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ABSTRACT

FRANCAIS

Dans cette these, nous montrons un théoreme de quantification de 1’algebre des fonc-
tions polynomiales sur le dual d’un algébroide de Lie local, en appliquant les résultats
de la quantification par déformation d’une paire de branes coisotropes obtenus par D.
Calaque, G. Felder, A. Ferrario, et C. Rossi. dans [Cal+11]. Dans ce contexte les al-
gebres déformées obtenues sont 1’algebre différentielle graduée de Chevalley-Eilenberg
et I’algebre associative enveloppante universelle de la déformation formelle triviale de
cet algébroide de Lie local. Ceci généralise un important théoreme de quantification
du dual d’une algebre de Lie, obtenu par M. Kontsevich dans [Kon03], au cas des al-
gébroides de Lie locaux.

ENGLISH

We prove a quantization theorem of the algebra of polynomial functions on the dual of
a local Lie algebroid, by applying the results of the deformation quantization of two
coisotropic branes obtained by D. Calaque, G. Felder, A. Ferrario, and C. Rossi. in
[Cal+11]. In this context the deformed algebras are the differential graded Chevalley-
Eilenberg algebra and the graded Universal Enveloping associative algebra of the trivial
formal deformation of this local Lie algebroid. This generalize a famous theorem of
quantization of the dual of a Lie algebra obtained by M. Kontsevich in [Kon03] to the
local Lie algebroids case.






INTRODUCTION EN FRANCAIS

CONTEXTE

MECANIQUE CLASSIQUE ET MECANIQUE QUANTIQUE

Ce travail dérive de I’étude de 1’apparente incompatibilité de deux théories physiques,
la mécanique classique et la mécanique quantique.

La mécanique classique est un formalisme mathématique ayant pour objectif de
décrire le mouvement d’objets macroscopiques de notre univers. Sa formulation Hamil-
tonienne consiste en une conceptualisation de I’ état physique de 1’objet comme un point
dans un espace de phase, cet espace étant défini comme une variété de Poisson ou une
variété symplectique M avec {e, e} pour crochet de Poisson. Une observable est le
résultat possible d’une mesure physique du systeme, celle-ci est représentée, au sein
du modele, par une fonction lisse sur la variété différentielle M. Les lois physiques
du systeme se traduisent au travers d’une fonction spécifique H appelée Hamiltonien
du systeme ou fonction d’énergie, et les prédictions quant a I’évolution du systeme
physique s’obtiennent au travers de 1’évolution temporelle d’une observable f. Cette
évolution est gouvernée par les équations d’Hamilton:

d

A titre d’exemple, si 1’on considére un systéme dynamique 2 N-degrés de liberté,
décrit par une variété lisse X de dimension N, alors I’espace d’état du systeme est le
fibré cotangent de cette variété, M := T*X. Un état du systeme a un certain temps
t est décrit par une position x dans X ayant pour coordonnées locales (x;);<y, et par
un moment p dans 7,°X ayant pour coordonnées locales (p;)i<y. Le fibré cotangent
T*X est muni d’une forme symplectique canonique, la 2-forme de Poincaré Y, dx; A
dp;, tandis que le Hamiltonien du systeme est obtenu par transformation de Legendre
du Lagrangien classique, on retrouve ainsi les équations canoniques d’Hamilton du
mouvement :
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dxi 8H dp,' - aH

dr  dpi 0 At ox

Ainsi, la loi de conservation de 1I’énergie s’exprime par la relation {H,H} = 0.

La mécanique quantique est quant a elle un formalisme mathématique visant a
décrire les mouvements d’objets microscopiques de I'univers. Dans sa formulation
d’Heisenberg, la variété symplectique de I’espace de phase est remplacée par un espace
projectif de Hilbert de dimension infinie, I’espace des états quantiques #. Les observ-
ables quantiques et le Hamiltonien H sont alors décrits par des opérateurs autoadjoints
sur H. Cependant, comme la composition de tels opérateurs n’est, en toute généralité,
pas commutative, il est alors possible de munir 4 d’un commutateur non-nul [e,e].
L’ évolution temporelle du systeme est alors décrite par les équations d’Heisenberg:

d i
EA = %[H JA].

Si la formulation d’Heisenberg de la mécanique quantique parait autant similaire
a la formulation Hamiltonienne de la mécanique classique c’est parce qu’elles entre-
tiennent le méme role dans deux contextes différents, de plus comme la formulation
d’Heisenberg est équivalente a celle de Schrodinger, qui est plus couramment utilisée
en physique, il parait important de s’intéresser aux liens mathématiques que ces deux
théories de la mécanique semblent entretenir. Cependant, la mécanique quantique est
également gouvernée par un ensemble de principes externes a cette formulation comme
le principe d’incertitude d’Heisenberg, ces principes imposent alors des conditions sur
les observables ayant un sens physique. A cause de ces conditions, il se peut que la
correspondance entre observables classiques et quantiques ne soit pas toujours possible
ou naturelle.

La quantification est alors entendue comme un processus permettant de réaliser, au
moins partiellement, cette correspondance en associant a une fonction lisse f un opéra-
teur autoadjoint Q(f) de maniere a ce que soit vérifié Q(1) = Id ainsi que I’équation:

[0(f),Q(8)] = ihQ({f.8})-

Ce probleme amena a de nombreux développements tels que la quantification de
Wigner-Weyl [Wey27], la quantification géométrique de Kostant et Souriau [Sou67],
la quantification de Berezin [Ber75], la quantification par déformation de Flato, Lich-
nerowicz et Sternheimer [Bay+77; FLS76], ainsi qu’une abondante diversité de résul-
tats de mathématique pure.

QUANTIFICATION EN MATHEMATIQUES

Le processus de quantification en mathématiques est a présent un sujet largement étudié
a I’aide d’approches et d’interprétations diverses et varié€es, ici nous allons brievement
revoir I’historique de celui qui nous a mené a ce développement. Une introduction pré-
cise sur la quantification des algebres de Poisson pourra €tre trouvée dans [ES98], le
cadre de travail pour cela est celui des modules libres au dessus de 1’algebre des séries
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formelles en A, notée K[A], pour un corps K de caractéristique nulle.

Etant donnée une K-algebre associative et commutative (Ao, .), une déformation de
Ao est une K[A]-algebre associative (A,*) dont le module gradué sous-jacent est un
K[A]-module libre, et telle que Ay = A/hA comme K-algebre. Comme le commutateur
de I’algebre A pourrait étre non-nul, Ay hérite d’une structure d’algebre de Poisson.
Celle-ci est donnée pour une paire d’éléments fy,go dans Ag, par le commutateur du
produit de A évalué sur deux relevés f, g dans A:

1
{fo,80} == ﬁ(f*g—g*f) mod hA.

L algebre de Poisson (Ao, {e,e}) est alors appelée la limite quasi-classique de A,
tandis que A est une quantification (par déformation) de (Ap,{e,e}). L’algebre A
joue alors le role de 1’algebre non commutative des observables quantiques, tandis que
I’algebre de Poisson Ag joue le role de celle des observables classiques. Cependant,
bien que la limite quasi-classique soit un objet mathématique unique, la quantification
de I’algebre Ay n’existe pas en toute généralité, et lorsqu’elle existe, elle n’a pas de
raison d’étre unique.

En 1997, M. Kontsevitch prouva dans son article [Kon03], que dans le cas ot K =R
et ol Ag est la R-algebre des fonctions lisses définies sur une variété différentiable réelle
M, tout crochet de Poisson {e, e} défini sur Ay induit I’existence d’une quantification de
(Ap,{e,e}), une présentation éclairante du sujet ayant été faite par Bernhard Keller dans
[Cat+05]. De plus la K[A]-algebre associative A est ici ’algeébre des séries formelles
a coefficients dans Ao, et le processus de quantification s’inspire des diagrammes de
Feynmann dans la théorie perturbative des champs topologiques et fut d’ailleurs reliée
plus tard au modele sigma de Poisson dans cette méme théorie physique. La preuve de
Kontsevitch consiste 2 démontrer la quantification dans le cas des ouverts de R? pour
une dimension finie d, puis d’étendre le résultat a I’ensemble de la variété en utilisant
des arguments de géométrie formelle et de connexion plate. Le résultat final est souvent
exprimé au moyen d’un théoreme de formalité pour le complexe décalé des cochaines
de Hochschild sur Ayp.

En 2005, A. Cattaneo et G. Felder étendirent, dans leur article [CFO7], la construc-
tion de Kontsevich en considérant une sous-variété C C M, appelée brane (définissant
les conditions de bord d’une théorie des champs quantiques), et en quantifiant I’algebre
de Poisson des sections des puissances extérieures du fibré normal sur C. Le résultat, se
réduisant a celui de Kontsevitch pour C = M, est une quantification de la structure de
Poisson sur M comme structure d’ @Z.-algebre sur A, et un théoréme de formalité rela-
tive pour le complexe des cochaines de Hochschild des sections de 1’algebre extérieure
sur le fibré normal de C.

En 2010, D. Calaque, G. Felder, A. Ferrario et C. Rossi prolongerent, dans leur
article [Cal+11], le résultat précédent au cas d’une paire de branes linéaires sur un
espace vectoriel, X. Le résultat souligna 1’importance des .7.-structures dans la quan-
tification des structures de Poisson en attribuant une structure d’.<7.-algébre a chaque
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brane déformée, ainsi que celle d’un Z.-bimodule sur I’intersection des branes. De
plus, en considérant une paire de branes duales de Koszul I'une de I’autre, ils prou-
verent également que la quantification par déformation des bivecteurs quadratiques de
Poisson préserve la dualité de Koszul.

CONTENU

ALGEBROIDES DE LIE COMME BRANES COISOTROPES

Les groupoides de Lie ont été grandement utilisés en physique car leur formalisme
offre une description unifiée de ’ensemble des actions des groupes de symétrie d’ un
systeme physique, remplacgant ainsi les groupes de Lie traditionnels. D’une fagcon sim-
ilaire aux algebres de Lie, les algébroides de Lie permettent une description unifiée
des actions des groupes de symétries ainsi que des espaces tangents de ces groupes,
permettant ainsi une meilleure compréhension des liens entre mécanique classique et
mécanique quantique. Ainsi, la question de la quantification des algébroides de Lie
apparait comme naturelle.

S’inspirant des travaux de D. Calaque, G. Felder, A. Ferrario et C. Rossi dans
[Cal+11], nous présentons une construction d’une paire de branes coisotropes, et nous
montrons qu'une structure d’algébroide de Lie local définit un élément de Maurer-
Cartan dans 1’algebre décalée des polyvecteurs de cette configuration.

Théoreme 11.2.2-1 :

Soient (M, N, [e,e],p) un algébroide de Lie local selon la définition I1.1.2-2.
Il existe un élément de Maurer-Cartan d, de 1’algebre de Lie différentielle graduée des
polyvecteurs sur M & N[1], uniquement défini a I’aide de [e,e] et p :

3 d([e,e],p) € MC(T} (M S N1])).

Nous montrons ensuite que les 2Z.-algebres obtenues par 1’application de la formal-
ité relative a deux branes, sont 1’algebre différentielle graduée de Chevalley-Eilenberg,
et I’algebre associative enveloppante universelle de 1’algébroide de Lie local en ques-
tion:

Théoréme 11.3.2-3 :

Il existe un isomorphisme de K[A]-algebres associatives différentielles graduées :

Jay ¢+ (C*(Lp,Rp).dcg,eNe) — (Ap,La,(dn),Va,) -

Théoréme 11.3.3-8 :

Il existe un isomorphisme de K[A]-algebres associatives graduées :

th : (%(Lﬁ7Rﬁ)7.'.) — (Bﬁ,SBh(dﬁ)—i—VBh).
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Nous utilisons ensuite ces résultats afin de prouver un théoreme de quantification de
I’algebre symétrique sur le dual de 1’algébroide de Lie local, par I’algebre enveloppante
universelle de 1’algébroide de Lie local.

Théoréme 11.4.2-2 :

Soit (M,N,[e,e],p) un algébroide de Lie local tel que M et N soient concentrés en
degré O et formant la paire de Lie-Rinehart donnée par:

R=S(M*) et L=S(M")®N.

Si on considere la variété de Poisson formé par le dual R-lineaire L”, la quantification
de Ialgebre de Poisson (O(L"), %{o, e}) des fonctions polynomiales sur L", est alors
isomorphe a I’algebre enveloppante universelle de la paire de Lie-Rinehart:

(% (Ly,Ry,), @ 0).

Ce théoréme est une généralisation du fameux théoréme de quantification de la
structure de Poisson de I’algebre symétrique sur le dual d’une algebre de Lie, obtenu
par M. Kontsevich dans [Kon03, Theorem 8.2].

ORGANISATION

Dans le chapitre I, nous rappelons les résultats et définitions qui sous-tendent cette
présentation. La premiere section est dédiée aux notions classiques de cogebre et
d’algebre supérieure, nous présentons ici seulement les définitions et propriétés que
nous seront amenés a utiliser et nous cherchons a atteindre la définition d’ Z.-bimodule.
Dans la section suivante, nous présentons pas a pas la quantification par déformation
d’une paire de branes coisotropes exposée dans I’article [Cal+11], les définitions et
propriétés essentielles sont présentées et nous renvoyons le lecteur a des références pré-
cises pour les détails techniques.

Le chapitre II commence par une présentation de 1’articulation des définitions d’une
paire de Lie-Rinehart, d’un algébroide de Lie ainsi que d’un algébroide de Lie local.
Nous construisons ensuite le cadre coisotrope et montrons 1’existence d’un élément de
Maurer-Cartan construit a I’aide des morphismes de structure de 1’algébroide de Lie
local, le crochet de Lie et I’ancre (Théoreme 11.2.2-1).

Nous présentons ensuite la déformation formelle triviale d’une paire de Lie-Rinehart
et I’explicitons dans le cas d’un algébroide de Lie local. Puis apres avoir calculé les
morphismes de structure de 1’.o7.-algeébre obtenue par déformation de la premiére brane,
nous montrons 1’existence d’un isomorphisme d’algebre différentielle graduée entre
cette .o7..-algebre et 1’algebre de Chevalley-Eilenberg de la déformation formelle triv-
iale de I’algébroide de Lie local (Théoreme 11.3.2-3).

Nous changeons de brane, puis nous commencons par définir la notion d’algebre
enveloppante universelle d’une paire de Lie-Rinehart et I’explicitons dans le cas de la
déformation formelle triviale d’un algébroide de Lie local. Nous terminons en montrant
I’existence d’un isomorphisme d’algebres associatives entre 1’algebre obtenue par dé-
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formation de la seconde brane et 1’algebre enveloppante universelle de la déformation
formelle triviale de 1’algébroide de Lie local (Théoreme I1.3.3-8).

Nous rappelons ensuite la définition de la structure de Poisson de Kirillov-Kostant-
Souriau définie sur le dual d’une algebre de Lie, et le théoreme de quantification associé.
Nous terminons cette présentation avec une généralisation de cette structure de Poisson
aux algébroides de Lie locaux, ainsi que celle du théoreme de quantification associé
(Théoreme 11.4.2-2).
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NOTATIONS

S’ensuit une courte liste non exhaustive des notations utilisées dans cette présentation.

ENSEMBLES

N L’ensemble des entiers positifs ou nul.

Z L’ensemble des entiers relatifs.

R L’ensemble des nombres réels.

K Un corps de caractéristique nulle.

H Le demi-plan supérieure stricte de Poincaré.

K[~] L’ensemble des séries formelles en # a coefficients dans K.
ILJ Un ensemble d’indice.
Multi(I) L’ensemble des multi-indices sur I
G L’ensemble des permutations d’un ensemble a n éléments.

Shuff(, ;) L’ensemble des (p,g)-shuffles.
UnShuff, ;) L’ensemble des (p, g)-unshuffles.

Cl‘; p L’ensemble des configurations de p points dans H et g points dans R.
‘KI;L 4 Le quotient de C;q par les translations réelles et les dilatations positives.
Gpg Un ensemble de graphes a p 4+ g sommets.
X, Une abréviation pour X ® K[A].

MC(X) L’ensemble des éléments de Maurer-Cartan de X.

ME(X) L’ensemble des classes d’équivalence de Maurer-Cartan de X.

CATEGORIES
Mody La catégorie des K-modules.
Mod% La catégorie des K-modules Z-gradués.
Modﬂzg’Iz La catégorie des objets IxI-gradués dans Mod%.
[1] Le foncteur de décalage de ModZ.
* Le foncteur de dualité de Mod%.
® Le bifoncteur monoidal de Mod%.
@ La somme directe de ModZ.

STRUCTURES ALGEBRIQUE

® Le produit tensoriel au dessus de K.

® Le produit dans 1’algebre symétrique.

. Le produit dans 1’algebre enveloppante universelle.
Lo Une structure A-infini.
L

Une structure L-infini.
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o > - Q= P o

MORPHISMES

La composition usuelle des morphismes.

La restriction d’un morphisme f a un sous espace X.

La projection canonique sur le sous espace X.

Le morphisme correspondant a I’identité qui diminue le degré de 1.
Le morphisme correspondant a 1’identité qui augmente le degré de 1.
Un produit dans une algebre.

Une unité dans une algebre.

Un coproduit dans une cogebre.

Une counité dans une cogebre.



INTRODUCTION

CONTEXT

CLASSICAL AND QUANTUM MECHANICS

This work is derived from the study of the apparent incompatibility of two theories of
physics, the classical mechanics and the quantum mechanics.

Classical mechanics is a mathematical model which aim to describe the motion of
macroscopic objects in our universe, its Hamiltonian formulation consist of a descrip-
tion of the state of the object as a point in a phase space, which is defined as a Poisson
or symplectic manifold M (with Poisson bracket {e,e}). An observable is a possible
measurement outcome of the physical system and is defined, in the model, as a smooth
function over M. The law of the physical system is then encoded as a specific function
H called the Hamiltonian or energy function, and the prediction on the evolution of
the physical system is meant to be obtained as the time evolution of an observable f,
governed by the Hamiltonian equations:

d

For example, if we consider a dynamical system with N-degrees of freedom, that is
X is a smooth manifold of dimension N, then the phase space is the cotangent bundle
of this manifold, M := T*X. A state of the system at a given time ¢ is described as an
element x in X with local coordinates (x;);<y, and momentum p in 7,X with local co-
ordinates (p;)i<n. The cotangent bundle 7*X is endowed with a canonical symplectic
form, the Poincaré two-form ) ;dx; A dp; and the Hamiltonian is the Legendre trans-
formation of the classical Lagrangian, leading to the canonical Hamilton equations of
motion:

dx; oH dp; B JoH

dr  dp; At dx
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In this context, the law of conservation of energy is expressed by {H,H} = 0.

Quantum mechanics is also a mathematical model, but it aim to describe the mo-
tion of microscopic objects in the universe. Its Heisenberg’s formulation replace the
symplectic manifold of the classical phase space by an infinite dimensional projective
Hilbert space, the space of quantum states . The observables are now selfadjoint op-
erators on #, with the Hamiltonian H being one of them, and since the composition of
such operators is not commutative, this space is endowed with a non-zero commutator
[e,®]. The time evolution of the system is then described by the Heisenberg equations:

d i
th = ﬁ[H LA

The Heisenberg’s picture of quantum mechanics is very similar to the Hamiltonian
formulation of classical mechanics and indeed those have the same role in different
context, and since the Heisenberg formulation is equivalent to the Schrédinger formu-
lation, which is more usually used in physics, one should consider the existence of a
mathematical link between the two theories.
However, the quantum mechanics comes with its own inviolable principles such as the
Heisenberg’s uncertainty principle, hence not all of the selfadjoint operators have a
physical meaning. Due to those conditions it may not be always possible to make a nat-
ural and easy correspondence between the space of classical observables and quantum
observables.

Quantization is then understood as a process to realize this correspondence, at least
partially, sending a smooth function f to a self adjoint operator Q(f) such that Q(1) =
Id and the following equation:

[0(f),0(8)] = ihQ({f,8})-

This problem leads to various developments such as Wigner-Weyl quantization
[Wey27], geometric quantization of Kostant and Souriau [Sou67], Berezin’s quantiza-
tion [Ber75], deformation quantization of Flato, Lichnerowicz and Sternheimer [Bay+77]
and [FLS76], and an abundant diversity of pure mathematical results in a similar con-
text.

QUANTIZATION IN MATHEMATICS

The quantization process in mathematics is now a wide field of study with various
approaches and interpretations, here we briefly review the history that led to our devel-
opement. A concise introduction on quantization of Poisson algebras can be found in
[ES98], the framework is the one of free modules over the K-algebra of power series in
h, denoted K[A], for a field, KK, of characteristic 0.

Given a commutative associative K-algebra A, a deformation of Ay is an associa-
tive K[h]-algebra (A,*) whose underlying module is a free K[A]-module, and such
that Ag = A/hA as a K-algebra. The algebra A may or may not be commutative, hence
Ao inherits a structure of a Poisson algebra. It is given for a pair of elements fj,go in
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Ay, by the commutator of the product of any two liftings f,g in A:

1
{fo,80} == ﬁ(f*g—g*f) mod hA.

The Poisson algebra (Ao, {e,e}) is then called a quasi classical limit of A, and A is
called a quantization of (Ag,{e,e}). The algebra A is then thought as the (non com-
mutative) algebra of quantum observables, whereas the Poisson algebra A is thought
as the one of classical observables. Despite the fact that the quasi classical limit is a
uniquely defined object, the quantization of the algebra Ag does not always exist, and if
it does, has no reason to be unique.

In 1997, M. Kontsevitch proved in [Kon03] that if K = R and A is the R-algebra of
smooth functions on a finite dimensional differentiable real manifold M, then any Pois-
son bracket, {e,e}, on Ay induces the existence of a quantization of (Ag,{e,e}), (see
[Cat+05] for an enlightening and encompassing survey of this work). Moreover, the
associative K[i]-algebra A is the algebra of power series in Ag, and the quantization
process is inspired by Feynman diagram perturbation series of topological quantum
field theory and was later related to the perturbation series of the Poisson sigma-model
in physics. The proof is made by showing an explicit quantization when M is an open
subset of RY for some finite dimension d, and is then extended using formal geometry
and flat connections. The overall result is expressed in terms of a formality theorem for
the shifted Hochschild cochain complex over Ay.

In 2005, A. Cattaneo and G. Felder extend Kontsevich’s construction in [CF07]
by considering a submanifold C C M (which may define a boundary condition for the
quantum fields), and quantizing the Poisson algebra of sections of the exterior power
of the normal bundle of C. The overall results is the quantization of the Poisson struc-
ture on M as an .o7,-algebra structure over A and a relative formality theorem for the

Hochschild cochain complex of the sections of the exterior algebra of the normal bun-
dle of C.

In 2010, D. Calaque, G. Felder, A. Ferrario and C. Rossi extend the previous result
in [Cal+11] to the case of two branes seen as a pair of linear subspaces of a vector
space, X. The result highlight the quantization of Poisson structures as pairs of .o7Z.-
algebras over the formal deformations of the branes, and %Z.-bimodule structure over
the intersection of the branes. By carefully choosing a specific configuration of branes,
Koszul dual to each other, they also prove that this deformation quantization process of
quadratic Poisson bivector preserves Koszul duality.
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CONTENT

LIE ALGEBROIDS AS COISOTROPIC BRANES

Lie groupoids have been widely used in physics to provide a unified description of the
symmetries in a system, they replace the traditional Lie groups and allow the encoding
of a number of different symmetries. In a similar way to Lie algebras, Lie algebroids
are thought to provide a unified description of both symmetries and tangent spaces in
the case of Lie groupoids, leading to a better understanding of the links between clas-
sical and quantum mechanics. Because of that, the question of the quantization of Lie
algebroid structures appears as a natural step.

Following the work of D. Calaque, G. Felder, A. Ferrario and C. Rossi in [Cal+11],
we present the construction of a coisotropic setting with two branes and show that
the structure of local Lie algebroids can be encoded as Maurer-Cartan elements of the
shifted algebra of polyvector fields on this coisotropic setting.

Theorem I1.2.2-1 :

Given a local Lie algebroid, (M,N,[e,e],p), w.r.t. definition I1.1.2-2.
There exists an element d, which is a Maurer-Cartan element of the differential graded
Lie algebra of polyvector fields over M & N[1], uniquely defined by [e, e] and p:

3 d([e,e],p) € MC(T} (M S NI1])).

We then show that the deformed .o7.-algebras obtained by the application of the
relative formality for two branes, gives the canonical Chevalley-Eilenberg differential
graded algebra, and the canonical universal enveloping associative algebra.

Theorem 11.3.2-3 :
There exists an isomorphism of differential graded K[#]-algebras:

jAh : (C.(Lﬁ7Rﬁ)7dCE7./\.) — (Aﬁ,gAﬁ(dﬁ),VAh) .

Theorem I1.3.3-8 :

There exists an isomorphism of associative graded K[A]-algebras:

jBr . (%(waRﬁ)?.'.) — (Bﬁ7£Bh(dﬁ)+VBh) .

4

We then use it to prove a theorem of quantization of the symmetric algebra on
the dual of a local Lie algebroid, by the universal enveloping algebra of this local Lie
algebroid.
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Theorem 11.4.2-2 :

Given a local Lie algebroid (M, N, [e,e],p) with M and N concentrated in degree 0,
and the setting of the underlying Lie-Rinehart pair :

R=S(M") and L=S(M*)®N.

If we consider the R-linear dual Poisson manifold L", the quantization of the Poisson
algebra (O(L"), %{ e e}) of polynomial functions over L", is then isomorphic to the
Universal Enveloping algebra of the Lie-Rinehart pair:

(% (Ly,Ry,), @ 0).

This theorem is a generalization of a well-known quantization theorem of the Pois-
son structure on the symmetric algebra on the dual of a Lie algebra, due to M. Kontse-
vich in [Kon03, Theorem 8.2].

ORGANIZATION

In chapter I, we briefly survey the work on which we rely. The first section is devoted
to introduce the readers to the classical notions of coalgebra and higher algebra, where
we aim to present only the definitions and properties that we seek, until we reach the
definition of .¢7..-modules. The second section presents the quantization of coisotropic
branes introduce in [Cal+11], the elementary tools and properties are sketched, and we
precisely refer to the original article for the technical details.

In chapter II, we start with the definitions of Lie-Rinehart pairs, Lie algebroids
and local Lie algebroids. We then construct the coisotropic setting and show that
it encode the local Lie algebroid structure maps, through the existence of a specific
Maurer-cartan element made of the Lie-bracket and the anchor map (Theorem I1.2.2-1).
We then present the trivial formal deformations of Lie-Rinehart pairs, and explicit the
Chevalley-Eilenberg algebra of the trivial formal local Lie algebroid.

After computing the structure maps of the .o7.-algebra obtained as a deformed %7.-
algebra of the first brane, we show the existence of a DG-isomorphism between this
w.-algebra and the Chevalley-Eilenberg algebra of the trivial formal local Lie alge-
broid (Theorem 11.3.2-3).

Switching to the other brane, we define the Universal enveloping algebra of a Lie-
Rinehart pair and explicit it in the case of a trivial formal local Lie algebroid. We then
show the existence of a morphism of associative algebras between the algebra obtained
as a deformed .o7.-algebra of the second brane and the universal enveloping algebra of
the trivial formal local Lie algebroid (Theorem I1.3.3-8).

We then recall the definition of the Kirillov-Kostant-Souriau Poisson structure on
the dual of a Lie algebra and the quantization theorem associated. We end this pre-
sentation with a generalization of the Poisson structure to local Lie algebroid and the
quantization theorem associated (Theorem I1.4.2-2).
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NOTATIONS

Here is a short and non exhaustive list of notations used throughout this presentation.

SETS

N The set of positive integers, starting with 0.

V) The set of all integers.

R The set of real numbers.

K A generic field of characteristic 0.

H The Poincaré upper half-plane.

K[A] The set of power series in / with coefficients in K.

LLJ Sets of indices.

Multi(T) The set of multi-indices over I
S, The set of permutation of n elements.
Shuff(, o) The set of (p,q)-shuffles.
UnShuff(, ;) The set of (p,g)-unshuffles.

C; q The set of configurations of p points in H and g points in R.

+ . + . . . . .
€y The quotient of C;/ , by real translations and positive dilatations.
Gpg A set of graphs of p + ¢ vertices.

Xy, An abbreviation for X @ K[A].
MC(X) The set of Maurer-Cartan elements over X.
ME(X) The set of Maurer-Cartan equivalence classes over X.
CATEGORIES
Mody The category of K-modules.

Modﬁ The category of Z-graded K-modules.
MOdHZ{Iz The category of IxI-graded objects in Mod%

[1] The shift functor on ModZ.

* The duality functor on Mod%.
® The tensor bifunctor on ModZ.
® The direct sum on ModZ.

ALGEBRAIC STRUCTURES

® The tensor product over K.
® The product in the symmetric algebra.
The product in the Universal enveloping algebra.
Lo An A-infinity related structure.
Lo An L-infinity related structure.
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o > - Q= P o

MORPHISMS

The usual composition of morphisms.

The restriction of the morphism f to a subspace X.

The projection onto a subspace X.

The morphism corresponding to the identity which lower the degree by 1.

The morphism corresponding to the identity which higher the degree by 1.
A product in an algebra.

A unit in an algebra.
A coproduct in a coalgebra.

A counit in an coalgebra.






I.1

I. SOMETHING TO RELY ON

GRADED ALGEBRAIC WORLD

This first section aims at introducing the basics of graded algebra and higher algebra.
It can be used as a memorandum by the readers who are already familiar with these
notions, and we hope that it will still be useful to them.

Throughout this presentation we consider a field K of characteristic 0, usually
K =R or K=C. We denote by Modxk the category of K-modules, in which the
set of K-linear maps between two K-modules V and W is denoted by Homy,q, (V,W).
We also admit the axiom of choice, hence the existence of basis for every K-module.

We aim at introducing the reader to higher algebra in the most natural way, therefore
we will define a context in which the apparent usual complexity of signs, arities and
degrees of classical definitions of .%%./.Z%.-algebras, modules and morphisms is implicit.
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INTRODUCTION TO GRADED ALGEBRA

THE CATEGORIES OF GRADED MODULES

We start with a recollection of the definitions and properties on the category of Z-graded
K-modules. A detailed approach of the subject can be found in [Bou07] or [LV12].

— Definition 1.1.1-1 : Z-graded K-modules

The category Mod%of Z-graded K-modules is as follows:
e Objects of Mod% are K-modules endowed with Z-grading:

VkeZ, AVieModg, V=PV, in Modx.
keZ

An element v € V; is called an homogeneous element of degree k, we write:
deg(v) = |v| =k.

We will say that V is of finite type when each of the V;, are finite dimensional.
e Morphisms in ModHZ< are those in Mody that preserve the Z-gradings:

Hommyggz (VW) = {f € Homyeay (V,W)|Vk EZ, foPy, =Pyof}.

Where Py denotes the projection onto X.
Compositions and identity morphisms are the ones of Modx.

This category is equipped with two symmetric monoidal tensor products, ® and ®,
coming from the ones on Mody. The Z-grading has degree-k component given by:

VkeZ, (VeWk= @ V.o W, and VeW)= [] Vin®Wa.
m+n=~k m+n=k

The symmetry isomorphisms, defining the Koszul’s sign rule, are as follows.

oyw : VW — WV
vaw — (=DM ey

We also have a shift functor, denoted by V[1], which pushes down the degree of all
homogeneous elements such that (V[1]); = Vi11. It then defines internal hom sets,
HomMode( (V,W), whose Z-grading is given by:

VkeZ, Hom* , (V,W):= (HomMode( (V,W))k = Homyy,z (V,WIk]),

=——Mod%

which in the special case of W =V, gives rise to suspension and desuspension isomor-
phisms:

l v = V[I] e€Hom !, (V,V[1]),

Z
— Mody

T V[l] -V EHodeZ(V[l],V).

K
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Given two elements in two hom sets f € HomMod% (V,W)and g € HomMod% (X,Y), we
will make use of the symmetry isomorphisms to see their tensor product, f ® g, as an
element of Homy 4z (VeX,W®Y) by defining:

VvexeVeX, (fog) (vex) =DM ogx).

The décallage isomorphism obtained by tensoring multiple desuspension morphisms is
then signed, and we have:

Jroen (VD" — Ve[l
@@l = (=DES DD |y g @y,

Seeing K as Z-graded K-module concentrated in degree 0, we define the Z-graded
linear dual, V*, of Z-graded K-module V by:

V"= Homy,pz (V,K).

Remark 1.1.1-2 :
If a Z-graded K-module V has an infinitely non-trivial Z-grading, i.e:

Card{k € Z| Vi £ {0}} = o,

the dual notion previously introduced does not coincide with the classical
notion of dual, as the set of linear forms, since we only have:

Vi = PV C J](Vor)* = Homyea, (V. K).
keZ keZ
DIMENSION CONSIDERATIONS

If we consider two Z-graded K-modules of finite type V and W, then since each of their
degree-k components are finite dimensional, it is therefore possible to identify graded
morphisms with tensors in duals of Modx:

Vk € Z, HOIIlMOdK (Vk, Wk) =W, ® (Vk)* in Modx.
Hence, since (V;)* = (V*)_y, the identification passes to ModZ as follows:

HomMod%(V7W) = H Homyeay, (Vi, W) = H Wi @ (Vi) = (WRV*),.
keZ keZ

In this case we will say that our Z-graded K-modules are dualizable, and we will iden-
tify the internal hom sets with the completed tensors products of duals:
k Sys* Sy
VkeZ, HomMod%(V,W) = (WkjeV*)g= (WRV*);.
For the sake of simplicity we will always work with dualizable Z-graded K-modules,

and obviously, in the case of finite dimension we can get rid of all the hats in the
previous equalities.
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GRADED ALGEBRAS AND MODULES

The context of Z-graded KK-modules defines a comprehensive context for defining other
algebraic structures such as, chains and cochains complexes, (associative) algebras and
coalgebras, and (differential) Lie algebras. We present the definitions in the case of
Z-graded K-modules, and it holds with due changes in case of completed ones.

We decide to present each of the properties as equalities between morphisms, by
doing so it will always imply the existence of implicit signs that will appear when we
will have to explicitly compute those morphisms.

We want to emphasize that an algebra can simply be defined in terms of a monoid
object in any monoidal category. Since our study restrict to the categories of Z-graded
K-modules, and later on, to differentials Z-graded K-modules we prefer to explicit
these realizations as follows:

— Definition 1.1.1-3 : Graded algebra
A Z-graded K-algebra is a pair (A, Vy4), where A is an object of Modﬂz@ and V4 is a
morphism in Homy,,z (A®A,A). We will say that (A,V,) is:

¢ Associative if:
Vo (VA X idA) =V,o (idA ®VA),

¢ Commutative iff:
Va=Vpo0ua,

¢ Anticommutative if:
Va= -V 0044,

* Unital if there is a morphism t4 in Homy,.z (K,A), such that:
Vao(ly®idy) =idy =Vpo(idg®@1a).

In this case t4 is unique, and we will denote by (A, V4, 14) this Z-graded
K-algebra.
Given two Z-graded K-algebras, (A,V,4) and (B, Vp), a morphism of Z-graded
K-algebras, f: (A,V4) — (B, Vp), is a morphism in Homygz (A, B) such that:

Veo(f®f)=foVyu.

If both Z-graded K-algebras are unital, then f ot = p.

A special type of algebraic structure that is of a main interest is the one of Lie
algebras, in the context of Z-graded K-modules it is defined as follows:

— Definition 1.1.1-4 : Graded Lie algebra

A Z-graded Lie K-algebra is an anticommutative Z-graded K-algebra, (L, V),
satisfying the (graded) Jacobi identity:

Vio (ldL®VL> =V;o (VL®ldL) +V;o (ldL®VL) o (GL,L®idL)-

The product V[ is called a Lie bracket.
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As we have a monoidal functor in ModHZ<, it is easy to define a graded algebra struc-
ture on the space of iterated tensor products of Z-graded K-module V. The free unital
graded tensor algebra of V, is the unital associative Z-graded K-algebra (T'(V), Vr(y), t1(v))

defined by:
T(V): =V,

neN

where, by convention V®° := K, and tp(v) is the injection of K into V&0 while the
product V(y) is given by concatenation of tensors.

Since the monoidal functor ® is symmetric, the graded tensor algebra is endowed with
an action of the symmetric groups. It is therefore possible to define another graded
algebra: the graded symmetric algebra of V, which is the unital associative Z-graded
K-algebra (S(V), Vg, ts(v)) defined by:

Xn
S(v):=D (V 7D (id - 0).(V®”))'

neN oS,
The product and unit are the quotient class of the ones of T(V') and given a tensor of
arrity n, vi ® - -- @ v,, in V" its quotient class, is denoted by v @ - -+ ®Ovy,.
Lastly, as we now have a definition of a graded algebra we recall the definition of a
Z-graded A-module over a Z-graded K-algebra, A.
— Definition 1.1.1-5 : Graded module over a graded algebra

Given a unital associative Z-graded K-algebra (A, V4, 14), a Z-graded (left)
A-module is a pair (M, pys), where M is a Z-graded K-module and py, is a
morphism in HomModﬂz{ (A®M,M), called the action, such that:

Py o (ida @ pym) = pm o (Va®idy),

PMm© (LA & idM) =1idy.

Given two A-modules (M, pps) and (N, py), a morphism of Z-graded A-modules
f:(M,pym)— (N,pn) is a morphism in Homygz (M,N) such that:

fopm=pno(ida®f).

Similar definitions hold for right A-modules.

Here also, the monoidal structure provides us with a straightforward example of
modules, given two Z-graded K-modules, V and M, the Z-graded free (left) module
over M over the free algebra T(V), is the Z-graded K-module Fy (M) :=T(V)® M,
with action morphism defined by:

or ) TV)QF (M) — Fv(M) . pp(m) = Vr(v) @idy.

A morphism of graded free modules f : Fy (M) — Fy(N) is uniquely defined by its
restriction on M:

f|MM—>FV(N) f:ldT(V)®f|N
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If we consider a Z-graded unital associative K-algebra (A, Vy4,14), and a Z-graded
A-module (M, pys), we want to consider the set of Z-graded A-linear morphisms from
M to A as the A-linear dual. Hence, we denote the A-linear dual of a Z-graded A-module,
M, simply by M" and set:

M’ :=Hom,(M,A) := {f S HomMOd%(MvA)l fopm = pumo(ids ®f)}

— Definition I.1.1-6 : Tensor product over a Z-graded K-algebra

Given a Z-graded unital associative K-algebra (A, V4, 4), and two Z-graded (left
and right) A-modules (M, pps) and (N, px ), where the left and right actions coincide,
meaning that for any homogeneous elements a € A, m € M and n € N we have:

om(a@m) = (=)l oy (m@a) and onv(a@n) = (=D)lMoy(n@a).

The Z-graded A-module M ®4 N is defined by the underlying Z-graded K-module
having the following degree-k components:

I :={pu(m®@a)@n—m@pn(a®@n)|meM,, n€ Ny, acA,, p+q+r=k},

(M@A N)k = (M®N)%k.
The (left) A-module structure over M ®4 N is then given by:

PMe,N = Pm R idy.

Therefore, one can speak about the tensor algebra of a Z-graded A-module M as:

Ta(M) := P M=,

neN

where again, M®4% = K and vy, () is the injection of K into M®4%, while the product
V1, (m) 18 given by concatenation of tensors. We can also define the symmetric algebra
of a Z-graded A-module M as:

SA(M) = @ <M®A”/@ (id— 0‘),(M®An)>’

N
ne e,

where the product and unit are the quotient class of the ones of T4 (M) and given
a tensor of arrity n, m; ®y4 --- @4 m, in TZ(M) , its quotient class, is denoted by
mp©a - ©Op My.

GRADED DERIVATIONS

Graded derivations form a subset of the endomorphisms of Z-graded K-modules, of
a Z-graded K-algebra, which are characterized by their images on generators of the
algebra and recovered using the Leibniz rule.
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— Definition I1.1.1-7 : Graded derivation

Given a Z-graded K-algebra (A,Vy4), a morphism f in Homy4z (A,A) is called a
graded derivation of (A, V,) if:

fOVA - VAO(f®ldA>+VAO(ldA ®f)

This condition is called the Leibniz rule.
We denote by Der(A) the Z-graded K-module of such morphisms. And the graded
commutator of derivations endows Der(A) with a Lie bracket.

Vp.q€Z, f€ DeI’(A)p, 8 € Der(A)q7 [fvg]Der(A) i=fog— (_1>quof‘

As an example, a special case of graded derivations that we will need is the one of
graded derivations of free algebras:

— Proposition 1.1.1-8 : Derivation of free algebra

Given a Z-graded K-module V, a derivation of the free unital graded tensor algebra, f
in Der(T(V)), is uniquely defined by its restrictions on V. It is resumed in the
collection of structures maps, also called Taylor components:

One can recover the whole derivation f using its Taylor components as follows:

i
f|T"(V) = Z id‘(?k@fl@idgm_l_k.
ieNk=0

]

CHAIN COMPLEXES AND DG(L)-ALGEBRAS

Chains complexes admit a reformulation in terms of Z-graded K-modules, and together
with the previously defined structures, they define the so called differential graded (Lie)
algebras.

— Definition 1.1.1-9 : Chain and cochain complexes

A chain (resp. cochain) complex over K, is a pair (A,d4) where A is an object of
Mod%, and dy4 is a morphism in Hom;d(}d% (A,A) (resp. +1), such that:

The morphism dy is called the differential of A.
Morphisms of (co)chain complexes from (A,dy4) to (B,dp), are morphisms f in
Homygz (A, B) such that:

dpo f = fody.

From now on, we choose a cohomological presentation, which means that we de-
cide to consider differentials of degree +1, hence in the context of cochain complexes.
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— Definition 1.1.1-10 : Differential graded associative algebra

A differential Z-graded associative K-algebra (DGA-algebra) is a triple (A,da,Va),
such that:

* (A,dy) is a cochain complex over K,

* (A,V,) is an associative Z-graded K-algebra,

* dy is a graded derivation of (A, V).
Morphisms of DGA-algebras are morphisms of graded algebras which are also
morphisms of cochain complexes.

And we also have the Lie algebra definition in the differential Z-graded K-module
context.

— Definition 1.1.1-11 : Differential graded Lie algebra

A differential Z-graded Lie K-algebra (DGL-algebra) is a triple (L,dr,[-,-]r), such
that:

* (L,dp) is a cochain complex over K,

* (L,[-,"]r) is a Z-graded Lie K-algebra,

* dy is a graded derivation of (L, [-,-]r).

GRADED COALGEBRAS AND COMODULES

Similar to the definition of graded algebras, graded coalgebras are their analogues in
the opposite category, these structures appears naturally in various context and often
together with an algebra structure, readers may refer to [Swe69] for more details.
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— Definition 1.1.1-12 : Graded coalgebra

A Z-graded K-coalgebra is a pair (C,Ac), where C is an object of Mod%, and Ac is
a morphism in Homyy,z (C,C®C). We will say that (C,A¢) is:
* Coassociative if:

(Ac ®idc) o Ac = (idc ® Ac) o Ac,

¢ Cocommutative if:
Ac = occoAc,

¢ Anticocommutative if:
Ac = —0ccoAc,

Counital if there is a morphism ¢ in Homyy,,z (C,K), such that:

(8c®idc)OAC =idc = (idC®£C) OAC;

In this case & is unique, and we will denote by (C,Ac, &c) this Z-graded
K-coalgebra.
* A coassociative counital coalgebra is said to be conilpotent if:

Vx e Ker(g), Ine N, Af(x):= (o?:_l1 (Ac®idc)) o Ac(x) =0

Given two Z-graded K-coalgebras (C,Ac) and (D,Ap), a morphism of Z-graded
K-coalgebras f: (C,Ac) — (D,Ap) is a morphism in HomMod% (C,D) such that:

(f®f)oAc=Apof.

If both Z-graded K-coalgebras are counital we also require & = €po f.

Restricting ourself to the case of conilpotent coalgebras, the monoidal structure of
the category provides us with a cofree object called the graded tensor coalgebra. Given
a Z-graded K-module V, it is defined as the cofree coassociative counital conilpotent
graded coalgebra (T(V),Ap(y), €r(v)), defined by:

T(V):=&ve,

neN

where, by convention, V®? := K and &r(v) is the projection onto K.
The coproduct Aty is given by deconcatenation of arity-n tensors:

AT(V) : T(V) — T(V)@T(V)
V1®"'®Vn — Z?:()(Vl@)'®Vt)®(vz+l®'®vn)

With the usual convention that an empty tensor () = 1 € K.
Similarly, one can define graded comodules.
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— Definition 1.1.1-13 : Graded comodule over a graded coalgebra

Given a coassociative counital Z-graded K-algebra (C,Ac, &), a Z-graded (left)
C-comodule is a pair (M, pys), where M is a Z-graded K-module and py, is a
morphism in HomMod% (M,C®M), called the coaction, such that:

(idc ® pm) o pm = (Ac ®idy) o pu,

(SC & idM) opy = idy.

Given two C-comodules, (M, pys) and (N, py), a morphism of Z-graded
C-comodules, f: (M,py) — (N, pn), is a morphism in Homygz (M,N) such that:

pno f = (idc® f)opum.

Similar definitions hold for right C-comodule.

Again, the monoidal structure provides us with a context of a free comodule. Given
two Z-graded K-modules V and M, the Z-graded (left) T (V)-comodule cofreely co-
generated by M over the cofree coalgebra T'(V), is the Z-graded K-module Fj(M) :=
T (V) ® M, with coaction morphism defined by:

A morphism of graded cofree comodules f : Fy(M) — Fy(N) is uniquely character-
ized by its projection onto N, resumed in the collection of structures maps, also called
Taylor components:

\V/HGN, fn Tn(V)®M—>N fn = HI{@NO‘f'TVL(V)(@M.

One can recover the whole comodule morphism using the following formula:

n . .
.f|T"(V)®M — Z id‘?nil ®fl
i=0

GRADED CODERIVATIONS
Again, by reversing the direction of the arrows, we get the definitions of coderivations.
— Definition 1.1.1-14 : Graded coderivation
Given a Z-graded K-coalgebra (C,Ac), a morphism f in Ho_mMod% (C,C) is called a
graded coderivation of (C,A¢) if:
Aco f = (f®idc+idc® f)oAc.

This condition is called the graded co-Leibniz rule.
We denote by Coder(C) the Z-graded K-module of such morphisms.

And the opposite analogue of derivation of free algebras becomes the coderivation
of cofree coalgebras, with the following classical property (see [Dol06]).
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— Proposition 1.1.1-15 : Coderivation of cofree conilpotent coalgebra

Given a Z-graded K-module V, a coderivation of the cofree counital conilpotent
graded tensor coalgebra f in Coder(T(V)) is uniquely characterized by its projection
onto V, resumed in the collection of structures maps called Taylor components:

VneN, fnZTn(V)—>V fniszOﬂTn(v).

One can recover the values of the coderivation using the formula:

n n—i
frory =Y. Y idy* @ freidy k.
i=0k=0
Again, by choosing a cohomological presentation we combine the previous defini-
tions into the one of a DG-coalgebra:

— Definition 1.1.1-16 : Codifferential graded coalgebra

A codifferential Z-graded K-coalgebra (DG-coalgebra) is a triple (C,dc,Ac), such
that:

* (C,dc) is a cochain complex over K,

* (C,Ac¢) is Z-graded coassociative K-coalgebra,

* dc is a graded coderivation of (C,A¢).
Morphisms of DG-coalgebras are morphisms of graded coalgebras which are also
morphisms of cochain complexes.

INTRODUCTION TO HIGHER ALGEBRA

ool Ls-STRUCTURES

The previously defined classical algebraic structures are encompassed in what is now
called higher algebra. A survey of @Z.-structure can be found in [KelO1], here we
simply recall the definitions that we will use later on, the ones of .@7./.Z..-algebras,
morphisms and modules.

— Definition 1.1.2-1 : (Curved) @%.-algebra

An .-algebra is a pair (A,dr4[1])), such that:

* Ais a Z-graded K-module,

* (T(A[1]),dr(ap))s A1) €T (af1))) is a counital DG-coalgebra.
An oe.-morphism, or co-morphism of @Z.-algebras f : (A,dr])) — (B,dr(s[)))
is a morphism of DG-coalgebras between (T (A[1]),drp1]), At ), €T(a))) and
(T(B[1]),dr By Ar(s)): € (B1)))-

As a coderivation of cofree coalgebra, the structure map dr4[1)) of an “.-algebra

split into its Taylor components (dg? A[l]))”EN' We say that (A,dr4))) is flat when

d"(fo()A[l]) = 0. If all Taylor components vanish except for d(Tl()A[l]) then (A,dT(Am)) isa

cochain complex, and if d 2)

T(A[1]) also does not vanish then (A, dy (1)) is a DG-algebra.



36 Chapter I. Something to rely on

A similar definition with the symmetric cofree conilpotent coalgebra gives rise to Z.o-
algebras:

— Definition 1.1.2-2 : (Curved) .Z..-algebra

An Z.-algebra is a pair (L,ds(z1})), such that:

e Lis a Z-graded K-module,

* (S(L[1]),ds(zp1}),As(Lp1))» €s(zj1))) 18 a counital cocommutative DG-coalgebra.
An Z-morphism, or eo-morphism of Z-algebra f: (L,ds 1)) — (M, dsm)))
is a morphism of DG-coalgebras between (S(L[1]),ds 1)), As(z))» €s(z[1)) and

(S(M(1]),ds 1)) As(m(1])» Es (m1)))-

If all the Taylor components for n = 0 or n > 2 vanish, then (L,dé )L[l])> is a DGL-

algebra. We say that (L,dg(zy})) is flat when déO()L[
we will always deal with flat .Z.-algebras.

)= 0. In the cases of interest for us,

— Definition 1.1.2-3 : Z,-quasi-isomorphism

Given two flat Z.-algebras (L,dg (1)) and (M, dsy1)))- an
Zew-quasi-isomorphism f: (L,dg (1)) — (M, dsyq))) is an Ze-morphism such
that f© =0and fV) isa quasi-isomorphism of complexes.
w-quasi-isomorphisms are defined in a similar way.

We end this short introduction with one of the main object of interest for us, .o7-
(bi)modules, on which the reader may find a concise introduction in [Kel06].

— Definition 1.1.2-4 : .2%.-module

Given an Z.-algebra, (A,dr4[1})), an Fe-module is a pair (M, (d](\;))nGN)’ such
that:

* M is a Z-graded K-module,

. d](v’;) . T"*I(A[l]) ®@M[1] — M][1] isamorphism of degree I,

* for all n € N*, we have:

n—i+1 n—i n i— .
Y dy ”(dﬁu ©dy; + Y idihed)sid "®sz[1]>:

i<n <n—1-i

An o/,.-module is usually defined without using the shift functor, the reason for
this is, as we will see in the next section, that .<7.-modules and %Z.-algebras admit an
encompassing interpretation in terms of .o7.-category, which looks like an .o7.-algebra
with many objects.

DEFORMATION OF &7,-STRUCTURES

Deformation problem amounts to characterize all the possible algebraic structures of a
certain type, which we can define on a space (constructed as a tensor of a predefined al-
gebra with some conditions). For example, it is a well-known fact that the deformations
of an associative K-algebra are controlled by the Maurer-Cartan equivalence classes of
the shifted Hochschild cochain complex over this algebra. Here we simply recall how



[.1 Graded algebraic world 37

these properties appeal together in our context.

We recall that we are working with a field K of characteristic 0. Given a differential
graded Lie algebra (L,dy,[e,e];), the set of Maurer-Cartan elements MC(L) is the set
of homogeneous elements v of degree 1 satisfying the Maurer-Cartan equation:

1
dr(v)+ E[V, vl =0.
When Ly is a nilpotent Lie algebra and its adjoint action on L; is also nilpotent, then
Ly integrates to a right affine action of exp(Ly) on L;. And it is therefore possible to

define the set of Maurer-Cartan equivalence classes as:
AME (L) :=MC(L)/exp(Ly).

When we are dealing with DGL-algebras we do not expect them to satisfy this nilpo-
tency condition in all cases. To make this property a reality we will tensor our DGL-
algebra with an artinian algebra. To do so we consider a graded commutative K-algebra
A whose maximal ideal is unique, and finite dimensional, those algebras are sometimes
called test algebras. In this condition the DGL-algebra L ® A satisfy our nilpotency
condition.

A classical example of such an algebra is given by the truncated polynomial algebra
K[A]/ (k") for a given integer n. But we will prefer to work with the algebra of formal
power series in & (which is not nilpotent), and we see L ® K[A] as the limit over the
DGL-algebras L ® K[A]/(R"). The result is called a graded topologically free K[A]-
module Ly, and its set of Maurer-Cartan equivalence classes is:

ME (Ly) = lim 46 (Lo K[R]/ ().

neN

The study of the Maurer-Cartan equivalence classes is important for deformation the-
ory, but what we are interested in here is how these sets behave with respect to Z.-
morphisms between their DGL-algebras:

Theorem 1.1.2-5 : [Kon03]

Given two DGL-algebras L and M, seen as flat -Z..-algebras, and an
Z%-quasi-isomorphism:
f:L—-M

Then for any test algebra A, the morphism defined by the Taylor components f (),

Induce a bijection between the sets #Z 6 (LR A) and A4 C(MQA).
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QUANTIZATION OF COISOTROPIC BRANES

In this section, we review the content of [Cal+11] by gradually unfolding the definitions
and the main propositions. Some adjustment have been made on the notations in order
to avoid ambiguity and to encompass with previous definitions. Proofs of the claims
can be found in the article, and we precisely refer to it when necessary while some
technical details are intentionally left aside, as they do not provide a real enlightening
of the constructions.

The overall reasoning is as follows: a coisotropic brane setting is used to define
two “..-algebras and an @Z.-bimodule, from which we construct an .%.-category. We
then explicit an .Z.-quasi-isomorphism from the Lie algebra of polyvector fields to the
shifted Hochschild cochain complex of this .o7.-category. This .Z.-quasi-isomorphism
induces a correspondence between the sets of equivalence classes of (k[A]-tensorised)
Maurer-Cartan elements, which are Poissons structures on one side and .2Z.-bimodules
structures on the other side.

THE %%.-CATEGORY SETTING

CATEGORY OF [ XI-GRADED OBJECTS

Assuming the notations of Section I.1, we define on the category of Z-graded K-modules
a new layer of filtering: the category of I xI-graded objects, presented in [Cal+11, §3].
This category is sometimes known as the category of K/-modules, for J = I x I, and
we explicit it in our context:

— Definition 1.2.1-1 : IxI-graded objects

2
Given a finite set I, we define the category Modﬁ’I as follows:

2
e Objects of Modﬁ’I are Z-graded K-modules V endowed with an [ x I-grading:

V(i,j)€IxI,3V;;eMod%, V= €D Vi; inMod%.
(i,j)eIx1

2
e Morphisms in Modﬂ%I are those in Modﬁ that preserve I x I-gradings:

Hom ,o(V,W) = { f € Homype (VW) Vi j €T, f(Vij) C W, j} .
o4

Compositions and identity morphisms are the ones of Mod.

This category inherits the direct sum and the shift functor of Z-graded K-modules, both
defined componentwise on two I x I-graded objects V and W:

2
In fact, the category Modﬁ’I is enriched over ModZ, with hom-object HomM FAe (V,W)
O K'
in Mod%, whose Z-graduation is defined by:

Vk € Z, Homll; dZ,IZ(V’W) = @ Homf/lod%(\/i_‘j,ﬂﬁj).
*K (i,j)€IxI



[.2 Quantization of coisotropic branes 39

The composition is made I x [-componentwise:
cUvw - M\/Iodélz (V,W) ®Hoﬁmv[odé12 (U,V) — Hom d%ﬂ (U,w) .
gOf = Yijena&vi,°fu,
And the identity element is simply the direct sum of identity morphisms:
idy : K — Hom o2 (V, V)
K

1 — Z (i,j)€IxI lde

2
Additionally, Modﬁ’I comes with a specific tensor product ®;, with unit object K/,

2
which makes Modﬁ’I into a non-symmetric monoidal category:

.. no._J{0} ifiF#j
Vi,jel, (VerW),: %Wk@wkj and (K)J _{ K  otherwise -

In fact, a K*/-module is a K/-bimodule and thus ®; is simply given by the tensor
product over K. It is worth mentioning that V @; W C V@ W (in Mod% x) thus the
[ x I-grading can be understood as a filtering on the tensor product component in the
category of Z-graded K-modules.

Remark 1.2.1-2 :

One way to visualize an object V' of this category is to provide a total order
on [ and take a square matrix of size #I = n with coefficients in Mod%.
Then we place the Z-graded K-module V; ; on the i-th row and j-th column.
The modified tensor product then act like a product of matrices, where usual
sums and products are replaced by direct sum and tensor products of K-
modules.

V‘

01,01

V:

l]vln

‘/ilhil

Insln
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IxI-GRADED COALGEBRA AND CODERIVATION

The monoidal product ®; gives rise to cofree coalgebras cogenerated by I xI-graded
objects.

— Definition 1.2.1-3 : I xI-graded tensor coalgebra

2
Given an [ xI-graded object V in Mod%I .
The IxI-graded tensor coalgebra T (V) is also defined by iterated tensor products:

T/(V) =@V CcT(V).

neN

Where V19 stands for the diagonaly I xI-graded unit object K!. The coproduct
Ae HomModZJz (Tr(V),T;(V)®;T1(V)) is the deconcatenation of tensors:
K

A Ti(V) — Ti(V)@:Ti(V)
VIQ @V = Yo ® - @) Q@ (Vig1 ® - Q)

where an empty tensor () stands for the unit 1/ in the unit object K.

The counit € € HomM R (Ty(V),K) is the projection onto K/,
K

The [ xI-graded tensor coalgebra is a counital conilpotent coassociative cofree coalge-
bra, but it would be naive to think that this structure is the same as any of the ones on
Mod%. To see why let us consider the simplest non-trivial case where I = {a,b}, and

2
let us consider a generic [ x I-graded object V in the category Modﬁ’I . Following the
remark on visualization of [ xI-graded objects we get:

K {0
B = (1 &)
V, V
1 _ a,a a,b
i) = (Vb.,a Vb,b>
T2 (V) _ Va(?a2 D Va,b ® Vb,a Va,a ® Va,b S¥ Va,b ® Vb,b
BT \Voa®Vaa®Vop OVoa  Vig ®Voa @ Vap
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Hence, the I xI-graded tensor coalgebra T§(V) contains the counital tensor coal-
gebras of its diagonal components: T(V;;) for all i € I. But it also contains various
different spaces that, as we will see later on, can be used to encode module actions. For
the purpose of the presentation we are interested in coderivations of this coalgebra.

— Definition 1.2.1-4 : IxI-graded coderivations

Given an I xI-graded object V and its I xI-graded tensor coalgebra (T;(V), A, €).
An I xI-graded coderivation of T;(V) is a morphism y in

Hom , 2 (T;(V),T;(V)) such that:

T Mod

K

Aoy = (y®id+id @ y)oA.

We denote by Coderp,(T7(V)) the set of IxI-graded coderivations of T;(V).

Direct computations show that any [ x I-graded coderivation y satisfy € o y = 0. More-
over, Y is only defined by its arity-n Taylor components, which in turn decompose with
respect to the I xI-grading:

v (i, j) € IxI, l//i(,'}) p(VEM)ig = Vi

One can then recover the map y by following an [ x I-graded variant of the recovering
procedure for coderivations of cofree coalgebra :

vgw,= Y Y (id)”) W& vt @ (idy)"), -

prgt+r=n  klel

2o-CATEGORY AS IXI-GRADED OBJECT

All of the above arrange in the definition of an .o7.-category:
— Definition 1.2.1-5 : @Z.-category
A (small and finite) @%.-category is a triple & = (I, E,dg), such that:
* [ is a finite set whose elements are called the objects of &,
2
* E=@ jjerx Eij is an object of Modﬁ’I ,

* dg is a codifferential on T;(E[1]), ie a degree 1 I xI-graded coderivation of
T;(E[1]) such that dg odg = 0.

Remark 1.2.1-6 :

An o,.-category with only one object is an .27.-algebra, while one of the
form & = ({a,b},E,dg) such that E}, , = {0}, provides us with a new kind
of @.-structures: in this case, (Eqq,(dE)aq) and (Epp, (dE)pp) are two
eo-algebras, while (E, p, (dg)qp) is an He-Eq 4-Ep p-bimodule.
Conversely, the data of two .@Z.-algebras and an .@Z.-bimodule defines an
wo-category having two objects, see [Cal+11] Example 3.3 .
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HOCHSCHILD GRADED MODULE OF AN .¢Z,-CATEGORY
— Definition 1.2.1-7 : Hochschild graded module

2

Given an object V = B; j)era Vi,j In Modﬁ’I ,
2
the Hochschild graded module of V is the following object of Modﬁ’I :

C*(V,V):= Ho_mM 2 (T/(V),V)

ody

It is endowed with a total Z-grading coming from a partially shifted Z-bigrading:

YV (p.q) €2, CPOV,V):=Hom’! (vt y),

ModK
Vnez, C'(V,V)= @ crIwv).
p+q=n

An element f € CP9)(V,V), is said to be an homogeneous cochain of arity p+ 1,
degree | f| = g, and of total degree || f|| = p+q.

The composition of Hochschild elements simply as morphisms is not a well-defined
operation due to possibly different arities. But the brace operation on two elements,
that we denote by y{¢} for two homogeneous morphisms y € CP19(V,V) and ¢ €
CP>92(V,V), endows C*(V,V) with a structure of non-associative algebra.

P1
y{o}:=) wo (id§’k ®10 @ idﬁ”’l"‘) e clrrrata)(y ),
k=0

Nevertheless, its graded commutator is well-known to define a Z-graded Lie bracket
over the Hochschild graded module: the Gerstenhaber bracket:

[W?‘P]Gerst = W{‘P} - (_1)(p1+q1)(p2+q2)¢{w}.

The Hochschild graded module of V can also be identified as a Z-graded K-module
(using appropriate suspension) with the space of [ xI-graded coderivations of T;(V[1])
since we have:

VneZ,  Codefy(Ty(V[1]) =Hom' . (T,(V[1]),V[1)

K
= P Howm?! (vt y)

Z,
ptqg=n Mod]K

=C"(V,V).

— Proposition 1.2.1-8 :

Under the above identification of Z-graded K-modules the Gerstenhaber bracket is
identified with the natural Lie bracket of coderivations.

We now consider an .o%.-category & = (I,E,dg) and we will call the Hochschild
graded module of the .o7.-category the Hochschild graded module of the underlying
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IxI-graded object E.

Since the o7.-category structure gives a coderivation dg € Coderr (T (E[1])), the
proposition 1.2.1-8 associates to dg a Hochschild element yin C*(E,E) of total degree
1 satisfying:

[V, VGers = v} — (=1)'¥{y} =0,

Thus one can define the following I x I-graded morphism, which associate to any homo-
geneous Hochschild element, f, its Gerstenhaber bracket with 7y:

9, : C*(E,E) — C*(E,E)
f = [’y’f]Gerst.

It is a straightforward computation, using the graded Jacobi identity, to show that it
defines a differential on C*(E,E) :

a?’o a)’(f) = [% [% f] Gerst]Gerst

= (_I)HfH [% [fv ’Y]Gerst]Gerst + (_1)1+|‘f” [f7 [% ﬂGerst]Gerst
= —dy0ay(f).

— Proposition 1.2.1-9 :

The setting of an «Z.-category & = (I, E,dg) defines the structure of a differential
graded Lie algebra over the Hochschild graded module of E:

(C. (E7E)7 a% [.7 .]Gerst> 5

where [e, ]G, is the Gerstenhaber bracket, and 7 is the MC-element associated to d.

COISOTROPIC BRANES INTO %7,-CATEGORY

COISOTROPIC SETTING DESCRIPTION

We consider a certain configuration of Z-graded K-modules, namely, let X denote a
finite d-dimensional Z-graded K-module endowed with two decompositions as a direct
sum of pairs of Z-graded K-submodule, X = U ®U’ and X =V @V, together satisfying
the following equality.

X2Unv)eUnv)aUnVv)se U nv'). (L.1)
From which we deduce:
uvxUunvye@Unv)  veUnV)eU'nv),
x=zyteUH)t , x*z=vigw)i,

where U+ = {f € X*| fiu = 0}, is the set of linear forms which vanish on U. Our main
object of interest is the shifted DGL-algebra of polyvector fields on X:
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— Definition 1.2.2-1 : T | (X)

The differential graded Lie algebra of polyvector fields on X is defined by the
following underlying Z-graded K-module:

poly (X) 1= Sgx+) (Der (S(X™))[=1])[1] = S(X*) @ S(X[-1])[1],

where we have used the identification Der(S(X*)) = S(X*) ® X. This module is
equiped with a zero differential, and the Schouten-Nijenhuis Lie bracket

[o, .]T;oly(X)’ which is defined as the extension of the Lie bracket of vector fields on
X as a graded biderivation.

Hence if we consider two homogeneous tensors dy,d> in TI.)oly (X) of arities ny,ny,
there exist two finite collections of derivations of S(X*), dy 1, - -+ ,dy ,, and

dr 1, ,dp, such that:

di =| (Tko ®S(X*) T US(XH) Tdknk) eTpoly( ) k€{172}

For the sake of simplicity, we omit the notation ®gx+) of the product in the
symmetric algebra. Hence, the Lie bracket of d and d5 is given by:

[dladZ]T;)oly(X) = Z 58N (dy d,i.j)
1<i<n
1<j<ny

LM diivdojlper Tdig - Tdii- Tdig Tdog - Tdaj- Tdoy).

Where the sign is given by:

S8y a1 gy = (1)1 Erc ) 48 D a1

We associate to this setting the following three Z-graded K-modules:

A:=S(U")@S(U'[-1]) ZS(UaU'[-1]),
B:=8(V*)@S(V'[-1]) =S(V*aV'[-1]),
K:=S(UNV))@S((U'nV"[-1]).

We see the Z-graded K-modules A[1], B[1] and K[1] as submodules of T}, (X) .
Hence, A and B endowed with zero differential are Z-graded (symmetric) associative
commutative K-algebras (i.e, trivial .oZ.-algebras). With these two .o7.-algebras, we
define an .27,.-A-B-bimodule structure on K, using a Kontsevitch-inspired approach:

To do so, it is sufficient to define its Taylor components dﬁ(m’n) and check that they
satisfy certain relations. These Taylor components are defined in terms of sums over a
finite set of specific graphs, used to set a product of differential forms with coefficients
made up of integrals over configuration spaces. The following are the details of this
construction, see [Cal+11, §6.2] , and [Kon03, §2].
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GRAPHS AND COMPACTIFIED CONFIGURATION SPACES

We will need some preliminary definitions on sets of graphs and configurations spaces
which can be found in [Cal+11, §5.1] and [Cat+05] (in French).
Given two non-negative integers p,q € N let G, , denotes the set of admissible graphs
of type (p,q). One such graph I is a pair composed of two sets V(I') and E(I"):

o V(I'): the set of vertices, is a totally ordered set of cardinal p + ¢,

» E(I'): the set of edges, is a finite collection of element of V(I") x V(T').

The first p elements of V(I') are called the vertices of 2 p D
the first type, while the remnant ones are called the l e
vertices of the second type. A pair (i, j) represent l N

an oriented edge of I', going from the i-th vertice to
the j-th. Finally, E(I") can contain multiple copies p+1lp+2 pPtq
of the same edge, and loops. A graphin G, ,

Given two non-negative integers p,q € N we denote by C;t 4 the configuration space of
p points in the complex strict upper-half plane H and ¢ points on the real axis R.

C;q ={(v,w) eHP xRY |V k#K ,v(k) #v(k') and V k <k, w(k) <w(k')}/G,

Where, G, denotes the semidirect product R™ x R which acts diagonally on H? x R4
by positive dilatation and real translation:
V(A,u) eRT xR, Vve HUR, (A, u)v:=Av+u

These configurations spaces admits a compactifica-
tion a la Fulton-MacPherson, (Kpfq, which can keep

1 track of the relative direction (and speed) of conver-

¢ gence of multiple points collapsing together. See
[Kon03], [Cal+11], [Cat+05] or [CR11] for the de-

43—4;27 tails. When no ordering is involved among the ver-
tices of second type (¢ < 1) we will simply drop the

+
An element of %2’2 "4 notation.

4-COLORED PROPAGATORS ON THE I-CUBE

In order to define the .o7,-bimodule structure, we only need to understand the graphs
and configurations spaces comming from pairs of the form (0,m + 1 +n) for m,n € N.
In such configurations we have m + 1 4 n ordered points on the real axis, one of which,
the (m+ 1)-th acts as a central point that we will call x and that we will put at the origin
using the action of G,.

— o —-—0—0—0—---——0o—
12 m Xm+2 n

+
An element of Cfom S ln
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To any edge (ji,j2) in a graph I' € Gy 140, We associate a projection, iy )
from ‘KO mt14n O %073 C 3,1, which simply extract the triple of points (ji, j2,m+ 1)
and send it to the same configuration of three points z,w and x on the real axis line
and eventually "collapsed" together (in the sens of the quotient space). The image of
the projection 7, ;) lies in a boundary of codimension 2 of the manifold with corners

©>.1, also called the I-cube see [Cal+11, §6.2] for the full details.

These projections allow us to pullback some differential forms defined on H? x R
(which extends smoothly to €7 ) to the more general space %0 mt1n The very detailed
definitions and proofs associated to these 1-forms can be found in [Cal+11, §5.2], here
we briefly recall their definitions in the case of the .o7.-bimodule structure. Given a
configuration of three points (z,w,x) € %> ; and using the action we can still consider
that x = 0, hence we set:

0" (o) = Sd rg(\f ff+f>

NN
. NN,
o " (z,w) = o d rg(\/_+\/_\/_+\/_>.

Where the complex square root is uniquely determined on the (large) upper half plane
by its value having a positive imaginary part (hence in the first quadrant).

Remark 1.2.2-2 :

In the most general case, when z,w € H and x € R, we will use the following
definition of the 4-colored propagators @™ ,0 >~ ,0™~ and @ :

ot (z,w,x) = —darg (Z W)

0 (z,w,x) ——darg( )

- L VZi—x—\Vw—x\z—x+/w—x
ot (z,w,x) = d g<vE_}—xf__‘¢1-v+Vw x)
O (2 wx) —da Vi—x—w—x\zi—x—yw—x

: Jixt ViV x A w—x

CONSTRUCTION OF THE £%.-BIMODULE STRUCTURE

We are now almost ready to define the Taylor components of the .27.-A-B-bimodule
structure. We consider our coisotropic setting equiped with a set of linear coordinates
{xi}i<q adapted to our orthogonal decomposition (I.1), by which we mean that there
exist two non-disjoint subsets I1,l, C [d] = {1,...,d} such that:

[d] = (hnL)U(hNL)U(IENL) LT NG), (1.2)
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and,

Span((x;)ier,nn) = (UNV)* ; Span((xi)icrris) = (UNV')7,
Span((xi)icrers,) = (U NV)* ; Span((xi)icrerss) = (U NV')*.

Given any edge (i, ;) of a graph I' € Go u+14» and any subset J C [d] we define the
R@m—+1+n
following endomorphism of (T;Oly (X )) :

‘L'(JI-J) = kz: (1®i—1 ® 14y, @ 1®m+n+1—i) ° (1®j—1 ®an Q 1®m+n+1—j) :
eJ

where 14y, is the classical interior derivative and d;, the classical partial derivative. We

use the previous propagators to construct an Ql(%ofm +14n)-Valued endomorphism of
T.

moly (X yem+1+n by setting for all edges e in E(I):

Ifﬁ]z

of =t et (o) e (1.3)

Theorem 1.2.2-3 : [Cal+11, Proposition 6.5]

We see the algebras A, B, K as Z-graded associative subalgebras of T7 - (X)[—1].
(m,n)

Given two non-negative integers m,n € N the morphism d Km’" defined as follows is
the (m,n)-Taylor component of an .¢,.-A-B-bimodule structure over K.

d"™ . APmeK[1]®B[1]*" — K]

TSN I VR

'€ Gom+1+4n ?0,m+1+n ecE(T)

Where [,LHI:J[:]I ., Stands for the K-multilinear map of degree m + n given by iterated

products (in the symmetric algebra T% ;. (X)[—1]) from T3, (X)" "1 *7 to T2 | (X),

followed by the projection onto K[1].

Remark 1.2.2-4 :

Due to the shift in the definition of T;Oly

7, are of degree —1, thus dg’" should be a sum of morphisms of degree
depending on the number of edges of each graphs I'. But one should notice

(X) , the contraction operators

that the integral is non-zero only if the integrand is a dim (%Jm 41 +n) -form

and this dimension is equal to m+n — 1. Thus [[.cg(r) X is a morphism
of degree 1 —m — n which combines with X . | . to make d" into a mor-
phism of degree 1.
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eo-CATEGORY AS .%,,-BIMODULE

Following the remark in Section 1.2.1-6, see [Cal+11, §3.7], given two .o7.-algebras
(A,d7(a)) and (B,dy(p)) the definition of the o7.-A-B-bimodule K defines an .-
category (I,E,dg) with a structure set as follows:

I = {(/l,b} 9 Ea,a ::A Y Eb,b = B 9 Ea,b = K 9 Eb,a = {0} (14)

Thus dg, as a codifferential of degree 1 on T;(E[1]), decomposes into three parts due
to the I xI-grading:

Coderl {(T/(E[1]))

~Hom!  (Ty(E[1]).E[1))
= (P Hom,, . (A" Al & D Homy, . (AN © K[1] @ B[1]*7,K[1])
neN p,qeN
@ €D Hom,,, . (B[1]°"*", B[1]).
meN

Using the <Z.-algebra structure on A (resp. B), dp(,) (resp. drp(p)), and the .-A-
B-bimodule structure previously defined, dkx, we set the Taylor components of dg to

be:
VneN, (dE)g"a = dfln) : VmeN, (dE)l(:Z) = dém),
¥pgeN,  (dp)h=dd? (de)pa=0.  (L5)

— Proposition 1.2.2-5 :
The triple, (I,E,dg), defined by (1.4) and (L.5), is an .2%.-category:

Cate(A,B,K) := (I,E,dg).

[.2.3 THE Z..-QUASI-ISOMORPHISM

In the previous section we have constructed an .@.-category Catw(A,B,K) out of a
coisotropic setting. Using proposition 1.2.1-9, we now make C*(Catw (A, B,K),Catw(A,B,K))
into a differential graded Lie algebra and review the existence of an -Z..-quasi-isomophism,

£, between the graded Lie algebra T} ) (X) , and C*(Cate(A, B,K), Cates(A, B,K)),

see [Cal+11, §7].

£:(T5y(X),0,[e,0]) — (C*(Cate(A, B,K), Catew(A, B,K)), [7,0], [0, 8] Gerst)

We recall that such an .Z..-morphism is nothing more than a morphism of codiffer-

ential cocommutative coalgebras between the shifted cocommutative cofree coalgebras
S(Thory (X)[1]) and S(C*(Cates(A, B, K), Cates(A, B, K))[1]), endowed with codifferen-
tials dTB oty (X) and dce(Cat..(4,B,k)) g1ven by the following non-zero Taylor components
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(also called Q-manifolds structure) coming from the DGLA structures:

2
Vv, € Tpoly( ) dé(zrf)ol X

e )= (=D)L v, va]

Y fi,/» € C*(Catw(A,B,K),Catw(A,B,K)),

(1) _
dg s (Catm(apxn ) b S1) = 411 f1lGerst

déz()C"(Catm(A,BK))[l]) (AR L) = (=D)L [fi, flGers

Therefore, as a morphism of coalgebras, £ is uniquely defined by its Taylor compo-
nents:

£ (T8 1 (X)[1]) — C*(Catw(4, B,K), Cateo (4, B,K))[1].
THE DECOMPOSITION

We start by a comprehensive description of target object: the DGLA of Hochschild
cochains. By definition of the I xI-grading on Catw(A,B,K), we get the following
K-module decomposition in each Z-bidegree (p,q):

C(pvq)<Catoo(A7B7K), Catoo(A;BvK))

=~ Hom? ZIZ(Tf“(Catoo(A,B,K)),Catoo(A,B,K))
od]K

=~ Hom! ., (A*""" A)e @ Hom! Mo ,(A” @ K®B*P~' K)©Hom?! ,(B*'*! B).
K K

0<i<p

Hence, by definition of the total degree and appropriate (de)suspension morphisms, we
get the total degree n component:

C"(Catw(A,B,K),Cato(A, B,K))
~ P P9 (Cat(A,B,K),Cate(A, B, K))

ptq=n
=~ (PHom! dK(A[l]@”'“,A @ €P Hom! & (A[1]¥" @ K[1]® B[1]%/,K[1])
ieN i,jeN
@@Hode (B[1]%/T B[1])
jeN

~ C"(AA)@ C'(A,K,B)® C"(B,B).

Where we implicitly see the Z-graded K-module A (resp. B) as a trivially I x I-graded
object concentrated in (a,a) (resp. (b,b)) and where the last middle term is just a
compact notation for a Hochschild-like space:

C"(AK,B):= P P Hom?! dZ(A®l®K®B®P ' K).
ptq=n 0<i<p
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This decomposition allows us to split the n-Taylor components £ in terms of three
parts:

e S (To, (X)[1]) — C*(A,A)[1],
e S (Th, (X)[1]) — C*(B,B)[1],
e S (T8, (X)[1]) — C*(A, K, B)[1]

EXPLICIT TAYLOR COMPONENTS

We now define the different parts of the .Z..-morphism using similar tools as in Section
1.2.2. We consider a pair of non-negative integers (n,m) and a general graph I' € G, ..

To any edge e € E(I'), we associate two new QI£ ()| (¢,f)-valued endomorphisms of

T8 o (X) 0

LN _ NI NS
o) = (o) (’551”12 +1.' 2) + T (07)® (’cel P41, 2) :

B IiNI NI _ NI NI
of =m0 o (4l ™) s (o) o (4 + ).

These definitions are very similar to the ones of @X, eq. (I.3), but with minor modifi-
cations: The form @™ (resp. @™) is a smooth 1-form on ¢, taking the same value as
™" (resp. @ 7). Thus, 7 is the pullback of the projection from %}, to €30, see
[Cal+11] Section 5.3.1

It is worth mentioning that in this context (as opposed to the one of the .o.-bimodule
structure definition), the graphs used may have multiple edges and loops. The details
on how to handle them can be found in [Cal+11] page 25 and we will not speak about
it here as it is not relevant for the whole comprehension.
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Theorem 1.2.3-1 : [Cal+11, Theorem 7.2]
We see the algebras A, B, K as Z-graded subalgebras of T? | (X)[—1].

The morphlsms 8( ), 22 ), and Sg{), for all n € N, defined below on an arity-n tensor
N QpeT X)®", are the Taylor components of an .Z.-quasi-isomorphism.

Oly(

poly(

. Xl) and 21(3") are defined by their arity-m parts:

254")(71®"'®Yn)|A®m DATT A

21(4”)(71@) ... ®Yn)|A®m e Z
I'eGum

toutllo (/ Hw> (idys (@ LEM (@ - @R D)

’“"eeE
L' N® - OW)jgem : B — B

L@ QW) jpem =Y,
1—‘GGn,m

ot </ Hw) (idrs | ) ® L) (M@ - @ ®e)

’”"eeE

. Sgg) is defined by its arity-(p,q) parts:

25?)(71 ® - DY) ucrgkepes © APQKRBY — K
’gg)(% ® e ®Yn)|A®p®K®B®q =
L€Gnpritq

Touﬂﬂw‘)(/% [1 “’) (idrs e ® L7 (N - @1 @)

n.p+1+q e€E(T)

Where un (resp /.LnJ[F,L, resp. U, JE p] e q) stands for the K-multilinear map of degree

m+n—1 (resp n—+ p+ q) given by iterated products (in the symmetric algebra
T3 o1y (X)[=1]) from Tp,, (X) 7 (resp. Th) (X)&" P+ ) 1o T | (X) , followed
by the projection onto A[1] (resp. B[1], resp. K[1]).

Using appropriate suspension and desuspensions, we consider the suspended ver-
sions of those morphisms, which will really defines the Taylor components of the mor-
phism of DG-coalgebras that we seek.
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el L (To X)) = crAa.A)]
ey L (o)) — (BB,
e (T, (X)) — CY(AK.B)1] .

Remark 1.2.3-2 :

In [Cal+11], the proof of the theorem splits into two parts:

The first part (§7.2), involving graph computations and integrals on con-
figuration spaces by means of Stokes theorem, proves that it is indeed an
Zw-morphism.

The second part (§7.3), shows that it is in fact a quasi-isomorphism, by us-
ing an o7,-version of Keller’s condition for bimodule (definition in §1.5).
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II.1.1

Il. QUANTIZATION OF LIE ALGEBROIDS

FROM LIE-RINEHART PAIRS TO LOCAL LIE ALGEBROIDS

ORIGINS AND USES

Lie algebroids are mathematical objects first introduced by J. Pradines in [Pra70] fol-
lowing works on Lie groupoids by C. Ehresmann and P. Libermann [Ehr52; Lib59].
Like Lie groupoids with respect to Lie groups, Lie algebroids are the "many objects"
analogue of Lie algebras. Lie groupoids have been used in physics to encode groups
actions coming from internal and external symmetries, and in differential geometry as
a tool for desingularization of some quotient spaces. The study of Lie algebroids seems
relevant for both fields since they act as an infinitesimal objects for Lie groupoids in
the smooth setting, and so, provides us with an unified framework for non-commutative
and symplectic geometry which are the mathematical contexts of quantum and classi-
cal physics respectively. We recommend [Lan06; Mac87] for an introduction to the
subject.
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DEFINITIONS AND LINKS

In this section, we will always consider Z-graded K-modules of finite dimension in
order to properly use their graded linear duals without having to switch between the
categories of completed and not completed Z-graded K-modules. In this context, we
present the definition of Lie-Rinehart pairs [Rin63], which are a more algebraic defini-
tion of a Lie algebroid in differential geometry and physics.

— Definition I1.1.2-1 : Lie-Rinehart pair

A Lie-Rinehart pair is a tuple (R, Vg, g,L, [®,®];, $r,p), such that:
* (R,Vg,g) is a Z-graded associative, commutative, unital K-algebra.
* (L,[e,®];) is a Z-graded Lie algebra,
* (L,dy) is a Z-graded left R-module,
* pisaLie morphism in Homy;,z (L,Der(R)), called the anchor, and
satisfying a Leibniz-like identity for all v{,v; in L and r in R:

Vi, dL(r@va)] = br(p(v)(r) @va) + (=DM (re vy, valy).

To see why the definition of Lie-Rinehart pair encompasses the one of a Lie alge-
broid as in [Lan06], consider a vector bundle 7 : E — X over a (differentiable) manifold
X.

We set the algebra R to be the associative unital K-algebra C=(X) of smooth functions
over X. While the Lie algebra L is set to be the space of global sections I'(X, E) over
X equiped with a choosen Lie bracket [e, ] and an action of C*(X) as the product of
functions.

We then identify the space of derivations of smooth functions over X with the tangent
bundle 7X equiped with the natural Lie bracket of vector fields.

The condition for a morphism p € HomModﬁ (I'(X,E),TX) to be an anchor map for a
Lie-Rinehart pair as defined above transposes into the definition of an anchor map as a
vector bundle map p : E — TX satisfying the Leibniz rule:

Vo0 e D(X,E),V feC?(X), [o1,fo2]=flo1,02]+ (poo1)(f)o2

In the following, we will consider a special case of Lie-Rinehart pairs where the algebra
R is a free K-module and the Lie algebra is a free R-module, restricting our study to
what we call local Lie algebroids:

— Definition 11.1.2-2 : Local Lie algebroid

A local Lie algebroid is a Lie-Rinehart pair, (R, Vg, g, L, [®,e].,dr,p), such that,
M and N are two Z-graded K-modules and where:
* R=S(M") is the symmetric graded free algebra over M*,
* L=S(M*)®N and ¢ is the concatenation of tensors, in other words, L is
freely generated by N as an R-module,
* pisa S(M*)-linear morphism.

Notice that since p is S(M*)-linear it can be understood as an element of the set
Homygz (N,Der(S(M*))). For the sake of simplicity we may shorten the notation of
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a local Lie algebroid from (R, Vg, g,L,[e,e]|.,dr,p) to (M,N,[e,e], p). It is straight-
forward to see that local Lie algebroids generalize the definition of a Z-graded Lie
K-algebra.

LOCAL LIE ALGEBROIDS AS COISOTROPIC BRANES

BRANES SETTING

Simplifying a bit further, we consider local Lie algebroid (M, N, [e, ], p) where M and
N are Z-graded K-modules of finite dimension and concentrated in degree 0. With
it, we construct a coisotropic setting as in Equation (I.1). Following the notations of
[Cal+11], we set the four Z-graded K-modules to be:

X:=U:=Mo®N[l], U :={0} and V=M, V' :=N[l]

Direct computations then show that the Z-graded K-algebras involved in the quantiza-
tion of coisotropic branes, as in 1.2.2, are:

poly(X) =S((M@N[1])") @ S(M[-1] & N)[1],
A=S((MaN[1])"),
B=S(M*)®S(N),

K =S(M")

We will show that the data of a local Lie algebroid gives rise to an explicit Maurer-

Cartan element in the DGL-algebra T;Oly (X). And we will later use it to deform the

e-algebras A and B. For now, since (M,N,[e o] p) is a Lie-Rinehart pair in the
special case where L is a free R-module, it induces that the morphism [e,e] can be
reconstructed from its restriction on N®2, denoted [e, o]:

VweSM"), Vv, €N, [i,w@w]=pW)w)@v+wa [vi,m]y

Consequently we shall consider the following two graded morphisms of degree 0:
[o,0]y € HomModH%(N(@z,S(M*)@N) and pE HomMod%(N,Der(S(M*)))

THE EXPLICIT MAURER-CARTAN ELEMENT

Given the setting previously introduced, we define two new morphisms associated to p
and [e, @]y as follows:
(ool © N = Homy,g (N[1]°2,5(M"))
b — (ldS(M*) & Cl)) o [0, O]No T ®2

p* M — Homy, (N[1],S(M"))
¥~ evyopot
where evy, is the evaluation morphism of a derivation of S(M*) on 1. The degree of

each of these morphisms is readily computed as being equal to |[e, ]5| =2 and |p”| =1,
and we have the following result:
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Theorem I1.2.2-1 :

Consider the two morphisms [e,e]5 and p” defined above and set d as follow:

di=p®—Sfeeliol  €SM)BS(V[-1))@ (MN[)

Then d is a Maurer-Cartan element of the DGL-algebra T? , (X) .

poly (

Proof :

First, using appropriate identification of hom sets and duals we have:
0% eS(M)@N[1]*@M  and [o,0]50 | € S(M*) @ (N[1]%2)" @ N[1]

The fact that [e,e]y is a graded anti-symmetric morphism on N ® N allow us to pass
from (N[1]¥2)* in the middle term to the graded symmetric algebra over N[1]* since
for all homogeneous elements v{,v, € N we have:

[o,@]yo T ®2(¢ MR L) = (_1>|¢V1|m [vi,valn
_(_1)IV1I+1+\V1IIVzI[

V2, Viln
= (_1)|V1HV2\+IV1\+|LV2HT\[.,.]NoT®2(¢ V@ L i)
o, 0]y OT®2((— )|¢V1|H”2|¢vz®¢v1)

[Q,Q]NOT®200‘N (¢v1®¢\/2)

Thusd € S(M*) @S(N*[—1]) @ (M®NI1]) =S((M®N[1])*) ® (M S N|1]) and we see
it as a graded derivation of S(M &N [ ])*) of degree 1 by extending it using the graded
Leibniz rule, which gives for all /1, --- ,I, in (M & N|[1])*:

d(ll @ .- @ln) — Z (_1)20§k<i|lk|ll @ - @d(li)G) o1,

0<i<n

The Schouten-Nijenhuis bracket of Tpoly (X) is the graded Lie bracket of derivations
on this set and the differential is zero, so if we want to show that d is a Maurer-Cartan
element only remain to show that:

1 1
§[d7d]T;)Oly(X) = §[d7d]Der =0

Since |[e,]5| =2 and |p”| =1 then d is a morphism of degree 1, and so, the graded

Lie bracket of derivations of d with itself is equal to the composition 2.4> which is then
a derivation, so we only need to show that @ vanishes on generators of S((M & N[1])*):

VoeM, p%(p%(d))—z[e,elyol (p%(d))=0 (IL1)

VHEN, — 2o (o SR (D) + yloolRo L (o kW) =0 12)



I1.2 Local Lie algebroids as coisotropic branes Y

Consider {m;};cr € M" (resp. {nj}jer € N7) to be a basis of M (resp. N), for a finite
set I (resp. J) of cardinal dim(M) (resp. dim(N)), and its dual basis {m'};cy (resp.
{n’} jey). We introduce the following two lemmata, in order to prove (IL.1).

— Lemma 11.2.2-2 :
The following equality holds true for alli € [ and all a,b € J,

([0, 050 L (p2(m")) (I na® L np) = —p oo, e]n(ng@np)(m'). ]

— Lemma 11.2.2-3 :
The following equality holds true for all i € T and all a,b € J,

2 2

Applying these two relations to the left-hand term of Equation (II.1) proves the equality
since for all i in I and all a,b in J we have:

0 (02 (1)) (L 10 | 1) = = p(1b) 0 (1) () — 2 p(120) 0 p(mp) (). N

(020200~ 3louslfo L (0% ) ) (o 4y

= 2P(m) 0P () — 5 0(12) D (m) (') + 2 p o, el (g ) (o)
= 5 [0(na), 20 arey () + 5 0([mas o) ()
=0.

Where in the last step, we use the property that p is a Lie morphism.
Following a similar procedure, we introduce two other computational lemmata used to
prove Equation (I1.2).

— Lemma I11.2.2-4 :

The following equality holds true for all j,a;,a>,a3 € J,
A A (_1)0 j
p" ([&8In (1) (h 1y @ L 10y ® L mag) =}, ——=P(11a,) <[”%<2>7”%<3>]N(” )) '
0e€G3 J

— Lemma I1.2.2-5 :
The following equality holds true for all j,ay,a,a3 € J,

([o,elvo L) ([0 015 (n))) (4 1y ® & 0, ® | 1)

(=1)° :
- ezé 3) [Mag(a) i) I (1) © [ag ) il ().
0c6s

kel
Since [e, ], is a graded Lie bracket on L = S(M*) ® N, it satisfies the graded Jacobi
identity. Given three basis elements n,, ,n4,,n4, of N, an element n’ of the dual basis,
and by applying the Jacobi identity twice and the property of the anchor, we get the
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following decomposition of 0:

- Z (_I)G[nau(l)’ [nao(z) J ”ag(g)]L]L(”j)

0eB;3
= ¥ () Tag) Y bLlag )M N (1) @) L (n)
SIGT kel

= B (1)L (Ptag) (P s (1)) @11+ iy ) © iy il ) )

= ¥ (100t,0)) (g g W) )+ X (1) Ty I8 (84) © g el ().
SIGT keé]l
0c63

We can now explicit the left-hand term of Equation (I1.2) using this relation and lem-
mata to prove it since for all j,aj,as,a3 in J:

(=59 (oswlf) + ol (o, ) (40 s L)
—1 o ‘
- Z <12) p(nag(l))<[nag(2),nag(3)]]\](n])>

0e€G3

(-1° ‘

py 12 [Mag oy s Mags I (1) © [y 1udn ()
€63
kel

=0.

The following are the proofs of the four computational lemmata.

Remind that {m;};c; € M" (resp. {nj}jer € NJ) stands for a basis of M (resp. N),
for a finite set I (resp. JJ) and {m'};cy (resp. {n’} jey) stands for the dual basis. Since we
are working with the tensor algebra, we will denote by Multi(I) the set of multi-index,
that is the set of all finite and totally ordered collections of elements of I. And given a
multi-index I € Multi(I), we will denote by m; the tensor my, & - -- @ my,,, with similar
notations for N and duals.

As a side note for all the following computations, we will always indistinctively use
the notation m! for m'' @ --- @ m™ and for m" © --- @ m™ . We allow ourselves this
abuse of notation since it is of no importance in the case of the elements ! which have
all degree 0 and acts, in some sense, simply as coefficients. It is of course not the case
for the elements of N[1] and we will take a great care to detail the computations.

Under these notations, the coefficients defining the tensors of the previous mor-
phisms p and [e, e]y are as follows:

VIeMulti(l), iel, jel, 3ri/ ek,

I i
p= Z r;)m @m@n’,
TeMulti(I)
jelb,iel
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Vie MU‘ltl(]I)a j17j23j3 EJ, 3 bi;h]z €K7

[0, 0]y = Z b;;jl’jz m1®nj3®(nj1 ®nj2).
[eMulti(I)

J1,J2,J3€]
And the coefficients are simply given by the pairing on S(M*) and on S(M*) ® N:

e =< p(u)(n) > and I =< @ gy >

For the sake of simplicity we will make use of Einstein notation for tensors by omitting
the sum over repeated indices appearing at any position in coefficients or tensors (but
not in sign’s exponent). For instance, the two previous morphisms are written as:

p:rl{’j m! @ m; @n’ and [o,o]N:b§;j1’jz m' @nj, @ (nt @nk?).

Viewing the two morphisms p~ and [e, e]4 as derivations of the graded symmetric al-
gebra S(M* @ N*[—1]), we can compute the expressions of theirs associated tensors as
follow:

pA:r{.’ij@Tanbmi and [0,0]]%:bé;jl’jzmIQ(Tnﬁ@Tnj2)®nj3.

Viewing back the elements of S(M* @& N*[—1]) as symmetric multilinear morphisms on
N[1] we will not forget to implicitly use the symmetrization isomorphism.

We also use Kronecker delta symbol, &g, for a given pair of indices (o, ), which takes
values 1 or 0 depending if o« = 3 or not.

Proof of 11.2.2-2:

Given any i in I and any a,b in J, a direct computation shows that:

([o0lvo 4 (0% (m'))) (L na® | mp)
= ([l (e} m! O ) ) (Lna L np)

_ rf’fb§'7f“f2m’ om' (1 nl'e 1t n2)(| ne® | ny)
. / 1 T j j N . /
= r/ml o’ @3 (DI fnli @t — B 40l 1) (Lna® Lny)

Ljvl.ab I
:—ri’]bj’a’ mt oml,

where we use the fact that [e,e]y is a graded anti-symmetric morphism therefore we
have the relation b;;’ b2 — b;;’ 21 On the other side, we have:
pole e|y(n,@ny)(m')

I'ab | i
= p(b}“"m" @nj)(m')

Iab 1j I
=b " ri/mt om',
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which proves that:

([o. o150 L (p*(m"))) (L na® L ) = —p oo, ]y (na @ np) (m').

Proof of 11.2.2-3:

Given any i in [ and any a, b in J, a direct computation shows that:

P (0% (")) (4 ma® L my)
= p(r[ ! © 1)) (L na® L ny)
= (@ 10T ©@my(m' )t 0 ) (Lnas L my)

/ 1 Sy oy . Sy . "y
=m! @m,-/(ml)®§<rf’frf,’f Tn]®Tnf—rf”rl{,” Tn]®TnJ> (4 n,® | nyp)

1 Ib I'a
:§<—rlu r,’+rr

) ml' @y (),

1

and:

p(np) 0 p(na) (m')
= p(np) <rll.’am1)
— rl{,',b rl{,amll @mi/<ml),

which proves that:

0 (0 () (1 ma® L my) = 5p(m) 0 ) () — 3 0(ma) 0 (my) ')

Proof of 11.2.2-4:
Given any j,aj,as,a3 in J, the left term reads as follows:
p” ([‘a ']ﬁ(”j)) (J 11a, @ | 10, ® | ngy)
=p® (bjﬂjl’jzml ol ok nj2)> (14, ® { ng,® | ng,)

_ rl{’,j3 b§7j17j2 <m1/®/rl’lj3 @m,(ml)@(T n]|®/[\n]2)> (\L na1®¢na2®¢na3>

, 1\ .. . . , .
— ! @mi(m1)® ( Z %rf’“b?”’” TnJU(1)®TnJG(2)®TnJ(T(3)> (14, ®  ng,® | ng;)
0eB;3

_ < Z Z _urg',hb§7]27]35é<17(1)5#;(2)52?(3)) mll@mi(ml)

J1:J2,73€J 0€G3 6

—1)° r I ) /
_ ( Z _( 6) r; ,ag(l)bj,ag(z),ag(3)> ! @mi(ml).

€63
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While given any o € &3, we have:

P(rag) (1 P ) (0)

La ,a ;
= p(n%(l)) <][)].3 o(2) G(3>m1®nj3> (n!)

rl{,vaa(l) b1_7“0(2>7%(3>

mI/Qm,'(mI),

which together proves that:

p° ([o: e () (b na @ L nay® L mas) =} — (_61)09(”%(19 <[”aa<z>’”%<3>]N(”j)) '

0€eS;3

]

Proof of 11.2.2-5:

Given any j,aj,as,a3 in J, the left-hand term reads as follows:

([o,0]vo ) ([0 o8 (7)) ( 10, @ L 10y ® | 1)

([o,0]k0 1) (B2 © (1071 @ 1 07) ) (L 10y 4 1y @ L 1)

= (B2l & ([o, @4 ()@ T 02— 17 [o,0]3(12)) ) (410, @ L 10y ® | 1)
(bl’“’” ’@(b.’“’f4 m'© T e ne =4 nit @ b IS I@Tn’5®TnJ6))

J
(L na,® L ne,® | ngy)

. ;.. . ;7 .. / — o . . .
_ (bj-’k’“ bzdwz . bj-’h’kbi’jz’B) mIQmI ® ( Z ( 61) 0 /e Tnja(2)® 0 njo(3)>
0eBS3

(ina1®\l/na2®\l/na3)
_1 o y 7 7 . ] . . . ] . . 7
— Z _( 6) 62?-(1)622-(2)62(;(3) <b§7k7j3 szldz _ b§7jl7kb£>./27j3) mIGmI
0€eS;3
(—1)0 Lk.ags l'a a La k. I'a a /
_ %o (3) “o(1)%a(2) “o(l) 0(2):%a(3) I I
= Z —— b, b, —b; b, m Om
S(GH
( 1) IaU k r aGQ),aG( I V4
= Z ; b, om .
0eB;3

And given an element o in &3 the the right-hand reads as follows:

Z:U[nao(z) ) nac(3)]N(nk) © [na(,(l) ) ”k]N(nj)
ke

]7a a ,a k !
= Z b, o(2) “(3)m’®b] o)k
kel

Lagy.k. I'\asmy,a /
= Y bRy e o
kel
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which together proves that:
([, olvo 4 ) ([o,o¥(n)) (4 1y ® L 10, @ | nay)

(=1)° .
—= 626 3 [naO'(Z)’nao-(B)]N<nk> @ [na0(1>7nk]N(nJ)
(g
keJ3




I1.3 Deformation algebras 63

1.3 DEFORMATION ALGEBRAS

I1.3.1 FORMAL DEFORMATION OF LIE-RINEHART PAIRS

We first consider a Lie-Rinehart pair (R, Vg, tg,L, [®,|.,dr,p) and to properly make
use of Theorem I.1.2-5 we consider K[A] the Z-graded K-module concentrated in
degree 0. In the context of this theorem, one could in a straightforward way define a
K[#]-linear extension of all the structure maps and get another Lie-Rinehart pair, we
will not do it here and instead we set some of the structure maps to have an A-dependent
coefficient:

Ry = R®K[A] Ly :=LK[A]
VR, = (VR @ Vg[y)) o (idr @ o) & @ idi[n]) R, == R®1
[0, ]2, := ([o,0]L ®N.Vi[p) o (idL @ g L ®idkr))
$r, = (G @ Vi) © (idr ® o[ L @ idk[r))
pr =P ®h € Homy,ez (L,Der(R)) @ K[A]

And we see Homy,z (L,Der(R)) ® K[Ah] as the subset of graded K[A]-linear mor-
phisms in Homyy,z (L, Der(Ry;)) which takes value in the set of K[A]-linear deriva-
tions of Rj.

— Proposition 11.3.1-1 :

(R#, VR, Ry, L, [®,®]1,, &1, P1), is a Lie-Rinehart pair, called the formal deformation

of the Lie-Rinehart pair (R, Vg, tg,L,[®, 0|1, 1, p).
Proof :
Straightforward
since (R,Vg,tg,L,[®,®];,dr,p) is a Lie-Rinehart pair and the new morphisms are
K[A]-linear. ]

Accordingly, we consider the formal deformation, (Mp, Ny, [e,e];,,pr), of the local
Lie algebroid defined in Section I1.2.1, and we apply to it the K[A]-linear extension of
the construction of [Cal+11], giving the following setting:

Tholy(X)n =S(M@N[1])*) @ S(M[-1] @ N)[1] @ K[A],
Ap=S(MeN[1])") e K[A],
Bh_S(M*) S(N)@K[#a],
=S(M*) @ K[h].

Hence, using a K[#]-linear extension of the Z..-quasi-isomorphism of [Cal+11] one
gets the map:

& ¢ To(X)@K[E] — C*(Catu(d,B,K),Catua(A, B, K)) @ K[F]
xXQp = ZnEN* %‘S(n)(xvvx)(gpn ’
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which, according to Theorem I.1.2-5 together with a limit argument, induces a bijection
between the sets of equivalence classes of Maurer-Cartan elements:

S ME(Tou,(X)@K[A]) — 4 (C*(Cate(A,B,K), Cateo(A, B,K)) © K[A])

In [Cal+11, §8], the authors studied the deformation quantization of quadratic Koszul
algebras, using an h-dependant bivector field 7 in the case of a trivial decomposition:
a total brane and a zero brane. Here the situation is more general as we will have a
non trivial pair of branes, and we are interested in the deformation quantization of the
symmetric algebras A and B under a specific A-dependant Maurer-Cartan element, that
we present:

— Proposition 11.3.1-2 :

Letd = p® — %[0, |50 | be as in Theorem I1.2.2-1 and define:
dp=d®h

Then d; is a Maurer-Cartan element of T} ) (X) .

Proof :

The proof is a direct computation since d is a Maurer-Cartan element of T;Oly (X) and
everything is K[A]-linearily extended, it amounts to showing that:

[dr,dy] =0
[]
We will show that the image of dj; under the Z..-morphism £; deforms the algebras
A and B into DG-algebras which are respectively isomorphic to the Chevalley-Eilenberg
algebra and the universal enveloping algebra of the formal deformation (M, Ny, [, ®]1, , pp).



I1.3.2

I1.3 Deformation algebras 65

THE CHEVALLEY-EILENBERG ALGEBRA

The Chevalley-Eilenberg algebra of a Lie algebra is a commutative DG-algebra made
up of wedge products of duals whose differential encodes the Lie bracket. Similarly,
the Chevalley-Eilenberg algebra of a Lie-Rinehart pair (R,L) is the commutative DG-
algebra of anti-symmetric R-multilinear maps whose differential encodes both Lie bracket
and anchor map.

— Definition I1.3.2-1 : Chevalley-Eilenberg algebra of a Lie-Rinehart pair

The Chevalley-Eilenberg algebra of a Lie-Rinehart pair, (R, Vg, g,L,[®, 0|1, $r,p),
where R and L are concentrated in degree 0 is the DG-algebra, C*(L,R), of graded
anti-symmetric R-multilinear morphisms between L and R:

C*(L,R) := Altg(L,R) = Homg(ARL,R)

The grading is set to be the arity of the morphisms and, given an homogeneous
morphism f of degree n, the differential dcg(f) on any n+ 1 elements
lo,---,l, € Lis:

dee(f)lo, -+ h) = Y, (=1)%0(ls0) (fLoqr)s - s lo(m))

O'EShuff(Ln)

- Y (=D o) le)Ls o) - s lo(m))
O‘EShufo’n,l)

To any pair of homogeneous morphisms f and g of degree n and m, their product
fAgissetonany n+melements [y, --- 1,4, € Lby:

(f/\g)(lla 7ln+m) = Z (_I)Gf(l(y(l)7 7lc(n))g(lc(n+l)a 7lo(n+m))

lm!
nlm! ;&

We now apply the £4, part of the K[#]-linear extension of the .Z..-morphism from
[Cal+11] to the Maurer-Cartan element dj and show that it is rather simple to compute.

— Proposition 11.3.2-2 :
Let d be as in Theorem I1.2.2-1, then:

La, (dp)=d®h
Proof :

In regard of Theorems I.1.2-5 and 1.2.3-1, we have the following definitions:

1
e ldn)= Y, —eld® - wd) o,

neN* n!
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where, for all n € N*,

Lhde - ®d)‘A®m

- ¥ teuml) (/ 1 e ) (idzs,, (@ 4 ") (A - @)
IeGum ” mecE(I"

In order to compute this morphism, we need to characterize the graphs I" whose contri-

butions to the sum do not trivially vanish. To do so, we consider n € N*, m € N and a

graph I' € G, ,, such that, there exist ay, --- ,a,, € A satisfying:

Nﬂrl;lz (/ H co) d®--- ®@d2]la1® - ®@]an) #0

Cim ecE(D)

First, since @/ is a 1-form we know that the integral will vanish on the integrands
coming from graphs whose number of edges is different than dim(%,’,,), thus, the graph
I" is compelled to satisfy:

#E(') =2n+m—2.

Then we consider the sets [ and J as in the proof of Theorem I1.2.2-1, that is {m; };c1 €
MY (resp. {n;};cy € N?) is a basis of M (resp. N) and {m'};c (resp. {n’/};c}) is the
dual basis of M* (resp. N*). To match with the decomposition in Equation (1.2), we
consider the set 1U J with a bijection onto [d] and we will thus consider that 7, :=1UJ
and I, := I, which means that:

o) = (0") @ (1o +7T2).

Now recall that the x; in dy, and lay, in the definitions of TE and ri] must be linear
coordinates on X = M @& N([1], thus we simply have to take x; := m* if k € T and 1 n*
else.

Let (s,¢) € E(I') be an edge defined by two num- / T N
bers 1 < s, <n+m. If s > m, this edge will in- \ o> ,;
volve terms of the form 14y, (¢5—,) Which vanish \\\aS*m/

since a5_, € S(M* @ N*[—1]). (5.0) \tl; -
s,t) with s > m

/ /,t N Similarly, any pair of edges with common starting
. d Ty ,: point (s,2),(s,#’) such that s < m involve terms of
the form Uy, © ldx, (d) which also vanish since d €
S(M*&N*[—-1]) @ (M & N[1]).

(s,1),(s,t') with s < m

In addition, the whole computation ends with a projection onto A, so each vertex of
the first type, which are all colored with a d element, must have at least one edge going
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out of them in order to have a non zero contribution. Now since the number of edges
must be equal to the sum of edges going out the vertices of first type (= n) and those
going out the vertices of second type (= 0), we are left with a second relation that I is
compelled to satisfy:

#E(I') = n.

Then, we are left with the property that if the graph I" has a non zero contribution, then
2n+m—2 =n, thus n+m = 2. And we know compute the contributions of the only
two graphs satisfying these relations.

* (n,m) = (1,1): There is only one graph, ', del
whose contribution is not trivially set to be INE l
zero. And we can compute its contribution as o2
follows: a

AR (/ 1 o >d®¢a1)

I]EEEFO

:% nza,z><w*>) Mo (tha)+ i) @2 Lar)

1 0 el
- d9 ax ax d
(/[0 1] 2o < m9) ) (%dek@’ x %dek‘@ k> (d® ] ap)

= ‘u;[l] (Z Ldm’ ®amz \Lal + Z LdTnJ ®8Tnj (\l/ a1)>

icl jel
::i.d(al).

* (n,m) = (2,0): There is also one graph, Iy, 1 «~2
whose contribution is not trivially computed r: ..
to be zero. But its coefficient vanishes: -

pdl! </me]1;1r, >d®d
|
(
0.

% All
T 2(00+)A”(2,1)(00+)> ! ( T2 )+T(12)> (1(12,1)+T%]271)> (d®d)

L (2
Joy®

—(3 T . All] T I
DO (Z”)dz)“z o(thatha) o (ton + ) @20



68 Chapter II. Quantization of Lie Algebroids

We shall note that, in the context of £4, graphs with loops do not appear because their
contribution is defined to be zero. Hence, by appealing all the previous computations

and using the fact that d is an element of degree 0 in T;Oly (X) , we get:

S, (dy) =M (d)@h=d®h.

We now state one of the two main theorems, which says that the deformed algebra
Ay, obtained from the deformation quantization of A, is actually the Chevalley-Eilenberg
algebra of the formal deformation of the local Lie algebroid.

Recall that {m;};c1 € M (resp. {nj}jer € N?) stands for a basis of M (resp. N),
{m'}icr (resp. {n’} jey) stands for the dual basis and given a multi-index 7 € Multi(T)
we denote by my the tensor my, © --- © my,,, with similar notations for N and duals and
that we assume Einstein notation, then:

Theorem 11.3.2-3 :

Given the formal deformation of a local Lie algebroid, (Mj, Ny, [e,]1,, 1), and the
setting of Lie algebroids as coisotropic branes of I.3.1. The following is an
isomorphism of DG-K[A]-algebras:

jAh, : (C.(LﬁaRﬁ)’dCEa./\.) — (Ah,SAﬁ(dﬁ),vAh) . .
CP(Ly,Rp) > f +— I%fl’(Jl”"’]P)ml(ngJl@...@Tnjp

where the coefficient f/:U1:"+/r) € K[#] is set by the K[#]-linear extension of the
tensor pairing on S(M*):

L(j1, . 7p) .
f7(]lv 7.]]7) .:< m17f(nj]7'..7njp) >’

and where V,, is the K[7]-linear extension of the product of A.

Proof of 11.3.2-3:

Since we are dealing with local Lie algebroids, we have L; = S(M*) @ N @ K[A] and
Rj; = S(M*) @ K[A], thus an element of the Chevalley-Eilenberg algebra is completely
defined by its values on elements of N, and as a Z-graded K-module we get the follow-
ing isomorphism.

C* (L, Rp) = K[A] @ Homy,gz (S(N[-1]),5(M"))

Now since Ay = S((M @ N[1])*) @ K[A] = K[h] ® S(M*) ® S(N*[—1]), it is identi-
fied as tensor equivalent to the Z-graded K-module K[A] ® Homy,ez (S(N[1]),S(M*)).

Given an element f in C?(Ly, Ry) itis then decomposed in Ay using coefficients f L(1s )
(and by taking care of the suspensions) as:

f: (_1)P(P—1)/2f1,(j1,~~-,jp)ml® Tl’lh ® 0O Tnjp

Thus, the morphism Jy, is an isomorphism of Z-graded K-modules, and up to some
renormalization factors it is the canonical between hom sets and tensors.
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We are then only left with the proof that J4, is a morphism of commutative DG-
algebra, and as a preliminary remark, note that for any f € C?(Ls,Ry) and any ay, - - ,a,
in J we have:

(_1)p(p—1)/2

p' f(nap'”vnap)

T, (e, @ - @ L ng,) =

Firstly, consider a pair of homogeneous morphisms f and g in C*(Ly, Rj) of degree p
and ¢, and any ay, ---,a,14 € J, since f A g is also an anti-symmetric morphism we
have the following relation:

,JAﬁ(f/\g)(\Lnal ®-® \Lnap+q)
(_1)(p+q)(p+q*1)/2

(f/\g)(nala 7na1,+q)

(p+q)!
_ (=1)°(-1) (p+q)(p+q—1)/2
- Gg (p+4q)!plq! f(na““)’ ’n%(ﬂ))g<nac(p+l)’ o ’nac(p+q))
0€0ptg
’ P‘H] p+q 1)/2 ! 1" / "
g Z ( ) ( 1) fl,(a0(1>7..-,ag(p))gl ,(ao.(p+1)7...7a0_(p+q))ml @ml ,
oGy (p+q)'plq!

and, if we compare it to,

VAzl<jAh(f>ajAﬁ(g))(\L Ng & -+ & inap+q)
1 - : s , ) . .
= —fhUdn) glhlprirdl o ml @ (Tt @ -~ @ 1 nfra) (L ng, ® -+ ® Vna,,,)

rlq!
—_1\9(—1)(p+q)(p+g—1)/2 , /
— Z ( l) ( 1) f17(a6(1)7"'7a6(p)) gl 7(“G(p+1)7“'7ac(p+q))ml@ml .
oo, (p+9)'plq!

We get Vy, 0(Ja, ®Ta,) = Ja, 0 (e Ne), hence Ty, is a morphism of algebras.
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Secondly, consider an homogeneous morphism f in C”(Ls, Ry) and any ay, - - - ,a, €
J, then we can unroll the following equations:

jAh(dCE(f))(\L Mgy @ -+ @ *Ln“p)

(—1)Plp+1)/2
= WdCE(f)(nam ’n‘lp)

(_1)i+p(p+l)/2

:os;sp . Pna) (g, oty - 1ay))

(_1)i+j+p(p+l)/2

>

o<icij<p  (PHD)!

Z (_1)i+p(p+1)/2
_Ogigp (p+1)!

—1)ititp(p+1)/2
DM
osicisp (P!

Z (_1)i+p(p+1)/2
_ogigp (p+1)!

(_1>i+j+p(p+l)/2

o<ici<p P+

f([naiynaj]l,hanaou 7nAa,‘7 7n/6\l_,'a 7na,,)

l.a; ! Y YRR !
hrkvlalml ®mk1 (fl7(a07 ZAiy ap)ml>

7al7a] I A o
hf(b ®nk2,nao,...,ai,...,aj,...,ap>

. g, cen !
hir ilal fI (ag, - ,di, “")mIkal (ml>

" ~ ~
+ ﬁbl aal?ajfl ’(k27a07"'7nai7"'7naj7"'7nap)m1,,@mlm

Y

and

SAh(dﬁ)(jAh(f))(\L Ngy K- ® \Lnap)
= (o oo ) (Al (Rl 1) ) (g0 )

1 . . .
B (ﬁ?fl’(h""”’”) ol @y (ml) @ (100 © - 4 nir)

_1\1+G-1) . . 1 "
%fl,(hw"y]p)béi S22l oml @
152, 2.p!

(Tn”@Tnsz@Tnh@“'@T/n}@"'@T”jp)><¢na0®”'®¢nap)

— Z (_1)0(—1)17(P+1)/2 f[,(ao-([)7'“7a()'<p))ri/7a0-<0)ml/@mk (ml)
(p+1)! 1 1
U€6p+] p p
—|— ﬁ kf17 : >jl7 : 7./17)b1 1, SZmIQmI//
1<lz<p 2. p‘

(tRO TR0 TRl @ e O T ® o O T ) (L gy ® - © | ng))
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:Zﬁ

0<% p p!<P+1)!

1) p(p+1)/2+1 1.(k I"a a 1
2 £l (kao(),ap) ' Ao de) 1 oy T
* 2 pl(p+1)! k ©Om

0'66p+1
= h
O;p p!(p+1)!

1)/2+1 1"
N Z ) p(p+1)/2+ ¢ ’(k,a07,.,7@{.’...7@]7...7%)bi ,ai,aijQmI//
0<i<j<p (p+ 1)'

(_1)i+p(p+1)/2

17(a07"'7d‘7"'3a ) Il’aA [
f b mt O my (m')

(_1)i+p(p+1)/2

which proves that J4, o dcg = £4, (dp) © Ja, meaning that J,, is also a morphism of
chain complexes and thus an isomorphism of commutative DG-algebras. []

11.3.3 THE UNIVERSAL ENVELOPING ALGEBRA

As in the Lie algebra case, the universal enveloping algebra of a Lie-Rinehart pair is
in some sense the most general associative algebra into which the Lie-Rinehart pair
embeds in such a way that the Lie bracket and the anchor map are both transfered only
into the commutator of the associative algebra. We now recall the definition and the
universal property that it satisfies, following the work of [MM10].

We start with a Lie-Rinehart pair (R, Vg, g, L,[e,®]r, b1, p) where R and L are con-
centrated in degree 0. The Z-graded K-module R @ L has a natural graded Lie algebra
structure defined for any ry,r; in R and any /1,/; in L by:

[r1+1,r2+blrer = p(h)(r2) — p(L2) (r1) +[I1, 2]

Consider the classical universal enveloping algebra, U(R @ L), and its augmentation
ideal U (R L) and denote by x; - x; the quotient class in U (R L) of a tensor x| ® x
inT(ROL).

— Definition I1.3.3-1 : Universal enveloping algebra of a Lie-Rinehart pair

The universal enveloping algebra of the Lie-Rinehart pair,
(R,VR,g,L,[®,®]1.dr,p), where R and L are concentrated in degree 0, is the
quotient algebra:

% (R,L):=UR®L)/(I)

Where (I) is the two-sided ideal in U (R & L) generated by:

.= {rz'(l’l —1—11) —rr _d)L(”Z)(ll)‘ ri,rn €R, I EL}

The universal enveloping algebra satisfies the following universal property.
Given any unital K-algebra A and any pair of morphisms kg : R — A and kK : L — A,
such that, kg is a morphism of unital K-algebras and Ky, is a morphism of Lie algebras
for the commutator on A satisfying, for any r in R and any / in L,

Kr(r)kr(l) = xr($r(r)(1)) and [kL(1), &R (7)]com = kr(P(1) (7)),
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then there exists a unique morphism of unital K-algebras X : % (R,L) — A such that:
K R =Kr and K L= KL-

As we did with the Chevalley-Eilenberg algebra, we want to apply the K[A]-linear
extension of the .Z..-morphism of [Cal+11] but this time we want to compute its £p,
part, unfortunately this computation will involve too many diagrams and there is no easy
way to deal with all of them. Instead, we will take a different approach by exploiting
the derived right action of By on Kj.

Recall from [Cal+11, §4.1] that the derived right action R of B on K, for a given
coisotropic setting, is defined as a coalgebra morphism:

Rg = T(BI]) — T(Endy,, ... (TAL)SKIL])

whose m-th Taylor component, evaluated on a tensor | b ® --- ® | b, in T(B[1])
is an element of End., ..., (T(A[l]) ® K[1]) which again, evaluated on a tensor
lai®---®]a,® ] kin T(A[l]) ® K[1] is defined by the Z.-bimodule structure of
Theorem 1.2.2-3:

RY(Lb1® - @Lbp) (Lar1® - @ Lan® LK)

=d"(la1® - ® 1 a,@ L klb® @ | by)

It has been shown ([Cal+11, §4.1]) that the derived right action endows the space
End (T(A[1]) ® K[1]) with a structure of an .o7.-algebra which gives, in the

T (A[1])—comod
case of a flat .o7.-algebra, a structure of DG-algebra and that ([Cal+11] Lemma 4.7 and

7.5 ) the derived actions are .%7,-quasi-isomorphisms.

Now since dj, is a Maurer-Cartan element, general deformation theory induces the
existence of deformed ..-algebra (Ap, L4, (dn) 4+ Va,), (Bn,£s,(dn) + Vp,) where
V4,,VB, are just the fi-linear extensions of the products in A and B. This in turn
gives us new derived actions as an .-morphism Rp, to the deformed .2.-algebra
End. o) comoa (T(Ax[1]) ® Kx[1]), and since it restricts to Rp for 7 = 0 a general per-
turbation theory argument induces that Rp, is also an .27.-quasi-isomorphism:

— Proposition 11.3.3-2 :

Given a local Lie algebroid viewed as a coisotropic setting as in II.2.1 and the
so-quasi-isomorphism of right derived action of [Cal+11]:

RBﬁ . (Bfi; £Bh, (dﬁ) + VB;;,) — (EndT(Aﬁ[l])fcomod (T<Aﬁ[1]) ® Kﬁ[”)? Q)
Where the o7.-algebra structure is defined by its non-zero Taylor components:
0'V(1) =Rp,(L,(dn)°(1)), QW) =, Wlcom: 0P (W1@2) =100y

mn.,__ gh,n m,n
o = A+ L ()™

Then Rp, induces in homology an isomorphism of associative algebras:

And where da, k, 1= Pr(a,[1))okK;,[1] © a’Kh‘T

H(Rp,) : (Bp,Lp,(dp)+Vp,) — H(Endy, ... (T(A5[1]) ©Kx[1])) ]
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Proof :

We claim that both #%,-algebras are associative algebras and since Rp, is an #Z.-morphism
and H(Rp,) is an isomorphism of vector spaces it becomes an isomorphism of quotient
algebras.

Note that By, = S(M* @ N) ® K[7] is concentrated in degree 0, so we know that £g, (dj,) +
Vp, have only arity-2 (or equivalently, degree 0) non zero component, thus H O(By) =
By, is an associative algebra. On the other side, the arity-0 of the .oZ,-structure on By is
only made up of £, (dﬁ)(o) and we claim that it vanishes. Indeed, we have:

1

£Bh(dﬁ)(0)(l): Z 0 Z To,un </ H w, > d®n Qn

neN* """ T'egG, o n 0 ecE(T

As before, due to the dimension of the integrated space and the vanishing property of
two edges going out of a vertex of the first type which are colored with a copy of d, the
graphs having non-zero contribution to the sum must satisfy:

dim(€, ) = #E(T) and #E(T) < n.

Hence n < 2 since dim((frjo) =2n—2.

Recall that |d| = 1 and \a)B | = —1 and, as a submodule of T}, (X), B[1] is concen-
trated in degree —1, therefore each vertex of the graph must have two edges joining
them and thus only n = 2 is possible. Consequently, we are left with the following
graph, whose contribution also vanishes:

The only remaining graph I'g, whose contribution

is not trivially computed to be zero, must have two dl ol
edges and no pair of edges sharing the same initial Lo: ~
point. The whole computation also vanish thanks to: E—

whlo </ [1 @ >d®d

20eeE (To)

:“2 (/%,A T /\”(21)(“’+)> ( ](11 2)07(21))(‘1@‘1)

2,0

s

+.u2 ( “ W@ ") AT (07) ( TJ ded)
+p" ( “ (@) A7l (@) (Tgl,z)OT(zl))(d@d)
"‘Uz ([ﬁ 1) (@) ATy (07) (T‘]I OT’H pded).

And the coefficient of the first and fourth term vanish for the same reason as in the proof
of Proposition I1.3.2-2, while the two middle terms simply do not end up in B[1] both
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due to the elements d,,i o L;1,,j(d) which lies in S(M*) ® S2(N*[—1]).
So the two 7.-algebras are actual DG-algebras and Rp, is a DG-quasi-isomorphism
and thus gives an isomorphism of associative algebras in homology. []

We now want to explicitly describe the differential of End.., 1 o0a (T(Ax[1]) @ Kx[1])
in order to prove that it is indeed isomorphic to the universal enveloping algebra of our
Lie-Rinehart pair.

— Proposition 11.3.3-3 :

Given a local Lie algebroid viewed as a coisotropic setting as in 11.2.1.
The morphism djy, , is defined by its only non-zero Taylor component:

1 .
(dAmKh) = Vi) © (P, 1) @ idg, 1))

Proof :

Since da,, k, = Pra,[1))ok;1] © 9k the study restricts to Taylor components

ZL‘T<AII,[1])®Kh,[I]
d?h’o, for m € N, taking value into A;[1] ® K5[1]. As dlnggo — dl'?’o + Lk, (dy)™0, we first

study the Taylor component dm’o, which will then be extended K[A]-linearily. Consider
then an integer m together with elements ay, --- ,a, in A and k in K and a graph I in
Gm,0 such that:

K[1]
num—|—l © <[5+

20,m+1 ecE

wf) (lar®@ - ®|an® k) #0.
)

Again, due to the 1-form part of the operator ®X the graph is compelled to satisfy
dim (%, ) =#E(T) and since A = S(M* & N*[—1]) and K = S(M*) if any edge goes
out of any point it will involve an element of the form v, whish all vanish on M* and
N*, thus #E(I") = 0 and m = 1. And the only graph with no edges reduces to:
1,0 K[l .
di (L ar® LK) = 15 (L ar LK) = Vi o (P @ idig) (L ar LK),

and since it is K[A]-linearily extended, the advised reader will know that it only remains
to prove that £k, (dj;)™" = 0 for all m € N, and indeed since we have:

|
Sk (dp) = Y F£§§’)(cz'®---®d)<g>)‘%”.
neN* "

We can consider a pair of non-negative integers n,m together with elements ay, - -- ,a,
in A and k in K such that:

WA ®@d)(a® - ®an®k) £0.

By unfolding the definition of Theorem 1.2.3-1, it implies that there exists a graph I" in
Gn,m+1 such that:

T Ok © ([ﬁ I1 wf) (@@ Lar® - Lan® L k) #0

nm+1 eEE(F)
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As always, since vertices of the first type are colored with a copy of d, there can not
be any pair of edges sharing a same vertex of the first type as a starting point, and as
before there cannot be any edge having a vertex of the second type for a starting point.

Thus, #E(T') < n, and for degree reason, since |d| = 1 with |®X| = —1 and K[1] is
concentrated in degree—1, there is no solution for n # 0. Thus, £k, (d;)™ = 0 and the
claim follows. ]

With this new insight we will show that there exists an isomorphism of associative
algebras from the universal enveloping algebra of the formal deformation of a local Lie
algebroid to the associative algebra HO(EndT(Aﬁ[l])—comod (T(Ax[1]) ® Kx[1])). To do so
we will use the universal property of the universal enveloping algebra on the following
setting of morphisms.

— Proposition 11.3.3-4 :

Given the formal deformation of a local Lie algebroid, (M, Ny, [, ®]r,, pr), there exist
two K[~]-linear morphisms:

Kry + SMY)@K[A] — Endy, o) e (T(AR) @ Ki[1])

Ap

Kr, S(M*)@N@K[[ﬁ]] — EndT(Aﬁ[l])—comod(T(Ah[l])®Kﬁ[1])

Y

whose images are defined by the following only non-zero and K[[#]-linear Taylor
components, sets on basis elements m! € S(M*) and n j € N and evaluated on any
a€A=S(M*®N*[—1])and k € K =S(M*):
ke, (m) O (L k) .= Lm' Ok,
Kk, (m' ©n)) O (L k) == Lm' © pn(n)) (k).
ke, (m' @n)V(La@ L k) = | < Psgpoyen-(La),nj > om' Ok,

inducing, by the universal property of the universal enveloping algebra U (L, Rj), the
existence of a morphism of associative unital K-algebras:

K : U(Ly,Rp) — HO(EndT(Aﬁ[l])fcomod(T(Aﬁ[l])®Kﬁ[1])>' J

Proof :

We first need to show that each of the Taylor components takes values into the O-
cocycles of End,, Apl1])—comod (T(Ax[1]) ® Kp[1]). Then we will prove that their compo-
sition with the quotient map of the homology H satisfies the conditions of the universal
property of the universal enveloping algebra % (Ry, Lj).

For this reason, the proof split into the following lemmata:

— Lemma I1.3.3-5 :

The maps kg, and Ky, take value into the morphisms of degree 0 which vanish under

oW, J
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— Lemma I1.3.3-6 :

The map H o kg, is a morphism of associative unital K-algebras.
The map H oKy, is a morphism of Lie algebras.

— Lemma I1.3.3-7 :
Forall r€ Rand [ € L, we have:

KRﬁ(r) KLﬁ<l) = KLﬁ(d)Ln(r) (1)),
ke, (1), KRy, ()] Com = KR, (PR (1)(1)). ]

Note that the conditions of the last lemma could have hold up to O-coboundaries, but
actually hold strictly. In consequence, the two morphisms H o kg, and H o k7, satisfy
the universal property of % (Ry,Ly;) and there exists a unique morphism of associative
unital K-algebras X such that:

K+ URpLy) — HEndy, o0 (TARL]) @ K1)

K g, = Hoxg, and K, =HoKg,. o
We now expose the proofs of the previous lemmata.

Proof of I1.3.3-5:

The degree of kg, (m )(©) and ke, (m! @n j)(o) is readily computed as being equal to 0,
while for kz, (m’ @n j)(l) one should notice the projection onto N*, which is non-zero
only if a € N*[—1], also leading to a morphism of degree 0, and we now prove that
the comodule endomorphisms defined by these Taylor components vanishes under the
differential Q(1). But before going further we should recall that as an .7.-bimodule
structure morphism dk, is reconstructed from its Taylor components using the ones of
the Z.-algebra structure of Ay and By which are in this case DG-algebras:

@n—1 o 4(1,0) ;1O (i) ®n—p—
iy Koy ey = ary @i, + 122 idhy ©dy) @id)" P @idg,
piif—i
We first study the restriction of the morphisms to expose their Taylor components:

1 I
0" (k, (m Dy

_ I

= [dAﬁ,,Knv KRzL(m )]Com\Tn(Aﬁu])@Kﬁu]

_ 1 1

= Ay K © KRy (M) g iy — KR (m ) O A Kioniay(i ey

en—1 (1,0) @p @n—p—i 1Y(0)

= ldAhm ® (th (ldAh[l] X KRh > + Z ldA Al ®dA dA Wl X KRﬁ( )
1<i<2
p<n—i

o 1,0

—id ' @ (or, () © o dig )

- Z (id,(?ﬁn[l_]i—i_l @ KR, (ml)(O)) ° (idfhﬁl] ®df(xl;3 ® idfhn[l_}p_i ®© ith[l]>
1<i<2

p<n—i

= idt @ (i o (idy, 1) @ ke, () ) = ki, () 0t )
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where the two sums cancels each other due to the degree-0 and arity-0 of the only Taylor
component of kg, (m'). And it is straightforward to see that both morphism in the last
parenthesis cancel each other on elements of the form | a® | k since they both take the
value — | m! @ Py, (a) ©k.

Similarily if we consider an element v € S(M*) ® N we have:

1
O (K2, (V) oniay ey
= [da,. ks KLy (V)]Commt (Agl1)@Kx[1]

= d,, k; © KL, (v) T, ek, KL (v)o dAmeT"(Aﬁ[l])@Kh[l]

o . ,@n—1—j (1,0) ®p (D) o+ ;@n—p—i—j .
= Y |id)y TedgT+ ) id @dy @id,| P @idg
0<j<1 1<§l§2
p<n—i—j

JCHOETACR)
- ¥ (i T ea,m0)

0</j<1

(zdf’hf@d,( + Z zd®p ®d§) df”m” ®ith[1]>

. Rn—j i . ® (1) o @n—p—1 _ .
— Z< <szﬁmf®KLﬁ(v)<f>> o ( ;ﬁlsz}:ﬁ”@dAh ®idy " ®zd,<ﬁm>
= id{" @ (d,gﬁm (szfH®KLh(V)(O))) +id, " @ (d(ﬁ Yo (idy, 1) @ ki, (v )(”)>
LY gy ed)eid ) e,m))

0<j<1 1<i<2
p<n—i—j

o 1,0
_O; id," " @ <KLﬁ( o (dfj[l]@)dl((ﬁ ))>
<j<

Z d®lf]] ®d( ) ®ld®n[ ]P 2 ® KLh(V)(O)

p<n—2
y idf}ﬁl@dlg)@zd@”“ 3@k, ()M

p<n—3
—id e (KLﬁ(v)<1> o(d) ® idKﬁm)>
Z d®lf1] ®d(;) Qi d@”[]]l’ 1 ® KL, (V)(O)
p<n—1
Y by wdy) @id " o, ()
p<n—2

—id @ (KL;L(V)(I) o(dy,) ® idmﬂ)
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— i1 (a0 o (idy 1y k2, (1)) — k() 0 (0 @ i) — e, (1) © 0 V)

h
tidy e (dig o idg, @ ki, ()O) = k1, () Vo (4 @ idi 1))
+ zc1lff>"[1]2 ® (— Kr, (V) Mo (idg, 1 @ dl((lﬁ’O) ))

where, again, some of the equalities holds due to the degree 0 of the morphism kg, (v).
The last line exposes the two apparently non-zero Taylor components of Q(!) (kr, (v)),
namely the arity-1 and arity-2. But a direct evaluation show that they also both vanish,
since for any basis elements m! e S(M*), nj €N, and any a € A and k € K, we have:

ke, (m! @nj)V(] a® | k)
=iV o (idy, 1) © k, (m! @ 1)) (L a® L k)
— kg, (m @nj) Vo <d5£2 ®idg, 1)) (L a® LK)
- KLﬁ(mI®nJ)( )oth (La® | k)
d” (L a® L m! © pp(nj) (k) — kp,(m! @ny) V(L dy(@)® LK)
+ ki, (m' @n)) O (] P, (a) 0)
=— | Px,(a) om' ©pp(nj) (k) — | < Psyen- (L dp(a)),nj > om' @k
+ L m' © pp(nj)(Px, (@) ©k + | m' © Py, (a) ® py(nj) (k)
= — L < Psgyen (L di(a)),nj > om' 0k + L m' © ps(n))(Pg,(a)) ©k
= — 1 p"(Px, (@) (nj) om' Ok b + L m' ©p(n;)(Pg,(a)) ©k DR
= 0.
And for every pair aj,a> € A and k € K we have:
ke, (m @)@ (L a® | ax® | k)
= (o ity KLﬁ,<m’®nj>“>> a0 )Y o 0 ) ) (b Lo L)

_KLrL(mI®nj)() o (idy, @ dyy )($01®$az®$k)
—dK,» '(Lay ® 1 < Ps(m ®N*(¢02) nj > om' O k)

+ (=D, (m' @n) V(L ar ©are L k)

+(=DMlep, (m' @n))' (L ar® | Py, (a2) ©k)
= — | Pk, (a1)® < Pyyyeon+(J a2),nj > om! Ok

+ (=Dl < Psuyon (L a1 ©@az),n; > om' ©k

— (—1)“’1| 1< PS(M*)®N*(¢ ap),nj > @mIQPKh(az) Ok
=0.

Consequently, the images of the morphisms kg, and kg, are subsets of the set of O-
cocycles of the DG-algebra End.., .00 (T(Ax[1]) ® Kx[1]). [
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Proof of 11.3.3-6:

Since kg, and Kz, take value into the O-cocycles, we can compose these morphisms with
the quotient map coming from the homology functor that we denote by H. Showing that
H oy, is amorphism of Lie algebra and H o kg, is a morphism of associatives algebras
is therefore equivalent to showing that the properties holds up to a O-coboundary. For
the later one, it is rather simple as the condition holds strictly since kg, have only one

non trivial Taylor component, hence, given any basis elements m/, m!' €9 (M*) and any
k € K, we have:

ki, (m') o kg, (m") (1 k)
= kg, (m") (L m" ©k)
=\ m' "om ok
= kg, (m' ©m") (L k).

To show that k7, is a Lie morphism, we first start with a description of Kz, o [e,e]z,.
Consider basis elements m! ,mI/ eES(M*),n jnjy €N, then we have:

ki, ([ @nj,m! @njlL,)
= kp, ([ @nj, pr(m")(1@np)l) @k
= kp, (p(m' @nj)(m") @ny+ r(m")(m' @nj, 1 @ny]L)) @k
= kg, (m' © p(nj)(m!) @ ny) @ hi— K, (dr(m! ) (p(ny) (m) @ nj)) @ i
— ke, (bL(m” ) (bL(m)([ny,njln))) @
= KLh(mIQp(nj)(mll)®nj/)®ﬁ—KLh(mI,(Dp(njf)(mI)@nj)@ﬁ
+xp, (Gr(m” ©m")([nj,nyln)) @b
We can now study the two Taylor components of KLﬁ([mI ®n j,mll ®mnjg,), starting
with the arity-0 one and an element k € K:
ke, ([m' @njm" @njl, ) (L k)
=L m! ©p(n))(m "o p(ny) (k)@= Lm! © p(ny)(m') © p(n)) (k) @ h>
+im om! ©p({ns:nyIv) & k) 1
=L m' ©p(nj)(m")© p(ny) (k)@ W+ | m" @m @ p(n;)(p(ny) (k) @7
— L ©p(ny)(m') @ p(n) (k) @ 12— Lm" ©m' © p(ny) (p(n) (k) @ 12
=Ll ©p(ny) (m' @ p(n)(K)) @ 2= Lml" ® p(ny) (m! © () (k)) & 1
=k, (m' @n)) @ o, (m" @) O (L) =, (m" @n ) oy, (m @nj) O (L k)
= ke, (' @), ke, (m" @ny)Jen, (LK)

(
)

Here again, the relation holds strictly. But it is not the case anymore for the arity-1
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Taylor component since for any a € A and k € K, we have:

<, (Im' @njm’ @nply, )V (Laz L k)
=1 < Psryen-(La),nj > om' @ p(nj)(m") 0k @ ki
— L < Psaryen(La),nj > om" ©p(ny)(m') ok h
+ 1 < Psryen: (b a), [, nply > oml om! ©koh,

and

(e, (! @nj), ke, (! @), (L a® LK)
= (KLﬁ<m’®nj><°> ok, (! @)D+ ke, (! @)V o (idg, 1)@ ke, (" 2y) )
— kp, (m" @ny) O ok, (m! @nj)V
— g, (m" @ny) Vo (idAh[l} ® Kk, (m! ®”j)(0)) ) (Ja® | k)
=L m! ®p(n;) << Pyaroyone (b a),ny > om” @k) @ h
+¢<Ps e (b a)n; > om! @m! © p(ny) (k)@ h
—1m" ®p( nj) (< Psuyen+(d a),n; > om' 0 k) @
— L < Psuyen-(d a),ny > om' ©m! Opnj)(k)@h
=L ©p(n)) (< Psguryon- (b @) > oml ) okl
— e p(nj) (< Psoyen+(d-a),nj > om') 0 k@ 1.

As a result, the non-trivial difference is:

ki, (! @yt @nple, )V (L aw L k) = ke, (m! @nj), ke, (m! @ np)]eo, (L a® LK)
=} < Psuyen-(d a), [nj,nply > om' om’ ©k®h
— L' om" ©p(n;) (< Psaryen (L a),ny >) Ok @i
+im om'® p(ny) (< Psgunyen-(La),nj >) ©k@h

And we claim that it lies in the image of 0, but before proving that, one should notice
that the arity-2 Taylor component of [k, (m' ®n;), Kz, (m" @n1)]com is also non-trivial
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since we have for any pair aj,a, € A and k € K:

[kz, (m! @ 1)), kp, (m" @n) ) (Lar® | ay® LK)
= i, (m! @nj)W o (idy, 1 @ kp, (m! @np) V)1 a1® ) arx® LK)

— kg, (m" @ny) Vo (idy, 1 @y, (m @n) V) (L a1® | ax® L k)
= kp, (m' @n)) V(L a1® | < Bsguyen (L a2),ny > om' ©k)

— kg, (m" @np) V(L ar® | < Pspyen+ (L a),nj > om! @ k)
=] < Ps(uyen+ (L a1),n; > oml® < Pyyyen: (4 a2),nj > om! ok

— \L < PS(M*)@N*(i (ll),l’lj/ > @mI O < PS(M*)@N*U/ az),l’lj > @mIG)k

To prove that both remnant Taylor components are the ones of a 0-coboundary we
define an element, 0, in End_! (T(A4[1]) ® Kp[1]) and show that Q1) (8)()

T (Ap[1])—comod
and Q1) (8)(?) coincide with the previous expressions.

As a comodule endomorphism, 0 is defined by its only non-zero Taylor component
01, set as the K[#]-linear extension of the following morphism:

o) . Ap[l)®Kp[l] — Kp[l]
baglk = 2.4m'om'® <Py (@ n@ Ly > 0k

The degree of (1) is readily computed to be —1 and it is not hard to see that Q! (0)
has only two Taylor components, Q(!)(8)(") and Q") (8)(?), which we evaluate:

0 ()N (}aw | k)
= [dAh,Khy e](clo)m (l, a®k i k)
=000 (d) @idg,m)(} a® | k)

—_pM (i (pA(Cl) — %[o,o]ﬁ,o$ (a))@ik) ®h

— —2 \LWLI@WLI/@ < pA(PS(M*)(@N*[_I](a))?L I’l]® inj/ > @k@h
+im'om'® < [o,0]f0 | (Psryen-—1 (@), L nj® Lny > 0k h,

where in the last equality we use the fact that both p? and [e, e] ﬁ,o J are derivations of
A of degree 1, hence the projection vanishes if a ¢ S(M*) ® N*[—1]. We can therefore
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reduce the problem to the case a = m! ® 1 n' with T € Multi(I) and € J:

oW @) V(| (m"® 1)@ Lk)@h

=2 mlom' e <p®(m ot L@l ny>ckah
—|—¢m1®mll®mT®<[o,o]]%(n’),inj®¢nj/>®k®h

——mlom’'e <) p®(m")on' njon; > okoh
+¢m1®m1/®<nt®$pA( T nj@ny >okoh
+imom om’ on'(<[e,oy,nj@ny >)OkQh

= —Imom @p(nj)( Don'(ny)okah
+lmom ®n(nj)®p( N(m") Ok h
+imom! om’ on'([n, nyln) Ok h

=Ll om ©p(n)) (<m’ @n'ny>) ko h
—|—¢mll®ml®p(nj/)(<mT®nt,nj >)®k®ﬁ
—|—¢<mT®nt,[nj,nj/]N>®m1®m1/®k®ﬁ

= kp, ([ @njym! @nplr,) V(1 (mT @1 ") L k)

- [KLh(mI ®nj)7 KL, (mll ®7lj/)]g0)m(i (mT® ) nt)® k)

So we obtain the desired relation for arity-1 Taylor components, and it only remains to
show it for 0" (8)(). Indeed, for any pair a;,a> € A and k € K we have:

D)l a1® | ar® | k)
[dAh,Kh; ] & n(da1®@la® k)
= (ag”o <ldA,[l 26l )+e< Vo (d) @ idy, +idp, @ ") ) (Lar® L ao® LK)
:—ZdK} (ia @ m om! ®<P(M*)®Sz( N[ 1 (az)inj®$n-/>®k)
+O0(ENML (@ ©a)@ L)+ 00 ual@wm(az)@k)
=2. | P, (a1)om' om ‘©< PS(M*)@SZ(N*[fl])(azxi ni®lny> ok
— (—1)‘“”2. ¢m1®m11® < PS(M*)®SZ(N*[—1})("1 Oaz),dn;®@|lny >0k
+2.lmom'e < PS(M*)@)Sz(N*[le(al),i ni®@lny> 0Pk, (a2) Ok
=2. L' om" ® < Bspyane(—1)(@1) © Psuyone (1) (a2), L nj@ Lny > Ok
=+ 1 < Pyryen-(Lar),nj > 0m'® < Psypyan- (L ax),nyp > om0k
— 4 <Pyryen-(d ar),nj > om'® < Pyyyen: (4 az),nj > om! Ok

_[KLﬁ(mI ®nj), KLh(mI/ ®nj/)](C20)m(*l’ a1 i, arX \L k)

So we have proved that k, ([m! ®nj,m1, ®njlr,) — [k, (m' @nj), kL, (m" ®@njr)]com is
a 0-coboundary and so H o Kz, is a Lie morphism.
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Proof of 11.3.3-7:

We now prove that H o k7, and H o kg, satisfy the conditions of the universal property
of % (Ry,Ly). As before, we prove that the conditions applied to kz, and kg, hold up
to 0-coboundaries, and in this case it holds stricly (the 0-coboundary is 0):

We consider basis elements m! € R = S(M*) and m’ ®@njeL=S(M")®N, then we
have the following arity-0 Taylor component applied to any k € K,

(kg (m") 0k, (m' @)@ (L k)
= KR,L(mII)(O) o KLh(mI ®nj)(0) (4 k)
= kg, (m") O (L m" © py(n;) (k)
=L m" om' ® pp(nj) (k)
=k, (m" om' ©nj) O (L k)
= K, (b, (m" ) (m @) O (L k).

Similarily, given elements a € A and k € K we have the following arity-1 Taylor
component:

(kg (") 0 Kz, (m! @)D (L ag | k)
= KRh(mI,)(O) oKL, (m1®nj)(1)(¢ a® | k)
=L m''® < Psggyan- (L a),n; > oml ok
=k, (m" Om' @ny) V(| az | k)
= k1, (r, (m" ) (' 1))V (L aw L&),

and since all other Taylor components trivially vanish, it proves that for all r € R and
[ € L, we have:

ke, (r)Ke;, (1) = ke, (b, () (1))-

It remains the second relation, here again we consider basis elements m!' € R= S(M*)
and m' ®n; € L = S(M*)® N, then we have the following arity-0 Taylor component
applied to any k € K,

[z, (m! @n» K, (7 )] o (LK)
= kg, (m' @n;)° ow( ") ><¢k>—KRh< MO ok, (m' @nj) O () k)
= kp, (' @n) O m! Ok) - KRh< MO m' © pn(nj) (k)
=L m ©pu(n))(m" ©k)— L m" om! © pp(n;) (k)
=L m' @ pp(nj)(m") Ok

= kg, (pr(m! @n;)(m!" ) O (L k).

Similarily, given elements a € A and k € K, we have the following arity-1 Taylor com-
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ponent:
[kt (! @ 17), ki, (" )i (1@ LK)
= kp, (m' @nj)V o (idy, 1 @ ke, (m")O) (L a® L k) = kg, (m") D o kp, (m' @nj) V(| a® | k)
= kg, (m' @nj) V(L a@ | m" ©k) — kg, (m") O (L < Bpgyan+ (L a),nj > om! ©k)
= <Psuyan-(L a)nj > om' om’ Ok— L m'e < Psyen (4 a),nj > om' Ok
=0,

which is what we wanted since kg, have a trivial arity-1 Taylor component. Again since
all other Taylor components trivially vanish, it proves that for all » € R and [ € L we
have:

(ke (1) s KRy (1)l com = KRy (PR(1)(r))- O

We now state the second main theorem, which says that the algebra By obtained
from the deformation quantization of B, is actually the universal enveloping algebra of
the formal deformation of the local Lie algebroid.

Theorem 11.3.3-8 :
Given the formal deformation of a local Lie algebroid, (Mp, Ny, [e,e]1,, pr), the
following is an isomorphism of associative Z-graded K[A]-algebras:
Jp, (% (Ly,Ry),@-0) — (Bﬁ,/gBh(dﬁ) + Vgﬁ) ,
which is defined using Proposition I1.3.3-4 and Proposition 11.3.3-2 by:

Jp, :=H(Rp,) ' o K.

Proof :

Since H(Rp,) is an isomorphism of Z-graded associative K-algebras and since X is
a morphism of Z-graded associative K-algebras, then Jp, is an isomorphism if and
only if X is also one. To prove it, we use a formal deformation theory argument,
by showing that the evaluation /# = 0 also gives an isomorphism. As an associative
algebra, % (Lo, Ro) is generated by S(M*) ® N, thus consider a basis element m’ @ n;,
since i=0and m' @n j € L we know that:

K (m' ©nj) = kpy(m' @nj)0.

From [Cal+11] Proposition 7.5, we also know that Rp is an isomorphism, and we want
to make RBO(mI ®@n;) more explicit. By the very definition of the right action, given m
elements ap, --- ,a,, € A and an element k € K we have:

Rp,(m' @n)™ (a1 ® - @] an® k)
:dém’l)(¢a1®~--®¢am®¢k®¢(ml®nj))
)y Hﬁﬂ%"([ﬁ I1 a’f)(Wl®'--®¢am®¢k®¢(ml®nj))

I'eGomio “0,m+2 ecE(I)
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As usual, if we consider a graph, I' € Gy 2, whose contribution in the previous sum
is non-zero, then I" is compelled to satisfy:

m = dim(6,"

0’m+2) =#E(T).

And, as before, any edge going out of one of the first m + 1-th vertices induce terms of
the forms t,4,, which trivially vanish on A or K.

It therefore only remains edges going out of the m +

2-th point colored by m! ®n; which vanish if more /\

than one edge share this point as a starting point. In
consequence, m = 1 and I" has only one edge as in ai k ml on j
the graph on the right.

We can compare the two elements of End T(Ax[1]) ® Kx[1]) by evalu-

T (Ap[1])—comod (
ating them. Consider an element a € A and k € K, then:

KLO(mI®nj)(l)(¢ a® | k) =] < Ps(pyen+(L a),nj > om! Ok
While:

Ry, (m' @nj)' (L a® | k)

K[

né,l)(a)jﬂi) ®T~é]37])(\lx a® i k® \L (l’l’ll ®I’l]))>
= ( ﬂé,l)(w+’)> w0 (L a)® Lk | m')

J.

1 [+ 9 —i

:\l, < PS(M*)@N* (\L a),nj > @mIQk

So the two morphisms agree, which means that the image of Rp, and the image of X
coincides, and in consequence X is an isomorphism of Z-graded K-modules for 7 =0
which lead to the final claim.
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QUANTIZATION THEOREMS

THE DUAL OF A LIE ALGEBRA

In his paper [Kon03], Kontsevich gave a direct application of his formality theorem,
by quantizing the linear Poisson structure of the dual of a Lie algebra. We review this
application and generalize the result to Lie algebroids.

Consider a finite d-dimensional Lie R-algebra g and its R-linear dual g* It is a well-
known fact that g* is naturally endowed with a Poisson structure called the Kirillov-
Kostant-Souriau Poisson bracket. Given a point p in g*, the differential at p of a smooth
function fin C*(g*) is an element d f,, in (g*)* ~ g. Hence, given two smooth functions
fyhin C=(g*) one can define a new smooth function:

{fsh}(p) =< p,[dfp,dhy] > .

This bilinear bracket is known to obey the Leibniz rule and the Jacobi identity, and thus
defines a structure of a Poisson algebra on C*(g*), which can be expressed in local
coordinates as follows. The identification (g*)* ~ g associates to each element e in g,
an R-linear map ¢* defined by,

R

_
= y(e)

v
By considering a basis (e, -+ ,e4) of g, this identification gives a set of linear coor-
dinates (xi, ---,xz) on g* by setting x; := e}. The Kirillov-Kostant-Souriau Poisson
bracket is then locally expressed as:

df dh
{finy="Y% [ei;ej]*a_)];&_xj

1<ij<d

Stricly speaking, Kontsevich’s work does not apply to all smooth functions but rather
only on polynomial functions, therefore we consider the symmetric algebra S(g) as be-
ing identified with the subalgebra of polynomial functions over g*.

On the other side, the formal R-algebra g[[i], endowed with the bracket h|e, o] is
naturally a Lie algebra, and we denote by Uj(g) the Universal Enveloping algebra of

(g[7], Ao 0]).
Theorem 11.4.1-1 : [Kon03, Theorem 8.2]

Consider the Poisson manifold g*. Kontsevitch’s quantization of the Poisson algebra
(S(g),{e,e}) of polynomial functions over g*, is isomorphic to Uy(g).

This result has been reproduced in [CFR11] using a different approach and in the
framework of [Cal+11]. Since Kontsevich’s proof of this theorem relies on the deforma-
tion of the Lie algebra of functions over g*, it is not clear if and how to extend this result
to Lie algebroids. In the next section, we show that it is indeed a direct application of
the previously shown theorems.
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11.4.2 THE DUAL OF A LOCAL LIE ALGEBROID

The definition of the dual of a Lie algebroid in the sens of differential geometry can
be found in [CW99, §16.5]. Here we consider the setting of a local Lie algebroid
(M,N,[e,e],p) as in Definition II.1.2-2, where M and N are finite dimensional Z-graded
R-modules concentrated in degree 0 and the local Lie algebroid L = S(M*) ® N is a free
S(M*)-module.

The S(M*)-linear dual of L is then defined by L" := S(M*) ® N*, and is also a free
S(M*)-module, hence (L")" = L. We then consider the algebra O(L") of S(M*)-linear
polynomial functions over L":

O(L") 1= Ss (L)) = S(M*) @ S(N) = S(M* ® N)

As for classical Lie algebra, one can define a Poisson bracket, {e,e}, on O(L") by
setting it on generators of the symmetric algebra, for all x,x; in N and all fi, f> in M*,
and then extending it as a biderivation:

{xl,)Q} = [X],Xz],
{f1, 2} =0,

{xn fi} = plx) (),
{fi,x1} = —p(x1) (A1)

— Proposition 11.4.2-1 :

The pair (O(L"),{e,e}) is a Poisson algebra.

Proof :

The previously defined bracket {e,e} is an anti-symmetric bilinear map subject to the
Leibniz rule in each argument. Hence, we only need to check the Jacobi identity:

Vx1,X2,x3 €N, {x1,{x2,x3} } + {x3, {x1, 02} } + {x2, {x3,x1 } }
= [x1, [x2, x3]] + [x3, [x1,x2]] + [x2, [x3,%1]]
—0,
Vxi,xo €N, f3€M* {x1,{x, B3 H{ s Axnx2 )} + {0, { 5,21} }
= p(x1) o p(x2)(f3) — p([x1,x2]) (f3) — p(x2) o p(x1)(f3)
—0,

where the last equality holds because p is a morphism of Lie algebras and other identi-
ties involving more than one term of M* trivially vanishes. []

‘We recall that.{mi}ieﬂ e M" (resp. {nj}jer € NY) stands for a basis of M (resp. N),
{m'}icr (resp. {n’} jcy) stands for the dual basis and given a multi-index / € Multi(1)
we denote by my the tensor my, © --- © my,,, with similar notations for N and duals and
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that we assume Einstein notation. The tensor decomposition of the structure morphisms
of the local Lie algebroid are:

p= rf’j m! @m; @n! and [o, 0]y = b;;jl’jz m' @nj, @ (n!' @n?).

Hence, as an anti-symmetric biderivation, the Poisson bracket, {e, e}, has a tensor
representation in S(M*) ® S(N) ® S>((M & N*)[1]) given by:
{o, 0} = —b.I].;j"h m' @nj, @ (L n''® | n'?) +2.rf’j m e (/e m).

It is therefore quite obvious that one half of the Poisson bracket %{0, e} is identified
under appropriate suspensions with the Maurer-Cartan element d of Theorem I1.2.2-1,
and so we get the following theorem.

Theorem 11.4.2-2 :
Given a local Lie algebroid, (M,N,[e,e],p), with M and N concentrated in degree 0,
and the setting of the underlying Lie-Rinehart pair where,

R=S(M") and L=S(M")®N.

Consider the Poisson manifold L'. The quantization of the Poisson algebra,
(O(L"), 1{e,}), of polynomial functions over L", is isomorphic to the Universal
Enveloping algebra of the Lie-Rinehart pair, (% (Ly,Ry;),+e).

Proof :

It is a direct consequence of Theorem I1.3.3-8, since 1{e,#} =d and O(L") = B. ]

Remark 11.4.2-3 :

In the special case of a trivial local Lie algebroid where M = {0} and p =0,
(L,[e,e]) is a Lie algebra, and we recover Theorem I1.4.1-1.

11.4.3 TOWARD .%,.-ALGEBRAS

Going back to the begining, the reader may have noticed that instead of working with
Lie algebroids, we could have worked with .Z..-algebras. Indeed, as we already men-
tionned, the Lie bracket [a’,a,’]Tl-DO1 (x) is here equal to d od and thus, d can be seen

as a graded derivation of the algebra S((M & N[1])*) squaring to 0. This leads to the
following proposition:

— Proposition 11.4.3-1 :

Given a local Lie algebroid (M, N, [, e|,p) where M and N are finite dimensional
Z-graded K-modules concentrated in degree zero.

The Maurer-Cartan element d constructed in Theorem I1.2.2-1 defines the structure of

an Z.-algebra over M[—1] & N. ]
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Proof :

Since M and N are concentrated in degree zero. The anchor p is a graded morphism of
degree zero, thus d as a graded derivation of S((M[—1] @ N)[1]*) is a graded morphism
of degree 1 squaring to zero.

Therefore, since X = M @& N|[1], we may hope to apply the same procedure for a
general Z..-algebra structure over X[—1], which is then called a local .Z,-algebroid,
and to recover an .o/..-algebraic analogue of the Chevalley-Eilenberg algebra and the
Universal enveloping algebra of the .Z..-algebroid as seen in [Bar08].
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