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Résumé

On étudie les foncteurs de déformations galoisiennes dérivés et leurs anneaux de déformations
dérivés en relation avec la cohomologie des espaces localement symétriques et les foncteurs
de pseudo-déformations galoisiennes dérivés. Plus précisément, dans le premier texte, on
généralise un résultat de Galatius et Venkatesh, qui relie la structure graduée de coho-
mologie des espaces localement symétriques a I’anneau d’homotopie gradué des anneaux
de déformations galoisiennes dérivés, en supprimant certaines hypotheses, et en particulier
en permettant les congruences dans ’algebre de Hecke localisée. On étudie également dans
un autre texte un analogue dérivé des foncteurs de pseudo-déformations galoisiennes au
sens de V. Lafforgue dans une approche purement algébrique, c’est-a-dire, indépendante
d’une interprétation automorphe.
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Abstract

We study derived Galois deformation functors and their derived deformation rings in
relation with the cohomology of locally symmetric spaces and derived Galois pseudo-
deformation functors. More precisely, in one text, we generalize a result of Galatius and
Venkatesh, which relates the graded structure of cohomology of locally symmetric spaces
to the graded homotopy ring of the derived Galois deformation rings, by removing certain
assumptions, and in particular by allowing congruences inside the localized Hecke algebra.
We also study in another text a derived analogue of Galois pseudo-deformation functors
in the sense of V. Lafforgue in a purely algebraic approach, that is, independent of an
automorphic interpretation.
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Introduction (frangais)

Dans cette these, on étudie les foncteurs de déformations galoisiennes dérivés et leurs
anneaux de déformations dérivés en relation avec la cohomologie des espaces localement
symétriques et les foncteurs de pseudo-déformations galoisiennes dérivés. Plus précisément,
dans le premier texte, on généralise un résultat de Galatius et Venkatesh [GV18, Theorem
14.1], qui relie la structure graduée de cohomologie des espaces localement symétriques a
I’anneau d’homotopie gradué des anneaux de déformations galoisiennes dérivés, en suppri-
mant certaines hypotheses, et en particulier en permettant les congruences dans ’algebre de
Hecke localisée. On étudie également dans un autre texte un analogue dérivé des foncteurs
de pseudo-déformations galoisiennes au sens de V. Lafforgue (voir [Lafl8]) dans une ap-
proche purement algébrique (c’est-a-dire indépendante d’une interprétation automorphe).

Cohomologie des espaces localement symétriques

La cohomologie des espaces localement symétriques associés a des groupes algébriques
réductifs définis sur les corps de nombres est un objet central dans la théorie des nombres
moderne. Comme espace vectoriel complexe muni d’une action de ’algebre de Hecke,
elle généralise ’espace des formes modulaires pour des groupes généraux; d’autre part, ce
module de Hecke admet des structures intégrales sous-jacentes naturelles (par exemple sur
les anneaux des entiers p-adiques). Etant donné une représentation automorphe cuspidale
cohomologique 7, la composante m-isotypique de la cohomologie sous l’action de Hecke
peut apparaitre en plusieurs degrés. Dans le cas de la variété de Shimura, ce phénomene
peut étre évité en se limitant aux représentations tempérées, mais en général, il ne peut
pas étre évité. Ce phénomene a été expliqué par Borel et Wallach par des calculs de
(g, K)-cohomologie sur C. Plus récemment, une interprétation motivique de ce phénomene
a été étudiée par A. Venkatesh. Sur les entiers p-adiques, les travaux fondamentaux sont
ceux de Calegari et Geraghty [CGI8| et de Galatius et Venkatesh [GVI1§|. Le premier
objectif de cette these (chapitres 1-4) est d’étudier, en suivant ces travaux, la relation
entre la structure graduée de cohomologie des espaces localement symétriques et ’anneau
d’homotopie gradué des anneaux de déformation galoisiennes dérivés, sous des hypotheéses
similaires mais plus légeres que celles de |[GV18S].



Soit F' un corps de nombres. Soit G un groupe algébrique linéaire réductif connexe sur
F. On note Gy = G(AY) et Goo = G(F ®qg R). Soit X¢ = G/ Koo V'espace symétrique
associé a G, o Ko = O - A(R), C étant un sous-groupe compact maximal du groupe
de Lie réel G4 et A un tore maximal Q-déployé dans le centre de Reng. Soit gy et £y les
entiers associés a G tels que

2qy + by = dim X¢g = d;
lo = rank G, — rank K.

Pour un sous-groupe ouvert compact U C Gy, 'espace localement symétrique de G de
niveau U est défini par XY = G(F)\(X¢ x G /U).

Soit p > 2 un nombre premier impair. Soit K un corps de nombres p-adiques suff-
isamment grand contenant toutes les prolongements F < @p; soit O son anneau des
entiers, k son corps résiduel et o un parameétre d’uniformisation. Pour un poids dominant
A = (Ari)r: FsK1<i<n pour G, on note Vy = ®;. posx V), la représentation algébrique
irréductible de G de plus haut poids A, et on note XN/,\(R) le faisceau associé pour une
O-algebre R.

Fixons un plongement K — C. Par la théorie de la (g, K)-cohomologie, la partie

tempérée Hg‘emp(Xg ,VA(C)) est concentrée en intervalle [go, qo + £o] et on a

(X&, VA(C)).

dim H{S[ ' (XE,VA(C)) = (i?) -dim H{,
En fait, dans [PV16] Section 3], les auteurs construisent une action de A*af; sur la partie
tempérée Hg“emp(Xg ,‘7,\((:)), ol ag, est le dual de l'algebre de Lie de la partie déployée
d’une algebre de Cartan fondamentale, telle que the;fp(Xg , ‘K(C)) est librement engendré
en degré go sur A"ag;.

Il est naturel de considérer la question analogue pour les coefficients entiers. Sous
certaines hypotheses, la méthode de Calegari-Geraghty (voir [CGI§|) implique que, pour
un idéal maximal non-Eisenstein de l'algebre de Hecke associée m, H*(XY VA (O))m est
un module gradué libre sur un anneau gradué-commutatif qui apparait naturellement dans
la méthode de Taylor-Wiles. Cependant, cet anneau gradué-commutatif n’est pas défini
canoniquement, et 'idée de [GV1§| est qu'un meilleur objet est la généralisation dérivée
de 'anneau de déformations galoisiennes.

On va expliquer plus en détail les objets et les résultats de la these.

Méthode de Calegari-Geraghty
On suppose que p est trés bon pour G au sens de [BHKT19, Page 10] et ¢, ¢ F. Soit

S, l'ensemble des places de F' divisant p et S, I'ensemble des places archimédiens de
F. Soit S O S, un ensemble fini des places finies de F. On note G5 = [],cq G(Fy)
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et on note G° pour I'image de la projection naturelle Gy — H%ZS G(F,). Fixons une
représentation fidele G — GLy et définissons G comme la cloture schématique de GG dans
GLN,0,. Supposons que U = Ug x U¥ = ([[,eqUs) ¥ (IT,¢s Uv) avec U, C G(Ov)
pour tout place finie v et chaque U, (v ¢ S\Sp) hyperspécial maximal; 'algebre de Hecke
sphérique H(G®,U") agit sur H*(XY ,VA(0)). Notons que 'image de cette action, que
I’on note h, est une O-algebre commutative finie. On dit qu’un idéal maximal m est non-
Eisenstein si toute composante (h®ok)-isotypique apparaissant dans H* (X, VA (0)m®ok
ne provient pas de H*(XZ, ‘N/A(k:))/H!*(Xg, Va(k)). Soit m un idéal maximal non-Eisenstein
de h et soit T = hy. Soit m une représentation automorphe cuspidale apparaissant dans
H*(XZ, VA (0))m. )

Soit I'y = Gal(F,/F,) et soit I'g le groupe de Galois de ’extension maximale S-ramifiée
de F. Soit LG = G x Gal(F/F) le L-groupe de G. On fait I'hypothese suivante :

Hypothése (Resw). Il existe une représentation galoisienne absolument irréductible (voir
[BHKT19, Definition 3.5]) p: T's — LG(k) associée a m (voir [BG10, Section 5] pour la
différence entre L-algébricité et C-algébricité) telle que

1. pourv ¢ S, la é(k)—classe de conjugaison de p(Frob,) est donnée par le paramétre
de Satake de m, modulo m;

2. plr, est minimale pour v € S\Sy;

3. plr, est simultanément soit ordinaire, soit Fontaine-Laffaille avec les poids de Hodge-
Tate différant d’au plus p — 2 pour v € S,. Dans le cas ordinaire, p|r, est de plus
supposée étre réguliére et dual réguliére (voir [Til96, Proposition 6.2 and Propostion

6.3)).

De plus, on demande que p soit impair (voir Definition |1.5.11)) et ait une image énorme
(voir Definition [1.5.8).

Soit S le probleme de déformation globale pour p: I's — LG(k:), qui est soit minimal
ordinaire, soit minimal Fontaine-Laffaille. Alors le foncteur de déformations pour p de type
S (noté Dg) est représenté par une O-algebre locale noethérienne compléte Rgs.

La méthode de [CGI18| est basée essentiellement sur les conjectures suivantes :

Conjecture (Galy). Il existe une représentation galoisienne py: I's — YG(T) qui est un
relevement de p telle que

1. pm|r, est minimale pour v € S\Sy;
2. pmlr, est simultanément soit ordinaire, soit Fontaine-Laffaille pour v € Sp;

3. pmlr, satisfait a la compatibilité locale-globale pour tout nombre premier de Taylor-
Wiles v.



(voir [GV18, Assumption 2] et [KT17, Conjecture 6.27]). Ceci implique en particulier qu’il
existe un morphisme naturel R — T de CNLgp et similairement pour les ”épaississements
de Taylor-Wiles” Rg et Tg pour les anneaur R et T.

Remarque. Pour GLy sur les corps CM, [ACC+18] donne des évidences fortes pour ’existence
de Rs — T, puisque les auteurs le prouvent apres quotient par un idéal nilpotent de T.

Conjecture (Vany). Le groupe H' (XY, Va(k))m s’annule sauf sii € [qo, qo + Lo)-

Calegari et Geraghty ont construit ensuite les O-algebres Roo = O[[X1,..., X,]] et
Seo = O[[X1,..., Xg40,]] (g est une constante quelconque) avec un O-algebre morphisme
Seo — Roo, ainsi qu'un complexe C%  de S.-modules libres finis concentrés en degrés

[q0, go+¥0] et un Sy-algebre morphisme Ro, — Endg_ (H*(C%)), tels que H*(C* ®g. O) =

H*(XZ,V)(O))m et on a le théoreme suivant:

Théoréme (Calegari-Geraghty). On conserve les notations ci-dessus. Supposons (Resy),
(Galy) et (Vany). Alors

1. HY(C:) =0 pour i # qo + Lo et HOT0(C%) est libre sur Roo.
2. Il existe un isomorphisme
HOHOTH(XE VA(O))n = Tor) (HOH0(CL,), 0),

et Tor> (H© 0 (C%),0) est naturellement un Tor?> (R, O)-module librement en-
gendré par Torg>(H©Ho(C%), O).

3. Rs — T est un isomorphisme.

Anneaux de déformations dérivés

Une motivation pour passer a la catégorie des O-algebres simpliciales vient de 'isomorphisme
Tor?>® (Reo, O) = T (Roo®g _O) comme O-algebres graduées-commutatives; notons que
-® SOOO peut étre considéré comme un modele pour calculer le foncteur dérivé a gauche
total du tenseur étendu par degré sur les anneaux simpliciaux (voir Section .

Pour une catégorie complete et cocomplete C, la catégorie simpliciale sC est définie
comme la catégorie des foncteurs contravariants de A vers C, ou A est la catégorie
d’indexation cosimpliciale (les objets sont des ensembles totalement ordonnés [n] = {0,...,n}
et les morphismes sont des applications non décroissantes). Quand C est la catégorie des
ensembles, des modules ou des algebres sur un anneau, la catégorie sC est naturellement
une catégorie modele simpliciale. En particulier dans ces catégories

1. on peut définir les groupes d’homotopie et une relation d’équivalence faible, tels que
f: A — B est une équivalence faible si et seulement si f induit des isomorphismes
sur tous les groupes d’homotopie;



2. il existe un hom enrichi sHom(A, B) € sSets, tel que sHom(A, B)y = Hom(A4, B).

Notons que Dg induit un foncteur de la catégorie des (O-algebres artiniennes locales
Artp vers la catégorie des ensembles Sets. Par [GV1S8], Ds peut étre étendu a un
foncteur sDg de la catégorie des O-algebres artiniennes locales simpliciales o\sArt/j
vers la catégorie des ensembles simpliciaux sSets. En disant étendu, on veut dire que
Ds(A) = mpsDs(A) lorsque A est une O-algebre locale artinienne classique (a droite A est
considéré comme un objet constant dans o\sArt/y).

Il est prouvé que le foncteur sDg est pro-représentable. Plus précisément, il existe un
systéeme projectif Rs = (Rn)nen avec chaque R, € o\sArt/; étant cofibrant, tel que
sDgs(A) est faiblement équivalent a lim sHom \scry/, (Rn, A) pour chaque A € p\sArt/j.

n

Notons que Rgs n’est unique que dans la catégorie d’homotopie, néanmoins 7w, Rs est bien
défini. En effet, si on identifie m,Rs comme la limite projective, c’est naturellement une
O-algebre graduée-commutative, et au degré 0 on a myRs = Rs. On peut maintenant
énoncer notre résultat principal (Chapitre 3, Theorem , qui est une généralisation de
[GV18, Theorem 14.1]:

Théoréme. Avec les notations ci-dessus, il existe un isomorphisme de O-algébres graduées-
commutatives T, Rs = Tor?>* (Reo, O) (0t m.Rs est défini comme la limite projective). De
plus, H*(XZ, VA(O))n est un m,Rs-module gradué librement engendré par HO%0 (XY VA (0))m.

Mentionnons les différences avec [GVI8, Theorem 14.1]:

1. Dans [GVI8, Theorem 14.1] le centre de G est supposé étre trivial. Dans le cas
général, comme déja souligné dans [GV18], on doit modifier les foncteurs de déformations
universels dérivés (locaux et globaux) pour tenir compte du centre.

2. Plus important, on doit redéfinir les probléemes de déformations locales dérivés, car
dans [GV18| Section 9] il est supposé que les foncteurs de déformations locales clas-
siques (non-cadrés) sont représentés par des anneaux formellement lisses, ce qui n’est
pas le cas pour nous.

3. Dans [GV1S], seul le cas Rs = T = O est considéré (donc pas de congruence) puisque
lapplication dans [GV18, Section 15] utilise la surjectivité de I'homomorphisme
Sec = R (voir [GVI8| Remark 1.1]). Cette surjectivité est obtenue en posant
des restrictions fortes sur les conditions de déformations locales que ’on n’a pas ici.
Ici, on doit recalculer les caractéristiques de Poitou-Tate Euler afin de vérifier les hy-
potheses du [GV18, Theorem 11.1] dans notre cadre plus général. Voir aussi [TU21],
ou certains résultats partiels sont prouvés sans la surjection Sy, — Reo.



Pseudo-déformations

Dans le chapitre 5 de la these, on se concentre sur ’aspect purement algébrique des fonc-
teurs de déformations/pseudo-déformations dérivés. Pour simplifier nos notations, on note
G un schéma en groupe réductif déployé sur O dans cette partie (il joue le role du dual
réductif du groupe G des sections antérieures).

Dans la construction du foncteur de déformations dérivé, le ” foncteur nerf” B qui va de
la catégorie des petites catégories vers la catégorie des ensembles simpliciaux joue un roéle
important. Pour une petite catégorie C, I’ensemble simplicial BC = (X,,) est défini par les
ensembles X,, € Ob(C) de (n41)-tuples (Co, ..., C,) d’objets de C avec des morphismes
Cy; — Cp pour k < [, qui sont compatibles lorsque n varie; c’est un ensemble simplicial
fibrant si et seulement si C € Gpd (voir [GJ09, Lemma 1.3.5]). Et quand C € Cat et
D € Gpd, deux foncteurs f,g: C — D sont naturellement isomorphes si et seulement si
Bf et Bg sont homotopes. Pour un groupe I' et A € Artp, on a

Homgp (T, G(A))/G*(A) = mpsHom,gets( BT, BG(A)),

donc pour construire le foncteur de déformations dérivés, il suffit d’étendre BG pour A €
o\sArt /. L’idée, suivant |[GV18], est plus ou moins de définir BG(A) (A € o\sArt/;)
comme la réalisation géométrique (ou diagonale) de I’ensemble bisimplicial [n] — BG(A,,).

Dans [Lafl8| Section 11], V. Lafforgue a introduit la notion de pseudo-caracteére pour
un groupe réductif connecté déployé G. Il a démontré que cette notion coincide avec
celle de G-classes de conjugaison de représentations galoisiennes a valeurs G sur un corps
algébriquement clos E. L’ingrédient principal de sa démonstration est un critere de semi-
simplicité pour les éléments de G(E)™ en termes de classe de conjugaison fermée; il est du
a Richardson en caractéristique zéro. Il a été généralisé au cas d’un corps algébriquement
clos de caractéristique arbitraire par [BMRO5] en remplacant la semisimplicité par la G-
complete réductibilité (voir aussi [Ser04] and [BHKT19, Theorem 3.4]). En utilisant ceci (et
une variante pour les anneaux artiniens), Boeckle-Harris-Khare-Thorne [BHKTT9, Theo-
rem 4.10] ont démontré une généralisation du résultat de Carayol pour tout groupe réductif
déployé G: toute pseudo-déformation sur G d’une représentation absolument G-irréductible
p est une G-déformation.

Motivé par la réinterprétation des pseudo-caracteres dans [Weidl8, Section 2], on voit
que les conditions qui définissent les G-pseudo-caracteres pour I' sur A sont similaires
a celles définissant les sSets-morphismes BI' — BG(A) quand A € Artp, donc il est
naturel de se demander s’il existe une généralisation dérivée des foncteurs de pseudo-
déformations. En appliquant les résultats de [BHKT19], on caractérise les foncteurs de
pseudo-déformations en utilisant une variante du nerf (voir Theorem , et on propose
une généralisation de cette théorie pour les déformations dérivées. Malheureusement, le
résultat dans ce contexte n’est que partiel, mais reste instructif.



Introduction (English)

In this thesis, we study derived Galois deformation functors and their derived deforma-
tion rings in relation with the cohomology of locally symmetric spaces and derived Galois
pseudo-deformation functors. More precisely, in one text, we generalize a result of Galatius
and Venkatesh (J[GV18, Theorem 14.1]), which relates the graded structure of cohomology
of locally symmetric spaces to the graded homotopy ring of derived Galois deformation
rings, by removing certain assumptions, and in particular by allowing congruences inside
the localized Hecke algebra. We also study in another text a derived analogue of Galois
pseudo-deformation functors in the sense of V. Lafforgue (see [Lafl8]) in a purely algebraic
approach (that is, independent of an automorphic interpretation).

Cohomology of locally symmetric spaces

The cohomology of locally symmetric spaces associated to reductive algebraic groups de-
fined over number fields is a central object in modern Number Theory. As a complex vector
space endowed with an action of the Hecke algebra, it generalizes the space of modular
forms for general groups; on the other hand, this Hecke module admits natural underlying
integral structures (for instance over rings of p-adic integers). Given a cohomological cuspi-
dal automorphic representation 7, the m-isotypical component of the cohomology under the
Hecke action may occur in several degrees. In the Shimura variety case, this phenomenon
can be avoided by restricting to tempererd representations, but in general, it cannot be
avoided. This phenomenon has been explained over C by Borel and Wallach by calculations
of (g, K')-cohomology. More recently, a motivic interpretation of this phenomenon has been
investigated by A. Venkatesh. Over the p-adic integers, the fundamental works are those
by Calegari and Geraghty [CG18] and by Galatius and Venkatesh [GV18]. The first goal
of this thesis (Chapters 1-4) is to study, following these works, the relation between the
graded structure of cohomology of locally symmetric spaces and the graded homotopy ring
of the derived Galois deformation rings under assumptions similar but lighter than those
of [GV18].

Let F' be a number field. Let G be a connected reductive linear algebraic group over
F. We write Gy = G(A¥) and Go = G(F ®g R). Let X¢ = Go/K be the symmetric



space associated to G, where Ko, = C - A(R), C is a maximal compact subgroup of the
real Lie group G and A is a maximal Q-split torus of the center of ReszjG. Let go and £y
be integers associated to G such that

2qo0 + by = dim X¢g = d;
lo = rank G, — rank K.

For an open compact subgroup U C Gy, the locally symmetric space of G with level
structure U is defined to be X& = G(F)\(X¢ x G¢/U).

Let p > 2 be an odd prime number. Let K be a large enough p-adic number field
containing all embeddings of F into @p, let O be its ring of integers, k be its residue field
and w be a uniformizing parameter. For a dominant weight A = (Ar;)-. sk 1<i<rank ¢ for
G, we write V) = ®;. p,x V). for the irreducible algebraic representation of G' of highest
weight A, and write VA(R) for the associated sheaf for an O-algebra R.

Fix an embedding K — C. By the theory of (g, K)-cohomology, the tempered part
Hy o (XE, VA (C)) is concentrated in the interval [go, o + £o] and we have

temp

(X&, VA(C)).

temp temp

: - 0
dim HOY (XY V,(C)) = ( ,0> - dim HL
1

temp(Xga ‘7)\(@))7
where ag, is the dual of the Lie algebra of the split part of a fundamental Cartan algebra,

In fact, in [PV16], Section 3], the authors constructed an action of A*af, on H;

such that Héi:n*p(Xg, VA(C)) is freely generated in degree go over N*ag,.

It’s natural to consider the analogous question for integral coefficients. Under some
assumptions, the Calegari-Geraghty method (see [CGI18]) implies that, H*(XZ, Va(O))m,
where m is a non-Eisenstein maximal ideal of the associated Hecke algebra, is a free graded
module over a graded commutative ring which arises naturally in the Taylor-Wiles method.
However, this graded commutative ring is not canonically defined, and the idea of |[GV18]
is that the better object is the derived generalization of the Galois deformation ring.

We will now explain in more details the objects and results of the thesis.

Calegari-Geraghty method

We suppose that p is very good for G in the sense of [BHKTT1Y9, Page 10] and (, ¢ F.
Let S, be the set of places of F' dividing p and S, be the set of archimedean places
of F. Let § 2 S, be a finite set of finite places of F'. We write Gg = [[,cq G(Fy)
and G° for the image of the natural projection Gy — [Togs G(Fv). Let’s fix a faithful
representation ¢ — GLy and define G to be the schematic closure of G' in GLy o, -
Suppose U = Us x U® = ([[,e5 Us) X (ITygs Uv) with U, C G(O,) for every finite place
v and each U, (v ¢ S\Sp) hyperspecial maximal; the spherical Hecke algebra H(GS, U
acts on H*(XY, VA(0)). Note that the image of this action, which we denote by A, is a
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finite commutative O-algebra. We say that a maximal ideal m is non-Eisenstein if any
(h ®o k)-isotypical component appearing in H*(XZ ,?A(O))m ®e k doesn’t come from
H*(Xg,XN/A(k))/H!*(Xg,XN/,\(/{)). Let m be a non-Eisenstein maximal ideal of h and let
T = hw. Let 7 be a cuspidal automorphic representation occuring in H *(Xg, 17}\((’))),“.

Let T', = Gal(F,/F,) and let T's be the Galois group of the maximal S-ramified ex-
tension of F. Let 'G = G x Gal(F/F) be the L-group of G. We make the following
assumption:

Assumption (Resy). There exists an absolutely irreducible (see |[BHKTI19, Definition
3.5]) Galois representation p: T's — “G(k) associated to 7 (see [BGI0, Section 5] for the
difference between L-algebraicity and C-algebraicity) such that

1. forv ¢ S, the @(k:)-conjugacy class of p(Froby) is given by the Satake parameter of
my modulo m;

2. plr, is minimal for v € S\Sp;

3. plr, is simultaneously either ordinary, or Fontaine-Laffaille with Hodge—Tate weights
differing by at most p — 2 for v € S,. In the ordinary case, p|r, is furthermore
assumed to be regular and dual regular (see [Til96, Propostion 6.2 and Propostion

6.3)).

We require further that p is odd (see Definition|1.53.11) and has an enormous image (see
Definition .

Let S be the global deformation problem for p: I's — “G(k), which is either minimal
ordinary or minimal Fontaine-Laffaille. Then the deformation functor for p of type S
(denoted Dg) is represented by a complete Noetherian local O-algebra Rs.

The method of [CG18] relies significantly on the following conjectures:

Conjecture (Galy). There is a Galois representation py: I's — LG(T) lifting p such that
1. pm|r, is minimal for v € S\Sp;
2. pmlr, is simultaneously either ordinary, or Fontaine-Laffaille for every v € Sy;
3. pm|r, satisifies local-global compatibility for any Taylor- Wiles prime v.

(see [GVI1S, Assumption 2] and [KT17, Conjecture 6.27]). This implies in particular that
there is a natural morphism Rs — T in CNLp and similarly for the ”Taylor- Wiles thick-
enings” Rg and T¢q of the rings Rs and T.

Remark. For GLx over CM fields, [ACC+18] gives strong evidences for the existence of
Rs — T, as these authors do prove it after quotient by a nilpotent ideal of T.

11



Conjecture (Vany). The cohomology group H (X, Va(k))m vanishes unless i € [qo, o +
).

Then Calegari and Geraghty ([CG18]) constructed Roo = O[[X1,...,X,]] and S =
O[[X1,...,Xg+44]] (g9 is some constant) with an O-algebra morphism So — R, as well
as a complex C% of finite free Soo-modules concentrated in degrees [qo, o + o] and~an Soo-
algebra morphism R — Endg,_ (H*(CZ)), such that H*(Ck ®s. O) 2 H*( XY, VA(O))m
and the following result holds:

Theorem (Calegari-Geraghty). Let the notations be as above. Assume (Resy), (Galy)
and (Vany,). Then

1. H(C%) =0 fori# qo + o and HOH0(C%) is free over Ruo.
2. There is an isomorphism
OO (XE VA (0))m = Tor]> (HPH0(CL,), 0),

and Tory>(H®+0 (C%),0) is a natural graded TorS= (R, O)-module freely gener-
ated by Torg> (H®© 0 (C%), 0).

3. Rs — T s an isomorphism.

Derived deformation rings

One motivation for passing to the category of simplicial O-algebras comes from the isomor-
phism Tor?= (R, O) = T (Roo®g O) as graded commutative O-algebras; note —®g O
can be thought of as a model for calculating the total left derived functor of the degreewise-
extended tensor on simplicial rings (see Section [2.1.5).

For a complete and cocomplete category C, the simplicial category sC is defined to be
the category of contravariant functors from A to C, where A is the cosimplicial indexing
category (the objects are totally ordered sets [n] = {0,...,n} and morphisms are non-
decreasing maps). When C is the category of sets, modules or algebras, the category sC is
naturally a simplicial model category. In particular in these categories

1. we can define homotopy groups and a weak equivalence relation, such that f: A - B
is a weak equivalence if and only if f induces isomorphisms on all homotopy groups;

2. there is an enriched hom sHom(A, B) € sSets, with the property sHom(A, B)g =
Hom(A, B).

Note Dg restricts to a functor from the category of artinian local O-algebras Arto to
the category of sets Sets. Following [GV1S], Ds can be extended to a functor sDg from the
category of simplicial artinian local O-algebras o\sArt/ to the category of simplicial sets

12



sSets. By saying extended, we mean Dg(A) = mpsDs(A) when A is a classical artinian
local O-algebra (on the right hand side A is regarded as a constant object in o\sArt/y).

It is proved that the functor sDg is pro-representable. More precisely, there exists a
projective system Rs = (Rn)neny with each R, € o\sArt/; being cofibrant, such that
sDs(A) is weakly equivalent to limsHom,,\scr/, (Rn, A) for each A € p\sArt/;. Note

n
Rs is unique only in the homotopy category, nonetheless m,Rs is well-defined. Indeed, by
regarding m,Rs as the projective limit, it is naturally a graded commutative O-algebra,

and at degree 0 we have myRs = Rs. We can now state our main result (Chapter 3,
Theorem (3.4.6)), which is a generalization of [GV18, Theorem 14.1]:

Theorem. With the above notations, there is an isomorphism of graded commutative O-
algebras m, Rs = Tor?>® (Reo, ©) (where m.Rs is defined as the projective limit). Moreover,
H*(XZ,VA(O))n is a graded T, Rs-module freely generated by H®OT0 (XY V\(O))n.

We mention the differences with [GV18, Theorem 14.1]:

1. In [GV18 Theorem 14.1] the group G is assumed to have a trivial center. In the
general case, as already pointed out in [GV18], one has to modify the derived (local
and global) universal deformation functors to take the center into account.

2. More importantly, one has to redefine the derived local deformation problems, for
in |[GV18, Section 9] it is assumed that the classical local (unframed) deformation
functors are represented by formally smooth rings, which is not the case for us.

3. In [GV18], only the case Rs = T = O is considered (so no congruence) since the
application in [GV18, Section 15] uses the surjectivity of the homomorphism So, —
R (see |[GV18, Remark 1.1]). This surjectivity is obtained by imposing strong
restrictions on the local deformation conditions (J[GV18|, Section 10]) which we don’t
have. Here, we have to recalculate the Poitou-Tate Euler characteristics in order to
verify [GV18, Theorem 11.1] in our more general setting. See also [TU21], where
some partial results are proved without the surjection Sy — Ro.

Pseudo-deformations

In Chapter 5 of the thesis, we concentrate on the purely algebraic aspect of derived
deformation/pseudo-deformation functors. To simplify our notations, we use G to de-
note a split reductive group scheme over O in this part (it plays the role of the reductive
dual of the group G of previous sections).

In constructing the derived deformation functor, the nerve functor B from the category
of small categories to the category of simplicial sets plays a substantial role. For a small
category C, the simplicial set BC = (X,,) is defined by sets X,, € Ob(C)[™ of (n + 1)-tuples
(Co,...,Cp) of objects of C with morphisms Cy — C; when k < [, which are compatible

13



when n varies; it is a fibrant simplicial set if and only if C € Gpd (see [GJ09, Lemma 1.3.5]).
And when C € Cat and D € Gpd, two functors f,g: C — D are naturally isomorphic if
and only if Bf and Bg are homotopic. For a group I' and A € Artp, one has

Homgp (T, G(A))/G*(A) = mpsHom,gets( BT, BG(A)),

so for constructing the derived deformation functor, it suffices to extend BG for A €
o\sArt /. The idea, following [GV18], is more or less to define BG(A) (A € o\sArt/j)
to be the geometric realization (or diagonal) of the bisimplicial set [n] — BG(Ay).

In [Lafl8, Section 11], V. Lafforgue introduced the notion of a pseudo-character for a
split connected reductive group G. He proved that this notion coincides with that of G-
conjugacy classes of G-valued Galois representations over an algebraically closed field E.
The main ingredient of his proof is a criterion of semisimplicity for elements in G(E)"
in terms of closed conjugacy class; it is due to Richardson in characteristic zero. It
has been generalized to the case of an algebraically closed field of arbitrary character-
istic by [BMRO5] replacing semisimplicity by G-complete reducibility (see also [Ser04] and
[BHKT19, Theorem 3.4]). Using this (and a variant for Artin rings), Boeckle-Harris-
Khare-Thorne [BHKT19, Theorem 4.10] proved a generalization of Carayol’s result for any
split reductive group G: any pseudo-deformation over G of an absolutely G-irreducible
representation p is a G-deformation.

Motivated by the reinterpretation of pseudo-characters in [Weid18, Section 2], one sees
that the conditions which define G-pseudo-characters on I' over A are similar to those
defining sSets-morphisms BI' — BG(A) when A € Artp, so it’s natural to ask if there
exists a derived generalization of pseudo-deformation functors. By applying the results of
[BHKT19], we characterizes pseudo-deformation functors using a variant of the nerve (see
Theorem , and we propose a generalization of this theory for derived deformations.
Unfortunately, the result in this context is only partial, but still instructive.

Outline of the thesis

In Chapter 1, we will introduce basic properties of the cohomology of locally symmetric
spaces with complex and integral coefficients, and present the Calegari-Geraghty method
which describes the graded structure of the integral cohomology after non-Eisenstein local-
izations. At the end we will try to give a motivation for introducing the derived deformation
rings.

In Chapter 2, we will prepare the necessary backgrounds on simplicial theory to study
functors from simplicial Artinian O-algebras to simplicial sets.

Chapter 3 is the main part of the thesis. In this chapter, we will extend the classical de-
formation functors to simplicial categories and study the homotopy of their pro-representing
rings. The main result (Theorem [3.4.6)) is a generalization of [GV18, Theorem 14.1], where
in particular the congruences inside the localized Hecke algebra are allowed.
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In Chapter 4, we will discuss the examples of general linear groups and orthogonal simil-
itude groups, and we will try to compare the derived deformation rings and the cohomology
of locally symmetric spaces under certain Langlands transfers.

In Chapter 5, we will give derived analogues of pseudo-deformation functors following
the reinterpretation of pseudo-characters in [Weid18), Section 2|, and then we will propose
a generalization for pseudo-deformations to simplicial categories.
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Chapter 1

Cohomology of locally symmetric
spaces

This chapter aims to present the basic properties of the cohomology of locally symmetric
spaces. In Section 1.1 and Section 1.2, we will recall the cohomology of locally sym-
metric spaces associated to reductive algebraic groups with complex and integral coeffi-
cients; we refer to [Har20, Chapters 6-9] for a general introduction. In Section 1.3, we will
present the Calegari-Geraghty method, where the graded structures of H *(Xg , ‘N/A(O))m
and TorJe (Roo, O) are emphasised; we remark that this could serve as a natural starting
point for considering deformations to simplicial rings.

1.1 Generalities about complex cohomology

We keep the notations in the introduction. More precisely, G is a connected reductive
linear algebraic group over a number field F' and A = (Ar;)7: Fos K, 1<i<rank G i a dominant
weight for G. We use V), = ®@,. pyx V). to denote the irreducible algebraic representation
of G of highest weight \. Note V) (O) is a finite free O-module equipped with a continuous
action of [],eg G(Oy), and the action extends to a [],cg G(Fy)-action on V)(K). For an

O-algebra R, the sheaf VA(R) is the sheaf of local sections of the morphism
G(F)\(Gf x Goo /Koo x VA(R))/U — X&

where u € U acts on z € Vy(R) by u™! - z (for simplicity, we suppose U C [[, G(Oy)).
Fix an embedding K < C. It’s well-known that H*(XZ, VA(C)) is isomorphic to the
cohomology of the de Rham complex Q*(XZ, VA(C)), and o (x8 ,VA(C)) is canonically
Hecke-equivariantly isomorphic to the complex Hompg  (A*(g/t),C®(G(F)\G(AFr)/U) ®
VA(C)). We write H*(g, K; V') for the cohomology of Homg__ (A*(g/¢), V), then one has
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CHAPTER 1. COHOMOLOGY OF LOCALLY SYMMETRIC SPACES

a Hecke-equivariant isomorphism
H*(X§,VA(C)) = H*(g, Koo; C*(G(F)\G(Ar)/U) @ VA(C)). (1.1)

We shall consider the square-integrable functions of C*°(G(F)\G(AFr)/U), and for this
we have to restrict to functions which transform in a certain way under the action of
the center. Let () be the central character of the G-representation V), and we define
(oo A°(R) — R+ to be the restriction of ¢y on the connected component of A(R). Let
C®(G(F)\G(AR)/U, () € C®°(G(F)\G(AF)/U) be the subspace of functions f such that
f(zg9) = ¢(2)f(g) for z € A°(R) and g € G(Ap). Let L2(G(F)\G(Ar)/U,(Z!) be the
space of functions f such that f(g)Cs(g) is square integrable on G(F)\G(Ar)/(U - A°(R))
(note that (s extends naturally to G). Note that L2(G(F)\G(Ar)/U, (L) decomposes
into a discrete and a continous spectrum

LA (G(P\G(AF)/U, ') = Liiso (G(P\G(AF) /U, (1) @ L2 (G(F)\G(AFR) /U, ),
and L2

disc

Liisc(G(FN\G(AF) /U, (1) = Ly (GIENG(AR) /U, (1) ® Ligs (GIF)\G(AF) /U, ).
Let CE’QO)(G(F)\G(AF)/U, () CC®(G(F)\G(AR)/U, ¢! be the maximal (g, Ko )-submodule
consisting of functions f € L*(G(F)\G(Ar)/U,¢LL).
Let Coh(\) be the finite set of isomorphism classes of unitary irreducible representations
Troo Of Goo such that H* (g, Keo; Mo @ VA(C)) # 0. By L3, (G(F)\G(AF) /U, () (oo X 7f),
we mean the (o X 7¢)-isotypical subspace of L3 (G(F)\G(Ap)/U, (). Let Hoonn) =
D L3.(GEN\GAR)/U, () (oo x 7f). Note that this is a finite sum of irreducible
oo €Coh(N)

modules, and it decomposes into a cuspidal and a residual part Hoop(x) = H, éléip( /\)@H éeosh( NS

Let H(*Z)(Xg,XN/A(C)) be the image of H*(g, Koo; C3)(G(F)\G(AF)/U, ) ® VA (Q)) in

H*(XY, VA(C)) under isomorphism (T.1)).

Theorem 1.1.1. 1. The map H*(g, Koo; Hoon(n) ® VA(C)) — H(*Q)(Xg,f/)\((C)) is sur-
jective.

(G(F)\G(Ar)/U, () decomposes further into a cuspidal and a residual spectrum

2. The map H*(g,Koo;Héishp()\) ® Vi(C)) — H*(XZ, VA(C)) is injective.

Proof. See [Har20, Theorem 8.1.1].
We define H

cusp
VA(C)) — H*(Xg, VA(C)).
Remark 1.1.2. Note the filtration (see [Har20l (8.23)])

Hep (XE,VA(C)) € HY (XG, VA(D)) € Hy (X, VA(C)) € H*(XE, VA(C)).

cusp

(XZ, VA(C)) to be the image of the injective map H*(g, Koo; Héléslf()\) ®

We expect that Hj,. (XY, VA(C)) coincides with H 6*2)(Xg ,VA(C)) for regular dominant A.

For Siegel varieties, this is proved in [MT02, Proposition 1].
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1.2. INTEGRAL COHOMOLOGY

Theorem 1.1.3. If 7 is tempered, then
1. Hz(Gv K0077TOO & V)\((C)) =0 fO’F { ¢ [q05 q0 + EO]a and
2. dim HV (g, Koo; oo @ VA(C)) = (%) - dim H (g, Koo Too @ VA(C)).

Proof. see [BW13, Corollary I11.5.2]. O

We write H (XE ,VA(C)) for the image of the tempered component of the map
H*(g, Koo; Hélgip()\) ® VA(C)) — H*(XY, VA(C)). Then as a corollary of the above theorem,
one has dim HZH (XY, VA(C)) = (%) - dim HE, (XZ, VA(C)).

1.2 Integral cohomology

From now on, we suppose U = [, U, with U, C G(O,)) and each U, (v ¢ S) hyperspecial
maximal. We choose a finite set of representatives {g;}i—1,..m for G(F)\G;/U. Then it’s
clear that XZ = [, T:\X¢ where T; = G(F) N g;Ug; *. We suppose that U is neat (see
INT16lL Page 27]); more precisely, we mean for every g = (g,) € U, the intersection NI, is
trivial, where I',, C F* is the torsion subgroup generated by the eigenvalues of g, in any
faithful representation of G. In particular the neatness implies all I'; are torsion-free and
Xg is a union of quotient manifolds of Xg.

The cohomology H*(X{, VA(0)) can be calculated as follows (see [KT17, Section 6.2]):
we define Cy o to be the complex of singular chains with Z-coefficients valued in G x X¢
(it is naturally a Z[G(F) x G]-module), then

H*(XE,VA(0)) = H* (Homg ()< (Cae, VA(O))).

Recall the Hecke algebra H(G®, U”) is freely generated over O by the characteritic functions
[USaU?] of the double coset USaU® (a € G¥). Fix a decomposition U aU® =[], a;U°
(i € G%), then the action of [U%alU®] on ¢ € Homg ()7 (Cae; VA(O)) is given by

([U°alU T ¢)(o) = Z aip(a; o).

It’s clear that this action is independent of the decomposition U alU?® = I U S and
induces an action of H(G®,U®) on H*(XY, A\ (0)).

Let h be the quotient of H(G*,U®) which acts faithfully on H*(XY, VA(0)). Since
H*(X§ ,VA(O)) is finitely generated, h is a finite commutative O-algebra and we have
h 2 T],, hm where m ranges through maximal ideals of h. Now H*(XY, VA(O)) decomposes
into [, H*(XY, VA(O))m. By saying that a maximal ideal m is non-Eisenstein, we mean
any (h ®o k)-isotypical component appearing in H* (Xg ) ‘N/A(O))m ®e k doesn’t come from
H* (XY, Va(k))/HF (XG, VA(K)).

19



CHAPTER 1. COHOMOLOGY OF LOCALLY SYMMETRIC SPACES

Remark 1.2.1. For GLy over a number field F', a maximal ideal m of h is said to be non-
Eisenstein if the associated representation I'rg — GLy(h/m) is absolutely irreducible.
By [NTI16, Theorem 4.2], this implies any (h ®o k)-isotypical component appearing in
H*( XY, V3(0))m ®0 k doesn’t come from H*(XZ, Va(k))/H; (XE, Va(k)).

Remark 1.2.2. Let m be a fixed non-Eisenstein ideal and let T = hy. Let’s brively discuss
the conjecture (Vany, ), which asserts that H*(XZ, Vi (k))m = 0 for i ¢ [qo, go-+4o]. Since m is
non-Eisenstein, we have the perfect Poincaré duality pairing (V' is the dual representation
for V)

HY(XE, VA(k))m x HAOHOT(XE VY (k))mv — F,

and it suffices to check (Vany,) for i < gy (for every A). Then after shrinking Ug to a normal
subgroup which acts trivially on V) (k) and using the Hecke-equivariant spectral sequence

B}t = HY(U/U', HYXE V() = HPPU(XE, Va()),

it suffices to check Hi(XlG], k)m = 0 for i < qo.

The annulation of H (XY, k) (i > 2) is still far from reach to the author’s knowledge,
and we expect that the annulation of H'(XZ, k) is equivalent to the validity of the
congruence subgroup problem for G (see [PR10]). For example, for G = SLy (N > 2)
over a number field F' with r; real places and r2 complex places, the congruence subgroup
problem holds if and only if N > 3 or N = 2 and r1 +r9 > 2 (see [BMS67, Theorem 14.1],
[Ser70, Theorem 2] and [Lub82, Theorem B|); on the other hand, gy = [NTQ]rl + ]\[22;]\7?”2,
so qp = 1 exactly when N =2 and r{ + 17y = 1.

1.3 Calegari-Geraghty method

The following part of this thesis will mainly focus on the Galois side. To simplify our
notations, we use G to denote a split reductive group scheme over O (it plays the role of the
reductive dual of the group G of previous sections), unless otherwise specified. We suppose
the center Z of G is smooth over O. Let g = Lie(G/O) ®o k (resp. 3x = Lie(Z/0) @0 k).

Let I's be the Galois group of the maximal S-ramified extension of F' and let p: I'g —
G(k) be a fixed absolutely irreducible continuous Galois representation; p will eventually
be the representation described in (Resy). Note that we have H(I's,gxr) = 3, by the
absolutely irreducibility of p (see [BHKT19, Lemma 5.1}).

1.3.1 Galois deformation theory

We begin by recalling some deformation theory for p. Let CNLp be the category of
complete Notherian local O-algebras with residue field k. The universal framed deformation
functor Defgz CNLp — Sets for p is defined by associating A € CNLp to the set of
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1.3. CALEGARI-GERAGHTY METHOD

continuous liftings p: I's — G(A) which make the following diagram commute:

I's —2> G(A)

5
\G(k).

Moreover, the universal deformation functor Defg: CNL» — Sets is defined by associ-
ating A € CNLg to the set of ker(G(A) — G(k))-conjugacy classes of Defg(A). As an
application of Schlessinger’s criterion (see [Sch68, Theorem 2.11]), the functors Def§ and
Defg are representable (for the latter we require the condition H°(T', gx) = 31, see [Til96],
Theorem 3.3]).

For each place v € S, we define similarly the universal framed deformation functor
Deft) and the universal deformation functor Def, for p|r, (note I', = Gal(F,/F,)). Again
Schlessinger’s criterion implies that DefE is representatble, say by RY € CNLp. However
the functor Def, is generally not representable, for H°(I',, gx) = 3% is usually not true.

Definition 1.3.1. Let v be a finite place of F. A local deformation problem for p|r, is a
subfunctor D, of DefE satisfying the following conditions:

1. D, is represented by a quotient R, € CNLp of R
2. For any A € CNLp, p € Dy(A) and a € é(A)7 we have apa=! € D,(A).

_ Let k[e] = k[t]/(t?). Then it’s well-known that D, (k[e]) can be identified with a subspace
L, C Z}(Ty, g), which is the preimage of a subspace L, C H'(T',, gx) under the projection
ZY Ty, gx) — HY(Ty, gx). Note R, can be generated by

dimy, L, = dimy, gy, + (dimy, L, — dimy H(T'y, g))

variables over O. We say D, or R, is formally smooth if R, is a power series ring over O;
note then the number of generators is dimy L.

Definition 1.3.2. A global deformation problem is a tuple & = (S, {Dy}ves), where D,
is a local deformation problem for p|r, for each v € S.

Definition 1.3.3. We say a lifting p: I's - G(A) (A € CNLp) of p is of type S if
plr, € Dy(A) for every v € S. Two liftings p1,p2: I's = G(A) of type S are said to be
equivalent if there exists a € ker(G(A) — G(k)) such that po = apia~!. An equivalent class
of liftings of type S is called a deformation of type S. We denote by Dg: CNLp — Sets
the functor which sends A € CNLp to the set of deformations to G(A) of type S.

Under our condition H O(FS, k) = 3k, it’s well-known that the functor Dg is repre-
sentable, say by Rs € CNLg.
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We define C%(I's, gi) by the cone construction: let C¢(I'g, gi) = C*[—1], where C* is
the mapping cone of the natural morphism

0—— CO<F57gk>

CYTs, gk) C*(Ts, gr) — ...

| |

0 0 D5 C (To, 1)/ Lo — B pes C* Ty g5) — - -

Let H5(I's, g) be the cohomology of C§(I's,gx). Then we have the following exact
sequence:

0 —~HS(s,g1) = H (s, g) — 0
—H§(Ts,0:) = H' (Ts, o) = E H' (T, 9)/ Lo
veS

—HE(Ts, 1) = H*(Ts,00) = D H* (L0, 1)
veS

For a finite O-module M equipped with a Galois group action, we write MYV =
Homp (M, K/O) and M* = Homp (M, K/O(1)). In particular, if M is a k-vector space,
then MY = Homy (M, k) and M* = Homy, (M, k(1)).

Define Hg, (T's, gf) = ker(H' (L', g}) = @,eg H'(Tv, 8})/Lir), where Lys € HY (T, gj;)
is the dual of L, C H'(T,, gx) under the local Tate duality. As an application of the Poitou-
Tate duality, we have H{, (I, g;)" = H3(Ts, gx) and H°(Ug,g5)" = H3(T's, gi) (see the
proof of [ACC+18, Proposition 6.2.24]).

Lemma 1.3.4. There is an O-algebra surjection O[[X1,...,X4]] » Rs, with

g =dimy H§(T's, g1) =dimy H§, (s, gi) + dimy, H°(T's, gx) — dimy, H(T's, g;)
- Z dimk HO(FUa gk) + Z(dlmk Lv - dimk HO(FUa gk))

v | oo veS
Proof. See [ACC+18|, Proposition 6.2.24]. O

Remark 1.3.5. Suppose ¢, ¢ F, and suppose H = ﬁ(GalF(Cp)) satisfies ng = 3k (this is part
of the enormous image condition for p), then it’s easy to see H’(I's, g}) = 0.

1.3.2 Taylor-Wiles primes

Given S and a finite set of places @ disjoint from S, we write Sg = (S U Q, {Dy }vesug)
where D,, = Def" for every v € Q.
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Definition 1.3.6. 1. A place v ¢ S is called a Taylor-Wiles prime if N(v) =1 (mod p)
and p(Frob,) is conjugated to a strongly regular element of T'(k) (i.e., an element
t € T(k) whose centralizer in G coincides with T').

2. An allowable Taylor-Wiles datum of level m is a set of Taylor-Wiles primes @) =
(v1,...,v), together with a strongly regular element ¢, € T'(k) conjugate to p(Frob,,)
for each i € {1,...,r}, such that

(a) N(v;) =1 (mod p™), for every i € {1,...,7};
(b) H3,(Tsug, gk) = 0.

Remark 1.3.7. By the Poitou-Tate duality, condition (b) is equivalent to HéL(FS, g;) = 0.

The existence of Taylor-Wiles data relies on the enormous image assumption for p (see
[ACC+18, Definition 6.2.28]):

Definition 1.3.8. Let g}, be the Lie algebra of the derived group G'. We say p: I's — G(k)
has an enormous image, if H = p(Galp,)) satisfies the following:

1. H has no non-trivial p-power order quotient.
2. H'(H,g,)=H'(H,g}) =0.

3. For any simple k[H]-module W C g}, there is a regular semisimple h € H such that
wh £ 0.

Lemma 1.3.9. Suppose p: I's — G(k) has an enormous image. Let r > dimy, H:(T's, g})
and m > 1. Then there exists an allowable Taylor- Wiles datum Q) of level m and cardinal
r.

Proof. [ACC+18, Lemma 6.2.31] proved this for GLy, but the proof applies verbatim for
general G. 0

Now fix r > dimy Hi(T's, ;). Let @ = (Qm)m>1 be a system of disjoint allowable
Taylor-Wiles data, such that each Q,, is of level m and cardinal r. For simplicity, we write
' = I'su@ps Pm = Ds,,,, for the deformation functor of type Sq,, and R;, = Rs,, = for
the representing ring of D,,. Let n = rank G.

Lemma 1.3.10. For every m > 1, there is an O-algebra surjection O[[X1, ..., Xg]] = R,
with

g = dimy Hg,, (T, 0x) = nr + dimy Hg(Cs, g) — dimy, Hg. (T's, g7)-
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Proof. We apply Lemma/|l.3.4{to the global deformation problem Sg,,. Then H Ty g5) =
Q’"L
0 by the definition of @, so

g =dimy H'(Tg,gz) — Y dimy HO(Ty, gz) + »_(dimy, Ly, — dimg HO(Ty, gs))

v | oo veS

+ Z (dlmk L, — dimy, HO(FU7 gk))
VEQmM

By Lemma [1.3.4] we have

dimy HE(T's, gy) — dimy HS, (Tg, g3) =dimy HO(Ds, gx) — > dimy H(Ty, g
v | oo

+ Z(dimk L, — dimg H(T, gx)).
veES

On the other hand, for v € Q,,, we have L, = H*(T', gx) and hence
dimy, L, — dimy, H°(T,,, g) = dimg H(T,, g}) = n

(here the first equality follows from the local Euler characteristic formula and the second
equality is because N(v) = 1 (mod p) and p(Frob,) is conjugated to a strongly regular
element of T'(k)). So the conclusion follows. O

Definition 1.3.11. We say pis odd, if > dimy H°(Ty, gx) = fo+[F : Q](dim G—dim B)+
v | oo

dimy, H(T's, gi).-

Remark 1.3.12. This definition seems rather deliberate. For the locally symmetric space
associated to RengLN and p: I's — GLy(k), one has ¢y = [%]rl + Nry — 1, where 71
(resp. r2) is the numbers of real (resp. complex) places of F', and hence

N2 —

]7'1 —i—NTg—l—i—(?‘l +27’2)T+1.

€0+[F : Q](dimG—dimB)—i—dimk HO(Fs,gk) = [N 1

Therefore the oddness of 5 means precisely dimy, H(T,, gz) = [ 22+1] for every real place

v, or in other words, H%(T,, g) has the minimal possible dimension.

Write pp,: Ty, — G(R,,) be any representative of the universal deformation. Then
for each v € @, there exists a conjugation of p,,|r, which takes values in T(R,,) (see
[GV18, Remark 8.4]). By restricting to O} via the local Artin reciprocity, we get an O-
algebra homomorphism O[A,] — R,, where A, is the Sylow p-subgroup of (k})"™. Define
Aq,. = Ilieq,, Av, then Ry, is naturally an O[Agq,,|-algebra and it’s clear that Rs =

R @0(aq,,)1 O
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Let Sy = O[[Xl, . ,an]], Im = <((1 —|—Xi)pm — 1)1§i§nr> and S,, = Soo/Jm (m > 1)
Note that J; D Jy O ... is a decreasing sequence and N;>1J; = 0. Since Ag,, is a product
of nr cyclic groups, each of order at least p™, the ring Sy, is a quotient of O[Ag,,]. We
introduce S,, = S,,/p™ and R,, = Ry, Rolag,, ] Spm. Let Roo = O[[X1,...,X,]] with
g = nr + dimg H:(Dg, gg) — dimyg, Hél (I's,g;). Then Lemma implies there is a
surjection Roo — R, for every m > 1.

1.3.3 Calegari-Geraghty setting

We temporarily use the bold G to denote the connected reductive algebraic group over
F mentioned in the introduction and we write and G = YG. Let U = Ug x U° =
(ITves Uv) x (I,¢s Uv) be a neat open compact subgroup of Gy such that U, € G(O,)
and each U, (v ¢ S) is hyperspecial maximal. Let h be the image of H(G?,U®) acting on
H*(XZ, VA(0)) and let m be a non-Eisenstein maximal ideal of h, and we write T = Ay,
Assume (Resy), (Galy) and (Vany).

Set S to be the global deformation problem for p: I's — G(k) described in (Resy)
(more precisely, it is simultaneously either ordinary or Fontaine-Laffaille for v € S),, and
minimal for v € S\S,). In Section we will show

> (dimy, L, — dimg H(Ty, gz)) = [F : Q)(dim G — dim B),
veS

so together with the oddness condition, one has
dimy, Hg(Ds, gx) — dimy Hg. (T's, gf,) = —o,

and hence dim Sy, — dim Ry = 4.

The conjecture (Vany) implies that we can choose a minimal cochain complex of O-
modules C* concentrated in degrees [qo, qo + ¢o] such that H*(C*) = H*(Xg,XN/A(O))m
(see [KT17, Lemma 2.3]). For each allowable Taylor-Wiles datum @, it is explained in
[GV18, Section 13.6] that, under the local-global compatibilities at Taylor-Wiles primes,
there exists a cochain complex Cj, of finite free Sy,-modules such that Cj, ®5 O/p™
is quasi-isomorphic to C*/p™ and there is a natural action of R,, on H*(C,) which is
compatible as S,,-algebras, and compatible with the Rg-action on H*(C*) after descending
to Cy, @5, O/p™ ~ C*/p™. We can further require Cy, to be minimal so that it is also
concentrated in degrees [qo, go + fo], and the quasi-isomorphism C};, ®g O/p™ ~ C*/p™
is then induced from an isomorphism of chain complexes.

To summarize the data, we have:

1. a minimal complex of O-modules C* concentrated in degrees [qo, g0 + ¢o];

2. an O-algebra homomorphism Rs — Endp(H*(C*));
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3. a minimal complex of S,,-modules C}, concentrated in degrees [qo, go + £o], such that
Cr, @5 Ofp™=C*/p™ for each m > 1;

4. a commutative diagram of S,,-algebra homomorphisms for each m > 1:

Ry,
l—®sm0/pm i—@)sm@/pm

Rs/p™ ——Endg /pm (H*(C*/p™));

Endo(H*(CY,))

5. a surjective @P-algebra homomorphism R., — R,, for each m > 1.

Now by the patching argument (see [KT17, Proposition 3.1]), we can find the following
data:

(a) a complex of finite free Sy-modules CJ concentrated in degrees [qo, o + {o] together
with an isomophism C% ®g, O = C*;

(b) an O-algebra homomorphism S — R

(¢) a commutative diagram of Sy.-algebra homomorphisms:

Roo —— EndSoo (H* (C:)ko))
i@swo \L®SOOO

Rs — Endo(H*(C¥)).

Remark 1.3.13. An important point in the patching argument is that R,,, — Endo(H*(C%,))
factors through R,/ m%:) for a constant ¢(m) only depending on m, so essentially the da-
tum (R, /m%(::),C,ﬁl) admits only finite choices, and hence we can select a compatible
system satisfying conditions (3)-(5) and pass to the inverse limit.

The difference with the Taylor-Wiles method is the appearance of the positive £y, both
as dim Sy, — dim R, and the length of the interval [go, qo + fo]. Note dimg  H*(C%) =
dimp, H*(C%,) < dim Ry = dim Soc—¥p (the first equality is because Roo/Anng  (H*(CZ))
acts faithfully on the finite Seo-module H*(C%,), so it is finite over Sy ). By the commu-
tative algebra lemma (applying to S = S, and D* = C%.), we know H'(C%.) is
non-zero only at degree i = qg + £p, and

depthg  H+0(C%)) = dimg, HH0(C%,) = dim Se — o;
pdg, HI0(CL) = o,

See also [Hanl2, Theorem 2.1.1], which proves above results by a different approach.
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Lemma 1.3.14. Let S be a Noetherian local ring. Let D* be a complex of finite free
S-modules concentrated in degrees [Gm,qs]. Let { = qs — qm. Suppose H*(D*) # 0, then
dimg H*(D*) > depthS — £. If equality holds, then H'(D*) is non-zero only at degree
i = qs, and we have depthg H%(D*) = depth S — ¢, pdgH% (D*) = .

Proof. Let q be the smallest integer that H9(D*) # 0, and set K¢ = D?/im(D471).

Note that 0 — D% — ... — D? is a projective resolution of K9, so pdgK? <
¢ — ¢m- On the other hand, by Ischebeck’s Lemma (see [Mat80, (15.E) Lemma 2])
Ext4(HY(D*),K?) = 0 for i < depthg K9 — dimg HY(D*). In particular, since H%(D*
is a non-zero submodule of K7, we must have depthg K¢ < dimg H%(D*).

By the Auslander-Buchsbaum formula (see [Sta, Tag 090V]), we get the desired in-
equality:

~ o

depth S = depthg K9 + pdgK? < dimg HY(D*) + (¢ — ¢m) < dimg HY(D*) + ¢.

If the two inequalities are actually equalities, then the second one gives ¢ = g5, which
implies K9 = H%(D*), and the first one then gives

depthg H%(D*) = dimg H%(D*) = depth S — ¢;
pdgH%(D*) = ¢.
Corollary 1.3.15. 1. H*(C%) = HW0(C%) is free over Ry.
2. There is an isomorphism H©Ho=i(C*) 22 Tord>= (H©+o(C%.), 0).
3. Hw+%(C*) is free over Rs and Rs — T is an isomorphism.

Proof. 1. Since the map So, — Ro repects the module structures of H%+0(C%), it
sends a regular sequence in S, for H®+0(C*% ) to a regular sequence in Ry, for
Hto(CL ), so

depthp_ H®T0(C% ) > depthg_ HP™0(C% ) = depth Re.

Since H%*tlo(C*%) is finitely generated over the regular local ring R, it’s well-
known that the projective dimension of H%+%(C% ) over Ry, is finite (consider the
Koszul resolution for Ry /mp_ or see [Sta, Tag 0007]) and we can apply the Aus-
lander-Buchsbaum formula

pdp  HPT0(C% ) = depth R — depthy_ HOMo(C2%) < 0.

Therefore H+0(C* ) is free over Roo.
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2. The Kiinneth spectral sequence (see [Weib94, Theorem 5.6.4], we use the cohomo-
logical version)

EYY = Tor®> (H1(C%,),0) = HPT(CZ, ®s.,, O)
collapses because FY? = 0 unless ¢ = qo + £o, so we get the desired isomorphism.

3. The above results imply that H%+0(C*) = Fo+0 (0% )®g O is free over Ryo®5. O.
Then since the module structure on H% 0 (C*) factors through R, ®g._ O — Rs,
the map R ®g,, O — Rs is an isomorphism and H% 0 (C*) is free over Rs.

]

1.3.4 Graded structure

Let’s discuss the graded structures of Tor?> (Ruo, @) and Tord> (H% 0 (C% ), ©). A priori,
these are graded modules, but in fact Tor?< (R, @) carries additional structures: it’s a
graded commutative ring.

Definition 1.3.16. 1. A graded commutative ring is a graded ring A = ®;>0A4;, such
that the multiplication satisfies a-b = (—1)""b-a for a € A,, and b € A,,.

2. Let A = ®;>0A; be a graded commutative ring. A graded A-module is an A-module
M equipped with a graded structure M = @®;>¢M; such that the scalar multiplication
sends A, X My, to My1p.

Definition 1.3.17. 1. A differential graded ring is a graded commutative ring A =
®i>0A; equipped with a differential d: A — A (i.e., a group homomorphism for the
additive structure of A) satisfying

(a) dsends A; to A;_1;
(b) dod = 0;
(c) d(a-b) = (da)-b+ (—=1)"a- (db) for a € A, and b € A,,.
2. Let A be a differential graded ring with differential d. A differential graded A-module
is a graded A-module M = @®;>0M; equipped with a differential dp;: M — M (i.e.,
a group homomorphism for the additive structure of M) satisfying
(a) dps sends M; to M;_q;
(b) darody =0;
(¢) dy(a-x) = (da) -x+ (=1)"a - (dyx) for a € A, and x € M,.
A differential graded ring or module has a natural chain complex structure, and we

write H,(—) for the homology. Note that if M is a differential graded A-module, then
H.(M) is naturally a graded H,(A)-module.
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When A is a ring and By, By are A-algebras, the Tor-algebra Tord(Bj, By) can be
calculated as m,(B1 ®4 c¢(B2)) where ¢(Bz2) is a cofibrant replacement of By in 4\sCR
(see Section and [Gil13, Section 7.11]). In fact, TorZ(By, Bs) is a strictly graded
commutative A-algebra equipped with divided powers (see [Gill3, Section 8.5]).

In our situation, the Koszul resolution of the S-algebra O is a differential graded ring,
and by [BMRI3, Theorem 11.8], one can calculate the Tor-algebra Tor?= (R, ©) using
this differential graded resolution instead of the simplicial resolution.

Lemma 1.3.18. Tord>=(H® 0 (C%), 0) is naturally a graded module over the graded com-
mutative O-algebra Tor?=(Ryo, O), freely generated by Torg"O (Ho+o(Cx), 0).

Proof. Let E = (Sx)™ and let {eq,..., ey} be the canonical basis. Since (X1,...,Xy,) is
a regular sequence in So and Soo /(X1, ..., Xpr) = O, the Koszul complex K, (s) associated
to the Soo-linear map s: E — Sy which sends e; to X; is a free resolution of O. Recall
that

1 0
K*(s):0—>7{Ei*i>~-d—2>/\Ed—1>/\E%’Soo—>0,

where di(a1 A -+ Aag) = Z?Zl(—l)i_ls(ai)al AN Nag N N ag.

Note that K.(s) is naturally a differential graded ring with the multiplication defined

by
(@ A Nai)- (bt A Abj)=ar A---Nag Nby A--- A bj.

Then together with the R..-module structure on H®+o(C* ), K,(s) ®g, HO0(Cx)
is naturally a differential graded K.(s) ®gs,, Roo-module. By the foregoing comment,
Torde (H©0+o (C%), 0) =2 H,(K.(s) @, HOT0(C.)) is a graded module over the graded
commutative ring Tor?= (Reo, O) = H, (K. (5)®s.. Roo). Moreover, Tord>= (H® o (C* ), O)
is freely generated by Torg> (H%® 4 (C* ), ©) because HOT0(C* ) is free over Rao. O

Note that H*(XZ, Va(O0))m = H*(C*) is equipped with a graded structure (note the
switch of indexes i —+ go+£o—1) via the isomorphism H%+0—i(C*) 2 Tor¥> (HwHo(C% ), O).
The following corollary is straightforward:

Corollary 1.3.19. H*(X(U;,f/)\((’)))m is a graded TorS= (R, O)-module, freely generated
by Ho+to (Xg, VA(O))m-

Remark 1.3.20. As mentioned in the introduction, an unsatisfactory aspect is that Tor?> (Ruo, O)
depends on various non-canonical choices. Note the isomorphism

Tors™ (Rac, 0) 2 7. (Rocig_O)

as graded commutative O-algebras, where Rx®g O is a simplicial ring which represents

L
the derived tensor product R..®g. O (see Section [2.1.5). The insight of Galatius and
Venkatesh is that one can extend deformations to simplicial rings and reinterpret Roo®g O
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as a derived representing ring, thus canonically. In the following chapters we will discuss
the derived deformation functors and derived deformation rings, which are the principal
subjects of this thesis.

30



Chapter 2

Simplicial backgrounds

The derived deformation functors are more or less functors from simplicial commutative
Q-algebras to simplicial sets. In this chapter we will prepare the necessary foundations
to study these functors. In Section 2.1 we will recall some basic facts on simplicial model
categories, and an important objective is to understand the structure of o\sCR/. In Sec-
tion 2.2 we will focus on the pro-representabilty of functors from the Artinian subcategory
o\sArt/; of o\sCR/\ to simplicial sets.

2.1 Simplicial model categories

2.1.1 Simplicial sets

We denote by A the cosimplicial indexing category: the objects are totally ordered sets
[n] = {0,1,...,n} for n > 0, and the morphisms are order-preserving functions between
these sets. Let d: [n—1] — [n] (0 <i<n)and s/: [n+1] — [n] (0 < j < n) be the
morphisms defined by

d'({0,1,...,n—1}) ={0,1,...,i —1,i+1,...,n},

and

s7({0,1,...,n+1}) ={0,1,...,4,4,...,n}.
Definition 2.1.1. For a category C, we define sC to be the category of functors A°? — C.

In fact, an object X € sC can be regarded as a sequence of X,, € C for n > 0 (X, being
the image of [n]) together with morphisms d;: X,, = X,,—1 (0 <i <n)and s;: X, = X, 11
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(0 < j < n) satisfying the relations

did; = didjyy  ifi<j
§58; = SiSj—1 if 4 < ] -1
djSi = Sidj_l if ¢ < _] -2
dijfl = dij =id

djsi = Si_ldj if 4 > ] + 1.

We call sSets the category of simplicial sets, sGp the category of simplicial groups...

Example 2.1.2. 1. A" = Homa(—,[n]) (n > 0) is a simplicial set, we call it the
standard n-simplex.

2. We denote by OA™ the smallest sub-simplicial set of A™ which contains d;(id,),
0 <i < n. We call 9A™ the boundary of A"™. Explicitly, A} is the set of non-
surjective order-preserving functions {0, 1,...,k} — {0,1,...,n}.

3. Let n > 1 and 0 < m < n. We denote by A}, the smallest sub-simplicial set of A"
which contains d;(idj,)) for 0 <i < n and i # m. We call A}, the m-th horn of A”".
Explicitly, (A}},)x is the set of order-preserving functions {0,1,...,k} — {0,1,...,n}
such that the image doesn’t contain {0,1,...,m —1,m+1,...,n}.

Definition 2.1.3. 1. A morphism of sSets is a cofibration if it is injective in every
simplicial degree.

2. Let X and Y be simplicial sets. A morphism p: X — Y is a fibration if for every
n>1,0 <k <n and solid arrow commutative diagram as follows:

n____ o
bl

7/
A" — =Y,

where i: A} — A" is the natural inclusion, there is a dotted arrow making the
diagram commute. We say a simplicial set X is fibrant (or Kan), if X — % is a
fibration (here * refers to A?, which is the terminal object of sSets).

A morphism A} — X can be regarded as an n-tuple (z9,...,2k,...,2n) of z; € X4
such that d;_12; = d;z; for ¢ < j. Thus p: X — Y is a fibration if and only if for every
n > 1 and n-tuple (29, ..., 2k, ..., 2n) as above satisfying p(z;) = d;y for some y € Y,,, there

exists x € X,, such that p(z) =y and z; = d;z.

Lemma 2.1.4. Every simplicial group is fibrant as a simplicial set, and every morphism
of simplicial groups f: G — H which induces surjective G, — H, for everyn > 1 is a
fibration as a morphism of simplicial sets.
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Proof. For the first statement, see [GJ09, Lemma 1.3.4]. For the second statement, it
suffices to show that for every n > 1 and n-tuple (zo,..., 2k, ..., 2,) of elements in G,_;
and y € H,, such that dj_1z; = d;z; for i < j and f(z;) = d;y, there exists € G,, such
that f(x) = y and d;z = 2. Since G,, — H,, is surjective, there exists a pre-image z’ of
y, by considering (d;z’)~! - 2, it reduces to show ker(f) is fibrant, which follows from the
first statement. O

Let AX be the category of simplices of X (see [Hir09, Definition 15.1.16]): the objects
are natural transformations A" — X, and the morphisms from A" — X to A™ — X

consist of natural transformations A™ — A" which respect the natural transformations

to X. By Yoneda’s lemma, the objects of AX can be identified with || X,, and the
n>0

morphisms from z € X, to y € X,,, can be identified with morphisms [n| — [m] of A such

that the induced map X,, = X,, sends y to z.

We have the following well-known lemma:

Lemma 2.1.5. Suppose C is a category admitting colimits; let F': A — C be a covariant

functor. Let Fy,: C — sSets be the functor which sends A € C to the simplicial set X =

(Xn)n>0 given by X, = Home(F ([n]), A) at n-th simplicial degree, and let F*: sSets — C

be the functor which sends X € sSets to  lim F(o). Then F* is left adjoint to F.
(n,o)eAX

Proof. 1t’s clear that F, is well-defined, and F* is well-defined since every simplicial set
morphism f: X — Y induces a functor AX — AY. For X € sSets and A € C, we have

Home (F*(X), A) = lim Home (F([n]), A)
(An S X)e(AX)oP
@1 Homggets (An’ F (A))
(Ar—X)e(AX)op
= Homgets hgfl A", F,(A))
(Ar=X)eAX
= Homggets (X, Fx(A4)),

12

where the last equation follows from [HirQ9, Proposition 15.1.20]. So F™* is left adjoint to

F,. O

Example 2.1.6. Consider the functor A — Top, which sends [n] to |A"|, where |A"| =
n

{(to,...,tn) € R | S #; = 1,¢; > 0} is the topological standard n-simplex, and sends

=

morphisms of A to corresponding linear maps. The associated left adjoint sends X € sSets

to | X| = lim |A™|, and the associated right adjoint is the usual singular complex
(An—=X)eAX

functor. We call |X| the geometric realization of X.
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Definition 2.1.7. A morphism of simplicial sets f: X — Y is a weak equivalence, if the
induced map |f|: |X| — |Y] is a topological weak equivalence.

Definition 2.1.8. Let X be a simplicial set and let v: * — X be a vertex of X. We also
use v to denote the corresponding point of the geometric realization |X|. Then for n > 1
the n-th homotopy group of (X,v) is defined by m,(X,v) = m,(|X|,v). We also define
mo(X) = mo(|X]).

For fibrant X, the group structures on m,(X,v) for n > 1 can be defined combinatori-
ally without refering to the geometric realization (see [GJ09, Section I1.7]). In particular,
this is the case when X € sGp. Henceforth, when X is a simplicial group with unit e
and n > 1, we will abbreviate 7,(X,e) by m,(X). Since changing the vertex v induces
group isomorphisms of homotopy groups m,(X,v) natural in X, a morphism f: X — Y of
simplcial groups is a weak equivalence in sSets if and only if m,(f): m,(X) = m,(Y) is an
isomorphism for all n.

The reason for introducing cofibrations, fibrations and weak equivalences of sSets is
that with these strucutures, the category sSets becomes a model category.

2.1.2 Model categories

Definition 2.1.9. A category C is a model category, if it is equipped with three classes of
morphisms: cofibrations, fibrations and weak equivalences (we say a cofibration or fibration
is trivial if it is also a weak equivalence), such that the following axioms hold:

CM1: C is complete and cocomplete.

CM2: Given composable morphisms f, g of C, if any two of f, g and fg are weak equivalences,
then so is the third.

CMa3: If f is a retract of g and ¢ is a cofibration, fibration or weak equivalence, then so is

1.

CM4: If either i is a trivial cofibration and p is a fibration, or 7 is a cofibration and p is a
trivial fibration, then ¢ has the left lifting property with respect to p (tautologically p
has the right lifting property with respect to i), i.e., for every solid arrow commutative
diagram

A——X

7
i 0 |
/7

B——=Y,
there exists a dotted arrow making the diagram commutative.

CM5: Any morphism f: X — Y can be factored in two ways:
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(a) f = pi, where p is a fibration and i is a trivial cofibration.

(b) f = qj, where q is a trivial fibration and j is a cofibration.

Remark 2.1.10. 1. It’s customary to write — for a cofibration, — for a fibration, and
5 for a weak equivalence.

2. The axiom CM1 implies that C has an initial object () and a terminal object *. We
say an object A € C is cofibrant if () < A, and fibrant if A — *.

3. We say B is a cofibrant replacement of A if ) — B-—»A. We say B is a fibrant
replacement of A if A<B —» x.

4. If C is a model category, then the opposite category C°P also carries a model category
structure: a morphism of C°P is a cofibration, fibration or weak equivalence if and
only if its dual is a fibration, cofibration or weak equivalence of C respectively. So if we
can prove some statement under axioms of model category, then the dual statement
is also true.

5. It follows from the axioms CM3, CM4 and CM5 that a morphism is a cofibration
if and only if it has the left lifting property with respect to all trivial fibrations, and
a morphism is a trivial cofibration if and only if it has the left lifting property with
respect to all fibrations. Similarly, a morphism is a fibration if and only if it has
the right lifting property with respect to all trivial cofibrations, and a morphism is
a trivial fibration if and only if it has the right lifting property with respect to all
cofibrations.

Let’s review the theory of cofibrantly generated model categories for the first infinite
cardinal, which is sufficient for our purpose. See [Hir09, Chapters 10 and 11] for transfinite
generalizations.

Definition 2.1.11. Let C be a category.

1. Let 4 be a class of morphisms of C. We say an object X € C is small relative to U if
for every (countable) sequence

Yo Y1 ==Y, — ...
where each Y; — Y;11 belongs to 4, the natural map hg Home (X, Y;) — Home (X, hgl Y:)
) %
is an isomorphism.

2. Let I be a set of morphisms of C. We say I permits the small object argument if the
sources of morphisms of I are small relative to the class of morphisms consisting of
pushouts of coproducts of I.

35



CHAPTER 2. SIMPLICIAL BACKGROUNDS

Definition 2.1.12. A model category C is cofibrantly generated, if it satisfies the following
two conditions:

1. There is a set of morphisms I, such that I permits the small object argument, and
a morphism is a trivial fibration if and only if it has the right lifting property with
respect to all elements of 1. We call such I a set of generating cofibrations.

2. There is a set of morphisms J, such that J permits the small object argument, and
a morphism is a fibration if and only if it has the right lifting property with respect
to all elements of J. We call such J a set of generating trivial cofibrations.

The small object argument of Quillen implies that the factorizations in CM5 can be
chosen functorial. We say a morphism f: Xg — X is an N-composition of morphisms in
some class 4l if there exists Xg — X1 — -+ — X; — ... such that each X; — X1 belongs
to U and f coincides with Xy — thZ

K]

Lemma 2.1.13. Let C be a cofibrantly generated model category with a set of generating
cofibrations I and a set of generating trivial cofibrations J.

1. There is a functorial factorization of every morphism of C into a cofibration followed
by a trivial fibration, such that the cofibration is an N-composition of pushouts of
coproducts of I.

2. There is a functorial factorization of every morphism of C into a trivial cofibration fol-
lowed by a fibration, such that the trivial cofibration is an N-composition of pushouts
of coproducts of J.

Proof. See [Hir09 Corollary 11.2.6]. O

Corollary 2.1.14. Let notations be as above. Then a morphism of C is a cofibration if
and only if it is a retract of an N-composition of pushouts of coproducts of I.

Proof. See [Hir(9, Corollary 10.5.23]. O

Example 2.1.15. Ch>((R), the category of chain complexes of R-modules concentrated in
non-negative degrees for a commutative ring R, is a cofibrantly generated model categroy.
The cofibrations, fibrations and weak equivalences are characterized as follows:

1. f: Cx — D, is a cofibration if C,, — D, is injective with projective cokernel for
n > 0.

2. f: Cy = D, is a fibration if C};, — D, is surjective for n > 1.

3. f: Cy — D, is a weak equivalence if H, f is an isomorphism.
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Thus every C, € Chxo(R) is fibrant, and taking cofibrant replacement means exactly
taking projective resolution in the sense of homological algebra.

For n > 0, let R[n] be the chain complex with R on n-th degree and with 0 elsewhere,
and let R (n + 1) be the chain complex

n+l n
o+ =>0—=R=R—0—...

Then the generating cofibrations may be taken to be 0 — R[0] together with natural
inclusions R[n] — R (n+ 1), and the generating trivial cofibrations may be taken to be
0— R(n+1).

For a model category C there are (left or right) homotopy relations for morphisms
f,9: X =Y of C. For our purpose we will only focus on the case where X is cofibrant and
Y is fibrant, and in this case the left and right homotopy relations coincide and define an
equivalence relation (see [Hir09, Section 7.3 and 7.4] for details).

Definition 2.1.16. Let C be a model category and f: A — B be a given morphism
of C. We define the over and under category 4\C/p, such that the objects are arrows
A — X — B with composition f, and the morphisms from A - X - BtoA—-Y — B
are the morphisms X — Y which respect the morphisms from A and to B.

Lemma 2.1.17. The category s\C/p is a model categories, with cofibrations, fibrations
and weak equivalences being those of C.

Proof. Tt suffices to check the axioms CM1 to CMS5 hold, and they follow directly from
the corresponding properties for C. O

We can regard 4\C/p as a subcategory of C. Then if two morphisms f,g: X — YV
are (left or right) homotopic in 4\C/p, they are (left or right) homotopic in C (see [Hir09,
Proposition 7.6.8]).

Homotopy categories and derived functors

For a model category C, the localization with respect to weak equivalences exists. More
precisely, there is an associated homotopy category Ho(C) with a functor v: C — Ho(C),
such that v(f) is an isomorphism if and only if f is a weak equivalence, and if F': C — D
is a functor which sends weak equivalences to isomorphisms, then there is a unique functor
F,: Ho(C) — D such that Fy oy = F. We remark that Ho(C) has same objects as C and
the functor v: C — Ho(C) is identity on objects. The morphisms of Ho(C) satisfy

Homyo ey (A, X) = Home(B,Y')/(homotopy),

where B is any cofibrant replacement of A and Y is any fibrant replacement of X. See
[Hir09, Section 8.3] for details.
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Lemma 2.1.18. Let C be a model category and A be any category. We fix simultaneously
a cofibrant replacement X' for every X € C. Suppose F: C — A is a functor which sends
trivial cofibrations between cofibrant objects to isomorphisms. Then there is a well-defined
functor

LF:Ho(C)— A
which sends X to F(X'). We say that LF is the total left derived functor for F.
Proof. See [Hir(9, Lemma 7.7.1] and [GJ09, Lemma II.7.3]. O

Note that the total left derived functor depends on the system of cofibrant replacements
up to natural isomorphism.

We may dually define the total right derived functor R for a functor which sends trivial
fibrations between fibrant objects to isomorphisms.

Definition 2.1.19. Let C,D be two model categories and let F': C &= D: G be a pair of
adjoint functors. We say (F, G) is a Quillen pair if one of the following equivalent conditions
holds:

1. F preserves cofibrations and trivial cofibrations.
2. G preserves fibrations and trivial fibrations.
In this case we say F' is a left Quillen functor and G is a right Quillen functor.

Theorem 2.1.20. Let C,D be two model categories and let F': C = D: G be a pair
of adjoint functors. Suppose (F,G) is a Quillen pair. Then LF: Ho(C) — Ho(D) and
RG: Ho(D) — Ho(C) ezist, and RG is right adjoint to LE. If furthermore for cofibrant
A € C and fibrant X € D, the map A — GX is a weak equivalence if and only if the adjoint
map FA — X is a weak equivalence, then LF and RG induce an adjoint equivalence of
categories Ho(C) = Ho(D).

Proof. See [Hir(9, Theorem 8.5.18 and Theorem 8.5.23]. O

Example 2.1.21. Let C be a model category and let I be a small category.

Suppose that there exists a model category structure on C! such that a morphism
A — B is a fibration or weak equivalence if and only if every A(i) — B(i) (i € I) is a
fibration or weak equivalence in C (this holds when C is cofibrantly generated, see [Hir09,
Theorem 11.6.1]); we call it the projective model structure and denote it by Céroj. Then
the constant functor A: C — Cémj preserves fibrations and weak equivalences, so the left

adjoint functor hﬂ Cémj — C is left Quillen, and the total left derived functor Ll
exists. For convenience, we denote the colimit of some cofibrant replacement by hocolim
(it is defined up to weak equivalence) and call it the homotopy colimit.

Dually, supppose that there exists a model category structure on C! such that a mor-

phism A — B is a cofibration or weak equivalence if and only if every A(i) — B(i) (i € I)
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is a cofibration or weak equivalence in C (this holds when C is combinatorial, see [Lur(9,
Proposition A.2.8.2]); we call it the injective model structure and denote it by Cilnj. Then
the constant functor A: C — Cilnj preserves cofibrations and weak equivalences, so the right
adjoint m CiInj — C is right Quillen, and the total right derived functor R@ exists. For
convenience, we denote the limit of some fibrant replacement by holim (it is defined up to
weak equivalence) and call it the homotopy limit.

We will primarily work with certain specific types of I, where it has a Reedy category
structure. Then there is a Reedy model cateogory stucture on C! which can be described
explicitly (see [Hir09, Theorem 15.3.4]). Moreover, the homotopy limit (resp. homotopy
colimit) can be computed via Reedy fibrant replacements (resp. Reedy cofibrant replace-
ments). See [Hir09, Proposition 15.10.10 and 15.10.12] for the cases of homotopy pulllbacks
(homotopy pushouts) and homotopy (co)limits indexed by N.

When I is represented by the diagram e — e < e, we also write A; XZO Ay for
holim (A; — Ay + Az). We say a diagram

A4>A1

L

Ay ——= Ag
is a homotopy pullback square if the natural map A — A; XZO Ay is a weak equivalence.

Lemma 2.1.22. Let C and D be two model categories. Let F': C — D and G: D — C be
two functors and suppose that (F,G) is a Quillen pair. Let I be a small category.

1. If Cémj, Démj exist, then LF o Llim is naturally isomorphic to Llim oLF'.
2. If Cilr1j>DiInj exist, then RG o R@ 1s naturally isomorphic to R@ORG.

Proof. We prove the second part, and the proof for the first part is similar.
Let FI':¢l. — DL, and G': DL, — C!

inj inj inj inj
Then it’s easy to see that F! is left adjoint to G!, and F' preserves cofibrations and weak

equivalences, so (F!,G') is a Quillen pair. Since A: C — CL. and F: C — D preserve

inj
cofibrant objects, the following diagram commutes up to natural isomorphism:

be the degreewise extensions of F and G.

LF!

HO(CiInj) - HO(DiInj)
LAT LAT
Ho(C) —2£~ Ho(D).
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Therefore the adjoint diagram

RG!
Ho(CL;) <= Ho(D[})

R lim R lim
Hol(cf RG Hipj_

commutes up to natural isomorphism. O
2.1.3 Simplicial model categories
Definition 2.1.23. A category C is a simplicial category if there is a mapping space functor
sHom¢(—, —): C°P x C — sSets,

with the following properties:

1. sHom¢(A, B)g = Hom¢ (A, B).

2. The functor sHom¢ (A, —): C — sSets has a left adjoint

A® —: sSets — C

natural in A.

3. The functor A ® — is associative in the sense that there is an isomorphism
AR (KX L) 2 (A®K)®L
natural in A € C and K, L € sSets.
4. The functor sHome(—, B): C°P — sSets has a left adjoint
shom¢(—, B): sSets — C°P
natural in B.

Definition 2.1.24. A category C is a simplicial model category, if it is both a model
category and a simplicial category, and satisfies the additional axiom:

SMT: Suppose j: A — B is a cofibration and ¢: X — Y is a fibration. Then
sHom¢ (B, X) ), sHom¢ (4, X) XsHome(4,y) SHome(B,Y)

is a fibration in sSets, which is trivial if j or ¢ is trivial.
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Remark 2.1.25. 1. The above definitions imply that sHom¢(A, —): C — sSets is right
Quillen with left adjoint A ® — when A is cofibrant, sHom¢(—, X): C°P — sSets is
right Quillen with left adjoint shome(—, X') when X is fibrant, and — ® K: C — C
is left Quillen with right adjoint shom¢ (K, —) for K € sSets.

2. There is a simplicial homotopy relation for morphisms X — Y in a simplicial model
category C (see [Hir09, Definition 9.5.2]), which coincides with the left and right
homotopy relations if the source X is cofibrant and the target Y is fibrant (see
[Hir09, Proposition 9.5.24]). In particular, if X € C is cofibrant and Y € C is fibrant,
then Homp, ey (X,Y) = mosHome (X, Y).

Example 2.1.26. The category of simplicial sets sSets is a simplicial model category, with
the specified classes of cofibrations, Kan fibrations and weak equivalences. In this case, the
tensor product is just the usual product, and shomggets coincides with sHomggets (see
[GJ09, Proposition 1.5.1, Theorem 1.11.3 and Proposition 1.11.5]).

Moreoover, sSets is cofibrantly generated. Note that every simplicial set with finitely
many non-degenerate simplices is small relative to all morphisms, we can take the set of
generating cofibrations I = {JA"™ — A™ | n > 0} (see [GJ09, Theorem I1.11.2]), and the
set of generating trivial cofibrations J = {A} — A" [n >1,0 <k < n}.

We explain how to generate cofibrantly generated simplicial model categories from
already known ones.
For a complete and cocomplete category C, the category sC has a simplicial category

structure: for A € sC and K € sSets, we define A®@ K € sC by (A® K), = || Ax,
keKy,
where | | denotes the coproduct in C, with connecting morphisms naturally induced from

those of A and K. Note that the definition is consistent for sSets.
Let C and D be complete and cocomplete categories. Suppose there is an adjoint pair
of functors
F:C2D:G,

then the level-wise extended pair F': sC & sD: G is still an adjoint pair between the
simplicial categories, and there are natural isomorphisms F(A x K) = F(A) ® K for
A € sC and K € sSets since F' preserves coproducts.

Proposition 2.1.27. Let notations be as above. Suppose sC is a cofibrantly generated
simplicial model category with a set of generating cofibrations I and a set of generating
trivial cofibrations J. Let FI ={Fi|i€ I} and FJ={Fj|j € I}. Suppose

(a) both FI and FJ permit the small object argument (see Definition|2.1.11]), and

(b) G: sD — sC sends N-compositions of pushouts of coproducts of F.J to weak equiva-
lences in sC.

41



CHAPTER 2. SIMPLICIAL BACKGROUNDS

Then there is a cofibrantly generated simplicial model category structure on sD, such that
F1I is a set of generating cofibrations and F'J is a set of generating trivial cofibrations.
With this model category structure, (F,G) is a Quillen pair.

Proof. See [Hir09, Theorem 11.3.2] and [GJ09, Theorem 11.4.4]. O

Remark 2.1.28. 1. The sets F'I and FJ already determine the weak equivalences, fibra-
tions and cofibrations of D. They can be characterized as follows:

(a) f is a weak equivalence if and only if Gf is a weak equivalence in C.
(b) f is a fibration if and only if Gf is a fibration in C.

(c) f is a cofibration if and only if it is a retract of an N-composition of pushouts
of coproducts of FI (see Corollary [2.1.14)).

2. When G preserves filtered colimits and the sources of I and J are small relative to
all morphisms, assumption (a) holds by the proof of [GJ09, Theorem II.4.1]. For a
condition to ensure assumption (b), see [GJ09, Lemma I1.5.1].

Example 2.1.29. Let R be a commutative ring. We denote by sModp the category of
simplicial R-modules and denote by sCR. the category of simplicial commutative rings.
Assumptions (a) and (b) of Proposition [2.1.27| hold in the following situations:

1. Consider the adjoint pair F': sSets = sModpg: G, where F is the free module functor
and G is the forgetful functor. We take I and J as in Example Then sModg
is a cofibrantly generated simplicial model category. In the next section we will show
that the model structure of sModpg is essentially the same as the model structure
of Ch>o(R) defined in Example and a more convenient choice of generating
cofibrations and generating trivial cofibrations is by transfering those of Ch>o(R) in
Example via the Dold-Kan equivalence.

2. Consider the adjoint pair F': sModz = sCR: G, where F' is the symmetric alge-
bra functor and G is the forgetful functor. We take I = {0 — Z} U {DK(Z[n] —
Z{n+1))|n>0}and J={DK(0 — Z(n+1)) | n >0} as remarked above. Then
sCR is a cofibrantly generated simplicial model category. The weak equivalences and
fibrations are those of sMody, and the cofibrations are retracts of N-compositions of
pushouts of coproducts of FI.

2.1.4 Dold-Kan correspondence

Let R be a commutative ring. Our goal here is to recall an equivalence of model categories
between sModp and Ch>o(R).
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When M € sModpg, we write M, for the R-module on n-th simplicial degree. Let
n—1

N(M) be the chain complexes of R-modules with N(M),, = () ker(d;) C M, and n-th
i=0

differential map

n—1 n—2
(—1)"dn: () ker(di) € My, — () ker(d;) € My—1.
=0 1=0

Then obviously M — N (M) is natural in M, and we call N(M) € Ch>o(R) the normalized
complex of M.

The Dold-Kan functor DK: Chx>(R) — sModp, is the quasi-inverse of N. Explicitly,
for a chain of R-modules C, = (Cy < Cy < C2 «+ ...), we define DK(C,) € sModp as
follows:

1. DK(Cy)n= @ Ck.
[n]—[K]

2. For 0: [m] — [n], we define the corresponding DK(C,),, — DK(C%),, on each com-
ponent of DK(C\),, indexed by [n] 5 [k] as follows: suppose [m] % [s] <, [k] is
the epi-monic factorization of the composition [m] LN [n] 5 [k], then the map on
component [n] A (k] is

aho— @ .

[m]—[r]

Remark 2.1.30. Let M[1] be the chain complex with M on degree 1 and 0 elsewhere. Then
DK(M/[1]) is the nerve of the abelian group M (see Example [3.1.1)).

Theorem 2.1.31. 1. (Dold-Kan) The functors DK and N are quasi-inverse and form
an equivalence of categories. Moreover, two morphisms f,g € Homgnmod, (M, N) are
simplicially homotopic if and only if N(f) and N(g) are chain homotopic.

2. The functors DK and N preserve the model category stuctures of Chso(R) and
sModpg defined above.

Proof. See [Weib94, Theorem 8.4.1] and [GJ09, Lemma 2.11]. Note that (1) is valid for
any abelian category instead of sModpg. O

Remark 2.1.32. Let Ch(R) be the category of complexes (C;);cz of R-modules and Chx>¢(R)
the subcategory of complexes for which C; = 0 for i < 0. The category Chx>o(R) is natu-
rally enriched over simplicial R-modules, and we have

sHomcy, ,(r)(Cx, D«) = sHomgnoa , (DK(Cy), DK(Dy)).
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Given Cy, D, € Ch>o(R). Let [Cy, Di] € Ch(R) be the mapping complex, more precisely,
[Cs, Di]n = [ 1,,, Homg(Ch,, Dpytry) and the differential maps are natural ones. Let 79 be
the functor which sends a chain complex X, to the truncated complex

0« ker(Xog— X_1) + X1+ ...
Then there is a weak equivalence
SHomChZO(R)(C*a D,) ~ DK(TZO[C*7 D.])

(see [Lur09, Remark 11.1]). And it’s clear that m,sHomcy_  (r)(Cx, Dx) is isomorphic to
the chain homotopy classes of maps from Cy to Diip. -

2.1.5 Simplicial commutative rings

In Example we introduce a model category structure on sCR. such that the fibra-
tions and weak equivalences are those of sMody (or equivalently sSets). The description
of cofibrations is a bit complicated, but we mention that a cofibration A — B must be
degreewise flat (see [Gill3, Lemma 7.10.2]). One can deduce from this fact that the de-
greewise tensor product — ®4 B: 4\sCR — p\sCR is a left Quillen functor, so it makes
sense to define its total left derived functor

—éAB: Ho(4\sCR) — Ho(p\sCR).

We also use C® 4B to denote some c¢(C) ®4 B € p\sCR, where ¢(C) is a cofibrant
replacement of C' in 4\sCR; it is well defined up to weak equivalence and it represents

L
C®aB.
In what follows, we will explain the graded commutative ring structure on 7, (A) for
A € sCR. Here it’s natural to consider together the modules over simplicial commutative
rings.

Definition 2.1.33. Fix A € sCR. We define the category Mod(A) as follows: the objects
are simplicial abelian groups M such that each M, is an A,-module and each morphism
[m] — [n] of A induces M,, — M,, compatible with A,, — A,,, and the morphisms from M
to N consist of A,-module morphisms M,, — N,, (n > 0) compatible with A-morphisms
[m] = [n].

Note if A € sCR is the constant simplicial ring associated to A € CR, then Mod(A)
is naturally isomorphic to sMod 4.

For A € sCR and M € Mod(A), the unnormalized chain complex is C(M) =
D, M, with differential

n

Z(—l)"di: M, — My_;.
1=0
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It’s clear that the above construction is natural in M. Moreover, the inclusion of abelian
group complexes N(M) — C(M) (by the way one can check the boundary and cycle in
N(M),, are A,-modules) is a homotopy equivalence and induces H,(N(M)) = H.(C(M))
(see |Gill3, Lemma 5.1.2]).

In the following we define multiplications of C'(A) on C(M ), making C'(M) a differential
graded module over C(A) (see Section [1.3.4)).

For m,n > 0, the set of surjective morphisms [m + n] — [m] of A is in one-to-one
correspondence with the set {o = (03)" | 1 < 01 < 02 < -+ < 0y, < m + n}, where
o = (o;)[*, corresponds to the morphism [m + n] — [m| sending o;,0; +1,...,0i41 — 1
to ¢ (we put o9 = 0 and oy,,41 = m + n + 1 for convenience). Let P, , be the set of
permutations (o, 7) of {1,2,...,m 4+ n} where o0 = (0;)/" satisfies 1 < 01 < 0g < -+ <
om <m+nand 7 = (1) satisfies 1 <71 <1 <--- <7, <m+n. Then (0,7) € Py p
determines surjective morphisms o: [m + n] — [m]| and 7: [m + n] — [n]. Let sign(o, )
be the sign of the permutation (o, 7). Then for (o,7) € Py, 5, we have (7,0) € P, ,, and
sign(o, 7) = (—1)""sign(7, o).

The multiplication of C'(A) on C(M) is defined by

a-r= Z sign(o, 7)A(o)(a) M (7)(x),

(U,T)epm,n

for a € A, and x € M,,, where A(o): A, — Aptn corresponds to o: [m + n] — [m] and
M(7): My, — M4y corresponds to 7: [m + n| — [n]. Then one has the following lemma:

Lemma 2.1.34. Let A € sCR and let M € Mod(A).

1. C(A) is a strictly graded commutative (i.e., a-a =0 for every a € A; for every odd
i) differential graded ring. Moreover, with the multiplication induced from C(A), the
normalized chain complex N(A) is a sub-differential graded ring of C'(A).

2. C(M) is a differential graded module over C(A). Moreover, with the multiplication
induced from C(M), the normalized chain complex N(M) C C(M) is a differential
graded module over N(A) C C(A).

3. The multiplication is well-defined for homology groups. In particular, under the iso-
morphisms m.(A) = H,(N(A)) = H.(C(A)) and n.(M) = H,(N(M)) = H.(C(M)),

7« (A) is a graded commutative ring and (M) is a graded mw.(A)-module.

Proof. See [Gil13| Lemma 8.3.2]. O
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2.2 Representability of functors

2.2.1 Functors from o\sArt/; to sSets
Simplicial Artinian rings

Recall that O is the ring of integers in a p-adic number field K, and k is the residue field
of O. We regard O and k as constant objects in sCR.

For A € 0\sCR, we have shown that &, m;A is naturally a graded commutative O-
algebra. Recall that sCR is cofibrantly generated, so we can fix a functorial factorization

O < ¢(A) > A for A € 0\sCR. Now let’s define an Artinian subcategory of 0\sCR/j.

Definition 2.2.1. The simplicial Artinian O-algebras over k, which we denote by o\sArt /g,
is the full subcategory of 0\sCR/\ consisting of objects A € »\sCR/j such that:

1. mpA is an Artinian local O-algebra in the usual sense.
2. A = @;>om; A is finitely generated as a module over myA.

Note that o\sArt/; is not a model category, and cofibrations, fibrations and weak
equivalences in p\sArt/j are used to indicate those in o\sCR/j. Nevertheless, o\sArt/j
is closed under weak equivalences since the definition only involves homotopy groups. We
also remark that every A € p\sArt/y is fibrant since A — k is degreewise surjective.

Example 2.2.2. If M € sMod; and dimg(m.(M)) < oo, then the object k & M €
0\sCR/}; defined by square-zero extension on each simplicial degree is an object of o\ sArt /.
In particular, k @ DK(k[n]) € o\sArt/j for n > 0 (here k[n] is the chain complex with k
on n-th degree and 0 elsewhere). For simplicity we write k @ k[n] for k & DK(k[n]).

Formally cohesive functors

Definition 2.2.3. A functor F: p\sArt/, — sSets is called formally cohesive if it satisfies
the following conditions:

1. F is homotopy invariant (i.e. preserves weak equivalences).

B
D
is a homotopy pullback square with at least one of B — D and C — D being
degreewise surjective (i.e., a fibration with surjective g, see [GJ09, Lemma I11.2.11]),

2. Suppose that

-

Q=—=n

e
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then
F(A)—— F(B

)
L
F(C) —=F(D)

is a homotopy pullback square (in this case we say F preserves homotopy pullbacks
for simplicity).

3. F(k) is contractible.

Example 2.2.4. If R € 0\sCR/}, is cofibrant, then the functor
sHom ,\,cr/, (R, —): 0\sArt/; — sSets

is a restriction of a right Quillen functor and obviously Kan-valued. In addition, it extends
to

sHom,\,cr/, (4, B) — sHomgets(sHom ,\ ,cr/, (R, A),sHom ,\ ;cr/, (R, B))
(this is called the simplicial enrichment), which is given by the adjoint
sHom,,\,cr/, (4, B) x sHom,,\scr/, (R, A) = sHom,\,cr/, (R, B)
defined just below [GJ09, Lemma I1.2.2]. Moreover, the functor is formally cohesive:

1. Since a right Quillen functor preserves weak equivalences between fibrant objects
([Hir09], Proposition 8.5.7) and every object of 0\sArt/ is fibrant, sHom ,\ ,cr/, (1, —)
is homotopy invariant.

2. Note that Bx"C € o\sArt/, (see [GVIS, Lemma 2.3]). Write F = sHom ,\,cr/, (R, —)
for simplicity. By Lemma we have RF(B x C) =~ RF(B) Xfﬁ]__(D) RF(C) in
the homotopy category, then use the fact that F is homotopy invariant, we get the
chain of weak equivalences F(A) ~ F(B x% C) ~ F(B) x?r(D) F(C).

3. sHom\,cr/, (R, k) is obviously contractible.
We can construct formally cohesive functors from known ones:

Lemma 2.2.5. 1. Let X be a simplicial set and let F be a Kan-valued, homotopy in-
variant functor. Then the functor A — sHomggets(X, F(A)) is formally cohesive
(resp. preserves homotopy pullbacks) if F is formally cohesive (resp. preserves ho-
motopy pullbacks).
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2. LetC be a small category and let (F¢)cec be a C-system of homotopy invariant functors
from o\sArt/; to sSets. Define F = holim.cc F. to be the objectwise homotopy
limit, then F is formally cohesive (resp. preserves homotopy pullbacks) if every Fe
(c € C) is formally cohesive (resp. preserve homotopy pullbacks).

3. Let I be a small filtered category and let (F;)ier be a filtered system of homotopy
invariant functors. Define F(A) = hocolim; F;(A). Then F is formally cohesive
(resp. preserves homotopy pullbacks) if all F; (i € I) are formally cohesive (resp.
preserve homotopy pullbacks).

Proof. First note sHomggets(X, F(—)) and holim.c¢ F. are homotopy invariant under our
assumptions, then since both sHom,gets(X, —) and the homotopy limit functor are right
Quillen, (1) and (2) are consequences of Lemma (see also [GV18, Lemma 4.29 and
Lemma 4.30]). Part (3) follows from Lemma below. O

Lemma 2.2.6. Let I be a small filtered category.

I

proj — SSets preserves fibrations and trivial fibrations.

1. The functor lignlz sSets

I

proj — SSets preserves weak equivalences.

2. The functor lignf sSets

3. The functor hﬂf sSets! — sSets commutes with homotopy pullbacks.

Proof. 1. Fibrations and trivial fibrations are characterized by right lifting properties
with respect to morphisms JA} — A™ and OA™ — A" respectively, and all objects
involved are small in the sense of Quillen, so the result follows.

2. By part (1) and [Hir09, Proposition 8.5.7], the functor @I preserves weak equiva-
lences between fibrant objects. The result follows because Kan’s Ex> functor (see
[GJ09) II1.4]) gives fibrant replacements and preserves filtered colimits.

3. Let (B; — D; < Cj)ier be a system of diagrams. Let B — D, < C! be a fibrant
replacement of B; — D; < C}, then by lifting properties (B — D} < C!);cs forms a
direct system. From parts (1) and (2), we see limy, B! — limy, D] + liny, C! is fibrant
and is weakly equivalent to hﬂ / B, — hg I D; + hg / C;, so

lim B; Xy p, 1im G == lim B} xpuy py lim Cf = lim B x p; CF,
J; I I I I J; I
where the second weak equivalence is because filtered colimits commute with finite
limits.

O]
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Pro-representable functors

Definition 2.2.7. Let F and G be two functors from o\sArt/j to sSets.

1. A natural transformation T: F — G is a weak equivalence if it induces weak equiva-
lences F(A) = G(A) for all A € p\sArt/}.

2. F and G are weakly equivalent if there exists a finite zig-zag of weak equivalences

between F and G.

Definition 2.2.8. A functor F: p\sArt/, — sSets is pro-representable, if there is a
projective system R = (Ry,)nen With each R, € p\sArt/j cofibrant, such that F is weakly
equivalent to ligsHomO\SCR/k (Rp,—).

In this case we say R = (R,) is a representing (pro-)ring for F (we will often omit
"pro” for convenience). For a pro-ring R = (R,,) we shall write

sHom ,\,cry, (R, —) = limsHom,,\,cr/, (Bn, —)

for simplicity.

Remark 2.2.9. 1. The pro-representability defined above is called the sequential pro-
representability in [GV18], but we will only encounter this case.

2. By Lemma [2.2.6] one can replace the colimit by the homotopy colimit. As pointed
out in [GV18, Section 2.6], the homotopy colimit is easier to map out of, while the
usual colimit preserves fibrations.

3. The representing ring is not uniquely determined up to natural isomorphism. How-
ever, since filtered colimits of sSets commute with 7, it’s easy to see that the
representing ring is uniquely determined up to natural isomorphism as a pro-object
in Ho(o\sCR/k). So if R pro-represents F then 7. R is well-defined.

We expect that a natural transformation of pro-representable functors induces a mor-
phism between the corresponding pro-rings, at least modulo homotopy. For this we require
the representing pro-ring R to be nice in the sense of |[GV18, Definition 2.23]. When
R = (R,,) is degreewise cofibrant, then the niceness condition means exactly that the pro-
ring R is Reedy fibrant in the standard Reedy model category (0\sCR/;)Y, so one can
always make such a choice by taking fibrant replacements in the Reedy model category.

Lemma 2.2.10. Let F and G be two Kan-valued functors from o\sArt/j to sSets. We
use T: F --+ G to denote a zigzag of natural tansformations

FeF 5 FoeFy—Fie =G
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where all left arrows are weak equivalences. Suppose R = (R,,) (resp. S = (Sn)) is a
representing pro-ring for F (resp. G) and R is fibrant in the Reedy model category (i.e.,
nice), then there is a morphism S % R of pro-simplicial rings such that for A € o\sArt/,
the diagram

X \
sHom ,\,cr/, (R, A) BN sHom ,\,cr/, (S, 4)

is commutative after taking homotopy groups m; (i > 0) (note the dotted arrows become
true arrows after taking homotopy groups, since weak equivalences become isomorphisms).

Proof. First of all we can replace the zigzag T by F < F* — G, where F* is the homotopy
limit of the diagram

FeF 5 FoeFy—Fie =G

(see discussions around |[GV18| (7.3)]). Then as [GV18, Lemma 2.25] there exists horizontal
arrows in the second and third lines which make the diagram

F*(A) g(A)

| |

hocolim, sHom )\ ;cr/, (Rn, A) — hocolim,, sHom,\ ;cr/, (Sn, 4)

l i

sHomO\SCR/k (R, A) SHomo\sCR/k(S7 A)

commute modulo simplicial homotopy. Note the niceness of R implies that

limsHom ,\;cr/, (S, Rn) — holim, sHom )\ ,cry, (S, Rn)

is a weak equivalence, and the arrow in the third line exists by the enriched Yoneda’s
lemma. O

By Lemma and Example any pro-representable functor is formally cohesive.
Conversely, Lurie’s criterion asserts that a formally cohesive functor is pro-representable
if additionally its tangent complex is not far from the tangent complexes of simplicial
commutative rings. We will introduce tangent complexes and Lurie’s criterion below.
2.2.2 Tangent complexes and Lurie’s criterion

(Co)tangent complexes of simplicial commutative rings

Let’s first recall Quillen’s cotangent and tangent complexes of simplicial commutative rings.
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Let /0 be the module of differentials with the canonical R-derivation d: R — Qg0
for an O-algebra R. Let Derp(R, —) be the covariant functor which sends an R-module M
to the R-module

Dero(R,M)={D: R — M | D is O-linear and D(xy) = 2D(y) + yD(z), Vz,y € R}.

It’s well-known that Homp(2g,0, —) is naturally isomorphic to Dero(R, —) via ¢ + ¢od.
For any k-module M and any R € »\CR/j, we have natural isomorphisms

Homk(QR/O ®R k, M) = Dero(R, M) = Hom@\CR/k (R, k& M)

where k& M is the k-algebra with square-zero ideal M. So the functor R — Qg0 ®r k is
left adjoint to the functor M — k& M.

The above adjunction has level-wise extensions to simplicial categories (see [GJ09]
Lemma I1.2.9 and Example 11.2.10). For R € ¢0\sCR, we can form degreewisely Qr /0 ®r
k € sMody, and we have

SHOI’nsMod;C (QR/O ®rk, M) = SHomo\sCR/k (Ra k@ M)

The functor M — k@ M from sMody to o\sCR/j preserves fibrations and weak equiv-
alences (we may see this via the Dold-Kan correspondence), so the left adjoint functor
R— Qr/o ®r k is left Quillen and it admits a total left derived functor.

Definition 2.2.11. For R € »\sCR, we define the cotangent complex of R to be
Lrio = Qcryj0 @c(r) I € Mod(R)
(here ® is the degreewise tensor product, and see Definition [2.1.33| for Mod(R)).

Then the total left derived functor of R+ Qg0 ®@r k is R— Lgjo ®g k.

By construction, Lr/o ®r k is cofibrant as it’s the image of the cofibrant object c(R)
under a total left derived functor, and it is fibrant in sMody, (all objects are fibrant there).
It follows that Lp,o ®g k is determined up to homotopy equivalence (by the Whitehead
theorem [Hir09, Theorem 7.5.10]). Using the Dold-Kan equivalence, we can form the
normalized complex (determined up to homotopy equivalence)

N(LR/(') QR k) S Chzo(k}).

We will often abuse the language and also use Lo ®@p k to denote its image under N.
Recall that for M, N € Ch(k), the internal Hom [M, N] € Ch(k) is defined as

[M, N, = [ [ Homp (M, Nop-yn).

m

When R € 0\sCR/j and C, € Ch>(k), we have (by Remark [2.1.32):

SHomo\SCR/k (C(R)’ k @ DK(C*)) = SHomSMOdk (LR/O ®R ka DK(C*))
~ DK(TZO[LR/O ®prk,Cy)).
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Definition 2.2.12. The tangent complex tR is the internal hom complex [LR/@ ®rk, k| €
Ch<o(k).

Note that tR is well-defined up to chain homotopy equivalence since it is the case
for Lr/o ®Rr k. Also note H_;(tR) = 0 for i < 0. When convenient, we may identify
Ch<(k) = Ch=°(k) via C* = C_;.

Remark 2.2.13. For a field k, the functor Homy (—, k) on k-vector spaces is exact and there
are no significant differences between tR and Lg/o ®r k. On the other hand, in studying
the adjoint Selmer groups, [TU21] considers derived deformations over pg: I's — G(B) for
some Artinian (-algebra B, where Lr /o ®g B appears to be the more appropriate object.

(Co)tangent complexes of formally cohesive functors and Lurie’s criterion

The tangent complexes of formally cohesive functors is constructed in [GVIS8] Section 4].
The key result is the following:

Proposition 2.2.14. Let F: o\sArt/; — sSets be a formally cohesive functor. Then
there exists Ly € Ch(k) such that F(k@®DK(C,)) is weakly equivalent to DK(7>o[Lr, Cy])
for every Cy € Chxq(k) with H.(Cy) finite.

Proof. See |[GV18, Lemma 4.25]. O

Definition 2.2.15. Let F: o\sArt/; — sSets be a formally cohesive functor. We define
tF = [Lr, k] to be the tangent complex of F.

Remark 2.2.16. It’s easy to see that Lr and tF are well-defined up to quasi-isomorphisms.
Comparing with above discussions for simplicial commutative rings, we call Lx the cotan-
gent complex of F.

Remark 2.2.17. In |[GVIS8| Section 4], the authors showed the existence of tangent com-
plexes for general formally cohesive functors. On the other hand, for the functors we are
interested in, we can always calculate their tangent complexes explicitly.

It’s convenient to regard tF as a cochain complex via C* = C_;, and we denote t*F =
H_;tF. Then for i,n > 0, we have m; F (k®k[n]) = H;([Lr,k[n]]) & Hi—n([LF, k]) = "' F.

If R € 0\sCR/j is cofibrant and Fr = sHom,\,cr/, ([, —), then the cotangent
complexes Lr, and Lr/o ®p k are quasi-isomorphic, since

DK(7>0[LFg, k[n]]) = sHom,,\scry, (R, k © k[n]) = DK(7>0[Lr/0 @r k, k[n]]).

Now we see any pro-representable functor F is formally cohesive and satisfies ' F = 0
(Vi < 0). The converse is given by Lurie’s criterion:

Theorem 2.2.18 (Lurie’s criterion). Let F be a formally cohesive functor. If dimy, t'F is
finite for everyi € Z and € F = 0 for everyi < 0, then F is (sequentially) pro-representable.
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Proof. See [Lur04, Corollary 6.2.14] and [GV18, Theorem 4.33]. O
The following lemma illustrates the conservativity of the tangent complex functor:

Lemma 2.2.19. Suppose F,G: o\sArt/, — sSets are formally cohesive functors. Then
a natural transformation F — G is a weak equivalence if and only if it induces isomorphisms
tF — G for all 1.

Proof. One direction is clear and we prove the other. If the natural transformation induces
isomorphisms t'F — t'G for all 4, then F(k @ k[n]) — G(k @ k[n]) is a weak equivalence
for every n > 0. Hence by simplicial artinian induction [GV18, Lemma 2.8] and the
formal cohesiveness of F and G, the map F(A) — G(A) is a weak equivalence for every
A€ p\sArt/y. O

The following lemma indicates that tangent complexes commute with homotopy limits:

Lemma 2.2.20. Let C be a small category and let (Fe)eec be a C-system of formally co-
hesive functors from o\sArt/j to sSets. Define F = holim.cc F. to be the objectwise
homotopy limit, then tF = holimcc tF.. In particular, for the objectwise homotopy pull-
back diagram

F-lr
lfz lpl
Fo &]:0

with F; (i =0,1,2) formally cohesive, we have the long exact sequence

(P1)+—(p2)

MAR), n g gy P02y g il E

t"F
Proof. The functor F is formally cohesive by Lemma The equation tF = holim.c¢ tF,

follows immediately from F(k&DK(C\)) ~ DK(m>0(tF®Cy)) (Cy € Chxo(k) with H,(Cx)
finite). O
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Chapter 3

Derived deformation functors

In this chapter, we will define the derived deformation functors with prescribed local defor-
mation conditions, and study the homotopy of the pro-representing rings. The main result
is Theorem where we show that |[GV18, Theorem 14.1] holds in our more general
setting.

In Section 3.1, we will introduce the derived universal deformation functor with an
emphasis on the center-modified version following [GV18, Section 5.4], and we will also
calculate the tangent complex in a slightly different approach. In Section 3.2, we will
define the derived local deformation problems using the classical framed local deformation
rings; this can be thought of as the reverse procedure of Remark where we define the
derived framed deformation functor from the unframed one. In Section 3.3 we will impose
local conditions to the derived global deformation functor, and in Section 3.4 we will verify
the calculations of [GV18], Section 11 and Section 14] in our more general setting and then
prove Theorem [3.4.6

3.1 Derived universal deformation functor

3.1.1 Reformulation of Defg

Let p: I's — G(k) be a fixed residual representation. Recall we defined Defg: CNLp —
Sets by associating A € CNLp to the set of ker(G(A) — G(k))-conjugacy classes of
continuous liftings p: I's — G(A) which make the following diagram commute:

I's —2> G(A)

It’s convenient to work with Artinian local O-algebras Artp instead of CNLp to avoid
the issue of continuity, so we often regard I'g as the projective limit of finite groups I'; and
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restrict Defg to Arte.
In the following we shall explain the simplicial interpretation of Defg: Artp — Sets.
Let Gpd be the category of small groupoids (recall a groupoid is a category such that
all homomorphisms between two objects are isomorphisms). Note that a group G can be
regarded as a one point groupoid e with End(e) = G. One reason for introducing groupoids
is that Gpd is a model category (see [Str00, Theorem 6.7]), while Gp is not. Let’s recall
a morphism f: G — H of Gpd is

1. a weak equivalence if it is an equivalence of categories;
2. a cofibration if it is injective on objects;

3. a fibration if for all « € G, b € H and h: f(a) — b there exists g: a — a' such that
f(a’) =band f(g) = h.

Moreover, the empty groupoid is the initial object and the unit groupoid consisting in a
unique object with a unique isomorphism is the final object, every object of Gpd is both
cofibrant and fibrant, and the homotopy category Ho(Gpd) is the quotient category of
Gpd modulo natural isomorphisms. By regarding a group G as a one point groupoid, the
functor Gp — Ho(Gpd) so obtained has the effect of modulo conjugations, so, for any
finite group I';, we have

Homeyp(L's, G(A))/G*(A) = Homygo(apay (Ti, G(A)).

Let Cat be the category of small categories. Let’s recall the nerve construction for Cat
and Gpd; it’s an application of Lemma [2.1.5

Example 3.1.1. 1. Let A — Cat be the functor defined by regarding [n] as a posetal
category: its objects are 0,1,...n and Homy, (k, f) has at most one element, and is
non-empty if and only if k < ¢. We write P: sSets — Cat and B: Cat — sSets
for the associated left adjoint and right adjoint respectively. The functor B is called
the nerve functor. The simplicial set BC = (X,,) is defined by sets X,, ¢ Ob(C)[
of (n + 1)-tuples (Cy,...,Cy) of objects of C with morphisms Cy — Cy when k < ¢,
which are compatible when n varies; it is a fibrant simplicial set if and only if C €
Gpd (see [GJ09, Lemma I1.3.5]). In a word, for BC to be fibrant, it must have the
extension property with respect to inclusions of horns in A™ (Vn > 1). For n = 2,
it amounts to saying that all homomorphisms in C are invertible; for n > 2, the
extension condition is automatic (details in the reference above). For C € Cat, we
have PBC = C, so Homcat(C, D) = Homsgets(BC, BD) (VC,D € Cat). Note that
B(C x [1]) = BC x A[1] (product is taken degreewise); in consequence, when C € Cat
and D € Gpd, two functors f,g: C — D are naturally isomorphic if and only if B f
and Bg are homotopic.
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2. As a corollary of (1), we have Homgpa(GPX, H) = Homgets(X, BH) for X € sSets
and H € Gpd, where GPX is the free groupoid associated to PX. We remark
that GPX and m1|X| (the fundamental groupoid of the geometric realization) are
isomorphic in Ho(Gpd) (see [GJ09, Theorem III.1.1]).

Lemma 3.1.2. The nerve functor B: Gpd — sSets is fully faithful and Kan-valued.
Moreover, it is Tight Quillen.

~

Proof. For the first statement, we know by the above example that Homcat(C, D) =
Homggets(BC, BD) (VC, D € Cat) and BC is fibrant for a groupoid C.

For the second statement, note that B obviously preserves weak equivalences; moreover,
by definition, Bf: BG — BH is a fibration if and only if it has the right lifting property
with respect to inclusions of horns in A™, Vn > 1 (see [GJ09, page 10]). For n = 1 this
means exactly that f is a fibration, while for n > 2 it’s automatic (see the proof of [G.J09,
Lemma 1.3.5]). O

For convenience, for I'g = @Fi, we understand BI'g as the pro-simplicial set (BT;)
(here each I'; is regarded as the one object groupoid e such that End(e) = I';). For
A € Artp, by applying the above lemma and then passing to homotopy categories, we get

Homey(T'i, G/(4))/G*(A) = Hompo(apa) (T, G(4))
> HomHo(sSets) (BTy, BG(A))
= mosHomysets (BT, BG(A)).

Passing to the limit, mosHomgets(BT's, BG(A)) is isomorphic to the set of Gad(A)-
conjugacy classes of continuous maps from I's to G(A).

We shall consider the deformations of p, so it’s natural to work with the overcategory
sSets/pq(r)- It is also a simplicial model category: the cofibrations, fibrations, weak
equivalences and tensor products are those of sSets (see [GJ09, Lemma II.2.4] for the only
non-trivial part of the statement). Note that p: I's — G(k) induces a map BI's — BG(k),
which makes BT'g a pro-object of sSets/ BG(k)- Similar to preceding discussions, we have

Defg(A) = Homp(ssets/ ¢ 1) (BL's; BG(A)) = mosHom (BT's, BG(A))

SsetS/Bg(k)

for A € Artp. Note that sHom,sets/ ;1 (BT's, BG(A)) is the fiber over p of the fibration
map
sHomgets(BI's, BG(A)) — sHom,gets(Bl's, BG(k)),

so it is actually the homotopy fiber (see [Hir09, Theorem 13.1.13 and Proposition 13.4.6]).

Remark 3.1.3. The same argument gives a simplicial interpretation of the framed universal
deformation functor Defg. Let Gpd, be the category of based groupoids (i.e., the under
category ,\Gpd). Now one has

Homgp (I';, G(A)) = Hompggpd,) (I, G(A)).
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We regard BI'g as a pro-object of the over and under category *\sSets/Bg(k) un-
der p: I's — G(k) (note .\sSets/pg() is also a simplicial model category: the cofi-
brations, fibrations, weak equivalences are those of sSets, and the tensor product of
X € \sSets/pgr) and K € sSets is the pushout of x < *® K — X ® K). Proceeding
as the unframed case, one gets

Defg/(A) 2= Hompg(,\sSets/ o) (BL'ss BG(A)) = mosHOM, \ sSets/ o, (BT's, BG(A))

for A € Artp.
By the description of the tensor product in .\sSets/ BG(k), one sees that the simpli-
cial set sHom \ssets/ ) (BT's, BG(A)) is isomorphic to the fiber over the base point of

the fibration map sHom,sets/ 1,1 (BT's, BG(A)) — sHomSSets/BG(k) (x, BG(A)). In other
words, one has the homotopy pullback square
sHom, \ssets/ ;) (BL's: BG(A)) *

|

SHomsSets/BG(k) (Bl_‘s, BG(A)) - SHomsSets/BG(k) (*7 BG(A))

3.1.2 Derived universal deformation functor

Let’s extend the functor sHom (BT's, BG(—)) to the category o\sArt/j (see

Definition .

Define Opn, g € Algé (i.e., a functor A — Algy, also called a cosimplicial object in
Alg) as follows: in codegree p we have On,¢ = O%p , and the coface and codegener-
acy maps are induced from the comultiplication and the coidentity of the Hopf algebra
Og respectively. Then for A € Algp, the nerve BG(A) is exactly Homaig, (On,a, A),
with face and degeneracy maps induced by the coface and codegeneracy maps in Op,¢-.
When A € o\sCR, the naive analogy is the diagonal of the bisimplicial set ([p],[q]) —
Homajg, (On,a; Aq) (recall that the diagonal of a bisimplicial set is a simplicial set model
for its geometric realization). However, we need to make some modifications using cofi-
brant replacements to ensure the homotopy invariance. Recall that sCR is cofibrantly

generated, so there is a functorial factorization O — ¢(A) S Afor Ae 0\sCR.

SsetS/BG(k)

Definition 3.1.4. 1. For A € »\sCR, we define Bi(A) to be the bisimplicial set

([p]: [q)) = Hom ,\ ;cr(¢(On, @), A%),

with face and degeneracy maps induced by the coface and codegeneracy maps in
On,¢ and the face and degeneracy maps in ARl

2. The diagonal diag Bi(A) is the simplicial set induced from the diagonal embedding

AP s A% x AP B goio
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When A is an O-algebra regarded as a constant object in »\sCR, we have
Bi(A)pq = Hom,\,cr(c(On,c), A%¥) = Homag, (On,a, A),

where the latter isomorphism is because the constant embedding functor is right adjoint to
mo: 0\SCR — Algy. Hence Bi(A) is just a disjoint union of copies of BG(A) in index q.
In particular, for A € p\sArt/;, there is a natural map Bi(A)s ; = BG(k) for each ¢ > 0,
so we may regard Bi(A) € (sSets/Bg(k))AOp via the association [g] — Bi(A)e,. Recall
that any morphism X — Y in sSets admits a functorial factorization

XS X »Y
into a trivial cofibration and a fibration.

Definition 3.1.5. For A € p\sArt/}, the simplicial set BG(A) is defined by the functorial
trivial cofibration-fibration factorization diag Bi(A4) < BG(A) — BG(k).

It’s clear that BG: o\sArt/, — sSets/pg) defines a functor. If A € Artp is a
constant simplicial ring, then diagBi(A) = BG(A) — BG(k) is a fibration, and hence
BG(A) is a strong deformation retract of BG(A) in sSets/pg) (see [Hir09, Definition
7.6.10]). In particular, these two are indistinguishable in our applications.

The following lemma explains the reason for taking cofibrant replacements of Oy, g:

Lemma 3.1.6. If A — B is a weak equivalence, then so is BG(A) — BG(B).
Proof. If A — B is a weak equivalence, then
sHom ,\,cr(c(On,c), A) — sHom,\,cr(c(On,c), B)

is a weak equivalence for each p > 0, so are diag Bi(A) — diag Bi(B) (see [Hir09, Theorem
15.11.11]) and BG(A) — BG(B). O

Definition 3.1.7. 1. The derived universal deformation functor sDefg: o\sArt/;, —
sSets is defined by

sDefg(A) = sHom (BT's, BG(A)).

sSets/BG(k>

2. The derived universal framed deformation functor sDefE: o\sArt/; — sSets is
defined by

sDefg(A) = hofib, (sDefg(A) — sHom (x, BG(A))).

sSets/BG(k>
Note sDefg(A) can be defined alternatively as
hofibs(sHomgets (BI's, BG(A)) — sHom,gets(BI's, BG(k))).

The following proposition summarizes the properties of the derived functors:
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Proposition 3.1.8. The functors sDefg and sDefE«l are formally cohesive.
Proof. We first verify three conditions in the above definition for sDefg:

1. If A — B is a weak equivalence, then BG(A) — BG(B) is a weak equivalence between
fibrant objects in sSets/pg(x), 50

SHomSSetS/BG(k) (BFS7 BG(A)) - SHomsSets/BG(k) (BFS7 BG(B))

is also a weak equivalence.

2. By |GV18, Lemma 4.31], to prove

BG(A) —= BG(B)

L

BG(C) — BG(D)

is a homotopy pullback square (one can regard this diagram in either sSets/ g 1) or
sSets), it suffices to check:

(a) the functor QBG: p\sArt/, — sSets preserves homotopy pullbacks, and

(b) mBG(C) — mBG(D) is surjective whenever C' — D is degreewise surjective.
Part (a) follows from [GV18, Lemma 5.2], and part (b) follows from [GV18], Corollary
5.3].

Then since BG is homotopy invariant and take fibrant values in sSets/pq(r), we can
apply Lemma [2.2.5[to deduce that sDefg = sHomggsets) . 1) (BT'g, BG(—)) preserves
homotopy pullback squares.

3. It’s clear that sDefg(k) is contractible.

The same argument applies for A — sHomgets) . ;) (¥, BG(A)). So sDefd is formally
cohesive as it is the homotopy pullback of formally cohesive functors. O

Now it’s clear that sDefg and sDefg are indeed generalizations of Defg and Def'y:

Proposition 3.1.9. When A is homotopy discrete (i.e., A is weakly equivalent to myA),
we have mosDefg(A) = Defg(myA) and mosDefg(A) = Defld (mpA).

Proof. By the formal cohesiveness, we may suppose A is a constant simplicial ring. Then
since BG(A) is a strong deformation retract of BG(A) in sSets/pg(x), the proposition
follows from the discussions in Section [B.1.1] O
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It’s natural to ask if the functors sDefg and sDefE are pro-representable, and for this
one has to calculate their tangent complexes. From now on, we will use calligraphic letters
for the pro-representing rings of derived deformation functors to distinguish them from the
classical representing rings.

Lemma 3.1.10. 1. We have t'sDefs = H* (T, gx) for all i € Z.

0 if i < 0;
2. We have €sDefg = { Z'(T'g, 1) if i = 0;
H™ ! (Ts, 1) if i > 0.

Proof. 1. See [GV18, Lemma 5.10]. Here we give a slightly different approach.

Without loss of generality, we temporarily forget the pro-issue on X = BI'g. Then
by [Hir09, Proposition 18.9.2], X is weakly equivalent to hocolim(a xyo» * (i.e., the
homotopy colimit of the single-point simplicial set indexed by (AX)°P), and hence

sHomyggets (X, BG(k @ k[n])) ~ holima x BG(k @ k[n]).
Since homotopy limits commute with homotopy pullbacks, we deduce
sDefg(k @ k[n]) ~ holima x sHomgets /1, ., (*: BG(k @ k[n])).

So t(sDefyg) is the homotopy limit indexed by AX of t(sHomgets/ (., (*; BG(-))).
The homotopy groups of hofib,(BG(k @ k[j]) — BG(k)) are trivial except at degree
j + 1, where it is g (see [GVIS, Lemma 5.5]), so t(sHomygets/ ., (%, BG(—))) is
concentrated on degree —1, where it is gi. The A X-diagram of complexes on X
forms a cohomological coefficient system in the sense of [GM13, Page 28], or local
system in the sense of [GV18| Definition 4.34], and the 71 (X, *)-action on gy, is exacly
the adjoint action.

By shifting (co)degrees ¢ — i + 1, it suffices to calculate holima x gr where g is
the cochain complex concentrated on degree 0. By [Hir09, Lemma 18.9.1], holim gy,
is naturally isomorphic to holima Z where Z is the cosimplicial object in Ch=°(k)
whose codegree [n] term is [[,cy, gk. The coface maps of Z can be described as
follows:

The k[['s]-module gj defines a functor D from the one-object groupoid e with End(e) =
I's to Ch=%(k), such that D(e) = g, and D(I's) acts on g, by the adjoint action.
Then Z™is ]  Df(iyn) (all ig’s are equal to the object e here, but keeping the

9= —ip
difference helps to clarify the process). Let di be the k-th face map from Fgﬂ to
I'%, in other words, dj, maps (ig — -+ — ip41) to (jo — -+ — jn) by "covering up”
ix. Then the corresponding D(j,) — D(in+1) is the identity map if k # n + 1, and
is D(iy, = iny1) if k=n+ 1.
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By [Dug08, Proposition 19.10], holima Z is quasi-isomorphic to the total complex
of the alternating double complex defined by Z. Since each Z" is concentrated on
degree 0, the total complex is simply

—)Hgk—> Hgk—>
I

n+1
FS

and the alternating sum [[gr — ][] gk is exactly the one which computes the group
I ot

cohomology. We deduce holimax gr ~ C*(I's, gk), and hence (+1 arises from the

degree-shifting) t'sDefg = H"1(T'g, gi) for all i € Z.

2. From Lemma [2.2.20 and

sDef5(A) = hofib, (sDefg(A) — sHom (x, BG(A))),

sSets/BG(k>

we get the long exact sequence

t'sDefy — t'sDefg — tisHoisets/BG(k>(*,BG(—)) L

In the proof of (1), we know t'sDefs = H**1(I's, gx) (Vi € Z) and

i ifi = —1;
t SHomsSetS/BG(k)(*aBG(_)) = { gkifi 75 1.

So the conclusion follows from the above long exact sequence; note by Lemma [2.2.20

all maps there are natural ones.
O

By Lurie’s criterion [2.2.18] the functor tisDefE is always pro-representable, while the
functor sDefg can’t be pro-representable unless H°(T's, g) = 0. If G has a nontrivial center
Z, we need a variant sDefg 7 of the functor sDefg, in order to allow pro-representability.

3.1.3 Modifying the center

We follow [GV18, Section 5.4] for this modification. Define PG = G/Z, then the short
exact sequence 1 — Z(A) — G(A) — PG(A) — 1 yields a fibration sequence BG(A) —
BPG(A) — B?Z(A). Indeed, given a simplicial group H and a simplicial sets X with a
left H-action, we can form the bar construction N, (x, H, X) at each simplicial degree (see
[Gil13, Example 3.2.4]), which gives the bisimplicial set ([p], [q]) — Hp XX, =: Ny(x, Hp, X},).
Consider the action Z(A)xG(A) — G(A), and the corresponding simplicial action N, Z(A) x
N,G(A) — Np,G(A) (note that N,Z(A) is a simplicial group because Z(A) is abelian). We
identify for each p > 0,
BG(A)p = Np(x, %, NyG(A)),
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BPG(A), = Ny(*, N, Z(A), N,G(A)),

and we put

B2Z(A)p = Np(*, NpZ(A), %)

(with diagonal face and degeneracy maps). The desired fibration is given by the canonical
morphisms of simplicial sets which in degree p are:

Np(*, %, NyG(A)) = Np(x, NpZ(A), NyG(A)) = Np(x, NyZ(A), *).

The functor sDefg z: 0\sArt/; — sSets is defined by the homotopy pullback square
(here the base maps are those induced from BG(k) — BPG(k) — B%2Z(k))

sDefg z(A) SHomsSetS/BQZ(k> (+, B>Z(A))

|

sHom BT's, BPG(A)) — sHoM,sets/ ., , ., (BT's, B2Z(A)).

SSetS/BPG(k) (

Then sDefg 7 is formally cohesive becasue it is the homotopy pullback of formally cohesive
functors. Observe that sDefg 7 and sDefg coincide when Z is trivial.

Remark 3.1.11. Note the construction sDefg 7 is functorial both in I's and G.

Consider the diagram

sDefg(A) *
sDefg z(A) sHomSSetS/B2Z(k>(*, B2Z(A))
SHomSSetS/BPG(k) (BF57 BPG(A)) - SHomsSets/BQZ(k) (BF57 BQZ(A))

By above discussions, the lower square and the combined square are homotopy fiber squares,
so is the upper square (see [Hir09, Proposition 13.3.15]). Now we can calculate the tangent
complex of sDefg 7.

Lemma 3.1.12. We have

H(Ts, 01) /31 if i = —1;

i — ,
t'sDefg 7z = { H'(Tg, g) otherwise.

Proof. Using the above homotopy fiber square, the proof is similar to Lemma [3.1.10] [

Since we’ve made the assumption H(I's, gx) = 3%, the functor sDef 5,7 is pro-representatble.
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Lemma 3.1.13. sDefg 7 fits into the fiber sequence

sDefg(A) — sDefg z(A) — sHomsets/ s pii(r,) (¥: BPG(A)).
Proof. Consider the diagram
sDefg (A) sDefg(A) sDefg 7(A)
* SHomsSets/BG(k> (*a BG(A>) - SHomsSets/BpG(k> (*7 BPG(A))
* sHomSSetS/BQZ(k)(*, B2Z(A)).

It suffices to apply [Hir09, Proposition 13.3.15] twice. Since the right composed square and
the lower square are homotopy fiber squares, so is the upper right square. Then since the
left square is also a homotopy fiber square, we deduce that the upper composed square is
a homotopy fiber square. ]

Similar results of this section hold for the derived universal (framed) deformation func-
tors for I';, — G(k). In this case we just replace the subscript S by v in our notations. Note
even after modifying the center, the functor sDef, 7 is generally not pro-representable, as

generally H°(T'y, gk) # 34-

3.2 Local conditions

3.2.1 Derived local deformation problem

Let v be a finite place of F. Following [GV18, Definition 9.1], a derived local deformation
problem at v means a functor p\sArt/; — sSets equipped with a natural transformation
to sDef, z: 0\sArt/; — sSets (note the center-modification here). Let D, be a local
deformation problem and let R, be the framed deformation ring for D, (so R, is a quotient
of RY)). It’s natural to try to associate a derived local deformation problem to D,.

Note the conjugation action of ker(G(A) — G(k)) on a lifting I, = G(A) together with
the functorial cofibrant replacement c induce a cosimplicial object [p] — c¢(R, ® On,q) €
0\sCR/j. To take into account the continuity, we regard R, as a pro-Artinian object in
the following.

Definition 3.2.1. Associated to D,, we define

1. sDY): o\sArt/;, — sSets to be the functor A sHom,,\,cr/, (c(y), A);
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2. sDy: 0\sArt/, — sSets to be the functor which sends A € p\sArt/; to the fixed
fibrant replacement in sSets/pq 1) of the diagonal of ([p], [¢]) — Hom \scr/, (c(Ry®

ONpG)a AA[q})

The definition of sD, is inspired by the simplicial bar construction (one may compare
with [GVI8, Lemma 5.7]). The natural A-equivariant map ¢(On,q) — ¢(Ry @ On,¢) —
¢(R,) induces

D, (A) = sDy(A) = sHOM gets) gy, (4, BG(A))

for A € p\sArt/j, which is a fibration sequence by [Lanl5, Lemma 4.6.6]. Using the long
exact sequence for homotopy groups, one sees that sD, preserves homotopy pullbacks,
since this is the case for sDJ and sHomsets 1 (%, BG(—)). Then we deduce

Lemma 3.2.2. sD, is formally cohesive.
Now we construct the natural transformation sD, — sDef,,.

Proposition 3.2.3. There is a natural transformation sD,, — sDef,, making the diagram

SDE (A) SDU(A) - SHomsSets/Bg(k) (*7 BG(A))
sDefH(A) —— sDef,(A) — sHomygegs) ., (%, BG(A)).

commutative up to weak equivalence. Here the first vertical arrow is induced from RY —
RS — R
uaes — Ly.

Remark 3.2.4. When the representing ring RS’ for sDefE is homotopy discrete, the map
sD,(A) — sDef, (A) is the natural one induced from the quotient map RS — R,. Note the
homotopy discreteness of R} is equivalent to the conjecture below [GV18, (1.5)] which says
RS is a complete intersection ring of expected dimension. Here we don’t need R} to be
homotopy discrete, which illustrates in a certain sense the comment of loc. cit. that one of
the advantages of the derived deformation ring is to circumvent the conjecture mentioned
above.

Proof. Fix A € o\sArt/,. We write Z = sDef,(A) and write X for the bisimplicial
set ([pl, [q]) = Hom\scry, (c(Ry ® On,a), APl). Note X can be viewed as a simplicial
object in sSets through [p] — X, = sHom,\,cr/, (c(R,®ONn,q), 4). By [Hir09, Theorem
15.11.6], diag X is naturally isomorphic to the realization |X]|, or in other words the coend
X ®a0p A where A is the cosimplicial standard simplex.

So it suffices to construct a sSets-morphism X ®@acp A — sDef,(A), or equivalently
a system of sSets-morphisms A" — sHomggets(X,, Z) which is A-compatible in [n].
Given [n| € A, we construct A — Homggets(Xpn ® AF, Z) by induction on k: for k = 0
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a map [0] — [n] gives naturally X,, — Xy — Z where the second arrow is induced from
sDef>'(A) — sDef,(A); for k > 0, each of the (k4 1) maps X — X — Z factors through
sDefH(A) — sDef,(A), so we can choose a morphism X ® A¥ — Z such that for [I] — [k]
with [ < k it is compatible with X, @ Al - X; ® Al — Z via the embedding A! — A*,
and X,, ® A¥ — Z associated to [k] — [n] is the composition X,, ® AF — X; @ AF — Z.
Thus we get a sSets-morphism A" — sHomggets(X,,, Z), and this construction is clearly
A-compatible in [n]. It’s direct to check that the map sD,(A) — sDef,(A) make the above
diagram commutative up to weak equivalence. ]

3.2.2 Modifying the center

We will always take the center-modification into account. For this it suffices to replace G
by PG = G/Z in Definition and henceforth we will instead write sD,, for the fibrant
replacement of the diagonal of ([p], [¢]) = Hom \.cry, (c(By ® On,(pg)); APl to simplify
our notations. Analogous to the above proposition and using Lemma we have the
following:

Corollary 3.2.5. There is a natural diagram

sHom

sDY(A) sDy(A)

| |

sDef (A) — sDef, z(A) — sHom

(%, BPG(A))

sSets/ppa(k)

(x, BPG(A)).

sSets/Bpg(k)
which is commutative up to weak equivalence and whose rows are fiber sequences.

Remark 3.2.6. In some cases we can define the derived local deformation problem more
arithmetically. For the unramified condition, see the example on [GV18| Page 91]. For
the (nearly) ordinary condition, one can also define the derived local deformation functor
directly by replacing the role of G by its Borel B, and under the regularity and dual regu-
larity conditions (see [Til96l Propostion 6.2 and Propostion 6.3]), this definition coincides
with the one using the framed ring (see discussions after [CT20l Definition 2.13]).

Lemma 3.2.7. When A € Algy is regarded as a constant simplicial ring, mosDy(A) is
isomorphic to Dy(A).

Proof. For A € Algy, we have (the canonical base point is omitted for brevity)

misHomsets )/ o0, (5 BPG(A)) = ker(PG(A) — PG(k)),

~

and it acts by conjugation on mosD5(A) = D, (A).
Moreover, We have the sequence of maps

msHomgets/ 1 o0, (5 BPG(A)) — mosD(A) — mosD,(A)
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such that mosDL(A) — mpsD, (A) is surjective and two elements of mosD5 (A) have the same
image if and only if they are in the same orbit for the WlsHomssets/BPG(k)(*, BPG(A))-
action. The conclusion follows easily. O

Recall R, is said to be formally smooth if it’s a power series ring over O.

Lemma 3.2.8. Suppose R, is formally smooth, then we have

, HO(Ty, 01) /3% if i = —1;
€D, =4 Ly ifi=0:
0ifi>0.

Proof. By Lemma we have the long exact sequence

0 =t~ 1sDY — t7'sD, — t 'sHomgets ; oo w, (5, BPG(=))
—t%sDY — 95D, — "sHom, gy Jsraw (5 BPG(=))
—t'sD,) = t'5D, = t'sHom,gets/ ) (+: BPG(—))

Since sD; = sHom,,\scr/, (¢(Ry), —) and R, is formally smooth, t'sDJ in concentrated
on degree 0, where it is Ev = HomenNL, (Ry, k @ E[0]). On the other hand

t'sHom

«, BPG(A))

sSets/ppa(k) (

is gr/3r concentrated on degree —1. Hence t'sD, fits into the exact sequence

0 =0 — t 1D, — gi/5k
L, = %D, =0
—0— t'sD, =0
...

where all maps are natural, and the conclusion follows. ]

3.2.3 Some local deformation problems

We discuss some local deformation problems for p: Iy — G(k) for specific groups used in
this thesis and [TU21].
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Minimal deformations

Let v € S\Sp. We would like to formulate a deformation condition which controls the
ramifications and is formally smooth (or liftable in [CHTOS]).

For general linear groups, the minimal conditions are defined in [CHTO0S, Section 2.4.4].
It’s noted by [Bool9|] that the key feature to define a lifting p to be minimal is to require
p(7) to have ”"the same unipotent structure” as p(7) (for 7 € I,). In loc. cit. the author
reinterpreted the definition of [CHT08] using unipotent orbits, and then defined analogously
the minimal conditions for symplectic and orthogonal similitude groups.

Let’s illustrate some ideas for G = GLy. We say p: I', = GLx (k) is minimal if p(1,)
contains a regular unipotent element. Let Jy be the standard Jordan block of size N (note

1/p™
Jn is regular nilpotent) and t,: I, — Z,, be the character defined by @) CtZ(T) (for

w}}/p" D
n > 1 and 7 € I,). Without loss of generality, we can suppose p(7) = exp(t,(7)Jn), and
we say a lifting p: Iy, — G(A) of p is minimal if there exists g, € ker(GLy(A) — GLy(k))
such that g,p(7)g, ! = exp(t,(7)Jn).

We write D" for the framed minimal deformation functor at v, then by [TU21, Lemma
1] the representing ring is a power series ring in N? variables over O, in other words,
DR s formally smooth and for L, C H'(T,, gx) associated to D™ we have dimy L, —
dimy H(T',, gx) = 0 (see also [CHTOS|, Corollary 2.4.21]). Note the unframed deformation
ring doesn’t exist unless p [¢, — 1 for all 1 <i < N — 1.

For symplectic and orthogonal similitude groups, the minimal deformation condition is
defined in [Bool7, Chapter 4] using the classification of nilpotent orbits by the Bala-Carter
data (see [Bool7, Definition 4.4.2.1]). By [Bool7, Proposition 4.4.2.3], D™ is formally
smooth and dimy, L, — dimy H°(T,, gz) = 0 for these groups.

Ordinary deformations

In the ordinary case G is allowed to be arbitrary. Let B = TN C G be a Borel subgroup
scheme (7T is a maximal split torus and N is the unipotent radical of B, and all these
groups are defined over 0). Let ® be the root system associated to (G,T) and ®* the
subset of positive roots associated to (G, B, T).

Let v € Sp. A representation p: I', — G(k) is call ordinary if there exists g, € G(k) such
that p takes values in g, 'B(k)g,. We require the following regularity and dual regularity
conditions:

(Reg,) for any o € ®1, a0y, # 1, and

(Reg?) for any o € T, oy, # w.

The framed nearly ordinary deformation functor D} is defined such that p € DI}°(A)
if and only if there exists g, € G(A) which lifts g, such that p takes values in g, *- B(A)- g,.
Note that this implies that the homomorphism x,.: I'y — T(A) given by g, - p- g, ' lifts
Xo- A lifting p € DI°(A) is called ordinary of weight p if after conjugation by g,, the
cocharacter p|r, : I, — T(A) = B(A)/N(A) is given (via the Artin reciprocity map rec,)
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by porecyt: I, — O — T(A), and we write DI for the framed ordinary deformation
functor of weight p. We also define D to be the framed ordinary deformation functor
without fixing the weight . By [TU21, Lemma 2], the functors D™, DY"* and Do are
all formally smooth, and one has dimy, L,, — dimg H%(T, gx) = [F : Qp](dim G — dim B).

Fontaine-Laffaille deformations

Let v € S, be unramified. For G = GLy, we write D5 for the framed Fontaine-Laffaille
deformation functor (i.e., p € DEV(A) if there exists a ¢-filtered A-module M free of rank
N over A, such that p is isomorphic to Virys(M)). By [CHTOS8, Corollary 2.4.3], DEL is
formally smooth and one has dimy, L, — dimy H(Ty, g) = [F,, : Qp](dim G — dim B).

For a symplectic or orthogonal similitude group, the Fontaine-Laffaille condition with
fixed similitude lifting is defined in [Bool7, Definition 3.2.1.2], and when the Fontaine-
Laffaille weights are multiplicity-free, [Bool7, Definition 3.2.1.3] proved that DL% is for-
mally smooth with dimy, L, — dimy H%(T'y, g},) = [F, : Qp](dim G — dim B).

3.3 Derived deformation functor with local conditions

Let S = (S,{D,}ves) be a global deformation problem (see Definition [1.3.2) and let Dg
be the deformation functor of type S.

Definition 3.3.1. The derived deformation functor of type S is defined to be the homotopy
limit
sDs = sDefg 7 xﬁves sDef,. H 5D,,.
veS

Since each functor on the right hand side is formally cohesive, so is sDg.

Lemma 3.3.2. When A € Algy is regarded as a constant simplicial ring, we have
m0sDs(A) = Ds(A).

Proof. We fix compatible base points. Firstly, from the fiber sequence

sDefg(A) — sDefg z(A) — sHom o, (+, BPG(A))

SsetS/Bpg(

and H°(T's, gk) = 3k, we see msDefg z(A) is trivial. On the other hand, from the diagram

sHom

sDY(A) sDy(A)

| |

sDefl)(A) — sDef,, z(A) — sHom

(%, BPG(A))

sSets/ppa(k)

sSets/ppa(k

[(+, BPG(A)),
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we deduce that 71 sDef,, z(A) doesn’t contribute to mpsDs(A). Note every functor defining
sDgs has the desired 7, so mpsDs(A) is the fiber of

Defg(A) & P Dy(A) — P Def,(A),
vES vES

and the conclusion follows. O

From now on we suppose every representing ring R, for D, is formally smooth. By
Lemma [2.2.5] and Lemma |3.2.8] the tangent complex of sDg fits into the exact sequence

0 =t 'sDs — H(Ts, 0x) /3 & D H(Tw, 0x) /35 — €D HO(Tu, 8k) /3
veS veSs

—t°sDs = H'(T's, 1) © @ Lo - @ H' (T, g1)
veS veS

—t'sDs — H*(Ts, g1) — D H* (T, 01
vES
—t2sDgs — 0.

Hence t1sDs = 0 and sDgs is pro-representable, say by Rs.

Lemma 3.3.3. t‘Rg = H?I(I’S,gk) fori>0.

Proof. This follows directly by comparing the above exact sequence with the exact sequence
0 —HX(Ts,gx) — H'Ts,gr) — 0

—H§(Ts,gr) = H' (Ts,gx) = D H' (To, g1)/ Lo
veES

—HE(Ts, 1) = H*(Ts,00) = D H* (T, 1)
veS

—H3(Ts,gx) — 0.
O

By Remark t'Rs is concentrated on degrees 0,1 when p has an enormous image
and (p ¢ F.

Remark 3.3.4. Without the assumption that every R, is formally smooth, the functor sDs
is still pro-representable, but *Rg = H?I(FS, gx) no longer holds for i > 1. We expect a
modified version of 7, Rs = Tor?>® (R, @) holds in this case.

Remark 3.3.5. Let ¥ be a non-empty subset of S. It’s natural to define the derived -
framed deformation of type S (see [ACC+18, Page 112]) as

2 h d
sDs = sDefg z X1, e sDef, 2 ( H sD, x H sDy).
veS\X veEY
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>~

Indeed, here it is not even necessary to modify the center. But in order to have WOSDE (A)
D% (A) for constant ring A, we need to suppose H(I'y, gx) = 31 for v € ¥ (this is true
for minimal conditions). Then the functor sD% is pro-representable (say by R%) and the
natural transformation (up to weak equivalence) sD¥ — [, 5, sDY induces A — RZ (up
to weak equivalence) where A¥ = ®,ex R, is regarded as a pro-Artinian ring.

Under the assumption that every R, (v € ) is formally smooth, it’s not difficult to
prove that the relative tangent complex t(R%, A*) (see [GV1S| Definition 4.1]) satisfies

t(Rs, A¥) = Hg3(Ts, o)
for i > 0 (see [ACC+18, (6.2.22)] for Hg y,(I's, g))-

3.3.1 Relative derived deformations

Let B € Artp and let pp: I's — G(B) be a fixed lifting of type S. [TU21|] considered
the derived deformation functor of type S over pp (denoted by sDs ). Essentially it’s the
functor sDg restricted to sSets /BG(B)- Note pp induces a map Rs — myRs — B, and
with this specified map, Rs, as a pro-object in p\sArt/p, represents sDs p.

We calculate m;sDs p(B @ M|n]) instead of the tangent complex, where M is a finite
module over B and M [n] means the Dolk-Kan of the chain complex M concentrated on de-
gree n. In fact the procedures of proving Lemma|[3.1.10]and Lemma can be genralized
directly, and one finds

misDs p(B® M[n]) = Hy " (Ts,gp ©p M)  (Vi,n > 0),

where gp = Lie(G/O) ®o B. Moreover, by the discussions in Section the complex
Ce!(T's, 95 ®p M) is quasi-isomorphic to [Lrsjo ®rs B, M] (here Rs is regarded as a
pro-object to take into account the continuity).

3.4 Taylor-Wiles descent

Now we are able to generalize [GV18, Theorem 14.1]. We follow the approach of [GV1S],
but make minor modifications to fit our more general situation.

We keep the settings in Section Recall that ¢, ¢ F' and p is supposed to have an
enormous image. Write Q = (Q)m>1 for a system of disjoint allowable Taylor-Wiles data
(see Definition such that each Q, is of level m and cardinal r > dimy, H:(T's, g}),
and write I'y, = I'suq,,, Dm = Ds,,,,, and R, = Rs,, . Let

— h
5§Dy, = sDefsug,..z XHues sDef, H sD,.
veS

Note we don’t put the derived unconditional deformation condition for v € @Q),, for it’s
not formally smooth, but as Lemma [3.3.2] it’s easy to see that mosDy,(A) = Dy,(A) for
A € Artp. Moreover, t~1sD,, is obviously trivial so sD,, is pro-representable, say by Rn.
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Let’s fix m > 1. By the definition of allowable Taylor-Wiles data, we have HgQ (T, 0k) =
0. Hence we have the exact sequence (see Remark note L, = HY (T, gx) for v € Q)

Am
0 _>HéQm(Fmvgk) — Hl(rmvgk) ? @Hl(rvvgk)/Lv
vES

Bm
—0 = H* Ty o) = €D H*(Tw,00) = 0. (3.1)
vESUQm

In particular, B,, is an isomorphism.

We use sDef}" to denote the derived local deformation functor for the unramified con-
dition. For a Taylor-Wiles prime v, recall that p|r,: Iy — G(k) is conjugated to some
pr: T, — T(k). We write sDef (resp. sDefl’") for the derived universal deformation
functor for p}: Ty — T'(k) (vesp. pl|r, /1, : Tv/1s — T(K)).

Lemma 3.4.1. Let v be a Taylor-Wiles prime. In the natural commutative diagram
sDefg ——— sDef" <~ sDef """
sDef g ) — sDef, <—— sDef?,

the first square is a homotopy pullback square, and the arrows with ~ are objectwise weak
equivalences.

Proof. See |GV18, Section 8.2] for the first statement, and [GV18, Section 8.3] for the
second. O

We thus obtain a homotopy pullback square up to weak equivalences

sDefg sDeflur

o

sDefSu{v} —_— sDef?;.

In order that the functors involved are pro-representable, we need to modify their centers
as in Section m We use sDefaT (resp. sDeff’;r) to denote the functor obtained from

sDefl (resp. sDef!"™) by modifying the center (the cumbersome notations just say that
the center of T" is T itself). By Remark |3.1.11| we have the commutative diagram

T ur
sDefg 7 sDer,T

| |

sDefgyfpy,z — sDeng.
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Lemma 3.4.2. The above diagram is a homotopy pullback square.

Proof. The diagram is a homotopy pullback square if and only if the sequence

0 —>tOsDefSVZ — tOSDefZL;r D tosDefSU{v},Z — tosDefiT
—t'sDefg 7 — tlsDeff’;r ) tlsDefSU{v},Z — tlsDeng

is exact. This follows from the homotopy pullback square before modifying the center and
the fact that modifying the center doesn’t change t* for i > 0. O

By repeating the procedure of adding Taylor-Wiles primes, we can replace v by a
Taylor-Wiles datum @,,,. Moreover, by applying

h
B XHvES SDefv,Z H SDv

vES

to the first vertical arrow, we can replace sDefg z — sDefgsuq,,z by sDs — sD,,. The
following corollary is clear:

Corollary 3.4.3. Let Q, be a Taylor-Wiles datum. Then we have the homotopy pull back
square

T,ur
sDg —— HveQm sDefmT

|

$Dm — [L,eq,, sDefZT,

and consequently we have an objectwise weak equivalence

~ h T,ur
sDs — sD,, XHveQm SDef T H sDer’T .
UeQm

Now we pass to the level of rings. In Section we defined the ”derived” tensor prod-
uct ® for simplicial commutative rings; this can be extended for pro-objects in o\sArt/j
indexed by natural numbers (we have to take the Postnikov truncations for o\sArt/j is
not closed under the tensor product, and then we can suppose the resulting pro-ring is nice
for convenience, see discussions around |GV18, Definition 3.3]), with the property that
R1 @R3R2 is a pro-objects of »\sArt/j representing the homotopy pullback of

SHomo\sCR/k (Rh _) — SHom@\sCR/k (R37 _) «— SHOIn@\SCl{/]c (R27 _)

We say a map R — S between pro-o\sArt/j objects is a weak equivalence if it induces
a weak equivalence on represented functors after applying level-wise cofibrant replacements
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(see |[GV18, Definition 7.4]), and we say a pro-object R of p\sArt/j is homotopy discrete
if the map R — myR is a weak equivalence.
Let Sy, (resp. Spy) be a pro-object of o\sArt /), which represents [],c¢, sDefZ,T (resp.

[Toecq,, sDeff’;r). By Lemma [2.2.10 applying to the weak equivalence

~ h T,ur
sDs — sDy, XHveQm Def H sDer’T ,
vEQm

there is a weak equivalence of representing rings Rs — Rm®g Sp (note Lemma
allows us to reverse the arrrow). This map between pro-o\sArt/; objects is an iso-
morphism in the pro-homotopy category by |[GV18, Lemma 3.14], so the isomorphism
T Rs — W*(Rm&mS}}{ ) of pro-graded O-algebras is well-defined.

Lemma 3.4.4. The pro-objects S, and Sy, are homotopy discrete.

Proof. Note [GV18 Lemma 7.5] asserts that a pro-object R of o\sArt/j such that b; =
dimy, R is zero except for i = 0,1 is homotopy discrete if and only if the complete local
ring associated to myR is isomorphic to a quotient of O[[X1, ..., Xp,]] by a regular sequence
of length bq.

By Lemma [3.1.13] &,, and S,y represent the derived framed deformation functors
HveQm sDefT'H and HveQm sDefT%E  Hence it suffices to show the classical (framed) uni-
versal deformation ring X, (resp. X) for pl : T'y — T(k) (vesp. pllr, /1, : Tv/1s — T(k))
where v is a Taylor-Wiles prime is a complete intersection ring of expected dimension.

1. For I it’s easy to see that b; = dimy tisDeff’;r vanishes for ¢ # 0, and by =
dimy, H}, (T, tx) = n. So it suffices to show ¥ = O[[X7,..., X,]]. But I is the
classical universal deformation ring for DefZ"" | which is represented by O[[X*(T) ®

Z)] = O[[X1, ..., X,]] (see [Til96, Proposition 4.2]).
2. For ¥, we have

dimy HTY(Ty, ty), if i > 0;

b; = dimy, t'sDef] ; = { 0. ifi <0

So bg = 2n, by = n and b; = 0 for ¢ # 0, 1. It suffices to check that ¥, is isomorphic to
O[[X1,..., Xon]]/(Y1,...,Y,) for a regular sequence (Y;). By [Til96, Proposition 4.2],
the classical representing ring for Def? is isomorphic to O[[X*(T) ® F, (P )]] (here (p)
means the pro-p completion). Recall A, is the Sylow p-subgroup of (k})™. We have

XH(T) @ F;'® = A, x Z" and hence ¥, 2 O[[X*(T) @ Fi'P]] = O[A ][ X1, .., Xu]]
as expected.
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Let X7 = O[[ X1, ..., Xp,]] and Xp, = O[Ag, ][ X1, - - -, Xnr]] (here Ag,, = [],cq,, Do)-
For convenience we also use X! and ¥, to denote the associated pro-Artinian rings. Then
the above lemma just says that S,, is weakly equivalent to 3, and Sy is weakly equivalent
to 2.

Note that I, — 'y, — Gal(ky/ky) for v € Qy, induces O[Ag,,] = X — T

Lemma 3.4.5. The commutative diagram

O[Ag,.] —=Xm

|

@) sur

induces a homotopy pullback square of represented functors after cofibrant replacements.

Proof. 1t suffices to note that ¥,, is obtained from O[Ag, ] by adding nr free variables,
and X is obtained from O by adding nr free variables. O

Recall in Section [1.3] we've deﬁned Sm = Soo/Jm which is a quotient of O[Ag,,]. Also
we’ve introduced Sm = Sn/p™, Ry = Ry Roliag,,]] S and a constant c(m) such that
R,, — Endo(H*(C#)) factors through R, /mc(m . Without loss of generality, we may

c(m)

suppose R, /m + 8, — O/p™ forms a compatible projective system for m € N*. We
remark that the cohomology of locally symmetric space is not involved explicitly here, but

finally we will need Ry, =2 @m R, /m R( ), which is true only if the numerical coincidence
holds (see the proof of Corollary [1.3.15|(3))
For each m > 1 we have (still apply Lemma [2.2.10| to reverse the weak equivalences)

fini Rs 5 Ry, S 5 RinBoia, 10 = R /iy @5 Ofp™ =: C.

We have Tor?>(Ru, O) = T (Roo®g O) = lim T ( m/m ®S O/p™ ) as graded
commutative O-algebras. Here the first isomorphism follows from Section 4] and the
second isomorphism follows from [GV18, Lemma 7.6].

For each n > m, there is a natural map

enm: Cn = n/mf ®g O/p" —>Cm—Rm/m— ®S o/p™,
but a prior, the maps fp,: Rs — Cp, (m > 1) don’t form a compatible system under ey,
and we have to do another patching so that e, ., o f, (n > m) are compatible modulo

homotopy. The key observation is that tRs is finite dimensional, so each homotopy class
of maps Rs — Cp, as pro-o\sArt/j objects is indeed finite (see [GV1S8, Page 100]).
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Consider the projective system of homotopy classes of maps Rs — C,, (m > 1) in-
duced from ey, ,,, then we can choose a subsequence of (f,,) such that e, o f, is ho-
motopic to f,, for every fn,fm (n > m) in that subsequence. Without loss of gener-
ality, we may simply suppose (fm)m>1 is such a sequence, and then (fp,)m>1 induces
hocolim,, sHom )\ scr/, (Cm, —) — sHom\,cr/, (Rs, —)-

Now we prove m,Rs = Tord>(Rs, O). Let’s recall the setting:

1. G is a connected reductive algebraic group defined over a number field F and G = FG;
2. pis an odd prime number which is very good for G and satisfies ¢, ¢ F’;

3. p: I's — G(k) is an absolutely irreducible Galois representation associated to some
cuspidal automorphic representation occuring in H*(X&, V3 (O))m which fits our as-
sumption (Resy);

4. we assume the conjectures (Galy) and (Vany).

Theorem 3.4.6. With the above notations, there is an isomorphism of graded commutative
O-algebras T Rs = Tor?> (Reo, O) (where . Rs is defined as the projective limit). More-
over, H*(X&, VA(O))m is a graded m.Rs-module freely generated by HPH0(XE, V3 (O)).

Remark 3.4.7. We have supposed special types of local deformation problems in (Vany,),
but essentially what we require are:

1. the numerical coincidence dimy Hé(l“g, gx) — dimy, Hél (I's, g;) = —4o holds;
2. the local deformation problems have formally smooth framed representing rings.

Proof. We will prove the first assertion and the second is an immediate consequence.
By above discussions, it suffices to prove

hocolim,,, sHom,\,cr/, (Cmm, —) — sHom_\ ,cr/, (Rs, —)
is a weak equivalence of natural transformations, and by Lemma [2.2.19]it suffices to show
t'(hocolim,, sHom,,\,cr/, (Cin, —)) — tisHomo\SCR/k (Rs,—)

is an isomorphism for all ¢ > 0.

For m > 1, tC,, fits into the exact triangle tC,, — t(Rm/mCR(m)) @ t(O/p™) — tS,,, and
by taking colimits over m we get the following exact sequence:

t' (hocolim,, sHom ,\,cr/, (Cim, —)) — t'Roo — 1154 L .

so the Euler characteristic for t(hocolim,, sHom,,\,cr/, (Ciny—)) is dim Ry —dim So. On
the other hand, by Lemma m the Euler characteristic for t(sHom,\,cr/, (Rs,—)) is
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dimy, Hé(FS, gx) —dimg HéL (I's, g5,), which is equal to dim Ry, —dim S, by Lemma 1.3.10l

We also find that both tangent complexes are concentrated on degrees 0 and 1. Thus it

suffices to show !C,, — t*Rs is an isomorphism for i = 0 and a surjection for ¢ = 1, or

equivalently by Lemma [3.4.5, t'(R,,/ m%g::) 2s,, yury ti(Rm@iZm Z};{)_is an isomorphism

for i = 0 and a surjection for i = 1, where X, = X, ®0[a,, ] Sm and X7 = S50 /p™.
Consider the following commutative diagram with exact rows:

0——= tO(Ryp /mi M @5, S) —— (R /m") & (05— 05,

: ]

0 P (Rn®y, Tm) 'R, o 08— 9%,

tl( m/m7 )®E Eur) tl( m/mc(m))@tliumr

r |

' (Rn®y, Tim) t'R,, @ tixw 'y,

The maps f, g are clearly isomorphisms. By a diagram chasing, it suffices to show h is an
isomorphism. Note t!X% = 0 and t'%,, = vEQm H2(Ty, ty) = [Leo,, H2(Ty, g1), so it
remains to prove t'R,, = HveQm H?(Ty,g1). As Lemma we have the exact sequence

O%tORm—)H m7gk; %@H vagk
veES

'Ry = H* (T, 0x) = @ H* (T, g1) — 0.
veS

By comparing it with the exact sequence (3.1]), we conclude t! R, = HveQm H?(Ty,g:). O

Remark 3.4.8. The formal smoothnesses for local deformation rings play an essential role
(especially in Lemma in the above calculations. A natural question is to genralize
the result without the formally smooth assumptions (for example firstly for local complete
intersection rings). However, we do not yet have a clear answer to this question.
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Chapter 4

Examples

4.1 General linear groups

We keep the notations of the previous section. Suppose F' is a number field with 7
real places and 9 complex places, and consider the locally symmetric spaces associated to
Res(gGL ~- The maximal compact subgroup of GLy (R) is O(N) and the maximal compact
subgroup of GLy(C) is U(N), so we have

2g0 + Lo = (N2 — Xy 4 (N2 = N2)ry — 1 = 225N 4 N2y — 1
bo=(N—[EDri+ 2N -N)ra—1=(N—[F])r + er —1,

N2—-N
5 T2

and consequently gg = [NTQ]H +
We suppose

1. m, is minimal for v € S\Sp;

2. either 7, is regular ordinary for every v € S), or p is unramified in F' and A\r 1 — A, <
p —n for all 7.

In [HLTT16] the authors proved that there exists a Galois representation p: I's —
GLN(O) associated to 7 such that p = pr (mod w) satisfies (Resy). In the ordinary
case, we suppose p|p, is regular and dual regular (see Section and these are called
distinguishability and strong distinguishability assumptions in [TU2I, Page 3-4]). Let
prin - pord and DIL be the minimal, ordinary and Fontaine-Laffaille local deformation
functors respectively; these functors are defined in Section and we have

Proposition 4.1.1. The functors D™, DY and DYV are liftable, and the framed rep-
resenting rings for these functors are formally smooth. Moreover, for DI and DEV,
we have dimy L, — dimy H°(T,, gx) = [F, : Qp] N . for DM we have dimy L,
dimy, HO(T',, gx) = 0.
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Let S to be the global deformation problem for p: I's — “G(k) which is simultaneously
either ordinary or Fontaine-Laffaille for v € S, and minimal for v € S\S,. For the
condition dimy H:(I's, gx) — dimy, HéL (s, g;) = —4o, we have:

Lemma 4.1.2. Let the notations be as above. Then

—14 Y dimy HO(Ty, gx) — Y (dimy, L, — dimy, H(T,, g1)) = Lo

v | oo veSs

holds if and only if the action of complex conjugation on gi is odd for every real place of
F.

Proof. By the above proposition we have Y (dimy, L, —dimy H°(T',, gx)) = ”t"rl +(n? -

veS
n)ra. So the condition is equivalent to > dimy H°(Ty,g1) = [#]Tl + n%ry. But for
v | oo
each v real, H(T,, gx) is at least ["2; 11, so we must have the equality, which is exactly
the oddness condition. O

Now it remains to check (Galy) and (Vany) for Theorem For the hypothesis
(Vany,), see Remark for a brief discussion. For the hypothesis (Galy), in [ACC+18|
Theorem 2.3.7], the authors construct a map I's — GLy(T/I), where I is a nilpotent
ideal, with desired characteristic polynomials for v ¢ S. In subsequent sections 3,4,5 of
[ACC+18], the local-global compatibilities are established for minimal, Fontaine-Laffaille
and ordinary places, given some additional restrictions listed there. The nilpotent ideal I
is eliminated in [CGH+20, Theorem 6.1.4] under the assumption that p splits completely
in F', however, the local-global compatibility hasn’t been established yet.

4.2 Orthogonal similitude groups

Consider the locally symmetric spaces associated to the orthogonal similitude groups
GSOg,p, over Q. Recall that

B Jfida 0\ fide O .
GOgp(R) ={g9 € GLg1s(R) | g < 0 —idb> g=A < 0 —idb> for some A € R*},

and GSO,y is the connected component of the identity in GOgyp (s0 GSOqp = GOgyp if
a+ b is odd).

We still have Theorem [3.4.6] once all necessary hypotheses are verified. But when a +b
is small, it seems more convenient to approach Theoremvia the special (local) isomor-
phisms listed in [Hel01l, X.6.4] and [MY90], for the auxiliary group under the isomorphism
is often better understood.
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It’s easy to see that GSO, is abelian when a+b < 2, and the center Z(GSO, ;) consists
of scalar matrices when a + b > 2. In the second case, the invariants ggp and ¢y satisfy

4.2.1 Derived deformation rings under Langlands transfers

Let’s discuss how the derived deformation rings behave under Langlands transfers in gen-
eral.

Let G and H be a connected reductive linear algebraic group over Q. As in the
introduction, we fix a finite set of finite places S O S, of F, an open compact group
U = Us xU% = ([Tyes Uv) X ([TygsUv) with U, C H(O,) and each U, (v ¢ S\S,)
hyperspecial maximal. Suppose 7y is a cuspidal automorphic representation occuring in
H*(XY,VA(0))m where m is a non-Eisenstein maximal ideal and we make the assumption
(Resy) for the residual representation pg: I's — “H(k). Suppose the Langlands transfer
r: YH — L@ is established, then there exists an automorphic ¢ in the global L-packet
defined by 7z and r, and the residual representations pg: I's — LG(k) satisfy pg = ropy.

Let D¢ (resp. sDg) be the deformtion functor (derived deformtion functor) with suit-
able local conditions for g, and we define similarly Dy (resp. sDg) with compatible local
conditions. Then there is a natural map Dy — Dg (resp. sDy — sD¢) induced by r,
and hence a morphism Rg — Ry (resp. Rg — Ry up to weak equivalence) between the
deformation rings (resp. derived deformation rings).

In the following we will take H = GSO, ; with a+b = 4 or 6. Note then H= GSping .
Recall that GSpin, can be identified with

{(4, B) € GLa x GL3 | det(A) = det(B)},
and GSping can be identified with the subgroup of GL; x GL4 defined by the exact sequence
1 — GSping -+ GL; x GLy — GL; — 1

with GL; x GLy — GLj is given by (), g) — A2 det(g).

For H = GSO3; and G = RengLg where F' is a quadratic imaginary field, the
transfer is induced by the natural inclusion GSping, — GL2 x GLa. Let I'rg be the
Galois group of the maximal S-ramified extension of F' and let Gal(F'/Q) = {1,c}. Then
LG = (GLy x GLg) x {1,¢} and “H = H x {1, ¢}, and the complex conjugation ¢ acts by
exchanging the components in GL2 x GLy. Note H can be identified with the subgroup

al 0 b1 0
0 0 b

{ o 662 d 02 | ardy — bic1 = agda — baca}
0 (&) 0 dQ
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0100
. . : : . 1 0 00

of GSpy, and the action of c¢ is extended to the conjugation action by 00 0 1 €
0 010

GSp4

Lemma 4.2.1. For H = GSO371 and G = Res(SGLg, the map Defgy — Defg between
unconditional deformation functors is an isomorphism.

Proof. We also use ¢ to denote the complex conjugation of I'g.

Let’s first consider the functor Defg. Let A € Artp and suppose pg: I's — YG(A) is
a lifting of pg. For 0 € I'p g, we write pg(0) = ((My, Ny),1). Note pa(c) = (X, X 1), ¢)
for some X € GLgy(A), and without loss of generality up to conjugation we may suppose
X is the identity matrix. Then it’s easy to see N, = M ¢, so the deformation of pg is
uniquely determined by the deformation for I'r g — GLo.

For Def 7, we can only conjugate pg(c) = ((X, X 1), ¢) to either (( <(1) ?) , ((1) (1)> ),c)

or ((<(1) _01> , <(1) _01>), ¢). But still the deformation of pg is uniquely determined by
the deformation for I'r ¢ — GLo. O]

Lemma 4.2.2. For H = GSO3; and G = RengLg, the map sDefy — sDefg between
unconditional derived deformation functors is a weak equivalence.

Proof. 1t suffices to check sDefy — sDefs induces a weak equivalence on tangent com-
plexes. Write b, and g, for the Lie algebras of “H and G respectively (note by, is a direct
summand of g), then it suffices to show H*(I's,bi) — H(I's, gx) is an isomorphism for
i=1,2.

For ¢ = 1 the isomorphism follows from the above lemma. Note also the isomorphism
for i = 0 and the Euler characteristics x(I's, hx) = x(I's, gx) (the subspace fixed by ¢ in g
lies in by), so H2(I's, bx) < H?(T's, gx) is also an isomorphism. O

Similarly, the above lemmas hold for H = GSO32 and G = GLg x GLy as well.

In the case H = GSO33 and G = GL4, these groups are split so we can identify Ly
with GSping and identify “G with GL4. The transfer 7: GSping — GL,4 is given by the
second projection

GSpinG - GL1 X GL4 — GL4

Lemma 4.2.3. For H = GSO33 and G = GL4, the map Def g — Defq between uncondi-
tional deformation functors is an isomorphism.

Proof. Let A € Artp and let py: I's — GSping(A) be a lifting of pr: I's — GSping(k).
Suppose pg (o) = (Mg, My). If M, is given, then there is a unique choice for such A, since
A2 and )\, (mod my) are determined. O
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Lemma 4.2.4. For H = GSO33 and G = GL4, the map sDefpy — sDefq between uncon-
ditional derived deformation functors is a weak equivalence.

Proof. 1t suffices to check sDefy — sDefg induces a weak equivalence on tangent com-
plexes. Write by, and g, for the Lie algebras of “H and G respectively, then it’s easy to
see by = gi, so Hi(I's, by) — H'(I's, gx) is an isomorphism for i = 1,2, and the conclusion
follows. O

The local conditions for pg: I's — “H(A) should be essentially defined by the corre-
sponding local conditions for pg: I's — “G(A). So in the cases

1. H=GSO3; and G = RengLg, or
2. H =GS0O22 and G = GLy x GLg, or
3. H=GSO033 and G = GLy,

we have the following:

Corollary 4.2.5. The map sDy — sDg is a weak equivalence, and so is Rg — Ry. In
particular, the map T Ra — TR is an isomorphism of graded commutative O-algebras.

If we could relate H*(XY, VA(O))m and H*(X}, VA(O))m, then we are able to deduce
Theorem for H if it is known for G. In the following we study the case GSOs3 ;.

4.2.2 The case GSO;,

Write H = GSO3; and G = RengLg where F' is an imaginary quadratic field. By
the preceding calculations, we know the ¢y and £y for both groups coincide. We define
¢: G — H as follows:

Let W = {z € My(F) | x = 2}, then det: W — Q is a quadratic form of signature
(1,3), so GOz 1 can be identified with the group of orthogonal similitudes of W. Let A be
the kernel of the norm map NV: Reng G, — G,,. Note that W comes with a structure
over O, we have the following commutative diagram of algebraic group schemes over Z
with exact rows over algebraically closed fields:

0—>A——>ResS" Gy, =Gy, 0

|,

0— = A—— Res?" GLy 2~ GSO3; —= 0.

Here ¢ is induced by associating g € Resgp GLs to the endomorphism z +— gzg“ on W,
and the vertical maps are natural inclusions. Note the similitude character of ¢(g) is
det(g) det(g)°.
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Let U = Ug x U5 = ([[,eq U1) X (IT,¢s Ui) be an open compact subgroup of Hy such
that each U, (v ¢ S) is hyperspecial maximal. We define V; to be the inverse image
of U; under GLy(Z; ®7 OF) — GSO3,1(Z;) and define V' = [[,V;. Note the Langlands
transfer r: “H — G induces a map between the spherical Hecke algebras H(G®, V) —
H(H®,U?) via the Satake isomorphisms

C(H(Q)) JUy) S C[Ty W HIm(©

and

C=(G(Q) Vi) S C[Tg] W (G Ta)(©),

Let A be a dominant weight for GSO3 1 and let V) be the irreducible algebraic represen-
tation of GSO3 1 of highest weight A. By regarding V) as an irreducible algebraic represen-
tation of Res(ZQF GLy via ¢: RengGLg — GSO03,1, we get a natural map H*(XY, A (0)) =
H*(Xg,YN/,\(O)). We make the assumption that we can choose F' such that V' — U is
surjective (note V; — Uj is surjective for [ unramified in F'). The following proposition
should be known by [HST93| and [Mok14], nevertheless we will give a proof.

Proposition 4.2.6. The natural map H*(Xg,f/)\((’))) — H*(Xg,‘N/,\(O)) is an isomor-
phism, and we have the commutative diagram of Hecke actions

H(H?, US) +——— H(G®, V)

() ()

H* (XY, VA(0)) —=— H*(X[,VA(0)).

Corollary 4.2.7. H*(XY, 17/\((9)),n is a graded T, R-module which is freely generated by
H%( XY, VA(O))m (note qo + Lo =2 here).

Remark 4.2.8. Once the isomorphism between locally symmetric spaces and the compati-
bility with the Langlands transfer are established, it’s easy to see that (Galy) and (Vany)
for m¢ implies those for 7mp. Together with the theory of Calegari-Geraghty we know (here
ST and R are limiting rings associated to H constructed by the Taylor-Wiles method,
and same for S¢ and RS)

1. H* (XY, VA(O))m — H*(X[, VA(O))m is an isomorphism;

2. Hi (XY, VA(O))m is a graded module freely generated by H% T (X%, VA(O))m over
Torfg(Rgo, O

7

)
3. Hi (XY, VA(O))m is a graded module freely generated by H%+o (XY, VA(O))m over
Tor’™ (RE, 0).
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So we should have Tor?> (RH 0) = Tory > (RG O). In general it’s seemingly more con-
vinient to compare the derived deformation rings.

We return to the commutative diagram of algebraic group schemes over Z with exact
rows over algebraically closed fields:

N

OHAHReSZ G, G, 0

|, ]

0 —> A ——> Resy " GLy —— GSO3; — 0.
For a field extension F/Q, we have H(Gal(E/E), (E®q F)*) = HY(Gal(E/E), GLa(E ®q
F)) = 0 by Hilbert’s Theorem 90, so we obtain the commutative diagram with exact rows

0—— A(E N

(E ®q F)* E* HY(Gal(E/E), A(E)) —= 0

| |

0= A(E) — = GLy(E ®g F) —*~ GSO31 (E) — = H'(Gal(E/E), A(E)) — 0.

Therefore GSO31(F) = E*¢(GL2(E ®g F')), and
0— A(E) — GLQ(E 0Y0) F) — GSO3’1(E) — E*/N(E KQ F)* —0

is exact. The above argument also applies for the adele ring A since H(Gal(Q;/Q;), A(Z;)) =
0 for every unramified [, so GSO31(A) = A*¢(GL2(Ar)) and we have the commutative
diagram with exact columns and rows

0 (4.1)
0—— A(Q) GLy(F) —~ GS035,1(Q) — = Q* /NF* —~0
0 A(A) GLiA p)—2s GSOL(A) —  A*/NAL —=0
Gal(F/Q)
0.

Proposition 4.2.9. There is a bijection between cuspidal automorphic representations g
of GSO31(A) and pairs (rg,x) of a cuspidal automorphic representation mg of GLa(AR)
and a grossencharacter x: Q*\A* — C* such that x o N 1is the central character of mg.
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Proof. This follows directly from the above discussion (see also [HST93, Proposition 1]).
Note that 7wy corresponds to ({fo¢ | f € mu}, Xxy), Where Xr, is the central charac-
ter of mg. For the other direction, the pair (7g,x) corresponds to the set of functions
f: GSO(Q)\GSO(A) — C such that f o ¢ € 7 and the central character of f is x. O

Now we prove Proposition [1.2.6]

Proof. Let my be a cuspidal automorphic representation of GSOgz1(A) and let 7¢ be the
cuspidal automorphic representation of GLa(Afp) obtained as in the above proposition.
Following [HST93, Section 3], the association 7wg — 7 is compatible with the transfer r,
so it is also compatible with the Hecke morphism H(G®,V*®) — H(H®, U®).

It remain to show the map Xg — Xg induced from ¢ is an isomorphism. From the
commutative diagram

0——A(R Cc*

- | |

)
0 —= A(A) —= GLy(Af) —2= GSO3.1(A) —= A*/NA% —= 0,

R* R*/NC* —0

we deduce an exact sequence
0 — A(A)/A(R) — GL2(Ap)/C* — GSO31(A)/R* — A*/(NAL -R*) — 0,
which admits a compatible faithful left action from
0 — A(Q) = GLy(F) — GSO3,1(Q) - Q*/NF* — 0.

Note that Q*\A*/(INA} - R¥) is trivial. Following the proof of the snake lemma, we obtain
a sequence of maps

AQN\A(A)/A(R) — GL2(F)\GL2(Ar)/C* — GSO3,1(Q)\GSO3,1(A) /R

such that the second arrow is surjective and each of its fiber is isomorphic to A(Q)\ A(A)/A(R)
(note the isomorphism is not canonical in general, but here A(A) lies in the center of
GL2(AF) so it’s canonical). Now consider the compatible right action from

0—>HA(Zl)—>HVz—>HUl—>0-
! ! !

It’s easy to see that A(Q)\A(A)/(A(R)-[], A(Z;)) is trivial, so the induced map X} — XY

is an isomorphism. O
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Chapter 5

Pseudo-deformation functors

In [Lafl8], the author defined pseudo-characters for reductive groups, generalizing the GLy
case by Wiles and Taylor. Moreover, in the residually irreducible case it is proved that
the pseudo-deformations are equivalent to the usual deformations (see [BHKT19, Theorem
4.10]).

It’s natural to ask if there is a derived deformation theory for pseudo-deformations,
and this is the topic we attempt to investigate in this chapter. In Section 5.1 we will
reinterpretation of pseudo-characters following [Weid18], Section 2]|. In Section 5.2 we will
relate the pseudo-deformation functor with a variant of the nerve functor, then we study
the derived analogue. In Section 5.3 we will attempt to propose a derived theory for
pseudo-deformations.

5.1 Classical pseudo-characters and functors on FFS

Let G be a split reductive group scheme over O such that the center Z of G is smooth over
0. We write I' = I'g for simplicity.

Recall the notion of a (classical) G-pseudo-character due to V. Lafforgue (see [Lafl§,
Définition-Proposition 11.3] and [BHKTI9, Definition 4.1]):

Definition 5.1.1. Let A be an O-algebra. A G-pseudo-character ©® on I'" over A is a
collection of O-algebra morphisms O, : O?\}in% — Map(I'™, A) for each n > 1, satisfying the
following conditions:

1. For each n,m > 1 and for each map (: {1,...,n} — {1,...,m}, f € (’)?\‘,ifg, and
Y1,--+,Ym €I, we have

@m(fg)(’hv <o 7’7m) = @n(f)(74(1)7 s a’YC(n))a
where f<(g1,...,9m) = F(gcays -5 9emy)-
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2. For each n > 1, for each 71, ...,7,+1 € I', and for each f € 07&%, we have

Onr1(H)(1, - mr1) = On(F) (1, - -, Yoty TnVnt1)s

Where f(gl7 A 7gn+1) = f(gla A 7gn—17gngn+1)'

We denote by PsCh(A) the set of pseudo-characters over A.

We want to give a simplicial reformulation of this notion. As a first step, following
[Weid18| Section 2], let us consider F'S the category of finite sets and FFS be the cate-
gory of finite free semigroups. For any finite set X, let Mx be the finite free semigroup
generated by X; we have I'Y = Homgemap(Mx,I') and GX = Homgemap(Mx,G). For a
semigroup M € FFS, note that Homgemap(Mx, G) is a group scheme, so, we can define a
covariant functor FFS — Algy,, M +— OHomsemGp( Mm,q)- We can also define the covariant
functor M — Map(Homgemap(M,I"), A). These functors on FFS extend canonically those
defined on the category FS by X + Ogx and X +— Map(I'X, A). Moreover, the natural
transformation

O?;%(G — Map(T'¥, A)

extends uniquely to a natural transformation of functors on FFS. Actually, there are
several useful functors on FFS; by the canonical extension from FS to FFS mentioned
above, it is enough to define them on the objects [n], as in [Weidl8, Example 2.4 and
Example 2.5]:

1. The association [n] — I'™ defines an object I'* € Sets¥¥S™.

2. For A € Algp, the association [n] — Map(I'", A) defines an object Map(I'®, A) €
AlgEFs.

3. The association [n] — (’)?&% defines an object (’)?\;1.% € AlghEFs,

4. Let G")/G = Spec(O%i%). Then for A € Algy, the association [n] — (G"/G)(A)
defines an object (G*/G)(A) € SetsFFS™,

As noted in [Weid18| Theorem 2.12], one sees that a G-pseudo-character © of I' over
A is exactly a natural transformation from (’)%{% to Map(I'®, A) (we call these natural
transformations AlgE¥S-morphisms).
Lemma 5.1.2. For A € Algy, there is a bijection between Homg , rrser (I'*, (G*/G)(A))
and PsCh(A).

Proof. Tt suffices to note that there is a bijection between Sets¥¥S”-morphisms I'* —
(G*//G)(A) and Alg§FS-morphisms O3, — Map(T'®, A). O
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For an algebraically closed field A and a (continuous) homomorphism p: I' — G(A),
we say that p is G-completely reducible if any parabolic subgroup containing p(I') has a
Levi subgroup containing p(I"). Recall the following results in [BHKT19, Section 4]:

Theorem 5.1.3. 1. [BHKTI19, Theorem 4.5] Suppose that A € Alg, is an algebraically
closed field. Then we have a bijection between the following two sets:

(a) The set of G(A)-conjugacy classes of G-completely reducible group homomor-
phisms p: T’ — G(A),

(b) The set of pseudo-characters over A.
2. [BHKT19, Theorem 4.10] Fiz an absolutely G-completely reducible representation

p:'— G(k)_, and suppose further that the centralizer of p in sz 15 scheme-theoretically
trivial. Let © be the pseudo-character, which is induced from

(Y15 o5m) = (P(1), -+, p(m))

when regarded as an element of Homg,, rrser (I'*, (G* JG)(k)). Let A € Arto. Then
we have a bijection between the following two sets:

(a) The set of CA?(A)—conjugacy classes of group homomorphisms p: I' — G(A) which
lift p,

(b) The set of pseudo-characters over A which reduce to © modulo m,.

Note that there are similarities between Sets¥FS™ and Sets®” = sSets. In the
following, we shall prove similar results with Sets¥¥S”” replaced by sSets.

5.2 Classical pseudo-characters and simplicial objects

Recall that on Op,q there are natural coface and codegeneracy maps, and we can regard
On.c as an object in Algé (i.e. a cosimplicial O-algebra). The adjoint action of G
on G* induces an action of G on Op,q, which obviously commutes with the coface and
codegeneracy maps. In consequence, (’)%{% is well-defined in Algé.

Definition 5.2.1. We define the functor BG: Alg, — sSets by associating A € Alg,,

to Homag,, ((9%{%, A) with face and degeneracy maps induced from the coface and code-

generacy maps in (’)%{%.

Note that the inclusion (’)%{% — On, ¢ gives a natural transformation BG — BG.
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5.2.1 Algebraically closed field

Let A € Algy be an algebraically closed field. We would like to characterize the elements of
Hom,gets(BI', BG(A)). They correspond to the continuous quasi-homomorphisms, which
we define below. As in previous chapters, BI' should be understanded as the pro-system of
simplicial sets, but it always suffices to forget the topology at first and take the continuity
into account at the end. So we will often ignore the pro-issue for convenience.

Definition 5.2.2. Let I' and G be two groups. We say a map p: I' — G is a quasi-
homomorphism if there exists a map ¢: I' — G such that p(z)"!p(zy) = ¢(z)p(y)p(x) "
for any z,y € .

Obviously a group homomorphism is a quasi-homomorphism. Note that every quasi-

homomorphism preserves the identity, and the set of quasi-homomorphisms is closed under
G-conjugations.
Remark 5.2.3. A quasi-homomorphism can fail to be a group homomorphism. We can
construct a quasi-homomorphism as follows: let o: I' — G be a group homomorphism, let
¢: ' — Z(o(T)) be a group homomorphism and let g € G, then p(x) = g~ Lo (z)p(x)gd(x) !
is a quasi-homomorphism. Such p is not necessarily a group homomorphism, an example
could be the following: take G = Hx H,0: I' — H x {e} and ¢: I — {e} x H, and choose
g such that g ¢ Z(o(I)).

Lemma 5.2.4. Let p be a quasi-homomorphism and let ¢ as above. Then the map ¢
induces a group homomorphism I' — G /Z(p(T')) which doesn’t depend on the choice of ¢.

Proof. For z,y,z € I', we have

d(ay)p(2)d(zy) ™" = pay) ™ playz)
= (@)p(y)o() ") (p(@)p(y2)d(z) ™)
)o(y) " plyz)d(z) ™
)6(y)p(2)d(y) " p(z) ™
Hence ¢(zy)~1é(x)o(y) € Z(p(I)) for any x,y € I', and ¢ induces a group homomorphism

I' — G/Z(p(T)). For any other choice ¢; such that p(x) Lp(zy) = ¢1(x)p(y)d1(x) L, we
see ¢ ! (x)¢(x) € Z(p(T')), and the conclusion follows. O

xT

¢(
= ¢(z

Lemma 5.2.5. Suppose that A € Algy is an algebraically closed field, and let f €
Homgsets(BT, BG(A)). Then we can associate a quasi-homomorphism p: T — G(A) to
f such that f sends (y1,...,v) € BTy, to the class in BG(A),, represented by

i1 i
p(IT) (I )=
7j=1 7j=1
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Proof. For each n > 1 and v = (y1,...,7) € I'™, we choose a representative T'(y) =
(915---,9n) € G(A)"™ of f(l)iwith closed orbit, note that any other representative with
closed orbit is conjugated to (gi,...,gn). Let H(7) be the Zariski closure of the subgroup
of G(A) generated by the entries of T'(y). Let n(y) be the dimension of a parabolic
P C G4 minimal among those containing H(7), we see n(v) is independent of the choice
of P. Let N = sup,,>1 yern n(7). We fix a choice of § = (41, . .. ,6,) satisfying the following

conditions:
1. n(d) = N.
2. For any &' € T™ satisfying (1), we have dim Zg , (H(8)) < dim Zg , (H(8")).

3. Forany ¢’ € T" satisfying (1) and (2), we have #mo(Za , (H(9))) < #m0(Za , (H(5")).

Write T'(0) = (h1,...,hy). As in the proof of [BHKTI19, Theorem 4.5], we have the
following facts:

1. For any (y1,...,7%m) € '™, there exists a unique tuple (gi,...,9m) € G(A)™ such
that (h1,...,hn, g1, .., 9m) is conjugated to T(O1,...,0n, Y1s- -, Ym)-

2. Let (h1,...,hn,91,...,9m) be as above. Any finite subset of the group generated by
(h1y-..yhn,q1,--.,9m) which contains (hq,...,hy,) has a closed orbit.

We define p(y) to be the unique element such that (hi,...,hy,p(7)) is conjugated to

T((Sl, . 7571; ’y)
Suppose for v1,...,vm € I', the unique tuple conjugated to T'(d1,...,0n, Y1, -+, Ym) 18
(h1y...yhn,g1,--.,9m). Consider the following diagram, where the horizontal arrows are

compositions of face maps:

((51,...,(5n,’yl,...,"ym)H(hl,...,hn,gl,...,gm)

| |

(61a .. '757131_[3":1 7]) - (hla .. ->hn7H§:1 g])

Since (hi,...,hn, H;:l gj) has a closed orbit and is a pre-image of f(d1,...,0p, H§'=1 Vi),

we have []_; g = p(ITj—1 %), and gi = p(IT;=; ) ' e([Ti=y ) (Vi=1,...,m).
Let 2,y € I'. Then the element in G(A)?"*2 associated to (61, ..,0n,T,01,.-.,0n,7y) is

n—1 n n n

(P15 oy pl), p(a) " p(6), ol [T 65) " ola [ [ 6))s p(= [T 65) 7 o= [T 65 - 9)),
j=1 j=1 j=1 j=1
and the element in G(A)?>"*! associated to (81,...,0n,01,...,00,y) is
n—1 n n n
By sy p(01), - p(TT ) (L] 00), oL 60~ (1T 65 - 0))-
j=1 j=1 j=1 j=1
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We sce both (p(@ [Ti=} 6;) " p(@ T}, ))i—t...u and (p(IT=% ) o(ITi_y 6;))ict,... have
a closed orbit and are pre-images of f (51, . ,(5 ), so they are conjugated by some ¢(z) €
G(A). Then since Zg,(H(0)) is minimal by the defining property, ¢(x) must conjugate
p(IT5=y (5j)_1p(H§L:16 y) to p( z [ 9 )" Lp(x [17=19; - y). We deduce that Va,y € T,
p(z)Lp(zy) = gf)(:c)p(y)gb(x) , and p is a quasi-homomorphism. It’s obvious that for any
(’717 cee a'7n) el™, (p(H] 1 '7)) 1P(H]:1 'Yj))z—l,...,n is a pre-image of f('Yl’ .. a'}’n) O

5.2.2 Artinian coefficients

Let p: I' — G(k) be an absolutely G-completely reducible representation, note then
H°(Ts,g9x) = 3 by [BHKTI9, Lemma 5.1]. We write f € Homggets(BI', BG(k)) for

the map induced from (v1,...,7) — (p(71),-- -, p(7n))-
Definition 5.2.6. For A € Arto, the set aDef 7(A) is the fiber over f of the map

HomsSets(Brv BG(A)) — HomsSetS(BFa BG(k>)

Definition 5.2.7. Let A € Artp. We say a map p: I' - G(A) is a quasi-lifting of p if p
mod my = p and p is a quasi-homomorphism.

Remark 5.2.8. In general, a quasi-lifting may not be a group homomorphism. Let 0 —
I - Ay — Ap be an infinitesimal extension in Artp. Let po: I' = G(Ap) be a group
homomorphism, let o: G(Ap) — G(A1) be a set-theoretic section of G(A;1) — G(Ap) and
let p = 0o py. Let’s construct a quasi-lifting p; = exp(X,)p where X: T' — g ®; [ is a
cochain to be determined.

For o, € T', there exists ¢4 € gr ®k I such that p(a)p(f) = exp(cq,p)p(af) since
po: I' — G(Ap) is a group homomorphism. It’s easy to check that ¢ € Z2(T', g @4 I).
Let ¢(a) = exp(Yy,) where Y: T' — g ® I is a group homomorphism also to be de-
termined. We require p1(af) = p1(a)d(a)p1(B)¢(a)~! for all o, € I'. Note that
p1(apf) = exp(Xag)p(aB) and

pr(a)p(e)p1(B)¢(e) ™! = exp(Xa)p(a) exp(Ya) exp(Xp)p(B) exp(Ya) ™
(Xa)p(a) exp(Xp + Yo — Adp(B)Ya)p(B)

= exp(Xo + Adp(a) Xp) exp(Adp(a)(1 — Adp(B))Ya)p(a)p(5)
( )

= exp(Xao + Adp(a) Xj) exp(Adp(a)(1 — Adp(B))Ya) exp(ca,p)p(af).

so we need to find a group homomorphism Y:I' — g ®; I such that Adp(a)(l —
Adp(B))Ya) + cap is a coboundary. In particular, in the case H?(T, g;) = 0, we can take
an arbitrary group homomorphism Y : I' — gi. Note that p; is a group homomorphism if
and only if ¢(a) = exp(Y,) € Z(A) for any a € T

= exp

Lemma 5.2.9. Let A € Artp and let p: T’ — G(A) be a quasi-lifting of p. Then Z(p(T")) =
Z(A).
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Proof. See [Til96, Lemma 3.1] (note that the condition that p is a group homomorphism
is not used in the proof). O

Corollary 5.2.10. Let A € Artp and let p: I' — G(A) be a quasi-lifting of p. Then p
induces a uniquely determined group homomorphism ¢: T' — ker(G*(A) — G2(k)) such

that p(z) ' p(xy) = d(x)p(y)¢(x)~" for any x,y € T.

Proof. By combining the above lemma with Lemma we see ¢: [ — G*(A) is
uniquely determined. Since p is a group homomoprhism, ¢ mod my4 commutes with p(I"),
and hence ¢ mod my4 is trivial. O

Now we can characterize aDef f(A) in terms of quasi-lifts. The following propostion
owing to [BHKT19] plays a crucial role (see also its use in the proof of [BHKT19, Theorem
4.10)):

Proposition 5.2.11. Suppose that X is an integral affine smooth O-scheme on which G
acts. Let x = (x1,...,2,) € X (k) be a point with Gy, - = closed, and Zg, (x) scheme-
theoretically trivial. We write X™Z for the functor Artpo — Sets which sends A to the
set of pre-images of x under X(A) — X(k), and write G" for the functor Artp — Sets
which sends A to ker(G(A) — G(k)). Then

1. The G"-action on X is free on A-points for any A € Artp.

2. Let X )G = Spec O[X|%, let n: X — X J/G be the natural map, and let (X JG) V@)
be the functor Artp — Sets which sends A to the set of pre-images of m(z) under
(X)G)(A) = (X)G)(k). Then m: X — X /G induces an isomorphism X% /G =
(X )G @),

Proof. See [BHKT19, Proposition 3.13]. O

Corollary 5.2.12. If (v1,...,7vm) is a tuple in T such that (p(71),...,p(ym)) has a
closed orbit and a scheme-theoretically trivial centralizer in G2, then (p(71),. .-, p(Ym))
has a lifting (g1, ..., 9m) € G(A)™ which is a pre-image of f(71,...,Ym) € BG(A)m, and
any other choice is conjugated to this one by a unique element of G*(A).

Theorem 5.2.13. Let A € Arto. Then aDef;(A) is isomorphic to the set of CA;(A)—
conjugacy classes of continuous quasi-liftings of p.

Proof. Evidently we can forget the topology in the proof.
Given a quasi-lifting p: I' — G(A), then the association

i—1 i
(- vm) = ([T e T )=t m
j=1 j=1
defines an element of aDef 7(A).
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In the following, we will construct a quasi-lifting from a given f € aDef f(A).

Let n > 1 be sufficiently large and choose 41, ..., d, € I" such that (hy = p(d1),...,hy, =
p(6,,)) is a system of generators of p(I"), then the tuple (A1, ..., hy,) has a scheme-theoretically
trivial centralizer in sz. By [BMRO5, Corollary 3.7], the absolutely G-completely re-
ducibility implies that the tuple (hi,...,hy,) has a closed orbit. By the above corollary,
we can choose a lifting (h1,...,h,) € G(A)" of (h1,...,hy) which is at the same time a
pre-image of f(d1,...,0n).

For any v € T, the tuple (hy,...,hn, p(7)) obviously has a closed orbit and a trivial
centralizer in G394, so we can choose a tuple in G(A)"*! which lifts (hi,. .., hy, p(7y)) and
is a pre-image of f(d1,...,0,,7). For this tuple, the first n elements are conjugated to
(hi,...,hy) by a unique element of G*d(A), so there is a unique g € G(A) such that the
tuple is conjugated to (hi,...,h,,g). We define p(v) to be this g. It follows immediately
that p mod m4 = p.

Now suppose 71, ...,7m € I'. As above, let (g1,...,gm) be the unique tuple such that
(hiy. . Py g1y - .-, gm) is a lifting of (R1,...,hn, p(71),...,p(7m)) and is a pre-image of
f(1,.. 00,71, ..,¥m), consider the following diagram, where the horizontal arrows are
compositions of face maps:

(517'"75na71>"'7’7m)4>(h1a'"7hnvgl7"'7gm)

| |

(617 .. '757171_[;":1 7]) - (h17 .. ‘7hn)H;‘:1 g])

Then (hl,...,hn,szl g;) is a lifting of (hy,.. .,Bn,ﬁ(H§:1 7v;)) and is a pre-image of
FO1 - 60, [Timy ). Hence Tiy g5 = p(IT5= 7)> and gi = p(IT21 %) " p(ITo=y %)
(Vi=1,...,m).

Let 2,y € T'. Then the element in G(A)?"*2 associated to (61, ...,0n,%,01,...,0n,y) is

n—1 n n n
(has ey s p(), p(a) " (1), s pla [T 60 o [ ] 07), (@ [T 65) "ot [ 1 65+ 0)),
Jj=1 Jj=1 j=1 j=1
and the element in G(A)?>"*! associated to (81,...,0n,01,...,0n,%) is
n—1 n n n
(R, b (1), p (T 8 o(J T 69 (LT 65 (T ] 65 - w))-
j=1 j=1 j=1 j=1

We see both (p(2 [T521 6,) p(x [T5=1 6;))i=1...n and (p(T152; 6;) " p(T 1=y 6))i=1,..n are

liftings of (h1,...,h,) and pre-images of f(d1,...,0,), so they are conjugated by some
¢(x) € G(A). We can even suppose ¢(x) € ker(G(A) — G(k)) because the centralizer

of (hi,...,hy) is Z. Since ¢(x) is uniquely determined modulo Z(A), it must conjugate
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p(IT5-1 5j)*1p(HJ 105 - y) to p( ]I, §;) p(z [Tj=19; - y). We deduce that Va,y € T,
p(x)Lp(zy) = ¢(z)p(y)d(x)~t, and p is a quasi-lift.
For the p constructed as above we can recover f from the formula (v1,...,7m) —

(p(IT 5 )~ 1,0(H] 175))i=1,...m

So it remains to prove that 1f p1 and p2 have the same image in aDef f(A), then they
are equal modulo ker(G(A) — G(k))-conjugation. Since (pl(HZ L)t p1(IT5=1 05))i=1,...n
and (,02(1_[;‘;%L (5]-)*1,02(1_[;‘-:1 d;))i=1,....n are both liftings of (hi,..., Bn) and pre-images of
f(01,...,0y), they are conjugated by some g € G(A), and we may choose g € ker(G(A) —
G(k)) because the centralizer of (hy,...,h,) is Z. After conjugation by g, we may suppose

i—1 i—1
(er(JT o~ mHé o = (2] 6) p2H5 L= (W L),
Jj=1 j=1

Then for v € T, pp([i-, ;)71 pe(I1j=1 6 - ) (k = 1,2) is uniquely determined by the

condition: (Rf,.. .,hn,pk(]_[?zl 5j)*1pk(H?:1 §; - ) lifts (h1,...,hn,p(7)) and is a pre-
image of f(d1,...,0n,7). In consequence, we have p; = po. O

As a by-product of the proof of Theorem [5.2.13] we also have:

Corollary 5.2.14. For A € Artp, the set HomsSets/BG(k)(BF, BG(A)/G"(A)) is isomor-
phic to aDef (A).

But unfortunately, the simplicial set BG(A)/G"(A) isn’t generally fibrant.

We attempt to compare the difference between aDeff(A) and D(A). Motivated by
the front-to-back duality in [Weib94, 8.2.10], we make the following definition. Let the
reflection action r act on BT and BG(A) as follows:

1. ractson BT, 2T x -« x T by (71, -, ) = (s -+, 71)-

2. r acts on On, ¢ by r(f)(g1,---,9n) = f(gn,-..,91). We see that r preserves O?\‘,i%,

hence r acts on BG(A),.

Definition 5.2.15. For A € Artp, we define bDef ;(A) to be the subset of aDef ¢(A)
consisting of f: B — BG(A) which commutes with r.

Theorem 5.2.16. Let A € Artop. Suppose the characteristic of k is not 2. Then bDef §(A)
is in bijection with D(A).

Proof. Let f € bDeff(A). It suffices to prove that the quasi-lifting p obtained in The-

orem is a group homomorphism. We choose the tuple (d1,...,d,) such that §; =

On+1—; and H;le 0; = e. Write p for the quasi-lifting constructed from this tuple as in The-

orem note that the choice of (d1,...,d,) only affects p by some conjugation. Let

¢: T — G(A)/Z(A) be the group homomorphism such that p(zy) = p(z)p(z)p(y)p(z) "

for any xz,y € I'. Note that ¢(x) mod my = 1 because p is a group homomorphism.
Since f commutes with r, we have
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1. p(z) = pla=1)"L, Yz e T.
2. p(x) "' plzy) = p(yz)p(x)~", Yo,y € T.
By substituting (1) into p(zy) = p(z)d(x)p(y)¢(z) ", we get
ply ) = pla™ ) o(a)p(y ) T e(e)

then consider (x,y) — (2!, y~!) and take the inverse, we get p(yx) = ¢(x) L p(y)d(x)p(z).
Now (2) implies p(zy)p(x) = p(x)p(yz), which in turn gives

p(x)¢(2)p(y)d(x) " p(a) = p(z)(x) " p(y)d(z)p(x).

So ¢(x)? commutes with p(I') for any 2 € T', and ¢> = 1. Since the characteristic of
k is not 2 and ¢(xr) mod my = 1 € G(k)/Z(k), we deduce ¢ = 1 and p is a group
homomorphism. O

5.3 Derived deformations of pseudo-characters

The functor aDef f = Homssets/gc(k)(BF, BG(—)) is analogous to the functor
DY = Homssets g,y (BT BG(-)),

so it’s natural to consider the function complex sHomssets/BG<k) (BT, BG(—)) and then to
extend the domain of definition to o\sArt/j, as constructing the functor sD: o\sArt/, —
sSets.

Definition 5.3.1. For A € o\sArt /), we define BG(A) to be the Ex™ of the diagonal of
the bisimplicial set

([p], lg]) = Hom y\.cr (c(OF1%), A2,

and define saDef(A) = hofib f(Homgets (BT, BG(A)) — Homggets (BT, BG(k))).

If A € Arto, then the bisimplicial set ([p], [¢]) — Homo\SCR(c((’)?\g}%), A2l doesn’t
depend on the index ¢, and each of its lines is isomorphic to Ex*BG(A). Hence f can be
regarded as an element of Homggets(BT, BG(k)). As the derived deformation functors sD,
we see that saDef: p\sArt/; — sSets is homotopy invariant.

Note that the inclusion (’)%{GG — Op, ¢ induces a natural transformation sD — saDef.

We would like to understand mpsaDef(A). Let’s first analyse the case A € Artp.
For simplicity, we don’t take the Ex* here. Since BG(A) — BG(k) is a fibration,
sHomsets, ., (BT, BG(A)) is a good model for sD(A). However, if BG(A) — BG(k) is
a not fibration, then sHomgets 5, (B, BG(A)) is not weakly equivalent to saDef(A).
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We have the commutative diagram

sHom sets) 5., (BT, BG(A))o —— sHomsets 5., (BT, BG(A))o

| |

mosHomsets 1, (BT, BG(A)) —— WOSHomsSets/BG(k> (BT, BG(A)).

Note that mosaDef(A) is the coequalizer of saDef(A); = saDef(A)o = aDef 7(A) by defi-
nition.

Proposition 5.3.2. The above diagram is naturally isomorphic to

DH(A) aDef ;(A)

/7
_
—~
_
—~
_
—

D(A) = mosHOMSets) 5., (BT, BG(A)).

And there is a dotted arrow which make the diagram commutative, whose image is bDef 7(A) C

aDef 7(A).

Proof. We have sHomets, ) (BI', BG(A))o = Homggets) () (BI', BG(A)), which is
exactly DY(A), since B: Gpd — sSets is fully faithful. The other isomorphisms follow by
definition.

The dotted arrow signifies the inclusion of usual deformations into pseudo-deformations,

whose image is bDef 7(A) by Theorem [5.2.16 O

Remark 5.3.3. Note however that the functor saDef: o\sArt/; — sSets remains quite
mysterious. It may be asked whether there is a more adequate derived deformation functor
for pseudo-characters.
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