
HAL Id: tel-03414933
https://theses.hal.science/tel-03414933v1

Submitted on 4 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vers un apprentissage protéiforme : accomoder les
changements de signature des agents artificiels.

Iago Bonnici

To cite this version:
Iago Bonnici. Vers un apprentissage protéiforme : accomoder les changements de signature des
agents artificiels.. Intelligence artificielle [cs.AI]. Université Montpellier, 2021. Français. �NNT :
2021MONTS034�. �tel-03414933�

https://theses.hal.science/tel-03414933v1
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITÉ DE MONTPELLIER

En Informatique

École Doctorale : Information Structure Systèmes

Unité de Recherche : LIRMM

Vers un apprentissage protéiforme :
accommoder les changements de signature

des agents artificiels

Towards Protean Learning:

Accommodating Signature Changes in Artificial Agents

Présentée par Iago BONNICI

Le 29 mars 2021

Sous la direction de Fabien MICHEL

et Abdelkader GOUAÏCH

Devant le jury composé de

Emmanuel RACHELSON, PR, ISAE-SUPAERO Rapporteur

Matthew E. TAYLOR, Associate Professor, IRL Lab, University of Alberta Rapporteur

Éric BOURREAU, MCF, LIRMM, Université de Montpellier Examinateur

Antoine CORNUÉJOLS, PR, Dept. MMIP, AgroParisTech Examinateur

Marianne HUCHARD, PR, LIRMM, Université de Montpellier Examinatrice

Olivier SIGAUD, PR, ISIR, Université Pierre et Marie Curie Examinateur

Abdelkader GOUAÏCH, MCF, LIRMM, Université de Montpellier Encadrant

Fabien MICHEL, MCF HDR, LIRMM, Université de Montpellier Directeur

et présidé par

Marianne HUCHARD, PR, LIRMM, Université de Montpellier Présidente du jury

1

Résumé :

Les agents de l’Apprentissage Automatique sont des procédures informatiques dont l’objectif est de
découvrir, de façon systématique, des solutions à des tâches complexes comme la vision artificielle,
le contrôle robotique, etc. Ce processus de recherche appelé “apprentissage” est caractérisé, comme
tout programme, par un ensemble d’entrées possibles et un ensemble possible de sorties produites.
Nous appelons ces ensembles la signature de l’agent apprenant.

Certaines tâches posent un défi particulier parce que la signature est naturellement amenée à
changer au fil de l’apprentissage. Par exemple, un capteur qui cesse de fonctionner entraîne une
“suppression d’entrée”. Quand un nouvel actionneur devient disponible, il y a “ajout de sortie”. À
chaque changement de signature, l’espace des solutions exploré devient indéfini, et il est coûteux, en
termes de calcul, de reprendre l’apprentissage de zéro. Dans cette thèse, nous abordons la question
de l’accommodation du processus d’apprentissage aux changements de signature.

Rendre l’apprentissage robuste aux changements de contexte est un problème de longue date.
L’Apprentissage Continu, la Dérive Conceptuelle ou l’Apprentissage par Transfert par exemple,
améliorent sa robustesse dans des contextes évolutifs comme des distributions variables de données
dans l’Apprentissage Supervisé Incrémental, ou des environnements fluctuants dans l’Apprentissage
par Renforcement. Cependant, la question d’accommoder explicitement les changements de signa-
ture n’a pas encore, à notre connaissance, été abordée par la communauté. Nous défendons qu’elle
représente un nouveau contexte d’apprentissage : l’Apprentissage Protéiforme (AP).

Dans un premier temps, nous établissons une formalisation rigoureuse de l’AP et du problème des
changements de signature. En particulier, nous nous intéressons à l’ajout et la suppression d’entrée,
qui constituent le sous-domaine restreint de l’AP d’Entrée (APE). Nous montrons qu’il existe 10 pro-
fils différents d’APE, et qu’un jeu de projections entre les espaces de solutions, dites projections na-

turelles, permet d’accommoder les évènements APE de façon générique.
Dans un second temps, nous concevons et réalisons deux expériences synthétiques pour mesurer

l’avantage de ces projections dans des contextes diversifiés : descente de gradient “adam” dans
un Réseau de Neurones Récurrent soumis à un tâche d’Apprentissage Supervisé Incrémental,
“Q-Learning” et “Actor-Critic” avec traces d’éligibilité dans une tâche tabulaire d’Apprentissage
par Renforcement. Dans chaque contexte, un agent protéiforme bénéficiant du transfert induit
par les projections naturelles est soumis à une transformation élémentaire de signature en cours
d’apprentissage. Ses performances à court et long termes sont comparées à celles d’un agent naïf
reprenant l’apprentissage de zéro. Nous répliquons la procédure 1 000 fois dans chaque contexte,
puis, par une analyse soigneuse des traces d’apprentissage, nous décomposons et documentons les
nombreux effets en jeu pendant le processus d’accommodation APE, et établis par une p-value 6 0,01.

Nous montrons que les projections naturelles accommodent les changements de signature de
façon plus économique que l’approche naïve, et nous discutons précisément des limites de cet
avantage au regard des différentes propriétés contrôlées du contexte d’apprentissage, par exemple
la difficulté de la tâche, l’informativité des senseurs gagnés ou perdus, la nature stochastique ou
déterministe des stratégies recherchées, ou le profil APE. Nous concluons que l’intérêt de l’AP n’est
pas seulement qu’il soulève une catégorie nouvelle de changements contextuels, mais aussi qu’il
existe des techniques génériques, comme les projections APE naturelles que nous exhibons, qui les
accommodent correctement dans les contextes testés.

Mots-clés :

Agents Apprenants, Apprentissage Protéiforme, Apprentissage Artificiel, Apprentissage par Trans-
fert, Apprentissage par Renforcement, Apprentissage Incrémental, Réseaux de Neurones

2

Abstract:

Agents in Machine Learning are computer procedures aimed to automatically discover solutions to
complex automation tasks like artificial vision, robot control, etc. This searching process called “learn-
ing” is characterized, like any computer procedure, by the set of possible input data they feed on, and
the set of possible output data they produce. We refer to these sets as the learning agent signature.

Some learning tasks are challenging because the agent signature undergoes changes over the
natural course of learning. When a sensor fails for instance, there is a sudden unexpected “input
deletion”. When a new actuator comes into use, there is an “output addition”. But when the signa-
ture is transformed, the explored space of solutions becomes undefined, and restarting the learning
from scratch is wasteful in terms of computing resources. In this thesis, we address the problem of
accommodating signature changes in learning.

Making learning algorithms robust to changes is a longstanding problem. Approaches like Con-
tinual Learning, Concept Drift or Transfer Learning have long been concerned with the reaction of
agents to evolving contexts, like varying data distributions in Online Supervised Learning or fluctu-
ating environments in Reinforcement Learning. However, to our knowledge, the problem of explicitly
accommodating signature changes has not been tackled by the community yet. We defend that it
constitutes a significant new learning context, namely Protean Learning (PL).

First, we develop a rigorous formalization of PL and the signature change problem. In particular,
we focus on input addition and deletion, which constitute the restricted Input-PL (IPL) subdomain.
We show that there exists 10 different IPL profiles, and that a set of projections among solutions
spaces, called natural projections, permits generic accommodation of IPL events

Second, we design and conduct two synthetic experiments to measure the advantage of natural
projections in various contexts: an “adam” gradient descent in a Recurrent Neural Network solving
an Online Supervised Learning task, “Q-Learning” and “Actor-Critic” approaches with eligibility
traces in a tabular Reinforcement Learning task. In every context, one protean agent benefiting from
the transfer induced by the natural projections is submitted to an elementary signature change event
during the course of learning. Its short-term and long-term performances are compared against a
naive agent restarting the learning from scratch. The process is replicated 1 000 times. Then, with a
careful analysis of the learning traces, we dissect and document the numerous effects in play during
IPL accommodation, and established with p-value 6 0.01.

We show that natural projections permit better accommodation of the signature changes
than the naive approach, and we qualify this advantage in depth depending on various controlled
properties of the learning context, like the difficulty of the task at hand, the information contained
in the input lost or gained, the stochastic or deterministic nature of the searched policy, or the
IPL profile. We conclude that PL is not only interesting because it brings up a challenging new
category of contextual changes, but also because there exist generic techniques, like the natural
IPL projections we exhibit, that correctly address them in the tested situations.

Keywords:

Learning Agents, Protean Learning, Machine Learning, Transfer Learning, Reinforcement Learning,
Online Learning, Neural Networks

Contents

Summary of Notations 7

I Introduction 9

1 Introduction 11
1.1 Context . 11

1.1.1 Signature Changes in Computing 11
1.1.2 Machine Learning . 15

1.2 Learning Within a Changing Environment 18
1.2.1 Signature of the Agent-Environment Retroaction Loop 18
1.2.2 Reinforcement Learning . 21

1.2.2.1 A Trial and Error Search 21
1.2.2.2 A Feedback Value to Guide the Search 22

1.2.3 The Signature Change Problem 24
1.2.3.1 Environmental Change 25
1.2.3.2 Signature Change . 26

1.3 Thesis Outline . 29

2 Background: Machine Learning 33
2.1 Behavioural Search . 33

2.1.1 The Maximization Problem . 34
2.1.2 Heuristics . 35
2.1.3 The Search Space . 38
2.1.4 Artificial Neural Networks . 39

2.2 Learning Contexts . 43
2.2.1 Supervised Learning . 44

2.2.1.1 The SL problem . 44
2.2.1.2 The SL Approach . 45
2.2.1.3 The Limits of SL . 46

2.2.2 Unsupervised Learning . 48
2.2.2.1 UL Principles . 48

4 CONTENTS

2.2.2.2 Various UL Situations 49

2.2.3 Reinforcement Learning . 51

2.2.3.1 RL Principles . 51

2.2.3.2 RL Methods and Limits 53

2.2.4 Transversal Learning Contexts 55

2.2.4.1 Online Learning . 55

2.2.4.2 Transfer Learning . 57

3 Problem Statement 61

3.1 The Signature Change Problem . 61

3.2 Thesis . 62

4 State of the Art 65

4.1 Documentation Method . 65

4.2 Related Works . 66

4.2.1 The Motivation for Transfer Learning 66

4.2.2 The Various Transfer Learning Situations 67

4.2.3 The Challenges of Transfer Learning 70

II Contributions 73

5 Theory of Protean Learning 75

5.1 Informal Overview . 75

5.2 Formalization . 78

5.2.1 Background . 78

5.2.2 PL as a Problem of Stream Processing 79

5.2.3 Data Streams and Causality . 80

5.2.4 Multiple Streams and Signatures 83

5.2.5 Learning Dynamics . 85

5.2.6 The Objective of PL . 86

5.2.7 Discussion . 87

5.3 Input Addition and Deletion . 89

5.3.1 Time Dependency . 89

5.3.2 Diminished vs. Augmented Search Spaces 90

5.3.3 Structure of the Search Spaces 91

5.3.4 The IPL Landscape Profiles . 93

5.3.5 Using IPL Profiles . 95

5.3.6 The Natural IPL Projections . 97

5.3.7 Towards Generic IPL . 98

CONTENTS 5

6 Experiment Input Protean Learning in Online Supervised Learning 101

6.1 Design . 101

6.2 Inputs Generation . 102

6.3 Optimal Outputs Generation . 104

6.4 The IPL profiles . 105

6.5 Agent Structure and Learning Procedure 106

6.6 Signature Changes and Natural IPL Projections 107

6.7 Measuring the Advantage of PL . 108

6.8 Results . 109

7 Experiment Input Protean Learning in Reinforcement Learning 117

7.1 A Tabular Benchmark for Input Protean Learning 118

7.1.1 The transition function . 118

7.1.2 The Agent/Environment Interface 120

7.1.3 A Minimal Environment . 122

7.1.4 Diminished Projections of the Environment 123

7.1.5 Policy Types . 125

7.1.6 Selecting Transition Functions 128

7.1.6.1 Transitions Connectedness 129

7.1.6.2 Transitions Symmetries 130

7.1.6.3 Sensitivity to Initial State 131

7.1.7 Optimality Analysis of the Benchmark 133

7.1.7.1 Computing Mean Rewards 133

7.1.7.2 Optimal Deterministic vs. Optimal Stochastic Policies . 134

7.1.7.3 Joint IPL Profiles . 136

7.2 The RL Agents . 136

7.2.1 Explored Search Spaces . 137

7.2.2 The Agent Objective . 137

7.2.3 Q-Learning . 139

7.2.4 Actor-Critic . 142

7.3 Measures . 146

7.4 Results . 147

7.4.1 Last Performance Measures . 148

7.4.2 Long-Term Advantage Measures 151

7.4.2.1 Input Addition . 152

7.4.2.2 Input Deletion . 153

7.4.3 Immediate Transfer Measures 154

7.5 Discussion . 155

6 CONTENTS

III Conclusion 161

8 Conclusion 163
8.1 Summary . 163
8.2 Limits and Perspectives . 165
8.3 Closing Thoughts . 167

Annex 169
A.1 Chapter 7 Transitions Function Symmetries 169
A.2 Constraints On Joint Profiles . 174
A.3 Chapter 7 Additional Table and Figures 177

Bibliography 179

List of Figures 194

List of Tables 195

List of Boxes 195

List of Listings 195

CONTENTS 7

Following academic conventions, we use the first-person plural to refer to work done
by the author, regardless of whether it was done in collaboration with colleagues. We also
conform to gender-neutral language and use singular they, their, themself, to refer to a
single person whose gender is unspecified.

Summary of Notations

General notations:

∅ The empty set.

N The set of natural numbers.

Z The set of relative numbers.

R The set of real numbers.

R+ The set of positive real numbers.

R+∗ R+ without the 0 element.

[0, 1] All numbers between 0 and 1 included.

Un The uniform distribution.

P(x | c) Probability that event x occurs given condition c.

E(x | c) Expected value of random variable x given condition c.

1c Indicator function evaluated in c: 0 if c is false and 1 if c is true.

|X| The number of elements in set X, a.k.a. the cardinal of X.

Whenever possible and non-ambiguous, capital letters (A, P, F , etc.) are used for proce-
dures, functions and distributions. calligraphy letters (S, I,O, etc.) for sets and lowercase
letters (s, i, o, etc.) for values, random variables and and elements living in these sets:

F : X→Y The function F maps set X into set Y.

F : x 7→ y The function F maps value x to value y.

y = F(x) The value y is the result of function F applied to value x.

y∼ F(x) The random variable y is distributed according to the probability distribu-
tion F(x) parametrized by the value x.

x (F) y The data stream y is determined from the data stream x by F in a causal,
non-Markovian way (see Chapter 5).

F∗ ⊲X The value F∗ maximizes F over X, or F∗ = maxx ∈X(F(x)).

X Y There exists an injection from set X to set Y.

X Y There exists a surjection from set X to set Y.

X Y There exists a bijection between set X and set Y.

8 CONTENTS

The following symbols are used pervasively to represent particular learning concepts,
unless otherwise stated. They are also used outside strict mathematical contexts to refer
to the concept in general and not to one precise mathematical object:

A Learning agent procedure.

E Agent environment.

T Transition function.

P Inner procedure, or “policy” of the agent, responsible for its end behaviour (not to
be confused with probability symbol P).

P Search space explored by the agent during learning. P contains every considered
procedure P ∈P.

S Inner search procedure supposed to explore P.

i Inputs to the learning agent and the behavioural procedure.

o Outputs from the behavioural procedure and the learning agent.

f Feedbacks to the learning agent procedure: rewards and penalties.

s Elementary environmental state.

h Hidden state.

u Elementary control, or agent action.

E Set of possible environments.

T Set of possible transition functions.

I Set of possible input values.

O Set of possible output values.

F Set of possible feedback values.

S Set of possible environmental states.

U Set of possible elementary agent actions.

I Observation procedure, converting states to inputs.

O Actuation procedure, converting outputs to actions.

F Feedback procedure, objective function.

∆ The agent signature, or arbitrary domain of values.

l The natural projection from diminished landscapes to augmented landscapes.

p An almost-natural projection from an augmented landscape to a diminished land-
scape.

m The natural injection from the space of deterministic procedures to the space of
stochastic procedures.

Part I

Introduction

Chapter 1

Introduction

1.1 Context

1.1.1 Signature Changes in Computing

Computer science, as a scientific discipline, is characterised by numerous extensive ap-
plication domains that differ much in nature: computation, simulation, communication,
creation, entertainment, control, problem solving, etc. At their core, there is computa-

tion. Computation is a process that transforms elementary inputs into elementary outputs
by strict application of a predefined procedure. For instance, the addition procedure is
an operation that transforms, say, a binary representation of the numbers 1 and 2 (0001

and 0010) into the corresponding representation of 3 (0011). Let us represent this process
as:

input [0001 and 0010]→ procedure [addition]→ output [0011]

Or to make it shorter with an informal diagram:

i→ P→ o

Machines perform billions of elementary operations within seconds without mistaking
or getting tired. As such, they are much more suited than humans to execute such repetitive
and well-defined computation procedures: boolean operations, integer arithmetic, floating
point calculations, text processing, etc. Computation arguably roots all other applications
of computer science, because computer-assisted simulation, communication, creation, en-
tertainment, control, problem solving etc. all rely on these elementary operations being
correctly and efficiently executed in fine.

Some applications are straightforward extensions of computation. In simulation for
instance, the user has determined a rigorous set of evolution rules P, and one particular
input used as a starting point. To perform the simulation, an output is computed from the
initial input, then it is immediately reused as a new input in the next simulation step to get
another output, and so on.

12 CHAPTER 1. INTRODUCTION

For instance, a weather prediction model is a simulation constituted of a set of com-
plex evolution rules representing spontaneous evolution of air pressure, temperature, hy-
grometry etc. If we have weather measures taken in the last hour, we feed them as an
initial input to the model, and it outputs a weather forecast for the next hour. This forecast
can be used as an input again to get a prediction two hours ahead, etc. until we are satis-
fied, or until the predictions get too weak. Under this view, simulation is just computation
iterated over time, like:

input [latest weather measures]→ procedure [weather model]→ output [1-hour forecast]

→ input [1-hour forecast]→ procedure [weather model] → output [2-hours forecast]

→ input [2-hours forecast]→ . . .

Or to make it shorter:
i→ P→ o→ i→ P→ o→ . . .

Arguably, all the above simulation process can be rewritten as one single, automated,
iterative procedure Pit. This single procedure feeds from the same initial input, but it
produces the whole sequence of predictions at once, in a single output:

i [latest weather measures]→ Pit [repeated calls to P]→ o [forecasts for the next few hours]

Note that this single procedure is now iterative and executes inner procedures itself.
In this situation, the caller of the inner procedure P is not a human user, but the higher-
level procedure Pit instead. Nesting procedures into each other this way, and defining
new procedures from existing ones, is the natural way humans use machines and build up
sophisticated computer processes from elementary computational operations.

This makes the notion of procedure P akin to the notion of mathematical functions and
to the notion of computer programs, that nest into each other. They are the cornerstone of
computer science, and they have 3 obvious ends:

• i: The input data, used to feed the procedure. Without inputs, no computation is
made.

• o: The output, or outcomes of the process. They are typically data, but they also
constitute real-world effects like motor activation or pausing. Without outputs, the
computation is useless.

• P: The procedure itself, responsible for execution of the process. Without a proce-
dure, it is unspecified how the output is supposed to be produced.

Inputs and outputs are easy to describe. In computer science, they are most com-
monly data whose size, shape and meaning are understood both by the caller and by the
procedure. On contemporary machines, they are typically sequences of bits representing
numbers, text, pictures, speech, etc. For instance, the addition procedure defined earlier
expects two 4-bits-long sequences representing integers (e.g., 1 and 2), and produces one

1.1. CONTEXT 13

4-bits-long sequence also representing an integer (e.g., 3). Higher-level procedures like
the weather prediction model expect more sophisticated data structures. In this situation,
inputs represent incomplete spatialized atmospheric properties, and outputs are similar
structures associated with confidence estimations. Alternate possible kinds of inputs in-
clude knowledge graphs, other agents information, books etc.

The shape and meaning of input and output data constitute the very essence of the
interplay between the procedure and its caller, and in particular, between humans and ma-
chines. We refer to them as the procedure signature. The signature is a rigorous contract
between both members. On the one hand, the procedure is expecting that the input data
be well-formed and meaningful, and is responsible for producing correct output. On the
other hand, the caller is expecting that the output data be also well-formed and meaning-
ful, so it is responsible for feeding correct input in. As a consequence, the input/output
signature cannot be changed unless both members are aware and update accordingly.

The present thesis addresses signature changes in one particular class of computer
procedures called learning procedures. Learning procedures are extensively described
in the remainder of this introduction. Regarding signature changes, in general, there are
several possible reasons for a procedure signature to change. For instance, the procedure
designer decides to change the signature when they realize that it does not exactly fit
their objectives, or they have new ones. As an example, the weather prediction model
improves after upgrade when it also outputs holidays traffic jams predictions in addition
to its own forecasts. This is a case of output addition. Alternately, the data processed
by the procedure occasionally becomes obsolete, or unavailable. For instance, when the
hygrometers fail or the wind records from last week are lost due to a server crash, the
internal procedure of the weather prediction model needs to be adjusted to accommodate
the missing information. This is a case of input deletion. There exist various types of
signature change events, which are the object of our work. In the second part of the thesis,
we focus specifically on input addition and input deletion. As written above, we address
in particular how one special class of computer procedures, the learning procedures,
react when such an event occurs.

To understand what learning procedures are, we first need to describe computer pro-
cedures more in depth. This is more difficult than describing inputs and outputs, because
a computer procedure is a deep, complex, dynamical and flexible object. Most often, it
is defined recursively by inner calls to lower-level procedures, until nothing but physical
laws actually specify what the output is. For instance, the addition procedure results from
combinations of bit-level logical AND and XOR procedures, whose efficiency and correct-
ness is only guaranteed in fine by the electronics of computer chips. In a nutshell, every
computer procedure, including weather forecast, is ultimately defined, and constituted, by
carefully triggered natural processes.

This has three very important consequences. First, unlike mathematical functions, it
is mandatory that computer procedures be constructive and finite. No computer can out-

14 CHAPTER 1. INTRODUCTION

Box 1.1: Non-deterministic procedures.

deterministicstochastic recurrent

Mathematical functions are strictly deter-

ministic. This means that, given twice the
same input i, they always output the same
value o = P(i). Computer procedures, on
the other hand, are not mandatorily de-
terministic. For instance, computer output
cannot be guessed when it generates user
passwords at random. Procedures relying
on random processes are called stochas-

tic procedures. They are specified in terms
of probability distributions, e.g., o∼ P(i),
and are useful in simulation, games, cryp-
tography etc. But there exists other sources
of non-determinism. For instance, some
computer procedures are called recurrent

because they keep track of previous ex-
ecutions and modify their current output
depending on past events. This is the case
of user login creation procedures, which
output “ok” but then “already in use” if
the same username is input twice. This
implies that recurrent procedures feature a

memory of past events, sometimes referred
to as inner hidden states h. A typical spec-
ification of recurrent procedures involves
additional, hidden inputs and outputs, in-
accessible to user: e.g., (o, oh) = P(i, ih).
This is useful in sequential decision
making, modelling natural processes,
or Reinforcement Learning (see Chap-
ter 2). Obviously, various sources of non-
determinism can be combined together,
e.g., (o, oh)∼ P(i, ih). There also exists
other sources of non-determinism than
the ones just described, like e.g., concur-
rency, undefined behaviour [J. Lee et al.

2017], etc. As drawn above, it is conve-
nient to consider that deterministic proce-
dures constitute a degenerated case of non-
determinism that belongs to every other
category: e.g., deterministic procedures
are stochastic procedures with only 0 or 1
probability measures, and also recurrent
procedures with empty hidden states.

put a result that no human could effectively compute by themself with natural processes,
provided they have enough resource to do so. Second, just like the natural processes they
eventually rely on, computer procedures are not necessarily deterministic. They can also
exhibit any kind of non-deterministic behaviour like stochastic behaviours or recurrence

(see Box 1.1). Third, and just like mathematical functions, computer procedures are ulti-
mately defined by humans, and machines are only able to execute them.

The latter seems intuitive when it comes to straightforward applications of computer
science, like plain computation, approximation, simulation, communication, etc. because
they suggest sophisticated combinations of recursive procedures, designed and written by
humans with a particular purpose in mind. In these domains, the challenge is to have them
correctly executed by the machine, preferably in an effective way in terms of computa-
tional “resources”: computation time, memory usage, disk storage, energy consumption,
development time, investor money, etc.

1.1. CONTEXT 15

However, it seems conflicting with other applications of computer science. Most fa-
mously, no human plays go better than Ke Jie, yet he has been beaten by a machine in
2017. Also, no human knows a constructive procedure to perform face-recognition on
random internet pictures, yet some clever, neural-networks-based algorithms learn doing
this “on their own”. In achieving these goals, computer scientists face a problem where
the expected inputs and outputs are easily described, (e.g., i: location of every stone on
the go board, o: next winning move), but the procedure P that would correctly connect
them is so difficult to design that it is out of practical reach. Artificial Intelligence (AI)
is concerned with this very situation, and attempts to exploit the computational power of
machines to bypass these human limitations.

This is were the learning procedures, the particular category of procedures whose
reactions to signature changes we are studying in this work, come into play. The next
section defines what learning procedures are, along with the associated research domains.
Section 1.2, illustrates the signature change problem with an example learning procedure.

1.1.2 Machine Learning

There are problems that humans are able to solve, but it is very hard to design a computer
procedure also able to solve them. Put it another way, there are “elusive procedures”, P⋆.
Among the most common ones: recognizing objects in our immediate environment, un-
derstanding questions asked by another human, producing adequate answers in natural
language, or issuing right decisions in governance debates. These elusive procedures seem
to form a gap between humans and machines, that the domain of AI has been historically
willing to bridge. The question whether it is possible to bridge it belongs to philosophy,
as it essentially boils down to the deep nature of human beings: If machines are limited
by natural processes, are we? And if we are, why could they not succeed in anything we
do? Notwithstanding philosophy, the AI community as a whole agrees that designing a
computer procedure P⋆ able to perform the above tasks correctly and efficiently is a hard
problem. This is mostly because we lack knowledge about the way humans actually suc-
ceed in these. This knowledge belongs to the fields of cognitive sciences, of psychology
and sociology, and is yet unveiled.

The AI problem is traditionally tackled by researchers from a symbolic, logical per-
spective. The idea is that the elusive procedures P⋆, if they exist, must eventually rely on
the basic rules of human reasoning, a.k.a. fundamental logic. This “strong” AI approach
is ambitious as it focuses on the difficult question: “How should P⋆ procedures work?”. It
struggles with concerns that eventually relate to the unknown nature of the human mind.

Alternately, for a few decades, there has been growing interest in new “weaker”, more
pragmatic approaches, because they turn out to be surprisingly powerful. In the domain of
Machine Learning (ML), the idea is that the elusive procedures P⋆ be automatically found
by artificial, automated agents dedicated to particular tasks. As a consequence, these ap-
proaches only need to answer the question “What should P⋆ procedures do?” [Ring 1997]

16 CHAPTER 1. INTRODUCTION

and the expected behaviour can be fulfilled by approximated procedures that yield ac-
ceptable performances. In other terms, ML is an empirical, statistical approach to AI. In
particular, ML agents only need to know the signature of the elusive procedures P⋆ to
run, and not the procedures themselves. This is the reason why signature changes are
particularly interesting to address in this context.

ML is successful because the agents it produces are typically generic in theory, in
the sense that they are supposed to succeed in various different tasks, and still are both
useful and efficient in practice. Artificial ML agents do recognize objects in pictures,
understand partial human speech, beat humans at board games, or again, predict online
consumers behaviours, whereas no known human is able to design the corresponding
formal procedures P⋆. This seems to contradict with the computer procedures limitations
defined earlier. If anything a machine does is to follow predefined procedures, how can
these algorithms succeed in tasks for which no explicit procedures were written?

The trick of ML is to not even try designing the elusive procedure P⋆. Instead, ML de-
fines a wide set of possible, well-defined procedures P, and assumes that this set is broad
enough to contain at least one procedure P̂ that approximately resembles P⋆. Once this
has been set, the idea is to search P, find P̂, and be satisfied with it.

There are two major practical problems in achieving this. First, there is no way to
tell which procedures in P are the right ones, so ML typically needs to successively test
them in turn until they find P̂. Second, it is very common for the search space P to be
immense or infinite, so the task of searching it is much resource-consuming. Fortunately,
searching P constitutes a well-defined repetitive procedure, which, as we wrote earlier,
is something machines are particularly successful at.

In a nutshell, the key insight of ML is to use the computational power of machines
to make them search the space of possible procedures P by themselves, until they find
a satisfying approximation of P⋆. To this end, artificial agents A are constructed, and
they follow searching procedures. Searching procedures perform similarly to the weather
simulation model defined earlier. For instance, on each time step, A receives one candidate
procedure P from P as an input, calls it to evaluate it, and outputs whether or not it is
likely to be useful, along with the next procedure to be tested:

i [first candidate P]→ A [test P]→ o [quality of P and second candidate]

→ i [second candidate P]→ A [test P]→ o [quality of P and third candidate]

→ i [third candidate P]→ . . .

In the above process, all procedures A and P are predefined and designed by humans,
so it does not contradict with the fundamental limitations of machines described earlier.
This automated procedure search eventually yields a good quality procedure P̂.

Note that this procedure is not P⋆. In fact, it is not even expected by computer sci-
entists that P̂ = P⋆, because the chances that P actually contains P⋆ and that A finds it
exactly are insignificant. Moreover, P typically contains procedures dedicated to approxi-

1.1. CONTEXT 17

Box 1.2: Epistemological status of ML.

In spite of a loud success, ML suffers from
an ambiguous reputation. On the one hand,
its effective performances in numerous ap-
plications are exciting because they seem
to seamlessly “bridge the AI gap”. On
the other hand, its pragmatic statistical na-
ture unveils very few fundamental knowl-
edge about the “elusive procedures” that
were the object of “strong” AI. In other
terms, ML explicitly rules out P⋆ to fo-
cus on performance with approximated P̂.
It produces procedures that mimic the
ones we expect, but teaches us nothing
about them. This is a poor epistemolog-
ical perspective. The disappointment is
magnified by numerous misleading terms
commonly used in ML like “learning”
(searching P), “neural networks” (one
tool to scroll candidates P) or “knowl-
edge” (the final procedure P̂) [Wladawsky-
Berger 2020]. These terms suggest a close
relation between ML procedures and the
human mind, but they are fallacious. The
relation is a regular human/machine inter-
action like any computation: Humans de-
fine procedures with a particular purpose
in mind (search P for P̂) and machines
execute them. In this thesis though, we
still consider that this approach has much
epistemological interest, especially at its
frontiers. As a matter of fact, ML does
not solve every problem out of the box.
Some elusive procedures P⋆, (autonomous
robot control, language acquisition) are

still far out of practical reach even with the
ML trick and today powerful machines.
“Solved” tasks, like playing chess or rec-
ognizing pictures, also carry their load of
unresolved questions. For example, we un-
derstand that any P̂ is satisfying provided
it is close enough from P⋆, but it is un-
clear what makes one particular P̂ useful.
P̂ is just one point in a wide space of pos-
sible procedures P, why does it behave so
closely to humans? Does this reveal any-
thing about the human mind? Do we learn
by exploring, like formal procedures, an
environment we know nothing about, and
a space of possible behaviours so wide
that it puzzles humans and machines alike?
The reason that misleading terms are used
in ML is that ML actually roots in bio-
inspiration and Artificial Life. Neural Net-
works are loosely inspired from the human
brain [McCulloch and Pitts 1943]. Rein-
forcement Learning is inspired from Psy-
chology [Sutton and Barto 2018]. Automa-
tion of natural speech processing high-
lights subtle linguistic phenomena [Gold-
berg 2016]. In the end, ML and cogni-
tive sciences, psychology, sociology, are
not entirely distinct as they keep interact-
ing together in search for the mechanics of
the human mind. Any progress in one un-
locks progress in the others. And there is
room for improvement in many practical
and theoretical aspects, like the signature

change problem addressed in this work.

mation, and not supposed to resemble human models of the problem, so implementations
of P̂ and P⋆ differ much by design. This said, P̂ is good enough to yield astonishing
results like synthesizing human faces [Karras et al. 2018] or beating human chess cham-
pions [Hsu 2002], which heightens the attention given to automated searching procedures.

Another common term for the searching procedure is a learning procedure, because it
is said that the agent “learns” how to solve the task at hand (see Box 1.2). In this thesis,

18 CHAPTER 1. INTRODUCTION

we investigate how learning procedures accommodate signature changes. In particular,
signature changes destroy and redefine the procedures search space P during the learning
process, and restarting the search from scratch is inefficient. Can better approaches be
developed to accommodate these events?

1.2 Learning Within a Changing Environment

In this thesis, we are interested in the problem of signature changes in learning computer
procedures. As described in the previous section, signature changes constitute a natural
phenomenon that affects procedures subject to variations in their basic input/output con-
tract. To our knowledge, this phenomenon is not accurately captured by modern ML ap-
proaches, and very few techniques accommodate it when it occurs during the course of
learning.

This section describes the phenomenon more in depth, with the help of an illustrative
example (a fictitious roverbot) that we refer to until the end of the chapter, and then regu-
larly throughout the manuscript. Before we expound signature changes, we need to detail
the interface between an agent subject to signature changes and its environment. This is
the object of the next section.

We take this opportunity to introduce Reinforcement Learning (RL) from an original,
stream-oriented perspective. This perspective is reused throughout the manuscript to inte-
grate signature changes as seamless events within the data streams. In particular, we use
it to construct the formal model defined in Chapter 5. We also choose to stand off the
usual notations in RL (i, o, P, E, etc. instead of s, a, π , T , etc.) to make it explicit that the
concepts developed in this thesis are not restricted to RL, but generic to various domains
in ML as explained in Chapter 2. In Chapter 5, we discuss the connections between our
notations and the traditional ones.

1.2.1 Signature of the Agent-Environment Retroaction Loop

Consider a sticky roverbot whose task is to follow a user anywhere (see Figure 1.1-Left).
The robot is simple and imaginary, as it is only used to introduce the key concepts of the
thesis. It is equipped with a few sensors providing the basic inputs, i, needed to fulfill the
task, e.g.:

• A front camera to spot the user direction.
• A front laser to measure distance to user.

It is also equipped with a few actuators providing the basic capabilities required to fulfill
the task, e.g.:

• A steering bar, associated with a motor controlling wheels direction.
• A power switch, that controls whether the wheels are spinning frontwards or back-

wards, or not.
Those are considered the output, o, of the robot.

1.2. LEARNING WITHIN A CHANGING ENVIRONMENT 19

an
g

le
 t

o
 u

se
r

distance to user

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

feedback
300°

200°

100°

0°

-100°

-200°

-300°

0m 1m 2m 3m 4m 5m

{

angle

dist
an

ce

sticky
roverbot

user

inputs

outputs

Agent

Environment

Figure 1.1: Left: The imaginary sticky roverbot used as an example learning agent in this chapter.
Right: Contour plot of an example feedback profile for the roverbot, defined with respect to the
user distance and angle.

Naturally, the robot also contains a chip that is responsible for hosting and running
its inner computing procedure, P. The robot procedure is supposed to choose the right
actions to undertake given the situation currently perceived by the sensors. In fine, P de-
termines the robot end behaviour. The robot signature is the type of data supposed to flow
through P: angle, distance, steering direction, power switch state. The signature can be
thought of as the list of sensors and actuators currently featured by the roverbot.

This situation raises several scientific challenges, most of which relate to the roverbot
engineering itself: power supply, wiring, robustness, flexibility, motion, safety, etc.

In particular, it also raises computer science related challenges. For instance, how to
compute user direction from the front camera picture? Or how to correctly coordinate the
motors so they do not break mechanical constraints? In the domain of ML, there is focus
on one particular question: What to use as the robot inner procedure P? In this thesis, we
focus on the associated question: How can P accommodate signature changes?

Within the roverbot, P is not a short, one-shot procedure like the addition procedure
seen earlier. With the addition procedure, you feed inputs in once (e.g., 9 and 3: 1001

and 0011), then you get the output once (e.g., 12: 1100) then the process is over:

i→ P→ o

The roverbot procedure is different because it lives ongoing time. On each time step
(say, every second), new decisions need to be taken depending on latest inputs. This re-
sembles the weather simulation procedure seen earlier, where each output was immedi-
ately reused as a new input to keep predicting a few hours ahead:

i→ P→ o→ i→ P→ o→ i . . .

20 CHAPTER 1. INTRODUCTION

In the weather simulation case, the whole process was only determined by i and P

so we could easily rewrite the above as a higher-level one-shot procedure Pit that did the
whole prediction at once:

i [initial weather measures]→ Pit [inner calls to P]→ o [e.g., 10 hours weather predictions]

But with the roverbot, the new inputs available on a time step are not the result of pre-
vious computation. Instead, they constitute new, fresh information taken from the outside
world, i.e. the agent’s environment E:

E→ i [user at 28°, 3.31 m]→ P→ o [stop running, steer]

E→ i [user at 10°, 3.30 m]→ P→ o [keep steering, but slower]

E→ i [user at -2°, 3.30 m]→ P→ o [stop steering, run]

E→ i [user at -1°, 3.16 m]→ . . .

In the general case, the dynamics of the environment E are unknown from both the
procedure P and from the bot designer themself. They encompass complex and unpre-
dictable phenomena like user behaviour, ground quality, weather conditions, random fluc-
tuations of sensors, etc. As a consequence, the above process cannot be rewritten ahead of
time as a one-shot summarized procedure Pit like in the previous situation. The roverbot
has to keep repeating a fresh decision process P indefinitely to keep running.

Interestingly, although the environment behaviour is ultimately unpredictable, there is
much that the agent can do to make it behave one particular way. For instance, if the bot
uses steering to face the user, then rolls towards them, there are good chances that the dis-
tance to user eventually decreases down to only a few centimeters. Of course, unexpected
things happen if the user keeps moving around, if there are obstacles on the ground, or
enough wind to deviate the bot trajectory. But the agent decisions constitute a legitimate
share of the set of factors determining the values of next inputs. In simpler terms, the
agent outputs influence the environment, like in:

E→ i→ P→ o→ E→ i→ P→ o→ E→ i→ . . .

Or, to make this agent-environment retroaction loop more explicit:

E P

i

o

In this view, E and P form a dynamical system where each procedure influences the
other via the only communication channels of the agent: i and o. This makes it very
clear that the agent signature is essential to the integration of P within its environment.
Computer scientists have very low control over E because it involves natural physics,
user behaviour or even chance. But they are supposed to design P and its signature so

1.2. LEARNING WITHIN A CHANGING ENVIRONMENT 21

that the roverbot fulfills the task no matter the possible hurdles in E. This is a difficult
problem, as it relates to AI, and the ideal P can be considered an “elusive procedure” P⋆.

Note: The “→” arrows used in this chapter are drawn for illustrative purpose only. In
Chapter 5, a formal definition of “ () ” arrows makes it possible to carry rigorous
meaning with similar diagrams.

Sometimes, the signature of the roverbot changes as the result of natural phenomena.
This happens for instance on an sensor failure (e.g., the laser breaks) or actuator addition
(e.g., a new speaker is plugged in). When this happens, the procedure needs to accom-
modate the change. Within ML, there exists learning procedures able to address agent-
environment retroaction loop contexts like the one described above. These procedures are
very common and well-documented but, to the best of our knowledge, they do not yet
accommodate signature changes. We describe one such procedure in the next section.

1.2.2 Reinforcement Learning

As explained in Section 1.1.2, the ML approach to the problem of animating the roverbot
is not to try to write the elusive procedure P⋆ explicitly. Instead, a wide space of pos-
sible procedures is designed: P, and the new agent task is to search this space until it
finds a procedure that makes it approximately follow the user in acceptable fashion: P̂.
ML branches into several subdomains depending on the learning situation involved (see
Section 2.2). The roverbot situation described here is most naturally handled by one par-
ticular ML approach called Reinforcement Learning (RL) [Sutton and Barto 2018]. RL is
typically useful when the procedure to learn is involved in an ongoing agent-environment
retroaction loop like the one above. This section introduces the basic principles of RL
needed to expose the thesis, RL is developed more in depth in Section 2.2.3.

1.2.2.1 A Trial and Error Search

When using RL to solve the roverbot problem, the first important thing to consider is that
the bot inner procedure P is not fixed anymore. Instead, the agent tries several candidate
procedures P in turn, all drawn from P, until it finds P̂. The agent “search” procedure S

is responsible for performing this search:

S [pick from P]→ P [first candidate]

E→ i→ P [first candidate]→ o→ . . .

S [pick from P]→ P [second candidate]

. . .→ E→ i→ P [second candidate]→ o→ . . .

S [pick from P]→ P [third candidate]

. . .

22 CHAPTER 1. INTRODUCTION

Drawn another way:

S PE

i

o

This has an important immediate consequence: before it finds P̂, the roverbot under-
goes many different behaviours outputted by S, some of which do not fulfill the task at
all (e.g., not moving, roaming in circles, flee from the user, flip upside down). During this
uncertain “learning phase”, the robot must be able to safely perform such trial and error

runs, until it eventually converges towards an acceptable behaviour P̂. This “heuristic”
disadvantage is the cost paid by ML computer scientists to not have to write the elusive
procedure P⋆ explicitly. This cost is smoothly endorsed for theoretical, imaginary agents
like the one at hand, but undesirable when it involves a real-world robot either precious,
dangerous or fragile. As such, RL is barely used in robotics in practice, but see [Smart and
Pack Kaelbling 2002; Bakker et al. 2006; Hester and Stone 2013; Cutler and How 2015]
for insights into bridging this gap. Overcoming the cost is easier with virtual agents, like
software tracking user preferences, because they cannot severely harm themselves or their
immediate environment. Still, the learning phase is typically expensive in terms of com-
puter time, data consumption, etc. As such, any technique susceptible to reduce the cost
of the learning phase is considered welcome in the domain of ML.

This permits a better characterization of the signature change problem. When the
roverbot signature changes, the search space P is also transformed, so it needs to be
explored again to find a new P̂. One trivial solution to accommodate the change is to start
the search over. Therefore, RL agents easily undergo such events by just resuming the
learning from scratch and exploring the new P again. Unfortunately, this naive technique
comes at the cost that the whole learning phase needs be undergone again. In this thesis,
we investigate alternate techniques so that parts of the “knowledge” collected by the agent
in the former search space be reused in the new P, the cost of the overall learning phase
be reduced, and the search procedure efficiency be improved. This falls under the scope of
another domain of ML called Transfer Learning and developed in Section 2.2.4.2. Before
we get into this, we need to understand how the procedure search is performed. The next
section explains the basic principles of P exploration in the case of RL.

1.2.2.2 A Feedback Value to Guide the Search

The second important thing to consider with the ML approach is that the agent search
procedure S must be able to distinguish, within P, bad candidate behaviours P from
good ones, that would be eligible for the final approximation P̂. In other terms, the agent
needs a mean to evaluate each tested procedure, and tell whether it has been doing well.
Evaluation is useful for several reasons. First, it makes it easy not to try bad behaviours
again, because S remembers that they have evaluated badly. Second, it makes it possible to

1.2. LEARNING WITHIN A CHANGING ENVIRONMENT 23

decide when to terminate the search: if a candidate behaviour is evaluated to be sufficiently
good, we consider that P̂ has been found and there is no need to keep exploring P. In
shorter terms, the learning phase is over. Third, evaluation is used as a clue to prioritize
the search space P, and browse areas that often yield good evaluations first. This will be
developed in Section 2.2. In the case of RL, evaluating the procedures generated by S is a
difficult problem, and the field takes a particular approach to it.

In RL, the agent designers build up an additional, special input used as a feedback: f .
This input is special because it is not supposed to feed the inner procedure P directly like
regular inputs, but the procedural search S instead. In a nutshell, i is input to procedure P,
whereas f is input for procedure S:

S PE
f

i

o

The feedback f is a continuous assessment whether or not the agent is currently doing
well. For instance, the user finds the sticky roverbot successful when it faces them, and
is close from them, but not too close or else it would be too much “sticky”. As such, the
feedback signal f is defined with respect to distance and angle to the user by, say:

ϕ : −distance
︸ ︷︷ ︸

stick to user

+ ln(distance)
︸ ︷︷ ︸

but not too close

+ ecos(angle)

︸ ︷︷ ︸

and face them

This yields the feedback profile shown in Figure 1.1-Right. The higher the feedback
value, the better the current behaviour evaluation. On this profile, we read that it is de-
sirable for the roverbot to be approximately 1 meter close from the user, because being
closer or further yields a lower feedback value. We also read that it is preferable that the
bot faces the user direction, because the highest value are attained when the direction is
close from 0°≡±360°.

The feedback values make it possible for the search procedure S to progressively con-
struct a mapping between P and the measure provided by f . In practice, for each tested
candidate procedure P, the agent roughly evaluates how much feedback it yields. High
feedbacks values are given by the roverbot designers as a reward for being successful,
while low feedback values are given like penalties. In the end, the behaviour earning the
most reward (or the less penalty) is chosen as the final approximation P̂.

With this simple principle, RL has become a major area of ML and yielded impressive
results. State of the art RL automated search agents learn to play human games [Mnih,
Kavukcuoglu, Silver, Rusu, et al. 2015; Berner et al. 2019], trade [Spooner et al. 2018]
or animate virtual creatures [Lillicrap et al. 2015; Gu et al. 2016], in a way similar to our
imaginary sticky bot.

24 CHAPTER 1. INTRODUCTION

Box 1.3: ML Design Space.

The ML tradeoff is simple. Elusive pro-
cedure P⋆ are complicated to design. In-
stead, 3 easier objects are designed: a
search space P, a feedback function f ,
and a search procedure S. The counterpart
is that the search within P is costly, and
the resulting P̂ that apparently “bridges the
AI gap” is not exact. But ML is not trivial.
Designing a P that is both easy to scroll
and rich enough to contain acceptable so-
lutions P̂ is difficult. A prominent mod-
ern solution to this is a tool referred to as
Artificial Neural Network (ANN) [McCul-
loch and Pitts 1943; Schmidhuber 2015].
ANNs are massively parametrized, non-
linear mathematical functions able to ap-
proximate any non-ANN function, includ-
ing P⋆, provided they have enough pa-
rameters (see Section 2.1.4). Designing f

raises other major concerns. For the agent,
f is the only clue about our actual needs

as users. The feedback must be contrasted,
so the agent clearly discriminates what not
to do. But it must also be unambiguous, or
we cannot expect P̂ to be satisfying. For in-
stance, the roverbot feedback designed in
Figure 1.1 states that we wish the robot to
face the user 1 meter close, but does not
state whether we wish it to stand in front,
or behind them, whether we expect it to re-
main still if the user does or keep moving
around in circle around them. As a result,
all these behaviours are possible outcomes

of the search. The ML agent designer is
responsible to clearly define their goal so
that P̂ is eventually meaningful. This is the
contract embodied by the signature of S:
a meaningful P̂ is only produced if mean-
ingful f is fed in. Finally, designing S so
it makes the best use of available informa-
tion is still the object of ML science. On
the one hand, S must yield good approxi-
mations P̂ for the result to be satisfying, so
it must search P thoroughly (correctness

concern). On the other hand, S must per-
form parsimoniously to alleviate the costs
of the “learning phase” (efficiency con-
cern). In addition, we expect that S is not
only able to solve the task at hand, but
also any task given a correct f (generic-

ity concern). With the same S and a dif-
ferent f , the ideal roverbot is also able to
learn how to hide from the user, systemati-
cally block their way, or only move around
if they are not. A generic procedure S, able
to find an acceptable P̂ in any learning
situation, constitutes a dream AI machine
able to learn any elusive procedure P⋆ that
humans cannot write. The perspective of
designing a generic learning agent makes
ML appealing to both scientists and engi-
neers. In this thesis, we address how sig-
nature changes in P transform P, and how
changes in f transform S. We also investi-
gate how particular S designs help in effi-
ciently accommodating this phenomenon.

1.2.3 The Signature Change Problem

One desired property of ML agents is that they are generic enough to seamlessly tackle
various learning situations (see Box 1.3). This is difficult because of the diversity of learn-
ing situations. For instance, either the learning context in which S performs its search is
fixed, or it varies over time during the course of learning. In the latter case, new challenges
must be faced by the agent.

1.2. LEARNING WITHIN A CHANGING ENVIRONMENT 25

1.2.3.1 Environmental Change

Our sticky roverbot is embedded into a wide, unpredictable environment. As such, un-
expected change occasionally occur during the course of learning. For instance, when it
starts following the user on a clear, wooden floor, the situation looks like:

S P [candidate behaviour]E [wooden floor]
f [position quality]

i [angle, distance]

o [steer, run]

Now, when the user goes outside, the situation changes because their yard is rocky.
This is an environmental change. For later convenience, we refer to this event with the
short symbol (∼E):

S P [candidate behaviour]E [rocky ground]
f [position quality]

i [angle, distance]

o [steer, run]

At this point, the task has not changed from the user perspective: “just stick around”.
However, there are chances that the agent be confused, because it has never been trained
to face the environmental snags in the yard, and the procedure supposed to fulfill the task
has become much more involved. On the wooden floor, sticking around mostly implied
locating the user, facing them and running towards them. Now, sticking around also im-
plies locating obstacles, avoiding them, dealing with the crumby floor when the wheels
slip, correct the trajectory when drifting with the wind, etc.

Interestingly, the task has not changed from the agent perspective either: “pick a pro-

cedure P̂ that yields good feedback f ”. The problem is that procedures that were good on
the wooden floor possibly give terrible results now on the rocky ground. In other terms,
the environmental change (∼E) changes the mapping between P and f : between the
candidate behaviours and their evaluated quality. In this situation, it typically reduces the
maximum value that f ever attains, and the adequate procedures P̂ becomes much more
difficult to find within P that they were before the change.

Overcoming environmental changes is the subject of ongoing research in ML. De-
pending on the change (small or big, gradual or sudden), the problem is tackled under
various names like Concept Drift [Tsymbal 2004] or Transfer Learning [Taylor and Stone
2009]. Within this scope, the main objective is to make the search procedure S flexible
enough so it is aware of the change, and does not have to undergo a costly learning phase

26 CHAPTER 1. INTRODUCTION

again after the change: only the new aspects of the new environment should be learned
again, and previous progress on the wooden floor should not be discarded.

1.2.3.2 Signature Change

Once the roverbot is accustomed to following the user on the rocky ground, another class
of unpredictable changes possibly occurs. These are change to the signature of the agent
procedures P and S. For instance, when the steering bar gets jammed with the dirt, then it
cannot control the direction anymore. We refer to this phenomenon as an output deletion,
and with the short symbol (−o):

S P [candidate behaviour]E [rocky ground]
f [position quality]

i [angle, distance]

o [×, run]

This is unfortunate for the roverbot, but the environment and the task at hand remain
the same. From the user perspective, the task is still phrased as “stick around”, and from
the agent perspective: “keep searching P for a procedure P̂ that yields good feedback f ”.
The best it can do from now on is to run frontwards or backwards, along the curve de-
termined by the locked position of the steering bar, so as to keep staying closest from
user.

Soon, a new device is plugged into the robot to compensate. Now it is equipped with,
say, an bouncy impulse spring. Any time, the bot can use it to jump and end up in a random
nearby location, facing a new random direction. We refer to this capability extension as
an output addition event (+o):

S P [candidate behaviour]E [rocky ground]
f [position quality]

i [angle, distance]

o [×, run, bounce]

The task at hand still remains the same. But the procedure to fulfill it has to become
different again. On the one hand, bouncing around makes it more difficult for the robot to
face the user, on the other hand, it makes it easier to escape from blocking rocks.

Later on, the laser supposed to measure the distance to user becomes fickle, and even-

1.2. LEARNING WITHIN A CHANGING ENVIRONMENT 27

tually fails. This is a case of input deletion (−i):

S P [candidate behaviour]E [rocky ground]
f [position quality]

i [angle, ×]

o [×, speed, bounce]

The task remains the same, and the agent still runs towards the user. Only it is more
difficult to stop before approaching too close from them. To compensate, the designers
decide that P stops feeding only from the angle to the user, which constitutes another input
deletion event (−i). Instead, P directly uses the full 1024×1024 pixels picture produced
by its front camera on each time step. This has several advantages. For instance, both
approximate distance and angle to user can be determined from the raw picture. Also, the
picture will be useful to spot the obstacles and avoid them before actually hitting them.
After this input addition event (+i) occurs, the learning situation becomes:

S P [candidate behaviour]E [rocky ground]
f [position quality]

i [×, ×, camera picture]

o [×, speed, bounce]

The task remains the same, but fulfilling it now implies that P computes the location
of the user and of nearby obstacles from the pixels itself, which represents a much more
involved procedure.

Signature changes do not only affect P, they also affect S when the feedback values
are updated. In a new upgrade to the roverbot, a new objective is added to the task: watch
the bot battery level and go recharge when low. This is made possible with a new feedback
value appended, an event called feedback addition (+ f):

S P [candidate behaviour]E [rocky ground]
f [pos. quality, batt. level]

i [×, ×, camera picture, battery level]

o [×, speed, bounce]

Note that a new battery sensor has also been added (+i).

From now on, not only the position of the roverbot has to be correct, but its battery

28 CHAPTER 1. INTRODUCTION

level must not become too low, so it has 2 competing objectives to fulfill. This implies
that the procedure P be revised again, and the search procedure S has more constraints to
satisfy.

Finally, solar panels and powerful accumulators are plugged into the bot, so it does
not need to worry about power level anymore. As such, the battery objective can be with-
drawn from the agent with a last type of structural signature change event called feedback

deletion (− f):

S P [candidate behaviour]E [rocky ground]
f [pos. quality, ×]

i [×, ×, camera picture, ×]

o [×, speed, bounce]

Note that the battery sensor has also been removed (−i).

In the end, our imaginary roverbot has undergone numerous modifications since it
entered the yard. It is therefore legitimate to expect that its behaviour is much different
from what it was on the wooden floor. However, we notice that a few things have not
changed during the whole process. First, the environment E has always remained the same
since the roverbot entered the yard. Only the bot capabilities evolved. Second, from the
user perspective, the task assigned to the roverbot has not changed either: “stick around”.
This is not exactly true since structural editions made to the feedback signal (+ f , − f)

arguably changed the objectives of the roverbot a little. However, it remains true that the
task never changed from the agent perspective: “search P for a procedure P̂ that yields

good feedback values f ”. As such, the user expects that the robot smoothly adjust its
behaviour when faced with a signature change.

But signature changes raise a new technical challenge related to the search space P

containing all candidate behaviours. During environmental change (∼E), the mapping
between P and f was modified, resulting in that procedures that were acceptable before
the change possibly ended up yielding lower values. The agent could not tell whether they
were still the best ones because the relative values of alternate procedures had possibly
raised up, even within the procedures already tried in the past. As such, the agent had to
explore P again, and ML attempts to make this new exploration process the less redun-
dant possible. To this end, ML assumes that not all the mapping has changed, but only a
few specific parts to be discovered.

But when the signature of P changes with events like (+i, −i, +o, −o), the situation
is much different because all behaviours in P become invalid. Any behaviour in P was
defined with respect to previous signature. For instance, before the roverbot laser failure,
all candidate procedures expected 2 inputs values (angle, distance) to process. When the

1.3. THESIS OUTLINE 29

laser fails, no procedure in P fulfills the task anymore, as their expected input is incom-
plete with only (angle). They have become ill-defined and inadequate to the new roverbot
capabilities. In shorter terms: any of these changes breaks the output signature of S. As a
consequence, a new search space needs to be constructed, and the problem of exploring it
again with parsimony is, to our knowledge, not tackled by the ML community yet.

The input signature of S also changes with events like (+ f , − f). In this case,
the situation is different again because the search space P is still valid, and so is
the mapping between P and previous values of f . The difference is that the search
procedure S needs to be updated so it is now able to process more or less conflicting
objectives together. This requires a new, parsimonious exploration of P again, but with a
focus on entirely different challenges, related to multi-objective optimisation and Pareto
boundaries [Yaochu Jin and Sendhoff 2008].

In this thesis, we consider that signature change events occurring during the course of
learning constitute a new learning situation for automated agents, namely Protean Learn-

ing (PL). An agent supporting PL enables continuous learning for ML agents undergoing
metamorphosis, so their capabilities seamlessly evolve over time. At the core of PL, there
is the problem of exploring the search space again after each change, with as much par-
simony as possible so as not to restart the searching process from scratch. In the second
part of the thesis, we focus on (+i) and (−i) in particular.

PL is not only useful for our imaginary sticky roverbot. Like any other ML procedure,
the agent algorithm A and its inner search procedure S apply to a broad cast of problems.
For instance, consider a long-term automatic trading learner feeding from streaming sta-
tistical indicators gathered online [Spooner et al. 2018]. Should this agent be erased and
restart the learning from scratch whenever a new indicator is created (+i), or when an old
indicator is disregarded because not considered relevant anymore by the trading commu-
nity (−i), then precious computing resources like time, power, data, developers, would
regularly be wasted. Instead, the agent must keep on working and improving with the new
available information.

1.3 Thesis Outline

In this thesis, we engage into Protean Learning (PL) with several contributions supposed
to address the problem of signature change accommodation, with a special focus on input
addition and input deletion events (+i) and (−i).

The contributions address two main questions. First, considering that the agent search
space is transformed on every signature change: Does a formal definition of PL permit
construction of generic accommodation procedures enabling parsimonious reexploration
of the search space regardless of the learning context at hand? In Chapter 5, we for-
malize PL in the general case, then describe an original set of generic accommodation
procedures in the restricted case of (+i) and (−i). Second: Do these generic accommo-

30 CHAPTER 1. INTRODUCTION

dation procedures constitute an improvement over the naive approach of PL restarting the
learning from scratch on every change? In Chapters 6 and 7 we address this latter ques-
tion with an experimental approach aimed to cover the widest range of different learning
conditions.

We expect that these contributions be useful to the domain of ML, and for future
works in the directions pointed by PL, bringing structural flexibility to automated
learning agents.

In the current chapter, we have introduced scientific context to the field of ML, and
used a small, imaginary example to introduce all the concepts needed to expose the the-
sis. In the remaining chapters, we detail the thesis and highlight our contributions to the
foundation of PL.

Chapter 2 offers a deeper tour of machine learning, where not only Reinforcement
Learning (RL) is addressed, but also Supervised Learning (SL), Unsupervised Learn-
ing (UL) and two key transversal learning contexts useful as PL background: Online
Learning (OL) and Transfer Learning (TL). Signature changes are not addressed in this
contextual chapter, but we stress important common theoretical and technical components
of ML, which are used in the rest of the thesis.

Chapter 3 details the signature change problem in depth, along with the need for PL
and the scientific challenges involved. Based on this, we formulate our position regard-
ing PL. We defend that PL is a significant, new, and non-trivial domain of ML. In par-
ticular, we defend that there exist generic ways to accommodate signature changes in PL
regardless of the learning context, the learning method or the task at hand.

Chapter 4 summarizes the state of the art with a range of previous works related to the
problem of accommodating changing learning contexts like Continual Learning, Concept
Drift, Domain Adaptation etc. In particular, we focus on TL to position PL as a particular
instance of TL unaddressed per se by the ML community yet.

In the second part of this work, we expound our current contributions to PL and our
argument to defend the thesis.

Chapter 5 offers a rigorous formalization of the PL situation, useful as a functional
model of learning contexts involving signature changes. Then, our focus is restricted to
two change events, (+i) and (−i), which constitute the restricted subdomain of Input-
PL (IPL). We study the reactions of the explored search space to these signature changes,
and show that they are structured by 10 archetypal IPL profiles. In addition, we exhibit
a set of natural projections useful to accommodate (+i) and (−i) events regardless of
the profile at hand, and suggest that these projections be good candidates to constitute
generic IPL techniques.

In Chapter 6, we verify this claim with a controlled synthetic experiment, in an Online
SL (OSL) context. We design a testbed involving the most generic type of IPL profile, and
compare them to degenerated profiles used as a baseline. Using this testbed, the perfor-

1.3. THESIS OUTLINE 31

mances of protean agents after (+i) and (−i) events are compared to the performances
of a naive agent resuming the learning from scratch on a signature change. We show that
the natural projections defined in Chapter 5 provide better results than the naive approach
in most situations, and qualify this result depending on the contexts controlled by the
experimental parameters.

In Chapter 7, we design and conduct another synthetic experiment to extend the above
results to a full-fledged RL context. The testbed we design addresses various IPL profiles
and two different learning methods, but the constructed protean agent always use the
same natural projections to accommodate (+i) and (−i) events. Once again, we show
that their performances outperform the naive agents in most situations, and we qualify
the result depending on the various controlled properties of the task at hand.

Chapter 8 eventually wraps up the whole document, with a special highlight on the
limits of current conclusions, and the perspectives for future works and future milestones
in ML.

32 CHAPTER 1. INTRODUCTION

Chapter 2

Background: Machine Learning

This chapter introduces the various Machine Learning (ML) approaches, their strengths
and limitations, with a special stress on Online Learning situations and Reinforcement
Learning, which will be used in subsequent chapters.

Section 2.1 describes a few important common aspects shared among every ML field,
because they all address the problem of searching an appropriated computer procedure P̂,
or “behavioural search”. In turn, we expound the maximization problem, the methods
— heuristics methods in particular — used to address it, the structure of the associated
search space P and one common technique, namely Artificial Neural Network (ANN),
used pervasively throughout ML to implement them.

Section 2.2 describes the distinguishing features of various ML subdomains. Every
subdomain specifies its own learning context, in which the behavioural search problem
occurs. In Supervised Learning (SL), the user exploits practical samples of the behaviour
they look for. In Unsupervised Learning (UL), there are no such samples. In Reinforce-
ment Learning (RL), the behavioural search is coupled with a reactive environment. Some
fields of ML are also transversal to others. Online Learning (OL) covers every situation
where the progression of behavioural search depends on the progression of external data
streams. In Transfer Learning (TL), the behavioural search extends over multiple tasks.

This chapter constitutes general background of the thesis. As such, the particular prob-
lem of PL and signature changes, the very object of our work, is not formally addressed
until the next chapter.

2.1 Behavioural Search

As explained in chapter 1, the ML approach to AI relies on one cornerstone process:
the exploration of a search space P, supposed to contain good approximations P̂ of the
elusive procedure P⋆. Since machines behaviours result from their inner procedures, we
refer to this cornerstone process as a behavioural search. This section reviews the most
widely used tools, methods and approaches to behavioural search.

34 CHAPTER 2. BACKGROUND: MACHINE LEARNING

2.1.1 The Maximization Problem

The behavioural search required by ML is a particular case of a longstanding problem oc-
curring throughout sciences in general, and computer science in particular: the maximiza-

tion problem. In this problem, there is an objective function, our “feedback” function f ,
mapping each element of the search space to a numerical value:

f :

{
P→ R

P 7→ f (P)
(2.1)

The problem is to find which elements in the search space yield the maximum possible
value. In other terms, the desired elements P∗ are the solutions of the equation:

f (P∗) = max
P∈P

(f (P)) (2.2)

Note that it is not strictly necessary for f to output numerical values in R. The only
requirement is that the feedback values be at least partially ordered, so it makes sense
to look for elements P∗ for which no other candidate P yields strictly better feedback.
Considering this, the best elements P∗ are more generally specified by:

∀P ∈P, f (P)6 f (P∗) (2.3)

Also note that P∗ is not necessarily unique within P, but there is always at least one.
Arguably any problem, and any computer science problem in particular, eventually

reduces to a maximization problem. To reduce it, consider that P virtually represents any
possible solutions set, and that f always measures, at the very least, whether the user is
satisfied with the solution (say, f (P∗) = 1) or not (say, f (P) = 0). In the particular ML
situation, f measures the quality of approximation P̂ with respect to the targeted “elusive
procedure” P⋆. As a consequence, no matter the considered ML technique, the resulting
behaviour P̂, used as a proxy to P⋆, is, at best, a solution to equation (2.3). At best P̂ = P∗.

The maximization problem is hard to solve in general1. This means that, given P

and f , it is not always possible to find the maximal candidates P∗. Instead, ML users fall
back on using the best candidates P̂ found so far.

In summary, the quality of P̂ depends on three major factors:

• P: The search space defined by the user. No good behaviour P̂ can be found if P
does not contain any in the first place. The design of P is discussed in Section 2.1.3.

• f : The feedback function defined by the user. No good P̂ can be found if f does not
accurately represents the candidates quality (see Box 1.3).

• (A, S): The agent search procedure defined by the user. No good P̂ can be found
if the search procedure fails in exploring P and misses important candidates. The
next section describes search procedures commonly used in ML.

1Otherwise it would be easy to solve any problem.

2.1. BEHAVIOURAL SEARCH 35

2.1.2 Heuristics

Analysis The most rigorous method for behavioural search is the mathematical analysis
of the objective function f . For example, if the agent behaviour is only parametrized
by one scalar value P, and given the concave objective function f : P 7→ eP−P2

, we can
calculate that the only solution to f ′(P) = 0 is 1

2 , and that f ′′
(

1
2

)
=−2e

1
4 is negative, so f

admits exactly 1 maximal candidate P̂ = P∗= 1
2 .

When a P̂ is found with this method, it is guaranteed to solve eq. (2.3). In the above
case, P̂ is strictly a best candidate for approximation of P⋆, unless either f or P were
ill-designed to address the problem at hand. However, in most real-world ML problems,
the candidates P are not simple numbers but computer programs represented with large
vectors or complex objects. And feedback functions f are not concave but discontinuous
mappings including various complicated forms of non-linearity.

As a consequence, the analytical approach suffers the major issue that it requires deep
theoretical groundwork, and that the majority of prominent ML problems are intractable
in practice. Reasons for this include undecidability, lack of mathematical knowledge,
combinatory explosion of the number of possible cases to study, or lack of computa-
tional resource. As a consequence, the exact solutions P∗ to eq. (2.3) cannot be found.
One possible workaround is to emit simplifying hypotheses, but this degrades in turn the
quality of P and f , thus the final behaviour P̂.

Inexact Methods One alternate approach to behavioural search, broadly employed
throughout ML, is to rely on inexact methods. Inexact methods are also called heuristics

because their results is not guaranteed to be optimal, but they practically reach sufficient
approximations2. In heuristics, no complete analysis of P is done. Instead, a large number
of particular candidates P is drawn from P, and evaluated with f (P) so as to determine
their quality. When a satisfactory candidate is eventually found, it constitutes the final
procedure P̂. Compared to analytic approaches, heuristics suffer the major pitfall that P
is not entirely scanned. As a consequence, many candidate procedures are never actually
tried, and there is no guarantee that any true solution to eq. (2.3) is eventually found.
These approaches must therefore be ruled out whenever an exact result is absolutely re-
quired. On the other hand, heuristics make it always possible to explore P at least a little.
And the pragmatic results P̂ yielded by these techniques turn out to be useful in practice3.

2In this respect, they are more general than, and not to be confused with the restricted sets of “admissible
and non-admissible heuristics” used in the particular domain planning and pathfinding.

3Heuristics are typically inspired from natural processes, because some natural processes are easily in-
terpreted as behavioural searches. One famous instance is the adaptation capabilities of species. Evolution
shapes species in a way that their reactions to environment continuously update [Darwin 1859]. The asso-
ciated biological process, a.k.a. natural selection, has inspired procedural searches from the local heuristics

category described hereafter. Ontogenesis is another example of natural behavioural search, since individu-
als progressively learn to behave in an environment they initially know nothing about. This process is much
more complex as it also involves inherited priors and observational learning [Bandura and Walters 1963;
Zentall 2012]. This falls out of scope for this thesis as we focus on single-agent search.

36 CHAPTER 2. BACKGROUND: MACHINE LEARNING

Exact Methods
require tractability

Heuristics
inexact

Behavioural Search
maximization problem

Random Search
inefficient

Local Searches
require topology

Gradient Searches
require differentiability

Figure 2.1: Various categories of behavioural searches.

Heuristic searches boil down to the repetition of many elementary operations called
heuristic steps: “pick P from P then evaluate f (P)”. Given a fixed step cost in terms of
computational resources, the more steps performed before a satisfying P̂ is found, the
more expensive the approach. The various heuristic methods described hereafter (see
Figure 2.1) share one common objective: reducing the number of steps required before a
satisfying P̂ is eventually found. In particular, they differ on the way the next candidate P

is chosen on each step.

In its most naive form, heuristic behavioural search is made at random: the next can-
didate P is always randomly drawn from P. This approach only requires that a random
distribution be defined over P, but is likely to be inefficient in practice, because many un-
lucky samplings are done before an interesting P̂ is eventually found, especially when the
interesting candidates P̂ are rare within P or underrepresented in the chosen distribution.

Local Heuristics Instead, one major improvement over random search is to guide the
search towards promising regions of the search space. This requires that P be supplied
with a topology structure, and is a cornerstone aspect of the signature change problem
addressed in the next chapters. The topology provides a notion of neighbourhood, so it
makes sense to say that some candidate procedures P are more or less “connected” to
each other. In addition to topology, the search space is equipped further with a notion of
distance or dissimilarity, so it also makes sense to say that candidate procedures are more
or less “close” or “similar” from each other, and speak of “regions” of P like an actually
spatialized set.

Once this structure is defined, the idea is to hypothesize that good quality procedures
neighbour each other within P. In other terms, f is assumed to vary smoothly over P
so that, whenever a good candidate is found, there is a fair chance that better candidates
be located around it. With this set up, then the next tested P is preferably drawn from
the neighbourhood of the best candidates found so far. This reduces the number of steps
eventually needed to find a satisfying P̂ within P.

In this situation, the profile of the objective function f is commonly nicknamed the
“landscape” of f , with high-valued regions pictured as hills, and low-variability regions
as plateaus. The search procedure is also nicknamed “hill-climbing” procedure. Note that
the spatial structure of the search space must be defined in a way that the smoothness
hypothesis holds, otherwise the above technique does not yield better results than plain
random search. We refer to this particular category of heuristics as local searches.

2.1. BEHAVIOURAL SEARCH 37

Local searches encompass many popular algorithms. In “evolutionary algorithms” for
instance, the less promising candidates P are successively filtered out from many genera-
tions of candidates, while new generations are created from local modifications of previ-
ous ones, according to principles of natural selection [Sastry et al. 2014]. They have been
successfully applied to Reinforcement Learning in [Moriarty et al. 1999], to the concept
drift problem in [Rohlfshagen et al. 2009], and there exist modular approaches to it [Pot-
ter 1997]. In “simulated annealing”, the new candidates are first drawn from very distant
regions, then the sampling regions are gradually narrowed around the most promising
candidates as the “temperature” parameter cools down, until only high quality candidates
remain [S. Kirkpatrick et al. 1983]. “Ant colonies” algorithms use the same locality prin-
ciples, in a way inspired from emergent behaviour of eusocial species [Maniezzo 1992].
See [Osman and Laporte 1996] for an insight into the diversity of these local approaches.

Exploration and Exploitation Local heuristics share a common challenge, well-known
as the exploration vs. exploitation dilemma [Gupta et al. 2006]. As a matter of fact, the
landscape of f typically exhibits local optima: non-optimal candidates that dominate their
regions, but are less good than the global optima which verify eq. (2.3). This is misleading
to the search procedures, since they are attracted towards any promising region, but they
have no way to tell whether the optima lying within the region are local or global.

The exploration / exploitation dilemma is an important balance to strike between two
contradictory search activities. On the one hand, promising regions of P need to be thor-
oughly sampled to find the best candidates among them. This requires many exploitation

steps. On the other hand, the smoothness hypothesis never guarantees that a best candidate
in a promising region best over all P. The only way to address this is to examine other,
further regions, and check whether they yield better candidates. This requires in turn many
exploration steps. To summarize: if exploration is missing, then important parts of P are
wasted. But if exploitation is missing, then no excellent candidates are found within the
promising regions. However, performing the two is computationally expensive. Satisfying
this tradeoff, depending on the problem at hand, is a major concern of local searches, and
also the object of ongoing research across the various fields of ML, including RL.

Gradient Searches Local searches can be improved further under some particular cir-
cumstances. In the above methods, the region surrounding each promising candidate is
sampled arbitrarily to find some promising neighbourhood to explore next. This “local
exploration” costs multiple steps. But if P is a continuous set and f a differentiable

function, then there is a vector directly pointing towards the next most interesting neigh-
bourhood. This vector is built from the derivative value d f

dP
(P). With this value calculated,

the search algorithm just needs to follow it and saves many local exploration steps.
The methods relying on this particular clue, like gradient ascent or adam [Kingma

and Ba 2015] are called gradient searches. Gradient searches imply that f can be at least
approximately differentiated at the current candidate location P, but they dramatically

38 CHAPTER 2. BACKGROUND: MACHINE LEARNING

increase the search performance, especially in smooth, high-dimensional search spaces.
They are especially useful with the ANN tools described in Section 2.1.4.

Parametrization Most heuristic methods need to be parametrized. In adam, for
instance, a parameter called “learning rate” specifies how far to follow the gradient
direction on each step. In simulated annealing, the “cooling” parameter specifies how
fast the temperature decreases. Heuristics are typically sensitive to these parameters, in
the sense that the quality of the resulting P̂ strongly depends on them. But the parameters
are difficult to tune to correctly match the landscape at hand. No predefined methodology
precisely determines which parameter values to use, so they need to be groped, which
makes heuristics difficult to apply on new problems. In spite of this limitation, local
searches yield consistent and useful results in practice, and are widely used in ML.

When the signature of the targeted procedure P⋆ changes, the whole search space P

needs to change, and whichever search method used by the learning agent needs to ac-
commodate the event because its target has transformed. This is the particular situation
we address in this thesis. Chapter 5 describes the general connections between search
landscapes when (+i) and (−i) events occur, and projections applicable to any kind of
behavioural search. Chapters 6 and 7 address accommodation of these change events by
three different local searches: adam search (with RNN learners), Q-Learning and Actor-
Critic (in a Reinforcement context).

2.1.3 The Search Space

There exists various ways to define the search space P. They have in common that P
must be both wide, so it has chances to contain good final candidates P̂, and easy to
explore, so these candidates have good chances to be found.

Naively, the largest search space is the space of all possible computer programs. This
space is huge, and it certainly contains the procedures desired by the user, but it is hard to
explore for several reasons. With exact search methods, this space is intractable because
of combinatory explosion and the many undecidable properties of computer programs.
With local heuristics, changing one small directive in a computer program typically
makes it behave a totally different way, so it is hard to equip this space with a topology
and a distance measure that makes the feedback function f vary smoothly over it. As a
consequence, the only unaffected automated search procedures over this space belong to
the random heuristics category, and are extremely inefficient because the subset of useful
programs is extremely sparse within the set of all possible programs.

In most cases, the search space must therefore be reduced to be more easily explored.
This implies that only a subset of all possible procedures be selected, a.k.a. P, and others
be left aside. Selecting this subset is non trivial, and there are two major approaches to it.

2.1. BEHAVIOURAL SEARCH 39

In mechanistic approaches, an insight into the inner mechanics of the unknown pro-
cedure P⋆ is used, so P only contains procedures whose internals are likely to resemble
the internals of P⋆. For instance, when looking for a procedure that correctly predicts the
incidence of a pandemic disease given the time i = t elapsed since primary infection, the
set of logistic functions P = {P : i 7→ C

C+(1−C)e−r i} is an insightful space to search [Pren-

tice and Pyke 1979]. If a good P̂ is found in this space, then the corresponding value
of C corresponds to the initial infected pool, and r measures the disease propagation rate.
Mechanistic approaches are compelling because of the strong semantics they provide, but
they also require strong prior knowledge about P⋆, which is uncommon to have in ML.

In phenomenological approaches, on the other hand, P is constructed so that it loses
as few information as possible compared to the larger set of all possible procedures. In
an ideal phenomenological P, any computer procedure (including P⋆), can be closely
approached from at least one candidate in P. This guarantees that good candidates P̂ ex-
ist, even though P is easier to search. For instance, polynomial functions can approach
any function arbitrarily closely, provided their degree D is high enough and their coeffi-
cients are correctly set (see next section). In addition, the space of polynomial functions
is easy to explore because it is it in bijection with the space of coefficients, so P RDf

with Df = D+1 degrees of freedom.

In this situation, P is de facto equipped with a strong topology that enables local
heuristics, and even gradient searches with the most common differentiable feedback
functions f . Phenomenological approaches are the more generic, because they do not
rely on insights into P⋆. As such, they are by far the most used in ML. In the remainder
of this thesis, we only address phenomenological techniques because they are the most
common, but see Box 2.1 for a more detailed comparison with mechanistic approaches.

2.1.4 Artificial Neural Networks

Arguably, the overall success of modern ML stems from one particular class of tools, ded-
icated to phenomenological approximation, whose tremendous performances are respon-
sible for the most remarkable achievements in this field. These tools are called Artificial
Neural Networks (ANNs) [Haykin 1999].

Like polynomials, ANNs approximate any function provided they have enough de-
grees of freedom Df and their coefficients are correctly set. Like polynomials, they
are parametrized by one vector of numbers so the associated search space is typi-
callyP RDf , which enables local heuristics. Like polynomials, they are typically dif-
ferentiable, which enables efficient gradient searches. In addition, they represent a broader
class of functional forms than polynomials, they are more flexible and more easily cus-
tomized to fit particular uses. For instance, they are not restricted to represent determinis-
tic procedures, as they can also be stochastic [Liao and Mao 1996] or recurrent [Mandic
and Chambers 2001; Lipton 2015].

The formulae of ANNs are typically deeper and more intricate than the formulae for

40 CHAPTER 2. BACKGROUND: MACHINE LEARNING

Box 2.1: Mechanistic vs. Phenomenological Approaches

There are two attitudes regarding defini-
tion of P. In mechanistic approaches, Pmc

only contains meaningful procedures, un-
derstandable by humans. In phenomeno-

logical approaches, Pph contains many
procedures with various behaviours, not
representing anything. Pph advantage is to
almost certainly contains a good P̂. But P̂

may produce aberrant results given un-
usual input. Conversely, Pmc guarantees
that P̂ is consistent with P⋆. Pmc has a
scientific advantage because it carries ex-
plicit hypotheses about P⋆, and conclu-

sions are drawn from P̂: If P̂ is bad, hy-
potheses are safely dismissed; If P̂ is good,
hypotheses are reinforced. As a down-
side, Pmc requires clever insights into P⋆,
which require difficult theoretical ground-
work, about the “elusive procedures”. This
makes Pph appealing. The model they use
(polynomials, ANNs) do not capture es-
sential mechanics of P⋆, only the observed
phenomenon, so they seamlessly approach
any P⋆. Pph is easily misused as a replace-

ment to Pmc, but the two approaches are
disjoint and complementary. As a phenom-
enological approach to AI, ML outcomes
must be treated with care and not over-
interpreted as models of the human mind.
Nevertheless, it is a matter of fact that sat-
isfying mechanistic models of P⋆, like hu-
man speech recognition, are lacking. And
the rise of ML proved “weak” Pph predic-
tions to be useful in practice. This is be-

cause ML searching procedures are tuned
with care, and much thought is actually de-
voted to alleviating their phenomenolog-
ical limitations. For instance, the ANNs
used in picture recognition are not vanilla
ANNs but CNNs, inspired from visual cor-
tex, because their formula is adapted to im-
age processing (detecting contours, over-
lapping areas) [Krizhevsky et al. 2012].
Unveiling CNNs constitutes an involved
groundwork and diminishes genericity, but
increases efficiency and understandability.
In other terms, ML reveals, with flexi-
ble ANNs tools, that there is a continuum
between phenomenological and mecha-
nistic approaches. On the phenomenolog-
ical end, agents are flexible and learn
without much human input, but it is un-
clear how they work and they are subject
to aberrations. On the mechanistic end,
agents require theoretical groundwork and
are hand-crafted with reduced autonomy,
but yield sounder results and humans un-
derstand their functioning. The question
whether it is possible for an automated
learning agent to yield both autonomous
and intelligible results is still open. And
generic learning models that strike, like
human learners, the right balance along
this gradient are the object of ongoing
research. This thesis addresses signature
changes in any attitude, although the two
conducted experiments are held within the
scope of phenomenological ML.

polynomials, so the computation of the derivatives necessary for gradient searches consti-
tutes a more involved process. This differentiation process relies on thorough applications
of the differentiation chaining rule, which, in this context, is commonly called “backprop-
agation” instead [Haykin 1999].

The principle of ANNs is simple. Here, we introduce them as an extension to polyno-
mial approximators. The formula for polynomials is progressively built by the summation

2.1. BEHAVIOURAL SEARCH 41

of successive “monoms” of the form:

md(i) = wd id (2.4)

With d ∈ N the monom degree, and wd ∈ R the associated multiplying coefficient, also
called “weight” . The final formula for a polynomial of degree D is:

o = P(i) =
D

∑
d=0

md(i) =
D

∑
d=0

wd id = w0 +w1 i+ · · ·+wD iD (2.5)

The formula is entirely specified with a vector of coefficients w ∈ RD+1. In the context
of ANNs, it is common to use labeled, directed graphs to represent such formulae:

i o

nD

...

n1

n0

1

1

1

wD

w1

w0

(2.6)

In this representation, node labels represent functions, and arrow labels represent weights.
The value of each arrow tip is the value of its source node multiplied by its label, and the
value of each node (or “neuron”) is the sum of incoming arrows tips transformed by the
node label. Here, i and o correspond to identity functions, in particular, input and output

of the procedure, while each nd is the power function:

nd : x 7→ xd (2.7)

ANNs generalize the polynomial formula to any formula described by directed graphs.
In particular, the typical structure of traditional ANNs, loosely inspired from cortical neu-
ron organization, is a multilayered formula, where each layer is only connected to the two
adjacent ones. With L layers, the formula looks like:

i o

n1,D1

...

n1,2

n1,1

w1,D1

w1,2

w1,1

n2,D2

...

n2,2

n2,1

w2,D1,D2

w2,1,1

. . .

. . .

. . .

. . .

w3,D2,D3

w3,1,1

nL,DL

...

nL,2

nL,1

wL,DL−1,DL

wL,1,1

wL+1,DL

wL+1,2

wL+1,1

(2.8)

42 CHAPTER 2. BACKGROUND: MACHINE LEARNING

Note that the number of nodes per layer (D1, D2, . . . , DL) typically varies within the
same network. However, the function associated with every intermediate node nl,d is tra-
ditionally the same: one non-linear function called an activation function, like x 7→ |x|
or x 7→ tanh(x). Even with this simple structure, many parameters are needed to specify
the procedure, which makes the associated search space P wide in terms of dimensional-
ity. And the many possible computation paths among the network makes it possible for the
formula to exhibit various different behaviours, some of which are likely to approximate
the desired procedure P⋆. In fact, Universal Approximation Theorems guarantee, for each
type of ANN, that a large category of functions can be approximated this way [Haykin
1999; Mhaskar and Poggio 2016; Zhou 2020].

Possible modifications to this simple structure extend ANN to broader classes of pro-
cedures. For instance, additional “bias” nodes, with no incoming arrows, can be added
to each layer to shift all inner values by a constant amount. Alternately, the activation
function represents the last transformation applied to produce a node output, and can be
adjusted with fine grain on each node to fit the problem at hand. On the input side of the
nodes, all incoming valued are traditionally integrated as a sum, but this can be extended to
any aggregate function like mean, max, etc. This is useful to construct one particular class
of ANNs called Convolutional Neural Networks (CNNs), well-suited to process auto-
correlated input data like pictures [Lecun and Bengio 1995; Zhang et al. 2017; Dhillon
and Verma 2020]. The network structure itself can become arbitrarily complex, and even
be part of the search space itself in approaches called “NeuroEvolution of Augmenting
Topologies” (NEAT) [Stanley and Miikkulainen 2002]. Note that a search space featuring
various network structures cannot be explored with gradient-based approaches due to the
discrete nature of directed graphs, so NEAT exploration needs to partly fall back on more
generic local searches like genetic algorithms. Finally, it is possible to correctly define
cycling network structures, provided at least one arrow on each cycle is associated with
a positive delay, meaning that several passes are needed to propagate values throughout
the network. Cycling networks are called Recurrent Neural Networks (RNNs) [Mandic
and Chambers 2001; Lipton 2015] and constitute non-Markovian procedures, useful to
approximate processes exhibiting a memory like natural language [Elman 1990; Cho et

al. 2014], or even NEAT search procedures themselves [Zoph and Le 2016].

RNNs in particular are typically well-suited to Reinforcement Learning, but suffer
one major concern known as the exploding/vanishing gradient problem. In theory,
their cycling structure permits that any time-dependent procedure be approached, no
matter the time scale. But in practice, gradient searches suffer from limitations of the
backpropagation process. When computing the derivative of the network by applying the
chaining rule up to far back in time, algorithms commonly loose track of the derivative
value, either because its magnitude weakens, or because it explodes due to artefactual
cumulation of rounding errors [Pascanu et al. 2013]. Various RNN structures have been
offered to alleviate this. For instance, Long Short-Term Memory networks (LSTM) have
been popular for a couple of decades [Hochreiter and Schmidhuber 1997; Bakker 2001].

2.2. LEARNING CONTEXTS 43

And more recently, a new architecture called Gated Recurrent Unit (GRU) has proved to
achieve the same performances with a smaller coefficients space [Cho et al. 2014].

Arguably, the possible extensions of ANNs make the set of possible networks almost
as wide as the set of possible computer programs, since directed graphs like the one shown
in equation (2.8) are representations of arbitrary computer calculations in general. This
seems to contradict with the need for reducing the search space. In fact, the strength of
ANNs is threefold. First, the network structure is flexible enough to fit various classes of
problems, and it is possible for the ML user to precisely customize their own reduction
of the search space with a dedicated ANN. Second, universal approximation theorems
guarantee that certain simple classes of ANNs structures, like the multilayered structures,
are sufficient to closely approximate arbitrary functions. As a consequence, the structure
may be fixed during the search without much loss in approximation capabilities, and there
is no need to explore the space of all structures anymore. Third, once the structure is fixed,
the search space is reduced to P RDf , which makes it possible to use efficient local
heuristics like gradient searches, whereas this is not possible when directly searching the
space of possible computer programs. Even when the structure varies during the search,
with NEAT-like approaches, gradient searches are performed between structural edition
steps, which strongly speeds up the algorithms.

In the end, ANNs have overwhelmingly proved to be a powerful tool for phenome-
nological behavioural search, and arguably gave ML the boost that ranked it among the
most prominent approaches to modern AI. Note however that they leave mechanistic
approaches aside. The strong differences between mechanistic and phenomenological

approaches to procedure approximation constitute an important epistemological insight
into the balance between the power and limits of ML (see Box 2.1).

This section has described the optimization problem, the various approaches to it
(heuristics in particular), phenomenological and mechanistic attitudes to the design of the
behavioural search space P and one common tool, namely ANN, performing the search
with phenomenological approaches. These principles are common across ML.

On the other hand, ML is diverse because it addresses various different learning con-
texts, and subdivides into several subdomains. In particular, the problem of signature
changes we are interested in occurs in some domains of ML, but not in others. The next
section summarizes these various subdomains, and emphasize their relations to PL.

2.2 Learning Contexts

ML is commonly considered to branch into three major subdomains: Supervised Learning
(SL), Unsupervised Learning (UL) and Reinforcement Learning (RL). This depends on
the context of the elusive procedure P⋆ being approximated. In other terms, while the
tools and methods described in previous section differed by the way P was defined and

44 CHAPTER 2. BACKGROUND: MACHINE LEARNING

off-

SL: Supervised Learning
UL: Unsupervised Learning
OL: Online Learning

OSL: Online SL
OUL: Online UL

RL: Reinforcement Learning
off-RL: offline RL

TL: Transfer Learning
PL: Protean Learning (Ch. 5)

: exp. IPL in OSL (Ch. 6)
: exp. IPL in RL (Ch. 7)

Figure 2.2: Informal map of various ML situations under the form of a Euler Diagram. The red area
represents the PL situation defended in this thesis. The dot and arrow represent our experimental
contributions to PL, in particular Input-PL (IPL) with the experiments exposed in subsequent
chapters.

searched, the ML subdomains described hereafter differ with respect to user expectations
about the resulting P̂. They are illustrated in Figure 2.2 under the form of a Euler diagram.

2.2.1 Supervised Learning

SL is the most straightforward application of ML to the AI problem of “elusive proce-
dures” P⋆ described in Section 1.1.

2.2.1.1 The SL problem

In SL, P⋆ is a one-shot procedure, feeding from input data i and producing output data o

once as a result:
i→ P⋆→ o

For instance, one common “elusive procedure” is the task of recognizing an object
in a picture. In this task, i constitutes a raw picture, say 256×256 pixels with 256 levels

rgb channels each, and o is a symbol, or “label”, taken from a predefined set of picture
categories, say {kitten, plane, banana, unknown}. In this regard, the signature of P⋆ is
well-known from computer scientists. But the procedure P⋆ that would correctly fulfill
the task cannot be written explicitly out. In a nutshell: humans easily label pictures at
first sight, but it is unclear how to process the corresponding pixels automatically so the
computation always ends up on the right symbol.

To understand SL approach, it is convenient to represent P⋆ as a plain mathematical
function, i.e. P⋆ : i 7→ o. This suggests that P⋆, like mathematical functions, is determinis-

tic. This is not the case in general. For instance, in the picture labelling example, there are

2.2. LEARNING CONTEXTS 45

always pictures that humans have trouble classifying as either a kitten or a banana, not
because the two objects look alike, but because the image is poor quality, or is an illusion,
or clearly features both in a way that the unknown label also seems unsuitable. Depending
on their mood, humans pick one category or the other in unpredictable ways.

However, no matter the nature of P⋆ (e.g., a function, a random process), SL attempts
to approximate it with another procedure P̂ whose nature possibly differ. For instance, a
non-deterministic process is possibly approximated with a stochastic process, or a ran-
dom process with a deterministic function. In the end, the goal of SL is only to find an
acceptable approximation P̂, so we stick to this simple functional representation for the
sake of simplicity:

o = P(i) (2.9)

There is something very specific to the SL situation: in SL, although the agent design-
ers cannot write P⋆, they happen to know a large set of examples realisations of P⋆, each
of the form (i, o⋆) with o⋆= P⋆(i). This set is called a training set, or T. In the object
recognition example, T constitutes, say, a database with a few thousand pictures, each of
which is annotated by a human with a “correct” symbol. The idea of SL is to use this prior
data as a hint to the automated agent so it finds a good approximation of P⋆, hence the
naming “Supervised”. To summarize, in SL, the learning agent feeds from the training set
as an input, and outputs the approximation P̂ as the result of its search:

T→ A→ P̂

P̂ has the same signature as P⋆, so the user can use it to process new images that have not
been labelled yet, and expect that P̂ correctly discriminates kitten pictures from plane pic-
tures, etc. Note that P̂ is approximate, so it does make mistakes. And these mistakes cannot
be automatically detected before a human eventually figures them out. The only advan-
tage is that P̂ is a rigorously predefined computer procedure, so it can label thousands new
images within seconds, whereas humans are inefficient to perform the same task again. In
a nutshell, SL trades precision for resources. This makes it ill-adapted for use in contexts
where absolute correctness matters, like medical analysis, satellite control or governance
decisions, but it remains useful in many applications like classifying intricate data [Kot-
siantis 2007], performing multivariate regression [Mitchell 1997; Chiplunkar et al. 2017],
or reproducing artistic patterns [Elgammal et al. 2018].

2.2.1.2 The SL Approach

Consistently with ML principles, the SL agent explores a wide set of candidate procedures
P ∈P, typically an ANN, to find P̂. Like the roverbot in section 1.2, it performs inner
calls to a search procedure S, typically a gradient-based heuristic, and tests numerous
candidate procedures P outputted by S. The search is guided by feedback procedure, or
“objective function” fT : P→ R.

46 CHAPTER 2. BACKGROUND: MACHINE LEARNING

One noticeable difference is that, unlike RL feedback values, SL feedback values are
not outputted by some environment external to the agent. In SL, values of f are directly
computed with the help of the training set. For instance, to evaluate a candidate proce-
dure P, f applies P to every input stored in the training set, and compares the result-
ing o = P(i) to the expected results o⋆= P⋆(i). The more all o values resemble the corre-
sponding o⋆ values, the higher the feedback value.

There are various ways to measure “similarity” between the values. When P outputs
numbers, for instance, one common comparison is the Mean-Squared Error (MSE) dis-
tance between every “predictions” o and the actual training data o⋆:

fT(P) =− 1
|T| ∑

(i, o⋆)∈T
(o⋆−P(i))2 (2.10)

Where |x| is the number of elements in x.
In the picture classification example, another measure of distance has to be used to

compare the symbols outputted by P and the symbols outputted by P⋆, because they are
not numbers. For instance, a function indicating their equality:

fT(P) =− 1
|T| ∑

(i, o⋆)∈T
1o⋆=P(i) (2.11)

Where:

1x =

{

1 if x is true

0 if x is false
(2.12)

The higher the value of f , the better the currently tested procedure P.
In the end, SL eventually boils down to the problem of finding one P̂ in P that max-

imizes f , which is an instance of the maximization problem defined in Section 2.1.1.
The procedure P̂ eventually outputted by the agent is a procedure that yielded best
feedback when tested. High feedback values mean that the outputs, or “predictions”
ô = P̂(i) closely resemble the training outputs o⋆ = P⋆(i). At this point, SL concludes
that P̂ is a fair surrogate to P⋆. This principle is also known as a statistical regression.
There exists very sophisticated approaches to phenomenological regression, like multi-
variate adaptive regression splines [Friedman 1991], ANN approximators, or Gaussian
processes [Chiplunkar et al. 2017], and “SL” is arguably a fancy name for a regression
which happens to use sophisticated phenomenological approaches.

2.2.1.3 The Limits of SL

The strength of phenomenological approaches like SL is that they are always flexible
enough to fit the training set. This is the reason for SL success, but also for its most
famous pitfall known as overfitting.

Designing a wide and flexible P almost guarantees that it contains good approxima-

2.2. LEARNING CONTEXTS 47

tions of P⋆. There is also a guarantee that P almost certainly contains good final candi-
dates P̂ with high feedback values fT

(
P̂
)
. But these two guarantees are not the same: the

latter is weaker than the former. In other terms, it is easier to find candidates that yield
good feedback fT

(
P̂
)
, because P̂ only needs to closely fit the training points (i, o⋆), than

to find candidates that fit P⋆ closely, because it remains unknown.

The powerful approximators commonly used in SL, like ANNs, happen to be flexible
enough to fit every training point in various tortuous ways that resembles nothing the user
expects from P⋆. This is called overfitting. In this situation, the value of fT

(
P̂
)

is high
but the only correct prediction of P̂ is the training set itself, and any other prediction is
aberrant. In the picture labelling problem for instance, P̂ perfectly predicts labels for the
pictures already labelled, but does only mistakes when given new pictures.

This reveals an implicit parsimony hypothesis on the user side: outputs of P⋆ should
vary somewhat smoothly with the inputs to interpolate the training points, but without
adding unnecessary variability between them.

Several approaches in SL aim to alleviate the overfitting problem. One simple ap-
proach is to stop the search before the feedback value becomes too high. This prevents
overfitting, but requires that the user have a prior idea when to stop.

Alternately, it is common to partition T into two separate sets: one actual “learning
set” TL used to evaluate the search feedback fTL

, and one “validation set” TV used to
assess overfitting once the search has settled on the first. P̂ is considered good if it also
yields good predictions on the validation set (high fTV

(
P̂
)
), because it has better chances

not to be overfitting the data points. On the contrary, if it predicts much wrong values
on the validation set (low fTV

(
P̂
)
), then either it has been overfitting the learning set

(high fTL

(
P̂
)
) or has not yet been able to fit the learning set at all (low fTL

(
P̂
)
). This

approach is widely used in SL as it enforces that P̂ strikes the right balance between ap-
proximate and exact fitting of the training set, and more closely resembles the supposedly
“smooth” target P⋆.

The above approach comes at the cost that the training data T must be abundant.
There needs to be both enough data for the search to succeed in TL and for the validation
on TV to be meaningful.

As a general trend in SL, the more data in T, the more optimistic the expectations
about P̂. Increasing the size and diversity of T also alleviates statistical noise. In fact,
there is no upper bound on the size requirement of T except that, considering that regular
calls to fT(P) are done during the automated search, the processing of T must remain
within reach of computational capacity.

SL is therefore limited by our ability to produce massive training data as humans,
while SL agents always crave for more. This has quickly become a major concern of SL
and all current SL algorithms are much data-greedy [Hlynsson et al. 2019]. It is the subject
of ongoing research to determine whether their data-efficiency can still be improved, and
at which cost [Cornuéjols, Koriche, et al. 2020].

48 CHAPTER 2. BACKGROUND: MACHINE LEARNING

This section has sketched an overview of SL as a ML subdomain. SL on its own is not
subject to the problems raised by signature changes, but the question of accommodating
these events in SL makes sense when it intersects later with OL and TL (see Figure 2.2).

2.2.2 Unsupervised Learning

UL is another common branch of ML. In this thesis, we do not address signature changes
within UL specifically, but UL has useful traditional applications within SL and RL, so
we summarize it as an important piece of ML background. UL gathers a broad range
of statistical analyses together. In contrast with SL, which essentially boils down to a
grouping of phenomenological regression methods, UL refers to very diverse statistical
situations, so it is more difficult to summarize in a unified way.

2.2.2.1 UL Principles

Although UL is difficult to unify, the reason that the naming “Unsupervised” opposes
the term “Supervised” is consistent across UL. In UL, the agent input data do not have
a (i, o⋆) shape like the SL training set T. Instead, the input data, say D, only consist
in singletons (i). In the picture labelling example, D consists in a database with many
pictures, but without the labels associated with them. The user goal is to unveil structure

within this raw dataset. Research questions associated with UL resemble: “Do all the
points in D look the same?” , “Do they fall into several distinct categories?”, “Do they
line up?”, etc. In consequence, the signature of the invoked searching agent resembles:

D [raw dataset]→ A→ P̂ [structure within D]

The dataset D is easy to describe: it typically contains a sequence of consistent data
“points” i, each described with a predefined list of properties constituting a vector. In the
picture labelling example, the properties would be the color values for each pixel. In a
dataset representing regular clients of a supermarket, the properties would be the name,
gender, age, budget, assiduity, etc. of each of them. Consistency of the dataset implies
that it basically fits in a rectangular table where each row constitutes a data point and
each column represents a property. When all properties are numerical, D is also typically
thought of as raw scatter plot, in an Euclidean space with one dimension per column.

The structure P̂ sought within D is more difficult to describe in a unified way, as it
ultimately depends on the statistical question at hand. This is where the various types
of analyses gathered under the term “UL” start branching. Still, UL analyses have in
common that the structure ultimately simplifies the data set, in the sense that it makes
it easier to describe. In other terms, the unveiling of hidden information within D makes
it less complex to work on, or compresses it without loosing much information.

Arguably, in this context, P̂ does not resemble the “approximated procedures” seen so
far. The unknown structure P⋆ is hardly recognized as an “elusive procedure”, and some

2.2. LEARNING CONTEXTS 49

UL approaches do not exactly perform exploration of a “search space P” to unveil P̂ ac-
cording to the ML principles described in Chapter 1. This makes UL partly stand beyond
the frontier between AI and statistical sciences, unless we also argue that the whole “ML”
approach to AI is just a fancy name for contemporary statistics. Nevertheless, UL is com-
monly referred to as one major domain of ML. As background to this thesis, we illustrate
the diversity underlying UL with 3 different cases in the next section.

2.2.2.2 Various UL Situations

The Clustering Problem This constitutes the most common UL task. In this situation,
The question is whether the data points fall into distinct categories, and how to automat-
ically sort these categories out. This is useful for instance in evolutionary sciences, to
pack similar genes and species together, or in medicine to spot typical patient immunity
response profiles. The signature of P in clustering is described with:

i [data point]→ P→ o [the category i belongs to]

P̂ outputs various possible categories. The meaning of a category is that points falling
into it look less dissimilar to other points within the same category than to points in other
categories. In the picture labelling examples, clustering assembles pictures that share com-
mon mean tones. In the supermarket example, it assembles clients with similar profiles.

The user has no further control on the category semantics, unless they enrich the
dataset D with additional properties they wish to see their data discriminated upon. For
instance, if the pictures are preprocessed with sophisticated contour detection algorithms,
then the categories unveiled by the agent also cluster pictures with similar complexity,
fractal dimension, patchwork, etc.

Clustering simplifies the original dataset D in that, instead of describing each ob-
ject i with all its properties, i is only summarized by the category it belongs to, and the
corresponding set of all categories is smaller to describe than the set of all data points.

There exist several clustering approaches. For instance, in “k-means” methods [Lloyd
1982], a distance metric is defined on the input space, and k additional points supposed to
represent the categories centroids are appended to the data. The corresponding candidate
procedure P is determined by the location of these centroids: P associates each point to
the category of its nearest centroid. The algorithm successively updates the centroids lo-
cations until it converges to a stable situation P̂, where each centroid location corresponds
to the mean position of the points associated to it. This algorithm works well in practice,
but supposes that the user has a prior idea of the number of categories to look for.

Other approaches to clustering differ in the way the resulting categories are struc-
tured. For instance, in “expectation maximization” [Dempster et al. 1977], the categories
are represented as distinct probability distributions, from which the inputs i have suppos-
edly been drawn, and the essential difference with “k-means” is that categories possibly
overlap by blending into each other: i.e. one data point i possibly belongs more to one

50 CHAPTER 2. BACKGROUND: MACHINE LEARNING

category than another. With “Kohonen maps” [Kohonen 2001], the categories themselves
exhibit a particular topology, in the sense that some categories are neighbouring each
other while others stand further apart. In the end, the UL user picks one approach or the
other depending on how they need to categorize their raw dataset D.

Unveiling Data Distribution In this other common UL task, the challenge is to unveil
the data distribution underlying D. In other terms, the user considers that every point
in D is drawn from an unknown stochastic process with probability distribution P⋆, and
wishes to summarize it with an approximated distribution P̂. In this situation, the tar-
geted procedures P constitutes probability measures on the input space D̃ where the data
points D⊂ D̃ live:

d ⊂ D̃ [one region of D̃]→ P→ o [probability that a data point i belongs to d]

One common approach to distribution estimation is the “kernel density estimation” [Scott
2018], where the density function of P̂ is straightforwardly given by:

dP̂(x) =
1

h |D| ∑
i∈D

K

(
x− i

h

)

(2.13)

With K a centered distribution called “kernel”, typically a Gaussian density:

K(x) =
1√
2π

e−
x2
2 (2.14)

Binarizing this density function also happens to produce several disjoint categories, which
is helpful for clustering because it does not require the number of categories to be pre-
defined. Still, the estimation requires that the “smoothing” parameter h be input to the
agent, and the binarization threshold also needs to be predefined by the user. Once again,
the UL user picks one approach or the other depending on the question at hand.

Principal Component Analysis The last common UL task summarized here is the
problem of addressing intrinsic correlations between the input data properties. For in-
stance with the supermarket data, this approach answers questions like: “Are younger
clients also the less regular?” or “Is it the case that regular clients are also the ones that
spend the most money when they come?”. Each such question is easily addressed with
one dedicated statistical model, but when the number of dataset properties becomes high,
the user wishes a high-level overview of the most related properties.

This is typically achieved with an approach called “Principal Components Analy-
sis” (PCA) [Jolliffe 2011]. PCA consists in a rewriting of all properties in the dataset, or
a “base change” of all inputs i coordinates:

i [data point properties]→ P→ o [data point new properties]

2.2. LEARNING CONTEXTS 51

The new properties are carefully crafted so they can be ordered from the one that discrimi-
nates all data points best, to the one whose perspective is almost indifferent. This is useful
to simplify D by reducing its dimensionality, since the first few properties approximately
summarize the diversity of the whole dataset, while the remaining ones can be discarded
without much loss of information.

The transformation is achieved using the algebraic information contained within the
covariance matrix of the dataset D. P̂ corresponds to the successive projection of data
points onto the line spanned by each eigenvector of this matrix, and these projections
are ordered with respect to the corresponding eigenvalues magnitude. As a consequence,
PCA new properties are linear combination of the others, and the corresponding coeffi-
cients of the first dimensions also convey information about the way each original property
correlates with the others.

A subsequent limitation of PCA is that only linear combinations can be produced this
way. To address non-linear relations among properties, the user needs to explicitly define
intermediate, non-linear combinations of properties. In the end, the coefficients of the
final combinations are useful for the user to spot highly correlated subsets of the original
properties, and dismiss redundant ones as another way of simplifying D.

In summary, UL gathers a range of diverse statistical approaches together. Their com-
mon objective is to analyze a data set to understand its structure, but without a particular
processing of this data in mind (e.g., without an expected outcome o⋆). However, the
UL ability to unveil structure within D makes it typically useful as a methodological
component of other ML fields like SL, or RL, addressed in the next section.

2.2.3 Reinforcement Learning

RL is the learning situation adapted to model the example sticky roverbot described in
section 1.2, and evolving within its environment.

2.2.3.1 RL Principles

In RL, the “elusive procedure” P⋆ is not expected to be useful as a single, one-shot process
like in:

i→ P⋆→ o

Instead, the true “behaviour” sought by the user emerges from the continuous interaction
between P⋆ and its surrounding environment E:

E P⋆

i

o

52 CHAPTER 2. BACKGROUND: MACHINE LEARNING

In other terms, the assessment of P depends on the many successive values of o outputted
by the process in reaction to E, so RL implies that time be a major component of the
learning context. The roverbot example is a machine supposed to follow a user anywhere:
i constitutes the data provided by the bot sensors (e.g., user direction and distance) and o

is the data sent to the bot actuators (e.g., steer and speed control). P⋆ is the ideal internal
procedure supposed to correctly compute outputs to inputs so the robot task is fulfilled
(e.g., the robot program), and E represents everything outside of the robot decisional
scope (e.g., user, weather, ground quality, hardware quality, . . .). In this situation, the
agent has to continuously react to its surroundings to keep exhibiting the right behaviour.

RL is also the appropriate learning context for other famous AI problems, like playing
human games [Mnih, Kavukcuoglu, Silver, Graves, et al. 2013; Mnih, Kavukcuoglu,
Silver, Rusu, et al. 2015; Silver et al. 2016; Berner et al. 2019], or processing human
speech [K.-F. Lee and Mahajan 1990; Goddeau and Pineau 2000]. In this context, the
behaviours P are commonly referred to as the possible agent’s policies, the inputs i as the
perceived environmental state, and the outputs o as the actions resulting from the current
policy [Sutton and Barto 2018].

Consistently with SL, a behavioural search space P is defined, and the agent ex-
plores P to find a good policy P̂. A crux difference with SL is that there is no training set

available to the agent. Because of the time component of RL, P⋆ can only be expressed as
a high-level expectation, e.g. “stick to user”, which typically spans among multiple time
steps. The user has no particular idea what to output as successive low-level o⋆ values to
achieve it, so there is no prior (i, o⋆) “training” data to use as hint. Instead, the agent is
supervised with a high-level feedback signal f (e.g., proximity to user) assessing, from
the user perspective, whether it is currently doing well:

A PE
f

i

o

This is the reason for the most challenging RL-specific problem: since the feedback sig-
nal f is evaluated on a higher time scale, there is a noticeable decoupling between the
individual decisions of the agent and their actual repercussions on f .

For instance with the sticky bot, succeeding in getting 1 meter closer from the
user implies that many intermediate correct decisions have been taken for a while:
e.g., steering right, run towards user, avoid obstacle, resume correct direction. All these
actions have been taken without information whether they were successful or not. And
when the reward finally comes under the form of a high feedback value, it is unclear to the
machine which (if any) of all these past actions should be the most credited for success,

2.2. LEARNING CONTEXTS 53

and therefore reinforced. This is known as the credit assignment problem [Watkins
1989; Sutton and Barto 2018]. To alleviate it, RL methods commonly keep track of past
decisions, and attempt to estimate how important they were in the process.

RL distinguishes between two different kinds of tasks. In episodic tasks, the agent-
environment retroaction loop has an expected termination point. For instance, if the rover-
bot mission is to escape from a maze, the goal is achieved as soon as the exit is reached.
These tasks have to be replayed numerous time before the agent figures out how to solve
them best. In continuing tasks, on the other hand, there is no expected termination point.
This is the case with the roverbot whose mission is to follow the user indefinitely. The task
keeps going while the agent progressively improves. Although these two kinds of tasks
constitute qualitatively different learning situations, the RL framework makes it possible
to reason about both in mostly the same terms [Sutton and Barto 2018].

2.2.3.2 RL Methods and Limits

There are two major types of approaches to finding P̂ in RL, They relate to the way P is
constructed.

In value-based approaches, one objective of the agent is to construct a reliable esti-
mation of the future expected feedback associated with each possible decision. This asso-
ciation is called “value function” and constitutes a biased model of the environment. The
model is biased because it only represents environmental dynamics from the perspective
of the feedback they eventually provide to the agent, and any external mechanics indiffer-
ent to the feedback does not belong to the value function. Based on this estimation, the
optimal procedure P̂ is defined as the trivial procedure always picking the highest-valued
decision. As a result, P boils down to the space of all possible value functions. This is
the case of methods known as SARSA, TD(λ), or Q-Learning [Sutton and Barto 2018].

P̂ is trivial to compute given a correct value function, but the value function is some-
times more difficult to approximate than the very targeted objective behaviour P⋆, because
it implies that the agent constructs an understanding of “how the environment works” in-
stead of just “what it should do within in”. In alternate, policy-gradient based approaches,
the value function is not explicitly targeted, and P is simply defined as the space of pos-
sible i→ o associations. The procedure P̂ eventually retained is one yielding consistently
good feedbacks, regardless the external mechanics it triggers. This is the case of methods
known as Actor-Critic or REINFORCE [Sutton and Barto 2018].

In simple, scholar RL cases commonly referred to as tabular cases, there is a small,
finite number of possible combinations of input/output pairs (i, o). This provides strong
guarantees that the credit assignment problem is overcome by the above methods, and
even that the optimal behaviour P⋆ is eventually reached exactly.

However, tabular cases fail to represent many real-world situations where the various
possible inputs and outputs are intractable: either they are too numerous (e.g., possible
situations on a Go board), or they are infinite (e.g., text messages) and even continuous

54 CHAPTER 2. BACKGROUND: MACHINE LEARNING

(e.g., user direction and distance) [Rachelson et al. 2008; Sigaud and Stulp 2019]. In such
cases, the agent needs to perform approximations of the environmental process E along
with approximations of the space of possible policies P, a typical use case for ANNs.

In traditional applications of RL, it is also commonly assumed that the environment
E is a Markovian process, either stochastic or deterministic, with no memory of past
events. Under this assumption, the above methods guarantee that an optimal approximated
behavior P̂ is eventually reached, which alleviates the credit assignment problem.

However, the environment surrounding the task does exhibit a memory in many real-
world situations. With the sticky roverbot for instance, the location of an obstacle differs
whether the bot has bumped against it in the past or not. In these cases, not only the current
environmental state and the current agent decision are relevant to the next iteration, but
also states and decisions arbitrarily distant in the past. E is still considered Markovian,
but it is then assumed to contain traces of past events commonly represented with inner
variables called hidden states.

Hidden states legitimately constitute the environment, but the agent gets no informa-
tion about them in the inputs. In this situation, although the above methods are still useful
in practice, their guarantees do not hold anymore. Unveiling adaptations of RL methods
that best accommodate the problem of intractable input/output spaces and the problem of
environmental hidden states is still the object of ongoing research.

The inner architecture of RL agents is commonly adapted depending on the challenge
at hand. For instance, it is either “monolithic” with e.g., one end-to-end ANN supposed
to directly connect inputs to outputs, or “modular”, with a more sophisticated internal
structure involving distinct components interacting together. Modular approaches are
motivated by various possible expectations. First, the user possibly seeks a hierarchical

representation of P, with a decoupling of high-level and low-level policies, so as to
improve performance or ease transfer [Ring 1994; 1997; Partalas et al. 2008]. See
also [Devin et al. 2017], [Frans et al. 2018], [Clavera et al. 2017] and [Suro 2020]
for applications of hierarchical approaches in robots. Second, the user possibly seeks
coordination between multiple agents, see [Ono and Fukumoto 1996; Pu-Cheng et al.

2006; Partalas et al. 2008] for examples in 2D grids, and [Uchibe et al. 1996] for an
example in soccer robots. Modular architecture is also a way to inject priors into the
learning procedure, which constitutes a shift towards more mechanistic approaches. This
is used in [Sprague and Ballard 2003] to improve on multi-objective tasks, in [Kalmár
et al. 1998] for grabbing robots, in [Hanna et al. 2010] to reduce state dimensionality in
games and in [Jin et al. 2012] for traffic optimization.

In summary, the RL learning context has proven to be flexible enough to address
many practical problems. This thesis attempts to extend its application range further by
featuring situations undergoing signature changes, as described in section 1.2. This said,
the problem of signature changes is not restricted to RL, as there also exist orthogonal
learning situations (see Figure 2.2). These are described in the next section.

2.2. LEARNING CONTEXTS 55

2.2.4 Transversal Learning Contexts

The learning situations constituting SL, UL and RL differ much, which makes these three
fields of ML essentially disjoint. However, they are connected in various ways. For in-
stance, UL or SL approaches are typically used as technical components within RL meth-
ods: e.g., UL is useful to compress and simplify the input space of RL agents, SL is useful
to approximate the value function in value-based methods [Levine and Koltun 2013], or
the environment itself. As such, any progress in either is also beneficial to RL.

There also exist higher-level problems defining learning situations that orthogonally
happen in SL, UL and RL. Therefore, they converge in their approaches to face them.
This is the case of Online Learning (OL) and Transfer Learning (TL).

2.2.4.1 Online Learning

The exploration of P, like the heuristics defined in Section 2.1.2, is typically an iterative
process involving multiple sequential steps.

This implies that there is a timeline associated with the search process. On each time
step, one candidate procedure P is drawn. Evaluation of P by the feedback signal f indi-
cates whether this candidate should be saved as a promising candidate for P̂, or if it should
be dismissed to test another P on the next step. This timeline is internal to the agent.

On the other hand, there is the user timeline. Time steps along this timeline correspond
to events external to the agent. In SL or UL for instance, the user first needs to gather T
or D input data, then they run the search agent and then finally collect the results. All this
constitutes one time step.

In a nutshell, the agent timeline is the one over which the automated ML search is
performed (one time step corresponds to the testing of one candidate P) while the user

timeline is the one over which the input data is produced (one time step corresponds to
new input data availability). As such, we also refer to them as the search timeline and the
input timeline.

The input timeline is trivial in the plain SL or UL cases, because in only contains one
time step. But interestingly, the two timelines happen to line up in the RL situation. In RL,
the agent iteratively receives inputs i and f , so the input timeline contains many steps. In
addition, no improvement of the current candidate procedure P can be done on the agent
side as long as no new input data is produced on the user side. In other terms, the agent
search blocks on each input step, as it needs more data to keep going: the two timelines
are nested into each other.

Note that the two timelines do not necessarily step at the same pace: e.g., the
agent possibly waits for a few input steps before updating the search. Alternately, the
agent possibly performs several search steps before waiting for new input data to be
available. Nevertheless, the two timelines are locked within each other due to the learning
configuration. This situation is commonly referred to as a case of incremental learning,
or Online Learning (OL) [Jain et al. 2014; Losing et al. 2018].

56 CHAPTER 2. BACKGROUND: MACHINE LEARNING

RL constitutes a natural OL situation. For this reason, it is non-trivial to use RL al-
gorithms to take advantage of “offline” contexts where the whole training data is readily
available at once, but see [Levine, Kumar, et al. 2020] for recent insights into bridging
this gap. However, OL also extends outside the strict scope of RL: there are cases of OL
in SL (OSL) [Gama et al. 2014] and in UL (OUL) [Cui et al. 2016]. For instance, in the
picture labelling example, the training data is long, costly, and slow to produce, because
humans need to label many pictures by hand. Instead of waiting for the training set T to
be complete, the user prefers that a rough automated procedure P̂ be ready as soon as the
manual labelling starts so as to use it right away, should this procedure be subsequently
improved as new manually labelled examples (i, o⋆) are made available. In this situation,
the SL agent search becomes blocked on every input step, waiting for new labelled exam-
ples to progress further. Another reason to stream the input data is that they are too big to
be processed as a whole by the learning agent, or because they are produced faster than
they can actually be stored [Reinsel et al. 2018]. This situation constitutes an iterative
learning process like:

(i, o⋆) [new labelled picture]→ A→ P̂ [best candidate found so far]

(i, o⋆) [new labelled picture]→ A→ P̂ [best candidate found so far]

. . .

A simple approach to OSL is to restart the learning from scratch on each new input. But
the exploration of P is costly so the user rather wishes that the search be resumed from
its latest state as soon as a new input is made available. As a consequence, the input
timeline and the search timeline become locked together again, and the learning situation
becomes an OSL problem. A similar situation is possible with UL: OUL happens when
the raw dataset input D is a data stream that the agent needs to accommodate whenever it
updates. Between two successive updates, the agent internal search steps freeze until the
next piece of data becomes available.

OL sometimes demands that major technical aspects of the internal agent process be
adapted, so as to regularly stop and resume the search. Regarding this, the major concern
of OL is to balance computing efficiency of each time step with the quality of every
yielded, temporary approximation P̂.

One typical OL challenge is that the distribution of incoming inputs sometimes varies
over the input timeline. For instance, in the picture labelling example, the agent initially
receives photos, so it starts progressing towards an approximated procedure P̂ that cor-
rectly processes photos into their matching labels. But at some point, the incoming data
stream starts yielding drawings and cartoons, so the procedure needs to be adapted to also
feature them. This results in that the targeted approximation P̂ becomes a moving target
for search procedure, a situation commonly referred to as “Concept Drift” [Widmer and

2.2. LEARNING CONTEXTS 57

Kubat 1996; Tsymbal 2004; Gama et al. 2014; Heng Wang and Abraham 2015; Webb et

al. 2017; Lecarpentier and Rachelson 2019]. Other possible modifications occurring dur-
ing the course of learning are the signature change studied in this thesis. For instance, the
two PL experiments exposed in Chapters 6 (OSL) and Chapter 7 (RL) happen in an OL
context.

Concept drifts and signature changes reveal that the very notion of “task” is not al-
ways straightforwardly defined, either from the user or the agent perspective, and even
occasionally changes over time. Making agents seamlessly handle changing tasks is the
core concern of another transversal field of ML called Transfer Learning (TL).

2.2.4.2 Transfer Learning

Exploring the search space P is the principal activity of ML agents, and is computation-
ally costly. The major outcome of the search process is the approximated procedure P̂,
sometimes referred to as the “knowledge” unveiled by the agent.

To alleviate the cost of learning, ML users notice connections between different learn-
ing tasks, because some of them look more similar to each other. For instance, consider
an automated agent whose task is to discriminate photos taken by night from photos taken
during daytime. Chances are that it partly works the same way as the former agent distin-
guishing kittens from planes, etc. As such, the user expects that some of the knowledge
learned by the agent in the former task, called the source task can be reused in the new
task, called the target task, so that the second learning phase is less costly:

T [training set]→ A→ P̂source [discriminates kittens]
(
T [new training set], P̂source

)
→ A→ P̂target [discriminates daytime]

Note that the search space possibly needs to be upgraded from one task to the other.
In other terms, Psource and Ptarget possibly differ, so a mapping between the two has
to be constructed to project Psource into Ptarget. This situation is referred to as Transfer
Learning (TL).

The trivial, naive approach to TL is to just ignore previous knowledge P̂source and start
the target learning from scratch as if the two tasks were unrelated. In this naive approach,
the target learning phase is costly, whereas it possibly performs a redundant exploration
compared to the source learning. Instead, clever TL techniques attempt to extract some of
the “knowledge” contained within P̂source and transfer it into the target task to make the
target search more efficient.

Like OL, TL is a higher-level learning situation that seamlessly occurs within SL,
UL or RL. In any case, the aim is that the TL agent be more efficient than the naive
agent. The signature change problem addressed in this thesis falls exactly within the
scope of TL, and the projection operation supposed to connect Psource to Ptarget is the
core corresponding technique, defined in Chapter 5 then tested in Chapter 6 and Chapter 7.

58 CHAPTER 2. BACKGROUND: MACHINE LEARNING

TL is challenging, and very few analytic approaches provide theoretical guarantees
in this field [Taylor and Stone 2009]. One first challenge is to evaluate the quality of the
transfer, because there are various ways it is possibly beneficial.

First, the initial performance of the agent on the target task is possibly better than
the initial performance of the naive agent. This is known as the jumpstart benefit, and
happens because some progress towards P̂target has already started during source learning.
Second, the agent possibly learns faster on the target task, because it inherits from some
form of intimacy with the search space. It therefore reaches P̂target sooner. Third, the final

performance of the agent on the target task is possibly better than the performance of
the naive agent. This happens for instance if spurious candidates procedures (e.g., local
optima) have already been avoided and ruled out during source learning.

Depending on the situation, the TL agent benefits from either a combination of
these advantages, or from none, so they are difficult to measure and distinguish from
each other. It is the object of ongoing research to define standard metrics for measuring
TL advantage [Lopez-Paz and Ranzato 2017].

The major concern of TL is known as negative transfer. This phenomenon makes the
TL agent less efficient at solving the target task than the naive agent.

Negative transfer possibly happens when the source and target approximated proce-
dures P̂source and P̂target differ so much that very few parts of P̂source can actually be reused
in P̂target. In this situation, the TL agent needs to unlearn source knowledge before it
eventually finds an acceptable target procedure, which makes it less efficient than a fresh,
naive agent. In other terms, negative transfer occurs when P̂source turns out to be more of
a burden than a useful hint to the agent.

As P̂target is unknown before the transfer, it is difficult to assess whether or not nega-
tive transfer is likely to occur, and there is no guarantee against this phenomenon in the
general case. Preventing negative transfer, or predicting it to avoid using TL techniques
in situations where it would be a burden, is still the object of ongoing research.

In some TL situations, the user expects that the end agent be able to eventually solve
both the target task and the source task. This implies that P̂target is an extension of P̂source,
so Psource is contained or injected within Ptarget. A common issue in this situation is
known as catastrophic forgetting, a phenomenon where the agent performance on the
source task is actually degraded as it improves on the target task.

For instance in the picture labelling problem, the more the agent is able to distinguish
daylight pictures from night pictures, the more mistake it makes when addressing whether
the pictures contains planes or kittens. Maybe the reason is that forgetting knowledge is
sometimes necessary to adapt new tasks, but this is still unsure to ML science, and the
right balance between stability and plasticity of the learning agent still needs to be struck.

For instance, to avoid catastrophic forgetting, some approaches focus on transferring
higher-level “knowledge” like technical components of the agent search procedure itself:

2.2. LEARNING CONTEXTS 59

e.g., learning rates in [Finn et al. 2017], hierarchical layers in [Ring 1994; 1997], or
composed actions in [Bacon et al. 2017; Frans et al. 2018], instead of the direct source
procedure P̂source. In [Rusu et al. 2016] an ANN is designed to capitalize on past expe-
rience without ever forgetting, at the cost of ever-growing needs in resource. In [LeCun
et al. 1990; J. Kirkpatrick et al. 2017; Zenke et al. 2017; Kaplanis et al. 2018], ANNs are
gifted with a certain learning capacity, and learn several new tasks without altering perfor-
mances on previously encountered ones, until their learning capacity becomes saturated.

Note that, while negative transfer is always undesirable because it cancels the benefits
of TL, catastrophic forgetting is only undesirable in specific situations where past
learning contexts are expected to be faced again. As a consequence, TL agents designers
always attempt to avoid negative transfer, but they have a choice how much comput-
ing resource to allocate into alleviating catastrophic forgetting, depending on the use case.

The Protean Learning (PL) situation exposed in this thesis is rigorously defined in
Chapter 5 as an instance of TL (see Figure 2.2). Accordingly, the connections between PL
and TL is described more in depth in Chapter 4. In Chapters 6 and 7, we conduct ex-
periments addressing the general negative transfer problem during signature changes in
both OSL and RL, leaving the particular problem of catastrophic forgetting for future
dedicated works.

60 CHAPTER 2. BACKGROUND: MACHINE LEARNING

Chapter 3

Problem Statement

In the previous two chapters, we have familiarized ourselves with computer learning pro-
cedures, with the problem of live signature change and with general relevant background
in the domain of ML. The remainder of this manuscript is specifically focused on signa-
ture changes and Protean Learning (PL). This chapter states the very subject of the thesis.
First, we wrap up the problems related with signature change that we have encountered
so far. Then, we formulate our core position regarding signature changes, that we defend
in the thesis. In particular, we focus on addressing (+i) and (−i) events more specifically.

3.1 The Signature Change Problem

Let us first summarize the learning situations involving signature changes that we have
seen so far. In Section 1.2, with the help of an imaginary roverbot example, we have
explained the various challenging situations faced when the expected signature of the
agent internal procedures undergoes changes during the course of learning.

We have seen that these changes come in several flavours. First, new inputs can be fed
into the agent with events like (+i) (input addition) or (+ f) (feedback addition). Con-
versely, inputs can also be removed from the agent with events like (−i) (input deletion)
or (− f) (feedback deletion). On the other hand, new outputs are expected from the agent
when (+o) (output addition) events occur, and have to be dismissed on (−o) (output
deletion) events. All these events are distinct from (∼E) (environmental change).

As noted before, there is a fundamental difference between events (+i, −i, +o, −o)

and (+ f , − f). The former induce changes in the input/output signature of the agent
inner behavioural procedure P, while the latter induce changes in the input signature of
the higher-level agent search procedures A and S instead, whose output is P itself. Within
the scope of this thesis, we consider that no extra procedure is ever expected from the
agent as the result of a signature change event (no “(+P)” or “(−P)” events).

There also exist softer kinds of signature change events, noted (∼i) (input change),
(∼o) (output change), and (∼ f) (feedback change). When these occur, no data stream is
added to or withdrawn from the agent interface, but the range of values they possibly carry

62 CHAPTER 3. PROBLEM STATEMENT

is modified. For instance, (∼i) happens when a thermometer sensor widens its sensitivity
range, resulting in that the agent has to process values never encountered before, or when
it restricts it, resulting in that some values will never be encountered again. This particular
kind of events is further discussed in Section 5.1.

Signature changes do not only occur in modular robots like the roverbot example.
They are more general, and naturally occur in any long-term OL procedures, when
every learning step is subordinate to the progression of external input data streams. For
instance, (−i) occurs any time an input stream fails, because the data source has become
extinct or obsolete, and (+i) occurs any time a new input stream is considered relevant
by the agent designers. Section 1.2 has already considered automatic trading learners
as an example long-term OL procedure, but signature changes also occur in modular
and developmental robotics [Ababsa et al. 2014; Doncieux et al. 2015], or in adaptive
games [Francillette 2014; Bonnici et al. 2019].

In general, the search space P containing every candidate behavioural procedures P

is transformed when signature changes occur, so the learning process is now exploring
an outdated landscape. This is what we call signature change problem. For instance,
when (−i) occurs in a RNN-based RL learner, there is no enough input data to compute
outputs of the formula given by the inner neural network, so the program mandatorily
blocks if no accommodating operation is performed. This failure is more serious than
a lack of convergence, or poor performances on the task at hand: after (−i), the agent
procedure ceases being defined because of wrong procedures arity, so it cannot be run by
a computer anymore.

In Chapter 2, we have made a tour of ML as a computer science discipline, and seen
how SL, UL, RL, OL or TL structure the research domain (see Figure 2.2). As a matter of
fact, most approaches to ML in these disciplines work under the implicit assumption that
the signatures of the learning agent and its inner procedure are fixed throughout the learn-
ing process, so they do not tackle the signature change problem. Consequently, accommo-
dating signature changes in PL cannot consist in trivially applying existing ML methods.

In other terms, although PL constitutes an essential learning context, it appears that
signature changes per se are not addressed yet by the ML community. This thesis attempts
to engage into this domain, with a special focus on (+i) and (−i).

3.2 Thesis

In this thesis, we defend that Protean Learning (PL) constitutes a significant, new and
non-trivial domain of ML. PL is significant because of the transient nature of the data
streams processed by computer procedures, resulting in that signature changes occur in
common natural tasks targeted by ML. PL is new because it explicitly focus on signature
changes, whereas the learner signature is mostly considered constant by contemporary
ML approaches.

3.2. THESIS 63

Regarding triviality, PL inherits from the triviality of TL in general. When a change
event occurs during the course of learning, and the agent is not able to handle the new
situation, there is always one trivial solution to accommodate the change. The trivial solu-
tion is to define a new, fresh adjusted agent, for example an agent with correct arity. This
agent is called naive, and commences a novel learning session from scratch in the new
situation, until it eventually solves the task again. This solution is trivial because it only
requires that the ML methods used to train the former agent (e.g., before the signature
change) be used again to train the naive agent (after the signature change), so it involves
no particular groundwork.

However, the trivial solution requires that much computing resources (time, power,
development, etc.) be allocated again so the naive learner fulfills its fresh training. The
more complex the task at hand, the more costly this new training phase. The cost is justi-
fiable if the new task is much different than the original one, but there are chances that it
is unnecessary if the change is slight. When the change is slight, the naive agent spends
much of the learning process to recover skills that the former agent already had, so the
computation is redundant.

To avoid this, the idea of TL, and of PL in particular, is to transfer the abilities of the
former agent to a new adjusted agent, so it does not have to learn everything again. This
factorization of the learning effort is useful not only to save a few immediate resources,
but to save them repeatedly if the changes are small and numerous, or even gradual.

In the end, the goal of PL and TL is not exactly to accommodate the change or
succeed in the resulting task — because this is easily done by the trivial solution — but to
improve the performance of this accommodation with respect to the corresponding naive
agent. This requires non-trivial groundwork, as it depends on insights into the learning
method used, on the task at hand and on the nature of the change. For instance, a good
transfer can be realized if the change is slight, but no performance gain can be achieved
when the new task is so different that there is no learning effort to factorize at all. In such
cases, the trivial solution is already optimal.

Regarding (+i) and (−i), our positioning is more precise and has stronger implica-
tions. In the remainder of the thesis, we focus on a protean agent Ap1 needing to accom-
modate one particular signature change event so it becomes Ap2 with a transfer technique
(see Figure 5.3). In contrast, the naive agent An restarts the learning over from scratch.
Note that Ap2 and An have the same signature and are trained on the same task. In the end,
PL is considered a success if Ap2 yields better performances than An on the task. Ensuring
this requires that the change event and the current learning method be known, but also
possibly requires deep insights into the particular task.

As we have seen in Chapter 2, the strength of ML approaches and associated
techniques is that they are sufficiently generic to be applied in a variety of learning
situations, regardless of the particular task. As a consequence, it would be undesirable
that PL required strong ad hoc knowledge of the task. In this thesis, we defend that it is

64 CHAPTER 3. PROBLEM STATEMENT

not the case. Although a strong ad hoc knowledge of the task at hand would indeed enable
optimal and finely-tuned accommodation of signature change events, we defend that
there also exist simple generic operations, referred to as projections, able to transform Ap1

into Ap2 without requiring particular knowledge of the task at hand, and still yielding
better results than the trivial solution An on average.

To this end, we contribute to the uncovering of PL as a subdomain of ML with three
contributions in this thesis:

• Chapter 5 provides a formal specification of PL, along with a precise definition of
a “signature change” (any variation of i∆, o∆ or f ∆) and the “task at hand” (E). We
also restrict our focus to two particular change events: input addition (+i) and in-
put deletion (−i), which constitute the basis of Input-related PL (IPL). The generic
IPL projections associated to these events are rigorously specified (the “natural pro-
jection” for (+i) and the class of “almost-natural projections” for (−i)).

• Chapter 6 addresses these particular two IPL events in the context of OSL. With a
carefully controlled synthetic experiment, we show that a simple application of the
generic projections on a RNN-based learner yields Ap2 agents that outperform An in
this context. In addition, we qualify this advantage depending on various properties
of the task, which addresses the strengths and limits of the generic IPL approach.
These results have been published in [Bonnici et al. 2020].

• Chapter 7 addresses the same particular two IPL events in the context of RL. The
intent is to port the previous results into a more sophisticated online learning sit-
uation featuring the credit assignment problem. To this end, a formal benchmark,
constituted of numerous tabular RL environments dedicated to basic assessment
of IPL, is specified and analyzed. Then, two traditional RL learners (Q-Learning
and Actor-Critic) are tested against this benchmark as they undergo (+i) and (−i)

events. Again, we show that a simple application of the generic projections to these
learners yields Ap2 agents that outperform An on average. And we qualify the advan-
tage of IPL depending on various properties of the environments in the benchmark.

In the end, we conclude that PL is not only interesting because it relates to challeng-
ing unaddressed natural learning situations, but also because there exist simple generic
PL approaches, at least in the case of IPL events, that correctly face these challenges at
least in OSL and RL contexts. For this reason, we suggest that PL be further explored as
a domain of ML, and that alternate generic projections corresponding to other events like
(+o, −o, ∼o, + f , − f , ∼ f , etc.) be investigated in future works.

Chapter 4

State of the Art

This chapter summarizes various works related to the problem of accommodating sig-
nature changes in ML. We explain how they are connected to PL, or not, so it is easier
to understand our positioning in the next. We conclude the chapter with an overview of
future PL milestones.

4.1 Documentation Method

Our bibliographic research in the restricted area of PL spawned from three major reviews
that structure the relevant literature. First, the book by Sutton and Barto 2018 (second
edition) provides a deep insight into RL and a thorough overview of the state of the art
in this domain, listing both various contemporary approaches to RL and unaddressed
problems. Then, the review by Taylor and Stone 2009 provides a deep analysis of the
interplay between RL and TL, while the chapter by Torrey and Shavlik 2010 addresses TL
in general. They were very useful to investigate how PL fits into the picture. Starting from
these points, publications were crawled up to most recent works, including the review
from Losing et al. 2018 about incremental approaches in OSL.

In this manuscript, considering that PL is a particular subdomain of TL, we only in-
cluded works that investigate TL, either within SL, UL or RL, and regardless of whether
they explicitly mentioned the notion of signature. Works with only a focus on learning
performances outside any contextual change were excluded.

Related works were compared according to various criteria listed in columns of Ta-
ble 4.1. For example, we distinguished whether the addressed change was a simple envi-
ronmental change (∼E) or a signature change (+i, −o, ∼ f , etc.). We also distinguished
whether the change is supposed to occur during the course of learning (so it relates to OL)
or between different learning sessions.

To clarify our positioning, two lines referring to PL are added at the bottom of the
table. The first refers to PL in its broadest intent (see Section 5.1), addressing every sig-
nature change in any context, but leaving plain environmental changes to generic TL ap-
proaches. The second corresponds to the restricted part of PL specifically focused on.

66 CHAPTER 4. STATE OF THE ART

Related Works (∼E) i o f OL TL CF
Heterog. TL [142] × X(∼i) × × × (UL) (1) ×
Heterog. DA [76] × X(∼i) × × × (SL) (1) X

Open-Set DA [14] × × X(∼o) × × (SL) × ×
Concept Drift [138] X × × X(∼ f) X(OSL) (4) X

Dynamic Evolutionary
Optimization [106]

X × × X(∼ f) X(OSL) (4) ×

Successor Features
+ Gen. Pol. Imp. [8][7]

× × × X
(+ f)
(− f)

X(RL) (2) X

Gradient Episodic
Memory [82]

X × × × × (SL) (4) X

Distral [129] X × × X(∼ f) X(RL) (3) ×
Modular Policies for

Multi-Task Transfer [27]
X × × X(∼ f) X(RL) (2) ×

Curric. Learning [9] X × × X(∼ f) × (SL) (2) ×
Multiple Outlooks [45] × X(+i) × × × (SL) (3) X

Progr. Networks [107] X × × X(∼ f) X(RL) (4) X

Protean Learning
(broadest sense)

× X

(+i)
(−i)
(∼i)

X

(+o)
(−o)
(∼o)

X

(+ f)
(− f)
(∼ f)

X(OL)
× (OL)

(1)
(2)
(3)
(4)

X

Input-PL
(in this thesis)

× X
(+i)
(−i)

× × X
(OSL)
(RL)

(4) ×

Table 4.1: Overview of previous works related to accommodating changes during learning. Num-
bers in brackets refer to bibliographic entries (page 179). Numbers in parentheses refer to TL situ-
ations described in Section 4.2.2. Tick marks summarize characteristic features of the approaches:
(∼E): Is the approach concerned with environmental changes?

i / o / f : Is it concerned with input / output / feedback signature changes?
OL: Does the change occur during the course of learning?
TL: Which transfer situation is it addressing?
CF: Does it attempt to alleviate Catastrophic Forgetting?

4.2 Related Works

The works listed in Table 4.1, and the comparison criteria corresponding to the last
two columns, are described in this section. First, the overview of TL sketched in Sec-
tion 2.2.4.2 is fleshed up with additional details regarding the motivations and the chal-
lenges in this field. Connections to other fields in relation to PL are also drawn, along with
an original taxonomy of various TL situations.

4.2.1 The Motivation for Transfer Learning

The domain of Transfer Learning (TL) defines a learning situation that strongly relates
to PL. In TL, the agent has already found acceptable solutions to a set of tasks called

4.2. RELATED WORKS 67

“source” tasks, so it is supposed to carry some kind of “knowledge”. The objective is to
benefit from this knowledge while tackling a new task called a “target” task. The knowl-
edge is said to be “transferred” from the source task to the target task. In other words, the
TL agent is expected to generalize not only within tasks, but also across tasks [Taylor and
Stone 2009; Torrey and Shavlik 2010]. Signature changes do constitute a modification of
the task at hand, so PL must also be considered an opportunity to “transfer” knowledge
from a “source” task (before the change event) to a “target” task (after the change event).

From a general perspective, the core motivation of TL is to improve learning efficiency
on the target task. In terms of our particular problem statement (see Section 3.2): if the
source agent Ap1 has its knowledge transferred into target agent Ap2 , then the objective
is that Ap2 performance be better than the performance of a naive agent An learning from
scratch on the target task. There are various ways that Ap2 can be better than An, depending
on the situation, which better qualifies the possible advantages of TL:

• Possibly, the initial performance of Ap2 is better than the initial performance of An.
This is known as the jumpstart benefit, and happens because the convergence pro-
cess has already started during source learning: Ap2 starts behavioural exploration
from approximately the ending point of Ap1 , which is likely better than the naive
starting point of An.

• Possibly, Ap2 learns faster than An, because transfer from Ap1 makes it inherit from
some form of intimacy with the task at hand. It therefore reaches a successful state
sooner.

• Possibly, the final performance of Ap2 is better than the final performance of An.
This happens for instance if dead-end local optima have already been avoided by Ap1

and ruled out during source learning, so there are maximization traps that Ap2 has
escaped but An got stuck into.

Note that a good TL agent possibly cumulates several of the above advantages, which
makes it possible to outperform naive agents and save a lot of computing resources.
For this reason, TL is investigated in numerous domains of ML. As an instance of TL,
PL agents also aim to benefit from the above advantages when accommodating signature
changes.

4.2.2 The Various Transfer Learning Situations

As a research domain, TL is transversal to ML and applies to UL, SL and RL. Relevant
literature at the intersection between these domains is summarized below, and a few key
publications are reported in lines of Table 4.1 to clarify the positioning of PL with respect
to previous works.

In UL for instance, Yang et al. 2009 feature transfer between heterogeneous data
sources to improve input flexibility of an image clustering algorithm. This approach is

68 CHAPTER 4. STATE OF THE ART

related to “Heterogeneous Domain Adaptation” [Li et al. 2014], a research domain re-
sembling PL in that the input interface of learning agents is supposed to widen its range
of possible source data. In [Busto and Gall 2017], an approach called “Open-Set Domain
Adaptation” also attempts to make the output interface of learning agents more flexible,
although it does not feature an explicit transfer between two tasks.

In more traditional SL contexts, some foundational work in TL is set by Thrun 1995
using classification problems. Thrun suggests that TL is a key condition to ambitious
long-lived learning agents supposed to meet various numerous tasks in sequence, a learn-
ing context also referred to as “Continuous Learning” or “Lifelong Learning”, and also
founded in [Ring 1994; 1997]. In [Lecarpentier and Rachelson 2019] for instance, non-
stationary RL environments undergo continuous changes.

In [Widmer and Kubat 1996], the authors also attempt to accommodate an important
phenomenon known as “Concept Drift”, resulting in that the distribution of input data
and the environmental context change over the course of learning, necessitating continu-
ous transfer. This problem is reviewed in [Tsymbal 2004], and in [Gama et al. 2014] in
the restricted scope of OSL. See also [Žliobaitė et al. 2016] for a review of applications
in SL. In [Heng Wang and Abraham 2015], the phenomenon is detected as a noisy signal.
In [Rohlfshagen et al. 2009], the corresponding problem is also tackled with formal ap-
proaches. In [Jaber et al. 2013], it is questioned which outdated information to drop first.
However, the signature of the learning agent is assumed to be fixed in these works.

Regarding RL, Taylor and Stone 2009 and Lazaric 2012 offer extensive reviews
of the interplay between RL and TL. In [Barreto, Munos, et al. 2017] then [Barreto,
Borsa, et al. 2018] for instance, an approach called “Successor Features”, combined with
“Generalized Policy Improvement”, is developed to transfer RL knowledge across tasks
that differ by their reward functions. In [Teh et al. 2017], the knowledge is “distilled”
with a method called “Distral” so that transfer works across parallel RL tasks.

Throughout the literature, and beyond the strict distinction between SL, RL and UL,
we found that there are various different situations in which TL is invoked, but it is not
always acknowledged which of these situations is currently being relevant. These 4 differ-
ent “use cases” for TL are illustrated in Figure 4.1 and constitute the penultimate column
of Table 4.1. In its broadest intent, PL, like TL, is possibly invoked in all of them. How-
ever, we only focus on the last one in the restricted scope of this thesis, so it is useful to
clearly distinguish them:

(1) Posterior Transfer: In this situation, a source training process has already been
done, and has been successful but costly. Now, a new target task has to be tack-
led, and the user wishes to benefit from this prior experience to improve efficiency
on the target. In short, they wish that transfer occurs from the old task to the new
task [Taylor and Stone 2009]. See [Tanaka and Yamamura 2003] for an example
application to tabular tasks, and [Cornuéjols, Murena, et al. 2020] for a recent ap-
proach where the transfer function is learned itself.

4.2. RELATED WORKS 69

accomplished
old task

similar
new task

(1) Posterior Transfer

parallel tasks

(3) Joint Learning

evolvable task

?

?

(4) Prior Transfer

compound task

(2) Subtasking

successive
subtasks

source task target task

Figure 4.1: Various different learning situations involving Transfer Learning.

(2) Subtasking: In this situation, there is one challenging target task to tackle. Attempts
to learning it directly will likely fail, so this target is broken down into several
easier, source tasks. The idea is to learn the source tasks first, then successively
combine them together to ease the learning path towards the whole target. In short,
the user wishes that transfer occurs from the small tasks to the big task [Taylor and
Stone 2009]. This relates to the idea of “Curriculum Learning”, a developmental
approach to learning complicated tasks [Bengio et al. 2009; Sigaud and Droniou
2016; Sodhani et al. 2020; Narvekar et al. 2020; Suro et al. 2021]. In “Hierarchical
Learning”, transfer is also supposed to be eased by modularizing the tasks, see for
example [Devin et al. 2017] in simulated robots, or [Frans et al. 2018] in virtual
3D articulated bodies.

(3) Joint Learning: In this situation, several tasks have to be learned at once. In or-
der to improve efficiency of the overall parallel process, the user expects that any
progress made in one task is immediately propagated to the others so the other
agents can benefit from it without needing to discover it by themselves. In short,
the user wishes that transfer occurs among parallel tasks [Caruana 1994; Teh et al.

2017]. See for instance [Harel and Mannor 2011] for an adaptation of this principle
to multiple parallel SL tasks called “Multiple Outlooks”.

(4) Prior Transfer: In this situation, the task will undergo future changes, but it is un-
known yet what these changes will be or when they will occur. Hence, the idea is to
design an agent that is flexible enough to adapt these changes, and keep improving
on the transforming task by always relying on the accumulated experience. In short,
the user wishes that transfer occurs from any task to the next [Ring 1994; Thrun
1995; Ring 1997]. This is closely related to the notions of “Concept Drift”, “Con-
tinual Learning” and “Lifelong Learning”. See for instance [Xu and Zhu 2018] for
a use of RL in continual SL, [Seff et al. 2017] for an application to Generative
Adversarial Networks, or [Rusu et al. 2016] for incremental improvement of “Pro-
gressive Networks”. In RL, the corresponding tasks would belong to the category
of “continuing” tasks, because they have no expected termination point.

70 CHAPTER 4. STATE OF THE ART

The PL situation described in Section 1.2, with the roverbot example, is an instance
of Prior Transfer (4). Although PL addresses the problem of accommodating signature
change in any of the above situations in principle, we consider that agents equipped for
Prior Transfer are the most generic ones, because signature changes are unpredictable
events in general. In the remainder of this thesis, we focus on PL in the situation (4).

4.2.3 The Challenges of Transfer Learning

TL suffers from a few common pitfalls. First, and like many behavioural search ap-
proaches in ML, there are very few theoretical guarantees that the target learning process
eventually converges towards acceptable behaviours. In particular, there is no general rule
for stating whether any source task is likely to be useful for improving performances on
a given target task. The obvious idea is that, the more similar the source and target tasks,
the more successful the transfer. But as there is no general, formal description of the
dissimilarity between two tasks, the effects of TL remain hard to predict.

Fortunately, in the restricted case of PL as described with the roverbot in Section 1.2,
it is expected that the difference between two successive tasks is “slight”. Indeed, it only
consists in a few elementary signature change events like (+i, −o, ∼ f , etc.) occurring
on every sensor/actuator update. Apart from this, the environment is supposed to remain
the same, and the task is not different from the user perspective. As explained above, there
is no formal guarantee that this is “slight” enough for transfer to always occur correctly,
but it encourages that TL be used as an inspiration when tackling PL situations.

In addition, one longstanding problem in TL is to correctly “map” the elements of the
source task (e.g., inputs, outputs, values, policies, search space) to elements of the target
tasks so that the two tasks correctly match [Taylor and Stone 2009]. This is difficult in
the general case, but it does fortunately not occur in the PL situation we describe. Indeed,
every signature change event like (+i) makes it obvious which input slots are kept from
the source task and which one is the original. For this reason again, there are chances
that TL be a useful source of inspiration when investigating PL.

This said, there are two major pitfalls in TL that PL also inherits from. First, when an
agent succeeds in solving the target task, it possibly happens that it is not able to solve the
source task anymore. This phenomenon is known as “Catastrophic Forgetting” (CF).

ANNs tools in particular are prone to CF, and there is a real effort in the community
to alleviate this problem. In [Rusu et al. 2016] for instance, ANNs are extended with ad-
ditional parameters on every new task met, so they do not overwrite previous knowledge
at the cost of increasing complexity. In [J. Kirkpatrick et al. 2017], the learning rate of
every weight is finely adjusted depending on its derivative, so the network can keep learn-
ing without forgetting, at least until it reaches maximal knowledge capacity. In a similar
fashion, Zenke et al. 2017 track not only the weights of their networks, but also their past
weights and importance, so the new learned policies can be approached by only tuning

4.2. RELATED WORKS 71

weights whose incidence on past knowledge is minimal, at least until maximal capacity
is reached. In [Kaplanis et al. 2018], bio-inspired modification of the network “synapses”
is used to prevent forgetting and enable continual learning.

Although the phenomenon is challenging to alleviate, the various TL situations de-
scribed in the previous section indicate that CF is only undesirable if the source task is
expected to be faced again. To our knowledge, this has not been explicitly stressed in
the literature. In curriculum approaches for instance, like Subtasking (2), source tasks
constitute the target task, so it is obvious that forgetting must be avoided [Sodhani et al.

2020]. However, in Posterior Transfer (1), the phenomenon is only undesirable if the tar-
get agent is supposed to solve the source task again, either because there is no copy of the
source agent left, or because the target agent is expected to eventually solve both tasks,
but then the situation is better described as Subtasking (2). In Joint Learning (3), CF is
only undesirable if the parallel agents are supposed to be used against any parallel task
interchangeably. Otherwise, when each agent is supposed to remain focused on its own
task, then it is not a problem that an agent is unable to address the source task it has
received transferred knowledge from.

The situation of Prior Transfer (4), is ambiguous in this respect. On the one hand,
change events are considered unknown and unpredictable, so it is possible that the agent
be occasionally reverted to a situation already encountered in the past [Al-Ghossein et al.

2018]. This happens for instance when a roverbot sensor has been broken for a few weeks
and then gets fixed. In this case, CF is an undesirable effect of TL, because the bot has
to learn how to use the sensor again and then computing resources are wasted. On the
other hand, it is sometimes unlikely that any change event be ever reverted. For instance,
it is unlikely that a deprecated statistic describing the usage of telegram services be ever
used again in predicting customer preferences. Alternately, it is unlikely that the broken
roverbot sensor be ever fixed if it happens to be on a mission on Mars. In this situation,
not being able to learn again in a situation encountered in the past is not a problem, and
there is no need to alleviate CF.

In summary, the transfer situation (4) highlights a tradeoff not explicitly mentioned, to
our knowledge, in TL literature. The alleviation of CF has a cost, either because it makes
the learning algorithm more complex [Rusu et al. 2016; Kaplanis et al. 2018], or because
it consumes a limited agent knowledge capacity [J. Kirkpatrick et al. 2017; Zenke et al.

2017]. But it is not always necessary, because the source task is not always expected to
be faced again by the target agent. In this situation, remembrance of past capacities can
be traded for improved performances on the task at hand. In this thesis, as we engage
into early investigation of more PL-specific, signature change related problems, we do
not attempt to tackle the problem of CF yet. As a consequence, the learning procedures
tested in Chapters 6 and 7 are not explicitly designed to alleviate it.

The second major pitfall of TL situations is that the effect of a given transfer procedure
is not absolutely reliable. For instance, when a target agent receiving knowledge with a

72 CHAPTER 4. STATE OF THE ART

transfer procedure happens to be better than the naive agent on a target task, it is possible
that another one receiving knowledge with the same transfer procedure be less efficient
than the naive learner on another target task. This phenomenon is known as “Negative
Transfer”, and is always undesirable because it cancels the advantages of the TL approach
against trivial accommodation of the task change.

Negative transfer can be alleviated under particular circumstances. See for in-
stance [Ge et al. 2014] for a study of negative transfer in SL with multiple sources tasks.
However, there are very few theoretical guarantees against negative transfer in the general
case [Taylor and Stone 2009; Torrey and Shavlik 2010]. In particular, there is no guaran-
tee that PL be not subject to it. For this reason, we specifically designed the experiments
presented in Chapters 6 and 7 to address and quantify negative transfer in PL.

Part II

Contributions

Chapter 5

Theory of Protean Learning

This chapter expounds our theoretical contributions to the domain of PL.
The first section is constructed to provide a clear overview of PL, with the various

challenges involved and the roadmap toward future progress in the field.
Then, as a groundwork, we develop a rigorous formalization of PL. In current work,

formalization is solely used is to make it unambiguous what we refer to as a “signature
change”, and a “protean” agent in the next. We expect that it lays out the foundation for
future analysis of convergence properties of dedicated PL algorithms, which we address
with an experimental approach in Chapters 6 and 7 for the sake of extensiveness. The
formalization is inspired from the traditional modelling of RL, but explicitly focuses on
the streaming nature of OL with formal diagrams, so the dependencies among streams,
the retroactions between procedures and the source of the changes become apparent.

After this general modelling has been set up, and for the remainder of this thesis, we
restrict our focus to two particular signature change events: (+i) and (−i), constituting
the Input-PL (IPL) subdomain. Under the light of these events, we study the structure
of the explored landscapes to uncover that they exhibit 10 different possible topological
configurations, or IPL profiles. We develop a taxonomy of these profiles and study how
they possibly influence the reactions of protean agents to the changes.

We also show that there exists a set of natural projections mapping the diminished
and augmented search spaces together, so the agent can navigate among them without
becoming undefined when (+i) or (−i) occurs. These projections are generic, as they do
not depend on the IPL profile at hand or the search space topology. We defend that they
constitute good candidates for generic accommodation of signature changes in IPL, and
lay out the experimental principles used in the next two chapters to address their value.

5.1 Informal Overview

In the previous chapter, PL was positioned with respect to existing literature. Before we
formalize PL, this section makes our overall approach of PL explicit, consistently with
the lines at the bottom of Table 4.1. In particular, we sketch a coarse-grained, high-level

76 CHAPTER 5. THEORY OF PROTEAN LEARNING

overview of PL domain before restricting our focus to the work presented in this thesis.
This overview is also a roadmap towards the construction of ideal, full-fledged PL agents.

As written in Chapter 4, signature changes cannot always be predicted. However, they
fall into only a few categories that structure the domain of PL:

• The agent possibly benefits from an addition of some data slots: inputs (+i), out-
puts (+o) or feedbacks (+ f). For instance, this happens when new sensors or actu-
ators are plugged into the sticky roverbot, or new parallel objectives are defined by
the user, like watching the battery level in addition to following the target.

Note that “addition” possibly refers to different kinds of events. For instance, when
something hidden has been revealed to the agent, like the battery level, there is a
true (+i). On the other hand, when something new has started existing, like key-
board input on a new device plugged into the agent, there is both an environmental
change (∼E): the keyboard plug, and then an input addition (+i).

• The agent suffers a removal of some data slots: inputs (−i), outputs (−o) or feed-
backs (− f). For instance, this happens as sensors and actuators break, or as they
become obsolete and the user removes them and cancels objectives.

• There is a change in the domains of possible values for some data slots: inputs (∼i),
outputs (∼o) or feedbacks (∼ f). For instance when a temperature sensor widens
its sensitivity range, or when a wheel motor is upgraded to also feature backwards
spinning, there are two ways to model the situation:

– In the first modelling option, the set of possible values for the data slots is
updated. For instance, if the rover possible output values for the wheel motor
are initially ranging in [0, 1] with the value 0 meaning stop, the value 0.5
meaning half-speed and the value 1 meaning full speed, then after the (∼o)

event, the new range is [−1, 1] and the new values have new meanings like−1
meaning full speed backwards and −0.5 meaning half-speed backwards. Note
that the meaning of previously existing values is unchanged. This explicitly
states to the agent that the range [−1, 0[has not been explored yet, and that
new environmental responses are expected whenever these values are tested.

– In the second modelling option, the set of possible values for the data slots is
always the same from the agent perspective, and only the environment accom-
modates the change. With the same example as above, if the agent possible
output values for the wheel motor are initially ranging in [0, 1] with the same
meanings, then the range after (∼o) event is still [0, 1], but the meanings have
changed. For instance, after the change, the value 0 means full speed back-

wards the value 0.5 means stop, and the value 1 means full speed. This ap-
proach is easier to tackle as it reduces any change event (∼i), (∼o) or (∼ f) to
a simple environmental change (∼E). As such, it falls out of the scope of PL

5.1. INFORMAL OVERVIEW 77

and can be tackled with other TL techniques. However, this approach is not
equivalent to the former because the agent is given less information about the
change, so it is likely that a PL approach yield better results in this situation.

• Beyond elementary operations on data slots, the agent may also splits into separate
pieces, so the data slots are separated at once into isolated groups. For instance, if
the user wishes to extract an independent battery-caring module from the rest of the
sticky bot, so as to use it in another artefact, then they have to separate all battery-
related sensors, objectives, knowledge etc. to build a new agent from them. As this
agent has a smaller signature, this higher-level operation falls under the scope of PL.

• Alternately, several agents may merge together, so the data slots are combined into
a whole. For instance, this happens when the user wishes to import abilities from
another static agent able to, say, beep whenever there is a spider nearby. If they ex-
pect that the resulting agent takes advantage of its target-following abilities to better
track the animals and go beep back close to the user, then the beeping actuators, ev-
ery spider-related sensors, the new corresponding objectives and the other agent
knowledge need to be merged into the sticky bot, in a way similar to traditional
curriculum approaches and Subtasking (2). However, the signature of the resulting
agent is augmented, so this operation also falls under the scope of PL.

Traditional TL agents are able to face (∼E) events, in which the signature is fixed. The
overall intent of PL is to make online agents also able to face (+i, +o, + f , −i, −o, − f ,

∼i, ∼o, ∼ f), but also (split) and (merge) events, without being undefined, and without
discarding their previous experience. An ideal PL agent is able to accommodate any of
these changes and keeps learning no matter the variations in its signature.

Obviously this is a challenging goal, and the issues involved differ much depending on
the change event. For instance, one challenge with (+i) and (+o) is to trigger exploration
of possible behaviours again, especially if the agent already satisfyingly converged. This
is also the case with (∼i) and (∼o) when new possible values are added to the data slots.

With (−i) and (−o), it is expected that performances decrease if the agent was heavily
relying on the lost data slots, so the challenge is also to gracefully ease the regression. This
is also the case with (∼i) and (∼o) when previously possible values become forbidden.

Regarding (+ f) and (− f), the multiplication of objectives loosens the definition of
the “optimal behaviour” to look for, and it is expected that various behaviours perform
equally well on the Pareto front [Yaochu Jin and Sendhoff 2008]. In this situation, one
new challenge is for the user to correctly specify their precise expectations. In contrast, a
simple (∼ f) event can be considered a simple subset of (∼E), which is already the object
of active research in general TL (see Table 4.1).

The challenges involved also depend much on the learning methods actually applied.
For instance, even though ANNs are ubiquitously used as function approximating tools

78 CHAPTER 5. THEORY OF PROTEAN LEARNING

in ML procedures, they are typically difficult to operate with when it comes to transform-
ing them or extracting knowledge. This makes future PL milestones like splitting agents
extremely challenging with today’s state of the art, but see [Watanabe et al. 2018] for an
insight into modularizing ANNs.

On the other hand, merging ANN-based agents together does not imply that their
knowledge be understood or modular, but suggests that a combinatory explosion of
possible interactions between all data slots and inner networks states be managed. This
constitutes another critical challenge to be met in PL.

In this thesis, we engage a few steps within the domain of PL. First, in Section 5.2,
we construct a formalization of this learning situation encompassing the above specu-
lated signature change events. Then, Section 5.3 restricts our focus to only (+i) and (−i)

events, constituting the heart of Input-PL (IPL) subdomain. Theoretical considerations on
the necessary features of natural IPL transfer projections are developed in this section.

Later, in Chapter 6, we design and conduct an experiment demonstrating the basic
viability of IPL in OSL. In particular, with a RNN-based learner, we ensure that the natural
projections theorized in Section 5.3 are sufficiently robust to avoid negative transfer in a
variety of learning situations.

Finally, Chapter 7 extends the results of Chapter 6 into a tabular RL context (see
Figure 2.2). We conclude that the natural projections described in Section 5.3 are also ap-
plicable to traditional RL methods like Q-Learning and Actor-Critic. In addition, although
the tested projections remain generic, they are sufficient to perform good transfer while
accommodating signature changes in a variety of learning situations. In future works, we
expect the simplifying hypotheses of tabular contexts to be lifted, and other change events
from the wider domain of PL (∼i, +o, − f , etc.) to be eventually addressed.

5.2 Formalization

This section develops a rigorous formalization of the PL problem. We start by summa-
rizing the traditional mathematical modelling of RL, before we switch to a data-stream
oriented view and extend the situation to PL in general. Finally, we discuss how PL is not
only an extension of RL, but a particular case of TL intersecting with any OL situation as
illustrated in Figure 2.2.

5.2.1 Background

RL is traditionally formalized using Markov Decision Processes (MDP) [Garcia and
Rachelson 2013; Sutton and Barto 2018]. On each time step t, the RL agent perceives
a “state” st , a random variable taking its values in the space of all possible perceptions S,
and a random scalar “reward” rt in R. The agent is then responsible to pick an “action” at

in A, according to the probability distribution given by its current internal behaviour

5.2. FORMALIZATION 79

called a “policy” P:
at ∼ P(st , rt) (5.1)

Note that the distribution is parametrized by the latest inputs st and rt . In reaction to the
action, the environment E determines the distribution of the next step state and reward:

(st+1, rt+1)∼ E(at) (5.2)

This response distribution is parametrized by the latest action at .
To describe how good the agent currently performs, a “discounted” return Ft is defined

as the sum of future rewards starting from t:

Ft =
∞

∑
i=t

γ i−tri (5.3)

The discount factor γ ∈ [0, 1[represents a recency principle. With this factor, rewards in
the near future are worth more than distant ones. The factor is applied so that the sum
always converges.

With this setting, the behavioural search for a RL agent is expressed as an optimiza-
tion problem over the space of considered policies P: Find the optimal policy P∗ that
maximizes the expected return value F at any t:

P∗= argmax
P∈P

E(Ft |P) (5.4)

Time dependency is important here, because the search for P∗ is typically performed
during the very course of the interaction between the agent and the environment. In other
terms, every time a new candidate P is tested, the value of Ft is updated. This is the reason
why RL is a case of OL. There exists various common methods to learn in this context.
Chapter 7 describes and use two methods known as Q-Learning and Actor-Critic.

5.2.2 PL as a Problem of Stream Processing

In the context of PL, we need to extend the above model to take into account changes in
the signature of the agent-environment interface, i.e. changes in S and A. We construct a
formal model that focuses on viewing RL as a stream processing situation.

Instead of using the concepts of “state”, “action” and “rewards”, dedicated to RL,
we stick to the more general, stream-oriented concepts of inputs, outputs and feedbacks.
The exact mapping between these two sets of concepts is loose, as it depends both on
perspective and on the learning situation at hand, so it is not straightforward to use the
ones as strict replacements to the others. This is developed in Section 5.2.7.

A data stream is a value that changes over time. Inputs i (loosely mapped to “states”),
outputs o (loosely mapped to “actions”) and feedbacks f (loosely mapped to “rewards”)
of a learning agent are considered data streams. The agent itself is considered a stream

80 CHAPTER 5. THEORY OF PROTEAN LEARNING

processing unit that endlessly transforms inputs i into outputs o with respect to an internal
procedure P called its “behaviour” (loosely mapped to “policy”). The objective of RL is
that values in the f stream become and remain high.

On the other hand, the environment E is another stream processing unit working the
other way round. It endlessly transforms the output streams o into input streams i and
feedbacks f , by strict application of the universe rules.

The signature describes the interface between the agent and the environment, with the
arity and the types of the data streams they are expected to receive and produce. In other
words, it is the collection of domains the various streams take their values in. The core
idea of this formalization is to consider that the signature is a stream itself, so that it also
changes in time and extends RL to PL.

5.2.3 Data Streams and Causality

Streams are represented by functions of continuous time, like u : R+→D. They take
their value in arbitrary domains D. Streams time is discretized with arbitrary precision
ε ∈ R+∗ by sequences εu : N→D such that:

∀t ∈ N, εu(t) = u(ε t) (5.5)

The elementary duration step ε t adjusts continuous, real time with any desired accuracy
level, while still representing the successive elementary decisional steps of the agent.

As they are processed by the agent or the environment, streams transform into each
other. Viewed another way, streams are determined by other streams. We call determi-

nation function d a function able to determine an outgoing stream v from an incoming
stream u no matter the precision ε considered: ∀ε ∈ R+∗, ∀t ∈ N,

εv(t) = dε(
εu(0), . . . , εu(t−1), εu(t)) (5.6)

Stream determination has a memory, because current value of v possibly depend on
any past values of u. As such, the determination process is not Markovian in general.
Alternately, the determination process can be considered Markovian, but then it must be
rewritten to involve recurrence and a hidden stream h f noted h:

{
εh(0) = εd(∅)

(εv(t), εh(t +1)) = εd(εu(t), εh(t))
(5.7)

Note that the initial hidden state h(0) must be defined along with the determination func-
tion d.

Stream determination is also causal because current and past values of u only deter-
mine the current value of v, and not its future values. Further iterations of u are needed to
determine future values of v.

5.2. FORMALIZATION 81

The following graphical alias is used to represent determination relation (5.6) or (5.7):

u (d) v (5.8)

The symbol in parentheses represents the determination function, the symbol pointed by
the arrow head is the consequence stream, and the symbol pointed by the line with no
head is the cause stream. For instance, i (P) o means that the inner agent process P

feeds from input stream i to produce the output stream o in a causal, non-Markovian way.
In other terms, P is recurrent and exhibits a memory. Conversely, o (E) i means
that the environment works the other way round.

Joining two determination functions in a cycle this way results in a recursive definition
for all values i(t) and o(t), so it is ill-defined. To correctly express the agent-environment
retroaction loop, we need to bootstrap their dynamics with another type of relation:

{
εv(0) = dε(∅)

εv(t +1) = dε(
εu(0), . . . , εu(t))

(5.9)

The relation (5.9) introduces a one-step delay determination function. And the determina-
tion function is also able to determine the first consequence value v(0) on its own. In the
Markovian view involving a hidden state hd noted h, this translates as:

{

(εv(0), εh(0)) = dε(∅)

(εv(t +1), εh(t +1)) = dε(
εu(t), εh(t))

(5.10)

This new relation is graphically represented as:

u (d∗) v (5.11)

The agent-environment feedback loop can therefore be well-defined with cycling ar-
rows i (P) o and o (E∗) i , meaning that the environment is responsible for
bootstrapping the loop and determines the first inputs to the agent.

(E∗) (P)

i

o

(5.12)

This constitutes a rigorous representation of the informal retroaction diagrams used in
Chapter 1. In this formal model, P represents the roverbot, E its surrounding environment,
i the data streaming from its sensors and o the data flowing to its actuators. (5.12) is
equivalent to the following system of equations (5.13). For the sake of readability, all ε

82 CHAPTER 5. THEORY OF PROTEAN LEARNING

symbols have been dropped, ∀t ∈ N:

i(0) = E(∅)

o(t) = P(i(0), . . . , i(t))

i(t +1) = E(o(0), . . . , o(t))

(5.13)

The above system can also be written as a combination of Markovian processes with hid-
den states according to interpretations (5.7) and (5.10) of diagram (5.12). This introduces
two “hidden” variables hE and hP:

(i(0), hE(0)) = E(∅)

hP(0) = P(∅)

(o(t), hP(t +1)) = P(i(t), hP(t))

(i(t +1), hE(t +1)) = E(o(t), hE(t))

(5.14)

In the next, we drop the above Markovian interpretation because diagrams and non-
Markovian systems are easier to read, but diagrams can always be interpreted this way.

Fleshing out this graphical notation, we use the following aliases when there are mul-
tiple cause streams or multiple consequence streams, respectively:

(d)

u1

u2

v (5.15) (d)u

v1

v2

(5.16)

Similarly to eqs. (5.6) and (5.8), the above two diagrams respectively translate as,
∀ε ∈ R+∗, ∀t ∈ N:

εv(t) = εd
((

εu1(0),
εu2(0)

)
, . . . ,

(
εu1(t),

εu2(t)
))

(5.17)
(

εv1(t),
εv2(t)

)
= εd

(
εu(0), . . . , εu(t)

)
(5.18)

When the consequence stream values are determination functions themselves, we use
the following construct:

u2

u1 (D)

(d) v (5.19)

The latter diagram being equivalent to:

{
εd(t) = εD(εu1(0), . . . ,

εu1(t))
εv(t) = εd(t)

(
εu2(0), . . . ,

εu2(t)
) (5.20)

Note that εd(t) is a function in this case.

5.2. FORMALIZATION 83

Equipped with these formal diagrams, we can reformulate the dynamical relation be-
tween a RL agent and its environment in a data-stream oriented fashion:

(E∗) f (A) (P)

i

o

(5.21)

The above representation includes the stream of rewards f produced by the environment,
and the agent internal procedure A. A performs the inner search S for good candidate be-
haviours P, guided by f . Note that A also feeds on i. This is useful for instance to construct
internal representations of E, like the value function in QL methods (see Section 2.2.3).

In contrast, A cannot feed on o for obvious causality reasons. This seems to contradict
with numerous RL methods, which do take o values into account in practice to improve
their policy search. As a matter of fact, no value o(t) can be used before being actually
produced, but the methods are still correctly represented without changing the diagram:
either consider that o(t) values are determined by A then embedded within P(t), so A

memorizes them; Or consider that every o(t) is re-emitted by E within i(t +1), and ig-
nored by P, so A accesses them on subsequent steps.

This representation also makes it clear why RL is a case of OSL: A needs to wait
for the next input value i(t +1) to produce the next policy P(t +1), so the two timelines
described in Section 2.2.4.1 (the input timeline and the search timeline) line up.

Now that RL is expressed in the above representation, we need to extend it so as to
encompass signature changes and the PL situation. In the next section, we construct one
particular type of data streams to represents signature change events.

5.2.4 Multiple Streams and Signatures

Signature changes imply that the arity and type of the data streams processed by the agent
vary. To represent this, we define one particular type of streams called multiple streams.

A multiple stream u, also noted u∆,χ , carries both a stream of domains noted u∆,
whose values are called signatures, and a stream of values noted uχ (Fig. 6.1). A sig-
nature is a tuple of domains (∆1, ∆2, . . .) and values are elements from these domains
(χ1 ∈ ∆1, χ2 ∈ ∆2, . . .). For instance, at t = 0.9, the sticky roverbot described in Chap-
ter 1 is sensitive to both “direction to user” and “ground speed”, and receives the signature
and values:

u(t) = u∆,χ(t) =

(
u∆(t)

uχ(t)

)

=

(
[0, 2π] R+

0.2 rad 15 cm.s−1

)

(5.22)

The particularity of PL, in contrast with RL, is that the signature stream is not constant.
We call signature change of the PL agent any variation of u∆ resulting in that the agent
later receives values with different domain signatures, thus the term protean. For instance,

84 CHAPTER 5. THEORY OF PROTEAN LEARNING

[0, 1]

Z

R

G

B

R

ta

uχ(ta) = (9.75, 14)

u∆(ta) = (R, Z)

tb

uχ(tb) = (1.72, B, 9, 0.48)

u∆(tb) = (R, {R, G, B}, Z, [0, 1])

tc

uχ(tc) = (R)

u∆(tc) = ({R, G, B})

(+i)(+i) (−i)(−i)(+i)(+i) (−i)(−i)(+i)(+i) (−i)(−i)(+i)(+i) (−i)(−i)time

va
lu

es

Figure 5.1: Example multiple stream u, also noted u∆,χ . Each curve corresponds to one transient
domain in the signature stream u∆. If u represents an agent input stream, then this learner is initially
sensitive to a data valued in Z. The learner later becomes also sensitive to data valued in R, then
in [0, 1]. All these input slots are eventually lost between tb and tc. In the end, the learner is only
sensitive to a nominal parameter in {R, G, B}. All beginning and end of sensitivities are marked
as input addition (+i) or input deletion (−i) events.

at t +δ t = 1.1, after its front camera has been broken (−i), and a new battery sensor has
been plugged in (+i), the sticky agent receives “ground speed” and “battery level” as:

u(t +δ t) = u∆,χ(t +δ t) =

(
u∆(t +δ t)

uχ(t +δ t)

)

=

(
R+ {1, . . . , 5}

31 cm.s−1 level 4

)

(5.23)

Multiple stream possibly make successive, overlapping “tracks” appear on the stream
input profile as represented in Figure 6.1. These tracks relate to the global agent signature,
so they are not mandatorily processed by distinct submodules within the agent. In the
framework called Horde for instance, a set of Generalized Value Functions (GVFs) is used
as a modularized approach to learn more from a reinforcement environment than only a
value function [Sutton, Modayil, et al. 2011]. Although it is an option that every GVF
only focuses on one input track while ignoring the other ones, change events affects the
arity of all GVFs simultaneously in general.

It is possible that the signature stream u∆ and the values stream uχ are caused by two
different determination functions. In this situation, we use the following construct with a

5.2. FORMALIZATION 85

simple closed curve to distinguish between u∆, uχ and the combined stream u:

u1 (d1) v∆ vχ (d2) u2

v

(5.24)

Consistently with eqs. (5.6) and (5.8), the above is an alias for, ∀ε ∈ R+∗, ∀t ∈ N:

{
εv∆(t) = εd1

(
εu1(0), . . . ,

εu1(t)
)

εvχ(t) = εd2
(

εu2(0), . . . ,
εu2(t)

) (5.25)

Note that diagram (5.24) and eq. (5.25) are only consistent with the definition of a multiple
stream if every value in vχ(t) belongs to the corresponding domain in v∆(t) for every t.

In summary, multiple streams enable seamless representation of data streams with
variable type and arity, like the one represented in Fig. 6.1. In the next section, we use
them to specify the PL situation with a formal diagram.

5.2.5 Learning Dynamics

At the highest level, a PL situation is represented by 3 multiple streams (i, o, f), one
stream of determining functions P and two fixed determining functions (E, A), with the
following determination diagram:

(E∗) f (A) (P)

iχi∆i

oχo∆o

(5.26)

According to the interpretation rules defined above, the diagram (5.26) is equivalent
to the set of formal equations (5.27–5.30). They form a dynamical system for any time
precision ε ∈ R+∗. For the sake of readability, all ε symbols have been dropped:

(

i(0), f (0), o∆(0)
)

= E(∅)

P(t) = A
((

i(0), f (0), o∆(0)
)

, . . . ,
(

i(t), f (t), o∆(t)
))

oχ(t) = P(t)
(

iχ(0), . . . , iχ(t)
)

(

i(t +1), f (t +1), o∆(t +1)
)

= E
(

o(0), . . . , o(t)
)

(5.27)

(5.28)

(5.29)

(5.30)

Note that P(t) is a determination function itself. Each colored equal sign corresponds to
one determination arrow in (5.26).

There are two major differences with the traditional RL retroaction drawn in (5.21).
First, all basic data streams i, o and f in (5.26) are multiple streams now, so their signature

86 CHAPTER 5. THEORY OF PROTEAN LEARNING

can change any time. Second, while output values oχ are still determined by P, output
signatures o∆ are determined by E. In other terms, the agent is not responsible for its
current input/output signature. Instead, A is responsible for always producing P candidates
with adequate signature, based on the information it gets from i∆ and o∆.

In the end, only two objects are not depending on time in this system: the environ-
ment E and the inner agent strategy A. In the sense of dynamical systems, E and A em-
body the evolution rules of the system, while its initial state is represented as the first
production of E:

(
i(0), f (0), o∆(0)

)
.

5.2.6 The Objective of PL

Similarly to RL, PL objective is to optimize values in the feedback stream f [Sutton and
Barto 2018], but the protean nature of f make this less straightforward to formulate.

First, not every domain is suitable for the signature of the reward stream f ∆, be-
cause feedback values need to be compared to one another so as to decide which one
is “best”. For instance, scalar values are useful, like values in R. But categorical values
like {R, G, B} (see Figure 6.1), which can be used as regular inputs i, cannot be used as
feedback values unless at least partially ordered, as discussed in Section 2.1.1.

Second, the reward stream f is a multiple stream, so there exists, in the general case,
a wide range of non-Pareto-dominant “optimal” behaviours to search. In addition, even
marginal optimality is not well defined with respect to only one discounted temporal
stream of feedbacks like in eq. (7.61), because PL data streams cannot be assumed to
last forever. As a consequence, the traditional learning objective of “maximizing rewards”
needs to be reformulated in PL as a multi-objective ML goal:

Given an environment E in the dynamical system (5.26), with a multiple stream of

feedbacks f whose signature f ∆ only contains partially ordered domains, find an agent

procedure A such that all values taken by the values stream f χ are Pareto-optimized.

An agent fulfilling the above requirement ideally solves the task represented by E.
However, the longstanding quest of ML, and of AI in general, is not only to construct
an ideal agent able to solve one particular task, but to construct an ideal generic agent,
supposed to seamlessly address a wide range of different tasks. Consequently, and in
addition to the “small” PL objective defined above, the “big” objective of PL is better
described as:

Given a class of environments E whose every element E fits into the dynamical sys-

tem (5.26), with multiple streams of feedbacks f whose signatures f ∆ only contain par-

tially ordered domains, find an agent procedure A such that all values taken by the values

stream f χ in every E ∈E are Pareto-optimized.

An agent fulfilling the above requirement adapts to various changing environments no
matter the variable nature of the signatures streams i∆, o∆ or f ∆. The widerE in terms of
the represented range of tasks, the more flexible the agent.

5.2. FORMALIZATION 87

5.2.7 Discussion

The formalism presented here is novel, and offered as a contribution of this thesis to better
understand the scope of PL in our current vision, previously described in Chapter 3. For
instance, our model states that all multiple streams domains are emitted by E, which rules
out the possibility for an agent to decide when the signature changes happen. As such, a
learning agent able to upgrade its own sensors/actuators capabilities at will falls outside
the strict scope of PL, unless the upgrade is an indirect environmental result of its actions1.

For the sake of simplicity, our representation of PL does not yet feature the traditional
probabilistic view of RL [Sutton and Barto 2018]. Instead, it focuses on the agent sig-

nature and how it changes in time, which is essential to PL. This said, we believe it is
easily extended to stochastic processes, by replacing the deterministic interpretations of
the diagrams by probabilistic relations. For instance, instead of being interpreted as an
equation, the following diagram:

u (f) v (5.31)

is interpreted as a probabilistic connection between two random processes u and v, with f

a probability distribution parametrized by past realizations of u, e.g., ∀ε ∈ R+∗, ∀t ∈ N

εv(t)∼ ε f (εu(0), . . . εu(t)) (5.32)

In summary, and consistently with Box 1.1, we distinguish at least 3 different kinds of
learning agent policies i (P) o (with dropped ε, and χ symbols):

• Deterministic policies: The current input i(t) predicts output o(t) exactly, like in:

o(t) = P
(
i(t)
)

(5.33)

This is the most basic type of policy, easily represented as a plain function of inputs.

• Non-recurrent stochastic policies: The outputs are randomly determined depending
on current input values, like in

o(t)∼ P
(
i(t)
)

(5.34)

In this case, P is better represented as a probability distribution parametrized by
inputs. The agent is less predictable, but Chapter 7 shows that it possibly lead to
better performances against non-deterministic environments.

1Note that, similarly to SL and UL being useful as technical elements of RL, PL is also useful as a
methodological element of other learning situations like this one. An agent capable of accommodating
unforeseen signature changes is likely advantaged when able to upgrade signature on its own.

88 CHAPTER 5. THEORY OF PROTEAN LEARNING

• Recurrent policies: The agent has a memory of past inputs, and uses it to determine
the current output, like in:

o(t)≃ P
(
i(t), i(t−1), . . . , i(0)

)
(5.35)

Where the symbol ≃ is used to represents either = or ∼. Equivalently, and accord-
ing to (5.7), the agent contains a hidden state h recurrently updated:

{

h(0)≃ P(∅)
(
o(t), h(t +1)

)
≃ P

(
i(t), h(t)

) (5.36)

This is the most sophisticated type of policies because it makes full use of the
possibilities offered by the i (P) o model.

Agent capabilities and reactions to PL differ depending on the type of policies ex-
plored by A. Chapter 6 addresses PL in a simple learning situation with only deterministic
policies. Chapter 7 addresses PL with both deterministic and non-recurrent stochastic
policies. Recurrent policies will be addressed in future works.

This section has introduced PL under the form of an extension to RL, but the connec-
tion between PL and other fields of ML is more subtle, (see Figure 2.2). This is where the
mapping between the concepts of input and “state”, of output and “action” etc. is refined.

For instance, PL can be considered a special case of RL. Under this perspective, not
only the inputs are given as RL “states”, but also their signature, e.g., st ∈S with:

st =
(
i∆(t), iχ(t)

)
. (5.37)

Alternately, PL can also be considered a generalization of RL. Under this perspective,
the signature is no longer considered constant, e.g., st ∈St with variable S, for instance:

St = ∏ i∆(t). (5.38)

This formalism is also compatible with future extensions of PL where the cause for
signature changes is that PL agents compose each other. For instance when one agent
splits into two or when two agents A1 and A2 merge into one agent A, their inputs are
separated or joined with e.g.: i∆(t +δ t) = i∆

1 (t)∪ i∆
2 (t).

As discussed in Section 4.2, PL is also an instance of TL. Whenever there is a change
in the streams domains i∆, o∆ or f ∆, the agent A is facing a transfer problem because
the task at hand has evolved. A new candidate P must be found to accommodate the
change, and previous knowledge needs to be reused so as to ensure better performances
than a naive agent. The model of PL offered in diagram (5.26) therefore fits into the frame
of TL, Concept Drift and Continual Learning.

5.3. INPUT ADDITION AND DELETION 89

In addition, as a generic instance of Prior Transfer (4), the model of PL offered in
diagram (5.26) is also suited to represent OL tasks in general, including RL but also OSL.
To interpret (5.26) in the context of OSL, consider the following:

• The data streams i and o carry the successive learning batches.
• The environment E holds the training set T containing (i⋆, o⋆) pairs.
• Every value oχ(t) produced by the agent A is an attempt to mimic the received input

pair iχ(t) = (i⋆(t), o⋆(t)).
• The environment E compares the stream oχ to o⋆, computes the corresponding loss

stream f and feeds it back to A.
The major difference with RL is that i(t) never depends on past values of o. Also, f (t)

is always immediately available after o(t) has been emitted. In other words, in OSL,
E is always Markovian with no hidden state, so A has no credit assignment problem to
solve. This is the reason why OSL is easier than RL in general. The experiment presented
in Chapter 6 assesses basic viability of a low-level PL projection technique in an OSL
context, and the experiment presented in Chapter 7 addresses this in a RL context.

5.3 Input Addition and Deletion

In the remainder of this thesis, we focus on two specific signature change events in PL:
input addition (+i) and input deletion (−i). This restricts PL to Input-PL (IPL). This sec-
tion studies how these events affect the search space P explored during learning. We see
how the IPL search landscapes fall into only a few categories of typical profiles illustrated
in Figure 5.2. We also see how the transfer component of IPL essentially relates to the
choice of insightful projections between “diminished” and “augmented” search spaces.

5.3.1 Time Dependency

During learning, the agent explores the landscape of P with respect to an objective func-
tion F representing the IPL learning objective. This is a maximization problem, and the
regions of P that yield highest values of F need to be found. Every element P ∈P is a
policy able to process inputs into outputs according to iχ (P) oχ . As a requirement,
P processes elements of the input space I into elements of the output space O, with:

I = ∏
∆∈i∆

∆ (5.39)

O = ∏
∆∈o∆

∆ (5.40)

The above two Cartesian products constitute the signature of P. For the policy search to
be well-defined, every procedure in P must have this same signature, or is ill-defined
and cannot be tested as a candidate.

90 CHAPTER 5. THEORY OF PROTEAN LEARNING

When (+i) and (−i) events come into play, i∆ varies in time, and so does I. For
instance, when only a (+i) event occurs between times t1 and t2 with t1 < t2, then:

I(t2) =I(t1)×∆+ (5.41)

Where ∆+ is the domain added to the signature. In this situation, we refer to I(t2) as the
augmented input space, and I(t1) is the diminished one. Since the augmented signature
differs from the diminished one, then no element in the search space can be candidate any-
more. As a consequence, P also needs to vary in time, and upgrade from P(t1) to P(t2)

such that every augmented candidate within P(t2) has a signature compatible with I(t2).
Conversely, when only a (−i) occurs between t1 and t2, then one domain ∆− is with-

drawn from the input signature Cartesian product. In this situation, I(t1) is the augmented
space and I(t2) is the diminished space. No candidate in P(t1) can produce output in
response to iχ(t2) values anymore because there are inputs missing, so the search space
needs to be downgraded to P(t2).

To abstract over (+i), (−i), t1 and t2 in the next, we refer to the augmented input space
and search space with the regular symbols I and P ∈P, while we refer to the diminished

input space and search space with the barred symbols Ī and P̄ ∈ P̄.

5.3.2 Diminished vs. Augmented Search Spaces

Both input spaces Ī and I are Cartesian products of domains. The only difference is
that Ī is missing one term in the product compared to I. As a consequence, there exists
a natural surjection of I into Ī, noted with double headed arrow , where every i ∈I

maps to the ī ∈ Ī with same values on all dimensions except the missing one:

I Ī (5.42)

Therefore, for every diminished procedure P̄, there exists one trivial augmented proce-
dure P that “mimics” P̄ by discarding the additional received value. To construct this P,
receive augmented input i, transform into ī using the above natural mapping, then apply P̄.
To illustrate this with the roverbot example, consider that a new battery sensor is plugged
into the agent, but the robot behaviour remains the same because it just ignores it. This
construction is always possible unless the agent has no way to “ignore” the new data.

From now on, we assume that every augmented search space contains such trivial
degenerated procedures, so there exists a natural injection of P̄ into P, noted with tailed
arrow , that we refer to as l:

l : P̄ P (5.43)

This has interesting consequences regarding the landscape of the agent objective func-
tion F . Namely, landscapes only fall into 10 possible categories that we refer to as land-
scape profiles, illustrated in Section 5.3.4. These profiles provide key insights into the
possible reactions of a learning agent to (+i) and (−i) signature change events.

5.3. INPUT ADDITION AND DELETION 91

In the next, we describe necessary relations between various subsets of P̄ and P.
After listing these relations, we interpret them under the light of behavioural search to ex-
pound these various profiles and how they must influence learning under IPL conditions.

5.3.3 Structure of the Search Spaces

To begin with, consider that there is always at least one possible diminished policy, oth-
erwise there would be no point in searching P̄:

P̄ 6=∅ (5.44)

Also, consider that the injection (5.43) is strict, otherwise there would be no point to
the augmented search space. This implies that there exists a non-empty set P̌ containing
every non-degenerated augmented policy:

P̌ =P−l
(
P̄
)

(5.45)

P̌ 6=∅ (5.46)

Note that P̌ (P, so the identity constitutes a trivial, strict injection between both sets:

P̌ P (5.47)

The situation is summarized by the following diagram:

P̄

P̌ P

l

(augmented policies)

(diminished policies)

(5.48)

Note that l
(
P̄
)

and P̌ form a partition of P. This diagram is progressively fleshed out
in the next, and in Chapter 7.

The learning agent objective is to find a policy that maximizes the function F . As
such, consider the optimal diminished policy set P̄∗. This non-empty set contains the best
policies that a diminished agent possibly finds in P̄. The associated best policy value
is F̄∗, with:

F̄∗= max
P̄∈P̄

(F(P̄))

P̄∗=
{

P̄∗∈ P̄, F(P̄∗) = F̄∗
}

P̄∗ 6=∅

(5.49)

Note that P̄∗⊂ P̄, and that possibly P̄∗= P̄. As a consequence, the relation between
both sets is non-strict. This is important in the next.

92 CHAPTER 5. THEORY OF PROTEAN LEARNING

On the other hand, P̌∗ contains the best policies that a diminished agent cannot pos-
sibly find. The associated best policy value is F∗, with:

F∗= max
P∈P

(F(P)) (5.50)

P∗= {P∗∈P, F(P∗) = F∗} (5.51)

P̌∗=P∗∩ P̌ (5.52)

Similarly, there is P̌∗⊂ P̌ and the relation is non-strict. This is summarized in the fol-
lowing diagram:

P̄

P̌ P

P̄∗

P̌∗

l

⊆

⊆

(augmented policies)

(diminished policies)

(5.53)

P̄∗ is non-empty, but possibly P̌∗=∅. This happens when the only optimal aug-
mented policies are degenerated. This trivial relation constitute another non-strict rela-
tion:

∅⊆ P̌∗ (5.54)

To avoid cluttering, we highlight the P̌∗ symbol with a dotted underline in the diagram,
as a reminder of the non-strict relation (5.54):

P̄

P̌ P

P̄∗

P̌∗

l

⊆

⊆

(augmented policies)

(diminished policies)

(5.55)

A diminished agent following a diminished policy P̄ has the same end behaviour as
an augmented agent following the corresponding degenerated policy l(P̄), so we assume
that both policies have the same value:

F(P̄) = F(l(P̄)) (5.56)

As a consequence, since P̄ P the value of best diminished policies cannot be higher
than the value of best augmented policies:

F̄∗6 F∗ (5.57)

In other terms, diminished agents cannot perform better than augmented agents, because
augmented agents have a larger panel of possible behaviours. Note that the above relation
is also non-strict, so that either F̄∗< F∗ (the augmented agent does better) or F̄∗= F∗ (the
diminished agent does as good).

In the end, the above key relations between policies sets and the associated optimal
values are all summarized in the following diagram. The symbol ⊲ is used to connect

5.3. INPUT ADDITION AND DELETION 93

optimal values to the set they maximize:

P̄

P̌ P

F̄∗⊲ P̄∗

F∗⊲ P̌∗

l

⊆

⊆

>(augmented policies)

(diminished policies)

(5.58)

These relations constitute the structure of the policy search landscape in IPL, and of the
interplay between P̄ and P.

5.3.4 The IPL Landscape Profiles

The diagram (5.58) contains a total of four non-strict relations (including relation (5.54)).
As a consequence, PL search landscapes exhibit various possible structures, depending on
whether the⊆ relations are strict (() or equal (=), and whether the 6 relation is strict (<)
or equal (=).

Not every combination is possible. Obviously for instance:

P̌∗=∅ =⇒ P̌∗(P̌ (5.59)

Also, an empty P̌∗ implies that every augmented optimal policy is degenerated, so the
augmented agent cannot perform better than the diminished one in this case:

P̄∗=∅ =⇒ F̄∗= F∗ (5.60)

This leaves only 10 possible combinations, corresponding to the landscape profiles
illustrated in Figure 5.2. The various profiles are described by three properties, corre-
sponding to the state of the non-strict relations involving P̄∗, P̌∗, and the tuple (F̄∗, F∗):

• Regarding (F̄∗, F∗), there are two possible options:

FT: F̄∗= F∗: No augmented policy does better than the best diminished policies.
We refer to these landscapes as flat through the change event or “FT”. In
FT environments (left column in Figure 5.2), the best agent performance can-
not be improved after a (+i) event, because no better performance is possibly
achieved with augmented policies. Conversely, removing an input with (−i)

is not dramatic for the agent because its theoretical performances do not de-
crease, only it has to search P̄ again to restore them.

HT: F̄∗< F∗: At least one augmented policy does better than the best diminished
policies. We refer to these landscapes as hilly through the change event or
“HT”. In HT environments (right column in the figure), (−i) events are guar-
anteed to decrease maximal performances. Conversely, there are chances that
providing new inputs to the agent with (+i) eventually helps in improving on
the task at hand.

94 CHAPTER 5. THEORY OF PROTEAN LEARNING

FFF

HFF

FHF

HHF

FLF

HLF

FFH

HFH

FHH

HHH

FT HT

FO

HO

LO

FI

HI

FI

HI

FI

HI

FI: flat inside: P̄∗= P̄

HI: hilly inside: P̄∗(P̄

FO: flat outside: P̌∗= P̌

HO: hilly outside: ∅(P̌(P̌∗

LO: low outside: P̌∗= ∅

FT: flat through: F̄∗= F∗

HT: hilly through: F̄∗< F∗

Figure 5.2: Euler diagrams for the various possible environment profiles with respect to
IPL events (+i) and (−i). P: augmented policies (outer green disk). P̄: diminished policies (in-
ner blue disk represents l

(
P̄
)
). P̌: non-degenerated augmented policies (outer ring). P∗: optimal

augmented policies (red area with solid outline). P̄∗: optimal diminished policies (red area within
inner disk represents optimal degenerated augmented policies, outline is dotted when not included
in P∗). P̌∗: optimal non-degenerated policies (red area within outer ring).

5.3. INPUT ADDITION AND DELETION 95

• Regarding P̄∗, there are two possible options:

FI: P̄∗= P̄: Every diminished policy is optimal, so the search landscape is flat

inside the diminished policies set, or “FI”. In FI environments (odd lines in
the figure), removing an input with (−i) also removes the learning challenge,
because no decision taken by the agent alters its performance from now on.

HI: P̄∗(P̄: Some diminished policies are better than others, so the search land-
scape is hilly inside the diminished policies set, or “HI”. In HI environments
(even lines in the figure), the agent search is not trivial even after a (−i) event,
for there are still both policies to prefer and policies to avoid.

• Regarding P̌∗, there are three possible options:

FO: P̌∗= P̌: Every augmented policy is optimal provided it is not degenerated,
so the search landscape is flat outside the diminished policies set, or “FO”. In
FO environments (upper block in the figure), the augmented agent performs
best as long as it does not ignore its additional input channel, which likely
makes the augmented search space easy to search.

HO: ∅ (P̌∗ (P̌: Not every non-degenerated augmented policy is optimal, so
the search landscape is hilly outside the diminished policy set, or “HO”. In
HO environments (middle block in the figure), the augmented agent search is
less trivial because the optimal policies need to be discovered among subopti-
mal non-degenerated augmented policies.

LO: P̌∗=∅: Every optimal augmented policy is degenerated, so the search land-
scape is low outside the diminished policies set, or “LO”. In LO environ-
ments (lower block in the figure), the additional input is never needed to attain
the best possible behaviour. As a consequence, (+i) events only bring decep-
tive information to the agent, since they augment the size of the search space
without enabling better behaviours. Conversely, once an augmented agent has
converged towards a best policy P∗, it is likely that (−i) event be trivial to
accommodate, because there is a trivial new best policy P̄∗= l−1(P∗).

These landscape profiles describe the overall structure of IPL search landscape, and
the various possible reactions of a learning agent to (+i) or (−i) events. For the sake
of brevity, they are referred to with three letters corresponding in order to their inside

status (F-lat or H-illy), their outside status (F-lat, H-illy or L-ow), and their through status
(F-lat or H-illy). For instance, HLF refers to the hilly inside, low outside and flat through

landscape (see Figure 5.2).

5.3.5 Using IPL Profiles

Although they are illustrative, the landscape profiles only contain very general informa-
tion so they only scratch the surface of the various IPL situations. For instance, it is correct

96 CHAPTER 5. THEORY OF PROTEAN LEARNING

to assume that the behavioural search is always “trivial” or “easy” when the search land-
scape is flat (e.g., in the FFF condition), but it is difficult to address how “difficult” is the
search within hilly landscapes (e.g., in the HLF condition).

In the next, we summarize several important sources of variability regarding the pos-
sible learning trajectories of agents undergoing IPL events, which are not captured by the
above profiles. When a profile is skewed, we can express the phenomenon by comparing
it to other profiles. We conclude that the profiles are useful to picture and characterize the
variety of concrete situations that IPL agents are confronted to.

First, the non strict relations in diagram (5.58) are not quantified. They only distin-
guish between generic and degenerated cases. The condition FFF (FT, FI, FO) is the most
degenerated situation, where it is obvious that no learning takes place. In Chapter 7, we
use FFF environments as a baseline for this reason. On the other hand, the condition HHH
(HT, HI, HO) is the less constrained, and a variety of different learning situations fit this
profile. In HHH for instance, the density of P∗ within P is unspecified, so it is unclear
how difficult it is for learning agents to come across optimal policies. For instance, an
agent learning within a very dense FHF IPL landscape possibly behaves like it would in
a FFF profile. In other terms, the scarcity of P∗ policies within P is an important addi-
tional qualifier of IPL profiles.

In practice, ML agents do not necessarily find an optimal policy P∗. Instead, they
possibly fall back on the best policy found so far: P̂. As a best-effort approximation
of the elusive procedure P⋆, P̂ is either almost as good as P∗, or its quality is much
lower, depending on how the values F

(
P̂
)

and F(P∗) compare together. For instance
in the HLF condition, an agent that easily gets stuck on a good local optimum P̂ ∈ P̌

possibly behaves like it would in a HHF profile. In other terms, the quality of non-optimal
policies is another important property of the landscape not completely captured by
the IPL profiles. Nevertheless, the above example shows that they constitute useful
archetypes for concrete IPL situations to be compared to.

The core activity of IPL agents is to search policies. Consequently, the agent search-
ing method is a major factor determining its trajectory within the landscape. For instance,
agents supposed to solve the maximization problem with exact analytical methods are
likely insensitive to the density of P∗ within P, and only the existence of optimal so-
lutions, e.g., P̌∗ 6=∅, is meaningful to them. On the other hand, agents relying on plain
random heuristics are likely sensitive to the density of P∗within P. In this case, the more
optimal policies, the more chances they have to eventually find one.

The same is not always true for local heuristics. With local heuristics, the exact topol-

ogy of the landscapes plays a very important role. For instance, the hillier the landscape
(the more non-optimal optima), the more difficult for the agents to find a P∗. On the other
hand, agents easily converge if the landscape gradually slopes up towards global optima.

The landscape topology is important enough to skew the IPL profiles entirely. For in-
stance in a HLF profile, if P is almost flat, with only one very narrow peak within l

(
P̄
)
,

5.3. INPUT ADDITION AND DELETION 97

the learning trajectory likely behaves as it would under FFF conditions. In this situation,
we say that the profile is a rigorous HLF behaving like a FFF in practice. Alternately, if P̌
shapes a very attractive slope towards a local sub-optimum P̂ ∈ P̌, the trajectory likely
behaves as it would under HHH conditions. In this situation, the profile is still a rigor-
ous HLF, but we say it behaves like a HHH in practice. Once again, this demonstrates
that the IPL profiles, although they are not sophisticated enough to predict the agents
search trajectories, are useful as archetypes for practical IPL situations to be compared to.

In Chapter 6, we conduct an IPL experiment, in the less constrained HHH profile,
using HLF and HHF environments as baselines. In Chapter 7, we experiment various
profiles together, using FFF as a baseline, and refer to their HI, FO, etc. properties to
discuss the observed results.

5.3.6 The Natural IPL Projections

The various factors described above (density of optimal policies, value of suboptima,
landscape slopes) influence the learning trajectory of maximization agents in general, and
not specifically IPL agents. The specificity of IPL is that the search space occasionally
transforms with (+i) and (−i) events: P̄ becomes P and P becomes P̄ during the
course of learning. This is were transfers need to be performed, in the sense of TL, and
it has deep consequences for agents whose activity strongly relies on the search space
topology, like agents performing local heuristics.

Whenever (+i) happens, the policy P̄ ∈ P̄ currently tested is not meaningful anymore,
and the agent search needs to be projected into some new location P ∈P. The nature of
this projection matters, and where it should land depends on the landscape IPL profile.
Assume for instance that the agent has converged towards P̄∗∈ P̄∗ before (+i) happens.
Then in every FT condition (see Figure 5.2), no policy in P̌ yields better performance
than P̄∗, so the naive projection P∗= l(P̄∗) is a perfectly valid choice. In other terms, the
agent should stick to its behaviour and ignore the new available input.

In HT conditions however, l(P̄∗) is a guaranteed suboptimal choice. Depending on the
topology of P, l(P̄∗) is also possibly a local optimum within P, so there is a legitimate
question whether to use l as a projection to accommodate (+i). On the one hand, l guar-
antees not to land on the worst policy among P, so the agent has a “jumpstart” advantage
against a naive agent starting from anywhere within P. On the other hand, l possibly
lands the agent into a maximization trap, where it remains stuck around the local subop-
timal l(P̄∗) while the naive one eventually finds a global P∗. As a consequence, either the
transfer uses the natural l projection, and then care must be taken to trigger exploration
again after the change event; or a more clever projection is used, but then the user needs
ad hoc insights into the topology of P to construct it. This thesis defends that the natural
projection is a good generic choice when there is no information about the topology. In
the experiments presented in the next two chapters, the natural projection l are used to
perform the transfer in response to (+i) events.

98 CHAPTER 5. THEORY OF PROTEAN LEARNING

The situation is more complicated with (−i) events since there exists no natural pro-
jection from P to P̄: information is lost. In other terms, learning agents cannot, in gen-
eral, keep exhibiting the same behaviour when they are missing an input. This is of lit-
tle importance in FI conditions (see Figure 5.2), because all diminished behaviours are
equivalent. However, the question what projection to choose to accommodate (−i) events
is legitimate in every HI condition. For instance, in HHH landscapes, an ideal projection
would directly land the diminished agent in the most promising region P̄∗⊂ P̄, but this
requires particular insights into the topology of P and P̄ that we cannot have at this level
of generality.

Alternately, in FT conditions, there is a chance that the augmented agent behaviour is
already part of l

(
P̄∗
)
. In this case, applying the reverse projection l−1 is the best way to

accommodate (−i). In other terms, when the agent succeeds in the task at hand without
making use of one input, then it should not be perturbed when this input is removed. To
represent this, we define a particular class of projections called almost-natural projections
from P back to P̄. A projection p : P→ P̄ is almost-natural if:

p|l(P̄) = l−1 (5.61)

Almost-natural projections guarantee to keep the agent behaviour as-is if it was currently
undergoing degenerated policies. In the experiment presented in the next two chapters, we
use almost-natural projections p to perform the transfer in response to (−i) events. We
also defend that they constitute a good default, generic choice in the absence of ad hoc

insights into the topology of P̄ and P.

This section has investigated and drawn the principal characteristics that every high-
level IPL problem should feature. In summary, projections between P̄ and P constitute
the core IPL lever in accommodating (+i) and (−i) signature change events. When it
comes down to particular learning situations, the more information users have about the
topology of the search landscapes, the more accurate the corresponding IPL profile, and
the more insightful the constructed projections.

5.3.7 Towards Generic IPL

While it is obvious that ad hoc algorithms perform better on the particular task they have
been designed to address, ML has long been concerned with the construction of generic

learning algorithms, that yield acceptable results in a variety of situations. Indeed, generic
agents are the most useful when attempting to approximate an elusive procedure P⋆ which
the user has no information about.

The previous sections have explained why ad hoc IPL projections are expected to yield
good transfers because they exploit the landscape profile at hand. However, we have also
noticed that there exists a class of natural projections, so-called because they preserve the
current agent behaviour at best during a signature change event: the natural projection l

5.3. INPUT ADDITION AND DELETION 99

Protean Agent:

Learning Agents:

Naive Agent:

initial state
transfer

naive initial state

Measures: { { {prior
performance

posterior
performance

final
performance

performance comparison

{

Short term reaction:

Long term advantage:

constant

signature change

Environment
(task at hand):

Agent/Environment
interface:

tested event:

observation function observation function
before after

1 input 2 inputs

2 inputs 1 input:

:

Figure 5.3: Global design of the experiments presented in chapters 6 and 7.

during (+i), and the almost-natural projections p during (−i). This thesis defends that
these natural projections are good candidates for accommodating IPL events in a generic
way, when no or very few information is available about the IPL profile of the task.

The next two chapters address this claim with a couple of synthetic experiments. The
first experiment (Chapter 6) verifies, in a simple OSL learning context, that a sophisti-
cated RNN-based learning algorithm supports the natural projections without becoming
unreliable, at least in HHH IPL landscapes, using HLF and HHF profiles as baselines. The
resulting transfer makes the protean agent (Ap1 , Ap2) more efficient than the naive An.

The second experiment (Chapter 7) addresses a more complicated learning context:
RL, which features the credit assignment problem. We verify that natural projections can
also be defined in other traditional learning algorithms, namely Q-Learning and Actor-
Critic, and we qualify the advantage they provide depending on numerous properties of
the task, and in particular, on its actual IPL profile.

While the two experiments differ much on the technical level and the learning sit-
uations they address, they are both designed according to the principles illustrated in
Figure 5.3:

1. The agent is given a task to solve, which constitutes its environment. This task does
not change during the agent lifetime.

2. The agent interface with the environment is defined in a flexible manner. Although
their environment is the same, diminished agents perceive it with only 1 input, while
augmented agents perceive it with 2 inputs. Augmented agents have complete in-
formation and can solve the task at hand.

100 CHAPTER 5. THEORY OF PROTEAN LEARNING

3. Two transfer techniques are defined, so the agent can switch between an augmented
or a diminished state without becoming undefined. The exact technique depends
on the learning algorithm, but always constitutes a natural projection or an almost-
natural projection.

4. A protean agent (Ap1 , Ap2) is trained against the task, there are two different set-
tings:

• To test (+i) event, the agent starts learning in a diminished state (Ap1), then
undergoes the change halfway through the learning process and is projected
into an augmented agent (Ap2) which resumes learning until the experiment is
over.

• To test (−i) event, the agent starts learning in an augmented state (Ap1), then
undergoes the change halfway through the learning process and is projected
into a diminished agent (Ap2) which resumes learning until the experiment is
over.

5. In parallel with Ap2 , a naive agent An is trained from scratch against the task. An has
the same signature as Ap2 , but does not benefit from Ap1’s transfer.

6. The learning traces of Ap1 , Ap2 and An are analysed with a small set of measures, to
address:

• Whether Ap2 has eventually succeeded in solving the task, by measuring fi-

nal performance. While augmented agents are expected to always succeed
after (+i), it is not always possible for diminished agents to recover from the
input loss after (−i).

• How An immediately reacts to the change event and the accommodating pro-
jection. To this end, the prior performance, right before the change is com-
pared to posterior performance, right after the change. The immediate reac-
tion to the change is supposed to be typically detrimental in the case of (−i),
but sometimes beneficial in the case of (+i).

• How Ap2 reacts to the change event on the long run, by comparing the
whole Ap2 trace and An trace together. It is expected that Ap2 has an advan-
tage over An because it benefits from the knowledge transferred from Ap1 .

The above protocol is declined and described in detail in chapters 6 and 7, along
with the various addressed experimental conditions and extended analysis of the result-
ing learning traces. Chapter 8 concludes that natural projections are a good fit to basic
generic IPL, while we also expound the limits of the approach.

Chapter 6

Experiment Input Protean Learning in
Online Supervised Learning

This chapter tackles PL by addressing the basic viability of the natural IPL projections
in a RNN-based agent, when (+i) and (−i) events happen during the course of learning
in an OSL context. Are the generic projections compatible with the ANN technique? Do
they succeed in performing the expected transfer?

To this end, we design and conduct a synthetic experiment where protean agents, mod-
elled as (Ap1 , Ap2), undergo signature changes and accommodate with natural projections,
while naive agents An, as a baseline, resume the learning from scratch after the change
events. The learning traces of all agents are studied with respect to the various condi-
tions of the experiment, so we can dissect the numerous effects in play during IPL events
accommodation. We conclude that the natural projections are not only useful to prevent
protean agents from becoming undefined, but leave the RNN in a consistent state, and
yield better results than the naive agents as they successfully avoid negative transfer.

These results, and the experimental design, were published in [Bonnici et al. 2020]. A
preliminary version of the experiment, addressing less flexible and memory-less classes
of functions, and the associated preliminary results were previously published in [Bonnici
et al. 2019].

6.1 Design

The experiment is designed according to the principles described in Section 5.3.7.
Learning agents are trained in an environment that constitutes an OSL task. The task

is chosen to mimic an idealized reinforcement situation like the imaginary roverbot de-
scribed in Section 1.2, involving recurrence and streaming procedures, but without the
credit assignment problem. The ideal policy P⋆ is known from the experimenter. This
procedure is represented as a determination function that transforms input streams i into
output streams o⋆ according to:

i (P⋆) o⋆ (6.1)

102 CHAPTER 6. EXPERIMENT IPL IS OSL

Note that P⋆ is recurrent, so it is non-Markovian and exhibits a memory of past values
of i. An example realization (i, o⋆) is illustrated in Figure 6.1.

Like in a SL context, the learning agents are supposed to approximate P⋆ given only
a training set T with example realisations of P⋆:

T = {(in, o⋆n)}n∈{1, ..., 1000} (6.2)

With every in (P⋆) o⋆n . In the experiment, T is finite with only 1 000 elements. The
streams processed are also finite and span over 128 timesteps.

Given clues successively drawn from T, the agents are supposed to construct an
approximation P̂ of P⋆. During this process, they undergo either a (+i) or a (−i) event.
The purpose of the experiment is to address that the natural IPL projections correctly
accommodate the perturbation, and that the resulting protean agents (Ap1 , Ap2) perform
better than a naive agent An.

An early version of this experiment was first described and the results were shown
in [Bonnici et al. 2019]. In this early version, it only addressed (+i) event with a weaker,
less consistent parametrization. In this upgraded version, (−i) is also addressed, and there
are 4 controlled parameters supposed to qualify the IPL approach depending on the learn-
ing situation: ρ , κ , α and ξ . They address in particular the generic IPL profile HHH,
and permit a comparison with two degenerated base profiles FHH and HLF. Here are the
successive steps of the protocol described hereafter:

1. Generate synthetic inputs in with controlled correlation (κ) and noise (ρ).
2. Construct ideal behaviour P⋆ with controlled complexity (ξ).
3. Compute ideal outputs o⋆n with control of relevant input (α).
4. Construct the RNN-based learning agent Ap1 and make it explore P to find approx-

imation of P⋆.
5. Perturb the agent with a signature change ((+i) or (−i)), accommodate the change

with a natural IPL projection to obtain Ap2 , resume learning.
6. Measure the advantage of Ap2 against the naive agent An.

All steps are described in the following sections.

6.2 Inputs Generation

In the reinforcement situation mimicked by the experiment, inputs i carry information
supposed to help the agent in its task. This information is more or less predictable. For
instance with the sticky roverbot, the position of the target is expected not to differ much
between time steps if the user moves smoothly, but it is hard to predict if the user motion
is fast and erratic.

As this predictability influences learning, we expect that it also influences the agent
reaction to an IPL change. We assess it by generating various synthetic input data with a

6.2. INPUTS GENERATION 103

1200 20 40 60 80 100

0.5

0.0

1.0

-0.5

-1.0

0.5

0.0

1.0

-0.5

-1.0

2D input sequence in

1D optimal output ôn

Figure 6.1: Example synthetic streams for the preliminary experiment. Top: Autocorrelated ran-
dom input stream in with 2 correlated channels, generated with ρ = 0.15 (intermediate noise level)
and κ = 0.5 (intermediate correlation level). Bottom: 1-channel output stream ôn computed from
in with transformed random Legendre polynomial combination: α = 0.5 (balanced usefulness of
input channels), and ξ = (2,3) (intermediate polynomial complexity). This situation is a case of
the generic profile HHH.

controlled level of unpredictability, or “noise” ρ .

Besides, when several information channels are available, they also are more or less
correlated together. For instance, when an infrared camera is plugged into the roverbot,
the information it carries is essentially similar to the classical camera. However, when a
battery sensor is plugged in, the new device produces original, decorrelated data instead.
We expect this correlation level to influence the agent reaction to an input addition or
deletion, and assess it by generating various synthetic data channels with a controlled
level of correlation κ . The procedure is described below.

Each synthetic input in is generated as 2-channels (or “2D”) data stream (i1n, i2n). First,
three reflected Gaussian random walks ian, ibn, icn [Khanıev et al. 2001] are independently
generated in the range [−1, 1], with initial value uniformly chosen and standard deviation
ρ . Then (see Figure 6.1, top) they are combined as:

in =

(

i1n

i2n

)

=

(

κ ibn +(1−κ) ian

κ ibn +(1−κ) icn

)

(6.3)

The lower ρ , the more predictable in. The higher κ , the more redundant the two channels.
In the experiment, three values are tested for ρ to assess the effect of input predictability:

• ρ = 0.05: The agent is given smooth inputs.
• ρ = 0.15: The agent is given noisier inputs.
• ρ = 10: The inputs are almost white noise.

Jointly, three values are tested for κ to assess the effect of channels redundancy:

104 CHAPTER 6. EXPERIMENT IPL IS OSL

• κ = 0: The agent is fed with two independent input channels.
• κ = 0.5: The two input channels carry correlated information.
• κ = 1: The two input channels are exactly identical.

The effects of IPL are later qualified with respect to these different tested situations.

6.3 Optimal Outputs Generation

The ideal policy chosen, P⋆, is a two-steps process (see Figure 6.1, bottom):

in (Q) i′n (R) o⋆n (6.4)

The first step Q is to merge the two channels of in into one, without memory:

i′n = α i1n +(1−α) i2n (6.5)

with a mixing parameter α ∈ [0, 1] explained later. The second step R transforms i′n
into o⋆n with a parametrization permitting fine control of the task complexity.

In general, not all tasks are equally complex. We consider two reasons for this: First,
some tasks require that the agent remembers past inputs so as to take best decisions. The
older the past inputs, the more complex the task. Second, some expected outputs are not
an easy, say linear, combination of the inputs. The less linear the combination, the more
complex the task.

We expect the task complexity to influence IPL accommodation of signature changes.
To assess this, we generate tasks with various complexity by choosing that R is constituted
of a random multivariate polynomial M. The measure of complexity ξ : (m, d) is twofold:

• The first component, m, is the depth of R memory, measuring how many past values
of i′n are used to compute one step:

o⋆(t +1) = M
(
i′n(t−m+1), . . . , i′n(t)

)
(6.6)

In other terms, m corresponds to the dimension of M. The higher m, the more com-
plex the task.

• The second component, d, is the degree of M. The higher d, the less linear M, and
the more complex the task.

Generating random multivariate polynomials with controlled degree d is not straight-
forward, and three methodological obstacles need to be overcome:

1: A polynomial of degree d with random parameters sometimes does not behave as
a full-degree polynomial. For instance, it can be almost linear. In this situation, the task
complexity becomes over-estimated. To avoid this, M is defined as a random mixture of
successive Legendre polynomials (Lk)k∈{0, ..., d} [Abramowitz and Stegun 1972], as each

6.4. THE IPL PROFILES 105

Lk makes full use of its degree k:

Ml =
d

∑
k=0

(−1)σk wk Lk,
d

∑
k=0

wk = 1 (6.7)

M :

[−1, 1]m → [−1, 1]

(x1, . . . , xm) 7→
m

∏
l=1

Ml(xl)
(6.8)

The weights values wk are conjointly drawn from a Dirichlet distribution so they sum
to 1, and each random sign σk is drawn from Un({−1, +1}).

2: M is almost degenerated when the dominant weight wd is lower than the others,
resulting in the task complexity being overestimated again. To avoid this, the Dirichlet
distribution concentration is set to (1, . . . , 1, 2) so wd is on average twice higher than
the other weights (w1, . . . , wd−1).

3: As m and d increase, values of M(x) become biased towards 0, so M is easily
approximated with the null function, and the task complexity is over-estimated again.
To avoid this, an additional transformation is applied to the values of M(x) so as to
stretch them away from 0. The transformation aims to restore the biased distribution
to Un([−1, 1]).

To this end, we first evaluate the distribution of M(x): for each tested value of m and d,
200 random polynomials M are drawn and evaluated in 2 000 random points x. The distri-
bution of all outputs M(x) is estimated with a Gaussian Kernel Density Estimation (KDE)
with Scott bandwidth selection [Jones et al. 1996]. We restore the distribution by using
a 256-points linear interpolation approximation of the corresponding cumulative density
function CDF as the stretching transformation. The final formula used for R is:

o⋆n(t) = 2×CDF◦M
(

i′n(t), . . . , i′n(t−m+1)
)

−1 (6.9)

Three values of complexity ξ are tested, which correspond to properties of M:
• ξ = (1, 1): M is linear and Markovian.
• ξ = (2, 3): M is cubic and remembers last iteration.
• ξ = (4, 3): M is cubic and reaches 4 steps back in time.

6.4 The IPL profiles

Not all inputs are equally useful. For instance, the battery level does not help the sticky
bot when it only has to follow its target. We expect this relative usefulness to influence
IPL reactions to signature change events. To assess this, we tune the value of α when
mixing the 2 inputs channels of in into i′n in equation (6.5). The higher α , the more useful
the first input channel and not the other. Three values are tested for α:

106 CHAPTER 6. EXPERIMENT IPL IS OSL

• α = 0: The channel i1n is useless to solve the task at hand.
• α = 0.5: The channel i1n is useful, but not sufficient to solve the task.
• α = 1: The channel i1n contains all the information needed to solve the task.
The two parameters α and κ determine the eventual IPL profile of the task at hand. For

instance, whenever α = 1, the second information channel brings no useful information,
so no behaviour in the augmented search space P yields better results than behaviours of
the diminished search space P̄. As a consequence, the corresponding profile is LO (see
Section 5.3).

Similarly, whenever κ = 1, the two information channels are strictly identical, so there
is no behaviour that augmented agents exhibit that could not also be exhibited by dimin-
ished agents. As a consequence, the corresponding profile is also LO.

LO profiles are necessarily FT. And since diminished agents always get some relevant
information when α = 1 or κ = 1, it is always better to take it into account than to ignore
it. As such, there are better diminished procedures than others and the profile is HI. In
summary, degenerated tested situations with α = 1 or κ = 1 all have HLF profiles.

On the other hand, the IPL landscape is FI whenever there is both α = 0 and κ = 0,
because diminished agent get no useful information to solve the task at hand, so there is no
“better” diminished procedure than others. The landscape tested in this situation is FHH.

These two degenerated landscapes, FHH and HLF, constitute useful baselines to com-
pare the generic landscapes, HHH, to.

6.5 Agent Structure and Learning Procedure

The agent approximates optimal behaviour P⋆ with its actual behaviour P. As a fixed
parameter in the experiment, we choose a Recurrent Neural Network (RNN) to imple-
ment P. The explored search space P is therefore isomorphic to RDf , with Df the number
of weights in the network.

RNNs are known to adjust arbitrarily complex recursive functions and infer arbitrar-
ily numerous hidden states provided they contain enough internal states [Elman 1990;
Schmidhuber 2015]. Therefore, they model any internal representation of the agent so
that it progresses towards P⋆. As suggested by our preliminary study of (+i) event [Bon-
nici et al. 2019], having not enough internal states results in the agent failing the task
when the environment memory reaches too far back in time. We therefore use 3 standard
Gated Recurrent Unit (GRU) cells as different network layers [Cho et al. 2014], with
6 internal states each, the last one being used as the network output. P produces the actual
agent outputs according to in (P) on .

The procedure A processes training examples by batches of 100 and updates weights
of P with a stochastic gradient descent and ‘adam’ update rule [Kingma and Ba 2015]
(learning rate = 0.01). On each batch, the Mean Squared Error MSE(o, o⋆) is calculated
as a loss. Convergence is achieved using pytorch [Paszke et al. 2017] for 1 000 iterations.

6.6. SIGNATURE CHANGES AND NATURAL IPL PROJECTIONS 107

6.6 Signature Changes and Natural IPL Projections

In accordance with the principles described in Section 5.3.7, three learning passes are
achieved on each run (see Figure 6.2). In the case of input addition (+i):

1. The “first-form” protean agent Ap1 (left trace, in blue) is constructed with a dimin-
ished, 1D input signature. Its parameters are randomly initialized from the uniform
distribution Un([−.01, .01]). Ap1 is trained against T, but only feeds from chan-
nel i1n of the input streams, being blind to i2n.

Note that in general, P⋆ cannot be reached in this case, because the agent is missing
the full information to correctly approximate it. Besides, the 1D signature of P even
differs from the 2D signature of P⋆. Only a reduction of P⋆: the closest 1D deter-
mination function, can be approximated.

2. The “second-form” protean agent Ap2 is then constructed with an augmented, 2D in-
put signature. Ap2 is constructed from Ap1 according to the natural IPL projection l:
every initial RNN parameter in Ap2 is copied from the latest corresponding parame-
ters in Ap1 , except for the necessary additional parameters, those supposed to weight
the new input layer, which are set to zero. Ap2 is then trained against the whole train-
ing set T(green, right light trace), not ignoring the input channel i2n anymore, so P⋆

can eventually be reached.

This simple form of TL is considered transfer of “low-level” knowledge in [Taylor
and Stone 2009], with an obvious mapping from the source task to the target task.
With this construction, and consistently with the natural projection described in
eq. (5.43), it is guaranteed that the augmented policy followed by Ap2 right after
the (+i) event is equivalent to the latest diminished policy followed by Ap1 right
before the event. In simpler terms, the fresh Ap2 is constructed so it initially ignores
the new input and behaves like Ap1 .

No insight into the landscape of P, or the corresponding IPL profile, were needed
to realize this change, so the projection is generic. It is the very purpose of this
experiment to verify that this IPL approach yields an acceptable transfer, or at least
that it does not trigger unrecoverable perturbations within the ANN.

3. The “naive” agent An is constructed with a 2D signature. Its parameters are ran-
domly initialized from the uniform distribution Un([−.01, .01]). Then An is di-
rectly trained against the whole training set (black trace).

In the case of input deletion (−i), the protocol is reversed: Ap1 has a 2D input signature
and is able to see the whole dataset (blue, left trace), while Ap2 and An have a 1D input
signature and are both blind to the second channel (red, black, right traces).

To realize this transfer, an almost-natural projection p is operated on the RNN,
with respect to eq. (5.61). The value of every weight parameter in Ap1 is copied into the

108 CHAPTER 6. EXPERIMENT IPL IS OSL

λ ^ 0.01 # learning rate
NN, IP ^ GRU_initialize() # Neural Network + Input Parameters
loop:

(
i∗b
)

b∈{1, ..., 100},
(
o∗b
)

b∈{1, ..., 100} ^ draw_batch(T) # pick training samples

if (+i) occurred: # Patch algorithm to accommodate change events.
IP ^ concatenate(IP, 0) # (+i): Append null column to input parameters matrix.

if (−i) occurred: # (−i): Remove column from input parameters matrix.
IP ^ drop_column(IP, 2) # These constitute (almost-)natural projections.

(ôb)b∈{1, ..., 100} ^ NN(IP × i∗) # compute network prediction

loss ^ MSE(ô, o∗) # compute prediction error
grad ^ backpropagation(NN, IP, i∗b, loss) # compute local derivative of the network
NN, IP ^ adam(NN, IP, grad, λ) # learning step: update network parameters

Listing 6.1: Pseudocode for input signature change accommodation in traditional adam
gradient descent for the GRU RNN fitting the batched training set T. NN: GRU function
and parameters (weights) except input layer. IP: learnable input-hidden weights of the
first layer of the GRU (reset, update and new gates) [Cho et al. 2014], a matrix of size
(ni, 18) in the experiment, with ni the number of input channels (1 or 2), whose first
dimension ni is updated when the change event occurs.

corresponding weight in Ap2 , except for the ones without an equivalent weights, those
corresponding to the lost input layer, which are dismissed. This construction results in a
loss of information, but ensures again that the policy currently followed by Ap1 remains
unchanged by the (−i) event provided it was a degenerated policy with only zeroes on the
discarded input layer. The purpose of this experiment is to verify that this IPL approach
yields an acceptable generic transfer in this case.

In summary, the couple (Ap1 , Ap2) is our experimental OSL model of a PL agent,
while the couple (Ap1 , An) represents a naive, non-PL agent. They both experience two
elementary signature changes: (+i) and (−i), and their performances are compared to-
gether. 1 000 replicates of the experiment are run for each combination of experimental
settings, and always with a freshly generated P⋆.

6.7 Measuring the Advantage of PL

Consistently with the experimental design described in Section 5.3.7, three measures are
taken to assess the advantage of PL compared to the naive approach. They are computed
on the learning curves l : t 7→MSE(o(t), o⋆(t)) (see Figure 6.2):

1: A short-term measure of transfer considers the loss jump occurring right after the
signature change. It is the difference between the mean last 100 loss values of Ap1 and the
mean first 100 of Ap2 (note that time is counted negatively prior to the event so it happens
at t = 0):

IT =
1

100

(
−1

∑
t=−100

log10

(

lAp1
(t)
)

−
99

∑
t=0

log10

(

lAp2
(t)
)
)

(6.10)

6.8. RESULTS 109

This “Immediate Transfer” measure is 0 when the event has no effect on learning (H),
positive when it immediately improves learning (C, D), and negative when learning is
perturbed by the event (A, B, E, F, G).

2: A long-term measure of the advantage is the mean gain:

LT =
1

1000

999

∑
t=0

log2

(

lAn
(t)

lAp2
(t)

)

(6.11)

A measure LT = 1 means that second-form agent Ap2 is twice better than the direct
agent An on average. LT = 0 means that they perform similarly.

3: A last performance measure is the mean last 100 loss values:

LP =
1

100

999

∑
t=900

log10

(

lAp2
(t)
)

(6.12)

When LP is below −2 (so the corresponding MSE is below 10−2), we consider that the
agent has succeeded in solving the task, like in all examples in Figure 6.2 except B.

6.8 Results

The measures obtained on each run are summarized in Figures 6.3 and 6.4. The various
effects discussed here are named A, B, C, D, E, F, G and H, and illustrated in Figure 6.2
with example runs drawn from key conditions in Figures 6.3 and 6.4.

A generalized linear model was fitted on the data to address relevance of the observed
variations. Predictions are represented as dots in Figures 6.3 and 6.4. All interactions
were considered between experimental settings ρ , κ , α and ξ considered as factors
(degrees of freedom: 80 919, residual stde: 0.7822). The effects discussed hereafter only
rely on high significance contrasts with p-value 6 0.001. Convergence and analysis of
the model were achieved with R-Cran software [R Core Team 2020]. Interaction contrasts
and their significance were calculated with the package phia [De Rosario-Martinez 2015].

As a general trend, even though the transfer sometimes has a negative short-term in-
fluence IT, the long-term score LT is positive on average. This reflects the advantage of
the second-form agent Ap2 compared to the naive agent An. In other words, performing
the transfer with the generic IPL projections is more beneficial than restarting the learn-
ing from scratch when the signature change occurs. This advantage needs to be qualified
depending on the situation:

A. IPL benefits from input redundancy: In the (+i) situation, it is expected that, when
the new input carries information similar to the existing one, transfer makes Ap2 ben-
efit from prior learning compared to An. This is confirmed by the data when α < 1:
the higher κ , the higher LT.

110 CHAPTER 6. EXPERIMENT IPL IS OSL

+i+i

−i−i

+i+i

lo
g 1

0
M

S
E

lo
g 1

0
M

S
E

lo
g 1

0
M

S
E

iterations

iterations

iterations

iterations

iterations

iterations

ρ : 0.15 κ : 1 α : 0.5 ξ : (2, 3)

LT = 2.04 IT =−0.28
LP =−3.40

ρ : 0.15 κ : 0.5 α : 0.5 ξ : (2, 3)

LT = 0.14 IT =−1.34
LP =−1.50

ρ : 0.15 κ : 0 α : 0 ξ : (2, 3)

LT = 1.89 IT = 0.08
LP =−3.38

ρ : 0.15 κ : 0.5 α : 0.5 ξ : (2, 3)

LT = 2.06 IT = 0.42
LP =−2.91

ρ : 0.15 κ : 0.5 α : 1 ξ : (2, 3)

LT = 2.59 IT =−0.58
LP =−3.70

ρ : 0.15 κ : 0.5 α : 0.5 ξ : (4, 3)

LT = 0.55 IT = 0.00
LP =−2.74

A E

B

C

D

F G

H

Figure 6.2: Learning curves l: evolution of MSE for key example individual runs in the experiment
illustrating the observed effects A, B, C, D, E, F, G and H (Section 6.8). Filled areas illustrate the
LT measure (7.85). Dotted bars illustrate the IT measure (7.87) and the LP measure (7.88). The
eyes represent 1D/2D input signatures. The signature change event occurs at time 0.

6.8. RESULTS 111

ED HC
A

FHH HHH HLF HHH HHH HLF HLF HLF HLF

Figure 6.3: Violin plot: Comparison of metrics in the various experimental settings. Top pane:
Long-Term advantage LT as defined in (7.85). Bottom pane: Immediate Transfer IT as defined
in (7.87). Violin border shade indicates the mean value of the Last Performance LP as defined
in (7.88). Violins are aggregated over ρ to ease readability, but statistical predictions of the metrics
depending on ρ are represented as dots within the violins. [Continued in Figure 6.4]

112 CHAPTER 6. EXPERIMENT IPL IS OSL

B G
F

FHH HHH HLF HHH HHH HLF HLF HLF HLF

Figure 6.4: Same as Fig. 6.3 for the input deletion case. Solid lines represent median values, dashed
line represent mean values. Grey areas in the violins represent 50% and 90% percentiles. White
squared labels locate the conditions from which the examples in Figure 6.2 have been drawn. Grey
square labels indicate the IPL profile corresponding to the tested conditions.

6.8. RESULTS 113

B. Input loss yields failure: In (−i), it is expected that both agents fails when important
input is removed. This is confirmed by the data when α < 1, κ < 1: the LP scores
are always above −2 on average. In this situation, performing the transfer or not
does not make a strong difference, although LT scores are still significantly positive
on average. B supports our abstract model of a task: the task is failed as expected
when the agent has not enough information.

C. IPL benefits from data structure: In (+i), it is expected that transfer is useless if
the initial input carries no relevant information. But surprisingly, LT scores are

positive even when α = 0 and κ = 0 in FHH profiles, and higher if ρ is low. Our
interpretation is that Ap1 still learns a correct representation/preprocessing of the
data in this case, and that this knowledge benefits to Ap2 . This is further discussed
in the next.

D. IPL benefits from immediate transfer: In (+i), transfer is expected to be immedi-
ately beneficial. This is confirmed by the data when α < 1 and κ < 1: IT scores are
positive on average.

E. There are negative transfer perturbations: Effect D does not hold in (−i) on the
degenerated HLF tasks α = 1 or κ = 1: IT scores are negative on average. In other
words, when the new input is not useful to improve, the agent looses performance
for a few iterations before figuring it out. Note that the long-term LT scores are still
positive on average.

F. IPL recovers with redundancy: In (−i), the removal perturbation is expected to be
less severe when the inputs are somewhat redundant. This is confirmed by the data
when α < 1: the higher κ , the higher IT (note that IT is still negative on average).
Ap2 transfers knowledge from the missing input to the remaining, similar input. LT
score is even positive when κ = 1, and the task is still solved.

G. IPL suffers from redundancy: The effect F is reversed when α = 1: the higher κ ,
the lower IT. Our interpretation is that, when only one of the two initial inputs is
relevant, but the other is a copy of it, it takes longer for Ap2 to figure out that the
lost information is still available in the remaining input. Note that the long-term
LT scores are still positive on average.

H. Complexity levels it off : It is expected and observed that, the more complex the
task (ξ), the less intense all the effects listed above. Indeed, when both Ap2 and An

struggle to lower the error, their relative advantage becomes less clear. Still, LT re-
mains positive on average.

In summary, we observe that IPL is overall beneficial on the long-term after a signature
change. Most of these results were expected, especially in the generic HHH situations.
However, it is worth noting that a short negative transfer perturbation (IT< 0) is observed

114 CHAPTER 6. EXPERIMENT IPL IS OSL

in special cases: obviously when an input is removed (−i), but also when a useless one
is added (+i) in HLF situations, should it be redundant with existing inputs (κ = 1) or a
simple distractor (α = 1).

As with TL in general, there were no guarantees, prior to the experiment, that this
negative effect would not overwhelm the whole learning process and take over the
long-term scores LT during the runs. Now that we measure that the long-term effect
is always positive on average, we are confident that the cost of negative transfer is, at
worst, still better than the cost of restarting the learning from scratch. We have thus
demonstrated that transfer with natural IPL projections works as expected, at least in
this idealized OSL situation, and that the protean approach of learning is still conceivable.

A few effects were unexpected. C shows that transfer is beneficial even if the prior
agent is completely unable to solve the task at hand, in a FHH situation. We suppose
that it learns information about the structure of the data it is later fed from. Considering
that, in this case, Ap2 and An both start with similar performance, but Ap2 learns more
efficiently than An, we suggest that this phenomenon be studied as an alternative parameter
initialization procedure. A parsimonious hypothesis is that Ap1 only learns to ignore the
useless initial input in these cases.

In addition, the parameter ρ was found to strengthen the effect C: the more structured
the data, the more the first-form agent had to transfer, even though it was always unable to
solve the task itself. Considering this parameter in the general case, however, there was no
clear influence of ρ on the reaction to the signature change event that we could identify.
Agents fed with noisy data sometimes proved to be significantly better at IPL than agents
fed with smooth data, and they sometimes proved to be significantly less good, although
we could not understand why or when. Possible reasons for this include that the concept
of “noise intensity” ρ is too weak as a representation of “data structure”; or that ρ only
influences learning outside signature change events, so IPL would be insensitive to it; or
that the influence of ρ on IPL is too complex to be figured out with the results of this
simple experiment only.

According to TL theory [Taylor and Stone 2009], there can be various reasons for the
second-form agent Ap2 advantage (see Section 4.2.1): either the agent gets a jumpstart

benefit, or learns faster, or learns better. The LT metric (7.85) is an aggregated estimation
of these 3 possible advantages, and IT (7.87) only measures jumpstart. As such, there
is no way to distinguish all effects from each other with these measures. However,
considering that many runs exhibit negative IT yet positive LT, we can confidently assert
that the jumpstart effect is not the only benefit of IPL in this setup. This question was
open in [Bonnici et al. 2019], and the effect C constitutes another argument in this favor.

The experiment presented in this chapter is idealized and abstract. It assesses the
sine qua non condition that IPL learners can be developed at least in an easy situation
like OSL, with the help of the generic natural projections.

6.8. RESULTS 115

The next chapter extends these preliminary results to a full-fledged RL situation, fea-
turing all challenges of incremental learning, where the data appears piece by piece and
not in full batch samples from a static training set [Losing et al. 2018]. In other terms,
while the agent learning timeline (horizontal axis in Figure 6.2) and the input data stream
timeline (horizontal axis in Figure 6.1) are not the same in the addressed OSL context,
they need to line up in RL. With full-fledged RL, the credit assignment problem also has
to be met [Sutton and Barto 2018]. Facing all these challenges to extend and complete the
above results is the subject of the next chapter.

In particular, when it comes to comparing IPL with other baselines, the traditional RL
benchmarks like mountain car and cart pole balancing [Sutton and Barto 2018] or Atari
Games [Silver et al. 2016; Mnih, Kavukcuoglu, Silver, Rusu, et al. 2015] and 3D crea-
tures [Gu et al. 2016; Lillicrap et al. 2015] cannot be directly used as they do not feature
signature changes yet. We first need to adapt them in order to compare IPL to naive or
alternate approaches. The first section of the next chapter is dedicated to the constitution
of such an adequate benchmark.

116 CHAPTER 6. EXPERIMENT IPL IS OSL

Chapter 7

Experiment Input Protean Learning in
Reinforcement Learning

The results shown in Chapter 6 address IPL natural and almost-natural projections in
an OSL situation, within continuous HHH, HLF and HHF landscape profiles, and with
deterministic agents. In this chapter, we conduct a similar experiment, with respect to the
protocol specified in Section 5.3.7. but we extend its scope in three directions. First the
learning situation is not OSL but full-fledged RL, so the agents have to face the credit
assignment problem. Second, more landscape profiles are addressed, like HFF or FHF,
using FFF as a baseline. Third, not only deterministic agents are tested, but also agents
that visit a space of stochastic policies. For the experiment to remain tractable, we focus
on a particular class of tabular RL environments, dedicated to addressing IPL, that we
expound in section 7.1.3. The projections tested are always natural (against (+i) events)
or almost-natural (against (−i) events).

To address PL in a RL situation, the agent needs to be embedded into a RL environ-
ment E. Instead of addressing one particular E, a whole class of environments is tested
to qualify the IPL agent reactions depending on the environment properties. Like in the
previous chapter, we restrict the study to IPL so we only consider (+i) and (−i) signa-
ture change events. We also restrict the analysis to “tabular” environments as described
in [Sutton and Barto 2018].

There are two motivations for this restriction. First, tabular environments are tractable,
so it is possible to analyse their properties. For instance, in the experiment, the true op-
timal policies P∗ are known for each tested environment, and described in Section 7.1.7.
Second, although they are hardly representative of full-fledged, large-scale environments
faced by real world RL agents, the tabular environments constructed here are non-trivial
and they exhibit diverse qualitative properties, corresponding to various IPL landscape
profiles. This makes them useful as theoretical benchmarks.

The benchmark described in Section 7.1 is dedicated to addressing IPL in RL. In addi-
tion to testing various environments, two traditional RL methods, namely Q-Learning and

118 CHAPTER 7. EXPERIMENT IPL IN RL

Actor-Critic with eligibility traces, are also tested to address IPL with both deterministic
and stochastic approaches to policy approximation in RL.

7.1 A Tabular Benchmark for Input Protean Learning

To address IPL in RL, we design a class of synthetic RL environments that is both mini-

mal, in the sense that it parsimoniously exhibits all properties relevant to IPL, and diverse,
in the sense that it covers various possible learning situations. This section first describes
tabular RL environments in general. Then, we explain the particular constraints enforced
in our specific benchmark. Finally, we describe the environments actually used. We take
time to express the benchmark properties in a generic way to encourage future extensions.

7.1.1 The transition function

A tabular RL environment is constituted of a set of states S, a set of possible agent con-

trols or actions U, and a set of possible rewards or feedbacks F. On each time step, the
agent stands on a state s ∈S, and chooses an action u ∈U. As a response, the environ-
ment yields a feedback f ∈F and moves the agent to a new state s′ ∈S. This (s, u, f , s′)
sequence is called a transition. Each environment is characterized by the transition pro-
cedure T that determines the next (f , s′) values for each possible state/action pair (s, u).

In tabular cases, S and U are finite sets. As such, the transition procedure T is cor-
rectly specified with a finite labelled, directed multigraph. Each node of the graph rep-
resents a state s ∈S, while each arrow represents a possible transition resulting from
picking a particular action u ∈U in this state. Arrows source in the predecessor state s,
they are labelled with the chosen action and the associated reward, i.e. (u, f), and they
target the associated subsequent state s′ ∈S. For instance, with S = {s1, s2}, U = {u1}
and F = {0, 1}:

T : s1 s2

(u1, 0)

(u1, 0)

(u1, 1)
(u1, 1) (7.1)

The example transition graph defined above is non-deterministic, because several dif-
ferent transitions are possible given one state/action pair. For instance, given (s2, u1), it
is unspecified whether the agent receives a feedback of 0 or 1, and whether it moves to
state s1 or s2, because the two arrows exist.

Stochastic RL Environments RL traditionally features one particular class of non-
deterministic environments: stochastic environments, also represented by Markov Deci-
sions Processes. In stochastic environments, whenever there exists several possible tran-
sitions given one state/action pair (s, u), the transition procedure T chooses among them

7.1. A TABULAR BENCHMARK FOR INPUT PROTEAN LEARNING 119

according to a probability distribution, i.e. (f , s′)∼ T (s, u). In this situation, T (s, u) is a
probability measure over the possible next transitions. For discrete feedback sets F, T is
therefore specified as:

T :

S×U→ [0, 1]F×S

(s, u) 7→
{
F×S→ [0, 1]
(f , s′) 7→ P((f , s′) | (s, u))

(7.2)

∀(s, u) ∈S×U, ∑
f∈F

∑
s′∈S

T (s, u)
(

f , s′
)
= 1 (7.3)

In other terms, each arrow in the representative graph of T is associated with a proba-
bility value, marked after a colon symbol ‘ : ’. For instance, (7.1) would become:

T : s1 s2

(u1, 0): 0.9

(u1, 0): 0.3

(u1, 1): 0.1
(u1, 1): 0.7 (7.4)

In this situation, picking action u1 in state s2 yields feedback f = 1 with 70% chances, and
the agent stays on s2, or it yields f = 0 with 30% chances, and the agent goes to s1 instead.
The transition function remains non-deterministic, but it is now completely specified.

Deterministic RL Environments RL environments are also possibly deterministic. In
this case, there is always exactly one possible transition for each state/action pair. Deter-
ministic environments can be considered degenerated stochastic environments where all
probabilities yielded by the transition function are either 0 or 1 (see Box 1.1). Viewed
another way, deterministic environments are degenerated non-deterministic environments
where every node s ∈S has exactly one outgoing arrow labelled with u for every u ∈U in
their representative graph, so there is no ambiguity left. For instance, (7.1) would become
deterministic if there were 2 possible actions to pick instead of only 1, i.e. U = {u1, u2}:

T : s1 s2

(u1, 0)

(u1, 0)

(u2, 1)
(u2, 1) (7.5)

In this situation, the agent standing in s2 has to pick action u2 to get the reward and
remain in s2, because it would get no reward and move to s1 if it picked action u1 instead.
Deterministic transition functions can be equivalently specified as a plain function:

T :

{
S×U→ S×F

(s, u) 7→ (s′, f)
(7.6)

120 CHAPTER 7. EXPERIMENT IPL IN RL

Deterministic environments are simple and yield qualitatively different learning situ-
ations. As such, the benchmark developed in subsequent sections only contains determin-
istic environments. Under IPL context however, deterministic environments sometimes
behave like non-deterministic environments from the agent perspective, so they are better
addressed with stochastic agents. This is a major particularity of IPL discussed later. To
understand this, we first need to specify how the agent perceives its environment.

7.1.2 The Agent/Environment Interface

In the agent/environment retroaction loop, the agent procedure A is expected to produce
actions u in response to incoming states s, like in this informal diagram:

T A

s

u

But there is not always a 1-to-1 mapping between environmental states s produced by T

and the inputs i actually received by the agent inner procedure P, or between the possible
environmental actions u and the outputs o actually produced by P. In other terms, the
agent does not perceive the environmental state exactly, and does not exactly produce all
the actions expected by the environment. The signatures of P and T do not exactly match.

Signature Conversion The conversion of environmental states s into agent inputs i is
represented by an observation procedure I, while the conversion of the agent outputs o

into environmental actions u is represented by an actuation procedure O:

T P ∈P

I

O

s ∈S i ∈I

o ∈Ou ∈U

E A

interface

In the benchmark we describe hereafter, I is a deterministic function whose image is
the set of every possible agent input I:

I :

{
S→ I

s 7→ i
(7.7)

The core property of IPL is that I is possibly modified during the course of learning. In
the roverbot example, (+i) occurs on a new sensor plug and (−i) on a sensor removal, so

7.1. A TABULAR BENCHMARK FOR INPUT PROTEAN LEARNING 121

the set of possible environmental states S does not change, only I and I. This is the case
in our experimental benchmark, were both I(t) and I(t) depend on time.

In the general PL context, the same principle holds for the set of possible outputs O
and the actuation function O, but this falls outside the scope of IPL. In the environments
we construct in the next, and for the sake of simplicity, the sets O and U are always the
same, and O is the identity function:

O =U (7.8)

O(o) = o = u (7.9)

In other terms, in the experiment, the agent decides its actions exactly.

Given T , I, O, an initial state s(0) and an inner agent policy P (described in Sec-
tion 7.1.5), the agent/environment retroaction loop constitutes a fully specified dynamical
system, yielding successive values of inputs, outputs, actions, feedbacks, and new states
called together a learning trajectory J:

J = (i(t), o(t), u(t), f (t), s(t +1))t∈N (7.10)

Input Signature Change Consistently with Section 5.3, I(t) results from the combi-
nation of various input channels, a tuple of domains (Id(t))d∈{1, ..., D(t)} whose Cartesian
product constitutes I(t):

I(t) =
D(t)

∏
d=1

Id(t) (7.11)

i(t) = (i1(t), . . . , iD(t)) (7.12)

With every id(t) ∈Id(t).

A (+i) signature change event results in that a new channel ID(t)+1 is appended to
the tuple, so the space of possible input values is extended to one more dimension. Con-
versely, a (−i) signature change event results in that an existing channel Id is removed
from the tuple, so the space of possible input values is projected into a space missing the
corresponding dimension d.

In the experiment (see Fig. 5.3), the learning trajectories last for tmax = 100000 it-
erations. Each run only undergoes one of the above signature change events, either (+i)

or (−i), at a specific time tchange = 50000. The agent signature is otherwise constant. Con-
sistency with the notations used in Chapter 5, we use the symbols Ī and Ī to refer to the
diminished input signature (before (+i) or after (−i)) and the symbols I and I to refer
to the augmented input signature (before (−i) or after (+i)).

122 CHAPTER 7. EXPERIMENT IPL IN RL

7.1.3 A Minimal Environment

For the sake of parsimony, we attempt to construct our experimental benchmark from a
minimal class of tabular environments where RL and IPL are still non-trivial.

Minimal Signature The set of possible agent outputs O is chosen to only contain two
values. As a consequence, on each step, the agent has a simple binary decision to make,
say, “dark” or “light”, which constitutes its very basic dilemma.

O = { , } (7.13)

Similarly, the set of possible feedbacks is reduced to a binary set: either the agent gets
null feedback, or it receives a unit reward. This is what makes the dilemma challenging.

F = {0, 1} (7.14)

The transitions graph T can therefore be simplified without ambiguity with the fol-
lowing graphical transformations. This is useful to specify the benchmark environments
in subsequent sections:

(, 0)
becomes ,

(, 1)
becomes 1

(, 0)
becomes ,

(, 1)
becomes 1

In other terms, null feedbacks are elided and the arrow color indicates the chosen
action u = o. For instance, the following two diagrams represent the same deterministic
transition function:

s1 s2

(, 0)

(, 1)
(, 0) (, 1)

becomes s1 s2 1
1

Minimal Signature Change Considering inputs, only two channels are used:
I1 and I2, and each channel is also binary. To distinguish the values they carry, we
call a and b the values carried by I1, while we use the symbols + and − to represent the
values carried by I2:

I1 = {a, b} (7.15)

I2 = {+, −} (7.16)

7.1. A TABULAR BENCHMARK FOR INPUT PROTEAN LEARNING 123

The agent receives combinations of these values. To illustrate this, imagine that a and b

convey shape information, while + and − convey color information:

a becomes + becomes

b becomes − becomes

The change events tested in the experiment are specified with respect to I1 and I2.

Ī =I1 (7.17)

I =I1×I2 (7.18)

We refer to Ī as the “1D” diminished signature, and to I as the “2D” augmented
signature. 1D agents only distinguish 2 values: {a, b}, whereas 2D agents distinguish
4 different values: {(a, +), (a, −), (b, +), (b, −)}. For illustration, all agents in the
experiment see the shapes, but 1D agents are insensitive to the color.

Minimal States The experimental environments are deterministic, so they contain no
hidden state. The learning agent does not perceive the states s directly, but distinguishes
4 different values at most (in 2D). For all possible inputs values i = I(s) to be useful,
i.e. for I to be always surjective, environments have to contain exactly 4 different states s:

S =
{

a+ , a− , b+ , b−
}

(7.19)

See for instance the 3 transitions functions TA, TB and TC in Figure 7.1, which are part
of the benchmark.

7.1.4 Diminished Projections of the Environment

The observation function I depends on the agent signature. In the 2D case, there is no loss
of information, so the agent perfectly distinguishes the states from one another with its
2 channels:

I2D :

a+ 7→
(

,
)

= (a, +)

a− 7→
(

,
)

= (a, −)

b+ 7→
(

,
)

= (b, +)

b− 7→
(

,
)

= (b, −)

(7.20)

In other terms, the augmented observation function is bijective:

I : S I (7.21)

In the end, it accesses enough information to understand the full transition function.

124 CHAPTER 7. EXPERIMENT IPL IN RL

a+

a−

b+

b−

TA

1

a+

a−

b+

b−

TB

1

11

a+

a−

b+

b−

TC

1

1

1

a b

T̄A

1
a b

T̄B

1
1

1

a b

T̄C

1
1

1

Figure 7.1: Example transition functions from the benchmark and their diminished projections.

However, in the 1D case, the agent only distinguishes the shape on the first channel:

I1D :

a+ 7→ = a

a− 7→ = a

b+ 7→ = b

b− 7→ = b

(7.22)

In other terms, the diminished observation function is not injective:

∀Ī : S→ Ī, ¬
(
Ī : S Ī

)
(7.23)

So 1D agents cannot distinguish a+ from a−, or b+ from b−: they are “missing a sensor”.
As a consequence, the best environment model they naively infer is a non-deterministic

transition process T̄ , corresponding to a transformation of T where each pair of nodes
with similar shape is collapsed into one node with undefined color (see Figure 7.1).

In T̄A, when receiving input a and choosing action , the 1D learning agent some-
times gets a reward, and sometimes not, depending on whether the true environment state
was a+ or a−. Similarly in T̄B or T̄C, when receiving input b and choosing action , it
sometimes navigates to a, and sometimes not, depending on whether the true environ-
ment state was b+ or b−. Note that TB and TC are projected into similar non-deterministic
diagrams, that a naive deterministic agent cannot distinguish from each other.

Here, the source of non-determinism in T̄ is not that the environment is stochastic,
but that T̄ contains hidden states (see Box 1.1). This is a key insight into IPL: signature
change events like (+i) or (−i) trigger modifications of the observation function,
resulting in that diminished agent face artefactual hidden states no matter the deter-

7.1. A TABULAR BENCHMARK FOR INPUT PROTEAN LEARNING 125

ministic nature of the environment. In other terms, the underlying Markov Decision
Process (MDP), becomes a Partially Observable MDP (POMDP) [Spaan 2012]. As a
consequence, the nature of the policy followed by the agent is decisive regarding its
ability to learn the best behaviour, this is the object of the next section.

7.1.5 Policy Types

In the situation described above, the searched policy space P plays a central role. Of
the three policy types described in Box 1.1 and Section 5.2.7 (deterministic, stochastic
and recurrent), only recurrent policies like in eq. (5.36) can systematically represent the
optimal behaviour in diminished T̄ situations, and solve the underlying POMDP. Indeed,
recurrent policies are equipped with a memory, so the agent can infer the environmental
hidden state and reproduce it internally. For instance in T̄A, a recurrent agent possibly
figures out that receiving input a and choosing action yields a reward when previous
input was b, but not when it was a, so it can adjust decisions based on this 1-step delayed
information. In other terms, based on memory, the agent can correctly discriminate the
transitions (a−, , 1, a+) and (a+, , 0, a+) from each other although they both appear
as “(a, , 0|1, a)”.

On the other hand, deterministic policies like in eq. (5.33) are not sophisticated enough
to figure this out, as they only depend on current input. In T̄A, if a deterministic agent
decides to pick when receiving a because it leads to (a−, , 1, a+), then it remains
trapped forever in the (a+, , 0, a+) transition loop and accumulates no reward on the
long run.

A compromise is struck by non-recurrent stochastic policies like in eq. (5.34). Non-
recurrent stochastic policies have no memory, but can reasonably enjoy the (a−, , 1, a+)

reward without remaining stuck forever in (a+, , 0, a+), because there is always a
chance that they escape with the other path (a+, , 0, b−) and get the reward again.

This experiment addresses how memory-less agents searching deterministic policies
spaces Pdet and non-recurrent stochastic policies spaces Psto react to IPL signature
change events (+i) and (−i). The case of recurrent policies Prec, featuring memory,
is left for future works, and the benchmark environments constructed here will also be
useful in addressing them.

In this experiment, diminished deterministic policies P̄det ∈ P̄det and augmented de-
terministic policies Pdet ∈Pdet are specified as plain functions:

P̄det :

{
Ī→ O

ī 7→ o
(7.24) Pdet :

{
I→ O

i 7→ o
(7.25)

Here are two examples in the context of this benchmark:

P̄det :

{
a 7→
b 7→ (7.26) Pdet :

(a, +) 7→
(a, −) 7→
(b, +) 7→
(b, −) 7→

(7.27)

126 CHAPTER 7. EXPERIMENT IPL IN RL

The example (7.26) represents a diminished agent that always chooses action when re-
ceiving input a, and action when receiving input b. Example (7.27) shows an augmented
agent that follows a more sophisticated policy because it distinguishes more states, but still
being deterministic.

The natural injection of P̄det into Pdet , described in eq. (5.43), is straightforward:
degenerated augmented policies simply ignore the second input channel. For instance, the
above example P̄det is projected into Pdet as:

P̄det :

{
a 7→
b 7→ =⇒ l(P̄det) :

(a, +) 7→
(a, −) 7→
(b, −) 7→
(b, −) 7→

(7.28)

In this situation, the augmented and diminished agents exhibit the same behaviour.

On the other hand, diminished stochastic policies P̄sto ∈ P̄sto and augmented stochas-
tic policies Psto ∈Psto are specified as parametrized probability measures:

P̄sto :

Ī→ [0, 1]O

ī 7→
{

7→ P(o = | i)
7→ P(o = | i)

(7.29) Psto :

I→ [0, 1]O

i 7→
{

7→ P(o = | i)
7→ P(o = | i)

(7.30)

Here are two examples in the context of this benchmark:

P̄sto :

a 7→
{

7→ P(| a) = 0.4
7→ P(| a) = 0.6

b 7→
{

7→ P(| b) = 0.7
7→ P(| b) = 0.3

(7.31)

Psto :

(a, +) 7→
{

7→ P(| (a, +)) = 0.2
7→ P(| (a, +)) = 0.8

(a, −) 7→
{

7→ P(| (a, −)) = 0.1
7→ P(| (a, −)) = 0.9

(b, +) 7→
{

7→ P(| (b, +)) = 0.8
7→ P(| (b, +)) = 0.2

(b, −) 7→
{

7→ P(| (b, −)) = 0.5
7→ P(| (b, −)) = 0.5

(7.32)

The example (7.31) represents a diminished agent that chooses action with 40% chances
when receiving input a, otherwise it chooses , and that chooses with 70% chances
when receiving input b, otherwise it chooses . Example (7.32) shows again that aug-
mented agents possibly follow more sophisticated policies because they distinguish more
states, although they are still non-recurrent.

The natural injection of P̄sto into Psto, described in eq. (5.43), follows the same prin-

7.1. A TABULAR BENCHMARK FOR INPUT PROTEAN LEARNING 127

ciple. For instance, the above example P̄sto injects into Psto as:

P̄sto :

a 7→
{

7→ P(| a) = 0.4
7→ P(| a) = 0.6

b 7→
{

7→ P(| b) = 0.7
7→ P(| b) = 0.3

=⇒ l(P̄sto) :

(a, +) 7→
{

7→ P(| (a, +)) = 0.4
7→ P(| (a, +)) = 0.6

(a, −) 7→
{

7→ P(| (a, −)) = 0.4
7→ P(| (a, −)) = 0.6

(b, +) 7→
{

7→ P(| (b, +)) = 0.7
7→ P(| (b, +)) = 0.3

(b, −) 7→
{

7→ P(| (b, −)) = 0.7
7→ P(| (b, −)) = 0.3

(7.33)

In this situation, the augmented and diminished agents exhibit the same behaviour.

In addition to l, there is also a natural injection m of deterministic policies into
stochastic policies, since deterministic policies can be considered degenerated stochastic
policies with only 0 or 1 probability measures:

m : Pdet Psto (7.34)

For instance:

Pdet :

(a, +) 7→
(a, −) 7→
(b, +) 7→
(b, −) 7→

=⇒ m(Pdet) :

(a, +) 7→
{

7→ P(| (a, +)) = 1
7→ P(| (a, +)) = 0

(a, −) 7→
{

7→ P(| (a, −)) = 0
7→ P(| (a, −)) = 1

(b, +) 7→
{

7→ P(| (b, +)) = 0
7→ P(| (b, +)) = 1

(b, −) 7→
{

7→ P(| (b, −)) = 1
7→ P(| (b, −)) = 0

(7.35)

This also holds for the diminished search spaces:

m : P̄det P̄sto (7.36)

128 CHAPTER 7. EXPERIMENT IPL IN RL

For instance:

P̄det :

{
a 7→
b 7→ =⇒ m(P̄det) :

a 7→
{
7→ P(| a) = 1
7→ P(| a) = 0

b 7→
{
7→ P(| b) = 0
7→ P(| b) = 1

(7.37)

In these situations, stochastic agents and deterministic agents exhibit the same behaviour.
Stochastic search spaces are therefore more general than deterministic search spaces,

which is the reason they can expect better results when faced with diminished inputs
like in examples shown in Figure 7.1. However, they still cannot infer the artefactual
environmental hidden state because they are non-recurrent. The situation is summarized
in the following diagrams:

Psto

P̄sto

Pdet

P̄det

m

m

ll (7.38)

Psto Prec (7.39)

Note that every injection relation is strict.

In the next, we combine the diagram (7.38) with diagram (5.58) to refine the IPL land-
scape profiles with respect to this relation between stochastic and deterministic search
spaces. As a consequence, the environment IPL profile can be used as a parameter of the
experiment no matter whether we address Psto or Pdet . Before we do so, we need to
enforce a few key properties of the benchmark.

7.1.6 Selecting Transition Functions

At this point, it is established that the environments used as a benchmark in the experi-
ment all resemble the example environments TA, TB, and TC shown in Figure 7.1. They are
deterministic tabular environments with 4 states, expecting binary actions values U =O,
yielding binary feedbacks F, and producing either 1D (diminished) or 2D (augmented)
observations on binary inputs channels combinations Ī =I1 or I =I1×I2. This
leaves room to numerous possible transitions functions (e.g., TA, TB, TC, . . .), whose topol-
ogy influences the learning and the agent reactions to IPL events. As a consequence, the
benchmark we constitute does not consist in only a few transitions functions, but in every
possible transition function fitting the above structure. As per the following count:

|T|=
∣
∣
∣(S×F)S×U

∣
∣
∣= (|S|× |F|)|S|×|U|

= (4×2)4×2 = 16777216
(7.40)

There are over 16 millions such transition functions.

7.1. A TABULAR BENCHMARK FOR INPUT PROTEAN LEARNING 129

However, not every T ∈T is actually suited to RL. In particular, there are two prop-
erties of T we need to enforce in our benchmark:

• First, reinforcement is essentially a trial-and-error process. As a consequence, we
cannot train RL agents within environments where it is impossible to reach back to
an earlier state and try other policies. In other terms, we want T , as a Markov pro-
cess, to be recurrent. Or we want T , as a directed graph, to be strongly connected.
In the next, we filter out every environment in T not meeting this condition.

• Second, the RL task tackled in this experiment belongs to the continuing tasks cate-
gory because it has no predefined duration or ending point [Sutton and Barto 2018].
As a consequence, we enforce that the reward eventually gathered by the agent
within T only depends on its policy, and not on its starting state. In the next, we
filter out every irrelevant environment from T regarding this condition.

In addition to the above restrictions, some transition functions within T are redundant
because they are just symmetric copies of each other. In the next, we also filter outer out
every redundant environment from the benchmark.

In the following few sections, we study T to structure the benchmark in three steps:

1. Filter out irrelevant transition functions from the benchmark according to the crite-
ria above. This reduces its size to only 80056 non-redundant relevant environments.

2. Use relations (7.38) and (5.58) to separate the benchmark into 8 distinct categories
depending on their “joint” IPL profile. The environment joint profile becomes a
parameter of the experiment.

3. Within each category, pick 100 transition functions at random to average the effect
of IPL across various environments specificities.

7.1.6.1 Transitions Connectedness

Not every T ∈T is relevant to RL. Consider the following transition function:

T :

a+

a−

b+

b−

1
1

1 ∈T (7.41)

Here T , as a Markov process, is not recurrent. This means that when the agent even-
tually reaches the subspace {a+, a−}, it will never be able to return to {b+, b−} again,
because there is no transition from a+ or a− to b+ or b−. This is a problem because RL is

130 CHAPTER 7. EXPERIMENT IPL IN RL

essentially a trial and error process, where the learner needs to reproduce its experience
until it finally figures out the best policy to solve the task at hand. In episodic tasks, recur-
rence is not a crucial property because the agent is guaranteed to always eventually start
over [Sutton and Barto 2018]. But in the continuing tasks addressed here, if the environ-
ment does not allow the agent to reach back to an earlier state and have another try, then
RL is not the right approach.

As a consequence, we restrict the benchmark to only contain the set of recurrent transi-
tion functions Trec ⊂T, i.e. the transition functions T such that for every x, y ∈S, there
exists a chain of actions (u1, . . . , un) that successively transitions from x to y. In other
terms, the directed multigraph representing T must be strongly connected. For example,
the following simple modification of T is recurrent and also part of the benchmark:

T :

a+

a−

b+

b−

1
1

1 ∈Trec (7.42)

Indeed, b− is reached from a+ with the actions chain (,), a+ is reached from a−

with the actions chain (, ,), etc. In a continuing context with this environment, a
RL learner is always able to reach back to a previous state and improve its policy again.

A careful screening of all transition functions in T yields the following count:

|Trec|= 5365248 (7.43)

7.1.6.2 Transitions Symmetries

Not every transition function is unique from the learner agent perspective. For instance,
consider the following two environments TD and T̃D:

TD :

a+

a−

b+

b−

1
1

1
T̃D :

a+

a−

b+

b−

1

1
1 (7.44)

The representation of TD and T̃D look different, but they only differ by their labels,
and the learning dynamics in either would always be the same in the experiment except
for relabelling.

In other terms, among all automorphisms in T, some are meaningless transforma-
tions T 7→ T̃ that do not transform the environment from the agent perspective. These
automorphisms are specified and studied in Annex A.1.

7.1. A TABULAR BENCHMARK FOR INPUT PROTEAN LEARNING 131

With these meaningless transformations correctly characterized, transition functions
in Trec are partitioned into C equivalence classes:

Trec =
C⋃

c=0

Teq(c) (7.45)

∀c, c′ ∈ {1, . . . , C}, c 6= c′ =⇒ Teq(c)∩Teq
(
c′
)
=∅ (7.46)

Within an equivalence class Teq(c), all environments are meaningless relabellings of each
other, so they are redundant and only one of them needs to be tested in the benchmark.
According to a deterministic procedure defined in Annex A.1, exactly one canonical tran-
sition function T ∈Teq(c) is picked within each class to finally constitute Tcan. Careful
screening of Trec yields the following count:

|Tcan|=C = 340136 (7.47)

7.1.6.3 Sensitivity to Initial State

The possible agent policies P ∈P differ by the actions they suggest in reaction to in-
puts, which implies that they trigger different transitions. As a result, they also differ by
the feedback they collect. Here, we study the relation between P and the corresponding
collected feedback F(P) for the two classes of policies addressed in the experiment: de-
terministic policies Pdet ∈Pdet and stochastic policies Psto ∈Psto.

First, consider augmented deterministic policies Pdet ∈Pdet , with these 3 examples:

PdetA :

(a, +) 7→
(a, −) 7→
(b, +) 7→
(b, −) 7→

PdetB :

(a, +) 7→
(a, −) 7→
(b, +) 7→
(b, −) 7→

PdetC :

(a, +) 7→
(a, −) 7→
(b, +) 7→
(b, −) 7→

(7.48)

Environments in the benchmark are deterministic with finite numbers of states and tran-
sitions. So if the agent sticks to any Pdet , its trajectory eventually cycles on itself forever.

For instance if the agent starts from initial state a+ in TD (A.1) and sticks to PdetA,
the trajectory ends up trapped on the cycle (a−, , b−, , b+,) forever. This cycle is
constituted of 3 transitions, and only 1 of them yields a reward. This enables a rigorous
characterization of the absolute policy “value” FTD

(a+, PdetA) =
1
3 . The value represents

the mean gain of the trajectory once trapped on a cycle. In its generic form:

FT :

{
S×P→ [0, 1]
(s, P) 7→ FT (s, P) = limit average reward

(7.49)

Note that the initial state matters. For instance, there is FTD
(a+, PdetB) = 0, but also

FTD
(b+, PdetB) =

1
3 , because the corresponding dynamical system is bistable with 2 dif-

ferent attractors (a+,) and (b+, , a−, , b−,), and they happen to yield different

132 CHAPTER 7. EXPERIMENT IPL IN RL

mean reward 0 and 1
3 . Depending on the starting state, the agent ends up in one or the

other, even though its policy, PdetB, is the same.

This property is undesirable in our context for three reasons. First, the RL task at
hand is a continuing task, so the starting state is not expected to be encountered again
on a regular basis. Second, the agents have no control over their starting state. Third, the
state they happen to stand on whenever they start testing a new policy is contingent to
their previous search trajectory. In shorter terms, we expect the agents to explore P, and
not S×P. As a consequence, we restrict the benchmark so it only contains starting state

independent transition functions T ∈Tssi ⊂Tcan such that:

∀s, s′ ∈S, ∀P ∈P, FT (s, P) = FT

(
s′, P

)
(7.50)

Interestingly, the property (7.50) holds for every Psto ∈Psto provided it holds for ev-
ery Pdet ∈Pdet , because loosening a strict deterministic policy into a stochastic policy
that allows the agent trajectory to occasionally escape deterministic cycles only results in
connecting together cycles whose values are supposed to be the same. As a consequence,
we only need to check the property for every Pdet ∈Pdet .

A careful screening of Tcan yields that:

|Tssi|= 80056 (7.51)

Tssi constitutes the final benchmark used in our experiment.

For instance, the three example transition functions TA, TB and TC specified in Fig-
ure 7.1 belong to Tssi. Note that (7.50) does not imply that the limit cycle is always the
same regardless of the starting state, only that if there are several possible limit cycles,
then they all have the same value. For instance in TA, the reaction function PdetC (7.48)
either leads to cycle (a+,) or cycle (b+, , b−,), depending on the starting point, but
both have value 0.

Note that the property (7.50) is weaker than the traditional requirement that
RL Markovian environments be ergodic [Sutton and Barto 2018]. Ergodicity ensures that
there exists a limit distribution of states and transitions in the corresponding process, but
it constitutes a hypothesis on the environment structure that IPL profiles are indifferent to.
T is ergodic if it is both recurrent and aperiodic. Section 7.1.6.1, has ensured that every
transition function in the benchmark is recurrent, but Tssi still contains periodic environ-
ments. In these environments, some states can only be attained on odd or event time steps,
or multiples of 4, etc. However, their IPL profile is controlled.

Arguably, the restriction (7.50) reduces the benchmark diversity, since it rules out non-
redundant, recurrent environments relevant for both RL and IPL. Consequently, we do not
defend that this reduction should always be used when reproducing the benchmark, espe-
cially when testing learning agents able to control their starting state. This experiment uses
the restriction for two reasons. First, every tested agent (see Section 7.2) is a simple reac-
tive agent, either deterministic or stochastic. The addressed decision process (Q-Learning

7.1. A TABULAR BENCHMARK FOR INPUT PROTEAN LEARNING 133

or Actor-Critic) is sophisticated enough to “pick an action” regarding current input, but
not to “navigate to a starting state of interest”. Second, the restriction permits a separation
of the benchmark into 8 joint landscape profiles described in the next section, which are
used as experimental parameters.

7.1.7 Optimality Analysis of the Benchmark

In this section, we analyse the landscape of Pdet and Psto for every environment T ∈Tssi

constituting the benchmark, with respect to the objective function F defined in eq. (7.49).
This permits a categorisation of the landscapes into 8 joint IPL profiles.

7.1.7.1 Computing Mean Rewards

The environments in Tssi are simple enough that the exact analytical profile of F can be
computed within each of them. F is the limit distribution of the corresponding Markov
Process, assuming uniformly randomized starting states s(0), computed for every tran-
sition function in Tssi with the help of the symbolic computation software Mathemat-

ica [Wolfram Research 2018]. Consider for instance a 1D agent trying the following di-
minished policy:

P̄sto :

a 7→
{

7→ P(| a) = pa

7→ P(| a) = 1− pa

b 7→
{

7→ P(| b) = pb

7→ P(| b) = 1− pb

(7.52)

In the example environments TA, TB or TC (Figure 7.1), we calculate that the mean ex-
pected future reward is:

FTA
(pa, pb) =

pa pb (pa−1)(pb−1)

p2
b (pa−2)+2(1+ pb− pa)

(7.53)

FTB
(pa, pb) =

pa− pb (pa−1)2−1
pb + pa (5+ pa (pb−2)−2 pb)−4

(7.54)

FTC
(pa, pb) =

pb (pb−1)(pa−1)2−1
pa (2+ pb (pb−2))− pb (pb−2)−4

(7.55)

Functional analysis of this class of formulae yield the exact optimal policies sets P̄∗

and P∗ for every environment in Tssi, along with the values of the maximum expected
mean reward F̄∗ and F∗.

For instance, in environment TB, the maximum mean reward that a diminished
1D agent possibly attains with a stochastic policy from P̄sto is 2

3 . And the only way to at-
tain it is to follow the degenerated policy where pa = 0 and pb = 1, so it turns out that the
optimal behaviour is also possibly found by a deterministic agent exploring P̄det . In TC,
the maximum possible value F∗ is 1

2 , but any policy achieves it provided pa = 1. This in-
cludes both policies from P̄det and policies exclusive to P̄sto. In contrast, the maximum

134 CHAPTER 7. EXPERIMENT IPL IN RL

expected reward in environment TA is much lower, approximately 0.0431, but is attained
for pa ≈ 0.660 and pb ≈ 0.416, so no deterministic policy in P̄det achieves this score.

From these examples, it appears that the relation between optimal regions of Pdet and
optimal regions of Psto is not straightforward. One consequence is that the IPL profiles
of Pdet and Psto are not necessarily the same, even within the same environment. We
therefore expect that the agents tested in the experiment undergo different learning expe-
riences whether they explore deterministic or stochastic policy spaces. Eventually, both
IPL profiles need to be specified as experimental context in the next.

7.1.7.2 Optimal Deterministic vs. Optimal Stochastic Policies

To expound the connections between Pdet and Psto profiles, we consider the set of rela-
tions shown in Section 5.3 regarding generic policy search spaces P again. These were
summarized in diagram (5.58), reminded here:

P̄

P̌ P

F̄∗⊲ P̄∗

F∗⊲ P̌∗

l

⊆

⊆

>(augmented policies)

(diminished policies)

The above does not yet distinguish deterministic policies from stochastic policies.
Section 7.1.5, has also shown the following relations in diagram (7.38):

Psto

P̄sto

Pdet

P̄det

m

m

ll

Combining the two sets of relations in the context of our deterministic, tabular bench-
mark, we obtain the following connections between the various tested policies spaces:

F∗sto

F̄∗sto

F∗det

F̄∗det

=

6

> >

⊲P̌∗sto⊳P̌∗det

⊲P̄∗sto⊳P̄∗det

P̌sto

P̄sto

P̌det

P̄det

⊆

⊆

⊇

⊇

PstoPdet
m

m

m

ll

(augmented)

(diminished)

(deterministic) (stochastic)

(optimal) (7.56)

The new relations appearing in diagram (7.56) are explained in the next.

1Exactly: the first root of a degree 5 polynomial, namely x 7→ 32x5−192x4+383x3−216x2+32x−1.

7.1. A TABULAR BENCHMARK FOR INPUT PROTEAN LEARNING 135

In environment TA (Figure 7.1), every diminished deterministic policy yields the same
reward FTA

(P̄det) = 0 because all cycles have null value in TA. However, with 1D stochas-
tic policies, there are chances that the null cycles be sometimes escaped to undergo
the (a−, , 1) transition without getting subsequently trapped forever in the (a+, , 0)
cycle, yielding a positive mean expected reward. The formula (7.53) reveals that this mean
reward is at most ≈ 0.043. In summary, it is possible that a diminished stochastic policy
from P̄sto does better than the best diminished deterministic policy in P̄det . Since every
deterministic policy has an equivalent stochastic image m(P̄det) ∈ P̄sto, this yields that in
general:

F̄∗det 6 F̄∗sto (7.57)

This is the reason why, as discussed in Section 7.1.4, there is an interest in tackling IPL sit-
uations with stochastic agents even within deterministic environments.

Such a situation is impossible with the augmented policy sets Psto and Pdet , because
the corresponding augmented observation function introduces no hidden state anymore.
When the environment is finite and deterministic, any deterministic trajectory J induced
by Pdet ∈Pdet eventually ends up trapped on a cycle. The environment is therefore struc-
tured by the transition cycles that provide maximum mean reward. Consider for instance
the following environment:

TE :

a+

a−

b+

b−1

1 1 (7.58)

The two cycles (a+, , a−,) and (b+, , b−,) yield the best possible mean reward: 1
2 .

Among the set of every possible trajectories, the only best trajectories J∗ are the ones
that either stick to one of those optimal cycles, or occasionally switch from one optimal
cycle to another. It is possible for deterministic policies in Pdet to follow the first kind of
optimal trajectories, here for instance with:

Pdet :

(a, +) 7→
(a, −) 7→
(b, +) 7→
(b, −) 7→

(7.59)

Therefore, no trajectory in Psto can yield better reward than the best deterministic policies
in Pdet . In other terms:

F∗sto = F∗det (7.60)

(7.57) and (7.60) complete the relations in diagram (7.56).

136 CHAPTER 7. EXPERIMENT IPL IN RL

7.1.7.3 Joint IPL Profiles

A consequence of these non-trivial connections between stochastic and deterministic
search spaces is that Pdet and Psto possibly belong to different IPL profiles, even within
the same environment. For instance within environment TA, the deterministic landscape
matches the FI profile FHH because every P̄det yields the same null reward, but the
stochastic landscape matches the HI profile HHH because some P̄sto are better than others.
The environment TA is therefore referred to with the joint profile: FHH-HHH.

Not every combination of IPL profiles into a joint profile is possible. There are a few
particular constraints that we expound in Annex A.2. Before running the experiment, the
joint profile of every environments in Tssi is calculated. Careful screening of the bench-
mark yields the partition summarized in Table 7.1.

Pdet-Psto count
joint profile
FFF-FFF 3 162
HFF-HHF 213
FHF-HHF 3 149
HHF-HHF 54 856
HLF-HLF 1 464
FHH-FHH 118
FHH-HHH 3 483
HHH-HHH 13 611
total |Tssi|= 80056

Table 7.1: Joint profiles partitioning the Tssi benchmark.

Some categories are missing from the benchmark, either because of the restrictions
described in Table A.1, or because of the parsimonious nature of Tssi. Nevertheless, they
are sufficiently diverse to address IPL in various learning situations. Degenerated profiles
like FFF are useful as experimental baselines to address the more general cases like HHH.

100 transition functions are randomly drawn from each joint profile listed in table (7.1)
to finally constitute the environments tested in the experiment.

7.2 The RL Agents

In the previous section, we have described the tabular RL environments E used in the
experiment and their transition functions T . We have described the (O, I(t)) signature
of the IPL learning agent within it, and also the policies search spaces P supposed to
be explored by the agent for approximations P̂ of the optimal policies P∗. The picture of
the experiment run in this chapter is still incomplete, because it is unspecified how this
exploration is performed. This section explains how the feedbacks values f (t) produced
by E are actually used by A to search P.

7.2. THE RL AGENTS 137

7.2.1 Explored Search Spaces

The search procedure A is the heart of the learning process, and the object of RL science
rather than strict IPL. This experiment tests 2 different, traditional learning procedures
described in [Sutton and Barto 2018]:

• Q-Learning (QL), a simple traditional method well-suited for tabular environments.
Agents undergoing QL explore Pdet in search for good deterministic policies.

• Actor-Critic (AC), another traditional method searching Psto. To contrast with
QL simplicity, we choose a sophisticated variant of AC featuring eligibility traces.

These procedures are well described in the literature, but it is yet unspecified how
they are supposed to accommodate signature change events like (+i) and (−i). In the
next, we explain the learning algorithm for QL and AC, but also the transfer projections
we use to support IPL so the methods safely commute between P̄ and P. In accordance
with the principles expounded in Section 5.3, we only construct simple projections
consistent with the natural projection l : P̄ P, and with the class of almost-natural
reverse projections p : P P̄. The core idea of the experiment is to verify that these
projections provide satisfying results in a variety of IPL situations.

In the context of our benchmark, P̄ and P can be represented within [0, 1]|I| hyper-
cubes. For instance, there is a natural bijection between P̄sto and [0, 1]2, represented in
Figure 7.2.b. On the other hand, there is a natural bijection between P̄det and {0, 1}2.
P̄det corresponds to degenerated stochastic policies for which every associated probabil-
ity measure is exactly 0 or 1. These lie on the corners of the hypercubes, as represented
in Figure 7.2.a. Similarly, for augmented policies, there is a natural bijection between
policies Psto and [0, 1]4, whose corners constitute Pdet represented as {0, 1}4.

Interestingly, the tested learning methods QL and AC do not exactly explore Pdet

and Psto, because they need to keep off the hypercubes boundaries to ensure continual ex-
ploration. In practice, QL explores a discrete set of stochastic policies as a proxy to Pdet ,
illustrated in Figure 7.2.c, and AC only visits a subset of non-degenerated stochastic poli-
cies as a proxy to Psto, illustrated in Figure 7.2.d. To ensure consistency of the results, we
parameterize QL and AC so the corresponding offset pmin is the same in both approaches.

7.2.2 The Agent Objective

In section 7.1.7, we have categorized the environments based on their joint IPL profiles.
To this end, every policy was evaluated by its future mean expected reward FT (P) (7.49).
This value remains theoretical for three reasons. First, it assumes that the agent always
sticks to the same policy, which is wrong in practice. Second, it is computed irrespective
of the starting state, because of the property (7.50). Third, only a high-level analysis of
the tabular environments makes its computation possible.

138 CHAPTER 7. EXPERIMENT IPL IN RL

(0, 0) (0, 0)(1, 0) (1, 0)

(0, 1) (0, 1)(1, 1) (1, 1)

a) Theoretical P̄det .

c) P̄det as explored by QL.

b) Theoretical P̄sto

d) P̄sto as explored by AC.

pmin =
ε
2 pmin = f (Wmax) (7.84)

Figure 7.2: Representation of diminished deterministic and stochastic search spaces in the bench-
mark: P̄det and P̄sto. The first dimension of the squares represents the probability of picking ac-
tion given input a, and the second dimension represents the probability of picking action given
input b. Black regions in a) and b) represent the theoretical search spaces, while black regions in c)
and d) represent the regions actually searched by the heuristic agents.

But the learning agent is blindly embedded into the environment, and does not know
the underlying states or the structure of the transition function. Its current policy changes
as it explores P and it is always standing on one particular state. As such, A cannot
access or use F to guide its search within P. Instead, it must approximate the value of
each tested policy P with an ad hoc estimation of the future mean reward constituting its
maximization goal. This estimation has to be computed from the feedbacks values f (t)

actually received during interaction with the environment. One common formal goal for
the agent is the discounted future gain G(P) [Sutton and Barto 2018]. The discounted gain
is defined in stochastic environments under the assumption that the evaluated policy P is
followed forever, and given a discount factor γ ∈ [0,1[:

G(P)(t) =
∞

∑
t ′=t

γ t ′−t f (t) (7.61)

The parameter γ characterizes the learning procedure regarding the credit assignment
tradeoff. When γ is 0, the agent only considers immediate rewards and is always greedy
for the next transition. The higher γ , the more long-term the estimation and the agent picks
actions that yield better future rewards even though they do not immediately pay off.

Interestingly, the value of G(P) depends on time and involves the values of future feed-
backs, which cannot be accessed by the agent either. The two RL approaches described in
the next attempt to provide reasonable estimation of G, or the policies “values”, based on
past experience, so as to finally settle on acceptable policies P̂.

7.2. THE RL AGENTS 139

7.2.3 Q-Learning

The first RL method tested in the experiment is QL. This is a search over the space of
deterministic policies P̄det or Pdet , that aims at maximizing the expected discounted
gain G (7.61) with an optimal policy P̄∗det or P∗det . To this end, the agent follows a stochastic
policy that only differs from deterministic ones by a small probability measure ε ∈]0, 1[
called exploration rate. For instance, instead of following P̄det with:

P̄det :

{
a 7→
b 7→ (7.62)

the QL agent undergoes the following stochastic policy:

P̄sto :

a 7→

7→ P(| a) = ε

2
7→ P(| a) = 1− ε

2

b 7→

7→ P(| b) = 1− ε

2
7→ P(| b) = ε

2

(7.63)

as a proxy for P̄det . For this reason, QL is referred to as an off-policy method [Sutton and
Barto 2018; Watkins 1989].

The parameter ε embodies the exploration vs. exploitation tradeoff. The higher ε , the
better the exploration of the transition function. The lower ε , the lower the offset between
the policies evaluated, P̄detor Pdet , and the policies actually followed, P̄sto or Psto (see
Figure 7.2.c).

While they follow the proxy policy, QL agents collect information from the envi-
ronment to estimate one particular function: Q : I×O→ R, called a value function. Q is
defined as the expected discounted gain (see eq. (7.61)) for a trajectory initialized by (i, o)

and then following an optimal policy P∗det forever. To this end, the agent iteratively updates
a table indexed by I×O, initialized at 0, and holding every approximated value Q̂(i, o).
The following update algorithm is run on each received (i(t), o(t), f (t), i(t +1)) quadru-
plet.

First, a critical value called the temporal difference is calculated:

δ ← f (t)+ γ max
o∈O

Q̂
(
i(t +1), o

)
− Q̂

(
i(t), o(t)

)
(7.64)

δ is a measure of the prediction error, contrasting the current appreciation Q̂ of the envi-
ronment and the feedback value actually received f (t).

In response to this error, the relevant estimated value is updated in the table, in the
direction pointed by δ . A third method parameter called the learning rate, η ∈ R+∗, spec-

140 CHAPTER 7. EXPERIMENT IPL IN RL

ifies the magnitude of this update:

Q̂
(
i(t), o(t)

)
← Q̂

(
i(t), o(t)

)
+η δ (7.65)

For instance, with η = 0.1, γ = 0.9 and a 1D agent exploring P̄det , the following table
transformation occurs after transition (a, , 1, b):

Q̂

a 0.1 0.2
b 1 0.8

←
Q̂

a 0.1 0.37
b 1 0.8

(7.66)

The Q̂ table determines the deterministic policy currently evaluated by the agent, ac-
cording to the greediness rule:

P̄det

(
Q̂
)

:

a 7→ argmax
o∈O

(
Q̂(a, o)

)

b 7→ argmax
o∈O

(
Q̂(b, o)

) (7.67)

In the above example:

P̄det

(
Q̂
)

:

{
a 7→
b 7→ (7.68)

However, the algorithm must stick to the exploration principle so as not to get stuck
on local optima. On each time step, there is a chance ε that a uniform random action be
chosen instead of the one dictated by P̄det , thus the actually followed policy:

P̄sto

(
Q̂
)

:

a 7→

7→ P(| a) = ε

2
7→ P(| a) = 1− ε

2

b 7→

7→ P(| b) = 1− ε

2
7→ P(| b) = ε

2

(7.69)

For this reason, the set of policies actually visited during QL search is the one represented
in Figure 7.2.c with pmin =

ε
2 .

The QL methods comes with theoretical guarantees. In the augmented, 2D situation,
with the above update rule and the above policy combined, it is guaranteed that Q̂(t)

eventually converges towards the true value function Q, and that Pdet

(
Q̂(t)

)
eventually

converges towards P∗det . However, in diminished situations like the 1D case, this guarantee
does not hold because the diminished observation function Ī : s(t) 7→ i(t) is not injective
anymore, so the environment admits hidden states. This makes it more difficult for
IPL agent to accommodate diminished input situations.

7.2. THE RL AGENTS 141

The above algorithm becomes ill-defined when (+i) and (−i) events occur. For in-
stance, the Q̂ table belongs to RI1×O before the (+i) event to represent diminished tar-
geted policies in P̄det , but it should belong to R(I1×I2)×O after the (+i) event, to repre-
sent augmented targeted policies in Pdet . These two sets are not isomorphic and Q̂ cannot
belong to both. As a consequence, the method needs to be adapted to accommodate IPL.

This is where the basic transfer projection that we wish to address in the experiment is
introduced. When (+i) occurs, we augment the Q̂ table with a duplication of the relevant
lines, according to:

Q̂← Q̂′, Q̂ ∈ RI1×O, Q̂′ ∈ R(I1×I2)×O

∀(i1, i2), o ∈ (I1×I2)×O, Q̂′
(
(i1, i2), o

)
= Q̂(i1, o)

(7.70)

For instance:

Q̂

a 0.1 0.2
b 1 0.8

←

Q̂′

(a, +) 0.1 0.2
(a, −) 0.1 0.2
(b, +) 1 0.8
(b, −) 1 0.8

(7.71)

This is consistent with the natural projection l : P̄det Pdet , because the policy
targeted by the agent after the transformation is the image by l of the policy targeted
before the transformation.

On a (−i) event, the table is diminished instead with a mean aggregation of the rele-
vant lines, according to:

Q̂← Q̂′, Q̂ ∈ R(I1×I2)×O, Q̂′ ∈ RI1×O

∀i1, o ∈I1×O, Q̂′
(
i1, o

)
=

1
|I2| ∑

i2∈I2

Q̂
(
(i1, i2), o

) (7.72)

This effectively results in information loss, for instance:

Q̂

(a, +) 0.9 0.1
(a, −) 0.7 0.8
(b, +) 0.2 0.6
(b, −) 0.5 0.4

←
Q̂′

a 0.8 0.45
b 0.35 0.5

(7.73)

This is consistent with the almost-natural projections p : Pdet P̄det , because the pol-
icy targeted by the agent before the change would not be transformed if it happened to be
a degenerated image of l. Note that this is not the only possible transformation consistent
with almost-natural transformations. In future works, other (−i) transformations will be
tested like random aggregation or min/max aggregations.

142 CHAPTER 7. EXPERIMENT IPL IN RL

s ^ draw(S) # random initial state Q ^ 0 # tabular action-state value function
η ^ 0.1 # learning rate pmin ^ 0.01 or 0.05 or 0.10 # minimal exploration rate
γ ^ 0.9 # discount factor ε ^ 2× pmin # greediness parameter
Loop:

With probability 1− ε:
a ^ maxa Q(s, a) # pick greedy action

else:
a ^ draw(A) # pick random action

Take action a, observe s′ and f ′.
If (+i) occurred: # Patch algorithm to accommodate change events.

Q((s1, s2), ·) ^ Q(s1, ·) # (+i): Duplicate every line in the value table.
If (−i) occurred: # (−i): Aggregate pairs of lines.

Q(s1, ·) ^
1
|I2| ∑s2

Q((s1, s2), ·) # These constitute (almost-)natural projections.

δ ^ f + γ maxa Q(s′, a)−Q(s, a) # calculate temporal difference
Q ^ Q+η δ # learning step: update value function approximation
s ^ s′ # step forward

Listing 7.1: Pseudocode for input signature change accommodation in traditional
Q-learning algorithm with traditional (s, a) notations for action/state. State is considered
2-dimensional s = (s1, s2) and the Q table is either indexed by s1 or (s1, s2) depending
on the underlying observation function arity. The highlighted structural transformations
of the table correspond to the operations described in eqs. (7.70) and eq. (7.72).

These projections operations constitute the low-level transfer method that we address
in our IPL experiment. The purpose is to verify that these simple accommodations of IPL
work in practice for the traditional QL approach to RL, at least within the benchmark
environments.

7.2.4 Actor-Critic

The second method tested in the experiment is AC. This is a search over the space of
stochastic policies Psto or P̄sto. Instead of focusing on the value function approxima-
tion Q̂, then deriving the optimal policy from it, AC attempts to directly approximate the
optimal policy P∗sto or P̄∗sto with a gradient search over the policies landscape.

To this end, a preferences or “weights” table W ∈ RI×O is defined, in a fashion similar
to the Q̂ table, except that it does not contain approximations of the policy "values",
but arbitrary numbers instead. The policy Psto(W) followed by the agent is the policy
determined by the exponential softmax transformation of W :

Psto(W) : i 7→

7→ eW (i,)

eW (i,)+ eW (i,)

7→ eW (i,)

eW (i,)+ eW (i,)

(7.74)

7.2. THE RL AGENTS 143

For instance in the diminished situation:

W

a -0.8 0.2
b 0.6 -1.3

=⇒ P̄sto(W) :

a 7→

7→ e−0.8

e−0.8 + e0.2 ≈ 0.269

7→ e0.2

e−0.8 + e0.2 ≈ 0.731

b 7→

7→ e0.6

e0.6 + e−1.3 ≈ 0.870

7→ e−1.3

e0.6 + e−1.3 ≈ 0.130

(7.75)

In addition to W , AC uses another tabular function V̂ ∈ RI supposed to approximate
the state-value function V . The definition of V resembles Q, but it does not involve the
currently chosen action. The value V (i) represents the expected future discounted gain for
a trajectory starting from i then following the optimal policy forever. Finally, a running
estimate of the next expected feedback, f̂ ∈ R, is also used in this method. All values in
tables W and V̂ are initialized to 0, and so is f̂ .

Similarly to QL, entries in W , V̂ and f̂ are regularly updated whenever a new quadru-
plet (i(t), o(t), f (t), i(t +1)) becomes available. On each step of the learning procedure,
the same typical value called temporal difference δ is first calculated:

δ ← f (t)− f̂ +V̂ (i(t +1), o(t))−V̂ (i(t), o(t)) (7.76)

Then, the expected reward value is updated with learning rate η similar to the learning
rate parameter in QL:

f̂ ← f̂ +η δ (7.77)

Regarding W and V̂ updates, the learning rule is more complex because we choose a
sophisticated variant of AC that uses eligibility traces to keep track of the most relevant
values in the tables to update on each step. Eligibility traces are two associated tabular
functions: zW ∈ RI×O and zV ∈ RI, supposed to weight the entries in W and V̂ most rel-
evant to be updated next. Eligibility traces consider that a value is relevant to be updated
not only if directly invoked by the current transition quadruplet, but also if it has recently

been invoked by a former quadruplet. The further back in time the former quadruplet,
the less relevant the update. This decay of relevance back in time is a geometrical de-
cay defined with two additional method parameters λW and λV ∈ [0, 1] called eligibility

decay rates. They constitute another traditional accommodation of the credit assignment
problem [Sutton and Barto 2018].

Eligibility traces are first set to zero. On each step, their past values decay and new
values are bumped. This calculation involves the probability p̄ that the agent had not taken

144 CHAPTER 7. EXPERIMENT IPL IN RL

action o(t) this time step:

p̄←
{

Psto(i(t),) if o(t) =

Psto(i(t),) if o(t) =
(7.78)

∀(i, o) ∈ I×O, zW (i, o)← λW zW (i, o)+

{

+ p̄ if o = o(t)

− p̄ if o 6= o(t)
(7.79)

∀i ∈ I, zV (i)← λV zV (i)+

{

1 if i = i(t)

0 if i 6= i(t)
(7.80)

The bump value in (7.80) corresponds to the gradient of the value V̂ (i(t)) with respect
to the whole table V̂ . And the bump value in (7.79) corresponds to the gradient of the log-
probability ln(Psto(i(t), o(t))) with respect to the preferences table W . This classifies AC
within the class of gradient search heuristics.

Once the eligibility traces have been updated, the values of V̂ and W are updated
according to:

∀(i, o) ∈ I×O, V̂ (i, o)← V̂ (i, o)+ηV δ zV (i, o) (7.81)

∀i ∈ I, W (i)←W (i)+ηW δ zW (i) (7.82)

With dedicated learning rates ηW and ηV ∈ [0, 1].

Like QL, the above procedure is guaranteed to converge towards P∗sto in the augmented
2D case, due to the policy gradient theorem [Sutton and Barto 2018], but not in the
diminished 1D case due to the presence of hidden states in the environment.

Like QL, AC agents enforce exploration of the environment and the policies space by
ensuring that the preferred action is not systematically taken on each step, and that the
other, non-preferred action is sometimes chosen instead. In QL, the non-preferred action
is taken with probability pmin =

ε
2 on each step. In AC, this probability depends on the

preference table according to (7.74).

Consequently, when AC agents converge towards these particular, degenerated de-
terministic policies Pdet ∈Psto, their exploration rate pmin tends towards zero. This
makes QL and AC not straightforward to compare in the experiment. To alleviate this
phenomenon, the above AC procedure is modified to maintain a base level of exploration
throughout learning. The last update operation (7.82) is completed with a clipping opera-
tion so the preferences magnitude never exceeds one limit value Wmax:

∀i ∈ I×O, W (i)← sign(W (i))min(|W (i)|, Wmax) (7.83)

This way, the explored policy never tends towards strictly deterministic policy, as there is

7.2. THE RL AGENTS 145

W ^ 0 # preferences table parametrizing policy: π(a|s, W) = eW(s, a)/∑eW(s, ·) (eq. (7.74))
s ^ draw(S) # random initial state V ^ 0 # tabular state value function

zV , zW ^ 0 # eligibility traces f̂ ^ 0 # mean reward estimation
λV , λW ^ 0.9 # trace decay rates pmin ^ 0.01 or 0.05 or 0.10 # minimal exploration rate

η , ηV , ηW ^ 0.1 # learning rates Wmax ^
1
2 ln
(

1
pmin
−1
)

preferences bound (eq. (7.84))

Loop:
a ^ draw(π(·|s, W)) # pick action according to current policy
Take action a, observe s′ and f ′.
If (+i) occurred: # Duplicate lines in tables (natural projection).

W((s1, s2), ·) ^ W(s1, ·) V((s1, s2)) ^ V(s1)
zW ((s1, s2), ·) ^ zW (s1, ·) zV ((s1, s2)) ^ zV (s1)

If (−i) occurred: # Aggregate pairs of lines in tables (almost-natural projection).
W(s1, ·) ^

1
|I2| ∑s2

W((s1, s2), ·) V(s1) ^
1
|I2| ∑s2

V((s1, s2))

zW (s1, ·) ^
1
|I2| ∑s2

zW ((s1, s2), ·) zV (s1) ^
1
|I2| ∑s2

zV ((s1, s2))

δ ^ f − f̂ +V(s′)−V(s) # calculate temporal difference

f̂ ^ f̂ +η δ # update expected reward
zV ^ λV zV +∇V V(s) # update value function eligibility traces
zW ^ λW zW +∇W lnπ(a|s, W) # update preferences table eligibility traces
V ^ V+ηV δ zV # update value function estimate
W ^ W+ηW δ zW # update preferences table estimate
W ^ sign(W)×min(|W|, Wmax) # Clip to ensure minimal exploration rate (eq. (7.83)).
s ^ s′ # step forward

Listing 7.2: Pseudocode for input signature change accommodation in traditional
Actor-Critic algorithm with eligibility traces, similarly to Listing 7.1. The gradient com-
putations ∇V and ∇W are detailed in eqs. (7.78-7.80). The additional clipping operation
described in eq. (7.83) is also highlighted.

always at least a chance pmin to pick a non-preferred action:

pmin =
e−Wmax

eWmax + e−Wmax
(7.84)

For this reason, the set of policies actually visited during our AC search is the one repre-
sented in Figure 7.2.d.

To properly compare QL and AC approaches in the experiment, the values of ε

and Wmax are setup so that the base exploration level pmin is the same in both methods.

Like QL, AC is unequipped to face (+i) and (−i) signature changes, because the
associated tabular function have fixed signature. To accommodate IPL, the same transfer
projection functions (see (7.70) and (7.72)) are applied to W , V̂ , zW and zV during the
events, so the number of lines in these two tables adjust the agent new required signature.
Scalar values f̂ and δ undergo no particular adjustment. The purpose is to verify that
such a low-level adaption of AC to IPL works in practice, at least on the benchmark
environments.

146 CHAPTER 7. EXPERIMENT IPL IN RL

7.3 Measures

In the previous sections, we have described that the experiment operates according to the
following protocol:

1. Define the parsimonious class of deterministic, tabular RL environments as a bench-
mark T.

2. Filter out irrelevant environments from the benchmark to constitute Tssi.
3. Analyze every environment in the benchmark to find the theoretical optimal policies

within them: P̄∗det , P
∗
det , P̄

∗
sto, and P∗sto.

4. Use this information to classify the benchmark into 8 different IPL joint profiles
(see Table 7.1).

5. Pick 100 uniformly random environments from each joint profile.
6. Within every environment picked:

(a) Initialize two 1D learners (QL and AC) and two 2D learners (QL and AC)
constituting the first form protean agents Ap1 .

(b) Run their learning algorithm for 50 000 iterations.
(c) Introduce (+i) change event to 1D learners and (−i) to 2D learners.
(d) Adjust the learning methods with the low-level transfer projections described

in eqs. (7.70) and (7.72). The corresponding agents constitute the second-form
protean agents Ap2 .

(e) Resume the learning algorithms for 50 000 iterations again.
(f) Run one baseline naive learner An for each tested agent, directly initialized

with the final signature, for 50 000 iterations.

Once all the corresponding learning trajectories have been collected, the following
3 measures are taken according to the principles described in Figure 5.3. Every measure
involves means over the binary feedbacks received during the simulation. These means
are comprised between 0 and the maximum possible reward F∗T , which depends on the
environment at hand. To compare the measures across environments, they are all normal-
ized by F∗T .

To estimate the Long-Term effect of transfer (LT), we calculate the mean difference
in reward between the protean and naive agent trajectories:

LT =
1

F∗T
· 1

50000

100000

∑
t=50001

(

fAp2
(t)− fAn

(t)
)

(7.85)

LT ∈ [−1, 1] (7.86)

Positive LT measures mean that the protean agent has an advantage over the naive agent
on the long run, while negative value mean the opposite so there is a negative transfer.

To estimate the immediate effect of transfer (IT), we calculate the mean difference
between the first 1 000 rewards received by Ap2 and the last 1 000 rewards received by Ap1 .

7.4. RESULTS 147

This constitutes 2% of their total learning time:

IT =
1

F∗T
· 1

1000

(
5000

∑
t=4001

fAp1
(t)−

6000

∑
t=5001

fAp2
(t)

)

IT ∈ [−1, 1]

(7.87)

Similarly, positive IT values mean that the change event is beneficial on the short term,
while negative values indicate immediate negative transfer.

Finally, to address whether the agents eventually solved the task at hand, the last
1 000 rewards received by Ap2 are averaged into a measure called Last Performance (LP):

LP =
1

F∗T
· 1

1000

10000

∑
t=9001

fAp2
(t) (7.88)

LP ∈ [0, 1] (7.89)

Highest values of LP indicate that the protean agent has succeeded in following an
optimal policy and sticking to it by the end of the run, while low values of LP indicate
task failure. We consider the task to be solved when LP is above 80%.

The benchmark T, and especially Tssi, has been enumerated and analyzed with the
Python language [Van Rossum and Drake 2009]. The formulae for FT (P) and optimal
values P∗ have been derived with the help of the formal analysis software Mathemat-

ica [Wolfram Research 2018]. The learning runs have been simulated and measured with
the Rust language [Nichols and Safari 2019; Jung et al. 2021], and statistical analysis
have been performed with R [R Core Team 2020].

7.4 Results

The results of the experiment conducted in this chapter are summarized on Figure 7.3.
As a general trend, like with the OSL results in Chapter 6, the LT measures are positive
on average, supporting that the natural and almost-natural IPL projections described in
sections 7.2.3 and 7.2.4 are useful to reuse knowledge in a variety of IPL situations. From
a more general perspective, they suggest that it is possible to accommodate signature
changes in RL with a PL approach without particular insights into the topology of P, and
still get better results than the naive agents.

Like in the previous chapter, the advantage of PL needs to be qualified depending
on the situation, for it remains weak or negative on occasions. In the next, the various
actual effects in play are discussed in contrast with the expected trends. A linear model
was fitted on the data within tested joint profile to address the relevance of observed varia-

148 CHAPTER 7. EXPERIMENT IPL IN RL

tions. All interactions were considered between three experimental conditions: the change
event {(+i), (−i)}, the learning method {QL, AC}, and the minimum exploration rate
pmin {0.01, 0.05, 0.1}, treated as categorical values. Each model had 59 988 degrees of
freedom, and their residual standard error is summarized in Annex Table A.2.

Consistently with the numerous experimental conditions addressed, there are numer-
ous effects in play carefully dissected in the next section. We only consider effects that
rely on high-significance contrasts with p-value 6 0.001. Similarly to the previous chap-
ter, every effect is associated to a letter like (A), (B), (C), etc. To illustrate them, a few
key example runs have been extracted from the data set and drawn in Figure 7.4. They
are referred to with numbers like 01 , 02 , 03 , etc. An extended visualization is also avail-
able in Annex Figures A.1 and A.2, along with the corresponding tested environments in
Figure A.3 and one extra example run in Figure A.4.

(A) No learning takes place in flat landscapes. First of all, under the FFF-FFF condi-
tion, PL agents Ap2 clearly have no long-term or short-term advantage or disadvan-
tage against the naive agents An (see run 01). This is expected since all correspond-
ing search landscapes are flat, so there is nothing to learn in the tested environments.
Regardless of the experimental conditions, no agent can improve, because they are
already optimal. This null result constitutes and validates our experimental baseline.

7.4.1 Last Performance Measures

The effects summarized in this section can be read on the LP measures (contours color
in Figure 7.3). We use this value to address whether the final agent Ap2 has successfully
solved the task.

(B) The task at hand is solved. Throughout the various experimental conditions,
LP measures are mostly distributed above 80%. This suggests that Ap2 eventually
succeeds in solving the tasks at hand. Note that exploration mitigates this result
since the LP values diminish when pmin increases. This is due to the tested learning
methods never “cooling” the exploration rate down. As there is always exploration
going on, the optimal policies cannot be exactly followed, thus the small offset be-
tween theoretical optimal gain and actual mean reward. The higher pmin, the wider
this offset (compare for instance 02 and 05).

(C) The agent fails when crucial input is deleted. There is one obvious exception
to (B) in every (HT, −i) condition. These conditions are (FHH-FHH ,−i),
(FHH-HHH ,−i) and (HHH-HHH ,−i). In HT environments, the diminished
search space P̄ only contains suboptimal policies compared to P. As a conse-
quence, it is expected that the final performance be low because Ap2 is diminished.
This observation supports our abstract model of a learning task: the task is cor-
rectly failed if the agent has not enough information to solve it, while it is correctly
fulfilled in the other situations (see run 03).

7.4. RESULTS 149

-0.02
-0.20
-0.80

0.00
0.02
0.20
0.80

-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75

+i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10

-i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10
HHH-HHH LT

IT

-0.02
-0.20
-0.80

0.00
0.02
0.20
0.80

-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75

+i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10

-i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10
FHH-HHH LT

IT

-0.02
-0.20
-0.80

0.00
0.02
0.20
0.80

-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75

+i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10

-i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10
FHH-FHH LT

IT

-0.02
-0.20
-0.80

0.00
0.02
0.20
0.80

-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75

+i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10

-i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10
HLF-HLF LT

IT

-0.02
-0.20
-0.80

0.00
0.02
0.20
0.80

-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75

+i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10

-i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10
HHF-HHF LT

IT

-0.02
-0.20
-0.80

0.00
0.02
0.20
0.80

-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75

+i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10

-i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10
FHF-HHF LT

IT

-0.02
-0.20
-0.80

0.00
0.02
0.20
0.80

-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75

+i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10

-i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10
HFF-HHF LT

IT

-0.02
-0.20
-0.80

0.00
0.02
0.20
0.80

-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75

+i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10

-i
QL

0.01 0.05 0.10
AC

0.01 0.05 0.10
FFF-FFF LT

IT

0.0 0.25 0.5 0.75 1.0
LP

01

02

0304

05

06 07 08

09

10

11 12

13

Figure 7.3: Violin plots representing the measures gathered under the various experimental con-
ditions. Each violin summarizes 100 environments tested with 1 000 runs each. Dotted and solid
lines within violins represent mean and median values. Note that LT axis is distorted to emphasize
small magnitudes. Numbered labels like locate the conditions of example runs shown in Figure 7.4.

150 CHAPTER 7. EXPERIMENT IPL IN RL

FFF-FFF QL (+i), pmin = 0.01

01

HLF-HLF QL (+i), pmin = 0.05

02

HHH-HHH QL (−i), pmin = 0.01

03

FHH-HHH AC (−i), pmin = 0.01

04

HHF-HHF QL (+i), pmin = 0.10

05

FHH-FHH AC (+i), pmin = 0.01

06

FHH-FHH AC (+i), pmin = 0.10

07

FHH-FHH QL (−i), pmin = 0.01

08

FHF-HHF AC (−i), pmin = 0.01

09

HFF-HHF QL (−i), pmin = 0.01

10

FHH-HHH QL (−i), pmin = 0.01

11

HHH-HHH AC (−i), pmin = 0.01

12

Figure 7.4: Example single runs illustrating the effects observed in Figure 7.3. The trajectories
represent the binary rewards collected by the agent as a windowed average (width: 1 000 steps). For
the first few steps before a window is filled, the cumulative mean is used instead. Blue trajectories
(on the left of plots) correspond to Ap1 and continue into Ap2 colored trajectories (light, on the right
of plots). The latter are paired with black An trajectories which start after the signature change
event (thick vertical line). Horizontal lines mark the theoretical value of expected rewards for
every deterministic cycle within current agent reach in the given environment. Note that the lines
are multiplied when several cycles have the same value. Horizontal axis is distorted to emphasize
the first few steps, as reminded by the thin vertical lines. The measures associated with each run
can be read in Table 7.2, and the corresponding environment topologies are represented in Annex
in Figure A.3, along with an extra run in Figure A.4.

7.4. RESULTS 151

run LT.e−2 IT LP run LT.e−2 IT LP
01 0.000 0.000 1.000 07 -0.030 0.368 0.896
02 0.012 -0.006 0.926 08 -0.024 -0.259 0.748
03 0.002 0.001 0.750 09 0.042 -0.156 0.977
04 0.104 -0.501 0.429 10 0.070 -0.108 0.997
05 0.318 0.062 0.902 11 2.232 -0.611 0.224
06 -0.576 0.141 0.979 12 0.066 -0.367 0.630

Table 7.2: Measures values corresponding to the example runs shown in Figure 7.4.

(D) Stochastic agents better accommodate diminished situations. In the FHH-HHH
condition, which is HT like in (C), it is also observed that AC approach yields
better final performance than QL. This is explained by the property (7.57). For
diminished agents, the space of stochastic policies P̄sto (searched by AC) possi-
bly contains better policies than the space of deterministic policies P̄det (searched
by QL). Indeed, the 100 environments chosen with this joint profile have an aver-
age F̄∗det value of 0.105 (std: 0.205) but an average F̄∗sto value of 0.309 (std: 0.192).
As a result, the actual mean reward collected by the agent is possibly better than
the maximum possible deterministic gain (see run 04). This explains why this joint
profile is deterministic-FI but stochastic-HI.

The effect (D) supports our previous claim that stochastic policies better accommo-
date the artefactual environmental hidden states appearing in diminished IPL situ-
ations. We still expect that recurrent policies from Prec (not tested in this experi-
ment) perform even better, as they infer hidden states to achieve same performances
as augmented agents.

7.4.2 Long-Term Advantage Measures

The effects summarized in this section can be read on the LT measures (white panels
in Figure 7.3). We use this value to assess the overall performance advantage of the
PL agent Ap2 , that benefits from the transfer after the signature change event, against
the naive agent An.

(E) Natural IPL projections yield positive transfer. As a general trend, LT measures are
positive throughout the various experimental conditions, as we expect from the
learning transfer that Ap2 benefits from. This supports that PL agents are advantaged
against naive agents. As the advantage reduces when An catches up against Ap2 ,
An and Ap2 typically terminate the run with similar performances (see run 02). As a
consequence, the absolute magnitude of LT values depends both on the advantage
of Ap2 and on the value of tmax. The higher tmax, the longer the period of similarity
and the lower the magnitude of LT as per formula (7.85). However, tmax = 10000 is
constant throughout the experiment, so the values can be compared to address only

152 CHAPTER 7. EXPERIMENT IPL IN RL

the advantage, regardless of their absolute magnitude (typically below 0.2 or 0.02).
A positive value of LT always indicates a long-term advantage of Ap2 over An, in-
cluding either a jumpstart effect or other forms of positive transfer.

7.4.2.1 Input Addition

The effects summarized in this section can be read under the (+i) conditions (leftmost
groups of columns in Figure 7.3). Under these conditions, Ap1 is a diminished, 1D agent
while Ap2 and An are augmented 2D agents.

(F) Exploration tempers IPL advantage. Under conditions (QL, +i), we observe a gen-
eral trend that LT significantly reduces as the minimal exploration rate pmin in-
creases. This suggests that the naive agent An benefits from exploration as it catches
up faster against Ap2 (compare for instance 02 and 05). Note that the advantage
of Ap2 remains, as there is always LT > 0 on average, even with the highest tested
exploration rate pmin = 0.10.

(G) Exploration is irrelevant in easy tasks. One exception to (F) is that it does not oc-
cur in the HFF-HHF condition. Every HFF landscape is both FO and FT. Also,
∣
∣P̌det

∣
∣/|Pdet | = 12/16 = 75% in our benchmark. As a result, in this condition,

optimal policies constitute more than 75% of the deterministic search space after
the (+i) event. Consequently, they are likely to be discovered early even with small
minimal exploration rates like pmin = 0.01 (see run 13 in Figure A.4 of Annex). This
makes it possible for An to catch up early, leaving the pmin-independent jumpstart
effect as the only benefit of Ap2 .

(H) The IPL advantage is weaker with the more sophisticated learning method. In the
(+i) conditions, LT scores of the AC method are consistently lower than LT scores
of the QL method. One possible reason is that the continuous nature of stochastic
search spaces like Psto and P̄sto, and the gradient-based nature of the AC method,
make the search more efficient for both Ap2 and An, reducing the advantage of
PL agents over naive agents. Another possible reason is that the preferences sys-
tem W of AC (see Section 7.2.4), and the eligibility traces supposed to strengthen
the direction of the search, actually make AC searches less flexible than QL when
it comes to accommodating signature changes. In other terms, there would be
more to unlearn for the AC Ap2 agent after the change event, which constitutes
a form of negative transfer and reduces the advantage of PL. The latter hypoth-
esis is supported by another observation, that LT is even negative in FHH-FHH
and HHH-HHH situations (see run 06).

(I) Exploration alleviates negative transfer. Supporting our interpretation of (H), the
magnitude of negative LT measures decreases as pmin increases. This is consistent
with the idea that exploration alleviates the effect of negative transfer, as it makes it

7.4. RESULTS 153

easier for Ap2 to escape local diminished optima, but still without making it better
than An (compare runs 06 and 07). Notwithstanding the reasons for these observa-
tions, the existence of low and negative LT values in AC confirms one open hypoth-
esis formulated in the previous chapter: the advantage of PL against naive agents is
subordinate to both the learning environment and the learning method.

7.4.2.2 Input Deletion

The effects summarized in this section can be read under the (−i) conditions (rightmost
groups of columns in Figure 7.3). Under these conditions, Ap1 is an augmented 2D agent
while Ap2 and An are diminished 1D agents.

(J) The IPL advantage is weaker on input deletion. Regarding (−i) conditions, we ob-
serve a general trend that the magnitude of LT measures is an order below the
LT measures in (+i). One possible reason for this is that diminished policies spaces
are smaller, and thus easier to explore for both Ap2 and An. This makes the ad-
vantage of PL less decisive (see run 04). For instance, in every FT environment
like HLF-HLF or HHF-HHF the augmented policies space is actually not essential
to achieving optimal results. It is therefore possible that Ap2 “recovery” after (−i) is
only slightly more efficient than An “discovery” after (+i). In such a situation, the
only advantage of PL happens when Ap1 has already converged towards an optimal
diminished policy, so it is not affected at all by the event because it benefits from
the almost-natural nature of the transfer projection.

(K) No learning takes place in landscapes diminished to flat. There is one obvious ex-
ception to (J) in the FHH-FHH condition. This condition is FI, so the diminished
position offers no learning challenge. As a result, most LT scores are null (see
run 08). For the same reason, the LT scores for QL methods under the FHF-HHF
condition are null because FHF is FI (see run 09). This is consistent with the base-
line constituted by the FFF-FFF condition (but see (M)).

(L) The optimal degenerated policy is not always found. In the HFF-HHF conditions,
the LT measures for QL method are low. In HFF, the only possible advantage of Ap2

happens when Ap1 has already converged towards a policy within P̄∗det . This un-
likely because 75% of Ap1 search space is already occupied by optimal policies
of P̌∗det , which is consistent with the observed effect.

(M) There is an advantage in convergence failure. Surprisingly, the LT measures for QL
method in FHH-HHH are better than the corresponding measures in FHH-FHH, al-
though both associated deterministic search spaces fall under the same IPL profile:
FHH. This is inconsistent with (K). One explanation is that QL method explores the
deterministic search space while actually testing stochastic policies Psto

(
Q̂
)

(see

154 CHAPTER 7. EXPERIMENT IPL IN RL

Figure 7.2.c). This is the strategy of QL to handle the exploration vs. exploita-
tion dilemma. As a consequence under this condition, Ap2 agents possibly benefit
from property (7.57) that F̄sto is possibly better than F̄det , like in (D), although they
are not supposed to (see run 11). This also explains that the LT measures of QL
in FHH-HHH resemble the corresponding measures in HHH-HHH. In other terms,
(M) is a possible artefact of the “off-policy” nature of QL. Closer examination of the
search spaces trajectories 11 , (see Annex Figure A.2), reveals another possible phe-
nomenon: while the deterministic agent keeps hesitating between two deterministic
policies, it actually follows a stochastic trajectory that yields better rewards than ei-
ther. This is not how QL is intended to work, as it constitutes a convergence failure,
resulting in artefact (M).

(N) The advantage depends on the topology exploited by the learning method. In the
HHH-HHH condition, the LT measures are positive on average with the QL method,
but not with the AC method (see run 12). The HHH-HHH condition is the most gen-
eral landscape profile and it has no degenerated “F-lat” descriptor. We suppose that
this effect is due to the topology of Pdet being more easy to exploit by QL than the
topology of Psto is easy to exploit by AC. This is elaborated upon in the discussion.

7.4.3 Immediate Transfer Measures

The effects summarized in this last section can be read on the IT measures (grey panels
in Figure 7.3). We use this value to assess the immediate reaction of the PL agent to the
signature change event.

(O) Input changes trigger consistent immediate response. As a general trend under
HT conditions, the sign of IT measures follows the change event: positive after (+i)

and negative after (−i). This is one expected outcome of the signature change.
IPL agents are able to immediately improve when given a new source of informa-
tion, but are subject to immediate regression when deprived a valuable input chan-
nel (see run 08). Note that this is a short-term effect so it is not redundant with (E)
and (J).

(P) Input changes are indifferent when useless. Unlike (O), which occurs under
HT conditions, IT measures are null under FT conditions. In these situations, the
augmented search space does not increase the optimum, nor does the diminished
search space decreases it. As a consequence, the agents react indifferently to the
change event (see run 05). This is inconsistent with results of the previous chapter,
where the IT measures were significantly negative when uninformative information
channels were added during (+i) events. One possible explanation to this is that the
effect does occur but that our IT measure is too coarse to detect it. To verify this, we
checked a second model on the same data, with finer grained IT measures where

7.5. DISCUSSION 155

the means rewards were computed over 100 trajectory steps instead of 1 000. No
significant negative IT scores were revealed with the finer-grained measures either,
which rules out this possible explanation. This is discussed in the next section.

(Q) Exploration alleviates input deletion perturbation. Refining (O), the magnitude of
negative IT measures in (HT, −i) conditions decreases as the minimal exploration
rate pmin increases. This suggests that exploration alleviates the perturbation engen-
dered by (−i) by enabling faster recovery towards P̄∗ (see run 03).

(R) Exploration alleviates input addition perturbation. Regarding (+i), under
FHH-FHH and HHH-HHH conditions, the average IT measure for AC agents
improves as the minimal exploration rate pmin increases. This is not observed
with QL method, which is consistent with (H). Both effects suggest that the
AC agent Ap1 remains stuck within P̄∗sto longer than necessary. (R) suggests that
exploration helps in escaping the local optimum, but (H) concludes that the delay
lost to An is never overcome (see run 07). Interestingly, this phenomenon is not
accurately observed in FHH-HHH environments, although they are also HT. We
have not been able to explain the reason for this. Possibly this is due to artefactual
topological specificities of the benchmark that we have not identified yet.

(S) Response to IPL events are diverse. Unlike previous effects, (S) does not rely on
high-significance contrasts with p-value 6 0.001, but on the combined observation
that the distribution of IT measures under HT conditions with QL agents undergo-
ing (+i) is multimodal (see corresponding violins in Figure 7.3), and that the modes
tend to collapse towards each other as pmin increases. In other terms, while the aver-
age IT measures varies not, two opposite trends likely interact within this condition.
We suppose that after (+i), some agents find the new optimum P∗ early and strug-
gle to stick to it as the minimum exploration rate increases. On the other hand,
others struggle to find P∗ and higher exploration rates helps them improve their
search. This phenomenon reflects that the reaction to the signature change strongly
depends on the environment and/or particular runs, even within one tight condition
like (QL, HT, +i). Furthermore, (S) is not observed with AC agents, suggesting
again that the reaction to the signature change is also strongly method-dependent.

7.5 Discussion

The experiment described in this chapter was designed to extend the results of the pre-
vious chapter, obtained in an OSL learning context, into a RL learning context (see Fig-
ure 2.2). We have chosen restricting to only tabular RL situations with small deterministic
environments constituted with 4 possible states and 2 possible actions (see examples in
Figure 7.1). Section 7.1.7, has shown that the corresponding benchmark Tssi is sufficient
to address a variety of IPL situations.

156 CHAPTER 7. EXPERIMENT IPL IN RL

General Consistence The observed effect (M), and the fact that (R) does not occur in
the FHH-HHH condition, point out a few possible artefacts introduced by this particular
benchmark and the chosen experimental conditions. As a consequence, the overall proto-
col is still subject to possible ameliorations. This said, all the observed effects (A), (B),
(C), (D), (E), (K), (L) and (O) constitute a strong validation of our expected experimen-
tal trends and baselines: the agent tested are correctly learning, solving the task whenever
possible, and failing otherwise. In particular, (E) supports our main result that the nat-
ural and almost-natural transfer projections described in Section 7.2 succeed in making
IPL agents more efficient than naive ones. This validates our approach and suggests that
PL be investigated more in depth as a promising framework to accommodating signature
changes in online learning situations. (C) and (O) mitigate the above by reminding that
no simple projection can restore the loss of a critical source of information after an input
deletion event (−i), this is further discussed in the next, along with alternate approaches
to IPL.

Reaction to Useless Input Addition In FT search spaces profiles, we observe ef-
fect (P). These are situations where the diminished agent has enough information to
achieve the same performance as the augmented one. As a consequence, the (+i) event
constitutes an addition of a useless information channel, in the sense that the agent cannot
use it to achieve better performance. In the experiment presented in Chapter 6, this con-
dition triggered transient negative transfer perturbations, because it took time for Ap2 to
figure out that the new channel was redundant or uninformative. This was measured with
significantly negative IT scores, which are not reproduced in this experiment.

We suppose that the reason is that the QL and AC methods used here are more simple
and predictable than the RNN method used in the previous chapter, as they use less param-
eters. Correspondingly, the policy landscape explored by QL and AC is smaller in terms
of dimensionality, and presumably less bumpy than the high-dimensional landscapes ex-
plored by the RNN, whose sensitivity to inner parameters is very high on occasions. We
suppose that this difference in parameter sensitivity explains the different results obtained
here, although this remains to be rigorously measured. In any case, this particular dis-
crepancy between both experiments strongly suggests that the learning method at hand
influences even the IPL reactions to change events, even though the transfer projections
are natural in both cases.

Exploration, Topology and the IPL Projections In accordance with the above, ef-
fects (F), (G), (I), (J) and (L) demonstrate a deep connection between the IPL problem
and the “exploration vs. exploitation” dilemma. The problem of smoothly accommodating
a signature change essentially boils down to finding a new acceptable optimal policy P̂ in
a search space that has been modified, either by a (+i) or a (−i) structural change.

This dilemma is vastly discussed in the literature, and it is not the goal of the ex-
periment to address it again. Instead, we address that the particular modification of P

7.5. DISCUSSION 157

induced by the IPL events is unusual, and deserves consideration. With these IPL events,
the modification consists in a projection into either a higher dimensional (after (+i)) or a
lower dimensional (after (−i)) alternate space (see Section 5.3). Once projected, agents
with a tendency to “exploit” more easily benefit from the PL transfer in situations where
the projection lands them on a promising region of the new search space. On the other
hand, agents with a tendency to “explore” more easily escape the trap of negative transfer
in situations where the projection lands them in strongly suboptimal regions of the new
search space.

To illustrate this, take for instance the effect (N) (run 12). When undergoing (−i) in
the HHH-HHH condition, there are various possible ways the Ap2 agent benefits from
a PL transfer. Here are three examples:

1. Ap1 got mistakenly stuck on the local optimum P̄∗while exploring P. This consti-
tutes a search failure, but has the fortunate consequence that Ap2 already stands on
the only remaining optimum after (−i). The chances of this happening depend both
on the exploration vs. exploitation tradeoff struck by the learning method (i.e. likely
to stop when reaching local optima), and on the chance inherent to the heuristic
search (i.e. encounters P̄∗ in a stage of likely convergence).

2. P̄∗ is “close” from P∗ with respect to a topology that the projection method is
conserving. As a consequence, when projected into the diminished policies space,
Ap2 only needs a short local exploration to find the diminished optimum again,
whereas An has to explore all P̄ over from scratch.

3. Ap1 remembers having explored P̄∗ during its search over P, and the IPL projec-
tion makes this memory available to Ap2 . This implies that the learning method be
non-Markovian, and that the transfer technique preserves its memory. In this case,
Ap2 directly moves back on P̄∗ after (−i) without needing to explore P̄ again.

Considering that, according to effect (B), the measured LP scores are typically close from
their maximum possible value, we consider that all agents Ap1 , Ap2 and An eventually
reach the true optimal policy in their current available search space. This is made possible
by the chosen long term tmax = 10000, and rules out the possibility 1. Since neither QL
nor AC method features an explicit memory of far passed local optima encountered in the
past, there are also very few chances that 3 occurs in the experiment.

As a consequence, we assume that in our benchmark, Pdet exhibits an interesting
topology that is both exploited by QL and conserved by the chosen almost-natural projec-
tion, but that the situation is different with Psto and AC, thus the effect (N). In conclusion,
we have exhibited one example IPL projection that conserves the topology exploited by
the learning method, and one that does not, suggesting that the reactions of learning agents
to IPL events strongly depends on both the learning method and the transfer projection
technique.

158 CHAPTER 7. EXPERIMENT IPL IN RL

The Role of IPL The above observations illustrate two distinct responsibilities regard-
ing heuristic learning agents design. On the one hand, the balance between “exploration”
and “exploitation” tendencies is supposed to be struck by the learning method at hand,
e.g., QL or AC in our situation. For instance: (Q) suggests that a tendency to explore alle-
viates the perturbation caused by (−i). This is outside the scope of IPL. On the other hand,
it is IPL approaches’ responsibility to ensure that the landing region after (+i) and (−i)

is appropriate. In fine, the landing region is entirely determined by the chosen projection
method, supposed to make the agent signature compatible with the new input space.

In our case, the projection is either a natural or an almost-natural projection, boiling
down to simple operations on the columns of the internal agent parameters tables (see
Section 7.2 for this chapter, and Section 6.6 in the previous one). These projections are
simple because they do not require particular insights about the topology of P. But the
major result of the two experiment, is that they are sufficient to provide IPL agents a
significant advantage against naive agents in a variety of learning contexts.

This said, the observed effects (H) and (R) confirm that negative transfer does occur
when the landing region is not adequate (compare for example the policy trajectories 06

and 07 in Annex Figures A.1 and A.2). In this case, only exploration helps, but then there
is no particular advantage of IPL against naive agents.

In summary, since local heuristic searches over the policies spaces P typically rely on
a particular topology of P, PL is responsible for accommodating input signature changes
by constructing projections that make the best use of this very topology. As a result, the
best IPL projection method strongly depends on the topology exploited by the learning
method at hand.

Choosing the Policy Type From the agent perspective, the most challenging aspect of
diminished environments is that they feature artefactual hidden states, as per the transition
projections described in Figure 7.1. From the benchmark analysis and the experimental
results, it appears that agents able to follow stochastic policies perform better than de-
terministic agents in this situation, because they approximate augmented trajectories that
would otherwise be impossible to follow (see equation (7.57)). However, there exists alter-
nate behavioural search spaces beyond P̄det and P̄sto, containing policies able to follow
the augmented trajectories exactly, and fitting none of the IPL profiles listed in Figure 5.2.

For instance, it is possible for diminished policies able to remember the last few itera-
tions to discriminate between states a+ and a− even though they only receive a as an input,
because the transitions leading to a+ and a− possibly have different antecedents. These
policies need to rely on recurrent procedures, and feature a memory of past events. They
constitute P̄rec, a wider search space, more difficult to explore than P̄det and P̄sto in gen-
eral because the convergence guarantees of traditional RL approaches, relying on Marko-
vian properties of both policies and the environment, do not hold anymore. Notwithstand-
ing, recurrent policies have long been the most natural fit to RL, and are investigated
pervasively throughout the domain [Lin and Mitchell 1993; Boots and Gordon 2010; Sil-

7.5. DISCUSSION 159

ver et al. 2016; Tallec and Ollivier 2018].
This aspect of IPL is specific to its interaction with RL, as it results from the recurrent

nature of RL. In OSL context (see Chapter 6), inputs were not related to past inputs, so
no policy within P̄rec could do better than the best policy in P̄sto. This is not the case
in this chapter, and now that the precise interplay between P̄det and P̄sto has been care-
fully dissected with the current experimental results, we suggest that recurrent policies
be investigated in future works as the most promising behavioural search space able to
accommodate IPL signature change events in RL.

160 CHAPTER 7. EXPERIMENT IPL IN RL

Part III

Conclusion

Chapter 8

Conclusion

8.1 Summary

In this thesis, we have been interested in a particular class of computer procedures, the
learning procedures, that are the object of ML science. Like any computer procedure,
learning procedures are characterized by their input/output signature, a rigorous contract
established between the procedure and its caller. Their particularity is that they target
elusive procedures P⋆, whose signature is also rigorously known.

The Problem Statement The contract is mandatory as it specifies the number, the type
and the meaning of the data fed into the procedure (the input signature), and of the data
produced by the procedure (the output signature): without a precise signature, the contract
is ill-defined and the procedure cannot be run. For this reason, it is a frequent implicit
assumption in ML that the signatures are fixed throughout the learning agents lifetimes.

However, ML addresses natural learning contexts in which not only the agent is sub-
mitted to environmental fluctuations, but also its interface with the environment. This
happens for instance with the roverbot described in Section 1.2, whose signature changes
whenever a sensor or an actuator is added or removed from its external interface. This also
happens with streaming statistical predictors, like internet agents analysing the behaviour
of online users, as they feed from data streams whose relevance or availability cannot be
relied upon over the course of learning. In these situations, the signature of the learning
agent cannot be kept, nor dropped, so it needs to transform for the learning process to
keep working.

The Proposition Accommodating signature changes of learning agents is the object of
the learning situation introduced in this thesis, namely Protean Learning (PL). Chapters 2
and Chapter 4 have sketched a large overview of ML that positioned PL as a subdomain of
Transfer Learning (TL), transversely to Supervised Learning (SL), Unsupervised Learn-
ing (UL) and an exclusive case of Online Learning (OL): Reinforcement Learning (RL).
We have defended that PL constitutes a significant, new, and non-trivial domain of ML,

164 CHAPTER 8. CONCLUSION

addressing all natural learning situations challenged by potential changes to the agent
signature.

The purpose of PL is twofold. First, PL aims to construct learning agents that do not
become undefined after signature changes. Second, and similarly to TL, PL aims that
their performance after the change be at least better than the performance of naive agents
resuming the learning from scratch on every change. In Chapter 5, we have developed,
with an original formalism dedicated to describe streaming procedures, a rigorous for-
malization of PL as a stream processing issue. This formalization makes it explicit what
is considered a “signature change” in PL, and the objective of PL.

The Contributions In Section 5.3 and subsequent chapters, we have restricted our focus
on two elementary signature change events: input addition (+i) and input deletion (−i),
constituting the restricted domain of Input-PL (IPL). In Chapter 5, we have shown
that (+i) and (−i) reveal a non-trivial range of situations possibly met by IPL agents: a set
of 10 different landscape profiles describing possible configurations of the explored search
space. Regarding these, we have discussed how a precise ad hoc knowledge of these land-
scapes is useful in designing dedicated IPL algorithms accommodating the change events.

Moreover, we have unveiled a natural set of projections, namely the natural projec-

tion l for (+i) and the class of almost-natural projections p for (−i), which permit
generic accommodation of these events regardless of the task at hand. These projections
meet the first objective of PL de facto, because the resulting agents remain correctly de-
fined. In this thesis, we have also defended that they meet the second objective. We de-
fended that natural IPL projections constitute an acceptable generic way of accommodat-
ing IPL signature changes, and produce better results than naive approaches.

In Chapter 6, we verified this claim in an Online Supervised Learning (OSL) context.
With a carefully controlled synthetic experiment, we showed that the natural projections
could be applied under the form of structural editions to a RNN-based learner. The result-
ing agents learned better than naive ones on most tested tasks. With a precise analysis of
the various effects in play during IPL accommodation, we showed in particular that the
technique was most useful after (−i) when the remaining inputs were sufficient to solve
the task at hand. Also, superfluous inputs added with (+i) triggered transitory negative
transfer perturbations that were overcome by IPL agents on the long run. We concluded
that natural IPL projections, in spite of their genericity, are at least moderate enough not
to perturb the ANN structure, and efficient enough to yield better results than the naive
baseline in OSL.

In Chapter 7, we extended the above verification to a full-fledged RL context. With a
carefully crafted dedicated benchmark, we showed that the natural projections could also
be applied to different learning algorithms like Q-Learning and Actor-Critic. Once again,
the resulting agents learned better than naive ones on most tested tasks. To qualify this
result, with another analysis of the various effects in play during IPL accommodation,
we showed that the IPL advantage varied much depending on the learning context and

8.2. LIMITS AND PERSPECTIVES 165

the algorithm at hand. In particular, we showed that diminishing (−i) events could
transform a Markovian RL environment, easily tackled with deterministic policies, into
a non-Markovian environment featuring artefactual hidden states, which only recurrent
policies can address exactly. As a consequence, not only the signature of the learning
agent becomes inadequate after (−i), but also the learning algorithm itself. We concluded
that natural projections remain the best choice in the absence of ad hoc information
about the task or future signature change events, but also that any insight into the par-
ticular topology of the explored search space should be used to improve PL performances.

In summary, we have contributed to the definition, the positioning and the study of PL.
We have constructed a first tool, the natural projections, dedicated to tackle IPL in par-
ticular, and evaluated the value of this tool in various contexts. Natural IPL projections
are advantageous because they correctly accommodate IPL events regardless of the task
at hand. But they are also limited as they do not exploit particularities of the task at hand.
With a pair of synthetic experiments, we have carefully listed, quantified and documented
these limitations.

8.2 Limits and Perspectives

The work presented in this thesis constitutes preliminary groundwork for the domain
of PL, whose foundation we intended to contribute to. As such, it is essentially incom-
plete, there is room for much theoretical improvement and many open questions deserve
to be addressed in future works.

Regarding Theoretical PL From a theoretical perspective, the formalization offered in
Chapter 5 is both generic and consistent, but has been tailored to represent recurrent PL
in RL so it is not straightforward to extend to every learning situation. For instance, the
diagrams needs to be reinterpreted as described in Section 5.2.7 to represent other forms
of OL like Online UL or Online SL (OSL). Future extensions of the model should enable
seamless use of diagrams like (5.26) to describe a wider range of learning situations.

Regarding IPL projections, we have suggested that natural projections be used as a
generic way to accommodate signature changes before falling back to ad hoc techniques.
However, it is an open question whether there exist other forms of generic projections, and
whether they would yield better performance than the natural ones. In addition, there are
several levels of ad hoc knowledge: the user either knows nothing about the landscape at
hand, or they know its IPL profile, or the number of local optima, etc. As a consequence,
there must exist several levels of projection genericity: projections generic to any HHF
profile, or generic to any concave landscape etc. These projections would constitute a
useful range of method for PL users to pick within, but still remain to be unveiled.

The results of Chapter 7 strongly suggest that the benefit of generic IPL projections
depends not only on the transfer technique, but also on the learning method and the ex-

166 CHAPTER 8. CONCLUSION

plored search space. Most notably, the IPL advantage is better with stochastic agents than
deterministic ones since stochastic policies better accommodate the environmental hidden
states. And recurrent policies are even more promising as they possibly infer the missing
states information. In other terms: every IPL landscape is FFF-FFF to a recurrent protean
agent provided it has enough memory to discriminate ambiguous inputs. As of today, there
is no theory for the interplay between the learning method and the advantage of generic
IPL projections. And it is unsure, in the general case, whether signature changes should
be better tackled with a careful choice of transfer projection or of the explored policies
space.

Regarding Practical PL From a practical perspective, the natural projections have
proven to be simple and generic enough that they can be seamlessly applied in three rad-
ically different learning algorithms: an RNN-based OSL learner, vanilla Q-Learning and
an Actor-Critic method enhanced with eligibility traces. However, the provided advantage
has been addressed in only two restricted, synthetic situations: batch OSL and tabular RL.
And the IPL advantage has only been verified against naive agents on the long run.

This leaves numerous real-world questions aside. For instance, in a situation where
immediate transfer matters more than long term performances, how likely is it that the
“transitory” negative transfer perturbation occasionally observed in Chapter 6 cancels
the benefits of using a PL approach against the naive accommodation? Again, the best
long-term scores obtained in the OSL experiment range between LT = 2 and LT = 4 for a
1 000 steps long learning session. This is strictly more than the baseline, but is it sufficient
to address real-world OSL contexts? Is it possible to quantify the advantage of generic IPL
with respect to a more meaningful practical baseline?

The assessment of IPL against a tabular RL benchmark in Chapter 7 is also limited by
the parsimonious nature of the chosen environments. For instance, it is yet unsure whether
the results would seamlessly hold if the (+i) event transformed not only 1D agents to
2D agents, but 3D agents to 4D agents etc. or if numerous inputs were added/deleted
at once. More generally, tabular environments are notorious for being a very restricted,
theoretical subset of real-world RL situations, and the algorithmic guarantees backing the
traditional RL methods do not hold outside tabular contexts [Sutton and Barto 2018].

Regarding the RL algorithms tested, QL targets improvement of the future discounted
reward G (equation (7.61)), so it may not converge towards the same “optimal policies”
than the ones listed in Section 7.1.7 and used as experimental baselines. We expect this
limitation of the experimental design to be overcome in future works by using algorithms
explicitly targeting the mean average reward instead, like R-Learning [Schwartz 1993].

In summary, practical assessment of IPL projections will greatly benefit from exper-
imental applications to real-world problems, like modular robotics [Ababsa et al. 2014;
Doncieux et al. 2015] or adaptive games [Francillette 2014; Bonnici et al. 2019], since
they demand that more specific situations be tackled to scale. This is the object of future
works.

8.3. CLOSING THOUGHTS 167

Regarding PL in General Throughout the thesis, our positioning with respect to the
overall approach to PL was twofold. On the one hand, we have introduced PL as a wide
subdomain of ML, supposed to tackle every TL issue with a concern about variable signa-
tures. On the other hand, we have restricted our focus to only IPL events (+i) and (−i) in
the Prior Transfer (4) situation (cf. page 69), so that they were specifically, and thoroughly
addressed from the theory to the various synthetic experimentations. As a consequence,
large areas of PL remain unexplored.

For instance, although negative transfer was controlled with care in our experiments,
it was not tested whether the natural IPL projections could efficiently avoid “Catastrophic
Forgetting” (CF). This phenomenon is well known from the TL community, especially re-
garding Subtasking TL situations (2), and especially because ANNs react badly to struc-
tural editions [J. Kirkpatrick et al. 2017]. In both experiments, not only we obtained
satisfying results in either (+i) or (−i) direction, but also we showed that the natural
projections are moderate enough that a RNN-based agent reacted smoothly to them. The
question whether CF is also overcome by the natural projections is still open, but we ex-
pect that the protocols described in Chapters 6 and 7 will be easily adapted to address this
issue.

Chapter 4 has sketched a roadmap of the various challenges induced by every differ-
ent PL event: not only (+i) and (−i), but also the input change (∼i), the output events
(+o), (−o) and (∼o), and the feedback events (+ f), (− f) and (∼ f). We have explained
why these events differ wildly in the obstacles they raise, but only addressed two of them
currently. In the future, we expect that these various alternate events be addressed in turn,
as PL progresses towards the construction of full-fledged, autonomous protean agents.

8.3 Closing Thoughts

Artificial agents developed in the context of AI result from an entanglement of human
motivations. Agents are designed to address urging needs like, for instance in ML, the
need to save scarce computing resources when tackling ambitious learning tasks (time,
power, memory, storage, development, money, etc). This efficiency concern conflicts with
a general requirement that ML agents be also autonomous, especially because they are
expected to tackle automation problems that humans themselves do not know how to
solve. The end tools constructed on this basis hinge on both technological progress and
advances in the corresponding academic fields, while the ethics of their actual usage is
ultimately under the supervision of our only responsible citizenship.

Notwithstanding, we believe that the essence of AI in general is more simple. As an
attempt to automate tasks handled by humans, AI remains a creative activity inspired by
nature. Real-world phenomena involve sophisticated natural agents able to face unantic-
ipated situations in adequate and original ways, including ourselves. Our understanding
of autonomous procedures relies on the observation of such processes, as it helps con-
structing our way beyond the current limitations of the artificial agents we design. As a

168 CHAPTER 8. CONCLUSION

consequence, it is common that contemporary solutions to ML issues are derived from
general knowledge of natural sciences, like CNNs from visual cortex, to address the lim-
its of vanilla ANNs in artificial vision, genetic algorithms from evolution, to address the
limits of exact maximization approaches, and RL from developmental psychology.

But in addition to rooting AI, nature is also the source of unaddressed challenges. In
this thesis, we have observed that natural agents, like tadpoles undergoing metamorpho-
sis, but also artificial agents facing natural situations, like the modular roverbot whose
interface experiences structural editions, are challenged with occasional changes to their
capabilities, which we have called “signature changes”. Tadpoles belong to this class of
natural processes seamlessly facing the situation induced by these spontaneous changes,
but artificial agents are, to the best of our knowledge, unable to undergo such radical
transformations.

Grounded in this natural inspiration, we have uncovered a significant unaddressed is-
sue in ML: making artificial agents protean, or able to accommodate changes in their very
capabilities. With the natural projections offered and evaluated in our contributions, we
have attempted to strike a first balance between efficiency and autonomy of such agents,
so they can be used in turn to meet the various needs of ML. With the help of two scrupu-
lous experiments addressing traditional ML contexts, we have shown that the natural pro-
jections are generic enough to be used against a variety of tasks unanticipated by the
designers, and efficient enough to yield better results than the naive approaches.

Like any other ambition of ML, the pursuit of an ideal protean agent is still open,
especially because the present thesis is only one contribution to it. In the future, we expect
not only that improvement in this direction will benefit to all natural applications of PL
like modular robotics, adaptive programs and developmental learning, but also that the
flexibility provided by protean adaptation will keep paving the way towards audacious
and valuable bio-inspired products of AI, and artificial life in general.

Annex

A.1 Chapter 7 Transitions Function Symmetries

Not every transition function is unique from the learner agent perspective. For instance,
consider the following two environments T and T̃ :

T :

a+

a−

b+

b−

1
1

1
T̃ :

a+

a−

b+

b−

1

1
1 (A.1)

The representation of T and T̃ look different, but they only differ by their labels, and
the learning dynamics in either would always be the same in the experiment. In other
terms, among all automorphisms in T, some are meaningless transformations M : T 7→ T̃

that do not change the environment from the agent perspective. In their most generic form,
relabelling automorphisms of T are defined as a sequence of functions transforming every
label into another one, e.g., in the case of the above transformation:

M :

Ma+ :

{
7→
7→ , Mb+ :

{
7→
7→

,

a 7→ b

b 7→ a

+ 7→ −
− 7→+

Ma− :

{
7→
7→ , Mb− :

{
7→
7→

(A.2)

Testing both T and T̃ in the benchmark is redundant, so it can be reduced. To this
end, we need to characterize “meaningless” transformations. For convenience, the same
symbol M is used to refer to various automorphisms simultaneously defined over the
set of input labels, action labels, transition functions, etc. E.g., M(a) = b, M(−) = +,
M(T) = T̃ . States labels are accordingly modified the straightforward way, e.g., in the
above example: M(a+) = M(a)M(+) = b−. Note that output labels are transformed locally

within the context of each state, e.g., Ma+() = , but Mb+() = , so they are possibly
changed in a state but not in another. As a consequence, the order of transformations
matters, and we choose that action labels be transformed before states labels.

170 ANNEX

Also note that we only consider automorphisms of T, so every transformation in M

is bijective, and the reverse function M−1 with associated constitutive reverse transforma-
tions M−1

a+
, M−1

a− , etc. always exists. A generic form of relabelling automorphisms like the
one shown in (A.2) is:

M ∈
(

{O O}|S|×{I1 I1}×{I2 I2}
)

(A.3)

Where {A B} represents the set of all bijections between A and B. The correspond-
ing bijection in {T T} is defined by the following symmetrical property for every
transition T (s, u) = (s′, f):

M(T)(M(s), Ms(u)) =
(
M
(
s′
)
, f
)

(A.4)

To specify what a “meaningless” transformation is, we need to consider the set
of possible “reactions” of the agent to an environmental state. A reaction has the
form R : S→O. This represents, at the same time, the agent policy, its possible inter-
nal states, the current stochastic realization, etc. to determine what the next output is
depending on latest environmental state. An automorphism M is meaningless in terms of
learning dynamics if and only if, for every possible agent reaction R, there exists another
symmetrical reaction M(R) such that:

∀s ∈S, Ms(M(R)(M(s))) = R(s) (A.5)

In other terms, in the transformed environment, an agent with the transformed reac-
tion M(R) behaves the exact same way as the original one, except that the labels have
been changed. As a consequence, there is no need to test both the original and the trans-
formed environments in the benchmark.

Reversibility of M ensures that M(R) is always injectively specified by the meaning-
less property (A.5), i.e.:

M(R) : s 7→M−1
M−1(s)

(
R
(
M−1(s)

))
(A.6)

In this view, automorphisms M do not only transform labels and transition functions into
one another, but also constitute an automorphism over the set of possible reaction func-
tions R.

Interestingly, while 2D agents possibly exhibit any possible reaction func-
tion R2D = R, 1D agents cannot react differently to indistinguishable environmental states
and have restricted reactions R1D = R̄. In fact, for any input l ∈ I1 used as a label, there is
always:

R̄
(
l+
)
= R̄

(
l−
)

(A.7)

As a consequence, 1D reactions only constitute a subset of possible reaction functions.
In (+i) and (−i) experiments, agents always undergo a 1D experience, either before or af-

A.1. CHAPTER 7 TRANSITIONS FUNCTIONS AND SYMMETRIES 171

ter the signature change event. This sets a constraint on the set of meaningless relabelling
transformations M. To remain meaningless in this context, M must make it possible that a
transformed 1D agent exhibits the same reaction as any original 1D agent. In other terms,
M must also constitute an endomorphism over the restricted set of 1D reaction functions,
so that M(R̄)(l+) = M(R̄)(l−) is also always true. In the following, we demonstrate that
this constraint is exactly:

∀l ∈I1, Ml+ = Ml− (A.8)

Which permits to rule out about 94% redundant environments from the benchmark,
without reducing its diversity.

To show that the condition (A.8) is necessary, we consider a meaningless transforma-
tion M that violates it, so:

∃(l, o) ∈I1×O, Ml+(o) 6= Ml−(o) (A.9)

Take for instance the following transformation:

M :

Ma+ :

{
7→
7→ , Mb+ :

{
7→
7→

,

a 7→ b

b 7→ a

+ 7→ −
− 7→+

Ma− :

{
7→
7→ , Mb− :

{
7→
7→

(A.10)

In this relabelling, Ma+() 6= Ma−(), which yields the following transformed transition
function M(T) according to (A.4):

a+

a−

b+

b−

1

1
1 (A.11)

Since M is supposed to be bijective over the set of every possible 1D reactions, then
no matter the diverging output o considered, there must exist a 1D reaction R̄ whose
image M(R̄) yields exactly o when faced with environmental state M(l+):

∃R̄, M(R̄)
(
M
(
l+
))

= o (A.12)

In our example, this could be M(R̄) : b− 7→ . Now, for every l ∈I1:

M
(
l+
)
= M(l)M(+)

M
(
l−
)
= M(l)M(−) (A.13)

172 ANNEX

So the above two states M(l+) and M(l−) only differ by their I2 label (exponent sign).
According to (A.7), 1D reactions are insensitive to I2 labels, so we can write:

M(R̄)
(
M
(
l+
))

= M(R̄)
(
M
(
l−
))

= o (A.14)

Reinjecting these in (A.9), we get:

Ml+
(
M(R̄)

(
M
(
l+
)))
6= Ml−

(
M(R̄)

(
M
(
l−
)))

(A.15)

Which by the meaningless property (A.5) reduces to:

R̄
(
l+
)
6= R̄

(
l−
)

(A.16)

This contradicts with the basic property of 1D reaction functions (A.7), and M is
not an endomorphism over 1D reactions anymore. Indeed, with the above transition
function M(T) (A.11), a 1D agent that picks when observing b would loop between b+

and b− states, with M(R̄)(b+) = M(R̄)(b−). However, in the corresponding preimage
transition function T (A.1), looping between corresponding preimage states a− and a+

would require that be taken in a+ and in a−, so R(a+) 6= R(a−), which is impossible
for an agent which cannot distinguish between a+ and a−. As a consequence, no
meaningless transformation M can verify (A.9), they must verify (A.8) instead.

Now, to show that (A.8) is a sufficient condition for M to be meaningless, we start
from the basic property of any 1D reaction function R̄:

∀l ∈I1, R̄
(
l+
)
= R̄

(
l−
)

(A.17)

In particular, this is true for any preimage state M−1(l):

R̄
(

M−1(l)
+
)

= R̄
(

M−1(l)
−)

(A.18)

According to (A.7), R̄ is indifferent to I2 labels (exponent sign), so it is safe to also write:

R̄
(
M−1(l+

))
= R̄

(
M−1(l−

))
(A.19)

The inverse version of (A.8) yields that:

∀l ∈I1, M−1
l+

= M−1
l− (A.20)

In particular, and because M−1(l+) and M−1(l−) only differ by their I2 labels due
to (A.13), we have:

M−1
M−1(l+)

= M−1
M−1(l−) (A.21)

A.1. CHAPTER 7 TRANSITIONS FUNCTIONS AND SYMMETRIES 173

Reusing this in (A.19), we get:

M−1
M−1(l+)

(
R̄
(
M−1(l+

)))
= M−1

M−1(l−)

(
R̄
(
M−1(l−

)))
(A.22)

Which according to (A.6) reduces to:

M(R̄)
(
l+
)
= M(R̄)

(
l−
)

(A.23)

This shows that the transformed reaction M(R̄) also respects the property (A.7). So if M

respects condition (A.8), then it is also an endomorphism over the set of 1D reactions
functions, which makes this condition sufficient.

In the end, a meaningless relabelling automorphism M that correctly verifies (A.8) is
completely summarized under the shorter form:

M :

(

Ma :

{
7→
7→ , Mb :

{
7→
7→ ,

{
a 7→ b

b 7→ a
,

{
+ 7→ −
− 7→+

)

(A.24)

With only the first input channel I1 used as a context to modify output labels with bi-
jections Ma and Mb. As a consequence, the generic form of meaningless transforma-
tions M (A.3) can be rewritten:

M ∈
(

{O O}|I1|×{I1 I1}×{I2 I2}
)

(A.25)

So we count that there exists

|O|!|I1|×|I1|!×|I2|! = 2!2×2!×2! = 16 (A.26)

possible meaningless transformations in the benchmark, including identity.

With these meaningless transformations correctly characterized, transition functions
in Trec are easily partitioned into C equivalence classes:

Trec =
C⋃

c=0

Teq(c)

∀c, c′ ∈ {1, . . . , C}, c 6= c′ =⇒ Teq(c)∩Teq
(
c′
)
=∅

∀c, ∀T, T̃ ∈Teq(c), ∃M, M meaningless & M(T) = T̃

(A.27)

Within an equivalence class, all environments are meaningless relabellings of each other,
so they are redundant and only one of them needs to be tested in the benchmark. Note that
a few classes contain less than 16 elements since the corresponding transition functions
have structural symmetries, resulting in M(T) = T even when M is not identity. Careful
screening of Trec yields the following count:

C = 340136 (A.28)

174 ANNEX

For the sake of consistency and reproducibility of the benchmark, one environment
has to be deterministically chosen within each symmetry class. We first decide a canonical
order O on the binary symbols used to define the transition function:

O(O) = (,)

O(F) = (0, 1)

O(I1) = (a, b)

O(I2) = (+, −)
O(S) =

(
a+, a−, b+, b−

)

(A.29)

Then, we encode each transition function as the successive symbols needed to define
it completely:

∀T ∈T, O(T) = ∑
(s, o)∈O(S)×O(O)

T (s,o) (A.30)

Where the × operation is defined as the ordered product of tuples, e.g.:

(a, b)× (,) = ((a,), (a,), (b,), (b,)), (A.31)

And the + operation is defined as the ordered concatenation of tuples, e.g.:

(x1, y1)+(x2, y2) = (x1, y1, x2, y2) (A.32)

For instance, canonical encoding for environment TA (see Figure 7.1) is:

O(TA) =
(
a+, 0, b−, 0, a+, 1, a+, 0, a−, 0, b−, 0, a+, 0, b+, 0

)
(A.33)

This provides a strict total, lexicographic ordering of T, and a fortiori a total ordering
within each symmetry class Teq(c). For instance, given the two environments defined
in (A.1):

T < T̃ (A.34)

To constitute the benchmark, only the first element of each Teq(c), with respect to this
ordering, is kept:

Tcan =
{

min
(
Teq(c)

)
, c ∈ {1, . . . , C}

}
(A.35)

Consistently with (A.26), this reduces the benchmark by about 15/16 ≈ 94%.

A.2 Constraints On Joint Profiles

Not every combination of IPL profiles into a joint profile is possible. In the context of our
benchmark, there are a few particular constraints which we expound here. They are all
summarized in Table A.1

As long as there exists one non-optimal path within the transition function (e.g., the

A.2. CONSTRAINTS ON JOINT PROFILES 175

if Pdet is then Psto is not
HI FI (A.38)
HT LO (A.40)
HT FT & FI(A.41)
FT HT (A.39)
LO

FO (A.37)
HO

FFH
any HFF (A.36)

HFH

Table A.1: Summary of constraints on IPL joint profiles.

transition (a+,) in TE (7.58)), then a policy that deterministically avoids it is always
better than a stochastic policy with a chance of undergoing it. As a consequence, the
only possible optimal stochastic policies within Psto contain at least one degenerated
deterministic component. In other terms, one associated optimal probability measure is
either exactly 0 or 1, so the optimal policies must lie on the boundary of the corresponding
hypercube [0, 1]|S|. Since there exists policies within P̌sto that do not lie on this boundary,
this implies that the outer landscape of F cannot be flat:

P∗sto 6=Psto =⇒ P̌∗sto 6= P̌sto (A.36)

As a result, no stochastic landscape Psto can belong to the FO categories HFF, FFH or
HFH.

A consequence of (7.34) and (7.60) is that no environment with a deterministic land-
scape classified as LO or HO can exhibit a FO stochastic landscape since suboptimal
deterministic policies of Pdet are inherited by Psto:

P̌∗det 6= P̌det =⇒ P̌∗sto 6= P̌sto (A.37)

The same reasoning also holds for diminished policies P̄: no environment with a
deterministic HI landscape can belong to a stochastic FI category:

P̄∗det 6= P̄det =⇒ P̄∗sto 6= P̄sto (A.38)

Regarding the best policy values, a consequence of (7.57) is that no environment with
a deterministic FT landscape can be also classified as a stochastic HT:

F̄∗det = F∗det =⇒ F̄∗sto = F∗sto (A.39)

And as a consequence of (7.60), no environment with a deterministic HT landscape

176 ANNEX

can be classified as a stochastic LO:

F̄∗det < F∗det =⇒ P̌∗sto 6=∅ (A.40)

When a deterministic HT landscape extends into a stochastic FT landscape, it means
that some diminished stochastic policies yield better results than diminished deterministic
ones, like in the example TA. But since P̄sto inherits from all policies in P̄det , including
the inferior ones, then the corresponding stochastic landscape cannot be FI:

(F̄∗det < F∗det & F̄∗sto = F∗sto) =⇒ P̄∗sto 6= P̄sto (A.41)

A.3. CHAPTER 7 ADDITIONAL TABLE AND FIGURES 177

A.3 Chapter 7 Additional Table and Figures

FFF-FFF QL (+i), pmin = 0.01

01

HLF-HLF QL (+i), pmin = 0.05

02

HHH-HHH QL (−i), pmin = 0.01

03

FHH-HHH AC (−i), pmin = 0.01

04

HHF-HHF QL (+i), pmin = 0.10

05

FHH-FHH AC (+i), pmin = 0.01

06

Figure A.1: Example runs presented in Figure 7.4 with additional information. On every plot,
the top panel is identical to the plot in Figure 7.4. The bottom panels represent the correspond-
ing agent trajectory within the environment states space. Light dots mean the agent has chosen
action and dark dots mean action . Middle panels represent the search trajectory within the
policies space P and P̄. When searching Pdet and P̄det with the QL method, each horizontal
line represents one deterministic policy labelled with corresponding actions in canonical order.
Optimal policies within P∗det are colored gold, and diminished optimal policies within P̄∗det are
colored purple. When searching Psto and P̄sto with the AC method, each trajectory corresponds to
one dimension of the stochastic search space, i.e. the probability of choosing action depending
on current observation. Figure continued in Figure A.2

178 ANNEX

joint profile meas. res. stde joint profile meas. res. stde
FFF-FFF LT 0.0000017 HLF-HLF LT 0.0576113
FFF-FFF IT 0.0001975 HLF-HLF IT 0.0369440
HFF-HHF LT 0.0075877 FHH-FHH LT 0.0260944
HFF-HHF IT 0.0235293 FHH-FHH IT 0.1203736
FHF-HHF LT 0.0094990 FHH-HHH LT 0.0383201
FHF-HHF IT 0.0263794 FHH-HHH IT 0.1690942
HHF-HHF LT 0.0405426 HHH-HHH LT 0.0443568
HHF-HHF IT 0.0617372 HHH-HHH IT 0.1214023

Table A.2: Residual standard error of the linear models fitted for measures LT and IT under the
various joint profiles.

FHH-FHH AC (+i), pmin = 0.10

07

FHH-FHH QL (−i), pmin = 0.01

08

FHF-HHF AC (−i), pmin = 0.01

09

HFF-HHF QL (−i), pmin = 0.01

10

FHH-HHH QL (−i), pmin = 0.01

11

HHH-HHH AC (−i), pmin = 0.01

12

Figure A.2: Figure A.1 continued.

A.3. CHAPTER 7 ADDITIONAL TABLE AND FIGURES 179

a+

a−

b+

b−

01

11

1

1

1 a+

a−

b+

b−

02

1

1 a+

a−

b+

b−

03

1
1

1

1

a+

a−

b+

b−

04

1 a+

a−

b+

b−

05

1 1

1

1

a+

a−

b+

b−

06

1

1

1
1

a+

a−

b+

b−

07

1

1
1

1

a+

a−

b+

b−

08

1

1

1

1

1

a+

a−

b+

b−

09

1

1

1
1 1

a+

a−

b+

b−

10

1

1

1

11 1

a+

a−

b+

b−

11

1 11

a+

a−

b+

b−

12

1

11

Figure A.3: Environments used in the example runs represented in Figure 7.4.

a+

a−

b+

b−

13

1

1

1

1

1

1

1

HFF-HHF QL (+i), pmin = 0.01

13

LT: 0.244e−2

IT: 0.01 LP: 1.000

Figure A.4: Example run illustrating effect (G).

180 ANNEX

Bibliography

[1] Ababsa, Tarek, Djedi, Noureddine, Duthen, Yves, and Cussat-Blanc, Sylvain.
Splittable Metamorphic Carrier Robots. In: 14th International Conference on the
Synthesis and Simulation of Living Systems, ALIFE. New York, US: The MIT
Press, 2014, pp. 1–8.

[2] Abramowitz, Milton and Stegun, Irene A. Lengendre Functions. In: Handbook of
Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. 9th.
New York: Dover, 1972, pp. 771–802.

[3] Bacon, Pierre-Luc, Harb, Jean, and Precup, Doina. The Option-Critic Architec-

ture. In: AAAI Conference on Artificial Intelligence 31.1 (2017).

[4] Bakker, Bram. Reinforcement Learning with Long Short-Term Memory. In: 14th
International Conference on Neural Information Processing Systems: Natural and
Synthetic. NIPS’01. Vancouver, British Columbia, Canada: MIT Press, 2001,
pp. 1475–1482.

[5] Bakker, Bram, Zhumatiy, V., Gruener, G., and Schmidhuber, J. Quasi-Online Re-

inforcement Learning for Robots. In: IEEE International Conference on Robotics
and Automation. ICRA 2006. Orlando, FL, USA: IEEE, 2006, pp. 2997–3002.

[6] Bandura, Albert and Walters, R.H. Social Learning and Personality Development.

Social Learning and Personality Development. Holt Rinehart and Winston: New
York, 1963.

[7] Barreto, André, Borsa, Diana, Quan, John, Schaul, Tom, Silver, David, Hessel,
Matteo, Mankowitz, Daniel, Zidek, Augustin, and Munos, Remi. Transfer in Deep

Reinforcement Learning Using Successor Features and Generalised Policy Im-

provement. In: 35th International Conference on Machine Learning. Ed. by Jen-
nifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Re-
search. Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 501–510.

[8] Barreto, André, Munos, Rémi, Schaul, Tom, and Silver, David. Successor Fea-

tures for Transfer in Reinforcement Learning. In: Advances in Neural Information
Processing Systems. Vol. 30. Curran Associates, Inc., 2017, pp. 4055–4065.

182 BIBLIOGRAPHY

[9] Bengio, Yoshua, Louradour, Jérôme, Collobert, Ronan, and Weston, Jason. Cur-

riculum Learning. In: 26th Annual International Conference on Machine Learning
- ICML ’09. Montreal, Quebec, Canada: ACM Press, 2009, pp. 1–8.

[10] Berner, Christopher et al. Dota 2 with Large Scale Deep Reinforcement Learning.
In: CoRR abs/1912.06680 (2019).

[11] Bonnici, Iago, Gouaïch, Abdelkader, and Michel, Fabien. Effects of Input Addi-

tion in Learning for Adaptive Games: Towards Learning with Structural Changes.
In: EvoApplications: Applications of Evolutionary Computation. Vol. LNCS.
Leipzig, Germany, 2019, pp. 172–184.

[12] Bonnici, Iago, Gouaïch, Abdelkader, and Michel, Fabien. Input Addition and

Deletion in Reinforcement: Towards Learning with Structural Changes. In: 19th
International Conference on Autonomous Agents and MultiAgent Systems. AA-
MAS ’20. Auckland, New Zealand: International Foundation for Autonomous
Agents and Multiagent Systems, 2020, pp. 177–185.

[13] Boots, Byron and Gordon, Geoffrey J. Predictive State Temporal Difference

Learning. In: Advances in neural information processing systems. Curran Asso-
ciates, Inc. 23 (2010). In collab. with J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, and A. Culotta, pp. 271–279.

[14] Busto, Pau Panareda and Gall, Juergen. Open Set Domain Adaptation. In: Inter-
national Conference on Computer Vision (ICCV). Venice: IEEE, 2017, pp. 754–
763.

[15] Caruana, Rich. Learning Many Related Tasks at the Same Time with Backprop-

agation. In: 7th International Conference on Neural Information Processing Sys-
tems. NIPS’94. Denver, Colorado: MIT Press, 1994, pp. 657–664.

[16] Pu-Cheng, Zhou, Bing-Rong, Hong, Qing-Cheng, Huang, and Khurshid, Javaid.
Hybrid Multiagent Reinforcement Learning Approach: The Pursuit Problem. In:
Information Technology Journal 5.6 (2006), pp. 1006–1011.

[17] Chiplunkar, Ankit, Rachelson, Emmanuel, Colombo, Michele, and Morlier,
Joseph. Approximate Inference in Related Multi-Output Gaussian Process Re-

gression. In: Pattern Recognition Applications and Methods. Ed. by Ana Fred,
Maria De Marsico, and Gabriella Sanniti di Baja. Vol. 10163. Series Title: Lec-
ture Notes in Computer Science. Cham: Springer International Publishing, 2017,
pp. 88–103.

[18] Cho, Kyunghyun, van Merrienboer, Bart, Gulcehre, Caglar, Bougares, Fethi,
Schwenk, Holger, Bengio, Yoshua, and Bahdanau, Dzmitry. Learning Phrase

Representations Using RNN Encoder-Decoder for Statistical Machine Trans-

lation. In: Conference on Empirical Methods in Natural Language Process-
ing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014,
pp. 1724–1734.

BIBLIOGRAPHY 183

[19] Clavera, Ignasi, Held, David, and Abbeel, Pieter. Policy Transfer via Modular-

ity and Reward Guiding. In: International Conference on Intelligent Robots and
Systems (IROS). 2017.

[20] Cornuéjols, Antoine, Koriche, Frédéric, and Nock, Richard. Statistical Compu-

tational Learning. In: A Guided Tour of Artificial Intelligence Research. Ed. by
Pierre Marquis, Odile Papini, and Henri Prade. Cham: Springer International Pub-
lishing, 2020, pp. 341–388.

[21] Cornuéjols, Antoine, Murena, Pierre-Alexandre, and Olivier, Raphaël. Transfer

Learning by Learning Projections from Target to Source. In: Advances in Intelli-
gent Data Analysis XVIII. Ed. by Michael R. Berthold, Ad Feelders, and Georg
Krempl. Vol. 12080. Series Title: Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2020, pp. 119–131.

[22] Cui, Yuwei, Ahmad, Subutai, and Hawkins, Jeff. Continuous Online Sequence

Learning with an Unsupervised Neural Network Model. In: Neural Computation
28.11 (2016), pp. 2474–2504.

[23] Cutler, Mark and How, Jonathan P. Efficient Reinforcement Learning for Robots

Using Informative Simulated Priors. In: International Conference on Robotics and
Automation (ICRA). Seattle, WA, USA: IEEE, 2015, pp. 2605–2612.

[24] Darwin, Charles. On the Origins of Species by Means of Natural Selection. In:
London: Murray (1859), p. 247.

[25] De Rosario-Martinez, Helios. Phia: Post-Hoc Interaction Analysis. 2015.

[26] Dempster, Arthur P., Laird, Nan M., and Rubin, Donald B. Maximum Likelihood

from Incomplete Data via the EM Algorithm. In: Journal of the Royal Statistical
Society. Series B (Methodological) 39.1 (1977), pp. 1–38.

[27] Devin, Coline, Gupta, Abhishek, Darrell, Trevor, Abbeel, Pieter, and Levine,
Sergey. Learning Modular Neural Network Policies for Multi-Task and Multi-

Robot Transfer. In: International Conference on Robotics and Automation
(ICRA). Singapore, Singapore: IEEE, 2017, pp. 2169–2176.

[28] Dhillon, Anamika and Verma, Gyanendra K. Convolutional Neural Network:

A Review of Models, Methodologies and Applications to Object Detection. In:
Progress in Artificial Intelligence 9.2 (2020), pp. 85–112.

[29] Doncieux, Stephane, Bredeche, Nicolas, Mouret, Jean-Baptiste, and Eiben, Agos-
ton E. (Gusz). Evolutionary Robotics: What, Why, and Where To. In: Frontiers in
Robotics and AI 2 (2015).

[30] Elgammal, Ahmed M., Mazzone, Marian, Liu, Bingchen, Kim, Diana, and Elho-
seiny, Mohamed. The Shape of Art History in the Eyes of the Machine. In: AAAI
Conference on Artificial Intelligence 32.1 (2018).

184 BIBLIOGRAPHY

[31] Elman, Jeffrey L. Finding Structure in Time. In: Cognitive Science 14.2 (1990),
pp. 179–211.

[32] Finn, Chelsea, Abbeel, Pieter, and Levine, Sergey. Model-Agnostic Meta-

Learning for Fast Adaptation of Deep Networks. In: 34th International Confer-
ence on Machine Learning (Sydney, NSW, Australia). Vol. 70. JMLR.org, 2017,
pp. 1126–1135.

[33] Francillette, Yannick. Modèle Adaptatif d’activités Pour Les Jeux Ubiquitaires.
PhD Thesis. LIRMM: Université de Montpellier, 2014.

[34] Frans, Kevin, Ho, Jonathan, Chen, Xi, Abbeel, Pieter, and Schulman, John. Meta

Learning Shared Hierarchies. In: ArXiv abs/1710.09767 (2018).

[35] Friedman, Jerome H. Multivariate Adaptive Regression Splines. In: The Annals
of Statistics 19.1 (1991), pp. 1–67.

[36] Gama, João, Žliobaitė, Indrė, Bifet, Albert, Pechenizkiy, Mykola, and
Bouchachia, Abdelhamid. A Survey on Concept Drift Adaptation. In: ACM Com-
puting Surveys 46.4 (2014), pp. 1–37.

[37] Garcia, Frédérick and Rachelson, Emmanuel. Markov Decision Processes. In:
Markov Decision Processes in Artificial Intelligence. Ed. by Olivier Sigaud and
Olivier Buffet. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013, pp. 1–38.

[38] Ge, Liang, Gao, Jing, Ngo, Hung, Li, Kang, and Zhang, Aidong. On Handling

Negative Transfer and Imbalanced Distributions in Multiple Source Transfer

Learning: Multiple Source Transfer Learning. In: Statistical Analysis and Data
Mining: The ASA Data Science Journal 7.4 (2014), pp. 254–271.

[39] Al-Ghossein, Marie, Murena, Pierre-Alexandre, Cornuéjols, Antoine, and Ab-
dessalem, Talel. Online Learning with Reoccurring Drifts: The Perspective of

Case-Based Reasoning. In: 3rd Workshop on Synergies between CBR and Data
Mining, ICCBR. Stockholm, Sweden, 2018.

[40] Goddeau, David and Pineau, Joelle. Fast Reinforcement Learning of Dialog

Strategies. In: International Conference on Acoustics, Speech, and Signal Pro-
cessing. Vol. 2. Istanbul, Turkey: IEEE, 2000, pp. II1233–II1236.

[41] Goldberg, Yoav. A Primer on Neural Network Models for Natural Language Pro-

cessing. In: Journal of Artificial Intelligence Research 57 (2016), pp. 345–420.

[42] Gu, Shixiang, Lillicrap, Timothy, Sutskever, Ilya, and Levine, Sergey. Contin-

uous Deep Q-Learning with Model-Based Acceleration. In: 33rd International
Conference on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q.
Weinberger. Vol. 48. Proceedings of Machine Learning Research. New York, New
York, USA: PMLR, 2016, pp. 2829–2838.

BIBLIOGRAPHY 185

[43] Gupta, Anil K., Smith, Ken G., and Shalley, Christina E. The Interplay Between

Exploration and Exploitation. In: Academy of Management Journal 49.4 (2006),
pp. 693–706.

[44] Hanna, Christopher J., Hickey, Raymond J., Charles, Darryl K., and Black,
Michaela M. Modular Reinforcement Learning Architectures for Artificially Intel-

ligent Agents in Complex Game Environments. In: Symposium on Computational
Intelligence and Games (CIG). Copenhagen, Denmark: IEEE, 2010, pp. 380–387.

[45] Harel, Maayan and Mannor, Shie. Learning from Multiple Outlooks. In: 28th
International Conference on International Conference on Machine Learning.
ICML’11. Madison, WI, USA: Omnipress, 2011, pp. 401–408.

[46] Haykin, Simon. Neural Networks: A Comprehensive Foundation. Second. OCLC:
643435359. Delhi: Pearson Education, 1999.

[47] Heng Wang and Abraham, Zubin. Concept Drift Detection for Streaming Data.
In: 2015 International Joint Conference on Neural Networks (IJCNN). Killarney,
Ireland: IEEE, 2015, pp. 1–9.

[48] Hester, Todd and Stone, Peter. TEXPLORE: Real-Time Sample-Efficient Rein-

forcement Learning for Robots. In: Machine Learning 90.3 (2013), pp. 385–429.

[49] Hlynsson, Hlynur, Escalante-B., Alberto, and Wiskott, Laurenz. Measuring the

Data Efficiency of Deep Learning Methods: in: 8th International Conference
on Pattern Recognition Applications and Methods. Prague, Czech Republic:
SCITEPRESS - Science and Technology Publications, 2019, pp. 691–698.

[50] Hochreiter, Sepp and Schmidhuber, Jürgen. Long Short-Term Memory. In: Neural
Computation 9.8 (1997), pp. 1735–1780.

[51] Hsu, Feng-hsiung. Behind Deep Blue: Building the Computer That Defeated the

World Chess Champion. Princeton: Princeton University Press, 2002. 298 pp.

[52] Jaber, Ghazal, Cornuéjols, Antoine, and Tarroux, Philippe. Online Learning:

Searching for the Best Forgetting Strategy under Concept Drift. In: Neural In-
formation Processing. Ed. by Minho Lee, Akira Hirose, Zeng-Guang Hou, and
Rhee Man Kil. Red. by David Hutchison et al. Vol. 8227. Series Title: Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 400–408.

[53] Jain, Lakhmi C., Seera, Manjeevan, Lim, Chee Peng, and Balasubramaniam, P. A

Review of Online Learning in Supervised Neural Networks. In: Neural Computing
and Applications 25.3-4 (2014), pp. 491–509.

[54] Jin, Yu, Duffield, Nick, Erman, Jeffrey, Haffner, Patrick, Sen, Subhabrata, and
Zhang, Zhi-Li. A Modular Machine Learning System for Flow-Level Traffic Clas-

sification in Large Networks. In: ACM Transactions on Knowledge Discovery
from Data 6.1 (2012), pp. 1–34.

186 BIBLIOGRAPHY

[55] Jolliffe, Ian. Principal Component Analysis. In: International Encyclopedia of
Statistical Science. Ed. by Miodrag Lovric. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 1094–1096.

[56] Jones, M. Chris, Marron, James S., and Sheather, Simon J. A Brief Survey of

Bandwidth Selection for Density Estimation. In: Journal of the American Statisti-
cal Association 91.433 (1996), pp. 401–407.

[57] Jung, Ralf, Jourdan, Jacques-Henri, Krebbers, Robbert, and Dreyer, Derek. Safe

Systems Programming in Rust. In: Communications of the ACM 64.4 (2021),
pp. 144–152.

[58] Kalmár, Zsolt, Szepesvári, Csaba, and Lorincz, András. Modular Reinforcement

Learning: An Application to a Real Robot Task. In: Learning Robots. Ed. by An-
dreas Birk and John Demiris. Red. by G. Goos, J. Hartmanis, and J. van Leeuwen.
Vol. 1545. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 29–45.

[59] Kaplanis, Christos, Shanahan, Murray, and Clopath, Claudia. Continual Rein-

forcement Learning with Complex Synapses. In: 35th International Conference on
Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings
of Machine Learning Research. Stockholmsmässan, Stockholm Sweden: PMLR,
2018, pp. 2497–2506.

[60] Karras, Tero, Aila, Timo, Laine, Samuli, and Lehtinen, Jaakko. Progressive Grow-

ing of GANs for Improved Quality, Stability, and Variation. In: 6th International
Conference on Learning Representations (ICLR). Ed. by Yann LeCun and Yoshua
Bengio. Vancouver, British Columbia, Canada, 2018.

[61] Khanıev, Tahır A., Unver, İhsan, and Maden, Selahattın. On the Semi-Markovian

Random Walk with Two Reflecting Barriers. In: Stochastic Analysis and Applica-
tions 19.5 (2001), pp. 799–819.

[62] Kingma, Diederik P. and Ba, Jimmy. Adam: A Method for Stochastic Optimiza-

tion. In: 3rd International Conference on Learning Representations (ICLR). Ed.
by Yoshua Bengio and Yann LeCun. San Diego, CA, USA, 2015.

[63] Kirkpatrick, James et al. Overcoming Catastrophic Forgetting in Neural Net-

works. In: Proceedings of the National Academy of Sciences 114.13 (2017),
pp. 3521–3526.

[64] Kirkpatrick, Scott, Gelatt, C. Daniel, and Vecchi, Mario P. Optimization by Simu-

lated Annealing. In: Science 220.4598 (1983), pp. 671–680.

[65] Kohonen, Teuvo. Self-Organizing Maps. 3rd ed. Springer Series in Information
Sciences 30. Berlin ; New York: Springer, 2001. 501 pp.

BIBLIOGRAPHY 187

[66] Kotsiantis, Sotiris B. Supervised Machine Learning: A Review of Classification

Techniques. In: Conference on Emerging Artificial Intelligence Applications in
Computer Engineering: Real Word AI Systems with Applications in eHealth,
HCI, Information Retrieval and Pervasive Technologies. Amsterdam, Nether-
lands: IOS Press, 2007, pp. 3–24.

[67] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. ImageNet Classifica-

tion with Deep Convolutional Neural Networks. In: Advances in Neural Informa-
tion Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger. Curran Associates, Inc., 2012, pp. 1097–1105.

[68] Lazaric, Alessandro. Transfer in Reinforcement Learning: A Framework and a

Survey. In: Reinforcement Learning. Ed. by Marco Wiering and Martijn van Ot-
terlo. Vol. 12. Springer, 2012, pp. 143–173.

[69] Lecarpentier, Erwan and Rachelson, Emmanuel. Non-Stationary Markov De-

cision Processes, a Worst-Case Approach Using Model-Based Reinforcement

Learning. In: Advances in Neural Information Processing Systems. Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett.
Vol. 32. Curran Associates, Inc., 2019, pp. 7216–7225.

[70] Lecun, Yann and Bengio, Yoshua. Convolutional networks for images, speech,

and time-series. In: The handbook of brain theory and neural networks. Ed. by
M.A. Arbib. MIT Press, 1995.

[71] LeCun, Yann, Denker, John S., and Solla, Sara A. Optimal Brain Damage. In:
Advances in Neural Information Processing Systems 2. Ed. by D. S. Touretzky.
Morgan-Kaufmann, 1990, pp. 598–605.

[72] Lee, Juneyoung, Kim, Yoonseung, Song, Youngju, Hur, Chung-Kil, Das, Sanjoy,
Majnemer, David, Regehr, John, and Lopes, Nuno P. Taming Undefined Behavior

in LLVM. In: 38th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI). Barcelona, Spain: ACM Press, 2017, pp. 633–
647.

[73] Lee, Kai-Fu and Mahajan, Sanjoy. Corrective and Reinforcement Learning for

Speaker-Independent Continuous Speech Recognition. In: Computer Speech &
Language 4.3 (1990), pp. 231–245.

[74] Levine, Sergey and Koltun, Vladlen. Guided Policy Search. In: ed. by Sanjoy
Dasgupta and David McAllester. Vol. 28. Atlanta, Georgia, USA: PMLR, 2013,
pp. 1–9.

[75] Levine, Sergey, Kumar, Aviral, Tucker, George, and Fu, Justin. Offline Reinforce-

ment Learning: Tutorial, Review, and Perspectives on Open Problems. In: (2020).

188 BIBLIOGRAPHY

[76] Li, Wen, Duan, Lixin, Xu, Dong, and Tsang, Ivor W. Learning with Augmented

Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 36.6 (2014),
pp. 1134–1148.

[77] Liao, X.X. and Mao, Xuerong. Exponential Stability and Instability of Stochastic

Neural Networks. In: Stochastic Analysis and Applications 14.2 (1996), pp. 165–
185.

[78] Lillicrap, Timothy P., Hunt, Jonathan J., Pritzel, Alexand er, Heess, Nicolas, Erez,
Tom, Tassa, Yuval, Silver, David, and Wierstra, Daan. Continuous Control with

Deep Reinforcement Learning. In: arXiv e-prints (2015), arXiv:1509.02971.

[79] Lin, Long-Ji and Mitchell, Tom M. Reinforcement Learning with Hidden States.
In: 2nd International Conference on From Animals to Animats: Simulation of
Adaptive Behavior: Simulation of Adaptive Behavior. Honolulu, Hawai, USA:
MIT Press, 1993, pp. 271–280.

[80] Lipton, Zachary Chase. A Critical Review of Recurrent Neural Networks for Se-

quence Learning. In: CoRR abs/1506.00019 (2015).

[81] Lloyd, Stuart. Least Squares Quantization in PCM. In: IEEE Transactions on In-
formation Theory 28.2 (1982), pp. 129–137.

[82] Lopez-Paz, David and Ranzato, Marc’Aurelio. Gradient Episodic Memory for

Continuum Learning. In: Advances in Neural Information Processing Systems.
Vol. 30. Curran Associates, Inc., 2017, pp. 6467–6476.

[83] Losing, Viktor, Hammer, Barbara, and Wersing, Heiko. Incremental On-Line

Learning: A Review and Comparison of State of the Art Algorithms. In: Neu-
rocomputing 275 (2018), pp. 1261–1274.

[84] Mandic, Danilo P. and Chambers, Jonathon A. Recurrent Neural Networks for

Prediction: Learning Algorithms, Architectures, and Stability. Wiley Series in
Adaptive and Learning Systems for Signal Processing, Communications, and
Control. Chichester ; New York: John Wiley, 2001. 285 pp.

[85] Maniezzo, Alberto Colorni Marco Dorigo Vittorio. Distributed Optimization by

Ant Colonies. In: Toward a Practice of Autonomous Systems: Proceedings of the
First European Conference on Artificial Life. Mit Press, 1992, p. 134.

[86] McCulloch, Warren S. and Pitts, Walter. A Logical Calculus of the Ideas Imma-

nent in Nervous Activity. In: The Bulletin of Mathematical Biophysics 5.4 (1943),
pp. 115–133.

[87] Mhaskar, Hrushikesh N. and Poggio, Tomaso. Deep vs. Shallow Networks: An

Approximation Theory Perspective. In: Analysis and Applications 14.06 (2016),
pp. 829–848.

BIBLIOGRAPHY 189

[88] Mitchell, Tom M. Machine Learning. Vol. 45. McGraw-Hill Series in Computer
Science. New York: McGraw-Hill, 1997. 414 pp.

[89] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Graves, Alex,
Antonoglou, Ioannis, Wierstra, Daan, and Riedmiller, Martin A. Playing

Atari with Deep Reinforcement Learning. In: CoRR abs/1312.5602 (2013).

[90] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A., et

al. Human-Level Control through Deep Reinforcement Learning. In: Nature
518.7540 (2015), pp. 529–533.

[91] Moriarty, David E., Schultz, Allan C., and Grefenstette, John J. Evolutionary Al-

gorithms for Reinforcement Learning. In: Journal of Artificial Intelligence Re-
search 11 (1999), pp. 241–276.

[92] Narvekar, Sanmit, Peng, Bei, Leonetti, Matteo, Sinapov, Jivko, Taylor, Matthew
E., and Stone, Peter. Curriculum Learning for Reinforcement Learning Domains:

A Framework and Survey. In: Journal of Machine Learning Research 21.181
(2020), pp. 1–50.

[93] Nichols, Carol and Safari, an O’Reilly Media Company. The Rust Programming

Language (Covers Rust 2018). OCLC: 1119061124. 2019.

[94] Ono, Norihiko and Fukumoto, Kenji. Multi-Agent Reinforcement Learning: A

Modular Approach. In: 2nd International Conference on Multiagent Systems,
AAAI (1996), p. 7.

[95] Osman, Ibrahim H. and Laporte, Gilbert. Metaheuristics: A Bibliography. In: An-
nals of Operations Research 63.5 (1996), pp. 511–623.

[96] Partalas, Ioannis, Feneris, Ioannis, and Vlahavas, Ioannis. A Hybrid Multiagent

Reinforcement Learning Approach Using Strategies and Fusion. In: International
Journal on Artificial Intelligence Tools 17.05 (2008), pp. 945–962.

[97] Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua. On the Difficulty of

Training Recurrent Neural Networks. In: 30th International Conference on In-
ternational Conference on Machine Learning (Atlanta, GA, USA). Vol. 28.
ICML’13. JMLR.org, 2013, pp. III-1310-III–1318.

[98] Paszke, Adam, Gross, Sam, Chintala, Soumith, Chanan, Gregory, Yang, Ed-
ward, DeVito, Zachary, Lin, Zeming, Desmaison, Alban, Antiga, Luca, and Lerer,
Adam. Automatic Differentiation in PyTorch. 2017.

[99] Potter, Mitchell A. The Design and Analysis of a Computational Model of Coop-

erative Coevolution. PhD Thesis. Fairfax, VA, USA: George Mason University,
1997.

[100] Prentice, Ross L. and Pyke, Ronald. Logistic Disease Incidence Models and Case-

Control Studies. In: Biometrika 66.3 (1979), pp. 403–411.

190 BIBLIOGRAPHY

[101] R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing, 2020.

[102] Rachelson, Emmanuel, Garcia, Frédérick, and Fabiani, Patrick. Extending the

Bellman Equation for MDPs to Continuous Actions and Continuous Time in

the Discounted Case. In: International Symposium on Artificial Intelligence and
Mathematics. Fort Lauderdale, USA, 2008.

[103] Reinsel, David, Gantz, John, and Rydning, John. The Digitization of the World,

From Edge to Core. IDC, 2018.

[104] Ring, Mark B. Continual Learning in Reinforcement Environments. PhD Thesis.
Austin, TX, USA: University of Texas at Austin, 1994.

[105] Ring, Mark B. CHILD: A First Step Towards Continual Learning. In: Machine
Learning 28.1 (1997), pp. 77–104.

[106] Rohlfshagen, Philipp, Lehre, Per Kristian, and Yao, Xin. Dynamic Evolutionary

Optimisation: An Analysis of Frequency and Magnitude of Change. In: 11th An-
nual Conference on Genetic and Evolutionary Computation - GECCO ’09. Mon-
treal, Québec, Canada: ACM Press, 2009, p. 1713.

[107] Rusu, Andrei A., Rabinowitz, Neil C., Desjardins, Guillaume, Soyer, Hubert,
Kirkpatrick, James, Kavukcuoglu, Koray, Pascanu, Razvan, and Hadsell, Raia.
Progressive Neural Networks. In: CoRR abs/1606.04671 (2016).

[108] Sastry, Kumara, Goldberg, David E., and Kendall, Graham. Genetic Algorithms.
In: Search Methodologies. Ed. by Edmund K. Burke and Graham Kendall.
Boston, MA: Springer US, 2014, pp. 93–117.

[109] Schmidhuber, Jürgen. Deep Learning in Neural Networks: An Overview. In: Neu-
ral Networks 61 (2015), pp. 85–117.

[110] Schwartz, Anton. A Reinforcement Learning Method for Maximizing Undis-

counted Rewards. In: ICML. 1993, pp. 298–305.

[111] Scott, David W. Kernel Density Estimation. In: Wiley StatsRef: Statistics Ref-
erence Online. Ed. by N. Balakrishnan, Theodore Colton, Brian Everitt, Walter
Piegorsch, Fabrizio Ruggeri, and Jozef L. Teugels. Chichester, UK: John Wiley
& Sons, Ltd, 2018, pp. 1–7.

[112] Seff, Ari, Beatson, Alex, Suo, Daniel, and Liu, Han. Continual Learning in Gen-

erative Adversarial Nets. In: CoRR abs/1705.08395 (2017).

[113] Sigaud, Olivier and Droniou, Alain. Towards Deep Developmental Learning. In:
IEEE Transactions on Cognitive and Developmental Systems 8.2 (2016), pp. 99–
114.

[114] Sigaud, Olivier and Stulp, Freek. Policy Search in Continuous Action Domains:

An Overview. In: Neural Networks 113 (2019), pp. 28–40.

BIBLIOGRAPHY 191

[115] Silver, David et al. Mastering the Game of Go with Deep Neural Networks and

Tree Search. In: Nature 529 (2016), pp. 484–503.

[116] Smart, Williiam D. and Pack Kaelbling, Leslie. Effective Reinforcement Learning

for Mobile Robots. In: International Conference on Robotics and Automation.
Vol. 4. Washington, DC, USA: IEEE, 2002, pp. 3404–3410.

[117] Sodhani, Shagun, Chandar, Sarath, and Bengio, Yoshua. Toward Training Recur-

rent Neural Networks for Lifelong Learning. In: Neural Computation 32.1 (2020),
pp. 1–35.

[118] Spaan, Matthijs T. J. Partially Observable Markov Decision Processes. In: Re-
inforcement Learning: State-of-the-Art. Ed. by Marco Wiering and Martijn van
Otterlo. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 387–414.

[119] Spooner, Thomas, Fearnley, John, Savani, Rahul, and Koukorinis, Andreas. Mar-

ket Making via Reinforcement Learning. In: 17th International Conference on Au-
tonomous Agents and MultiAgent Systems. AAMAS ’18. Stockholm, Sweden:
International Foundation for Autonomous Agents and Multiagent Systems, 2018,
pp. 434–442.

[120] Sprague, Nathan and Ballard, Dana. Multiple-Goal Reinforcement Learning with

Modular Sarsa(O). In: 18th International Joint Conference on Artificial Intelli-
gence. IJCAI’03. Acapulco, Mexico: Morgan Kaufmann Publishers Inc., 2003,
pp. 1445–1447.

[121] Stanley, Kenneth O. and Miikkulainen, Risto. Efficient Reinforcement Learning

Through Evolving Neural Network Topologies. In: 4th Annual Conference on Ge-
netic and Evolutionary Computation. GECCO’02. New York City, New York:
Morgan Kaufmann Publishers Inc., 2002, pp. 569–577.

[122] Suro, François. Epigenetic Learning of Autonomous Behaviours in a Society of

Agents. PhD Thesis. Université de Montpellier, 2020. 193 pp.

[123] Suro, François, Ferber, Jacques, Stratulat, Tiberiu, and Michel, Fabien. A Hier-

archical Representation of Behaviour Supporting Open Ended Development and

Progressive Learning for Artificial Agents. In: Autonomous Robots (2021).

[124] Sutton, Richard S. and Barto, Andrew G. Reinforcement Learning: An Intro-

duction. 2nd. Adaptive Computation and Machine Learning Series. Cambridge,
Mass: MIT Press, 2018. 322 pp.

[125] Sutton, Richard S., Modayil, Joseph, Delp, Michael, Degris, Thomas, Pilarski,
Patrick M., White, Adam, and Precup, Doina. Horde: A Scalable Real-Time Ar-

chitecture for Learning Knowledge from Unsupervised Sensorimotor Interaction.
In: The 10th International Conference on Autonomous Agents and Multiagent
Systems - Volume 2. AAMAS ’11. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems, 2011, pp. 761–768.

192 BIBLIOGRAPHY

[126] Tallec, Corentin and Ollivier, Yann. Unbiased Online Recurrent Optimization. In:
International Conference on Learning Representations. 2018.

[127] Tanaka, Fumihide and Yamamura, Masayuki. Multitask Reinforcement Learning

on the Distribution of MDPs. In: International Symposium on Computational In-
telligence in Robotics and Automation. Computational Intelligence in Robotics
and Automation for the New Millennium. Vol. 3. Kobe, Japan: IEEE, 2003,
pp. 1108–1113.

[128] Taylor, Matthew E. and Stone, Peter. Transfer Learning for Reinforcement Learn-

ing Domains: A Survey. In: Journal of Machine Learning Research 10.7 (2009),
pp. 1633–1685.

[129] Teh, Yee, Bapst, Victor, Czarnecki, Wojciech M., Quan, John, Kirkpatrick, James,
Hadsell, Raia, Heess, Nicolas, and Pascanu, Razvan. Distral: Robust Multitask

Reinforcement Learning. In: Advances in Neural Information Processing Systems
30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett. Curran Associates, Inc., 2017, pp. 4496–4506.

[130] Thrun, Sebastian. Is Learning the N-Th Thing Any Easier Than Learning the

First? In: 8th International Conference on Neural Information Processing Sys-
tems. NIPS’95. Denver, Colorado: MIT Press, 1995, pp. 640–646.

[131] Torrey, Lisa and Shavlik, Jude. Transfer Learning. In: Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods, and Tech-
niques. Ed. by Emilio Soria Olivas, José David Martín Guerrero, Marcelino
Martinez-Sober, Jose Rafael Magdalena-Benedito, and Antonio José Serrano
López. IGI Global, 2010, pp. 242–264.

[132] Tsymbal, Alexey. The Problem of Concept Drift: Definitions and Related Work.
In: (2004).

[133] Uchibe, Eiji, Asada, Minoru, and Hosoda, Koh. Behavior Coordination for a Mo-

bile Robot Using Modular Reinforcement Learning. In: International Conference
on Intelligent Robots and Systems. IROS ’96. Vol. 3. Osaka, Japan: IEEE/RSJ,
1996, pp. 1329–1336.

[134] Van Rossum, Guido and Drake, Fred L. Python 3 Reference Manual. Scotts Val-
ley, CA: CreateSpace, 2009.

[135] Watanabe, Chihiro, Hiramatsu, Kaoru, and Kashino, Kunio. Modular Represen-

tation of Layered Neural Networks. In: Neural Networks 97 (2018), pp. 62–73.

[136] Watkins, Christopher J. C. H. Learning from Delayed Rewards. In: PhD thesis,
Cambridge University (1989).

[137] Webb, Geoffrey I., Lee, Loong Kuan, Petitjean, François, and Goethals, Bart. Un-

derstanding Concept Drift. In: CoRR abs/1704.00362 (2017).

BIBLIOGRAPHY 193

[138] Widmer, Gerhard and Kubat, Miroslav. Learning in the Presence of Concept Drift

and Hidden Contexts. In: Machine Learning 23.1 (1996), pp. 69–101.

[139] Wladawsky-Berger, Irving. Conceptualizing AI in Human Terms Is Misleading.
In: The Wall Street Journal (2020).

[140] Wolfram Research, Inc. Mathematica, Version 11.3. 2018.

[141] Xu, Ju and Zhu, Zhanxing. Reinforced Continual Learning. In: Advances in
Neural Information Processing Systems 31. Ed. by S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Asso-
ciates, Inc., 2018, pp. 899–908.

[142] Yang, Qiang, Chen, Yuqiang, Xue, Gui-Rong, Dai, Wenyuan, and Yu, Yong. Het-

erogeneous Transfer Learning for Image Clustering via the Social Web. In: Joint
Conference of the 47th Annual Meeting of the ACL and 4th International Joint
Conference on Natural Language Processing of the AFNLP. Vol. 1. ACL ’09.
Suntec, Singapore: Association for Computational Linguistics, 2009, pp. 1–9.

[143] Yaochu Jin and Sendhoff, B. Pareto-Based Multiobjective Machine Learning: An

Overview and Case Studies. In: IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews) 38.3 (2008), pp. 397–415.

[144] Zenke, Friedemann, Poole, Ben, and Ganguli, Surya. Continual Learning

Through Synaptic Intelligence. In: 34th International Conference on Machine
Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of
Machine Learning Research. International Convention Centre, Sydney, Australia:
PMLR, 2017, pp. 3987–3995.

[145] Zentall, Thomas R. Perspectives on Observational Learning in Animals. In: Jour-
nal of Comparative Psychology 126.2 (2012), pp. 114–128.

[146] Zhang, Yu, Chan, William, and Jaitly, Navdeep. Very Deep Convolutional Net-

works for End-to-End Speech Recognition. In: International Conference on
Acoustics, Speech and Signal Processing (ICASSP). New Orleans, LA: IEEE,
2017, pp. 4845–4849.

[147] Zhou, Ding-Xuan. Universality of Deep Convolutional Neural Networks. In: Ap-
plied and Computational Harmonic Analysis 48.2 (2020), pp. 787–794.

[148] Žliobaitė, Indrė, Pechenizkiy, Mykola, and Gama, João. An Overview of Concept

Drift Applications. In: Big Data Analysis: New Algorithms for a New Society.
Ed. by Nathalie Japkowicz and Jerzy Stefanowski. Vol. 16. Cham: Springer Inter-
national Publishing, 2016, pp. 91–114.

[149] Zoph, Barret and Le, Quoc V. Neural Architecture Search with Reinforcement

Learning. In: CoRR abs/1611.01578 (2016).

List of Figures

1.1 The Imaginary Sticky Roverbot . 19

2.1 Various categories of behavioural searches. 36

2.2 Overview of ML as an Euler Diagram 44

4.1 Illustration of Various TL Contexts . 69

5.1 Example Multiple Streams . 84

5.2 IPL Profiles . 94

5.3 Global design of the Experiments . 99

6.1 Example Synthetic Streams . 103

6.2 Example Learning Curves in OSL . 110

6.3 Violin Plots for Measures in OSL: input addition 111

6.4 Violin Plots for Measures in OSL: input deletion 112

7.1 Example transition functions from the benchmark and their diminished
projections. 124

7.2 Diminished Stochastic and Deterministic Search Spaces 138

7.3 Violin Plots for Measures in RL . 149

7.4 Example Runs . 150

A.1 Extended Visualization of Example Runs 177

A.2 Figure A.1 continued. 178

A.3 Environments Used in Example Runs 179

A.4 Example run illustrating effect (G). 179

List of Tables

4.1 Overview of Related Works . 66

7.1 Joint profiles partitioning the Tssi benchmark. 136
7.2 Measures of the Example Runs . 151

A.1 Summary of constraints on IPL joint profiles. 175
A.2 Residual STDE for Linear Models . 178

List of Boxes

1.1 Non-deterministic procedures. 14
1.2 Epistemological status of ML. 17
1.3 ML Design Space. 24

2.1 Mechanistic vs. Phenomenological Approaches 40

List of Listings

6.1 Pseudocode for (+i) and (−i) RNN accommodation in OSL. 108

7.1 Pseudocode for (+i) and (−i) accommodation in Q-Learning. 142
7.2 Pseudocode for (+i) and (−i) accommodation in Actor-Critic. 145

	Summary of Notations
	I Introduction
	Introduction
	Context
	Signature Changes in Computing
	Machine Learning

	Learning Within a Changing Environment
	Signature of the Agent-Environment Retroaction Loop
	Reinforcement Learning
	A Trial and Error Search
	A Feedback Value to Guide the Search

	The Signature Change Problem
	Environmental Change
	Signature Change

	Thesis Outline

	Background: Machine Learning
	Behavioural Search
	The Maximization Problem
	Heuristics
	The Search Space
	Artificial Neural Networks

	Learning Contexts
	Supervised Learning
	The SL problem
	The SL Approach
	The Limits of SL

	Unsupervised Learning
	UL Principles
	Various UL Situations

	Reinforcement Learning
	RL Principles
	RL Methods and Limits

	Transversal Learning Contexts
	Online Learning
	Transfer Learning

	Problem Statement
	The Signature Change Problem
	Thesis

	State of the Art
	Documentation Method
	Related Works
	The Motivation for Transfer Learning
	The Various Transfer Learning Situations
	The Challenges of Transfer Learning

	II Contributions
	Theory of Protean Learning
	Informal Overview
	Formalization
	Background
	PL as a Problem of Stream Processing
	Data Streams and Causality
	Multiple Streams and Signatures
	Learning Dynamics
	The Objective of PL
	Discussion

	Input Addition and Deletion
	Time Dependency
	Diminished vs. Augmented Search Spaces
	Structure of the Search Spaces
	The IPL Landscape Profiles
	Using IPL Profiles
	The Natural IPL Projections
	Towards Generic IPL

	Experiment Input Protean Learning in Online Supervised Learning
	Design
	Inputs Generation
	Optimal Outputs Generation
	The IPL profiles
	Agent Structure and Learning Procedure
	Signature Changes and Natural IPL Projections
	Measuring the Advantage of PL
	Results

	Experiment Input Protean Learning in Reinforcement Learning
	A Tabular Benchmark for Input Protean Learning
	The transition function
	The Agent/Environment Interface
	A Minimal Environment
	Diminished Projections of the Environment
	Policy Types
	Selecting Transition Functions
	Transitions Connectedness
	Transitions Symmetries
	Sensitivity to Initial State

	Optimality Analysis of the Benchmark
	Computing Mean Rewards
	Optimal Deterministic vs. Optimal Stochastic Policies
	Joint IPL Profiles

	The RL Agents
	Explored Search Spaces
	The Agent Objective
	Q-Learning
	Actor-Critic

	Measures
	Results
	Last Performance Measures
	Long-Term Advantage Measures
	Input Addition
	Input Deletion

	Immediate Transfer Measures

	Discussion

	III Conclusion
	Conclusion
	Summary
	Limits and Perspectives
	Closing Thoughts

	Annex
	Chapter 7 Transitions Function Symmetries
	Constraints On Joint Profiles
	Chapter 7 Additional Table and Figures

	Bibliography
	List of Figures
	List of Tables
	List of Boxes
	List of Listings

