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Résumé

Une nouvelle astronomie avec les ondes gravitationnelles est née en 2015 avec la détection de la
première fusion de trous noirs de masse stellaire. Depuis, une cinquantaine de fusions de trous
noirs et d’étoiles à neutrons ont été observées par les détecteurs Advanced LIGO et Advanced
Virgo. Ces détections permettent d’étudier les populations d’objets compacts, de comprendre
la distribution de leur masse, et de contraindre les scenarios de formation de système binaire.
Elles permettent également d’étudier la nature de la matière nucléaire dans des environnements
extrêmes, ou encore la physique des jets relativistes et des phénomènes d’accrétion, ou bien de
tester la validité de la relativité générale. Ces observations, désormais routinières, sont d’une
importance majeure et vont continuer à faire progresser notre compréhension de l’univers lors
des prochaines campagnes d’observations. Mais découvrir de nouvelles sources astrophysiques ou
d’origine cosmologiques d’ondes gravitationnelles fait partie des objectifs majeures de la commu-
nauté et nécessite des moyens supplémentaires. C’est sur ce sujet que porte cette thèse.

Plus précisément, les travaux résumés dans cette thèse portent sur la recherche de signaux
d’ondes gravitationnelles de longue durée dans les détecteurs Advanced Virgo et Advanced LIGO,
c’est-à-dire des signaux transitoires dont la durée se situe entre environ 5 et 1000 secondes.

Les processus astrophysiques pouvant émettre ce type d’ondes gravitationnelles sont variés,
mais encore mal modélisés. Ils incluent de potentielles instabilités magnéto-hydrodynamiques
dans les étoiles à neutrons nouvellement formées, qui peuvent rendre ces dernières asymétriques
et en faire des émettrices d’ondes gravitationnelles, des processus de fragmentation dans les
disques d’accrétion autour des trous noirs, ou bien les éruptions géantes qui surviennent dans
certains magnétars isolés, associés aux sursauts gamma mous. Ils incluent aussi les signaux de
systèmes binaires de trous noirs légers sur des orbites excentriques.

A la différence des fusions d’objets compacts, étoiles à neutrons et trous noirs, la forme
d’onde du signal attendu ici n’est pas suffisamment bien modélisée pour permettre l’utilisation
de techniques optimales de traitement du signal, comme le filtrage adapté. Les méthodes de
détections reposent donc sur des algorithmes qui ne font pas ou peu d’hypothèse sur la nature
du signal cherché, et qui sont par conséquent moins sensibles.

Je présente une nouvelle chaîne d’analyse de données que j’ai développée pour rechercher
des signaux non modélisés dans les détecteurs de type Advanced Virgo et Advanced LIGO. Ce
programme se base sur une méthode déjà éprouvée pour la recherche de signaux en provenance
d’un point précis du ciel, et est optimisé pour des recherches sur l’ensemble du ciel sur toute
la durée d’une session d’observation. Il implémente une méthode hiérarchique de sélection des
données pour réduire le temps de calcul, et se base sur la corrélation des données entre plusieurs
détecteurs pour rejeter les artefacts d’origine instrumentale et environnementale.

J’utilise cette chaîne d’analyse pour rechercher des signaux dans les données des campagnes
d’observation O2 et O3 d’Advanced Virgo et Advanced LIGO, et j’obtiens des résultats qui ne
mettent pas en évidence de nouvelles sources malgré une sensibilité légèrement meilleure pour
des types de signaux variés. Je montre aussi que le temps de calcul a été considérablement réduit.

Enfin, je décris la recherche de contreparties en onde gravitationnelles éventuellement émises
par trois éruptions géantes de magnétars qui semblent constituer une nouvelle catégorie de sur-
saut gamma, et démontre que si un évènement de ce type venait à se produire dans la galaxie, il
serait possible de d’observer l’émission d’ondes gravitationnelles si celle-ci est au moins 1% aussi
énergétique que l’émission électromagnétique avec les détecteurs actuelles à leur sensibilité finale.

Mots-clés : Relativité générale - Ondes gravitationnelles - Objets compacts - Analyse de
données



Abstract

A new astronomy with gravitational waves was born in 2015 with the detection of the first stellar
mass black hole merger. Since then, about 50 black hole and neutron star mergers have been
observed by the Advanced LIGO and Advanced Virgo detectors during three observation periods.
These detections allow to study the populations of compact objects, their mass distribution, and
the scenarios of binary system formation. They also allow to study the nature of nuclear matter
in extreme environments, the physics of relativistic jets and accretion phenomena, to measure
the Hubble constant in an independent way, and to test possible deviations from the theory of
general relativity. These observations, now routine, are of major importance and will continue to
advance our understanding of the universe during the next observing campaigns. But discovering
new astrophysical or cosmological sources of gravitational waves is one of the major objectives
of the community and requires additional resources. It is on this subject that this thesis focuses.

More precisely, the work summarized in this thesis concerns the search for long duration
gravitational wave signals in the Advanced Virgo and Advanced LIGO detectors, i.e. transient
signals whose duration is between about 5 and 1000 seconds.

The astrophysical processes that can emit this type of gravitational waves are varied, but
still poorly modeled. They include potential magneto-hydrodynamic instabilities in newly formed
neutron stars, which can make them asymmetric and thus emit gravitational waves, fragmenta-
tion processes in accretion disks around black holes, or giant flares that occur in some isolated
magnetars, associated with soft gamma-ray bursts. They also include signals from binary systems
of rather light black holes in eccentric orbits.

Unlike mergers of compact objects, neutron stars and black holes, the waveform of the signal
expected here is not sufficiently well modeled to allow the use of optimal signal processing
techniques, such as matched filtering. Detection methods therefore rely on algorithms that make
few or no assumption about the nature of the signal sought, and are therefore less sensitive.

In this thesis, I present a new data analysis pipeline that I have developed to search for
unmodeled signals in Advanced Virgo and Advanced LIGO interferometric detectors. This pro-
gram is based on an already proven method to search signals from a specific point in the sky,
and is optimized for searches over the whole sky during an entire observing run. It implements
a hierarchical data selection method to reduce the computational time required for analysis, and
relies on the correlation of data between multiple detectors to reject artifacts of instrumental
and environmental origin.

I use this pipeline to search for signals in data from the Advanced Virgo and Advanced LIGO
O2 and O3 observing campaigns, and obtain results that do not highlight new sources despite
slightly better sensitivity for various signal types. I also show that the computational time was
significantly reduced.

Finally, I describe the search for gravitational wave counterparts possibly emitted by three
giant magnetar flares that seem to constitute a new class of gamma-ray bursts, and show that
if such an event were to occur in the galaxy, it would be possible to observe gravitational wave
emission if it is at least 1% as energetic as the electromagnetic emission with the current detec-
tors at their final sensitivity.

Keywords: General relativity - Compact objects - Gravitational waves - Data analysis
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Introduction

In 1905, based on Lorentz’s work, Poincaré proposed the concept of gravific wave as a consequence
of the impossibility of instantaneous action at a distance applied to gravitation [1]. However,
it remained not formalized until 1916, after Einstein formulated the general theory of relativity
[2]. Using the framework of general relativity, Einstein predicted that small perturbations of the
structure of space-time itself could propagate through the Universe at the speed of light, hence
named gravitational waves [3, 4]. Nevertheless, the nature and even the existence of such waves
remained controversial for many more years after that. This, and the fact that their predicted
amplitude was extremely small, lead to a loss of interest within the scientific community.

The theoretical obstacles were of two types. First, it was unclear whether gravitational
waves had a real effect on matter, or if they were just a coordinate effect without any physical
reality. Einstein himself famously changed his mind several times on that question. Secondly,
the linear approximation used to describe them was only valid for regions of spacetime where
the gravitational field is weak. Yet, the most promising potential sources of gravitational waves
were phenomena involving very strong gravitational fields, such as the merger of two compact
objects. The equations of general relativity were not solved in the strong field regime, so no one
was even sure that the theory allowed generation of gravitational waves in this regime. These
obstacles were cleared in the late 1950’s notably by Pirani and Bondi [5, 6, 7, 8], who showed that
gravitational waves could be associated with the Riemann tensor, an object whose physical reality
was indubitable, even in the strong field regime, and that they carry energy. What happened a
bit later at the Chapel Hill meeting organized in 1957 in North Carolina [9] is now considered
as a crucial moment in the history of gravitational-wave physics. Pirani’s presentation at the
conference had an especially high impact on those who were thinking about actually constructing
a real gravitational wave detector [9, 10]. Also present at the conference, Feynman came with
a description of a thought experiment, free of the problems and hinderances of tensor calculus,
that shows that gravitational waves contain energy and could be detected. The crux of the
sticky beads argument is that if one puts two beads on a stick, where the stick is perpendicular
to the direction of propagation of the gravitational wave, as the wave propagates by, the stick
will be held firm by the atomic and molecular forces while the beads will move with respect to
each other. If there is friction between the beads and the stick, then heat will be generated.
Clearly the source of this energy is ultimately the gravitational wave [11]. Interestingly, Weber
was among the audience and decided soon after to build a detector to detect gravitational waves
by measuring vibrations induced in a large mechanical system. His first antenna was a large
aluminium cylinder isolated from group vibration by a steel wire and placed inside a vacuum
chamber. Piezoelectric sensors were installed to sense the bar’s vibration induced by gravitational
waves [12]. In 1969, Weber and collaborators claim to have detected gravitational waves [13],
but Weber’s “signals” have never been confirmed by other bars built by other teams all over the
world (USA, Italy, Germany, UK, Brazil, Netherlands, Australia).

In 1974, the discovery of the first binary pulsar, PSR 1913+16 [14], provided the first indirect
proof of the existence of gravitational waves. Indeed, the orbital decay of the pulsar is in total
agreement with the theoretical value predicted by general relativity, which proves that the system
radiates energy in the form of gravitational waves [15]. The interest for detecting gravitational
waves was renewed at these singular occasions.
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The idea of using laser interferometry to detect gravitational waves emerged in the late 1960’s,
after the first explicit suggestion by Gertsenshtein and Pustovoid in 1962 [16]. It turns out that
the first prototype, a 8.5m arm long interferometer, has been built by Forward, student of Weber
in 1978. In the late 60’s Weiss, inspired by Pirani’s seminal articles, started to get interested in
laser interferometry to detect gravitational waves. Several meter’s long projects have then been
funded to develop the technology in USA but also in Germany (Billing’s team) and in the UK
(Drever who would build later the 40m prototype at Caltech). However, because of the huge
technical challenges, and the cost of the large instruments necessary to have a realistic chance of
detection, only two major projects in the USA and Europe got funded and the construction of
the kilometer-scale laser interferometers LIGO and Virgo only began in the 1990s respectively
in the United States and Italy [10]. The UK-German detector GEO has arms of 600meters and
has been very useful for LIGO and Virgo to develop and test new technology. Finally, after more
than two decades of development and sensitivity upgrades, the upgraded version of the LIGO
detector observed on 14 September 2015 the first confirmed gravitational-wave signal from the
merger of two black holes - GW150914 [17]. Since then, several dozens of signals have been
detected by the LIGO and Virgo detectors, all from the merger of two compact objects, black
holes and neutron stars [18].

The discovery of gravitational waves has definitively closed a hundred years old controversy
and constitutes another solid proof of the validity of general relativity. On top of that, it has
opened an entirely new field of astronomy. GW150914 was the first direct proof of the existence
of black holes. On 17 August 2017, the detection of a gravitational wave signal from the fusion
of two neutron stars [19], followed by the detection of a gamma-ray burst from the same part
of the sky, opened the era of multi-messenger astronomy. By combining gravitational waves
with observations in the electromagnetic spectrum, cosmic rays and neutrinos, we can probe the
physics of compact objects and cosmology deeper than ever. Very recently, the mergers of two
mixed system – a black hole and a neutron star – have been observed [20]

This thesis presents the work I did between 2018 and 2021 within the LIGO and Virgo col-
laboration on the detection of long-lived gravitational-wave signals. The first chapter will be
dedicated to the theoretical aspects of gravitational waves in the framework of general relativity,
and to the principle of interferometric detectors, using the example of Advanced Virgo. After-
wards, I will give an overview of the main astrophysical sources of gravitational waves, with
a focus on long-lived transient sources. The core of my work has been the development of a
data analysis pipeline to search for unmodeled gravitational waves. This pipeline and the data
analysis methods it implements will be presented in the third chapter. Finally, the next two
chapters will be devoted to the description of the searches I performed with the pipeline : all-sky
searches in the Advanced LIGO – Advanced Virgo ’s second and third observing runs in chapter
4, and a study of the potential gravitational wave emission of Magnetar Giant Flares is reported
in chapter 5.
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Chapter 1

General relativity, gravitational waves
and their detection

1.1 Basics of general relativity

It is quite difficult to explain the notion of a gravitational wave (GW) in one or two sentences,
since it does not have an intuitive translation in pre-relativistic physics. GW could be thought
of as a perturbation of the geometry of spacetime that propagates through the Universe at the
speed of light. Yet, to give a meaning to this definition, we need to describe what is meant by
the geometry of spacetime. General relativity postulates that space and time do not constitute
a fixed, immutable scene in which the physical events take place, but on the contrary, that
the geometry of spacetime is not fixed, and is determined by the distribution of its constituent
components, matter and energy - which are reciprocally influenced by the geometry.

Since GW are described in the framework of general relativity, the purpose of this first section
is to explain the basics concepts of this theory, and to set up the mathematical framework and
definitions that will be necessary to describe the physics of GW, mainly following [21], and [22].

1.1.1 Concepts and principles

In the second half of the 19th century, Maxwell formulated the classical theory of electromag-
netism in the form of the Maxwell’s equations, which describe the coupling between electric and
magnetic fields, and showed that electromagnetic waves propagate at a constant speed - the
speed of light, c = 299,792,458m/s - in the vacuum. In the meantime, the dynamics of macro-
scopic bodies was still described very accurately by Newton’s laws of motion in the framework
of classical mechanics.

However, a fundamental contradiction exists between the two theories: classical mechanics
obeys the Galilean principle of relativity, which states that the laws of physics should have the
same expression in any inertial frame of reference. This is not the case for Maxwell’s equations,
whose expressions are not invariant under a Galilean transformation. Furthermore, in the 1880’s,
Michelson and Morley showed experimentally that the speed of light that we measure is the same
in all frames, and does not depend on the relative motion of the observers.

This manifest incompatibility led Einstein to develop the special theory of relativity, published
in 1905 [23]. The theory reformulates the laws of mechanics in order to make them compatible
with the invariance of c and the principle of relativity, which states that the laws of physics
should have the same form in any reference frame. As a consequence, the notion of absolute
space and time disappears, as well as the concept of simultaneity between two events. If we
consider two events E1 and E2 described by their respective coordinates in some inertial frame
(c t1, x1, y1, z1) and (c t2, x2, y2, z2), the time interval t2 − t1 between them does not remain the

8



same when it is expressed in another inertial frame. Instead, it is the spacetime interval

∆s2 = −c2 (t2 − t1)2 + (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (1.1)

that is invariant under a change of frame. The theory of special relativity successfully unifies
classical physics and electromagnetism, but it is not compatible with Newton’s law of universal
gravitation. Indeed, the latter involves an instantaneous action at a distance between attracting
bodies, which is forbidden by the finiteness of c. Therefore, a different theory of gravitation is
needed to be compatible with special relativity.

The equivalence principle is one of the main concepts that constitute the roots of general
relativity. Newton’s second law stipulates that the acceleration ~a of a body is proportional to
the force ~F applied,

~F = mi~a. (1.2)

The proportionality factor between force and acceleration is the inertial mass mi of the body.
On the other hand, the force ~P exerted on a body by a gravitational field ~g is proportional to
its gravitational mass mg:

~P = mg~g. (1.3)

It is clear that inertial mass and gravitational mass are two different quantities in the Newtonian
theory. However, all the experiences and observations made to date show that the two masses
are equal. As a consequence, the acceleration of a body in a gravitational field does not depend
on its mass: ~a = ~g. This is called the weak equivalence principle.

The equality between inertial and gravitational mass is a coincidence in Newtonian physics, in
the sense that it is not fundamental to the theory. Einstein postulates that this principle is true
and places it at the center of his theory of gravitation. He proposes the following interpretation,
known as the Einstein equivalence principle:

The outcome of any local non-gravitational experiment in a freely falling laboratory
is independent of the velocity of the laboratory and its location in spacetime.

In other words, it is impossible to make a distinction between a particle that accelerates due to
the action of a gravitational field and a particle at rest in an accelerating frame. Therefore, it
is possible to see gravitation no longer as a force, but as an intrinsic property of spacetime that
causes the acceleration of free-falling particles.

1.1.2 Geometrical framework

The idea that gravitation is a geometric property of spacetime is implemented in the framework
of Riemannian geometry, which generalizes Euclidean geometry to non-flat spaces. In general
relativity, free-falling particles follow geodesics (“straight lines”) in a curved spacetime, just like
particles in inertial motion follow a straight line in the flat space. In the following paragraphs,
I will briefly describe the fundamental concepts of Riemaniann geometry and introduce the
mathematical objects that play a significant role in the description of GW.

The geometrical structure of spacetime is a 4-dimensional manifold. A manifold of dimension
n is a space which resembles locally the flat space Rn, but does not have necessarily the same
topological properties. For example, a sphere, such as the surface of the Earth, is a 2-dimensional
manifold: at the local level, it "looks" flat and points on the surface can be localized with a set
of two coordinates in R2 (e.g latitude and longitude), but the sphere in its entirety cannot be
assimilated to the plane R2 - its topology is different.

The metric properties of a manifold are entirely described by the metric tensor, which allows
to compute distances and angles. Considering two infinitely close points p and q and a coordinate
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system {xα} such that the coordinates of p and q are respectively (xα) and (xα + dxα), the
infinitesimal distance ds between them is given by

ds2 = gµνdx
µdxν , (1.4)

where gµν represent the components of the metric tensor at the point p expressed in this coor-
dinate system. Note that we use the Einstein summation convention that consists in summing
over indexes that are repeated in upper and lower position. Greek indexes are summed from 0
to 3, while Latin indexes are summed from 1 to 3 : vµvµ = v0v0 + v1v1 + v2v2 + v3v3.

For instance, in the Euclidean space R3 with coordinates (x, y, z), it is clear that ds2 =
dx2 + dy2 + dz2, therefore

gµν = δµν ≡

1 0 0
0 1 0
0 0 1

 . (1.5)

In special relativity, the invariant spacetime interval is ds2 = −c2dt2 + dx2 + dy2 + dz2, so the
metric of spacetime is the Minkowski metric

gµν = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.6)

Note that in that case, ds2 is negative for a particle that moves at a velocity lower than c, and
null for a photon. The metric tensor is also symmetric: gνµ = gµν in any coordinate system. Its
inverse has components gµν such that

gµσgσν = δµν . (1.7)

In the remainder of this chapter, we will use the metric tensor and its inverse to raise and lower
indexes

All the geometrical properties of a manifold are described by the Riemann tensor

Rαβµν = ∂µΓαβν − ∂νΓαβµ + ΓαρµΓρβν − ΓαρνΓρβµ, (1.8)

which is a combination of the first and second derivatives of the metric tensor via the Christoffel
symbols:

Γαµν =
1

2
gαρ (∂µgρν + ∂νgµρ − ∂ρgµν) (1.9)

Two quantities of interest can be constructed from the Riemann tensor: the Ricci tensor

Rµν = Rρµρν , (1.10)

and its trace, the Ricci scalar
R = gµνRµν . (1.11)

These quantities play an important role in general relativity, as they form a part of the Einstein
equation that links the geometry of spacetime to the distribution of mass-energy.

1.1.3 Physics in curved spacetime

The motion of a particle is entirely described by its trajectory in spacetime, called world line. In
a given coordinate system {xα}, a world line can be parametrized by an arbitrary real number
λ, such that the coordinates of the particle along its world line are given by the functions xα(λ).
Among all possible parametrizations, we define the proper time to be the time measured by a
clock that follows this world line. It is a physical, measurable quantity that does not depend on
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the coordinate system. A fundamental interpretation of the metric tensor gµν is that the proper
time interval dτ between two infinitesimally close points on a world line is

cdτ =
√
−ds2. (1.12)

Consequently, the proper time between two points on a world line parametrized by λ1 and λ2 is

τ =

∫ q

p

√
−ds2 =

∫ λ2

λ1

√
−gµν

dxµ

dλ

dxν

dλ
dλ. (1.13)

In the absence of any external force, the coordinates xµ(τ) of a particle follow the geodesics
equation

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0. (1.14)

Note that this equation depends on the derivatives of the metric tensor via the Christoffel sym-
bols, and therefore on the curvature of spacetime. The geodesics equation generalizes Newton’s
first law of motion: in a flat spacetime and cartesian coordinate system (t, x, y, z), all Christoffel
symbols are zero, so the equation reduces to d2xµ

dt2
= 0, which corresponds to rectilinear uniform

motion. The presence of a gravitational field is no longer modelized by an external force, but
it is reflected by the fact that the metric diverges from the Minkowski metric. There are three
types of geodesics, depending on the sign of the spacetime interval ds2:

• Timelike geodesics - ds2 < 0 correspond to world lines of massive particles. They
maximize the proper time between two points.

• Null geodesics - ds2 = 0 are the world lines followed by photons. They correspond to
particles moving at the speed of light.

• Spacelike geodesics - ds2 > 0 minimize the distance between two points. Causality
forbids physical particles to follow spacelike geodesics.

As already stated, the core concept of general relativity is the fact that the metric of space-
time is determined by the distribution and the circulation of mass-energy. These properties are
encompassed in the stress-energy tensor Tµν , whose components can be related to the (local)
energy density ρ, momentum ~p and the stress tensor S:

T00 = ρ

T0i = pi

Tij = Sij .

(1.15)

In Newtonian physics, the Poisson equation relates the gravitational potential Φ to the mass
distribution ρ:

∆φ = 4πGρ. (1.16)

In general relativity, the metric of spacetime gµν is related to the stress-energy tensor via the
Einstein field equations

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (1.17)

The quantity Rµν − 1
2Rgµν is the Einstein tensor. It is the simplest tensor built from the metric

and its first and second derivatives are divergence free, hence it ensures the conservation of energy-
momentum. Besides, it reduces to the Poisson equation in the weak field limit. The cosmological
constant Λ was initially added to the equations by Einstein to ensure that the Universe is static
at large scales. Nowadays, after the discovery of the acceleration of the expansion of the Universe
in 1998 [24, 25], it is linked to the density of dark energy in the Universe.
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1.2 Gravitational waves

1.2.1 Linearized Einstein equations

The Einstein equations are highly nonlinear, which makes the search for exact solutions very
difficult in practice. However, it is possible to linearize these equations to get analytic solutions
at the first order. The Minkowski metric ηµν is a trivial solution of the equations that corresponds
to a flat spacetime. Therefore, in the weak field approximation, i.e when the gravitational field
is small, the metric of spacetime can be expressed as the sum of the Minkowski metric and a
small perturbation hµν :

gµν = ηµν + hµν (1.18)

with |hµν | << 1. In practice, this approximation would be valid when the gravitational po-
tential Φ is small compared to c2. For example, at the surface of the Earth, we have Φ '
6.2× 107 m2 s−2 << c2.

Let us linearize the left hand side of the Einstein equations by expanding the metric gµν at
the first order in |hµν |. First, we need to compute the inverse metric tensor gµν , which can be
expressed as

gµν = ηµν + kµν (1.19)

with |kµν | << 1. Using the fact that gµσgσν = ηµσησν = δµν , and neglecting higher order terms,

kµν = −ηµαηνβhαβ = −hµν . (1.20)

The Christoffel symbols associated to the linearized metric gµν = ηµν + hµν are

Γαµν =
1

2
ηασ (∂µhσν + ∂νhµσ − ∂σhµν) , (1.21)

where we have expanded Eq. (1.9) and neglected terms in second order in |hµν |.

We can now compute the Ricci tensor and Ricci scalar using the linearized expression of
the Christoffer symbols. Since we consider only the terms in first order, the quadratic terms
disappear and

Rµν = ∂σΓσµν − ∂νΓσµσ. (1.22)

Therefore,

Rµν =
1

2
ηαβ (∂µ∂αhνβ + ∂ν∂αhµβ − ∂α∂βhµν − ∂α∂βhµν) . (1.23)

For commodity let us introduce the notations h ≡ ηµνhµν for the trace of hµν and the trace-
reversed metric perturbation h̄µν ≡ hµν − 1

2hηµν . Finally, the Einstein tensor can be expressed
as a function of h̄µν and its partial derivatives:

Rµν −
1

2
Rgµν =

1

2
ηαβ

(
∂ν∂αh̄µβ + ∂µ∂αh̄νβ − ∂α∂βh̄µν − ∂β∂αh̄αβηµν

)
. (1.24)

One can recognize in this last expression the d’Alembertian operator ηµν∂µ∂ν , which is associated
to the propagation of a plane wave at the speed of light (ηµν∂µ∂ν = c2∂2

t − (∂2
x + ∂2

y + ∂2
z ) in the

Minkowskian coordinates system (t, x, y, z)). The linearized Einstein equations resemble a wave
equation for h̄µν with the stress-energy tensor as a source term:

ηαβ∂α∂βh̄µν − ηαβ
(
∂ν∂αh̄µβ + ∂µ∂αh̄νβ − ∂β∂αh̄αβηµν

)
= −16πG

c4
Tµν +O(|h|2). (1.25)

In this last equation, we have included the term O(|h|2) as a reminder that this approximation
is only valid at the first order.
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1.2.2 Gauge transformations

The general expression of the linearized Einstein equations is valid in any coordinate system that
verifies the condition |hµν | << 1. In general relativity, there is no privileged coordinate system:
physical quantities are invariant under a change of coordinates. Therefore, it is reasonable to
change coordinates to simplify the equations and get a better understanding of the underlying
physics.

If we consider a new system of coordinates {x′µ} = {xµ + εµ(xν)}, where the functions εµ

satisfy the condition | ∂εµ∂xν | ∼ |hµν | (i.e an infinitesimal change of coordinates), the expression of
the metric tensor g′µν in the new coordinate system is given by

g′µν = ηµν + h′µν (1.26)

with
h′µν = hµν − ∂µεν − ∂νεµ (1.27)

and |h′µν | ∼ |hµν | << 1. The components of the Riemann tensor are not affected by such a
change of coordinates: R′αβµν = Rαβµν . Therefore, both system of coordinates depict the same
physical system. This property is called gauge invariance by analogy with the gauge invariance
of the electromagnetic potential, where a transformation of the potential Aµ 7→ Aµ + ∂αψ does
not change the value of the observable field Fµν = ∂µAν − ∂νAµ.

Lorenz gauge

We can look for infinitesimal changes of coordinates that simplify the expression of the linearized
Einstein equations. In particular, we would like to see if it is possible to cancel the terms in
ηµν∂µh̄αν in Eq. (1.25) to obtain a true wave equation of the form

ηµν∂µ∂ν h̄αβ = −16πG

c4
Tαβ. (1.28)

It happens that this is the case. Since h′µν = hµν − ∂νεµ − ∂µεν , the components of h̄µν =

hµν − 1
2hηµν in the new coordinates system are h̄′µν = h̄µν − ∂νεµ − ∂µεν + ∂σε

σηµν , and, after
some index manipulation we get

ηµν∂µh̄
′
αν = ηµν∂µh̄αν − ηµν∂µ∂νεα. (1.29)

Therefore, by choosing a linear form εα such that ηµν∂µ∂νεα = ηµν∂µh̄, we can always find a
coordinate system in which

∂µ
(
ηµν h̄αν

)
= 0. (1.30)

Following the analogy with electromagnetism, this condition is called the Lorenz gauge, as it
imposes the divergence of h̄αβ to be null (in electromagnetism, the Lorenz gauge consists in
choosing the potential Aµ such that ∂µ(ηµνAν) = 0). In the Lorenz gauge, the linearized Einstein
equations have the form of Eq. (1.28). Therefore, the transverse-traceless perturbation h̄αβ of
the Minkowski metric ηαβ can propagate like a wave through a flat spacetime at the speed of
light. This is a gravitational wave.

TT gauge

To get a better understanding of the nature of GW and the way they propagate and interact
with matter, let us first try to solve the linearized Einstein equations of Eq. (1.28) in the vacuum
(i.e where Tµν = 0) and in the Lorenz gauge defined by Eq. (1.30). A simple solution of the
wave equation in the absence of a source term is the monochromatic plane wave

h̄µν(xα) = Aµνe
ikσxσ , (1.31)
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where kµ is the 4-wavevector that obeys kµkµ = 0, and Aαβ is a matrix that represents the
amplitude of the wave. In addition, the Lorenz gauge imposes an orthogonality condition:

kµAµν = 0. (1.32)

There are still an infinite number of coordinates systems that satisfy the Lorenz gauge, so we
can impose more gauge conditions in order to simplify the expression of Aµν . In particular, it
is possible to show that there always exists an infinitesimal change of coordinates such that the
field h̄µν satisfies the Lorenz gauge condition and the two following conditions:

ηµνAµν = 0 (1.33)
A0ν = 0. (1.34)

The first condition cancels the trace of the field. Therefore, in such a coordinate system
h̄µν = hµν . The second one means that the field is orthogonal (transverse) to the 4-velocity
of an observer in its own reference frame. Hence, that particular case of the Lorenz gauge is
called the traceless-transverse (TT) gauge.

If we place ourselves in a coordinates system (t, x, y, z) that satisfies the TT gauge and chosen
in such a way that the GW propagates along the z axis, the components of Aµν must obey the
following conditions:

• Transverse gauge =⇒ A0ν = 0.

• Lorenz gauge and transverse gauge =⇒ Azν = 0.

• Traceless gauge =⇒ ηµνAµν = 0

• Symmetry of the metric tensor =⇒ Aµν = Aνµ.

Therefore, only two degrees of freedom remain, and Aµν has the form

Aµν =


0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0

 . (1.35)

These two degrees of freedom are commonly noted Axx ≡ a+ and Axy = a×. They correspond
to the two polarization modes of the GW, which are respectively named plus and cross
polarization.

1.2.3 Emission of gravitational waves

In the absence of source term (Tµν = 0), the linearized Einstein equations describe the propaga-
tion of GW in the vacuum. To study how GW are generated, we have to solve the equations in
the presence of a source, i.e when Tµν 6= 0. A major caveat to this approach is that these equa-
tions are only valid in the weak field regime, when the gravitational field is small. Yet, because
of the factor 16πG/c4 ∼ 4 × 10−43 in the Einstein equations, a very strong gravitational field
is necessary to produce GW at a detectable level. Therefore, a precise modelization of the GW
signal emitted by a source requires to solve the full, non-linear Einstein equations, which have
in general no analytic solutions. In fact, it was not until 1959 than Pirani and Bondi showed the
existence of plane wave solutions to the non linearized Einstein equations [8]. Nevertheless, the
results obtained in the weak field approximation are still very useful to understand the physics
of GW emission.
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We use a Cartesian system of coordinates {xσ} = {ct, x, y, z} in the Lorenz gauge attached
to the source. The general solution to Eq. (1.28) is given by the retarded potential

h̄µν(t, ~x) =
4G

c4

∫
Tµν

(
t− |~x−

~x′|
c

, ~x′

)
d3~x′

|~x− ~x′|
. (1.36)

In general, it is very complicated, or even not possible at all, to compute the components of Tµν .
However, we can as always get an analytic expression after some approximations on the nature
and location of the source. Let us suppose that (i) the source is spatially localized in a finite
volume of characteristic length L, (ii) far away from the observer (r = |~x| >> |~x′|), and (iii) that
Tµν varies slowly: 1

Tµν

∂Tµν
∂t << L

c . Then we can simplify the right hand term of Eq. (1.36)

h̄µν(t, r) ' 4G

rc4

∫
Tµν

(
t− r

c
, ~x′
)
d3~x′, (1.37)

where r = |~x|. Besides, using the conservation law of the stress-energy tensor ∇µTµν = 0 and
the divergence theorem, we can link the temporal and spatial components of this tensor∫

xixj
∂2T00

∂t2
d3~x = 2c2

∫
Tijd

3~x. (1.38)

For non-relativistic sources, T00 ' ρc2 where ρ is the mass-energy density. Therefore, the spatial
components of the trace-reversed metric perturbation are given by

h̄ij(t, r) '
2G

rc4
Ïij(t−

r

c
) (1.39)

where Iij(t) ≡
∫
ρ(t, ~x)xixjd3~x is the quadrupole tensor of the source and the dot indicates the

time derivative. Finally we have to express this quantity in the TT gauge. This can be done
using the transverse projector

Pij = δij −
x̂ix̂j
r2

. (1.40)

The components ITT
ij of the quadrupole tensor in the TT gauge are given by

ITT
ij = PikI

klPlj −
1

2
PijPklI

kl. (1.41)

Therefore,

hTTij (t, r) ' 2G

rc4
ÏTT
ij (t− r

c
). (1.42)

The amplitude of the GW emitted by a system is proportional to the second time derivative of
the quadrupole moment.

Example 1: spinning solid

Following [26], we consider the example of triaxial ellipsoid whose quadrupole tensor I can be
expressed in the basis of its principal axes of inertia

Iij =

Ix 0 0
0 Iy 0
0 0 Iz

 . (1.43)

We will suppose that the object spins around its z-axis at pulsation ω. Therefore, the values of
Iij(t) at any time t are given by

I(t) = R(ωt)I(0)R−1(ωt). (1.44)
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with

Rij(ωt) =

 cosωt sinωt 0
− sinωt cosωt 0

0 0 0

 . (1.45)

After a straightforward computation we have

Ïij(t) = 2εIzω
2

− cos 2ωt sin 2ωt 0
sin 2ωt cos 2ωt 0

0 0 0

 . (1.46)

For convenience, we have defined the ellipticity ε ≡ (Ix − Iy)/Iz. Notice that the expression
of Iij(t) is already traceless and transverse. Therefore, using Eq. (1.42), the two polarization
modes of the GW seen by an observer located at a distance r on the z-axis are

h+(t+ r/c) = −4GεIzω
2

rc4
cos 2ωt

h×(t+ r/c) =
4GεIzω

2

rc4
sin 2ωt.

(1.47)

GW are therefore emitted at twice the rotation frequency of the body. Their amplitude h ≡√
〈h2

+(t) + h2
×(t)〉 is proportional to Iz ∼ MR2, the ellipticity ε and the square of the rotation

frequency. The order of magnitude of h is

h ∼ 10−22

(
Iz

1038 kg m2

)( ε

10−6

)( ω

1 kHz

)2
(

1 kpc

r

)
. (1.48)

In the case where the observer is located on an axis that makes an angle ι with the z-axis, it can
be shown [26] that the polarizations are

h+(t+ r/c) = −4GεIzω
2

rc4

1 + cos2 ι

2
cos 2ωt

h×(t+ r/c) =
4GεIzω

2

rc4
cos ι sin 2ωt.

(1.49)

Example 2: orbiting bodies

Let us now consider the case of two bodies with masses m1 and m2 orbiting each other at
a distance a. We will note r1 and r2 their respective distances to the center of mass O and
M ≡ m1 + m2 the total mass of the system, such that r1 = am2/M and r2 = am1/M . The
bodies orbit with an angular velocity ω. In the reference frame of the center of mass, their
coordinate vectors are

~x1(t) =

r1 cosωt
r1 sinωt

0

 , ~x2(t) =

r2 cosωt
r2 sinωt

0

 . (1.50)

We can compute the GW emission of that system. Considering the bodies as point-like masses,
the density distribution is

ρ(t, ~x) = m1 δ (~x− ~x1(t)) +m2 δ (~x− ~x2(t)) , (1.51)

which gives the quadrupole tensor

Iij =

1
2µa

2 (1 + cos 2ωt) 1
2µa

2 sin 2ωt 0
1
2µa

2 sin 2ωt 1
2µa

2 (1− cos 2ωt) 0
0 0 0

 , (1.52)
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where µ = m1m2/M is the reduced mass of the system. The second time derivative of Iij is

Ïij(t) = −2µa2ω2

cos 2ωt sin 2ωt 0
sin 2ωt − cos 2ωt 0

0 0 0

 . (1.53)

Along with the previous example, we are already in the TT-gauge since Iii = 0 and Izj = Iiz = 0,
so, using Eq. (1.42), the two polarizations of the GW seen by an observer at distance r on the
z-axis are

h+(t+ r/c) = −4Gµa2ω2

rc4
cos 2ωt,

h×(t+ r/c) = −4Gµa2ω2

rc4
sin 2ωt.

(1.54)

Like in the example of the triaxial spinning ellipsoid, GW are emitted at twice the orbiting
frequency of the system.

Note that these examples describe only the cinematic of the sources. In a realistic case, the
amplitude and frequency of the GW would decrease with time, because GW carry energy.

1.2.4 Energy carried and luminosity

It is not obvious to see that GW carry energy. In fact, the question remained controversial
for a long time. In 1969, Isaacson showed that GW carry energy by associating an effective
stress-energy tensor tGW

αβ to the second order correction of the metric perturbation [27]. The
demonstration requires to consider second order terms in the expansion of gµν :

gαβ = ηαβ + εh
(1)
αβ(xµ) + ε2h

(2)
αβ(xµ) +O(ε3). (1.55)

At first order in ε, solving the Einstein equations in the vacuum give the linearized Einstein
equations given in Eq. (1.25), which describe the propagation of GW. However, at the second
order they give rise to the effective stress-energy tensor

tGW
αβ ≡

c4

32πG
〈∂αhij∂βhij〉. (1.56)

Considering now a GW that propagates along the z direction and using the conservation of the
energy-momentum tensor ∂mutµν = 0, the flux F of energy, i.e. the energy per unit time and
surface area is given [28] by

F =
c3

16πG
〈ḣ+

2
+ h2

×〉. (1.57)

where < ... > is an average over time. Using this last equation and Eq. (1.42), the gravitational-
wave luminosity LGW of a source with quadrupole tensor I(TT )

ij is

LGW =
G

5c5
〈
...
I ij

...
I
ij〉. (1.58)

1.2.5 Effect of gravitational waves on matter

We have seen how the linearized Einstein equations allow GW to propagate through spacetime
at the speed of light, and, using an appropriate system of coordinates, got an expression for the
components of the perturbation hµν . We now need to see how GW interact with matter if we
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want to be able to detect them. Let us consider a monochromatic plane GW. We place ourselves
in the TT gauge, such that the metric is gµν(xα) = ηµν + hµν(xα) with

hµν(xα) =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 eikαx
α
, (1.59)

and kα = (−ω/c, 0, 0, kz = ω/c).
Let us consider a free-falling particle. The evolution of its coordinate vector xµ is driven

by the geodesic equation given in Eq. (1.14). In the TT gauge, the third spatial coordinate
being aligned in the direction of the wave propagation, we should consider the movement of the
free-falling particle in the (x1, x2) plane. The Christofell symbols (see Eq. (1.9)) being related
to the first derivatives of hαβ , we can see that they are all null to first order in hαβ , leading to

d2xi

dτ2
= 0 (1.60)

Therefore, in the TT gauge, the coordinates of a free-falling particle are not affected by the GW.
However, this rather counter-intuitive result does not mean that GW do not affect the motion
of free-falling particles. It is rather a particularity of the TT coordinates, which "follow" the
motion of the particle.

Indeed, when one measures in the laboratory the distance between two free-falling particles,
materialized for instance by two test-mass mirrors, we use the coordinate system of a local
inertial frame (also named Fermi coordinate system) whose origin coincides with the geodesic
of one of the mirror. In this coordinate system, the path of a GW generates a displacement of
the geodesics. The variation of the distance between the free-falling test-masses is given by the
geodesic deviation equation [29] assuming the distance between masses is small compared to the
GW wavelength

d2ξα

dτ2
=
d2ξα

dt2
= Rαµνβ U

µ Uν ξβ (1.61)

where ξα is the vector connecting two geodesics, Uµ is the four-velocity vector (Uµ = dxµ/dτ)
of the free-falling test-masses and Rαµνβ is the Riemann tensor which is gauge invariant.

To first order in hµν , assuming coordinate time and proper time are equivalent (test-masses
are slowing moving) and considering the two test-masses are separated along the x-axis by Lx,
the geodesic deviation equation becomes

d2ξα

dt2
= Rα00β ξ

β = Rα00x Lx = −Rα0x0 Lx (1.62)

As Eq. (1.62) is gauge invariant, we can use the expressions of the Riemann tensor in the TT
gauge (see Eq. (1.8))

Rx0x0 = Rx0x0 = −1

2
ḦTT
xx (1.63)

Ry0x0 = Ry0x0 = −1

2
ḦTT
xy (1.64)

Ry0y0 = Ry0y0 = −1

2
ḦTT
yy (1.65)

where HTT
ij is the metric perturbation tensor in a detector frame on Earth which is related to

hTTij by a 3-rotation geometrical transform as we will see in Section 1.3. We thus obtain the
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Figure 1.1: Effect of a GW on a circle of free-falling particles. Top figure represents the effect of
a + polarized wave as function of time, bottom figure a × polarized wave.

equations that govern the change of the length between two test-masses along the x-axis when a
GW is passing by

ξ̈x =
1

2
ḦTT
xx Lx (1.66)

ξ̈y = ξ̇y = 0 (1.67)

Similarly, if we consider a third test-mass located at Ly along the y-axis, the displacement along
this direction is given by

ξ̈y =
1

2
ḦTT
yy Ly (1.68)

ξ̈x = ξ̇x = 0 (1.69)

It is straightforward to integrate Eqs. (1.66) and (1.68). At zero order we have ξi = Li. At the
first order ξi = Li + 1

2H
TT
ii Li. The relative length change in each direction is thus defined at

first order in Hij as
δL

L
=

1

2
HTT
ii (1.70)

The traceless property of the metric perturbation tensor (HTT
yy = −HTT

xx ) is thus implying
that at a given instant a GW is inducing a differential effect on length in two perpendicular
directions. In Figure 1.1 we generalize this result to a ring of particles in the (~x, ~y) plane
(orthogonal to the direction of propagation of the wave) for a GW with only plus (HTT

xy = 0)
and cross (HTT

xx = 0) polarization respectively.

1.3 Detecting gravitational waves

The factor G/c4 ∼ 10−44 m−1kg−1s2 in Eq. (1.42) makes GW much weaker than their elec-
tromagnetic counterparts. The commonly used fiducial strain amplitude h ∼ 10−21 is given
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LASER source

Mirrors

Beam splitter

Detector

Figure 1.2: Optical scheme of a Michelson interferometer. The initial beam from the laser source
is split in two by the beam splitter mirror. Light is reflected by the mirrors at the end of both
arms and recombines at the beam splitter. The reflected recombined beam contains constructive
or destructive interferences depending on the difference of optical path in the two arms.

by compact binary coalescence sources. Being able to detect such tiny spacetime deformation
requires special instrumental techniques. Laser interferometry is known for providing the most
precise instrument to measure differential motion. Furthermore, the geometry of a Michelson
interferometer with perpendicular arms is perfectly adapted to the differential effect along the
two arms of GW on free-falling objects.

1.3.1 Laser interferometry GW detection principle

Figure 1.2 shows the optical layout of a simple Michelson interferometer. We assume the beam
splitter and the end mirrors are free to move in the plane of the interferometer. We choose a
coordinate system where the beam splitter and the end mirrors are fixed (TT gauge coordinates
system). The coordinates origin is at the beam splitter and the arms along the x and y axes
have lengths L1 and L2 that are roughly equal on a kilometer scale. With a laser of wavelength
λ incident on the beam splitter, the electric field seen by the photodetector is

Ψdet = ΨinrBStBS(r1e
2ikL1 + r2e

2ikL2), (1.71)

where rBS and tBS are the reflectivity and the transmittivity of the beam splitter, r1 and r2 are
the reflectivity of the end mirrors, k = 2π/λ and Ψin is the electric field at the beam spliter.
The light power exiting the dark port of the interferometer is thus

Pout = Pinr
2
BSt

2
BS(r2

1 + r2
2)(1 + C cos(2k(L2 − L1)), (1.72)
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where Pin is the laser power impinging the beam splitter and the contrast C

C =
2r1r2

r2
1 + r2

2

(1.73)

quantifies the asymetries in reflectivities of the two arms. The amplitude of the light leaving
the interferometer depends on the difference in the phase accumulated by the light travelling in
the two arms. The interferometer operates with the condition that in the absence of excitation
(noise or GW) the light exiting the dark port is null. Let’s now see how a GW passing by will
modify the laser power at the photodetector. For simplicity, we consider a plus polarized GW
incoming from the z direction. In the TT gauge the spacetime interval between two neighboring
points connected by a light ray remains null

0 = ds2 = gµνdx
µdxν = (ηµν + hµν)dxµdxν , (1.74)

= −c2dt2 + (1 + hxx(t))dx2 + (1 + hyy(t))dy
2 (1.75)

We can calculate the phase shift generated by the passing GW,

∆φ =
2π

λ
(2Lx − 2Ly), (1.76)

where Lx and Ly are the optical paths in the arms along the x and the y direction respectively.
Using Eq. (1.74) along the x arm we have

Lx =

∫
cdt =

∫ L

0

√
1 + hxx(t− x

c
)dx ≈

∫ L

0
(1 +

1

2
hxx(t− x

c
))dx, (1.77)

A photon will travel one arm in ∼ 10µs which is much shorter than the typical duration of the
signals searched in the 10 − 104 Hz sensitive band. We can thus consider that hxx(t) does not
vary during the light travel of a photon. Using hxx(t) = −hyy(t) = h+(t) = h0 cos(ωGW t) where
ωGW = 2πfGW , Eq. (1.77) becomes

Lx = L1 +
c

ωGW
sin(ωGW

L1

c
) h0 cos(ωGW (t− L1

2c
)) (1.78)

= L1 +
c

ωGW
sin(ωGW

L1

c
) h+(t− L1

2c
) (1.79)

Similarly for the y arm photon trip we have

Ly = L2 −
c

ωGW
sin(ωGW

L2

c
) h+(t− L2

2c
) (1.80)

Eqs. (1.78) and (1.80) are telling that the distance between two free falling points (distance
between the beam splitter and the end mirror) will vary when a GW is passing by and this
change is proportional to the amplitude of the GW.

∆L

L
∝ h+ (1.81)

The phase shift induced by the passing GW is thus approximated to

∆φ ≈ 4π

λ
(δL+

2c

ωGW
sin(ωGW

L

c
) h+(t− L

c
)) (1.82)

where δL = L1 − L2 and L = (L1 + L2)/2. Here we assume the two arms have similar length.
In absence of a GW signal, we have the standard Michelson phase shift ∆Φ = 4πδL/λ.
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Eq. (1.82) shows that a measure of the phase shift is a direct measure of the GW strain
amplitude. For a signal amplitude of 10−21, the phase shift is of order 10−11 rad which is
extremely small. From Eq. (1.82) we could conclude that we can increase the phase shift induced
by a GW by increasing the arms length. This is not true as the approximation made in Eq. (1.77)
assumes that ωGWL/c << 1. In other words the response of a Michelson interferometer as
function of the GW frequency is not constant. Besides, one may wonder how long should be the
arms to detect a GW of frequency fGW . This is given by maximizing the term sin(2πfGWL/c),
i.e. L = cfGW /4. For a GW source emitting at ∼ 1Hz, L ∼ 75 km should be the minimum length
of the arms to be able to detect sources emitting at lower frequency. This is of course not feasible,
and actually real GW detectors are more complex than a simple Michelson interferometer.

1.3.2 Advanced interferometers

It is common to cite a paper by Gertsenshtein and Pustovoid published in 1962 to date the
idea of using a Michelson interferometer to detect GW over a broader range of frequencies than
Weber’s bar detector [16]. Yet, it took decades of developments to bring on Earth the first and
now second generation of interferometric GW detectors that are sensitive enough to detect GW
from the merger of two stellar mass black holes for the first time on September 2015 [17].

The current network of ground-based detectors shown in Figure 1.3 is composed of the two
Advanced LIGO detectors located at Hanford and Livingston in the USA, the Advanced Virgo
detector located at Cascina in Italy, the GEO-600 detector located near Hannover in Germany
and the underground KAGRA detector near Kamioka in Japan. A copy of Advanced LIGO
detector is currently under construction in India. The arms of Advanced LIGO are 4 km long
while Advanced Virgo and KAGRA have arms of 3 km. GEO-600 arms are 600m long which
makes the detector less sensitive than Advanced LIGO and Advanced Virgo and is mainly used
so far to test advanced technology. KAGRA is the first detector located underground and whose
Fabry-Perot mirrors are cooled down at 20K to reduce respectively seismic noise and thermal
noise.

Figure 1.4 displays the main components added to a simple Michelson interferometer to
enlarge its frequency range response and to enhance its sensitivity. A complete description
of Advanced LIGO, Advanced Virgo and KAGRA can be found in [30, 31, 32]. There are
some differences between detectors (KAGRA is using cryogenic techniques to reduce the thermal
noise) but what follows is implemented almost in all four detectors. As already mentioned, an
interferometer sensitivity depends on the arm length that cannot be too long because of the cost
of the vacuum chamber. Additional partially transmitive test-mass mirrors are added close to
the beam-splitter in order to create Fabry-Perot cavities in the two arms. Photons are bounced
back and forth many times on average before leaving the cavities, resulting in an increase of the
optical path by a factor 2F/π where the finesse F of the cavities is 440 for Advanced Virgo and
500 for Advanced LIGO. The arms of Advanced Virgo are equivalent to the arms of a ∼ 103 km
Michelson.

The optical properties of the mirrors of the Fabry-Perot cavities must be exquisite in order
to achieve success. The Advanced Virgo mirrors were tested, and the root mean squared surface
uniformity is less than 0.5 nm, scattered light is less than 100 parts per million (ppm), and
absorption, including coating, is less than 0.4 ppm at 1064 nm1 for the end mirrors.

The Advanced Virgo input and end mirrors for the Fabry-Perot cavity arms have different
radius of curvature (1420m and 1683m respectively) and a beam radius as large as 60mm at the
end mirror. The high power circulating in the interferometer, especially within the Fabry-Perot
cavities, causes thermal lensing. This is a well known problem and thermal compensation is
an integral part of Advanced Virgo and Advanced LIGO design. To maintain the arm-cavity
mode structure, it will be necessary to control the radius of curvature of all test masses within

1Fused silica mirror blanks are transparent at the frequency of the the Virgo Nd:YV04 laser.
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Figure 1.3: Locations on Earth of the different ground-based GW detectors. In yellow are
detectors already making observations. LIGO India detector end of construction is planned circa
2025-2027. Credit : LIGO-Virgo-KAGRA collaboration.

± 2m from the initial radius of curvature. A system of ring heaters around optical components
and compensation plates illuminated by CO2 lasers have been installed to control the thermal
deformation of the mirrors’ surfaces.

The noise sources that inhibit the interferometer performance are discussed below. However,
let us consider one’s ability to measure the relative phase between the light in the two arms. The
Heisenberg uncertainty relation for light with phase φ and photon number N is ∆φ ∆N ∼ 1.
For a measurement lasting time τ using laser power P , the number of photons of wavelength
λ is N = Pλτ/hc, and with Poisson statistics describing the light ∆N =

√
N =

√
Pλτ/hc.

Therefore,

∆φ ∆N =
2π

λ
(2δL)

√
Pλτ/hc = 1 , (1.83)

where δL = L1 − L2. This implies that

δL =
1

4π

√
hcλ

Pτ
. (1.84)

This is the demonstration of the shot noise limit of the Michelson interferometer. With more
light power the interferometer can measure smaller distance displacements and achieve better
sensitivity. The plan for Advanced Virgo is to have 175W exiting the laser (λ = 1.06µm),
with 125W actually making it to the entrance of the interferometer. Currently 40W is used in
Advanced Virgo but the plan is to inject 100W for the next observing runs.

A nice trick to increase the laser power circulating into the cavities is to add a semi transparent
mirror between the laser source and the beam splitter to recycle back into the interferometer
the light coming out from the beam splitter. The recycling mirror forms a cavity with the
interferometer that increase the laser power by a factor ∼ 28 for Advanced Virgo.

Finally, at the output of the interferometer another partially transmissive mirror is added to
sends the light back into the system. Thanks to optical fiber, the phase of the light acquired
from the GW in one arm while expanding is sent to the other arm when it starts expanding
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increasing the phase shift. By repeating over and over this process one can increase sensitivity
at a particular frequency determined by the reflectivity of the signal recycling mirror. It is also
possible to form another resonant cavity that broadens the bandwidth of the interferometer in the
high frequency range of the detector. This system is called signal recycling. LIGO is currently
the only dual-recycled interferometer operating with power and signal recycling, but Virgo signal
recycling will be ready for the next observing run.

Quantum noise is one of the fundamental limitations to the sensitivity of GW detectors that
appear as quantum shot noise, caused by statistical fluctuations in the arrival time of photons
at the interferometer output and quantum radiation pressure noise, due to quantum fluctuations
in the photon flux impinging on the interferometer mirrors. A key technology to improve the
GW detector sensitivity beyond this quantum noise limit is the injection of squeezed vacuum
states of light into the dark port of the interferometer. Since up to now the quantum radiation
pressure noise is just below the residual technical noise sources at low GW detection frequencies,
a broadband sensitivity improvement can be achieved by reducing the shot noise contribution via
a moderate injection of frequency-independent squeezed vacuum states, whose fluctuations are
reduced in the quadrature of the light aligned with the gravitational-wave signal. In this case,
the effect of squeezing injection is equivalent to an increase of the circulating optical power in
the detector, without the drawback of an increase of the thermal effects inside the interferometer
optics due to their residual absorption and consequent thermal aberrations. In the recent years,
Advanced LIGO and Advanced Virgo have operated with injected squeezed light. Advanced Virgo
has obtaining up to 3 dB of sensitivity improvement (increasing the binary neutron star sensitivity
range by 5-8%) [33] while Advanced LIGO , has achieved 3 dB of sensitivity improvement but
operating a dual recycling configuration [34]. Injected squeezed state of light allow to increase
the sensitivity without increasing the laser power and thus limiting the thermal effects that are
hard to control.

All these enhancements from a simple Michelson interferometer makes Advanced LIGO and
Advanced Virgo able to measure phase shift corresponding to mirror displacement much smaller
than ∼ 10−18 m.

1.3.3 Advanced detectors noise sources

GW detectors sensitivity is defined by calculating the amplitude spectral density (ASD) of the
detector noise (output of the dark port in absence of a GW signal). The ASD frequency depen-
dence is due to the contributions of different sources of noise. Figure 1.5 shows the noise budget
of the Advanced Virgo project as foreseen before construction started. Quantum noise, which
includes photon shot noise above 300Hz and radiation pressure at low frequency. As already
seen to decrease the shot noise, one needs to increase the laser power circulating in the cavities.
Doing this increases the radiation pressure fluctuation on the mirrors as well as thermal noise
within mirrors substrates and coatings. The thermal noise due to the coatings dominates in the
mid-frequency range. To decrease the thermal noise or radiation pressure noise two ways are
currently pursed: improve the quality of the mirror coatings and increase the size of the mirrors
but this later solution requires to adapt the suspension systems. Each detector has developed
different design for their isolation system. In Advanced Virgo, mirrors are attached through fused
silica fibers to a series of mechanical filters attached to the top of an inverted pendulum. This
isolation system is mainly passive and is able to suppress almost all horizontal movements of
the mirrors due to the seismic noise above ∼ 10Hz [31]. Finally one should mention the gravity
gradient noise that is not yet a problem in ground-based detectors but will become problematic
when radiation pressure decreases (for instance when Advanced Virgo is upgraded with larger
mirrors). This Newtonian noise is generated by fluctuations of the Newtonian gravitational po-
tential surrounding mirrors. Those fluctuations could come from thermal fluctuations of the
atmosphere or ground motions.

So far we have described fundamental noise sources or seismic noises, but many more noise
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Figure 1.4: Simplified optical layout of Advanced Virgo. Input mirror (IM) and end mirror
(EM) are forming the two Fabry-Perot cavities. The recycling cavities at the center of the
interferometer are 12 meters long and are formed by the power recycling Mirror (PRM), the
signal recycling mirror (SRM) and the two IM mirrors [31]. Compensation plates (CP) and ring
heaters around optical components are in charge of controlling the thermal effects that could
make cavities unstable to control.
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Figure 1.5: Estimated noise budget of the Advanced Virgo detector as anticipated in 2015 [31].
The different curves in color correspond to a specific source of noise, whose addition is used to
generate the Advanced Virgo reference sensitivity curve (solid black). Each noise contribution is
calculated given parameters and hypotheses described in [31].

sources are contributing to the overall detectors’ noise. Among them, we could quote noise
from residual gas pressure in the ultra-high vacuum chambers, the laser whose stabilization in
frequency, phase, amplitude and pointing is not perfect. There is also noise from the different
control systems, including electronics and noise from the environment such as thunder storms
or acoustic noise. Another source of noise that is clearly visible on real data ASD shown on
Figure 1.6 is due to resonances and mains. Parts of the detectors have mechanical resonances
such as many components on the optical benches, or vibration modes such as the violin modes
of vibration of the fused silica wires used to suspend the mirrors. Rotors of vacuum pumps or
monochromatic forces applied to mirrors to calibrate the detector are also generating narrow
high or moderate amplitude spectral lines in almost the whole frequency range of the data.

Despite the huge effort over the years performed by the detectors’ teams to mitigate each
source of noise, all ground-based GW detectors record data that cannot be fully described assum-
ing the noise is Gaussian and stationary. The data recorded by each GW detector are the subject
of data quality studies that are mandatory to GW searches. These studies (see e.g. [35, 36, 37])
determine the period of times where the detectors are functioning in low noise conditions. They
also identify and classify the main transient noise sources that may mimic a genuine GW signal
or just impact its reconstruction. They also identify and list all narrow spectral lines that are
more or less persistent in the data.
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Figure 1.6: Amplitude spectral density of the Advanced Virgo detector on March 23rd 2020
(blue curve) corresponding to one of the last day of the O3 observing run. The magenta curve
is a reference ASD estimated during the first part of O3. The green range corresponds to the
predicted sensitivity range aimed for the Advanced Virgo detector during O3.

1.3.4 Gravitational wave detectors response

We have seen in Section 1.2.5 that the relative length change of one interferometer’s arm is
proportional to the metric perturbation tensor. Attaching an inertial reference frame to the
interferometer arms, we can use Eq. (1.70) to derive the difference between the relative length
changes of the two arms

s(t) = ∆[
δL

L
] =

1

2
(HTT

xx −HTT
yy ) (1.85)

To express the metric perturbation tensor in a frame attached to the detector we first express it
in a fixed-Earth reference frame attached to the center of the Earth. We start from Eq. (1.59)
that is expressed in the propagation wave frame and apply three Euler’s angle rotations that are
combined in the orthogonal matrix

M =

 cos Ψ cos Φ− cos Θ sin Φ sin Ψ cos Ψ sin Φ + cos Θ cos Φ sin Ψ sin Θ sin Ψ
− sin Ψ cos Φ− cos Θ sin Φ cos Ψ − sin Ψ sin Φ + cos Θ cos Φ cos Ψ sin Θ cos Ψ

sin Θ sin Φ − sin Θ cos Φ cos Θ


(1.86)

where Θ, Φ and Ψ are the Euler’s angles. Note that Ψ corresponds to the polarization angle of
the GW. It corresponds to a rotation around the propagation wave axis. Dropping all indices we
have

H(t) = tMh(t)M (1.87)

Eq. (1.85) can be written as

s(t) = F+(Θ,Φ,Ψ)h+(t) + F×(Θ,Φ,Ψ)h×(t) (1.88)

where F+ and F× are named the antenna pattern functions because they encode the response of
the detector to the two GW polarizations. Contrary to telescopes, GW detectors are observing
sources from anywhere in the sky at any time except that the response of the detector, the
gravitational strain s(t), is not uniform but depends on the relative position of the source with
respect to the detector position on Earth at the time of arrival of the GW.
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Yet, while Euler’s angles are convenient to derive the antenna pattern functions, one usually
locate a source in a fixed celestial frame coordinates system using the equatorial coordinates
right-ascension α ∈ [0, 2π] and the declination δ ∈ [−π/2, π/2] or the spherical polar angles
altitude θ and azimuth φ. A third angle, the Greenwich Mean Sideral Time (GMST), which
gives the orientation of the Earth at the time of arrival is necessary to change coordinates using
the relationship [38, 39]

φ = α−GMST (1.89)

θ =
π

2
− δ (1.90)

Θ = π − θ (1.91)

Φ = φ− π

2
(1.92)

Ψ = ψ (1.93)

For instance in spherical polar coordinates the antenna pattern functions read

F+(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ (1.94)

F×(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ (1.95)

Eq. (1.88) gives the strain amplitude for a detector located at the center the Earth with its
arms located along the Earth-fixed frame axes. The last step consist in expressing the strain
amplitude in a frame attached to a detector frame defined by the location of the beamsplitter
and the two arms orientation vectors. The final expression of F+ and F× is rather complex and
the full derivation can be found in [38].

1.3.5 Calibration of the GW detectors

The strain amplitude of the GW detectors is reconstructed from the dark fringe photodiodes
measurement and the control signals that are applied to maintain the free-falling masses at their
nominal position. The control system of advanced detectors is rather complex with the goal
to keep a destructive interference at the interferometer output port. As a consequence, below
a few hundred hertz it is necessary to substract the control signals from the dark fringe signal
before reconstructing s(t). Above a few hundred hertz, the suspended mirrors behave as free-
falling masses. The length variations induced by a passing gravitational wave generate directly
variations of the output power of the interferometer.

To reconstruct s(t) it is necessary to calibrate the sensing and control loop elements by
measuring their transfer functions. This is usually done by injecting a deterministic excitation
signal through the actuators.

Over the years, GW detectors have developed advanced techniques to perform calibration.
For instance Advanced LIGO and Advanced Virgo are calibrated using the Photon Calibrator
technique that consists in using radiation pressure induced by auxiliary lasers whose power
is known absolutely instead of using the main laser wavelength as reference through the free
swinging Michelson technique [40]. Actually both techniques are used to cross-validate calibration
results whose uncertainty is provided as function of frequency.

Following the same principle, the reconstruction of s(t) is also the opportunity to substract
well identified noise source, whose contribution to the dark fringe signal is measured by a witness
signal. Not all sources of noise can be substracted but detectors’ sensitivity can be improved in
some frequency range resulting in an increase of several Megaparsec2 for the binary neutron star
coalescence range [41, 40].

2The gain depends on the dataset. In Advanced LIGO during the O2 run, the Hanford detector sensitivity
was increased by 20% on average.
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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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Figure 1.7: GW signal GW150914 in LIGO Hanford (left) and Livingstone (right). First row:
strain data (filtered with a bandbass filter between 35−250 Hz). Second row: reconstructed signal
and waveform template from numerical relativity.Third row : residual noise after substrating the
template from the signal. Fourth row: time-frequency representation of the signal. Figure from
[17].

Absolute timing calibration is also critical when performing multi-detector analysis for both
detection (cross-correlation assumed the arrival time of the GW to be synchronized) and source
sky position determination based also in the arrival time of the signal in each detector. The mas-
ter timing system is controlled by GPS and provide coherent timing information to all detectors
elements.

1.4 Progress of GW astronomy

1.4.1 Observing runs and detections

The life of GW detectors alternates between phases of observation (observing runs) and periods of
maintenance / commissioning, during which upgrades are carried out to improve the sensitivity of
the instruments. Therefore, each observing run provides a better sensitivity than its predecessors.
As of 2021, three runs have been performed with Advanced Virgo and Advanced LIGO. Each of
them has offered ground-breaking discoveries.

The first observing run (O1) took place between September 2015 and January 2016, with
only the two LIGO detectors observing. On September 14th 2015 - a few days before the official
start of the run - the first GW signal ever was detected. The signal, represented in Figure 1.7
was seen for 0.2 s between 35 to 250 Hz, and had the characteristic chirp morphology expected
from the merger of two compact objects. It is consistent with the merger of two black holes of
masses 36+5

−4 M� and 29+4
−4 M� observed at a luminosity distance DL = 430+150

−170 Mpc [17].
The implications of this discovery were huge. Besides being the first detection of GW, it was
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the first direct observation of solar-mass black holes. It was also a fantastic opportunity to test
the validity of general relativity in the strong field regime. These tests showed no measurable
deviation from the predictions of the theory [42]. Two other binary black hole systems (BBH)
were discovered in total during O1, allowing to start to measure the rate of such events [43].

The second run (O2) began on November 30th 2016 for LIGO, and on August 1st 2017 for
Advanced Virgo, and ended on August 25th 2017. During the almost 9 months of observation,
7 new BBHs were discovered. The inclusion of Advanced Virgo in the detectors network allowed
to constrain more precisely the location of detected events and the polarization of GW [44]. Yet,
the major discovery made during O2 was undoubtedly the detection of GW170817, the first GW
signal from a binary neutron star (BNS) merger. The signal detected on August 17th 2017 was
visible for a duration of ∼ 100 s in the frequency band of the detectors, and it has been associated
to the inspiral and merger of two neutron stars of masses 1.46 M� and 1.27 M� at a distance of
∼ 40 Mpc [19]. A few seconds after the GW signal, the Fermi-GBM telescope recorded a short
gamma-ray burst (GRB) [45], which was confirmed later by INTEGRAL [46]. These detections
triggered an unprecedented observing campaign across the whole electromagnetic spectrum, and
a counterpart was detected 11 hours after the initial GW alert in NGC 4993 [47]. For the first
time, the associated kilonova signal was observed very early on confirming the scenario that BNS
merger are associated to short GRB and kilonova. The source has been followed in ultraviolet,
optical, infrared and radio waves. A search for high-energy neutrinos [48] was also conducted.
The simultaneous observation of GW and electromagnetic signal from the same sources marked
a milestone in the domain of multi-messenger astronomy. Important constrains on the speed of
GWs [49], modified gravity theories and finally the first measurement of the Hubble constant
with GWs [50] have been possible with this very first BNS merger.

After more than one and a half year of interruption, the third observing campaign (O3) was
launched on April 1st 2019, with a detection range increased by 50% and 100% for Advanced
LIGO and Advanced Virgo detectors respectively. Given the rate of events inferred from previous
detections, this increase in sensitivity lead the community to expect a rate of ∼ 1 detection per
week. Indeed, during the first 6 months of O3, from April 1st 2019 to October 31st 2019, 39 GW
events have been detected, most of them from BBH mergers [18].

Among the 36 BBH mergers reported so far from O3, GW190521 features the most massive
black holes observed so far. The mass of the remnant black hole is estimated to be 142+28

−16 M�[51].
This is the first direct evidence of the existence of intermediate mass black holes. Interestingly,
it falls within the so-called mass gap, a range of masses for which it is supposed that a process
called pulsional pair instability prevents the formation of black holes from stellar collapse [52].
Therefore, it raises many new questions about the channel of formation of such black holes. The
picture of compact binary mergers was completed by the observation of two neutron star - black
hole colescences, GW200105 and GW200115 [20].

To this day, Advanced LIGO and Advanced Virgo have detected ∼ 50 signals from compact
binary mergers [18], most of them being BBH, with two confirmed binary neutron star merger,
GW170817 [19] and GW190425 [53], and two neutron star - black hole mergers [20]. These
detections allow to estimate the rate of compact binary mergers in the universe, and probe the
population of compact objects. With 47 confirmed detection the BBH rate is the most tightly
constrained, with RBBH = 23.9+14.3

−8.6 Gpc−3 yr−1 [54]. Regarding BNS, the rate inferred from the
two observed events is RBNS = 320+490

−240 Gpc−3 yr−1 [54], and the two newly discovered NSBH
allow to estimate RNSBH = 130+112

−69 Gpc−3 yr−1 [20].

1.4.2 Perspectives

The next observing runs of Advanced LIGO and Advanced Virgo are already planned. O4 should
start mid 2022 for a duration of 1 year and a sensitivity further improved compared to O3. The
designed sensitivity of Advanced LIGO and Advanced Virgo should be reached during O5, by
2025. At the time, Advanced LIGO should reach a detection range for BNS of 330 Mpc, and
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Figure 1.8: Summary of past (O1, O2, O3) and future planned (O4, O5) observing runs of
Advanced LIGO, Advanced Virgo, and KAGRA. Achieved and expected sensitivities are given
by the BNS detection range in Mpc. For future runs, dates and sensitivities may have large
uncertainties. Figure from[55]. The fourth run O4 should start on August 2022.
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150− 260 Mpc for Advanced Virgo. New detectors are planned to join the network, KAGRA as
soon as O4, and LIGO India in 2025-2027, although there are large uncertainties on the exact
dates and sensitivities [55]. A summary of the past and planned observing runs is shown in
Figure 1.8.

Increased sensitivity and observing time will surely lead to more and more detections. The
sample of compact binary mergers will grow, providing more informations on the populations of
black holes and neutron star with especially better measurement of the black hole spins. More
detections of BNS mergers will place multi-messenger astronomy in a central place, and may
provide new insight on the equation of state and the physics of neutron stars. Finally, we can
expect to detect new sources of GW, possibly non related to compact binary mergers, such as
magnetars, core-collapse supernovae or the stochastic GW background.

In the more distant future, third-generation detectors like the proposed Einstein Telescope
[56] or Cosmic Explorer [57] may reach sensitivities an order of magnitude higher than what is
achieved by Advanced LIGO and Advanced Virgo. However, ground-based detectors’ sensitivity
will always be limited at low frequency (below ∼ 1 Hz) because of the Earth’ seismic noise. The
Laser Interferometer Space Antenna (LISA), whose launch is planned for 2034, will scan the GW
universe at frequencies between 10−4 and 1 Hz, giving access to new types of potential sources,
such as even more massive BBH, white dwarf binaries, and the low frequency components of the
stochastic GW background.

Finally, the international pulsar timing array [58] is a project that consists in measuring
fluctuations of the pulsation of pulsars caused by GW. This allows to probe very low frequencies
< 10−8 Hz GW emitted by the coalescence of super-massive black holes at the center of galaxies
[59].

32



Chapter 2

Astrophysical sources of gravitational
waves

Because of the extreme stiffness of space-time, only a few extreme astrophysical phenomena are
able to emit GW at a detectable level. Notably, a good source of GW would be very compact,
asymmetric and involve relativistic speeds. Therefore, the most promising candidates are compact
objects, i.e neutron stars and black holes (and, to a lesser extent, white dwarfs). In fact, the
most energetics GW emission mechanisms happen during cataclysmic events that involve one or
more compact objects. In this chapter, I give an overview of the main sources of GW related to
transient GW, and especially long-lived transient, for which the expected signal lasts at least a
few seconds.

2.1 Binary systems of compact objects

Binary systems made of two compact objects make excellent sources of GW, since they are highly
non-axisymmetric and relativistic. In fact, mergers of two compact objects are the brightest
known sources of GW - they can radiate GW with an energy equivalent to several solar masses
(a few percent of the total mass of the system), and the only ones detected to this day.

To understand the GW emission of those systems, we can go back to the toy model of Chapter
1: we have seen that two point-like objects of mass m1 and m2 that orbit each other at a distance
a and orbital pulsation ω radiate a GW strain

h+(t) =
4Gµa2ω2

rc4
cos(2ωt)

h×(t) =
4Gµa2ω2

rc4
sin(2ωt)

where µ ≡ m1m2/(m1 +m2) is the reduced mass of the system. At order zero, the dynamics of
this system is given by Kepler’s third law,

a3ω2 = GM, (2.1)

with M = m1 + m2. When the bodies are far away from each other, their GW emission is not
detectable by current generation detectors. Indeed, if we consider somewhat realistic values, like
M = 2M� and a = 1 UA, the frequency f of the GW emitted is

f =

√
GM

π2a3
∼ 10−7 Hz, (2.2)

far below the detector’s sensitive band. Such signals could be seen by pulsar timing array
detectors [58].
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However, GW carry energy. Because of that, the system will progressively lose energy, and
the two objects will get closer and closer, and eventually merge, generating a very bright burst
of GW that Advanced LIGO and Advanced Virgo are able to detect. Combining Eq. (1.53) and
(1.58), the GW luminosity of the toy model is

LGW =
32G

5c5
µ2a4ω6. (2.3)

In the meantime, the total energy E of the system is the sum of the kinetic energy and gravita-
tional potential energy

E =
1

2
µa2ω2 − GµM

a
(2.4)

= −1

2

GµM

a
(2.5)

We then see that when the system loses energy the separation between the two bodies must
decrease as well. The energy-balance equation LGW = −dE

dt that relates the energy loss to
luminosity leads to a differential equation for the time evolution of the GW frequency fGW = ω/π

dfGW
dt

=
96

5
π8/3

(
GM
c3

)5/3

f
11/3
GW , (2.6)

whereM = µ3/5M2/5 is the chirp mass of the system.
We can integrate this equation to get some insight about the evolution of the system and the

GW emission. The GW frequency is given by

fGW (t) =
1

π

(
5

256

1

(tc − t)

)3/8(GM
c3

)−5/8

(2.7)

where tc is the time at the merger. We can re-express the two polarisation modes seen by an
observer at distance r on the z-axis

h+(t) = A(t) cosφ(t)

h×(t) = A(t) cosφ(t),
(2.8)

with

A(t) = GM
rc2

(
c3(tc−t)

5GM

)−1/4
(2.9)

φ(t) = 2

[
φc −

(
c3(tc−t)

5GM

)5/8
]

(2.10)

tc and φc represent respectively time and phase at the merger. The amplitude and frequency of
the signal depends only on the chirp mass and increases with time, giving it the characteristic
chirp morphology.

This toy model considers the simple case of non-spinning objects with circular orbits, and
uses Newtonian dynamics to derive the expression of the waveforms at the first order. In practice,
more precise waveforms are obtained using post-Newtonian expansions of this model by adding
corrections at different orders of v2/c2 (see e.g [60, 61, 62, 63]). These waveforms takes more
parameters than just the masses of the bodies, notably their spin, the tilt angle between the
spins and the orbital plane, and the eccentricity of the orbit.

Furthermore, the Newtonian approximation we have used is only valid in a flat space-time.
This approximation breaks when the two bodies get close and the gravitational field becomes
strong. In Schwarzschild geometry, we can model the coalescence by a succession of quasi-circular
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orbits up to the point where the two bodies reach the innermost stable circular orbit (ISCO),
whose radius is given by

RISCO =
6GM

c2
. (2.11)

Therefore, the frequency of the GW at the ISCO is

fISCO =
c3

63/2πGM
(2.12)

This frequency scales with the inverse of the total mass M of the system. For M=2.8M�, a
system formed of two neutron stars, fISCO ' 1.6 kHz and RISCO=25 km which is to be compared
to the radius of a neutron star (∼10 km). The dynamics after the ISCO is dominated by strong
field effects and leads quickly to the plunge of the two compacts objects. A first solution of
the final orbit has been provided by numerical relativity endeavour [64]. Analytical waveforms
are now available especially using the Effective One Body formalism [65] or phenomenological
waveforms [66]. When a black hole is formed a ringdown signal is expected from the perturbed
newborn Kerr black hole. The exact waveform of the expected signal is obtained from black hole
perturbation theory [67]. Also, the GW signal from the merger of two neutron stars is further
more complicated to predict because of the tidal effects that might play a significant role when
the two bodies get sufficiently close [68].

It is interesting to estimate the duration τ = t − tc of the signal in the bandwidth of the
detectors. From Eq. (2.7) we obtain

τ ' 2.18 s

(
1.21 M�
M

)5/3(100 Hz

fGW

)8/3

(2.13)

For instance, for a two neutron star coalescence, if we can start measuring the signal at 10Hz,
the signal lasts ∼ 17 minutes. At 100Hz, the signal duration is of the order of a few seconds. The
other important factor is that the duration scales with M−5/3. The more massive the system,
the shorter the signal. In the context of a long-duration GW signal search, we will focus our
studies on low mass binary systems (neutron stars or low mass black holes).

Most of the compact binary mergers discovered so far in Advanced LIGO and Advanced Virgo
data do not fall under the scope of this thesis, since they produce short duration signals that
are well modelled and searched by optimal matched filter algorithms. However, waveforms from
the inspiral of highly eccentric systems of low mass system are less well modelled and may be
detectable [69]. Hence, these events are potentially a target for long transient searches. Examples
of waveforms from eccentric compact binary coalescences are shown in Figure 2.1.

2.2 Binary neutron star post-merger

After the merger of two neutron stars, a post-merger GW signal may be emitted depending on
the nature of the remnant object.

There are three main scenarios for the outcome of a binary neutron star merger (BNS) [71]:
it can either form directly a black hole, or a supermassive neutron star that will shortly collapse
into a black hole, or neutron that will survive for a longer amount of time, or indefinitely. The
likelihood of each scenario depends on the mass and spin of the remnant, as well as on the
equation of state of neutron stars, which is not precisely known. The theoretical maximal mass
for a non-rotating neutron star is the Tolman-Oppenheimer-Volkoff mass MTOV [72, 73], which
depends on the equation of state, and is believed to be between 2.2− 2.7M�.

When the massM of the remnant is significantly higher thanMTOV, it collapses immediately
into a black hole. In that case the GW emission is expected to be minimal, with only the ringdown
signal at f > 6000[Hz] [74, 75].
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Figure 2.1: Time-frequency representation of a sample of long-duration GW signals from eccentric
compact binary coalescences [70].

Scenarios in which the mass of the remnant is lower than ∼ 1.5MTOV are more promising
in term of GW emission because a neutron star is formed. If M is between 1.2 − 1.5MTOV,
the newly formed neutron star is said to be hypermassive [71]. Only differential rotation is
able to prevent the collapse for such masses, but this does not last long. Differential rotation
is suppressed on a short time scale (< 1 s) through viscous dissipation and magnetic braking
[76], and the nascent neutron star collapses promptly into a black hole. In this scenario, a short
GW burst is expected from the excitation of the fundamental oscillation mode (f -mode) of the
neutron star, at frequencies between 2 − 4 kHz [77, 78]. The short duration and relatively high
frequencies do not make this type of signal a promising target for long-duration searches.

WhenM . 1.2MTOV, a supramassive or a stable neutron star is formed. When the remnant
is supramassive (MTOV . M . 1.2MTOV), it is prevented from collapsing by its rotational
energy and can survive between a few minutes and a few days before eventually collapse into
a black hole [79]. When M . MTOV, it is indefinitely stable. In both cases, long-lived GW
may be emitted. Different mechanisms of emission have been proposed, which involve magnetic
field and rotation-induced instabilities that grow on timescales 102 − 104 s [71]. Indeed, because
of conservation of angular momentum, the neutron star is likely to be rapidly rotating and
have a strong magnetic field. These instabilities may deform the star in a non-axisymmetric
manner, leading to generation of GW. This scenario, called millisecond magnetar, is also a
possible outcome of core-collapse supernovae, and we give more details on the various instabilities
and characteristics of the signal expected in Section 2.3.3.

In all cases the loss of angular momentum due to GW emission and/or magnetic braking
will result in slowing down the rotation of the neutron star, up to the point where it will either
collapse into a black hole if M &MTOV, or become a stable neutron star, and the transient GW
emission will be quenched.

Piro et al. [80] estimated the fraction of BNS mergers that give birth to a long-lived neu-
tron star remnant between 23 − 99%, depending on the equation of state and mass distribu-
tion of neutron stars. Therefore, a significant fraction of the BNS detected could be followed
by a long-lived post-merger signal. The volumetric rate of binary neutron star mergers is
RBNS = 320+490

−240 Gpc3 yr−1[81], with two confirmed detection, GW170817, at ∼ 40 Mpc [19]
and GW190425 at ∼ 160 Mpc [53]. Searches for a post-merger signal after GW170817 did not
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Figure 2.2: Time-frequency representation of a sample of long-duration GW descending chirps
expected from accretion disk instabilities around the ISCO [84, 85].

found any signal, neither short or long [82, 83], but they set upper limits on the GW strain
amplitude that just one order of magnitude higher than those predicted by models [83]. With
the planned increase in detectors’ sensitivity, these events are therefore promising candidates for
future long-duration searches.

2.3 The death of massive stars

At the end of their life, massive stars (of mass & 10M�) form an extremely dense iron core
which is supported by the degeneracy pressure of electrons. The radius R of the core is typically
of the order of magnitude of the radius of the Earth (∼ 6000 km). When its mass exceeds
the Chandrasekhar limit, pressure is no longer sufficient to counter the core’s self-gravity. The
latter eventually collapses into a much smaller object, a proto-neutron star of R ∼ 30 km, in
which matter reaches nuclear density. At this point, the nuclear force becomes repulsive and
the collapse is stopped. The outer part of the core bounces back, creating a shock wave that
propagates outward.

The shock in itself is not sufficient to blow out the stellar envelope, as 99% of the energy
is dissipated through neutrino emission [86]. To create a supernova, it must be revived via a
mechanism that remains uncertain to this day - but certainly involves neutrinos [87]. If this
mechanism is not successful, the stellar envelope is not entirely ejected and matter falls back
into the proto-neutron star, which eventually collapse into a black hole [88]. This is the collapsar
scenario.

On the contrary, if the explosion is successful, the proto-neutron star may survive, at least
temporarily. In about 10% of the cases, the remnant neutron star is supposed to be a millisecond
magnetar, highly magnetized (with internal magnetic field B ∼ 1015 G, or even more) [89], and
rapidly rotating (rotation period P ∼ 1 ms) [90].

The two scenarios, collapsar and millisecond magnetar, have been proposed to be the central
engine of long GRBs [91, 92]. They are also promising potential sources of GW.
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2.3.1 Core bounce

A short-lived GW burst (< 2 s) may be emitted by the star bounce itself if the core is rapidly
rotating and develops a sufficient non-axisymmetric quadrupole moment. However, numerical
studies have shown that the expected energy emitted via GW is quite low (EGW ∼ 10−9 M�c

2),
which restrain the detection horizon to our galaxy [93, 94]. Given that the rate of core-collapse
supernovae in the Milky Way is estimated to be ∼ 2 − 3 events per century [95], detection of
such GW emission is still a long shot.

2.3.2 Accretion disk

In the collapsar scenario, the newly formed black hole is surrounded by an accretion disk or a
torus constituted of matter from the collapsing star [96].

Piro and Pfahl [97] showed that a gravitational instability can arise in the outer part of the
accretion disk, in the zone where cooling become efficient. Fragments of ∼ 0.1 − 1M� with the
density of a neutron star may form and migrate inwards. We can roughly model this system as
a fragment of mass Mf orbiting the central black hole of mass MBH. The amplitude of the GW
strain for a source at a distance r would be

h ∼ 6× 10−24

M3/5
f M

2/5
BH

M�

5/3(
f

100 Hz

)2/3(100 Mpc

r

)
, (2.14)

where f is the orbital frequency of the fragment around the black hole. The expected GW signal
would be chirp-like (increasing frequency over time), last ∼ 100 s and have a strain amplitude
∼ 10−22 at 100 Hz for a source at 100 Mpc, which is within the detection range of current
generation detectors. The GW energy released by a fragment of Mf = 1 M� falling into a black
hole of mass 5 M� would therefore be ∼ 4× 10−2 M�c2 [28].

In addition to fragmentation, different kinds of instabilities may grow in the disk that can lead
to GW emission. Van putten proposed a model of rapidly rotating Kerr black hole, surrounded
by a rotating, highly magnetized accretion torus located at the level of the innermost stable
circular orbit. In this scenario, the torus undergoes turbulence and instabilities that may lead to
break the axial symmetry and develop a time varying quadrupole moment, hence GW emission
at the orbital frequency of the accretion torus [98]. Those instabilities would be powered by
the coupling between the black hole spin and the torus magnetic field, the former transferring
angular momentum to the latter. As a consequence of the black hole spin-down, the radius of the
ISCO increases, and so does the orbital period of the torus. Therefore, the expected frequency
of the GW emitted decreases with time. The GW signal would last ∼ 10 s, with a chirp-down
morphology and potentially verly large energy released (EGW ∼ 1053 erg) [84, 85], although
the latter is based on rather optimistic energy considerations. In figure 2.2, we show a time-
frequency representation of a few down-chirping waveforms that are expected from accretion disk
instabilities.

2.3.3 Proto-neutron star

Because of their high rotation speed and magnetic field, newly formed magnetars could be a
powerful source of GW, provided they develop a significant, time-varying quadrupole moment.
We have seen in Section 1.2.3 that a triaxial ellipsoid spinning around its z-axis at pulsation ω
generates an average GW strain

〈h〉 =
4G

rc4
εIzω

2, (2.15)

where r is the distance to the source, Iz the inertia moment around the z axis and ε ≡ (Ix−Iy)/Iz
the ellipticity parameter. Therefore, to be an efficient generator of GW, a neutron star must
develop an asymmetry in the plane orthogonal to its spin axis (here the (x, y) plane).
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According to [99], when the toroidal component of the magnetic field is dominant, it can
deform the neutron star into a prolate ellipsoid (a rugby ball shape, with Iz > Ix ' Iy). The
ellipticity εB induced by the volume-averaged toroidal field 〈Bt〉 can be approximated as

εB = 10−6

(
〈Bt〉

1015 G

)
(2.16)

The spinning prolate ellipsoid undergoes precession if the magnetic and spin axes are misaligned.
In fact, the situation where both axes are aligned is an unstable equilibrium. The minimal energy
level of such a system is when the two axes are orthogonal. This is called the spin-flip instability.
Therefore, even if the angle between the axes is initially low, this instability drives the magnetic
axis orthogonal to the spin axis. The precession energy is dissipated through viscous dissipation.
As a result, the system becomes an optimal GW emitter (similar to a spinning bar), and emits
GW at frequency f = ω/π, and at amplitude h ∝ εB ω

2. Numerical simulations from Dall’Osso
et al. [100] showed that such signal could last ∼ 103 − 105 s, and that the detection horizon for
Advanced LIGO would be around ∼ 4 Mpc.

Another potential source of GW emission comes from the high rotation speed. Rotation
tends to turn a spherical body into an oblate spheroid (flattened at the poles, like the Earth for
example). However, since the symmetry and spin axis are aligned, the corresponding quadrupole
moment does not vary with time, hence no GW is emitted in this case. Nevertheless, when the
rotation speed is very high - more precisely when the ratio of rotational to gravitational energy
is higher than 0.28, another type of instability can be activated, known as rotational instability,
or bar-mode. This instability would grow in ∼ 101 − 102 s and deform the star in the plane
orthogonal to the spin axis, giving it a bar shape (or cigar) [101]. It could also explain the
presence of a typical X-ray plateau in the light curve of the GRB [102]. In this case, the GW
signal emitted could be long-lived (∼ 103 s) with decreasing frequency and amplitude over time,
and amplitude h ∼ 10−23 at 100 Mpc [103].

R-modes are toroidal oscillation modes that originate from the Coriolis form in rotating
bodies. These modes are unstable and are subject to the so-called Chandrasekhar-Friedman-
Schutz instability [104, 105]. When activated, they can emit GW at 4/3 the spinning frequency
of the neutron star [106] that would potentially last for a very long time.

Like the remnant of a BNS merger, the newborn neutron star is expected to rapidly spin
down because of GW emission and magnetic dipole radiation. Consequently, the frequency and
amplitude of the potential GW emitted will progressively drop, on a time scale of days to weeks.
Besides, the relative amplitudes of the magnetic field poloidal and toroidal components, and
rotation speed, are critical to understand which GW emission mechanisms are activated and
for how long. Conversely, detecting a GW emission from a newborn magnetar would certainly
provide a deep insight on the physics of these objects, especially combined with electromagnetic
and neutrino observations.

Detection horizons are currently around 3−4 Mpc for unmodelled searches, and 20−40 Mpc
for optimal matched filter searches [103]. An horizon of 4 Mpc only only places galaxies from
the local group within detection range.

The local rate of core-collapse supernovae is estimated to be ∼ 7 × 10−5 Mpc−3 yr−1 [107].
Assuming that 1 event out of 10 results in the formation of a millisecond magnetar, we can
expect a rate of ∼ 1 millisecond magnetar every 4 years at a distance < 20 Mpc (considering
that the local Universe is uniform, which is not the case in reality). Therefore, improving the
sensitivity of unmodelled search algorithms could be crucial to detect these sources.

2.4 Isolated neutron stars

Isolated neutron stars may continue to emit GW, even a long time after their birth, through a
persistent non-asymmetric deformation or during cataclysmic events whose trigger mechanisms
remain mysterious to this day.
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2.4.1 Pulsars

Pulsars are rapidly rotating neutron stars that emit beams of electromagnetic radiation (usually
radio waves) along their magnetic axis. When the magnetic axis is not aligned with the rotation
axis, the radiation observed is periodic, allowing to measure precisely the rotation frequency of
the neutron star.

We know from the toy model of a rotating triaxial ellipsoid that the GW emitted is

h+(t+ r/c) = −4GεIzω
2

rc4
cos 2ωt

h×(t+ r/c) =
4GεIzω

2

rc4
sin 2ωt.

(2.17)

The intrinsic parameters that command the GW emission are the ellipticity ε, moment of inertia
Iz and rotation period P = 2π/ω.

About 300 known pulsars have rotation frequency within LIGO-Virgo sensitive band [108],
while the estimated number of isolated neutron stars in the galaxy is ∼ 160, 000 [109]. Despite
the expected amplitude of continuous GWs emitted by pulsar is very low, we could detect them
by integrating a potential signal over a long period of data.

2.4.2 Magnetars

Magnetars form a class of neutron stars with extremely high magnetic field (∼ 1013 − 1016 G,
100 − 1000 times higher than typical neutron stars observed as radio pulsars). Their existence
was proposed by Duncan and Thomson in the 1990s [110, 111, 112] to explain the observations
of Soft Gamma Repeaters (SGRs), sources that emit short bursts (∼ 0.1 s) of soft gamma-rays
at energies ∼ 1038 − 1043 erg at irregular intervals.

Those bursts are usually divided into 3 categories [113]: short bursts that last ∼ 0.1 − 1 s
and release ∼ 1041 erg, intermediate bursts, which have significantly longer duration (∼ 1− 40 s)
and higher peak energy (∼ 1041 − 1043 erg), and giant flares, which can release up to 1047 erg in
gamma rays.

Magnetar giant flares (MGFs) are very rare events. Only three of them have been observed
so far from galactic SGRs, from SGR 0526-66 in 1979 [114], SGR 1900+14 in 1998 [115] and
SGR 1806-20 in 2004 [116]. In all cases, the initial short peak of gamma-rays was followed by
an afterglow X-ray tail at ∼ 1044 erg.s−1, lasting ∼ 100 s, and modulated by quasi-periodic
oscillations [117]. These giant flares are the most energetic phenomena known from isolated
neutron stars. Scenarios proposed to explain these events involve catastrophic events, such as
a sudden reconfiguration of the star’s internal structure and / or magnetic field [111, 118], but
much remains unclear to this day.

Because of the large energy released, MGFs are promising potential sources of transient GW.
GW can be emitted if some oscillations modes of the star are excited. Notably, Ioka [118], and
Corsi and Owen [119], showed that a brutal rearrangement of the internal magnetic field could
excite the fundamental f-mode at high frequency (∼ 1− 2 kHz), leading to a short (≤ 0.1 s) but
powerful burst of GW carrying a maximal energy EGM ∼ 1048 − 1049 erg. However, numerical
simulations by Zink 2012 and Ciolfi and Rezzolla 2012 showed that in more realistic conditions,
the GW energy expected from excitation of the f-mode would be in the range 1034 − 1036 erg,
so virtually undetectable. Nevertheless, MGFs may emit GW at lower frequencies < 600 Hz, via
the excitation of other oscillation modes, but the detailed mechanisms remain unknown.

Much remains unclear about the trigger mechanism of MGFs - and less energetic flares - as
well as the potential GW associated with these events. However, the fact that the pulsating
tails last ∼ 100 s makes them a potential source of long-lived transient signals. Besides, in 2021,
Burns et al. have shown that extra-galactic MGFs could be associated with a distinct class of
short GRBs [120]. Their results imply that the rate of MGFs in the local universe may be several
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orders of magnitude higher than the rate of compact binary mergers. In chapter 5, I describe a
search for a GW counterpart around 3 extragalactic MGFs, place upper limits on the GW energy
emitted, and study the prospects of detection for future observing runs.

2.5 Other sources and summary

Compact binary sytems, core-collapse supernovae and isolated neutron stars constitute the main
sources of GW that we expect to see with ground-based interferometers such as LIGO and Virgo.
However, other potential sources may exist and could be detected in the future.

A stochastic background of GW could be formed by the sum of all non-resolved sources. Two
main components of this background are expected, an astrophysical part composed of unresolved
compact binary systems, supernovae and isolated neutron stars, and a cosmological component
from inflation, cosmic strings and phase transitions in the early universe [121]. The detection of
this stochastic background is a challenge because the expected signal is both random and small.
Searches typically use cross-correlation of the data from separated detectors to extract the signal
from the uncorrelated noise.

Like stellar mass black holes, the merger of two supermassive black holes is also expected
to emit GW. Such events could occur in galaxy mergers. The frequency of the GW emitted is
too low to be detected by ground-based interferometric detectors, but the space mission LISA
should be able to detect them.

Sources of GW are rather diverse, and so are the types of signals expected. Transient sources
are usually classified into two categories, modelled and unmodelled. Modelled signals consist
mostly in compact binary mergers for which precise waveforms are known (in practice, this
concerns only systems with low eccentricity and mass ratio), and are searched via matched
filtering algorithms. To this date, in 2021, ∼ 50 black holes binary mergers have been detected
by the LIGO and Virgo detectors[18], as well as one binary neutron stars merger and one black
hole - neutron star merger. Unmodelled signals are more difficult to detect because of the lack
of precise waveform and the large parameter space. This is especially true for long lived signals,
for which the energy is spread over a longer duration. Conversely, detecting such signals, or
set meaningful upper limits on the GW energy emitted after, say, a core-collapse supernova,
would certainly allow to better constrain the models of emission and get better knowledge of this
sources.

To summarize, we can classify the potential sources of long-lived transient GW into four main
categories.

• Newly born neutron stars: either the remnant of a core-collapse supernova or a binary
neutron star merger, these objects are expected to be highly perturbated in the first minutes
of their existence and may radiate GW via several processes.

– Spin-flip instability, induced by a strong toroidal magnetic field, can drive the sym-
metry axis orthogonal to the rotation axis, making the young NS an optimal GW
emitter.

– Rotational instability (bar-mode) may develop in a rapidly spinning neutron star, and
induce deformation in the plane orthogonal to the rotation axis, leading to varying
quadrupole moment and GW emission.

– R-modes can grow in a rotating neutron star subject to the Chandrasekhar-Friedman-
Schutz instability and long-lasting GW at 4/3 the rotation frequency of the star.

• Accretion disk instabilities: newly formed black holes after a core-collapse supernova
are surrounded by an accretion disk. Several instabilities may provoke non-axisymmetric
deformations of the disk and generate GW.
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• Magnetar Giant Flares: MGFs are highly energetic burst of soft gamma-rays from
isolated magnetars, followed by long-lasting pulsating tails. Several oscillations modes
may be excited at the occasion, leading to potential GW emission.

• Eccentric compact binary coalescences: merger of compact binaries with low masses
and high eccentricities may produce a longer detectable GW signal. Waveforms from
eccentric system are less well modelized, making them a pertinent source for long-duration
burst searches.

This list is by no means exhaustive, as many processes remain poorly understood or even not
known at all. In particular, modelling the GW emission from neutron star oscillations, or accre-
tion disk instabilities, requires complex, multi-dimensional magneto-hydrodynamical simulations
that possess a lot of free parameters that need to be constrained. Hence, despite the computed
waveforms may depict the global morphology of the signal emitted, they are not precise enough
to be used to search for GW in the detectors’ data with matched filter algorithms, such as what is
done for circular compact binary coalescences. This motivates the need for unmodelled detection
algorithms that do not rely on the exact shape of the signal searched.
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Chapter 3

PySTAMPAS : a data analysis pipeline to
search for long-duration signals

The extremely weak amplitude of GW requires sophisticated data analysis techniques to extract
the signal from the detectors’ noise, even with the remarkable sensitivity of current generation
detectors. The field of GW data analysis is diverse, with a large variety of signals that require
different search algorithms. The core of my thesis has been the development of a GW data
analysis pipeline targeting unmodelled, long-lived transient signals. In this chapter, I first explain
the main concepts and definitions of statistical data analysis applied to GW detection [122], then
present the specific goals and challenges of unmodelled transient searches, and finally describe
the PySTAMPAS pipeline and characterize its performances.

3.1 Gravitational waves data analysis

3.1.1 Basic concepts and definitions

The goal of data analysis is to extract meaningful information - signal - from a given data set
which may also contain random fluctuations or unwanted information - noise. Of course, the
definition of signal and noise depends on the problem considered. In the case of GW detection,
the signal we want to extract is the detector’s response h(t) to a GW given by Eq. (1.88). This
signal is buried into the detector’s noise n(t), whose various components are described in Chapter
1. We assume that the GW response adds to the detector’s noise such that the detector’s strain
output is

s(t) = h(t) + n(t). (3.1)

Hypothesis testing

A given data set may or may not contain a signal, so we need a criterion to decide whether or
not a signal is present in the data. To use the language of statistics, it means choosing between
the null hypothesis H0: data do not contain a GW signal - and the alternative hypothesis H1:
data contain a GW signal. When making such a decision, two types of error are possible:

• false positive - claim that H1 is true whereas it is in fact H0;

• false negative - claim that H0 is true whereas it is in fact H1.

A false positive is called a type I error and a false negative a type II error, and their respective
probability are α and β. When we decide on the null hypothesis or the alternative hypothesis, we
want to compute these probabilities to estimate the significance of our claim. For GW searches,
we usually want to know the probability α of being a false positive, i.e avoid to wrongly claim
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a GW detection, and compute the associated probability β to miss a signal. In that context,
(1− β) is often called the detection efficiency of the search.

In order to decide between H0 and H1 for a given data set d, we will compute a detection
statistic Λ[d] ∈ R which measures the plausibility of H1 or H0: Λ[d] should increase with the
probability of H1 being true instead of H0, given the data d observed. By estimating the
distribution of Λ under the null hypothesis, i.e when the data contain only noise, we can assess
the false-alarm probability α of a candidate event.

3.1.2 Formulation of the problem

Let us consider a GW signal emitted by a point-like source whose direction in the sky is given
by the unit vector Ω̂. The signal is described by its two polarization modes h+(t) and h×(t) in
the equatorial coordinates1. The detector’s response h(t) is

h(t) = F+(t, Ω̂)h+(t) + F×(t, Ω̂)h×(t), (3.2)

where F+(t, Ω̂) and F×(t, Ω̂) are the antenna factors that weight the polarizations mode accord-
ing to the direction of the source, as explained in section 1.3.4. Our goal is to build a detection
statistic Λ[s(t)] that maximizes the efficiency of the search for a given false-alarm probability.

Optimal case: matched filtering

In the optimal case, the signal h(t) is perfectly known, and the noise is a zero-mean Gaussian
random process that is fully described by its one-sided power spectral density (PSD) S(f), which
is defined as twice expectation value of the squared modulus of the Fourier transform of the noise,
i.e

S(f) = 2〈|ñ(f)|2〉. (3.3)

In this case, the Neyman-Pearson lemma states that there exists an optimal detection statistic,
the likelihood ratio:

Λ[s(t)] =
L (H1|s(t))
L (H0|s(t))

. (3.4)

The likelihood L (H|s(t)) of an hypothesis H given the data s(t) observed is proportional to the
conditional probability P (s(t)|H) of observing s(t) knowing that H is true. Therefore,

Λ[s(t)] =
P (s(t)|H1)

P (s(t)|H0)
. (3.5)

Under the null hypothesis, n(t) = s(t), while under the alternative hypothesis, n(t) = s(t)−h(t).
Assuming n(t) is a Gaussian random variable,

P (n(t)|H1) = P (n(t)|H0) ∝ exp

[
−1

2

∫ +∞

−∞

|ñ(f)|2

S(f)

]
. (3.6)

For convenience and readability we can define the scalar product

(a, b) ≡
∫ +∞

−∞

ã?(f)b̃(f)

S(f)
, (3.7)

such that finally the likelihood ratio writes

Λ[s(t)] =
e−(s−h,s−h)/2

e−(s,s)/2
. (3.8)

1The effect of the polarization angle ψ is implicitly encoded in the definition of h+(t) and h×(t) so the antenna
factors depend only on the sky position.

44



In practice, the probability distribution P (s(t)|H1) is not perfectly known. The signal h(t)
may depend on several parameters (for example, for a compact binary coalescence, masses,
spins, eccentricity, distance, inclination, starting time, etc), so the likelihood ratio is maximized
over the whole parameter space. This process can rapidly become computationally expensive,
which restricts the applicability of matched filtering to signals which are well modelized by a
small number of parameters, such as compact binary coalescence with circular orbits and aligned
spins.

Unmodelled searches

For most of the potential long-lived signals presented in Chapter 2, the models are not precise
enough to use matched filtering. The lack of knowledge and the diversity of the potential sources
require more agnostic detection algorithms that make minimal assumptions on the parameters
of the signal searched. To this end, we need to build an ad hoc detection statistic. Several
detection algorithms have been developed to search for unmodelled GW short-duration signals
(often called bursts). Most of them rely on an excess power statistic computed over a time-
frequency representation of the data, and a network of detectors. In the latter case, an event
must be seen in several detectors coincidentally to be considered a candidate signal.

3.2 Description of the search method

In the early 2010’s, STAMP (Stochastic Transient Analysis Multi-detector Pipeline) was developed
to search for long-lived, unmodelled GW signals emitted by known GRBs [123]. The search relied
on an excess cross-power statistic that is computed by cross-correlating data streams from two
different detectors. Later on, a modified version, STAMP-AS, was implemented to perform all-sky
/ all-time searches [124]. This type of search is performed over a whole observing run (months
or year-long) and without assumption on the sky location of the source.

Unmodelled all-sky / all-time searches are computationally expensive because of the vast
amount of data to analyze and the large parameter space to cover. Consequently, STAMP-AS
has several limitations that makes it suboptimal. Notably, it has to sacrifice sensitivity in order
to keep the computing speed reasonable. When I inherited the pipeline at the beginning of
my thesis, I was charged with the development of new features to address these limitations.
Because the STAMP-AS code had become difficult to maintain and modify over time, I decided
to re-write the software from scratch and developed the PySTAMPAS pipeline. In this section, I
describe the search algorithm that is used in PySTAMPAS. It is still based on the STAMP formalism
- cross-correlation of two detectors data streams, but implements several new features designed
to reduce computional cost and increase sensitivity.

3.2.1 Time-frequency analysis

Principle

We are looking for signals of duration T ∼ 101− 103 s whose frequency lies in the sensitive band
of the detectors, i.e 20 Hz . f . 2000 Hz. The unknown duration and frequency evolution leads
us to consider time-frequency analysis.

A signal s(t) can be represented in the frequency domain by its Fourier transform

s̃(f) =

∫ +∞

−∞
s(t)e−2iπftdt. (3.9)

This representation would be appropriate if we searched for purely monochromatic signals, or sig-
nals of very long duration (orders of magnitude longer than the observing time). A time-frequency
representation offers a compromise between time and frequency resolution. The principle is to
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divide the total observing time Tobs into N smaller segments of duration T , and compute a
frequency representation of the data for each of the segments. In general, the signal can be de-
composed on any set of orthogonal, square-integrable functions. This is the paradigm of wavelet
decomposition.

The most simple time-frequency representation is given by the short-term Fourier transform.
In this case, the signal in each segment is multiplied by a window function that is non zero only
in the short segment of time considered, then the Fourier transform is computed. Formally, we
can write

s̃T (t; f) =

∫ +∞

−∞
wT (t′ − t) s(t′)e−2iπft′dt′. (3.10)

Here, and from now on, we will use the notation t; to denote the time segment start time. A
standard choice of window function w(t) is the Hann window:

w(t) =

{
2 cos2 (πt/T + π/2) if 0 ≤ t < T

0 otherwise
(3.11)

(the factor 2 comes from the normalization of the integral). In practice, the output strain of
GW detectors is sampled at a frequency fs. Each segment of length T contains nT = Tfs data
samples sk(t; ) = s(t+ k/fs). We will therefore compute the discrete Fourier transform (DFT)

s̃T (t; fj) =

nT−1∑
k=0

w(kT/nT ) sk(t; )e−2iπjk/nT . (3.12)

The DFT gives access to frequencies between −fs/2 and fs/2 with a frequency resolution
df = fs/nT = 1/T . Since the input signal is real-valued, we can consider only the values of
fj = jfs/nT between 0 and fs/2.

Additionally, we consider time segments that overlap by 50% in order not to lose information
at the extremities of the Hann window, so the true number of time segments is N = 2Tobs/T .
The output of the process is then a set of N × nT /2 (complex) values of s̃T (t; fj). It is useful
to represent them in a 2-dimensional time-frequency map (tf -map) that shows the frequency
evolution of the signal as a function of time.

PSD estimation

In our quest to build a detection statistic for unmodelled signals, we need an estimation of the
noise PSD S(f). This task is complicated in the case of GW detectors for two main reasons.

1. The actual noise from GW detectors is not purely Gaussian. It contains a lot of non-
stationary features such as glitches or wandering spectral lines. These noise artifacts cannot
be easily modelized, and may be mistaken for a signal.

2. It is not possible to separate a priori a signal from the noise, since we do not know the exact
waveform of the signal searched. If the PSD is estimated on a sample of data that contains
a signal, the latter may be factored into the PSD and not be accurately reconstructed.

In other words, the risks are to mistake a noise transient for a signal, and conversely, i.e to
commit a type I or type II error. Because of those difficulties, there is not an optimal method
to estimate the PSD: depending on the morphology of the signal searched and the type of noise
artifacts present in the data, different methods may be appropriate.

Recall that the one-sided PSD S(f) is twice the expectation value of the squared modulus of
the Fourier transform of the noise:

S(f) = 2 〈|ñ(f)|2〉 , for f > 0. (3.13)
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For a time-frequency pixel s̃(t; f), we can write

〈|s̃(t; f)|2〉 = 〈|h̃(t; f) + ñ(t; f)|2〉

= 〈|h̃(t; f)|2〉+
1

2
S(t; f),

(3.14)

assuming that signal and noise are uncorrelated (〈h̃?(t; f) ñ(t; f)〉 = 0). Therefore, we need a
way to estimate

1

2
S(t; f) = 〈|s̃(t; f)|2〉 − 〈|h̃(t; f)|2〉. (3.15)

It is clear that we have to make (at least implicitly) an assumption on the nature of the signal
h̃(t; f) to estimate S(f). In PySTAMPAS, I implemented two PSD estimation methods adapted to
different types of signals.

The first one, inherited from STAMP, consists of taking the average of |s̃(t; f)|2 over a given
number nt of neighbouring time segments. Given that time segments have 50% overlap and a
Hann window is applied, this method is equivalent to the well-known Welch’s method [125]. We
will note

P ta(t; f) = 2 |s̃(t; f)|2 (3.16)

where the overline denotes the average over the nt adjacent time segments. The implicit assump-
tions of this method are

1. the noise is stationary over the period of time considered;

2. no signal is present in the adjacent time segments.

The stationary assumption is valid in most cases for the Gaussian component of the noise. The
PSD may vary over time, but usually over time periods much longer than the ones considered
in transient searches, except at low frequency (< 100 Hz), where anthropogenic noise, seismic
noise and scattered light can deter the detector’s sensitivity. Besides, short glitches that are
often present in the data are not taken into account by this method and therefore appear as
signal. Regarding the second assumption, it is true for most signals excepted monochromatic or
quasi-monochromatic signals. Such signals will be factored in the PSD if their duration is greater
than the segment of time over which the PSD is averaged, and therefore not be reconstructed.

With these limitations in mind, I implemented another PSD estimation method whose char-
acteristics are opposite to the ones of the time-average method. The average is replaced by the
median, which is more robust against extreme values. Besides, instead of considering neigh-
bouring time segments, we consider neighbouring frequency bins. This provides two advantages.
Short glitches, which usually have a large bandwidth, are now factored in the PSD and are not
reconstructed as signal. On the contrary, monochromatic signals are much better reconstructed.
The main drawback of this method is that spectral lines that are present in the detector’s noise
are also enhanced. Additionally, signals covering wide-ranging frequency band are poorly recon-
structed.

The optimal choice of a PSD estimation method depends on the type of signals targeted.
PySTAMPAS implements these two complementary methods that may be adapted to a particular
search. We show in Figure 3.1 that both methods provide an accurate estimation of the PSD,
excepted that spectral lines are less well reconstructed with the frequency-median method. Once
the PSD P (t; f) is estimated - using either method - we compute the whitened statistic

ỹ(t; f) =
s̃(t; f)√
P (t; f)

(3.17)

which is the basic pixel statistic for our analysis. Assuming that the noise is Gaussian, the
distribution of |ỹ(t; f)|2 should follow a χ2 law with two degrees of freedom. We verify this result
in Figure 3.2.
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Figure 3.1: Estimation of the PSD for a 100 s long segment of LIGO H1 data from the O2
observing run using the two different methods. The 10 times averaged square modulus of the
Fourier transform is shown in blue for reference.

Figure 3.2: Distribution of |ỹ(t; f)|2 for a tf -map built from colored Gaussian noise. The distri-
bution matches closely a χ2 distribution with two degrees of freedom and a standard deviation
σ = 0.5.

48



y = Max (y
1
, y

2
)

y
1

y
2

y

Figure 3.3: Illustration of the method used to combine tf -maps of different resolutions into a
single tf -map.

Multi-resolution

We saw that the time and frequency resolutions of tf -maps are linked: df = 1/T . High temporal
resolution leads to low frequency resolution and conversely. Therefore, the question arises of the
choice of the time-frequency resolution. Depending on the duration and spectral evolution of the
signal searched, one would like to favor either a good time-resolution (small T , large df) or the
contrary. To put it more quantitatively, if a GW signal has a typical frequency evolution rate
∂f/∂t, a good choice of resolution would be one such that df/T ∼ ∂f/∂t, so T ∼ (∂f/∂t)−1/2.
The STAMP pipeline uses a time-frequency resolution of 1 s × 1 Hz as a compromise. In order to
improve signal reconstruction, I implemented a multi-resolution tf -map which combines several
time-frequency resolutions.

The algorithm used to build multi-resolution tf -maps is explained in Figure 3.3. To begin
with, we choose a set of resolutions {Ti×dfi} and build a tf -map of the data for each resolution.
We then define virtual pixels of dimension minTi×min dfi. Each virtual pixel is covered by one
pixel of each resolution. We assign to it the value of ỹ(t; f) that corresponds to the largest value
of |ỹ(t; f)| among each resolution. An example of a multi-resolution tf -map for a BNS (BNS)
merger simulated signal is shown in Figure 3.4. We can see how the first part of the signal is
better reconstructed with low time-resolution pixels, while on the contrary the chirping part is
reconstructed with high time-resolution pixels. The use of multi-resolution increases the number
of pixels in a tf -map, and consequently the computing time needed to build the maps. Yet, this
improvement is allowed by the gains in computational cost made by rewriting the pipeline.
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Figure 3.4: An example of a multi-resolution tf -map built from a time series made of colored
Gaussian noise and a simulated GW signal from a BNS merger. The map combines 6 time-
frequency resolutions (0.5− 1− 2− 4− 8− 16 s). PSD is estimated using the frequency-median
method with a window of 20 Hz.

3.2.2 Clustering algorithm

The typical expected signature of a long-lived GW signal in a tf -map is a cluster of excess power
pixels, as can be seen in Figure 3.4. One of the main challenges of the search is to identify and
regroup the pixels that contain the signal to reconstruct it accurately. This step is known as
clustering.

Different strategies of clustering have been developed for long-duration searches, that can
be divided into two categories. Seed-based clustering algorithms identify excess power pixels in
a tf -map and try to group them by proximity. On the contrary, seedless algorithms make the
assumption that the signal has a certain shape in a tf -map (e.g a family of curves) and try to
fit it accordingly. These two strategies are complementary.

Burstegard

The burstegard clustering algorithm was initially developed for STAMP to extract signals of
arbitrary shape in tf -maps [126]. It consists in the following steps.

1. Identify pixels with |ỹ(t; f)| above a given threshold in the map.

2. While pixels not belonging to any cluster remain:

(a) select one pixel not belonging to any cluster as the cluster’s seed. Define a clustering
area around that seed.

(b) Do:

i. Add pixels that fall within the clustering area to the cluster.
ii. Select another pixel of the cluster as the active seed, and continue to aggregate

pixels.

until all pixels in the cluster have been the active seed once and the cluster cannot
grow anymore.
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Figure 3.5: Illustration of the burstegard algorithm for a single cluster.

(c) If the number of pixels is greater than a given minimal number, save the cluster.

An illustration of the clustering process is shown in Figure 3.5. The algorithm has 4 free param-
eters:

• the threshold on the value of |ỹ(t; f)|;

• the clustering radii in the time and frequency directions;

• the minimal number of pixels per cluster.

These parameters can be tuned in order to be more or less sensitive to signal and noise fluctua-
tions.

Stochtrack

Seedless algorithms have been developed following the idea that most long-lived GW signals
have a track-like shape in a tf -map that can be fitted by a family of curves (e.g quadratic Bezier
curves) [127]. The principle is to integrate the value of |ỹ(t; f)| along all the curves that can be
drawn in the tf -map. The algorithm is the following:

1. try a random curve:

(a) Select three random points in the tf -map and build the associated Bezier curve.

(b) Collect all pixels that overlap the curve. They form a cluster Γ.

(c) Compute the total energy E =
∑
t;f∈Γ

|ỹI(t; f)|2 of the cluster.

51



Figure 3.6: BNS merger signal from Figure 3.4 reconstructed with burstegard using a multi-
resolution tf -map (top panel) and a single resolution tf -map of 1 s× 1 Hz (bottom panel). The
use of multi-resolution allows to better reconstruct the different parts of the signal, with higher
frequency resolution at the beginning and higher time-resolution at the end.

2. Repeat the last step Ntries times and keep the cluster with the largest energy.

One of the main advantages of seedless algorithms over seed-based one is that they are not
sensitive to many noise features. In addition, since no threshold is set on the energy of the
pixels, they can be sensitive to long tracks of sub-threshold pixels that would not be seen by
burstegard. However, by requiring signals to have a specific shape, stochtrack makes an
assumption on the nature of the signal searched. Consequently, it is sensitive to a narrower
range of signals than burstegard. More practically, the number of tracks to test in order to
successfuly reconstruct a signal is Ntries ∼ 107, which makes this algorithm more expensive.
Also, it is possible to parametrize the type of curve tested to be more or less sensitive to different
types of signal, as it is done for searches for GW emitted by magnetars [128].

3.2.3 Coherent analysis

So far, our detection method consists in building tf -maps of the whitened statistic ỹ(t; f) from
a given detector, then running a clustering algorithm to extract groups of pixels that form
candidate GW events. In theory it would be possible to stop here, and build a detection statistic
that reflects the significance of each cluster using only single-detector data. However this method
would have serious limitations. When the signal searched is not known a priori, as it is the case
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for un-modeled searches, one can only rely on the clusters’ energy to distinguish signal from noise.
Yet, real data from GW detectors feature all kinds of noise transients that can generate high
energy clusters, making the method inapplicable in practice. Besides, to estimate the distribution
of background noise events, one needs to analyze samples of data that do not contain any signal
for sure. These constraints lead us to test the coherence of clusters in different detector data
streams.

Coherent analysis consist in combining the data streams of several detectors to better dis-
criminate signal from noise. Indeed, a true GW signal would theoretically induce a response in
every detector that is observing at the same time (weighted by the detector’s antenna factors
and intrinsic sensitivity, and modulo the difference in arrival times), while noise from different
detectors can safely be considered uncorrelated2. These properties allow to construct a much
more robust detection statistic and to address the limitations of single-detector searches.

Estimator of the GW strain power

To begin with, let us consider a pair of detectors I and J and a GW signal (h+(t), h×(t)) whose
source’s direction is given by the unit vector Ω̂. The responses induced in the detectors are

h̃I(t; f) =
∑
A

FAI (t; Ω̂) h̃A(t; f)

h̃J(t; f) =
∑
A

FAI (t; Ω̂) h̃A(t; f) e2iπfΩ̂·∆~xIJ/c,
(3.18)

where the FAI are the antenna factors corresponding to each of the two polarization states
A ∈ {+,×}. The phase factor e2iπfΩ̂·∆~xIJ/c in detector J takes in consideration the delay of
arrival of the signal τ = Ω̂ ·∆~xIJ/c with respect to the other detector, as explained in section
1.3.4. This time delay translates into a phase in the frequency domain3. Assuming that noise
and signal are uncorrelated, the expectation value of the correlation product between the two
detectors’ output is

〈s̃?I(t; f)s̃J(t; f)〉 = 〈h̃?I(t; f)h̃J(t; f)〉

=
∑
A,A′

〈h̃?A(t; f)h̃A′(t; f)〉FAI (t; Ω̂)FA
′

J (t; Ω̂)e2iπfτ . (3.19)

To simplify this expression, we will assume that the GW is unpolarized, meaning that

〈h̃?A(t; f)h̃A′(t; f)〉 =
1

2
δAA′H̃(t; f). (3.20)

The quantity H̃(t; f) is the unpolarized GW strain power spectrum that we want to estimate
from the detectors’ output. The assumption that the GW is unpolarized is not trivial. For
example, the GW emission of a rotating non-axisymmetric ellipsoid or of a binary system are
polarized, as we have seen in Chapter 1. Nevertheless, we will show that polarized signals
are still well reconstructed under that approximation, because of the large degeneracy between
the parameters. Furthermore, it allows to drop the polarization angle ψ and the inclination of
the source ι from the computation of the estimator, which reduces considerably the size of the
parameter space.

Under this simplification, following [123], we get

〈s̃?I(t; f)s̃J(t; f)〉 = εIJ(t; f, Ω̂)H̃(t; f)e2iπfτ , (3.21)
2Global electromagnetic fields in the Earth’s upper atmosphere could potentially be a source of correlated

noise between spatially separated detectors, but they are far too weak to impact the type of search described in
this work [129].

3Typical values of the time delay range in ∼ 10ms, which is far shorter than the duration T of the time
segments. Therefore the effect is seen only in the frequency domain, and not in the time domain.
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with
εIJ(t; Ω̂) =

1

2

(
F+
I (t; Ω̂)F+

J (t; Ω̂) + F×I (t; Ω̂)F×J (t; Ω̂)
)
. (3.22)

Therefore, the quantity

Ŷ (t; f, Ω̂) = Re

[
1

εIJ(t; Ω̂)
e−2πifτ s̃?I(t; f) s̃J(t; f)

]
(3.23)

is an estimator for H̃(t; f):
〈Ŷ (t; f, Ω̂)〉 = H̃(t; f) (3.24)

Coherent SNR of a single pixel

It can be shown (see [123], appendix B) that an estimator for the variance of Ŷ (t; f, Ω̂) is

σ̂2
Y (t; f, Ω̂) =

1

|εIJ(t; f, Ω̂)|2
PI(t; f)PJ(t; f). (3.25)

This allows us to define the coherent signal-to-noise ratio (SNR) of a single time-frequency pixel
for the detector pair IJ :

SNRIJ(t; f, Ω̂) =
Ŷ (t; f, Ω̂)

σ̂Y (t; f, Ω̂)
= Re

[
2 ỹ?I (t; f)ỹJ(t; f)e−2πifτ

]
. (3.26)

Note that this expression depends only on the whitened single-detector statistics ỹI(t; f) and the
time delay τ of arrival of the GW between the detectors.

In the general case of a network of N detectors, there are N(N − 1)/2 pairs over which to
perform cross-correlation. We then define the total SNR

SNR(t; f, Ω̂) =
N∑
I=1

∑
J>I

SNRIJ(t; f, Ω̂). (3.27)

Coherent SNR of a cluster of pixels

In the previous stage of the analysis, clusters of pixels have been extracted from single-detector
tf -maps. A cluster may be the signature of a true GW signal, or just corresponds to noise
fluctuations in the detector. The goal is to build a detection statistic for a whole cluster to
discriminate both cases, using the coherent SNR of pixels.

The coherent SNR given by Eq. (3.26) depends on the sky location of the source via the
delay of arrival between the detectors. Since the primary focus of the pipeline is to perform
all-sky searches, we need to consider all possible sky positions. Even when performing a targeted
search, for example for a GW counterpart around a GRB, the sky location may not be precisely
constrained, or it may be given within some error box. It is therefore interesting to work out
how the coherent SNR is affected by an error in the sky location. For the sake of simplicity we
will restrain ourselves to the case of a 2 detectors network for which there is only one baseline
for cross-correlation.

We note Ω̂0 the true direction to the source, such that

SNR(t; f, Ω̂0) = 2 |ỹ?I (t; f)ỹJ(t; f)|. (3.28)

An error d~Ω on the direction induces an error dτ = d~Ω ·∆~xIJ/c on the time delay. Therefore,

SNR(t; f, Ω̂0 + d~Ω) = cos(2πfdτ) SNR(t; f, Ω̂0), (3.29)
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so the relative loss4 of SNR is ε = cos(2πfdτ). We can then determine the maximal error on the
delay dτmax such that the relative loss is less than ε:

dτmax =
arccos ε

2πf
. (3.30)

The angular maximal resolution dΩmax is

dΩmax =
cdτmax

∆xIJ
=
c arccos ε

2πf∆xIJ
(3.31)

when d~Ω is parallel to ∆~xIJ . For the two LIGO detectors, f ∼ 100 Hz and ε = 0.95, we get
dΩmax ∼ 120 arcminute.

In an all-sky search, one needs to consider all sky positions (which reduces to the delay τ for
a 2 detectors network) in order to maximize the SNR of the signal. From the previous result,
we have to scan all the possible values of τ with a bin size dτmax to constrain the SNR loss to
less than ε. Of course, such maximization does not make sense for a single pixel: we would just
find the value of τ that compensates exactly the dephasing between ỹI(t; f) and ỹJ(t; f). It is
necessary to consider a cluster of several pixels to break the degeneracy. In practice, for a cluster
Γ, we scan the values of τ to maximize the summed SNR

SNRΓ =
∑

(t,f)∈Γ

SNR(t; f, τ). (3.32)

Note that if the cluster is spread over several frequency bins, the value of dτmax is given by the
maximal frequency fmax of the cluster’s pixels.

From a computational point of view, we are interested in the number Nτ of values of τ
to test for a given value of ε. For a pair of detectors IJ , possible values of τ range between
−∆xIJ/c and ∆xIJ/c. Therefore, Nτ ' 2∆xIJ/(cdτmax). However, it is possible to significantly
reduce that number. Indeed, we are considering a phase factor, such that ε = cos(2πfdτ) =
cos(2πf(dτ + 1/f)). As a consequence, it is sufficient to test time delays in the interval [0; 1/f ]
instead of [−∆xIJ/c,∆xIJ/c] to get the correct phase factor. In the case of a broadband cluster
with pixel frequencies between fmin and fmax, this interval is the largest for f = fmin, so we
need to test time delay values between 0 and 1/fmin by steps of dτmax ' arccos ε

2πfmax
. Finally, Nτ is

reduced to

Nτ '
2π

arccos ε

fmax
fmin

, (3.33)

which remains rather small in practice (less than a few hundred). Since the computations are
done only over the small subset of pixels that constitute the cluster, it is possible to test hundreds
of time delays in a reasonable amount of time and therefore limit the loss of SNR to ε = 0.95 for
all type of signal.

The process is the same for a network of N > 2 detectors, excepted that we cannot rely on
the degeneracy between Ω̂ and τ anymore because there are several baselines. We maximize the
total summed SNR

SNRΓ =

N∑
I=1

∑
J>I

∑
(t,f)∈Γ

SNRIJ(t; f, Ω̂). (3.34)

over NΩ sky positions uniformly distributed over the sky. We will show in section 3.4 that it is
still possible to reconstruct the signal accurately in that case with ∼ 100 sky positions tested.

4Strictly speaking the SNR loss is 1− ε, but for convenience we use ε to quantify the SNR loss.
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Detection statistic

Once we have found the sky position that maximizes SNRΓ, we can finally build a detection
statistic to test the hypothesis of a GW signal versus the null hypothesis. In this respect, SNRΓ

would be a natural candidate, since it is proportional to the signal’s strength H̃2(t; f). It is in
fact the one that is used in STAMP-AS and in the targeted version of STAMP.

However, the hierarchical method used in PySTAMPAS applied on real GW data tend to bias
the selection of triggers because of the presence of noise outliers in one detector. When combined
with noise fluctuation in the second detector, such triggers may have large SNRΓ values despite
being incoherent. This problem is exacerbated by the fact that we now test many more sky
positions than with STAMP-AS, which may mechanically lead to larger value of SNRΓ for noise
triggers. This problem is not critical for seedless clustering, since noise features usually do not
resemble Bezier curves and are consequently dismissed at the first stage of the analysis, but it is
when using burstegard which extracts any cluster of excess power pixels no matter its spectral
shape.

To counter this effect, we build an ad hoc detection statistic that aims to lower the significance
of incoherent noise triggers. For each detector, we define the quantity

EresI ≡
∑

(t,f)∈Γ

|SNR(t; f)− |ỹI(t; f)|2|. (3.35)

It can be seen as the residual energy that is left in the detector’s data after subtracting the sum
of |ỹI(t; f)|2 to the coherent SNR, hence the "incoherent" component of the trigger.

If the trigger corresponds to a coherent GW signal, reconstructed with the right time delay,
EresI is expected to be much smaller than both SNRΓ and the auto-power energy EI

EI =
∑

(t,f)∈Γ

|ỹI(t; f)|2. (3.36)

In the ideal case of two identical detector with the same alignment and sensitivity, EresI should
even tend to 0 for a true signal. On the contrary, for a noise trigger due to a noise feature in
one detector, EresJ in the second detector has no reason to be small. It should be at the order of
magnitude of SNRΓ. We can build the discriminant quantity

Λ =
SNRΓ

SNRΓ +
∑
I

EresI
EI

. (3.37)

which should tend to 1 for a true GW signal. Since a detection statistic has to be monotone
with the significance of the signal, we finally define

pΛ = − log(|1− Λ|) (3.38)

to be the detection statistic for PySTAMPAS.

Summary

PySTAMPAS implements an enhanced version of the STAMP algorithm [123] which consists in com-
puting a detection statistic based on the cross-correlated data streams between two detectors.
The workflow of the analysis is presented in Figure 3.7. New features are implemented to im-
prove signal reconstruction, such as the use of multi-resolution tf -maps and another method
to estimate the PSD to better reconstruct quasi-monochromatic signals. In the next section, I
describe the practical implementation of the pipeline and explain how it has been optimized for
all-sky / all-time searches.
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STAGE 1 – Incoherent clustering

STAGE 2 – Coherent analysis

Figure 3.7: Workflow of the hierarchical search algorithm implemented in PySTAMPAS. In the
first stage, a clustering algorithm is run on time-frequency maps built from single detector data
stream. In the second stage, clusters are cross-correlated between detectors to build a coherent
detection statistic efficient at detecting coherent excess of energy in a network of GW detectors.

3.3 Implementation of the pipeline

The implementation of the search method into an end to end data analysis software requires to
manage several elements: data input/output, pre-processing of the data, allocation of computing
resources, background estimation, post-processing of the final outputs, data quality information,
user friendly interface, and many more. The bottlenecks of the code in term of computing
resources have to be identified and optimized, and each feature must be tested and debugged.
Hence the name pipeline for such a piece of software.

3.3.1 Motivation and overview

STAMP has been originally designed for targeted searches in which the sky position of the potential
source is known. This allows to directly generate coherent tf -maps, and run the clustering
algorithm only once on these tf -maps. To generalize the method to the case where the position
of the source is unknown, STAMP-AS considers different sky positions and runs the whole process
for each one. This is particularly costly because the clustering step must be performed again for
each position tested, and the correlation product computed for the whole tf -map. In addition,
the background distribution is estimated by time-shifting the data from one detector with respect
to the other. For each time-slide, the whole process must be repeated. After few analyses of
Advanced LIGO and Advanced Virgo data it became rather obvious that the computational cost
is a limitation of STAMP-AS. It can take several months to search for a GW signal simulating
a rather size-limited background dataset (∼ 50 years of background) with only 5 sky positions
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tested, leading to a certain loss of sensitivity.
To cope with the computational cost of background estimation, Thrane and Coughlin pro-

posed a hierarchical method [130] that consists in running the clustering algorithm on single-
detector tf -maps before computing the coherent statistic. This method was successfully applied
to seedless clustering, allowing for rapid background estimation without sacrificing too much
sensitivity. It is this method that is implemented in PySTAMPAS with seed-based clustering too.

In order to address the STAMP-AS issues and implement all the new features I decided to
rewrite the pipeline from scratch implementing the method presented in section 3.2. As its name
suggests, PySTAMPAS is written in Python. This choice of programming language has been driven
by its simplicity and readability, and the fact that it is widely used within the LIGO-Virgo
community and in general. The main drawback of python is its relative slowness with respect
to compiled languages such as C++ and Fortran. However, there are many C-based libraries
dedicated to scientific calculation and data analysis that allow to overcome this obstacle.

The core of PySTAMPAS is written in Python (3.6+) and makes extensive use of optimized
scientific computing packages such as Numpy and Scipy, as well as the more GW-oriented package
GWpy [131]. Some bottlenecks of the code are also written in Cython when it is needed to reach
the performance of a compiled language.

3.3.2 Data pre-processing

Segments and windows

Data from GW detectors are available under the form of time series of the detector’s strain output
s(t) sampled at frequency fs (16384Hz for Advanced LIGO and 20 kHz for Advanced Virgo).
Time series are discontinuous. Some time periods are missing because of bad data quality, or just
because the interferometers are not "locked". For each detector we get a list of time segments
for which data are available.

Since we perform a coherent search over a network of detectors, we consider only segments
of data that are coincident in every detector. Each coincident segment is then divided into
windows of duration Twin ∼ 500 s that overlap by 50%. Overlapping lowers the probability that
a signal is split between two windows. Each window is then processed independently, allowing
for distributed computing.

Frequency band

The PSD of ground based detectors increases steeply below∼ 20Hz because it is difficult to design
efficient seismic attenuators in low frequency regime. This sets a lower limit to the frequency
band analyzed. To suppress energy at lower frequencies, we apply a high-pass filter to the data
with a frequency cutoff corresponding to the lower bound of the frequency band analyzed (the
exact value depends on the characteristics of the data that can vary for each observing run, it is
usually between 20− 30 Hz.)

The upper limit of the frequency band can be chosen more freely, and tuned according to the
expected maximal frequency of the type of signals searched. It is generally set around 2000 Hz
for long-duration all-sky searches [124, 132, 133]. Since the higher frequency content does not
interest us, we resample the time series to fs = 4096 Hz.

In a real search, other methods of data conditioning may be applied to deal with non-Gaussian
features of the noise. Since these are specific to the characteristics of each observing run, they
will be discussed in the next chapters when we will discuss real data searches.

Time-frequency maps

Once the time series for a given window is correctly conditioned, time-frequency maps are built
following the procedure described in section 3.2. To avoid any edge effect and ensure phase
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continuity between consecutive windows, a buffer of a few seconds of data (typically 4 s) is taken
on both sides of each window. The maps are either generated in advanced for the whole run and
saved on disk, or built on-the-fly when requested by the analysis.

3.3.3 Coincident analysis

The coincident analysis is the step where true GW signals are searched in the data. The clustering
algorithm is run on single detector tf -maps for each window of all detectors, and extracts a set
of cluster ΓI which is the result of cross-correlation computed following Eq. (3.34). Clusters are
saved as tf -maps where only the selected pixels have non-zero value.

Note that in practice, the coincident analysis is performed last. In order to remain as ignorant
as possible regarding the potential presence of a GW signal in the data, and to avoid biasing the
analysis, we first analyze the background distribution and estimate the sensitivity of the search.

3.3.4 Background estimation

The statistical significance of a given trigger of statistic pΛ is described by its false-alarm prob-
ability or p-value, which is the probability of observing at least one noise trigger with statistic
equal or higher than pΛ during the analysis5.

To estimate this probability, we need to know the false-alarm rate (FAR), that is the rate of
noise triggers. Assuming noise triggers are mutually independent, they should follow a Poisson
distribution, so the false-alarm probability (FAP) associated to a given value of pΛ is

FAP(pΛ) = 1− e−FAR(pΛ)Tobs (3.39)

where FAR(pΛ) is the rate of noise triggers with statistic equal or higher than pΛ and Tobs is the
duration of the observation. If the noise was effectively Gaussian and stationary, the simplest
way to estimate the distribution of background triggers would be to perform a Monte Carlo study
over randomly generated Gaussian noise in each detector. However, for a real GW search, this
would not work becuse of the contribution of the numerous noise artifacts in the data. That
is why we need to empirically estimate the FAR by analyzing real detectors’ data that do not
contain GW signal.

It is not possible to remove the GW signal a priori from the data, since we do not know its
waveform and when it arrives. However, since the analysis relies on the coherence of the data
between detectors, it is possible to artificially screen the signal by shifting the data between
the detectors by an amount of time greater than the estimated coherence time of a GW (and
greater than the light time of flight between the detectors). Hence, even if a GW signal is present
in the data, it will always be cross-correlated with noise in the other detectors, so the trigger
will not have a high value of pΛ. Commonly used in GW searches, the time-slides method [134]
assumes data from at least 2 detectors are searched using coherence or a simple time-coincidence.
By performing multiple time-slides with different time-shifts, it is possible to simulate several
realisations of the noise and to reach lower values of FAR. This is a good approximation in the
limit of low signal event counts.

The workflow of a background analysis for an all-sky search is represented in Figure 3.8. The
data set is composed of several coincident segments of data that account for a total duration
Tobs. It is splitted into Nwin windows of duration Twin that overlap by 50%, such that Tobs =
Twin(Nwin + 1)/2. A lag consists in shifting the data by a given amount of windows: at the nth
lag, window i from detector I is matched with detector J window i+2n+oJ , detector K window
i + 2(n + 1) + oK and so on. The values oJ and oK are integer numbers that allow to define
an offset for each detector, in order to ensure that coincident data are never processed during

5The p-value cannot be interpreted as the probability P (H0|pΛ) of the trigger being a noise trigger. It is
rather the likelihood of obtaining pΛ under the null hypothesis, i.e P (pΛ|H0).
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Figure 3.8: Illustration of the way PySTAMPAS performs time-slides for the lag n = 1, with offsets
oJ = 1 and oK = 2. In this example, a GW signal is present in window i in all detectors. The
cluster extracted from window i in detector I is matched with pixels from window i+3 in detector
J and i + 4 in detector K, ensuring that the signal is not coherent. In addition, 3 minilags are
performed for this cluster. For the sake of clarity, overlap between maps is not represented here.

background estimation. Lags are done circularly over the whole run (index of lag windows is
computed modulo Nwin), so the maximal number of lags Nlags that can be done is Nwin/2.

In practice, clusters of pixels have already been extracted and saved prior to shifting the
data (the interest of that method is precisely to avoid running the clustering step again for each
lag). For a given lag, we select the clusters that have been extracted from each detector in the
windows selected (i.e window i for detector I, window i + 2n + oJ for detector J and so on),
and build a coherent trigger for each of them. To further increase the amount of background
simulated, we add the possibility to do minilags. When a cluster is processed, a minilag consists
in shifting circularly the time axis of the tf -maps in the other detectors by an amount of time
greater than the expected coherence time of a signal. For example, doing minilags of 16 s over
512 s tf -maps allows to multiply the amount of background computed by 32.

By performing Nlags lags over a full observing run of duration Tobs, and n minilags per lag,
we simulate an equivalent amount of background

Tbkg = TobsNlagsn. (3.40)

The false-alarm rate for a given value p?Λ of pΛ is the number of background triggers that have
pΛ ≥ p?Λ, divided by the total background time Tbkg:

FAR(p?Λ) =
N(pΛ ≥ p?Λ)

Tbkg
. (3.41)
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The time-slides method is very useful, since it allows to simulate a vast amount of background
data while preserving the non-Gaussian features of the noise. It has however some limitations.
In practice, the assumption that noise triggers follow a Poisson distribution may not be true,
precisely because of these non-Gaussian features. The rate of noise triggers may vary with time
because of instrumental and environmental effects, as we will see in the next chapter when
analyzing real data. This may lead to underestimate or overestimate the false-alarm rate if a
“calm” period of data in one detector is matched with a noisy period in another one. Besides, in
our case, the fact that clusters are selected on single-detector data tends to bias the background
analysis towards loud noise transients. Once again, we will see with real data that it is sometimes
necessary to develop selection criteria to reject those events in post-processing.

3.3.5 Efficiency estimation

To fully characterize an analysis, we need to estimate the sensitivity of the search, i.e the prob-
ability to detect a true GW signal with a false-alarm probability lower than a given threshold.
Since we do not know a priori the exact shape of the signals searched, the only way to pro-
ceed is to manually inject simulated signals into the data and try to characterize how well they
are recovered. Injected signals should be chosen to cover the parameter space of the search in
duration, frequency and spectral morphology.

Simulated signals - waveforms - consist in two time series describing the two polarization
modes (h+(t), h×(t)) of the GW, sampled at frequency fs. In practice, metadata about the
signal (duration, frequency range, nominal distance...) are also stored by the pipeline. To
simulate a realistic GW signal, several parameters must be defined:

• the direction Ω̂ to the source;

• the time of arrival t0 of the signal at the center of the Earth (which serves as a reference);

• the inclination and polarization angles ι and ψ that characterize the orientation of the
source’s reference frame with respect to the Earth equatorial frame;

• a scaling amplitude factor α to set the strength of the signal.

Initial polarization modes are given in the source frame. They must be rotated and expressed in
the Earth equatorial frame via the polarization angle ψ and the inclination angle ι:

heq
+ (t) = a+ cos 2ψ h+(t)− a× sin 2ψ h×(t)

heq
× (t) = a+ sin 2ψ h+(t) + a× cos 2ψ h×(t) (3.42)

where a+ = 1+cos ι2

2 and a× = cos ι. The delay of arrival between the detector’s position ~rI and
the center of the Earth is

τI =
Ω̂ · ~rI
c

. (3.43)

The data are time shifted accordingly to reflect that delay. Antenna pattern factors F+
I (t; Ω̂)

and F×I (t; Ω̂) are first computed in the Earth equatorial frame as a function of Ω̂ and the sidereal
time and then adapted to each detector position on Earth.

Finally, the response of the detector is

hI(t) = α [F+
I (t; Ω̂)heq

+ (t− τI) + F×I (t; Ω̂)heq
× (t− τI)]. (3.44)

It is resampled and interpolated to match with the detector’s sampling and the first and last
seconds are tapered with a Hann window to avoid numerical artifacts.

Signals are injected for different values of α which correspond to different amplitudes (or
equivalently distance). For each waveform and each amplitude factor, a number Ninj of injections
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Figure 3.9: Detection efficiency as a function of distance for an accretion disk instability signal
(ADI-B, see Table 3.1) added to Gaussian noise colored with LIGO O2 PSD. Error bars at 1σ
are computed from Eq. (3.48) for Ninj = 50.

are performed with random parameters (sky position, arrival time polarization and inclination
angles) to get a sufficient statistic. We then compute the ratio of recovered injections Nrec over
Ninj to get an estimation of the detection efficiency:

Eff(α) =
Nrec

Ninj
. (3.45)

This process is repeated for different amplitude factors to characterize the detection efficiency as
a function of the signal’s strength.

Several quantities can be used to characterize the strength of a GW signal. One that is
commonly used is the root summed square amplitude hrss which is defined by

hrss =

√∫ [
h2

+(t) + h2
×(t)

]
dt. (3.46)

This quantity is useful because GW detectors are sensitive to the amplitude of the signal: the
hrss has the same unit than the detector’s amplitude spectral density, allowing for rapid compar-
ison between the two. It is convenient to express the sensitivity of the search to a given signal
with a single number. Long duration searches commonly use the value of hrss for which the ef-
ficiency is 50%. It is obtained by fitting a sigmoid curve to the data, as can be seen in Figure 3.9.

The error on Eff(α) are computed assuming that the probability to recover Nrec injections
while we expect Êff×Ninj injections is given by a binomial probability
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Waveform Parameters Duration Frequency Morphology
[s] [Hz]

ECBC-A M1 = 1.4, M2 = 1.4, ecc = 0.2 291 10 - 250 Chirp
ECBC-B M1 = 1.4, M2 = 1.4, ecc = 0.4 178 10 - 275 -
ECBC-C M1 = 1.4, M2 = 1.4, ecc = 0.6 64 10 - 350 -
ECBC-D M1 = 3.0, M2 = 3.0, ecc = 0.2 81 10 - 180 -
ECBC-E M1 = 3.0, M2 = 3.0, ecc = 0.4 49 10 - 200 -
ECBC-F M1 = 3.0, M2 = 3.0, ecc = 0.6 15 10 - 200 -
ISCOchirp-A mBH = 5.0 237 1049-2048 Broadband chirp-down
ISCOchirp-B mBH = 10.0 237 705 - 2048 -
ISCOchirp-C mBH = 20.0 236 196 - 1545 -
ADI-A mBH = 5.0, aBH = 0.3 35 135 - 166 Chirp-down
ADI-B mBH = 10.0, aBH = 0.95 9 110 - 209 -
SG-C 243 402-408 Mono-chromatic
WNB-A 20 50-400 Band limited white noise

Table 3.1: Name, source parameters, duration, frequency range and spectral morphology of
waveforms used to characterize PySTAMPAS.Mi is the component compact object mass; ecc is the
eccentricity of the binary orbit at 10Hz; MBH and aBH are the mass and normalized spin of the
black hole. All masses are expressed in unit of M�.

p(Nrec|Êff, Ninj) =
Ninj!

Nrec!(Ninj −Nrec)!
Êff

Nrec
(1− Êff)Ninj−Nrec (3.47)

The error on the measured Eff(α) is then given by the Bayes’ theorem

p(Eff|Nrec, Ninj) =
p(Nrec|Êff, Ninj)p(Êff|Ninj)

Z
(3.48)

We will consider that p(Êff|Ninj) is constant as there is no reason to favor any particular Êff
value over another. The overall constant factor Z is determined by integrating Eq. (3.48). We
finally obtain

p(Eff|Nrec, Ninj) =
Γ(Ninj + 2)

Γ(Nrec + 1)Γ(Ninj −Nrec + 1)
EffNrec(1− Eff)Ninj−Nrec (3.49)

where Γ(N) is the gamma function defined by Γ(N + 1) = N !. The 1σ confidence interval is
computed by numerical integration of p(Eff|Nrec, Ninj).

3.4 Performances and optimization

We now have a complete pipeline, which is able to search for coherent GW signals in a network
of detectors, with background estimation and injection campaign. In this section, I present the
work I did to test, optimize and characterize the pipeline to make it ready for real data analyses.

To characterize the pipeline, we use a set of simulated signals whose main properties are
described in Table 3.1. They cover a large range of the parameter space in duration, frequency
and spectral morphology and come from astrophysical and generic models. Waveforms labeled
ECBC represent the inspiral-merger-ringdown GW emission of nonspinning eccentric compact
binary coalescences [70]. The ISCOchirp family models broadband chirps from innermost stable
circular orbit waves around rotating blackholes [85], and ADI are accretion disk instabilities
models from [135]. In addition, we also use a sine Gaussian signal (SG-C) and a band limited
white noise burst (WNB-A) to extend the coverage of the parameter space.
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3.4.1 Tuning of the parameters

The pipeline has a variety of free parameters that have to be defined by the user before performing
a search.

Windows duration

The duration of windows fixes the maximal duration of signal we are able to reconstruct. Fol-
lowing the choice of past Advanced LIGO/Advanced Virgo long duration searches, we fix the
duration of windows to 512 s (we choose a power of 2 to be able to easily divide a map when
performing minilags). GW transients with duration >> 512 s may exist, but given the current
sensitivity of the instruments, it is very unlikely that they could be reconstructed in their entire
duration using a method based on excess power in time frequency maps. Besides, continuous
wave methods may be more adapted to search for such very long signals. As previously said,
consecutive windows overlap by 50% in order not to split a signal between two windows.

Time-frequency resolutions and clustering

When using the hierarchical method, the incoherent part of the analysis is of great importance
because it is at this stage that clusters of pixels that constitute the candidate events are extracted.
If a GW signal is not or poorly reconstructed, it will be irremediably lost whatever happens in
the coherent stage. That is why a particular attention must be given to signal reconstruction in
single-detector tf -maps.

In that spirit, we would like to tune the parameters to optimize signal reconstruction at the
first stage of the analysis, while keeping computational cost affordable. The main parameters to
tune are the time-frequency resolutions of the tf -maps, the clustering threshold and radii and the
minimal number of pixels in a cluster. It is however not possible to do a systematic optimization
of all the parameters because of the variety of signals targeted. In theory, it would be possible
to choose one particular waveform and tune the parameters to maximize detection efficiency for
that waveform, but this would introduce a bias in the analysis, effectively favoring one particular
class of signal with no guarantee that such an optimization holds for another type of waveform.
For this reason, I had to rely on semi-quantitative arguments, and proceeded by trial and error
to finally converge towards a reasonable set of parameters.

Since we are targeting long-duration signals, we expect a potential signal to be spread over a
large number of pixels, with a small excess power per pixel. Therefore, it is appropriate to choose
a relatively low threshold on the individual pixel’s energy |ỹI(t; f)| for clustering. The drawback
is that it increases the number N of pixels to consider while clustering, which can rapidly become
computationally expensive given that burstegard’s time complexity is O(N logN). However,
since that step is computed only once per tf -map, it is possible to select a threshold much
lower that what would be possible without using the hierarchical approach. I found that a
threshold between 1.6− 2 over |ỹI(t; f)| is generally appropriate. This leads to select 2− 5% of
the loudest pixels of a tf -map (in the Gaussian noise case). For most signals, setting an even
lower threshold does not seem to improve signal reconstruction and brings a lot of noise pixels
to the reconstructed cluster. The same argument applies for the clustering radius, that fixes the
clustering area around a seed pixel. A too large value for this parameter may lead to contaminate
a signal with noise pixels that aggregate the main cluster. An illustration of this behaviour is
shown in Figure 3.10, with a too low threshold and a too large radius. I found that a clustering
area of 1 s× 1 Hz is appropriate for many GW waveforms tested.

In this configuration, the minimal number of pixels per cluster can be used as a parameter
to control the rate of noise clusters that are generated. It depends strongly on the number
of time-frequency resolutions used, since the combination can make pixels overlap. The more
resolutions, the more pixels in a cluster in average. For a set of 4 different resolutions, values
between 30− 80 are optimal for this parameter.
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Figure 3.10: Time-frequency maps of a faint BNS merger signal reconstructed with burstegard
for different sets of clustering parameters. For the top figure, the clustering threshold is set to
1.5 and the clustering radius to 1 s × 1 Hz. The middle figure is made with a threshold of 2
and radius of 3 s × 3 Hz. In both cases, the signal is polluted by noise pixels that have been
aggregated to main cluster. The bottom figure shows the cluster obtained with a threshold of
2 and radius of 1 s× 1 Hz. It is an acceptable compromise that allows to reconstruct the signal
without adding too much noise pixels to it.

Regarding the time-frequency resolutions, the best choice depends once again on signal mor-
phology. We have seen however that a limited number of resolutions is enough to improve the
detection efficiency of non-monochromatic GW signals. Using a set of 4 resolutions ranging
from 4 s × 0.25Hz to 0.5 s × 2Hz, we showed that detection efficiency increases by 5− 40% (at
constant FAR), compared to 1 s × 1Hz pixels for the waveforms described in Table 3.1. Signals
that benefit the most from multi-resolution are those with non-linear frequency evolution, e.g a
BNS coalescence signal, which is quasi-monochromatic when its enter the detector’s bandwith
at the end of the inspiral, before rapidly increasing in frequency before the merger. The effect
of multi-resolution on the reconstruction of a BNS signal can be seen in Figure 3.6.

PSD estimation

We have explained the pros and cons of the two PSD estimation methods implemented in
PySTAMPAS in section 3.2. Both consist in averaging or taking the median over adjacent pix-
els. The free parameter is the number of adjacent pixels to consider.

For the time-average method, taking a short window may lead to overestimate the contribu-
tion of signal in the PSD, hence reducing the sensitivity of the search. On the contrary, taking
a very long window may lead to inaccurate estimation of the PSD if it fluctuates on a time scale
shorter than the length of the window considered. It should also be noted that since different
resolutions are used, the total duration of the nt adjacent time bins is not the same for each
resolution. We finally opt for a rather long window of nt = 32 adjacent time bins which allows
to at least partially reconstruct monochromatic signals with duration lower than ∼ 50 s.

Now considering the frequency-median method, we will see with real GW data that the main
inconvenient is the presence of spectral lines in the data which are enhanced by this method, and
can generate loud clusters if they are not correctly masked. The length of the window can also
not be too large, since the PSD varies with frequency. A window of 10 Hz on each side of the pixel
to be estimated is sufficient to remove most of the short glitches from the data. Consequently, a
buffer of 10 Hz must be taken below the low frequency boundary of the search with this method.
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3.4.2 Coherent signal reconstruction

Reconstruction of a polarized signal

To derive the expression of the coherent SNR of a pixel given by Eq. (3.26), we assumed
that the signal is unpolarized, i.e that there is no correlation between the two polarization
modes h̃+(t; f) and h̃×(t; f). This allowed us to drop the cross terms 〈h̃?+(t; f) h̃×(t; f)〉 in the
correlation product, simplifying the final expression of the coherent SNR. STAMP-AS notably
uses this approximation to perform all-sky searches [124]. In practice however, a lot of potential
long-lived GW signals are expected to be polarized, such as GW from compact binary mergers or
rotating neutron stars. The GW emission is parametrized by two more variables: the polarization
angle ψ and the inclination ι, as explained in section 1.3.4. In this case, the authors of [123]
showed that polarization induces another phase factor η in the expression of the SNR:

SNRIJpol(t; f, Ω̂, ι, ψ) = Re
[
2 ỹ?I (t; f)ỹJ(t; f)e−2πifτ+iη

]
(3.50)

with

η = −phase[F+
I F

+
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a+ = (1 + cos2 ι)/2,

a× = cos ι.

(3.51)

In the expression of the coherent SNR of Eq. (3.26), η is not taken into account (it is implicitly
set to 0). We will refer to this as an unpolarized filter. We investigate the effect of using an
unpolarized filter on signal reconstruction for polarized waveforms. We inject polarized signals
with different values of ι and ψ at a given sky position Ω̂ and compute the value of

SNRpol
Γ =

∑
(t;f)∈Γ

SNRIJpol(t; f, Ω̂, ι, ψ)

for each injection. Therefore, SNRpol
Γ is the maximal SNR that is obtained when all parameters

- position and polarization - are known. We then maximize the unpolarized SNRΓ given by Eq.
(3.32) over randomly chosen sky positions and compare it to SNRpol

Γ . Figure 3.11 shows the frac-
tion of SNRΓ / SNRpol

Γ as a function of the number of sky positions tested for different waveforms
injected considering different polarizations: circular polarisation (ι = 0) and linear plus polari-
sation (ι = π/2). We observe that polarized monochromatic waveforms (SG-C and SG-2000Hz)
are efficiently reconstructed with an unpolarized filter after a relatively small number of trials,
regardless of their frequency (405 Hz and 2000 Hz respectively). However, non-monochromatic
signals (ADI-B and ECBC-A) are not accurately reconstructed. The ratio SNRΓ / SNRpol

Γ tends
to a value that is strictly lower than 1. This demonstrates that using an unpolarized filter to
reconstruct polarized signals leads to underestimate the coherent SNR of signals in certain cases.

The phase difference ∆Φ of the signal between the two detectors depends on the frequency
f , the delay of arrival τ , and the polarization-induced dephasing η :

∆Φ(f) = 2πfτ − η. (3.52)

For a monochromatic signal, f is the same for all pixels, hence there is a degeneracy between τ
and η. In this case, maximizing over sky positions (i.e over τ) will lead to reconstruct the SNR of
the signal signal correctly because the η term will be factored into the reconstructed τ . However,
for a non-monochromatic signal, the degeneracy between τ and η is broken as pixels of different
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frequency are present. ∆φ(f) is an affine function of f that is described by two parameters. To
reconstruct the correct SNR, it is necessary to maximize SNRΓ over both τ and η. We illustrate
this behaviour in Figure 3.12 with an ECBC-A waveform: with the unpolarized filter, the signal
dephasing between the two detectors is incorrectly fitted, leading to a relative loss of SNR of
∼ 20%.

Figure 3.11: Fraction SNRΓ / SNRpol
Γ as function of the number of sky positions NΩ̂ tested for

different waveforms. SNRpol
Γ is computed taking into account the actual signal polarization and

sky position. The cases of a circularly polarized signal (ι = 0) and of a linearly + polarized signal
(ι = π/2) are represented. SG-C and SG-2000Hz are monochromatic sine Gaussian waveforms
at respective frequency 400 and 2000 Hz.

This study brings to light another sub-optimal characteristic of STAMP-AS for polarized sig-
nals. Polarized GW signals are not accurately reconstructed because the offset term η is not
taken into account when computing the phase term ∆φ. To reconstruct these signals correctly,
it would be necessary to maximize SNRΓ over both sky positions and polarization angles. As
doing this significantly expands the parameter space of the search, and therefore increases com-
puting time, we keep the unpolarized filter for the different analyses that are presented in the
remainder of this thesis. Yet, the polarized filter is now implemented into PySTAMPAS and ready
to be used for known polarized sources.

Number of sky locations to test

We are now interested in the number of sky positions needed to be tested to reconstruct the signal
accurately. We have seen in section 3.2 that for a 2 detectors network, this number depends on
the ratio fmax/fmin of the frequency boundaries of the signal (see Eq. (3.33)). In Figure 3.13, we
verify this result experimentally and investigate also the case of a 3 detectors network, adding
Virgo to the two LIGO detectors. Different waveforms are injected, and we compute the ratio
ε of the reconstructed SNRΓ to its maximal value as a function of the number of sky positions
tested. The two sine Gaussian signals, SG-C and SG-2000Hz, are reconstructed equally rapidly
despite having different frequencies (405 Hz and 2000 Hz respectively). In contrast, ISCOchirp-C,
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Figure 3.12: Phase difference ∆Φ between H1 and L1 for an ECBC-A waveform injected with
circular polarization as function of the signal’s frequency. The actual values obtained from the
tf -maps’ pixels are shown in blue. The values predicted by the polarized filter with correct
sky position and polarization angles are in red, and the values obtained by maximizing the
unpolarized filter over 100 sky positions are in green.

which has the largest value of fmax/fmin among the signals tested, is the one that requires the
largest amount of sky positions to be reconstructed at the same value of ε. For a 2 detectors
network, all the signals are reconstructed with ε ≥ 0.95 after ∼ 100 positions tested.

The same results obtained with a 3 detectors network are shown with dashed lines in Figure
3.13. Monochromatic signals are still reconstructed more rapidly than large-band signals, however
the number of sky positions needed is higher than for a two detectors network. This can be
explained by the fact that for a 3 detectors network, the degeneracy between Ω̂ and τ is partially
broken: for a given value of Ω̂, there are three different values of τ corresponding to the three
baselines. This enlarges the parameter space, so more positions need to be tested. In average,
a factor 10 more positions are required to reach the same value of ε, so a maximum of 1000 sky
positions for ε = 0.95. This increases the computational cost of the search, but is still feasible
with the pipeline.

Effect of a third detector on detection efficiency

Despite the STAMP method can be straightforwardly generalized to a network of an arbitrary
number of detectors, all-sky searches done with STAMP-AS (e.g [132, 133]) have only used the two
LIGO detectors at Hanford (H1) and Livingston (L1) so far. Several factors explain this choice.
First, the sensitivity of Advanced Virgo was significantly lower than the one of Advanced LIGO
during the first three observing runs, by at least a factor 2. Besides, contrary to H1 and L1, whose
arms are almost aligned, Virgo (V1) has a different orientation, and is therefore not sensitive to
the same parts of the sky than the two LIGO detectors. This feature is useful for parameter
estimation, since it breaks the degeneracy between the source’s location and polarization, allowing
to constrain better the location of the source. However, for an all-sky, unmodelled search, the

68



Figure 3.13: Fraction ε of SNRΓ reconstructed as function of the number of NΩ̂ of sky positions
tested for different waveforms. Results for 2 and 3 detectors networks are plotted with continuous
lines and dashed lines respectively.

benefit is not trivial in terms of detection efficiency. Finally, increasing the size of the detectors
network leads to break the total observing time in several network configurations. Because of the
512 s long windows requirement a small fraction of the total observing time is lost. For example,
during O3, H1, L1 and V1 were observing coincidentally during only 47% of the run, while the
pair H1 - L1 alone was locked for 62% of the run.

To decide whether or not it is relevant to include more detectors in the network for a given
search, it is interesting to estimate the gain in detection efficiency it could provide. To do so, we
perform Monte Carlo analyses and compute the detection efficiency for an ADI-A waveform with
two detectors (H1-L1), and with three detectors (H1-L1-V1). We first perform a background
study. Since the definition of pΛ is normalized to take into account the number of baselines,
background distributions are similar for the 2 and 3 detectors network, with just the number of
triggers being increased by 1/3 with 3 detectors because of the new clusters provided by Virgo
data. In Figure 3.14 we show the detection efficiency as a function of distance for an ADI-
A waveform in different configurations. We use the two detectors network H1-L1 as a control
study. To simulate realistic conditions, we take the nominal PSD of each detector during O2 to
generate Gaussian noise, hence Virgo’s sensitivity is about 3 times lower than LIGO’s. Finally,
we compute the detection efficiency for the same network but setting Virgo’s sensitivity to be
equal to LIGO’s to see if it makes a sensible difference. Results show that detection efficiency
is increased by ∼ 25% by adding a third detector with the same sensitivity as the two others
in the network. Such non negligible improvement is mainly due to the better coverage of the
sky ensured by the presence of a third, non-aligned detector. However, when using a realistic
Virgo’s PSD, the increase in sensitivity is only of ∼ 10%. In a real data analysis, that increase
could likely be annulled by an increase of the FAR if the transient noise triggers rate from the
third detector is larger than the two LIGO detectors’ noise triggers rate. On the other hand, one
sees that the efficiency curves for H1-L1-V1 have a slightly different shape than for H1-L1. The
consequence is that the maximal distance at which one can detect 90% of the sources in the sky
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Figure 3.14: Detection efficiency as a function of the distance to the source for an ADI-A signal for
different detector networks, considering O2 Advanced LIGO and O2 Advanced Virgo detectors’
sensitivity (blue and orange curves) or O2 Advanced LIGO sensitivity for all three detectors
(green).

is increased by a factor ∼ 1.2 by considering V1 data in the O2 all-sky/all-time search, which is
in fact not negligible.

3.4.3 Dependence on the clustering algorithm parameters

To decide what amount of effort it is worth to invest into developing better clustering algorithms,
it is interesting to estimate what would be the sensitivity of the search with a “perfect” clustering
algorithm, i.e an algorithm that would select all, and only the pixels of the tf -map that contains
the signal. To simulate an optimal clustering, we proceed the following way.

1. Choose a waveform with well-defined time-frequency boundaries.

2. Inject that waveform in simulated detector Gaussian noise at a very high amplitude.

3. Run burstegard with a selective threshold on |ỹ(t; f)| to extract only the pixels that
contain the signal.

4. Save the cluster’s pixels to use them as a mask.

We then perform a usual efficiency study by injecting the waveform into the data, excepted that
instead of running the clustering algorithm, we select directly the pixels that corresponds to the
mask we have defined previously to be the cluster. By doing that, we remove the dependence on
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the clustering algorithm and compute the coherent detection statistic on the pixels that contain
the injected signal, no matter how faint they are.

In addition, we estimate the detection efficiency using the optimal detection statistic defined
in Eq. (3.8). Given the template h injected in Gaussian noise n, we define the complex matched
filter SNR for one detector I

ρI ≡
(s, h)√
(h, h)

(3.53)

where s = n + h and (a, b) is the scalar product from Eq. (3.7). For noise only, the real and
imaginary parts of ρ follow a normal distribution, so the square modulus |ρI |2 follows a Chi-square
distribution with two degrees of freedom. Then, we define the network SNR for the detector pair
IJ (here H1 and L1), ρ ≡

√
|ρI |2 + |ρJ |2. Hence, ρ2 follows a Chi-square distribution with four

degrees of freedom, which we verify empirically. This allows us to assess a p-value and FAR to
each injection, which we use to set a threshold on |ρ| that corresponds to a FAR of 1/50 yr−1.

Figure 3.15 shows the detection efficiency as a function of the signal’s strength expressed via
the distance to the source. Detection efficiencies are computed for a FAR threshold of 1/50 yr−1,
corresponding to a threshold on pΛ of 2.4 or ρ = 15. We use three waveforms for this study,
in order to investigate a potential dependency on the waveform. Two accretion disk instability
signals, ADI-A and ADI-B, and an eccentric compact binary coalescence, ECBC-A (see Table
3.1 for details). To provide a comparison, the results obtained with the same parameters but
using burstegard are shown, as well as the results obtained with the optimal matched filter6.
As expected, sensitivity is better with the “optimal” clustering, however not by a huge factor:
the relative improvement on the distance at 50% efficiency between the “optimal” clustering and
burstegard is ∼ 10−20%. On the other hand, there is a factor 5−6 between sensitivity that can
be achieved with our method and the sensitivity provided by a perfect matched filter search. This
gap seems to be independant of the signal duration and morphology. This result highlights the
potential for improvement of clustering algorithms, but also the gap between unmodelled searches
based on cross-correlation and searches based on matched filtering techniques. Nevertheless, the
latter are not feasible in practice for all-sky searches as discussed earlier. Matched filtering is
the optimal filtering technique when the signal is known, but this is not the case of our search.

3.5 Summary and comparison with STAMP-AS

To characterize the detection efficiency of the pipeline, We perform a Monte Carlo study over
Gaussian noise colored with LIGO’s nominal PSD during O2. The set of parameters used for this
study is presented in Table 3.2. For the two PSD estimation methods, we first do a background
analysis to estimate the value of pΛ that corresponds to a FAR of 1/50 yr−1. Then, we run an
injection campaign with the waveforms from Table 3.1 and estimate the hrss at 50% detection
efficiency for this FAR threshold. To provide a comparison, we do the same study with STAMP-AS.
Relative detection efficiencies between STAMP-AS and PySTAMPAS are shown in Figure 3.16 for each
waveform and each PSD method.

For all waveforms but three, the detection efficiency is higher with PySTAMPAS. The average
relative increase is ∼ 30%. The sine Gaussian signal (SG-C) is an extreme case. Reconstruction
of monochromatic signals is a weakness of STAMP-AS because of the way PSD is estimated. With
the frequency-median method, the detection efficiency is increased by a factor 6. Also, using
the same time-average method thatn in STAMP-AS but with a larger window, it is increased by
a factor 4. We notice than the PSD method has a great influence on the sensitivity, which
confirms that some waveforms are much better reconstructed with one or the other method. For

6The optimal matched filter is computed by matching the data with the exact waveform that is injected, so
it is the theoretical maximal sensitivity than can be reached. A realistic search using a matched filter technique
would be less sensitive because of the number of templates to test.
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Parameters Value
tf-maps
Window duration 512s
Frequency range 20− 2000 Hz

∆ti ×∆fi
[4.0 s× 0.25Hz− 2.0 s× 0.5Hz
−1.0 s× 1.0Hz− 0.5 s× 2.0Hz]

PSD estimation
Time-average 32 time bins
Frequency-median 20Hz
Clustering
Pixel energy threshold 2.0
Clustering radius 1 s× 1 Hz
Minimum pixels number 30

Coherent stage
SNR loss 1− ε 5%

Table 3.2: Set of parameters used for the Monte Carlo study presented in section 3.5.

instance, the white noise burst (WNB-A) is not reconstructed at all with the frequency-median
PSD, because it has a too large bandwidth.

The case of the ISCOchirp family illustrates a limitation of the pipeline. These signals are
less well detected than with STAMP-AS, with an average 20% loss in sensitivity. The use of a
hierarchical method may be the cause of that loss: since clusters are now extracted on single
detector data, a signal which generates pixels that are slightly under the clustering threshold
in both detectors will not be reconstructed at all, even if it could have been seen in a coherent
tf -map. This affects principally the longer signals, for which the energy is spread over a large
number of pixels. To better reconstruct these signals, a seedless algorithm may be more suited.

We now summarize the principal improvements of PySTAMPAS with respect to STAMP-AS.

• Reduced computing time:

– Lonetrack hierarchical method

– Use of parallel computing for building tf -maps and perform mini-lags.

– Use of Cython and optimized computing libraries to address bottlenecks of the code.

• Improved detection efficiency:

– Two PSD estimation methods suited for different signal morphologies.

– Multi-resolution tf -maps.

– Limited SNR loss due to sky localization error.

• Generalization to multi-detector network (useful when Advanced Virgo will be included in
the analyses).

Current status and potential improvement

At the time of this writing, PySTAMPAS is able to perform a full analysis (i.e background estima-
tion, efficiency estimation and coincident analysis), either in an all-sky or a targeted configura-
tion. I have used it to perform full all-sky analyses of the second Advanced LIGO - Advanced
Virgo observing run (O2) and the first part of the third run (O3a). The results of those analyses
will be presented in the chapter 4. In addition, I also had the occasion to run it in a targeted
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search configuration to perform searches for GW counterpart around a sample of GRBs asso-
ciated with a potential MGF origin. This search, published in [136], is described in chapter
5.

Regarding clustering algorithms, I have focused my optimization efforts on burstegard, as
the hierarchical method was already implemented in STAMP for seedless algorithms. However, a
Python implementation of stochtrack has been written and plugged into the pipeline. Some
work is still needed to test it, but it is planned that PySTAMPAS will ultimately be able to carry
out analyses with both burstegard and seedless algorithms. The study I performed in section 3.4
seems to indicate that there is a maximal value to the detection sensitivity that can be reached
with an excess cross-power method. However, as potential long-lived GW signals become better
modelled, it may be possible to develop new algorithms that bridge the gap between unmodeled
and matched filter searches.

Finally, to be used for data analysis within the LIGO-Virgo collaboration, the pipeline will
have to undergo an internal review that is planned for late 2021.
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Figure 3.15: Detection efficiency for a FAR of 1/50 yr−1 as a function of the distance to the source
for three different waveforms of different duration, ADI-A (40 s, top), ADI-B (8 s, middle) and
ECBC-A (296 s, bottom). Results obtained with PySTAMPAS using the burstegard algorithm
are shown in blue. Results for the optimal clustering algorithm are in orange, and results using
optimal matched filtering are in green.
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Figure 3.16: Ratio between the hrss at 50% detection efficiency obtained with PySTAMPAS and
STAMP-AS for FAR = 1/50 yr−1 for both PSD estimation methods over Gaussian noise. The
white noise burst waveform WNB-A was not recovered at all using the frequency-median PSD.
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Chapter 4

All-sky searches for long-duration
transients in the second and third
observing runs of Advanced LIGO and
Advanced Virgo

In this chapter, I describe several all-sky searches for long duration gravitational wave signals in
real data from Advanced LIGO and Advanced Virgo. To begin with, I present the results of the
all-sky search for long-duration bursts carried out in the third observing run of Advanced LIGO
and Advanced Virgo (O3). I have contributed to the search by running STAMP-AS1 and I derived
the upper limits on some of the potential sources that are reported in the LIGO-Virgo-KAGRA
collaboration paper recently submitted in Physical Review D journal [137]. In parallel to this
work on real GW data, I use PySTAMPAS to analyze the second Advanced LIGO - Advanced Virgo
observing run (O2) and the first half of the third run (O3a). This is the first full-scale test of the
pipeline with real data, and it is also the occasion to compare its performances with the other
pipelines used for long-duration transient searches.

4.1 All-sky search for long duration gravitational wave bursts in
O3

The third observing run of Advanced LIGO and Advanced Virgo took place between April 1, 2019
and March 27, 2020, with a break between October 1, 2019 and November 1, 2019 for detector
commissioning. This was the longest run to date and the first time the three detectors were
observing simultaneously for the whole duration of a run. Detectors’ sensitivity was increased
by 50% and 100% compared to O2 for Advanced LIGO and Advanced Virgo respectively [55].

Among the major discoveries made during this run, we can cite the first detection of in-
termediate mass black holes [51], and the first two observations of a black hole - neutron star
merger [20]. In addition, ∼ 50 more GW events from binary black holes mergers were detected
[18], allowing to better constrain the BH population and the volumetric rate of compact binary
mergers.

Several unmodelled searches have also been performed over this run. I have participated
in the all-sky search for long-duration transient signals. Three different pipelines were used to
maximize the coverage of the rather large signal’s parameter space: Coherent WaveBurst [138]
and STAMP-AS, which come into two declinations, Zebragard, that uses seed-based clustering over
coherent tf -maps, and Lonetrack [139], that performs seedless clustering using Bezier curves

1PySTAMPAS was not yet ready and reviewed for participating to the O3 LIGO-Virgo-KAGRA paper.
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Figure 4.1: Cumulative distributions of background triggers obtained with STAMP-AS for O3,
on top of which red crosses represent the most significant triggers found in coincidence. Top
and bottom panels represent Zebragard and Lonetrack respectively, while left and right panel
represent the two parts of the run, O3a and O3b. All triggers found in coincidence are compatible
with background noise.

and uses the hierarchical method that consists in selecting clusters in single detector data before
computing cross-correlation.

The data analyzed consist in ∼ 204.4 days of coincident data from the two LIGO detectors
H1 and L1. Because of the sensitivity gap and its different orientation, Virgo was not included
in the analysis as it would not improve detection efficiency.

Results of background and zero-lag analyses are presented in Figure 4.1 for the two parts
of the run (O3a and O3b), and for Zebragard and Lonetrack respectively. To get rid of the
most problematic sources of transient noise (glitches) affecting mainly the Zebragard analysis,
we apply few selection criteria: the first one is based on the balance of incoherent energy (EI
or auto-power as defined in Eq. (3.36) between the two detectors (Rveto). The second one is
the fraction of coherent SNR contained in a single time bin (SNRfrac). In addition, depending
on the dataset, it is sometimes needed to veto triggers that correspond to periods of bad quality
data. Those periods are flagged by different list of veto segments built from the thousands of
auxiliary channels that participate to the control or the monitoring of the detectors. Over the
years, STAMP-AS pipeline has established a procedure to select veto segments that are useful for
the Zebragrad search. We consider all veto lists (DQ flags and UPV vetoes [37, 140, 141]) and
study using a subset of background triggers if they veto significantly families of loud glitches.
By significantly, we consider that the coincident rate must be at least 5 times higher than the
accidental rate standard deviation. We also exclude a veto list whose efficiency over dead-time is
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Figure 4.2: Time-frequency representation of the waveforms used in this search. Figure from
[137].

smaller than 10 or those which contain too many small segments. It turns out for the O3 analysis,
this procedure defined for the O2 long-duration Zebragard search led to the selection of none
of the veto lists, except one DQ flag list that has been defined by the detector characterization
team to flag a known problem with the LIGO Hanford laser power stabilisation system (Flag
name: H1:DCH-PSL_FSS_BLRMS_GT0P3).

We note that Lonetrack does not need any selection criteria applied on triggers, because
seedless clustering is less sensitive to transient noise features than seed-based clustering2. In
addition, the hierarchical method it implements allows to generate much more background than
Zebragard, and reach a p-value equivalent to 5σ.

No excess of triggers was found in coincidence compared to the background distribution for
either of the three pipelines. The most significant trigger found by STAMP-AS has a p-value of
0.14, which is largely compatible with noise. Coherent WaveBurst found a trigger with a p-
value of 0.088, corresponding to a significance of ∼ 1.7σ, but its morphology is compatible with
a fluctuating spectral line. Therefore, we report no statistically significant candidate event for
this search.

To characterize the sensitivity of the search to GW signals, we use a set of 20 waveforms that
span the time-frequency plane, as can be seen in Figure 4.2. They represent a variety of astro-
physical models. In addition to the accretion disk instabilities (ADI), ISCO waves (ISCOChirp)
and eccentric compact binary coalescences (ECBC) that are described in Table 3.1, GRBplateau
represents a model of GW emission from a newly formed magnetar being the central engine of a
GRB [102], and Magnetar waveforms are a model of GW emission from magnetars formed post
BNS mergers [142].

All pipelines inject waveforms at random starting times, sky location, polarization angle
and cosine of the inclination, and for different values of hrss. The lowest value of hrss at 50%
detection efficiency and for a FAR of 1 per 50 years obtained among each of the three pipelines is
represented in Figure 4.3. On average, detection efficiency increased by a factor 1.8 compared to

2This has been confirmed since O1
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Figure 4.3: Injected hrss versus mean frequency at 50% detection efficiency and a FAR of 1 per
50 years for the different waveforms tested. Only the lower value among all pipelines is shown
for each waveform. The averaged amplitude spectral noise densities for H1 and L1 are shown for
reference. Dashed-dotted lines represent the GW energy of fractions of 0.01 M�c2.

the results of the O2 search [133], which is compatible with the increase in detectors’ sensitivity
between O2 and O3.

Using these results, we place upper limits on the rate of eccentric compact binary coalescences
(ECBC), using the “loudest event statistic” [143]. The upper limit at 90% confidence on the
volumetric rate of events assuming the distribution of the sources is uniform and isotropic is

R90% =
2.3

4πT
∫∞

0 dr r2 eff(r)
, (4.1)

with T being the total observing time and eff(r) the detection efficiency as a function of the
distance computed for a FAR of 1/50 yr−1. We show the upper limits on the ECBC rates per
unit volume for different waveforms in Table 4.1, and upper limits on the total event rate as a
function of the distance in Figure 4.4.

The search for long-duration, unmodelled transient signals in O3 did not reveal any significant
candidate. The evolution of the upper limits on the rate of events and detection efficiency between
O2 and O3 are mainly due to the increased detectors’s sensitivity and observing time, as there
was no significant change made to the pipelines. However, several improvements of the search
algorithms are planned for O4. PySTAMPAS is planned to replace STAMP-AS, and a new pipeline,
CoCoA [144, 145], may join the analysis. Progress in data analysis, combined with increased
detectors’ sensitivity, may lead to a first detection, or at least continue to constrain the event
rate.
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Waveform M1[M�] M2[M�] e R90% [Gpc−3yr−1]
ECBC_A 1.4 1.4 0.2 9.97× 102

ECBC_B 1.4 1.4 0.4 8.09× 102

ECBC_C 1.4 1.4 0.6 3.21× 103

ECBC_D 3.0 3.0 0.2 3.99× 102

ECBC_E 3.0 3.0 0.4 8.89× 102

ECBC_F 3.0 3.0 0.6 2.43× 103

ECBC_G 5.0 5.0 0.2 1.50× 103

ECBC_H 5.0 5.0 0.4 5.10× 102

ECBC_I 5.0 5.0 0.6 6.98× 102

Table 4.1: Rate upper limits per unit volume at 90% confidence level on eccentric compact binary
coalescences with various masses and eccentricity e, computed with Eq. (4.1).
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Figure 4.4: Upper limits at 90% confidence level on the rate of eccentric compact binary coales-
cences as a function of the distance. Only the best result is shown for each waveform. The inset
shows the ratio of the rates with respect to O2 results [133] for ECBC_A to ECBC_F.

4.2 Real data analysis with PySTAMPAS

Real data analysis is bringing new challenges compared to Gaussian noise simulations. Non-
stationary and non-Gaussian features may degrade the efficiency of the search in various ways.
Loud noise transients can generate triggers with a high value of pΛ, leading to increase the
detection threshold and therefore decrease sensitivity. They can also combine with a true GW
signal, causing the latter to be poorly reconstructed. Finally, they may bias the PSD estimation,
which can also lead to badly reconstructe of signal. The tf -map represented in Figure 4.5
illustrates some of these features. We can notably see the presence of spectral lines, as well as a
short noise transient (glitch) at low frequency.
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Figure 4.5: Time-frequency map of a 512 s long data segment from LIGO Hanford (LHO) at the
beginning of O2. The statistic represented is the modulus of the Fourier transform of the data.
This map illustrates the principal non-Gaussian noise features that challenge a search: forest of
spectral lines can be seen around 500, 1000, 1480 and 1950 Hz , among others, and a short glitch
is present at low frequency, ∼ 180 s from the beginning.

4.2.1 Configuration of PySTAMPAS for real data analysis

Depending on the method used to estimate the PSD, some noise features may be enhanced when
considering the whitened statistic ỹ(t; f). In the top panel of Figure 4.6, we show the tf -map
of ỹ(t; f) computed over the same segment of data than in Figure 4.5 using the time-average
PSD estimation method. The glitch is particularly visible, forming a column of pixels with high
|ỹ(t; f)|, 180 s from the beginning of the map. In addition, the PSD is overestimated at low
frequency around it, leading to underestimate |ỹ(t; f)|. However, most spectral lines do not
appear in the map, as they have been factored in the PSD.

Gating

To attenuate the effect of large amplitude glitches, we now use a gating algorithm which consists
in identifying peaks directly in the strain time series s(t). The gating algorithm works the
following way: First, the time series sI(t) are searched for peaks. A sample at ti is identified
as a peak if it has a value |sI(ti)| at least 10 times larger than the mean value of |sI(t)| over
the neighbouring 2 s of data. In this case, all values of sI(t) in the segment of data within 2 s
of the peak are set to 0. To avoid issue due to sharp edges, the data on the boundaries of the
masked segment are tapered. The effect of gating is shown in the bottom panel of Figure 4.6.
The glitch has been correctly identified and masked. This gating procedure is implemented in
practice using the gate method of the GWpy package [131]. It is in principle equivalent to the
“glitch cut” that was used in STAMP-AS [146].

Identification of spectral lines

The frequency-median PSD estimator has opposite characteristics, as can be seen in Figure 4.7.
The glitch has been correctly factored into the PSD this time, as it is large band, and does not
appear anymore in the tf -map of |ỹ(t; f)|. On the contrary, all spectral lines are present and
enhanced.
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Figure 4.6: Top: time frequency map of the same time segment than in Figure 4.5, using the
whitened statistic ỹ(t; f) where the PSD has been estimated by averaging over neighbouring time
segments. The glitch is clearly visible, and causes to underestimate the SNR at low frequency.
Most of the spectral lines have been factored in the PSD, excepted the fluctuating ones around
1000− 1050 Hz. Bottom: same tf -map obtained after the gating procedure. A segment of ∼ 5 s
of data around the glitch is notched. The PSD around the glitch is not biased.
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Figure 4.7: Top : another time frequency map of the same time segment than in Figure 4.5,
where this time the PSD have been estimated by taking the median over neighbouring frequency
bins. The glitch has been correctly factored in the PSD, contrary to the lines. Bottom : same
map after applying frequency masks.
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In the STAMP-AS implementation, a mask is applied over frequency bins that correspond to
well identified spectral lines. A list of spectral lines to notch is established before the analysis
starts. It is sufficient, given that most lines are already factored into the PSD, STAMP-AS using
only the averaged neighbouring time segments PSD. This is no longer the case for PySTAMPAS.
Therefore, we need a more systematic and automatic method to flag problematic frequency bins.

The goal is to identify frequency bins that are regularly excited throughout the observing
run, without discarding any potential GW signal. We proceed in two steps. First, for each
tf -map built, we compute the median of |y(t; f)| over all time pixels. If that median is higher
than a given threshold, the corresponding frequency bin is flagged as a potential spectral line.
Second, we require that frequency bin be flagged in more than a given fraction of the total tf -
maps built to be definitely considered a spectral line. By imposing this condition, we reduce the
risk of incorrectly flagging a transient monochromatic signal and flag only the frequencies that
are excited during a significant part of the run. This analysis is done independently for each
time-frequency resolution considered, and each flagged frequency bin is masked. The result of
this process is shown in the bottom panel of Figure 4.7, using a threshold of 2 on |y(t; f)| and
requiring a frequency bin to be flagged in more than 5% of the total tf -maps built for O2.

Cluster reconstruction

These two methods, gating and frequency mask, allow to get rid of most of the noise features
that affect the search. However, they have the drawback of splitting the tf -maps in different
parts. If a GW signal crosses a masked frequency bin, or time bins that have been gated, it may
be reconstructed in several pieces by burstegard. To address this problem, we add an extra step
after the initial clustering. We define the distance between two clusters as the minimal number
of pixels between each corner of the clusters. Clusters for which this distance is lower than a
certain threshold are then grouped together.

4.3 Analysis of O2 with PySTAMPAS

The second observing run of Advanced LIGO took place between November 30th, 2016 and
August 25th, 2017, while Advanced Virgo was active from August 1st to August 25th, 2017.
The LIGO-Virgo collaboration has published in [133] the results of an all-sky search for long-
duration bursts obtained with 4 different pipelines: two versions of STAMP-AS, Zebragard and
Lonetrack implementing a seed-based and a seedless clustering respectively, as well as a long-
duration configuration of Coherent WaveBurst and X-Pipeline. In this section, I re-analyse
the data with PySTAMPAS to demonstrate and compare its performances to the other pipelines.

4.3.1 Pipeline configuration and data used

The data set we use corresponds to ∼ 117 days of coincident data from the LIGO detectors H1
and L1. It is splitted into 36, 518 windows of 512 s duration with a 50% overlap. Strain time series
are high-pass filtered with a 22 Hz frequency cutoff, and gated. Time-frequency maps of |ỹI(t; f)|
are built for each window and each detector. The PSD is estimated with the frequency-median
method, using a moving window of 20 Hz around each pixel.

The algorithm to identify spectral lines is run over the maps, and ∼ 5% of the total frequency
bins are flagged for each resolution and each detector. A summary of the parameters used for
the search is given in Table 4.2. They are almost the same than the ones used for the Monte
Carlo study (Table 3.2), except that we increase the minimum number of pixels per cluster to
80 to lower the number of clusters extracted. In the meantime we also increase the clustering
radius to 2 s× 2 Hz.
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Parameters Value
tf-maps
Window duration 512s
Frequency range 22− 2000 Hz

Time-freauency resolution [4.0 s× 0.25Hz− 2.0 s× 0.5Hz
−1.0 s× 1.0Hz− 0.5 s× 2.0Hz]

PSD estimation
Time-average 32 time bins
Clustering
Pixel energy threshold 2.0
Clustering radius 2 s× 2 Hz
Minimum pixels number 80

Coherent stage
SNR loss 1− ε 5%

Table 4.2: PySTAMPAS parameters used in the analysis of the O2 dataset.

4.3.2 Incoherent stage

We first run the incoherent stage of the analysis, which is common for both the background
estimation and the zero-lag search.

In total, burstegard extracts 12, 090 clusters in H1 and 4, 662 in L1. The rate of clusters
is much higher than with Gaussian noise (∼ 1 clusters every 20 minutes). Their distribution as
function of time and frequency is shown in Figure 4.8 for both detectors. We can see that they
are not uniformly distributed, with some periods of time and frequencies containing an excess of
clusters. Therefore, despite the gating and frequency masks, a lot of clusters corresponding to
noise transients have been extracted.

In Figure 4.9 we show tf -maps of the loudest cluster (ranked by their total auto-power
EI =

∑
(t;f)∈Γ

|ỹ(t; f)|2) from H1 and L1. It is clear that they both correspond to spectral lines.

After checking the list of identified lines provided by the detector characterization LSC group, it
seems that H1 one corresponds to the excitation of the third harmonic of the mirror’s suspensions
violin modes, and that L1 one is associated with an harmonic of the 60 Hz electric power line.
Despite their high energy, these lines have not been flagged because they are excited too rarely.
We proceed to the second stage of the analysis, and compute the coherent statistic over time-
shifted data streams before reaching any conclusion.

4.3.3 Background estimation

For each cluster extracted at the first stage, we perform 10 big lags and 32 mini-lags, and compute
the coherent detection statistic pΛ for each time-slide. In total, every cluster extracted in the
117 days of coincident data is time-shifted 320 times, so the equivalent amount of background
data simulated is a little more than 100 years.

The full processing (320 lags over ∼ 16000 clusters extracted, accounting for ∼ 100 years
of background noise, and including the first stage) took ∼ 50 days of CPU time on the LIGO
Caltech clusters. It was performed in about one day of real-life time using distributed computing.
To provide a comparison, the non-hierarchical, Matlab implementation of STAMP-AS took several
weeks of real-life time to simulate 50 years of background, accounting for several years of CPU
time. The gain in computing speed is therefore at least a factor 10.

In total, ∼ 16000 × 320 ' 5 × 106 triggers are generated and ranked along their statistic
pΛ. Since we are mostly interested in large pΛ triggers, only the ones with pΛ greater than 2.2
are saved to gain time and memory. The distribution of pΛ is shown in Figure 4.10, on top of
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Figure 4.8: Mean frequency and starting time of clusters extracted by burstegard from each
detector. The colormap represents the total auto-power E of the clusters.

which is plotted the same distribution for an ADI-A signal injected at a distance of 30 Mpc, and
for Gaussian noise. We can see that there is a tail in the distribution formed by loud triggers
with pΛ > 3 that is not present in Gaussian data. Since the tail of the distribution significantly
overlaps the distribution of signal, the detection efficiency of the search would be dramatically
reduced if we were using only pΛ. It is therefore necessary to understand the nature of these
outlier triggers and develop selection criteria to dismiss them without hurting the efficiency of
detecting true GW signals.
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Figure 4.9: Time-frequency maps of the loudest trigger extracted from H1 and L1 during O2 by
PySTAMPAS. Top (H1): it corresponds to a forest of spectral lines associated with the 3rd harmonic
of the mirror’s violin modes. Frequencies between 1512 and 1518 Hz have been notched by the
automatic notch algorithm. Bottom (L1): excitation of the 5th harmonic of the 60 Hz power
line.

Data quality vetoes

During an observing run, the state of the instruments and the environment are monitored by
a multitude of probes and sensors that are primarly used for the control and monitoring of the
detectors and then used to evaluate the quality of the data. When they appear to be affected by
an instrumental or environmental artifact also visible in an auxiliary channel, a data quality flag
(DQ flag) can be created that contains the corresponding times and a description of the issue.
Hundreds of DQ flags are defined, by hands or by automatic process, and stored in a database
for each detector [147]. They are classified in different categories based on their impact on the
quality of the data [37]. Other types of vetoes are also produced from the auxiliary channels: a
fast glitch finder algorithm, Omicron [140], produces lists of triggers from all auxiliary channels3.
Algorithms such that UPV [141], hVeto [148] or iDQ [149]4 analyze the correlation between the
glitches found in the GW and the auxiliary channels. In the end, thousands of lists of vetoes
are generated. Not every DQ flags nor auxiliary based vetoes are relevant for a given analysis
however, and we want to select them carefully in order to minimize the amount of data to be

3Auxiliary channels that couple with GW signal are excluded from this list.
4iDQ is a supervised learning framework to detect artefacts in GW channel, used online to asses the quality

of the LIGO detectors data around GW alerts.
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Figure 4.10: Distributions of pΛ obtained with PySTAMPAS for background triggers from O2 before
any post-processing selection (in orange); for Gaussian noise (green); and for an ADI-A signal
injected at different amplitudes (blue).

Name Deadtime [s]
L1:DCH-CS_MIC_BLRMS_GT_250 997
L1:DCH-EY_MIC_BLRMS_GT_200 1388
L1 UPV vetoes 7669
H1:DCH-ETMX_L2_UL_DAC_OVERFLOW 176
H1 UPV vetoes 18781
Total H1: 18957 s / L1: 10054 s

Table 4.3: List of Data Quality flags selected for the analysis of O2 with STAMP-AS, and re-used
with pySTAMPAS.The UPV vetoes are not listed here.

vetoed. Relevant DQ flags for a given type of search are listed in a veto definer file. This list
is established by the detector characterization group for a few generic transient searches. For
instance the short duration burst search. For other searches, the list of useful DQ flags is built by
the search team. This is the case for the long duration burst search. The principle is to figure out
whether loudest background triggers are correlated in time with DQ flags or glitches in auxiliary
channels. This study is done with a subset of background triggers that have a ranking statistic
above a given threshold. This work had already been done for STAMP-AS for the O2 analysis,
and a list of segments that correspond to relevant DQ flags given in Table 4.3 and UPV vetoes
was generated. For the O2 PySTAMPAS analysis, I use that list to veto the triggers that overlap
the DQ flag segments. I describe the method used to select DQ flags for long duration burst
search in more detail in section 4.4. The effect of removing those triggers is shown in Figure
4.11. Despite the accumulated dead time of the segments being about 1 day, almost 50% of the
loudest triggers (pΛ > 2.2) are removed.

The distribution of remaining triggers features one large outlier located ∼ 245 days after
the beginning of the run. It is caused by a single loud cluster from H1 that generates a trigger
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Figure 4.11: Coherent statistic pλ of background triggers found in O2 by PySTAMPAS as a function
of their starting time. Red points correspond to triggers that overlap a segment identified in the
Data Quality flags list.

with high pΛ at each time slide. A coherent tf -map of the loudest of these triggers is shown in
Figure 4.12. It is a monochromatic line at frequency ∼ 1083 Hz that is listed as a calibration
line. Since this line has been duly identified and categorized, we consider this is safe to veto the
corresponding triggers a posteriori. Ideally this frequency bin should have been notched a priori,
but as only one map was affected we decided to veto all triggers whose mean frequency is within
[1081 – 1085 ]Hz are vetoed.

Figure 4.12: Coherent tf -map of the loudest background trigger found in O2 by PySTAMPAS after
applying DQ flags. It corresponds to a calibration line around 1083 Hz.

The background distribution has been significantly cleaned with the use of DQ flags and the
removal of the calibration line, as can be seen with the blue histogram in Figure 4.14. However,
there are still a lot of triggers with pΛ ∈ 2.6− 3.2 that still affects the detection efficiency.
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Other post-processing selection

After inspection, the loudest remaining triggers are mostly monochromatic. However, their times
and frequencies do not correspond to any identified DQ flags or spectral lines. We need to use
additional information to apply a global selection criterion to the triggers that allows to reject
noise events while minimally affecting GW signals.

Figure 4.13: Distribution of the discriminant variable R for noise triggers (blue) found in O2
with PySTAMPAS, and an ADI-A signal (orange) for a source between 1 and 50 Mpc.

Several criteria of this type have been developed over time for STAMP and STAMP-AS. One of
the simplest, labeled Rveto, consists in computing the ratio R of incoherent energies of a trigger
in each detector :

R =
EI
EJ

(4.2)

For a true GW signal, R ∼ 1, provided the detectors have comparable sensitivity and orientation,
which is more or less the case here for H1 and L1. Loud noise transients, however, may have a
lot of energy in one detector but not in the other. The distribution of log10(R) for a signal and
for background triggers is shown in Figure 4.13. As expected, the distribution is peaked around
0 for the signal, and is shifted to larger values for noise triggers. Based on this result, we can
apply a rough selection criteria by requiring R to be lower than 4 for any trigger found. Using
this threshold, we can see that the majority of noise triggers will be removed, as well as a small,
but non negligible fraction of signal. We apply the Rveto selection criteria to the remaining
background triggers. The final distribution of the FAR as a function of pΛ is shown by the green
curve in Figure 4.14. This distribution is not far from the Gaussian noise triggers distribution
shown on Figure 4.10. We will use a detection threshold of pΛ = 2.6 that corresponds to a FAR
of 1 per 50 years to derive the pipeline efficiency.

It is important to note that in practice, development and tuning of post-processing vetoes
should be done over a small sample of background noise that covers the whole run, but not over
the full sample, in order not to introduce any bias in the background estimation. Typically, a
subsample of ∼ 10% of the total time-slides is used to discover the problems and features of
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Figure 4.14: False alarm rate (FAR) as a function of pΛ of the O2 PySTAMPAS search obtained
after the several post-processing steps applied.

the noise, and the rest is used for the main background estimation. I did not do that for this
exploratory work since those data had already been analyzed, and I focused on real data issues,
but this is the way we would proceed for a forthcoming search.

4.3.4 Injection campaign

To estimate the sensitivity of the search, we use the waveforms described in Table 3.1. Waveforms
are injected in the data at random time, localization and polarization following the procedure
described in Section 3.3. Injection times are selected uniformly over the segments of data.

To compute the detection efficiency, we use the threshold of 2.6 on pΛ that corresponds to a
FAR of 1 per 50 years. The same post-processing selection criteria than in the background study
are used: triggers within segments flagged by DQ flags are removed, as well as triggers whose
mean frequency is around 1083± 2 Hz or that have R > 4. For each waveform, the hrss at 50%
detection efficiency is shown in Figure 4.15 as a function of the WG signal mean frequency. To
provide a comparison, results of the STAMP-AS / Zebragard O2 analysis are also shown.

For most waveforms, the results of the two pipelines are within the same order of magnitude,
and follow the detectors’ sensitivity frequency, as expected. However, we note that, excepted
for the sine gaussian waveform, the relative detection efficiency gain between PySTAMPAS and
STAMP-AS that we observed with Gaussian noise is not present for this O2 search application.
We go from an average improvement of ∼ 30% with Gaussian noise to a loss of ∼ 20% with
real data. Several factors can explain this effect. The detection threshold on pΛ is higher with
real data because of non-Gaussian noise events that contribute to the tail of the distribution,
despite the selection criteria we apply. In addition, these selection criteria, especially Rveto,
lead to dismiss a fraction of the injections, effectively reducing detection efficiency. Finally, a
fraction of the signal is masked by frequency masks, which are more numerous when we use the
frequency-median PSD estimation.

This illustrates the difficulties of setting up and configure a new pipeline for real data analysis
over a full observing run. Nevertheless, we showed with this analysis that using the frequency
median PSD instead of the time-average PSD allows to gain almost a factor 10 on sensitivity for
monochromatic signals which represent a large class of potential long duration GW signals. The
main drawback of this method is the presence of a multitude of monochromatic noise events that
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Figure 4.15: Values of hrss at 50% detection efficiency and a FAR of 1/50 yr−1 are represented
for each waveform as a function of its mean frequency. Green crosses represent values obtained
with PySTAMPAS, while purple dots represent the results obtained with STAMP-AS for the same
waveforms. The detectors’ averaged amplitude spectral densities during O2 are shown with the
blue and red curves for H1 and L1 respectively.

can not always be flagged or associated to a known spectral line, leading to decrease sensitivity
to other types of signal. In Section 4.5, we will go back to these issues and propose methods to
increase the sensitivity of PySTAMPAS with the frequency-median over real data.

4.3.5 Coincident analysis

The coincident analysis - the actual search for GW signals - is performed the exact same way
than the background estimation, except that the data are not time shifted. Using the FAR curve
we computed in Figure 4.14, we can associate the values of pΛ of triggers found in coincidence
to a false alarm rate, and estimate their false alarm probability.

Results of the coincident search are shown in Figure 4.16. The FAR of the loudest coincident
triggers are represented on top of the FAR curve computed from the background triggers. The
same selection criteria than background triggers have been applied to coincident triggers. The
most significant trigger has a pΛ of 2.37, wich corresponds to a false alarm rate of 1 per 163
days. Considering that the observing time is 117 days, and assuming that noise triggers follow a
Poisson distribution, the probability to observe at least one noise event with a significance higher
than 2.37 (p-value) is p = 0.51. Consequently, all triggers found in coincidence are compatible
with noise. We can decide for the null hypothesis for this search, i.e no significant GW event
was found. To be complete, we show in Figure 4.17 the coherent tf -map of the loudest trigger.
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Figure 4.16: False alarm rate of the O2 PySTAMPAS search as a function of pΛ after applying all
post-processing selection criteria (DQ flags, Rveto and removal of the calibration line at 1083
Hz). On top of the curve are represented (red crosses) the values for the 5 most significant
triggers found in coincidence.

It is a 77 s, narrow-band event with frequencies between 1072 − 1080 Hz. It is not completely
monochromatic5. Nevertheless, based on its morphology, and given its low significance, it is
compatible with a non-stationary (“wandering”) line.

These results are compatible with the ones previously published in [133] obtained with
STAMP-AS, Coherent WaveBurst and the X-pipeline, for which the most significant event had
a p-value of 0.6.

4.4 Analysis of O3a with PySTAMPAS

In parallel to the STAMP-AS / Zebragard analysis, I also ran PySTAMPAS over the first half of O3
(O3a). The parameters of this search are the same than the ones used for O2 given in Table
4.2, excepted that we use this time the time-average PSD estimator. In order to maximize the
sensitivity to long-lived signals, we estimate the PSD by averaging |ỹ(t; f)|2 over 128 neighbouring
time segments on each side. The run contains ∼ 107 days of coincident data between H1 and L1
that are splitted into 35, 578 windows.

4.4.1 Background estimation

During the first stage of the analysis, 14136 clusters are extracted from L1 and 5204 from H1. The
rate of clusters is similar to what has been observed during the analysis of O2. The distribution
of clusters as function of time and frequency, shown in Figure 4.18, features an excess of clusters
at low frequency (below 100 Hz) in both detectors. As explained before, the PSD tends to vary
rapidly at low frequency because of seismic and anthropogenic noise. Since we estimate it by

5The closest repertoried spectral line is the calibration line at 1083 Hz, which cannot be associated to this
trigger
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Figure 4.17: Coherent tf -maps of the loudest trigger found in coincidence (zero-lag) between H1
and L1 for the O2 PySTAMPAS search.

averaging over a relatively long period of time, these variations are not factored into the PSD
and generate pixels with high |ỹ(t; f)|. Besides, like in the O2 analysis, some periods of data
feature an excess of clusters.

We compute ∼ 56 years of background using the time-slides method and set a standard FAR
threshold of 1 per 50 years. Background distributions are shown in Figure 4.19 with the FAR as
a function of pΛ for the different selection criteria applied.

Selection of DQ flags

We first check if there are relevant DQ flags for this data set. Among the hundreds of DQ flags
that are available, the burst and LIGO detector characterization working groups pre-select a
subsample of them that may be relevant for transient, unmodelled searches. However, not every
flag in this list is useful for our specific analysis. To select the ones to use, we apply the following
method. First, for each flag, we identify the triggers of large pΛ value that overlap the segments
where this flag is active. If the rate of triggers over these segments is significantly higher than the
overall rate of triggers (a typical value would be 10 times the overall rate)6, the flag is potentially
useful and we investigate further. Otherwise, it is dismissed. Then to cross-check the selection,
we time shift the data by different amounts of time and compute the rate of triggers that are
coincident to the flag’s active segments. If this rate is of the same order of magnitude for shifted
and non shifted data, it is likely to be a false association and we do not use the DQ flag. Using
this method, we finally select 7 DQ flags that account for about 2.5 days of dead time. They
are listed in Table 5.3 and correspond to various instrumental and environmental effects (loud
glitches, squeezing saturation, thunder, etc).

Post-processing veto SNRfrac

After vetoing the triggers overlapping with DQ flags’ segments, the tail of the distribution consists
in short glitches at low frequency, as illustrated in Figure 4.20. Some glitches may pass the gating
step, because they are not loud enough to reach the threshold, or because another louder glitch is
present in the data less than 2 s apart. Since those glitches have a very different morphology than

6This criteria is equivalent to asking that the ratio veto efficiency over veto deadtime is larger than 10.
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Figure 4.18: Mean frequency and starting time of clusters extracted by burstegard from each
detector for the O3a PySTAMPAS search. The colormap represents the auto-power E of the clusters.

what is expected for a GW signal, it is possible to define a discriminant variable to distinguish
them from a signal. The variable SNRfrac was implemented in STAMP-AS, along with Rveto, to
deal with short glitches. In this study, we define SNRfrac to be the maximum of the fraction of
the summed SNR contained in a single time bin :

SNRfrac =

max
t∈Γ

∑
f

SNR(t; f, Ω̂)

SNRΓ
. (4.3)
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Figure 4.19: False alarm rate as a function of pΛ of the O3a PySTAMPAS search after post-
processing selections applied (DQ flags and SNRfrac).

Name Deadtime [s]
L1:DCH-LSC_PRCL_IN1_GT_P075:1 2661
L1:DCH-POP_LOUD_GLITCHES:2 80181
L1:DCH-SQZ_SATURATIONS:1 2484
L1:DCH-THUNDER_MIC_BP_GT_300:1 2903
H1:DCH-POP_LOUD_GLITCHES:2 51662
H1:DCH-PSL_FSS_BLRMS_GT0P3:1 10203
H1:DCH-WHISTLES:2 41313
Total 191407

Table 4.4: List of DQ flags selected for the analysis of O3a with PySTAMPAS.

For a short glitch, the largest part of the energy tends to be located in a single time bin. Therefore,
we expect a high value of SNRfrac, as opposed as for a long-lived signal. Similar to what we did
with Rveto, we compare the distribution of SNRfrac for signal and noise in Figure 4.21. The
distribution for noise triggers is clearly bimodal with a separation at SNRfrac ' 0.4, while most
values are lower than 0.4 for the signal. Therefore, we set a selection criteria of SNRfrac lower
than 0.4 for the triggers. The final cumulated distribution of triggers after DQ flags and SNRfrac
veto is represented by the blue curve in Figure 4.19. The loudest trigger pΛ value for a a FAR
of 1 per 50 years is 3.0.

4.4.2 Efficiency estimation

We use the same set of waveforms as in the O2 analysis to estimate the sensitivity of the search.
The method remains identical. The results are presented in Figure 4.22, with also a comparison
with STAMPAS / Zebragard results [20]. We report an efficiency increased for all waveforms
except for the 3 ISCO chirps, a result similar to what has been obtained with Gaussian noise.
The average improvement over hrss at 50% detection efficiency compared to STAMP-AS is ∼ 25%.
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Figure 4.20: Coherent tf -map of the loudest background trigger found in the PySTAMPAS O3a
analysis before the application of the SNRfrac veto.

Figure 4.21: Distribution of the discriminant variable SNRfrac for noise triggers found in O3a
by PySTAMPAS and an ADI-A signal injected at distances between 1 and 50 Mpc.

Notably, sensitivity for the sine Gaussian signal (SG-C) is increased by a factor 2.8. This is
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mainly due to the fact that we estimate the PSD over a segment of time that is longer than the
duration of this signal.

Figure 4.22: Values of hrss at 50% detection efficiency and a FAR of 1/50 yr−1 are represented for
each waveform as a function of its mean frequency for the O3a search. Green crosses represent
values obtained with PySTAMPAS, while purple dots represent the results obtained with STAMP-AS
for the same waveforms. The detectors’ averaged amplitude spectral densities during O3 are
shown with the blue and red curves for H1 and L1 respectively.

4.4.3 Coincident analysis

The results of the coincident analysis are shown in Figure 4.23. The loudest trigger has a
false alarm rate of 1 per 363 days, corresponding to a p-value of 0.27. Its time-frequency map
is represented in Figure 4.24, and is typical of triggers generated by PSD fluctuations at low
frequency. Once again, we report no detection of a GW signal.

4.5 Conclusions and potential improvements

We have used PySTAMPAS on real data and seen that despite the promising results obtained on
Gaussian noise, a substantial amount of work is needed to make the pipeline competitive for real
data analysis.

For each run, we used a different PSD estimation method. We saw that the frequency-
median PSD offers much better sensitivity to monochromatic signal than STAMP-AS or Coherent
WaveBurst, by at least one order of magnitude (i.e a factor 100 on the GW energy emitted and
a factor 1000 in the detection volume being surveyed). However, the numerous spectral lines
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Figure 4.23: False alarm rate of the PySTAMPAS O3a search as a function of pΛ after applying all
post-processing selection criteria (DQ flags and SNRfrac). On top of the curve are placed the
values for the 10 most significant triggers found in coincidence with red crosses.

Figure 4.24: Coherent tf -map of the loudest coincident (zero-lag) trigger found by PySTAMPAS
during O3a.

that are present in the detectors’ noise are enhanced with this method and generate a lot of
loud background triggers. The use of frequency masks and Rveto allows to clean the background
distribution, but it is at the cost of sensitivity to non-monochromatic signals, which are also
affected by these cuts. The algorithm we use to flag spectral lines is quite basic, and it may be
worthwhile to devote efforts to use or develop more intelligent lines removal techniques in the
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future.
The results we have obtained on O3a with the time-average PSD were closer to what we could

expect from Gaussian noise analyses, with an overall increase in detection efficiency compared to
the previous version of STAMP-AS. The discriminant variable SNRfrac is very efficient to remove
the short glitches that constitute the loudest background triggers, and it does not affect signal
as much as Rveto does.

In any case, we showed that it is possible to perform rapid background estimations for all-sky
/ all-time searches with seed-based clustering. We did not go beyond 100 years of background
in these searches because there was no significant event that would have required to estimate
background further, but in future runs, with increased detectors’ sensitivity, it is plausible that
events with FAR lower than 1 per 100 years will be detected. In this case, it would be necessary
to generate enough background to correctly estimate the FAR of such events, so rapid back-
ground estimation will become crucial. In any case, it is worthwhile to begin with analysing a
small amount of background noise to identify the problems, select the appropriate DQ flags and
develop post-processing vetoes if necessary, before running a “blind analysis” of several hundred
years.

4.5.1 Development of a new detection statistic

We have seen in Section 4.3 that the tail of the background distribution is dominated by non
Gaussian noise trigger (mostly transient spectral lines). Applying the Rveto selection criteria
to clean up this distribution degrades the detection efficiency, as a fraction of the injections
is vetoed. Let us investigate this problem further. Recall from Eq. (3.37) that the detection
statistic pΛ involves different quantities: the coherent summed signal to noise ratio SNRΓ and
the normalized residual energies in each detector

EresI =
∑

(t,f)∈Γ

SNR(t; f)− |ỹI(t; f)|2.

To simplify the problem and consider it in way that is symmetric between all detectors, we can
define the summed residual energy

Σres =
∑
I

EresI

EI
. (4.4)

Therefore, in the limit SNRΓ >> Σres,

pΛ ≡ − log(|1− Λ|) ' log

(
SNRΓ

Σres

)
. (4.5)

The qualitative argument that made us choose this definition for pΛ is that for a true GW signal,
SNRΓ should be large and Σres should remain small, while for a noise trigger, even with a high
value of SNRΓ, Σres has no reason to be small. Without more knowledge on the respective
distributions of noise and signal over real data, taking the ratio between these two quantities was
a reasonable choice. However, now that we have access to those distributions with real data, we
can re-evaluate the relevance of this choice and define a more adapted detection statistic.

In Figure 4.25, we show the distributions SNRΓ versus Σres for the noise and signal triggers
extracted from the O2 analysis. Noise triggers that overlap DQ flags have been removed, but
Rveto has not been applied. Signal triggers correspond to ADI-A and ISCOchirp-B waveforms.
The separation between the two populations, noise and signal, is well marked. In particular,
when values of SNRΓ become significant (& 2000), Σres is a better discriminant variable between
noise and signal. To evaluate the ability of pΛ to discriminate signal and noise, we draw isovalues
of the pΛ statistic in the figure (black dashed line). We can see the shortcomings of this variable:
the tail of the background distribution, at pΛ ≥ 3, is not separated from the signals despite having
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Figure 4.25: Distribution of SNRΓ versus Σres for noise triggers extracted in the O2 and O3a
analyses (in blue), and for triggers associated with injections (in orange). Two waveforms, ADI-
A and ISCOchirp-B, were used and injected at various amplitudes. The black dashed curves
represent isovalues of pΛ, and the red curve are isovalues of the new statistic LΛ defined in Eq.
(4.6).

much larger values of Σres. This behaviour, which is not present in Gaussian noise simulations,
leads to a loss of sensitivity.

By observing the distribution of noise triggers in the SNRΓ−Σres plane, it seems that another
combination of these two quantities may be more appropriate. If we define

LΛ =
log SNRΓ

Σres
, (4.6)

we can see in Figure 4.25 that isovalues of this new statistic (red lines) provide more discrimina-
tion between the two populations. To test that hypothesis, we re-compute the FAR distribution
as a function of LΛ instead of pΛ, then we re-compute the detection efficiencies using a threshold
on LΛ that corresponds to a FAR of 1 per 50 years. The FAR curve obtained is shown in Figure
4.26. Contrary to the curve obtained with pΛ (Figure 4.14), the tail is absent. Values of hrss

at 50% detection efficiency for the different waveforms are shown in Table 4.5 with a detection
threshold of 1.5 on LΛ. We report an increase in sensitivity of 15% in average compared to the
results obtained using pΛ as detection statistic7.

This work shows that it is possible to significantly improve the detection efficiency by adapting
the detection statistic to the characteristics of the noise distribution. The definition of LΛ we

7The extreme value of 4.86 obtained for ECBC-D is removed from the computation of the relative improvement.
It grows to 40% when that value is included
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Figure 4.26: False alarm rate as function of the new detection statistic LΛ for the O2 PySTAMPAS
search after removing triggers corresponding to DQ flags. Rveto is not applied.

have chosen here gives satisfactory results for the analysis of O2 with the frequency-median PSD,
removing the need for post-processing cuts that affect the detection efficiency, and allowing to
reach detection efficiency similar or better than STAMP-AS for a majority of the waveforms tested.

In this case, the construction of LΛ is dependant on the data set. We choose its expression by
looking at the distribution of two discriminant variables, SNRΓ and Σres, over noise and signal.
This process could be automated via a simple neural network, which would have the advantage
of being adaptative to each data set analyzed. However, when training such a neural network,
one should be careful to feed it with signals covering a large range of morphologies, in order to
avoid overfitting the data and biasing the trigger selection towards a certain type of signal.

4.5.2 Reconstruction of GW170817

The binary neutron star merger signal GW170817 was observed on 17 August 2017 at 12:41:04
UTC by the three detectors H1, L1 and V1. The detection of counterparts along the whole
electromagnetic spectrum opened the era of multi-messenger astronomy. The relatively low chirp
mass of the system (Mc ' 1.19 M�) means that the signal was present in the sensitive band of
the detectors for several dozens of seconds. Hence, it falls within the parameter space covered by
long-duration searches. The merger signal was detected with matched filtering techniques with a
combined SNR of 32.4 [19]. Despite its very high significance, it was not seen by STAMP-AS during
the all-sky search on the O2 run [133]. Similarly, I did not found any signal in the re-analysis of
this run with PySTAMPAS presented in Section 4.3.

Since the GW signal from compact binary mergers is well modelled and depends on a relatively
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Waveform pΛ LΛ Relative improvement
ADI-A 3.35e-22 3.2e-22 1.05
ADI-B 4.6e-22 4.54e-22 1.01
ISCOchirp-A 1.2e-20 1.32e-20 0.91
ISCOchirp-B 2.53e-21 2.68e-21 0.94
ISCOchirp-C 1.03e-21 1.08e-21 0.95
NCSACAM_A 2.16e-21 1.65e-21 1.31
NCSACAM_B 2.33e-21 1.76e-21 1.323
NCSACAM_C 1.29e-21 1.21e-21 1.07
NCSACAM_D 1.57e-20 3.23e-21 4.86
NCSACAM_E 3.19e-21 1.94e-21 1.64
NCSACAM_F 1.65e-21 1.18e-21 1.40
SG-C 5.97e-22 5.91e-22 1.01

Table 4.5: Values of hrss at 50% detection efficiency and a FAR of 1 per 50 year for the different
waveforms tested, using the pΛ (column 2) and LΛ (column 3) as a detection statistic. The last
column displays the relative improvement obtained by using LΛ instead of pΛ.

small number of parameters, they are primarily searched with matched filter algorithms, so the
fact that GW170817 was not recovered by neither STAMP-AS nor PySTAMPAS is not critical per
se. Yet, unmodelled detection algorithms are used to search for a potential post-merger signal
for which we have seen in Chapter 2 that there are large theoretical uncertainties or compact
binary coalescnece of systems with eccentricity. Un-modelled searches for a post-merger signal
to GW170817 have been performed, focusing short-duration (< 1 s), long-duration (1 − 500 s)
[150] and very-long duration (several days) [82] signals. None of these searches found a candidate
GW signal. The search for a long-lived post-merger signal, which was conducted with STAMP and
Coherent WaveBurst, was sensitive on signals up to a distance of ∼ 4 Mpc, that is approximately
one order of magnitude lower than the distance of GW170817. Yet, as the post-merger signal is
expected to be fainter than the merger one, detecting the latter is a good test of the sensitivity
of our pipelines. A non-detection of the pre-merger signal is not promising for the prospect of
detecting a post-merger signal.

In figure 4.27 we show tf -maps of the data from L1 and H1 around the time of GW170817.
A short glitch was present in L1 data at the time of the event [19], thus we use cleaned data
from which the glitch has been removed [151]. The signal is clearly visible by eye in L1. Yet,
burstegard did not extract any cluster in this tf -map. After investigation, it happens that a
large number of pixels have a value of |ỹ(t; f)| below the clustering threshold of 2. Therefore,
the most energetic pixels are in general separated by a distance larger than the clustering radius
of 2 s× 2 Hz, so the clustering fails to reconstruct the signal.

To see if it is possible to reconstruct the signal, we decide to modify the parameters of the
clustering algorithm. The two options would be to lower the threshold on |ỹ(t; f)| to add more
pixels, and / or to increase the clustering radius. We opt for the latter in order not to add too
much noise pixels. In Figure 4.28, we show the cluster extracted by burstegard after setting the
clustering radius to 5 s×5 Hz. Despite a lot of sub-treshold pixels are missing, a part of the signal
is reconstructed. To assess its significance, we build the coherent trigger that corresponds to this
cluster by matching it with pixels from H1. The coherent tf -map obtained is shown in Figure
4.29. The trigger has a statistic pΛ = 2.20, and LΛ = 1.64. Since we have changed the clustering
parameters, we have to re-estimate the background distribution, as different noise clusters may
be extracted too. The FAR of the search with these new parameters is shown in Figure 4.30 as
a function of LΛ, applying the same DQ flags and post-processing vetos than in the O2 analysis
of Section 4.3. The trigger corresponding to GW170817 has a FAR of 2.75 × 10−8 s−1, that is
about 1 per 420 days. Hence, it does not pass the detection threshold of 1 per 50 years.
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Figure 4.27: Multi-resolution tf -map of the cleaned data from LIGO Livingston (L1, top) and
LIGO Hanford (H1, bottom) around the time of GW170817. The maps are made with PySTAMPAS
using strain data after noise subtraction [151].

Nevertheless, this result highlights a path for future improvement. The distribution of LΛ

shown in Figure 4.30 still has a tail that diminishes the significance of the GW170817 triggers. In
purely Gaussian noise, this event would certainly have had a far greater significance, potentially
crossing the detection threshold. It is therefore important to find better ways to discriminate
non-Gaussian noise triggers for signal. In this respect, discriminant statistics based on spectral
shape or coherence between detectors, such as SNRfrac and LΛ, may be refined and improved.
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Figure 4.28: Cluster extracted by burstegard using a clustering radius of 5 pixels from the
tf -map of Figure 4.27.

Figure 4.29: Coherent trigger reconstructed by matching the cluster from Figure 4.28 with H1
data.
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Figure 4.30: Cumulated distribution of background triggers obtained with the configuration of
burstegard that allows to reconstruct GW170817. We use the statistic LΛ to better discriminate
a signal from loud noise events. The red dot represents the trigger that corresponds to GW170817.
It has a FAR of ∼ 1 per 420 days.
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Chapter 5

Search for long-duration gravitational
waves counterpart around Magnetar
Giant Flares

In this chapter, I present a targeted search for a gravitational-wave counterpart potentially
emitted by 3 short GRBs (GRBs) from nearby galaxies. These results have been published in a
paper I wrote with Bizouard, Burns, Christensen, Coughlin, Wadiasingh, and Younes [136].

Unlike all-sky searches, targeted searches look for gravitational wave emission from a par-
ticular source. The parameter space is considerably reduced, since the position and time of the
targeted source are known with a certain degree of precision. However, the detection method
remains the same. It was also an opportunity to use PySTAMPAS in a targeted search configuration.

5.1 Magnetar Giant Flares

5.1.1 Context and history

Soft gamma repeaters (SGRs) are astrophysical sources that emit short bursts of soft gamma-
rays with peak luminosity in the range 1038 − 1042 erg s−1 at irregular intervals, separated by
months or years of quiescence (see e.g [28, 152, 113]). The first one, SGR 1806-20, was discovered
in 1979 in the Large Magellanic Cloud[114], and a handful of SGRs have been observed since
then in our galaxy. Among them SGR 1935+2154, first discovered in 2014, has been associated
to a fast radio burst, FRB 200428, making the link for the first time between fast radio bursts
and magnetar flares [153].

SGRs are now believed to be magnetars, highly magnetized neutron stars with surface mag-
netic field B & 1014 G, and possibly even larger internal field. In the magnetar model, the huge
internal magnetic field constitute the reservoir of energy for the repeated bursts [110, 111, 112].

On rarer occasions, SGRs undergo giant flares, known asMGF (MGFs). Those flares typically
consist in a short (∼ 0.1 s) burst of gamma-rays with luminosity around 1044−1047 erg s−1, orders
of magnitude higher than “normal” flares. The short burst is followed by a decaying tail in the
hard X-rays that can last several hundreds of seconds. Interestingly, this tail features quasi-
periodic oscillations (QPOs) at frequencies between 20 − 600 Hz that could be the signature of
non-radial oscillations of the neutron star [117]. Only three MGFs have been observed so far :
from SGR 0526-66 in 1979 [114], SGR 1900+14 in 1998 [115] and SGR 1806-20 in 2004 [116, 154],
but all three exhibit this typical behaviour, as can be seen in the light curves shown in Figure
5.1.

Beyond the three giant flares observed in the MilkyWay, the question arises of potential MGFs
from other galaxies. Given the order of magnitude of the energy emitted, Eiso ∼ 1044− 1047 erg,
only the short gamma-ray flash of an extragalactic MGF could be detected. Because of that,
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Figure 5.1: Light curves of the three giant flares from galactic SGRs showing the initial burst
and pulsating tail. Top : SGR 0526-66 (1979), figure from [114]. Middle : SGR 1900-14 (1998),
figure from [115]. bottom : SGR 1806-20 (2004), figure from [116].
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such signals would resemble short GRBs emitted by BNS mergers.
Early in 2021, Burns et al. unambiguously identified a sample of 4 short GRBs from nearby

galaxies (closer than 5 Mpc) potentially associated to MGF [120]. Indeed, their electromagnetic
properties (light curve, spectrum, isotropic energy) differ from the ones of short GRBs, and the
no detection of a GW signal from a BNS at such short distances rules out a potential BNS origin.
This discovery, added to the three MGFs known from our galaxy, confirms that these sources
constitute a significant fraction (more than 1%) of the population of short GRBs [155]. The
volumetric rate of MGFs inferred from these events is RMGF = 3.8+4.0

−3.1 × 105 Gpc−3 yr−1 [120],
much higher than the rate of compact binary mergers.

Because of the large energy released at a relatively close distance, these sources are potentially
observable with gravitational waves [118, 119, 156]. Therefore, the discovery of Burns et al. has
motivated us to re-visit these 4 extragalactic GRBs with PySTAMPAS to search for a potential
gravitational waves counterpart.

For two of these events, GRB 051103 and GRB 070201, unmodelled searches for GW emission
had already been performed with X-PIPELINE [157], the FLARE pipeline [158]. They did not found
any GW signal, but set upper limits on the gravitational wave emitted. X-PIPELINE set limits at
1.2×1052 erg for GRB 051103, while FLARE found upper limits at 2.0×1051 erg and 7.9×1050 erg
for GRB 051103 and GRB 070201 respectively [159, 160]. The third event, GRB 070222, was
only recently included in the sample of potential MGFs. X-PIPELINE set an exclusion distance at
8.9 Mpc for short-duration bursts [161]. Finally, the latest event, GRB 200415a [162], happened
after the suspension of O3 in March 2021. Only GEO-HF and KAGRA were observing at the
time, but we did not analyze those data. The results of a search for GW counterpart to GRB
200415a in GEO-HF and KAGRA data will be reported in a forthcoming publication of the
LIGO-Virgo-KAGRA collaboration. All the upper limits given here are for the 100 − 200 Hz
band, where the detectors are the most sensitive.

5.1.2 Potential gravitational-wave emission processes

Gravitational waves are emitted if the magnetar develops a sufficiently strong time-varying
quadrupole moment. Given the large amount of energy released during a giant flare, it is likely
that some oscillation modes of the star are excited. However, it is difficult to understand exactly
which modes are excited, where and how.

Excitations of the fundamental f -mode were originally thought to be able to generate de-
tectable GW at frequencies ∼ 1− 2 kHz [118, 119]. From the reservoir of magnetic energy, Ioka
[118] and Corsi and Owen [119] computed the maximal energy released via gravitational waves
to be around ∼ 1048 − 1049 erg. However, these optimistic predictions have since been ruled out
by numerical simulations, and it is now believed that this mode cannot be excited sufficiently to
generate GW at a detectable amplitude unless the magnetic field is orders of magnitude higher
that what it is observed [163, 164, 165]. Besides, the high volumetric rate of such events [120]
makes it likely that they occur several times during the life of the magnetar, so this disfavours
scenarios in which all the reservoir of energy is consumed at once.

Prospects for detecting GW from magnetars still exist however. The QPOs observed in the
pulsating tails of several MGFs could be associated with oscillation modes being exited at lower
frequencies for a longer amount of time [166]. These could be coupled with GW emission in the
200− 600 Hz band [167, 168, 163], for which current detectors are the most sensitive. The QPOs
seem to damp on short timescales (∼ 1 s), but are continuously re-excited. It is not clear which
oscillation modes exactly are associated with the QPOs, and how they couple to GW emission.
In particular, we do not know if they involve only the crust or also the core of the magnetar.
In the latter case, GW emission could be much stronger than in the former, because the crust
represents only a small fraction of the total mass of the star.

Once again the large uncertainties on the models motivate the use of an unmodelled search
algorithm, and for this particular case, consider a short-duration and long duration GW emission.
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We are particularly interested in constraining the ratio EGW /Eiso of gravitational waves energy
emitted to the isotropic electromagnetic energy, as it could give an indication on the location of
the trigger (internal or magnetospheric).

5.2 Description of the searches

5.2.1 Data sample

Following the discovery of Burns et al. [120], we consider 4 short GRBs which are potentially
MGFs. For GRB 051103 [169, 170], GRB 070201 [171, 172] and GRB 070222 [120, 173], we use
coincident data from two of the three initial LIGO detectors (H1, H2 and L1) from the 5th science
run (S5). GRB 200415a [174, 175] happened after the end of O3 unfortunately. Only KAGRA
(K1) and the GEO-HF (G1) were observing at the time, and we did not analyzed those data as
they are still covered by the proprietary data period (a collaboration paper is in preparation).
However, we considered it for a prospective study to estimate the chance of detecting a GW signal
when advanced GW detectors will reach their design sensitivity, expected during O5 [176]. The
main properties of each source are summarized in table 5.1

Event Time (UTC) Host Distance (Mpc) Detectors Pair efficiency
GRB 051103 09:25:42 UTC 3 November 2005 M81 3.6 H2, L1 0.47
GRB 070201 15:23:10 UTC 1 February 2007 M31 0.77 H1, H2 0.30
GRB 070222 07:31:55 UTC 22 February 2007 M83 4.6 H1, H2 0.32
GRB 200415a 08:48:05 UTC 15 April 2020 NGC 253 3.3 G1, K1 0.471

Table 5.1: Properties of each event and detectors that were observing at the time of each event.
Pair efficiency is the quantity εIJ defined in Eq. (3.22). H2 is the 2 km-long arm interferometer
that shared the same vacuum chambers than H1 during 2012

5.2.2 Configuration of the pipeline and method

Given that the QPOs damp on short timescales, potential scenarios of GW emission also include
short-duration signals. To consider such a possibility, we configure PySTAMPAS to search for
shorter signals with duration ∼ 1 s. To do so, we set up the clustering algorithm to favour short
signals composed of a few amount of pixels. Hence, two searches are done for each source : a
long-duration one and a short-duration one, which use different configurations of the pipeline.

On-source and off-source windows

Each search around each of the 3 GRBs is performed independently. The methodology is the
following. We define two data sets. The search itself is performed on an on-source window,
that consists in an interval of time that contains the event, and therefore the potential signal
we expect to detect. To estimate the background distribution and the sensitivity of the search,
we use an off-source window. It is a larger data set, which we take as close as possible to the
event, but excluding the on-source window. We assume that the characteristics of the noise in
the off-source window are representative of the ones in the on-source window.

To choose the duration of the on-source window, we have to take into account the expected
duration and the GW signal, and its potential delay with respect to the gamma-ray emission. As
we saw, these parameters are poorly constrained [163]. In order not to exclude any possibility, we
opt for 512 s on both sides of the GRB trigger time. This allows us to keep the value of Twin used
in all-sky searches. The on-source window is split into three windows of 512 s that overlap by
50%. Regarding the off-source window, its precise length is not fixed, because of discontinuities
in the data available. It consists in about ∼ 10 total days of coincident data. It is also split in
512 s, 50% overlapping windows.
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Data pre-processing

Following the method described in section 3.2, each window is analyzed independently to search
for excess power clusters. The clusters are cross-correlated with the other detector’s data and
the detection statistic pΛ is computed.

The data are high pass filtered with 22 Hz frequency cut-off and gated to remove short glitches.
Among the two available methods to estimate the PSD, we opt for the frequency-median because
it provides increased sensitivity to quasi-monochromatic signals. Like in previous searches, the
window for the moving median is set to 20 Hz.

Time-frequency maps of the whitened statistic ỹ(t, f) are built with a time-frequency reso-
lution of 1 s× 1 Hz and 50% overlap between time segments. We do not use the multi-resolution
feature for this study because it is not useful for quasi monochromatic signals. The frequency
range of the maps is 30 − 2000 Hz, which is adapted to the PSD of LIGO detectors during the
S5 run.

The frequency-median method for PSD estimation makes the analysis very sensitive to spec-
tral lines. We use frequency notches to mask problematic frequency bins. The algorithm used
to select the bins to mask is the same than the one used for the all-sky search in O2 data : if a
frequency bin has a mean value of |ỹ(t; f)| greater than 2 in more than 5% of the total windows,
it is notched. This process is done on the off-source window, and the frequency notches are then
applied also to the on-source window.

Clustering

We use burstegard as clustering algorithm. Since the parameters of the search are not the same
than for an all-sky search, we tune the algorithm differently. Two sets of parameters are defined
for long and short-duration searches. In the first configuration, we target long-duration signals.
Therefore, we set a rather low threshold on the pixels’ energy (corresponding to select ∼ 10% of
the total number of pixels of a tf -map), and dismiss clusters that are constituted of less than 20
pixels. The minimal number of pixels is lower than in all-sky searches, but it is compensated by
the fact that we use only one resolution, so clusters contain less pixels in average.

Given that there are plausible scenarios for short-duration GW emission, we decided to do a
complementary search using a configuration that targets specifically short lived signals (∼ 1 s).
As the successor of STAMP, PySTAMPAS was not initially designed to perform such searches. Other
data analysis pipelines, such as Coherent WaveBurst and the X-PIPELINE, are traditionally used
for short-duration searches in LIGO-Virgo data. Nevertheless, the detection principle remains
the same. To increase sensitivity to short signals, we first decrease the minimal number of pixels
per cluster to 5. Indeed, we expect that kind of signals to have all their energy spread over only
a few pixels. To compensate for the increased number of noise clusters generated, we increase
the threshold on |ỹ(t; f)| to 2.5, leading to consider less than 1% of the total number of pixels
in a tf -map.

Coherent analysis

Coherent analysis differs from an all-sky search because the direction to the source Ω̂ is known,
and consequently the antenna patterns and time delay between detectors 2.

In practice, the localization of a GRB is given with an error box that can be rather large.
Luckily, all 3 events considered here has been associated with a host galaxy whose coordinates
are known. Nevertheless, the angular diameter of nearby galaxies on the sky is not negligible.
To consider the most extreme case, M31 has an angular diameter of ∼ 3o. We can go back to the
computations of section 3.2 to estimate the relative loss of SNR 1− ε induced by the uncertainty

2The current version of PySTAMPAS does not consider a possible error box around an event.
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on Ω̂ :
ε ' (πfdτ)2. (5.1)

For GRB 070201 and GRB 070222, the only detectors for which we have data are H1 and H2,
which are co-located. There is no delay, therefore ε = 1. Only for GRB 051103 we are in the
case of spatially separated detectors, H2 and L1, for which the distance is ∼ 3000 km. The error
box given by the GCN [169] for this event is 120 squared arcminutes. Using this information, we
can constrain the maximal loss of SNR (which happens in the case where the error ~dΩ is parallel
to the baseline) to ∼ 8% at 2000 Hz, which is acceptable as a first approximation.

In addition, it should be noted that the antenna factors and time delay are not recomputed
for each cluster when performing background and efficiency estimation. Indeed, we want to
assess the sensitivity of the search to a precise event that happened at a fixed time and duration.
Therefore, we always use the values that correspond to the configuration of the detectors network
at the time of the event.

5.2.3 Waveforms tested

Given the theoretical uncertainties on the GW emission processes and the number, it is not really
pertinent to use astrophysically motivated waveforms to estimate the sensitivity of the search.
Instead, we opt for more generic waveforms, sinusoidal signals damped with an exponentially de-
caying envelope. These waveforms depend on 3 parameters, the amplitude A0, central frequency
f0 and decay time T . We create circularly polarized waveforms for which the GW strain is

h+(t) = A0 cos(2πf0t)e
−t/T

h×(t) = A0 sin(2πf0t)e
−t/T .

(5.2)

For the long-duration search, we use 6 different signals with f0 ∈ {100 Hz, 250 Hz, 500 Hz} and
T ∈ {2 s, 10 s}. To simulate a short lived signal we use a single sine damped waveform with a
decay time T = 0.2 s at f0 = 100 Hz. Indeed, we saw when doing the long duration search that
sensitivity for a monochromatic signal scales with the detector’s PSD, so it is not necessary to
scan all the frequency range. Nevertheless, this set of waveforms allows to cover the parameter
space of low-frequency 20−500 Hz GW emission scenarios associated with the QPOs. Waveforms
are injected with antenna factors and a time delay corresponding to the time and location of
the event, but with random values of the polarization angle ψ and cosine of the inclination ι
to reflect that we do not know a priori the orientation of the source3. The lack of precisely
modelled signals in this case illustrates the interest of a search algorithm that makes minimal
assumptions on the signal’s morphology. Indeed, the GW signal emitted during MGFs may be
more complex than a simple sine damped. However, we have seen than the pipeline is mainly
sensitive to the global characteristics of a signal, namely the mean frequency and duration, so
results obtained with sine damped should not be different than ones obtained with more realistic
waveforms. A caveat to that claim is the case of repeating signal, for which the search sensitivity
could be improved by stacking the signal.

To constrain models, we are particularly interested in the energy EGW emitted in the form
of GW, and its ratio with the isotropic electromagnetic energy Eiso radiated during the flare.
Recalling the quadrupole formula, the GW energy emitted by a source seen at a distance r

EGW = r2 c
3

4G

∫
(ḣ2

+(t) + ḣ2
×(t)) dt. (5.3)

Since r is known from the host galaxy, we can estimate or place limits on the GW energy emitted
during the flares.

3Targeted searches for GW emitted by GRBs usually consider that the source is seen face-on (ι = 0) because
the GRB jet is beamed. We do not make that assumption here, which results in a relative loss of sensitivity for
our search by a factor ∼ 0.7.
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Figure 5.2: Cumulative distribution of background triggers for each GRB. Crosses represent
the GW triggers found in the on-source windows of GRB 051103 and GRB 070201. No trigger
was found for GRB 070222. The left and right panels show the results of long-duration and
short-duration searches, respectively. Figure from [136]

5.3 Results

5.3.1 Background estimation

For each of the 3 searches, the off-source window contains ∼ 10 days of data. We perform 1000
time slides, allowing to simulate ∼ 27 years of background noise, and fix a detection threshold
corresponding to a FAR of 1 per 20 years. Note that to compute the false-alarm probability,
the observing time is the duration of the on-source window, which is 1024 s, much shorter than
the off-source window. Therefore, a FAR of 1/20 yr−1 corresponds to a FAP of 1.6× 10−6, i.e a
confidence of more than 4.5σ.

For each event, we perform two distinct searches using the long and short duration configu-
rations respectively. To clean the background distributions from loud transient noise, we apply
Rveto with a rather high threshold of 10, which has no influence on the sensitivity of the search.
The results of background studies are shown in figure 5.2. Distributions of background triggers
feature no significant outlier.

5.3.2 Coincident analysis

The FAR of the loudest trigger found in the on-source window is shown on top of the FAR curve
in Figure 5.2 for each search. No trigger was found in the on-source window for GRB 070222.
Their properties are described in Table 5.2. A coherent tf -map of the most significant trigger
found is shown in Figure 5.3. Its frequency around 240 Hz makes it likely to be a fluctuation of
an harmonic of the 60 Hz power line. All triggers found in the on-source windows have a FAR
and morphology compatible with the null hypothesis, hence we report no significant gravitational
wave candidate.

5.3.3 Upper limits on gravitational wave energy radiated

Using the set of sine damped waveforms, we compute the value of GW energy at 50% detection
efficiency for each search with a threshold of 1/20 yr−1 on the FAR. The results are reported in
Table 5.3.

It is clear from these results that LIGO detectors’ sensitivity of the searches during S5 was
not sufficient to have a realistic chance to detect a GW emission, since the upper limits on
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GRB Search tstart − t0 (s) Duration (s) Frequency range (Hz) FAP

GRB 051103 Long 286 8 1640-1642 5.5× 10−3

Short 91 2.5 249–251 2.0× 10−1

GRB 070201 Long 158 12 237–243 6.4× 10−2

Short 431 1 783–786 4.8× 10−1

Table 5.2: Properties of the loudest triggers found in each GRB on-source window for long-
duration and short-duration searches. tstart refers to the starting time of the GW trigger, while
t0 is the GRB trigger time. The false-alarm probability (FAP) is inferred from the FAR and the
duration of the on-source window.

Figure 5.3: Tf -map of the loudest trigger found in the long duration search around GRB070201.
It is compatible with an excitation of the 7th harmonic of the 60 Hz power line.

Duration (s) f0 (Hz) GW energy limits (erg)
GRB051103 GRB070201 GRB070222 GRB200415a

0.2 100 1.44× 1052 3.47× 1050 1.69× 1052 2.3× 1049

2 100 5.95× 1051 3.07× 1050 9.19× 1051 1.43× 1049

2 250 2.56× 1052 8.83× 1050 5.56× 1052 1.21× 1050

2 500 3.32× 1053 1.25× 1052 7.13× 1053 –
10 100 6.70× 1051 2.36× 1050 1.24× 1052 1.53× 1049

10 250 3.22× 1052 1.35× 1051 6.30× 1052 1.14× 1050

10 500 4.13× 1053 1.69× 1052 9.11× 1053 –
Isotropic-equivalent electro-magnetic energy Eiso (erg)
5.3× 1046 1.6× 1045 6.2× 1045 1.3× 1046

Table 5.3: GW energy emitted for a source detected at 50% efficiency for a FAR of 1 per 20 years.
Limits for 0.2 s emission have been obtained in the short-duration configuration of the pipeline.
Values for GRB 200415a have been obtained using simulated data following the sensitivity of
Advanced LIGO at the end of O3. The isotropic electromagnetic energy Eiso of each event
computed by [120] is given for comparison. Table from [136]

the GW energy emitted we set are 5 − 7 orders of magnitude higher than the electromagnetic
energy detected. However, these limits are improved by about a factor 2 compared to the ones
set by previous searches done using the X-PIPELINE for GRB 051103 and GRB070201, which
demonstrate the capability of PySTAMPAS to perform long-duration and short-duration targeted
GW searches. They are still higher than the ones reported by FLARE, but this pipeline was
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Figure 5.4: Upper limits (UL) on the GW energy emitted by GRB051103 (M81), GRB070222
(M83) and GRB070201 (M31) during are represented with cross markers for long duration emis-
sion, and triangular markers for short duration emission. Red markers represent the limits that
could have been set up for this GRB 2001415a with LIGO if it was observing at the time. The
dark grey band and blue band represent the limit on EGW as function of the distance to the
source that will be achievable with Advanced LIGO data at design sensitivity (O5) and Einstein
Telescope respectively. The brown band represents the minimal/maximal Eiso estimated for the
three GRBs analyzed in this study. Distances of nearest galaxies, SGR 1806–20 and SGR1900–14
are also shown.

sensitive to a much more restrained parameter space (only narrow-band signals with duration
. 0.1 s) [158].

For GRB 200415a, the hypothetical limits on the GW energy that could have been observed
by Advanced LIGO (O3 sensitivity) if it had been active at the time are ∼ 100 times lower
than in S5, which is compatible with the gain of a factor 10 in the detectors’ strain sensitivity
between these runs. However, there is still a gap of more than 3 orders of magnitude between
the sensitivity to GW energy and the electromagnetic energy emitted, so potential GW emission
processes would have still be difficult to constrain.

5.4 Future prospects and discussion

Despite the large energy released in gamma-rays, we showed that first generation detectors were
not sensitive enough to detect a GW emission from an extragalactic MGF, even assuming that
the GW energy emitted EGW is much larger than the electromagnetic energy Eiso, as could be
the case if the trigger of the flare is internal [119]. However, second generation ground-based
detectors at designed sensitivity could be sensitive to such values of EGW , and may be able rule
out the scenario EGW >> Eiso if an event like GRB 070201 happened during a future observing
run.

To explore the prospects of a future detection, we perform Monte Carlo studies using Gaussian
noise following Advanced LIGO at design sensitivity (expected during O5), and the Einstein
Telescope’s design sensitivity. We consider the pair H1 L1 of Advanced LIGO, and modelize the
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Einstein Telescope with 2 co-located interferometric detectors whose arms form a 60◦ angle and
arbitrarily located in Italy. Using the same set of damped sine waveforms as in the real data
search, we compute the detection sensitivity at 50% detection efficiency and FAR of 1/20yr−1.
Since we are doing a prospective study, signals are injected at random positions on the sky, and
the pipeline is then used in the all-sky configuration. Results are summarized in Figure 5.4. We
show the upper limit on the GW energy detectable as a function of the distance to the source
for different scenarios.

We see that a potential GW emission from an extragalactic MGF will be difficult to detect
with second generation detectors if EGW ∼ Eiso. However, third generation detectors such as
the Einstein Telescope may be able to approach these values for a relatively close event (e.g in
M31).

Prospects of detection are better for galactic events. For SGR 1806-20 and SGR 1900-14,
Advanced LIGO at design sensitivity would be able to constrain the GW energy emitted up to 1%
of the isotropic electromagnetic energy. Given the fact that 3 galactic MGFs have been observed
in the last ∼ 40 years, the possibility that such an event happens during a future observing run
is not negligible. With a gain of factor ∼ 100 in sensitivity to GW energy expected for third
generation detectors, the less rare less energetic flares may also come within detection range.

Characterization of gravitational-wave emission from magnetar activity is essential to under-
stand the nature of the unknown trigger(s) of the flares, and how strongly they couple to the
interior of the neutron star. This also has implications fore more common short bursts that may
share the same physical trigger, since similar QPOs have been reported in those [177, 178]. In
addition, given the recent association of a fast radio burst with a short GRB event [153, 179, 180],
and proposals that magnetar oscillations may underlie some fast radio bursts, [181, 182, 183, 184],
GW studies offer a potentially unique view on the trigger of magnetar bursts. This also mo-
tivates the development of new detection algorithms that more specifically targets repeating
signals associated with QPOs.

Finally, we note that the volumetric high rate of MGF inferred by [120] potentially allows for
a non-negligible contribution to the stochastic GW background [121] by magnetars, which could
be pertinent for third generation detectors.
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Conclusion

Six years after the first discovery of a gravitational wave signal from the merger of two black holes,
gravitational wave astronomy has made tremendous progresses. During the third observing run
of Advanced LIGO and Advanced Virgo, which was concomitant with my thesis, compact binary
merger detections, that were groundbreaking just a few years ago, became (almost) routine. The
frontier is rapidly pushed back, and new sources of gravitational wave may be on the verge of
being observed.

Among the potential new sources of gravitational waves not yet observed, this thesis has
focused on searches for long-lived (> 1 s) transient signals. Such signals may be emitted in
the aftermath of cataclysmic events involving neutron stars or black holes, such as core-collapse
supernovae or the remnant of a binary neutron star merger. Models of emission usually in-
volve complex hydrodynamical instabilities, potentially coupled with magnetic field, in a ultra-
relativistic framework. Therefore, it is extremely difficult to compute exact waveforms for the
gravitational wave signals emitted, so searches have to rely on signal-agnostic methods.

One of these methods, STAMP, consists in looking for excess power pixels in a time-frequency
representation of the data. To distinguish gravitational-wave signal from the numerous noise
transients that are present in the data, it uses the correlation product between data streams from
spatially separated detectors. The bulk of my work has consisted in improving and optimizing
STAMP to perform all-sky searches over a year-long observing run and a network of detectors.
It has culminated with the development of a new data analysis pipeline, PySTAMPAS, which
implements the core of the STAMP method along with several new features intended to reduce the
computational cost of an analysis and improve detection sensitivity.

I then used this new pipeline to search for long-duration gravitational waves in real detectors’
data. I revisited the second observing run of Advanced LIGO/Advanced Virgo, and obtained
results comparable with what have been obtained by state of the art pipelines currently used by
the LIGO-Virgo-KAGRA collaboration. I also analyzed the first part of the third observing run,
in parallel with STAMP-AS, and obtained improved upper limits for a wide range of signals tested.

The identification of a sample of short GRBs with a Magnetar Giant Flare origin by Burns et
al. in early 2021 [81] has been the occasion to revisit these events with PySTAMPAS. Magnetars are
promising candidates for detectable gravitational-wave emission, because of their large reservoir
of magnetic energy. Knowledge of these objects is still sparse, but it expands rapidly, and
characterizing the potential GW emission would be useful to constrain the models, especially for
the trigger of the giant flares. I did not detect any signal from the three events that happened
in the late 2000’s, but I set upper limits on the gravitational-wave energy emitted that are
consistent with the literature. I also studied the detection prospects for such events in future
observing runs, and showed that Advanced LIGO should be able to detect a GW emission from
a galactic magnetar giant flare if the GW energy emitted is more than 1% of the total isotropic
electromagnetic energy emitted. Flares from extragalactic magnetars, however, may not be
detectable even with third generation detectors, unless the energy emitted via gravitational
waves is orders of magnitude higher than the gamma-ray energy.

The first detection of a signal that does not come from a compact binary merger did not hap-
pen during O3, but continuous improvement of the sensitivity of detectors, as well as increasing
observing time, makes the prospect of a detection more and more likely, and hopefully imminent.
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It is therefore important to devote efforts to improve our data analysis techniques in order to
maximize the benefit from increased detectors’ sensitivity. Detection methods based on an excess
cross-power statistic may never reach the sensitivity of optimal matched filter, yet the gap could
be partially bridged, for example by developing better clustering algorithms - potentially making
more assumptions on the nature of the signal, or by improving the methods to reject transient
glitches and spectral lines that increase the false-alarm rate of the search.

The hypothetical detection of an unmodelled gravitational-wave signal in the near future
may provide invaluable information on the gravitational-wave emission processes. To be able
to constrain the models, our pipeline will have to be extended to be able to reconstruct the
waveform of a detected signal, and estimate its parameters.
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