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and optimizing compilers for high-performance computing are also limited by the FP types supported by these units. However, the pursuit of efficiency and stability on applications has led researchers to investigate a finer control of exponent and fraction bits for finding the right balance between accurate results and execution time and/or energy consumed. For example, numerical computations often involve iterative solvers where the residual error is a function of the input data, or where dynamically adaptive precision can accelerate convergence. Numerical analysts have to resort to explicit conversions and multi-versioning, resulting in code bloat and making the intent of the program even less clear. Little attention in languages and compilers has been given to formats that disrupt the traditional FP arithmetics with runtime capabilities and allow the exploration of multiple configurations, a paradigm recently referred to as variable precision computing. This thesis proposes to overcome the limiting language and compiler support for traditional FP formats with novel FP arithmetic with runtime capabilities, showing the intersection between compiler technology and variable precision arithmetic. We present an extension of the C type system that can represent generic FP operations and formats, supporting both static precision and dynamically variable precision. We design and implement a compilation flow bridging the abstraction gap between this type system and low-level FP instructions or software libraries. The effectiveness of our solution is demonstrated through an LLVM-based implementation, leveraging aggressive optimizations in LLVM including the Polly loop nest optimizer. We provide support for two backend code generators: one for the ISA of a variable precision FP arithmetic coprocessor, and one for the MPFR multi-precision floating-point library.

We demonstrate the productivity benefits of our intuitive programming model and its ability to leverage an existing compiler framework. Experiments on two high-performance benchmark suites yield strong speedups for both our software and hardware targets. We also show interesting insights on the use of variable precision computing in linear algebra kernels. i

Résumé

Les unités de calcul à virgule flottante (FP) prennent en charge un sous-ensemble de formats définis par la norme IEEE 754, ainsi que quelques formats qui leur sont spécifiques (le format de 80 bits sur de l'architecture x86, et le format 128 bit propriétaire des PowerPC). De fait, les langages et les compilateurs optimisants utilisés en calcul intensif sont limités par les formats supportés sur les machines cibles. Cependant, la recherche de l'efficacité et de la stabilité des applications a conduit les numériciens à explorer d'autres tailles pour les exposants et les parties fractionnaires afin de trouver un bon équilibre entre la précision des résultats, le temps d'exécution et l'énergie consommée. C'est le cas pour les calculs numériques qui font appel à des solveurs itératifs dont l'erreur résiduelle est une fonction des données d'entrée, ou ceux pour lesquels une précision adaptable dynamiquement peut accélérer la convergence. Les numériciens doivent recourir à des conversions explicites et prévoir plusieurs versions du code, ce qui entraîne un accroissement de la taille de ce dernier au détriment de sa lisibilité Peu d'attention a été accordée au support d'autre formats flottants dans les langages et à leur compilation, ainsi qu'à leurs conséquences sur le processus d'analyse numérique. Le calcul en précision variable est un paradigme récent qui propose de faire varier les formats à l'exécution et d'en analyser les effets.
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A missing type in a graph implies the algorithm did not converge. Results for double are not displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 B. [START_REF] Akkaş | Intrinsic compiler support for interval arithmetic[END_REF] Execution time for CG variants with multiple formats with matrices s2rmt3m1, s3rmq4m1, s3rmt3m1, and plat362 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm did not converge. Results for double are not displayed.120 xiv List of Tables 2. [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems[END_REF] Residual error for some Polybench [START_REF] Pouchet | PolyBench: The polyhedral benchmark suite[END_REF] applications. It illustrates the difference between accuracy, here calculated through the residual error of each application, The dearth of compatible floating-point (FP) formats among companies in the early 1980s has significantly held back a plethora of applications, from signal and image processing to neural networks and numerical analysis, that leverage real numbers in their computation. The standardization of FP representations in the 1985 [START_REF] Electrical | IEEE standard for binary floating-point arithmetic[END_REF] was an important instrument to increase the productivity and the usage of real numbers in a variety of research fields. In the same direction, the progress of Very Large-Scale Integration (VLSI) technology has also contributed to allowing the generalization of hardware units for floating-point arithmetic.

The possibility of packing more transistors in the same die, predicted by Moore's Law [START_REF] Moore | Cramming more components onto integrated circuits[END_REF], has played an important role in the integration of multiple types of FP units in computer systems, for instance, scalar and single instruction, multiple data (SIMD) in single and multicore processors, and single instruction, multiple threads (SIMT) in graphics processing units (GPU). The availability of hardware FP units is not only the rule nowadays, but they are also paramount to the performance of numerical applications. However, none of these major advancements by the hardware industry would have been possible without the effort and robustness of computer systems and, especially, compiler technology.

Compilers play an important role and have long leveraged efficient usage of FP units. Compiler optimizations for FP operations target representations supported by the hardware: at best, 16, 32, 64, and 128 bits IEEE formats, and perhaps some target-specific formats (X86 FP80 and POWER9 128 bits). Although these representations are still well-suited for the majority of applications, there is a need to rethink FP arithmetics as to improve performance, energy and/or accuracy. The reasoning is twofold:

(1) Exploring the trade-off between output quality, and accuracy has already motivated the adaptation of standard FP formats in applications. The main idea is to reduce precision and exponent bits in use in the FP format in an attempt to trade quality by energy and/or performance. By controlling the FP formats at a fine-grained granularity, this trade-off has energy-saving and performance-increase potentials.

(2) A wide range of applications show optimal performance for FP representations that cannot be represented with standard formats. On the one hand, Google's bfloat16 [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems[END_REF] has attracted a lot of interest for training and inference in neural networks [START_REF] Kalamkar | A Study of BFLOAT16 for Deep Learning Training[END_REF] due to having a higher exponent range than the IEEE 16-bit format. On the other hand, linear solvers, n-body problems [START_REF] Frolov | Highly accurate evaluation of the few-body auxiliary functions and four-body integrals[END_REF], and other applications in mathematics and physics [START_REF] Bailey | High-Precision Arithmetic in Mathematical Physics[END_REF] have shown to benefit from higher-than-standard representations since (a) they may not converge with fewer bits of precision or (b) they can converge faster with higher precision [START_REF] Higham | Accuracy and stability of numerical algorithms[END_REF]. These applications may suffer from cancellation and accumulative errors when numbers cannot be precisely represented using the standard formats.

Motivation [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems[END_REF] has gained a lot of research attention in the last years through approximate computing (AC) [START_REF]A Survey of Techniques for Approximate Computing[END_REF][START_REF] Xu | Approximate Computing: A Survey[END_REF]. AC aims to trade accuracy for energy savings and performance with the assumption that a loss of accuracy in output results is irrelevant and can be tolerated. The latter, especially for higher-than-standard representations, has not been explored to its extent. The pursuit of efficiency and stability in the aforementioned domains has led researchers to reexamine the use of standard formats. Considering there is no unique precision value that fits all targeted applications, variable precision (VP) computing has been used as an exploration tool to search for the most suitable solution for each.

This paradigm change has also led to the emergence of new FP formats and representations. New paradigms and representations must still rely on solid and robust languages and compiler infrastructure in order to ease the exploration of further techniques and solutions. A gap between hardware designs for VP computing and their programming models still exists, as well as what the role of compilers is. This motivates the work of this thesis.

Contributions

The main contributions of this thesis are:

(1) A multi-format, multi-representation language and compiler support for FP representations that are suitable for VP Computing. Among the sub-contributions related to it are:

(a) a C type-system extension for declaring FP numbers of arbitrary representation and size. This generic class of FP types has attributes, such as the size of mantissa or exponent, or the size of the field encoding the mantissa or exponent, and the overall memory footprint. These may be known statically or only at runtime, (b) an IR embedding of the runtime and compile-time aspects of generic FP types. Thanks to a tight integration within a state-of-the-art compiler infrastructure, this embedding allows benefiting from most existing compiler optimizations supporting high-performance numerical computing, (c) two code generators implemented specifically to take advantage of VP Computing.

(2) A study demonstrating the exploration of VP in high-performance computing (HPC) applications, which includes:

(a) Basic Linear Algebra Subprograms (BLAS) libraries aimed at helping exploration of VP in applications, (b) A study that shows interesting insights to precision exploration in different variants of the Conjugate Gradient algorithm, an iterative method for solving linear systems.

Outline

This thesis is organized as follows: Chapter 2 will present the main ideas within the literature and challenges that give basis to this thesis. We will cover aspects related to compiler and language support for novel FP representations, and how precision variation is being neglected on the software/hardware integration stack. Chapter 3 will discuss the main state-of-the-art concepts related to this thesis, illustrating hardware and software aspects and how they co-related.

The first main contribution of this thesis, the vpfloat C-based language extension and type system, is described in Chapter 4, covering all aspects and details of the syntax, and semantics, along with library implementations.

Chapter 5 goes through the compiler integration requirements that are necessary to give support for our type system. It also presents the design and implementation of our code generators and target-specific passes.

Chapter 6 focus on the experimental setup and main results that give basis to the contributions of this thesis.

Finally, chapter 7 summarizes the main contribution of this work and shows the main directions envisioned as part of future work. 

Introduction

Computation techniques for real numbers is still an active field of research. Finding new computer representations for real numbers that are optimized for an application remains challenging. In this chapter, we present the main ideas that form the basis for the research performed through the course of this thesis.

Precision versus Accuracy

Precision and accuracy are related concepts, although it is a mistake to think they are equivalent. The accuracy of a value relates to the proximity between the measurement of a value and its true value. In the context of the representation of real numbers, it is often expressed as the difference between the result of the computation and its exact result. On the other hand, precision makes reference to the current representation in use, and it is often expressed as a number of bits or digits. Table 2.1 illustrates the difference between accuracy, here calculated as the norm function between measured and exact values of the output vector or matrix, and precision, represented by 24, 53, 128, and 512 bits. One can notice that the accuracy is an application-and data-dependent constraint, while precision is only subject to the value one chooses to adopt. The choice of precision generally leads to high accuracy, however, rounding error and cancellation inherent to finite-sized representation may also influence output accuracy which can sometimes lead to high-precision representations to have less accurate results. Without any need for a rounding operation, computers can only represent a small subset of values (integers and few rational numbers, for example) in a finite number of bits. Predominantly, values cannot be precisely represented with a finite number of bits, and a rounding operation is needed to bound the value to a fixed (and finite) representation. The accumulation of rounding operations may cause the propagation of rounding errors, also known as round-off errors, that can compromise the result of the application. The choice of precision used during the computation can play an important role in binding the error to an expectable value. Table 2.1 shows how round-off errors influence the accuracy of multiple applications from the Polybench suite.

Cancellation is another property from finite-sized representations that can impact the quality of results. It occurs when we subtract two values that are very close, but different. If the difference is too small to be represented with the precision of the numeric format, the result becomes zero. It is usually overcome by analyzing its sources of issues and re-implementing the algorithm [START_REF] Goldberg | What every computer scientist should know about floating-point arithmetic[END_REF].

A simple look at Table 2.1 shows that some algorithms are more susceptible to errors than others, and lower-precision implementations have, in general, lower accuracy. Some kernels are also actually numerically unstable for 24, and 53 precision bits, even with small datasets, while higher precision reaches stability (e.g. gramschmidt). If one strives for accuracy, it is paramount that higher-than-standard precision be adopted.

While most modern processors have hardware support for variants with 24 bits and 53 bits, 128-bit 1 and 512-bit variants are more cumbersome. High precision is only supported through software libraries MPFR [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF], GMP [START_REF] Granlund | GNU Multiple Precision Arithmetic Library 6[END_REF], and high-efficiency languages in high-performance computing do not provide any higher-level abstraction. This leads to tedious, error-prone and library-dependent implementations involving explicit memory management. Multipleprecision floating-point arithmetic, as provided by MPFR and GMP to explore different precision levels, is difficult to write and maintain, and more than the performance gap of a software FP implementation, the productivity gap makes this approach inaccessible to potential users.

In that regard, the following questions may be asked: How can languages and compilers be used to accelerate and improve the productivity of multi-precision FP libraries? Can one improve the integration between compilers and these libraries to take better advantage of classical compiler optimizations?

Floating-Point Representation

Floating point is the most common way to represent real numbers in computer systems. They are written in the form of:

(-1) s × 1.m × 2 e (2.1)
where s is a single bit specifying the sign of the number, 1.m denotes the mantissa part, also known as precision or fraction part, and e represents the exponent of the number.

IEEE Formats

Prior to the standardization of floating-point representations in 1985 2 , companies had their own proprietary FP formats, with specific rules and format layout. For instance, IBM System/360 [START_REF]IBM System/360 Principles of Operation[END_REF] introduced the Hexadecimal floating point (called HFP), Microsoft used the Microsoft Binary Format (MBF) for its BASIC [START_REF] Kemeny | Basic: a manual for BASIC, the elementary algebraic language designed for use with the Dartmouth Time Sharing System[END_REF] language products, and even the U.S. Air Force defined a formal specification of an ISA that included floating-point capabilities [START_REF] Shrimpton | An Implementation of MIL-STD-1750 Airborne Computer Instruction Set Architecture[END_REF]. The IEEE 754 standard technical document served as an important instrument to conform floating-point formats to specific properties, and offer compatibility and portability for long-time use. Since then, the standard was widely adopted for representing real numbers in computer systems. It defines a set of rules for rounding, exception handling, and operations in FP, along with different encoding formats for FP arithmetics with representation ranging between 16 and 128 bits (see Figure 2.1). Although equation 2.1 generalizes how FP numbers are calculated, one must notice that format-specific features such as, Infinity, Not-a-Number (NaN), subnormals, and even biasing cannot be expressed through the formula. Instead, the IEEE 754 Standard for floating-point arithmetic helps to address them individually.

The Intel 8087 [START_REF] Palmer | The Intel® 8087 numeric data processor[END_REF], introduced in 1980, was the FP coprocessor for the Intel 8086 line of microprocessors that is historically seen as the pioneer of the IEEE 754 standard. Although the coprocessor did not implement it in all its details, it gave the basis for the standard specification. Subsequently, all major processor manufacturers have started to adopt IEEE formats in the design of FP units in order to leverage compatibility across multiple computing systems. 1 Notice that 128 bits of precision does not correspondent to the IEEE FP128 format, which has 113 bits of precision 2 The IEEE Standard for Floating-Point Arithmetic (IEEE 754) was established in 1985 [START_REF] Electrical | IEEE standard for binary floating-point arithmetic[END_REF], and revised in 2008 [START_REF]Soc. IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-2008[END_REF] and 2019 [START_REF]IEEE Standard for Floating-Point Arithmetic, IEEE Std[END_REF]) Programming languages and compilers have long contributed to support these formats in order to ease the utilization of FP-capable hardware. In C-based languages, for example, types float and double are typically used for binary32 and binary64 formats. Support for binary128 is provided through __float128 type specifier, while binary16 has only recently been added to GCC [START_REF] Stallman | The GNU project[END_REF] and LLVM [START_REF] Lattner | LLVM: a compilation framework for lifelong program analysis transformation[END_REF] compilers.

Although these formats are sufficient for most applications, many works have shown the benefit of using different representations:

(1) bfloat16 prevailed over IEEE's binary16 for neural network applications due to its 8-bit exponent size that offers a wider dynamic range and allows IEEE32 to be truncated directly.

(2) IEEE's course-grained format selection hinders the ability to fine-tune the number of exponent and mantissa bits actually needed for a computation. Additionally, one hypothetical application may produce accurate output with a format that has the same number of mantissa bits as binary32, and the same number of exponent bits as binary64. Exploring new configurations and formats are still limited to library-dependent solutions, thus, there is no downstream compiler support from these libraries.

(3) High precision has shown their importance on many scientific domains [START_REF] Bailey | High-precision computation: Mathematical physics and dynamics[END_REF]. X86 FP803 and PowerPC Double-Double4 formats were proposed as non-standard alternatives for applications that require more accuracy. In fact, even the IEEE committee has considered the growing interest in formats with larger encoding. The IEEE 754-2008 Standard shows how encodings for formats with footprints larger than or equal to 128 bits can be specified.

No format definition is defined per se, but the specification and requirements necessary for a format to be considered IEEE beyond 128-bit width are provided. In spite of that, no further discussion is given, and support for any type beyond 128 bits of a footprint is only achieved with multiple-precision libraries.

Alternatively, an important research venue in the past years lies on rethinking the FP arithmetic in order to compensate for the IEEE's deficiencies (cancellation, rounding). Two alternative floating-point formats, which can provide finer-grained control on the numeric precision and accuracy are UNUM [START_REF] Gustafson | The End of Error: Unum Computing[END_REF] and Posit [START_REF] Gustafson | Beating Floating Point at its Own Game: Posit Arithmetic[END_REF], and are described in the following sections.

UNUM

The Universal NUMber (UNUM) format is a variable precision format proposed in 2015 to overcome some of the rounding-related issues of IEEE formats [START_REF] Gustafson | The End of Error: Unum Computing[END_REF]. It is a self-descriptive FP format with 6 subfields: the sign s, the exponent e, the fraction f (like in IEEE 754) and three descriptor fields: u, es-1 and fs-1 (see in Fig. 2.2). Variable-length fields es-1 and fs-1 encode the number of bits contained in the exponent e and fraction f, respectively. Thanks to the "uncertainty" bit u, the format can also be used for interval arithmetic with values being represented as a bounded pair of two UNUM numbers, an interval. The only sizing limitation of a UNUM is given by the maximum length of es-1 and fs-1 fields, known as UNUM environment (ess, fss). Thus, UNUM encoding is characterized as having a variable precision footprint. Hardware accelerators [START_REF] Bocco | Dynamic Precision Numerics Using a Variable-Precision UNUM Type I HW Coprocessor[END_REF][START_REF] Glaser | An 826 MOPS, 210uW/MHz Unum ALU in 65 nm[END_REF] were proposed to facilitate performance comparison between this new format and the IEEE standard. Its amount of flexibility has shown to (1) incur a higher hardware implementation cost when compared to traditional FP units; (2) demand extra, and more complex memory management due to the variable-length capabilities. Applications that require higher-than-standard precision representations can, nonetheless, still benefit from its use to design solutions with smaller residual error [START_REF] Bocco | Byte-Aware Floating-point Operations through a UNUM Computing Unit[END_REF].

Posit

Posit [START_REF] Gustafson | Beating Floating Point at its Own Game: Posit Arithmetic[END_REF] was proposed as a simpler, more hardware-friendly alternative to the UNUM format. It uses a fixed-size encoding scheme but still enables variable-length exponent and mantissa fields through tapered accuracy. Along the usual sign, exponent, and fraction fields, posits specifies the regime bits fields to allow changes in the size of the exponent field.

The Posit Format

Here is the structure of an n-bit posit representation with es exponent bits (fig. 2). 
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Generic posit format for finite, nonzero values

The sign bit is what we are used to: 0 for positive numbers, 1 for negative numbers. If negative, take the 2's complement before decoding the regime, exponent, and fraction.

To understand the regime bits, consider the binary strings shown in Table 1, with numerical meaning k determined by the run length of the bits. (An "x" in a bit string means, "don't care"). Although UNUM was first proposed as a replacement for IEEE, its hard design cost and complexity has shortly been overruled by this hypothesis. Posit, however, has shown to be a better competitor than UNUM for the IEEE standard. De Dinechin et al. [START_REF] De Dinechin | Posits: the good, the bad and the ugly[END_REF] shows uses cases for the posit system in machine learning, some Monte Carlo methods, and graphics rendering. In other situations, posit formats present large degradations of accuracy than the IEEE counterparts. Regardless, authors also assert that, for a new floating-point to displace the current specification, tools, like compilers, must exist and can explore all properties and features of a new format. Yet, compiler support for Posit types are scarce and have not shown to be openly included in any mainstream infrastructure.

New FP Formats from a Compiler's Point of View

The full exploration of IEEE formats was only possible through the integration between hardware and the software stack, and compilers, capable of harnessing all the power of FP units. Having defined formats and proposed their arithmetics do not guarantee their utilization unless powerful tooling is also available. Effective ways to use programming languages are needed to drive novel FP formats. Additionally, the integration of new FP formats with an optimizing compilation flow is paramount for improving their productivity, and making use of FP units [START_REF] Bocco | SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing[END_REF][START_REF] Glaser | An 826 MOPS, 210uW/MHz Unum ALU in 65 nm[END_REF][START_REF] Jaiswal | PACoGen: A Hardware Posit Arithmetic Core Generator[END_REF][START_REF] Tiwari | PERI: A Posit Enabled RISC-V Core[END_REF] that implement them.

Compilers must take into consideration format-specific attributes, and how they can efficiently generate code for formats with different requirements. One must also verify how types are impacted by classical compiler optimizations, as well as the need for new format-specific ones. For instance, UNUM's variable size is a challenge for memory management of data types in compilers, and must not be overlooked.

Recent works evaluated the potential of UNUM and Posit formats in scientific computing [START_REF] Bocco | Byte-Aware Floating-point Operations through a UNUM Computing Unit[END_REF][START_REF] Hou | Enhancing Accuracy and Dynamic Range of Scientific Data Analytics by Implementing Posit Arithmetic on FPGA[END_REF] as well as machine learning [START_REF] Carmichael | Deep Positron: A Deep Neural Network Using the Posit Number System[END_REF][START_REF] Johnson | Rethinking floating point for deep learning[END_REF]. However, the lack of an integrated compilation flow still hinders the comparison of numerical benchmarks across formats, precision control schemes, and hardware/software implementations. Languages, types, and code generation strategies integrated with state-of-the-art compilers could enable a more thorough investigation of the impact of new formats across the hardware/software stack.

This leads to the following question: How can one extend languages and provide compiler support for new formats taking into consideration their singular properties?

Variable Precision as a New Paradigm for FP Arithmetic

The rise of new formats has also contributed to a further investigation of real numbers and FP representations in real-life applications. Variable precision (VP) computing is emerging as an alternative computing paradigm for the utilization of real numbers in computer systems. It differentiates from mixed precision [START_REF] Baboulin | Accelerating scientific computations with mixed precision algorithms[END_REF] by having a finer granularity that exceeds the scope of IEEE formats. VP also offers characteristics similar to arbitrary-precision computing [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF][START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF] as it is mostly used to address high-precision applications. However, while the latter targets a platform for high-precision representations, VP embeds not only this platform but also a programming scheme to explore formats, precision values, and ultimately, trade-offs between accuracy/precision, and performance/energy. In other words, variable precision encapsulates and generalizes the ideas of mixed precision with finer granularity, and arbitrary-precision computing. In this work, we focus on the exploration of variable precision in high-precision scenarios, although no restrictions are imposed for low precision. This section walks the reader into the main concepts of VP. Then, it overviews the main challenges imposed to compiler and language designers for the provision of a full-fledged infrastructure for VP exploration.

Problem with Precision Cherry-picking: Numerical Stability and Numerical Accuracy

Most numerical algorithms and techniques for linear algebra are built upon continuous mathematics. The Newton-Raphson's method (from equation [START_REF] Ypma | Historical Development of the Newton-Raphson Method[END_REF]), Euler's number calculation, and other mathematical formulas expressed through the Mathematics's limit of a sequence term in convergence state have no exact representations in computer systems. Instead, their discretization through finite representations adds a layer of complexity to the equation as only approximate results can be computed.

There is no guarantee that those methods are fully compatible with discrete mathematics. In particular, the chosen representation may preclude the convergence of the numerical algorithm, an issue in the heart of numerical stability. Iterative methods for solving linear systems, which will be discussed herein, are good examples of techniques where numerical stability may not always be reached. The Gramschmidt method, denoted gram in Table 2.1, is an example of a numerically unstable algorithm. In other cases, an algorithm may be convergent but deviates from the expected value due to low numerical accuracy. Table 2.1 also shows that applications 3mm and covar have low numerical accuracy for large and extra-large data sets when using IEEE 32 format and, thus, may produce unsatisfactory results for further utilization.

Quantifying Errors in Floating Points

Numerical analysis techniques can be employed to remedy issues of stability and accuracy in applications. The idea is centered on analyzing the main sources of errors through backward error or forward error analysis [START_REF] Higham | Accuracy and stability of numerical algorithms[END_REF]. Backward error is the input error, commonly known as ∆x, associated with the approximate solution to a problem. Forward error is the distance between the exact solution of a problem and the produced value. Fig. 2.4a illustrates these relations.

Higham [START_REF] Higham | Accuracy and stability of numerical algorithms[END_REF] shows that the relationship between backward and forward error is given by:

f orward error ≈ conditioning × backward error (2.2)
where conditioning represents how a small change in the input reflects in the output. A system is said to be ill-conditioned when a small change in the input results in a large change in the output. The use of backward and forward error analysis assess the nature of the accuracy and stability problem of applications. Table 2.4b illustrates how they aid numerical analysts in the design of more stable algorithms. For instance, an algorithm with small forward error and large backward error is not sensitive to accuracy, so there is no need to reduce its backward error. On the other hand, a problem is considered ill-conditioned when it has a small backward error and a large forward error. In this case, a new implementation is unlikely to improve stability, and methods to reduce its conditioning factor should be preferred (we will cover this topic in another chapter).

Additionally, an algorithm with large forward and backward errors can potentially improve accuracy with a new implementation that minimizes the backward error. It is likely that the forward error is strongly connected to the backward error of the application. However, not only is it nontrivial to devise a new algorithm for a certain problem, but it may also be difficult to precisely analyze their sources of uncertainties even with the availability of tools to perform it. 

Augmenting Precision to Remedy Stability

As an easier-employable alternative, numerical stability and accuracy issues can also be solved by augmenting the computation precision in use 5 . This procedure is equivalent to lowering the quantification step, formally known as unit in the last place (ulp) or u, between two representable FP values [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]. Although u is directly connected to numerical stability and accuracy, it is often more practical to make use of the relative error (given by f (x+∆x)-f (x)

f (x)
or ∆y y ) so as to estimate how numerically stable an algorithm or a solution to this algorithm is.

In the general case, working with a smaller ulp automatically leads to better accuracy and stability (although Higham 2002 [64] shows that is not always the case). A question we may want to ask is: which value of u to use if we want to guarantee a minimum relative error ? Or reformulating the question to a computer scientist: which precision can we use to guarantee stability and accuracy?

Considering there is no unique precision value that fits all targeted applications, variable precision (VP) computing can be used as an exploration tool to search for the most suitable solution for the stability of kernels or applications. Equally important, different representations or formats can take advantage of this paradigm, i.e., there might not be a right solution for a single problem. Input data that generate large numbers benefit from wide-range FP formats, while others may not have this same requirement.

Linear algebra algorithms have the potential to take advantage of precision alternation and hint at being an interesting investigation venue for VP approaches and techniques [START_REF] Bailey | Reproducibility and variable precision computing[END_REF]. Figure 2.5: When applied on different MatrixMarket [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF] matrices, the number of iterations for the conjugate gradient (CG) algorithm decreases when precision augments. This experiment aims to show the usage of variable precision in a real-life application.

Linear Algebra from the Variable Precision Perspective

Linear algebra kernels are the actual working engine underneath many scientific applications. They are widely used in most modern software for physics, molecular chemistry, structural engineering, and many other scientific fields. The most representative kernel is the linear solver, which computes the solution vector x for a linear system given by Ax = b. Each solver of this linear system is a delicate trade-off between computing complexity, memory occupancy and numerical stability. Within the last decades, considerable research in that area has provided hundreds of interchangeable libraries which diversely address those three criteria [START_REF] Dongarra | Freely Available Software for Linear Algebra[END_REF]. In some cases, the choice of the appropriate method is left to the scientist. In other cases, he/she may even be left with trial experimentation for selecting the most appropriate method. Among the algorithms to solve this ubiquitous problem in scientific computing, direct solvers such as Gaussian elimination or Cholesky propose to find the exact solution of a linear system using a finite number of steps/operations, while iterative linear solver methods aim at finding an approximate solution to the problem that stays within a threshold limit. Due to the growth in the size of the linear systems to be solved, the latter have gained importance, and they are now often preferred in many applications due to their low memory occupancy: typically with an O(N ) memory cost rather than O(N 3 ) for direct methods.

This improvement comes at the expense of numerical instability. For example, these methods tend to accumulate more round-off errors than their direct counterparts. There are compensation techniques for restoring stability, such as preconditioning, or reorthogonalization, but they may be impractical for the memory cost of computational complexity. Increasing the precision of arithmetic computations can be used as a powerful alternative to address this problem. The impact on the computation is twofold: (1) to accelerate the convergence of the iterative algorithm, and (2) to avoid the need for complex compensations techniques.

The exploration of variable precision through high-precision representations becomes important as applications are not only dependent on the algorithm itself. Input data can also impact its accuracy and final results. Figure 2.5 shows an example of the conjugate gradient (CG) algorithm, an iterative solver for linear systems, executed for different MatrixMarket [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF] matrices. One can observe that input data, and precision impact the number of iterations needed for the algorithm to converge. There is no exclusive value of precision that fits all cases in a common application since the input data also influences the number of iterations needed for convergence. Therefore, the investigation of variable precision is still limited by the availability of hardware, and high-performance libraries for numerical analysts, but perhaps above all, languages and compilers.

Languages and Data types

Previous sections of this chapter summarize different issues regarding stability, precision, FP representations, and their relation with programming languages, and/or compilers. Section 2.2 describes precision and accuracy, and how it can be cumbersome to verify this relation with state-of-the-art tools. Section 2.3 illustrates some of the FP formats available nowadays and their use, while Section 2.4 covers aspects of numerical stability, and how precision variation could potentially be an asset for linear algebra kernels. It also comes downs to how programmers or numerical analysts can develop algorithms to minimize computational errors in the output, and how programming languages, data types, and compilers can provide the properties needed for this exploration.

A largely relevant reason why languages have not explored VP yet is the recent realization of the potential of variable precision in many fields [START_REF] Bailey | Reproducibility and variable precision computing[END_REF]. Admittedly, researchers have always been keen on precision control. However, the rise of new formats has given further motivation on the matter. With the state-of-the-art apparatuses, varying precision in applications can be achieved in different ways:

(1) Mixed precision [START_REF] Baboulin | Accelerating scientific computations with mixed precision algorithms[END_REF] offers little flexibility for precision variation with the great advantage of compiler and hardware support for traditional IEEE formats. This greatly increases user productivity with a programming model that is simple and efficient. But it is still limited to the lack of support for other representations, such as UNUM and Posit.

(2) Multi-precision software libraries, such as MPFR [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF] and GMP [START_REF] Granlund | GNU Multiple Precision Arithmetic Library 6[END_REF], and MPFun [START_REF] Bailey | MPFUN: A portable high performance multiprecision package[END_REF], yield to higher performance cost than mixed precision, but offer a larger flexibility with a bit-wise mantissa configuration. Due to the programming model imposed by these libraries written in C and Fortran, higher-level programming languages (Julia, Python and C++, among others) provide wrappers to ease their use, with an additional cost in performance.

(3) Other representations have been explored mainly through libraries [START_REF] Lindstrom | Universal coding of the reals: alternatives to IEEE floating point[END_REF][START_REF] Lloyd | [END_REF][START_REF] Long | Softposit[END_REF]. There are software implementations for UNUM, and Posit formats, but the lack of integration with a compiler hinders the exploration and performance improvement of these formats in real-life applications.

David Bailey, a well-known mathematician and computer scientist, states, in a recent publication [START_REF] Bailey | Reproducibility and variable precision computing[END_REF], that existing software facilities for variable precision computations are rather difficult to use, particularly for large, computationally demanding applications. Existing languages have no direct syntax and semantics for the variation and dynamic precision. Programmers must rely on high-level language (HLL) abstractions to implement data structures capable of this handling. The composite data type struct can be used in C-based languages for that purpose. In objected-oriented languages like C++, Rust and Java, one may implement them as class abstractions. Even dynamically typed languages, such as Julia and Python, would rely on high-level abstractions to express the syntax requirements for variable precision. Programming languages have yet to offer extensions to handle variable precision capabilities by default. And yet, none of the aforementioned abstractions has a syntax that could benefit from hardware support.

Along with the language support, it is paramount that a specific type (or a type system) be able to drive all properties that come along. Programming languages are not normally equipped with types that allow this flexibility, i.e., variation of the precision in any simple fashion. A concise semantics must allow simple reusability, which is difficult to express using dynamic typing of any kind.

Equal importance should be given to the runtime requirements for dynamic precision code. A feature that clearly favors HLL abstractions is precision genericity, i.e., users can hide the precision value in data structures so that it is only evaluated at runtime. This allows one to write code that is precision-agnostic. By looking back at programming languages and their types, one may notice that this requirement are only possible through the abstractions mentioned previously. In those languages, there are no data types that are able to express this requirement, including how to properly manage the memory of types that are not inherently constant-sized.

Additionally, even the implementation of a type system with these requirements in a lowerlever language would greatly benefit HL languages. Python and Julia are inherently dependent on lower-level languages through code binding. As example, TensorFlow [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems[END_REF] is implemented in C++ and mostly used by Python users. Thus, even HL languages require low-level abstraction for the generation of highly optimized code and libraries.

Compilers and Optimizations

Compilers and optimizations also play a central role as an interface between programming languages and powerful hardware architecture. Performance improvements in VP computing, and novel FP representations, pass through the integration with an optimized, state-of-the-art compiler infrastructure. IEEE standard formats have long been supported by industry-standard compilers, like the GNU C Compiler [START_REF] Stallman | The GNU project[END_REF], and LLVM [START_REF] Lattner | LLVM: a compilation framework for lifelong program analysis transformation[END_REF]. Few FP representations or types, however, have seen their support integrated into standard compiler toolchains. Akkaş et al. [START_REF] Akkaş | Intrinsic compiler support for interval arithmetic[END_REF] proposed intrinsic compiler support for intervals in GCC in order to accelerate the execution of interval arithmetic algorithms.

Compilers, similarly to programming languages, struggle with alternative FP formats, missing on the essential, data-flow, control-flow and algebraic optimizations available for IEEE compatible arithmetic. They also miss opportunities to leverage hardware implementations for alternative FP arithmetic. As consequence, the exploration of variable precision, closely associated with these formats, becomes difficult. The numerical analyst is left with the choice among HL abstractions that cannot deliver the expected flexibility and performance, as explained in the previous section.

There has not been any investigation of type systems for variable precision exploration that includes proper compiler specialization. The challenge and implementation complexity are twofold:

(1) At runtime, compilers have similar constraints as programming languages: a variable precision model should allow algorithms to be written in a precision-agnostic model, which implicates in a novel type system not compatible with current architectures. It also compels such a type system to be, in some way, dynamic. This implies a more complex memory allocation strategy, as type declarations may not always infer variables with fixed (and constant) sizes. While this is not a novelty to many languages, its integration with a compiler has not been shown yet.

(2) At compile time, implementations of these type systems must make the most of what is already inside the infrastructure. The myriad of optimizations available should be reused, or revised so that new types can still profit from them.

• Multi-precision FP libraries offer the flexibility to handle many variations of real numbers. However, they introduce performance overheads due to the lack of compiler support. This prevents optimizations easily explored by traditional IEEE formats, namely, constant propagation, loop nest optimizations, inlining opportunities, and many more. Compiler integration and compatibility to classical optimizations can potentially harness the power of these libraries, and eliminate some of these overheads. Practically, this integration imposes an implementation challenge to properly typify their properties. This has yet to be proven in a well-established compiler toolchain.

• As new FP formats emerge, hardware implementations were proposed to drive their arithmetics. Equally important is their interaction with compilers and classical optimizations. New optimizations may also be devised to enable compiler integration, and classical ones may need to be enhanced to handle different scenarios. For example, constant propagation, instruction selection, and register allocation should take into consideration not only the format itself but also the characteristics of the hardware and architecture in use.

• The handling of precision-agnostic code should be largely integrated with classical optimizations so that types with these properties can also be boosted in performance. Additionally, code generators in compilers should grant these types an interface to specialized hardware units, enabling the acceleration of formats with variable footprint.

All these requirements are far-fetched from today's compilers. Variable precision, although can be studied without much of the help of a compiler, would greatly benefit from it. The implementation of compilers that support dynamic type systems is also significant for HL languages. This specialization grants these languages a low-level substrate to which they can be bound, and thus enables a tighter integration with a downstream compilation flow.

Furthermore, there is a complementary aspect of the importance of language and compiler integration: memory utilization. The memory wall [START_REF] Wulf | Hitting the memory wall: Implications of the obvious[END_REF], speed disparity between outside-chip memory and processor, has long affected the performance of computer systems. From a variable precision perspective that can deeply rely on multi-precision FP libraries, the urge to optimize memory usage is imminent and paramount to performance. The use of high-precision formats incurs an additional memory overhead imposed by high-level data structures used in declarations. For instance, MPFR uses a 32-byte6 struct to represent values, an increase of 16× when compared to IEEE 128-bit format 7 . The lack of specific register allocation support may also augment the use of temporary values and, by consequence, significantly increase memory usage. Language and compiler integration can contribute to mitigating the effect of memory usage on high-precision formats, and this is, in fact, one of the main long-term goals and benefits of this work.

Conclusion

This chapter presented the main motivations for this work and put into perspective the issues vis-à-vis compiler and language support for alternative formats, high-precision representations, and at last, variable precision computing. Although this thesis does not aim to prove the full potential of variable precision computing, but rather show the means to its exploration, we briefly show that linear algebra is a likely candidate to benefit from it. Better compiler and language integration are needed since the software abstraction still highly depend on library implementations, which are difficult to use, prone to errors, and inefficient if not used wisely.

Hence, this thesis will try to answer questions in two categories:

(1) Languages, Compilers and Data types

• How can languages and compilers be used to accelerate and improve the productivity of multi-precision FP libraries? Can one improve the integration between compilers and these libraries to take better advantage of classical compiler optimizations?

• How can one extend languages and provide compiler support for new formats taking into consideration their singular properties?

• What are the compiler and optimizations requirements to support an FP type system with runtime capabilities? How can compilers provide proper memory management for these types?

(2) Variable Precision Computing

• Can variable precision serve as an interesting exploration paradigm in the context of numerical algorithms?

The following chapters of this document are intended to answer the questions set out above. This chapter will discuss the main state-of-the-art concepts and work that give basis to this thesis. It will be divided into two main categories: (1) computing paradigms that cover the main ideas and approaches for the efficient use of real numbers, and (2) hardware and software solutions within the context of new representations, along with libraries and techniques that contribute to widening the exploration tooling. The former relates to the thesis since it overviews how different paradigms handle precision control, its flexibility, and exploration potential, important to justify our design choices, and implementation decisions of following chapters; while the latter summarizes the main contributions to the exploration of new representations, and how they can potentially be used in a broader context.

Computing paradigms for floating-point arithmetics

Having representations for real numbers available by themselves is often not enough to provide the functionality or performance/energy needed by the user. In other words, assigning float, double, or __float128 types in applications (pseudo)randomly may offer meaningful results, but applications might not reach the expected performance and/or energy; or even worse, applications may execute fast, but results are out of bounds and do not reach expectation. Essentially, users are confronted with trade-offs between accuracy and performance/energy. Besides, indiscriminate use of large-footprint types can have a negative impact on memory usage, and as consequence, performance.

Although computing paradigms for FP arithmetics extends to many approaches (exact computing [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF][START_REF] Yap | The exact computation paradigm[END_REF], interval arithmetics [START_REF] Moore | Introduction to interval analysis[END_REF][START_REF] Revol | Introduction to the IEEE 1788-2015 Standard for Interval Arithmetic[END_REF] and other alternative methods [START_REF] Arnold | The residue logarithmic number system: theory and implementation[END_REF][START_REF] Isupov | Using Floating-Point Intervals for Non-Modular Computations in Residue Number System[END_REF], we will focus on two principal paradigms that lay the foundation of variable precision computing: mixed precision and arbitrary precision.

Mixed precision computing

The mixed precision computing paradigm [START_REF] Baboulin | Accelerating scientific computations with mixed precision algorithms[END_REF] involves the combination of IEEE FP types in order to provide sufficient output accuracy and compatible hardware support. The paradigm main focus is to find the right balance between IEEE types and numerical stability, prioritizing reduced-precision formats (binary16 and binary32 ) over higher-precision ones (binary64 ) and harnessing an increased computer power on applications. Its main benefit lies in the performance boost and energy reduction it can achieve, considering that 16-bit and 32-bit operations can execute more than 2× faster than their 64-bit counterparts, and reduce data movement due to small data types.

It has been widely explored in linear solver methods for high-performance computing (HPC) in conjunction with the iterative refinement process, a long-standing technique to improve the accuracy of a computed solution by applying a correction factor to the final solution. The approach is based on Newton-Raphson's method [START_REF] Ypma | Historical Development of the Newton-Raphson Method[END_REF]:

x n+1 = x n -f (x n )/f (x n ) (3.1)
which enables lower-precision solutions to be refined to the same accuracy as higher precision. Baboulin et al. [START_REF] Baboulin | Accelerating scientific computations with mixed precision algorithms[END_REF] present an approach to mixing 32-bit and 64-bit floating-point arithmetic and iterative refinement in direct and iterative methods for solving a linear system of equations. It argues that the reduction of data movement to/from the memory compensates the refinement process, and makes iterative refinement a valuable approach for linear solvers. The combination of these two techniques yields performance results that are comparable to a full single (32 bits) precision solver while still delivering the same accuracy as the double (64-bit) precision implementation.

The reduction of data movement in memory, computations cost in low precision, and suitable accuracy are the principal reasons why mixed precision and iterative refinement are being employed together. The literature is extensive on the exploration of these techniques together. Carson and Higham [START_REF] Carson | Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions[END_REF] accelerate GMRES (an iterative solver for linear systems) by iterative refinement employing three levels of precision (16, 32, and 64 bits). Adding another additional level of precision reduces communication with the memory even more, and improves performance even further. GPUs have also been used to explore these techniques [START_REF] Abdelfattah | Towards Half-Precision Computation for Complex Matrices: A Case Study for Mixed Precision Solvers on GPUs[END_REF][START_REF] Haidar | Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers[END_REF][START_REF] Haidar | Mixed-precision iterative refinement using tensor cores on GPUs to accelerate solution of linear systems[END_REF][START_REF] Haidar | Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers[END_REF], confirming their potentials and benefits.

Nevertheless, a major drawback of these approaches stems from the lack of flexibility vis-à-vis FP types in use. They only work with a limiting number of types, at best binary16, bfloat, binary32, and binary64, and, thus, hinders the exploration of other representations. Lee et al. [START_REF] Lee | AIR: Iterative refinement acceleration using arbitrary dynamic precision[END_REF] goes further by controlling and adapting precision dynamically in FPGAs, which can achieve up to 2-3× speedups over other mixed precision techniques.

Arbitrary precision

Arbitrary precision extends the idea of FP operations to formats that go beyond the scope of the IEEE standard. Unlike mixed precision, it may offer gradual and bit-level customization of exponent and mantissa values, which makes arbitrary precision an excellent tool to explore the impact of precision in applications. In order to offer such flexibility, arbitrary precision toolchains have the downside of being much slower than mixed precision solutions, as they have to resort to software implementation rather than taking advantage of hardware-specific FP units. Listing 3.1: MPFR variable type as defined in [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF] 1 void mat_mult ( mpfr_t * matResult , mpfr_t * matA , mpfr_t * matB , Ada [START_REF] Leavitt | Adjustable precision floating point arithmetic in Ada[END_REF], Fortran (MPFUN [START_REF] Bailey | MPFUN: A portable high performance multiprecision package[END_REF]), C (MPFR [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF] and GMP [START_REF] Granlund | GNU Multiple Precision Arithmetic Library 6[END_REF]), and Cuda (Campary [START_REF] Joldes | CAMPARY: Cuda multiple precision arithmetic library and applications[END_REF]) are some of the programming languages for which arbitrary precision libraries were implemented.

MPFR Multi-precision library

MPFR [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF] is the state-of-the-art multi-precision (or arbitrary-precision) library for floating point computations, allowing bit-wise control of precision values. It was created as an effort to provide floating-point operations with as much precision as necessary, without needing hardware support. Although it makes use of GMP internally, precision values of MPFR variables have the exact number of bits requested by the user, which is not true to its counterpart. It uses a regular base-2 notation in the form of ±1 × mantissa × 2 exponent , where the value of mantissa is only limited by the amount of memory in the system, and exponent takes a type according to the machine word (32 or 64 bits), which gives enough dynamic range to represent essentially any real number needed [START_REF] Brent | An idealist's view of semantics for integer and real types[END_REF].

An MPFR object is of type __mpfr_struct, as illustrated in Listing 3.1. Its API follows the pattern mpfr_op(dest, src1[, src2, ...,][rounding mode]), in which the dest and src parameters are mpfr_ptr. Op can be a basic operation (+, -, ×, ÷), a fused operation (fma, fms), 

.). The parameters may have

different exponent and precision sizes, and the destination parameter can be identical to a source parameter. They need (destination included) to be allocated and have their precision defined with mpfr_init before being used and freed with mpfr_clear once useless. These functions have a high-performance penalty and should thus be called wisely. The value of an MPFR variable is set using mpfr_set, which is useful in particular for spilling variables. Listing 3.2 shows the code for a simple matrix multiplication implemented in MPFR. One can notice how verbose MPFR coding is, even for simple algorithms. MPFR's programming model, although simple to use and efficient, is error-prone to memory management, as programmers are in charge of allocating and freeing resources. Due to its popularity, MPFR has been widely used in high-level language abstractions, such as in the C++ Boost library for multi-precision arithmetic [START_REF] Maddock | [END_REF], MFPI [START_REF] Revol | The MPFI Library: Towards IEEE 1788-2015 Compliance[END_REF] and CGAL [START_REF] Fabri | On the design of CGAL a computational geometry algorithms library[END_REF], as well as in dynamic languages like Julia [START_REF] Bezanson | Julia: A Fast Dynamic Language for Technical Computing[END_REF] and Python [START_REF] Van Rossum | Python reference manual[END_REF]. They provide high-level features (through classes and dynamic type systems) that abstract allocations and deallocations away from programmers.

C++ Boost for Multi-precision

As an example, listing 3.3 illustrates the implementation of the same matrix multiplication algorithm using the Boost Multi-precision library. Except for the function default::precision that sets up the current precision, the compiler handles object allocations and deallocations, and the creation of intermediate temporaries, similar to an ordinary integer or floating-point variable declaration. However, these abstractions draw an additional overhead to the library that can compromise its performance even more.

Compilers have supported and are able to optimize floating-point types (IEEE types in general) for a long time. However, the lack of compatibility between compilers and library-defined FP representations, like MPFR, is still a major challenge. Better integration with compilers would allow faster execution, as well as improve the productivity of these libraries.

Dynamic-typed Languages: a Julia example

As an alternative to the high-level abstraction provided through classes, dynamic-typed languages like Julia are more versatile, using a flexible type system that leaves type evaluation until runtime. Listing 3.4: Implementation of matrix multiplication example in the Julia language: its dynamic type system hides the types of variables until runtime evaluation This means that programmers are not obliged to specify the types of variables, and instead, types are only evaluated and check at runtime. Listing 3.4 exemplifies the power of Julia's type system. One may notice that no information type has been given, and the type for each of the variables will only be known at runtime.

for i = 1: dim1 3 tmp = zero ( typeof ( matResult [1 , 1]) ) 4 for j = 1: dim3 5 for k = 1: dim2 6 tmp = matA [i , k ] * mat [k , j ]
As such, Julia's type system has a property that greatly benefits the exploration of new types, and representations: precision genericity. Sections 2.5 and 2.6 in Chapter 2 shows that variable precision computing can leverage the use of precision-agnostic code, and hence, enabling a type system that resembles Julia's is highly demanding and beneficial.

Exploration Tools (Hardware and Software)

Variable precision computing and its applicabilities intersect with different research topics and approaches. Alternative FP formats widen the design space exploration on appropriate representations for real numbers. Many researchers have proposed frameworks and tools to explore the impact of different representations in real-life applications. Complementary, the study of precision-awareness approaches have highly contributed to make accuracy a mainstream constraint in many fields, and it collaborates to give significance to variable precision computing. Additionally, it is paramount that new libraries and hardware architectures drive the variable precision paradigm to compete with existing models.

In the remainder of this chapter, we focus on giving the reader an overview of the state-ofthe-art in all these topics. We start by presenting some software for alternative FP formats, including UNUM and Posit tooling. After, we cover methods to enable precision awareness and the detection of numerical errors. An introduction to BLAS and LAPACK is later presented. We conclude by showing hardware implementations used to improve the numerical stability and numerical error in applications, and the compiler or software support proposed for the usage of each unit.

Software for Alternative FP Formats

State-of-the-art compilers like GCC and LLVM have started to include support for a few nonstandardized FP formats, from Google's bfloat16 and Intel's extended precision to POWER9 double-double. Although proprietary compilers for Posit formats already exists, no much is known about the hardware, ISA or the compiler toolchain available. Instead, many work focus on providing infrastructure for the exploration of alternative formats.

Tagliavini et al. [START_REF] Tagliavini | FlexFloat: A Software Library for Transprecision Computing[END_REF] propose FlexFloat, a software library designed to aid the development of applications with fine-grained precision configuration. Unlike MPFR, FlexFloat enables bit-width control of both mantissa and exponent fields, reducing the FP emulation time. It achieves a significant performance speedup in comparison to other FP emulation libraries because it leverages native type support for float and double types. It later performs a user-transparent sanity check to guarantee that calculated values are representable in the specified type. FlexFloat has no support for high-precision representations, and although it could be extended, it still cannot be used with the same flexibility as MPFR.

Anderson et al. [START_REF] Anderson | Vectorization of multibyte floating point data formats[END_REF] also take a similar approach as FlexFloat by proposing a set of nonstandard byte-aligned FP types refer to as flytes, that still leverages native IEEE types. The proposed scheme reduces the cost of data transfer volume and storage space requirements by using reduced-precision representations in memory, while it still enables acceleration through existing hardware vector units of general-purpose processors. However, it still suffers from overheads imposed by format conversions, since operations are still highly dependent on IEEE formats. Similar to the previous work, it lacks support for high-precision representations which limits its utilization scope.

There are also work that focus on the implementation of format-specific software libraries. SoftPosit [START_REF] Long | Softposit[END_REF] is a software implementation of posit types that conforms to the specification as defined in [START_REF] Gustafson | Beating Floating Point at its Own Game: Posit Arithmetic[END_REF]. It borrows many ideas from the original IEEE-complaint Berkeley SoftFloat library [START_REF] Hauser | SoftFloat[END_REF], and has been used to compare the accuracy of posit to IEEE types [START_REF] Chien | Posit NPB: Assessing the Precision Improvement in HPC Scientific Applications[END_REF]. Software implementation for the UNUM formats had also been proposed [START_REF] Lloyd | [END_REF], but it is certainly less popular than SoftPosit due to the significant complexity of the UNUM representation.

Other researchers have focused on investigating the arithmetic design space of hardware units with alternative numerical representations. Johnson [START_REF] Johnson | Rethinking floating point for deep learning[END_REF] uses tapered encodings from the posit format, logarithmic number system (LNS) [START_REF] Arnold | The residue logarithmic number system: theory and implementation[END_REF][START_REF] Kingsbury | Digital filtering using logarithmic arithmetic[END_REF], and kulisch accumulator [START_REF] Kulisch | Computer arithmetic and validity: theory, implementation, and applications[END_REF] to design an accelerator that is effective for convolutional neural networks (CNNs). The work finds inspiration in previous research and shows momentum to explore alternative representation and repurpose ideas.

Lindstrom et al. [START_REF] Lindstrom | Universal Coding of the Reals using Bisection[END_REF][START_REF] Lindstrom | Universal coding of the reals: alternatives to IEEE floating point[END_REF] propose a modular framework for representing real numbers that generalize posit, IEEE and other floating-point number systems. Similarly, Omtzigt et al. [START_REF] Omtzigt | Universal Number Library[END_REF][START_REF] Omtzigt | Universal Numbers Library: design and implementation of a high-performance reproducible number systems library[END_REF] present a high-performance number systems library for the exploration of custom number systems, from tapered types to arbitrary floating points, with support for reproducible arithmetic computation in concurrent environments. Additionally, all the recent publications w.r.t. custom formats, their applicability, and hardware implementations show interesting opportunities for extending the role of compilers to novel numerical systems.

Nevertheless, none of the aforementioned work has all properties needed for variable precision exploration. Anderson et al., Tagliavini et al. [START_REF] Anderson | Vectorization of multibyte floating point data formats[END_REF][START_REF] Tagliavini | FlexFloat: A Software Library for Transprecision Computing[END_REF] lack support for high-precision representations, and others [START_REF] Lindstrom | Universal coding of the reals: alternatives to IEEE floating point[END_REF][START_REF] Omtzigt | Universal Numbers Library: design and implementation of a high-performance reproducible number systems library[END_REF][START_REF] Tagliavini | FlexFloat: A Software Library for Transprecision Computing[END_REF] provide no hardware support. There is no solution that combines a language scheme for multiple representations, compiler integration capable of software or hardware compatibility.

Precision-Awareness, Auto-Tuning, and Numerical Error Detection

The variety of numerical errors in floating-point formats has often led developers to choose data types that deliver sufficient accuracy but poor performance. For instance, the performance difference between using float and double can be up to 2× in favor of the former. Precisionaware schemes can be used to detect and debug numerical errors in applications, and auto-tuning techniques propose to find the right compromise between enough accuracy and speed. We overview some of the main schemes and techniques for precision awareness and auto-tuning.

Ansel et al. [START_REF] Ansel | Language and compiler support for auto-tuning variable-accuracy algorithms[END_REF] propose language extensions to expose accuracy choices to the user, allowing the user to incorporate trade-offs between time and accuracy directly at code level. Once accuracy information is set by the programmer in the PetaBricks programming language [START_REF] Ansel | PetaBricks: a language and compiler for algorithmic choice[END_REF], the compiler and auto-tuner employ a genetic algorithm approach to search valid candidates that meet the desired accuracy. The scheme uses a source-to-source compiler from the PetaBricks language to C++, so its limitation is directly influenced by this integration. Its auto-tuning can be further improved if C++ data structures or types were to allow a fine-grained accuracy configuration. Moreover, this work has widely known as a viable software approach for approximate computing [START_REF] Xu | Approximate Computing: A Survey[END_REF].

Darulova et al. [START_REF] Darulova | On Sound Compilation of Reals[END_REF] presents a programming model, specification language, and compilation algorithm that guarantees to meet the desired precision with respect to real numbers.

Precimonious [START_REF] Rubio-González | Precimonious: Tuning assistant for floating-point precision[END_REF] is a dynamic program analysis tool aimed to assist programmers to tune the precision of FP applications. It relies on user-input configuration files in order to specify which variables in code can be submitted for auto-tuning analysis. The algorithm iteratively searches for suitable sets of types within the specified files and variables that are satisfiable within an error threshold. Precimonious uses a more modern design since it is built on top of LLVM, so it can potentially be used for a wider range of programming languages in different architectures.

Herbie and Herbgrind [START_REF] Panchekha | Automatically improving accuracy for floating point expressions[END_REF][START_REF] Sanchez-Stern | Finding root causes of floating point error[END_REF] are two related tools to help developers identify and address root causes of numerical instability in applications. Many works have proposed to use shadow program execution to measure numerical errors in applications. Rubio-Gonzales et al. [START_REF] Rubio-González | Floating-Point Precision Tuning Using Blame Analysis[END_REF] minimizes Precimonious's analysis time through multiple shadow executions. Chowdhary et al. [START_REF] Chowdhary | Debugging and detecting numerical errors in computation with posits[END_REF] employ shadow execution to detect and debug errors in posit formats by relying on high-precision values. And more recently, NSan [START_REF] Courbet | NSan: a floating-point numerical sanitizer[END_REF] has been proposed as a new sanitizer for locating and debugging floating-point numerical issues, fully integrated into the LLVM sanitizer infrastructure.

All of the work described in the above paragraphs are great examples of how compiler support for alternative formats can be beneficial. The limiting number of FP types natively has a negative impact on the interaction of these work with the compiler.

Software for Scientific Computing Exploration

During the decades before the 2000s, the very active research in computational physics, and others fields, drove the development of standard and efficient FP libraries. Two of the most important software technologies put forward were the design and specification of the Basic Linear Algebra Subprograms (BLAS) and the Linear Algebra Package (LAPACK).

Basic Linear Algebra Subprograms (BLAS)

Mixed precision techniques, as described in 3.1.1, took great advantage of the Basic Linear Algebra Subprograms (BLAS), a set of standardized linear algebra routines that are intended to be reliable, fast, and portable. It specifies the arithmetic computational routines which perform common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication. It is further structured in three categories, according to their complexities.

Level 1 defines a set of linear algebra functions that operate on vectors only. These functions share the form:

y ← αx + y (3.2)
where α is a scalar and x, y are vectors Level 2 functions are matrix-vector operations, such as multiple variations of the matrix-vector product operation. These functions share the form:

y ← αAx + βy (3.3)
where A is a Matrix, α, β are scalars and x, y are vectors Level 3 functions are intended for matrix-matrix operations. Typically, these functions perform O(N 3 ) operations on O(N 2 ) data, therefore the algorithm structure, i.e. its interaction scheme between FPU and memory, is decisive for performance, but it is still very specific to the platform it runs on. Most of these functions share the form:

y ← αA × B + βC (3.4)
where A, B, C are matrices, α, β are scalars.

The original BLAS implementation ( [START_REF] Lawson | Basic Linear Algebra Subprograms for Fortran Usage[END_REF]) is the reference for the arithmetic operations involving vectors and matrices. As a sequel of the original work, several variants have been developed: OpenBLAS [START_REF] Xianyi | OpenBLAS[END_REF], Intel Matrix Kernel Library (MKL) [START_REF] Wang | Intel math kernel library[END_REF], and ATLAS [START_REF] Whaley | Automatically Tuned Linear Algebra Software[END_REF]. All of these libraries are tailored for standard precision (and support multiple degrees of parallelism), and no high-precision specification of any kind is given.

The design of XBLAS [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF] is the first attempt on the design of a representative subset of BLAS routines that internally operate in extended precision (80-or 128-bit representations). Internal extra digits can aid the reduction of accumulated round-off errors and cancellations and can justify the use of slower operations. External operands and function signatures are still similar to classical BLAS routines and are easily adaptable to the proposed library. While many functions, such as dot products, matrix-vector products, matrix-matrix multiplications, can be improved with internal extra precision, others struggle to make them worth using. Particularly, scaling matrix or vector by a constant, vector additions, and computing norms of vectors and matrices have shown no benefit of internal operating digits. From the perspective of adjusting precision dynamically, however, XBLAS still hinders exploration by disallowing multi-precision computation.

MPACK [START_REF] Nakata | The MPACK (MBLAS/MLAPACK) a multiple precision arithmetic version of BLAS and LAPACK[END_REF] goes further on the development of a true arbitrary/higher-precision linear algebra (MBLAS). The library supports many multi-precision libraries, like MPFR [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF], GMP [START_REF] Granlund | GNU Multiple Precision Arithmetic Library 6[END_REF], QD [START_REF] Bailey | QD: A Double-Double/Quad-Double Package[END_REF], as well as IEEE 754 binary128, and uses similar function signatures as the traditional BLAS implementations. MPACK is the project that perhaps best captures a multi-precision BLAS, with the significant drawback of neither having full hardware support nor a friendly interface to interact with compiler optimizations.

The BLAS-like Library Instantiation Software (BLIS) [START_REF] Van Zee | BLIS: A framework for rapidly instantiating BLAS functionality[END_REF] framework was proposed as a new infrastructure for rapid instantiation of BLAS functionality. The framework shows that it is possible to express all level-2 and level-3 BLAS operations in terms of a few simple kernels, and thus, it accelerates the instantiation of BLAS-like operations. By isolating BLIS operations to few kernels, BLIS may aid those who wish to auto-tune operations for high performance.

In the previous chapter, we show VP computing as a use case in the context of linear algebra. Hence, a VP-specific BLAS library implementation would also contribute to the study of the trade-off between precision and other constraints (energy, execution time, number of iterations, etc.) in many fields. While this is already achieved with MBLAS from MPACK, its use of high-level structures means there are no support in compilers, or hardware specialization, which translates to significant performance overheads in comparison to other hardware-compatible BLAS libraries.

Linear Algebra Package (LAPACK)

The Linear Algebra Package (LAPACK) library is an effort to design and implement highperformance routines for solving linear systems and eigenvalue problems and finding leastsquare solutions of systems of equations. It also provides matrix factorization algorithms (LU, Cholesky, QR, SVD, etc) that are needed by other routines in the library. LAPACK routines are implemented by relying on BLAS. Block algorithm techniques [START_REF] Dongarra | Block reduction of matrices to condensed forms for eigenvalue computations[END_REF] are employed to improve the locality of matrices and accelerate the code executed.

Other relevant projects associated to LAPACK are the Matrix Algebra on GPU and Multicore Architectures (MAGMA) [START_REF] Tomov | Towards dense linear algebra for hybrid GPU accelerated manycore systems[END_REF], a LAPACK library for heterogeneous/hybrid architecture, ScaLAPACK [START_REF] Blackford | ScaLAPACK users' guide[END_REF] that targets distributed-memory platforms, and the Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) [START_REF] Buttari | A class of parallel tiled linear algebra algorithms for multicore architectures[END_REF]. MPACK also implements an arbitrary/highprecision library for LAPACK kernels, MLAPACK. However, the library also suffers from the same issues encountered in MBLAS, i.e, lack of hardware support, and no compiler integration.

Characteristics of the Hardware Implementation of Variable Precision FP Units

Compilers and languages can certainly work as enablers to expand the use of new computer architectures. As is the case of variable precision computing, there needs to be coordination between the software, i.e, compilers and languages, and hardware targets. One must take into account the specificities of the hardware in order to augment compiler support. The following section presents three interesting work proposed within the context of variable precision arithmetics. We then highlight their main aspects, and the software interface proposed to enable their usage.

Round-off Error Minimization through Long Accumulators

Kulisch et al. [START_REF] Kulisch | Computer arithmetic and validity: theory, implementation, and applications[END_REF] proposes a rather orthodox way of error-free calculations for FP arithmetic through long accumulations, known as kulisch accumulator. A kulisch accumulator is a fixed-point register wide enough to minimize the impact of round-off errors of FP arithmetic operations. It aims to be used in long chains of arithmetic operations, such as dot products, in order to avoid values to be rounded when stored back to memory.

Two major issues can be spotted in kulisch accumulators: (1) an accumulator can operate only in a single chain of arithmetic operations at a time. Multiple accumulators would have to be added for parallel use. (2) automatic detection of long accumulators by the compiler can be implemented. However, it prevents the user from evaluating which set of operations need additional accuracy, and hence, an unnecessary overhead is introduced. Still, the simple design of a kulisch accumulator also inspired further exploration of these long accumulators in fused operations of the posit arithmetic [START_REF] Gustafson | Beating Floating Point at its Own Game: Posit Arithmetic[END_REF], which means that it can be used for multiple formats, and integrated with different approaches.

A Family of Variable Precision, Interval Arithmetic Processors

Schulte et al. [START_REF] Schulte | A family of variable-precision interval arithmetic processors[END_REF] presents a family of variable precision, interval arithmetic processors for improved accuracy and reduced accumulation of errors. Contrary to previous architecture that uses fixed-point arithmetic and relies on an internal accumulator to minimize round-off errors, this work takes an orthogonal approach of using FP arithmetic, and a register file to allow multiple operations at a time.

The operating mode of these processors depends essentially on the data type declarations provided by the user in the program. Table 3.1 shows some of the supported data types. The software interface is provided by class declarations of each type in a similar fashion as in the Variable-precision interval matrix VPI software package [START_REF] Ely | The VPI software package for variable precision interval arithmetic[END_REF], and provides support for arithmetic instructions and operations in scalar types, as well as intervals. Although this solution is able to add specialized hardware support for this family of processors, a major drawback lies in the lack of compiler integration to enable classical optimizations for these types. C++ objects don't provide the necessary low-level abstraction for driving these new types to optimizations.

Scalar Multiple-precision UNUM RISC-V Floating-point Accelerator (SMURF)

Scalar Multiple-precision UNUM RISCV-V Floating-point Accelerator (SMURF) [START_REF] Bocco | SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing[END_REF] is a coprocessor built up on top of a RISC-V [START_REF] Waterman | The RISC-V instruction set manual, volume i: User-level ISA[END_REF] Rocketchip architecture [START_REF] Asanović | The Rocket Chip Generator[END_REF] that operates in a variable precision fashion. As UNUM is a self-descriptive format, FP values in memory are store using this format, while arithmetics operations execute in a regular base-2 scientific notation form.

An important concept introduced with this coprocessor is the idea of the Maximum Byte Budget (MBB), a value that is configured through control status registers and which limits the size of the number stored in memory. The main idea behind MBB is to reduce the memory footprint and memory pressure when dealing with high-precision numbers while maintaining outputs within the same order of magnitude. Additionally, Working G-Layer Precision (WGP) is the nomenclature adopted to the precision used in the coprocessor.

The coprocessor uses a scratchpad as a register file of 32 interval registers. By keeping values within the register file, we are able to significantly reduce memory pressure. Each of these interval registers has two endpoints divided in the header, containing sign, exponent, flags (NaN, ∞, zero, ...), and mantissa which is divided into 64-bit chunks of up to 512 bits (with a total of 8 chunks).

A RISC-V ISA extension, depicted in figure 3.2, was proposed in order to make use of the coprocessor. The supported operations ( 12 -14 ) are comparisons, addition, subtraction, multiplication, interval midpoint (GGUESS) and interval radius (GRADIUS). Other operations (e.g. division) are implemented in software. The ISA has three main features: (i) It supports a set of instructions to control status registers for internal operation precision and MBB (mentioned in the previous section), ( 1 -4 ), etc.; (ii) It supports internal registers copies and on-the-fly conversion among IEEE and gbound formats ( 5 -11 ); (iii) and it also has a dedicated Load and Store Unit (LSU) with compatible instructions which handle misaligned memory accesses ( 15 -18 ).

The ISA extension proposed to help the integration between software and hardware. However, no compiler specification is given, which prevents complex code execution. Language, compiler and runtime support for the features presented in this work could further improve its use in applications. Moreover, by using the values of MBB and WGP as knobs for the size of variables in memory and precision in operations, respectively, the architecture enables a fair degree of variable precision computing.

Other (UNUM or Posit) accelerators

Along with the three main hardware units for variable precision computing, several researchers have shown the use of UNUM or Posit accelerators to facilitate comparison across formats. Tiwari [START_REF] Tiwari | PERI: A Posit Enabled RISC-V Core[END_REF] proposes a posit-enabled RISC-V core as the first-level replacement for IEEE units. It proposes to reinterpret float or double types as posit computing, avoiding specific native compiler support for these types. Other examples of accelerators for alternative formats can be found in [START_REF] Glaser | An 826 MOPS, 210uW/MHz Unum ALU in 65 nm[END_REF][START_REF] Jaiswal | PACoGen: A Hardware Posit Arithmetic Core Generator[END_REF]. The main hurdle for their adoption still relates to the required software stack support: compiler, and language integration, along with scientific computing libraries like those presented in 3.2.3 for fast execution.

Conclusion

This chapter presented the main state-of-the-art contributions that give basis to the work of this thesis. From one side, we described different computing paradigms for efficiently use of real numbers, presenting specific libraries and work that have been developed within this context. In the second part, we focused our attention on the principal hardware and software work that covers the exploration of new representations. These previous works present some caveats: while mixed precision is fundamentally supported by compiler and hardware, it lacks the flexibility of arbitrary precision libraries. Other previous works are either standalone solutions to handle precision with no hardware and compiler support or hardware accelerators without compiler support. There is a lack of synergy between software and computer paradigms, and the hardware layer, as well as a flexibility concern that has been poorly addressed so far. This will be the main focus of the following chapters. Albeit the IEEE 754 standard have met immense success across diverse areas, some applications require alternative representation to approximate real numbers. Linear algebra solvers, as briefly discussed in 2.4.2, can potentially benefit from high-precision representations. In direct solvers algorithms, such as Cholesky and Gaussian elimination, they can reduce the residual error [START_REF] Carson | Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions[END_REF][START_REF] Higham | Accuracy and stability of numerical algorithms[END_REF] of the output. Besides, they can be even more beneficial for iterative methods, preferred for large-sized problems. Increasing the precision of the intermediate residual vector is an effective mean to reduce the number of iterations needed in an iterative solver. Chapter 6 will show and discuss the benefits of using high-precision formats with these algorithms.

While a variable precision algorithm may be seen superficially similar to a typical model 1 , the estimation and configuration of the precision (in this case, the fractional part) value for part or all of the arithmetic operations is done at the algorithmic level. This estimation is generally complex to compute and may lead to unnecessary over-provisioning of fractional bits. Thus, a practical alternative is to adapt precision dynamically, i.e., instead of computing the necessary precision a priori, the algorithm is modified to use an outer loop to systematically check the result for accuracy at predefined points, as depicted in Algorithm 1. If the residual is above a predefined threshold, or if convergence is too slow, the solver increases its internal precision and resumes computation. One should also notice a similar procedure can also be taken to dynamic adjustment of exponent bits.

Algorithme 1: Simplified variable precision algorithm: function is precision-agnostic, i.e., it is not restricted to a single precision value.

1 output = f unction(precision) 2 repeat 3 if convergence is slow then 4 increase speed 5 end 6 precision = precision + speed 7 output = f unction(precision)
8 until output accuracy is greater than threshold; Hence, a strong requirement for the software engineering, tools, and more importantly, compiler and languages supporting this variability is:

(1) the language used for variable precision development must be performance-oriented;

(2) the kernel source code must be unique, therefore the programming style must be agnostic of the underlying precision of its variable precision data, like described section 2.5;

(3) the required precision and exponent value depend on the conditioning of data: it may be defined at kernel initiation time or dynamically and gradually increased in the case of adaptive methods;

(4) a variable-precision implementation should be as similar as possible to its original reference algorithm in C with standard IEEE arithmetic; in particular, extended precision should be used only when necessary, which implies that applications may smoothly transition between legacy support libraries (e.g., double-precision BLAS) and extended or adaptive precision solutions when required.

A programming model able to meet these requirements makes variable precision an extension (and a generalization) of mixed precision (3.1.1) and allows a deeper space exploration of precision, exponent, and in general FP representations. In the remainder of this chapter, we will focus on the description of a type system and language definition that target the requirements specified above.

Syntax

As shown in previous chapters, programming languages struggle with IEEE-alternative formats for FP arithmetic, and as consequence, with the exploration of variable precision arithmetic. The user is left with no choice but to rely on (1) high-level managed languages like Julia [START_REF] Bezanson | Julia: A Fast Dynamic Language for Technical Computing[END_REF] or Python [START_REF] Van Rossum | Python reference manual[END_REF] whose abstractions and type systems provides a high productivity variable-precision interface but fails to deliver competitive performance, (2) an efficient language like C with reduced flexibility due to manual memory management and calls to specific software libraries Listing 4.1: Backus normal form (BNF) like notation for the vpfloat language extension such as MPFR [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF] or GMP [START_REF] Granlund | GNU Multiple Precision Arithmetic Library 6[END_REF], or (3) sacrificing much precision control by relying on a mixedprecision paradigm [START_REF] Baboulin | Accelerating scientific computations with mixed precision algorithms[END_REF] based on IEEE-compatible formats. In any case, significant overheads are encountered: from ( 1) and ( 2) performance-wise, and from (3) in terms of flexibility.

Approximate representations of real numbers in which the sizes of mantissa and exponent may vary according to the user's needs require runtime capabilities that are not easily expressed with the semantics of programming languages in general. Julia, Python and class-based objects in C++ (like Boost) offer underlying data structures to store the value of precision used. MPFR uses a C struct to reach the same effect. Nevertheless, FP formats with runtime capabilities cannot be achieved with the semantics of primitive data types. Types float, double, long double, and every other primitive FP type have predefined exponent and mantissa values, permitting the user only to select values statically in a course-grained fashion.

As a way to improve the state of the art on languages and types for variable precision exploration, we propose an extended type system for C-based languages capable of manipulating FP operations with different representations and formats. It provides first-class support to programming with variable precision FP arithmetic, enabling hardware support when available and offering the flexibility of numerical libraries that can operate with multiple precisions. It differs from the current C syntax by introducing a new parametrized type for multiple representations named vpfloat that borrows the syntax of C++ template.

The new primitive type vpfloat is parameterized with attributes to control a given FP implementation, such as its specific format, exponent, precision and/or storage size information. The syntax aims at providing a generic way for different formats to coexist within the same keyword, while also enabling the addition of new formats or representations as they are proposed. Listing 4.1 shows the syntax rules of the vpfloat language extension in a Backus Normal Form (BNF) like notation.

Every declaration must provide a type attribute which (1) specifies its representation in memory; and (2) if and how many subsequent attributes are needed, along with which information they carry. Attributes are specified in the following order: type, exponent, precision, and size. One should notice that, with the exception of type, attributes can all be defined with integral constant literals or identifiers. This specific property demonstrates one of the main advantages of vpfloat over their counterparts: types are not obliged to be declared to retain unmodified constant exponent and mantissa values. Allowing FP attribute information to be declared with identifiers, our language extension supports constant-size and dynamically-sized types, which is always a technical hurdle in unmanaged languages like C, its associated Intermediate Representations (IRs) and Application Binary Interfaces (ABIs). Table 4.1 illustrates how our type system contrasts with the most common FP types, and data structures found in the literature when considering different constraints, such as compiler integration, hardware capabilities, multi-format support, among others. Our solution is the only one able to check all boxes. It combines the hardware and compiler support provided by primitive types like float and double, with the multi-level flexibility of MPFR and the Boost Multi-precision library. In the following sections and chapters, we explain how these types are implemented, their semantics and integration with an industry-level compiler infrastructure.

Semantics

After each declaration has been syntactically analyzed, it is during semantic analysis that the compiler checks declarations to guarantee that FP attributes respect the semantics rules required by the specific type. While some types may hold meaning through their type attribute alone, others may require up to three additional attributes to provide meaningful information to the type declaration.

As a practical example, one may use our type system substrate to implement support for the bfloat16 format. Variables for this format only need to specify the type attribute, as information about exponent and precision is embedded within the format's name. Other declarations, such as unum and mpfr, are parametrisable and require information about the exponent and mantissa, and an optional attribute that may hold the size of the variable's memory footprint. For each different type, attributes shall be interpreted in different ways. Listing 4.2: MPFR variable type as defined in [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF]. 
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A multi-format type system

As proof of the power and flexibility of our type system, we designed and implemented a full compilation flow supporting the two representations: mpfr and unum. Even though the reasoning to categorize our type system according to formats is valid, it is also possible to distinguish types in terms of other constraints, such as allocation schemes, and attribute groups. Viewing them from the perspective of allocation schemes, constant-size types have a fixed and always-constant allocation size, while dynamically-sized ones have a memory footprint which in most cases can only be evaluated at runtime. When classifying types according to their attribute groups, a type can have constant or runtime attributes which means it was declared with integer-literal or identifier, respectively, as depicted in Listing 4.1. As we progress into the details of our type system, examples are presented to walk the reader into these different categories.

MPFR

Variables declared as mpfr hold the number of bits of exponent and mantissa in the second and third fields of the declaration, respectively. These values are used later to set up MPFR objects created during our MPFR backend transformation pass (see Section 5.3.1 in chapter 5). As . MPFR uses an assembly-like programming model that requires operands (destination included) to be pre-allocated and have their precision defined before being used and freed once no longer needed. Moreover, there are no restrictions on a maximum exponent or mantissa used for each declaration.

Listing 4.3 shows examples of AXPY, a level-1 BLAS [START_REF] Lawson | Basic Linear Algebra Subprograms for Fortran Usage[END_REF] routine for vector multiplication, for different MPFR types. Functions axpy100 and axpy256 implement AXPY with constant-size MPFR type of 100, and 256 bits of mantissa, respectively. Function vaxpy show the flexibility of our language extension, illustrating the support for types with runtime attributes as the number of mantissa bits (the precision) is not known at compile time. In this function, the number of mantissa bits will be the one provided by the caller, and a simple analysis of the dynamic attributes is implemented to finalize the type-checking of function calls at runtime. At heart, vpfloat<mpfr, ...> types work as a thin C-compatible wrapper for the MPFR library in the fashion as other heavier higher-level ones (like in Julia, Python or C++ Boost for Multi-precision). However, because they are fully integrated at compiler level, more optimization opportunities can be found, thus improving performance. Listing 4.4 shows the vpfloat< mpfr, ...> type implementation of the matrix multiplication algorithm found in Chapter 3 for MPFR and Boost for Multi-precision. One may argue that our approach requires some information to be duplicated, particularly, type attributes (<mpfr, 16, prec>). While this is true, it guarantees that underlying compiler layers until code generation hold the correct information for each variable type, and thus, justifying this duplication. Furthermore, we can partially resolve duplications with typedef declarations: they work for constant types but are rather difficult to express with types that rely on runtime FP attributes.

UNUM

While attributes exp-info and prec-info for MPFR types are enough to be read as exponent and mantissa/precision, respectively, the UNUM format requires rethinking on how those attributes must be interpreted. As defined in the format specification (see Fig. 4.1a), meta-data information ess and fss not only act as fields bounding the number of bits of exponent and precision, but also contribute to defining the size of a UNUM value [START_REF] Gustafson | The End of Error: Unum Computing[END_REF]. One should notice that the language syntax does not specify exp-info and prec-info as the number of bits of exponent and precision, respectively, but rather attributes that relate to them. The UNUM format derives this information from ess and fss, which means that the second field of a UNUM declaration holds the size of exponent and the third field holds the size of mantissa. We provide a backend code generator targeting a simplified version of the instruction set architecture (ISA) proposed by Bocco et al. [START_REF] Bocco | Dynamic Precision Numerics Using a Variable-Precision UNUM Type I HW Coprocessor[END_REF][START_REF] Bocco | SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing[END_REF]. It implements support for UNUM format in memory, for both scalar and interval-based operations, although the latter has not been considered in our work. Bocco also proposes a modification to UNUM, depicted in Fig. 4.1b, which changes the order of the header fields for a simplification in the decode stage of the coprocessor. Our frontend semantically analyzes UNUM types and follows the requirements of the target ISA. In particular, values of ess and fss range between 1 and 4, and 1 and 9, respectively, which allows exponents between 1 and 16 bits, and mantissas between 1 and 512 bits. Since ess and fss produce exponent and mantissa values that grow exponentially, UNUM types may be declared with an optional size-info attribute that holds the maximum number of bytes used to represent the number. This attribute value must be in the range 1..68 bytes and is in perfect conformity with the concept of the architecture's Memory Byte Budget (MBB). MBB was primarily design to reduce the growth of UNUM numbers due to ess and fss fields. The first 6 examples in table 4.2 show that variables declared with no MBB practically double of size for an fss increase of one bit. MBB, and consequently, the size-info field for UNUM types not only improve and correct that but allow many more format declarations, as depicted in table 4.2.

Declarations with no size-info convey that sizes are calculated according to the values of ess and fss. Particularly, a variable has (2+2 ess +2 fss +7)/8 bytes, where 2 comes from sign and utag fields from the UNUM format, ess and fss are specified in the declaration, and 7 and 8 are used to round the values to a multiple of 8. The presence of size-info implicates the truncation of a declaration to a maximum of size bytes. Since the mantissa is the last field specified in the format, the size attribute may truncate bits of the mantissa. The formula used to calculate the number of mantissa bits in this case is given by min(2 fss , size * 8 -(2 + 2 ess + 2 fss )). Table 4.2 illustrates different UNUM representations, showing the corresponding values of exponent, mantissa and total size, they may assume. Owing to the variable-length nature of UNUM, the number of mantissa bits directly relates to the number of exponent bits needed for the represented number. For instance, vpfloat<unum,3,6,6> may have its precision truncated to 29 bits, if and only if the represented number requires 8 exponent bits. Otherwise, more mantissa bits are used. This level of flexibility not only complexifies hardware design but is often misunderstood by users.

The ability of our language extension to handle the UNUM flexibility illustrates its generic nature and runtime capabilities. Listing 4.5 shows the implementation of three functions: (1) AXPY (axpy_UnumConst) implemented using a constant-size UNUM type, (2) a second AXPY function (axpy_UnumDyn) with constant-size type and a runtime attribute, and (3) the General Matrix Vector Multiplication (GEMV) from BLAS implemented with a dynamically-sized type. One can notice that even constant-size types may not be entirely constant. They can still hold attributes that can be analyzed at runtime, as illustrated in function axpy_UnumDyn.

1 void axpy_UnumConst ( int N , 2 vpfloat < unum , 4 , 6 , 8 > alpha , 3 vpfloat < unum , 4 , 6 , 8 > *X , 4 vpfloat < unum , 4 , 6 , 8 > * Y ) { 5 for ( unsigned i = 0; i < N ; ++ i ) 6 Y [ i ] = alpha * X [ i ] + Y [ i ]; 7 }

Alternatives Formats

Variable precision computing does not boil down only to the dynamic adjustment of precision. It also encapsulates the tuning of exponent bits and, more importantly, the use of alternative representations. Our language extension offers a general infrastructure that enables multiple FP formats to coexist. The main motivation for the template-like vpfloat syntax is to offer a common ground to specify different FP formats.

Figure 4.2 summarizes the multi-format characteristic of our language extension. Two potentially interesting additions are posit [START_REF] Gustafson | Beating Floating Point at its Own Game: Posit Arithmetic[END_REF] and a customize IEEE-like format with a bit-wise exponent and mantissa capabilities. Posit has already been proved to be a valuable alternative [START_REF] De Dinechin | Posits: the good, the bad and the ugly[END_REF] to IEEE formats in some scenarios, but it is still very far from replacing them entirely. 

Memory allocation schemes

Two distinct allocation schemes are necessary to accommodate the flexibility of our language extension. Viewing from perspective of how memory must be handled, we can divide them in two categories: constant-size and dynamically-sized types.

As the name suggests, constant-size types are declarations with fixed (and constant) memory footprint. They can be further subdivided according to their attribute types and must satisfy one of the three criteria: (1) its variable size can be derived from exp-info and prec-info attributes known at compile time; (2) variable is declared by specifying all attributes (including size-info) known at compile time; or (3) size-info attribute is known at compile time. Variables that fulfil criteria (1) or ( 2) are said to have constant types, while those that meet the requirement of criterion (3) have constant size but with some variability. Figure 4.3 shows how types are divided according to these criteria. We survey the characteristics and differences among these three groups (constant types, constant-size types with runtime attribute, and dynamically-sized types), highlighting the differences between MPFR and UNUM types if they exist. 

Constant Types

We allow the declaration of constant types in the same fashion as standard primitives types. As the name indicates, constant-type variables are declared by only specifying attributes known at compile time. They can be declared as global, local variables, and arguments, just like any primitive type variable in C.

Representing constants

Variables of a constant-size type can be initialized providing a FP literal. A v suffix is used to denote a literal of vpfloat<unum, ...> types, and a y suffix is used for vpfloat<mpfr , ...> types. They can also be initialized with a IEEE 754 FP literal, i.e., using float and double FP literals, however an implicit conversion is performed by the compiler in those cases which may incur loss of precision through rounding.

Table III of the sign bit and other fields, with the mantissa being the last field of the format. If the representation exceeds 64 bits, the remaining chunks contain the rest of the mantissa. Values are biased according to the maximum exponent value, similar to the IEEE formats. The 0s shown in UNUM formats are reserved for ess and fss values which are only properly set later in the compilation flow. Indeed, constants are created everywhere in the compilation flow, and these fields depend on the evaluation context. This behavior is specific to the UNUM format. Since it would be too intrusive to modify every LLVM transformation pass, we added a dedicated finalization pass instead to properly set up all UNUM constant literals.

Constant-Size Types with Runtime-Decidable Attributes

Constant-size types can still offer some variability if exp-info or prec-info attributes are only known at runtime. Its sole shared characteristic with constant types, as described above, comes from the constant memory footprint, which, from a compiler perspective, eases considerably the calculation of addresses for multi-dimensional types, like arrays. Constant creation, runtime verification of attributes, and type conversions are done in the fashion as for dynamically-sized types, which are described below.

Dynamically-Sized Types

One challenging feature of variable precision FP formats is the need to declare types whose memory footprint is not known until runtime evaluation. Such functionality is an important aspect of our extension and is one of the main requirements of variable precision computing exploration: to allow users to programmatically explore multiple configurations of exponent and mantissa in a single run. There are no restrictions on using dynamically-sized types for MPFR or UNUM representations as long as compatible backends are provided. More specifically, backends are responsible for implementing the runtime capabilities, either through library calls (as is the case of vpfloat<mpfr, ...>), or through a compatible ISA (as for vpfloat<unum, ...> in our examples). The runtime aspect of dynamically-sized types in regards to memory management A VLA is an array declaration where its number of elements is not known at compile, and is, therefore, evaluated at runtime. The code snippet in Listing 4.6 shows the use of a VLA for an array with n elements. The compiler is not able to infer the size of the array at the time of compilation, for that reason, it generates code that evaluates it at runtime. VLAs shall only be declared as local variables and function parameters, and their lifetime extends from the declaration of the object until the program leaves the scope of the declaration. In the example, the array declaration at line 8 is alive until the end of the loop at line 15, which means that arr is dead (or does not exist) outside of the loop. VLAs are stack-allocated, and their memory locations are only valid within their declaration scope. While VLAs are allocated on-demand according to their scope lifetime, compilers usually stack-allocated variables with constant sizes at the beginning of the function. In the example, arr allocates stack space within the loop scope while variable j (at line 6) is allocated, if needed, at the beginning of the function. Of course, some optimizations attempt to promote variables to registers and, therefore avoid stack allocation for constant-size types; this is an important category of optimization we would like to leverage in this work (e.g. when targeting the UNUM ISA).

1 int f ( int n ) {
Like in VLAs, dynamically-sized vpfloat types can only be declared as local variables and function parameters, and their life cycles also follow those of VLAs. Hence, they are stackallocated within their declaration scopes since it is not possible to guarantee that all values used as attributes exist at the beginning of the function. Additionally, this aspect of the language adds extra complexity to dynamically-sized types as dynamic values for the attributes are not assured to respect the limits for each specific type.

Runtime verification

The C Standard, for instance, provides no specification that guarantees VLA arrays are declared with a positive size expression. In practice, the user is free to pass a negative value as the size of a VLA array, leading to undefined behavior, according to the standard. Adopting the same behavior for vpfloat declarations eases the role of the compiler as no verification is needed at runtime in order to ensure the programmer uses a valid expression. On the other hand, no guarantees would be given that the executed code will perform the correct computation if runtime attributes have not been checked for consistency.

We choose to err on the side of correctness, and compliance with the underlying numerical libraries when relying on them (such as MPFR), and implement runtime verification functions to ensure that all parameters and the size of each declaration respect the boundaries defined by the representation. Listing 4.7 implements a runtime verifier for the vpfloat<mpfr, ...> that checks if MPFR object's precision holds the correct value, i.e., attributeValue. One should also notice that all vpfloat<mpfr, ...> have already been converted to MPFR, which is why no more reference for these types are presented. Our compiler generates verification calls for vpfloat parameters passed through a function call in order to guarantee that values passed as attributes still hold the same value upon creation. These calls, although not directly imposed by the language, but rather compiler-generated, are important to ensure correctness from the code, or language, perspective.

Function __sizeof_vpfloat

Each dynamically-sized type declaration generates a call to __sizeof_vpfloat, a function from our runtime library that checks for consistency of attributes and returns the number of bytes needed for the specific type. Generating a call to this function ensures all attributes are well-defined and respect boundaries for the type. The function can be generated under two situations: (1) as a replacement to the user-specified sizeof function, or (2) when a dynamically-sized type needs memory allocation.

In Listing 4.5, variable alphaAX of function gemm_unum is allocated and freed in every iteration of the loop, with its allocation size given by calling __sizeof_vpfloat. A better solution would be to declare the variable outside of the loop, that way only one call to the function is required. However, the purpose of the example is not to show the optimal solution but to illustrate when our runtime library checks types and how memory management occurs. Furthermore, a mem2reg2 optimization can eliminate this allocation inside the loop, since there is no loop dependency in the declaration.

Listing 4.8 shows an example implementation of __sizeof_vpfloat function. For vpfloat< mpfr, ...>, the only type verification needed concerns the precision attribute, which must be a positive value. These types always return the value of sizeof(mpfr), as they will be lowered to MPFR at a later compilation stage. In vpfloat<unum, ...> types, values ess, fss, and size are checked according to target ISA. That is, ess must have a value between 1 and 4 (lines [START_REF] Bezanson | Julia: A Fast Dynamic Language for Technical Computing[END_REF][START_REF] Blackford | ScaLAPACK users' guide[END_REF][START_REF] Bocco | Dynamic Precision Numerics Using a Variable-Precision UNUM Type I HW Coprocessor[END_REF][START_REF] Bocco | Byte-Aware Floating-point Operations through a UNUM Computing Unit[END_REF], fss between 1 and 9 (lines 25-28), and size between 1 and 68 (lines [START_REF] Chowdhary | Debugging and detecting numerical errors in computation with posits[END_REF][START_REF] Cools | Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method[END_REF][START_REF] Cools | Improving strong scaling of the Conjugate Gradient method for solving large linear systems using global reduction pipelining[END_REF][START_REF] Cools | On rounding error resilience, maximal attainable accuracy and parallel performance of the pipelined Conjugate Gradients method for large-scale linear systems in PETSc[END_REF]. Additionally, values are guaranteed to reserve bits for the mantissa (lines 39-43) and size is either already specified or calculated accordingly (line 46).

Function Parameter and Return

Declaring dynamically-sized types as a local variable is not enough to provide a robust language extension. It is also important to integrate them to function calls through argument passing and parameters, so that is possible to bind function call arguments to function parameters. Listings 4.3, 4.5, and 4.9 show that programmers can also make use of these types as function parameters, as long as attributes are known declarations for the specific context. In that case, a valid runtime attribute may come from a global integer variable declaration or a previouslydeclared parameter, as shown in the examples. Our compiler parses and analyzes the given attributes in order to ensure that known attributes are being used. It is important to highlight that dynamically-sized types are only valid within the scope in which they were created. In other words, functions do not share dynamically-sized types, but dynamic (runtime) attributes are bound to formal arguments so that (dependent) types from different functions can be passed through function calls. Function vaxpy uses parameter prec as a bound attribute for precision in Listing 4.3. Parameters alpha, X, beta, Y in Listing 4.5 have been bound to parameter fss, while local variables a_dyn, X_dyn, and Y_dyn in Listing 4.9 have made use of parameter p as a runtime attribute.

Function example_dynamic_type in Listing 4.9 also shows examples of how these types interact in a function call. Similarly to VLAs, the compiler ensures that each type attribute in a formal argument of the callee depends on attributes properly bound in the declaration. Any inconsistency found by the compiler is reported back to the user through our compile-time and runtime checks as shown in Listing 4.4.3.1. A compile-time error is raised at line 11, since values of a, X, and Y were created with a constant value of 256, instead of 100. Lines 15 and 18 show examples of how runtime verifications can guarantee correctness between attributes and vpfloat declaration in function calls. In line 15, a runtime error is reported back to the user if p is not equal to 256, while in line 18 an error is raised since the value of p has changed.

Dynamically-sized types can also be declared as return types and their semantics are similar to function arguments. Our language allows attributes of return types to be bound to function arguments, even though arguments are not yet available when parsing the return type. Our compiler delays the creation of the function's return type until all function arguments have been processed, and semantic analysis verifies that attributes given in a declaration exist and can be used to build a return type. While a parameter requires attributes to be declared previous to its declaration, this is not the case for return types. For example, example_dyn_type_return shows how to use dynamically-sized types with a function argument as an attribute, and example_dyn_type_return_error is caught by syntax analysis since prec is not declared in that context.

Constants

Constant-size types have the advantage of having a fixed memory footprint, and thus constant values can be represented as soon as values of the exponent and mantissa are known. Dynamicallysized types pose another challenge as attributes are only known at runtime, which makes it impossible to represent a constant value according to its statically unknown attributes. We handle them by creating a fixed-size representation of the constant in a maximum configuration at compile time and cast it at runtime to the dynamically-sized type in use. For UNUM types, the maximum configuration is 16 bits of exponent and 512 bits of mantissa; for MPFR types the maximum configuration is 16 bits of exponent and 240 bits of mantissa. UNUM's maximum configuration comes directly from the target ISA specification that accepts maximum values of ess and fss as 4 and 9, respectively. The maximum configuration for MPFR was chosen to correspond to the number of bytes of sizeof(__mpfr_struct), that is, 32 bytes.

Additionally, we also enable binding constant values to dynamically-sized types in function calls. For these cases, the compiler is unable to properly infer bindings between runtime arguments and the constant, with function parameters. Hence, users are required to properly cast the specified constant, which means binding the constant accordingly in the function call. Listing 4.10 uses two examples of how function vaxpy from Listing 4.3 is being called with alpha parameter equals to 1. One can observe that only the first call succeeds as the proper binding for the constant is provided. Furthermore, since variables x and y in the function have also been declared as vpfloat<mpfr, 16, precision>, the same type for 1.0 is required.

Type Comparison, Casting and Conversion

Types are only considered to be equal if they hold the exact same attributes. Our type system only implements subtyping or implicit conversion in two situations: (1) when doing plain variable assignments, which means we can guarantee that truncation or extension of a source type to its destination can be done safely; [START_REF] Abdelfattah | Towards Half-Precision Computation for Complex Matrices: A Case Study for Mixed Precision Solvers on GPUs[END_REF] and between constant types, when it is possible to guarantee a correct conversion. For instance, constants whose types differ by one attribute. In these cases, we follow the C language Standard which favors higher-ranked formats, that is, those with larger exponent, mantissa, or size.

Other implicit conversions over more general expressions would be too ambiguous when determining the types of intermediate values. If types are not equal, it is the user's responsibility to insert the appropriate cast or type conversion. Casting exposes the underlying array of bytes implementing a given format and vice versa. Listing 4.11 illustrates many of the implicit and explicit situations discussed above. In line 7, the compiler cannot implicitly cast one of the operands of the addition to the other, so the programmer must provide the correct cast for one of the two operands, as in line 10. From line 12 to 25, one can see that the compiler can still offer implicit conversions when no ambiguity is assured. The intermediate type for b + d(line 24) can be implicitly casted to type of d, due to having two more bits in the fss attribute. In line 25, compiler can safely cast the intermediate of b + e to the type of b as it has one more bit in the ess attribute. Nonetheless, ambiguity can still be found in constant types when multiple attributes differ (line 18). In those cases, an explicit cast must be used. After these conversions take place, the compiler can proceed to implicitly cast the intermediate type to the destination type. In lines 24, and 25, for example, a compiler-generated conversion from vpfloat<unum, 4, 8> to vpfloat<unum, 4, 7>, and from vpfloat<unum, 4, 6> to vpfloat<unum, 4, 7> are generated.

Language Extension Limitations

Our extension gives significant flexibility for users to declared FP types with dynamic attributes. Not only we enable plain vpfloat declarations, but also their use as underlying types to construct pointers, arrays, or even vectors3 . However, one current limitation of our language extension lies on the use of types with runtime attributes (from sections 4.4.2 and 4.4.3) within some of the compound types in C-based languages, namely, struct and class.

From a language perspective, we have not found a concrete syntax that satisfies the same requirements of plain declarations. We could potentially declare a primitive vpfloat type inside a struct that uses an internal variable as runtime attribute. Although that would be syntactically possible, it leads to an addled situation: vpfloat's allocation size relies on a value initialization inside the struct, which usually happens after struct allocation. Limiting the declarations to pointer-based types would help to circumvent this issue. In this case, we could simple restrict pointer vpfloat declarations inside these compound types, since their allocations can be done after type creation. There have been proposal submissions [START_REF] Deniau | Proposal for classes with runtime size[END_REF][START_REF] Snyder | Exploring classes of runtime size[END_REF] to the committee to add support for classes with runtime size in C++, showing there is still interest in the community to offer this level of flexibility. Our variable (parametric) floating-point types as presented herein may also help justifying their inclusion in the language. Nonetheless, this is considered part of a future work due to its complexity in compiler instrumentation.

Libraries for Variable Precision

The language description, its syntax, and semantics presented in this chapter are sufficient to allow users to implement algorithms and libraries that enable FP variation. Having compatibility with two representations (MPFR, UNUM) with language and compiler integration, extends the use of variable precision for algorithmic evaluation. One may want to explore the impact of high-precision representations within linear solvers and singular value algorithms, while others may utilize it to implement physics and engineering applications.

As Basic Linear Algebra Subprogram (BLAS) has been successfully used in linear algebra and other fields to produce fast and portable software (see Section 3.2.3.1), we make use of our proposed multi-format language extension and designed a representative subset of BLAS routines to show the interest of our approach. The selected subset of routines is enough to implement different variations of linear algebra algorithms such as the Conjugate Gradient and the Singular Value Decomposition. In the following sections, we show two versions of BLAS: mpfrBLAS, a BLAS library based on vpfloat<mpfr, ...> data types, and unumBLAS that is implemented with vpfloat<unum,...> types. Although they require few changes, the design of these libraries aspires to follow similar models as standard implementations. In particular, our libraries:

(1) implement different flavors for the same algorithm. The goal is to minimize the number of variables in extended (high-) precision footprints. These representations should be used only when necessary and providing multiple implementations aid application designers to choose the right function with the right balance between accuracy and performance. For instance, a variable-precision implementation of CG can bear to have the matrix stored as double and its extended-precision representation is not needed.

(2) try to use the same function signatures as standard BLAS implementations. That way, applications may smoothly transition between legacy support libraries (e.g., double-precision BLAS) and extended or adaptive precision solutions when required. Similar to xBLAS [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF], our libraries use resembling function signatures to those of legacy code for rapid adaptation.

mpfrBLAS: A vpfloat<mpfr, ...> BLAS library

The mpfrBLAS is a vpfloat<mpfr, ...>-based BLAS implementation that targets the exploration of variable precision in, but not limited to, high-precision scenarios. No restrictions are imposed on employing it for lower precision, but it has the drawback over other implementations by underlying the use of MPFR. It was implemented to enable execution in multi-threaded environments through the use of OpenMP directives. The complete list of implemented routines is presented below, divided according to the BLAS level to which they belong. The naming strategy used for them follows the type declarations for matrix and vector variables. For example, a DOT function where y is a vpfloat and x is a double is named as vpm_dot_vd. String "vpm_" is an indicator of a vpfloat<mpfr, ...> BLAS routine, while 'vd' indicates that y and x have vpfloat and double types, respectively.

Level 1: Vector-to-vector operations

-COPY: Copy a vector to a new vector. Two COPY functions are provided: one where vectors X and Y have the same precision value, and a more general implementation where precision may be different between vectors.

y i = x i
As an example, one may want to increase the precision of a vector for a better estimation of the accuracy of the computed value.

-SCAL: Multiplies each vector element by a constant.

x In some cases, it is important to perform accumulation in a high-precision container to minimize the effects of round-off errors. The kulisch accumulator [START_REF] Kulisch | Computer arithmetic and validity: theory, implementation, and applications[END_REF] is based on this concept and it is also the reason why vdot_vd has been implemented.

-AXPY: Computes vector accumulation. Above, we show an implementation example for vpm_gemv_vvv, automatically generated by Pluto [START_REF] Bondhugula | A Practical Automatic Polyhedral Program Optimization System[END_REF], an automatic parallelizer and locality optimizer. The only modifications done concern the inclusion of variables lda, incx, and incy, requirements for BLAS functions. We will further discuss support for Loop Nest optimizer within the context of our types (in Chapter 5), however, Pluto's capabilities go beyond the support for types. That is, it optimizes the data locality by merely analyzing patterns of access, without requiring to have previous knowledge about the footprint of the type. This example intent is to show that state-of-the-art optimizers can be used to design high-performance libraries for vpfloat types. Future implementations of our libraries will focus on these specializations, which require substantial work to guarantee performance improvement in most cases.

y i = x i +
-SYMV: Sparse matrix vector product. GEMM has, as have other routines, been implemented so that it has a signature close to BLAS original one. The sole difference is the presence of a precision variable as the first function parameter. The remaining ones conform to the legacy code signature4 , easing portability. Furthermore, both transpose and non-transpose matrices are supported by our implementation.

y = αAx
Our mpfrBLAS is composed of 17 routines, ranging from simple vector-vector operations (Level 1) to a matrix product (Level 3). Even though there are many functions missing, these functions already allow us to implement some linear algebra algorithms, which will be discussed in Chapter 6. Moreover, we should clarify that the exponent field, defined as a constant 16, has no real effect on MPFR types. Its actual size value is predefined by the underlying mpfr_t struct.

unumBLAS: A vpfloat<unum, ...> BLAS library

We also propose a subset of BLAS routines for vpfloat<unum, ...> types. Due to the flexibility of our extension, many variations of vpfloat<unum,...>-enabled libraries can be created. This one, in particular, has been implemented considering all FP attributes being expressed as variables, but other implementations may consider different constraints and use constant value for the declaration of any FP attribute. Function names are preceded by prefix "vpu_", while 'v' indicates vpfloat<unum, ...> types, 'd' is used for double. 4.7.2.1 Level 1: Vector-to-vector operations -COPY: Copy a vector to a new vector. attributes, one of which has no effect on the representation. Types created as vpfloat<unum, ...> are more flexible with up to three attributes to control.

y i = x i

Conclusion

This chapter introduced and presented all aspects of the C language extension and type system for variable precision FP computing that we propose. When comparing to state-the-art solutions, we hope to have proven that our language extension has similar capabilities and equivalent programming model as traditional formats (like programming with IEEE formats), with better language integration than high-level structures. This enables further integration with a compiler toolchain, which will be introduced in the next chapter. We also allow multiple formats to coexist within the same keyword, which can further improve the exploration of alternative formats and can accelerate the integration with industry-level compiler infrastructures.

Along with the extension, we also provide implementations for a subset of BLAS routines that uses our types. They allow developers to rapidly instantiate code for testing multiple formats and variable precision. Furthermore, the main feature of these libraries is enabling programmatically driven experimentations in an attribute agnostic fashion for a given representation. That is, we may single-run applications in multiple precision configurations without requiring code recompilation. Some of the experimental results from Chapter 6 were obtained this way. We will demonstrate the value and realism of our language extension through its integration into an industry-level compiler. Our solution was implemented on top of the LLVM [START_REF] Lattner | LLVM: a compilation framework for lifelong program analysis transformation[END_REF] infrastructure, since it provides a modular compilation flow, a powerful Intermediate Representation (IR), and is widely used both in academia and industry. This chapter focuses on detailing the compilation flow needed to support the vpfloat type system. We will cover the aspects of the proposed LLVM IR extension for variable precision FP arithmetic, and how it interacts with the compilation flow and optimizations. Later we describe the backend code generators we implemented in order to consume vpfloat<mpfr, ...> and vpfloat<unum, ...> types from our language extension.

Frontend

We have implemented support for the vpfloat language extension and type system in LLVM's frontend for C/C++ (clang). Our frontend supports both representations MPFR and UNUM as defined in the Language chapter (4). Aside from implementing the specification of our language, semantic and syntax analysis, the only work needed by this stage is the generation of LLVM Intermediate Representation (LLVM IR).

Intermediate Representation (IR)

LLVM uses a target-independent intermediate language for a common infrastructure where code optimizations and transformations can be applied. The LLVM IR defines a set of assembly-like instructions that operate on values and types, and which are later used by the code generators of different architectures. More specifically, LLVM defines a set of types to represent different data structures, from simple primitive types like integers and floating points, to vectors, arrays and structures.

As such, we provide an extension to the LLVM IR Type System that enables vpfloat FP types in intermediate code. Similar to our language-level type system, vpfloat IR types also keep the information on attributes internally, so that expressiveness is maintained across the compilation process. We essentially translate the functionalities from language level to intermediate, that is, even closer to target code generators.

VPFloat Types

A new class for vpfloat was implemented to provide LLVM with a native representation of variable precision FP types. Attributes are defined as Value 1 objects since they can be represented by instructions, constants, function parameters, or global variables. In Listing 5.1, we show a snippet of the implementation of VPFloatType class for UNUM and MPFR types, here represented by constants 0 and 1, respectively. With the exception of ConfigTy declared as an integer constant (line 13), all other attributes can assume values of different Value-inherited classes (lines 14 to 16), and help to show the flexibility of our type system.

The addition of a new type system, although somewhat intrusive from a maintenance perspective, allows us to have a tighter integration with LLVM. This favors its use not only on novel optimizations we may wish to implement but also qualifies these new types to be used in classical ones. Constant propagation, stack-to-register promotion, and common subexpression elimination are some of the optimizations that work out-of-the-box in our type system without any necessary modification.

Additionally, the human-readable representation of our IR vpfloat types resembles that of the language extension. Listing 5.2 shows the the IR code of the ex_dyn_type_ret function from Listing 4.9. UNUM VPFloats in the IR are specified as 0, while MPFR use a constant of 1 for its format. This non-optimized (-O0 compilation flag) version also illustrates the dynamic aspect of our types. A call to function __sizeof_vpfloat in line 10 is used to get the number of bytes needed by the allocation instruction alloca (line 13). We also make use of a pair of 1 Value is one of the most important LLVM IR classes because it is the base class for all values computed in a program. instructions store and load to control the address pointer of the stack. Lines 11-12 and 18-19 are used to record and recover the status of the stack, respectively, so that it can be dynamically allocated. To the best of our knowledge, this is the first work that proposes these levels of interaction between types and values in the program for FP arithmetic. LLVM types are usually self-sufficient, i.e., free from the interference of other values in the program (except for VLAs). This flexibility comes at the cost of evaluating their compatibility with the significant number of optimizations LLVM offers.

Function Declarations

LLVM IR has a particular way of representing function declarations that omits variables names for function parameters. As an example, __sizeof_vpfloat from Listing 5.2 (line 23) is printed as a function declaration, because it was either inserted by the compiler automatically or came from an included header file. One should notice that only parameter types are included, and not their names, simply because they are not needed. Declaration-wise, parameters' names are irrelevant. Although this works well for standard LLVM IR code and also conforms to the C specification (as in line 3 of Listing 5.3a), our type system cannot afford the use of the same approach. Types with runtime-decidable attributes may have their declarations dependent on function parameters, which can lead these types to be invalid. As values are used as binding operands for vpfloat types, it is important to make sure that function declarations have vpfloat types with proper attributes.

We propose to address this issue by using negative values as a way of expressing binding relations between parameters and vpfloat types. Since negative values have no meaning for floating-point format parameters whatsoever, we can make use of them to specify these relations. We depict some examples of this approach in Listing 5.3: with Listing 5.3a showing the Clevel code for different function declarations, and Listing 5.3b having their corresponding IR 

Interaction with Classical Optimizations

A new IR type system allows vpfloat types to interact and benefit from classical optimizations available in the infrastructure. While many optimizations are out-of-the-box compatible with vpfloat, some require modifications for proper support. The following sections cover the necessary changes in toolchain and optimizations.

Type-value Relation

Standard compilers usually use specific data structures to track the relation between a value definition and its uses [START_REF] Aho | Compilers, principles, techniques[END_REF]. A Use-Definition (use-def) chain consists of a use (U) of a variable and all the definitions that can reach U directly without any other intermediate definition. It usually expresses the assignment of a value to a variable. Its counterpart, Definition-Use (def-use) chain relates the definition (D) of a variable with all its uses that are reachable from D without any intervening definition. These concepts and structures are prerequisites for applying many compiler optimizations and transformations, such as constant propagation, register allocation, and common subexpression elimination. LLVM also makes use of these concepts to construct relations between value definitions and uses throughout the compilation flow. Although LLVM's def-use chain and use-def chain implementations allows one only to track chains between Value objects, vpfloat types also have def-use relations with attribute Value objects. Hence, the current LLVM implementation is incompatible with our type extension, and a vpfloat type cannot be obtained by traversing the def-use chain of an attribute. Due to the required modifications of many key components of the compiler for making the current def-use implementation compatible with our type system, we have chosen to keep a separated list of Value objects being used as types attributes. One should notice that constant values do not require tracking, since they will never change. Once the list is constructed, two operations are possible:

(1) Update: optimizations may optimize values in the program that require the update of references from our tracking list. If an object is replaced by a new one, our type system makes sure to update any type that uses the old value to the new reference.

(2) Deletion: Because LLVM classical optimizations have no knowledge about our tracking system, it is possible they wind up realizing that values being used as vpfloat attributes are no longer needed in the computation and, thus, can be deleted. However, an object deletion can invalidate types. Our compiler makes sure vpfloat attributes are never deleted by adding a mark through an intrinsic call. Because they are inherently seen as having side effects, adding intrinsic calls to mark values avoids their deletion. Although this may have a negative impact on the generated code, we ensure that vpfloat types are not invalidated.

Loop Idiom Recognition

Another optimization change for vpfloat compatibility is implemented for the Loop Idiom Recognizer. This pass implements a simple, yet efficient transformation that replaces a simple loop structure into a non-loop form. Two of the implemented optimizations consist of detecting loop structures that can be replaced by memset and memcpy calls: the former is used to detect object initialization in an array and the latter copies an object from one location to another. These transformations can greatly improve application performance and are depicted in Listing 5.4a. Constant vpfloat types are implemented in the same fashion as traditional primitive types. Lines 1-10 and Listings 5.4b-5.4d exemplify how the pass generates memset and memcpy calls to initialize array values for constant types double and a 6-byte unum.

We have modified this pass to take into consideration dynamically-sized types where sizes cannot be known at compile time. If a dynamically-sized type is found, the compiler uses the __sizeof_vpfloat function to calculate the size of the type in use. Listing 5.4e shows how the pass optimizes a vector-copy for-loop by generating a memcpy call instead. Because the pass does not know the size of vec_unum1 and vec_unum2 a priori, it generates a call to __sizeof_vpfloat. Additionally, due to the definition of the base MPFR data type which includes a pointer variable in the struct (see in Listing 4.2), this pass has been disabled for the vpfloat <mpfr, ...> types. Listing 5.4f shows that no optimization is performed for the vpfloat <mpfr, 16, 100> data type.

Inlining

Inlining Expansion replaces a function call site by the body of the function and is a relevant optimization to improve code performance. Some inlining heuristics can lead to speedups of more than 50% in execution time [START_REF] Arnold | A comparative study of static and profile-based heuristics for inlining[END_REF]. While constant types have out-of-the-box support, types with runtime attributes require additional work during inline expansion as they are only considered valid inside a function. This issue boils down to the def-use chains from the previous section (see 5.2.3.1).

We have expanded the pass to include support for these types. Values with dynamically-sized types have their types changed (or mutated) in order to comply with the current function where they are being used in. We illustrate two examples of inlining expansions that may be generated: (2) The callee vpfloat with runtime attributes needs to mutate to a caller one with the same characteristics. Our implementation ensures that caller attributes are used, and no reference to the callee function remains to invalidate values of the new type. Function call to func_sum(Lines 19-21) has been inlined, and had values mutate from vpfloat<mpfr, 16, p>, in function func_sum, to vpfloat<mpfr, 16, p>, in function func.

In both cases, we must also guarantee that constants, return types, and any call within the inlined function (and its type) are mutated.

Lifetime Marker Optimization

LLVM generates a pair of intrinsics, llvm.lifetime.start 3 and llvm.lifetime.end 4 , to mark the lifetime of variables in the program. The main goal is to provide passes with hints on the lifetime of variables for optimization opportunities. More precisely, the compiler implements a stack coloring optimization that makes use of lifetime markers to represent the lifetime of stack slots. It then attempts to reduce the used stack space by merging disjoint stack slots. We must follow the same reasoning from loop idiom recognition and disable, or prevent, this optimization to run for MPFR based types. Because code generation will transform them into MPFR struct types, we are not able to guarantee proper memory management when stack locations between objects overlap. The pointer variable _mpfr_d makes the mpfr_t struct non trivially-copyable. Removing lifetime intrinsics for MPFR-derived types resolves this issue. Although one may argue that removing lifetime markers may incur an extra performance overhead, the stack coloring optimization has shown negligible impact on performance in our experiments. Their removal asserts that deletions are executed for all objects.

OpenMP Multithread Programming

Improvements in performance have much to do with how much parallelism can be explored in computer applications. Having first-class support for primitive types in the compiler enables their use within parallel programming schemes like OpenMP [START_REF] Dagum | OpenMP: an industry standard API for shared-memory programming[END_REF]. Looking at both language and compiler perspectives, to the best of our knowledge, this is the first work that shows MPFR and UNUM types integrated within language and compiler, with multi-thread execution capabilities. Previous works are OpenMP-compatible through high-level abstractions and miss optimization opportunities.

Loop nest Optimizations

Our LLVM type extension is also able to leverage advanced loop nest optimizers. Polly [START_REF] Grosser | Polly -Polyhedral optimization in LLVM[END_REF], LLVM's loop nest optimizer, can also be used to optimize vpfloat memory accesses. Any limitation of the polyhedral model in vpfloat is mostly given by the optimizer. Constant-sized types, described in sections 4.4.1 and 4.4.2, are fully supported by Polly. Any potential performance slowdown is caused by suboptimal heuristic tuning, a well-known challenge with loop nest optimizers in general.

In the case of dynamically-sized types, the limitation stems from Polly's lack of support for performing loop tiling with runtime loop bounds, i.e., the application of loop tiling where bounds are not known at compile time. This requires heuristics to generate loops with a dynamic (runtime decidable) behavior, and full automatic support for dynamically-sized types are mostly dependent upon adding this functionality to Polly. Although we can trick the optimizer to assume these types to have constant sizes, it is likely to generate suboptimal heuristics with poor performance. Nevertheless, we can still explore polyhedral techniques at code-level with other optimizers [START_REF] Bondhugula | A Practical Automatic Polyhedral Program Optimization System[END_REF][START_REF] Verdoolaege | Polyhedral parallel code generation for CUDA[END_REF], as shown in 4.7.1. Still, our experimental results 6.1 will show the benefits of Polly for constant-sized types.

Vectorization

Vectorization has become one of the most essential techniques in today's systems. Although our backends are not yet prepared to handle vector instructions, our LLVM IR type system has been implemented so that it does not hinder the use of vectorization. In other words, vectorization of vpfloat types is possible if compatible code generators are provided. Perhaps more importantly, because of our extensible language and compiler extensions, developers can, more easily, define new types that can potentially make use of vectorization strategies.

In Listing 5.6, we show an example axpy function implemented with an MPFR-derived type (Listing 5.6a) and its vectorized IR code for the loop body (Listing 5.6b). Code was compiled with -O3 flag, which enables vectorization, and -mllvm -force-vector-width=128 option to force vector size of 128 elements. There is no IR restriction for vectorization of vpfloat types with 

Code Generators

From the application perspective, an IR type extension like vpfloat is not worthwhile unless a compatible backend for each type is provided to drive their capabilities. In order to evaluate the effectiveness of this integration, we designed and implemented two backend code generators that support each vpfloat representation. Backends were selected to fit the requirements of our extension. In both cases, we chose those that effectively offer the flexibility we provide. That is, (1) support for variations of precision, exponent attributes with static and dynamic features. The MPFR backend consists of lowering the vpfloat<mpfr, ...> to generate MPFR [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF] code, hence, showing the integration with a software target. Our second backend makes use of the vpfloat<unum, ...> representation in order to partially implement the RISC-V ISA [START_REF] Bocco | Dynamic Precision Numerics Using a Variable-Precision UNUM Type I HW Coprocessor[END_REF][START_REF] Bocco | SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing[END_REF] extension for UNUM variable precision arithmetic of [START_REF] Gustafson | The End of Error: Unum Computing[END_REF], thus targeting a hardware solution. The remaining sections of this chapter detail the aspects relative to each backend, showing code transformations, and target-specific optimizations implemented for each backend.

Software Target: MPFR

The MPFR code generator takes the form of a middle-end transformation pass that lowers the vpfloat <mpfr, ...> type into MPFR references. It runs at a late stage of the middle-end LLVM compiler to guarantee that the main optimizations, if enabled, have already been executed.

Although the pass is used for MPFR code generation, we made it generic enough to handle any type expressible with vpfloat. This means that adding backend support for a software target can easily be achieved by implementing a few functions. Our transformation only requires one to write callbacks to set up the external library information, such as, the base data type used, names of function that implement each operation, allocation strategy and routines, among others. In fact, one could easily use the MPFR backend as a GMP [START_REF] Granlund | GNU Multiple Precision Arithmetic Library 6[END_REF] backend by providing the appropriate callback routines. Or even more, a software backend for the vpfloat<unum, ...> backend could also be derived in the same way.

In its essence, the pass traverses functions in the compilation unit (or module) searching for vpfloat<mpfr, ...> types and recreate them as MPFR objects. Lowering to MPFR calls and references involves the following transformations:

(1) MPFR represents its objects by a C struct (see Listing 4.2) that must be allocated and initialized before first use. This characteristic imposes the first hurdle for MPFR code generation in an unmanaged language like C. While wrappers for higher-level languages like C++, Python and Julia, can hide allocations and deallocations away from users through their language abstractions, C has no automatic support for memory management.

We thus provide similar functionality to enable automatic memory management of MPFR objects by monitoring LLVM IR alloca instructions and their enclosing scope. This is possible because vpfloat variables are typed as first-class scalar values, and are modeled as stack-allocated in upstream passes. This enables fully transparent creation and deletion of MPFR objects. In addition, any optimization pass reducing the number of live variables will translate into more efficient memory management after lowering to MPFR. The pass is also in charge of generating proper object initialization, translating constant and dynamicallysized types to the appropriate MPFR configurations and calls. Our pass detects single and multi-dimensional arrays and structs of variable-precision values, generating the appropriate calls to allocate multiple MPFR objects if needed. Moreover, it supports the creation and deletion of MPFR objects through dynamic memory allocation (malloc, new, etc.), and transparently manages objects created with these functions.

Below, we show examples of the allocation strategies adopted as described in the aforementioned paragraphs, namely, for alloca instructions, multi-dimensional arrays, and dynamic memory allocation, respectively. On the left-hand side, we depict a snippet of a vpfloat code as written by the programmer, while the right-hand side illustrates a C-level representation generated by our transformation pass. (2) Arithmetic IR instructions fadd, fsub, fmul, fdiv are converted to mpfr_{add,sub, mul,div} or any of their derivative functions (mpfr_{add,sub,mul,div}_{si,ui,d}). Comparisons, negation, and conversions all have corresponding functions in the MPFR library. These op-to-op conversions gives us opportunities for a first optimization: we try to leverage MPFR functions specialized for the case where one or more operands can be re-written with a regular primitive data type, e.g. double, unsigned, float, etc, without precision lost. The following example shows some of the conversions and optimizations performed. Notice that values 1.0 and 0.5 can be represented as int and double even though they were previously defined as vpfloat. This simple approach is used to generate more specialized functions to accelerate computation since they are likely to operate in objects with a smaller memory footprint. (4) Load instructions, Φ Nodes, dereferencing (element-indexing) instructions, and constant values of vpfloat arguments are all rewritten to use the MPFR struct type. Store instructions are converted to mpfr_set or any of its derivative functions (mpfr_set_{si, ui,d}) for performance purposes.

(5) C++ imposes particular challenges for MPFR code generation due to some object-oriented features, such as VTables, lambda functions, and classes. Our code generator supports all these features for constant types. The lack of support for types with runtime attributes within compound types (class, struct, and function types, etc.), as described in the Language Extension Limitations section 4.6 from the previous chapter, propagates this limitation to the backend.

Compound types that make use of vpfloat<mpfr, ...> and its compound-type variances (pointers, arrays, etc.) are reconstructed as MPFR struct types. VTables are all updated to the newly recreated references so that the C++ polymorphism feature is supported.

In the example above, our pass creates a new VPFloatClass with mpfr_t types and recreates all objects with this new type. Although LLVM provides a mutateType method, it is strongly advised to recreated objects instead. Creating new compound types involves a recursive operation to remake them in a bottom-up order due to type dependencies: type1 may declare an object of type2 that has vpfloat<mpfr, ...> inside. Not only do we need to recreate type2, but type1 as well, and the associated structures that they use.

Although Loop Idiom Recognition is disabled for vpfloat<mpfr, ...>, the compiler can still make use of memory-related functions (memcpy, memmove, etc.) through the C++ standard library, or when capturing lambda functions by value. From the language perspective, vpfloat types are considered to have the same semantics as regular FP types. That is, they are seen as trivially copyable types. On the one hand, this facilitates IR code generation from a C++ level since it does not require implementation of copy and move constructors. On the other hand, it also adds extra complexity to the generation of MPFR code, which, due to the pointer variable in the struct, is not trivially copyable. To circumvent this issue, our code generator detects memory-related functions and generates three additional functions (prepare_memcpy, clean_memcpy, vp_memcpy) to support for them. Essentially, we are able to guarantee that the pointer to the mantissa field is not overwritten, only its content is copied/moved accordingly. We illustrate this transformation in the example below: Function prepare_memcpy performs a simple memcpy to save the values of X which are overwritten by the original memcpy operation. After memcpy is executed, the pass calls vp_memcpy to restore the correct values of the object and make a copy to their right locations. Lastly, clean_memcpy frees up the temporary memory allocated by prepare_memcpy. These functions were implemented to handle the manipulation of vpfloat types in two scenarios: (1) when pure multi-dimensional arrays are copied/moved between locations, like in the example; (2) or when copies and moves are introduced due to lambda functions and C++ standard library. For instance, in the case of having vpfloat declarations within a class object. // Some code } that implements an atomic compare-and-swap. 5 MPFR-derived types are not automatically handled by OpenMP in scenarios where objects need to be atomically modified with a single IR or instruction (they use a library call). This occurs because, as mentioned herein repeatedly, the pointer variable in the MPFR struct prevents atomic updates. Our code generator enforces atomicity by inserting a critical section and calling our implementation of compare_and_exchange. The critical section uses a dedicated mutex, properly nested to avoid interference with any other synchronization. Function vp_atomic_compare_exchange has an equivalent implementation to those of traditional atomic_compare_exchange functions, but targets MPFR objects. We present below the use of omp atomic directive to calculate the value of π and pseudo-codes generated by the compiler from the pragma directive. The code on the left follows the classical compilation flow and generates a call to atomic_compare_exchange to atomically manipulated π in double. On the right, π is calculated using vpfloat<mpfr, 16, 1000>, and our transformation adds a critical section in order to properly update the object value with vp_atomic_compare_exchange. Moreover, we also present a possible implementation for vp_atomic_compare_exchange.

(7) Eventually, the MPFR code generation pass attempts to optimize the number of dynamically created MPFR objects by reusing old references if it is guaranteed that their values will no longer be needed. Notice that the pass operates on Static Single Assignment (SSA) form, making this step differ from a traditional copy elimination and coalescing, both implemented in target-specific backend compilers. Instead, we follow a backward traversal of use-def chains to identify MPFR objects that may be shared across variable renaming of invariant values, and across convergent paths with mutually exclusive live intervals.

In summary, the pass rewrites all vpfloat<mpfr, ...> operands by replacing them with MPFR objects and the appropriate initialization. Unlike higher-level MPFR abstractions such as the C++ Boost library for multi-precision arithmetic [START_REF] Maddock | [END_REF], we are able to leverage the compiler toolchain and its existing optimizations (constant folding, inlining, common subexpression elimination, among others), with MPFR objects only being created at the end of the middle-end compilation flow. Furthermore, since this backend is actually implemented as a middle-end pass, it is usable for all target ISAs with respective LLVM backends. In fact, because our pass is target-independent, we have collected results for this target in two distinct systems: a RISC-V FPGA-based processor, as well as X86 systems.

Hardware Target: UNUM

Our second backend makes use of the vpfloat<unum, ...> representation in order to partially implement the RISC-V ISA [START_REF] Waterman | The RISC-V instruction set manual, volume i: User-level ISA[END_REF] extension for UNUM variable precision arithmetic of [START_REF] Bocco | SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing[END_REF]. Table 5.1 shows the instructions supported by our backend. We exclude all instructions related to interval arithmetic, since our types are only used for UNUM scalar representations, and are not intended for interval endpoints.

The ABI specification for the ISA extension is similar to the standard RISC-V FP ABI. Table 5.2 lists the coprocessor registers and respective roles in the defined calling convention. Register naming uses the same convention as the FP registers in RISC-V. However, in lieu of using f as a prefix, the letter g is used to denote coprocessor registers. The calling convention for argument and return values also complies with the RISC-V FP ABI, as well as the registers preserved across function calls.

Compiler-Controlled Status Registers

The compiler must work together with the proposed ISA to coordinate and control multiple parameters inside the coprocessor. This ISA extension supports generic FP instructions with precision ranging from 64 to 512 bits, controlled at a 64-bit granularity. Since the UNUM format [START_REF] Gustafson | The End of Error: Unum Computing[END_REF] is used to represent values stored in memory, loads and stores must be parameterized according to the variable size and positioning of the UNUM fields in the highly flexible format. Two control registers hold the ess and fss fields of the UNUM formats, controlling the maximum values of ess and fss defined by the coprocessor, also known as UNUM environment (ess,fss). For instance, a UNUM environment [START_REF] Aho | Compilers, principles, techniques[END_REF][START_REF] Ansel | PetaBricks: a language and compiler for algorithmic choice[END_REF] indicates maximum ess and fss values of 4, 8, respectively. These values are sufficient to represent numbers with at most 16 bits of exponent, and 256 bits of mantissa. The ISA also defines concepts of WGP (Working G-layer precision) and MBB (Memory Byte Budget), which are, respectively, the precision used in computation and the maximum number of bytes read and written during load and store operations.

According to the ISA specification, the compiler is in charge of controlling six control registers. Table 5.3 gives a description of each control register with the minimum and maximum values they can assume. The ISA specifies two UNUM environments that can be used simultaneously by operating with different memory instructions. Instructions lgu and stu use values of the default UNUM environment, while lgu.s and stu.s consider ess and fss values of the second UNUM environment. In the following section 5.3.2.2, it will be shown that having two UNUM environments help the compiler handling constants for types with runtime attributes. Values wgp and mbb, on the other hand, are have no duplication. That is, the compiler may need to alternate these values in order to allow multiple configurations simultaneously.

Additionally, we have designed and implemented two additional passes to properly handle the generation of generic FP operations with the UNUM ISA: the first targets the configuration of status registers in the coprocessor, and the second addresses memory accesses for dynamicallysized types in multi-dimensional arrays.

FP Configuration Pass

The FP configuration pass consists on analyzing functions in the call graph and properly configures the status registers (ess, fss, WGP, MBB) as to convey to high level type information. The pass runs in the middle-end phase since it is the lowest level to retain information about type configuration. Types in the backend are lightweight and cannot fully represent FP attributes of vpfloat. An IR pass also enables it to be target-independent and can potentially be used for architectures other than RISC-V.

The pass keeps track of values that come in and go out of basic blocks. By analyzing the control flow graph (CFG), it guarantees that values are being properly assigned. If any change is Although the coprocessor has two UNUM environments that could be used to alternate the used values of ess and fss, we reserve the second one to handle two situations:

(1) Load constants in dynamically-sized types: section 4.4.3.4 explains that constants for these types are generated with a maximum configuration. For UNUM types, that corresponds to the maximum values of ess and fss supported by the coprocessor. Therefore, assigning a constant to a dynamically-sized variable implies the use of lgu.s in lieu of the lgu instruction6 .

(2) Register spilling may be necessary when the number of live variables during the execution of the program is greater than the number of available registers. We use the second environment to spill the register as a maximum configuration. Even though this slows down spilling and filling operations during register allocation, it does not require the register allocator to have any previous knowledge of the FP configuration of variables been spilled. Moreover, since there may be a significant difference between the spilling size of a variable and its actual memory size, techniques to avoid spilling [START_REF] Pereira | SSA Elimination after Register Allocation[END_REF] can play an important role to reduce the memory impact on high-precision representations.

Array Address Calculation Pass

Array address calculation pass is applicable only to dynamically-sized types and aims at providing proper array addresses. Since LLVM provides no support for dynamically-sized types, additional care is needed to compute the addresses of values whose sizes are only known at runtime. The __sizeof_vpfloat function allows to perform this task. The pass traverses every function searching for GetElementPtr instructions. These instructions are replaced by the appropriate low-level address computation, accumulating over the number of elements and the dynamic size of every element.

Conclusion

This chapter presents the modifications and requirements needed to extend the support of our vpfloat type system substrate to an industry-level compiler infrastructure. We showed many aspects that justify why this integration improves the state-of-the-art. We showed which optimizations may and may not run in the compilation flow, and code modifications needed for many of the language aspects, such as runtime capabilities and type compatibility. We also described how vpfloat<unum, ...> and vpfloat<mpfr, ...> go from the LLVM IR type system to their code generators: the former through a RISC-V ISA extension and the latter by relying on the open-source MPFR library.

Chapter 6: Experimental results In the previous chapters, we have described the whole compilation flow required to provide variable precision FP arithmetic. Language extension, type system and compiler support have been proposed as an intent to better explore different types, precision and exponent configurations, and at last variable precision computing. This chapter will focus on the experimental results that give basis to the contributions of this thesis.

Contents

We start by presenting and hopefully convincing the reader on, the benefits of language and compiler integration of a language extension for multiple FP formats. The second segment of this section consists of illustrating the use of variable precision within linear algebra kernels. By making use of the mpfrBLAS library described in section 4.7.1, we provide implementations to different variants of the Conjugate Gradient (CG) and show interesting insights that may encourage the exploration of variable precision computing.

The Benefits of Language and Compiler Integration

This section is mainly divided into two parts. The first focuses on comparing our extension, type system and compiler solution to a state-of-the-art approach with equivalent functionality with the intent of showing the benefits of compiler integration. The last part presents experimental results to demonstrate the advantage of having hardware support for high-precision formats.

MPFR vpfloat vs. Boost Multi-precision

This section shows a comparison of our MPFR type vpfloat<mpfr, ...> with the Boost library for multi-precision [START_REF] Maddock | [END_REF]. Both approaches rely on the MPFR library and execute code with equivalent precision values. The goal is to demonstrate that high-precision FP emulation libraries can further benefit from language and compiler integration. Because compilers cannot detect FP representations within high-level languages abstractions, optimizations opportunities are missed. While traditional IEEE formats are handled through different compilation strategies at a later stage of the compilation process1 , our type system mimics the behavior of standard (compiler-compatible) types by relying on a middle-end pass but still leveraging much of the compilation flow and optimizations. Experiments were conducted using two different systems: a dual-processor Intel Xeon E5-2637v3 machine with 128GB of RAM, and a dual-processor Intel Xeon Gold 5220 machine with 96 GB of RAM, labeled M1 and M2, respectively, and depicted in Table 6.1.

Polybench

The Polybench benchmark suite [START_REF] Pouchet | PolyBench: The polyhedral benchmark suite[END_REF] is a collection of 30 kernels aimed to explore the impact of compiler optimizations in a variety of areas. It is widely used to measure the benefits of applying polyhedral optimization techniques in a compiler and contains code for many computation-intensive algorithms in fields of linear algebra, stencil, and data-mining. Two strategies were used to Polybench version 4.1: (1) first, we compiled Polybench for both baseline and vpfloat<mpfr, ...> types using optimization level -O3; (2) in the second scenario, we use optimization level -O1 for vpfloat<mpfr, ...> for reasons that will be explained later, while Boost continued to be compiled with -O3. In both scenarios, we enable and disable Polly's polyhedral loop nest optimizations [START_REF] Grosser | Polly -Polyhedral optimization in LLVM[END_REF], and the best execution time reference, with and without Polly, is taken for each application. Each application was compiled for three different precision configurations: 100 bits (≈30 decimal digits), 170 bits (≈50 decimal digits), and 500 bits (≈150 decimal digits). Figure 6.2 shows the speedup for each benchmark using Boost as the baseline and when compiling both solutions with optimization level -O3. Figure 6.3 depicts the values of speedups considering the same baseline but with vpfloat<mpfr, ...> applications being compiled with optimization level -O1. We observe speedups over most of the test suite for all precision configurations in the two machines where experiments were executed. A few kernels have shown similar performance to Boost: jacobi-1d and jacobi-2d at the lower precision settings, and doitgen, durbin and mvt at highest precision when executed in the M2. The only slowdowns occur on some specific cases: adi and deriche at lower precisions only. These results are due to the complexity of the array access patterns in the stencil kernel, hitting limitations of the MPFR lowering pass in reusing MPFR objects over invariant or mutually exclusive values. In other cases, the measures show that a late MPFR lowering dramatically improves performance, especially on computationally intensive kernels benefiting from greater cache locality and a proportionally more significant decrease of MPFR memory management overhead.

The reason why we chose to plot results for -O1 optimization level is that we observed many benchmarks exhibit better performance with this optimization flag rather than with -O3. In fact, the overall speedup of -O1 has shown to be superior to -O3. This was originally a surprise, but can be explained as follows: as MPFR requires memory allocation for every object in use, suboptimal performance at -O3 stems from the higher number of allocations generated. Because the compiler runs many aggressive optimizations (inlining, loop unrolling, aggressive code motion, just to name a few), many more objects need allocation and incur an extra execution time in the application. In fact, finding optimization sequences that are likely to yield better performance is challenging. However, recent work [START_REF] Silva | Exploring the Space of Optimization Sequences for Code-Size Reduction: Insights and Tools[END_REF][START_REF] Zanella | YACOS: A Complete Infrastructure to the Design and Exploration of Code Optimization Sequences[END_REF] on the exploration of optimization space could potentially help us investigate better optimization heuristics in the presence of multi-precision arithmetic, and is a relevant topic for future work.

We have also decided to run experiments in two different machines in order to show that speedups are not inherent to specific system configuration. Experimental results are similar in the two configurations, and differences are, in the most part, within an acceptable tolerance range. Kernels floyd, and lu show significantly better speedups in M2, because Boost versions show bad usage of the cache with an increase in the number of cache misses, and thus, impacting execution time. A following experiment will demonstrate that cache misses in Boost have an even greater impact when running applications with multiple threads of execution.

Overall, results show an average performance speedup (vpfloat<mpfr, ...> vs. Boost library for MPFR) of 1.80× and 1.86× for M1 and M2, respectively in -O3. Additionally, it should be pointed out that these results have been corroborated by peers through an Artifact Evaluation (AE)2 submitted to a conference, and functional and reproduced badges had been given. For -O1, speedups of 1.88× and 1.91× were observed in the two machines.

Impact of the Loop nest optimizer

One of the major advantages of our solution, as we have been highlighting throughout this document, relates to compiler integration and the possibility of using optimizations out-ofthe-box. This is particularly true when considering Polly Loop nest Optimizer. Even without modifications to support vpfloat, Polly is able to find optimal array access patterns in the Polybench suite compiled for vpfloat. To illustrate our argument, figure 6.1 shows the speedup of -O3 + Polly vs. -O3. Although many kernels have seen slowdowns when compiled with Polly, an overall speedup of 1.18× is observed. It shows that deeper compiler integration helps to accelerate FP emulation libraries. On the other hand, Polly is unable to optimize Boost array accesses. The optimizer gives up trying to find patterns that suit the complexity of the library. 

Compilation time

Another important metric to consider is the time needed to compile each application. Because the middle-end pass implemented to transform vpfloat<mpfr, ...> to MPFR references incurs an extra compilation time to code generation, it is important to measure its impact in compilation time. Table 6.2 shows significant speedups in terms of compilation time for the Polybench applications. In fact, Boost high compilation times stem from C++ template deduction, highly used in the Boost Multi-precision library. The difference in compilation times between -O3 and -O3 + Polly for vpfloat<mpfr, ...> types shows that the optimizer is, in fact, supported by these types. Similar compilation times between -O3 and -O3 + Polly for Boost shows the contrary. an Intel Xeon Gold 5220 with 96 GB of RAM (M2), respectively. Y-axes are shown with the same limit to ease comparisons between results in the two machines.

RAJAPerf

The RAJAPerf benchmark suite [START_REF] Rajaperf | [END_REF] is a collection of loop-based computational kernels commonly found in HPC applications. Kernels are written such that they can be implemented in different variants: sequential (single-threaded) execution, and parallel programming models like OpenMP, and CUDA. Examples of applications are the traditional AXPY and DOT product from BLAS libraries, Polybench kernels like 2mm, 3mm and adi, vector additions and multiplications, among many others. Table 6.3 shows the list of the 43 RAJAPerf applications used in this experiment and classified according to their groups. We compiled the suite at optimization level -O3 for our vpfloat<mpfr, ...> type and compare it with the Boost library for Multi-precision, both relying on the MPFR library with equivalent precision (≈ 30 decimal digits). The suite is implemented in C++, and makes use of high-level abstractions such as Lambda functions, polymorphism, dynamic dispatching, and thus, highly motivated the support of such features in our type system. All applications are compiled for sequential and parallel execution. By leveraging the integration with OpenMP, described in Section 5.3.1, we also collect results for three OpenMP variants along with the three sequential variants for a total of 6 variants of each kernel, and a total of 258 variants. Figure 6.4 shows the speedup of vpfloat<mpfr, ...> over Boost. Y-axes are depicted in different log scales in order to show the speedups achieved by OpenMP variants in each machine. As was the case for Polybench, we observe speedups over most of the test suite, and slowdowns are associate with additional copies and object allocations that are needed in these specific cases. Measurements also demonstrate that a late MPFR lowering pass significantly improves performance for the majority of cases. More interestingly, our solution scales much better than Boost when using OpenMP in both systems. Hardware counter measurements, collected in M1, indicate that speedups in the 7-9× range stem from the reduction of memory accesses and cache misses, with up to 90× reduction in last-level cache misses. The Boost implementation often converts compute-bound kernels into memory-bound ones as memory transactions exceed the off-chip bandwidth. Deep integration with the compiler and its optimizations and the reuse of old MPFR objects contribute to reduce the memory pressure and allow our solution to scale much better in multi-threaded environments. Table 6.4 shows averages speedups in M1 and M2 for all RAJAPerf variants. We notice that systems with many more processors/threads lead to better overall speedups, especially in OpenMP variants. This shows an important property of our solution: scalability. Because our solution scales better than the baseline, better speedups are seen in more powerful systems. Finally, these results have also been corroborated by peers through an Artifact Evaluation (AE).

Compilation time

Similar to Polybench, we also estimate the compilation time needed for RAJAPerf in the two scenarios. Once more, our solution has shown to outperform the baseline in that metric. RAJAPerf with vpfloat<mpfr, ...> was compiled in 313 seconds, while the Boost version required an average of 1054 seconds. In summary, with a compilation time speedup of 3.37× we are able to produce code that can be more than 32× faster than the baseline. We also demonstrate the effectiveness of our type extension and its integration with LLVM on a hardware implementation of the UNUM format. The main purpose of this experiment is to show the benefits of hardware support for high-precision representations. To the best of our knowledge, until now, UNUM's functionality could only be evaluated with software libraries since no hardware implementation supported a software stack capable of running representative benchmarks. Owing to the better performance observed in Section 6.1.1.1 when compared to Boost, we used our vpfloat<mpfr, ...> implementation as the baseline for comparison with the UNUM coprocessor.
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Our target platform consists of an FPGA implementation of a RISC-V Rocket processor [START_REF] Asanović | The Rocket Chip Generator[END_REF] connected to the UNUM coprocessor of [START_REF] Bocco | SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing[END_REF]. All benchmarks including baseline MPFR implementations have been compiled to the RISC-V ISA. As explained in section 5.3.1, our MPFR backend is target independent, and hence, applications with vpfloat<mpfr, ...> types can potentially be executed on any LLVM-compatible platform with MPFR support.

We compiled Polybench for both baseline (vpfloat<mpfr, ..>), and vpfloat<unum, ...> type using two strategies: -O3, and -O3 + polly. Each application was compiled using three precision configurations: 100 bits (≈30 decimal digits), 170 bits (≈50 decimal digits), and 500 bits (≈150 decimal digits). The execution time for the baseline is obtained considering the best time reference, with and without Polly. The main purpose of this experiment is to compare the best result for the vpfloat<mpfr, ...> type with two compilation procedures for the UNUM type (with and without Polly). Figure 6.5 shows the speedup of applications normalized to the baseline MPFR performance (note the logarithmic scale). Unfortunately we hit hardware bugs when executing some benchmarks: gesummv and adi failed to run when compiled with Polly and 3 more benchmarks failed at the highest precision with Polly (3mm, ludcmp, nussinov). This is due to an issue in the coprocessor memory subsystem.

We notice that Polly is able to significantly improve performance for many applications in the test suite. This is solid validation of the robustness of our design and implementation, given the complexity of polyhedral compilation methods and their sensitivity to efficient memory management. We notice a larger speedup gap in vpfloat<unum, ...> (with and without Polly) than in vpfloat<mpfr, ...> types. vpfloat<unum, ...> kernels compiled with Polly have an overall speedup of 1.44× over its -O3, and this difference over vpfloat<mpfr, ...>(1.18×) is explained as follows: because a UNUM type has an in-place layout, the array access patterns generated by Polly better match such characteristic. Although MPFR types are accelerated by the optimizer, the heuristics available do not work as well as for UNUM types, and optimizing them for MPFR types is an interesting venue to explore as future work.

It further validates the benefits of making variable precision FP arithmetic transparent to upstream optimization passes. Notably, gemm, 2mm and 3mm show speedups of more than 20× over the baseline, benefiting from cache and register reuse through polyhedral loop optimization with downstream loop unrolling and scalar promotion. Average speedups at the highest precision (150 digits) are 18.03× and 27.58× for O3, and -O3 + Polly, respectively. The rare slowdowns with Polly are caused by suboptimal heuristic tuning, a well-known challenge with loop nest optimizations in general. As expected, having support for high-precision computation lead to significant performance gains over software targets. These results show great benefits of having compiler (and hardware) support for high-precision representations, especially now with the rise of the dark silicon era [START_REF] Esmaeilzadeh | Dark silicon and the end of multicore scaling[END_REF]. 

Linear Algebra Kernels

The first segment of this chapter showed that supporting a substrate of variable precision computing in a language and compiler enable significant acceleration when comparing with state-of-the-art solutions. These experiments demonstrate the potential of our proposal and the benefits of a compiler-integrated solution. The remaining of this chapter is dedicated to illustrating the use of variable precision in the context of Linear Algebra and is used to show interesting insights to encourage the exploration of variable precision computing in this area. The experiments conducted in section 6.1 all made use of constant MPFR and UNUM types, as there was no need for dynamic type manipulation of any sort. In this section, we concentrate our attention on showing potential use cases of types with runtime-decidable attributes, which are not only a great exploration tool for precision-awareness in numerical applications but also essential to adaptive or variable precision computing. Although high-level languages like Julia [START_REF] Bezanson | Julia: A Fast Dynamic Language for Technical Computing[END_REF] or Python [START_REF] Van Rossum | Python reference manual[END_REF] provide dynamic type systems amenable to this kind of research, our type system has the great advantage of enabling C-level performance, as well as supporting both hardware and software targets. We conclude this chapter by experimenting with multiple variants of the Conjugate Gradient (CG) linear solver method.

Conjugate Gradient (CG)

To demonstrate how our type system can be beneficial to the exploration of variable precision, we used our vpfloat<mpfr, ...> to implement multiple variants of the Conjugate Gradient method. The CG algorithm solves linear systems in the form of Ax = b when matrix A is Symmetric Positive Definite (SPD), a common case for the resolution of partial differential equations (PDEs). It is classified as an iterative method, a mathematical procedure that uses an initial value to generate improvements of the solution with successive operations. Contrary to direct methods that have a finite (predefined) number of operations, iterative methods are based on a convergence state to determine the number of operations to execute. The method is exact in theory, but the successive roundoff errors slow down or even destroy convergence. The projective iterative method, typically exemplified by CG, has gained importance due to a low memory occupancy, typically O(N ) rather than O(N 3 ) for direct methods. CG is a good example to illustrate the influence of arbitrary precision in an application's output since the number of iterations needed for the algorithm to converge depends on the chosen precision. In the remaining sections that cover conjugate gradient, we go through a series of requirements, properties and descriptions for CG algorithms. Four CG variants are implemented: original Hestenes and Stiefel [START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF] CG, preconditioned CG, pipelined CG, and BiCG. We wrap up the CG section by showing experiments and a discussion over them.

Stopping condition

A common characteristic of CG algorithms is the stopping condition required by the iterative process. We adopt the common choice of using the value of r k , called recursive residual, as a threshold, usually called tolerance, for the stopping condition. When r k is under the threshold, the algorithm leaves the scope and stops the execution, and the result is kept within a predictable error margin. CG algorithms have a complex behavior regarding the mathematical relation between tolerance and attainable accuracy. This involves in-depth analysis which is well beyond the scope of this thesis. 

Precision-generic implementation

An important property we aimed to preserve in our type system is the ability to write code that is unique so that no duplication is needed to handle the underlying precision in use. In other words, our main focus was to design a type system that is precision-generic, i.e., where code is not attained to a single configuration. CG algorithms implemented with vpfloat<mpfr, ...> follow this requirement and, therefore, are precision-agnostic: the core CG iteration takes a precision parameter, and every run of the function can make use of a different precision value. This allows us within a single run of the application, without recompilation, to programmatically drive experiments with multiple precision configurations. Listing 6.1 shows how one would call cg_algo, implemented as precision-agnostic. We iterate over a loop where precision, defined as prec, ranges from 50 to 2000 with a step of 50. Finally, translating a CG algorithm to vpfloat is straightforward: [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems[END_REF] there is no need to extend the precision of the matrix A, as it is read-only;

(2) only working arrays have to be declared as vpfloat.

Original CG: Hestenes and Stiefel algorithm

The pseudo-code for the algorithm is given by Algorithm 2, where line 6 shows how r k controls the number of iterations.

Algorithme 2: conjugate gradient: original Hestenes and Stiefel algorithm [START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF] 1: p 0 := r 0 := b -Ax 0 2: while iteration count not exceeded do 3:

α k := r T k r k p T k Ap k 4:
x k+1 := x k + α k p k 5:

r k+1 := r k -α k Ap k 6:
if r k+1 ≤ tol then break 7:

β k := r T k+1 r k+1 r T k r k 8: p k+1 := r k+1 + β k p k 9:
k + + 10: end while One may notice how every operation can in fact be expressed as a BLAS function. The main motivation of implementing BLAS libraries for vpfloat types is to enable the exploration of these linear algebra algorithms. Listing 6.2 shows the implementation of the CG algorithm [START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF] with our mpfrBLAS library(from Section 4.7.1). Two stopping conditions can be seen: (1) at line 21 when the value of rs_next is below a threshold; (2) at line 4 when the maximum number of iterations has been reached and the algorithm is unlikely to converge. We only replaced: [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems[END_REF] vector-scalar products by vpm_axpy_vvv, (2) matrix-vector products by vpm_sparse_gemv_vdv, (3) dot products by vpm_dot_vv, and (4) products of a vector by a scalar by vpm_scal. Because these functions have rather similar function signatures (with the exception from the precision) to standard BLAS, it is fairly simple to retarget this algorithm for other library instantiations. 

α k := r T k r k p T k Ap k 6:
x k+1 := x k + α k p k 7:

r k+1 := r k -α k Ap k 8:
if r k+1 ≤ tol then break 9:

z k+1 := iM r k+1 10:

β k := z T k+1 r k+1 z T k r k 11: p k+1 := z k+1 + β k p k 12:
k + + 13: end while than those of traditional algorithms. Algorithm 5 shows the implementation of pipelined CG. Matrix-product A × w k (line 9) can be done in parallel to calculations from lines 10 and 11. Although this property adds more parallelism to CG, its drawback is the loss of numerical stability the algorithm is likely to observe when compared to traditional methods [START_REF] Carson | The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology[END_REF].

BiCG

While many problems lead to the handling and computation with SPD matrices, there are cases where a more general matrix must be employed and none of the CG algorithms previously described can be adopted. BiCG [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF] extends the use of CG to general matrices (and not only to SPD). It is similar to the original CG but requires some additional computation to account for matrix generality.

Results and Discussion

To demonstrate the use of variable precision and how our type system can be beneficial to this exploration, we have implemented and analyzed the impact of different precision values in all four CG variants (Hestenes and Stiefel [START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF], preconditioned, pipelined CG, and BiCG) for two constraints: number of iterations and execution time. BLAS libraries have been implemented with the following types: long double, __fp128, vpfloat<mpfr, ...>, and Boost mpfr_float Algorithme 5: Pipelined conjugate gradient algorithm [START_REF] Cornelis | The Communication-Hiding Conjugate Gradient Method with Deep Pipelines[END_REF] 1: p 0 := r 0 := b -Ax 0 2: s 0 := A × p 0 , w 0 := A × r 0 3: z 0 := A × w 0 , α 0 := r T 0 r 0 s T 0 p 0 4: while iteration count not exceeded do 5:

x k := x k-1 + α k-1 p k-1 6: r k := r k-1 -α k-1 s k-1 7: w k := w k-1 -α k-1 z k-1 8:
if r k ≤ tol then break 9:

q k = A × w k 10:

β k := r T k r k r T k-1 r k-1 11: α k := r T k r k r T k w k - β k α k -1 r T k r k 12: p k := r k + β k p k-1
13:

s k := w k + β k s k-1
14:

z k := q k + β k z k-1 15:
k + + 16: end while x j+1 := x j + α j p j 7:

r j+1 := r j -α j Ap j 8:

if r j+1 ≤ tol then break j + + 14: end while type. We also use OpenBLAS [START_REF] Xianyi | OpenBLAS[END_REF] as a reference implementation, that way an optimized version of each algorithm in double is also provided.

We used 40 squared SPD matrices from Matrix Market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF] with problem sizes (N) in the range of 132 to 5489. Matrices are stored as sparse using the Compressed Row Storage (CSR) format and can have up to 315891 non-zero elements (nnz). We selected 12 out of 40 to be displayed in Figures 6.6 and 6.7 (for the results of Number of iterations vs. Precision) and Figures 6.8 and 6.9 (for the results of Execution Time vs. Precision). The remaining matrices are included as appendices of the thesis to keep this chapter at a reasonable length.

Every application and matrix was executed using five configurations: double (OpenBLAS), fp80, fp128, vpfloat<mpfr, ...> (from 150 to 2000 bits, step = 50), and Boost for Multiprecision (from 150 to 2000 bits, step = 50). The convergence threshold (tol) was selected as 1e -10 in order to keep results within a reasonable degree of accuracy. A missing type in a figure means that the algorithm has not converged for that configuration. For example, pipelined CG did not converge for types double and fp80 in the nasa2910 matrix, and thus, they are not displayed in Figure 6.6. Execution times for the double type (in Figures 6.8 and 6.9, and appendix B) are not shown because they are usually at a smaller order of magnitude than other types. Experiments were conducted in M2, and could not be conducted with our vpfloat<unum, ...> in a RISC-V environment because the system has been ported to a new platform, and is still encountering stability issues.

Number of Iterations

Original CG, BiCG and Preconditioned CG

The impact of precision on standard matrices taken from Matrix market confirms a wellestablished result: in the general case, the higher the precision, the fewer iterations it takes to converge. In matrix bcsstk19, for example, OpenBLAS needs 295400 iterations to converge, while going to high precision requires a little more than 70000 for 150 bits of precision, and around 4000 when using more than 1000 bits. That is, high precision allowed a convergence speed of more than 700× when compared to OpenBLAS.

This observation can be spotted in 12 out of 12 matrices in the original, and BiCG algorithms. Indeed, when comparing the results of these two algorithms, one may also confirm that BiCG is a generalization of the original CG for non-SPD matrices since both have an equivalent convergence factor. This generalization comes at a cost: the additional computation can double the execution time.

Preconditioned CG is, without a doubt, the best-performing algorithm for all matrices analyzed. Applying a preconditioner beforehand decreases the condition number and helps to reduce significantly the number of iterations in almost all situations. The single situation where even preconditioning does not help is for the ill-conditioned matrix crystk01. Convergence is only achieved with the use of high-precision representations like FP128, or higher.

Remedying the stability of pipelined CG with high precision

Perhaps the most interesting result from these experiments come from analyzing pipelined CG. The algorithm is mainly proposed as a viable CG variant to run in many-core (distributed) systems because it offers a higher degree of parallelism than other CG implementations. However, it has shown to suffer from local rounding errors that accumulate in the vectors recurrences [START_REF] Carson | The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology[END_REF][START_REF] Cornelis | The Communication-Hiding Conjugate Gradient Method with Deep Pipelines[END_REF]. In fact, our results show and confirm that pipelined CG undergoes stability issues when executed with OpenBLAS4 . Differently from other variants that can be stable for many of the matrices analyzed, pipelined CG has not reached the stability necessary to converge in any of these cases. Besides, our experiments show an aspect that, to the best of our knowledge, has not being spotted by related work: increasing precision can help to minimize local rounding errors and offer the stability necessary for convergence. While many researchers have proposed to address pipelined CG's instability with new implementations to compensate those errors [START_REF] Cools | Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method[END_REF][START_REF] Cools | Improving strong scaling of the Conjugate Gradient method for solving large linear systems using global reduction pipelining[END_REF][START_REF] Cools | On rounding error resilience, maximal attainable accuracy and parallel performance of the pipelined Conjugate Gradients method for large-scale linear systems in PETSc[END_REF], we show a simpler solution that relies on increasing the computation precision of the application for regaining stability. Still, these results are significantly attained to the tolerance we used (1e -10 ), which is chosen to keep highly accurate results. If the tolerance was increased, this algorithm would certainly be less susceptible to convergence issues, an aspect to consider in the future.

An interesting observation is the non-linear behavior of the number of iterations for a linear increase in precision, an effect found in all variants, and mainly caused by the accumulation of rounding errors [START_REF] Carson | On the cost of iterative computations[END_REF] subjected through the multiple matrix-vector and vector-vector products. Another common characteristic of all instances relates to the precision in use: they all reach a minimum plateau value of the number of iterations needed for convergence. Some matrices reach this plateau with few hundreds of bits, while others may require thousands of bits. These results are an interesting exploration venue on numerical analysis aiming to determine a priori the best precision value to adopt as to exhibit a good trade-off between the number of iterations and execution time.

Because our type system can be precision-agnostic, we are able to run experiments and collect results for multiple-precision configurations with a single run of each application, without recompilation, and code duplication. Although results for Boost are also collected using the same approach, our solution still manages to outperform Boost by at least 1.35×, and it is still the only solution available with a real possibility of hardware integration, a venue that will be explored as part of our future work.

We would like to emphasize that, by no means, these results should be seen as mathematical proofs of how precision augmentation is beneficial. This study is merely an indicator that increasing precision in applications can have an interesting venue of exploration in CG benchmarks. Mathematically analyzing these results require a much more in-depth understanding of the nature and internal properties of CG, and is out of the scope of this thesis. Figure 6.6: CG variants with multiple formats with matrices nasa2910, bcsstk08, bcsstk11, bcsstk12, bcsstk13, and bcsstk16 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did not converge. Figure 6.7: CG variants with multiple formats with matrices bcsstk19, bcsstk20, bcsstk23, crystk01, s3rmt3m3, and plat1919 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did not converge.

Execution time

It may initially sound paradoxical that higher precision can lead to fewer iterations, however, this also demonstrates that higher precision may actually reduce the execution time of a numerical application, as depicted in Figures 6.8 and 6.9. We observe that many variants are indeed able to significantly improve execution time by relying on very high precision. For instance, all variants running in matrix bcsstk13, except precond, with 2000 bits of precision show more than 5× speed when compared to 150 bits.

Although high-precision representation can improve performance in different variants and matrices, the trend followed by execution time is not the same as for the number of iterations. We can observe that, for many situations, the reduced number of iterations is not able to compensate for the increase of precision, which results in higher execution times. This is the case for all variants in matrix bcsstk16, results that correlate to the small improvement in the number of iterations when precision is increased.

Precond has an interesting property: given that the condition number of the matrix is (highly) improved with a preconditioner, increasing the precision has two more perceptible effects:

(1) either the plateau is reached earlier, (2) or increasing precision has a negative impact on execution time and should be avoided. This variant has also shown the best overall execution times, which explains why it is the preferred implementation in numerical libraries.

Interestingly, numerical analysts can potentially make use of these results with the aim to determine the best trade-off between precision and the number of iterations for an optimal execution time. The objective would be to comprehend the behavior of the number of iterations and the impact it has on execution time, as an Oracle for the best representation to be used5 . Table 6.5 summarizes how execution time in vpfloat<mpfr, ...> compares to other types, showing the counts of the number of matrices where our type outperforms its counterparts. Values for vpfloat and Boost are cherry-picked with the best execution time among the precision range (from 150 to 2000 with a step=50). We observe that vpfloat<mpfr, ...> can outperform lower-precision types, like long double and __float128, in many matrices and variants. We also show better performance of Boost in the majority of cases, which corroborates with the results presented in previous sections of this chapter. Lastly, execution times for vpfloat are expected to be improved when UNUM type is used. Figure 6.8: Execution time for CG variants with multiple formats with matrices nasa2910, bcsstk08, bcsstk11, bcsstk12, bcsstk13, and bcsstk16 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm did not converge. Results for double are not displayed. Figure 6.9: Execution time for CG variants with multiple formats with matrices bcsstk19, bcsstk20, bcsstk23, crystk01, s3rmt3m3, and plat1919 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm did not converge. Results for double are not displayed.

Conclusion

This chapter demonstrated the productivity benefits of our intuitive programming model and its ability to leverage an existing optimizing compiler framework. We presented a series of experiments on PolyBench and RAJAPerf suites that yield strong speedups for both software and hardware targets. Our compiler integrated solution is more capable of leveraging the classical optimizations already implemented by the compiler, which helps to reason about the speedup results observed. Experimental results also showed that significantly higher speedups are observed when comparing a software to a hardware target. This result is particularly interesting with the rise of the dark silicon area and may be an aspect for evaluation on future processor designs. Our last experiments in CG are a step towards better understanding the impact of (high-)precision in linear algebra and illustrated how variable precision may raise its importance for the future of high-performance computing. To that end, this thesis is a step towards making variable precision easier to use and better integrated into a language, compiler and hardware, and serves as an enabler for better exploration of variable precision computing.

Chapter 7: Conclusion

This thesis defines a compilation strategy to use and explore variable precision FP arithmetic and proposes a design and implementation of this strategy. We are mainly interested in how languages and compilers can support data structures, types, and both software-and hardwareenabled operations to accelerate applications with different FP requirements. No previous solution has shown a complete integration of FP arithmetic with constant and variable memory footprint. Our proposed type system, embedded into the compiler's intermediate representation, and lowering and backend code generation strategies provide both high-productivity and highperformance with variable precision FP formats. Our extension supports FP arithmetic of arbitrary representation and precision, and the precision and exponent can be configured at compilation time and runtime.

We exposed a list of questions in chapter 2 and the work presented in the context of this thesis is intended to answer these questions. In the following paragraphs, we provide a summary of how we answered these questions:

How can languages and compilers be used to accelerate and improve the productivity of multi-precision FP libraries? Can one improve the integration between compilers and these libraries to take better advantage of classical compiler optimizations? Chapters 4 and 5 show the solution we propose to enable the instantiation of multi-format FP types. Because of the genericity of our type system, types that hide underlying implementation with multi-precision FP libraries can be supported. More precisely, an MPFR type (vpfloat< mpfr, ...>) has been added as a lightweight alternative to use the MPFR library in a more programmer-friendly fashion. This type provides a functionality similar to high-level MPFR abstractions, like Boost Multi-precision library, Julia and Python's dynamic type systems, but it offers a C-level easy-to-use interface for MPFR.

We provide an integrated compiler solution that bridges the abstraction gap between multiprecision FP libraries and compiler transformations, permitting us to postpone the instantiation of library-related operations and objects until after optimizations are run. Experimental results corroborate on showing that a later transformation pass to generate library-specific code has a positive impact on execution time since more optimization opportunities can be found. We also demonstrate through a practical code example (Figure 5.6) that even vectorization can be supported at least to some extend.

How can one extend languages and provide compiler support for new formats taking into consideration their singular properties?

Chapter 4 describes the language requirements, syntax, and semantics defined within the context of this thesis. We use a new primitive type vpfloat to encapsulate many properties of FP types. The use of a single keyword, although not necessary, is employed to allow multiple formats to coexist within a single context, and differentiates language pre-existing types from those of our extension. The proposed syntax offers flexibility for the declaration of formats with different attributes. Its use is not hindered by any constraint, such as precision and exponent values, or even size, and users should not be restrained by any form of type declaration. In other words, the support for FP arithmetic of arbitrary representation, whose precision and exponent can be configured at compilation time and runtime, allows a high degree of flexibility that has not been explored in previous works.

The effectiveness of our type extension (and language syntax) in representing multiple formats is shown through: (1) an MPFR-compatible type that views FP attributes as exponent and precision fields, and (2) a UNUM type class where FP attributes are interpreted according to the format specification, and so, differently from the former. To the best of our knowledge, no previous work tackled the integration within an optimizing compilation flow, taking into consideration format-specific attributes, and how the compiler can efficiently generate code for types that may not necessarily have constant size. Having support for two types with different semantics is proof of how extensible our solution is, not only from a language perspective but also throughout the full compilation flow, enabling the design of software-and hardware-specific code generators.

What are the compiler and optimizations requirements to support an FP type system with runtime capabilities? How can compilers provide proper memory management for these types?

Our proposal tackles a set of capabilities neglected by low-level programming languages: the ability to declare types with runtime capabilities. This feature has re-gained significance in the context of variable precision where the cost of increasing precision must be avoided for performance purposes. We enable the use of types with runtime-decidable attributes by allowing their specialization with integer variables of the program.

Our compilation flow handles these types from language to the middle-end level representation through a new type extension that enable declarations to have constant or runtime-decidable attributes. We implemented this extension in LLVM to benefit from the optimizations available on its intermediate representation. We also assessed that specific optimizations such as Loop Idiom Recognition and Inlining need modifications to handle types with runtime attributes. Backend code generation for such types is only possible thanks to the coordination between the compiler infrastructure and the target backend, which means that a compatible ISA or software target solution is required to drive the flexibility of these types.

The use of MPFR is possible because objects can be constructed with the precision value specified upon object creation, and operations make use of this information to compute values. The synergy between the UNUM coprocessor and the compiler is done through an ISA agnostic to the format used for computation. The compiler sets status registers values inside the hardware to control the FP format in use, which gives the compliance and full support for UNUM types with runtime capabilities.

Can variable precision serve as an interesting exploration paradigm in the context of numerical algorithms?

Yes, our experiments on the conjugate gradient method and variants show a clear variable precision exploration aspect in linear algebra. Experimental results show that increasing the precision to be used can have a non-negligible impact on the number of iterations of an algorithm. It also demonstrates that precision is particularly important for the pipelined CG variant due to instability caused by the accumulation of rounding errors. The stability of the algorithm is only achieved with high precision and using primitive data types only works for it to some extent, that is, when the tolerance threshold is increased. In that case, it means that an approximate (and less accurate) solution is acceptable. The design of BLAS routines also permits the exploration of other high-performance algorithms, such as Singular Value Decomposition (SVD), and Generalized minimal residual method (GMRES).

Perspectives

Our future work can be divided into two main categories: (1) the first relates to additional compiler work and tooling that can be envisioned; (2) and the complementary work aimed in the application side with many aspects to consider.

Compilation and Integration Tools

Chapters 4 and 5 show the main contributions found within the context of this thesis. But they also show some limitations and ideas that can be pursued as future work, as part of the language, compilation, and tool integration process. Among them, we may refer to:

(1) Improve high-level structures integration: vpfloat support for compound types such as class, and structs, is still limited to constant types. There are two challenges to resolve:

(1) find a consistent syntax and semantic to express types with runtime attributes so that users are able to bind them to variable declarations; (2) instrument the compiler to support them is also a challenging part of the work, since none of the elements within the current infrastructure has functionality that resembles it,

(2) Generally work on the improvements of loop nest-related heuristics to better optimize vpfloat. Although we are able to leverage Polly, many heuristics are suboptimal and are not capable of optimizing the code, even for constant types. Add support for dynamicallysized types in Polly heuristics is also a venue of exploration in order to improve cache utilization within our BLAS library implementations,

(3) Our language proposal shows support for two formats (MPFR, and UNUM), but it is also extensible to other representations. More interestingly, the Posit format, a UNUM successor, has shown potential usage for many scientific fields [START_REF] Carmichael | Deep Positron: A Deep Neural Network Using the Posit Number System[END_REF][START_REF] De Dinechin | Posits: the good, the bad and the ugly[END_REF][START_REF] Johnson | Rethinking floating point for deep learning[END_REF], and is a valuable candidate to appear as a vpfloat format within our extension. Ongoing work is also underway to support an IEEE-like representation, much similar to the MPFR format, but enabling hardware support to accelerate computation with high-precision representations even further, (4) Improve tooling integration with open-source projects like PetSC [START_REF] Abhyankar | PETSc/TS: A Modern Scalable ODE/DAE Solver Library[END_REF][START_REF] Balay | PETSc Web page[END_REF], Armadillo [START_REF] Sanderson | Armadillo: a template-based C++ library for linear algebra[END_REF],

and Eigen [START_REF] Guennebaud | [END_REF]: many of the related work use, experiment, and validate their solution with open-source projects. The evaluation presented in [START_REF] Cools | Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method[END_REF][START_REF] Cools | Improving strong scaling of the Conjugate Gradient method for solving large linear systems using global reduction pipelining[END_REF][START_REF] Cools | On rounding error resilience, maximal attainable accuracy and parallel performance of the pipelined Conjugate Gradients method for large-scale linear systems in PETSc[END_REF], for example, are conducted in PetSc [START_REF] Abhyankar | PETSc/TS: A Modern Scalable ODE/DAE Solver Library[END_REF][START_REF] Balay | PETSc Web page[END_REF], a modern and scalable ordinary differential equation (ODE) and differential algebraic equations (DAE) solver library. The Armadillo [START_REF] Sanderson | Armadillo: a template-based C++ library for linear algebra[END_REF] and Eigen libraries [START_REF] Guennebaud | [END_REF] are template-based metaprogramming C++ libraries for linear algebra and scientific computing and are also highly used within the context of the applications targeted to be explored in future work.

Applications

On the application side, we can explore different aspects:

(1) Run CG experiments with our vpfloat<unum, ...> types once all stability issues are resolved in the system. We are mainly interested to understand how the reduced number of iterations impacts execution time. Increasing precision may collaborate to reduce execution time even if compared to optimized implementations with vectorization capabilities (for example, applications with double and using vector instructions).

(2) Although this thesis focuses mainly on providing language and compiler integration as a mean to accelerate exploration of variable precision and other FP formats in general, our last experiments with CG show insights to increase the interest of numerical analysts in the exploration of variable precision. Future work will focus on new applications and configurations to accelerate linear algebra. We are keen to see if variable precision can be used with the iterative refinement technique presented in chapter 3 as part of the mixed-precision computing section. It is also envisioned that other applications, such as SVD and GMRES, be studied to widen the comprehension of the impact of precision and FP formats in general. The outcome of this thesis can be seen as an enabler of this exploration. Figure A.2: CG variants with multiple formats with matrices bcsstk14, bcsstk15, bcsstk21, bcsstk22, bcsstk24, and bcsstk26 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did not converge. 
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 2 , 0.0 , MPFR_RNDN ) ;for ( unsigned i = 0; i < dim1 ; ++ i ) { for ( unsigned j = 0; j < dim3 ; ++ j ) { for ( unsigned k = 0; k < dim2 ; ++ k ) { mpfr_mul ( tmp , matA [ i * dim2 + k ] , matB [ k * dim3 + j ] ,MPFR_RNDN ) ; mpfr_add ( sum , sum , tmp , MPFR_RNDN ) ; } mpfr_set ( matResult [ i * dim3 + j ] , sum , MPFR_RNDN ) ; mpfr_set_d ( sum , 0.0 , MPFR_RNDN ) ; Usage of the MPFR library in a matrix multiplication example
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 933 void mat_mult ( unsigned prec , mpfr_float * matResult , 2 mpfr_float * matA , mpfr_float * matB , ( unsigned j = 0; j < dim3 ; ++ j )for ( unsigned k = 0; k < dim2 ; ++ k ) tmp = matA [ i * dimi2 + k ] * matB [ k * dim3 + j ]; matResult [ i * dim3 + j ] = tmp ;} } Usage of the C++ Boost library for Multi-precision in a matrix multiplication example or one of many possible mathematical functions ( n √ , cos, sin, log, ..
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 8 vpfloat < mpfr , 16 , 100 > alpha , 3 vpfloat < mpfr , 16 , 100 > *X , 4 vpfloat < mpfr , 16 , 100 > * Y ) { 5 for ( unsigned i = 0; i < N ; ++ i ) 6 Y [ i ] = alpha * X [ i ] + Y [ i ]; 7 } void axpy256 ( int N , vpfloat < mpfr , 16 , 256 > alpha , vpfloat < mpfr , 16 , 256 > *X , vpfloat < mpfr , 16 , 256 > * Y ) { for ( unsigned i = 0; i < N ; ++ i ) Y [ i ] = alpha * X [ i ] + Y [ i ]; } void vaxpy ( unsigned prec , int N , vpfloat < mpfr , 16 , prec > alpha , vpfloat < mpfr , 16 , prec > *X , vpfloat < mpfr , 16 , prec > * Y ) { for ( unsigned i = 0; i < N ; ++ i ) Y [ i ] = alpha * X [ i ] + Y [ i ]; } Listing 4.3: axpy benchmark with vpfloat<mpfr, ...> type.
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 5 void mat_mult ( unsigned prec , vpfloat < mpfr , 32 , prec > * matResult , 2 vpfloat < mpfr , 32 , prec > * matA , 3 vpfloat < mpfr , 32 , prec > * matB , 4 unsigned dim1 , unsigned dim2 , unsigned dim3 ) { vpfloat < mpfr , 32 , prec > tmp ; 7 for ( unsigned i = 0; i < dim1 , ++ i ) { 8 tmp = 0.0; 9 for ( unsigned j = 0; j < dim3 ; ++ j ) for ( unsigned k = 0; k < dim2 ; ++ k ) tmp = matA [ i * dimi2 + k ] * matB [ k * dim3 + j ]; matResult [ i * dim3 + j ] = tmp ; } } Listing 4.4: Usage of the vpfloat<mpfr, ...> in a matrix multiplication example. presented in 3.1.2.1, an MPFR object is of type __mpfr_struct (see Listing 3.1, reproduced in Listing 4.2)

  Universal NUMber (UNUM) Format as defined by Bocco et al.[START_REF] Bocco | Dynamic Precision Numerics Using a Variable-Precision UNUM Type I HW Coprocessor[END_REF][START_REF] Bocco | SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing[END_REF].
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 41 Figure 4.1: Difference between Gustafson and Bocco et al. [21, 23] UNUM formats.
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 8 void axpy_UnumDyn ( int N , int fss , vpfloat < unum , 4 , fss , 18 > alpha , vpfloat < unum , 4 , fss , 18 > *X , vpfloat < unum , 4 , fss , 18 > * Y ) { for ( unsigned i = 0; i < N ; ++ i ) Y [ i ] = alpha * X [ i ] + Y [ i ]; } void vgemv ( unsigned fss , int M , int N , vpfloat < unum , 4 , fss > alpha , double *A , vpfloat < unum , 4 , fss > *X , vpfloat < unum , 4 , fss > beta , vpfloat < unum , 4 , fss > * Y ) { for ( unsigned i = 0; i < M ; ++ i ) { // Calls vp f lo at _ al l oc at i on _ si ze (4 , fss ) // to enforce type consistency , see // Section III . A .5 " Dynamically -sized Types " vpfloat < unum , 4 , fss > alphaAX = 0.0; for ( unsigned j = 0; j < N ; ++ j ) alphaAX += A [ i * N + j ] * X [ j ]; Y [ i ] = alpha * alphaAX ; // Free stack for alphaAX here } } Listing 4.5: Comparing naïve implementations of AXPY with a constant-size type (axpy_UnumConst), a constant-size type with runtime attribute (axpy_UnumDyn), and GEMV with a dynamically-sized type (vgemv).
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7 // of the function 8 int 9 arr [ 0 ] = 0 ;

 78900 arr [ i ]; // Stack allocation here for ( j = 1; j < i ; ++ j ) arr [ j ] = f2 ( j ) + arr [ j -1]; total = arr [ i -1]; // Free stack for arr here } return total ; } Listing 4.6: Variable Length Array (VLA) example. is akin to how Variable Length Arrays (VLA), a feature from the C Standard, are handled by compilers.

1 3 if 5 " 6 "Listing 4 . 7 :

 35647 void v p f loat_mpfr_checker ( int attributeValue , mpfr_t op ) { 2 ( op -> _mpfr_prec != attributeValue ) { 4 fprintf ( stderr , " Error : Precision values do not match .\ n " Error : Passed % d to an object with % d precision bits .\ n " Error : Impossible to continue !\ n " , 7 attributeValue , ( int ) op -> _mpfr_prec ) ; Runtime checker implementation example of vpfloat<mpfr, ...> types.

  return a ; } vpfloat < unum , 4 , fss > // ERROR e x _ d y n _ type _ret_ erro r ( unsigned p , vpfloat < unum , 4 , p > a ) { a = 1.3; return a ; } Listing 4.9: Uses of dynamically-sized types in function calls and returns.

  , n , ( vpfloat < mpfr , 16 , precision >) 1.0 , x , y ) ; , n , ( vpfloat < mpfr , 15 , precision >) 1.0 , x , y ) ; // Some code } Listing 4.10: Uses of dynamically-sized types in function call and return.
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 26 void e x ample_conversions ( unsigned fss , unsigned fss2 ) { vpfloat < unum , 4 , fss > a_fss = 1.3 v ; 4 vpfloat < unum , 4 , fss2 > a_fss2 = 1.3 v ; 5 / ERROR : invalid operands to binary expression 7 vpfloat < unum , 4 , 7 > add_a_error = a_fss + a_fss2 ; vpfloat < unum , 4 , 7 > add_a = a_fss + ( vpfloat < unum , 4 , fss >) a_fss2 ; vpfloat < unum , 4 , 6 > b = 1.3 v ; vpfloat < unum , 3 , 7 > c = 1.1 v ; vpfloat < unum , 4 , 8 > d = 1.1 v ; vpfloat < unum , 3 , 6 > e = 1.1 v ; // ERROR : invalid operands to binary expression vpfloat < unum , 4 , 7 > add_bc_error = b + c ; // OK vpfloat < unum , 4 , 7 > add_bc_okay = ( vpfloat < unum , 3 ,7 >) b + c ; // OK vpfloat < unum , 4 , 7 > add_bd_okay = b + d ; vpfloat < unum , 4 , 7 > add_be_okay = b + e ; } Listing 4.11: Examples of implicit and explicit conversions between vpfloat<...> types

  if (( m >= 1) && ( n >= 1) ) { lbp =0; ubp = floord (m -1 ,32) ; # pragma omp parallel for private ( lbv , ubv , t2 , t3 , t4 ) for ( t1 = lbp ; t1 <= ubp ; t1 ++) { for ( t2 =0; t2 <= floord (n -1 ,32) ; t2 ++) { for ( t3 =32* t1 ; t3 <=( min (m -1 ,32* t1 +31) ) -7; t3 +=8) { for ( t4 =32* t2 ; t4 <= min (n -1 ,32* t2 +31) ; t4 ++) { Y [ t3 * incy ] = alpha * A [ t3 * lda + t4 ] * X [ t4 * incx ] + beta * Y [ t3 * incy ]; Y [( t3 +1) * incy ] = alpha * A [(( t3 +1) * lda ) + t4 ]* X [ t4 * incx ] + beta * Y [( t3 +1) * incy ]; Y [( t3 +2) * incy ] = alpha * A [(( t3 +2) * lda ) + t4 ]* X [ t4 * incx ] + beta * Y [( t3 +2) * incy ]; Y [( t3 +3) * incy ] = alpha * A [(( t3 +3) * lda ) + t4 ]* X [ t4 * incx ] + beta * Y [( t3 +3) * incy ]; Y [( t3 +4) * incy ] = alpha * A [(( t3 +4) * lda ) + t4 ]* X [ t4 * incx ] + beta * Y [( t3 +4) * incy ]; Y [( t3 +5) * incy ] = alpha * A [(( t3 +5) * lda ) + t4 ]* X [ t4 * incx ] + beta * Y [( t3 +5) * incy ]; Y [( t3 +6) * incy ] = alpha * A [(( t3 +6) * lda ) + t4 ]* X [ t4 * incx ] + beta * Y [( t3 +6) * incy ]; Y [( t3 +7) * incy ] = alpha * A [(( t3 +7) * lda ) + t4 ]* X [ t4 * incx ] + beta * Y [( t3 +7) * incy ]; } } for (; t3 <= min (m -1 ,32* t1 +31) ; t3 ++) { for ( t4 =32* t2 ; t4 <= min (n -1 ,32* t2 +31) ; t4 ++) { Y [ t3 ] = alpha * A [ t3 * lda + t4 ] * X [ t4 * incx ] + beta * Y [ t3 * incy ]

Listing 5 . 1 :

 51 Partial implementation of vpfloat types in the LLVM IR.

60 1 ; 3 @

 13 Function Attrs : noinline nounwind optnone 2 define vpfloat <0 , 4 , %fss > ex_dyn_type_ret ( i32 signext %fss , vpfloat <0 , 4 , %fss > %a ) #0 { 4 entry : 5 call void @llvm . vpfloat . runtimeattr . mark . i32 ( i32 %fss ) 6 %fss . addr = alloca i32 , align 4 7 %saved_stack = alloca i8 * , align 8 8 store i32 %fss , i32 * %fss . addr , align 4 9 %0 = load i32 , i32 * %fss . addr , align 4 %1 = call i64 @__sizeof_vpfloat ( i32 0 , i32 4 , i32 %0 , i64 0) %2 = call i8 * @llvm . stacksave () store i8 * %2 , i8 ** %saved_stack , align 8 %vla = alloca i8 , i64 %1 , align 8 %a . addr = bitcast i8 * %vla to vpfloat <0 , 4 , %fss >* store vpfloat <0 , 4 , %fss > %a , vpfloat <0 , 4 , %fss >* %a . addr , align 8 store vpfloat <0 , 4 , %fss > fpext ( double 1.300000 e +00 to vpfloat <0 , 4 , ← %fss >) , vpfloat <0 , 4 , %fss >* %a . addr , align 8 %3 = load vpfloat <0 , 4 , %fss > , vpfloat <0 , 4 , %fss >* %a . addr , align 8 %4 = load i8 * , i8 ** %saved_stack , align 8 call void @llvm . stackrestore ( i8 * %4 ) ret vpfloat <0 , 4 , %fss > %3 } declare extern_weak i64 @__sizeof_vpfloat ( i32 , i32 , i32 , i64 ) Listing 5.2: IR code of the ex_dyn_type_ret function from Listing 4.9 types in the LLVM IR.

1 2 3

 2 double e x a m p l e 1 _ d o u b l e _ d e c l a r a t i o n ( double a ) ; double e x a m p l e 2 _ d o u b l e _ d e c l a r a t i o n ( double ) ;

4 5 6 7 2 3 4 5 6 7 1 >) #2 8 9Listing 5 . 3 :

 462461853 vpfloat < unum , 4 , 6 > e x a m p l e _ c o n s t _ d e c l a r a t i o n ( vpfloat < unum , 4 , 6 > a ) ; vpfloat < unum , 4 , fss > 8 e x a m p l e1_declaration ( unsigned fss , vpfloat < unum , 4 , fss > a ) ; 9 vpfloat < unum , ess_fss , ess_fss , size > e x a m p l e2_declaration ( unsigned ess_fss , unsigned size , vpfloat < unum , ess_fss , ess_fss , size > a ) ; vpfloat < unum , ess , fss , size > e x a m p l e3_declaration ( unsigned ess , unsigned fss , unsigned size , vpfloat < unum , ess , fss , size > a ) ; (a) C-level function declarations for vpfloat types with runtime-evaluated attributes. 1 declare double @ e x a m p l e 1 _ d o u b l e _ d e c l a r a t i o n ( double ) #2 declare double @ e x a m p l e 2 _ d o u b l e _ d e c l a r a t i o n ( double ) #2 declare vpfloat <0 , 4 , 6 > @ e x a m p l e _ c o n s t _ d e c l a r a t i o n ( vpfloat <0 , 4 , 6 >) #2 declare vpfloat <0 , 4 , -1 > @exam ple1 _dec larat ion ( i32 signext , vpfloat <0 , 4 ,← declare vpfloat <0 , -1 , -1 , -2 > @exam ple2 _dec larat ion ( i32 signext , i32 ← signext , vpfloat <0 , -1 , -1 , -2 >) #2 declare vpfloat <0 , -1 , -2 , -3 > @exam ple3 _dec larat ion ( i32 signext , i32 ← signext , i32 signext , vpfloat <0 , -1 , -2 , -3 >) #2 (b) IR-level function declarations for vpfloat types with runtime-evaluated attributes. Function declaration examples for vpfloat types with runtime-evaluated attributes in C headers and LLVM IR.function declarations. The first 3 function declarations illustrate the current LLVM IR support for constant types, where parameter names are not shown and types require no additional (value-related) information. The remaining three examples display binding relations between integer parameters and vpfloat type declarations. Negative value -1 binds the attribute to the first function parameter, -2 to the second, and so on. This allows semantic analysis to check that function calls match the function signature for declarations.

63 1 4 5

 634 double * vec_double ; 2 for ( unsigned i = 0; i < N ; ++ i ) 3 vec_double [ i ] = 0; double * vec1 , * vec2 ; 6 for ( unsigned i = 0; i < N ; ++ i ) 7 vec1 [ i ] = vec2 [ i ];

8 9Listing 5 . 4 :

 854 vpfloat < unum , 4 , 6 , 6 > * vec_unum_c ; 10 for ( unsigned i = 0; i < N ; ++ i ) 11 vec_unum_c [ i ] = 0; 12 13 vpfloat < unum , 4 , fss > * vec_unum1 ; 14 vpfloat < unum , 4 , fss > * vec_unum2 ; 15 for ( unsigned i = 0; i < N ; ++ i ) 16 vec_unum1 [ i ] = vec_unum2 [ i ]; 17 18 vpfloat < mpfr , 16 , 100 > vec_mpfr ; 19 for ( unsigned i = 0; i < N ; ++ i ) 20 vec_mpfr [ i ] = 0; (a) Original code before Loop Idiom Recognition. memset ( vec_double , 0 , N * 8) ; (b) Optimized (memset) generation for double. memcpy ( vec1 , vec2 , N * 8) ; (c) Optimized (memset) generation for constant vpfloat<unum, ...>. memset ( vec_unum_c , 0 , N * 6) ; (d) Optimized (memset) generation for vpfloat <unum, ...> with a runtime attribute. memcpy ( vec_unum1 , vec_unum2 , N * __sizeof_vpfloat (0 , 4 , fss , 0) ) ; (e) Optimized (Optimized (memcpy) generation in constant vpfloat<unum, ...>. for ( unsigned i = 0; i < N ; ++ i ) vec_mpfr [ i ] = 0; (f) Optimized (No optimization for vpfloat< mpfr, ...> types. Loop idiom recognition pass for different types: double(5.4b, 5.4c), vpfloat<unum, ...>(5.4d, 5.4e), and vpfloat<mpfr, ...>(5.4f).

( 1 ) 16 /

 116 Constant-type generation mutates the original type to a constant one, thus replacing a function-specific type by a global 2 counterpart. The call to function func_sum (Lines / Do something with vec1 17 s += func_sum (100 , vec1 , 1000) ; 18 19 vpfloat < mpfr , 16 , prec > * vec2 ; 20 // Do something with vec2 21 s += func_sum ( prec , vec2 , 1000) ; 22 } (a) Original code before inlining expansion.

17 /Listing 5 . 5 :

 1755 / Do something with vec1 18 vpfloat < mpfr , 16 , 100 > sum1 = 0.0; 19 for ( unsigned i = 0; i < N ; ++ i ) 20 sum1 += vec1 [ i ]; 21 s += ( double ) sum1 ; 22 23 vpfloat < mpfr , 16 , prec > * vec2 ; 24 // Do something with vec2 25 vpfloat < mpfr , 16 , prec > sum2 = 0C representation of the inlining optimization. Inlining expansion examples for types with runtime attributes. 15-17) from Listing 5.5a is inline expanded to the code shown in lines 7-10 from 5.5b, which mutates vpfloat<mpfr, 16, p> to vpfloat<mpfr, 16, 100>.

( 6 )

 6 Section 5.2.3.5 briefly states that having support for primitive types facilitates the use of parallelization through programming models. Support for OpenMP is included almost out-of-the-box for MPFR-derived types. The only special treatment lies on handling omp atomic directives, which generates a call to atomic_compare_exchange, a function void mem_func_example ( int n , vpfloat < mpfr , 16 , 1000 > *X , vpfloat < mpfr , 16 , 1000 > * Y ) { memcpy (X , Y , sizeof ( vpfloat < mpfr , 16 , 100 >) * n ) ; // Some code } void mem_func_example ( int n , mpfr_t X , mpfr_t Y ) { // Prepare memcpy void ** tmp ; prepare_memcpy ( tmp , X , sizeof ( mpfr_t ) * n ) ; // memcpy executed , pointer is overwritten memcpy (X , Y , sizeof ( mpfr_t ) * n ) ; // Restore correct values overwritten by memcpy and clenup vp_memcpy (X , tmp , &X , &Y , 1 , 32 , sizeof ( mpfr_t ) * n ) ; clean_memcpy ( tmp ) ;

  bool v p _ a t o m i c _ c o m p a r e _ e x c h a n g e ( unsigned size , void * ptr , void * expected , void * desired , int success_order , int failure_order ) { bool ret ; if ( mpfr_cmp (*(( mpfr_t *) ptr ) , *(( mpfr_t *) expected ) ) == 0) { mpfr_set (*(( mpfr_t *) ptr ) , *(( mpfr_t *) desired ) , roundingMode ) ; ret = true ; } else { mpfr_set (*(( mpfr_t *) expected ) , *(( mpfr_t *) ptr ) , roundingMode ) ; ret = false ; } return ret ; }

c h o l e s k y c o r r e l a t i o n c o v a r i a n c e d e r i c h e d o i t g e n d u r b i n f d t d - 2 Figure 6 . 1 :

 261 Figure 6.1: Speedup of Polly's loop nest optimizer in Polybench compiled for vpfloat<mpfr, ... types.

Figure 6 . 2 :

 62 Figure 6.2: Speedup of vpfloat<mpfr, ...> over the Boost library for multi-precision for the Polybench benchmark suite, and compiled with optimization level -O3. The execution time reference taken are the best between compilations with and without Polly. Results are shown for two different machines: an Intel Xeon E5-2637v3 with 128GB of RAM (M1), and an Intel Xeon Gold 5220 with 96 GB of RAM (M2), respectively. Y-axes are shown with the same limits to ease comparisons between results in the two machines. 83

Figure 6 . 3 :

 63 Figure 6.3: Speedup of vpfloat<mpfr, ...> over the Boost library for multi-precision for the Polybench benchmark suite. vpfloat<mpfr, ...> applications were compiled with optimization level -O1 and Boost with -O3. The execution time reference taken are the best between compilations with and without Polly. Results are shown for two different machines: an Intel Xeon E5-2637v3 with 128GB of RAM (M1), and an Intel Xeon Gold 5220 with 96 GB of RAM (M2), respectively. Y-axes are shown with the same limit to ease comparisons between results in the two machines.
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 265 Figure 6.5: Speedup of vpfloat<unum, ...> over vpfloat<mpfr, ...> on the PolyBench suite

1 3 }

 3 for ( unsigned prec = 50; prec <= 2000; prec += 50) { 2 cg_algo ( prec , x , A , b ) Listing 6.1: Calling a precision-generic implementation of CG

Algorithme 3 :Algorithme 4 :

 34 Jacobi preconditioner 1: for i = 1 to m do preconditionned conjugate gradient: general algorithm 1: r 0 := b -Ax 0 2: z 0 := iM r 0 3: p 0 := z 0 4: while iteration count not exceeded do 5:

Algorithme 6 : 2 : 0 3: p * 0 := r * 0 4: while iteration count not exceeded do 5 :

 620005 biconjugate gradient: general algorithm 1: p 0 := r 0 := b -Ax 0 choose r * 0 such as (r 0 r * 0 )

p

  j+1 := r j+1 + β j p j 12: p * j+1 := r * j+1 + β j p * j 13:

Figure B. 5 :

 5 Figure B.5:Execution time for CG variants with multiple formats with matrices s2rmt3m1, s3rmq4m1, s3rmt3m1, and plat362 from matrix market[START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm did not converge. Results for double are not displayed.
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Table 2 .

 2 1: Residual error for some Polybench[START_REF] Pouchet | PolyBench: The polyhedral benchmark suite[END_REF] applications. It illustrates the difference between accuracy, here calculated through the residual error of each application, and precision, represented by 24, 53, 128, and 512 bits. The residual error is calculated as the norm function between measured and exact values of the output vector or matrix.

				Dataset		
		Mini	Small Medium	Large	Xlarge
	gemm 24 bits *	1.5e-5	2.1e-4	4.1e-3	2.3e-1	1.45e0
	53 bits * 3.1e-14 4.0e-13 7.7e-12 4.33e-10 2.69e-9
	128 bits < 1e-600 < 1e-600 < 1e-600 1.49e-34 2.6e-33
	512 bits < 1e-600 < 1e-600 < 1e-600 < 1e-600 < 1e-600
	3mm 24 bits * 6.7e-07 1.1e-04 3.1e-02 4.4e+01	998.4
	53 bits * 1.3e-15 2.1e-13 5.8e-11 8.2e-08 1.8e-06
	128 bits 3.5e-38 5.6e-36 1.5e-33 2.13e-30 4.8e-29
	512 bits < 1e-600 < 1e-600 < 1e-600 < 1e-600 < 1e-600
	covar 24 bits *	5.8e-5	5.6e-3	2.1e-1	41.02 5.7e+02
	53 bits * 1.2e-13 2.5e-12 2.37e-10	7.2e-8 1.0e-06
	128 bits 3.2e-36 6.6e-35 6.3e-33 1.9e-30 2.6e-29
	512 bits 9.1e-152 1.8e-150 1.6e-148 4.8e-146 6.7e-145
	gram 24 bits *	28	71	220	616	868
	53 bits *	9.1	76	231	584	849
	128 bits 1.1e-21 7.0e-21 3.5e-20 1.7e-19	3.6e-6
	512 bits 4.6e-137 2.1e-136 7.5e-136 1.1e-134 1.3e-121
						

* 

Correspond to IEEE 32 and IEEE 64 formats, respectively.

Table 1 .

 1 Run-length meaning k of the regime bits

J. L. Gustafson, I. Yonemoto

Table 3 . 1 :

 31 Some of the data types supported in Schulte et al.[START_REF] Schulte | A family of variable-precision interval arithmetic processors[END_REF] 

	Data Type	Description
	vp_float	Variable-precision floating point number
	vp_vector	Variable-precision floating point vector
	vp_matrix	Variable-precision floating point matrix
	vp_interval	Variable-precision interval
	vp_ivector	Variable-precision interval vector
	vp_imatrix	

Table 3 .

 3 

		2: Coprocessor's Instruction Set Architecture	
		31	25 24 20 19 15 14 13	12 11	7 6	0
	0	func7		rs2	rs1	xd xs1 xs2	rd	opcode
		7		5	5	1	1	1	5	7
	1	susr		unused	Xs1	0	1	0	unused CUST
	2	lusr		unused unused 1	0	0	Xd	CUST
	3	smbb/swgp/sdue/ssue unused	Xs1	0	1	0	unused CUST
	4	lmbb/lwgp/ldue/lsue unused unused 1	0	0	Xd	CUST
	5	mov_g2g		unused	gRs1	0	0	0	gRd	CUST
	6	movll/movlr		unused	gRs1	0	0	0	gRd	CUST
	7	movrl/movrr		unused	gRs1	0	0	0	gRd	CUST
	8	mov_x2g		#imm5	Xs1	0	1	0	gRd	CUST
	9	mov_g2x		#imm5	gRs2	1	0	0	Xd	CUST
	10	mov_d2g/mov_f2g		#imm5	Xs1	0	1	0	gRd	CUST
	11	mov_g2d/mov_g2f		#imm5	gRs2	1	0	0	Xd	CUST
	12	fcvt.x.g/fcvt.g.x	unused	Xs1	0	1	0	gRd	CUST
	13	fcvt.f.g/fcvt.g.f	unused	Xs1	0	1	0	gRd	CUST
	14	fcvt.d.g/fcvt.g.d	unused	Xs1	0	1	0	gRd	CUST
	15	gcmp		gRs2	gRs1	1	0	0	Xd	CUST
	16	gadd/gsub/gmul		gRs2	gRs1	0	0	0	gRd	CUST
	17	gguess/gradius		unused	gRs1	0	0	0	gRd	CUST
	18	lgu/ldub		unused	Xs1	0	1	0	gRd	CUST
	19	stul/stub		gRs2	Xs1	0	1	0	unused CUST
	20 lgu_next/ldub_next	gRs2	Xs1	1	1	0	Xd	CUST
	21 stul_next/stub_next	gRs2	Xs1	1	1	0	Xd	CUST

Table 4 . 1 :

 41 Comparison of the vpfloat type system and FP types, and data structures found in the literature.

	Type	Exponent (in bits)	Mantissa or precision (in bits)	Compiler-integrated	Hardware-enabled	High-precision support	Multi-format
	half	5	11	Yes	Yes	No	No
	bfloat16	8	8	Yes	Yes	No	No
	float Variable	No	No	Yes	Yes *
	vpfloat<...>	Variable	Variable	Yes	Yes	Yes	Yes +
	* Multi-format libraries can be implemented by relying on it		

+ New Formats can be added

Table 4 .

 4 2: Sample UNUM declarations and their respective exponent, mantissa, and size values.

	vpfloat<unum,ess,fss> or	exponent precision	size
	vpfloat<unum,ess,fss,size> (in bits) (in bits) (in bytes)
	vpfloat<unum,3,4>		8	16	5
	vpfloat<unum,3,5>		8	32	9
	vpfloat<unum,3,6>		8	64	11
	vpfloat<unum,3,7>		8	128	19
	vpfloat<unum,3,8>		8	256	35
	vpfloat<unum,3,9>		8	512	67
	vpfloat<unum,3,6,6>		8	29	6
	vpfloat<unum,4,6,12>	16	64	12
	vpfloat<unum,3,8,60>	8	256	60
	vpfloat<unum,4,9,20>	16	129	20
		vpfloat<...>	
		Multiple Formats	
	MPFR		UNUM	Alternative Formats
	vpfloat<mpfr, ...>	vpfloat<unum, ...>	Posit? Custom IEEE?
	exp-info: exponent	exp-info: exponent size size(ess)
	prec-info: mantissa	prec-info: fraction size size(fss)
		size-info: number of bytes

Table 4 .

 4 represents the FP literal 1.3 for different vpfloat UNUM and MPFR types. Representations are in hexadecimal, with the V prefix for UNUM types and Y for MPFR types. Each format shows a different representation for the closest approximation of the same value. Values are displayed in chunks of 64 bits such that the last chunk always contains the value 3: Floating-point literal 1.3 represented with different types

	vpfloat<unum, ...> or	Representation of 1.3
	vpfloat<mpfr, ...>	(hexadecimal)
	vpfloat<unum,3,6,6>	0xV001FE999999A
	vpfloat<unum,3,6,8>	0xV001FE9999999999A
	vpfloat<unum,4,9,20>	0xV999999999999999A9999
		9999999999990001FFFE
	vpfloat<unum,4,9>	0xVCCCCCCCCCCCCCCCDCCCCCCCCCCC
		CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
		CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
		CCCCCCCCCCCCCCCCCCCCCCCC4CCCC
		CCCCCCCCCCCCCC0000FFFF
	vpfloat<mpfr,8,48>	0xY0FF4CCCCCCCCCCD
	vpfloat<mpfr,16,100>	0xYCCCCCCCCCCCCCCC
		D0FFFF4CCCCCCCC

  + βy

	void vpm_sparse_symv_vdv ( unsigned precision , int m , int n ,
	vpfloat < mpfr , 16 , precision > alpha ,
	double *A , int * rowInd , int * colInd ,
	vpfloat < mpfr , 16 , precision > *X ,
	vpfloat < mpfr , 16 , precision > beta ,
	vpfloat < mpfr , 16 , precision > * Y )
	void vpm_sparse_symv_vvv ( unsigned precision , int m , int n ,
	vpfloat < mpfr , 16 , precision > alpha ,
	vpfloat < mpfr , 16 , precision > *A ,
	int * rowInd , int * colInd ,
	vpfloat < mpfr , 16 , precision > *X ,
	vpfloat < mpfr , 16 , precision > beta ,
	vpfloat < mpfr , 16 , precision > * Y )
	void vpm_sparse_gemv_vdd ( unsigned precision , int m , int n ,
	vpfloat < mpfr , 16 , precision > alpha ,
	double *A , int * rowInd , int * colInd ,
	double *X ,
	vpfloat < mpfr , 16 , precision > beta ,
	vpfloat < mpfr , 16 , precision > * Y )
	void vpm_sparse_gemv_vdv ( unsigned precision , int m , int n ,
	vpfloat < mpfr , 16 , precision > alpha ,
	double *A , int * rowInd , int * colInd ,
	vpfloat < mpfr , 16 , precision > *X ,
	vpfloat < mpfr , 16 , precision > beta ,
	vpfloat < mpfr , 16 , precision > * Y )
	void vpm_sparse_gemv_vvv ( unsigned precision , int m , int n ,
	vpfloat < mpfr , 16 , precision > alpha ,
	vpfloat < mpfr , 16 , precision > *A ,
	int * rowInd , int * colInd ,
	vpfloat < mpfr , 16 , precision > *X ,
	vpfloat < mpfr , 16 , precision > beta ,
	vpfloat < mpfr , 16 , precision > * Y )
	-Sparse MV: Sparse matrix vector product.
	y = αAx + βy
	void vpm_sparse_symv_vdd ( unsigned precision , int m , int n ,
	vpfloat < mpfr , 16 , precision > alpha ,
	double *A , int * rowInd , int * colInd ,
	double *X ,
	vpfloat < mpfr , 16 , precision > beta ,
	vpfloat < mpfr , 16 , precision > * Y )

We have implemented different variations of the matrix-vector multiplications in order to handle different scenarios: dense, sparse and symmetric sparse matrices. Those with a sparse prefix are used for sparse matrices represented in the CSR (Compressed Row Storage) format. 4.7.1.3 Level 3: Matrix-matrix operations C = αAB + βC void vpm_gemm ( unsigned precision , enum CBLAS_ORDER order , enum CBLAS_TRANSPOSE transA , enum CBLAS_TRANSPOSE transB , int m , int n , int k , vpfloat < mpfr , 16 , precision > alpha , vpfloat < mpfr , 16 , precision > *A , int lda , vpfloat < mpfr , 16 , precision > *B , int ldb , vpfloat < mpfr , 16 , precision > beta , vpfloat < mpfr , 16 , precision > *C , int ldc )
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  LLVM vectorizers. Rather than that, code generators are not yet designed to handle them and are an important exploration venue to consider in the future.

	void vec_axpy ( unsigned precision , int n ,
	vpfloat < mpfr , 16 , precision > alpha ,
	vpfloat < mpfr , 16 , precision > *X , int incx ,
	vpfloat < mpfr , 16 , precision > *Y , int incy ) {
	for ( unsigned i = 0; i < n ; ++ i ) {
	Y [ i ] = alpha * X [ i ] + Y [ i ];
	}
	}
	(a) C code to be vectorized.
	vector . body :
	%index = phi i64 [ 0 , %vector . ph . new ] , [ %index . next .1 , %vector . body ]
	%niter = phi i64 [ %unroll_iter , %vector . ph . new ] , [ %niter . nsub .1 , ←
	%vector . body ]
	%9 = getelementptr inbounds vpfloat <1 , 16 , %precision > , vpfloat <1 , 16 , ←
	%precision >* %X , i64 %index
	%10 = bitcast vpfloat <1 , 16 , %precision >* %9 to <128 x vpfloat <1 , 16 , ←
	%precision > >*
	%wide . load = load <128 x vpfloat <1 , 16 , %precision > > , <128 x vpfloat <1 , ←
	16 , %precision > >* %10
	%11 = fmul <128 x vpfloat <1 , 16 , %precision > > %wide . load , %broadcast .←
	splat
	%12 = getelementptr inbounds vpfloat <1 , 16 , %precision > , vpfloat <1 , 16 , ←
	%precision >* %Y , i64 %index
	%13 = bitcast vpfloat <1 , 16 , %precision >* %12 to <128 x vpfloat <1 , 16 , ←
	%precision > >*
	%wide . load18 = load <128 x vpfloat <1 , 16 , %precision > > , <128 x vpfloat ←
	<1 , 16 , %precision > >* %13
	%14 = fadd <128 x vpfloat <1 , 16 , %precision > > %11 , %wide . load18
	store <128 x vpfloat <1 , 16 , %precision > > %14 , <128 x vpfloat <1 , 16 , ←
	%precision > >* %13
	%index . next = or i64 %index , 128
	%15 = getelementptr inbounds vpfloat <1 , 16 , %precision > , vpfloat <1 , 16 , ←
	%precision >* %X , i64 %index . next
	%16 = bitcast vpfloat <1 , 16 , %precision >* %15 to <128 x vpfloat <1 , 16 , ←
	%precision > >*
	%wide . load .1 = load <128 x vpfloat <1 , 16 , %precision > > , <128 x vpfloat ←
	<1 , 16 , %precision > >* %16
	%17 = fmul <128 x vpfloat <1 , 16 , %precision > > %wide . load .1 , %broadcast .←
	splat
	%18 = getelementptr inbounds vpfloat <1 , 16 , %precision > , vpfloat <1 , 16 , ←
	%precision >* %Y , i64 %index . next
	%19 = bitcast vpfloat <1 , 16 , %precision >* %18 to <128 x vpfloat <1 , 16 , ←
	%precision > >*
	%wide . load18 .1 = load <128 x vpfloat <1 , 16 , %precision > > , <128 x vpfloat ←
	<1 , 16 , %precision > >* %19
	%20 = fadd <128 x vpfloat <1 , 16 , %precision > > %17 , %wide . load18 .1
	store <128 x vpfloat <1 , 16 , %precision > > %20 , <128 x vpfloat <1 , 16 , ←
	%precision > >* %19
	%index . next .1 = add i64 %index , 256
	%niter . nsub .1 = add i64 %niter , -2
	%niter . ncmp .1 = icmp eq i64 %niter . nsub .1 , 0
	br i1 %niter . ncmp .1 , label %middle . block . unr -lcssa , label %vector . body
	(b) Vectorized IR code for the loop body.

Listing 5.6: Vectorization of vpfloat types. current

  Second and third examples, more specifically, show library function calls to allocate and free MPFR objects in multidimensional arrays.

		{
	{	mpfr_t val200 ;
	vpfloat < mpfr , 16 , 200 > val200 ;	mpfr_init ( val200 , 200) ;
	// Do something with val200	// Do something with vall200
	} // Leaves scope , thus , frees	mpfr_clear ( vall200 ) ; // frees val200
	val200 .	before leaving
		} // Leaves scope
	{ vpfloat < mpfr , 16 , 200 > vp_mat [10][20]; // Do something with vp_mat } // Leaves scope , thus , frees vp_mat .	{ mpfr_t vp_mat [10][20]; vp_malloc_2d ( vp_mat , 200 , 10 , 20) ; // Do something with vp_mat vp_free_2d ( vp_mat ) ; // frees vp_mat before leaving } // Leaves scope
	{ vpfloat < mpfr , 16 , 200 > * vp_vec = malloc (20000 * sizeof ( vpfloat < mpfr , 16 , 200 >) ) ; // Do something with vp_vec free ( vp_vec ) ; } // Leaves scope , thus , frees vp_vec .	{ mpfr_t * vp_vec = malloc (20000 * sizeof ( mpfr_t ) ) ; vp_malloc_1d ( vp_vec , 200 , 1000) ; // Do something with vp_vec vp_free_1d ( vp_vec ) ; // frees vp_vec before leaving free ( vp_vec ) ; } // Leaves scope

  Functions with vpfloat MPFR arguments are cloned and re-built as MPFR objects.Although previous examples show that references and value copies are passed similarly in function calls, the pass respects the C standard for argument passing, such as, pass by value, pass by reference. They follow the same behavior as primitive scalar floating-point types in regards to multi-dimensional arrays, pointers as function parameters. The compiler also makes sure that passed-by-value arguments are only affected in the callee function, while changes in the passed-by-reference values are also seen within the caller. Additionally, return types are handled through LLVM's StructRet attribute, being returned as the first argument of the function.

	void func ( vpfloat < mpfr , 16 , 1000 > val1 , vpfloat < mpfr , 16 , 1000 > val2 ,
	vpfloat < mpfr , 16 , 1000 > * res ) {
	(3) vpfloat < mpfr , 16 , 1000 >
	vdot ( int n , vpfloat < mpfr , 16 , 1000 > *X ,
	vpfloat < mpfr , 16 , precision > * Y ) ;
	void vdot ( mpfr_t ret_result , int n , mpfr_t X , mpfr_t Y ) ;

Table 5 .

 5 1: Instructions supported by the UNUM Backend.

	Instruction group	Instruction group
	susr	fcvt.x.g/fcvt.g.x
	lusr	fcvt.f.g/fcvt.g.f
	smbb/swgp/sdue/ssue	fcvt.d.g/fcvt.g.d
	lmbb/lwgp/ldue/lsue	gcmp/gadd/gsub/gmul
	movll/movlr	gguess/gradius
	movrl/movrr	lgu/lgu.s/ldub/ldub.s
	mov_x2g/mov_g2x	stu/stu.s/stub/stub.s
	mov_d2g/mov_f2g	lgu_next/ldub_next
	mov_g2d/mov_g2f	stul_next/stub_next

Table 5 .

 5 2: ABI Convention for the VP registers

	Register ABI Name	Description	Saver
	g0-7	gt0-7	Temporaries	Caller
	g8-9	gs0-1	Saved Registers	Callee
	g10-11	ga0-1	Arguments/return values Caller
	g12-17	ga2-7	Arguments	Caller
	g18-27	gs2-11	Saved Registers	Callee
	g28-31	gt8-11	Temporaries	Caller

Table 5 .

 5 3: Control registers inside the UNUM Coprocessor.

	Category	Name	(min,max) Allowed	Description
	Default UNUM	due.ess	(1,4)	Tells the coprocessor the maximum number of bits in the ess field for load and store (lgu and stu)
	Environment (DUE) due.fss	(1,9)	Tells the coprocessor the maximum number of bits in the fss field for load and store (lgu and stu)
	Second UNUM	sue.ess	(1,4)	Tells the coprocessor the maximum number of bits in the ess field for load and store (lgu.s and stu.s)
	Environment (SUE) sue.fss	(1,9)	Tells the coprocessor the maximum number of bits in the fss field for load and store (lgu.s and stu.s)
	Precision	wgp	(0,7)	Number of bits used for arithmetic operations in the FPU unit
	Memory Byte Budget	mbb	(1,68)	Number of bits used in load and store instructions

needed when entering a basic block, a new instruction is added. We make use of variations of the susr instruction to configure each register separately: instructions susr.ess, susr.fss manipulate ess and fss values of the default UNUM environment, and susr.wgp and susr.mbb are used to configure WGP, and MBB.
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Table 6 .

 6 1: Machine configurations used for experiments.

		Processor Model	# Procs. # Threads # Cores	Frequency	L1	Caches L2	L3	RAM
						4 x 32KB			
	M1	Intel Xeon E5-2637v3	2	8 Cores 16 Threads	3.50 GHz	D-Cache 4 x 32KB	4 x 256KB	15MB	128GB
						I-Cache			
						18 x 32KB			
	M2	Intel Xeon Gold 5220	2	36 Cores 72 Threads	2.20 GHz	D-caches 18 x 32KB	18 x 1 MB	24.75MB 96GB
						I-Caches			

Table 6 .

 6 2: Compilation time for Polybench with different optimization levels and types.

	Type	Opt. Flags Compilation time (in seconds) Speedup over Boost
		-O3	13.02	8.91
	vpfloat<mpfr, ...>	-O3 + Polly -O1	91.79 8.81	1.27 13.17
		-O1 + Polly	69.87	1.68
	Boost	-O3 -O3 + Polly	116.09 117.32	1.00 1.00

Table 6 .

 6 3: List of RAJAPerf applications classified according to their groups.

	Group	Num. of apps.	Applications
	apps	7	del_dot_vec_2d, energy, fir, ltimes, ltimes_noview, pressure, vol3d
	basic	9	daxpy, if_quad, int3, init_view1d, init_view1d_offset, mataddsubb, nested_init, reduced3_int, trap_int
	lcals	10	diff_predict, eos, first_diff, first_sum, gen_lin_recur, hydro_1d, hydro_2d, int_predict, planckian, triad_elim
	polybench	12	2mm, 3mm, adi, atax, fdtd_2d, floyd_warshall, gemm, gemver, gesummv, jacobi_1d, jacobi_2d, mvt
	stream	5	add, copy, dot, mul, trial

Table 6 .

 6 4: Average speedups for RAJA in machines M1 and M2 (from Table6.1).

		Sequential			OpenMP	
	Base Lambda RAJA Base Lambda RAJA
	M1 1.74	1.61	1.65	7.98	7.16	7.72
	M2 1.90	1.77	1.86	32.94	32.57	31.67

  Speedup of vpfloat<mpfr, ...> over the Boost library for multi-precision for the RAJAPerf benchmark suite, both compiled with -O3 optimization level. 6.1.2 Hardware(UNUM vpfloat) vs. Software (MPFR vpfloat)

	10 2					
	Speedup					
	Base Seq	Lambda Seq	RAJA Seq	Base OpenMP	Lambda OpenMP	RAJA OpenMP
	Figure 6.4:					

Table 6 . 5 :

 65 Count on the number of matrices where vpfloat<mpfr, ...> outperforms other types. Only matrix with types that converge are considered. For vpfloat and Boost, we cherry-pick the best execution time among the precision range (from 150 to 2000 with a step=50)

	Algorithm Variant	double long double __float128	Boost (All mat.) (N>1000) (N>2000)
	Original	4/32	19/32	25/35	40/40	27/27	15/15
	Precond	0/36	6/37	9/39	40/40	27/27	15/15
	Pipeline	0/0	7/7	29/34	32/40	26/27	15/15
	BiCG	4/32	18/32	25/35	40/40	27/27	15/15

X86 FP80 has a sign bit, 15 exponent bits, and 64 mantissa bits with no hidden bit.

PowerPC double-double uses pairs of double(binary64 ) to represent 128-bit numbers, with a sign bit, 11 exponent bits and 106 mantissa bits.

Numerical analysis and augmenting precision are not mutually exclusive methods of stability/accuracy resolution. They can potentially be used in combination. However, this subject will not be discussed herein.

Except for binary16 which was only introduced by the IEEE committee in 2008. Compilers nowadays can support half type for binary16, and Google's bfloat data type, both 16-bit representations.

In a 64-bit machine like x86-64, where sizes of pointers and integers types are 8 bytes.

The value is calculated without considering the mantissa field. Thus, 32/2 = 16, since 32 bytes are needed for MPFR, and 2 bytes (1 sign bit and 15 exponent bits) are required for IEEE 128-bit format.

function mat_mult ( matResult , matA , matB , dim1 , dim2 , dim3 )

The programming model for C++ Boost Multi-precision is fundamentally similar to an IEEE-enabled implementation, except by the line that sets the precision in use.

mem2reg promotes memory references to registers, avoiding the need for memory allocation.

From the LLVM perspective, there is a difference between array and vector, as the latter is lowered to vector-enabled instructions.

https://developer.apple.com/documentation/accelerate/1513282-cblas_dgemm

Types such as float, double, integers, and constant vpfloat are considered global because they have a unique representation for the whole program unit.

https://llvm.org/docs/LangRef.html#llvm-lifetime-end-intrinsic

https://llvm.org/docs/LangRef.html#llvm-lifetime-start-intrinsic

https://en.cppreference.com/w/c/atomic/atomic_compare_exchange

Instructions lgu and lgu.s load UNUM variables from memory. They take into consideration values ess and fss of the default and second UNUM environment, respectively, as well as MBB.

In LLVM, for instance, the choice between an FP-capable ISA and software implementation is only done at the backend stage, when building Direct-Acyclic Graphs (DAGs).

https://www.acm.org/publications/policies/artifact-review-badging

Notice that convergence for double is not shown in the results of the pipelined CG algorithm because no convergence is reached.

Assuming that all types are supported by hardware. Otherwise, the right choice will most likely be double for all situations.

Acknownledgement

In fact, our experiments take advantage of BLAS flexibility and retargetability, and we show different implementations of CG and variants for different formats: vpfloat<mpfr, ...>, double, long double,__fp128, and Boost for Multi-precision.

Preconditioned CG

Preconditioned CG is a slightly modified algorithm 3 that can significantly improve convergence by relying on preconditionning techniques to reduce the condition number of the matrix (see section 2.4.1). Incomplete LU or incomplete Cholesky are some examples of techniques that help in that task. However, we have only considered the Jacobi Preconditionner method (from Algorithm 3), since it has low computational cost and scales linearly according to matrix size. The modified algorithm is listed in 4, showing the use of both matrix A and preconditioned matrix iM (which stands for inverse M ).

Pipelined CG

Our mpfrBLAS has been implemented to exploit thread-level parallelism through OpenMP. Extending beyond multi-core architectures, our type system could potentially benefit from many-core systems with the use of MPI [START_REF] Snir | MPI-the Complete Reference: the MPI core[END_REF] or related models. Aside from matrix-vector products, the original standard algorithm cannot be easily parallelized due to the reuse of variable arrays between lines. Ghysels and Vanroose [START_REF] Ghysels | Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm[END_REF] proposed to hide global synchronization latency of the preconditioned CG with a variant that offers further opportunities of parallelism 3 In many libraries, the conjugate gradient algorithm implements the preconditionning by default. Figure A.1: CG variants with multiple formats with matrices bcsstk04, bcsstk05, bcsstk06, bcsstk07, bcsstk09, and bcsstk10 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did not converge. Figure A.3: CG variants with multiple formats with matrices bcsstk27, bcsstk28, bcsstk34, bcsstm07, bcsstm10, and bcsstm12 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did not converge. Figure A.4: CG variants with multiple formats with matrices bcsstm27, 494_bus, 662_bus, 685_bus, s1rmq4m1, and s1rmt3m1 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). Y-axes show the number of iterations needed to converge for precision in bits between 150 and 2000 with a step=50. A missing type in a graph implies the algorithm did not converge. Execution time for CG variants with multiple formats with matrices bcsstk04, bcsstk05, bcsstk06, bcsstk07, bcsstk09, and bcsstk10 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm did not converge. Results for double are not displayed. Execution time for CG variants with multiple formats with matrices bcsstk14, bcsstk15, bcsstk21, bcsstk22, bcsstk24, and bcsstk26 from matrix market [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm did not converge. Results for double are not displayed. [START_REF] Boisvert | Matrix market: a web resource for test matrix collections[END_REF][START_REF]Matrix Market repository[END_REF]. Graph lines represent different matrices, and graph columns correspond to variants (from left to right: original CG, precond CG, pipelined CG, BiCG). A missing type in a graph implies the algorithm did not converge. Results for double are not displayed.

Annexes