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Dark Matter, the missing mass
problem and small scale issues

“From a drop of water,” said the writer, “a logician could infer the possibility
of an Atlantic or a Niagara without having seen or heard of one or the other.

So all life is a great chain, the nature of which is known whenever we are
shown a single link of it.”

Arthur Conan Doyle, A Study in Scarlet
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2 1. DARK MATTER, THE MISSING MASS PROBLEM AND SMALL SCALE ISSUES

The issue of the origin and nature of the cosmological dark matter (DM) is one of
the greatest puzzles of modern physics: it seems that most of the matter that makes
up the Universe is something unknown and invisible, as if it only interacted gravi-
tationally with everything else or as if our understanding of gravity itself was incom-
plete. After the first compelling observational hints for the presence of DM (whatever
DM means), all relying on its gravitational effects, several interpretations and models
have been proposed, some provide a sensible explanation of the observed phenomena
and may also predict other signatures observable with multiple detection technique.
Yet, no other direct proof outside from gravitational has been found so far. DM can
actually mean different things, related to different interpretations of its gravitational
imprints: modification of standard gravity, or a new form of matter. More specifi-
cally, in this thesis, we will be focusing on an aspect that mixes the subatomic and
macroscopic properties of DM: the structuring of DM on small (subgalactic) scales.
We shall review the conceptual aspects, develop an analytical model, and investigate
the consequences of such a structuring for DM detection and constraints.

To place this work in context and elaborate on the motivations, in this introduc-
tory chapter we brush a broad picture of the DM issue, the proposed models and
current associated constraints or problems. We first give some historical facts as well
as more details on the original striking pieces of evidence for its existence. Then, we
turn to the input of modern cosmology and we introduce the ACDM model and its
successes. In a third part, we highlight the recent tensions arising in that paradigm.
Afterwards, we review the different theoretical approaches developed in the last 50
years and we conclude by discussing the different detection techniques and the
current status of DM searches.

Note that most of this chapter is addressed to a large audience. It has been written
with the intention of making it accessible, as much as possible, to non specialists.
Technical developments are then shown in the following four chapters.

1.1 The first proofs of the missing mass problem

In this section, we detail the different observations that first led to the idea of
the existence of DM and its presence in the Universe, which took root between the
1920’s and the 1980’s. The bringing-in of the more recent development of precise
observational cosmology will be treated in the following section. These introductory
paragraphs aim to provide the reader with key chronological events. We also refer to
BERTONE et al. (2016) and PEEBLES (2017) for extensive historical reviews.

1.1.1 Local dynamics

The search for dark celestial bodies with gravitational influence started around the
middle of the 19" century. One of the most famous examples is the explanation of the
anomalous motion of Uranus by Le Verrier in 1846 (LE VERRIER 1859; KOLLERSTROM
2006a,b) with another planet that had never been seen before and which is the
now called Neptune. Subsequently, at the beginning of the 20" century Lord
Kelvin introduced a new way to analyse astronomical observations by performing a
thermodynamical study of stellar systems with the idea to evaluate the amount of
possible dark bodies from the velocity dispersion of observable objects. Referring to
this pioneering work of Lord Kelvin, in 1906 Henri Poincaré argued that the amount
of dark matter around us was more probably smaller or similar to that of visible
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matter (POINCARE 1906); incidentally coining the word under its French translation
matiere obscure.

About 20 years later, by improving on previous analysis, Oort evaluated the lo-
cal (i.e. in the Solar neighbourhood) gravitational potential by studying the motion of
nearby stars (OORT 1932). From his result he inferred the local density of matter, he
compared it to the local density of stars and he concluded on the presence of dark
bodies (referred to as nebulous or meteoric matter) saying that they should not make
more than half of the total density with the limit p < 0.05 Mg pc~2. Today, evalua-
tions of DM density in the local environment of the Sun have tremendously improved
thanks to continuous upgrade of instrumental and observational techniques, as well
as of data analysis techniques. The improved precision in the data also allowed the
experts to use refined dynamical and kinematic descriptions of the relevant stellar
ensembles, see READ (2014) for a review. Recent estimates give, p ~ 0.44+0.1 GeV cm 3
(CATENA et al. 2010; P1FFL et al. 2014; MCMILLAN 2017) compatible and in agreement
with Oort first upper bound. Besides, recent methods include constraints from global
dynamical consistency (rotation curves, discussed in Sect. 1.1.3, and Galactic mass
models) as well as local dynamical constraints (Bovy et al. 2012). Recent measure-
ments come from the Gaia telescope (GAIA COLLABORATION 2018) that allowed for
unprecedented precision in the stellar kinematics of stars located in a sphere of 10
kpc around the Sun — an example of evaluation of the local DM density using this
new database is given in BUCH et al. (2019).

1.1.2 Galaxy clusters

The first convincing historical hint for the presence of DM (beside luminous mat-
ter) was made by Fritz Zwicky while observing the Coma cluster (ZWICKY 1933, 1937).
To this end he used the virial theorem that we briefly detail. Let us consider a
stably-bound system made of a collection of self-gravitating objects of masses m;,
at positions x; and with velocities v;. The total kinetic energy K and the total grav-
itational potential energy W are

1
= §me3 and W = Z | My (1.1)
i
1#]

X; — X
where Gy is Newton’s constant. The virial theorem states that the averaged values
of these two quantities are related via
2(K)+(W)=0. (1.2)

This equation can be used to relate the total mass M of the system to the velocity

dispersion <02>1/ 2, Assuming that all objects have the same mass and that the system
is isotropic, homogeneous and spherical with radial extension R one shows

<v2>1/2 o 3G (1.3)

5 R

In 1933, Zwicky observed 800 galaxies inside the Coma cluster. Using an estimate
of their mass around 10° My he deduced the total mass as the sum of the galaxy
masses. Then, adopting an estimate for the total size of the cluster (10° lyr) and
using Eq. (1.3) he evaluated the velocity dispersion to be ~ 80 kms~!. However,
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the observed velocity dispersion was of the order 1000 kms~!. This discrepancy

gave the first hint for the presence of an invisible source of mass in the cluster
that he called dunkle Materie (dark matter) and that would enhance the dispersion.
Subsequently, in 1937, he computed a corrected average mass m of the galaxies and
found roughly m > 4.5 x 10! M. While the estimation was incorrect because of
systematic uncertainties on the expansion rate of the Universe, see Sect. 1.2 (more
recent studies have shown that it is about a factor of 10 lower), the conclusion
for the presence of DM still holds. Today, X-ray measurements are also used
to precisely evaluate the quantity of intra-cluster ionised gas which emits via
thermal bremsstrahlung. By measuring the gas temperature, around 7 ~ 107-10%
K, and assuming hydrostatic equilibrium one can reconstruct its mass distribution
and show that it only accounts for a fraction of the missing mass pointed out by
Zwicky. See the reviews SARAZIN (1986), ROSATI et al. (2002), and ETTORI et al. (2013).

Let us finish by mentioning another method to estimate the masses of galaxy clus-
ters, which has been more recently used and which relies on gravitational lensing, a
general relativistic effect (MASSEY et al. 2010). Such a method was actually proposed
by ZWICKY (1937), but the necessary observational data became available only in the
1980’s. Here one uses the fact that, according to general relativity, masses curve
space-time and deflect the trajectories of light, which are no longer seen as straight
lines. To put it simply, dense objects in the Universe act as lenses for background
photons. Two regimes can be distinguished. The first is strong lensing, where pho-
tons pass close to the lens and are sufficiently deflected to form several images of
the background objects. A common realisation of this phenomenon is the creation
of Einstein rings. When the foreground massive system is at least axi-symmetric
all background sources in the same line of sight are seen forming a ring around it.
For a system of mass M, the radius of this ring is called the Einstein radius and
takes the following expression

4GNM dyg )1/2

e = dy ( 2 duds

(1.4)

where d; g, d1, and dg are the distances between the lens and the source, the observer
and the lens and the observer and the source respectively. Therefore this expression
provides a way to evaluate M from the measurement of all the other quantities. When
axi-symmetry is only approximate one observes arcs instead of a full circle. The
position and shape of these arcs can, nonetheless, be used to constrain the mass of
the system. The first strong lensing event was reported in 1987 (SOUCAIL et al. 1987)
but such events are now common with instruments like the Hubble Space Telescope
e.g. in (JAUZAC et al. 2015). The second regime is weak lensing happening when the lens
is offset from the source line of sight and emitted photons fly too far from the lens for
their deflection to be directly detected. However the lens can still slightly distort the
image of the background sources and considering multiple sources equidistant from
the lens, their images are all distorted of the same amount. In that case, the idea is
then to statistically analyse a sufficient amount of sources, seeking a coherent signal
of distortion. In practice both regimes can be combined to reconstruct the mass
distribution of clusters, strong lensing probing the central parts and weak lensing
the outskirts (CACCIATO et al. 2006; HOEKSTRA et al. 2013).
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Figure 1.1 - Taken from (CORBELLI et al. 2000). Circular velocity with respect to the distance
to the centre of the M33 galaxy. The points are the measured values with their error bars.
The solid line is the total result from the model including DM. More precisely, the contribution
of DM is shown in dash-dotted, the contribution of stars is shown in short dashes and the
contribution of the gas in long dashes.
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Figure 1.2 - Left panel: Rotation curve data points compiled in (PETAC 2020). The distance
of the Sun to the galactic centre is taken as Ry = 8.122 + 0.031 kpc (except for the green
point that are obtained considering R = 8.34 + 0.16 kpc). Right panel: Circular velocity for
the Milky Way computed using a mass model picked from (MCMILLAN 2017) and spherisizing
the stellar distribution.

1.1.3 Rotation curves

In spiral galaxies, in which the stars and gas concentrate in a disc whose stabil-
ity is ensured by rotation, the measurement of the quasi-circular velocity of stars or
gas as a function of their distance to the centre characterises a rotation curve. Astro-
physicists noticed that theoretical predictions of rotation curves from Newton’s law of
gravitation! and observations mismatch, thus yielding compelling evidence of DM. In
a very rough approach, if p,(r) represents the mass density of baryonic matter in a
galaxy, by Newtonian dynamics one can approximately say that the circular velocity

At these scales and for these objects the corrections of general relativity are negligible.
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of an object at distance R from the centre is

G
ve(R) ~ \/];:I /r|<R pp(r)d3r. (1.5)

Observations show that spiral galaxies are mainly composed of stars and neutral-
hydrogen lying in a disc. Moreover one knows that both these two components have
a mass density that decreases exponentially with the distance from the centre so
that all the mass is approximately contained in the central region. For objects in

the outskirts, it yields
ve(R) ~ \/ijjiM x R~Y2, (1.6)

with M the total inner mass. Therefore, the velocity should decrease with the
radius R while direct measurements tend to show a flat asymptote. After the
preliminary works of SLIPHER (1914), PEASE (1918), and BABCOCK (1939) this
anomalous behaviour and its universality were highlighted in the 1970s. Firstly,
Vera Rubin and Kent Ford refined the measurement of the rotation curve for the
Andromeda galaxy in 1970, using the optical spectroscopy of ionized hydrogen
(HII) emission regions (RUBIN et al. 1970). Secondly, in 1975, using the radio
observations of the hyperfine 21 cm emission line of the hydrogen atoms (HI),
the flat behaviour of the rotation curve was shown at larger distances (ROBERTS
et al. 1975). This observation critically impacted on the discussion, giving a strong
case for the potential presence of some unseen matter (FREEMAN 1970; ROGSTAD
et al. 1972; WHITEHURST et al. 1972; ROBERTS et al. 1973) that should enhance
v. at large R. Subsequently, EINASTO et al. (1974) and OSTRIKER et al. (1974)
also showed the similarities of the missing mass issue in galaxies and clusters;
emphasizing its significance and linking it to a more generic cosmological anomaly.
By the end of the 1980s little doubt was left about the existence of missing mass
in galaxies, thanks to the work of Rubin’s group and others who systematically
analysed the rotation curves of several galaxies (BOSMA et al. 1979; RUBIN et al. 1980).

An example of the discrepancy between the observed and predicted rotation curves
is illustrated in Fig. 1.1 for the M33 galaxy, it is so large that is barely alleviated by
taking measurement uncertainties into account as shown by the error bars. Because
of our position inside the MW it has always been more difficult to produce its rotation
curve. However, the precision of the measurements has strongly increased since then
and the implications for DM are getting clearer and clearer. In Fig. 1.2 taken from
PETAC (2020) is a compilation of the latest observations for the MW used to constrain
the DM distribution (see also IoccoO et al. (2015)). In the left panel of Fig. 1.2 the
predicted rotation curve of the MW is shown with the contribution of baryons and
dark matter, for a given mass model taken in (MCMILLAN 2017).

More broadly, similarly to what we have presented for galaxy clusters, it is also
possible to directly study the velocity dispersion of stars and use the virial theorem in
systems where the dynamical equilibrium is not set by rotation e.g. in (giant) elliptical
galaxies or in (small) dwarf spheroidal galaxies. One then show that for any galaxy,
whatever its morphology, an important amount of mass seems to be missing.
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1.2 The input of cosmology

Cosmology is the study of the Universe as a whole and of its dynamics, which
should be determined by its content and the general law of gravitation. The
rigorous scientific and modern approach to this subject only begun in the 1920s
when new powerful observational devices were put into service concomitantly to
the appropriation of Einstein’s General Relativity (GR) as a tool to understand the
dynamics of the entire Universe. Using GR, Alexander Friedmann proposed in 1922
that the Universe necessarily was in an ongoing expansion. Two years later, in 1924,
thanks to the new Hooker telescope of Mount Wilson, Edwin Hubble understood
that many objects in space, which were taken to be nebulas, are in fact galaxies far
beyond our own Milky-Way and he measured their velocities. Then, in 1927, Georges
Lemaitre independently found the same result as Friedmann and with Hubble’s
observations, he was able to give an approximation of the expansion rate, which is
commonly called the Hubble expansion rate H. In 1929 Hubble refined the evaluation
of H. Cosmology was born and since then it has been in constant evolution thanks
to new probes and more and more precise instruments and observations. Through
times, observational data have improved both in quality and in quantity, and
have progressively established the ACDM paradigm, which has been the standard
cosmological model in vogue since the early 2000’s. Let us give further details in the
following.

1.2.1 A brief history of the Universe

Here we summarised the key concepts to understand the current cosmological
observations and why they they are interpreted in terms of a large abundance of
DM on large scales in the hot Big Bang model. A more formal introduction on
cosmology is given in Chapter 2. As the Universe is in expansion one can look at
its history back in time and inquire into the evolution of its size and content. If the
expansion has never stopped until the current state, then the Universe must have
been denser and denser at earlier and earlier times. As a matter of fact, at a critical
point, it must have been so dense, that our current knowledge of the physical laws
cannot even describe what happened before. Despite this limitation, it is common
to imagine that the observed Universe was, at first, contracted to a singular point.
In that fictitious framework, the moment back to this singular state is then called
the Big Bang (BB), and conventionally defined as the O of our cosmic clock. One
has motivated reasons today to think that, at early times, the Universe experienced
a phase of inflation (accelerated expansion) sourced by one or several scalar fields,
called inflaton. The inflaton then decayed into all the known species of elementary
particles during a reheating phase. All the particles and radiation produced after
inflation formed a hot dense plasma as the energy was such that they all interacted
frequently. Note that the inflaton field also imprinted perturbations in the metric
due to its quantum fluctuations and subsequently, inhomogeneities in the density
fields. With the expansion of the Universe, interactions rarefied and the temperature
decreased allowing for different changes in the particle content that were dictated
by the particles nature/behaviour. Therefore let us now very briefly review the
key events of the early Universe based on the current particle physics paradigm
called the Standard Model (SM), which will be more precisely introduced in Sect. 1.4.2.
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Figure 1.3 - Fluctuations of the CMB temperature around the average value — taken from
(THE PLANCK COLLABORATION et al. 2020)

Approximately 20 ps after the BB, the electroweak phase transition gave a mass to
the elementary particle when the Higgs field got trapped at the bottom of its potential
well. Then, baryons (protons and neutrons) formed after the quantum chromody-
namics phase transition when quarks got confined into hadrons, roughly 20 us after
the BB. Afterwards, at around 1 s, neutrinos, which only interacted weakly with the
rest of the plasma, decoupled and slightly after, at around 6 s, electron and positron
annihilated into photons according to et + e~ « v + . After the annihilation, only
the excess of matter over anti-matter remained?. Between roughly 10 s and 20 min
the nuclei of light elements formed during the Big Band Nucleosynthesis (BBN). Af-
terwards, the amount of non-relativistic matter became dominant over the amount
of radiation at a time called equivalence. From that point forward the small inhomo-
geneities in the matter density field started to grow. Eventually, electron and baryons
assembled (essentially to form neutral hydrogen) at the recombination epoch through
the process e~ +p™ — H+~, when the plasma temperature dropped below the binding
energy 7' ~ 0.3 eV < 13.6 eV (at around 300 000 yr). Recombination freed previously
interacting photons that were no longer energetic/hot enough to ionise the neutral
gas. These photons have cooled down since then because of expansion, and form
what is today observed as the cosmic microwave background (CMB). In the proper
frame, CMB radiation is isotropic and follows a black-body distribution, a conclusive
and compelling observational proof of the validity of the hot big bang model. Further
statistical analyses of the fluctuations of the CMB temperature across the sky provide
also decisive arguments as for the existence of a large amount of DM on cosmological
scales. BBN and the measurement of the abundance of the light elements support
the CMB observations. Subsequently began the dark ages where no more light was
emitted in the Universe before the formation of the first stars and galaxies.



1.2. The input of cosmology 9

6000 [
5000 |

4000 |

[nK?)

3000 |

T
f

D,

2000 |

1000 |

600 [
300 f

-300 :| ' H

600 |

" 460
130
0

TT

{

——
——

Wit a0 s biby sonanns 0
PR by

T e

AD

““";ﬁ"{'ﬁl’ﬂ*fw
4 -30

Ll 111l 1 TR SR [N T TN TN TR NS TN TR N N SN TN T SO S | 1
2 10 30 500 1000 1500 2000 2500
¢

Figure 1.4 - Temperature anisotropy power spectrum of the CMB taken from (THE PLANCK
COLLABORATION et al. 2020) in the upper panel. The red points are the data while the blue
curve is the best fit within the ACDM model. The agreement is remarkable as shown by the
residuals in the lower panel.

1.2.2 The Cosmic Microwave Background

Henceforth, let us focus on the CMB and show how it confirms the existence of
the missing mass problem on the cosmological scales. Thereafter we shall introduce
in more details the ACDM model favoured by the CMB data. The CMB is a relic
electromagnetic emission produced roughly 380 000 years after the BB. It had been
theoretically predicted by (ALPHER et al. 1948a,b; GAMOW 1948a,b) and was observed
for the first time, by accident, by Penzias and Wilson (PENZIAS et al. 1965) as a noise
received by a 20-foot horn-reflector antenna at the Crawford Hill Laboratory in New
Jersey. In the same issue of the Astrophysical Journal where the results were pre-
sented, DICKE et al. (1965) immediately identified this excess noise as the CMB. It
originates from the recombination process that made the Universe electrically neu-
tral. Indeed, before recombination, photons were in constant interaction with the
baryons and electrons and the Universe was opaque. During recombination, they
slightly decoupled and started to stream freely. Today one observes these photons
emitted on a surface of the sky, the last scattering surface, as a nearly perfect black body
with a temperature T = 2.72548 + 0.00057 K (FIXSEN 2009). However the distribution
of temperature is not totally homogeneous and spatially fluctuates with an amplitude
O(x) = dT(x)/T ~ 1075 according to the position x. The first experiment that measured
the anisotropy was the COBE satellite (BENNETT et al. 1996). The precision reached
another level with the WMAP satellite launched in 2003 (SPERGEL et al. 2003) and
today the most accurate map of the CMB temperature fluctuations is provided by the
PLANCK satellite (THE PLANCK COLLABORATION et al. 2020 — hereafter refereed to as
Planck18). These anisotropies are the imprints, on the primordial photon bath, of the

2The matter excess over antimatter is an observational fact that is currently not explained in the
context of the standard model of elementary particles. Current theoretical understanding relies on
baryogenesis scenarios (including baryogenesis via leptogenesis), and demands particle physics beyond
the standard model — see CLINE (2006) and DAVIDSON et al. (2008) for reviews.
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primordial matter fluctuations that led to the formation of structures (Y. B. ZELDOVICH
etal. 1969; PEEBLES 1982a,b) and they are a consequence of the baryon acoustic oscil-
lations (BAO). Indeed, when baryons and photons were tightly coupled in a single fluid
thanks to Thomson scattering between photons and electrons, light could produce an
enormous pressure force on the baryons. In the meantime, there were density fluc-
tuations (possibly stemmed from the inflaton, as seen above). Baryons were naturally
prone to concentrating the fluid into the potential wells of the overdensities while pho-
tons were tending to expel it: there was a competition between pressure and gravity
that gave rise to sound waves. The 0'* moment (monopole) of temperature fluctuations
©y is proportional to the density contrast of baryons and photons and was governed,
in the Fourier space, by the equation (DODELSON 2003)
2

8@20 + H(t) (1 - 3c§(t)) 86(20 + k22(t)0g = F(k,t) (1.7)
where F' is a force term that is induced by the gravitational potential, ¢, is the
sound speed in the fluid and H is the expansion rate. This is an equation for
wave propagation in real space with a force term and a friction term (i.e. a damped
harmonic oscillator in Fourier space). It shows that the photons pushed the baryons
out of the potential wells i.e. in a sound wave travelling at the velocity ¢, so that
the positive perturbations in the baryon-photon fluid density spread out of their
original position. After a time t4.,,, photons decouple and recombination occurs,
freeing baryons from the radiative pressure. The shell of baryons had travelled a
comoving distance rgr,e ~ 150 Mpc defining a specific length scale. Other physical
effects imprint on the CMB, like the Sachs-Wolf effect (SACHS et al. 1967) or the
Sunyaev-Zeldovich effect (SUNYAEV et al. 1970), which we do not discuss here. We
will rather focus now on the implications for DM. A detailed treatment of CMB is
given in (DODELSON 2003; HU 2009; PETER et al. 2013; BAUMANN b) and a review on
BAO can be found in (EISENSTEIN et al. 1998).

To extract the relevant statistical properties of the matter field at recombination,
one actually recasts the skymap of CMB temperature fluctuations in terms of its
the angular correlations. This is parametrised by expressing the temperature con-
trast as a function of a direction characterised by a unit vector 1, and by expanding
the underlying angular correlations over spherical harmonics. The associated two-
point correlation function reads

(O@em) =3 >

=0

CyPy(Rq) (1.8)

where the factor C; represents the power spectrum and P, is the Legendre polyno-
mial of order /. In the end, the commonly displayed value is D, = ¢(¢ + 1)Cy/(27), as
shown in Fig. 1.4. The data (red dots) exhibit 8 peaks with specific positions sepa-
rated by A¢ ~ 300 which is directly related to the comoving size rq;ag ~ 150 Mpc. The
shapes of these peaks is related to the matter content of the universe at recombi-
nation, and points to the need of a very large fraction of DM. Indeed the presence
and amount of DM only impacts the value of the force term F in Eq. (1.7) since it
only interacts gravitationally, while the amount of baryons impacts both ¢, and F.
The exact solution of this equation is not trivial, nevertheless it turns out that, be-
cause of this double dependence, it is impossible to properly recover the shape of
the peaks simply by playing with the density of baryons, assuming that general rel-
ativity is reliable on these scales.
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Figure 1.5 - Hubble eXtreme Deep Field observations. The figure is separated vertically in
the middle: real observation on the left and mock observation from the Illustris collaboration
(VOGELSBERGER et al. 2014) on the right.

Another convincing argument for DM is provided by the decreasing tail at large
multipole ¢. This behaviour is caused by diffusion damping (also called Silk-damping
— SILK 1968) due to the imperfection of the photon-baryon fluid before recombination.
Indeed, on typical distances (n.or)”!, where n. is the electron density and ot the
Thomson scattering cross-section, photons stream freely. On typical times H!
they encounter n.orcH ! electrons and diffused in a random walk over a length
Ap ~ (neopcH)™'Y/2. Therefore on scales smaller than this typical distance photons
do not follow the sound waves, thus smoothing out the temperature fluctuations.
This translates into a drop in the correlation function at small scales. Without the
presence of a component that interacts mostly gravitationally, the large-¢ peaks
would have vanished. The interaction of DM and photons is therefore constrained
(BOEHM et al. 2002; BOEHM et al. 2005).

1.2.3 Structure formation

Beside the observational hints discussed above, all potentially interpreted in terms
of its gravitational influence, the ubiquitous presence of DM, able to efficiently re-
spond to the gravitational perturbations seeded by inflation, further provides the most
fundamental ingredient to our current theoretical understanding of structure forma-
tion. It also provides us with a clear understanding as for why galaxies and galaxy
clusters are embedded into extended DM halos. In the meantime, this gives a natural
explanation to the previously discussed anomalies. In that picture, after recombi-
nation, DM, which dominates the energy budget of the Universe, drives the growth
of the matter density fluctuations that survived the early epoch. After some time
the over-dense regions become dense enough to collapse and virialise and they form
bound objects called DM halos (MO et al. 2010). All the structures seen were then
formed by the baryons falling in the middle of the halos, reaching a sufficient density
to initiate star formation. To emphasize on this point, including CDM in cosmological
numerical simulations of the Universe (SPRINGEL et al. 2005, 2008; DIEMAND et al.
2011; VOGELSBERGER et al. 2014) has provided replicas of galaxies or galaxy clusters
with an exquisite resemblance. This is shown first in Fig. 1.5 by comparing a patch
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Figure 1.6 - Galaxy distribution in redshift from galaxy redshift surveys compared to the
result of the Millenium simulation, taken from (SPRINGEL et al. 2006).

of the sky seen by the Hubble telescope with a mock version given by the Illustris
collaboration. Secondly we also show in Fig. 1.6 the remarkable agreement between
the galaxy distribution obtained in the Millenium simulation (SPRINGEL et al. 2006)
and the one observed in galaxy surveys CfA2 (GELLER et al. 1989), 2dFGRS (COLLESS
1999) and SDSS (AHUMADA et al. 2020).

Furthermore, because of the different observations of the matter distribution in
the Universe, one has to consider that the DM component is pressure-less and highly
non-relativistic well before matter-radiation equivalence in order to understand the
presence of clustering on the smallest scales observed. Indeed, DM particles with
high velocity in the early Universe would have had time to free-stream out of the
smallest over-dense region, smearing them out, before their growth. In other words,
this effect induces a cut-off on the power spectrum (the two-point correlation function
of the matter density) at small scales. The current constraints allow for models that
are then called warm or cold DM (WDM or CDM). The latter option corresponding to
the smallest velocity dispersion is the favoured one.

Eventually, let us mention that BAO does not only leave an imprint in the CMB
,but also in the galaxy distribution at low redshift observed by galactic surveys. The
BOSS (SDSS-III) collaboration (ROss et al. 2017) in particular has shown a correlation
peak on comoving scales of the order ~ 150 Mpc in agreement with the CMB value,
providing another argument in favour of DM.

1.2.4 The ACDM model

The CMB data is well fitted by a six-parameter model called ACDM that describes
the Universe as expanding and flat and comprising baryonic matter, CDM and dark
energy — parametrised as a cosmological constant A. The power spectrum of the
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temperature fluctuations given by the best fit on this model is represented by the
blue line in Fig. 1.4 and is in remarkable agreement with the data. The six pa-
rameters of ACDM are

e (), : the relative (to the critical density) abundance of baryons today

e Qo : the relative abundance of CDM today

e h : the reduced Hubble expansion rate today

o A, : the amplitude of the initial power spectrum

® 1 : the spectral index of the initial power spectrum
o T : the reionization optical depth

In the following chapters of this thesis we will make use of, and then further discuss,
all parameters but the reionization optical depth. In this section we focus on the first
thee only. The reduced Hubble expansion rate & is given by the ratio of the Hubble
expansion rate today, denoted Hj, over a typical rate of 100 km.s~!.Mpc~!. From CMB
data analyses, the Planck Collaboration has inferred a value of h = 0.6736 + 0.0054 (at
a 68% confidence level — Planck18). Moreover according to the same Planck data
analysis the abundances multiplied by the Hubble rate squared are Q. oh* = 0.1200 +
0.0012 and Q, 0h? = 0.02237 £ 0.00015. In a flat Universe the sum of the abundances of
baryonic matter, radiation, CDM and dark energy (1) o sum up to 1. Therefore giving
the proportion of the three components

Qb,g = 49%, QC,O = 26%, and QA70 = 69% . (19]

This result tells us that on the scale of the Universe the ratio of DM over the to-
tal amount of matter is of order 84%. Consequently, not only do CMB data also
points to the existence of DM but they also ascertains that it has to be the dom-
inant form of matter.

1.2.5 Big Bang Nucleosynthesis

Approximately 10 s after the Big Bang the lightest elements, D = 2H, T = 3H,
3He, He, "Li, "Be, start to form thanks to the specific thermodynamical conditions
(pressure, density, temperature, neutron lifetime) at that time. This period of light
elements synthesis is called Big Bang nucleosynthesis, as opposed to stellar nu-
cleosynthesis which will take place much later and will form heavier nuclei. See
(SARKAR 1996) and (OLIVE et al. 2000) for reviews. Heavier elements having been
produced much later in the centre of stars by nuclear fusion. The light element with
the highest binding energy is the helium-4, however, it cannot be formed directly
via 4 body interactions as the number density of photon n, is much higher than
the number density of baryons n;, at that time. Therefore the chain of interactions
was made of 2 — 2 processes

ptn—D+xy
D+p —3He+vy, D+D—p+T, D+D —3He+n
T+D — “He +n, T+*He — "Li+ v
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The first one corresponds to the formation of deuterium, necessary to launch the
chain. Interestingly, this process is very sensitive to the baryon-to-photon ratio n =
nn/ny ~ 10719, Indeed, deuterium forms when the temperature of the plasma was
around 7' ~ 1 MeV. However, the binding energy of deuterium being small (E}, ~
2.2 MeV), its production is prevented by the overwhelming abundance of photons,
whose energy distribution tail destroys deuterium too efficiently before helium can
be produced. As the photon temperature decreases to ~ 0.1 MeV, deuterium can
remain longer in the plasma and its increasing fraction activates helium production.
The final amount of deuterium present in the Universe can be seen as a leftover of
the reaction that stopped when the temperature became too low; consequently, it
is very sensitive to the initial conditions and 7. That yields an interesting indirect
probe of the baryon abundance even though measuring the primordial amount of
deuterium in the Universe is challenging. COOKE et al. (2018) give n = (5.931 + 0.051) x
10710 and Qy, gh? = 0.02166+0.00015+0.00011, independently confirming the value found
with the CMB - at 2¢ in this study. This value is too low to explain on its own the
total matter content of the Universe it indirectly points towards the necessity of an
additional exotic matter component.

1.3 The tensions in the ACDM paradigm

In the previous section, we have introduced the concept of DM and the ACDM
model and mentioned its successes. However, for a few years, the ACDM model has
been questioned by different observations. This thesis develops in the context of the
small scale issues but for the sake of completeness, we start by discussing the large
scale tensions that are also relevant for DM.

1.3.1 The large scale tensions

The Hubble tension. In Sect. 1.2.2 we gave the value of h inferred from CMB
data analyses. However, this quantity can also be evaluated through late-time ob-
servations using the same method as that of Hubble first attempted. Using type 1A
supernovae and cepheids as standard candles it is possible to determine our distance
to remote galaxies. Plotting the galaxy population in a graph showing velocity against
distance, the shape of the curve obtained is directly related to A. A combined analysis
of datasets of supernovae finds an expansion rate of h = 0.736 + 0.0039 (RIESS et al.
1998; VERDE et al. 2019) with a discrepancy of ~ 50 with the Planck value. Such a
difference indicates either systematics in the data or in the chain of analysis of one of
the two experiments as suggested in (RIGAULT et al. 2015) or the signature of depar-
ture from the ACDM model and a hint for new physics. Therefore several models have
been proposed to alleviate the tension (DI VALENTINO et al. 2016; KUMAR et al. 2016;
RENK et al. 2017; POULIN et al. 2019; BANIHASHEMI et al. 2020) but their viability is
challenged by the BAO and CMB observations. As of today, none of these models is
significantly preferred, thus future observations will probe them further.

The Sg tension. One defines by og the (square root of) the variance of the matter
power spectrum on scales of the size 8h~! Mpc~!. The quantity Ss is proportional to it,
as defined by Ss = 05(2,0/0.3)%5. Similarly to & this quantity can be derived both from
the six ACDM parameter fitted on the CMB and from late time observations. The joint
analysis KIDS1000+BOSS+2dfLenS has given Sg = 0.766 7001 (HEYMANS et al. 2020)
while the value inferred from Planck is Ss = 0.832 £ 0.013 with a ~ 30 discrepancy
between the two. This also is interesting for DM as it also suggests the potential
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Figure 1.7 - Both panels are taken from (BULLOCK et al. 2017). Left panel: Rotation curve of
a typical galaxy with asymptotic circular velocity of ~ 40 km s~!. The dashed curve represents
the expected NFW profile and the circles are data points taken from (OH et al. 2015). The solid
blue line is an example of cored profile (BURKERT 1995) which better match the data. Right
panel: The RAR relation for 2693 data points taken from a group of 153 galaxies and based
on (McGAUGH et al. 2016). Figure taken from (BULLOCK et al. 2017).

presence of new physics that could give hints on its nature (LESGOURGUES et al. 2016;
MURGIA et al. 2016; ABELLAN et al. 2020; BOHR et al. 2020).

1.3.2 Issues for CDM on small scales

Small scales are the main topic of this thesis and related issues of ACDM are
therefore of primordial interest. Here we need to clarify an important point that is,
how small are the small scales? In practice, we will consider that everything under
the size of a typical galaxy is within the small scale range. To be more precise for DM
halos one can set a limit in mass at M < 10'' M, and in size at R < 200 kpc. A review
on the small scales problem is available in D. H. WEINBERG et al. (2015) and BULLOCK
et al. (2017). We summarise here the major conundrums and the possible solutions.

First and foremost, let us recap some of the main predictions of ACDM. As
mentioned in Sect. 1.2.3 CDM is responsible for structure formation by growing the
gravitational perturbations produced by inflation on all scales until turning unstable,
and then collapsing and the forming bound objects. These halos are virialised objects
with a self-similar structure. Small halos are contained into larger ones, themselves
contained in even larger ones and so on. A limit to self-similarity is set by the
minimal length scale of the matter density perturbations that survive the early epoch
of the universe, which translates into a minimal halo mass of order My, ~ 107!2 M,
or even lower depending on the nature of DM (the values given are typical to particle
CDM). Inside a galactic halo, one expects an abundant distribution of subhalos with
self-similar properties. In particular, in CDM-only simulation, it is found that all sub-
halos of MW-like galaxies generally have a similar density profile (up to rescaling) that
increases toward their centre. One talks about cuspy profiles in opposition to cored
profiles in which the density would be homogeneously distributed around the centres.
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The core-cusp problem. Observed rotation curves indicate that a substantial
fraction of galactic halos are consistent with cored density profiles (NARAY et al. 2008;
BLOK 2010; OH et al. 2015), which is in contradiction with CDM-only simulation re-
sults. An example is given in the right panel of Fig. 1.7. Moreover, the simulations
also tend to over-predict the mass of DM in the central region of the halos (ALAM
et al. 2002; OMAN et al. 2015).

The diversity issue. It appears that galaxies with a similar circular velocity
asymptote in their outskirts can have inner circular velocities spanning a wide range
of values, much wider than what is naively predicted by ACDM (OMAN et al. 2015).
Even if the inclusion of the baryonic physics in the simulations could solve the core-
cusp tension (see the next section) it would still fail solving the diversity issue. Con-
sequently, together, they may be the most challenging problems for CDM.

The Tully-Fischer relation. Consider galaxies for which one knows the total bary-
onic mass My, and the circular velocity v. in the asymptotic part of the rotation curve.
It is possible to place all these galaxies in a graph of M;, against v.. The outcome gives
the Tully-Fischer relation that shows M;, vé‘ (MCGAUGH 2005). This can be stated
more generally in terms of the Radial Acceleration Relation (RAR) that is equivalent
but relies on different quantities: the gravitational acceleration due to baryons gya:
and the radial acceleration g,,s = v2/r (LELLI et al. 2017). In the left panel of Fig. 1.7
one shows that in regions dominated by baryons, where gy, is large, the observed
acceleration follows gons ~ gbar @s expected. For small values, it departs from this sim-
ple scaling due to the presence of DM. However, the smallness of the scatter around
the mean value of g.,s at a given gp,, is difficult to explain from the DM contribution,
especially in light of the diversity issue.

The plane of satellites problem. One observes that bright satellite galaxies (of the
MW or other hosts) tend to lie in a specific plane and rotate coherently. At first, this
seems to be in contradiction with cosmological simulations (PAWLOWSKI et al. 2014).
However in-depth statistical analysis have proven that the presence of such planes
— that may stem from the anisotropic accretion of satellites from cosmic filaments —
is plausible (CAUTUN et al. 2015).

The missing satellite problem. In CDM-only simulations, thousands of subhalos
are expected to be massive enough to contain stars and be observed in the inner 300
kpc of the MW (or any other MW-like galaxy) as dwarf, faint or ultra-faint satellite
galaxies. However only ~ 50 are effectively observed (DES COLLABORATION 2015). This
raised some concerns in the past even though we have know for several decades now
that two concomitant explanations are at play. On the one hand, star/galaxy forma-
tion is very likely to become inefficient in small subhalos, as the gas is expelled by
various processes quite early in the formation history of such small objects (BULLOCK
et al. 2000; SOMERVILLE 2002; OKAMOTO et al. 2008; WADEPUHL et al. 2010). On the
other hand, the census of Galactic satellites is not yet complete, as a large portion of
the sky remains to be probed - there could therefore be a biased observational deficit.
In the end, with more and more satellites being discovered over time (TORREALBA et
al. 2018), the tension has now faded away.

The too-big-to-fail problem. Satellite galaxies are likely to form in the most mas-
sive subhalos, such as those observed in CDM-only simulations. However, it seems
than the most massive substructures are then not observed while they are too big
to have failed star formation (BOYLAN-KOLCHIN et al. 2011). However, similarly than
for the missing satellites problem, inclusion of baryonic physics in the simulations
has now reconciled their results with observations (SAWALA et al. 2016). Notice that
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even if it is not necessary, solutions to the core-cusp problem could also resolve this
tension by decreasing the expected central density of the subhalos.

1.3.3 Solutions to the small scale crisis

There are two classes of solutions, which may overlap, and that can give the
correct explanation to the still unsolved aforementioned tensions on small scales. On
the one hand, they may simply originate from the description of baryonic feedback in
numerical simulation, which still relies on rather empirical prescriptions. However,
even though very complex and challenging, the treatment of baryonic physics, star
formation, etc., has considerably improved over the past years, and there is hope to
reach more conclusive answers within the next decade (VOGELSBERGER et al. 2019).
On the other hand, the previous tensions can also indicate a departure from the
ACDM paradigm.

For several years now it has been shown in various simulations that cores in
galaxies could be induced by baryonic feedback redistributing energy in the central
parts (PONTZEN et al. 2012; MADAU et al. 2014; CHAN et al. 2015; ONORBE et al.
2015). The efficiency of baryon-induced core-formation (through supernova feedback,
molecular cooling in the reionization epoch, etc.) may depend on the chosen sub-grid
physics recipe but they all seem to show that it should occur in halos with mass
M < 10'° M,. Complementarily, high resolution (non cosmological) simulations
show formation of cores in all halos (READ et al. 2016). Recent studies have also
shown that the RAR relation could also be obtained in simulations (NAVARRO et al.
2017; PARANJAPE et al. 2021). One may also need to invoke the effects of the halo
environment such as tidal stripping and disk shocking. The Chapter 4 of this thesis
will actually discuss such dynamical effects, but focusing on their impact on dark
subhalos instead of on dwarf galaxies. In summary, baryonic physics is likely to play
a major role in the understanding of these tensions between theory and observations,
and it is important to investigate further its impact on the structuring of DM in the
centres of halos. For now, the diversity problem, especially when put in front of the
very small scatter characterising the Tully-Fisher or RAR diagrams, seems to be the
most challenging. Therefore, one should remain open-minded to other classes of
solutions.

If the tension is indeed caused by a departure from the ACDM paradigm that
would provide an interesting probe for DM nature. Different classes of solutions
are commonly considered.

First, instead of the usual CDM scenario with subhalos as light as 1072 M, (or
lower), one can also consider the WDM case. A priori both configurations are simi-
lar except for the DM particle velocity dispersion in the early Universe, nevertheless,
that has serious consequences. Indeed, a small mass particle would have had a
higher velocity in the early Universe and therefore would have suppressed the mat-
ter power spectrum on small scales because of the free-streaming damping effect —
already brought up in Sect. 1.2.2 and detailed in Sect. 3.6. Consequently, this cut-
off in the power spectrum prevents subhalos to form below some scale set by the free
streaming mass but, more importantly, it also reduces the central density of subhalos
alleviating the too-big-to-fail problem. Unfortunately, it has also been shown that this
produces too small cores to suppress the core-cusp tension (MACCIO” et al. 2012).
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Figure 1.8 - Image of the Bullet Cluster. Left panel: Iso-contour of the gravitational potential
reconstructed from lensing observations and taken from (CLOWE et al. 2006). Right panel
Superposition of the X-ray image of the intra-cluster gas (pink) and reconstructed dark matter
distribution from lensing. Credit: X-ray: NASA/CXC/CfA/(MARKEVITCH 2005), Optical and
lensing map: NASA/STScl, Magellan/U.Arizona/(CLOWE et al. 2006), Lensing map: ESO WFI.

Another model that has recently gained a growing attention is self-interacting DM
(SIDM) where DM is made of particles that can rather efficiently self-scatter (CARLSON
et al. 1992; SPERGEL et al. 2000; SCHUTZ et al. 2014; TULIN et al. 2018). Interestingly,
concrete realisations of SIDM can be easily constructed in particle physics from an
effective point of view, although self-scattering is not by itself imposed by any theoret-
ical prejudice. Let us denote the self-interaction transfer cross-section — an angular-
weighted cross-section that characterises the averaged momentum transfer — by or.
In a medium with a DM mass density p, particles scatter efficiently on a length scale
A = (pyor/my)~!, with m, the DM particle mass. Inside a halo, assuming it originally
exhibits a cuspy profile, the central density is large and A small. Then DM behaves
like a fluid and momentum and energy can be redistributed inside the structure lead-
ing to the formation of a core, hence potentially solving the core-cusp problem (and,
as a DM-only solution, also the too-big-to-fail problem) (NISHIKAWA et al. 2020). The
required order of magnitude is A ~ 1 - 10? kpc corresponding roughly to 0.5 cm? g=! <
or/my < 10 cm? g=! (ELBERT et al. 2015; FRrY et al. 2015; ROBLES et al. 2019). More-
over for o/m, > 5 cm? g=! the self interaction can lead to gravitational core collapse
in the MW satellite galaxies that may produce a diversity of inner density profiles
(KAHLHOEFER et al. 2019; SAMEIE et al. 2020). These are rather large cross-sections
(equivalent to the neutron-neutron scattering cross-section) but they are actually not
much constrained since not necessarily correlated with the scattering cross-section
off baryons. Upper bounds can be set using galaxy cluster mergers. They provide
constraints on the behaviour of the baryonic and the DM components of two clus-
ters during a collision. In the SIDM context, they especially probe the strength of
the DM self-scattering. The most famous of these mergers is called the Bullet cluster
and yields or/m, <1 cm? g=! (MARKEVITCH et al. 2004). This bound is lower than
the cross-section needed to solve the core-cusp problem at the scale of galaxies. A
way out is to have a velocity-dependent self-scattering cross-section, which would be
suppressed at large dispersion velocities, like in galaxy clusters (v ~ 1000 kms™! in
galaxy clusters, while v ~ 10-100 kms~! in dwarf or regular galaxies). Therefore, the
rate of DM self-scattering is constrained to be velocity-dependent, more precisely a
decreasing function of the DM velocity.

Finally, let us briefly discuss the case of quantum pressure-induced cores in
scenarios with ultra-light DM boson particles (then called fuzzy DM). The combination
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of Poisson’s and Schrodinger’s equations for self-gravitating bosonic systems gives
that the central mass distribution in structures made of light bosons are impacted
when their de Broglie wavelength A\ = h/(mv) becomes of the order ~ kpc. Thus
making formation of cores possible for a particle mass of the order m ~ 10722 eV (HUI
et al. 2017; Hur 2021).

To summarize, it is important to stress that although CDM is not fully in trou-
ble while baryonic physics is not more plainly understood and fixed in cosmological
simulations, these current issues on small scales represent an exciting challenge.
There exist independent and purely DM potential solutions, like SIDM or fuzzy DM,
and further theoretical inspection and observational tests of these scenarios will be
decisive in the coming years. Conversely, testing the very features of CDM, like the
presence of fully dark subhalos, also represents an important test to validate or ex-
clude CDM. Anyway, these different classes of DM rely on specific realizations of the
subatomic world, most assuming the existence of new particles and interactions. We
briefly review a non-exhaustive list thereof below, as the intimate DM particle candi-
date properties should directly translate into dedicated search strategies.

1.4 Theoretical models of Dark Matter

In this section, we review the different classes of possible candidates for DM af-
ter discussing, in the first part, the possibility of a modified theory of gravity. The
possibilities are numerous, from elementary particles to black holes, and our goal
here is not to be exhaustive but rather to give a brief review of the most popular
models that have not been completely ruled out so far and that remain appealing
from a detection perspective.

1.4.1 Modified gravity

The theory of general relativity (GR) gives high precision predictions when tested
on scales from a few centimetres to the solar system size. For instance, one can
cite the historical observations of gravitational lensing around the sun (DYSON et al.
1920) and the explanation of the perihelion precession of Mercury — measured by
LE VERRIER (1859). Today it provides the correct corrections for GPS (KouBA 2002)
and lensing observations are now common with the Hubble Space Telescope. The
detection of gravitational waves by the LIGO/Virgo collaborations (LIGO AND VIRGO
COLLABORATIONS 2016) and the first direct observation of a black hole in 2019 (EHT
COLLABORATION 2019) have again provided new confirmations for the validity of the
theory. However, on large scales, all the anomalous observations exposed in the pre-
vious sections could actually be related to limits of its applicability. On cosmological
scales, on top of the DM issue, the presence of dark energy supports this possibil-
ity (RIESS et al. 1998; PERLMUTTER et al. 1999). Several attempts have been made to
provide a suitable extension of GR however it remains challenging to propose models
that can be experimentally probed and that are theoretically consistent.

At the galactic level, rotation curves can be empirically explained using the MOd-
ified Newtonian Dynamics (MOND formalism introduced by MILGROM (1983). See
FAMAEY et al. (2012) for a review. There, the Newtonian gravitational acceleration is
modified via a factor that depends on its strength. The typical acceleration of a star
in a galaxy being ~ 11 orders of magnitude below the gravitational acceleration at
the surface of the Earth, the modification has to be important for low gravitational
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accelerations while being negligible at high gravitational accelerations (in order not to
spoil Newtonian dynamics on Earth). In more details, if one measures a gravitational
acceleration gy from the observed distribution of matter using Newtonian dynamics
then, the true gravitational acceleration g must be related to gy via the relation

n(L)g=ox. (1.10)

The function p is such that pu(z) — 1 for z > 1 and p(z) — = for x < 1 and gives
a smooth transition between two regimes characterised by the scale acceleration ay.
In the weak acceleration regime g < a¢ the circular velocity of a system at distance
R from a point mass M becomes

ve(R) ~ (GnMag)/*. (1.11)

Therefore the circular velocity no longer depends on the distance from the centre
of the galaxy in the outskirts, consequently explaining the flatness of the rotation
curves. Moreover, such a relation also explains the small scatter in the Tully-Fischer-
RAR relations since without DM a tight correlation between the baryonic acceleration
and the observed one is naturally expected. On the other hand, while successful
of galactic scales, MOND fails to explain the dynamics of galaxy clusters, except at
the price of an additional hot DM component (SANDERS 2003). Let us also mention
that the Bullet Cluster (already broached it in the context of self-interacting DM)
suggests the existence of a pressureless fluid supporting the two clusters involved.
In Fig. 1.8 are represented the mass distribution of the gas that makes the main
part of ordinary matter and the total mass distribution, mainly supported by a dark
component. The baryonic matter and DM distributions are unambiguously offset,
which is very challenging or nearly impossible to properly account for if the mass is
only sourced by the baryons. On the other hand, while the gas particles are slowed
down by their interactions, a (quasi)collisionless dark fluid is not (CLOWE et al. 2004,
2006), therefore naturally providing the offset®.

Eventually, let us mention that the "covariantisation" of MOND remains a very
challenging task; there is no unique and perfect way to construct a relativistic ex-
tension, based upon this empirical requirement, that passes all the observational
constraints. Amongst the current relativistic extensions of MOND one can cite the
Relativistic Aquadratic Lagrangian (RAQUAL) theory (J. BEKENSTEIN et al. 1984), the
Tensor-Vector-Scalar (TeVeS) theories (J. D. BEKENSTEIN 2005; SKORDIS et al. 2006;
SKORDIS 2008), the Bi-Scalar-Tensor-Vector (BSTV) theories (SANDERS 2005), the Gen-
eralized Einstein-Aether (GEA) theories (ZLOSNIK et al. 2007), the bimetric theories
(BIMOND) (MILGROM 2010) and Dipolar Dark Matter (L. BLANCHET et al. 2017). It is
thus difficult to make generic predictions for cosmology, large scale structures and
the CMB in this context. For instance, SKORDIS et al. (2020) have proposed a theory
in agreement with the CMB, however, the agreement to structure formation remains
to be checked - it is, today, the biggest challenge to covariant versions of MOND.
Besides, such theories introduce anyway an effective DM component through new
degrees of freedom behaving as a pressureless fluid.

3Note that however this observation does not necessarily rule out MOND (ANGUS et al. 2006). Besides,
the bullet cluster may be a too rare object emerging in ACDM (KRALJIC et al. 2015). If other similar ones
where to be discovered in the future, this would challenge the cosmological paradigm.
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1.4.2 Particle candidates

Our knowledge of the microscopic structure of known matter relies on nuclear
physics, atomic physics, and at the smallest scales on quantum field theory. The
standard model (SM) of elementary particles is a robust theoretical construction based
upon powerful physical principles such as symmetries, gauge invariance, and the
Higgs mechanism as a self-consistent mechanism to give masses to particles. Al-
though DM could be made of macroscopic objects, let us first review the possibility
that it be made of elementary particles. We shortly review the SM (see PARTICLE
DATA GROUP et al. 2020 for an extensive review) before showing how DM candidates
could emerge from exotic extensions.

The standard model

The SM is a non-abelian quantum field theory based on a (partially and spon-
taneously) broken SU(3)c ® SU(2)r ® U(l)y gauge symmetry (SALAM et al. 1959;
GLASHOW 1961; S. WEINBERG 1967). The SU(3)c group corresponds to quantum
chromodynamics (QCD) and describes strong interactions, the corresponding
charges are referred to as colours. The SU(2), ® U(l)y part corresponds to the
electroweak sector that unifies the electromagnetic and weak interactions. The
L notation stands for left as this group only acts on particles according to their
chirality, i.e. only on the left-handed particles. In this model, the matter is made of
elementary fermions (with half-integer spins), six kinds of quarks (u,d, s, ¢, b,t) in the
fundamental representation of SU(3)c and six leptons (e, u, 7, ve, vy, v7) that can be
packed into doublets of the fundamental representation of SU(2); when left-handed
and into singlet otherwise (neutrinos are only left-handed particles). Interactions
are mediated via particles in the adjoint representation of the group: the gluons
g for the strong interaction and the massless bosons W', W2, W3 and B for the
electroweak interaction. At low energy (F < Agw ~ 250 GeV) a scalar field called
the Higgs field H (ENGLERT et al. 1964; HIGGS 1964), coupled in a gauge-invariant
way to fermions, falls at the bottom of its potential well, gets a vacuum expectation
value (VEV) usually denoted v = (H) and induces a spontaneous symmetry breaking,
SU2)L, ® U(l)y — U(l)g. Here U(1l)g describes the electromagnetic interactions
with @) the standard electromagnetic charge. The subsequent Goldstone bosons
(GOLDSTONE et al. 1962) can be ’‘gauged-out’, which transforms the W and B
fields into three massive fields (with longitudinal polarisation) W+, W—, Z% The
remaining massless field corresponds to the photon . Beside providing masses
to gauge bosons, the Higgs field is also a fundamental piece of the theory because
it provides gauge-invariant mass terms to the fermions. Finally, the gravitational
interaction, fully described in GR by space-time curvature, is usually not considered
as part of the SM but can be included at low energy by the introduction of a spin-2
particle called the graviton. However, the added terms in the Lagrangian are not
renormalisable; non-physical divergences appear and cannot be removed with a final
number of experimental inputs. The theory becomes non-predictive. Therefore to
properly describe gravity in all regimes of energy one needs to extend the theory in
the UV, which cannot be realised in a simple and generic way — for instance, string
theory (POLCHINSKI 2007a,b) is a framework that provides a consistent theory albeit
being hardly predictive and testable today.

Assuming DM is made of elementary particles, we can shortly review the prop-
erties the latter should have. As DM has not been yet seen via its interactions with
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light, it must be electromagnetically neutral or have an extremely small charge. More-
over, it needs to be stable (or metastable with a cosmological lifetime) and massive to
provide 80% of the total mass of the Universe. Therefore, all known particles are al-
ready ruled out except for neutrinos. However, denoting m; the masses of the three
neutrinos, one can evaluate their total abundance in the Universe today as being
(LESGOURGUES et al. 2006):

3

Qoh?2 =S T 1.12
0 ;93.14& (1.12)

while the best constraints from ground experiments are of the order m; < 0.8 eV — with
a 90% confidence level (AKER et al. 2021) - that roughly gives Q, oh? < 2.6 x 1072. The
CMB puts a bound ), m; < 0.24 eV (with a 95% confidence level from Planck18) that
yields Q,0h? < 2.6 x 1073, far below the value for the total dark matter Q.oh? = 0.12.
Moreover, if DM was made exclusively of neutrinos it would not fit in the WDM or
CDM category neither, but would instead be hot DM (HDM) owing to their relativistic
speed at the time of matter domination, a consequence of their small mass and their
thermal production in the early universe. This is not supported by observations (e..
Ly-alpha) which strongly favour hierarchical structure formation. Therefore it would
be difficult to explain the presence of galaxies. Besides, the mass of fermionic DM
particles is also constrained by their phase-space distribution in galaxies to m > 1.7
keV (TREMAINE et al. 1979; BOYARSKY et al. 2009a) .

Therefore, no SM particle can account for DM. One needs to rely on extensions of
the SM to incorporate DM. It actually turns out that, while the SM allows for predic-
tions of subatomic properties or processes which have been tested to unprecedented
precision, it is not devoid of issues. For instance, it does not allow to fully under-
stand the hierarchy of particle masses, the hierarchy between the Planck and elec-
troweak scales, the specificity of neutrinos (initially described as massless and only
left-handed particles), and it does not incorporate gravity even when it gets relevant in
the very high-energy limit. Other issues are of observational nature: it does not pro-
vide an explanation to the asymmetry between matter and antimatter, nor to inflation,
not the least to DM. Interesting theoretical solutions are given by extensions/modifi-
cations of the SM that can solve at least one problem inherent to particle physics and
can at the same time provide a good DM candidate. In the following, we detail different
DM models and explain how they have been introduced. See FENG (2010) for a review.

Sterile neutrinos

In the primary version of the SM, neutrinos are considered massless (GIGANTI et
al. 2018). However, from neutrino oscillations, it is known that this is not strictly
the case even if the upper bound from ground-based experiments gives m, < 1.1 eV
as seen above. Therefore one needs to correct the original version of the SM La-
grangian. As neutrinos are neutral it is possible to assume that they are Majorana
particles. Even if Majorana masses cannot be generated by a usual Yukawa cou-
pling, one can introduce the non-renormalisable Weinberg operator given, for elec-
tronic neutrinos for instance, by

+
Ly = %(LTMQH)C(HTZ'UQL) +hec. with L= (2) ., H= (g()) (1.13)

where H is the Higgs doublet and C is the charge conjugation operator. When the
Higgs acquires its VEV, (H?) = v, this term becomes a Majorana mass term and one
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obtains m, = v?/A and then A ~ Agyr ~ 10 GeV - of the order the energy scale of
the Grand Unified Theory (GUT) - to satisfy the upper bound on the neutrino mass.
A simple physical realisation of a neutrino mass term comes when introducing a
right-handed neutrino Ny that, in full generality, adds a Dirac mass term and but
also a Majorana mass term so that

1
L =—mpvLNg + iMN}{C—lNR

(1.14)
1 === 0 mp v
— _ c R
e 5 (]/L NL) (mD M ) (NR> + h.C.
with Nf = —NAC~! and v = Cr;T. The mass matrix has then two eigenvalues, one

of which must be vanishingly small due to current constraints on neutrino masses.
This can be realised by the so-called see-saw mechanism (MOHAPATRA et al. 1980). In
the type-I seesaw limit (ADHIKARI et al. 2017) where M > mp ~ v one has two mass
eigenstates corresponding roughly to v, with mass m% /M < v and to N§{ with mass
M > v. Therefore, the model provides here a natural explanation for he smallness of
the neutrino mass (the light mass eigenstate being roughly the SM neutrino) and an
explicit realisation of the Weinberg operator with M ~ Agyr. Moreover if it exists, Ny is
then a singlet for all interactions, it is therefore called a sterile neutrino (in opposition
to the other neutrinos said to be active) and could be a good DM candidate (DODELSON
et al. 1994; SHI et al. 1999; ASAKA et al. 2005). In addition, sterile neutrinos are also
well motivated to explain the matter-antimatter asymmetry of the Universe.

In practice sterile neutrino mass can cover, a priori, a wide range of values as one
can either have no Majorana mass and a Dirac mass or no Dirac mass and a pure
Majorana mass or intermediate configurations. Moreover even in the seesaw case il-
lustrated above if we do not require mp ~ v then M can also be much smaller. In
particular if M ~ keV, the sterile neutrino becomes a good CDM or WDM candidate
(depending on the production mechanism). These particles are unstable, as they can
decay into an active neutrino and a photon, but their lifetime can be much longer than
the age of the Universe. Nevertheless, this remains an interesting feature as the emit-
ted photon in the decay is produced with an energy at half the mass of the sterile neu-
trino (in the rest frame) and provides a clean astrophysical signature. Therefore using
X-ray observation and searching for an emission line puts constraints on the allowed
mass range. See also BOYARSKY et al. (2009b) and BOYARSKY et al. (2018) for reviews.

Axion(-like) particles

Amongst the lightest possible DM candidates are the axions, introduced to solve
the strong CP (charge-parity) problem of the SM. See MARSH (2016, 2017) for detailed
reviews. Indeed, in full generality, one needs to introduce a CP-violating term in
the SM Lagrangian,

0

Lo= ———
0= 39,2

Tr [ G G| (1.15)
where G is the gluon field strength tensor and G* = ¢*'*°G ,, /2. The coupling con-
stant 6 is related to non trivial topological properties of SU(3). and the associated
instantons (BELAVIN et al. 1975). Therefore, even if this new term can be rewritten as
a current derivative (and would therefore not produce any physical effect in the ab-
sence of instantons, like in QED), it actually contributes important non-perturbative
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effects. In addition, it cannot be removed by chiral rotations* and it also contributes
to the electric dipolar moment of the neutron d,, ~ 3.6 x 1076 x § ¢ cm. From exper-
iments it has thus been shown that the value of 6 is severely constrained, 6 < 10710,
which could be considered a problem if one is sceptical about such a large degree
of fine tuning. A possible solution is to introduce a new field, called the axion,
coupling to GG with a dynamics that naturally leads to the cancellation of §. Sev-
eral models have been introduced: the Peccei-Quinn-Weinberg-Wilczek (PQWW) axion
(PECCEI et al. 1977; S. WEINBERG 1978; WILCZEK 1978) (completely ruled out today by
beam dump experiements), the Kim-Shifman-Vainshtein-Zacharov (KSVZ) axion (KiM
1979; SHIFMAN et al. 1980) or the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion
(ZHITNITSKY 1980; DINE et al. 1981). Note that the last two, however, also require the
existence either of new heavy quarks, or a second Higgs doublet.

The idea is to introduce a new U(1)pq symmetry, which acts with chiral rotations,
that is spontaneously broken at an energy much higher than the QCD confinement
scale f, > Aqcp ~ 150 MeV to produce the axion field a € [0,27] as a pseudo-scalar
Goldstone boson. Then the chiral anomaly provides a coupling of ¢ with GG (and FF,
the field strength of QED) and the coefficient ¢ is replaced by 6 + Ca/f, in Eq. (1.15).
Here we have introduced the integer colour anomaly Cé,, = 2Tr [QpqT,T;], with T,
the generators of the SU(3). representation of the fermions and Qpq the PQ charge
of the field responsible for the spontaneous breaking of the PQ symmetry. In the
end, the vacuum energy is proportional to cos(Ca/f,) (Where § has been absorbed by
shifting « and C must be an integer to respect the shift symmetry a — a + 27f,). Be-
cause now a is a dynamical field the energy can be minimised and a vacuum can
be dynamically selected.

When the primordial plasma cools down below T' ~ Aqcp the axion po-
tential takes the form

1 — cos (CG)] (1.16)

Ja

with m, the up quark mass. Then, the axion becomes a pseudo Nambu Goldstone
Boson (pNGB) with a mass m? ~ muA3QCD / f. that can be approximated by

V(a) = muA%CD

7. (1.17)
The field rolls down to a minimum of the potential, oscillating and forming a zero-
momentum condensate which makes an excellent beyond the standard model CDM
candidate. In this QCD axion DM scenario, in order to produce a consistent amount
of DM, the typical bounds on the scale f, are 10° GeV < f, < 10'2 GeV corresponding
to the mass range 10 peV < m, < 0.1 eV.

Eventually, QCD axions studies have paved the way to more generic ones in the
context of axion-like particles (that generalise the QCD axion and are not necessarily
related to the strong CP-problem) or ultralight axions (with a mass down to m, ~
10722 €V) making fuzzy DM - that can alleviate the core-cusp tension. However, the
minimal mass is constrained from the Lyman-a forest (ARMENGAUD et al. 2017; IRSIC
et al. 2017), from the tidal disruption of satellite galaxies (DU et al. 2018; MARSH
et al. 2019), from the galactic rotation curves (BAR et al. 2018) and from several
other observations. The experimental endeavour around axion searches, which have
become priority after the waning of WIMP candidates, will be broached in Sect. 1.5.

1012 GeV
ma’leueV( © ) .

*A similar term for SU(2)1, can be removed by chiral rotations.
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Weakly Interacting Massive Particles

Owing to their simple production mechanism in the early Universe and the fact
that they are naturally cold DM candidates (LEE et al. 1977), Weakly Interacting
Massive Particles (WIMPs) have been among the most popular models. They are
neutral, stable, they have a mass in the GeV-TeV range and they interact weakly with
the SM. Moreover, throughout the last 50 years, several BSM approaches initially
designed to solve problems inherent to particle physics (e.g. the electroweak hier-
archy problem) have predicted WIMP-like particles as by-products (often related to
ensuring the stability of the proton). That was, at least before the null search of new
physics around the TeV scale at the LHC, a very strong theoretical motivation to the
searches of WIMPs. After the LHC campaign, WIMPs have lost their quasi-monopoly.
Nonetheless, if it is true that the GeV-TeV mass range is indeed under experimental
pressure, all the constraints rely on specific aspects of the WIMP-SM interactions.
The vast parameter space is far from being entirely probed and WIMPs are still
alive (LEANE et al. 2018) and they remain a dominant class of models. They remain
an interesting scenario especially in terms of simplicity and minimality, beside the
possibility to detect them from a variety of observations or experiments. Let us
reviews some of the model below.

Supersymmetry. Supersymmetry (SUSY) has been introduced in the 1970s as an
extension of gauge theories by allowing the presence of anti-commuting spinors op-
erators and thus symmetrising, in a way, fermions and bosons (GERVAIS et al. 1971;
NEVEU et al. 1971; RAMOND 1971; WEsS et al. 1974). See MARTIN (1998) for a re-
view on the SUSY formalism. Therefore, in SUSY every particle has a super-partner
with a spin that differs from its own by a half-integer: all fermions have bosonic
super-partners and conversely. One of the most important features of SUSY is the
solution given to the electroweak hierarchy problem (GILDENER 1976). Indeed, even
if the SM masses are correctly renormalised and there is no objection in having a
Higgs boson with a mass of 125 GeV, if we introduce new physics and new degrees
of freedom at the Planck scale, Mp; ~ 10!? GeV (motivated by a UV completion of the
SM including gravity) the Higgs mass should be contaminated by large radiative cor-
rections. In SUSY the issue is avoided as the radiative corrections from loops of the
bosonic super-partners exactly cancel those induced by the SM fermions (provided
their masses are equal). Since the masses of superpartners are experimentally bound
to be larger than those of the SM fermions, the cancellation is, however, not exact.
Nevertheless, having them in the TeV mass range is in principle sufficient to explain
why radiative corrections to the Higgs mass also remain in the TeV range, making it
insensitive to UV physics. In addition, another appeal of SUSY comes from the fact
that if extended to a gauge theory one obtains supergravity an effective realisation of
superstrings theory (a special kind of string theory) at low energy — NATH et al. 1975
and WESss et al. 1992 for a review. More interesting for DM, it provides a set of particles
called neutralinos that are natural WIMPs. In the minimal supersymmetric standard
model (MSSM), the minimal extension of the SM, to provide a mass to up and down
particles it is necessary to introduce two Higgs doublets H, and H,;. Both their neutral
components have then fermionic super-partners A and HY called higgsinos that are
neutral. Moreover, the B boson and one of the three W bosons are also partnered
to neutral fermions, the bino B° and the wino W°. The mass eigenstates of these
four components are the neutralinos y? with i € [0,4] and as their partner, they inter-
act weakly with the SM particles. Therefore they have every properties to be WIMPs
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except for stability. Nevertheless in SUSY, in order not to spoil the constraint on the
proton decay rate, a supplemental discrete symmetry called R-parity is imposed in the
model. A direct consequence of its definition is that one can introduce an invariant
quantum number R that is R = 1 for SM particles and R = —1 for the superpartners
and the lightest supersymmetric particle (LSP) becomes stable as it cannot decay into
SM particle without violating R-parity. If the LSP is the lightest of the neutralinos it
then becomes a perfect WIMP candidate. Other particles such as the gravitino (the
superpartner of the graviton) are also good DM candidates, even though the latter is
much more difficult to constrain as only interacting gravitationally with the SM, or
the (right-handed) sneutrino (ASAKA et al. 2006; ARINA et al. 2007). See JUNGMAN
et al. (1996) for a review of SUSY DM. Extensions of MSSM can also provide more
viable candidates, such as the singlino of the NMSSM (ELLWANGER et al. 2010).

Extra dimensions. The possibility of spacetime having more than 4 dimensions
has been under investigation since the first attempt by KALUZA (1921), trying to unify
GR and electromagnetism by resorting to a compact fifth dimension. In particular,
Klein studied the possibility of a fifth dimension that is compactified around a circle
of small radius and therefore hidden to the observer (KLEIN 1926). While the first
attempt resulted in theoretical issues, in the 1980’s this idea became attractive again
with the popularity of string theory (that cannot be formulated in 4 dimensions only).
Furthermore, some scenarios are appealing as they allow to solve the hierarchy prob-
lem by lowering the Planck scale to the electroweak scale in the bulk the (space of the
extra dimensions). Among the models that have been proposed are: a model with a
new dimension at the millimeter scale (ARKANI-HAMED et al. 1998; ARKANI-HAMED et
al. 1999), the Randall-Sundrum model (RANDALL et al. 1999) and the Universal Extra
Dimensions (UED) model (APPELQUIST et al. 2001). From a phenomenological point of
view, particles that are allowed to propagate through all dimensions of space exhibit,
more massive, excited states — Kaluza-Klein (KK) states. In UED all SM particles are
free to propagate in all dimensions and the lightest KK particle (LKP), if neutral and
stable, can become a good WIMP (SERVANT et al. 2003; AGASHE et al. 2004). Stability
is ensured via the conservation of a symmetry called the KK-parity (that is generally
assumed but could be broken depending on the compactification scheme). A good
candidate for WIMP is the KK-photon that can also approximately identified as the
first excited state of the B-boson B() (as the mixing with the excited states of the W
boson is small). See HOOPER et al. (2007) for a full review on UED DM.

Simplified effective models. With no experimental hints for SUSY or extra di-
mensions at the Large Hadron Collider (LHC), the focus on WIMPs is in part slightly
shifting towards bottom-up approaches. Instead of looking for UV complete models
that solve problems of the SM and bring DM candidates as a bonus (top-down ap-
proaches), we consider WIMPs as having generic properties (bottom-up approaches).
More precisely, in this picture, they are a set of fermionic, scalar of vector particles
that can interact through a set of mediators with the SM particles; the masses and
coupling constants being treated as free parameters. This approach allows deriving
generic constraints and prediction for classes of models (ABDALLAH et al. 2015; ARINA
2018; ATLAS COLLABORATION 2019). Moreover, it still represents a reliable and mo-
tivated way to probe physics beyond the SM because various UV-complete models
can be mapped onto the same classes of Lagrangians at low energy. In Chapter 2
we study in details fermionic WIMPs in a simplified Lagrangian model with scalar,
pseudo-scalar, vector and axial-vector interactions with the SM particles. Moreover,
we show how a non-trivial configuration of the low-energy limit of the NMSSM can
be analysed within that framework. Amongst the various possibilities of simplified
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models one can cite the minimal DM models that aim at producing candidates with
the most important DM features while only adding a minimal extension to the SM
(CIRELLI et al. 2006; E. MA 2006; HONOREZ et al. 2007; CIRELLI et al. 2015). Asym-
metric DM (NUsSINOV 1985; D. B. KAPLAN 1992; D. E. KAPLAN et al. 2009a; PETRAKI
et al. 2013; ZUREK 2014; GARANI et al. 2019), based on the idea that DM abun-
dance originates from a mechanism similar to the abundance of ordinary matter over
anti-matter, can be described from simplified models as well. In addition, they can
also capture SIDM (BERNAL et al. 2016; CHU et al. 2016; HAMBYE et al. 2020) as
we also study in Chapter 2.

Other models

The aforementioned models have been amongst the most attractive ones and have
drawn much attention. Let us mention here a few other possibilities. There is mil-
licharged DM (mDM) that possesses a tiny electric charge and can therefore interact
with the SM through the regular photon or via dark photons (LU et al. 2019). This
scenario is interesting as it can be probed by the sky-averaged 21-cm observations
(BOWMAN et al. 2018). There are mirror DM models where DM is made of a hidden
copy of the SM content (FOOT 2014). In the atomic DM models, it is made of bound
states (D. E. KAPLAN et al. 2009b). Not to forget models where DM interacts only
gravitationally (FAIRBAIRN et al. 2018; MARKKANEN et al. 2018).

Besides, DM scenarios can usually be classified in terms of production mecha-
nisms (e.g. thermal for WIMPs or sterile neutrinos, non-thermal for axions), giving
new names to candidates with similar properties. An extremely massive (m ~ 102
to 10'6 GeV) and non-thermally produced version of the WIMP is called the WIM-
PZILLA (CHUNG et al. 1998; KOLB et al. 1998). This makes a candidate produced
through gravitational interactions only. Strongly Interacting Massive Particles (SIMPs)
(STARKMAN et al. 1990) offer a realisation of SIDM. They are produced via a specific
thermal process involving 3 — 2 interactions (HOCHBERG et al. 2014; CHOI et al. 2016)
instead of 2 — 2 interactions for the usual WIMP. Eventually, WIMP-like particles with
very small couplings to the SM particles are referred to as Feebly Interacting Mas-
sive Particles (FIMPs) and their production mechanism, although thermal, is slightly
different than that of the WIMP, see Sect. 2.3.3.

1.4.3 Macroscopic objects and primordial black holes

Historically the first mention of DM by Poincaré in 1906 was referring to dark bod-
ies or dark stars. So far we have introduced DM particle models without discussing
the possibility that DM might be made of such macroscopic objects of ordinary mat-
ter. We generically call MACHO (for Massive Astrophysical Compact Halo Object) any
astrophysical body that does not emit light and is not associated with any plane-
tary system. Examples include unassociated planets, low luminosity stars like white
dwarfs and red dwarfs and also brown dwarfs. However, scenarios in which MACHOs
that range between planetary to stellar masses are strongly disfavoured by microlens-
ing surveys in the MW (TISSERAND et al. 2007).

A non-baryonic class of MACHOs are primordial black holes (PBHs) (ZEL'DOVICH et
al. 1967; S. HAWKING 1971; B. J. CARR et al. 1974) that provide a good DM candidate.
PBHs are supposed to form in the primordial universe from rare and extremely high
density fluctuations that collapse directly to BHs right after entering the horizon,
after inflation. Since collapsing from gravitational instabilities, their formation are
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boosted each time the radiation pressure in the universe drops. This happens for
instance at the QCD phase transition (JEDAMZIK 1997; JEDAMZIK et al. 1999), or any
other transition when relativistic degrees of freedom disappear (e*e~ annihilation,
etc.). The abundance of PBHs depends on the amplitude of the primordial power
spectrum, and should be extremely small if the latter were at the level constrained
by Planck. However, the amplitude is not constrained on small scales, and could
actually be such that PBHs represent a significant fraction, if not all, of the DM in
the universe. Present at the time of last-scattering and if numerous enough they
provide the non-baryonic mass necessary to understand the anisotropies of the CMB,
playing the role of DM. This scenario faces observational pressure too, with the micro-
lensing studies constraining MACHOs, with BBN and CMB, with y-ray and cosmic-
ray instruments — due to Hawking’s radiation (S. W. HAWKING 1974) — and with other
probes (B. CARR et al. 2020b). Nonetheless, one window remains open for PBHs
with mass 10" g < mppp < 10?2 g. Recent studies even suggested that PBHs could
provide a solution to the asymmetry between matter and antimatter (B. CARR et al.
2020a) on top of being the main or only DM component. Finally, let us point out
that PBHs have also regained interest thanks to the latest observations of black holes
binary mergers with the gravitational waves detectors LIGO /Virgo (CLESSE et al. 2018;
LIGO AND VIRGO COLLABORATIONS 2019). In the scenario inspired by LIGO/Virgo the
fraction of DM in the form of PBHs is established at ~ 10~3 (DE LUCA et al. 2020; A.
HALL et al. 2020; FRANCIOLINI et al. 2021) even if a total fraction of 1 is still possible
in some models (JEDAMZIK 2020a,b).

1.5 Searches for Dark Matter and constraints

So far, DM has been discussed in terms of its gravitational manifestations or sig-
natures on different astrophysical scales. Dedicated searches for particle DM further
follow three main strategies. The first one is to try to produce DM particles at colliders
and spot missing energy in the reconstructed final states after a collision, signalling
dark particles escaping the detectors. Direct detection methods focus on searching
DM present in the Earth’s surroundings via its its direct interactions with target SM
particles/atoms in underground laboratories. Eventually, indirect methods search
for the final products of DM annihilation or decay (indirect searches may also include
searches for the impact of DM interactions with its environment - capture in stars or
planets, stellar evolution, etc., somewhat connected to direct searches). For example
one can search for an excess of gamma rays, cosmic rays or neutrinos over a con-
trolled background that could be induced as by-products of the DM annihilation into
SM particles (assuming that DM self-annihilates).

1.5.1 Particle collider searches

To find DM at colliders the generic method is to search in the detectors for an
excess of events with a single final particle or jet and an important amount of miss-
ing transverse energy Fr. Indeed at a proton-proton collider like the Large Hadron
Collider (LHC), if DM interacts with the SM we expect to have events of the form
pp — X + DM where X is a single final state. Moreover, if these interactions are weak
DM should not be seen by the detectors and therefore they should escape without de-
positing energy (leaving missing energy in the reconstruction of the event). The search
is then dependant on the nature of the state X = ~, W, jets, Z, h,b,t, and it requires a
good reconstruction of the event and good control of the background. For instance in
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Figure 1.9 - Left panel: Compilation of exclusion limits at 90% of the spin-independent
WIMP-nucleon cross-section with respect to the DM mass. The neutrino floor is also repre-
sented. Figure taken from SCHUMANN (2019). Right panel: Compilation of constraints on the
axion-two-photons coupling with respect to the axion mass. The shaded areas show the reach
of future experiments. Figure taken from IRASTORZA et al. (2018).

the detectors ATLAS (ATLAS COLLABORATION 2013) and CMS (CMS COLLABORATION
2008) at the LHC, if X = v one of the main background contamination comes from
events pp — Z(— vv) + v where the Z boson also escapes the detector. Selection cuts
in the kinematics of the analysed events are necessary to optimise the background
rejection. See a review in KAHLHOEFER (2017). As nothing has been detected so far,
only constraints (dependent on the nature of the interactions) are set on the couplings
between SM and DM particles. In the literature generic analysis are often performed
using effective operators (FOox et al. 2011; J. GOODMAN et al. 2011) or simplified
models (ABDALLAH et al. 2015; KRAML et al. 2017; ATLAS COLLABORATION 2019).
Eventually, see MIMASU et al. (2015) for a review of ALPs searches at colliders.

1.5.2 Direct searches

Direct searches are one of the most efficient ways to search for certain classes of
DM particles, especially WIMPs and axions. It has been shown however that building
detectors for sterile neutrinos would be excessively challenging (ANDO et al. 2010).
Let us divide the following discussion between the specific methods employed for
WIMPs and then for axions.

WIMP direct searches

In the WIMP scenario, DM interacts weakly with the SM particles which offers a
handle for detection using the scattering process x + SM — x + SM. Such interactions
can be classified in two categories, whether their cross-section depends on the velocity
of the incoming particles or not. In the former case, direct detection prospects are
suppressed due to the low velocity of DM particles. Therefore velocity-independent
interactions are more efficiently probed with this technique. The goal of numerous
experiments is to detect the recoil of a target SM particle induced by such scattering.
Common methods relies on crystal targets such as DAMA/LIBRA (BERNABEI et al.
2018), EDELWEISS (ARNAUD et al. 2018), (Super)CDMS (AGNESE et al. 2018), CoGeNT
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(AALSETH et al. 2013), CRESST (ANGLOHER et al. 2012) or noble liquid time projection
chambers such as XenonlT (APRILE et al. 2018), DarkSide-50 (AALSETH et al. 2018)
or LUX (AKERIB et al. 2017). See SCHUMANN (2019) for a review. Due to the low
expected event rate, background rejection is one of the hardest challenges for these
experiments. To face it, experimental collaborations use several shielding tools: they
usually place the detector underground and they only focus the search on a fiducial
part of the total detector material. Except for the DAMA result (that we discuss later),
no clear evidence of what could be a DM signal is found today with these methods.
Thus, the results are shown as upper bounds on the scattering cross-section, as
depicted in the left panel of Fig. 1.9. One still must be careful with these exclusion
limits having in mind that they depend both on the nature of the interaction (spin-
dependent or spin-independent), the nature of the recoiling particle (proton, neutron
or electron) and on the DM phase-space distribution around Earth that is not perfectly
constrained (M. W. GOODMAN et al. 1985; JUNGMAN et al. 1996; LEWIN et al. 1996;
GREEN 2010; CATENA et al. 2012; LAVALLE et al. 2015; LACROIX et al. 2018) — not to
mention the impact that subhalos in the vicinity of the Earth would have and that is
not considered as studied in IBARRA et al. (2019).
To give more details we write the expected event rate as

M pX /d3Vf@

1.18
dE mN My ( )

where M is the total target mass, my the mass of the target nuclei and m, the mass of
the DM particle. The function p, is the local DM density and fg is the velocity distri-
bution of DM in the Earth-frame. It must be truncated from above since no particle in
the Galactic frame has a velocity over the escape velocity ve..°. The scattering cross-
section is denoted o, the velocity norm v = |v| and FE; represents the recoil energy.
One can also trade the later variable for an angle as E, = pv?/my(1 — cos §) with 6 the
scattering angle in the centre of mass frame. Here we also introduced the reduced
mass un = mnmy/(mnx + my). Then if we denote by E;, the minimal energy threshold
of the detector it imposes a minimal velocity vyin = VmnEin/2/ux of the incoming DM
particle in order to have detection. Furthermore one can generally decompose the
cross-section in a spin-independent and an spin-dependent part as follow

dU my 2 2

95 = A |os1F&(By) + osp B (Br)] (1.19)
where ogr and ogp are the cross-sections at zero momentum transfer and Fg; and Fgp
are the associated nuclear form factors that depend on the recoil energy (JUNGMAN
et al. 1996). One can usually consider that it is possible to decompose the cross-
section into several bits that go as

do
dE,

x v with n=-2,0, (1.20)

so that the particle physics contribution to Eq. (1.18) is decoupled from the astro-
physics part that can be written, according to the velocity dependence as,

g(vmin) - -/v>v ' dgvfeiEV)

5In any case, a consistent phase-space distribution function should take that into account by being
zero at large velocity. Therefore, formally, the integral can go to infinity. Moreover, one could also be
sensitive to the tiny flux of high velocity unbound particle crossing the Galactic halo.

and (o) = / B fo (V). (1.21)
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Let us now discuss the DAMA exception. Because of the Earth rotation around
the Sun, and therefore in the local DM distribution, the total amount of detected
events should be annually modulated (DRUKIER et al. 1986; FREESE et al. 2013). The
DAMA collaboration claims to have detected a DM annual modulation of at least 9.5¢
(BERNABEI et al. 2018). The corresponding parameter space is shown as contour
plots in Fig. 1.9. However, this result is singular and in tension with the constraints
set by the other instruments. Today it is investigated by the collaborations SABRE
(ANTONELLO et al. 2019) and COSINE-100 (Ko et al. 2019) — which has already ex-
cluded the discovery. Nonetheless, the origin of the DAMA excess, even if coming from
systematic or environmental effects, is yet to be explained.

Finally, let us mention that the direct detection experiments for WIMPs will soon
face the neutrino floor issue (BILLARD et al. 2014) shown in orange in Fig. 1.9. In
other words, they will reach the sensitivity threshold for neutrinos to become a
new part of the background, which is hard to reject. Proposals for distinguishing
DM events from neutrino ones are considered and could come from the annual
modulation and the preferred directionality of DM particle trajectories with respect
to the detector, even though it will remain a challenging experimental task. On the
other hand, probing the neutrino floor should also allow an alternative exploration of
the neutrino sector of the SM (BOEHM et al. 2019; BOEHM et al. 2020).

Axion-like particle direct searches

In the case of ALPs, they can also be probed via direct detection techniques —
see a review in IRASTORZA et al. (2018). Many of them are based on the Primakoff
effect: the conversion of axions into detectable photons in a strong magnetic field.
Some also use the axio-electric effect: the interaction of axions with electrons. This
should be possible due to the allowed coupling of the axion field to the electromag-
netic field tensor and to electrons,

1 _ 0
L= _Zga"/aF,UVFMV - gae2ua

evMyse (1.22)
e

where we introduce the couplings constants g,, and g,. that are the quantities probed
by the experiments. Today the ADMX collaboration (ASZTALOS et al. 2010), because
it has not detected axions in the Galactic halo, provides the best constraint on g,,
on a restricted range of mass. In order to cover the entire parameter space available
to the QCD axion, other specific proposals for axion direct detection in the Galactic
halo with such haloscopes are either under development or have obtained prelim-
inary results. We can mention ABRACADABRA (KAHN et al. 2016; OUELLET et al.
2019), CASPEr (BUDKER et al. 2014) or MADMAX (MADMAX WORKING GROUP 2017).
Furthermore, one can probe axions that could be produced in the Sun from the Pri-
makoff effect (PRIMAKOFF 1951), which would lead to an axion flux originating from
the Sun. Helioscopes are designed to convert these axions back to photons by means
of intense magnetic fields, such as CAST (ARIK et al. 2014) or IAXO (ARMENGAUD
et al. 2014) to put constraints on g,, on a larger mass range. See the summary
plot in the right panel of Fig. 1.9.

In addition, let us point out that the crystal-based detectors for WIMPs can also
be used to search for ALPs again based on the Primakoff effect, examples are EDEL-
WEISS (ARMENGAUD et al. 2013) and the DAMA instrument (BERNABEI et al. 2001).
The liquid gas detectors are not sensitive to that effect but they can probe the equiv-
alent of the photo-electric effect for axions (DEREVIANKO et al. 2010). Interestingly,
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Figure 1.10 - Compilation of the upper bound on the annihilation cross-section from gamma-
ray observations. Here the DM density distribution in the MW is assumed to follow an Einasto
profile (EINASTO et al. 1974) and the gamma-ray signal is produced through the bb channel.
This figure is taken from CTA CONSORTIUM (2020).

the Xenon1T collaboration has detected an electron recoil excess giving a 3.50 signif-
icance to a solar-axion model (APRILE et al. 2020). However, this excess is sensitive
to the background modelling and and its interpretation in terms of axions may be in
tension with astrophysical observations as stated in D1 LuzIO et al. (2020), so that
it should be investigated further.

1.5.3 Indirect searches

The spectrum of indirect searches is vast and we present here the principal ob-
servations setting the strongest constraints on the aforementioned DM candidates.
The method relies on the assumption that DM can self-annihilate or decay to produce
SM particles, which may be detectable (PROFUMO et al. 2010; LAVALLE et al. 2012;
CIRELLI 2013; GASKINS 2016; SLATYER 2017; PEREZ DE LOS HEROS 2020). Therefore
the idea mainly involves astrophysical observation in search of an excess of signal
over a controlled background/foreground. Three different categories of SM targets
are mainly probed: gamma rays, neutrinos and cosmic rays. Indirect searches can
also rely on cosmological observables, such as the Sunyeav-Zeldovich effect (poorly
constraining (COLAFRANCESCO 2004; LAVALLE et al. 2010)) or the CMB (energy depo-
sition from annihilation or decay around recombination). In the following, we detail
the current status of the searches in each case. In the end, we also mention the
contribution of cosmology. As no DM signal has been unambiguously detected so far
constraints are usually set on the decay rates and on the annihilation cross-section.
In the most common scenarios, the latter appears in an average over the velocity
distribution which can be decomposed as follows:

’U2 ’1)4
{Tanmv) = ooc +o1e (5 ) +O (27, (1.23)
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where the first and second terms are respectively called the s-wave and p-wave terms.
The quantity c is the speed of light. Since in most astrophysical configurations DM is
non-relativistic, indirect probes are essentially sensitive to the velocity-independent
s-wave term. On the other hand, sensitivity to the p-wave term is usually much worse
and strongly depends on the DM velocity dispersion in the targeted system (for in-
stance, v ~ 1073 in the Milky Way today, while it was much smaller at recombination
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time). Therefore constraints on o, (for oy = 0) are usually weaker than the constraints
on ogp. Note, however, that more intricate velocity dependencies can also be encoun-
tered e.g. with Sommerfeld enhancement effects become relevant (HISANO et al. 2004;
CIRELLI et al. 2006; ARKANI-HAMED et al. 2009; IENGO 2009; CASSEL 2010).

Gamma-ray observations

Gamma rays produced by astrophysical sources are observed today by different in-
struments. Direct observation is only possible in space as the atmosphere is opaque
to photons in that energy range. The Fermi Large Area Telescope (Fermi-LAT) orbiting
the Earth has been operating since 2010 and has provided among the most complete
dataset in the energy range 0.1-100 GeV. It has a narrow point spread function (i.e.
resolution angle) of 6, = 0.5° and a wide field of view ~ 2.4 sr but its sensitivity de-
creases fast after 100 GeV. At higher energies, an improved sensitivity is obtained on
Earth by resorting to imaging atmosphere Cherenkov telescopes (IACTs), which ben-
efit from a much larger collection area (typical non-thermal gamma-ray fluxes fall off
like power laws with energy). As IACTs are ground-based they do not directly detect
individual photons but rather the particle shower produced by their interaction in the
atmosphere via the Cherenkov effect. The current instruments are H.E.S.S., MAGIC,
VERITAS and HAWC. In a few years, the Cherenkov Telescope Array (CTA) will be-
come the leading observatory (CTA CONSORTIUM 2019) using this technology. The
latter should have a good angular resolution 6, ~ 0.05°, however as all IACTs, it will
have also a much narrower field of view (approximately a few tens of degrees squared).

In the past, special attention has been paid to the centre of the Galaxy. Indeed,
the mass density profile of DM in the MW should be the highest towards its cen-
tre, enhancing there a possible emission from DM annihilation. To illustrate this,
in the simplest scenario, the differential flux of photons coming from DM on a line

A

of sight in direction n satisfies
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with ppum(s, ) the mass density of DM along the line of sight. Therefore the higher
the integral of ppyi(s, i) the more annihilation products can be seen (assuming a lo-
cal conversion to gamma rays). It turns out that an intense and diffuse gamma-ray
emission has been discovered in the Fermi-LAT data that is currently difficult to fully
interpret given the complex astrophysical environment close to the Galactic Centre.
Indeed, our current knowledge of the gas content, of the (regular and turbulent) mag-
netic field configuration, of conventional cosmic-ray sources or other cosmic-ray ac-
celeration mechanism, makes it extremely difficult to construct a reliable background
model. Using simple background models leads to finding excess of gamma-rays in
the GeV energy range (FERMI-LAT COLLABORATION 2017), but the relative amplitude
of this excess is largely at the level of current theoretical errors. This is illustrated
by the many explanations as for possible conventional contributions in this energy
range — e¢.g. from the galactic bulge emission (BARTELS et al. 2018; MACIAS et al.
2018) or millisecond pulsars (BARTELS et al. 2016). Another interpretation relies on a
DM annihilation signal (DAYLAN et al. 2016; LEANE et al. 2019; ZHONG et al. 2019),
but in the absence of a more robust background modeling, it can hardly be consid-
ered as serious hint for DM. We can note in passing that conventional astrophysical
emissions are much harder to calculate and to estimate as they often originate in
non-linear and complex phenomena. On the other hand, a DM annihilation signal
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prediction is simply the integral of a squared density along a line of sight. Recent
studies have shown no significance for a DM signal and have even used this to place
severe constraints on the DM annihilation cross-section (ABAZAJIAN et al. 2020). In
the future, the amount of millisecond pulsars around the Galactic centre could be
probed with gravitational wave detectors (CALORE et al. 2019b) to understand better
whether or not they are responsible for the excess.

Instead of focusing on the very centre of the Galaxy where the data interpretation
is complicated, it is also possible to look in surrounding patches of the sky, where the
DM emission is still strong. As no DM emission has been detected there so far, these
regions are used to set constraints on the DM annihilation cross-section (CIRELLI
et al. 2010; FERMI-LAT COLLABORATION 2012a; CHANG et al. 2018). Furthermore,
the constraints that CTA will be able to set, if no detection is made, have also been
forecast (LEFRANC et al. 2015; SILVERWOOD et al. 2015; CTA CONSORTIUM 2020) — see
Fig. 1.10. Other interesting targets are dwarf galaxies since they are background free.
In addition, they should be embedded into a DM subhalo where the annihilation of DM
particles should thus be enhanced. Constraints from dwarf spheroidal are amongst
the best current constraints on the DM annihilation cross-section in the range 1-
100 GeV (FERMI-LAT COLLABORATION 2015b). For similar reasons galaxy clusters are
interesting extragalactic targets because the biggest reservoirs of DM at hand (ANDO
et al. 2012). However, the intrinsic gamma-ray emission from these objects is however
not well known and subject to large uncertainties - not background-free sources like
dwarf galaxies. In complement to Fig. 1.10, constraints on decaying dark matter can
be found in e.g. CIRELLI et al. (2012).

Another set of analysis relies on DM structuring. A DM signal would trace its dis-
tribution and therefore impact the angular power spectrum of the gamma-ray flux.
MW subhalos can have an impact on the spatial distribution of the diffuse Galactic
gamma-ray emission (ANDO 2009). On larger scales DM structuring can also leave
an imprint on the extragalactic background (ANDO et al. 2006, 2007). In practice
both effects need to be combined. The measurement of the angular power spectrum
has been performed in ACKERMANN et al. (2012a) providing constraints on DM anni-
hilation (ANDO et al. 2013). Furthermore, inside individual objects such as the MW
or its satellites, the presence of substructures could also boost the DM annihilation
signal, imposing more stringent constraints or improving the hope for a detection
(STREF et al. 2017; ANDO et al. 2019). Eventually, in Chapter 5 a special focus will
be given to the detectability of point-like subhalo in the MW with the Fermi-LAT and
CTA instruments (BUCKLEY et al. 2010; PIERI et al. 2011; BERTONI et al. 2015; HUTTEN
et al. 2016; CALORE et al. 2017, 2019a).

Cosmic-ray observations

Unlike gamma rays, cosmic rays do not travel in straight lines as they diffuse
on Galactic magnetic turbulences. Therefore, they do not trace the position of their
source. Nevertheless, antimatter cosmic rays remain a good probe for DM searches.
They have been observed by various instruments, the most important ones being
PAMELA, the Alpha Magnetic Spectrometer (AMS-02) installed on the International
Space Station (ISS) and ATIC, a balloon-borne instrument. The Fermi-LAT and IACTs
are also sensitive to cosmic rays. Moreover, cosmic rays are also observed by the Voy-
ager satellites that reached the outskirts of the solar system and left the heliopause.
Two major observations for DM have been discussed in the past decades, the positron
excess and the anti-proton excess.
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The instruments PAMELA, Fermi-LAT, AMS-02 and others have put in evidence a
rise in the positron fraction ¢.+/(¢.+ + ¢.- ) at energies higher than ~ 10 GeV (ADRIANI
et al. 2009; FERMI-LAT COLLABORATION 2012b; AMS COLLABORATION 2013), that can-
not be interpreted in terms of a pure secondary contribution — produced from inelastic
interactions of cosmic-ray nuclei with the interstellar gas (MOSKALENKO et al. 1998;
DELAHAYE et al. 2009; LAVALLE 2011; BOUDAUD et al. 2017a). DM-induced interpre-
tations of this excess have been proposed, backed with compatible particle models
(TURNER et al. 1990; BALTZ et al. 2002; FOx et al. 2009; IBARRA et al. 2009; CUOCO
et al. 2017). However, a positron production from annihilating thermally produced
WIMP particles® would have to be strongly boosted by the presence of local subha-
los in order to match the excess; to such an extent that is unlikely in the ACDM
model (LAVALLE et al. 2007, 2008; P1ERI et al. 2011) — although this constraint can be
alleviated in specific scenarios with Sommerfeld enhancement for instance (CIRELLI
et al. 2008). In addition, it also has to be consistent with the non-observation of a
gamma-ray counterpart (BERTONE et al. 2009) and no overproduction of antiprotons
(see the next paragraph). Moreover, standard astrophysical explanations exist, which
significantly moderates the relevance of more exotic solutions. For instance, pulsars
are well-known sources of positrons, which could contribute a significant part, if not
all of the observed positron flux (HOOPER et al. 2009; PROFUMO 2009; SERPICO 2012;
YUAN et al. 2014; BOUDAUD et al. 2018b). Predictions of the cosmic-ray lepton flux
at high energy is also affected by a potentially large statistical variance since a small
number of sources might dominate the yield in a rather restricted high-energy range
(SHEN 1970; AHARONIAN et al. 1995; DELAHAYE et al. 2010).

Several studies have also performed statistical analysis of the antiproton flux data
from AMS-02 and have found an excess that seems to be in agreement with a DM
sourced production (CHOLIS et al. 2019; CuocoO et al. 2019). This is particularly
intriguing because simply by knowing the cosmic ray flux in the Galaxy and the bary-
onic matter distribution one can compute the expected background of antiprotons.
However, the discovery of an excess by performing fits on the data may be a biased
result, especially because uncertainties in the models are large. Indeed, the pro-
duction cross-section of antiproton is known to roughly 20% not forgetting to men-
tion their propagation that is non-trivial to predict. As a matter of fact, a careful
treatment of the data shows that they are fully consistent with a pure astrophysi-
cal origin (BOUDAUD et al. 2020). The presence of a DM-induced component could
be tested more robustly in the future with the analysis of other antimatter cosmic-
ray nuclei (KORSMEIER et al. 2018).

Eventually, the Voyager space probes, because they are no longer under the in-
fluence of the solar system magnetic field, can capture cosmic rays with sub-GeV
energy and therefore set constraints on DM with a mass in the MeV range, provid-
ing a probe of s-wave annihilation complementary to the CMB. Besides, the p-wave
constraints are even more stringent than the CMB bounds (BOUDAUD et al. 2017b,
2018a). Interestingly, the Voyager measurements can also constrain evaporating light
PBHs (BOUDAUD et al. 2019).

Neutrino observations

Reviews on the implication of neutrino observation for DM can be found in
JUNGMAN et al. (1996) and LAVALLE et al. (2012). Similarly to photons, neutrinos

8Assuming the s-wave cross-section {cannv) = goc ~ 3 x 10726 cm?® 57!, the typical value to obtain the
correct abundance of DM in the Universe through the standard freeze-out mechanism - see Sect. 2.3.3.
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travel in straight lines and trace the position of their source. However, they have
a very low cross-sections therefore, assuming that the typical flux of high-energy
neutrinos is similar to that of gamma rays, the expected event rate is comparatively
very small. To get a sensitivity similar to that of gamma-ray telescope, one should
scale the detection area by a factor ~ o1/Gr ~ 108, where ot is the Thomson cross
section, and Gy is the Fermi constant (the Fermi-LAT satellite has an effective
detection area of ~ 1 m?). This explains why neutrino telescopes need a huge
detection volume to hope for detection of cosmic neutrinos. Neutrino telescopes
are usually made of photomultipliers immersed under water or ice. The principle
of cosmic neutrino detection mostly relies on the detection of their parent charged
leptons, after electroweak conversion close to the detector, from the associated
Cherenkov showers developing in water or ice. The current observatories are
IceCube at the South Pole (ICECUBE COLLABORATION 2006), ANTARES in the
Mediterranean sea (ANTARES COLLABORATION 2011), Super-Kamiokande (FUKUDA
et al. 2003) and the Baikal-GVD (BAIKAL-GVD COLLABORATION 2019). KM3NET
(KATZ 2006), successor of ANTARES is being built and since its starting up in 2010
IceCube has been (and will be further) upgraded to improve its sensitivity (ICECUBE
COLLABORATION 2012; ROTT 2013). The minimal energy threshold goes from ~ 5
MeV in Super-Kamiokande to ~ 10 or 100 GeV in IceCube.

The first way to search for DM particles with neutrinos is via their possible pro-
duction in the Galactic halo and, as for gamma rays, towards the Galactic centre
(ICECUBE COLLABORATION 2011, 2013b). Another interesting method is to search for
DM in the centre of the Sun or the Earth. Indeed owing to possible interactions
with the elements making the Sun or the Earth, DM particles can be gravitationally
captured and can accumulate in their centres. If DM self-annihilates in these dense
regions neutrinos are the only SM products that escapes and can be detected. In
the Sun, the capture rate of DM gets equilibrated by the annihilation rate in most
of the relevant parameter space within a timescale shorter than the Sun’s age (evap-
oration becomes sizable only for masses < 5 GeV), such that the DM particle pop-
ulation remains constant. The neutrino flux can therefore be predicted from the
capture rate only, which is fixed by scattering interactions. This is why DM-induced
solar neutrino searches are complementary with direct detection searches, and are
expressed in the same parameter space (scattering cross section vs. mass). The cap-
ture rate depends on the spin-independent and spin-dependant terms of the cross-
section with the elements it contains. As it is dominantly composed of hydrogen, solar
observations are efficient to constrain the spin-dependent part (SUPER-KAMIOKANDE
COLLABORATION 2011; ICECUBE COLLABORATION 2013a). In the case of the Earth,
equilibrium cannot be assumed but its composition being mostly of spin-O nuclei, it
is a better target for spin-independent interactions (MIJAKOWSKI et al. 2020). Even-
tually, the IceCube collaboration has recorded very high-energy events (AARTSEN et
al. 2014) that might be interpreted as DM particles with the mass in the PeV range
(ESMAILT et al. 2015; MURASE et al. 2015) — even though other astrophysical expla-
nations have been proposed. However, so far the statistics is too low to properly
identify the origin of the events.

Cosmological probes

We have seen that cosmological observations have been decisive to confirm the
missing mass problem from its gravitational effects on large scales. In practice, DM
particle interactions with the SM particles (through decay, annihilation or scattering)
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Figure 1.11 - Representation of the outline of this work.

would exchange energy with the photon bath and leave imprints on the temperature
and polarisation power spectra or on the frequency spectrum of the CMB (SALATI
1985; SLATYER et al. 2009; ALI-HAIMOUD et al. 2015; SLATYER 2015; SLATYER et al.
2016). Moreover, they can also contribute extra-ionisation during the reionisation
epoch (L1U et al. 2016) — when the hydrogen gas is ionised by the radiation emitted
by the first stars and galaxies. The presence of the large ¢ peaks sets constraints on
DM interactions with photons and neutrinos (BOEHM et al. 2001; BOEHM et al. 2002;
BOEHM et al. 2005; WILKINSON et al. 2016). In order to probe the Universe in the dark
ages (before the formation of the first stars) down to the end of the reionisation epoch,
a promising observation is that of the brightness temperature of the hydrogen atom 21
cm line (FURLANETTO et al. 2006). As DM annihilation or decay could impact on this
21 cm signal, it will be of particular interest for DM searches (LOPEZ-HONOREZ et al.
2016; L1U et al. 2018; SCHNEIDER et al. 2020) with observations provided by various
instruments (BOWMAN et al. 2010; PARSONS et al. 2010; PACIGA et al. 2011; BURNS et
al. 2012; GREENHILL et al. 2012; HAARLEM et al. 2013; MELLEMA et al. 2013; TINGAY
et al. 2013). BBN can also be another way to set complementary constraints and test
the validity of scenarios (SERPICO et al. 2004; WILKINSON et al. 2016). Eventually,
the abundance of DM measured today provides by itself one of the most stringent
cosmological constraints on particle models, both on their interactions with standard
matter and their total annihilation cross section — for thermal production scenarios
— (LEE et al. 1977; VYSOTSKII et al. 1977; STEIGMAN 1979; BINETRUY et al. 1984;
BERNSTEIN et al. 1985; STEIGMAN et al. 2012).

1.6 Summary and outline

One often says that the problem of DM first appeared for the first time in 1933.
The astrophysicist Fritz Zwicky was then interested in the Coma galaxy cluster and he
discovered that the measured velocity dispersion of galaxies inside exceeded severely
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the velocity dispersion inferred from Newtonian’s dynamics with an estimation of the
total mass made from all the visible matter. He then concluded on the possible pres-
ence of an invisible non-luminous matter, the DM, inside the cluster, enhancing by two
orders of magnitudes its total mass to solve the issue (ZWICKY 1933, 1937). Although
this was the first observational appearance of DM, this discovery did not receive much
credit because most astrophysicists were concerned by the measurement errors. The
issue drew even more attention in the 1970s in part due to Vera Rubin, Kent Ford
and others who measured the velocity of stars in spiral galaxies and discovered that
once again, one needed an additional dark and massive component to make physical
sense of the kinematic observations of galactic scales: stars on the outer arms gener-
ically had higher velocities than expected (RUBIN et al. 1970). Today we know that
introducing an effective exotic (non-standard) cold and collisionless DM component,
whatever it really be (modification of gravity or new form of particles or matter), is
necessary to explain many more cosmological and astrophysical observations such as
the inhomogeneities in the CMB (Planck18, SPERGEL et al. 2003), BBN, the formation
of structures such as galaxies and cluster of galaxies (HAWKINS et al. 2003), gravi-
tational lensing effects (CLOWE et al. 2006) etc. No known form of matter could play
the role of DM (e.g. the BBN and CMB constraints): it has to be an (or several) exotic
species or a new degree of freedom of a more fundamental theory of gravity. The to-
tal rough evolution of the Universe is best described today by a simple model, called
ACDM, whose main components are dark energy and a specific class of DM candi-
dates identified as cold dark matter (CDM). In the end, there is now little doubt on
its existence and understanding its nature is an important challenge, a key to better
understand the dynamics, full content, and origin of our Universe

There are two possibilities to tackle the DM problem. The first one is to state that
Einstein’s law of gravitation is not valid on large length scales and should be modified
or replaced. With this point of view, DM does not exist and our misunderstanding
of gravity itself is the cause of all the anomalous observations. However, finding an
accurate and physically acceptable modification is a real challenge. One could
mention for instance the empirical proposal MOND (for MOdified Newtonian Dy-
namics) (MILGROM 1983) that relies on this eventuality but whose "covariantisation"
remains a very challenging task or needs the introduction of DM as new degrees of
freedom (FAMAEY et al. 2012). Several interesting attempts are still ongoing (SKORDIS
et al. 2020). The second way to think of this problem is to introduce DM as new
massive particles: "non-baryonic particles". They could be particles predicted by SM
extensions: supersymmetry, Kaluza-Klein theories, string theory, etc, or particles
introduced to solve more specific problems like axions or massive neutrinos. Not to
forget that DM could also be made of other exotic, while macroscopic, objects, like
primordial black holes (B. J. CARR et al. 1974; CHAPLINE 1975; B. CARR et al. 2016).
Today DM particles are actively searched through different strategies, exemplified by
a series of experiments or observational programs, e.g.: EDELWEISS (BENOIT et al.
2002; ARNAUD et al. 2018), CDMS (AALSETH et al. 2011)/SuperCDMS AGNESE et al.
2014, XENONIT (APRILE et al. 2018, 2020), AMS02, Gaia (THE GAIA COLLABORATION
2016; GAIA COLLABORATION 2018), Fermi-LAT (W. B. ATWOOD et al. 2009), etc. Direct
detection experiments try to find DM through its direct interaction with classical SM
matter, assuming that such an interaction exists. Indirect detection goal is to find
by-products of DM-DM or DM-SM interactions anywhere in the Universe or their
imprint on cosmological observables (such as photons or cosmic ray emissions that
could only be sourced by the presence of DM). Eventually, the hope at colliders is to
produce DM particles from the SM particle interactions and identify their presence
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as the missing energy they carried out of the detectors with them.

While the CDM paradigm seems to be the best model to explain most current data,
some tensions arose in the last decades, in particular at the galactic scale and be-
low, then referred to as the small scale issues. Analysing the causes and possible
solutions to these issues might be key in a deeper understanding of the nature of
DM. On the other hand, since baryonic physics remains a potential clue, precisely
determining the properties of CDM candidates on small scales and the related impact
on DM searches, is an important step that must be studied in parallel. For instance,
the (gravitational) detection of DM subhalos would not only confirm that a signifi-
cant part of DM is cold, but it would also provide indications as for the interaction
properties of DM particles. Therefore, having a precise understanding of features that
single out CDM from other proposals, like the presence of abundant populations of
subhalos in galaxies and clusters, is important to really test CDM through its inti-
mate properties. This thesis develops in this context and addresses tightly related
questions. The main goal is to understand, from first principles and without relying
a priori on cosmological simulations, how dark matter (sub)halos are distributed in
the Universe and what they can tell us about the DM particle nature. The different
parts are centred around an analytical model for the description of the fine struc-
ture of DM that had been optimised to describe the DM distribution in the MW, with
an unprecedented level of details (STREF 2018) — hereafter denoted SL17. It is based
on a statistical description of the ensemble of all subhalos and it encompasses all
the structures from the largest to the smallest down to ~ 107!2 M, in some scenar-
ios (a resolution orders of magnitude beyond the reach of cosmological simulations
— SPRINGEL et al. 2008). It is constructed on an initial (also said cosmological) dis-
tribution assuming hard-sphere substructures following the total DM profile of the
host. Based on consistent modelling of the different dynamical effects, subhalos are
then pruned by tidal stripping and destroyed when becoming too weakly bounded.
This model, fully described in Chapter 4, has been a motivation to explore various
domains of theoretical high-energy physics at the crossroad between cosmology, par-
ticle physics, astrophysics and gravitational dynamics.

After this general introduction on DM, the rest of the document is divided into
four other chapters following a chronological order in terms of the DM history and
represented in Fig. 1.11. In Chapter 2, I study the physics of DM particles in the
early Universe assuming DM is made of WIMPs equipped with a minimal set of in-
teractions with SM particles, and I systematically link the particle physics properties
to the kinetic decoupling temperature which is itself related to the minimal subhalo
mass. In Chapter 3, I address the formation of DM structures and the derivation
of the cosmological mass function for the subhalo population. In Chapter 4, I show
how to implement a new dynamical effect in the semi-analytical subhalo model: the
encounters with individual stars. Eventually, in Chapter 5, I discuss the possibil-
ity for subhalos in the MW to be detected as point-like sources of gamma rays with
the Fermi-LAT and CTA instruments.
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The evolution of the Universe is known to be influenced by the microscopic be-
haviour of its particle content. In a scenario where DM particles are thermally pro-
duced in the early Universe through their interactions with the SM particles, the
strength of the creation processes is particularly important as it fixes the total DM
abundance measured today (I. B. ZELDOVICH et al. 1975; LEE et al. 1977; BINETRUY
et al. 1984; SREDNICKI et al. 1988; GONDOLO et al. 1991; GRIEST et al. 1991). The re-
lation between particle models and the quantity of DM measured is then determined
by their chemical decoupling (BRINGMANN et al. 2007). Besides, the same interac-
tions also fix a small scale cut-off for the mass of halos at formation, because of
DM Kkinetic decoupling (BOEHM et al. 2005; GREEN et al. 2005; BERTSCHINGER 2006),
as it will be explained in Chapter 3. In the CDM paradigm, the minimal mass can
be as low as ~ 10712 M, (BRINGMANN 2009), in which case all large DM structures
should be populated with a substantial number of subhalos (V. BEREZINSKY et al.
2003). The Galactic halo does not break the rule; a statistical description of the
subhalo population in the MW is given in Chapter 4 by the SL17 model. There, the
minimal halo mass is a free input parameter. In this chapter, we then address the
question: What is a realistic value expected in a simplified WIMP model? The aim
is twofold. Firstly, we want to classify a set of generic interactions by extracting the
relevant behaviour that impacts the minimal mass of halos. We focus particularly on
the velocity dependence of the cross-sections involved in the different interactions.
Secondly, combined with the SL17 model, the long term goal of this study would be
able to produce consistent forecasts for detection experiments, where the microscopic
behaviour of DM impacts both the structuring in the MW and its signatures. Along
this way, we pay specific attention to constraining this simplified particle model to
correctly predict the observed DM abundance. In addition, we also look at the im-
portance of a possible DM self-interaction.

Because no beyond the standard model theories have been confirmed experimen-
tally yet, simplified models are currently flourishing (ABDALLAH et al. 2015; KRAML
et al. 2017; ARINA 2018; ATLAS COLLABORATION 2019). If defining a UV complete
theory and examining its phenomenological implications can be called a top-down
approach, one then talks about bottom-up studies for simplified models. Neverthe-
less, we can exactly relate them to specific models without integrating out degrees of
freedom (as necessary with high-dimensional effective field theory operators). An ex-
ample is given in the conclusion of this chapter with the CP-odd sector of the NMSSM
(DOMINGO 2017). In other words, simplified models can be seen as a tool to efficiently
probe a large generic parameter space. Our contribution is thus, more specifically, to
create a dictionary that relates a simplified particle model to the subhalo distribution
in the MW (or other objects). Mapping a complex model to our simplified model, one
can then infer some of the structuring properties of DM and the impact on detection
experiments where the fine-grained structuring may play a role.

This chapter does not enter immediately into the details of the chemical and
kinetic decoupling in a simplified particle model. It develops linearly. In Sect. 2.1
we introduce the mathematical aspects of the ACDM model. Then, in Sect. 2.2, we
focus our attention on the description of the particle content of the Universe in terms
of phase-space distributions: we review the definition of the phase-space function
and its evolution rules by the Boltzmann equation. The next section, Sect. 2.3,
dives into the thermodynamics of the early Universe and gives some first details
on the WIMP history. It is followed by Sect. 2.4 that summarises the state of the
art around the resolution of chemical and kinetic decouplings and shows how we
implemented the master equations in our numerical codes. Eventually, the key
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section Sect. 2.5, specifies the simplified model and, using all the aforementioned
tools, shows specific examples of its link with the minimal halo mass. Eventually,
we conclude and discuss our results, the possible improvements and the impact in
terms of observations and constraints.

Unless mentioned otherwise, we use the natural units A = ¢ = kg = 1 in the rest of
the document. Moreover, Einstein’s summation rules are implicit and Greek indices
run from O to 3 while Latin indices run from 1 to 3. Metric signature is chosen to
be mostly negative (+, —,—, —). Note that some of the references cited in this chap-
ter use the opposite signature and convention for indices. In addition, some also
place the time component at the end making the Latin indices (or Greek in the op-
posite case) go from O to 3.

2.1 The mathematics of the expanding Universe

In this section the basics of Einstein’s general relativity are introduced with the
point of view of the action formalism, summarizing the extensive development done in
the appendices of WALD (1984) — hereafter refereed to as W84. The main objective here
is not to enter into high levels of technicality that differential geometry induces but
rather to establish the notations and the main equations that are needed to properly
introduce the description of a Universe where general relativity is the valid theory of
gravity at all length scales. Eventually, we mention a few words about inflation, a
period taking place before the standard picture of ACDM, which solves some of its
caveats and sets its initial conditions.

2.1.1 A few words on general relativity

In the theory of general relativity, space-time (the fabric of the Universe) is de-
scribed by a 4 dimensional pseudo-Riemannian manifold (M, g,,,). On this manifold it
is possible to define a natural volume element, that can be written, in a right handed
coordinate basis (c.f. W84, Appendix B) as

(= %swa dz# Ada” Ada? Ada” = /—gda® Ada! Ada? A da? (2.1)
where g = det(gu,) and ¢,,,, is the permutation symbol such that €03 = +1. It
is also common to define the volume form as the Hodge dual of the O-form 1 i.e.
¢ = %(1). Because this expression is dependent on the metric, it is also convenient to
use another 4-form ¢’ defined by ¢ = \/—g(’. Then every component of the Universe
and space-time itself is determined by the action

S 19", {itil = Sa [¢"] + Sm (9" {1i }i] (2.2)

where Sg is the action for the metric and Sy is the matter action dictating the be-
haviour of fields {¢;}; making the content of the Universe. More precisely, space-time
is driven by the Einstein-Hilbert action defined as

1
Sa "] =

= e / V=g (R—2A) 2.3)

where A is a constant called the cosmological constant and R is the Ricci scalar built
as the trace of the Ricci tensor R = ¢g"”R,,,,. The latter quantity is directly linked to the
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metric via the connection I'f,, given by the Christoffel symbol,

— )\ A
Ry = 0,1, — 0,T%, + T0\I), —T,T,
. 1 (2.4)
with PZV = igp {aug)\l/ + 8Vgu/\ - a)\g/u/} .

In addition, the matter action Sy is defined from the matter Lagrangian density
Ly [{¢i}i] according to

Sulg", {ikl = 7 G / V=g La [{Wi}i] ¢ (2.5)

From the least action principle, S is to be minimised with respect to the metric field
in order to obtain the gravitational equation of motion, i.e. §5/dg"” = 0. Defining the
stress-energy tensor 7),, as the response of matter with respect to the modification of
space-time (or more precisely to the change of the metric) as follows

2 0(v/—9Lm) _2551\4 gL 2.6)
[N .

V=g egw o

after computations (and up to minor troubles due to boundary conditions that can be
overcome by a redefinition of Sg, c.f. W84) it yields the Einstein equation

T =—

1
{Gw/ =Ry — 2ng,} + Agu = 8nGNT s 2.7)

where G, is called the Einstein tensor. The space-time deformation is encoded in the
left hand side while the content behaviour is described by the right hand side and this
equation shows their interplay. Note that a common notation to describe the metric
is to write down the invariant length element ds? in (M, g, ),

ds® = G datda” . (2.8)

Eventually, to complete this section let us mention the conservation of the stress-
energy tensor. It is usually derived using the fact that the Riemann tensor satisfies
the Bianchi identity. However, in order to keep on with the action framework let us
summarise the proof done in (W84, appendix E) and show that it is a consequence of
the diffeomorphism invariance of the matter action. Indeed, in order for the theory
to be physical it must not depend on the choice of coordinate used and therefore Sg
and Sy must be independent under the action of any diffeomorphism. In particular,
consider a specific one-parameter family of diffeomorphism f),. Then the following
identities must be satisfied

dSg [ Sq
dx ) dgm

dSm 0SM O0SMm

pry prd 4 -
0 o 5gw5g +Z/ 50, 51 . (2.9)

0g"’ and 0= ——

where dg" = dg"” /d\ and §; = dvp;/d\. Introducing £,, the Lie derivative with respect
to any given vector field v in the tangent bundle of M denoted 7'M, it can be proven
that §¢g" = £,(¢"") = Vv, + Vv, with V representing the covariant derivative. More-
over, if all ¢; satisfy the equation of motion, then §S\;/d¢; = 0. Therefore, using the
definitions of the Einstein tensor and of the stress-energy tensor in Eq. (2.6) it yields

/(V“GW)UVC =0 and /(V“TW)U”C =0 YveTM. (2.10)
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Because the equality is true for all vectors in the tangent bundle it implies the usual
contracted Bianchi identity and the associated stress-energy conservation

V,G" =0 and V,TH =0 (2.11)

where we used the fact that the connection used is specified by V9,3 = 0. Now, let us
see in the next subsection, how all these notions are used to describe an homogeneous
and isotropic universe with the Friedman-Lemaitre-Robertson-Walker metric.

2.1.2 The Friedman-Lemaitre-Robertson-Walker Universe

If we assume that the Universe is globally homogeneous and isotropic, a solution
for the left hand side of the Einstein equation applied to the system Universe as a whole
is of the form given by the Friedman-Lemaitre-Robertson-Walker (FLRW) metric

2

2 _ 2 2
ds* =dt“ —a <]_—W

+ r2dQ2) ) (2.12)

with K the curvature with dimension length—2? whose sign determines the geometry:
K > 0 (spherical), K < 0 (hyperbolic), K = 0 (flat). The dimensionless coefficient a is
called the scale factor. Here we used the coordinate system (¢,r, 6, ) where ¢ is the called
the cosmic time and (r,0,v) are the usual spherical Euclidean spatial coordinates so
that dQ? = d#? + sin®#dy)>. A common notation is also to define dy = dr/(1 — Kr2)!/?
where y is called the comoving distance. Using Cartesian spatial coordinates this
metric can also be written ds? = dt* —a?y;;dz'd2z’ where v;; reduces to the 3D Euclidean
metric when K = 0. Another classic parametrisation introduces the conformal time
n, related to the cosmic time through adn = dt, such that
ds? = a2 (dn2 __d r2d92> (2.13)
1— Kr? ' '
Under these symmetry assumptions, the stress-energy tensor on the right-hand
side of Eq. (2.7) is also constrained and takes the form of the perfect fluid tensor

— see (S. WEINBERG 1972; W84) for more details — that is of a fluid with no heat
conduction and no stress due to viscosity,

T/W = (:0 + P)UMUZ/ - Pguua (2.14)

where p is the energy density of the fluid and P its pressure. Notice that both of these
quantities depend only on ¢ (or equivalently n). We also introduced the four-velocity
of the fluid particles defined by u* = dz*/d\ on a geodesic described with the affine
parameter ). For an observer in the frame of the fluid, i.e. such that v’ = 0, it possible
to write the stress-energy tensor in matrix notation,

p 0 0 0
0O -P 0 0

™ =|o o _p o (2.15)
0O 0 0 —P

In the case of several perfect fluids making the Universe, the total energy tensor is the
sum of the energy tensors 7/ of the different species tagged by the letter i,

T =>"T!" whichimplies p=)» p; and P=> P;. (2.16)
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It is common to describe the evolution of the Universe using the Hubble parameter H
and the conformal Hubble parameter H respectively defined as

1 (. da _1(, da
H a{a:dt} and ’H_a{a_dn}. (2.17)

Note that, in our notations, a dot (resp. a prime) over a quantity denotes its deriva-
tive with respect to the cosmic time ¢ (resp. conformal time 7). By definition of the
conformal time, these two quantities are related by # = aH. Consequently, Einstein’s
equation reduces to the Friedmann equations,

= Sﬂng-k[;—ig and H+ H?=—
From these expressions one can define an energy density for the cosmological con-
stant py = A/(87Gx) and for the scalar curvature px = —3K/(87Gna?) as well as a
pressure term p, = —p,. In cosmology it is usual to work with abundances which
represent the proportion of each species (including the cosmological constant and the
curvature as species) in the Universe

H2

4G A
%(p+3p)+§. (2.18)

1 8nG
QIE{pE;{é\I}pZ so that QK+QA+ZQi:1a (2.19)

thanks to the first equation of Friedmann and with p. the critical density. In addition,
if the three components are assumed to be non interacting (except than gravitation-
ally), the v = 0 equation of conservation for the stress-energy tensor in Eq. (2.11) can
be applied individually to each species and it describes the evolution of the different
energy densities with time according to

In what follows we assume no overall curvature, ie. K = 0. As seen in Sect. 1.2.2,
the CMB data point towards a Universe separable into three main general species:
radiation (made of relativistic particles), matter (made of non-relativistic matter, i.e.
CDM and baryons after recombination) and a cosmological constant A or a dark en-
ergy fluid. For each of these three components it is possible to define a constant
equation of state as

w=P/p (2.21)

that are w, = 1/3 (for radiation), w,, = 0 (for matter) and wy = —1 for the cosmolog-
ical constant. While the value for w, can directly been inferred from the definition
of pp and p,, in the case of the radiation and matter a proof is given by Eq. (2.84)
and Eq. (2.85). For a constant equation of state, Eq. (2.20) then yields a relation
between p and the scale factor

—3(14w)
p(t) = p(t,) (;&) (2.22)

with ¢, a reference point in time. A common notation is to tag by a 0 all quantities
evaluated today and to set (without any loss of generality) a(ty) = 1. Therefore, when
applied to the three different components, it gives

pr = pr’oa*‘l, Pm = pmjoa*S and pp = cst. (2.23)
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Because the Universe has had a continuous expansion from a = 0 (what is commonly
called the Big Bang) to a = ap = 1 today, at a very early time it was necessarily
dominated by radiation. Then, with the increase of the scale factor, since data shows
that pfmop; g > pa, it was followed by a period of matter domination and since py > pm,o
we are today in a period of cosmological constant domination. Let us insist on the
fact that the instant a = 0 is fictitious and cannot be described without a theory of
quantum gravity, therefore we only consider this point as a theoretical reference.

In cosmology it is also usual to parametrize time by the cosmological redshift z(¢) =
a~1(t) — 1. The name redshift comes from the fact that it describes the factor by which
the frequency of a geodesically propagating photon that was emitted at a time ¢ and
received today has shifted to a larger wavelengths because of expansion. The first
Friedmann equation gives the evolution of H with the redshift

H(z) = Hoy/Quo(1+ 2)* + Quo(L+ 2)3 + Dy 0, (2.24)

where Hy = H(z = 0), and the different abundances vary according to

2
Qi(2) = Qi o(1 + 2)3(Fw) (;2)) : (2.25)

Eventually, the cosmic time and the redshift are related via d¢ = da/a. It yields

z , 1

to—t= /0 dz AEH) (2.26)
where we recall that ¢, is the time today. In Fig. 2.1 we represent the evolution of
H and of the different abundances with respect to the redshift z. The three differ-
ent stages of the Universe evolution characterised by the domination of radiation,
matter and then cosmological constant are visible in the left panel. The redshift of
equivalence between matter and radiation is introduced as zeq = Qm o/ 0 — 1. It de-
fines the redshift at which the abundancies of matter and radiation are the same,
at the transition between the radiation-dominated era and the matter-dominated era
(where the blue and red lines cross).

2.1.3 A few words on inflation

Several observations point towards the presence of an inflationary stage (of
accelerated expansion such that ¢ > 0) at the beginning of the Universe, a stage
which is implicitly assumed when introducing the standard cosmological ACDM
model. Let us mention a few of the hints and describe briefly with a simple model its
main features.

The first major issue is the apparent homogeneity of the temperature in the CMB.
Indeed, at the time of last-scattering, when CMB was emitted, the size of a causally
connected region then, corresponds to a patch of size ~ 1° in the sky today. Hence-
forth, there is no reason, a priori, for two points separated by an angle larger than
~ 1° to source the emission of a nearly-perfect black body with the same temper-
ature Toyp at a precision of 6Tcvs/Tevs ~ 107°. Introducing an early inflationary
stage solves this problem by causally connecting the entire sky before the start of
the standard cosmology regime. The second issue, that we are going to focus on, as
an example, is the flatness problem. As detailed previously, the CMB data favour a
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Figure 2.1 - Left panel: Evolution of the abundances with the redshift. Right panel : Late
time evolution of the Hubble parameter with the redshift. These two figures have been made
using the Planck18 cosmology.

model with Qx = 0, however, it is possible to derive a differential equation for the
evolution of Qi assuming Q, = 0

dite =20k H (e—1) (2.27)
dt

where e = —H/H? = 1 — a/a?. There are not specific physically well-motivated reasons,
a priori, for Qg to be equal to O as an initial condition. In standard cosmology,
e = 3(1 4+ w)/2 and since w > 0 for radiation and matter, Qx should then increase up
to today and has all the chances to be larger than the constraint Qo = 0.00070 057
(95% confidence level interval — see Planck18) if the initial value is not fined tuned.
Now, let us assume that we have a period of accelerated expansion in the very
early universe. During that period ¢ < 1 and Qx is a decreasing function of time.
Consequently, even if Qx was a priori arbitrary, assuming sufficiently long inflation,
it may have had time to become extremely small before entering the radiation era. In
other words, this process gives a physical dynamical explanation for the smallness of
Qx as measured today without requiring a fine-tuning of the initial conditions. One
could remark that the most efficient configuration corresponds to € = 0, nevertheless,
that would impose H = cst. and give the Universe a stable de Sitter geometry and a
never-ending accelerated expansion. Therefore we need to have 1 > ¢ > 0. One can
then wonder about the time necessary for inflation to match all the constraints. This
time is parametrized by N = In(a(t.)/a(t;)) and referred to as the number of e-folds
where ¢, and ¢; are the cosmic times a the end and start of inflation respectively. The
value of N is constrained to be larger than ~ 50 (THE PLANCK COLLABORATION 2020).

A simple model for inflation is driven by a single scalar field ¢ called the inflaton,
that minimally couples to gravity through the matter action given by

s

where V(¢) is the inflaton potential and ¢ the volume form defined in Eq. (2.1). In
an homogenous and isotropic universe, for the FLRW metric, the stress energy tensor

%gﬂ“amam +Vi(g)| ¢ (2.28)
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and the equation of motion for this field yield

¢? ¢?
po=24V(0) amd py=2 V(o) 2.2
. L v 87Gn | 2
b+ 3HS + df) 0 and g2 = SN [‘f; + v(@] (2.30)

where p, and py are respectively the energy density and pressure of the field.
The parameter ¢ introduced above in the differential equation for Qx can be
written here under the form

3¢?

¢* +2V(¢) 230

€

and ¢4 ~ 0, as required to have an accelerated expansion, only if P> < V(p). If we
also require that ¢ < H¢, these two constraints form the slow roll conditions for the
field ¢. They are essentially equivalent to impose that the potential at the initial value
of ¢ is flat and that the field rolls slowly from its initial position towards a minimum
of V. The parameter ¢, is referred to as the slow roll parameter. The end of inflation
happens at ¢, ~ 1 when the inflaton eventually goes all the way down the potential
and gains enough Kkinetic energy. If we assume that the potential is quadratic close to
¢ =0, and goes as V(¢) = miqﬁQ /2, once at the bottom, the field satisfies the equation
of motion of an harmonic oscillator with a friction term,

¢+3Hp+mip=0. (2.32)
When close to the minimum of potential we can assume that H ~1 becomes negligible
in comparison to the typical time of oscillations ~ m;I. Then ¢ = —méd), which implies
2 = —m3¢¢2 and the perfect oscillator solution, ¢ « cos(mgt). The continuity equation

for ¢ yields pg + 3Hpy = —3py = —3H(¢* — m%¢?)/2 ~ 0 in average, on Hubble time
scales, and p, ~ a2 decreases with time. In practice, because the inflation leads
to standard cosmology we assume that the inflaton field decays in all the standard
model particles during its oscillation with enough energy so that they acquire a state
of thermodynamic equilibrium. This transition is called the reheating phase and it will not
be further detailed here. After reheating, standard cosmology sets in. To complete the
picture, however, we now need to develop the statistics of the particle content in the
early Universe in order to understand what happened after reheating, in a period that
is rich in cosmological events and interesting physics — and cannot simply be reduced
to the simple model of a radiation dominated period. It will be the occasion to detail
the concept of thermodynamic equilibrium that has been mentioned before.

2.2 phase-space distributions in general relativity

2.2.1 Geometry of phase space for a single particle

The best way to understand the behaviour of particles in the early Universe is to
describe their distribution in phase space. Let us describe here the general frame-
work. First and foremost, let us give a definition of phase space. To this end, consider
a particle on a curve whose commoving coordinates are given by z# = z#(\) with
A the affine parameter that traces the position on the curve and maps it to a real
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number (it can be taken as the proper time for timelike paths, which is however not
appropriate to describe the motion of massless particles). The tangent vector field
to this curve is then given by i# = da*/d\!. If the particle is free falling, z* is the
solution to the equation of motion given by the action, and associated Lagrangian
(CHOQUET-BRUHAT 2014; W84),

1
Serla] = / {LFF = QQM:W} X, (2.33)
The equation of motion obtain from the Euler-Lagrange equation is
d [(OLpr OLpp . dat o
— - = e, —— 4+ TH %P = 2.34
dA(@:b#) gan 00 P Tqy Flast =0 234

also called the geodesic equation. Moreover it is straightforward to show that the
general equality holds

— | Lee — ") =0 2.35
Y ( FF~ 5o & ) ; (2.35)
which implies, in the present case, the conservation of the quantity g(u,u) = g, @"&"
along the geodesics. In addition, we introduce the canonical momentum as p, = g, .

Because of the relation

ds?

da2’
one can choose A\ = 7/m, with 7 the proper time, for massive particles, so that, in
the end, it yields the general mass-shell relation

g(p,p) =m?. (2.37)

To go a little bit further, in mathematical terms, the couple (z*,p,) is said to live
in the cotangent bundle 7*M of the manifold M describing the space-time. Then
p* = ¢g"p, and the 8 dimensional couple (z*,p") lives in the tangent bundle T M. In
the following we follow the notations and the clear introduction made in EHLERS (2011)
— hereafter referred to as E70, since these published notes are from a lecture given in
1970. See also BICHTELER (1967), MARLE (1969), and STEWART (1971). We call phase
space and its on-shell hypersurfaces the following sets

P={(z,p)|zeM,peT,M,qglpp) >0}
P = {(z,p) |2 € M, p € TuM, g(p,p) = m?>}

It is also important to define volume elements on those spaces. Every set P(z) =
{p € TuM,g(p,p) < 0} for x € M has its own pseudo-Riemannian structure with
the associated volume form
1
0= J\/—g Euvpedp! A dp” A dp? A dp? . (2.39)
When restricted to the mass-shell hypersurface P, (r) = {p € T, M, g(p,p) = m?} it
reduces by imposing the mas-shell condition Eq. (2.37) as

g(p,p) = cst = (2.36)

(2.38)

1 =g . ,
O, = 20(p°)8 [g(p,p) - mﬂ 0= ?ﬁTg&jk dp® A dp? A dp”. (2.40)

where pg(z#,p’) is the value of py that satisfies the dispersion relation for a given

(z*,p'). We denote by ©/4 the Heaviside/Dirac distribution. On the total phase space
and its mass-shell hypersurface the volume forms are then respectively given by

Q=(AN0 and Q,=(A0,,. (2.41)

'For this discussion the dot notation refers to derivative with respect to A and not the cosmic time.
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2.2.2 Liouville's theorem and phase-space distribution function
From the previous geodesic equation, we can define a vector field on P,, that is

called the Liouville vector L,, and which describes the geodesic flow in phase space,

0
opt

0 - y
L, = po‘% = I,p"'p (2.42)
An important property related to the Liouville vector is that the volume form is con-
served along the geodesic flow. This is often referred to as the Liouville theorem. The
proof relies on d2,, = 0 and Cartan’s formula

Lr,, Q) = d(ir,, Qm) +iL,, (dQn) (2.43)

where iy, is the interior product, £;, is the Lie derivative along L,,. Usually one de-
notes w,, = ir,, (), that can be proven to satisfy dw,, = 0 as well. This yields the afore-
mentioned property under the form £, (92,) = 0. Let us now introduce the phase-
space distribution function. One can prove that for any hypersurface ¥ (oriented
6-dimensional submanifold with boundary) of P,,, the ensemble average number of
occupied states in X, denoted N[Y] , can be written according to a single function f,,
called the one-point phase-space distribution function (PSDF) as

N[E] = /Z Fontom - (2.44)

The number of collisions in any bounded region D C P,, is given by the value of the
previous quantity at the boundaries 0D according to

N[oD] :/BD fmwm:/Dd(fwm):/Ddfm/\wm. (2.45)

The different equalities come from Stokes’ theorem and the fact that dw,, = 0. More-
over as (2, is a 7-form in a 7-dimensional manifold it follows that for any vector field
X and function h in that manifold dh A ix(2,,) = X (h)Q,. In our case, it yields

N[oD] = / Lin(fm)Qm (2.46)

proving that the Liouville vector represents, as a matter of fact, the phase-space
density of collisions. When there is a balance between particle entering and leav-
ing the region then the Liouville operator is equal to 0. The corresponding equation
is called Liouville’s equation L,,(f,) = 0. The interest behind the definition of the
PSDF is that it fully describes the system. Furthermore, one can also define its
corresponding moments,

Ao an — / Foup® ™0, (2.47)

In E70 the following useful Lemma is proven. If i is a differentiable function with
continuous derivatives on P, then it satisfies the equality

v, ( / hp“@m) — / Lo (B)60n - (2.48)

The proof follows the same principles as the derivation we sketched to show that the
Liouville operator corresponds to the phase-space density of collisions. With the help
of a second lemma, based on this first one, E70 even more generally shows that

¥, MO anh — / Lon(fo)p™ oo p®n 16, (2.49)
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In the following now we take into account the fact that particles are quantum ob-
jects that occupy a volume h? = (27)? (in natural units) of phase space and that they
can have a number g, of internal degrees of freedom. Therefore we slightly change
the definition of the PSDF to make explicit these dependencies. For the rest of the
study we use the redefinition f,, — gmfn/(27)3. Consequently, the first and sec-
ond moments that correspond to the number density current and the stress-energy
density tensor, are written

_ _ gm _ _ 9m
=M= / e / Ford" D O - (2.50)
Thus, according to Eq. (2.49), both satisfy V,n* = 0 and V,T"” = 0 for a balanced
number of collisions in a volume of phase space. Moreover we also decompose
the stress-energy tensor and extract two key quantities, the energy density and the
mean Kkinetic pressure

p=T0 — (29:)3 /fm (1) 0 and P = %Tr{TU} - 3(92’;)2 /fmp20m 2.51)

where we introduced the 3-momentum norm p = (—g;;p'p’)"/?.

The Liouville equation is here described for a single particle and then used to
characterise a entire population through the one-point PSDF. To be more precise,
one should describe the phase space for all particles through the complete PSDF
depending on all degrees of freedom. In that case the Liouville theorem holds for
a system driven by Hamiltonian dynamics. However the treatment in a relativistic
framework is beyond the scope of this simple introduction.

In the next section, we discuss the unbalanced case leading to the Boltzmann
equation, that is Liouville equation with a collision term. Let us mention also that
this introduction to the PSDF is rather abstract and that a more pedestrian deriva-
tion of the Liouville operator and subsequently of the Boltzmann equation is given
in DEBBASCH et al. (2009a,b). There the authors detail every geometrical property of
the phase space. Moreover, they also show the relations between the contra-variant
on-shell PSDF as introduced here (which depends on p' and the covariant (which
depends on p;) and off-shell counterparts.

2.2.3 Boltzmann’s equation

In this section we briefly introduce the general expression of the Boltzmann equa-
tion. In a system where several species coexist together, we label by a Roman letter
the distribution function of each species. For instance, for species denoted a the PSDF
is labelled f, = f,,,.The phase-space density of collisions is denoted by an operator
C on f, and depends on the PSDF of all other species interacting with a. With this
definition Boltzmann equation takes the form

Lm(fa) = é(fa) . (2.52)

In full generality, the collision term depends on the two-point PSDF. In turn, the
Hamiltonian treatment for the full PSDF (depending on all degrees of freedom) gives
an equation for the two-point PSDF that depends on the three-point PSDF, so on
and so forth. This is referred to as the Bogoliubov-Born-Green-Kirkwood-Yvon hi-
erarchy. Under the assumption of "molecular chaos", i.e. the momenta of colliding
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particles are uncorrelated and do not depend on their position, the two-point PSDF
can be written as the product of two one-point PSDFs. Here we work under this
approximation that justifies Eq. (2.52).

Let us now give an expression for C. Consider a generic interaction between two
sets of particles I =Y — Z. We are interested on its impact for particles of the given
species a. For clarity, we illustrate all our notations on the process a+a-+c — a+b+Db.
Note that for fermionic species, particles and antiparticles are labelled differently.
There Y, Z and I can be represented as three sets Y = {a,a,c}, Z = {a,b,b} and
I =YUZ={a,a,a,c,b,b}. Then, we index all particles in the sets Y or Z. As a is at
least present once, one of them is labelled a;. The only requirement is that all other
particles are indexed with numbers that do not repeat for identical particles. The
sets of the indexed particles are called ), Z and Z = Y U Z. For instance if a; € Y
then Y = {a1,a2,¢1} and Z = {a3,b;,b2} are two valid sets. If a; € Z one can choose
Y ={az,a3,c1} and Z = {ay, b1, ba}. Whenever necessary we specify in which set is a; by
marking it with a star, ), or Z,. For a set of indexed particles X = ), Z, 7 we introduce
X = X\{a1}. For instance, if a; € Y, one has Y, = {az,c1} and Z = {as, b, b2} = Z. This
notation will turn useful because the Liouville equation characterises the evolution
of one species, whose phase-space volume is not integrated over. Eventually, the
number of particles of species a in an set of particles X =Y, Z, I is denoted £,(X).

With all these definitions we can now introduce physical quantities without ambi-
guities. Firstly, the total phase-space volume element associated with the interaction
Y — Z at fixed value of the momentum p,, is defined by

dIl = (2m)*6® (Zpﬁ Zpﬁ,) A { (92';”)3} (2.53)

KEY K'eZ KT

and secondly the phase space function is introduced as

Fyz = [ fula® pl) T] A+ ew (@ pl)) (2.54)

KEY K EZ

where ¢ is a factor differentiating bosons and fermions. For outgoing fermions, the
available phase space is reduced due to Pauli blocking, which is subsequently en-
coded by setting ¢ = —1. For bosons, on the contrary, it is enhanced, therefore ¢ = +1.
As a shorthand notation f, is to be understood as the PSDF for the species which the
particle labelled  belongs to. The collision operator for Y — Z takes the form

Croz )@ ) = 55 [ 162 Wyiz Pz, — &)Wy z Pl dll (2,59

where W represents the strength of the interaction and § is a combinatorial pre-
factor. Indeed, labelling the particles and subsequently their momentum, when in-
tegrating over dII, the phase space of identical particles is counted multiple times.
Hence the introduction of

S=1[l&)&(2) . (2.56)

rel

where | represents the set of all species in /. In our example [ = {a,b,c}. Fur-
thermore the coefficients ¢,(Z) and ,(Y) are introduced because we do not actually
integrate over p,, and because the choice of particle a; is arbitrary; every other par-
ticle of species a in the same set Y or Z contributes the same. Eventually, the last
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ingredient is the expression of the interaction strength. With the choice of normal-
isation in Eq. (2.53) it can be written

Wyz =[] IMy_zl (2.57)

KEL Sk

with s, the different spin configurations of the particle x. The product simply means
that we sum over all possible spin configurations. In particular, here we sum over
the spin states of the particle a; too which is why we divided the total by g,. The
matrix elements of the interaction My _, z is computed from quantum field theoretical
methods. As specified with the notations, Wy.z, # Wy,.z a priori, since they do not
have the same dependence in the momenta. In Wy.z, the momentum p,, is in the
outgoing side while for Wy, .z it is in the incoming side.

Now, if CP (Charge-Parity) symmetry (or equivalently time inversion symmetry by
the CPT theorem — PESKIN et al. 1995; S. WEINBERG 1995; SCHWARTZ 2014) is con-
served in the interaction, as it will be in all the cases we consider, then the matrix
element is the same for the forward and backward processes. Therefore, the colli-
sion term can be slightly simplified by defining the sum of the forward and back-
ward contributions

Cyesz (fa) (@, 0%) = Oy z (fa) (2", ph,) + (1 — 0y 2)Czmsy (fa) (2", 1))
1 _
5.3 /dH 8a(Y)Wy, 2 [(1 = dyz)Fzy, — Fy, 2] (2.58)
—£a(Z)Wy;z* [(1 - 5YZ)]:Z*;37 - ]:y;Z*]} .

where dyz = 1 if Y = Z and O otherwise. Indeed in the case Y = Z the collision
operator Cy_,y as defined in Eq. (2.55) already includes the backward process. The
total collision operator is finally expressed as a sum over all possible interactions

C(fa) (@, ph) = > Cyvez (fa) (@*,ph). (2.59)
Y,2)

Eventually, let us mention the the Boltzmann equation introduced above is de-
rived from the classical theory, and then applied to the evolution of quantum species.
There are still ambiguities in the Boltzmann approach between decays and 2-body
processes. For instance you can have a + b — c on the one hand, ¢ — d + e on the
other hand, but also a + b — (offshell ¢) — d + e. The full quantum equation takes
care of these possible double-counting issues in principle. A more precise (and much
more involved) description of a quantum system is possible through the Kadanoff-
Baym equation, which is based on the density matrix. However, in a cosmological
context, this framework is mostly relevant to study leptogenesis and baryogenesis
(BUCHMULLER et al. 2000; FROSSARD et al. 2013). For the study of thermal DM, the
Boltzmann equation is appropriate.

2.2.4 H-theorem

In this section, the main ingredients for the proof of the H-theorem are displayed.
Let us start by defining the total entropy current density of a system of several species
as the sum of the different entropy current densities,

SH = za: {sg - (29;)3 / [faln fo — ea(1 + o fa) In(1 + 6afa)]p“0a} . (2.60)
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where the usual definition of the scalar entropy is given by the O-th component of this
4-vector. Using the Lemma of Eq. (2.48) and setting the function h = f/(1 + ¢f) in

order to gain space in the equations?, one obtains the covariant derivative as
VSt = — ga e /Lm (faltt fo — ca(1 + o fa) In(1 + cafa)) ba
2.61
o 261
)In )In (hy) 0,
1 + afa

With the Boltzmann equation, the Llouvﬂle vector can be replaced by the
collision operator to get

Vit = =Y gy [ € ) @ ph ) (halat 91)) - (2:62)

where we made explicit the momentum dependence in this last expression.

As the collision operator for a given interaction Y < Z has been given in the
previous section it can be used to further develop the computation. However, in order
to keep the discussion short we only treat the case of a single species with particles
interacting through a + a — a + a. Afterward we will argue on why the theorem holds
for arbitrary interactions and species. Consequently, one first set Y = Z = {qa,a},
S =4, (YY) =& (2) = 2. For simplicity we also index the particles as Z, = ), = {a1, a2}
and Z = Y = {as,as}. The collision operator becomes

~ i 1 _
Cyez (fa) (:EH?pal) = @ / W{“l,“2}?{“3:a4} [F{QS,G4}§{01,G2} - ‘F{al,az};{amm}} dII. (2.63)

and the derivative of the entropy is

1
VuSs = _§/W{a1,a2};{a3,a4} []:{as,az;};{al,az} - f{a1,a2};{a3,a4}} In (ha (2, pay)) dIT (2.64)

with the notation of the total phase-space volume form dIl = dII A 6, /(2(27)3). Notice
now that changing p,, — p., leaves the expression invariant. Changing p,, — p,, or
Pa; — Da, transforms the expression on its opposite. Therefore we average over four
copies of V, S/ and make the proper changes of variables to get

1 . . v ,
V;Ls(l; = _g/dHWalaz;a3a4f(l(xuvpfll)fa(xuapZQ)fa(xu7p23)fa(xu7pZa4)

l S R %(M P ,p@>> (269
ha(z#, ply ) ha(@#,ph,)  ha(2#, phy)ha(2#, ph,) ha(zt, Dy )ha (2t pt,) )
Because of the inequality (z — y)In(xz/y) > 0, valid for all (z,y) € R? that satisfies
xy > 0, this equation implies V,S¥ > 0. This is exactly the result of the H-theorem,
i.e. the second principle of thermodynamics: the entropy current density can only
increase. It is therefore proven here for the specific configuration of a single species
with 2 — 2 interactions. As a matter of fact for any number of species and any
interaction I = Y < Z the momenta can always be shuffled around so that every
term in the derivative of S* satisfies

H h:‘i(‘ru’pf{)

1
V5" o — / kg ney | | dIT
g ” |J£1;[I fq p ] H h"‘i/ (xlt?pic’) H hﬁ(lﬂuﬂp;) H h apn

K'EZ KEY K'EZ

(2.66)

2When ¢ = 0 we recover the non relativistic case.
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with a positive coefficient of proportionality. From similar arguments one then gets
the conclusion V,S* > 0 in full generality which proves the H-theorem.

2.2.5 Thermodynamic equilibrium between species

Let us focus first on the equilibrium distribution of an isolated species f&9. It is
defined such that it conserves entropy, i.e. V,S5*[fs4] = 0. The condition for equality
is obtained from Eq. (2.65) and can be written as

In hzq(a;“,pf“) +1n hﬁﬂ(x“,ng) =1In h‘;q(a:“,pés) +1n hgq(x”,pz4) . (2.67)

Because of the energy momentum conservation the solution 2% can be parametrised
as Inhid(z”, p¥) = aq(2”) — Bau(x?)p”. Inverting the relation between h, and f, gives

. v v -1
sq(l'y,pl) — |:€Ba,,u(x )p“—aa(w ) — ga . (2.68)

This expression in called the Maxwell-Juttner distribution (JUTTNER 1911). In order
for f, to vanish at large p the vector 3,, needs to be time-like and future directed,
therefore it can be parametrised by f, ,, = Bqua,, With u, uf = 1. In the rest frame of uf
one can then simplify 3, ,p" = f.po. The physical meaning of o, and /3, can be found by
deriving the thermodynamic equalities associated associated to f{4. One then shows
that ¢, is in fact the chemical potential at position x per units of temperature while
B, is the inverse temperature. In the end, setting the chemical potential p, = a4/5a,
we recover the general expression of the Fermi-Dirac and Bose-Einstein distributions.

Replacing f, by the equilibrium distribution in Eq. (2.62) gives that L,,(fs4) = 0. As
shown in BERNSTEIN (1988) and E70 there is no general solution to that equation for
massive particles in the FLRW metric; this is a purely geometric property. Therefore
there is no universal solution for «, and (5,. Nevertheless, consider a species a of
mass m, described by its equilibrium distribution. Then one can still derive that in

FLRW if m, = 0 its temperature goes as T « ¢! and if m, — oo it goes as T, « a 2.

In the Early Universe multiple species coexist and interact. Then the conservation
of the stress-energy tensor, as well as the general H-theorem give

vV (Z T;W) =0 and V, (Z S;;) >0. (2.69)

The equilibrium PSDF are defined by V,S* = 0. This implicit definition imposes
that all species satisfy the equilibrium distribution of Eq. (2.68) with the addition
that for every interaction Y « Z

Yo=Y p and Y fa= ) B (2.70)

acYy a'eZ acY a'eZ

This two equalities are referred respectively to as the chemical and kinetic or thermal
equilibrium. The combination of the two is called the thermodynamic equilibrium.
However, for the same reason as for the single species treatment, there are no general
solutions to these equations when dealing with massive particles. Nevertheless,
in the equilibrium approximation, as long as particle interact sufficiently between
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themselves, they still acquire a state of quasi thermodynamic equilibrium.

We end here the first part of this statistical physics analysis. In the following
section, we use the formulae established here and put them in a physical context
with several particle species in interaction.

2.3 Thermal history of the early Universe

In this section, the different ingredients introduced in the previous section con-
cerning the statistical description of particle species are applied to the history of the
early Universe. However, first, we discuss the locally inertial frame that is convenient
for computations. Afterwards, we describe the thermochemical evolution of the Early
Universe and conclude by addressing the thermal history of WIMPs.

2.3.1 Locally inertial frame

The geometry of space-time has not been specified hitherto in Sect. 2.2. In the fol-
lowing, at every position =/ we will work in the locally inertial frame (LIF) with new co-
ordinates y*(z") and associated canonical momentum ¢* = dy*/d\. We introduce the
comoving momentum norm as ¢ = (J;;¢°¢’)"/? and we define the energy of a particle as

E(q) = ¢" = qo = (m?* 4+ 0;;¢'¢)Y? = (m? + )V, 2.71)
Let us consider a (n,m) tensor 7" with component T[jr} i 111 the LIF and Ty,

in the original coordinate system z*. One can relate both components by the usual
law for coordinate transformations,

~ a 1 a HUn a Un+1 8 VUn+4+m
() O A S R (2.72)
n+1--Am+n OxV1 Oxvn 8yl»lfn+1 8y#n+m Unt1--Vm+n

For a metric in the diagonal form it is always possible to transform it into a Minkowski
metric (up to second order corrections) by setting

i
Dy’ — |Gy 1 H=v
0 ifu#v (2.73)
1
and  y" =y + Opryt {(x” —zp)+ §FZU<‘TP —zp)(x” —xp)| + ...
This definition of the new coordinates is not unique however as it can be rescaled
by a Lorentz transformation. In the interesting case for us, when the original coordi-
nate system is Cartesian in a FLRW Universe with no curvature then the metric is
ds? = dt? — a?dz’d2’ and according to Eq. (2.72) we can relate ¢* to the canonical
momentum p* = dz#/d\ with

q0 = pO and qi = a(tp)pi (2.74)

This transformation being position dependent, we specify that in the previous equa-
tion the scale factor has to be evaluated at xg = t,°. Moreover with the definition

5In order to get the Christoffel symbols to vanish in the new set of coordinates we can simply write
the new coordinates in terms of the old ones in a second order expansion as

¥ = (t— ty) + 5% (65) H(tp)ous (o' — 2) (&’ — ) + ..

y' = alty) (L+ H(tp)ty) (2" — ) + ...

(2.75)
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of the 3-momentum norm p = (—g;;p’'p’)"/? one can check that p = ¢ and py = p° =
E(q) = E(p). In addition, from now on we also use another, more intuitive notation
for the phase space volume element. We define

1 . )
d&3p = pobm = 5\/—9%,{ dp’ A dp? A dpF (2.76)
so that in the LIF it reduces to
1 . )
d*q = 5k da’ A dg A dg” . (2.77)

In conclusion, all the equations can be written in the LIF without loss of generality
(remembering then to make the proper transformation when necessary) as it is often
more convenient in practice. Besides, in order to go from the LIF to the frame of
coordinates z# corresponding the the Cartesian FLRW, one can simply replace d3q —
d3p, ¢ — p and therefore E(q) — E(p) in the expressions.

2.3.2 The effective energy and entropy densities

We are now fully equipped to address the thermodynamics of the early Universe.
After the end of inflation, the inflaton field arguably releases its energy in the form of
radiation during a period called reheating. This very large energy density is then turned
into all accessible standard-model states called the primordial plasma (depending
on the effective reheating temperature 7;), and to exotic particles with sufficient
couplings and kinetically allowed masses such that m < 7. This is called thermal
production. Then rapid scatterings between particles p; +p; < p; + p; ensures thermal
equilibrium, while rapid annihilations and creations of particle and antiparticle pairs
pi +7; <+ X (where X represents any other set of particles in the plasma) ensures
chemical equilibrium.

When assumed in thermodynamic equilibrium all species have their number den-
sity, pressure and density given by the equilibrium equation derived from the equilib-
rium expression in Eq. (2.68). Therefore the equilibrium distribution becomes

1(q) = {eﬁ(E(Q)—H) _ 5}_1 . (2.78)

where we recall that p is the chemical potential here. Nevertheless, we mentioned
that there is no universal solution for the temperature and the chemical potential
as functions of time for massive particles. This has been studied by BERNSTEIN
(1988) who showed that if all particles interact frequently in the thermal bath we can
then be certain that the corrections to the equilibrium distribution remain small.
Therefore, in the following we assume that all SM species can be described simply by
their equilibrium distribution unless stated otherwise.

A first remark is that because the photon number is not necessarily conserved,
for instance in interactions such as

e +y—oe +v+7, (2.79)

their chemical potential is py =01in order to satisfy Eq. (2.70). Moreover, every fermion
and anti-fermion ¢ and v in the SM annihilates into photons according to

Doy 2.80)
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which implies py = —pu,;. Therefore, for fermions with 4, # 0 it can be shown that,
when m < T, the difference in number density between the particle and the anti-
particle is given by the following expression,

3
_ 9 3| 2(Fe Hy
Ny — Ny = @T lﬂ (T) + (T) ] . (2.81)
At early times, when m. < 7', one can approximate y. ~ 0. In the following, we neglect
the chemical potential of SM particles with respect to the temperature as long as their
mass satisfies m < 7. Then, the number density, energy density and pressure at
equilibrium can be written under the form

Je z?
”eq—ngz en 12 K2 (zn) = QLFZ nﬂ{ 5 K1 (zn) + Ko(ﬂfn)}

T4 X 6z a3 322
P = g? gl { <n3 + — Ki(zn) + FKO(WI) (2.82)
n=1
T4 [e's) SU2 4 +00
Pea — ‘g? (—5)n+1ﬁ[( Z Kl (JJ?”L) —|— K()(.’L'n)
n=1 n=1

where Kj(z) is the modified cylindrical Bessel function of order j; and
x=m/T. (2.83)

In the scenario z — 0 of massless particles, also called ultra-relativistic (UR) limit,
these expressions simplify and give

3 24 e
n®d = %5(3),4, Pl = ngOT B and P = % (2.84)
with A =1 and B =1 for bosons and A = 3/4 and B = 7/8 for fermions. The full proof
is given in App. B.1. Note that at the same time we have proven that the equation
of state for radiation is given by w = 1/3. We can also evaluate the expression in the
opposite limit, + — oo, for what is then called non-relativistic particles (NR). Including
the contribution of the chemical potential yields

eq mT\*/? —(m—p)/T eq eq eq eq eq
=g e , ph=mn and P =nT <« p®. (2.85)

Non-relativistic species are pressureless which yields the equation of state for the
matter component of the Universe w ~ 0. After the inflation phase, the temperature
of the plasma decreases and most species become, as the Universe expands,
non-relativistic. Then, if they stay in thermodynamic contact with the plasma their
number and energy densities are thus exponentially suppressed.

Collisions and annihilations ensuring thermodynamic equilibrium are called rapid
if the associated interaction rate, generically denoted I', is larger than the expansion
rate H. One can then discriminate between the interactions that have time to happen
with those that are frozen due to the expansion. To this end, H can be evaluated in
the Early Universe thanks to the first Friedmann equation. Indeed, using the fact that
only UR species contribute to the total energy density at this epoch,

prov =P =D P (2.86)

1€ER
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where we tag by the letter i every species present in the plasma and where R formally
represents the set of UR species. The common notation is to introduce g.z(7"), the
effective relativistic degrees of freedom for energy density at temperature 7" so that

4m3GyN 30p
= {geﬁ(T) - 7T2T4}T4. (2.87)

In essence, the history of the early Universe is encoded in the evolution of g.s(7T).
Its variations are related to variations of p and thus to species appearing into or
vanishing from the plasma, either because they are at thermodynamic equilibrium
and become NR or for any other possible reason — at the QCD phase transition when
all quarks and gluons combine into protons, neutrons, etc. Furthermore, the total
entropy being a conserved quantity if the expansion is adiabatic, it is convenient, in
many computations, to use its associated density. More precisely, for a volume V of
entropy S(V), the entropy density is simply given as s = S(V)/V. As shown in App. B.1
it can be written, for a given species at equilibrium with p = 0,

2

peq Pea T3 +o00 1 3 A
eq __ _ n 7‘1
% = =T Ela - Ki(xn) + 2 Ko(xn) o . (2.88)

Because both the energy density and the pressure go to zero for NR species, it is
useful to introduce another relativistic effective degree of freedom, h.z(7"), so that
the total entropy density is

5= Z 59 = ot (T)T3. (2.89)

According to the expressions of p;? and s;* shown previously thus ges and heg can

also be written in terms of Bessel functions as

3 2

15 n 6 A ’L 3 Z
geff Zgz <Z 5( ) { ( o n ) Kl(mz ) =+ ;:QKO(zzn)}> + Agév (2.90)

1522

3 2
hege(T Zgz <Z (n+1) {(8% a;;) Ki(xzin) + 4;;" Ko(a:m)}) + Ag, (2.91)

[E3%

where the sum on i runs over all possible species of the SM, except for neutrinos.
Neutrino contribution is given by the last term Ay and cannot be computed directly
using Eq. (2.82) because they decouple from the plasma at 7" ~ 1 MeV. Therefore
when electrons become NR, at 7' ~ m. = 511 keV, they transfer their entropy to the
photons, but no longer to neutrinos, which are left colder. Neutrinos then acquire
a new temperature 7, = (4/11)'/3T, computed from entropy conservation, different
from 7. This changes the number of effective degrees of freedom in the photon bath.
For further details on the decoupling process see below, in Sect. 2.3.3 the specific
case of DM decoupling — the basic principles are the same for neutrinos. Therefore
their contribution is, more precisely,

Agi=git (3@(T —me) + Nei (T”)n O(me — T)) (2.92)

8 T

with © the Heaviside distribution. In practice, the Heaviside step is numerically
smoothed out by a regulating function. Moreover, N.g = 3.045 is an effective number
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Figure 2.2 - Left panel: Evolution of the number of effective degree of freedom with the
temperature. Note that the z-axis is reversed so that high temperature (and therefore early

times) are on the left. The peak for gi/ % is due to the divergence of the derivative of h.s at
the QCD phase transition that is unphysical. It is regularised numerically through simple
smooth functions. Right panel: Evolution of the DM annihilation rate over the Hubble rate
for various temperature dependences of the thermally average cross-section. In this example
agp = a; = as = 3 x 10726 cm?s7! and the DM mass is 100 GeV. When the ratio is much larger
than 1 chemical equilibrium is maintained, when it becomes much lower than 1 the chemical
equilibrium is lost.

of neutrinos. This value, different from 3, takes into account the fact that all three
flavours did not decouple exactly at the same time and that the high-momentum tails
of their distributions remained coupled to the plasma up to electron-position anni-
hilation (MANGANO et al. 2005; SALAS et al. 2016). In the left panel of Fig. 2.2 the
evolution of these effective degrees of freedom with temperature is represented, tak-
ing into account all the SM species. It is not important to leave a possible WIMP
contribution out for this graph since we are interested in DM particles that decouple
from the plasma when NR (a condition for being a CDM candidate). Eventually, let us
introduce the evolution of cosmic time with respect to the temperature

ﬁ__l ™ 1/2 _ heﬁ(T) dlnheg(T))
dT sV 45Gx {g* 1= gest (T) (H 3dInT } (2.93)

that plays an important role for the study of the early Universe. The evolution of g, is
represented in the left panel of Fig. 2.2 alongside heg and geg-.

2.3.3 Qualitative history of WIMPs in the early Universe

In this section, we assume that DM is made of one species x of mass m, for clarity
that can be, for now, a scalar, a Dirac fermion, a Majorana fermion, or a vector. In
all generality, we denote Y the anti-particle even if in the case of a Majorana fermion
for instance the bar notation can be redundant as they are their own anti-particles.
Besides, we address here two different configurations: the usual WIMP scenario and
the FIMP (Feebly Interacting Massive Particle) scenario. Let us start with the former.
In the standard picture, after inflation, WIMPs are produced from the plasma, and
reach instantaneously thermodynamic equilibrium. This imposes that their mass be
lower than the thermal energy of the primeval bath, and that they have strong enough
couplings to particles from the plasma. At chemical equilibrium, production from the
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plasma is balanced by annihilation of yx pairs. However, as the Universe expands
and the temperature drops, WIMPs become NR, and the plasma is no longer energetic
enough to produce them efficiently. As long as chemical equilibrium holds, this re-
sults in exponentially quenching the WIMP population, according to Eq. (2.85). The
rate at which annihilation occurs, denoted by I',,, below, is given approximately by

TCann & Ny (OyxUMel) X Z aq$_q_3/26_m (2.94)
q=0

with n, the number density of WIMPs and (o,3vMme1) the thermal average of the an-
nihilation cross-section — detailed in Sect. 2.4. Here we simply assume the partial
wave decomposition of the cross-section in terms of x = m, /T(x 1/v? for NR inter-
acting particles) so that (o,zume) =~ >-, a2z~ 9. The first term, ¢ = 0, is called the
s-wave term while the second, ¢ = 1, is called the p-wave term, and is NR velocity
supressed. Assuming similar amplitudes q,, the annihilation rate is dominated by
the lowest non-vanishing ¢ term*. Annihilation ceases depleting the WIMP population
when the probability of WIMP encounters drops to zero, i.e. when the expansion rate
gets roughly larger than the annihilation rate,

Fann S H X \/ gest (T)x_z. (2.95)

From this time on particles y and X can no longer interact and the annihilation
process stops (rigorously, it never completely stops but is rather tremendously
reduced). By tuning the cross section to values typical of weak interactions, this
occurs before DM particles are completely exponentially suppressed and the number
density of WIMPs freezes out. Hence the subsequent denomination of freeze-out
mechanism and also "weakly-interacting”" massive particles. The right panel of
Fig. 2.2 shows the evolution of I',,,,/H for different behaviours of the cross-section.
At high temperature, small z, the ratio is larger than 1 (marked by the black vertical
line) but decreases and eventually drops below 1.

Now let us explain the basic principle of kinetic decoupling. In the standard pic-
ture, even when WIMPs have chemically decoupled they can still be in kinetic equilib-
rium with the plasma. They keep the same temperature 7' with the approximate func-
tional form for the PSDF thanks to scattering interactions of the type: x + ¢ < x + v,
with any particle ¢ of the plasma. If not strongly velocity-suppressed, those processes
are still efficient for a while since they occur at a rate given by

Fscatt = Ny <UX1/J<—>XwUM@1> S8 xig <Ux1[1<—>waMgl> . (296)

Here there is no exponential suppression in ['y,y With the temperature while the
plasma is relativistic as there is in I';,,. In the most common scenario, Tscatt >> Tann
and kinetic decoupling occurs at later times when ['s.,1t ~ H - see BINDER et al. (2017)
for the treatment when this is not true. Thus, even though the number density of
particles in the plasma (represented by n, o x;?’ here) decreases slower than n,,
it still decreases faster than H and at some point, the scattering processes can no
longer keep up with the expansion rate of the Universe. Then DM stops interacting
and starts to stream freely. It acquires its own temperature denoted 7). The complete
history of the WIMP evolution is summarised in Fig. 2.3.

*If a1 > ao, the p-wave term can dominates over the s-wave term even if the later is non null.
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Figure 2.3 - Representation of the standard WIMPs thermal history.

Let us finally briefly mention the FIMP configuration. It occurs when DM particles
do not interact enough with the rest of the primordial plasma and are not produced
very quickly in thermodynamic equilibrium with the SM particles. Nonetheless,
either creation processes (not balanced by annihilations processes due to the initial
lack of DM particles) or decays of more massive particles can lead to an increase in
n, and a possible increase in I'y,,. If Iy, grows fast enough DM reaches the state
of thermodynamic equilibrium before chemically decoupling and we then recover
the previous scenario. However, if I'y,, stays lower than H, because of too small
couplings to the SM particles, one talks of FIMP DM and this scenario is referred to
as a freeze-in (L. J. HALL et al. 2010; BERNAL et al. 2017). This scenario is analogue
to the production mechanism relevant to sterile neutrinos: The Dodelson-Widrow
mechanism - active-sterile oscillation in vacuum - (DODELSON et al. 1994) or the
resonant Shi-Fuller mechanism - resonant Mikheyev-Smirnov-Wolfenstein oscillation
— (SHI et al. 1999). The freeze-in mechanism was also already discussed in the
context of scalar DM (MCDONALD 2002), or sneutrinos (ASAKA et al. 2006).

In the last sections of this chapter, we now detail the mathematics and the dif-
ferent physical interactions behind the chemical and kinetic decouplings of WIMPs.
Then we illustrate the impact for the halo minimal mass discussed in Chapter 3
within a simplified particle model.

2.4 Chemical and kinetic decoupling of WIMPs

In this section, we detail the production mechanism of thermal DM and its loss of
equilibrium with the rest of the primordial plasma. For that, we assume that DM is
made of one or several WIMP fermionic species that are thermally produced in the
early Universe along with all the SM particles either during reheating or slightly after
by the conversion from SM particles. All particles that are directly interacting both
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with WIMPs and with SM particles are called mediators. They can be SM mediators
or exotic mediators coming from a dark sector.

We denote by {x;}; the set of WIMPs with associated masses {m;};. This set also
contains the anti-particles if DM is made of Dirac fermions. For instance, for one
Dirac fermion we denote x; = X,. By convention, the lightest of all the WIMPs is
tagged 0 and has mass mg. Moreover in this section n; represents the number density
of x; and f; its PSDF. Interactions involving WIMPs can be put into one of the following
four broad categories based on the decomposition of EDSJO et al. (1997)

* Annihilation and creation interactions, e.g. x; + x; <+ Y
¢ Elastic scatterings, e.g. x; + X < x; + X

* Decays and inverse decays, e.g. x; <> xj +Y

* Non elastic scatterings, e.g. x; + X < x; + Z

where X, Y, and Z are arbitrary sets of incoming and outgoing particles different from
WIMPs. Therefore, the collision operator can be divided into four subsequent parts.
Only the first category, however, corresponds to processes changing the total number
of WIMPs and is relevant for chemical decoupling. For the thermal contact, they all
contribute although, in the kinetic decoupling context, we are only interested in the
lightest WIMP and the dominant contribution comes from elastic scatterings.

2.4.1 Chemical decoupling: general set-up

The study of the chemical decoupling is nothing more than the study of the evo-
lution of the number density of WIMPs when it starts to diverge from its equilibrium
value. Conveniently, using Eq. (2.48) we have already seen that

Yt = (;:)3 / Lon(fa)00 (2.97)

so that, combined to the Boltzmann equation, it yields

Vant = {CU) = gty [ CUDG 20 | (2.98)

Here we introduce C as the 0" moment of the collision operator. In the Cartesian
FLRW metric, the covariant derivative of the density vector flow depends only on its
0t component® and it yields the equation for the evolution of the density in terms
of the Hubble rate

dn,

3Hn, . 2.99
1 + n, ( )

"
Vunl =

The Hubble rate H acts as a dilution term thus, if ¢ = 0, this equation simply gives
ne (14 2)3. The main objective is to evaluate the 0'"-moment of the collision operator
to recast it under a form that only depends on the number densities of the different
species, no longer on the PSDFs. If this is possible, all equations on the number
densities will then form a closed system of differential equations that can be numeri-
cally solved. To this end, let us consider an arbitrary interaction between two sets of

5Note that the 0" component of a four-vector in the Cartesian FLRW and in the LIF are the same.
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particles Y < Z and show how this quantity can be generically simplified. Here we
are only interested in the case where Y # Z since elastic scattering are not relevant.
Therefore, assuming the CP invariance of the interactions, according to Eq. (2.58) we
can write the zeroth-order collision operator as

Cyez (fa) = /dﬂ{éa YIWy,.z [Fzy, — Fyazl — &a(Z2)Wyiz, [Fz.y — Fyzl} - (2.100)

where dIl = dII A 6,, /(2(27)3). As a matter of fact, since the particle that is labelled a;
is completely equivalent to all the other particles of species a in this expression, there
is no use of the x» notation and we can simplify the expression as

Cyoz (fa) = 7A€a .2)

/dHWyz[]:zy Fy;z| (2.101)
where A&, (Y,Z) = &,(Y) — &(Z) counts the net difference between created and an-
nihilated particles in the process. In the following, because this should hold true
for interactions in the early Universe, we assume that all particles are in thermal
equilibrium with the plasma. However as we have seen there is no general equilib-
rium parametrisation for the distribution function of massive species. The solution
is then to use the pseudo-potential approximation that consists in writing the differ-
ent PSDF under the form

) = [eﬂE(tJ)+a+¢(q) _ 5}‘1 , (2.102)

where ¢ is a correction to the equilibrium distribution. As proven in BERNSTEIN (1988)
the value of ¢ is constrained by the rate of elastic collisions. If this rate is high enough
one can safely approximate ¢ ~ 0 and this is what is assumed in the following. An
essential property of this PSDF, which is useful for simplifying the expressions is

1+ e fu(gn) = e TPED £ (q,) . (2.103)

Moreover the Dirac delta distribution in dII enforces the conservation of energy

Y Eulge) =Y Eu(aw). (2.104)

KEY K EZ

Using these two equalities alongside Eq. (2.101) allows factoring out the pseudo-
chemical potentials

A&u(Y, Z)

éY(—)Z(fCL) = S

[eor oz _ 1] / AT Wy 2 Fy.z (2.105)

with the definitions of the total potentials

ay = Z ar and ayz = Z oy (2.106)
rey r'eZ

The integral term can take different forms according to the process and this is what we
detail in the following. Let us first give a convenient way to massage it. We introduce
the volume element which reduces to the Lorentz-invariant phase space in the LIF

41 4 m 1 d3(lﬂ
Y.z = 27T 5 Z C],.; Z q, H %(271‘)3 . (2.107)

KEY K'EZ KEZ
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Besides, we also introduce the Y-momentum volume element and the Y-energy prod-
uct so that we can write dII = dIly zdPy/Ey with

B d3q,§ B 1

KEY

Eventually we separate the symmetry factor into two parts Sy and Sz for the two
sets respectively, so that S = SySz. Now we can introduce a generic notation for
a quantlty that represents a differential rate of interactions with a dimension of
[length]—3#Y~1.[time] ' and its thermal average as

(2.109)
and  (Ry.z) = (H g“)/dpydnyzfyz

KEY

The bracket notation represents the fact that the integral is weighted by the phase
space distribution functions. Consequently, the 0'"-moment of the collision opera-
tor can be written explicitly, as a function of the thermally averaged collision rate,
the number density of the species in Y, the chemical potentials and a combinato-
rial pre-factor as follows

s A& (Y, Z _
Cyez(fa) = ééy) [er—az — (H n,g) (Ry;z) - (2.110)
KEY

We are now equipped to detail the expression of the zeroth moment of the collision
operator in meaningful examples. In practice we limit ourselves to two classes of
processes 2 <> n and 1 +» n with n > 2.

Interactions 2 <> n . In this case we write the process as b + ¢ — Z where b
and c can represent any species and 7 is a set of unknown species. In that specific
configuration we can start by writing the interaction rate as follows

1 11
4E:(qc)Ey(qp) 9egp Sz

This expression is already very similar to the expression of a cross-section. Hence,
the idea to write it in terms of 0,._,z. In order to do so, let us make use of the Mgller
velocity v8s,, = [(mwahq?)? —m2m?)Y/? /(Ey(g) Ee(qc)) between the two incoming particles,
where 7, is the Minkowski metric. The differential cross-section is given with our
notations, as a function of the differential interaction rate dR;._,z and va, by

dRpensy = Wibey;z dllpey = - (2.111)

1 1 1
A0pe sy = L W sdll 2 = dR (.5 . 2.112)
- AEy(qy) Ee(qe)vgS,; 9v9e Sz toep 2 be 2 vﬁ/?el ek

The common notation is not to use the quantity denoted R;._,y but rather to define
the thermal average product of the cross-section and relative Mgller velocity (referred
to as the thermal cross-section for short in the following). In the end, the total zeroth
moment collision operator is given by

Aéa({bc}, Z)

Abc = c bﬂl = {bc}, 2 ) [ MM |€ e — . .
G = 2T (i~ (R ) e 1] @
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From this formula it is possible to quickly deduce the expression for any interaction
2 +» n with n > 2. Moreover note that if Z does not contain any particle of species a
then A, ({bc}, Z)/Sgey = 1 whether or not b and ¢ are actually both equal or not to a.

Interactions 1 < n. These interactions correspond to decay and inverse decay
processes. Let us consider y <» Z. We can start, similarly to what has been done
above, by writing the differential interaction rate

1 11 m

— W,zdl,z=—2dl, 2 (2.114)
2Ey(qy) gy Sz v . Ey(qy) v

which appears to directly depend on I'y_, z, the usual decay rate. Then, it is possible
to define a thermally averaged decay rate in a manner similar to the thermal cross-
section and the zeroth moment collision operator becomes

dRy—>Z =

éyHZ = A&y} 2) {(Tysz) = (Ryz) } ny [e™ %7 — 1] . (2.115)

Note that the thermal average decay rate can be evaluated completely as shown in
BELANGER et al. (2018) when there are only two particles in the final state.

In summary, Bolzmann’s equation can be integrated to give an equation on the
number density of WIMPs. This equation therefore implies the integral of the collision
operator, which depends on thermally averaged interaction rates and on the number
density of species involved in these interactions.

2.4.2 Chemical decoupling : WIMPs (co-)annihilation equation

Now that these general considerations have been introduced let us resume the
study of the zeroth moment of the Boltzmann equation for the set of WIMP species
introduced above. However, we should have as many Boltzmann equations as species
are involved, which can be an issue for a numerical solver. This section is there-
fore devoted to the introduction of a simple ordinary differential equation driving
the total WIMPs number density.

Evolution of the total number density

Let us introduce the co-annihilation equation that describes the evolution of the
total number density of all the WIMPs species,

nXEZni. (2.116)

If we assume that they have all decayed today in the less massive species yo, which
makes then the entire DM component of the Universe, the value of ng(tg) and n,(to)
are the same. Note that here we cannot describe co-annihilation with a species that
does not end decaying to WIMPs, or that gets suppressed only after DM freezes out,
nor can we describe relativistic exotic degrees of freedom. For simplicity, let us fur-
thermore consider in the following that the only interactions that change the total
number of WIMPs and have an impact on n, are the annihilations/creations of a
pair of WIMPs. Because WIMPs are assumed to be non-relativistic when they chem-
ically decouple, the collision operator can be written such that the total number of
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DM particles satisfies

eq,eq

d?’LX eq U nj eq\2 ay,. 2
e +3Hn, = ZZ (Tij—ZVMol) 4 (n;q)Q {(nxq) —e an}

Wi Z (2.117)

+ 3> (14 0y,) (Tyi)™ (n”'le%)Q {(”iq)%_ay - "i}
i Y

where the sum over Z spans all the possible set of outgoing particles in x; + x; = Z
and the sum on y runs over all mediators decaying into x; + x;. The prefactor 4d,,,;
is one if y; = x; and zero otherwise. We introduced n;?, the equilibrium number
densities of the WIMP species at zero chemical potential. Besides, the equilibrium
values of the cross-section and the decay rates are respectively given in Eq. (B.48)
and Eq. (B.54) and this equation is more generally proven in App. B.2.

Interaction mediators can be either SM particles or exotic particles from a dark
sector. One issue is that these particles can be produced (e.g. by the annihilation
of DM) and be part of the initial or final states of the interactions. Then, they ei-
ther have to be in thermodynamic equilibrium, so that their pseudo-potential is zero
(which is the case when they are SM particles) or it is necessary to solve an equation
for their pseudo-chemical potential — which implies the resolution of a coupled sys-
tem of equations. In the following, we always rely on the assumption that all such
particles involved are in thermodynamic equilibrium with the thermal bath (thanks to
frequent interactions with light SM particles for instance) when it is possible. Two
options can be considered.

* The mediators have a mass greater than 2m,. As chemical decoupling is expected
to occur at T ~ m/20 these mediators have an exponentially suppressed number
density and their decay into WIMPs is sub-dominant with respect to light SM
particle annihilation (as long as the coupling SM/mediator is larger or roughly
similar to the coupling WIMPs/mediator). We could worry that if the mediator is
too massive its chemical equilibrium with the rest of the thermal bath should,
however, be broken. Nevertheless, in that configuration, such mediators cannot
be produced by DM annihilation (plasma not energetic enough) and similarly to
the decay, their number density is too low to produce DM via 2 « 2 interactions
efficiently. Consequently, they cannot be amongst the final/initial states of the
relevant DM annihilation/creation processes. In conclusion, for mediators with
mass greater than 2mg even if their chemical equilibrium with the primordial
plasma is lost, Eq. (2.117) is not impacted.

* The mediators have a mass lower than 2my. These are more likely to be still
at chemical equilibrium with the bath, which we thus assume, and they are
not massive enough to decay into WIMPs. Therefore the decay term can still
be neglected if the aforementioned condition, in brackets, on the coupling is
satisfied and the pseudo chemical potential of the mediators may be set to zero.
In that case, however, we need to be careful because those mediators, if they are
not part of the SM, can be a part of DM if they do not have time to decay into
light SM particles (and they would not be in chemical equilibrium then).

Henceforth, under the simplifying hypothesis of thermodynamical equilibrium
ay = 0 and oy = 0 in Eq. (2.117) and following BINETRUY et al. (1984), GRIEST et al.
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(1991), and EDSJO et al. (1997) we can rewrite the previous equation with the definition
of the effective thermally averaged annihilation cross-section and decay rates as

eq eq

UUM@] ef—f = Z Z Uzj~>2>eq
ngd

e g?f = Z Z XlX] y—>ij>eq (ne%)z

(2.118)

even though the latter is usually negligible in most scenarios — as decay terms are
only important here when DM is mainly produced by the decay of a heavy parti-
cle that is not in thermal equilibrium with the plasma. Then the total DM number
density is driven by the equation

dn,

I)ed
T X 3Hn, = {<UUM@1>§g + <n>qff} {(n;qy _ "i} (2.119)

X

first derived in LEE et al. (1977) with no co-annihilation and no decay processes.
Under this form it is easier to highlight the competition between the Hubble rate
H and the collisional rate Funy = ny((oomen)et + (D)ot /7$) that was discussed in
Sect. 2.3.3. Indeed, when I'y,, dominates, the equation drives the number density
towards the equilibrium value. However, when the Hubble rate dominates, we recover
the equation for the dilution of the number density of matter in the expanding
Universe.

Majorana vs. Dirac fermions

So far we have not introduced a difference between DM particles that are Majorana
or Dirac fermions. As a matter of fact, there is one but it is subtle to include in that
framework. Indeed, consider that DM particles are made of the minimal possible
amount of Dirac particles. Then, we necessarily have two species, xo and its anti-
particle x; = X,. If we assume a simple coupling to SM fermions ¢ in order to use the
definition of Eq. (2.118) we need to sum over four configurations (: = 0/1,j = 0/1). For
Dirac fermions, cross-sections where i = j are not permitted (annihilation processes
involve the particle and its antiparticle). It yields the sum over two terms that are
actually identical (as the configuration where i represents y and j represents Y is
exactly similar to the reversed one) so that

<UUM01>Zg,Dirac = i {<UX§H¢E’UMQI>eq + < XX%¢¢UMBI>eq} = % <UXYHwEUMz1>eq (2 120]

The factor 1/4 in front comes from the fact that n{ing /(n5? )? = 1/4 since n¢% = nd 1 +ng
and we assume symmetric DM, so that the two terms that are added are equal For
a minimal content of Majorana particles there is only one species and for a similar
coupling to a single SM species it yields

eq — “_ eq
<UUM91>CH,Maj0rana - <Uxxﬁ1/)E,UM'Z‘1> =2 <OUM@1>CH,DiraC : (2.121)
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Figure 2.4 - Evolution of the comoving number density Y, with the parameter = m(/T and
a mass mg = 100 GeV at chemical decoupling. In red is represented the equilibrium solution.
In blue is the solution for s-wave cross-section (cupg) = a with o taking three different values.
In green the case of a p-wave cross-section with (oumg) = a/x. The p-wave cross-section being
suppressed by a factor of z, the decoupling occurs before for the green curves and yields to a
higher residual quantity of DM.

Resolution of the annihilation equation

The goal is now to review the method that, in practice, is used to solve Eq. (2.119).
Moreover we also need to make the link between the final number density evaluated
and the observed abundance of DM that can be used to put constraints on the particle
model used to compute the cross-sections. A common parametrisation is to use a
pseudo-comoving number density, usually written as the ratio of the number density
over the total entropy density. More precisely we denote

Y, =—. (2.122)

This definition is convenient since when the number of DM particles in the Universe
becomes almost a constant n, o< a2 by dilution in the expanding Universe after chem-
ical decoupling. Therefore, as when there is no production of entropy, s o< a3 as well,
the ratio becomes almost a constant. Massaging Eq. (2.119), using the expressions
of s and H with the temperature and the definition of g, of Eq. (2.93) the differen-
tial equation on Y, is then

dYX . > mo 1/2
R Gy 729*
dzx 45GN ©

(1) loomait (1) - 2] (2.123)

From now on we forget about a possible DM production from the decay of a massive
particle and therefore we do not take into account the decay term of Eq. (2.119).
The equilibrium value of the comoving number density is given by the ratio of the
equilibrium number density to the entropy density

nsd 45 m;\ 2 m;
yed—_X — % il — ) Ko —) . 2.124
T (1) 27 (7) =(7) (2.124)

Finding a solution to the ODE Eq. (2.123) is not trivial and requires a numerical
evaluation. However it is still possible to estimate the value of the temperature (or
equivalently z) at the moment of freeze-out. For that, we search when Y, becomes
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Figure 2.5 - Constraints on the cross-section by the comparison to the abundance measured
in Planck18 with the different confidence level. For simplicity, only the uncertainty on the
observed abundance is taken into account — not the uncertainties on p. and 7,. Left panel:
Case of a s-wave cross-section, i.e. (cumg).q = cst. The conventional value is represented in
red. Right panel: Case of a p-wave cross-section, i.e. (cumg) = cst./x. Here we represented
the value of the constant by multiplying the thermally averaged cross-section by z on the
y-axis.

sufficiently different from Yya. Following GONDOLO et al. (1991) we define the freeze-
out temperature as Y, (zy) = (6 + 1)Y9(xs) with § a fixed parameter that can be ap-
proximated as 6 = 1.5. This leads to the implicit equation

\/457rm0 K2($f) 1/2 Kl(xf) 1 dlnh ff(T)
(T o 2) = - —— 2.12
4Gy hea () T OO0+ D = gy T (2129

T=Ty

which is roughly equivalent to (but more precise) asking I',,, = H. In practice the
temperature of chemical decoupling does not vary much between different models
and unless the couplings are extremely low — in which case we are closer to a
freeze-in scenario — or extremely large — in which case the number density of DM is
too much depleted to account for the observed abundance today. Typically it is given
by Ted = mo/TCd ~ 20.

In Fig. 2.4 we show the solution of Eq. (2.123) obtained with a implicit Euler
solver. We assume the presence of only one Majorana DM species of mass 100 GeV
and the thermal cross-section (cume)op = Y., anz~". This partial wave decomposition
has already been mentioned in Sect. 2.3.3. More particularly we recall that ag is
called the s-wave term and a; the p-wave term. In the figure we represent the solution
for a pure s-wave term and a pure p-wave term for different values of a = a9 = a;.
Because at temperatures of interest z > 1 for a same value of a the s-wave scenario
gives a larger thermally averaged cross-section and therefore a lower final DM density
subsequent to a later decoupling. We have used typical values for a in particular
10726 cm3-s7! (~ 107! pb) and 1072* cm?.s~! (~ 10! pb) , which roughly correspond
to what is expected to obtain the observed abundance today. See the following
discussion about Fig. 2.5. Moreover we recover the previous statement, that the
chemical decoupling temperature satisfies z.q ~ 20 — 25.
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The total abundance today

Eventually, the most important quantity is the value of Y, today that we denote
Yy (to) = Yy (z0). In theory we could obtain it by solving Eq. (2.123) up to now. However,
because we know that after chemical decoupling Y4 is negligible in comparison to Y,
it is possible to simplify the equations. In practice we define a truncation temperature
as Y, (x;) = 103Y>§q(mt). After that point we approximate the evolution equation as

dYX . m™  mo 1/2
X 729*
dx 45GN ©

(T) (ovmol)egt Yy (2.126)

that can be solved analytically. A separation of variables yields

z0 { gM2(T !
Y, (to) _Yx(xt){HYX(xtw e | <9$§ )<angl>gg> dx} (2.127)

However, the evaluation of (cuy)et Up to today is not possible numerically a priori
and requires to know the leading orders in the partial wave expansion, the s-wave
term and the p-wave term. The latter cannot always be efficiently derived from a
given particle model, but this is not an issue since, if the s-wave term is zero, we
can simply consider YQ ~ Y, (x;) in a good approximation. The theoretical abundance
of Majorana (C)DM particles is then

ch h2 _ mOnX(tO) h2 _ mOS(tO)YX(tO) h2

c,0 - De De
3 3 2 2 2
_ 16x Yx(to)heﬁ@o)( T ) <m0> GeV (Mpc) ( GeV ) 2.128)
135 GeV GeV mpl km 100s—1
— 2.764 x 10° X Y, m0>
764 % 10° x X(to)(GeV

where we have used for the last equality 7 = 2.72548 K (FIXSEN 2009) and heg (1) = 3.94
(assuming massless neutrinos). Comparing the theoretical value to the observed one,
Qcoh? = 0.1200 + 0.0012 from Planck18, is useful to put constraints on the underlying
particle physics model. In Fig. 2.5 we considered the s-wave and p-wave scenarios,
that is (comel)op = Do ana™ With ag # 0 and ay = 0 respectively on the left and right
panel. Interestingly, when m, > 10 GeV the value of ag or a; that gives the correct
abundance is approximately a constant of the mass. In practice the conventional
adopted value to make quick comparisons is, for the s-wave case,

(oMol ) et ~ 3 X 1072 ecm3s7 1, (2.129)

given in red on the figure, even though the real curve is slightly above or below de-
pending on the dark matter mass. This result is in agreement with STEIGMAN et al.
(2012). Note that we truncated the range in mass at 10 TeV since higher masses —
over O(100) TeV — would break the unitarity of the underlying particle physics the-
ory (GRIEST et al. 1990).

2.4.3 Kinetic decoupling

From the Boltzmann to the Fokker-Planck equation

The thermal or kinetic equilibrium is mostly maintained through elastic scattering
processes x(q1) + ¥(q2) < x(g3) + ¥ (qs) where x is the DM particle and ¢ a particle
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in the relativistic bath such as light SM fermions. The aim is therefore to derive
an equation for the DM temperature T) to evaluate when it departs from the bath
temperature 7. As derived in App. B.3.3 the temperature of a non-relativistic species
with an isotropic distribution is given by

3
_ Mx /.2 _ 9 2, o n iy 4°d
TX - 6 <Urel>NR - MMy /q fX(x » q )(27_[_)3 : (2130)
Therefore integrating the second moment of the Boltzmann equation (with ¢ = 6;;¢'¢’)
should give an equation for 7). More precisely one can check that
2 43 2 g3
¢~ d°q / p- d°p [aTX }
L —_— = L — =3 —= +2HT,| . 2.131
gx/ m(fx)mx (27T)3 gx m(fx)mx (27_(_)3 anX 8t + X ( )
where p is the canonical momentum in FLRW and ¢ the canonical momentum in
the LIF. Therefore, the only missing part is the same integral but on the collision
operator. This turns out to require several approximations in order to obtain an
analytical formulation. According to BERTSCHINGER (2006) and BINDER et al. (2016)
the collision-operator for the elastic scattering can be written

Ofy

Ea) s 9 [wT,q{){EX(q{)T+q{fx<q{>(1+sxfx<q{>)}] (2.132)

2 ik qu

C(f)lal) = o

This results follows from an expansion at small momentum transferred §¢’ = q§ — q{,
as expressed in terms of the initial and final momenta of the DM particle, ¢; and
q3, respectively. Moreover, v(7,q]) corresponds to the momentum relaxation rate.
Assuming that DM is non-relativistic so that DM particles have a negligible velocity in
the plasma frame, it only depends on the temperature and can be written

w/T

- 1 € XY\
T) = W%%/dwwﬁ (8)Pyu(8)s (2.133)

where w = F); is the scattered particle energy in the center-of-mass frame, such that
s ~ mi + 2wm,y + mi Moreover

1
Prew(s) = 12 [s = (my +my)?| [s = (my = my)?] (2.134)
is the 3-momentum norm of the incoming particles in the the centre-of-mass frame

and ¢, = ¢, = —1 when dealing with fermionic particles. Besides, we introduced

the transfer cross-section a?ff”,

_.d _
a?fw = [(1— cos G)%dﬂ

1 1 (2.135)
_ _ Z 2
- 1287rsﬁ;1<¢(5) Ix Gy /dt( 2 ( |MX¢—>><¢| )

spins

where 0 is the angle between q{ and q§ in the centre-of-mass frame and ¢ in this
integral does not refer to time but to the Mandelstam variable t = (¢f — ¢5)?. As a
matter of fact, the transfer cross-section corresponds to a weighted version of the
usual cross-section where the collisions transferring more momentum are favoured
(cosf ~ —1 corresponds to particles leaving the collision with the opposite direction
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they initially have). The collision term has the form of a Fokker-Planck operator and,
under the assumption of non-relativistic DM and using isotropy, it can be written
in term of the momentum norm g

92 o
C(fla) = V(T)% [mXTq - (q - QmQXT) 2" 3} - (2.136)

The second moment ot the collision operator is then

¢* d’q
9x / C(fX)nTXW = 3mynyy(T)(T — Ty) (2.137)
which can be combined with Eq. (2.131) to get the equation for the DM temperature
ddltx +2HT, =~v(T)(T —Ty). (2.138)

Here, as in the annihilation equation, there is competition between the Hubble rate
H and the momentum relaxation rate v. In the limit v > H the equation admits
the simple solution 7, = T which means thermal equilibrium is reached. On the
contrary, when v < H the solution is 7} < a2 that is the expected behaviour for
the temperature of a massive species.

The temperature evolution

Similarly to the number density of DM particles, which is more efficiently tracked
through its comoving expression, it is convenient to express an effective pseudo-
temperature that would tend to a constant after kinetic decoupling. Since we ex-
pect T, o a2 asymptotically after kinetic decoupling, we can again use the entropy
density as a weighting factor, to a power giving the correct asymptotic scaling in a.
An additional factor of m, allows use to define the following dimensionless pseudo-
temperature (BRINGMANN et al. 2007). Let us introduce,

_ my Ty
Y= "2

(2.139)

which depends on the mass of the DM particle, and the entropy density. Massaging
Eq. (2.138) with the expression of the entropy density in terms of effective degree of
freedoms allows to rewrite it under the form

diny, — Voer(Dg*(T) (1) [ v
dinz ~ heg (T) H B Yx . (2140

The structure of this equation suggests to numerically solve for Iny,, which we do
with an implicit Euler solver once again. The equilibrium value y{? is simply obtained
for T\, = T o ! when thermal equilibrium is maintained. After decoupling y, reaches
a plateau at the value y3°. The kinetic decoupling temperature is thus defined at the
intersection of the plateau with the equilibrium value, y{4,

Tea = 2 62/3(Thy) . (2.141)
my

In Fig. 2.6 is shown an example of solution for a DM particle of mass m, = 100
GeV and pseudo-scalar and scalar mediated tree-level interactions. The mass of the
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Figure 2.6 — Upper panel: Evolution of the comoving temperature (blue) with the ratio = =
my /T for a single Majorana DM species of mass m, = 100 GeV in two scenarios (dash-dotted
and dashed) referred as scalar and pseudo-scalar and detailed in Sect. 2.5. The particle
mediator has a mass of 500 GeV and couples to SM and DM particles with the same coupling
constant A = 0.1. The red curve corresponds to the equilibrium value. Lower panel: Evolution
of the corresponding scattering (blue) and Hubble (green) rate.

mediating particle is 500 GeV and we set a universal coupling constant A = 0.1 as
defined in the following section. In the upper panels, we represented the evolution
of the comoving temperature with = m, /T in blue and the equilibrium value in
solid red. In the lower panel, we show the evolution of v(7') and the Hubble rate
H. When the interaction rate dominates, equilibrium is maintained and y, = y3.
On the contrary, when ~ drops below H the equilibrium is lost and the plateau is
quickly reached. The dash-dotted lines report the position of the asymptotes and the
subsequent temperature of kinetic decoupling. We observe a bump on the red curve
occurring at x ~ 7 x 10? (roughly where the decoupling of the scalar-mediated inter-
action happens). Translated in terms of temperatures for m, = 100 GeV this yields
T ~ 150 MeV which is the temperature of the QCD phase transition. By tremen-
dously decreasing the value of s, the transition changes the growing rate of y, since
one can show that y, « hegz. The difference between the pseudo-scalar and scalar
mediated processes mainly comes from their different behaviour when the incoming
particles have a small relative velocity. This difference is similar and related to the
difference between the s-wave and p-wave terms obtained for chemical decoupling.
Here the pseudo-scalar interaction is velocity suppressed and therefore equilibrium
is lost faster than for the scalar case where the interaction is not. More details on
these velocity effects are given in the following section.

2.5 Consistent determination of the halo minimal mass

In the previous sections, we have detailed the evaluation of the chemical and ki-
netic decoupling for WIMPs. In this final section, we evaluate the subsequent minimal
cosmological mass that halo may have. This quantity is directly related to the tem-
perature of kinetic decoupling via two processes called free-streaming and acoustic
damping, which are detailed in Sect. 3.6. Moreover, the minimal mass of collaps-
ing DM structures directly impacts their population in the MW such as their total
number. This is more particularly detailed in Chapter 4 when introducing the SL17
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Table 2.1 - All the tree-level diagrams involved in DM annihilation and creation. Every box
corresponds to a different final product. Note that the u-channel diagrams are only involved
when the incoming or/and the outgoing particles are identical.

model. In this section we assume, for now, that given Ti4 it is possible to evaluate
the minimal cosmological mass My;y,.

2.5.1 Lagrangian of the WIMP simplified model

We consider a model of fermionic DM, Majorana or Dirac particles denoted x; in-
teracting with standard model fermions ; through scalar, pseudo-scalar, vector and
axial-vector interactions. We denote by ¢, ¢, and V} all the possible neutral scalar,
pseudo-scalar, and vector mediators. A generic CP-conserving Lagrangian density for
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the interactions between the SM and the DM particles is then

S B g . . . e
L5 = = Xibx (A bk + i7" B oi)x; — DilAbr + 17 Bior) 2.142)

+ XN (XY = VIV it (X;i - yli’f) Vi
where the summation over k,,j is implicit. The factor §, = 1/2 (resp 1) for Majo-
rana (resp. Dirac) DM particles is set in order to conserve similar Feynman rules
in both cases despite the different combinatorial factors arising in the evaluation of
the S-matrix. For Majorana DM particles Y = x and the coupling via the vector in-
teraction is not permitted, hence X, = 0 in that case. The mediating particles can
also interact between themselves with

w w
Eﬁifv = —%szmi%% - @Hijkéf)i@j@k —wlij¢iVi'Vi . (2.143)

The symmetry factors are S;;, = ny! (resp. Sj;, = n,!) where ny4 (resp. n,) is the
number of identical fields ¢ (resp. ¢) in the first and second terms. The factor w
is a normalisation factor with an energy dimension. Such terms can arise from
Higgs-like mechanisms. Indeed with the Higgs doublet of the SM, H = (h*,h")7,
after the spontaneous breaking of the SU(2); symmetry, the field acquires a vacuum
expectation value (VEV) (H) = (0,w/v/2). Then the quadratic term of the Higgs
potential, namely A(H'H)?, produces Awh?. The term (D*H)'(D,H) gives \whZ"Z,,. In
addition, ¢* or ¢* interactions can also be produced in the same way and could be
added for completeness. In this work they are omitted for simplicity. As pointed out
in KAHLHOEFER et al. (2016) this theory is, a priori, non-renormalizable. In particular,
the axial-vector interaction violates unitarity at large energy. One solution would be
to consider the V particle as the gauge boson of a new symmetry U’(1). However,
this brings further complications in the model to provide a mass to V' and it is not
consistently taken into account in this analysis. Here we also neglect the couplings
of the vector mediator to the other gauge bosons through kinetic mixing. Therefore,
we should keep in mind that if the mass of one of the vector mediators is sufficiently
close to the mass of the Z boson my ~ 91 GeV electroweak constraints may be spoiled
through an enhanced mixing (BABU et al. 1997).

With N, DM particles, Ny, N,, Ny mediators and N, SM particles/antiparticle
couples, the Lagrangian density £XM contains (N)% + Ny)(Ngy + N, + 2Ny) free cou-

int
plings. The total set of free parameters also contains the N4 + N, + Ny free masses

and the couplings of £§i‘fv. For simplicity therefore we can focus on special cases.
One can assign values separately for the couplings between the DM particle xy and
the interaction mediators on the one hand, and for the couplings between the SM
fermions and the same mediators on the other hand. For the latter, all couplings
would be fixed if we considered SM mediators, a possibility that we discard here.
However, we may still envisage simplifying assumptions. We can consider that cou-
plings to the scalar mediation sector is of Yukawa type, with A ~ B ~ \; o my to
respect minimal flavour violation principles (D’AMBROSIO et al. 2002) — we can also
allow for different normalisation factors between up-type and down-type quarks, or
between quarks and leptons (like in supersymmetric models). More simply, we can
assign universal couplings to all SM fermions (also for vector and axial interactions),

and other universal couplings to DM particles.
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Table 2.2 - Diagrams involved in the scattering of DM particles on the thermal bath, which do
not change the number of particles. Every box corresponds to a different particle with which
the DM particle scatters. Note that DM can also scatter off the SM antifermions, which is not
represented here to gain space.

2.5.2 Cross-sections and velocity dependencies

After the derivation of the master equations of chemical and kinetic decouplings,
one needs to determine both the cross-section for annihilation processes and the
transfer cross-section for elastic scatterings. We recall that for a generic interaction
i+ j — k + ¢ they are respectively given by

i dt M
Oij—kt = 6471_51)1] gzgﬂkz/ (Z ’ zjaké‘ )

spins

i 1 1
7= dt(—t Mos |2
om 12871979% gigjsij/ ( ) (Z ‘ z]—MJ‘

spins

(2.144)

where p,;(s) is the centre of mass momentum given by p;;(s) = (s — (m; — m;)?)(s —
(m; +m;)?)/(4s). The factor S;; is 2 if the two particles are the same and 1 other-
wise. We restrict the analysis to the tree-level diagrams. All the relevant processes
for chemical decoupling are represented in Tab. (2.1). All the relevant processes for
kinetic decoupling are represented in Tab. (2.2). Note that here we do not take into
account the possible scatterings on the mediators via the exchange of a DM particle
in the t-channel or s-channel. Indeed we assume that mediators are only present in
the thermal bath if lighter than the DM particles, in which case these diagrams are
suppressed by the mass of the DM particles in comparison to the scattering on SM
fermions. Moreover, the DM particles can also scatter on the anti-fermions of the
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Table 2.3 - Diagrams involved in the self-interaction with scalar mediators.
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Figure 2.7 - Annihilation cross-section of DM into e*e™ multiplied by the relative velocity of
the incoming particles. In the left panel, only one mediator contributes while on the right there
is a mixture of two. We denote S=scalar, PS=pseudo-scalar, V=vector and AV=axial-vector.
All mediators have the same mass m = 224 GeV, chosen so that the resonance happens at
vrel = 0.75 for clarity. The couplings involved are all equal to O.1.

SM. The amplitudes are the same as for the scattering on the fermions except for
the term implying a vector mediator, for which the signs of interference contributions
may be changed. Therefore, one needs to be careful and consider these two scattering
processes on their own. Indeed, even if a global sign of the amplitude is irrelevant,
if several mediators of different nature are involved the interference terms with the
vector mediators can potentially switch signs.

As detailed in Chapter 1, self-interactions in DM models can help solve some
of the small-scale tensions. Therefore we also evaluate, within our model, the
corresponding transfer cross-section divided by the DM mass. The diagrams involved
are represented in Tab. (2.3) for scalar mediators. The contribution of the other
mediators adds in the same way. For Majorana DM all three diagrams play a role.
For Dirac DM we need to distinguish x\ — xXx which involves the s and ¢-channel
diagrams and xx — xx which involves the ¢ and u-channel.

The velocity dependence can be evaluated through the Lorentz-invariant relative
velocity. Indeed, one can relate the energy in the centre of mass defined by the Man-
delstam variable s to v, with the expression

rel

) . 5\ —1/2
s = (m; +my)* 4+ 2mimj(yrel — 1) with e = (1 — ) (2.145)

It appears to be useful to develop the expression of the thermally averaged cross-
section and transfer cross-section involved in chemical and kinetic decoupling. One
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can always write the expansion

o
OVl = 3 Gnvi] - (2.146)
n=0
and the leading order can be evaluated with some lengthy mathematical developments
detailed in App. B.3.3. In practice, it is painful to go to high order, but it turns out that
terms beyond n = 1 usually add negligible corrections, which can safely be neglected
in most cases. Then, using the non-relativistic definition of the temperature and
Eq. (B.98) one can evaluate the s-wave and p-wave terms of the usual partial wave

decomposition in the ratio x = m,/T

T,
(ovrel) = ag + 6a1—> = ag + 6aix, (2.147)
My

with the assumption of thermal equilibrium 7, = T. For non-relativistic species we
recall that v, ~ vy SO We can use both indifferently.

For the transfer cross-section a similar expansion is possible. If interested in
its behaviour for direct detection, where the relative velocity between the incoming
particle is small, one can also develop in series of v,,;. However, for kinetic decoupling,
a better parameter to develop on is p,,,/m,. Indeed, the velocity of SM particles in the
primordial plasma is large (~ 1). The incoming centre-of-mass momentum, on the
contrary, is limited by the temperature and a rough scaling gives p,,,/m, ~ |T? —

m2|'/?/m, < 1 when kinetic decoupling occurs. Therefore we can write

00 0o ]7 2n
or = Z bnvfg or or = Z Cn (w> . (2.148)

In Fig. 2.7 we show the evolution, with the relative velocity, of the total tree-level
cross-section for the annihilation of DM particles into eTe™. In the left panel, there is
only one mediator while in the second panel there is a combination of two, with the
same mass. The couplings involved are all set to 0.1. At low velocity the scalar and
vector-mediated interactions have a cross-section that drops to O, which is the sign
that the corresponding s-wave term is O, that is ap = 0 in Eq. (2.146). On the contrary,
for the pseudo-scalar and axial-vector mediator, the product of the relative velocity
with the cross-section goes to a constant at vanishing velocity. This is the sign that
the s-wave term is non zero. On the right-hand side, the combination of propagators
by pairs shows that only for the case where we add two mediators that induce a zero
s-wave term on their own we recover a final 0 s-wave term. This configuration is the
addition of a vector with a scalar mediator. Nevertheless, this is, a priori, non-trivial
since the interference in the amplitude squared can either cancel or add new terms.

In the left panel of Fig. 2.8 we show the evolution of the tree-level cross-section for
the annihilation of DM into scalar and pseudo-scalar mediators and a combination
of both. The couplings are set to 0.1 except for G;;; and H,j;, that are set to 0. The
difference between Majorana and Dirac is here induced by the fact that there is no
u-channel contribution in o,y_.4, when DM is made of Dirac particles. As shown by
the vanishing-velocity behaviour, only the annihilation into two scalars misses the
s-wave term. This is further shown in Sect. 2.5.4 where we treat in more details the
scalar and pseudo-scalar configurations. In the right panel of the same figure, we
represented the self-interaction transfer cross-section. The masses and couplings are
chosen so that the Sommerfeld effect due to bound state formation is on the verge
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Figure 2.8 - Left panel: Annihilation cross-section of DM into scalar and pseudo-scalars
multiplied by the relative velocity of the incoming particles. For the annihilation into one
scalar and one pseudo-scalar the Dirac and Majorana DM particle scenarios have to be dis-
tinguished since the latter has a u-channel contribution the former misses. The couplings
Gi;r and H,j;, are set to O and we only consider the coefficients A;’ and B;” equal to 0.1. Right
panel: Self-interaction transfer cross-section at low velocity. Notice that in the z-axis v, is
given in km s~! contrary to the other figures. Each curve corresponds to a single mediator
that is either scalar (S) in blue, vector (V) in red or axial-vector (AV) in green. The pseudo-
scalar mediator gives much lower values that are not represented here. The Majorana and
Dirac case are separated as they involve different Feynman diagrams. The scalar and vector-
mediated interactions have the same cross-section in several configurations and the blue solid
curve, blue dashed and green dashed curves are superposed. Similarly the blue and green
dash-dotted curves are also superposed. For Majorana DM particles vector interactions are
impossible and therefore not computed. The dots represent the values obtained from observa-
tions by KAPLINGHAT et al. (2016) from dwarf galaxies (red), LSBs (blue) and clusters (green).
The masses and couplings are chosen at the verge of Sommerfeld enhancement effects. The
grey lines represents constant values of o;~.

of being important (ARKANI-HAMED et al. 2009; IENGO 2009; CASSEL 2010; FENG
et al. 2010). Indeed its strength is parametrised by ¢, = 47mp,/(A\?m,) for m,, the
mediator mass and A the coupling constant. Sommerfeld effects start being relevant
when ¢, < 1. However, our goal is to give a simple application of this "toy" model.
These constraints are thus not considered in a first approach. Here ¢, = 1.3 and in
this configuration, the scalar, vector and axial-vector mediated transfer cross-sections
are on the right order of magnitude to match the observationally derived values in
KAPLINGHAT et al. (2016) and represented by the coloured dots. The three distinct
groups are obtained from three classes of astrophysical objects: dwarf galaxies in
red, Low Surface Brightness spiral galaxies (LSBs) in blue and clusters in green,
which exhibit different typical velocity dispersions. As mentioned in Chapter 1, the
need for self-interactions to solve the core-cusp issue is only present on small scales.
This translates as asking for a self-interaction cross-section that decreases with the
velocity. Namely the values inferred in KAPLINGHAT et al. (2016) give the rough scaling
ot x 1/v,. The scalar and vector-mediated interactions show a velocity evolution that
is consistent with this requirement. The axial-vector however tends to predict too large
cross-sections at large velocity. Eventually, the pseudo-scalar mediator provides such
a small cross-section that it is not represented in the figure for clarity.
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Figure 2.9 - Representation of the operations performed in order to obtain a consistent min-
imal mass for DM halos.

2.5.3 A consistent evaluation : the method

We have developed, from scratch, a C++ code that is able to evaluate, for any
parameters in the simplified Lagrangian, the chemical decoupling temperature, the
abundance of DM today, the kinetic decoupling temperature, and the minimal halo
mass. The structure of this entire code is given in App. A.5.

First, for every model we constrain the couplings by the total abundance of DM
observed today — assuming that WIMPs are the only source of DM. As mentioned
in Sect. 2.4.2 this value is fixed according to the result of Planckl8. When a
single effective coupling constant is considered as a free parameter, we precisely
determine its appropriate value by a simple bisection method®. Once the couplings
are determined we move on to the evaluation of the kinetic decoupling temperature
and of different properties of the model. The total procedure is shown in Fig. 2.9 and
is illustrated in the context of a single scalar and single pseudo-scalar mediator in
the following subsection.

Several properties of the constrained model need to be further checked in order to
ensure theoretical consistency. They are the following

¢ In order to remain consistent with the perturbative treatment at tree level we ask
that the coupling constant be lower than /4.

* The amplitudes are evaluated with a Breit-Wigner functional form that has a
width given by the decay rate of the mediator, according to the optical theorem.
However, this is an approximation, only valid in the limit I' < m: we ask that
I' < 0.1m. This further sets another upper bound on the couplings.

* When the mediators are less massive than the DM particles they can be present
in the plasma at chemical decoupling, in which case we assume that they are in
thermodynamic contact with the SM particles in order not to have to solve for
their number density — c.f. the discussion in Sect. 2.4.2. Nevertheless, in that

5The amplitudes for the processes described above feature products of DM-mediators and SM-
mediators couplings. We can basically promote this whole product as a free parameter, which allows us
to actually account for more diverse situations.
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case, one should at least verify that they decay fast, much faster than ~ 1 s. This
ensures that they do not contribute to the effective number of degree of freedom
during BBN and obey the associated constraints.

* For a large mass hierarchy between the DM particles and the mediators, one can
have bound-state formation and Sommerfeld enhancement of the cross-sections.
As we do not treat these phenomena in the current version of the code we should
ask that whenever Sommerfeld enhancement is relevant (in particular for anni-
hilation and creation of DM particles), the couplings be less than (47my,/m,)"/?
with m, the mediator mass.

¢ In this study of chemical decoupling it is assumed that DM is still in thermal
contact with the plasma. Therefore, we need to ask that both events are
sufficiently far apart and occurring in the right order, firstly chemical and
then kinetic decoupling. We choose to set the criterion zyq > 5x.q €even
though one should probably ask for a greater difference in order to ensure no
contamination. Precise study of what happens in simultaneous chemical and
kinetic decoupling is treated in BINDER et al. (2018, 2021).

We should again emphasize here that our goal is to allow for an accurate resolu-
tion of the chemical and kinetic decouplings whenever our sets of assumptions are
valid. It is rather to give a general idea of the relations between the parameters of
the model and the minimal halo mass (and the subsequent properties for indirect de-
tection). However, even outside from the validity range of our assumptions, we still
carry on the study to try to infer as generic as possible a physical understanding,
even if more approximate in that case.

2.5.4 The scalar and pseudo-scalar examples

In order to illustrate the method, we perform the full computation in two specific
cases, both involving a single Majorana DM particle x of mass m,. Firstly, we consider
a unique pseudo-scalar mediator ¢ of mass m, coupling to the DM particles and to
ete”. We define the associated effective coupling constant

A= /BB, (2.149)

Secondly, we consider a single scalar ¢ with mass mg, which similarly couples only to
the DM particles and eTe™, such that we also introduce

VAQPAS - (2.150)

Besides, for simplicity, we do not consider the couplings between the scalar and
pseudo-scalar particle themselves. This actually amounts to suppress bi-quadratic
and quartic terms from the fundamental scalar Lagrangian.

Taking this effective coupling as the only free coupling of the problem, anni-
hilation cross sections trivially scale like o« A\*. In order to further understand
the velocity dependencies of the relevant cross sections, we fully provide them in
Tab. (2.4) and Tab. (2.5) up to second order in relative velocity. This makes explicit
the velocity dependence that we first illustrated in Fig. 2.7 and Fig. 2.8 in terms
of the s-wave and p-wave contributions. Besides, we show the first order in ve-
locity of the transfer cross-section for the scattering against SM fermions in Tab. (2.6).

A
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Figure 2.10 - Constrained effective universal coupling (upper panels) and kinetic decoupling
temperature (bottom panels) in terms of the DM and mediator masses. Here the dark sector
is made of a single Majorana DM particle and a single mediator pseudo-scalar (left panels) or
scalar (right panels).

We recover the well-known scaling relation of the DM abundance with the an-

nihilation cross section

1
Yy(to) ~ 75— - (2.151)
gi/Q <0-UM01>eIC;1f

Let us focus on the constrained value of the effective coupling constant. According to
the tables of cross-sections, after some simplifications one finds that it satisfy

Ao 4 VX Iy > 2.152)
Mm/ /My i my < My,
where m,, represents the mediator mass, either mg or my,. Here we used

that the s-channel annihilation into fermions is only open if m, 2 my (in the
non-relativistic regime).
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Figure 2.11 - Minimal mass of the halos (upper panel) and the unevolved number of subhalos
in a 102 Mg, host (lower panels). All black marks in Fig. 2.10 should also be reported here but
are not for clarity.

The minimal halo mass is the maximum between the mass set by the scale of acous-
tic oscillations (M,,) and that set by the free-streaming scale (My). As detailed in
Sect. 3.6 one has the following scaling relations’

My ~ (my Tiq) /2

o (2.153)
Mao ~ de

Therefore, as we expect the rough scaling T4 « m,, it should imply that My, my 3
anyway. Eventually, the total number of subhalos in a given host object should scale
as Ny < M@ with a ~ 1.95 as discussed both in Chapter 3 and Chapter 4. Therefore
one can expect the approximate scaling Ng,, mi'

In Fig. 2.10 and Fig. 2.11, we show the result for the entire chain of analysis from

the tuning of the effective coupling to get the correct abundance to the number of

"Note that here we use the simple prescription k.o, ~ axaV3Hia, would we consider kg ~
1.8(my /Tka)*/?ara Hea one would have M., ~ (myTia)~>/? similarly than for the free-streaming mass.
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Figure 2.12 - Self-interaction transfer cross-section at v, = 10> km s~! (upper panels) and
decay time of the mediator (lower panels) for a pseudo-scalar (left panels) and scalar (right
panels) mediator. All black marks in Fig. 2.10 should also be reported here but are not for
clarity.

unevolved subhalos in a 10'? M, host. By unevolved we mean, cosmological, before
taking into account any dynamical effects modifying the halo properties. The tuned
value of the effective coupling A in the upper panels Fig. 2.10 follows the scaling of
Eq. (2.152). The diagonal lines, where the mediator mass is twice the mass of the
DM particle, correspond to annihilation on the pole. There, the annihilation cross-
section is subsequently enhanced and a small value of A is required in order to obtain
the correct abundance. In some cases, the numerical calculation runs into trouble —
with a dedicated warning — (represented by black tri-branch star symbol) as the correct
coupling is so low that the mediator width becomes too narrow to properly perform the
integrals numerically. The black crosses show when the decay rate of the mediator
is larger than 10% of its mass. This constraint could be alleviated if the coupling of
the mediator to WIMPs was different from its coupling to the SM particles. The other
black symbols show where the resolution may fail because of the different constraints
mentioned in the previous subsection (see the legend). Eventually, the couplings in
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Figure 2.13 - Scatter plot showing the correlation between the self-interaction transfer cross-
section and the minimal halo mass for the scalar propagator. The two panels correspond
to v = 102 km-s~! (left) and v,y = 10° km-s~! (right). The colours span the range of DM
mass and the circle sizes represent the logarithm of the scalar mediator mass (between 102
and 10® GeV). As the left panels correspond to typical velocities in galaxies we show a cyan
band corresponding to the constraints derived in KAPLINGHAT et al. (2016) for Low Surface
Brightness galaxies. Similarly in the right panel, the velocity is typical of clusters and therefore
we show the associated constraint in green. Here we kept all the points that do not satisfy
the Sommerfeld limit (that is they can be in the Sommerfeld enhanced regime). However, we
removed all those not satisfying the other constraints (non-perturbative effective couplings,
kinetic decoupling close to chemical decoupling).

the pseudo-scalar scenario are lower than in the scalar scenario. Indeed, the latter
exhibits an annihilation cross-section that is velocity suppressed® — since the DM
particles are non-relativistic at chemical decoupling — which forces the coupling to
higher values in order to compensate.

In the lower panel of Fig. 2.10 the corresponding kinetic decoupling temperature is
represented. A first remark is that for m, lower than the mediator mass it is roughly
independent of the mediator mass. This can be derived from the scaling in )\ extracted
from Eq. (2.152), which, once put in the expression of a?ff” given in Tab. (2.6), yields

4
U?I(‘w x (mnp - m (mx) l M MMhm (2.154)
m | 5 it my, <mmpy

with m,, the mediator mass and where we introduced here

x? 1 Dy !

Moreover, this also shows that when m, > m,, the larger the mediator the earlier
the decoupling and the greater the kinetic decoupling, which also corresponds to
the observed behaviour. The black stars represent configurations where kinetic
decoupling is close to chemical decoupling (or even happens before). In the scalar
scenario, this situation only occurs on the pole where the coupling constant is low
and therefore the kinetic decoupling early. In the pseudo-scalar case, however, this
also happens for other points at small DM mass and large mediator coupling. This is

8For the xx — ¢¢ annihilation the velocity independent terms produced by the ¢t and u-channels are
actually cancelled by the interference term, as shown in Tab. (2.4).
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due to the velocity suppression of the scattering transfer cross-section with a pseudo-
scalar mediator, thus giving an earlier kinetic decoupling than with a scalar mediator.

The upper panels of Fig. 2.11 represent the subsequent minimal halo mass
obtained using the results of Sect. 3.6. The black diamonds correspond to the points
where the acoustic mass dominates over the free-streaming mass. This happens
for late decouplings. As the kinetic temperature does not exactly scale as Tiq ~ m,,
in particular, due to the dependence on the mediator mass, the true behaviour of
Myin departs from the simple scaling my 3. However, the global trend is conserved
when the mediator mass is close to the DM mass and therefore the decoupling
does not occur too late so that the dominant halo mass still is the free-streaming
mass. Eventually, as the kinetic decoupling temperature is generally colder in the
scalar scenario, the subsequent minimal halo mass is larger. The lower panels of
Fig. 2.11 show the evolution of the unevolved number of subhalos in a 10?2 M, host
and obtained using the recipes of SL17 presented in Chapter 5. The global trend
Naup ~ m;”( is also respected when the mass difference between the mediator and the
DM particle is not too large. Indeed this number spans 18 orders of magnitudes for a
DM mass which spans 6. Moreover, it reaches values up to 10?2 that prohibits a full
description of the DM structuring in Galaxy-like objects with numerical simulations.
This justifies the use of analytical models like SL17. Besides, the imprint of the
velocity dependence of the cross-sections can be seen here as a difference of 2 to
3 orders of magnitude between the scalar and pseudo-scalar cases at equivalent
masses. The latter, which has the earlier kinetic decoupling, gives the largest number
of subhalos. Interestingly enough, it is also the pseudo-scalar case that can be
probed by indirect DM searches, since it yields an s-wave annihilation.

The upper panels of Fig. 2.12 show the behaviour of the self-interacting transfer
cross-section at v, = 10® km-s™! (the typical velocity in galaxy clusters). For pseudo-
scalar interactions, the values are too low to have an impact. However, in the scalar
case, some configurations exhibit values in the interesting range for the core-cusp
issue as already discussed in the context of Fig. 2.8. Fig. 2.13 additionally presents a
scatter plot of all points obeying most of the required constraints (see the legend for
details), shown in the plane self-interacting cross-section (actually v, o1/m,, more
suited to observational constraints) vs. minimal halo mass. The preferred values
(with uncertainties) of cross-sections to potentially solve the core-cusp issue on dif-
ferent scales, as constrained by current observations (KAPLINGHAT et al. 2016), are
reported as shaded cyan and green bands. This figure points out that it should be
possible to obtain a consistent theory with a single scalar mediator to address the
core-cusp issue while accounting for observational constraints on different scales.
The inclusion of Sommerfeld enhancement should increase the self-interaction at
small velocity, therefore further making it easier to obtain the desired hierarchy be-
tween dwarf galaxies and clusters. We remind however that such high couplings are
probably already excluded by detection constraints. Forgetting about the Sommerfeld
enhancement and this latter issue, one sees that this simple model roughly correlates
the self-interaction to the maximal subhalo mass. If the self-interaction was the an-
swer to the core-cusp problem, in this simple model it would then restrict the range
of minimal subhalo mass to 107 %My < My, < 1071Mg. Eventually, let us point out
that the lower panels of Fig. 2.12 show the decay time of the mediator that should
be sufficiently small to avoid any impact on BBN.
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Table 2.4 - Velocity dependence of the three different squared tree-level diagrams of
UrelOyx—pp» UrelOxx—ae» UrelOyx—de and the associated interferences. Each row and column
is identified with a particle symbol and a letter (s, ¢, ) that correspond to the mediating par-
ticle and the channel. The squared terms are on the diagonal and the interference terms are
off the diagonal. The DM mass is m,, the pseudo-scalar mass m,, and the scalar mass m,. We
considered here the expansion to third order in relative velocity and to zeroth order in m,/m,
and mg/m,, thus assuming m, > m,, my. The effective coupling ) is assumed universal and
w is the VEV-like term. The widths of the mediators are neglected in front of their mass.

XX = Y ¢ (s) \ o(s)
R My > Mg, My
¢ (s) ’ (n;;s:r:;é) ”r2e1
R My K< Mg, My
b(s) | e,
o (5 0 I N i,

Table 2.5 — Velocity dependence of the annihilation cross-section in SM fermions v,e10yy—syw
and their interferences. See the table above for more explanations. The fermion mass is
m.,. Moreover, we consider the two limits m, > my, m, and m, < mgy,m,. The width of the
mediators are neglected in front of their mass.

=TI 710
)\74 mxmw
o) |
)\4 m4 ﬁ 4
v () 0 e ()

Table 2.6 - Leading order expansion of the scattering transfer cross-sections a?fw in terms of
the ratio p,,, /m,. We assume no hierarchy between the DM and mediator mass. The width of
the mediators are neglected in front of their mass.
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2.6 Conclusion

2.6.1 Discussion of the preliminary results

In this chapter, we started by the introduction of the mathematics behind the
ACDM model and then introduced the notion of phase space and of the associated
distribution function. Then we showed that the PSDF is driven by the Boltzmann
equation, and from there, we gave an overview of the thermodynamics describing the
evolution of particle species in the early universe.. We then detailed on the compu-
tation of the chemical and kinetic decouplings. In the last section, we moved on to
the study of a simplified DM model and determined the minimal halo mass implied by
its intimate properties. After making explicit the Lagrangian and our method for the
analysis we showed specific realisations for scalar and pseudo-scalar mediated inter-
actions. There we derived the velocity dependencies of the cross-sections and used
appropriate series expansions to provide some generic scaling relations. We summa-
rized the comparison of the two configurations in Tab. (2.7). It is well-known that
a scalar (respectively pseudo-scalar) mediation leads to a p-wave (s-wave) annihila-
tion cross-section, not suited (well suited) for indirect searches, while well suited (not
suited) for direct searches. Less known is the fact that s-wave annihilation (in this
very minimalistic setup) is also related to smaller minimal halo masses, which should
increase the potential of indirect searches. Finally, we looked at the self-interaction
transfer cross-section and recovered that, up to Sommerfeld corrections, the scalar
mediator can be compatible with observationally favoured values. We further identi-
fied the portion of the parameter space that could be consistent with a DM solution
to the core-cusp problem. This includes the associated minimal halo masses, which
provides a well-defined target range for more dedicated studies.

We now discuss the impact of the minimal mass and subhalo number on DM
searches. Firstly, they may have some impact on the indirect detection methods.
Indeed, one shows in Sect. 5.1.4 that the luminosity of a subhalo is roughly
proportional to its mass. In practice it goes as m!'~¢ with ¢ ~ 0.1 a small correction
related to concentration (or time of collapse). Moreover, the subhalo mass function
approximately goes as a power law, m~® with a < 2 for conventional primordial power
spectra.. Therefore, the integrated luminosity goes as M2,5~® — M2~ and at most
yields a dependence going in M, ; . Assuming a realistic value a ~ 1.95 — c.f. Chapter 3
— it is already possible to anticipate differences in the amplification of the annihilation
rate (the so-called subhalo boost factor for a velocity independent annihilation
cross-section (SILK et al. 1993; BERGSTROM et al. 1999; LAVALLE et al. 2008)) for
a velocity-independent (s-wave) annihilation cross-section — c.f. the discussion in
SL17 where a factor 2 difference in the MW is shown between M,,;, = 107!* M, and
Mpin = 1076 Mg, for a = 2. Between, My, = 10712 and M, = 103 one can very roughly
expect a factor 5 difference with o ~ 1.95. However, we also show in Chapter 5 that the
perspective of detecting sub-halos as point-like sources with gamma-ray instruments
does not depend on the minimal cut-off mass of the subhalos because only massive
enough subhalos can be found above the sensitivity reach of current and future
experiments. According to IBARRA et al. (2019), the smallest subhalos could change
by a factor of a few the probability that we under-evaluate the constraints of direct
detection with a subhalo passing through the Earth, though without taking into
account the range of minimal masses that we determined earlier in this chapter
(scalar interactions and p/s-wave annihilation/scattering). Having a link between the
subhalo distribution and the particle physics properties can then help reveal further
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‘ {(ovMol) et X" A Tia  Muin ~mi®  Negp ~m
pseudo-scalar | v-indep. wv-dep. (v*) lower higher lower higher
scalar v-dep. (v?) wv-indep. higher lower higher lower

Table 2.7 - Summary - Comparison between pseudo-scalar and scalar interactions. The label
higher and lower are indicative of a direct comparison at equivalent masses.

correlations between the fundamental theoretical ingredients and the subsequent
direct detection constraints (including a proper treatment of structuring on small
scales). In the same analysis, the authors point out that, what could be an additional
promising probe, the capture of DM particles by the Sun, should not be impacted
by the presence of subhalos - though this relies on assumptions on their local
abundance which are plagued by large uncertainties. Let us also mention that
very small clumps with mass < 107!3 Mg could also be probed locally by laser
interferometers like LISA as they could modify the arm length if passing through
(ADAMS et al. 2004). However, classical clumps are too large to have a significant
impact so that the method is better suited for PBHs or to superdense clumps with
a different formation scenario (V. BEREZINSKY et al. 2010). Nevertheless, because of
dynamical mass loss effects induced by gravitational tides in the MW, subhalos can
be pruned very significantly, especially due to the crossing of the baryonic disc and to
individual stellar encounters — as discussed in Chapter 5. This could lead, if subhalos
are resilient to tidal stripping (which is still debated), to a crowded population of tiny
remnants. The probability to observe such objects may anyway remain too low to be
relevant. Eventually, the most promising probe in the next decades may come from
pulsar timing arrays which could, in principle, be used on subhalos with masses as
low as 10713 My (RAMANI et al. 2020). In summary, although a clear signature due
to small-scale clumps may be difficult to find, if we detected one (at least), it would
be a powerful tool to constrain the underlying particle physics model and the CDM
scenario as a whole.

The next step is to perform the same analysis with the vector and axial-vector
mediators. Furthermore, we also want to link all the possible interactions to the
corresponding effective operators in order to relate this simplified model to the already
existing constraints from the CMB (GLUSCEVIC et al. 2018) or direct detection (CIRELLI
et al. 2013). Yet another interesting step, but which goes beyond our current interest
and effort, would be to more deeply account for collider constraints, using for instance
the results of ABDALLAH et al. (2015).In the same vein, it would be interesting to flag
more precisely the violation of unitarity produced by the axial-vector couplings and
set the corresponding limitations on the model. In the following, we discuss how to
connect the simplified model phenomenology with an example of UV-complete theory.

2.6.2 Connection to the CP-odd sector of the NMSSM

In the introduction of the chapter, we had mentioned that simplified models could
also be mapped to UV complete models. This is something we started to study in
the context of the light CP-odd sector of the NMSSM. Indeed in that model, DM
couples to a pseudo-scalar that can itself mix with pseudo-scalar mesons. Then
DM can annihilate into fermions via the direct coupling of the CP-odd Higgs or into
photons and gluons through its mixing via the mesons and triangle diagrams. The
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entire framework we have implemented is fully described in DOMINGO (2017). Here I
broadly summarise the main features of the model and show very preliminary results.

The idea is to consider configurations where the lightest pseudo-scalar particle
called A; is lighter than 2 times the charm mass which means my, < 3 GeV. The
value of my, is obtained through the diagonalization of the two pseudo-scalar states
(one doublet component and one singlet state). Its interaction Lagrangian density

with quarks, leptons, photons and gluons is

1Py My,

La, = 1 + tan 8 Z my by

——= 41 wy
Vv | tanp R (2.156)
e
« R4 As a A
O A Fu P — 2 Cy G G

where tan 5 is the ratio of the two Higgs VEVs and Pj; is the element relating A; to
the doublet component of the NMSSM (ELLWANGER et al. 2010). In the first line we
recognise pseudo-scalar interactions as already set in our simplified model, thus
already taken into account in our numerical codes. In the second line however there
are effective couplings to photons and gluons parametrised by C,, and C - they result
from triangle loops of leptons, charginos and heavy quarks. See App. B.4 for the
expressions and their computation. At the exception of the chargino contribution, the
simplified model introduced above formally takes into account such terms. However
they are not at tree-level and therefore they were not hitherto considered.

In addition, the particle A; mixes with pseudo-scalar mesons. This effect can be
evaluated through the chiral Lagrangian. One then obtains a new physical eigenstate
A; that is a combination of different pseudo-scalar states written

Ay = OanA; + Z Oagp (2.157)
%)

where the sum runs over ¢ = 7°,7,7/. In the left panel Fig. 2.14 we show the evolution
of the mixing parameters O,4, obtained in our numerical code. They are consistent
with the results shown in DOMINGO (2017) and appear to be small except near the
masses of the mesons. In the following we must ask that the A; does not contaminate
their masses too much and therefore we avoid the resonances. The mesons also
couple to photons through the Wess-Zumino-Witten terms. One denotes C,[y] the
corresponding coupling to F**F#_ In the end, A; couples to photons through A; and
the pions. For large masses, my, 2 1 GeV, the validity of the description with the

~

chiral Lagrangian breaks down but we do not consider these cases for now.

In order to implement this framework within our numerical tools we simply need
to evaluate the annihilation and scattering cross-sections corresponding to the cou-
plings to photons and gluons. This amounts to add two new terms

LM 5 DY AVFRER 4 DY ALGY, G (2.158)

int

Then, to evaluate the DM annihilation into photons in the s-channel, we plug an
effective coupling constant

D) (s) = 044Cy(s) + Y 04,C41¢] (2.159)
®
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Figure 2.14 - Left panel: Evolution of the mixing parameters with the mass of A; for tan 8 =
10 and P;; = 0.03. Except for resonances at the mass of the mesons they remain low. The
parameter i = 3 refers to 7°. Right panel: Annihilation cross-section of the DM particle y for
the same parameters P;; and tan § and a coupling between A4; and x being 0.1. For simplicity
we did not incorporate here the effect of the chargino loops.

which depends on s, the Mandelstam variable. The cross-sections for the annihilation
into photons are shown as the blue curves in the right panel of Fig. 2.14. We repre-
sented the total cross-section as well as the contribution of the triangle loops (dash-
dotted) and the mixing to the 7° (dashed). Note that the total is not the sum of the
two components due to interferences. For comparison, we show the annihilation into
ete” in solid red. We could now scan the parameter space in order to constrain the
model with the abundance. Then we may try to evaluate the scattering cross-section
and the kinetic decoupling in such models. In conclusion, we demonstrated here how
our numerical tools and simplified model could be generically adapted to probe more
complex theories (with the addition of effective couplings in that case). This project is
part of a larger collaboration on new supergravity models (MOULTAKA et al. 2019).
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Cosmological halo mass function

“If there were an answer I could give you to how the universe works, it
wouldn’t be special. It would just be machinery fulfilling its cosmic design. It
would just be a big, dumb food processor. But since nothing seems to make
sense, when you find something or someone that does, it's euphoria”

Janet character in The Good Place
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To understand the distribution of CDM halos and subhalos in the Universe today,
it is necessary to dive into their formation mechanism. In the standard picture,
the DM density field was primarily imprinted by quantum fluctuations at the time
of inflaton decay. Their evolution in the first stages of the Universe was mainly
dictated by the particle properties of CDM. They started to grow efficiently after
matter-radiation equality (linearly in time), subsequently leading to the non-linear
collapse of structures. The over-dense regions became denser and denser, so
much that at some point they collapsed into bounded objects, which we call halos,
and virialised. Several authors have investigated the detailed physics behind this
evolution, first with analytical developments (e.g. MO et al. (2010), and references
therein), which provide deeper insights on the physical phenomena before entering
(or independent of) the highly non-linear stages, not to mention complementary
considerable effort to study galaxy formation (e.g. VOGELSBERGER et al. (2019)). One
of the main results in the field is the halo mass function obtained via the Extended
Press-Schechter (EPS) or Excursion Set Theory (EST) (PRESS et al. 1974; BOND et al.
1991). One subtlety, however, comes from the approximate self-similar structuration
of the halos. Large halos contain smaller ones that contain even smaller ones, so on
and so forth. The lower limit to this Russian doll construction is set by the minimal
halo mass, itself depending on the nature of DM as already mentioned in Chapter 2.
The EPS framework is particularly efficient to describe the population of halos in
the Universe. However, the distribution of subhalos in a given host halo is harder to
evaluate. Using an algorithmic tool called merger trees (LACEY et al. 1993) that is
built upon the EPS formalism, the upper limit of the subhalo mass function can be
approximated. The result, which seems to be rather insensitive to the considered
cosmology, has been compared to simulations and proven to be reliable (GIOCOLI
et al. 2008b; Y. LI et al. 2009; BENSON 2012; JIANG et al. 2014, 2016). Unfortunately,
the low mass range of subhalo is poorly constrained and one usually makes naive
extrapolations below the resolved masses. Here we show a slight modification of the
previous methods that is better motivated in the low mass range. The main objective
is to provide a correct description of the full cosmological subhalo distribution in the
MW, dwarf galaxies, or galaxy clusters. Indeed, the subhalo model SL17 —-(STREF
et al. 2017) — which is at the core of this thesis, has been built for the MW at z = 0 and
the total number of subhalo is calibrated on numerical simulations: here we want to
pave the way to go beyond these restrictions. In the longer term, the idea would be
to provide a generic analytic model of subhalos, complementary to approaches like
HIROSHIMA et al. (2018) which would have many possible applications, for instance
for the study of the 21cm line and more generally for indirect searches; and which
could also apply to DM candidates beside WIMPs. So far, the results presented in
Sect. 3.5 are preliminary but the development of the different numerical tools is
advanced enough to make a comparison with the literature in Chapter 4 after the
SL17 model is introduced.

The first sections of this chapter are devoted to the CDM halo formation history
from the primordial fluctuations (Sect. 3.1, Sect. 3.2) to the collapse and virialisation
(Sect. 3.3). Then, we introduce the EPS formalism (Sect. 3.4) and discuss merger trees
and the subhalo mass function in Sect. 3.5. Eventually, in Sect. 3.6, we connect with
Chapter 2 by defining the minimal mass of halos in the CDM paradigm introduced by
free-streaming and acoustic damping and by relating it to the DM properties.
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3.1 Relativistic theory of perturbations

In the first two sections the linear evolution of the matter density field is detailed
with the linearised Einstein’s equation at first order. This first part introduces more
particularly the main equations and initial conditions.

3.1.1 Notations and gauge choice

Here we present the notations and some features of the relativistic perturbations.
However, the aim is simply to introduce and summarise the main results of what
is a lengthy derivation. The issues around gauge transformation and Scalar-Vector-
Tensor decomposition are thus not mentioned for instance. We assume from the start
that it is possible to work in the conformal Newtonian gauge with the metric

ds? = a?(n) |(1 + 20)dn® — (1 - 20)0;;dz"de’ | (3.1)

and where the parameters ¢ and ¢ represent, in the appropriate limit, the classical
Newtonian potential. We denote by 7 the conformal time. For a complete treatment
of perturbation theory in general relativity see the reviews and books GREEN et al.
(2005), MO et al. (2010), KNOBEL (2012), and BAUMANN (a, b). The metric tensor is
written g, = g,,, +09,, where g, corresponds to the homogeneous and isotropic FLRW
metric introduced in Sect. 2.1.2. More generally, the inhomogeneous quantities are
distinguished from the homogeneous ones by putting a bar on top of the latter: they
are referred to as the background values. The associated Christoffel symbols can be
found in App. C.1. We have seen that the stress-energy tensor for a perfect fluid in a
homogeneous and isotropic universe can be written, with p the homogeneous energy
density and P the homogeneous pressure,

T", = (p+ Pyu'u, — Poy. (8-2)
In contrast, the full stress energy tensor is denoted
T, =T", +0T", = (p + P)utu, — Ps¥ —TI*, (3.3)

with p = p+ 6p, P = P+ 6P, u, = u, + 6u,. The last term, II#,, is the traceless
anisotropic 4-tensor and it satisfies II'; = —T"; + 6T%; /3, 1% = 0 and I1; = 0. Its non
zero components, Hij form a 3-tensor (i.e. it transforms as a tensor in a 3D manifold).
Using that g, u"u" = gutfu” = 1 yields ju’ = —a~'¢y. The comoving (or coordinate)
velocity ' is given such that éu’ = v'/a with v* = dz'/dn. At first order,

ut =a7t (1 — w,vi) and  wu, =a(l+ 1, —v;) (3.4)

and these two expressions can be used to express the stress-energy tensor

i Ptop (p+ P’
t (—(p+P)vj —(P +46P)d; _ni]) - (3.5)

Eventually we introduce both the density contrast § and the comoving gauge density
contrast A with the following definitions

po=p and PA=d6p+pv=27p—3pH(l+w)v, (3.6)

where v is defined so that v; = 9;v. Moreover, w = P/p is the equation of state and the
second equality for A is obtained using the continuity equation at the zero-th order
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of perturbation theory, given in Eq. (2.20).

Now that all the key quantities have been defined we can derive the equations
that they satisfy. However, let us first discuss shortly some more notational intrica-
cies. This next part is not of crucial importance to understand structure formation.
However it gives a better insight into the equations and the way they are derived.

3.1.2 Intermezzo: a few words on geometry and Fourier space

Following BAUMANN (b), it is possible to rewrite the tensors with respect to the
orthonormal frame defined by the tetrad

eh =a H(1—)s, e =a 1+ ) (8.7

that satisfies gwegeg = 13 Where 1,3 is the usual Minkowski metric. These vectors
have been chosen as the perturbed component of velocity of a co-moving observer
at rest. Tensor components defined in that new frame are identified by a hat on
their indices, e.g. i. For a given (2, 0) tensor J for instance, its components satisfy

JH = J@Begeg. Let us consider ¢ a 3-vector that is an order 1 quantity, then

5qi = 5qdeg = a_léq% and dq; = a_léqi. (3.8)

In order to simplify the problem, for 3-vectors and 3-tensors that have no time com-
ponents such as II;; and v;, it is common to work in this new frame. However, for sim-
plicity we drop the hat notation, keeping in mind that it should be here. It amounts
to say that we reduce the problem to the Minkowski metric. For the comoving ve-
locity and symmetric, traceless 3-tensors, which are order 1 quantities, one simply
scales out the expansion rate by doing so.

Another way of reformulating the same idea, following KNOBEL (2012), is to directly
scale out the expansion rate in the spatial coordinates so that the metric reduces to
hij = CL_QgZ‘j (not Minkowski at first order). Then, similarly to above, for any order
1 quantity dq it is possible to write h;joq = Bijéq = 0;;0¢q and there is no difference
between lower and upper indices. In the following we work with the Laplace operator
of the velocity that is therefore defined as § = V?v = 40,0, = 9;v'.

Eventually, let us introduce the Fourier transform. We define in the 3D-space,
with k the co-moving Fourier mode,

5q(k) = / 5q(x)e= VI dx . (3.9)

It can be shown that vh = 1+Tr(6h)/2 at first order, with the decomposition h = 1+ 6h.
Therefore, the Fourier transform of order 1 quantities can simply be expressed as the
usual Fourier transform in 3D Euclidean space with co-moving Fourier modes

Sq(k) = / Sq(x)e ™ dx and dq(x) (2;)3 / Sq(k)e™* 3k (3.10)

3.1.3 First order equations

In order to set a realistic framework, let us assume that the Universe is filled with
different species that are supposed to interact only gravitationally between them-
selves. All quantities related to a given species called a are labelled by the same
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letter (e.g. d4,0q,...). Because the total stress-energy tensor is given by a sum of
the different components

T =Y T (8.11)

and because this equality has to be valid at all orders, the global density, the pressure
and the stress-anisotropy tensor are also given by a simple sum over all the species
P= Par P=>Pa, 6p=> 0pa, 6P=> 6P, II"=>TI7J. (3.12)

This equation holds for (p + P)§ - as a direct consequence of the sum of the stress
anisotropy tensor. Therefore one can write as well,

(P+P)0=> (P + Pa)ba- (3.13)
a
The continuity and Euler equations come from the conservation of all the stress-
energy tensors V,T/" = 0 (as we assume that different species interact only gravi-
tationally between themselves). Using the 0" component of this expression we get
the continuity equation

0P,

5 + (14 wa) (6 — 38') = 3H (wa _ 5/)) 5 (3.14)
with the definition of the matter density contrast 6, = dp,/p,. We recall that the
prime notation represents the derivative with respect to the conformal time . The
ith components give the Euler equation (the generalisation in general relativity of the
usual Euler equation of hydrodynamics)

7 0;0P, oI,
Vg + Hvay — 3H =200 = ——F—— — Ojth — ———>— .
’ ’ piz 7 pa(l + wa) pa(l + wa)
Traditionally these three equations are gathered in a single one which is written in
terms of the variable 6,. To this end, one simply needs to apply the operator §9,
on both sides of Eq. (3.15). This gives

(3.15)

P V2P, 5Loy0,Tl
O, +H(1-3=|0,=——— "< -V — ———=C. 3.16
‘ ( &> I R Ny (3.16
Let us now introduce the anisotropic pressure ¢! as
_ 5 1 9
Iaij = (pa + Pa) 0i0j — 30i;V" ) 0a - (3.18)

In Fourier space the following implicit definition can be inverted in order to write

o, in terms of II,, more precisely,
1. KE|[1 ik 1. KE| g
§ *5” — k k |:62] — kjj} =1 yields Oq — § 7(5” — k — ’i .
Pa+ Pa

2|3 k2 3 k2 23 k2 (8.19)

'This quantity is defined in (BAUMANN b). In GREEN et al. (2005) the notation 7 is used, however in
order to avoid confusion with the mathematical number we will not work with this convention. Eventu-
ally (Mo et al. 2010) have a slightly different definition denoted II. Moreover, notice that for this equation
the total anisotropic pressure o must satisfy

@+P)o=> (P, + Pa)oa- (3.17)

a
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Massaging Eq. (3.16) with this new notation, in Fourier space, one can write the
Fourier transformed Euler equation as

7 k25P 2
74 1-3=2)9,=—"2 4+ k% — k%q,. 3.20
a+’H< 3,) ﬁa(1+wa)+ () L (3.20)

a

The continuity and Euler equations tell how the content of the Universe evolves
with time, however, they do not provide information on the evolution of space-time
itself (i.e. on the evolution of the potentials ¢ and ¢ in this specific case). This, in
turn, is given by the perturbed Einstein equation. At first order the component of
Einstein’s tensor can be decomposed as G, = é,w + 0G,. The 0t" order equation
@W = SWGNTW must still hold and it gives the Friedmann equations. The first order
reduces to 060G, = 81GNdT),. See App. C.1 for the details of the different components
of this tensorial equation. They can be summarised as

¢ — 1 = 12nGna’(p + P)o  (spatial traceless)

¢ + Hip = 4nGna*(p+ P)0/k*  (0-i*" component)

k*¢p = —ArGna*pA  (Poisson)

"+ 2H + H)Y + H(WY' + 2¢) = 4nGna® [5P +(p+ F)VQO'} (spatial trace).

(3.21)

All the important equations have now been introduced. They form a system that
cannot be solved analytically without making some approximations. In the next part
we say a few words about the initial conditions and we subsequently focus on the
evolution of the perturbations.

3.2 Evolution of the perturbations

3.2.1 Initial conditions

Initial conditions are imposed by the inflation model. Let us follow LESGOURGUES
et al. (2013) and look at the easiest deviation that can be considered from the homo-
geneous background and that is predicted in the most common scenarios. It consists
in assuming that there is a local time shift §n(x) of order 1 in perturbation theory
between the quantities of interest and their background value, in particular,

Pa(1, %) = Pa (1 + 0n(x), x) = P, (1, %) + Py (0, x)d1(x) 3.22)
Pa(,%) = Pa(i) + 61(x), x) = Pa(1, %) + P (0, %)59(x).
which imposes the initial condition
§pa = —3H(p, + Pa)on(x) . (3.23)

If we write the pressure as a function of the energy density p, and S, the entropy,
we can develop P, = P,(p.,S,) as

Po(pa, Sa) = Pa(Py, Sa) + 20pa + T7a0Sa + O(6p% + 6S2) (3.24)

with the definition of the sound speed

P, . P,
cz 4 and with 7, = g

. 2
pals, 954 |, (3.25)
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Therefore, combining Eq. (3.22) and Eq. (3.23) gives
P, >
5P, = ?5pa e (5pa) (3.26)

and the subsequent identifications ¢2 = ?& /P, and 05, = 0. Perturbations are thus
called isentropic. Moreover, when the equation of state is w, = cst. for every species,
it can then be identified with the sound speed. Indeed, differentiating w, with re-
spect to the conformal time yields
7. [P, P, P,
w;:():_f—“ —2— =2 and w,= =2, (3.27)
Pa | Pa  Pa Pa
which leads to w, = c2. Besides, it is also possible to define an effective sound speed

for the entire fluid as a weighted sum of the sound speeds for each species

2 _ N~ 2Pat Pa

= - (3.28)
. pP+tP
In the context of isentropic perturbations it becomes
2(5 L P 2
C2 — aca(pa + P(l) _ a0a5pa577(x) . Za 5Pa _ oP (329]

* Yu(Pa+ Pa) >0 0Padn(X)  Yu0pa  Op

where we used Eq. (3.23). However notice that even though ¢? = w, for every species,
w = P/p # % in general - if there are more than one species. Now, to see how these ini-
tial conditions can be translated into constrains on the unknown variables (dpg, 0, - . .)
of our system of equations, one can define a non adiabatic pressure fluctuation

ﬁi+§5p
p+P

dpa _ op
PatPa P+P|

O0Pppqg = 0P — cgép = chépa — Zcﬁ
a a
= ch (ﬁa +ﬁa>
a

Remark that in the case of isentropic perturbation one has initially 6 P,.q = 765 = 02.
However, the initial condition does not impose that §P,,q4 remains equal to zero as
time goes. When 0P,,q is initially zero and remains so we say that perturbations are
isentropic and their evolution is adiabatic.

(3.30)

If we consider a Universe made of two components, radiation labelled by the letter
r and matter labelled by the letter m, then (using the fact that w, = 1/3, wy, = 0 and

c? = w,) it yields the expression of the homogeneous energy density and pressure

5 3 4
a Qa,

P=Pet P = [(Q) + (q) ]
a a

h A (3.31)
ﬁ:ﬁrzlpr: 17eq (“ﬂl)
3 3 2 a
with the effective sound speed being
1 r 1
2o w13 (3.32)

T T we+y 1+3y/A

2This last equation is similar to the definition of the dimensionless entropy in GREEN et al. (2005).



102 3. COSMOLOGICAL HALO MASS FUNCTION

and where y = p,,/p, = a/acq. Similarly, the non adiabatic pressure fluctuation is

Spr _6Pm]_ y/4 [35/)1« 5pm]

- = - . 3.33
Pt Pr Pm| 1434145 Pa (8.33)

In the end, having isotropic initial fluctuations with adiabatic evolution implies the
relation between the radiation and matter density contrasts 30p,/p, = 46pm/pp,-

3.2.2 Evolution of the potentials

Henceforth we continue the analysis in the case of an anisotropic-free fluid. One
has, from the spatial traceless component of Einstein’s equation, the equality ) = ¢.
This quantity is thus referred to as the gravitational potential. In order to study its
evolution one can use Poisson’s equation in terms of the density contrast § Eq. (C.11)
and a combination of the other linearised Einstein equations [Eq. (C.20), Eq. (C.10)
and Eq. (C.3)] under the form

K2p + 3H (¢ + Ho) = —%7#5 and ¢" +3(1+w)He +wk’*p=0. (3.34)
with the approximation ¢> ~ w - even though that does not strictly hold when
there are more than one species. In the super-Hubble limit, £ < H, the terms
proportional to H? are dominant in Poisson’s equation and therefore § ~ —2¢.
Moreover the right hand side equation shows that supper-Hubble modes of ¢
are a constant that only depends on the value of w. Consequently these modes
have a fixed value ¢rp in the radiation dominated era, where w ~ w, = 1/3,
and another fixed but different value ¢\p in the matter-dominated era where,
w ~ wy = 0. With the assumption of adiabatic perturbations §, = 46,,/3 in the early
radiation dominated era, thus, on super Hubble scales, §, ~ —2¢rp and 6, ~ —3¢rp/2.

One can then relate ¢rp to ¢yp thanks to the comoving curvature perturbation.
In the Newtonian gauge the latter takes the form

R=—¢+Ho. (3.35)

A straightforward computation made in BAUMANN (a) and reproduced in App. C.2
shows that for isentropic initial conditions with an adiabatic evolution and a zero
anisotropic stress-energy tensor, the derivative of R reduces to

K2 P

dl k\?
R = _Bﬁﬁ(R —Hv) and gives the scaling dl?jcj ~ (H) ) (3.36)

Therefore, for the super-horizon modes, the curvature perturbation is a constant of
the scale factor. This property is important since inflation has increased the value of
‘H so much that, initially, all modes are assumed to be super-Hubble. Consequently,
all modes start with an initially constant R before they re-enter the horizon. Moreover,
massaging R as a function of the potential and the equation of state only and using
its conservation on super-Hubble scales yields

5+ 3w, 5 4+ 3wy
R ¢rp = — | —— | dMD - 37
<3+3wr> RD <3+3wm> MD (3.37)

Plugging the values w, = 1/3 and wy = 0 yields ¢yp = (9/10)¢rp. For sub-Hubble
scales, k£ > H, computations are more involved. Let us just mention that in the
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radiation era ¢ decreases and that its growing mode becomes constant in the matter-
dominated era. The important message of this section is that on super-Hubble scales
the potential is frozen and so are §, and ¢, with it. In the following we focus on the
evolution of the DM perturbations.

3.2.3 Evolution of the DM perturbations

We assume that the Universe is only made of matter, still labelled here by the
generic letter m, and radiation r. For the evolution of perturbations in the radiation
dominated era it is necessary to study the evolution of §,, and 4,, simultaneously with
the continuity and Euler equations

O 4+ 0m—3¢ =0 and 0 +Hby, = k¢ (3.38)
In practice, combining these two equations yields
8"+ Moy = —k*¢ + 3H' + 3¢ (3.39)

and, in the sub-Hubble limit, only the first term of the right hand side is impor-
tant. Moreover it is possible to neglect the radiation contribution to the potential (S.
WEINBERG 2002) and consider that it is only sourced by matter. Therefore, thanks to
the Poisson equation, the evolution of d,, is driven by

6! +HS = AnGNa* Dy Am - (3.40)

Now, as shown in App. C.1, A and ¢ are related by the equation A = § + 2¢ + 2¢'/H.
Because ¢ o« H2A/k? by Poisson’s equation, for sub-Hubble scales it yields A ~ 6.
Thus, the equation on 4, can be written only in terms of its derivatives. By a change
of variable  — y = a/acq it transforms into the Mezaros equation

d26,, 2+3y dom 3 5
dy?  2y(1+y) dy  2y(L+y) "
whose growing mode solution for the radiation dominated era goes as 6, x Iny x Ina.

Therefore DM perturbations grow during DM on sub-Hubble scales, however the
growth is logarithmic and consequently rather slow.

=0 (3.41)

In the matter-dominated era, Poisson’s equation yields
(3.42)

As the growing mode of the potential is a constant of time in the matter-dominated
era and in the sub-Hubble limit, this shows that the growing mode of the DM per-
turbation follows §,, « a. In more details, when taking into account dark energy it

is possible to use Eq. (3.40) that we introduced for the radiation dominated era’.

3This equation can also be found often written in terms of the cosmic time ¢ instead of the conformal
time 7. Going from one to the other is straightforward using the relation adn = dt one finds

6// _ d25m _ d dém 2d25m —|—a2Hd§7m

P T (GF) e a

which gives a similar equation with a factor of 2 in front of the Hubble drag term,

b + 2Hbr, = ATGNPAm .
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Figure 3.1 - Evolution of the growth factor with the redshift in the matter and A dominated
era for the Planck 2018 cosmology Planck18. Here we assume 2,(z) = 0 which should not
hold down to the equivalence between matter and radiation.

The growing mode solution is usually parametrised by 6, « D(t) where D is called
the growth function and satisfies

5 H(t) [t H3dt . S 9
DIt) = 3%mo g /0 e M D)+ 2HD0) = 4G’ D). (3.43)

It can be approximated by the following fitting formula given in CARROLL et al. (1992)

5 Qm(z)} {1 . Q/;(()z)

D(z) ~ ———Qu(2) {Qﬁﬁ(z) —Qp(z) + [1 + —

-1
= ST . } , (3.44)

assuming no radiation (2,(z) ~ 0). The evolution of (1 + z)D(z) is represented in
Fig. 3.1 for the Planck cosmology. Let us point out that, for z in the matter dominated
era, the abundances are such that Q, ~ 1 and 2, ~ 0 so that the growth factor
satisfies (1 + z)D(z) — 1. The conclusion is, as expected, the same as the simple
estimation from Eq. (3.42). However, when 2, dominates the increase of D(z) drops
and perturbation stop growing, they are frozen by the cosmological constant.

In summary, DM perturbations entering the horizon grow as Ina during the
radiation-dominated era, as a during the matter-dominated era and stop growing
in a dark energy-dominated era. As over-dense regions get denser and denser
they develop a gravitational instability that prompts their collapse and triggers the
formation of halos. This is the subject of the next section.

3.3 Collapse model and halo formation mechanism

In this section we describe the process of over-densities collapsing to form
halos. This is non-linear physics and, in general, our understanding of this
process relies mostly on cosmological simulations. However, provided that sev-
eral simplifications are made, it is possible to extract analytical solutions (S.
WEINBERG 1972; KNOBEL 2012).
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3.3.1 Non-linear spherical collapse

In this section we consider an isolated spherical over-dense region of size R(t) at
time ¢ that has density p(t) = p(t) + dp(t) where 5(t) stands as the homogeneous back-
ground density. Because over-densities are essentially frozen during the radiation
domination era; as shown in the previous section, we study its evolution during a
matter-dominated Universe when the cosmological constant is negligible. The mat-
ter is assumed to be homogeneously distributed inside the over-dense region and,
being isolated during all its evolution, it conserves a constant mass M. Following
Mo et al. (2010) we assume that the different shells forming the spherical region
never cross. Then a particle at radius R from the centre on a radial trajectory has
energy per units of mass

1 (dR\* GxM
=—|(—] — . 3.45
(%) (349
Because this energy is required to be negative to have a bound object collapsing we
introduce £ = —FE > 0. Moreover, during the matter domination era, we know that

the background density evolves as

1

)= ——. 3.46
p(t) 6mGNt2 ( )
Then, it is convenient to introduce a pseudo-conformal time 7 that is defined
by the differential equality d¢ = R/v2£dr. We separate variables so that be-
tween two instants, corresponding to 7 and 7; where the corresponding radii

are R and R;, Eq. (3.45) yields

R dR'
~ Jr, /GNMR'JE—R?"

(3.47)

T —T;

Note that we choose the positive square root only in order to have an increasing
solution. Furthermore, considering only negative energies restricts solutions to be
bounded by R < GyM/E. We can solve the above integral by making the change of
variable R —+ X = 1—2ER/(GxM), which yields the simplification

X X' 2 26 R;
T—T=— /Xo 1d_7 = arccos (1 — Giﬂﬁ;) — arccos <1 — Gi%) . (3.48)

In addition, we show in App. C.3 that in a matter-dominated Universe at an initial time
t;, the argument of the second arccosine is negligible since 2ER;/(GNM) ~ 46;/9 < 1
— a precise treatment of the initial conditions of the overdensity is given in MO et al.
(2010) — chapter 5.1. Thus, the final solution in terms of 7 is given by

_ GyM

G M
R(r)=—¢ i

(1 —cos(t —7)) and t(r)= W(T — 7 —sin(t —715)) . (3.49)

Without loss of generality we can further redefine 7 — 7, — 7. Therefore, we can now
give an expression of the overdensity § as a function of the conformal time 7. Using
Eq. (3.49), Eq. (3.46) and the expression of the mass we get

[+ — sin ]2

o1 (3.50)

5(r) = 920 9t L0

_9 _9
p(r) 2 R3(7) 2

[1 — cosT]
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Figure 3.2 - Left panel: Evolution of the overdensity with 7 in the spherical collapse model
and from the linear approximation. Right panel: Evolution of the radius R and of the grav-
itational and kinetic energy with 7. After turnaround at 7 = 7, virialisation occurs when the
virial relation is satisfied (2K + W = 0).

When developing in series this expression around 7 = 0, it yields

2/3
o(1) ~ i7'2 3E ( ot > . (3.51)

20 10 \GnM

Besides, ¢ increases from O to infinity when 7 goes from O to 27: the overdensity
diverges. In the same time the radius R(7) increases from 7 = 0 to 7 = 7 with a
maximum of R(m) = GyM/E and then decreases back to 0. The size of the region
grows and then shrinks, the transition between these two phases is called the
turnaround. The evolution of 6 and R is represented in Fig. 3.2.

Before going further, let us mention that this computation is also often made by
considering a spherical homogeneous sphere in a fully general relativistic treatment
and its evolution is examined by using Friedman equations. Indeed according to the
Birkhoff theorem, the background and the region evolve independently. Moreover,
the over-dense region is an independent isotropic and homogeneous region that has
a positive curvature. Its geometry can then be described using the FLRW metric in
the same way we do for the Universe with K = 1. We introduce a scale factor A
associated with it. If A(ty) = 1 is set as a definition, then it satisfies R(t) = A(t)Rp.
Using Friedmann’s equations, the evolution of the scale factor is

-\ 2
A\"  8nGy 1 o dR\* 2GNM
<A) =3 P- W which implies <dt> =—F5 1 (3.52)

where where we have used the conservation of the mass M. With this approach we
find back the exact same equations when taking —2F = 1 i.e. by rescaling the time
variable in this new FLRW metric. In fact, this does not impact the physical inter-
pretation because the only relevant time is that defining the background evolution,
and, irrespective of the time normalisation, because the initial condition is always set
by demanding R = R; ~ 0 at initial time ¢ = ¢,.
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3.3.2 Imitial kinetic and potential energy of over-densities

The over-dense region starts shrinking when 7 = 7 and the model predicts that it
goes back to a singularity when 7 = 27. This is, of course, non-physical and would
prevent the existence of halos by forming black holes. As matter of fact, after the
turn-around point, the region virialises and reaches a state of equilibrium before the
singularity. According to the virial theorem, a self-gravitating system in steady-state
has its potential energy W equal to minus two times its kinetic energy K. It is
therefore interesting to search for the radius R at which this condition is satisfied.
However, while the potential energy is straightforward to compute, the kinetic energy
is not. The idea is thus to compute the initial total energy when the over-density is
still in the linear regime and deduce the kinetic energy from its conservation. In the
following we follow, in part, a derivation presented in OKOLI et al. (2016).

Kinetic energy. The computation first starts with the expression of the initial ve-
locity field for particles inside the region of interest that is still assumed to be spheri-
cal, though not necessarily homogeneous in this first part. Consider a non relativistic
particle species at physical position r(¢). Because of expansion r(¢) = a(¢)x (with x the
comoving coordinate) and the velocity field evolves as u(t) = Hr + v where v = a(t)x is
the comoving/peculiar velocity. Using Eq. (3.15) in the non-relativistic limit, with no
anisotropy tensor and pressure-less matter, the linearized equation for the peculiar
velocity can be re-written under the form

%Z 4 Hy = —2V<I>(x,t) , (3.53)
where ® = ¢+ai;(x)%/2. The Poisson equation can then be written V2® = 47Gnpa?d.
Therefore, ®(x,t) = D(t)/a(t)®;(x) since D(t;) = a(t;) for ¢; a time in the matter-
dominated era when the perturbation still has not grown significantly. Written dif-
ferently, the peculiar velocity satisfies,

d(av) D(t)

ot = ) <™ (3.54)
This equation can be solved for v at time ¢ as
— VX(PZ (X) t D(t,) I 1 . '
0 / o) Y T T Imanparn DV (3.55)

where we use the differential equation Eq. (3.43) satisfied by the growth function
D for the second equality. At the initial time ¢; in the matter-dominated era, the
Hubble rate satisfies H; = a(t;)/a(t;) = D(t;)/D(t;). Moreover the Friedmann equation
gives H? = 8rGyp(t;)/3, which yields

2 1 2

_3HZ mv}(@Z(X) = ——

Ve®i(r). (3.56)

V; =
Therefore the total initial velocity field can be formulated under the simple form
u; = HZ'I‘ — %Hivr@(r) . (357]

Furthermore, the total kinetic energy of the system at initial time can be written

1
K; = 3 /Vl pi(r)u?(r)d’r (3.58)
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where V; represents the volume of the over-dense region. Replacing u; by its expres-
sion, expanding at first order and using the Poisson equation V,®;(r) = 3H?26;(r)/2
the kinetic energy becomes
1_ 22,22 4 3
K; = fpi/ Hir® + -r*V,®;(r) — -r.V,;®,(r) ) d°r
2 v, 3 3
1

4 1
= fﬁi/ <Hi27’2 + TQVFQZ-(I')> d?r — *ﬁij{ 2V, ®;(r)d’s
277y, 3 3 s,

(3.59)

where S; represents the surface area of the region at time ¢;. Moreover, as the system
is spherical it is possible to introduce an initial radius R; and then, at first order
on the surface area, we have

V. ®; ()

’L

_rGNpZ/ 6

(3.60)
so that j{ 2V, ®;(r)d? s:47TGNRZ-pi/ §;(r)d®r
S; Vi

Using, once again, the Poisson equation to get rid of the Laplace operator the final
expression of the initial kinetic energy for a spherical system at first order becomes

K; = 4W§;Np?/v 7+ 6,(r) (2 - BY)| d°r. (3.61)

Potential energy. The potential energy is much simpler to compute as we do
not need the initial velocity of particles to do so. The only important quantity is
the density of matter inside the object. The most general expression of the gravi-
tational potential energy is

W, —fGNp’ // L o) [L+0i(ra)] g3 g3 (3.62)

|P1 — 13|

In order to be consistent with the computation of the kinetic energy and slightly sim-
plify this expression we expand it at first order in ¢;. Moreover, using symmetry
considerations (invariance under exchange of r; and rsy inside the integral) it can now
directly be written under the form

2 22
W, = — GNP, / 1+ 26:(r)] <3RZ47"> dr. (3.63)
Jy,

3

3.3.3 Virialisation of an homogeneous sphere

Firstly, we compute the total energy FEi, as the sum of the initial kinetic and
potential energy. With the previous expressions it is straightforward to show that

10 52 r? 30
Fu = = TGN R /V 5i(r) (1 _ R?) Rl (3.64)
In order to keep things simple in this section we come back to the assumption of the
non-spherical homogeneous collapse, that is, the over-dense region is homogeneous
and of total mass M. Consequently, we can simply write ¢;(r) = ¢; and perform the
integral over the entire volume. The total energy is then

6  GnM? 3ME
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using the fact, for the second equality, that §; = 3/2072 and R; = GyM72/(4€) at first
order for 7 — 0. In addition, when the sphere is homogeneous, the expression of
the potential energy in Eq. (3.62) can be simplified and gives the compact expression,
valid even when ¢ is no longer small,

3 GNM?
W=-= ) 3.66
PR ( )

Eventually, using Fi,; = K + W the virialisation condition, 2K + W = 0 now becomes
2E.. = W. This equation translates into an equation on R that takes the form

6ME  3GNM? , _ GnM
F T: R and yields R = 58

= R(T =371/2). (3.67)

The evolution of K and W is represented in the right panel of Fig. 3.2. Therefore, after
turnaround we can expect virialisation to occur at 7 = 37/2. However, this model is
very simplistic and in reality the halo is considered formed when 7 ~ 27. As we cannot
trust our non-linear model of § around this point and because we do not know how to
properly treat non-linearities we define the collapsed density of the over-dense region
as the linear overdensity at 7 = 27. This collapsed region becomes what is usually
called a (dark matter-dominated) halo. In other words we say that a halo is collapsed
and virialised at t,;; = 2rGNM/(2£)%/? when its linear overdensity reaches

3€ [ 6ty \¥® 3 5
= — AL = 2 (127)%/% ~ 1. . .
de =15 (GNM) 55(127) 686 (3.68)

Let us repeat that this critical overdensity is not the true overdensity of the col-
lapsing object that becomes close to infinite, it is an extrapolation of the linear one.
Eventually, we can remark that this expression is a fixed number that does not de-
pends on any characteristic of the overdensity (such as its mass). This is of par-
ticular interest for counting halos and understanding their distribution, as detailed
in the next section.

3.4 Excursion set theory and halo mass function

In the following, we rely on the review of KNOBEL (2012) for the introduction of
the power spectrum and the PS formalism (PRESs et al. 1974). Useful references
for the power spectrum and transfer function definitions are C.-P. MA et al. (1995),
DODELSON (2003), and PETER et al. (2013). Then we refer to BOND et al. (1991) and
ZENTNER (2007) for more details on the excursion set theory. The aim of this section
is to summarise the previous developments that can be used to learn more about the
population of halos in the Universe assuming that they have no internal dynamics.
The specific study of the subhalo population in galaxies where dynamical effects play
an important role is treated in Chapter 4. In the first part, we introduce the proba-
bilistic treatment of the density contrast and define the matter power spectrum and
the associated transfer function. Then we briefly develop the PS formalism and show
why it fails to be the right and complete description of the halo population. Even-
tually, using the excursion set formalism, we show how a revised treatment can be
performed and the kind of information that can be brought out of it.
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3.4.1 Density contrast

The CMB data show that after inflation, the matter density contrast 6,, = dpm/p,,
presumably behaves as an approximately homogeneous and isotropic Gaussian ran-
dom field*. The latter can be entirely described by its two point correlation function

f(Xl,Xg) = <(5m(X1)(5m(X2)> VXl, X9 . (369)

Using the hypothesis of homogeneity and isotropy it is possible to go further and write
E(r) = (0m(x +1r)dm(x)) = &(r). If £ is a continuous function at » = 0, using the spectral
representation theorem it is possible to define a Fourier transformed expression as

P(k) = / () PBr with  (5,(k)8% (K)) 6@ (k — K) = P(k) (3.70)

where P is called the matter power spectrum. The fact that ¢ must be real
and rotationally invariant imposes P(k) = P*(—k) = P(k). Taking the inverse
Fourier transform yields
1 : o0 i
£(r) = /P(k)e’krd3k:/ A?n(k:)Mdlnk: (3.71)
(2m)3 0 k

r

where we defined A2, = k3P(k)/(272) as the dimensionless matter power spectrum®.

The fact that J,, is a Gaussian field means that it satisfies a multivariate Gaussian
probability distribution. Since (6,(x)) = 0 for all x € R? by definition, if we consider N
arbitrary points (xi,...,xy) the probability density of the fields is

1 1 _
Ps(0m(X1), ..., Om (X)) = PEIENTTs exp (—2 %jém(xi)cijlam(xj)) (3.72)

where C;; = ¢((|x; —x;|) is the covariance matrix that characterises the field
completely. If we look more precisely at a single point x, then the PDF of
the field becomes simply

5 1 62,
Pa(m) = —o—exp | 5% (3.73)
with 02 = £(0). Besides, to properly evaluate the statistics of the density contrast field
om, it is necessary to assume (approximate) ergodicity. In other words, since one has
only one realisation of the Universe, one considers that the ensemble average over
several realisations gives the same result as a volume average. As a matter of fact, if
&(r) — 0 when r — oo the zero mean homogeneous Gaussian random field is indeed
ergodic (ADLER 1981). Therefore the power spectrum is sufficient to know everything
about the statistics of the density contrast.

3.4.2 Power spectrum and transfer function

The matter power spectrum appearing in the definition of the two-points corre-
lation function is to be evaluated during the matter-dominated era and later, when
structures can actually form. However, in practice, we have access to the prediction

“This remains an approximation as the distribution is limited by the lower boundary § > —1.
5The notation A2, is standard but must not be mistaken with the co-moving gauge density contrast.
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of inflationary models right after inflation that we denote as time ¢;,;. To be more
precise, at that epoch, for modes that are super-Hubble, the comoving curvature per-
turbation R is simply related to the primordial potential by R = —3¢(tinf)/2 as shown
in Eq. (3.37). It is then possible to predict the curvature power spectrum defined as

Pr(k) = (RODRK)) = § 60k, tur) (0, b)) 8.74

In the ACDM model the curvature power spectrum is parametrised by

272 k™t
k) = % — 3.75
Pr(k) = 75 As (1) (3.75)
with kg = 0.05 Mpc~! fixed by convention. In Planckl8 the best fit is found for a
spectral amplitude In(10'°Ag) = 3.044 + 0.014 and a spectral index n, = 0.9649 + 0.0042.

The transfer function is a generic function that makes the connection between
tinr and a later time ¢ taking into account the different growth of different modes as
well as damping effects. We introduce ¢,,, a time in the matter-dominated phase of
the Universe when the cosmological constant and curvature of the universe are still
negligible. The transfer function is then implicitly defined by

Dy(t) a(tm)

k.t) = k,ting) T (k, tm, 3.76
with the introduction of a new® growth function
_ (k1)
D (t) = t). 3.77

The last part of the equation is introduced such that at ¢ = ¢, there is no depen-
dence on the growth function on the left-hand side. However at time ¢,,,, when matter
dominates, D (t,,) = a(t,,) therefore this convention has no impact and the last frac-
tion is 1. Then, since nothing else is dependent on ¢,,, the transfer function only
depends on k, and we write T'(k) = T'(k,t,,). For modes k well inside the horizon at
a time ¢, after the radiation era, Poisson’s equation gives the relation between the
matter fluctuations and the potential as

k2

Ok, t) = Bk, ) = — s oD

o(k,t). (3.78)

If we neglect the cosmological constant impact, the background density evolves as

3H?

2 k2a(t)
m,0 8mGN

3 Qo H2

pm(t) = a 3(t) thatyields 0uy(k,t) = o(k,t). (3.79)
For isentropic perturbations entering the horizon in the matter-dominated
era (i.e. with &k < ko), the amplitude of the metric perturbation satisfies
d(k,tm) = (9/10)¢(k, ting) as seen in Sect. 3.2.2. Therefore, in this configuration we
choose K = 9/10 in order to have the correct normalisation. Indeed, the transfer func-
tion is also well defined for modes entering the horizon at late time. Since those modes

%In the sense that we have already introduced a growth function in Eq. (3.43). We will show below
that, in fact, for sub-Hubble modes the two definitions coincide.



112 3. COSMOLOGICAL HALO MASS FUNCTION

were super-horizon at the matter-radiation equality, ¢(k,t) = Ko(k, tin)D1(t)/a(t)”.
Therefore this yields the convenient property of the transfer function,

lim T'(k) = 1. (3.80)
k—0

Note that for isocurvature perturbations, modes entering the horizon in the matter-
dominated era satisfy ¢(k,t,) = (1/5)¢(k, tins), and the normalisation factor has to be
set to £ = 1/5 to respect the same property at small k. Using the transfer function
and the new growth function, we obtain
2 _k2Dy(t)
om(k,t) = —glC NIT:
Remark that for sub-Hubble scales 6,,(t) o< D;(t). Therefore D;(t) = D(t), with D(t) the
growth function introduced in Eq. Eq. (3.43), because D;(¢) is normalised such that
D, (t) = a(t) in the matter-dominated era — when the potential is constant. Giving it a
new definition simply allows us to match with the usual definitions in the literature.
The matter power spectrum, for isentropic initial conditions with adiabatic evolution
is then related to the curvature power spectrum by the relation (NAKAMA et al. 2018),

T(k)p(k, tint) - (3.81)

4

- |

k2D (t)
O oHZ

2
T(k)] Pr (k). (3.82)

The transfer function for a given mode mainly depends on the moment it crossed
the horizon. Three physical processes have an important imprint on its shape: the
collisional damping of baryon at recombination (also called Silk damping — SILK 1968),
the collisional damping of DM at kinetic decoupling, and the collision-less damping of
DM after kinetic decoupling (free-streaming). In practice, we use the parametrisation
given by EISENSTEIN et al. (1998) that takes into account the baryonic effect. Let
us point out that in this work, the authors give a different definition of the transfer
function, using the matter fluctuations in the synchronous gauge, but because the
transfer function only addresses sub-horizon scales, gauge choice has no importance
and it can be shown that it is perfectly equivalent to the definition above. For the
DM-induced effects, we give more details in Sect. 3.6.

3.4.3 Filters and window functions

In the standard derivation of the halo mass function, the next step is to introduce
filtered moments of the density contrast. Indeed, we are interested in averages on
volumes of typical length R, and we ask the question of whether it is possible to
form there a halo of mass M. Therefore, the smoothed density contrast on scale R
is defined as the convolution product

Sr(x) = [ 5)Wallx - y)d’y (3.83)

where W5 is called the window function of size R, or the filter. The definition of
this function is not unique and in practice 3 different choices are made: the Gaus-
sian filter, the real-space top hat, and the k-space top hat. As we will see, the lat-
ter is the only convenient choice in the excursion set formalism. In Fourier space
this equation becomes

Sr(k) = Wg(k)s(k) (3.84)

“Indeed K¢(k,tint) = Kdrp = ¢mp = é(k,tm), by the choice of K, on these scales. The definition of
D, (t) being equivalent to ¢(k,t) = ¢(k,tm)D1(t)/a(t) the result is immediate.
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Figure 3.3 - Power spectra of the primordial curvature perturbations (red), matter today
without transfer function (green) and matter today (blue). For this plot we used the Planck18
cosmology, the transfer function given in (EISENSTEIN et al. 1998) and the exact growth func-
tion from Eq. (3.43).

and the three different definitions are

Wr(k) = (k:?%)?’ [sin(kR) — kR cos(kR)] (real-space top hat)

2
Wr(k) = exp (-@) (Gaussian) (3.89)

Wr(k) = ©(1 — kR) (k-space top hat).

Only the first two have a corresponding definition in real space

Wr(r) =O©(R—r) 1 3R3 (real-space top hat)
s
L o\3/2 2 (3.86)
W)= (57m) o (‘zm) (Gaussian)

and can be associated with a volume V(R) without ambiguity that is equal to 47R3/3
for the real-space top hat window, and to (27)%2R? for the Gaussian window. Never-
theless, it is possible to assign a volume to the k-space top-hat window in real space
by the normalisation requirement Wgz(0)V(R) = 1 so that V(R) = 672R3. The typical
mass associated to R for a given window is then

M = puoV(R) (3.87)

where py, o is the background matter density today. Note that since Jr is a linear
combination of ¢§ it then follows the same Gaussian statistics with variance

o = GR(O0)IR(0) = [ AL () Wr(k)Pdlnk. (3.88)

One can see that, if there were no transfer function, the power law power spectrum
for the curvature perturbations Pr (k) « k™ ~* would yield P(k) o< k™ and A2 o k™s+3,
Moreover, the variance would be % o R~(+3) or put differently, with respect to the
mass, o3, o M~("*3)/3 Consequently, if ns ~ 1, the variance of the density field
decreases with the mass (or size) of the region. The evolution of o) with the mass at
redshift z = 0 is represented in Fig. 3.4 and shows, more accurately, that it decreases
with M also in a model where the transfer function is taken into account.
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3.4.4 The Press-Schechter formalism and cloud-in-cloud problem

The objective here is to compute the halo mass function, i.e. the mass distribution
of halos in the Universe. The main idea of Press-Schechter (PS) (PRESS et al. 1974) was
to say that any region with radius R with a density contrast Jr that is equal to the
critical threshold 4. collapses into a halo. It is reasonable to assume that 6z decreases
with the radius of the region of interest so that if 6z > J. then it exists R’ > R such
that ' = .. Looking at a specific scale R, all the points in space with Ji > 6. should
correspond to larger and larger halos with increasing §z. Therefore the fraction of
halos with a mass greater than a given mass M is

F(M)= R exp —% ddnr
Se 2woN 20%/[ (3.89)
Lo ( be ) '
= —erfc | —— ) .
2 V20

Unfortunately this approach does not take into account the fact that even though
dr might be less than ¢, it is possible that ¢, with R’ > R may satisfy 0% > J.. Said
differently, the PS formalism is based upon the averaged expectation, and does not
correctly account for the fact that delta is truly a random variable, and independent
from scale to scale. Whatever delta on a given scale, there’s always a non-zero prob-
ability for delta to either larger or smaller at a different scale, irrespective of its size
(except for asymptotic cases). There the larger volume R’ collapses and creates a halo
that is not counted by the PS formalism. Let us highlight, one more time, that in the
PS computation it is implicitly assumed that only over-dense region at small scales
ends up in larger collapsed objects. Therefore they are missing the under-dense re-
gions that belong to larger over-densities. This effect is called the cloud-in-cloud
problem and it can be seen directly from the formula above. At very small scales the
variance of the density field goes to infinity,

Ilzlglo OR = ]\141§00-J\/[ = 0. (3.90)
This can be shown very easily in the case of a constant transfer function since a
rough scaling of the variance is o?(M) o« M~G+7)/3 with n, ~ 1. If we plug this re-
sult into Eq. (3.89) it yields that F(0) = 1/2, which would mean that the fraction of
halos with a mass greater than O is 1/2. Of course, this makes no physical sense,
one should recover F(0) = 1. As already mentioned, this issue is a direct conse-
quence of the cloud-in-cloud problem and Press and Schechter argued that it could
be fixed simply by multiplying F(M) by the missing factor 2. Even if this is true,
the argument is not satisfying. We introduce, in the next section, the excursion set
formalism that gives a complete answer.

3.4.5 The excursion set theory

The excursion set theory (BOND et al. 1991) — hereafter called EST — provides a
way of counting correctly the number of formed halos. The formalism is much more
involved than PS but we will see that it predicts the same result, with the correct
normalisation. The basic idea is to compute the largest scale R for which ér = J. so
that the under-dense regions in over-dense larger ones are not forgotten. Moreover,
this formalism does much more since it allows for a better understanding of the
statistical properties of halos.
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As seen above, one has ogr — 0 when R — oo, og — oo when R — 0 and the function
R +— 0% is strictly decreasing. In the EST approach it is usual to define S = 0%
and make use of the bijection between R and S to identify S to a given scale, writing
0r = §(5). Note that in this picture the one to one correspondence is made at a specific
redshift, chosen to be zero. Without fixing a time/redshift the definition of S(R) would
be ambiguous. Therefore, let us consider a given position and a large R. The value
of S is then close to O and thus, from the Gaussian probability distribution, so is §x.
Now if we decrease R, then S is higher and the value of 6 can also depart from O more
easily (in a statistical sense). In other words, lowering R increases the probability for
0r to be above the threshold §.. For a given patch, the largest value of R for which dr
becomes larger than J. is called the first up-crossing and corresponds to a halo of size
R. The problem of counting halos amounts to determining the probability of having a
first up-crossing at a given R, within an infinitesimal range dR, or said otherwise at a
given S within a range dS. Starting from a large scale corresponding to a small Sy with
0(Sp) = do < 0., a change in the smoothing scale leads to §(.S;) = ¢; with 65 = S1—Sp > 0.
With a k-space top hat window filter, increasing the window size only amounts to
adding a set of new Fourier modes that are completely independent. As we shall see
below, the transition probability for A§ = 6; — Jp (the change in critical density coming
from a change 05) is actually a Gaussian with zero mean and a variance §S%. Now,
starting from ¢y and §;, when increasing the value of S by increments of §.5, one has an
evolution of § by independent steps (2, 03, ...) describing a random walk. In addition,
because all the steps are independent, this walk is more specifically a Markov Chain.

In order to study the behaviour of the walk one can go to the continuous limit
and describe it as a Brownian diffusion. To this end, let us consider the density of
trajectories p(d,.S) at position § at time S. This density is normalised as a probability
distribution, that is, its L; norm is 1 on R. By the Gaussian character of the tran-
sitions the density of the chains at position ¢ at time S + §.S is related to the density
at position § — = at time S by the equation

1 2
)= [ Voo (—255

From this relation one can compute the derivative of p with respect to S,

p(6,S + 468 > p(0 —x,8)dx (3.91)

B _ gy L /1e =) (6 - 2. 8) - p(6.9)]
95 ~ 655055 | Vames P\ T2sg ) PO T Ho) T PO S)IA
. 1 1 x? 2 0%p dp 3

e [ @)% (0@EP))
_als“l‘olas 5952 88

and as (z") « §S™? and (2?) = 49 it yields the equation of diffusion

op 1 0%p
S — 206%°
8The independence property is crucial for the following derivation and in the original EST framework
it is necessary to work with a k-space top-hat window function which is not the filter with the best
physical meaning. Therefore several studies have gone further and tried to find ways to include the
possibility of a non-Gaussian random field and correlated steps, allowing them to use the other filters

(VERECHTCHAGUINA et al. 2006; MAGGIORE et al. 2010; MUSSO et al. 2014). However, this is beyond the
scope of this introduction.

(3.93)
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In order to find a solution, we need initial and boundary conditions. The initial
condition comes from the prescription that the walk starts at §p for S = Sy giving
p(9,S0) = op(d — dp). Furthermore, once a trajectory reaches § = 4. it has to be removed
from the sample because it corresponds to a collapsed object; this gives the second
condition p(d., S) = 0. One says that the trajectories are described by a diffusion equa-
tion with an absorbing wall at § = .. A general solution is given in CHANDRASEKHAR
(1943). Let us here sketch a quick proof. First, let us start with the usual method to
solve the diffusion equation and define the Fourier transform of the density p as

) 1 .
plw,S) = / dyp(5,8)e™ 0 with p(5,8) = o / dw plw, §)ei (3.94)

Fourier transforming the master equation allows for a simple solution

2 2
p(w,S) = A(w) exp (—25) with  A(w) = exp (—iw% + C;Sb) (3.95)

where the value of A is determined thanks to the initial condition. Fourier trans-
forming back the expression yields

+00 2 .
p(4,8) = 1/ dw exp <L;AS> gWAd

21 J oo
(3.96)

1 (A6)?
= exp | —

V21 AS 2AS
with AS =5 — Sy and Ad = 6 — §p. This is the usual solution for a diffusion equation
with an initial condition concentrated in one point. However, here one can see that
the absorption condition is not satisfied as p(d., S) # 0. In order to take the absorption
into account one notices that removing all the trajectories reaching § = d. is the same

than subtracting the contribution of a new source in § = 2§, — Jy (as if the absorbed
trajectories were in fact absorbed by this source)?. Therefore, the total solution is

1 (AS)? (2[6e — 6] — AS)?
p(9,S) = J3AS [exp (— NG ) — exp (— QAOS )] (3.97)

and one can easily check that the subtraction does not change the initial condition.

The fraction of halos formed with variance less than S(M) (i.e. with mass greater
that the associated mass M) is simply the complementary of the fraction of halos
that have not collapsed

de Oc — 50
FS:l—/ a6 p(4, :erfc(c > 3.98
(9)=1- [ dip(6.9) o (3.98)
For Sy = 0 and ¢y = 0 it yields the results of PS with the correct normalisation,
as expected. However, this is much more powerful since now we can evaluate the
probability distribution of first up-crossing at scale S knowing that we started from
scale Sy # 0 at 9 # 0. This is given by

_dF e 1522 _ 0 — 0o <_(5c—50)2>

F(8160,50) = 5 = ‘/_oo 95 = Vanass "\ T oas (3.99)

9This is actually nothing else but the method of images in classical electrostatics — see JACKSON
(2003) (3rd edition - p57).
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Figure 3.4 - Right panel: The smoothed variance of the matter density field in a window
(written in terms of mass) of size M. Left panel: Press-Schechter and Sheth-Tormen mass
functions for the different window filters. The tilted dashed black lines are a guide for the eyes
and represent the halo mass function proportional to M 195,

Once translated into the fraction of mass in halos between M and M + dM, in the
region of scale Sy and density contrast Jy, one has

as| . d.—d (6. — 50)2\ | dS

In the next section, we show in more details how this formulation, once generalised,
can tell us much more about the statistics of halos than the PS formalism. Tak-
ing now S — 0 (infinitely large region) with null density contrast ¢, = 0 we recover
the PS case and it is possible to get the halo mass function of the entire Universe.
Using the fact that S = o2 it yields

dn _ pm ( )’dS
dM M dMm

2 pm 6. | dlno 52
z Ze __c 3.101
dln M exp < 20’2> ( )

T™M? o
v fps(v)

_ ﬁim dlnv
- M2dInM

where we introduced the usual notation of the peak height v = §./0 with the definition
of the function fpg being simply

fes(v) = \/ze‘”m- (3.102)

Using the scale invariant power spectrum (thus neglecting the transfer function), the
PS mass function scales as oc M (s=9)/6 exp(CM(s+3)/3) (oc M—4/3 exp(CM*/?) for ng ~ 1)
where C is a constant.

3.4.6 A few words on ellipsoidal collapse

This last expression is valid in the spherical collapse model. When one accounts
for ellipsoidal perturbations, the critical density becomes a function of the ellipticity e
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and prolateness p, which we shall properly define later on.. Let us consider a particle
in the universe at the initial comoving coordinate x;. Using Eq. (3.55) and v = ax one
has the equation of evolution for its comoving position,

dx D(t)

at = anGpna | (8:109)

In the matter-dominated era the factor 5(t)a® is a constant and if we assume that, at
first order, V®;(x) = V®,(x;), with the additional fact that D(¢) > D(¢;) one can write
the Zel'dovich approximation (ZEL'DOVICH 1970)

D(#)

x(t) = x; — m

Vo,;(x;) (3.104)
which is equivalent to consider that particles go on straight line trajectories. Because
of mass conservation the matter density satisfies the following relation p(x, t)a3(t)d3x =
p(x;,ti)a’(t;)d3x;. From the formula of change of variable, one can relate d®x and d3x;
through the Jacobian matrix according to

Ox ox s
3 o 3 . . — . p—
d°x = det (8Xi) d’x; with (ax)jk jk = D(t) Oz 0z,

D,
eOrn

] (x;). (3.105)

where 0,,0,, [®i/(47Gxp(t))a’(t)] (x;) is called the deformation tensor. If A;, Xy and A3
are the eigenvalues of this tensor, then 1 — D(¢)\;, 1 — D(¢t)\2 and 1 — D(t)\3 are the
eigenvalues of (0x/0x;). Then the mass conservation takes the form

a®(t) 1
X, t) = p(x,t;)— . (3.106)
PGt = PO (1) T~ DO DO [T DA
Choosing the initial time when the perturbations are negligible, one obtains
1
1460, 1) = P00 _ (3.107)

p(t) [ =DHM[ = D(H)A] [1 = D(t)As]

Now considering the ordered eigenvalues A\; > Ay > A3, ellipticity and prolateness of
the halos are defined by the two following parameters

A1 — A3 A1+ A3 — 2\

= d = .
‘ T e )

3.108
2()\1 + Ao + /\3) ( )

An ellipsoidal halo collapses preferentially in the direction of the largest eigenvalue
as gravity enhances the non-sphericity. In particular, it leads to the "Zel’dovich pan-
cakes" formation (SHANDARIN et al. 1989). According to SHETH et al. (2001), the
critical overdensity for ellipsoidal collapse d.. can be obtained by solving

2717
bec(r) =5c{1+ﬁ [5(8 ~ plp) (4e2)) ] } (3.109)

with v = 0.615 and § = 0.47 and §. ~ 1.686 the spherical collapse model critical density.
They obtain this relation by fitting the ellipsoidal collapse model — summarised in
(Mo et al. (2010) - chapter 5.3). In the end they provide the scaling of J.. with v
and the redshift z instead of ¢ and p

— 5CM

dec(V, 2) D)

[1 + [;v?’v] . (3.110)
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With this expression of the barrier the solution of the diffusion equation on p(9,.5)
has no simple solution. However they also provide a fit of fsr(r) that can be used
to replace fps in the halo mass function

1
fsr(v) :A<1+1/2‘1) —e 2, (3.111)

with A = 0.3222 and ¢ = 0.3 (the usual PS result being ¢ = 0 and A = 0.5). In Fig. 3.4
we show the Press-Schechter and Sheth-Tormen mass functions for different window
filters multiplied by the mass squared. While this plot covers 28 orders of magni-
tudes in mass, the total variation on the y-axis is less than 2 orders of magnitude.
Therefore the halo mass function is roughly proportional to M~ with « € [1.9,2.0].
The diagonal black lines show M~'% in order to guide the eyes. The difference be-
tween Press-Schechter and Sheth-Tormen results is small but the latter is able to
better reproduce the results from simulations. In addition, even small changes at
small mass could have dramatic impacts on observables sensitive to the low mass
range as the number of small halos drastically dominates — see the discussion in
the conclusion of Chapter 2.

3.5 Subhalo mass function from merger trees

3.5.1 From the excursion set theory to merger trees

In this section, we are interested in the evolution of halos. We mainly follow the
review of ZENTNER (2007) and use similar notations, which are also the same as LACEY
et al. (1993, 1994) who studied this problem in great details.

First and foremost we need to add the scale factor a (or equivalently the redshift z)
into the problem. In the standard picture the value of ¢, is fixed and or changes with
time. Here we adopt the other point of view where the only quantity dependent on
the scale factor is the threshold. Indeed, increasing the fluctuations or decreasing the
threshold is equivalent. More precisely, we introduce an effective collapse threshold
that decreases with time as w(z) = §.D(z = 0)/D(z), where D(z) is the linear growth
factor introduced in Eq. (3.43), while S = S(z = 0) is a constant. We just expressed in
Eq. (3.99) the probability distribution to have a first up-crossing of the threshold 4.
knowing that we started in a region of size Sy and density contrast dp. Actually, this
expression can be generalised to the generic two-barrier crossing problem: it gives the
probability to have a first up-crossing of the barrier ws in a region of size S» knowing
that it has already first up-crossed the barrier w; in a region of size S; as

Aw Aw)?
f(W27S2|W1351)d52:m6XP <_(2A; >d527 (3.112)

with Aw = ws — w;. One of the most interesting quantity we can compute is the
averaged number of halos formed at time ¢, and of mass M, that are contained in a
halo of mass M; formed at time ¢; > to,

dN(My | M) _ M

YA Ef(wz,SQ | w1, S1)

dSs

—|. 3.113
O, ( )

Now, from Eq. (3.112) one can simulate the formation history of a given halo. The
easiest way is to proceed is by going backwards in time. Consider a host halo of mass
M at time z; that we call the parent or the host. At time 22 = 21 + Az one can draw
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the masses MQ(U, M2(2), 2(3), ... of the progenitor halos that merged to form the host. At
the next step, z3 = z; + 2Az the previously defined progenitors become parents and
one can draw new smaller progenitors for them as well as new progenitors for the
original host ... and so on and so forth. This way one builds a tree; the branches
being all new progenitors that subdivide as z increases. This iterative procedure may
seem straightforward to implement to produce a realistic merging history but it is
not. The reason is that the algorithm drawing the progenitor masses needs to satisfy
several conditions. Firstly, one needs to introduce a mass cut-off M, not too small
to converge in a reasonable amount of time. Nevertheless, the algorithm needs to
take into account the mass included in subhalos smaller than the cut-off. This is
referred to as accreted mass. Secondly, all progenitors must be treated equally at
each step. Thirdly, the total mass needs to be conserved and the mass distribution
given by Eq. (3.113) at each redshift must be satisfied (this is called the consistency
test). In practice, in order to satisfy all these conditions, several algorithms have
been proposed (COLE 1991; LACEY et al. 1993; PARKINSON et al. 2007; ZHANG et al.
2008; JIANG et al. 2014). Here we have compared the algorithms of SOMERVILLE et al.
(1999) (hereafter labelled — SK99) and COLE et al. (2002) (hereafter labelled - C0O0).
Both have the advantage of treating left-over mass (not contained in progenitors) as
accreted mass and being fast to execute. In Fig. 3.5 are shown the comparison of the
averaged number of subhalos formed at two redshifts zo = 0.2 and z; = 1 in a halo of
mass M; = 10’2 M. One can see that the consistency test is not exactly verified for
SK99. As a matter of fact, this behaviour is expected as the algorithm does not satisfy
the second point (all subhalos treated equally); it discards progenitors drawn from the
halo mass function that gives a total mass exceeding that of the host halo. As detailed
in ZHANG et al. (2008) and JIANG et al. (2014), the COO algorithm is not perfect and
suffers from several drawbacks (as all merger trees do) too, essentially because it
underestimates the mass of the most massive progenitors at large redshift. However,
it is simple to implement and behaves rather well in the self-consistency test. Most
importantly, it compares well with results from simulations. An improvement of the
CO0O0 algorithm is given in PARKINSON et al. (2007). However they calibrate their recipe
on the Millennium Simulation. Our goal is to be as much as possible independent
of simulations, therefore we make the choice of using the original COO algorithm in
the following, which we shortly explain below.

Let us give more details on this algorithm. Consider a small time step Aw. From
Eq. (3.113) one can compute the average mass fraction of a halo of mass M; at w;
that was in progenitors of mass M, at wy = w; + Aw as

d2N (Ma, wa| My, wy)
dMde

M1 Aw
AwdMs = —
“ 2 M2 vV 27[‘(52 — 51)3/2

dSs

d M- 3.114
Oy 2 ( )

wo=w1

The mean number of progenitors of masses M,.s < My < M;/2 into the parent of
mass M; after one step is then

d?N(Ms | M)
dMsdw
M]. ]\/f1/2 1
W —
V2T J Myes M (52 — 51)3/2

M /2
P(M;) = Aw / dM,

w2=w (3.115)

d
52 dM, .

=A
dM,
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Figure 3.5 - Consistency test for the SK99 (green) and COO (blue) algorithms for one and two
redshifts respectively. The red dashed curves represent the expected value for the excursion
set theory (EST). The close the algorithm get to the red curve the better it is.

Besides, one can also evaluate the fraction of mass that is made of unresolved sub-
halos (that are below the mass resolution cut-off),

1 2

+oo
dSe = Awy| ————~. 3.116
/rcs m(82 - 51)3/2 52 . W(Sres - Sl) ( ]

F(Ml) = Aw

One first chooses Aw such that P <« 1 in order to ensure that the probability to have
more than two progenitors on that time step is negligible. Then one draws R from a
uniform distribution in [0,1]. If R < P then this means that at that time step one has
found a progenitor in the range [M,¢s, M1/2]. One defines the cumulative distribution
of M, within the range [M,es, M1/2] as

F (M | M) =

/M2d 'W (3.117)

P(M)) 2 dMjdw

wo=w1
Then one draws a value y from a uniform distribution in [0, 1] and the value of M, is
defined as the solution of F(M> |M;) = y. Here we have exactly two progenitors of mass
My, M;(1 — F) — M, and it remains M; F accreted mass (from unresolved progenitors).
When R > P one only has one progenitor (the main progenitor) of mass M;(1 — F') and
it remains M;F accreted mass (from unresolved progenitors).

3.5.2 Unevolved subhalo mass function

The unevolved subhalo mass function (hereafter USMF) is what we call the cos-
mological subhalo mass function (in the sense that a subhalo mass is defined as a
smaller scale collapsing on a flat homogeneous background, not subject to any tidal
stripping effect). Here we show how it can be obtained from merger-tree simulations.
The mass function in a parent halo of mass M is denoted ®(m, M) in the following.
In GIOCOLI et al. (2008b), Y. LI et al. (2009), and JIANG et al. (2014) the authors have
looked at the p-th order USMFs denoted USMF|[p|]. The 1st order USMF is defined as
the mass function of all subhalos that have directly merged into the parent halo. The
2-nd order is the mass function of the sub-subhalos (the subhalos of the 1%t-order
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subhalos), etc. We denote the USMF[p| as ¢, = dN,/dm. Assuming universality, all
the orders are related by the recursion relation

M
Gp(m, M) = /0 1 (m, )1 (m!, M)dm' . (3.118)

This equation just mathematically means that at order p all the halos of mass m are
contained in larger halos of order p — 1 of mass m' and they are distributed according
to ¢1(m,m’) in each of them. The total USMF is given by the sum

O(m, M) = igbp(m,M). (3.119)
p=1

Because of the recursion relation, ® can also be written as a function of ¢,

(e’ o0 M
B(m, M) = ¢y (m, M) + 3 6p(m, M) = ¢ (m, M) + 3 /0 é1.(m, m')p_r (!, M)dm!
p=2 p=2

M oo
= ¢1(m, M)+/O P1(m,m) > dp_1(m/, M)dm’
p=2

M
= ¢1(m, M) —|—/0 ¢1(m, m" Y@ (m’, M)dm’
(3.120)

Since ¢1(m > m/,m’) = 0 one can massage the last equation by truncating the integral
from below and we get the implicit relation
M
O (m, M) = ¢1(m, M) + ¢1(m,m" )®(m, M)dm'. (8.121)
m
Unfortunately, this equation does not allow to easily solve for ¢; or & knowing one
or the other. It can be used for numerical tests or in very simple scenarios. If we
assume, for instance, that USMFJ[1] is self-similar and has a power-law dependence
that is ¢1(m, M) o« (m/M)* with A € R, then, the total USMF necessarily goes as
®(m, M) < (m/M)~? and the index of —2 can be viewed as a critical exponent. However,
this theoretical result does not provide any practical insights on the value of \.

The total number of halos contained in a host with M = 102 M, with a mass
over a given threshold is given in Fig. 3.6. This figure was obtained by running
the COO algorithm with M, = 10~*M over 350 Monte-Carlo realisations. The blue
line represents the average total number of unevolved halos while the red lines are
the average of the successive orders of USMF. The sum of the different orders gives
back the total number.

3.5.3 Merger Trees and fitting function

In the following we evaluate with COO the USMF[1] on five decades of mass and fit
n(m, M) = m¢1(m, M) with the functional form proposed by (JIANG et al. 2014) — which
is an extension of another function proposed by GIOCOLI et al. (2008b) —

n(m, M) = [%(M) (E)al(m + 72(M) <Z>QQ(M)] exp (—B(M) (Z)C(M)> . (8.122)

As mentioned in JIANG et al. (2014) — and relying on Y. LI et al. (2009) — some kind
of universality appears, the coefficients do not depend on the host mass for 10'° M,
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Figure 3.6 - Left panel: The cumulative number of subhalos in a host halo of mass 10'? M.
First-order halos are represented in dark red, second-order sub(sub)halos in lighter red and
so on. The total number of subhalos in over 350 realisations is represented by the grey lines,
the blue line is the total average.

< M < 10 Mg and they also should not vary with the cosmology. Here we can
impose the theoretical bounds

0<7v, 0<y, —-1<a;<0, —-1<a3<0, 0P8 and 0<( (3.123)

on the coefficients. In their fit, however, the aforementioned authors do not constrain
the shape of the mass function at small masses, which is not a problem, a priori, as
they are interested in the large-mass tail. Because we want to recover a mass function
valid over many orders of magnitude in mass (up to ~ 30!) we have to design another
method to extrapolate the results at low masses. Let us first assume the purely
theoretical approximation, that there is no minimal mass limit for the halos (that they
can be of vanishingly small size). Obviously, this cannot be the case in reality, either
because of the damping effects detailed in Sect. 3.6 or to another extent, because we
can no longer talk about subhalos under the typical distance between two particles.
Furthermore, we also make the assumption that every halo of order p is entirely
made of halos of order p + 1. In the strict infinitely small size limit, this should hold
true. Therefore if we integrate the USMFs on the mass over the entire range between
0 and the host mass, this yields

1 M
H/o ¢p(m, M)mdm =1 Vp>1. (3.124)

One can check, as a consistency test, that this normalisation condition is conserved
by Eq. (3.118). If we assume that ¢,_; and ¢; are normalised to 1 then ¢, is too
because of the relation

M M M
]\14/0 d’p(m, M)mdm = ]\14/0 [/} ¢1 (m’ m’)mdm] pr—l(m/, M)dm/
- % /M [/m ¢1(m, m')mdm] Gp—1(m’, M)dm’ (3.125)
0 0

:1/Mm’¢ 1 (m/, M)dm' =1
M Jo P ’
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Cosmo. M/M@ Y1 (051 (e%) ﬂ C Y2
Planck18 109 0.01954 | -0.9452 | -0.5609 | 20.39 | 3.333 || 0.4618
Planck18 | 10'? | 0.01894 | -0.9402 | -0.5783 | 24.57 | 3.586 || 0.4568
Planck18 | 10 | 0.02228 | -0.9191 | -0.5719 | 21.48 | 3.473 || 0.4949
Jiang+14 | 10' | 0.02340 | -0.9313 | -0.5670 | 22.36 | 3.456 || 0.4634

Jiang + 14 0.13 -0.83 -0.02 5.67 1.19 1.33
Giocoli + 08 0.18 -0.80 0 12.27 | 3.00 0

Table 3.1 - Results of the fit for the Planck18 cosmology and the same cosmology than that
of JIANG et al. (2014) - here Jiang+14. For comparison in the bottom two panels we put the
results obtained by Jiang+14 and GIocoOLI et al. (2008b) — here Giocoli+08.

where we used the fact that ¢,(m’ > m,m) = 0 (subhalos cannot be larger than the
host). In the end, it amounts to say that, instead of letting +; and ~2 be free param-
eters, one of them is actually constrained. More specifically, from the normalisation
condition of Eq. (3.124), we get

e
L—mp ¢y (M, 8)
72 = Ttag

I ()

where v : (z,s) — 7(z,s) is the lower incomplete gamma function. With this require-
ment, we theoretically constrain the slope of the mass function in the small mass
range. In Tab. 3.1, we give the results for the Planck18 cosmology and the cosmology
used in JIANG et al. (2014), for M, = 107°M and discarding all the subhalos with a
mass between [M,s, 2M,s| in order to minimise possible boundary effects. In addition,
these fits are also represented in Fig. 3.7. The red curves corresponding to USMF[1]
are the fitted functions while the other orders, in lighter red, are here evaluated with
Eq. (3.118). In the lower right panel of the same figure we compare the results of
the literature in dark and light red with our own for the three different host masses
— in light, medium and dark blue. We also show results for unconstrained fits for
which the value of -, is not fixed by the normalisation condition (dashed curves).
With the simple COO algorithm we obtain results that differ at most by 50% from the
fits in the literature. Moreover, the necessity of the constrain on v, appears here as
the unconstrained fits all give as = —0.9999 at the limit of the available range of values.

) (3.126)

All these fits remain roughly similar whatever the mass of the host. Henceforth, for
simplicity, we introduce a standardised mass function by considering (y; = 0.019,a; =
—0.94,090 = —0.58,8 = 24, = 3.4;72 = 0.464). We keep three digits for 7, in order
to have a correct normalisation at the sub-per cent level. This standardised USMF
matches with cosmological simulation results (DIEMAND et al. 2006, 2007; DIEMAND
et al. 2008; SPRINGEL et al. 2008; ZHU et al. 2016) where the mass function exhibits
a power-low dependency with a mass index « < 2. Note that in terms of our param-
eters, a ~ 1 — ;. Consequently, we get a prediction for o ~ 1.94 for the Planck18
cosmology — this is slightly different from similar predictions in the literature which
are not constrained by Eq. (3.124). This may have deep consequences on the subhalo
abundance in host halos, because this would predict a net domination of the smallest
scales in the overall subhalo mass fraction.

The next step is to evaluate the evolved subhalo mass function (ESMF), after taking
into account the dynamics inside the host. This is treated by the SL17 model, detailed
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Figure 3.7 — Upper and bottom left panels: Unevolved subhalo mass function at different
orders. The first order (red curve) is fitted on simulations (grey) and all further orders are
obtained using Eq. (3.118) and the universality approximation (that is, the fitted coefficients
do not depend on the host mass). The grey shaded area represents the 1o fluctuations be-
tween Monte-Carlo realisations. Note that on every mass decade the number of realisation
is different for optimisation: from 100 realisations at low mass to 10000 realisations at large
masses. Lower right panel: Comparison of our constrained fit (solid blue) and unconstrained
fit (dashed blue) obtained for a host mass M, = 10*? M, with the similar fits provided in JIANG
et al. (2014) (dark red) and GiocoLI et al. (2008b) (light red). Note that we do not use the
same cosmology but this should have little impact. The main difference may come from the
Merger Tree algorithm that is used. The result of the merger tree is here shown with blue
round markers. In the lower panel, we show the residuals of the upper panel as well as the
difference between the two different host halo masses M = 10%, 10! M, (light blue) and (dark
blue) for the constrained (solid) and unconstrained fits (dashed). The three solid blue lines
and the blue round markers are relatively close, thus showing the self-similarity.

in Chapter 4. In its original construction, the SL17-USMF is a power law normalised
to the typical subhalo mass fraction measured in cosmological simulations. This also
translates in terms of total number of subhalos. With the USMF that we have just
predicted from merger-tree calculations, and from given cosmological parameters,
the total number of subhalo is now a theoretical prediction, and a calibration on
numerical simulations is no longer required (except to test the validity or precision
of merger-tree approaches themselves). This is an important improvement for the
model. For clarity, however, we delay the rest of this discussion to Sect. 4.2.
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3.6 Power spectrum cut-off and minimal halo mass

So far DM has been treated as a perfect fluid. However, it is not necessarily a good
description depending on the scale of interest. This section is focused on this issue.
Indeed, when DM is collision-less (such as for WIMPs after kinetic decoupling), its
behaviour on small scales can depart from the fluid approximation. From this effect
comes a limit on the minimal mass that DM halos can have and that is called the
free-streaming mass. Besides, because of interactions between the DM and radiation
fluids at kinetic decoupling, a second lower bound on the masses exists and is referred
to as the acoustic mass here. The main goal of this section is to summarise the key
concepts and show how the minimal mass of halos can be derived.

3.6.1 The Euler equation for collision-less dust

We have hitherto considered the different component of matter in the Universe as
fluids. However, the fluid description is valid for species exhibiting a mean free path
smaller than the scale of interest. When DM becomes collision-less, as discussed in
Chapter 2, discrepancies arise on the smallest scales. In this section, we follow the
discussion of MO et al. (2010) and we first show that the fluid description remains
valid on sub-horizon scales as long as the particle diffusion can be neglected. Indeed,
let us consider a non-relativistic particle in the expanding universe. Its Lagrangian
can be written as the difference of the kinetic energy and potential energy,

L(x, %, 1) = %m(ax +ax)2 — mo(x, t) (3.127)
Using x = (2!,2%,23) as the argument of the Lagrangian amounts to work in the 3D-
euclidean space where distances are rescaled by the scale factor. The canonical mo-
mentum associated with this Lagrangian is the physical 3-momentum p = (p1, po2, Ps)
given by p = 0L/0x = ma’%x + maax. However it is more convenient to work with
the momentum p = ma?x that only depends on the peculiar velocity v = ax. In fact,
this momentum can be canonically associated with a canonical transformation of this
Lagrangian. Indeed one can subtract a total derivative to the Lagrangian without
changing the action of the system and one introduces therefore L = L — dS/dt where
S = maax?/2. This corresponds to a change of variables in parameter space (¢, ;) —
(2%, p;) where p; has the desired expression. More precisely the new Lagrangian is

L(x,%x,t) = %ma25{2 —m®(x,t) (3.128)

where ® = ¢ + aax?/2. Let us look now at the transformation from the Hamiltonian
point of view. The original Hamiltonian is

K(Xapvt) :X'f)_L(X7X7t) =

o a4
53 p’— —x-p+ me(x,t). (3.129)

The subtraction of the time derivative of S in the Lagrangian corresponds to a canon-
ical transformation through a type 2 generating function - following the same nota-
tions as BINNEY et al. (2008), appendix D and problem 9.3 —

1
Sz(x,f),t):S—i-x-f):imadxz—i-x'f) (3.130)

and the canonically transformed Hamiltonian is

NN 8S2 1
K(x,p,1) = K(x,B,) + 5= = 55" + mP(x,) (8.131)
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In the end, one can introduce the PSDF associated with p as f(x,p,t). According
to Liouville’s theorem for a collision-less gas, it is possible to write the collision-less
Boltzmann equation (that is also called the Vlasov equation in that context) for f as

Bf {Jg }:o with {f’K}E;lgggi_gfzg}ﬂ (3.132)

Note that here we keep the index of p; down as the canonical momentum is formally
defined with down indices. We introduce the momentum amplitude § = (57 p;p;)"/2.
In Mo et al. (2010) — chapter 4.1.4 — the authors introduce also the average val-
ued of a any quantity @ as

3 A
/f o4 >*3 , (3.133)

where n is the number density of particles and d*p, = dpidp.dps'®. Using the
Vlasov equation they show that for a collision-less dust one recovers the tradi-
tional Jean’s equation in the expanding universe, involving the average of the
peculiar velocity v = p/(ma),

d(v) 1 1 Vi« Peg

However, instead of a pressure term, here one obtains an effective pressure P.g that
is given according to its divergence by

V Peff pz oxJ [ 2} with Jl-zj = <Ui1}j> — <’UZ> <’Uj> R (3135]

which shows that, indeed, the velocity dispersion induces an effective pressure in the
fluid. If this term is negligible we recover the same equation as for a pressureless
fluid. On large scales, this should be true and all the treatment of DM perturbation
and background evolution holds even after it decouples from the plasma and can
no longer strictly speaking be considered as a fluid. However, this is not satisfied
on small scales where the velocity dispersion and the fluid approximation breaks
down. In particular, particles that are in small over-densities can free-stream out due
to the velocity dispersion-induced pressure and therefore smear it out. This effect is
called free-streaming damping and we detail it in the next section in order to extract the
impacted length scales. It is specifically relevant for DM after kinetic decoupling.

3.6.2 Free-streaming damping effect

In order to study the evolution of small perturbations when the fluid approximation
does not hold, as we cannot solve the Vlasov equation analytically we decompose the
PSDF into a background part and a first order perturbation f = fy+ f;. As f represent
the background it does not depend on x and the dependence on momentum is only

1%Note that the momentum p* introduced in Sect. 2.2.1, reduces, in the non relativistic limit, to
p* = (m,p' = ma'). Therefore one has p’ = p;/a® and subsequently § = ap where p = (—g;;p'p’)'/2.
Moreover, this relation also highlights that d®p = d®*p. /a®, explaining the factor 1/¢® in the definition of
the average value (Q).
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through the norm ¢ = (69p;p;)'/?. A straightforward derivation done in (MO et al. 2010
— chapter 4.1.4) shows that in Fourier space, with k' the conjugate variable to 27,

A

lkmp (= Ekd))

fl (ka f), g) = fl (k, f)a gkd) exXp <_
(3.136)

im k- Vo) [ aga(€)p(, exp (i Pie - )

They introduce d¢ = dt/a? and the variable &4 = £(tq) representing the initial value
of ¢ i.e. the value at kinetic decoupling. The solution for f; can be plugged into the
Fourier transform of the density contrast §(k, ) to obtain the first order equation

d3p.
5(k7t) = % /fl(ka f’?gkd) exXp ( (E gkd))
pa (2m)* (3.137)
gm? d3p, '
il [ Vot [ g€ e (i P ¢)) GP
Using an integration by part in the last integral
d3p.
stkot) = 2% [ i 5kd>exp< 26— 6a) ) G5
) (3.138)
I [ agea@)aie 6o (6~ €))
pa® Jeg ’ *\m
with k = (;;k'k7)'/2. Moreover we introduced G, the kernel function
d3A* An—&—l )
/f() GneisP / 27T2f sin(gs) . (3.139)

The second equality comes from the s1mp1e dependence of f; with §. In order to go
further in the analysis it is necessary to have more information on f; and f; at the
initial time. Let us assume that f; is given by the Maxwell-Boltzmann distribution

-2
) — H—m __4d
fo(4) = exp < T > exp < 2ma2To> , (3.140)

where Tj here represent the temperature of the species background and not the tem-
perature of the plasma. As introduced in Chapter 2, Ty x a~2 for a massive species
and then the PSDF f; is in fact independent on time. At initial time, we further
assume that f; can be approximated by its first order expansion in x4 and Ty,

fi(k, D, ka) < p > m q A <5N) <5T0>2
=0 = |+ | =+ — +0 + . (3.141)
fo(@) To Ty~ 2ma®Ty ) To 17 To
According to GREEN et al. (2005), considering the adiabatic evolution, up to kinetic
decoupling, allows us to write

AlkD&a) @ 5 mw((‘ij‘) +(5T°>2> (3.142)

fo(4) 3maiyTia Ty

with Tyg = To(tka) = To(&ka) and axq = a(tkq). Inserting this relation into Eq. (3.138),
gives a relation for the density contrast as

sti, 1) = S8l g, (X (e g))

3Tiap
(3.143)
_gmk2 ¢ 1ol 2 ¢l / E gt
I acea a0 g (16— €))

pa’
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Figure 3.8 - Right panel: Evolution of the comoving free-streaming Fourier scale with the
redshift for different kinetic decoupling temperatures and different DM mass. Left panel

Ratio of the matter power spectrum damped due to free-streaming and acoustic oscillation
matter over the perfect CDM power spectrum.

Moreover, it is also possible to neglect the gravitational potential, as a good approxi-
mation, in order to simplify the expression. Evaluating G, and p using the expression
of fy, yields the following ratio between the density contrast at time ¢ and the density

contrast at the moment of kinetic decoupling #yq:
T
aray/ kd/ ol ] . (3.149)
ta @

2
5(k, 1) 2 (k] ~(&)
= 1-=(— fs ith kg(t) =

d(k, tka) { 3 (kfs>:| ‘ s i

In the end, this equation, valid for k£ < kg, shows that Fourier modes greater than kg
are damped. Indeed, these are scales for which the velocity dispersion is no longer

negligible. In practice the effect is taken into account in the transfer function that
is modified according to

iy 7t -2 (£) ]G5

kfs

(3.145)

3.6.3 The free-streaming length and mass

A common approach is also to define the free-streaming length at time ¢ as the
proper distance that DM particles travelled from kinetic decoupling to today. Then it

is possible to roughly evaluate the free-streaming scale as the inverse of this distance
The free-streaming length is defined as

Ms(t) = a / \/0ijdaidad (3.146)

and one can show, using the 4-momentum p" = mdz*/dr that

/5 ! (t)
Ais(t) = ipipd — Tat = / _ DY) gy
f a / ]p p] dt/ fd (

a(t') E[p(t")]

(3.147)
B o) ., toat
=0 [ Sy = oOmana [ 5t
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The last equality comes from the fact v « 1/a and with viq being the velocity of the
particles at kinetic decoupling. Therefore the free-streaming length and the Fourier
mode are related by the relation

Ukd |2m
Afs (t)k—fS Kd (3.148)

In practice vy is distributed according to the PSDF fy. Then its PDF is

2 m 3/2 _mvﬁd
Dora (Vkd) = \[r (de) viqe Tka (3.149)

and its average Tiq = /8Tk4q/(mm). BERTSCHINGER (2006) has numerically solved the
Boltzmann hierarchy in a general relativistic set-up and has found that at kinetic
decoupling the average velocity must be corrected by a numerical factor so that v =

6Tka/(5m). In the end, it yields that A\ ~ a(t)/ki. A simple expression for the
minimal mass of subhalos accessible due to free streaming damping is given by the
mass enclosed in the comoving scale ki today

3
A7 T 3 4g —3 T Tk
M= —p (t — | = —0,,(to) s (¢t — — . 3.150
5= Pm (to) <k:fs(t0)) 3 Pm (to)Ass (to) (de 5 ( )

The last term inside the parentheses in the right hand side is an O(1) number.

The expression of ki can be numerically evaluated first by replacing the integral
on time by an integral on the scale factor, and by making explicit the dependence

on the Hubble parameter
tode @ da
= —_—. 3.151
/tkd a?(t') /akd a’H(a) ( )

As performed in GONDOLO et al. (2012), the integral can be done in two parts. In-
troduce the scale factor (resp. time) a, (resp. t,) such that at that time the universe
has a temperature 7, much smaller than the electron-positron annihilation tempera-
ture but also higher than the temperature at the matter-radiation equivalence 7,,.
Then, for late times, ¢t > t,,

bdt @ da @ da
/tkd a?(t') /akd a3H (a) + /a @H(a) (3.152)

Replacing H by its expression in terms of degrees of freedom Eq. (2.87) in the first
part and by its expression for a Universe made of matter and radiation Eq. (2.24) in
the second part yields the final expression

Cod V2 [ (B(T)—l) !
/tkd a?(t') aqueq { B(T)+1 T (T
| _ aa() e [ ar
with KfS<de = 2/3 /* 1/5 T/ -1 ? (3.153)
Teq

d B(T)=4/1
and  B(T) o
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Figure 3.9 - Minimal halo mass due to acoustic oscillations from Eq. (3.160) (dashed red) and
free-streaming damping (solid blue) for different DM particle masses.

provided that 7, > T,,. Here T represents the temperature of photons at time t.
Eventually, in order to evaluate kyq one also needs the scale factor at kinetic decou-
pling, ayxq4, which can be obtained as

Teq (heff(Teq) ) 13
= —_— eq - 3.154
= T hegt (Tika) fled ( )

After matter-radiation equality when 7" <« Ty, assuming also that Tiq > T, for
simplicity, one can expand the expression of Eq. (3.153) as

o de V2 T, T
~ 1 °d Ki(Tiq) — 2 3.155
/tkd a2(t/) CLeqffgq [ ! <4de) A ( kd) Teq ( )

which tends to a constant at small temperature, i.e. at large time. Therefore one
roughly has Ai(t > teq) x a(t) and kg (t > teq) = cst. Consequently, the free-streaming
mass can often be found written under the forms

47 s 3 47 — Tl T ’

Qe 3 [1kd
MS—— — P (T q = —pn(t )\S t — — 3.156
f 3 m< eq) (kfs(teq)> 3 m( eq) f ( eq) (de 27”) ( ]

using the fact that py, (to) = pm(to)ag = pm(teq)ad,. In the right panel of Fig. 3.8 the evo-
lution of the comoving free-streaming Fourier scale k() is represented with the red-
shift. It shows that, indeed, after matter radiation equality the free-streaming length
reaches an asymptotes. In Fig. 3.9 the free-streaming mass is plotted in blue for
different DM masses. It can go as low as 10~!! M, in the most extreme cases shown.

3.6.4 Acoustic damping effect and minimal mass

Before kinetic decoupling, the WIMPs are coupled to the relativistic plasma and
therefore they cannot be treated as separate fluids. All the modes which enter the
horizon scale in that period are subject to Jean’s oscillations due to the competi-
tion between pressure induced by the plasma and gravity. Moreover, because the
decoupling is not instantaneous, viscosity is responsible for a damping of the sub-
horizon modes when their oscillation frequency becomes higher than the scattering
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rate. This corresponds to the Silk damping for baryons (SILK 1968). The exact anal-
ysis of viscosity in an imperfect fluid in a general relativistic framework is beyond
the scope of this short review — see BOEHM et al. (2001), HOFMANN et al. (2001),
BOEHM et al. (2005), and LOEB et al. (2005). Following the authors of GREEN et al.
(2005), similarly to the free-streaming damping, it is possible to define a collisional
damping scale k4 such that

ok tia) _ ()

— = 3.157
300t 3157
with ¢; the initial time, and where they give the approximation
m O\ 1/2
kq~138 <) axaHyq - (3.158)
Tia

The total impact on the overdensity field is given by

o(k,t) Ok, t) (K, trq) 2 (kN2 (& . £ 2
5k, t;)  o(k, tea) 5(1{,:1) = l13 (kf) ]6 (%) (%) (3.159)

The total effect on the matter power spectrum is shown in the left panel of Fig. 3.8.
In the following, however, we use the same prescription as GONDOLO et al. (2012)
by considering an acoustic damping scale set by the sound horizon scale at kinetic
decoupling uniquely. This roughly amounts to slightly overestimate k4 by not consid-
ering the term (m/Tiq)'/? which is of the order ~ 10~! — 10-2. More precisely, as the
sound speed is ¢; = 1/4/3 in a relativistic plasma, the comoving sound horizon scale
iS kao ~ V3Hxa ~ axaV3Hyq. The corresponding acoustic mass is

A mkd>3 A ( 1 )3
Moo = —pp,(t = —pp(t — ) . 3.160
T 7m(ta) (52 ) = T (ta) (i (8.160)
which amounts to define a minimal halo mass as
Mpin = max [Mao, M| (3.161)

The evolution of M,, with the kinetic decoupling temperature is plotted as the dashed
red line on Fig. 3.9. We can explain the different behaviours in these plots with the
mass and the temperature. Indeed for the free-streaming mass, the dominant term
in front of the free-streaming mode kg is apy (Tka/m)~"/? with axq ~ 1/Tiq. There-
fore Mg, ~ (mTiq)~>/?. Similarly for the acoustic mass, if one considers k4 given by
Eq. (3.158) then it yields M,, ~ (mTiq) /2. However for k,, ~ axqv3Hyq there is
no direct dependence on the mass and one finds M,, ~ Tk_d3. This is exactly what
is observed in the figure.

3.7 Conclusion

In this chapter, we have detailed the formation and cosmological distribution of DM
halos. We have shown the first-order equations governing the evolution of the density
contrasts for matter and radiation as well as their velocity. Then, we briefly have
mentioned the initial conditions and, with some approximations, we have derived the
main behaviours, in particular that of the matter density contrast; the latter grows
logarithmically in the radiation dominated era and linearly in the matter-dominated
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era. Afterwards, we have shown a simple model to explain the formation of halos
through their collapse and virialisation. From there we have dived into the statistical
properties of the density contrast field. We haves shown how to characterise the field
of density fluctuations through the matter power spectrum and how to evaluate the
matter power spectrum from the primordial curvature perturbations. Eventually, we
have reviewed the Press-Schechter formalism and its extension, the Excursion Set
Theory and we have detailed the construction of Merger Trees as a theoretical frame-
work to predict the (sub)halo mass function. So far all these results were already
known in the literature. Nevertheless, with our own implementation of a Merger
Tree algorithm, we have evaluated the first order unevolved subhalo mass function
USMF([1] while ensuring its consistent normalisation through a fitting procedure that
is slightly tweaked in comparison to the literature. Inserting this USMF[1] in the SL17
model we have recovered a population of subhalos in the MW that is consistent with
simulations — and with its original calibration procedure; this is detailed in Chapter 4.
In the end, we have connected the formation history of halos to Chapter 2 by intro-
ducing the free-streaming and acoustic damping of small over-densities. With several
approximations, we have shown how to evaluate the minimal mass of halos from the
DM mass and the temperature of the photon bath at kinetic decoupling.

Having revisited the entire formation history of halos is an asset to now improve
the SL17 model in different directions. First, as already mentioned, the evaluation
of the USMF for Merger Trees allows to properly normalise the SL17 model without
directly relying on cosmological simulations. However Merger Trees are much more
than the USMF, since they reproduce the complete cosmological history of the halos.
As done in COLE et al. (2002), BOSCH et al. (2005), ZENTNER et al. (2005), GIOCOLI et al.
(2008a), BENSON (2012), JIANG et al. (2016), and HIROSHIMA et al. (2018), they could
theoretically be used to more precisely predict the evolved distribution of subhalos
today — in comparison to what is done with the recipe of the SL17 model — and at
higher redshifts. However, Merger Trees are only efficient to describe the large mass
range of subhalos and extrapolation to the total population is not trivial if we want to
avoid, as much as possible, relying on cosmological simulations. This calls for further
work as it may have several interesting applications. For instance, for the use of the
21-cm cosmological signal/s to probe the dark ages of the universe, where subhalos
could have a strong impact (LOPEZ-HONOREZ et al. 2016).
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Effect of baryonic tides on the
Galactic subhalo population

“Petite furie, je me bats pour toi

Pour que dans dix mille ans de ¢a

On se retrouve a I'abri, sous un ciel aussi joli
Que des milliers de roses

Je viens du ciel et les étoiles entre elles

Ne parlent que de toi

D’un musicien qui fait jouer ses mains

Sur un morceau de bois

De leur amour plus bleu que le ciel autour”

Francis Cabrel, Petite Marie
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In the previous chapter, we have summarised the entire evolution of halos from
their formation seeded by primordial fluctuation through their virialisation and up
to today. However, the extended Press-Schechter formalism only informs about the
statistical count of halos and says nothing about their structural properties and their
spatial distribution (with the exception of the bias parameter that we do not discuss).
In this section, we enter deeper into the descriptions of halos, from their internal
properties to the study of global populations. In particular, we address the structuring
of DM in the MW and, more specifically, study the population of subhalos (i.e the halos
inside the Galactic halo) throughout the analytical and dynamically constrained SL17
model (STREF et al. 2017). In this article, as a first-order description of the complex
Galactic DM distribution, it is assumed that all subhalos of the MW are stripped and
potentially destroyed due to two dynamical effects called smooth stripping and disc
shocking. However, several other dynamical processes can impact on the subhalo
population. Many studies have been carried out on this topic (TAYLOR et al. 2001;
BOsCH et al. 2005; PENARRUBIA et al. 2005; ZENTNER et al. 2005; PENARRUBIA et al.
2010; JIANG et al. 2016; DELOS 2019b; OGIYA et al. 2019). This chapter focuses
on a specific process: the subhalo-star encounters in the Galactic disc. They have
been studied with (semi-)analytical models in V. BEREZINSKY et al. (2005), GREEN et al.
(2007), SCHNEIDER et al. (2010), and V. S. BEREZINSKY et al. (2014) and with numerical
simulations in ANGUS et al. (2007) and DELOs (2019a). It has been shown that they
can have serious consequences on individual subhalos but the global impact on the
total population of the MW has never been evaluated accurately. Our goal is therefore
to implement subhalo-star encounters as a new feature of the SL17 model.

Because the SL17 model is purely analytical, we keep on with the same philoso-
phy to include the impact of stars. It has the main advantage of producing results
in a matter of seconds (ideal for large scans of the parameter space) and making
the model easily scalable to any other Galaxy-like objects. Nonetheless, inherently
to the non-linear aspect of the issue, the derivation we propose relies on several as-
sumptions that we carefully justify.

In several of the aforementioned in-depth (semi-)analytical analysis of the stellar
encounter process, the authors evaluate the fraction of disrupted subhalos by
comparing the total binding energy of each clump of DM with the kinetic energy
kick they receive during the encounter. However as mentioned in GREEN et al.
(2007) and BosCH et al. (2018b) this procedure does not provide a satisfactory
criterion to claim the disruption since it does not relate directly to the capacity of
a subhalo to survive. We provide here another method to evaluate the disruption
efficiency. Moreover most of these studies rely on a computation that has been
developed for the encounter of two galaxies and performed in GERHARD et al. (1983)
— hereafter GF83 - based itself on SPITZER (1958). Then it has been adapted to
the encounter between a cluster of stars and black hole (B. J. CARR et al. 1999)
and for the encounter of sub-halos with stars later on. While this simple formula
provides the correct scaling and the right asymptotic behaviour is some limits it
was made to describe, originally, the encounter of two extended objects. Because
a star has a typical size much smaller than the typical size of a subhalo it can be
considered negligible, which allows us to improve the computation as we aim to prove.

This chapter is divided as follows. In the first two parts Sect. 4.1 and Sect. 4.2 we
recall the main features of the SL17 model by detailing the description of individual
(sub)halos and then their global, constrained, distribution in the MW. Then we move
on to the impact of the individual stellar encounters on the subhalo population. In
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Sect. 4.3 we start by studying the encounter of one star with one subhalo, refining
the original and usual analytical computations. In Sect. 4.4 we analytically integrate
the effect of several encounters on a single subhalo. Eventually, in Sect. 4.5 we
show, for the first time, a complete evaluation of the consequences for the constrained
total subhalo population in the MW.

4.1 Properties of individual halos and subhalos

In this section we are interested in the internal properties of halos. We start by fo-
cusing on their mass density profile parametrised by a scale radius and scale density
and later introduce the virial mass and concentration. Eventually we address briefly
the interdependence of these different parameters.

4.1.1 Mass density profile, mass profile and gravitational potential

Because virialisation is a non-linear process, it is challenging to analytically and
accurately predict the structure of halos; therefore, one relies on numerical simu-
lations. The density profile of a subhalo is a result of several processes that can
be internal - phase mixing, relaxation — or due to interactions with the environ-
ment — accretion, mergers. Cosmological simulations have shown that the shape
of dark halos presents a self-similar structure over a large range of scales. Such
a halo shape should then describe all systems down to all existing layers of inho-
mogeneities like subhalos and sub-subhalos, etc. This result is due to NAVARRO
et al. (1996) who showed, more particularly, that dark halos are spherical with a
mass density well fitted by

1
p(x) = ps X {g(fﬁ) = x(l+:p)2} (4.1)
where ps is called the scale density and the scaled variable x = r/r; represents the ratio
of the distance r from the centre of the halo over the scale radius r;. The function g
is implicitly defined as the dimensionless mass density. This profile is now called the
NFW profile. A more general version is

g(z) = .

N HJ'Y(l + x@)(ﬁ—w)/a 4.2)

that we refer to as the («,3,7) model. The NFW profile is recovered for (a,f,7) =
(1,3,1). This model is convenient as varying the parameters allows describing a va-
riety of different relevant shapes. Indeed the NFW profile is cuspy, that is p(r) — oo
when r — 0 but today some observations points toward possible cored profiles — in
dwarf galaxies for instance OH et al. (2015) where p(r) — cst. when » — 0. As 7 pro-
vides the inner slope of the profile, taking v — 0 allows to recover a core. The other
parameters 5 and o control respectively the outer slope and the transition regime
between the centre and the outskirts. In this work we use (a,f,7) = (1,3,0) just
called cored profile in the next chapter and («, 8,7) = (2,5,0) called the Plummer pro-
file (PLUMMER 1911). Since the original work that introduced the NFW profile, other
propositions have been made, providing better fit to simulations, such as the Einasto
profile (SPRINGEL et al. 2008), given by

g(z) = exp <—Z [ — 1}) . (4.3)
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This profile is cored, however, simulations show that the parameter « is ~ 0.17. Thus,
it effectively behaves as a core only when = < 1073. All in all, cosmological simulations
tend to favour little to no cores. The different dimensionless mass density profiles
are represented in the right panel of Fig. 4.1. In this plot, the range of radii does
not allow to see the cored feature of the Einasto profile when « = 0.17 as it is too small.

From the density profile several other quantities can be derived. First the

mass profile, representing the mass contained in the ball delimited by the
spherical shell at radius r, is

m(r) = /|r’|<r p(rd3r = dmper3 {u(:}:) = /0 g(m')x'2d:);”} ) (4.4)

In the case of an NFW profile, in particular, the result is

p(x) =In(l+=x) — (4.5)

1+z°
One could worry that here u(r — oo) — oo, making the mass of the dark halo ill-
defined. In practice one can associate a finite size to halos: either their virial radius if
they are isolated or a smaller one if, throughout their history, they have been pruned
by interactions with their environment. Moreover one can also compute the internal
gravitational potential ® of an isolated dark halo (provided that it only contains DM).
Indeed from Poisson equation one has A® = 47Gyp. Inverting this equation yields

B(r) = —Gn / - m:,g/)dr’. (4.6)

4.1.2 Virial parameters

A subhalo of mass M is considered formed once it is virialised — see Sect. 3.3

An interesting quantity is the value of the true overdensity at virialisation, not
only the extrapolated value from the linear approximation. We can compute that,
within the spherical top-hat collapse model, the overdensity at turn-around ¢, is
given by evaluating § at the turn-around conformal time 7, = 7 corresponding to
tia = TGNM/(2E) according to Eq. (3.49) and, 6. = 6(7ta) = 972/16 — 1 according
to Eq. (3.50). However while the spherical collapse model predicts virialisation at
7 = 37 /2, cosmological simulations predict a virialisation time closer to 7; = 2w, cor-
responding to t,i; = TGNM/E = 2t,, where § diverges. Therefore, in order to extract
the value of the overdensity at virialisation we rely on the fact that the virial theorem
always imposes that the radius of the structure at virialisation R(ti;) must be half the
radius at turnaround. Thus, because in the matter domination era p oc t=2, it yields
p(tvir) = p(tia)/4. Moreover, since the density inside the structure is p = 3M/(47R3),
consequently p(t.i;) = 8p(tta) because of the evolution of R between these two in-
stants. Therefore introducing the density contrast as A = § + 1, for simplicity, at
virialisation it satisfies

p(tvir)

Avir =
p(tvir)

= 32Aa = 1872, 4.7)

which is once again independent of the mass of the structure. Naturally this sim-
ple approximation needs to be corrected when we take into account that Q, # 1.
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Under the hypothesis that the curvature of the universe is null, Qg = 0, (BRYAN et
al. 1998) give the fitting formula

Q0
Qm’0(1 + 2)3 + QA70 '

Avir(zvir) = 1872 + 82¢(2yir) — 39¢%(2vir) where ¢(z) = (4.8)
Moreover, zyi; is the redshift of virialisation of the structure corresponding to the cos-
mic time t.;,. Our first evaluation of this parameter is the 0*" order of this expression.
For Q0,0 = 0.31 and Q, o = 0.68, as soon as z,, > 10, the previous functional form
exhibits a saturation plateau at Ay; ~ 1872 ~ 178. The mass of the structure is then
4

M = gﬂAvir(Zvir)ﬁ(zvir)Rg(zvir) (49]
and because the A,; is close to the value 200 for the typical collapse redshift, it is
common to introduce a density contrast A = 200. The main advantage with this fixed
number is that, by definition, it is independent of the cosmology. We associate to the
constant contrast a slightly modified virial mass and virial radius related by

ma(z) = gﬂ'Apc(z)r?’A(z). (4.10)

In the first part we keep the notation A as another prescription than 200 is mathe-
matically equivalent. Then, if one takes ra(zyir) = R(zyir) We recover ma (zvir) ~ M.
The virial mass of a subhalo changes with time because of accretion or by the sim-
ple change of r4(z). Eventually, a last quantity of interest, although it has no real
physical meaning, is the virial concentration ca(z). Formally we introduce the ra-
dius r_5(z) of a profile as

dlnp

=-2 4.11
dlnr r=r_s(2) ( ]

and the virial concentration is then ca(z) = ra(z)/r—2(z). Notice that the ratio
r_9(z)/rs(z) does not depend on rs(z) so that r_(z) = nrs(z) where n is a fixed
number depending only on the profile. Therefore, nca(z) = ra(z)/rs(z). In prac-
tice for an (a,,7) profile one has r_y(z) = re(2)[(2—7)/(8 —2)]"/* which implies
r_2(z) = rs(z) for NFW. The main advantage of defining the virial concentration is
that it establishes a bijection between (rs(z),ps(z)) and (ma,ca(z)). Let us prove
it. Firstly, we ask, for consistency,

ma(2) = m(ra(2)) = 4mpy(2)rd(2)lnea (2)) (4.12)

where we have used the dimensionless mass yu(z). This relation can also be seen, in a
way, as the definition of the scale parameters. Secondly, this last equation, combined
to Eq. (4.10), then yields the relations

_ Ape(z) [neal))? 1 { 3mA(z))]1/3 (4.13)

ps(2) = 3 p(nea(z)) and TS(Z):UCA(Z) AT Ape(z

Remark that the scale density is only dependant on the virial concentration and not
on the virial mass. However, concentration and mass are not entirely independent.
Cosmological simulations show that they are anti-correlated which means that sub-
halos with a lower virial mass tend to have a higher concentration. This effect is
called the mass-concentration relation. The next section is dedicated to summarising
several approaches to theoretically predict it.
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Figure 4.1 - Left panel: Several dimensionless mass density profiles used in this study, NFW
(solid blue), cored afy (dashed blue), Plummer (PLUMMER 1911) (dash-dotted blue), Einasto
a = 0.17 (solid blue) and Einasto a = 0.5 (dashed red). The latter is just represented to
show the core in the Einasto profile which is not easy to see for o = 0.17 in that range of z.
Right panel: Mass-Concentration relation for different redshifts and given by three models
called here Maccio+08 (MAccIO’ et al. 2008), Diemer+15 and Diemer+19 (DIEMER et al. 2019).
This figure has been produced using the COLOSSUS code (DIEMER 2018) with the Planck18
cosmology.

4.1.3 The virial mass-concentration relation

The anti-correlation of concentration with mass can be well understood by looking
at the cosmological history of halos. Indeed halos with a small mass form rather
early in the Universe, at a time when the average density is higher. Therefore, in
comparison to halos formed at a later time, when the density is smaller, they tend to
have lower scale radii and higher concentrations. However, it is difficult to translate
this simple idea into a realistic model that can give predictions consistent with the
results of simulations. Amongst the most popular models we can cite: BULLOCK et al.
(2001b), MACCIO” et al. (2008), LubLOW et al. (2014), DIEMER et al. (2015), OKOLI
et al. (2016), and DIEMER et al. (2019).

An usual method to build models is to assume a behaviour, for the scale density
and for the scale radius, similar to what is observed in simulations. Namely, they
show that the central density of halos seems to become roughly independent of the
redshift after a short period of evolution. In order to see what are the implications for
the concentration, one first comment is that we can always relate the concentration
at redshift z; to concentration at redshift z5 thanks to the relation

C?’A(Zl) _ pc(ZZ) pS(Zl) C?)A(ZQ) (4.14)

pnea(z1))  pe(z1) ps(z2) p(nea(z2))

In what is maybe one of the simplest and earliest, yet rather accurate, model devel-
oped by BULLOCK et al. (2001b) and MAcCCIO” et al. (2008). They assume that the
parameter which remains constant over time is the pseudo scale density defined as

ps = 3u(nea(z))ps(z) (4.15)



4.2. A model for the subhalo population in the Galaxy 141

Replacing in Eq. (4.14), and considering z; = z and z; = z. (the redshift of collapse)
it yields the expression of the concentration with z as

2= | apio) h [Zi(g))} - (4.16)

Further assuming that gs/(Apc(2.)) is the same for all halos and is not really sensitive
to z., one calls this constant ratio K3. The last step consists in finding z. for a given
halo of mass ma(z). The main assumption is to say that ma(zyi;) = m, is related to
ma(z) by a constant factor F' such that m, = Fma(z). Then we define z.(F,ma(z)) as

oM (Meey 2e(Fyma(z))) = 0c (4.17)

and the concentration can be obtained by a fit of the parameters F' and K on numer-
ical simulations. It is found that for the cosmology of THE PLANCK COLLABORATION
(2014) the best-fit is given by F' = 0.01 and K = 4.2. In the more modern model of
DIEMER et al. (2019), they assume two phases for the halo evolution. In the first
one , the halo grows rapidly with a constant concentration parameter ca ~ 4, which
means that r;(z) follows the increase of rA(z). In the second phase, which they call
"pseudo"-evolution, the halo freezes: p;, and rs become constants (an idea similar to
what we have seen above). Using Eq. (4.14) they are then able to relate the con-
centration to the peak height v(M, z) = 6./op (M, z) through an implicit function with
parameters they fit to their simulations. We do not detail here all the other possible
models, however let us just mention the one of OKOLI et al. (2016) which is partic-
ular because it has the advantage of deriving a concentration from first principles
using the ellipsoidal collapse model. Consequently, it almost does not depend on fits
of numerical simulations. Several mass-concentration relations are plotted as an il-
lustration for three different redshifts in the left panel of Fig. 4.1. At large redshift
and large mass one observe an upturn in the more recent model. This has been
interpreted to be due to the presence of unrelaxed halos in the cosmological simula-
tions used to fit the concentration law. Taking only into account the relaxed halos,
the upturn would vanish (LUDLOW et al. 2014). In the following, however, because
we are only interested in the redshift = = 0, we use a direct fit to simulations taken
from SANCHEz-CONDE et al. (2014).

4.2 A model for the subhalo population in the Galaxy

More interesting than individual properties of subhalos are their total distribu-
tion in galaxies, dwarfs, galaxy clusters, etc. Indeed, we review in the conclusion
of Chapter 2 the main potential impacts of the subhalo population on the detec-
tion experiments, namely boost factor of local density enhancements. Consequently,
it is essential to properly model their distribution, especially in the MW. In Chap-
ter 3 we already discussed the unevolved distribution of subhalos in a given host
through the USMF but we are now interested in the evolved counterpart, taking into
account dynamical effects. Several methods exist to describe the subhalo population,
each has its advantages and drawbacks. Firstly, there are cosmological simulations.
They provide the full knowledge of a consistent population in all the mock halos that
they produce. The main drawback, however, is the limited resolution (SPRINGEL et al.
2008), while subhalos can have masses down to 10712 M,, as detailed in Sect. 3.6, cos-
mological simulations cannot resolve objects with masses < 10* My.Moreover, while
they can provide MW-like objects for instance, these are not the MW, with its specific
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properties and constraints. The second method is to use analytical models, based
on cosmological principles and dynamical effects to produce a statistical parametri-
sation of the subhalo population. In that framework a fully consistent description of
a precise constrained host object is possible, however, some assumptions and sim-
plification are required in order to be able to build the models and use them with
the aim to make predictions. This approach is detailed in this section through the
model (STREF et al. 2017) previously called SL17 and which originally described the
subhalo population of the MW. See complementary approaches, in particular with the
already mentioned merger tree-based models in e.g. BOSCH et al. (2005), PENARRUBIA
et al. (2005), BENSON (2012), ZAVALA et al. (2014), BARTELS et al. (2015), HIROSHIMA
et al. (2018), and ISHIYAMA et al. (2020).

4.2.1 The general recipe and initial hypothesis

The SL17 model is inherently built according to the internal properties of dark
halos that have been previously summarised. The construction follows the recipe:

¢ Start from a constrained mass model of the MW that includes baryons and a DM
halo, cuspy or cored, (more specifically MCMILLAN (2017) is used) and assume
that the latter is the sum of a smooth component and a subhalos component,
as expected from the cosmological structure formation in the CDM scenario for
the early ages of the Milky Way. These two components are supposed to still be
present today.

¢ Assume that all subhalos are independent hard spheres on circular orbits so
that they can be characterised by three quantities: their initial cosmological (or
also said fictitious) mass ma, their concentration cx and their distance from the
centre of the Galaxy R. The distribution of subhalos along these three variables
is described by three PDFs, p,,, p. and pr, normalised to unity.

¢ Assume that, initially, the concentration and mass functions are given by first
cosmological principles and that they are independent of the position of the sub-
halos. Moreover, assume that the subhalos follow the same spatial distribution
as the total DM halo (as if they were large particles of the halo). Eventually,
subhalos initial radial extension is given by their virial radius ra.

* Incorporate the fact that, with time, particles are stripped from the subhalos
according to different physical processes (called tidal effects) and that, conse-
quently, subhalos shrink. These tidal effects have two main causes that are de-
tailed later on. They define a new radial extension of the subhalos that depends
on their original mass concentration and position and that is called the tidal ra-
dius r¢(ma,ca, R) < ra. In consequence their mass gets also smaller than their
original virial cosmological mass and is called the tidal mass m¢ = m(ry) < ma. If
some of them are pruned too much, according to a hand-selected criterion, they
are assumed to be destroyed.

* Normalise the whole subhalo mass taking into account that all particles lost
by subhalos due to tidal effects are incorporated in the smooth component
so that the total constrained DM halo is conserved and that we have reached
equilibrium today.
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In more details, the total DM density of the MW at distance R from the Galac-
tic centre (GC) can be written as

ptot(R) = psm(R) + psub(R) (4.18)

where p represents the smooth DM component and ps,, describes the average mass
density in the form of subhalos. More precisely it is convenient to write it as

dnsub
dmt

pou(R) = [ dmim, (4.19)
where dng,n/dm; is the position dependent evolved mass function, i.e. the final number
density of subhalo with a mass m, at the position R. In order to detail the expres-
sion of the integral one needs first to address the disruption criterion. According to
the results of cosmological simulations (TORMEN et al. 1998; HAYASHI et al. 2003;
DIEMAND et al. 2004; DIEMAND et al. 2008; SPRINGEL et al. 2008; BOsSCH 2017) we
expect subhalos that are stripped too much (i.e. that have a too small tidal radius) to
be destroyed. In the model this is implemented by the criterion

{Tt /rs 2 ¢ = the subhalo survives (4.20)

ri/Ts < € = the subhalo is disrupted

that relies on the value of ¢, treated as a fixed input of the model. The lower
this coefficient is, the more resilient subhalos are to tidal stripping. Cosmological
simulations suggest that it should be taken ~ 1, which implies rather fragile
subhalos. However, according to BOSCH et al. (2018a,b) and ERRANI et al. (2020a,b)
this is may come from a numerical bias due to the limited resolution. Therefore,
typical values can be taken close to ¢; ~ 0. In practice we consider values in the range
€ € [1072,1].

The entire population is described by a joint PDF on all the cosmological masses
ma, concentrations cp and positions R of all the N subhalos. In practice, we only
use A = 200 — since we have seen it is a good approximation of the real overdensity
at virialisation. Henceforth, the subscript A is omitted and we write m = ma—sg,
¢ = ca—900 Whenever there are no possible confusions. I particular one should be
careful not to mistake the cosmological mass m with the function m(r) of r that is the
real physical mass enclosed in the ball of radius r of the subhalo (these two quantities
are related by m = m(ra—s90)). Using the fact that all subhalos are independent of each
other the joint PDF can be factored out into N one-point PDFs as follows

N
p({miti, {citi, {Ri}i) = [ pr(mi, i, Ri) . (4.21)
i=1

Initially, when tidal effects are not taken into account (when the distribution is the
cosmological unevolved one), the one-point PDF is factorisable in

pilnit. (m7 ¢, R) = pR(R)pm(m)pc(C | m) . (4.22)

where pr is the PDF on the position in the GC assuming isotropy, p, the PDF on
the cosmological mass and p. the PDF on the concentration. After the inclusion of
tidal effects, a population of subhalos is destroyed and their total number decreases
to their number in the MW today, denoted N = Ng,,. Mathematically this is included
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by an Heaviside function that truncates the population according to the disruption
criterion. In practice the one-point PDF at late time becomes

late 1 Tt (m7 ¢, R)

pi¢(m,e, R) = EpR(R)pm(m)pc(c |m)© — &l (4.23)

rs(m, c)
where K is a normalisation factor — so that the PDF be normalised to one if integrated
on the entire parameter space. For simplicity, and to show that tidal effects are
accounted for, we denote in the following p!**¢ = p,. While pr and p,, are independent,
because of the Heaviside function, the total one point PDF, which takes into account
tidal stripping, becomes an intricate combination of them.

The PDF on the position is given assuming that subhalos are distributed according
to the total DM profile of the MW. Therefore, using simply the density profile of DM
in the MW, denoted py\w, taken from MCMILLAN (2017) yields,

R Rao00
pr(R) = paw(R) - Msgo = 4m / pvw (R)R2AR (4.24)
Moo 0
where Mg is the virial mass of the total DM Galactic halo inside its virial radius Raq.
In the original version, the PDF on the cosmological mass takes the form
of a simple power-law

m

plm) = K (2] (4.25)

mo

with K,, and mo being normalisation factors. Note that the cosmological mass is
bounded from below: it cannot be lower than a given m,;,. As seen in Chapter 2 and
Chapter 3, for thermal produced DM WIMPs, the value of my;, is fully determined by
their microscopic behaviour in the early Universe. Nonetheless, in the SL17 model, it
is regarded as a free input parameter. In this simple power-law scenario, the mass
index « is taken in [1.9, 2.0] to match with cosmological simulation results (DIEMAND et
al. 2006, 2007; DIEMAND et al. 2008; SPRINGEL et al. 2008; ZHU et al. 2016). Testing
the two extreme cases o« = 1.9 and « = 2.0 generally allows bracketing some degree
of theoretical uncertainties. Besides, one also needs to fix a maximal cosmological
subhalo mass; we choose mpy.x = Mayp/100. In a new, updated version, the PDF of
the cosmological mass can be evaluated through the Merger Tree-induced USMF ¢,
evaluated in Sect. 3.5. There one simply has

1 - Ma00
pn(m) = =—61(m, Mago) where Now = [ d1(m, Mago)dm  (4.26)
sub Mmin
is the total number of unevolved subhalos in the host Galaxy. Remark that in the low
mass range it reduces to a power-law with a mass index a = 1.94.
Eventually, the concentration is log-normal-distributed (JING 2000; BULLOCK et al.

2001a; WECHSLER et al. 2002; MAccCIO” et al. 2007, 2008),

1 1 Inc—Iné\?
pelelm) = B ) ev/mos °F [‘ ( Voo, )] *.27)

with the scatter 0. and the mass dependent median concentration ¢(m). For simplicity
the relation between mass and concentration is, here, taken from result of numerical
simulations (SANCHEz-CONDE et al. 2014),

am) =Y a, [m (h—&@)r (4.28)

n=0
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with a, = [37.5153,—1.5093,1.636 x 1072,3.66 x 1074, —2.89237 x 107°,5.32 x 10~ 7] and h
the scaled Hubble parameter. The scatter, is found to be independent of the mass
(MAccIO’ et al. 2008) and the value is fixed at 0. = 0.141n(10) as in (MACCIO’ et al.
2008; DUTTON et al. 2014; SANCHEZ-CONDE et al. 2014). Because ¢ € [1,+o00| there
is also a normalisation factor K. given by

K.(m) = %erfc (_lr;c%(;n)) . (4.29)

Let us recall that p,,(m) is not the distribution of the physical mass of subhalos, it
is the distribution of cosmological initial mass. The distribution of physical mass at a
given position R from the GC takes into account the dynamical effects and is

_ (7 pi(m. ¢, R) —m (r¢(m,c
pmt(mt\R)—/l dc/dmpR(R)éD (me — m (ro(m, ¢, R))] (4.30)

with ép the Dirac distribution. From this expression it is possible to compute the
expression of pg,, taking tidal effects into account as expressed in Eq. (4.19), with
dnsup/dmy = Ngub pm,(my | R). In conclusion, this models allows to access the com-
plete statistical knowledge of the subhalo population in the MW today. As shown,
by this previous example, it can be used to compute any statistical quantity on the
subhalo population that has been impacted by tidal effects. In the next section, we
briefly introduce tidal effects, from the underlying physical mechanisms to the eval-
uation of the subhalo tidal radii.

4.2.2 The dynamical constraints on the subhalo

The first dynamical effect is tidal stripping. When a subhalo with a cosmological
structure orbits inside a host halo, particles in the outskirts of the subhalo can be
more attracted by the gravitational potential of the host than by the potential of the
subhalo itself. In other words, outskirts particles are no longer bound to the subhalo.
They leave the structure to become particles of the host halo. According to BINNEY
et al. (2008), this effect prunes the subhalo until its extension becomes equal to the
smooth Jacobi radius that is given by

1dIn M(R)

m(resm(RR,m, c)) }1/3 (4.31)

resm(R,m,c) = R { -
3N(R)F(R)

Here, M(R) is the mass of the MW contained in the ball of radius R, due to DM
and baryons. Interestingly the ratio ¢, /7s is independent of the virial mass of the
subhalo, it only depends on R and c. Indeed one can write

(T sm/Ts) 3 M(R)

Foom/r)? ~ dmpae) B8 LB (4.32)

where the left hand side only depends on ¢ and R.

The second dynamical effect is called tidal shocking by the stellar disc and it is
due to baryons. Indeed, crossing the smooth gravitational potential of the Galactic
disc induces an energetic and velocity shock for the particles of the subhalo. For
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that we use the stellar mass density model of MCMILLAN (2017) defined by a dou-
ble exponential disc

p«(R, z) = ; [221 exp <_Rz’ - Zz)] (4.33)
where the best-fit parameters are (31,%3) = (8.96,1.83) x 108 Mg kpc=2, (Ri, Ry) =
(2.5,3.02) kpc and (z1,22) = (0.3,0.9) kpc. In order to evaluate the impact of disc
shocking, we use the impulsive approximation: we consider that the time scale of
the crossing is small enough that particles can be considered frozen in the frame of
the subhalo. In addition, for simplicity, we give an expression of velocity kick that
is averaged over radial shells and only depends on the distance r from the centre of
the subhalo as (OSTRIKER et al. 1972)

294 reé
\/gvz .

This expression depends on é,, the axis normal to the galactic plane, v, the sub-
halo velocity along é, and g4 the gravitational acceleration due to the potential of
the disc. It is straightforward to relate this velocity kick to a kinetic energy kick
per unit of particle mass using

Avy = (4.34)

1 1
AEq = B [(Vd + Avq)? - VQ} = §(Avd)2 +Vv.Avq (4.35)

where we introduced v the initial velocity of the particle in the frame of the subhalo.
Considering a isotropic initial velocity distribution the second term can be averaged
out so that AEq ~ (Avq)?/2. Nevertheless, we need to come back to the impulsive
approximation as, for the innermost particle of a subhalo, it breaks down. There,
the adiabatic invariance protects the particle from receiving a too high energy kick. A
correction factor can therefore be introduced according to GNEDIN et al. (1999) to give

N

4 2
(Ava)® Ar(na) = 3i§r2A1(nd) (4.36)

DO |

where A;(n) = (14 7?)~%/? and 74 is the adiabatic parameter: a ratio of characteristic
times. More precisely, n = tqw with t4 = hq/v, the crossing time of the disc. We
use hg ~ 0.9 kpc. The quantity w represents the orbital frequency of the particle
approximated by w = oyy,/r With oy, the velocity dispersion in the subhalo evaluated
using Jean’s equation. The functional form of A; reproduces the correct behaviour
of adiabatic protection, that is, whenever it is efficient, for nq > 1, the energy kick is
suppressed.

The tidal radius is then evaluated recursively. The number of disc crossings Nc;oss
is evaluated with the assumption that the orbits are circular. The algorithm starts
with 7.9 = 7, sm given by Eq. (4.31) for a subhalo of given virial mass m and con-
centration c. For every crossing, it evaluates a new value of r, with the requirement
that if the kinetic energy kick in a shell is greater than the gravitational potential of
the structure at that position, the entire shell is removed. More precisely, we make
explicit the dependence in the radius and in the tidal extension r of the energy gain
function by writing AEq = AE4(r, ). We denote by ®(r,r) the gravitational potential
of the truncated structure — see Eq. (4.6) —

m(r’)

O(r, ) :—GN/t . (4.37)
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Figure 4.2 - Left panel: Number density of subhalo with respect to the distance from the
GC for a minimal subhalo cosmological mass of m3i»=1071° My and a mass index a = 1.9.
The effect of the disc shocking is switched on in the case (sm. + disc) and switched off
in the (sm. only) configuration. In comparison is shown the cosmological distribution) in
green (superposed to the red dash-dotted curve). Right panel : Comparison of the ESMF
(dashed lines) obtained from the standardised USMF (solid lines) of Sect. 3.5 with the results
of HIROSHIMA et al. (2018) (dotted lines) — here Hiroshima+18. Only the smooth stripping
is taken into account and subhalos are considered rather fragile ¢, = 0.77. The minimal

cosmological subhalo mass is set to 107> My. The two colours, red and blue, correspond to
two host masses.

The successive tidal radii, crossing after crossing are evaluated, for the crossing i + 1,
by solving ;41 in the equation

AE4(reir1,70,0) = [ P(reie1,7e,i)| Vi € [0, Nevoss — 1] - (4.38)

The tidal radius today is then r; = 7 n.o.-

4.2.3 Total number of subhalos

This paragraph is devoted to the evaluation of the total number of subhalo, that
is the normalisation of the mass function. In the first place, we review the original
method of SL17 and then show the new method based on Merger Tree algorithms.
For the rest of this document, nevertheless, the former, original method is used as
it is built explicitly for the MW.

Original calibration for the MW

When the USMF is set by a simple power-law, the calibration of the model is made
according to DM only simulations. This particular choice is motivated by the fact
that the inclusion of baryonic feedback in simulation is still a difficult task based on
tuned recipes of subgrid physics. Moreover, simulations offer MW-like object and not
the MW; they have baryonic distributions that are not exactly the same as the MW.
Therefore their effect on subhalos might differ. In particular we use DIEMAND et al.
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Mumin = 10719 Mg Muin = 107% Mg
Naub e =1 € = 1072 e =1 e = 1072

a=19]44x10"® 46x10"® | 1.1 x 101 1.2 x 101®

a=20|24x%x10% 25x10% | 2.3 x 106 2.5 x10'6

Table 4.1 - Calibrated number of subhalos for various configurations of the model when
smooth stripping and tidal shocking by the disc are taken into account. The MW halo is
assumed to have an NFW profile and the mass densities are taken from McMILLAN (2017).

(2008). The result of this simulation can be converted as follows. First, we define the
mass fraction in a given range, when there are no baryons as

47 N,
fsub(ml,mz 2T Ysub /dRR2/ dmm/ depi(m,c, R), (4.39)
Mago mi

where p; is the one point PDF when baryonic tidal effects are omitted. Then, for ¢ = 1
(remember that this high value may be the result of numerical artefacts), the mass
fraction in the DM only simulation is given by

fim — £ (2.2 x 1075 Mog, 8.8 x 1074 Mago) ~ 11% (4.40)

sub

Therefore this allows computing the ratio K™ /N5 ag

KSim 4m / 2 /m2 /OO T't,sm
— — dRR dmm depr(R)pm(m)pe(c|m)O© {’(c, R) — 1] .
Nsub 1\4'20().1255111%1 mi 1 Ts

(4.41)
where Nssffg‘ (resp. K:™) is the number of subhalos from the simulation (resp. the nor-
malisation factor of the simulation), with the specific parameters and configuration of
the simulation. Now we want to get the value of Ny, and K; for any set of parameters
of the model. To this end, we assume that in the outskirts of the MW halo, subhalos
do not experience tidal effects (or that they are negligible). The mass density DM in
the form of subhalos is the same in the simulation and for any parameters of the
model at R = Ryy. We have seen how to write pg,, so that

NSIIH
b [ amm [~ depn(mipele | m)e | " e Ra) - 1] =
t (4.42)
Nou /dmm/ depm(m)pe(c| m)© [ (m, ¢, Rago) —et] .
Because, as assumed, tidal effects are negligible in the outer regions
T't,sm
© [ 1;: (C, RQ(]()) - 1:| ~ 0 [’l“ (m C, Rgoo) - Gt:| (443)
and from the previous equation
Ky
Noub = ——im Neub - 4.44
b= Jgpim Vaub ( )

Typical values of Ny, are given in Tab. 4.1 for a MW having an NFW profile in terms
of the different parameters of the model that are the mass index, «, the minimal virial
mass of subhalos m;,;, and the disruption parameter ¢,. The value of m,,;, is treated as
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a free parameter in the range ~ [107!2Mg, 10~*Mg]. In all configurations, the number
of subhalos is huge, which justify the use of such a statistical model. Moreover, for
a = 2.0 the values are higher than for a = 1.9 because while the total mass of the
MW must be the same there are more of the small subhalos. Therefore the difference
between « = 2.0 and o = 1.9 is more pronounced when my,, is smaller. Eventually,
because most subhalos are in the outer regions of the Galaxy, where tidal effects
are not very efficient to destroy them, Ny, is not very sensitive to the disruption
parameter. This effect is enhanced by the fact that disrupted subhalos have small
concentration, and therefore large virial mass (by the anti-correlation between mass
and concentration), subsequently, they are less numerous from the start. In Fig. 4.2
we show the subhalo number density given by

dnsub
dmt

Nngub(R) = / dmy , (4.45)
in the central part of the MW. Two configurations are considered, with and without
the disc shocking effects. For comparison, the cosmological (unevolved) distribution
is also represented. For fragile subhalos (disruption parameter ¢, = 1) we find a
strong suppression due to the disc shocking effect toward the centre of the Galaxy in
comparison to the cosmological distribution and to smooth stripping only. The effect
is less important with smaller and smaller values of «;.

Normalisation using Merger Trees

When the USMF is given by the Merger Trees algorithm, there is no need for a
calibration procedure. Indeed, one directly has the total number of evolved subhalos
by Na, = Ny K — we recall that N, is the number of unevolved subhalos given in
Eq. (4.26). According to Tab. (4.2), we recover here the same mass fraction foup ~ 11%
for a MW-sized halo, which gives confidence in the Merger Tree method. Subse-
quently, we also compare the associated evolved subhalo mass function (ESMF),

stub
dm

=47 / pR(R)nsun(R)R*dR, (4.46)

with HIROSHIMA et al. (2018) in the left panel of Fig. 4.2. We consider only the smooth
stripping effects and rather fragile subhalos with ¢, = 0.77 and my;, = 107° Mg. The
behaviours of the ESMFs are similar, only the overall normalisation differs. However,
the model presented in HIROSHIMA et al. (2018) is built differently than the SL17
model and contains more physical ingredients; it takes into account the evolution
of the subhalos from their accretion to today and the non-circularity of their orbits,
based on recipes calibrated on numerical simulations. Therefore let us emphasize
that this new normalisation procedure is a preliminary result which should pave the
way towards further improvements of the SL17 model — where the philosophy is to
avoid relying on cosmological simulations whenever possible.

4.3 Encounter of a single subhalo with a single star

So far the outer edge stripping of subhalos from the host halo and disc shocking
have been taken into account. In fact, another dynamical effect has to be considered,
the individual stellar encounters. This is addressed now. We first focus on the
encounter between one subhalo and a single star. The goal is to evaluate the variation
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Mmin = 10-6 Mo, ¢ =1 fsub Nsup
M = 10° Mg, 11 % | 2.5 x 102
M =102 Mg, 11 % | 1.7 x 10%
M =10 Mg 11% | 1.1 x 108

Table 4.2 — Mass fraction of subhalos in the range [2.2 x 107%M,8.8 x 10~*M] obtained with
the standardised USMF from Chapter 3 for three different host masses and for fragile sub-
halos destroyed whenever r, < ry. The corresponding total number of subhalos is also shown
assuming the minimal subhalo cosmological mass of 107¢ M.

Figure 4.3 - The geometry of the problem. The clump is represented as a sphere with centre
C and radius ;. The star is at point S and the encounter happens with the impact parameter
b.

in kinetic energy felt by the particles in the subhalo. We start by giving a complete
parametrisation of the problem and then move on to the computation of the kinetic
energy kick, that we compare to the literature.

4.3.1 General set-up and velocity kick

We follow the original work of SPITZER (1958) and GERHARD et al. (1983) , hereafter
GF83. The geometry of the problem is summarised in Fig. 4.3. The star is assumed
to be a point-like object with a mass m,. The subhalo has an original extension r
and its mass is my = m(ry). The centre of mass of the subhalo is labelled by the letter
C. The centre of mass of the entire system, associated with 3-fixed axes, defines a
Galilean frame R. Let O be a fixed random point in that frame. Particles inside the
subhalos all have the same mass m,. Consider one of them with a position tagged by
the letter M;. Using Newton’s second law its equation of motion in R can be written

dQOMi _ GNm*
dez2 |SM,3

GNmp
SM; + ; WMMJ (4.47)
JF

The position of the centre of mass of the subhalo is obtained as

m
oCc =-—2% oM, 4.48
D (4.48)
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so that, deriving twice by the time and applying Eq. (4.47) on the left hand side yields

dQOC mpm*
_ E 4.49
dt? ]SM \3 ( )

A practical parametrisation is to introduce the positions with respect to the centre of
mass of the subhalo, r; = CM,; and r, = CS. The velocity of the DM particle M; with
respect to the centre of mass is denoted v; = dr;/d¢ and can be written

dv; d*CM; d?0M; d?0cC

= = —_ . 4-
dit de? de? de? (4.50)

Then, we introduce du;/dt describing the motion of the particle itself and du./dt¢ de-
scribing the motion of the centre of mass of the subhalo in R and write these two
components in terms of the variables {r;}; and r,

dui o dQOMZ' GN GNmp
dt = de2 - _|I‘z’—1‘*|3(rz r*)"’; ’I‘Z—I'j|3(rj rz)
‘ (4.51)
du, _ d?0cC ——%ZM(I“—I‘ )
dt — dt2 omy = rj —rf? o

Because the subhalo contains a large amount of particles it can be described by
continuous functions and in particular by its mass density. Therefore taking the
continuous limit yields, for a particle at a position r

d *

au_ Gnm —r,) +Gn / —r')d’r’

dt |r—r*|3 v/ — \3 (4.52)
e G [P (e |

dt v/ — r*|3 * )

The two integrals can be further simplified if we assume that the subhalo keeps a
spherical symmetry during the encounter

du  Gnmy GNm(r)
dt \r—r*\(r ru) + r

duc N GNm*m(r*)

- r,.
3
dt myrs

r3

(4.53)

In order to evaluate, from this expression, the net change in velocity for a particle
during the encounter one needs to rely on two assumptions. The first one is the
impulse approximation already discussed for the disc shocking effect. Here it amounts
to neglect the second term of du/dt¢ corresponding to self-gravity. In other words, it
amounts to neglect the internal dynamics of the subhalo in comparison to the other
dynamical effects. This approximation will be justified in Sect. 4.4.2. The second one
is the high-speed encounter limit that allows, if the relative velocity between the centre
of mass of the subhalo and the star is high enough, to consider that the relative
trajectories are straight lines. It ensures that the frame where the subhalo is fixed,
let us say R’, is not rotating with respect to the frame R and that the derivative of the
velocity v computed previously in R is the same in R'. We only consider encounters
that happen in this regime — as it will be justified in Sect. 4.4.1 they almost all fall
in this category for the purpose of the study in the MW. Now let us define the change
in velocity, also called the velocity kick, as

dv ' (du due
5":/,005(1 /oo{dt_ - }dt—éu—éuc. (4.54)
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In the high speed encounters regime, r,(t) = —b — v,t where b is the impact vector
directed from S to C at the time of closest approach and v, is the constant relative
velocity. Performing the integration over time yields

Gnm,. r+b—¢,(r.é,)

Su = —2
" v 12— (réy, )%+ b +2rb (4.55)
su, = —QGNm*I(b, re)ép
Ur

with the unitary vectors é,, = v,/v, and &, = b/b. Moreover we also introduced the
dimensionless function / that can be written

o /mm(m) t
0

(b 4 v2t2)%/

I(b,r) (4.56)

myg

where we assume implicitly that m(r > r,) = my;. We have found convenient to
slightly transform this expression. First let us proceed to the change of variable
2 = b? + v that yields

(b, ) / - m (4.57)
Then remark that if b > r; the expression simplifies a lot as
1
_ 32 _
I(b>ry,r) =0 /b = TQ—dew_l' (4.58)

When b < 7 let us use the fact that dm(x)/dz = 4rp(z)z? for < r; to write that in
full generality the factor I satisfies,

I(br)—b2/ m)dx—i—bz/Jrooldx
o omy a:Q\/xQ 22/ 22

bQ _ b? n b var -8, +oo b2 q
my @) / mole b re x2Vx2 — b2

) (4.59)

4 Tt 1

= ——Tr/ p(z)zva? —b?de + — rg—b2+b—
b Tt Ty + 2 b2

myg

=1-0(ry—b) — in / p(z)xva? — b2dx.
my Jo

In a first approach, we can say that the function [ is a weighted average of the mass
enclosed between r = 0 and r = b inside the subhalo. Indeed, one can also check that
when b = 0 one has I(b = 0,r,) = 0. As a matter of fact, I represents more particularly,
the weighted fraction of particles that contribute to ju.. Indeed, when b > ry, panel
(b) of Fig. 4.4, the star does not penetrate the structure and therefore the velocity
kicks from all particles add up to make the centre of mass’ velocity kick and that is
why I = 1. On the contrary, when b < r, panel (a) of Fig. 4.4, the star penetrates the
structure and all the outer shell particles, at » > b, do not contribute to the centre
of mass velocity kick; albeit all receiving a velocity kick their sum averages out to O.
Consequently only the inner part of the subhalo contained in r < b has a substantial
contribution. When b = 0 there is no inner part and 7 = 0.
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Figure 4.4 - Two different geometrical configurations. In the left panel (a) the sum of the
velocity kick of particles in the red area gives no contribution to the velocity kick felt by the
centre of mass of the subhalo in R. On the contrary, in both panels () and (b) the particles
in the blue areas contributes. Consequently, the factor I is less than 1 in (a) and is equal to 1
in (b).

Eventually as for the the disc shocking effect, we can also introduce a kinetic
energy kick per units of particle mass as

1
OF = 5(5v)2 +v.0v. (4.60)
Similarly, if the initial velocity distribution is isotropic then the second term can be
averaged out which yields the expression of the averaged value

s 1 <2GNm*>2 o b?(1—2I)—2Irb
=30 ) [T T e | +61)

Before following up on this result by defining an angle averaged version, we first
recap the original computation of GF83 in order to make comparisons. Moreover, in
this first part, we forget about the effect of the energy dispersion that is induced by
the initial velocity in the term v.dv. A careful treatment of the dispersion effects will
be made when accounting for the encounters with many stars.

oF =

1
2

4.3.2 Comparison with the original result

The result of Eq. (4.55) can be compared to GF83. Because the authors of
the latter reference were considering the encounter of two extended objects (more
specifically two galaxies with Plummer density profiles) they could not obtain an
expression as simple as with a point star. Therefore they derived an expression in
two limiting cases that correspond to b < r and b > r¢ in our notations. Then they
interpolated their result between the two asymptotic behaviours.

Assuming a Plummer density for the star p,(r) = p.(1 + (r/e,)?)~%/? with p, and &,
being the scale density and scale radius of the star, it can be shown that Eq. (4.52)
amputated from the self gravitating term is transformed into

dv Gnmy

(r—r1,) + Gy /0 dr (T)Q o(r) [ T T b () — B2 () (4.62)

dt ey my T lr+re T

with the definition of the function

£}
I+ r(rtry)

Mi(r) = )
V1t o

(4.63)
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When ¢, — 0, h%(r) — 1 and we come back to our first derivation. However here, the
derivative of the velocity can no longer be simplified to define the analytic equivalent
of I(b,r;) as we did. Other approximations are needed to pursue the derivation when
the scale radius of the star ¢, cannot be neglected in front of the other typical scale
of the problem - that are the scale radius rg of the subhalo and the impact parameter
b. The latter having the theoretical possibility to go to 0 we will make sure that, either
taking it small will not affect our result, or that in practice it is never small enough
to be an issue.

Therefore let us focus on the details of GF83 computation where we make the
replacement ¢, = 0 to match with our configuration. First, let us look at the limit
b — 0. Using I(b = 0,7;) = 0 one recovers their asymptotic expression

2GNML\ €, — ¢y, €,
~ - oy 4.64
s (Sor ) T o0

where we introduced é, = r/r and ¢, = é,.¢,, € [—1,1] and with the typical velocity
kick 6V = 2Gym,/(bv,). However, one major issue is that for ¢,, = +1 the velocity
kick diverges. This can be physically interpreted by saying that at b = 0 the star
goes through the centre of the clump. Therefore a segment of particles meet the
point star during the encounter and get an infinite velocity kick. This effect which
concerns only a negligible amount of particles is a direct consequence of taking ¢, —
0 since this parameter otherwise acts as a regulator. In any case, they choose to
simplify the denominator in a way that remove the divergence arguing that if angles
are parametrised in an appropriate way one has the average value <c%> = 1/3 and
the velocity kick is approximately given by

2GNMy 3 € — ¢y €y, (D 2
5vb30_< b )2 b (r> (4.65)

where the dependence in the ratio r/b has been made explicit.

In a second time they also give the asymptotic behaviour when r/b — 0. Making
a development of Eq. (4.55) at first order yields

2G N, ) . A ?
5V:—< Uljl:n ) [(1—1—220b> eb+2(er_cvrevr)+o<(2> >‘| : (4.66)

In GF83 because of the non integrability of Eq. (4.62), the computation is made
through a method equivalent to assuming /(b,7;) = 1 in the equation above, i.e. the
implicitly assume b > r,. However, in our case it is possible to have b < r, and b > r at
the same time for the inner-most particles, in which case I(b,7;) < 1 and the original
expression is missing a term. This could make a substantial difference for certain
encounters. Remark, that in contrast with the asymptotic limit when b — 0 this
expression is never divergent for any value of the scalar products ¢, and c;.

Eventually, they completed their computation by providing with an interpolation
formula between the two asymptotes under the form

(R I S )

v
with A; and X2 two functions that follows the conditions: Ai(z) — 1, X\2(z) — 1 when
r — 0 and A\(z) ~ 3272/2, X2(z)/M(z) — 0 when x — oo. They chose to use the
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parametrisation \;(z) = (222/3 + 1)~! and \y(x) = M (z). If we conserve the factor I
and average over angles their expression (see next paragraph for more details), the
averaged squared velocity kick becomes

g2y (26m e (1) 904G L |
(6v)?) ( o ) 1 1] +6(b> B2 (4.68)

Taking the limit /(b,7,) = 1 in the previous expression yields the original GF83 result
when ¢, — 0. As shown in the next section, Eq. (4.68) appears to be an excellent
approximation of the velocity kick squared. Nevertheless the replacement <c3,> =1/3
done in Eq. (4.65) can be more justified.

4.3.3 Angle averaged velocity squared

Taking the average value of v on entire shells is actually very useful because it
reduces the dimensionality of the problem and it remains consistent with the fact that
the subhalo is assumed to conserve its spherical symmetry throughout the encounter.
Therefore one defines, for any function ¢ of the angles, its averaged value

1
(@) = o ]{dﬂ q(0, ) (4.69)

with d©2 = dcosfdy so that § and ¢ that can represent different geometrical angles
chosen so that the computation is made as convenient as possible.

Issues of this method

Computing the integral over angles appears to be not trivial. Let us try to evalu-
ate the average value of (6v)? that is the only quantity appearing in the mean kinetic
energy kick. If we consider a radius r < b the computation can be done analyti-
cally from Eq. (4.61),

r

(0p)_ = (2" [ gy Laresn)
r<b b T 1_(%)2

] . (4.70)

However, this function diverges when r/b — 1 even if that has no physical meaning.
Indeed the problem is identical to the issue that was pointed out in Eq. (4.64) for
the GF83 computation when ¢, + 1. The divergence comes from the fact that at
r = b particles in the —é, direction are in contact with the star and since the star is
considered to be a point with a diverging potential the velocity kick for those particles
goes to infinity. As was mentioned then, one can expect that this only affects a rather
negligible number of particles but, because of the averaging process, this divergence
appears now on the entire shell » = b. The problem becomes even more important
when r > b. Indeed the same computation in this range gives

2GNM \ 2 b 2 r/b 1
<<5v)2>T>b:( UNZ)”) {1 I‘”H/@ 1 +]£ daz\/(z)zﬁu_ﬁ} @.71)

where the barred integral represents the Cauchy principal value. However for any
parameter y > 1 one can straightforwardly show that

1

Y T
dx =
]{) V2 — 2% |1 — 22|

+00 (4.72)
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and the energy kick is not properly defined. As for the case, r = b this divergence
occurs because r > b necessarily defines a star-crossing shell, that is, a shell for
which some particles end up inside the star at one point or another of the crossing.
Once again, those particles meeting the star, or passing in its vicinity, are a small
fraction of the total amount of particles and for simplicity, their behaviour may here
be assumed of little importance for the rest of the computation. One could argue that
actually, the divergence is the signature that the angle-averaged procedure is in fact
impossible and should not be used. However, even if a complete computation taking
into account the angle dependence could be made for an individual halo, this would
make the numerical evaluation so long that it would realistically make impossible the
study of the stellar encounter effect on the entire subhalo population. That is why,
in the following, we rely on an ansatz.

Definition of several ansatzes

In order to get rid of the divergence one can adopt several ansatz which may be
physically motivated. The first solution would be to truncate the average and perform
it on the plane (é,,,é, = &, x &,) perpendicular to &, since no particles in it ever

is in the vicinity of the star and assume that the radial behaviour of (§v)? can be
extrapolated in the other direction. Doing so it defines a first ansatz
1 —
2\ _ 2 A
<\5V\ >J_ =5 ja{dQ (0v)“dp [cos (er,eb)}
(4.73)

_ (2GNZ“>2 [IQ+ 1—2rI :

. 1+(3)
where Jp represents the Dirac distribution (noted here with the tag p in order to
make the distinction with the other occurrences of § which represents variations in
this chapter) and the cosine imposes that we fix » in the plane perpendicular to &,.

Another possibility is to extrapolate Eq. (4.61) for the particles in the direction &, for
r > 0, to all other directions. The result is then

o\ _ QGNm*)Q o 20 1
(ov) >_( vb [I v Ttz (4.74)

Eventually a last option is to give an averaged value of ¢, and ¢, and replace them
directly in Eq. (4.61) in the same way that what was done in GF83 to replace ¢,, by the
average value (¢ ) = 1/3. However, there are several ways to make this substitution.
Since we have an analytical formula for small values of /b we can ask for our approx-
imation to match the exact result of Eq. (4.70) at first order in the r/b expansion, in
order to constrain the value of ¢, and ¢,. It gives the following system

2¢,(I — 1) =0 (4.75)
(1—c2)(2 —1)+4¢(1—-1) = 2/3. (4.76)

The first equation directly gives ¢, = 0 while the second cannot be solved in a general
way as we do not want ¢, to be a function of /. However since I(b > ry, 1) = 1 it is
consistent to require that (1 —¢2 ) = 2/3. Doing so, it no longer describes well the limit
b — 0 when /b — 0. Nevertheless, in practice, it corresponds to particles at a position
r < b < r, too far in the centre to be of interest for us (as we will only look at radii
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above r = 10~?r,). Interestingly, this solution is also compatible with a direct average
over angles since, defining ¢,, = cosf and ¢, = sinf cos ¢, it yields

(a-c))= g and () =0. (4.77)

Therefore we have proven that averaging the terms c¢,, and ¢, directly is indeed not
a bad approximation. Consequently, because it relies on similar assumptions, the
result will be equivalent to Eq. (4.68), which should then give a good evaluation of
the s