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I

Dark Matter, the missing mass
problem and small scale issues

“From a drop of water," said the writer, "a logician could infer the possibility
of an Atlantic or a Niagara without having seen or heard of one or the other.
So all life is a great chain, the nature of which is known whenever we are
shown a single link of it.”

Arthur Conan Doyle, A Study in Scarlet
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The issue of the origin and nature of the cosmological dark matter (DM) is one of
the greatest puzzles of modern physics: it seems that most of the matter that makes
up the Universe is something unknown and invisible, as if it only interacted gravi-
tationally with everything else or as if our understanding of gravity itself was incom-
plete. After the first compelling observational hints for the presence of DM (whatever
DM means), all relying on its gravitational effects, several interpretations and models
have been proposed, some provide a sensible explanation of the observed phenomena
and may also predict other signatures observable with multiple detection technique.
Yet, no other direct proof outside from gravitational has been found so far. DM can
actually mean different things, related to different interpretations of its gravitational
imprints: modification of standard gravity, or a new form of matter. More specifi-
cally, in this thesis, we will be focusing on an aspect that mixes the subatomic and
macroscopic properties of DM: the structuring of DM on small (subgalactic) scales.
We shall review the conceptual aspects, develop an analytical model, and investigate
the consequences of such a structuring for DM detection and constraints.

To place this work in context and elaborate on the motivations, in this introduc-
tory chapter we brush a broad picture of the DM issue, the proposed models and
current associated constraints or problems. We first give some historical facts as well
as more details on the original striking pieces of evidence for its existence. Then, we
turn to the input of modern cosmology and we introduce the ΛCDM model and its
successes. In a third part, we highlight the recent tensions arising in that paradigm.
Afterwards, we review the different theoretical approaches developed in the last 50
years and we conclude by discussing the different detection techniques and the
current status of DM searches.

Note that most of this chapter is addressed to a large audience. It has been written
with the intention of making it accessible, as much as possible, to non specialists.
Technical developments are then shown in the following four chapters.

1.1 The first proofs of the missing mass problem

In this section, we detail the different observations that first led to the idea of
the existence of DM and its presence in the Universe, which took root between the
1920’s and the 1980’s. The bringing-in of the more recent development of precise
observational cosmology will be treated in the following section. These introductory
paragraphs aim to provide the reader with key chronological events. We also refer to
BERTONE et al. (2016) and PEEBLES (2017) for extensive historical reviews.

1.1.1 Local dynamics

The search for dark celestial bodies with gravitational influence started around the
middle of the 19th century. One of the most famous examples is the explanation of the
anomalous motion of Uranus by Le Verrier in 1846 (LE VERRIER 1859; KOLLERSTROM

2006a,b) with another planet that had never been seen before and which is the
now called Neptune. Subsequently, at the beginning of the 20th century Lord
Kelvin introduced a new way to analyse astronomical observations by performing a
thermodynamical study of stellar systems with the idea to evaluate the amount of
possible dark bodies from the velocity dispersion of observable objects. Referring to
this pioneering work of Lord Kelvin, in 1906 Henri Poincaré argued that the amount
of dark matter around us was more probably smaller or similar to that of visible
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matter (POINCARÉ 1906); incidentally coining the word under its French translation
matière obscure.

About 20 years later, by improving on previous analysis, Oort evaluated the lo-
cal (i.e. in the Solar neighbourhood) gravitational potential by studying the motion of
nearby stars (OORT 1932). From his result he inferred the local density of matter, he
compared it to the local density of stars and he concluded on the presence of dark
bodies (referred to as nebulous or meteoric matter) saying that they should not make
more than half of the total density with the limit ρ� . 0.05 M� pc−3. Today, evalua-
tions of DM density in the local environment of the Sun have tremendously improved
thanks to continuous upgrade of instrumental and observational techniques, as well
as of data analysis techniques. The improved precision in the data also allowed the
experts to use refined dynamical and kinematic descriptions of the relevant stellar
ensembles, see READ (2014) for a review. Recent estimates give, ρ ∼ 0.4±0.1 GeV cm−3

(CATENA et al. 2010; PIFFL et al. 2014; MCMILLAN 2017) compatible and in agreement
with Oort first upper bound. Besides, recent methods include constraints from global
dynamical consistency (rotation curves, discussed in Sect. 1.1.3, and Galactic mass
models) as well as local dynamical constraints (BOVY et al. 2012). Recent measure-
ments come from the Gaia telescope (GAIA COLLABORATION 2018) that allowed for
unprecedented precision in the stellar kinematics of stars located in a sphere of 10
kpc around the Sun – an example of evaluation of the local DM density using this
new database is given in BUCH et al. (2019).

1.1.2 Galaxy clusters

The first convincing historical hint for the presence of DM (beside luminous mat-
ter) was made by Fritz Zwicky while observing the Coma cluster (ZWICKY 1933, 1937).
To this end he used the virial theorem that we briefly detail. Let us consider a
stably-bound system made of a collection of self-gravitating objects of masses mi,
at positions xi and with velocities vi. The total kinetic energy K and the total grav-
itational potential energy W are

K ≡ 1
2
∑
i

miv
2
i and W ≡ GN

2
∑
i,j
i 6=j

mimj

|xi − xj |
(1.1)

where GN is Newton’s constant. The virial theorem states that the averaged values
of these two quantities are related via

2 〈K〉+ 〈W 〉 = 0 . (1.2)

This equation can be used to relate the total mass M of the system to the velocity
dispersion

〈
v2〉1/2. Assuming that all objects have the same mass and that the system

is isotropic, homogeneous and spherical with radial extension R one shows

〈
v2
〉1/2

∼

√
3
5
GNM

R
. (1.3)

In 1933, Zwicky observed 800 galaxies inside the Coma cluster. Using an estimate
of their mass around 109 M� he deduced the total mass as the sum of the galaxy
masses. Then, adopting an estimate for the total size of the cluster (106 lyr) and
using Eq. (1.3) he evaluated the velocity dispersion to be ∼ 80 km s−1. However,
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the observed velocity dispersion was of the order 1000 km s−1. This discrepancy
gave the first hint for the presence of an invisible source of mass in the cluster
that he called dunkle Materie (dark matter) and that would enhance the dispersion.
Subsequently, in 1937, he computed a corrected average mass m of the galaxies and
found roughly m > 4.5 × 1010 M�. While the estimation was incorrect because of
systematic uncertainties on the expansion rate of the Universe, see Sect. 1.2 (more
recent studies have shown that it is about a factor of 10 lower), the conclusion
for the presence of DM still holds. Today, X-ray measurements are also used
to precisely evaluate the quantity of intra-cluster ionised gas which emits via
thermal bremsstrahlung. By measuring the gas temperature, around T ∼ 107–108

K, and assuming hydrostatic equilibrium one can reconstruct its mass distribution
and show that it only accounts for a fraction of the missing mass pointed out by
Zwicky. See the reviews SARAZIN (1986), ROSATI et al. (2002), and ETTORI et al. (2013).

Let us finish by mentioning another method to estimate the masses of galaxy clus-
ters, which has been more recently used and which relies on gravitational lensing, a
general relativistic effect (MASSEY et al. 2010). Such a method was actually proposed
by ZWICKY (1937), but the necessary observational data became available only in the
1980’s. Here one uses the fact that, according to general relativity, masses curve
space-time and deflect the trajectories of light, which are no longer seen as straight
lines. To put it simply, dense objects in the Universe act as lenses for background
photons. Two regimes can be distinguished. The first is strong lensing, where pho-
tons pass close to the lens and are sufficiently deflected to form several images of
the background objects. A common realisation of this phenomenon is the creation
of Einstein rings. When the foreground massive system is at least axi-symmetric
all background sources in the same line of sight are seen forming a ring around it.
For a system of mass M , the radius of this ring is called the Einstein radius and
takes the following expression

rE = dL

(4GNM

c2
dLS
dLdS

)1/2
(1.4)

where dLS, dL and dS are the distances between the lens and the source, the observer
and the lens and the observer and the source respectively. Therefore this expression
provides a way to evaluate M from the measurement of all the other quantities. When
axi-symmetry is only approximate one observes arcs instead of a full circle. The
position and shape of these arcs can, nonetheless, be used to constrain the mass of
the system. The first strong lensing event was reported in 1987 (SOUCAIL et al. 1987)
but such events are now common with instruments like the Hubble Space Telescope
e.g. in (JAUZAC et al. 2015). The second regime is weak lensing happening when the lens
is offset from the source line of sight and emitted photons fly too far from the lens for
their deflection to be directly detected. However the lens can still slightly distort the
image of the background sources and considering multiple sources equidistant from
the lens, their images are all distorted of the same amount. In that case, the idea is
then to statistically analyse a sufficient amount of sources, seeking a coherent signal
of distortion. In practice both regimes can be combined to reconstruct the mass
distribution of clusters, strong lensing probing the central parts and weak lensing
the outskirts (CACCIATO et al. 2006; HOEKSTRA et al. 2013).
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Figure 1.1 – Taken from (CORBELLI et al. 2000). Circular velocity with respect to the distance
to the centre of the M33 galaxy. The points are the measured values with their error bars.
The solid line is the total result from the model including DM. More precisely, the contribution
of DM is shown in dash-dotted, the contribution of stars is shown in short dashes and the
contribution of the gas in long dashes.
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Figure 1.2 – Left panel: Rotation curve data points compiled in (PETAC 2020). The distance
of the Sun to the galactic centre is taken as R� = 8.122 ± 0.031 kpc (except for the green
point that are obtained considering R� = 8.34 ± 0.16 kpc). Right panel: Circular velocity for
the Milky Way computed using a mass model picked from (MCMILLAN 2017) and spherisizing
the stellar distribution.

1.1.3 Rotation curves

In spiral galaxies, in which the stars and gas concentrate in a disc whose stabil-
ity is ensured by rotation, the measurement of the quasi-circular velocity of stars or
gas as a function of their distance to the centre characterises a rotation curve. Astro-
physicists noticed that theoretical predictions of rotation curves from Newton’s law of
gravitation1 and observations mismatch, thus yielding compelling evidence of DM. In
a very rough approach, if ρb(r) represents the mass density of baryonic matter in a
galaxy, by Newtonian dynamics one can approximately say that the circular velocity

1At these scales and for these objects the corrections of general relativity are negligible.
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of an object at distance R from the centre is

vc(R) ∼
√
GN
R

∫
|r|<R

ρb(r)d3r . (1.5)

Observations show that spiral galaxies are mainly composed of stars and neutral-
hydrogen lying in a disc. Moreover one knows that both these two components have
a mass density that decreases exponentially with the distance from the centre so
that all the mass is approximately contained in the central region. For objects in
the outskirts, it yields

vc(R) ∼

√
GN
R
M ∝ R−1/2 , (1.6)

with M the total inner mass. Therefore, the velocity should decrease with the
radius R while direct measurements tend to show a flat asymptote. After the
preliminary works of SLIPHER (1914), PEASE (1918), and BABCOCK (1939) this
anomalous behaviour and its universality were highlighted in the 1970s. Firstly,
Vera Rubin and Kent Ford refined the measurement of the rotation curve for the
Andromeda galaxy in 1970, using the optical spectroscopy of ionized hydrogen
(HII) emission regions (RUBIN et al. 1970). Secondly, in 1975, using the radio
observations of the hyperfine 21 cm emission line of the hydrogen atoms (HI),
the flat behaviour of the rotation curve was shown at larger distances (ROBERTS

et al. 1975). This observation critically impacted on the discussion, giving a strong
case for the potential presence of some unseen matter (FREEMAN 1970; ROGSTAD

et al. 1972; WHITEHURST et al. 1972; ROBERTS et al. 1973) that should enhance
vc at large R. Subsequently, EINASTO et al. (1974) and OSTRIKER et al. (1974)
also showed the similarities of the missing mass issue in galaxies and clusters;
emphasizing its significance and linking it to a more generic cosmological anomaly.
By the end of the 1980s little doubt was left about the existence of missing mass
in galaxies, thanks to the work of Rubin’s group and others who systematically
analysed the rotation curves of several galaxies (BOSMA et al. 1979; RUBIN et al. 1980).

An example of the discrepancy between the observed and predicted rotation curves
is illustrated in Fig. 1.1 for the M33 galaxy, it is so large that is barely alleviated by
taking measurement uncertainties into account as shown by the error bars. Because
of our position inside the MW it has always been more difficult to produce its rotation
curve. However, the precision of the measurements has strongly increased since then
and the implications for DM are getting clearer and clearer. In Fig. 1.2 taken from
PETAC (2020) is a compilation of the latest observations for the MW used to constrain
the DM distribution (see also IOCCO et al. (2015)). In the left panel of Fig. 1.2 the
predicted rotation curve of the MW is shown with the contribution of baryons and
dark matter, for a given mass model taken in (MCMILLAN 2017).

More broadly, similarly to what we have presented for galaxy clusters, it is also
possible to directly study the velocity dispersion of stars and use the virial theorem in
systems where the dynamical equilibrium is not set by rotation e.g. in (giant) elliptical
galaxies or in (small) dwarf spheroidal galaxies. One then show that for any galaxy,
whatever its morphology, an important amount of mass seems to be missing.
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1.2 The input of cosmology

Cosmology is the study of the Universe as a whole and of its dynamics, which
should be determined by its content and the general law of gravitation. The
rigorous scientific and modern approach to this subject only begun in the 1920s
when new powerful observational devices were put into service concomitantly to
the appropriation of Einstein’s General Relativity (GR) as a tool to understand the
dynamics of the entire Universe. Using GR, Alexander Friedmann proposed in 1922
that the Universe necessarily was in an ongoing expansion. Two years later, in 1924,
thanks to the new Hooker telescope of Mount Wilson, Edwin Hubble understood
that many objects in space, which were taken to be nebulas, are in fact galaxies far
beyond our own Milky-Way and he measured their velocities. Then, in 1927, Georges
Lemaitre independently found the same result as Friedmann and with Hubble’s
observations, he was able to give an approximation of the expansion rate, which is
commonly called the Hubble expansion rate H. In 1929 Hubble refined the evaluation
of H. Cosmology was born and since then it has been in constant evolution thanks
to new probes and more and more precise instruments and observations. Through
times, observational data have improved both in quality and in quantity, and
have progressively established the ΛCDM paradigm, which has been the standard
cosmological model in vogue since the early 2000’s. Let us give further details in the
following.

1.2.1 A brief history of the Universe

Here we summarised the key concepts to understand the current cosmological
observations and why they they are interpreted in terms of a large abundance of
DM on large scales in the hot Big Bang model. A more formal introduction on
cosmology is given in Chapter 2. As the Universe is in expansion one can look at
its history back in time and inquire into the evolution of its size and content. If the
expansion has never stopped until the current state, then the Universe must have
been denser and denser at earlier and earlier times. As a matter of fact, at a critical
point, it must have been so dense, that our current knowledge of the physical laws
cannot even describe what happened before. Despite this limitation, it is common
to imagine that the observed Universe was, at first, contracted to a singular point.
In that fictitious framework, the moment back to this singular state is then called
the Big Bang (BB), and conventionally defined as the 0 of our cosmic clock. One
has motivated reasons today to think that, at early times, the Universe experienced
a phase of inflation (accelerated expansion) sourced by one or several scalar fields,
called inflaton. The inflaton then decayed into all the known species of elementary
particles during a reheating phase. All the particles and radiation produced after
inflation formed a hot dense plasma as the energy was such that they all interacted
frequently. Note that the inflaton field also imprinted perturbations in the metric
due to its quantum fluctuations and subsequently, inhomogeneities in the density
fields. With the expansion of the Universe, interactions rarefied and the temperature
decreased allowing for different changes in the particle content that were dictated
by the particles nature/behaviour. Therefore let us now very briefly review the
key events of the early Universe based on the current particle physics paradigm
called the Standard Model (SM), which will be more precisely introduced in Sect. 1.4.2.
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Figure 1.3 – Fluctuations of the CMB temperature around the average value – taken from
(THE PLANCK COLLABORATION et al. 2020)

Approximately 20 ps after the BB, the electroweak phase transition gave a mass to
the elementary particle when the Higgs field got trapped at the bottom of its potential
well. Then, baryons (protons and neutrons) formed after the quantum chromody-
namics phase transition when quarks got confined into hadrons, roughly 20 µs after
the BB. Afterwards, at around 1 s, neutrinos, which only interacted weakly with the
rest of the plasma, decoupled and slightly after, at around 6 s, electron and positron
annihilated into photons according to e+ + e− ↔ γ + γ. After the annihilation, only
the excess of matter over anti-matter remained2. Between roughly 10 s and 20 min
the nuclei of light elements formed during the Big Band Nucleosynthesis (BBN). Af-
terwards, the amount of non-relativistic matter became dominant over the amount
of radiation at a time called equivalence. From that point forward the small inhomo-
geneities in the matter density field started to grow. Eventually, electron and baryons
assembled (essentially to form neutral hydrogen) at the recombination epoch through
the process e−+p+ → H +γ, when the plasma temperature dropped below the binding
energy T ∼ 0.3 eV < 13.6 eV (at around 300 000 yr). Recombination freed previously
interacting photons that were no longer energetic/hot enough to ionise the neutral
gas. These photons have cooled down since then because of expansion, and form
what is today observed as the cosmic microwave background (CMB). In the proper
frame, CMB radiation is isotropic and follows a black-body distribution, a conclusive
and compelling observational proof of the validity of the hot big bang model. Further
statistical analyses of the fluctuations of the CMB temperature across the sky provide
also decisive arguments as for the existence of a large amount of DM on cosmological
scales. BBN and the measurement of the abundance of the light elements support
the CMB observations. Subsequently began the dark ages where no more light was
emitted in the Universe before the formation of the first stars and galaxies.
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Figure 1.4 – Temperature anisotropy power spectrum of the CMB taken from (THE PLANCK

COLLABORATION et al. 2020) in the upper panel. The red points are the data while the blue
curve is the best fit within the ΛCDM model. The agreement is remarkable as shown by the
residuals in the lower panel.

1.2.2 The Cosmic Microwave Background

Henceforth, let us focus on the CMB and show how it confirms the existence of
the missing mass problem on the cosmological scales. Thereafter we shall introduce
in more details the ΛCDM model favoured by the CMB data. The CMB is a relic
electromagnetic emission produced roughly 380 000 years after the BB. It had been
theoretically predicted by (ALPHER et al. 1948a,b; GAMOW 1948a,b) and was observed
for the first time, by accident, by Penzias and Wilson (PENZIAS et al. 1965) as a noise
received by a 20-foot horn-reflector antenna at the Crawford Hill Laboratory in New
Jersey. In the same issue of the Astrophysical Journal where the results were pre-
sented, DICKE et al. (1965) immediately identified this excess noise as the CMB. It
originates from the recombination process that made the Universe electrically neu-
tral. Indeed, before recombination, photons were in constant interaction with the
baryons and electrons and the Universe was opaque. During recombination, they
slightly decoupled and started to stream freely. Today one observes these photons
emitted on a surface of the sky, the last scattering surface, as a nearly perfect black body
with a temperature T = 2.72548 ± 0.00057 K (FIXSEN 2009). However the distribution
of temperature is not totally homogeneous and spatially fluctuates with an amplitude
Θ(x) = δT (x)/T ∼ 10−5 according to the position x. The first experiment that measured
the anisotropy was the COBE satellite (BENNETT et al. 1996). The precision reached
another level with the WMAP satellite launched in 2003 (SPERGEL et al. 2003) and
today the most accurate map of the CMB temperature fluctuations is provided by the
PLANCK satellite (THE PLANCK COLLABORATION et al. 2020 – hereafter refereed to as
Planck18). These anisotropies are the imprints, on the primordial photon bath, of the

2The matter excess over antimatter is an observational fact that is currently not explained in the
context of the standard model of elementary particles. Current theoretical understanding relies on
baryogenesis scenarios (including baryogenesis via leptogenesis), and demands particle physics beyond
the standard model – see CLINE (2006) and DAVIDSON et al. (2008) for reviews.
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primordial matter fluctuations that led to the formation of structures (Y. B. ZELDOVICH

et al. 1969; PEEBLES 1982a,b) and they are a consequence of the baryon acoustic oscil-
lations (BAO). Indeed, when baryons and photons were tightly coupled in a single fluid
thanks to Thomson scattering between photons and electrons, light could produce an
enormous pressure force on the baryons. In the meantime, there were density fluc-
tuations (possibly stemmed from the inflaton, as seen above). Baryons were naturally
prone to concentrating the fluid into the potential wells of the overdensities while pho-
tons were tending to expel it: there was a competition between pressure and gravity
that gave rise to sound waves. The 0th moment (monopole) of temperature fluctuations
Θ0 is proportional to the density contrast of baryons and photons and was governed,
in the Fourier space, by the equation (DODELSON 2003)

∂2Θ0
∂t2

+H(t)
(
1− 3c2

s(t)
) ∂Θ0
∂t

+ k2c2
s(t)Θ0 = F (k, t) (1.7)

where F is a force term that is induced by the gravitational potential, cs is the
sound speed in the fluid and H is the expansion rate. This is an equation for
wave propagation in real space with a force term and a friction term (i.e. a damped
harmonic oscillator in Fourier space). It shows that the photons pushed the baryons
out of the potential wells i.e. in a sound wave travelling at the velocity cs so that
the positive perturbations in the baryon-photon fluid density spread out of their
original position. After a time tdrag, photons decouple and recombination occurs,
freeing baryons from the radiative pressure. The shell of baryons had travelled a
comoving distance rdrag ∼ 150 Mpc defining a specific length scale. Other physical
effects imprint on the CMB, like the Sachs-Wolf effect (SACHS et al. 1967) or the
Sunyaev-Zeldovich effect (SUNYAEV et al. 1970), which we do not discuss here. We
will rather focus now on the implications for DM. A detailed treatment of CMB is
given in (DODELSON 2003; HU 2009; PETER et al. 2013; BAUMANN b) and a review on
BAO can be found in (EISENSTEIN et al. 1998).

To extract the relevant statistical properties of the matter field at recombination,
one actually recasts the skymap of CMB temperature fluctuations in terms of its
the angular correlations. This is parametrised by expressing the temperature con-
trast as a function of a direction characterised by a unit vector n̂, and by expanding
the underlying angular correlations over spherical harmonics. The associated two-
point correlation function reads

〈
Θ(n̂)Θ(n̂′)

〉
=
∞∑
`=0

2`+ 1
4π C`P`(n̂.n̂′) (1.8)

where the factor C` represents the power spectrum and P` is the Legendre polyno-
mial of order `. In the end, the commonly displayed value is D` = `(` + 1)C`/(2π), as
shown in Fig. 1.4. The data (red dots) exhibit 8 peaks with specific positions sepa-
rated by ∆` ∼ 300 which is directly related to the comoving size rdrag ∼ 150 Mpc. The
shapes of these peaks is related to the matter content of the universe at recombi-
nation, and points to the need of a very large fraction of DM. Indeed the presence
and amount of DM only impacts the value of the force term F in Eq. (1.7) since it
only interacts gravitationally, while the amount of baryons impacts both cs and F .
The exact solution of this equation is not trivial, nevertheless it turns out that, be-
cause of this double dependence, it is impossible to properly recover the shape of
the peaks simply by playing with the density of baryons, assuming that general rel-
ativity is reliable on these scales.
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Figure 1.5 – Hubble eXtreme Deep Field observations. The figure is separated vertically in
the middle: real observation on the left and mock observation from the Illustris collaboration
(VOGELSBERGER et al. 2014) on the right.

Another convincing argument for DM is provided by the decreasing tail at large
multipole `. This behaviour is caused by diffusion damping (also called Silk-damping
– SILK 1968) due to the imperfection of the photon-baryon fluid before recombination.
Indeed, on typical distances (neσT)−1, where ne is the electron density and σT the
Thomson scattering cross-section, photons stream freely. On typical times H−1

they encounter neσTcH
−1 electrons and diffused in a random walk over a length

λD ∼ (neσTcH)−1/2. Therefore on scales smaller than this typical distance photons
do not follow the sound waves, thus smoothing out the temperature fluctuations.
This translates into a drop in the correlation function at small scales. Without the
presence of a component that interacts mostly gravitationally, the large-` peaks
would have vanished. The interaction of DM and photons is therefore constrained
(BOEHM et al. 2002; BOEHM et al. 2005).

1.2.3 Structure formation

Beside the observational hints discussed above, all potentially interpreted in terms
of its gravitational influence, the ubiquitous presence of DM, able to efficiently re-
spond to the gravitational perturbations seeded by inflation, further provides the most
fundamental ingredient to our current theoretical understanding of structure forma-
tion. It also provides us with a clear understanding as for why galaxies and galaxy
clusters are embedded into extended DM halos. In the meantime, this gives a natural
explanation to the previously discussed anomalies. In that picture, after recombi-
nation, DM, which dominates the energy budget of the Universe, drives the growth
of the matter density fluctuations that survived the early epoch. After some time
the over-dense regions become dense enough to collapse and virialise and they form
bound objects called DM halos (MO et al. 2010). All the structures seen were then
formed by the baryons falling in the middle of the halos, reaching a sufficient density
to initiate star formation. To emphasize on this point, including CDM in cosmological
numerical simulations of the Universe (SPRINGEL et al. 2005, 2008; DIEMAND et al.
2011; VOGELSBERGER et al. 2014) has provided replicas of galaxies or galaxy clusters
with an exquisite resemblance. This is shown first in Fig. 1.5 by comparing a patch
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Figure 1.6 – Galaxy distribution in redshift from galaxy redshift surveys compared to the
result of the Millenium simulation, taken from (SPRINGEL et al. 2006).

of the sky seen by the Hubble telescope with a mock version given by the Illustris
collaboration. Secondly we also show in Fig. 1.6 the remarkable agreement between
the galaxy distribution obtained in the Millenium simulation (SPRINGEL et al. 2006)
and the one observed in galaxy surveys CfA2 (GELLER et al. 1989), 2dFGRS (COLLESS

1999) and SDSS (AHUMADA et al. 2020).
Furthermore, because of the different observations of the matter distribution in

the Universe, one has to consider that the DM component is pressure-less and highly
non-relativistic well before matter-radiation equivalence in order to understand the
presence of clustering on the smallest scales observed. Indeed, DM particles with
high velocity in the early Universe would have had time to free-stream out of the
smallest over-dense region, smearing them out, before their growth. In other words,
this effect induces a cut-off on the power spectrum (the two-point correlation function
of the matter density) at small scales. The current constraints allow for models that
are then called warm or cold DM (WDM or CDM). The latter option corresponding to
the smallest velocity dispersion is the favoured one.

Eventually, let us mention that BAO does not only leave an imprint in the CMB
,but also in the galaxy distribution at low redshift observed by galactic surveys. The
BOSS (SDSS-III) collaboration (ROSS et al. 2017) in particular has shown a correlation
peak on comoving scales of the order ∼ 150 Mpc in agreement with the CMB value,
providing another argument in favour of DM.

1.2.4 The ΛCDM model

The CMB data is well fitted by a six-parameter model called ΛCDM that describes
the Universe as expanding and flat and comprising baryonic matter, CDM and dark
energy – parametrised as a cosmological constant Λ. The power spectrum of the
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temperature fluctuations given by the best fit on this model is represented by the
blue line in Fig. 1.4 and is in remarkable agreement with the data. The six pa-
rameters of ΛCDM are

• Ωb,0 : the relative (to the critical density) abundance of baryons today

• Ωc,0 : the relative abundance of CDM today

• h : the reduced Hubble expansion rate today

• As : the amplitude of the initial power spectrum

• ns : the spectral index of the initial power spectrum

• τ : the reionization optical depth

In the following chapters of this thesis we will make use of, and then further discuss,
all parameters but the reionization optical depth. In this section we focus on the first
thee only. The reduced Hubble expansion rate h is given by the ratio of the Hubble
expansion rate today, denoted H0, over a typical rate of 100 km.s−1.Mpc−1. From CMB
data analyses, the Planck Collaboration has inferred a value of h = 0.6736 ± 0.0054 (at
a 68% confidence level – Planck18). Moreover according to the same Planck data
analysis the abundances multiplied by the Hubble rate squared are Ωc,0h

2 = 0.1200 ±
0.0012 and Ωb,0h

2 = 0.02237 ± 0.00015. In a flat Universe the sum of the abundances of
baryonic matter, radiation, CDM and dark energy ΩΛ,0 sum up to 1. Therefore giving
the proportion of the three components

Ωb,0 = 4.9% , Ωc,0 = 26% , and ΩΛ,0 = 69% . (1.9)

This result tells us that on the scale of the Universe the ratio of DM over the to-
tal amount of matter is of order 84%. Consequently, not only do CMB data also
points to the existence of DM but they also ascertains that it has to be the dom-
inant form of matter.

1.2.5 Big Bang Nucleosynthesis

Approximately 10 s after the Big Bang the lightest elements, D = 2H, T = 3H,
3He, 4He, 7Li, 7Be, start to form thanks to the specific thermodynamical conditions
(pressure, density, temperature, neutron lifetime) at that time. This period of light
elements synthesis is called Big Bang nucleosynthesis, as opposed to stellar nu-
cleosynthesis which will take place much later and will form heavier nuclei. See
(SARKAR 1996) and (OLIVE et al. 2000) for reviews. Heavier elements having been
produced much later in the centre of stars by nuclear fusion. The light element with
the highest binding energy is the helium-4, however, it cannot be formed directly
via 4 body interactions as the number density of photon nγ is much higher than
the number density of baryons nb at that time. Therefore the chain of interactions
was made of 2 → 2 processes

p + n → D + γ
D + p → 3He + γ, D+D → p + T, D+D → 3He + n

T+D → 4He + n, T+4He → 7Li + γ
. . .
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The first one corresponds to the formation of deuterium, necessary to launch the
chain. Interestingly, this process is very sensitive to the baryon-to-photon ratio η =
nb/nγ ∼ 10−10. Indeed, deuterium forms when the temperature of the plasma was
around T ∼ 1 MeV. However, the binding energy of deuterium being small (Eb ∼
2.2 MeV), its production is prevented by the overwhelming abundance of photons,
whose energy distribution tail destroys deuterium too efficiently before helium can
be produced. As the photon temperature decreases to ∼ 0.1 MeV, deuterium can
remain longer in the plasma and its increasing fraction activates helium production.
The final amount of deuterium present in the Universe can be seen as a leftover of
the reaction that stopped when the temperature became too low; consequently, it
is very sensitive to the initial conditions and η. That yields an interesting indirect
probe of the baryon abundance even though measuring the primordial amount of
deuterium in the Universe is challenging.COOKE et al. (2018) give η = (5.931± 0.051)×
10−10 and Ωb,0h

2 = 0.02166±0.00015±0.00011, independently confirming the value found
with the CMB – at 2σ in this study. This value is too low to explain on its own the
total matter content of the Universe it indirectly points towards the necessity of an
additional exotic matter component.

1.3 The tensions in the ΛCDM paradigm

In the previous section, we have introduced the concept of DM and the ΛCDM
model and mentioned its successes. However, for a few years, the ΛCDM model has
been questioned by different observations. This thesis develops in the context of the
small scale issues but for the sake of completeness, we start by discussing the large
scale tensions that are also relevant for DM.

1.3.1 The large scale tensions

The Hubble tension. In Sect. 1.2.2 we gave the value of h inferred from CMB
data analyses. However, this quantity can also be evaluated through late-time ob-
servations using the same method as that of Hubble first attempted. Using type 1A
supernovae and cepheids as standard candles it is possible to determine our distance
to remote galaxies. Plotting the galaxy population in a graph showing velocity against
distance, the shape of the curve obtained is directly related to h. A combined analysis
of datasets of supernovae finds an expansion rate of h = 0.736 ± 0.0039 (RIESS et al.
1998; VERDE et al. 2019) with a discrepancy of ∼ 5σ with the Planck value. Such a
difference indicates either systematics in the data or in the chain of analysis of one of
the two experiments as suggested in (RIGAULT et al. 2015) or the signature of depar-
ture from the ΛCDM model and a hint for new physics. Therefore several models have
been proposed to alleviate the tension (DI VALENTINO et al. 2016; KUMAR et al. 2016;
RENK et al. 2017; POULIN et al. 2019; BANIHASHEMI et al. 2020) but their viability is
challenged by the BAO and CMB observations. As of today, none of these models is
significantly preferred, thus future observations will probe them further.

The S8 tension. One defines by σ8 the (square root of) the variance of the matter
power spectrum on scales of the size 8h−1 Mpc−1. The quantity S8 is proportional to it,
as defined by S8 = σ8(Ωm,0/0.3)0.5. Similarly to h this quantity can be derived both from
the six ΛCDM parameter fitted on the CMB and from late time observations. The joint
analysis KIDS1000+BOSS+2dfLenS has given S8 = 0.766+0.020

−0.014 (HEYMANS et al. 2020)
while the value inferred from Planck is S8 = 0.832 ± 0.013 with a ∼ 3σ discrepancy
between the two. This also is interesting for DM as it also suggests the potential
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Figure 1.7 – Both panels are taken from (BULLOCK et al. 2017). Left panel: Rotation curve of
a typical galaxy with asymptotic circular velocity of ∼ 40 km s−1. The dashed curve represents
the expected NFW profile and the circles are data points taken from (OH et al. 2015). The solid
blue line is an example of cored profile (BURKERT 1995) which better match the data. Right
panel: The RAR relation for 2693 data points taken from a group of 153 galaxies and based
on (MCGAUGH et al. 2016). Figure taken from (BULLOCK et al. 2017).

presence of new physics that could give hints on its nature (LESGOURGUES et al. 2016;
MURGIA et al. 2016; ABELLAN et al. 2020; BOHR et al. 2020).

1.3.2 Issues for CDM on small scales

Small scales are the main topic of this thesis and related issues of ΛCDM are
therefore of primordial interest. Here we need to clarify an important point that is,
how small are the small scales? In practice, we will consider that everything under
the size of a typical galaxy is within the small scale range. To be more precise for DM
halos one can set a limit in mass at M < 1011M� and in size at R < 200 kpc. A review
on the small scales problem is available in D. H. WEINBERG et al. (2015) and BULLOCK

et al. (2017). We summarise here the major conundrums and the possible solutions.
First and foremost, let us recap some of the main predictions of ΛCDM. As

mentioned in Sect. 1.2.3 CDM is responsible for structure formation by growing the
gravitational perturbations produced by inflation on all scales until turning unstable,
and then collapsing and the forming bound objects. These halos are virialised objects
with a self-similar structure. Small halos are contained into larger ones, themselves
contained in even larger ones and so on. A limit to self-similarity is set by the
minimal length scale of the matter density perturbations that survive the early epoch
of the universe, which translates into a minimal halo mass of order Mmin ∼ 10−12 M�,
or even lower depending on the nature of DM (the values given are typical to particle
CDM). Inside a galactic halo, one expects an abundant distribution of subhalos with
self-similar properties. In particular, in CDM-only simulation, it is found that all sub-
halos of MW-like galaxies generally have a similar density profile (up to rescaling) that
increases toward their centre. One talks about cuspy profiles in opposition to cored
profiles in which the density would be homogeneously distributed around the centres.
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The core-cusp problem. Observed rotation curves indicate that a substantial
fraction of galactic halos are consistent with cored density profiles (NARAY et al. 2008;
BLOK 2010; OH et al. 2015), which is in contradiction with CDM-only simulation re-
sults. An example is given in the right panel of Fig. 1.7. Moreover, the simulations
also tend to over-predict the mass of DM in the central region of the halos (ALAM

et al. 2002; OMAN et al. 2015).

The diversity issue. It appears that galaxies with a similar circular velocity
asymptote in their outskirts can have inner circular velocities spanning a wide range
of values, much wider than what is naively predicted by ΛCDM (OMAN et al. 2015).
Even if the inclusion of the baryonic physics in the simulations could solve the core-
cusp tension (see the next section) it would still fail solving the diversity issue. Con-
sequently, together, they may be the most challenging problems for CDM.

The Tully-Fischer relation. Consider galaxies for which one knows the total bary-
onic mass Mb and the circular velocity vc in the asymptotic part of the rotation curve.
It is possible to place all these galaxies in a graph of Mb against vc. The outcome gives
the Tully-Fischer relation that shows Mb ∝ v4

c (MCGAUGH 2005). This can be stated
more generally in terms of the Radial Acceleration Relation (RAR) that is equivalent
but relies on different quantities: the gravitational acceleration due to baryons gbar
and the radial acceleration gobs = v2

c/r (LELLI et al. 2017). In the left panel of Fig. 1.7
one shows that in regions dominated by baryons, where gbar is large, the observed
acceleration follows gobs ∼ gbar as expected. For small values, it departs from this sim-
ple scaling due to the presence of DM. However, the smallness of the scatter around
the mean value of gobs at a given gbar is difficult to explain from the DM contribution,
especially in light of the diversity issue.

The plane of satellites problem. One observes that bright satellite galaxies (of the
MW or other hosts) tend to lie in a specific plane and rotate coherently. At first, this
seems to be in contradiction with cosmological simulations (PAWLOWSKI et al. 2014).
However in-depth statistical analysis have proven that the presence of such planes
– that may stem from the anisotropic accretion of satellites from cosmic filaments –
is plausible (CAUTUN et al. 2015).

The missing satellite problem. In CDM-only simulations, thousands of subhalos
are expected to be massive enough to contain stars and be observed in the inner 300
kpc of the MW (or any other MW-like galaxy) as dwarf, faint or ultra-faint satellite
galaxies. However only ∼ 50 are effectively observed (DES COLLABORATION 2015). This
raised some concerns in the past even though we have know for several decades now
that two concomitant explanations are at play. On the one hand, star/galaxy forma-
tion is very likely to become inefficient in small subhalos, as the gas is expelled by
various processes quite early in the formation history of such small objects (BULLOCK

et al. 2000; SOMERVILLE 2002; OKAMOTO et al. 2008; WADEPUHL et al. 2010). On the
other hand, the census of Galactic satellites is not yet complete, as a large portion of
the sky remains to be probed - there could therefore be a biased observational deficit.
In the end, with more and more satellites being discovered over time (TORREALBA et
al. 2018), the tension has now faded away.

The too-big-to-fail problem. Satellite galaxies are likely to form in the most mas-
sive subhalos, such as those observed in CDM-only simulations. However, it seems
than the most massive substructures are then not observed while they are too big
to have failed star formation (BOYLAN-KOLCHIN et al. 2011). However, similarly than
for the missing satellites problem, inclusion of baryonic physics in the simulations
has now reconciled their results with observations (SAWALA et al. 2016). Notice that
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even if it is not necessary, solutions to the core-cusp problem could also resolve this
tension by decreasing the expected central density of the subhalos.

1.3.3 Solutions to the small scale crisis

There are two classes of solutions, which may overlap, and that can give the
correct explanation to the still unsolved aforementioned tensions on small scales. On
the one hand, they may simply originate from the description of baryonic feedback in
numerical simulation, which still relies on rather empirical prescriptions. However,
even though very complex and challenging, the treatment of baryonic physics, star
formation, etc., has considerably improved over the past years, and there is hope to
reach more conclusive answers within the next decade (VOGELSBERGER et al. 2019).
On the other hand, the previous tensions can also indicate a departure from the
ΛCDM paradigm.

For several years now it has been shown in various simulations that cores in
galaxies could be induced by baryonic feedback redistributing energy in the central
parts (PONTZEN et al. 2012; MADAU et al. 2014; CHAN et al. 2015; OÑORBE et al.
2015). The efficiency of baryon-induced core-formation (through supernova feedback,
molecular cooling in the reionization epoch, etc.) may depend on the chosen sub-grid
physics recipe but they all seem to show that it should occur in halos with mass
M . 1010 M�. Complementarily, high resolution (non cosmological) simulations
show formation of cores in all halos (READ et al. 2016). Recent studies have also
shown that the RAR relation could also be obtained in simulations (NAVARRO et al.
2017; PARANJAPE et al. 2021). One may also need to invoke the effects of the halo
environment such as tidal stripping and disk shocking. The Chapter 4 of this thesis
will actually discuss such dynamical effects, but focusing on their impact on dark
subhalos instead of on dwarf galaxies. In summary, baryonic physics is likely to play
a major role in the understanding of these tensions between theory and observations,
and it is important to investigate further its impact on the structuring of DM in the
centres of halos. For now, the diversity problem, especially when put in front of the
very small scatter characterising the Tully-Fisher or RAR diagrams, seems to be the
most challenging. Therefore, one should remain open-minded to other classes of
solutions.

If the tension is indeed caused by a departure from the ΛCDM paradigm that
would provide an interesting probe for DM nature. Different classes of solutions
are commonly considered.

First, instead of the usual CDM scenario with subhalos as light as 10−12 M� (or
lower), one can also consider the WDM case. A priori both configurations are simi-
lar except for the DM particle velocity dispersion in the early Universe, nevertheless,
that has serious consequences. Indeed, a small mass particle would have had a
higher velocity in the early Universe and therefore would have suppressed the mat-
ter power spectrum on small scales because of the free-streaming damping effect –
already brought up in Sect. 1.2.2 and detailed in Sect. 3.6. Consequently, this cut-
off in the power spectrum prevents subhalos to form below some scale set by the free
streaming mass but, more importantly, it also reduces the central density of subhalos
alleviating the too-big-to-fail problem. Unfortunately, it has also been shown that this
produces too small cores to suppress the core-cusp tension (MACCIO’ et al. 2012).
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Figure 1.8 – Image of the Bullet Cluster. Left panel: Iso-contour of the gravitational potential
reconstructed from lensing observations and taken from (CLOWE et al. 2006). Right panel
Superposition of the X-ray image of the intra-cluster gas (pink) and reconstructed dark matter
distribution from lensing. Credit: X-ray: NASA/CXC/CfA/(MARKEVITCH 2005), Optical and
lensing map: NASA/STScI, Magellan/U.Arizona/(CLOWE et al. 2006), Lensing map: ESO WFI.

Another model that has recently gained a growing attention is self-interacting DM
(SIDM) where DM is made of particles that can rather efficiently self-scatter (CARLSON

et al. 1992; SPERGEL et al. 2000; SCHUTZ et al. 2014; TULIN et al. 2018). Interestingly,
concrete realisations of SIDM can be easily constructed in particle physics from an
effective point of view, although self-scattering is not by itself imposed by any theoret-
ical prejudice. Let us denote the self-interaction transfer cross-section – an angular-
weighted cross-section that characterises the averaged momentum transfer – by σT.
In a medium with a DM mass density ρχ particles scatter efficiently on a length scale
λ = (ρχσT/mχ)−1, with mχ the DM particle mass. Inside a halo, assuming it originally
exhibits a cuspy profile, the central density is large and λ small. Then DM behaves
like a fluid and momentum and energy can be redistributed inside the structure lead-
ing to the formation of a core, hence potentially solving the core-cusp problem (and,
as a DM-only solution, also the too-big-to-fail problem) (NISHIKAWA et al. 2020). The
required order of magnitude is λ ∼ 1 - 103 kpc corresponding roughly to 0.5 cm2 g−1 <
σT/mχ < 10 cm2 g−1 (ELBERT et al. 2015; FRY et al. 2015; ROBLES et al. 2019). More-
over for σ/mχ > 5 cm2 g−1 the self interaction can lead to gravitational core collapse
in the MW satellite galaxies that may produce a diversity of inner density profiles
(KAHLHOEFER et al. 2019; SAMEIE et al. 2020). These are rather large cross-sections
(equivalent to the neutron-neutron scattering cross-section) but they are actually not
much constrained since not necessarily correlated with the scattering cross-section
off baryons. Upper bounds can be set using galaxy cluster mergers. They provide
constraints on the behaviour of the baryonic and the DM components of two clus-
ters during a collision. In the SIDM context, they especially probe the strength of
the DM self-scattering. The most famous of these mergers is called the Bullet cluster
and yields σT/mχ . 1 cm2 g−1 (MARKEVITCH et al. 2004). This bound is lower than
the cross-section needed to solve the core-cusp problem at the scale of galaxies. A
way out is to have a velocity-dependent self-scattering cross-section, which would be
suppressed at large dispersion velocities, like in galaxy clusters (v ∼ 1000 km s−1 in
galaxy clusters, while v ∼ 10-100 km s−1 in dwarf or regular galaxies). Therefore, the
rate of DM self-scattering is constrained to be velocity-dependent, more precisely a
decreasing function of the DM velocity.

Finally, let us briefly discuss the case of quantum pressure-induced cores in
scenarios with ultra-light DM boson particles (then called fuzzy DM). The combination
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of Poisson’s and Schrodinger’s equations for self-gravitating bosonic systems gives
that the central mass distribution in structures made of light bosons are impacted
when their de Broglie wavelength λ = h/(mv) becomes of the order ∼ kpc. Thus
making formation of cores possible for a particle mass of the order m ∼ 10−22 eV (HUI

et al. 2017; HUI 2021).

To summarize, it is important to stress that although CDM is not fully in trou-
ble while baryonic physics is not more plainly understood and fixed in cosmological
simulations, these current issues on small scales represent an exciting challenge.
There exist independent and purely DM potential solutions, like SIDM or fuzzy DM,
and further theoretical inspection and observational tests of these scenarios will be
decisive in the coming years. Conversely, testing the very features of CDM, like the
presence of fully dark subhalos, also represents an important test to validate or ex-
clude CDM. Anyway, these different classes of DM rely on specific realizations of the
subatomic world, most assuming the existence of new particles and interactions. We
briefly review a non-exhaustive list thereof below, as the intimate DM particle candi-
date properties should directly translate into dedicated search strategies.

1.4 Theoretical models of Dark Matter

In this section, we review the different classes of possible candidates for DM af-
ter discussing, in the first part, the possibility of a modified theory of gravity. The
possibilities are numerous, from elementary particles to black holes, and our goal
here is not to be exhaustive but rather to give a brief review of the most popular
models that have not been completely ruled out so far and that remain appealing
from a detection perspective.

1.4.1 Modified gravity

The theory of general relativity (GR) gives high precision predictions when tested
on scales from a few centimetres to the solar system size. For instance, one can
cite the historical observations of gravitational lensing around the sun (DYSON et al.
1920) and the explanation of the perihelion precession of Mercury – measured by
LE VERRIER (1859). Today it provides the correct corrections for GPS (KOUBA 2002)
and lensing observations are now common with the Hubble Space Telescope. The
detection of gravitational waves by the LIGO/Virgo collaborations (LIGO AND VIRGO

COLLABORATIONS 2016) and the first direct observation of a black hole in 2019 (EHT
COLLABORATION 2019) have again provided new confirmations for the validity of the
theory. However, on large scales, all the anomalous observations exposed in the pre-
vious sections could actually be related to limits of its applicability. On cosmological
scales, on top of the DM issue, the presence of dark energy supports this possibil-
ity (RIESS et al. 1998; PERLMUTTER et al. 1999). Several attempts have been made to
provide a suitable extension of GR however it remains challenging to propose models
that can be experimentally probed and that are theoretically consistent.

At the galactic level, rotation curves can be empirically explained using the MOd-
ified Newtonian Dynamics (MOND formalism introduced by MILGROM (1983). See
FAMAEY et al. (2012) for a review. There, the Newtonian gravitational acceleration is
modified via a factor that depends on its strength. The typical acceleration of a star
in a galaxy being ∼ 11 orders of magnitude below the gravitational acceleration at
the surface of the Earth, the modification has to be important for low gravitational
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accelerations while being negligible at high gravitational accelerations (in order not to
spoil Newtonian dynamics on Earth). In more details, if one measures a gravitational
acceleration gN from the observed distribution of matter using Newtonian dynamics
then, the true gravitational acceleration g must be related to gN via the relation

µ

(
g

a0

)
g = gN . (1.10)

The function µ is such that µ(x) → 1 for x � 1 and µ(x) → x for x � 1 and gives
a smooth transition between two regimes characterised by the scale acceleration a0.
In the weak acceleration regime g � a0 the circular velocity of a system at distance
R from a point mass M becomes

vc(R) ∼ (GNMa0)1/4 . (1.11)

Therefore the circular velocity no longer depends on the distance from the centre
of the galaxy in the outskirts, consequently explaining the flatness of the rotation
curves. Moreover, such a relation also explains the small scatter in the Tully-Fischer-
RAR relations since without DM a tight correlation between the baryonic acceleration
and the observed one is naturally expected. On the other hand, while successful
of galactic scales, MOND fails to explain the dynamics of galaxy clusters, except at
the price of an additional hot DM component (SANDERS 2003). Let us also mention
that the Bullet Cluster (already broached it in the context of self-interacting DM)
suggests the existence of a pressureless fluid supporting the two clusters involved.
In Fig. 1.8 are represented the mass distribution of the gas that makes the main
part of ordinary matter and the total mass distribution, mainly supported by a dark
component. The baryonic matter and DM distributions are unambiguously offset,
which is very challenging or nearly impossible to properly account for if the mass is
only sourced by the baryons. On the other hand, while the gas particles are slowed
down by their interactions, a (quasi)collisionless dark fluid is not (CLOWE et al. 2004,
2006), therefore naturally providing the offset3.

Eventually, let us mention that the "covariantisation" of MOND remains a very
challenging task; there is no unique and perfect way to construct a relativistic ex-
tension, based upon this empirical requirement, that passes all the observational
constraints. Amongst the current relativistic extensions of MOND one can cite the
Relativistic Aquadratic Lagrangian (RAQUAL) theory (J. BEKENSTEIN et al. 1984), the
Tensor-Vector-Scalar (TeVeS) theories (J. D. BEKENSTEIN 2005; SKORDIS et al. 2006;
SKORDIS 2008), the Bi-Scalar-Tensor-Vector (BSTV) theories (SANDERS 2005), the Gen-
eralized Einstein-Aether (GEA) theories (ZLOSNIK et al. 2007), the bimetric theories
(BIMOND) (MILGROM 2010) and Dipolar Dark Matter (L. BLANCHET et al. 2017). It is
thus difficult to make generic predictions for cosmology, large scale structures and
the CMB in this context. For instance, SKORDIS et al. (2020) have proposed a theory
in agreement with the CMB, however, the agreement to structure formation remains
to be checked – it is, today, the biggest challenge to covariant versions of MOND.
Besides, such theories introduce anyway an effective DM component through new
degrees of freedom behaving as a pressureless fluid.

3Note that however this observation does not necessarily rule out MOND (ANGUS et al. 2006). Besides,
the bullet cluster may be a too rare object emerging in ΛCDM (KRALJIC et al. 2015). If other similar ones
where to be discovered in the future, this would challenge the cosmological paradigm.
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1.4.2 Particle candidates

Our knowledge of the microscopic structure of known matter relies on nuclear
physics, atomic physics, and at the smallest scales on quantum field theory. The
standard model (SM) of elementary particles is a robust theoretical construction based
upon powerful physical principles such as symmetries, gauge invariance, and the
Higgs mechanism as a self-consistent mechanism to give masses to particles. Al-
though DM could be made of macroscopic objects, let us first review the possibility
that it be made of elementary particles. We shortly review the SM (see PARTICLE

DATA GROUP et al. 2020 for an extensive review) before showing how DM candidates
could emerge from exotic extensions.

The standard model

The SM is a non-abelian quantum field theory based on a (partially and spon-
taneously) broken SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge symmetry (SALAM et al. 1959;
GLASHOW 1961; S. WEINBERG 1967). The SU(3)C group corresponds to quantum
chromodynamics (QCD) and describes strong interactions, the corresponding
charges are referred to as colours. The SU(2)L ⊗ U(1)Y part corresponds to the
electroweak sector that unifies the electromagnetic and weak interactions. The
L notation stands for left as this group only acts on particles according to their
chirality, i.e. only on the left-handed particles. In this model, the matter is made of
elementary fermions (with half-integer spins), six kinds of quarks (u, d, s, c, b, t) in the
fundamental representation of SU(3)C and six leptons (e, µ, τ, νe, νµ, ντ ) that can be
packed into doublets of the fundamental representation of SU(2)L when left-handed
and into singlet otherwise (neutrinos are only left-handed particles). Interactions
are mediated via particles in the adjoint representation of the group: the gluons
g for the strong interaction and the massless bosons W 1, W 2, W 3 and B for the
electroweak interaction. At low energy (E < ΛEW ∼ 250 GeV) a scalar field called
the Higgs field H (ENGLERT et al. 1964; HIGGS 1964), coupled in a gauge-invariant
way to fermions, falls at the bottom of its potential well, gets a vacuum expectation
value (VEV) usually denoted v ≡ 〈H〉 and induces a spontaneous symmetry breaking,
SU(2)L ⊗ U(1)Y → U(1)Q. Here U(1)Q describes the electromagnetic interactions
with Q the standard electromagnetic charge. The subsequent Goldstone bosons
(GOLDSTONE et al. 1962) can be ’gauged-out’, which transforms the W and B
fields into three massive fields (with longitudinal polarisation) W+, W−, Z0. The
remaining massless field corresponds to the photon γ. Beside providing masses
to gauge bosons, the Higgs field is also a fundamental piece of the theory because
it provides gauge-invariant mass terms to the fermions. Finally, the gravitational
interaction, fully described in GR by space-time curvature, is usually not considered
as part of the SM but can be included at low energy by the introduction of a spin-2
particle called the graviton. However, the added terms in the Lagrangian are not
renormalisable; non-physical divergences appear and cannot be removed with a final
number of experimental inputs. The theory becomes non-predictive. Therefore to
properly describe gravity in all regimes of energy one needs to extend the theory in
the UV, which cannot be realised in a simple and generic way – for instance, string
theory (POLCHINSKI 2007a,b) is a framework that provides a consistent theory albeit
being hardly predictive and testable today.

Assuming DM is made of elementary particles, we can shortly review the prop-
erties the latter should have. As DM has not been yet seen via its interactions with
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light, it must be electromagnetically neutral or have an extremely small charge. More-
over, it needs to be stable (or metastable with a cosmological lifetime) and massive to
provide 80% of the total mass of the Universe. Therefore, all known particles are al-
ready ruled out except for neutrinos. However, denoting mi the masses of the three
neutrinos, one can evaluate their total abundance in the Universe today as being
(LESGOURGUES et al. 2006):

Ων,0h
2 =

3∑
i=1

mi

93.14 eV (1.12)

while the best constraints from ground experiments are of the order mi < 0.8 eV – with
a 90% confidence level (AKER et al. 2021) – that roughly gives Ων,0h

2 < 2.6× 10−2. The
CMB puts a bound

∑
imi < 0.24 eV (with a 95% confidence level from Planck18) that

yields Ων,0h
2 < 2.6 × 10−3, far below the value for the total dark matter Ωc,0h

2 = 0.12.
Moreover, if DM was made exclusively of neutrinos it would not fit in the WDM or
CDM category neither, but would instead be hot DM (HDM) owing to their relativistic
speed at the time of matter domination, a consequence of their small mass and their
thermal production in the early universe. This is not supported by observations (e.g.
Ly-alpha) which strongly favour hierarchical structure formation. Therefore it would
be difficult to explain the presence of galaxies. Besides, the mass of fermionic DM
particles is also constrained by their phase-space distribution in galaxies to m ≥ 1.7
keV (TREMAINE et al. 1979; BOYARSKY et al. 2009a) .

Therefore, no SM particle can account for DM. One needs to rely on extensions of
the SM to incorporate DM. It actually turns out that, while the SM allows for predic-
tions of subatomic properties or processes which have been tested to unprecedented
precision, it is not devoid of issues. For instance, it does not allow to fully under-
stand the hierarchy of particle masses, the hierarchy between the Planck and elec-
troweak scales, the specificity of neutrinos (initially described as massless and only
left-handed particles), and it does not incorporate gravity even when it gets relevant in
the very high-energy limit. Other issues are of observational nature: it does not pro-
vide an explanation to the asymmetry between matter and antimatter, nor to inflation,
not the least to DM. Interesting theoretical solutions are given by extensions/modifi-
cations of the SM that can solve at least one problem inherent to particle physics and
can at the same time provide a good DM candidate. In the following, we detail different
DM models and explain how they have been introduced. See FENG (2010) for a review.

Sterile neutrinos

In the primary version of the SM, neutrinos are considered massless (GIGANTI et
al. 2018). However, from neutrino oscillations, it is known that this is not strictly
the case even if the upper bound from ground-based experiments gives mν < 1.1 eV
as seen above. Therefore one needs to correct the original version of the SM La-
grangian. As neutrinos are neutral it is possible to assume that they are Majorana
particles. Even if Majorana masses cannot be generated by a usual Yukawa cou-
pling, one can introduce the non-renormalisable Weinberg operator given, for elec-
tronic neutrinos for instance, by

LW = 1
Λ(LT iσ2H)C(HT iσ2L) + h.c. with L =

(
νe
e

)
, H =

(
H+

H0

)
(1.13)

where H is the Higgs doublet and C is the charge conjugation operator. When the
Higgs acquires its VEV,

〈
H0〉 = v, this term becomes a Majorana mass term and one
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obtains mν = v2/Λ and then Λ ∼ ΛGUT ∼ 1015 GeV – of the order the energy scale of
the Grand Unified Theory (GUT) – to satisfy the upper bound on the neutrino mass.
A simple physical realisation of a neutrino mass term comes when introducing a
right-handed neutrino NR that, in full generality, adds a Dirac mass term and but
also a Majorana mass term so that

L = −mDνLNR + 1
2MNT

RC
−1NR

= −1
2
(
νL N c

L

)( 0 mD
mD M

)(
νcR
NR

)
+ h.c.

(1.14)

with N c
L = −NT

RC
−1 and νcR = CνL

T . The mass matrix has then two eigenvalues, one
of which must be vanishingly small due to current constraints on neutrino masses.
This can be realised by the so-called see-saw mechanism (MOHAPATRA et al. 1980). In
the type-I seesaw limit (ADHIKARI et al. 2017) where M � mD ∼ v one has two mass
eigenstates corresponding roughly to νL with mass m2

D/M � v and to N c
L with mass

M � v. Therefore, the model provides here a natural explanation for he smallness of
the neutrino mass (the light mass eigenstate being roughly the SM neutrino) and an
explicit realisation of the Weinberg operator with M ∼ ΛGUT. Moreover if it exists, NR is
then a singlet for all interactions, it is therefore called a sterile neutrino (in opposition
to the other neutrinos said to be active) and could be a good DM candidate (DODELSON

et al. 1994; SHI et al. 1999; ASAKA et al. 2005). In addition, sterile neutrinos are also
well motivated to explain the matter-antimatter asymmetry of the Universe.

In practice sterile neutrino mass can cover, a priori, a wide range of values as one
can either have no Majorana mass and a Dirac mass or no Dirac mass and a pure
Majorana mass or intermediate configurations. Moreover even in the seesaw case il-
lustrated above if we do not require mD ∼ v then M can also be much smaller. In
particular if M ∼ keV, the sterile neutrino becomes a good CDM or WDM candidate
(depending on the production mechanism). These particles are unstable, as they can
decay into an active neutrino and a photon, but their lifetime can be much longer than
the age of the Universe. Nevertheless, this remains an interesting feature as the emit-
ted photon in the decay is produced with an energy at half the mass of the sterile neu-
trino (in the rest frame) and provides a clean astrophysical signature. Therefore using
X-ray observation and searching for an emission line puts constraints on the allowed
mass range. See also BOYARSKY et al. (2009b) and BOYARSKY et al. (2018) for reviews.

Axion(-like) particles

Amongst the lightest possible DM candidates are the axions, introduced to solve
the strong CP (charge-parity) problem of the SM. See MARSH (2016, 2017) for detailed
reviews. Indeed, in full generality, one needs to introduce a CP-violating term in
the SM Lagrangian,

Lθ = − θ

32π2 Tr
[
G̃µνG

µν
]

(1.15)

where Gµν is the gluon field strength tensor and G̃µν = εµνρσGρσ/2. The coupling con-
stant θ is related to non trivial topological properties of SU(3)c and the associated
instantons (BELAVIN et al. 1975). Therefore, even if this new term can be rewritten as
a current derivative (and would therefore not produce any physical effect in the ab-
sence of instantons, like in QED), it actually contributes important non-perturbative
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effects. In addition, it cannot be removed by chiral rotations4 and it also contributes
to the electric dipolar moment of the neutron dn ' 3.6 × 10−16 × θ e cm. From exper-
iments it has thus been shown that the value of θ is severely constrained, θ . 10−10,
which could be considered a problem if one is sceptical about such a large degree
of fine tuning. A possible solution is to introduce a new field, called the axion,
coupling to GG̃ with a dynamics that naturally leads to the cancellation of θ. Sev-
eral models have been introduced: the Peccei-Quinn-Weinberg-Wilczek (PQWW) axion
(PECCEI et al. 1977; S. WEINBERG 1978; WILCZEK 1978) (completely ruled out today by
beam dump experiements), the Kim-Shifman-Vainshtein-Zacharov (KSVZ) axion (KIM

1979; SHIFMAN et al. 1980) or the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion
(ZHITNITSKY 1980; DINE et al. 1981). Note that the last two, however, also require the
existence either of new heavy quarks, or a second Higgs doublet.

The idea is to introduce a new U(1)PQ symmetry, which acts with chiral rotations,
that is spontaneously broken at an energy much higher than the QCD confinement
scale fa � ΛQCD ∼ 150 MeV to produce the axion field a ∈ [0, 2π] as a pseudo-scalar
Goldstone boson. Then the chiral anomaly provides a coupling of a with GG̃ (and FF̃ ,
the field strength of QED) and the coefficient θ is replaced by θ + Ca/fa in Eq. (1.15).
Here we have introduced the integer colour anomaly Cδab = 2Tr [QPQTaTb], with Ta
the generators of the SU(3)c representation of the fermions and QPQ the PQ charge
of the field responsible for the spontaneous breaking of the PQ symmetry. In the
end, the vacuum energy is proportional to cos(Ca/fa) (where θ has been absorbed by
shifting a and C must be an integer to respect the shift symmetry a → a + 2πfa). Be-
cause now a is a dynamical field the energy can be minimised and a vacuum can
be dynamically selected.

When the primordial plasma cools down below T ∼ ΛQCD the axion po-
tential takes the form

V (a) = muΛ3
QCD

[
1− cos

(Ca
fa

)]
(1.16)

with mu the up quark mass. Then, the axion becomes a pseudo Nambu Goldstone
Boson (pNGB) with a mass m2

a ' muΛ3
QCD/fa that can be approximated by

ma ' 10µeV
(

1012 GeV
fa

)
. (1.17)

The field rolls down to a minimum of the potential, oscillating and forming a zero-
momentum condensate which makes an excellent beyond the standard model CDM
candidate. In this QCD axion DM scenario, in order to produce a consistent amount
of DM, the typical bounds on the scale fa are 109 GeV < fa < 1012 GeV corresponding
to the mass range 10 µeV < ma < 0.1 eV.

Eventually, QCD axions studies have paved the way to more generic ones in the
context of axion-like particles (that generalise the QCD axion and are not necessarily
related to the strong CP-problem) or ultralight axions (with a mass down to ma ∼
10−22 eV) making fuzzy DM – that can alleviate the core-cusp tension. However, the
minimal mass is constrained from the Lyman-α forest (ARMENGAUD et al. 2017; IRŠIČ

et al. 2017), from the tidal disruption of satellite galaxies (DU et al. 2018; MARSH

et al. 2019), from the galactic rotation curves (BAR et al. 2018) and from several
other observations. The experimental endeavour around axion searches, which have
become priority after the waning of WIMP candidates, will be broached in Sect. 1.5.

4A similar term for SU(2)L can be removed by chiral rotations.
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Weakly Interacting Massive Particles

Owing to their simple production mechanism in the early Universe and the fact
that they are naturally cold DM candidates (LEE et al. 1977), Weakly Interacting
Massive Particles (WIMPs) have been among the most popular models. They are
neutral, stable, they have a mass in the GeV-TeV range and they interact weakly with
the SM. Moreover, throughout the last 50 years, several BSM approaches initially
designed to solve problems inherent to particle physics (e.g. the electroweak hier-
archy problem) have predicted WIMP-like particles as by-products (often related to
ensuring the stability of the proton). That was, at least before the null search of new
physics around the TeV scale at the LHC, a very strong theoretical motivation to the
searches of WIMPs. After the LHC campaign, WIMPs have lost their quasi-monopoly.
Nonetheless, if it is true that the GeV-TeV mass range is indeed under experimental
pressure, all the constraints rely on specific aspects of the WIMP-SM interactions.
The vast parameter space is far from being entirely probed and WIMPs are still
alive (LEANE et al. 2018) and they remain a dominant class of models. They remain
an interesting scenario especially in terms of simplicity and minimality, beside the
possibility to detect them from a variety of observations or experiments. Let us
reviews some of the model below.

Supersymmetry. Supersymmetry (SUSY) has been introduced in the 1970s as an
extension of gauge theories by allowing the presence of anti-commuting spinors op-
erators and thus symmetrising, in a way, fermions and bosons (GERVAIS et al. 1971;
NEVEU et al. 1971; RAMOND 1971; WESS et al. 1974). See MARTIN (1998) for a re-
view on the SUSY formalism. Therefore, in SUSY every particle has a super-partner
with a spin that differs from its own by a half-integer: all fermions have bosonic
super-partners and conversely. One of the most important features of SUSY is the
solution given to the electroweak hierarchy problem (GILDENER 1976). Indeed, even
if the SM masses are correctly renormalised and there is no objection in having a
Higgs boson with a mass of 125 GeV, if we introduce new physics and new degrees
of freedom at the Planck scale, MPl ∼ 1019 GeV (motivated by a UV completion of the
SM including gravity) the Higgs mass should be contaminated by large radiative cor-
rections. In SUSY the issue is avoided as the radiative corrections from loops of the
bosonic super-partners exactly cancel those induced by the SM fermions (provided
their masses are equal). Since the masses of superpartners are experimentally bound
to be larger than those of the SM fermions, the cancellation is, however, not exact.
Nevertheless, having them in the TeV mass range is in principle sufficient to explain
why radiative corrections to the Higgs mass also remain in the TeV range, making it
insensitive to UV physics. In addition, another appeal of SUSY comes from the fact
that if extended to a gauge theory one obtains supergravity an effective realisation of
superstrings theory (a special kind of string theory) at low energy – NATH et al. 1975
and WESS et al. 1992 for a review. More interesting for DM, it provides a set of particles
called neutralinos that are natural WIMPs. In the minimal supersymmetric standard
model (MSSM), the minimal extension of the SM, to provide a mass to up and down
particles it is necessary to introduce two Higgs doublets Hu and Hd. Both their neutral
components have then fermionic super-partners H̃0

u and H̃0
d called higgsinos that are

neutral. Moreover, the B boson and one of the three W bosons are also partnered
to neutral fermions, the bino B̃0 and the wino W̃ 0. The mass eigenstates of these
four components are the neutralinos χ̃0

i with i ∈ [0, 4] and as their partner, they inter-
act weakly with the SM particles. Therefore they have every properties to be WIMPs
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except for stability. Nevertheless in SUSY, in order not to spoil the constraint on the
proton decay rate, a supplemental discrete symmetry called R-parity is imposed in the
model. A direct consequence of its definition is that one can introduce an invariant
quantum number R that is R = 1 for SM particles and R = −1 for the superpartners
and the lightest supersymmetric particle (LSP) becomes stable as it cannot decay into
SM particle without violating R-parity. If the LSP is the lightest of the neutralinos it
then becomes a perfect WIMP candidate. Other particles such as the gravitino (the
superpartner of the graviton) are also good DM candidates, even though the latter is
much more difficult to constrain as only interacting gravitationally with the SM, or
the (right-handed) sneutrino (ASAKA et al. 2006; ARINA et al. 2007). See JUNGMAN

et al. (1996) for a review of SUSY DM. Extensions of MSSM can also provide more
viable candidates, such as the singlino of the NMSSM (ELLWANGER et al. 2010).

Extra dimensions. The possibility of spacetime having more than 4 dimensions
has been under investigation since the first attempt by KALUZA (1921), trying to unify
GR and electromagnetism by resorting to a compact fifth dimension. In particular,
Klein studied the possibility of a fifth dimension that is compactified around a circle
of small radius and therefore hidden to the observer (KLEIN 1926). While the first
attempt resulted in theoretical issues, in the 1980’s this idea became attractive again
with the popularity of string theory (that cannot be formulated in 4 dimensions only).
Furthermore, some scenarios are appealing as they allow to solve the hierarchy prob-
lem by lowering the Planck scale to the electroweak scale in the bulk the (space of the
extra dimensions). Among the models that have been proposed are: a model with a
new dimension at the millimeter scale (ARKANI–HAMED et al. 1998; ARKANI-HAMED et
al. 1999), the Randall-Sundrum model (RANDALL et al. 1999) and the Universal Extra
Dimensions (UED) model (APPELQUIST et al. 2001). From a phenomenological point of
view, particles that are allowed to propagate through all dimensions of space exhibit,
more massive, excited states – Kaluza-Klein (KK) states. In UED all SM particles are
free to propagate in all dimensions and the lightest KK particle (LKP), if neutral and
stable, can become a good WIMP (SERVANT et al. 2003; AGASHE et al. 2004). Stability
is ensured via the conservation of a symmetry called the KK-parity (that is generally
assumed but could be broken depending on the compactification scheme). A good
candidate for WIMP is the KK-photon that can also approximately identified as the
first excited state of the B-boson B(1) (as the mixing with the excited states of the W
boson is small). See HOOPER et al. (2007) for a full review on UED DM.

Simplified effective models. With no experimental hints for SUSY or extra di-
mensions at the Large Hadron Collider (LHC), the focus on WIMPs is in part slightly
shifting towards bottom-up approaches. Instead of looking for UV complete models
that solve problems of the SM and bring DM candidates as a bonus (top-down ap-
proaches), we consider WIMPs as having generic properties (bottom-up approaches).
More precisely, in this picture, they are a set of fermionic, scalar of vector particles
that can interact through a set of mediators with the SM particles; the masses and
coupling constants being treated as free parameters. This approach allows deriving
generic constraints and prediction for classes of models (ABDALLAH et al. 2015; ARINA

2018; ATLAS COLLABORATION 2019). Moreover, it still represents a reliable and mo-
tivated way to probe physics beyond the SM because various UV-complete models
can be mapped onto the same classes of Lagrangians at low energy. In Chapter 2
we study in details fermionic WIMPs in a simplified Lagrangian model with scalar,
pseudo-scalar, vector and axial-vector interactions with the SM particles. Moreover,
we show how a non-trivial configuration of the low-energy limit of the NMSSM can
be analysed within that framework. Amongst the various possibilities of simplified
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models one can cite the minimal DM models that aim at producing candidates with
the most important DM features while only adding a minimal extension to the SM
(CIRELLI et al. 2006; E. MA 2006; HONOREZ et al. 2007; CIRELLI et al. 2015). Asym-
metric DM (NUSSINOV 1985; D. B. KAPLAN 1992; D. E. KAPLAN et al. 2009a; PETRAKI

et al. 2013; ZUREK 2014; GARANI et al. 2019), based on the idea that DM abun-
dance originates from a mechanism similar to the abundance of ordinary matter over
anti-matter, can be described from simplified models as well. In addition, they can
also capture SIDM (BERNAL et al. 2016; CHU et al. 2016; HAMBYE et al. 2020) as
we also study in Chapter 2.

Other models

The aforementioned models have been amongst the most attractive ones and have
drawn much attention. Let us mention here a few other possibilities. There is mil-
licharged DM (mDM) that possesses a tiny electric charge and can therefore interact
with the SM through the regular photon or via dark photons (LIU et al. 2019). This
scenario is interesting as it can be probed by the sky-averaged 21-cm observations
(BOWMAN et al. 2018). There are mirror DM models where DM is made of a hidden
copy of the SM content (FOOT 2014). In the atomic DM models, it is made of bound
states (D. E. KAPLAN et al. 2009b). Not to forget models where DM interacts only
gravitationally (FAIRBAIRN et al. 2018; MARKKANEN et al. 2018).

Besides, DM scenarios can usually be classified in terms of production mecha-
nisms (e.g. thermal for WIMPs or sterile neutrinos, non-thermal for axions), giving
new names to candidates with similar properties. An extremely massive (m ∼ 1012

to 1016 GeV) and non-thermally produced version of the WIMP is called the WIM-
PZILLA (CHUNG et al. 1998; KOLB et al. 1998). This makes a candidate produced
through gravitational interactions only. Strongly Interacting Massive Particles (SIMPs)
(STARKMAN et al. 1990) offer a realisation of SIDM. They are produced via a specific
thermal process involving 3→ 2 interactions (HOCHBERG et al. 2014; CHOI et al. 2016)
instead of 2→ 2 interactions for the usual WIMP. Eventually, WIMP-like particles with
very small couplings to the SM particles are referred to as Feebly Interacting Mas-
sive Particles (FIMPs) and their production mechanism, although thermal, is slightly
different than that of the WIMP, see Sect. 2.3.3.

1.4.3 Macroscopic objects and primordial black holes

Historically the first mention of DM by Poincaré in 1906 was referring to dark bod-
ies or dark stars. So far we have introduced DM particle models without discussing
the possibility that DM might be made of such macroscopic objects of ordinary mat-
ter. We generically call MACHO (for Massive Astrophysical Compact Halo Object) any
astrophysical body that does not emit light and is not associated with any plane-
tary system. Examples include unassociated planets, low luminosity stars like white
dwarfs and red dwarfs and also brown dwarfs. However, scenarios in which MACHOs
that range between planetary to stellar masses are strongly disfavoured by microlens-
ing surveys in the MW (TISSERAND et al. 2007).

A non-baryonic class of MACHOs are primordial black holes (PBHs) (ZEL’DOVICH et
al. 1967; S. HAWKING 1971; B. J. CARR et al. 1974) that provide a good DM candidate.
PBHs are supposed to form in the primordial universe from rare and extremely high
density fluctuations that collapse directly to BHs right after entering the horizon,
after inflation. Since collapsing from gravitational instabilities, their formation are
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boosted each time the radiation pressure in the universe drops. This happens for
instance at the QCD phase transition (JEDAMZIK 1997; JEDAMZIK et al. 1999), or any
other transition when relativistic degrees of freedom disappear (e+e− annihilation,
etc.). The abundance of PBHs depends on the amplitude of the primordial power
spectrum, and should be extremely small if the latter were at the level constrained
by Planck. However, the amplitude is not constrained on small scales, and could
actually be such that PBHs represent a significant fraction, if not all, of the DM in
the universe. Present at the time of last-scattering and if numerous enough they
provide the non-baryonic mass necessary to understand the anisotropies of the CMB,
playing the role of DM. This scenario faces observational pressure too, with the micro-
lensing studies constraining MACHOs, with BBN and CMB, with γ-ray and cosmic-
ray instruments – due to Hawking’s radiation (S. W. HAWKING 1974) – and with other
probes (B. CARR et al. 2020b). Nonetheless, one window remains open for PBHs
with mass 1017 g < mPBH < 1022 g. Recent studies even suggested that PBHs could
provide a solution to the asymmetry between matter and antimatter (B. CARR et al.
2020a) on top of being the main or only DM component. Finally, let us point out
that PBHs have also regained interest thanks to the latest observations of black holes
binary mergers with the gravitational waves detectors LIGO/Virgo (CLESSE et al. 2018;
LIGO AND VIRGO COLLABORATIONS 2019). In the scenario inspired by LIGO/Virgo the
fraction of DM in the form of PBHs is established at ∼ 10−3 (DE LUCA et al. 2020; A.
HALL et al. 2020; FRANCIOLINI et al. 2021) even if a total fraction of 1 is still possible
in some models (JEDAMZIK 2020a,b).

1.5 Searches for Dark Matter and constraints

So far, DM has been discussed in terms of its gravitational manifestations or sig-
natures on different astrophysical scales. Dedicated searches for particle DM further
follow three main strategies. The first one is to try to produce DM particles at colliders
and spot missing energy in the reconstructed final states after a collision, signalling
dark particles escaping the detectors. Direct detection methods focus on searching
DM present in the Earth’s surroundings via its its direct interactions with target SM
particles/atoms in underground laboratories. Eventually, indirect methods search
for the final products of DM annihilation or decay (indirect searches may also include
searches for the impact of DM interactions with its environment - capture in stars or
planets, stellar evolution, etc., somewhat connected to direct searches). For example
one can search for an excess of gamma rays, cosmic rays or neutrinos over a con-
trolled background that could be induced as by-products of the DM annihilation into
SM particles (assuming that DM self-annihilates).

1.5.1 Particle collider searches

To find DM at colliders the generic method is to search in the detectors for an
excess of events with a single final particle or jet and an important amount of miss-
ing transverse energy /ET. Indeed at a proton-proton collider like the Large Hadron
Collider (LHC), if DM interacts with the SM we expect to have events of the form
pp→ X + DM where X is a single final state. Moreover, if these interactions are weak
DM should not be seen by the detectors and therefore they should escape without de-
positing energy (leaving missing energy in the reconstruction of the event). The search
is then dependant on the nature of the state X = γ,W, jets, Z, h, b, t, and it requires a
good reconstruction of the event and good control of the background. For instance in
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Figure 1.9 – Left panel: Compilation of exclusion limits at 90% of the spin-independent
WIMP-nucleon cross-section with respect to the DM mass. The neutrino floor is also repre-
sented. Figure taken from SCHUMANN (2019). Right panel: Compilation of constraints on the
axion-two-photons coupling with respect to the axion mass. The shaded areas show the reach
of future experiments. Figure taken from IRASTORZA et al. (2018).

the detectors ATLAS (ATLAS COLLABORATION 2013) and CMS (CMS COLLABORATION

2008) at the LHC, if X = γ one of the main background contamination comes from
events pp → Z(→ νν̄) + γ where the Z boson also escapes the detector. Selection cuts
in the kinematics of the analysed events are necessary to optimise the background
rejection. See a review in KAHLHOEFER (2017). As nothing has been detected so far,
only constraints (dependent on the nature of the interactions) are set on the couplings
between SM and DM particles. In the literature generic analysis are often performed
using effective operators (FOX et al. 2011; J. GOODMAN et al. 2011) or simplified
models (ABDALLAH et al. 2015; KRAML et al. 2017; ATLAS COLLABORATION 2019).
Eventually, see MIMASU et al. (2015) for a review of ALPs searches at colliders.

1.5.2 Direct searches

Direct searches are one of the most efficient ways to search for certain classes of
DM particles, especially WIMPs and axions. It has been shown however that building
detectors for sterile neutrinos would be excessively challenging (ANDO et al. 2010).
Let us divide the following discussion between the specific methods employed for
WIMPs and then for axions.

WIMP direct searches

In the WIMP scenario, DM interacts weakly with the SM particles which offers a
handle for detection using the scattering process χ+ SM→ χ+ SM. Such interactions
can be classified in two categories, whether their cross-section depends on the velocity
of the incoming particles or not. In the former case, direct detection prospects are
suppressed due to the low velocity of DM particles. Therefore velocity-independent
interactions are more efficiently probed with this technique. The goal of numerous
experiments is to detect the recoil of a target SM particle induced by such scattering.
Common methods relies on crystal targets such as DAMA/LIBRA (BERNABEI et al.
2018), EDELWEISS (ARNAUD et al. 2018), (Super)CDMS (AGNESE et al. 2018), CoGeNT
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(AALSETH et al. 2013), CRESST (ANGLOHER et al. 2012) or noble liquid time projection
chambers such as Xenon1T (APRILE et al. 2018), DarkSide-50 (AALSETH et al. 2018)
or LUX (AKERIB et al. 2017). See SCHUMANN (2019) for a review. Due to the low
expected event rate, background rejection is one of the hardest challenges for these
experiments. To face it, experimental collaborations use several shielding tools: they
usually place the detector underground and they only focus the search on a fiducial
part of the total detector material. Except for the DAMA result (that we discuss later),
no clear evidence of what could be a DM signal is found today with these methods.
Thus, the results are shown as upper bounds on the scattering cross-section, as
depicted in the left panel of Fig. 1.9. One still must be careful with these exclusion
limits having in mind that they depend both on the nature of the interaction (spin-
dependent or spin-independent), the nature of the recoiling particle (proton, neutron
or electron) and on the DM phase-space distribution around Earth that is not perfectly
constrained (M. W. GOODMAN et al. 1985; JUNGMAN et al. 1996; LEWIN et al. 1996;
GREEN 2010; CATENA et al. 2012; LAVALLE et al. 2015; LACROIX et al. 2018) – not to
mention the impact that subhalos in the vicinity of the Earth would have and that is
not considered as studied in IBARRA et al. (2019).

To give more details we write the expected event rate as

dR
dEr

= M

mN

ρχ
mχ

∫
d3v f⊕(v)v dσ

dEr
(1.18)

where M is the total target mass, mN the mass of the target nuclei and mχ the mass of
the DM particle. The function ρχ is the local DM density and f⊕ is the velocity distri-
bution of DM in the Earth-frame. It must be truncated from above since no particle in
the Galactic frame has a velocity over the escape velocity vesc

5. The scattering cross-
section is denoted σ, the velocity norm v = |v| and Er represents the recoil energy.
One can also trade the later variable for an angle as Er = µ2

Nv
2/mN(1− cos θ) with θ the

scattering angle in the centre of mass frame. Here we also introduced the reduced
mass µN = mNmχ/(mN + mχ). Then if we denote by Eth the minimal energy threshold
of the detector it imposes a minimal velocity vmin =

√
mNEth/2/µN of the incoming DM

particle in order to have detection. Furthermore one can generally decompose the
cross-section in a spin-independent and an spin-dependent part as follow

dσ
dEr

= mN

2µ2
Nv

2

[
σSIF

2
SI(Er) + σSDF

2
SD(Er)

]
(1.19)

where σSI and σSD are the cross-sections at zero momentum transfer and FSI and FSD
are the associated nuclear form factors that depend on the recoil energy (JUNGMAN

et al. 1996). One can usually consider that it is possible to decompose the cross-
section into several bits that go as

dσ
dEr

∝ vn with n = −2, 0 , (1.20)

so that the particle physics contribution to Eq. (1.18) is decoupled from the astro-
physics part that can be written, according to the velocity dependence as,

g(vmin) =
∫
v>vmin

d3v f⊕(v)
v

and h(vmin) =
∫
v>vmin

d3v f⊕(v)v . (1.21)

5In any case, a consistent phase-space distribution function should take that into account by being
zero at large velocity. Therefore, formally, the integral can go to infinity. Moreover, one could also be
sensitive to the tiny flux of high velocity unbound particle crossing the Galactic halo.
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Let us now discuss the DAMA exception. Because of the Earth rotation around
the Sun, and therefore in the local DM distribution, the total amount of detected
events should be annually modulated (DRUKIER et al. 1986; FREESE et al. 2013). The
DAMA collaboration claims to have detected a DM annual modulation of at least 9.5σ
(BERNABEI et al. 2018). The corresponding parameter space is shown as contour
plots in Fig. 1.9. However, this result is singular and in tension with the constraints
set by the other instruments. Today it is investigated by the collaborations SABRE
(ANTONELLO et al. 2019) and COSINE-100 (KO et al. 2019) – which has already ex-
cluded the discovery. Nonetheless, the origin of the DAMA excess, even if coming from
systematic or environmental effects, is yet to be explained.

Finally, let us mention that the direct detection experiments for WIMPs will soon
face the neutrino floor issue (BILLARD et al. 2014) shown in orange in Fig. 1.9. In
other words, they will reach the sensitivity threshold for neutrinos to become a
new part of the background, which is hard to reject. Proposals for distinguishing
DM events from neutrino ones are considered and could come from the annual
modulation and the preferred directionality of DM particle trajectories with respect
to the detector, even though it will remain a challenging experimental task. On the
other hand, probing the neutrino floor should also allow an alternative exploration of
the neutrino sector of the SM (BOEHM et al. 2019; BOEHM et al. 2020).

Axion-like particle direct searches

In the case of ALPs, they can also be probed via direct detection techniques –
see a review in IRASTORZA et al. (2018). Many of them are based on the Primakoff
effect: the conversion of axions into detectable photons in a strong magnetic field.
Some also use the axio-electric effect: the interaction of axions with electrons. This
should be possible due to the allowed coupling of the axion field to the electromag-
netic field tensor and to electrons,

L = −1
4gaγaFµνF̃

µν − gae
∂µa

2me
eγµγ5e (1.22)

where we introduce the couplings constants gaγ and gae that are the quantities probed
by the experiments. Today the ADMX collaboration (ASZTALOS et al. 2010), because
it has not detected axions in the Galactic halo, provides the best constraint on gaγ
on a restricted range of mass. In order to cover the entire parameter space available
to the QCD axion, other specific proposals for axion direct detection in the Galactic
halo with such haloscopes are either under development or have obtained prelim-
inary results. We can mention ABRACADABRA (KAHN et al. 2016; OUELLET et al.
2019), CASPEr (BUDKER et al. 2014) or MADMAX (MADMAX WORKING GROUP 2017).
Furthermore, one can probe axions that could be produced in the Sun from the Pri-
makoff effect (PRIMAKOFF 1951), which would lead to an axion flux originating from
the Sun. Helioscopes are designed to convert these axions back to photons by means
of intense magnetic fields, such as CAST (ARIK et al. 2014) or IAXO (ARMENGAUD

et al. 2014) to put constraints on gaγ on a larger mass range. See the summary
plot in the right panel of Fig. 1.9.

In addition, let us point out that the crystal-based detectors for WIMPs can also
be used to search for ALPs again based on the Primakoff effect, examples are EDEL-
WEISS (ARMENGAUD et al. 2013) and the DAMA instrument (BERNABEI et al. 2001).
The liquid gas detectors are not sensitive to that effect but they can probe the equiv-
alent of the photo-electric effect for axions (DEREVIANKO et al. 2010). Interestingly,
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Figure 1.10 – Compilation of the upper bound on the annihilation cross-section from gamma-
ray observations. Here the DM density distribution in the MW is assumed to follow an Einasto
profile (EINASTO et al. 1974) and the gamma-ray signal is produced through the bb channel.
This figure is taken from CTA CONSORTIUM (2020).

the Xenon1T collaboration has detected an electron recoil excess giving a 3.5σ signif-
icance to a solar-axion model (APRILE et al. 2020). However, this excess is sensitive
to the background modelling and and its interpretation in terms of axions may be in
tension with astrophysical observations as stated in DI LUZIO et al. (2020), so that
it should be investigated further.

1.5.3 Indirect searches

The spectrum of indirect searches is vast and we present here the principal ob-
servations setting the strongest constraints on the aforementioned DM candidates.
The method relies on the assumption that DM can self-annihilate or decay to produce
SM particles, which may be detectable (PROFUMO et al. 2010; LAVALLE et al. 2012;
CIRELLI 2013; GASKINS 2016; SLATYER 2017; PÉREZ DE LOS HEROS 2020). Therefore
the idea mainly involves astrophysical observation in search of an excess of signal
over a controlled background/foreground. Three different categories of SM targets
are mainly probed: gamma rays, neutrinos and cosmic rays. Indirect searches can
also rely on cosmological observables, such as the Sunyeav-Zeldovich effect (poorly
constraining (COLAFRANCESCO 2004; LAVALLE et al. 2010)) or the CMB (energy depo-
sition from annihilation or decay around recombination). In the following, we detail
the current status of the searches in each case. In the end, we also mention the
contribution of cosmology. As no DM signal has been unambiguously detected so far
constraints are usually set on the decay rates and on the annihilation cross-section.
In the most common scenarios, the latter appears in an average over the velocity
distribution which can be decomposed as follows:

〈σannv〉 = σ0c+ σ1c

〈
v2

rel
c2

〉
+O

(
v4

rel
c4

)
, (1.23)

where the first and second terms are respectively called the s-wave and p-wave terms.
The quantity c is the speed of light. Since in most astrophysical configurations DM is
non-relativistic, indirect probes are essentially sensitive to the velocity-independent
s-wave term. On the other hand, sensitivity to the p-wave term is usually much worse
and strongly depends on the DM velocity dispersion in the targeted system (for in-
stance, v ∼ 10−3 in the Milky Way today, while it was much smaller at recombination
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time). Therefore constraints on σ1 (for σ0 = 0) are usually weaker than the constraints
on σ0. Note, however, that more intricate velocity dependencies can also be encoun-
tered e.g. with Sommerfeld enhancement effects become relevant (HISANO et al. 2004;
CIRELLI et al. 2006; ARKANI-HAMED et al. 2009; IENGO 2009; CASSEL 2010).

Gamma-ray observations

Gamma rays produced by astrophysical sources are observed today by different in-
struments. Direct observation is only possible in space as the atmosphere is opaque
to photons in that energy range. The Fermi Large Area Telescope (Fermi-LAT) orbiting
the Earth has been operating since 2010 and has provided among the most complete
dataset in the energy range 0.1-100 GeV. It has a narrow point spread function (i.e.
resolution angle) of θr = 0.5◦ and a wide field of view ∼ 2.4 sr but its sensitivity de-
creases fast after 100 GeV. At higher energies, an improved sensitivity is obtained on
Earth by resorting to imaging atmosphere Cherenkov telescopes (IACTs), which ben-
efit from a much larger collection area (typical non-thermal gamma-ray fluxes fall off
like power laws with energy). As IACTs are ground-based they do not directly detect
individual photons but rather the particle shower produced by their interaction in the
atmosphere via the Cherenkov effect. The current instruments are H.E.S.S., MAGIC,
VERITAS and HAWC. In a few years, the Cherenkov Telescope Array (CTA) will be-
come the leading observatory (CTA CONSORTIUM 2019) using this technology. The
latter should have a good angular resolution θr ∼ 0.05◦, however as all IACTs, it will
have also a much narrower field of view (approximately a few tens of degrees squared).

In the past, special attention has been paid to the centre of the Galaxy. Indeed,
the mass density profile of DM in the MW should be the highest towards its cen-
tre, enhancing there a possible emission from DM annihilation. To illustrate this,
in the simplest scenario, the differential flux of photons coming from DM on a line
of sight in direction n̂ satisfies

dφDM→γ
dE (n̂) ∝ 〈σv〉

∫ +∞

0
ρ2

DM(s, n̂) ds (1.24)

with ρDM(s, n̂) the mass density of DM along the line of sight. Therefore the higher
the integral of ρDM(s, n̂) the more annihilation products can be seen (assuming a lo-
cal conversion to gamma rays). It turns out that an intense and diffuse gamma-ray
emission has been discovered in the Fermi-LAT data that is currently difficult to fully
interpret given the complex astrophysical environment close to the Galactic Centre.
Indeed, our current knowledge of the gas content, of the (regular and turbulent) mag-
netic field configuration, of conventional cosmic-ray sources or other cosmic-ray ac-
celeration mechanism, makes it extremely difficult to construct a reliable background
model. Using simple background models leads to finding excess of gamma-rays in
the GeV energy range (FERMI-LAT COLLABORATION 2017), but the relative amplitude
of this excess is largely at the level of current theoretical errors. This is illustrated
by the many explanations as for possible conventional contributions in this energy
range – e.g. from the galactic bulge emission (BARTELS et al. 2018; MACIAS et al.
2018) or millisecond pulsars (BARTELS et al. 2016). Another interpretation relies on a
DM annihilation signal (DAYLAN et al. 2016; LEANE et al. 2019; ZHONG et al. 2019),
but in the absence of a more robust background modeling, it can hardly be consid-
ered as serious hint for DM. We can note in passing that conventional astrophysical
emissions are much harder to calculate and to estimate as they often originate in
non-linear and complex phenomena. On the other hand, a DM annihilation signal
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prediction is simply the integral of a squared density along a line of sight. Recent
studies have shown no significance for a DM signal and have even used this to place
severe constraints on the DM annihilation cross-section (ABAZAJIAN et al. 2020). In
the future, the amount of millisecond pulsars around the Galactic centre could be
probed with gravitational wave detectors (CALORE et al. 2019b) to understand better
whether or not they are responsible for the excess.

Instead of focusing on the very centre of the Galaxy where the data interpretation
is complicated, it is also possible to look in surrounding patches of the sky, where the
DM emission is still strong. As no DM emission has been detected there so far, these
regions are used to set constraints on the DM annihilation cross-section (CIRELLI

et al. 2010; FERMI-LAT COLLABORATION 2012a; CHANG et al. 2018). Furthermore,
the constraints that CTA will be able to set, if no detection is made, have also been
forecast (LEFRANC et al. 2015; SILVERWOOD et al. 2015; CTA CONSORTIUM 2020) – see
Fig. 1.10. Other interesting targets are dwarf galaxies since they are background free.
In addition, they should be embedded into a DM subhalo where the annihilation of DM
particles should thus be enhanced. Constraints from dwarf spheroidal are amongst
the best current constraints on the DM annihilation cross-section in the range 1-
100 GeV (FERMI-LAT COLLABORATION 2015b). For similar reasons galaxy clusters are
interesting extragalactic targets because the biggest reservoirs of DM at hand (ANDO

et al. 2012). However, the intrinsic gamma-ray emission from these objects is however
not well known and subject to large uncertainties - not background-free sources like
dwarf galaxies. In complement to Fig. 1.10, constraints on decaying dark matter can
be found in e.g. CIRELLI et al. (2012).

Another set of analysis relies on DM structuring. A DM signal would trace its dis-
tribution and therefore impact the angular power spectrum of the gamma-ray flux.
MW subhalos can have an impact on the spatial distribution of the diffuse Galactic
gamma-ray emission (ANDO 2009). On larger scales DM structuring can also leave
an imprint on the extragalactic background (ANDO et al. 2006, 2007). In practice
both effects need to be combined. The measurement of the angular power spectrum
has been performed in ACKERMANN et al. (2012a) providing constraints on DM anni-
hilation (ANDO et al. 2013). Furthermore, inside individual objects such as the MW
or its satellites, the presence of substructures could also boost the DM annihilation
signal, imposing more stringent constraints or improving the hope for a detection
(STREF et al. 2017; ANDO et al. 2019). Eventually, in Chapter 5 a special focus will
be given to the detectability of point-like subhalo in the MW with the Fermi-LAT and
CTA instruments (BUCKLEY et al. 2010; PIERI et al. 2011; BERTONI et al. 2015; HÜTTEN

et al. 2016; CALORE et al. 2017, 2019a).

Cosmic-ray observations

Unlike gamma rays, cosmic rays do not travel in straight lines as they diffuse
on Galactic magnetic turbulences. Therefore, they do not trace the position of their
source. Nevertheless, antimatter cosmic rays remain a good probe for DM searches.
They have been observed by various instruments, the most important ones being
PAMELA, the Alpha Magnetic Spectrometer (AMS-02) installed on the International
Space Station (ISS) and ATIC, a balloon-borne instrument. The Fermi-LAT and IACTs
are also sensitive to cosmic rays. Moreover, cosmic rays are also observed by the Voy-
ager satellites that reached the outskirts of the solar system and left the heliopause.
Two major observations for DM have been discussed in the past decades, the positron
excess and the anti-proton excess.
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The instruments PAMELA, Fermi-LAT, AMS-02 and others have put in evidence a
rise in the positron fraction φe+/(φe+ +φe−) at energies higher than ∼ 10 GeV (ADRIANI

et al. 2009; FERMI-LAT COLLABORATION 2012b; AMS COLLABORATION 2013), that can-
not be interpreted in terms of a pure secondary contribution – produced from inelastic
interactions of cosmic-ray nuclei with the interstellar gas (MOSKALENKO et al. 1998;
DELAHAYE et al. 2009; LAVALLE 2011; BOUDAUD et al. 2017a). DM-induced interpre-
tations of this excess have been proposed, backed with compatible particle models
(TURNER et al. 1990; BALTZ et al. 2002; FOX et al. 2009; IBARRA et al. 2009; CUOCO

et al. 2017). However, a positron production from annihilating thermally produced
WIMP particles6 would have to be strongly boosted by the presence of local subha-
los in order to match the excess; to such an extent that is unlikely in the ΛCDM
model (LAVALLE et al. 2007, 2008; PIERI et al. 2011) – although this constraint can be
alleviated in specific scenarios with Sommerfeld enhancement for instance (CIRELLI

et al. 2008). In addition, it also has to be consistent with the non-observation of a
gamma-ray counterpart (BERTONE et al. 2009) and no overproduction of antiprotons
(see the next paragraph). Moreover, standard astrophysical explanations exist, which
significantly moderates the relevance of more exotic solutions. For instance, pulsars
are well-known sources of positrons, which could contribute a significant part, if not
all of the observed positron flux (HOOPER et al. 2009; PROFUMO 2009; SERPICO 2012;
YUAN et al. 2014; BOUDAUD et al. 2018b). Predictions of the cosmic-ray lepton flux
at high energy is also affected by a potentially large statistical variance since a small
number of sources might dominate the yield in a rather restricted high-energy range
(SHEN 1970; AHARONIAN et al. 1995; DELAHAYE et al. 2010).

Several studies have also performed statistical analysis of the antiproton flux data
from AMS-02 and have found an excess that seems to be in agreement with a DM
sourced production (CHOLIS et al. 2019; CUOCO et al. 2019). This is particularly
intriguing because simply by knowing the cosmic ray flux in the Galaxy and the bary-
onic matter distribution one can compute the expected background of antiprotons.
However, the discovery of an excess by performing fits on the data may be a biased
result, especially because uncertainties in the models are large. Indeed, the pro-
duction cross-section of antiproton is known to roughly 20% not forgetting to men-
tion their propagation that is non-trivial to predict. As a matter of fact, a careful
treatment of the data shows that they are fully consistent with a pure astrophysi-
cal origin (BOUDAUD et al. 2020). The presence of a DM-induced component could
be tested more robustly in the future with the analysis of other antimatter cosmic-
ray nuclei (KORSMEIER et al. 2018).

Eventually, the Voyager space probes, because they are no longer under the in-
fluence of the solar system magnetic field, can capture cosmic rays with sub-GeV
energy and therefore set constraints on DM with a mass in the MeV range, provid-
ing a probe of s-wave annihilation complementary to the CMB. Besides, the p-wave
constraints are even more stringent than the CMB bounds (BOUDAUD et al. 2017b,
2018a). Interestingly, the Voyager measurements can also constrain evaporating light
PBHs (BOUDAUD et al. 2019).

Neutrino observations

Reviews on the implication of neutrino observation for DM can be found in
JUNGMAN et al. (1996) and LAVALLE et al. (2012). Similarly to photons, neutrinos

6Assuming the s-wave cross-section 〈σannv〉 = σ0c ∼ 3× 10−26 cm3 s−1, the typical value to obtain the
correct abundance of DM in the Universe through the standard freeze-out mechanism – see Sect. 2.3.3.
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travel in straight lines and trace the position of their source. However, they have
a very low cross-sections therefore, assuming that the typical flux of high-energy
neutrinos is similar to that of gamma rays, the expected event rate is comparatively
very small. To get a sensitivity similar to that of gamma-ray telescope, one should
scale the detection area by a factor ∼ σT/GF ' 108, where σT is the Thomson cross
section, and GF is the Fermi constant (the Fermi-LAT satellite has an effective
detection area of ∼ 1 m2). This explains why neutrino telescopes need a huge
detection volume to hope for detection of cosmic neutrinos. Neutrino telescopes
are usually made of photomultipliers immersed under water or ice. The principle
of cosmic neutrino detection mostly relies on the detection of their parent charged
leptons, after electroweak conversion close to the detector, from the associated
Cherenkov showers developing in water or ice. The current observatories are
IceCube at the South Pole (ICECUBE COLLABORATION 2006), ANTARES in the
Mediterranean sea (ANTARES COLLABORATION 2011), Super-Kamiokande (FUKUDA

et al. 2003) and the Baikal-GVD (BAIKAL-GVD COLLABORATION 2019). KM3NET
(KATZ 2006), successor of ANTARES is being built and since its starting up in 2010
IceCube has been (and will be further) upgraded to improve its sensitivity (ICECUBE

COLLABORATION 2012; ROTT 2013). The minimal energy threshold goes from ∼ 5
MeV in Super-Kamiokande to ∼ 10 or 100 GeV in IceCube.

The first way to search for DM particles with neutrinos is via their possible pro-
duction in the Galactic halo and, as for gamma rays, towards the Galactic centre
(ICECUBE COLLABORATION 2011, 2013b). Another interesting method is to search for
DM in the centre of the Sun or the Earth. Indeed owing to possible interactions
with the elements making the Sun or the Earth, DM particles can be gravitationally
captured and can accumulate in their centres. If DM self-annihilates in these dense
regions neutrinos are the only SM products that escapes and can be detected. In
the Sun, the capture rate of DM gets equilibrated by the annihilation rate in most
of the relevant parameter space within a timescale shorter than the Sun’s age (evap-
oration becomes sizable only for masses . 5 GeV), such that the DM particle pop-
ulation remains constant. The neutrino flux can therefore be predicted from the
capture rate only, which is fixed by scattering interactions. This is why DM-induced
solar neutrino searches are complementary with direct detection searches, and are
expressed in the same parameter space (scattering cross section vs. mass). The cap-
ture rate depends on the spin-independent and spin-dependant terms of the cross-
section with the elements it contains. As it is dominantly composed of hydrogen, solar
observations are efficient to constrain the spin-dependent part (SUPER-KAMIOKANDE

COLLABORATION 2011; ICECUBE COLLABORATION 2013a). In the case of the Earth,
equilibrium cannot be assumed but its composition being mostly of spin-0 nuclei, it
is a better target for spin-independent interactions (MIJAKOWSKI et al. 2020). Even-
tually, the IceCube collaboration has recorded very high-energy events (AARTSEN et
al. 2014) that might be interpreted as DM particles with the mass in the PeV range
(ESMAILI et al. 2015; MURASE et al. 2015) – even though other astrophysical expla-
nations have been proposed. However, so far the statistics is too low to properly
identify the origin of the events.

Cosmological probes

We have seen that cosmological observations have been decisive to confirm the
missing mass problem from its gravitational effects on large scales. In practice, DM
particle interactions with the SM particles (through decay, annihilation or scattering)
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Figure 1.11 – Representation of the outline of this work.

would exchange energy with the photon bath and leave imprints on the temperature
and polarisation power spectra or on the frequency spectrum of the CMB (SALATI

1985; SLATYER et al. 2009; ALI-HAÏMOUD et al. 2015; SLATYER 2015; SLATYER et al.
2016). Moreover, they can also contribute extra-ionisation during the reionisation
epoch (LIU et al. 2016) – when the hydrogen gas is ionised by the radiation emitted
by the first stars and galaxies. The presence of the large ` peaks sets constraints on
DM interactions with photons and neutrinos (BOEHM et al. 2001; BOEHM et al. 2002;
BOEHM et al. 2005; WILKINSON et al. 2016). In order to probe the Universe in the dark
ages (before the formation of the first stars) down to the end of the reionisation epoch,
a promising observation is that of the brightness temperature of the hydrogen atom 21
cm line (FURLANETTO et al. 2006). As DM annihilation or decay could impact on this
21 cm signal, it will be of particular interest for DM searches (LOPEZ-HONOREZ et al.
2016; LIU et al. 2018; SCHNEIDER et al. 2020) with observations provided by various
instruments (BOWMAN et al. 2010; PARSONS et al. 2010; PACIGA et al. 2011; BURNS et
al. 2012; GREENHILL et al. 2012; HAARLEM et al. 2013; MELLEMA et al. 2013; TINGAY

et al. 2013). BBN can also be another way to set complementary constraints and test
the validity of scenarios (SERPICO et al. 2004; WILKINSON et al. 2016). Eventually,
the abundance of DM measured today provides by itself one of the most stringent
cosmological constraints on particle models, both on their interactions with standard
matter and their total annihilation cross section – for thermal production scenarios
– (LEE et al. 1977; VYSOTSKII et al. 1977; STEIGMAN 1979; BINÉTRUY et al. 1984;
BERNSTEIN et al. 1985; STEIGMAN et al. 2012).

1.6 Summary and outline

One often says that the problem of DM first appeared for the first time in 1933.
The astrophysicist Fritz Zwicky was then interested in the Coma galaxy cluster and he
discovered that the measured velocity dispersion of galaxies inside exceeded severely
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the velocity dispersion inferred from Newtonian’s dynamics with an estimation of the
total mass made from all the visible matter. He then concluded on the possible pres-
ence of an invisible non-luminous matter, the DM, inside the cluster, enhancing by two
orders of magnitudes its total mass to solve the issue (ZWICKY 1933, 1937). Although
this was the first observational appearance of DM, this discovery did not receive much
credit because most astrophysicists were concerned by the measurement errors. The
issue drew even more attention in the 1970s in part due to Vera Rubin, Kent Ford
and others who measured the velocity of stars in spiral galaxies and discovered that
once again, one needed an additional dark and massive component to make physical
sense of the kinematic observations of galactic scales: stars on the outer arms gener-
ically had higher velocities than expected (RUBIN et al. 1970). Today we know that
introducing an effective exotic (non-standard) cold and collisionless DM component,
whatever it really be (modification of gravity or new form of particles or matter), is
necessary to explain many more cosmological and astrophysical observations such as
the inhomogeneities in the CMB (Planck18, SPERGEL et al. 2003), BBN, the formation
of structures such as galaxies and cluster of galaxies (HAWKINS et al. 2003), gravi-
tational lensing effects (CLOWE et al. 2006) etc. No known form of matter could play
the role of DM (e.g. the BBN and CMB constraints): it has to be an (or several) exotic
species or a new degree of freedom of a more fundamental theory of gravity. The to-
tal rough evolution of the Universe is best described today by a simple model, called
ΛCDM, whose main components are dark energy and a specific class of DM candi-
dates identified as cold dark matter (CDM). In the end, there is now little doubt on
its existence and understanding its nature is an important challenge, a key to better
understand the dynamics, full content, and origin of our Universe

There are two possibilities to tackle the DM problem. The first one is to state that
Einstein’s law of gravitation is not valid on large length scales and should be modified
or replaced. With this point of view, DM does not exist and our misunderstanding
of gravity itself is the cause of all the anomalous observations. However, finding an
accurate and physically acceptable modification is a real challenge. One could
mention for instance the empirical proposal MOND (for MOdified Newtonian Dy-
namics) (MILGROM 1983) that relies on this eventuality but whose "covariantisation"
remains a very challenging task or needs the introduction of DM as new degrees of
freedom (FAMAEY et al. 2012). Several interesting attempts are still ongoing (SKORDIS

et al. 2020). The second way to think of this problem is to introduce DM as new
massive particles: "non-baryonic particles". They could be particles predicted by SM
extensions: supersymmetry, Kaluza-Klein theories, string theory, etc, or particles
introduced to solve more specific problems like axions or massive neutrinos. Not to
forget that DM could also be made of other exotic, while macroscopic, objects, like
primordial black holes (B. J. CARR et al. 1974; CHAPLINE 1975; B. CARR et al. 2016).
Today DM particles are actively searched through different strategies, exemplified by
a series of experiments or observational programs, e.g.: EDELWEISS (BENOIT et al.
2002; ARNAUD et al. 2018), CDMS (AALSETH et al. 2011)/SuperCDMS AGNESE et al.
2014, XENON1T (APRILE et al. 2018, 2020), AMS02, Gaia (THE GAIA COLLABORATION

2016; GAIA COLLABORATION 2018), Fermi-LAT (W. B. ATWOOD et al. 2009), etc. Direct
detection experiments try to find DM through its direct interaction with classical SM
matter, assuming that such an interaction exists. Indirect detection goal is to find
by-products of DM-DM or DM-SM interactions anywhere in the Universe or their
imprint on cosmological observables (such as photons or cosmic ray emissions that
could only be sourced by the presence of DM). Eventually, the hope at colliders is to
produce DM particles from the SM particle interactions and identify their presence
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as the missing energy they carried out of the detectors with them.

While the CDM paradigm seems to be the best model to explain most current data,
some tensions arose in the last decades, in particular at the galactic scale and be-
low, then referred to as the small scale issues. Analysing the causes and possible
solutions to these issues might be key in a deeper understanding of the nature of
DM. On the other hand, since baryonic physics remains a potential clue, precisely
determining the properties of CDM candidates on small scales and the related impact
on DM searches, is an important step that must be studied in parallel. For instance,
the (gravitational) detection of DM subhalos would not only confirm that a signifi-
cant part of DM is cold, but it would also provide indications as for the interaction
properties of DM particles. Therefore, having a precise understanding of features that
single out CDM from other proposals, like the presence of abundant populations of
subhalos in galaxies and clusters, is important to really test CDM through its inti-
mate properties. This thesis develops in this context and addresses tightly related
questions. The main goal is to understand, from first principles and without relying
a priori on cosmological simulations, how dark matter (sub)halos are distributed in
the Universe and what they can tell us about the DM particle nature. The different
parts are centred around an analytical model for the description of the fine struc-
ture of DM that had been optimised to describe the DM distribution in the MW, with
an unprecedented level of details (STREF 2018) – hereafter denoted SL17. It is based
on a statistical description of the ensemble of all subhalos and it encompasses all
the structures from the largest to the smallest down to ∼ 10−12 M� in some scenar-
ios (a resolution orders of magnitude beyond the reach of cosmological simulations
– SPRINGEL et al. 2008). It is constructed on an initial (also said cosmological) dis-
tribution assuming hard-sphere substructures following the total DM profile of the
host. Based on consistent modelling of the different dynamical effects, subhalos are
then pruned by tidal stripping and destroyed when becoming too weakly bounded.
This model, fully described in Chapter 4, has been a motivation to explore various
domains of theoretical high-energy physics at the crossroad between cosmology, par-
ticle physics, astrophysics and gravitational dynamics.

After this general introduction on DM, the rest of the document is divided into
four other chapters following a chronological order in terms of the DM history and
represented in Fig. 1.11. In Chapter 2, I study the physics of DM particles in the
early Universe assuming DM is made of WIMPs equipped with a minimal set of in-
teractions with SM particles, and I systematically link the particle physics properties
to the kinetic decoupling temperature which is itself related to the minimal subhalo
mass. In Chapter 3, I address the formation of DM structures and the derivation
of the cosmological mass function for the subhalo population. In Chapter 4, I show
how to implement a new dynamical effect in the semi-analytical subhalo model: the
encounters with individual stars. Eventually, in Chapter 5, I discuss the possibil-
ity for subhalos in the MW to be detected as point-like sources of gamma rays with
the Fermi-LAT and CTA instruments.





II

Halo minimal mass in a simplified
particle physics model

“Chacun trouvait un terme pour désigner l’unité. Chacun affûta ses
poignards pour zigouiller son contradicteur. Toutes ces positions signifiaient
la même chose : dans l’espace-temps ondulait une singularité première. Une
explosion la libéra. Alors, l’inétendu s’étendit, l’inéfafable connut le
décompte, l’immuable s’articula, l’indifférencié prit des visages multiples,
l’obscur s’illumina. Ce fut la rupture. Fin de l’Unicité !”

Sylvain Tesson, La panthère des neiges
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The evolution of the Universe is known to be influenced by the microscopic be-
haviour of its particle content. In a scenario where DM particles are thermally pro-
duced in the early Universe through their interactions with the SM particles, the
strength of the creation processes is particularly important as it fixes the total DM
abundance measured today (I. B. ZELDOVICH et al. 1975; LEE et al. 1977; BINÉTRUY

et al. 1984; SREDNICKI et al. 1988; GONDOLO et al. 1991; GRIEST et al. 1991). The re-
lation between particle models and the quantity of DM measured is then determined
by their chemical decoupling (BRINGMANN et al. 2007). Besides, the same interac-
tions also fix a small scale cut-off for the mass of halos at formation, because of
DM kinetic decoupling (BOEHM et al. 2005; GREEN et al. 2005; BERTSCHINGER 2006),
as it will be explained in Chapter 3. In the CDM paradigm, the minimal mass can
be as low as ∼ 10−12 M� (BRINGMANN 2009), in which case all large DM structures
should be populated with a substantial number of subhalos (V. BEREZINSKY et al.
2003). The Galactic halo does not break the rule; a statistical description of the
subhalo population in the MW is given in Chapter 4 by the SL17 model. There, the
minimal halo mass is a free input parameter. In this chapter, we then address the
question: What is a realistic value expected in a simplified WIMP model? The aim
is twofold. Firstly, we want to classify a set of generic interactions by extracting the
relevant behaviour that impacts the minimal mass of halos. We focus particularly on
the velocity dependence of the cross-sections involved in the different interactions.
Secondly, combined with the SL17 model, the long term goal of this study would be
able to produce consistent forecasts for detection experiments, where the microscopic
behaviour of DM impacts both the structuring in the MW and its signatures. Along
this way, we pay specific attention to constraining this simplified particle model to
correctly predict the observed DM abundance. In addition, we also look at the im-
portance of a possible DM self-interaction.

Because no beyond the standard model theories have been confirmed experimen-
tally yet, simplified models are currently flourishing (ABDALLAH et al. 2015; KRAML

et al. 2017; ARINA 2018; ATLAS COLLABORATION 2019). If defining a UV complete
theory and examining its phenomenological implications can be called a top-down
approach, one then talks about bottom-up studies for simplified models. Neverthe-
less, we can exactly relate them to specific models without integrating out degrees of
freedom (as necessary with high-dimensional effective field theory operators). An ex-
ample is given in the conclusion of this chapter with the CP-odd sector of the NMSSM
(DOMINGO 2017). In other words, simplified models can be seen as a tool to efficiently
probe a large generic parameter space. Our contribution is thus, more specifically, to
create a dictionary that relates a simplified particle model to the subhalo distribution
in the MW (or other objects). Mapping a complex model to our simplified model, one
can then infer some of the structuring properties of DM and the impact on detection
experiments where the fine-grained structuring may play a role.

This chapter does not enter immediately into the details of the chemical and
kinetic decoupling in a simplified particle model. It develops linearly. In Sect. 2.1
we introduce the mathematical aspects of the ΛCDM model. Then, in Sect. 2.2, we
focus our attention on the description of the particle content of the Universe in terms
of phase-space distributions: we review the definition of the phase-space function
and its evolution rules by the Boltzmann equation. The next section, Sect. 2.3,
dives into the thermodynamics of the early Universe and gives some first details
on the WIMP history. It is followed by Sect. 2.4 that summarises the state of the
art around the resolution of chemical and kinetic decouplings and shows how we
implemented the master equations in our numerical codes. Eventually, the key
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section Sect. 2.5, specifies the simplified model and, using all the aforementioned
tools, shows specific examples of its link with the minimal halo mass. Eventually,
we conclude and discuss our results, the possible improvements and the impact in
terms of observations and constraints.

Unless mentioned otherwise, we use the natural units ~ = c = kB = 1 in the rest of
the document. Moreover, Einstein’s summation rules are implicit and Greek indices
run from 0 to 3 while Latin indices run from 1 to 3. Metric signature is chosen to
be mostly negative (+,−,−,−). Note that some of the references cited in this chap-
ter use the opposite signature and convention for indices. In addition, some also
place the time component at the end making the Latin indices (or Greek in the op-
posite case) go from 0 to 3.

2.1 The mathematics of the expanding Universe

In this section the basics of Einstein’s general relativity are introduced with the
point of view of the action formalism, summarizing the extensive development done in
the appendices of WALD (1984) – hereafter refereed to as W84. The main objective here
is not to enter into high levels of technicality that differential geometry induces but
rather to establish the notations and the main equations that are needed to properly
introduce the description of a Universe where general relativity is the valid theory of
gravity at all length scales. Eventually, we mention a few words about inflation, a
period taking place before the standard picture of ΛCDM, which solves some of its
caveats and sets its initial conditions.

2.1.1 A few words on general relativity

In the theory of general relativity, space-time (the fabric of the Universe) is de-
scribed by a 4 dimensional pseudo-Riemannian manifold (M, gµν). On this manifold it
is possible to define a natural volume element, that can be written, in a right handed
coordinate basis (c.f. W84, Appendix B) as

ζ =
√
−g
4! εµνρσ dxµ ∧ dxν ∧ dxρ ∧ dxσ =

√
−g dx0 ∧ dx1 ∧ dx2 ∧ dx3 (2.1)

where g = det(gµν) and εµνρσ is the permutation symbol such that ε0123 = +1. It
is also common to define the volume form as the Hodge dual of the 0-form 1 i.e.
ζ = ?(1). Because this expression is dependent on the metric, it is also convenient to
use another 4-form ζ ′ defined by ζ =

√
−g ζ ′. Then every component of the Universe

and space-time itself is determined by the action

S [gµν , {ψi}i] = SG [gµν ] + SM [gµν , {ψi}i] (2.2)

where SG is the action for the metric and SM is the matter action dictating the be-
haviour of fields {ψi}i making the content of the Universe. More precisely, space-time
is driven by the Einstein-Hilbert action defined as

SG [gµν ] ≡ 1
16πGN

∫ √
−g (R− 2Λ) ζ ′ (2.3)

where Λ is a constant called the cosmological constant and R is the Ricci scalar built
as the trace of the Ricci tensor R = gµνRµν. The latter quantity is directly linked to the
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metric via the connection Γρµν given by the Christoffel symbol,

Rµν ≡ ∂ρΓρνµ − ∂νΓρρµ + ΓρρλΓλνµ − ΓρνλΓλρµ

with Γρµν = 1
2g

ρλ {∂µgλν + ∂νgµλ − ∂λgµν} .
(2.4)

In addition, the matter action SM is defined from the matter Lagrangian density
LM [{ψi}i] according to

SM [gµν , {ψi}i] ≡
1

16πGN

∫ √
−gLM [{ψi}i] ζ ′ . (2.5)

From the least action principle, S is to be minimised with respect to the metric field
in order to obtain the gravitational equation of motion, i.e. δS/δgµν = 0. Defining the
stress-energy tensor Tµν as the response of matter with respect to the modification of
space-time (or more precisely to the change of the metric) as follows

Tµν ≡ −
2√
−g

δ (
√
−gLM)
δgµν

= −2δLM
δgµν

+ gµνLM (2.6)

after computations (and up to minor troubles due to boundary conditions that can be
overcome by a redefinition of SG, c.f. W84) it yields the Einstein equation{

Gµν ≡ Rµν −
1
2Rgµν

}
+ Λgµν = 8πGNTµν , (2.7)

where Gµν is called the Einstein tensor. The space-time deformation is encoded in the
left hand side while the content behaviour is described by the right hand side and this
equation shows their interplay. Note that a common notation to describe the metric
is to write down the invariant length element ds2 in (M, gµν),

ds2 ≡ gµνdxµdxν . (2.8)

Eventually, to complete this section let us mention the conservation of the stress-
energy tensor. It is usually derived using the fact that the Riemann tensor satisfies
the Bianchi identity. However, in order to keep on with the action framework let us
summarise the proof done in (W84, appendix E) and show that it is a consequence of
the diffeomorphism invariance of the matter action. Indeed, in order for the theory
to be physical it must not depend on the choice of coordinate used and therefore SG
and SM must be independent under the action of any diffeomorphism. In particular,
consider a specific one-parameter family of diffeomorphism fλ. Then the following
identities must be satisfied

0 = dSG
dλ =

∫
δSG
δgµν

δgµν and 0 = dSM
dλ =

∫
δSM
δgµν

δgµν +
∑
i

∫
δSM
δψi

δψi . (2.9)

where δgµν = dgµν/dλ and δψi = dψi/dλ. Introducing Lv, the Lie derivative with respect
to any given vector field v in the tangent bundle of M denoted TM, it can be proven
that δgµν = Lv(gµν) = ∇µvν +∇νvµ with ∇ representing the covariant derivative. More-
over, if all ψi satisfy the equation of motion, then δSM/δψi = 0. Therefore, using the
definitions of the Einstein tensor and of the stress-energy tensor in Eq. (2.6) it yields∫

(∇µGµν)vν ζ = 0 and
∫

(∇µTµν)vν ζ = 0 ∀v ∈ TM . (2.10)
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Because the equality is true for all vectors in the tangent bundle it implies the usual
contracted Bianchi identity and the associated stress-energy conservation

∇µGµν = 0 and ∇µTµν = 0 (2.11)

where we used the fact that the connection used is specified by ∇µgαβ = 0. Now, let us
see in the next subsection, how all these notions are used to describe an homogeneous
and isotropic universe with the Friedman-Lemaitre-Robertson-Walker metric.

2.1.2 The Friedman-Lemaitre-Robertson-Walker Universe

If we assume that the Universe is globally homogeneous and isotropic, a solution
for the left hand side of the Einstein equation applied to the system Universe as a whole
is of the form given by the Friedman-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = dt2 − a2
(

dr2

1−Kr2 + r2dΩ2
)
, (2.12)

with K the curvature with dimension length−2 whose sign determines the geometry:
K > 0 (spherical), K < 0 (hyperbolic), K = 0 (flat). The dimensionless coefficient a is
called the scale factor. Here we used the coordinate system (t, r, θ, ψ) where t is the called
the cosmic time and (r, θ, ψ) are the usual spherical Euclidean spatial coordinates so
that dΩ2 = dθ2 + sin2 θdψ2. A common notation is also to define dχ = dr/(1 − Kr2)1/2

where χ is called the comoving distance. Using Cartesian spatial coordinates this
metric can also be written ds2 = dt2−a2γijdxidxj where γij reduces to the 3D Euclidean
metric when K = 0. Another classic parametrisation introduces the conformal time
η, related to the cosmic time through adη = dt, such that

ds2 = a2
(

dη2 − dr2

1−Kr2 + r2dΩ2
)
. (2.13)

Under these symmetry assumptions, the stress-energy tensor on the right-hand
side of Eq. (2.7) is also constrained and takes the form of the perfect fluid tensor
– see (S. WEINBERG 1972; W84) for more details – that is of a fluid with no heat
conduction and no stress due to viscosity,

Tµν = (ρ+ P )uµuν − Pgµν , (2.14)

where ρ is the energy density of the fluid and P its pressure. Notice that both of these
quantities depend only on t (or equivalently η). We also introduced the four-velocity
of the fluid particles defined by uµ ≡ dxµ/dλ on a geodesic described with the affine
parameter λ. For an observer in the frame of the fluid, i.e. such that ui = 0, it possible
to write the stress-energy tensor in matrix notation,

Tµν =


ρ 0 0 0
0 −P 0 0
0 0 −P 0
0 0 0 −P

 . (2.15)

In the case of several perfect fluids making the Universe, the total energy tensor is the
sum of the energy tensors Tµνi of the different species tagged by the letter i,

Tµν =
∑
i

Tµνi which implies ρ =
∑
i

ρi and P =
∑
i

Pi . (2.16)
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It is common to describe the evolution of the Universe using the Hubble parameter H
and the conformal Hubble parameter H respectively defined as

H ≡ 1
a

{
ȧ ≡ da

dt

}
and H ≡ 1

a

{
a′ ≡ da

dη

}
. (2.17)

Note that, in our notations, a dot (resp. a prime) over a quantity denotes its deriva-
tive with respect to the cosmic time t (resp. conformal time η). By definition of the
conformal time, these two quantities are related by H = aH. Consequently, Einstein’s
equation reduces to the Friedmann equations,

H2 = 8πGN
3 ρ+ Λ

3 −
K

a2 and Ḣ +H2 = −4πGN
3 (ρ+ 3P ) + Λ

3 . (2.18)

From these expressions one can define an energy density for the cosmological con-
stant ρΛ = Λ/(8πGN) and for the scalar curvature ρK = −3K/(8πGNa

2) as well as a
pressure term pΛ = −ρΛ. In cosmology it is usual to work with abundances which
represent the proportion of each species (including the cosmological constant and the
curvature as species) in the Universe

Ωi ≡
{ 1
ρc
≡ 8πGN

3H2

}
ρi so that ΩK + ΩΛ +

∑
i

Ωi = 1 , (2.19)

thanks to the first equation of Friedmann and with ρc the critical density. In addition,
if the three components are assumed to be non interacting (except than gravitation-
ally), the ν = 0 equation of conservation for the stress-energy tensor in Eq. (2.11) can
be applied individually to each species and it describes the evolution of the different
energy densities with time according to

ρ̇i = −3H(ρi + Pi) . (2.20)

In what follows we assume no overall curvature, i.e. K = 0. As seen in Sect. 1.2.2,
the CMB data point towards a Universe separable into three main general species:
radiation (made of relativistic particles), matter (made of non-relativistic matter, i.e.
CDM and baryons after recombination) and a cosmological constant Λ or a dark en-
ergy fluid. For each of these three components it is possible to define a constant
equation of state as

w = P/ρ (2.21)

that are wr = 1/3 (for radiation), wm = 0 (for matter) and wΛ = −1 for the cosmolog-
ical constant. While the value for wΛ can directly been inferred from the definition
of ρΛ and pΛ, in the case of the radiation and matter a proof is given by Eq. (2.84)
and Eq. (2.85). For a constant equation of state, Eq. (2.20) then yields a relation
between ρ and the scale factor

ρ(t) = ρ(tp)
(
a(t)
a(tp)

)−3(1+w)

(2.22)

with tp a reference point in time. A common notation is to tag by a 0 all quantities
evaluated today and to set (without any loss of generality) a(t0) = 1. Therefore, when
applied to the three different components, it gives

ρr = ρr,0a
−4, ρm = ρm,0a

−3 and ρΛ = cst. (2.23)
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Because the Universe has had a continuous expansion from a = 0 (what is commonly
called the Big Bang) to a = a0 = 1 today, at a very early time it was necessarily
dominated by radiation. Then, with the increase of the scale factor, since data shows
that ρ4

m,0ρ
−3
r,0 > ρΛ, it was followed by a period of matter domination and since ρΛ > ρm,0

we are today in a period of cosmological constant domination. Let us insist on the
fact that the instant a = 0 is fictitious and cannot be described without a theory of
quantum gravity, therefore we only consider this point as a theoretical reference.

In cosmology it is also usual to parametrize time by the cosmological redshift z(t) =
a−1(t) − 1. The name redshift comes from the fact that it describes the factor by which
the frequency of a geodesically propagating photon that was emitted at a time t and
received today has shifted to a larger wavelengths because of expansion. The first
Friedmann equation gives the evolution of H with the redshift

H(z) = H0
√

Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + ΩΛ,0 , (2.24)

where H0 = H(z = 0), and the different abundances vary according to

Ωi(z) = Ωi,0(1 + z)3(1+wi)
(
H0
H(z)

)2
. (2.25)

Eventually, the cosmic time and the redshift are related via dt = da/ȧ. It yields

t0 − t =
∫ z

0
dz′ 1

(1 + z′)H(z′) (2.26)

where we recall that t0 is the time today. In Fig. 2.1 we represent the evolution of
H and of the different abundances with respect to the redshift z. The three differ-
ent stages of the Universe evolution characterised by the domination of radiation,
matter and then cosmological constant are visible in the left panel. The redshift of
equivalence between matter and radiation is introduced as zeq ≡ Ωm,0/Ωr,0 − 1. It de-
fines the redshift at which the abundancies of matter and radiation are the same,
at the transition between the radiation-dominated era and the matter-dominated era
(where the blue and red lines cross).

2.1.3 A few words on inflation

Several observations point towards the presence of an inflationary stage (of
accelerated expansion such that ä > 0) at the beginning of the Universe, a stage
which is implicitly assumed when introducing the standard cosmological ΛCDM
model. Let us mention a few of the hints and describe briefly with a simple model its
main features.

The first major issue is the apparent homogeneity of the temperature in the CMB.
Indeed, at the time of last-scattering, when CMB was emitted, the size of a causally
connected region then, corresponds to a patch of size ∼ 1◦ in the sky today. Hence-
forth, there is no reason, a priori, for two points separated by an angle larger than
∼ 1◦ to source the emission of a nearly-perfect black body with the same temper-
ature TCMB at a precision of δTCMB/TCMB ∼ 10−5. Introducing an early inflationary
stage solves this problem by causally connecting the entire sky before the start of
the standard cosmology regime. The second issue, that we are going to focus on, as
an example, is the flatness problem. As detailed previously, the CMB data favour a
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Figure 2.1 – Left panel: Evolution of the abundances with the redshift. Right panel : Late
time evolution of the Hubble parameter with the redshift. These two figures have been made
using the Planck18 cosmology.

model with ΩK = 0, however, it is possible to derive a differential equation for the
evolution of ΩK assuming ΩΛ = 0

dΩK

dt = 2ΩKH (ε− 1) (2.27)

where ε = −Ḣ/H2 = 1− ä/ȧ2. There are not specific physically well-motivated reasons,
a priori, for ΩK to be equal to 0 as an initial condition. In standard cosmology,
ε = 3(1 + w)/2 and since w > 0 for radiation and matter, ΩK should then increase up
to today and has all the chances to be larger than the constraint ΩK,0 = 0.0007+0.0037

−0.0037
(95% confidence level interval – see Planck18) if the initial value is not fined tuned.
Now, let us assume that we have a period of accelerated expansion in the very
early universe. During that period ε < 1 and ΩK is a decreasing function of time.
Consequently, even if ΩK was a priori arbitrary, assuming sufficiently long inflation,
it may have had time to become extremely small before entering the radiation era. In
other words, this process gives a physical dynamical explanation for the smallness of
ΩK as measured today without requiring a fine-tuning of the initial conditions. One
could remark that the most efficient configuration corresponds to ε = 0, nevertheless,
that would impose H = cst. and give the Universe a stable de Sitter geometry and a
never-ending accelerated expansion. Therefore we need to have 1 > ε > 0. One can
then wonder about the time necessary for inflation to match all the constraints. This
time is parametrized by N = ln(a(te)/a(ti)) and referred to as the number of e-folds
where te and ti are the cosmic times a the end and start of inflation respectively. The
value of N is constrained to be larger than ∼ 50 (THE PLANCK COLLABORATION 2020).

A simple model for inflation is driven by a single scalar field φ called the inflaton,
that minimally couples to gravity through the matter action given by

SM = −
∫ [1

2g
µν∂µφ∂νφ+ V (φ)

]
ζ (2.28)

where V (φ) is the inflaton potential and ζ the volume form defined in Eq. (2.1). In
an homogenous and isotropic universe, for the FLRW metric, the stress energy tensor
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and the equation of motion for this field yield

ρφ = φ̇2

2 + V (φ) and pφ = φ̇2

2 − V (φ), (2.29)

φ̈+ 3Hφ̇+ dV (φ)
dφ = 0 and H2 = 8πGN

3

[
φ̇2

2 + V (φ)
]

(2.30)

where ρφ and pφ are respectively the energy density and pressure of the field.
The parameter ε introduced above in the differential equation for ΩK can be
written here under the form

εφ = 3φ̇2

φ̇2 + 2V (φ)
(2.31)

and εφ ∼ 0, as required to have an accelerated expansion, only if φ̇2 � V (φ). If we
also require that φ̈ � Hφ̇, these two constraints form the slow roll conditions for the
field φ. They are essentially equivalent to impose that the potential at the initial value
of φ is flat and that the field rolls slowly from its initial position towards a minimum
of V . The parameter εφ is referred to as the slow roll parameter. The end of inflation
happens at εφ ∼ 1 when the inflaton eventually goes all the way down the potential
and gains enough kinetic energy. If we assume that the potential is quadratic close to
φ = 0, and goes as V (φ) = m2

φφ
2/2, once at the bottom, the field satisfies the equation

of motion of an harmonic oscillator with a friction term,

φ̈+ 3Hφ̇+m2
φφ = 0 . (2.32)

When close to the minimum of potential we can assume that H−1 becomes negligible
in comparison to the typical time of oscillations ∼ m−1

φ . Then φ̈ = −m2
φφ, which implies

φ̇2 = −m2
φφ

2 and the perfect oscillator solution, φ ∝ cos(mφt). The continuity equation
for φ yields ρ̇φ + 3Hρφ = −3pφ = −3H(φ̇2 − m2

φφ
2)/2 ∼ 0 in average, on Hubble time

scales, and ρφ ∼ a−3 decreases with time. In practice, because the inflation leads
to standard cosmology we assume that the inflaton field decays in all the standard
model particles during its oscillation with enough energy so that they acquire a state
of thermodynamic equilibrium. This transition is called the reheating phase and it will not
be further detailed here. After reheating, standard cosmology sets in. To complete the
picture, however, we now need to develop the statistics of the particle content in the
early Universe in order to understand what happened after reheating, in a period that
is rich in cosmological events and interesting physics – and cannot simply be reduced
to the simple model of a radiation dominated period. It will be the occasion to detail
the concept of thermodynamic equilibrium that has been mentioned before.

2.2 phase-space distributions in general relativity

2.2.1 Geometry of phase space for a single particle

The best way to understand the behaviour of particles in the early Universe is to
describe their distribution in phase space. Let us describe here the general frame-
work. First and foremost, let us give a definition of phase space. To this end, consider
a particle on a curve whose commoving coordinates are given by xµ = xµ(λ) with
λ the affine parameter that traces the position on the curve and maps it to a real
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number (it can be taken as the proper time for timelike paths, which is however not
appropriate to describe the motion of massless particles). The tangent vector field
to this curve is then given by ẋµ = dxµ/dλ1. If the particle is free falling, xµ is the
solution to the equation of motion given by the action, and associated Lagrangian
(CHOQUET-BRUHAT 2014; W84),

SFF[x] ≡
∫ {

LFF ≡
1
2gµν ẋ

µẋν
}

dλ . (2.33)

The equation of motion obtain from the Euler-Lagrange equation is

d
dλ

(
∂LFF
∂ẋµ

)
− ∂LFF

∂xµ
= 0 , i.e.

dẋµ

dλ + Γµαβẋ
αẋβ = 0 (2.34)

also called the geodesic equation. Moreover it is straightforward to show that the
general equality holds

d
dλ

(
LFF −

∂LFF
∂ẋµ

ẋµ
)

= 0 , (2.35)

which implies, in the present case, the conservation of the quantity g(u, u) = gµν ẋ
µẋν

along the geodesics. In addition, we introduce the canonical momentum as pµ = gµν ẋ
ν.

Because of the relation

g(p, p) = cst = ds2

dλ2 , (2.36)

one can choose λ = τ/m, with τ the proper time, for massive particles, so that, in
the end, it yields the general mass-shell relation

g(p, p) = m2 . (2.37)

To go a little bit further, in mathematical terms, the couple (xµ, pµ) is said to live
in the cotangent bundle T ?M of the manifold M describing the space-time. Then
pµ = gµνpν and the 8 dimensional couple (xµ, pµ) lives in the tangent bundle TM. In
the following we follow the notations and the clear introduction made in EHLERS (2011)
– hereafter referred to as E70, since these published notes are from a lecture given in
1970. See also BICHTELER (1967), MARLE (1969), and STEWART (1971). We call phase
space and its on-shell hypersurfaces the following sets

P = {(x, p) |x ∈M , p ∈ TxM , g(p, p) ≥ 0}
Pm = {(x, p) |x ∈M , p ∈ TxM , g(p, p) = m2}

(2.38)

It is also important to define volume elements on those spaces. Every set P (x) =
{p ∈ TxM, g(p, p) ≤ 0} for x ∈ M has its own pseudo-Riemannian structure with
the associated volume form

θ = 1
4!
√
−g εµνρσdpµ ∧ dpν ∧ dpρ ∧ dpσ . (2.39)

When restricted to the mass-shell hypersurface Pm(x) = {p ∈ TxM, g(p, p) = m2} it
reduces by imposing the mas-shell condition Eq. (2.37) as

θm ≡ 2Θ(p0)δ
[
g(p, p)−m2

]
θ = 1

3!

√
−g
p̂0

εijk dpi ∧ dpj ∧ dpk . (2.40)

where p̂0(xµ, pi) is the value of p0 that satisfies the dispersion relation for a given
(xµ, pi). We denote by Θ/δ the Heaviside/Dirac distribution. On the total phase space
and its mass-shell hypersurface the volume forms are then respectively given by

Ω ≡ ζ ∧ θ and Ωm ≡ ζ ∧ θm . (2.41)
1For this discussion the dot notation refers to derivative with respect to λ and not the cosmic time.
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2.2.2 Liouville’s theorem and phase-space distribution function

From the previous geodesic equation, we can define a vector field on Pm that is
called the Liouville vector Lm and which describes the geodesic flow in phase space,

Lm ≡ pα
∂

∂xα
− Γiµνpµpν

∂

∂pi
. (2.42)

An important property related to the Liouville vector is that the volume form is con-
served along the geodesic flow. This is often referred to as the Liouville theorem. The
proof relies on dΩm = 0 and Cartan’s formula

LLm(Ωm) = d(iLmΩm) + iLm(dΩm) (2.43)

where iL is the interior product, LLm is the Lie derivative along Lm. Usually one de-
notes ωm = iLmΩm that can be proven to satisfy dωm = 0 as well. This yields the afore-
mentioned property under the form LLm(Ωm) = 0. Let us now introduce the phase-
space distribution function. One can prove that for any hypersurface Σ (oriented
6-dimensional submanifold with boundary) of Pm, the ensemble average number of
occupied states in Σ, denoted N [Σ] , can be written according to a single function fm
called the one-point phase-space distribution function (PSDF) as

N [Σ] =
∫

Σ
fmωm . (2.44)

The number of collisions in any bounded region D ⊂ Pm is given by the value of the
previous quantity at the boundaries ∂D according to

N [∂D] =
∫
∂D

fmωm =
∫
D

d(fωm) =
∫
D

dfm ∧ ωm . (2.45)

The different equalities come from Stokes’ theorem and the fact that dωm = 0. More-
over as Ωm is a 7-form in a 7-dimensional manifold it follows that for any vector field
X and function h in that manifold dh ∧ iX(Ωm) = X(h)Ωm. In our case, it yields

N [∂D] =
∫
Lm(fm)Ωm (2.46)

proving that the Liouville vector represents, as a matter of fact, the phase-space
density of collisions. When there is a balance between particle entering and leav-
ing the region then the Liouville operator is equal to 0. The corresponding equation
is called Liouville’s equation Lm(fm) = 0. The interest behind the definition of the
PSDF is that it fully describes the system. Furthermore, one can also define its
corresponding moments,

Mα1...αn ≡
∫
fmp

α1 ...pαnθm . (2.47)

In E70 the following useful Lemma is proven. If h is a differentiable function with
continuous derivatives on Pm then it satisfies the equality

∇µ
(∫

hpµθm

)
=
∫
Lm(h)θm . (2.48)

The proof follows the same principles as the derivation we sketched to show that the
Liouville operator corresponds to the phase-space density of collisions. With the help
of a second lemma, based on this first one, E70 even more generally shows that

∇µMα1...αn−1µ =
∫
Lm(fm)pα1 ...pαn−1θm . (2.49)
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In the following now we take into account the fact that particles are quantum ob-
jects that occupy a volume h3 = (2π)3 (in natural units) of phase space and that they
can have a number gm of internal degrees of freedom. Therefore we slightly change
the definition of the PSDF to make explicit these dependencies. For the rest of the
study we use the redefinition fm → gmfm/(2π)3. Consequently, the first and sec-
ond moments that correspond to the number density current and the stress-energy
density tensor, are written

nµ ≡Mµ = gm
(2π)3

∫
fmp

µθm and Tµν ≡Mµν = gm
(2π)3

∫
fmp

µpνθm . (2.50)

Thus, according to Eq. (2.49), both satisfy ∇µnµ = 0 and ∇µTµν = 0 for a balanced
number of collisions in a volume of phase space. Moreover we also decompose
the stress-energy tensor and extract two key quantities, the energy density and the
mean kinetic pressure

ρ ≡ T 00 = gm
(2π)3

∫
fm
(
p0
)2
θm and P ≡ 1

3Tr
{
T ij
}

= gm
3(2π)2

∫
fmp

2θm (2.51)

where we introduced the 3-momentum norm p = (−gijpipj)1/2.

The Liouville equation is here described for a single particle and then used to
characterise a entire population through the one-point PSDF. To be more precise,
one should describe the phase space for all particles through the complete PSDF
depending on all degrees of freedom. In that case the Liouville theorem holds for
a system driven by Hamiltonian dynamics. However the treatment in a relativistic
framework is beyond the scope of this simple introduction.

In the next section, we discuss the unbalanced case leading to the Boltzmann
equation, that is Liouville equation with a collision term. Let us mention also that
this introduction to the PSDF is rather abstract and that a more pedestrian deriva-
tion of the Liouville operator and subsequently of the Boltzmann equation is given
in DEBBASCH et al. (2009a,b). There the authors detail every geometrical property of
the phase space. Moreover, they also show the relations between the contra-variant
on-shell PSDF as introduced here (which depends on pi and the covariant (which
depends on pi) and off-shell counterparts.

2.2.3 Boltzmann’s equation

In this section we briefly introduce the general expression of the Boltzmann equa-
tion. In a system where several species coexist together, we label by a Roman letter
the distribution function of each species. For instance, for species denoted a the PSDF
is labelled fa ≡ fma.The phase-space density of collisions is denoted by an operator
Ĉ on fa and depends on the PSDF of all other species interacting with a. With this
definition Boltzmann equation takes the form

Lm(fa) = Ĉ(fa) . (2.52)

In full generality, the collision term depends on the two-point PSDF. In turn, the
Hamiltonian treatment for the full PSDF (depending on all degrees of freedom) gives
an equation for the two-point PSDF that depends on the three-point PSDF, so on
and so forth. This is referred to as the Bogoliubov-Born-Green-Kirkwood-Yvon hi-
erarchy. Under the assumption of "molecular chaos", i.e. the momenta of colliding
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particles are uncorrelated and do not depend on their position, the two-point PSDF
can be written as the product of two one-point PSDFs. Here we work under this
approximation that justifies Eq. (2.52).

Let us now give an expression for Ĉ. Consider a generic interaction between two
sets of particles I = Y → Z. We are interested on its impact for particles of the given
species a. For clarity, we illustrate all our notations on the process a+a+ c→ a+ b+ b.
Note that for fermionic species, particles and antiparticles are labelled differently.
There Y , Z and I can be represented as three sets Y = {a, a, c}, Z = {a, b, b} and
I = Y ∪ Z = {a, a, a, c, b, b}. Then, we index all particles in the sets Y or Z. As a is at
least present once, one of them is labelled a1. The only requirement is that all other
particles are indexed with numbers that do not repeat for identical particles. The
sets of the indexed particles are called Y, Z and I = Y ∪ Z. For instance if a1 ∈ Y
then Y = {a1, a2, c1} and Z = {a3, b1, b2} are two valid sets. If a1 ∈ Z one can choose
Y = {a2, a3, c1} and Z = {a1, b1, b2}. Whenever necessary we specify in which set is a1 by
marking it with a star, Y? or Z?. For a set of indexed particles X = Y,Z, I we introduce
X = X\{a1}. For instance, if a1 ∈ Y?, one has Y? = {a2, c1} and Z = {a3, b1, b2} = Z. This
notation will turn useful because the Liouville equation characterises the evolution
of one species, whose phase-space volume is not integrated over. Eventually, the
number of particles of species a in an set of particles X = Y,Z, I is denoted ξa(X).

With all these definitions we can now introduce physical quantities without ambi-
guities. Firstly, the total phase-space volume element associated with the interaction
Y → Z at fixed value of the momentum pa1 is defined by

dΠ ≡ (2π)4δ(4)

∑
κ∈Y

pµκ −
∑
κ′∈Z

pµκ′

 ∧
κ′′∈I

{
θκ′′

2(2π)3

}
(2.53)

and secondly the phase space function is introduced as

FY;Z ≡
∏
κ∈Y

fκ(xµ, piκ)
∏
κ′∈Z

(1 + εκ′fκ′(xµ, piκ′)) (2.54)

where ε is a factor differentiating bosons and fermions. For outgoing fermions, the
available phase space is reduced due to Pauli blocking, which is subsequently en-
coded by setting ε = −1. For bosons, on the contrary, it is enhanced, therefore ε = +1.
As a shorthand notation fκ is to be understood as the PSDF for the species which the
particle labelled κ belongs to. The collision operator for Y → Z takes the form

ĈY→Z(fa)(xµ, pia1) = 1
2gaS

∫
[ξa(Z)WY;Z?FY;Z? − ξa(Y )WY?;ZFY?;Z ] dΠ (2.55)

where W represents the strength of the interaction and S is a combinatorial pre-
factor. Indeed, labelling the particles and subsequently their momentum, when in-
tegrating over dΠ, the phase space of identical particles is counted multiple times.
Hence the introduction of

S ≡
∏
r∈Î

[ξr(Y )! ξr(Z)!] . (2.56)

where Î represents the set of all species in I. In our example Î = {a, b, c}. Fur-
thermore the coefficients ξa(Z) and ξa(Y ) are introduced because we do not actually
integrate over pa1 and because the choice of particle a1 is arbitrary; every other par-
ticle of species a in the same set Y or Z contributes the same. Eventually, the last
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ingredient is the expression of the interaction strength. With the choice of normal-
isation in Eq. (2.53) it can be written

WY;Z =
∏
κ∈I

∑
sκ

|MY→Z |2 (2.57)

with sκ the different spin configurations of the particle κ. The product simply means
that we sum over all possible spin configurations. In particular, here we sum over
the spin states of the particle a1 too which is why we divided the total by ga. The
matrix elements of the interactionMY→Z is computed from quantum field theoretical
methods. As specified with the notations, WY;Z? 6= WY?;Z a priori, since they do not
have the same dependence in the momenta. In WY;Z? the momentum pa1 is in the
outgoing side while for WY?;Z it is in the incoming side.

Now, if CP (Charge-Parity) symmetry (or equivalently time inversion symmetry by
the CPT theorem – PESKIN et al. 1995; S. WEINBERG 1995; SCHWARTZ 2014) is con-
served in the interaction, as it will be in all the cases we consider, then the matrix
element is the same for the forward and backward processes. Therefore, the colli-
sion term can be slightly simplified by defining the sum of the forward and back-
ward contributions

ĈY↔Z (fa) (xµ, pia1) = ĈY→Z (fa) (xµ, pia1) + (1− δY Z)ĈZ→Y (fa) (xµ, pia1)

= 1
2gaS

∫
dΠ {ξa(Y )WY?;Z [(1− δY Z)FZ,Y? −FY?;Z ]

−ξa(Z)WY;Z? [(1− δY Z)FZ?;Y −FY;Z? ]} .

(2.58)

where δY Z = 1 if Y = Z and 0 otherwise. Indeed in the case Y = Z the collision
operator ĈY→Y as defined in Eq. (2.55) already includes the backward process. The
total collision operator is finally expressed as a sum over all possible interactions

Ĉ (fa) (xµ, pia1) =
∑

(Y,Z)
ĈY↔Z (fa) (xµ, pia1) . (2.59)

Eventually, let us mention the the Boltzmann equation introduced above is de-
rived from the classical theory, and then applied to the evolution of quantum species.
There are still ambiguities in the Boltzmann approach between decays and 2-body
processes. For instance you can have a + b → c on the one hand, c → d + e on the
other hand, but also a + b → (offshell c) → d + e. The full quantum equation takes
care of these possible double-counting issues in principle. A more precise (and much
more involved) description of a quantum system is possible through the Kadanoff-
Baym equation, which is based on the density matrix. However, in a cosmological
context, this framework is mostly relevant to study leptogenesis and baryogenesis
(BUCHMULLER et al. 2000; FROSSARD et al. 2013). For the study of thermal DM, the
Boltzmann equation is appropriate.

2.2.4 H-theorem

In this section, the main ingredients for the proof of the H-theorem are displayed.
Let us start by defining the total entropy current density of a system of several species
as the sum of the different entropy current densities,

Sµ ≡
∑
a

{
Sµa = − ga

(2π)3

∫
[fa ln fa − εa(1 + εafa) ln(1 + εafa)] pµθa

}
. (2.60)
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where the usual definition of the scalar entropy is given by the 0-th component of this
4-vector. Using the Lemma of Eq. (2.48) and setting the function h = f/(1 + εf) in
order to gain space in the equations2, one obtains the covariant derivative as

∇µSµa = − ga
(2π)3

∫
Lm (fa ln fa − εa(1 + εafa) ln(1 + εafa)) θa

= − ga
(2π)3

∫
Lm (fa) ln

(
fa

1 + εafa

)
θa = − ga

(2π)3

∫
Lm (fa) ln (ha) θa .

(2.61)

With the Boltzmann equation, the Liouville vector can be replaced by the
collision operator to get

∇µSµ = −
∑
a

ga
(2π)3

∫
Ĉ (fa) (xµ, pia1) ln

(
ha(xµ, pia1)

)
θa1 . (2.62)

where we made explicit the momentum dependence in this last expression.

As the collision operator for a given interaction Y ↔ Z has been given in the
previous section it can be used to further develop the computation. However, in order
to keep the discussion short we only treat the case of a single species with particles
interacting through a + a → a + a. Afterward we will argue on why the theorem holds
for arbitrary interactions and species. Consequently, one first set Y = Z = {a, a},
S = 4, ξa(Y) = ξa(Z) = 2. For simplicity we also index the particles as Z? = Y? = {a1, a2}
and Z = Y = {a3, a4}. The collision operator becomes

ĈY↔Z (fa) (xµ, pia1) = 1
4ga

∫
W{a1,a2};{a3,a4}

[
F{a3,a4};{a1,a2} −F{a1,a2};{a3,a4}

]
dΠ . (2.63)

and the derivative of the entropy is

∇µSµa = −1
2

∫
W{a1,a2};{a3,a4}

[
F{a3,a4};{a1,a2} −F{a1,a2};{a3,a4}

]
ln (ha(x, pa1)) dΠ (2.64)

with the notation of the total phase-space volume form dΠ = dΠ ∧ θa1/(2(2π)3). Notice
now that changing pa1 → pa2 leaves the expression invariant. Changing pa1 → pa3 or
pa1 → pa4 transforms the expression on its opposite. Therefore we average over four
copies of ∇µSµa and make the proper changes of variables to get

∇µSµa = −1
8

∫
dΠWa1a2;a3a4fa(xµ, pia1)fa(xµ, pia2)fa(xµ, pia3)fa(xµ, pia4)

×
[

1
ha(xµ, pia1)ha(xµ, pia2) −

1
ha(xµ, pia3)ha(xµ, pia4)

]
ln
(
ha(xµ, pia1)ha(xµ, pia2)
ha(xµ, pia3)ha(xµ, pia4)

)
.

(2.65)

Because of the inequality (x − y) ln(x/y) ≥ 0, valid for all (x, y) ∈ R2 that satisfies
xy > 0, this equation implies ∇µSµa ≥ 0. This is exactly the result of the H-theorem,
i.e. the second principle of thermodynamics: the entropy current density can only
increase. It is therefore proven here for the specific configuration of a single species
with 2 → 2 interactions. As a matter of fact for any number of species and any
interaction I = Y ↔ Z the momenta can always be shuffled around so that every
term in the derivative of Sµ satisfies

∇µSµ ∝ −
∫ [∏

κ∈I
fq(xµ, piκ)

]
ln


∏
κ∈Y

hκ(xµ, piκ)∏
κ′∈Z

hκ′(xµ, piκ′)


 1∏
κ∈Y

hκ(xµ, piκ)
− 1∏

κ′∈Z
hκ′(xµ, piκ′)

dΠ

(2.66)
2When ε = 0 we recover the non relativistic case.
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with a positive coefficient of proportionality. From similar arguments one then gets
the conclusion ∇µSµ ≥ 0 in full generality which proves the H-theorem.

2.2.5 Thermodynamic equilibrium between species

Let us focus first on the equilibrium distribution of an isolated species f eq
a . It is

defined such that it conserves entropy, i.e. ∇µSµ [f eq
a ] = 0. The condition for equality

is obtained from Eq. (2.65) and can be written as

ln heq
a (xµ, pia1) + ln heq

a (xµ, pia2) = ln heq
a (xµ, pia3) + ln heq

a (xµ, pia4) . (2.67)

Because of the energy momentum conservation the solution heq
a can be parametrised

as ln heq
a (xν , pν) = αa(xν)− βa,µ(xν)pµ. Inverting the relation between ha and fa gives

f eq
a (xν , pi) =

[
eβa,µ(xν)pµ−αa(xν) − εa

]−1
. (2.68)

This expression in called the Maxwell-Juttner distribution (JÜTTNER 1911). In order
for fa to vanish at large p the vector βa,µ needs to be time-like and future directed,
therefore it can be parametrised by βa,µ = βaua,µ with ua,µu

µ
a = 1. In the rest frame of uµa

one can then simplify βa,µpµ = βap̂0. The physical meaning of αa and βa can be found by
deriving the thermodynamic equalities associated associated to f eq

a . One then shows
that αa is in fact the chemical potential at position x per units of temperature while
βa is the inverse temperature. In the end, setting the chemical potential µa = αa/βa,
we recover the general expression of the Fermi-Dirac and Bose-Einstein distributions.

Replacing fa by the equilibrium distribution in Eq. (2.62) gives that Lm(f eq
a ) = 0. As

shown in BERNSTEIN (1988) and E70 there is no general solution to that equation for
massive particles in the FLRW metric; this is a purely geometric property. Therefore
there is no universal solution for αa and βa. Nevertheless, consider a species a of
mass ma described by its equilibrium distribution. Then one can still derive that in
FLRW if ma = 0 its temperature goes as T ∝ a−1 and if ma →∞ it goes as Ta ∝ a−2.

In the Early Universe multiple species coexist and interact. Then the conservation
of the stress-energy tensor, as well as the general H-theorem give

∇µ

(∑
a

Tµνa

)
= 0 and ∇µ

(∑
a

Sµa

)
≥ 0 . (2.69)

The equilibrium PSDF are defined by ∇µSµ = 0. This implicit definition imposes
that all species satisfy the equilibrium distribution of Eq. (2.68) with the addition
that for every interaction Y ↔ Z∑

a∈Y
µa =

∑
a′∈Z

µa′ and
∑
a∈Y

βa =
∑
a′∈Z

βa′ (2.70)

This two equalities are referred respectively to as the chemical and kinetic or thermal
equilibrium. The combination of the two is called the thermodynamic equilibrium.
However, for the same reason as for the single species treatment, there are no general
solutions to these equations when dealing with massive particles. Nevertheless,
in the equilibrium approximation, as long as particle interact sufficiently between
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themselves, they still acquire a state of quasi thermodynamic equilibrium.

We end here the first part of this statistical physics analysis. In the following
section, we use the formulae established here and put them in a physical context
with several particle species in interaction.

2.3 Thermal history of the early Universe

In this section, the different ingredients introduced in the previous section con-
cerning the statistical description of particle species are applied to the history of the
early Universe. However, first, we discuss the locally inertial frame that is convenient
for computations. Afterwards, we describe the thermochemical evolution of the Early
Universe and conclude by addressing the thermal history of WIMPs.

2.3.1 Locally inertial frame

The geometry of space-time has not been specified hitherto in Sect. 2.2. In the fol-
lowing, at every position xµp we will work in the locally inertial frame (LIF) with new co-
ordinates yµ(xν) and associated canonical momentum qµ = dyµ/dλ. We introduce the
comoving momentum norm as q = (δijqiqj)1/2 and we define the energy of a particle as

E(q) ≡ q0 = q0 = (m2 + δijq
iqj)1/2 = (m2 + q2)1/2 . (2.71)

Let us consider a (n,m) tensor T with component T̃µ1..µn
µn+1..µm+n in the LIF and Tµ1..µn

µn+1..µm+n
in the original coordinate system xµ. One can relate both components by the usual
law for coordinate transformations,

T̃µ1..µn
µn+1..µm+n = ∂yµ1

∂xν1
...
∂yµn

∂xνn
∂xνn+1

∂yµn+1
...
∂xνn+m

∂yµn+m
T ν1..νn
νn+1..νm+n (2.72)

For a metric in the diagonal form it is always possible to transform it into a Minkowski
metric (up to second order corrections) by setting

∂xµy
ν =


√
|gµµ| if µ = ν

0 if µ 6= ν

and yµ = yµp + ∂xνy
µ
[
(xν − xνp) + 1

2Γνρσ(xρ − xρp)(xσ − xσp )
]

+ . . .

(2.73)

This definition of the new coordinates is not unique however as it can be rescaled
by a Lorentz transformation. In the interesting case for us, when the original coordi-
nate system is Cartesian in a FLRW Universe with no curvature then the metric is
ds2 = dt2 − a2dxidxj and according to Eq. (2.72) we can relate qµ to the canonical
momentum pµ = dxµ/dλ with

q0 = p0 and qi = a(tp)pi (2.74)

This transformation being position dependent, we specify that in the previous equa-
tion the scale factor has to be evaluated at x0

p = tp
3. Moreover with the definition

3In order to get the Christoffel symbols to vanish in the new set of coordinates we can simply write
the new coordinates in terms of the old ones in a second order expansion as

y0 = (t− tp) + 1
2a

2(tp)H(tp)δij(xi − xip)(xj − xjp) + . . .

yi = a(tp) (1 +H(tp)tp) (xi − xip) + . . .
(2.75)
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of the 3-momentum norm p = (−gijpipj)1/2 one can check that p = q and p̂0 = p0 =
E(q) = E(p). In addition, from now on we also use another, more intuitive notation
for the phase space volume element. We define

d3p = p̂0θm = 1
3!
√
−gεijk dpi ∧ dpj ∧ dpk (2.76)

so that in the LIF it reduces to

d3q = 1
3!εijk dqi ∧ dqj ∧ dqk . (2.77)

In conclusion, all the equations can be written in the LIF without loss of generality
(remembering then to make the proper transformation when necessary) as it is often
more convenient in practice. Besides, in order to go from the LIF to the frame of
coordinates xµ corresponding the the Cartesian FLRW, one can simply replace d3q →
d3p, q → p and therefore E(q) → E(p) in the expressions.

2.3.2 The effective energy and entropy densities

We are now fully equipped to address the thermodynamics of the early Universe.
After the end of inflation, the inflaton field arguably releases its energy in the form of
radiation during a period called reheating. This very large energy density is then turned
into all accessible standard-model states called the primordial plasma (depending
on the effective reheating temperature Tr), and to exotic particles with sufficient
couplings and kinetically allowed masses such that m < Tr. This is called thermal
production. Then rapid scatterings between particles pi + pj ↔ p′i + p′j ensures thermal
equilibrium, while rapid annihilations and creations of particle and antiparticle pairs
pi + pi ↔ X (where X represents any other set of particles in the plasma) ensures
chemical equilibrium.

When assumed in thermodynamic equilibrium all species have their number den-
sity, pressure and density given by the equilibrium equation derived from the equilib-
rium expression in Eq. (2.68). Therefore the equilibrium distribution becomes

f eq(q) =
[
eβ(E(q)−µ) − ε

]−1
. (2.78)

where we recall that µ is the chemical potential here. Nevertheless, we mentioned
that there is no universal solution for the temperature and the chemical potential
as functions of time for massive particles. This has been studied by BERNSTEIN

(1988) who showed that if all particles interact frequently in the thermal bath we can
then be certain that the corrections to the equilibrium distribution remain small.
Therefore, in the following we assume that all SM species can be described simply by
their equilibrium distribution unless stated otherwise.

A first remark is that because the photon number is not necessarily conserved,
for instance in interactions such as

e− + γ → e− + γ + γ , (2.79)

their chemical potential is µγ = 0 in order to satisfy Eq. (2.70). Moreover, every fermion
and anti-fermion ψ and ψ̄ in the SM annihilates into photons according to

ψ + ψ̄ → γ + γ (2.80)
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which implies µψ = −µψ̄. Therefore, for fermions with µψ 6= 0 it can be shown that,
when m � T , the difference in number density between the particle and the anti-
particle is given by the following expression,

nψ − nψ̄ = g

6π2T
3
[
π2
(
µψ
T

)
+
(
µψ
T

)3
]
. (2.81)

At early times, when me � T , one can approximate µe ∼ 0. In the following, we neglect
the chemical potential of SM particles with respect to the temperature as long as their
mass satisfies m � T . Then, the number density, energy density and pressure at
equilibrium can be written under the form

neq = gT 3

2π2

∞∑
n=1

εn+1x
2

n
K2(xn) = g

2π2
1
β3

∞∑
n=1

(−ε)n+1
{

2x
n2K1(xn) + x2

n
K0(xn)

}

ρeq = gT 4

2π2

+∞∑
n=1

εn+1
{(

6x
n3 + x3

n

)
K1(xn) + 3x2

n2 K0(xn)
}

P eq = gT 4

2π2

∞∑
n=1

(−ε)n+1x
2

n2K2(xn) = gT 4

2π2

+∞∑
n=1

εn+1
{

2x
n3K1(xn) + x2

n2K0(xn)
} (2.82)

where Kj(z) is the modified cylindrical Bessel function of order j and

x = m/T . (2.83)

In the scenario x → 0 of massless particles, also called ultra-relativistic (UR) limit,
these expressions simplify and give

neq = gT 3

π2 ζ(3)A, ρeq = gπ2T 4

30 B and P eq = ρeq

3 (2.84)

with A = 1 and B = 1 for bosons and A = 3/4 and B = 7/8 for fermions. The full proof
is given in App. B.1. Note that at the same time we have proven that the equation
of state for radiation is given by w = 1/3. We can also evaluate the expression in the
opposite limit, x→∞, for what is then called non-relativistic particles (NR). Including
the contribution of the chemical potential yields

neq = g

(
mT

2π

)3/2
e−(m−µ)/T , ρeq = mneq and P eq = neqT � ρeq . (2.85)

Non-relativistic species are pressureless which yields the equation of state for the
matter component of the Universe w ∼ 0. After the inflation phase, the temperature
of the plasma decreases and most species become, as the Universe expands,
non-relativistic. Then, if they stay in thermodynamic contact with the plasma their
number and energy densities are thus exponentially suppressed.

Collisions and annihilations ensuring thermodynamic equilibrium are called rapid
if the associated interaction rate, generically denoted Γ, is larger than the expansion
rate H. One can then discriminate between the interactions that have time to happen
with those that are frozen due to the expansion. To this end, H can be evaluated in
the Early Universe thanks to the first Friedmann equation. Indeed, using the fact that
only UR species contribute to the total energy density at this epoch,

ρtot ≡
∑
i

ρeq
i '

∑
i∈R

ρeq
i . (2.86)
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where we tag by the letter i every species present in the plasma and where R formally
represents the set of UR species. The common notation is to introduce geff(T ), the
effective relativistic degrees of freedom for energy density at temperature T so that

H2 = 4π3GN
45

{
geff(T ) ≡ 30ρ

π2T 4

}
T 4. (2.87)

In essence, the history of the early Universe is encoded in the evolution of geff(T ).
Its variations are related to variations of ρ and thus to species appearing into or
vanishing from the plasma, either because they are at thermodynamic equilibrium
and become NR or for any other possible reason – at the QCD phase transition when
all quarks and gluons combine into protons, neutrons, etc. Furthermore, the total
entropy being a conserved quantity if the expansion is adiabatic, it is convenient, in
many computations, to use its associated density. More precisely, for a volume V of
entropy S(V ), the entropy density is simply given as s ≡ S(V )/V . As shown in App. B.1
it can be written, for a given species at equilibrium with µ = 0,

seq = ρeq + P eq

T
= gT 3

2π2

+∞∑
n=1

εn+1
{(

8x
n3 + x3

n

)
K1(xn) + 4x2

n2 K0(xn)
}
. (2.88)

Because both the energy density and the pressure go to zero for NR species, it is
useful to introduce another relativistic effective degree of freedom, heff(T ), so that
the total entropy density is

s =
∑
i

seq
i ≡

2π2

45 heff(T )T 3. (2.89)

According to the expressions of ρeq
i and seq

i shown previously thus geff and heff can
also be written in terms of Bessel functions as

geff(T ) =
∑
i 6=ν

gi
15
π4

( ∞∑
n=1

ε
(n+1)
i

{(
6xi
n3 + x3

i

n

)
K1(xin) + 3x2

i

n2 K0(xin)
})

+ ∆g4
ν , (2.90)

heff(T ) =
∑
i 6=ν

gi
45
4π4

( ∞∑
n=1

ε(n+1)
{(

8xi
n3 + x3

i

n

)
K1(xin) + 4x2

i

n2 K0(xin)
})

+ ∆g3
ν , (2.91)

where the sum on i runs over all possible species of the SM, except for neutrinos.
Neutrino contribution is given by the last term ∆gnν and cannot be computed directly
using Eq. (2.82) because they decouple from the plasma at T ∼ 1 MeV. Therefore
when electrons become NR, at T ∼ me = 511 keV, they transfer their entropy to the
photons, but no longer to neutrinos, which are left colder. Neutrinos then acquire
a new temperature Tν = (4/11)1/3T , computed from entropy conservation, different
from T . This changes the number of effective degrees of freedom in the photon bath.
For further details on the decoupling process see below, in Sect. 2.3.3 the specific
case of DM decoupling – the basic principles are the same for neutrinos. Therefore
their contribution is, more precisely,

∆gnν = gν
7
8

(
3Θ(T −me) +Neff

(
Tν
T

)n
Θ(me − T )

)
(2.92)

with Θ the Heaviside distribution. In practice, the Heaviside step is numerically
smoothed out by a regulating function. Moreover, Neff = 3.045 is an effective number
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Figure 2.2 – Left panel: Evolution of the number of effective degree of freedom with the
temperature. Note that the x-axis is reversed so that high temperature (and therefore early
times) are on the left. The peak for g1/2

? is due to the divergence of the derivative of heff at
the QCD phase transition that is unphysical. It is regularised numerically through simple
smooth functions. Right panel: Evolution of the DM annihilation rate over the Hubble rate
for various temperature dependences of the thermally average cross-section. In this example
a0 = a1 = a2 = 3 × 10−26 cm2 s−1 and the DM mass is 100 GeV. When the ratio is much larger
than 1 chemical equilibrium is maintained, when it becomes much lower than 1 the chemical
equilibrium is lost.

of neutrinos. This value, different from 3, takes into account the fact that all three
flavours did not decouple exactly at the same time and that the high-momentum tails
of their distributions remained coupled to the plasma up to electron-position anni-
hilation (MANGANO et al. 2005; SALAS et al. 2016). In the left panel of Fig. 2.2 the
evolution of these effective degrees of freedom with temperature is represented, tak-
ing into account all the SM species. It is not important to leave a possible WIMP
contribution out for this graph since we are interested in DM particles that decouple
from the plasma when NR (a condition for being a CDM candidate). Eventually, let us
introduce the evolution of cosmic time with respect to the temperature

dt
dT = −1

s

√
π

45GN

{
g

1/2
? (T ) ≡ heff(T )√

geff(T )

(
1 + d ln heff(T )

3 d lnT

)}
(2.93)

that plays an important role for the study of the early Universe. The evolution of g? is
represented in the left panel of Fig. 2.2 alongside heff and geff .

2.3.3 Qualitative history of WIMPs in the early Universe

In this section, we assume that DM is made of one species χ of mass mχ for clarity
that can be, for now, a scalar, a Dirac fermion, a Majorana fermion, or a vector. In
all generality, we denote χ the anti-particle even if in the case of a Majorana fermion
for instance the bar notation can be redundant as they are their own anti-particles.
Besides, we address here two different configurations: the usual WIMP scenario and
the FIMP (Feebly Interacting Massive Particle) scenario. Let us start with the former.
In the standard picture, after inflation, WIMPs are produced from the plasma, and
reach instantaneously thermodynamic equilibrium. This imposes that their mass be
lower than the thermal energy of the primeval bath, and that they have strong enough
couplings to particles from the plasma. At chemical equilibrium, production from the
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plasma is balanced by annihilation of χ̄χ pairs. However, as the Universe expands
and the temperature drops, WIMPs become NR, and the plasma is no longer energetic
enough to produce them efficiently. As long as chemical equilibrium holds, this re-
sults in exponentially quenching the WIMP population, according to Eq. (2.85). The
rate at which annihilation occurs, denoted by Γann below, is given approximately by

Γann ∝ nχ 〈σχχvMøl〉 ∝
∑
q=0

aqx
−q−3/2e−x (2.94)

with nχ the number density of WIMPs and 〈σχχvMøl〉 the thermal average of the an-
nihilation cross-section – detailed in Sect. 2.4. Here we simply assume the partial
wave decomposition of the cross-section in terms of x = mχ/T (∝ 1/v2 for NR inter-
acting particles) so that 〈σχχvMøl〉 '

∑
q aqx

−q. The first term, q = 0, is called the
s-wave term while the second, q = 1, is called the p-wave term, and is NR velocity
supressed. Assuming similar amplitudes aq, the annihilation rate is dominated by
the lowest non-vanishing q term4. Annihilation ceases depleting the WIMP population
when the probability of WIMP encounters drops to zero, i.e. when the expansion rate
gets roughly larger than the annihilation rate,

Γann . H ∝
√
geff (T )x−2. (2.95)

From this time on particles χ and χ can no longer interact and the annihilation
process stops (rigorously, it never completely stops but is rather tremendously
reduced). By tuning the cross section to values typical of weak interactions, this
occurs before DM particles are completely exponentially suppressed and the number
density of WIMPs freezes out. Hence the subsequent denomination of freeze-out
mechanism and also "weakly-interacting" massive particles. The right panel of
Fig. 2.2 shows the evolution of Γann/H for different behaviours of the cross-section.
At high temperature, small x, the ratio is larger than 1 (marked by the black vertical
line) but decreases and eventually drops below 1.

Now let us explain the basic principle of kinetic decoupling. In the standard pic-
ture, even when WIMPs have chemically decoupled they can still be in kinetic equilib-
rium with the plasma. They keep the same temperature T with the approximate func-
tional form for the PSDF thanks to scattering interactions of the type: χ+ ψ ↔ χ+ ψ,
with any particle ψ of the plasma. If not strongly velocity-suppressed, those processes
are still efficient for a while since they occur at a rate given by

Γscatt = nψ 〈σχψ↔χψvMøl〉 ∝ x−3 〈σχψ↔χψvMøl〉 . (2.96)

Here there is no exponential suppression in Γscatt with the temperature while the
plasma is relativistic as there is in Γann. In the most common scenario, Γscatt � Γann
and kinetic decoupling occurs at later times when Γscatt ∼ H - see BINDER et al. (2017)
for the treatment when this is not true. Thus, even though the number density of
particles in the plasma (represented by nψ ∝ x−3

χ here) decreases slower than nχ,
it still decreases faster than H and at some point, the scattering processes can no
longer keep up with the expansion rate of the Universe. Then DM stops interacting
and starts to stream freely. It acquires its own temperature denoted Tχ. The complete
history of the WIMP evolution is summarised in Fig. 2.3.

4If a1 � a0, the p-wave term can dominates over the s-wave term even if the later is non null.
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Figure 2.3 – Representation of the standard WIMPs thermal history.

Let us finally briefly mention the FIMP configuration. It occurs when DM particles
do not interact enough with the rest of the primordial plasma and are not produced
very quickly in thermodynamic equilibrium with the SM particles. Nonetheless,
either creation processes (not balanced by annihilations processes due to the initial
lack of DM particles) or decays of more massive particles can lead to an increase in
nχ and a possible increase in Γann. If Γann grows fast enough DM reaches the state
of thermodynamic equilibrium before chemically decoupling and we then recover
the previous scenario. However, if Γann stays lower than H, because of too small
couplings to the SM particles, one talks of FIMP DM and this scenario is referred to
as a freeze-in (L. J. HALL et al. 2010; BERNAL et al. 2017). This scenario is analogue
to the production mechanism relevant to sterile neutrinos: The Dodelson-Widrow
mechanism – active-sterile oscillation in vacuum – (DODELSON et al. 1994) or the
resonant Shi-Fuller mechanism – resonant Mikheyev-Smirnov-Wolfenstein oscillation
– (SHI et al. 1999). The freeze-in mechanism was also already discussed in the
context of scalar DM (MCDONALD 2002), or sneutrinos (ASAKA et al. 2006).

In the last sections of this chapter, we now detail the mathematics and the dif-
ferent physical interactions behind the chemical and kinetic decouplings of WIMPs.
Then we illustrate the impact for the halo minimal mass discussed in Chapter 3
within a simplified particle model.

2.4 Chemical and kinetic decoupling of WIMPs

In this section, we detail the production mechanism of thermal DM and its loss of
equilibrium with the rest of the primordial plasma. For that, we assume that DM is
made of one or several WIMP fermionic species that are thermally produced in the
early Universe along with all the SM particles either during reheating or slightly after
by the conversion from SM particles. All particles that are directly interacting both
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with WIMPs and with SM particles are called mediators. They can be SM mediators
or exotic mediators coming from a dark sector.

We denote by {χi}i the set of WIMPs with associated masses {mi}i. This set also
contains the anti-particles if DM is made of Dirac fermions. For instance, for one
Dirac fermion we denote χ1 = χ0. By convention, the lightest of all the WIMPs is
tagged 0 and has mass m0. Moreover in this section ni represents the number density
of χi and fi its PSDF. Interactions involving WIMPs can be put into one of the following
four broad categories based on the decomposition of EDSJO et al. (1997)

• Annihilation and creation interactions, e.g. χi + χj ↔ Y

• Elastic scatterings, e.g. χi +X ↔ χi +X

• Decays and inverse decays, e.g. χi ↔ χj + Y

• Non elastic scatterings, e.g. χi +X ↔ χj + Z

where X, Y , and Z are arbitrary sets of incoming and outgoing particles different from
WIMPs. Therefore, the collision operator can be divided into four subsequent parts.
Only the first category, however, corresponds to processes changing the total number
of WIMPs and is relevant for chemical decoupling. For the thermal contact, they all
contribute although, in the kinetic decoupling context, we are only interested in the
lightest WIMP and the dominant contribution comes from elastic scatterings.

2.4.1 Chemical decoupling: general set-up

The study of the chemical decoupling is nothing more than the study of the evo-
lution of the number density of WIMPs when it starts to diverge from its equilibrium
value. Conveniently, using Eq. (2.48) we have already seen that

∇µnµa = ga
(2π)3

∫
Lm(fa)θa (2.97)

so that, combined to the Boltzmann equation, it yields

∇µnµa =
{
Ĉ(fa) ≡

ga
(2π)3

∫
Ĉ(fa)(xµ, pia1)θa1

}
. (2.98)

Here we introduce Ĉ as the 0th moment of the collision operator. In the Cartesian
FLRW metric, the covariant derivative of the density vector flow depends only on its
0th component5 and it yields the equation for the evolution of the density in terms
of the Hubble rate

∇µnµa = dna
dt + 3Hna . (2.99)

The Hubble rate H acts as a dilution term thus, if Ĉ = 0, this equation simply gives
na ∝ (1+z)3. The main objective is to evaluate the 0th-moment of the collision operator
to recast it under a form that only depends on the number densities of the different
species, no longer on the PSDFs. If this is possible, all equations on the number
densities will then form a closed system of differential equations that can be numeri-
cally solved. To this end, let us consider an arbitrary interaction between two sets of

5Note that the 0th component of a four-vector in the Cartesian FLRW and in the LIF are the same.
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particles Y ↔ Z and show how this quantity can be generically simplified. Here we
are only interested in the case where Y 6= Z since elastic scattering are not relevant.
Therefore, assuming the CP invariance of the interactions, according to Eq. (2.58) we
can write the zeroth-order collision operator as

ĈY↔Z (fa) = 1
S

∫
dΠ {ξa(Y )WY?;Z [FZ,Y? −FY?;Z ]− ξa(Z)WY;Z? [FZ?;Y −FY;Z? ]} . (2.100)

where dΠ = dΠ ∧ θa1/(2(2π)3). As a matter of fact, since the particle that is labelled a1
is completely equivalent to all the other particles of species a in this expression, there
is no use of the ? notation and we can simplify the expression as

ĈY↔Z (fa) = ∆ξa(Y, Z)
S

∫
dΠWY;Z [FZ,Y −FY;Z ] (2.101)

where ∆ξa(Y,Z) = ξa(Y ) − ξa(Z) counts the net difference between created and an-
nihilated particles in the process. In the following, because this should hold true
for interactions in the early Universe, we assume that all particles are in thermal
equilibrium with the plasma. However as we have seen there is no general equilib-
rium parametrisation for the distribution function of massive species. The solution
is then to use the pseudo-potential approximation that consists in writing the differ-
ent PSDF under the form

f(q) =
[
eβE(q)+α+φ(q) − ε

]−1
. (2.102)

where φ is a correction to the equilibrium distribution. As proven in BERNSTEIN (1988)
the value of φ is constrained by the rate of elastic collisions. If this rate is high enough
one can safely approximate φ ∼ 0 and this is what is assumed in the following. An
essential property of this PSDF, which is useful for simplifying the expressions is

1 + εκfκ(qκ) = eακ+βEκ(q)fκ(qκ) . (2.103)

Moreover the Dirac delta distribution in dΠ enforces the conservation of energy∑
κ∈Y

Eκ(qκ) =
∑
κ′∈Z

Eκ′(qκ′) . (2.104)

Using these two equalities alongside Eq. (2.101) allows factoring out the pseudo-
chemical potentials

ĈY↔Z(fa) =∆ξa(Y,Z)
S

[
eαY −αZ − 1

] ∫
dΠWY,ZFY;Z (2.105)

with the definitions of the total potentials

αY ≡
∑
r∈Y

αr and αZ ≡
∑
r′∈Z

αr′ . (2.106)

The integral term can take different forms according to the process and this is what we
detail in the following. Let us first give a convenient way to massage it. We introduce
the volume element which reduces to the Lorentz-invariant phase space in the LIF

dΠY,Z = (2π)4δ(4)

∑
κ∈Y

qµκ −
∑
κ′∈Z

qµκ′

 ∏
κ∈Z

{
1

2E(q)
d3qκ
(2π)3

}
. (2.107)
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Besides, we also introduce the Y -momentum volume element and the Y -energy prod-
uct so that we can write dΠ = dΠY,ZdPY/EY with

dPY =
∏
κ∈Y

{
d3qκ
(2π)3

}
and EY =

∏
κ∈Y

{ 1
2Eκ(qκ)

}
. (2.108)

Eventually we separate the symmetry factor into two parts SY and SZ for the two
sets respectively, so that S = SY SZ . Now we can introduce a generic notation for
a quantity that represents a differential rate of interactions with a dimension of
[length]−3(#Y−1)·[time]−1 and its thermal average as

dRY;Z ≡

∏
κ∈Y

1
gκ

 1
SZEY

WY;Z dΠY,Z

and 〈RY;Z〉 ≡

∏
κ∈Y

gκ
nκ

∫ dPY dRY;ZFY;Z .

(2.109)

The bracket notation represents the fact that the integral is weighted by the phase
space distribution functions. Consequently, the 0th-moment of the collision opera-
tor can be written explicitly, as a function of the thermally averaged collision rate,
the number density of the species in Y , the chemical potentials and a combinato-
rial pre-factor as follows

ĈY↔Z(fa) = ∆ξa(Y,Z)
SY

[
eαY −αZ − 1

]∏
κ∈Y

nκ

 〈RY;Z〉 . (2.110)

We are now equipped to detail the expression of the zeroth moment of the collision
operator in meaningful examples. In practice we limit ourselves to two classes of
processes 2↔ n and 1↔ n with n ≥ 2.

Interactions 2 ↔ n . In this case we write the process as b + c → Z where b
and c can represent any species and Z is a set of unknown species. In that specific
configuration we can start by writing the interaction rate as follows

dRbc→Y = 1
4Ec(qc)Eb(qb)

1
gcgb

1
SZ

W{bc};Z dΠ{bc},Z . (2.111)

This expression is already very similar to the expression of a cross-section. Hence,
the idea to write it in terms of σbc→Z . In order to do so, let us make use of the Møller
velocity vbcMøl = [(ηµνqµb qνc )2−m2

bm
2
c ]1/2/(Eb(qb)Ec(qc)) between the two incoming particles,

where ηµν is the Minkowski metric. The differential cross-section is given, with our
notations, as a function of the differential interaction rate dRbc→Z and vbcMøl, by

dσbc→Z = 1
4Eb(qb)Ec(qc)vbcMøl

1
gbgc

1
SZ

W{bc};ZdΠ{bc},Z = 1
vbcMøl

dR{bc};Z . (2.112)

The common notation is not to use the quantity denoted Rbc→Y but rather to define
the thermal average product of the cross-section and relative Møller velocity (referred
to as the thermal cross-section for short in the following). In the end, the total zeroth
moment collision operator is given by

Ĉbc↔Y = ∆ξa({bc}, Z)
S{bc}

{〈
σbc→Y v

bc
Møl

〉
=
〈
R{bc},Z

〉}
nbnc

[
eαb+αc−αZ − 1

]
. (2.113)
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From this formula it is possible to quickly deduce the expression for any interaction
2 ↔ n with n ≥ 2. Moreover note that if Z does not contain any particle of species a
then ∆ξa({bc}, Z)/S{bc} = 1 whether or not b and c are actually both equal or not to a.

Interactions 1 ↔ n. These interactions correspond to decay and inverse decay
processes. Let us consider y ↔ Z. We can start, similarly to what has been done
above, by writing the differential interaction rate

dRy→Z = 1
2Ey(qy)

1
gy

1
SZ

Wy;Z dΠy,Z = my

Ey(qy)
dΓy→Z (2.114)

which appears to directly depend on Γy→Z , the usual decay rate. Then, it is possible
to define a thermally averaged decay rate in a manner similar to the thermal cross-
section and the zeroth moment collision operator becomes

Ĉy↔Z = ∆ξa({y}, Z) {〈Γy→Z〉 = 〈Ry;Z〉}ny
[
eαy−αZ − 1

]
. (2.115)

Note that the thermal average decay rate can be evaluated completely as shown in
BÉLANGER et al. (2018) when there are only two particles in the final state.

In summary, Bolzmann’s equation can be integrated to give an equation on the
number density of WIMPs. This equation therefore implies the integral of the collision
operator, which depends on thermally averaged interaction rates and on the number
density of species involved in these interactions.

2.4.2 Chemical decoupling : WIMPs (co-)annihilation equation

Now that these general considerations have been introduced let us resume the
study of the zeroth moment of the Boltzmann equation for the set of WIMP species
introduced above. However, we should have as many Boltzmann equations as species
are involved, which can be an issue for a numerical solver. This section is there-
fore devoted to the introduction of a simple ordinary differential equation driving
the total WIMPs number density.

Evolution of the total number density

Let us introduce the co-annihilation equation that describes the evolution of the
total number density of all the WIMPs species,

nχ ≡
∑
i

ni . (2.116)

If we assume that they have all decayed today in the less massive species χ0, which
makes then the entire DM component of the Universe, the value of n0(t0) and nχ(t0)
are the same. Note that here we cannot describe co-annihilation with a species that
does not end decaying to WIMPs, or that gets suppressed only after DM freezes out,
nor can we describe relativistic exotic degrees of freedom. For simplicity, let us fur-
thermore consider in the following that the only interactions that change the total
number of WIMPs and have an impact on nχ are the annihilations/creations of a
pair of WIMPs. Because WIMPs are assumed to be non-relativistic when they chem-
ically decouple, the collision operator can be written such that the total number of
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DM particles satisfies

dnχ
dt + 3Hnχ =

∑
i,j

∑
Z

〈σij→ZvMøl〉eq n
eq
i n

eq
j

(neq
χ )2

[
(neq
χ )2 − eαZn2

χ

]
+
∑
i,j

∑
y

(1 + δχiχj ) 〈Γy→ij〉
eq neq

y

(neq
χ )2

[
(neq
χ )2e−αy − n2

χ

] (2.117)

where the sum over Z spans all the possible set of outgoing particles in χi + χj → Z
and the sum on y runs over all mediators decaying into χi + χj. The prefactor δχiχj
is one if χi = χj and zero otherwise. We introduced neq

i , the equilibrium number
densities of the WIMP species at zero chemical potential. Besides, the equilibrium
values of the cross-section and the decay rates are respectively given in Eq. (B.48)
and Eq. (B.54) and this equation is more generally proven in App. B.2.

Interaction mediators can be either SM particles or exotic particles from a dark
sector. One issue is that these particles can be produced (e.g. by the annihilation
of DM) and be part of the initial or final states of the interactions. Then, they ei-
ther have to be in thermodynamic equilibrium, so that their pseudo-potential is zero
(which is the case when they are SM particles) or it is necessary to solve an equation
for their pseudo-chemical potential – which implies the resolution of a coupled sys-
tem of equations. In the following, we always rely on the assumption that all such
particles involved are in thermodynamic equilibrium with the thermal bath (thanks to
frequent interactions with light SM particles for instance) when it is possible. Two
options can be considered.

• The mediators have a mass greater than 2m0. As chemical decoupling is expected
to occur at T ∼ m0/20 these mediators have an exponentially suppressed number
density and their decay into WIMPs is sub-dominant with respect to light SM
particle annihilation (as long as the coupling SM/mediator is larger or roughly
similar to the coupling WIMPs/mediator). We could worry that if the mediator is
too massive its chemical equilibrium with the rest of the thermal bath should,
however, be broken. Nevertheless, in that configuration, such mediators cannot
be produced by DM annihilation (plasma not energetic enough) and similarly to
the decay, their number density is too low to produce DM via 2↔ 2 interactions
efficiently. Consequently, they cannot be amongst the final/initial states of the
relevant DM annihilation/creation processes. In conclusion, for mediators with
mass greater than 2m0 even if their chemical equilibrium with the primordial
plasma is lost, Eq. (2.117) is not impacted.

• The mediators have a mass lower than 2m0. These are more likely to be still
at chemical equilibrium with the bath, which we thus assume, and they are
not massive enough to decay into WIMPs. Therefore the decay term can still
be neglected if the aforementioned condition, in brackets, on the coupling is
satisfied and the pseudo chemical potential of the mediators may be set to zero.
In that case, however, we need to be careful because those mediators, if they are
not part of the SM, can be a part of DM if they do not have time to decay into
light SM particles (and they would not be in chemical equilibrium then).

Henceforth, under the simplifying hypothesis of thermodynamical equilibrium
αY = 0 and αy = 0 in Eq. (2.117) and following BINÉTRUY et al. (1984), GRIEST et al.
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(1991), and EDSJO et al. (1997) we can rewrite the previous equation with the definition
of the effective thermally averaged annihilation cross-section and decay rates as

〈σvMøl〉eq
eff ≡

∑
i,j

∑
Z

neq
i n

eq
j

(neq
χ )2 〈σij→Z〉

eq

1
neq
χ
〈Γ〉eq

eff ≡
∑
i,j

∑
y

(1 + δχiχj ) 〈Γy→ij〉
eq neq

y

(neq
χ )2

(2.118)

even though the latter is usually negligible in most scenarios – as decay terms are
only important here when DM is mainly produced by the decay of a heavy parti-
cle that is not in thermal equilibrium with the plasma. Then the total DM number
density is driven by the equation

dnχ
dt + 3Hnχ =

{
〈σvMøl〉eq

eff + 〈Γ〉
eq
eff

neq
χ

}[
(neq
χ )2 − n2

χ

]
(2.119)

first derived in LEE et al. (1977) with no co-annihilation and no decay processes.
Under this form it is easier to highlight the competition between the Hubble rate
H and the collisional rate Γann ≡ nχ(〈σvMøl〉eq

eff + 〈Γ〉eq
eff /n

eq
χ ) that was discussed in

Sect. 2.3.3. Indeed, when Γann dominates, the equation drives the number density
towards the equilibrium value. However, when the Hubble rate dominates, we recover
the equation for the dilution of the number density of matter in the expanding
Universe.

Majorana vs. Dirac fermions

So far we have not introduced a difference between DM particles that are Majorana
or Dirac fermions. As a matter of fact, there is one but it is subtle to include in that
framework. Indeed, consider that DM particles are made of the minimal possible
amount of Dirac particles. Then, we necessarily have two species, χ0 and its anti-
particle χ1 = χ0. If we assume a simple coupling to SM fermions ψ in order to use the
definition of Eq. (2.118) we need to sum over four configurations (i = 0/1, j = 0/1). For
Dirac fermions, cross-sections where i = j are not permitted (annihilation processes
involve the particle and its antiparticle). It yields the sum over two terms that are
actually identical (as the configuration where i represents χ and j represents χ is
exactly similar to the reversed one) so that

〈σvMøl〉eq
eff,Dirac = 1

4
[〈
σχχ→ψψvMøl

〉eq
+
〈
σχχ→ψψvMøl

〉eq]
= 1

2
〈
σχχ→ψψvMøl

〉eq
(2.120)

The factor 1/4 in front comes from the fact that neq
χ0n

eq
χ0
/(neq

χ )2 = 1/4 since neq
χ = neq

χ0 +neq
χ0

and we assume symmetric DM, so that the two terms that are added are equal. For
a minimal content of Majorana particles there is only one species and for a similar
coupling to a single SM species it yields

〈σvMøl〉eq
eff,Majorana =

〈
σχχ→ψψvMøl

〉eq
= 2 〈σvMøl〉eq

eff,Dirac . (2.121)
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Figure 2.4 – Evolution of the comoving number density Yχ with the parameter x = m0/T and
a mass m0 = 100 GeV at chemical decoupling. In red is represented the equilibrium solution.
In blue is the solution for s-wave cross-section 〈σvMøl〉 = a with a taking three different values.
In green the case of a p-wave cross-section with 〈σvMøl〉 = a/x. The p-wave cross-section being
suppressed by a factor of x, the decoupling occurs before for the green curves and yields to a
higher residual quantity of DM.

Resolution of the annihilation equation

The goal is now to review the method that, in practice, is used to solve Eq. (2.119).
Moreover we also need to make the link between the final number density evaluated
and the observed abundance of DM that can be used to put constraints on the particle
model used to compute the cross-sections. A common parametrisation is to use a
pseudo-comoving number density, usually written as the ratio of the number density
over the total entropy density. More precisely we denote

Yχ ≡
nχ
s
. (2.122)

This definition is convenient since when the number of DM particles in the Universe
becomes almost a constant nχ ∝ a−3 by dilution in the expanding Universe after chem-
ical decoupling. Therefore, as when there is no production of entropy, s ∝ a−3 as well,
the ratio becomes almost a constant. Massaging Eq. (2.119), using the expressions
of s and H with the temperature and the definition of g? of Eq. (2.93) the differen-
tial equation on Yχ is then

dYχ
dx =

√
π

45GN

m0
x2 g

1/2
? (T ) 〈σvMøl〉eq

eff

[(
Y eq
χ

)2
− Y 2

χ

]
. (2.123)

From now on we forget about a possible DM production from the decay of a massive
particle and therefore we do not take into account the decay term of Eq. (2.119).
The equilibrium value of the comoving number density is given by the ratio of the
equilibrium number density to the entropy density

Y eq
χ =

neq
χ

s
= 45

4π4heff(T )
∑
i

gi

(
mi

T

)2
K2

(
mi

T

)
. (2.124)

Finding a solution to the ODE Eq. (2.123) is not trivial and requires a numerical
evaluation. However it is still possible to estimate the value of the temperature (or
equivalently x) at the moment of freeze-out. For that, we search when Yχ becomes
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Figure 2.5 – Constraints on the cross-section by the comparison to the abundance measured
in Planck18 with the different confidence level. For simplicity, only the uncertainty on the
observed abundance is taken into account – not the uncertainties on ρc and T0. Left panel:
Case of a s-wave cross-section, i.e. 〈σvMøl〉eq

eff = cst. The conventional value is represented in
red. Right panel: Case of a p-wave cross-section, i.e. 〈σvMøl〉 = cst./x. Here we represented
the value of the constant by multiplying the thermally averaged cross-section by x on the
y-axis.

sufficiently different from Y eq
χ . Following GONDOLO et al. (1991) we define the freeze-

out temperature as Yχ(xf ) = (δ + 1)Y eq
χ (xf ) with δ a fixed parameter that can be ap-

proximated as δ = 1.5. This leads to the implicit equation

√
45πm0

4π4√GN

K2(xf )
heff(Tf )g

1/2
? (Tf ) 〈σvMøl〉eq

eff δ(δ + 2) = K1(xf )
K2(xf ) −

1
xf

d ln heff(T )
d lnT

∣∣∣∣∣
T=Tf

(2.125)

which is roughly equivalent to (but more precise) asking Γann = H. In practice the
temperature of chemical decoupling does not vary much between different models
and unless the couplings are extremely low – in which case we are closer to a
freeze-in scenario – or extremely large – in which case the number density of DM is
too much depleted to account for the observed abundance today. Typically it is given
by xcd = m0/Tcd ∼ 20.

In Fig. 2.4 we show the solution of Eq. (2.123) obtained with a implicit Euler
solver. We assume the presence of only one Majorana DM species of mass 100 GeV
and the thermal cross-section 〈σvMøl〉eq

eff =
∑
n anx

−n. This partial wave decomposition
has already been mentioned in Sect. 2.3.3. More particularly we recall that a0 is
called the s-wave term and a1 the p-wave term. In the figure we represent the solution
for a pure s-wave term and a pure p-wave term for different values of a = a0 = a1.
Because at temperatures of interest x � 1 for a same value of a the s-wave scenario
gives a larger thermally averaged cross-section and therefore a lower final DM density
subsequent to a later decoupling. We have used typical values for a in particular
10−26 cm3·s−1 (∼ 10−1 pb) and 10−24 cm3·s−1 (∼ 101 pb) , which roughly correspond
to what is expected to obtain the observed abundance today. See the following
discussion about Fig. 2.5. Moreover we recover the previous statement, that the
chemical decoupling temperature satisfies xcd ∼ 20− 25.
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The total abundance today

Eventually, the most important quantity is the value of Yχ today that we denote
Yχ(t0) = Yχ(x0). In theory we could obtain it by solving Eq. (2.123) up to now. However,
because we know that after chemical decoupling Y eq

χ is negligible in comparison to Yχ,
it is possible to simplify the equations. In practice we define a truncation temperature
as Yχ(xt) = 103Y eq

χ (xt). After that point we approximate the evolution equation as

dYχ
dx = −

√
π

45GN

m0
x2 g

1/2
? (T ) 〈σvMøl〉eq

eff Y
2
χ (2.126)

that can be solved analytically. A separation of variables yields

Yχ(t0) = Yχ(xt)
{

1 + Yχ(xt)
√

π

45GN

∫ x0

xt

(
g

1/2
? (T )
x2 〈σvMøl〉eq

eff

)
dx
}−1

(2.127)

However, the evaluation of 〈σvMøl〉eq
eff up to today is not possible numerically a priori

and requires to know the leading orders in the partial wave expansion, the s-wave
term and the p-wave term. The latter cannot always be efficiently derived from a
given particle model, but this is not an issue since, if the s-wave term is zero, we
can simply consider Y 0

χ ' Yχ(xt) in a good approximation. The theoretical abundance
of Majorana (C)DM particles is then

Ωth
c,0h

2 = m0nχ(t0)
ρc

h2 = m0s(t0)Yχ(t0)
ρc

h2

= 16π3Yχ(t0)
135 heff(T0)

(
T0

GeV

)3 ( m0
GeV

)(GeV
mpl

)2 (Mpc
km

)2 ( GeV
100 s−1

)2

= 2.764× 108 × Yχ(t0)
(
m0

GeV

) (2.128)

where we have used for the last equality T0 = 2.72548 K (FIXSEN 2009) and heff(T0) = 3.94
(assuming massless neutrinos). Comparing the theoretical value to the observed one,
Ωc,0h

2 = 0.1200 ± 0.0012 from Planck18, is useful to put constraints on the underlying
particle physics model. In Fig. 2.5 we considered the s-wave and p-wave scenarios,
that is 〈σvMøl〉eq

eff =
∑
n anx

n with a0 6= 0 and a0 = 0 respectively on the left and right
panel. Interestingly, when mχ > 10 GeV the value of a0 or a1 that gives the correct
abundance is approximately a constant of the mass. In practice the conventional
adopted value to make quick comparisons is, for the s-wave case,

〈σvMøl〉eq
eff ∼ 3× 10−26 cm3 s−1 , (2.129)

given in red on the figure, even though the real curve is slightly above or below de-
pending on the dark matter mass. This result is in agreement with STEIGMAN et al.
(2012). Note that we truncated the range in mass at 10 TeV since higher masses –
over O(100) TeV – would break the unitarity of the underlying particle physics the-
ory (GRIEST et al. 1990).

2.4.3 Kinetic decoupling

From the Boltzmann to the Fokker-Planck equation

The thermal or kinetic equilibrium is mostly maintained through elastic scattering
processes χ(q1) + ψ(q2) ↔ χ(q3) + ψ(q4) where χ is the DM particle and ψ a particle
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in the relativistic bath such as light SM fermions. The aim is therefore to derive
an equation for the DM temperature Tχ to evaluate when it departs from the bath
temperature T . As derived in App. B.3.3 the temperature of a non-relativistic species
with an isotropic distribution is given by

Tχ = mχ

6
〈
v2

rel

〉
NR

= gχ
mχnχ

∫
q2fχ(xµ, qi) d3q

(2π)3 . (2.130)

Therefore integrating the second moment of the Boltzmann equation (with q2 = δijq
iqj)

should give an equation for Tχ. More precisely one can check that

gχ

∫
Lm(fχ) q

2

mχ

d3q
(2π)3 = gχ

∫
Lm(fχ) p

2

mχ

d3p
(2π)3 = 3mχnχ

[
∂Tχ
∂t

+ 2HTχ
]
. (2.131)

where p is the canonical momentum in FLRW and q the canonical momentum in
the LIF. Therefore, the only missing part is the same integral but on the collision
operator. This turns out to require several approximations in order to obtain an
analytical formulation. According to BERTSCHINGER (2006) and BINDER et al. (2016)
the collision-operator for the elastic scattering can be written

C(fχ)(qj1) = Eχ(qj1)
2 δik

∂

∂qi1

[
γ(T, qj1)

{
Eχ(qj1)T ∂fχ

∂qk1
+ qj1fχ(qj1)

(
1 + εχfχ(qj1)

)}]
(2.132)

This results follows from an expansion at small momentum transferred δqj = qj3 − q
j
1,

as expressed in terms of the initial and final momenta of the DM particle, q1 and
q3, respectively. Moreover, γ(T, qj1) corresponds to the momentum relaxation rate.
Assuming that DM is non-relativistic so that DM particles have a negligible velocity in
the plasma frame, it only depends on the temperature and can be written

γ(T ) = 1
3m3

χπ
2T

∑
ψ

gψ

∫
dω eω/T(

eω/T − εψ
)2σχψT (s)p4

χψ(s)s (2.133)

where ω = Eψ is the scattered particle energy in the center-of-mass frame, such that
s ' m2

χ + 2ωmχ + m2
ψ. Moreover

p2
χψ(s) = 1

4s
[
s− (mχ +mψ)2

] [
s− (mχ −mψ)2

]
(2.134)

is the 3-momentum norm of the incoming particles in the the centre-of-mass frame
and εψ = εχ = −1 when dealing with fermionic particles. Besides, we introduced
the transfer cross-section σχψT ,

σχψT ≡
∫

(1− cos θ)dσχψ→χψ
dΩ

dΩ

= 1
128πsp4

χψ(s)
1

gχgψ

∫
dt(−t)

∑
spins
|Mχψ→χψ|2

 (2.135)

where θ is the angle between qj1 and qj3 in the centre-of-mass frame and t in this
integral does not refer to time but to the Mandelstam variable t = (qµ1 − qµ3 )2. As a
matter of fact, the transfer cross-section corresponds to a weighted version of the
usual cross-section where the collisions transferring more momentum are favoured
(cos θ ∼ −1 corresponds to particles leaving the collision with the opposite direction
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they initially have). The collision term has the form of a Fokker-Planck operator and,
under the assumption of non-relativistic DM and using isotropy, it can be written
in term of the momentum norm q

C(fχ)(q) = γ(T )1
2

[
mχT

∂2

∂q2 +
(
q + 2mχT

q

)
∂

∂q
+ 3

]
fχ . (2.136)

The second moment ot the collision operator is then

gχ

∫
C(fχ) q

2

mχ

d3q
(2π)3 = 3mχnχγ(T )(T − Tχ) (2.137)

which can be combined with Eq. (2.131) to get the equation for the DM temperature

dTχ
dt + 2HTχ = γ(T )(T − Tχ) . (2.138)

Here, as in the annihilation equation, there is competition between the Hubble rate
H and the momentum relaxation rate γ. In the limit γ � H the equation admits
the simple solution Tχ = T which means thermal equilibrium is reached. On the
contrary, when γ � H the solution is Tχ ∝ a−2 that is the expected behaviour for
the temperature of a massive species.

The temperature evolution

Similarly to the number density of DM particles, which is more efficiently tracked
through its comoving expression, it is convenient to express an effective pseudo-
temperature that would tend to a constant after kinetic decoupling. Since we ex-
pect Tχ ∝ a−2 asymptotically after kinetic decoupling, we can again use the entropy
density as a weighting factor, to a power giving the correct asymptotic scaling in a.
An additional factor of mχ allows use to define the following dimensionless pseudo-
temperature (BRINGMANN et al. 2007). Let us introduce,

yχ ≡
mχTχ
s2/3 (2.139)

which depends on the mass of the DM particle, and the entropy density. Massaging
Eq. (2.138) with the expression of the entropy density in terms of effective degree of
freedoms allows to rewrite it under the form

d ln yχ
d ln x = −

√
geff(T )g1/2

? (T )
heff(T )

γ(T )
H

(
1−

yeq
χ

yχ

)
. (2.140)

The structure of this equation suggests to numerically solve for ln yχ, which we do
with an implicit Euler solver once again. The equilibrium value yeq

χ is simply obtained
for Tχ = T ∝ a−1 when thermal equilibrium is maintained. After decoupling yχ reaches
a plateau at the value y∞χ . The kinetic decoupling temperature is thus defined at the
intersection of the plateau with the equilibrium value, yeq

χ ,

Tkd ≡
y∞χ
mχ

s2/3(Tkd) . (2.141)

In Fig. 2.6 is shown an example of solution for a DM particle of mass mχ = 100
GeV and pseudo-scalar and scalar mediated tree-level interactions. The mass of the
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Figure 2.6 – Upper panel: Evolution of the comoving temperature (blue) with the ratio x =
mχ/T for a single Majorana DM species of mass mχ = 100 GeV in two scenarios (dash-dotted
and dashed) referred as scalar and pseudo-scalar and detailed in Sect. 2.5. The particle
mediator has a mass of 500 GeV and couples to SM and DM particles with the same coupling
constant λ = 0.1. The red curve corresponds to the equilibrium value. Lower panel: Evolution
of the corresponding scattering (blue) and Hubble (green) rate.

mediating particle is 500 GeV and we set a universal coupling constant λ = 0.1 as
defined in the following section. In the upper panels, we represented the evolution
of the comoving temperature with x = mχ/T in blue and the equilibrium value in
solid red. In the lower panel, we show the evolution of γ(T ) and the Hubble rate
H. When the interaction rate dominates, equilibrium is maintained and yχ = yeq

χ .
On the contrary, when γ drops below H the equilibrium is lost and the plateau is
quickly reached. The dash-dotted lines report the position of the asymptotes and the
subsequent temperature of kinetic decoupling. We observe a bump on the red curve
occurring at x ' 7 × 102 (roughly where the decoupling of the scalar-mediated inter-
action happens). Translated in terms of temperatures for mχ = 100 GeV this yields
T ' 150 MeV which is the temperature of the QCD phase transition. By tremen-
dously decreasing the value of sχ the transition changes the growing rate of yχ since
one can show that yχ ∝ heffx. The difference between the pseudo-scalar and scalar
mediated processes mainly comes from their different behaviour when the incoming
particles have a small relative velocity. This difference is similar and related to the
difference between the s-wave and p-wave terms obtained for chemical decoupling.
Here the pseudo-scalar interaction is velocity suppressed and therefore equilibrium
is lost faster than for the scalar case where the interaction is not. More details on
these velocity effects are given in the following section.

2.5 Consistent determination of the halo minimal mass

In the previous sections, we have detailed the evaluation of the chemical and ki-
netic decoupling for WIMPs. In this final section, we evaluate the subsequent minimal
cosmological mass that halo may have. This quantity is directly related to the tem-
perature of kinetic decoupling via two processes called free-streaming and acoustic
damping, which are detailed in Sect. 3.6. Moreover, the minimal mass of collaps-
ing DM structures directly impacts their population in the MW such as their total
number. This is more particularly detailed in Chapter 4 when introducing the SL17
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Table 2.1 – All the tree-level diagrams involved in DM annihilation and creation. Every box
corresponds to a different final product. Note that the u-channel diagrams are only involved
when the incoming or/and the outgoing particles are identical.

model. In this section we assume, for now, that given Tkd it is possible to evaluate
the minimal cosmological mass Mmin.

2.5.1 Lagrangian of the WIMP simplified model

We consider a model of fermionic DM, Majorana or Dirac particles denoted χi in-
teracting with standard model fermions ψi through scalar, pseudo-scalar, vector and
axial-vector interactions. We denote by φk, ϕk and V µ

k all the possible neutral scalar,
pseudo-scalar, and vector mediators. A generic CP-conserving Lagrangian density for
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the interactions between the SM and the DM particles is then

Lχ,SM
int =− χiδχ(Aijk φk + iγ5Bij

k ϕk)χj − ψi(A
i
kφk + iγ5Bikϕk)ψi

+ χiγ
µδχ(Xij

k − Y
ij
k γ

5)V µ
k χj + ψiγ

µ
(
X ik − Y ikγ5

)
V µ
k ψi

(2.142)

where the summation over k, i, j is implicit. The factor δχ = 1/2 (resp 1) for Majo-
rana (resp. Dirac) DM particles is set in order to conserve similar Feynman rules
in both cases despite the different combinatorial factors arising in the evaluation of
the S-matrix. For Majorana DM particles χ = χ and the coupling via the vector in-
teraction is not permitted, hence Xij

k = 0 in that case. The mediating particles can
also interact between themselves with

LφϕV
int = − w

Sijk
Gijkφiφjφk −

w

Sjk
Hijkφiϕjϕk − wIijφiV µ

j Vj,µ . (2.143)

The symmetry factors are Sijk = nφ! (resp. Sjk = nϕ!) where nφ (resp. nϕ) is the
number of identical fields φ (resp. ϕ) in the first and second terms. The factor w
is a normalisation factor with an energy dimension. Such terms can arise from
Higgs-like mechanisms. Indeed with the Higgs doublet of the SM, H = (h+, h0)T ,
after the spontaneous breaking of the SU(2)L symmetry, the field acquires a vacuum
expectation value (VEV) 〈H〉 = (0, w/

√
2). Then the quadratic term of the Higgs

potential, namely λ(H†H)2, produces λwh3. The term (DµH)†(DµH) gives λwhZµZµ. In
addition, φ4 or ϕ4 interactions can also be produced in the same way and could be
added for completeness. In this work they are omitted for simplicity. As pointed out
in KAHLHOEFER et al. (2016) this theory is, a priori, non-renormalizable. In particular,
the axial-vector interaction violates unitarity at large energy. One solution would be
to consider the V particle as the gauge boson of a new symmetry U ′(1). However,
this brings further complications in the model to provide a mass to V and it is not
consistently taken into account in this analysis. Here we also neglect the couplings
of the vector mediator to the other gauge bosons through kinetic mixing. Therefore,
we should keep in mind that if the mass of one of the vector mediators is sufficiently
close to the mass of the Z boson mZ ' 91 GeV electroweak constraints may be spoiled
through an enhanced mixing (BABU et al. 1997).

With Nχ DM particles, Nφ, Nϕ, NV mediators and Nψ SM particles/antiparticle
couples, the Lagrangian density Lχ,SM

int contains (N2
χ + Nψ)(Nφ + Nϕ + 2NV ) free cou-

plings. The total set of free parameters also contains the Nφ + Nϕ + NV free masses
and the couplings of LφϕV

int . For simplicity therefore we can focus on special cases.
One can assign values separately for the couplings between the DM particle χ and
the interaction mediators on the one hand, and for the couplings between the SM
fermions and the same mediators on the other hand. For the latter, all couplings
would be fixed if we considered SM mediators, a possibility that we discard here.
However, we may still envisage simplifying assumptions. We can consider that cou-
plings to the scalar mediation sector is of Yukawa type, with A ∼ B ∼ λψ ∝ mψ to
respect minimal flavour violation principles (D’AMBROSIO et al. 2002) – we can also
allow for different normalisation factors between up-type and down-type quarks, or
between quarks and leptons (like in supersymmetric models). More simply, we can
assign universal couplings to all SM fermions (also for vector and axial interactions),
and other universal couplings to DM particles.
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Table 2.2 – Diagrams involved in the scattering of DM particles on the thermal bath, which do
not change the number of particles. Every box corresponds to a different particle with which
the DM particle scatters. Note that DM can also scatter off the SM antifermions, which is not
represented here to gain space.

2.5.2 Cross-sections and velocity dependencies

After the derivation of the master equations of chemical and kinetic decouplings,
one needs to determine both the cross-section for annihilation processes and the
transfer cross-section for elastic scatterings. We recall that for a generic interaction
i + j → k + ` they are respectively given by

σij→k` = 1
64πsp2

ij

1
gigjSk`

∫
dt

∑
spins
|Mij→k`|2


σijT = 1

128πsp4
ij

1
gigjSij

∫
dt(−t)

∑
spins
|Mij→ij |2

 (2.144)

where pij(s) is the centre of mass momentum given by pij(s) = (s − (mi − mj)2)(s −
(mi + mj)2)/(4s). The factor Sij is 2 if the two particles are the same and 1 other-
wise. We restrict the analysis to the tree-level diagrams. All the relevant processes
for chemical decoupling are represented in Tab. (2.1). All the relevant processes for
kinetic decoupling are represented in Tab. (2.2). Note that here we do not take into
account the possible scatterings on the mediators via the exchange of a DM particle
in the t-channel or s-channel. Indeed we assume that mediators are only present in
the thermal bath if lighter than the DM particles, in which case these diagrams are
suppressed by the mass of the DM particles in comparison to the scattering on SM
fermions. Moreover, the DM particles can also scatter on the anti-fermions of the
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Table 2.3 – Diagrams involved in the self-interaction with scalar mediators.
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Figure 2.7 – Annihilation cross-section of DM into e+e− multiplied by the relative velocity of
the incoming particles. In the left panel, only one mediator contributes while on the right there
is a mixture of two. We denote S=scalar, PS=pseudo-scalar, V=vector and AV=axial-vector.
All mediators have the same mass m = 224 GeV, chosen so that the resonance happens at
vrel = 0.75 for clarity. The couplings involved are all equal to 0.1.

SM. The amplitudes are the same as for the scattering on the fermions except for
the term implying a vector mediator, for which the signs of interference contributions
may be changed. Therefore, one needs to be careful and consider these two scattering
processes on their own. Indeed, even if a global sign of the amplitude is irrelevant,
if several mediators of different nature are involved the interference terms with the
vector mediators can potentially switch signs.

As detailed in Chapter 1, self-interactions in DM models can help solve some
of the small-scale tensions. Therefore we also evaluate, within our model, the
corresponding transfer cross-section divided by the DM mass. The diagrams involved
are represented in Tab. (2.3) for scalar mediators. The contribution of the other
mediators adds in the same way. For Majorana DM all three diagrams play a role.
For Dirac DM we need to distinguish χχ → χχ which involves the s and t-channel
diagrams and χχ→ χχ which involves the t and u-channel.

The velocity dependence can be evaluated through the Lorentz-invariant relative
velocity. Indeed, one can relate the energy in the centre of mass defined by the Man-
delstam variable s to vrel with the expression

s = (mi +mj)2 + 2mimj(γrel − 1) with γrel =
(
1− v2

rel

)−1/2
(2.145)

It appears to be useful to develop the expression of the thermally averaged cross-
section and transfer cross-section involved in chemical and kinetic decoupling. One
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can always write the expansion

σvrel =
∞∑
n=0

anv
2n
rel . (2.146)

and the leading order can be evaluated with some lengthy mathematical developments
detailed in App. B.3.3. In practice, it is painful to go to high order, but it turns out that
terms beyond n = 1 usually add negligible corrections, which can safely be neglected
in most cases. Then, using the non-relativistic definition of the temperature and
Eq. (B.98) one can evaluate the s-wave and p-wave terms of the usual partial wave
decomposition in the ratio x = mχ/T

〈σvrel〉 = a0 + 6a1
Tχ
mχ

= a0 + 6a1x , (2.147)

with the assumption of thermal equilibrium Tχ = T . For non-relativistic species we
recall that vrel ' vMøl so we can use both indifferently.

For the transfer cross-section a similar expansion is possible. If interested in
its behaviour for direct detection, where the relative velocity between the incoming
particle is small, one can also develop in series of vrel. However, for kinetic decoupling,
a better parameter to develop on is pχψ/mχ. Indeed, the velocity of SM particles in the
primordial plasma is large (∼ 1). The incoming centre-of-mass momentum, on the
contrary, is limited by the temperature and a rough scaling gives pχψ/mχ ∼ |T 2 −
m2
ψ|1/2/mχ � 1 when kinetic decoupling occurs. Therefore we can write

σT =
∞∑
n=0

bnv
2n
rel or σT =

∞∑
n=0

cn

(
pχψ
mχ

)2n

. (2.148)

In Fig. 2.7 we show the evolution, with the relative velocity, of the total tree-level
cross-section for the annihilation of DM particles into e+e−. In the left panel, there is
only one mediator while in the second panel there is a combination of two, with the
same mass. The couplings involved are all set to 0.1. At low velocity the scalar and
vector-mediated interactions have a cross-section that drops to 0, which is the sign
that the corresponding s-wave term is 0, that is a0 = 0 in Eq. (2.146). On the contrary,
for the pseudo-scalar and axial-vector mediator, the product of the relative velocity
with the cross-section goes to a constant at vanishing velocity. This is the sign that
the s-wave term is non zero. On the right-hand side, the combination of propagators
by pairs shows that only for the case where we add two mediators that induce a zero
s-wave term on their own we recover a final 0 s-wave term. This configuration is the
addition of a vector with a scalar mediator. Nevertheless, this is, a priori, non-trivial
since the interference in the amplitude squared can either cancel or add new terms.

In the left panel of Fig. 2.8 we show the evolution of the tree-level cross-section for
the annihilation of DM into scalar and pseudo-scalar mediators and a combination
of both. The couplings are set to 0.1 except for Gijk and Hijk that are set to 0. The
difference between Majorana and Dirac is here induced by the fact that there is no
u-channel contribution in σχχ→φϕ when DM is made of Dirac particles. As shown by
the vanishing-velocity behaviour, only the annihilation into two scalars misses the
s-wave term. This is further shown in Sect. 2.5.4 where we treat in more details the
scalar and pseudo-scalar configurations. In the right panel of the same figure, we
represented the self-interaction transfer cross-section. The masses and couplings are
chosen so that the Sommerfeld effect due to bound state formation is on the verge
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Figure 2.8 – Left panel: Annihilation cross-section of DM into scalar and pseudo-scalars
multiplied by the relative velocity of the incoming particles. For the annihilation into one
scalar and one pseudo-scalar the Dirac and Majorana DM particle scenarios have to be dis-
tinguished since the latter has a u-channel contribution the former misses. The couplings
Gijk and Hijk are set to 0 and we only consider the coefficients Aijk and Bijk equal to 0.1. Right
panel: Self-interaction transfer cross-section at low velocity. Notice that in the x-axis vrel is
given in km s−1 contrary to the other figures. Each curve corresponds to a single mediator
that is either scalar (S) in blue, vector (V) in red or axial-vector (AV) in green. The pseudo-
scalar mediator gives much lower values that are not represented here. The Majorana and
Dirac case are separated as they involve different Feynman diagrams. The scalar and vector-
mediated interactions have the same cross-section in several configurations and the blue solid
curve, blue dashed and green dashed curves are superposed. Similarly the blue and green
dash-dotted curves are also superposed. For Majorana DM particles vector interactions are
impossible and therefore not computed. The dots represent the values obtained from observa-
tions by KAPLINGHAT et al. (2016) from dwarf galaxies (red), LSBs (blue) and clusters (green).
The masses and couplings are chosen at the verge of Sommerfeld enhancement effects. The
grey lines represents constant values of σχχT .

of being important (ARKANI-HAMED et al. 2009; IENGO 2009; CASSEL 2010; FENG

et al. 2010). Indeed its strength is parametrised by εφ ≡ 4πmm/(λ2mχ) for mm the
mediator mass and λ the coupling constant. Sommerfeld effects start being relevant
when εφ . 1. However, our goal is to give a simple application of this "toy" model.
These constraints are thus not considered in a first approach. Here εφ = 1.3 and in
this configuration, the scalar, vector and axial-vector mediated transfer cross-sections
are on the right order of magnitude to match the observationally derived values in
KAPLINGHAT et al. (2016) and represented by the coloured dots. The three distinct
groups are obtained from three classes of astrophysical objects: dwarf galaxies in
red, Low Surface Brightness spiral galaxies (LSBs) in blue and clusters in green,
which exhibit different typical velocity dispersions. As mentioned in Chapter 1, the
need for self-interactions to solve the core-cusp issue is only present on small scales.
This translates as asking for a self-interaction cross-section that decreases with the
velocity. Namely the values inferred in KAPLINGHAT et al. (2016) give the rough scaling
σT ∝ 1/vrel. The scalar and vector-mediated interactions show a velocity evolution that
is consistent with this requirement. The axial-vector however tends to predict too large
cross-sections at large velocity. Eventually, the pseudo-scalar mediator provides such
a small cross-section that it is not represented in the figure for clarity.
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Figure 2.9 – Representation of the operations performed in order to obtain a consistent min-
imal mass for DM halos.

2.5.3 A consistent evaluation : the method

We have developed, from scratch, a C++ code that is able to evaluate, for any
parameters in the simplified Lagrangian, the chemical decoupling temperature, the
abundance of DM today, the kinetic decoupling temperature, and the minimal halo
mass. The structure of this entire code is given in App. A.5.

First, for every model we constrain the couplings by the total abundance of DM
observed today – assuming that WIMPs are the only source of DM. As mentioned
in Sect. 2.4.2 this value is fixed according to the result of Planck18. When a
single effective coupling constant is considered as a free parameter, we precisely
determine its appropriate value by a simple bisection method6. Once the couplings
are determined we move on to the evaluation of the kinetic decoupling temperature
and of different properties of the model. The total procedure is shown in Fig. 2.9 and
is illustrated in the context of a single scalar and single pseudo-scalar mediator in
the following subsection.

Several properties of the constrained model need to be further checked in order to
ensure theoretical consistency. They are the following

• In order to remain consistent with the perturbative treatment at tree level we ask
that the coupling constant be lower than

√
4π.

• The amplitudes are evaluated with a Breit-Wigner functional form that has a
width given by the decay rate of the mediator, according to the optical theorem.
However, this is an approximation, only valid in the limit Γ � m: we ask that
Γ < 0.1m. This further sets another upper bound on the couplings.

• When the mediators are less massive than the DM particles they can be present
in the plasma at chemical decoupling, in which case we assume that they are in
thermodynamic contact with the SM particles in order not to have to solve for
their number density – c.f. the discussion in Sect. 2.4.2. Nevertheless, in that

6The amplitudes for the processes described above feature products of DM-mediators and SM-
mediators couplings. We can basically promote this whole product as a free parameter, which allows us
to actually account for more diverse situations.



2.5. Consistent determination of the halo minimal mass 83

case, one should at least verify that they decay fast, much faster than ∼ 1 s. This
ensures that they do not contribute to the effective number of degree of freedom
during BBN and obey the associated constraints.

• For a large mass hierarchy between the DM particles and the mediators, one can
have bound-state formation and Sommerfeld enhancement of the cross-sections.
As we do not treat these phenomena in the current version of the code we should
ask that whenever Sommerfeld enhancement is relevant (in particular for anni-
hilation and creation of DM particles), the couplings be less than (4πmm/mχ)1/2

with mm the mediator mass.

• In this study of chemical decoupling it is assumed that DM is still in thermal
contact with the plasma. Therefore, we need to ask that both events are
sufficiently far apart and occurring in the right order, firstly chemical and
then kinetic decoupling. We choose to set the criterion xkd > 5xcd even
though one should probably ask for a greater difference in order to ensure no
contamination. Precise study of what happens in simultaneous chemical and
kinetic decoupling is treated in BINDER et al. (2018, 2021).

We should again emphasize here that our goal is to allow for an accurate resolu-
tion of the chemical and kinetic decouplings whenever our sets of assumptions are
valid. It is rather to give a general idea of the relations between the parameters of
the model and the minimal halo mass (and the subsequent properties for indirect de-
tection). However, even outside from the validity range of our assumptions, we still
carry on the study to try to infer as generic as possible a physical understanding,
even if more approximate in that case.

2.5.4 The scalar and pseudo-scalar examples

In order to illustrate the method, we perform the full computation in two specific
cases, both involving a single Majorana DM particle χ of mass mχ. Firstly, we consider
a unique pseudo-scalar mediator ϕ of mass mϕ coupling to the DM particles and to
e+e−. We define the associated effective coupling constant

λ ≡
√
B00

0 Be0 . (2.149)

Secondly, we consider a single scalar φ with mass mφ, which similarly couples only to
the DM particles and e+e−, such that we also introduce

λ ≡
√
A00

0 Ae0 . (2.150)

Besides, for simplicity, we do not consider the couplings between the scalar and
pseudo-scalar particle themselves. This actually amounts to suppress bi-quadratic
and quartic terms from the fundamental scalar Lagrangian.

Taking this effective coupling as the only free coupling of the problem, anni-
hilation cross sections trivially scale like ∝ λ4. In order to further understand
the velocity dependencies of the relevant cross sections, we fully provide them in
Tab. (2.4) and Tab. (2.5) up to second order in relative velocity. This makes explicit
the velocity dependence that we first illustrated in Fig. 2.7 and Fig. 2.8 in terms
of the s-wave and p-wave contributions. Besides, we show the first order in ve-
locity of the transfer cross-section for the scattering against SM fermions in Tab. (2.6).
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Figure 2.10 – Constrained effective universal coupling (upper panels) and kinetic decoupling
temperature (bottom panels) in terms of the DM and mediator masses. Here the dark sector
is made of a single Majorana DM particle and a single mediator pseudo-scalar (left panels) or
scalar (right panels).

We recover the well-known scaling relation of the DM abundance with the an-
nihilation cross section

Yχ(t0) ∼ 1
g

1/2
? 〈σvMøl〉eq

eff
. (2.151)

Let us focus on the constrained value of the effective coupling constant. According to
the tables of cross-sections, after some simplifications one finds that it satisfy

λ ∝
{√

mχ if mχ � mm

mm/
√
mχ if mχ � mm ,

(2.152)

where mm represents the mediator mass, either mφ or mϕ. Here we used
that the s-channel annihilation into fermions is only open if mχ & mψ (in the
non-relativistic regime).
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Figure 2.11 – Minimal mass of the halos (upper panel) and the unevolved number of subhalos
in a 1012 M� host (lower panels). All black marks in Fig. 2.10 should also be reported here but
are not for clarity.

The minimal halo mass is the maximum between the mass set by the scale of acous-
tic oscillations (Mao) and that set by the free-streaming scale (Mfs). As detailed in
Sect. 3.6 one has the following scaling relations7

Mfs ∼ (mχTkd)−3/2

Mao ∼ T−3
kd

(2.153)

Therefore, as we expect the rough scaling Tkd ∝ mχ, it should imply that Mmin ∝ m−3
χ

anyway. Eventually, the total number of subhalos in a given host object should scale
as Nsub ∝M1−α

min with α ∼ 1.95 as discussed both in Chapter 3 and Chapter 4. Therefore
one can expect the approximate scaling Nsub ∝ m3

χ.
In Fig. 2.10 and Fig. 2.11, we show the result for the entire chain of analysis from

the tuning of the effective coupling to get the correct abundance to the number of
7Note that here we use the simple prescription kao ∼ akd

√
3Hkd, would we consider kd ∼

1.8(mχ/Tkd)1/2akdHkd one would have Mao ∼ (mχTkd)−3/2 similarly than for the free-streaming mass.
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Figure 2.12 – Self-interaction transfer cross-section at vrel = 103 km s−1 (upper panels) and
decay time of the mediator (lower panels) for a pseudo-scalar (left panels) and scalar (right
panels) mediator. All black marks in Fig. 2.10 should also be reported here but are not for
clarity.

unevolved subhalos in a 1012 M� host. By unevolved we mean, cosmological, before
taking into account any dynamical effects modifying the halo properties. The tuned
value of the effective coupling λ in the upper panels Fig. 2.10 follows the scaling of
Eq. (2.152). The diagonal lines, where the mediator mass is twice the mass of the
DM particle, correspond to annihilation on the pole. There, the annihilation cross-
section is subsequently enhanced and a small value of λ is required in order to obtain
the correct abundance. In some cases, the numerical calculation runs into trouble –
with a dedicated warning – (represented by black tri-branch star symbol) as the correct
coupling is so low that the mediator width becomes too narrow to properly perform the
integrals numerically. The black crosses show when the decay rate of the mediator
is larger than 10% of its mass. This constraint could be alleviated if the coupling of
the mediator to WIMPs was different from its coupling to the SM particles. The other
black symbols show where the resolution may fail because of the different constraints
mentioned in the previous subsection (see the legend). Eventually, the couplings in
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Figure 2.13 – Scatter plot showing the correlation between the self-interaction transfer cross-
section and the minimal halo mass for the scalar propagator. The two panels correspond
to vrel = 102 km·s−1 (left) and vrel = 103 km·s−1 (right). The colours span the range of DM
mass and the circle sizes represent the logarithm of the scalar mediator mass (between 10−2

and 103 GeV). As the left panels correspond to typical velocities in galaxies we show a cyan
band corresponding to the constraints derived in KAPLINGHAT et al. (2016) for Low Surface
Brightness galaxies. Similarly in the right panel, the velocity is typical of clusters and therefore
we show the associated constraint in green. Here we kept all the points that do not satisfy
the Sommerfeld limit (that is they can be in the Sommerfeld enhanced regime). However, we
removed all those not satisfying the other constraints (non-perturbative effective couplings,
kinetic decoupling close to chemical decoupling).

the pseudo-scalar scenario are lower than in the scalar scenario. Indeed, the latter
exhibits an annihilation cross-section that is velocity suppressed8 – since the DM
particles are non-relativistic at chemical decoupling – which forces the coupling to
higher values in order to compensate.

In the lower panel of Fig. 2.10 the corresponding kinetic decoupling temperature is
represented. A first remark is that for mχ lower than the mediator mass it is roughly
independent of the mediator mass. This can be derived from the scaling in λ extracted
from Eq. (2.152), which, once put in the expression of σχψT given in Tab. (2.6), yields

σχψT ∝


(
mχ
mϕ

)4
Fm

(
mψ
mχ

)
if mχ � mm

Fm
(
mψ
mχ

)
if mχ � mm

(2.154)

with mm the mediator mass and where we introduced here

Fφ(x) = x2

(1 + x)2 and Fϕ(x) = 1
(1 + x)2

(
pχψ
mχ

)4

. (2.155)

Moreover, this also shows that when mχ � mm, the larger the mediator the earlier
the decoupling and the greater the kinetic decoupling, which also corresponds to
the observed behaviour. The black stars represent configurations where kinetic
decoupling is close to chemical decoupling (or even happens before). In the scalar
scenario, this situation only occurs on the pole where the coupling constant is low
and therefore the kinetic decoupling early. In the pseudo-scalar case, however, this
also happens for other points at small DM mass and large mediator coupling. This is

8For the χχ → φφ annihilation the velocity independent terms produced by the t and u-channels are
actually cancelled by the interference term, as shown in Tab. (2.4).
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due to the velocity suppression of the scattering transfer cross-section with a pseudo-
scalar mediator, thus giving an earlier kinetic decoupling than with a scalar mediator.

The upper panels of Fig. 2.11 represent the subsequent minimal halo mass
obtained using the results of Sect. 3.6. The black diamonds correspond to the points
where the acoustic mass dominates over the free-streaming mass. This happens
for late decouplings. As the kinetic temperature does not exactly scale as Tkd ∼ mχ,
in particular, due to the dependence on the mediator mass, the true behaviour of
Mmin departs from the simple scaling ∝ m−3

χ . However, the global trend is conserved
when the mediator mass is close to the DM mass and therefore the decoupling
does not occur too late so that the dominant halo mass still is the free-streaming
mass. Eventually, as the kinetic decoupling temperature is generally colder in the
scalar scenario, the subsequent minimal halo mass is larger. The lower panels of
Fig. 2.11 show the evolution of the unevolved number of subhalos in a 1012 M� host
and obtained using the recipes of SL17 presented in Chapter 5. The global trend
Nsub ∼ m3

χ is also respected when the mass difference between the mediator and the
DM particle is not too large. Indeed this number spans 18 orders of magnitudes for a
DM mass which spans 6. Moreover, it reaches values up to 1022 that prohibits a full
description of the DM structuring in Galaxy-like objects with numerical simulations.
This justifies the use of analytical models like SL17. Besides, the imprint of the
velocity dependence of the cross-sections can be seen here as a difference of 2 to
3 orders of magnitude between the scalar and pseudo-scalar cases at equivalent
masses. The latter, which has the earlier kinetic decoupling, gives the largest number
of subhalos. Interestingly enough, it is also the pseudo-scalar case that can be
probed by indirect DM searches, since it yields an s-wave annihilation.

The upper panels of Fig. 2.12 show the behaviour of the self-interacting transfer
cross-section at vrel = 103 km·s−1 (the typical velocity in galaxy clusters). For pseudo-
scalar interactions, the values are too low to have an impact. However, in the scalar
case, some configurations exhibit values in the interesting range for the core-cusp
issue as already discussed in the context of Fig. 2.8. Fig. 2.13 additionally presents a
scatter plot of all points obeying most of the required constraints (see the legend for
details), shown in the plane self-interacting cross-section (actually vrel σT/mχ, more
suited to observational constraints) vs. minimal halo mass. The preferred values
(with uncertainties) of cross-sections to potentially solve the core-cusp issue on dif-
ferent scales, as constrained by current observations (KAPLINGHAT et al. 2016), are
reported as shaded cyan and green bands. This figure points out that it should be
possible to obtain a consistent theory with a single scalar mediator to address the
core-cusp issue while accounting for observational constraints on different scales.
The inclusion of Sommerfeld enhancement should increase the self-interaction at
small velocity, therefore further making it easier to obtain the desired hierarchy be-
tween dwarf galaxies and clusters. We remind however that such high couplings are
probably already excluded by detection constraints. Forgetting about the Sommerfeld
enhancement and this latter issue, one sees that this simple model roughly correlates
the self-interaction to the maximal subhalo mass. If the self-interaction was the an-
swer to the core-cusp problem, in this simple model it would then restrict the range
of minimal subhalo mass to 10−8M� . Mmin . 10−1M�. Eventually, let us point out
that the lower panels of Fig. 2.12 show the decay time of the mediator that should
be sufficiently small to avoid any impact on BBN.
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Table 2.4 – Velocity dependence of the three different squared tree-level diagrams of
vrelσχχ→ϕϕ, vrelσχχ→φφ, vrelσχχ→φϕ and the associated interferences. Each row and column
is identified with a particle symbol and a letter (s, t, u) that correspond to the mediating par-
ticle and the channel. The squared terms are on the diagonal and the interference terms are
off the diagonal. The DM mass is mχ, the pseudo-scalar mass mϕ and the scalar mass mφ. We
considered here the expansion to third order in relative velocity and to zeroth order in mϕ/mχ

and mφ/mχ, thus assuming mχ � mϕ,mφ. The effective coupling λ is assumed universal and
w is the VEV-like term. The widths of the mediators are neglected in front of their mass.

χχ→ ψψ φ (s) ϕ(s)
mχ � mφ,mϕ
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]
Table 2.5 – Velocity dependence of the annihilation cross-section in SM fermions vrelσχχ→ψψ
and their interferences. See the table above for more explanations. The fermion mass is
mψ. Moreover, we consider the two limits mχ � mφ,mϕ and mχ � mφ,mϕ. The width of the
mediators are neglected in front of their mass.

χψ → χψ φ (t) ϕ (t)
φ (t) λ4

π

m2
χm

2
ψ

m4
φ

(mχ+mψ)2

ϕ (t) 0 λ4

2π
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χ

m4
ϕ(mχ+mψ)2

(
pχψ
mχ

)4

Table 2.6 – Leading order expansion of the scattering transfer cross-sections σχψT in terms of
the ratio pχψ/mχ. We assume no hierarchy between the DM and mediator mass. The width of
the mediators are neglected in front of their mass.
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2.6 Conclusion

2.6.1 Discussion of the preliminary results

In this chapter, we started by the introduction of the mathematics behind the
ΛCDM model and then introduced the notion of phase space and of the associated
distribution function. Then we showed that the PSDF is driven by the Boltzmann
equation, and from there, we gave an overview of the thermodynamics describing the
evolution of particle species in the early universe.. We then detailed on the compu-
tation of the chemical and kinetic decouplings. In the last section, we moved on to
the study of a simplified DM model and determined the minimal halo mass implied by
its intimate properties. After making explicit the Lagrangian and our method for the
analysis we showed specific realisations for scalar and pseudo-scalar mediated inter-
actions. There we derived the velocity dependencies of the cross-sections and used
appropriate series expansions to provide some generic scaling relations. We summa-
rized the comparison of the two configurations in Tab. (2.7). It is well-known that
a scalar (respectively pseudo-scalar) mediation leads to a p-wave (s-wave) annihila-
tion cross-section, not suited (well suited) for indirect searches, while well suited (not
suited) for direct searches. Less known is the fact that s-wave annihilation (in this
very minimalistic setup) is also related to smaller minimal halo masses, which should
increase the potential of indirect searches. Finally, we looked at the self-interaction
transfer cross-section and recovered that, up to Sommerfeld corrections, the scalar
mediator can be compatible with observationally favoured values. We further identi-
fied the portion of the parameter space that could be consistent with a DM solution
to the core-cusp problem. This includes the associated minimal halo masses, which
provides a well-defined target range for more dedicated studies.

We now discuss the impact of the minimal mass and subhalo number on DM
searches. Firstly, they may have some impact on the indirect detection methods.
Indeed, one shows in Sect. 5.1.4 that the luminosity of a subhalo is roughly
proportional to its mass. In practice it goes as m1−ε with ε ∼ 0.1 a small correction
related to concentration (or time of collapse). Moreover, the subhalo mass function
approximately goes as a power law, m−α with α ≤ 2 for conventional primordial power
spectra.. Therefore, the integrated luminosity goes as M2−ε−α

max −M2−ε−α
min and at most

yields a dependence going in M−εmin. Assuming a realistic value α ∼ 1.95 – c.f. Chapter 3
– it is already possible to anticipate differences in the amplification of the annihilation
rate (the so-called subhalo boost factor for a velocity independent annihilation
cross-section (SILK et al. 1993; BERGSTRÖM et al. 1999; LAVALLE et al. 2008)) for
a velocity-independent (s-wave) annihilation cross-section – c.f. the discussion in
SL17 where a factor 2 difference in the MW is shown between Mmin = 10−10 M� and
Mmin = 10−6 M� for α = 2. Between, Mmin = 10−12 and Mmin = 103 one can very roughly
expect a factor 5 difference with α ∼ 1.95. However, we also show in Chapter 5 that the
perspective of detecting sub-halos as point-like sources with gamma-ray instruments
does not depend on the minimal cut-off mass of the subhalos because only massive
enough subhalos can be found above the sensitivity reach of current and future
experiments. According to IBARRA et al. (2019), the smallest subhalos could change
by a factor of a few the probability that we under-evaluate the constraints of direct
detection with a subhalo passing through the Earth, though without taking into
account the range of minimal masses that we determined earlier in this chapter
(scalar interactions and p/s-wave annihilation/scattering). Having a link between the
subhalo distribution and the particle physics properties can then help reveal further
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〈σvMøl〉eq
eff σχψT λ Tkd Mmin ∼ m−3

χ Nsub ∼ m3
χ

pseudo-scalar v-indep. v-dep. (v4) lower higher lower higher
scalar v-dep. (v2) v-indep. higher lower higher lower

Table 2.7 – Summary - Comparison between pseudo-scalar and scalar interactions. The label
higher and lower are indicative of a direct comparison at equivalent masses.

correlations between the fundamental theoretical ingredients and the subsequent
direct detection constraints (including a proper treatment of structuring on small
scales). In the same analysis, the authors point out that, what could be an additional
promising probe, the capture of DM particles by the Sun, should not be impacted
by the presence of subhalos – though this relies on assumptions on their local
abundance which are plagued by large uncertainties. Let us also mention that
very small clumps with mass . 10−13 M� could also be probed locally by laser
interferometers like LISA as they could modify the arm length if passing through
(ADAMS et al. 2004). However, classical clumps are too large to have a significant
impact so that the method is better suited for PBHs or to superdense clumps with
a different formation scenario (V. BEREZINSKY et al. 2010). Nevertheless, because of
dynamical mass loss effects induced by gravitational tides in the MW, subhalos can
be pruned very significantly, especially due to the crossing of the baryonic disc and to
individual stellar encounters – as discussed in Chapter 5. This could lead, if subhalos
are resilient to tidal stripping (which is still debated), to a crowded population of tiny
remnants. The probability to observe such objects may anyway remain too low to be
relevant. Eventually, the most promising probe in the next decades may come from
pulsar timing arrays which could, in principle, be used on subhalos with masses as
low as 10−13 M� (RAMANI et al. 2020). In summary, although a clear signature due
to small-scale clumps may be difficult to find, if we detected one (at least), it would
be a powerful tool to constrain the underlying particle physics model and the CDM
scenario as a whole.

The next step is to perform the same analysis with the vector and axial-vector
mediators. Furthermore, we also want to link all the possible interactions to the
corresponding effective operators in order to relate this simplified model to the already
existing constraints from the CMB (GLUSCEVIC et al. 2018) or direct detection (CIRELLI

et al. 2013). Yet another interesting step, but which goes beyond our current interest
and effort, would be to more deeply account for collider constraints, using for instance
the results of ABDALLAH et al. (2015).In the same vein, it would be interesting to flag
more precisely the violation of unitarity produced by the axial-vector couplings and
set the corresponding limitations on the model. In the following, we discuss how to
connect the simplified model phenomenology with an example of UV-complete theory.

2.6.2 Connection to the CP-odd sector of the NMSSM

In the introduction of the chapter, we had mentioned that simplified models could
also be mapped to UV complete models. This is something we started to study in
the context of the light CP-odd sector of the NMSSM. Indeed in that model, DM
couples to a pseudo-scalar that can itself mix with pseudo-scalar mesons. Then
DM can annihilate into fermions via the direct coupling of the CP-odd Higgs or into
photons and gluons through its mixing via the mesons and triangle diagrams. The
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entire framework we have implemented is fully described in DOMINGO (2017). Here I
broadly summarise the main features of the model and show very preliminary results.

The idea is to consider configurations where the lightest pseudo-scalar particle
called A1 is lighter than 2 times the charm mass which means mA1 . 3 GeV. The
value of mA1 is obtained through the diagonalization of the two pseudo-scalar states
(one doublet component and one singlet state). Its interaction Lagrangian density
with quarks, leptons, photons and gluons is

LA1 = − iP11√
2v
A1


mu

tan βuγ
5u+ tan β

∑
ψ=d,s
µ,e

mψψγ
5ψ


− α

4πCγA1FµνF̃
µν − αs

4πCgA1G
a
µνG̃aµν

(2.156)

where tan β is the ratio of the two Higgs VEVs and P11 is the element relating A1 to
the doublet component of the NMSSM (ELLWANGER et al. 2010). In the first line we
recognise pseudo-scalar interactions as already set in our simplified model, thus
already taken into account in our numerical codes. In the second line however there
are effective couplings to photons and gluons parametrised by Cγ and Cg – they result
from triangle loops of leptons, charginos and heavy quarks. See App. B.4 for the
expressions and their computation. At the exception of the chargino contribution, the
simplified model introduced above formally takes into account such terms. However
they are not at tree-level and therefore they were not hitherto considered.

In addition, the particle A1 mixes with pseudo-scalar mesons. This effect can be
evaluated through the chiral Lagrangian. One then obtains a new physical eigenstate
Ã1 that is a combination of different pseudo-scalar states written

Ã1 = OAAA1 +
∑
ϕ

OAφϕ (2.157)

where the sum runs over ϕ = π0, η, η′. In the left panel Fig. 2.14 we show the evolution
of the mixing parameters OAϕ obtained in our numerical code. They are consistent
with the results shown in DOMINGO (2017) and appear to be small except near the
masses of the mesons. In the following we must ask that the A1 does not contaminate
their masses too much and therefore we avoid the resonances. The mesons also
couple to photons through the Wess-Zumino-Witten terms. One denotes Cγ [ϕ] the
corresponding coupling to FµνF̃µν. In the end, Ã1 couples to photons through A1 and
the pions. For large masses, mA1 & 1 GeV, the validity of the description with the
chiral Lagrangian breaks down but we do not consider these cases for now.

In order to implement this framework within our numerical tools we simply need
to evaluate the annihilation and scattering cross-sections corresponding to the cou-
plings to photons and gluons. This amounts to add two new terms

−Lχ,SM
int 3 DγA1

A1F
µνF̃µν +DgA1

A1G
a
µνG̃aµν . (2.158)

Then, to evaluate the DM annihilation into photons in the s-channel, we plug an
effective coupling constant

DγA1
(s) = OAACγ(s) +

∑
ϕ

OAϕCγ [ϕ] , (2.159)
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Figure 2.14 – Left panel: Evolution of the mixing parameters with the mass of A1 for tan β =
10 and P11 = 0.03. Except for resonances at the mass of the mesons they remain low. The
parameter i = 3 refers to π0. Right panel: Annihilation cross-section of the DM particle χ for
the same parameters P11 and tan β and a coupling between A1 and χ being 0.1. For simplicity
we did not incorporate here the effect of the chargino loops.

which depends on s, the Mandelstam variable. The cross-sections for the annihilation
into photons are shown as the blue curves in the right panel of Fig. 2.14. We repre-
sented the total cross-section as well as the contribution of the triangle loops (dash-
dotted) and the mixing to the π0 (dashed). Note that the total is not the sum of the
two components due to interferences. For comparison, we show the annihilation into
e+e− in solid red. We could now scan the parameter space in order to constrain the
model with the abundance. Then we may try to evaluate the scattering cross-section
and the kinetic decoupling in such models. In conclusion, we demonstrated here how
our numerical tools and simplified model could be generically adapted to probe more
complex theories (with the addition of effective couplings in that case). This project is
part of a larger collaboration on new supergravity models (MOULTAKA et al. 2019).
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Cosmological halo mass function

“If there were an answer I could give you to how the universe works, it
wouldn’t be special. It would just be machinery fulfilling its cosmic design. It
would just be a big, dumb food processor. But since nothing seems to make
sense, when you find something or someone that does, it’s euphoria”

Janet character in The Good Place
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To understand the distribution of CDM halos and subhalos in the Universe today,
it is necessary to dive into their formation mechanism. In the standard picture,
the DM density field was primarily imprinted by quantum fluctuations at the time
of inflaton decay. Their evolution in the first stages of the Universe was mainly
dictated by the particle properties of CDM. They started to grow efficiently after
matter-radiation equality (linearly in time), subsequently leading to the non-linear
collapse of structures. The over-dense regions became denser and denser, so
much that at some point they collapsed into bounded objects, which we call halos,
and virialised. Several authors have investigated the detailed physics behind this
evolution, first with analytical developments (e.g. MO et al. (2010), and references
therein), which provide deeper insights on the physical phenomena before entering
(or independent of) the highly non-linear stages, not to mention complementary
considerable effort to study galaxy formation (e.g. VOGELSBERGER et al. (2019)). One
of the main results in the field is the halo mass function obtained via the Extended
Press-Schechter (EPS) or Excursion Set Theory (EST) (PRESS et al. 1974; BOND et al.
1991). One subtlety, however, comes from the approximate self-similar structuration
of the halos. Large halos contain smaller ones that contain even smaller ones, so on
and so forth. The lower limit to this Russian doll construction is set by the minimal
halo mass, itself depending on the nature of DM as already mentioned in Chapter 2.
The EPS framework is particularly efficient to describe the population of halos in
the Universe. However, the distribution of subhalos in a given host halo is harder to
evaluate. Using an algorithmic tool called merger trees (LACEY et al. 1993) that is
built upon the EPS formalism, the upper limit of the subhalo mass function can be
approximated. The result, which seems to be rather insensitive to the considered
cosmology, has been compared to simulations and proven to be reliable (GIOCOLI

et al. 2008b; Y. LI et al. 2009; BENSON 2012; JIANG et al. 2014, 2016). Unfortunately,
the low mass range of subhalo is poorly constrained and one usually makes naive
extrapolations below the resolved masses. Here we show a slight modification of the
previous methods that is better motivated in the low mass range. The main objective
is to provide a correct description of the full cosmological subhalo distribution in the
MW, dwarf galaxies, or galaxy clusters. Indeed, the subhalo model SL17 —-(STREF

et al. 2017) – which is at the core of this thesis, has been built for the MW at z = 0 and
the total number of subhalo is calibrated on numerical simulations: here we want to
pave the way to go beyond these restrictions. In the longer term, the idea would be
to provide a generic analytic model of subhalos, complementary to approaches like
HIROSHIMA et al. (2018) which would have many possible applications, for instance
for the study of the 21cm line and more generally for indirect searches; and which
could also apply to DM candidates beside WIMPs. So far, the results presented in
Sect. 3.5 are preliminary but the development of the different numerical tools is
advanced enough to make a comparison with the literature in Chapter 4 after the
SL17 model is introduced.

The first sections of this chapter are devoted to the CDM halo formation history
from the primordial fluctuations (Sect. 3.1, Sect. 3.2) to the collapse and virialisation
(Sect. 3.3). Then, we introduce the EPS formalism (Sect. 3.4) and discuss merger trees
and the subhalo mass function in Sect. 3.5. Eventually, in Sect. 3.6, we connect with
Chapter 2 by defining the minimal mass of halos in the CDM paradigm introduced by
free-streaming and acoustic damping and by relating it to the DM properties.
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3.1 Relativistic theory of perturbations

In the first two sections the linear evolution of the matter density field is detailed
with the linearised Einstein’s equation at first order. This first part introduces more
particularly the main equations and initial conditions.

3.1.1 Notations and gauge choice

Here we present the notations and some features of the relativistic perturbations.
However, the aim is simply to introduce and summarise the main results of what
is a lengthy derivation. The issues around gauge transformation and Scalar-Vector-
Tensor decomposition are thus not mentioned for instance. We assume from the start
that it is possible to work in the conformal Newtonian gauge with the metric

ds2 = a2(η)
[
(1 + 2ψ)dη2 − (1− 2φ)δijdxidxj

]
(3.1)

and where the parameters ψ and φ represent, in the appropriate limit, the classical
Newtonian potential. We denote by η the conformal time. For a complete treatment
of perturbation theory in general relativity see the reviews and books GREEN et al.
(2005), MO et al. (2010), KNOBEL (2012), and BAUMANN (a, b). The metric tensor is
written gµν = gµν+δgµν where gµν corresponds to the homogeneous and isotropic FLRW
metric introduced in Sect. 2.1.2. More generally, the inhomogeneous quantities are
distinguished from the homogeneous ones by putting a bar on top of the latter: they
are referred to as the background values. The associated Christoffel symbols can be
found in App. C.1. We have seen that the stress-energy tensor for a perfect fluid in a
homogeneous and isotropic universe can be written, with ρ the homogeneous energy
density and P the homogeneous pressure,

T
µ
ν = (ρ+ P )uµuν − Pδµν . (3.2)

In contrast, the full stress energy tensor is denoted

Tµν = T
µ
ν + δTµν = (ρ+ P )uµuν − Pδµν −Πµ

ν (3.3)

with ρ = ρ + δρ, P = P + δP , uµ = uµ + δuµ. The last term, Πµ
ν, is the traceless

anisotropic 4-tensor and it satisfies Πi
j = −T ij + δijT

k
k/3, Π0

0 = 0 and Π0
i = 0. Its non

zero components, Πi
j form a 3-tensor (i.e. it transforms as a tensor in a 3D manifold).

Using that gµνu
µuν = gµνu

µuν = 1 yields δu0 = −a−1ψ. The comoving (or coordinate)
velocity vi is given such that δui ≡ vi/a with vi = dxi/dη. At first order,

uµ = a−1
(
1− ψ, vi

)
and uµ = a (1 + ψ,−vi) (3.4)

and these two expressions can be used to express the stress-energy tensor

T ij =
(

ρ+ δρ (ρ+ P )vi
−(ρ+ P )vj −(P + δP )δij −Πi

j

)
. (3.5)

Eventually we introduce both the density contrast δ and the comoving gauge density
contrast ∆ with the following definitions

ρδ ≡ ρ and ρ∆ ≡ δρ+ ρ′v = δρ− 3ρH(1 + w)v , (3.6)

where v is defined so that vi = ∂iv. Moreover, w = P/ρ is the equation of state and the
second equality for ∆ is obtained using the continuity equation at the zero-th order
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of perturbation theory, given in Eq. (2.20).

Now that all the key quantities have been defined we can derive the equations
that they satisfy. However, let us first discuss shortly some more notational intrica-
cies. This next part is not of crucial importance to understand structure formation.
However it gives a better insight into the equations and the way they are derived.

3.1.2 Intermezzo: a few words on geometry and Fourier space

Following BAUMANN (b), it is possible to rewrite the tensors with respect to the
orthonormal frame defined by the tetrad

eµ0 = a−1(1− ψ)δµ0 , eµi = a−1(1 + φ)δµi (3.7)

that satisfies gµνe
µ
αe
µ
β = ηαβ where ηαβ is the usual Minkowski metric. These vectors

have been chosen as the perturbed component of velocity of a co-moving observer
at rest. Tensor components defined in that new frame are identified by a hat on
their indices, e.g. µ̂. For a given (2, 0) tensor J for instance, its components satisfy
Jµν = J α̂β̂eµαe

ν
β. Let us consider δqi a 3-vector that is an order 1 quantity, then

δqi = δqα̂eiα = a−1δqî and δqî = a−1δqi . (3.8)

In order to simplify the problem, for 3-vectors and 3-tensors that have no time com-
ponents such as Πij and vi, it is common to work in this new frame. However, for sim-
plicity we drop the hat notation, keeping in mind that it should be here. It amounts
to say that we reduce the problem to the Minkowski metric. For the comoving ve-
locity and symmetric, traceless 3-tensors, which are order 1 quantities, one simply
scales out the expansion rate by doing so.

Another way of reformulating the same idea, following KNOBEL (2012), is to directly
scale out the expansion rate in the spatial coordinates so that the metric reduces to
hij = a−2gij (not Minkowski at first order). Then, similarly to above, for any order
1 quantity δq it is possible to write hijδq = h̄ijδq = δijδq and there is no difference
between lower and upper indices. In the following we work with the Laplace operator
of the velocity that is therefore defined as θ ≡ ∇2v = δil∂ivl = ∂iv

i.
Eventually, let us introduce the Fourier transform. We define in the 3D-space,

with k the co-moving Fourier mode,

δq(k) =
∫
δq(x)e−ikx√h d3x . (3.9)

It can be shown that
√
h = 1+Tr(δh)/2 at first order, with the decomposition h = 1+δh.

Therefore, the Fourier transform of order 1 quantities can simply be expressed as the
usual Fourier transform in 3D Euclidean space with co-moving Fourier modes

δq(k) =
∫
δq(x)e−ikx d3x and δq(x) = 1

(2π)3

∫
δq(k)eikx d3k (3.10)

3.1.3 First order equations

In order to set a realistic framework, let us assume that the Universe is filled with
different species that are supposed to interact only gravitationally between them-
selves. All quantities related to a given species called a are labelled by the same
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letter (e.g. δa, θa, . . . ). Because the total stress-energy tensor is given by a sum of
the different components

Tµν =
∑
a

Tµνa (3.11)

and because this equality has to be valid at all orders, the global density, the pressure
and the stress-anisotropy tensor are also given by a simple sum over all the species

ρ =
∑
a

ρa, P =
∑
a

P a, δρ =
∑
a

δρa, δP =
∑
a

δPa, Πij =
∑
a

Πij
a . (3.12)

This equation holds for (ρ + P )θ - as a direct consequence of the sum of the stress
anisotropy tensor. Therefore one can write as well,

(ρ+ P )θ =
∑
a

(ρa + P a)θa . (3.13)

The continuity and Euler equations come from the conservation of all the stress-
energy tensors ∇µTµνa = 0 (as we assume that different species interact only gravi-
tationally between themselves). Using the 0th component of this expression we get
the continuity equation

δ′a + (1 + wa)(θa − 3φ′) = 3H
(
wa −

δPa
δρa

)
δa (3.14)

with the definition of the matter density contrast δa ≡ δρa/ρa. We recall that the
prime notation represents the derivative with respect to the conformal time η. The
ith components give the Euler equation (the generalisation in general relativity of the
usual Euler equation of hydrodynamics)

v′a,i +Hva,i − 3HP
′
a

ρ′a
va,i = − ∂iδPa

ρa(1 + wa)
− ∂iψ −

∂jΠj
a,i

ρa(1 + wa)
. (3.15)

Traditionally these three equations are gathered in a single one which is written in
terms of the variable θa. To this end, one simply needs to apply the operator δil∂l
on both sides of Eq. (3.15). This gives

θ′a +H
(

1− 3P
′

ρ′a

)
θa = − ∇2δPa

ρ(1 + wa)
−∇2ψ −

δil∂l∂jΠj
a,i

ρa(1 + wa)
. (3.16)

Let us now introduce the anisotropic pressure σ1 as

Πa,ij =
(
ρa + P a

)(
∂i∂j −

1
3δij∇

2
)
σa . (3.18)

In Fourier space the following implicit definition can be inverted in order to write
σa in terms of Πa, more precisely,

3
2

[
1
3δ

ij − kikj

k2

] [1
3δij −

kikj
k2

]
= 1 yields σa = 3

2

[
1
3δ

ij − kikj

k2

]
Πa,ij

ρa + P a
. (3.19)

1This quantity is defined in (BAUMANN b). In GREEN et al. (2005) the notation π is used, however in
order to avoid confusion with the mathematical number we will not work with this convention. Eventu-
ally (MO et al. 2010) have a slightly different definition denoted Π. Moreover, notice that for this equation
the total anisotropic pressure σ must satisfy

(ρ+ P )σ =
∑
a

(ρa + P a)σa . (3.17)
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Massaging Eq. (3.16) with this new notation, in Fourier space, one can write the
Fourier transformed Euler equation as

θ′a +H
(

1− 3P
′
a

ρ′a

)
θa = k2δPa

ρa(1 + wa)
+ k2ψ − 2

3k
2σa . (3.20)

The continuity and Euler equations tell how the content of the Universe evolves
with time, however, they do not provide information on the evolution of space-time
itself (i.e. on the evolution of the potentials ψ and φ in this specific case). This, in
turn, is given by the perturbed Einstein equation. At first order the component of
Einstein’s tensor can be decomposed as Gµν = Gµν + δGµν. The 0th order equation
Gµν = 8πGNTµν must still hold and it gives the Friedmann equations. The first order
reduces to δGµν = 8πGNδTµν. See App. C.1 for the details of the different components
of this tensorial equation. They can be summarised as

φ− ψ = 12πGNa
2(ρ+ P )σ (spatial traceless)

φ′ +Hψ = 4πGNa
2(ρ+ P )θ/k2 (0-ith component)

k2φ = −4πGNa
2ρ∆ (Poisson)

φ′′ + (2H′ +H2)ψ +H(ψ′ + 2φ′) = 4πGNa
2
[
δP + (ρ+ P )∇2σ

]
(spatial trace) .

(3.21)

All the important equations have now been introduced. They form a system that
cannot be solved analytically without making some approximations. In the next part
we say a few words about the initial conditions and we subsequently focus on the
evolution of the perturbations.

3.2 Evolution of the perturbations

3.2.1 Initial conditions

Initial conditions are imposed by the inflation model. Let us follow LESGOURGUES

et al. (2013) and look at the easiest deviation that can be considered from the homo-
geneous background and that is predicted in the most common scenarios. It consists
in assuming that there is a local time shift δη(x) of order 1 in perturbation theory
between the quantities of interest and their background value, in particular,

ρa(η,x) = ρa(η + δη(x),x) ' ρa(η,x) + ρ′a(η,x)δη(x)
Pa(η,x) = P a(η + δη(x),x) ' P a(η,x) + P

′
a(η,x)δη(x) .

(3.22)

which imposes the initial condition

δρa = −3H(ρa + P a)δη(x) . (3.23)

If we write the pressure as a function of the energy density ρa and Sa the entropy,
we can develop Pa = Pa(ρa, Sa) as

Pa(ρa, Sa) = Pa(ρa, Sa) + c2
aδρa + τaδSa +O(δρ2

a + δS2
a) (3.24)

with the definition of the sound speed

c2
a ≡

∂Pa
∂ρa

∣∣∣∣
Sa

and with τa ≡
∂Pa
∂Sa

∣∣∣∣
ρa

. (3.25)
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Therefore, combining Eq. (3.22) and Eq. (3.23) gives

δPa = P
′
a

ρ′a
δρa +O

(
δρ2
a

)
(3.26)

and the subsequent identifications c2
a = P

′
a/ρ
′
a and δSa = 0. Perturbations are thus

called isentropic. Moreover, when the equation of state is wa = cst. for every species,
it can then be identified with the sound speed. Indeed, differentiating wa with re-
spect to the conformal time yields

w′a = 0 = −ρ
′
a

ρa

[
P a
ρa
− P

′
a

ρ′a

]
and wa = P

′
a

ρ′a
, (3.27)

which leads to wa = c2
a. Besides, it is also possible to define an effective sound speed

for the entire fluid as a weighted sum of the sound speeds for each species

c2
s ≡

∑
a

c2
a

ρa + P a

ρ+ P
. (3.28)

In the context of isentropic perturbations it becomes

c2
s =

∑
a c

2
a(ρa + P a)∑

a(ρa + P a)
=
∑
a c

2
aδρaδη(x)∑

a δρaδη(x) =
∑
a δPa∑
a δρa

= δP

δρ
(3.29)

where we used Eq. (3.23). However notice that even though c2
a = wa for every species,

w ≡ P/ρ 6= c2
s in general – if there are more than one species. Now, to see how these ini-

tial conditions can be translated into constrains on the unknown variables (δρa, θa, . . . )
of our system of equations, one can define a non adiabatic pressure fluctuation

δPnad ≡ δP − c2
sδρ =

∑
a

c2
aδρa −

∑
a

c2
a

ρa + P a

ρ+ P
δρ

=
∑
a

c2
a

(
ρa + P a

) [ δρa

ρa + P a
− δρ

ρ+ P

]
.

(3.30)

Remark that in the case of isentropic perturbation one has initially δPnad = τδS = 02.
However, the initial condition does not impose that δPnad remains equal to zero as
time goes. When δPnad is initially zero and remains so we say that perturbations are
isentropic and their evolution is adiabatic.

If we consider a Universe made of two components, radiation labelled by the letter
r and matter labelled by the letter m, then (using the fact that wr = 1/3, wm = 0 and
c2

r = wr) it yields the expression of the homogeneous energy density and pressure

ρ = ρr + ρm =
ρeq
2

[(
aeq
a

)3
+
(
aeq
a

)4
]

P = P r = 1
3ρr = 1

3
ρeq
2

(
aeq
a

)4
(3.31)

with the effective sound speed being

c2
s = c2

r
1 + wr

1 + wr + y
= 1/3

1 + 3y/4 (3.32)

2This last equation is similar to the definition of the dimensionless entropy in GREEN et al. (2005).
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and where y ≡ ρm/ρr = a/aeq. Similarly, the non adiabatic pressure fluctuation is

δPnad = c2
r
ρm

ρ+ P

[
δρr

ρr + P r
− δρm

ρm

]
= y/4

1 + 3y/4

[3
4
δρr
ρr
− δρm

ρm

]
. (3.33)

In the end, having isotropic initial fluctuations with adiabatic evolution implies the
relation between the radiation and matter density contrasts 3δρr/ρr = 4δρm/ρm.

3.2.2 Evolution of the potentials

Henceforth we continue the analysis in the case of an anisotropic-free fluid. One
has, from the spatial traceless component of Einstein’s equation, the equality ψ = φ.
This quantity is thus referred to as the gravitational potential. In order to study its
evolution one can use Poisson’s equation in terms of the density contrast δ Eq. (C.11)
and a combination of the other linearised Einstein equations [Eq. (C.20), Eq. (C.10)
and Eq. (C.3)] under the form

k2φ+ 3H(φ′ +Hφ) = −3
2H

2δ and φ′′ + 3(1 + w)Hφ′ + wk2φ = 0 . (3.34)

with the approximation c2
s ∼ w – even though that does not strictly hold when

there are more than one species. In the super-Hubble limit, k � H, the terms
proportional to H2 are dominant in Poisson’s equation and therefore δ ∼ −2φ.
Moreover the right hand side equation shows that supper-Hubble modes of φ
are a constant that only depends on the value of w. Consequently these modes
have a fixed value φRD in the radiation dominated era, where w ' wr = 1/3,
and another fixed but different value φMD in the matter-dominated era where,
w ' wm = 0. With the assumption of adiabatic perturbations δr = 4δm/3 in the early
radiation dominated era, thus, on super Hubble scales, δr ' −2φRD and δm ' −3φRD/2.

One can then relate φRD to φMD thanks to the comoving curvature perturbation.
In the Newtonian gauge the latter takes the form

R ≡ −φ+Hv . (3.35)

A straightforward computation made in BAUMANN (a) and reproduced in App. C.2
shows that for isentropic initial conditions with an adiabatic evolution and a zero
anisotropic stress-energy tensor, the derivative of R reduces to

R′ = −3k
2

H
ρ

ρ+ P
(R−Hv) and gives the scaling

d lnR
d ln a ∼

(
k

H

)2
. (3.36)

Therefore, for the super-horizon modes, the curvature perturbation is a constant of
the scale factor. This property is important since inflation has increased the value of
H so much that, initially, all modes are assumed to be super-Hubble. Consequently,
all modes start with an initially constant R before they re-enter the horizon. Moreover,
massaging R as a function of the potential and the equation of state only and using
its conservation on super-Hubble scales yields

R = −
(5 + 3wr

3 + 3wr

)
φRD = −

(5 + 3wm
3 + 3wm

)
φMD . (3.37)

Plugging the values wr = 1/3 and wm = 0 yields φMD = (9/10)φRD. For sub-Hubble
scales, k � H, computations are more involved. Let us just mention that in the
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radiation era φ decreases and that its growing mode becomes constant in the matter-
dominated era. The important message of this section is that on super-Hubble scales
the potential is frozen and so are δr and δm with it. In the following we focus on the
evolution of the DM perturbations.

3.2.3 Evolution of the DM perturbations

We assume that the Universe is only made of matter, still labelled here by the
generic letter m, and radiation r. For the evolution of perturbations in the radiation
dominated era it is necessary to study the evolution of θm and δm simultaneously with
the continuity and Euler equations

δ′m + θm − 3φ′ = 0 and θ′m +Hθm = k2φ (3.38)

In practice, combining these two equations yields

δ′′m +Hδm = −k2φ+ 3Hφ′ + 3φ′′ (3.39)

and, in the sub-Hubble limit, only the first term of the right hand side is impor-
tant. Moreover it is possible to neglect the radiation contribution to the potential (S.
WEINBERG 2002) and consider that it is only sourced by matter. Therefore, thanks to
the Poisson equation, the evolution of δm is driven by

δ′′m +Hδ′m = 4πGNa
2ρm∆m . (3.40)

Now, as shown in App. C.1, ∆ and δ are related by the equation ∆ = δ + 2φ + 2φ′/H.
Because φ ∝ H2∆/k2 by Poisson’s equation, for sub-Hubble scales it yields ∆ ' δ.
Thus, the equation on δm can be written only in terms of its derivatives. By a change
of variable η → y = a/aeq it transforms into the Mezáros equation

d2δm
dy2 + 2 + 3y

2y(1 + y)
dδm
dy −

3
2y(1 + y)δm = 0 (3.41)

whose growing mode solution for the radiation dominated era goes as δm ∝ ln y ∝ ln a.
Therefore DM perturbations grow during DM on sub-Hubble scales, however the
growth is logarithmic and consequently rather slow.

In the matter-dominated era, Poisson’s equation yields

∆m ∼ δm = −k2φ

4πGNa2ρm
. (3.42)

As the growing mode of the potential is a constant of time in the matter-dominated
era and in the sub-Hubble limit, this shows that the growing mode of the DM per-
turbation follows δm ∝ a. In more details, when taking into account dark energy it
is possible to use Eq. (3.40) that we introduced for the radiation dominated era3.

3This equation can also be found often written in terms of the cosmic time t instead of the conformal
time η. Going from one to the other is straightforward using the relation adη = dt one finds

δ′′m = d2δm
dη2 = a

d
dt

(
a

dδm
dt

)
= a2 d2δm

dt2 + a2H
dδm
dt

which gives a similar equation with a factor of 2 in front of the Hubble drag term,

δ̈m + 2Hδ̇m = 4πGNρ∆m .
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Figure 3.1 – Evolution of the growth factor with the redshift in the matter and Λ dominated
era for the Planck 2018 cosmology Planck18. Here we assume Ωr(z) = 0 which should not
hold down to the equivalence between matter and radiation.

The growing mode solution is usually parametrised by δm ∝ D(t) where D is called
the growth function and satisfies

D(t) ≡ 5
2Ωm,0

H(t)
H0

∫ t

0

H3
0 dt′

a2(t′)H2(t′) and D̈(t) + 2HḊ(t) = 4πGNa
2ρmD(t) . (3.43)

It can be approximated by the following fitting formula given in CARROLL et al. (1992)

D(z) ' 5
2(1 + z)Ωm(z)

{
Ω4/7

m (z)− ΩΛ(z) +
[
1 + Ωm(z)

2

] [
1 + ΩΛ(z)

70

]}−1
, (3.44)

assuming no radiation (Ωr(z) ∼ 0). The evolution of (1 + z)D(z) is represented in
Fig. 3.1 for the Planck cosmology. Let us point out that, for z in the matter dominated
era, the abundances are such that Ωm ∼ 1 and ΩΛ ∼ 0 so that the growth factor
satisfies (1 + z)D(z) → 1. The conclusion is, as expected, the same as the simple
estimation from Eq. (3.42). However, when ΩΛ dominates the increase of D(z) drops
and perturbation stop growing, they are frozen by the cosmological constant.

In summary, DM perturbations entering the horizon grow as ln a during the
radiation-dominated era, as a during the matter-dominated era and stop growing
in a dark energy-dominated era. As over-dense regions get denser and denser
they develop a gravitational instability that prompts their collapse and triggers the
formation of halos. This is the subject of the next section.

3.3 Collapse model and halo formation mechanism

In this section we describe the process of over-densities collapsing to form
halos. This is non-linear physics and, in general, our understanding of this
process relies mostly on cosmological simulations. However, provided that sev-
eral simplifications are made, it is possible to extract analytical solutions (S.
WEINBERG 1972; KNOBEL 2012).
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3.3.1 Non-linear spherical collapse

In this section we consider an isolated spherical over-dense region of size R(t) at
time t that has density ρ(t) = ρ(t) + δρ(t) where ρ(t) stands as the homogeneous back-
ground density. Because over-densities are essentially frozen during the radiation
domination era; as shown in the previous section, we study its evolution during a
matter-dominated Universe when the cosmological constant is negligible. The mat-
ter is assumed to be homogeneously distributed inside the over-dense region and,
being isolated during all its evolution, it conserves a constant mass M . Following
MO et al. (2010) we assume that the different shells forming the spherical region
never cross. Then a particle at radius R from the centre on a radial trajectory has
energy per units of mass

E = 1
2

(dR
dt

)2
− GNM

R
. (3.45)

Because this energy is required to be negative to have a bound object collapsing we
introduce E = −E > 0. Moreover, during the matter domination era, we know that
the background density evolves as

ρ(t) = 1
6πGNt2

. (3.46)

Then, it is convenient to introduce a pseudo-conformal time τ that is defined
by the differential equality dt = R/

√
2E dτ . We separate variables so that be-

tween two instants, corresponding to τ and τi where the corresponding radii
are R and Ri, Eq. (3.45) yields

τ − τi =
∫ R

Ri

dR′√
GNMR′/E −R′2

. (3.47)

Note that we choose the positive square root only in order to have an increasing
solution. Furthermore, considering only negative energies restricts solutions to be
bounded by R < GNM/E. We can solve the above integral by making the change of
variable R → X = 1 − 2ER/(GNM), which yields the simplification

τ − τi = −
∫ X

X0

dX ′

1−X ′2 = arccos
(

1− 2ER
GNM

)
− arccos

(
1− 2ERi

GNM

)
. (3.48)

In addition, we show in App. C.3 that in a matter-dominated Universe at an initial time
ti, the argument of the second arccosine is negligible since 2ERi/(GNM) ∼ 4δi/9 � 1
– a precise treatment of the initial conditions of the overdensity is given in MO et al.
(2010) – chapter 5.1. Thus, the final solution in terms of τ is given by

R(τ) = GNM

2E (1− cos(τ − τi)) and t(τ) = GNM

(2E)3/2 (τ − τi − sin(τ − τi)) . (3.49)

Without loss of generality we can further redefine τ − τi → τ . Therefore, we can now
give an expression of the overdensity δ as a function of the conformal time τ . Using
Eq. (3.49), Eq. (3.46) and the expression of the mass we get

δ(τ) = δρ(τ)
ρ(τ) = 9

2GNM
t2(τ)
R3(τ) − 1 = 9

2
[τ − sin τ ]2

[1− cos τ ]3
− 1 (3.50)
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Figure 3.2 – Left panel: Evolution of the overdensity with τ in the spherical collapse model
and from the linear approximation. Right panel: Evolution of the radius R and of the grav-
itational and kinetic energy with τ . After turnaround at τ = π, virialisation occurs when the
virial relation is satisfied (2K +W = 0).

When developing in series this expression around τ = 0, it yields

δ(τ) ∼ 3
20τ

2 ∼ 3E
10

( 6t
GNM

)2/3
. (3.51)

Besides, δ increases from 0 to infinity when τ goes from 0 to 2π: the overdensity
diverges. In the same time the radius R(τ) increases from τ = 0 to τ = π with a
maximum of R(π) = GNM/E and then decreases back to 0. The size of the region
grows and then shrinks, the transition between these two phases is called the
turnaround. The evolution of δ and R is represented in Fig. 3.2.

Before going further, let us mention that this computation is also often made by
considering a spherical homogeneous sphere in a fully general relativistic treatment
and its evolution is examined by using Friedman equations. Indeed according to the
Birkhoff theorem, the background and the region evolve independently. Moreover,
the over-dense region is an independent isotropic and homogeneous region that has
a positive curvature. Its geometry can then be described using the FLRW metric in
the same way we do for the Universe with K = 1. We introduce a scale factor A
associated with it. If A(t0) = 1 is set as a definition, then it satisfies R(t) = A(t)R0.
Using Friedmann’s equations, the evolution of the scale factor is

(
Ȧ
A

)2

= 8πGN
3 ρ− 1

R2
0A2 which implies

(dR
dt

)2
= 2GNM

R
− 1 (3.52)

where where we have used the conservation of the mass M . With this approach we
find back the exact same equations when taking −2E = 1 i.e. by rescaling the time
variable in this new FLRW metric. In fact, this does not impact the physical inter-
pretation because the only relevant time is that defining the background evolution,
and, irrespective of the time normalisation, because the initial condition is always set
by demanding R = Ri ∼ 0 at initial time t = ti.
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3.3.2 Initial kinetic and potential energy of over-densities

The over-dense region starts shrinking when τ = π and the model predicts that it
goes back to a singularity when τ = 2π. This is, of course, non-physical and would
prevent the existence of halos by forming black holes. As matter of fact, after the
turn-around point, the region virialises and reaches a state of equilibrium before the
singularity. According to the virial theorem, a self-gravitating system in steady-state
has its potential energy W equal to minus two times its kinetic energy K. It is
therefore interesting to search for the radius R at which this condition is satisfied.
However, while the potential energy is straightforward to compute, the kinetic energy
is not. The idea is thus to compute the initial total energy when the over-density is
still in the linear regime and deduce the kinetic energy from its conservation. In the
following we follow, in part, a derivation presented in OKOLI et al. (2016).

Kinetic energy. The computation first starts with the expression of the initial ve-
locity field for particles inside the region of interest that is still assumed to be spheri-
cal, though not necessarily homogeneous in this first part. Consider a non relativistic
particle species at physical position r(t). Because of expansion r(t) = a(t)x (with x the
comoving coordinate) and the velocity field evolves as u(t) = Hr + v where v = a(t)ẋ is
the comoving/peculiar velocity. Using Eq. (3.15) in the non-relativistic limit, with no
anisotropy tensor and pressure-less matter, the linearized equation for the peculiar
velocity can be re-written under the form

∂v
∂t

+Hv = −1
a
∇Φ(x, t) , (3.53)

where Φ = φ+aä
∑
i(xi)2/2. The Poisson equation can then be written ∇2Φ = 4πGNρa

2δ.
Therefore, Φ(x, t) = D(t)/a(t)Φi(x) since D(ti) = a(ti) for ti a time in the matter-
dominated era when the perturbation still has not grown significantly. Written dif-
ferently, the peculiar velocity satisfies,

∂(av)
∂t

= −D(t)
a(t) ∇xΦi(x) (3.54)

This equation can be solved for v at time t as

v = −∇xΦi(x)
a(t)

∫ t D(t′)
a(t′) dt′ = − 1

4πGNρa2(t)Ḋ(t)∇xΦi(x) (3.55)

where we use the differential equation Eq. (3.43) satisfied by the growth function
D for the second equality. At the initial time ti in the matter-dominated era, the
Hubble rate satisfies Hi = ȧ(ti)/a(ti) = Ḋ(ti)/D(ti). Moreover the Friedmann equation
gives H2

i = 8πGNρ(ti)/3, which yields

vi = − 2
3Hi

1
a(ti)

∇xΦi(x) = − 2
3Hi
∇rΦi(r) . (3.56)

Therefore the total initial velocity field can be formulated under the simple form

ui = Hir−
2
3Hi∇rΦi(r) . (3.57)

Furthermore, the total kinetic energy of the system at initial time can be written

Ki = 1
2

∫
Vi
ρi(r)u2

i (r)d3r (3.58)
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where Vi represents the volume of the over-dense region. Replacing ui by its expres-
sion, expanding at first order and using the Poisson equation ∇rΦi(r) = 3H2

i δi(r)/2
the kinetic energy becomes

Ki = 1
2ρi

∫
Vi

(
H2
i r

2 + 2
3r

2∇rΦi(r)− 4
3r.∇rΦi(r)

)
d3r

= 1
2ρi

∫
Vi

(
H2
i r

2 + 4
3r

2∇rΦi(r)
)

d3r− 1
3ρi

∮
Si
r2∇rΦi(r)d2s

(3.59)

where Si represents the surface area of the region at time ti. Moreover, as the system
is spherical it is possible to introduce an initial radius Ri and then, at first order
on the surface area, we have

∇rΦi(r)|Si = r
r

GNρi
Ri

∫
Vi
δi(r)d3r

so that
∮
Si
r2∇rΦi(r)d2s = 4πGNR

2
i ρi

∫
Vi
δi(r)d3r .

(3.60)

Using, once again, the Poisson equation to get rid of the Laplace operator the final
expression of the initial kinetic energy for a spherical system at first order becomes

Ki = 4πGN
3 ρ2

i

∫
Vi

[
r2 + δi(r)

(
2r2 −R2

i

)]
d3r . (3.61)

Potential energy. The potential energy is much simpler to compute as we do
not need the initial velocity of particles to do so. The only important quantity is
the density of matter inside the object. The most general expression of the gravi-
tational potential energy is

Wi = −GNρ
2
i

2

∫∫
Vi

[1 + δi(r1)] [1 + δi(r2)]
|r1 − r2|

d3r1d3r2 . (3.62)

In order to be consistent with the computation of the kinetic energy and slightly sim-
plify this expression we expand it at first order in δi. Moreover, using symmetry
considerations (invariance under exchange of r1 and r2 inside the integral) it can now
directly be written under the form

Wi = −4πGNρ
2
i

3

∫
Vi

[1 + 2δi(r)]
(

3R2
i − r2

4

)
d3r . (3.63)

3.3.3 Virialisation of an homogeneous sphere

Firstly, we compute the total energy Etot as the sum of the initial kinetic and
potential energy. With the previous expressions it is straightforward to show that

Etot = −10
3 πGNR

5
i ρ

2
i

∫
Vi
δi(r)

(
1− r2

R2
i

)
1
R3
i

d3r . (3.64)

In order to keep things simple in this section we come back to the assumption of the
non-spherical homogeneous collapse, that is, the over-dense region is homogeneous
and of total mass M . Consequently, we can simply write δi(r) = δi and perform the
integral over the entire volume. The total energy is then

Etot = − δi
(1 + δi)2

GNM
2

Ri
= −3ME

5 , (3.65)
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using the fact, for the second equality, that δi = 3/20τ2 and Ri = GNMτ2/(4E) at first
order for τ → 0. In addition, when the sphere is homogeneous, the expression of
the potential energy in Eq. (3.62) can be simplified and gives the compact expression,
valid even when δ is no longer small,

W = −3
5
GNM

2

R
. (3.66)

Eventually, using Etot = K + W the virialisation condition, 2K + W = 0 now becomes
2Etot = W . This equation translates into an equation on R that takes the form

6ME
5 = 3

5
GNM

2

R
and yields R = GNM

2E = R(τ = 3π/2) . (3.67)

The evolution of K and W is represented in the right panel of Fig. 3.2. Therefore, after
turnaround we can expect virialisation to occur at τ = 3π/2. However, this model is
very simplistic and in reality the halo is considered formed when τ ' 2π. As we cannot
trust our non-linear model of δ around this point and because we do not know how to
properly treat non-linearities we define the collapsed density of the over-dense region
as the linear overdensity at τ = 2π. This collapsed region becomes what is usually
called a (dark matter-dominated) halo. In other words we say that a halo is collapsed
and virialised at tvir ≡ 2πGNM/(2E)3/2 when its linear overdensity reaches

δc ≡
3E
10

( 6tvir
GNM

)2/3
= 3

20(12π)3/2 ' 1.686 . (3.68)

Let us repeat that this critical overdensity is not the true overdensity of the col-
lapsing object that becomes close to infinite, it is an extrapolation of the linear one.
Eventually, we can remark that this expression is a fixed number that does not de-
pends on any characteristic of the overdensity (such as its mass). This is of par-
ticular interest for counting halos and understanding their distribution, as detailed
in the next section.

3.4 Excursion set theory and halo mass function

In the following, we rely on the review of KNOBEL (2012) for the introduction of
the power spectrum and the PS formalism (PRESS et al. 1974). Useful references
for the power spectrum and transfer function definitions are C.-P. MA et al. (1995),
DODELSON (2003), and PETER et al. (2013). Then we refer to BOND et al. (1991) and
ZENTNER (2007) for more details on the excursion set theory. The aim of this section
is to summarise the previous developments that can be used to learn more about the
population of halos in the Universe assuming that they have no internal dynamics.
The specific study of the subhalo population in galaxies where dynamical effects play
an important role is treated in Chapter 4. In the first part, we introduce the proba-
bilistic treatment of the density contrast and define the matter power spectrum and
the associated transfer function. Then we briefly develop the PS formalism and show
why it fails to be the right and complete description of the halo population. Even-
tually, using the excursion set formalism, we show how a revised treatment can be
performed and the kind of information that can be brought out of it.
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3.4.1 Density contrast

The CMB data show that after inflation, the matter density contrast δm = δρm/ρm
presumably behaves as an approximately homogeneous and isotropic Gaussian ran-
dom field4. The latter can be entirely described by its two point correlation function

ξ(x1,x2) ≡ 〈δm(x1)δm(x2)〉 ∀x1, x2 . (3.69)

Using the hypothesis of homogeneity and isotropy it is possible to go further and write
ξ(r) = 〈δm(x + r)δm(x)〉 = ξ(r). If ξ is a continuous function at r = 0, using the spectral
representation theorem it is possible to define a Fourier transformed expression as

P(k) =
∫
ξ(r)e−ikrd3r with

〈
δm(k)δ∗m(k′)

〉
δ(3)(k− k′) = P(k) (3.70)

where P is called the matter power spectrum. The fact that ξ must be real
and rotationally invariant imposes P(k) = P∗(−k) = P(k). Taking the inverse
Fourier transform yields

ξ(r) = 1
(2π)3

∫
P(k)eikrd3k =

∫ ∞
0

∆2
m(k)sin(kr)

kr
d ln k (3.71)

where we defined ∆2
m = k3P(k)/(2π2) as the dimensionless matter power spectrum5.

The fact that δm is a Gaussian field means that it satisfies a multivariate Gaussian
probability distribution. Since 〈δm(x)〉 = 0 for all x ∈ R3 by definition, if we consider N
arbitrary points (x1, ...,xN ) the probability density of the fields is

pδ(δm(x1), ..., δm(xN )) = 1
(2π)N/2

√
detC

exp

−1
2
∑
ij

δm(xi)C−1
ij δm(xj)

 (3.72)

where Cij = ξ (|xi − xj |) is the covariance matrix that characterises the field
completely. If we look more precisely at a single point x, then the PDF of
the field becomes simply

pδ(δm) = 1√
2πσ

exp
(
− δ2

m
2σ2

)
(3.73)

with σ2 = ξ(0). Besides, to properly evaluate the statistics of the density contrast field
δm, it is necessary to assume (approximate) ergodicity. In other words, since one has
only one realisation of the Universe, one considers that the ensemble average over
several realisations gives the same result as a volume average. As a matter of fact, if
ξ(r) → 0 when r → ∞ the zero mean homogeneous Gaussian random field is indeed
ergodic (ADLER 1981). Therefore the power spectrum is sufficient to know everything
about the statistics of the density contrast.

3.4.2 Power spectrum and transfer function

The matter power spectrum appearing in the definition of the two-points corre-
lation function is to be evaluated during the matter-dominated era and later, when
structures can actually form. However, in practice, we have access to the prediction

4This remains an approximation as the distribution is limited by the lower boundary δ ≥ −1.
5The notation ∆2

m is standard but must not be mistaken with the co-moving gauge density contrast.



3.4. Excursion set theory and halo mass function 111

of inflationary models right after inflation that we denote as time tinf . To be more
precise, at that epoch, for modes that are super-Hubble, the comoving curvature per-
turbation R is simply related to the primordial potential by R = −3φ(tinf)/2 as shown
in Eq. (3.37). It is then possible to predict the curvature power spectrum defined as

PR(k) ≡ 〈R(k)R(k)〉 = 9
4 〈φ(k, tinf)φ(k, tinf)〉 (3.74)

In the ΛCDM model the curvature power spectrum is parametrised by

PR(k) = 2π2

k3 AS
(
k

k0

)ns−1
(3.75)

with k0 = 0.05 Mpc−1 fixed by convention. In Planck18 the best fit is found for a
spectral amplitude ln(1010AS) = 3.044± 0.014 and a spectral index ns = 0.9649± 0.0042.

The transfer function is a generic function that makes the connection between
tinf and a later time t taking into account the different growth of different modes as
well as damping effects. We introduce tm, a time in the matter-dominated phase of
the Universe when the cosmological constant and curvature of the universe are still
negligible. The transfer function is then implicitly defined by

φ(k, t) ≡ Kφ(k, tinf)T (k, tm)D1(t)
a(t)

a(tm)
D1(tm) (3.76)

with the introduction of a new6 growth function

D1(t) ≡ φ(k, t)
φ(k, tm)a(t) . (3.77)

The last part of the equation is introduced such that at t = tm there is no depen-
dence on the growth function on the left-hand side. However at time tm, when matter
dominates, D1(tm) = a(tm) therefore this convention has no impact and the last frac-
tion is 1. Then, since nothing else is dependent on tm, the transfer function only
depends on k, and we write T (k) ≡ T (k, tm). For modes k well inside the horizon at
a time t, after the radiation era, Poisson’s equation gives the relation between the
matter fluctuations and the potential as

δm(k, t) ' ∆m(k, t) = − k2

4πGa2(t)ρ̄m(t)φ(k, t) . (3.78)

If we neglect the cosmological constant impact, the background density evolves as

ρ̄m(t) = Ωm,0
3H2

0
8πGN

a−3(t) that yields δm(k, t) = −2
3
k2a(t)

Ωm,0H2
0
φ(k, t) . (3.79)

For isentropic perturbations entering the horizon in the matter-dominated
era (i.e. with k � keq), the amplitude of the metric perturbation satisfies
φ(k, tm) = (9/10)φ(k, tinf) as seen in Sect. 3.2.2. Therefore, in this configuration we
choose K = 9/10 in order to have the correct normalisation. Indeed, the transfer func-
tion is also well defined for modes entering the horizon at late time. Since those modes

6In the sense that we have already introduced a growth function in Eq. (3.43). We will show below
that, in fact, for sub-Hubble modes the two definitions coincide.
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were super-horizon at the matter-radiation equality, φ(k, t) = Kφ(k, tinf)D1(t)/a(t)7.
Therefore this yields the convenient property of the transfer function,

lim
k→0

T (k) = 1 . (3.80)

Note that for isocurvature perturbations, modes entering the horizon in the matter-
dominated era satisfy φ(k, tm) = (1/5)φ(k, tinf), and the normalisation factor has to be
set to K = 1/5 to respect the same property at small k. Using the transfer function
and the new growth function, we obtain

δm(k, t) = −2
3K

k2D1(t)
Ω0

mH
2
0
T (k)φ(k, tinf) . (3.81)

Remark that for sub-Hubble scales δm(t) ∝ D1(t). Therefore D1(t) = D(t), with D(t) the
growth function introduced in Eq. Eq. (3.43), because D1(t) is normalised such that
D1(t) = a(t) in the matter-dominated era — when the potential is constant. Giving it a
new definition simply allows us to match with the usual definitions in the literature.
The matter power spectrum, for isentropic initial conditions with adiabatic evolution
is then related to the curvature power spectrum by the relation (NAKAMA et al. 2018),

P(k, t) = 4
25

[
k2D1(t)
Ωm,0H2

0
T (k)

]2

PR(k) . (3.82)

The transfer function for a given mode mainly depends on the moment it crossed
the horizon. Three physical processes have an important imprint on its shape: the
collisional damping of baryon at recombination (also called Silk damping – SILK 1968),
the collisional damping of DM at kinetic decoupling, and the collision-less damping of
DM after kinetic decoupling (free-streaming). In practice, we use the parametrisation
given by EISENSTEIN et al. (1998) that takes into account the baryonic effect. Let
us point out that in this work, the authors give a different definition of the transfer
function, using the matter fluctuations in the synchronous gauge, but because the
transfer function only addresses sub-horizon scales, gauge choice has no importance
and it can be shown that it is perfectly equivalent to the definition above. For the
DM-induced effects, we give more details in Sect. 3.6.

3.4.3 Filters and window functions

In the standard derivation of the halo mass function, the next step is to introduce
filtered moments of the density contrast. Indeed, we are interested in averages on
volumes of typical length R, and we ask the question of whether it is possible to
form there a halo of mass M . Therefore, the smoothed density contrast on scale R
is defined as the convolution product

δR(x) ≡
∫
δ(y)WR(|x− y|)d3y (3.83)

where WR is called the window function of size R, or the filter. The definition of
this function is not unique and in practice 3 different choices are made: the Gaus-
sian filter, the real-space top hat, and the k-space top hat. As we will see, the lat-
ter is the only convenient choice in the excursion set formalism. In Fourier space
this equation becomes

δR(k) = ŴR(k)δ(k) (3.84)
7Indeed Kφ(k, tinf) = KφRD = φMD = φ(k, tm), by the choice of K, on these scales. The definition of

D1(t) being equivalent to φ(k, t) = φ(k, tm)D1(t)/a(t) the result is immediate.
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without transfer function (green) and matter today (blue). For this plot we used the Planck18
cosmology, the transfer function given in (EISENSTEIN et al. 1998) and the exact growth func-
tion from Eq. (3.43).

and the three different definitions are

ŴR(k) = 3
(kR)3 [sin(kR)− kR cos(kR)] (real-space top hat)

ŴR(k) = exp
(
−(kR)2

2

)
(Gaussian)

ŴR(k) = Θ(1− kR) (k-space top hat) .

(3.85)

Only the first two have a corresponding definition in real space

WR(r) = Θ(R− r) 3
4πR3 (real-space top hat)

WR(r) =
( 1

2πR2

)3/2
exp

(
− r2

2R2

)
(Gaussian)

(3.86)

and can be associated with a volume V (R) without ambiguity that is equal to 4πR3/3
for the real-space top hat window, and to (2π)3/2R3 for the Gaussian window. Never-
theless, it is possible to assign a volume to the k-space top-hat window in real space
by the normalisation requirement WR(0)V (R) = 1 so that V (R) = 6π2R3. The typical
mass associated to R for a given window is then

M = ρ̄m,0V (R) (3.87)

where ρ̄m,0 is the background matter density today. Note that since δR is a linear
combination of δ it then follows the same Gaussian statistics with variance

σ2
R ≡ 〈δR(0)δR(0)〉 =

∫
∆2

m(k)|ŴR(k)|2d ln k . (3.88)

One can see that, if there were no transfer function, the power law power spectrum
for the curvature perturbations PR(k) ∝ kns−4 would yield P(k) ∝ kns and ∆2

m ∝ kns+3.
Moreover, the variance would be σ2

R ∝ R−(ns+3) or put differently, with respect to the
mass, σ2

M ∝ M−(ns+3)/3. Consequently, if ns ∼ 1, the variance of the density field
decreases with the mass (or size) of the region. The evolution of σM with the mass at
redshift z = 0 is represented in Fig. 3.4 and shows, more accurately, that it decreases
with M also in a model where the transfer function is taken into account.
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3.4.4 The Press-Schechter formalism and cloud-in-cloud problem

The objective here is to compute the halo mass function, i.e. the mass distribution
of halos in the Universe. The main idea of Press-Schechter (PS) (PRESS et al. 1974) was
to say that any region with radius R with a density contrast δR that is equal to the
critical threshold δc collapses into a halo. It is reasonable to assume that δR decreases
with the radius of the region of interest so that if δR > δc then it exists R′ > R such
that δR′ = δc. Looking at a specific scale R, all the points in space with δR > δc should
correspond to larger and larger halos with increasing δR. Therefore the fraction of
halos with a mass greater than a given mass M is

F (M) =
∫ +∞

δc

1√
2πσM

exp
(
− δ2

M

2σ2
M

)
dδM

= 1
2erfc

(
δc√
2σM

)
.

(3.89)

Unfortunately this approach does not take into account the fact that even though
δR might be less than δc, it is possible that δ′R with R′ > R may satisfy δ′R > δc. Said
differently, the PS formalism is based upon the averaged expectation, and does not
correctly account for the fact that delta is truly a random variable, and independent
from scale to scale. Whatever delta on a given scale, there’s always a non-zero prob-
ability for delta to either larger or smaller at a different scale, irrespective of its size
(except for asymptotic cases). There the larger volume R′ collapses and creates a halo
that is not counted by the PS formalism. Let us highlight, one more time, that in the
PS computation it is implicitly assumed that only over-dense region at small scales
ends up in larger collapsed objects. Therefore they are missing the under-dense re-
gions that belong to larger over-densities. This effect is called the cloud-in-cloud
problem and it can be seen directly from the formula above. At very small scales the
variance of the density field goes to infinity,

lim
R→0

σR = lim
M→0

σM =∞ . (3.90)

This can be shown very easily in the case of a constant transfer function since a
rough scaling of the variance is σ2(M) ∝ M−(3+ns)/3 with ns ∼ 1. If we plug this re-
sult into Eq. (3.89) it yields that F (0) = 1/2, which would mean that the fraction of
halos with a mass greater than 0 is 1/2. Of course, this makes no physical sense,
one should recover F (0) = 1. As already mentioned, this issue is a direct conse-
quence of the cloud-in-cloud problem and Press and Schechter argued that it could
be fixed simply by multiplying F (M) by the missing factor 2. Even if this is true,
the argument is not satisfying. We introduce, in the next section, the excursion set
formalism that gives a complete answer.

3.4.5 The excursion set theory

The excursion set theory (BOND et al. 1991) – hereafter called EST – provides a
way of counting correctly the number of formed halos. The formalism is much more
involved than PS but we will see that it predicts the same result, with the correct
normalisation. The basic idea is to compute the largest scale R for which δR = δc so
that the under-dense regions in over-dense larger ones are not forgotten. Moreover,
this formalism does much more since it allows for a better understanding of the
statistical properties of halos.
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As seen above, one has σR → 0 when R→∞, σR →∞ when R→ 0 and the function
R 7→ σ2

R is strictly decreasing. In the EST approach it is usual to define S = σ2
R

and make use of the bijection between R and S to identify S to a given scale, writing
δR = δ(S). Note that in this picture the one to one correspondence is made at a specific
redshift, chosen to be zero. Without fixing a time/redshift the definition of S(R) would
be ambiguous. Therefore, let us consider a given position and a large R. The value
of S is then close to 0 and thus, from the Gaussian probability distribution, so is δR.
Now if we decrease R, then S is higher and the value of δR can also depart from 0 more
easily (in a statistical sense). In other words, lowering R increases the probability for
δR to be above the threshold δc. For a given patch, the largest value of R for which δR
becomes larger than δc is called the first up-crossing and corresponds to a halo of size
R. The problem of counting halos amounts to determining the probability of having a
first up-crossing at a given R, within an infinitesimal range dR, or said otherwise at a
given S within a range dS. Starting from a large scale corresponding to a small S0 with
δ(S0) = δ0 < δc, a change in the smoothing scale leads to δ(S1) = δ1 with δS = S1−S0 > 0.
With a k-space top hat window filter, increasing the window size only amounts to
adding a set of new Fourier modes that are completely independent. As we shall see
below, the transition probability for ∆δ = δ1− δ0 (the change in critical density coming
from a change δS) is actually a Gaussian with zero mean and a variance δS8. Now,
starting from δ0 and δ1, when increasing the value of S by increments of δS, one has an
evolution of δ by independent steps (δ2, δ3, ...) describing a random walk. In addition,
because all the steps are independent, this walk is more specifically a Markov Chain.

In order to study the behaviour of the walk one can go to the continuous limit
and describe it as a Brownian diffusion. To this end, let us consider the density of
trajectories p(δ, S) at position δ at time S. This density is normalised as a probability
distribution, that is, its L1 norm is 1 on R. By the Gaussian character of the tran-
sitions the density of the chains at position δ at time S + δS is related to the density
at position δ − x at time S by the equation

p(δ, S + δS) =
∫ 1√

2πδS
exp

(
− x2

2δS

)
p(δ − x, S)dx (3.91)

From this relation one can compute the derivative of p with respect to S,

∂p

∂S
= lim

δS→0

1
δS

[∫ 1√
2πδS

exp
(
− x2

2δS

)
[p(δ − x, S)− p(δ, S)] dx

]

= lim
δS→0

1
δS

[∫ 1√
2πδS

exp
(
− x2

2δS

)[
x2

2
∂2p

∂δ2 − x
∂p

∂δ
+O(x3)

]
dx
]

= lim
δS→0

[〈
x2〉
δS

1
2
∂2p

∂δ2 +
〈
O(x3)

〉
δS

] (3.92)

and as 〈xn〉 ∝ δSn/2 and
〈
x2〉 = δS it yields the equation of diffusion

∂p

∂S
= 1

2
∂2p

∂δ2 . (3.93)

8The independence property is crucial for the following derivation and in the original EST framework
it is necessary to work with a k-space top-hat window function which is not the filter with the best
physical meaning. Therefore several studies have gone further and tried to find ways to include the
possibility of a non-Gaussian random field and correlated steps, allowing them to use the other filters
(VERECHTCHAGUINA et al. 2006; MAGGIORE et al. 2010; MUSSO et al. 2014). However, this is beyond the
scope of this introduction.
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In order to find a solution, we need initial and boundary conditions. The initial
condition comes from the prescription that the walk starts at δ0 for S = S0 giving
p(δ, S0) = δD(δ− δ0). Furthermore, once a trajectory reaches δ = δc it has to be removed
from the sample because it corresponds to a collapsed object; this gives the second
condition p(δc, S) = 0. One says that the trajectories are described by a diffusion equa-
tion with an absorbing wall at δ = δc. A general solution is given in CHANDRASEKHAR

(1943). Let us here sketch a quick proof. First, let us start with the usual method to
solve the diffusion equation and define the Fourier transform of the density p as

p̂(ω, S) =
∫

dγ p(δ, S)e−iωδ with p(δ, S) = 1
2π

∫
dω p̂(ω, S)eiωδ . (3.94)

Fourier transforming the master equation allows for a simple solution

p̂(ω, S) = A(ω) exp
(
−ω

2

2 S

)
with A(ω) = exp

(
−iωδ0 + ω2

2 S0

)
(3.95)

where the value of A is determined thanks to the initial condition. Fourier trans-
forming back the expression yields

p(δ, S) = 1
2π

∫ +∞

−∞
dω exp

(
−ω

2

2 ∆S
)
eiω∆δ

= 1√
2π∆S

exp
(
−(∆δ)2

2∆S

) (3.96)

with ∆S = S − S0 and ∆δ = δ − δ0. This is the usual solution for a diffusion equation
with an initial condition concentrated in one point. However, here one can see that
the absorption condition is not satisfied as p(δc, S) 6= 0. In order to take the absorption
into account one notices that removing all the trajectories reaching δ = δc is the same
than subtracting the contribution of a new source in δ = 2δc − δ0 (as if the absorbed
trajectories were in fact absorbed by this source)9. Therefore, the total solution is

p(δ, S) = 1√
2π∆S

[
exp

(
−(∆δ)2

2∆S

)
− exp

(
−(2 [δc − δ0]−∆δ)2

2∆S

)]
(3.97)

and one can easily check that the subtraction does not change the initial condition.

The fraction of halos formed with variance less than S(M) (i.e. with mass greater
that the associated mass M ) is simply the complementary of the fraction of halos
that have not collapsed

F (S) = 1−
∫ δc

−∞
dδ p(δ, S) = erfc

(
δc − δ0√

2∆S

)
. (3.98)

For S0 = 0 and δ0 = 0 it yields the results of PS with the correct normalisation,
as expected. However, this is much more powerful since now we can evaluate the
probability distribution of first up-crossing at scale S knowing that we started from
scale S0 6= 0 at δ0 6= 0. This is given by

f(S | δ0, S0) ≡ dF
dS = −

∫ δc

−∞
dδ ∂p
∂S

= δc − δ0√
2π∆S3/2 exp

(
−(δc − δ0)2

2∆S

)
. (3.99)

9This is actually nothing else but the method of images in classical electrostatics – see JACKSON

(2003) (3rd edition - p57).
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Figure 3.4 – Right panel: The smoothed variance of the matter density field in a window
(written in terms of mass) of size M . Left panel: Press-Schechter and Sheth-Tormen mass
functions for the different window filters. The tilted dashed black lines are a guide for the eyes
and represent the halo mass function proportional to M−1.95.

Once translated into the fraction of mass in halos between M and M + dM , in the
region of scale S0 and density contrast δ0, one has

f(M | δ0, S0)
∣∣∣∣ dS
dM

∣∣∣∣ dM = δc − δ0√
2π∆S3/2 exp

(
−(δc − δ0)2

2∆S

) ∣∣∣∣ dS
dM

∣∣∣∣ dM . (3.100)

In the next section, we show in more details how this formulation, once generalised,
can tell us much more about the statistics of halos than the PS formalism. Tak-
ing now S → 0 (infinitely large region) with null density contrast δ0 = 0 we recover
the PS case and it is possible to get the halo mass function of the entire Universe.
Using the fact that S = σ2 it yields

dn
dM = ρ̄m

M
f(M)

∣∣∣∣ dS
dM

∣∣∣∣
=
√

2
π

ρ̄m
M2

δc
σ

∣∣∣∣ d ln σ
d lnM

∣∣∣∣ exp
(
− δ2

c

2σ2

)

= ρ̄m
M2

d ln ν
d lnMνfPS(ν)

(3.101)

where we introduced the usual notation of the peak height ν = δc/σ with the definition
of the function fPS being simply

fPS(ν) =
√

2
π
e−ν

2/2 . (3.102)

Using the scale invariant power spectrum (thus neglecting the transfer function), the
PS mass function scales as ∝M (ns−9)/6 exp(CM (ns+3)/3)(∝M−4/3 exp(CM4/3) for ns ∼ 1)
where C is a constant.

3.4.6 A few words on ellipsoidal collapse

This last expression is valid in the spherical collapse model. When one accounts
for ellipsoidal perturbations, the critical density becomes a function of the ellipticity e
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and prolateness p, which we shall properly define later on.. Let us consider a particle
in the universe at the initial comoving coordinate xi. Using Eq. (3.55) and v = ax one
has the equation of evolution for its comoving position,

dx
dt = − Ḋ(t)

4πGNρ(t)a3∇Φi(x) . (3.103)

In the matter-dominated era the factor ρ(t)a3 is a constant and if we assume that, at
first order, ∇Φi(x) = ∇Φi(xi), with the additional fact that D(t) � D(ti) one can write
the Zel’dovich approximation (ZEL’DOVICH 1970)

x(t) = xi −
D(t)

4πGNρ(t)a3(t)∇Φi(xi) (3.104)

which is equivalent to consider that particles go on straight line trajectories. Because
of mass conservation the matter density satisfies the following relation ρ(x, t)a3(t)d3x =
ρ(xi, ti)a3(ti)d3xi. From the formula of change of variable, one can relate d3x and d3xi
through the Jacobian matrix according to

d3x = det
(
∂x
∂xi

)
d3xi with

(
∂x
∂xi

)
jk

= δjk −D(t) ∂2

∂xj∂xk

[ Φi

4πρ(t)a3(t)

]
(xi) . (3.105)

where ∂xj∂xk
[
Φi/(4πGNρ(t))a3(t)

]
(xi) is called the deformation tensor. If λ1, λ2 and λ3

are the eigenvalues of this tensor, then 1 − D(t)λ1, 1 − D(t)λ2 and 1 − D(t)λ3 are the
eigenvalues of (∂x/∂xi). Then the mass conservation takes the form

ρ(x, t) = ρ(xi, ti)
a3(t)
a3(ti)

1
[1−D(t)λ1] [1−D(t)λ2] [1−D(t)λ3] . (3.106)

Choosing the initial time when the perturbations are negligible, one obtains

1 + δ(x, t) = ρ(x, t)
ρ(t) = 1

[1−D(t)λ1] [1−D(t)λ2] [1−D(t)λ3] . (3.107)

Now considering the ordered eigenvalues λ1 ≥ λ2 ≥ λ3, ellipticity and prolateness of
the halos are defined by the two following parameters

e ≡ λ1 − λ3
2(λ1 + λ2 + λ3) and p ≡ λ1 + λ3 − 2λ2

2(λ1 + λ2 + λ3) . (3.108)

An ellipsoidal halo collapses preferentially in the direction of the largest eigenvalue
as gravity enhances the non-sphericity. In particular, it leads to the "Zel’dovich pan-
cakes" formation (SHANDARIN et al. 1989). According to SHETH et al. (2001), the
critical overdensity for ellipsoidal collapse δec can be obtained by solving

δec(e, p) = δc

{
1 + β

[
5(e2 − |p|p)

(
δec(e, p)
δc

)2]γ}
(3.109)

with γ = 0.615 and β = 0.47 and δc ' 1.686 the spherical collapse model critical density.
They obtain this relation by fitting the ellipsoidal collapse model – summarised in
(MO et al. (2010) - chapter 5.3). In the end they provide the scaling of δec with ν
and the redshift z instead of e and p

δec(ν, z) = δc
D(z = 0)
D(z)

[
1 + βν−2γ

]
. (3.110)
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With this expression of the barrier the solution of the diffusion equation on p(δ, S)
has no simple solution. However they also provide a fit of fST(ν) that can be used
to replace fPS in the halo mass function

fST(ν) = A

(
1 + 1

ν2q

)√ 2
π
e−

ν2
2 , (3.111)

with A = 0.3222 and q = 0.3 (the usual PS result being q = 0 and A = 0.5). In Fig. 3.4
we show the Press-Schechter and Sheth-Tormen mass functions for different window
filters multiplied by the mass squared. While this plot covers 28 orders of magni-
tudes in mass, the total variation on the y-axis is less than 2 orders of magnitude.
Therefore the halo mass function is roughly proportional to M−α with α ∈ [1.9, 2.0].
The diagonal black lines show M−1.95 in order to guide the eyes. The difference be-
tween Press-Schechter and Sheth-Tormen results is small but the latter is able to
better reproduce the results from simulations. In addition, even small changes at
small mass could have dramatic impacts on observables sensitive to the low mass
range as the number of small halos drastically dominates – see the discussion in
the conclusion of Chapter 2.

3.5 Subhalo mass function from merger trees

3.5.1 From the excursion set theory to merger trees

In this section, we are interested in the evolution of halos. We mainly follow the
review of ZENTNER (2007) and use similar notations, which are also the same as LACEY

et al. (1993, 1994) who studied this problem in great details.
First and foremost we need to add the scale factor a (or equivalently the redshift z)

into the problem. In the standard picture the value of δc is fixed and σR changes with
time. Here we adopt the other point of view where the only quantity dependent on
the scale factor is the threshold. Indeed, increasing the fluctuations or decreasing the
threshold is equivalent. More precisely, we introduce an effective collapse threshold
that decreases with time as ω(z) = δcD(z = 0)/D(z), where D(z) is the linear growth
factor introduced in Eq. (3.43), while S = S(z = 0) is a constant. We just expressed in
Eq. (3.99) the probability distribution to have a first up-crossing of the threshold δc
knowing that we started in a region of size S0 and density contrast δ0. Actually, this
expression can be generalised to the generic two-barrier crossing problem: it gives the
probability to have a first up-crossing of the barrier ω2 in a region of size S2 knowing
that it has already first up-crossed the barrier ω1 in a region of size S1 as

f(ω2, S2 |ω1, S1) dS2 = ∆ω√
2π∆S3/2 exp

(
−(∆ω)2

2∆S

)
dS2 , (3.112)

with ∆ω = ω2 − ω1. One of the most interesting quantity we can compute is the
averaged number of halos formed at time t2 and of mass M2 that are contained in a
halo of mass M1 formed at time t1 > t2,

dN(M2 |M1)
dM2

= M1
M2

f(ω2, S2 |ω1, S1)
∣∣∣∣ dS2
dM2

∣∣∣∣ . (3.113)

Now, from Eq. (3.112) one can simulate the formation history of a given halo. The
easiest way is to proceed is by going backwards in time. Consider a host halo of mass
M1 at time z1 that we call the parent or the host. At time z2 = z1 + ∆z one can draw
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the masses M (1)
2 ,M

(2)
2 ,M

(3)
2 , ... of the progenitor halos that merged to form the host. At

the next step, z3 = z1 + 2∆z the previously defined progenitors become parents and
one can draw new smaller progenitors for them as well as new progenitors for the
original host . . . and so on and so forth. This way one builds a tree; the branches
being all new progenitors that subdivide as z increases. This iterative procedure may
seem straightforward to implement to produce a realistic merging history but it is
not. The reason is that the algorithm drawing the progenitor masses needs to satisfy
several conditions. Firstly, one needs to introduce a mass cut-off Mres not too small
to converge in a reasonable amount of time. Nevertheless, the algorithm needs to
take into account the mass included in subhalos smaller than the cut-off. This is
referred to as accreted mass. Secondly, all progenitors must be treated equally at
each step. Thirdly, the total mass needs to be conserved and the mass distribution
given by Eq. (3.113) at each redshift must be satisfied (this is called the consistency
test). In practice, in order to satisfy all these conditions, several algorithms have
been proposed (COLE 1991; LACEY et al. 1993; PARKINSON et al. 2007; ZHANG et al.
2008; JIANG et al. 2014). Here we have compared the algorithms of SOMERVILLE et al.
(1999) (hereafter labelled – SK99) and COLE et al. (2002) (hereafter labelled - C00).
Both have the advantage of treating left-over mass (not contained in progenitors) as
accreted mass and being fast to execute. In Fig. 3.5 are shown the comparison of the
averaged number of subhalos formed at two redshifts z2 = 0.2 and z2 = 1 in a halo of
mass M1 = 1012 M�. One can see that the consistency test is not exactly verified for
SK99. As a matter of fact, this behaviour is expected as the algorithm does not satisfy
the second point (all subhalos treated equally); it discards progenitors drawn from the
halo mass function that gives a total mass exceeding that of the host halo. As detailed
in ZHANG et al. (2008) and JIANG et al. (2014), the C00 algorithm is not perfect and
suffers from several drawbacks (as all merger trees do) too, essentially because it
underestimates the mass of the most massive progenitors at large redshift. However,
it is simple to implement and behaves rather well in the self-consistency test. Most
importantly, it compares well with results from simulations. An improvement of the
C00 algorithm is given in PARKINSON et al. (2007). However they calibrate their recipe
on the Millennium Simulation. Our goal is to be as much as possible independent
of simulations, therefore we make the choice of using the original C00 algorithm in
the following, which we shortly explain below.

Let us give more details on this algorithm. Consider a small time step ∆ω. From
Eq. (3.113) one can compute the average mass fraction of a halo of mass M1 at ω1
that was in progenitors of mass M2 at ω2 = ω1 + ∆ω as

d2N(M2, ω2|M1, ω1)
dM2dω

∣∣∣∣∣
ω2=ω1

∆ωdM2 = M1
M2

∆ω√
2π(S2 − S1)3/2

∣∣∣∣ dS2
dM2

∣∣∣∣ dM2 (3.114)

The mean number of progenitors of masses Mres < M2 < M1/2 into the parent of
mass M1 after one step is then

P (M1) = ∆ω
∫ M1/2

Mres
dM2

d2N(M2 |M1)
dM2dω

∣∣∣∣∣
ω2=ω1

= ∆ω M1√
2π

∫ M1/2

Mres

1
M2 (S2 − S1)3/2

∣∣∣∣ dS2
dM2

∣∣∣∣ dM2 .

(3.115)
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Figure 3.5 – Consistency test for the SK99 (green) and C00 (blue) algorithms for one and two
redshifts respectively. The red dashed curves represent the expected value for the excursion
set theory (EST). The close the algorithm get to the red curve the better it is.

Besides, one can also evaluate the fraction of mass that is made of unresolved sub-
halos (that are below the mass resolution cut-off),

F (M1) = ∆ω
∫ +∞

Sres

1√
2π(S2 − S1)3/2 dS2 = ∆ω

√
2

π(Sres − S1) .
(3.116)

One first chooses ∆ω such that P � 1 in order to ensure that the probability to have
more than two progenitors on that time step is negligible. Then one draws R from a
uniform distribution in [0, 1]. If R < P then this means that at that time step one has
found a progenitor in the range [Mres,M1/2]. One defines the cumulative distribution
of M2 within the range [Mres,M1/2] as

F(M2 |M1) = 1
P (M1)

∫ M2

Mres
dM ′2

d2N(M ′2 |M1)
dM ′2dω

∣∣∣∣∣
ω2=ω1

(3.117)

Then one draws a value y from a uniform distribution in [0, 1] and the value of M2 is
defined as the solution of F(M2 |M1) = y. Here we have exactly two progenitors of mass
M2, M1(1− F )−M2 and it remains M1F accreted mass (from unresolved progenitors).
When R > P one only has one progenitor (the main progenitor) of mass M1(1−F ) and
it remains M1F accreted mass (from unresolved progenitors).

3.5.2 Unevolved subhalo mass function

The unevolved subhalo mass function (hereafter USMF) is what we call the cos-
mological subhalo mass function (in the sense that a subhalo mass is defined as a
smaller scale collapsing on a flat homogeneous background, not subject to any tidal
stripping effect). Here we show how it can be obtained from merger-tree simulations.
The mass function in a parent halo of mass M is denoted Φ(m,M) in the following.
In GIOCOLI et al. (2008b), Y. LI et al. (2009), and JIANG et al. (2014) the authors have
looked at the p-th order USMFs denoted USMF[p]. The 1st order USMF is defined as
the mass function of all subhalos that have directly merged into the parent halo. The
2-nd order is the mass function of the sub-subhalos (the subhalos of the 1st-order
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subhalos), etc. We denote the USMF[p] as φp = dNp/dm. Assuming universality, all
the orders are related by the recursion relation

φp(m,M) =
∫ M

0
φ1(m,m′)φp−1(m′,M)dm′ . (3.118)

This equation just mathematically means that at order p all the halos of mass m are
contained in larger halos of order p− 1 of mass m′ and they are distributed according
to φ1(m,m′) in each of them. The total USMF is given by the sum

Φ(m,M) ≡
∞∑
p=1

φp(m,M) . (3.119)

Because of the recursion relation, Φ can also be written as a function of φ1,

Φ(m,M) = φ1(m,M) +
∞∑
p=2

φp(m,M) = φ1(m,M) +
∞∑
p=2

∫ M

0
φ1(m,m′)φp−1(m′,M)dm′

= φ1(m,M) +
∫ M

0
φ1(m,m′)

∞∑
p=2

φp−1(m′,M)dm′

= φ1(m,M) +
∫ M

0
φ1(m,m′)Φ(m′,M)dm′

(3.120)

Since φ1(m > m′,m′) = 0 one can massage the last equation by truncating the integral
from below and we get the implicit relation

Φ(m,M) = φ1(m,M) +
∫ M

m
φ1(m,m′)Φ(m′,M)dm′ . (3.121)

Unfortunately, this equation does not allow to easily solve for φ1 or Φ knowing one
or the other. It can be used for numerical tests or in very simple scenarios. If we
assume, for instance, that USMF[1] is self-similar and has a power-law dependence
that is φ1(m,M) ∝ (m/M)λ with λ ∈ R, then, the total USMF necessarily goes as
Φ(m,M) ∝ (m/M)−2 and the index of −2 can be viewed as a critical exponent. However,
this theoretical result does not provide any practical insights on the value of λ.

The total number of halos contained in a host with M = 1012 M� with a mass
over a given threshold is given in Fig. 3.6. This figure was obtained by running
the C00 algorithm with Mres = 10−4M over 350 Monte-Carlo realisations. The blue
line represents the average total number of unevolved halos while the red lines are
the average of the successive orders of USMF. The sum of the different orders gives
back the total number.

3.5.3 Merger Trees and fitting function

In the following we evaluate with C00 the USMF[1] on five decades of mass and fit
η(m,M) = mφ1(m,M) with the functional form proposed by (JIANG et al. 2014) – which
is an extension of another function proposed by GIOCOLI et al. (2008b) –

η(m,M) =
[
γ1(M)

(
m

M

)α1(M)
+ γ2(M)

(
m

M

)α2(M)
]

exp
(
−β(M)

(
m

M

)ζ(M)
)
. (3.122)

As mentioned in JIANG et al. (2014) – and relying on Y. LI et al. (2009) – some kind
of universality appears, the coefficients do not depend on the host mass for 1010 M�
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Figure 3.6 – Left panel: The cumulative number of subhalos in a host halo of mass 1012 M�.
First-order halos are represented in dark red, second-order sub(sub)halos in lighter red and
so on. The total number of subhalos in over 350 realisations is represented by the grey lines,
the blue line is the total average.

< M < 1015 M� and they also should not vary with the cosmology. Here we can
impose the theoretical bounds

0 ≤ γ1 , 0 ≤ γ2 , −1 ≤ α1 ≤ 0 , −1 ≤ α2 ≤ 0 , 0 ≤ β and 0 ≤ ζ (3.123)

on the coefficients. In their fit, however, the aforementioned authors do not constrain
the shape of the mass function at small masses, which is not a problem, a priori, as
they are interested in the large-mass tail. Because we want to recover a mass function
valid over many orders of magnitude in mass (up to ∼ 30!) we have to design another
method to extrapolate the results at low masses. Let us first assume the purely
theoretical approximation, that there is no minimal mass limit for the halos (that they
can be of vanishingly small size). Obviously, this cannot be the case in reality, either
because of the damping effects detailed in Sect. 3.6 or to another extent, because we
can no longer talk about subhalos under the typical distance between two particles.
Furthermore, we also make the assumption that every halo of order p is entirely
made of halos of order p + 1. In the strict infinitely small size limit, this should hold
true. Therefore if we integrate the USMFs on the mass over the entire range between
0 and the host mass, this yields

1
M

∫ M

0
φp(m,M)mdm = 1 ∀p ≥ 1 . (3.124)

One can check, as a consistency test, that this normalisation condition is conserved
by Eq. (3.118). If we assume that φp−1 and φ1 are normalised to 1 then φp is too
because of the relation

1
M

∫ M

0
φp(m,M)mdm = 1

M

∫ M

0

[∫ M

0
φ1(m,m′)mdm

]
φp−1(m′,M)dm′

= 1
M

∫ M

0

[∫ m′

0
φ1(m,m′)mdm

]
φp−1(m′,M)dm′

= 1
M

∫ M

0
m′φp−1(m′,M)dm′ = 1

(3.125)
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Cosmo. M/M� γ1 α1 α2 β ζ γ2
Planck18 109 0.01954 -0.9452 -0.5609 20.39 3.333 0.4618
Planck18 1012 0.01894 -0.9402 -0.5783 24.57 3.586 0.4568
Planck18 1015 0.02228 -0.9191 -0.5719 21.48 3.473 0.4949
Jiang+14 1012 0.02340 -0.9313 -0.5670 22.36 3.456 0.4634

Jiang + 14 0.13 -0.83 -0.02 5.67 1.19 1.33
Giocoli + 08 0.18 -0.80 0 12.27 3.00 0

Table 3.1 – Results of the fit for the Planck18 cosmology and the same cosmology than that
of JIANG et al. (2014) – here Jiang+14. For comparison in the bottom two panels we put the
results obtained by Jiang+14 and GIOCOLI et al. (2008b) – here Giocoli+08.

where we used the fact that φp(m′ > m,m) = 0 (subhalos cannot be larger than the
host). In the end, it amounts to say that, instead of letting γ1 and γ2 be free param-
eters, one of them is actually constrained. More specifically, from the normalisation
condition of Eq. (3.124), we get

γ2 =
1− γ1β

− 1+α1
ζ γ

(
1+α1
ζ , β

)
β
− 1+α2

ζ γ
(

1+α2
ζ , β

) , (3.126)

where γ : (z, s) 7→ γ(z, s) is the lower incomplete gamma function. With this require-
ment, we theoretically constrain the slope of the mass function in the small mass
range. In Tab. 3.1, we give the results for the Planck18 cosmology and the cosmology
used in JIANG et al. (2014), for Mres = 10−5M and discarding all the subhalos with a
mass between [Mres, 2Mres] in order to minimise possible boundary effects. In addition,
these fits are also represented in Fig. 3.7. The red curves corresponding to USMF[1]
are the fitted functions while the other orders, in lighter red, are here evaluated with
Eq. (3.118). In the lower right panel of the same figure we compare the results of
the literature in dark and light red with our own for the three different host masses
– in light, medium and dark blue. We also show results for unconstrained fits for
which the value of γ2 is not fixed by the normalisation condition (dashed curves).
With the simple C00 algorithm we obtain results that differ at most by 50% from the
fits in the literature. Moreover, the necessity of the constrain on γ2 appears here as
the unconstrained fits all give α2 = −0.9999 at the limit of the available range of values.

All these fits remain roughly similar whatever the mass of the host. Henceforth, for
simplicity, we introduce a standardised mass function by considering (γ1 = 0.019, α1 =
−0.94, α2 = −0.58, β = 24, ζ = 3.4; γ2 = 0.464). We keep three digits for γ2 in order
to have a correct normalisation at the sub-per cent level. This standardised USMF
matches with cosmological simulation results (DIEMAND et al. 2006, 2007; DIEMAND

et al. 2008; SPRINGEL et al. 2008; ZHU et al. 2016) where the mass function exhibits
a power-low dependency with a mass index α . 2. Note that in terms of our param-
eters, α ' 1 − α1. Consequently, we get a prediction for α ' 1.94 for the Planck18
cosmology — this is slightly different from similar predictions in the literature which
are not constrained by Eq. (3.124). This may have deep consequences on the subhalo
abundance in host halos, because this would predict a net domination of the smallest
scales in the overall subhalo mass fraction.

The next step is to evaluate the evolved subhalo mass function (ESMF), after taking
into account the dynamics inside the host. This is treated by the SL17 model, detailed
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Figure 3.7 – Upper and bottom left panels: Unevolved subhalo mass function at different
orders. The first order (red curve) is fitted on simulations (grey) and all further orders are
obtained using Eq. (3.118) and the universality approximation (that is, the fitted coefficients
do not depend on the host mass). The grey shaded area represents the 1σ fluctuations be-
tween Monte-Carlo realisations. Note that on every mass decade the number of realisation
is different for optimisation: from 100 realisations at low mass to 10000 realisations at large
masses. Lower right panel: Comparison of our constrained fit (solid blue) and unconstrained
fit (dashed blue) obtained for a host mass M0 = 1012 M� with the similar fits provided in JIANG

et al. (2014) (dark red) and GIOCOLI et al. (2008b) (light red). Note that we do not use the
same cosmology but this should have little impact. The main difference may come from the
Merger Tree algorithm that is used. The result of the merger tree is here shown with blue
round markers. In the lower panel, we show the residuals of the upper panel as well as the
difference between the two different host halo masses M = 109, 1015 M� (light blue) and (dark
blue) for the constrained (solid) and unconstrained fits (dashed). The three solid blue lines
and the blue round markers are relatively close, thus showing the self-similarity.

in Chapter 4. In its original construction, the SL17-USMF is a power law normalised
to the typical subhalo mass fraction measured in cosmological simulations. This also
translates in terms of total number of subhalos. With the USMF that we have just
predicted from merger-tree calculations, and from given cosmological parameters,
the total number of subhalo is now a theoretical prediction, and a calibration on
numerical simulations is no longer required (except to test the validity or precision
of merger-tree approaches themselves). This is an important improvement for the
model. For clarity, however, we delay the rest of this discussion to Sect. 4.2.



126 3. COSMOLOGICAL HALO MASS FUNCTION

3.6 Power spectrum cut-off and minimal halo mass

So far DM has been treated as a perfect fluid. However, it is not necessarily a good
description depending on the scale of interest. This section is focused on this issue.
Indeed, when DM is collision-less (such as for WIMPs after kinetic decoupling), its
behaviour on small scales can depart from the fluid approximation. From this effect
comes a limit on the minimal mass that DM halos can have and that is called the
free-streaming mass. Besides, because of interactions between the DM and radiation
fluids at kinetic decoupling, a second lower bound on the masses exists and is referred
to as the acoustic mass here. The main goal of this section is to summarise the key
concepts and show how the minimal mass of halos can be derived.

3.6.1 The Euler equation for collision-less dust

We have hitherto considered the different component of matter in the Universe as
fluids. However, the fluid description is valid for species exhibiting a mean free path
smaller than the scale of interest. When DM becomes collision-less, as discussed in
Chapter 2, discrepancies arise on the smallest scales. In this section, we follow the
discussion of MO et al. (2010) and we first show that the fluid description remains
valid on sub-horizon scales as long as the particle diffusion can be neglected. Indeed,
let us consider a non-relativistic particle in the expanding universe. Its Lagrangian
can be written as the difference of the kinetic energy and potential energy,

L(x, ẋ, t) = 1
2m(aẋ + ȧx)2 −mφ(x, t) (3.127)

Using x ≡ (x1, x2, x3) as the argument of the Lagrangian amounts to work in the 3D-
euclidean space where distances are rescaled by the scale factor. The canonical mo-
mentum associated with this Lagrangian is the physical 3-momentum p̃ ≡ (p̃1, p̃2, p̃3)
given by p̃ = ∂L/∂ẋ = ma2ẋ + maȧx. However it is more convenient to work with
the momentum p̂ = ma2ẋ that only depends on the peculiar velocity v = aẋ. In fact,
this momentum can be canonically associated with a canonical transformation of this
Lagrangian. Indeed one can subtract a total derivative to the Lagrangian without
changing the action of the system and one introduces therefore L̂ = L − dS/dt where
S = maȧx2/2. This corresponds to a change of variables in parameter space (xi, p̃i) →
(xi, p̂i) where p̂i has the desired expression. More precisely the new Lagrangian is

L̂(x, ẋ, t) = 1
2ma

2ẋ2 −mΦ(x, t) (3.128)

where Φ = φ + aȧx2/2. Let us look now at the transformation from the Hamiltonian
point of view. The original Hamiltonian is

K̃(x, p̃, t) = x · p̃− L(x, ẋ, t) = 1
2ma2 p̃2 − ȧ

a
x · p̃ +mφ(x, t) . (3.129)

The subtraction of the time derivative of S in the Lagrangian corresponds to a canon-
ical transformation through a type 2 generating function – following the same nota-
tions as BINNEY et al. (2008), appendix D and problem 9.3 –

S2(x, p̂, t) = S + x · p̂ = 1
2maȧx2 + x · p̂ (3.130)

and the canonically transformed Hamiltonian is

K̂(x, p̂, t) = K̃(x, p̃, t) + ∂S2
∂t

= 1
2ma2 p̂2 +mΦ(x, t) (3.131)
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In the end, one can introduce the PSDF associated with p̂ as f(x, p̂, t). According
to Liouville’s theorem for a collision-less gas, it is possible to write the collision-less
Boltzmann equation (that is also called the Vlasov equation in that context) for f as

∂f

∂t
+
{
f, K̂

}
= 0 with

{
f, K̂

}
≡
∑
i

[
∂K̂

∂p̂i

∂f

∂xi
− ∂K̂

∂xi
∂f

∂p̂i

]
. (3.132)

Note that here we keep the index of p̂i down as the canonical momentum is formally
defined with down indices. We introduce the momentum amplitude q̂ = (δij p̂ip̂j)1/2.
In MO et al. (2010) – chapter 4.1.4 – the authors introduce also the average val-
ued of a any quantity Q as

〈Q〉 ≡ g

a3n

∫
f(x, p̂, t)Q d3p̂?

(2π)3 , (3.133)

where n is the number density of particles and d3p̂? ≡ dp̂1dp̂2dp̂3
10. Using the

Vlasov equation they show that for a collision-less dust one recovers the tradi-
tional Jean’s equation in the expanding universe, involving the average of the
peculiar velocity v = p̂/(ma),

∂ 〈v〉
∂t

+H 〈v〉+ 1
a

[〈v〉 .∇x] 〈v〉 = −1
a
∇xΦ− ∇xPeff

ρa(1 + δ) . (3.134)

However, instead of a pressure term, here one obtains an effective pressure Peff that
is given according to its divergence by

(∇xPeff)i = ρ
∑
j

∂

∂xj

[
(1 + δ)σ2

ij

]
with σ2

ij = 〈vivj〉 − 〈vi〉 〈vj〉 , (3.135)

which shows that, indeed, the velocity dispersion induces an effective pressure in the
fluid. If this term is negligible we recover the same equation as for a pressureless
fluid. On large scales, this should be true and all the treatment of DM perturbation
and background evolution holds even after it decouples from the plasma and can
no longer strictly speaking be considered as a fluid. However, this is not satisfied
on small scales where the velocity dispersion and the fluid approximation breaks
down. In particular, particles that are in small over-densities can free-stream out due
to the velocity dispersion-induced pressure and therefore smear it out. This effect is
called free-streaming damping and we detail it in the next section in order to extract the
impacted length scales. It is specifically relevant for DM after kinetic decoupling.

3.6.2 Free-streaming damping effect

In order to study the evolution of small perturbations when the fluid approximation
does not hold, as we cannot solve the Vlasov equation analytically we decompose the
PSDF into a background part and a first order perturbation f = f0+f1. As f0 represent
the background it does not depend on x and the dependence on momentum is only

10Note that the momentum pµ introduced in Sect. 2.2.1, reduces, in the non relativistic limit, to
pµ = (m, pi = mẋi). Therefore one has pi = p̂i/a

2 and subsequently q̂ = ap where p = (−gijpipj)1/2.
Moreover, this relation also highlights that d3p = d3p̂?/a3, explaining the factor 1/a3 in the definition of
the average value 〈Q〉.
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through the norm q̂ = (δij p̂ip̂j)1/2. A straightforward derivation done in (MO et al. 2010
– chapter 4.1.4) shows that in Fourier space, with ki the conjugate variable to xi,

f1(k, p̂, ξ) = f1(k, p̂, ξkd) exp
(
−ik · p̂

m
(ξ − ξkd)

)
+ im

(
k · ∇p̂f0

) ∫ ξ

0
dξ′a2(ξ′)Φ(k, ξ′) exp

(
−ik · p̂

m
(ξ − ξ′)

) (3.136)

They introduce dξ = dt/a2 and the variable ξkd = ξ(tkd) representing the initial value
of ξ i.e. the value at kinetic decoupling. The solution for f1 can be plugged into the
Fourier transform of the density contrast δ(k, t) to obtain the first order equation

δ(k, t) = gm

ρa3

∫
f1(k, p̂, ξkd) exp

(
−ik · p̂

m
(ξ − ξkd)

) d3p̂?
(2π)3

+ i
gm2

ρa3

∫ (
k · ∇p̂f0

) ∫ ξ

ξkd
dξ′a2(ξ′)Φ(k, ξ′) exp

(
−ik · p̂

m
(ξ − ξ′)

) d3p̂?
(2π)3

(3.137)

Using an integration by part in the last integral

δ(k, t) = gm

ρa3

∫
f1(k, p̂, ξkd) exp

(
−ik · p̂

m
(ξ − ξkd)

) d3p̂?
(2π)3

− gmk2

ρa3

∫ ξ

ξkd
dξ′ξ′a2(ξ′)Φ(k, ξ′)G0

( k
m

(ξ − ξ′)
) (3.138)

with k = (δijkikj)1/2. Moreover we introduced Gn the kernel function

Gn(s) ≡
∫
f0(q̂)q̂ne−is·p̂ d3p̂?

(2π)3 =
∫ ∞

0

dq̂
2π2 f0(q̂) q̂

n+1

s
sin(q̂s) . (3.139)

The second equality comes from the simple dependence of f0 with q̂. In order to go
further in the analysis it is necessary to have more information on f0 and f1 at the
initial time. Let us assume that f0 is given by the Maxwell-Boltzmann distribution

f0(q̂) = exp
(
µ−m
T0

)
exp

(
− q̂2

2ma2T0

)
, (3.140)

where T0 here represent the temperature of the species background and not the tem-
perature of the plasma. As introduced in Chapter 2, T0 ∝ a−2 for a massive species
and then the PSDF f0 is in fact independent on time. At initial time, we further
assume that f1 can be approximated by its first order expansion in µ and T0,

f1(k, p̂, ξkd)
f0(q̂) = δ

(
µ

T0

)
+
(
m

T0
+ q̂2

2ma2T0

)
δT0
T0

+O
((

δµ

µ

)2
+
(
δT0
T0

)2)
. (3.141)

According to GREEN et al. (2005), considering the adiabatic evolution, up to kinetic
decoupling, allows us to write

f1(k, p̂, ξkd)
f0(q̂) = q̂2

3ma2
kdTkd

δ(k, tkd) +O
((

δµ

µ

)2
+
(
δT0
T0

)2)
(3.142)

with Tkd = T0(tkd) = T0(ξkd) and akd = a(tkd). Inserting this relation into Eq. (3.138),
gives a relation for the density contrast as

δ(k, t) = gδ(k, ξkd)
3Tkdρa3 G2

( k
m

(ξ − ξkd)
)

− gmk2

ρa3

∫ ξ

ξkd
dξ′ξ′a2(ξ′)Φ(k, ξ′)G0

( k
m

(ξ − ξ′)
)
.

(3.143)
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Figure 3.8 – Right panel: Evolution of the comoving free-streaming Fourier scale with the
redshift for different kinetic decoupling temperatures and different DM mass. Left panel:
Ratio of the matter power spectrum damped due to free-streaming and acoustic oscillation
matter over the perfect CDM power spectrum.

Moreover, it is also possible to neglect the gravitational potential, as a good approxi-
mation, in order to simplify the expression. Evaluating G2 and ρ using the expression
of f0, yields the following ratio between the density contrast at time t and the density
contrast at the moment of kinetic decoupling tkd:

δ(k, t)
δ(k, tkd) =

[
1− 2

3

(
k

kfs

)]
e
−
(

k
kfs

)2

with kfs(t) ≡

akd

√
Tkd
2m

∫ t

tkd

dt
a2(t′)

−1

. (3.144)

In the end, this equation, valid for k < kfs, shows that Fourier modes greater than kfs
are damped. Indeed, these are scales for which the velocity dispersion is no longer
negligible. In practice the effect is taken into account in the transfer function that
is modified according to

T (k)→ T (k)
[
1− 2

3

(
k

kfs

)2]
e
−
(

k
kfs

)2

. (3.145)

3.6.3 The free-streaming length and mass

A common approach is also to define the free-streaming length at time t as the
proper distance that DM particles travelled from kinetic decoupling to today. Then it
is possible to roughly evaluate the free-streaming scale as the inverse of this distance.
The free-streaming length is defined as

λfs(t) ≡ a(t)
∫ √

δijdxidxj (3.146)

and one can show, using the 4-momentum pµ = mdxµ/dτ that

λfs(t) = a(t)
∫ t

tkd

√
δijpipj

dτ
dt′dt

′ = a(t)
∫ t

tkd

p(t′)
a(t′)E[p(t′)]dt

′

= a(t)
∫ t

tkd

v(t′)
a(t′)dt′ = a(t)vkdakd

∫ t

tkd

dt′

a2(t′)

(3.147)
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The last equality comes from the fact v ∝ 1/a and with vkd being the velocity of the
particles at kinetic decoupling. Therefore the free-streaming length and the Fourier
mode are related by the relation

λfs = a(t)vkd
kfs

√
2m
Tkd

(3.148)

In practice vkd is distributed according to the PSDF f0. Then its PDF is

pvkd(vkd) =
√

2
π

(
m

Tkd

)3/2
v2

kde
−
mv2

kd
2Tkd (3.149)

and its average vkd =
√

8Tkd/(πm). BERTSCHINGER (2006) has numerically solved the
Boltzmann hierarchy in a general relativistic set-up and has found that at kinetic
decoupling the average velocity must be corrected by a numerical factor so that vkd =√

6Tkd/(5m). In the end, it yields that λfs ∼ a(t)/kfs. A simple expression for the
minimal mass of subhalos accessible due to free streaming damping is given by the
mass enclosed in the comoving scale kfs today

Mfs ≡
4π
3 ρm(t0)

(
π

kfs(t0)

)3
= 4π

3 ρm(t0)λfs
3(t0)

 π

vkd

√
Tkd
2m

3

. (3.150)

The last term inside the parentheses in the right hand side is an O(1) number.

The expression of kfs can be numerically evaluated first by replacing the integral
on time by an integral on the scale factor, and by making explicit the dependence
on the Hubble parameter ∫ t

tkd

dt
a2(t′) =

∫ a

akd

da
a3H(a) . (3.151)

As performed in GONDOLO et al. (2012), the integral can be done in two parts. In-
troduce the scale factor (resp. time) a? (resp. t?) such that at that time the universe
has a temperature T? much smaller than the electron-positron annihilation tempera-
ture but also higher than the temperature at the matter-radiation equivalence Teq.
Then, for late times, t > t?,∫ t

tkd

dt
a2(t′) =

∫ a?

akd

da
a3H(a) +

∫ a

a?

da
a3H(a) . (3.152)

Replacing H by its expression in terms of degrees of freedom Eq. (2.87) in the first
part and by its expression for a Universe made of matter and radiation Eq. (2.24) in
the second part yields the final expression

∫ t

tkd

dt
a2(t′) =

√
2

a2
eqHeq

{[
ln
(
B(T )− 1
B(T ) + 1

)]T
Tkd

+Kfs(Tkd)
}
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√
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[
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1/2
? (T ′)
h

1/3
eff (T ′)

− 1
]

dT ′
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and B(T ) ≡

√
1 + Teq

T
,

(3.153)
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Figure 3.9 – Minimal halo mass due to acoustic oscillations from Eq. (3.160) (dashed red) and
free-streaming damping (solid blue) for different DM particle masses.

provided that T? � Teq. Here T represents the temperature of photons at time t.
Eventually, in order to evaluate kkd one also needs the scale factor at kinetic decou-
pling, akd, which can be obtained as

akd = Teq
Tkd

(
heff(Teq)
heff(Tkd)

)1/3
aeq . (3.154)

After matter-radiation equality when T � Teq, assuming also that Tkd � Teq for
simplicity, one can expand the expression of Eq. (3.153) as

∫ t

tkd

dt
a2(t′) '

√
2

aeqH2
eq

[
ln
(
Teq

4Tkd

)
+Kfs(Tkd)− 2

√
T

Teq

]
(3.155)

which tends to a constant at small temperature, i.e. at large time. Therefore one
roughly has λfs(t > teq) ∝ a(t) and kfs(t > teq) = cst. Consequently, the free-streaming
mass can often be found written under the forms

Mfs = 4π
3 ρm(teq)

(
πaeq
kfs(teq)

)3

= 4π
3 ρm(teq)λfs

3(teq)

 π

vkd

√
Tkd
2m

3

(3.156)

using the fact that ρm(t0) = ρm(t0)a3
0 = ρm(teq)a3

eq. In the right panel of Fig. 3.8 the evo-
lution of the comoving free-streaming Fourier scale kfs(t) is represented with the red-
shift. It shows that, indeed, after matter radiation equality the free-streaming length
reaches an asymptotes. In Fig. 3.9 the free-streaming mass is plotted in blue for
different DM masses. It can go as low as 10−11 M� in the most extreme cases shown.

3.6.4 Acoustic damping effect and minimal mass

Before kinetic decoupling, the WIMPs are coupled to the relativistic plasma and
therefore they cannot be treated as separate fluids. All the modes which enter the
horizon scale in that period are subject to Jean’s oscillations due to the competi-
tion between pressure induced by the plasma and gravity. Moreover, because the
decoupling is not instantaneous, viscosity is responsible for a damping of the sub-
horizon modes when their oscillation frequency becomes higher than the scattering
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rate. This corresponds to the Silk damping for baryons (SILK 1968). The exact anal-
ysis of viscosity in an imperfect fluid in a general relativistic framework is beyond
the scope of this short review – see BOEHM et al. (2001), HOFMANN et al. (2001),
BOEHM et al. (2005), and LOEB et al. (2005). Following the authors of GREEN et al.
(2005), similarly to the free-streaming damping, it is possible to define a collisional
damping scale kd such that

δ(k, tkd)
δ(k, ti)

= e
−
(
k
kd

)2

(3.157)

with ti the initial time, and where they give the approximation

kd ' 1.8
(
m

Tkd

)1/2
akdHkd . (3.158)

The total impact on the overdensity field is given by
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δ(k, ti)

= δ(k, t)
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)2

(3.159)

The total effect on the matter power spectrum is shown in the left panel of Fig. 3.8.
In the following, however, we use the same prescription as GONDOLO et al. (2012)
by considering an acoustic damping scale set by the sound horizon scale at kinetic
decoupling uniquely. This roughly amounts to slightly overestimate kd by not consid-
ering the term (m/Tkd)1/2 which is of the order ∼ 10−1 − 10−2. More precisely, as the
sound speed is cs = 1/

√
3 in a relativistic plasma, the comoving sound horizon scale

is kao ∼
√

3Hkd ∼ akd
√

3Hkd. The corresponding acoustic mass is

Mao ≡
4π
3 ρm(tkd)

(
πakd
kao

)3
= 4π

3 ρm(tkd)
( 1√

3Hkd

)3
. (3.160)

which amounts to define a minimal halo mass as

Mmin = max [Mao,Mfs] (3.161)

The evolution of Mao with the kinetic decoupling temperature is plotted as the dashed
red line on Fig. 3.9. We can explain the different behaviours in these plots with the
mass and the temperature. Indeed for the free-streaming mass, the dominant term
in front of the free-streaming mode kfs is a−1

kd (Tkd/m)−1/2 with akd ∼ 1/Tkd. There-
fore Mfs ∼ (mTkd)−3/2. Similarly for the acoustic mass, if one considers kd given by
Eq. (3.158) then it yields Mao ∼ (mTkd)−3/2. However for kao ∼ akd

√
3Hkd there is

no direct dependence on the mass and one finds Mao ∼ T−3
kd . This is exactly what

is observed in the figure.

3.7 Conclusion

In this chapter, we have detailed the formation and cosmological distribution of DM
halos. We have shown the first-order equations governing the evolution of the density
contrasts for matter and radiation as well as their velocity. Then, we briefly have
mentioned the initial conditions and, with some approximations, we have derived the
main behaviours, in particular that of the matter density contrast; the latter grows
logarithmically in the radiation dominated era and linearly in the matter-dominated
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era. Afterwards, we have shown a simple model to explain the formation of halos
through their collapse and virialisation. From there we have dived into the statistical
properties of the density contrast field. We haves shown how to characterise the field
of density fluctuations through the matter power spectrum and how to evaluate the
matter power spectrum from the primordial curvature perturbations. Eventually, we
have reviewed the Press-Schechter formalism and its extension, the Excursion Set
Theory and we have detailed the construction of Merger Trees as a theoretical frame-
work to predict the (sub)halo mass function. So far all these results were already
known in the literature. Nevertheless, with our own implementation of a Merger
Tree algorithm, we have evaluated the first order unevolved subhalo mass function
USMF[1] while ensuring its consistent normalisation through a fitting procedure that
is slightly tweaked in comparison to the literature. Inserting this USMF[1] in the SL17
model we have recovered a population of subhalos in the MW that is consistent with
simulations – and with its original calibration procedure; this is detailed in Chapter 4.
In the end, we have connected the formation history of halos to Chapter 2 by intro-
ducing the free-streaming and acoustic damping of small over-densities. With several
approximations, we have shown how to evaluate the minimal mass of halos from the
DM mass and the temperature of the photon bath at kinetic decoupling.

Having revisited the entire formation history of halos is an asset to now improve
the SL17 model in different directions. First, as already mentioned, the evaluation
of the USMF for Merger Trees allows to properly normalise the SL17 model without
directly relying on cosmological simulations. However Merger Trees are much more
than the USMF, since they reproduce the complete cosmological history of the halos.
As done in COLE et al. (2002), BOSCH et al. (2005), ZENTNER et al. (2005), GIOCOLI et al.
(2008a), BENSON (2012), JIANG et al. (2016), and HIROSHIMA et al. (2018), they could
theoretically be used to more precisely predict the evolved distribution of subhalos
today – in comparison to what is done with the recipe of the SL17 model – and at
higher redshifts. However, Merger Trees are only efficient to describe the large mass
range of subhalos and extrapolation to the total population is not trivial if we want to
avoid, as much as possible, relying on cosmological simulations. This calls for further
work as it may have several interesting applications. For instance, for the use of the
21-cm cosmological signal/s to probe the dark ages of the universe, where subhalos
could have a strong impact (LOPEZ-HONOREZ et al. 2016).
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Effect of baryonic tides on the
Galactic subhalo population

“Petite furie, je me bats pour toi
Pour que dans dix mille ans de ça
On se retrouve à l’abri, sous un ciel aussi joli
Que des milliers de roses
Je viens du ciel et les étoiles entre elles
Ne parlent que de toi
D’un musicien qui fait jouer ses mains
Sur un morceau de bois
De leur amour plus bleu que le ciel autour”

Francis Cabrel, Petite Marie
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In the previous chapter, we have summarised the entire evolution of halos from
their formation seeded by primordial fluctuation through their virialisation and up
to today. However, the extended Press-Schechter formalism only informs about the
statistical count of halos and says nothing about their structural properties and their
spatial distribution (with the exception of the bias parameter that we do not discuss).
In this section, we enter deeper into the descriptions of halos, from their internal
properties to the study of global populations. In particular, we address the structuring
of DM in the MW and, more specifically, study the population of subhalos (i.e the halos
inside the Galactic halo) throughout the analytical and dynamically constrained SL17
model (STREF et al. 2017). In this article, as a first-order description of the complex
Galactic DM distribution, it is assumed that all subhalos of the MW are stripped and
potentially destroyed due to two dynamical effects called smooth stripping and disc
shocking. However, several other dynamical processes can impact on the subhalo
population. Many studies have been carried out on this topic (TAYLOR et al. 2001;
BOSCH et al. 2005; PENARRUBIA et al. 2005; ZENTNER et al. 2005; PEÑARRUBIA et al.
2010; JIANG et al. 2016; DELOS 2019b; OGIYA et al. 2019). This chapter focuses
on a specific process: the subhalo-star encounters in the Galactic disc. They have
been studied with (semi-)analytical models in V. BEREZINSKY et al. (2005), GREEN et al.
(2007), SCHNEIDER et al. (2010), and V. S. BEREZINSKY et al. (2014) and with numerical
simulations in ANGUS et al. (2007) and DELOS (2019a). It has been shown that they
can have serious consequences on individual subhalos but the global impact on the
total population of the MW has never been evaluated accurately. Our goal is therefore
to implement subhalo-star encounters as a new feature of the SL17 model.

Because the SL17 model is purely analytical, we keep on with the same philoso-
phy to include the impact of stars. It has the main advantage of producing results
in a matter of seconds (ideal for large scans of the parameter space) and making
the model easily scalable to any other Galaxy-like objects. Nonetheless, inherently
to the non-linear aspect of the issue, the derivation we propose relies on several as-
sumptions that we carefully justify.

In several of the aforementioned in-depth (semi-)analytical analysis of the stellar
encounter process, the authors evaluate the fraction of disrupted subhalos by
comparing the total binding energy of each clump of DM with the kinetic energy
kick they receive during the encounter. However as mentioned in GREEN et al.
(2007) and BOSCH et al. (2018b) this procedure does not provide a satisfactory
criterion to claim the disruption since it does not relate directly to the capacity of
a subhalo to survive. We provide here another method to evaluate the disruption
efficiency. Moreover most of these studies rely on a computation that has been
developed for the encounter of two galaxies and performed in GERHARD et al. (1983)
– hereafter GF83 – based itself on SPITZER (1958). Then it has been adapted to
the encounter between a cluster of stars and black hole (B. J. CARR et al. 1999)
and for the encounter of sub-halos with stars later on. While this simple formula
provides the correct scaling and the right asymptotic behaviour is some limits it
was made to describe, originally, the encounter of two extended objects. Because
a star has a typical size much smaller than the typical size of a subhalo it can be
considered negligible, which allows us to improve the computation as we aim to prove.

This chapter is divided as follows. In the first two parts Sect. 4.1 and Sect. 4.2 we
recall the main features of the SL17 model by detailing the description of individual
(sub)halos and then their global, constrained, distribution in the MW. Then we move
on to the impact of the individual stellar encounters on the subhalo population. In
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Sect. 4.3 we start by studying the encounter of one star with one subhalo, refining
the original and usual analytical computations. In Sect. 4.4 we analytically integrate
the effect of several encounters on a single subhalo. Eventually, in Sect. 4.5 we
show, for the first time, a complete evaluation of the consequences for the constrained
total subhalo population in the MW.

4.1 Properties of individual halos and subhalos

In this section we are interested in the internal properties of halos. We start by fo-
cusing on their mass density profile parametrised by a scale radius and scale density
and later introduce the virial mass and concentration. Eventually we address briefly
the interdependence of these different parameters.

4.1.1 Mass density profile, mass profile and gravitational potential

Because virialisation is a non-linear process, it is challenging to analytically and
accurately predict the structure of halos; therefore, one relies on numerical simu-
lations. The density profile of a subhalo is a result of several processes that can
be internal – phase mixing, relaxation – or due to interactions with the environ-
ment – accretion, mergers. Cosmological simulations have shown that the shape
of dark halos presents a self-similar structure over a large range of scales. Such
a halo shape should then describe all systems down to all existing layers of inho-
mogeneities like subhalos and sub-subhalos, etc. This result is due to NAVARRO

et al. (1996) who showed, more particularly, that dark halos are spherical with a
mass density well fitted by

ρ(x) = ρs ×
{
g(x) = 1

x(1 + x)2

}
(4.1)

where ρs is called the scale density and the scaled variable x = r/rs represents the ratio
of the distance r from the centre of the halo over the scale radius rs. The function g
is implicitly defined as the dimensionless mass density. This profile is now called the
NFW profile. A more general version is

g(x) = 1
xγ(1 + xα)(β−γ)/α (4.2)

that we refer to as the (α, β, γ) model. The NFW profile is recovered for (α, β, γ) =
(1, 3, 1). This model is convenient as varying the parameters allows describing a va-
riety of different relevant shapes. Indeed the NFW profile is cuspy, that is ρ(r) → ∞
when r → 0 but today some observations points toward possible cored profiles – in
dwarf galaxies for instance OH et al. (2015) where ρ(r) → cst. when r → 0. As γ pro-
vides the inner slope of the profile, taking γ → 0 allows to recover a core. The other
parameters β and α control respectively the outer slope and the transition regime
between the centre and the outskirts. In this work we use (α, β, γ) = (1, 3, 0) just
called cored profile in the next chapter and (α, β, γ) = (2, 5, 0) called the Plummer pro-
file (PLUMMER 1911). Since the original work that introduced the NFW profile, other
propositions have been made, providing better fit to simulations, such as the Einasto
profile (SPRINGEL et al. 2008), given by

g(x) = exp
(
− 2
α

[xα − 1]
)
. (4.3)
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This profile is cored, however, simulations show that the parameter α is ∼ 0.17. Thus,
it effectively behaves as a core only when x . 10−3. All in all, cosmological simulations
tend to favour little to no cores. The different dimensionless mass density profiles
are represented in the right panel of Fig. 4.1. In this plot, the range of radii does
not allow to see the cored feature of the Einasto profile when α = 0.17 as it is too small.

From the density profile several other quantities can be derived. First the
mass profile, representing the mass contained in the ball delimited by the
spherical shell at radius r, is

m(r) =
∫
|r′|<r

ρ(r′)d3r′ = 4πρsr
3
s

{
µ(x) ≡

∫ x

0
g(x′)x′2dx′

}
. (4.4)

In the case of an NFW profile, in particular, the result is

µ(x) = ln(1 + x)− x

1 + x
. (4.5)

One could worry that here µ(x → ∞) → ∞, making the mass of the dark halo ill-
defined. In practice one can associate a finite size to halos: either their virial radius if
they are isolated or a smaller one if, throughout their history, they have been pruned
by interactions with their environment. Moreover one can also compute the internal
gravitational potential Φ of an isolated dark halo (provided that it only contains DM).
Indeed from Poisson equation one has ∆Φ = 4πGNρ. Inverting this equation yields

Φ(r) = −GN

∫ ∞
r

m(r′)
r′2

dr′ . (4.6)

4.1.2 Virial parameters

A subhalo of mass M is considered formed once it is virialised – see Sect. 3.3
. An interesting quantity is the value of the true overdensity at virialisation, not
only the extrapolated value from the linear approximation. We can compute that,
within the spherical top-hat collapse model, the overdensity at turn-around δta is
given by evaluating δ at the turn-around conformal time τta = π corresponding to
tta = πGNM/(2E) according to Eq. (3.49) and, δta = δ(τta) = 9π2/16 − 1 according
to Eq. (3.50). However while the spherical collapse model predicts virialisation at
τ = 3π/2, cosmological simulations predict a virialisation time closer to τvir = 2π, cor-
responding to tvir = πGNM/E = 2tta where δ diverges. Therefore, in order to extract
the value of the overdensity at virialisation we rely on the fact that the virial theorem
always imposes that the radius of the structure at virialisation R(tvir) must be half the
radius at turnaround. Thus, because in the matter domination era ρ ∝ t−2, it yields
ρ(tvir) = ρ(tta)/4. Moreover, since the density inside the structure is ρ = 3M/(4πR3),
consequently ρ(tvir) = 8ρ(tta) because of the evolution of R between these two in-
stants. Therefore introducing the density contrast as ∆ ≡ δ + 1, for simplicity, at
virialisation it satisfies

∆vir = ρ(tvir)
ρ(tvir)

= 32∆ta = 18π2 , (4.7)

which is once again independent of the mass of the structure. Naturally this sim-
ple approximation needs to be corrected when we take into account that Ωm 6= 1.
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Under the hypothesis that the curvature of the universe is null, ΩK = 0, (BRYAN et
al. 1998) give the fitting formula

∆vir(zvir) = 18π2 + 82q(zvir)− 39q2(zvir) where q(z) =
ΩΛ,0

Ωm,0(1 + z)3 + ΩΛ,0
. (4.8)

Moreover, zvir is the redshift of virialisation of the structure corresponding to the cos-
mic time tvir. Our first evaluation of this parameter is the 0th order of this expression.
For Ωm,0 = 0.31 and ΩΛ,0 = 0.68, as soon as zvir > 10, the previous functional form
exhibits a saturation plateau at ∆vir ' 18π2 ∼ 178. The mass of the structure is then

M = 4
3π∆vir(zvir)ρ(zvir)R3(zvir) (4.9)

and because the ∆vir is close to the value 200 for the typical collapse redshift, it is
common to introduce a density contrast ∆ = 200. The main advantage with this fixed
number is that, by definition, it is independent of the cosmology. We associate to the
constant contrast a slightly modified virial mass and virial radius related by

m∆(z) ≡ 4
3π∆ρc(z)r3

∆(z) . (4.10)

In the first part we keep the notation ∆ as another prescription than 200 is mathe-
matically equivalent. Then, if one takes r∆(zvir) = R(zvir) we recover m∆(zvir) ' M .
The virial mass of a subhalo changes with time because of accretion or by the sim-
ple change of rs(z). Eventually, a last quantity of interest, although it has no real
physical meaning, is the virial concentration c∆(z). Formally we introduce the ra-
dius r−2(z) of a profile as

d ln ρ
d ln r

∣∣∣∣
r=r−2(z)

= −2 (4.11)

and the virial concentration is then c∆(z) = r∆(z)/r−2(z). Notice that the ratio
r−2(z)/rs(z) does not depend on rs(z) so that r−2(z) = ηrs(z) where η is a fixed
number depending only on the profile. Therefore, ηc∆(z) = r∆(z)/rs(z). In prac-
tice for an (α, β, γ) profile one has r−2(z) = rs(z) [(2− γ)/(β − 2)]1/α which implies
r−2(z) = rs(z) for NFW. The main advantage of defining the virial concentration is
that it establishes a bijection between (rs(z), ρs(z)) and (m∆, c∆(z)). Let us prove
it. Firstly, we ask, for consistency,

m∆(z) = m(r∆(z)) = 4πρs(z)r3
s (z)µ(ηc∆(z)) . (4.12)

where we have used the dimensionless mass µ(x). This relation can also be seen, in a
way, as the definition of the scale parameters. Secondly, this last equation, combined
to Eq. (4.10), then yields the relations

ρs(z) = ∆ρc(z)
3

[ηc∆(z)]3

µ (ηc∆(z)) and rs(z) = 1
ηc∆(z)

[ 3m∆(z)
4π∆ρc(z)

]1/3
. (4.13)

Remark that the scale density is only dependant on the virial concentration and not
on the virial mass. However, concentration and mass are not entirely independent.
Cosmological simulations show that they are anti-correlated which means that sub-
halos with a lower virial mass tend to have a higher concentration. This effect is
called the mass-concentration relation. The next section is dedicated to summarising
several approaches to theoretically predict it.
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Figure 4.1 – Left panel: Several dimensionless mass density profiles used in this study, NFW
(solid blue), cored αβγ (dashed blue), Plummer (PLUMMER 1911) (dash-dotted blue), Einasto
α = 0.17 (solid blue) and Einasto α = 0.5 (dashed red). The latter is just represented to
show the core in the Einasto profile which is not easy to see for α = 0.17 in that range of x.
Right panel: Mass-Concentration relation for different redshifts and given by three models
called here Maccio+08 (MACCIO’ et al. 2008), Diemer+15 and Diemer+19 (DIEMER et al. 2019).
This figure has been produced using the COLOSSUS code (DIEMER 2018) with the Planck18
cosmology.

4.1.3 The virial mass-concentration relation

The anti-correlation of concentration with mass can be well understood by looking
at the cosmological history of halos. Indeed halos with a small mass form rather
early in the Universe, at a time when the average density is higher. Therefore, in
comparison to halos formed at a later time, when the density is smaller, they tend to
have lower scale radii and higher concentrations. However, it is difficult to translate
this simple idea into a realistic model that can give predictions consistent with the
results of simulations. Amongst the most popular models we can cite: BULLOCK et al.
(2001b), MACCIO’ et al. (2008), LUDLOW et al. (2014), DIEMER et al. (2015), OKOLI

et al. (2016), and DIEMER et al. (2019).

An usual method to build models is to assume a behaviour, for the scale density
and for the scale radius, similar to what is observed in simulations. Namely, they
show that the central density of halos seems to become roughly independent of the
redshift after a short period of evolution. In order to see what are the implications for
the concentration, one first comment is that we can always relate the concentration
at redshift z1 to concentration at redshift z2 thanks to the relation

c3
∆(z1)

µ(ηc∆(z1)) = ρc(z2)
ρc(z1)

ρs(z1)
ρs(z2)

c3
∆(z2)

µ(ηc∆(z2)) . (4.14)

In what is maybe one of the simplest and earliest, yet rather accurate, model devel-
oped by BULLOCK et al. (2001b) and MACCIO’ et al. (2008). They assume that the
parameter which remains constant over time is the pseudo scale density defined as

ρ̃s = 3µ(ηc∆(z))ρs(z) (4.15)
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Replacing in Eq. (4.14), and considering z1 = z and z2 = zc (the redshift of collapse)
it yields the expression of the concentration with z as

c∆(z) = 1
η

[
ρ̃s

∆ρc(zc)

]1/3 [ρc(zc)
ρc(z)

]1/3
. (4.16)

Further assuming that ρ̃s/(∆ρc(zc)) is the same for all halos and is not really sensitive
to zc, one calls this constant ratio K3. The last step consists in finding zc for a given
halo of mass m∆(z). The main assumption is to say that m∆(zvir) = m? is related to
m∆(z) by a constant factor F such that m? = Fm∆(z). Then we define zc(F,m∆(z)) as

σM (m?, zc(F,m∆(z))) = δc (4.17)

and the concentration can be obtained by a fit of the parameters F and K on numer-
ical simulations. It is found that for the cosmology of THE PLANCK COLLABORATION

(2014) the best-fit is given by F = 0.01 and K = 4.2. In the more modern model of
DIEMER et al. (2019), they assume two phases for the halo evolution. In the first
one , the halo grows rapidly with a constant concentration parameter c∆ ∼ 4, which
means that rs(z) follows the increase of r∆(z). In the second phase, which they call
"pseudo"-evolution, the halo freezes: ρs and rs become constants (an idea similar to
what we have seen above). Using Eq. (4.14) they are then able to relate the con-
centration to the peak height ν(M, z) = δc/σM (M, z) through an implicit function with
parameters they fit to their simulations. We do not detail here all the other possible
models, however let us just mention the one of OKOLI et al. (2016) which is partic-
ular because it has the advantage of deriving a concentration from first principles
using the ellipsoidal collapse model. Consequently, it almost does not depend on fits
of numerical simulations. Several mass-concentration relations are plotted as an il-
lustration for three different redshifts in the left panel of Fig. 4.1. At large redshift
and large mass one observe an upturn in the more recent model. This has been
interpreted to be due to the presence of unrelaxed halos in the cosmological simula-
tions used to fit the concentration law. Taking only into account the relaxed halos,
the upturn would vanish (LUDLOW et al. 2014). In the following, however, because
we are only interested in the redshift z = 0, we use a direct fit to simulations taken
from SÁNCHEZ-CONDE et al. (2014).

4.2 A model for the subhalo population in the Galaxy

More interesting than individual properties of subhalos are their total distribu-
tion in galaxies, dwarfs, galaxy clusters, etc. Indeed, we review in the conclusion
of Chapter 2 the main potential impacts of the subhalo population on the detec-
tion experiments, namely boost factor of local density enhancements. Consequently,
it is essential to properly model their distribution, especially in the MW. In Chap-
ter 3 we already discussed the unevolved distribution of subhalos in a given host
through the USMF but we are now interested in the evolved counterpart, taking into
account dynamical effects. Several methods exist to describe the subhalo population,
each has its advantages and drawbacks. Firstly, there are cosmological simulations.
They provide the full knowledge of a consistent population in all the mock halos that
they produce. The main drawback, however, is the limited resolution (SPRINGEL et al.
2008), while subhalos can have masses down to 10−12 M� as detailed in Sect. 3.6, cos-
mological simulations cannot resolve objects with masses . 104 M�.Moreover, while
they can provide MW-like objects for instance, these are not the MW, with its specific
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properties and constraints. The second method is to use analytical models, based
on cosmological principles and dynamical effects to produce a statistical parametri-
sation of the subhalo population. In that framework a fully consistent description of
a precise constrained host object is possible, however, some assumptions and sim-
plification are required in order to be able to build the models and use them with
the aim to make predictions. This approach is detailed in this section through the
model (STREF et al. 2017) previously called SL17 and which originally described the
subhalo population of the MW. See complementary approaches, in particular with the
already mentioned merger tree-based models in e.g. BOSCH et al. (2005), PENARRUBIA

et al. (2005), BENSON (2012), ZAVALA et al. (2014), BARTELS et al. (2015), HIROSHIMA

et al. (2018), and ISHIYAMA et al. (2020).

4.2.1 The general recipe and initial hypothesis

The SL17 model is inherently built according to the internal properties of dark
halos that have been previously summarised. The construction follows the recipe:

• Start from a constrained mass model of the MW that includes baryons and a DM
halo, cuspy or cored, (more specifically MCMILLAN (2017) is used) and assume
that the latter is the sum of a smooth component and a subhalos component,
as expected from the cosmological structure formation in the CDM scenario for
the early ages of the Milky Way. These two components are supposed to still be
present today.

• Assume that all subhalos are independent hard spheres on circular orbits so
that they can be characterised by three quantities: their initial cosmological (or
also said fictitious) mass m∆, their concentration c∆ and their distance from the
centre of the Galaxy R. The distribution of subhalos along these three variables
is described by three PDFs, pm, pc and pR, normalised to unity.

• Assume that, initially, the concentration and mass functions are given by first
cosmological principles and that they are independent of the position of the sub-
halos. Moreover, assume that the subhalos follow the same spatial distribution
as the total DM halo (as if they were large particles of the halo). Eventually,
subhalos initial radial extension is given by their virial radius r∆.

• Incorporate the fact that, with time, particles are stripped from the subhalos
according to different physical processes (called tidal effects) and that, conse-
quently, subhalos shrink. These tidal effects have two main causes that are de-
tailed later on. They define a new radial extension of the subhalos that depends
on their original mass concentration and position and that is called the tidal ra-
dius rt(m∆, c∆, R) < r∆. In consequence their mass gets also smaller than their
original virial cosmological mass and is called the tidal mass mt = m(rt) < m∆. If
some of them are pruned too much, according to a hand-selected criterion, they
are assumed to be destroyed.

• Normalise the whole subhalo mass taking into account that all particles lost
by subhalos due to tidal effects are incorporated in the smooth component
so that the total constrained DM halo is conserved and that we have reached
equilibrium today.



4.2. A model for the subhalo population in the Galaxy 143

In more details, the total DM density of the MW at distance R from the Galac-
tic centre (GC) can be written as

ρtot(R) = ρsm(R) + ρsub(R) (4.18)

where ρ represents the smooth DM component and ρsub describes the average mass
density in the form of subhalos. More precisely it is convenient to write it as

ρsub(R) =
∫

dmtmt
dnsub
dmt

(4.19)

where dnsub/dmt is the position dependent evolved mass function, i.e. the final number
density of subhalo with a mass mt at the position R. In order to detail the expres-
sion of the integral one needs first to address the disruption criterion. According to
the results of cosmological simulations (TORMEN et al. 1998; HAYASHI et al. 2003;
DIEMAND et al. 2004; DIEMAND et al. 2008; SPRINGEL et al. 2008; BOSCH 2017) we
expect subhalos that are stripped too much (i.e. that have a too small tidal radius) to
be destroyed. In the model this is implemented by the criterion{

rt/rs ≥ εt ⇒ the subhalo survives
rt/rs < εt ⇒ the subhalo is disrupted

(4.20)

that relies on the value of εt, treated as a fixed input of the model. The lower
this coefficient is, the more resilient subhalos are to tidal stripping. Cosmological
simulations suggest that it should be taken ∼ 1, which implies rather fragile
subhalos. However, according to BOSCH et al. (2018a,b) and ERRANI et al. (2020a,b)
this is may come from a numerical bias due to the limited resolution. Therefore,
typical values can be taken close to εt ∼ 0. In practice we consider values in the range
εt ∈ [10−2, 1].

The entire population is described by a joint PDF on all the cosmological masses
m∆, concentrations c∆ and positions R of all the N subhalos. In practice, we only
use ∆ = 200 – since we have seen it is a good approximation of the real overdensity
at virialisation. Henceforth, the subscript ∆ is omitted and we write m = m∆=200,
c = c∆=200 whenever there are no possible confusions. I particular one should be
careful not to mistake the cosmological mass m with the function m(r) of r that is the
real physical mass enclosed in the ball of radius r of the subhalo (these two quantities
are related by m = m(r∆=200)). Using the fact that all subhalos are independent of each
other the joint PDF can be factored out into N one-point PDFs as follows

p({mi}i, {ci}i, {Ri}i) =
N∏
i=1

p1(mi, ci, Ri) . (4.21)

Initially, when tidal effects are not taken into account (when the distribution is the
cosmological unevolved one), the one-point PDF is factorisable in

pinit.
1 (m, c,R) = pR(R)pm(m)pc(c |m) . (4.22)

where pR is the PDF on the position in the GC assuming isotropy, pm the PDF on
the cosmological mass and pc the PDF on the concentration. After the inclusion of
tidal effects, a population of subhalos is destroyed and their total number decreases
to their number in the MW today, denoted N = Nsub. Mathematically this is included
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by an Heaviside function that truncates the population according to the disruption
criterion. In practice the one-point PDF at late time becomes

plate
1 (m, c,R) ≡ 1

Kt
pR(R)pm(m)pc(c |m)Θ

[
rt(m, c,R)
rs(m, c)

− εt
]
, (4.23)

where Kt is a normalisation factor – so that the PDF be normalised to one if integrated
on the entire parameter space. For simplicity, and to show that tidal effects are
accounted for, we denote in the following plate

1 = pt. While pR and pm are independent,
because of the Heaviside function, the total one point PDF, which takes into account
tidal stripping, becomes an intricate combination of them.

The PDF on the position is given assuming that subhalos are distributed according
to the total DM profile of the MW. Therefore, using simply the density profile of DM
in the MW, denoted ρMW, taken from MCMILLAN (2017) yields,

pR(R) = ρMW(R)
M200

with M200 = 4π
∫ R200

0
ρMW(R)R2dR (4.24)

where M200 is the virial mass of the total DM Galactic halo inside its virial radius R200.
In the original version, the PDF on the cosmological mass takes the form

of a simple power-law

pm(m) = Km

(
m

m0

)−α
, (4.25)

with Km and m0 being normalisation factors. Note that the cosmological mass is
bounded from below: it cannot be lower than a given mmin. As seen in Chapter 2 and
Chapter 3, for thermal produced DM WIMPs, the value of mmin is fully determined by
their microscopic behaviour in the early Universe. Nonetheless, in the SL17 model, it
is regarded as a free input parameter. In this simple power-law scenario, the mass
index α is taken in [1.9, 2.0] to match with cosmological simulation results (DIEMAND et
al. 2006, 2007; DIEMAND et al. 2008; SPRINGEL et al. 2008; ZHU et al. 2016). Testing
the two extreme cases α = 1.9 and α = 2.0 generally allows bracketing some degree
of theoretical uncertainties. Besides, one also needs to fix a maximal cosmological
subhalo mass; we choose mmax = M200/100. In a new, updated version, the PDF of
the cosmological mass can be evaluated through the Merger Tree-induced USMF φ1,
evaluated in Sect. 3.5. There one simply has

pm(m) = 1
Ñsub

φ1(m,M200) where Ñsub ≡
∫ M200

mmin
φ1(m,M200)dm (4.26)

is the total number of unevolved subhalos in the host Galaxy. Remark that in the low
mass range it reduces to a power-law with a mass index α = 1.94.

Eventually, the concentration is log-normal-distributed (JING 2000; BULLOCK et al.
2001a; WECHSLER et al. 2002; MACCIO’ et al. 2007, 2008),

pc(c |m) = 1
Kc(m)

1
c
√

2πσc
exp

[
−
( ln c− ln c̄√

2σc

)2
]

(4.27)

with the scatter σc and the mass dependent median concentration c̄(m). For simplicity
the relation between mass and concentration is, here, taken from result of numerical
simulations (SÁNCHEZ-CONDE et al. 2014),

c̄(m) =
∑
n=0

an

[
ln
(

m

h−1M�

)]n
(4.28)
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with an = [37.5153,−1.5093, 1.636 × 10−2, 3.66 × 10−4,−2.89237 × 10−5, 5.32 × 10−7] and h
the scaled Hubble parameter. The scatter, is found to be independent of the mass
(MACCIO’ et al. 2008) and the value is fixed at σc = 0.14 ln(10) as in (MACCIO’ et al.
2008; DUTTON et al. 2014; SÁNCHEZ-CONDE et al. 2014). Because c ∈ [1,+∞[ there
is also a normalisation factor Kc given by

Kc(m) = 1
2erfc

(
− ln c̄(m)√

2σc

)
. (4.29)

Let us recall that pm(m) is not the distribution of the physical mass of subhalos, it
is the distribution of cosmological initial mass. The distribution of physical mass at a
given position R from the GC takes into account the dynamical effects and is

pmt(mt |R) =
∫ ∞

1
dc
∫

dm pt(m, c,R)
pR(R) δD [mt −m (rt(m, c,R))] (4.30)

with δD the Dirac distribution. From this expression it is possible to compute the
expression of ρsub taking tidal effects into account as expressed in Eq. (4.19), with
dnsub/dmt = Nsub pmt(mt |R). In conclusion, this models allows to access the com-
plete statistical knowledge of the subhalo population in the MW today. As shown,
by this previous example, it can be used to compute any statistical quantity on the
subhalo population that has been impacted by tidal effects. In the next section, we
briefly introduce tidal effects, from the underlying physical mechanisms to the eval-
uation of the subhalo tidal radii.

4.2.2 The dynamical constraints on the subhalo

The first dynamical effect is tidal stripping. When a subhalo with a cosmological
structure orbits inside a host halo, particles in the outskirts of the subhalo can be
more attracted by the gravitational potential of the host than by the potential of the
subhalo itself. In other words, outskirts particles are no longer bound to the subhalo.
They leave the structure to become particles of the host halo. According to BINNEY

et al. (2008), this effect prunes the subhalo until its extension becomes equal to the
smooth Jacobi radius that is given by

rt,sm(R,m, c) ≡ R
{
m(rt,sm(R,m, c))

3M̂(R)F (R)

}1/3

with F (R) = 1− 1
3

d ln M̂(R)
d lnR . (4.31)

Here, M̂(R) is the mass of the MW contained in the ball of radius R, due to DM
and baryons. Interestingly the ratio rt,sm/rs is independent of the virial mass of the
subhalo, it only depends on R and c. Indeed one can write

µ(rt,sm/rs)
(rt,sm/rs)3 = 3

4πρs(c)
M̂(R)
R3 F (R) (4.32)

where the left hand side only depends on c and R.

The second dynamical effect is called tidal shocking by the stellar disc and it is
due to baryons. Indeed, crossing the smooth gravitational potential of the Galactic
disc induces an energetic and velocity shock for the particles of the subhalo. For
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that we use the stellar mass density model of MCMILLAN (2017) defined by a dou-
ble exponential disc

ρ?(R, z) =
2∑
i=1

[ Σi

2zi
exp

(
− R
Ri
− |z|
zi

)]
(4.33)

where the best-fit parameters are (Σ1,Σ2) = (8.96, 1.83) × 108 M� kpc−2, (R1, R2) =
(2.5, 3.02) kpc and (z1, z2) = (0.3, 0.9) kpc. In order to evaluate the impact of disc
shocking, we use the impulsive approximation: we consider that the time scale of
the crossing is small enough that particles can be considered frozen in the frame of
the subhalo. In addition, for simplicity, we give an expression of velocity kick that
is averaged over radial shells and only depends on the distance r from the centre of
the subhalo as (OSTRIKER et al. 1972)

∆vd = 2gd√
3vz

rêz . (4.34)

This expression depends on êz, the axis normal to the galactic plane, vz the sub-
halo velocity along êz and gd the gravitational acceleration due to the potential of
the disc. It is straightforward to relate this velocity kick to a kinetic energy kick
per unit of particle mass using

∆Ed = 1
2
[
(vd + ∆vd)2 − v2

]
= 1

2(∆vd)2 + v.∆vd (4.35)

where we introduced v the initial velocity of the particle in the frame of the subhalo.
Considering a isotropic initial velocity distribution the second term can be averaged
out so that ∆Ed ∼ (∆vd)2/2. Nevertheless, we need to come back to the impulsive
approximation as, for the innermost particle of a subhalo, it breaks down. There,
the adiabatic invariance protects the particle from receiving a too high energy kick. A
correction factor can therefore be introduced according to GNEDIN et al. (1999) to give

∆Ed = 1
2 (∆vd)2A1(ηd) = 4g2

d
3v2
z

r2A1(ηd) (4.36)

where A1(η) = (1 + η2)−3/2 and ηd is the adiabatic parameter: a ratio of characteristic
times. More precisely, η = tdω with td = hd/vz the crossing time of the disc. We
use hd ' 0.9 kpc. The quantity ω represents the orbital frequency of the particle
approximated by ω = σsub/r with σsub the velocity dispersion in the subhalo evaluated
using Jean’s equation. The functional form of A1 reproduces the correct behaviour
of adiabatic protection, that is, whenever it is efficient, for ηd � 1, the energy kick is
suppressed.

The tidal radius is then evaluated recursively. The number of disc crossings Ncross
is evaluated with the assumption that the orbits are circular. The algorithm starts
with rt,0 = rt, sm given by Eq. (4.31) for a subhalo of given virial mass m and con-
centration c. For every crossing, it evaluates a new value of rt with the requirement
that if the kinetic energy kick in a shell is greater than the gravitational potential of
the structure at that position, the entire shell is removed. More precisely, we make
explicit the dependence in the radius and in the tidal extension rt of the energy gain
function by writing ∆Ed = ∆Ed(r, rt). We denote by Φ(r, rt) the gravitational potential
of the truncated structure – see Eq. (4.6) –

Φ(r, rt) = −GN

∫ rt

r

m(r′)
r′2

dr′ . (4.37)
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Figure 4.2 – Left panel: Number density of subhalo with respect to the distance from the
GC for a minimal subhalo cosmological mass of mmin=

200 10−10 M� and a mass index α = 1.9.
The effect of the disc shocking is switched on in the case (sm. + disc) and switched off
in the (sm. only) configuration. In comparison is shown the cosmological distribution) in
green (superposed to the red dash-dotted curve). Right panel : Comparison of the ESMF
(dashed lines) obtained from the standardised USMF (solid lines) of Sect. 3.5 with the results
of HIROSHIMA et al. (2018) (dotted lines) – here Hiroshima+18. Only the smooth stripping
is taken into account and subhalos are considered rather fragile εt = 0.77. The minimal
cosmological subhalo mass is set to 10−5 M�. The two colours, red and blue, correspond to
two host masses.

The successive tidal radii, crossing after crossing are evaluated, for the crossing i+ 1,
by solving rt,i+1 in the equation

∆Ed(rt,i+1, rt,i) = |Φ(rt,i+1, rt,i)| ∀i ∈ J0, Ncross − 1K . (4.38)

The tidal radius today is then rt ≡ rt,Ncross.

4.2.3 Total number of subhalos

This paragraph is devoted to the evaluation of the total number of subhalo, that
is the normalisation of the mass function. In the first place, we review the original
method of SL17 and then show the new method based on Merger Tree algorithms.
For the rest of this document, nevertheless, the former, original method is used as
it is built explicitly for the MW.

Original calibration for the MW

When the USMF is set by a simple power-law, the calibration of the model is made
according to DM only simulations. This particular choice is motivated by the fact
that the inclusion of baryonic feedback in simulation is still a difficult task based on
tuned recipes of subgrid physics. Moreover, simulations offer MW-like object and not
the MW; they have baryonic distributions that are not exactly the same as the MW.
Therefore their effect on subhalos might differ. In particular we use DIEMAND et al.
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mmin = 10−10 M� mmin = 10−6 M�
Nsub εt = 1 εt = 10−2 εt = 1 εt = 10−2

α = 1.9 4.4× 1018 4.6× 1018 1.1× 1015 1.2× 1015

α = 2.0 2.4× 1020 2.5× 1020 2.3× 1016 2.5× 1016

Table 4.1 – Calibrated number of subhalos for various configurations of the model when
smooth stripping and tidal shocking by the disc are taken into account. The MW halo is
assumed to have an NFW profile and the mass densities are taken from MCMILLAN (2017).

(2008). The result of this simulation can be converted as follows. First, we define the
mass fraction in a given range, when there are no baryons as

f̂sub(m1,m2) = 4πNsub
M200

∫
dRR2

∫ m2

m1
dmm

∫ ∞
1

dc p̂t(m, c,R) , (4.39)

where p̂t is the one point PDF when baryonic tidal effects are omitted. Then, for εt = 1
(remember that this high value may be the result of numerical artefacts), the mass
fraction in the DM only simulation is given by

f̂ sim
sub = f̂sub(2.2× 10−6M200, 8.8× 10−4M200) ' 11% (4.40)

Therefore this allows computing the ratio Ksim
t /N sim

sub as

Ksim
t

N sim
sub

= 4π
M200f̂ sim

sub

∫
dRR2

∫ m2

m1
dmm

∫ ∞
1

dc pR(R)pm(m)pc(c |m)Θ
[
rt,sm
rs

(c,R)− 1
]
.

(4.41)
where N sim

sub (resp. Ksim
t ) is the number of subhalos from the simulation (resp. the nor-

malisation factor of the simulation), with the specific parameters and configuration of
the simulation. Now we want to get the value of Nsub and Kt for any set of parameters
of the model. To this end, we assume that in the outskirts of the MW halo, subhalos
do not experience tidal effects (or that they are negligible). The mass density DM in
the form of subhalos is the same in the simulation and for any parameters of the
model at R = R200. We have seen how to write ρsub so that

N sim
sub

Ksim
t

∫
dmm

∫ ∞
1

dc pm(m)pc(c |m)Θ
[
rt,sm
rs

(c,R200)− 1
]

=

Nsub
Kt

∫
dmm

∫ ∞
1

dc pm(m)pc(c |m)Θ
[
rt
rs

(m, c,R200)− εt
]
.

(4.42)

Because, as assumed, tidal effects are negligible in the outer regions

Θ
[
rt,sm
rs

(c,R200)− 1
]
∼ Θ

[
rt
rs

(m, c,R200)− εt
]

(4.43)

and from the previous equation

Nsub = Kt
Ksim

t
N sim

sub . (4.44)

Typical values of Nsub are given in Tab. 4.1 for a MW having an NFW profile in terms
of the different parameters of the model that are the mass index, α, the minimal virial
mass of subhalos mmin and the disruption parameter εt. The value of mmin is treated as
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a free parameter in the range ∼ [10−12M�, 10−4M�]. In all configurations, the number
of subhalos is huge, which justify the use of such a statistical model. Moreover, for
α = 2.0 the values are higher than for α = 1.9 because while the total mass of the
MW must be the same there are more of the small subhalos. Therefore the difference
between α = 2.0 and α = 1.9 is more pronounced when mmin is smaller. Eventually,
because most subhalos are in the outer regions of the Galaxy, where tidal effects
are not very efficient to destroy them, Nsub is not very sensitive to the disruption
parameter. This effect is enhanced by the fact that disrupted subhalos have small
concentration, and therefore large virial mass (by the anti-correlation between mass
and concentration), subsequently, they are less numerous from the start. In Fig. 4.2
we show the subhalo number density given by

nsub(R) =
∫

dmt
dnsub
dmt

, (4.45)

in the central part of the MW. Two configurations are considered, with and without
the disc shocking effects. For comparison, the cosmological (unevolved) distribution
is also represented. For fragile subhalos (disruption parameter εt = 1) we find a
strong suppression due to the disc shocking effect toward the centre of the Galaxy in
comparison to the cosmological distribution and to smooth stripping only. The effect
is less important with smaller and smaller values of εt.

Normalisation using Merger Trees

When the USMF is given by the Merger Trees algorithm, there is no need for a
calibration procedure. Indeed, one directly has the total number of evolved subhalos
by Nsub ≡ ÑsubKt – we recall that Ñsub is the number of unevolved subhalos given in
Eq. (4.26). According to Tab. (4.2), we recover here the same mass fraction f̂sub ∼ 11%
for a MW-sized halo, which gives confidence in the Merger Tree method. Subse-
quently, we also compare the associated evolved subhalo mass function (ESMF),

dNsub
dm = 4π

∫
pR(R)nsub(R)R2dR, (4.46)

with HIROSHIMA et al. (2018) in the left panel of Fig. 4.2. We consider only the smooth
stripping effects and rather fragile subhalos with εt = 0.77 and mmin = 10−5 M�. The
behaviours of the ESMFs are similar, only the overall normalisation differs. However,
the model presented in HIROSHIMA et al. (2018) is built differently than the SL17
model and contains more physical ingredients; it takes into account the evolution
of the subhalos from their accretion to today and the non-circularity of their orbits,
based on recipes calibrated on numerical simulations. Therefore let us emphasize
that this new normalisation procedure is a preliminary result which should pave the
way towards further improvements of the SL17 model – where the philosophy is to
avoid relying on cosmological simulations whenever possible.

4.3 Encounter of a single subhalo with a single star

So far the outer edge stripping of subhalos from the host halo and disc shocking
have been taken into account. In fact, another dynamical effect has to be considered,
the individual stellar encounters. This is addressed now. We first focus on the
encounter between one subhalo and a single star. The goal is to evaluate the variation
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mmin = 10−6 M�, εt = 1 f̂sub Nsub
M = 109 M� 11 % 2.5× 1012

M = 1012 M� 11 % 1.7× 1015

M = 1015 M� 11 % 1.1× 1018

Table 4.2 – Mass fraction of subhalos in the range [2.2 × 10−6M, 8.8 × 10−4M ] obtained with
the standardised USMF from Chapter 3 for three different host masses and for fragile sub-
halos destroyed whenever rt < rs. The corresponding total number of subhalos is also shown
assuming the minimal subhalo cosmological mass of 10−6 M�.

rt

•C

•S

b = bêb

vr = vrêvr

•Mi

ri

r?

•O

êb

êvr

ê⊥

Figure 4.3 – The geometry of the problem. The clump is represented as a sphere with centre
C and radius rt. The star is at point S and the encounter happens with the impact parameter
b.

in kinetic energy felt by the particles in the subhalo. We start by giving a complete
parametrisation of the problem and then move on to the computation of the kinetic
energy kick, that we compare to the literature.

4.3.1 General set-up and velocity kick

We follow the original work of SPITZER (1958) and GERHARD et al. (1983) , hereafter
GF83. The geometry of the problem is summarised in Fig. 4.3. The star is assumed
to be a point-like object with a mass m?. The subhalo has an original extension rt
and its mass is mt = m(rt). The centre of mass of the subhalo is labelled by the letter
C. The centre of mass of the entire system, associated with 3-fixed axes, defines a
Galilean frame R. Let O be a fixed random point in that frame. Particles inside the
subhalos all have the same mass mp. Consider one of them with a position tagged by
the letter Mi. Using Newton’s second law its equation of motion in R can be written

d2OMi

dt2 = − GNm?

|SMi|3
SMi +

∑
j 6=i

GNmp
|MiMj |3

MiMj (4.47)

The position of the centre of mass of the subhalo is obtained as

OC = mp
mt

∑
i

OMi (4.48)
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so that, deriving twice by the time and applying Eq. (4.47) on the left hand side yields

d2OC
dt2 = −GN

mpm?

mt

∑
i

SMi

|SMi|3
. (4.49)

A practical parametrisation is to introduce the positions with respect to the centre of
mass of the subhalo, ri = CMi and r? = CS. The velocity of the DM particle Mi with
respect to the centre of mass is denoted vi = dri/dt and can be written

dvi
dt = d2CMi

dt2 = d2OMi

dt2 − d2OC
dt2 . (4.50)

Then, we introduce dui/dt describing the motion of the particle itself and duc/dt de-
scribing the motion of the centre of mass of the subhalo in R and write these two
components in terms of the variables {rj}j and r?

dui
dt ≡

d2OMi

dt2 = − GN
|ri − r?|3

(ri − r?) +
∑
j 6=i

GNmp
|ri − rj |3

(rj − ri)

duc
dt ≡

d2OC
dt2 = −m?

mt

∑
i

GNmp
|rj − r?|3

(ri − r?) .
(4.51)

Because the subhalo contains a large amount of particles it can be described by
continuous functions and in particular by its mass density. Therefore taking the
continuous limit yields, for a particle at a position r

du
dt = − GNm?

|r− r?|3
(r− r?) +GN

∫
ρ(r′)
|r′ − r|3 (r− r′)d3r′

duc
dt = −GNm?

mt

∫
ρ(r′)
|r′ − r?|3

(r′ − r?)d3r′ .
(4.52)

The two integrals can be further simplified if we assume that the subhalo keeps a
spherical symmetry during the encounter

du
dt = − GNm?

|r− r?|
(r− r?) + GNm(r)

r3 r

duc
dt = GNm?m(r?)

mtr3
?

r? .
(4.53)

In order to evaluate, from this expression, the net change in velocity for a particle
during the encounter one needs to rely on two assumptions. The first one is the
impulse approximation already discussed for the disc shocking effect. Here it amounts
to neglect the second term of du/dt corresponding to self-gravity. In other words, it
amounts to neglect the internal dynamics of the subhalo in comparison to the other
dynamical effects. This approximation will be justified in Sect. 4.4.2. The second one
is the high-speed encounter limit that allows, if the relative velocity between the centre
of mass of the subhalo and the star is high enough, to consider that the relative
trajectories are straight lines. It ensures that the frame where the subhalo is fixed,
let us say R′, is not rotating with respect to the frame R and that the derivative of the
velocity v computed previously in R is the same in R′. We only consider encounters
that happen in this regime – as it will be justified in Sect. 4.4.1 they almost all fall
in this category for the purpose of the study in the MW. Now let us define the change
in velocity, also called the velocity kick, as

δv ≡
∫ ∞
−∞

dv
dt dt =

∫ ∞
−∞

{du
dt −

duc
dt

}
dt = δu− δuc . (4.54)
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In the high speed encounters regime, r?(t) = −b − vrt where b is the impact vector
directed from S to C at the time of closest approach and vr is the constant relative
velocity. Performing the integration over time yields

δu = −2GNm?

vr

r + b− êvr(r.êvr)
r2 − (r.êvr)2 + b2 + 2r.b

δuc = −2GNm?

vrb
I(b, rt)êb

(4.55)

with the unitary vectors êvr = vr/vr and êb = b/b. Moreover we also introduced the
dimensionless function I that can be written

I(b, rt) ≡
b2vr
mt

∫ ∞
0

m
(√

b2 + v2
r t

2
)

(b2 + v2
r t

2)3/2 dt (4.56)

where we assume implicitly that m(r > rt) = mt. We have found convenient to
slightly transform this expression. First let us proceed to the change of variable
x2 = b2 + v2

r t
2 that yields

I(b, rt) = b2

mt

∫ ∞
b

m(x)
x2
√
x2 − b2

dx . (4.57)

Then remark that if b ≥ rt the expression simplifies a lot as

I(b ≥ rt, rt) = b2
∫ ∞
b

1
x2
√
x2 − b2

dx = 1 . (4.58)

When b ≤ rt let us use the fact that dm(x)/dx = 4πρ(x)x2 for x < rt to write that in
full generality the factor I satisfies,

I(b, rt) = b2

mt

∫ rt

b

m(x)
x2
√
x2 − b2

dx+ b2
∫ +∞

rt

1
x2
√
x2 − b2

dx

= b2

mt

{[
m(x)

√
x2 − b2
xb2

]rt
b

−
∫ rt

b
4πρ(x)x

√
x2 − b2
b2

dx
}

+
∫ +∞

rt

b2

x2
√
x2 − b2

dx

= − 4π
mt

∫ rt

b
ρ(x)x

√
x2 − b2dx+ 1

rt


√
r2

t − b2 + b2

rt +
√
r2

t − b2


= 1−Θ (rt − b)

4π
mt

∫ rt

b
ρ(x)x

√
x2 − b2dx .

(4.59)

In a first approach, we can say that the function I is a weighted average of the mass
enclosed between r = 0 and r = b inside the subhalo. Indeed, one can also check that
when b = 0 one has I(b = 0, rt) = 0. As a matter of fact, I represents more particularly,
the weighted fraction of particles that contribute to δuc. Indeed, when b > rt, panel
(b) of Fig. 4.4, the star does not penetrate the structure and therefore the velocity
kicks from all particles add up to make the centre of mass’ velocity kick and that is
why I = 1. On the contrary, when b < rt, panel (a) of Fig. 4.4, the star penetrates the
structure and all the outer shell particles, at r > b, do not contribute to the centre
of mass velocity kick; albeit all receiving a velocity kick their sum averages out to 0.
Consequently only the inner part of the subhalo contained in r < b has a substantial
contribution. When b = 0 there is no inner part and I = 0.
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•
S

b

0 < I(b, rt) < 1
(a)

•C •C

•
S

b

I(b, rt) = 1
(b)

•C

Figure 4.4 – Two different geometrical configurations. In the left panel (a) the sum of the
velocity kick of particles in the red area gives no contribution to the velocity kick felt by the
centre of mass of the subhalo in R. On the contrary, in both panels (a) and (b) the particles
in the blue areas contributes. Consequently, the factor I is less than 1 in (a) and is equal to 1
in (b).

Eventually as for the the disc shocking effect, we can also introduce a kinetic
energy kick per units of particle mass as

δE = 1
2(δv)2 + v.δv . (4.60)

Similarly, if the initial velocity distribution is isotropic then the second term can be
averaged out which yields the expression of the averaged value

δE = 1
2(δv)2 = 1

2

(2GNm?

vrb

)2
[
I2 + b2(1− 2I)− 2Ir.b

(r + b)2 − (r.êvr)2

]
. (4.61)

Before following up on this result by defining an angle averaged version, we first
recap the original computation of GF83 in order to make comparisons. Moreover, in
this first part, we forget about the effect of the energy dispersion that is induced by
the initial velocity in the term v.δv. A careful treatment of the dispersion effects will
be made when accounting for the encounters with many stars.

4.3.2 Comparison with the original result

The result of Eq. (4.55) can be compared to GF83. Because the authors of
the latter reference were considering the encounter of two extended objects (more
specifically two galaxies with Plummer density profiles) they could not obtain an
expression as simple as with a point star. Therefore they derived an expression in
two limiting cases that correspond to b � r and b � rt in our notations. Then they
interpolated their result between the two asymptotic behaviours.

Assuming a Plummer density for the star ρ?(r) = ρ?(1 + (r/ε?)2)−5/2 with ρ? and ε?
being the scale density and scale radius of the star, it can be shown that Eq. (4.52)
amputated from the self gravitating term is transformed into

dv
dt = − GNm?

|r− r?|
(r− r?) +GN

m?

mt

∫ rt

0
dr
(
r

r?

)2
ρ(r)

[
r + r?
|r + r?|

h?+(r)− h?−(r)
]

(4.62)

with the definition of the function

h?±(r) =
1 + ε2?

r(r±r?)√
1 + ε2?

(r±r?)2

. (4.63)
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When ε? → 0, h?±(r) → 1 and we come back to our first derivation. However here, the
derivative of the velocity can no longer be simplified to define the analytic equivalent
of I(b, rt) as we did. Other approximations are needed to pursue the derivation when
the scale radius of the star ε? cannot be neglected in front of the other typical scale
of the problem – that are the scale radius rs of the subhalo and the impact parameter
b. The latter having the theoretical possibility to go to 0 we will make sure that, either
taking it small will not affect our result, or that in practice it is never small enough
to be an issue.

Therefore let us focus on the details of GF83 computation where we make the
replacement ε? = 0 to match with our configuration. First, let us look at the limit
b → 0. Using I(b = 0, rt) = 0 one recovers their asymptotic expression

δv ∼
b→0
−
(2GNm?

vrb

) êr − cvr êvr

r(1− c2
vr)

b . (4.64)

where we introduced êr = r/r and cvr = êr.êvr ∈ [−1, 1] and with the typical velocity
kick δV ≡ 2GNm?/(bvr). However, one major issue is that for cvr = ±1 the velocity
kick diverges. This can be physically interpreted by saying that at b = 0 the star
goes through the centre of the clump. Therefore a segment of particles meet the
point star during the encounter and get an infinite velocity kick. This effect which
concerns only a negligible amount of particles is a direct consequence of taking ε? →
0 since this parameter otherwise acts as a regulator. In any case, they choose to
simplify the denominator in a way that remove the divergence arguing that if angles
are parametrised in an appropriate way one has the average value

〈
c2
vr

〉
= 1/3 and

the velocity kick is approximately given by

δv ∼
b→0
−
(2GNm?

vrb

) 3
2

êr − cvr êvr

b

(
b

r

)2
(4.65)

where the dependence in the ratio r/b has been made explicit.

In a second time they also give the asymptotic behaviour when r/b → 0. Making
a development of Eq. (4.55) at first order yields

δv = −
(2GNm?

vrb

)[(
1− I − 2r

b
cb

)
êb + r

b
(êr − cvr êvr) +O

((
r

b

)2
)]

. (4.66)

In GF83 because of the non integrability of Eq. (4.62), the computation is made
through a method equivalent to assuming I(b, rt) = 1 in the equation above, i.e. the
implicitly assume b > rt. However, in our case it is possible to have b < rt and b� r at
the same time for the inner-most particles, in which case I(b, rt) < 1 and the original
expression is missing a term. This could make a substantial difference for certain
encounters. Remark, that in contrast with the asymptotic limit when b → 0 this
expression is never divergent for any value of the scalar products cvr and cb.

Eventually, they completed their computation by providing with an interpolation
formula between the two asymptotes under the form

δv = −
(2GNm?

vrb

)[(
1− I − 2r

b
cb

)
λ2

(
r

b

)
êb + r

b
(êr − cvr êvr)λ1

(
r

b

)]
. (4.67)

with λ1 and λ2 two functions that follows the conditions: λ1(x) → 1, λ2(x) → 1 when
x → 0 and λ1(x) ∼ 3x−2/2, λ2(x)/λ1(x) → 0 when x → ∞. They chose to use the
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parametrisation λ1(x) = (2x2/3 + 1)−1 and λ2(x) = λ2
1(x). If we conserve the factor I

and average over angles their expression (see next paragraph for more details), the
averaged squared velocity kick becomes

〈
(δv)2

〉
GF

=
(2GNm?

vrb

)[I − 1]2 + 6
(
r

b

)2 9 + 4
(
r
b

)4[
3 + 2

(
r
b

)2]4
 . (4.68)

Taking the limit I(b, rt) = 1 in the previous expression yields the original GF83 result
when ε? → 0. As shown in the next section, Eq. (4.68) appears to be an excellent
approximation of the velocity kick squared. Nevertheless the replacement

〈
c2
vr

〉
= 1/3

done in Eq. (4.65) can be more justified.

4.3.3 Angle averaged velocity squared

Taking the average value of δv on entire shells is actually very useful because it
reduces the dimensionality of the problem and it remains consistent with the fact that
the subhalo is assumed to conserve its spherical symmetry throughout the encounter.
Therefore one defines, for any function q of the angles, its averaged value

〈q〉 ≡ 1
4π

∮
dΩ q(θ, ϕ) (4.69)

with dΩ = d cos θdϕ so that θ and ϕ that can represent different geometrical angles
chosen so that the computation is made as convenient as possible.

Issues of this method

Computing the integral over angles appears to be not trivial. Let us try to evalu-
ate the average value of (δv)2 that is the only quantity appearing in the mean kinetic
energy kick. If we consider a radius r < b the computation can be done analyti-
cally from Eq. (4.61),

〈
(δv)2

〉
r<b

=
(2GNm?

vrb

)2
I2 − 2I + b

r

arcsin( rb )√
1−

(
r
b

)2
 . (4.70)

However, this function diverges when r/b → 1 even if that has no physical meaning.
Indeed the problem is identical to the issue that was pointed out in Eq. (4.64) for
the GF83 computation when cvr ± 1. The divergence comes from the fact that at
r = b particles in the −êb direction are in contact with the star and since the star is
considered to be a point with a diverging potential the velocity kick for those particles
goes to infinity. As was mentioned then, one can expect that this only affects a rather
negligible number of particles but, because of the averaging process, this divergence
appears now on the entire shell r = b. The problem becomes even more important
when r > b. Indeed the same computation in this range gives

〈
(δv)2

〉
r>b

=
(2GNm?

vrb

)2
I

I − 1 + b

r

√(
r

b

)2
− 1

+−
∫ r/b

0
dx x√(

r
b

)2 − x2

1
|1− x2|

 (4.71)

where the barred integral represents the Cauchy principal value. However for any
parameter y > 1 one can straightforwardly show that

−
∫ y

0
dx x√

y2 − x2
1

|1− x2|
= +∞ (4.72)
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and the energy kick is not properly defined. As for the case, r = b this divergence
occurs because r > b necessarily defines a star-crossing shell, that is, a shell for
which some particles end up inside the star at one point or another of the crossing.
Once again, those particles meeting the star, or passing in its vicinity, are a small
fraction of the total amount of particles and for simplicity, their behaviour may here
be assumed of little importance for the rest of the computation. One could argue that
actually, the divergence is the signature that the angle-averaged procedure is in fact
impossible and should not be used. However, even if a complete computation taking
into account the angle dependence could be made for an individual halo, this would
make the numerical evaluation so long that it would realistically make impossible the
study of the stellar encounter effect on the entire subhalo population. That is why,
in the following, we rely on an ansatz.

Definition of several ansatzes

In order to get rid of the divergence one can adopt several ansatz which may be
physically motivated. The first solution would be to truncate the average and perform
it on the plane (êvr , ê⊥ = êvr × êb) perpendicular to êb since no particles in it ever
is in the vicinity of the star and assume that the radial behaviour of (δv)2 can be
extrapolated in the other direction. Doing so it defines a first ansatz

〈
|δv|2

〉
⊥
≡ 1

2π

∮
dΩ (δv)2δD

[
cos ̂(êr, êb)

]
=
(2GNm?

vrb

)2
I2 + 1− 2I√

1 +
(
r
b

)2
 (4.73)

where δD represents the Dirac distribution (noted here with the tag D in order to
make the distinction with the other occurrences of δ which represents variations in
this chapter) and the cosine imposes that we fix r in the plane perpendicular to êb.
Another possibility is to extrapolate Eq. (4.61) for the particles in the direction êb for
r > 0, to all other directions. The result is then

〈
(δv)2

〉
‖
≡
(2GNm?

vrb

)2
[
I2 − 2I

1 + r
b

+ 1
(1 + r

b )2

]
. (4.74)

Eventually a last option is to give an averaged value of cb and cvr and replace them
directly in Eq. (4.61) in the same way that what was done in GF83 to replace cvr by the
average value

〈
c2
vr

〉
= 1/3. However, there are several ways to make this substitution.

Since we have an analytical formula for small values of r/b we can ask for our approx-
imation to match the exact result of Eq. (4.70) at first order in the r/b expansion, in
order to constrain the value of cvr and cb. It gives the following system

2cb(I − 1) = 0 (4.75)

(1− c2
vr)(2I − 1) + 4c2

b(1− I) = 2/3 . (4.76)

The first equation directly gives cb = 0 while the second cannot be solved in a general
way as we do not want cvr to be a function of I. However since I(b ≥ rt, rt) = 1 it is
consistent to require that (1− c2

vr) = 2/3. Doing so, it no longer describes well the limit
b→ 0 when r/b→ 0. Nevertheless, in practice, it corresponds to particles at a position
r � b � rt, too far in the centre to be of interest for us (as we will only look at radii
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above r = 10−2rs). Interestingly, this solution is also compatible with a direct average
over angles since, defining cvr = cos θ and cb = sin θ cosϕ, it yields

〈
(1− c2

vr)
〉

= 2
3 and 〈cb〉 = 0 . (4.77)

Therefore we have proven that averaging the terms cvr and cb directly is indeed not
a bad approximation. Consequently, because it relies on similar assumptions, the
result will be equivalent to Eq. (4.68), which should then give a good evaluation of
the squared velocity kick too. However the latter relies on an interpolation that we
do not need here. Following our development to the end, the total expression of
the velocity kick becomes

〈
(δv)2

〉
∼
≡
(2GNm?

vrb

)2
[
I2 + 3(1− 2I)

3 + 2( rb )2

]
. (4.78)

which is also an expression more compact than Eq. (4.68).

A comparison of all these approximations is made in the left panel of Fig. 4.5 for
b < rt. Firstly, we check that all our different ansatz have a consistent behaviour.
The only "irregularity" is observed for 〈δv〉⊥ in dash-dotted blue which drops to 0 at
a finite radius. Secondly, as expected, the GF83 computation not corrected by the
factor I(b, rt) is not efficient to actually describe what happens at small and large
radii; it misses the correct asymptotic behaviours. This is a direct consequence of
the absence of the I term which has a finite value in ]0, 1[ in this configuration. We
can easily check with Eq. (4.61) that

lim
r→0

(δv)2 =
(2GNm?

vrb

)2
[I − 1]2 6= 0

lim
r→∞

(δv)2 =
(2GNm?

vrb

)2
I2 6= 0

(4.79)

which translate the fact that the velocity kick of the centre of mass of the clump in
R is only obtained as the sum of the individual velocity kicks of only a fraction of the
particles – see the discussion in Sect. 4.3.1 about the meaning of the function I.

4.3.4 The integrated kinetic energy kick

It is common in the literature to work with the total integrated kinetic energy kick
of the subhalo over its binding energy. For comparison we therefore introduce

δEint = 2π
∫ rt

0
r2ρ(r)(δv)2dr (4.80)

and the binding energy

U = 4πGN

∫ rt

0
m(r)ρ(r)rdr (4.81)

The ratio of these two quantities is represented in the left panel of Fig. 4.5 with respect
to the impact parameter. It scales as b−4 when b� rs and as a constant (up to a small
logarithmic correction) when b � rs. Therefore one recovers the behaviour found in
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Figure 4.5 – Left panel: Angle-averaged velocity squared in the plane perpendicular to êb
(dotted blue), in the direction +êb (dash-dotted blue) and from Eq. (4.78) (solid blue). These
results are compared to the original prediction by GF83 (dashed red) and to the corrected
version in Eq. (4.68) (solid red). The tidal radius of the subhalo is set to rt = 100 × rs and
b = rs. The green dashed lines correspond to the asymptotic behaviours. Right panel: Ratio
of the total kinetic energy integrated on the entire profile over the binding energy for various
values of the tidal radius. The solid curves are obtained with our ansatz of Eq. (4.78), dashed
curve are obtained using GF83 result and the dotted lines correspond to a comparison with
the usually adopted shape ∝ (ηb + rs)−4. Comparison is made with the characteristic binding
energy introduced in DELOS (2019a) (here denoted D19)

MOORE (1993) and used in the context of dark matter subhalos in GREEN et al. (2007)
and DELOS (2019a) – as well as in GOERDT et al. (2007) in the large b limit –:

δEint
U
∼ GNm

2
?

v2
rρs(ηb+ rs)4 (4.82)

with η a parameter. Albeit GREEN et al. (2007) provide an estimate for η it is ill-defined
in the case of an NFW profile. Here we find η = 213 for rt/rs = 10−2, η = 3.57 for
rt/rs = 1 and η = 0.228 for rt/rs = 102. The dash-dotted curve corresponds to the
characteristic binding energy introduced in DELOS (2019a) (referred to as D19) and
assumes a slightly different shape δEint ∝ 1/(b4 + r4

s ). If the tidal radius is not smaller
than the scale radius our solution provides better agreement with Eq. (4.82) than the
GF83 solution. The agreement is similar if the tidal radius is smaller the scale radius.

4.4 Encounters of a single subhalo with a population of star

When a subhalo crosses the stellar disc it encounters many stars. The goal of this
section is to study the integrated effect of all these encounters . We start by describ-
ing the stellar population before performing a full statistical analysis and analyse
the impact on the subhalo profile.
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4.4.1 The stellar population

What matters for a subhalo that crosses the stellar disc is the impact parameters
of its encounters with stars and the masses of the latter. Here we assume that the
stellar disc is infinite, infinitely thin and homogeneous with surface density Σ?(R).
Consider a subhalo following a straight line trajectory making an angle θ with respect
to the perpendicular of the disc. The number of encountered stars with an impact
parameter between b and b + db is

dN = Σ?(R)
m?

2πbdb
cos(θ) . (4.83)

Here we define m? as the average stellar mass of a star in the disc. As a matter of fact,
this distribution cannot be physically valid in all configurations as it diverges when
θ = π/2, which corresponds to subhalo with an orbit within the disc. Nonetheless,
it is also possible to consider a non-homogeneous and finite disc to obtain a finite
distribution. However, the computation is much more involved and done in App. D.2.
Comparing Eq. (4.83) to the more accurate expression of Eq. (D.18) shows that it is
a good approximation as long as cos(θ) � b/Rd where Rd is the typical length scale of
the variations in Σ?(R). This condition is satisfied for the vast majority of subhalos
so Eq. (4.83) is used in the following.

As already mentioned, our previous computation for the energy kick in Sect. 4.3
relies on several assumptions. The first implicit one is that the encounter is isolated.
It bounds the impact parameter to, at maximum, half the distance between stars.
We consider then an axisymmetric distribution of stars parametrised by the mass
density ρ?(R, z) where R is the radius from the GC in the galactic plane and z the
height. Henceforth, the previously introduced surface density is given by

Σ?(R) =
∫ +∞

−∞
ρ?(R, z)dz (4.84)

and we introduce the maximal impact parameter at R as

bmax(R) ≡ 1
2Σ?(R)

∫ +∞

−∞
ρ?(R, z)

(
ρ?(R, z)
m?

)−1/3
dz

= m?
1/3

Σ?(R)

∫ +∞

0
ρ

2/3
? (R, z) dz .

(4.85)

In order to be consistent with SL17 we use the stellar mass density model of
MCMILLAN (2017) defined by a double exponential disc and introduced in Eq. (4.33).
With the stellar mass distribution function of CHABRIER (2003) that we call pm?(m?)
in the following we find m? ' 0.17 M�, thus giving bmax(8 kpc) ' 1.1 pc.

Furthermore, the expression of δE also relies on the high-speed encounter assumption
which ensures that the subhalo keeps a straight line trajectory with respect to the
star. This is satisfied only if the kinetic energy T , in the centre of mass frame of the
system {star + subhalo}, is much larger than the potential energy |W | with

T = 1
2

m?mt
m? +mt

v2
r and W = −Gm?

[
m(r?)
r?

+ Θ(rt − r?)
∫ rt

r?

ρ(r)
r

d3r
]
. (4.86)

One can easily check that W is minimal when r? = b. Therefore the condition defines
a minimal impact parameter bmin. As a matter of fact, for an average star of mass



160 4. EFFECT OF BARYONIC TIDES ON THE GALACTIC SUBHALO POPULATION

m? ' 0.17 M� the minimal impact parameter bmin is always much smaller than bmax
unless the relative velocity becomes smaller than 0.1 km s−1. Such small velocities are
very unlikely in the MW since the typical subhalo velocity is of order 100 km s−1. Nev-
ertheless, in order to be sure that the condition is satisfied we impose in our numerical
codes T ≥ 10W – even though this condition gives bmin = 0 kpc in most configurations.
Therefore we may discard some extremely rare encounters making the result conser-
vative in the sense that we do not take into account values of δE that would not be
evaluated with all the assumption satisfied. The total number of encounter is then

N = Σ?

m?

π

cos(θ)
(
b2max − b2min

)
. (4.87)

At 8 kpc, we find N ' 2346× (0.5/ cos(θ)).

Eventually we also need to introduce the distribution of relative velocity. For that
we assume that subhalos follow a Maxwell-Boltzmann distribution with dispersion
σ(R) – which can be evaluated using Jean’s dispersion as shown in App. D.1. In
addition we assume that stars have a circular velocity v?(R). Then we get the relative
speed distribution under the form

fvr(vr) =
√

2
π

vr
σ v?

sinh
(
vr v?
σ2

)
e−(v2

?+v2
r )/(2σ2) (4.88)

with the corresponding average value

vr = σ

√
2
π

{
e−X

2 +
√
π

2 (1 + 2X2) erf(X)
X

}
(4.89)

and with the introduction of X = v?/(
√

2σ). In particular at 8 kpc, vr ' 334 km/s. This
concludes the description of the stellar population. We now move on to the evaluation
of total energy kick received after multiple encounters during one crossing of the disc.

4.4.2 Total energy kick and scatter

We develop here a statistical analysis of the total energy kick and scatter. We
discuss in detail some subtleties of the computation and justify the impulsive approx-
imation. Then we evaluate the profile change of a subhalo when it crosses the disc
and we compare our main results to the literature.

The random walk in velocity space

When crossing the stellar disc a subhalo encounters a number N of subhalos,
every encounter occurring with a different impact parameter. Therefore a particle in-
side receives a sequence of velocity kicks that we denote {δvj}1≤j≤N . We make the
assumption that the subhalo does not have time to relax between the encounters (to
be consistent with the impulse approximation), hence the total velocity kick given
by the sum of all the velocities

∆v =
N∑
i=1

δvi . (4.90)

Then the total kinetic energy per particle mass becomes

∆E = 1
2 (∆v)2 + v ·∆v (4.91)
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Figure 4.6 – In both panels, the solid curves are obtained assuming ∆v constructed out of a
2D isotropic random walk in velocity space and dashed curve are for a 3D isotropic random
walk. Left panel: Probability density function of the centred reduced total energy kick for
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All the encounters are characterised by the statistical distribution of impact parame-
ters and stellar masses. Therefore all vectors δvi and thus ∆v are random variables.
In the following, we first show how it is possible to evaluate a PDF for ∆v. The se-
quence {δvj}1≤j≤N behaves like a random walk in velocity space. In a first approach,
from Eq. (4.55), every δvi is confined in the same plane, perpendicular to the relative
velocity vector êvr and therefore, the random walk must be two-dimensional. Never-
theless, as the stars have their own velocity, the relative velocity vector varies from
one encounter to another if the velocity of the subhalo is not high enough. Thus,
the perpendicular plane is actually not necessarily fixed and the random walk is not
strictly two dimensional. In order to bracket the uncertainty, we parametrise the di-
mension by d that takes the value 2, 3. When N is large enough the random walk
can then be approximated as a Brownian motion by using the Central Limit (CL)
theorem. The PDF for ∆v is then

p∆v(∆v) = 1
(2π)d

√
detC

exp
[
−1

2
(
∆v−∆v

)T
C−1

(
∆v−∆v

)]
(4.92)

with C the covariance matrix which can be written (for an isotropic random walk) as

C = N
d

diag
[
(δv)2

]
, (4.93)

and only depends on the second moment of δv defined by

δv2 =
∫

dm?pm?(m?)
∫ bmax

bmin
db pb(b)(δv)2 (4.94)

with the approximation (δv)2 '
〈
(δv)2〉

∼ defined in Eq. (4.78) and with the impact
parameter distribution pb(b) = (dN/db) /N . Moreover pm?(m?) is the stellar mass PDF.
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In practice, in order to improve the numerical speed, the simplification pm?(m?) =
δD (m? −m?) is considered. Moreover, by isotropy, the average value of ∆v is then nec-
essarily 0. Consequently, the previous general Gaussian distribution takes the form

p∆v(∆v) '
(

d

2πN (δv)2

)d/2
exp

(
− d(∆v)2

2N (δv)2

)
. (4.95)

A straightforward first evaluation for ∆E is obtained by considering the average value
of ∆v using the PDF derived above as

∆E = 1
2(∆v)2 = 1

2N δv
2 . (4.96)

However one may wonder about the impact of the second term in Eq. (4.91). In order
to properly take it into account the solution is to derive the full PDF for ∆E. A general
way to write the probability distribution of energy kick is

p∆E(∆E) =
∫

d3v pv(v)
∫

dd∆v p∆v(∆v)δD

[
∆E − (∆v)2

2 + v ·∆v
]
. (4.97)

We only consider isotropic initial velocity distributions pv(v) = pv(v). Therefore it is
convenient to first perform the integral over the direction of v. A straightforward
notation is to introduce the probability of ∆E knowing ∆v

p∆E(∆E |∆v) =
∫

d3v pv(v) δD

[
∆E − (∆v)2

2 + v ·∆v
]
. (4.98)

In this integral we can parametrise v.∆v = v|∆v| cos θ in the Dirac distribution and
integrate over the angle θ so that

p∆E(∆E |∆v) = 2π
|∆v|

∫ +∞

0
dv vpv(v)Θ

[
v − |(∆v)2 − 2∆E|

2|∆v|

]
(4.99)

In the end the total distribution of ∆E is given as

p∆E(∆E) =
∫

dd∆v p∆E(∆E |∆v)p∆v(∆v)

= 4π1+d/2

Γ(d/2)

∫ ∞
0

d|∆v||∆v|d−2p∆v(∆v)

×
∫ +∞

0
dv vpv(v)Θ

[
v − |(∆v)2 − 2∆E|

2|∆v|

]
,

(4.100)

where we use, in the second integral, the fact that the distribution in velocity kick is
isotropic: p∆v(∆v) = p∆v(|∆v|). For some numerical applications it can be interesting
now to invert the two integrals. It amounts to re-write the total PDF as

p∆E(∆E) =
∫ +∞

0
d3v p∆E(∆E | v)pv(v) (4.101)

with the probability of ∆E knowing v being

p∆E(∆E | v) ≡ πd/2

vΓ(d/2)Θ [v − η(∆E)]
∫ |∆v|+(v,∆E)

|∆v|−(v,∆E)
p∆v(∆v)|∆v|d−2d|∆v| (4.102)
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and with the definition η(x) =
√

max{−2x, 0}. The Heaviside function Θ naturally
appears from the computation and it simply enforces the physical positivity of
the final kinetic energy Ef ≡ ∆E + v2/2. Besides, we introduced the integral
boundaries for |∆v| as

|∆v|−(v,∆E) =
{
−v +

√
v2 + 2∆E if ∆E ≥ 0

+v −
√
v2 + 2∆E if ∆E < 0

|∆v|+(v,∆E) = +v +
√
v2 + 2∆E .

(4.103)

The interest behind this new expression for the probability of ∆E is to isolate the
PDF on the initial velocity v that is, in general, non-analytical and not necessarily
perfectly known. As a matter of fact, we will see in the following that this formula-
tion allows deriving generic and interesting properties regardless of the initial velocity
PDF. Using Eq. (4.95) and Eq. (4.102), the expression of p∆E(∆E | v) can then be
written under the form

p∆E(∆E | v) = Θ [v − η(∆E)]
2vΓ(d/2)

√
d

2N (δv)2
δΓ
[
d− 1

2 ;
d|∆v|2−

2N (δv)2
,
d|∆v|2+

2N (δv)2

]
(4.104)

with the notation of the Gamma function difference being

δΓ [z; a, b] = Γ (z, a)− Γ (z, b) =
∫ b

a
tz−1e−tdt . (4.105)

In practice let us look at d = 2 and a Maxwellian distribution of initial velocity

pv(v) = 1
(2πσ2

sub(r))3/2 e
− v2

2σ2
sub(r) . (4.106)

with dispersion σsub that is evaluated through the Jean’s equation c.f. App. D.1. As
shown in App. D.3.3, the total integration reduces to the simple expression

p∆E(∆E) = 1
2σ2

sub
√

1 + s2
exp

(
∆E

2σ2
sub
− |∆E|

2σ2
sub

√
1 + s2

s

)
(4.107)

with the parameter s2 = N δv2/(8σ2
sub) = ∆E/(4σ2

sub) that is a normalised ratio of the
dispersion of |∆v|2 (or also the average in that case) and the dispersion of the initial
velocity |v|. The associated scatter is larger than the average value and is given by

σ∆E = ∆E
√

1 + 1
2s2 > ∆E . (4.108)

This distribution is plotted in the left panel of Fig. 4.6 in terms of the associated
centred reduced variable. When σsub is large, s is small and the distribution is
symmetric with respect to the average while it shifts toward lower values for small
σsub. This can be understood as the dominant dispersion comes from the uncertainty
on the initial velocity that, because of the Maxwell-Boltzmann distribution, is
symmetric. When s grows, however, the PDF is peaked on negative values, so that
energies lower than the average are more probable. In order to properly take into
account the dispersion in energy kick and the shift in the distribution, one should
evaluate, after each disc crossing, a new density profile for the subhalo by properly
removing the particles with a final velocity greater than the escape velocity – this
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Figure 4.7 – Complementary cumulative distribution function of the energy kick received
after one crossing of the disc due to the encounter with stars ∆E. In blue is shown the
true value (solid) and the approximation using the CL theorem (dashed-dotted) for bmin ∼ 0.
In red are similar curve imposing a lower cut-off on the distribution of impact parameters
bmin → b0(Q = 0.2). The vertical green dashed line is the value of the gravitational potential ψ.
Left panel: In the inner part of the subhalo r/rs = 0.01 Right panel: In the outskirts of the
subhalo r/rs = 2.34.

possibility is discussed in App. D.3. However, this requires extensive numerical
resources to evaluate the impact of one disc crossing on a single subhalo and could
not be applicable in the framework of SL17. Therefore, in the following, we focus on
defining one energy kick value as an estimate of the energy kick felt by all particles in
each given shell.

Let us introduce ∆E(q) the maximal total energy kick that is received by at least
a fraction q of the particles – the full expression is discussed in App. D.3.3 for a
Maxwellian distribution of initial velocity. In particular the median energy gain is
Med(∆E) ≡ ∆E(q = 0.5). One can show that for any value of s,

1
2 <

Med(∆E)
∆E

< ln(2) (4.109)

so mean and median are always close. The ratio ∆E(q)/∆E is plotted in the right
panel of Fig. 4.6 for different values of the parameter s. If s is large enough (s ≤ 0.5),
i.e. if the effect of the encounters is relevant, then ∆E(0.25 < q < 0.75) and ∆E stay
close to each other as ∆E(q)/∆E ∈ [0.1, 2]. The fact that at large values of s the PDF
of the left panel of Fig. 4.6 is no longer symmetric with respect to the average is the
reason why Med(∆E) < ∆E in all configurations. Subsequently, it is both physically
meaningful and convenient to define the energy kick received by all particles in a given
shell as being Med(∆E) and it can be well approximated by ∆E ∼ κ∆E, choosing
κ ∼ 0.7.
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Figure 4.8 – Left panel: Median energy kick received by at least half of the particles in terms
of the radius. Upper panel: In blue is shown the true value (solid) and the approximation using
the CL theorem (long-sort dashed) for bmin ∼ 0. In red are similar curve imposing a lower cut-
off on the distribution of impact parameters bmin → b0(Q = 0.2). The green dashed curve is
the value of the gravitational potential of the subhalo. Lower panel: Value of the parameter s
in the two configurations with (blue) and without (red) the cut-off on the impact parameters.
The magenta dotted curve is the limit s = 0.5. Right panel: Same figure for the energy kick
standard deviation. Note that the dash-dotted and solid red curve are not distinguishable
(one has good convergence of the CL theorem when the impact parameter range is truncated
for the dispersion).

Issues with the Central Limit

So far, all the results are built on the fact that the number of encountered stars
per crossing N is large enough to apply the CL theorem as if it were infinite. As a
matter of fact, according to the position inside the subhalo, this does not necessarily
hold. Indeed, when bmin is close to 0, as the velocity kick (δv)2 ∝ b−4 for the inner-
most particles, it gets tremendously large. In the meantime, because pb(b) ∝ b, in the
majority of the disc crossings, on a total of N ∼ 102 − 105 encounters, none of them
has an impact parameter b � bmax. Therefore, when applied blindly, the CL theorem
overestimates the energy kick felt by the particles in the innermost part of the sub-
halo – here we keep on omitting the protection by adiabatic invariance that will be
discussed later on. More details on the CL theorem and the limit of its application
in a physical context are given in App. A.2.2. In order to illustrate and quantify the
effect let us look at a striking example and focus on a small subhalo where it is more
pronounced. More precisely, consider a typical subhalo before its first crossing of the
stellar disc, with a typical mass mt = 1.6×10−9 M�, scale radius rs = 7.1×10−7 kpc and
tidal radius rt = 2.34192 × rs at a distance R = 8 kpc for the GC. All these values are
consistent with a subhalo that has only been smoothly stripped in the SL17 model.
Its relative velocity with the stars is given by the average value vr(8 kpc) = 334 km s−1

and its inclination is given by cos θ = 0.5 so that it encounters N ∼ 2346 stars. The
goal is to determine the true PDF for ∆E and compare it to Eq. (4.107). However, even
though the number of encounters is not high enough to have proper convergence of
the CL distribution it is still too high to allow for a full analytical computation. In-
deed, that would require evaluating N convolutions of the PDF for δv, which is far
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from being achievable, even numerically and with the use of Fourier transforms. A
Monte-Carlo (MC) algorithm is, therefore, better suited for the task and with a total of
5×105 draws we achieve convergence to the true PDF of ∆E. In Fig. 4.7 is represented
the complementary cumulative distribution function (CCDF) of ∆E

F (> ∆E) ≡
∫ +∞

∆E
p∆E(∆E′)d∆E′ (4.110)

for two radii, one in the inner part of the subhalo r = 10−2× rs and in the outskirts r =
2.34×rs. The blue solid curves show the true distribution from the MC algorithm while
the blue dash-dotted lines are the expectations from the CL theorem. As predicted the
difference between these two curves is less pronounced in the outskirts, however, the
approximated distribution is tremendously shifted toward much higher values of ∆E
in the centre. For the same subhalo, Fig. 4.8, clearly shows that the expectation from
the CL theorem for Med(∆E), in dashed blue, overshoots the gravitational potential
on the entire range of radii, while the true value, in solid blue, only crosses it on the
outskirts. Therefore it seems that using Eq. (4.92) is impossible.

Unfortunately, even though the MC algorithm is efficient to treat the aforemen-
tioned example, it is too greedy in terms of CPU-time to be used for the study of the
full subhalo population. Because only encounters with small impact parameters are
responsible for the convergence issue while they have very small chances to occur, the
solution is to truncate the impact parameter range from below. We detail the method
in the following. For one crossing of the disc, we denote by b0 the minimal impact
parameter. From the PDF of impact parameter, the PDF of b0 is given by

pb0(b0) = 2N
(1− β2)N

b0
b2max

[
1−

(
b0
bmax

)2]N−1

(4.111)

with β ≡ bmin/bmax � 1. We define b0(Q) so that in only a fraction Q of the disc
crossings the subhalo experiences an encounter with impact parameter lower than
b0(Q). It is given by

b0(Q) = bmax
[
1− (1− β2)(1−Q)1/N

]1/2
. (4.112)

Consequently, the best way to recover a pseudo-convergence so that the CL distribution
of Eq. (4.92) approximate as good as possible the real distribution is to replace bmin
by b0(Q). We estimated that setting Q ∼ 0.2 gives correct results. Examples are shown
by the red curves in Fig. 4.7. Convergence is not exact but the new CL result is now
much closer to the true CCDF in solid blue. In Fig. 4.8 we show the evolution of the
median energy kick and its dispersion in terms of the radius inside the substructure.
As the energy kick becomes sizeable when it is of the same order as the gravitational
potential it is when s & 1 that the effect of stars become important. This can be
understood easily as the inequality σ < |Φ| obtained from the expression of σsub given
by Jean’s equation implies directly ∆E ∼ |Φ| ⇒ s > 0.5. While the CL result with the
truncation (in dashed red) provides a good estimation of the true median (solid blue)
in the left panel, the dispersion is not at all well recovered in the right panel: the true
energy kick has a much higher dispersion. That was expected as the non-convergence
issue we are trying to solve here is symptomatic of the large discrepancy between the
median and the average and thus of the large dispersion. The take-home message is
that defining a precise energy kick for the entire population of particles in one shell
of a subhalo is not trivial and the chosen definition needs to be considered with care.
Hereafter we stick to the median as it is a well, physically grounded, prescription.
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Validity of the impulse approximation

While we have already discussed the high-speed encounter limit we have not yet
mentioned the validity of the impulse approximation which amounts to consider that
particles in the subhalo do not have to reorganise during an encounter. The justi-
fication is provided by comparing the orbital time scale of the particles to the time
scale of the encounter tcol ∼ b/vr. At a distance r for the centre of the subhalo the
typical orbital frequency of the particles is ω(r) = σsub/r and the encounter can be
considered impulsive if tcolω(r) � 1 for any value of r. In practice, in an NFW sub-
halo ω(r → 0) → ∞ therefore the approximation cannot hold perfectly. However what
is important is to evaluate at which radius it exactly breaks down. Let us consider
an encounter with b = bmax and vr = vr. Then we find tcolω(10−3rs) < 1 whatever the
mass of the subhalo (with a concentration fixed at the median value). The equality is
reached at 8 kpc if vr ∼ 20 km s−1, which has less than 0.02 % to occur according to
the PDF for vr given in Eq. (4.89). In conclusion, the impulse approximation is valid
for the vast majority of encounters down to radii as small as 10−3rs.

We can compare this configuration to that of the disc shocking effect. In the
latter case, the typical time of encounter is much longer as it corresponds to the total
crossing of the disc tcross ∼ hd/vz with hd ' 0.9 kpc the width of the disc and vz the
velocity in the perpendicular direction. Because hd � bmax the impulse approximation
breaks down for larger radii and has to be taken into account.

4.4.3 The impact on the subhalo profile

In this section, we aim at giving a rough estimation of the impact of the star
encounters on the subhalo profile. Here we go beyond the stripping criterion of SL17
described by Eq. (4.38) – which simply consists of truncating the halo where the
kinetic energy kick is equal to the gravitational potential – in order to justify that
it gives a good first approximation. We start with the assumption that right after
the encounter a subhalo is stripped of its particles with a final velocity greater than
the escape velocity at their original position r. In practice, we should also take into
account the fact that the system relaxes after some time and acquire a new structure,
however, this is beyond the scope of this analysis.

Let us start with the initial phase space distribution function (PSDF) that we de-
note f(v, r). Because we assume isotropy it only depends on the norm of the velocity
and radius such that f(v, r) = f(v, r). Note, however, that a generalisation of the
following equations to a non isotropic system would be straightforward. The PSDF
is normalised such that

ρ(r) =
∫
v<ves(r)

f(v, r)d3v = 4π
∫ ves(r)

0
f(v, r)v2dv , (4.113)

where we introduced ves(r) the escape velocity which is given in terms of the grav-
itational potential as

ves(r) =
√

2|Φ(r)|. (4.114)

The probability distribution of initial velocity that we introduced earlier is then given
by pv(v | r) = 4πv2f(v, r)/ρ(r). Note that here we make explicit the dependence in r.
Our goal is thus to define a final PSDF, after crossing of the disc, f̃(vf , r) in order
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Figure 4.9 – Left panel: Final PSDF (in red) in terms of the velocity at a given radius r inside
a subhalo of mass m200 = 8 × 10−6 M� with median concentration that crosses the disc at 8
kpc from the GC for three different initial PSDF (in blue). The value of r is chosen as 75% of
the tidal radius fixed by the virial radius r200 here. Eddington is given by Eq. (4.121), MB by
Eq. (4.122) and MB truncated by Eq. (4.123). The normalisation was chosen such that the
integral between v = 0 and v = ves of these curve should be 1 to recover the correct value of
the density profile at position r. The only correctly normalised distribution is MB truncated.
The MB simple PSDF is normalised on the range v ∈ [0,∞[ and the Eddington PSDF is not
normalised at all. The later two, therefore, under-predict the value of the density. Right top
panel: The initial profile in cyan and the new profiles computed with the different initial PSDF
for an NFW subhalo crossing the disc at three distances from the GC. Right bottom panel:
The ratio of the new profile over the initial profile. The dash-dotted lines correspond to the
tidal radius evaluated in the SL17 recipe by when choosing a typical kinetic energy kick of
every shell at the median value.

to access the final density profile

ρ̃(r) =
∫
vf<ves(r)

f̃(vf , r)d3vf = 4π
∫ ves(r)

0
f̃(vf , r)v2

fdvf . (4.115)

To this end, because for a fixed initial velocity v the final velocity vf is directly related
to the energy kick, we can deduce, from Eq. (4.104), the PDF of final velocity for
a given initial velocity, as

pvf (vf |v, r) = 1
2Γ(d/2)

vf
v

√
d

2N (δv)2
δΓ
[
d− 1

2 ; (v − vf )2d

2N (δv)2
,
(v + vf )2d

2N (δv)2

]
(4.116)

Therefore the final PSDF can be evaluated as

f̃(vf , r) = 1
4πv2

f

∫
pvf (vf | r)f(v, r)d3v (4.117)

where pvf (vf | r) acts as a kernel function linking the final to the initial PSDF. Inte-
grating over the final velocity, according to Eq. (4.115), it yields the final density,

ρ̃(r) =
∫
f(v, r)

{
Fvf (≤ ves(r) | v, r) ≡

∫
vf<ves(r)

pvf (vf | r)
}

d3v (4.118)
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where Fvf (≤ vf | v, r) is the complementary distribution function (CDF) of the PDF
pvf . In that sense Fvf is the kernel distribution which relates the final to the initial
density. The only thing that we need to evaluate now is the initial PSDF f . To be
consistent with SL17 we assume that the initial profile exhibits a sharp truncation at
the tidal radius. Unfortunately, finding the initial PSDF for such objects is involved
(LACROIX et al. 2018). The main method, for an isotropic system, is to rely on the
Eddington formalism. One introduces the opposite gravitational potential Ψ = |Φ| and
the opposite total energy E = Ψ − v2/2. Then the PSDF is only dependent on E and
the Eddington inversion formula gives

f(E) = 1√
8π

{
1√
E

dρ
dΨ

∣∣∣∣
Ψ=0

+
∫ E

0

dΨ√
E −Ψ

d2ρ

dΨ2

}
(4.119)

with the relation between Ψ and ρ given by Poisson’s equation ∆Ψ = −4πGNρ. When
Ψ = 0 at finite radius the derivative of ρ with respect to Ψ does not vanish and the
first term ∝ 1/

√
E is divergent and non physical. In order to keep things simple in the

following we naïvely remove this term and compute the associated initial profile as

ρ(r) = 4π
√

2
∫ Ψ(r)

0

{
f̂(E) ≡

∫ E
0

dΨ′√
E −Ψ′

d2ρ

dΨ′2

}√
Ψ(r)− EdE . (4.120)

Two major caveats can then be pointed out. Firstly, the reconstructed density is
defined up to a constant that is taken as 0 here. Moreover, modifying the PSDF,
from f to f̂ , modifies the profile and one should then use the proper gravitational
potential given by Poisson’s equation. For simplicity here, the gravitational potential is
evaluated with respect to the original profile. Furthermore, this is slightly discordant
with the fact that the kernel Fvf is evaluated for a strict NFW profile. Regardless of
these issues the PSDF, in terms of velocity, can then be evaluated as

f(v, r) = f̂

(
Ψ(r)− v2

2

)
. (4.121)

Nevertheless, in order to parametrise our uncertainty due to the aforementioned
caveats we introduce two other simple PSDF. First we consider the Maxwell-
Boltzmann distribution Eq. (4.106) and we simply set

f(v, r) = ρ(r)
(2πσ2

sub(r))3/2 exp
(
− v2

2σ2
sub

)
. (4.122)

Even though this distribution is realistic, its main downside is that the velocity of par-
ticles can be initially higher than the escape velocity, especially in the outskirts where
the velocity dispersion given by Jean’s equation tend to the gravitational potential.
Consequently, close to the truncation radius, this PSDF is not correctly normalised
and it under-evaluates the density; Eq. (4.113) is not satisfied. The second option we
investigate is to set a cut-off in the velocity-space and renormalise to obtain

f(v, r) = ρ(r)
K(r)

[
exp

(
− v2

2σ2
sub

)
− exp

(
−v

2
es(r)

2σ2
sub

)]
(4.123)

where we set the normalisation factor K(r) to specifically satisfy Eq. (4.113).
Nevertheless, such a prescription is also not perfect because the velocity dispersion
is no longer σsub (it gives a lower velocity dispersion). All in all, even if the three initial
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PSDF we introduced are all approximate, they allow us to bracket the theoretical
uncertainty on the initial velocity distribution.

In the left panel of Fig. 4.9 we represent the evolution of the PSDF with respect to
the velocity at a fixed position in a typical subhalo after one disc crossing. We observe,
as expected, that the stars naturally shift the distributions to higher values of veloc-
ity. In the right panel, we show the corresponding new profile density in the top part
and the comparison to the initial profile at the bottom for the different initial PSDF
introduced. We plotted the result for a subhalo crossing the disc at three different
distances from the GC. We can remark that even in the most conservative case of the
initial truncated Maxwell-Boltzmann distribution of Eq. (4.123) the density decreases
toward the outskirts. At R =8 kpc and R =4.5 kpc the vertical dash-dotted lines rep-
resent the tidal radius obtains from the SL17 recipe using a typical kinetic energy kick
equal to the median. In both cases, they correspond to positions where the new densi-
ties are already below 50% of the initial one. At R =1 kpc the tidal radius is evaluated
to be 0 as a sizeable part of the central particles are ejected (the blue curves being
below the 50% threshold in the bottom panel). In order to determine the true final
profile one also should integrate the effect of relaxation after the shock. Nevertheless,
this simple analysis is enough to justify the SL17 recipe and the use of the median as
a typical energy kick and to compare it to more realistic effects on the density profile.

4.4.4 Results and comparisons with previous works

In conclusion, the energy kick induced by star encounters on a total disc cross-
ing is defined as ∆E ∼ Med(∆E) = κN δv2/2 with κ ∼ 0.7 and δv2 given by the inte-
gral in Eq. (4.94) truncated from below by imposing the cut-off bmin → b0(Q = 0.2).
The total impact of star encounters during several disc crossings on one subhalo
can be evaluated by replacing the value of ∆E in Eq. (3.118) by the value of the
median discussed above.

Using this method we compared, in the left panel of Fig. 4.10, the evolution, with
time, of the bound mass fraction of a given subhalo with initial radius given by the
virial radius to the simulation results of ANGUS et al. (2007) – hereafter AZ07. As they
considered a subhalo at z ∼ 26 with concentration (cvir = 2)) and virial mass mvir = 10−6

M� in order to use our formalism we roughly rescaled its size to z ∼ 0 by assuming that
the scale radius and scale density remain constant – which should hold approximately
– see the discussion on the mass concentration relation. We found a concentration
c200 = 84.7, a mass m200 = 8×10−6 M� and a tidal radius r200 = 0.42 pc. In the same fig-
ure, we also show the evolution of the bound mass fraction for a subhalo of the same
virial mass but median concentration picked in SÁNCHEZ-CONDE et al. (2014). We
consider that the subhalo enters the galactic disc with an inclination cos θ = 1/2 and
has a relative velocity with the stars vr(8 kpc) = 334 km.s−1. Even if stripping becomes
less and less efficient with time in our work, all three results are still in good agree-
ment. Moreover, while we have derived an analytical estimate for the number of star
encounters per crossing and for the number of crossings, the authors of AZ07 used
a refined model of the Galaxy to evaluate these two quantities with better precision.
In addition, the discrepancies can be further understood as we assume a sharp and
fixed truncation in radius (parametrised by rt) without change of the density profile at
every crossing such as it realistically should be (GOERDT et al. 2007; DELOS 2019a).

In the right panel of Fig. 4.10 we show the time it takes to completely destroy a
subhalo with a mass m200 (and median concentration) trapped and immobile in the
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Figure 4.10 – Left panel: Evolution of the mass fraction (blue) and tidal radius (red) of a
subhalo of initial virial mass 8 × 10−6 M�. This mass corresponds to the rescaled virial mass
today studied in AZ07 (ANGUS et al. 2007) assuming fixed scale density and scale radius. The
initial radius of the structure is fixed to r200 and the energy kick induced by star encounters at
each crossing is fixed by ∆E = κN δv2/2 with κ ∼ 0.7 and δv2 given by the integral in Eq. (4.94).
The concentration c200 = 84.7 correspond to that of AZ07 rescaled to today assuming fixed
scale radius and scale density. The concentration c200 = 56.8 is the median concentration
from SÁNCHEZ-CONDE et al. (2014). Right panel: Evolution with mass of the disruption time
for a subhalo trapped at 8 kpc of the GC in the stellar disc. Two cases are considered: stars
only where the initial radius is the virial radius today (blue) and stars+smooth where the
initial radius is the Jacobi radius. Comparison is made with GG07 (GREEN et al. 2007) and
the two model they consider (green)

Galactic disc at 8 kpc of the GC. For comparison with GREEN et al. (2007) – hereafter
GG07 we also considered both NFW and Plummer density profiles for the subhalo
and we assumed stars flying by with a velocity in the range vr ∼ (270± 3× 25) km.s−1.
We focus on two cases, one where the initial radius of the subhalo is given by its
virial radius at z ∼ 0 and one where the initial radius is set from the smooth stripping.
Comparing the first scenario to GG07 we observe that the orders of magnitude and the
general behaviour of tdis with the mass are similar. Let us point out, nevertheless, that
the comparison is somewhat biased as they considered subhalos at z ∼ 26 similarly to
AZ07 and therefore there can be a mismatch between the definition of mass and virial
radius for the same substructures. Another caveat of the method is that we make the
crude approximation that the profile and the gravitational potential of the subhalo do
not evolve during its entire time in the disc before being completely destroyed, which
may artificially lower the value of tdis. Eventually, we note here that it is quicker to
destroy subhalos with an NFW profile and a virial mass m . 10−4 M� than it is for
a Plummer profile of the same mass.

In this analysis above, we considered resilient subhalos by choosing εt = 10−2 as
disruption parameter. However this choice appears not to have a strong impact as
when the number of encountered stars becomes large (N > 104), there is a sudden
transition between two distinct behaviours of the energy kick with the radius owing
to the dependence of bmin in N : from ∆E ∝ (r/rs)2, as plotted in Fig. 4.8, to ∆E ∝
cst. larger than the gravitational potential. Therefore subhalos experience a rapid
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transition with N between having a new tidal radius rt close to the initial boundaries
and complete dispersal of all their particles (even in the inner shells).

4.5 Effect on the total population of subhalo

In this section, we incorporate the effect of stars into the SL17 model in addi-
tion to smooth stripping and disc shocking. Firstly, we describe how we compute
the combined effect of individual encounters and disc shocking. Then, in a sec-
ond step, we show our results for the impact on the subhalo mass function and
the total number density.

4.5.1 Combination of the different stripping effects

Let us now discuss the inclusion of the gravitational shocking by individual stars
into that framework. In the impulsive approximation limit, the total energy kick is
the combination ∆v + ∆vd for which a PDF could be formally derived. Because of
adiabatic corrections for the disc shocking however this is not possible. Nevertheless
one can always write the total energy gain as

∆Etot = 1
2(∆v + ∆vd)2 + v · (∆v + ∆vd)

= ∆E + ∆Ed + ∆v ·∆vd .
(4.124)

In order to circumvent our ignorance of the true distribution for ∆vd with adiabatic
corrections, we make the assumption that ∆v.∆vd ∼ 0 that is exact in the case of a
subhalo with a normal incidence on the disc (in the 2D random walk configuration,
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∆v is parallel to the disk and ∆vd is perpendicular to it). Therefore one approxi-
mate the total energy kick as being

∆Etot '
1
2
[
0.7N δv2 + |∆vd|2A1(ηd)

]
(4.125)

More details on the total distribution of ∆Etot are given in App. D.4 and support
this definition. Moreover, for efficiency, (δv)2 is evaluated assuming a typical subhalo
entering the galactic disc with an average inclination cos θ = 1/2 and an average
relative velocity with the stars vr(R) given in Eq. (4.89). In the following, we recompute
the tidal radius of subhalos by replacing the value of the kinetic energy kick in
Eq. (3.118), which only took into account the smooth and disk shocking effect, by
the above definition. We show how tidal stripping is impacted by single encounters
with stars.

4.5.2 Results

We consider four different configurations for the evaluation of the tidal effects.
(i) smooth only: the tidal radius is entirely defined by Eq. (4.31). (ii) smooth+stars: on
top of the smooth effect only the individual encounters with stars are included. (iii)
smooth+disc: on top of the smooth effect only the disc shocking effect is included. (iv)
smooth+stars+disc: all effects are taken into account. In Fig. 4.11 we show the evolution
of the final tidal mass in terms of the original cosmological mass for the different
stripping configurations and for three concentrations at a distance R = 8 kpc from
the GC. The dominant effect of baryons on small subhalos with initial mass m200 . 1
M� are the individual encounters. On the contrary, for larger subhalos, baryonic
stripping is mostly due to the disc shocking.

The total mass function for the different stripping cases and for different input
parameters of the subhalo model are plotted in Fig. 4.12 for a minimal cosmological
mass mmin

200 = 10−10 M�. While baryonic effects are mild and even negligible in the
outer region of the disc, e.g. at a distance R = 15 kpc, they have more and more
impact close to the GC. At R = 1 kpc the mass functions are strongly suppressed and
offset toward small masses, especially because of stellar encounters. Indeed, in the
resilient subhalo scenario (with a disruption parameter εr = 10−2), they reduce by 6
orders of magnitude the mass function for 10−10 < mt . 10−6 M� (in comparison to the
smooth only case) and populate the mass range much below the minimal cosmological
mass. The disc shocking effects only induce an equivalent reduction of 4 orders of
magnitude. In the fragile case (εr = 1) disc shocking effects disrupt all subhalos and
so do stellar encounters at low masses. At R = 8 kpc one notice a similar effect
with almost 2 (resp. 4) orders of magnitude suppression due to stellar encounters
and a 1 (resp. 2) order(s) of magnitude suppression due to disk shocking at low
masses for resilient subhalos (resp. fragile). The causes for the strength of stellar
encounters in the centre are two-fold: close to the GC subhalos cross the disc more
often and the stellar density is higher, reducing the interstellar distances and the
impact parameters, therefore, enhancing the kinetic energy kicks.

In Fig. 4.13 we show the number density of subhalo at every position from the GC.
As seen above, stellar encounters strongly impact the low mass range that is also the
most populated therefore the effects can be important. We recover the conclusions
that further than 12 kpc from the GC the baryonic effects are negligible. At 8 kpc
effects are already sizeable. Although the number density for a population of resilient



174 4. EFFECT OF BARYONIC TIDES ON THE GALACTIC SUBHALO POPULATION

10−5

10−3

10−1

101

103

105

107

m
2 t
×

d
n
/d
m

t
[M
�

k
p

c−
3
]

α = 1.9 α = 2.0

101

102

103

104

105

m
2 t
×

d
n
/d
m

t
[M
�

k
p

c−
3
]

10−14 10−11 10−8 10−5 10−2 101 104 107 1010

mt = m(rt) [M�]

102

103

104

105

m
2 t
×

d
n
/d
m

t
[M
�

k
p

c−
3
]

Unevolved mass functionUnevolved mass function

10−11 10−8 10−5 10−2 101 104 107 1010

mt = m(rt) [M�]

εt = 10−2

εt = 1

sm. only

sm. + stars

sm. + disk

sm. + stars + disk

sm. only

sm. + stars

sm. + disk

sm. + stars + disk

R
=

1
k
p

c
R

=
8

k
p

c
R

=
15

k
p

c

Figure 4.12 – Mass functions taking into account four different stripping configurations, at
different distances from the GC, R= 1, 8, 15 kpc and for two different values of the mass
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subhalos configuration. The green curve is the unevolved mass function where rt = r200.
Notice that at R = 1 kpc there are no solid and dashed blue curves as disk shocking effects
destroy all the population of subhalos if they are fragile.

subhalos would still be non-impacted, fragile subhalos would have a population re-
duced by one order of magnitude in comparison to the scenario with disc shocking
and smooth stripping only (as seen with the dashed and solid curves). The difference
grows toward the GC and at R = 1 kpc fragile subhalos are all destroyed and resilient
subhalos have a population divided by 100 because of star encounters.
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Figure 4.13 – Number density of subhalos taking into account four different stripping con-
figurations, at different distances from the GC, R= 1, 8, 15 kpc and for two different values of
the mass index α = 2.0 on the left and α = 1.9 on the right. The minimal cosmological mass
is set to mmin

200 = 10−10 M�. The red (resp. blue) corresponds to the resilient (resp. fragile)
subhalos configuration. The green curve is the cosmological number density without tidal
effects. Notice that at R = 1 kpc there is no blue circle marker as disk shocking effect destroy
all the population of subhalo if they are fragile.

4.6 Conclusion and further developments

4.6.1 Discussion on stellar encounters

In conclusion, we have refined the theoretical analysis of dynamical effects
induced on particles of one subhalo during the encounter with a star. In particular,
we have derived a new solution for the estimated velocity kick received by particles
in every shell of the subhalo. Conveniently this solution is chosen to remove the
divergences produced by the potential of the point-like star, therefore it also may
underestimate the impact of very penetrative encounters. In the following, we have
studied the properties of the stellar encounters for a subhalo crossing the stellar disc
(neglecting the effect of the central bulge) and computed the impact of successive
encounters. In order to use the SL17 recipe for the evaluation of tidal effects on
the total subhalo population, we have given specific attention to the definition of a
typical kinetic energy kick received by particles in every shell of the subhalo. To this
end we have performed Monte-Carlo simulations in a given specific configuration
that we have compared to analytical estimates: they show that a careful treatment
of the impact parameter distribution is necessary in order to not overestimate the
kinetic energy. Then, choosing the typical energy kick as the median energy kick
in every shell is interesting as it is easy to evaluate and because it is physically
motivated. However, the MC simulation also evidenced that the dispersion around
the median can be important and therefore this choice remains an approximation
and there is no perfect solution. Besides, the model exhibits another caveat as it
considers that subhalos conserve an isotropic distribution with their original density
profile and with a sharp truncation at their tidal radius. This has been shown to
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not be the case, in part because after a shock subhalos enter a relaxation phase.
We cannot take it into account in our analytical model and simulations indicate
that subhalos possibly adopt a universal profile different from NFW (HAYASHI et al.
2003; DELOS 2019a). Nevertheless, a quick comparison with previous studies based
on numerical simulation seems to still be in good agreement. Consequently, for
the aim of this study, we can be confident in the global effect of stars on the total
population: namely, stellar encounters have a sizeable effect in the inner 10 kpc on
subhalos with mass . 1 M�. However the precise impact can vary from one subhalo
to another (depending on their orbit, their velocity, . . . ) and the global theoretical
uncertainty should be evaluated in more details – with dedicated simulations for
instance. Eventually, let us mention that the validity of the disruption criterion
can be questioned (ERRANI et al. 2020a,b) and one could imagine the possibility of
creating undisrupted small bound remnants through tidal stripping.

From an observational point of view, the star encounters, because they tend to
reduce the number density of subhalos and change the mass function, can have
consequences for the local DM searches. Many of the possible impacts have already
been mentioned in the conclusion of Chapter 2 – e.g. the probability that a subhalo
passes through the Earth and produces a sizeable effect on the direct detection
constraints. The modification of the mass density profile could also play a role. Note
that the effect of stars should not, however, drastically impact the boost factor in
most of the directions in the sky, as it only concerns a rather limited region around
the GC where the smooth component dominates. In the next chapter, in particular,
because we assume resilient subhalos, the star encounter effects can be neglected
for simplicity. Especially since the research of point-like subhalos mostly involves
large structures that are too massive (m > 103 M�) to be impacted by the stellar
encounters, as it will be shown.

4.6.2 Prospects for further developments

Direct follow-ups of this study could concern the capture of subhalos by stars or
the heating of the disc due to subhalos and the comparison to numerical simulation.
Indeed here we only treated the effect of stars on subhalo, conversely, the effect of
subhalos on stars may give rise to interesting signatures. Moreover, the disruption
of halos by stellar encounters may create dark streams that could also be studied
(ZHAO et al. 2005; SCHNEIDER et al. 2010). In addition, because this works relies on
several assumptions and hand-selected criteria, it would be of interest to compare
this analysis to a more refined analytical description of the star encounters on a
specific subhalo and against dedicated numerical simulations.

Other upgrades of the SL17 model would consist in introducing a more realistic
history of the subhalos as mentioned in the conclusion of Chapter 5. We have al-
ready started to go in that direction with the determination of the USMF thanks to
Merger Tree algorithms. In more details, we could now also take into account the
fact that their mass evolves with time through accretion before they are themselves
accreted in addition to the non-trivial evolution of their scale radius and scale density
(parametrised by the evolution of the mass-concentration relation with the redshift).
Besides, the non-circularity of subhalo orbits could also be considered. Let us briefly
mention that we have also already paved the way to the latter by computing, with the
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Figure 4.14 – Probability distribution of eccentricity at given position r from the centre of an
infinitely large NFW halo. The black curves are iso-contours. The bottom panel shows an
evaluation of the numerical error.

Eddington formalism, the probability for a particle at a distance r from the centre of
a spherical self-gravitating structure with profile ρ to have a given eccentricity e (or
given perihelion and aphelion). Indeed it can be given as

p(e | r) ≡ 1
ρ(r)

∫
f(E)δD [he(E , L)− e] d3v (4.126)

where E = Ψ(r)− v2/2 with Ψ(r) the gravitational potential and L = |r× v| the angular
momentum. The function he(E , L) is the value of the eccentricity fixed by the energy
and the angular momentum: the perihelion and aphelion, rmin(E , L) and rmax(E , L),
are implicitly given as solutions of

1
r2 + 2

L
[E −Ψ(r)] = 0 and he(E , L) ≡ rmax(E , L)− rmin(E , L)

rmax(E , L) + rmin(E , L) (4.127)

In Fig. 4.14 the PDF is represented for an infinite NFW profile – thus avoiding the
finite size issues of the Eddington formalism discussed in Sect. 4.4. Because of the
implicit definition of he, the numerical evaluation is complex, therefore the bottom
panel shows the numerical error by checking that the normalisation is correct with

ε ≡
∣∣∣∣∫ 1

0
pe(e | r)de− 1

∣∣∣∣ . (4.128)

Considering, instead of a particle, a subhalo in the MW density profile1, this would
represent the probability distribution for a subhalo at a given position from the GC
to have a given eccentricity. From this figure we remark that the distribution is
peaked above 0.5, thus the circular orbit approximation (e = 1) should already give
good results. Let us emphasize that this study is only preliminary and that it needs
more work to be properly included in the SL17 model. Nonetheless, this is one step
towards a possible future improvement.

1Note that the gravitational effect of baryons should be also included and that it could be done by
spherisizing their distribution as shown in App. D.1.
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In recent years, the Fermi-LAT collaboration has produced catalogues of gamma-
ray point sources (ABDO et al. 2010; NOLAN et al. 2012; ACERO et al. 2015; FERMI-LAT
COLLABORATION 2019), amongst which some of them are classified as unidentified.
That is to say, they cannot be hitherto associated with a known astrophysical object.
In the fourth and last catalogue, 1525 point sources are reported as such. Assuming
that DM can self annihilate, this is of particular interest as it raises the question,
whether or not, some of these point sources can be DM subhalos that should pop-
ulate the MW. In this study we make use of the SL17 model detailed in Sect. 4.2 to
answer the question. Similar studies have been done in the literature. One class of
analysis is based on the MW-like object produced in cosmological numerical simula-
tions; they evaluate the detectability of the DM subhalos within these mock Galaxies
– although their DM and baryonic distribution can still significantly depart from the
real MW – (PIERI et al. 2011; CALORE et al. 2017). The second class of methods
is to search for unidentified point sources in the data, looking for specific features
that would point toward annihilating DM – such as spectral properties – (BELIKOV

et al. 2012; BERTONI et al. 2015; MIRABAL et al. 2016; SCHOONENBERG et al. 2016;
HOOPER et al. 2017; CORONADO-BLAZQUEZ et al. 2019; CORONADO-BLÁZQUEZ et al.
2019; GLAWION et al. 2019). Eventually, the last class of methods is based on a
statistical description of the DM subhalo population such as we will present. We
can mention the Clumpy code (CHARBONNIER et al. 2012; HÜTTEN et al. 2016) which
goal was to make comparison with the cosmological simulations (KELLEY et al. 2019).
However, these analyses did not evaluate the detectability of the individual objects
over a consistent and realistic foreground. This was further investigated in CALORE

et al. (2019a), also based on the SL17 model.

Here we go further by proposing a fully consistent and analytic model for the in-
tricate gamma-ray analysis. Indeed, our DM distribution is based on SL17, which is
itself built using the realistic baryonic distribution model of MCMILLAN (2017). Eval-
uating the baryonic diffuse emission of gamma-ray (that we call GDE or sometimes
DGE, for galactic diffuse emission, in the following) with the same model we implicitly
take into account its spatial correlations with the subhalo distribution. Note that here,
however, we do not incorporate the contribution of the stellar encounters discussed
in the previous chapter; we will show that it is a valid approximation. The diffuse DM
sourced gamma-ray emission is also important. Because past and current observa-
tions have not resulted in an unambiguous detection, this diffuse emission is used
to set constraints on the annihilation cross-section, requiring that the DM diffuse
signal be lower than the baryonic background/foreground fluctuations. For future
instruments, the hope to detect it and consequently discover DM is still alive (CIRELLI

et al. 2010; FERMI-LAT COLLABORATION 2010; S. BLANCHET et al. 2012; BRINGMANN

et al. 2012; FERMI-LAT COLLABORATION 2012a; ESSIG et al. 2013; CIRELLI et al. 2015;
FORNASA et al. 2015; LEFRANC et al. 2015; SILVERWOOD et al. 2015; CHANG et al.
2018). Let us point out that an additional level of intricacy is given by the fact that the
diffuse DM contribution is also impacted by the unresolved subhalo population that
boosts the annihilation strength (ANDO et al. 2019). In conclusion, specific attention
has to be paid to the sensitivity levels both to the point-sources and to the DM diffuse
emission to assess if the detection of point-sources has a non-negligible probability
to happen before the detection of the latter. We actually show that this consistent
treatment tends to yield rather pessimistic results for the detection of point-like sub-
halos. Nevertheless, in hypothetical situations where some subhalos are detectable,
we evaluate the position of the most visible ones and their internal properties.
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The entire chapter is based on the work published in FACCHINETTI et al. (2020)
and develops as follows. In Sect. 5.1 we derive the emissivity properties of DM and in
particular we introduce the notion of J-factor. In Sect. 5.2 we describe the statistics
of this quantity in the MW. In Sect. 5.3 we detail the background baryonic models and
we establish the sensitivity of Fermi-LAT-like and CTA-like instruments. Let us point
out already that our main goal is here to give a proof of principle of the method and
obtain the right orders of magnitudes without being necessarily accurate. Therefore,
in this chapter, we introduce a simplified realistic (yet not necessarily accurate) model
for the background that is, in part fitted on data but with angular distributions in the
sky that are based on a constrained baryonic distribution in the MW (the same distri-
bution used to implement the tidal effects). This way we account for the correlation
between tidal effects and background model. We do not consider a full data anal-
ysis mainly because DM can be hidden in the data and disentangling background
from signal is beyond the scope of this analysis. Finally we conclude, in Sect. 5.4,
on the detectability of DM subhalos as point sources. In this chapter, for notational
simplifications, we write m = m200 and c = c200. Here we refer to both background
and foreground contributions as background. We consider two density profiles for the
total Galactic halo, an NFW profile and a Cored profile given respectively according
to Eq. (4.2) by (α = 1, β = 3, γ = 1) and (α = 1, β = 3, γ = 0) and with the parameter
fits of MCMILLAN (2017). The subhalos profile is always NFW. The parameters of the
SL17 model are mostly chosen to be α = 1.9, mmin = 10−10 M� and εt = 10−2 so that
subhalos are resilient in order to maximise their detectability. Nevertheless, in the
first sections we also consider a few other configurations for comparisons.

5.1 Gamma-rays from subhalos

This section is focused on the introduction of subhalo luminosity, gamma-fluxes
and J-factors that are of great importance in the following. In the first paragraph,
we also introduce some geometrical notations that are necessary to introduce all
the other quantities.

5.1.1 Geometry and integrals in the Galaxy

As the Solar System is within the MW at a distance R� = 8.2 kpc for the GC we
introduce a convenient coordinate system represented in Fig. 5.1. In order to describe
the position of any point M a convenient choice is to use the distance-longitude-
latitude triplet (also called Galactic coordinates) s = (s, l, b). This coordinate system
is related Cartesian orthonormal frame attached to the solar system (êx, êy, êz), where
êy points to the GC and êx is also within the Galactic plane. The precise relation
is given by the vectorial equality

s = s (cos b sin l êx + cos b cos l êy + sin b êx) . (5.1)

The GC is therefore located at R� = R�êy. The vector between the GC and a point
at position s in the Galactic coordinates is R = s − R�. Thus, the distance squared
can be written in terms of s and R� as follows

R2(s, l, b) = (s−R�)2 = s2 +R2
� − 2sR� {cosψ = cos b cos l} (5.2)

where we have introduced the angle ψ = (̂s, êy). As a matter of fact, because the SL17
model is spherically symmetric, the spatial dependence of the DM sourced gamma
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rays is fully specified by ψ. In addition, for any line of sight parametrised by the unit
vector n̂ = (l0, b0), there is another convenient coordinate system represented by s =
(s, θ, ϕ) where θ = (̂s, n̂) is called the polar angle and ϕ is the azimuthal angle. The vol-
ume element, in that coordinate system, takes the form d3s = s2dΩds = s2 sin θdθdϕds.
Moreover, the expression of the radius to the GC R can also be re-written

R2(s, θ, ϕ) = s2 +R2
� − 2sR� (cosψ cos θ − sinψ cos θ sinϕ) (5.3)

Nevertheless, while for numerical applications it is important to choose the proper
system, it can also be extremely convenient to introduce definitions that are inde-
pendent on the coordinate choice. In the following, pointing directions in the sky
are defined by 3-dimensional unitary vectors in S2 the 2-sphere. For instance, any
position vector is decomposed as its norm and direction as s = sn̂. Consequently,
instead of writing R(s, l, b) or R(s, θ, ϕ) we denote R(s, n̂). Subsequently, the solid an-
gle element in direction q̂ ∈ S2 is called d2Ωq̂. When a choice of coordinate is made
and q̂ is parametrised by the angles (θ, ϕ) or (l, b) the solid angle element becomes
d2Ωq = sin θdθdϕ = cos bdbdl such that d3(sq̂) = s2dsd2Ωq. For a given sky patch, P ⊂ S2

and a function g(s,q) defined on R× P what is commonly called the integral over the
solid angles corresponding to P is∫

q∈P
g(s,q)d2Ωq . (5.4)

When g = 1 then the integral gives δΩ(P), the solid angle covered by the patch P. One
specific class of patches of interest are the cones. For a given direction n̂ and an angle
α ∈ [0, π] we call cone centred in n̂ and of angular aperture α, the set

C(n̂, α) = {q̂ ∈ S2 |α > |( ̂̂q, n̂)|} (5.5)

with solid angle δΩ(C(n̂, α)) = 2π(1− cosα). Because it is often interesting to integrate
over small regions, if the angle α is smaller than the typical angular variations of g
then the following approximation holds,∫

q∈C(n̂,α)
g(s, q̂)d2Ωq̂ ' δΩ(C(n̂, α))g(s, n̂) . (5.6)

5.1.2 General definition of the differential flux

We can now write the gamma-ray flux induced by DM annihilation along the line
of sight n̂ = s/s (equivalently along ψ, (θ, ϕ) or all corresponding coordinates pairs (l, b)
in Galactic coordinates if a coordinate system is chosen):

dφγ,χ(E, n̂)
dEdΩ = 1

4π

∫ sm(n̂)

0
ds
∫

d3v1
fχ [R(s, n̂),v1]

mχ∫
d3v2

fχ [R(s, n̂),v2]
mχ

∑
f

dNf
γ (E)
dE

vrel(v1,v2)σf [vrel(v1,v2)]
2δχ

(5.7)

where sm(n̂) ' R200 + R� cosψ is the distance to the virial border of the halo in the
direction n̂ and R(s, n̂) = sn̂ − R�. The function (R,v) 7→ f(R,v) is the Galactic
PSDF normalised such that ∫

fχ(R,v) d3v = ρχ(R) . (5.8)
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Figure 5.1 – Representation of the Galactic coordinate system and of the Cartesian coordinate
attached to the solar system

where ρχ denotes any DM mass density profile under consideration. The different
properties of the DM particles are encoded in the mass mχ, the annihilation cross-
section σf in SM particles ff̄ and the associated differential photon flux dNf

γ /dE –
which we tabulate from CIRELLI et al. (2011). The parameter δχ is 1 (2) for scalar
DM or Majorana (Dirac) fermionic DM and vrel(v1,v2) = |v2 − v1| because velocities
are non relativistic. The total annihilation cross-section σ is then decomposed ac-
cording to the branching ratios

Bf = Br
(
χχ↔ ff̄

)
= σf

σ
(5.9)

In addition, we define the average annihilation cross-section as

〈σv〉 (R) ≡
∫

d3v1
fχ (R,v1)
ρχ (R)

∫
d3v2

fχ (R,v2)
ρχ (R) vrelσ(vrel) . (5.10)

For a s-wave annihilation cross-section σ(vrel)vrel = cst. and therefore, the average
value does not depend on the position along the line of sight s. For other velocity
dependences a common parametrisation is to define a function S so that σ(vrel)vrel =
(σv)0S(vrel/2) where (σv)0 is a normalisation constant. In the s-wave case the natural
convention is to set S = 1 such that 〈σv〉 = (σv)0. An example of non trivial S factor
is obtained, for instance, with Sommerfeld enhancement (ARKANI-HAMED et al. 2009;
IENGO 2009; CASSEL 2010; FENG et al. 2010; BODDY et al. 2017), such as discussed
in the addendum Sect. 5.6. With these definitions we introduce the spectral function

Sχ ≡
(σv)0
2δχm2

χ

∑
f

dNf
γ (E)
dE Bf (5.11)

that carries almost all the WIMP-model-dependent information. In the end, the total
differential flux is then given by

dφγ,χ(E, n̂)
dEdΩ =Sχ4π

∫ sm(n̂)

0
ds ρ2

χ [R(s, n̂)] 〈S(v)〉 [R(s, n̂)]

with 〈S(v)〉 (R) =
∫

d3v1
fχ (R,v1)
ρχ (R)

∫
d3v2

fχ (R,v2)
ρχ (R) S

(
vrel
2

)
.

(5.12)
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In the following, only on the case of an s-wave annihilation cross-section is con-
sidered. However would we need to incorporate velocity effects, this could be added
straightforwardly by replacing ρ2

χ → ρ2
χ 〈S(v)〉. Furthermore the DM particle is as-

sumed to be a Majorana fermion and for simplification, only two annihilations chan-
nels for bottom quarks f = b and tau leptons f = τ− are investigated, assuming that
DM only annihilates entirely in one or in the other, (Bb = 0, Bτ = 1) or (Bb = 1, Bτ = 0).

5.1.3 The J-factor: several definitions

For every direction q̂ in the sky we introduce the quantity

j(q̂) ≡ 1
4π

∫ sm(q̂)

0
ds ρ2

χ [R(sq̂)] such that
dφγ,χ(E,q)

dEdΩ = Sχj(q̂) . (5.13)

Consider now a sky patch P. A first version of the usual J-factor (BERGSTROM et
al. 1998) is given by

J(P) ≡
∫

q̂∈P
j(q̂)d2Ωq̂ with

dφγ,χ(E,P)
dE = SχJ(P) (5.14)

the integrated flux on P. Note that this J-factor has no dimension of steradians (in
comparison to other definitions found in the literature) and consequently may slightly
differ from other conventions. Now the average flux in P is given by〈dφγ,χ(E,P)

dEdΩ

〉
P

= Sχ
{
J (P) ≡ J(P)

δΩ(P)

}
. (5.15)

If we had at our disposal an instrument that was equally efficient for every line-of-
sight contained in this patch, this quantity would be the true collected flux. However
real instruments are more complex and it is necessary to be more precise and make
explicit the energy-dependence of the angular resolution and effective collection area.
To this end, we introduce new versions of the average J-factor, closer to what matters
from an experimental point of view. Consider that θr(E) is the resolution angle of the
instrument. If P = C(n̂, θr) is the cone centred on n̂ and angular size the resolution
angle, also called the resolution solid angle, we introduce shorthand notations

Jn̂(θr) ≡ J(P = C(n̂, θr)) and Jn̂(θr) ≡ J (P = C(n̂, θr)) (5.16)

and we further define

Jn̂(∆E) ≡ 1
ASχ(∆E)

1
∆E

∫
∆E

dEA(E)Sχ(E)Jn̂ [θr(E)]

Jn̂(∆E) ≡ 1
ASχ(∆E)

1
∆E

∫
∆E

dEA(E)Sχ(E)Jn̂ [θr(E)] .
(5.17)

When ∆E is in the argument of a function the notation ∆E ≡ (Emin, Emax) is used,
i.e. it refers to the dependence in both Emin and Emax. When in integral boundaries
it refers to the segment ∆E ≡ [Emin, Emax]. Otherwise ∆E = Emax − Emin. Besides,
in the denominator we introduced

ASχ(∆E) ≡ 1
∆E

∫
∆E

dEA(E)Sχ(E)

= 〈σv〉2m2
χ

NγA(mχ,∆E) ≡
∑
f

Bf
1

∆E

∫
∆E

dEA(E)
dNf

γ

dE

 .
(5.18)
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The quantity A is an effective experimental collection area. As a matter of fact A
should depend both on the energy (as explicitly written) and on the pointing direction.
However, in order to keep the analysis simple, we assume a flat maximal angular ac-
ceptance within each resolution solid angles. In addition Nγ is the number of photons
per annihilation in the energy range [Emin, Emax]. These experiment-averaged defini-
tions allow us to formulate the observational sensitivity more accurately. When the
resolution angle is broadly independent of the energy in [Emin, Emax], then the defi-
nitions have been set such that J ' J and J ' J . Furthermore, if Jn̂ is roughly
independent of θr then Jn̂ ' Jn̂ whatever the dependence in energy of θr . This as-
sumption, which relies on Eq. (5.6), is particularly reasonable away from the GC
where the angular variations of ρ2

χ are less important.

5.1.4 Subhalo luminosity

After this general introduction of the J-factors this section is focused on the
subhalos and define their intrinsic luminosity. This quantity tells the capacity of
their inner region (below a given radius r) to produce gamma rays regardless of
the particle physics properties. It is defined as a function of r,m, c and of the sub-
halo density profile by

`(r,m, c) ≡
∫ r

0
ρ2(r′) d3r′ = 3

{
`∞(m, c) = 4π

3 r3
s ρ

2
s

}∫ r/rs

0
x′2g2(x′)dx′ . (5.19)

Recall that g is the dimensionless mass density profile. Here `∞ is the value
of the intrinsic luminosity such that for an NFW profile `∞ = limr→∞ `(r).
More precisely for this particular profile, the intrinsic luminosity function is
analytical and takes the form

`(r,m, c) = 1
3

[
1− 1

(1 + r/rs)3

]
, (5.20)

which yields `(2rs,m, c) = 0.963`∞(m, c) ' `∞(m, c). Next we also introduce the tidal
luminosity of a subhalo, given by the luminosity emitted by the entire structure

`t(R,m, c) ≡ ` (r`(R,m, c),m, c) . (5.21)

where, because the volume inside 2rs produces 96% of the total luminosity, we de-
fined the luminosity radius r` as

r`(R,m, c) ≡ min [rt(R,m, c), 2 rs(m, c)] (5.22)

In other words, this definition introduces the effective size of the subhalo.
Subsequently, we introduce the notion of point-like structure base on this ef-
fective size and we show how the intrinsic luminosity can then be related to
the definition of the J-factor.

5.2 Statistical description of J-factors

This section is devoted to transpose the statistical description of subhalo in term
of their mass, concentration and position into the statistical distribution of the J-
factors as it is the key astrophysical quantity related to the DM distribution in the
context of gamma-ray searches.
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5.2.1 Point-like subhalos and their properties

First, the notion of point-like subhalo is introduced. This is a purely geometrical
construction that does not depend on whether the subhalo is resolved or unresolved.
It only depends on the resolution angle θr and on the subhalo size. Then we evaluate
the number of point-like clumps in the MW and compute their J-factor.

Definition of a point-like subhalo

For a given resolution angle θr a subhalo of scale radius rs is assumed to be point-
like if its luminosity radius r` introduced in Eq. (5.22) is contained in the correspond-
ing resolution solid angle – see e.g. BUCKLEY et al. (2010) and CHARBONNIER et al.
(2012). In mathematical term it amounts to ask

min(rt, 2rs)
s

≤ sin θr . (5.23)

More importantly, for the description within the SL17 model, rs can be related to (m, c)
– c.f. Eq. (4.13) – in order to transform the expression into a bound on the mass

m ≤ mmax
pt (s, c, θr) ≡

4π
3 (200ρc)

{
cs sin θr

min [xt(R(s), c), 2]

}3
. (5.24)

We recall that xt = rt/rs. Here we introduced the maximal mass mmax
pt for a subhalo to

be point-like. It only depends on s, c and θr. Note that this inequality relies on the fact
that xt is independent of the cosmological mass – c.f. Eq. (4.32) – (had we consider the
impact of stellar encounter this would no longer be the case and make the analysis
considerably more complex). Therefore the less massive, the more concentrated and
the farther a subhalo is, the more chances it has to be point-like. The bound can
also be rewritten in terms of virial radius

r200(m) ≤ cs sin θr
min(xt, 2) '

csθr
2 ⇔ rs(m, c) .

sθr
2 . (5.25)

For resolution angles satisfying sin θr ∼ θr . 1, the scale radius of a point-like subhalo
has to be much smaller than its distance to the observer.

Statistics from SL17 and number of point-like subhalos

Let us now incorporate the contribution of the SL17 model and built averages and
probabilities for all the quantities related to subhalo emission of gamma rays. In
SL17 a subhalo is characterised by three quantities its virial mass mi, concentration
ci and distance to the GC Ri. Here however it is more convenient to characterise the
subhalo position not by its distance to the GC but by its distance to the observer
si and its direction n̂i (which can be written in terms of two angles depending on
the chosen coordinate system). Henceforth the position-dependence is now written
in terms of si = sin̂i – making use of the relation R(si, n̂i) in Eq. (5.2). We introduce
both ξi = (si,mi, ci) and ζi = (n̂i, ξi) two 3 and 5-dimensional vectors encoding all the
information of the subhalo. Consider a quantity Q that is a function of all subhalo
parameters Q : {ζi}i 7→ Q({ζi}i), we call the average value of Q the quantity

〈Q〉 ≡
∫
ZNsub

Q({ζi}i)
Nsub∏
i=1

[
pt (ζi) d5ζi

]
(5.26)
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where pt is the one-point PDF for the subhalo distribution given in Eq. (4.23). More-
over, the volume element of the parameter space is

d5ζ = d3sdmdc = d2Ωn̂d3ξ with d3ξ = s2dsdmdc (5.27)

and the total integration space Z is the set of all possible values for the 5-dimensional
vector ζ. In practice we can start by introducing all the possible values of ξ, in a
fixed direction n̂, as the set of all the allowed values for the mass, the concentration
and the distance to the observer s,

Ξ(n̂) ≡ {(s,m, c) | s < sm(n̂), 1 ≤ c, mmin ≤ m ≤ mmax} . (5.28)

For a given sky patch we then introduce the total parameter space for ζ, as

Z(P) ≡
⋃

q̂∈P
{q̂} × Ξ(q̂) =

{
(q̂, ξ) ∈ R5 | q̂ ∈ P, ξ ∈ Ξ(q̂)

}
. (5.29)

Two specific kind of sky patches are used: P = S2 and P = C(n̂, α), that are the full sky
and the cone centred in n̂ and of angular aperture α. In particular the total integra-
tion space introduced in Eq. (5.26) is Z = Z(S2). When dealing with the conic patches
we set the shorter notation Z(n̂, α) = Z(C(n̂, α)). Eventually the sets of parameters re-
stricted to the point-like subhalo in the direction n̂ and in the patch P are respectively

Ξpt(n̂) = {(s,m, c) ∈ Ξ(n̂) |m ≤ mmax
pt (sn̂, c, θr)}

Zpt(P) = {(n̂, ξ) ∈ Z(P) | ξ ∈ Ξpt(n̂)}
(5.30)

According to the definition of Jn̂ and Jn̂, the most interesting patches are the cones of
aperture α = θr therefore we mostly deal with Zpt(n̂, θr) in the following. Note also that
because of the integration properties given in Eq. (5.6), because, for the considered
instruments θr � 1 it is always possible to write, for a function h(ζ)∫

Z(n̂,θr)
h(ζ)d5ζ ' δΩr

∫
Ξ(n̂)

h(n̂, ξ)d3ξ∫
Zpt(n̂,θr)

h(ζ)d5ζ ' δΩr

∫
Ξpt(n̂)

h(n̂, ξ)d3ξ
(5.31)

where δΩr ≡ δΩ(C(n̂, θr)) = 2π(1 − cos θr) ' πθ2
r is the resolution solid angle. This trick

is numerically convenient as it reduces a 5-dimensional integral to a 3-dimensional
integral much faster to evaluate. In summary, an integral on a variable ζ is an integral
over all the parameters of the subhalos while an integral over the variable ξ means
that the direction of the subhalo is fixed and the integral is only over the remain-
ing three parameters (distance to the observer, cosmological mass and concentration).

In order illustrate all these rather abstract definitions let us evaluate the number of
point-like subhalos around a direction n̂ is a cone C(n̂, θr). For a subhalo i, similarly to
a Heaviside function, Θ [n̂i ∈ C(n̂, θr)] is defined as a measure which is 1 only if the cen-
tre of the subhalo is in the cone and 0 otherwise. The function Θ

[
mi ≤ mmax

pt (si, ci, θr)
]

is similar but is 1 when the subhalo i is point-like. Therefore the product of the two
measures the size of the parameter space where the subhalo is point-like and in the
right patch of the sky. Consequently, averaging over the subhalo distribution now
gives the number of point-like subhalos in C(n̂, θr) as

Npt
sub(n̂, θr) ≡

〈∑
i

Θ [n̂i ∈ C(n̂, θr)] Θ
[
mi ≤ mmax

pt (si, ci, θr)
]〉

= Nsub

∫
Zpt(n̂,θr)

d5ζ pt(ζ) .
(5.32)
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Figure 5.2 – Fraction of point like subhalos in a resolution angle θr = 0.1◦ with respect to
the direction in the sky and for different parameters of the subhalo model. We observe that
1− fpt

ψ � 1 which reflects the fact that the vast majority of the subhalos can be considered as
point-like. The highest of the curves corresponds to the situation mmin = 10−6 M� and α = 1.9
where the smallest subhalos are the less numerous.

where we used the fact that all subhalos are independent for the second equality.
Let us then compare this number of point-like subhalos with the total number of
subhalos. With the previous definitions the latter can be written as

N tot
sub(n̂, θr) ≡

〈∑
i

Θ [n̂i ∈ C(n̂, θr)]
〉

= Nsub

∫
Z(n̂,θr)

d5ζ pt(ζ) . (5.33)

In order to properly illustrate the comparison we introduce fpt
n̂ (θr) (equivalently writ-

ten fpt
ψ (θr)) the fraction of point-like subhalos lying in the cone C(n̂, θr) in any di-

rection n̂ (or ψ) in the sky,

fpt
n̂ (θr) ≡

Npt
sub(n̂, θr)

N tot
sub(n̂, θr)

(5.34)

The value of 1 − fpt
ψ (θr) is plotted in Fig. 5.2 for different subhalo models. In every

direction ψ the fraction is very close to 1; the vast majority of subhalos appear as
point-like. This can be easily understood as all the extended structure can only
be close to the observer; on the size of the MW, almost all subhalos are distant enough.

J-factor for a single point-like object

Consider a point-like subhalo located at a distance si � rt in the direction n̂i, con-
tained in the cone with aperture the resolution angle C(n̂i, θr). This subhalo occupies
a volume δVi and has a mass mt,i. The total DM density at the position of the subhalo
is the sum of the smooth component in δVi and the subhalo contribution. Therefore
at any position sn̂ in the volume δVi one can write the DM density as

ρχ [R(s, n̂)] = ρsm [R(s, n̂)] + ρi (|sin̂i − sn̂|) . (5.35)

The J-factor of the subhalo i depends on the square of the DM density, so that

Jpt
i ≡

1
4π

∫
q̂∈C(n̂i,θr)

d2Ωq̂

∫
sq̂∈δVi

ds ρ2
sm [R(s, q̂)] = Jpt,sub

i + Jpt,sm
i + Jpt,cross

i (5.36)
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Figure 5.3 – Representation of the total diffuse DM J-factor averaged over the subhalo popu-
lation (left) and point-like subhalo J-factor (right) in a resolution solid angle. Circles represent
subhalos. This is a schematic view as the subhalo size must vary over orders of magnitudes
and the satellite is excessively large.

where the different J-factor components are

Jpt,sub
i = 1

4π

∫
q̂∈C(n̂i,θr)

d2Ωq̂

∫
sq̂∈δVi

ds ρ2
i (|sin̂i − sq̂|)

Jpt,sm
i = 1

4π

∫
q̂∈C(n̂i,θr)

d2Ωq̂

∫
sq̂∈δVi

ds ρ2
sm [R(s, q̂)]

Jpt,cross
i = 1

2π

∫
q̂∈C(n̂i,θr)

d2Ωq̂

∫
sq̂∈δVi

ds ρsm [R(s, q̂)] ρi(|sin̂i − sq̂|)

(5.37)

and the expressions can be simplified as

Jpt,sub
i = Jpt,sub(ζi) = `t(ζi)

4πs2
i

, Jpt,sm
i ' ρ2

sm [R(si, n̂i)] δVi
4πs2

i

and Jpt,cross
i ' ρsm [R(si, n̂i)]mt,i

2πs2
i

.

(5.38)

The expression of Jpt,sub
i is exact and relates, for a point subhalo, its J-factor to its

intrinsic luminosity. The two other expressions are approximated under the assump-
tion that the smooth component is roughly a constant on the size of the subhalo so
that ρ2

sm [R(sq̂))] ' ρ2
sm [R(si))]. Because at the border of the subhalo the density is

always such that ρi(rt,i) > ρsm [R(si)] – due to the smooth tidal stripping – it yields
Jpt,sub

n̂i,i � Jpt,cross
n̂i,i � Jpt,sm

n̂i,i . Consequently, only the subhalo part is significant and in
good approximation (at the sub-percent level)

Jpt
i = Jpt,sub

i . (5.39)

By definition, for a point source, Jpt
i = Jpt

i where J is defined in Eq. (5.17).

5.2.2 Diffuse emission from the smooth and subhalo components

In the paragraph above, we evaluated the J-factor of point-like subhalos. Let us
now look at the total J-factor for the diffuse DM component in a given direction n̂.
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Similarly than for the total DM density around a subhalo given in Eq. (5.35), the total
DM density at any point sn̂ of the Galaxy is

ρχ [R(s, n̂)] = ρsm [R(s, n̂)] +
∑
i

ρi (|sin̂i − sn̂|) . (5.40)

where here there is a sum over all the possible subhalos. The J-factor can also be
decomposed in a smooth contribution, a subhalo contribution and a cross product
term as Jn̂(θr) = J sm

n̂ (θr) + J sub
n̂ (θr) + Jcross

n̂ (θr) where the different elements are

J sub
n̂ (θr) = 1

4π
∑
i,j

∫
q̂∈C(n̂,θr)

d2Ωq̂

∫ sm(q̂)

0
ds ρi (|si − sq̂|) ρj (|sj − sq̂|)

J sm
n̂ (θr) = 1

4π

∫
q̂∈C(n̂,θr)

d2Ωq̂

∫ sm(q̂)

0
ds ρ2

sm [R(s, q̂)]

Jcross
n̂ (θr) = 1

2π
∑
i

∫
q̂∈C(n̂,θr)

d2Ωq̂

∫ sm(q̂)

0
ds ρsm [R(s, q̂)] ρi (|sin̂i − sq̂|) .

(5.41)

In order to evaluate the properties of the diffuse emission, we are interested in the av-
eraged value of the total J-factor over the distribution of subhalos. Consequently
we need to evaluate the average of Jn̂(θr) according to Eq. (5.26). Let us detail
what it gives for the three components above. First, the average contribution of
the subhalo component is〈

J sub
n̂ (θr)

〉
= 1

4π
∑
i,j

∫
q̂∈C(n̂,θr)

d2Ωq̂

∫ sm(q̂)

0
ds 〈ρi (|sin̂i − sq̂|) ρj (|sjn̂j − sq̂|)〉 . (5.42)

As in the SL17 model subhalos are assumed not to overlap it yields for the cross-
correlation of densities 〈ρi (|sin̂i − sq̂|) ρj (|sjn̂j − sq̂|)〉 =

〈
ρ2
i (|sin̂i − sq̂|)

〉
δij. It is then

possible to reduce the double sum〈
J sub

n̂ (θr)
〉

= 1
4π
∑
i

∫
q̂∈C(n̂,θr)

d2Ωq̂

∫ sm(q̂)

0
ds
〈
ρ2
i (|si − sq̂|)

〉
=
∑
i

〈
J sub

n̂,i (si, θr)
〉

with J sub
n̂,i (si, θr) ≡

1
4π

∫
q̂∈C(n̂,θr)

d2Ωq̂

∫ sm(q̂)

0
ds ρ2

i (|sin̂i − sq̂|) .
(5.43)

Here J sub
n̂,i (si, θr) is the contribution of subhalo i to the J-factor. As seen in Sect. 5.2.1,

most subhalos are point-like, therefore it is possible to assume that they are all
centred in the cone C(n̂, θr) so that the approximation J sub

n̂,i (si, θr) ' Jpt,sub
i holds .

The average is then〈
J sub

n̂,i (θr, si)
〉
'
〈

Θ [n̂i ∈ C(n̂, θr)] Jpt
i

〉
'
∫
Zpt(n̂,θr)

d5ζi pt(ζi)Jpt
i (ζi)

so that
〈
J sub

n̂ (θr)
〉
' Nsub

∫
Zpt(n̂,θr)

d5ζ pt(ζ)`t(ζ)
4πs2 .

(5.44)

This equation simply tells that the subhalo term of the diffuse emission is obtained
by averaging the contribution of all point-like subhalos in the cone C(n̂, θr). Further-
more, let us focus now on the cross term and make the assumption that the smooth
density is almost a constant on the size of the subhalo. Then one can approximate
ρsm [R(s,q))] in the integral by ρsm [R(si, n̂i))] and define

Jcross
n̂,i (θr, si, n̂i) ≡

ρsm [R(si, n̂i))]
2π

∫
q̂∈C(n̂,θr)

dq̂
∫ sm(q̂)

0
ds ρi (|sin̂i − sq̂|) (5.45)
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the contribution of the cross term to the J-factor. For the same reasons than for the
subhalo term the cross term can also be approximated by J sm

n̂,i (θr, si, n̂i) ' Jpt,cross
i . The

averaged value over the subhalo distribution is then

〈
Jcross

n̂,i (θr, si)
〉
'
〈

Θ [n̂i ∈ C(n̂, θr)] Jpt,cross
i

〉
'
∫
Zpt(n̂,θr)

d5ζi pt(ζi)Jpt,cross
i (ζi)

so that 〈Jcross
n̂ (θr)〉 ' Nsub

∫
Zpt(n̂,θr)

d5ζ pt(ζ)ρsm [R(s, n̂)]mt(ζ)
2πs2 .

(5.46)

In summary, the total diffuse emission from DM as the sum of the averaged value of
the subhalo and cross term in addition to the smooth term (that does not need to be
averaged over as it does not depend on the subhalos)

〈Jn̂(θr)〉 = 1
4π

∫
q̂∈C(n̂,θr)

d2Ωq̂

∫ sm(q̂)

0
ds ρ2

sm [R(s, q̂)]

+Nsub

∫
Zpt(n̂,θr)

d5ζ pt(ζ) 1
4πs2 [`t(ζ) + 2ρsm [R(s, n̂)]mt(ζ)]

(5.47)

with the associated gamma-ray flux being Sχ(mχ, E) 〈Jn̂(θr)〉 consistently with
Eq. (5.12). The evolution of the diffuse J-factor (and its different components) with
the pointing direction parametrised by the angle ψ is shown in Fig. 5.4. The smooth
component dominates towards the centre1 and the subhalo component dominates
(or is at least of the same order of magnitude) towards the outskirts. The cross term
is however negligible, an order of magnitude (at least) below the other two terms.
The effect of subhalos, already discussed in the original paper SL17 is known as the
subhalo boost. Moreover using the prescription in Eq. (5.17) we can also introduce
the energy averaged diffuse J-factor according to

〈Jn̂〉(∆E) ≡ 1
∆EASχ(∆E)

∫
∆E

dEA(E)Sχ(E) 〈Jn̂ [θr(E)]〉 . (5.48)

and similarly the energy and resolution averaged diffuse J-factor 〈Jn̂〉 as

〈Jn̂〉(∆E) ≡ 1
∆EASχ(∆E)

∫
∆E

dEA(E)Sχ(E)
〈
Jn̂ [θr(E)]
δΩr(E)

〉
. (5.49)

Now that all the properties of the J-factor averaged on the subhalo population have
been derived, in the next section, we more particularly look at the probability distri-
bution of J-factor for point-like subhalos. This is indeed crucial in order to evaluate
the number of detectable point-like subhalo above a given sensitivity threshold.

5.2.3 Statistical properties of point-like subhalos

Consider a direction and resolution angle θr. The probability for a subhalo to be
point-like and contained in the cone C(n̂, θr) with a J-factor J can be written as

ppt
J (J, n̂, θr) ≡

∫
Zpt(n̂,θr)

d5ζ pt(ζ)δ
[
Jpt,sub(ζ)− J

]
. (5.50)

1Therefore, by pruning the subhalos toward the centre, the impact of stellar encounters would only
very slightly enhance the smooth contribution.
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Figure 5.4 – Evolution of the diffuse J-factor, 〈Jψ〉 = 〈Jψ〉 /δΩr with the angle ψ. Here are
shown the contribution of the smooth component (dash-dotted lines) and of the point-like
component (dashed lines). We consider both an NFW and a cored Galactic profile as well as
two different minimal masses for the subhalo population, mmin = 10−10 M� and mmin = 10−4

M�. Eventually two mass index are also represented α = 1.9 and α = 2.0.

One can then define the complementary cumulative distribution function (CCDF) as
the integrated probability to have a J-factor larger than some threshold value as

P pt
> (J, n̂, θr) ≡

∫ ∞
J0

n̂

dJ ′ p(J0
n̂, n̂, θr)

=
∫
Zpt(n̂,θr)

d5ζ pt(ζ)Θ
[
Jpt,sub(ζ)− J

]
.

(5.51)

The total number of subhalos over the threshold value J in the resolution
solid angle is then

Npt
> (J, n̂, θr) = NsubP

pt
> (J, n̂, θr) (5.52)

where Nsub is the total number of subhalos in the MW. Note that P pt
> (0, n̂, θr) < 1

because it defines the probability in the cone of angle θr around the direction n̂
only. It only normalises to unity after integration over the full sky. In the right
panel of Fig. 5.5 we represent the evolution of these two quantities for a resilient
subhalo population defined by (α,mmin, εt) = (1.9, 10−10 − 10−4, 0.01) embedded in an
NFW Galactic halo and for a resolution angle θr. By the spherical symmetry of the
SL17 model, the line of sight n̂ is parametrised by the angle ψ – defined in Eq. (5.2)
– and two directions are considered ψ = 20◦ and ψ = 90◦. On the same plot we also
show the typical sensitivity of the Fermi-LAT instrument. This figure, shows; in
particular, that the dependence of P pt

J (J, n̂, θr) with the direction n̂ (or equivalently
ψ here) is not trivial. We can remark that at ψ = 20◦ the curves are higher in the
region J0

n̂ ∈ [1016, 1019] GeV2 cm−5 than at ψ = 90◦. This comes from the strength of
the tidal effects in the inner part of the MW. There, because subhalos are resilient
to disruption since εt = 10−2, a non negligible population of highly stripped subhalos
with rt ' 10−2rs, appear as point-like while being rather close. Not to mention
that the surviving subhalos are also the most concentrated and therefore the most
luminous. As a matter of fact the peak survives up to ψ ∼ 50◦ for θr = 0.1◦. In
addition we can also observe a difference between mmin = 10−10 and mmin = 10−4,
however one can show that the probability density at high J-factor scales as mmin.
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Consequently, since Nsub ∝ 1/mmin, this have not effect on the total number of
visible subhalos (as it is defined below). On the right panel of Fig. 5.5 we show
the number of point-like subhalo by unit of resolution solid angle above a given
threshold in different directions. We also plot the difference between an NFW and a
cored host halo. The cored profile predicts more visible subhalos, except in the range
J0 ∈ [1018, 1019] GeV2 cm−5. The drop is a consequence of the sharp decrease, which ap-
pears roughly at J & 1018 GeV2 cm−5 but at slightly smaller J-factors in the cored case.

Let us consider now a threshold that varies with the direction in the sky, we call
it J0 : n̂ 7→ J0(n̂). Then, the probability for a subhalo to be point-like and over the
threshold function on a sky patch P is given by

P pt
> (J0;P, θr) = 1

δΩr

∫
n̂∈P

d2Ωn̂ F
pt
J (J0(n̂), n̂, θr)

'
∫

n̂∈P
d2Ωn̂

∫
Ξpt(n̂,θr)

d3ξ pt(n̂, ξ)Θ
[
Jpt,sub(n̂, ξ)− J0(n̂)

] (5.53)

where we recall δΩr = δΩ(C(n̂, θr)) = 2π(1 − cos θr). The second line is obtain using
the approximation Eq. (5.6) and with the notation ζ = (n̂, s,m, c) = (n̂, ξ) . By con-
struction, when the patch P = S2 is the entire sky (the 2-sphere) and J0 = 0, the
probability is correctly normalised: P pt

> (0;π/2, S2) = 1. Indeed this quantity is the
probability for any subhalo (as θr = π/2 they are all point-like) to be anywhere in the
sky and to have a positive J-factor, it has to be 1. The number of subhalos over the
threshold function is, as in Eq. (5.52),

Npt
> (J0;P, θr) = NsubP

pt
> (J0;P, θr) . (5.54)

Although the study is mainly focused on point-like substructures we also want to
assess whether the detection of extended structure seems possible with the same
techniques. Subsequently, we introduce, for a given subhalo, the general truncated
J-factor in an apparent resolution angle θe as

Je(ζ, θe) ≡
`(re(ζ, θe),m, c)

4πs2 where re(ζ, θe) ≡ min{rt, 2rs, s sin(θe)} . (5.55)

Henceforth, similarly to Eq. (5.53), we can also define a probability distribution for
any subhalo to have a truncated J-factor Je above a threshold function J0 : n̂ 7→
J0(n̂) and to be in the patch P as

P e
>(J0;P, θe) ≡

∫
n̂∈P

d2Ωn̂

∫
Ξ(n̂)

d3ξ pt(n̂, ξ)Θ [Je(θe, n̂, ξ))− J0(n̂)] (5.56)

and the number of subhalos with truncated J-factor above the threshold function is

N e
>(J0;P, θe) = NsubP

e
>(J0;P, θe) . (5.57)

Eventually, the probability to have any subhalo with a total J-factor above the thresh-
old in P is obtained either by taking the limit θr = π/2 in Eq. (5.53) and considering
all sources as point-like or taking the limit θe = π in Eq. (5.56) such that Je is always
the total J-factor of the structure. Therefore

P tot
> (J0;P) = P e

>(J0;P, θe = π) = P pt
> (J0;P, θr = π/2)

N tot
> (J0;P) = N e

>(J0;P, θe = π) = Npt
> (J0;P, θr = π/2) .

(5.58)
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As a matter of fact, Npt/e/tot
> (J0;P, θr) is actually an average value and the true

number can fluctuate with a certain probability distribution. The probability to detect
k subhalos is given by a binomial probability

P (k |Nsub) =
(
Nsub
k

)
pk(1− p)Nsub−k (5.59)

where, for shorthand notations p = P
pt/e/tot
> (J0;P, θr). Indeed, one subhalo has a

probability p to satisfy all the requirements. Then in order for exactly k of them to be
in that configuration one also needs Nsub−k that are not (which happens for each with
a probability 1 − p). In addition, the binomial factor takes into account the fact that
all subhalos are equivalent and the k visible one can be chosen amongst the total Nsub
in different ways. Under the assumption that we expect to only deal with k � Nsub
and Nsub � 1, we can use the Poissonian limit

P (k |Nsub) ' (Nsubp)k

k! e−Nsubp = Nk
>

k! e
−N> (5.60)

with N> = N
pt/e/tot
> (J0;P, θr). We would like to define a confidence interval for the num-

ber of visible subhalo when knowing Npt/e/tot
> (J0;P, θr). This happens to be non trivial

because the Poisson distribution is not continuous. The cumulative distribution func-
tion, that is the probability to observe at least n point-like subhalos is given by

P (≥ k |Nsub) ' 1−
k−1∑
i=0

P (i |n) . (5.61)

Nevertheless, if k is promoted to a real number x we can define the continous ver-
sion of Eq. (5.61) as

Px(x |Nsub) ≡ e−Nvis

dxe−1∑
k=0

Nk
>

k! = Γ(dxe , N>)
Γ(dxe) (5.62)

with Γ the gamma function (with, on the numerator, its incomplete version). The
second equality is a pure mathematical identity. With this result it is then simpler
to define a confidence interval. We define a non optimal, yet conservative, confidence
interval at 100(1 − c)% that x be measured in the range [N−c , N+

c ] by solving

c

2 = Γ(N−c + 1, N>)
Γ(N−c + 1)

= 1− Γ(N+
c , N>)

Γ(N+
c )

. (5.63)

We define now four regions as strips, bounded in ψ:

• Region 1, P1: 5◦ ≤ ψ ≤ 34◦ with solid angle ∆Ω1 = 1.05 sr

• Region 2, P2: 34◦ ≤ ψ ≤ 48◦ with solid angle ∆Ω2 = 1.04 sr

• Region 3, P3: 48◦ ≤ ψ ≤ 60◦ with solid angle ∆Ω3 = 1.06 sr

• Region 4, P4: 120◦ ≤ ψ ≤ 132◦ with solid angle ∆Ω4 = 1.06 sr
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Figure 5.5 – Left panel: Probability distribution function ppt
J (J, ψ, θr) in red and the cu-

mulative P pt
> (J, ψ, θr) in blue. Note that, from the symmetry of the SL17 model we have

parametrised n̂ by the angle ψ. The resolution angle is chosen to be θr = 0.1◦ and the line-
of-sight are ψ = 20◦ and ψ = 90◦ (Galactic pole). In addition the subhalo configuration is
(α,mmin, εt) = (1.9, 10−10 − 10−4, 0.01) and the host Galactic halo is assumed to have an NFW
profile. The green line gives the typical sensitivity of a Fermi-LAT-like instrument calculated
for an observation time of 10 yr. Right panel: The number of visible subhalo by units of
the resolution solid angle in different directions and for the same subhalo configuration. The
bottom plot represents the relative comparison between the numbers obtained for an Core
profile of the host and an NFW profile (as represented in the upper panel).

In Fig. 5.6 we show the evolution of the number of subhalos above a constant J
in 5◦ ≤ ψ ≤ 180◦ and in region 1. This is particularly interesting in the case of a
simplified CTA-like instruments where the sensitivity to point-like sources can be
assumed to be isotropic. Indeed, this is a reasonable assumption, justified later on,
due to the isotropy of the cosmic rays distribution and if we neglect the sensitivity
dependence of the instrument on the zenith angle, and the contribution of the GDE.
In this scenario, the J-factor threshold for subhalos to be detectable is a constant.
We plot Npt

> (dashed blue curves), N e
> (dash-dotted blue curves) and N tot

> (solid blue
curve) for different values of θr and θe. The left panels are for a global NFW profile
while the right panel are for a Cored profile. The shaded blue areas are the 68%
confidence interval for N tot

> . Moreover, we compare our analytical formulas to the
Monte-Carlo results of HÜTTEN et al. (2016) with the red and grey curves, which
correspond to two different subhalo models, and represent N e

> for θe = 0.8◦. Note
that they integrate over a slightly different region of the sky given by |b| > 10◦.
Nevertheless, we are in good agreement with this previous study, especially because
the dependence in J is similar and because the orders of magnitude are compatible.
For a similar angle θr = θr the curves N e

> decrease less fast than the curves Npt
> which

is expected as the latter removes all the extended objects that are the only one which
can make a substantial contribution at large J . The curve N tot

> scales roughly as 1/J
until it becomes close to 1, which is a direct consequence of the fact that the intrinsic
luminosity of a subhalo approximately satisfies ` ∝ m0.9 and because the cosmological
mass distribution goes as pm(m) ∝ m−1.9. Eventually, the confidence levels are wider
in our case for small numbers of sources (blue shaded areas vs red and grey shaded
areas) but this could be expected as our confidence interval is not optimal.
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In figure Fig. 5.7 we show the ratios

Npt
> (J ; θr,Pi))

Npt
> (J ; θr,Pj)

,
N e
>(J ; θe,Pi))

N e
>(J ; θe,Pj)

and N tot
> (J ;Pi))

N tot
> (J ;Pj)

(5.64)

with the same colour and line style code as in Fig. 5.6. This plot allows identifying
which region is best to favour the detection of subhalos, for an instrument with an
isotropic sensitivity (because every region roughly covers the same solid angle). The
higher the ratio is, the better it is to look in the region i instead of the region j. We can
see that for the search of point-like sources the inner regions are the most efficient
when θr = 0.01◦ or 0.1◦. Indeed the light and medium blue dashed curves are all above
1. This is due to the presence of the bump in Fig. 5.5 at small angles ψ. For θr = 1◦
and for extremely large J (around 1018 GeV2 cm−5 and above) it seems better to look
toward the region 2, however such J correspond to very small values of Npt

> . Now
for N e

> (the dash-dotted curves) the differences between regions are less important
even though for θe = 0.01◦ and 0.1◦ the same conclusion holds, the region 1 appears
to be the most efficient. For θe = 1◦ (the curve is superposed to the curve for N tot

> in
solid dark blue) the region 3 is now the most appropriate for J & 1016 GeV2 cm−5. In
conclusion in an isotropic background, the point-like sources have more probability
to be detectable close to the GC. Let us now evaluate, in the next section the sensitivity
of Fermi-LAT-like and CTA-like instruments to the point-sources.

5.3 Sensitivity of Fermi-LAT-like and CTA-like instruments

This section is devoted to the evaluation of the sensitivity of Fermi-LAT-like and
CTA-like instruments within our model. The main point is that, in this study, we do
not want to perform a full data-driven analysis, the philosophy is rather to develop a
simple background model that can easily be implemented but which is still in good
agreement with and calibrated on data. We call it realistic as physically motivated and
partly fitted on data, even if not necessarily accurate. We avoid to perform a data
analysis as disentangling the DM signal to the background is beyond the scope of
this analysis. Besides, the angular dependence of this realistic model relies on the
same baryonic distribution used to implement dynamical effects on the subhalo pop-
ulation. Thus, we account for the correlation between the subhalo properties and
the background. Consequently, we first define the background and then move on
to the statistical analysis.

5.3.1 A realistic background model

The Fermi-LAT background

For a Fermi-LAT-like telescope, which is a space-borne instrument, the true
background includes different astrophysical contributions that can have either
Galactic or extragalactic origins. The Galactic contributions form the GDE (or
also DGE) and are mainly sourced by unresolved sources or by the interaction of
cosmic rays with the interstellar gas and radiation such as Bremssthralung, inverse
Compton and pion production processes. The extragalactic component provides an
isotropic gamma-ray flux. Previous studies in the literature have tried to use very
precise models of the GDE from cosmic ray modelling and template fitting techniques
(FERMI-LAT COLLABORATION 2015a; GASKINS 2016; CALORE et al. 2019a; FERMI-LAT
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Figure 5.6 – Number of sources with a J-factor greater than a given uniform threshold. The
red and grey solid curves are the result obtained by HÜTTEN et al. (2016) – here Hüten+16
– for their HIGH and LOW models counting all subhalos in the regions with |b| > 10 and
considering J = J(0.8◦) with Monte-Carlo method. The darkest blue solid curve is our count of
all sub-halos with total J-factor above the threshold. The shaded areas correspond to the 68%
confidence limit. The dashed curves correspond to the number Npt of point-like only subhalos
with J-factor above the threshold for different resolution angles θr = 1◦, 0.1◦, 0.01◦. The dash-
dotted lines are the number Ntot of subhalos with a truncated J-factor denoted Je in an
apparent angle θr = 1◦, 0.1◦, 0.01◦ greater than the threshold. We use our analytical model with
an NFW profile (upper panel) and Core profile (lower panel) – with α = 1.9, mmin = 10−10 M�
and εt = 10−2). Remark that because of a different normalisation of the J-factor (a difference
of a factor 4π) we had to shift Hütten+16 results for proper comparisons.

COLLABORATION 2019). Here we restrict ourselves to the pion decay component
which dominates the GDE (away from the GC and in the energy range [1, 100] GeV)
and is produced by proton-proton interactions.

In order to be consistent with the mass model, for the baryons, that is used to
evaluate the tidal stripping of subhalos we pick the neutral hydrogen (atomic and
molecular) distribution from MCMILLAN (2017). Then we define, at a given position x
the number density of hydrogen in the intergalactic medium as

nism(x) = nH(x) + 2nH2 = ρH(x)
mH

+ 2ρH2(x)
mH2

(5.65)
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Figure 5.7 – Legends are identical to Fig. 5.6 and the subhalo model is the same. Ratio of the
number of subhalos above the threshold in the three regions of interests. It shows that for
small angular resolution θr ≤ 0.1◦ point like subhalos are most likely to be found in Region 1
(central part of the galaxy). For θr = 1◦ it depends on the sensitivity of the instrument. In that
configuration detectors with a high (resp. low) sensitivity in J have more chances to see point-
like subhalos in Region 1 (resp. Region 3). For the number of sources with Je(θe) above the
threshold, given in Eq. (5.57), the conclusions are similar even though the difference between
the regions is less pronounced. The optimal strategy for the angular resolution of CTA would
then be to search for subhalos in Region 1.

where H and H2 correspond to the atomic and molecular component respectively with
mH and mH2 their masses. Integrating this distribution along a line of sight n̂ gives
the corresponding gamma-ray flux as

d3φπ(E, n̂)
dEd2Ω = fπ(E)

4π

∫
ds nism(s, n̂) . (5.66)

Usually the value of n̂ is parametrised by the longitude-latitude couple (l, b) as here
there is no spherical symmetry that would allow to only use the angle ψ. More-
over, the spectral function fπ(E) is calibrated on data from ACKERMANN et al. (2012b)
and we use the parametrisation

fπ(E) = f0(E)
(

E

1 GeV

)−a(E)
(5.67)

with the parameters being, in function of the energy range,

(f0(E), a(E)) =


(6.69× 10−27 GeV−1 s−1, 2.27) if 1 GeV ≤ E < 1.4 GeV
(7.45× 10−27 GeV−1 s−1, 2.59) if 1.4 GeV ≤ E < 2.3 GeV
(8.31× 10−27 GeV−1 s−1, 2.72) if 2.3 GeV ≤ E < 100 GeV .

(5.68)

In the following we restrict the study to E ∈ [1, 100] GeV as below 1 GeV the pio-
nic component can no longer be easily approximated by power laws. In the end we
have the total background flux as

d3φb(E, n̂)
dEd2Ω =

{
d3φGDE(E, n̂)

dEd3Ω ≡ αb
d3φπ(E, n̂)

dEd2Ω

}
+ d3φiso(E)

dEd2Ω . (5.69)

The introduction of a pre-factor αb ≥ 1 in front of the pionic component to enhance
the GDE. This is done to roughly take into account the other neglected components
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Figure 5.8 – Integrated gamma-ray flux vs. latitude. The gamma ray-flux is integrated over 2
ranges of longitudes −30◦ ≤ l ≤ 30◦ and −30◦ ≤ l ≤ 30◦ as well as 2 ranges of energy E ∈ [1.6, 30]
GeV and E ∈ [13, 100] GeV. Comparison is made between our model (solid red) and the data
taken from ACKERMANN et al. (2012b) – here called (Ackermann+12). The different shaded
areas correspond to different values of the parameter αb introduced in Eq. (5.69). Note that
the isotropic component is the same in our model and in the data as we directly calibrated it
on the data. The bottom panels represents the relative difference between our GDE and the
total GDE (here called DGE) obtained from the data and for the different values of αb.

that have a similar spatial dependence as well as to mimic additional systematic
uncertainties. In Fig. 5.8 we show the dependence in latitude (integrated over fixed
ranges of longitudes) of our background model, compared to the true background
observed by the Fermi-LAT. The four plots correspond to 2 different energy ranges
and two different longitudes ranges. The different shaded red areas show different
values of αb. As a good compromise to match our model to the true data as much
as possible in the outskirts, we decide to set αb = 1.5. This choice is also motivated
by a direct comparison of the number of photons received in a given patch of the
sky in Sect. 5.3. In any case, we can remark that our model, albeit not perfect,
is fully consistent with the data.

Now we introduce our virtual Fermi-LAT instrument that does not have exactly
the same characteristics as the true Fermi-LAT while still being comparable. Indeed
here the goal is to reach an O(1) precision on our result and therefore we prefer tak-
ing simplified specifications. In particular, we restrict our search in the energy range
E ∈ [1, 100] GeV where the effective collection area is a constant (which is also con-
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Figure 5.9 – Left panel : Spectrum of the gamma-ray flux in our GDE model with αb = 1.5
(dashed red) and from DM annihilation (blue) into bb with 〈σv〉 = 3 × 10−26 cm3 s−1 and for
different particle masses. Here we averaged over on the patch −80◦ < l < 80◦, 5◦ < |b| < 15◦
for an NFW Galactic profile. The vertical dashed lines represent E = mχ/20 and roughly goes
through the maxima. Right panel : Same but for the τ+τ− annihilation channel and with
the vertical lines set at E = mχ/3.

venient as this is the limit of our pion model). This constant is taken to be A = 0.9
m2. Moreover, uniform coverage of the sky is assumed with a field of view span-
ning 1/5 of the full sky, i.e. ' 2.3 sr. This is consistent with the values found in
W. ATWOOD et al. (2013) and BRUEL et al. (2018) and from the exposure quoted in
FERMI-LAT COLLABORATION (2019). Eventually, instead of considering a proper point
spread function with an energy dependence, we only limit our analysis to two bench-
mark resolution angles θr = 0.1◦ and θr = 1◦ which bracket the true point spread
function of the Fermi-LAT.

5.3.2 The CTA background

For CTA-like instruments, that are imaging Cherenkov array telescopes (IACTs)
and based on the ground, the gamma rays are not detected directly. It is rather the
products of their interactions with atmospheric particles that are seen. Therefore
while the Fermi-LAT-like background is also present in the CTA configuration, the
data is polluted by cosmic-ray events that have the same signature as gamma-ray
events and thus cannot always be distinguished. Consequently one also needs to
properly take into account their contribution. In practice, the dominant components
come from protons and electrons. We can parametrise the additional photon flux from
electrons, which is isotropic, with the functions given in SILVERWOOD et al. (2015)

d3φe(E)
dEd2Ω = 1.17× 10−11

(
E

1 TeV

)−Γe(E)
GeV−1 cm−2 s−1 sr−1 (5.70)

with Γe(E) = 3.0 for E < 1 TeV and Γe(E) = 3.9 for E > 1 TeV. Similarly the photon flux
from protons is given by a power law in terms of a false reconstructed photon energy,

d3φp(E)
dEd2Ω = 2.62× 10−8

( 3E
1 TeV

)−2.71
GeV−1 cm−2 s−1 sr−1 (5.71)

As a matter of fact, electron events cannot be distinguished from photon events. How-
ever, most of the proton events can. The efficiency of the rejection depends on the
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energy, however here we follow SILVERWOOD et al. (2015) and assume that only a frac-
tion εp = 10−2 protons are mistaken for photons. Then the total background due
to cosmic rays can be written

d2φCR(E)
dEdΩ = εp

d2φp(E)
dEdΩ + d2φe(E)

dEdΩ . (5.72)

Besides, for CTA, the predictions for the sensitivity to the DM diffuse emission are
done toward the centre of the Galaxy, therefore one needs a better model for this re-
gion that what we described in the Fermi case. In particular we assume that the total
GDE in the central 5◦ is uniform as considered in LEFRANC et al. (2015) and given by

d2φGDE(E,< 5◦)
dEdΩ = 1.86× 10−4

(
E

1 GeV

)−2.57
GeV−1 cm−2 s−1 sr−1 (5.73)

This dependence is calibrated on the flux of the ON region (a very central region
into ψ < 1.36◦) defined in SWSB15 – although they do not assume that the GDE
flux is uniform as we do). We need to keep in mind, therefore, that the true flux
should be slightly smaller in the outer part of the inner 5◦ region, by a factor of
2.5 approximately, which is of the same order than, or even below, the uncertainty
on the effective collection area as shown below. Moreover, our goal not being to
precisely model the background we simply check, in the end, that our results are
realistic and consistent with SWSB15. In the left panel of Fig. 5.10 are shown the
different gamma-ray flux components for CTA in direction of the GC. We also show
the extrapolation of the model for ψ > 5◦ derived for the Fermi-LAT background. The
latter appears to be sub dominant in front of the GDE and CR components given by
SWSB15. In the right panel, the event rate from our work is compared to event rates
obtained from Monte-Carlo simulations of the CTA performances from BERNLÖHR

et al. (2013) and used in HÜTTEN et al. (2016). Our model is slightly underestimating
the event rate but in view of the difference between the two black curves, it is still in
good agreement with the literature. Moreover, we also plotted the total GDE toward
the centre to show that it is almost negligible in comparison with the cosmic-ray
contribution.

Eventually, similarly to the virtual Fermi-LAT instrument, let us introduce a vir-
tual CTA-like instrument based on CTA characteristics (CTA CONSORTIUM 2019). We
perform our analysis in the energy range E ∈ [25, 104] GeV. In that range the effective
collection area varies too much to be taken as a constant. Therefore, we compared
several predictions made in BERNLÖHR et al. (2013) and fitted by hand

log10A(E) = a

[
log10

(
E

1 GeV − 6
)]3

+ b (5.74)

with the parameters a = 3.4 × 10−2 and b = 6.65. In Fig. 5.11 the evolution of A(E)
is represented in terms of the energy. Moreover here it is impossible to consider a
uniform coverage of the sky as the field of view is θFoV ∼ 5◦, thus covering a solid
angle δΩFoV = 0.024 sr. With such a small value, one of the main goal of this study
for CTA is to characterise the optimal pointing direction for a detection of a point-like
subhalos. Eventually, similarly than for the Fermi-LAT case we do not consider the
energy dependence of the point spread function and rather use two fixed resolution
angles θr = 0.1◦ and θr = 0.01◦. Besides, for simplicity we also neglect the variation
of sensitivity with the zenith angle.
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Figure 5.10 – Left panel: Gamma-ray fluxes reconstructed by CTA vs. the gamma-ray
energy. In blue is represented the false CR-induced gamma-ray reconstructed signal in terms
of the reconstructed gamma-ray energy taken from SWSB15 – here S+15. The red solid curve
is the GDE flux in the ON region of SWSB15. We also show our own GDE model extrapolated
to the GC (ψ = 0) with αb = 1.5 and the isotropic gamma-ray component evaluated from
Fermi-LAT data and extrapolated to high energies by a power law (dash-dotted). Right panel:
Evolution of the differential event rate with the energy for different models. We compare our
own model of false-CR induced reconstructed signal based on the CR model of SWSB15 (in
solid blue on the left panel) and of our average effective collection area Eq. (5.74) (blue) to the
MVA model of BERNLÖHR et al. (2013) (solid black) and HÜTTEN et al. (2016) (dashed black).
The red solid line shows the event rate for the GDE of the ON region that we use for ψ ≤ 5◦
(also in solid red on the left panel). The red dashed-dotted line corresponds to the isotropic
gamma-ray contribution.
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Figure 5.11 – Effective collection area for CTA-like instrument in terms of the energy. We
compared our approximate model Eq. (5.74) in solid black to the different Monte Carlo re-
sults from BERNLÖHR et al. (2013) – denoted Bernlohr+12. The shaded grey shaded area is
bracketed by the curves (a, b) = (2.9× 10−2, 6.8) and (a, b) = (4× 10−2, 6.6).

5.3.3 A simple criterion for the sensitivity

General framework

Before entering into an involved likelihood analysis for the sensitivity we first derive
here some general properties from a much simpler criterion based on an On−Off study
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(T.-P. LI et al. 1983). Assume that we look in one patch of the sky with the size of
the resolution solid angle θr and centred around a virtual point source in direction n̂i
with J−factor Jpt

i – defined in Eq. (5.39). The number of photons received from this
point-like structure in a time T (n̂i), on an energy range ∆E, is given by

Npt
γ,i(n̂i) = Rpt

i (n̂i)T (n̂i)∆E (5.75)

with the definition of the energy-averaged event rate being

Rpt
i (n̂i) ≡ ASχJpt

i = 〈σv〉 J
pt
i

2m2
χ

NγA . (5.76)

In the same sky patch and energy range and for the same observation time we also
receive, on average, a number of background photons given by

Nbg
γ,diff(n̂i,∆E) = Rbg

diff(E, n̂i)T (n̂i)∆E (5.77)

with the background differential rate being

Rbg
diff(n̂i) = 1

∆E

∫
∆E

dE
∫

q̂∈C(n̂i,θr)
d2Ωq̂

d3φbg(E, q̂)
dEd2Ω A(E)

' δΩr
∆E

∫
∆E

dE d3φbg(E, n̂i)
dEd2Ω A(E) .

(5.78)

where we used the approximation of Eq. (5.6) for the second equality and the fact
that θr is assumed not to depend on energy. Then, the criterion to have detection
of the point-source is that it must detach from the Poissonian fluctuations of the
background. Therefore, the source is detected if

Npt
γ,i(n̂i) > nσ

√
Nbg
γ,diff(n̂i) (5.79)

where nσ gives a threshold of sensitivity. In practice, this number should be taken of
order unity since this is the expected inequality in an On−Off analysis when the On
and Off regions are identical. However, as this statistical criterion is rather simplis-
tic, we consider it as an effective parameter that can be used to rescale the results
obtained in this section to the results of the full likelihood analysis. From Eq. (5.79)
the sensitivity in terms of a minimal value for Ji can be extracted. The subhalo is
detectable if its J-factor is above the threshold

Jmin(n̂) ≡ nσ
T (n̂)

√
Nbg
γ,diff(n̂)

∆EASχ
= nσ

2m2
χ

〈σv〉
1√

T (n̂)∆E

√
Rbg

diff(n̂)
NγA

. (5.80)

Here we can explicitly see that the spatial dependence of the minimal J-factor is due
to the spatial variations of the background. Therefore, the most visible subhalo do
not necessarily have to be the one with the highest intrinsic luminosity, they have
to be the subhalos that have the largest luminosity in comparison to the threshold
at their position. Moreover, the dependence in the observation time and on the
annihilation cross-sections are rather trivial, and from Fig. 5.5, it may appear that
a small change in 〈σv〉 may give very different results for the number of visible
subhalos. However if we assume no detection of the DM diffuse component, the
constraints on 〈σv〉, in a realistic context forbids this number to become arbitrarily
large and, as a matter of fact, to remain below or close to 1 – see the discussion on
the general case below. On the contrary, the dependence on mχ is not trivial as it
impacts the spectrum of photon produced by the DM annihilation.
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Figure 5.12 – Top left panel: Skymap of the effective number of subhalos per solid angle
unit in a DM-only background—assuming a WIMP mass of 100 GeV annihilating to τ+τ−

with 〈σv〉 = 3 × 10−25 cm3/s, a gamma-ray energy range 1-100 GeV, and a subhalo popula-
tion configuration (α,mmin/M�, εt) = (1.9, 10−10, 0.01) embedded in an NFW Galactic halo. Top
right panel: Associated angular distribution (with 95% confidence band), with two angular
resolutions θr = 0.1◦ and 1◦, and several configurations for the subhalo population ranging
in (α,mmin/M�) ∈ (1.9 − 2, 10−10 − 10−4). Bottom left and right panels: Same as above for
subhalos embedded in a cored Galactic halo.

The ideal DM-only configuration

With this first simple criterion, we can start looking at an idealised case, the DM-
only configuration, where we assume that there is no baryon background. Although
being completely unrealistic this simple exercise allows us to first evaluate where
should be the most visible subhalos. Therefore, here, the only background component
comes from the DM diffuse emission,

Rbg
diff(n̂) = RDM

diff (n̂) ≡ 〈Jn̂〉
〈σv〉
2m2

χ

NγA (5.81)

where 〈Jn̂〉(∆E) is defined in Eq. (5.47) and Eq. (5.48). Plugging this expression into
Eq. (5.80) gives the simple expression of the sensitivity

Jmin(n̂) = nσ√
T (n̂)

1√
∆E

√√√√ 2m2
χ〈Jn̂〉

〈σv〉NγA
. (5.82)
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Here it is interesting to notice that, because we assume an energy-independent reso-
lution angle, then 〈Jn̂〉(∆E) = 〈Jn̂〉 ∝ δΩr ∝ θ2

r from Eq. (5.6) and

Jmin(n̂) ∝ θr√
〈σv〉 T (n̂)

. (5.83)

Consequently, the dependence in 〈σv〉 is through an inverse square root. A constant
background (which does not depend on DM properties and thus on 〈σv〉) would give,
from Eq. (5.80), a dependency in the inverse. Indeed, this square root behaviour is
a consequence of the fact that when one increases 〈σv〉 in a DM-only configuration
one decreases the sensitivity independently of the background but one also increases
the background fluctuations. Moreover when θr increases the sensitivity gets worse
because it simply enhances the background. Eventually, let us mention that here
as the diffuse DM J-factor only depends on ψ the pointing direction n̂ can be
parametrised by ψ only.

In Fig. 5.12 we show skymaps for the number of visible point-like subhalos per
units of the resolution solid angle. More precisely, in this figure, are called visible,
all the point-like clumps with a J-factor above the sensitivity Jmin and in the reso-
lution solid angle such that

Nvis(n̂) ≡ Npt
> (Jmin(n̂), n̂, θr) (5.84)

In addition, we consider an NFW and cored Galactic profiles and a DM particle
of mass mχ = 100 GeV which annihilates to τ+τ− with the thermal cross-section
〈σv〉 = 3 × 10−26 cm3 s−1. Moreover ∆E = [1, 100] GeV, with an observation time of
10 yr and we look at the resolution angles θr = 0.1◦, 1◦. for a Fermi-LAT-like instru-
ment. Although no baryon background is included, the baryonic tides are supposed
to impact the subhalo distribution anyway and the subhalo model is specified by
(α,mmin, εt) = (1.9, 10−10M�, 0.01). Eventually the statistical criterion is fixed to nσ = 3.
One needs to be careful here as with such parameters Nbg

γ and N i
γ are small and

can be below 1. Therefore the results must be treated with care and analysed at the
qualitative level only; they can only be used to compare different configurations. The
main conclusion however is that the optimal region to search for subhalos forms a
ring peaked around ψ ∼ 30◦ for θr = 0.1◦ and around ψ ∼ 50◦ for θr = 1◦ as shown
on the left panel. This change in angular distribution is due to two effects. Firstly
changing θr degrades the sensitivity and secondly, it changes the population of sub-
halos that can be considered as point-like. More generally decreasing θr tends to
shift the peak of the distribution toward small values of ψ. Moreover, the impact of
changing the minimal mass or the mass index as well as the Galactic profile is shown
by the different curves and in conclusion, the only real impact comes from the mass
index. It could be surprising that a smaller mass index gives a higher number of vis-
ible subhalos since it corresponds to fewer substructures. However, a smaller mass
index means a lower background as well as more massive subhalos (as the mass
function is less steep) that are more visible. For the same mass index, lowering the
minimal subhalo mass gives also less potentially visible subhalos – as this increases
the background – while not really changing the number of subhalos that detach from
the background (subhalos in the range 10−10-10−4 M� are not enough massive for
that). As mentioned earlier, even if the numbers have to be taken with care, for a
thermal cross-section we only find a bit less than O(1) visible subhalos, which is not
an optimistic first evaluation for a detection.
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The general case

Here the general case is considered where the diffuse background has a component
coming from DM and from baryons. We derive both the sensitivity to point sources
but also the sensitivity to the DM diffuse component. Assuming that it is not detected
we further deduce an interesting limit on the minimal possible value for the point
source J-factor threshold. The total background emission rate is

Rbg
diff(n̂) = RDM

diff (n̂) +R
bg\DM
diff (n̂)

= 〈Jn̂〉
〈σv〉
2m2

χ

NγA+R
bg\DM
diff (n̂)

(5.85)

With a baryonic background, when there is no detection of the diffuse DM component
it imposes that, in a sky patch P observed over a time T̃ (P) in the energy range ∆̃E,
the cross-section is bounded from above. The number of received photon from the
patch in question from the DM diffuse component and from the other astrophysi-
cal sources respectively are

ÑDM
γ,diff(P) = R̃DM

diff (P)T̃ (P)∆̃E(P)

Ñ
bg\DM
γ,diff (P) = R̃

bg\DM
diff (P)T̃ (P)∆̃E(P)

(5.86)

where the DM and background rate without DM diffuse emission rate are

R̃DM
diff (P) = 〈σv〉2m2

χ

NγA
{
J(P) = ∆E

∫
q̂∈P

d2Ωq̂
〈
Jq̂
〉}

R̃
bg\DM
diff (P) = 1

∆̃E(P)

∫
∆̃E(P)

dE
∫

q̂∈P
d2Ωq̂

d3φbg\DM(E, q̂)
dEd2Ω A(E) ,

(5.87)

and where
〈
Jq̂
〉

is defined in Eq. (5.49). No detection of the DM diffuse emission on the
patch P implies that its emission is hidden in the Poissonian background, meaning

ÑDM
γ,diff(P) < ñσ

√
Ñ

bg\DM
γ,diff (P) (5.88)

where ñσ is an order 1 number and plays the same role as nσ introduced above. From
Eq. (5.86) and Eq. (5.87) we can transform this inequality as an upper bound for the
annihilation cross-section, when there is no detection of the DM diffuse emission in
all the observed patches. It takes the form

〈σv〉max = ñσ
2m2

χ

NγA
min
P

 1√
T̃ (P)∆̃E

√
R̃

bg\DM
diff (P)
J(P)

 (5.89)

This result shows in particular that

〈σv〉max ∝
1

J(P)
√
T̃ (P)

(5.90)

i.e., that the constraint on 〈σv〉 gets more and more stringent with the observation
time. Moreover, as it could be expected, it is also stricter in regionswith a large J-
factor for the diffuse DM emission. Eventually, we now combine this new result with
Eq. (5.80) in order to know what is the best sensitivity that can be reached for point
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sources if no DM diffuse emission is ever detected in any observed patch P. We call
this quantity the critical minimal point J-factor and it is given by

Jcrit
min(n̂) = nσ

ñσ
max
P


√√√√ T̃ (P)∆̃E
T (n̂)∆E

√√√√R
bg\DM
diff (n̂)

R̃
bg\DM
diff (P)

J(P)


×

√√√√√1 + ñσ

R
bg\DM
diff (n̂)

min
P


√
R̃

bg\DM
diff (P)√
T̃ (P)∆̃E

〈Jn̂〉
J(P)

 .
(5.91)

In particular, when 〈σv〉max is low enough, which amounts to take an observation
time T̃ (P) large, it yields the limit

Jcrit
min(n̂) ∼

T̃ (P?)→∞

nσ
ñσ

√√√√ T̃ (P?)∆̃E
T (n̂)∆E

√√√√ R
bg\DM
diff (n̂)

R̃
bg\DM
diff (P?)

J(P?) , (5.92)

where we introduced P? as the sky patch where the minimum in Eq. (5.89) is reached.
Moreover, the true value is always above this asymptotic value, therefore it really
corresponds to a lower bound on the minimal J-factor for point-like subhalos to be
detectable (also called visible in the following). This last expression can be further
simplified considering the same energy range ∆E = ∆̃E. Moreover also assuming that
P? = C(m̂?, θr) – that is the sky patch considered is just a cone of size the resolution
angle – then the expression of the diffuse J-factor becomes J(P?) = 〈Jm?〉 and the
critical minimal point J-factor is

Jcrit
min(n̂) ∼

T̃ (m̂?)→∞

nσ
ñσ

√
T̃ (m̂?)
T (n̂)

√
R

bg\DM
diff (n̂) 〈Jm?〉√

R̃
bg\DM
diff (m̂?)

. (5.93)

The value of the critical J-factor is important as it gives the maximal number of sub-
halos that are visible if the DM diffuse emission is never detected. This expression
tells that the only spatial dependence of the critical minimal J-factor comes from the
known astrophysical background. In addition, as the diffuse J-factor quickly de-
creases from the centre, faster than the diffuse background R̃

bg\DM
diff , thus m̂? usually

corresponds to a direction close to the GC. In the following, we also introduce

ηeff
σ (m̂, n̂) ≡ nσ

ñσ

√
T̃ (m̂)
T (n̂) (5.94)

as an effective normalisation parameter for the critical J-factor. In the next section,
we show how it can be evaluated from the more realistic Likelihood analysis. As
a matter of fact, and as seen in Fig. 5.13, this infinite observation time limit is a
good approximation for realistic experiments. Indeed, in this figure we show with the
dashed curves the evolution of the minimal J-factor for fixed values of 〈σv〉 (red and
green) and of Jcrit

min (blue) with the total observation time. There it is assumed that
the same observation time is used to set the constraint on 〈σv〉 and to evaluate Jmin
such that T̃ = T . Then we also introduce the observation time T . For Fermi-LAT,
it represents the total cumulative time of data collection by the instrument. Taking
into account the fact that the satellite continuously observes the entire sky with a
truncated field of view we set T = T̃ = T/5. For CTA the field of view is so narrow
that the instrument only uses its operating time on specific directions of interests.
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Figure 5.13 – Evolution of the minimal J-factor with the observation time T for the Fermi-
LAT-like and the CTA-like instruments for a WIMP of mass 100 GeV annihilating into τ+τ−

in the direction (l, b) = (0◦, 20◦). We assume an NFW Galactic DM profile. The red and green
curves show the evolution of Jmin at fixed 〈σv〉. In red (resp. green) we assume a detection of
the DM diffuse emission at T = 10 (resp. 20) yr for the Fermi-LAT configuration. In the CTA
case we similarly assume a detection after T = 50 hr and 500 hr. We also set (nσ = 5, ñσ = 3) for
Fermi and (nσ = 5, ñσ = 2.71) for CTA. The blue curves represent the critical minimal J-factor.
By construction a subhalo with a J-factor under the blue curve cannot be detectable before
the discovery of the diffuse DM emission for similar observation times. The dashed curve are
the result from the simple criterion rescaled by ηeff

σ to the likelihood result in solid lines. The
subhalo model is set by α = 1.9, mmin = 10−10 M� and εt = 10−2.

Therefore T here only represents the observation time in the pointing direction which
amounts to set T = T̃ = T . Besides, the pointing direction for the constraint on 〈σv〉
is fixed in the rough direction of the patches used in the likelihood analysis in order
to make proper comparisons. Consequently we imposed m? as (l, b) = (0◦, 10◦) for the
Fermi-LAT-like configuration and (l, b) = (0◦, 1◦) for the CTA-like configuration. The
parameter ηeff

σ is also set to match the solid curves of the likelihood method. Remark
then that the dashed blue lines for Jcrit

min appear, as predicted, to follow an asymptotic
regime at observation times as low as T = 2 yr for θr = 1◦ in the Fermi-LAT-like case
and T = 1 hr in the CTA-like case
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5.3.4 The likelihood analysis : general framework

In the following we perform a likelihood analysis to properly asses the sensitivity
of the two types of instruments. The first part is focused on how the constraint on
〈σv〉 is set from the DM diffuse emission. In a second part we detail the determination
of the sensitivity to point-like sources.

The constraints on the annihilation cross-section

First, consider a Region of Interest (RoI) that is divided in NS spatial bins, cor-
responding to different patches Pi in the sky. In addition we divide the total energy
range of the instrument in NE bins ∆Ej. Then in every bin the previous model for
the known astrophysical background and for the DM emission allows to evaluate
the average number of expected events. For the spatial bin i and energy bin j we
write it under the form

µij [〈σv〉 , ηk] = ∆EjT (Pi)
{
〈σv〉MjJ(∆Ej ,Pi) +

∑
k

ηkR
k
diff(∆Ej ,Pi)

}
(5.95)

where the sum can run over all the possible background contributions. More precisely
k can be CR, GDE or iso, where RCR

diff is the isotropic background from CR mistaken as
photons,RGDE

diff is the baryonic Galactic diffuse emission and Riso
diff is the extragalactic

baryonic emission. Using similar notations than in the previous discussion, with the
straightforwardly adapted definitions, these terms are

J(∆Ej ,Pi) =
∫

q̂∈Pi
d2Ωq̂

〈
Jq̂
〉
(∆Ej)

Rkdiff(∆Ej ,Pi) = 1
∆Ej

∫
∆Ej

dE
∫

q̂∈Pi
d2Ωq̂

d3φk(E, q̂)
dEd2Ω A(E) .

(5.96)

The DM contribution is written in terms of the factor Mj which only depends on the
DM particle mass and on the energy bin,

Mj =
NγA(m2

χ,∆Ej)
2m2

χ

(5.97)

In addition, T (Pi) is the observation time in the bin i. Four different kind of analysis
have to be done, whether we consider a Fermi-LAT-like or a CTA-like instrument and
whether we want to set a constraint on 〈σv〉 from the DM diffuse emission or evaluate
the sensitivity to point-like sources. In all cases the method starts by drawing a mock
number in every bin (ij) from a Poisson law as,

nij ∼ Poiss
[
µij(〈σv〉 = 0, ηk = η0

k)
]
. (5.98)

For Fermi-LAT-like instruments η0
CR = 0 and η0

GDE = η0
iso = 1 while for CTA-like in-

struments η0
CR = 1, η0

GDE = 1 and ηiso = 0 as the iso component is negligible in the
centre in front of the CR component. The mock data is subsequently analysed with
the following likelihood, inspired from SILVERWOOD et al. (2015) – hereafter SWSB15 –

L(〈σv〉 , αij , ηk) =
∏
ij

 (αijµij)nij√
2πσ2

αnij !
e−αijµije

−
(αij−1)2

2σ2
α

∏
k

 1√
2πσ2

ηk

e
− (ηk−ηk)2

2σ2
k

 . (5.99)



210 5. DETECTABILITY OF POINT -LIKE SUBHALOS WITH GAMMA-RAY TELESCOPES

The variable αij are introduced to mimic systematic uncertainties of the instrument
while σk and ηk set biases in the different component of the model. Note, however, that
correlations between bins are not considered. The values of ηk, σα and σk is discussed
and justified later on. From now on, let us briefly detail the likelihood method. The
first step is to define a null hypothesis H0: the value of 〈σv〉 is equal to its best fit value. The
best fit value of the variables, denoted with a hat in what follows, are obtained by
maximising the value of the likelihood. In other words, they must satisfy

∂L
∂ 〈σv〉

∣∣∣∣
〈̂σv〉,α̂ij ,η̂k

= 0 , ∂L
∂αkl

∣∣∣∣
〈̂σv〉,α̂ij ,η̂k

= 0 and ∂L
∂ηq

∣∣∣∣∣
〈̂σv〉,α̂ij ,η̂k

= 0 . (5.100)

Then, the following step is to evaluate how much higher 〈σv〉 can reasonably be
from its best fit value in a statistical sense. To this end one first needs to intro-
duce the likelihood ratio

R(〈σv〉) ≡ L(〈σv〉 , ˆ̂αij(〈σv〉), ˆ̂ηk(〈σv〉))
L(〈̂σv〉, α̂ij , η̂k)

(5.101)

where ˆ̂αij(〈σv〉) and ˆ̂ηk(〈σv〉) are the best-fit values at fixed 〈σv〉. The first noticeable
property is that, by definition, R(〈σv〉) ≤ 1. Moreover when 〈σv〉 is very different from
its best-fit value R is expected to become small. Therefore the question becomes how
small can R be. Wilk’s theorem (WILKS 1938) tells that in the limit of an infinite
number of bins and on the condition that the null hypothesis holds true, the value
of −2 lnR(〈σv〉) satisfies a χ2(1) distribution (COWAN et al. 2011): 2 lnR(〈σv〉) ∼ χ2(1).
The probability distribution function of χ2(k), for k a positive integer, is

pχ2(k)(x) = 1
2/2Γ(k/2)

xk/2−1e−x/2 (5.102)

We denote by t the number so that the probability to have −2 lnR(〈σv〉) > t is p0 under
the null hypothesis. Then, t satisfies

p0 =
∫ ∞
t

pχ2(k)(y)dy =
∫ ∞
t

1√
2πye

y/2dy =
√

2
π

∫ ∞
√
t
e−x

2/2dx . (5.103)

Setting a constraint at ñσ amounts to ask that

p0 = 1− 1√
2π

∫ +ñσ

−ñσ
e−x

2/2dx =
√

2
π

∫ ∞
ñσ

e−x
2/2dx (5.104)

which imposes t = ñ2
σ. To summarise, the upper bound 〈σv〉max at ñσ is set as the

solution of −2 lnR(〈σv〉max) = ñ2
σ. Instead of the ñσ criterion, it is also common to

simply fix the limit through p0, in which case t is then implicitly given by

erfc
[√

t

2

]
= p0 . (5.105)

Typical values are t(p0 = 0.1) ' 2.71 for a bound at 90% confidence level and
t(p0 = 0.05) ' 3.85 for a bound at 95% confidence level.

In practice, however, finding the best-fit values is not necessarily easy as it in-
volves minimising a multivariate function. However, as pointed out in SWSB15, the
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minimisation over the parameter αij is straightforward and it can be written as a
function of 〈σv〉 and ηk

α̃ij(〈σv〉 , ηk) = 1
2

(
1− σ2

αµij +
√

(σ2
α − 1)2 + 4σ2

αnij

)
(5.106)

Therefore, following App. A.3 we find the best-fit values using a Newton-Ralphson
algorithm. In practice, the Hessian matrix involved in the process is at most 3 di-
mensional and the convergence is fast.

The sensitivity threshold to point-like sources

The analysis for the sensitivity to point-like structures is very similar to the anal-
ysis of the constraint on 〈σv〉. Here, however, we consider a RoI that is centred
around a central spatial bin tagged i0 where we assume that a point-source is present.
Therefore, we introduce a slightly modified expression for µij by adding this point-
source term as follows

µij [J, ηk; 〈σv〉] = ∆EjT (Pi)
{
〈σv〉Mj(J(∆Ej ,Pi) + νiJ) +

∑
k

ηkR
k
diff(∆Ej ,Pi)

}
(5.107)

where νi = δi,i0. An important difference is that now, 〈σv〉 is no longer considered
as a free parameter which needs to be determined but it has a fixed value. That is
to say we always evaluate the minimal J-factor at a given 〈σv〉. The mock data is
evaluated similarly, by drawing on a Poissonian distribution, except in the central bin
where ni0j = µi0j and J = J , the value of the J-factor emitted by the point-source.
The goal is to find how large J should be to ensure the discovery. The likelihood for
the analysis is the same than Eq. (5.99) at the difference that it now depends on J
and not on 〈σv〉: we denote L = L(J, αij , ηk; 〈σv〉). The null hypothesis for a detection
is H0: There is no point source in the central bin. Consequently, we build a new likelihood
ratio, that depends on J through the mock data

R(J) = L(Ĵ, α̂ij , η̂k); 〈σv〉)
L(J = 0, ˆ̂αij(J = 0), ˆ̂ηk(J = 0); 〈σv〉)

(5.108)

where ˆ̂αij(J = 0) and ˆ̂ηk(J = 0) are the best fit values in the null hypothesis. Under
this form R > 1 when J > 0, since Ĵ should be driven toward the value of J in order
to maximise the likelihood. According to Wilk’s theorem we could define 5-σ detection
by the requirement 2 lnR(J) ≥ 25 so that the minimal J-factor of a point-like source
to be detected in direction n̂ of the central bin is

2 lnR(Jmin(n̂)) = 25 . (5.109)

However, rigorously, 2 lnR(J) does not follow a χ2(1) distribution as the null hypothe-
sis enforces J = 0, at the boundary of its domain of definition – since a negative value
of J makes no physical sense (HÜTTEN et al. 2016). In that case, the distribution is
slightly modified. However, the present criterion can just be taken as a definition that
is also called the Test-Statistic (TS). Therefore rather than saying that we have a 5σ
detection we rather say that we have a detection with a TS of 25, which is the typical
value found in the literature (CALORE et al. 2017; FERMI-LAT COLLABORATION 2019)
and which should be sufficient to prevent false detections.
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Figure 5.14 – 3σ constraint on the s-wave annihilation cross-section of DM in bb (right panels)
and τ+τ− (left panels) for a Fermi-LAT-like instrument. The upper panels correspond to a
Galactic NFW profile and the lower panels to a Cored profile. We considered 3 different times
of operation for the Fermi-LAT-like instrument T = 2, 10 or 20 yr, respectively shown in blue,
red and green. The solid curves are obtained from the likelihood analysis while the dashed
curves are given by the On-Off-like analysis for θr = 0.1◦ and 1◦. The dark shaded area is
the limit obtained by the Fermi-LAT collaboration for T = 2 yr (FERMI-LAT COLLABORATION

2012a) with a Galactic DM density profile different from ours. Therefore the blue dashed line
uses the same profile to make a direct comparison. The light shaded area is given by the same
collaboration and using dwarf spheroidal galaxies as targets (instead of a region around the
GC) and for a time of observation of 6 years (FERMI-LAT COLLABORATION 2015b). They also
apply to the core profile scenario but are not displayed in the bottom panels for clarity.

5.3.5 The Fermi-LAT-like configuration

For a Fermi-LAT-like instrument the constraint on the annihilation cross-section
is set in an RoI that covers two symmetric regions of the sky, above and below the
GC, spanning |l| < 80◦ and 5◦ < |b| < 15◦. This region is divided into 3200 bins that
each cover roughly a solid angle 1◦ × 1◦. The energy range [1, 100] GeV is divided into
5 logarithmically spaced bins. Within our model by setting αb = 1.5 in Eq. (5.69), the
GDE and isotropic components give an average of ∼ 360000 photons collected in a
total time T = 2 years of observations and in the total RoI. This number is in perfect
agreement with the real number of photon collected by the Fermi-LAT collaboration
(FERMI-LAT COLLABORATION 2012a). However, in their analysis, they have to discard
all the 0.9◦ × 0.9◦ areas around point sources. This suppresses by 25% the total
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Figure 5.15 – Selected RoI to set constraints on 〈σv〉 with the Fermi-LAT-like instrument and
bases on FERMI-LAT COLLABORATION (2012a). In colour are represented one Monte Carlo
draw for the number of background photons in bins of size 1◦ × 1◦.

number of photons. In order to mimic this experimental constraint, when drawing
the mock data we randomly mask 25% of the spatial bins. Then the total number of
photon received roughly becomes 270000 as it is in the real collected data.

The data analysis is performed by setting σα = 0 therefore fixing αij = 1 because
we do no assume systematics from the instrument. Moreover uncertainties on the
isotropic gamma-ray component are neglected which amounts to set σiso = 0, ηiso = 1
so that ηiso = 1. On the contrary, however, because our GDE model is not perfect σGDE
and ηGDE are fixed such that the reconstruction of the best-fit is biased. This bias
leaves room for a possible explanation of a fraction of the GDE component present in
the mock data by DM emission; thus degrading the constraint on 〈σv〉. In particular,
we impose a constraint on these two quantities as

σGDE '
1− ηGDE

3 (5.110)

such that what corresponds to the data η0
GDE = 1 is at 3σ of the biased value. A 30%

bias is authorised therefore ηGDE = 0.7 and σGDE = 0.11. The results are shown in
Fig. 5.15. The 3σ constraints on 〈σv〉 are plotted for different total observation times
of the Fermi-LAT (T = 2 yr, 10 yr and 20 yr) in blue, red and green respectively. The
four panels correspond to two different annihilation channels (τ+τ− and bb) and two
Galactic DM profiles (NFW/Core). The dashed curves are obtained thanks to the
On-Off criterion in the direction (l, b) = (0◦, 10◦). The first remark is that the spectral
dependence of our curves follows the dark shaded area given by the Fermi-LAT
collaboration. In particular, we should compare the dash-dotted blue curve of the
top right panel which is obtained with the same Galactic DM profile than used by
the Fermi-LAT collaboration. A slight deviation can be observed at large WIMP mass
in the τ+τ− channel. This deviation can be explained as in their data analysis they
use photons above 100 GeV while we do not and the spectrum of photons produced
in the τ+τ− channel roughly decreases as E−1 with a bump around E ∼ mχ/3 as
shown in Fig. 5.9 and stated in CALORE et al. (2017) – before being exponentially
suppressed at larger energies. Therefore we do not probe the most sensitive region of
energy for high masses. In the bb case, a similar bump occurs at E ∼ mχ/20. This
factor of 10 difference in the position of the bump with respect to the mass, allows
keeping a good agreement up to mχ = 104 GeV. The second remark concerns the
time evolution. The constraints go like ∝ 1/

√
T in the simple analysis and this also
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approximately holds true in the likelihood analysis. This could be expected as we
do not impose systematics. Let us also point out that the constraint from identified
dwarf spheroidal galaxies is also an interesting limit. This method could allow to
discover DM before the diffuse emission or the detection of several unassociated
point-like sources. Eventually, the overall agreement with the Fermi-LAT results at
T = 2 yr justifies the method which allows now evaluating the constraints at longer
times.

In order to establish the sensitivity to point-like sources, we use two different RoIs
according to the resolution angle. In the configuration where θr = 0.1◦ we consider a
grid of 11×11 bins of size 0.2◦×0.2◦ and divide the energy range in 5 bins as for the con-
straints on the cross-section. When the resolution angle is θr = 1◦ then we reduce the
analysis to a grid of 3× 3 bins of size 2◦ × 2◦. The analysis is performed with the same
values of ηk, σk and σα in the likelihood than for the constraint. In Fig. 5.13 we can
observe that this more involved analysis (solid curves) reproduces similar behaviours
than the simple criterion (dashed curves) but with a correct overall normalisation.

5.3.6 The CTA-like configuration

For a CTA-like instrument, the constraint on the annihilation cross-section is
set in the inner 5◦ of the Galaxy. The RoI is taken as in SWSB15, a circular region
centred slightly above the galactic plane, divided into 28 bins and where the region
|b| < 0.3◦ is truncated out. The energy range is [25, 104] GeV and it is divided into
15 equal logarithmic bins. In the CTA-like case, for rapidity of convergence, and
only for the constraint on the annihilation cross-section we do not really draw
mock data according to the Poisson law but rather directly use the average value
nij ' µij(〈σv〉 = 0, ηk = η0

k), which is called the Asimov data set, in order to match the
SWSB15 analysis. This should give the same results as an MC simulation but faster,
avoiding the need for several mock data sets to obtain convergence. The analysis
is performed without and with the GDE, which means that ηGDE is either set to 0
or stays a free parameter. When neglecting the GDE we set σα = 0 in order to give
the strongest possible constraint in the model, otherwise, the systematics is taken
to be σα = 0.3% or σα = 1%. The isotropic extragalactic gamma-ray component is
neglected and we set σCR = σGDE → ∞, as we assume no constraints (in reality, the
isotropic gamma-ray contribution in the inner 5◦ is negligible in comparison to the
CR component). This amounts in reality to omit the Gaussian terms corresponding
to ηCR and ηGDE (and renormalising correctly). Our results are shown in the upper
panels of Fig. 5.16 for Cored (in red) and NFW (in blue) Galactic DM profile and for
two annihilation channels bb (upper left panel) and τ+τ− (upper right panel). In the
bottom panel, we compare the results of SWSB15 represented by the shaded dark
red and light red areas and obtained for an observation time T = 100 hr with an
Einasto profile, to our own results obtained in similar configurations in solid dark
and medium blue respectively. We observe small differences that can be explained
by two factors. Firstly, our GDE model is supposed to be isotropic in the centre
unlike in SWSB15 and overestimates the true value. Secondly, the final result is
rather sensitive to the effective collection area. As we consider an idealised average
dependence in energy this explain mostly the differences. Moreover two observation
times T = 100 hr (solid curves) and T = 500 hr (dashed curves) are displayed. In
the configuration without GDE and σα = 0 as well as in the configuration with
GDE and σα = 0.3% the constraints go as 〈σv〉max ∝ 1/

√
T as it was the case in the
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Figure 5.16 – Upper panels: 2.71σ constraint (90%) on the s-wave annihilation cross-section
of DM in bb (right upper panel) and τ+τ− (left upper panel) for a CTA-like instrument. The two
Galactic DM profiles are considered, Cored (red) and NFW (blue). We evaluate three different
configurations for the likelihood analysis with GDE ans 0.3% systematics (dark curves), with
GDE and 1% systematics as well as no GDE and 0% systematics. The details on the method
is described in Sect. 5.3.6. Moreover we also compared two observation time T = 100hr and
T = 500 hr. Lower panel: Same than above but with the Einasto DM profile for the MW
used in SWSB15 – here denoted S+15. The results obtained in SWSB15 for T = 100 hr are
represented by the red shaded areas. Moreover we also show comparison with CTA20 (CTA
CONSORTIUM 2020) results (light red curve).

Fermi-LAT-like instrument because the systematics are negligible in comparison to
the fluctuations of the backgrounds. However for σα = 1%, this behaviour changes as
for T = 500 hr the systematics become dominant and therefore fix the constraint.

The evaluation of the sensitivity to point source is limited to the region ψ > 5◦ and
is also determined with RoIs of 11 × 11 bins of size 0.2◦ × 0.2◦ or 0.02◦ × 0.02◦ whether
θr = 0.1◦ or 0.01◦. The energy range is similarly divided into 15 equal logarithmic
bins. Rigorously, in this region of research, the GDE is given by that of the Fermi-LAT
configuration and the likelihood adapted in consequences. Indeed we set σα = 0.3%
and we introduce a bias in the GDE component with ηGDE = 0.7 and σGDE = 0.11.
However, in practice, the GDE appears to be completely negligible in front of the
CR flux when ψ > 5◦. Henceforth, for faster convergence, we consider only the CR
isotropic background. In Fig. 5.13, already discussed after Eq. (5.94), the solid curves
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mχ
[GeV] channel bkg. T

[yr]
NFW Core

N−95% Nvis N+
95% N−95% Nvis N+

95%
θr = 0.1◦

100 τ+τ− DM+b 10? 0 1.8× 10−3 0.6 0 9.0× 10−3 0.80
100 τ+τ− b only 10? 0 2.4× 10−3 0.63 0 1.3× 10−2 0.85
100 bb̄ DM+b 10? 0 0.26 2.0 0 1.2 4.2
1000 bb̄ DM+b 10? 0 1.7× 10−2 0.92 0 7.1× 10−2 1.35
1000 τ+τ− DM+b 10? 0 1.3× 10−5 0.34 0 9.8× 10−5 0.41
100 bb̄ DM+ b 20† . . . . . . . . . 0 1.8 5.3
100 bb̄ DM+ b 20? . . . . . . . . . 0 3.3 7.8

θr = 1◦
100 τ+τ− DM+b 10? 0 5.0× 10−2 1.2 0 0.16 1.7
100 τ+τ− b only 10? 0 5.4× 10−2 1.2 0 0.19 1.8
100 bb̄ DM+b 10? 0 1.3 4.3 0 3.7 8.4
1000 bb̄ DM+b 10? 0 0.20 1.8 0 0.57 2.9
1000 τ+τ− DM+b 10? 0 4.2× 10−3 0.69 0 1.9× 10−2 0.93
100 bb̄ DM+ b 20† . . . . . . . . . 0.14 4.0 8.8
100 bb̄ DM+ b 20? . . . . . . . . . 1.2 6.0 12

? Using 〈σv〉max (10 yr) for the corresponding channel.
† Using 〈σv〉max (20 yr) for the corresponding channel.

Table 5.1 – Number of visible subhalos and 95% confidence interval assuming angular res-
olutions of θr = 0.1◦ and 1◦, and different WIMP models. The subhalo sensitivity a,d the
constraint on 〈σv〉 are evaluated using the recipe for the Fermi-LAT-like instrument detailed
in Sect. 5.3.5. The subhalo configuration is (α,mmin/M�, εt) = (1.9, 10−10, 0.01), i.e. it describes
a population of subhalos resilient to tidal stripping.

represent the evolution with the observation time of the minimal J-factor. Contrarily
to the asymptotic behaviour reached in the Fermi-LAT configuration we observe a
decrease at a large time for CTA. As a matter of fact, this is due to the systematics
that affect more, at earlier times, the constraints 〈σv〉max than the sensitivity of point-
like sources. Therefore at larger times 〈σv〉max becomes a constant and therefore Jcrit

min
in blue recovers a behaviour in ∝ 1/

√
T as in Eq. (5.83).

5.4 Detectable point-subhalos and their characteristics

In summary, we have hitherto introduced the notion of J-factor and point like
subhalos and we have evaluated the distribution of J within SL17. We also have de-
fined a background/foreground model for Fermi-LAT-like and CTA-like instruments
and from that, we have deduced, in Sect. 5.3, their sensitivity to point-like structure,
written in terms of J-factor, as well as the constraint on the DM annihilation cross-
section in order not to spoil the non-detection of the DM diffuse emission around the
GC. We have already shown the evolution of these last two quantities with time. In
this section, we insert the value Jmin and in the probability distributions of Sect. 5.2.3
in order to evaluate the total number of detectable/visible point-like subhalos (and
to a lesser extent of extended sources).
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5.4.1 Results for the Fermi-LAT analysis

In Fig. 5.22, Fig. 5.23 and Fig. 5.24 we show 2D-plots of Npt
> (J, n̂, θr) divided by

δΩr and defined in Eq. (5.52), with the parametrisation of n̂ by the angle ψ. That is,
the number of point-sources above the threshold J in every direction ψ (we recall
that knowing ψ is enough because of the spherical symmetry of the SL17 model).
On top we also show the evolution of the sensitivity Jmin(l, b) with (l, b) = (0◦, ψ) and
(l, b) = (180◦, ψ − 180◦) and for a 100 GeV WIMP annihilating into τ+τ−. Different
configurations are considered. Firstly, we look at two different backgrounds for the
sensitivity to point sources, one that is the sum of the baryonic sources and the
DM diffuse source (solid curves) which has been discussed so far and one that only
contains the baryonic sources (dash-dotted curves). In practice the latter simply
amounts to neglect the term 〈σv〉MjJ(∆Ej ,Pi) in Eq. (5.107) for the likelihood
analysis. Secondly, the value of 〈σv〉 is fixed to its upper limit after 10 yr associated
to two different observation times for the source search T = 10 yr (blue curves) and
T = 20 yr (red-brownish curves). These numbers mean that, for the red curve, the
diffuse DM emission has already been detected when the sensitivity to point-like
subhalos is established. In addition we show an extreme case with a constant large
〈σv〉 = 10−24 cm−3 s−1 and a sensitivity to point sources evaluated at 10 yr (green).
Note that the probability to detect subhalos above a constant threshold J peaks at
ψ = 50◦ for θr = 1◦ and ψ = 20◦ for θr = 0.1◦. This is better seen in the middle panels
that are just zoomed windows in ψ ∈ [0◦, 40◦]. This is consistent with the discussion
about the different regions done in Sect. 5.2.3. However, in the meantime, the
closer to the GC we are, the worse the sensitivity is. This is amplified when taking
into account the DM background in an NFW profiled host halo since it can have a
large contribution toward the GC when 〈σv〉 is large. See for instance the difference
between the solid and dashed green curves. The number of visible point-like sources
in the direction n̂ is Nvis(n̂) = Npt

> (Jmin(n̂), n̂, θr). In conclusion, there is a cooperation
between the two effects which tend to maximise Nvis(n̂) where Npt

> (J, n̂, θr) peaks, i.e.
around 20◦ and 50◦ as emphasised by the projections of the bottom panels.

In Fig. 5.18 we present a summary plot for the dependence in position of the most
detectable subhalos. We introduce Nvis(< ψ) = Npt

> (Jmin(n̂),P(ψ), θr) where P(ψ) is the
region of angle ψ′ such that 0 < ψ′ < ψ. This quantity is the number of detectable
point-like subhalo that are between the GC and the angle ψ. We look a two different
WIMP masses and two background configurations. The annihilation cross-section is
fixed to its 3σ limit after 10 yr (assuming no detection of the diffuse DM emission)
and the sensitivity to point sources is also evaluated at 10 yr. The main conclusion
is that if some were detectable, subhalos should be searched at l = 0◦ in the bands
10◦ . |b| . 40◦. This conclusion is also illustrated in the skymap Fig. 5.17 which
shows the number of subhalo detectable in every direction of the sky per units of
resolution solid angle for θr = 0.1◦. According to the figures shown in App. E.1 the
visible subhalos would then have a mass of 104 − 105 M� at θr = 0.1◦ and 106 − 107 M�
at θr = 1◦2. Moreover they should be at a distance s ∼ 8− 10 kpc from Earth.

The table Tab. (5.1) summarises the total number of visible point-like subhalos
that we can expect to detect for different background configurations, different WIMP
models, the two different Galactic profiles and the two benchmark resolution angles.

2Thus, they should not be impacted by the star encounters, as mentioned in the introduction of the
chapter.
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log10(Nvis(l, b)/(δΩr/sr))
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Figure 5.17 – Skymaps of the visible subhalos for a 100 GeV WIMP annihilating into τ+τ−

in the Fermi-LAT-like configuration. We also assume an NFW Galactic DM profile and the
subhalo configuration is (α,mmin/M�, εt) = (1.9, 10−10, 0.01). The annihilation cross-section is
fixed to its 3σ upper bound after 10 years of observation given by the likelihood analysis for
the Fermi-LAT-like recipe. The sensitivity is also fixed for 10 years of observation with a
resolution angle fixed to θr = 0.1◦. It is obtained with the likelihood analysis, including the full
background, the GDE, the isotropic component and the DM diffuse emission. The horizontal
lines are guides to indicate the latitudes |b| = 30◦, 60◦.

Different observation times are also compared. We give the average values as well
as the confidence interval at 95%. The main conclusion is that the total number
Nvis is less than 1 today (after 10 years of observation) as the DM diffuse emission
still has not been detected in the two band RoI around the GC. The most optimistic
scenario is found for mχ = 100 GeV and an annihilation into bb, essentially because
the constrain on the annihilation cross-section is slightly looser than for τ+τ−. Indeed
Nvis < 3.7 (1.3) for a cored (NFW) host halo. Nevertheless, the numbers are still
compatible with 0 at a 95% confidence level. Furthermore, it seems that increasing
θr gives a slightly more visible subhalo which could make us think that extended
subhalos may be easier to spot. However, this is not trivial as here we only evaluated
the sensitivity to point-like subhalos and that of extended sources should be slightly
degraded in comparison. Eventually, in the most optimistic configurations, several
subhalos may become detectable after 20 years of observations, and even more if the
diffuse emission DM was to be detected today. Therefore it motivates to push the
observations even further as hopes for discoveries are still alive.

5.4.2 Results for the CTA analysis

For an instrument like CTA, as already mentioned, the operative time is smaller
than for the Fermi-LAT and the field of view is also much more restricted. Therefore we
always need to focus on specific directions of the sky and in regions with a reasonable
size (in comparison to the field of view) in order to produce realistic results. Consider-
ing that CTA has an isotropic sensitivity to point source, in Fig. 5.20 we show the evo-
lution of the number of subhalo above a constant threshold in J-factor with the angle
ψ and in regions with the size the field of view. More precisely, we introduce simply

N
pt/e
>,FoV(J, ψ) ≡ Npt/e

> (J ; θr/e,PFoV(ψ)) (5.111)



5.4. Detectable point-subhalos and their characteristics 219

10−4

10−2

100
N

v
is
(<

ψ
)

mχ = 100 GeV, DM + b

mχ = 1000 GeV, DM + b

mχ = 100 GeV, b

0 10 20 30 40 50 60

ψ [◦]

10−12

10−9

10−6

10−3

d
N

v
is
(<

ψ
)/

d
ψ

[(
◦ )
−

1
]

NFW

Core

10−4

10−2

100

N
v
is
(<

ψ
)

0 10 20 30 40 50 60

ψ [◦]

10−8

10−6

10−4

10−2

d
N

v
is
(<

ψ
)/

d
ψ

[(
◦ )
−

1
]

Figure 5.18 – Upper panels: Number of detectable point-like sources in the volume between
the GC and the angle ψ. Lower panel : Angular distribution obtained from the derivation of
the upper panel curves. We consider a 100 GeV and a 103 GeV WIMPs annihilating into τ+τ−

(left panel) and bb̄ (right panel). The background is either sourced by baryons only or also by
the DM diffuse emission. The annihilation cross-section is fixed at its 3σ upper limit assuming
no detection of the diffuse DM component after 10 years of observations. The sensitivity to
point sources is also set after 10 years of observation. The subhalo model is given by α = 1.9,
mmin = 10−10 M� and εt = 10−2.

for both point-like sources of extended sources and where PFoV(ψ) is the patch of the
sky corresponding to the FoV around the direction n̂. However, this quantity is time
consuming to evaluate numerically. Therefore it is approximated by

N
pt/e
>,FoV(J, ψ) ' δΩFoV

δΩ(Pstrip
FoV (ψ))

N
pt/e
> (J ; θr/e,P

strip
FoV (ψ)) (5.112)

with Pstrip
FoV (ψ) the strip between ψ − θFoV and ψ − θFoV. Moreover in the numerator

δΩFoV ∼ 0.024 sr and in the denominator the solid angle of the strip is given by
δΩ(Pstrip

FoV (ψ)) = 2π(cos(ψ − θFoV) − cos(ψ + θFoV)). This figure is similar to Fig. 5.22,
Fig. 5.23 and Fig. 5.24 but it is not presented as a 2D plot. The coloured line represent
the contours of fixed J . The black lines are an example of the sensitivity J determined
for a 103 GeV WIMP annihilating into τ+τ− with two fixed annihilation cross-sections.
While we have seen how to evaluate the sensitivity to point-like sources we must also
detail how we evaluated to sensitivity to extended sources in order to plot the black
lines of the lower panel. The chosen criterion goes as follows. If a source as an ex-
tension θe then it is embedded in a square of n × n spatial bins with n = θe/θr. In
practice the true total area covered by the source is 2π(1− cos θr) ∼ πθ2

e . The total area
covered by the n2 bins is (2θrn)2 = 4θ2

e . Therefore the the effective total number of bins
in which the source shines is πn2/4. After numerically verifying that the sensitivity is
roughly proportional to the square root of the area it yields

Jext
min(θe, n̂) ∼ Jmin(n̂)

√
π

4
θr
θr

(5.113)

where Jmin(n̂) is the point-like sensitivity evaluated in Sect. 5.3. In this analysis we
only consider θe = 10θr which is not enough to assess the detectability of all extended
sources but gives a first indication. In Fig. 5.19 gives a practical example on how to
evaluate N

pt/e
> (J ; θr/e,P) from the curve Fig. 5.6 when P is the region 5◦ ≤ ψ ≤ 180◦.



220 5. DETECTABILITY OF POINT -LIKE SUBHALOS WITH GAMMA-RAY TELESCOPES

1015 1016 1017 1018 1019 1020

J [GeV2 cm−5]

10−1

100

101

102

103

104

N
(≥

J
)

J
p
t

m
in

J
e
x
t

m
in

(θ
e
)

Ntot, Je(θe = 1◦)

Npt(θr = 0.1◦), Jpt

NFW, 5◦ < ψ < 180◦

θr = 1◦, θe = 10θr

Figure 5.19 – Same than Fig. 5.6 but zoomed in and with examples of sensitivity to point
sources and extended sources for θr = 0.1◦. The value of Jpt

min has been computed for a DM
particle of mass mχ = 103 GeV annihilating via the channel τ+τ−, for 500 hr of observation
and for an annihilation cross-section 〈σv〉 = 10−23 cm3 s−1. The value of the Jext

min is evaluated
by Eq. (5.113). Note that here we also added the 95% confidence level bands that were only
present for Ntot in Fig. 5.6 not to saturate the plot.

This method can be directly adapted to any sky patch.

The first remark on Fig. 5.20 is that the annihilation cross-section must be higher
than the constraints set in Fig. 5.16 in order to have numbers greater than 1 for
the specific WIMP model treated here – since the solid black curves representing
〈σv〉 = 10−24 cm3 s−1 are well below 1. This gives first indications that neither
point-like subhalos nor extended subhalos may be detectable before the diffuse DM
emission in the GC. The second remark concerns the position where we are most
likely to detect these subhalos if it happens that they are. We find that the optimal
region in the search of point-like clumps is 0 . ψ . 40◦ (around ψ ∼ 25◦). This is a
similar conclusion to what we got in the Fermi-LAT-analysis, which is not surprising
as the distribution of subhalo is the same in both cases and in the latter case the
sensitivity was enhancing the probability of discovery in directions where the number
of subhalo above constant threshold peaks. For extended objects the distribution is
flatter and even if the region around ψ ∼ 50◦ (ψ ∼ 30◦) for θe = 1◦ (θe = 0.1◦) seems to be
better suited, extended subhalos could be detected in any direction. Moreover, this
plot is to be related to Fig. 5.6 and Fig. 5.7 where we already showed that Region 1
corresponding to 0◦ ≤ ψ ≤ 34◦ was the optimal region to detect point-like subhalos for
an isotropic sensitivity. Besides, we also mentioned that if the threshold value of J
is large enough N

pt/e
> (J ; θr/e,Pi) is maximal in the region 1 if θe = 1◦ and in the region

3 if θe = 0.1◦ but that the difference between region is not important. This is exactly
what is shown again here but differently.

Eventually, in Fig. E.7 we show the limits set on the annihilation cross-section
if we indeed do not detect a subhalo after 500 hr of observation in a patch of the
size of the field of view at ψ = 25◦ (solid lines). In comparison, the 2.71σ constraints
obtained with the diffuse emission after 100 hr of observation of the GC with GDE
and 0.3% of systematics is also plotted. The shaded areas correspond to the 68%
and 95% confidence levels. For an NFW Galactic profile, the constraint set with the
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subhalos is much larger than the constraint set by the diffuse DM emission, therefore
it means that we should not detect a subhalo (point-like or extended) before the diffuse
emission even with a five-time longer search of subhalos. For a cored profile the same
conclusion holds even if the difference is less pronounced because the constraints on
〈σv〉 from the diffuse are looser. For θr = 0.01◦ and point-like source searches (upper
right panel) the confidence intervals shrink. Indeed, at such small resolution angles
the number of point-like subhalo above a given J threshold J drops exponentially with
J (c.f. the light dashed curves in Fig. 5.6). Therefore, the range of J corresponding to
the range of fluctuations of the number of sources around 1 is smaller. Similar curves
are plotted in App. E.2 for different configurations and for a uniform observation time
of 100 hr in the 4 regions introduced in Sect. 5.2, which each cover a solid angle
∆Ω ∼ 1.05 sr, that is 44 times larger than the field of view. Therefore spending 100
hr uniformly in all these regions may be unrealistic but allows to make comparisons.
With such high exposure, the search of an extended object in a cored Galactic profile
seems to get competitive with a 100 hr observation of the GC for the diffuse DM
emission and the difference between regions is not discernible.

5.5 Conclusion

In this chapter, we have performed a fully consistent analysis of the detectability
of point-like subhalos within a semi-analytical model. Our method is complementary
to other work which relies on data analysis and/or a precise modelling of the back-
ground/foreground, cosmological simulation and/or Monte Carlo analysis. The main
advantage of our work is to account with a rather simple, yet realistic model, for the
correlation between the baryonic sourced background and the subhalo distribution
which is impacted by the baryonic distribution in the MW through tidal stripping ef-
fects. This is especially true for the Fermi-LAT instrument which is sensitive to the
pionic component and therefore to the distribution of hydrogen.

Three different questions have been addressed: (i) Is it possible that some subhalos have
been detected as unidentified sources in the Fermi-LAT catalogues? (ii) Can we expect to detect the
subhalos as point-like sources before detecting the diffuse DM emission with the Fermi-LAT or CTA?
(iii) If yes, then when, where and how much? Let us summarise this entire analysis and try
to extract the key points of the answer we have provided. We first have evaluated the
emissivity of DM in gamma rays and introduced the notion of J-factor. In a second
time, we have defined the notion of point like-subhalos and based on SL17 we have
developed the statistical analysis of their J-factor. Then we have considered mock
instruments resembling the Fermi-LAT and CTA for which we have given a consistent
and realistic background model. Subsequently, we have derived the sensitivity to
point-like subhalos and to the diffuse DM emission with a simple criterion and a
more involved likelihood analysis. From there we extracted the constraints on 〈σv〉
assuming no detection of the DM diffuse emission. We have shown that our results
are completely consistent with the literature, which allowed us to extrapolate the
constraints to any observation time. Moreover, we also established the existence of
a critical constant (over time) J-factor. If a subhalo has a J-factor under the critical
value it means that it will never be detectable before the discovery of the diffuse
DM emission. We evidenced, with the likelihood analysis, that this critical value
can slightly vary with time when the systematics of the instrument is introduced.
Then, combining the statistical analysis of the J-factor and the sensitivity, we have
extracted the total number of detectable subhalos in given patches of the sky for a
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Figure 5.20 – Number NFoV – defined in Eq. (5.111) – of sources above a given threshold in
J-factor in terms of the pointing angle. The coloured level lines correspond to fixed value of J
with J0 = 1 GeV2 cm−5. The black lines correspond to the sensitivity of CTA for a DM particle of
mass mχ = 103 GeV annihilating via the channel τ+τ− and for 500 hr of uniform observation
in the FoV. The solid line is for 〈σv〉 = 10−24 cm3 s−1 and the dashed one for 〈σv〉 = 10−22

cm3 s−1. The upper panels are for the detection of point-like sources while the bottom panel
are for the detection of extended sources with a size 10 times larger than the resolution. Note
that the x-axis differs in both cases as for point-like sources the interesting range in between
ψ = 5◦ and ψ = 90◦ only. The range of J-factor in the colour bar also differ.

time of observation assuming (or not) the detection of the DM diffuse emission first.
In practice scanning a variety of WIMP masses and two annihilation channel as well
as an NFW and a cored Galactic profile we have shown that it seems unlikely to have
detected point-like subhalos as gamma-ray sources yet – which answers the question
(i) – and if we do in the forthcoming future it should be a rather small number of O(1)
even after 20 years of observation with the Fermi-LAT. For CTA it seems unlikely to
ever discover a point-like subhalo unless a lot of observation time can be used for
the search of point-sources or unless the annihilation cross-section is large 〈σv〉 &
10−23 cm3 s−1 for a 103 GeV WIMP, in which case the DM diffuse emission should
also be discovered quickly in the GC after a few hundred hours – this answers the
question (ii). The most detectable subhalos should then mostly be rather massive and
present toward the GC where the tidal effects have efficiently pruned them to become
point-like while still large enough to provide a substantial gamma-ray emission. We
evaluated that a good window of research would be 10◦ ≤ ψ ≤ 40◦ for both the Fermi-
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Figure 5.21 – Annihilation cross-section that is necessary to detect at least one subhalo
(solid lines) with the shaded areas corresponding to the confidence levels at 68% and 95%.
These curves can also be interpreted as the maximal value of the cross-section possible if no
subhalos are discovered. The limit is set for a homogeneous observation of the sky over 500
hr in the FoV at ψ = 25◦ (where detection is favoured as seen in Fig. 5.20). The comparison
is made with the diffuse constraint already derived above also for an observation of 100 hr.
The left panel is the limit for point-like sources and the right panel for extended objects where
θe = 10× θr (the extension is 10 times the angular resolution).

LAT and CTA – which answers the question (iii). In the general case, we also noticed
that because a core Galactic profile tends to put a less strong constraint on 〈σv〉
(as the DM density toward the GC is, by definition, not cuspy) it would be easier in
that scenario to detect subhalos without the DM diffuse emission rather than in an
NFW profile. As a side analysis, we have looked at estimations for the detectability
of extended sources, especially in the case of CTA. It seems more probable to detect
extended sources than a point-like structure although the cross-sections involved also
seem to prevent a subhalo detection before the discovery of the diffuse DM emission.

In conclusion, we can wonder what it would take to obtain better results in terms
of the number of detectable subhalos. First of all, we need to mention that, in fact,
the chosen model for the subhalo population, that we used to extract the final num-
bers, has been chosen to be on the optimistic side with resilient subhalos. In a fragile
subhalo scenario, the conclusions would be drastically more pessimistic as all the
pruned, bright subhalos would have been destroyed around the GC. Another possi-
bility would be to consider models that change the mass function by changing the
primordial power spectrum and enhances the population of subhalos in the relevant
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Figure 5.22 – Angular profile of visible point-like subhalos (J > J
(l,b)
min ) assuming θr = 0.1◦

for a global NFW (left panels) or cored halo (right panels). Subhalo parameters are set to
(α,mmin/M�, εt) = (1.9, 10−10, 0.01). The Jmin curves assume 〈σv〉 fixed to its 3-σ limit for 10 yr
or to an already excluded value of 10−24cm3/s for a 100 GeV WIMP annihilating into τ+τ−. Ob-
servation times of 10 and 20 yr are considered. Top panels: Angular distribution of subhalo
J-factors (coloured), J (l,b=ψ)

min curves (l = 0◦, 180◦), and iso-log10Nvis. Bottom panels: Zoom in
the ψ ∈ [0◦ − 40◦] range.

mass range for detection. A concrete physical realisation of such a model could come
from primordial black holes (B. CARR et al. 2016) or ultra-compact mini halo, how-
ever, this is beyond the scope of this analysis.

5.6 Addendum: boost and Sommerfeld enhancement

When the annihilation cross-section of DM in gamma rays is velocity dependant,
the generated flux may be strongly dependent on the subhalo distribution. For ex-
ample, when it scales as the inverse of the velocity, subhalos, with a lower typical
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Figure 5.23 – 2-dimensional projection of Fig. 5.22 for a global NFW (left panel) or cored halo
(right panel).

velocity than the host halo, can be the main source of the signal. In this section,
we summarise the main results obtained in a collaboration that aims to classify dif-
ferent targets (clusters and dwarfs) for gamma-ray DM searches with velocity depen-
dant annihilation cross-sections (LACROIX et al. in prep.). In particular, four cases
are considered s/p-wave with/without Sommerfeld enhancement. Our contribution
is twofold, the new normalisation procedure of the SL17 model already discussed in
Chapter 3 and Chapter 4, which allow rescaling it to clusters and dwarfs, and the dis-
cussion on the impact of the subhalo population. Here we focus mainly on the second
aspect and we start by characterising the velocity dependence of the cross-section
before showing the impact of subhalos.

5.6.1 Velocity dependence of the cross-section

The Sommerfeld correction is a non-perturbative effect. In an annihilation process,
it arises from the multiple self-interactions of the incoming non-relativistic DM parti-
cles through a light mediator and the formation of bound states. This is more particu-
larly described by a Yukawa potential characterising the interactions between the in-
coming particles. One writes the modification of the cross-section with factors S` such
that σvrel = a0Ss(vrel/2)+a1v

2
relSp(vrel/2)+. . . where a0 and a1 are the s and p-wave coeffi-

cients. However, these two S functions cannot be evaluated analytically for a Yukawa
potential and one often relies upon the approximate Hulthén potential. It gives

Ss(v) = π

εv

sinh
(
2π 6εv

π2εφ

)
cosh

(
2π 6εv

π2εφ

)
− cos

(
2π
√

6
π2εφ
− 36ε2v

π4ε2
φ

)

Sp(v) =

(
6

π2εφ
− 1

)2
+ 144ε2v

π4ε2
φ

1 + 144ε2v
π4ε2

φ

Ss(vrel)

(5.114)

with the introduction of εv = {v ≡ vrel/2}/αχ and εφ = mφ/(αχmχ) where αχ = λ2
χ/(4π)

is the equivalent of a fine structure constant. Here λχ is then the coupling constant
of the mediator φ of mass mφ to the DM particle of mass mχ. For now on we use
v instead of vrel and we absorb the velocity dependence of the p-wave term in the
Sommerfeld factor. That is, we redefine ε2vSp → Sp. For a simple phenomenological
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Figure 5.24 – Same as Fig. 5.22 and Fig. 5.23 for an angular resolution of θr = 1◦.

study and to understanding the different regimes in velocity one can reduce both
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enhancement terms to the much simpler ansatz

S(εv, εφ) '
(
εpv + Ap

εv

)1 +
(
B

1
1+p
p

εv
εφ

)−q−
1+p
q

+
∞∑
n=1

[
(n2 − 1)εv

]p
f res
n (εv, εφ) (5.115)

where we set p = 0/2 for the s/p-wave term. The two coefficients, Ap and Bp, can be
set to recover the correct normalisation, in well defined limits, as

Ap = π

2p and Bp = 2p61+p

π2p+1 , (5.116)

even though they are not really important for the discussion of the velocity effects.
The parameter q > 0 does not play an important role as well and simply controls the
transition between the two regimes where εv � εφ or εv � εφ. Eventually, the function
f res
n resembles a Breit-Wigner distribution,

f res
n (εv, εφ) ' 1(

1− πn√
6
√
εφ
)2

+ n2ε2v

Θ [εφ − εv]

∼ 1
n2ε2v

δD

[
εφ −

6
π2n2

]
Θ [εφ − εv]

(5.117)

and is, therefore, approximated by a Dirac distribution at first order of small εv and
large n. In the following, we consider εφ less than 1 in order for Sommerfeld effects
to possibly be important. One then distinguishes three different regimes in veloc-
ity for a fixed value of εφ that are:

• 1� εv: No Sommerfeld enhancement, S ' εpv.

• εφ � εv � 1: Coulomb regime, S ' Apε−1
v

• εv � εφ � 1: Saturation/resonance regime.

In the last scenario resonances appear where f res
n is close to its maximum, therefore

for εφ ∼ 6/(πn)2. Otherwise, one simply gets the saturation behaviour dictated by
the right hand term of Eq. (5.115). All in all, in the saturation/resonance regime,
the enhancement factor goes as

S '
{

[π2εφ/6)]1−pεp−2
v ∝ εp−2

v /εp−1
φ (resonance)

ApBp(εv/εφ)p/εφ ∝ εpv/ε
1+p
φ (saturation) .

(5.118)

The evolution of the enhancement factor with εφ is illustrated in Fig. 5.25. The
dash-dotted and dashed lines show where the resonance peaks and the saturation
minima are, according to our ansatz. We see that we recover the correct behaviour.
Moreover one can also check that the value of the plateau corresponding to the
Coulomb regime, for εφ small and εv < 1 in the figure, the enhancement factor goes
indeed as ε−1

v .

In a DM structure, particles velocity spans a wide range of values, from 0 to the
escape velocity. Thus, different regimes may play a role simultaneously. As there
always are particles with a low velocity, the saturation/resonance regime should, a
priori, always have an impact if εφ < 1. However the velocity distribution is peaked
and some phase-space regions, if not populated enough, do not actually contribute
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Figure 5.25 – Evolution of the Sommerfeld enhancement factor with the ratio εφ for fixed val-
ues of εv. Left panel: s-wave. Right panel: p-wave (note that we absorbed the v2 dependence
be redefining the enhancement factor). We also represent the scaling, induced by our sim-
ple ansatz, for the resonance peaks and the saturation minima with dash-dotted and dashed
lines respectively.

significantly. In practice, we noticed that one can approximate the total Sommerfeld
enhancement in a halo simply by looking at the circular velocity at the scale radius
v ∼ (GNm(rs)/rs)1/2. This special velocity is associated to the factor εv. Let us assume
that εv ≡ ε0(m/m0)ν where m is the cosmological mass and ε0 and m0 normalisation
constants that do not need to be made explicit. According to the relations between the
scale parameters and the virial parameters one finds ν ' 1/3. This also defines a bijec-
tion between the mass and the parameter εφ. We introduce m?(εφ) ≡ m0(εφ/ε0)1/ν and
ε?φ(m) ≡ εv = ε0(m/m0)ν such that m?(ε?φ) = 1. Therefore, we define S(m, εφ) ≡ S(εv, εφ)
and we translate the discussion of the different velocity regimes into a discussion
of different mass regimes where


m?(1)� m : S ∝ mνp (no enhancement)
m?(εφ)� m� m?(1) : S ∝ m−ν (Coulomb)

m� m?(εφ)� m?(1) : S ∝
{
mν(p−2)/εp−1

φ (resonance)
mνp/ε1+p

φ (saturation) .

(5.119)

The value of m?(εφ) sets the transition between the Coulomb and resonance/satura-
tion regimes. The mass dependency can be summarised under a simple index sm,
such that S ∝ m−smε−γφ . In the left panel of Fig. 5.26 we show the different regimes
associated to halos of three different masses; 106 M�, 1012 M� and 1015 M�. The
left curves represent the velocity distribution (not normalised) at the scale radius,
obtained with the Eddington inversion method and assuming an infinite NFW profile.
The solid horizontal lines mark the circular velocity at the scale radius. The dashed
vertical lines give the associated value ε?φ(m). This highlights the fact tha,t because of
the extension of the velocity distribution, several regimes can contribute at the same
time. Besides, it also shows that, nonetheless, the velocity distribution is narrow
enough to justify the identification between the circular velocity and the mass of the
structure.
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Figure 5.26 – Left panel: Saturation velocity as a function of εφ (solid black curve), delin-
eating the transition between the Coulomb and saturation regimes. The Sommerfeld factor
is represented as the third dimension (purple color scale), as a function of velocity v and εφ.
The characteristic speeds of 1015, 1012, and 106 M� halos are indicated, with the corresponding
(unnormalized) full Eddington velocity distribution taken at the scale radius, along the right
vertical axis for illustration. Right panel: Sommerfeld-enhanced J-factors as a function of
εφ for DM halos of different masses, assuming an s-wave annihilation. Figure taken from
LACROIX et al. (in prep.).

In the right panel of Fig. 5.26 we show the Sommerfeld-enhanced J-factor for
several halos of different masses. Let us discuss the case of the three masses 106 M�,
1012 M� and 1015 M� reported on the left panel of the same figure. For 1015 M� almost
the whole phase space is within the Coulomb regime for all values of εφ. This is due
to the large value ε?φ ' 0.5. One barely witnesses any saturation peak except for the
first one at εφ ' 2/3. The small but visible second and third peaks are due to a small
fraction of phase space leaking on the saturation/resonance regime at slightly smaller
values of εφ. For 1012 M� one has ε?φ ' 0.05. For higher values, the bulk of the phase
space is in the saturation/resonance regime, hence the clear presence of the peaks.
For lower values it goes to the Coulomb regime but some part of the phase space
remains in the saturation/resonance regime for values of εφ slightly lower than 0.05.
This explains, again, the presence of peaks down to εφ ∼ 10−2. Eventually, similar
conclusions hold for 106 M� with ε?φ ' 5 × 10−4.

5.6.2 The impact of subhalos in a target halo

In order to understand the impact of subhalos on the J-factor of a target, one
recalls the individual properties first. For a subhalo of mass m, without Sommerfeld
enhancement, the J-factor goes as J(m) ∝ mc3 ∝ m1−3ε, where we assume here c ∝ m−ε
for simplicity. Adding the Sommerfeld enhancement is a priori non trivial – c.f. the
expression in Eq. (5.12). Nonetheless, following our identification between circular
velocity and cosmological mass one can approximate the enhanced J-factor by

JS(m) ' J0S(m, εφ)J(m) ∝ ε−γφ
(
m

m0

)1−3ε−sm
. (5.120)

We now recall that the J-factor of a structure is its luminosity over its distance
squared to the observer. Moreover, for non overlapping subhalos the luminosities
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add. Therefore, the total impact of subhalos in a given host at a fixed distance from
us is obtained by integrating the J-factor population as

J sub
S (εφ) =

∫ mmax

mmin
jS(m, εφ)d lnm with jS(m, εφ) ≡ mdNsub

dm JS(m, εφ) (5.121)

and with dNsub/dm the evolved mass function that we take proportional to the power
law m−α. We write the differential j-factor as jS(m, εφ) ∝ ε−γφ m−β where β ≡ α− 2 + 3ε−
sm. For most applications one can consider that mmax < m?(1) and the entire mass
range is subject to enhancement (as long as εφ < 1). According to the value of sm, the
computation then relies on the associated indices

βc = α− 2 + 3ε+ ν and γc = 0
βres = α− 2 + 3ε− ν(p− 2) and γres = p− 1
βsat = α− 2 + 3ε− νp and γsat = 1 + p .

(5.122)

and the total J-factor can be decomposed as

J sub
S (εφ) = J sub

S,c (εφ) + J sub
S,res(εφ) + J sub

S,sat(εφ) . (5.123)

After integration these three terms take the form

J sub
S,c (εφ) ∝ Θ (mmax −m?(εφ))

−ε−γc
φ

βc

[(
m

m0

)−βc
]mmax

max{m?(εφ),mmin}

J sub
S,sat(εφ) ∝ Θ (m?(εφ)−mmin)

−ε−γsat
φ

βsat

[(
m

m0

)−βsat
]min{m?(εφ),mmax}

mmin

J sub
S,res(εφ) ∝

∑
n

δD

[
εφ −

6
(πn)2

]
Θ (m?(εφ)−mmin)

−ε−γres
φ

βres

[(
m

m0

)−βres
]min{m?(εφ),mmax}

mmin

.

(5.124)

For a realistic value of the mass index α ' 1.95 and with ν ' 1/3 and ε ' 0.05 one
has βc > 0, βsat < 0. For the resonance term, the sign depends on whether we are in
the s-wave or p-wave scenario through the value of p. This means that all the subha-
los contribute to the s-wave resonances, while only the subhalos with a mass above
m?(εφ) contribute to the p-wave resonances. We are mainly interested in the evolution
of the J-factor with εφ. Using the bijection between the mass and εφ we can charac-
terise three regions according to the value of the latter and to the values of ε?φ(mmin)
and ε?φ(mmax). The behaviour of the three components is summarised in Tab. (5.2).
Note that the J-factor may also be mostly dominated by the smooth component of the
host halo, especially at large εφ, where the Sommerfeld correction is mild or null. The
cross-term can, however, be safely neglected. Indeed it is already negligible without
Sommerfeld enhancement in comparison to the smooth and subhalo contributions
(and therefore often omitted in the literature). Furthermore, it corresponds to the an-
nihilation of particles in subhalos with particles of the smooth distribution, occurring
with a velocity of the order of the velocity dispersion in the host.

In Fig. 5.27 we show the Sommerfeld-enhanced J-factor (including or not the
subhalo contribution), represented with respect to εφ for one galaxy cluster (Fornax),
two dwarf spheroidal galaxies (Draco and Ursa Major II), and one dwarf irregular
galaxy (IC10). In these plots one has εφ > ε?φ(mmin). Let us focus on Fornax which
experiences a large subhalo boost, even when Sommerfeld enhancement is null
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s-wave εφ < ε?φ(mmin) ε?φ(mmin) < εφ < ε?φ(mmax) ε?φ(mmax) < εφ < 1
J sub
S,c (εφ) cst. ∝ ε−βc/ν

φ ∼ ε−1.3
φ x

J sub
S,sat(εφ) x ∝ ε−1

φ ∝ ε−1
φ

J sub
S,res(εφ) x ∝ εφ ∝ εφ

p-wave εφ < ε?φ(mmin) ε?φ(mmin) < εφ < ε?φ(mmax) ε?φ(mmax) < εφ < 1
J sub
S,c (εφ) cst. ∝ ε−βc/ν

φ ∼ ε−1.3
φ x

J sub
S,sat(εφ) x ∝ ε−3−βsat/ν

φ ∼ ε−1.3
φ ∝ ε−3

φ

J sub
S,res(εφ) x ∝ ε−1

φ ∝ ε−1
φ

Table 5.2 – Dependence in εφ of all the Sommerfeld-enhanced J-factors.
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Figure 5.27 – Figures taken from LACROIX et al. (in prep.). Sommerfeld-enhanced J-factor for
four different targets whether the subhalo contribution is included (solid lines) or not (dashed
lines). Note that they are a factor 4π higher than what it would be with our own definition of
the J-factor (and also have an extra unit of steradians). To fasten the numerical evaluation,
the full phase-space distribution is not integrated over as is should be from Eq. (5.12). The
computation relies on an approximation through typical velocities evaluated as moments of
the PSDF, with the Eddington formalism, assuming no anisotropy. The latter being charac-
terised by a parameter called β, hence the notation β = 0. More details are given in the original
publication. Left panel: s-wave case. Right panel: p-wave case.

in the s-wave scenario. For this structure, at small εφ, when the host is already
deeply in the Coulomb regime one can clearly witness the impact of the subhalos
that further enhance the J-factor by several orders of magnitude. Moreover, one can
approximate that ε?φ(mmax) ∼ 0.05. Then, the subhalo behaviour is dominated by the
regime ε?φ(mmin) < εφ < ε?φ(mmax). We can verify that the scaling, with εφ, of the peaks
and minima is consistent with the corresponding values given in Tab. (5.2).

In conclusion, the presence of subhalos in a Sommerfeld-enhanced scenario can
tremendously boost the J-factor in different targets for gamma-ray searches and es-
pecially in galaxy clusters. We have shown here an simple analytical model for the
subhalo contribution of the J-factor dependence with εφ. This allows us to better un-
derstand the results of the extensive numerical computation that yield the curves of
Fig. 5.27. Further developments and details can be found in LACROIX et al. (in prep.).
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VI

Conclusion

Although numerical simulations are not able to fully characterise the DM
distribution on the entire sub-galactic scale range, they have shown tension
between the ΛCDM model predictions and the observations in the last decades.
Besides, assuming that very small DM clumps exist they may provide interesting
characteristic signatures yielding a substantial impact for current or next-generation
direct or indirect detection experiments. Therefore the DM fine-grained structure
in the Universe is, more than ever, worth being investigated. In this work, I have
explored many aspects of DM structuring on small scales throughout these four
interdependent chapters. The main goal was to provide a new or consolidated
analytical insight on DM distribution and its intrinsic nature: from the subhalo
population in the MW and other astrophysical objects to the impact for (indirect)
detection experiments, through its relation to particle models.

In Chapter 2, I reviewed the thermodynamics of WIMPs in the early Universe and
their chemical and kinetic decouplings. Then, I introduced a simplified particle model
which can be explored with a C++ code that I developed from scratch. It allows relat-
ing particle physics properties to the minimal cosmological mass of halos. I performed
an illustrative analysis of two scenarios (constrained by the DM abundance) including
a scalar and a pseudoscalar mediator respectively. I showed the pertinent behaviours
of the different cross-sections involved, especially with the velocity and I extracted the
main scaling relations between the coupling constant, the particle masses and the
minimal mass of subhalos. I particularly evaluated the self-interaction cross-section
and compared it to the expected values to solve the small scale cusp-core issue. In
the low mass scalar mediator scenario, self-interactions can become sufficiently im-
portant to enter the SIDM regime. Eventually, I discussed the possible consequences
for detection experiments. This analysis shows how probing the signature of small
structures can tell us more about DM particle nature.

In Chapter 3, I reviewed the framework underlying the formation of halos in the
CDM paradigm, from quantum fluctuations to growth, collapse and virialisation. Af-
terwards, I summarised some notions of excursion set theory and the associated
merger trees. Using one such algorithm I evaluated the first order subhalo mass
function in a given host halo for the entire mass range (up to 30 orders of magnitude)
using a physically motivated constrained fit. This fit gives a power low scaling, m−α

at small mass, with α ∼ 1.95 and produces a realistic behaviour at large mass. Thus,
I gave a new calibration method of the SL17 model that no longer depends on cos-
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mological simulations. I compared my results to similar studies in the literature and
found reasonable agreements. Furthermore, my fit was then used to study the effect
of Sommerfeld enhancement in various size objects, from dwarfs to clusters.

In Chapter 4 I introduced the details of the SL17 model and I showed how one can
derive the current distribution of subhalos in a galaxy like the MW from the cosmo-
logical distribution with the addition of tidal effects. More importantly, I introduced
a new analytical study of stellar encounters and their impact on the total population
of subhalos. I improved the usual calculation done in the literature to account for
the impact of one star on a single subhalo. Subsequently, I derived the effect of the
entire stellar disc. In order to be as precise as possible, I performed a full proba-
bilistic treatment of the energy gain of the particle inside the structure. I showed the
approximate impact on the subhalo profile. Note that, this analysis, centred on the
central limit theorem happens to exhibit several subtleties which had to be taken into
consideration. Eventually, using the recipe of SL17, I showed the consequences for
the total subhalo population, the subsequent mass function and the subhalo number
density. The results point towards important effects on the lighter subhalos in the
central regions of the Galaxy (< 10 kpc). Stellar encounters can even enhance the
disruption of fragile subhalos and deplete their local number density. If subhalos are
resilient, stars still strongly prune them. This may have different effects for detec-
tion experiments depending on the local distribution of DM and lead to interesting
signatures (such as the heating of the Galactic disc).

In Chapter 5, using the SL17 model, I evaluated the probability to detect
subhalos as point-like sources of gamma rays with Fermi-LAT-like and CTA-like
experiments. With an analytical model for the baryonic diffuse emission correlated
to SL17, I have analysed if we could realistically hope to observe one subhalo
before detecting the diffuse DM emission (due to to the smooth distribution and
to the unresolved sources) in the MW. This study was motivated both by the
presence of 1525 non-associated point-sources in the fourth Fermi-LAT catalogue
and the future launch of the more precise experiment CTA. I have shown that,
with both instruments, the diffuse emission is more likely to be detected first,
even though some optimistic configurations may predict O(10) visible structures in
the years to come. I derived the regions of the sky where one should search for
the emission of point-like subhalos in order to optimise the probabilities (around
20◦ to 60◦ from the GC) and thus set a guide for the experimental collaborations.
The results being model-dependent a detection or a non-detection detection
with more collected data will help, in any case, to obtain information on the na-
ture of DM and/or on its distribution in the Galaxy or to further constrain the models.

Since the emergence of the missing mass problem, all the observational and
experimental efforts invested in DM search have been pending an unambiguous
detection. The current research around DM gets more and more exciting with the
new experiments and data releases coming up. One can cite for instance (amongst
many) CTA, Gaia, SKA, all the observatory of the 21-cm signal, the space-based laser
interferometers, the next generation direct detectors etc. The fine-grained structuring
may be particularly interesting to learn more about DM nature in the future. Small
scales already point towards tensions or inconsistencies emerging in the current
cosmological paradigm. The detection of a single light substructure would give
critical information on DM intrinsic constitution. In this context, it becomes crucial
to accurately model the full DM distribution. Analytical models, such as the one
I have contributed to in this work, are very powerful tools to describe the entire
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population of subhalos in the Galaxy and other objects. Working at the crossroad
between particle physics, cosmology, astrophysics and gravitational dynamics, in a
consistent global picture, further brings the various connections between different
aspects of the models and enhances the different constraints and detection prospects.

This entire document can be divided in several articles:

• (FACCHINETTI et al. 2020): Facchinetti G., Lavalle J. Stref M., Statistics for dark
matter subhalo searches in gamma rays from a kinematically constrained population model. I:
Fermi-LAT-like telescopes, submitted to physical review D. Based on Chapter 5

• Facchinetti G., Lavalle J. Stref M., Statistics for dark matter subhalo searches in gamma
rays from a kinematically constrained population model. II: CTA-like telescopes. Based on
Chapter 5.

• Facchinetti G, Stref M. Lavalle J., Effect of stars on the Galactic dark matter subhalo
population. Chapter 4

• Facchinetti G, Lavalle J., Subhalo population in a simplified dark matter model. Based on
Chapter 2 and the end of Chapter 3

• Lacroix T., Facchinetti G., Pérez-Romero J., Stref M., Lavalle J., Maurin D.,
Sánchez-Conde M. A., Classification of targets for gamma-ray dark matter searches with
velocity-dependent annihilation and substructure boost I: detailed prediction. I contributed
to this collective work by providing the subhalo mass function for the SL17
that allows its application to various size objects. This point is discussed in
Chapter 3. Besides, I participated in the discussions for the interpretation of
the results.

Most of the articles listed above have been or are on the verge to be submitted –
except for the full study of the simplified model which is an ongoing task. This thesis
paves the way toward further improvements around the SL17 model and new studies,
related to this work, are foreseen. In particular, I would like to make the model able
to properly describe the halo distribution at higher redshifts, with the aim to use it
in different contexts (e.g. for the study of the 21 cm line). In addition, I should also
resume working on the DM phenomenology in the CP-odd sector of the NMSSM that
takes place in a larger collaboration around a project of supergravity. Eventually, on
a larger time scale, I also want to search for new possible collaborations. Firstly, with
experts of simulations or Newtonian dynamics, to work around the stellar encounters
and more generally on the impact of tidal effects. Secondly with CMB experts to
further develop around the simplified model. I would like to plug in DM interactions
beyond the effective-coupling way and track more systematically velocity-dependent
signatures. To conclude, I look forward to many new projects on DM related topics.
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A
Mathematical and numerical tools

This appendix is devoted to detail the different mathematical and numerical tools
used in this work. We start by defining several special functions. Then we introduce
notions of probabilities that are largely used in different analysis and in particular
we focus on the central limit theorem. Afterwards, we describe the maximisation
algorithm used in our likelihood analysis and the Fourier transform. Eventually,
we give the structure of our codes.

A.1 Common special functions

A.1.1 Error function and its complementary

The error function and the complementary error function are defined as

erf :


R→ ]− 1, 1[

x 7→ 2√
π

∫ x

0
e−t

2dt
and erfc :

{
R→ ]0, 2[
x 7→ 1− erf(x) (A.1)

This function are of particular interest when studying Gaussian probability distribu-
tion functions as the erf function gives the cumulative distribution function and erfc
the complementary cumulative distribution function – see App. A.2.

A.1.2 Gamma function

The Gamma function is defined, for all z ∈ C+ ≡ {z ∈ C | <(z) > 0} by the

Γ : z 7→
∫ +∞

0
tz−1e−tdt . (A.2)

Note that the notation C+ is not universal and is just a short notation introduced
here. This definition can be extended to the entire complex plane except for the non-
positive integers, denoted E in the following, by analytic continuation. One of the
most interesting properties of the Gamma function is that

Γ(z + 1) = zΓ(z) ∀z ∈ E (A.3)

This result can be obtained by integration by part for z ∈ C+, and by unicity of the
analytic continuation it also holds for z ∈ E. A direct consequence of this property is
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that if n ∈ N?, the Gamma function evaluated in n is Γ(n) = (n − 1)!. Moreover this
recursion formula is also useful when used with the special value Γ(1/2) =

√
π.

It is possible to introduce incomplete versions of this function. Namely, the upper-
incomplete gamma function and the lower-incomplete gamma function defined, for
s ∈ R+ and z ∈ C+ by

Γ : (z, s) 7→
∫ +∞

s
tz−1e−tdt and γ : (z, s) 7→

∫ s

0
tz−1e−tdt . (A.4)

These two quantities straightforwardly satisfy Γ(z, s) + γ(z, s) = Γ(z) for all (z, s) ∈
(C+,R+). However one of the most interesting properties for this work is

Γ(n, s)
Γ(n) = e−s

n−1∑
k=0

sk

k! ∀n ∈ N∗ (A.5)

as it relates the cumulative distribution function for a Poisson distribution to the
Gamma functions – see App. A.2. The ratio Γ(n, s)/Γ(n) is often referred as the regu-
larised incomplete gamma function evaluated in (n, s).

A.1.3 Euler-Beta function

The Euler beta function is given by

B :


C+ × C+ → C

(x, y) 7→
∫ 1

0
tx−1(1− t)y−1dt .

(A.6)

We can notice that by a simple change of variable in the integral, B(x, y) = B(y, x)
for all (x, y) ∈ C+ × C+. Moreover, a key property of the Beta function is that it can
be written using Gamma function as

B(x, y) = Γ(x)Γ(y)
Γ(x+ y) ∀(x, y) ∈ C+ × C+ . (A.7)

Eventually, it is also possible to introduce an incomplete beta function as

B :


[0, 1]× C+ × C+ → C

(s, x, y) 7→
∫ s

0
tx−1(1− t)y−1dt .

(A.8)

A.1.4 Riemann zeta function

The Riemann-zeta function is defined on C1 ≡ {z ∈ C | <(z) > 1} as

ζ :


C1 → C

s 7→
∞∑
n=1

1
ns
.

(A.9)

Interestingly, the Riemann zeta function is related to the Gamma function by

ζ(s) = 1
Γ(s)

∫ ∞
0

ts−1

et − 1dt ∀s ∈ C1 (A.10)
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This equality can also be used as the main definition of the zeta function. Similarly
as the Gamma function, the zeta function has an analytical continuation on the en-
tire complex plane except in s = 1 where it has a simple pole. Several particular
values of this function are

ζ(−1) = − 1
12 , ζ(0) = −1

2 , ζ(2) = π2

6 , ζ(4) = π4

90 . (A.11)

While the first two are of particular mathematical interest and can have surprising
meaningful consequences in physics (e.g. for the Casimir effect and in string theory)
only the last two are relevant in our analysis.

A.1.5 Modified Bessel function of the second kind

The modified Bessel function of the second kind (or hyperbolic Bessel function
of the second kind), is defined as the solution the decaying solution of the ordinary
differential equation of unknown y,

x2 d2y

dx2 + x
dy
dx −

(
x2 + α2

)
y = 0 (A.12)

with α ∈ R a parameter. When α > −1/2 the solution can be expressed as an integral

Kα(x) =
√
π

Γ
(
α+ 1

2

) (x
2

)α ∫ ∞
1

e−tx(t2 − 1)α−
1
2 dt ∀x > 0 . (A.13)

Moreover it is possible to prove that

Kα+1(x)−Kα−1(x) = 2α
x
Kα(x) ∀x > 0 . (A.14)

A last interesting properties of these function concerns their limit at infinity. More
precisely an equivalent is given, for every values of α ∈ R as

Kα(x) ∼
x→∞

√
π

2xe
−x . (A.15)

A.2 A few words on probabilities

A.2.1 Formal mathematical definition

Because a large part of the work presented in this document relies on the use of
probabilities, we introduce here a few formal notions about probabilities. This brief
summary is based on the dedicated chapters on probabilities in APPEL (2007) and
the reader is invited to refer to this book for complements that are omitted here.

Probability space. In a very formal way, probabilities are defined through a
probability space (Ω,Σ, P ) made of Ω a set called the sample space, Σ a σ-algebra on Ω
and P a measure that satisfy P (Ω) = 1. In other words, a probability space is nothing
more than a measured space of measure unity. In practice we work with Ω = R and
therefore the σ-algebra we consider are Σ = B(R), the corresponding Borel sets.

Random variable. In general, let (Ω,Σ) and (Ω′,Σ′) be two measurable spaces. A
function X : Ω → Ω′ is measurable if X−1(A) ∈ Σ for all A ∈ σ′, we say that X ∈ mΣ.
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A random variable is a real-valued measurable function in a probability space. The
space X(Ω) is called the sample image or definition domain of X.

Probability law. Let (Ω,Σ, P ) be a probability space and let X be a random vari-
able. The probability law for the random variable X is given by

PX :
{
B(R) → [0, 1]
B 7→ P (X−1(B)) .

(A.16)

More conveniently it is common to introduce the notation {X ∈ B} ≡ X−1(B). Indeed
since this quantity is the probability to have X in B it is more intuitive written under
that form. Moreover we can also associate to X another function that is called the
cumulative density function (CDF)

FX :
{

R → [0, 1]
x 7→ P{X ≤ x} = PX (]−∞, x]) .

(A.17)

It is also common to work with the complementary cumulative density function
(CCDF) given by FX : x 7→ 1 − FX(x). When FX is a continuous function the random
variable X is said to be continuous too. Moreover, X is absolutely continuous if there
exist a positive and measurable function pX : R → R+ such that one can write

FX(x) =
∫ x

−∞
pX(t)dt . (A.18)

The function pX is then called the probability density function (PDF) of X. On the
contrary, we say that a random variable is discrete if there exists D ∈ B(R) countable,
such that P{X /∈ D} = 0.

Random vectors. Let X1, ...Xn be n random variables, then X = (X0, .., Xn) is called
a random vector. The joint cumulative distribution function for X is given by

FX :


Rn → [0, 1]

x 7→ P

{
n⋂
i=1
{Xi ≤ xi}

}
.

(A.19)

If X0, ..., Xn are discrete random variables, then we can write Xi(Ω) = {xji | j ∈ N} so that
everything is determined by the knowledge of pi1,..in ≡ P{{X0 = xi10 } ∩ ... ∩ {Xn = xinn }}.
However when they are continuous random variable, things get more involved and
therefore we will focus on that configuration in the following. We introduce a joint
PDF under the form

pX(x) = ∂

∂z0

∂

∂z1
. . .

∂

∂zn
FX(z)

∣∣∣∣
z=x

. (A.20)

For two random vectors X,Y we can define similarly the joint PDF denoted p(X,Y).
The marginal PDF for X is the function given by the integral

pX(x) =
∫
p(X,Y)(x,y)dy (A.21)

and the conditional PDF p(X|Y) is defined as

p(X|{Y=y}) : x 7→
p(X,Y)(x,y)
pY(y) . (A.22)
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This definition is well motivated by Bayes’ theorem. For all y such that pY(y) = 0 then
p(X,Y)(x,y) = 0 for almost all x and in that case p(X|{Y=y})(x) = 0 for almost all x too.
Conditional PDF are useful because it is usual in physics to only know, a priori, the
probability densities p(X|{Y=y}) and pY. From the definition we can recover the joint
PDF p(X,Y) and the marginal PDF pX easily. This is something largely used in this
work. In practice, however, we adopt simpler notation and we denote

”p(X|{Y=y})(x) ≡ pX(x | {Y = y}) = px(x |y)” (A.23)

when the random vector Y is implicit and can be guessed from context. Moreover
note that here the distinction between the random vector X (upper case) and its val-
ues x (lower case) is omitted and everything is written with the same letter in order
to gain space and because in physical context there is usually no need for the dis-
tinction as long as we remain careful.

A.2.2 Central limit theorem

The central limit theorem is a powerful mathematical tool which gives the proba-
bility distribution of a sum of random variables. In this work, we rely on this theorem,
especially in Chapter 2 where we are confronted with its limitations. More insights
on the issue is given here. Firstly, let us assume that we have a succession N of
random variables xi that are independent and identically distributed (i.i.d.). We want
to know the PDF pX of the random variable

X =
N∑
i=1

xi . (A.24)

The PDF for every xi is denoted px. In order to do so, one convenient method re-
lies on the characteristic function

φx(ω) ≡ eiωx =
∫
px(x)eiωxdx and φX(ω) ≡ eiωX =

∫
pX(X)eiωXdX (A.25)

which is the Fourier transform of the PDF. Indeed, because the Fourier transform of
a convolution is the product of the Fourier transforms, it can be shown that

φX(ω) = φNx (ω) ∀ω (A.26)

Consequently, by the inverse Fourier transform it yields

pX(X) = 1
2π

∫
φNx (ω)e−iωXdω . (A.27)

Nevertheless, this expression is not necessarily easy to work with as it implies
two Fourier transforms and the evaluation of a function to a power N where
N can be arbitrary here. The central limit consists in looking at what happens
when N → ∞ as it makes things simpler. In the following it is convenient to
work with the reduced variable

y ≡ x− x
σx

(A.28)

where x is the average value of x and σx its standard deviation. Here the existence of
σx 6= 0 is implicitly assumed. The PDF for y is denoted py and is directly related to px
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via py(y) = px(σxy + x)σx. By a direct evaluation the average and standard deviation of
X are Nx and

√
Nσx. We can further introduce two last random variables

Y ≡
N∑
i=1

yi = X −Nx√
Nσx

and Z ≡ 1√
N
Y (A.29)

Because the PDF satisfy pY (Y )dY = pZ(Z)dZ and because the property Eq. (A.26)
holds for Y it yields

φZ(ω) = φY

(
ω√
N

)
= φNy

(
ω√
N

)
. (A.30)

It is now time to use the main property of the characteristic function (the reason
why it is called that way) which is

φy(ω) =
n∑
k=0

(iω)k

k! mk +O
(
ωn+1

)
with mk ≡

∫
ykpy(y)dy . (A.31)

where by definition of y the moments are m0 = 1, m1 = 0 and m2 = 1. Plugging this
expression in Eq. (A.30) and taking the logarithm gives

lnφZ(ω) = N ln
[
1 + 1

N

n∑
k=2

ik
mk

k!Nk/2−1ω
k +O

( 1
N (n+1)/2

)]

lnφZ(ω) = −ω
2

2

[
1 + im3

3
ω

N1/2 −
(

3− m4
12

)
ω2

N
+O

( 1
N

)5/2
]
.

(A.32)

In the infinite N limit it yields

lim
N→∞

φZ(ω) = e−
ω2
2 (A.33)

which implies that Z ∼ N (0, 1) where N (0, 1) is the normal distribution of mean 0
and variance 1. Therefore by the different relations involved Y ∼ N (0,

√
N) and X ∼

N (Nx,
√
Nσx). However as in physics nothing is ever infinite, it is necessary to be

careful when the large N limit is applied to simplify a problem. When the distribution
has large high-order moments the value of N must be sufficiently large. In practice
here a very rough order of magnitude is given by

N � m
2

k−2
k ∀k ≥ 3 . (A.34)

The important point is that the threshold value for N , which allows to safely approxi-
mate the PDF of the sum X as a Gaussian, depends on the PDF of the i.i.d. A highly
non symmetrical distribution for instance gives a large m3, m5, . . . that may impose to
use a larger N in comparison to an initially symmetric distribution.

A.3 Dimensional reduction and maximisation algorithm

In this paragraph we are interested in the maximisation of a function L (θ, ζ, ξ).
The different arguments are three set of parameters such that ξ is fixed. Moreover we
assume that we can write the solution of the equation

∂L

∂ζ
= 0 as ζ = z(θ) . (A.35)

Therefore we first want to reduce the maximisation problem to the hypersurface z(θ)
and then numerically find a solution. To do so we will define the restriction λ on the
hypersurface and compute all its derivative that will then be plugged in a Newton-
Ralphson algorithm.
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A.3.1 First and second derivatives on the hypersurface

We introduce λ(θ, ξ) = L (θ, z(θ), ξ). The first derivative of λ can be easily found
via a direct differentiation,

∂λ

∂θi
= ∂L

∂θi

∣∣∣∣
ζ=z(θ)

+
∑
q

∂zq
∂θi

∂L

∂ζq

∣∣∣∣∣
ζ=x(θ)

= ∂L

∂θi

∣∣∣∣
ζ=z(θ)

(A.36)

since, indeed, the second term is equal to 0 by definition of z. Let us now evalu-
ate the second derivative as

∂2λ

∂θj∂θi
= ∂2L

∂θj∂θi

∣∣∣∣∣
ζ=z(θ)

+
∑
q

∂zq
∂θj

∂2L

∂ζq∂θi

∣∣∣∣∣
ζ=z(θ)

(A.37)

Although this expression could be use directly, we want to express it in a more con-
venient form, making explicit the symmetry under the exchange θi ↔ θj. Thus let us
simplify the expression by first noticing that in

∂

∂θi

 ∂L

∂ζq

∣∣∣∣∣
ζ=z(θ)

 = ∂2L

∂ζq∂θi

∣∣∣∣∣
ζ=z(θ)

+
∑
p

∂zp
∂θi

∂2L

∂ζp∂ζq

∣∣∣∣∣
ζ=z(θ)

, (A.38)

by definition the left-hand side of this equation is equal to 0. Therefore we can relate
the two terms in the right hand side according to

∂2L

∂ζq∂θi

∣∣∣∣∣
ζ=z(θ)

= −
∑
p

∂zp
∂θi

∂2L

∂ζp∂ζq

∣∣∣∣∣
ζ=ê(θ)

. (A.39)

Replacing Eq. (A.39) in Eq. (A.37) yields

∂2λ

∂θj∂θi
= ∂2L

∂θj∂θi

∣∣∣∣∣
ζ=z(θ)

−
∑
q,p

∂zq
∂θj

∂zp
∂θi

∂2L

∂ζp∂ζq

∣∣∣∣∣
ζ=z(θ)

. (A.40)

In addition of being explicitly symmetric, this expression can happen to be more con-
venient to use in lengthy computations.

A.3.2 The Newton-Ralphson algorithm

Now that we have determined the expression of the first and second derivative
of λ we can use the Newton-Ralphson algorithm to find its maximum. First we in-
troduce the derivative vector D(θ, ξ) = ∇θλ(θ, ξ) such that, by definition of the best
fit θ̂ it satisfies D(θ̂, ξ) = 0. Let us now Taylor-expand the expression of D around
the best fit point as

D(θ, ξ) =
[
(θ − θ̂).∇θ

]
D(θ, ξ) +O

(
|θ − θ̂|2

)
(A.41)

The left hand side can be written in terms of its components as

[
(θ − θ̂).∇θ

]
D(θ, ξ) =

∑
j

(θj − θ̂j)
∂2λ

∂θj∂θi
=
∑
j

(θj − θ̂j)Hji(θ, ξ)

with Hji(θ, ξ) ≡ ∂2λ

∂θj∂θi

(A.42)
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ChemicalDecoupling

DegreesOfFreedom

CrossSection_ccff

StandardModel

CrossSection_cfcf

KineticDecoupling

MinimalHaloMass

MyMaths

SpecialIntegrations

Differentiation

Particle

MyUnits

CPOddHiggsLowMass

InputReader

Virtual Singleton Pure header

Decay rates

GaussLegendre

ExceptionHandler

CrossSection

ParticlePairs

Mathematica - FeynCalc

DarkSector

CrossSection_ccsX

Amplitude_ccff

Amplitude_ccsX

Amplitude_cfcf

gsl (adaptative integrals)

ConstrainedHaloMass

input.in

Mmin.out

ConstrainedCoupling.out

CrossSection_ccgg

Amplitude_ccgg

Spline

Figure A.1 – Class structure of the C++ code. The upper panel is related to Chapter 2 and
DM evolution in the Early Universe in a particle physics model. In red are highlighted the
parts that depend on outer libraries and tools such as FeynCalc (SHTABOVENKO et al. 2020)
and the GNU Scientific Library (GSL). The plain arrows represent the "inclusion" of the header
files while the dashed arrows symbolises a mother-daughter relationship. Singletons are in
blue/green and pure header files are in dark grey.

the Hessian matrix. Therefore we can rewrite the previous equation in matrix notation

D(θ, ξ) = [H(θ, ξ)] (θ − θ̂) +O
(
|θ − θ̂|2

)
. (A.43)

Note that here we make use of the symmetry of the Hessian matrix. By inverting
H it then yields the approximation

θ̂ = θ −
[
H−1(θ, ξ)

]
D(θ, ξ) +O

(∣∣∣[H−1(θ, ξ)
]

(θ − θ̂)
∣∣∣2) (A.44)

The idea behind the Newton-Ralphson algorithm is, as in its 1D version, to start from
a value θ̂0 and try to approximate θ̂ by the sequence

θ̂n+1 ≡ θ̂n −
[
H−1(θ̂n, ξ)

]
D(θ̂n, ξ) (A.45)

such that

θ̂ = lim
n→∞

θ̂n . (A.46)

A.4 Fourier transform

Let f be a function from Rn to Rm where n,m > 0. We assume that f ∈ L1(Rn,Rm).
Then it is possible to define the Fourier transform of f as

f̂ : k 7→
∫
f(x)e−ix.kdnx (A.47)
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BaryonModel
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GammaSpectrum

Cosmology
MyMaths

Spline

Figure A.2 – Class structure of the C++ code for the three projects presented in Chapter 3,
Chapter 4 and Chapter 5. Colour coding it the same than that of Fig. A.1. Here python
tools are used to fit functions and analyse large amount of data coming from Merger Trees
Monte-Carlos.

If f̂ is Lebesgue integrable too then is it also possible to inverse this transformation.
Indeed one can show that the function defined by

ˆ̂
f : x 7→ 1

(2π)n
∫
f̂ (k) eix.kdnk (A.48)

is such that ˆ̂
f = f(x) for almost all x. When the function f is L2 instead of L1 similar

properties hold and the notion of almost everywhere is no longer necessary if the
function is sufficiently smooth. In order to prove results in L2 it is useful to introduce
first Schwartz’s space S that is dense in L2 and define the Fourier transform in that
space. Because L2 is compact and the Fourier transform is linear, properties in S can
be continued in L2. Moreover, for distributions, this space is even more useful. Indeed
one can introduce the tempered distributions as the function in the dual S ′. If D is
the space of test functions then one can show that S ′ ⊂ D′ and therefore tempered
distribution are a subclass of the usual distributions. The Fourier transform of a
tempered distribution T can be defined by its action on a test function ϕ ∈ S as〈

T̂, ϕ
〉

= 〈T, ϕ̂〉 . (A.49)

This definition coincides with the Fourier transform introduced above for functions.
Therefore, if we take the example of the Dirac distribution,〈

δ̂, ϕ
〉

= 〈δ, ϕ̂〉 = ϕ̂(0) =
∫
ϕ(x)dnx = 〈T1, ϕ〉 (A.50)

so that the Fourier transform of the Dirac distribution is the constant function T1 :
x 7→ 1 and the inverse is also true. In physics, for conventions, we are careful to make
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1 ## Number of points/models to evaluate ##
2 Npoints :: 2
3

4 ## Dark sector particles ##
5 # DS particle of the form DSi :: (type, num of dof)
6 DSCONT :: NDM :: 2
7 DSCONT :: DSPart :: (scalar, 1)
8 DSCONT :: DSPart :: (pseudoscalar, 1)
9 DSCONT :: DSPart :: (vector, 3)

10

11 ## Dark matter particle type ##
12 # By default it is "Majorana" but can also be set to "Dirac"
13 TYPEDM :: 0 :: Majorana
14 TYPEDM :: 1 :: Majorana
15

16 # Masses dark sector [GeV] ##
17 # −> set m_0 = 100, m_1 = 200, m_s = 5, m_ps = 50, m_V = 500
18 MDMDS :: 0 :: 100 200, 5, 50, 500
19 # −> set m_0 = 100, m_1 = 300, m_s = 4, m_ps = 40, m_V = 400
20 MDMDS :: 1 :: 100 300, 4, 40, 400
21

22 # Interactions Dark sector − SM elementary particles (DS−SMSM)
23 # By default couplings are set to 0
24 # ... :: #model :: #mediator particle number :: couplings
25 IntDSSM :: 0 :: 0 :: l_e=0.1, l_tau=0.2
26 IntDSSM :: 0 :: 1 :: l_e=0.1, l_mu=0.2
27 IntDSSM :: 0 :: 2 :: a_e=0.1, b_e=0.2
28 IntDSSM :: 1 :: 0 :: l_e=0.1, l_tau=0.2
29 IntDSSM :: 1 :: 1 :: l_e=0.1, l_mu=0.2
30 IntDSSM :: 1 :: 2 :: a_e=0.1, b_e=0.2
31

32 ## Interactions Dark matter − Dark sector ##
33 IntDSDM :: 0 :: 0 :: l_0_0=0.1, l_0_1=0.1, l_1_1 = 0.2
34 IntDSDM :: 1 :: 0 :: l_0_0=0.1, l_0_1=0.1, l_1_1 = 0.2
35

36 ## Interaction Dark sector − Dark sector ##
37 IntDSDS :: 0 :: csss_0_0_0=0.1, dspp_0_1_1=0.1
38 IntDSDS :: 1 :: csss_0_0_0=0.1, dspp_0_1_1=0.1

Figure A.3 – Example of configuration file

the distinction between the "real space" where the original distribution is defined and
the "Fourier space" where the Fourier transform is defined. If x represents a position
in real space, for instance, one has the following identities

δ(n)(x) = 1
(2π)n

∫
e±ix.kdnk and δ(n)(k) =

∫
e±ix.kdnx (A.51)

with the factors of (2π) in that order. The first one is defined as the inverse transform
of the distribution T1 that is itself the transform of δ while the second one is the direct
transform of T1. In practice the convention does not matter as long as we track down
all the factors 2π until the end of the computation, however, this is the most common
convention - especially used in Quantum Field Theory.
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A.5 Code structure and numerical tools

For this work, we have developed an entire C++ code from scratch in order to per-
form the different analysis. This code is structured in an oriented-object programming
manner according to Fig. A.1 and Fig. A.2. When there is no need to instantiate sev-
eral objects from a class and that this class can be used in multiple parts of the code
we construct it as a singleton. The Pure header files are not really classes and cannot
be used to create objects, they often correspond to structures repositories of generic
functions. The CrossSection class is special as it is virtual (defines all the tools to
compute cross-sections but is not related to any specific processes) and also can not
be used to instantiate an object. The classes Spline, PPC4DMReader, TransferFunc-
tion, DarkHalo, BaryonModel, MassModels, and Galaxy were given by the authors of
SL17 and only slightly modified. The connection between the two parts in the two
figures is given by the class MinimalMassHalo.

An example of the input file is given in Fig. A.3. There is a set of models defined
that is read by the code and converted into a vector of DarkSectorModel objects. We
define Npoints, the total number of models treated (used to initialised the table and
be sure that we are not forgetting any model). Then we define the particle content, the
number of DM particles NDM, the number of mediators and their type. Afterwards for
each model, the DM particles can either be set as Majorana or Dirac fermions. The
MDMDS lines set the mass of the particle in the order they have been defined. The
rest of the file initialises the coupling constants to a value different from 0.

Let us also detail the numerical recipes. We have already shown the numerical
maximisation procedure through the Newton-Ralphson algorithm. Numerical inte-
grations are usually performed through our own implementation of the Gauss Leg-
endre method. When it is necessary to integrate highly non-smooth function (such
as tree-level cross-sections around a pole with a small propagator width) we use the
adaptative methods given in the GNU Scientific Library and in particular the adap-
tative Gauss Kronrod method. We also compared their performances with Simpson’s
methods. The interpolations are done through our own Spline functions and nu-
merical derivatives are evaluated with our implementation of the different scheme
according to the situation. In order to solve ordinary differential equations, we rely
mostly on the implicit Euler scheme whenever possible as it is generally fast to exe-
cute and has good stability and convergence. We also investigated other higher-order
schemes, implicit or explicit, such as Adam-Moulton or Runge-Kutta.





B
Complements for chemical and

kinetic decoupling computations

This appendix is devoted to giving more details on different computations that are
not done in Chapter 2. Firstly, we develop the expression of the equilibrium ther-
modynamic quantities in the Early Universe (pressure, density and entropy). Then
we detail the evaluation of the thermally averaged cross-sections and decay rates
for DM annihilation and production. In particular, we focus on the numerical im-
plementation that we created to compute tree-level cross-sections in a systematic
way and how to overcome the technical difficulties given by scenarios where DM
is made of Majorana fermions.

B.1 The equilibrium quantities

B.1.1 Number density, energy density and pressure

In this section we develop the value of the expression for ρ, P and n at equilibrium.
In order to solve everything at once we evaluate the quantity

A(α, γ) = g

2π2

∫ ∞
0

q2(1+α)Eγ(q)
eβE(q) − ε

dq (B.1)

and we recover the different values of the different quantities at equilibrium taking
(α = 0, γ = 1) for ρeq, (α = 0, γ = 0) for neq and (α = 1, γ = −1) for 3P eq. First we make
the change of variable βE(q) → u and βm → x so that

A(α, γ) = g

2π2
1

β3+2α+γ

∫ ∞
x

(u2 − x2)1/2+αuγ+1

eu + ε
du (B.2)

Then, the usual trick is to write the exponential as

1
eu − ε

= e−u

1− εe−u = e−u
∞∑
n=0

εne−un =
∞∑
n=1

εn+1e−un (B.3)

so that the factor A can be written under the form

A(α, γ) = g

2π2
1

β3+2α+γ

∞∑
n=1

εn+1
∫ ∞
x

uγ+1(u2 − x2)1/2+αe−undu (B.4)
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Now let us perform another change of variable u/x → z (if x > 0) so that

A = g

2π2

(
x

β

)3+2α+γ ∞∑
n=1

εn+1
∫ ∞

1
zγ+1(z2 − 1)1/2+αe−z(xn)dz . (B.5)

Now, in order to make progress in the computation, let us move on to the evaluation
of the different quantities separately

neq = A(0, 0) = g

2π2
x3

β3

∞∑
n=1

εn+1
∫ ∞

1
z(z2 − 1)1/2e−z(xn)dz

ρeq = A(0, 1) = g

2π2
x4

β4

∞∑
n=1

εn+1
∫ ∞

1
z2(z2 − 1)1/2e−z(xn)dz

P eq = 1
3A(1,−1) = g

6π2
x4

β4

∞∑
n=1

εn+1
∫ ∞

1
(z2 − 1)3/2e−z(xn)dz

(B.6)

By an integration by part for the number density,

neq = g

6π2
x3

β3

∞∑
n=1

εn+1(xn)
∫ ∞

1
(z2 − 1)3/2e−z(xn)dz (B.7)

and by separation of integrals for the energy density

ρeq = g

2π2
x4

β4

∞∑
n=1

εn+1
{∫ ∞

1
(z2 − 1)3/2e−z(xn)dz +

∫ ∞
1

(z2 − 1)1/2e−z(xn)dz
}

(B.8)

everything now depends on two integrals. Using the Bessel functions they
can be expressed as∫ ∞

1
(z2 − 1)3/2e−z(xn)dz = K2(xn) 1√

π
Γ
(5

2

)( 2
xn

)2
= 3

(xn)2K2(xn)∫ ∞
1

(z2 − 1)1/2e−z(xn)dz = K1(xn) 1√
π

Γ
(3

2

) 2
xn

= 1
xn
K1(xn)

(B.9)

In the end, combining everything yields

neq = g

2π2
1
β3

∞∑
n=1

εn+1x
2

n
K2(xn)

ρeq = g

2π2
1
β4

∞∑
n=1

εn+1
{

3x2

n2 K2(xn) + x3

n
K1(xn)

}

P eq = g

2π2
1
β4

∞∑
n=1

εn+1x
2

n2K2(xn)

(B.10)

Using the relation

K2(xn) = 2
xn
K1(xn) +K0(xn) (B.11)

it is also possible to rewrite these expression using only the first two order of the
modified Bessel functions of the second kind,

neq = g

2π2
1
β3

∞∑
n=1

εn+1
{

2x
n2K1(xn) + x2

n
K0(xn)

}

ρeq = g

2π2
1
β4

∞∑
n=1

εn+1
{(

6x
n3 + x3

n

)
K1(xn) + 3x2

n2 K0(xn)
}

P eq = g

2π2
1
β4

∞∑
n=1

εn+1
{

2x
n3K1(xn) + x2

n2K0(xn)
} (B.12)
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B.1.2 The massless case

In the massless scenario the expressions are analytic. Indeed we can write

A(α, γ) = g

2π2
1

β3+2α+γ

∞∑
n=1

εn+1
∫ ∞

0
u2+2α+γe−undu (B.13)

now we perform the change of variable un → ω in the integral and we also introduce
the variable s = 3 + 2α + γ. It yields

A(α, γ) = g

2π2βs

∞∑
n=1

εn+1

ns

∫ ∞
0

ωs−1e−ωdω = g

2π2βs
Γ(s)

∞∑
n=1

εn+1

ns
(B.14)

For bosons ε = +1 and one recovers the expression of the Riemann-zeta function. For
Fermions ε = −1 and things are less trivial. However, it is still possible to use the
Riemann-zeta function. For that let us write

∞∑
n=1

(−1)n+1

ns
=
∞∑
p=0

1
(2p+ 1)s −

∞∑
p=1

1
(2p)s

=
∞∑
p=0

1
(2p+ 1)s −

1
2s ζ(s)

(B.15)

Moreover from the same decomposition it is possible to write

ζ(s) =
∞∑
p=0

1
(2p+ 1)s + 1

2s ζ(s) (B.16)

Therefore the sum over odd terms is given as
∞∑
p=0

1
(2p+ 1)s = 2s − 1

2s ζ(s) (B.17)

ans plugging this result in the previous expression yields
∞∑
n=1

(−1)n+1

ns
= 2s − 1

2s ζ(s)− 1
2s ζ(s) = 2s−1 − 1

2s−1 ζ(s) . (B.18)

At the end of the day we can summarize

A(α, γ) =


g

2π2βs
Γ(s)ζ(s) for bosons

g

2π2βs
2s−1 − 1

2s−1 Γ(s)ζ(s) for fermions .
(B.19)

It implies for the physical quantities

neq =


g

2π2β3 Γ(3)ζ(3) = g

π2β3 ζ(3) for bosons

g

2π2β3
3
4Γ(3)ζ(3) = 3g

4π2β3 ζ(3) for fermions
(B.20)

ρeq =


g

2π2β4 Γ(4)ζ(4) = gπ2

30β4 for bosons

g

2π2β4
7
8Γ(4)ζ(4) = 7

8
gπ2

30β4 for fermions
(B.21)

and since A only depends on the combination s = 3 + 2α + γ that is the same for
(α = 0, γ = 1) and (α = 1, γ = −1), the pressure satisfies P eq = ρeq/3.
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B.1.3 The massive case

In the massive case x → ∞ and therefore, only the leading terms are impor-
tant in the expansion of Bessel functions. More precisely, because the modified
Bessel function of the second kind are decreasing fast we can approximate
for the number density

neq = g

2π2
x2

β3K2(x) ∼ g
(
mT

2π

)3/2
e−m/T (B.22)

Similarly the expansion of ρeq can be written

ρeq = g

2π2
1
β4x

3K1(x) (B.23)

Because the behaviour is the same K2 ∼ K1 ∼ K0 at infinity,

ρeq ∼ x

β
neq = mneq (B.24)

Eventually the pressure satisfies

P eq = g

2π2
1
β4x

2K0(x) ∼ 1
β
neq = neqT (B.25)

B.1.4 The entropy density

The total entropy contained in a volume V satisfies, when local thermodynamic
equilibrium is maintained, the second law of thermodynamics. In this section only we
will omit the label eq to denote that we work with equilibrium quantity.

TdS = d(ρV ) + PdV = d [(ρ+ P )V ]− V dP . (B.26)

Now consider S and U = ρV as functions of T and V . It is possible to write

dS =
(
∂S

∂T

)
V

dT +
(
∂S

∂V

)
T

dV

dU =
(
∂U

∂T

)
V

dT +
(
∂U

∂V

)
T

dV
(B.27)

And in the meantime the law of thermodynamics we wrote above gives

dS = 1
T

dU + P

T
dV = 1

T

[(
∂U

∂T

)
V

dT +
{(

∂U

∂V

)
T

+ P

}
dV
]

(B.28)

which yields (
∂S

∂T

)
V

= 1
T

(
∂U

∂T

)
V

and
(
∂S

∂V

)
T

= 1
T

[(
∂U

∂V

)
T

+ P

]
(B.29)

In order to have integrability

∂2S

∂V ∂T
= ∂2S

∂T∂V
⇒ 1

T

∂2U

∂T∂V
= − P

T 2 + 1
T

(
∂P

∂T

)
V
− 1
T 2

(
∂U

∂V

)
T

+ 1
T

∂2U

∂V ∂T
(B.30)

and therefore it yields the equality

T

(
∂P

∂T

)
V

= P + ρ (B.31)
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and because P does not vary with the volume this equation can also be written

dP = P + ρ

T
dT . (B.32)

Remark that this equation can be consistently obtained directly by computing
the derivative of P at equilibrium with respect to the temperature from the
definition of pressure,

dP
dT = g

6π2

∫
∂f(q, t)
∂T

q4

E(q)dq (B.33)

And because the dependence of f with T is such that f(q, t) = g(E(q)/T ) it yields that

∂f(q, t)
∂T

= − E(q)
T 2

dg(x)
dx

∣∣∣∣
x=E(q)/T

and ∂f(q, t)
∂q

= p

E(q)T
dg(x)

dx

∣∣∣∣
x=E(q)/T

(B.34)

so that the different derivatives on the PDF are related by

∂f(q, t)
∂T

= −E
2(q)
qT

∂f(q, t)
∂q

. (B.35)

Therefore the derivative of the pressure with the temperature is

dP
dT = − g

6π2T

∫
∂f(q, t)
∂q

q3E(q)dq

= g

6π2T

∫
f(q, t)

[
3p2E(q) + p4

E(q)

]
dq = ρ+ P

T
.

(B.36)

Replacing this condition in the first equation gives

dS = 1
T

{
d [(ρ+ P )V ]− V ρ+ P

T
dT
}

= d
[(ρ+ P )V

T

]
(B.37)

and integrating this differential yields

S = (ρ+ P )V
T

+ cst (B.38)

where the constant can be taken to 0. In the end the entropy density (or sometime
called comoving entropy) s ≡ S/V satisfies

s = ρ+ P

T
(B.39)

B.2 Collision term for chemical decoupling

In this section we detail the different steps of computation that have been omit-
ted in the main text in order to keep the discussion as simple as possible. First we
show how we can generically simplify the collision term for the annihilation and cre-
ation of WIMPs. In a second part we show how to evaluate the effective quantities
of the co-annihilation regime.
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B.2.1 General simplification of the collision term

Let us consider in the following that the only interactions that change the total
number of WIMPs and have an impact on nχ are the annihilations/creations into/by
SM particles and or mediators and the possible decay or inverse decay of mediators
into WIMPs. We focus more on the associated zeroth-moment collision operator of
these interactions.

Contribution of the 2↔ n interactions. Let us first consider a 2↔ n annihilation
and creation process χi + χj → Z. The thermally averaged cross-section is given by〈

σij→Zv
ij
Møl

〉
= 1
ninj

1
SZ

∫ F{ij},Z
4Ei(qi)Ej(qj)

W{ij};ZdΠ{ij},ZdP{ij} (B.40)

which we can slightly simplify into〈
σij→Zv

ij
Møl

〉
= gigj
ninj

∫ dσij→Z
dΠ{ij},Z

vijMølF{ij},ZdΠ{ij},ZdP{ij} . (B.41)

The next step is now to simplify the phase space factor F{ij},Z using the fact that
the WIMPs are assumed to be non relativistic at the time of chemical decoupling.
The conservation of energy imposed by the Dirac delta function in the expression of
the differential cross section yields

EZ ≡
∑
κ′∈Z

Eκ′(qκ′) ∼ mi +mj � T (B.42)

such that ∏
κ∈Z

(1 + εκ′fκ′) = eαZ+βEZ∏
κ∈Z

(eβEκ(qκ) − εκ)
' eαZ . (B.43)

We write neq
i the equilibrium number density at zero chemical potential. Because

WIMPs are assumed to be non relativistic, their PSDF takes the simple form of a
Boltzmann distribution

fi(qi) = e−βEi(qi)−αi = ni
neq
i

e−βEi(qi) , (B.44)

therefore, it yields

ni =
∫
e−αi−βEi

1
2Ei(q)

d3q
(2π)3 = e−αineq

i . (B.45)

Combining Eq. (B.43) and Eq. (B.44) allows to write the phase space factor as

F{ij};Z = fifj
∏
κ∈Z

(1 + εκ′fκ′) '
ninj
neq
i n

eq
j

e−β(Ei+Ej)eαZ = ninj
neq
i n

eq
j

Feq
{ij},Ze

αZ . (B.46)

Consequently we can simply write down〈
σij→Zv

ij
Møl

〉
=
〈
σχiχj→Zv

ij
Møl

〉eq
eαZ . (B.47)

where here, in particular, we define〈
σij→Zv

ij
Møl

〉eq
≡ gigj
neq
i n

eq
j

∫
σij→Zv

ij
Møle

−β(Ei(qi)+Ej(qj)) d3qi
(2π)3

d3qj
(2π)3 . (B.48)
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We will show later on how this latter expression can be further simplified and be
convenient for numerical evaluations. In the end the zeroth order collision opera-
tor for annihilation becomes

Ĉij→Z = ninj
〈
σij→Zv

ij
Møl

〉 [neq
i

ni

neq
j

nj
e−αZ − 1

]
=
〈
σij→Zv

ij
Møl

〉eq [
neq
i n

eq
j − e

αZninj
]
. (B.49)

Contribution of the 1↔ 2 interactions. Secondly, let us look now at the decay in-
teraction y ↔ χi+χj. The general derivation has shown that for the decays and inverse
decay it is possible to write everything in terms of the thermally averaged decay rate

〈Γy→ij〉 = 1
ny

1
S{ij}

∫ F{y},{ij}
2Ey(qy)

W{y};{ij} dΠ{y},{ij}dP{y} = my

Ey(qy)
dΓy→Z (B.50)

which can also be slightly simplified under the form

〈Γy→ij〉 = 1
ny

∫
my

Ey(qy)
dΓy→ij

dΠ{y},{ij}
F{y},{ij} dΠ{y},{ij}dP{y} (B.51)

Here because of the Dirac delta distribution in the expression of dΓy→ij we necessarily
have Ey = Ei + Ej � T . Moreover because WIMPs are non relativistic fi(qi) � 1
and fj(qj) � 1 such that

fy(qy)(1 + εifi(qi))(1 + εjfj(qj)) ' e−αye−βEy(qy) . (B.52)

The thermally averaged decay rate takes a simple form

〈Γy→ij〉 =
neq
y e
−αy

ny
〈Γy→ij〉eq (B.53)

where, in particular, we define

〈Γy→ij〉eq ≡ gy
neq
y

Γy→ij
∫

my

Ey(qy)
e−βEy(qy) d3qy

(2π)3

= gy
neq
y

Tm2
y

2π2 Γij→Y = K1(my/T )
K2(my/T )Γij→Y .

(B.54)

This expression is analytical and which will be shown in the next section.
For the moment let us write down the contribution to the zeroth-moment of
the collision operator as

Ĉy→ij = (1 + δχiχj ) 〈Γy→ij〉
eq neq

y

neq
i n

eq
j

[
neq
i n

eq
j e
−αy − ninj

]
(B.55)

where δχiχj is one if χi = χj and zero otherwise.

The total number density of WIMPs is

nχ ≡
∑
i

ni . (B.56)
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Thus, by summing the equations of evolution for every ni and taking into account all
possible interactions which change the total number of WIMPs yields

dnχ
dt + 3Hnχ =

∑
ij

〈
σij→v

ij
Møl

〉eq [
neq
i n

eq
j − e

αZninj
]

+
∑
ij

〈Γy→ij〉eq neq
y

neq
i n

eq
j

[
neq
i n

eq
j e
−αy − ninj

]
.

(B.57)

with the notations〈
σij→v

ij
Møl

〉eq
=
∑
Z

〈
σij→Zv

ij
Møl

〉eq
and 〈Γ→ij〉eq =

∑
y

〈Γy→ij〉eq . (B.58)

B.2.2 The effective quantities for co-annihilation

In order to simplify further this expression, we assume that the pseudo chemi-
cal potential of all the WIMPs species are the same and we denote αi ' αχ for all
i. Moreover, we also assume that the chemical potential of the incoming and out-
going particles that are not WIMPs is also zero – see the full discussion in the main
text. A direct consequence is that ni/n

eq
i ' nχ/n

eq
χ . Subsequently, when used in

the previous equation, it gives

dnχ
dt + 3Hnχ = (〈σvMøl〉eq

eff + 〈Γ〉eq
eff)

[
(neq
χ )2 − n2

χ

]
(B.59)

with the definitions

〈σvMøl〉eq
eff ≡

∑
ij

〈
σij→v

ij
Møl

〉eq n
eq
i n

eq
j

(neq
χ )2

〈Γ〉eq
eff ≡

∑
i,j

(1 + δχiχj ) 〈Γ→ij〉
eq neq

y

(neq
χ )2 ,

(B.60)

as introduced in Eq. (2.118). The first thing worth mentioning it the value of neq
χ that

can be deduced from the equilibrium number density of massive, non relativistic,
particles given in Eq. (B.22),

neq
χ = T

2π2

∑
i

gim
2
iK2

(
mi

T

)
. (B.61)

In a second time we write, according to EDSJO et al. (1997),

〈σvMøl〉eq
eff = 1

(neq
χ )2

g2
0T

8π4

∫ ∞
4m2

0

σeff(s) ≡
∑
ij

gigj
g2

0

p2
ij(s)
p2

00(s)
σij→(s)

 p2
00(s)

√
sK1

(√
s

T

)
ds (B.62)

where s is the Mandelstam variable and pij is the centre of mass frame incoming
momentum given by

p2
ij(s) = 1

4s
[
s− (mi +mj)2

] [
s− (mi −mj)2

]
(B.63)

Note that we do not have negative values of p2
ij as, by definition, the cross-sections

satisfy σij→(s < (mi + mj)2) = 0. The value of p2
00(s) can further be simplified as

p2
00(s) = (s − 4m2

0)/4. Putting together Eq. (B.61) and Eq. (B.62) gives

〈σvMøl〉eq
eff = g2

0
8T

1[∑
i gim

2
iK2(mi/T )

]2 ∫ ∞4m2
0

σeff(s)(s− 4m2
0)
√
sK1

(√
s

T

)
ds . (B.64)
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For the decay rate the computation is slightly easier and gives

〈Γ〉eq
eff = 16π5

T

1[∑
i gim

2
iK2(mi/T )

]2 ∑
ij

(1 + δχiχj )
∑
y

gym
2
yK1

(
my

T

)
Γy→ij . (B.65)

B.3 The tree-level 2 ↔ 2 cross-sections

Here we detail the formalism behind the numerical tool we have developed to eval-
uate the tree-level 2 ↔ 2 cross-sections. After a general introduction we mention,
in a second part, a necessary trick to account for Majorana fermion specific config-
urations in FeynCalc (SHTABOVENKO et al. 2016), the software we use to evaluate
the squared amplitudes.

B.3.1 General evaluation for numerical implementation

Let us consider a process i+j → k+` mediated by different particles. We introduce
V the set of particles that contributes to the interaction in the v = s, t, u channels –
where s, t, u are the Mandelstam variables here. For instance, mediators contributing
to the t-channel are all in the set T . Then the total amplitude can be written as

Mij→k` =
∑

v∈{s,t,u}

[∑
a∈V
PavSav

]
(B.66)

where we introduced the propagators as

Pav = 1
v −m2

a + imaΓa
. (B.67)

The associated cross-section and transfer cross-sections are then given by

σij→k` = 1
64πs

1
p2
ij

1
Sk`

1
gigj

∫ M2 ≡
∑
spins
|Mij→k`|2

 dt

σTij→k` = 1
128πs

1
p4
ij

1
Sk`

1
gigj

∫ M2 ≡
∑
spins
|Mij→k`|2

 (−t)dt

(B.68)

where the integral goes from tmin(s) to tmax(s) and pij(s) is the incoming 3-momentum
norm in the centre of mass. We also denoted by Sk` a symmetry factor that is 2 if
the outgoing particles are the same or 1 otherwise and gi, gj the number of degrees
of freedom of particles i and j. Moreover, we introduced the factor M2 that we aim
to compute in this section. With the decomposition of the amplitude its squared
sum over spins can be written

M2 =
∑
v,w

∑
a∈V

∑
b∈W

(Pav )∗ Pbw
∑
spins

[
(Sav )† Sbw

] (B.69)

The * represents the complex conjugation. Thanks to the spinor sum rules and polar-
isation sum rules, we can always simplify the spin sum and write it as a polynomial
function of the variables s and t under the simple form

∑
spins

[
(Sav )† Sbw

]
=
∞∑
n=0

qabvw,n(s)tn ≡ Qabvw . (B.70)
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Note that an important property of Qabvw, which will be useful later, is the symmetry
Qabvw =

(
Qbawv

)∗
. Thus the M2 term can be written as

M2(s, t) =
∑
v,w

∑
a∈V

∑
b∈W

(
(Pav )∗ PbwQabvw

) (B.71)

which represent a given value of v. We now develop the sums on v, w as

M2 =
∑
a∈S
b∈S

(Pas )∗ PbsQabss +
∑
a∈T
b∈T

(Pat )∗ PbtQabtt +
∑
a∈U
b∈U

(Pas )∗ PbsQabuu

+
∑
a∈S
b∈T

(Pas )∗ PbtQabst +
∑
a∈T
b∈S

(Pas )∗ PbtQabts +
∑
a∈S
b∈U

(Pas )∗ PbuQabsu

+
∑
a∈U
b∈S

(Pau)∗ PbsQabus +
∑
a∈T
b∈U

(Pat )∗ PbuQabtu +
∑
a∈U
b∈T

(Pau)∗ PbtQabst

(B.72)

Henceforth we isolate the squared terms from the interference terms. Therefore we
write, for the first three sums in the first line of the equation above

∑
a∈V
b∈V

(Pav )∗ PbvQabvv =
∑
a∈V
|Pav |2Qaavv + 2

∑
a∈V
b∈V
a<b

<
[
(Pav )∗ PbvQabvv

]
∀v = s, t, u (B.73)

Where the notation a < b means that if we have summed on (a, b) we do not also sum
on (b, a) (since this term is implicitly taken into account by the factor of 2 and the
real part function). Moreover the terms in the second and third lines of Eq. (B.72) all
correspond to interference terms therefore it yields

∑
a∈V
b∈W

(Pav )∗ PbwQabvw +
∑
a∈W
b∈V

(Paw)∗ PbvQabwv = 2
∑
a∈V
b∈W

<
[
(Pav )∗ PbwQabvw

]
∀v 6= w (B.74)

In other words we write the squared matrix element as

M2 =
∑
a∈S
|Pas |2Qaass +

∑
a∈T
|Pat |2Qaatt +

∑
a∈U
|Pau |2Qaauu

+ 2
∑
a∈S
b∈T

<
[
(Pas )∗ PbtQabst

]
+ 2

∑
a∈S
b∈U

<
[
(Pas )∗ PbuQabsu

]
+ 2

∑
a∈T
b∈U

<
[
(Pat )∗ PbuQabtu

]

+ 2
∑
a∈S
b∈S
a<b

<
[
(Pas )∗ PbsQabss

]
+ 2

∑
a∈T
b∈T
a<b

<
[
(Pat )∗ PbtQabtt

]
+ 2

∑
a∈U
b∈U
a<b

<
[
(Pau)∗ PbuQabuu

] (B.75)

Therefore the first thing to do in our algorithm is to consider all possible mediators in
every possible channel. Then we dress a table of the different couples and evaluate
the polynomials Q which is done using FeynCalc (SHTABOVENKO et al. 2016). Let us
see an example with generic mediators φ1, φ2, φ3 and for an interaction where φ1, φ2, φ3
contribute to the s-channel, φ1, φ3 to the t-channel and φ2, φ3 to the u-channel. Then
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we dress the following tables

SS2 table : {(φ1, φ1), (φ2, φ2), (φ3, φ3)}
T T 2 table : {(φ1, φ1), (φ3, φ3)}
UU2 table : {(φ2, φ2), (φ3, φ3)}
SS< table : {(φ1, φ2), (φ1, φ3), (φ2, φ3)}
T T < table : {(φ1, φ3)}
UU< table : {(φ2, φ3)}
ST table : {(φ1, φ1), (φ1, φ3), (φ2, φ1), (φ2, φ3), (φ3, φ1), (φ3, φ3)}
SU table : {(φ1, φ2), (φ1, φ3), (φ2, φ2), (φ2, φ3), (φ3, φ2), (φ3, φ3)}
T U table : {(φ1, φ2), (φ1, φ3), (φ3, φ1), (φ3, φ3)}

(B.76)

Note that for the T U table for instance we need to have both (φ1, φ3) and (φ3, φ1) as
in the first case φ1 contributes to the t-channel and φ3 to the u-channel while in the
second case it is the opposite. We need to evaluate all the polynomials Q for these 28
couples. Fortunately, we are never facing such a complex system because if φ1 and
φ2 for instance are from the same species we can generically compute polynomials for
general couples (φ1/2, φ1/2) which reduces the problem. The next step is to evaluate
the integral over the Mandelstam variable t. First, for simplicity, we introduce the
squared effective complex mass µ = m(m− iΓ) ∈ C so that the propagators becomes

Pav = 1
v − µa

(B.77)

Because of the linearity of the expression M2 we generically have to evaluate in-
tegrals of the form

Iabvw(n) =
∫ tmax

tmin
(Pav )∗ Pbwtndt (B.78)

and as a matter of fact they can all be written under the form

J np,q(α, β) =
∫ tmax

tmin

tn

(t− α∗)p(t− β)q dt (B.79)

where (α, β) ∈ C. Indeed, even that is straightforward for combination of s and t-
channel propagators it is not obvious for u-channels. This comes from the property
s + t + u = m2

i + m2
j + m2

k + m2
` ≡ M2 which gives

Pau = 1
u− µa

= −1
t− ρa

(B.80)

with the definition ρa = M2 − s − µa. Therefore we can rewrite

Iabss (n) = 1
(s− µ∗a)(s− µb)

J n0,0(0, 0) , Iabtt (n) = J n1,1(µa, µb) , Iabuu(n) = J n1,1(ρa, ρb)

Iabst (n) = 1
s− µ∗a

J n0,1(0, µb) , Iabsu = −1
s− µ∗a

J n0,1(0, ρb) Iabst (n) = −J n1,1(µa, ρb)
(B.81)

So let us know give an expression for J α,βn . The first step is to perform a partial
fraction decomposition of the integrand. Indeed we can always write

1
(t− α∗)p(t− β)q =

p∑
l=1

Al
(t− α∗)l +

q∑
l=1

Bl
(t− β)l (B.82)
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and it is thus convenient to introduce

jnl (α) =
∫ tmax

tmin

tn

(t− α)ldt (B.83)

such that the total integral J can be written

J np,q(α, β) =
p∑
l=1

Alj
n
l (α∗) +

q∑
l=1

Blj
n
l (β) . (B.84)

In particular, for p = 1 and q = 1 we have A1 = 1/(α∗ − β) and B1 = −1/(α∗ − β).
In order to simplify the small j integral we can start by introducing the change of
variable y = (t − α)/α so that

jnl (α) = αn−l+1
∫ ymax

ymin
(y + 1)ny−ldy = αn−l+1

n∑
r=0

(
n

r

)∫ ymax

ymin
yr−ldy (B.85)

Then being careful in treating the element r = l − 1 in the sum, to introduce a log-
arithm dependence, it yields

jnl (α) = αn−l+1


n∑
r=0
r 6=l−1

(
n

r

)
yr−l+1

max − yr−l+1
min

r − l + 1 −
(

n

l − 1

)
ln
(
ymax
ymin

) (B.86)

A convenient parameter to introduce is u = (tmin − tmax)/(tmax − α) = ymax/ymin − 1.
Indeed in the non relativistic limit, that we investigate further below, tmax − tmin ∼ 0
and therefore |u| < 1 which allows for further developments in series. Written in
terms of u the integral j becomes

jnl (α) = αn−l+1


n∑
r=0
r 6=l−1

(
n

r

)
yr−l+1

max
r − l + 1

[
1− (1 + u)r−l+1

]
−
(

n

l − 1

)
ln(1 + u)

 . (B.87)

Combining everything allows to evaluate the total integral over the squares matrix
element systematically, whatever the tree-level 2 → 2 interaction we consider.

B.3.2 Mandelstam variables and kinematics

In order to pursue the computation we review here some properties of the Mandel-
stam variables for a generic i+j → k+` interaction with particles of respective mass mi,
mj, mk, m`. Using the lorentz factor associated to the relative velocity γrel = (1− v2

rel)1/2

on can write s under three different ways

s = (mi +mj)2 + 2mimj(γrel − 1)

s = m2
i +m2

j + 2
(√

m2
i + p̄2

ij

√
m2
j + p̄2

ij + p̄2
ij

)
s = m2

k +m2
` + 2

(√
m2
k + p̄2

k`

√
m2
` + p̄2

k` + p̄2
k`

)
.

(B.88)

Massaging the second and third expressions yields

p̄2
ij = 1

4s
(
s− (mi −mj)2

) (
s− (mi +mj)2

)
p̄2
k` = 1

4s
(
s− (mk −m`)2

) (
s− (mk +m`)2

) (B.89)
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Combining this expression with the value of s in terms of γrel we can express p̄ij as
well in terms of the Lorentz boost factor and the masses as

pij = mimj

√
γ2

rel − 1
(mi +mj)2 + 2mimj(γrel − 1) . (B.90)

Eventually, now that we have expressed s we wan look at t. First, we define the scat-
tering angle in the center of mass frame θ̄ through the implicit relation cos θ̄ = p̄1p̄3/p

2.
Then t is given by

t = m2
i +m2

k − 2
(√

m2
i + p2

ij

√
m2
k + p2

k` − pijpk` cos θ
)

= m2
j +m2

` − 2
(√

m2
j + p2

ij

√
m2
` + p2

k` − pijpk` cos θ
)
.

(B.91)

In particular in the next section we rely on tmax − tmin that is given always

tmax − tmin = 4pijpk` (B.92)

and therefore tends to 0 at small relative velocity when γrel → 1.

B.3.3 The small velocity expansion

Relative velocity and a classical view of temperature

Let us here address a bit more in details the definition of the temperature. So far it
has been introduced through the thermodynamic equalities, in the Maxwell-Juttner
distribution. Here we present a simple computation that links the temperature to
its statistical representation as a measure of the average kinetic energy of particles.
Consider two particles labelled 1 with momentum q1 and 2 with momentum q2 in the
LIF then we can define the Lorentz invariant concept of relative velocity as

vrel ≡
1

(ηµνqµ1 qν2 )

√
(ηqµ1 qν2 )2 −m2

1m
2
2 (B.93)

Note that this definition is slightly different than the Møller velocity. It is,
more particularly,

vMøl ≡
(q1.q2)

E(q1)E(q2)vrel (B.94)

and they become the same in the non-relativistic case, when the mass of the involved
particles is much higher than the momenta. Now let us focus at the average value of
the relative velocity squared between two particles of a same species of mass m. With
n the number density of particles, it can be defined as

〈
v2

rel

〉
≡ g2

a

n2
a

∫
fa(qi1)fa(qi2)v2

rel
d3q1
(2π)3

d3q2
(2π)3 (B.95)

where for shorthand notations the space-time dependence of the functions in yµ is
omitted. For an isotropic PSDF it is possible to integrate over the angle between the
two momenta q1 and q2 so that it yields

〈
v2

rel

〉
= g2

a

n2
a

∫
fa(q1)fa(q2) q2

1 + q2
2

m2
a + q2

1 + q2
2

d3q1
(2π)3

d3q2
(2π)3 . (B.96)
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In the non-relativistic limit the mass dominates, m2 � q2
1 + q2

2 , and the average
relative velocity squared takes the form of a kinetic energy per units of mass. In-
deed, it can be written〈

v2
rel

〉
NR

= 2
〈
q2

m2
a

〉
= 2ga

na

∫
fa(q)

q2

m2
a

d3q
(2π)3 (B.97)

In the case of the Fermi-Dirac and Bose-Einstein distributions, in the non-relativistic
case, f(q) = f eq(q) reduces to a Maxwell-Boltzmann distribution so that〈

v2
rel

〉
NR

= 6T
ma

(B.98)

which relates the velocity dispersion of the gas to its temperature. Let us emphasize
however that this definition is only valid for non-relativistic species.

General development

In order to properly evaluate some cross-sections, it is necessary to evaluate the
small u series expansion of Eq. (B.87). Indeed, we just have mentionned above that,
for a small relative velocity, u goes to 0. Therefore, annihilation cross-sections of
non-relativistic DM are in this regime. Moreover, let us look at scattering cross-
sections for a process involving non relativistic DM and a DM fermion χψ → χψ in
the t-channel with propagator of effective mass µa ' m2

a. The value of u is always
given by −4pij(s)pab(s)

|u| =
4m2

χ

|µa|
ω2 −m2

ψ

m2
χ +m2

ψ + 2ωmχ
(B.99)

where ω is here the SM fermion energy in the rest frame of the DM particle. Therefore
in order to evaluate the scattering rate for kinetic decoupling, we need to integrate
over the full distribution of SM fermions we have to evaluate configurations where
ω ' m2

ψ. This amounts to say that we need to integrate on slow DM fermions so that
the relative velocity with DM is small. Therefore |u| can go close to 0 as well.

For |u| < 1, the expression of Eq. (B.87) can be developed in a power series by using

1− (1 + u)r−l+1 = −
∞∑
q=0

(
r − l + 1
q + 1

)
uq+1 (B.100)

where the binomial coefficient corresponds to the generalised version. That is, for
every z ∈ C – in practice here we only need z ∈ Z – and n ≥ 0 it is(

z

n

)
≡ z(z − 1)(z − 2) . . . (z − n+ 1)

n! (B.101)

From this definition one can straightforwardly see that(
r − l + 1
q + 1

)
= r − l + 1

q + 1

(
r − l
q

)
(B.102)

holds. Moreover one can also use the power series of the logarithm given by

ln(1 + u) =
∞∑
q=0

(−1)q

q + 1 u
q+1 . (B.103)
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From the definition of the binomial coefficient one can further check that it is possi-
ble to given a similar expression between the series of the logarithm ln(1 + u) and
1 − (1 + u)r−l+1 simply since (

−1
q

)
= (−1)q . (B.104)

In the end one just showed that

1− (1 + u)r−l+1 = −(r − l + 1)
∞∑
q=0

(
r − l
q

)
uq+1

q + 1

ln(1 + u) =
∞∑
q=0

(
−1
q

)
uq+1

q + 1 .
(B.105)

Plugging this results in Eq. (B.87) gives

jn` (α) = −αn−l+1
∞∑
q=0

uq+1

q + 1

n∑
r=0

(
n

r

)(
r − l
q

)
yr−l+1

max . (B.106)

Therefore for small u one numerically uses this expansion for a few orders in q until
convergence. It is also now possible to obtain the leading order of the small velocity
expansion for any cross-section. First one can rewrite the previous expression as

jnl (α) = −
∞∑
q=0

(−4pijpk`)q+1

q + 1

n∑
r=0

(
n

r

)(
r − l
q

)
αn−r(tmax(s)− α)r−l+q . (B.107)

Then, using the expression of the 3-momentum norm in the centre of mass with the
relative velocity we obtain that, at zeroth order,

vrel
1

64πsp2
ij

jnl (α) ∼
vrel→0

1
32πλ

kl
ij

t̂nmax
(t̂max − α)l

(B.108)

where t̂max = tmax((mi + mj)2) and

λk`ij ≡

√
((mk −m`)2 − (mi +mj)2) ((mk +m`)2 − (mi +mj)2)

mimj(mi +mj)2 . (B.109)

All in all, one can then compute the total s-wave term of any cross-section simply
by replacing all the terms jnl by the previous expression. In particular, for an
annihilation cross section with mi = mj and mk = m` one can further simplify
λkkii = (1 −m2

k/m
2
i )1/2/m2

i and t̂max = m2
i −m2

k which makes the evaluation straightfor-
ward in simple examples.

Example: transfer scattering cross-section

Because for an elastic scattering the momentum are such that p̄ij = p̄k` and tmax =
0, we can simplify even further the expression of jn` in that case. It yields

jn` (α) = (−1)`
∞∑
q=0

(2p̄ij)2(q+1)

q + 1 αn−`−qG(n, q, `) (B.110)
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where we introduced the term

Gnlq =
n∑
r=0

(
n

r

)(
r − l
q

)
(−1)r . (B.111)

The transfer cross-section, with mediator of mass mm, width Γm 6= 0 and reduced
complex mass squared associated µm = mm(mm − iΓm), is

σ̄T = 1
128πmmΓm

−1
gigj

∑
n

qn(s)
s

∞∑
q=0

4(q+1)

q + 1 p̄
2(q−1)
ij =

{
µn−qm

}
Gn+1,1
q (B.112)

We can notice that when p̄ij → 0 (which corresponds to vrel → 0) this expression is a
priori divergent, which is a problem. However by noticing that

Gn+1,l
q=0 =

n+1∑
r=0

(
n+ 1
r

)
(−1)r = 0 (B.113)

it yields that the sum over q begins at q = 1 effectively and that there are no divergence
at all. By a redefinition of q → q − 1 the result for the transfer cross section is then

σ̄T = 1
8πm2

p

1
gigj

∑
n

qn(s)m
2(n−1)
m
s

∞∑
q=0

−1
q + 2

(2p̄ij
mm

)2q
=
{(

1− i Γm
mm

)n−q−1
}
mp

Γp
Gn+1,1
q+1 .

(B.114)
In the case Γm = 0 the final expression is similar,

σ̄T = 1
8πm2

m

1
gigj

∑
n

qn(s)m
2(n−1)
m
s

∞∑
q=0

−1
q + 2

(2p̄ij
mm

)2q
Gn+1,2
q+1 . (B.115)

In order to make a correct development we can use the following relations

Gn+1,l
1 = −δn,0
Gn+1,l

2 = lδn,0 + δn,1

Gn+1,l
3 = −l(l + 1)δn,0/2− lδn,1 − δn,2

(B.116)

which indicate that the leading term in the velocity expansion for a given value
of n is given by q = n and that it is of order v2n

rel. Therefore we can parametrize
in a very simple way

σ̄T = 1
8πm2

p

1
gigj

∑
n

qn
(
(mi +mj)2

)
bnv

2n
rel +O

(
v

2(n+1)
rel

)
(B.117)

and in both cases, Γp = 0 the factors bn can be expressed under the form

bn = 1
m2

m + Γ2
m

(−4)n

n+ 2
(mimj)2n

(mi +mj)2(n+1) . (B.118)

B.3.4 Self-interaction of Majorana fermions

The Feynman rules given in DENNER et al. (1992) or HABER et al. (1985) are globally
similar for Dirac and Majorana particles – up to a change in the normalisation of the
coupling constant. However, when considering the self-interaction, the associated
amplitude for Majorana particles has a u-channel diagram which has no counterpart
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φc

χb; β

χa; α

= igjabc
(
C−1Γj

)
αβ

φc

χb; β

χa; α

= −igjabc (ΓjC)αβ
φc

χb; β

χa; α

= −igjabc (Γj)αβ

Figure B.1 – Our convention for the three different Majorana vertices
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χ; α3

χ; α4
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φ
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χ; α1 χ; α3

χ; α2 χ; α4

χ; α1

χ; α2 χ;α4

χ; α3

p1

p4
φ

p2

p3

Figure B.2 – Feynman diagrams for the self-interaction with Majorana particles

in the Dirac scenario. In version 9.2, FeynCalc does not temper well with Majorana
fermions. In practice, the u-channel in itself is not problematic and could be evaluated
with the usual Dirac rules on its own, but its interference with the s and t-channels
produce spinor configurations that are not understood. The new version 9.3, released
in 2020, solves the issue but since we started working on version 9.2 we describe
here the solution we adopted in the first place (the same that authors of version
9.3 have implemented). The idea relies on taking the transpose of certain fermion
chains. Consider the generic Lagrangian

L = −1
2g

j
abcχaΓjχbφc (B.119)

such that Γj = 1, iγ5, γµγ5, γµ spans all the possible operators. In Fig. B.1 are shown
our convention for the corresponding vertices. In the following, we simply focus on
a single mediator φc and the self-interaction amplitude. The different S terms intro-
duced in Eq. (B.66) are, for the three available channels,

Ss = −(gjc)2 [v(p2)Γju(p1)] [u(p3)Γjv(p4)]
St = +(gjc)2 [u(p3)Γju(p1)] [v(p2)Γjv(p4)]
Su = +(gjc)2 [v(p1)Γjv(p4)] [v(p2)Γjv(p3)] .

(B.120)

Note that following DENNER et al. (1992), the term Ss fixes the fermion chain ordering
2134. The sign in front of St comes from a (−1) due to the negative permutation 2134→
3124. Similarly, the sign in front of Su also comes from the negative permutation
2134→ 1423. The total amplitude is given byM =Ms +Mt +Mu. In order to evaluate
the matrix element squared it is necessary to evaluate SsSu and StSu. However, when
evaluating the fermion spin sum FeynCalc v9.2 can only treat the following terms∑

s

us(p)us(p) = /p+m and
∑
s

vs(p)vs(p) = /p−m (B.121)

therefore it is straightforward to show that this can not work. Indeed the spinor
content is not the same in Ss and Su, thus the need to transform the expressions.



268 B. COMPLEMENTS FOR CHEMICAL AND KINETIC DECOUPLING COMPUTATIONS

The idea is to rely on the the following property that relates the spinors thanks to
the charge conjugation matrix

us(p) = CvTs (p) and vs(p) = CuTs (p) , (B.122)

and with C† = C−1 and CT = −C. Moreover one can also show, thanks to the prop-
erties of the gamma matrices, the following general identity

C−1ΓjC = ηjΓTj (B.123)

where ηj = 1 if Γj = 1, γ5, γµγ5 and it is −1 otherwise. Let us look now at the expres-
sion of Su and in particular at the two different fermion chains. By a transpose
operation the two chains are

v(p2)Γjv(p3) = [v(p2)Γjv(p3)]T = vT (p3)ΓTj vT (p2)
= −u(p3)CΓTj C−1u(p2) = −ηju(p3)Γju(p2)

(B.124)

and v(p1)Γjv(p4) = −ηju(p4)Γju(p1). In the end the term Su can be given in four dif-
ferent ways listed here

Su = +(gjc)2 ×


+ [v(p1)Γjv(p4)] [v(p2)Γjv(p3)]
−ηj [u(p4)Γju(p1)] [v(p2)Γjv(p3)]
−ηj [v(p1)Γjv(p4)] [u(p3)Γju(p2)]
+ [u(p4)Γju(p1)] [u(p3)Γju(p2)]

(B.125)

where we used the fact that η2
j = 1 in the last equality. In order to evaluate SsSu we

now also transpose the fermion chains in Ss to obtain

Ss = −(gjc)2 ×


+ [v(p2)Γju(p1)] [u(p3)Γjv(p4)]
−ηj [v(p1)Γju(p2)] [u(p3)Γjv(p4)]
−ηj [v(p2)Γju(p1)] [u(p4)Γjv(p3)]
+ [v(p1)Γju(p2)] [u(p4)Γjv(p3)]

. (B.126)

Now, we only need to choose one expression of Ss and one expression of Su such that
they share the same spinor content. For instance, we can choose the third expression
of Ss and the second of Su or the second expression of Ss and the third of Su that are
the only two combinations that work. Therefore it is now possible to use the usual
spin sum rules without any ambiguity for the term SsSu. Similarly, for the term St
we can also transform the fermion chains as

St = +(gjc)2 ×


+ [u(p3)Γju(p1)] [v(p2)Γjv(p4)]
−ηj [v(p1)Γjv(p3)] [v(p2)Γjv(p4)]
−ηj [u(p3)Γju(p1)] [u(p4)Γju(p2)]
+ [v(p1)Γjv(p3)] [u(p4)Γju(p2)]

. (B.127)

In that case, the second (resp. third) expression of St matches with the first (resp.
fourth) of Su. Two combinations are thus possible to implement fermion chains that
FeynCalc v9.2 can treat.
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B.4 Triangle diagram production of photons and gluons

We focus here on the production from a pseudo-scalar from a Dirac fermion tri-
angle loop. The scalar case has been widely studied in the literature for the Higgs
particle decay into two photons (BERGSTRÖM et al. 1985; DJOUADI 2008; MARCIANO

et al. 2012). The amplitude of the triangle plot represented in Fig. B.3, amputated
from the polarisation vectors, is proportional to

Tµν =−
∫ d4k

(2π)4 Tr
{
iγµ

i(/k + /p1 +m)
(k + p1)2 −m2γ

5 i(/k − /p2 +m)
(k − p2)2 −m2 iγ

ν i(/k +m)
k2 −m2

}
(B.128)

Using the properties of the gamma matrices

Tr
{
γµ(/k + /p1 +m)γ5(/k − /p2 +m)γν(/k +m)

}
= 4imεµνρσ(p1)ρ(p2)σ , (B.129)

and it yields a much simpler formulation,

Tµν = 4mεµνρσ(p1)ρ(p2)σ
∫ d4k

(2π)4
1

(k + p1)2 −m2
1

(k − p2)2 −m2
1

k2 −m2 . (B.130)

that we can compute using the Feynman parametrisation for integration. First let us
denote the three factors appearing un the denominator

D1 = k2 −m2

D2 = (k + p1)2 −m2

D3 = (k − p2)2 −m2
(B.131)

and the integral as

C0 ≡
∫ ddk

(2π)d
1

D1D2D3
. (B.132)

The Feynman parametrisation consists in writing

1
D1D2D3

= 2
∫ 1

0
dy
∫ y

0
dz 1

[D1 + (D2 −D1)y + (D3 −D2)z]3
. (B.133)

Massaging the denominator D(y, z) = D1 + (D2 − D1)y + (D3 − D2)z it is possible to
factorise the dependence in k as

D(y, z) = k2 −m2 + y
[
(k + p1)2 − k2

]
+ z

[
(k − p2)2 − (k + p1)2

]
= k2 −m2 + 2ykp1 − 2zk(p1 + p2)
= [k + yp1 − z(p1 + p2)]2 − 2z2p1p2 + 2yzp1p2 −m2

(B.134)

where we used the fact that p2
1 = p2

2 = 0. With a change of variables k → k − yp1 +
z(p1 + p2) and by introducing the Mandelstam variable s = (p1 + p2)2 = 2p1p2 it yields
D → D′(y, z) = k2 − sz(z − y) − m2, thus giving

C0 = 2
∫ 1

0
dy
∫ y

0
dz
∫ d4k

(2π)4
1

[k2 − sz(z − y)−m2]3
. (B.135)

By a Wick rotation it yields

C0 = −i 1
8π2Γ(3)

∫ 1

0
dy
∫ y

0
dz 1

sz(z − y) +m2 (B.136)
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Using the complex square root and the complex logarithm and with the definition of
a reduced mass squared x = 4m2/s (compared to the energy in the centre of mass),∫ y

0
dz 1

sz(z − y) +m2 = x2

2m2

∫ +y

−y
dv 1

v2 − y2 + x

= x

2m2
√
y2 − x

∫ y/
√
y2−x2

−y/
√
y2−x

dw 1
w2 − 1

= x

4m2
√
y2 − x

ln
(√

y2 − x− y√
y2 − x+ y

)
.

(B.137)

The second integration gives

∫ 1

0
dy
∫ y

0
dz 1

sz(z − y) +m2 = x

4m2

∫ 1

0
dy 1√

y2 − x
ln
(√

y2 − x− y√
y2 − x+ y

)

= − x

8m2

[
ln2
(√

y2 − x− y√
y2 − x+ y

)]1

0

= − x

8m2 ln2
(√

1− x− 1√
1− x+ 1

)
.

(B.138)

The common notation is to introduce the function fϕ defined by

fϕ(x) = x

4 ln2
(√

1− x− 1√
1− x+ 1

)
. (B.139)

It yields the value of the coefficient C0

C0 = i

32π2m2 fϕ

(
4m2

s

)
, (B.140)

such that the amplitude writes

Tµν = 4mεµνρσ(p1)ρ(p2)σC0 = i

16π2m
fϕ

(
4m2

s

)
2εµνρσ(p1)ρ(p2)σ . (B.141)

Now, if we want to write a complete amplitude for the disintegration of a pseudo-scalar
ϕk into two photons or two gluons though the fermion ψj we need to add the charges
at each vertex and the sum over colour indices in each quark propagator so that

iMµν
γγ = iBjk

Nj(Qje)2

16π2m
fϕ

(
4m2

s

)
2εµνρσ(p1)ρ(p2)σε∗µ(p1)ε∗ν(p2)

iMµν
gg = iBjk

g2
sδ

q
j

16π2m
fϕ

(
4m2

s

)
Tr{T aT b}2εµνρσ(p1)ρ(p2)σε∗µ(p1)ε∗ν(p2)

(B.142)

where Nj = 3, the number of colours, if ψj is a quark and Nψ = 1 if it is a lep-
ton. Moreover here we introduce δq

j that is 1 if ψj is a quark and 0 otherwise as
well as T a ≡ λa/2, the Gell-Mann matrices divided by the factor 2. They are nor-
malised according such that

Tr{T aT b} = 2δab . (B.143)
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k − p2

k

k + p1

p2

p1

ϕk

γ; g

γ; g

Figure B.3 – Triangle diagram

In addition, we introduce the fine structure constant and its strong counterpart, αem =
e2/(4π) and αs = g2

s/(4π) respectively, so that the previous expressions summarises to

iMµν
γγ = iBjk

αem
4π

NjQ
2
j

m
fϕ

(
4m2

s

)
2εµνρσ(p1)ρ(p2)σε∗µ(p1)ε∗ν(p2)

iMµν
gg = iBjk

αs
4π

δq
j

2mfϕ

(
4m2

s

)
2εµνρσ(p1)ρ(p2)σε∗µ(p1)ε∗ν(p2) .

(B.144)

Let us now introduce the dual of the field strength F̃µν = εµνρσFρσ/2 and G̃a,µν =
εµνρσGaρσ/2, where Fµν = (∂µAν − ∂νAµ) and Gaµν = (∂µAaν − ∂nuAaµ + gfabcAbµA

c
µ). We can

compute, in Fourier space (with ∂µ → ipµ),

FµνF̃
µν → 2εµνρσ(p1)ρ(p2)σA1,µA2,ν

GaµνG̃
a,µν → 2εµνρσ(p1)ρ(p2)σAa1,µAa2,ν +O(A3) .

(B.145)

Therefore the interaction between pseudo-scalars and two photons or gluons at one
loop-level can be described with the two effective terms in the Lagrangian

L 3 −αem
4π CγϕkFµνF̃

µν − αs
4πCgϕkTr{GµνG̃µν} (B.146)

with Gµν ≡ GaµνT
a (sum over a implicit here) and with the definition of the cou-

pling coefficients being

Cγ = −Bjk
NjQ

2
j

m
fϕ

(
4m2

s

)
and Cg = −Bjk

1
m
fϕ

(
4m2

s

)
. (B.147)

In the case studied in DOMINGO (2017) one would have to set the couplings of the
pseudo-scalar to the fermions as Bjk = P11/(

√
2v)m(tan β)±1 and we find the exact

same results for the effective couplings, namely,

Cγ = − P11

2
√

2v
NcQ

2(tan β)±1F
(
m2

s

)
and Cg = − P11

2
√

2v
(tan β)±1F

(
m2

s

)
. (B.148)

with F(x) = 2fϕ(4x). Note that there is also a second diagrams to consider, inverting
p1 and p2 as well as µ and ν in the expressions above. This additional diagram is
equal to the one we computed here and it is taken into account from the new effec-
tive terms in the Lagrangian due to the factor of 2 appearing in the Feynman rules
(for two identical outgoing states).





C
Complements on structure

formation

In this appendix we give some formulas and performed computations used in
Chapter 2. The first order perturbed Einstein equations are derived in a first section.
The following section is devoted to the comoving curvature perturbation and finally,
the last section addresses the initial conditions for the spherical collapse model.s

C.1 Perturbed Einstein equations

In order to evaluate the perturbed Einstein equations we first need to give the ex-
pression of the christoffel symbols and of the order 1 Einstein tensor. Firstly, the
Christoffel symbols are

Γ0
00 = H+ ψ′

Γ0
0i = ∂iψ

Γi00 = δij∂jψ

Γ0
ij = Hδij −

[
φ′ + 2H(φ+ ψ)

]
δij

Γij0 = Hδij − φ′δij
Γijk = −

[
δik∂jφ+ δij∂kφ

]
+ δjkδ

il∂lφ = −2δi(j∂k)φ+ δjkδ
il∂lφ

(C.1)

so that the Einstein tensor at first order becomes

δG00 = 2∇2φ− 6Hφ′

δG0i = 2∂i(φ′ +Hψ)

δGij =
[
∇2(ψ − φ) + 2φ′′ + 2(2H′ +H2)(φ+ ψ) + 2Hψ′ + 4Hφ′

]
δij + ∂i∂j(φ− ψ) .

(C.2)

Before going further one recall the Friedmann equations for the background, written
in terms of H (and not H as in the main text). They are

H2 = 8πGN
3 ρa2 and H′ +H2 = 4πGN

3 ρa2(1− 3w) . (C.3)

Then using the first order of the stress energy tensor, the equation δGµν = 8πGNTµν
can be decomposed in four parts listed below.
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• The spatial traceless part:

δ

[
Gij −

1
3Gmng

mngij

]
= 8πGNδ

[
Tij −

1
3Tmng

mngij

]
(C.4)

Keeping only the 1st order terms of this expression yields

δGij −
1
3δGmng

mngij = 8πGN

[
δTij −

1
3δTmng

mngij

]
. (C.5)

In order to use this equation it is necessary to write the first order perturbation of the
strees energy tensor with indices down. This can be done quite easily, because at first
order δTµν = gµρδT

ρ
ν + δgµρT

ρ
ν and therefore δTij = −a2δimδT

m
j + 2φa2δij. Remember-

ing that indices of the stress-energy tensor are lowered and raised in Minkowsky’s
flat metric it yields (

∂i∂j −
1
3δij∇

2
)

(φ− ψ) = 8πGNa
2Πij . (C.6)

Writing now this equation in Fourier space and using the identity of Eq. (3.19)
it simplifies to

φ− ψ = 12πGNa
2(ρ+ P )σ . (C.7)

In most applications σ = 0, which then implies that φ = ψ. However for the moment
let us write the most general equations possible and keep σ.

• The 00-th component:

δG00 = 8πGNδT00 . (C.8)

Developing the different term yields

2∇2φ− 6Hφ′ = 8πGN
(
g0µδT

µ
0 + δg0µT

µ
0
)

= 8πGN
(
g00δT

00 + δg00T
0

0
)

= 8πGNa
2 (δρ+ 2ψρ)

(C.9)

then using Friedmann equation (i.e. the zeroth order part of this equation) leaves

∇2φ = 4πGNa
2ρδ + 3H(φ′ +Hψ) . (C.10)

By using Friedmann equation we can further simplify this expression as

∇2φ = 3
2H

2δ + 3H(φ′ +Hψ) . (C.11)

This equation is Poisson’s equation in terms of δ.

• The 0i component:

δG0i = 8πGNδT0i . (C.12)

It gives the differential equation

∂i
[
φ′ +Hψ + 4πGNa

2(ρ+ P )v
]

= 0 (C.13)
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that we can integrate, assuming that perturbation vanish at infinity. Therefore

φ′ +Hψ + 4πGNa
2(ρ+ P )v = 0 (C.14)

and with this equation it is possible to relate the comoving density contrast ∆ to
the density contrast using only the potentials. Indeed by replacing the value of v
in the expression, it yields

∆ = δ + 2φ′

H
+ 2ψ . (C.15)

Introducing this result in Eq. (C.10) one obtains Poisson’s equation written in terms
of the co-moving gauge density contrast ∆ according to

∇2φ = 4πGNa
2ρ [δ − 3H(1 + w)v] = 4πGNa

2ρ∆ . (C.16)

• The spatial trace:

δ
[
giµGµj

]
= 8πGNδT

i
j . (C.17)

Since δ
[
giµGµj

]
= δgiµGµj + giµδGµj, it yields

−a−2
[
2φδimGmj + δimδGmi

]
= −24πGNδP (C.18)

and using the expression of the zeroth-order spatial component of Einstein’s tensor
Gij = −(2H′ +H2)δij it is possible to develop the first part inside the brackets

2φδimGmi + δimδGmi = 3
[
∇2(ψ − φ) + 2φ′′ + 2(2H′ +H2)ψ + 2Hψ′ + 4Hφ′

]
+∇2(φ− ψ)

= 6
[
φ′′ + (2H′ +H2)ψ +H(ψ′ + 2φ′)

]
− 2∇2(φ− ψ) .

(C.19)

Eventually, combining this equation with the expression of φ − ψ gives the last for-
mula we will derive with Einstein’s equation. It relates the potentials to δP and σ
in the following way

φ′′ + (2H′ +H2)ψ +H(ψ′ + 2φ′) = 4πGNa
2(ρ+ P )

[
δP

ρ+ P
+∇2σ

]
. (C.20)

C.2 The comoving curvature perturbation

Using the 0ith component of Einstein’s equation the comoving curvature pertur-
bation in the Newtonian gauge transforms into

R = −φ−H φ′ +Hψ
4πGNa2

(
ρ+ P

) . (C.21)

Differentiating now this expression and using the continuity equation for the back-
ground yields the expression of the co-moving curvature variation rate

R′ = −φ′−H′ φ′ +Hψ
4πGNa2(ρ+ P )

−Hφ
′′ +H′ψ +Hψ′

4πGNa2(ρ+ P )
−H2 φ′ +Hψ

4πGNa2(ρ+ P )

(
1 + 3P

′

ρ′

)
. (C.22)
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Henceforth, with the Friedmann equations for the background H2−H′ = 4πGNa
2(ρ+P ),

and furthermore using the fact that 3H(φ′+Hψ) = ∇2φ− 4πGNa
2δρ, rearranging terms

and using the definition of the non adiabatic pressure fluctuation yields

−4πGNa
2(ρ+ P )R′ = H(Hφ′ +H′ψ) +H

(
φ′′ +H′ψ +Hψ′

)
+H2 (φ′ +Hψ)(1 + 3P

′

ρ′

)
= H

[
φ′′ +H(2φ′ + ψ′) + (H2 + 2H′)ψ

]
+HP

′

ρ′
∇2φ− 4πGNa

2HδρP
′

ρ′

= 4πGNa
2H

[
δPnad +

(
c2
s −

P
′

ρ′

)
δρ+ (ρ+ P )∇2σ

]
+HP

′

ρ′
∇2φ .

(C.23)

For isentropic initial conditions with an adiabatic evolution and a zero anisotropic
stress-energy tensor this equation reduces to

R′ = −3k
2

H
ρ

ρ+ P
(R−Hv) and gives the scaling

d lnR
d ln a ∼

(
k

H

)2
. (C.24)

C.3 Initial conditions for the spherical collapse

Here we follow the treatment done in (MO et al. 2010 – chapter 5.1). We as-
sume that we are in a matter dominated Universe. The initial radius at time ti is
related to the constant mass of the structure and to the initial overdensity δi and
background density ρi as

M = 4
3π(1 + δi)ρiR3

i (C.25)

Using Fridemann equation we get

R3
i = 2GNM

Ωi(1 + δi)H2
i

. (C.26)

Moreover we can also show from the conservation of the mass that
dRi
dti

= HiRi

[
1− 1

3Hiti

δi
1 + δi

d ln δi
d ln ti

]
. (C.27)

Plugging this result in the equation for the energy E = GNM/Ri − (dRi/dti)2/2 yields

GNM

Ri
− (HiRi)2

2

[
1− 1

3Hiti

δi
1 + δi

d ln δi
d ln ti

]2
= E (C.28)

The combination of Eq. (C.26) and Eq. (C.28) gives

ERi
GNM

= 1− 1
Ωi(1 + δi)

[
1− 1

3Hiti

δi
1 + δi

d ln δi
d ln ti

]2
(C.29)

In a matter dominated Universe at ti, one has δi ∝ t
2/3
i � 1, Ωi ∼ 1 and Hiti ∼

2/3. Therefore it yields

ERi
GNM

∼ 1−
[
1− δi

3

]2
∼ 2

9δi (C.30)

which proves that (ERi)/(GNM) � 1.



D
Complements on baryonic tides

D.1 Jean’s equation and velocity dispersion

Let us consider a self-gravitating system. The PSDF f(x,v) of such a system follows
the collisionless Boltzmann equation

∂f

∂t
+ [v.∇x]f −∇Φ.∇vf = 0 . (D.1)

Finding solutions to this equation is however not trivial and here because we are
mainly interested in the velocity dispersion we can evaluate the velocity moments. In
particular the combination of the zeroth and first order moments yields

∂ρ 〈vj〉
∂t

+ 〈vj〉
∂ 〈vi〉
∂xj

= − ∂Φ
∂xi
− 1
ρ

∂(ρσ2
ij)

∂xj
(D.2)

with σ2
ij = 〈vivj〉 − 〈vi〉 〈vj〉 the velocity variance tensor such that this equation re-

semble the Euler equation with pij = ρσ2
ij an effective pressure term in the Euler

equation. This equation is called the Jeans equation. In a spherical system, using
spherical coordinates we can rewrite

1
ρ

∂(ρ
〈
v2
r

〉
)

∂r
+ 2 β(r)

r

〈
v2
r

〉
= −dΦ

dr where β(r) ≡ 1−
〈
v2
θ

〉
+
〈
v2
φ

〉
2 〈v2

r 〉
(D.3)

is the anisotropy parameter. Here, for particles in subhalos, isotropy is as-
sumed, therefore we have β(r) = 0 and σ2

sub =
〈
v2
r

〉
thus, for a finite size

structure of tidal radius rt,

σ2
sub(r) = G

ρ(r)

∫ rt

r

ρ(r′)m(r′)
r′2

dr′ . (D.4)

The same approach is used to compute the velocity distribution of subhalos in the
dark halo of the Galaxy. One major difference is that baryons now contribute to the
potential Φ and the mass of the system is

mtot(R) = mDM(R) +
∫
|r′|<R

ρb(r′) d3r′ . (D.5)
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where ρb is the baryonic mass density, which is axisymmetric rather than spherical.
The DM velocity variance can then be approximated the same formula, but chang-
ing the mass in the integrand,

σ2(R) = G

ρ

∫ Rmax

R

ρ(R′)mtot(R′)
R′2

dR′ . (D.6)

The boundaries of the MW are fixed at Rmax = 500 kpc.

D.2 Distribution of impact parameters

Let us define a galactic frame with origin the centre of the galaxy (G, êx, êy, êz) where
the z-axis is perpendicular to the galactic plane (in the following, when referring to
the galactic plane we mean the middle of the stellar disc) and êx and êy are arbitrary
orthonormal vectors. We assume that all along the disc crossing the subhalo keeps
a rectilinear trajectory that intercepts the galactic plane at position R, at time t = 0,
in the galactic frame, with a velocity vc. Let us now consider a star tagged by the
letter i that has a position Ri at t = 0 in the same frame. We assume that on the time
the subhalo crosses the disc it keeps a linear trajectory with a velocity vi such that
vi.Ri ∼ 0. For simplicity we also introduce Si = Ri −R. Then, at an arbitrary time, t
the distance between the star and the subhalo is given by

di(t) = |Si − vr,it| (D.7)

where we introduce the relative velocity between the star and the subhalo vr,i = vc−vi.
The impact parameter for this specific star is defined as bi ≡ min{di(t)}, it yields

bi = |Si × vr,i|
|vr,i|

. (D.8)

Now we want to know what is the probability for this star to be at position Ri and have
a mass mi. We call the associated probability distribution quantity p(m?,R?)(mi,Ri) =
pm?(mi |Ri)pR?(Ri). In our model we make the usual approximation that pm?(mi |Ri) =
pm?(mi) so that it does not depend on the position. Moreover the probability distri-
bution of positions is given by the mass density as

pRi(Ri) = ρ?(Ri)
[∫

d3R ρ?(R)
]−1

= ρ?(Ri)
mtot
?

(D.9)

where mtot
? is the total mass of stars and ρ?(Ri) their mass density at position Ri. All

stars being independent the joint PDF for their mass and position is

p(m?,R?) ({mi}i, {Ri}i) =
N?∏
i=1

[
pm?(mi)pR?(Ri)

]
(D.10)

with N? = mtot
? /m? the total number of stars. With all these ingredients it is possible

to evaluate the number density of stars that are crossed with impact parameter b and
mass M?, knowing the trajectory of the subhalo, as

d2N
dbdm?

=
∫ N?∏

i=1
dmid3Ri pm?(mi)pR?(Ri)

[
N?∑
i=1

δD(bi − b)δD(mi −m?)
]
. (D.11)
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Figure D.1 – Number density of stars encountered with an impact parameter b divided by b (to
ease the comparison between the approximation and the full expression) vs the cosine of the
angle between the subhalo trajectory and the normal to the galactic plane θ. The lowest cos θ
is the closer the subhalo passes to the stellar disc. The approximate computation is given by
the black solid line and is independent of b while the full expression gives the coloured solid
line for different values of b. There is a change in behaviour around cos θ ∼ b/Rd where Rd ∼ 3
kpc is the approximate typical length scale of the stellar disc.

Massaging this expression, it is straightforward to prove that the mass probability
distribution can be factored out and it leaves us with the number of density of stars
with a given impact parameter that can be written under the compact form

dN
db = 1

m?

∫
d3R? ρ?(R?)δD(b? − b) . (D.12)

Form the expression of the impact parameter it is convenient to make the change
of variables in this integral R? → S? = R? − R and define the Dirac distribution
on the squared value of the impact parameter. Eventually, in order to simplify the
computation we will assume that all stars lay within an infinitely thin axi-symmetric
disc of surface density Σ? and the integration over the entire 3D space reduces to the
integration on the galactic plane. We therefore write

dN
db = 2b

m?

∫
d2S? Σ? [R?(S?)] δD(b2? − b2) . (D.13)

Now in order to continue the computation we can choose, without loss of gener-
ality, the convenient orientation of the basis (êx, êy) such that R = (R, 0, 0). Moreover
we parametrise the relative velocity direction with two angles θ and ϕ as vr,i/|vr,i| =
(sin θ cosϕ, sin θ sinϕ, cos θ) and S? = (S cosφ, S sinφ, 0) such that d2S? = sdsdφ. Then the
expression of the impact parameter becomes

b2? = s2
[
1− sin2 θ cos2(φ− ϕ)

]
. (D.14)

The integration over the Dirac delta distribution in Eq. (D.12) after the change of
variable can be done analytically by solving the delta for the angle φ. It gives four
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distinct solutions in [ϕ−π, ϕ+π] when Scθ < b < S, that can be written under the form,

φj = ϕ+ ηj arccos

 χj
sin θ

√
1− b2

s2

 . (D.15)

where we have introduced χj = (+1,+1,−1,−1) and ηj = (+1,−1,+1,−1). The arc-
cos function image being in the range [0, π] only, the χj factor parametrises the two
solutions in the interval [ϕ,ϕ + π] while the ηj gives the two symmetric solutions in
the interval [ϕ − π, ϕ]. Henceforth in order to perform the integration over the Dirac
distribution it is also necessary to provide the absolute value for the derivative of
b2? with the variable φ evaluated in the four solution points. Using the properties of
these solutions, this takes a simple form∣∣∣∣∣db2?dφ

∣∣∣∣∣
φ=φj

= 2s2 sin2 θ| cos(φj − ϕ)|| sin(φj − ϕ)| = 2
√
s2 − b2

√
b2 − s2 cos2 θ (D.16)

Then the only thing we need to do last is relate the value of R? to s in the four
solution points. We denote Rj these four quantities and introduce a new variable
y = s2/b2. Using the simple relation R? = S? + R – that is the definition of S? – it
is straightforward to show that R2

j = R2 + b2y + 2hj(y, cθ, ϕ) with the shorter notation
cθ = cos θ and the functions hj being

hj(y, cθ, ϕ) ≡ χjRb√
1− c2

θ

[
cosϕ

√
y − 1− ηj

χj
sinϕ

√
1− yc2

θ

]
(D.17)

In the end, the number density of stars with impact parameter b can be written as

dN
db = b

2

∫ 1
c2
θ

1

dy√
1− yc2

θ

√
y − 1

4∑
j=1

Σ?(Rj)
m?

(D.18)

and the computation is complete. Eventually we would like to relate the angles ϕ
and θ to physical quantities (i.e. the angle marking the direction of the stars and the
subhalo). In practice this is difficult in a general case. We will therefore consider that
stars are motionless during all subhalo crossing so that vr,i = vc.

Eventually let us mention that formally the functions hj can be rewritten in a
more convenient way as

hj = χjRb
√
y cos

ϕ+ ηj
χj

arctan

√1− yc2
θ

y − 1

 (D.19)

Under this form it becomes easier to see that the functions hj and the associated
radii Rj are bounded

|hj | ≤ Rb
√
y and |R− b√y| < Rj < R+ b

√
y (D.20)

In particular, since y < 1/c2
θ this previous inequality implies that |Rj − R| < b/cθ.

If we consider that the variations of Σ? on R are of typical length Rd it yields that
Σ?(Rj) = Σ?(R) as long as cθ � b/Rd. Therefore one can simply rewrite the density
of encountered stars as

dN
db = 2bΣ?(R)

m?

∫ 1
c2
θ

1

dy√
1− yc2

θ

√
y − 1

= Σ?(R)
m?

2πbdb
cθ

. (D.21)
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D.3 Energy and velocity distributions in stellar encounters

In this appendix, we detail the PDF of several functions of interest and we prove
several properties claimed in the main text. We start by introducing the PDF of final
velocity in a given shell and give an analytical derivation. With the results, we prove
the relation between the median and the average kinetic energy kick of Eq. (4.109)
on general grounds. In a third part, we illustrate this formal derivation with the
example of the initial velocity following a Maxwell-Boltzmann distribution. Eventually,
we conclude by studying the impact of stellar encounters on the density profile using
a simple criterion in order to justify the use of the median as the typical kinetic energy
kick felts by all particles in a given shell during one crossing of the disc.

D.3.1 Probability distribution for the final velocity

We suppose that we know the PDF, pv(v | r) ,for the initial velocity v of particles
at position r in a subhalo and the probability for particles in that shell to receive
a velocity kick ∆v then the probability distribution of final velocity vf at position
r can be written under the form

pvf (vf | r) =
∫

d3v pv(v | r)
∫

dd∆v p∆v(∆v | r)δD [vf − |v + ∆v|] . (D.22)

We leave room here for the possibility of ∆v being a 3D or 2D random vector with
the dimension parameter d. Let us assume an isotropic initial velocity distribution
so that pv(v | r) = pv(v | r) with v = |v|. Then it is possible to integrate first on the
angular distribution of v in order to remove unnecessary degrees of freedom and get
rid of the Dirac delta term. It yields

pvf (vf | r) =
∫

d3v pv(v | r)pvf (vf | v, r) (D.23)

with the definition of the PDF of vf knowing v and r being

pvf (vf | v, r) = vf
v

∫
dd∆v p∆v(∆v | r)

∆v Θ [∆v − |v + vf |] Θ [(v + vf )−∆v] (D.24)

and where we introduced the velocity kick norm ∆v = |∆v|. For an isotropic distribu-
tion of ∆v such that p∆v(∆v | r) = p∆v(∆v | r) it further simplifies to

pvf (vf | v, r) = vf
v

πd/2

Γ(d/2)

∫ |v+vf |

|v−vf |
d∆v (∆v)d−2p∆v(∆v | r) . (D.25)

Let us now assume that ∆v follows a Gaussian distribution according to the result of
the central limit theorem. Then the distribution on ∆v takes a simple form

p∆v(∆v | r) = π−d/2

ud
e−

(∆v)2

u2 with u = u(r) =

√
2N (δv)2

d
(D.26)



282 D. COMPLEMENTS ON BARYONIC TIDES

10−3 10−2 10−1 100 101 102 103

v/u

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆̂
E

(q
,v

)/
∆
E

2D

3D

q = 0.25

q = 0.50

q = 0.75

q = 0.25

q = 0.50

q = 0.75

Figure D.2 – The inverse CCDF of kinetic energy knowing the velocity at three values q = 0.25,
q = 0.5 and q = 0.75 with respect to the initial velocity v

which yields, with the change of variable ∆v → u
√
t in the second line, and the intro-

duction of the incomplete Gamma function in the third line,

pvf (vf | v, r) = vf
v

1
Γ(d/2)

∫ |v+vf |

|v−vf |
d∆v (∆v)d−2

ud
e−

(∆v)2

u2 (D.27)

= vf
uv

1
2Γ(d/2)

∫ ( v+vf
u

)2

(
v−vf
u

)2 dt t
d−3

2 e−t (D.28)

= vf
uv

1
2Γ(d/2)

[
Γ
(
d− 1

2 ,

(
v − vf
u

)2
)
− Γ

(
d− 1

2 ,

(
v + vf
u

)2
)]

.(D.29)

In the end, here we have found a generic expression for the PDF of vf for any
initial velocity distribution. Another interesting quantity is the associated CDF
of vf that is defined as

Fvf (< vf | r) ≡
∫ vf

0
pvf (v′f | r) dv′f

=
∫

d3v pv(v | r)
{
Fvf (< vf | v, r) ≡

∫ vf

0
pvf (v′f | v, r)dv′f

}
.

(D.30)

The CDF knowing v and r can therefore be computed with the expression of the
PDF derived above. We will see the utility of this expression in the following para-
graphs and especially when discussing the density profile modifications due to the
encounter. However let us first inspect the properties of the median energy kick
in light of the previous derivation.

D.3.2 Properties of the median energy kick

In the main text, we have introduced the median value of the energy kick received
by particles in a subhalo during the encounter with stars when it crosses the stellar
disc. Moreover, we have based our computation of the tidal radius on the fact that
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the typical energy received in a shell is defined as the median value that can be
approximated by the average value modulated by a coefficient between 0.5 and 0.7 (in
the case of a 2D random walk in the velocity space). We prove this property here and
show that it is independent of the initial velocity distribution. Similarly to the CDF for
vf it is possible to introduce a related CDF for the kinetic energy kick ∆E as follows

F∆E(< ∆E | r) =
∫

d3v pv(v | r)Fvf (<
√
v2 + 2∆E | v, r) . (D.31)

Henceforth we can define a median value for ∆E knowing v and r as Med(∆E | v, r). In
Fig. D.2 we show that value of ∆̂E(q, v) that is given by the implicit equation

Fvf

(
<

√
v2 + 2∆̂E(q, v) | v, r

)
= 1− q, (D.32)

for three different values of q. In particular, the median Med(∆E | v, r) = ∆̂E(0.5, v)
is bounded by the asymptotes in v = 0 and v → ∞. Series expansions in these two
regime then show that the value of the boundaries are such that

d− 1
d

<
Med(∆E | v, r)

∆E
< x with x solution of

Γ(d/2, xd/2)
Γ(d/2) = 1

2 . (D.33)

In practice for d = 2, it yields x = ln(2) and for d = 3 it yields x = 0.789. Eventually, even
though the total median value Med(∆E) cannot be easily computed from Med(∆E | v, r),
the properties of the boundaries have to be conserved. Therefore we have shown that
whatever the initial velocity distribution of velocity the median kinetic energy kick is
always equivalent to the average up to an O(1) pre-factor.

D.3.3 The example of a Maxwellian initial velocity

In order to illustrate the theoretical development above and to connect with the
main text we consider now that the PDF of the initial velocity is a Maxwell-Boltzmann
distribution Eq. (4.106) such that

pv(v | r) = 1
(2πσ2

sub(r))3/2 e
− v2

2σ2
sub(r) . (D.34)

In order to compute the median of ∆E we can start by computing the exact PDF and
CDF. The PDF for ∆E is given by

p∆E(∆E | r) =
∫

d3v pv(v | r)
∫

dd∆v p∆v(∆v | r)δD

[
∆E − (∆v)2

2 + v.∆v
]

(D.35)

=
∫

dd∆v p∆v(∆v | r)
2π
∆v

∫
|2∆E−(∆v)2|

2∆v

dv pv(v | r) (D.36)

=
∫

dd∆v p∆v(∆v | r)
1√

2πσ2
sub(∆v)2

exp


(
∆E − (∆v)2

2

)2

2σ2
sub|∆v|2

 (D.37)

Note that here we integrate over v before integrating over ∆v for simplicity. According
to the dimensionality of the random walk it yields

p∆E (∆E | r) =



exp
(

∆E
2σ2

sub
− |∆E|

2σ2
sub

√
1+s2
s

)
4σ2

subs
√

1+s2 if d = 2

|∆E|e
∆E

2σ2
sub

4πσ4
subs

2
√

1+s2K1

[
|∆E|
2σ2

sub

√
1+s2
s

]
if d = 3

(D.38)
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where s2 ≡ u2/(8σ2
sub) = N δv2/(4dσ2) = ∆E/(2dσ2

sub) and K1 is the modified Bessel
function of the second kind of order 1. Now we focus on the d = 2 case and
write down the CDF as

F (< ∆E | r) =


1− 1 + ξ

2ξ e−
∆E
2σ2 (ξ−1) if ∆E ≥ 0

ξ − 1
2ξ e

∆E
2σ2 (1+ξ) else.

(D.39)

with ξ =
√

1 + s2/s. The complementary CDF, i.e. CCDF, introduced in the main text
is denoted F (> ∆E) ≡ 1− F (< ∆E). Eventually the energy ∆E(q) is defined implicitly
through the CCDF as the solution of F (> ∆E(q)) = q. Therefore according to the
value of q the energy ∆E(q) can be written

∆E(q)
2σ2 =


1

1− ξ ln
( 2qξ

1 + ξ

)
if q < 1+ξ

2ξ

1
1 + ξ

ln
(2(1− q)ξ

ξ − 1

)
else .

(D.40)

As the average kinetic energy kick is such that ∆E/(2σ2
sub) = 2s2 = 2(ξ2 − 1),

when q ≤ 0.5, it yields

Med(∆E)
∆E

= ξ + 1
2 ln

(1 + ξ

2qξ

)
≥ ξ(1− 2q) + 1

2 ≥ 1
2 (D.41)

with Med(∆E) = ∆E(0.5) and where we used the inequality ln(1/x) ≥ 1−x. Eventually,
when q 6= 0.5 the ratio diverges as ξ → ∞ (corresponding to s → 0). When q = 0.5
the ratio is a decreasing function of ξ and

Med(∆E)
∆E

≤ lim
ξ→1

Med(∆E)
∆E

= ln(2) . (D.42)

which proves in this specific case the result of Eq. (D.33).

D.4 Probability distributions of the total energy kick (stars
+ disc shocking)

As mentioned in the main text we define a total energy kick as ∆Etot = ∆E + ∆Ed
where ∆Ed is the energy kick due to the disc shocking and ∆E is the energy kick due
to the encounters with stars. In the following we assume that ∆E is distributed along
as in Eq. (D.38) in the d = 2 case and ∆Ed is distributed along a Gaussian according to

p∆Ed(∆Ed) = 1√
2πσ2

sub(∆vd)2A2(η)
e
−

(
∆Ed−A1(η)

(∆vd)2
2

)2

2σ2
sub(∆vd)2A2(η) (D.43)

where ∆vd is given in Eq. (4.34) and the adiabatic correction A1 is introdueced in
Eq. (4.36). We also introduced a new adiabatic corrective factorA2(η) for the dispe-
rion – according to GNEDIN et al. (1999). In the following we also use a parameter
sd ≡ (∆vd)2/(4σ2

sub). Then it is possible to deduce a PDF for ∆Etot. In order to do
so we introduce two variables

ν± ≡
1
2

(√
1 + s2

s
± 1

)√
2A2s2

d (D.44)
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Figure D.3 – Evolution of ∆Etot(q = 0.5)/∆Etot with the parameters s and sd under the as-
sumption that A2 = A2 for simplicity. The black curves represent contours of constant ∆Etot:
∆Etot = 0.2σ2 (dash-dotted), ∆Etot = 2σ2 (solid), ∆Etot = 20σ2 (dashed).

and we define a pseudo centred reduced variable corresponding to ∆Etot of the form

ε ≡ 1√
2A2s2

d

(
∆Etot
2σ2

sub
− s2

dA1

)
(D.45)

in order to simplify the expressions. The main goal of this analysis is to quantify the
asymmetry of the PDF around the average value in order to evaluate whether consid-
ering an average value for ∆Etot is relevant and if not what should be the better choice.
Therefore using an affine shift to define this new variable we do not lose in generality
in that sense. With these two definitions we can evaluate a PDF for ε under the form

pε(ε | ν−, ν+) = ν+ν−
ν+ + ν−

e−2εν−+ν2
−erfc(ν− − ε) + ν+ν−

ν+ + ν−
e2εν++ν2

+erfc(ν+ + ε) . (D.46)

In addition, the average value of ε can be rewritten ε = (ν+−ν−)/(2ν+ν−) and from this
PDF we can also derive a CCDF for ε. It yields the following expression

F ε(ε | ν−, ν+) = − ν+ν−
ν+ + ν−

e2εν++ν2
+

2ν+
erfc(ν+ + ε)

+ ν+ν−
ν+ + ν−

e−2εν−+ν2
−

2ν−
erfc(ν− − ε) + 1

2erfc(ε) .
(D.47)

The main advantage of this parametrisation is to be only depends on two parameters
ν+ and ν− and therefore to be easy to compute numerically. Moreover it can be used
to show that the value of the CCDF at the average yields

1
e
∼ 0.368 < F ε(ε | ν+, ν−) < 1

2 (D.48)

therefore considering the average value is a good way to evaluate that the maximal
energy gain for a fraction of at least 37% of the particle. This is understandable as
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we had, Med(∆Etot) ≤ ∆E in the case without disc shocking and because the disc
shocking that has a symmetric distribution only tends to re-symmetrise the PDF for
∆Etot. Therefore, this justifies entirely the fact that we can evaluate the total energy
as roughly being the sum of the means. In Fig. D.3 is represented the evolution of
Med(∆E)/∆Etot with the parameters s and sd under the assumption A1(η) = A2(η)
for simplicity. When sd � s the distribution is symmetrised again with respect to
the average and the ratio is close to 1. When s � sd the symmetry is maximally
broken and that yields a ratio of ∼ 0.7 as discussed in the scenario with the only
star encounters effect.



E
Complements on the detectability

of subhalos

E.1 Internal properties of the visible point-like subhalos

In this section, we show the internal properties of the most visible point-like sub-
halos. As an example we consider a sensitivity evaluated in a Fermi-LAT like config-
uration with 20 yr of observation and for θr = 0.1◦ or 1◦. Moreover, we also use the 3σ
upper limit for the annihilation cross-section for 10 yr of observation (which implies
that the diffuse DM emission has already been detected first). In Fig. E.3 we first
show the position along the line of sight of the visible subhalos for different pointing
directions. They are mostly gathered around the HC at s ∼ 10 kpc for pointing di-
rection not too far from the GC. In Fig. E.1 and Fig. E.2 we show the concentration
and tidal mass of the visible subhalos in the direction (l, b) = (0◦, 20◦) in the left panel.
Moreover, we also represent the evolution of the median concentration with mt at
three different distances (indeed while the median concentration directly depends on
the cosmological mass, its dependence on the tidal mass depends on the tidal effects
and the position). We observe that a band in the parameter space reaches the median
concentration. These are the regions that contribute the most to the total number of
visible point-like subhalos. On the right panel, we show, in terms of the distances
which regions of the parameter spaces are not integrated over because the subhalo
is either not point-like, destroyed or too faint.

E.2 Cross-section limits for CTA

This section is devoted to showing the limits that can be set with CTA in the four
regions defined in Sect. 5.2. They are displayed according to each regions in Fig. E.4,
Fig. E.5, Fig. E.6 and Fig. E.7. We can observe that the constraint from subhalos (solid
curves) is better for extended objects in comparison to the 2.17σ upper limit of 〈σv〉
set by the assumed non-observation of the DM diffuse emission in the GC (dashed).
However, we recall that, as said in the main text, here we assume an exposure of
100 hr sr−1 which is extremely high for a field of view of ∼ 0.024 sr. Therefore we
can safely say that the stronger constraint may never come from the non-detection of
subhalos. For extended objects the limits are roughly similar in every region however,
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NFW Galactic halo - Properties of subhalos visible with θr = 0.1◦

Cored Galactic halo - Properties of subhalos visible with θr = 0.1◦

Figure E.1 – Left panels: Concentrations and physical masses of the most visible subhalos
in the direction of Galactic coordinates (l, b) = (0◦, 20◦). The solid (dashed, dotted-dashed)
white curve indicates the median concentration of a subhalo of virial mass m200 that would
be pruned off down to the tidal mass mt in abscissa at a Galactocentric distance of 1 kpc
(10 and 100 kpc, respectively) if tidal disruption were unplugged (though not tidal stripping).
This shows that subhalos with a given mt originate from heavier and heavier objects as they
are found closer and closer to the GC (i.e. tidal stripping is more and more efficient), should
tidal stripping not be destructive —see in comparison the minimal concentration needed to
survive tidal effects in the associated right panels. Right panels: Exclusion areas for the
computation of the probability and for different distances to the observer: subhalos that are
not seen as points (red), subhalos that are below the critical/minimal allowed concentration
and then tidally disrupted (turquoise—εt = 0.01), subhalos that are too faint (dark gray on the
left), subhalos that are either too faint or not point sources (light gray). Visible: those lying in
the white area. Top panels: NFW Galactic halo. Bottom panels: Cored Galactic halo.

for point-like structures the constraint gets worse and worse with the distance of the
region to the GC, consequently Region 1 is optimal.
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NFW Galactic halo - Properties of subhalos visible with θr = 1◦

Cored Galactic halo - Properties of subhalos visible with θr = 1◦

Figure E.2 – Same as Fig. E.1 but with θr = 1◦.
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Figure E.3 – Distribution of number of visible subhalo with the distance to the observer s and
for different pointing directions. Here the sensitivity is evaluated for a Fermi-LAT instrument,
20 yr of observation and θr = 0.1◦ while the annihilation cross-section into bb is set as the
upper 3σ limit for 10 yr of observation (the smooth halo should have already been detected).
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Region 1
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Figure E.4 – Annihilation cross-section necessary to detect at least one subhalo (solid lines)
with the shaded areas corresponding to the confidence levels at 68% and 95%. These curves
can also be interpreted as the maximal value of the cross-section possible if no subhalos are
discovered. The limit is set for an homogeneous observation of the sky over 100 hr in the
region 1: 5◦ ≤ ψ ≤ 34◦ (where detection is favored as seen in a previous plot). The comparison
is made with the diffuse constraint already derived above also for an observation of 100 hr.
The left panel is the limit for point-like sources and the right panel for extended objects where
θe = 10× θr (the extension is 10 times the angular resolution).
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Region 2
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Figure E.5 – Annihilation cross-section necessary to detect at least one subhalo (solid lines)
with the shaded areas corresponding to the confidence levels at 68% and 95%. These curves
can also be interpreted as the maximal value of the cross-section possible if no subhalos are
discovered. The limit is set for an homogeneous observation of the sky over 100 hr in the
region 2: 34◦ ≤ ψ < 48◦ (where detection is favored as seen in a previous plot). The comparison
is made with the diffuse constraint already derived above also for an observation of 100 hr.
The left panel is the limit for point-like sources and the right panel for extended objects where
θe = 10× θr (the extension is 10 times the angular resolution).
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Region 3
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Figure E.6 – Annihilation cross-section necessary to detect at least one subhalo (solid lines)
with the shaded areas corresponding to the confidence levels at 68% and 95%. These curves
can also be interpreted as the maximal value of the cross-section possible if no subhalos are
discovered. The limit is set for an homogeneous observation of the sky over 100 hr in the
region 3: 48◦ ≤ ψ ≤ 60◦ (where detection is favored as seen in a previous plot). The comparison
is made with the diffuse constraint already derived above also for an observation of 100 hr.
The left panel is the limit for point-like sources and the right panel for extended objects where
θe = 10× θr (the extension is 10 times the angular resolution).
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Region 4
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Figure E.7 – Annihilation cross-section necessary to detect at least one subhalo (solid lines)
with the shaded areas corresponding to the confidence levels at 68% and 95%. These curves
can also be interpreted as the maximal value of the cross-section possible if no subhalos
are discovered. The limit is set for an homogeneous observation of the sky over 100 hr in
the region 4: 120◦ < ψ < 132◦ (where detection is favored as seen in a previous plot). The
comparison is made with the diffuse constraint already derived above also for an observation
of 100 hr. The left panel is the limit for point-like sources and the right panel for extended
objects where θe = 10× θr (the extension is 10 times the angular resolution).





F
Résumé détaillé en français

F.1 Problème de masse manquante et petites échelles

Le problème de la masse manquante est l’un des mystères les plus intrigants de la
physique moderne; il semblerait que la majorité de la matière présente dans l’Univers
nous soit inconnue. Cette conclusion résulte de plusieurs observations à plusieures
échelles. Au niveau des galaxies spirales nous observons, depuis les années 1970, des
vitesses de rotation des étoiles et du gaz anormalement importantes dans les régions
externes. De fait, ces vitesses sont supérieures à ce que prédit de théorie de la gravi-
tation appliquée à la distribution de masse visible (RUBIN et al. 1970). Un phénomène
similaire existe dans les amas de galaxies et avait déjà intrigué les chercheurs dès
les années 1930 (ZWICKY 1933). Deux solutions sont envisageables pour réconcilier
théorie et observation. La première est de chercher à savoir si la relativité générale est
bien la bonne théorie de la gravité où si, dans certaines limites, elle doit être modi-
fiée. Nous pouvons citer la théorie MOdified Newtonian Dynamics (MOND) s’inscrivant
dans ce cadre (MILGROM 1983). La seconde option est de considérer la possible pré-
sence de matière non visible englobant les galaxies et les amas. Elle donne alors un
terme supplémentaire dans les distributions de masse qui, une fois introduit dans les
équations, permet de retrouver le résultat des observations. Cette nouvelle matière
est appelée la matière noire ou matière obscure. Dans ce travail nous postulons son
existence. Enfin, notons qu’il n’est pas exclu que les deux options cohabitent avec
l’existence d’une matière noire associée à une théorie de la gravité modifiée.

La cosmologie, et plus particulièrement l’observation du fond diffus cosmologique
(ALPHER et al. 1948a,b ; GAMOW 1948a), donne un argument fort en faveur de la ma-
tière noire. Elle met en évidence le pouvoir de prédiction du modèle ΛCDM fondé sur
l’existence d’une constante cosmologique et de la matière noire dite froide (avec une
vitesse faible comparée à la vitesse de la lumière et ce depuis les premières époques
de l’Univers). La formation des structures comme les galaxies, les amas ou les super-
amas est aussi difficile à expliquer sans sa présence et son agragation en halos dans
lesquels les baryons se concentrent pour former étoiles et galaxies. Les simulations
cosmologiques basées sur le modèle ΛCDM reproduisent notamment des univers
ayant une ressemblance inouïe avec le notre (SPRINGEL et al. 2005). En revanche
en ce concentrant sur l’échelle des galaxies et en dessous, les simulations et les ob-
servations montrent des divergences, cela donne lieu au problème des petites échelles
(BULLOCK et al. 2017). Certaines de ces différences s’estompent à mesure que les si-
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mulations deviennent plus précises et les observations s’accumulent. Il reste tout de
même intéressant de pouvoir étudier analytiquement la distribution des sous-halos
dans les halos galactiques afin de se confronter aux simulations et aux observations.

La question est aussi de savoir de quoi est faite intrinsèquement la matière
noire. Etant donné le succès du modèle standard de la physique des particules
nous pouvons nous attendre à ce quelle soit elle même composée de particules
élémentaires (FENG 2010). Plusieurs scénarios sont alors possibles; les neutrinos
stériles (BOYARSKY et al. 2009b), les axions (PECCEI et al. 1977) ou encore les WIMPs
(particules massives interagissant faiblement en anglais) pouvant provenir des
modèles de supersymmétrie (MARTIN 1998) ou de dimensions supérieures (KALUZA

1921 ; KLEIN 1926) par exemple. Une autre option serait une matière noire faite
d’objet macroscopiques et compacts, comme des étoiles très peu lumineuse (scénario
déjà exclus par les observations) ou des trous noirs primordiaux (formé dans les tous
premiers instants de l’Univers) (ZEL’DOVICH et al. 1967 ; S. HAWKING 1971). Enfin il
n’est ici pas impossible non plus que plusieurs scénarios soient mêlés.

Devant l’enjeu du problème, de nombreuses collaborations ont traqué la matière
noire afin de la détecter autrement que par ses interactions gravitationnelles. Trois
techniques sont alors à l’oeuvre. La première consiste a rechercher la matière noire
comme produit des interactions réalisées à l’intérieur des collectionneurs de parti-
cules comme le LHC. La seconde repose sur la présence de matière noire dans notre
environnement proche et attend d’observer l’interaction d’une ou plusieurs de ces
particules avec des noyaux d’atomes. Enfin la troisième option se concentre sur la
recherche de phénomène astrophysiques qui ne pourraient être causés que par la
présence de matière noire. En particulier des excès de particules (photons, neutrinos)
reçu depuis des sources identifiées et pour lesquelles il est possible de différencier la
contribution de la matière noire des sources classiques.

Ce travail est centré autour d’un modèle cohérent et analytique de distribution
des sous-halos dans la Voie-Lactée le modèle SL17. Le but est ici de l’améliorer, de
lui donner de nouvelles bases théorique et de l’utiliser pour faire des prédictions de
détection indirecte. L’ensemble du document est présenté de façon chronologique par
rapport à l’évolution de la matière noire dans l’Univers. Premièrement je m’intéresse
à son comportement dans l’Univers primordial et à l’effet que cela a produit sur sa
distribution actuelle, notamment à travers la masse minimale des halos. Ensuite, à
l’aide du modèle de l’excursion set et des arbres de fusion, je prédis la distribution
en masse non évoluée des sous-halos présents dans les halos. Dans un quatrième
chapitre je me concentre, par la suite, sur la Voie-Lactée. Je rappelle comment le
modèle SL17 permet de passer d’une distribution de masse non évoluée à sa ver-
sion évoluée en incluant les effets dynamiques. J’étudie alors un effet non pris en
compte originellement due à l’interaction des sous-halos avec les étoiles individuelles
dans le disque Galactique. Enfin j’utilise SL17 pour évaluer la possibilité de détec-
ter des sous-halos de matière noire comme point-source de rayons gamma dans des
expériences type Fermi-LAT and CTA.

F.2 Masse minimale des halos dans un modèle simplifié

Dans un scénario WIMP, la matière noire est produite grâce à ses nombreuses
interactions avec les particules du modèle standard dans les premiers instants de
l’Univers. Au tout début, matière noire et particules du modèle standard sont dans
un état d’équilibre thermodynamique et forment le plasma primordial. Cependant, les
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WIMPs étant des particules massives, elles deviennent rapidement non relativistes et
leur densité décroit exponentiellement. En effet, elles sont alors plus difficile à pro-
duire à mesure que la densité d’énergie du plasma, fait de particule majoritairement
moins massive, décroit avec l’expansion de l’Univers. Cependant, le taux d’annihila-
tion des particules de matière noire chute également car elles sont plus rares dans
le plasma. De fait, après un certain temps, l’expansion gèle tous les processus de
création et d’annihilation de matière noire et son abondance se trouve fixée. Ce pro-
cessus s’appelle le découplage chimique (LEE et al. 1977). En revanche les WIMPs
peuvent encore diffuser sur le plasma et conservent un équilibre thermique avec ce
dernier en échangeant de l’énergie. L’expansion fait cependant chuter le taux de diffu-
sion de la même manière, de sorte qu’après une certaine période de temps, la matière
noire se trouve priver de toute interaction avec le plasma. On appelle ce processus
le découplage cinétique (HOFMANN et al. 2001). Les WIMPs commencent alors une
période de propagation dite libre dans l’Univers ayant une influence directe sur la
masse minimale que les halos de matière noire peuvent former par la suite (GREEN

et al. 2005 ; BERTSCHINGER 2006 ; BRINGMANN 2009). Dans le modèle SL17 la masse
minimale des halos est un paramètre libre. Ici nous cherchons à savoir quelle va-
leur est attendue pour différents modèles de physique des particules. De plus, nous
souhaitons aussi classifier les différents processus microscopiques et en extraire les
propriétés pertinentes. Pour cela nous utilisons un modèle simplifié avec des inter-
actions matière noire - modèle standard produites à l’aide de particule médiatrices
scalaire, pseudo-scalaire et (axial)-vecteur à l’ordre de l’arbre. Ces modèles sont en
effets de plus en plus utilisés aujourd’hui (ABDALLAH et al. 2015 ; KAHLHOEFER et al.
2016 ; ARINA 2018) afin d’obtenir des résultats génériques qui peuvent se rapporter à
des modèles UV-complets. Nous montrons cela avec l’exemple du secteur CP-impair
dans le NMSSM (DOMINGO 2017).

Tout d’abord nous rappelons les lois mathématiques régissant le modèle ΛCDM.
En second lieu, nous introduisons la notion d’espace des phases en relativité générale
et la fonction de distribution associée. Nous montrons comment son comportement
est régi par l’équation de Boltzmann relativiste ; ce qui nous permet de dériver, par
la suite, différentes propriétés thermodynamiques pour les particules présentes dans
l’Univers primordial. En troisième lieu nous développons plus en détail les équations
régissant le découplage chimique et le découplage cinétique en montrant quelques
exemples simples. Enfin nous abordons l’étude de notre modèle simplifié. Nous com-
mençons par introduire le Lagrangien ainsi que tous les processus à l’arbre perti-
nents. Nous développons aussi les différentes contraintes théoriques sur le modèle.
Nous imposons notamment que les couplages soient suffisamment faibles pour évi-
ter les effets non perturbatifs (comme les corrections à une ou plusieurs boucles,
ou l’effet de Sommerfeld) et nous vérifions que le découplage chimique se passe suf-
fisamment tôt avant le découplage cinétique pour éviter toute contamination — les
équations que nous utilisons ne prenant pas en compte les cas où les deux se pro-
duisent simultanément. La méthode d’analyse est alors la suivante. A l’aide d’un code
que nous avons entièrement conçu nous commençons par contraindre les couplages
des particules en imposant que l’abondance prédite par le découplage cinétique soit
l’abondance observée aujourd’hui (en supposant que les WIMPs forment toute la ma-
tière noire). Puis, une fois les bons couplages déterminés, nous calculons la tempé-
rature du plasma primordial au moment du découplage cinétique. Cette dernière est
finalement directement reliée à la masse minimale des halos. En guise d’illustration
nous montrons aussi le nombre de sous-halos alors prédit dans la Voie-Lactée. En
particulier nous pouvons dériver des lois d’échelles et montrer que la masse minimale



298 F. RÉSUMÉ DÉTAILLÉ EN FRANÇAIS

se comporte comme Mmin ∼ m−3
χ et le nombre de sous-halos comme Nsub ∼ m3

χ où mχ

est la masse des WIMPs. Nous attachons une importance particulière à dériver le com-
portement en vitesse des différentes section-efficaces entrant dans les calculs. Ainsi
nous montrons qu’un médiateur pseudo-scalaire induit un découplage chimique plus
tardif (à couplage équivalent) qu’un médiateur scalaire, du à des suppression en vi-
tesse des interactions pour ce dernier. A l’inverse le découplage cinétique se produit
plus tôt pour le pseudo-scalaire que pour le scalaire. Notons que les dépendances
en vitesse sont importantes à characteriser car elle ont un impact sur les possibili-
tés de detection aujourd’hui. Enfin, nous nous intéressons aussi à la section efficace
d’auto-interaction de la matière noire qui, si suffisante, pourrait être une solution au
problème coeur-pic (un des problèmes aux petites échelles de ΛCDM).

F.3 Fonction de masse cosmologique

Afin de comprendre la distribution des halos dans le modèle SL17 il est néces-
saire d’en étudier la formation. Elle prend source dans les fluctuations quantiques
de l’inflaton, champ responsable de l’inflation, s’étant transmises à la distribution de
densité de matière. L’ensemble des fluctuations ayant survécu aux premières époques
de l’Univers commencent à croire plusieurs centaines de milliers d’années après le
Big Bang, sous l’effet de la gravité, lorsque la matière noire devient la composante
dominante. Les régions les plus fortement sur-denses s’effondrent ensuite, se viri-
lisent et forment les halos (MO et al. 2010). Alors que les premières étapes peuvent
être décrites à l’aide de la théorie des perturbations linéaires en relativité générale,
l’effondrement gravitationnel étant un phénomène non linéaire, il ne peut-être analy-
tiquement évalué que dans des configurations simples.

La distribution cosmologique en masse des halos (sans considérer d’aspects dy-
namiques) peut tout de même être calculée analytiquement grâce à la théorie dite de
l’excursion set (BOND et al. 1991). Cette dernière fournie aussi une trame pour simu-
ler la formation hiérarchique des halos à l’aide des arbres de fusion. Nous utilisons
dans ce travail l’algorithme C00 pour étudier la distribution des sous-halos de rang
un dans un halo hôte. En effet, les halos sont faits de sous-halos, eux-même faits de
sous-halos qui sont des sous-sous-halos dits de rang deux pour l’hôte etc. Dans sa
version originelle le modèle SL17 utilise une fonction de masse des halos de rang un
en loi de puissance, dNsub/dm ∝ m−α avec α ∈ [1.9, 2.0] et une normalisation fixée par
des simulations cosmologiques. L’objectif est d’être ici plus précis et de s’affranchir de
l’étape de normalisation sur les simulations. Plusieurs études se sont déjà penchées
sur le sujet (GIOCOLI et al. 2008b ; Y. LI et al. 2009 ; JIANG et al. 2014). Cependant
elles ne se sont intéressées principalement qu’aux sous-halos de grandes masses. En
effet, les arbres de fusion sont trop gourmands en temps pour pouvoir simuler des
sous-halos plus léger que ∼ 10−5M où M est la masse de l’hôte. Une extrapolation
d’ajustement sur des fonctions biens choisies est alors nécessaire. La nouveauté est
qu’ici nous contraignons cet ajustement en supposant que toute la masse du halo
hôte est contenu dans des sous-halos de rang un. Ceci étant thoriquement motivé
dans un modèle de formation hierarchique et quasi auto-similaire. Ceci nous permet
de retrouver à petite masse le comportement en loi de puissance avec α ∈ [1.9, 2.0],
la littérature, où l’ajustement n’est pas contraint, donne généralement un exposant
plus faible, e.g. α ∼ 1.8. De plus si l’on compare le nombre total de sous-halos ob-
tenu avec cette nouvelle fonction de masse, il est comparable à celui de la calibration
originale. Enfin nous avons aussi comparé le modèle SL17 augmenté de cette nou-
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velle fonction de masse à un modèle semblable de distribution de sous-halos dans
la littérature (HIROSHIMA et al. 2018). Nous trouvons des résultats cohérents mais
légèrement différents. Cela n’est pas surprenant dans la mesure où cet autre modèls
qui s’appuie sur des simulations cosmologiques, incorpore des recettes de physique
plus complètes pour caractériser la dynamique des halos. Ce résultat est donc une
motivation pour une amélioration accrue du modèle SL17, qui pourra se faire en par-
tie autour des arbres de fusion à la manière de COLE et al. (2002), ZENTNER et al.
(2003), BENSON (2012) et HIROSHIMA et al. (2018). La différence avec ces dernières
études étant notre souhait de s’affranchir au maximum des résultats de simulations
numériques afin d’en être le plus indépendant possible.

En dernier lieu, nous abordons dans ce chapitre les très petites échelles
et montrons comment le découplage cinétique de la matière noire influence
la masse minimale des halos qu’elle peut former. Cela permet de faire le lien
formel avec le chapitre précédent.

F.4 Effet des baryons sur les sous-halos de la Voie-Lactée

Au sein du modèle SL17, les halos sont décrits de manière statistique. L’idée prin-
cipale est de considérer une distribution cosmologique, notamment à l’aide de la fonc-
tion de masse discutée précédemment, et de la contraindre en incorporant des effets
dynamiques. L’impact principal est une réduction de la taille des sous-halos et leur
destruction lorsqu’ils deviennent trop petit. Notons que le critère de destruction est
sujet à discussion et de récentes études tendent à montrer que les sous-halos pour-
raient survivre même avec une taille infiniment réduite (BOSCH et al. 2018b ; ERRANI

et al. 2020b). Dans sa version originelle, deux effets dynamiques principaux sont in-
clus. Le premier est l’effet de marrée lisse qui arrache les particules externes des
sous-halos par l’attraction gravitationelle du halo hôte. Le second et l’effet de choc
par le potentiel du disque de baryons (GNEDIN et al. 1999). A chaque passage d’un
sous-halo par le disque les particules reçoivent un gain positif d’énergie cinétique qui
permet à celles qui sont dans les régions externes de s’échapper. Dans ce travail nous
étudions plus précisément une troisième forme d’effets dus aux interactions indivi-
duelles avec les étoiles. Lorsqu’un sous-halo croise une étoile, les particules qui le
composent, reçoivent, de même, un gain en énergie cinétique qui peut alors aussi
exclure certaines d’entre elles. Cet effet a déjà été considéré dans la littérature (V.
BEREZINSKY et al. 2005 ; ANGUS et al. 2007 ; GREEN et al. 2007 ; DELOS 2019a) mais
jamais appliqués avec précision sur une population complète de sous-halos.

Nous regardons d’abord l’effet d’une seule étoile sur un sous-halo et nous amélio-
rons le calcul usuellement utilisé, produit dans GF83, en remarquant que des simpli-
fications peuvent être faite de part l’aspect ponctuel d’une étoile devant la taille d’un
sous-halo. Ensuite, nous nous intéressons à l’impact de plusieurs étoiles. Nous déri-
vons une description probabiliste du gain en énergie cinétique total reçu ∆E par les
particulesd’un sous halos donné. Nos calculs reposent sur le théorème central limite
dont les hypothèses ne s’avèrent pas entièrement vérifiées si un soin particulier n’est
pas apporté aux propriétés des rencontres entre étoiles et sous-halos. N’ayant pas
d’autres alternatives pour un calcul analytique nous adaptons donc notre technique
au mieux afin d’avoir la meilleure description possible de ∆E. Nous obtenons alors
des résultats très satisfaisants malgré ces ajustements. Nous nous intéressons aussi
à l’impact de ce gain en énergie sur la distribution finale de matière noire dans le
sous-halo juste après le choc ; ce qui n’avait pas été considéré dans SL17. Cepen-
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dant, cela ne peut être appliqué sur une population globale de halos et seule l’effet
de la réduction en taille des sous-halos est retenu par la suite — comme dans SL17.
Enfin nous nous intéressons à l’effet des étoiles sur l’ensemble de la population de
sous-halos. Nous observons qu’il est principalement important pour les sous-halos
ayant une masse m < 10−3 M�. En particulier, il décale la fonction de masse initiale
vers les petites valeurs et dans un scénario ou les sous-halos sont facilement des-
tructibles, il réduit leur population de plusieurs ordres de grandeur dans les régions
les plus centrales de la Galaxies — où le nombre de croisement du disque est impor-
tant et les étoiles plus nombreuses. Le nombre total de sous-halos fragiles se retrouve
alors réduit d’un ordre de grandeur comparé aux prédictions originelles de SL17 à
8 kpc du centre Galactique. Dans une configuration de sous-halos dit résistants les
effets sur le nombre total sont réduits et ne sont visibles qu’en deçà de 4 kpc du
centre. La modification de la fonction de masse pourrait, dans tous les cas, avoir des
conséquences sur les prédictions des recherches locales de matière noire.

F.5 Détectabilité de sous-halos ponctuels

Dans les sections précédentes nous avons travaillé sur la distribution de sous-
halos, dans la Voie-Lactée en particulier. Ici nous utilisons ce travail pour étudier
la possibilité de détecter des sous-halos de matière noire comme points-sources de
rayons gammas dans la Galaxie. En effet, la collaboration Fermi-LAT à relevé dans un
catalogue récent, 1525 points sources non résolus de rayons gamma qu’ils n’ont pas
pu associer à des objets astrophysiques connus (FERMI-LAT COLLABORATION 2019).
La plupart doivent être des object extragalactiques dont l’identification n’est pas en-
core certaine. Cependant, il est interessant de se demander si certains d’entres-eux
peuvent être des sous-halos de matière noire, en supposant que cette dernière s’anni-
hile et produit des rayons gamma. Plusieurs études se sont penchées sur la question
et les conclusions semblent s’orientées vers un nombre d’au maximum O(10) sous-
halos visibles (PIERI et al. 2011 ; BERTONI et al. 2015 ; HÜTTEN et al. 2016 ; CALORE

et al. 2017, 2019a ; CORONADO-BLAZQUEZ et al. 2019). En revanche toutes les tech-
niques employées jusqu’à présent reposent, soit sur une analyse directe des données
du Fermi-LAT, soit sur des Monte-Carlo sans fond réaliste, soit sur des simulations
cosmologiques et des reproductions de Voie-Lactée. Dans ce dernier cas, une galaxies
type Voie-Lactée prise dans une simulation n’est pas vraiment identique à la Voie-
Lactée elle-même et elle ne permet pas de résoudre toute la population de sous-halos
(jusqu’aux plus petits d’entre eux). De fait, il est interessant de regarder si dans un
modèle analytique contraint nous obtenons aussi une probabilité non nulle de dé-
tecter un ou plusieurs sous-halos. Si oui, nous attendons nous à les détecter avant
de détecter la matière noire dite diffuse émise par le halo hôte et les sous-halos non
résolus ? Pour répondre à ces questions nous ajoutons à SL17 un modèle de fond
diffus gamma émis par des sources astrophysiques identifiées et dépendant de la
distribution de baryons utilisée pour contraindre la population de sous-halos. Nous
l’appelons le fond diffus baryonique. De fait nous prenons en compte la corrélation
implicite qu’il existe entre fond de rayons gamma et distribution de sous-halos. L’idée
ici n’est donc pas de dériver des limites exactes en se basant sur une analyse des
données des instruments, la philosophie de l’étude est d’obtenir des nombres suffi-
samment précis pour être prédictifs, à l’aide d’un modèle avec lequel il est facile de
jouer et de dériver des résultats analytiques. De plus, nous nous intéressons à la
fois à des instruments type Fermi-LAT dont les données sont accessibles mais aussi
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à des instruments type CTA qui n’estluimême pas encore opérationnel et pour le-
quel, seules des prédictions peuvent être faites. Ces instruments fictifs reprennent
dans les grandes lignes les principales caractéristiques des vrais sans pour autant
en être des descriptions parfaites.

La première étape est de définir l’émission de photons gamma produits par la
matière noire ; par les sous-halos dits ponctuels, par rapport à la résolution d’un
instrument, mais aussi par la composante diffuse. Cette quantité est caractérisée par
une grandeur appelée le J-facteur. Ensuite nous évaluons, avec SL17, la probabilité
qu’un sous-halos donnée ait un J-facteur plus grand qu’un seuil donné dans une
direction donnée. Nous faisons cela pour un halo hôte ayant différents profils de
densités dits NFW ou coeur. L’étape suivante est alors d’évaluer le seuil en J-facteur
pour qu’un sous-halo soit détectable au dessus du fond de gammas après un certain
temps d’observation. De même nous évaluons aussi la section efficace d’annihilation
nécessaire pour que le fond diffus de matière noire soit détecté au dessus du fond
diffus baryonique. Pour cela nous employons deux techniques, une première simple,
basée sur une analyse On-Off et une seconde plus complexe utilisant la notion de
vraisemblance (T.-P. LI et al. 1983). Nous nous assurons que la seconde approche
donne des contraintes sur les sections efficaces d’annihilation de la matière noire
comparable avec les résultats d’analyse de données ou de Monte-Carlo présents dans
la littérature (FERMI-LAT COLLABORATION 2012a ; SILVERWOOD et al. 2015). Une fois
ceci fait nous pouvons alors extrapoler les limites à des temps d’observation aussi
grands que nous le souhaitons. L’avantage de la première approche, en contrepartie,
est de fournir le comportement simple des différents seuils en fonction du temps
d’observation et des différents paramètre de l’instrument. Nous dérivons notamment
l’existence d’un seuil critique en J-facteur tel que, si l’on ne détecte jamais le fond
diffuse de matière noire (situation dans laquelle nous sommes actuellement), un sous-
halos avec un J-facteur plus faible ne pourra jamais être détecté non plus.

Enfin, nous évaluons la probabilité d’avoir des sous-halos ponctuels dépassant le
seul de détectabilité dans différentes configurations. Dans les scénarios les plus op-
timistes ou les sous-halos sont résistants à la destruction nous pouvons espérer une
dizaine d’objets maximum pour Fermi-LAT après 10 ans de prises de données. Dans
le cas de CTA, son faible champ de vue, sa meilleur précision et son temps d’obser-
vation réduit rendent les résultats moins optimistes et la détection de points-sources
ne semble pas possible avant la détection de la composante diffuse. Nous avons pu
observer que dans tous les cas, même si la direction d’observation la plus propice
pour une détection varie avec la résolution de l’instrument, elle se trouve globalement
à une angle entre 20◦ et 60◦ du centre Galactique. Les sous-halos les plus détectable
sont alors de masse relativement élevée > 103 M� et proche du centre. Ceci s’explique
car les sous-halos très massifs à cette position sont fortement épluchés par les effets
dynamiques, et s’ils sont résistants, ils survivent en étant ponctuels et suffisamment
proche pour produire un J-facteur fort. Enfin pour CTA nous avons aussi examiné
la possibilité de détecter des sous-halos non ponctuels mais les résultats, sont sensi-
blement similaires à ceux des sources ponctuelles, ce qui induit une détection, avant
la composante diffuse de matière noire, peu probable.
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Abstract

The problem of the missing mass of the Universe is one of the most puzzling conundrums of modern
physics. Assuming that it stems from the existence of yet unknown dark matter (DM) particles, one
can probe the cosmos in the hope of detecting unambiguous signatures thereof. The properties of
cold DM (CDM) particle candidates lead to the prediction that gravitational structures form on scales
much smaller than typical galaxies, below the resolution scope of current cosmological simulations.
This clustering translates into a large population of subhalos in galaxies, hence in the Milky Way. Only
analytical models can encompass and describe their full distribution. My work is centred upon building
a theoretically consistent and dynamically constrained subhalo population model. This relies mostly on
three ingredients: the minimal subhalo mass, the cosmological mass function, and dynamical effects. I
start from a simplified model of thermally produced dark matter (with scalar, pseudo-scalar, vector and
axial-vector interactions with standard model particles). I classify models in terms of small-scale cut-off
on the matter power spectrum, which is directly related to the minimal halo mass, making explicit
the role of velocity dependence in the interaction processes. Secondly, I improve on the determination
of the cosmological subhalo mass function by deriving it from the excursion set theory and a merger
tree, while it was previously calibrated on simulations. Thirdly, I incorporate new dynamical effects
by analytically studying the impact of stellar encounters susceptible of occurring in galactic discs.
Besides, I illustrate an application of this model for indirect detection experiments looking for traces of
DM annihilation in the Milky Way. In light of the 1525 unassociated point sources discovered by the
Fermi-LAT collaboration, I give prospects for the detection of point-like subhalos as gamma-ray sources
with Fermi-LAT-like and CTA-like instruments. I also shortly discuss the impact of additional effects,
like the Sommerfeld effect.

Résumé

Le problème de masse manquante de l’univers est l’une des plus grandes énigmes de la cosmologie
et de la physique fondamentale moderne. En supposant qu’elle soit résolue par l’existence de particules
exotiques de matière noire, nous pouvons sonder le cosmos à la recherche des signatures spécifiques
que ces dernières seraient susceptibles de laisser. Les candidats de type "particule" pour la matière
noire froide ont des propriétés donnant lieu à la formation de structures gravitationnelles à des
échelles bien plus petites que celles des halos galactiques typiques, hors de portée des simulations
cosmologiques actuelles. Cette structuration, prédite théoriquement et dérivant des propriétés
d’interactions des particules supposées de matière noire froide, se traduit en principe par l’existence
d’un grand nombre de sous-halos composés exclusivement de matière noire dans des galaxies telles
que la Voie Lactée. Seuls des modèles analytiques permettent alors de décrire leur distribution dans
ses détails. Mon travail est centré sur le développement d’un tel modèle. Ce modèle est construit en
respectant un principe d’auto-cohérence théorique auquel s’ajoutent des contraintes dynamiques, et
repose principalement sur trois ingrédients : la masse minimale des sous-halos, leur fonction de masse
cosmologique, et l’adjonction d’effets dynamiques dépendant de l’environnement. Le premier de ces
éléments est déterminé dans le cadre d’un scénario simplifié de matière noire produite thermiquement
dans l’univers primordial (particules exotiques dotées d’interactions scalaires, pseudo-scalaires,
vectorielles et axiales aux particules du modèle standard). Je détermine l’impact des différents
paramètres de ce scénario sur l’échelle de coupure prédite dans le spectre de puissance de la matière,
qui se trouve corrélée à la masse minimale des sous-halos. En particulier, je rends explicite le rôle
de la dépendance en vitesse des taux d’interactions. En second lieu, j’améliore la détermination de
la fonction de masse des sous-halos en la calculant à partir d’une théorie statistique de formation
des structures et d’un arbre de fusion. Cela permet de s’affranchir d’une étape de calibration sur
des simulations cosmologiques qui représentait une forte limitation du modèle avant ce travail. De
plus, j’ajoute de nouveaux effets dynamiques en déterminant, de façon analytique, les effets de marée
gravitationnelle induits par les rencontres individuelles successives des sous-halos avec les étoiles du
disque galactique. Pour terminer, j’illustre une application de ce modèle de population de sous-halos
en ré-évaluant les prédictions de signaux de matière noire pour des expériences de détection indirecte.
Je donne notamment des perspectives plus réalistes pour la détection de sous-halos ponctuels comme
sources de rayons gamma avec des instruments de types Fermi-LAT et CTA, et pour l’association
potentielle de certaines des 1525 sources non-associées figurant actuellement dans le catalogue de
Fermi-LAT avec des sous-structures de matière noire. Je discute enfin très brièvement l’impact d’autres
effets plus subtils associés à des interactions entre particules à longue portée, comme l’effet Sommerfeld.
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