en tirant parti des puissantes optimisations de LLVM, notamment l’optimisation
de nids de boucles par Polly. Nous proposons un support pour deux générateurs de code : un
premier pour le jeu d’instruction d’un coprocesseur arithmétique à précision variable, et un
deuxième ciblant la bibliothèque MPFR de virgule flottante en multi précision. Ce support
démontre les avantages de productivité de notre modèle de programmation intuitif et sa capacité
à tirer parti d’une chaîne de compilation existante. Les expérimentations réalisées sur deux
suites de référence en calcul à haute performance ont permis d’obtenir de fortes accélérations
aussi bien pour nos cibles logicielles que matérielles. Nous présentons également des résultats
intéressants sur l’utilisation de la précision variable pour des noyaux d’algèbre linéaire.

iii

Acknownledgement

First, I would like to the jury for having accepted to be part of my defense and for all insightful
comments, and questions. I would also like to thank Christian and Albert for giving me the
opportunity to work on this subject since the beginning, and Frédéric for having accepted to get
on board in the last year of my PhD. All of you have made these last three years much easier
with your availability, insights, feedbacks, and enormous help whenever I needed. I would like to
thank Yves, my unofficial math-related advisor, who had the patience to explain many math
concepts that I would, otherwise, have struggled with during this period. I extend my gratitude
to Vincent, Diego and Alexandre who welcomed me in their laboratories, and all my amazing
co-workers from LIALP, LSTA and the whole CEA for their kindness and for their support.
Special thanks to Andrea whose work have played an important role in the experiment section
of this manuscript. Many thanks to all my friends here in France, in Brazil, and around the
world for helping to relax in times of stress, specially close to paper deadlines.

None of this would have been possible without the caring and loving support of my whole
family. The awesome energy you have sent me from Brazil surely played a role on the output of
this work. Thank you for believing in me. Love you guys! And last but not least, this work is
dedicated to Jana, my amazing wife, who were always there for me and has agreed to embark
with me in this journey. I can never thank you enough for all your love and support. Love you
so much!

v

Contents

List of Figures xi

List of Tables xv

List of Listings xvii

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 2

2 Problem Statement 5
2.1 Introduction . 5
2.2 Precision versus Accuracy . 5
2.3 Floating-Point Representation . 7

2.3.1 IEEE Formats . 7
2.3.2 UNUM . 9
2.3.3 Posit . 9
2.3.4 New FP Formats from a Compiler’s Point of View 10

2.4 Variable Precision as a New Paradigm for FP Arithmetic 10
2.4.1 Problem with Precision Cherry-picking: Numerical Stability and Numerical

Accuracy . 11
2.4.1.1 Quantifying Errors in Floating Points 11
2.4.1.2 Augmenting Precision to Remedy Stability 12

2.4.2 Linear Algebra from the Variable Precision Perspective 13
2.5 Languages and Data types . 14
2.6 Compilers and Optimizations . 15
2.7 Conclusion . 17

3 Programming Languages, Paradigms for FP Computation and exploration Tools 19
3.1 Computing paradigms for floating-point arithmetics 19

3.1.1 Mixed precision computing . 20
3.1.2 Arbitrary precision . 20

3.1.2.1 MPFR Multi-precision library 21
3.1.2.2 C++ Boost for Multi-precision 22

vii

3.1.2.3 Dynamic-typed Languages: a Julia example 22
3.2 Exploration Tools (Hardware and Software) . 23

3.2.1 Software for Alternative FP Formats . 23
3.2.2 Precision-Awareness, Auto-Tuning, and Numerical Error Detection 24
3.2.3 Software for Scientific Computing Exploration 25

3.2.3.1 Basic Linear Algebra Subprograms (BLAS) 25
3.2.3.2 Linear Algebra Package (LAPACK) 27

3.2.4 Characteristics of the Hardware Implementation of Variable Precision FP
Units . 27
3.2.4.1 Round-off Error Minimization through Long Accumulators . . . 27
3.2.4.2 A Family of Variable Precision, Interval Arithmetic Processors . 27
3.2.4.3 Scalar Multiple-precision UNUM RISC-V Floating-point Accel-

erator (SMURF) . 28
3.2.4.4 Other (UNUM or Posit) accelerators 29

3.3 Conclusion . 29

4 Language and Type System Specifications for Variable Precision FP Arithmetic 31
4.1 Syntax . 32
4.2 Semantics . 34
4.3 A multi-format type system . 35

4.3.1 MPFR . 35
4.3.2 UNUM . 36
4.3.3 Alternatives Formats . 38

4.4 Memory allocation schemes . 39
4.4.1 Constant Types . 40

4.4.1.1 Representing constants . 40
4.4.2 Constant-Size Types with Runtime-Decidable Attributes 41
4.4.3 Dynamically-Sized Types . 41

4.4.3.1 Runtime verification . 42
4.4.3.2 Function __sizeof_vpfloat . 43
4.4.3.3 Function Parameter and Return 45
4.4.3.4 Constants . 46

4.5 Type Comparison, Casting and Conversion . 46
4.6 Language Extension Limitations . 47
4.7 Libraries for Variable Precision . 48

4.7.1 mpfrBLAS: A vpfloat<mpfr, ...> BLAS library 49
4.7.1.1 Level 1: Vector-to-vector operations 49
4.7.1.2 Level 2: Matrix-vector operations 50
4.7.1.3 Level 3: Matrix-matrix operations 53

4.7.2 unumBLAS: A vpfloat<unum, ...> BLAS library 54
4.7.2.1 Level 1: Vector-to-vector operations 54

viii

4.7.2.2 Level 2: Matrix-vector operations 55
4.7.2.3 Level 3: Matrix-matrix operations 56

4.8 Conclusion . 57

5 Compiler Integration for Variable Precision FP Formats 59
5.1 Frontend . 59
5.2 Intermediate Representation (IR) . 59

5.2.1 VPFloat Types . 60
5.2.2 Function Declarations . 61
5.2.3 Interaction with Classical Optimizations 62

5.2.3.1 Type-value Relation . 63
5.2.3.2 Loop Idiom Recognition . 63
5.2.3.3 Inlining . 64
5.2.3.4 Lifetime Marker Optimization 65
5.2.3.5 OpenMP Multithread Programming 66
5.2.3.6 Loop nest Optimizations . 66
5.2.3.7 Vectorization . 66

5.3 Code Generators . 68
5.3.1 Software Target: MPFR . 68
5.3.2 Hardware Target: UNUM . 74

5.3.2.1 Compiler-Controlled Status Registers 75
5.3.2.2 FP Configuration Pass . 75
5.3.2.3 Array Address Calculation Pass 76

5.4 Conclusion . 77

6 Experimental results 79
6.1 The Benefits of Language and Compiler Integration 79

6.1.1 MPFR vpfloat vs. Boost Multi-precision 79
6.1.1.1 Polybench . 80
6.1.1.2 RAJAPerf . 85

6.1.2 Hardware(UNUM vpfloat) vs. Software (MPFR vpfloat) 88
6.2 Linear Algebra Kernels . 90
6.3 Conclusion . 102

7 Conclusion 103

A CG Experimental Results: Number of Iterations 109

B CG Experimental Results: Execution Time 115

Publications 121

ix

List of Figures

2.1 IEEE Formats (officially known as binary16, binary32, binary64, and binary128
as defined by the standard. 8

2.2 The Universal NUMber (UNUM) Format . 9
2.3 The Posit Format . 9
2.4 Relationship between backward and forward errors. 12
2.5 When applied on different MatrixMarket [24, 86] matrices, the number of iterations

for the conjugate gradient (CG) algorithm decreases when precision augments.
This experiment aims to show the usage of variable precision in a real-life application. 13

4.1 Difference between Gustafson and Bocco et al. [21, 23] UNUM formats. 37
4.2 Summary of vpfloat multi-format schemes. 39
4.3 Memory Allocation Schemes for Constant-Size and Dynamically-Sized Types . . 40

6.1 Speedup of Polly’s loop nest optimizer in Polybench compiled for vpfloat<mpfr,

... types. 82
6.2 Speedup of vpfloat<mpfr, ...> over the Boost library for multi-precision for

the Polybench benchmark suite, and compiled with optimization level -O3. The
execution time reference taken are the best between compilations with and without
Polly. Results are shown for two different machines: an Intel Xeon E5-2637v3
with 128GB of RAM (M1), and an Intel Xeon Gold 5220 with 96 GB of RAM
(M2), respectively. Y-axes are shown with the same limits to ease comparisons
between results in the two machines. 83

6.3 Speedup of vpfloat<mpfr, ...> over the Boost library for multi-precision for the
Polybench benchmark suite. vpfloat<mpfr, ...> applications were compiled
with optimization level -O1 and Boost with -O3. The execution time reference
taken are the best between compilations with and without Polly. Results are
shown for two different machines: an Intel Xeon E5-2637v3 with 128GB of RAM
(M1), and an Intel Xeon Gold 5220 with 96 GB of RAM (M2), respectively. Y-axes
are shown with the same limit to ease comparisons between results in the two
machines. 84

6.4 Speedup of vpfloat<mpfr, ...> over the Boost library for multi-precision for
the RAJAPerf benchmark suite, both compiled with -O3 optimization level. . . . 87

xi

6.5 Speedup of vpfloat<unum, ...> over vpfloat<mpfr, ...> on the PolyBench
suite . 89

6.6 CG variants with multiple formats with matrices nasa2910, bcsstk08, bcsstk11,
bcsstk12, bcsstk13, and bcsstk16 from matrix market [24, 86]. Graph lines represent
different matrices, and graph columns correspond to variants (from left to right:
original CG, precond CG, pipelined CG, BiCG). Y-axes show the number of
iterations needed to converge for precision in bits between 150 and 2000 with a
step=50. A missing type in a graph implies the algorithm did not converge. . . 97

6.7 CG variants with multiple formats with matrices bcsstk19, bcsstk20, bcsstk23,
crystk01, s3rmt3m3, and plat1919 from matrix market [24, 86]. Graph lines
represent different matrices, and graph columns correspond to variants (from
left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the
number of iterations needed to converge for precision in bits between 150 and
2000 with a step=50. A missing type in a graph implies the algorithm did not
converge. 98

6.8 Execution time for CG variants with multiple formats with matrices nasa2910,
bcsstk08, bcsstk11, bcsstk12, bcsstk13, and bcsstk16 from matrix market [24, 86].
Graph lines represent different matrices, and graph columns correspond to variants
(from left to right: original CG, precond CG, pipelined CG, BiCG). A missing
type in a graph implies the algorithm did not converge. Results for double are
not displayed. 100

6.9 Execution time for CG variants with multiple formats with matrices bcsstk19,
bcsstk20, bcsstk23, crystk01, s3rmt3m3, and plat1919 from matrix market [24,
86]. Graph lines represent different matrices, and graph columns correspond
to variants (from left to right: original CG, precond CG, pipelined CG, BiCG).
A missing type in a graph implies the algorithm did not converge. Results for
double are not displayed. 101

A.1 CG variants with multiple formats with matrices bcsstk04, bcsstk05, bcsstk06,
bcsstk07, bcsstk09, and bcsstk10 from matrix market [24, 86]. Graph lines
represent different matrices, and graph columns correspond to variants (from
left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the
number of iterations needed to converge for precision in bits between 150 and
2000 with a step=50. A missing type in a graph implies the algorithm did not
converge. 110

xii

A.2 CG variants with multiple formats with matrices bcsstk14, bcsstk15, bcsstk21,
bcsstk22, bcsstk24, and bcsstk26 from matrix market [24, 86]. Graph lines
represent different matrices, and graph columns correspond to variants (from
left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the
number of iterations needed to converge for precision in bits between 150 and
2000 with a step=50. A missing type in a graph implies the algorithm did not
converge. 111

A.3 CG variants with multiple formats with matrices bcsstk27, bcsstk28, bcsstk34,
bcsstm07, bcsstm10, and bcsstm12 from matrix market [24, 86]. Graph lines
represent different matrices, and graph columns correspond to variants (from
left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the
number of iterations needed to converge for precision in bits between 150 and
2000 with a step=50. A missing type in a graph implies the algorithm did not
converge. 112

A.4 CG variants with multiple formats with matrices bcsstm27, 494_bus, 662_bus,
685_bus, s1rmq4m1, and s1rmt3m1 from matrix market [24, 86]. Graph lines
represent different matrices, and graph columns correspond to variants (from
left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the
number of iterations needed to converge for precision in bits between 150 and
2000 with a step=50. A missing type in a graph implies the algorithm did not
converge. 113

A.5 CG variants with multiple formats with matrices s2rmt3m1, s3rmq4m1, s3rmt3m1,
and plat362 from matrix market [24, 86]. Graph lines represent different matrices,
and graph columns correspond to variants (from left to right: original CG,
precond CG, pipelined CG, BiCG). Y-axes show the number of iterations needed
to converge for precision in bits between 150 and 2000 with a step=50. A missing
type in a graph implies the algorithm did not converge. 114

B.1 Execution time for CG variants with multiple formats with matrices bcsstk04,
bcsstk05, bcsstk06, bcsstk07, bcsstk09, and bcsstk10 from matrix market [24, 86].
Graph lines represent different matrices, and graph columns correspond to variants
(from left to right: original CG, precond CG, pipelined CG, BiCG). A missing
type in a graph implies the algorithm did not converge. Results for double are
not displayed. 116

B.2 Execution time for CG variants with multiple formats with matrices bcsstk14,
bcsstk15, bcsstk21, bcsstk22, bcsstk24, and bcsstk26 from matrix market [24, 86].
Graph lines represent different matrices, and graph columns correspond to variants
(from left to right: original CG, precond CG, pipelined CG, BiCG). A missing
type in a graph implies the algorithm did not converge. Results for double are
not displayed. 117

xiii

B.3 Execution time for CG variants with multiple formats with matrices bcsstk27,
bcsstk28, bcsstk34, bcsstm07, bcsstm10, and bcsstm12 from matrix market [24,
86]. Graph lines represent different matrices, and graph columns correspond
to variants (from left to right: original CG, precond CG, pipelined CG, BiCG).
A missing type in a graph implies the algorithm did not converge. Results for
double are not displayed. 118

B.4 Execution time for CG variants with multiple formats with matrices bcsstm27,
494_bus, 662_bus, 685_bus, s1rmq4m1, and s1rmt3m1 from matrix market [24,
86]. Graph lines represent different matrices, and graph columns correspond
to variants (from left to right: original CG, precond CG, pipelined CG, BiCG).
A missing type in a graph implies the algorithm did not converge. Results for
double are not displayed. 119

B.5 Execution time for CG variants with multiple formats with matrices s2rmt3m1,
s3rmq4m1, s3rmt3m1, and plat362 from matrix market [24, 86]. Graph lines
represent different matrices, and graph columns correspond to variants (from left
to right: original CG, precond CG, pipelined CG, BiCG). A missing type in a
graph implies the algorithm did not converge. Results for double are not displayed.120

xiv

List of Tables

2.1 Residual error for some Polybench [98] applications. It illustrates the difference
between accuracy, here calculated through the residual error of each application,
and precision, represented by 24, 53, 128, and 512 bits. The residual error is
calculated as the norm function between measured and exact values of the output
vector or matrix. 6

3.1 Some of the data types supported in Schulte et al. [107] 28
3.2 Coprocessor’s Instruction Set Architecture . 29

4.1 Comparison of the vpfloat type system and FP types, and data structures found
in the literature. 34

4.2 Sample UNUM declarations and their respective exponent, mantissa, and size
values. 39

4.3 Floating-point literal 1.3 represented with different types 41

5.1 Instructions supported by the UNUM Backend. 74
5.2 ABI Convention for the VP registers . 75
5.3 Control registers inside the UNUM Coprocessor. 76

6.1 Machine configurations used for experiments. 80
6.2 Compilation time for Polybench with different optimization levels and types. . . 81
6.3 List of RAJAPerf applications classified according to their groups. 85
6.4 Average speedups for RAJA in machines M1 and M2 (from Table 6.1). 86
6.5 Count on the number of matrices where vpfloat<mpfr, ...> outperforms other

types. Only matrix with types that converge are considered. For vpfloat and
Boost, we cherry-pick the best execution time among the precision range (from
150 to 2000 with a step=50) . 99

xv

List of Listings

3.1 MPFR variable type as defined in [49] . 21
3.2 Usage of the MPFR library in a matrix multiplication example 21
3.3 Usage of the C++ Boost library for Multi-precision in a matrix multiplication

example . 22
3.4 Implementation of matrix multiplication example in the Julia language: its

dynamic type system hides the types of variables until runtime evaluation 23
4.1 Backus normal form (BNF) like notation for the vpfloat language extension . . 33
4.2 MPFR variable type as defined in [49]. 35
4.3 axpy benchmark with vpfloat<mpfr, ...> type. 35
4.4 Usage of the vpfloat<mpfr, ...> in a matrix multiplication example. 36
4.5 Comparing naïve implementations of AXPY with a constant-size type (axpy_UnumConst

), a constant-size type with runtime attribute (axpy_UnumDyn), and GEMV with
a dynamically-sized type (vgemv). 38

4.6 Variable Length Array (VLA) example. 42
4.7 Runtime checker implementation example of vpfloat<mpfr, ...> types. 43
4.8 __sizeof_vpfloat implementation example for vpfloat<unum, ...> and vpfloat

<mpfr, ...> types. 44
4.9 Uses of dynamically-sized types in function calls and returns. 45
4.10 Uses of dynamically-sized types in function call and return. 47
4.11 Examples of implicit and explicit conversions between vpfloat<...> types . . . 48
5.1 Partial implementation of vpfloat types in the LLVM IR. 60
5.2 IR code of the ex_dyn_type_ret function from Listing 4.9 types in the LLVM IR. 61
6.1 Calling a precision-generic implementation of CG 91
6.2 Implementation of algorithm 2 using mpfrBLAS 4.7.1. 92

xvii

Chapter 1: Introduction

The dearth of compatible floating-point (FP) formats among companies in the early 1980s
has significantly held back a plethora of applications, from signal and image processing to
neural networks and numerical analysis, that leverage real numbers in their computation. The
standardization of FP representations in the 1985 [45] was an important instrument to increase
the productivity and the usage of real numbers in a variety of research fields. In the same
direction, the progress of Very Large-Scale Integration (VLSI) technology has also contributed
to allowing the generalization of hardware units for floating-point arithmetic.

The possibility of packing more transistors in the same die, predicted by Moore’s Law [89],
has played an important role in the integration of multiple types of FP units in computer
systems, for instance, scalar and single instruction, multiple data (SIMD) in single and multicore
processors, and single instruction, multiple threads (SIMT) in graphics processing units (GPU).
The availability of hardware FP units is not only the rule nowadays, but they are also paramount
to the performance of numerical applications. However, none of these major advancements by
the hardware industry would have been possible without the effort and robustness of computer
systems and, especially, compiler technology.

Compilers play an important role and have long leveraged efficient usage of FP units.
Compiler optimizations for FP operations target representations supported by the hardware: at
best, 16, 32, 64, and 128 bits IEEE formats, and perhaps some target-specific formats (X86 FP80
and POWER9 128 bits). Although these representations are still well-suited for the majority
of applications, there is a need to rethink FP arithmetics as to improve performance, energy
and/or accuracy. The reasoning is twofold:

(1) Exploring the trade-off between output quality, and accuracy has already motivated the
adaptation of standard FP formats in applications. The main idea is to reduce precision
and exponent bits in use in the FP format in an attempt to trade quality by energy and/or
performance. By controlling the FP formats at a fine-grained granularity, this trade-off
has energy-saving and performance-increase potentials.

(2) A wide range of applications show optimal performance for FP representations that cannot
be represented with standard formats. On the one hand, Google’s bfloat16 [1] has
attracted a lot of interest for training and inference in neural networks [72] due to having
a higher exponent range than the IEEE 16-bit format. On the other hand, linear solvers,
n-body problems [50], and other applications in mathematics and physics [14] have shown
to benefit from higher-than-standard representations since (a) they may not converge with
fewer bits of precision or (b) they can converge faster with higher precision [64]. These
applications may suffer from cancellation and accumulative errors when numbers cannot
be precisely represented using the standard formats.

1

Motivation (1) has gained a lot of research attention in the last years through approximate
computing (AC) [88, 125]. AC aims to trade accuracy for energy savings and performance with
the assumption that a loss of accuracy in output results is irrelevant and can be tolerated.

The latter, especially for higher-than-standard representations, has not been explored to its
extent. The pursuit of efficiency and stability in the aforementioned domains has led researchers
to reexamine the use of standard formats. Considering there is no unique precision value that
fits all targeted applications, variable precision (VP) computing has been used as an exploration
tool to search for the most suitable solution for each.

This paradigm change has also led to the emergence of new FP formats and representations.
New paradigms and representations must still rely on solid and robust languages and compiler
infrastructure in order to ease the exploration of further techniques and solutions. A gap between
hardware designs for VP computing and their programming models still exists, as well as what
the role of compilers is. This motivates the work of this thesis.

1.1 Contributions
The main contributions of this thesis are:

(1) A multi-format, multi-representation language and compiler support for FP representations
that are suitable for VP Computing. Among the sub-contributions related to it are:

(a) a C type-system extension for declaring FP numbers of arbitrary representation and
size. This generic class of FP types has attributes, such as the size of mantissa or
exponent, or the size of the field encoding the mantissa or exponent, and the overall
memory footprint. These may be known statically or only at runtime,

(b) an IR embedding of the runtime and compile-time aspects of generic FP types.
Thanks to a tight integration within a state-of-the-art compiler infrastructure, this
embedding allows benefiting from most existing compiler optimizations supporting
high-performance numerical computing,

(c) two code generators implemented specifically to take advantage of VP Computing.

(2) A study demonstrating the exploration of VP in high-performance computing (HPC)
applications, which includes:

(a) Basic Linear Algebra Subprograms (BLAS) libraries aimed at helping exploration of
VP in applications,

(b) A study that shows interesting insights to precision exploration in different variants
of the Conjugate Gradient algorithm, an iterative method for solving linear systems.

1.2 Outline
This thesis is organized as follows:

Chapter 2 will present the main ideas within the literature and challenges that give basis
to this thesis. We will cover aspects related to compiler and language support for novel
FP representations, and how precision variation is being neglected on the software/hardware
integration stack.

Chapter 3 will discuss the main state-of-the-art concepts related to this thesis, illustrating
hardware and software aspects and how they co-related.

2

The first main contribution of this thesis, the vpfloat C-based language extension and type
system, is described in Chapter 4, covering all aspects and details of the syntax, and semantics,
along with library implementations.

Chapter 5 goes through the compiler integration requirements that are necessary to give
support for our type system. It also presents the design and implementation of our code
generators and target-specific passes.

Chapter 6 focus on the experimental setup and main results that give basis to the contributions
of this thesis.

Finally, chapter 7 summarizes the main contribution of this work and shows the main
directions envisioned as part of future work.

3

Chapter 2: Problem Statement

Contents
2.1 Introduction . 5
2.2 Precision versus Accuracy . 5
2.3 Floating-Point Representation . 7

2.3.1 IEEE Formats . 7
2.3.2 UNUM . 9
2.3.3 Posit . 9
2.3.4 New FP Formats from a Compiler’s Point of View 10

2.4 Variable Precision as a New Paradigm for FP Arithmetic 10
2.4.1 Problem with Precision Cherry-picking: Numerical Stability and Nu-

merical Accuracy . 11
2.4.2 Linear Algebra from the Variable Precision Perspective 13

2.5 Languages and Data types . 14
2.6 Compilers and Optimizations . 15
2.7 Conclusion . 17

2.1 Introduction
Computation techniques for real numbers is still an active field of research. Finding new computer
representations for real numbers that are optimized for an application remains challenging. In
this chapter, we present the main ideas that form the basis for the research performed through
the course of this thesis.

2.2 Precision versus Accuracy
Precision and accuracy are related concepts, although it is a mistake to think they are equivalent.
The accuracy of a value relates to the proximity between the measurement of a value and its true
value. In the context of the representation of real numbers, it is often expressed as the difference
between the result of the computation and its exact result. On the other hand, precision makes
reference to the current representation in use, and it is often expressed as a number of bits or
digits.

Table 2.1 illustrates the difference between accuracy, here calculated as the norm function
between measured and exact values of the output vector or matrix, and precision, represented by
24, 53, 128, and 512 bits. One can notice that the accuracy is an application- and data-dependent
constraint, while precision is only subject to the value one chooses to adopt. The choice of

5

precision generally leads to high accuracy, however, rounding error and cancellation inherent
to finite-sized representation may also influence output accuracy which can sometimes lead to
high-precision representations to have less accurate results.

Table 2.1: Residual error for some Polybench [98] applications. It illustrates the difference
between accuracy, here calculated through the residual error of each application, and precision,
represented by 24, 53, 128, and 512 bits. The residual error is calculated as the norm function
between measured and exact values of the output vector or matrix.

Dataset
Mini Small Medium Large Xlarge

gemm 24 bits∗ 1.5e-5 2.1e-4 4.1e-3 2.3e-1 1.45e0
53 bits∗ 3.1e-14 4.0e-13 7.7e-12 4.33e-10 2.69e-9
128 bits < 1e-600 < 1e-600 < 1e-600 1.49e-34 2.6e-33
512 bits < 1e-600 < 1e-600 < 1e-600 < 1e-600 < 1e-600

3mm 24 bits∗ 6.7e-07 1.1e-04 3.1e-02 4.4e+01 998.4
53 bits∗ 1.3e-15 2.1e-13 5.8e-11 8.2e-08 1.8e-06
128 bits 3.5e-38 5.6e-36 1.5e-33 2.13e-30 4.8e-29
512 bits < 1e-600 < 1e-600 < 1e-600 < 1e-600 < 1e-600

covar 24 bits∗ 5.8e-5 5.6e-3 2.1e-1 41.02 5.7e+02
53 bits∗ 1.2e-13 2.5e-12 2.37e-10 7.2e-8 1.0e-06
128 bits 3.2e-36 6.6e-35 6.3e-33 1.9e-30 2.6e-29
512 bits 9.1e-152 1.8e-150 1.6e-148 4.8e-146 6.7e-145

gram 24 bits∗ 28 71 220 616 868
53 bits∗ 9.1 76 231 584 849
128 bits 1.1e-21 7.0e-21 3.5e-20 1.7e-19 3.6e-6
512 bits 4.6e-137 2.1e-136 7.5e-136 1.1e-134 1.3e-121

∗Correspond to IEEE 32 and IEEE 64 formats, respectively.

Without any need for a rounding operation, computers can only represent a small subset of
values (integers and few rational numbers, for example) in a finite number of bits. Predominantly,
values cannot be precisely represented with a finite number of bits, and a rounding operation is
needed to bound the value to a fixed (and finite) representation. The accumulation of rounding
operations may cause the propagation of rounding errors, also known as round-off errors, that can
compromise the result of the application. The choice of precision used during the computation
can play an important role in binding the error to an expectable value. Table 2.1 shows how
round-off errors influence the accuracy of multiple applications from the Polybench suite.

Cancellation is another property from finite-sized representations that can impact the quality
of results. It occurs when we subtract two values that are very close, but different. If the
difference is too small to be represented with the precision of the numeric format, the result
becomes zero. It is usually overcome by analyzing its sources of issues and re-implementing the
algorithm [53].

A simple look at Table 2.1 shows that some algorithms are more susceptible to errors than
others, and lower-precision implementations have, in general, lower accuracy. Some kernels are
also actually numerically unstable for 24, and 53 precision bits, even with small datasets, while

6

higher precision reaches stability (e.g. gramschmidt). If one strives for accuracy, it is paramount
that higher-than-standard precision be adopted.

While most modern processors have hardware support for variants with 24 bits and 53 bits,
128-bit1 and 512-bit variants are more cumbersome. High precision is only supported through
software libraries MPFR [49], GMP [54], and high-efficiency languages in high-performance
computing do not provide any higher-level abstraction. This leads to tedious, error-prone
and library-dependent implementations involving explicit memory management. Multiple-
precision floating-point arithmetic, as provided by MPFR and GMP to explore different precision
levels, is difficult to write and maintain, and more than the performance gap of a software FP
implementation, the productivity gap makes this approach inaccessible to potential users.

In that regard, the following questions may be asked: How can languages and compilers
be used to accelerate and improve the productivity of multi-precision FP libraries? Can one
improve the integration between compilers and these libraries to take better advantage of classical
compiler optimizations?

2.3 Floating-Point Representation
Floating point is the most common way to represent real numbers in computer systems. They
are written in the form of:

(−1)s× 1.m× 2e (2.1)

where s is a single bit specifying the sign of the number, 1.m denotes the mantissa part, also
known as precision or fraction part, and e represents the exponent of the number.

2.3.1 IEEE Formats
Prior to the standardization of floating-point representations in 19852, companies had their own
proprietary FP formats, with specific rules and format layout. For instance, IBM System/360 [66]
introduced the Hexadecimal floating point (called HFP), Microsoft used the Microsoft Binary
Format (MBF) for its BASIC [73] language products, and even the U.S. Air Force defined
a formal specification of an ISA that included floating-point capabilities [108]. The IEEE
754 standard technical document served as an important instrument to conform floating-point
formats to specific properties, and offer compatibility and portability for long-time use. Since
then, the standard was widely adopted for representing real numbers in computer systems.

It defines a set of rules for rounding, exception handling, and operations in FP, along with
different encoding formats for FP arithmetics with representation ranging between 16 and 128
bits (see Figure 2.1). Although equation 2.1 generalizes how FP numbers are calculated, one
must notice that format-specific features such as, Infinity, Not-a-Number (NaN), subnormals,
and even biasing cannot be expressed through the formula. Instead, the IEEE 754 Standard for
floating-point arithmetic helps to address them individually.

The Intel 8087 [95], introduced in 1980, was the FP coprocessor for the Intel 8086 line of
microprocessors that is historically seen as the pioneer of the IEEE 754 standard. Although the
coprocessor did not implement it in all its details, it gave the basis for the standard specification.
Subsequently, all major processor manufacturers have started to adopt IEEE formats in the
design of FP units in order to leverage compatibility across multiple computing systems.

1Notice that 128 bits of precision does not correspondent to the IEEE FP128 format, which has 113 bits of
precision

2The IEEE Standard for Floating-Point Arithmetic (IEEE 754) was established in 1985 [45], and revised in
2008 [112] and 2019 [67])

7

sign

Binary16

exp.
(5 bit)

frac.
(10 bit)

sign

Binary32

exp.
(8 bit)

frac.
(23 bit)

sign

Binary64

exp.
(11 bit)

frac.
(52 bit)

sign

Binary128 . . .

exp.
(15 bit)

frac.
(112 bit)

Figure 2.1: IEEE Formats (officially known as binary16, binary32, binary64, and binary128 as
defined by the standard.

Programming languages and compilers have long contributed to support these formats in
order to ease the utilization of FP-capable hardware. In C-based languages, for example, types
float and double are typically used for binary32 and binary64 formats. Support for binary128
is provided through __float128 type specifier, while binary16 has only recently been added to
GCC [113] and LLVM [76] compilers.

Although these formats are sufficient for most applications, many works have shown the
benefit of using different representations:

(1) bfloat16 prevailed over IEEE’s binary16 for neural network applications due to its 8-bit
exponent size that offers a wider dynamic range and allows IEEE32 to be truncated
directly.

(2) IEEE’s course-grained format selection hinders the ability to fine-tune the number of expo-
nent and mantissa bits actually needed for a computation. Additionally, one hypothetical
application may produce accurate output with a format that has the same number of
mantissa bits as binary32, and the same number of exponent bits as binary64. Exploring
new configurations and formats are still limited to library-dependent solutions, thus, there
is no downstream compiler support from these libraries.

(3) High precision has shown their importance on many scientific domains [13]. X86 FP803

and PowerPC Double-Double4 formats were proposed as non-standard alternatives for
applications that require more accuracy. In fact, even the IEEE committee has considered
the growing interest in formats with larger encoding. The IEEE 754-2008 Standard shows
how encodings for formats with footprints larger than or equal to 128 bits can be specified.
No format definition is defined per se, but the specification and requirements necessary for
a format to be considered IEEE beyond 128-bit width are provided. In spite of that, no

3X86 FP80 has a sign bit, 15 exponent bits, and 64 mantissa bits with no hidden bit.
4PowerPC double-double uses pairs of double(binary64) to represent 128-bit numbers, with a sign bit, 11

exponent bits and 106 mantissa bits.

8

further discussion is given, and support for any type beyond 128 bits of a footprint is only
achieved with multiple-precision libraries.

Alternatively, an important research venue in the past years lies on rethinking the FP
arithmetic in order to compensate for the IEEE’s deficiencies (cancellation, rounding). Two
alternative floating-point formats, which can provide finer-grained control on the numeric
precision and accuracy are UNUM [57] and Posit [58], and are described in the following sections.

2.3.2 UNUM

The Universal NUMber (UNUM) format is a variable precision format proposed in 2015 to
overcome some of the rounding-related issues of IEEE formats [57]. It is a self-descriptive
FP format with 6 subfields: the sign s, the exponent e, the fraction f (like in IEEE 754) and
three descriptor fields: u, es-1 and fs-1 (see in Fig. 2.2). Variable-length fields es-1 and fs-1
encode the number of bits contained in the exponent e and fraction f, respectively. Thanks to
the "uncertainty" bit u, the format can also be used for interval arithmetic with values being
represented as a bounded pair of two UNUM numbers, an interval. The only sizing limitation of
a UNUM is given by the maximum length of es-1 and fs-1 fields, known as UNUM environment
(ess, fss). Thus, UNUM encoding is characterized as having a variable precision footprint.

sign
s e f

exponent fraction
u

ubit exponent
size

fraction
size

es - 1 fs - 1
es bits fs bits ess fss

Figure 2.2: The Universal NUMber (UNUM) Format

Hardware accelerators [21, 52] were proposed to facilitate performance comparison between
this new format and the IEEE standard. Its amount of flexibility has shown to (1) incur a higher
hardware implementation cost when compared to traditional FP units; (2) demand extra, and
more complex memory management due to the variable-length capabilities.
Applications that require higher-than-standard precision representations can, nonetheless, still
benefit from its use to design solutions with smaller residual error [22].

2.3.3 Posit

Posit [58] was proposed as a simpler, more hardware-friendly alternative to the UNUM format.
It uses a fixed-size encoding scheme but still enables variable-length exponent and mantissa fields
through tapered accuracy. Along the usual sign, exponent, and fraction fields, posits specifies
the regime bits fields to allow changes in the size of the exponent field.

2.1. The Posit Format

Here is the structure of an n-bit posit representation with es exponent bits (fig. 2).

s

sign
bit

regime
bits

r r r r⋯ r

exponent
bits, if any

e1 e2 e3⋯ ees

fraction
bits, if any

f1 f2 f3 f4 f5 f6⋯

Figure 2. Generic posit format for finite, nonzero values

The sign bit is what we are used to: 0 for positive numbers, 1 for negative numbers. If

negative, take the 2’s complement before decoding the regime, exponent, and fraction.

To understand the regime bits, consider the binary strings shown in Table 1, with numerical

meaning k determined by the run length of the bits. (An “x” in a bit string means, “don’t care”).

Table 1. Run-length meaning k of the regime bits

Binary 0000 0001 001x 01xx 10xx 110x 1110 1111

Numerical meaning, k −4 −3 −2 −1 0 1 2 3

We call these leading bits the regime of the number. Binary strings begin with some number of

all 0 or all 1 bits in a row, terminated either when the next bit is opposite, or the end of the

string is reached. Regime bits are color-coded in amber for the identical bits r, and brown for

the opposite bit r̄ that terminates the run, if any. Let m be the number of identical bits in the

run; if the bits are 0, then k = −m; if they are 1, then k =m− 1. Most processors can “find first

1” or “find first 0” in hardware, so decoding logic for regime bits is readily available. The regime

indicates a scale factor of useedk, where useed = 22
es

. Table 2 shows example useed values.

Table 2. Table 1. The useed as a function of es

es 0 1 2 3 4

useed 2 22 = 4 42 = 16 162 = 256 2562 = 65536

The next bits (color-coded blue) are the exponent e, regarded as an unsigned integer. There

is no bias as there is for floats; they represent scaling by 2e. There can be up to es exponent

bits, depending on how many bits remain to the right of the regime. This is a compact way of

expressing tapered accuracy ; numbers near 1 in magnitude have more accuracy than extremely

large or extremely small numbers, which are much less common in calculations.

If there are any bits remaining after the regime and the exponent bits, they represent the

fraction, f , just like the fraction 1.f in a float, with a hidden bit that is always 1. There are no

subnormal numbers with a hidden bit of 0 as there are with floats.

The system just described is a natural consequence of populating the u-lattice. Start from

a simple 3-bit posit; for clarity, fig. 3 shows only the right half of the projective reals. So far,

fig. 3 follows Type II rules. There are only two posit exception values: 0 (all 0 bits) and ±∞ (1
followed by all 0 bits), and their bit string meanings do not follow positional notation. For the

other posits in fig. 3, the bits are color-coded as described above. Note that positive values in

fig. 3 are exactly useed to the power of the k value represented by the regime.

J. L. Gustafson, I. Yonemoto

2017, Vol. 4, No. 2 73

Figure 2.3: The Posit Format

9

Although UNUM was first proposed as a replacement for IEEE, its hard design cost and
complexity has shortly been overruled by this hypothesis. Posit, however, has shown to be a
better competitor than UNUM for the IEEE standard. De Dinechin et al. [42] shows uses cases
for the posit system in machine learning, some Monte Carlo methods, and graphics rendering. In
other situations, posit formats present large degradations of accuracy than the IEEE counterparts.
Regardless, authors also assert that, for a new floating-point to displace the current specification,
tools, like compilers, must exist and can explore all properties and features of a new format. Yet,
compiler support for Posit types are scarce and have not shown to be openly included in any
mainstream infrastructure.

2.3.4 New FP Formats from a Compiler’s Point of View

The full exploration of IEEE formats was only possible through the integration between hardware
and the software stack, and compilers, capable of harnessing all the power of FP units. Having
defined formats and proposed their arithmetics do not guarantee their utilization unless powerful
tooling is also available. Effective ways to use programming languages are needed to drive novel
FP formats. Additionally, the integration of new FP formats with an optimizing compilation
flow is paramount for improving their productivity, and making use of FP units [23, 52, 69, 115]
that implement them.

Compilers must take into consideration format-specific attributes, and how they can efficiently
generate code for formats with different requirements. One must also verify how types are
impacted by classical compiler optimizations, as well as the need for new format-specific ones.
For instance, UNUM’s variable size is a challenge for memory management of data types in
compilers, and must not be overlooked.

Recent works evaluated the potential of UNUM and Posit formats in scientific computing [22,
65] as well as machine learning [28, 70]. However, the lack of an integrated compilation flow still
hinders the comparison of numerical benchmarks across formats, precision control schemes, and
hardware/software implementations. Languages, types, and code generation strategies integrated
with state-of-the-art compilers could enable a more thorough investigation of the impact of new
formats across the hardware/software stack.

This leads to the following question: How can one extend languages and provide compiler
support for new formats taking into consideration their singular properties?

2.4 Variable Precision as a New Paradigm for FP Arithmetic

The rise of new formats has also contributed to a further investigation of real numbers and FP
representations in real-life applications. Variable precision (VP) computing is emerging as an
alternative computing paradigm for the utilization of real numbers in computer systems. It
differentiates from mixed precision [12] by having a finer granularity that exceeds the scope of
IEEE formats. VP also offers characteristics similar to arbitrary-precision computing [49, 87]
as it is mostly used to address high-precision applications. However, while the latter targets
a platform for high-precision representations, VP embeds not only this platform but also a
programming scheme to explore formats, precision values, and ultimately, trade-offs between
accuracy/precision, and performance/energy. In other words, variable precision encapsulates
and generalizes the ideas of mixed precision with finer granularity, and arbitrary-precision
computing. In this work, we focus on the exploration of variable precision in high-precision
scenarios, although no restrictions are imposed for low precision.

10

This section walks the reader into the main concepts of VP. Then, it overviews the main chal-
lenges imposed to compiler and language designers for the provision of a full-fledged infrastructure
for VP exploration.

2.4.1 Problem with Precision Cherry-picking: Numerical Stability and Numerical
Accuracy

Most numerical algorithms and techniques for linear algebra are built upon continuous math-
ematics. The Newton-Raphson’s method (from equation [127]), Euler’s number calculation,
and other mathematical formulas expressed through the Mathematics’s limit of a sequence
term in convergence state have no exact representations in computer systems. Instead, their
discretization through finite representations adds a layer of complexity to the equation as only
approximate results can be computed.

There is no guarantee that those methods are fully compatible with discrete mathematics. In
particular, the chosen representation may preclude the convergence of the numerical algorithm,
an issue in the heart of numerical stability. Iterative methods for solving linear systems, which
will be discussed herein, are good examples of techniques where numerical stability may not
always be reached. The Gramschmidt method, denoted gram in Table 2.1, is an example of a
numerically unstable algorithm. In other cases, an algorithm may be convergent but deviates
from the expected value due to low numerical accuracy. Table 2.1 also shows that applications
3mm and covar have low numerical accuracy for large and extra-large data sets when using
IEEE 32 format and, thus, may produce unsatisfactory results for further utilization.

2.4.1.1 Quantifying Errors in Floating Points

Numerical analysis techniques can be employed to remedy issues of stability and accuracy in
applications. The idea is centered on analyzing the main sources of errors through backward
error or forward error analysis [64]. Backward error is the input error, commonly known as ∆x,
associated with the approximate solution to a problem. Forward error is the distance between
the exact solution of a problem and the produced value. Fig. 2.4a illustrates these relations.

Higham [64] shows that the relationship between backward and forward error is given by:

forward error ≈ conditioning× backward error (2.2)

where conditioning represents how a small change in the input reflects in the output. A system
is said to be ill-conditioned when a small change in the input results in a large change in the
output.

The use of backward and forward error analysis assess the nature of the accuracy and stability
problem of applications. Table 2.4b illustrates how they aid numerical analysts in the design of
more stable algorithms. For instance, an algorithm with small forward error and large backward
error is not sensitive to accuracy, so there is no need to reduce its backward error. On the other
hand, a problem is considered ill-conditioned when it has a small backward error and a large
forward error. In this case, a new implementation is unlikely to improve stability, and methods
to reduce its conditioning factor should be preferred (we will cover this topic in another chapter).

Additionally, an algorithm with large forward and backward errors can potentially improve
accuracy with a new implementation that minimizes the backward error. It is likely that the
forward error is strongly connected to the backward error of the application. However, not only
is it nontrivial to devise a new algorithm for a certain problem, but it may also be difficult to
precisely analyze their sources of uncertainties even with the availability of tools to perform it.

11

x

x + 𝝙x

𝑓(x)

𝑓(x + 𝝙x)

Computed
Forward errorBackward error

Exact

Exact

(a) Backward and forward errors [64]

Forward Error Backward Error Analysis
Small Small Problem has a good implementation
Small Large Not sensitive to accuracy
Large Large May increase accuracy with new implementation

Large Small Ill-conditioned problem.
Unlikely to improve only with new implementation

(b) Backward and forward error analysis: what could we do?

Figure 2.4: Relationship between backward and forward errors.

2.4.1.2 Augmenting Precision to Remedy Stability

As an easier-employable alternative, numerical stability and accuracy issues can also be solved
by augmenting the computation precision in use5. This procedure is equivalent to lowering the
quantification step, formally known as unit in the last place (ulp) or u, between two representable
FP values [91]. Although u is directly connected to numerical stability and accuracy, it is often
more practical to make use of the relative error ε (given by f(x+∆x)−f(x)

f(x) or ∆y
y) so as to estimate

how numerically stable an algorithm or a solution to this algorithm is.
In the general case, working with a smaller ulp automatically leads to better accuracy and

stability (although Higham 2002 [64] shows that is not always the case). A question we may
want to ask is: which value of u to use if we want to guarantee a minimum relative error ε? Or
reformulating the question to a computer scientist: which precision can we use to guarantee
stability and accuracy?

Considering there is no unique precision value that fits all targeted applications, variable
precision (VP) computing can be used as an exploration tool to search for the most suitable
solution for the stability of kernels or applications. Equally important, different representations
or formats can take advantage of this paradigm, i.e., there might not be a right solution for a
single problem. Input data that generate large numbers benefit from wide-range FP formats,
while others may not have this same requirement.

Linear algebra algorithms have the potential to take advantage of precision alternation and
hint at being an interesting investigation venue for VP approaches and techniques [16].

5Numerical analysis and augmenting precision are not mutually exclusive methods of stability/accuracy
resolution. They can potentially be used in combination. However, this subject will not be discussed herein.

12

50 150 250 350 450 550 650 750 850 950
Precision in bits

100

200

300

400

500

600

700

800

Nu
m

be
r o

f I
te

ra
tio

ns

bcsstk01
bcsstk03
bcsstk04
bcsstk05
bcsstk22

Figure 2.5: When applied on different MatrixMarket [24, 86] matrices, the number of iterations
for the conjugate gradient (CG) algorithm decreases when precision augments. This experiment
aims to show the usage of variable precision in a real-life application.

2.4.2 Linear Algebra from the Variable Precision Perspective

Linear algebra kernels are the actual working engine underneath many scientific applications.
They are widely used in most modern software for physics, molecular chemistry, structural
engineering, and many other scientific fields. The most representative kernel is the linear solver,
which computes the solution vector x for a linear system given by Ax= b. Each solver of this
linear system is a delicate trade-off between computing complexity, memory occupancy and
numerical stability. Within the last decades, considerable research in that area has provided
hundreds of interchangeable libraries which diversely address those three criteria [43]. In some
cases, the choice of the appropriate method is left to the scientist. In other cases, he/she may
even be left with trial experimentation for selecting the most appropriate method.

Among the algorithms to solve this ubiquitous problem in scientific computing, direct solvers
such as Gaussian elimination or Cholesky propose to find the exact solution of a linear system
using a finite number of steps/operations, while iterative linear solver methods aim at finding an
approximate solution to the problem that stays within a threshold limit. Due to the growth
in the size of the linear systems to be solved, the latter have gained importance, and they are
now often preferred in many applications due to their low memory occupancy: typically with an
O(N) memory cost rather than O(N3) for direct methods.

This improvement comes at the expense of numerical instability. For example, these methods
tend to accumulate more round-off errors than their direct counterparts. There are compensation
techniques for restoring stability, such as preconditioning, or reorthogonalization, but they may
be impractical for the memory cost of computational complexity. Increasing the precision of
arithmetic computations can be used as a powerful alternative to address this problem. The
impact on the computation is twofold: (1) to accelerate the convergence of the iterative algorithm,
and (2) to avoid the need for complex compensations techniques.

The exploration of variable precision through high-precision representations becomes im-
portant as applications are not only dependent on the algorithm itself. Input data can also

13

impact its accuracy and final results. Figure 2.5 shows an example of the conjugate gradient
(CG) algorithm, an iterative solver for linear systems, executed for different MatrixMarket [24,
86] matrices. One can observe that input data, and precision impact the number of iterations
needed for the algorithm to converge. There is no exclusive value of precision that fits all
cases in a common application since the input data also influences the number of iterations
needed for convergence. Therefore, the investigation of variable precision is still limited by the
availability of hardware, and high-performance libraries for numerical analysts, but perhaps
above all, languages and compilers.

2.5 Languages and Data types
Previous sections of this chapter summarize different issues regarding stability, precision, FP
representations, and their relation with programming languages, and/or compilers. Section 2.2
describes precision and accuracy, and how it can be cumbersome to verify this relation with
state-of-the-art tools. Section 2.3 illustrates some of the FP formats available nowadays and
their use, while Section 2.4 covers aspects of numerical stability, and how precision variation
could potentially be an asset for linear algebra kernels. It also comes downs to how programmers
or numerical analysts can develop algorithms to minimize computational errors in the output,
and how programming languages, data types, and compilers can provide the properties needed
for this exploration.

A largely relevant reason why languages have not explored VP yet is the recent realization
of the potential of variable precision in many fields [16]. Admittedly, researchers have always
been keen on precision control. However, the rise of new formats has given further motivation
on the matter. With the state-of-the-art apparatuses, varying precision in applications can be
achieved in different ways:

(1) Mixed precision [12] offers little flexibility for precision variation with the great advantage
of compiler and hardware support for traditional IEEE formats. This greatly increases
user productivity with a programming model that is simple and efficient. But it is still
limited to the lack of support for other representations, such as UNUM and Posit.

(2) Multi-precision software libraries, such as MPFR [49] and GMP [54], and MPFun [15],
yield to higher performance cost than mixed precision, but offer a larger flexibility with a
bit-wise mantissa configuration. Due to the programming model imposed by these libraries
written in C and Fortran, higher-level programming languages (Julia, Python and C++,
among others) provide wrappers to ease their use, with an additional cost in performance.

(3) Other representations have been explored mainly through libraries [82, 83, 84]. There are
software implementations for UNUM, and Posit formats, but the lack of integration with a
compiler hinders the exploration and performance improvement of these formats in real-life
applications.

David Bailey, a well-known mathematician and computer scientist, states, in a recent publi-
cation [16], that existing software facilities for variable precision computations are rather difficult
to use, particularly for large, computationally demanding applications. Existing languages have
no direct syntax and semantics for the variation and dynamic precision. Programmers must
rely on high-level language (HLL) abstractions to implement data structures capable of this
handling. The composite data type struct can be used in C-based languages for that purpose.
In objected-oriented languages like C++, Rust and Java, one may implement them as class
abstractions. Even dynamically typed languages, such as Julia and Python, would rely on
high-level abstractions to express the syntax requirements for variable precision. Programming

14

languages have yet to offer extensions to handle variable precision capabilities by default. And
yet, none of the aforementioned abstractions has a syntax that could benefit from hardware
support.

Along with the language support, it is paramount that a specific type (or a type system) be
able to drive all properties that come along. Programming languages are not normally equipped
with types that allow this flexibility, i.e., variation of the precision in any simple fashion. A
concise semantics must allow simple reusability, which is difficult to express using dynamic
typing of any kind.

Equal importance should be given to the runtime requirements for dynamic precision code.
A feature that clearly favors HLL abstractions is precision genericity, i.e., users can hide the
precision value in data structures so that it is only evaluated at runtime. This allows one to
write code that is precision-agnostic. By looking back at programming languages and their types,
one may notice that this requirement are only possible through the abstractions mentioned
previously. In those languages, there are no data types that are able to express this requirement,
including how to properly manage the memory of types that are not inherently constant-sized.

Additionally, even the implementation of a type system with these requirements in a lower-
lever language would greatly benefit HL languages. Python and Julia are inherently dependent
on lower-level languages through code binding. As example, TensorFlow [1] is implemented in
C++ and mostly used by Python users. Thus, even HL languages require low-level abstraction
for the generation of highly optimized code and libraries.

2.6 Compilers and Optimizations
Compilers and optimizations also play a central role as an interface between programming
languages and powerful hardware architecture. Performance improvements in VP computing,
and novel FP representations, pass through the integration with an optimized, state-of-the-art
compiler infrastructure. IEEE standard formats have long been supported by industry-standard
compilers, like the GNU C Compiler [113], and LLVM [76]. Few FP representations or types,
however, have seen their support integrated into standard compiler toolchains. Akkaş et al.[5]
proposed intrinsic compiler support for intervals in GCC in order to accelerate the execution of
interval arithmetic algorithms.

Compilers, similarly to programming languages, struggle with alternative FP formats, missing
on the essential, data-flow, control-flow and algebraic optimizations available for IEEE compatible
arithmetic. They also miss opportunities to leverage hardware implementations for alternative
FP arithmetic. As consequence, the exploration of variable precision, closely associated with
these formats, becomes difficult. The numerical analyst is left with the choice among HL
abstractions that cannot deliver the expected flexibility and performance, as explained in the
previous section.

There has not been any investigation of type systems for variable precision exploration
that includes proper compiler specialization. The challenge and implementation complexity are
twofold:

(1) At runtime, compilers have similar constraints as programming languages: a variable
precision model should allow algorithms to be written in a precision-agnostic model, which
implicates in a novel type system not compatible with current architectures. It also compels
such a type system to be, in some way, dynamic. This implies a more complex memory
allocation strategy, as type declarations may not always infer variables with fixed (and

5Except for binary16 which was only introduced by the IEEE committee in 2008. Compilers nowadays can
support half type for binary16, and Google’s bfloat data type, both 16-bit representations.

15

constant) sizes. While this is not a novelty to many languages, its integration with a
compiler has not been shown yet.

(2) At compile time, implementations of these type systems must make the most of what is
already inside the infrastructure. The myriad of optimizations available should be reused,
or revised so that new types can still profit from them.

• Multi-precision FP libraries offer the flexibility to handle many variations of real
numbers. However, they introduce performance overheads due to the lack of compiler
support. This prevents optimizations easily explored by traditional IEEE formats,
namely, constant propagation, loop nest optimizations, inlining opportunities, and
many more. Compiler integration and compatibility to classical optimizations can
potentially harness the power of these libraries, and eliminate some of these overheads.
Practically, this integration imposes an implementation challenge to properly typify
their properties. This has yet to be proven in a well-established compiler toolchain.

• As new FP formats emerge, hardware implementations were proposed to drive their
arithmetics. Equally important is their interaction with compilers and classical
optimizations. New optimizations may also be devised to enable compiler integration,
and classical ones may need to be enhanced to handle different scenarios. For example,
constant propagation, instruction selection, and register allocation should take into
consideration not only the format itself but also the characteristics of the hardware
and architecture in use.

• The handling of precision-agnostic code should be largely integrated with classical
optimizations so that types with these properties can also be boosted in performance.
Additionally, code generators in compilers should grant these types an interface
to specialized hardware units, enabling the acceleration of formats with variable
footprint.

All these requirements are far-fetched from today’s compilers. Variable precision, although
can be studied without much of the help of a compiler, would greatly benefit from it. The
implementation of compilers that support dynamic type systems is also significant for HL
languages. This specialization grants these languages a low-level substrate to which they can be
bound, and thus enables a tighter integration with a downstream compilation flow.

Furthermore, there is a complementary aspect of the importance of language and compiler
integration: memory utilization. The memory wall [123], speed disparity between outside-chip
memory and processor, has long affected the performance of computer systems. From a variable
precision perspective that can deeply rely on multi-precision FP libraries, the urge to optimize
memory usage is imminent and paramount to performance. The use of high-precision formats
incurs an additional memory overhead imposed by high-level data structures used in declarations.
For instance, MPFR uses a 32-byte6 struct to represent values, an increase of 16× when
compared to IEEE 128-bit format7. The lack of specific register allocation support may also
augment the use of temporary values and, by consequence, significantly increase memory usage.
Language and compiler integration can contribute to mitigating the effect of memory usage on
high-precision formats, and this is, in fact, one of the main long-term goals and benefits of this
work.

6In a 64-bit machine like x86-64, where sizes of pointers and integers types are 8 bytes.
7The value is calculated without considering the mantissa field. Thus, 32/2 = 16, since 32 bytes are needed

for MPFR, and 2 bytes (1 sign bit and 15 exponent bits) are required for IEEE 128-bit format.

16

2.7 Conclusion
This chapter presented the main motivations for this work and put into perspective the issues
vis-à-vis compiler and language support for alternative formats, high-precision representations,
and at last, variable precision computing. Although this thesis does not aim to prove the full
potential of variable precision computing, but rather show the means to its exploration, we
briefly show that linear algebra is a likely candidate to benefit from it. Better compiler and
language integration are needed since the software abstraction still highly depend on library
implementations, which are difficult to use, prone to errors, and inefficient if not used wisely.

Hence, this thesis will try to answer questions in two categories:

(1) Languages, Compilers and Data types

• How can languages and compilers be used to accelerate and improve the productivity
of multi-precision FP libraries? Can one improve the integration between compilers
and these libraries to take better advantage of classical compiler optimizations?

• How can one extend languages and provide compiler support for new formats taking
into consideration their singular properties?

• What are the compiler and optimizations requirements to support an FP type system
with runtime capabilities? How can compilers provide proper memory management
for these types?

(2) Variable Precision Computing

• Can variable precision serve as an interesting exploration paradigm in the context of
numerical algorithms?

The following chapters of this document are intended to answer the questions set out above.

17

Chapter 3: Programming Languages,
Paradigms for FP Computation and

exploration Tools

Contents
3.1 Computing paradigms for floating-point arithmetics 19

3.1.1 Mixed precision computing . 20
3.1.2 Arbitrary precision . 20

3.2 Exploration Tools (Hardware and Software) . 23
3.2.1 Software for Alternative FP Formats . 23
3.2.2 Precision-Awareness, Auto-Tuning, and Numerical Error Detection . . . 24
3.2.3 Software for Scientific Computing Exploration 25
3.2.4 Characteristics of the Hardware Implementation of Variable Precision

FP Units . 27
3.3 Conclusion . 29

This chapter will discuss the main state-of-the-art concepts and work that give basis to this
thesis. It will be divided into two main categories: (1) computing paradigms that cover the main
ideas and approaches for the efficient use of real numbers, and (2) hardware and software solutions
within the context of new representations, along with libraries and techniques that contribute
to widening the exploration tooling. The former relates to the thesis since it overviews how
different paradigms handle precision control, its flexibility, and exploration potential, important
to justify our design choices, and implementation decisions of following chapters; while the latter
summarizes the main contributions to the exploration of new representations, and how they can
potentially be used in a broader context.

3.1 Computing paradigms for floating-point arithmetics
Having representations for real numbers available by themselves is often not enough to provide
the functionality or performance/energy needed by the user. In other words, assigning float,
double, or __float128 types in applications (pseudo)randomly may offer meaningful results,
but applications might not reach the expected performance and/or energy; or even worse,
applications may execute fast, but results are out of bounds and do not reach expectation.
Essentially, users are confronted with trade-offs between accuracy and performance/energy.
Besides, indiscriminate use of large-footprint types can have a negative impact on memory usage,
and as consequence, performance.

Although computing paradigms for FP arithmetics extends to many approaches (exact
computing [87, 126], interval arithmetics [90, 100] and other alternative methods [9, 68], we

19

will focus on two principal paradigms that lay the foundation of variable precision computing:
mixed precision and arbitrary precision.

3.1.1 Mixed precision computing

The mixed precision computing paradigm [12] involves the combination of IEEE FP types in
order to provide sufficient output accuracy and compatible hardware support. The paradigm
main focus is to find the right balance between IEEE types and numerical stability, prioritizing
reduced-precision formats (binary16 and binary32) over higher-precision ones (binary64) and
harnessing an increased computer power on applications. Its main benefit lies in the performance
boost and energy reduction it can achieve, considering that 16-bit and 32-bit operations can
execute more than 2× faster than their 64-bit counterparts, and reduce data movement due to
small data types.

It has been widely explored in linear solver methods for high-performance computing (HPC)
in conjunction with the iterative refinement process, a long-standing technique to improve the
accuracy of a computed solution by applying a correction factor to the final solution. The
approach is based on Newton-Raphson’s method [127]:

xn+1 = xn− f(xn)/f ′(xn) (3.1)

which enables lower-precision solutions to be refined to the same accuracy as higher precision.
Baboulin et al. [12] present an approach to mixing 32-bit and 64-bit floating-point arithmetic

and iterative refinement in direct and iterative methods for solving a linear system of equations.
It argues that the reduction of data movement to/from the memory compensates the refinement
process, and makes iterative refinement a valuable approach for linear solvers. The combination
of these two techniques yields performance results that are comparable to a full single (32
bits) precision solver while still delivering the same accuracy as the double (64-bit) precision
implementation.

The reduction of data movement in memory, computations cost in low precision, and suitable
accuracy are the principal reasons why mixed precision and iterative refinement are being
employed together. The literature is extensive on the exploration of these techniques together.
Carson and Higham [29] accelerate GMRES (an iterative solver for linear systems) by iterative
refinement employing three levels of precision (16, 32, and 64 bits). Adding another additional
level of precision reduces communication with the memory even more, and improves performance
even further. GPUs have also been used to explore these techniques [2, 59, 60, 61], confirming
their potentials and benefits.

Nevertheless, a major drawback of these approaches stems from the lack of flexibility vis-à-vis
FP types in use. They only work with a limiting number of types, at best binary16, bfloat,
binary32, and binary64, and, thus, hinders the exploration of other representations. Lee et
al. [79] goes further by controlling and adapting precision dynamically in FPGAs, which can
achieve up to 2–3× speedups over other mixed precision techniques.

3.1.2 Arbitrary precision

Arbitrary precision extends the idea of FP operations to formats that go beyond the scope of
the IEEE standard. Unlike mixed precision, it may offer gradual and bit-level customization
of exponent and mantissa values, which makes arbitrary precision an excellent tool to explore
the impact of precision in applications. In order to offer such flexibility, arbitrary precision
toolchains have the downside of being much slower than mixed precision solutions, as they have
to resort to software implementation rather than taking advantage of hardware-specific FP units.

20

typedef struct {
int _mpfr_prec ;
int _mpfr_sign ;
int _mpfr_exp ;
int * _mpfr_d ;

} __mpfr_struct , *mpfr_ptr , mpfr_t [1];

Listing 3.1: MPFR variable type as defined in [49]

1 void mat_mult (mpfr_t *matResult , mpfr_t *matA , mpfr_t *matB ,
2 unsigned dim1 , unsigned dim2 , unsigned dim3 ,
3 unsigned precision) {
4

5 mpfr_t sum;
6 mpfr_init2 (sum , precision);
7 mpfr_t tmp;
8 mpfr_init2 (tmp , precision);
9 mpfr_set_d (sum , 0.0, MPFR_RNDN);

10

11 for (unsigned i = 0; i < dim1; ++i) {
12 for (unsigned j = 0; j < dim3; ++j) {
13 for (unsigned k = 0; k < dim2; ++k) {
14 mpfr_mul (tmp , matA[i*dim2 + k], matB[k*dim3 + j], MPFR_RNDN)

;
15 mpfr_add (sum , sum , tmp , MPFR_RNDN);
16 }
17 mpfr_set (matResult [i*dim3 + j], sum , MPFR_RNDN);
18 mpfr_set_d (sum , 0.0, MPFR_RNDN);
19 }
20 }
21 mpfr_clear (sum);
22 mpfr_clear (temp);
23 }

Listing 3.2: Usage of the MPFR library in a matrix multiplication example

Ada [78], Fortran (MPFUN [15]), C (MPFR [49] and GMP [54]), and Cuda (Campary [71]) are
some of the programming languages for which arbitrary precision libraries were implemented.

3.1.2.1 MPFR Multi-precision library

MPFR [49] is the state-of-the-art multi-precision (or arbitrary-precision) library for floating
point computations, allowing bit-wise control of precision values. It was created as an effort to
provide floating-point operations with as much precision as necessary, without needing hardware
support. Although it makes use of GMP internally, precision values of MPFR variables have
the exact number of bits requested by the user, which is not true to its counterpart. It uses a
regular base-2 notation in the form of ±1×mantissa×2exponent, where the value of mantissa is
only limited by the amount of memory in the system, and exponent takes a type according to
the machine word (32 or 64 bits), which gives enough dynamic range to represent essentially any
real number needed [26].

An MPFR object is of type __mpfr_struct, as illustrated in Listing 3.1. Its API follows
the pattern mpfr_op(dest, src1[, src2, ...,][rounding mode]), in which the dest and src
parameters are mpfr_ptr. Op can be a basic operation (+,−,×,÷), a fused operation (fma, fms),

21

1 void mat_mult (unsigned prec , mpfr_float *matResult ,
2 mpfr_float *matA , mpfr_float *matB ,
3 unsigned dim1 , unsigned dim2 , unsigned dim3) {
4

5 mpfr_float :: default_precision (prec);
6 mpfr_float tmp;
7 for (unsigned i = 0; i < dim1 , ++i) {
8 tmp = 0.0;
9 for (unsigned j = 0; j < dim3; ++j)

10 for (unsigned k = 0; k < dim2; ++k)
11 tmp = matA[i*dimi2 + k] * matB[k*dim3 +j];
12 matResult [i*dim3 + j] = tmp;
13 }
14 }

Listing 3.3: Usage of the C++ Boost library for Multi-precision in a matrix multiplication
example

or one of many possible mathematical functions (n√,cos,sin, log, ...). The parameters may have
different exponent and precision sizes, and the destination parameter can be identical to a source
parameter. They need (destination included) to be allocated and have their precision defined
with mpfr_init before being used and freed with mpfr_clear once useless. These functions
have a high-performance penalty and should thus be called wisely. The value of an MPFR
variable is set using mpfr_set, which is useful in particular for spilling variables. Listing 3.2
shows the code for a simple matrix multiplication implemented in MPFR. One can notice how
verbose MPFR coding is, even for simple algorithms. MPFR’s programming model, although
simple to use and efficient, is error-prone to memory management, as programmers are in charge
of allocating and freeing resources.

Due to its popularity, MPFR has been widely used in high-level language abstractions, such
as in the C++ Boost library for multi-precision arithmetic [85], MFPI [101] and CGAL [48], as
well as in dynamic languages like Julia [19] and Python [117]. They provide high-level features
(through classes and dynamic type systems) that abstract allocations and deallocations away
from programmers.

3.1.2.2 C++ Boost for Multi-precision

As an example, listing 3.3 illustrates the implementation of the same matrix multiplication
algorithm using the Boost Multi-precision library. Except for the function default::precision
that sets up the current precision, the compiler handles object allocations and deallocations,
and the creation of intermediate temporaries, similar to an ordinary integer or floating-point
variable declaration. However, these abstractions draw an additional overhead to the library
that can compromise its performance even more.

Compilers have supported and are able to optimize floating-point types (IEEE types in
general) for a long time. However, the lack of compatibility between compilers and library-defined
FP representations, like MPFR, is still a major challenge. Better integration with compilers
would allow faster execution, as well as improve the productivity of these libraries.

3.1.2.3 Dynamic-typed Languages: a Julia example

As an alternative to the high-level abstraction provided through classes, dynamic-typed languages
like Julia are more versatile, using a flexible type system that leaves type evaluation until runtime.

22

1 function mat_mult (matResult , matA , matB , dim1 , dim2 , dim3)
2 for i = 1: dim1
3 tmp = zero(typeof (matResult [1, 1]))
4 for j = 1: dim3
5 for k = 1: dim2
6 tmp = matA[i,k] * mat[k, j]
7 end
8 matResult [i,j] = tmp
9 end

10 end
11 end

Listing 3.4: Implementation of matrix multiplication example in the Julia language: its dynamic
type system hides the types of variables until runtime evaluation

This means that programmers are not obliged to specify the types of variables, and instead,
types are only evaluated and check at runtime. Listing 3.4 exemplifies the power of Julia’s type
system. One may notice that no information type has been given, and the type for each of the
variables will only be known at runtime.

As such, Julia’s type system has a property that greatly benefits the exploration of new
types, and representations: precision genericity. Sections 2.5 and 2.6 in Chapter 2 shows that
variable precision computing can leverage the use of precision-agnostic code, and hence, enabling
a type system that resembles Julia’s is highly demanding and beneficial.

3.2 Exploration Tools (Hardware and Software)

Variable precision computing and its applicabilities intersect with different research topics
and approaches. Alternative FP formats widen the design space exploration on appropriate
representations for real numbers. Many researchers have proposed frameworks and tools to
explore the impact of different representations in real-life applications. Complementary, the
study of precision-awareness approaches have highly contributed to make accuracy a mainstream
constraint in many fields, and it collaborates to give significance to variable precision computing.
Additionally, it is paramount that new libraries and hardware architectures drive the variable
precision paradigm to compete with existing models.

In the remainder of this chapter, we focus on giving the reader an overview of the state-of-
the-art in all these topics. We start by presenting some software for alternative FP formats,
including UNUM and Posit tooling. After, we cover methods to enable precision awareness and
the detection of numerical errors. An introduction to BLAS and LAPACK is later presented.
We conclude by showing hardware implementations used to improve the numerical stability and
numerical error in applications, and the compiler or software support proposed for the usage of
each unit.

3.2.1 Software for Alternative FP Formats

State-of-the-art compilers like GCC and LLVM have started to include support for a few non-
standardized FP formats, from Google’s bfloat16 and Intel’s extended precision to POWER9
double-double. Although proprietary compilers for Posit formats already exists, no much is
known about the hardware, ISA or the compiler toolchain available. Instead, many work focus
on providing infrastructure for the exploration of alternative formats.

23

Tagliavini et al. [114] propose FlexFloat, a software library designed to aid the development
of applications with fine-grained precision configuration. Unlike MPFR, FlexFloat enables
bit-width control of both mantissa and exponent fields, reducing the FP emulation time. It
achieves a significant performance speedup in comparison to other FP emulation libraries because
it leverages native type support for float and double types. It later performs a user-transparent
sanity check to guarantee that calculated values are representable in the specified type. FlexFloat
has no support for high-precision representations, and although it could be extended, it still
cannot be used with the same flexibility as MPFR.

Anderson et al. [6] also take a similar approach as FlexFloat by proposing a set of non-
standard byte-aligned FP types refer to as flytes, that still leverages native IEEE types. The
proposed scheme reduces the cost of data transfer volume and storage space requirements by
using reduced-precision representations in memory, while it still enables acceleration through
existing hardware vector units of general-purpose processors. However, it still suffers from
overheads imposed by format conversions, since operations are still highly dependent on IEEE
formats. Similar to the previous work, it lacks support for high-precision representations which
limits its utilization scope.

There are also work that focus on the implementation of format-specific software libraries.
SoftPosit [84] is a software implementation of posit types that conforms to the specification as
defined in [58]. It borrows many ideas from the original IEEE-complaint Berkeley SoftFloat
library [62], and has been used to compare the accuracy of posit to IEEE types [32]. Software
implementation for the UNUM formats had also been proposed [83], but it is certainly less
popular than SoftPosit due to the significant complexity of the UNUM representation.

Other researchers have focused on investigating the arithmetic design space of hardware
units with alternative numerical representations. Johnson [70] uses tapered encodings from
the posit format, logarithmic number system (LNS) [9, 74], and kulisch accumulator [75] to
design an accelerator that is effective for convolutional neural networks (CNNs). The work finds
inspiration in previous research and shows momentum to explore alternative representation and
repurpose ideas.

Lindstrom et al. [81, 82] propose a modular framework for representing real numbers that
generalize posit, IEEE and other floating-point number systems. Similarly, Omtzigt et al. [93,
94] present a high-performance number systems library for the exploration of custom number
systems, from tapered types to arbitrary floating points, with support for reproducible arithmetic
computation in concurrent environments. Additionally, all the recent publications w.r.t. custom
formats, their applicability, and hardware implementations show interesting opportunities for
extending the role of compilers to novel numerical systems.

Nevertheless, none of the aforementioned work has all properties needed for variable pre-
cision exploration. Anderson et al., Tagliavini et al. [6, 114] lack support for high-precision
representations, and others [82, 94, 114] provide no hardware support. There is no solution
that combines a language scheme for multiple representations, compiler integration capable of
software or hardware compatibility.

3.2.2 Precision-Awareness, Auto-Tuning, and Numerical Error Detection

The variety of numerical errors in floating-point formats has often led developers to choose
data types that deliver sufficient accuracy but poor performance. For instance, the performance
difference between using float and double can be up to 2× in favor of the former. Precision-
aware schemes can be used to detect and debug numerical errors in applications, and auto-tuning
techniques propose to find the right compromise between enough accuracy and speed. We
overview some of the main schemes and techniques for precision awareness and auto-tuning.

24

Ansel et al. [7] propose language extensions to expose accuracy choices to the user, allowing
the user to incorporate trade-offs between time and accuracy directly at code level. Once
accuracy information is set by the programmer in the PetaBricks programming language [8], the
compiler and auto-tuner employ a genetic algorithm approach to search valid candidates that
meet the desired accuracy. The scheme uses a source-to-source compiler from the PetaBricks
language to C++, so its limitation is directly influenced by this integration. Its auto-tuning can
be further improved if C++ data structures or types were to allow a fine-grained accuracy con-
figuration. Moreover, this work has widely known as a viable software approach for approximate
computing [125].

Darulova et al. [40] presents a programming model, specification language, and compilation
algorithm that guarantees to meet the desired precision with respect to real numbers.

Precimonious [102] is a dynamic program analysis tool aimed to assist programmers to tune
the precision of FP applications. It relies on user-input configuration files in order to specify
which variables in code can be submitted for auto-tuning analysis. The algorithm iteratively
searches for suitable sets of types within the specified files and variables that are satisfiable
within an error threshold. Precimonious uses a more modern design since it is built on top of
LLVM, so it can potentially be used for a wider range of programming languages in different
architectures.

Herbie and Herbgrind [96, 105] are two related tools to help developers identify and address
root causes of numerical instability in applications. Many works have proposed to use shadow
program execution to measure numerical errors in applications. Rubio-Gonzales et al. [103]
minimizes Precimonious’s analysis time through multiple shadow executions. Chowdhary et
al. [33] employ shadow execution to detect and debug errors in posit formats by relying on
high-precision values. And more recently, NSan [38] has been proposed as a new sanitizer for
locating and debugging floating-point numerical issues, fully integrated into the LLVM sanitizer
infrastructure.

All of the work described in the above paragraphs are great examples of how compiler
support for alternative formats can be beneficial. The limiting number of FP types natively has
a negative impact on the interaction of these work with the compiler.

3.2.3 Software for Scientific Computing Exploration

During the decades before the 2000s, the very active research in computational physics, and
others fields, drove the development of standard and efficient FP libraries. Two of the most
important software technologies put forward were the design and specification of the Basic Linear
Algebra Subprograms (BLAS) and the Linear Algebra Package (LAPACK).

3.2.3.1 Basic Linear Algebra Subprograms (BLAS)

Mixed precision techniques, as described in 3.1.1, took great advantage of the Basic Linear
Algebra Subprograms (BLAS), a set of standardized linear algebra routines that are intended to
be reliable, fast, and portable. It specifies the arithmetic computational routines which perform
common linear algebra operations such as vector addition, scalar multiplication, dot products,
linear combinations, and matrix multiplication. It is further structured in three categories,
according to their complexities.

Level 1 defines a set of linear algebra functions that operate on vectors only. These functions
share the form:

y← αx+ y (3.2)

where α is a scalar and x,y are vectors

25

Level 2 functions are matrix-vector operations, such as multiple variations of the matrix-vector
product operation. These functions share the form:

y← αAx+βy (3.3)

where A is a Matrix, α,β are scalars and x,y are vectors
Level 3 functions are intended for matrix-matrix operations. Typically, these functions

perform O(N3) operations on O(N2) data, therefore the algorithm structure, i.e. its interaction
scheme between FPU and memory, is decisive for performance, but it is still very specific to the
platform it runs on. Most of these functions share the form:

y← αA×B+βC (3.4)

where A,B,C are matrices, α,β are scalars.
The original BLAS implementation ([77]) is the reference for the arithmetic operations

involving vectors and matrices. As a sequel of the original work, several variants have been
developed: OpenBLAS [124], Intel Matrix Kernel Library (MKL) [120], and ATLAS [122]. All of
these libraries are tailored for standard precision (and support multiple degrees of parallelism),
and no high-precision specification of any kind is given.

The design of XBLAS [80] is the first attempt on the design of a representative subset of
BLAS routines that internally operate in extended precision (80- or 128-bit representations).
Internal extra digits can aid the reduction of accumulated round-off errors and cancellations
and can justify the use of slower operations. External operands and function signatures are still
similar to classical BLAS routines and are easily adaptable to the proposed library. While many
functions, such as dot products, matrix-vector products, matrix-matrix multiplications, can be
improved with internal extra precision, others struggle to make them worth using. Particularly,
scaling matrix or vector by a constant, vector additions, and computing norms of vectors and
matrices have shown no benefit of internal operating digits. From the perspective of adjusting
precision dynamically, however, XBLAS still hinders exploration by disallowing multi-precision
computation.

MPACK [92] goes further on the development of a true arbitrary/higher-precision linear
algebra (MBLAS). The library supports many multi-precision libraries, like MPFR [49], GMP [54],
QD [17], as well as IEEE 754 binary128, and uses similar function signatures as the traditional
BLAS implementations. MPACK is the project that perhaps best captures a multi-precision
BLAS, with the significant drawback of neither having full hardware support nor a friendly
interface to interact with compiler optimizations.

The BLAS-like Library Instantiation Software (BLIS) [118] framework was proposed as a
new infrastructure for rapid instantiation of BLAS functionality. The framework shows that it is
possible to express all level-2 and level-3 BLAS operations in terms of a few simple kernels, and
thus, it accelerates the instantiation of BLAS-like operations. By isolating BLIS operations to
few kernels, BLIS may aid those who wish to auto-tune operations for high performance.

In the previous chapter, we show VP computing as a use case in the context of linear algebra.
Hence, a VP-specific BLAS library implementation would also contribute to the study of the
trade-off between precision and other constraints (energy, execution time, number of iterations,
etc.) in many fields. While this is already achieved with MBLAS from MPACK, its use of
high-level structures means there are no support in compilers, or hardware specialization, which
translates to significant performance overheads in comparison to other hardware-compatible
BLAS libraries.

26

3.2.3.2 Linear Algebra Package (LAPACK)

The Linear Algebra Package (LAPACK) library is an effort to design and implement high-
performance routines for solving linear systems and eigenvalue problems and finding least-
square solutions of systems of equations. It also provides matrix factorization algorithms (LU,
Cholesky, QR, SVD, etc) that are needed by other routines in the library. LAPACK routines
are implemented by relying on BLAS. Block algorithm techniques [44] are employed to improve
the locality of matrices and accelerate the code executed.

Other relevant projects associated to LAPACK are the Matrix Algebra on GPU and Multicore
Architectures (MAGMA) [116], a LAPACK library for heterogeneous/hybrid architecture,
ScaLAPACK [20] that targets distributed-memory platforms, and the Parallel Linear Algebra for
Scalable Multi-core Architectures (PLASMA) [27]. MPACK also implements an arbitrary/high-
precision library for LAPACK kernels, MLAPACK. However, the library also suffers from the
same issues encountered in MBLAS, i.e, lack of hardware support, and no compiler integration.

3.2.4 Characteristics of the Hardware Implementation of Variable Precision FP Units
Compilers and languages can certainly work as enablers to expand the use of new computer
architectures. As is the case of variable precision computing, there needs to be coordination
between the software, i.e, compilers and languages, and hardware targets. One must take
into account the specificities of the hardware in order to augment compiler support. The
following section presents three interesting work proposed within the context of variable precision
arithmetics. We then highlight their main aspects, and the software interface proposed to enable
their usage.

3.2.4.1 Round-off Error Minimization through Long Accumulators

Kulisch et al. [75] proposes a rather orthodox way of error-free calculations for FP arithmetic
through long accumulations, known as kulisch accumulator. A kulisch accumulator is a fixed-point
register wide enough to minimize the impact of round-off errors of FP arithmetic operations. It
aims to be used in long chains of arithmetic operations, such as dot products, in order to avoid
values to be rounded when stored back to memory.

Two major issues can be spotted in kulisch accumulators: (1) an accumulator can operate
only in a single chain of arithmetic operations at a time. Multiple accumulators would have to
be added for parallel use. (2) automatic detection of long accumulators by the compiler can
be implemented. However, it prevents the user from evaluating which set of operations need
additional accuracy, and hence, an unnecessary overhead is introduced. Still, the simple design
of a kulisch accumulator also inspired further exploration of these long accumulators in fused
operations of the posit arithmetic [58], which means that it can be used for multiple formats,
and integrated with different approaches.

3.2.4.2 A Family of Variable Precision, Interval Arithmetic Processors

Schulte et al. [107] presents a family of variable precision, interval arithmetic processors for
improved accuracy and reduced accumulation of errors. Contrary to previous architecture that
uses fixed-point arithmetic and relies on an internal accumulator to minimize round-off errors,
this work takes an orthogonal approach of using FP arithmetic, and a register file to allow
multiple operations at a time.

The operating mode of these processors depends essentially on the data type declarations
provided by the user in the program. Table 3.1 shows some of the supported data types. The
software interface is provided by class declarations of each type in a similar fashion as in the

27

Table 3.1: Some of the data types supported in Schulte et al. [107]

Data Type Description
vp_float Variable-precision floating point number
vp_vector Variable-precision floating point vector
vp_matrix Variable-precision floating point matrix
vp_interval Variable-precision interval
vp_ivector Variable-precision interval vector
vp_imatrix Variable-precision interval matrix

VPI software package [46], and provides support for arithmetic instructions and operations in
scalar types, as well as intervals. Although this solution is able to add specialized hardware
support for this family of processors, a major drawback lies in the lack of compiler integration to
enable classical optimizations for these types. C++ objects don’t provide the necessary low-level
abstraction for driving these new types to optimizations.

3.2.4.3 Scalar Multiple-precision UNUM RISC-V Floating-point Accelerator (SMURF)

Scalar Multiple-precision UNUM RISCV-V Floating-point Accelerator (SMURF) [23] is a
coprocessor built up on top of a RISC-V [121] Rocketchip architecture [11] that operates in a
variable precision fashion. As UNUM is a self-descriptive format, FP values in memory are store
using this format, while arithmetics operations execute in a regular base-2 scientific notation
form.

An important concept introduced with this coprocessor is the idea of the Maximum Byte
Budget (MBB), a value that is configured through control status registers and which limits the
size of the number stored in memory. The main idea behind MBB is to reduce the memory
footprint and memory pressure when dealing with high-precision numbers while maintaining
outputs within the same order of magnitude. Additionally, Working G-Layer Precision (WGP)
is the nomenclature adopted to the precision used in the coprocessor.

The coprocessor uses a scratchpad as a register file of 32 interval registers. By keeping values
within the register file, we are able to significantly reduce memory pressure. Each of these
interval registers has two endpoints divided in the header, containing sign, exponent, flags (NaN,
∞, zero, ...), and mantissa which is divided into 64-bit chunks of up to 512 bits (with a total of
8 chunks).

A RISC-V ISA extension, depicted in figure 3.2, was proposed in order to make use of
the coprocessor. The supported operations (12-14) are comparisons, addition, subtraction,
multiplication, interval midpoint (GGUESS) and interval radius (GRADIUS). Other operations
(e.g. division) are implemented in software. The ISA has three main features: (i) It supports a set
of instructions to control status registers for internal operation precision and MBB (mentioned
in the previous section),(1 - 4), etc.; (ii) It supports internal registers copies and on-the-fly
conversion among IEEE and gbound formats (5 -11); (iii) and it also has a dedicated Load
and Store Unit (LSU) with compatible instructions which handle misaligned memory accesses
(15-18).

The ISA extension proposed to help the integration between software and hardware. However,
no compiler specification is given, which prevents complex code execution. Language, compiler
and runtime support for the features presented in this work could further improve its use in
applications. Moreover, by using the values of MBB and WGP as knobs for the size of variables

28

Table 3.2: Coprocessor’s Instruction Set Architecture

31 25 24 20 19 15 14 13 12 11 7 6 0
0 func7 rs2 rs1 xd xs1 xs2 rd opcode

7 5 5 1 1 1 5 7
1 susr unused Xs1 0 1 0 unused CUST
2 lusr unused unused 1 0 0 Xd CUST
3 smbb/swgp/sdue/ssue unused Xs1 0 1 0 unused CUST
4 lmbb/lwgp/ldue/lsue unused unused 1 0 0 Xd CUST
5 mov_g2g unused gRs1 0 0 0 gRd CUST
6 movll/movlr unused gRs1 0 0 0 gRd CUST
7 movrl/movrr unused gRs1 0 0 0 gRd CUST
8 mov_x2g #imm5 Xs1 0 1 0 gRd CUST
9 mov_g2x #imm5 gRs2 1 0 0 Xd CUST
10 mov_d2g/mov_f2g #imm5 Xs1 0 1 0 gRd CUST
11 mov_g2d/mov_g2f #imm5 gRs2 1 0 0 Xd CUST
12 fcvt.x.g/fcvt.g.x unused Xs1 0 1 0 gRd CUST
13 fcvt.f.g/fcvt.g.f unused Xs1 0 1 0 gRd CUST
14 fcvt.d.g/fcvt.g.d unused Xs1 0 1 0 gRd CUST
15 gcmp gRs2 gRs1 1 0 0 Xd CUST
16 gadd/gsub/gmul gRs2 gRs1 0 0 0 gRd CUST
17 gguess/gradius unused gRs1 0 0 0 gRd CUST
18 lgu/ldub unused Xs1 0 1 0 gRd CUST
19 stul/stub gRs2 Xs1 0 1 0 unused CUST
20 lgu_next/ldub_next gRs2 Xs1 1 1 0 Xd CUST
21 stul_next/stub_next gRs2 Xs1 1 1 0 Xd CUST

in memory and precision in operations, respectively, the architecture enables a fair degree of
variable precision computing.

3.2.4.4 Other (UNUM or Posit) accelerators

Along with the three main hardware units for variable precision computing, several researchers
have shown the use of UNUM or Posit accelerators to facilitate comparison across formats.
Tiwari [115] proposes a posit-enabled RISC-V core as the first-level replacement for IEEE units.
It proposes to reinterpret float or double types as posit computing, avoiding specific native
compiler support for these types. Other examples of accelerators for alternative formats can be
found in [52, 69]. The main hurdle for their adoption still relates to the required software stack
support: compiler, and language integration, along with scientific computing libraries like those
presented in 3.2.3 for fast execution.

3.3 Conclusion

This chapter presented the main state-of-the-art contributions that give basis to the work of
this thesis. From one side, we described different computing paradigms for efficiently use of real

29

numbers, presenting specific libraries and work that have been developed within this context. In
the second part, we focused our attention on the principal hardware and software work that
covers the exploration of new representations. These previous works present some caveats: while
mixed precision is fundamentally supported by compiler and hardware, it lacks the flexibility
of arbitrary precision libraries. Other previous works are either standalone solutions to handle
precision with no hardware and compiler support or hardware accelerators without compiler
support. There is a lack of synergy between software and computer paradigms, and the hardware
layer, as well as a flexibility concern that has been poorly addressed so far. This will be the
main focus of the following chapters.

30

Chapter 4: Language and Type System
Specifications for Variable Precision FP

Arithmetic

Contents
4.1 Syntax . 32
4.2 Semantics . 34
4.3 A multi-format type system . 35

4.3.1 MPFR . 35
4.3.2 UNUM . 36
4.3.3 Alternatives Formats . 38

4.4 Memory allocation schemes . 39
4.4.1 Constant Types . 40
4.4.2 Constant-Size Types with Runtime-Decidable Attributes 41
4.4.3 Dynamically-Sized Types . 41

4.5 Type Comparison, Casting and Conversion . 46
4.6 Language Extension Limitations . 47
4.7 Libraries for Variable Precision . 48

4.7.1 mpfrBLAS: A vpfloat<mpfr, ...> BLAS library 49
4.7.2 unumBLAS: A vpfloat<unum, ...> BLAS library 54

4.8 Conclusion . 57

Albeit the IEEE 754 standard have met immense success across diverse areas, some applica-
tions require alternative representation to approximate real numbers. Linear algebra solvers, as
briefly discussed in 2.4.2, can potentially benefit from high-precision representations. In direct
solvers algorithms, such as Cholesky and Gaussian elimination, they can reduce the residual
error [29, 64] of the output. Besides, they can be even more beneficial for iterative methods,
preferred for large-sized problems. Increasing the precision of the intermediate residual vector is
an effective mean to reduce the number of iterations needed in an iterative solver. Chapter 6
will show and discuss the benefits of using high-precision formats with these algorithms.

While a variable precision algorithm may be seen superficially similar to a typical model1,
the estimation and configuration of the precision (in this case, the fractional part) value for part
or all of the arithmetic operations is done at the algorithmic level. This estimation is generally
complex to compute and may lead to unnecessary over-provisioning of fractional bits. Thus, a

1The programming model for C++ Boost Multi-precision is fundamentally similar to an IEEE-enabled
implementation, except by the line that sets the precision in use.

31

practical alternative is to adapt precision dynamically, i.e., instead of computing the necessary
precision a priori, the algorithm is modified to use an outer loop to systematically check the
result for accuracy at predefined points, as depicted in Algorithm 1. If the residual is above a
predefined threshold, or if convergence is too slow, the solver increases its internal precision and
resumes computation. One should also notice a similar procedure can also be taken to dynamic
adjustment of exponent bits.

Algorithme 1: Simplified variable precision algorithm: function is precision-agnostic,
i.e., it is not restricted to a single precision value.
1 output= function(precision)
2 repeat
3 if convergence is slow then
4 increase speed
5 end
6 precision= precision+ speed
7 output= function(precision)
8 until output accuracy is greater than threshold;

Hence, a strong requirement for the software engineering, tools, and more importantly,
compiler and languages supporting this variability is:

(1) the language used for variable precision development must be performance-oriented;

(2) the kernel source code must be unique, therefore the programming style must be agnostic
of the underlying precision of its variable precision data, like described section 2.5;

(3) the required precision and exponent value depend on the conditioning of data: it may be
defined at kernel initiation time or dynamically and gradually increased in the case of
adaptive methods;

(4) a variable-precision implementation should be as similar as possible to its original reference
algorithm in C with standard IEEE arithmetic; in particular, extended precision should
be used only when necessary, which implies that applications may smoothly transition
between legacy support libraries (e.g., double-precision BLAS) and extended or adaptive
precision solutions when required.

A programming model able to meet these requirements makes variable precision an extension
(and a generalization) of mixed precision (3.1.1) and allows a deeper space exploration of precision,
exponent, and in general FP representations. In the remainder of this chapter, we will focus on
the description of a type system and language definition that target the requirements specified
above.

4.1 Syntax
As shown in previous chapters, programming languages struggle with IEEE-alternative formats
for FP arithmetic, and as consequence, with the exploration of variable precision arithmetic.
The user is left with no choice but to rely on (1) high-level managed languages like Julia [19] or
Python [117] whose abstractions and type systems provides a high productivity variable-precision
interface but fails to deliver competitive performance, (2) an efficient language like C with
reduced flexibility due to manual memory management and calls to specific software libraries

32

1 vpfloat - declaration :
2 vpfloat '<' vpfloat - attributes '>' declaration
3

4 vpfloat - attributes :
5 type ',' exp -info ',' prec -info ',' size -info
6

7 type:
8 unum | mpfr | posit | custom_ieee | ...
9

10 exp -info:
11 integer - literal | identifier
12

13 prec -info:
14 integer - literal | identifier
15

16 size -info:
17 integer - literal | identifier

Listing 4.1: Backus normal form (BNF) like notation for the vpfloat language extension

such as MPFR [49] or GMP [54], or (3) sacrificing much precision control by relying on a mixed-
precision paradigm [12] based on IEEE-compatible formats. In any case, significant overheads
are encountered: from (1) and (2) performance-wise, and from (3) in terms of flexibility.

Approximate representations of real numbers in which the sizes of mantissa and exponent
may vary according to the user’s needs require runtime capabilities that are not easily expressed
with the semantics of programming languages in general. Julia, Python and class-based objects
in C++ (like Boost) offer underlying data structures to store the value of precision used. MPFR
uses a C struct to reach the same effect. Nevertheless, FP formats with runtime capabilities
cannot be achieved with the semantics of primitive data types. Types float, double, long
double, and every other primitive FP type have predefined exponent and mantissa values,

permitting the user only to select values statically in a course-grained fashion.
As a way to improve the state of the art on languages and types for variable precision

exploration, we propose an extended type system for C-based languages capable of manipulating
FP operations with different representations and formats. It provides first-class support to
programming with variable precision FP arithmetic, enabling hardware support when available
and offering the flexibility of numerical libraries that can operate with multiple precisions.
It differs from the current C syntax by introducing a new parametrized type for multiple
representations named vpfloat that borrows the syntax of C++ template.

The new primitive type vpfloat is parameterized with attributes to control a given FP
implementation, such as its specific format, exponent, precision and/or storage size information.
The syntax aims at providing a generic way for different formats to coexist within the same
keyword, while also enabling the addition of new formats or representations as they are proposed.
Listing 4.1 shows the syntax rules of the vpfloat language extension in a Backus Normal Form
(BNF) like notation.

Every declaration must provide a type attribute which (1) specifies its representation in
memory; and (2) if and how many subsequent attributes are needed, along with which information
they carry. Attributes are specified in the following order: type, exponent, precision, and size.
One should notice that, with the exception of type, attributes can all be defined with integral
constant literals or identifiers. This specific property demonstrates one of the main advantages
of vpfloat over their counterparts: types are not obliged to be declared to retain unmodified
constant exponent and mantissa values. Allowing FP attribute information to be declared

33

Table 4.1: Comparison of the vpfloat type system and FP types, and data structures found in
the literature.

Type Exponent
(in bits)

Mantissa or
precision
(in bits)

Compiler-
integrated

Hardware-
enabled

High-
precision
support

Multi-
format

half 5 11 Yes Yes No No
bfloat16 8 8 Yes Yes No No
float 8 24 Yes Yes No No
double 11 53 Yes Yes No No
quad 15 113 Yes No Yes No
double quad 19 237 No No Yes No
FlexFloat Variable Variable No Yes No No
Flytes Variable Variable Yes Yes No No
__mpfr_struct Variable Variable No No Yes Yes*

Boost
Multi-prec.

Variable Variable No No Yes Yes*

vpfloat<...> Variable Variable Yes Yes Yes Yes+

* Multi-format libraries can be implemented by relying on it
+ New Formats can be added

with identifiers, our language extension supports constant-size and dynamically-sized types,
which is always a technical hurdle in unmanaged languages like C, its associated Intermediate
Representations (IRs) and Application Binary Interfaces (ABIs).

Table 4.1 illustrates how our type system contrasts with the most common FP types, and
data structures found in the literature when considering different constraints, such as compiler
integration, hardware capabilities, multi-format support, among others. Our solution is the
only one able to check all boxes. It combines the hardware and compiler support provided by
primitive types like float and double, with the multi-level flexibility of MPFR and the Boost
Multi-precision library. In the following sections and chapters, we explain how these types are
implemented, their semantics and integration with an industry-level compiler infrastructure.

4.2 Semantics

After each declaration has been syntactically analyzed, it is during semantic analysis that the
compiler checks declarations to guarantee that FP attributes respect the semantics rules required
by the specific type. While some types may hold meaning through their type attribute alone,
others may require up to three additional attributes to provide meaningful information to the
type declaration.

As a practical example, one may use our type system substrate to implement support for the
bfloat16 format. Variables for this format only need to specify the type attribute, as information
about exponent and precision is embedded within the format’s name. Other declarations, such
as unum and mpfr, are parametrisable and require information about the exponent and mantissa,
and an optional attribute that may hold the size of the variable’s memory footprint. For each
different type, attributes shall be interpreted in different ways.

34

typedef struct {
int _mpfr_prec ;
int _mpfr_sign ;
int _mpfr_exp ;
int * _mpfr_d ;

} __mpfr_struct , *mpfr_ptr , mpfr_t [1];

Listing 4.2: MPFR variable type as defined in [49].

1 void axpy100 (int N,
2 vpfloat <mpfr , 16, 100> alpha ,
3 vpfloat <mpfr , 16, 100> *X,
4 vpfloat <mpfr , 16, 100> *Y) {
5 for (unsigned i = 0; i < N; ++i)
6 Y[i] = alpha * X[i] + Y[i];
7 }
8

9 void axpy256 (int N,
10 vpfloat <mpfr , 16, 256> alpha ,
11 vpfloat <mpfr , 16, 256> *X,
12 vpfloat <mpfr , 16, 256> *Y) {
13 for (unsigned i = 0; i < N; ++i)
14 Y[i] = alpha * X[i] + Y[i];
15 }
16

17 void vaxpy(unsigned prec , int N,
18 vpfloat <mpfr , 16, prec > alpha ,
19 vpfloat <mpfr , 16, prec > *X,
20 vpfloat <mpfr , 16, prec > *Y) {
21 for (unsigned i = 0; i < N; ++i)
22 Y[i] = alpha * X[i] + Y[i];
23 }

Listing 4.3: axpy benchmark with vpfloat<mpfr, ...> type.

4.3 A multi-format type system

As proof of the power and flexibility of our type system, we designed and implemented a full
compilation flow supporting the two representations: mpfr and unum. Even though the reasoning
to categorize our type system according to formats is valid, it is also possible to distinguish types
in terms of other constraints, such as allocation schemes, and attribute groups. Viewing them
from the perspective of allocation schemes, constant-size types have a fixed and always-constant
allocation size, while dynamically-sized ones have a memory footprint which in most cases can
only be evaluated at runtime. When classifying types according to their attribute groups, a
type can have constant or runtime attributes which means it was declared with integer-literal or
identifier, respectively, as depicted in Listing 4.1. As we progress into the details of our type
system, examples are presented to walk the reader into these different categories.

4.3.1 MPFR

Variables declared as mpfr hold the number of bits of exponent and mantissa in the second and
third fields of the declaration, respectively. These values are used later to set up MPFR objects
created during our MPFR backend transformation pass (see Section 5.3.1 in chapter 5). As

35

1 void mat_mult (unsigned prec , vpfloat <mpfr , 32, prec > *matResult ,
2 vpfloat <mpfr , 32, prec > *matA ,
3 vpfloat <mpfr , 32, prec > *matB ,
4 unsigned dim1 , unsigned dim2 , unsigned dim3) {
5

6 vpfloat <mpfr , 32, prec > tmp;
7 for (unsigned i = 0; i < dim1 , ++i) {
8 tmp = 0.0;
9 for (unsigned j = 0; j < dim3; ++j)

10 for (unsigned k = 0; k < dim2; ++k)
11 tmp = matA[i*dimi2 + k] * matB[k*dim3 +j];
12 matResult [i*dim3 + j] = tmp;
13 }
14 }

Listing 4.4: Usage of the vpfloat<mpfr, ...> in a matrix multiplication example.

presented in 3.1.2.1, an MPFR object is of type __mpfr_struct (see Listing 3.1, reproduced
in Listing 4.2). MPFR uses an assembly-like programming model that requires operands
(destination included) to be pre-allocated and have their precision defined before being used and
freed once no longer needed. Moreover, there are no restrictions on a maximum exponent or
mantissa used for each declaration.

Listing 4.3 shows examples of AXPY, a level-1 BLAS [77] routine for vector multiplication,
for different MPFR types. Functions axpy100 and axpy256 implement AXPY with constant-size
MPFR type of 100, and 256 bits of mantissa, respectively. Function vaxpy show the flexibility of
our language extension, illustrating the support for types with runtime attributes as the number
of mantissa bits (the precision) is not known at compile time. In this function, the number
of mantissa bits will be the one provided by the caller, and a simple analysis of the dynamic
attributes is implemented to finalize the type-checking of function calls at runtime.

At heart, vpfloat<mpfr, ...> types work as a thin C-compatible wrapper for the MPFR
library in the fashion as other heavier higher-level ones (like in Julia, Python or C++ Boost for
Multi-precision). However, because they are fully integrated at compiler level, more optimization
opportunities can be found, thus improving performance. Listing 4.4 shows the vpfloat<
mpfr, ...> type implementation of the matrix multiplication algorithm found in Chapter 3
for MPFR and Boost for Multi-precision. One may argue that our approach requires some
information to be duplicated, particularly, type attributes (<mpfr, 16, prec>). While this
is true, it guarantees that underlying compiler layers until code generation hold the correct
information for each variable type, and thus, justifying this duplication. Furthermore, we can
partially resolve duplications with typedef declarations: they work for constant types but are
rather difficult to express with types that rely on runtime FP attributes.

4.3.2 UNUM

While attributes exp-info and prec-info for MPFR types are enough to be read as exponent
and mantissa/precision, respectively, the UNUM format requires rethinking on how those
attributes must be interpreted. As defined in the format specification (see Fig. 4.1a), meta-data
information ess and fss not only act as fields bounding the number of bits of exponent and
precision, but also contribute to defining the size of a UNUM value [57]. One should notice that
the language syntax does not specify exp-info and prec-info as the number of bits of exponent
and precision, respectively, but rather attributes that relate to them. The UNUM format derives

36

this information from ess and fss, which means that the second field of a UNUM declaration
holds the size of exponent and the third field holds the size of mantissa.

sign
s e f

exponent fraction
u

ubit exponent
size

fraction
size

es - 1 fs - 1
es bits fs bits ess fss

(a) Gustafson’s Universal NUMber (UNUM) Format

es bits fs bitsess fss

sign
s e

exponent
f

fractionexponent
size

es - 1
fraction

size

fs - 1 u
ubit

(b) Universal NUMber (UNUM) Format as defined by Bocco et al. [21, 23].

Figure 4.1: Difference between Gustafson and Bocco et al. [21, 23] UNUM formats.

We provide a backend code generator targeting a simplified version of the instruction set
architecture (ISA) proposed by Bocco et al. [21, 23]. It implements support for UNUM format
in memory, for both scalar and interval-based operations, although the latter has not been
considered in our work. Bocco also proposes a modification to UNUM, depicted in Fig. 4.1b,
which changes the order of the header fields for a simplification in the decode stage of the
coprocessor. Our frontend semantically analyzes UNUM types and follows the requirements
of the target ISA. In particular, values of ess and fss range between 1 and 4, and 1 and 9,
respectively, which allows exponents between 1 and 16 bits, and mantissas between 1 and 512
bits. Since ess and fss produce exponent and mantissa values that grow exponentially, UNUM
types may be declared with an optional size-info attribute that holds the maximum number of
bytes used to represent the number. This attribute value must be in the range 1..68 bytes and is
in perfect conformity with the concept of the architecture’s Memory Byte Budget (MBB). MBB
was primarily design to reduce the growth of UNUM numbers due to ess and fss fields. The first
6 examples in table 4.2 show that variables declared with no MBB practically double of size for
an fss increase of one bit. MBB, and consequently, the size-info field for UNUM types not only
improve and correct that but allow many more format declarations, as depicted in table 4.2.

Declarations with no size-info convey that sizes are calculated according to the values of ess
and fss. Particularly, a variable has (2+2ess +2fss +7)/8 bytes, where 2 comes from sign and utag
fields from the UNUM format, ess and fss are specified in the declaration, and 7 and 8 are used
to round the values to a multiple of 8. The presence of size-info implicates the truncation of a
declaration to a maximum of size bytes. Since the mantissa is the last field specified in the format,
the size attribute may truncate bits of the mantissa. The formula used to calculate the number
of mantissa bits in this case is given by min(2fss,size ∗ 8− (2 + 2ess + 2fss)). Table 4.2 illustrates
different UNUM representations, showing the corresponding values of exponent, mantissa and
total size, they may assume. Owing to the variable-length nature of UNUM, the number of
mantissa bits directly relates to the number of exponent bits needed for the represented number.
For instance, vpfloat<unum,3,6,6> may have its precision truncated to 29 bits, if and only if
the represented number requires 8 exponent bits. Otherwise, more mantissa bits are used. This
level of flexibility not only complexifies hardware design but is often misunderstood by users.

The ability of our language extension to handle the UNUM flexibility illustrates its generic
nature and runtime capabilities. Listing 4.5 shows the implementation of three functions: (1)

37

1 void axpy_UnumConst (int N,
2 vpfloat <unum , 4, 6, 8> alpha ,
3 vpfloat <unum , 4, 6, 8> *X,
4 vpfloat <unum , 4, 6, 8> *Y) {
5 for (unsigned i = 0; i < N; ++i)
6 Y[i] = alpha * X[i] + Y[i];
7 }
8

9 void axpy_UnumDyn (int N, int fss ,
10 vpfloat <unum , 4, fss , 18> alpha ,
11 vpfloat <unum , 4, fss , 18> *X,
12 vpfloat <unum , 4, fss , 18> *Y) {
13 for (unsigned i = 0; i < N; ++i)
14 Y[i] = alpha * X[i] + Y[i];
15 }
16

17 void vgemv(unsigned fss , int M, int N,
18 vpfloat <unum , 4, fss > alpha ,
19 double *A,
20 vpfloat <unum , 4, fss > *X,
21 vpfloat <unum , 4, fss > beta ,
22 vpfloat <unum , 4, fss > *Y) {
23 for (unsigned i = 0; i < M; ++i) {
24 // Calls vpfloat_allocation_size (4, fss)
25 // to enforce type consistency , see
26 // Section III.A.5 " Dynamically -sized Types"
27 vpfloat <unum , 4, fss > alphaAX = 0.0;
28 for (unsigned j = 0; j < N; ++j)
29 alphaAX += A[i*N + j] * X[j];
30 Y[i] = alpha * alphaAX ;
31 // Free stack for 'alphaAX ' here
32 }
33 }

Listing 4.5: Comparing naïve implementations of AXPY with a constant-size type
(axpy_UnumConst), a constant-size type with runtime attribute (axpy_UnumDyn), and GEMV
with a dynamically-sized type (vgemv).

AXPY (axpy_UnumConst) implemented using a constant-size UNUM type, (2) a second AXPY
function (axpy_UnumDyn) with constant-size type and a runtime attribute, and (3) the General
Matrix Vector Multiplication (GEMV) from BLAS implemented with a dynamically-sized type.
One can notice that even constant-size types may not be entirely constant. They can still hold
attributes that can be analyzed at runtime, as illustrated in function axpy_UnumDyn.

4.3.3 Alternatives Formats
Variable precision computing does not boil down only to the dynamic adjustment of precision.
It also encapsulates the tuning of exponent bits and, more importantly, the use of alternative
representations. Our language extension offers a general infrastructure that enables multiple
FP formats to coexist. The main motivation for the template-like vpfloat syntax is to offer a
common ground to specify different FP formats.

Figure 4.2 summarizes the multi-format characteristic of our language extension. Two
potentially interesting additions are posit [58] and a customize IEEE-like format with a bit-wise
exponent and mantissa capabilities. Posit has already been proved to be a valuable alternative [42]
to IEEE formats in some scenarios, but it is still very far from replacing them entirely.

38

Table 4.2: Sample UNUM declarations and their respective exponent, mantissa, and size values.

vpfloat<unum,ess,fss> or exponent precision size
vpfloat<unum,ess,fss,size> (in bits) (in bits) (in bytes)
vpfloat<unum,3,4> 8 16 5
vpfloat<unum,3,5> 8 32 9
vpfloat<unum,3,6> 8 64 11
vpfloat<unum,3,7> 8 128 19
vpfloat<unum,3,8> 8 256 35
vpfloat<unum,3,9> 8 512 67
vpfloat<unum,3,6,6> 8 29 6
vpfloat<unum,4,6,12> 16 64 12
vpfloat<unum,3,8,60> 8 256 60
vpfloat<unum,4,9,20> 16 129 20

vpfloat<...>
Multiple Formats

MPFR

vpfloat<mpfr, ...>

exp-info: exponent
prec-info: mantissa

UNUM

vpfloat<unum, ...>

exp-info: exponent size size(ess)
prec-info: fraction size size(fss)
size-info: number of bytes

Alternative Formats

Posit? Custom IEEE?

Figure 4.2: Summary of vpfloat multi-format schemes.

4.4 Memory allocation schemes

Two distinct allocation schemes are necessary to accommodate the flexibility of our language
extension. Viewing from perspective of how memory must be handled, we can divide them in
two categories: constant-size and dynamically-sized types.

As the name suggests, constant-size types are declarations with fixed (and constant) memory
footprint. They can be further subdivided according to their attribute types and must satisfy one
of the three criteria: (1) its variable size can be derived from exp-info and prec-info attributes
known at compile time; (2) variable is declared by specifying all attributes (including size-info)
known at compile time; or (3) size-info attribute is known at compile time. Variables that fulfil
criteria (1) or (2) are said to have constant types, while those that meet the requirement of
criterion (3) have constant size but with some variability.

39

Figure 4.3 shows how types are divided according to these criteria. We survey the character-
istics and differences among these three groups (constant types, constant-size types with runtime
attribute, and dynamically-sized types), highlighting the differences between MPFR and UNUM
types if they exist.

vpfloat<...>
Memory Allocation Schemes

Constant-size Types

Constant Types

Criterion (1)
Constant
exp-info
prec-info

Criterion (2)
Constant
exp-info
prec-info
size-info

With runtime attribute

Criterion (3)
Runtime
(exp-info OR prec-info)
Constant
size-info

Dynamically-sized Types

With runtime attribute

Criterion

Runtime
size-info

Figure 4.3: Memory Allocation Schemes for Constant-Size and Dynamically-Sized Types

4.4.1 Constant Types

We allow the declaration of constant types in the same fashion as standard primitives types. As
the name indicates, constant-type variables are declared by only specifying attributes known
at compile time. They can be declared as global, local variables, and arguments, just like any
primitive type variable in C.

4.4.1.1 Representing constants

Variables of a constant-size type can be initialized providing a FP literal. A v suffix is used to
denote a literal of vpfloat<unum, ...> types, and a y suffix is used for vpfloat<mpfr , ...>
types. They can also be initialized with a IEEE 754 FP literal, i.e., using float and double FP
literals, however an implicit conversion is performed by the compiler in those cases which may
incur loss of precision through rounding.

Table III represents the FP literal 1.3 for different vpfloat UNUM and MPFR types.
Representations are in hexadecimal, with the V prefix for UNUM types and Y for MPFR types.
Each format shows a different representation for the closest approximation of the same value.
Values are displayed in chunks of 64 bits such that the last chunk always contains the value

40

Table 4.3: Floating-point literal 1.3 represented with different types

vpfloat<unum, ...> or Representation of 1.3
vpfloat<mpfr, ...> (hexadecimal)
vpfloat<unum,3,6,6> 0xV001FE999999A
vpfloat<unum,3,6,8> 0xV001FE9999999999A
vpfloat<unum,4,9,20> 0xV999999999999999A9999

9999999999990001FFFE
vpfloat<unum,4,9> 0xVCCCCCCCCCCCCCCCDCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC4CCCC

CCCCCCCCCCCCCC0000FFFF
vpfloat<mpfr,8,48> 0xY0FF4CCCCCCCCCCD
vpfloat<mpfr,16,100> 0xYCCCCCCCCCCCCCCC

D0FFFF4CCCCCCCC

of the sign bit and other fields, with the mantissa being the last field of the format. If the
representation exceeds 64 bits, the remaining chunks contain the rest of the mantissa. Values
are biased according to the maximum exponent value, similar to the IEEE formats.

The 0s shown in UNUM formats are reserved for ess and fss values which are only properly
set later in the compilation flow. Indeed, constants are created everywhere in the compilation
flow, and these fields depend on the evaluation context. This behavior is specific to the UNUM
format. Since it would be too intrusive to modify every LLVM transformation pass, we added a
dedicated finalization pass instead to properly set up all UNUM constant literals.

4.4.2 Constant-Size Types with Runtime-Decidable Attributes

Constant-size types can still offer some variability if exp-info or prec-info attributes are only
known at runtime. Its sole shared characteristic with constant types, as described above, comes
from the constant memory footprint, which, from a compiler perspective, eases considerably the
calculation of addresses for multi-dimensional types, like arrays. Constant creation, runtime
verification of attributes, and type conversions are done in the fashion as for dynamically-sized
types, which are described below.

4.4.3 Dynamically-Sized Types

One challenging feature of variable precision FP formats is the need to declare types whose
memory footprint is not known until runtime evaluation. Such functionality is an important
aspect of our extension and is one of the main requirements of variable precision computing
exploration: to allow users to programmatically explore multiple configurations of exponent and
mantissa in a single run. There are no restrictions on using dynamically-sized types for MPFR or
UNUM representations as long as compatible backends are provided. More specifically, backends
are responsible for implementing the runtime capabilities, either through library calls (as is the
case of vpfloat<mpfr, ...>), or through a compatible ISA (as for vpfloat<unum, ...> in our
examples). The runtime aspect of dynamically-sized types in regards to memory management

41

1 int f(int n) {
2

3 int total = 0;
4 for (int i = 1; i < n; ++i) {
5

6 int j; // Allocation at the beginning
7 // of the function
8 int arr[i]; // Stack allocation here
9 arr [0] = 0;

10

11 for (j = 1; j < i; ++j)
12 arr[j] = f2(j) + arr[j - 1];
13

14 total = arr[i - 1];
15 // Free stack for 'arr ' here
16 }
17 return total;
18 }

Listing 4.6: Variable Length Array (VLA) example.

is akin to how Variable Length Arrays (VLA), a feature from the C Standard, are handled by
compilers.

A VLA is an array declaration where its number of elements is not known at compile, and
is, therefore, evaluated at runtime. The code snippet in Listing 4.6 shows the use of a VLA
for an array with n elements. The compiler is not able to infer the size of the array at the
time of compilation, for that reason, it generates code that evaluates it at runtime. VLAs shall
only be declared as local variables and function parameters, and their lifetime extends from the
declaration of the object until the program leaves the scope of the declaration. In the example,
the array declaration at line 8 is alive until the end of the loop at line 15, which means that
arr is dead (or does not exist) outside of the loop. VLAs are stack-allocated, and their memory
locations are only valid within their declaration scope. While VLAs are allocated on-demand
according to their scope lifetime, compilers usually stack-allocated variables with constant sizes
at the beginning of the function. In the example, arr allocates stack space within the loop
scope while variable j (at line 6) is allocated, if needed, at the beginning of the function. Of
course, some optimizations attempt to promote variables to registers and, therefore avoid stack
allocation for constant-size types; this is an important category of optimization we would like to
leverage in this work (e.g. when targeting the UNUM ISA).

Like in VLAs, dynamically-sized vpfloat types can only be declared as local variables and
function parameters, and their life cycles also follow those of VLAs. Hence, they are stack-
allocated within their declaration scopes since it is not possible to guarantee that all values used
as attributes exist at the beginning of the function. Additionally, this aspect of the language
adds extra complexity to dynamically-sized types as dynamic values for the attributes are not
assured to respect the limits for each specific type.

4.4.3.1 Runtime verification

The C Standard, for instance, provides no specification that guarantees VLA arrays are declared
with a positive size expression. In practice, the user is free to pass a negative value as the size
of a VLA array, leading to undefined behavior, according to the standard. Adopting the same
behavior for vpfloat declarations eases the role of the compiler as no verification is needed
at runtime in order to ensure the programmer uses a valid expression. On the other hand,

42

1 void vpfloat_mpfr_checker (int attributeValue , mpfr_t op) {
2

3 if (op -> _mpfr_prec != attributeValue) {
4 fprintf (stderr , "Error: Precision values do not match .\n"
5 "Error: Passed %d to an object with %d precision bits .\n"
6 "Error: Impossible to continue !\n",
7 attributeValue , (int)op -> _mpfr_prec);
8 exit(EXIT_FAILURE);
9 }

10 }

Listing 4.7: Runtime checker implementation example of vpfloat<mpfr, ...> types.

no guarantees would be given that the executed code will perform the correct computation if
runtime attributes have not been checked for consistency.

We choose to err on the side of correctness, and compliance with the underlying numerical
libraries when relying on them (such as MPFR), and implement runtime verification functions
to ensure that all parameters and the size of each declaration respect the boundaries defined by
the representation. Listing 4.7 implements a runtime verifier for the vpfloat<mpfr, ...> that
checks if MPFR object’s precision holds the correct value, i.e., attributeValue. One should
also notice that all vpfloat<mpfr, ...> have already been converted to MPFR, which is why
no more reference for these types are presented. Our compiler generates verification calls for
vpfloat parameters passed through a function call in order to guarantee that values passed as
attributes still hold the same value upon creation. These calls, although not directly imposed by
the language, but rather compiler-generated, are important to ensure correctness from the code,
or language, perspective.

4.4.3.2 Function __sizeof_vpfloat

Each dynamically-sized type declaration generates a call to __sizeof_vpfloat, a function
from our runtime library that checks for consistency of attributes and returns the number of
bytes needed for the specific type. Generating a call to this function ensures all attributes
are well-defined and respect boundaries for the type. The function can be generated under
two situations: (1) as a replacement to the user-specified sizeof function, or (2) when a
dynamically-sized type needs memory allocation.

In Listing 4.5, variable alphaAX of function gemm_unum is allocated and freed in every
iteration of the loop, with its allocation size given by calling __sizeof_vpfloat. A better
solution would be to declare the variable outside of the loop, that way only one call to the
function is required. However, the purpose of the example is not to show the optimal solution
but to illustrate when our runtime library checks types and how memory management occurs.
Furthermore, a mem2reg2 optimization can eliminate this allocation inside the loop, since there
is no loop dependency in the declaration.

Listing 4.8 shows an example implementation of __sizeof_vpfloat function. For vpfloat<
mpfr, ...>, the only type verification needed concerns the precision attribute, which must be a
positive value. These types always return the value of sizeof(mpfr), as they will be lowered to
MPFR at a later compilation stage. In vpfloat<unum, ...> types, values ess, fss, and size are
checked according to target ISA. That is, ess must have a value between 1 and 4 (lines 19-22),
fss between 1 and 9 (lines 25-28), and size between 1 and 68 (lines 33-36). Additionally, values
are guaranteed to reserve bits for the mantissa (lines 39-43) and size is either already specified

2mem2reg promotes memory references to registers, avoiding the need for memory allocation.

43

1 int __sizeof_vpfloat (int type , int exp , int prec , int size) {
2

3 int hasError = 0;
4

5 if (type == 1) {
6 // MPFR type == 1
7 // Only need to check prec > 0
8 if (prec <= 0) {
9 fprintf (stderr , " precision must be a positive value .\n");

10 hasError = 1;
11 }
12 // And return sizeof (mpfr_t)
13 size = sizeof (mpfr_t);
14

15 } else if (type == 0) {
16 // UNUM type == 0
17

18 // ess should be between 1 and 4
19 if (exp < 1 || exp > 4) {
20 fprintf (stderr , "ESS out of bounds (1 <= exp <= 4).\n");
21 hasError = 1;
22 }
23

24 // fss should be between 1 and 9
25 if (prec < 1 || prec > 9) {
26 fprintf (stderr , "FSS out of bounds (1 <= fss <= 9).\n");
27 hasError = 1;
28 }
29

30 if (size) {
31

32 // size should be between 1 and 68
33 if (size < 1 || size > 68) {
34 fprintf (stderr , "SIZE out of bounds (1 <= size <= 68) .\n");
35 hasError = 1;
36 }
37

38 // Checks for mantissa bits
39 if ((size << 3) <= (2 + exp + prec + (1 << exp))) {
40 fprintf (stderr , " Format has no mantissa bits. "
41 "SIZE (=%d) too small .\n", size);
42 hasError = 1;
43 }
44

45 } else
46 size = (2 + exp + prec + (1 << exp) + (1 << prec) + 7) / 8;
47

48 } else
49 fprintf (stderr , "ERROR: Unknown type .\n");
50

51 if (hasError)
52 exit(EXIT_FAILURE);
53

54 return size;
55 }

Listing 4.8: __sizeof_vpfloat implementation example for vpfloat<unum, ...> and vpfloat
<mpfr, ...> types.

44

1 void example_dynamic_type (unsigned p) {
2

3 vpfloat <mpfr , 16, 256> a;
4 vpfloat <mpfr , 16, 256> X[10] , Y[10];
5 // here initialize a, X and Y here
6

7 vpfloat <mpfr , 16, p> a_dyn;
8 vpfloat <mpfr , 16, p> X_dyn [10] , Y_dyn [10];
9 // initialize a_dyn , X_dyn and Y_dyn here

10

11 vaxpy (100 , 10, a, X, Y); // ERROR
12 vaxpy (256 , 10, a, X, Y); // OK
13

14 vaxpy (256 , 10, a_dyn , X_dyn , Y_dyn); // OK if p == 256
15 vaxpy(p, 10, a_dyn , X_dyn , Y_dyn); // OK
16 ++p;
17 vaxpy(p, 10, a_dyn , X_dyn , Y_dyn); // ERROR
18 }
19

20 vpfloat <unum , 4, fss > // OK
21 ex_dyn_type_ret (unsigned fss , vpfloat <unum , 4, fss > a) {
22 a = 1.3;
23 return a;
24 }
25

26 vpfloat <unum , 4, fss > // ERROR
27 ex_dyn_type_ret_error (unsigned p, vpfloat <unum , 4, p> a) {
28 a = 1.3;
29 return a;
30 }

Listing 4.9: Uses of dynamically-sized types in function calls and returns.

or calculated accordingly (line 46).

4.4.3.3 Function Parameter and Return

Declaring dynamically-sized types as a local variable is not enough to provide a robust language
extension. It is also important to integrate them to function calls through argument passing
and parameters, so that is possible to bind function call arguments to function parameters.
Listings 4.3, 4.5, and 4.9 show that programmers can also make use of these types as function
parameters, as long as attributes are known declarations for the specific context. In that case,
a valid runtime attribute may come from a global integer variable declaration or a previously-
declared parameter, as shown in the examples. Our compiler parses and analyzes the given
attributes in order to ensure that known attributes are being used. It is important to highlight
that dynamically-sized types are only valid within the scope in which they were created. In
other words, functions do not share dynamically-sized types, but dynamic (runtime) attributes
are bound to formal arguments so that (dependent) types from different functions can be passed
through function calls. Function vaxpy uses parameter prec as a bound attribute for precision
in Listing 4.3. Parameters alpha, X, beta, Y in Listing 4.5 have been bound to parameter fss,
while local variables a_dyn, X_dyn, and Y_dyn in Listing 4.9 have made use of parameter p as a
runtime attribute.

45

Function example_dynamic_type in Listing 4.9 also shows examples of how these types
interact in a function call. Similarly to VLAs, the compiler ensures that each type attribute
in a formal argument of the callee depends on attributes properly bound in the declaration.
Any inconsistency found by the compiler is reported back to the user through our compile-time
and runtime checks as shown in Listing 4.4.3.1. A compile-time error is raised at line 11, since
values of a, X, and Y were created with a constant value of 256, instead of 100. Lines 15 and 18
show examples of how runtime verifications can guarantee correctness between attributes and
vpfloat declaration in function calls. In line 15, a runtime error is reported back to the user if
p is not equal to 256, while in line 18 an error is raised since the value of p has changed.

Dynamically-sized types can also be declared as return types and their semantics are similar
to function arguments. Our language allows attributes of return types to be bound to function
arguments, even though arguments are not yet available when parsing the return type. Our
compiler delays the creation of the function’s return type until all function arguments have been
processed, and semantic analysis verifies that attributes given in a declaration exist and can be
used to build a return type. While a parameter requires attributes to be declared previous to
its declaration, this is not the case for return types. For example, example_dyn_type_return
shows how to use dynamically-sized types with a function argument as an attribute, and
example_dyn_type_return_error is caught by syntax analysis since prec is not declared in
that context.

4.4.3.4 Constants

Constant-size types have the advantage of having a fixed memory footprint, and thus constant
values can be represented as soon as values of the exponent and mantissa are known. Dynamically-
sized types pose another challenge as attributes are only known at runtime, which makes it
impossible to represent a constant value according to its statically unknown attributes. We
handle them by creating a fixed-size representation of the constant in a maximum configuration
at compile time and cast it at runtime to the dynamically-sized type in use. For UNUM types,
the maximum configuration is 16 bits of exponent and 512 bits of mantissa; for MPFR types the
maximum configuration is 16 bits of exponent and 240 bits of mantissa. UNUM’s maximum
configuration comes directly from the target ISA specification that accepts maximum values
of ess and fss as 4 and 9, respectively. The maximum configuration for MPFR was chosen to
correspond to the number of bytes of sizeof(__mpfr_struct), that is, 32 bytes.

Additionally, we also enable binding constant values to dynamically-sized types in function
calls. For these cases, the compiler is unable to properly infer bindings between runtime
arguments and the constant, with function parameters. Hence, users are required to properly
cast the specified constant, which means binding the constant accordingly in the function call.
Listing 4.10 uses two examples of how function vaxpy from Listing 4.3 is being called with alpha
parameter equals to 1. One can observe that only the first call succeeds as the proper binding
for the constant is provided. Furthermore, since variables x and y in the function have also been
declared as vpfloat<mpfr, 16, precision>, the same type for 1.0 is required.

4.5 Type Comparison, Casting and Conversion

Types are only considered to be equal if they hold the exact same attributes. Our type system
only implements subtyping or implicit conversion in two situations: (1) when doing plain variable
assignments, which means we can guarantee that truncation or extension of a source type to its
destination can be done safely; (2) and between constant types, when it is possible to guarantee
a correct conversion. For instance, constants whose types differ by one attribute. In these cases,

46

1 void someFunction () {
2

3 // Some code
4

5 // OKAY
6 vaxpy(precision , n, (vpfloat <mpfr , 16, precision >)1.0, x, y);
7

8 // ERROR
9 vaxpy(precision , n, (vpfloat <mpfr , 15, precision >)1.0, x, y);

10

11 // Some code
12 }

Listing 4.10: Uses of dynamically-sized types in function call and return.

we follow the C language Standard which favors higher-ranked formats, that is, those with larger
exponent, mantissa, or size.

Other implicit conversions over more general expressions would be too ambiguous when
determining the types of intermediate values. If types are not equal, it is the user’s responsibility
to insert the appropriate cast or type conversion. Casting exposes the underlying array of bytes
implementing a given format and vice versa. Listing 4.11 illustrates many of the implicit and
explicit situations discussed above. In line 7, the compiler cannot implicitly cast one of the
operands of the addition to the other, so the programmer must provide the correct cast for one
of the two operands, as in line 10. From line 12 to 25, one can see that the compiler can still
offer implicit conversions when no ambiguity is assured. The intermediate type for b + d(line
24) can be implicitly casted to type of d, due to having two more bits in the fss attribute. In line
25, compiler can safely cast the intermediate of b + e to the type of b as it has one more bit in
the ess attribute. Nonetheless, ambiguity can still be found in constant types when multiple
attributes differ (line 18). In those cases, an explicit cast must be used. After these conversions
take place, the compiler can proceed to implicitly cast the intermediate type to the destination
type. In lines 24, and 25, for example, a compiler-generated conversion from vpfloat<unum, 4,
8> to vpfloat<unum, 4, 7>, and from vpfloat<unum, 4, 6> to vpfloat<unum, 4, 7> are

generated.

4.6 Language Extension Limitations
Our extension gives significant flexibility for users to declared FP types with dynamic attributes.
Not only we enable plain vpfloat declarations, but also their use as underlying types to construct
pointers, arrays, or even vectors3. However, one current limitation of our language extension lies
on the use of types with runtime attributes (from sections 4.4.2 and 4.4.3) within some of the
compound types in C-based languages, namely, struct and class.

From a language perspective, we have not found a concrete syntax that satisfies the same
requirements of plain declarations. We could potentially declare a primitive vpfloat type
inside a struct that uses an internal variable as runtime attribute. Although that would be
syntactically possible, it leads to an addled situation: vpfloat’s allocation size relies on a
value initialization inside the struct, which usually happens after struct allocation. Limiting
the declarations to pointer-based types would help to circumvent this issue. In this case, we
could simple restrict pointer vpfloat declarations inside these compound types, since their

3From the LLVM perspective, there is a difference between array and vector, as the latter is lowered to
vector-enabled instructions.

47

1 void example_conversions (unsigned fss , unsigned fss2) {
2

3 vpfloat <unum , 4, fss > a_fss = 1.3v;
4 vpfloat <unum , 4, fss2 > a_fss2 = 1.3v;
5

6 // ERROR: invalid operands to binary expression
7 vpfloat <unum , 4, 7> add_a_error = a_fss + a_fss2 ;
8

9 // OK
10 vpfloat <unum , 4, 7> add_a = a_fss + (vpfloat <unum , 4,fss >) a_fss2 ;
11

12 vpfloat <unum , 4, 6> b = 1.3v;
13 vpfloat <unum , 3, 7> c = 1.1v;
14 vpfloat <unum , 4, 8> d = 1.1v;
15 vpfloat <unum , 3, 6> e = 1.1v;
16

17 // ERROR: invalid operands to binary expression
18 vpfloat <unum , 4, 7> add_bc_error = b + c;
19

20 // OK
21 vpfloat <unum , 4, 7> add_bc_okay = (vpfloat <unum , 3,7>)b + c;
22

23 // OK
24 vpfloat <unum , 4, 7> add_bd_okay = b + d;
25 vpfloat <unum , 4, 7> add_be_okay = b + e;
26 }

Listing 4.11: Examples of implicit and explicit conversions between vpfloat<...> types

allocations can be done after type creation. There have been proposal submissions [41, 111] to
the committee to add support for classes with runtime size in C++, showing there is still interest
in the community to offer this level of flexibility. Our variable (parametric) floating-point types
as presented herein may also help justifying their inclusion in the language. Nonetheless, this is
considered part of a future work due to its complexity in compiler instrumentation.

4.7 Libraries for Variable Precision
The language description, its syntax, and semantics presented in this chapter are sufficient to
allow users to implement algorithms and libraries that enable FP variation. Having compatibility
with two representations (MPFR, UNUM) with language and compiler integration, extends the
use of variable precision for algorithmic evaluation. One may want to explore the impact of
high-precision representations within linear solvers and singular value algorithms, while others
may utilize it to implement physics and engineering applications.

As Basic Linear Algebra Subprogram (BLAS) has been successfully used in linear algebra
and other fields to produce fast and portable software (see Section 3.2.3.1), we make use of
our proposed multi-format language extension and designed a representative subset of BLAS
routines to show the interest of our approach. The selected subset of routines is enough to
implement different variations of linear algebra algorithms such as the Conjugate Gradient and
the Singular Value Decomposition. In the following sections, we show two versions of BLAS:
mpfrBLAS, a BLAS library based on vpfloat<mpfr, ...> data types, and unumBLAS that is
implemented with vpfloat<unum,...> types. Although they require few changes, the design of
these libraries aspires to follow similar models as standard implementations. In particular, our
libraries:

48

(1) implement different flavors for the same algorithm. The goal is to minimize the number of
variables in extended (high-) precision footprints. These representations should be used
only when necessary and providing multiple implementations aid application designers to
choose the right function with the right balance between accuracy and performance. For
instance, a variable-precision implementation of CG can bear to have the matrix stored as
double and its extended-precision representation is not needed.

(2) try to use the same function signatures as standard BLAS implementations. That way, ap-
plications may smoothly transition between legacy support libraries (e.g., double-precision
BLAS) and extended or adaptive precision solutions when required. Similar to xBLAS [80],
our libraries use resembling function signatures to those of legacy code for rapid adaptation.

4.7.1 mpfrBLAS: A vpfloat<mpfr, ...> BLAS library

The mpfrBLAS is a vpfloat<mpfr, ...>-based BLAS implementation that targets the explo-
ration of variable precision in, but not limited to, high-precision scenarios. No restrictions are
imposed on employing it for lower precision, but it has the drawback over other implementations
by underlying the use of MPFR. It was implemented to enable execution in multi-threaded
environments through the use of OpenMP directives.

The complete list of implemented routines is presented below, divided according to the BLAS
level to which they belong. The naming strategy used for them follows the type declarations
for matrix and vector variables. For example, a DOT function where y is a vpfloat and x is
a double is named as vpm_dot_vd. String "vpm_" is an indicator of a vpfloat<mpfr, ...>
BLAS routine, while ’vd’ indicates that y and x have vpfloat and double types, respectively.

4.7.1.1 Level 1: Vector-to-vector operations

– COPY: Copy a vector to a new vector.

yi = xi

void vpm_copy (int precision , int n,
vpfloat <mpfr , 16, precision > *x, int incx ,
vpfloat <mpfr , 16, precision > *y, int incy)

void vpm_copy_2p (int precision1 , int precision2 , int n,
vpfloat <mpfr , 16, precision1 > *x, int incx ,
vpfloat <mpfr , 16, precision2 > *y, int incy)

Two COPY functions are provided: one where vectors X and Y have the same precision
value, and a more general implementation where precision may be different between vectors.
As an example, one may want to increase the precision of a vector for a better estimation
of the accuracy of the computed value.

– SCAL: Multiplies each vector element by a constant.

x= αx

void vpm_scal (unsigned precision , int n,
vpfloat <mpfr , 16, precision > alpha ,

49

vpfloat <mpfr , 16, precision > *X, int incx)

– DOT: Computes the DOT product between two vpfloat< mpfr,...> vectors.

r =
∑

xi + yi

vpfloat <mpfr , 16, precision >
vpm_dot_vd (int precision , int n, double *X, int incx ,

vpfloat <mpfr , 16, precision > *Y, int incy)

vpfloat <mpfr , 16, precision >
vpm_dot_vv (int precision , int n,

vpfloat <mpfr , 16, precision > *X, int incx ,
vpfloat <mpfr , 16, precision > *Y, int incy)

In some cases, it is important to perform accumulation in a high-precision container to
minimize the effects of round-off errors. The kulisch accumulator [75] is based on this
concept and it is also the reason why vdot_vd has been implemented.

– AXPY: Computes vector accumulation.

yi =
∑

xi + yi

void vpm_axpy_vdd (unsigned precision , int n, double alpha ,
double *X, int incx ,
vpfloat <mpfr , 16, precision > *Y, int incy)

void vpm_axpy_vvv (unsigned precision , int n,
vpfloat <mpfr , 16, precision > alpha ,
vpfloat <mpfr , 16, precision > *X, int incx ,
vpfloat <mpfr , 16, precision > *Y, int incy)

vpm_axpy* functions are simple implementations of vector accumulation, which is widely
used in linear algebra. More interestingly, vpm_axpy_vdd also works as a copy function
from double vector to a vpfloat one.

4.7.1.2 Level 2: Matrix-vector operations

– GEMV: General matrix-vector product.

y = αAx+βy

void vpm_gemv_vdd (unsigned precision ,
enum CBLAS_ORDER order ,
enum CBLAS_TRANSPOSE trans ,
int m, int n,
vpfloat <mpfr , 16, precision > alpha ,

50

double *A, int k,
double *X, int incx ,
vpfloat <mpfr , 16, precision > beta ,
vpfloat <mpfr , 16, precision > *Y, int incy)

void vpm_gemv_vdv (unsigned precision ,
enum CBLAS_ORDER order ,
enum CBLAS_TRANSPOSE trans ,
int m, int n,
vpfloat <mpfr , 16, precision > alpha ,
double *A, int lda ,
vpfloat <mpfr , 16, precision > *X, int incx ,
vpfloat <mpfr , 16, precision > beta ,
vpfloat <mpfr , 16, precision > *Y, int incy)

void vpm_gemv_vvv (unsigned precision ,
enum CBLAS_ORDER order ,
enum CBLAS_TRANSPOSE trans ,
int m, int n,
vpfloat <mpfr , 16, precision > alpha ,
vpfloat <mpfr , 16, precision > *A, int lda ,
vpfloat <mpfr , 16, precision > *X, int incx ,
vpfloat <mpfr , 16, precision > beta ,
vpfloat <mpfr , 16, precision > *Y, int incy)

int t1 , t2 , t3 , t4;
int lb , ub , lbp , ubp , lb2 , ub2;
register int lbv , ubv;

if ((m >= 1) && (n >= 1)) {
lbp =0;
ubp= floord (m -1 ,32);

pragma omp parallel for private (lbv ,ubv ,t2 ,t3 ,t4)
for (t1=lbp;t1 <= ubp;t1 ++) {

for (t2 =0;t2 <= floord (n -1 ,32);t2 ++) {
for (t3 =32* t1;t3 <=(min(m -1 ,32* t1 +31)) -7;t3 +=8) {

for (t4 =32* t2;t4 <= min(n -1 ,32* t2 +31);t4 ++) {
Y[t3*incy] = alpha * A[t3*lda + t4] * X[t4*incx]

+ beta * Y[t3*incy];
Y[(t3 +1)*incy] = alpha*A[((t3 +1)*lda)+t4]*X[t4*incx]

+ beta*Y[(t3 +1)*incy];
Y[(t3 +2)*incy] = alpha*A[((t3 +2)*lda)+t4]*X[t4*incx]

+ beta*Y[(t3 +2)*incy];
Y[(t3 +3)*incy] = alpha*A[((t3 +3)*lda)+t4]*X[t4*incx]

+ beta*Y[(t3 +3)*incy];
Y[(t3 +4)*incy] = alpha*A[((t3 +4)*lda)+t4]*X[t4*incx]

+ beta*Y[(t3 +4)*incy];
Y[(t3 +5)*incy] = alpha*A[((t3 +5)*lda)+t4]*X[t4*incx]

+ beta*Y[(t3 +5)*incy];
Y[(t3 +6)*incy] = alpha*A[((t3 +6)*lda)+t4]*X[t4*incx]

+ beta*Y[(t3 +6)*incy];
Y[(t3 +7)*incy] = alpha*A[((t3 +7)*lda)+t4]*X[t4*incx]

+ beta*Y[(t3 +7)*incy];
}

}
for (;t3 <= min(m -1 ,32* t1 +31);t3 ++) {

for (t4 =32* t2;t4 <= min(n -1 ,32* t2 +31);t4 ++) {
Y[t3] = alpha * A[t3*lda + t4] * X[t4*incx]

+ beta * Y[t3*incy];
}

}
}

51

}
}

}

Above, we show an implementation example for vpm_gemv_vvv, automatically generated by
Pluto [25], an automatic parallelizer and locality optimizer. The only modifications done
concern the inclusion of variables lda, incx, and incy, requirements for BLAS functions.
We will further discuss support for Loop Nest optimizer within the context of our types
(in Chapter 5), however, Pluto’s capabilities go beyond the support for types. That is,
it optimizes the data locality by merely analyzing patterns of access, without requiring
to have previous knowledge about the footprint of the type. This example intent is to
show that state-of-the-art optimizers can be used to design high-performance libraries for
vpfloat types. Future implementations of our libraries will focus on these specializations,
which require substantial work to guarantee performance improvement in most cases.

– SYMV: Sparse matrix vector product.

y = αAx+βy

void vpm_sparse_gemv_vdd (unsigned precision , int m, int n,
vpfloat <mpfr , 16, precision > alpha ,
double *A, int *rowInd , int *colInd ,
double *X,
vpfloat <mpfr , 16, precision > beta ,
vpfloat <mpfr , 16, precision > *Y)

void vpm_sparse_gemv_vdv (unsigned precision , int m, int n,
vpfloat <mpfr , 16, precision > alpha ,
double *A, int *rowInd , int *colInd ,
vpfloat <mpfr , 16, precision > *X,
vpfloat <mpfr , 16, precision > beta ,
vpfloat <mpfr , 16, precision > *Y)

void vpm_sparse_gemv_vvv (unsigned precision , int m, int n,
vpfloat <mpfr , 16, precision > alpha ,
vpfloat <mpfr , 16, precision > *A,
int *rowInd , int *colInd ,
vpfloat <mpfr , 16, precision > *X,
vpfloat <mpfr , 16, precision > beta ,
vpfloat <mpfr , 16, precision > *Y)

– Sparse MV: Sparse matrix vector product.

y = αAx+βy

void vpm_sparse_symv_vdd (unsigned precision , int m, int n,
vpfloat <mpfr , 16, precision > alpha ,
double *A, int *rowInd , int *colInd ,
double *X,
vpfloat <mpfr , 16, precision > beta ,
vpfloat <mpfr , 16, precision > *Y)

52

void vpm_sparse_symv_vdv (unsigned precision , int m, int n,
vpfloat <mpfr , 16, precision > alpha ,
double *A, int *rowInd , int *colInd ,
vpfloat <mpfr , 16, precision > *X,
vpfloat <mpfr , 16, precision > beta ,
vpfloat <mpfr , 16, precision > *Y)

void vpm_sparse_symv_vvv (unsigned precision , int m, int n,
vpfloat <mpfr , 16, precision > alpha ,
vpfloat <mpfr , 16, precision > *A,
int *rowInd , int *colInd ,
vpfloat <mpfr , 16, precision > *X,
vpfloat <mpfr , 16, precision > beta ,
vpfloat <mpfr , 16, precision > *Y)

We have implemented different variations of the matrix-vector multiplications in order
to handle different scenarios: dense, sparse and symmetric sparse matrices. Those with
a sparse prefix are used for sparse matrices represented in the CSR (Compressed Row
Storage) format.

4.7.1.3 Level 3: Matrix-matrix operations

C = αAB+βC

void vpm_gemm (unsigned precision , enum CBLAS_ORDER order ,
enum CBLAS_TRANSPOSE transA ,
enum CBLAS_TRANSPOSE transB , int m, int n, int k,
vpfloat <mpfr , 16, precision > alpha ,
vpfloat <mpfr , 16, precision > *A, int lda ,
vpfloat <mpfr , 16, precision > *B, int ldb ,
vpfloat <mpfr , 16, precision > beta ,
vpfloat <mpfr , 16, precision > *C, int ldc)

GEMM has, as have other routines, been implemented so that it has a signature close to
BLAS original one. The sole difference is the presence of a precision variable as the first
function parameter. The remaining ones conform to the legacy code signature 4, easing
portability. Furthermore, both transpose and non-transpose matrices are supported by
our implementation.

Our mpfrBLAS is composed of 17 routines, ranging from simple vector-vector operations
(Level 1) to a matrix product (Level 3). Even though there are many functions missing, these
functions already allow us to implement some linear algebra algorithms, which will be discussed
in Chapter 6. Moreover, we should clarify that the exponent field, defined as a constant 16, has no
real effect on MPFR types. Its actual size value is predefined by the underlying mpfr_t struct.

4https://developer.apple.com/documentation/accelerate/1513282-cblas_dgemm

53

4.7.2 unumBLAS: A vpfloat<unum, ...> BLAS library
We also propose a subset of BLAS routines for vpfloat<unum, ...> types. Due to the flexibility
of our extension, many variations of vpfloat<unum,...>-enabled libraries can be created. This
one, in particular, has been implemented considering all FP attributes being expressed as
variables, but other implementations may consider different constraints and use constant value
for the declaration of any FP attribute. Function names are preceded by prefix "vpu_", while ’v’
indicates vpfloat<unum, ...> types, ’d’ is used for double.

4.7.2.1 Level 1: Vector-to-vector operations

– COPY: Copy a vector to a new vector.

yi = xi

void vpu_copy (int ess , int fss , int size , int n,
vpfloat <unum , ess , fss , size > *x, int incx ,
vpfloat <unum , ess , fss , size > *y, int incy);

– SCAL: Multiplies each vector element by a constant.

x= αx

void vpu_scal (int ess , int fss , int size , int n,
vpfloat <unum , ess , fss , size > alpha ,
vpfloat <unum , ess , fss , size > *X, int incx);

– DOT: Computes the DOT product between two vpfloat< mpfr,...> vectors.

r =
∑

xi + yi

vpfloat <unum , ess , fss , size >
vpu_dot_vd (int ess , int fss , int size , int n,

double *X, int incx ,
vpfloat <unum , ess , fss , size > *Y, int incy);

vpfloat <unum , ess , fss , size >
vpu_dot_vv (int ess , int fss , int size , int n,

vpfloat <unum , ess , fss , size > *X, int incx ,
vpfloat <unum , ess , fss , size > *Y, int incy);

– AXPY: Computes vector accumulation.

yi =
∑

xi + yi

void vpu_axpy_vdd (int ess , int fss , int size , int n,
double alpha , double *X, int incx ,
vpfloat <unum , ess , fss , size > *Y, int incy);

54

void vpu_axpy_vvv (int ess , int fss , int size , int n,
vpfloat <unum , ess , fss , size > alpha ,
vpfloat <unum , ess , fss , size > *X, int incx ,
vpfloat <unum , ess , fss , size > *Y, int incy);

4.7.2.2 Level 2: Matrix-vector operations

– GEMV: General matrix-vector product.

y = αAx+βy

void vpu_gemv_vdd (int ess , int fss , int size ,
enum CBLAS_ORDER order , enum CBLAS_TRANSPOSE trans ,
int m, int n, vpfloat <unum , ess , fss , size > alpha ,
double *A, int lda , double *X, int incx ,
vpfloat <unum , ess , fss , size > beta ,
vpfloat <unum , ess , fss , size > *Y, int incy);

void vpu_gemv_vvd (int ess , int fss , int size ,
enum CBLAS_ORDER order , enum CBLAS_TRANSPOSE trans ,
int m, int n, vpfloat <unum , ess , fss , size > alpha ,
double *A, int lda ,
vpfloat <unum , ess , fss , size > *X, int incx ,
vpfloat <unum , ess , fss , size > beta ,
vpfloat <unum , ess , fss , size > *Y, int incy);

void vpu_gemv_vvv (int ess , int fss , int size ,
enum CBLAS_ORDER order , enum CBLAS_TRANSPOSE trans ,
int m, int n, vpfloat <unum , ess , fss , size > alpha ,
vpfloat <unum , ess , fss , size > *A, int lda ,
vpfloat <unum , ess , fss , size > *X, int incx ,
vpfloat <unum , ess , fss , size > beta ,
vpfloat <unum , ess , fss , size > *Y, int incy);

– Sparse MV: Sparse matrix vector product.

y = αAx+βy

void vpu_sparse_gemv_vdd (int ess , int fss , int size , int m, int n,
vpfloat <unum , ess , fss , size > alpha ,
double *A, int *rowInd , int *colInd ,
double *X, vpfloat <unum , ess , fss , size > beta ,
vpfloat <unum , ess , fss , size > *Y);

void vpu_sparse_gemv_vvd (int ess , int fss , int size , int m, int n,
vpfloat <unum , ess , fss , size > alpha ,
double *A, int *rowInd , int *colInd ,
vpfloat <unum , ess , fss , size > *X,
vpfloat <unum , ess , fss , size > beta ,
vpfloat <unum , ess , fss , size > *Y);

55

void vpu_sparse_gemv_vvv (int ess , int fss , int size , int m, int n,
vpfloat <unum , ess , fss , size > alpha ,
vpfloat <unum , ess , fss , size > *A,
int *rowInd , int *colInd ,
vpfloat <unum , ess , fss , size > *X,
vpfloat <unum , ess , fss , size > beta ,
vpfloat <unum , ess , fss , size > *Y);

– SYMV Sparse: Sparse Symmetric matrix vector product.

y = αAx+βy

void vpu_sparse_symv_vdd (int ess , int fss , int size , int m, int n,
vpfloat <unum , ess , fss , size > alpha ,
double *A, int *rowInd , int *colInd ,
double *X, vpfloat <unum , ess , fss , size > beta ,
vpfloat <unum , ess , fss , size > *Y);

void vpu_sparse_symv_vvd (int ess , int fss , int size , int m, int n,
vpfloat <unum , ess , fss , size > alpha ,
double *A, int *rowInd , int *colInd ,
vpfloat <unum , ess , fss , size > *X,
vpfloat <unum , ess , fss , size > beta ,
vpfloat <unum , ess , fss , size > *Y);

void vpu_sparse_symv_vvv (int ess , int fss , int size , int m, int n,
vpfloat <unum , ess , fss , size > alpha ,
vpfloat <unum , ess , fss , size > *A,
int *rowInd , int *colInd ,
vpfloat <unum , ess , fss , size > *X,
vpfloat <unum , ess , fss , size > beta ,
vpfloat <unum , ess , fss , size > *Y);

4.7.2.3 Level 3: Matrix-matrix operations

C = αAB+βC

void vpu_gemm (int ess , int fss , int size , enum CBLAS_ORDER order ,
enum CBLAS_TRANSPOSE transA , enum CBLAS_TRANSPOSE transB ,
int m, int n, int k, vpfloat <unum , ess , fss , size > alpha ,
vpfloat <unum , ess , fss , size > *A, int lda ,
vpfloat <unum , ess , fss , size > *B, int ldb ,
vpfloat <unum , ess , fss , size > beta ,
vpfloat <unum , ess , fss , size > *C, int ldc);

unumBLAS routines are very similar to the ones defined in mpfrBLAS. However, one may
notice that UNUM types have broader adaptability. MPFR types are declared with two FP

56

attributes, one of which has no effect on the representation. Types created as vpfloat<unum,
...> are more flexible with up to three attributes to control.

4.8 Conclusion
This chapter introduced and presented all aspects of the C language extension and type system
for variable precision FP computing that we propose. When comparing to state-the-art solutions,
we hope to have proven that our language extension has similar capabilities and equivalent
programming model as traditional formats (like programming with IEEE formats), with better
language integration than high-level structures. This enables further integration with a compiler
toolchain, which will be introduced in the next chapter. We also allow multiple formats to coexist
within the same keyword, which can further improve the exploration of alternative formats and
can accelerate the integration with industry-level compiler infrastructures.

Along with the extension, we also provide implementations for a subset of BLAS routines that
uses our types. They allow developers to rapidly instantiate code for testing multiple formats and
variable precision. Furthermore, the main feature of these libraries is enabling programmatically
driven experimentations in an attribute agnostic fashion for a given representation. That is,
we may single-run applications in multiple precision configurations without requiring code
recompilation. Some of the experimental results from Chapter 6 were obtained this way.

57

Chapter 5: Compiler Integration for
Variable Precision FP Formats

Contents
5.1 Frontend . 59
5.2 Intermediate Representation (IR) . 59

5.2.1 VPFloat Types . 60
5.2.2 Function Declarations . 61
5.2.3 Interaction with Classical Optimizations 62

5.3 Code Generators . 68
5.3.1 Software Target: MPFR . 68
5.3.2 Hardware Target: UNUM . 74

5.4 Conclusion . 77

We will demonstrate the value and realism of our language extension through its integration
into an industry-level compiler. Our solution was implemented on top of the LLVM [76] infras-
tructure, since it provides a modular compilation flow, a powerful Intermediate Representation
(IR), and is widely used both in academia and industry. This chapter focuses on detailing the
compilation flow needed to support the vpfloat type system. We will cover the aspects of the
proposed LLVM IR extension for variable precision FP arithmetic, and how it interacts with
the compilation flow and optimizations. Later we describe the backend code generators we
implemented in order to consume vpfloat<mpfr, ...> and vpfloat<unum, ...> types from
our language extension.

5.1 Frontend
We have implemented support for the vpfloat language extension and type system in LLVM’s
frontend for C/C++ (clang). Our frontend supports both representations MPFR and UNUM as
defined in the Language chapter (4). Aside from implementing the specification of our language,
semantic and syntax analysis, the only work needed by this stage is the generation of LLVM
Intermediate Representation (LLVM IR).

5.2 Intermediate Representation (IR)
LLVM uses a target-independent intermediate language for a common infrastructure where code
optimizations and transformations can be applied. The LLVM IR defines a set of assembly-like
instructions that operate on values and types, and which are later used by the code generators
of different architectures. More specifically, LLVM defines a set of types to represent different

59

1 class VPFloatType : public Type {
2

3 public :
4

5 enum VPTypeID {
6 UNUMTyID = 0, ///< 0: Unum Type
7 MPFRTyID ///< 1: MPFR Type
8 };
9

10 private :
11

12 // Code ...
13 ConstantInt * ConfigTy ;
14 Value * ExponentInfo ;
15 Value * PrecisionInfo ;
16 Value * SizeInfo ;
17 // Code ...

Listing 5.1: Partial implementation of vpfloat types in the LLVM IR.

data structures, from simple primitive types like integers and floating points, to vectors, arrays
and structures.

As such, we provide an extension to the LLVM IR Type System that enables vpfloat
FP types in intermediate code. Similar to our language-level type system, vpfloat IR types
also keep the information on attributes internally, so that expressiveness is maintained across
the compilation process. We essentially translate the functionalities from language level to
intermediate, that is, even closer to target code generators.

5.2.1 VPFloat Types
A new class for vpfloat was implemented to provide LLVM with a native representation
of variable precision FP types. Attributes are defined as Value1 objects since they can be
represented by instructions, constants, function parameters, or global variables. In Listing 5.1,
we show a snippet of the implementation of VPFloatType class for UNUM and MPFR types,
here represented by constants 0 and 1, respectively. With the exception of ConfigTy declared as
an integer constant (line 13), all other attributes can assume values of different Value-inherited
classes (lines 14 to 16), and help to show the flexibility of our type system.

The addition of a new type system, although somewhat intrusive from a maintenance
perspective, allows us to have a tighter integration with LLVM. This favors its use not only on
novel optimizations we may wish to implement but also qualifies these new types to be used in
classical ones. Constant propagation, stack-to-register promotion, and common subexpression
elimination are some of the optimizations that work out-of-the-box in our type system without
any necessary modification.

Additionally, the human-readable representation of our IR vpfloat types resembles that of
the language extension. Listing 5.2 shows the the IR code of the ex_dyn_type_ret function
from Listing 4.9. UNUM VPFloats in the IR are specified as 0, while MPFR use a constant of 1
for its format. This non-optimized (-O0 compilation flag) version also illustrates the dynamic
aspect of our types. A call to function __sizeof_vpfloat in line 10 is used to get the number
of bytes needed by the allocation instruction alloca (line 13). We also make use of a pair of

1Value is one of the most important LLVM IR classes because it is the base class for all values computed in
a program.

60

1 ; Function Attrs: noinline nounwind optnone
2 define vpfloat <0, 4, %fss >
3 @ex_dyn_type_ret (i32 signext %fss , vpfloat <0, 4, %fss > %a) #0 {
4 entry:
5 call void @llvm. vpfloat . runtimeattr .mark.i32(i32 %fss)
6 %fss.addr = alloca i32 , align 4
7 %saved_stack = alloca i8*, align 8
8 store i32 %fss , i32* %fss.addr , align 4
9 %0 = load i32 , i32* %fss.addr , align 4

10 %1 = call i64 @__sizeof_vpfloat (i32 0, i32 4, i32 %0 , i64 0)
11 %2 = call i8* @llvm. stacksave ()
12 store i8* %2 , i8** %saved_stack , align 8
13 %vla = alloca i8 , i64 %1 , align 8
14 %a.addr = bitcast i8* %vla to vpfloat <0, 4, %fss >*
15 store vpfloat <0, 4, %fss > %a , vpfloat <0, 4, %fss >* %a.addr , align 8
16 store vpfloat <0, 4, %fss > fpext (double 1.300000 e+00 to vpfloat <0, 4, ←↩

%fss >), vpfloat <0, 4, %fss >* %a.addr , align 8
17 %3 = load vpfloat <0, 4, %fss >, vpfloat <0, 4, %fss >* %a.addr , align 8
18 %4 = load i8*, i8** %saved_stack , align 8
19 call void @llvm. stackrestore (i8* %4)
20 ret vpfloat <0, 4, %fss > %3
21 }
22

23 declare extern_weak i64 @__sizeof_vpfloat (i32 , i32 , i32 , i64)

Listing 5.2: IR code of the ex_dyn_type_ret function from Listing 4.9 types in the LLVM IR.

instructions store and load to control the address pointer of the stack. Lines 11-12 and 18-19
are used to record and recover the status of the stack, respectively, so that it can be dynamically
allocated. To the best of our knowledge, this is the first work that proposes these levels of
interaction between types and values in the program for FP arithmetic. LLVM types are usually
self-sufficient, i.e., free from the interference of other values in the program (except for VLAs).
This flexibility comes at the cost of evaluating their compatibility with the significant number of
optimizations LLVM offers.

5.2.2 Function Declarations

LLVM IR has a particular way of representing function declarations that omits variables names
for function parameters. As an example, __sizeof_vpfloat from Listing 5.2 (line 23) is printed
as a function declaration, because it was either inserted by the compiler automatically or came
from an included header file. One should notice that only parameter types are included, and not
their names, simply because they are not needed.

Declaration-wise, parameters’ names are irrelevant. Although this works well for standard
LLVM IR code and also conforms to the C specification (as in line 3 of Listing 5.3a), our type
system cannot afford the use of the same approach. Types with runtime-decidable attributes
may have their declarations dependent on function parameters, which can lead these types to be
invalid. As values are used as binding operands for vpfloat types, it is important to make sure
that function declarations have vpfloat types with proper attributes.

We propose to address this issue by using negative values as a way of expressing binding
relations between parameters and vpfloat types. Since negative values have no meaning for
floating-point format parameters whatsoever, we can make use of them to specify these relations.
We depict some examples of this approach in Listing 5.3: with Listing 5.3a showing the C-
level code for different function declarations, and Listing 5.3b having their corresponding IR

61

1 double example1_double_declaration (double a);
2

3 double example2_double_declaration (double);
4

5 vpfloat <unum , 4, 6> example_const_declaration (vpfloat <unum , 4, 6> a);
6

7 vpfloat <unum , 4, fss >
8 example1_declaration (unsigned fss , vpfloat <unum , 4, fss > a);
9

10 vpfloat <unum , ess_fss , ess_fss , size >
11 example2_declaration (unsigned ess_fss , unsigned size ,
12 vpfloat <unum , ess_fss , ess_fss , size > a);
13

14 vpfloat <unum , ess , fss , size >
15 example3_declaration (unsigned ess , unsigned fss , unsigned size ,
16 vpfloat <unum , ess , fss , size > a);

(a) C-level function declarations for vpfloat types with runtime-evaluated attributes.

1 declare double @example1_double_declaration (double) #2
2

3 declare double @example2_double_declaration (double) #2
4

5 declare vpfloat <0, 4, 6> @example_const_declaration (vpfloat <0, 4, 6>) #2
6

7 declare vpfloat <0, 4, -1> @example1_declaration (i32 signext , vpfloat <0, 4,←↩
-1>) #2

8

9 declare vpfloat <0, -1, -1, -2> @example2_declaration (i32 signext , i32 ←↩
signext , vpfloat <0, -1, -1, -2>) #2

10

11 declare vpfloat <0, -1, -2, -3> @example3_declaration (i32 signext , i32 ←↩
signext , i32 signext , vpfloat <0, -1, -2, -3>) #2

(b) IR-level function declarations for vpfloat types with runtime-evaluated attributes.

Listing 5.3: Function declaration examples for vpfloat types with runtime-evaluated attributes
in C headers and LLVM IR.

function declarations. The first 3 function declarations illustrate the current LLVM IR support
for constant types, where parameter names are not shown and types require no additional
(value-related) information. The remaining three examples display binding relations between
integer parameters and vpfloat type declarations. Negative value -1 binds the attribute to the
first function parameter, -2 to the second, and so on. This allows semantic analysis to check
that function calls match the function signature for declarations.

5.2.3 Interaction with Classical Optimizations

A new IR type system allows vpfloat types to interact and benefit from classical optimizations
available in the infrastructure. While many optimizations are out-of-the-box compatible with
vpfloat, some require modifications for proper support. The following sections cover the
necessary changes in toolchain and optimizations.

62

5.2.3.1 Type-value Relation

Standard compilers usually use specific data structures to track the relation between a value
definition and its uses [4]. A Use-Definition (use-def) chain consists of a use (U) of a variable and
all the definitions that can reach U directly without any other intermediate definition. It usually
expresses the assignment of a value to a variable. Its counterpart, Definition-Use (def-use)
chain relates the definition (D) of a variable with all its uses that are reachable from D without
any intervening definition. These concepts and structures are prerequisites for applying many
compiler optimizations and transformations, such as constant propagation, register allocation,
and common subexpression elimination.

LLVM also makes use of these concepts to construct relations between value definitions
and uses throughout the compilation flow. Although LLVM’s def-use chain and use-def chain
implementations allows one only to track chains between Value objects, vpfloat types also
have def-use relations with attribute Value objects. Hence, the current LLVM implementation
is incompatible with our type extension, and a vpfloat type cannot be obtained by traversing
the def-use chain of an attribute. Due to the required modifications of many key components of
the compiler for making the current def-use implementation compatible with our type system,
we have chosen to keep a separated list of Value objects being used as types attributes. One
should notice that constant values do not require tracking, since they will never change. Once
the list is constructed, two operations are possible:

(1) Update: optimizations may optimize values in the program that require the update of
references from our tracking list. If an object is replaced by a new one, our type system
makes sure to update any type that uses the old value to the new reference.

(2) Deletion: Because LLVM classical optimizations have no knowledge about our tracking
system, it is possible they wind up realizing that values being used as vpfloat attributes
are no longer needed in the computation and, thus, can be deleted. However, an object
deletion can invalidate types. Our compiler makes sure vpfloat attributes are never
deleted by adding a mark through an intrinsic call. Because they are inherently seen as
having side effects, adding intrinsic calls to mark values avoids their deletion. Although
this may have a negative impact on the generated code, we ensure that vpfloat types are
not invalidated.

5.2.3.2 Loop Idiom Recognition

Another optimization change for vpfloat compatibility is implemented for the Loop Idiom
Recognizer. This pass implements a simple, yet efficient transformation that replaces a simple
loop structure into a non-loop form. Two of the implemented optimizations consist of detecting
loop structures that can be replaced by memset and memcpy calls: the former is used to detect
object initialization in an array and the latter copies an object from one location to another.

These transformations can greatly improve application performance and are depicted in
Listing 5.4a. Constant vpfloat types are implemented in the same fashion as traditional
primitive types. Lines 1-10 and Listings 5.4b-5.4d exemplify how the pass generates memset and
memcpy calls to initialize array values for constant types double and a 6-byte unum.

We have modified this pass to take into consideration dynamically-sized types where sizes
cannot be known at compile time. If a dynamically-sized type is found, the compiler uses
the __sizeof_vpfloat function to calculate the size of the type in use. Listing 5.4e shows
how the pass optimizes a vector-copy for-loop by generating a memcpy call instead. Because
the pass does not know the size of vec_unum1 and vec_unum2 a priori, it generates a call to
__sizeof_vpfloat. Additionally, due to the definition of the base MPFR data type which

63

1 double * vec_double ;
2 for (unsigned i = 0; i < N; ++i)
3 vec_double [i] = 0;
4

5 double *vec1 , *vec2;
6 for (unsigned i = 0; i < N; ++i)
7 vec1[i] = vec2[i];
8

9 vpfloat <unum , 4, 6, 6> * vec_unum_c ;
10 for (unsigned i = 0; i < N; ++i)
11 vec_unum_c [i] = 0;
12

13 vpfloat <unum , 4, fss > * vec_unum1 ;
14 vpfloat <unum , 4, fss > * vec_unum2 ;
15 for (unsigned i = 0; i < N; ++i)
16 vec_unum1 [i] = vec_unum2 [i];
17

18 vpfloat <mpfr , 16, 100> vec_mpfr ;
19 for (unsigned i = 0; i < N; ++i)
20 vec_mpfr [i] = 0;

(a) Original code before Loop Idiom Recognition.

memset (vec_double , 0, N * 8);

(b) Optimized (memset) generation for double.

memcpy (vec1 , vec2 , N * 8);

(c) Optimized (memset) generation for constant
vpfloat<unum, ...>.

memset (vec_unum_c , 0, N * 6);

(d) Optimized (memset) generation for vpfloat
<unum, ...> with a runtime attribute.

memcpy (vec_unum1 , vec_unum2 , N *
__sizeof_vpfloat (0, 4, fss , 0));

(e) Optimized (Optimized (memcpy) generation
in constant vpfloat<unum, ...>.

for (unsigned i = 0; i < N; ++i)
vec_mpfr [i] = 0;

(f) Optimized (No optimization for vpfloat<
mpfr, ...> types.

Listing 5.4: Loop idiom recognition pass for different types: double(5.4b, 5.4c), vpfloat<unum,
...>(5.4d, 5.4e), and vpfloat<mpfr, ...>(5.4f).

includes a pointer variable in the struct (see in Listing 4.2), this pass has been disabled for
the vpfloat <mpfr, ...> types. Listing 5.4f shows that no optimization is performed for the
vpfloat <mpfr, 16, 100> data type.

5.2.3.3 Inlining

Inlining Expansion replaces a function call site by the body of the function and is a relevant
optimization to improve code performance. Some inlining heuristics can lead to speedups of more
than 50% in execution time [10]. While constant types have out-of-the-box support, types with
runtime attributes require additional work during inline expansion as they are only considered
valid inside a function. This issue boils down to the def-use chains from the previous section
(see 5.2.3.1).

We have expanded the pass to include support for these types. Values with dynamically-sized
types have their types changed (or mutated) in order to comply with the current function where
they are being used in. We illustrate two examples of inlining expansions that may be generated:

(1) Constant-type generation mutates the original type to a constant one, thus replacing a
function-specific type by a global2 counterpart. The call to function func_sum (Lines

2Types such as float, double, integers, and constant vpfloat are considered global because they have a
unique representation for the whole program unit.

64

1 double
2 func_sum (unsigned p,
3 vpfloat <mpfr , 16, p> vec ,
4 unsigned N) {
5 vpfloat <mpfr , 16, p> sum = 0.0;
6 for (unsigned i = 0; i < N; ++i)
7 sum += vec[i];
8 return (double) sum;
9 }

10

11 void func(unsigned prec) {
12

13 double s = 0.0
14

15 vpfloat <mpfr , 16, 100> *vec1;
16 // Do something with vec1
17 s += func_sum (100 , vec1 , 1000);
18

19 vpfloat <mpfr , 16, prec > *vec2;
20 // Do something with vec2
21 s += func_sum (prec , vec2 , 1000);
22 }

(a) Original code before inlining expansion.

1 double
2 func_sum (unsigned p,
3 vpfloat <mpfr , 16, p> vec ,
4 unsigned N) {
5

6 vpfloat <mpfr , 16, p> sum = 0.0;
7 for (unsigned i = 0; i < N; ++i)
8 sum += vec[i];
9 return (double) sum;

10 }
11

12 void func(unsigned prec) {
13

14 double s = 0.0;
15

16 vpfloat <mpfr , 16, 100> *vec1;
17 // Do something with vec1
18 vpfloat <mpfr , 16, 100> sum1 = 0.0;
19 for (unsigned i = 0; i < N; ++i)
20 sum1 += vec1[i];
21 s += (double) sum1;
22

23 vpfloat <mpfr , 16, prec > *vec2;
24 // Do something with vec2
25 vpfloat <mpfr , 16, prec > sum2 =

0.0;
26 for (unsigned i = 0; i < N; ++i)
27 sum2 += vec2[i];
28 s += (double) sum2;
29 }

(b) C representation of the inlining optimization.

Listing 5.5: Inlining expansion examples for types with runtime attributes.

15-17) from Listing 5.5a is inline expanded to the code shown in lines 7-10 from 5.5b,
which mutates vpfloat<mpfr, 16, p> to vpfloat<mpfr, 16, 100>.

(2) The callee vpfloat with runtime attributes needs to mutate to a caller one with the
same characteristics. Our implementation ensures that caller attributes are used, and no
reference to the callee function remains to invalidate values of the new type. Function call
to func_sum(Lines 19-21) has been inlined, and had values mutate from vpfloat<mpfr,
16, p>, in function func_sum, to vpfloat<mpfr, 16, p>, in function func.

In both cases, we must also guarantee that constants, return types, and any call within the
inlined function (and its type) are mutated.

5.2.3.4 Lifetime Marker Optimization

LLVM generates a pair of intrinsics, llvm.lifetime.start 3 and llvm.lifetime.end 4, to
mark the lifetime of variables in the program. The main goal is to provide passes with hints on
the lifetime of variables for optimization opportunities. More precisely, the compiler implements
a stack coloring optimization that makes use of lifetime markers to represent the lifetime of stack
slots. It then attempts to reduce the used stack space by merging disjoint stack slots. We must

3https://llvm.org/docs/LangRef.html#llvm-lifetime-end-intrinsic
4https://llvm.org/docs/LangRef.html#llvm-lifetime-start-intrinsic

65

follow the same reasoning from loop idiom recognition and disable, or prevent, this optimization
to run for MPFR based types. Because code generation will transform them into MPFR struct
types, we are not able to guarantee proper memory management when stack locations between
objects overlap. The pointer variable _mpfr_d makes the mpfr_t struct non trivially-copyable.
Removing lifetime intrinsics for MPFR-derived types resolves this issue. Although one may argue
that removing lifetime markers may incur an extra performance overhead, the stack coloring
optimization has shown negligible impact on performance in our experiments. Their removal
asserts that deletions are executed for all objects.

5.2.3.5 OpenMP Multithread Programming

Improvements in performance have much to do with how much parallelism can be explored in
computer applications. Having first-class support for primitive types in the compiler enables
their use within parallel programming schemes like OpenMP [39]. Looking at both language and
compiler perspectives, to the best of our knowledge, this is the first work that shows MPFR and
UNUM types integrated within language and compiler, with multi-thread execution capabilities.
Previous works are OpenMP-compatible through high-level abstractions and miss optimization
opportunities.

5.2.3.6 Loop nest Optimizations

Our LLVM type extension is also able to leverage advanced loop nest optimizers. Polly [55],
LLVM’s loop nest optimizer, can also be used to optimize vpfloat memory accesses. Any
limitation of the polyhedral model in vpfloat is mostly given by the optimizer. Constant-sized
types, described in sections 4.4.1 and 4.4.2, are fully supported by Polly. Any potential
performance slowdown is caused by suboptimal heuristic tuning, a well-known challenge with
loop nest optimizers in general.

In the case of dynamically-sized types, the limitation stems from Polly’s lack of support
for performing loop tiling with runtime loop bounds, i.e., the application of loop tiling where
bounds are not known at compile time. This requires heuristics to generate loops with a dynamic
(runtime decidable) behavior, and full automatic support for dynamically-sized types are mostly
dependent upon adding this functionality to Polly. Although we can trick the optimizer to
assume these types to have constant sizes, it is likely to generate suboptimal heuristics with
poor performance. Nevertheless, we can still explore polyhedral techniques at code-level with
other optimizers [25, 119], as shown in 4.7.1. Still, our experimental results 6.1 will show the
benefits of Polly for constant-sized types.

5.2.3.7 Vectorization

Vectorization has become one of the most essential techniques in today’s systems. Although our
backends are not yet prepared to handle vector instructions, our LLVM IR type system has been
implemented so that it does not hinder the use of vectorization. In other words, vectorization of
vpfloat types is possible if compatible code generators are provided. Perhaps more importantly,
because of our extensible language and compiler extensions, developers can, more easily, define
new types that can potentially make use of vectorization strategies.

In Listing 5.6, we show an example axpy function implemented with an MPFR-derived type
(Listing 5.6a) and its vectorized IR code for the loop body (Listing 5.6b). Code was compiled
with -O3 flag, which enables vectorization, and -mllvm -force-vector-width=128 option to force
vector size of 128 elements. There is no IR restriction for vectorization of vpfloat types with

66

1 void vec_axpy (unsigned precision , int n,
2 vpfloat <mpfr , 16, precision > alpha ,
3 vpfloat <mpfr , 16, precision > *X, int incx ,
4 vpfloat <mpfr , 16, precision > *Y, int incy) {
5 for (unsigned i = 0; i < n; ++i) {
6 Y[i] = alpha * X[i] + Y[i];
7 }
8 }

(a) C code to be vectorized.

1 vector .body:
2 %index = phi i64 [0, %vector .ph.new], [%index .next .1, %vector .body]
3 %niter = phi i64 [%unroll_iter , %vector .ph.new], [%niter .nsub .1, ←↩

%vector .body]
4 %9 = getelementptr inbounds vpfloat <1, 16, %precision >, vpfloat <1, 16, ←↩

%precision >* %X , i64 %index
5 %10 = bitcast vpfloat <1, 16, %precision >* %9 to <128 x vpfloat <1, 16, ←↩

%precision >>*
6 %wide.load = load <128 x vpfloat <1, 16, %precision >>, <128 x vpfloat <1, ←↩

16, %precision >>* %10
7 %11 = fmul <128 x vpfloat <1, 16, %precision >> %wide.load , %broadcast .←↩

splat
8 %12 = getelementptr inbounds vpfloat <1, 16, %precision >, vpfloat <1, 16, ←↩

%precision >* %Y , i64 %index
9 %13 = bitcast vpfloat <1, 16, %precision >* %12 to <128 x vpfloat <1, 16, ←↩

%precision >>*
10 %wide. load18 = load <128 x vpfloat <1, 16, %precision >>, <128 x vpfloat←↩

<1, 16, %precision >>* %13
11 %14 = fadd <128 x vpfloat <1, 16, %precision >> %11 , %wide. load18
12 store <128 x vpfloat <1, 16, %precision >> %14 , <128 x vpfloat <1, 16, ←↩

%precision >>* %13
13 %index .next = or i64 %index , 128
14 %15 = getelementptr inbounds vpfloat <1, 16, %precision >, vpfloat <1, 16, ←↩

%precision >* %X , i64 %index .next
15 %16 = bitcast vpfloat <1, 16, %precision >* %15 to <128 x vpfloat <1, 16, ←↩

%precision >>*
16 %wide.load .1 = load <128 x vpfloat <1, 16, %precision >>, <128 x vpfloat←↩

<1, 16, %precision >>* %16
17 %17 = fmul <128 x vpfloat <1, 16, %precision >> %wide.load .1, %broadcast .←↩

splat
18 %18 = getelementptr inbounds vpfloat <1, 16, %precision >, vpfloat <1, 16, ←↩

%precision >* %Y , i64 %index .next
19 %19 = bitcast vpfloat <1, 16, %precision >* %18 to <128 x vpfloat <1, 16, ←↩

%precision >>*
20 %wide. load18 .1 = load <128 x vpfloat <1, 16, %precision >>, <128 x vpfloat←↩

<1, 16, %precision >>* %19
21 %20 = fadd <128 x vpfloat <1, 16, %precision >> %17 , %wide. load18 .1
22 store <128 x vpfloat <1, 16, %precision >> %20 , <128 x vpfloat <1, 16, ←↩

%precision >>* %19
23 %index .next .1 = add i64 %index , 256
24 %niter .nsub .1 = add i64 %niter , -2
25 %niter .ncmp .1 = icmp eq i64 %niter .nsub .1, 0
26 br i1 %niter .ncmp .1, label %middle .block.unr -lcssa , label %vector .body

(b) Vectorized IR code for the loop body.

Listing 5.6: Vectorization of vpfloat types.

67

current LLVM vectorizers. Rather than that, code generators are not yet designed to handle
them and are an important exploration venue to consider in the future.

5.3 Code Generators

From the application perspective, an IR type extension like vpfloat is not worthwhile unless a
compatible backend for each type is provided to drive their capabilities. In order to evaluate the
effectiveness of this integration, we designed and implemented two backend code generators that
support each vpfloat representation.

Backends were selected to fit the requirements of our extension. In both cases, we chose those
that effectively offer the flexibility we provide. That is, (1) support for variations of precision,
exponent attributes with static and dynamic features. The MPFR backend consists of lowering
the vpfloat<mpfr, ...> to generate MPFR [49] code, hence, showing the integration with a
software target. Our second backend makes use of the vpfloat<unum, ...> representation in
order to partially implement the RISC-V ISA [21, 23] extension for UNUM variable precision
arithmetic of [57], thus targeting a hardware solution. The remaining sections of this chapter
detail the aspects relative to each backend, showing code transformations, and target-specific
optimizations implemented for each backend.

5.3.1 Software Target: MPFR

The MPFR code generator takes the form of a middle-end transformation pass that lowers the
vpfloat <mpfr, ...> type into MPFR references. It runs at a late stage of the middle-end
LLVM compiler to guarantee that the main optimizations, if enabled, have already been executed.

Although the pass is used for MPFR code generation, we made it generic enough to handle
any type expressible with vpfloat. This means that adding backend support for a software
target can easily be achieved by implementing a few functions. Our transformation only requires
one to write callbacks to set up the external library information, such as, the base data type
used, names of function that implement each operation, allocation strategy and routines, among
others. In fact, one could easily use the MPFR backend as a GMP [54] backend by providing the
appropriate callback routines. Or even more, a software backend for the vpfloat<unum, ...>
backend could also be derived in the same way.

In its essence, the pass traverses functions in the compilation unit (or module) searching for
vpfloat<mpfr, ...> types and recreate them as MPFR objects. Lowering to MPFR calls and
references involves the following transformations:

(1) MPFR represents its objects by a C struct (see Listing 4.2) that must be allocated and
initialized before first use. This characteristic imposes the first hurdle for MPFR code
generation in an unmanaged language like C. While wrappers for higher-level languages like
C++, Python and Julia, can hide allocations and deallocations away from users through
their language abstractions, C has no automatic support for memory management.
We thus provide similar functionality to enable automatic memory management of MPFR
objects by monitoring LLVM IR alloca instructions and their enclosing scope. This is
possible because vpfloat variables are typed as first-class scalar values, and are modeled as
stack-allocated in upstream passes. This enables fully transparent creation and deletion of
MPFR objects. In addition, any optimization pass reducing the number of live variables will
translate into more efficient memory management after lowering to MPFR. The pass is also
in charge of generating proper object initialization, translating constant and dynamically-
sized types to the appropriate MPFR configurations and calls. Our pass detects single and

68

multi-dimensional arrays and structs of variable-precision values, generating the appropriate
calls to allocate multiple MPFR objects if needed. Moreover, it supports the creation and
deletion of MPFR objects through dynamic memory allocation (malloc, new, etc.), and
transparently manages objects created with these functions.

Below, we show examples of the allocation strategies adopted as described in the afore-
mentioned paragraphs, namely, for alloca instructions, multi-dimensional arrays, and
dynamic memory allocation, respectively. On the left-hand side, we depict a snippet of
a vpfloat code as written by the programmer, while the right-hand side illustrates a
C-level representation generated by our transformation pass. Second and third examples,
more specifically, show library function calls to allocate and free MPFR objects in multi-
dimensional arrays.

{
vpfloat <mpfr , 16, 200> val200 ;
// Do something with val200
} // Leaves scope , thus , frees

val200 .

{
mpfr_t val200 ;
mpfr_init (val200 , 200);
// Do something with vall200
mpfr_clear (vall200); // frees val200

before leaving
} // Leaves scope

{
vpfloat <mpfr , 16, 200> vp_mat

[10][20];
// Do something with vp_mat
} // Leaves scope , thus , frees

vp_mat .

{
mpfr_t vp_mat [10][20];
vp_malloc_2d (vp_mat , 200, 10, 20);
// Do something with vp_mat
vp_free_2d (vp_mat); // frees vp_mat

before leaving
} // Leaves scope

{
vpfloat <mpfr , 16, 200> * vp_vec =

malloc (20000 * sizeof (vpfloat <
mpfr , 16, 200 >));

// Do something with vp_vec
free(vp_vec);
} // Leaves scope , thus , frees

vp_vec .

{
mpfr_t * vp_vec = malloc (20000 *

sizeof (mpfr_t));
vp_malloc_1d (vp_vec , 200, 1000);
// Do something with vp_vec
vp_free_1d (vp_vec); // frees vp_vec

before leaving
free(vp_vec);
} // Leaves scope

(2) Arithmetic IR instructions fadd, fsub, fmul, fdiv are converted to mpfr_{add,sub,
mul,div} or any of their derivative functions (mpfr_{add,sub,mul,div}_{si,ui,d}).
Comparisons, negation, and conversions all have corresponding functions in the MPFR
library. These op-to-op conversions gives us opportunities for a first optimization: we try
to leverage MPFR functions specialized for the case where one or more operands can be
re-written with a regular primitive data type, e.g. double, unsigned, float, etc, without
precision lost. The following example shows some of the conversions and optimizations
performed. Notice that values 1.0 and 0.5 can be represented as int and double even
though they were previously defined as vpfloat. This simple approach is used to generate
more specialized functions to accelerate computation since they are likely to operate in
objects with a smaller memory footprint.

69

void func(vpfloat <mpfr , 16, 1000 > val1 , vpfloat <mpfr , 16, 1000 > val2 ,
vpfloat <mpfr , 16, 1000 > *res){

*res = -val1;
*res -= val2;
*res += -3.0v;
res = 0.5v/(res);
// Continue ...

void func(mpfr_t val1 , mpfr_t val2 , mpfr_t res){

mpfr_neg (res , val1 , MPFR_RNDN);
mpfr_sub (res , res , val2 , MPFR_RNDN);
mpfr_add_si (res , val1 , -3.0, MPFR_RNDN);
mpfr_d_div (res , 0.5, val1 , MPFR_RNDN);
// Continue ...

(3) Functions with vpfloat MPFR arguments are cloned and re-built as MPFR objects.
Although previous examples show that references and value copies are passed similarly in
function calls, the pass respects the C standard for argument passing, such as, pass by value,
pass by reference. They follow the same behavior as primitive scalar floating-point types
in regards to multi-dimensional arrays, pointers as function parameters. The compiler also
makes sure that passed-by-value arguments are only affected in the callee function, while
changes in the passed-by-reference values are also seen within the caller. Additionally,
return types are handled through LLVM’s StructRet attribute, being returned as the first
argument of the function.

vpfloat <mpfr , 16, 1000 >
vdot(int n, vpfloat <mpfr , 16, 1000 > *X,

vpfloat <mpfr , 16, precision > *Y);

void vdot(mpfr_t ret_result , int n, mpfr_t X, mpfr_t Y);

(4) Load instructions, Φ Nodes, dereferencing (element-indexing) instructions, and constant
values of vpfloat arguments are all rewritten to use the MPFR struct type. Store
instructions are converted to mpfr_set or any of its derivative functions (mpfr_set_{si,
ui,d}) for performance purposes.

(5) C++ imposes particular challenges for MPFR code generation due to some object-oriented
features, such as VTables, lambda functions, and classes. Our code generator supports all
these features for constant types. The lack of support for types with runtime attributes
within compound types (class, struct, and function types, etc.), as described in the Language
Extension Limitations section 4.6 from the previous chapter, propagates this limitation to
the backend.
Compound types that make use of vpfloat<mpfr, ...> and its compound-type variances
(pointers, arrays, etc.) are reconstructed as MPFR struct types. VTables are all updated
to the newly recreated references so that the C++ polymorphism feature is supported.
In the example above, our pass creates a new VPFloatClass with mpfr_t types and
recreates all objects with this new type. Although LLVM provides a mutateType method,
it is strongly advised to recreated objects instead. Creating new compound types involves

70

class KernelBase {
public :

virtual void updateChecksum (VariantID vid) = 0;
};

class VPFloatClass : public KernelBase {
public :

void updateChecksum (VariantID vid);
private :

vpfloat <mpfr , 16, 1000 > x;
vpfloat <mpfr , 16, 1000 >* vec;

};

class VPFloatClass : public KernelBase {
public :

void updateChecksum (VariantID vid);
private :

mpfr_t x;
mpfr_t vec;

};

a recursive operation to remake them in a bottom-up order due to type dependencies:
type1 may declare an object of type2 that has vpfloat<mpfr, ...> inside. Not only do
we need to recreate type2, but type1 as well, and the associated structures that they use.
Although Loop Idiom Recognition is disabled for vpfloat<mpfr, ...>, the compiler can
still make use of memory-related functions (memcpy, memmove, etc.) through the C++
standard library, or when capturing lambda functions by value. From the language
perspective, vpfloat types are considered to have the same semantics as regular FP types.
That is, they are seen as trivially copyable types. On the one hand, this facilitates IR
code generation from a C++ level since it does not require implementation of copy and
move constructors. On the other hand, it also adds extra complexity to the generation of
MPFR code, which, due to the pointer variable in the struct, is not trivially copyable. To
circumvent this issue, our code generator detects memory-related functions and generates
three additional functions (prepare_memcpy, clean_memcpy, vp_memcpy) to support for
them. Essentially, we are able to guarantee that the pointer to the mantissa field is not
overwritten, only its content is copied/moved accordingly. We illustrate this transformation
in the example below:
Function prepare_memcpy performs a simple memcpy to save the values of X which are
overwritten by the original memcpy operation. After memcpy is executed, the pass calls
vp_memcpy to restore the correct values of the object and make a copy to their right locations.
Lastly, clean_memcpy frees up the temporary memory allocated by prepare_memcpy.
These functions were implemented to handle the manipulation of vpfloat types in two
scenarios: (1) when pure multi-dimensional arrays are copied/moved between locations,
like in the example; (2) or when copies and moves are introduced due to lambda functions
and C++ standard library. For instance, in the case of having vpfloat declarations within
a class object.

(6) Section 5.2.3.5 briefly states that having support for primitive types facilitates the use of
parallelization through programming models. Support for OpenMP is included almost
out-of-the-box for MPFR-derived types. The only special treatment lies on handling
omp atomic directives, which generates a call to atomic_compare_exchange, a function

71

void mem_func_example (int n, vpfloat <mpfr , 16, 1000 > *X,
vpfloat <mpfr , 16, 1000 > *Y) {

memcpy (X, Y, sizeof (vpfloat <mpfr , 16, 100 >)*n);
// Some code

}

void mem_func_example (int n, mpfr_t X, mpfr_t Y) {

// Prepare memcpy
void ** tmp;
prepare_memcpy (tmp , X, sizeof (mpfr_t)*n);

// memcpy executed , pointer is overwritten
memcpy (X, Y, sizeof (mpfr_t)*n);

// Restore correct values overwritten by memcpy and clenup
vp_memcpy (X, tmp , &X, &Y, 1, 32, sizeof (mpfr_t)*n);
clean_memcpy (tmp);

// Some code
}

that implements an atomic compare-and-swap.5 MPFR-derived types are not automat-
ically handled by OpenMP in scenarios where objects need to be atomically modified
with a single IR or instruction (they use a library call). This occurs because, as men-
tioned herein repeatedly, the pointer variable in the MPFR struct prevents atomic
updates. Our code generator enforces atomicity by inserting a critical section and calling
our implementation of compare_and_exchange. The critical section uses a dedicated
mutex, properly nested to avoid interference with any other synchronization. Function
vp_atomic_compare_exchange has an equivalent implementation to those of traditional
atomic_compare_exchange functions, but targets MPFR objects. We present below the
use of omp atomic directive to calculate the value of π and pseudo-codes generated by the
compiler from the pragma directive. The code on the left follows the classical compila-
tion flow and generates a call to atomic_compare_exchange to atomically manipulated
π in double. On the right, π is calculated using vpfloat<mpfr, 16, 1000>, and our
transformation adds a critical section in order to properly update the object value with
vp_atomic_compare_exchange. Moreover, we also present a possible implementation for
vp_atomic_compare_exchange.

(7) Eventually, the MPFR code generation pass attempts to optimize the number of dynamically
created MPFR objects by reusing old references if it is guaranteed that their values will
no longer be needed. Notice that the pass operates on Static Single Assignment (SSA)
form, making this step differ from a traditional copy elimination and coalescing, both
implemented in target-specific backend compilers. Instead, we follow a backward traversal
of use-def chains to identify MPFR objects that may be shared across variable renaming
of invariant values, and across convergent paths with mutually exclusive live intervals.

In summary, the pass rewrites all vpfloat<mpfr, ...> operands by replacing them with
MPFR objects and the appropriate initialization. Unlike higher-level MPFR abstractions such as
the C++ Boost library for multi-precision arithmetic [85], we are able to leverage the compiler
toolchain and its existing optimizations (constant folding, inlining, common subexpression

5https://en.cppreference.com/w/c/atomic/atomic_compare_exchange

72

void prepare_memcpy (char ** temp_object , char *src , unsigned size) {
* temp_object = (char *) malloc (size);
memcpy (* temp_object , src , size);

}

void clean_memcpy (char ** temp_object) {
free (* temp_object);

}

void vp_memcpy (mpfr_t * dst , void* src , char * initial_address ,
unsigned num_elems , unsigned elem_size , unsigned size) {

unsigned num_objects = ceil ((double)size /(double)(elem_size * num_elems));
unsigned offset = (unsigned)((char *) dst - initial_address);

// Do nothing in the case offset is larger than size.
// It means the compiler could not verify at compilation time
// that a memcpy is not needed
if (offset > size || size < 32)

return ;
else if (num_objects == 0) {

printf (" Number of objects cannot be Zero .\n");
exit (0);

} else if (elem_size == 32)
size = 32;

for (unsigned i = 0; i < num_objects ; ++i) {
for (unsigned j = 0; j < num_elems ; ++j) {

mpfr_t * srcval = (mpfr_t *)((char *) src + offset + (i*size));
mpfr_t * dstval = (mpfr_t *)((char *) dst + (i*size));
// Copy the value of srcval to dstval and change
// the pointer to that value.
mpfr_set (srcval [j], dstval [j], roundingMode);
dstval [j]-> _mpfr_d = srcval [j]-> _mpfr_d ;

}
}

}

pragma omp parallel for
for (i = 0; i < 10000; ++i) {

double x=(i+0.5)*dx;
pragma omp atomic
pi += (dx / (1.0 + x * x));

}

pragma omp parallel for
for (i = 0; i < 10000; ++i) {

vpfloat <mpfr ,16 ,500 > x=(i+0.5)*dx;
pragma omp atomic
pi += (dx / (1.0 + x * x));

}

// Coded in double
pi_local += (dx / (1.0 + x * x));
calls atomic_compare_exchange to

compare / update pi and pi_local

// Coded in vpfloat <mpfr ,16 ,500 >
pi_local += (dx / (1.0 + x * x));
start critical section
calls vp_atomic_compare_exchange to

compare / update pi and pi_local
end critical section

73

bool vp_atomic_compare_exchange (unsigned size , void *ptr ,
void *expected , void *desired ,
int success_order , int failure_order) {

bool ret;
if (mpfr_cmp (*((mpfr_t *) ptr), *((mpfr_t *) expected)) == 0) {

mpfr_set (*((mpfr_t *) ptr), *((mpfr_t *) desired), roundingMode);
ret = true;

} else {
mpfr_set (*((mpfr_t *) expected), *((mpfr_t *) ptr), roundingMode);
ret = false;

}
return ret;

}

Table 5.1: Instructions supported by the UNUM Backend.

Instruction group Instruction group
susr fcvt.x.g/fcvt.g.x
lusr fcvt.f.g/fcvt.g.f

smbb/swgp/sdue/ssue fcvt.d.g/fcvt.g.d
lmbb/lwgp/ldue/lsue gcmp/gadd/gsub/gmul

movll/movlr gguess/gradius
movrl/movrr lgu/lgu.s/ldub/ldub.s

mov_x2g/mov_g2x stu/stu.s/stub/stub.s
mov_d2g/mov_f2g lgu_next/ldub_next
mov_g2d/mov_g2f stul_next/stub_next

elimination, among others), with MPFR objects only being created at the end of the middle-end
compilation flow. Furthermore, since this backend is actually implemented as a middle-end pass,
it is usable for all target ISAs with respective LLVM backends. In fact, because our pass is
target-independent, we have collected results for this target in two distinct systems: a RISC-V
FPGA-based processor, as well as X86 systems.

5.3.2 Hardware Target: UNUM

Our second backend makes use of the vpfloat<unum, ...> representation in order to partially
implement the RISC-V ISA [121] extension for UNUM variable precision arithmetic of [23].
Table 5.1 shows the instructions supported by our backend. We exclude all instructions related
to interval arithmetic, since our types are only used for UNUM scalar representations, and are
not intended for interval endpoints.

The ABI specification for the ISA extension is similar to the standard RISC-V FP ABI.
Table 5.2 lists the coprocessor registers and respective roles in the defined calling convention.
Register naming uses the same convention as the FP registers in RISC-V. However, in lieu of
using f as a prefix, the letter g is used to denote coprocessor registers. The calling convention
for argument and return values also complies with the RISC-V FP ABI, as well as the registers
preserved across function calls.

74

5.3.2.1 Compiler-Controlled Status Registers

The compiler must work together with the proposed ISA to coordinate and control multiple
parameters inside the coprocessor. This ISA extension supports generic FP instructions with
precision ranging from 64 to 512 bits, controlled at a 64-bit granularity. Since the UNUM
format [57] is used to represent values stored in memory, loads and stores must be parameterized
according to the variable size and positioning of the UNUM fields in the highly flexible format.
Two control registers hold the ess and fss fields of the UNUM formats, controlling the maximum
values of ess and fss defined by the coprocessor, also known as UNUM environment (ess,fss). For
instance, a UNUM environment (4, 8) indicates maximum ess and fss values of 4, 8, respectively.
These values are sufficient to represent numbers with at most 16 bits of exponent, and 256 bits
of mantissa. The ISA also defines concepts of WGP (Working G-layer precision) and MBB
(Memory Byte Budget), which are, respectively, the precision used in computation and the
maximum number of bytes read and written during load and store operations.

According to the ISA specification, the compiler is in charge of controlling six control registers.
Table 5.3 gives a description of each control register with the minimum and maximum values
they can assume. The ISA specifies two UNUM environments that can be used simultaneously
by operating with different memory instructions. Instructions lgu and stu use values of the
default UNUM environment, while lgu.s and stu.s consider ess and fss values of the second
UNUM environment. In the following section 5.3.2.2, it will be shown that having two UNUM
environments help the compiler handling constants for types with runtime attributes. Values
wgp and mbb, on the other hand, are have no duplication. That is, the compiler may need to
alternate these values in order to allow multiple configurations simultaneously.

Additionally, we have designed and implemented two additional passes to properly handle
the generation of generic FP operations with the UNUM ISA: the first targets the configuration
of status registers in the coprocessor, and the second addresses memory accesses for dynamically-
sized types in multi-dimensional arrays.

5.3.2.2 FP Configuration Pass

The FP configuration pass consists on analyzing functions in the call graph and properly
configures the status registers (ess, fss, WGP, MBB) as to convey to high level type information.
The pass runs in the middle-end phase since it is the lowest level to retain information about type
configuration. Types in the backend are lightweight and cannot fully represent FP attributes of
vpfloat. An IR pass also enables it to be target-independent and can potentially be used for
architectures other than RISC-V.

The pass keeps track of values that come in and go out of basic blocks. By analyzing the
control flow graph (CFG), it guarantees that values are being properly assigned. If any change is

Table 5.2: ABI Convention for the VP registers

Register ABI Name Description Saver
g0-7 gt0-7 Temporaries Caller
g8-9 gs0-1 Saved Registers Callee
g10-11 ga0-1 Arguments/return values Caller
g12-17 ga2-7 Arguments Caller
g18-27 gs2-11 Saved Registers Callee
g28-31 gt8-11 Temporaries Caller

75

Table 5.3: Control registers inside the UNUM Coprocessor.

Category Name (min,max)
Allowed Description

Default UNUM due.ess (1,4) Tells the coprocessor the maximum number of bits
in the ess field for load and store (lgu and stu)

Environment (DUE) due.fss (1,9) Tells the coprocessor the maximum number of bits
in the fss field for load and store (lgu and stu)

Second UNUM sue.ess (1,4) Tells the coprocessor the maximum number of bits
in the ess field for load and store (lgu.s and stu.s)

Environment (SUE) sue.fss (1,9) Tells the coprocessor the maximum number of bits
in the fss field for load and store (lgu.s and stu.s)

Precision wgp (0,7) Number of bits used for arithmetic operations
in the FPU unit

Memory
Byte Budget mbb (1,68) Number of bits used in load and

store instructions

needed when entering a basic block, a new instruction is added. We make use of variations of the
susr instruction to configure each register separately: instructions susr.ess, susr.fss manipulate
ess and fss values of the default UNUM environment, and susr.wgp and susr.mbb are used to
configure WGP, and MBB.

Although the coprocessor has two UNUM environments that could be used to alternate the
used values of ess and fss, we reserve the second one to handle two situations:

(1) Load constants in dynamically-sized types: section 4.4.3.4 explains that constants for these
types are generated with a maximum configuration. For UNUM types, that corresponds
to the maximum values of ess and fss supported by the coprocessor. Therefore, assigning
a constant to a dynamically-sized variable implies the use of lgu.s in lieu of the lgu
instruction6.

(2) Register spilling may be necessary when the number of live variables during the execution
of the program is greater than the number of available registers. We use the second
environment to spill the register as a maximum configuration. Even though this slows
down spilling and filling operations during register allocation, it does not require the
register allocator to have any previous knowledge of the FP configuration of variables been
spilled. Moreover, since there may be a significant difference between the spilling size of a
variable and its actual memory size, techniques to avoid spilling [97] can play an important
role to reduce the memory impact on high-precision representations.

5.3.2.3 Array Address Calculation Pass

Array address calculation pass is applicable only to dynamically-sized types and aims at providing
proper array addresses. Since LLVM provides no support for dynamically-sized types, additional
care is needed to compute the addresses of values whose sizes are only known at runtime. The
__sizeof_vpfloat function allows to perform this task. The pass traverses every function

6Instructions lgu and lgu.s load UNUM variables from memory. They take into consideration values ess and
fss of the default and second UNUM environment, respectively, as well as MBB.

76

searching for GetElementPtr instructions. These instructions are replaced by the appropriate
low-level address computation, accumulating over the number of elements and the dynamic size
of every element.

5.4 Conclusion
This chapter presents the modifications and requirements needed to extend the support of
our vpfloat type system substrate to an industry-level compiler infrastructure. We showed
many aspects that justify why this integration improves the state-of-the-art. We showed which
optimizations may and may not run in the compilation flow, and code modifications needed
for many of the language aspects, such as runtime capabilities and type compatibility. We
also described how vpfloat<unum, ...> and vpfloat<mpfr, ...> go from the LLVM IR type
system to their code generators: the former through a RISC-V ISA extension and the latter by
relying on the open-source MPFR library.

77

Chapter 6: Experimental results

Contents
6.1 The Benefits of Language and Compiler Integration 79

6.1.1 MPFR vpfloat vs. Boost Multi-precision 79
6.1.2 Hardware(UNUM vpfloat) vs. Software (MPFR vpfloat) 88

6.2 Linear Algebra Kernels . 90
6.3 Conclusion . 102

In the previous chapters, we have described the whole compilation flow required to provide
variable precision FP arithmetic. Language extension, type system and compiler support have
been proposed as an intent to better explore different types, precision and exponent configurations,
and at last variable precision computing. This chapter will focus on the experimental results
that give basis to the contributions of this thesis.

We start by presenting and hopefully convincing the reader on, the benefits of language and
compiler integration of a language extension for multiple FP formats. The second segment of
this section consists of illustrating the use of variable precision within linear algebra kernels. By
making use of the mpfrBLAS library described in section 4.7.1, we provide implementations
to different variants of the Conjugate Gradient (CG) and show interesting insights that may
encourage the exploration of variable precision computing.

6.1 The Benefits of Language and Compiler Integration
This section is mainly divided into two parts. The first focuses on comparing our extension, type
system and compiler solution to a state-of-the-art approach with equivalent functionality with
the intent of showing the benefits of compiler integration. The last part presents experimental
results to demonstrate the advantage of having hardware support for high-precision formats.

6.1.1 MPFR vpfloat vs. Boost Multi-precision
This section shows a comparison of our MPFR type vpfloat<mpfr, ...> with the Boost library
for multi-precision [85]. Both approaches rely on the MPFR library and execute code with
equivalent precision values. The goal is to demonstrate that high-precision FP emulation libraries
can further benefit from language and compiler integration. Because compilers cannot detect
FP representations within high-level languages abstractions, optimizations opportunities are
missed. While traditional IEEE formats are handled through different compilation strategies
at a later stage of the compilation process1, our type system mimics the behavior of standard

1In LLVM, for instance, the choice between an FP-capable ISA and software implementation is only done at
the backend stage, when building Direct-Acyclic Graphs (DAGs).

79

Table 6.1: Machine configurations used for experiments.

Processor # # Cores
Frequency

Caches
RAM

Model Procs. # Threads L1 L2 L3

M1
Intel Xeon
E5-2637v3 2 8 Cores

16 Threads 3.50 GHz

4 x 32KB
D-Cache
4 x 32KB
I-Cache

4 x
256KB 15MB 128GB

M2
Intel Xeon
Gold 5220 2 36 Cores

72 Threads 2.20 GHz

18 x 32KB
D-caches
18 x 32KB
I-Caches

18 x
1 MB 24.75MB 96GB

(compiler-compatible) types by relying on a middle-end pass but still leveraging much of the
compilation flow and optimizations. Experiments were conducted using two different systems: a
dual-processor Intel Xeon E5-2637v3 machine with 128GB of RAM, and a dual-processor Intel
Xeon Gold 5220 machine with 96 GB of RAM, labeled M1 and M2, respectively, and depicted in
Table 6.1.

6.1.1.1 Polybench

The Polybench benchmark suite [98] is a collection of 30 kernels aimed to explore the impact
of compiler optimizations in a variety of areas. It is widely used to measure the benefits
of applying polyhedral optimization techniques in a compiler and contains code for many
computation-intensive algorithms in fields of linear algebra, stencil, and data-mining.

Two strategies were used to Polybench version 4.1: (1) first, we compiled Polybench for both
baseline and vpfloat<mpfr, ...> types using optimization level -O3; (2) in the second scenario,
we use optimization level -O1 for vpfloat<mpfr, ...> for reasons that will be explained later,
while Boost continued to be compiled with -O3. In both scenarios, we enable and disable Polly’s
polyhedral loop nest optimizations [55], and the best execution time reference, with and without
Polly, is taken for each application. Each application was compiled for three different precision
configurations: 100 bits (≈30 decimal digits), 170 bits (≈50 decimal digits), and 500 bits (≈150
decimal digits).

Figure 6.2 shows the speedup for each benchmark using Boost as the baseline and when
compiling both solutions with optimization level -O3. Figure 6.3 depicts the values of speedups
considering the same baseline but with vpfloat<mpfr, ...> applications being compiled with
optimization level -O1. We observe speedups over most of the test suite for all precision
configurations in the two machines where experiments were executed. A few kernels have shown
similar performance to Boost: jacobi-1d and jacobi-2d at the lower precision settings, and doitgen,
durbin and mvt at highest precision when executed in the M2. The only slowdowns occur on some
specific cases: adi and deriche at lower precisions only. These results are due to the complexity
of the array access patterns in the stencil kernel, hitting limitations of the MPFR lowering
pass in reusing MPFR objects over invariant or mutually exclusive values. In other cases, the
measures show that a late MPFR lowering dramatically improves performance, especially on
computationally intensive kernels benefiting from greater cache locality and a proportionally
more significant decrease of MPFR memory management overhead.

The reason why we chose to plot results for -O1 optimization level is that we observed many
benchmarks exhibit better performance with this optimization flag rather than with -O3. In

80

fact, the overall speedup of -O1 has shown to be superior to -O3. This was originally a surprise,
but can be explained as follows: as MPFR requires memory allocation for every object in use,
suboptimal performance at -O3 stems from the higher number of allocations generated. Because
the compiler runs many aggressive optimizations (inlining, loop unrolling, aggressive code motion,
just to name a few), many more objects need allocation and incur an extra execution time in the
application. In fact, finding optimization sequences that are likely to yield better performance
is challenging. However, recent work [109, 128] on the exploration of optimization space could
potentially help us investigate better optimization heuristics in the presence of multi-precision
arithmetic, and is a relevant topic for future work.

We have also decided to run experiments in two different machines in order to show that
speedups are not inherent to specific system configuration. Experimental results are similar in
the two configurations, and differences are, in the most part, within an acceptable tolerance
range. Kernels floyd, and lu show significantly better speedups in M2, because Boost versions
show bad usage of the cache with an increase in the number of cache misses, and thus, impacting
execution time. A following experiment will demonstrate that cache misses in Boost have an
even greater impact when running applications with multiple threads of execution.

Overall, results show an average performance speedup (vpfloat<mpfr, ...> vs. Boost
library for MPFR) of 1.80× and 1.86× for M1 and M2, respectively in -O3. Additionally, it
should be pointed out that these results have been corroborated by peers through an Artifact
Evaluation (AE)2 submitted to a conference, and functional and reproduced badges had been
given. For -O1, speedups of 1.88× and 1.91× were observed in the two machines.

Impact of the Loop nest optimizer

One of the major advantages of our solution, as we have been highlighting throughout this
document, relates to compiler integration and the possibility of using optimizations out-of-
the-box. This is particularly true when considering Polly Loop nest Optimizer. Even without
modifications to support vpfloat, Polly is able to find optimal array access patterns in the
Polybench suite compiled for vpfloat. To illustrate our argument, figure 6.1 shows the speedup
of -O3 + Polly vs. -O3. Although many kernels have seen slowdowns when compiled with Polly,
an overall speedup of 1.18× is observed. It shows that deeper compiler integration helps to
accelerate FP emulation libraries. On the other hand, Polly is unable to optimize Boost array
accesses. The optimizer gives up trying to find patterns that suit the complexity of the library.

Table 6.2: Compilation time for Polybench with different optimization levels and types.

Type Opt. Flags Compilation time (in seconds) Speedup over Boost

vpfloat<mpfr, ...>

-O3 13.02 8.91
-O3 + Polly 91.79 1.27

-O1 8.81 13.17
-O1 + Polly 69.87 1.68

Boost -O3 116.09 1.00
-O3 + Polly 117.32 1.00

2https://www.acm.org/publications/policies/artifact-review-badging

81

2m
m

3m
m ad

i
ata

x
bic

g

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

de
ric

he

do
itg

en
du

rbi
n

fdt
d-2

d
floy

d
ge

mm

ge
mve

r

ge
su

mmv

gra
msch

midt

he
at

3d

jac
ob

i 1d

jac
ob

i 2d lu

lud
cm

p
mvt

nu
ssi

no
v

sei
de

l 2d
sy

mm
sy

r2k sy
rk

tri
so

lv
trm

m
0

1

2
Sp

ee
du

p
100 bits (≈30 decimal digits) 170 bits (≈50 decimal digits) 500 bits (≈150 decimal digits)

Figure 6.1: Speedup of Polly’s loop nest optimizer in Polybench compiled for vpfloat<mpfr,
... types.

Compilation time

Another important metric to consider is the time needed to compile each application. Because the
middle-end pass implemented to transform vpfloat<mpfr, ...> to MPFR references incurs an
extra compilation time to code generation, it is important to measure its impact in compilation
time. Table 6.2 shows significant speedups in terms of compilation time for the Polybench
applications. In fact, Boost high compilation times stem from C++ template deduction, highly
used in the Boost Multi-precision library. The difference in compilation times between -O3
and -O3 + Polly for vpfloat<mpfr, ...> types shows that the optimizer is, in fact, supported
by these types. Similar compilation times between -O3 and -O3 + Polly for Boost shows the
contrary.

82

2m
m

3m
m ad

i
ata

x
bic

g
ch

ole
sk

y
co

rre
lat

ion
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rbi

n
fdt

d-2
d

floy
d

ge
mm

ge
mve

r
ge

su
mmv

gra
msch

midt
he

at
3d

jac
ob

i 1d
jac

ob
i 2d lu

lud
cm

p

mvt
nu

ssi
no

v
sei

de
l 2d

sy
mm
sy

r2k sy
rk

tri
so

lv
trm

m

0

2

4

6

Sp
ee

du
p

2m
m

3m
m ad

i
ata

x
bic

g
ch

ole
sk

y
co

rre
lat

ion
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rbi

n
fdt

d-2
d

floy
d

ge
mm

ge
mve

r
ge

su
mmv

gra
msch

midt
he

at
3d

jac
ob

i 1d
jac

ob
i 2d lu

lud
cm

p

mvt
nu

ssi
no

v
sei

de
l 2d

sy
mm
sy

r2k sy
rk

tri
so

lv
trm

m

0

2

4

6

Sp
ee

du
p

100 bits (≈30 decimal digits) 170 bits (≈50 decimal digits) 500 bits (≈150 decimal digits)

Figure 6.2: Speedup of vpfloat<mpfr, ...> over the Boost library for multi-precision for the Polybench benchmark suite, and compiled with
optimization level -O3. The execution time reference taken are the best between compilations with and without Polly. Results are shown
for two different machines: an Intel Xeon E5-2637v3 with 128GB of RAM (M1), and an Intel Xeon Gold 5220 with 96 GB of RAM (M2),
respectively. Y-axes are shown with the same limits to ease comparisons between results in the two machines.

83

2m
m

3m
m ad

i
ata

x
bic

g
ch

ole
sk

y
co

rre
lat

ion
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rbi

n
fdt

d-2
d

floy
d

ge
mm

ge
mve

r
ge

su
mmv

gra
msch

midt
he

at
3d

jac
ob

i 1d
jac

ob
i 2d lu

lud
cm

p

mvt
nu

ssi
no

v
sei

de
l 2d

sy
mm
sy

r2k sy
rk

tri
so

lv
trm

m

0

2

4

6

Sp
ee

du
p

2m
m

3m
m ad

i
ata

x
bic

g
ch

ole
sk

y
co

rre
lat

ion
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rbi

n
fdt

d-2
d

floy
d

ge
mm

ge
mve

r
ge

su
mmv

gra
msch

midt
he

at
3d

jac
ob

i 1d
jac

ob
i 2d lu

lud
cm

p

mvt
nu

ssi
no

v
sei

de
l 2d

sy
mm
sy

r2k sy
rk

tri
so

lv
trm

m

0

2

4

6

Sp
ee

du
p

100 bits (≈30 decimal digits) 170 bits (≈50 decimal digits) 500 bits (≈150 decimal digits)

Figure 6.3: Speedup of vpfloat<mpfr, ...> over the Boost library for multi-precision for the Polybench benchmark suite. vpfloat<mpfr,
...> applications were compiled with optimization level -O1 and Boost with -O3. The execution time reference taken are the best between
compilations with and without Polly. Results are shown for two different machines: an Intel Xeon E5-2637v3 with 128GB of RAM (M1), and
an Intel Xeon Gold 5220 with 96 GB of RAM (M2), respectively. Y-axes are shown with the same limit to ease comparisons between results in
the two machines.

84

6.1.1.2 RAJAPerf

The RAJAPerf benchmark suite [99] is a collection of loop-based computational kernels commonly
found in HPC applications. Kernels are written such that they can be implemented in different
variants: sequential (single-threaded) execution, and parallel programming models like OpenMP,
and CUDA. Examples of applications are the traditional AXPY and DOT product from BLAS
libraries, Polybench kernels like 2mm, 3mm and adi, vector additions and multiplications, among
many others. Table 6.3 shows the list of the 43 RAJAPerf applications used in this experiment
and classified according to their groups.

We compiled the suite at optimization level -O3 for our vpfloat<mpfr, ...> type and
compare it with the Boost library for Multi-precision, both relying on the MPFR library with
equivalent precision (≈ 30 decimal digits). The suite is implemented in C++, and makes use
of high-level abstractions such as Lambda functions, polymorphism, dynamic dispatching, and
thus, highly motivated the support of such features in our type system. All applications are
compiled for sequential and parallel execution. By leveraging the integration with OpenMP,
described in Section 5.3.1, we also collect results for three OpenMP variants along with the three
sequential variants for a total of 6 variants of each kernel, and a total of 258 variants.

Figure 6.4 shows the speedup of vpfloat<mpfr, ...> over Boost. Y-axes are depicted in
different log scales in order to show the speedups achieved by OpenMP variants in each machine.
As was the case for Polybench, we observe speedups over most of the test suite, and slowdowns
are associate with additional copies and object allocations that are needed in these specific
cases. Measurements also demonstrate that a late MPFR lowering pass significantly improves
performance for the majority of cases. More interestingly, our solution scales much better than
Boost when using OpenMP in both systems. Hardware counter measurements, collected in M1,
indicate that speedups in the 7–9× range stem from the reduction of memory accesses and cache
misses, with up to 90× reduction in last-level cache misses. The Boost implementation often
converts compute-bound kernels into memory-bound ones as memory transactions exceed the
off-chip bandwidth. Deep integration with the compiler and its optimizations and the reuse of
old MPFR objects contribute to reduce the memory pressure and allow our solution to scale
much better in multi-threaded environments. Table 6.4 shows averages speedups in M1 and M2
for all RAJAPerf variants. We notice that systems with many more processors/threads lead to

Table 6.3: List of RAJAPerf applications classified according to their groups.

Group Num. of apps. Applications

apps 7 del_dot_vec_2d, energy, fir, ltimes, ltimes_noview,
pressure, vol3d

basic 9 daxpy, if_quad, int3, init_view1d, init_view1d_offset,
mataddsubb, nested_init, reduced3_int, trap_int

lcals 10 diff_predict, eos, first_diff, first_sum, gen_lin_recur,
hydro_1d, hydro_2d, int_predict, planckian, triad_elim

polybench 12 2mm, 3mm, adi, atax, fdtd_2d, floyd_warshall, gemm,
gemver, gesummv, jacobi_1d, jacobi_2d, mvt

stream 5 add, copy, dot, mul, trial

85

Table 6.4: Average speedups for RAJA in machines M1 and M2 (from Table 6.1).

Sequential OpenMP

Base Lambda RAJA Base Lambda RAJA

M1 1.74 1.61 1.65 7.98 7.16 7.72
M2 1.90 1.77 1.86 32.94 32.57 31.67

better overall speedups, especially in OpenMP variants. This shows an important property of
our solution: scalability. Because our solution scales better than the baseline, better speedups
are seen in more powerful systems. Finally, these results have also been corroborated by peers
through an Artifact Evaluation (AE).

Compilation time

Similar to Polybench, we also estimate the compilation time needed for RAJAPerf in the
two scenarios. Once more, our solution has shown to outperform the baseline in that metric.
RAJAPerf with vpfloat<mpfr, ...> was compiled in 313 seconds, while the Boost version
required an average of 1054 seconds. In summary, with a compilation time speedup of 3.37× we
are able to produce code that can be more than 32× faster than the baseline.

86

2M
M

3M
M

ADD
ADI

ATA
X

COPY
DAXPY

DEL
DOT

VEC
2D

DIF
F

PREDIC
T

DOT
ENERGY

EOS
FDTD

2D FIR

FIR
ST

DIF
F

FIR
ST

SUM

FLOYD
WARSHALL

GEM
M

GEM
VER

GEN
LIN

RECUR

GESUM
M

V
HEAT

3D

HYDRO
1D

HYDRO
2D

IF
QUAD
IN

IT
3

IN
IT

VIE
W

1D

IN
IT

VIE
W

1D
OFFSET

IN
T

PREDIC
T

JA
COBI 1D

JA
COBI 2D

LT
IM

ES

LT
IM

ES
NOVIE

W
M

UL

M
ULADDSUB

M
VT

NESTED
IN

IT

PLANCKIA
N

PRESSURE

REDUCE3
IN

T
TRAP

IN
T

TRIA
D

TRID
IA

G
ELIM

VOL3D

100

101
Sp

ee
du

p

2M
M

3M
M

ADD
ADI

ATA
X

COPY
DAXPY

DEL
DOT

VEC
2D

DIF
F

PREDIC
T

DOT
EOS

FDTD
2D FIR

FIR
ST

DIF
F

FIR
ST

SUM

FLOYD
WARSHALL

GEM
M

GEM
VER

GEN
LIN

RECUR
GESUM

M
V

HEAT
3D

HYDRO
1D

HYDRO
2D

IF
QUAD
IN

IT
3

IN
IT

VIE
W

1D

IN
IT

VIE
W

1D
OFFSET

IN
T

PREDIC
T

JA
COBI 1D

JA
COBI 2D

LT
IM

ES

LT
IM

ES
NOVIE

W
M

UL

M
ULADDSUB

M
VT

NESTED
IN

IT

PLANCKIA
N

PRESSURE

REDUCE3
IN

T
TRAP

IN
T

TRIA
D

TRID
IA

G
ELIM

VOL3D

100

101

102

Sp
ee

du
p

Base Seq Lambda Seq RAJA Seq Base OpenMP Lambda OpenMP RAJA OpenMP

Figure 6.4: Speedup of vpfloat<mpfr, ...> over the Boost library for multi-precision for the RAJAPerf benchmark suite, both compiled
with -O3 optimization level.

87

6.1.2 Hardware(UNUM vpfloat) vs. Software (MPFR vpfloat)
We also demonstrate the effectiveness of our type extension and its integration with LLVM on
a hardware implementation of the UNUM format. The main purpose of this experiment is to
show the benefits of hardware support for high-precision representations. To the best of our
knowledge, until now, UNUM’s functionality could only be evaluated with software libraries
since no hardware implementation supported a software stack capable of running representative
benchmarks. Owing to the better performance observed in Section 6.1.1.1 when compared to
Boost, we used our vpfloat<mpfr, ...> implementation as the baseline for comparison with
the UNUM coprocessor.

Our target platform consists of an FPGA implementation of a RISC-V Rocket processor [11]
connected to the UNUM coprocessor of [23]. All benchmarks including baseline MPFR imple-
mentations have been compiled to the RISC-V ISA. As explained in section 5.3.1, our MPFR
backend is target independent, and hence, applications with vpfloat<mpfr, ...> types can
potentially be executed on any LLVM-compatible platform with MPFR support.

We compiled Polybench for both baseline (vpfloat<mpfr, ..>), and vpfloat<unum, ...>
type using two strategies: -O3, and -O3 + polly. Each application was compiled using three
precision configurations: 100 bits (≈30 decimal digits), 170 bits (≈50 decimal digits), and 500
bits (≈150 decimal digits). The execution time for the baseline is obtained considering the best
time reference, with and without Polly. The main purpose of this experiment is to compare the
best result for the vpfloat<mpfr, ...> type with two compilation procedures for the UNUM
type (with and without Polly).

Figure 6.5 shows the speedup of applications normalized to the baseline MPFR performance
(note the logarithmic scale). Unfortunately we hit hardware bugs when executing some bench-
marks: gesummv and adi failed to run when compiled with Polly and 3 more benchmarks failed
at the highest precision with Polly (3mm, ludcmp, nussinov). This is due to an issue in the
coprocessor memory subsystem.

We notice that Polly is able to significantly improve performance for many applications in
the test suite. This is solid validation of the robustness of our design and implementation, given
the complexity of polyhedral compilation methods and their sensitivity to efficient memory
management. We notice a larger speedup gap in vpfloat<unum, ...> (with and without Polly)
than in vpfloat<mpfr, ...> types. vpfloat<unum, ...> kernels compiled with Polly have an
overall speedup of 1.44× over its -O3, and this difference over vpfloat<mpfr, ...>(1.18×) is
explained as follows: because a UNUM type has an in-place layout, the array access patterns
generated by Polly better match such characteristic. Although MPFR types are accelerated by
the optimizer, the heuristics available do not work as well as for UNUM types, and optimizing
them for MPFR types is an interesting venue to explore as future work.

It further validates the benefits of making variable precision FP arithmetic transparent to
upstream optimization passes. Notably, gemm, 2mm and 3mm show speedups of more than 20×
over the baseline, benefiting from cache and register reuse through polyhedral loop optimization
with downstream loop unrolling and scalar promotion. Average speedups at the highest precision
(150 digits) are 18.03× and 27.58× for O3, and -O3 + Polly, respectively. The rare slowdowns
with Polly are caused by suboptimal heuristic tuning, a well-known challenge with loop nest
optimizations in general. As expected, having support for high-precision computation lead to
significant performance gains over software targets. These results show great benefits of having
compiler (and hardware) support for high-precision representations, especially now with the rise
of the dark silicon era [47].

88

2m
m

3m
m ad

i
ata

x
bic

g
ch

ole
sk

y
co

rre
lat

ion
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rbi

n
fdt

d-2
d

floy
d

ge
mm

ge
mve

r
ge

su
mmv

gra
msch

midt
he

at
3d

jac
ob

i 1d
jac

ob
i 2d lu

lud
cm

p
mvt

nu
ssi

no
v

sei
de

l 2d
sy

mm
sy

r2k sy
rk

tri
so

lv
trm

m

100

101

102

Sp
ee

du
p

-O3 (≈30 dec. digits)
-O3 + Polly (≈30 dec. digits)

-O3 (≈50 dec. digits)
-O3 + Polly (≈50 dec. digits)

-O3 (≈150 dec. digits)
-O3 + Polly (≈150 dec. digits)

Figure 6.5: Speedup of vpfloat<unum, ...> over vpfloat<mpfr, ...> on the PolyBench suite

89

6.2 Linear Algebra Kernels

The first segment of this chapter showed that supporting a substrate of variable precision
computing in a language and compiler enable significant acceleration when comparing with
state-of-the-art solutions. These experiments demonstrate the potential of our proposal and
the benefits of a compiler-integrated solution. The remaining of this chapter is dedicated to
illustrating the use of variable precision in the context of Linear Algebra and is used to show
interesting insights to encourage the exploration of variable precision computing in this area.

The experiments conducted in section 6.1 all made use of constant MPFR and UNUM types,
as there was no need for dynamic type manipulation of any sort. In this section, we concentrate
our attention on showing potential use cases of types with runtime-decidable attributes, which
are not only a great exploration tool for precision-awareness in numerical applications but
also essential to adaptive or variable precision computing. Although high-level languages like
Julia [19] or Python [117] provide dynamic type systems amenable to this kind of research, our
type system has the great advantage of enabling C-level performance, as well as supporting
both hardware and software targets. We conclude this chapter by experimenting with multiple
variants of the Conjugate Gradient (CG) linear solver method.

Conjugate Gradient (CG)

To demonstrate how our type system can be beneficial to the exploration of variable precision,
we used our vpfloat<mpfr, ...> to implement multiple variants of the Conjugate Gradient
method. The CG algorithm solves linear systems in the form of Ax = b when matrix A is
Symmetric Positive Definite (SPD), a common case for the resolution of partial differential
equations (PDEs). It is classified as an iterative method, a mathematical procedure that uses
an initial value to generate improvements of the solution with successive operations. Contrary
to direct methods that have a finite (predefined) number of operations, iterative methods are
based on a convergence state to determine the number of operations to execute. The method
is exact in theory, but the successive roundoff errors slow down or even destroy convergence.
The projective iterative method, typically exemplified by CG, has gained importance due to a
low memory occupancy, typically O(N) rather than O(N3) for direct methods. CG is a good
example to illustrate the influence of arbitrary precision in an application’s output since the
number of iterations needed for the algorithm to converge depends on the chosen precision. In
the remaining sections that cover conjugate gradient, we go through a series of requirements,
properties and descriptions for CG algorithms. Four CG variants are implemented: original
Hestenes and Stiefel [63] CG, preconditioned CG, pipelined CG, and BiCG. We wrap up the CG
section by showing experiments and a discussion over them.

Stopping condition

A common characteristic of CG algorithms is the stopping condition required by the iterative
process. We adopt the common choice of using the value of rk, called recursive residual, as a
threshold, usually called tolerance, for the stopping condition. When rk is under the threshold,
the algorithm leaves the scope and stops the execution, and the result is kept within a predictable
error margin. CG algorithms have a complex behavior regarding the mathematical relation
between tolerance and attainable accuracy. This involves in-depth analysis which is well beyond
the scope of this thesis.

90

1 for (unsigned prec = 50; prec <= 2000; prec += 50) {
2 cg_algo (prec , x, A, b)
3 }

Listing 6.1: Calling a precision-generic implementation of CG

Precision-generic implementation

An important property we aimed to preserve in our type system is the ability to write code that
is unique so that no duplication is needed to handle the underlying precision in use. In other
words, our main focus was to design a type system that is precision-generic, i.e., where code is
not attained to a single configuration. CG algorithms implemented with vpfloat<mpfr, ...>
follow this requirement and, therefore, are precision-agnostic: the core CG iteration takes a
precision parameter, and every run of the function can make use of a different precision value.
This allows us within a single run of the application, without recompilation, to programmatically
drive experiments with multiple precision configurations. Listing 6.1 shows how one would call
cg_algo, implemented as precision-agnostic. We iterate over a loop where precision, defined as
prec, ranges from 50 to 2000 with a step of 50. Finally, translating a CG algorithm to vpfloat
is straightforward: (1) there is no need to extend the precision of the matrix A, as it is read-only;
(2) only working arrays have to be declared as vpfloat.

Original CG: Hestenes and Stiefel algorithm

The pseudo-code for the algorithm is given by Algorithm 2, where line 6 shows how rk controls
the number of iterations.

Algorithme 2: conjugate gradient: original Hestenes and Stiefel algorithm [63]
1: p0 := r0 := b−Ax0
2: while iteration count not exceeded do
3: αk := rTk rk

pTk Apk
4: xk+1 := xk +αkpk

5: rk+1 := rk−αkApk

6: if ‖ rk+1 ‖≤ tol then break
7: βk := rTk+1rk+1

rTk rk
8: pk+1 := rk+1 +βkpk

9: k+ +
10: end while

One may notice how every operation can in fact be expressed as a BLAS function. The main
motivation of implementing BLAS libraries for vpfloat types is to enable the exploration of
these linear algebra algorithms. Listing 6.2 shows the implementation of the CG algorithm [63]
with our mpfrBLAS library(from Section 4.7.1). Two stopping conditions can be seen: (1) at
line 21 when the value of rs_next is below a threshold; (2) at line 4 when the maximum number
of iterations has been reached and the algorithm is unlikely to converge. We only replaced: (1)
vector-scalar products by vpm_axpy_vvv, (2) matrix-vector products by vpm_sparse_gemv_vdv,
(3) dot products by vpm_dot_vv, and (4) products of a vector by a scalar by vpm_scal. Because
these functions have rather similar function signatures (with the exception from the precision)
to standard BLAS, it is fairly simple to retarget this algorithm for other library instantiations.

91

1 // rs = rk '*rk
2 vpfloat <mpfr , 16, precision > rs = vpm_dot_vv (precision , n, r_k , 1, r_k , 1);
3

4 for (unsigned num_iter = 1; num_iter < m * 1000; ++ num_iter) {
5

6 vpm_sparse_gemv_vdv (precision , m, n, (vpfloat <mpfr , 16, precision >)1.0,
7 A, rowInd , colInd , p_k ,
8 (vpfloat <mpfr , 16, precision >)0.0, Ap_k);
9 alpha = rs / vpm_dot_vv (precision , n, p_k , 1, Ap_k , 1);

10

11 // x = x + alpha*p
12 vpm_axpy_vvv (precision , n, alpha , p_k , 1, x_k , 1);
13

14 // r = r - alpha *Ap
15 vpm_axpy_vvv (precision , n, -alpha , Ap_k , 1, r_k , 1);
16

17 // rk+1
18 rs_next = vpm_dot_vv (precision , n, r_k , 1, r_k , 1);
19

20 if (sqrt ((double) rs_next) < tolerance) {
21 break;
22

23 vpm_scal (precision , n, rs_next / rs , p_k , 1);
24 vpm_axpy_vvv (precision , n, (vpfloat <mpfr , 16, precision >)1.0,
25 r_k , 1, p_k , 1);
26 rs = rs_next ;
27 }

Listing 6.2: Implementation of algorithm 2 using mpfrBLAS 4.7.1.

In fact, our experiments take advantage of BLAS flexibility and retargetability, and we show
different implementations of CG and variants for different formats: vpfloat<mpfr, ...>,
double, long double,__fp128, and Boost for Multi-precision.

Preconditioned CG

Preconditioned CG is a slightly modified algorithm3 that can significantly improve convergence
by relying on preconditionning techniques to reduce the condition number of the matrix (see
section 2.4.1). Incomplete LU or incomplete Cholesky are some examples of techniques that
help in that task. However, we have only considered the Jacobi Preconditionner method (from
Algorithm 3), since it has low computational cost and scales linearly according to matrix size.
The modified algorithm is listed in 4, showing the use of both matrix A and preconditioned
matrix iM (which stands for inverse M).

Pipelined CG

Our mpfrBLAS has been implemented to exploit thread-level parallelism through OpenMP.
Extending beyond multi-core architectures, our type system could potentially benefit from
many-core systems with the use of MPI [110] or related models. Aside from matrix-vector
products, the original standard algorithm cannot be easily parallelized due to the reuse of
variable arrays between lines. Ghysels and Vanroose [51] proposed to hide global synchronization
latency of the preconditioned CG with a variant that offers further opportunities of parallelism

3In many libraries, the conjugate gradient algorithm implements the preconditionning by default.

92

Algorithme 3: Jacobi preconditioner
1: for i = 1 to m do
2: for j = 1 to n do
3: if i == j then
4: iM [i, j] := 1

A[i,j]
5: else
6: iM [i, j] := 0
7: end if
8: end for
9: end for

10: return(iM)

Algorithme 4: preconditionned conjugate gradient: general algorithm
1: r0 := b−Ax0
2: z0 := iMr0
3: p0 := z0
4: while iteration count not exceeded do
5: αk := rTk rk

pTk Apk
6: xk+1 := xk +αkpk

7: rk+1 := rk−αkApk

8: if ‖ rk+1 ‖≤ tol then break
9: zk+1 := iMrk+1

10: βk := zTk+1rk+1

zTk rk
11: pk+1 := zk+1 +βkpk

12: k+ +
13: end while

than those of traditional algorithms. Algorithm 5 shows the implementation of pipelined CG.
Matrix-product A×wk (line 9) can be done in parallel to calculations from lines 10 and 11.
Although this property adds more parallelism to CG, its drawback is the loss of numerical
stability the algorithm is likely to observe when compared to traditional methods [31].

BiCG

While many problems lead to the handling and computation with SPD matrices, there are cases
where a more general matrix must be employed and none of the CG algorithms previously
described can be adopted. BiCG [104] extends the use of CG to general matrices (and not only
to SPD). It is similar to the original CG but requires some additional computation to account
for matrix generality.

Results and Discussion

To demonstrate the use of variable precision and how our type system can be beneficial to this
exploration, we have implemented and analyzed the impact of different precision values in all
four CG variants (Hestenes and Stiefel [63], preconditioned, pipelined CG, and BiCG) for two
constraints: number of iterations and execution time. BLAS libraries have been implemented
with the following types: long double, __fp128, vpfloat<mpfr, ...>, and Boost mpfr_float

93

Algorithme 5: Pipelined conjugate gradient algorithm [37]
1: p0 := r0 := b−Ax0
2: s0 :=A× p0,w0 :=A× r0

3: z0 :=A×w0,α0 := rT0 r0
sT0 p0

4: while iteration count not exceeded do
5: xk := xk−1 +αk−1pk−1
6: rk := rk−1−αk−1sk−1
7: wk := wk−1−αk−1zk−1
8: if ‖ rk ‖≤ tol then break
9: qk =A×wk

10: βk := rTk rk
rTk−1rk−1

11: αk := rTk rk

rTk wk−
βk

αk−1 rTk rk

12: pk := rk +βkpk−1
13: sk := wk +βksk−1
14: zk := qk +βkzk−1
15: k+ +
16: end while

Algorithme 6: biconjugate gradient: general algorithm
1: p0 := r0 := b−Ax0
2: choose r∗0 such as (r0r∗0) , 0
3: p∗0 := r∗0
4: while iteration count not exceeded do
5: αj := rTj r∗

j

p∗T
j Apj

6: xj+1 := xj +αjpj

7: rj+1 := rj −αjApj

8: if ‖ rj+1 ‖≤ tol then break
9: r∗j+1 := r∗j −αjA

T p∗j

10: βk := r∗T
j+1rj+1

rTj r∗
j

11: pj+1 := rj+1 +βjpj

12: p∗j+1 := r∗j+1 +βjp
∗
j

13: j+ +
14: end while

type. We also use OpenBLAS [124] as a reference implementation, that way an optimized version
of each algorithm in double is also provided.

We used 40 squared SPD matrices from Matrix Market [24, 86] with problem sizes (N) in
the range of 132 to 5489. Matrices are stored as sparse using the Compressed Row Storage
(CSR) format and can have up to 315891 non-zero elements (nnz). We selected 12 out of 40 to
be displayed in Figures 6.6 and 6.7 (for the results of Number of iterations vs. Precision) and
Figures 6.8 and 6.9 (for the results of Execution Time vs. Precision). The remaining matrices
are included as appendices of the thesis to keep this chapter at a reasonable length.

Every application and matrix was executed using five configurations: double (OpenBLAS),
fp80, fp128, vpfloat<mpfr, ...> (from 150 to 2000 bits, step = 50), and Boost for Multi-
precision (from 150 to 2000 bits, step = 50). The convergence threshold (tol) was selected as

94

1e−10 in order to keep results within a reasonable degree of accuracy. A missing type in a figure
means that the algorithm has not converged for that configuration. For example, pipelined
CG did not converge for types double and fp80 in the nasa2910 matrix, and thus, they are
not displayed in Figure 6.6. Execution times for the double type (in Figures 6.8 and 6.9,
and appendix B) are not shown because they are usually at a smaller order of magnitude
than other types. Experiments were conducted in M2, and could not be conducted with our
vpfloat<unum, ...> in a RISC-V environment because the system has been ported to a new
platform, and is still encountering stability issues.

Number of Iterations

Original CG, BiCG and Preconditioned CG

The impact of precision on standard matrices taken from Matrix market confirms a well-
established result: in the general case, the higher the precision, the fewer iterations it takes
to converge. In matrix bcsstk19, for example, OpenBLAS needs 295400 iterations to converge,
while going to high precision requires a little more than 70000 for 150 bits of precision, and
around 4000 when using more than 1000 bits. That is, high precision allowed a convergence
speed of more than 700× when compared to OpenBLAS.

This observation can be spotted in 12 out of 12 matrices in the original, and BiCG algorithms.
Indeed, when comparing the results of these two algorithms, one may also confirm that BiCG
is a generalization of the original CG for non-SPD matrices since both have an equivalent
convergence factor. This generalization comes at a cost: the additional computation can double
the execution time.

Preconditioned CG is, without a doubt, the best-performing algorithm for all matrices
analyzed. Applying a preconditioner beforehand decreases the condition number and helps to
reduce significantly the number of iterations in almost all situations. The single situation where
even preconditioning does not help is for the ill-conditioned matrix crystk01. Convergence is
only achieved with the use of high-precision representations like FP128, or higher.

Remedying the stability of pipelined CG with high precision

Perhaps the most interesting result from these experiments come from analyzing pipelined CG.
The algorithm is mainly proposed as a viable CG variant to run in many-core (distributed)
systems because it offers a higher degree of parallelism than other CG implementations. However,
it has shown to suffer from local rounding errors that accumulate in the vectors recurrences [31,
37]. In fact, our results show and confirm that pipelined CG undergoes stability issues when
executed with OpenBLAS4. Differently from other variants that can be stable for many of the
matrices analyzed, pipelined CG has not reached the stability necessary to converge in any of
these cases. Besides, our experiments show an aspect that, to the best of our knowledge, has not
being spotted by related work: increasing precision can help to minimize local rounding errors and
offer the stability necessary for convergence. While many researchers have proposed to address
pipelined CG’s instability with new implementations to compensate those errors [34, 35, 36], we
show a simpler solution that relies on increasing the computation precision of the application
for regaining stability. Still, these results are significantly attained to the tolerance we used
(1e−10), which is chosen to keep highly accurate results. If the tolerance was increased, this algo-
rithm would certainly be less susceptible to convergence issues, an aspect to consider in the future.

4Notice that convergence for double is not shown in the results of the pipelined CG algorithm because no
convergence is reached.

95

An interesting observation is the non-linear behavior of the number of iterations for a linear
increase in precision, an effect found in all variants, and mainly caused by the accumulation of
rounding errors [30] subjected through the multiple matrix-vector and vector-vector products.
Another common characteristic of all instances relates to the precision in use: they all reach
a minimum plateau value of the number of iterations needed for convergence. Some matrices
reach this plateau with few hundreds of bits, while others may require thousands of bits. These
results are an interesting exploration venue on numerical analysis aiming to determine a priori
the best precision value to adopt as to exhibit a good trade-off between the number of iterations
and execution time.

Because our type system can be precision-agnostic, we are able to run experiments and
collect results for multiple-precision configurations with a single run of each application, without
recompilation, and code duplication. Although results for Boost are also collected using the
same approach, our solution still manages to outperform Boost by at least 1.35×, and it is still
the only solution available with a real possibility of hardware integration, a venue that will be
explored as part of our future work.

We would like to emphasize that, by no means, these results should be seen as mathematical
proofs of how precision augmentation is beneficial. This study is merely an indicator that
increasing precision in applications can have an interesting venue of exploration in CG benchmarks.
Mathematically analyzing these results require a much more in-depth understanding of the
nature and internal properties of CG, and is out of the scope of this thesis.

96

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

nasa2910 2910x2910 NonZeros 174296

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk08 1074x1074 NonZeros 12960

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk11 1473x1473 NonZeros 34241

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk12 1473x1473 NonZeros 34241

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk13 2003x2003 NonZeros 83883

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk16 4884x4884 NonZeros 290378

0 500 1000 1500 2000
Precision in bits

4000

6000

8000

10000

12000

Nu
m

be
r o

f I
te

ra
tio

ns
Original Algo

Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1650

1700

1750

1800

1850

1900

1950

2000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

4000

6000

8000

10000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4000

6000

8000

10000

12000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

216

218

220

222

224

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

2000

4000

6000

8000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5000

10000

15000

20000

25000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2000

3000

4000

5000

6000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

5000

10000

15000

20000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5000

10000

15000

20000

25000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5000

10000

15000

20000

25000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2000

3000

4000

5000

6000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

5000

10000

15000

20000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5000

10000

15000

20000

25000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

50000

100000

150000

200000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1300

1400

1500

1600

1700

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

50000

100000

150000

200000

250000

300000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

50000

100000

150000

200000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

480

500

520

540

560

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

254

256

258

260

262

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

480

490

500

510

520

530

540

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

480

500

520

540

560

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

Figure 6.6: CG variants with multiple formats with matrices nasa2910, bcsstk08, bcsstk11,
bcsstk12, bcsstk13, and bcsstk16 from matrix market [24, 86]. Graph lines represent different
matrices, and graph columns correspond to variants (from left to right: original CG, precond CG,
pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in
bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did
not converge.

97

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk19 817x817 NonZeros 6853

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk20 485x485 NonZeros 3135

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk23 3134x3134 NonZeros 45178

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

crystk01 4875x4875 NonZeros 315891

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s3rmt3m3 5357x5357 NonZeros 207123

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

plat1919 1919x1919 NonZeros 32399

500 1000 1500 2000
Precision in bits

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f I
te

ra
tio

ns
Original Algo

VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

2500

5000

7500

10000

12500

15000

17500

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1000

2000

3000

4000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

5000

10000

15000

20000

25000

30000

35000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

2500

5000

7500

10000

12500

15000

17500

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

100000

200000

300000

400000

500000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4000

6000

8000

10000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

100000

200000

300000

400000

500000

600000

700000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

100000

200000

300000

400000

500000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

3000

4000

5000

6000

7000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

3000

4000

5000

6000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

50000

100000

150000

200000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

10000

15000

20000

25000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

25000

50000

75000

100000

125000

150000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

50000

100000

150000

200000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

50000

100000

150000

200000

250000

300000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

50000

100000

150000

200000

250000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

100000

200000

300000

400000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

50000

100000

150000

200000

250000

300000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
VP(150, 2000, step=50)

Figure 6.7: CG variants with multiple formats with matrices bcsstk19, bcsstk20, bcsstk23,
crystk01, s3rmt3m3, and plat1919 from matrix market [24, 86]. Graph lines represent different
matrices, and graph columns correspond to variants (from left to right: original CG, precond CG,
pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in
bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did
not converge.

98

Execution time

It may initially sound paradoxical that higher precision can lead to fewer iterations, however, this
also demonstrates that higher precision may actually reduce the execution time of a numerical
application, as depicted in Figures 6.8 and 6.9. We observe that many variants are indeed able to
significantly improve execution time by relying on very high precision. For instance, all variants
running in matrix bcsstk13, except precond, with 2000 bits of precision show more than 5× speed
when compared to 150 bits.

Although high-precision representation can improve performance in different variants and
matrices, the trend followed by execution time is not the same as for the number of iterations.
We can observe that, for many situations, the reduced number of iterations is not able to
compensate for the increase of precision, which results in higher execution times. This is the
case for all variants in matrix bcsstk16, results that correlate to the small improvement in the
number of iterations when precision is increased.

Precond has an interesting property: given that the condition number of the matrix is
(highly) improved with a preconditioner, increasing the precision has two more perceptible effects:
(1) either the plateau is reached earlier, (2) or increasing precision has a negative impact on
execution time and should be avoided. This variant has also shown the best overall execution
times, which explains why it is the preferred implementation in numerical libraries.

Interestingly, numerical analysts can potentially make use of these results with the aim to
determine the best trade-off between precision and the number of iterations for an optimal
execution time. The objective would be to comprehend the behavior of the number of iterations
and the impact it has on execution time, as an Oracle for the best representation to be used5.

Table 6.5 summarizes how execution time in vpfloat<mpfr, ...> compares to other types,
showing the counts of the number of matrices where our type outperforms its counterparts.
Values for vpfloat and Boost are cherry-picked with the best execution time among the precision
range (from 150 to 2000 with a step=50). We observe that vpfloat<mpfr, ...> can outperform
lower-precision types, like long double and __float128, in many matrices and variants. We
also show better performance of Boost in the majority of cases, which corroborates with the
results presented in previous sections of this chapter. Lastly, execution times for vpfloat are
expected to be improved when UNUM type is used.

Table 6.5: Count on the number of matrices where vpfloat<mpfr, ...> outperforms other
types. Only matrix with types that converge are considered. For vpfloat and Boost, we
cherry-pick the best execution time among the precision range (from 150 to 2000 with a step=50)

Algorithm
double long double __float128

Boost
Variant (All mat.) (N>1000) (N>2000)
Original 4/32 19/32 25/35 40/40 27/27 15/15
Precond 0/36 6/37 9/39 40/40 27/27 15/15
Pipeline 0/0 7/7 29/34 32/40 26/27 15/15
BiCG 4/32 18/32 25/35 40/40 27/27 15/15

5Assuming that all types are supported by hardware. Otherwise, the right choice will most likely be double
for all situations.

99

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

nasa2910 2910x2910 NonZeros 174296

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk08 1074x1074 NonZeros 12960

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk11 1473x1473 NonZeros 34241

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk12 1473x1473 NonZeros 34241

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk13 2003x2003 NonZeros 83883

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk16 4884x4884 NonZeros 290378

0 500 1000 1500 2000
Precision in bits

2

4

6

8

10

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

8

9

10

11

12

13

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.0

0.2

0.4

0.6

0.8
Ex

ec
ut

io
n

tim
e

(in
 se

co
nd

s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2

3

4

5

6

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1.0

1.2

1.4

1.6

1.8

2.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

2

4

6

8

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4

6

8

10

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2

3

4

5

6

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1.0

1.2

1.4

1.6

1.8

2.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

2

4

6

8

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4

6

8

10

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

25

50

75

100

125

150

175

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

50

100

150

200

250

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

50

100

150

200

250

300

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.6

0.8

1.0

1.2

1.4

1.6

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

Figure 6.8: Execution time for CG variants with multiple formats with matrices nasa2910,
bcsstk08, bcsstk11, bcsstk12, bcsstk13, and bcsstk16 from matrix market [24, 86]. Graph lines
represent different matrices, and graph columns correspond to variants (from left to right:
original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm
did not converge. Results for double are not displayed.

100

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk19 817x817 NonZeros 6853

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk20 485x485 NonZeros 3135

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk23 3134x3134 NonZeros 45178

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

crystk01 4875x4875 NonZeros 315891

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s3rmt3m3 5357x5357 NonZeros 207123

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

plat1919 1919x1919 NonZeros 32399

500 1000 1500 2000
Precision in bits

0

2

4

6

8

10

12

14

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.4

0.6

0.8

1.0

1.2

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

5

10

15

20

25

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.2

0.3

0.4

0.5
Ex

ec
ut

io
n

tim
e

(in
 se

co
nd

s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

2

4

6

8

10

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

50

100

150

200

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1.5

2.0

2.5

3.0

3.5

4.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

100

200

300

400

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

100

200

300

400

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

8

9

10

11

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

8

9

10

11

12

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

40

60

80

100

120

140

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

60

80

100

120

140

160

180

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

50

100

150

200

250

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

20

40

60

80

100

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

20

40

60

80

100

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

50

100

150

200

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

50

100

150

200

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
VP(150, 2000, step=50)

Figure 6.9: Execution time for CG variants with multiple formats with matrices bcsstk19,
bcsstk20, bcsstk23, crystk01, s3rmt3m3, and plat1919 from matrix market [24, 86]. Graph
lines represent different matrices, and graph columns correspond to variants (from left to right:
original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm
did not converge. Results for double are not displayed.

101

6.3 Conclusion
This chapter demonstrated the productivity benefits of our intuitive programming model and
its ability to leverage an existing optimizing compiler framework. We presented a series of
experiments on PolyBench and RAJAPerf suites that yield strong speedups for both software
and hardware targets. Our compiler integrated solution is more capable of leveraging the
classical optimizations already implemented by the compiler, which helps to reason about the
speedup results observed. Experimental results also showed that significantly higher speedups are
observed when comparing a software to a hardware target. This result is particularly interesting
with the rise of the dark silicon area and may be an aspect for evaluation on future processor
designs. Our last experiments in CG are a step towards better understanding the impact of
(high-)precision in linear algebra and illustrated how variable precision may raise its importance
for the future of high-performance computing. To that end, this thesis is a step towards making
variable precision easier to use and better integrated into a language, compiler and hardware,
and serves as an enabler for better exploration of variable precision computing.

102

Chapter 7: Conclusion

This thesis defines a compilation strategy to use and explore variable precision FP arithmetic
and proposes a design and implementation of this strategy. We are mainly interested in how
languages and compilers can support data structures, types, and both software- and hardware-
enabled operations to accelerate applications with different FP requirements. No previous
solution has shown a complete integration of FP arithmetic with constant and variable memory
footprint. Our proposed type system, embedded into the compiler’s intermediate representation,
and lowering and backend code generation strategies provide both high-productivity and high-
performance with variable precision FP formats. Our extension supports FP arithmetic of
arbitrary representation and precision, and the precision and exponent can be configured at
compilation time and runtime.

We exposed a list of questions in chapter 2 and the work presented in the context of this
thesis is intended to answer these questions. In the following paragraphs, we provide a summary
of how we answered these questions:

How can languages and compilers be used to accelerate and improve the productivity of
multi-precision FP libraries? Can one improve the integration between compilers and these
libraries to take better advantage of classical compiler optimizations?

Chapters 4 and 5 show the solution we propose to enable the instantiation of multi-format FP
types. Because of the genericity of our type system, types that hide underlying implementation
with multi-precision FP libraries can be supported. More precisely, an MPFR type (vpfloat<
mpfr, ...>) has been added as a lightweight alternative to use the MPFR library in a more
programmer-friendly fashion. This type provides a functionality similar to high-level MPFR
abstractions, like Boost Multi-precision library, Julia and Python’s dynamic type systems, but it
offers a C-level easy-to-use interface for MPFR.

We provide an integrated compiler solution that bridges the abstraction gap between multi-
precision FP libraries and compiler transformations, permitting us to postpone the instantiation
of library-related operations and objects until after optimizations are run. Experimental results
corroborate on showing that a later transformation pass to generate library-specific code has
a positive impact on execution time since more optimization opportunities can be found. We
also demonstrate through a practical code example (Figure 5.6) that even vectorization can be
supported at least to some extend.

How can one extend languages and provide compiler support for new formats taking into
consideration their singular properties?

Chapter 4 describes the language requirements, syntax, and semantics defined within the
context of this thesis. We use a new primitive type vpfloat to encapsulate many properties of

103

FP types. The use of a single keyword, although not necessary, is employed to allow multiple
formats to coexist within a single context, and differentiates language pre-existing types from
those of our extension. The proposed syntax offers flexibility for the declaration of formats with
different attributes. Its use is not hindered by any constraint, such as precision and exponent
values, or even size, and users should not be restrained by any form of type declaration. In other
words, the support for FP arithmetic of arbitrary representation, whose precision and exponent
can be configured at compilation time and runtime, allows a high degree of flexibility that has
not been explored in previous works.

The effectiveness of our type extension (and language syntax) in representing multiple formats
is shown through: (1) an MPFR-compatible type that views FP attributes as exponent and
precision fields, and (2) a UNUM type class where FP attributes are interpreted according to
the format specification, and so, differently from the former. To the best of our knowledge,
no previous work tackled the integration within an optimizing compilation flow, taking into
consideration format-specific attributes, and how the compiler can efficiently generate code for
types that may not necessarily have constant size. Having support for two types with different
semantics is proof of how extensible our solution is, not only from a language perspective but
also throughout the full compilation flow, enabling the design of software- and hardware-specific
code generators.

What are the compiler and optimizations requirements to support an FP type system with
runtime capabilities? How can compilers provide proper memory management for these types?

Our proposal tackles a set of capabilities neglected by low-level programming languages:
the ability to declare types with runtime capabilities. This feature has re-gained significance
in the context of variable precision where the cost of increasing precision must be avoided for
performance purposes. We enable the use of types with runtime-decidable attributes by allowing
their specialization with integer variables of the program.

Our compilation flow handles these types from language to the middle-end level representation
through a new type extension that enable declarations to have constant or runtime-decidable
attributes. We implemented this extension in LLVM to benefit from the optimizations available
on its intermediate representation. We also assessed that specific optimizations such as Loop
Idiom Recognition and Inlining need modifications to handle types with runtime attributes.
Backend code generation for such types is only possible thanks to the coordination between the
compiler infrastructure and the target backend, which means that a compatible ISA or software
target solution is required to drive the flexibility of these types.

The use of MPFR is possible because objects can be constructed with the precision value
specified upon object creation, and operations make use of this information to compute values.
The synergy between the UNUM coprocessor and the compiler is done through an ISA agnostic
to the format used for computation. The compiler sets status registers values inside the hardware
to control the FP format in use, which gives the compliance and full support for UNUM types
with runtime capabilities.

Can variable precision serve as an interesting exploration paradigm in the context of numeri-
cal algorithms?

Yes, our experiments on the conjugate gradient method and variants show a clear variable
precision exploration aspect in linear algebra. Experimental results show that increasing the
precision to be used can have a non-negligible impact on the number of iterations of an algorithm.
It also demonstrates that precision is particularly important for the pipelined CG variant due

104

to instability caused by the accumulation of rounding errors. The stability of the algorithm
is only achieved with high precision and using primitive data types only works for it to some
extent, that is, when the tolerance threshold is increased. In that case, it means that an
approximate (and less accurate) solution is acceptable. The design of BLAS routines also permits
the exploration of other high-performance algorithms, such as Singular Value Decomposition
(SVD), and Generalized minimal residual method (GMRES).

Perspectives

Our future work can be divided into two main categories: (1) the first relates to additional
compiler work and tooling that can be envisioned; (2) and the complementary work aimed in
the application side with many aspects to consider.

Compilation and Integration Tools

Chapters 4 and 5 show the main contributions found within the context of this thesis. But
they also show some limitations and ideas that can be pursued as future work, as part of the
language, compilation, and tool integration process. Among them, we may refer to:

(1) Improve high-level structures integration: vpfloat support for compound types such as
class, and structs, is still limited to constant types. There are two challenges to resolve:
(1) find a consistent syntax and semantic to express types with runtime attributes so that
users are able to bind them to variable declarations; (2) instrument the compiler to support
them is also a challenging part of the work, since none of the elements within the current
infrastructure has functionality that resembles it,

(2) Generally work on the improvements of loop nest-related heuristics to better optimize
vpfloat. Although we are able to leverage Polly, many heuristics are suboptimal and are
not capable of optimizing the code, even for constant types. Add support for dynamically-
sized types in Polly heuristics is also a venue of exploration in order to improve cache
utilization within our BLAS library implementations,

(3) Our language proposal shows support for two formats (MPFR, and UNUM), but it is
also extensible to other representations. More interestingly, the Posit format, a UNUM
successor, has shown potential usage for many scientific fields [28, 42, 70], and is a valuable
candidate to appear as a vpfloat format within our extension. Ongoing work is also
underway to support an IEEE-like representation, much similar to the MPFR format, but
enabling hardware support to accelerate computation with high-precision representations
even further,

(4) Improve tooling integration with open-source projects like PetSC [3, 18], Armadillo [106],
and Eigen [56]: many of the related work use, experiment, and validate their solution
with open-source projects. The evaluation presented in [34, 35, 36], for example, are
conducted in PetSc [3, 18], a modern and scalable ordinary differential equation (ODE)
and differential algebraic equations (DAE) solver library. The Armadillo [106] and Eigen
libraries [56] are template-based metaprogramming C++ libraries for linear algebra and
scientific computing and are also highly used within the context of the applications targeted
to be explored in future work.

105

Applications
On the application side, we can explore different aspects:

(1) Run CG experiments with our vpfloat<unum, ...> types once all stability issues are
resolved in the system. We are mainly interested to understand how the reduced number of
iterations impacts execution time. Increasing precision may collaborate to reduce execution
time even if compared to optimized implementations with vectorization capabilities (for
example, applications with double and using vector instructions).

(2) Although this thesis focuses mainly on providing language and compiler integration as
a mean to accelerate exploration of variable precision and other FP formats in general,
our last experiments with CG show insights to increase the interest of numerical analysts
in the exploration of variable precision. Future work will focus on new applications and
configurations to accelerate linear algebra. We are keen to see if variable precision can
be used with the iterative refinement technique presented in chapter 3 as part of the
mixed-precision computing section. It is also envisioned that other applications, such as
SVD and GMRES, be studied to widen the comprehension of the impact of precision
and FP formats in general. The outcome of this thesis can be seen as an enabler of this
exploration.

106

Annexes

107

Appendix A: CG Experimental Results:
Number of Iterations

109

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk04 132x132 NonZeros 3648

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk05 153x153 NonZeros 2423

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk06 420x420 NonZeros 7860

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk07 420x420 NonZeros 7860

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk09 1083x1083 NonZeros 18437

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk10 1086x1086 NonZeros 22070

0 500 1000 1500 2000
Precision in bits

200

300

400

500

600

Nu
m

be
r o

f I
te

ra
tio

ns
Original Algo

Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

86

87

88

89

90

91

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

150

200

250

300

350

400

450

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

200

300

400

500

600

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

150

175

200

225

250

275

300

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

138

140

142

144

146

148

150

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

150

175

200

225

250

275

300

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

150

175

200

225

250

275

300

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1000

2000

3000

4000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

360

380

400

420

440

460

480

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1000

2000

3000

4000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1000

2000

3000

4000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

360

380

400

420

440

460

480

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1000

2000

3000

4000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

246.0

246.5

247.0

247.5

248.0

248.5

249.0

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

195

200

205

210

215

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

246

247

248

249

250

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

246.0

246.5

247.0

247.5

248.0

248.5

249.0

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2000

3000

4000

5000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

850

900

950

1000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

1500

2000

2500

3000

3500

4000

4500

5000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2000

3000

4000

5000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

Figure A.1: CG variants with multiple formats with matrices bcsstk04, bcsstk05, bcsstk06,
bcsstk07, bcsstk09, and bcsstk10 from matrix market [24, 86]. Graph lines represent different
matrices, and graph columns correspond to variants (from left to right: original CG, precond CG,
pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in
bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did
not converge.

110

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk14 1806x1806 NonZeros 63454

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk15 3948x3948 NonZeros 117816

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk21 3600x3600 NonZeros 26600

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk22 138x138 NonZeros 696

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk24 3562x3562 NonZeros 159910

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk26 1922x1922 NonZeros 30336

0 500 1000 1500 2000
Precision in bits

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r o

f I
te

ra
tio

ns
Original Algo

Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

620

640

660

680

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

5000

7500

10000

12500

15000

17500

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

10000

15000

20000

25000

30000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

700

710

720

730

740

750

760

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

10000

15000

20000

25000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

10000

15000

20000

25000

30000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

6000

8000

10000

12000

14000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

650

660

670

680

690

700

710

720

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

6000

8000

10000

12000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

6000

8000

10000

12000

14000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

150

200

250

300

350

400

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

124

125

126

127

128

129

130

131

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

150

200

250

300

350

400

450

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

150

200

250

300

350

400

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

100000

200000

300000

400000

500000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5000

6000

7000

8000

9000

10000

11000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

100000

200000

300000

400000

500000

600000

700000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

100000

200000

300000

400000

500000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

10000

20000

30000

40000

50000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2000

2200

2400

2600

2800

3000

3200

3400

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

10000

20000

30000

40000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

10000

20000

30000

40000

50000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

Figure A.2: CG variants with multiple formats with matrices bcsstk14, bcsstk15, bcsstk21,
bcsstk22, bcsstk24, and bcsstk26 from matrix market [24, 86]. Graph lines represent different
matrices, and graph columns correspond to variants (from left to right: original CG, precond CG,
pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in
bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did
not converge.

111

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk27 1224x1224 NonZeros 56126

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk28 4410x4410 NonZeros 219024

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk34 588x588 NonZeros 21418

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstm07 420x420 NonZeros 7252

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstm10 1086x1086 NonZeros 22092

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstm12 1473x1473 NonZeros 19659

0 500 1000 1500 2000
Precision in bits

1000

1200

1400

1600

Nu
m

be
r o

f I
te

ra
tio

ns
Original Algo

Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

280

285

290

295

300

305

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1000

1200

1400

1600

1800

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1000

1200

1400

1600

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4000

4500

5000

5500

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

4000

6000

8000

10000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

400

600

800

1000

1200

1400

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

198

200

202

204

206

208

210

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

400

600

800

1000

1200

1400

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

400

600

800

1000

1200

1400

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

250

300

350

400

450

500

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

64

65

66

67

68

69

70

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

250

300

350

400

450

500

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

250

300

350

400

450

500

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2500

5000

7500

10000

12500

15000

17500

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2500

5000

7500

10000

12500

15000

17500

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2000

3000

4000

5000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

520

540

560

580

600

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2000

3000

4000

5000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

Figure A.3: CG variants with multiple formats with matrices bcsstk27, bcsstk28, bcsstk34,
bcsstm07, bcsstm10, and bcsstm12 from matrix market [24, 86]. Graph lines represent different
matrices, and graph columns correspond to variants (from left to right: original CG, precond CG,
pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in
bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did
not converge.

112

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstm27 1224x1224 NonZeros 56126

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

494_bus 494x494 NonZeros 1666

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

662_bus 662x662 NonZeros 2474

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

685_bus 685x685 NonZeros 3249

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s1rmq4m1 5489x5489 NonZeros 262411

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s1rmt3m1 5489x5489 NonZeros 217651

500 1000 1500 2000
Precision in bits

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f I
te

ra
tio

ns
Original Algo

FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

2500

5000

7500

10000

12500

15000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

400

600

800

1000

1200

1400

1600

1800

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

411.0

411.5

412.0

412.5

413.0

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

400

600

800

1000

1200

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

400

600

800

1000

1200

1400

1600

1800

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

400

500

600

700

800

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

255

260

265

270

275

280

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

400

500

600

700

800

900

1000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

400

500

600

700

800

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

350

400

450

500

550

600

650

700

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

280.0

280.2

280.4

280.6

280.8

281.0

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

350

400

450

500

550

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

350

400

450

500

550

600

650

700

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4000

5000

6000

7000

8000

9000

10000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

800

820

840

860

880

900

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

4000

5000

6000

7000

8000

9000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4000

5000

6000

7000

8000

9000

10000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4000

5000

6000

7000

8000

9000

10000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

970

980

990

1000

1010

1020

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

4000

5000

6000

7000

8000

9000

10000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4000

5000

6000

7000

8000

9000

10000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

Figure A.4: CG variants with multiple formats with matrices bcsstm27, 494_bus, 662_bus,
685_bus, s1rmq4m1, and s1rmt3m1 from matrix market [24, 86]. Graph lines represent different
matrices, and graph columns correspond to variants (from left to right: original CG, precond CG,
pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in
bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did
not converge.

113

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s2rmt3m1 5489x5489 NonZeros 217681

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s3rmq4m1 5489x5489 NonZeros 262943

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s3rmt3m1 5489x5489 NonZeros 217669

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

plat362 362x362 NonZeros 5786

0 500 1000 1500 2000
Precision in bits

10000

15000

20000

25000

30000

35000

40000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2400

2600

2800

3000

3200

3400

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

10000

15000

20000

25000

30000

35000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

10000

15000

20000

25000

30000

35000

40000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

20000

40000

60000

80000

100000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

6000

8000

10000

12000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

20000

40000

60000

80000

100000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

20000

40000

60000

80000

100000

120000

140000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

6000

8000

10000

12000

14000

16000

18000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

20000

40000

60000

80000

100000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

20000

40000

60000

80000

100000

120000

140000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f I
te

ra
tio

ns

Original Algo
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f I
te

ra
tio

ns

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f I
te

ra
tio

ns

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f I
te

ra
tio

ns

Bicg
Double (OpenBLAS)
FP80
FP128
VP(150, 2000, step=50)

Figure A.5: CG variants with multiple formats with matrices s2rmt3m1, s3rmq4m1, s3rmt3m1,
and plat362 from matrix market [24, 86]. Graph lines represent different matrices, and graph
columns correspond to variants (from left to right: original CG, precond CG, pipelined CG,
BiCG). Y-axes show the number of iterations needed to converge for precision in bits between
150 and 2000 with a step=50. A missing type in a graph implies the algorithm did not converge.

114

Appendix B: CG Experimental Results:
Execution Time

115

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk04 132x132 NonZeros 3648

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk05 153x153 NonZeros 2423

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk06 420x420 NonZeros 7860

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk07 420x420 NonZeros 7860

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk09 1083x1083 NonZeros 18437

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk10 1086x1086 NonZeros 22070

0 500 1000 1500 2000
Precision in bits

0.03

0.04

0.05

0.06

0.07

0.08

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.05

0.10

0.15

0.20

0.25

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.06

0.08

0.10

0.12

0.14

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.030

0.035

0.040

0.045

0.050

0.055

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.03

0.04

0.05

0.06
Ex

ec
ut

io
n

tim
e

(in
 se

co
nd

s)

Precond
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.04

0.05

0.06

0.07

0.08

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.2

0.3

0.4

0.5

0.6

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.08

0.10

0.12

0.14

0.16

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.2

0.4

0.6

0.8

1.0

1.2

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.2

0.3

0.4

0.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.08

0.10

0.12

0.14

0.16

0.18

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.4

0.6

0.8

1.0

1.2

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.6

0.8

1.0

1.2

1.4

1.6

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.25

0.50

0.75

1.00

1.25

1.50

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

1.0

1.2

1.4

1.6

1.8

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

Figure B.1: Execution time for CG variants with multiple formats with matrices bcsstk04,
bcsstk05, bcsstk06, bcsstk07, bcsstk09, and bcsstk10 from matrix market [24, 86]. Graph lines
represent different matrices, and graph columns correspond to variants (from left to right:
original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm
did not converge. Results for double are not displayed.

116

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk14 1806x1806 NonZeros 63454

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk15 3948x3948 NonZeros 117816

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk21 3600x3600 NonZeros 26600

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk22 138x138 NonZeros 696

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk24 3562x3562 NonZeros 159910

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk26 1922x1922 NonZeros 30336

0 500 1000 1500 2000
Precision in bits

3

4

5

6

7

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.2

0.3

0.4

0.5

0.6

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

4

5

6

7

8

9

10

11

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

6

8

10

12

14

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.2

0.4

0.6

0.8

1.0

1.2
Ex

ec
ut

io
n

tim
e

(in
 se

co
nd

s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

16

18

20

22

24

26

28

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

10

15

20

25

30

35

40

45

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2.0

2.5

3.0

3.5

4.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

4.5

5.0

5.5

6.0

6.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

3

4

5

6

7

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.05

0.10

0.15

0.20

0.25

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

100

200

300

400

500

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

3

4

5

6

7

8

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

200

400

600

800

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

200

400

600

800

1000

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

4

6

8

10

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.8

1.0

1.2

1.4

1.6

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

4

6

8

10

12

14

16

18

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

Figure B.2: Execution time for CG variants with multiple formats with matrices bcsstk14,
bcsstk15, bcsstk21, bcsstk22, bcsstk24, and bcsstk26 from matrix market [24, 86]. Graph lines
represent different matrices, and graph columns correspond to variants (from left to right:
original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm
did not converge. Results for double are not displayed.

117

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk27 1224x1224 NonZeros 56126

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk28 4410x4410 NonZeros 219024

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstk34 588x588 NonZeros 21418

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstm07 420x420 NonZeros 7252

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstm10 1086x1086 NonZeros 22092

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstm12 1473x1473 NonZeros 19659

0 500 1000 1500 2000
Precision in bits

0.3

0.4

0.5

0.6

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2

4

6

8

10

12

14

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2

4

6

8

10

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

10

11

12

13

14

15

16

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5

10

15

20

25

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.16

0.18

0.20

0.22

0.24

0.26

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.04

0.05

0.06

0.07

0.08

0.09

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.0550

0.0575

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.01

0.02

0.03

0.04

0.05

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.1

0.2

0.3

0.4

0.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.4

0.6

0.8

1.0

1.2

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.4

0.5

0.6

0.7

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.6

0.8

1.0

1.2

1.4

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.6

0.7

0.8

0.9

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.10

0.15

0.20

0.25

0.30

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.8

1.0

1.2

1.4

1.6

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

Figure B.3: Execution time for CG variants with multiple formats with matrices bcsstk27,
bcsstk28, bcsstk34, bcsstm07, bcsstm10, and bcsstm12 from matrix market [24, 86]. Graph
lines represent different matrices, and graph columns correspond to variants (from left to right:
original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm
did not converge. Results for double are not displayed.

118

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bcsstm27 1224x1224 NonZeros 56126

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

494_bus 494x494 NonZeros 1666

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

662_bus 662x662 NonZeros 2474

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

685_bus 685x685 NonZeros 3249

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s1rmq4m1 5489x5489 NonZeros 262411

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s1rmt3m1 5489x5489 NonZeros 217651

500 1000 1500 2000
Precision in bits

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

2

3

4

5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

5

10

15

20

25

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

5

10

15

20

25

30

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.08

0.10

0.12

0.14

0.16

0.18

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.07

0.08

0.09

0.10

0.11

0.12

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.2

0.3

0.4

0.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.15

0.20

0.25

0.30

0.35

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.10

0.15

0.20

0.25

0.30

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.06

0.08

0.10

0.12

0.14

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.10

0.12

0.14

0.16

0.18

0.20

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.080

0.085

0.090

0.095

0.100

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.05

0.10

0.15

0.20

0.25

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

0.15

0.20

0.25

0.30

0.35

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.1

0.2

0.3

0.4

0.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2

4

6

8

10

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

8

9

10

11

12

13

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

5

10

15

20

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2

4

6

8

10

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

500 1000 1500 2000
Precision in bits

8

9

10

11

12

13

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 500 1000 1500 2000
Precision in bits

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

Figure B.4: Execution time for CG variants with multiple formats with matrices bcsstm27,
494_bus, 662_bus, 685_bus, s1rmq4m1, and s1rmt3m1 from matrix market [24, 86]. Graph
lines represent different matrices, and graph columns correspond to variants (from left to right:
original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm
did not converge. Results for double are not displayed.

119

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s2rmt3m1 5489x5489 NonZeros 217681

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s3rmq4m1 5489x5489 NonZeros 262943

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s3rmt3m1 5489x5489 NonZeros 217669

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

plat362 362x362 NonZeros 5786

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

5

10

15

20

25

30

35

40

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

1

2

3

4

5
Ex

ec
ut

io
n

tim
e

(in
 se

co
nd

s)

Precond
FP80
FP128
VP(150, 2000, step=50)

250 500 750 1000 1250 1500 1750 2000
Precision in bits

30

35

40

45

50

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

10

20

30

40

50

60

70

80

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

10

20

30

40

50

60

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

2

4

6

8

10

12

14

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

250 500 750 1000 1250 1500 1750 2000
Precision in bits

30

40

50

60

70

80

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

20

40

60

80

100

120

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

20

30

40

50

60

70

80

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

250 500 750 1000 1250 1500 1750 2000
Precision in bits

40

60

80

100

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

40

60

80

100

120

140

160

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Original Algo
FP80
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Precond
FP80
FP128
VP(150, 2000, step=50)

250 500 750 1000 1250 1500 1750 2000
Precision in bits

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Pipeline
FP128
VP(150, 2000, step=50)

0 250 500 750 1000 1250 1500 1750 2000
Precision in bits

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
tim

e
(in

 se
co

nd
s)

Bicg
FP80
FP128
VP(150, 2000, step=50)

Figure B.5: Execution time for CG variants with multiple formats with matrices s2rmt3m1,
s3rmq4m1, s3rmt3m1, and plat362 from matrix market [24, 86]. Graph lines represent different
matrices, and graph columns correspond to variants (from left to right: original CG, precond
CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm did not converge.
Results for double are not displayed.

120

Publications

Publications in International Conferences and Workshops
• Tiago Trevisan Jost, Yves Durand, Christian Fabre, Albert Cohen, Frédéric Pétrot. Seam-

less Compiler Integration of Variable Precision Floating-Point Arithmetic International
Symposium on Code Generation and Optimization (CGO 2021)

• Tiago Jost, Yves Durand, Christian Fabre, Albert Cohen, Frédéric Pétrot. VP Float: First
Class Treatment for Variable Precision Floating Point Arithmetic. ACM International
Conference on Parallel Architectures and Compilation Techniques (PACT 2020) (pp.
355–356)

• Andrea Bocco, Tiago T. Jost, Albert Cohen, Florent de Dinechin, Yves Durand, Chris-
tian Fabre. Byte-Aware Floating-point Operations through a UNUM Computing Unit.
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2019)
(pp. 323-328)

• Tiago T. Jost, Andrea Bocco, Yves Durand, Christian Fabre, Florent de Dinechin, and
Albert Cohen. Variable Precision Floating-Point RISC-V Coprocessor Evaluation using
Lightweight Software and Compiler Support. Third Workshop on Computer Architecture
Research with RISC-V (CARRV’19).

121

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D.
Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.
Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems”. In: arXiv:1603.04467 [cs] (Mar. 2016). url: http://arxiv.org/
abs/1603.04467 (visited on 11/24/2020) (pages 1, 15).

[2] A. Abdelfattah, S. Tomov, and J. Dongarra. “Towards Half-Precision Computation
for Complex Matrices: A Case Study for Mixed Precision Solvers on GPUs”. In: 2019
IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA). Nov. 2019, pp. 17–24. doi: 10.1109/ScalA49573.2019.00008 (page 20).

[3] S. Abhyankar, J. Brown, E. M. Constantinescu, D. Ghosh, B. F. Smith, and H. Zhang.
“PETSc/TS: A Modern Scalable ODE/DAE Solver Library”. In: arXiv preprint arXiv:1806.
01437 (2018) (page 105).

[4] A. V. Aho, R. Sethi, and J. D. Ullman. “Compilers, principles, techniques”. In: Addison
wesley 7.8 (1986), p. 9 (page 63).

[5] A. Akkaş, M. J. Schulte, and J. E. Stine. “Intrinsic compiler support for interval arith-
metic”. In: Numerical Algorithms 37.1 (2004), pp. 13–20 (page 15).

[6] A. Anderson and D. Gregg. “Vectorization of multibyte floating point data formats”.
In: 2016 International Conference on Parallel Architecture and Compilation Techniques
(PACT). Sept. 2016, pp. 363–372. doi: 10.1145/2967938.2967966 (page 24).

[7] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe. “Language
and compiler support for auto-tuning variable-accuracy algorithms”. In: International
Symposium on Code Generation and Optimization (CGO 2011). Apr. 2011, pp. 85–96.
doi: 10.1109/CGO.2011.5764677 (page 25).

[8] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe.
“PetaBricks: a language and compiler for algorithmic choice”. In: ACM SIGPLAN Notices
44.6 (June 2009), pp. 38–49. issn: 0362-1340. doi: 10.1145/1543135.1542481. url:
https://doi.org/10.1145/1543135.1542481 (visited on 02/12/2021) (page 25).

[9] M. G. Arnold. “The residue logarithmic number system: theory and implementation”. In:
17th IEEE Symposium on Computer Arithmetic (ARITH’05). IEEE, 2005, pp. 196–205
(pages 19, 24).

[10] M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney. “A comparative study of static
and profile-based heuristics for inlining”. In: ACM SIGPLAN Notices 35.7 (Jan. 2000),
pp. 52–64. issn: 0362-1340. doi: 10.1145/351403.351416. url: https://doi.org/10.
1145/351403.351416 (visited on 03/05/2021) (page 64).

123

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://doi.org/10.1109/ScalA49573.2019.00008
https://doi.org/10.1145/2967938.2967966
https://doi.org/10.1109/CGO.2011.5764677
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/351403.351416
https://doi.org/10.1145/351403.351416
https://doi.org/10.1145/351403.351416

[11] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig, Y.
Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B.
Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman. The Rocket Chip Generator.
UCB/EECS-2016-17. EECS Department, University of California, Berkeley, Apr. 2016.
url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
(pages 28, 88).

[12] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and
S. Tomov. “Accelerating scientific computations with mixed precision algorithms”. In:
Computer Physics Communications 180.12 (Dec. 2009), pp. 2526–2533. doi: 10.1016/
j.cpc.2008.11.005. url: https://www.research.manchester.ac.uk/portal/en/
publications/accelerating-scientific-computations-with-mixed-precision-
algorithms(5b73720d- 719c- 40dd- 8dad- d6262e5921cd)/export.html (visited on
11/27/2020) (pages 10, 14, 20, 33).

[13] D. H. Bailey, R. Barrio, and J. M. Borwein. “High-precision computation: Mathematical
physics and dynamics”. In: Applied Mathematics and Computation 218.20 (June 2012),
pp. 10106–10121. issn: 0096-3003. doi: 10.1016/j.amc.2012.03.087. url: http:
//www.sciencedirect.com/science/article/pii/S0096300312003505 (visited on
11/24/2020) (page 8).

[14] D. Bailey and J. Borwein. “High-Precision Arithmetic in Mathematical Physics”. In:
Mathematics 3 (May 2015), pp. 337–367. doi: 10.3390/math3020337 (page 1).

[15] D. H. Bailey. “MPFUN: A portable high performance multiprecision package”. In: NASA
Ames Research Center (1990) (pages 14, 21).

[16] D. H. Bailey. “Reproducibility and variable precision computing”. In: The International
Journal of High Performance Computing Applications 34.5 (Sept. 2020), pp. 483–490.
issn: 1094-3420. doi: 10.1177/1094342020938424. url: https://doi.org/10.1177/
1094342020938424 (visited on 12/13/2020) (pages 12, 14).

[17] D. H. Bailey, X. S. Li, and Y. Hida. QD: A Double-Double/Quad-Double Package.
Lawrence Berkeley National Laboratory, 2003 (page 26).

[18] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A.
Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May,
L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H.
Zhang, and H. Zhang. PETSc Web page. 2021. url: https://www.mcs.anl.gov/petsc
(page 105).

[19] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. “Julia: A Fast Dynamic Language
for Technical Computing”. In: arXiv:1209.5145 [cs] (Sept. 2012). url: http://arxiv.
org/abs/1209.5145 (visited on 11/27/2020) (pages 22, 32, 90).

[20] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.
Hammarling, G. Henry, A. Petitet, et al. ScaLAPACK users’ guide. SIAM, 1997 (page 27).

[21] A. Bocco, Y. Durand, and F. d. Dinechin. “Dynamic Precision Numerics Using a Variable-
Precision UNUM Type I HW Coprocessor”. In: 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH). June 2019, pp. 104–107. doi: 10.1109/ARITH.2019.00028 (pages 9,
37, 68).

124

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1016/j.cpc.2008.11.005
https://www.research.manchester.ac.uk/portal/en/publications/accelerating-scientific-computations-with-mixed-precision-algorithms(5b73720d-719c-40dd-8dad-d6262e5921cd)/export.html
https://www.research.manchester.ac.uk/portal/en/publications/accelerating-scientific-computations-with-mixed-precision-algorithms(5b73720d-719c-40dd-8dad-d6262e5921cd)/export.html
https://www.research.manchester.ac.uk/portal/en/publications/accelerating-scientific-computations-with-mixed-precision-algorithms(5b73720d-719c-40dd-8dad-d6262e5921cd)/export.html
https://doi.org/10.1016/j.amc.2012.03.087
http://www.sciencedirect.com/science/article/pii/S0096300312003505
http://www.sciencedirect.com/science/article/pii/S0096300312003505
https://doi.org/10.3390/math3020337
https://doi.org/10.1177/1094342020938424
https://doi.org/10.1177/1094342020938424
https://doi.org/10.1177/1094342020938424
https://www.mcs.anl.gov/petsc
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145
https://doi.org/10.1109/ARITH.2019.00028

[22] A. Bocco, T. T. Jost, A. Cohen, F. d. Dinechin, Y. Durand, and C. Fabre. “Byte-Aware
Floating-point Operations through a UNUM Computing Unit”. In: 2019 IFIP/IEEE
27th International Conference on Very Large Scale Integration (VLSI-SoC). Oct. 2019,
pp. 323–328. doi: 10.1109/VLSI-SoC.2019.8920387 (pages 9, 10).

[23] A. Bocco, Y. Durand, and F. d. Dinechin. “SMURF: Scalar Multiple-precision Unum
Risc-V Floating-point Accelerator for Scientific Computing”. In: ACM, Mar. 2019, pp. 1–8.
doi: 10.1145/3316279.3316280. url: https://hal.inria.fr/hal-02087098 (visited
on 11/27/2020) (pages 10, 28, 37, 68, 74, 88).

[24] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra. “Matrix market:
a web resource for test matrix collections”. In: Proceedings of the IFIP TC2/WG2.5
working conference on Quality of numerical software: assessment and enhancement. GBR:
Chapman & Hall, Ltd., Jan. 1997, pp. 125–137. isbn: 978-0-412-80530-1. (Visited on
11/27/2020) (pages 13, 14, 94, 97, 98, 100, 101, 110–114, 116–120).

[25] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. “A Practical Auto-
matic Polyhedral Program Optimization System”. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). June 2008 (pages 52, 66).

[26] R. P. Brent. “An idealist’s view of semantics for integer and real types”. In: Australian
Computer Science Communications 4 (1982), pp. 130–140 (page 21).

[27] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. “A class of parallel tiled linear
algebra algorithms for multicore architectures”. In: Parallel Computing 35.1 (2009),
pp. 38–53. issn: 0167-8191. doi: https://doi.org/10.1016/j.parco.2008.10.002.
url: http://www.sciencedirect.com/science/article/pii/S0167819108001117
(page 27).

[28] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and D. Ku-
dithipudi. “Deep Positron: A Deep Neural Network Using the Posit Number System”. In:
arXiv:1812.01762 [cs] (Jan. 2019). url: http://arxiv.org/abs/1812.01762 (visited
on 11/27/2020) (pages 10, 105).

[29] E. Carson and N. J. Higham. “Accelerating the Solution of Linear Systems by Iterative
Refinement in Three Precisions”. In: SIAM Journal on Scientific Computing 40.2 (Jan.
2018), A817–A847. issn: 1064-8275. doi: 10.1137/17M1140819. url: https://epubs.
siam.org/doi/abs/10.1137/17M1140819 (visited on 11/27/2020) (pages 20, 31).

[30] E. Carson and Z. Strakoš. “On the cost of iterative computations”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
378.2166 (Mar. 2020), p. 20190050. issn: 1364-503X, 1471-2962. doi: 10.1098/rsta.2019.
0050. url: https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0050
(visited on 11/25/2020) (page 96).

[31] E. C. Carson, M. Rozložník, Z. Strakoš, P. Tichý, and M. Tůma. “The Numerical
Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and
Methodology”. In: SIAM Journal on Scientific Computing 40.5 (2018), A3549–A3580.
doi: 10.1137/16M1103361. url: https://doi.org/10.1137/16M1103361 (pages 93,
95).

[32] S. W. D. Chien, I. B. Peng, and S. Markidis. “Posit NPB: Assessing the Precision
Improvement in HPC Scientific Applications”. In: arXiv:1907.05917 [cs] 12043 (2020),
pp. 301–310. doi: 10.1007/978-3-030-43229-4_26. url: http://arxiv.org/abs/
1907.05917 (visited on 11/27/2020) (page 24).

125

https://doi.org/10.1109/VLSI-SoC.2019.8920387
https://doi.org/10.1145/3316279.3316280
https://hal.inria.fr/hal-02087098
https://doi.org/https://doi.org/10.1016/j.parco.2008.10.002
http://www.sciencedirect.com/science/article/pii/S0167819108001117
http://arxiv.org/abs/1812.01762
https://doi.org/10.1137/17M1140819
https://epubs.siam.org/doi/abs/10.1137/17M1140819
https://epubs.siam.org/doi/abs/10.1137/17M1140819
https://doi.org/10.1098/rsta.2019.0050
https://doi.org/10.1098/rsta.2019.0050
https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0050
https://doi.org/10.1137/16M1103361
https://doi.org/10.1137/16M1103361
https://doi.org/10.1007/978-3-030-43229-4_26
http://arxiv.org/abs/1907.05917
http://arxiv.org/abs/1907.05917

[33] S. Chowdhary, J. P. Lim, and S. Nagarakatte. “Debugging and detecting numerical errors
in computation with posits”. In: Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2020. New York, NY, USA:
Association for Computing Machinery, June 2020, pp. 731–746. isbn: 978-1-4503-7613-6.
doi: 10.1145/3385412.3386004. url: https://doi.org/10.1145/3385412.3386004
(visited on 12/10/2020) (page 25).

[34] S. Cools, J. Cornelis, and W. Vanroose. “Numerically Stable Recurrence Relations for the
Communication Hiding Pipelined Conjugate Gradient Method”. In: IEEE Transactions
on Parallel and Distributed Systems 30.11 (2019), pp. 2507–2522. doi: 10.1109/TPDS.
2019.2917663 (pages 95, 105).

[35] S. Cools, J. Cornelis, P. Ghysels, and W. Vanroose. “Improving strong scaling of the
Conjugate Gradient method for solving large linear systems using global reduction
pipelining”. In: CoRR abs/1905.06850 (2019). url: http://arxiv.org/abs/1905.06850
(pages 95, 105).

[36] S. Cools, W. Vanroose, E. F. Yetkin, E. Agullo, and L. Giraud. “On rounding error
resilience, maximal attainable accuracy and parallel performance of the pipelined Conju-
gate Gradients method for large-scale linear systems in PETSc”. In: Proceedings of the
Exascale Applications and Software Conference 2016. EASC ’16. New York, NY, USA:
Association for Computing Machinery, Apr. 2016, pp. 1–10. isbn: 978-1-4503-4122-6.
doi: 10.1145/2938615.2938621. url: https://doi.org/10.1145/2938615.2938621
(visited on 04/03/2021) (pages 95, 105).

[37] J. Cornelis, S. Cools, and W. Vanroose. “The Communication-Hiding Conjugate Gradient
Method with Deep Pipelines”. In: CoRR abs/1801.04728 (2018). url: http://arxiv.
org/abs/1801.04728 (pages 94, 95).

[38] C. Courbet. “NSan: a floating-point numerical sanitizer”. In: Proceedings of the 30th ACM
SIGPLAN International Conference on Compiler Construction. CC 2021. New York, NY,
USA: Association for Computing Machinery, Mar. 2021, pp. 83–93. isbn: 978-1-4503-8325-
7. doi: 10.1145/3446804.3446848. url: https://doi.org/10.1145/3446804.3446848
(visited on 04/01/2021) (page 25).

[39] L. Dagum and R. Menon. “OpenMP: an industry standard API for shared-memory
programming”. In: IEEE Computational Science and Engineering 5.1 (Jan. 1998), pp. 46–
55. issn: 1558-190X. doi: 10.1109/99.660313 (page 66).

[40] E. Darulova and V. Kuncak. “On Sound Compilation of Reals”. In: arXiv:1309.2511
[cs] (Sept. 2013). url: http://arxiv.org/abs/1309.2511 (visited on 11/25/2020)
(page 25).

[41] L. Deniau and A. Naumann. Proposal for classes with runtime size. Document number:
N4188. 2014. url: http://www.open-std.org/JTC1/SC22/wg21/docs/papers/2014/
n4188.pdf (page 48).

[42] F. de Dinechin, L. Forget, J.-M. Muller, and Y. Uguen. “Posits: the good, the bad and the
ugly”. In: Proceedings of the Conference for Next Generation Arithmetic 2019. CoNGA’19.
New York, NY, USA: Association for Computing Machinery, Mar. 2019, pp. 1–10. isbn:
978-1-4503-7139-1. doi: 10.1145/3316279.3316285. url: https://doi.org/10.1145/
3316279.3316285 (visited on 11/27/2020) (pages 10, 38, 105).

[43] J. Dongarra. Freely Available Software for Linear Algebra (September 2018). 2018. url:
http://www.netlib.org/utk/people/JackDongarra/la-sw.html (page 13).

126

https://doi.org/10.1145/3385412.3386004
https://doi.org/10.1145/3385412.3386004
https://doi.org/10.1109/TPDS.2019.2917663
https://doi.org/10.1109/TPDS.2019.2917663
http://arxiv.org/abs/1905.06850
https://doi.org/10.1145/2938615.2938621
https://doi.org/10.1145/2938615.2938621
http://arxiv.org/abs/1801.04728
http://arxiv.org/abs/1801.04728
https://doi.org/10.1145/3446804.3446848
https://doi.org/10.1145/3446804.3446848
https://doi.org/10.1109/99.660313
http://arxiv.org/abs/1309.2511
http://www.open-std.org/JTC1/SC22/wg21/docs/papers/2014/n4188.pdf
http://www.open-std.org/JTC1/SC22/wg21/docs/papers/2014/n4188.pdf
https://doi.org/10.1145/3316279.3316285
https://doi.org/10.1145/3316279.3316285
https://doi.org/10.1145/3316279.3316285
http://www.netlib.org/utk/people/JackDongarra/la-sw.html

[44] J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling. “Block reduction of matrices to
condensed forms for eigenvalue computations”. In: Journal of Computational and Applied
Mathematics 27.1 (1989), pp. 215–227. issn: 0377-0427. doi: https://doi.org/10.1016/
0377-0427(89)90367-1. url: http://www.sciencedirect.com/science/article/
pii/0377042789903671 (page 27).

[45] I. o. Electrical, E. E. C. S. S. Committee, and D. Stevenson. IEEE standard for binary
floating-point arithmetic. IEEE, 1985 (pages 1, 7).

[46] J. S. Ely. “The VPI software package for variable precision interval arithmetic”. In:
Interval Computations 2.2 (1993), pp. 135–153 (page 28).

[47] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. “Dark silicon
and the end of multicore scaling”. In: 2011 38th Annual International Symposium on
Computer Architecture (ISCA). 2011, pp. 365–376 (page 88).

[48] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. “On the design
of CGAL a computational geometry algorithms library”. In: Software: Practice and
Experience 30.11 (2000), pp. 1167–1202. issn: 1097-024X. doi: https://doi.org/
10.1002/1097-024X(200009)30:11<1167::AID-SPE337>3.0.CO;2-B. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/1097-024X%28200009%2930%3A11%
3C1167%3A%3AAID-SPE337%3E3.0.CO%3B2-B (visited on 12/04/2020) (page 22).

[49] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. “MPFR: A multiple-
precision binary floating-point library with correct rounding”. In: ACM Transactions on
Mathematical Software 33.2 (June 2007), 13–es. issn: 0098-3500. doi: 10.1145/1236463.
1236468. url: https://doi.org/10.1145/1236463.1236468 (visited on 11/27/2020)
(pages xvii, 7, 10, 14, 21, 26, 33, 35, 68).

[50] A. M. Frolov and D. H. Bailey. “Highly accurate evaluation of the few-body auxiliary
functions and four-body integrals”. In: Journal of Physics B: Atomic, Molecular and
Optical Physics 36.9 (Apr. 2003), pp. 1857–1867. issn: 0953-4075. doi: 10.1088/0953-
4075/36/9/315. url: https://doi.org/10.1088%2F0953-4075%2F36%2F9%2F315
(visited on 11/24/2020) (page 1).

[51] P. Ghysels and W. Vanroose. “Hiding global synchronization latency in the preconditioned
Conjugate Gradient algorithm”. In: Parallel Computing. 7th Workshop on Parallel Matrix
Algorithms and Applications 40.7 (July 2014), pp. 224–238. issn: 0167-8191. doi: 10.
1016/j.parco.2013.06.001. url: https://www.sciencedirect.com/science/
article/pii/S0167819113000719 (visited on 03/30/2021) (page 92).

[52] F. Glaser, S. Mach, A. Rahimi, F. K. Gürkaynak, Q. Huang, and L. Benini. “An 826
MOPS, 210uW/MHz Unum ALU in 65 nm”. In: 2018 IEEE International Symposium on
Circuits and Systems (ISCAS). May 2018, pp. 1–5. doi: 10.1109/ISCAS.2018.8351546
(pages 9, 10, 29).

[53] D. Goldberg. “What every computer scientist should know about floating-point arith-
metic”. In: ACM Computing Surveys 23.1 (Mar. 1991), pp. 5–48. issn: 0360-0300. doi:
10.1145/103162.103163. url: https://doi.org/10.1145/103162.103163 (visited on
11/27/2020) (page 6).

[54] T. Granlund. GNU Multiple Precision Arithmetic Library 6.1.2. Dec. 2016 (pages 7, 14,
21, 26, 33, 68).

[55] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N. Pouchet. “Polly
– Polyhedral optimization in LLVM”. In: Proceedings of the First International Workshop
on Polyhedral Compilation Techniques (IMPACT). 2011, pp. 1–6 (pages 66, 80).

127

https://doi.org/https://doi.org/10.1016/0377-0427(89)90367-1
https://doi.org/https://doi.org/10.1016/0377-0427(89)90367-1
http://www.sciencedirect.com/science/article/pii/0377042789903671
http://www.sciencedirect.com/science/article/pii/0377042789903671
https://doi.org/https://doi.org/10.1002/1097-024X(200009)30:11<1167::AID-SPE337>3.0.CO;2-B
https://doi.org/https://doi.org/10.1002/1097-024X(200009)30:11<1167::AID-SPE337>3.0.CO;2-B
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-024X%28200009%2930%3A11%3C1167%3A%3AAID-SPE337%3E3.0.CO%3B2-B
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-024X%28200009%2930%3A11%3C1167%3A%3AAID-SPE337%3E3.0.CO%3B2-B
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-024X%28200009%2930%3A11%3C1167%3A%3AAID-SPE337%3E3.0.CO%3B2-B
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1088/0953-4075/36/9/315
https://doi.org/10.1088/0953-4075/36/9/315
https://doi.org/10.1088%2F0953-4075%2F36%2F9%2F315
https://doi.org/10.1016/j.parco.2013.06.001
https://doi.org/10.1016/j.parco.2013.06.001
https://www.sciencedirect.com/science/article/pii/S0167819113000719
https://www.sciencedirect.com/science/article/pii/S0167819113000719
https://doi.org/10.1109/ISCAS.2018.8351546
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163

[56] G. Guennebaud, B. Jacob, et al. Eigen v3. 2010. url: http://eigen.tuxfamily.org
(page 105).

[57] J. L. Gustafson. The End of Error: Unum Computing. CRC Press, 2017 (pages 9, 36, 68,
75).

[58] Gustafson and Yonemoto. “Beating Floating Point at its Own Game: Posit Arithmetic”.
In: Supercomputing Frontiers and Innovations: an International Journal 4.2 (June 2017),
pp. 71–86. issn: 2409-6008. doi: 10.14529/jsfi170206. url: https://doi.org/10.
14529/jsfi170206 (visited on 11/27/2020) (pages 9, 24, 27, 38).

[59] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. “Harnessing GPU Tensor Cores
for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers”. In:
SC18: International Conference for High Performance Computing, Networking, Storage
and Analysis. Nov. 2018, pp. 603–613. doi: 10.1109/SC.2018.00050 (page 20).

[60] A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham. “Mixed-precision
iterative refinement using tensor cores on GPUs to accelerate solution of linear systems”.
In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
476.2243 (2020), p. 20200110 (page 20).

[61] A. Haidar, P. Wu, S. Tomov, and J. Dongarra. “Investigating Half Precision Arithmetic
to Accelerate Dense Linear System Solvers”. In: Proceedings of the 8th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems. ScalA ’17. New York,
NY, USA: Association for Computing Machinery, 2017. isbn: 978-1-4503-5125-6. doi:
10.1145/3148226.3148237. url: https://doi.org/10.1145/3148226.3148237
(page 20).

[62] J. Hauser. SoftFloat. 1997. url: http://www.jhauser.us/arithmetic/SoftFloat.html
(page 24).

[63] M. R. Hestenes, E. Stiefel, et al. “Methods of conjugate gradients for solving linear
systems”. In: Journal of research of the National Bureau of Standards 49.6 (1952),
pp. 409–436 (pages 90, 91, 93).

[64] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002 (pages 1, 11,
12, 31).

[65] J. Hou, Y. Zhu, S. Du, and S. Song. “Enhancing Accuracy and Dynamic Range of
Scientific Data Analytics by Implementing Posit Arithmetic on FPGA”. In: Journal
of Signal Processing Systems 91.10 (Oct. 2019), pp. 1137–1148. issn: 1939-8115. doi:
10.1007/s11265-018-1420-5. url: https://doi.org/10.1007/s11265-018-1420-5
(visited on 11/27/2020) (page 10).

[66] IBM. IBM System/360 Principles of Operation. IBM Press, 1964 (page 7).
[67] IEEE. “IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (Revision of

IEEE 754-2008)”. In: Institute of Electrical and Electronics Engineers New York, 2019
(page 7).

[68] K. Isupov. “Using Floating-Point Intervals for Non-Modular Computations in Residue
Number System”. In: IEEE Access 8 (2020), pp. 58603–58619. issn: 2169-3536. doi:
10.1109/ACCESS.2020.2982365 (page 19).

[69] M. K. Jaiswal and H. K. So. “PACoGen: A Hardware Posit Arithmetic Core Generator”.
In: IEEE Access 7 (2019), pp. 74586–74601. issn: 2169-3536. doi: 10.1109/ACCESS.2019.
2920936 (pages 10, 29).

128

http://eigen.tuxfamily.org
https://doi.org/10.14529/jsfi170206
https://doi.org/10.14529/jsfi170206
https://doi.org/10.14529/jsfi170206
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1145/3148226.3148237
http://www.jhauser.us/arithmetic/SoftFloat.html
https://doi.org/10.1007/s11265-018-1420-5
https://doi.org/10.1007/s11265-018-1420-5
https://doi.org/10.1109/ACCESS.2020.2982365
https://doi.org/10.1109/ACCESS.2019.2920936
https://doi.org/10.1109/ACCESS.2019.2920936

[70] J. Johnson. “Rethinking floating point for deep learning”. In: arXiv:1811.01721 [cs] (Nov.
2018). url: http://arxiv.org/abs/1811.01721 (visited on 11/27/2020) (pages 10, 24,
105).

[71] M. Joldes, J.-M. Muller, V. Popescu, andW. Tucker. “CAMPARY: Cuda multiple precision
arithmetic library and applications”. In: International Congress on Mathematical Software.
Springer, 2016, pp. 232–240 (page 21).

[72] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avancha, D. T.
Vooturi, N. Jammalamadaka, J. Huang, H. Yuen, J. Yang, J. Park, A. Heinecke, E.
Georganas, S. Srinivasan, A. Kundu, M. Smelyanskiy, B. Kaul, and P. Dubey. “A Study
of BFLOAT16 for Deep Learning Training”. In: arXiv:1905.12322 [cs, stat] (June 2019).
url: http://arxiv.org/abs/1905.12322 (visited on 11/24/2020) (page 1).

[73] J. G. Kemeny, T. E. Kurtz, and D. S. Cochran. Basic: a manual for BASIC, the elementary
algebraic language designed for use with the Dartmouth Time Sharing System. Dartmouth
Publications, 1968 (page 7).

[74] N. G. Kingsbury and P. J. Rayner. “Digital filtering using logarithmic arithmetic”. In:
Electronics Letters 7.2 (1971), pp. 56–58 (page 24).

[75] U. Kulisch. Computer arithmetic and validity: theory, implementation, and applications.
Vol. 33. Walter de Gruyter, 2013 (pages 24, 27, 50).

[76] C. Lattner and V. Adve. “LLVM: a compilation framework for lifelong program analysis
transformation”. In: International Symposium on Code Generation and Optimization,
2004. CGO 2004. Mar. 2004, pp. 75–86. doi: 10.1109/CGO.2004.1281665 (pages 8, 15,
59).

[77] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. “Basic Linear Algebra
Subprograms for Fortran Usage”. In: ACM Transactions on Mathematical Software
5.3 (Sept. 1979), pp. 308–323. issn: 0098-3500. doi: 10.1145/355841.355847. url:
https://doi.org/10.1145/355841.355847 (visited on 11/27/2020) (pages 26, 36).

[78] R. Leavitt. “Adjustable precision floating point arithmetic in Ada”. In: ACM SIGAda
Ada Letters VII.5 (Sept. 1987), pp. 63–78. issn: 1094-3641. doi: 10.1145/36077.36082.
url: https://doi.org/10.1145/36077.36082 (visited on 11/27/2020) (page 21).

[79] J. Lee, G. D. Peterson, D. S. Nikolopoulos, and H. Vandierendonck. “AIR: Iterative
refinement acceleration using arbitrary dynamic precision”. In: Parallel Computing 97
(Sept. 2020), p. 102663. issn: 0167-8191. doi: 10.1016/j.parco.2020.102663. url:
http://www.sciencedirect.com/science/article/pii/S0167819120300569 (visited
on 01/06/2021) (page 20).

[80] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y.
Kang, A. Kapur, M. C. Martin, B. J. Thompson, T. Tung, and D. J. Yoo. “Design,
implementation and testing of extended and mixed precision BLAS”. In: ACM Trans-
actions on Mathematical Software 28.2 (June 2002), pp. 152–205. issn: 0098-3500. doi:
10.1145/567806.567808. url: https://doi.org/10.1145/567806.567808 (visited on
12/09/2020) (pages 26, 49).

[81] P. Lindstrom. “Universal Coding of the Reals using Bisection”. In: Proceedings of the
Conference for Next Generation Arithmetic 2019. CoNGA’19. New York, NY, USA:
Association for Computing Machinery, Mar. 2019, pp. 1–10. isbn: 978-1-4503-7139-1.
doi: 10.1145/3316279.3316286. url: https://doi.org/10.1145/3316279.3316286
(visited on 12/15/2020) (page 24).

129

http://arxiv.org/abs/1811.01721
http://arxiv.org/abs/1905.12322
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/36077.36082
https://doi.org/10.1145/36077.36082
https://doi.org/10.1016/j.parco.2020.102663
http://www.sciencedirect.com/science/article/pii/S0167819120300569
https://doi.org/10.1145/567806.567808
https://doi.org/10.1145/567806.567808
https://doi.org/10.1145/3316279.3316286
https://doi.org/10.1145/3316279.3316286

[82] P. Lindstrom, S. Lloyd, and J. Hittinger. “Universal coding of the reals: alternatives to
IEEE floating point”. In: Proceedings of the Conference for Next Generation Arithmetic.
CoNGA ’18. New York, NY, USA: Association for Computing Machinery, Mar. 2018,
pp. 1–14. isbn: 978-1-4503-6414-0. doi: 10.1145/3190339.3190344. url: https://doi.
org/10.1145/3190339.3190344 (visited on 11/27/2020) (pages 14, 24).

[83] G. S. Lloyd. unum. url: https://github.com/LLNL/unum (pages 14, 24).
[84] C. Long. Softposit. 2019. url: https://gitlab.com/cerlane/SoftPosit/-/wikis/

home (pages 14, 24).
[85] J. Maddock and C. Kormanyos. Boost.Multiprecision. 2020 (pages 22, 72, 79).
[86] Matrix Market repository. 2007. url: https://math.nist.gov/MatrixMarket/ (pages 13,

14, 94, 97, 98, 100, 101, 110–114, 116–120).
[87] V. Ménissier-Morain. “Arbitrary precision real arithmetic: design and algorithms”. In:

The Journal of Logic and Algebraic Programming. Practical development of exact real
number computation 64.1 (July 2005), pp. 13–39. issn: 1567-8326. doi: 10.1016/j.
jlap.2004.07.003. url: http://www.sciencedirect.com/science/article/pii/
S1567832604000748 (visited on 12/22/2020) (pages 10, 19).

[88] S. Mittal. “A Survey of Techniques for Approximate Computing”. In: ACM Computing
Surveys 48.4 (Mar. 2016), 62:1–62:33. issn: 0360-0300. doi: 10.1145/2893356. url:
https://doi.org/10.1145/2893356 (visited on 11/24/2020) (page 2).

[89] G. E. Moore. “Cramming more components onto integrated circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE Solid-State Circuits
Society Newsletter 11.3 (Sept. 2006), pp. 33–35. issn: 1098-4232. doi: 10.1109/N-
SSC.2006.4785860 (page 1).

[90] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to interval analysis. SIAM,
2009 (page 19).

[91] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre, G.
Melquiond, N. Revol, and S. Torres. Handbook of Floating-Point Arithmetic, 2nd edition.
Birkhäuser Boston, 2018 (page 12).

[92] M. Nakata. The MPACK (MBLAS/MLAPACK) a multiple precision arithmetic version
of BLAS and LAPACK. http://mplapack.sourceforge.net/, 2010 (page 26).

[93] E. T. L. Omtzigt, P. Gottschling, M. Seligman, and W. Zorn. Universal Number Library.
url: https://github.com/stillwater-sc/universal (page 24).

[94] E. T. L. Omtzigt, P. Gottschling, M. Seligman, and W. Zorn. “Universal Numbers Library:
design and implementation of a high-performance reproducible number systems library”.
In: arXiv e-prints (2020), arXiv–2012 (page 24).

[95] J. F. Palmer. “The Intel® 8087 numeric data processor”. In: Proceedings of the May
19-22, 1980, national computer conference. 1980, pp. 887–893 (page 7).

[96] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock. “Automatically improving
accuracy for floating point expressions”. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI ’15. New York,
NY, USA: Association for Computing Machinery, June 2015, pp. 1–11. isbn: 978-1-4503-
3468-6. doi: 10.1145/2737924.2737959. url: https://doi.org/10.1145/2737924.
2737959 (visited on 02/12/2021) (page 25).

130

https://doi.org/10.1145/3190339.3190344
https://doi.org/10.1145/3190339.3190344
https://doi.org/10.1145/3190339.3190344
https://github.com/LLNL/unum
https://gitlab.com/cerlane/SoftPosit/-/wikis/home
https://gitlab.com/cerlane/SoftPosit/-/wikis/home
https://math.nist.gov/MatrixMarket/
https://doi.org/10.1016/j.jlap.2004.07.003
https://doi.org/10.1016/j.jlap.2004.07.003
http://www.sciencedirect.com/science/article/pii/S1567832604000748
http://www.sciencedirect.com/science/article/pii/S1567832604000748
https://doi.org/10.1145/2893356
https://doi.org/10.1145/2893356
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860
https://github.com/stillwater-sc/universal
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2737924.2737959

[97] F. M. Q. Pereira and J. Palsberg. “SSA Elimination after Register Allocation”. In:
Compiler Construction. Ed. by O. de Moor and M. I. Schwartzbach. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 158–173. isbn: 978-3-642-00722-
4. doi: 10.1007/978-3-642-00722-4_12 (page 76).

[98] L.-N. Pouchet et al. PolyBench: The polyhedral benchmark suite. 2012 (pages 6, 80).
[99] RAJAPerf. url: https://github.com/LLNL/RAJAPerf (page 85).

[100] N. Revol. “Introduction to the IEEE 1788-2015 Standard for Interval Arithmetic”. In:
10th International Workshop on Numerical Software Verification - NSV 2017, workshop
of CAV 2017. Ed. by A. Abate and S. Boldo. LNCS. Heidelberg, Germany: Springer, July
2017, pp. 14–21. doi: 10.1007/978-3-319-63501-9. url: https://hal.inria.fr/hal-
01559955 (page 19).

[101] N. Revol. “The MPFI Library: Towards IEEE 1788–2015 Compliance”. In: International
Conference on Parallel Processing and Applied Mathematics. Springer, 2019, pp. 353–363
(page 22).

[102] C. Rubio-González, Cuong Nguyen, Hong Diep Nguyen, J. Demmel, W. Kahan, K. Sen,
D. H. Bailey, C. Iancu, and D. Hough. “Precimonious: Tuning assistant for floating-point
precision”. In: SC ’13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. Nov. 2013, pp. 1–12. doi: 10.1145/
2503210.2503296 (page 25).

[103] C. Rubio-González, C. Nguyen, B. Mehne, K. Sen, J. Demmel, W. Kahan, C. Iancu,
W. Lavrijen, D. H. Bailey, and D. Hough. “Floating-Point Precision Tuning Using Blame
Analysis”. In: 38th International Conference on Software Engineering. Ed. by W. Visser
and L. Williams. Austin, Texas: IEEE TCSE and ACM SIGSOFT, May 2016 (page 25).

[104] Y. Saad. Iterative Methods for Sparse Linear Systems. Other Titles in Applied Mathemat-
ics. Society for Industrial and Applied Mathematics, Jan. 2003. isbn: 978-0-89871-534-7.
doi: 10.1137/1.9780898718003. url: https://epubs.siam.org/doi/book/10.1137/
1.9780898718003 (visited on 12/01/2020) (page 93).

[105] A. Sanchez-Stern, P. Panchekha, S. Lerner, and Z. Tatlock. “Finding root causes of floating
point error”. In: Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2018. New York, NY, USA: Association
for Computing Machinery, June 2018, pp. 256–269. isbn: 978-1-4503-5698-5. doi: 10.
1145/3192366.3192411. url: https://doi.org/10.1145/3192366.3192411 (visited
on 02/12/2021) (page 25).

[106] C. Sanderson and R. Curtin. “Armadillo: a template-based C++ library for linear algebra”.
In: Journal of Open Source Software 1.2 (2016), p. 26. doi: 10.21105/joss.00026. url:
https://doi.org/10.21105/joss.00026 (page 105).

[107] M. J. Schulte and E. E. Swartzlander. “A family of variable-precision interval arithmetic
processors”. In: IEEE Transactions on Computers 49.5 (May 2000), pp. 387–397. issn:
1557-9956. doi: 10.1109/12.859535 (pages 27, 28).

[108] S. Shrimpton. An Implementation of MIL-STD-1750 Airborne Computer Instruction Set
Architecture. ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUGH (ENGLAND),
1981 (page 7).

131

https://doi.org/10.1007/978-3-642-00722-4_12
https://github.com/LLNL/RAJAPerf
https://doi.org/10.1007/978-3-319-63501-9
https://hal.inria.fr/hal-01559955
https://hal.inria.fr/hal-01559955
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1137/1.9780898718003
https://epubs.siam.org/doi/book/10.1137/1.9780898718003
https://epubs.siam.org/doi/book/10.1137/1.9780898718003
https://doi.org/10.1145/3192366.3192411
https://doi.org/10.1145/3192366.3192411
https://doi.org/10.1145/3192366.3192411
https://doi.org/10.21105/joss.00026
https://doi.org/10.21105/joss.00026
https://doi.org/10.1109/12.859535

[109] A. F. d. Silva, B. N. B. de Lima, and F. M. Q. Pereira. “Exploring the Space of
Optimization Sequences for Code-Size Reduction: Insights and Tools”. In: Proceedings
of the 30th ACM SIGPLAN International Conference on Compiler Construction. CC
2021. New York, NY, USA: Association for Computing Machinery, 2021, pp. 47–58. isbn:
978-1-4503-8325-7. doi: 10.1145/3446804.3446849. url: https://doi.org/10.1145/
3446804.3446849 (page 81).

[110] M. Snir, W. Gropp, S. Otto, S. Huss-Lederman, J. Dongarra, and D. Walker. MPI–the
Complete Reference: the MPI core. Vol. 1. MIT press, 1998 (page 92).

[111] J. Snyder and R. Smith. Exploring classes of runtime size. Document number: N4025. 2014.
url: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4025.pdf
(page 48).

[112] I. C. Soc. IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-2008). IEEE New
York, 2008 (page 7).

[113] R. Stallman et al. The GNU project. 1998 (pages 8, 15).
[114] G. Tagliavini, A. Marongiu, and L. Benini. “FlexFloat: A Software Library for Trans-

precision Computing”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 39.1 (Jan. 2020), pp. 145–156. issn: 1937-4151. doi: 10.1109/TCAD.
2018.2883902 (page 24).

[115] S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti. “PERI: A Posit Enabled RISC-V
Core”. In: arXiv:1908.01466 [cs] (Aug. 2019). url: http://arxiv.org/abs/1908.01466
(visited on 11/27/2020) (pages 10, 29).

[116] S. Tomov, J. Dongarra, and M. Baboulin. “Towards dense linear algebra for hybrid
GPU accelerated manycore systems”. In: Parallel Matrix Algorithms and Applications
36.5 (June 2010), pp. 232–240. issn: 0167-8191. doi: 10.1016/j.parco.2009.12.005
(page 27).

[117] G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voor Wiskunde
en Informatica Amsterdam, 1995 (pages 22, 32, 90).

[118] F. G. Van Zee and R. A. Van De Geijn. “BLIS: A framework for rapidly instantiating
BLAS functionality”. In: ACM Transactions on Mathematical Software (TOMS) 41.3
(2015), pp. 1–33 (page 26).

[119] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado, and F.
Catthoor. “Polyhedral parallel code generation for CUDA”. In: ACM Transactions on
Architecture and Code Optimization 9.4 (Jan. 2013), 54:1–54:23. issn: 1544-3566. doi:
10.1145/2400682.2400713. url: https://doi.org/10.1145/2400682.2400713
(visited on 03/19/2021) (page 66).

[120] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang. “Intel math kernel
library”. In: High-Performance Computing on the Intel® Xeon Phi™. Springer, 2014,
pp. 167–188 (page 26).

[121] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic. “The RISC-V instruction set
manual, volume i: User-level ISA”. In: CS Division, EECE Department, University of
California, Berkeley (2014) (pages 28, 74).

[122] R. C. Whaley and J. Dongarra. “Automatically Tuned Linear Algebra Software”. In:
SuperComputing 1998: High Performance Networking and Computing. 1998 (page 26).

[123] W. A. Wulf and S. A. McKee. “Hitting the memory wall: Implications of the obvious”.
In: ACM SIGARCH computer architecture news 23.1 (1995), pp. 20–24 (page 16).

132

https://doi.org/10.1145/3446804.3446849
https://doi.org/10.1145/3446804.3446849
https://doi.org/10.1145/3446804.3446849
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4025.pdf
https://doi.org/10.1109/TCAD.2018.2883902
https://doi.org/10.1109/TCAD.2018.2883902
http://arxiv.org/abs/1908.01466
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713

[124] Z. Xianyi, W. Qian, and Z. Chothia. “OpenBLAS”. In: URL: http://xianyi. github.
io/OpenBLAS (2012), p. 88 (pages 26, 94).

[125] Q. Xu, T. Mytkowicz, and N. S. Kim. “Approximate Computing: A Survey”. In: IEEE
Design Test 33.1 (Feb. 2016), pp. 8–22. issn: 2168-2364. doi: 10.1109/MDAT.2015.
2505723 (pages 2, 25).

[126] C. Yap and T. Dubé. “The exact computation paradigm”. In: Computing in Euclidean
Geometry. Vol. Volume 4. Lecture Notes Series on Computing Volume 4. WORLD SCIEN-
TIFIC, Jan. 1995, pp. 452–492. isbn: 978-981-02-1876-8. doi: 10.1142/9789812831699_
0011. url: https://www.worldscientific.com/doi/abs/10.1142/9789812831699_
0011 (visited on 12/02/2020) (page 19).

[127] T. J. Ypma. “Historical Development of the Newton-Raphson Method”. In: SIAM Review
37.4 (1995), pp. 531–551. issn: 0036-1445. url: https://www.jstor.org/stable/
2132904 (visited on 12/01/2020) (pages 11, 20).

[128] A. F. Zanella, A. F. da Silva, and F. M. Quintão. “YACOS: A Complete Infrastructure
to the Design and Exploration of Code Optimization Sequences”. In: Proceedings of the
24th Brazilian Symposium on Context-Oriented Programming and Advanced Modularity.
SBLP ’20. New York, NY, USA: Association for Computing Machinery, 2020, pp. 56–63.
isbn: 978-1-4503-8943-3. doi: 10.1145/3427081.3427089. url: https://doi.org/10.
1145/3427081.3427089 (page 81).

133

https://doi.org/10.1109/MDAT.2015.2505723
https://doi.org/10.1109/MDAT.2015.2505723
https://doi.org/10.1142/9789812831699_0011
https://doi.org/10.1142/9789812831699_0011
https://www.worldscientific.com/doi/abs/10.1142/9789812831699_0011
https://www.worldscientific.com/doi/abs/10.1142/9789812831699_0011
https://www.jstor.org/stable/2132904
https://www.jstor.org/stable/2132904
https://doi.org/10.1145/3427081.3427089
https://doi.org/10.1145/3427081.3427089
https://doi.org/10.1145/3427081.3427089

	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Contributions
	Outline

	Problem Statement
	Introduction
	Precision versus Accuracy
	Floating-Point Representation
	IEEE Formats
	UNUM
	Posit
	New FP Formats from a Compiler's Point of View

	Variable Precision as a New Paradigm for FP Arithmetic
	Problem with Precision Cherry-picking: Numerical Stability and Numerical Accuracy
	Quantifying Errors in Floating Points
	Augmenting Precision to Remedy Stability

	Linear Algebra from the Variable Precision Perspective

	Languages and Data types
	Compilers and Optimizations
	Conclusion

	Programming Languages, Paradigms for FP Computation and exploration Tools
	Computing paradigms for floating-point arithmetics
	Mixed precision computing
	Arbitrary precision
	MPFR Multi-precision library
	C++ Boost for Multi-precision
	Dynamic-typed Languages: a Julia example

	Exploration Tools (Hardware and Software)
	Software for Alternative FP Formats
	Precision-Awareness, Auto-Tuning, and Numerical Error Detection
	Software for Scientific Computing Exploration
	Basic Linear Algebra Subprograms (BLAS)
	Linear Algebra Package (LAPACK)

	Characteristics of the Hardware Implementation of Variable Precision FP Units
	Round-off Error Minimization through Long Accumulators
	A Family of Variable Precision, Interval Arithmetic Processors
	Scalar Multiple-precision UNUM RISC-V Floating-point Accelerator (SMURF)
	Other (UNUM or Posit) accelerators

	Conclusion

	Language and Type System Specifications for Variable Precision FP Arithmetic
	Syntax
	Semantics
	A multi-format type system
	MPFR
	UNUM
	Alternatives Formats

	Memory allocation schemes
	Constant Types
	Representing constants

	Constant-Size Types with Runtime-Decidable Attributes
	Dynamically-Sized Types
	Runtime verification
	Function sizeofvpfloat
	Function Parameter and Return
	Constants

	Type Comparison, Casting and Conversion
	Language Extension Limitations
	Libraries for Variable Precision
	mpfrBLAS: A vpfloat<mpfr, ...> BLAS library
	Level 1: Vector-to-vector operations
	Level 2: Matrix-vector operations
	Level 3: Matrix-matrix operations

	unumBLAS: A vpfloat<unum, ...> BLAS library
	Level 1: Vector-to-vector operations
	Level 2: Matrix-vector operations
	Level 3: Matrix-matrix operations

	Conclusion

	Compiler Integration for Variable Precision FP Formats
	Frontend
	Intermediate Representation (IR)
	VPFloat Types
	Function Declarations
	Interaction with Classical Optimizations
	Type-value Relation
	Loop Idiom Recognition
	Inlining
	Lifetime Marker Optimization
	OpenMP Multithread Programming
	Loop nest Optimizations
	Vectorization

	Code Generators
	Software Target: MPFR
	Hardware Target: UNUM
	Compiler-Controlled Status Registers
	FP Configuration Pass
	Array Address Calculation Pass

	Conclusion

	Experimental results
	The Benefits of Language and Compiler Integration
	MPFR vpfloat vs. Boost Multi-precision
	Polybench
	RAJAPerf

	Hardware(UNUM vpfloat) vs. Software (MPFR vpfloat)

	Linear Algebra Kernels
	Conclusion

	Conclusion
	CG Experimental Results: Number of Iterations
	CG Experimental Results: Execution Time
	Publications

