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Abstract

In this thesis, we are interested in random walks related to Galton-Watson
trees. Firstly, we study the A-biased walk on a Galton-Watson tree, and
deduce the scaling limit of its cover time, i.e. the time that every vertex is
visited. Secondly, we study the capacity, in the sense of potential theory, of a
branching random walk in Z¢, and deduce its asymptotic for all dimensions
d > 3. Thirdly, we study the spread of a branching random walk condi-
tioned on rarely survival, and give its limiting behavior in the sense both of
genealogy and of spatial distribution.

Résumé

Dans cette thése, on s’intéresse aux marches aléatoires liées a l'arbre de
Galton-Watson. Premiérement, on étudie la marche A-biaisée sur un arbre de
Galton-Watson, et en déduit la limite de son temps de recouvrement, c’est-
a-dire la durée pour visiter chaque sommet dans ’arbre. Deuxiémement, on
étudie la capacité, au sens de la théorie du potentiel, d’'une marche aléa-
toire branchante dans Z<, et en déduit son asymptotique pour toutes les di-
mensions d > 3. Troisitmement, on étudie I’étendue d’'une marche aléatoire
branchante conditionnellement & une survie rare, et fournit son comporte-
ment limite au sens de la généalogie et de la distribution spatiale.
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Chapter 1

Introduction

This thesis mainly concerns branching random walks and biased random
walks on Galton-Watson tree. We explore the fundamental concepts in Sec-
tion and introduce three distinct problems as follows. In Section [I.2] we
study the cover time for biased random walks on supercritical Galton-Watson
trees; in Section [1.3| we treat the capacity for critical branching random walks;
and in Section we consider the spatial spread of branching random walks
conditioned on rarely survival. The following Chapter [3] to Chapter [6] are
autonomous, presenting proofs for our results, based on [18], [21], [19], and
[20], respectively.

1.1 Galton-Watson trees and branching random
walks

Intuitively, a Galton-Watson tree is a discrete branching structure, where
each particle at each generation splits into randomly many new particles inde-
pendently, according to the same offspring distribution. Further, a branching
random walk can be viewed as a random walk indexed by a Galton-Watson
tree, in other words, the Galton-Watson tree describes the genealogy of indi-
viduals in a population, whose displacements are given by the random walk.

1.1.1 Planar trees and Galton-Watson trees
We define a planar tree as a set of integer sequences, T' C U,>oN’}, such that

e The root & € T, where by convention we denote N = {&}.

e If a node u = (uy,- - ,u,) € T, then its parent U= (Ug, -+ yUp_1) €
T.

10



CHAPTER 1. INTRODUCTION 11

e For each node u = (uy,--- ,u,) € T, there exists an integer k,(T) > 0
called its number of children, such that for every j € N, (uy,- -+ ,u,,j) €
T if and only if 1 < j < k,(T).

As conventional notations, we say one node u = (uy,--- ,u,) € T is an
ancestor of another one v’ = (u},--- ,ul,) € T, denoted by u < ', if n < n’
and u; = u;, 1 < i < n. We also define the height (generation) of a node to
be its length as a word, i.e. if u = (uy,--- ,u,), then |u| = n. Moreover, we
denote by #7T the total number of nodes, and by Z,, the total population of
generation n.

On a tree T, we have an natural ordering known as the lexicographi-

n

cal order. Since each node of T" belongs to U,>oN'}, we can put them in
lexicographical order as words, and explore the tree as a sequence of nodes

Uy =, U, Ug, - -+

We remark that each node appears exactly once in this sequence if the tree
is finite, thus if #71 = n, the sequence terminates at u,,_1.

Given a distribution p on N, we can construct a probability measure on

the set of trees, denoted by P,, so that for all nodes u,

ky i w1 under P,.
This random object is called a Galton-Watson tree. To avoid trivial cases,
we always assume that p(0) + (1) < 1.

We present here two fundamental properties of Galton-Watson trees con-
cerning the behavior of populations. In the following, we denote m = E,Z;
as the average number of children, and f(z) := E,[2%'] as the generating
function in a Galton-Watson tree.

Theorem 1.1.1 (Athreya and Ney [I7, Theorem 1.5.1]). Given that 1(0) +
u(l) < 1, m < oo, let q be the smallest non-negative solution of f(x) =
x, then the Galton-Watson tree with offspring distribution p extincts with
probability

P,(T extincts) = q.
In particular, the case m > 1 is called supercritical, where ¢ < 1; the cases
m =1 and m < 1 are called critical and subcritical respectively, where ¢ = 1.

Theorem 1.1.2 (Kesten-Stigum [62]). For m < oo, M, = (£%),5¢ is a
non-negative martingale converging almost surely to My,. If m € (1,00),
then

E,[Zylog, Z1] < 00 <= P,(Ms > 0| non-eatinction) = 1,

where we take log, x =log(x V 1) to avoid log0.
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L.
F

tree T height process (H;) = (|u;])

Galton-Watson tree is a well-studied fundamental structure, see Athreya
and Ney [I7] for an overview. Moreover, we remark that the height process
(H;) == (Ju;|) of a critical Galton-Watson tree has the following scaling limit,

Theorem 1.1.3 (Aldous [9]). Let P, be the law of Galton-Watson trees
with offspring distribution p, where E,Z; = 1, Var(Z;) = o* < o0, and
ged{j:u(j) > 0} = 1. Denote by (H}*) the height process of the depth-first
sequence (u;), H" = |u;|, under P,(- | #T = n), then as n — oo, in the space

of continuous functions C10, 1],

<i &t]) — (| Bt])o<t<1 in distribution,
0<t<1

vn
where (By) is the standard Brownian motion.

Further, this result induces a scaling limit for the Galton-Watson tree it-
self, and there are extensions on subcritical trees and Galton-Watson forests,
see Duquesne and Le Gall [42].

1.1.2 Branching random walks

Consider each node on the Galton-Watson tree as a vertex, and add an edge
between a node and its parent, then one can see T" as a connected graph. If
we attach a vector d, in any vector space V (where we normally take V = R¢)
to each directed edge (<U, u), fix the position of the root at V; = 0 and let
Vi =D <y dur, then (V,),er forms a spatial tree. Following the spirit that
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all displacements are i.i.d., we define a branching random walk as the random
object constructed above such that

(Fus (), ) are iid.
Furthermore, we shall be interested in branching random walks with the
auxiliary independence that
du/ z.}\.Jd. 6,

independent of offspring distributions (k,). The corresponding probability
measure is denoted by P, 4.

The branching random walk have received extensive studies, see Shi [89]
and references therein for an overview. A remarkable problem for the branch-
ing random walk is the position of the left-most particle,

M,, = min{V,,: |u| = n}.

For this topic one studies the supercritical case m > 1, and the asymptotic
behavior of M,, is mainly determined by its log Laplace transform

P(t) :=logE Z e Ve

|ul=1
In general, M,, grows linearly,

Theorem 1.1.4 (Hammersley [54], Kingman [63] and Biggins [29]). Assume
that ¥(0) = logm > 0 and 1(t) < oo for some t > 0, then almost surely on
the set of non-extinction,

1
lim —M,, =7,
n—oo 1
where
v := —inf M e R.
s>0 8§

Moreover, the situations for () = oo, ¥t > 0 are discussed in Gantert
[52], and the second order fluctuation for M, is logarithmic,

Theorem 1.1.5 (Aidékon [5]). Let P denote the probability measure of a
general branching random walk. In the boundary case,

E[ L[ >LE|Y e =LEl) Ve | =1,

ul=1 lul=1 ul=1
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given finite moment conditions on (V,,), there exists C' > 0 such that for any
x?

3 .
lim IP’(Mn > §logn—|—x) :E[e_ce D“},

n—o0
where Dy, is the martingal limit of D,, := Z‘u‘:n V,e Ve,

There are further results on the particles in the neighborhood of the
extreme position, see Madaule [80] and references therein.

1.1.3 Randomly biased walks

We can construct a random walk on the Galton-Watson tree based on a
branching random walk (V). The randomly biased walk is defined as a
nearest-neighbor random walk (X,,) on a Galton-Watson tree, starting at

Xy = 9, such that its transition probabilities P(u,u’) := P(X,41 = v | X;, = v, (Vi )uer)
are proportional to

1{%:1/}6_‘/“ + 1{27:“}6_‘/“'.

The most studied problem for the biased random walk (X,) is the behav-
ior of its height (|.X,|). It has been showed in Lyons and Pemantle [78] that,
(Xy) is transient if inf,co1)9(¢) > 0, and recurrent if inf,cp1)9(¢) < 0. In
the transient case, (| X,|) grows with a polynomial speed,

Theorem 1.1.6 (Hammond [55]). Let (X,,) denotes a biased random walk. If
¥(0) > 0, infe01)9(t) > 0, and the underlying branching random walk (V,,)
has independent increments of the form P, g, with 0 € [q1,q2] for 1 < ¢1 < ¢o,
then there exists an explicit v > 0 and an explicit non-degenerate law such
that on the set of non-extinction,

n~ 7| X,| converges in distribution.

Further, in the recurrent case (| X, |) grows much slower. The most studied
situation is the critical case infycpo 1)1 (t) = 0, where exact behavior of (|X,,|)
depends on ¢/(1) and x := inf{t > 1:¢(¢) > 0}:

Theorem 1.1.7 (Hu and Shi [57]). Let (X)) denotes a biased random walk.
If (0) > 0, infycp(t) = 0 and ¢'(1) = 0, then on the set of non-
extinction,

1
(log n)_g | X,| converges to an explicit distribution.
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Theorem 1.1.8 (Aidékon and de Rapheélis [7] for ; de Raphélis [35]
for (1.1.2)) and ( - Let (X,,) denotes a biased mndom walk ]fw( ) >0,
1nft€[071] 1/)( ) =0 and ¥'(1) < O gzven finite second moment for (e=V*), there
exists an explicit constant C' > 0 such that on the set of non-extinction,

1
(——|thtJ|) — | B| in distribution, if kK> 2, (1.1.1)
Cy1
( \/(ign‘XLntj‘) — | B| in distribution, if k=2, (1.1.2)
C . :
e | X ney| | = H in distribution, if k € (1,2), (1.1.3)

where B is the standard Brownian motion on R, and H s the height process
of an explicit Lévy process.

We remark that all the results above deal with the supercritical case m >
1, where the Galton-Watson tree does not extinct with positive probability.
In critical and subcritical cases, one can still study similar phenomenons
conditioned on non-extinction, for discussions on this topic we refer to Ben
Arous and Hammond [26]. There is also a systematic study on the range of
(X,), see Andreoletti and Chen [12] and references therein.

A special case of the biased random walk is when 6 is deterministic.
Indeed, if 6 = 0_10g, then it is called the A-biased random walk, if further
A =1, it is the simple random walk. On A-biased random walks, finer results
are possible concerning the speed of the biased random walk:

Theorem 1.1.9 (Lyons, Pemantle and Peres [79]). Let A, := E[ug"™!], then
for any A € (A.,m), on the set of non-extinction, the speed of the \-biased
random walk (X,,),

X
[y ;= lim M

n—oo N

exists almost surely, and it is a positive constant.

This limit [, is explicitly calculated in Aidékon [6], with boundary cases
A — m and A < A, discussed in Ben Arous, Hu, Olla and Zeitouni [27] and
Ben Arous, Fribergh, Gantert and Hammond [25], respectively. We also have
central limit theorems, see Peres and Zeitouni [83].

1.2 Cover time

In Chapter [3| we shall study the cover time of a Galton-Watson tree by a
A-biased random walk. In general, for a connected finite graph G = (V, E)
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and a random walk (X;) on it, its cover time is defined as
TG X) = it (b (X0 5 < 1) = V)

We remark that the random walk (X;) can be either discrete or continuous.
In fact, most theorems are valid for both cases, and one can easily adapt the
proof of one case for the other. In the following we shall use the continuous
setting (X;)scr+, where the walk jumps to adjacent positions in exponential
times, for better compatability with the Ray-Knight theorem that we shall
introduce later.

To study the cover time, one fundamental idea is to analyse the local
times (L"(t)), defined as

t
L¥(t) ;:/0 1ix,—uds, t € RT.

Our problem can then be described as studying the minimum of local times,
T(G; X) =inf{t > 0: mi‘l;l L*(t) > 0}.
ue

It is natural then, to study correlations of local times for upper and lower
bounds of the cover time.

There are deep results when (X}) is the (continuous-time) simple random
walk on GG. The first idea in general is to bound 7" by the number of
vertices #V = n,

Theorem 1.2.1 (Feige [47], [48]). Let G = (V, E) be a connected graph with
n vertices, let (X;) be the (continuous-time) simple random walk starting at
any fixed vertex on G, then as n — oo,

(1 —o(1))nlogn < ET*"(G; X) < 4n®/27.

Both bounds in this theorem are optimal, yet there is a large gap in
between, since only the cardinality #V = n is far from enough to describe
the connectivity of G. One can easily imagine that a straight line of n vertices
should behave very differently from a complete graph of n vertices.

To improve this, for instance, one may involve the hitting time:

Theorem 1.2.2 (Matthews [81]). Let G = (V, E) be a connected graph of n
vertices, let (X;) be the simple random walk starting at any fized vertex on
G, as n — o0,

max min H(u,v)(log(#F) — 1) < ET*"(G; X) < max H(u,v)(1 + logn),

SCG u,wes u,veG

where H(u,v) = E,7, + E,7, with 7, = inf{t > 0: X; = u} being the hitting
time of u.
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Suppose all hitting times are of the same order, then this theorem fixes
the scale of the cover time at T°V(G; X) < H(u,v)logn. The next step is
to seek a precise asymptotic. To this end, we introduce the main treatment
for the cover time with the Discrete Gaussian Free Field (DGFF) and the
Ray-Knight theorems.

1.2.1 Graphs as electrical networks

Before introducing the DGFF, we need some concepts on general random
walks. We refer to Aldous and Fill [I1] for a complete introduction.

Consider a graph G(V, E') as an electrical network, consists of wires such
that each edge in (u,v) € E is a resistor with resistance R, .

We can arbitrarily choose two vertices uy, us € V', assign to them voltages
Vi, = 1,V,, = 0, and then attach voltages V, at all other vertices u,v €
V\{u1,us} and currents I, , along (oriented) edges (u,v) € E, such that the
following properties are satisfied:

o Kirchhoff’s Law:

Z I, =0, Vu € V\{uy,us}.

veV

e Ohm’s Law:
Vi—Vo = Ryluy, V(u,v) € E.

We can then define effective resistances as the inverse of the total current,

1
Zu~u1 Iuh” .

Further, this electrical network is related to the random walk with tran-
sition probabilities P(u,v) proportional to RL in that

9
sV

Ref‘f(ula u2) ==

Proposition 1.2.3 (Aldous and Fill [I1l Proposition 3.10]). Let G = (V, E)
be a finite connected graph with the above mentioned electrical network struc-
ture, let (X;) be the (continuous-time) random walk with transition probabil-
ities P(u,v). Let 7 be the stationary distribution for (X3), then there exists
a universal constant C' > 0 such that

T(wP, (1, < 7.0) = Vu,v €'V,

Rep(u, v)’

where 1, = inf{t > 0: X; = v}, and 7, = inf{t > 0: X; = u}.
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Conversely, for any reversible random walk, i.e. (X;) with transition
probabilities (P(u,v)) and stationary distribution 7 satisfying

m(u)P(u,v) = w(v)P(v,u), Yu ~v €V,

we can construct an electrical network such that transition probabilities (P(u,v))

are proportional to inverse of resistances RL.
U,V

We remark that this electrical network is unique up to a constant factor.
We can set a canonical electrical network with C' = 1 in Proposition [1.2.3
Further, one can easily verify that the simple random walk, and more gener-
ally the randomly biased walk in Section [I.1.3] are reversible random walks,
and we shall use their corresponding (canonical) electrical networks without
further notifications.

We remark that, under the viewpoint of electrical networks, the effective
resistance / conductance between points becomes a fundamental parameter.
In our case, the study for cover time only requires resistances between two
points on a tree, that is the sum of resistances along the path. An inter-
esting case is the effective conductance between the root and generation n
of a Galton-Watson tree: for this study, a canonical setting is to consider
supercritical Galton-Watson trees m > 1, and on each edge at generation
n one attaches a conductance independently distributed as m™(. Then the
effective conductance C,, between the root and generation n satisfies

Theorem 1.2.4 (Chen, Hu and Lin [31]). Assume that ¢ and the offspring
distribution p has finite moments as follows: for X ~ ( and Y ~ u,

E[X? + X'+ Y" < o0,
then on the set of non-extinction, % converges in distribution to an explicit
measure. Moreover, there exist explicit constants cg, 1, co such that

2
E[C,] — L — 2loen _ @i+0((1°g”) )

an i n? ci n? n3

One may also take the conductance on each edge in the form of a branch-
ing random walk instead, in this case there are different asymptotic behaviors,
see Rousselin [87].

1.2.2 Discrete Gaussian free field

Given G = (V, E) and the electrical network on it, a Discrete Gaussian free
field (DGFF) (ny)uev (pinned at uy € V') is then defined as a set of centered
Gaussian variables indexed by vertices of (G, such that

E(T,u - nu’)Q = Reff(”; ul)a Nuy = 0.
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We remark that its continuous analog is the Gaussian free field on R?, attach-
ing a Gaussian distribution at every point in R? and pinned at 0. On each
bounded domain, the continuous Gaussian free field can be approximated
by DGFF on the corresponding (%Z)d lattice. Gaussian Free fields are also
related to quantum gravity in physics, and there are extensive researches on
these topics. See Sznitman [91] for an overview.

What we are most interested in is the following Ray-Knight theorem that
couples the DGFF of a graph to its local times, also known as Dynkin’s
isomorphism theorem:

Theorem 1.2.5 (Eisenbaum et al. [46]). For any connected finite graph
G = (V,E), let (X;) be the (continuous-time) simple random walk on G, and
let (ny)uev be the DGFF on G. For any t € RT,

{L“(t)—f—ni:uEV}i{(nu—i—\/%)Q:ueV}.

Recall that the cover time depends on minimum of local times, this the-
orem, first proved by Ding, Lee and Peres [39] and later improved by Zhai
[93], further converts the problem to extreme values of the DGFF.

Theorem 1.2.6 (Ding, Lee and Peres [39], Zhai [93]). Let G = (V, E) be a
connected graph, and let (X;) be the (continuous-time) simple random walk
starting at ug € V.. Denote by (n,) the DGFF pinned at ug, then there exist
c,C' > 0 such that, for any s > 0,

P (|T(G; X) — M*#B| > (VSBM + sR)#E) < Ce™,

where M = E(max,ey 1), R = max, ey Reg(u, u').

Note that this theorem gives the first-order estimate of the cover time
for any graph, sharper estimates are then anticipated, starting with specific
graphs. In fact, we consider trees as the most promising graphs for such
estimates, because the electrical networks based on trees are simple, in that
effective resistances are just sums of resistances along paths. Therefore, the
covariances for the DGFF are explicit, and the DGFF can be reduced to
a branching random walk, by assigning a Gaussian random variable with
variance equal to the resistance along any edge.

1.2.3 Cover time on trees

With the help of the DGFF, one can then fully characterize local times on
trees. For instance, for the simple random walk we have that
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Lemma 1.2.7 (Bai [I8, Lemma 2.3]). Let s,t € R™. If (X;) is the (continuous-
time) simple random walk, and G = (V, E) is a tree, let u,v € V such that

v < u, then
t 1
L¥(t) ~ PG <_, _) ,
Jul " Jul

Ll =) ~po ()

Jul = ol Jul = Jv]

where PG(a,b) stands for the distribution of Y. | F;, where P and E; are
independent random variables such that P ~ Poisson(a) has Poisson distri-
bution of expected value a, and E; ~ Exp(b) has exponential distribution of
expected value %

By a second moment method based on local times, Ding and Zeitouni
[40] gave the second order asymptotics with error O((loglogn)®) for simple
random walk on binary trees, it was then refined to O(1) by Belius, Rosen and
Zeitouni [23] using a Bessel estimate. Further, a scaling limit was established
independently by Cortines, Louidor and Saglietti [32] and Dembo, Rosen and
Zeitouni [37],

Theorem 1.2.8 (Cortines, Louidor and Saglietti [32], Dembo, Rosen and
Zeitouni [37]). Let T denote the cover time of the first n generations of
a complete binary tree by the continuous-time simple random walk, then as
n — oo,

Trgo’l} .
P (2"+1n —nlog2 +logn < 8) = Eexp (—CZe ) ,

for some explicitly constructed constant C' > 0 and distribution Z.

This scaling limit is based on, by studying correlations of local times, the
observation that: At time close to the expected cover time, those vertices
left uncovered form some almost independent clusters.

Our result extends this estimate to more general trees and random walks,

Theorem 1.2.9 (Bai [18]). Let T;° denote the cover time of the first n
generations of a Galton-Watson tree T' by the continuous-time \-biased walk.
Suppose X > 1,EZ; > 1,Var(Z;) < oo. Let Py be the law of the \-biased
random walk. Then for P,-almost surely any tree T', conditioned on its first
n generations T, for any v € R and n — oo, when A > m,

A—1)Tco -
P, (# —nlogm —logW <=z Tn) —e

2An 1Y% %
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when X\ = m,
— 1)7Tcov
p. ( (WZH )nn
2mnt Y Zi
when 1 < A < m,

b (51011
v 2Wmntl

—nlogm —loglW <=z

Tn> —e ¢

—x

—nlogm —logW <z

Tn) — e °

The proof is mainly inspired by [32], relying on an variant of the above-
mentioned observation: For the A-biased random walk, at time close to the
expected cover time, the remaining uncovered vertices are almost indepen-
dent. We shall establish this observation by a careful estimate of local times,
and complete the proof with its help in Chapter [3]

The same cover time problem for randomly biased walks on Galton-
Watson trees is left open. Indeed, on a Galton-Watson tree, there are short
branches on the tree T,, (1" cut at height n) that extincts in generations 1
to n — 1, but they are negligible for the A-biased walk, since covering them
are much easier than visiting nodes in generation n. However, this is no
longer true for the randomly biased walk. Further difficulties are anticipated
in treating these anomalies.

1.3 Capacity of the range

In Chapter [f] and Chapter [5, we shall study the capacity of a branching
random walk. For a discrete random walk (X,,) in Z%, its range is defined as

Rils,t] .= {Xs, Xsy1, -+, Xs}, s < t.

Moreover, if d > 3, we can define its capacity (of the range) with respect to
a symmetric probablity law n on Z% as

cap,A = Z PI(74 = 00),

z€EA

where P? is the law of a (discrete) random walk (.S,) started at = with
transition probability n, and 77 := inf{n > 1: S, € A} is its first returning
time to A. We remark that the continuous version for the size of the range
#R[0,n] is clearly the Lebesgue measure, and that for the capacity is the
Brownian capacity defined (in Morters and Peres [82, Definition 8.17]) as
follows: for any bounded set F' C R?(d > 3),

-1
cap(F) := (inf{// G(z,y)v(dz)v(dy): v is a probability measure on F}) ,
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where G(z,y) = |z—y|*~¢, or more generally any kernel of the form G(z,y) =
Clz — y|~®. Moreover, there is an equivalent way to define capacity, namely
that
cap, A = Cqy lim [z]|"*P](74 < 00),
|z|—o0

where the inverse of the scaling factor, (Cdm|x|d_2)_1, is the expected time
that a n-random walk starting from 0 hits z. The same definition works
for the continuous setting, by changing the discrete random walk n to the
Brownian motion.

The (size of) range of an ordinary random walk has been extensively stud-
ied since Dvoretzky and Erdés [43], we present here its asymptotic for the
simple random walk. For an overview of later results on central limit theo-

rems, large and moderate deviations of the range, see Asselah and Schapira
[14].

Theorem 1.3.1 (Dvoretzky and Erdés [43]). Let (X,,) be a simple random
walk in Z¢. Asn — oo,

ifd>3,
1
—#R[0,n] = Py(1" = 00), almost surely;
n
ifd=2,
1
Ogn#R[O, n| — 7w, almost surely;
ifd=1,
1
T#R[O,n] — sup B; — Oi<rtl£1 By in distribution,
n 0<t<1 <tis

where (By) is a standard Brownian motion on R.

Similar results for the capacity date back to Jain and Orey [58], with re-
finements to central limit theorems in the series of paper by Asselah, Schapira
and Sousi [15], [16], [88] recently. The study for capacity is recently moti-
vated by its connections to random interlacements. The model of random
interlacements was introduced in Sznitman [90], serving as a model for scal-
ing limits of traces of simple random walks. Intersection probabilities and
potential theory then emerge naturally in the treatment, calling for sharp
estimates of the capacity. For an overview of random interlacements, see
Drewitz, Rath and Sapozhnikov [41].

Theorem 1.3.2 (Jain and Orey [58] for (1.3.4) and ([1.3.5), Chang [30]
for (1.3.6). Let (X,) be a simple random walk in Z%, let n be the one-step
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distribution X1 — Xo, then as n — oo, if d > 5, there exist constants cq > 0
such that

1
—cap, R[0,n] — c4, almost surely; (1.3.4)
n
if d =4,
1 2
Ogncaan[O,n] — %, almost surely; (1.3.5)
if d =3,
1 1 T
—=cap, [0, n] — —=capp,, (B0, 1]) in distribution, (1.3.6)

vn 3v/3

where (By) here stands for the standard Brownian motion in R3.

Theorem 1.3.3 (Asselah, Schapira and Sousi [15] for (1.3.7)), [16] for (1.3.9),
Schapira [88] for (1.3.8)). In the same setting of Theorem[1.3.4, as n — oo,

there exists a constant Cy > 0 such that if d > 6,

cap, 1?[0,n] — Ecap, R[0, n]
NLD

— N(0,Cy) in distribution; (1.3.7)

ifd =5,

cap, 1[0,n] — Ecap, R[0, n]
vnlogn

if d=4, there exists an explicit distribution v such that

(log n)?
n

— N(0,Cy) in distribution; (1.3.8)

(caan[O,n] - Ecaan[(),n]) — v in distribution; (1.3.9)

Further, one can see the critical branching random walk (conditioned on
non-extinction) as a generalisation of an ordinary random walk, order the
branching random walk by its lexicographical order, then we have results on
its range,

Theorem 1.3.4 (Le Gall and Lin [73] for (1.3.10)), [72] for (1.3.11)); Zhu
[94] for (1.3.12)). Let P,y be the law of a branching random walk, where

W is critical with finite variance, and 6 is symmetric, irreducible with finite
support. Let (X;) denote the depth-first sequence under P, o(- | #1T =n). As
n — oo, if d > 5, there exists ¢, 9 > 0 such that

1
—RI[0,n] = ¢,9 in probability; (1.3.10)
n
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ifd=4,

1
OgnR[O,n] — 8720 in probability, (1.3.11)

n
where 0% = (det Mn)l/4, with n denoting the covariance matrix of n;

ifd <3,
n~Y4R[0,n] — 274 (det My)*?Ng(suppZ) in distribution, (1.3.12)

where \q is the Lebesque measure, and I is the random measure on R? known
as Integrated Super-Brownian Ezrcursion.

Generalising the methods and estimates in [73], we managed to obtain
the asymptotics for the capacity of a branching random walk,

Theorem 1.3.5 (Bai and Wan [2I] for (1.3.13]) and (1.3.14); Bai and Hu
[19] for (1.3.15)). Let P, be the law of a branching random walk, where

1 1s critical with finite variance, and 6 is symmetric, irreducible with finite
exponential moment. Let n be a irreducible distribution with mean 0 and
finite (d + 1)-th moment. Let (X;) denote the depth-first sequence under
P,o(- | #T = 00). Asn — oo, if d > 7, there exists c,9,, > 0 such that

1
—cap, R[0,n] = ¢, in probability; (1.3.13)
n
if d =6 and i has finite 5-th moment, there exists ¢, 9, > 0 such that
1
Ogncaan[O,n] — Cu0n in probability, (1.3.14)

if 3<d <5, then for any e >0, P,g(- | #T = 00)-almost surely,
cap, [0, n] = n~(@=D/440) "y oo, (1.3.15)

Remark 1.3.6. This theorem is formulated with the Galton-Watson tree con-
ditioned to be infinite, in order to keep consistency in all dimensions. The
model can be replaced by the Galton-Watson forest or the Galton-Watson
conditioned to be large, with adjustments in the proof (see for instance
Lemma . For convenience of the demonstration, in Chapter [4| and
Chapter 5, we are going to use the Galton-Watson conditioned to be large
and the Galton-Watson forest, respectively. In particular, as will be showed
in Lemmal5.2.3] n subtrees in a Galton-Watson forest generally contain ©(n?)
vertices, therefore its capacity is of the order R[0,n?] instead of R[0,n].

Similar structures can be observed among the four theorems above, namely
there is a critical dimension with O(lo’;n) behavior, and we have a linear in-
crease in high dimensions and a fluctuation in low dimensions. The intuition
behind this will be explained in the following subsections, focusing on the

capacity for branching random walks.
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1.3.1 High dimensions and the infinite model

Let us first look at the capacity for the simple random walk. The following
subadditive property follows easily by definition,

cap, [0, n] < cap, R[0,n/2] + cap, R[n/2,n].

Moreover, the simple random walk clearly has the following translational-
invariant property, by which one can deduce its ergodicity

R[s,t] — X, £ R[0,t — 5], Vs < t. (1.3.16)

One can thus conclude by Kingman’s subadditive ergodic theorem that

lim lcaan[O,n]

n—oo 1,
is a constant almost surely and in L'. Therefore, one can easily show the
linear growth in high dimensions by an lower bound of the expected value of
the capacity.

As for branching random walks, the problem reduces to establishing a
model with similar invariant properties as (1.3.16). Motivated by this, we
construct the following model, which can be seen as the infinite version of
Aldous [8, Section 2.6], or a generalization of Le Gall and Lin [73, Section
2.2].

0<1 To

We define a two-sided forest to be a sequence of trees with labels,

T = ((0776)7 (177—1)7 (177:1)7 (2775)7 (277:2) e )7
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where the roots (+i,@) of 7; and 7_; (i > 0) are identified (glued together)
as one single point. The number of children k(;,)(7), displacement from
parent d;,)(7) and spatial location of a vertex V(;,)(7T) are denoted as for
ordinary trees. The roots (4, @) have the offspring distributions denoted by
k(j;@)(T).

On the set of two-sided forests, we define the following probability mea-
sure P, ¢ as a variant for that of a branching random walk P, g:

e For each i > 0,u # @,
iid.

k,0)(T)~ 1,
and for other nodes (47, @) (7 > 0)

b

Pu,e(k(t,g)(T) =i, k?(_i,@)(T) =Jj)=pli+j+1).

e Displacements d;,(7) are i.i.d. and distributed as § on each directed
edge, starting at V() (7) = 0.

We remark that if we restrict u to the geometric distribution, and forgets
about branches at each instant, leaving only memories on the history from
a site to infinity, the resulted model is a discrete snake. Its scaling limit is
called a Brownian snake, introduced in Le Gall [70], with various interest-
ing properties and applications mostly in connections with super-Brownian
motion semilinear partial differential equations (see Le Gall [75] and [71]).

We shall explain in Chapter 4] that this model exhibits a combinatoric
explanation, resulting in its translational invariance property,

Proposition 1.3.7 (Bai and Wan [21I], Proposition 2.2|). Let u be a critical
distribution on N with finite variance, let 0 be a symmetric and irreducible
distribution on Z with finite exponential moment. Then

Rs,t] — X £ R[0,t — 5] under P, g, Vs < t.

Further, by showing that P,y is absolutely continuous with respect to
ordinary branching random walks, we have linear growth for the capacity in
high dimensions.

1.3.2 Critical dimension and low dimensions

The study of the critical dimension requires more precise estimates. To
begin with, we define the discrete Green’s function with respect to a random
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distribution 7 as

Gylw,y) = Gylz —y) =Y _PU(Sp =z —y).

n=0
Then we have that

Lemma 1.3.8 (Lawler [68, Theorem 4.3.5]). Let n be an aperiodic and ir-
reducible distribution on Z%(d > 3) with mean 0, covariance matriz T, and
finite (d + 1)-th moment. Then

Cdm

Gy(z) = W

+ O(|z|"™%),

where ;
INCY

(d —2)7d/2,/det T,

I'(-) stands for the Gamma function, and

Jp(x) = yJz - T te.

Further, the following lemma inspired by Lawler [67, Theorem 3.6.1] al-
lows us to establish a relation between the capacity and Green’s functions,

de =

Lemma 1.3.9 (Bai and Hu [19]). Ford > 3, and any sequence (X,,)nez € Z2
satisfying (1.3.16|), then

1 n
n+1;E

By analysis of the Green’s functions, one can show that in dimension
d = 6, the sum Z;:iz G (Xo, Xj) for the two-sided forest is concentrated
around C'log n, with a weak dependence on the parameter ¢, thus this lemma
enables us to deduce that

1{X0€{X17‘“vXn*i}}PnXo(T?X,i,m,Xn,i} = oo) . Z Gn(XO,Xj)] =1.

j=—i

E%gcaan[O, n] = ZE[1{Xi¢{Xi+1f”7Xn}}PnXi(7_{+Xg,---,Xn} = OO):|
=0

= Z Eu,@ |:1{X0€{X1,--- ,Xn—i}}PnXO (7_{—’—)(714,... KXnoi}t OO):|
=0
n

~
—~

logn
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An estimation on the second moment with similar methods show that
the capacity is concentrated around its expected value, and we convert from
the two-sided forest to ordinary branching random walks by an argument of
absolute continuity between them.

In low dimensions, a different approach is needed to show that the discrete
setting converge to its continuous analog as in Theorem [I.3.1} Theorem
In fact, for the simple random walk, there is a coupling with the standard
Brownian motion in that, for any € > 0, there exists v > 0 such that (see for
instance Lawler [66, Lemma 3.1])

P(max | X |as) — Bs| > n1/4+6) <e ™
0<s<n

and for the range of branching random walks, the convergence of range is
established through convergence of local times.

Currently we can only provide the order of the capacity in Theorem [1.3.5
using estimates of Green’s functions and inequalities derived from lemmas

like Lemma [1.3.9]

1.4 Rarely survived branching random walks

In Chapter [6] we consider the spread of the last generation of a branching
random walk conditioned on rarely survival. Take a branching random walk
(Vi)uer on R, conditioned on survival at the n-th generation, their spatial
locations (V,,)ju=n can then be listed in increasing order as

v <. <@
n —_— _ n Y
where Z,, is the population of generation n. We study its spatial spread

R, := V%) )

n

and gaps
g =V v 1 <i<z, —1.

n n

The behavior of (V,)y/=, conditioned on survival is well-studied, for in-
stance as we have introduced in Theorem [I.1.5] In our case, we study the
behavior given the "rarely survival" condition {Z, = k} for k being a de-
terministic integer. This problem is mainly motivated by [85], [86], where
Ramola, Majumdar and Schehr studied the range R, and gaps (g’) for the
critical branching Brownian motion, which is the continuous analogy of our
model with geometric i of expected value 1 and Gaussian 6. We extend the
result to general branching random walks,
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Theorem 1.4.1 (Bai and Rousselin [20]). Let k > 2, let 1 < i < k —
1. Consider a branching random walk P, g, where v has finite variance,
and 0 has finite exponential moments. There are explicit positive constants
C1, Cy, C5 such that, as x — oo,

im 17—y = J(Crro())a, E[u] =1,
e {exp<—<cg o)), Elu] #1,

im s g = = (0103 + 0(1))$727 ]E[N] =1,
lim Po(g, > @] Z, = k) {exp(_<02 o), B 21

As for related works, a critical Galton-Watson tree conditioned on non-
extinction typically satisfies Z, = ©(n), see Curien and Le Gall [34] for
a detailed discussion. Moreover, see Abraham, Bouaziz, and Delmas [2]
for the 'fat’ case Z, > n. For supercritical Galton-Watson trees, typically
Z, = O(m"), see Berestycki et al. [28] for the case Z, < em™.

1.4.1 The prune and cut operation

To study this problem, we first define the prune and cut operations on trees:

T pru(7) cut(pru(7))

e For any tree T', we construct the pruned tree at height n by
pru,(T):={ueT:FveT,|v|=nu=<0v}.
By convention, if Z,(T") = 0, we take pru, (T') = {@}.
e Moreover, we define the cut operation by

on(T) = N\ w ha(T) = n— |6u(T)], cutn(T) = T[gn(T)].

|u|=n,ueT

where by convention, ¢, (1) = @ if Z,(T) = 0.
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Clearly, these operations extend to branching random walks (i.e. trees with
spatial displacements). Moreover, by construction we have that

Ry (T) = Ra(pru,T) = Rp(eus,pra, ) (cutnpru, T,

and the same thing applied to gaps. In other words, the study of R, and
g% of a branching random walk reduces to those of the structure cut,pru,T
under P, (- | Z, = k).

We remark that the structure of cut, pru, 7" conditioned on non-extinction
along converges to the Yule tree, as showed in Curien and Le Gall [34].

1.4.2 Ratio Theorem

As indicated in the previous subsection, our main goal is to study the geneal-
ogy structure of cut,pru,7". The key component is then the ratio theorem,
which provide transition probabilities for the Markov chain (Z,):

Proposition 1.4.2 (Athreya and Ney [I7, Section 1.7-1.11]). Let p be an
offspring distribution such that

p(0), (1) >0, p(0) +p(1) <1, EZ; < 0.

Let P,(i,7) denote the transition probability P,(Zy+n, = j| Zx = 1) for large
enough k.

1. For any j > 1, there exists a sequence (m;) such that

P (1, )
1m
n—oo P,(1,1)

/‘ﬂ-j € (07 OO),

where /* means non-decreasing limit.
2. ForanyteZ,i,j5,k,1>1,

. Pn+t<i j) t i—k im;
lim 00 I) ik T
e Pok) T kmy

where q is the extinction probability, f is the generating function, and

v=f"(9).
3. IfEZ, = 1,0% :== Varu < oo, then for anyi,j > 1,

207
lim n?P,(i,j) = — .
n—00 02> et Tr(p(0))F
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4. IfEZy # 1, 3777 jlog ju(j) < oo, then for any i,j > 1,

lim ™" P, (i, j) = iq'" v,

n—oo
where (v;) is determined by Q(s) = Y2 ;8,0 < s < 1, with Q the
unique solution of

Q(f(s)) =1Q(s)(0 < s < 1), Qg) =0, im Q'(s) = 1.

S—q

Given this set of genealogical properties, we can show that under P, (- | Z,, =
k), the tree cut,pru,T has its first branching Z; = 2 with high probability,
and has no other branches until approaching the bottom of the tree. Fur-
ther, we deduce that the law of cut,pru,T" converges as n — oo, and shall
conclude on the desired spatial properties based on these observations.



Chapter 2

Introduction (en frangais)

Dans cette thése, on s’intéresse essentiellement aux marches aléatoires bran-
chantes et marches aléatoires biaisées sur 'arbre de Galton-Watson. On
présente les concepts fondamentaux dans la section et introduit trois
problémes distincts par la suite. Dans la section [2.2] on étudie le temps de
recouvrement pour les marches aléatoires biaisées sur les arbres de Galton-
Watson surcritiques; dans la section on traite la capacité pour les marches
aléatoires branchantes critiques; et dans la section on considére 1’étendue
d’une marche aléatoire branchante conditionnellement & une survie rare. Les
chapitres sont autonomes, présentant des preuves de nos résultats, et se
sont basés sur [I8], [21], [19], et [20].

2.1 Arbres de Galton-Watson et marches aléa-
toires branchantes

Intuitivement, 'arbre de Galton-Watson est une structure de branchement
discréte, ou chaque particule a chaque génération donne naissance a de
nouvelles particules indépendamment, selon la méme loi de reproduction.
De plus, une marche aléatoire branchante peut étre considérée comme une
marche aléatoire indexée par 'arbre de Galton-Watson, en d’autres termes,
I’arbre de Galton-Watson décrit la généalogie des individus d’une population,
dont les déplacements sont donnés par la marche aléatoire.

2.1.1 Arbres planaires and arbres de Galton-Watson

On définit un arbre planaire comme un ensemble des suites d’entiers, T" C
Un>oN7%, tel que

e La racine @ € T, ou par convention on note N = {&}.

32
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e Siunnceud u = (ug,- -+ ,u,) € T, alors son parent u o= (ug, ++ ,Up_1) €
T.

e Pour chaque nceud u = (uq, -+ ,u,) € T, il existe un entier k,(7) > 0
appelé son nombre d’enfants, tel que pour tout j € N, (ug,- -+ ,u,,J) €

T si et seulement si 1 < j < k(7).

Par convention, on dit qu’un noeud w = (uy, - ,u,) € T est 'ancétre d'un
autre noeud v’ = (u},--- ,ul,) € T, noté par u < ', sin <n' et u; =u}, 1 <
i < n. On définit également la hauteur (génération) d’un nceud comme sa
longueur en tant que mot, i.e. si u = (uy,--- ,u,), alors |u| = n. De plus, on
note #1' le nombre total de nceuds, et Z,, la population totale de la génération
n.

Dans un arbre 7', on a un ordre lexicographique: Puisque chaque noeud
de T" appartient a U,>oN7}, on peut les mettre dans l'ordre lexicographique
comme des mots, et explorer I’arbre comme une suite de noeuds

U():@,Ul,UQ,"'

On remarque que chaque nceud apparait exactement une fois dans cette suite
si I'arbre est fini, donc si #1 = n, la suite se termine & u,,_1.

Etant donnée une loi 4 sur N, on peut construire une mesure de prob-
abilité sur I’ensemble des arbres, notée P,, telle que pour tous les nceuds
u7

k A o sous P,

Cet objet aléatoire est appelé I'arbre de Galton-Watson. Pour éviter les cas
triviaux, on suppose toujours que u(0) + p(1) < 1.

On présente ici deux propriétés fondamentales des arbres de Galton-
Watson concernant le comportement des populations. Dans ce qui suit, on
note m := E,Z; comme le nombre moyen d’enfants, et f(z) := E, [le]
comme la fonction génératrice dans I'arbre de Galton-Watson.

Théoréme 2.1.1 (Athreya and Ney [I7, Théoréme 1.5.1]). Supposons que
w(0) + u(1) < 1, m < oo, soit q la plus petite solution positive de f(x) = z,
alors 'arbre de Galton-Watson avec la loi de reproduction p est fini avec

probabilité
P,(T est fini) = q.

En particulier, le cas m > 1 est appelé surcritique, ot ¢ < 1; les cas m =1
et m < 1 sont appelés, respectivement, critique et sous-critique, ot ¢ = 1.
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Théoréme 2.1.2 (Kesten-Stigum [62]). Pour m < oo, M, := (£2),5, est
une martingale positive, converge presque stiremen